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Abstract 

Adelie penguins have been widely studied as an "indicator" species for the health of the Southern 

Ocean ecosystem. However, the effects of climatic variability and human activities on Adelie 

penguin populations are poorly understood. As many of the Adelie penguin colonies used for long-

term demographic studies are located near research stations, there is a need to be able to disentangle 

the effects of human activities and environmental variability on Adelie penguin populations. This 

study investigates the landscape properties that drive the locations of Adelie penguin colonies in the 

Windmill Is, East Antarctica. It also examines whether potential changes in snow cover and/or 

proximity to human activities best explain the varying population trends of colonies in two breeding 

localities. While some colonies have been abandoned, or have undergone strong population 

decreases, the populations of others have grown by more than 1000% in the past 38 years. 

This study uses Geographic Information Systems to generate spatial data of landscape, snow 

accumulation patterns and proximity to human activity parameters. Landscape parameters are 

derived from fine-scale digital elevation models (DEMs) and snow accumulation patterns are 

modelled using a complex physically-based GIS model. The parameters are then combined into 

multivariate statistical models to generate predictions of habitat suitability. 

Individually, the landscape attributes, such as elevation, slope, solar radiation, and wetness index, 

have little power to predict the distribution of colonies within a breeding locality. On the• other 

hand, multivariate models (discriminant analysis and decision tree) derived from these landscape 

attributes predict the presence or absence of colonies in test grid cells with up to 78.9% accuracy. 

General rules to describe the distribution of Adelie penguin colonies are not easily derived, as 

habitat suitability appears to be driven by complex interactions between landscape attributes. 

At Whitney Pt, the study site farthest from Casey, modelled snow accumulation parameters explain 

most of the variation in population trends among colonies (up to 83.7% accuracy, for five classes). 

At Shirley I, 500 m from Casey, models derived from proximity to human activity parameters 

correctly predict the trend classes for up to 83.8% of test cells, while models derived from snow 

accumulation parameters correctly classify up to 57.8% of test cells. This suggests that while snow 

accumulation patterns are a primary driver of variation in population trends among colonies, the 
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effect of snow accumulation is outweighed by the effects of human activities near Casey. 
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I Introduction 

The effect of climate change on the environment is an issue of current public and scientific 

concern. Some of the most significant climate alterations have been observed in polar regions 

(e.g. Fraser and Patterson, 1997; Croxall. et  al., 2002; Ainley, 2002; Forcada et al., 2006). In 

addition, Antarctica is designated as a wilderness zone to be protected under the Antarctic 

Treaty. Therefore, an understanding of the effects of climate change is particularly critical for 

management of Antarctic environments. 

Seabirds have been widely used as indicators of changes in the Southern Ocean ecosystem (e.g. 

Micol and Jouventin, 2001; Croxall et al., 2002; Kato et al., 2002; Kato et al., 2004). There are a 

number of reasons for this, including their perceived primary role in the Southern Ocean 

ecosystem and the ease with which they can be monitored (Micol and Jouventin, 2001; Kato et 

al., 2002). However, it has also been acknowledged that using birds as bioindicators of climate 

change is problematic because of the complex nature of the numerous interactions in the 

Southern Ocean ecosystem (Croxall et al., 2002) and the potential confounding effects of human 

impacts at local scales. Adelie penguin (Pygoscelis adeliae) colonies are known to be abandoned 

and recolonised as the climate changes (Ainley, 2002; Emslie and Woehler, 2005) and have 

hence been termed "bellwethers of climate change" (Ainley, 2002). 

1.1 Climate variability and Adelie penguin populations 

The localities used by breeding Adelie penguins are affected by interactions between the terrain 

and local climatic conditions. One of the key facets of this study is the investigation of the 

impact of snow accumulation on the distribution of colonies and on their population trends over 

46 years. One previous study attempted similar analyses (Fraser and Patterson, 1997). That study 

used a hillshade model as a surrogate for wind exposure to penguin colonies. Wind exposure 

was, in turn, used as an indicator for areas where snow would be abraded. The present study 

applies a more complex snow accumulation model, based on the physics of drifting snow and 

available meteorological data (Wallace, 2005). 

Most recent investigations of Adelie penguin population trends have focused on climate change, 

and especially changes in sea-ice extent (e.g. Trivelpiece and Fraser, 1996; Croxall et al., 2002; 
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Kato et al., 2002; Kato et al., 2004; Forcada et al., 2006). Others have attempted to separate the 

effects of climate changes and human activities (e.g. Fraser and Patterson, 1997; Micol and 

Jouventin, 2001). The present study followed the latter approach, and attempts to differentiate 

between climatic and human-induced effects. 

Many studies of the effects of climatic variation on Adelie penguin population trends have 

focused on broader-scale variables, such as sea-ice extent. These studies have generated 

somewhat contradictory results. There is debate about the extent to which these studies have 

been able to show clear patterns or causal mechanisms for population fluctuations (Croxall et al., 

2002; Ainley et al., 2003). It is possible that part of the reason for these contradictory results is 

that other environmental factors are confounding or exacerbating the effects of sea-ice changes at 

different sites and in different years (Fraser and Trivelpiece, 1996; Fraser and Patterson, 1997; 

Ainley et al., 2003). This study attempts to increase understanding of local environmental effects 

that alter the suitability of individual colony sites. This will, in turn, improve the interpretation of 

local, regional and ecosystem-scale population trends. 

1.2 Human impacts and Adelie penguins 

Human activities have had substantial impacts on the physical environment of Antarctic coastal 

areas (e.g. Young, 1990; Wilson et al., 1990; Micol and Jouventin, 2000.. For Adelie penguins, 

this effect has been most severe where penguin colonies have been destroyed for the construction 

of research stations and associated infrastructure (Wilson et al., 1990; Micol and Jouventin, 

2001). There is argument about the potential impact of human activities outside the immediate 

footprint of research stations (Wilson et al; 1989; Culik et al., 1990; Wilson et al., 1991; Woehler 

et al., 1994; Giese, 1996; Fraser and Patterson, 1997; Micol and Jouventin, 2001; Pfeiffer and 

Peter, 2004). Woehler et al. (1994) proposed that decreasing populations in some penguin 

colonies were the result of pedestrian visits by station personnel. 

As the number of people visiting Antarctica increases, so does concern about the potential 

impacts of human disturbance on Antarctic wildlife (Pfeiffer and Peter, 2004). In 2005/06, 26 

245 tourists visited Antarctica on tourism vessels (IAATO, 2006). In addition to this, almost 

4000 live in research stations located throughout Antarctica during summer (COMNAP, 2006). 

The debate on the potential impact of human activities has been particularly intense on the 



Antarctic Peninsula, where tourism is concentrated (Fraser and Patterson, 1997; Pfeiffer and 

Peter, 2004). However, it is also potentially an issue around all Antarctic research stations. 

Long-term studies of Adelie penguin populations have typically been generally conducted near 

research stations, where human activities are focused (e.g. Woehler et al., 1994; Fraser and 

Patterson, 1997; Micol and Jouventin, 2001; Woehler et al., 2001). Studies of Adelie penguins 

have also generally involved nesting birds. This means that it may be difficult to disentangle any 

effects of climatic variability and the role of human activities on numbers of breeding Adelie 

penguins. Clarke and Kerry (1994) raised concerns about the effects of invasive monitoring 

procedures on the validity of scientific observations of Adelie penguins at Bechervaise Island, 

near Mawson. 

1.3 The role of GIS in studying these phenomena 

In recent years, Geographic Information Systems (GIS) have been used extensively for habitat 

analysis of plant and animal species across the globe (e.g. Glenz et al., 1991; Manel et al., 1999; 

Lenton et al., 2000), as the development of GIS software has made it possible to include spatial 

variability data into ecological studies (Maurer, 1994). However, GIS has rarely been used to 

examine the land-based habitat requirements of Adelie penguins, with the exception of Fraser 

and Patterson (1997). Historically, attempts to study the nest-site requirements of Adelie 

penguins have been forced to ignore the spatial variability of terrain in and among colonies. This 

was largely because of the inability of available analytical techniques and computing power to 

adequately examine spatial data (Yeates, 1975; Moczydlowski, 1986 and 1989; Maurer, 1994; 

Evans, 1991). Some studies of human impacts have incorporated some limited assessment of the 

spatial variability of human activities (e.g. Wilson et al., 1990; Young, 1990; Woehler et al., 

1994; Fraser and Patterson, 1997; Patterson et al., 2003). 

A high-resolution digital elevation model allows fine-scale features to be captured and 

quantified, and their role in the distribution and population trends of penguin colonies to be 

investigated. GIS modelling of landscape parameters such as drainage and snow accumulation is 

more efficient than manually measuring these phenomena, and in the case of snow accumulation, 

allows historical trends and relationships to be examined from available long-term datasets 

(Orndorff and Van Hoesen, 2001). This enables an examination of the physical landscape 
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characteristics of Adelie penguin colonies in much greater detail than in previous studies, and an 

assessment and quantification of the spatial variability of nesting sites (Yeates, 1968; 

Moczydlowski, 1986, 1989). 

Historically, most studies have looked at population trends for what are here termed breeding 

localities — areas that contain several colonies (using the definition of Woehler et al. (1991, 

1994). There has been little examination of the spatial variability of demographic data within 

breeding localities. Exceptions to this include Woehler et al. (1994) who reported correlations 

between the population trends of colonies and their distance from Casey, Fraser and Patterson 

(1997) who compared the role of variability in wind exposure with the population trends of 

colonies, Wilson et al. (1990) who investigated the effects of human disturbance associated with 

the Cape Hallett research station on penguin breeding success and Patterson et al. (2003) who 

examined the relationships between snow accumulation, tourist visits and colony population 

trends. 

In the Windmill Is, individual Adelie penguin colonies have exhibited different population 

trends. Several of the colonies closest to Casey have undergone population decreases during the 

50 years of human occupation in the Windmill Is region (Woehler et al., 1994; E.J. Woehler, 

unpub. data). However, the overall Adelie penguin population of the Windmill Is trebled 

between 1961/62 and 1989/90, with the populations of many colonies increasing, and new 

colonies established at many breeding localities (Woehler et al., 1991). This trend has continued 

to the present (E.J. Woehler, unpub.. data). An analysis of fine-scale processes is needed to 

contribute to our understanding of the observed variability: 

1.4 Adelie penguins 

Adelie penguins have been intensively studied because of their perceived primary role in the 

Southern Ocean ecosystem, and the ease of access to them for study (Giese, 1996; Micol and 

Jouventin, 2001; Kato et al., 2002; Ainley, 2002). Adelie penguins are considered an 'indicator' 

species for the health of the whole ecosystem (e.g. Ainley, 2002). With the exception of Emperor 

penguins (Aptenodytes forsteri) penguin colonies are typically located on coastal ice-free sites 

(Trivelpiece and Fraser, 1996; Ainley, 2002). These are similar to the requirements for research 

stations, and many stations have penguin colonies nearby. Adelie penguins are strongly 



philopatric, and their colonies are easily observed, unlike cryptic-nesting species such as 

Wilson's storm-petrels (Oceanites oceanicus). 

One of the advantages in studying the distribution of Adelie penguins is that their current and 

former spatial distributions can be easily mapped. The birds form colonies of up to thousands of 

pairs. Adults build nests from small pebbles, collected from surrounding areas, to raise their 

eggs/chicks above the ground and so protect them from snow and meltwater (Ainley, 2002). In 

the Windmill Islands, these accumulations of nest pebbles have been shown to be up to 9000 

years old (Emslie and Woehler, 2005). The perimeters of existing and former colonies can be 

clearly seen in aerial photographs and on the ground. 

Regional trends have been identified in Adelie penguin populations across Antarctica. East 

Antarctic populations have shown sustained increases; populations on the Antarctic Peninsula 

have increased and decreased, and those in the Ross Sea showed no clear pattern (Woehler and 

Croxall, 1998; Woehler et al., 2001). Most population studies have examined regional trends, 

and there is a need for better understanding of finer-scale variation within regions. 

Adelie penguins can feed a considerable distance out to sea. A tracking study at Shirley I, near 

Casey, found that breeding penguins travelled between 31 and 144 kilometres from the colony 

(Wienecke et al., 2000). Another study of the foraging range of penguins at Shirley I found that 

they had a maximum foraging range of 135 kilometres (Kerry et al., 1997). These findings are 

broadly consistent with studies in other parts of the continent which have found that Adelie 

penguins feed between 2 and 100 kilometres from the colonies, with the short distances 

associated with extensive fast-ice (e.g. Kerry et al., 1995; Watanuki et al., 1997; Ainley, 2002). 

Given the large distances Adelie penguins travel to feed, and the short distances between 

colonies within a breeding locality, it is considered that land-based influences on Adelie penguin 

colonies are more likely to explain population trend differences among colonies than differences 

in the marine environment. 

1.5 Definitions 

In the penguin literature, the terms "colony", "rookery", "sub-colony" and "breeding locality" 

have been used in contradictory and ambiguous ways. The definition of what constitutes a 

colony is unclear for many seabird species. Wittenberger and Hunt (1985) proposed that a 
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continuum exists from solitary to colonial nesting, and that the decision on whether neighbouring 

groups of birds should be described as discrete colonies depends on the degree of interaction 

among the groups. This study uses the definitions in Woehler et al. (1991) and Woehler et al. 

(1994): A breeding colony is here defined as an area of contiguous nest territories. In turn, a nest 

territory is defined as an area containing a nest, and which is defended by a breeding pair, and is 

typically approximately 1 m 2  . A breeding locality is a geographical feature, either an island or a 

discrete area of mainland, on which breeding colonies are found. Thus, Whitney Pt contains 48 

colonies (sensu Woehler) and is considered to be one breeding locality. This contrasts with the 

definition of Ainley (2002) who used the term "colony" for what is here termed a breeding 

locality (Fig. 1.1), and with the term "rookery" which was historically used to describe breeding 

localities (e.g. Penney, 1968). 

Sites that contain conspicuous and clearly outlined agglomerations of nest pebbles, and are not 

known to have been used by breeding pairs of penguins during the period of human occupation 

in Antarctica have often been described as "relict" colonies (e.g. Penney, 1968; Woehler et al., 

1994; Emslie and Woehler, 2005). This study follows that definition, but uses the term "relic" 

rather than "relict" to refer to these unused colonies. This change follows the Oxford •  

Dictionary's (Pearsall, 1999) definitions as follows: 

"Relic n. 1 an object of interest surviving from an earlier time" 

"Relict n. 1 an organism or other thing which has survived from an 
earlier period. > Ecology: a population, formerly more widespread, that 
survives in only a few localities." 

By these definitions, the surviving remnant of a penguin colony whose population is decreasing 

might be defined as relict. "Relic" is a more appropriate term to describe colonies that are not 

used presently, and is thus used here. 
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Fig. 1.1: This area of the Windmill Is, East Antarctica, was identified by Ainley (2002) as a 
single colony. However, using the definitions of Woehler et al. (1994), this map shows two 
breeding localities, each containing several colonies. 
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1.6 Aims and objectives 

The study aims to: 

• • Quantify spatial landscape parameters (slope, drainage, aspect, solar radiation, planar and 

profile curvature, surface roughness) and climatic parameters (wind exposure and snow 

accumulation) from fine-scale digital elevation models (DEMs) of the two study, sites 

• Apply multivariate statistical analyses to investigate the importance of static landscape 

parameters in influencing the distributions of Adelie penguin colonies at the two study sites 

• Determine the contribution of selected climatic variables (snow accumulation patterns and 

wind exposure) to the observed long-term population trends of Adelie penguin colonies at the 

two study sites, using multivariate statistical analyses 

• Investigate the ability of proximity to Casey and the main Shirley I access point and exposure 

to potential air-borne emissions from Casey to explain the observed population trends of 

colonies on the island using multivariate statistical analyses 

1.7 Hypotheses 

This study investigates selected aspects of the spatial ecology of Adelie penguin breeding 

localities. It examines whether selected parameters of the landscape can predict the locations of 

Adelie penguin colonies within the breeding localities at Whitney Pt (66° 15'S, 1100  32'E) and 

Shirley I (66°17'S, 110°29'E) near Casey, Wilkes Land, East Antarctica. The study also 

investigates whether the interaction of these parameters and snow accumulation patterns, or 

proximity to human activities can predict the population trends of penguin colonies at two sites. 

This can be expressed as the following null hypotheses: 

HNULL 	Static landscape variables (slope, drainage, aspect, planar and profile curvature, 

surface roughness, wind exposure, snow cover and solar radiation) cannot predict the 

locations of current and relic Adelie penguin colonies at Shirley I and Whitney Pt. 

HNULL 2 Interactions between the shape of the land and the weather conditions that drive snow 

accumulation patterns cannot predict the population trends of Adelie penguin 
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colonies at Shirley I and Whitney Pt. 

HNULL 3 
 

Proximity and exposure to human activities associated with Casey cannot predict the 

population trends of Adelie penguin colonies at Shirley I and Whitney Pt. 



Chapter 2: Literature .  Review 

2 Literature Review 

2.1 Spatial ecology of Adelie penguins and the effects of landscape 
processes 

2.1.1 Adelie penguin distribution 

Adelie penguins have a circumpolar breeding distribution between 60 0  and 77°S. The global 

population has been estimated at approximately 2.4 million breeding pairs, at some 170 breeding 

localities. The birds nest on ice-free rocky shores with landing beaches, where there is access to 

open water for feeding. Colony sites are believed to be chosen because they have ready access to 

the sea, are exposed to prevailing winds, have gentle slopes that allow good drainage and 

discourage snow accumulation, and have a supply of suitable pebbles for nest construction (Yeates, 

1975; Trivelpiece and Fraser, 1996; Ainley, 2002). 

The spatial distribution of any species can be viewed at a nested hierarchy of scales, with the spatial 

pattern varying according to the scale (Maurer, 1994). At the broadest scale - that of the entire 

Antarctic continent - Adelie penguins breed where there are exposed rocky areas with landing 

beaches (Falla, 1937, in Ainley, 2002). Viewed from a regional scale, in an area such as the 

Windmill Islands, breeding localities are patchily distributed. Within each breeding locality, 

penguins are clustered into colonies and within an individual colony; the nest territories of penguins 

are mostly contiguous. Most studies that address the spatial distribution of Adelie penguin colonies 

have been conducted at the broader scales. 

Many of those studies focused on the marine environment and variability in parameters such as prey 

availability and sea-ice extent (e.g. Ainley and Le Resche, 1973; Fraser et al., 1992; Kerry et al., 

1995; Fraser and Trivelpiece, 1996; Kato et al., 2002; Forcada et al., 2006). Earlier studies 

suggested that the distributions of seabirds were primarily controlled by prey availability (e.g. 

Voous, 1965, in Fraser and Trivelpiece, 1996). From the 1970s onwards, studies suggested that 

distributions were also constrained by variability in the marine environment, such as sea-ice extent, 

and variations in sea temperatures, salinity and mixing depths (e.g. Ainley and LeResche, 1973; 

Fraser and Trivelpiece, 1996) 

10 



Chapter 2: Literature Review 

Ainley (2002) argued that breeding localities were geographically structured by a combination of 

available resources and by intra- and inter-species competition (Ainley, 2002). The resources 

included physical factors, such as suitable nesting sites, and biological factors, such as prey 

availability. Prey availability appeared to be the primary driver of the total number of birds in a 

region, and competition for food exacted a negative effect on population clumping (Ainley et al., 

1995; and reported in Ainley, 2002). Where a locality had a large breeding population, the localities 

within a 150-200 kilometre radius were typically found to have small populations (Ainley et al., 

1995). In addition to the breeding birds, each colony had a population of non-breeding birds that 

visited the colony and fed farther out to sea (Birt et al., 1987; Ainley, 2002). In contrast to the 

negative effect of competition for resources, the natal philopatry and social tendencies of Adelie 

penguins were found to have a Positive effect on the clumping of colonies, in that while nesting 

sites and prey resources were available, Adelie penguins remained close to their birth colony 

(Ainley, 2002). 

During the summer chick-rearing period, breeding Adelie penguins are central place foragers 

(Ropert-Coudert et al., 2004). The distances they travel to feeding areas vary throughout the 

breeding season and among breeding localities. Satellite-tracking studies have found that the birds 

travel up to 200 kilometres from the colony to feed during the chick provisioning period, with the 

shortest distances associated with areas of fast-ice, where the penguins walk to the foraging grounds 

(e.g. Kerry et al., 1995; Watanuki et al., 1997; Ainley, 2002). Tracking studies at Shirley I 

(Wienecke et al., 2000) found that breeding penguins feed up to 31-110km from the colony during 

the guard stage and 94-144km during the crèche stage (Kent et al., 1998; Wienecke et al., 2000). If 

Adelie penguins in the Windmill Islands feed between 30 and 140 kilometres from the breeding 

localities, it appears likely that differences in population trends among colonies located less than 

100m apart are driven by factors related to the terrestrial and social environment, rather than marine 

environment. 

2.1.2 Coloniality 

Adelie penguins are strongly colonial birds. Theories of why they nest colonially include nest-site 

availability; anti-predator strategies; access to mates; and social factors related to breeding, such as 

information transfer (Ainley et al., 1995). Wittenberger and Hunt (1985) noted that 98% of marine 

birds nest in colonies. They proposed that many seabird nest sites are more clumped than they 
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would be if simply constrained by the available suitable habitat. This is demonstrated in situations 

where neighbouring potential nest habitat remains unoccupied while one colony becomes crowded. 

This pattern occurs in the Windmill Islands, where relic colonies occur within 50m of extant 

colonies that contain hundreds of pairs. Wittenberger and Hunt also noted that colonies provide 

protection against predation in the form of increased vigilance, but at the same time they attract 

predators by providing a concentration of available food and they may also be more prone to 

disease. 

It may be that for Adelie penguins, a shortage of available rocky coast forces some degree of nest 

clumping, that makes them unable to take advantage of one of the benefits of solitary nesting — that 

of concealment from predators. Studies have found that when Adelie penguin breeding localities are 

under stress, the effects are most strongly exhibited in smaller colonies (Giese, 1996; Fraser and 

Patterson, 1997). Fraser and Patterson argued that a population below 25-30 pairs was unable to 

maintain the colony's defences against predation by skuas (Catharacta spp.) on the Antarctic 

Peninsula. 

2.1.3 Topographic influences on colony locations 

Fraser and Patterson (1997) used the term "landscape effect" to describe the influence that the shape 

of the land exerts on Adelie penguin colonies. This described a phenomenon recognised by the 

earliest Antarctic explorers — that Adelie penguins not only require ice-free rocky areas for nesting, 

but that they also select those sites where snow does not accumulate (Levick, 1915). 

It has since been argued that snow accumulation, meltwater runoff and solar radiation influence the 

selection of Adelie penguin nesting sites, and that the abandonment of a colony can occur rapidly 

after two or more years of failed breeding (Yeates, 1975; Moczydlowski, 1986, 1989; Trivelpiece 

and Fraser, 1996; Fraser and Patterson, 1997). 

Snow cover has repeatedly been found to be one of the most important drivers of nest site selection 

by Adelie penguins (Levick, 1915; Yeates, 1975; Moczydlowski, 1986; Moczydlowski, 1989; 

Trivelpiece and Fraser, 1996; Fraser and Patterson, 1997; Ainley, 2002). Therefore it is not 

surprising that changes in snowfall and wind regimes should also have been found to alter their 

breeding success and influence population trends, as recently shown by Fraser and Patterson (1997). 

12 



Chapter 2: Literature Review 

Ainley (2002) wrote that Adelie penguin colonies typically occur on ridges and higher ground, and 

that where they share breeding grounds with congeneric birds, Adelies are found farther from 

landing beaches. He argued that this is related to the conditions at the sites during the Last Glacial 

Maximum (19 000 y bp) when the species was under greater ecological pressure, and when land-ice 

lowered the height of the land by several metres, submerging gently sloping beaches. In more 

southern areas, where Adelie penguins nest in single-species colonies and land is in greater demand, 

he found that they nest closer to sea level. 

Adelie penguins are confined to areas where glaciers have formed moraines near the coasts, to 

provide nest-pebbles. Ainley (2002) argued that the availability of nest pebbles is a crucial driver of 

colony locations. In the Windmill Islands, most relic and extant colonies occur on raised-beach 

formations covered in rock debris measuring 2-6cm (Fig. 2.1). Keage (1982) argued that the 

preference for these formations demonstrates the importance of the availability of nest pebbles in 

determining colony locations. He wrote that the colony size and nest density are directly related to 

the availability of nest pebbles, with colony populations increasing with distance from the ice cap. 

However, he did not address the potential role played by penguins in building up these raised-beach 

formations by collecting nest-pebbles from surrounding areas. 

The present study did not address the availability of nest pebbles for two reasons. First, it is difficult 

to measure pebble availability and requirements. The number of pebbles used in nest construction is 

highly variable and ranges from nests built with a few pebbles to nests built from several hundred 

stones. It is also difficult to measure the spatial distribution of suitably sized pebbles over the area 

of a breeding locality. Second, if nest pebble availability were a limiting factor on nesting sites in 

the Windmill Islands, it is likely that the relic colonies would either be occupied or denuded of 

stones. At both Shirley I and Whitney Pt, there are numerous relic colonies in close proximity to 

colonies that contain hundreds of breeding pairs, and these relic colonies contain huge numbers of 

pebbles. 
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Fig 2.1: Adelie penguin colony at Whitney Pt, January, 2006. This colony is undergoing a strong 
population increase (3900% more breeding pairs than when the colony was first counted in 
1959/60). 

Early studies of the relationship(s) between the shape of the landscape and nest site selection by 

Adelie penguins occurred between the 1960s and 1980s (Yeates, 1975; Moczydlowski, 1986; 

Moczydlowski, 1989). Both Yeates and Moczydlowski noted the importance of snow distribution in 

determining the locations of colonies. Yeates found that microclimatic effects were vital for 

successful breeding, with nest sites exposed to high levels of wind exposure and solar radiation, 

compared with unoccupied areas. He argued that while microclimate played a vital role in site 

selection, interannual variability was likely to be caused by macroclimatic variation. Yeates did not 

address the role microclimate plays in determining the ultimate effect of macroclimate events. It 

may be that some colonies are in locations that are more prone than others to being covered by 

snow and hence become more or less suitable as snow cover conditions change (Fraser and 
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Patterson, 1997). 

Moczydlowski (1986; 1989) investigated the terrain properties of colony locations in the South 

Shetland Is. He found that the common features of all colonies were good drainage and high levels 

of solar radiation, with Adelie penguins nesting in the sites with the thinnest snow cover at the end 

of winter. In addition, their colonial nature helped shed snow because their faeces carried high 

levels of sodium chloride, which lowered the freezing point of water. This in turn aided dispersion 

of snow from colonies. From this, he concluded that Adelie penguins selected nest sites that are 

naturally likely to have the least amount of snow, and then, through the deposition of faeces, further 

increase the site's suitability. In 1986, Moczydlowski found that when penguins were not present, 

there was no difference in air temperature between colony sites and other parts of the landscape. He 

also argued that Adelie penguins did not nest in the most exposed sites. Instead, he proposed that 

they prefer sites with the least snow cover, but also with lower winds. Both Yeates and 

Moczydlowski's studies were conducted before the widespread availability of GIS as a tool for 

analysing spatial data. Their studies therefore did not take account of spatial variability within and 

among colonies. 

At Cape Hallett, in the Ross Sea, Adelie penguins are found on well-drained mounds, and where 

these were flattened by human activities associated with the now-abandoned research station, 

Adelie penguins did not recolonise after the station closed. However, where those mounds remained 

or were rebuilt as part of habitat rehabilitation, the penguins reoccupied after the humans left 

(Wilson et al., 1990). 

2.1.4 Climate variability and snow accumulation 

As with studies of the geographic distribution of Adelie penguin colonies, most investigations of the 

relationships between climate variability and Adelie penguin breeding success or population trends 

have been conducted at broad scales. Many studies have examined the responses of breeding 

localities to changes in sea-ice extent and other climatic variables (e.g. Ainley and LeResche, 1973; 

Fraser et al., 1992; Croxall et al., 2002; Kato et al., 2002; Kato et al., 2004; Olmastroni et al., 2004; 

Forcada et al., 2006). Such studies are useful in studying population trends for entire regions. They 

are of limited value in attempting to interpret differences in population performance among colonies 

within a breeding locality, where all the colonies are likely to be subject to similar sea ice 
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conditions and other, finer-scale processes are likely to be involved. 

A few studies have attempted to separate the effects of changes in sea-ice extent and snow 

accumulation patterns at local scales (Trivelpiece and Fraser, 1996; Fraser and Patterson, 1997; 

Patterson et al., 2003). On the Antarctic Peninsula, rising temperatures over the past 50 years have 

been accompanied by increasing snowfall and decreases in sea-ice extent — both factors which have 

been implicated in decreasing Adelie penguin breeding populations (Fraser and Patterson, 1997). 

Trivelpiece and Fraser (1996) studied population trends at Litchfield I, near Palmer Station on the 

Antarctic Peninsula. They noted that 18 of 21 colonies that have recently been abandoned were in 

the lee of prominent topographic features. 

Patterson et al. (2003) used a GIS hillshade model as a proxy for snow accumulation on Litchfield I 

and nearby Torgersen I, in a bid to determine whether snow accumulation or the effects of human 

visitation could best explain the observed changes in colony population trends. The hillshade model 

could be seen more accurately as a surrogate for exposure to the prevailing winds. Their study 

found a strong correlation between wind exposure and population trends, and no statistically 

significant relationship between the rates of human visitation and population trends. One of the 

limitations of a hillshade model as a surrogate for snow accumulation is that it models light — which 

has a laminar flow, whereas wind flows turbulently, and the transport of snow is physically 

complex (e.g. Kind, 1986; Liston and Sturm, 1998; Green et al., 1999). Thus, a hillshade can only 

give a first approximation of the patterns of snow accumulation. Such an approximation is 

appropriate in sites with simple topography, but potentially less useful for fine scale studies in sites 

with more complex or finer-scale topographies, such as those around Casey, where the maximum 

altitude is about 35m above mean sea level, and the landscape is dominated by a mix of low cliffs 

and gently undulating plateaux. 

2.1.5 Human impacts on Adelie penguins 

The Adelie penguin colonies, for which long-term population records are available, such as those 

used in examinations of responses to climate variability, are typically located near Antarctic 

research stations (Ainley and LeResche, 1973; Fraser et al., 1992; Trivelpiece and Fraser, 1996; 

Fraser and Patterson, 1997; Fraser, 1998; Micol and Jouventin, 2001; Olmastroni et al., 2004; 

Emslie and Woehler, 2005). This makes it potentially difficult to separate the effects of climate 
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variability from the effects of human activity at or near the colonies. 

A number of studies have investigated the effect of human activities on Adelie penguins. Reasons 

given for this research include public concern that man's presence in Antarctica may damage the 

ecosystem (Wilson et al. 1991), the obligations of national research programs under the Antarctic 

Treaty and concerns that the effects of human activity may affect the results of scientific research 

(Clarke and Kerry, 1994; Wilson et al., 1989). National Antarctic science programs are obliged to 

minimise their effect on wildlife and the environment, under the Antarctic Treaty and the Madrid 

Protocol. The International Association of Antarctica Tour Operators (2006) stated that tourism 

operators are also obliged to meet the requirements of the Antarctic Treaty. Young (1990) noted 

that Adelie penguins and humans have very similar requirements in Antarctica, namely access to 

ice-free terrain near water, and that as human activities increase, so too do the chances of significant 

effects on Adelie penguins. 

Adelie Penguins have often been considered to be relatively immune to human disturbances because 

they do not always display overt distress behaviours (Giese, 1996). However, numerous studies 

have attempted to investigate the effects of human activities on pygoscelid penguins. These 

activities include the destruction of penguin colonies (Micol and Jouventin, 2001); other alterations 

to the terrain from station construction (Wilson et al., 1990); aircraft flying over colonies (Culik et 

al., 1990; Wilson et al., 1991); manipulation of the birds during scientific studies (Wilson et al., 

1990; Clark and Kerry, 1994, Giese, 1996) and pedestrian visits to colonies (Culik et al., 1990; 

Wilson et al., 1991; Woehler et al., Giese, 1996; 1994; Fraser and Patterson, 1997; Holmes et al., 

2006). Measures used to determine the effects on penguins include behavioural changes, 

physiological changes such as heart rate (Wilson et al., 1991), changes in feeding behaviour 

(Wilson et al., 1989); and changes in breeding success or colony population trends (Woehler et al., 

1994; Giese, 1996; Fraser and Patterson, 1997; Patterson et al., 2003). 

The results of these studies have been somewhat contradictory and ambiguous. Many of the studies 

that have found a negative impact have used short-term measures, such as heart rates or behavioural 

responses. For example, Wilson et al., (1991) found that while birds may appear unconcerned by 

the approach of humans, heart rates increased from 80 to 127 beats per minute when approached by 

a researcher on foot. Another experiment showed that comparatively brief and non-invasive human 

handling resulted in an approximate 50% increase in the duration of foraging trips (Wilson et al., 
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1989). The researchers in that study concluded that this represented a "psychological" effect on the 

birds. 

There is also some direct evidence of a long-term effect on Adelie penguin numbers as a result of 

human visits. Giese (1996) studied the effects of scientific nest checks conducted every second day 

and tourist-style visits two to four times every day in Adelie penguin colonies that had previously 

been exposed to little human activity. She found that colonies subjected to both treatments had 

lower breeding success than control colonies. This difference was significant in small colonies (-40 

pairs) and not significant for larger colonies (-70 pairs). Giese argued that the effect of disturbance 

was exacerbated in smaller colonies and that it was most closely linked to the frequency of 

disturbance rather than the intensity of the disturbance. 

Woehler et al., (1994) proposed that visits to colonies by station personnel were responsible for 

observed decreases in breeding success and populations of colonies at the end of Shirley I nearest 

Casey. An examination of Adelie penguin population trends on two islands near Palmer Station on 

the Antarctic Peninsula was unable to find a link between population trends and human activities 

(Fraser and Patterson, 1997). In that study, the most heavily visited island, Torgersen I, was also the 

one with the smallest decrease in Adelie penguin numbers. Young (1990) found that Adelie penguin 

numbers in colonies close to the research station at Cape Bird declined significantly, while the 

overall number of penguins in the breeding locality increased. Those colonies closest to the station 

were the ones that had been most intensively studied and were also within 200m of a helicopter 

landing pad. 

At Cape Hallett, in the Ross Sea, Adelie penguins are known to nest on well-drained mounds 

(Wilson et al., 1990). The total population decreased from 62 900 pairs to 37 000 between 1959 and 

1968, when the Cape Hallett research station was in use. Station construction work led to the 

destruction of some mounds and the construction of buildings near others changing the snow 

accumulation regime. The station was abandoned in 1973 and demolished in the 1980s. Wilson et 

al. found that penguins reoccupied few areas where humans had altered the terrain. A combination 

of land acquisition by man, disturbance and scientific study was blamed for the observed population 

decline. Scientific practices such as banding and handling of the birds were most closely correlated 

with population declines in individual colonies. It took 12-14 years after the research station was 

abandoned for the penguin population to reach the size it was before human occupation. 
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Micol and Jouventin (2001) investigated the effects of station activities and the construction of a 

runway on the populations of 7 seabird species nesting near Dumont d'Urville, Antarctica. They 

found that despite the destruction of 10% of the region's Adelie penguin nests, the total number of 

Adelies had increased by 50% during the study period. On Ile des Petrels, where the station 

buildings are located and helicopters operate each summer, the number of Adelie penguins 

increased by 250%. Micol and Jouventin noted that they could not quantify the effect of 

environmental factors such as sea-ice extent, food availability and nest-site availability. However, 

they suggested that in the long term, these factors outweighed the apparently significant short-term 

effects of human construction activities. 

It is unclear why the penguin populations of Cape Hallett and Dumont d'Urville should display such 

different responses to station activities. It may be that other environmental factors have confounded 

the results of one or both of these studies. Little of the literature has involved examination of 

variation among colonies within one breeding locality, which is the scale at which such impacts are 

most likely to be seen. 

2.2 GIS habitat modelling 

Geographic Information System analysis has rarely been used to examine the spatial ecology of 

Adelie penguins (Patterson et al., 2003). However, GIS has been widely used to investigate 

relationships between the landscape and numerous other species across the world (e.g. Aspinall and 

Veitch, 1993; Baker et al., 1995; Bian and West, 1997; Store and Kangas, 2001). GIS has enabled 

ecological studies to quantitatively analyse spatial variability (Burrough and McDonnell, 2000; 

Vogiatzakis, 2003). Store and Kangas (2001) also noted that GIS applications can generate new 

data by spatial analysis of existing data. Typically, GIS-based habitat analyses have involved the 

creation of spatial data layers, each of which represents one habitat parameter. These layers have 

then been combined, using some function — derived from either expert knowledge or statistical 

testing - to produce a map showing the relative quality of habitat for the species being examined 

(Store and Kangas, 2001). 

GIS habitat modelling has been widely used in autecology (Guisan and Zimmermann, 2000; Kidd 

and Ritchie, 2000; Lenton et al., 2000; Osborne et al., 2001; Lauver et al., 2002; Gibson et al., 

2004). It has also been used for many reasons related to the interactions between human land-uses 

and the environment (Guisan and Zimmermann, 2000). These have included the identification of 
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conservation priorities (Bian and West, 1997; Walker and Craighead, 1997), field work and 

management planning (Curnutt et al., 2000), distribution and abundance modelling (Aspinall and 

Veitch, 1993); environmental impact assessments, as a step in refining habitat maps (Breininger et 

al., 1991), and to model changes in habitat suitability and fragmentation through time (Hansen et 

al., 2001). 

Habitat prediction models have been found to produce stronger results for species that are common, 

range-restricted or more specialised than for species that are rare, wide-ranging and/or more 

generalised in their habitat requirements (Pereira and Itami, 1991; Debinski et al:, 1999). Adelie 

penguins can be considered to be common within breeding localities, though their specific habitat 

requirements are poorly understood (Yeates, 1975; Moczydlowski, 1986, 1989 

Numerous approaches have been used to drive GIS-based habitat models, and one common 

classification method has been to split such models according to whether they are informed by field 

data (empirical models) and or by expert knowledge (rule-based models) (Guisan and 

Zimmermann, 2000; Store and Kangas, 2001). Store and Kangas (2001) argued that rule-based 

models were most suitable for situations in which it would be too expensive or time consuming to 

gather empirical data. 

Rule-based models have been used for species for which good expert knowledge of habitat 

requirements was available, and the distribution poorly understood (e.g. Lauver et al., 2002). This 

approach has been considered suitable for those cryptic species whose presence/absence is difficult 

to map (Gibson et al., 2004). Rule-based models have often used similar techniques to multi-criteria 

decision making analysis (Pereira and Duckstein, 1993; Lenton et al., 2000), which is a common 

technique in GIS. In models using this approach, habitat parameters have typically been assigned 

values based on expert knowledge, and these factors then combined to produce habitat suitability 

maps (Breininger et al., 1991; Pereira and Duckstein, 1993; Curnutt et al., 2000; Hansen et al., 

2001; Store and Kangas, 2001). Areas of suitable habitat have been defined as those areas in which 

all habitat factors coincide (Kelly et al., 2001). One criticism of this approach is that validation of 

these models has also often relied on expert knowledge, making the entire process somewhat 

circular (Pereira and Itami, 1991). • 

Empirical models take a more objective approach to analysing habitat suitability. Such models have 

typically attempted to quantify the relationship between observed distributions and habitat 
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parameters. The classification of habitat parameters has generally been independent of the wildlife 

data (Aspinall and Veitch, 1993). Adelie penguins are suited to empirical modelling because the 

penguins' present and past distribution is relatively easy to measure. In contrast, there is little expert 

knowledge available appropriate for forming rules to determine the location of colonies, as such 

processes are poorly understood (Yeats, 1975; Moczydlowski, 1986 and 1989; Wilson et al., 1990). 

The conspicuousness of Adelie penguin nests is in contrast to the problems encountered by 

researchers investigating bird species whose nest sites are cryptic and whose total populations and 

distributions must be inferred (Guisan and Zimmermann, 2000; Gibson et al., 2004). 

Store and Kangas (2001) argued that the accuracy of the results of habitat analysis depends on the 

quality of the source data and of the analytical techniques. The most important factors affecting the 

quality of spatial data have been described as currency, completeness, consistency, accessibility, 

accuracy and precision, as well as the error sources inherent in the data-gathering processes. Error 

propagation also occurs through the analysis process, particularly as a result of combining data sets 

with different spatial and temporal scales (Burrough and McDonnell, 2000; Store and Kangas, 

2001). 

Input data for GIS habitat analyses have typically been derived from three main sources — remotely 

sensed photographs and images (Breininger et al., 1991; Aspinall and Veitch, 1993; Bian and West, 

1997; Hansen et al., 2001; Osborne et al., 2001; Gibson et al., 2004); paper maps (Raphael et al., 

1995; Lenton et al., 2000); and DEM derivatives (Raphael et al., 1995; Blackard and Dean, 1999; 

Guisan and Zimmermann, 2000; Gibson et al., 2004). Input data of animal or plant distribution have 

been gathered by survey (Aspinall and Veitch, 1993; Osborne et al., 2001; Gibson et al., 2004); or 

by radio or satellite tracking (Bian and West, 1997). 

It has been stated that empirical models tend to decline in accuracy as the number of input variables 

and environmental complexity increases (Vogiatzakis, 2003). A common source of errors has been 

in the conversion of the available data to spatial coverages. Guisan and Zimmermann (2000) noted 

that many of the variables that determine habitat suitability, such as temperature or solar radiation 

are often interpolated from widely spaced monitoring stations and are hence prone to interpolation 

errors. In contrast, they argued that available DEMs and their derivatives tend to be highly spatially 

accurate. An additional benefit of DEM derivatives is that they may be more cheaply and efficiently 

generated than manually measured directly causative variables (Lenton et al., 2000; Gibson et al., 
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2004). Guisan and Zimmermann (2000) proposed that DEMs and their basic derivatives — slope, 

aspect and curvature — are generally the most accurate maps available, though they may not have 

the highest predictive potential. DEM derivatives may not have direct physiological relevance for a 

species, but can act indirectly on causative variables, such as temperature (Gibson et al., 2004). 

However, Vogiatzakis argued that these surrogate parameters may introduce errors into models. 

One result of using DEM-derivatives in a model is that the model may not be readily applied to 

other geographic areas because the same topographic position in a different region may experience 

a different environmental gradient (Guisan and Zimmermann, 2000; Austin, 2002; Gibson et al., 

2004). However, Guisan and Zimmermann (2000) showed that at local scales, DEM derivatives 

may show strong correlations with species distributions. 

Few GIS habitat analyses have accounted for temporal variability in habitat suitability (Curnutt et 

al., 2000). Guisan and Zimmermann (2000) noted that historical conditions may have a significant 

influence on the current distribution of organisms, and that most static models have failed to 

account for this. They urged researchers to incorporate historical data wherever possible. Guisan 

and.Zimmermann also noted that since temporal data of species' responses to environmental change 

are rarely available, static models are often the only possible approach. Cumutt et al. (2000) 

developed a model to account for changing hydrological conditions between years and between 

management scenarios. Baker et al. (1993) noted that selection of nest sites by sandhill cranes may 

have occurred when vegetation, climate patterns, water management or disturbance levels were 

different and that the suitability of an individual nest-site may vary from year to year. However, 

other studies that examined changing distributions of species have not considered temporal changes 

in the habitat quality (e.g. Glenz et al., 2001). 

The majority of GIS-based habitat analyses has used records of species presence/absence to 

measure habitat suitability (e.g. Pereira and Itami, 1991; Aspinall and Veitch, 1993). Aspinall and 

Veitch (1993) suggested that presence/absence data is appropriate for species where only a sample 

survey is available. Breininger et al. (1991) warned that model development and testing based on 

animal sightings or radio tracking may not reflect actual habitat suitability, because these may 

detect a small subset of an area used by the population. This was less of a problem in the present 

study because of the conspicuous nature of Adelie penguin nests, which reduced the risks of error 

associated with one-off observations of the species in a particular location. One difficulty with 
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calibrating habitat suitability models has been the fact that any species rarely occupies all of its 

potential range (Curnutt et al., 2000). Fielding and Bell (1997) noted that prediction errors can 

occur in habitat models when the habitat is unsaturated. They warned that if the species under 

examination is not using the entire available habitat, this will generate interference in the model. It 

has also been argued that it often cannot be determined whether an animal has never, or will never 

use a particular location (Breininger et al., 1991). However, Curnutt et al. (2000) argued that while 

the species in question may not appear in all areas with suitable habitat indices, it should not appear 

in sites deemed to be unsuitable. Fielding and Bell (1997) suggested that such "false negatives" are 

likely to be the result of errors in either the statistical model or due to some relevant ecological 

process not being mapped. They warned that appropriate data may not be available for some 

ecological processes. Guisan and Zimmermann (2000) argued that nature is too complex and 

heterogeneous to be reduced a single predictive model, no matter how complex that model may be. 

Breininger et al. (1991) argued that long-term studies of population dynamics are needed to 

accurately quantify habitat suitability, but noted that this is beyond the scope of many mapping 

applications. 

Scale 

It has been argued that the scale at which habitat is analysed can have major implications for the 

conclusions that can be drawn (Maurer, 1994). Baker et al. (1995) argued that ecologists need to be 

able to understand how habitat requirements change across spatial scales. They argued that 

choosing the wrong scale can lead to researchers drawing incorrect conclusions or to an inability to 

draw any conclusions. They found that as the resolution of analysis increased, there was a 

corresponding decrease in the ability to detect important habitat variables and draw conclusions. 

However, most GIS-based habitat analyses have been conducted at just one scale. The choice of 

scale has typically been driven by a compromise between the scales perceived to be important for 

the species under investigation, the resolution and extent of the available datasets and the available 

computational power (e.g. Aspinall and Veitch, 1993; Osborne et al., 2001). Pereira and Itami 

(1991) noted that different variables are likely to be important at different spatial scales. Lauver et 

al. (2002) found that loggerhead shrikes occurred in sites their model predicted as low quality 

habitat, and proposed that this was because the birds were making use of habitat features that were 

too small to be picked up at the 0.1ha resolution of their model. A few studies have investigated 

landscape variability at more than one scale. Raphael et al. (1995) modelled murrelet nesting habitat 
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requirements at river basin and site-specific scales. Osborne et al. (2001) used datasets that had 

been acquired at different spatial scales before combining them into a single predictive model. 

Most GIS-based studies have worked at broad scales, with resolutions typically larger than lha (e.g. 

Manel et al., 1999; Glenz et al., 2001; Osborne et al., 2001; Gibson et al., 2004). Exceptions to this 

include Sieg and Becker (1990), who measured landscape variables within an 11.3m radius of• 

merlin (Falco columbarius) nests. If the ability to detect important landscape variables decreases as 

the resolution increases, as argued by Baker et al. (1995) it seems likely there's a need for more 

studies that use GIS-techniques to examine spatial variability at fine scales. 

2.3 Statistics in GIS-based habitat modelling 

A wide variety of multivariate statistical tests have been applied to GIS-based habitat modelling. 

The simplest models have operated entirely within a GIS, combining the data layers by some 

mathematical function (Guisan and Zimmermann, 2000; Store and Kangas, 2001). However, 

Guisan and Zimmermann (2000) warned that these tests have typically been inadequate for model-

building as they did not allow stepwise selection procedures or graphical tests of model-fitting. 

More complex models have made use of the more powerful statistical tools available only in 

specialised statistical packages (e.g. Blackard and Dean, 1999; Debinski et al., 1999; Manel et al., 

1999; Osborne et al., 2001; Gibson et al., 2004). 

2.3.1 Univariate testing 

The first step of statistical modelling of habitat suitability has often involved univariate exploration 

of the relationship between the dependent variable and each parameter (Manel et al., 1999). It has 

been argued that if a species selects habitat based on the measured parameters, those parameters 

should show differences in the mean and variance between sites, where the species is present and 

absent. Larger variation in the distribution of values has typically been expected in sites where the 

species is absent (Pereira and Itami, 1991). 

2.3.2 Multivariate model selection 

It has been noted that the large and evolving range of statistical approaches available for ecological 

modelling can make it difficult for ecologists to choose appropriate methods (Manel et al., 1999). 
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Multivariate analyses that have been widely used in GIS-based habitat suitability studies include 

discriminant analysis (Raphael et al., 1995; Manel et al., 1999; Debinski et al., 1999; Kidd and 

Ritchie, 2000); logistic regression (Sieg and Becker, 1990; Osborne et al., 2001); decision trees 

(Hansen et al., 2001), artificial neural networks (Blackard and Dean, 1999; Manel et al., 1999); 

generalised linear models (Gibson et al., 2004); and Bayesian approaches (Aspinall and Veitch, 

1993). 

One of the challenges in selecting an appropriate testing method is that few studies have compared 

the performance of different models. Exceptions to this include Blackard and Dean (1999) who 

compared the performance of two forms of discriminant analysis and artificial neural networks; and 

Manel et al. (1999) who compared discriminant analysis, artificial neural networks and logistic 

regression, in predicting the distribution of several Himalayan river bird species. Blackard and Dean 

found that an artificial neural network was significantly more powerful than either of the 

discriminant analysis functions, but found no significant difference in the results of the linear- and 

non-parametric discriminant analyses. They also noted that the artificial neural network took 2500 

hours of computer run time, compared with five minutes for the discriminant analysis. Manel et al. 

(1999) found that the three methods they compared all had strong predictive power. When tested 

against calibration data, the artificial neural network outperformed the other two models, and 

discriminant analysis performed slightly better than logistic regression. When tested against 

datasets from different geographic areas, logistic regression marginally, but significantly 

outperformed the other two models, with the artificial neural network the worst-performer. They 

also found that the results from logistic regressions were most variable across species. 

Discriminant analysis has been successfully used in ornithological studies to distinguish suitable 

habitat and the effect of human visitors on breeding populations (Debinski et al., 1999; Manel et al., 

1999; Patterson et al., 2003). However, it is limited in its applicability because of the underlying 

assumptions of normality, equal variance within each group and equal covariance matrices within 

each group (Flury and Riedwyl, 1988; Hastie et al., 2001). 

Many of the available multivariate statistical tests rely on data that is normally distributed, but 

many ecological datasets do not meet this requirement (Blackard and Dean, 1999). Guisan and 

Zimmermann (2000) wrote that data sets can be normalised by a variety of functions, but warned 

that models built on the artificially normalised data can make biological interpretations difficult. 
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Manel et al. (1999) noted that multivariate normality can be hard to assess, especially with large 

numbers of predictor variables. They argued that as normal distributions are an underlying 

assumption of discriminant analysis, the results should always be treated with caution. However, 

Blackard and Dean (1999) argued that in practice, the assumptions of discriminant analysis are 

often violated with minimal apparent effect on the result. 

Logistic regression has also been widely used in ecological models (Sieg and Becker, 1990; Pereira 

and Itami, 1991; Bian and West, 1997; Glenz et al., 1999; Kelly et al., 2001; Osborne et al., 2001). 

This approach has been considered the most suitable when some of the available data were 

qualitative and did not meet assumptions of multivariate normality (e.g. Pereira and Itami, 1991). • 

Hansen et al. (2001) used a hybrid decision tree to classify habitat units. They wrote that this 

approach allowed them to incorporate different data types in the data analysis. Decision trees are 

non-parametric and hence make no assumptions about the distribution of the data (Quinn and 

Keough, 2002). Because decision trees attempt to predict each data point exactly, they avoid the 

need to characterise the model fit (Guisan and Zimmermann, 2000). Such trees have been found to 

generate almost as many terminal nodes as there are observations, and to therefore not offer any 

modelling parsimony. Pruning and cross-validation have typically been used to find an "optimal" 

balance between the number of terminal nodes and the predictive power (Guisan and Zimmermann, 

2000). 

2.3.3 Model refinement 

Once an initial statistical model has been generated, researchers have typically reduced the number 

of explanatory variables to a "reasonable" number, in order to enhance the model's accuracy and 

predictive power. Researchers have done this either arbitrarily, automatically by the statistical 

programs, by methods such as stepwise procedures, by following physiological principles or by• 

following shrinkage rules (Guisan and Zimmermann, 2000). Guisan and Zimmermann suggested 

that the number of explanatory variables should not exceed 10. A priori decisions about which 

parameters to include in the model have been found to be useful in studies of rare species, with 

small numbers of "present" data points (Gibson et al., 2004). For large datasets, it has been 

considered more appropriate to allow the statistical results determine the choice of datasets to be 

incorporated, using stepwise procedures (sensu Glenz et al., 1999; Debinski et al., 1999). 
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2.3.4 Testing validity 

The most common method for assessing the performance of a statistical model has been to report 

the overall percentage of correct predictions (Sieg and Becker, 1990; Raphael et al., 1995; Debinski

•et al., 1999). Some researchers have tested model performance by cross-validation (Sieg and 

Becker, 1990). However, it has been argued that cross-validation provides an overly optimistic 

assessment of the predictive power of the model (Fielding and Bell, 1997; Guisan and 

Zimmermann, 2000). 

Blackard and Dean (1999) and Guisan and Zimmermann (2000) argued that the optimal method for 

validating a model is to test it on independently collected data. This approach has only been 

possible in situations where independent datasets were available (Lauver et al., 2002). Guisan and 

Zimmermann suggested that where a single, large dataset is available, splitting that set into training 

and testing groups is appropriate. This approach was taken by Blackard and Dean (1999) and Manel 

et al. (2000). Fielding and Bell suggested that splitting a dataset into training and test sets can cause 

problems if the original data set is small. This has been a particular problem for studies of rare or 

cryptic species, with few positive records (e.g. Gibson et al., 2004). 

2.4 Snow accumulation modelling 

2.4.1 Snow transport mechanisms 

Snow drift is an important element in mass-balancing processes in polar and alpine environments 

because of its potential to move large volumes of snow during strong surface wind events (Kind, 

1986; Greene et al., 1999; Bintanja et al., 2001; Doorschot et al., 2004). Snow enters the 

environment as precipitation, which is not distributed uniformly across the landscape when it occurs 

in windy conditions (Kind, 1986). Precipitation tends to accumulate on leeward slopes, but this 

process is poorly understood and rarely incorporated in models of snow accumulation (Lehning et 

al., 2000). 

It is generally understood that snow is ablated from windward surfaces, and deposited in low-

velocity zones, such as in the lee of topographic features (Evans et al., 1989; Ishikawa and 

Sawagaki, 2001; Haehnel et al., 2001). Wind speeds increase on windward and convex slopes, and 

decrease on leeward and concave slopes (Liston and Sturm, 1998). Exposed 'areas, such as ridges, 
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may be almost snow-free, while gentle slopes may show a uniform snow distribution (Jaedicke et 

al., 2000). Deep snowdrifts occur where the areas of ablation are larger than the areas of 

accumulation (Liston and Sturm, 1998). It has been argued that topography is a crucial driver of 

snow accumulation patterns because changes in wind direction are more important than changes in 

wind speed in determining snow deposition (Liston and Sturm, 1998). It has also been found that 

the heaviest snow drift events occur during periods of roughly constant strong winds, and that short 

but strong blasts do not produce significant snow drift (Michaux et al., 2002). 

The dominant snow transport methods are saltation and turbulent suspension (Kind, 1986; Liston 

and Sturm, 1998). Creep (the gradual down-slope movement of crystals) also shifts snow, but it is 

rarely incorporated in flux modelling because of its very small contribution to total flux (Uematsu et 

al., 1991; Jaedicke et al., 2000). Saltation is the motion of snow crystals bouncing in a flow-layer 

several centimetres above the snow layer (Kind, 1976; Kind, 1986; Pomeroy et al., 1997; Lehning 

et al., 2000; Whittow, 2000). Saltation occurs when the wind produces a shear stress that exceeds 

the amount of stress needed to shatter the bonds of snow surface crystals. It is considered to be 

responsible for up to 25% of annual snow transport; with the proportion dropping as wind speed 

increases (Pomeroy et al., 1997; Haehnel et al. 2001). Once snow is moving by saltation, it is 

available to become suspended in the zone of turbulent flow (Kind, 1976; Kind, 1986; Pomeroy et 

al., 1997; Lehning et al., 2000). The term turbulent flow describes the net forward movement of air 

in an irregular, eddying flow, and it stretches tens of metres above the snow surface (Whittow, 

2000; Pomeroy et al., 1997). 

In addition to snow being redistributed, a significant amount is lost through sublimation. This is the 

conversion of ice crystals to vapour (Pomeroy et al., 1997). In one study in the Arctic, sublimation 

losses were calculated at 9-22% of the winter precipitation, with sublimation accounting for up to 

half the winter precipitation falling on windward slopes (Liston and Sturm, 1998). 

2.4.2 Why snow accumulation is modelled 

Accurate models of snow accumulation are needed for many applications. These include water-

catchment management (Greene et al., 1999; Daly et al., 2000; Walter et al., 2004), avalanche threat 

abatement (Greene et al., 1999; Lehning et al., 2000; Doorschot et al., 2004), infrastructure 

planning and maintenance (Kind, 1976; Purves et al., 1998; Jaedicke et al., 2000; Haehnel et al., 
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2001), ecological studies (Evans et al., 1989, Greene et al., 1999; Ishigawa and Sawagaki, 2001) 

and management of recreational sites such as rock climbing areas and ski runs (Purves et al., 1998). 

2.4.3 Available snow accumulation models 

Snow accumulation models vary in both complexity and accuracy, depending on the available input 

data and required results: Most of the early models operated in two dimensions (Greene et al., 

1999), and were designed to predict the evolution of snowdrifts and the distribution of snow along 

the line of the prevailing wind direction (Liston and Sturm, 1998). Attempts to take into account the 

three-dimensional spatial variability of snow accumulation patterns are more recent (Daly et al., 

2000). One method of classifying models is into those that attempt to provide numerical snow 

depths (e.g. Pomeroy et al., 1997; Greene et al., 1999; Lehning et al., 2000); and those that provide 

a relative map of snow distribution (e.g. Purves et al., 1998; Ishigawa and Sawagaki, 2001). 

Attempts to model snow accumulation are complicated by the challenges involved in measuring 

precipitation and snow flux. These challenges include disturbing influences such as low 

temperatures, high humidity, riming and the difficulty of distinguishing fresh precipitation from 

drifting snow (Doorschot et al., 2004). Attempts to measure snow flux have used pulse-counting 

sensors, mechanical traps, acoustic and optic sensors (Bintanja et al., 2001; Doorschot et al., 2004). 

These measurement difficulties are reflected in the fact that the Australian Bureau of Meteorology 

does not record precipitation at its Antarctic weather stations (AADC, 2006). 

A criticism of many snow accumulation models, such as those described in Pomeroy et al. (1997) 

and Lehning et al. (2000) has been that they are too complicated for easy assimilation into models 

such as those used for hydrological management (Walter et al., 2004). There have been attempts in 

recent years to develop relatively simple snow-distribution models, because of concern that the 

earlier, mechanistic models were overly complex (Walter et al., 2004). These simpler models 

typically set a constant value for variables such as snow density and threshold shear velocity, 

despite the spatial variability of these values (Liston and Sturm, 1998). 

Another problem with these physically detailed models is their intensive input requirements. Many 

of the aVailable models require automatic weather stations to be distributed through the study area 

(Jaedicke et al., 2000; Daly et al., 2000; Lehning et al., 2004). These requirements are greatest for 

models designed to cover large expanses of spatially variable terrain, across which the major input 
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parameters (typically Solar radiation, wind speed, air temperature, humidity and precipitation) are 

likely to vary significantly (Daly et al., 2000). 

In addition to the meteorological inputs, models typically require an initial snow cover layer. 

Researchers have used a variety of methods to assess the initial snow cover. These include using 

radar to measure snow depth (Jaedicke et al., 2000) and manually measuring snow depths along 

transects (Evans et al., 1989). Such approaches are inappropriate for modelling historic snow cover, 

or for modelling snow cover in areas that are not readily accessible. 

Some of the most prominent snow accumulation models are briefly described here. The Prairie 

Blowing Snow Model (Pomeroy et al., 1993) was physically based and was found to predict snow 

accumulation to within 10% of observed snow depths. However, its complexity and data 

requirements meant that its use was restricted to areas with major climatological stations, and is 

hence unsuitable for polar environments (Pomeroy et al., 1997). The Distributed Blowing Snow 

Model was developed for Arctic conditions from the Prairie Blowing Snow Model. This model 

divided the terrain into homogeneous landscape elements, based on vegetation, terrain, exposure 

and fetch characteristics. Meteorological observations were used to model the snow transportation 

processes (Pomeroy et al., 1997). Such an approach ignores the continuous nature of landscape 

variables, and is considered to be not suitable for adaptation to fine-scale applications such as this 

study. 

Another model, SnowPack (Lehning et al., 2000; Doorschot et al., 2004) was designed for 

avalanche prediction. Its focus is on modelling the stability of the snow-pack and it therefore 

required input data related to crystal structure of the snow pack. The model was designed for steep 

alpine environments, and required input from a network of about 100 weather stations in the Swiss 

Alps (Lehning et al., 2004). In steep terrain, there is also the potential to use remotely triggered 

cameras to measure changes in snow distribution, which can then be used as inputs for the 

development of a statistical model (e.g. Tappeiner et al., 2001). 

Daly et al. (2000) used spatially explicit temperature-index, precipitation and snow maps to specify 

initial snow conditions, before running their model through- multiple time steps. Although the 

authors described this model as "simple" (p. 3269) it relied on 97 air temperature sensors and 287 

snow gauges reporting hourly measurements. 
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The SnowTran-3D model (Liston and Sturm, 1998; Greene et al., 1999) attempted to model three-

dimensional snow movement for treeless terrain in the Alaskan Arctic. It was designed to help with 

water resource management and has been adapted for integration with a GIS (Haehnel et al., 2001). 

This model accounted for transport variations resulting from accelerating and decelerating flow, 

using solar radiation, precipitation, wind speed and direction, air temperature, humidity, topography 

and vegetation snow-holding capacity. It has been argued that SnowTran is only suitable for areas 

with gentle terrain (Lehning et al., 2000) because it assumes that the wind direction is not affected 

by the topography. 

Scale 

One of the principle constraints on snow accumulation modelling is its demand for computational 

power. Thus, attempts at snow modelling are typically limited in spatial and temporal scale scales 

(Hageli and McClung, 2000). Problems associated with scale are common with snow accumulation 

models. These include the inability of regular meteorological measurements to capture fine-scale 

processes such as snow drift; the inability of snow profile measurements to capture spatial 

variability and contradictions between input and output scales. 

Temporal and spatial scales can be defined as a combination of extent and resolution (Greenberg et 

. al., 2002). ). The temporal extent has typically been one season. Models designed to cover large 

extents have had commensurately large resolutions — up to 4km 2  and time-steps up to one month 

(Evans et al., 1989; Daly et al., 2000; Orndorff and Van Hoesen, 2001). Studies with smaller 

extents have generally also had finer resolutions — e.g. Greene et al. (1999) used cells of 30x30m, 

and some models have operated at time-steps as small as one to three hour time-steps (Daly et al., 

2000; Haehnel et al., 2001). Liston and Sturm (1998) wrote that more detailed DEMs can resolve 

more landscape features, finer temporal scales for weather data can better capture short-term 

weather events and more detailed wind models can improve the accuracy of the model. However, 

the trade-off is in greater computational complexity. Naaim et al. (1998) wrote that numerical 

modelling of wind fields over complex terrain was computationally intensive and warned that 

boundaries must be carefully chosen. 
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2.4.4 Commonly used physical inputs 

Wind Flow Field • 

Topography alters the speed and direction of the wind flow (Liston and Sturm, 1998; Lehning et al., 

2000). Therefore, a robust wind field model has been considered to be an important part of many 

snow accumulation models (Purves et al., 1998; Liston and Sturm, 1998; Haehnel et al., 2001; 

Walter et al., 2005). Most of the available algorithms to measure this are based on the slope and 

aspect of cells. In contrast, Liston and Sturm (1998) elected not to model a wind field because their 

model was designed for relatively gentle terrain, and excluding a wind field model reduced 

computational expense. 

Wind Shear Stress 

The wind speed required to shift snow is dependent on factors such as the age and density of the 

snow and the temperature and humidity of the air (Doorschot et al., 2004). However, some 

snowdrift models have used a constant value for this threshold (Purves et al., 1998; Greene et al., 

1999). Once the wind shear stress exceeds the threshold, snow begins to move. Modelled wind 

shear velocity has generally been calculated from the wind flow field and the surface roughness 

(Liston and Sturm, 1998; Haehnel et al., 2001) and may also take into account the air and snow 

density (Jaedicke et al., 2000). Liston and Sturm (1998) argued that the threshold changes very 

slowly in low temperatures, and that a constant value is suitable for environments such as the winter 

Arctic. They found that attempts to introduce more complex and realistic shear thresholds did not 

• improve the results of their model. 

A few models have included no measure of wind shear (Tappeiner et al., 2001; Purves et al., 1998; 

Orndorff and Van Hoesen, 2001). Tappeiner et al (2001) and Orndorff and Van Hoesen (2001) 

attempted to explain snow accumulation based on terrain characteristics rather than on weather 

inputs. 

Saltation and Suspension 

Most models have taken into account at least a single measure of snow transport through saltation 

and suspension (e.g. Liston and Sturm, 1998; Haehnel et al., 2001; Walter et al., 2004). Many of the 

authors used similar algorithms to calculate these factors, and the treatment outlined by Liston and 
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Sturm (1998) has been followed by others (e.g. Haehnel et al., 2001; Walter et al., 2004; Parajka et 

al., 2005). 

The availability of snow for drifting is largely density dependent. Some models operated on the 

assumption that old snow is too dense to be easily transported, and that only fresh snow is available 

for transport (Walter et al., 2004). Purves et al. (1998) argued that during melting periods, no drift 

would occur, apart from that of precipitating snow. They argued that if a melt-freeze cycle occurs 

without snow falling during the freeze period; it could be assumed the shear velocity would be so 

high as to prevent any erosion. 

Sublimation 

Sublimation is the evaporation of snow to water vapour (Whittow, 2000). The relative importance 

of sublimation in snow dynamics is driven by factors such as temperature and wind speed, with the 

sublimation rate increasing as temperatures and wind speeds rise (Pomeroy et al., 1997; Liston and 

Sturm, 1998). Sublimation calculations require information on the size of the snow crystals 

(Pomeroy et al., 1993). 

Precipitation 

Precipitation was a key input for most snow accumulation models (Purves et al., 1998; Lehning et 

al., 1999; Daly et al., 2000; Orndorff and Van 'Hoesen, 2001; Tappeiner etal., 2001). However, in 

polar environments, precipitation may be a less important source of snow than accumulation by 

horizontal transport (Liston and Sturm, 1998; Seppelt and Connell, 2005). 

Initial snow layer 

Various methods have been used to produce the initial snow cover inputs for snow models. Purves 

et al. (1998) initialised their model with a uniform layer of snow over the entire study area. Other 

approaches have included measurements the snow depth along transects either manually or by using 

radar (Jaedicke et al., 2000). Ishikawa and Sawagaki (2001) used a fine scale (2m) DEM, and used 

a pit-filling algorithm to simulate concave areas filling with snow. 
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3 Chapter 3: Data and Methods 

3.1 3.1 Study areas 

3.1.1 Windmill Is 

The Windmill Is are the islands and coastline covering an area of about 75-801= 2  around Casey 

(66°17'S, 110°32'E) Wilkes Land, East Antarctica (Fig. 3.1). They comprise four large peninsulas 

and more than 30 islands (Murray and Luders, 1990; Kirkup et al., 2002). During summer, the 

Windmill Is contain the only extensive areas of snow-free land for about 800km of coast around 

Casey (Murray and Luders, 1990; Kent et al., 1998). 

The Windmill Is contain extant penguin colonies on fourteen islands and peninsulas. The region's 

total population was estimated at 93 092 ±9300 pairs in 1990 (Woehler et al., 1991). Historically, 

colonies have also existed in other parts of the region, such as the Bailey Peninsula (Emslie and 

Woehler, 2005). Colonies have been monitored on Shirley I, Whitney Pt, Blakeney Pt, the Frazier 

Is, Odbert I, Ardery I and Peterson I during the period of human habitation. 

3.1.2 Geology 

The geology of the northern Windmill Is is dominated by metamorphic rocks, in particular schist, 

gneiss and migmatite (Orton, 1963; Murray and Luders, 1990; Kirkup et al., 2002). At some point 

during the late Pleistocene-early Holocene, the entire Windmill Is area was glaciated, and has 

subsequently been subject to fluctuating sea levels (Kirkup et al., 2002). Shirley Is and Whitney Pt 

are topographically characterised by gentle, rocky outcrops, with a maximum elevation of 

approximately 30m MSL. The Windmill Is are located to the west of Law Dome, but the inland 

topography deflects the katabatic winds away from the immediate area (Murray and Luders, 1990). 
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Fig. 3.1: Location of the study sites. 
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3.1.3 Weather 

The weather around Casey is frigid-Antarctic (Melick et al., 1994). Weather observations between 

1989 and 2004 showed that in the warmest month, January, the mean daily maximum temperature 

was 2.1°C and the mean minimum was -2.6°C. October was the coldest month of the breeding 

season and also the time when Adelie penguins arrived at the colonies. During October, the mean 

daily temperature range was -15.3°C to -8.3°C. The area had a modelled mean annual snowfall of 

224.6mm (snow water equivalent) (Bureau of Meteorology, 2004). Between 1996 and 2006, 

monthly mean wind directions ranged between 92.3° and 186.1°, with the prevailing winds coming 

from ESE. During the Adelie penguin breeding seasons in this decade, the mean wind speed was 

12.64 knots, with a mean monthly maximum wind gust of 65.06 knots. During that decade, 

breeding seasons had a mean 32.5 days in which winds exceeded gale force (37kts) (AADC, 2006). 

3.1.4 Human history 

Humans have visited and occupied the Windmill Is since the USA Navy's Operation Windmill in 

1947-48. The USA established the Wilkes research station (66°15.4'S, 110°31.5'E) in 1957. The 

Wilkes base was handed over to the Australian government in 1960. The Australians inhabited 

Wilkes until 1969, when they shifted to the Casey Tunnel (66°16.7'S, 110°31.5E), which is located 

between the current Casey site (66°15.9'S, 110°31.8'E) and the coast. In 1989, the station was 

shifted to its current site (Woehler et al., 1991; Bureau of Meteorology, 2006). Personnel in both the 

Australian and American programs undertook scientific research at both Shirley I and Whitney Pt 

(e.g. Penney, 1968; Kent et al., 1998; Woehler et al., 1994). In 2005/06, Casey housed 53-60 

personnel during summer, and 20 during winter. 

3.1.5 Shirley I 

Shirley I (66°17'S, 110°29'E) lies about 750m west of Casey, across a 100m-wide channel that is 

blocked with sea-ice for part of the year.. In the 2005/06 summer, the island contained 46 extant 

Adelie penguin colonies and 22 relic colonies (E.J. Woehler, unpub. data). When Adelie penguins 

were first counted there in 1968/69, the island was inhabited by approximately 7100 breeding pairs 

(Woehler et al., 1994). By 2005/06, this had increased to about 11, 000 breeding pairs, an increase 

of 54.9% (E.J. Woehler, unpub. data). 
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During the 2005/06 breeding season, nine pairs of south polar skuas (C. maccormicki) were 

breeding on the island (P.K. Bricher, unpub. data), along with an unknown number of Wilson's 

storm-petrels (Oceanites oceanicus) and snow petrels (Pagodroma nivea). The island is frequently 

visited by Weddell seals (Leptonychotes weddellii) and occasionally by male southern elephant 

seals (Mirounga leonina). Leopard seals (Hydrurga leptonyx) patrol the seas around the island, 

especially during February when the fledged penguin chicks depart for sea. Station personnel have 

regularly visited the island since Wilkes was established. It is within Casey's extended station limits 

when the sea ice in the Shirley Channel is safe to cross on foot. This makes it is a popular 

destination for station personnel during early summer (Woehler et al., 1994; E.J. Woehler, unpub. 

data). Once the sea-ice has broken out, it is less frequently visited by groups using boats. 

In 1963/64, the Adelie penguin population of the island was estimated at 3000 breeding pairs. 

Formal counts on the island began in 1968 and were conducted on five occasions between 1968 and 

1977. The counts lapsed until 1989, apart from a partial count in 1984. Between 1989 and 2005, 

counts were conducted in 13 years. Most of the studies of penguins and other species on Shirley I 

have been non-invasive, and relied on observations and samples collected from outside the colonies 

(e.g. Woehler et al., 1991; Woehler et al., 1994; Petz, 1997; McRae et al., 1999; Emslie and 

Woehler, 2005). However there are some exceptions to this. In 1968, 140 adult Adelie penguins 

were banded (Murray and Luders, 1990). In 1992, researchers investigating Adelie penguin diet 

marked 46 breeding adult pairs, and temporarily banded the flippers of their chicks. The stomachs 

of 52 adult birds were flushed using the water-flushing technique, and 92 chicks were flipper-

banded (Robertson et al., 1994; Kent et al., 1998). A total of 26 birds were fitted with satellite 

trackers in two studies during the summers of 1995/96 and 1996/97 (Kerry et al., 1997; Wienecke et 

al., 2000). 

3.1.6 Whitney Pt 

Whitney Pt (66° 15'S ;  1100  32'E) is one of two mainland Adelie penguin breeding localities in the •  

Windmill Islands. It is part of the Clark Peninsula that was designated as a Site of Special Scientific 

Interest in 1985. In 1996, the Clark Peninsula SSSI was redesignated Antarctic Specially Protected 

Area No. 136 (AAD, 2006). The site was considered to be of particular value because it is largely 

undisturbed and supports one of Antarctica's most extensive and best-developed plant communities. 

The Adelie penguin population in the ASPA was considered to be significant and relatively 
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undisturbed, and so was listed among the values to be protected. The Australian Antarctic Division 

(2006) stated that these populations provide valuable comparative data for human impacts at Shirley 

I. Under the rules of the ASPA, access to the site is restricted by a permit system. Permits are only 

issued for scientific research or for essential management purposes consistent with the site's 

management plan. Typically, permits to conduct seabird surveys are only issued for two people at a 

time to enter the ASPA. 

In the summer of 2005/06, Whitney Pt was occupied by 43 colonies of Adelie penguins, and 

contained a further 4 relic colonies (E.J. Woehler, unpub. data). It is also inhabited by breeding 

South polar slcuas (10 pairs in 2005/06 (P.K. Bricher, unpub. data), at least three pairs of snow 

petrels and approximately 10-20 pairs of Wilsons storm-petrels. 

Adelie penguins were first counted at Whitney Pt in 1959/60, when the population comprised 

approximately 1100 breeding pairs in 14 colonies (Penney, 1968). By 1983/84, this had increased to 

4199 pairs in 28 colonies. Five of the new colonies were located on relic sites as identified by 

Penney (1968). During this period, the eight colonies at the western end increased in population by 

33% and four new colonies were established, bringing the total population increase in that area to 

58%. In contrast, at the eastern end of the point, 11 new colonies were established and the 

population increased by 519% (Martin et al., 1990; Woehler et al., 1991). By the summer of 

2005/06, the total breeding population at Whitney Pt was 8790 — an increase of 699% since 1959/60 

(E.J. Woehler, unpub. data.). 

Whitney Pt is approximately 500m from the "Wilkes Hilton" - the radio hut for Wilkes, and now a 

popular field hut for expeditioners at Casey. Since the SSSI declaration, access to Whitney Pt has 

been limited to scientists conducting Adelie penguin counts and botanical studies. Before that, it 

was open to visitation by station personnel. In the summers of 1959/60 and 1960/61, Penney (1968) 

lived in a small hut (known as "The Wannigan") near colony IV, observing penguin behaviour. In 

Penney's study, 1528 adults, 66 juveniles and 217 chicks were banded with aluminium flipper-

bands, and 25 birds were dissected. Nest locations in colonies 1-VI were marked with welding rods. 

In 1964, a further 100 chicks were banded (Murray and Luders, 1990). 
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3.2 Data sets 

3.2.1 Adelie penguin counts 

Adelie penguin count data were available for the colonies at Whitney Pt for 22 seasons between 

1959/60 and 2005/06, and for the Shirley I colonies for 18 seasons between 1968/69 and 2005/06. 

The number of breeding pairs was generally counted between 25 November and 5 December each 

summer, when the females had laid their eggs and departed to sea, leaving the male to incubate the 

eggs. In a number of years, bad weather delayed the counts, and in these years the counts were 

conducted as soon after the planned dates as weather permitted. 

Penguins were counted using manual tally counters, while standing outside the colonies. In most 

years, two people conducted the Whitney Pt count and three people conducted the Shirley I count. 

Each colony was counted up to six times, and a mean of those counts calculated. To avoid bias in 

the counting, repeat counts of an individual colony were not conducted consecutively. 

3.2.2 Adelie penguin colony maps 

In February 2006, the Adelie penguin colonies at Shirley I and Whitney Pt were mapped using a 

Trimble Pro XH differential GPS (P.K. Bricher, unpub. data). The extents of currently occupied 

(extant) and abandoned colonies were mapped. The current perimeter was determined by the extent 

of fresh guano. By February, the neatly defined pebble nests seen at the start of the breeding season 

were scattered, and hence could not be used to determine the colony extent. Guano-covered areas 

that were obviously pathways to and from the colonies were excluded. The historic perimeters were 

determined by the area covered by pebbles of a suitable size for nest building (Emslie and Woehler, 

2005). This criterion meant that areas of bare rock, similar to those seen to be occupied by nesting 

birds in extant colonies, were excluded. Only those areas with clear evidence of past occupation 

were mapped (Fig. 3.2). 

Observations on the ground suggested that the position of these perimeters could be reliably 

identified to approximately ±0.5 m. In many locations, the position was more precisely located, but 

an error margin of ±0.5 m was considered conservative and was used here. For Whitney Pt, the GPS 

had a mean horizontal accuracy of ±0.49 m. For Shirley I, the horizontal accuracy was ±0.69 m. 

The mapping was conducted at a time selected to minimise disturbance to nesting birds. In late 
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February, the chicks had fledged and departed, and most adult birds were feeding at sea. Up to two 

birds were still within the boundaries of some colonies. If birds were sitting near the colony 

perimeter, mapping of that colony was delayed until the birds had moved away. 

All mapping for this project was conducted in UTM WGS 84, zone 49S. 
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Fig. 3.2 Adelie penguin colony maps for Shirley land Whitney Pt. 
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3.2.3 Ethics approval and permits 

All fieldwork for this study was conducted as part of Australian Antarctic Science Project 1219. 

The chief investigator was Dr Eric Woehler. Permit number 05/06-1219 authorised the following: 

N while on foot, disturb 

(a) a concentration of birds; or 

(b) a bird that is breeding or moulting; 

(ii) 	enter an Antarctic Specially Protected Area 

Ethics approval was granted by the University of Tasmania Animal Ethics Committee, under 

Animal Use Permit No A0008581. 

3.2.4 Aerial photographs 

The Australian Antarctic Division has acquired aerial photographs of Shirley I and Whitney Pt on a 

number of occasions. Photographs were taken of Whitney Pt in 1990, 1994 and 2003. The 2003 

aerial photographs were used for the creation of a fine-scale. Digital Elevation Model (DEM). The 

photographs were taken using a Zeiss UMK 1318 photogrammetric camera, from a height of 

approximately 828 m ASL, with a focal length of 100mm. These photographs showed Whitney Pt 

in a stereo-pair of photographs, but the photographs were taken shortly after a snowfall event that 

covered the entire site in a thin layer of snow (AADC, 2003). The snow cover limited the precision 

of the DEM that could be created because of the difficulty of identifying ground control points and 

in identifying surface heights (Fig. 3.3). 

The 1990 photographs, taken with a Linhof photogrammetric camera, did not include stereo-pairs. 

They were hence inappropriate for extracting height data. These photographs showed areas of snow 

and ice in December 1990. The snow cover in these photographs corresponded with observations at 

Whitney Pt during December 2005 (P.K. Bricher, unpub. data). As 2005/06 was considered a high-

melt summer, it was considered that these areas represented permanent snow and ice, and were 

therefore considered to be unsuitable for Adelie penguin habitat. The Linhof photographs covered 

all of Whitney Pt except for a small area, approximately 20 x 30 m in the northeast (AADC, 1990) 

Therefore, permanent snow cover could not be mapped for this area (Fig. 3.4). 
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Fig. 3.3: Orthophoto of the aerial photographs of Whitney Pt, used for photogrammetry (AADC, 
2003; Anders, 2005). 

Fig. 3.4: Aerial photographs of Whitney Pt used for mapping permanent snow cover (AADC, 1990) 
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The 1994 photographs were taken with a Zeiss UMK 1318 photogrammetric camera. Two sets of 

photographs were taken at heights of approximately 500m ASL and 3000m ASL. The 500m altitude 

photographs were overexposed and covered in snow (AADC, 1994). They were thus considered 

unsuitable for DEM creation. The combination of altitude and snow-cover in the photographs taken 

from 3000m ASL meant they contained less precise height data than the 2003 photographs. 

Aerial photographs were taken of Shirley I in 1994, 2001 and 2003. The photographs taken in 

January 2001 were used for the creation of a photogrammetric DEM with cells 4 m 2 . They were 

taken with a Wild RC8 camera, at an approximate height of 750m and a focal length of 210mm. 10 

stereo-pairs of photographs covered the whole island. Similar to the 1990 images of Whitney Pt, 

these photographs showed the areas of permanent snow cover that were considered unsuitable for 

Adelie penguin nest-sites (Fig. 3.5). The snow cover in these images corresponded with 

observations in January 2006 (P.K. Bricher, unpub. data). However, the relatively high number of 

photographs covering the island made the DEM construction complex. 

The 1994 photographs were taken using the same camera and aircraft as those used for the 1994 

Whitney Pt mission. These photographs had the same problems with snow and over-exposure as 

outlined above for Whitney Pt. The 2003 images were taken during the same mission as the 2003 

photographs of Whitney Pt, and showed a light snow cover over the entire island. These images 

could be used to construct a DEM, but the 2001 photographs were considered to be more suitable 

because of the low altitude, long focal length and minimal snow cover. 
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Fig. 3.5: Orthophoto of aerial photographs of Shirley I (AADC, 2001; Anders, 2006). 

3.2.5 Digital elevation models 

For the present study, high-resolution photogrammetric DEMs were extracted from stereo-pairs of 

aerial photographs of the study sites (Anders, 2005, 2006) using the software Virtuozo NT 

(www.supresoft.com ). For Whitney Pt, a DEM with 10x10 m cells was derived from the 2003 aerial 

photographs (see section 3.2), with ground control collected using a differential GPS (Morgan, 

2005). The GPS had a mean horizontal accuracy of ±0.8 m, and a mean vertical accuracy of ±0.76 

m. There was an additional horizontal error associated with the identification of the ground control 

points estimated at ±5m. The large size of this error was caused by difficulty in identifying the 

ground control points due to the extensive snow cover in the aerial photographs. Positional errors 

were greatest in the areas covered by snow. For areas of exposed rock, the vertical accuracy was 

±2m, and the DEM's overall positional accuracy was 6.59 m ±0.58 s.d. (Anders, 2005). 

From this DEM, a Topogrid interpolation was used to generate a DEM with 2x2 m cells (Fig. 3.6: Lucieer, 
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2005a). Topogrid uses an iterative finite difference interpolation method, and is effectively a 

discretised thin-plate spline technique, where the roughness penalty has been modified to allow the 

fitted DEM to follow abrupt changes in terrain, like streams and ridges (ESRI, 1999). Spline 

interpolations are considered to be hydrographically sound, but one of their limitations is that errors 

cannot be quantified. Splines maintain small-scale features better than other interpolation methods, 

such as trend surfaces and weighted averages but there is concern that they may produce an 

unnaturally smooth surface (Burrough and McDonnell, 2000). 

The Shirley I DEM was based on the 2001 photography (AAD 2001) using ground control collected 

with a Trimble Pro XH differential GPS. The vertical accuracy for areas not covered by snow, ice 

or Adelie penguin faeces was ±2 m (90% certainty) of its true value. The surface heights for such 

areas could not be accurately determined because non-textured surfaces cannot be viewed in stereo. 

These areas were corrected for significant gross errors using a linear interpolation algorithm based 

on surrounding elevation data. The errors in the faeces-covered Adelie penguin colonies are likely 

to be smaller than those in the snow-covered areas, because of the small relative size of penguin 

colonies compared to permanent snow coverage. However, as this study was examining the terrain 

properties of Adelie penguin colonies, errors in these areas were far more critical than errors in the 

areas covered by permanent snow and ice. 

The aerial photographs (AADC, 2001) were of sufficiently fine resolution to allow the 

identification of well-defined objects less than 0.5 m in diameter. The ground control points had a 

mean horizontal accuracy of ±0.68 m and a mean vertical accuracy of ±1.33 m. The large number of 

stereo-models (10) needed to provide coverage of the island meant there were significant areas of 

overlap between the models. In'these areas, the height values for an individual cell were calculated 

as the mean of the values for that cell in each of the stereo-models. While the resulting cell heights 

were still within specification for the DEM, they resulted in artefactual "smoothing" in some of the 

derived data layers. This was especially evident in the surface roughness and curvature layers (see 

Chapter 4, Figs. 4.5-4.8). These artefacts did not affect the distance data layers, which were not 

derived from the DEM, or the modelled snow accumulation layers, which were modelled using 

5x5m cells. They appeared to have little effect on the aspect, slope, solar radiation and wind 

exposure layers. To minimise the effects of these artefacts, a DEM was interpolated from the spot 

height points of the original DEM using a sub-sample of one-third of the original data points. An 

ordinary lcriging algorithm with anisotropy and a large neighbourhood was then applied to the data 
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(Lucieer, 2006). The resulting DEM produced much less obvious artefacts in the curvature and 

surface roughness layers. The 4 m 2  cell resolution was considered to be the minimum that could 

reliably be extracted from the available photography. It was not possible to determine what effect 

these residual artefacts and the ±2m height error had on the analyses (Fig. 3.6). 

For the snow accumulation models, the fine-scale DEMs of Shirley I and Whitney Pt were 

resampled to 25 m2  cells, and merged with a DEM of the Windmill Is, that had 100 m 2  cells 

(Lucieer, 2005b). This DEM was interpolated from an available DEM of the Windmill Is with 625 

m2  cells using Topogrid (AADC, 1999; Lucieer, 2005b). Coastal features on these DEMs had a 

claimed horizontal and vertical accuracy of ±1m. However, they were derived from aerial 

photographs taken in several different summers, and at different dates, with varying sea-ice extents. 

The aerial photographs of Shirley I taken in 2001 showed that the mapped coastline for the island 

was incorrect — in the photographs used for mapping Shirley I, the Shirley Channel was blocked 

with sea ice. The 2001, ice-free photographs showed that about half the southern coast of Shirley Is 

and parts of the coves on the northern coast were mapped incorrectly. It is likely that the mapping 

errors were concentrated around coastlines where sea ice obscured the coast. 
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Fig. 3.6: Interpolated DEMs of Whitney Pt and Shirley I (Anders, 2005, 2006; Lucieer, 2005, 2006) 
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3.2.6 NCEP/NCAR Weather reanalysis data 

This study investigated the effects of changes in modelled snow accumulation patterns on Adelie 

penguin colonies during the past fifty years. Bureau of Meteorology data were available for the 

Windmill Islands region from 1960 onwards, but it was considered that any changes in weather 

conditions were likely to have been obscured by changes in the locations of weather observing 

equipment (N. Adams, pers. comm.). From 1960 until February 1969, the weather station was 

located at the now-abandoned Wilkes (66 ° 15.3'S, 110° 31.5'E, 12m ASL) on the Clark Peninsula, 

near Whitney Pt. In February 1969, the weather station was moved to the Casey Tunnel (66°17'S, 

110°32'E, 12m ASL) on Bailey Peninsula and in 1989, it was shifted to Casey (66° 16.9'S, 110° 

31.8'E, 40m ASL: Bureau of Meteorology, 2006). 

The NCEP/NCAR Reanalysis Project was the result of collaboration between the National Centers 

for Environmental Prediction and the National Center for Atmospheric Research. The project was 

set up to model global weather data from 1948 onwards, based on the available weather 

observations. It was designed to resolve problems such as that outlined above, and variations in the 

quality of weather observations. The project's authors claimed that the reanalysis data eliminated 

perceived climate jumps associated with operational data assimilation systems, though it was still 

affected by changes in the observation systems (Kalnay et al., 1996; Kistler et al., 2001). 

The NCEP/NCAR reanalysis used observations of upper air temperature, horizontal wind and 

specific humidity; land surface observations of surface pressure and oceanic reports of surface 

pressure, temperature, horizontal winds and specific humidity. The values for surface variables, 

such as those used in the current study, were calculated from a combination of direct observations 

and the reanalysis model (Kistler et al., 2001). 

Hines et al. (2000) noted that the quality of any of the available weather reanalysis outputs is reliant 

on the quantity and quality of the available data. The Southern Ocean and Antarctica have 

historically contained fewer weather reporting stations than the northern hemisphere, and Hines et 

al. (2000) argued that this makes such reanalysis data increasingly important but also increases the 

risk of errors because of the paucity of input data. In addition, they found that the extreme weather 

and often sharp topographic changes in Antarctica reduced the accuracy of the NCEP/NCAR 

results, compared with other parts of the world. They found that the data contained trends in surface 

pressure at 65°S that were not supported by available observations and warned that this could affect 
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the results of studies involving changes in surface pressure. The spurious trend showed an 

approximate 0.20hPa yr-1  over 50 years. It is unclear whether this same trend in the data is evident 

at 62°S (the latitude of the current study sites) and what impact this trend may have had on the 

predictions of snow accumulation patterns, which are partly determined by surface pressure data. 

The NCEP/NCAR reanalysis data for the Casey region was extracted for three key periods in 

1959/60, 1968/69 and 2005/06 (Kalnay, 1996). The first two periods correspond to the summers in 

which the first Adelie penguin counts were conducted at Whitney Pt and Shirley I respectively, and 

2005/06 with the most recent counts. The data were calculated for a grid-point located 63.14 km 

north-northeast of Casey (65.7125°S, 110.625°E). 

3.3 Methods 

3.3.1 GIS processing methods 

This study used the GIS package ArcGIS 9.0 (ESRI, 1999-2004) to create, store, manage and 

display spatial data layers. A fi-eeware GIS package, PCRaster v2 (van Deursen et al., 2006), was 

also used to generate DEM derivative. The derived layers were then exported back to ArcGIS for 

further analysis. PCRaster is a dynamic modelling system that is largely used for environmental 

modelling. Here it was used to develop static layers showing slope, drainage, solar radiation and 

surface curvature. 

Slope . 

Slope layers were calculated from the DEMs, based on a 3x3 cell neighbourhood. The slope was. 

calculated using a third-order finite difference method. The resulting value for the central cell was 

given as height difference (vertical distance / horizontal distance). Where a surrounding cell was 

missing a height value, or the centre cell was at the edge of the DEM, a neighbourhood interpolator 

was used to fill in the missing values. This interpolator assigned each unvalued cell the mean value 

of all existing cells in a 3x3 cell window surrounding the cell with the missing value (van Deursen 

et al., 2006). 

Aspect 

The PCRaster aspect function operates in a similar way to the slope algorithm. Each cell's aspect 
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value was calculated based on the elevation of its 8 neighbours in a 3x3 cell kernel. The third-order 

finite difference method was used. The results were presented in 360 degrees, with north assigned 

0/360 degrees. Where a cell in the neighbourhood was missing a value, the neighbourhood 

interpolator, described above, was used to fill in the missing values. The aspect data were only used 

in decision tree analysis, for which they did not need to be converted to a linear scale. 

Wetness Index 

In PCRaster, the "wetness index" function calculates the potential drainage of a cell, based on the 

upstream area. This is a unitless measure as it models the shape of the land rather than actual runoff. 

From the DEM, a local drain direction network was calculated, using an eight-point pour algorithm. 

This created a layer describing the direction water flows from each cell to its steepest downslope 

neighbour. Where a cell had two or more downslope neighbours of equal elevation, the drain 

direction was assigned randomly. Flat areas were dealt with by calculating flow directions from 

cells at the edge of the flat area. A repair, function was used to remove pits and hence ensure that the 

drain direction network was hydrologically sound. The decision was made to remove pits from the 

local drain direction layer; because observations of the shape of the landscape at Shirley I and 

Whitney Pt suggested that any pits were most likely to be artefacts of the DEM, rather than 

reflecting that actual shape of the land. From the repaired local drain direction network, an upstream 

area value was calculated for each cell, showing the total area of all upstream cells. The wetness 

index was calculated by the following equation: 

Wetness = In (upstream area/slope) 

(sensu Burrough and McDonnell, 2000; PCRaster, 2005). 

Planar and Profile Curvature 

Planar (also known as planform) and profile curvature were calculated for each cell, using the 

elevation of neighbouring cells in a 3x3 cell neighbourhood. Planar curvature is a unitless measure 

of the change in slope per distance in horizontal direction, in the direction of the slope (such as that 

shown by contour lines), where concave slopes (gullies) are negative and convex slopes are 

positive. Profile curvature is a measure of the shape of the profile of the slope. Positive values occur 

at sites where the steepness of the slope is increasing such as the tops of hills (convex slopes). 

51 



Chapter 3: Data and Methods 

Negative values occur where the steepness of the slope is decreasing, such as at the base of hills 

(concave slopes). 

Solar Radiation 

The PCRaster-based solar radiation model, PotRad (van Dam, 2001), was used to calculate the solar 

radiation in MJ/m2  for each grid cell, based on the DEM and the latitude of the study sites. The 

model worked in hourly time-steps, over a year. It did not take into account weather conditions, 

such as cloud cover, which would reduce the amount of solar radiation. It was thus a measure of 

maximum potential solar radiation, rather than actual radiation. The lack of weather input was not 

Considered significant as cloud cover over each study site was likely be largely, homogeneous and 

any variation in cloud cover over the study sites was likely to be random. 

s Surface Roughness 

Using ArcGIS, surface roughness was measured by calculating the standard deviation of the 

elevation of cells in a 3x3 cell neighbourhood. Standard deviation was selected as the measure of 

roughness, as it was less sensitive to the effects of a single outlying value than other measures, such 

as range. As surface roughness is correlated with slope, a normalised surface roughness layer was 

calculated by dividing the surface roughness value of a cell by its slope value. Both the standard 

deviation and normalised values of surface roughness were incorporated in the statistical analyses. 

Adjacency 

A data layer was produced showing whether adjacent cells contained Adelie penguin nests. This 

was done by calculating the mean of a 3x3 cell neighbourhood from a binary penguin colony 

presence/absence layer, where cells that contained Adelie penguin nests were given a value of 1, 

and cells without colonies were given a value of zero. This layer was used to exclude the edge cells 

of colonies from the analysis of all the landscape parameters. Only cells with a mean value of 1 

(presence) were incorporated in the analysis. This was done to ensure that the cells used in the 

analysis actually represented sites that contained Adelie penguins. The precision of the colony maps 

was ±1 m and excluding the edge cells from the analysis minimised the chance of incorrectly 

labelling cells as containing penguin nests. 

Wind Exposure 
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The wind exposure layer was based on the prevailing winds for the breeding season as shown in the 

NCEP/NCAR weather reanalysis data. Wind roses were constructed based on the three-hourly 

averages for 15 th  October 1959 - 31 st  January 1960, 15 th  October 1968 - 31 st  January 1 .969 and 15 th  

*October 2005 - 31 st  January 2006, using the program Grapher 6 (Golden Software, 2005). These 

dates were selected to reflect the period between the approximate arrival dates for breeding birds 

and the time when chicks reach the creche stage, and are capable of some limited movement to 

avoid serious effects from climatic conditions. The data showed that the majority of wind speeds 

greater than 10ml ' came from east-southeast. It appeared that any changes in prevailing wind 

direction between the examined time periods were within the annual variability and were hence not 

considered to be significant (Neil Adams, pers. comm.) 

A hillshade model was created from the DEMs, using the wind roses to set the prevailing wind 

direction. A hillshade model has traditionally been used to model light and shadow based on an 

illumination source at a set direction and azimuth (ESRI, 1999). In the present study it was used to 

model exposure to the wind, with the direction set at 122°, and the azimuth at 5°, to imitate wind 

travelling just above the ground's surface, following the approach of Patterson et al. (2003). This 

layer could be used as a surrogate for three things — exposure to prevailing winds, snow 

accumulation (sensu Patterson et al., 2003) and on Shirley I, for exposure to potential airborne 

pollutants from Casey. In this study, it was used in the analyses of the effect of snow accumulation 

on population trends of Adelie penguin colonies, as a surrogate for wind exposure, and in the 

effects of human activities on the Adelie penguin colonies on Shirley I, as a surrogate for exposure 

to potential emissions from Casey. 

Snow Accumulation Model 

This study used a GIS-based model to simulate the drifting of snow in the two study areas. The 

model was developed for Antarctic conditions, and thus accounted for the absence of precipitation 

data and limited access to the sites (Wallace, 2005). Without direct measures of precipitation or of 

the starting snow layer, it was impossible to derive numerical results, such as snow-depths. Instead, 

the model produced a map of relative snow accumulation, similar to the models of Ishikawa and 

Sawagaki (2001), Orndorff and van Hoesen (2001) and Purves et al. (1998). 

Due to the physical complexity of the forces that drive snow transport, models of snow 

accumulation have generally involved a balance between accuracy and available resources, such as 
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input data and computational power (e.g. Liston and Sturm, 1998) Therefore, factors which were 

considered less important for a particular application have typically been excluded in order to 

minimise computational expense (e.g. Walter et al., 2004; Tappeiner et al., 2001). The Windmill 

Islands model accounted for wind deflection, wind speed, wind shear stresses, saltation, suspension 

and snow density (Wallace, 2005). Saltation and suspension Were treated as one variable, after the 

approach taken by Kind (1981). Commonly incorporated factors that have been excluded from this 

model include precipitation, sublimation, vegetation and snow melt. 

Wallace's model used equations developed for snow accumulation models in other parts of the 

world, but adapted for the Windmill Islands. 

Wind deflection and speed are crucial to accurate modeling of snow accumulation, and are affected 

by topography. Algorithms to model deflections in wind direction have typically been based on the 

slope and aspect of the ground (Purves et al., 1998). Wallace's model used the following wind 

direction equation, which was developed by Ryan (1977): 

• 	D= -0.255S sin(2(A-0)) 

Where S= slope (%) 

A= aspect of the slope (deg) 

0= initial wind direction (deg) 

Wind speeds tend to increase on windward slopes, and decrease in the lee of topographic features, 

dropping to almost zero just below ridges (Walter et al., 2004). Wallace's model followed Liston 

and Sturm's (1998) weighting for wind speed based on the slope and curvature of the topography, 

using the following formula: 

Where pts  = Topographic slope, scaled to be within the range -0.5<[t<0.5 

plc  = Topographic curvature, scaled to be within the range -0.5<pt<0.5 

ys  = 0.6 = Positive constant to weight the effect of slope on wind speed 
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7c= 0.4 = Positive constant to weight the effect of curvature on wind speed 

Snow transport only begins when the wind shear stress (U*) exceeds the threshold velocity (Us e) 
.(Gugolj, 2005). The wind shear stress was calculated by the following formula (Liston and Sturm, 

1998; Gugolj, 2005) 

U* = W r  K  
ln(H r/S r) 

Where W r  = Wind speed at reference height (ms-1 ) 

K = 0.41 = von Karman's constant 

1-1, = 10 = Reference height (m) 

S r  = 0.1 = Surface roughness length (m) 

H r  is the reference height at which the wind speed is measured. At Casey this height was unknown, 

but it was assumed that the measurements were taken at 10m (Wallace, 2005). The surface 

roughness length was set at a value suggested by Linacre and Geerts (1999) for areas with low-

lying vegetation and few sharp valleys and peaks (Wallace, 2005). 

Saltation and suspension were modelled as one variable, using the following algorithm which was 

developed by Kind (1981): 

pa Us 	U 	U 
= 	 (0.25 	l 	3 -I  

gPs 	3UT 	
(In S hn perpendicular to the wind direction) 

Where U* = Wind shear stress ms -1  

UT = Threshold velocity ms -1  

Us  = 0.75 ms-1 = Terminal fall velocity of snow 

P a  = Air density (kgm -3) 
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P; = Snow density (kgm -3 ) 

g = Gravitational acceleration (ms -2) 

Air density was calculated by the following formula: 

Pa 	P  
R.(T) 

Where p = Air pressure (Pa) 

R = 287.05  J  = Gas constant 
kg.K 

T = temperature (K) 

Snow density is assumed to vary with elevation, and following Walter et al. (2004), this was 

assumed to be 80kgm-3 for snow at elevations above 10m ASL, and 140kgm -3  for elevations below 

10m ASL. Snow density is known to vary with age, and modelling to account for this requires daily 

precipitation observations, which were not available for the Windmill Islands when the model was 

developed (Walter et al., 2004; AADC, 2006). 

Gravitational acceleration was calculated according to the following formula (International 

Association of Geodesy, 2005): 

g = ge(1+13 i sin2(0) —132sin2(20)) — 3.086 x 10 -6  H 

Where 0= Latitude of the point 

H = Elevation above sea-level (m) 

ge  = 9.7803184 ms -2  = Gravitational acceleration at the equator 

131 = 0.0053024 ms -2 = constant 

132 = 0.0000059 ms -2  

As the model was developed for Antarctic conditions, Wallace considered that the generally low 

annual temperatures would make sublimation and snow melt of limited importance in determining 
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snow accumulation patterns. This assumption is unlikely to hold during summer, when 

temperatures in the Windmill Islands regularly climb above 0°C, and both snowmelt and 

sublimation are likely to be significant factors. In this study, the model was run for periods in late 

winter and spring, when it was considered that Wallace's (2005) assumptions would apply, and so 

sublimation and melt were not incorporated in the model. 

Vegetation in the Windmill Is consists of low-lying mosses and lichens (Seppelt and Connell, 

2005). The vegetation's snow-holding capacity is little different to the rock that is typical of the 

region. It was considered unlikely that it would have a significant effect on the surface roughness, 

unlike the vegetation in other parts of the world where grasses, shrubs and trees have significantly 

altered snow transport patterns (e.g. Pomeroy et al., 1993; Pomeroy et al., 1997; Liston and Sturm, 

1998; Daly et al., 2000; Evans et al., 1989; Haehnel et al., 2001; Tappeiner et al., 2001). It was 

therefore considered appropriate to use the constant value of 0.1 m for surface roughness. 

Reliable precipitation data has rarely been collected in polar environments, due to the difficulty in 

determining the difference between fresh precipitation and blowing snow (Bureau of Meteorology, 

2006). One study in the low Arctic measured "true" precipitation in a small glade well within an 

open forest (Pomeroy et al., 1997). Such natural windbreaks do not exist in the Antarctic. The 

Windmill Islands have been estimated to have an annual precipitation of 175mm, but this has not 

been recorded directly (Seppelt and Connell, 2005; Bureau of Meteorology, 2006). The relatively 

small amount of precipitation was considered to be of limited significance in predicting snow 

distribution. The NCEP/NCAR Weather Reanalysis Project does provide models of precipitation 

for Antarctica for the past fifty years (NCEP/NCAR, 2006). However, those data were not based on 

actual observations so it is difficult to know how accurate they are. In addition, they were not 

available to Wallace (2005) when he designed the model. 

Wallace (2005) tested his model against aerial photographs of Shirley I, taken in January 2001 

(AADC, 2001). He used a DEM with grid cells of 20x20m, and ran the model over three months 

leading up to the day of the photography. This test showed strong agreement with the observed 

snow distribution shown in the photographs. He suggested that increasing the resolution of the 

DEM would improve this match still further. 

The model was applied to a merged DEM that covered the northern Windmill Islands, in order to 

provide a source for transported snow into the study areas. The 2x2m cell DEMs of Whitney Pt and 
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Shirley I were resampled to 5x5m cells using a cubic resampling algorithm. The Windmill Island 

10x 10m DEM was also resampled to 5x5m by cubic resampling. The DEMs were then merged to 

generate a DEM that provided surrounding land for snow to blow from. The DEMs were resampled 

to 5x5m cells in order to combine two models of different resolutions. The model was run for three 

months leading up to 15 November in 1959, 1968 and 2005. This date was chosen as it marks the 

peak laying period for Adelie penguins and hence the time when snow cover is likely to be most 

crucial. The model required daily average temperature, wind speed, wind direction and air pressure 

data, were derived from the NCEP/NCAR weather reanalysis project. The model produced a data 

layer showing the relative distribution of snow for that day. 

Once the snow accumulation data layers had been calculated for the years of first and last Adelie 

penguin counts, the layers for 1959 and 1968 (first counts for Whitney Pt and Shirley I, 

respectively) were subtracted from the 2005 layer. This produced layers showing the changes in 

snow accumulation. Cells where the snow accumulation was the same in both years were given a 

value of zero. Positive values indicated increasing snow depth and negative values decreasing snow 

depth. 

Permanent Snow and Ice 

The snow accumulation model simulated the short-term distribution of snow. Areas of permanent 

ice and compacted snow were evident in aerial photographs taken of the study sites in mid-summer 

(AADC, 1990; 2001). These were removed from the analysis. This was done by digitising the 

extent of snow visible in aerial photographs of both study sites. The extent and depth of snow 

patches that last through summer varies between years. Ideally, this would be measured in multiple 

years, and some form of average, maximal and minimal measures calculated. However only one set 

of suitable images was available for each study site. 

The 1990 aerial photographs of Whitney Pt were georeferenced to the photogrammetric DEM 

(which was based on a single stereo-pair of images), with an affine transformation. Positional 

discrepancies between the three photographs and the DEM were typically 1-2 m, with errors of up 

to 4 m in a small area in the northwest. From the transformed photographs, a vector layer was 

created showing those areas of permanent snow. To minimise the risk of incorrectly describing 

exposed terrain as snow-covered, a conservative approach was taken to the digitising process. The 

vector layer showing permanent snow cover was digitised 1 m inside the extent of the snow visible 
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in the photographs. This ensured that sites that represent actual Adelie penguin colonies were not 

incorrectly described as unsuitable. This was especially important in areas like colonies I -IV on 

Whitney Pt, which are situated near the base of a cliff, with a narrow bank of snow (about 1 m 

wide) between the colonies and the cliff. 

For Shirley I, an orthophoto generated from the 2001 photographs was available (Anders, 2006; 

AADC, 2001). From this, Anders (2006a) generated a vector layer showing the areas of permanent 

ice. As the orthophoto was directly generated from the DEM, positional errors were limited, and the 

permanent snow layer was more accurate than that for Whitney Pt. 

Assigning Population Trends 

Each penguin colony was assigned a population trend. The count data for each colony was 

converted into percentages, with the baseline year assigned the value of 100%. Colonies in which 

the population increased after the baseline year were given values over 100%, while those that 

decreased were given values below 100%. The baseline year was typically 1959/60 for Whitney Pt 

and 1968/69 for Shirley I. For colonies that were established after those years, the baseline year was 

the first year in which penguins were counted at that site. The trend was based on the percentage 

difference between the year of first count and 2005. This method eliminated problems caused by the 

wide disparity in population size between colonies. For example, a population decrease of 10 

breeding pairs in a colony of forty has far greater significance on the colony as a whole, than an 

identically sized decrease in a colony of 2000. This method reflects the compounding effect of 

population decrease in a small colony, as seen in studies which found that small colonies are less 

resilient to environmental stressors than larger colonies (Giese, 1996; Patterson et al., 2003). 

Assigning percentage values was problematic in newly founded colonies. Such colonies exist at 

both study sites, and typically began with a few pairs of birds, before increasing. The 100% value 

reflected a small count (e.g. 10 birds), and the percentage increases were up to 27 400% (Colony L, 

Shirley I) in 15 years. The population trends were divided into classes (Table 3.1) to eliminate this 

problem. Decreasing colonies were split into moderate (50-80%) and strong (<50%) decrease 

classes. Colonies in which the population of 2005 were within 20% of the baseline count were 

considered to be stable. Those in which the populations were increasing were divided into moderate 

(120-150%) and strong (<150%) increases. This classification resulted in a small sample size for 

those that are decreasing moderately, but meant that each class was internally homogeneous, 
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incorporating only colines that exhibited similar trends. Those colonies that have not been inhabited 

during the period of human occupation in the Windmill Islands were classed as relic. They were 

included in the analysis of variables which are unlikely to have Ohanged in the past 9000 years, such 

as elevation and slope, but were excluded from the analyses of population trends. 

Table 3.1: Population trend classes for Adelie penguin colonies at Whitney Pt and Shirley I 

Population Trend Class Number of Colonies 
Whitney Pt Shirley! 

<50% (Strong Decrease) 1 2 15 
50-80% (Moderate Decrease) 2 1 8 
80-120% (Stable) 3 5 9 
120-150% (Moderate Increase 4 2 2 
>150% (Strong Increase) 5 23 10 
Total 33 44 

Selection of random control plots 

Control cells were selected randomly from those areas of exposed rock that had no evidence of 

having historically contained Adelie penguin colonies. Hawth's random sampling tool 

(www.spatialecology.com ) was used to generate control plots. The tool was used to select random 

points — 42 points at Whitney Pt and 66 points on Shirley I. On these points, square control plots 

were generated which contained a number of cells equivalent to the mean number of cells in a 

colony at that study sites. At Whitney Pt, this number was 25 cells, and at Shirley I it was 49. Some 

of the control plots overlapped with colonies or areas of permanent snow. These were then shifted 

the minimum distance required to ensure that the plots represented areas of exposed rock without 

Adelie penguin colonies (Fig. 3.7). 

Export of colony and control data from ArcGIS 

The vector layer showing the extent of Adelie penguin colonies was converted to raster, and this 

•was used to set the analysis extent for the extraction of data from all the raster data layers. A 

conversion tool (L,ucieer, 2005c) was used to convert the cells within the analysis extent to a 

comma separated file for import to statistical programs. The process was repeated for the control 

cells. 
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Fig. 3.7: Randomly selected control plots for Shirley land Whitney Pt. 
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3.3.2 Statistical Processing Methods 

Adelie penguin distribution univariate analysis 

The statistical package, JMF' 5.1 (SAS Institute, 1989-2003), was used to generate histograms and •  

scatterplots for all the landscape parameters. Visual exploration of histograms of the parameters 

showed that none was normally distributed. Thus, parametric tests for differences were considered 

to be unsuitable (Zar, 1999). Instead, Wilcoxon two-group tests for difference were used to explore 

whether the distribution of colony values was different to the distribution of the control plot values. 

When applied to two groups of data, the Wilcoxon two-group test is also known as the Mann-

Whitney Test (Zar, 1999; Dytham, 2003). The Wilcoxon/Mann-Whitney test has been found to 

have 95% of the power of the equivalent parametric t-test, when applied to a normally distributed 

dataset. However, if the data are not normally distributed, as in this study, the Wilcoxon test may be 

much more powerful than the t-test (Zar, 1999). The Wilcoxon test compares ranks rather than raw 

values (Dytham, 2003). 

In this study, the two groups were Adelie penguin colonies, and control plots. The Wilcoxon test 

was applied to each of the static landscape parameters being investigated for its ability to explain 

the presence or absence of Adelie penguin colonies. These parameters were the modelled values for 

elevation, slope, solar radiation, wetness index, wind exposure, snow accumulation (2005), planar 

and profile curvature and surface roughness (standard deviation and normalised). The data for 

Whitney Pt and Shirley I were examined separately. 

To minimise the effect of spatial autocorrelation, the tests were conducted on both the individual 

cell values and the colony/control plot mean values. Spatial autocorrelation can be defined by 

Tobler's Law, which states "Everything is related to everything else, but near things are more 

related than distant things" (Tobler, 1970). Thus, the values for a single parameter for two cells 

within a colony or a control plot are likely to be more similar than values for that parameter in two 

different colonies or control plots. Spatial autocorrelation can either take the form of patches or 

gradients (Legendre, 1993). In this study, the colonies and the control plots represented clumps, 

while the landscape data layers represented gradients. Legendre (1993) noted that this phenomenon 

can cause problems for statistical tests because the data violate the assumption of independence of 

observations that underlies most statistical techniques. Using colony/control plot mean values in 
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this study allowed the removal of within-colony spatial autocorrelation. However, this approach 

also meant that much of the variance within colonies and control plots was lost. Therefore, it was 

considered appropriate to use both the individual cell values and the mean values, despite the 

limitations of each approach. Between-colony spatial autocorrelation is also likely to be present, but 

accounting for it was beyond the scope of this study. 

Multivariate analysis of Adelie penguin distribution 

Univariate tests, such as the Wilcoxon two-group test, can only measure the relationship between 

the response variable and one parameter at a time. This leads to a number of limitations: first, 

univariate tests cannot account for interactions between two or more parameters which may affect 

habitat suitability; second, it is possible that variables that show no mean difference may contribute 

to multivariate group separation; and third, test statistics generated for individual parameters cannot 

account for correlations between the parameters (Flury and Riedwyl, 1988). Therefore, in this 

study, multivariate statistical tests were needed to investigate interactions between parameters that 

may affect habitat suitability. As noted in section 2.3.2, a wide range of multivariate statistical 

models is available for predicting species distribution, based on GIS-derived parameters (Guisan 

and Zimmermann, 2000). Here, discriminant analyses and decision trees were used. The data for 

Whitney Pt and Shirley I were examined separately, and each test was conducted on both the values 

for individual cells and on the colony mean values. 

Discriminant analysis 

Discriminant analysis has often been used in bird ecology studies (e.g. Fraser and Patterson, 1997; 

Debinski et al., 1999; Manel et al., 1999; Patterson et al., 2003). It is used when observations from 

predetermined groups are characterised by two or more parameters (Quinn and Keough, 2002). In 

this study, the predetermined groups were Adelie penguin colonies (present) and control plots 

(absent). Discriminant analysis generates a linear combination of variables that maximises the 

probability of correctly assigning observations to their pre-determined groups and can also be used 

to predict the group-membership of test observations. It is mathematically identical to a single 

factor MANOVA, and where there are only two response groups, it derives a single discriminant 

function from a linear combination of the original variables. This function maximises the 

differences between the groups, and minimises the differences within the groups (Quinn and 

Keough, 2002). 
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One of the limitations of discriminant analysis is its assumption that the input data has a normal 

multivariate distribution. In addition, multivariate normality cannot be inferred from the univariate 

distribution of a parameter, and it has also been argued that discriminant analysis can still be 

applied in situations where the normality assumption is violated, though it may no longer be the 

optimal test (Flury and Riedwyl, 1988; Blackard and Dean, 1999). 

The complexity of the discriminant analysis model increases as the number of variables increases. 

Here, a stepwise variable selection process was used to ensure that only those parameters that 

improved the proportion of correct classifications were incorporated in the final model. First, the 

data were split into training and test sets, (see Model testing, below) with 80% of the data points 

used for the model construction. Then all the static landscape parameters were included in a 

discriminant analysis model, using JMP 5.1. Finally, all the parameters were removed, and added 

back one-by-one until additional parameters did not further increase the proportion of correct 

classifications. Once an optimal model had been constructed, it was validated with the test set of 

data (see Model testing, below). The discriminant analysis formulae were then applied to each grid 

• cell to predict the population trend class. This was done by applying the formulae in ArcGIS to 

generate maps of predicted Adelie penguin colony distributions. 

Decision tree analysis 

Decision trees are non-parametric and are capable of handling different data types (such as 

categorical and non-linear data) and also non-normal data (Weka Manual, 2006). The datasets in 

this study were not normally distributed, and as there is debate about the effect of non-normality on 

the performance of discriminant analysis, it was considered that decision trees would provide a 

check on the model performance of the discriminant analyses. Each of the study sites was examined 

individually, and each test was run on both the values of the individual cells and the colony/control 

plot mean values, as described above. 

Each group in a decision tree is characterised by a typical value for the response variable, the 

number of observations in the group and the values of the explanatory variables that define it 

(De'Ath and Fabricius, 2000). This study used the J48 decision tree in Weka 3.4 (Witten and Frank, 

2005), which is derived from the C4.5 model developed by J.R. Quinlan (1993). The algorithm 

chooses an attribute that best differentiates the output values and creates a separate branch for each 

output value. These subgroups (nodes) are considered to be terminal if all members of that group 
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have the same output value or no further distinguishing features can be found. If the node is not 

terminal, the process is repeated (Weka Manual, 2006). An example of a decision tree is given in 

Fig. 3.8. 

176.9633 > 176.9633 

Fig. 3.8: Decision tree for population trends of Adelie penguin colonies at Shirley I, derived from 
individual cell values for proximity to human activity parameters. 

The decision tree process requires a minimum object size to be set. In this case, the minimum object 

size refers to the minimum number of cells in each terminal node. In this study, the minimum object 

size was set by experimentally building decision trees with different object sizes to find the model 

with the smallest minimum object size that produced a tree with fewer than 20 splits in the data 

(leaves). As with the discriminant analyses, the decision tree models were constructed from training 

datasets (80% of the original data) and validated with the test sets. 

In this study, the decision trees were used for statistical modelling but were not implemented in a 

GIS to produce predictive maps. Unlike discriminant analysis, a decision tree does not produce 

mathematical formulae that can be readily implemented in a GIS. Instead, it produces a set of 

conditional statements. Where a tree has only two or three leaves this may be applied in a GIS using 

available tools. However, more complex trees result in complex sets of nested conditional 

statements that would require scripting in order to be implemented efficiently. 
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Model testing 

It has been argued that the optimal method for testing model performance is to validate the model 

with independently collected data (Blackard and Dean, 1999; Guisan and Zimmermann, 2000). This 

was not possible in the present study, as independent test data were not available. Instead, each 

model was tested by both cross-validation and validation. Cross-validation works by taking out an 

individual value from the training set and predicting its value, and it therefore tends to provide an 

optimistic measure of a model's accuracy (Burrough and McDonnell, 2000). 

In addition to cross-validation, the models in this study were validated by splitting data sets into 

training and test sets, with 80% of the data points used for training, and 20% for testing. This 

approach has been recommended for studies in which independently collected data were not 

available (Blackard and Dean, 1999; Guisan and Zimmermann, 2000; Manel et al., 2000). The 

models based on colony mean values were validated using the test set for the individual cell value 

data. This was done because there were too few data points in the mean data sets to generate test 

sets that could reliably validate the models' performances. In addition, any model applied in a GIS 

would be applied to individual cell values, not colony means. 

A purely random classifier, assigning observations into two groups could be expected to correctly 

classify 50% of the observations. Therefore, a model here was assumed to have some predictive 

power if validation showed that it correctly classified significantly more than 50% of the test data. 

Univariate tests for Adelie penguin colony population trends and snow cover variables 

Three variables associated with snow cover were examined for their ability to explain changes in 

population trends of Adelie penguin colony trends. These variables were the modelled snow cover 

for November 15, 2005, changes in the modelled snow cover between the first year of Adelie 

penguin count data (1959 for Whitney Pt and 1968 for Shirley I) and 2005, and exposure to 

prevailing winds. Only those colonies in which Adelie penguins have been known to nest during the 

period covered by count data were included in the population trend analyses. 

When a Wilcoxon test is applied to more than two groups of data, it is equivalent to the Kruskal- 

Wallis non-parametric one-way analysis of variance test (Zar, 1999; Dytham, 2003). The Wilcoxon 

or Kruskal-Wallis tests can be applied in any situation where the parametric ANOVA test is 
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applicable. If it is applied to normally distributed data, the Wilcoxon test is 95% as powerful as 

ANOVA, but if it is applied to non-normally distributed data, as in this study, it can be much more 

powerful (Zar, 1999). Here, Wilcoxon tests were used to assess the parameters for significant 

differences among the five population trend classes, using JMP. In addition, histograms and 

scatterplots were generated for visual exploration of the data. 

Multivariate tests for Adelie penguin colony population trends and snow cover variables 

The snow accumulation and wind exposure variables were tested for their ability to predict 

population trends for Adelie penguin colonies using the discriminant analysis and decision tree 

procedures outlined above. As with the models of colony distribution, the two study sites were 

examined separately and both the individual cell values and colony mean values were tested. The 

models were validated using the test sets of individual cell values. When classifying data into five 

groups, a purely random classifier could be expected to correctly predict the class with 

approximately 20% accuracy. Therefore, models were considered to have some explanatory power 

if they correctly classified significantly more than 20% of the test data points. As with the 

distribution investigations, maps of predicted Adelie penguin colony population trends were derived 

from the discriminant analyses, but not from the decision trees, due to the difficulties outlined 

above. 

Adelie penguin colony population trends and proximity to human activities 

The examination of the relationships between Adelie penguin colony population trends and the 

colonies' proximity and exposure to human activities used similar methods to the examination of the 

relationships between snow cover parameters and colony population trends. Wilcoxon tests were 

used to explore univariate differences among colonies in the five population trend classes. 

Discriminant analyses and decision trees were used to classify colonies into the five observed 

population trend classes. As with the snow accumulation tests, only those colonies in which Adelie 

penguins have been known to have nested during the period covered by the count data were 

incorporated in the analyses. All of these tests were conducted on both the individual cell values 

and the colony mean values, and validated with the test set of individual cell values. 

The investigations into proximity to human activities differed from the distribution and snow 

accumulation analyses in that it used different parameters for the two study sites. Shirley I is 500m 
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directly downwind from Casey and is regularly visited by station personnel. Therefore, the 

statistical tests investigated proximity to Casey, proximity to the sea-ice crossing point (used to 

access the island while the sea-ice is safe to cross on foot) and wind exposure (as a surrogate for 

exposure to potential airborne emissions from Casey) for their ability to explain population trends. 

The results of the analyses of wind exposure needed to be interpreted cautiously, as wind exposure 

was a surrogate for the effects of both wind speeds and of potential human activities on the colony 

population trends. 

Access to Whitney Pt is restricted to scientists with permits (AAD, 2006). Therefore, a measure of 

proximity to a site access point, equivalent to the sea-ice crossing point on Shirley I, was not 

appropriate. In addition, the wind exposure layer could give no information about exposure to 

potential emissions from Casey because Whitney Pt is northeast of Casey, and the prevailing wind 

blows from the southeast. Therefore, measures of proximity to human activities for Whitney Pt 

were restricted to the distance from Casey. All the statistical tests and models were applied in an 

identical way to those for Shirley I. 
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4 Results 

4.1 GIS landscape layers 

4.1.1 Slope 

The calculated slope data layers (Fig. 4.1) generally describe the terrain in the Windmill Is 

accurately; they display large areas of gentle slopes, with most of the altitude variation confined to 

areas of cliffs 10-15 m in height. 

4.1.2 Aspect 

The aspect data layers (Fig 4.2) displayed a strong.agreement with the observed shape of the terrain. 

4.1.3 Wetness index 

The wetness index layers (Fig. 4.3) show that snow melt run-off for the two study sites is diverted 

into small gullies and runnels, rather than into large stream flows. The layers show a strong 

agreement with observed lakes and areas of ephemeral water, which occur in low-lying terrain 

during summer. The pattern of drainage lines in some parts of Shirley I .(Fig. 4.3a) appear to be 

overly regular, and hence affected by artefacts in the DEM. These areas coincide with the areas of 

permanent snow as shown in the aerial photographs taken in mid-summer, which resulted in lower 

accuracy in those parts of the DEM (AADC, 1990; 2001). 

4.1.4 Solar radiation 

The highest modelled values for solar radiation are similar for Shirley I (4185.44 MJ/m 2) and 

Whitney Pt (4198.62 MJ/m2), but the lowest values were different. The lowest value for Shirley I 

was 1840.91 MJ/m2 ; this compared with 1206.81 MJ/m 2  for Whitney Pt. It is likely that this results 

from the cliffs that run east-west on Whitney Pt; similar cliffs on Shirley I are oriented northeast-

southwest. The model results for both sites (Fig. 4.4) displayed strong agreement with calculated 

slope and aspect. 

69 



Chapter 4: Results 

4.1.5 Planar and profile curvatures 

The planar and profile curvature layers generally show a reasonable agreement with the observed 

shapes of slopes at the two sites. A visual inspection shows no strong patterns between the 

curvature patterns and the locations of Adelie penguin colonies. For Shirley I, these are the layers 

most obviously affected by artefacts in the DEM. These artefacts are reduced in the interpolated 

DEM used for the analyses, but smoothed areas where two or more stereo-models overlapped are 

still visible in the curvature layers. This problem does not arise for the Whitney Pt models as the 

Whitney Pt DEM was constructed from one stereo-pair of photographs (Figs. 4.5 and 4.6). 

4.1.6 Surface roughness 

The calculated surface roughness (standard deviation) data layers show a strong agreement with the 

calculated slopes, as they measure variability in elevations within a 3x3 cell neighbourhood (Fig. 

4.7). The surface roughness (normalised) data layers are dominated by very small values (less than 

two) with values up to nine generally concentrated in areas where rough terrain was observed. In 

these layers, smooth but steep slopes have values below two (Fig. 4.8). 

4.1.7 Adjacency 

The adjacency layers calculate the proportion of cells in a 3x3 cell neighbourhood that contain 

Adelie penguins (Fig. 4.9). Only the cells that appear red in Fig. 4.9 were labelled as colony cells 

for the statistical analyses reported here. This process removed all those cells on the edge of the 

colonies. 

4.1.8 Wind exposure 

The wind exposure layers (Fig. 4.10) exhibit a negative relationship with solar radiation, as they 

represent exposure to the direction of the prevailing winds (south-southeast) and the highest solar 

radiation levels are recorded on north-facing slopes. 

4.1.9 Snow accumulation model 

• The snow accumulation model generates maps of relative snow accumulation across the study sites 

(Fig. 4.11), rather than numeric values for snow depth, with strong negative associations with wind 
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exposure. The model could only be validated visually, as there is no effective data available to 

compare it to. The aerial photographs show areas of permanent snow and ice, which are not 

available for transport. However, areas of snow ablation and accumulation show a general 

agreement with snow accumulation patterns in the aerial photographs, and with those observed 

during the summer of 2005/06 (AADC, 1990; 2001). The model does not predict the areas of 

permanent snow and ice that occur along the eastern and southern coasts of the study sites, but it 

does predict the snow that accumulates in the valley to the south of Whitney Pt. This suggests that 

the model cannot account for the effects of sea-ice that builds up around the Antarctic coast. The 

model was applied for the spring months in 1959 and 2005 for Whitney Pt and in 1968 and 2005 for 

Shirley I. No area of either study site shows consistent increases or decreases of snow between the 

two years for which snow cover was modelled. The large areas of modelled snow accumulation or 

ablation in 2005 are little different to the other years modelled, and other areas showed fine-scale 

spatial patterns of change (Fig. 4.12). 

	

4.1.10 	Proximity to Human Activities 

For Whitney Pt, only a distance from Casey layer was generated (Fig. 4.13a).For Shirley I, the 

layers showing distance from Casey and from the sea-ice crossing point show strong agreement 

(Fig. 4.13b and 4.14). 

	

4.1.11 	Population trends 

The population trends for Adelie penguin colonies were calculated as the percentage difference in 

the number of breeding pairs between the year in which a colony was first counted and 2005. The 

number of colonies in each trend classes is presented in Table 4.1. 
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Table 4.1: The number of colonies in the five population trend classes for Whitney Pt and Shirley I. 

Population Trend Class Number of Colonies 
Whitney Pt Shirley I 

<50% (Strong Decrease) 1 2 15 
50-80% (Moderate Decrease) 2 1 8 
80-120% (Stable) 3 5 9 
120-150% (Moderate Increase 4 2 2 
>150% (Strong Increase) 5 23 10 
Total 33 44 

4.1.12 	Summary Statistics 

Summary statistics for each data set are provided in appendix 1. The data are divided into Whitney 

Pt and Shirley I sets, and further into individual cell values and colony/control plot mean values. 

Summaries are •presented for each population trend class of colony cells. This provides an 

explanation of the spread of data used in the models. 
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Chapter 4: Results 

4.2 Adelie penguin colony distribution 

This section presents the results of the tests for the ability of individual landscape parameters, and 

of the discriminant analyses and decision trees derived from them to explain the distribution of 

Adelie penguin colonies within the two study sites as expressed in the following null hypothesis. 

HNULL 1 Static landscape variables (slope, drainage, aspect, planar and profile curvature, surface 
roughness, wind exposure, snow cover and solar radiation) cannot predict the locations 
of current and relic Adelie penguin colonies at Shirley land Whitney Pt. 

The results are presented separately for each study site and for the tests conducted using individual 

cell values and colony mean values. 

4.2.1 Univariate Analyses 

4.2.1.1 	Whitney Pt 

Individual Cell Values 

Wilcoxon tests show significant differences between those cells in colony sites and those in control 

plots for the static landscape parameters of surface roughness (standard deviation), slope, elevation, 

wetness index, surface roughness (normalised) and the modelled snow cover for 15 November 2005 

(Table 4.2). Adelie penguin colonies do not occur on the steepest slopes irrespective of aspect, or on 

the moderately steep, south-facing slopes that have low solar radiation. The penguin colonies 

occurred in several altitude "zones", separated by 1-2m. It is likely that these zones are the result of 

the terrain being dominated by a mixture of plateaux and cliffs. 

Table 4.2: Wilcoxon/Kruskal-Wallis rank sum tests for differences among individual cell values for 
static landscape parameters in colonies and control plots at Whitney Pt. 

Variable • Z Prob>Z Chi-Square DF Prob>ChiSq Significance 
Roughness (St De v) 12.642 0.000 159.823 1 <0.0001 Significant 
Slope 11.308 0.000 127.866 1 <0.0001 Significant 
Elevation 10.466 0.000 109.546 1 <0.0001 Significant 
Wetness Index -4.578 <0.0001 20.959 1 <0.0001 Significant 
Snow 2005 3.779 0.000 14.280 1 0.000 Significant 
Roughness (Norm) -2.301 0.021 5.297 1 0.021 Significant 
Profile Curvature -0.921 0.357 0.849 1 0.357 N.S. 
Solar Radiation -0.463 0.643 0.215 1 0.643 N.S. 
Wind Exposure -0.299 0.765 0.090 1 0.765 N.S. 
Plan Curvature -0.284 0.777 0.008 1 0.777 N.S. 
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Colony/Control Plot Mean Values 

Wilcoxon tests showed significant differences between the mean values for colony sites and control 

plots for surface roughness (standard deviation) (Table 4.3). One result of using mean values rather 

than individual cell values is that much of the within colony variance is lost. It is likely that this 

explains the difference in the number of parameters found to have significant differences in 

distribution. It is likely that the mean values represent a truer picture of significant differences, 

because spatial autocorrelation means the values for the individual cells within any one colony 

share information. Among-colony spatial autocorrelation is still likely to be a factor in all the tests 

on mean values, but within-colony autocorrelation is removed. At the same time, no colony exists 

on homogeneous terrain, and the mean values ignore within-colony variance. 

Table 4.3: Wilcoxon/Kruskal-Wallis rank sum tests for differences between colony and control plot 
mean values for static landscape variables on Whitney Pt. 

Variable Z Prob>Z Chi-Square OF Prob>ChiSq Significance 
Roughness (St Dev) -1.966 0.049 3.883 1 0.049 Significant 
Slope -1.903 0.057 3.639 1 0.057 N.S. 
Snow 2005 -1.494 0.135 2.247 1 0.134 N.S. 
Roughness (Norm) -0.909 0.363 0.836 1 0.361 N.S. 
Elevation -0.702 0.482 0.500 1 0.479 N.S. 
Wind Exposure 0.545 0.586 0.303 1 0.582 N.S. 
Wetness Index -0.285 0.776 0.084 1 0.772 N.S. 
Solar Radiation -0.201 0.840 0.043 1 0.837 N.S. 
Profile Curvature 0.079 0.937 0.007 1 0.933 N.S. 
Planar Curvature 0.000 1.000 0.000 1 0.996 N.S. 

4.2.1.2 	Shirley I 

Individual Cell Values 

Wilcoxon tests show significant differences between cells in colony sites and control plots on 

Shirley I for all static landscape parameters except planar curvature (Table 4.4). Adelie penguin 

colonies do not occur on steep slopes, rough terrain or in areas with especially high or low solar 

radiation. These variables tend to covary. That is, rough terrain is associated with slopes, and the 

highest solar radiation is on north-facing slopes, which on Shirley I tend to be very steep. Likewise, 

the steepest south-facing slopes have the lowest solar radiation. 
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Table 4.4: Wilcoxon/Kruskal-Wallis rank sum tests for differences between individual cell values 
for static landscape parameters in colonies and control plots on Shirley I. 

Variable Z Prob>Z ChiSquare DF Prob>ChiSqSignificance 
Elevation 30.025 0.000 901.490 1 <0.0001 Significant 
Roughness (StDev) -28.173 0.000 793.736 1 <0.0001 Significant 
Slope -27.687 0.000 766.572 1 <0.0001 Significant 
Snow 2005 13.321 0.000 177.448 1 <0.0001 Significant 
Solar Radiation 13.175 0.000 173.583 1 <0.0001 Significant 
Wetness Index 11.524 0.000 132.811 1 <0.0001 Significant 
Wind Exposure 4.064 <0.0001 16.517 1 <0.0001 Significant 
Profile Curvature 3.079 0.002 9.480 1 0.002 Significant 
Roughness (Norm) 2.111 0.035 4.456 1 0.035 Significant 
Planar Curvature . -0.927 0.354 0.859 1 0.354 N.S. 

Colony/Control Plot Means 

Wilcoxon tests show significant differences between the mean values for colony sites and control 

plots on Shirley I for planar curvature, surface roughness (standard deviation), and slope (Table 

4.5). It is likely that a combination of the loss of variance associated with using mean values, and 

the reduction of the effect of spatial autocorrelation explains the differences in these results 

compared with the tests on individual cell values. Again, colonies are rare in sites with steep slopes 

and rough terrain. 

Table 4.5: Wikoxon/Kruskal-Wallis rank sum tests for differences between colony and control plot 
mean values for static landscape parameters on Shirley I. 

Variable Z Prob>Z ChiSquare DF Prob>ChiSq Significance 

Slope -3.842 0.000 14.782 1 0.000 Significant 

Roughness (StDev) -3.810 0.000 14.535 1 0.000 Significant 
Planar Curvature -1.969 0.049 3.889 1 0.049 Significant 
SolarRad 1.887 0.059 3.569 1 0.059 N.S. 
Profile 1.698 0.090 2.892 1 0.089 N.S. 

Elevation 1.483 0.138 2.207 1 0.137 N.S. 
Roughness (Norm) 1.415 0.157 2.008 1 0.156 N.S. 

Snow 2005 0.803 0.422 0.649 1 0.420 N.S. 

Wetness Index -0.434 0.664 0.191 1 0.662 N.S. 
Wind Exposure -0.196 0.845 0.039 1 0.843 N.S. 
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4.2.2 Discriminant Analyses 

4.2.2.1 	Whitney Pt 

Individual Cell Values 

A stepwise discriminant analysis model was constructed with elevation, surface roughness 

(standard deviation) and solar radiation as input parameters (App. 2). These parameters increase the 

predictive power of the model, and are listed in the order of their value in predicting presence or 

absence. Other parameters were excluded because they did not improve the model performance. 

Cross-validation shows that this model accurately predicts the presence or absence of nesting 

Adelie penguins in a cell with 68.1% accuracy. Validation, which is generally considered a more 

robust assessment of accuracy (Blackard and Dean, 1999; Guisan and Zimmermann, 2000), shows 

an overall predictive accuracy of 70.5%. The confusion matrix (Table 4.6) shows that this model 

has a higher proportion of false positives than false negatives. Thus, the model predicts more areas 

of suitable habitat than are occupied. Visual comparison of the predicted and observed distribution 

of Adelie penguins (Fig. 4.15) shows agreement between predicted and observed distributions. The 

use of elevation in this model is considered to be the result of the plateau-dominated terrain, rather 

than the result of birds preferring particular elevations. Surface roughness covaries with slope, and 

the distribution map predicts colony occurrence in areas with gentle slopes and at least moderate 

levels of solar radiation. 

Table 4.6: Confusion matrix for validation of the discriminant analysis model based on the 
individual cell values of colonies and control plots in Whitney Pt. Percentage values in brackets are 
the percentage of the observed total. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 

Absent 132 (64.1%) 53 	(23.6%) 185 	(42.9%) 
Present 74 	(35.9%) 172 (76.4%) 246 	(57.1%) 
Total 206 ' 225 . 431 
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Colony/Control Plot Mean Values 

The discriminant analysis model was constructed using wind exposure, surface roughness 

(normalised), surface roughness (standard deviation) and wetness index as input parameters, entered 

in the order listed (App. 2). The other static landscape parameters did not increase the predictive 

power of the model. Cross-validation shows that this model has an overall accuracy of 65.6%. 

When validated with the test set of individual cell values, the model shows an overall predictive 

accuracy of 65.4%. The model most accurately predicts the presence of nesting penguins, and has a• 

high proportion of false positive errors (Table 4.7). In the resulting predictive map, areas of 

predicted suitable and unsuitable habitat are more patchily distributed than in the map derived from 

individual cell values. It appears that this patchiness results from the inclusion of the wetness index 

in the model, as many of the breaks in habitat suitability occur along drainage lines (Fig. 4.16). The 

use of mean values reduces within-group variance, and the effects of spatial autocorrelation. This 

model produces fewer false absences than the model based on individual cell values, but also 

produces more false presences. It is likely that collinearities in the data sets account for the 

differences in the input parameters for the two models. Again, the map predicts penguin colonies in 

sites with gentle slopes and with moderate degrees of wind exposure. 

Table 4.7: Confusion matrix for the validation of the discriminant analysis model of Adelie penguin 
distribution based on colony and control plot mean values for Whitney Pt. The percentage values in 
brackets show the proportion of the observed total. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 
Absent 119 	(57.8%) 62 	(27.6%) 181 	(42%) 
Present 87 	(42.2%) 163 	(72.4%) 250 	(58%) 
Total 206 225 431 
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Chapter 4: Results 

4.2.2.2 	Shirley I 

Individual Cell Values 

Surface roughness (standard deviation), elevation, solar radiation, wind exposure, slope and the 

2005 snow cover parameters increased the predictive power of the stepwise discriminant analysis 

model (App. 2). The other static landscape parameters were excluded because they did not increase 

the predictive power of the model. Cross-validation shows that this model correctly classifies 79.6% 

of cells. Validation shows the overall model accuracy is 78.9% (Table 4.8). The model predicts the 

presences of nesting penguins better than absences, with a high proportion of false positives (Fig. 

4.17). Both predicted and observed extant presences are concentrated on the large plateau at the 

western end of the island. Large areas of predicted presences also occur near sea level at the western 

end of the island, in the area dominated by a relic colony, but partially covered by snow in the 

available aerial photography. 

Table 4.8: Confusion matrix for validation of discriminant analysis model based on individual cell 
values in colonies and control plots on Shirley I. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 
Absent 433 (66.7%) 60 	' (9.1%) 493 (37.8%) 
Present 216 (33.3%) 597 (90.9%) 813 (62.3%) 
Total 649 657 1306 

Colony/Control Plot Means 

A discriminant analysis model to predict Adelie penguin distribution on Shirley I was constructed 

using the colony and control plot mean values for slope, snow cover in November 2005, wetness 

index, solar radiation and wind exposure as inputs (App. 2). Cross-validation shows that this model 

predicts Adelie penguin colony distribution with 76.5% accuracy. Validation with the test set of 

individual cell values shows the overall model accuracy is 70.8% (Table 4.9). The model predicts 

colony presences more strongly than absences (Fig. 4.18). Again the wetness index influences the 

model based on colony means, but not the model derived from individual cell values. It appears that 

this parameter is affected by spatial autocorrelation, and gains predictive power when within-colony 

variance is removed. Surface roughness is not used as a parameter in this model, unlike that derived 

from individual values. This may be because the roughness variables covary with slope. 
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Table 4.9: Confusion matrix for validation of discriminant analysis model based on colony and 
control plot mean values of Shirley I. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 
Absent 412 	(63.5%) 114 	(21.9%) 556 	(42.6%) 
Present 237 	(36.5%) 513 	(78.1%) 750 	(57.4%) 
Total 649 657 1306 
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Chapter 4: Results 

Fig. 4.18: Predicted Adelie penguin colony distribution based on discriminant analysis of 
colony/control plot mean values for static landscape parameters. 
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4.2.3 Decision Tree Analyses 

4.2.3.1 	Whitney Pt 

Individual Cell Values 

A decision tree was constructed based on individual cell values with a minimum object size of 100 

and seven leaves (App. 3). Cross-validation shows that it correctly predicts 73.4% of Adelie 

penguin colony presences or absences. Validation shows that the model has 74% accuracy. Solar 

radiation, elevation, aspect, snow cover in 2005 and wind exposure were used as inputs. The other 

static landscape parameters did not improve the predictive power of the model. The confusion 

matrix (Table 4.10) shows that the model performance was similar for both presence and absence 

predictions, though it predicted colony presences slightly better than absences. However, decision 

trees could not be assessed visually, because of the difficulty in implementing them within a GIS. 

The tree predicts that Adelie penguins are generally absent where solar radiation is below 2434.05 

MJ/m2 ., and that where solar radiation is higher than this, Adelie penguins will nest at low altitudes 

(below 13.4m ASL). After these splits, predictions are based on aspect (greater than or less than 130 

degrees — the direction of the prevailing winds), modelled snow cover in November 2005 and 

elevation (App. 3). 

Table 4.10: Confusion matrix for validation of the decision tree model of Adelie penguin 
distribution based on individual cell values for Whitney Pt. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 
Absent 151 	(73.3%) 57 	(25.33%) 208 	(48.3%) 
Present 55 	(26.7%) 168 (74.67%) 223 	(51.7%) 
Total 206 225 431 

Colony/Control Plot Mean Values 

A decision tree based on the colony and control plot mean values for static landscape parameters 

predicts Adelie penguin colony presence or absence with 59.4% accuracy as measured by cross-

validation, and with 51.7% accuracy as measured by validation with the test set of individual cell 

values. The tree has a minimum object size of two and four leaves. Surface roughness (standard 

deviation) and drainage improved the predictive power of the model, but the other parameters were 
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not selected because they did not increase the predictive power (App. 3). The confusion matrix 

(Table 4.11) shows that the model predicts colony presences slightly better than absences. The 

model predicts Adelie penguins to be absent where the surface roughness has a standard deviation 

greater than 0.85 and to be present where the wetness index is below 3.46 or above 5.06 (App. 3). 

Table 4.11: Confusion matrix for validation of the decision tree model of Adelie penguin colony 

distribution based on colony and control plot mean values for Whitney Pt. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 
Absent 103 	(50%) 105 	(46. 7%) 208 	(48.3%) 
Present 103 	(50%) 120 	(53.3%) 223 	(51.7%) 
Total 206 125 431 

4.2.3.2 	Shirley I 

Individual Cell Values 

A decision tree with a minimum object size of 200 and nine leaves, predicts Adelie penguin colony 

distribution with 82.8% accuracy, as measured by cross-validation and 84.5% accuracy, as 

measured by validation. Slope, elevation, aspect, the difference in snow cover between 1968 and 

2005, surface roughness (standard deviation) and wind exposure were used as inputs (App. 3). The 

confusion matrix (Table 4.12) shows that the model 'predicts colony presence slightly more 

accurately than absence. The model predicts absences where the slope is less than 0.22, and present 

at the highest possible elevations (>29.39 m). Below this altitude, aspect, changes in snow cover 

and elevation are used to further differentiate colonies from control plots. 

Table 4.12: Confusion matrix for validation of the decision tree analysis of Adelie penguin colony 
distribution based on individual cell values for colonies and control plots on Shirley I. 

Observed Distribution 

Predicted 
Distribution 

Absent Present Total 
Absent 539 	(83.1%) 93 	(14.2%) 632 	(42.9%) 
Present 110 	(17%) 564 (85.8%) 674 	(57.1%) 
Total 649 657 1306 
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Colony/Control Plot Means 

A decision tree with a minimum object size of two and 12 leaves predicts Adelie penguin colony 

presence or absence with 64.3%, as measured by cross-validation and 68% accuracy, as measured 

by validation (Table 4.13). Slope, planar curvature, elevation, snow cover 2005, solar radiation and 

surface roughness (standard deviation) were used as inputs (App. 3). The other static landscape 

parameters did not improve the model's predictive performance. The model predicts colony 

absences better than colony presences (Table 4.13). The model predicts absences where the slope is 

less than 0.13, a gentler slope than that used for splitting the tree derived from individual cell 

values. Cells in gullies (planar curvature <=-0.02) are predicted to contain penguins as are all sites 

above 29 m ASL. Below 29 m, planar curvature, snow cover in November 2005, slope, solar 

radiation, and surface roughness (standard deviation) are used to differentiate the groups (App. 3). 

Table 4.13: Confusion matrix for decision tree analysis of Adelie penguin colony distribution based 

on colony and control plot mean values for Shirley I. 

Observed Distribution 

Predicted 	' 
Distribution 

Absent Present Total 
Absent 494 (76.1%) 287 	(43.7%) 781 	(59.8%) 
Present 155 (23.9%) 370 	(56.3%) 525 	(40.2%) 
Total 649 657 1306 

The results of the discriminant analyses and decision trees suggest that the null hypothesis should 

be rejected. Static landscape parameters, as calculated in this study, can be used to predict the 

presence or absence of Adelie penguin nests in a given cell within the study site with up to 84.5% 

accuracy. 
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4.3 Snow Accumulation Patterns and Addlie Penguin Colony 
Population Trends 

This section presents the results of the tests for the ability of individual snow accumulation 

parameters and the discriminant analyses and decision trees derived from these parameters to 

explain the observed population trends of Adelie penguin colonies within the two study sites as 

expressed in the following null hypothesis. 

HNuLL2 Interactions between the shape of the land and the weather conditions that drive snow 
accumulation patterns cannot predict the population trends of Adelie penguin colonies 
at Shirley I and Whitney Pt. 

The results are presented separately for each study site and for the tests conducted using individual 

cell values and colony mean values. 

4.3.1 Univariate Analyses 

4.3.1.1 	Whitney Pt 

Individual Cell Values 

Wilcoxon tests were used to explore differences among the distributions of individual cell values in 

colonies in five population trend classes at Whitney Pt. These tests show significant differences for 

all three data layers related to snow accumulation (Table 4.14). The colonies with strong population 

increases (>150% of the 1959 population) are associated with the thinnest snow cover, while stable 

colonies are found in areas with thicker snow cover. For the individual cell values, colonies in all 

population trend classes are associated with areas with minimal changes in the modelled snow 

cover between 1959 and 2005. 

Table 4.14: Wilcoxon tests for differences among individual cell values for colonies in the five 
population trend classes on Whitney Pt. 

• 	Variable Chi-Square DF Prob>ChiSq Significance 
Wind Exposure 234.772 4 <0.0001 Significant 
Snow 2005 28.133 4 <0.0001 Significant 
Snow Difference 12.638 4 0.013 Significant 
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Colony Mean Values 

Wilcoxon tests for difference among the distributions of colony mean values show no significant 

differences among the five population trend classes for any of the data layers related to snow 

accumulation on Whitney Pt (Table 4.15). It is likely that the loss of variance associated with 

calculating mean values is responsible for the difference from the results of the Wilcoxon tests on 

the individual cell values for Whitney Pt. 

Table 4.15: Wilcoxon tests for differences among colony mean values in the five population trend 
classes on Whitney Pt. 

Variable Chi-Square DF Prob>ChiSq Significance 
Wind Exposure 3.290 4 0.511 Not Significant 
Snow Differenc( 2.556 4 0.635 Not Significant 
Snow 2005 2.316 4 0.678 Not Significant 

4.3.1.2 	Shirley I 

Individual Cell Values 

Wilcoxon tests on the individual cell values show significant differences among the five population 

trend classes for all the parameters associated with snow accumulation patterns (Table 4.16). 

However, the summary statistics (App. 1) and visual, inspection of scatterplots show few obvious 

trends. 

Table 4.16: Wilcoxon tests for difference among the distributions of individual cell values in 
colonies in five population trend classes on Shirley I. 

Variable Chi-Square DF Prob>ChiSq Significance 
Wind Exposure 103.146 4 <0.0001 Significant 
Snow 2005 302.697 4 <0.0001 Significant 
Snow Difference 33.110 4 <0.0001 Significant 

Colony Means 

Wilcoxon tests on the colony mean values for colonies in five population trend classes show no 

significant differences for any of the parameters associated with snow accumulation (Table 4.17). It 
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is considered likely that the loss of variance associated with calculating mean values is responsible 

for the difference from the results of the Wilcoxon tests on the individual cell values for Shirley I. 

Table 4.17: Wilcoxon tests for difference among colony mean values in five population trend 
classes on Shirley I. 

Variable ChiSquare DF Prob>ChiSq Significance 
Snow 2005 8.366 4 0.079 Not Significant 
Snow Difference 3.013 4 0.556 Not Significant 
Wind Exposure 	• 1.731 4 0.785 Not Significant 

4.3.2 Discriminant Analyses 

4.3.2.1 	Whitney Pt 

Individual Cell Values 

Cross-validation shows that a discriminant analysis model using wind exposure and snow cover in 

2005 as inputs predicted the colony population trend class with 48.6% accuracy (App.2). The 

change in snow cover between 1959 and 2005 did not improve the predictive power of the model. 

Validation shows the overall accuracy is 48.3%. The confusion matrix (Table 4.18) shows that the 

model predicts stable colonies (class 3) with the highest accuracy (58.1%) and moderately declining 

colonies with the lowest accuracy (0%). However, this class has only one data point in the test set, 

so this is not statistically significant. The observed colony population trends are shown in Fig. 4.19 

and the predicted trends in Fig. 4.23. The predictive map (Fig. 4.20) shows a mix of predicted trend 

classes within each colony, rather than clear spatial trends. It is likely that the results are biased by 

the large number of data points within the strongly increasing class 5 (n=847) compared with the 

other classes (combined n=191). The inequality of sample sizes is the result of different population 

trends at Shirley I and Whitney Pt, and makes the Whitney Pt results difficult to interpret. 
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Table 4.18: Confusion matrix for validation of the discriminant analysis model for population trend 
predictions for Whitney Pt based on individual cell values. The percentage value in brackets 
represents the percentage of the observed trend class total. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4 Class 5 Total 

Predicte 
d Trend 
C/ass 

Class 1 (Strong Dec3 (75%) 0 0 0 20 (11.9%) 23 (11%) 
Class 2 (Mod Dec.) 1 (25%) 0 1 (3%) 0 40 (23.8%) 42 (20.1%) 
Class 3 (Stable) 0 0 18 (58.1%) 4 (80%) 25 (14.9%) 47 (22.5%) 
Class 4 (Mod Inc.) 0 0 9 (29%) 1 (20%) 4 (2.4%) 14 (6.7%) 
Class 5 (Strong Inc 0 1 (100%) 3 (9.7%) 0 79 (47%) 83 (39.7%) 
Total 4 1 31 5 168 209 

Colony Mean Values 

A discriminant analysis model was constructed using the modelled snow cover in 2005, change in 

snow cover between 1959 and 2005 and wind exposure as inputs (App. 2). Cross-validation shows 

that this model correctly predicts population trends in 42.4% of cells within colonies on Whitney Pt. 

Validation with the test set of individual cell values shows that the model has an overall accuracy of 

38.8% (Fig. 4.21). The model performs best in predicting strongly increasing colonies (class 5: 

41.1%) as shown in the confusion matrix (Table 4.19). This model is even more likely to be 

affected by the disparity in sample sizes than the model based on individual cell values. 

Table 4.19: Confusion matrix for validation of the discriminant analysis model predicting 
population trends for Adelie penguin colonies at Whitney Pt based on colony mean values for snow 
accumulation parameters. 

Observed Trend Class 

Predicted 
Trend 
Class 

Class 1 Class 2 Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.) 1 (25%) 0 2 (6.5%) 0 25 (14.9%) 28 (13.4%) 
Class 2 (Mod Dec.) 3 (75%) 0 1 (3.2%) 0 45 (26.8%)49 (23.4%) 
Class 3 (Stable) 0 0 10 (32.3%) 2 (40%) 5 (3%) 17 (8.1%) 
Class 4 (Mod Inc.) 0 , 0 7 (22.6%) 1 (20%) 24 (14.3%) 32 (15.3%) 
Class 5 (Strong Inc.) 0 1 	(100%) 11 (35.5%) 2 (40%) 69 (41.1%) 83 (39.7%) 
Total 4 1 31 5 168 209 

97 



slinsay  •fr.  daidvio  

O
bs

er
ve

d 
Po

pu
la

tio
n 

T
re

nd
s f

or
 A

de
lie

 P
en

gu
in

 C
i 

pn
ie

 
W

hi
tn

ey
 P

t 

O
bs

er
ve

d 
Po

pu
la

tio
n 

Tr
en

d 
N

M
 0

 (
Re

lic
) 

1 
(S

tr
on

g 
D

ec
re

as
e)

 

2 
(M

od
er

at
e 

D
ec

re
as

e)
 

3 
(S

ta
bl

e)
 

4 
(M

od
er

at
e 

In
cr

ea
se

) 

_  j
  5 

(S
tr

on
g 

In
cr

ea
se

) 
M

et
re

s 
50

 	
10

0 
I 	

I  
 

20
0 



syn.ray  .•7  ddidmo  

Pr
ed

ic
te

d 
Po

pu
la

tio
n 

T
re

nd
s o

f A
 e

 le
 P

en
gu

in
 C

ol
on

ie
s 

W
hi

tn
ey

 P
t 

Ba
se

d 
on

 in
di

vi
du

al
 c

el
l v

al
ue

s f
or

 sn
ow

 c
ov

er
 (2

00
5)

, 
sn

ow
 c

ov
er

 d
iff

er
en

ce
 (1

95
9-

20
05

) a
nd

 w
in

d 
ex

po
su

re
. 

V
al

id
at

io
n 

=
48

.3
%

 a
cc

ur
ac

y.
 



44-
 

tN
ari

lip
 . 

li
t

o 1
114

V
 	

1,„(  

Pr
ed

ic
te

d 
Po

pt
la

tio
n 

T
re

nd
s o

f A
de

lie
 P

en
gu

in
 C

ol
on

ie
s 

W
hi

tn
ey

 P
t 

Ba
se

d 
on

 c
ol

on
y 

m
ea

n 
va

lu
es

 fo
r s

no
w

 c
ov

er
 (2

00
5)

, 
sn

ow
 c

ov
er

 d
iff

er
en

ce
 (1

95
9-

20
5)

 a
nd

 w
in

d 
ex

po
su

re
. 

V
ali

da
tio

n 
=

 3
8.

8%
 a

cc
ur

ac
y. 

Pr
ed

ic
te

d 
Po

pu
la

tio
n 

T
re

nd
 

2 3 4 
M

et
re

s 
50

 	
-  
1
0
0
 

-̀•e
!!”

"I
PF

M
- 

•t\
J  

A
 •

 •
 

••
•1

 

A
 

c• 

o' 
`Z-

•  
cn

.  
••c;1•

  ■
-t3

  

cO
 

rT
 

sy
 

A
 

rti
 • 

to
2 rt
 

c40
 

■—
■ 	

cn
 H.

 

•
r,

 r7-
 

A
 M

 
'Z

s 
c'O

 •
Es-

 

'10
 
A
 

c

•  
"
 

rc3.
  

simsay  :17  daidvq,D  



Chapter 4: Results 

4.3.2.2 	Shirley I 

Individual Cell Values 

A discriminant analysis model was constructed using wind exposure, the modelled snow cover in 

November 2005 and the change in snow cover between 1959 and 2005 (App. 2). Cross-validation 

suggests this model predicted colony population trends with 31.4% accuracy and validation shows 

it has an overall accuracy of 25.6%. The model most accurately predicts moderately decreasing 

(class 2: 63.6%) and stable (class 3: 54.7%) colonies (Table 4.20). The observed population trends 

for Shirley I are presented in Fig. 4.22 and the predicted population trends in Fig. 4.23. 

Table 4.20: Confusion matrix for the discriminant analysis model predicting population trends 
based on the individual cell values for snow accumulation parameters for Shirley I. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4 Class 5 Total 

' 
Predicted 
Trend 
Class 

Class 1 (Strong Dec.) 2 (4.9%) 1 (9.1%) 7 (5%) 9 (15.8%) 18 (1O.1%)37 (8.7%) 
Class 2 (Mod Dec.) 18 (43.9%) 7 (63.6%) 30 (21.6%) 7 (12.3%) 32 (18%) 94 (22.1%) 
Class 3 (Stable) 15 (36.6%) 2 (18.2%) 76 (54.7%) 28 (49.1%) 88 (49.4%) 209 (49.1%) 
 Class 4 (Mod Inc.) 3 (7.3%) 1 (9.1%) 16 (11.5%) 7 (12.3%) 23 (12.9%) 50 (11.7%) 
Class 5 (Strong Inc.) 3 (7.3%) 0 10 (7.2%) 6 (10.5%) 17 (9.6%) 36 (8.5%) 
Total 41 11 139 57 178 426 

Colony/Control Plot Means 

A discriminant analysis model was constructed using the colony mean values for wind exposure, 

snow cover in November 2005 and the difference in snow cover between 1959 and 2005 (App. 2). 

Cross-validation shows that this model has an accuracy of 31.8% and validation with the test set of 

individual cell values shows it has an overall accuracy of 27.9% (Fig. 4.24). The confusion matrix 

(Table 4.21) shows that the model most accurately predicts moderately decreasing colonies (class 2: 

62.5%) 

Table 4.21: Confusion matrix for validation of the discriminant analysis model predicting colony 
population trends based on colony mean values for snow accumulation parameters for Shirley I. 

Observed Trend Class 

Predicted 
Trend 
Class 

Class 1 Class 2 . Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.3 (7.3%)2 (18.2%) 13 .(9.5%) 9 (15.8%)23 (13%) 50 (11.8%) 
Class 2 (Mod Dec.) 9 (22%)5 (45.5%) 20 (14.6%)4 (7%) 18 (10.2%) 56 (13.2%) 
Class 3 (Stable) 17 (41.5%)2 (18.2%) 84 (61.3%) 34 (59.7%) 93 (52.5%) 230 (54.4%) 
Class 4 (Mod Inc.) 8 (19.5%)2 (18.2%) 13 (9.5%) 9 (15.8%)26 (14.7%) 58 (13.7%) 
Class 5 (Strong Inc.)4 (9.8%)0 7 (5.1%) (1.8%) 17 (9.6%) 29 (6.9%) 
Total 41 11 137 . 57 177 423 

101 



Fig. 4.22  Observed population trend  classes of Addle penguin colonies on Shirley  I. 
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Chapter 4: Results 

Fig. 4.23: Predicted population trend classes of Adelie penguin colonies on Shirley I based on 
discriminant analysis of individual cell values for snow accumulation parameters. 
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4.3.3 Decision Tree Analysis 

4.3.3.1 	Whitney Pt 

Individual Cell Values 

A decision tree analysis, with a minimum object size of 50, and with four leaves was constructed 

using wind exposure and snow cover in November, 2005 (App. 3). The difference in snow cover 

between 1959 and 2005 did not improve the predictive power of the model. Cross-validation shows 

that the model predicts population trends with 83.5% accuracy, while validation shows that the 

model is 83.7% accurate. The confusion matrix (Table 4.22) shows that the model is most accurate 

in predicting strongly increasing colonies (class 5: 98.8%). In contrast the model fails to accurately 

predict any of the decreasing colonies (classes 1 and 2), although the sample size of these in the test 

set is too small to draw conclusions about this aspect of the model. The tree predicts that those 

colonies with wind exposure ratings greater than 39 or with snow cover in 2005 of less than 0.07 

have strongly increasing population trends. In areas with deeper snow cover, those with wind 

exposure greater than 5 are also predicted to be increasing, while colonies in other areas are listed as 

stable (App. 3). 

Table 4.22: Confusion matrix of the performance of the decision tree analysis of colony population 
trends based on individual cell values for snow accumulation parameters. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4. Class 5 Total 

Predicted 
Trend 
Class 

Class 1 (Strong Dec 0 0 0 0 0 0 
Class 2 (Mod Dec.) 0 0 0 0 0 0 
Class 3 (Stable) 0 0 9 (29%) 1 (20%) 2 (1.2%) 12 (5.7%) 
Class 4 (Mod Inc.) 0 0 0 0 0 0 
Class 5 (Strong Inc. 4 (100%) 1 (100%) 22 (71%) 4 (80%) 166 98.8%) 197 (94.3%) 
Total 4 1 31 5 168 209 

Colony Mean Values 

A decision tree analysis with a minimum object size of two and with two leaves, was constructed 

• using the colony mean values for snow cover in November, 2005 (App. 2). Mean values for wind 

exposure and the difference in snow cover between 1959 and 2005 did not improve the predictive 

power of the model. Cross-validation of the model suggests that it predicts colony trends with 
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63.6% accuracy and validation with the test set of individual cell values shows it has an overall 

accuracy of 81.2% (Table 4.23). The model most accurately predicts strongly increasing colonies 

(class 5: 95.2%) and fails to accurately predict the trends of any declining or moderately increasing 

colonies (classes 1, 2 and 4). In this model, those cells with snow cover less than or equal to 1.14 

are predicted to be increasing strongly, while all others are predicted as stable. 

Table 4.23: Confusion matrix for validation of the decision tree analysis for colony trend 

predictions based on the colony mean values for snow accumulation parameters. 

Observed Trend Class 

Predicted 
Trend Class 

Class 1 Class 2 Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.)0 0 0 0 0 0 
Class 2 (Mod Dec.) 0 0 0 0 0 0 
Class 3 (Stable) 0 0 10 (32.3%) 1 	(20%) 8 (4.8%) 19 (9.1%) 
Class 4 (Mod Inc.) 0 0 0 0 0 0 
Class 5 (Strong Inc.) 4 (100%) 1 	(100%) 21 (67.7%) 4 	(80%) 160 (95.2%) 190 (90.9%) 
Total 4 1 31 5 168 209 

4.3.3.2 	Shirley I 

Individual Cell Values 

A decision tree with a minimum object size of 50 and with 18 leaves was constructed using the 

November 2005 snow cover, wind exposure and the change in snow cover between 1959 and 2005. 

Cross-validation shows that the model correctly predicts 53.8% of colony trends. Validation shows 

that it has an overall accuracy of 57.8%. The confusion matrix (Table 4.24) shows that the model 

most accurately predicts strongly increasing colonies (class 5: 73%). This model predicts population 

trends based on a complex interaction between the three variables, with snow cover in November 

2005 and wind exposure explaining most of the variance (App. 3). 
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Table 4.24: Confusion matrix for the decision tree prediction model of penguin colony population 
trends for Shirley I based on individual cell values for snow accumulation parameters. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4 Class 5 Total 

Class 1 (Strong Dec12 (29.3%) 0 5 	(3.6%) 0 2 • 	(1.1%) 19 	(4.5%) 
Class 2 (Mod Dec.) 0 7 	(63.6%) 5 	(3.6%) 0 1 	(0.1%) 13 	(3.1%) 

Predicted 
Trend 
Class 

Class 3 (Stable) 13 (31.7%) 0 78(56.1%) 10(17.5%) 34 	(19.1%) 135(31.7%) 
Class 4 (Mod Inc.) 2 	(4.9%) 2 	(18.2%) 9 	(6.5%) 19 (33.3%) 11 	(6.2%) 43 	(10.1%) 
Class 5 (Strong Inc. 14 (34.2%) 2 	(18.2%) 42 (30.2%) 28 (49.1%) tft#t 	(73%) 216(50.7%) 
Total 41 11 139 57 178 426 

Colony Means 

A decision tree with a minimum object size of two and with 13 leaves was constructed using the 

November 2005 snow cover, the change in snow cover between 1959 and 2005 and wind exposure 

(App. 3). Cross-validation shows that this model has an overall accuracy of 27.3%. Validation with 

the test set of individual cell values shows that it correctly predicts 41.6% of colony trends. The 

confusion matrix (Table 4.25) shows that the model most accurately predicts strongly increasing 

colonies (class 5: 65%) and fails to correctly predict any cells in colonies with moderately 

increasing populations (class 4). As with the previous model, snow cover in 2005 was used to make 

the first splits in the data, followed by wind exposure, and the model uses a complex mix of the 

three variables to predict population trends. 

Table 4.25: Confusion matrix for the decision tree prediction model of penguin colony population 
trends for Shirley I based on colony mean values for snow accumulation parameters. 

Observed Trend Class 
• 

Predicted 
Trend Class 

Class 1 Class 2 Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.) 25 (618%) 2 (18.2%) 28 (20.4%) 17 (29.8%) 56 (31.6%) 128 (30.1%) 
Class 2 (Mod Dec.) 1 (2.4%) 6 (54.6%) 4 (2.9%) 0 7 (4%) 18 (4.2%) 
Class 3 (Stable) 6 (14.6%) 2 (18.2%) 31 (22.6%) 0 0 39 (9.2%) 
Class 4 (Mod Inc.) 0 0 0 0 0 0 

Class 5 (Strong Inc.) 9 (22%) 1 (9.1%) 76 (55.5%) 40 (70.2%) 115 (65%) 241 (56.6%) 
Total 41 11 139 57 178 426 

The results of the discriminant analyses and decision trees show that the null hypothesis should be 

rejected. Purely random classifications could be expected to accurately predict 20% of values across 

five classes. The predictive models derived from snow accumulation parameters produce significant 

results for both sites, when based on both individual cell and colony mean values. The results are 

stronger for Whitney Pt than for Shirley I. 
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4.4 Proximity to human activities and population trends of Adelie 
penguin colonies 

This section presents the results of the tests for the ability of individual parameters associated with 

proximity or exposure to human activities, and the discriminant analyses and decision trees derived 

from these parameters to explain the observed population trends of Adelie penguin colonies within 

the two study sites as expressed in the following null hypothesis. 

HNULL 3 Proximity and exposure to human activities associated with Casey cannot predict the 

population trends of Adélie penguin colonies at Shirley I and Whitney Pt. 

The results are presented separately for each study site and for the tests conducted using individual 

cell values and colony mean values. 

4.4.1 Univariate Analyses 

4.4.1.1 	Whitney Pt 

Individual Cell Values 

A Wilcoxon test on individual cell values for colonies in five population trend classes demonstrates 

a significant difference among the classes for the distance from Casey (Table 4.26). Exploration of 

the scatterplots and histograms showed that strongly increasing colonies occurred at all distances 

from Casey, while stable (class 3) and moderately decreasing (class 2) colonies were clustered 

closest to Casey, and strongly decreasing (class 1) and moderately increasing (class 4) colonies 

were found near the middle of the study site. 

Table 4.26: Wilcoxon test for difference between individual cell values for colonies in five 
population trend classes. 

Variable 
	

Chi-Square DF Prob>ChiSq Significance 
Casey Distance 

	
221.307 
	

4 
	

<0.0001 
	

Significant 
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Colony Mean Values 

A Wilcoxon test on colony mean values in five population trend classes shows no significant 

difference among the population trend classes on Whitney Pt for the distance from Casey (Table 

4.27). It is likely that the decreased variance in the colony mean values reduced the significance of 

the differences among the five classes. 

Table 4.27: Wilcoxon test for difference between colony mean values in five population trend 
classes for Whitney Pt. 

Variable Chi-Square DF Prob>ChiSq Significance 
Casey Distanc 
	

5.211 
	

4 
	

0.266 
	

N.S. 

4.4.1.2 	Shirley I 

Individual Cell Values 

Wilcoxon tests shows significant differences among the five population trend classes for all the 

parameters associated with proximity to human activity (Table 4.28). All population trend classes 

are clustered around the median values for wind exposure. Almost all the strongly increasing 

colonies are found at the farthest difference from Casey and from the sea-ice crossing point. Most 

of the stable colonies occur at medium to long distances from Casey and the sea-ice crossing point. 

Moderately decreasing colonies are clustered very close to Casey, and close to the sea-ice crossing 

point. Strongly decreasing colonies are bimodal, occurring close to Casey and the sea-ice crossing 

point, and also at moderately long distances from both. 

Table 4.28: Wikoxon tests for significant difference among individual cell values for the five 
population trend classes for Adelie penguin colonies on Shirley I. 

Variable ChiSquare DF Prob>ChiSq Significance 
Casey Distance 1466.67 4 <0.0001 Significant 
Sea-ice Crossing Point Distance 1446.62 4 <0.0001 Significant 
Wind Exposure 103.15 4 <0.0001 Significant 
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Colony Mean Values 

Similarly to the individual cell tests, Wilcoxon tests show significant differences among the five 

population trend classes for all the parameters associated with proximity to human activities, for 

colony mean values (Table 4.29). They show no significant differences among colonies for wind 

exposure. 

Table 4.29: Wilcoxon tests for difference between colony mean values for the five population trend 
classes for Adelie penguin colonies on Shirley I. 

Variable Chi-Square OF Prob>ChiScSignificance 
Casey Distance 16.990 4 0.002 Significant 
Sea-ice Crossing Point Distan 13.868 4 0.008 Significant 
Wind Exposure 1.731 4 0.785 N. S. 

4.4.2 Discriminant Analyses 

4.4.2.1 	Whitney Pt 

Individual Cell Values 

A discriminant analysis model to predict population trends was constructed using the distance from 

Casey (App. 2). Cross-validation suggests this model has an accuracy of 28.1%, while validation 

shows the overall accuracy is 26.8% (Fig. 4.25). The confusion matrix (Table 4.30) shows the 

model predicts colony population trends with a high degree of accuracy for classes 1-4 (ranging 

from 93.6% to 100%). The small number of data-points in the test set for classes 1, 2 and 4 reduces 

the reliability of this result. The model accurately predicts 10.1% of the strongly increasing colonies 

(class 5). This class represents 80.38% of the dataset, and so has a large effect on the overall 

accuracy. 
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Table 4.30: Confusion matrix of the discriminant analysis model predicting Adelie penguin colony 
population trends at Whitney Pt based on the individual cells' distance from Casey. 

• 	Observed Trend Class . 
Class 1 Class 2 - Class 3 Class 4 Class 5 Total 

Predicted 
Trend 
Class 

Class 1 (Strong Dec 4 - (100%) 0 0 0 31 (18.5%) 35 (16.8%) 
Class 2 (Mod Dec.) 0 1 (100%) 0 0 19 (11.3%) 20 (9.6%) 
Class 3 (Stable) .  0 0 29 (93.6%) 0 57 (33.9%) 86 (41.2%) 
Class 4 (Mod Inc.) 0 0 2 (6.5%) 5 (100%) 44 (26.2%) 51 (24.4%) 
Class 5 (Strong Inc.I0 0 0 0 17 (10.1%) 17 (8.1%) 
Total 4 1 31 5 168 209 

Colony Mean Values 

A discriminant analysis model predicting Adelie penguin population trends based on the colony 

mean values for distance from Casey (App. 2) has an overall accuracy. of 33.3%, as measured by 

cross-validation. Validation with the test set of individual cell values shows the model has an 

overall accuracy 17.2% (Fig. 4.26). The confusion matrix (Table 4.31) shows the model most 

accurately predicts colony trends for moderately decreasing colonies (class 2: 100%) and 

moderately increasing colonies (class 4: 100%). However the low number of data points in these 

classes in the test set reduces the reliability of these results. The model fails to correctly predict any 

cells in stable colonies. 

Table 4.31: Confusion matrix for cross-validation of the discriminant analysis model predicting 
population trends based on colony mean values for the distance of Whitney Pt colonies from Casey. 

Observed Trend Class 

Predicted 
Trend Class 

Class 1 Class 2 Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.) 3 	(75%)0 0 0 8 (4.8%) 11 (5.3%) 
Class 2 (Mod Dec.) 0 1 	(100%) 29 (93.6%) 0 47 (28%) 77 (36.8%) 
Class 3 (Stable) 0 0 0 0 44 (26.2%)44 (21.1%) 
Class 4 (Mod Inc.) 0 0 2 (6.6%) 5 	(100%) 42 (25%)49 (23.4%) 
Class 5 (Strong Inc.) 1 	(25%) 0 0 0 27 (16.1%) 28 (13.4%) 
Total 4 1 31 5 168 209 
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Chapter 4: Results 

4.4.2.2 	Shirley I 

Individual Cell Values 

A discriminant analysis model was constructed using the individual cell values for distance from 

Casey, distance from the sea-ice crossing point and the wind exposure (App. 2). The wind exposure 

layer was included as a surrogate for exposure to any potential airborne emissions from Casey, as 

Shirley I is directly downwind from Casey. However, wind exposure contributed only a small 

amount to increasing the model's predictive power. Cross-validation suggests that this model 

predicts population trends with 72.7% accuracy. Validation shows that the accuracy is 72.1% (Fig. 

4.27). Distance from Casey is the most important factor in predicting observed colony population 

trends. A discriminant analysis model derived from this one parameter, correctly predicts trends for 

49.4% of the cells (as shown by cross-validation), compared with 26.8% for Whitney Pt for the 

same model. The confusion matrix (Table 4.32) shows that the Shirley I model using all three 

parameters most accurately predicts the trends for moderately increasing colonies (class 4: 100%) 

and strongly increasing colonies (class 5: 75.8%). 

Table 4.32: Confusion matrix for the discriminant analysis model predicting population trends of 
Shirley I colonies based on individual cells' distance from Casey, distance from the sea-ice crossing 
point and exposure to prevailing winds. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4 • Class 5 Total 

. 
Predicted 
Trend 
Class 

Class 1 (Strong Dec.11 (26.8% ) 0 3 	(2.2%) 0 4 (2.3% ) 18 (4.2%) 
Class 2 (Mod Dec.) 9 	(22%) 7 (63.6%) 1 	(0.7%) 0 0 17 (4%) 
Class 3 (Stable) 9 	(22%) 2 (18.2%) 97 (69.8%) 0 . 0 108 (25.4%) 
Class 4 (Mod Inc.) 7 	(17.1%) 2 (18.2%) 38 • (27.3%) 57 (100%) 39 (21.9% ) 143 (33.6%) 
Class 5 (Strong Inc.) 5 	(12.2%) 0 0 0 135 (75.8% ) 140 (32.9%) 
Total 41 11 139 57 178 426 

Colony Mean Values 

The discriminant analysis model of Adelie penguin colony population trends based on proximity to 

human activities based on colony mean values was improved by the distance from the sea-ice 

crossing point and the wind-exposure (App. 2). Distance from Casey decreased the predictive 

power of the model and was excluded from the final Model. Cross-validation shows that the model 

correctly predicts the population trend in 36.4% of test cells, while validation with the test set of 
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individual cell values shows that the overall accuracy is 40.6% (Fig. 4.28). The model most 

accurately predicts strongly increasing colonies (class 5: 75.3%) and least accurately predicts 

strongly decreasing (class 1: 7.3%) colonies (Table 4.33). • 

Table 4.33: Confusion matrix for validation of the discriminant analysis model predicting 
population trends of Shirley I colonies based on the colony mean values for distance from the sea-
ice crossing point and exposure to prevailing winds. 

• 	Observed Trend Class 

Predicted 
Trend 
Class 

Class 1 Class 2 Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.) 3 (7.3%) 0 39 (28.1%) 0 0 42 (9.9%) 
Class 2 (Mod Dec.) 13 (31.7%) 7 (63.6%) 5 (3.6%) 0 3 (1.7%) 28 (6.6%) 
Class 3 (Stable) 11 (26.8%) 0 19 (13.7%) 0 0 30 (7%) 
Class 4 (Mod Inc.) 10 (24.4%)0 16 (11.5%) 10 (17.5%) 41 (23%) 77 (18.1%) 
Class 5 (Strong Inc.) 4 (9.8%) 4 (36.4%) 60 (43.2%) 47 (82.5%) 134 (75.3%) 249 (58.5%) 
Total 41 11 139 57 178 426 
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Chapter 4: Results 

4.4.3 Decision Tree Analyses 

4.4.3.1 	Whitney Pt 

Individual Cell Values 

A decision tree model was constructed with a minimum object size of 50 and with 5 leaves, using 

the individual cell values for distance from Casey. Cross-validation .  shows that the model has an 

overall accuracy of 88.9% and validation shows that it correctly predicts penguin colony population 

trends for 90.9% of test cells. An examination of the decision tree shows three distinct bands of 

cells in class 5 (strong increase), interspersed by a band of cells with stable penguin populations and 

a band of cells with moderately increasing penguin colony populations (class 4). Both the colonies 

closest to Casey and farthest away are classified as class 5 (App. 3). The model most accurately 

predicts increasing colonies (class 4: 100% and class 5: 94.1%). It fails to accurately predict the 

trends of any decreasing colonies (Table 4.34). However, the small size of the datasets showing 

population decreases in the test set reduces the reliability of the model for these classes. 

Table 4.34: Confusion matrix for the decision tree analysis predicting population trends of Whitney 
Pt colonies based on the individual cells' distances from Casey. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4 Class 5 Total 

Predicted 
Trend 
Class 

Class 1 (Strong Dec 0 0 0 	• 0 0 0 
Class 2 (Mod Dec.) 0 0 0 0 0 0 
Class 3 (Stable) 0 0 27(87.1%) 0 5 (3% ) 32 (15.3%) 
Class 4 (Mod Inc.) 0 0 2 	(6.5%) 5 (100% ) 5 (3% ) 12 (5.7%) 
Class 5 (Strong Inc:4 (100% ) 1 (100%) 2 	(6.5%) 0 158 (94.1% ) 165 (79%) 
Total 4 1 31 5 168 209 

Colony Mean Values 

A decision tree based on the colony mean values for distance from Casey predicted colony trend 

with 66.7% accuracy, as measured by cross-validation. The model had a minimum object size of 

two and two leaves (App. 3). Validation with the test set of individual cell values shows that the 

model has an overall accuracy of 79.9%. The model (Table 4.35) predicts that the populations of all 

colonies less than 3.31cm from Casey are stable (class 3) and the populations of all farther colonies 

are increasing strongly (class 5). 
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Table 4.35: Confusion matrix for the decision tree analysis predicting population trends of Whitney 
Pt colonies based on the colony mean values for distance from Casey. 

Observed Trend Class 

Predicted 
Trend Class 

Class 1 Class 2 Class 3 Class 4 Class 5 Total 
Class 1 (Strong Dec.) 0 0 0 0 0 0 
Class 2 (Mod Dec.) 0 0 0 0 0 0 
Class 3 (Stable) 0 1 	(100%) 21 (67.7%) 0 22 (13.1%) 44 (21.1%) 
Class 4 (Mod Inc.) 0 -0 o o o 0 
Class 5 (Strong Inc.) .  4 	(100%) 0 10 (32.3%) 5 	(100%) 146 (86.9%) 165 (79%) 
Total 4 1 31 5 168 209 

4.4.3.2 	Shirley I 

•  Individual Cell Values 

A decision tree model based on the individual cell values for the parameters related to human 

proximity predicts Shirley I population trends with 86.5% accuracy, as measured by cross-

validation and 83.8% accuracy, as measured by validation. The tree has a minimum object size of 

50 and 11 leaves. The distance from the sea-ice crossing point and from Casey are the most 

predictive parameters, with wind exposure used for two terminal splits in the data. The model uses 

interactions between the three variables to separate the population trends (App. 3). The confusion 

matrix (Table 4.36) shows the model most accurately predicted trends for increasing colonies (class 

4: 87.7% and class 5: 86.5%). It is difficult to interpret the relative importance of the two distances 

measures because they covary strongly. 

Table 4.36: Confusion matrix for the decision tree analysis predicting population trends of Shirley I 
colonies based on the individual cell values for distance from the sea-ice crossing point, distance 
from Casey and wind exposure. 

Observed Trend Class 
Class 1 Class 2 Class 3 Class 4 - Class 5 Total • 

Predicted 
Trend 
Class 

Class 1 (Strong Dec. 27 (65.9%) 0 0 0 0 27 (6.3%) 
Class 2 (Mod Dec.) 4 (9.8%) 7 (63.6%) 1 (0.7%) 0 0 12 (2.8%) 
Class 3 (Stable) 5 (12.2%) 4 (36.4%) 119 (85.6%) 1 (1.8%) 12 . 	(6.7%) 141 (33.1%) 
Class 4 (Mod Inc.) 0 0 4 (2.9%) 50 (87.7%) 12 	(6.7%) 66 (15.5%) 
Class 5 (Strong Inc.) 5 (12.2%) 0 15 (10.8%) 6 (10.5%) 154 (86.5%) 180 (42.3%) 
Total 41 11 139 57 178. 426 
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Colony Mean Values 

A decision tree model derived from the colony, mean values related to human activities predicts 

colony trends with 56.8% accuracy, as measured by cross-validation, and 57.3%, as measured by 

validation. The tree had a minimum object size of two and nine leaves (App. 3). Distance from 

Casey is the most important predictor, with wind exposure used for one split in the middle of the 

tree. Distance from the sea-ice crossing point was not identified as .  a predictor of observed colony 

•population trends. The model most accurately predicts strongly increasing colonies (82.6%) and 

strongly decreasing colonies (class 1: 78.1%). It fails to correctly predict any moderately increasing 

(class 4) colonies (Table 4.37). In this model, those colonies less than 855.58 m from Casey are 

predicted to be decreasing moderately, while those furthest from Casey (>1778.12 m) are 

decreasing strongly. However, the latter group has an object size of two and is hence too small to 

make reliable assumptions from. Those colonies between 1588.42 and 1778.12 m from Casey are 

predicted to be strongly increasing. For thOse colonies between 855.58 m and 1588.42 m, a 

combination of distance from Casey, distance from the sea-ice crossing point and wind exposure is 

used to differentiate the population trend classes (App. 3). 

Table 4.37: Confusion matrix for the decision tree analysis predicting population trends of Shirley I 
colonies based on the colony mean values for distance from Casey and wind exposure. 

Observed Trend Class 

Predicted 
Trend Class 

Class 1 Class 2 Class 3 - Class 4 Class 5 Total 
Class 1 (Strong Dec.) 32 (78.1%) 3 (27.3%) 38 (27.3%) 0 28 (15.7%) 103 (24.2%) 
Class 2 (Mod Dec.) 0 5 (45.5%) 9 (6.5%) 0 0 14 (3.3%) 
Class 3 (Stable) 9 (22%) 3 (27.3%) 60 (43.2%) 0 3 (1.7%) 75 (17.6%) 
Class 4 (Mod Dec.) 0 0 0 0 0 0 
Class 5 (Strong Dec.) 0 0 32 (23%) 57 (100%) 147 (82.6%) 236 (55.4%) 
Total 41 11 139 57. 178 426 

The results of these models suggest that proximity to human activities partially explains the 

population trends of Adelie penguin colonies on Shirley I. Distance from Casey appears to have 

minimal predictive power for the observed population trends of colonies on Whitney Pt. The very 

high values for the decision tree model based on individual cell values (90.9%) appear to be the 

result of "banding" in the colonies, with the strongest population trend increases found in the 

colonies closest to and farthest from Casey. Thus, the null hypothesis should be rejected for Shirley 

I but not for Whitney Pt. 
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5 Discussion 

5.1 The effect of landscape on Adelie penguin distribution in the 
Windmill Is 

The modelled static landscape parameters have significant predictive power for the presence or 

absence of Adelie penguin colonies within the study sites at Whitney Pt and Shirley I. A purely 

random classification for two classes could be expected to predict class membership with 

approximately 50% accuracy. Both discriminant analysis and decision trees based on both 

individual cell values and colony mean values predict the presence or absence of Adelie penguins in 

cells with accuracies far higher than this, suggesting that landscape parameters, as modelled in this 

study, are important drivers of Adelie penguin colony locations in the Windmill Is. The results are 

strongest for the individual cell analyses and for the decision trees. The parameters associated with 

elevation change — slope, surface roughness (standard deviation) and surface roughness 

(normalised) — are repeatedly shown to be important predictors of colony locations. Surface 

roughness (standard deviation), solar radiation and wind exposure are the most commonly selected 

variables in the discriminant analysis and decision tree models. These all improved the predictive 

power of three of the four models. All of the measured landscape variables were used in at least one 

of the models, except for the surface curvature layers and aspect, which could not be applied in 

discriminant analyses or averaged because of the circular nature of the data. The models predict 

Adelie penguin distribution with higher accuracy for Shirley I than for Whitney Pt by 5.4-16.3%. It 

is likely that this difference is mostly driven by the difference in the accuracy of the DEMs. 

No single static landscape parameter, apart from the presence or absence of permanent snow, can be 

used to predict the presence or absence of Adelie penguins. Instead, it appears that a complex 

interaction of several landscape parameters affect habitat suitability. However, a few generalisations 

can be made. Adelie penguin colonies generally do not occur On the steepest slopes, regardless of 

aspect, or on moderately steep south-facing slopes with low, solar radiation. Similarly, the birds 

appear to choose colony sites with moderate levels of wind exposure. Beyond that, simple spatial 

rules determining colony locations could not be discerned. The colonies occur on hilltops, valley 

bottoms and the sides of hills, facing almost all directions, and with varying scores On the wetness 

index. 
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These results at least partially agree with previous studies into the relationships between static 

landscape parameters and the distribution of Adelie penguin nest sites. Snow accumulation has 

repeatedly been found to be a significant factor in the distribution of Adelie penguins in other parts 

of Antarctica (e.g. Levick, 1915; Yeates, 1975; Moczydlowski, 1986, 1989; Trivelpiece and Fraser, 

1996; Fraser and Patterson, 1997; Patterson et al., 2003). 

This study is the first to compare the observed distribution of Adelie penguin colonies with snow 

distributions derived from a spatial, physically-based blowing snow model. Historically, studies 

investigating the relationship between colonies and snow cover have relied on observations or direct 

measurements of snow depth in or near colonies on a given date. These approaches were unable to 

account for spatial variability within and among colonies, or to account for temporal changes in 

snow cover. A more spatially-explicit approach was taken by Patterson et al. (2003), who used a 

GIS hillshade model as a surrogate for snow accumulation. As has been discussed earlier in this 

paper, that approach was more directly a surrogate for exposure to prevailing winds. Wind exposure 

is not the same as snow accumulation, as may be highlighted by considering the case of a concave 

cliff that faces prevailing winds. The area at the base of the cliff is likely to accumulate snow (this 

can be seen near colonies I-IV at Whitney Pt, P.K. Bricher, pers. obs.), but a hillshade model would 

display that area as highly exposed to the prevailing winds, and hence likely to be free of snow. 

However, there is a strong correlation between wind exposure and modelled snow accumulation, 

and it is therefore difficult to separate the relative effects of each parameter. 

Ainley (2002) proposed that Adelie penguins typically nest on ridges and on higher ground. He did 

note that where they nested in single-species colonies, they are found closer to sea-level. Similarly, 

Wilson et al. (1990) found that Adelie penguin colonies occur on well-drained mounds. This study 

found that Adelie penguins nest at all elevations in the study sites, although they appear to occur in 

altitude "bands". This may be because the terrain in the Windmill Is is dominated by plateaux and 

low cliffs. There was no evidence that Adelie penguins nest only on ridges. While many colonies on 

Shirley I and at Whitney Pt do occur on ridges, others occur in valley bottoms and at the bases of 

hills. Profile and planar curvature, which are measures of the shape of a slope, were repeatedly 

found not to improve the predictive power of the distribution models. 

Yeates (1975) found that Adelie penguins select nest sites with the highest solar radiation and wind 

exposure measures. In the present study, the highest modelled solar radiation levels were found on 
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north-facing slopes (Fig. 4.4), and the highest wind exposure on south-east facing slopes (Fig. 

4.10). An examination of the scatterplots of solar radiation and wind exposure showed that, Adelie 

penguin colonies did not occur at sites with either the highest or the lowest solar radiations, 

especially at Whitney Pt. Instead, they were clustered in sites with modelled armual.solar radiation 

values between 3200 and 3700 MJ/m 2, on a scale of 2500 to 4000 MJ/m 2 . In addition, the colonies 

were clustered on sites with moderate wind exposure. Based on the results obtained in this study, it 

appears that in the Windmill Is, Adelie penguins select nest sites that balance their requirements for 

sites with at least moderate levels of solar radiation and that are moderately exposed to prevailing 

winds. 

Moczydlowski (1986; 1989) found that high levels of solar radiation and good drainage were 

common features of all Adelie penguin colonies on the pen-Antarctic South Shetland Is and that 

while colonies were located in the sites with the thinnest snow cover, they did not occur in the most 

exposed sites. In the present study, drainage appeared as a predictive factor in three of the four 

distribution models based on mean values, but it did not increase the predictive power of the other 

models. It is possible that drainage is less important as a predictor of Adelie penguin habitat in the 

Windmill Is, which have a drier continental Antarctic climate, than it is in wetter, maritime pen-

Antarctic regions. It is also likely that the wetness index values are more susceptible to the effects 

of within-colony spatial autocorrelation than other variables. The results of the present study also 

agreed with Moczydlowski's finding that Adelie penguin colonies do not occur in the sites with the 

• highest wind exposure. An examination of scatterplots and histograms of the wind exposure data for 

both study sites showed that the colonies were clustered in sites with medium levels of wind 

exposure. 

The techniques applied here allowed an objective analysis of the spatial variability of all the 

modelled static landscape variables, whereas previous studies have typically relied on subjective 

descriptions or individual measurements of the variables in a low number of colonies. The 

multivariate models developed in this study are able to predict the presence or absence of Adelie 

penguin nests within a 4m 2  grid cell with up to 84.5% accuracy. 

5.2 The effect of snow accumulation patterns on Adelie penguin colony 
.population trends in the Windmill Is 

On the Antarctic Peninsula, snow accumulation patterns have been found to be important predictors 
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of Adelie penguin colony population trends and of colony distributions (Fraser and Patterson, 1997; 

Patterson et al., 2003). Results from this study support those findings. At Whitney Pt, the modelled 

snow accumulation and wind exposure layers explain much of the variation in colony population 

trends. These layers have less predictive power on Shirley I, where proximity to human activities 

explain a large proportion of the variation on colony population trends (see section 5.4). 

At Whitney Pt, the colonies with strong population increases (>150% of the 1959 population) are 

associated with the thinnest modelled snow cover, while stable colonies are found in areas with 

thicker snow cover. For the individual cell values, colonies of all population trend classes are 

associated with areas with minimal changes in the modelled snow cover between 1959 and 2005. 

However, the colony mean values of colonies with the strongest decreases (<50% of the 1959 

population) are associated with the areas showing the greatest increases in snow accumulation. 

Given the small sample size for decreasing colonies on Whitney Pt, this result should be interpreted 

cautiously. The snow accumulation data for Shirley I do not show such obvious trends. 

The Whitney Pt results agree with the findings of Patterson et al. (2003) who found that exposure to 

prevailing winds acted as a primary driver of colony population trends. Their study was conducted 

in an area where increasing mean temperatures led to increased snowfall. In the Windmill Is, little 

attention has been paid to potential climate change, and the modelled change in snow cover in this 

study suggested that there was little broad-scale change in snow accumulation during the period 

under examination (1959-2005). This suggests that a broader process is driving the overall increase 

in Adelie penguin numbers for the Windmill Is, but that snow accumulation may mediate that 

increase in individual colonies, at the site furthest from human activities. 

5.3 The effect of proximity to human activities on Adelie penguin 
colony population trends in the Windmill Is 

Distance from Casey has some predictive power for the population trends of colonies at Whitney Pt. 

The discriminant analysis based on individual cell values predicts colony trends with 26.7% 

accuracy, a small but significant effect. In contrast, the decision tree based on individual cell values 

predicts trends with 90.9% accuracy *— a highly significant result. This highlights the differing 

assumptions of discriminant analysis and decision trees. As a parametric test, discriminant analysis 

assumes that the values of all points in a class will be clustered around a single value. As a non-

parametric test, a decision tree is able to cope with multimodal data, such as those observed at 
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Whitney Pt. The decision tree identified three distinct "bands" of colonies that had strongly 

increasing populations. These bands were interspersed by a band of colonies with moderately 

increasing populations and a band of stable colonies. The fact that the colonies both closest to and 

farthest from Casey have strong population increases suggests that some other environmental factor, 

that is not accounted for here, is causing bands of terrain with different levels of suitability. 

Shirley I is much closer to Casey, is regularly visited by station personnel and is immediately 

downwind of Casey. At this site, proximity to human activities has much greater predictive power 

for colony population trends than at Whitney Pt. Wilcoxon tests show significant differences among 

population trend classes for distance from Casey and from the sea-ice crossing point used by 

personnel to access the island. These differences are significant for both the individual cell values 

and the colony mean values. It is difficult to separate the effects of these two variables because of 

the strong correlation between the distance from Casey and distance from the sea-ice crossing point. 

Wind exposure, which acts as a surrogate for both exposure to prevailing winds and to possible 

exposure to noise and particulates from Casey, has little predictive power compared with the • 

distance measures. 

The results of the analyses based on individual cell values are stronger than those based on colony 

• mean values for Shirley I. The discriminant analysis based on individual cell values has an overall 

accuracy of 72.1%, compared with 40.6% for the discriminant analysis based on colony means. 

However, spatial autocorrelation is likely to have affected the results of the models based on 

individual cell values. The predictive map (Fig. 4.32) derived from the discriminant analysis based 

on individual cell values, shows that the model strongly predicts the trends of the large colonies at 

the western end of the island, but poorly predicts the trends of smaller colonies in other parts of the 

island. The predictive map (Fig. 4.33) derived from the discriminant analysis based on colony mean 

values shows that this model more accurately predicts the trends of smaller colonies at the eastern 

end of the island. The difficulty in applying decision tree results in a GIS precludes a visual 

assessment of the performance of the decision tree models. Using the more conservative results of 

the models based on colony mean values, the discriminant analysis has approximately twice the 

predictive power that a purely random classifier might be expected to have (40.6%, compared with 

20%). The decision tree has almost three times•the predictive power than it would if proximity to 

human activities had no effect on Adelie penguin colony population trends (57.3%, compared with 

20%). 
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It is difficult to determine whether the distance from Casey or the distance from the sea-ice crossing 

point is the most significant factor in explaining penguin colony population trends on Shirley I for 

the period 1968-2005, because of correlations between these two variables. As a result, their 

relative importance varied among the models. Therefore, these results should be interpreted with 

caution. While these results suggest that proximity to human activities is a significant driver of 

Adelie penguin colony population trends, further investigations are required to separate the effects 

of station-related activities, such as noise and particulate emission, and the effects of visits to the 

colonies by station personnel. 

Previous studies into the effects of human activities on Adelie penguin population trends have 

produced site-specific results. The results of the present study at least partially support the 

proposition of Woehler et al. (1994) that visits by station personnel appear to cause decreases in 

populations among some Adelie penguin colonies on Shirley I. A similar situation was found at 

Cape Bird, Ross I (Young, 1990) where Adelie penguin colonies close to the research station 

underwent significant population decreases at a time when the overall penguin population was 

increasing. 

Giese (1996) reported significantly lower breeding success in Adelie penguin colonies that had been 

subjected to daily recreational visitors or to regular scientific nest-checks. She concluded that the 

frequency of disturbance drove the magnitude of the decrease in breeding success. Giese's study 

was conducted in a breeding locality that had been little disturbed by previous human activities. In 

contrast, Patterson et al. (2003) investigated colonies on Torgersen I, near Palmer on the Antarctic 

Peninsula that had been regularly visited by tourists and researchers for many years. They found 

that tourism had no detectable effect on Adelie penguin breeding population size or breeding 

success. Similarly, Fraser and Patterson (1997) had found no correlation between Adelie penguin 

population trends and human-use histories of breeding localities near Palmer. 

Studies of the effects of proximity and/or exposure to human activities on the breeding success and 

population trends of Adelie penguins have also examined the effects of habitat modification on the 

birds. At Cape Hallett, Wilson et al. (1990) found that Adelie penguin populations decreased during 

the period in which the station was inhabited, and that they subsequently returned to the numbers 

present before human occupation, once the station had been abandoned. It is difficult to separate the 

126 



Chapter 5: Discussion 

effects of habitat modification from the effects of visitation or disturbance associated with station 

activities when habitat modification directly impacts on nesting habitat. At Dumont d'Urville, Terre 

Adelie, Micol and Jouventin (2000) found that Adelie penguin numbers had increased by 49% in 14 

years, despite the destruction of some colonies for the construction of a runway that spanned three 

islands. They found above-average population increases (154%) on the Ile des Petrels, where the 

station is located. The largest population increase (826%) over the same time period was found in 

the breeding locality farthest from the station, at Cap Geodesie. However, extensive habitat 

modification on islands around Dumont d'Urville makes it difficult to draw conclusions about the 

effects of proximity to human activities on these penguin population trends. 

From these studies, it appears that the effects of proximity and/or exposure to human activities are 

determined by a combination of the types of activities involved and the history of interactions 

between humans and Adelie penguins at a given site. They may also be confounded by 

environmental trends at regional scales. The results of this study suggest that in the Windmill Is, 

proximity and/or exposure to human activities may play a significant role in mediating the observed 

long-term increases in Adelie penguin numbers. Of the colonies for which long-term census data 

are available, the majority of colonies with decreasing population trends are located on Shirley I, 

which is the closest breeding locality to Casey (Woehler et al., 1991). On Shirley I, disci -iminant 

analysis and decision tree models based on proximity and exposure to human activity data predict 

population trend classes with athigh degree of accuracy (40.6%-86.5%). 

5.4 How this study compares with other GIS-based habitat analyses 

The majority of GIS-based habitat analyses have focused on mapping or predicting the distribution 

of a species (Guisan and Zimmermann, 2000; Lenton et al., 2000; Osborne, Alonso and Bryant, 

2001; Lauver, Busby and Whistler, 2002; Gibson et al., 2004). Typically they have not investigated 

temporal changes in habitat suitability (Curnutt et al., 2000). The present study was able to do this 

because of the relative ease with which current and relic Adelie penguin colonies can be mapped, 

and because of the existence of long-term population data for Adelie penguin colonies in the 

Windmill Is. 

A common problem in habitat suitability analyses is that it is rarely possible to determine that a site 

has never or will never be used by the species under examination (Breininger et al., 1991). In the 
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present study, it was possible to determine which sites have been used in the past because relic 

Adelie penguin colonies are relatively easy to map. However, this does not preclude the possibility 

that other suitable sites are available that have not yet been exploited by the birds. Fielding and Bell 

(1997) warned that interference will occur in a model if a species is not using the entire available 

suitable habitat. It is likely that this is the case in the Windmill Is, as evidenced by the high 

proportion of recently established colonies at Whitney Pt on sites that had no evidence of previous 

habitation (Martin et al., 1990). The strength of the predictive power of the distribution models in 

the present study was similar to the results of other GIS-based habitat analyses (e.g. Aspinall and 

Veitch, 1993; Debinski et al., 1999; Guisan and Zimmermann ., 2000; Osborne et al., 2001). 

Most habitat analysis studies have used just one multivariate statistical technique (e.g. Debinski et 

al., 1999; Patterson et al., 2003; Gibson et al., 2004). This study followed the example of Blackard 

and Dean (1999), Manel et al. (1999) and Guisan and Zimmermann (2000) and applied two 

different statistical techniques, with differing underlying assumptions. The discriminant analyses 

and decision trees produced similar results for each of the models, except in the cases outlined 

earlier in this discussion. The fact that different inputs were selected for the different models 

suggests collinearities between some of the data, and the use of two different tests enabled 

confirmation of the results and the identification of weaknesses in the models. The data used in this 

study violate the assumption of normality, as well as assumptions about equality of variance and of 

covariance matrices (Flury and Riedwyl, 1988) that underpin discriminant analysis. Although it has 

been argued that violations of the normality assumptions of discriminant analysis have apparent 

minimal effect on results (Blackard and Dean, 1999), it was considered appropriate to compare the 

results of disciminant analysis models with the non-parametric decision tree analysis. The results 

show that the non-parametric decision trees have stronger predictive power than the parametric 

discriminant analyses. 

This study used advanced GIS habitat analysis techniques, including complex models and 

multivariate statistical tests. It used two different multivariate modelling methods, and used colony 

mean values to eliminate the effects of within-colony spatial autocorrelation. This study therefore 

accounted for potential artefacts of the methods that have often been ignored in previously 

published studies (Legendre, 1993; Guisan and Zimmermann, 2000). However, it does not 

eliminate among-colony spatial autocorrelation, and this is an area for future investigation 

(Legendre, 1993). 
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5.5 Limitations on the study 

The results of the analyses based on DEM derivatives for Whitney Pt are less reliable than those for 

Shirley I, because the accuracy of the Whitney Pt DEM was severely limited by the snow cover in 

the available aerial photograph. The DEM had a mean height.accuracy of ±2m for areas of exposed 

rock and ±6.6m for snow-covered areas. This, in turn, affected the reliability of the DEM 

derivatives. It is likely that the large differences in the predictive power of the models of Adelie 

penguin colony distribution between Shirley I and Whitney Pt are caused by the greater errors in the 

Whitney Pt DEM. The Shirley• I DEM was much more accurate, but was affected by the 

"smoothing" effect where stereo-models overlapped. This effect was reduced in the interpolated 

DEM that was used for the analyses. The effects of these errors on the analyses were 

unquantifiable; hoWever, it was considered that they were less severe than the errors in the Whitney 

Pt DEM. As outlined in section 6.2, better aerial photography would greatly reduce the errors 

resulting from positional uncertainty in the DEMs. 

The Adelie penguin population trends were calculated from the changes between counts conducted 

in two breeding seasons (1959/60 and 2005/06 for Whitney Pt and between 1968/69 and 2005/06 

for Shirley I). These calculated trends were potentially affected by counting errors and by data 

aliasing issues associated with interannual fluctuations in breeding pair numbers. However, an 

examination of the plotted long-term trends showed a strong agreement with the calculated trends 

for these colonies. In addition, the general trends for the population trends are well-knOwn (Woehler 

et al., 1991; Woehler et al., 1994). Trends in colony populations were categorised into five classes. 

Doing this increased the power of the resulting statistical analyses, but reduced the sample size and 

concomitant degrees of freedom. Classifying the data into regularly-spaced classes allowed 

comparison of "like" population trends, but it resulted in small sample sizes for some classes of 

data. This was especially so for the moderately increasing class (class 4), and made interpretation of 

the multivariate models difficult for these classes. 

The boundary cells of current and relic Adelie penguin colonies were removed from the analyses 

because of the positional uncertainty of the colony boundaries. This ensured that all cells described 

as having Adelie penguins present represented actual penguin colony habitat. However, it reduced 

the number of data points in the analyses and resulted in some very small colonies being entirely 

excluded from the analyses. It is possible that the landscape properties of these small colonies are 
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different to larger colonies. It is also possible that the effects of environmental or human-related 

stressors are more severe for these small colonies, as has been shown in other parts of Antarctica 

(Giese, 1996; Patterson et al., 2003). 

The solar radiation model was a measure of potential, rather than actual solar radiation, and was 

hence unable to account for the effect of cloud cover on actual radiation. As the PotRad model used 

here was designed for use in the tropics, it did not account for the high albedo of snow and ice 

present in the Antarctic (van Dam, 2001). Thus, it is possible that the model underestimated the 

total solar radiation for south-facing slopes. However, the results of the models here agree with 

findings in other parts of Antarctica, where Adelie penguin colonies were found not to occur on the 

sites With the lowest solar radiation (Moczydlowski, 1986; 1989). The solar radiation model used in 

this study proved to be an important predictor of the distribution of Adelie penguin colonies, even if 

it did not show actual solar radiation levels. The model could be tested by comparing its modelled 

results with pyranometer observations along transects at the study sites. 

The NCEP/NCAR weather reanalysis data were produced for a grid point located 63.1 km to sea off 

Casey. Thus, the effects of local topographic features in mediating the weather conditions at the 

study sites could not be examined in this study. It has also been argued elsewhere that the paucity of 

weather observations in the Southern Ocean reduced the accuracy of the reanalysis data for 

Antarctica (Hines et al., 2000). The sensitivity of the snow accumulation model to different weather 

data input could be tested in the future by comparing results of a snow model based on 

NCEP/NCAR data with one based on Bureau of Meteorology observations for years where both 

sets of data are available. 

The snow accumulation model produced maps of relative spatial patterns of snow accumulation, 

rather than numerical results of snow depths. It was not validated with ground-truth data, and so the 

modelled snow distribution cannot be assumed to represent actual snow distribution. Snow .  

accumulation patterns have long been known to be important drivers of the distribution and 

population trends of Adelie penguin colonies in the Antarctic (e.g. Levick, 1915; Moczydlowski 

1986, 1989; Fraser and Patterson, 1997; Patterson et al., 2003). However, GIS-based snow 

accumulation models are rare and often rely on input data that is not available for Antarctic 

environments (Liston and Sturm, 1998). Although no snow accumulation model can expect to 

capture all of the physical processes associated with snow transport, the model used in this study 
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showed strong visual agreement with observed snow patterns and with Adelie penguin colony 

distribution and population trends (Greene et al., 1999). 

The diseriminant analyses were likely to be adversely affected because some of the data violated the 

assumptions of normality, independence of variables and equal variance that underpin discriminant 

analysis (Flury and Riedwyl, 1988). Other multivariate statistical techniques, such as logistic 

regression, that do not make the same assumptions could have been used more effectively here. 

Because of the data violations of the discriminant analysis, it was considered appropriate to repeat 

the analyses using decision tree models. Decision trees are capable of handling data that are not 

normally distributed. The resulting models consistently had stronger predictive power than the 

discriminant analyses, but could not be readily applied in a GIS. Both of the study sites consisted of 

several hundred thousand cells, and it was unwieldy to produce predictions for each cell in Weka. 

To implement the models in ArcGIS would have involved complex sets of nested conditional 

statements. This was a major limitation to the study, as the models with the greatest predictive 

power could not be explored spatially. However, there is potential for a tool to be developed to 

enable the implementation of decision trees in a GIS environment. 
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6 Conclusions 

6.1 Conclusions of the study 

This study used advanced GIS-based analysis and multivariate statistical techniques to investigate 

factors that affect the distribution and population trends of Adelie penguin colonies within breeding 

localities.. Landscape parameters were derived from fine-scale DEMs, and a physically-based snow 

accumulation model was used to simulate the patterns of snow cover. Discriminant analysis and 

decision tree analysis were used to construct predictive models of distribution based on static 

landscape parameters, and of population trends based on parameters associated with snow 

accumulation and proximity to human activities. 

This study showed that landscape parameters can explain much of the distribution of Adelie 

penguin colonies within breeding localities in the Windmill Is. In particular, slope, surface 

roughness, wind exposure and solar radiation were found to have the greatest predictive power for 

Adelie penguin colony distribution. Further, the study showed that at Whitney Pt, which is 3Icm 

upwind of Casey, parameters associated with snow accumulation patterns can explain much of the 

variation in population trends. At Shirley I, proximity to activities associated with the station 

explained much of the variation in population trends, with snow accumulation having reduced 

predictive power. 

The distribution analysis displayed a general agreement with the findings of previous Adelie 

penguin habitat analyses, in that the penguins chose to nest in areas with modelled high solar 

radiation, thin snow cover and with moderate exposure to prevailing winds. However, it also found 

that the distribution of Adelie penguin colonies at Whitney Pt and on Shirley I could not be easily 

explained by general rules or by the values of a few static landscape parameters, as has been 

previously suggested (e.g. Moczydlowski, 1986; 1989). The colonies occurred on slopes facing 

every compass direction; in the bottoms of gullies and on the tops of ridges; in sites with all but the 

lowest modelled solar radiation and on all but the steepest or roughest terrain. The distribution of 

colonies appeared to be governed by a complex interaction of landscape parameters. 

The analyses of the effects of snow accumulation parameters on Adelie penguin colony population 
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trends for Whitney Pt showed strong agreement with the findings of Patterson et al. (2003). At 

Whitney Pt, as on the Antarctic Peninsula the colonies with the highest modelled levels of snow 

accumulation and lowest wind exposure had the strongest decrease in population. However, at 

Shirley I, the snow accumulation layers had much less predictive power for Adelie penguin colony 

trends. There, the layers showing proximity to human activity had much more power to explain 

observed population trends for colonies than the snow accumulation layers. It appears that at 

Shirley I, local effects associated with Casey explain a large amount of the variability in population 

trends of colonies. Further research is needed to investigate potential causative factors, as it is 

unclear whether the observed effects are the result of human visits to colonies, emissions from 

Casey, some combination of these or another cause. However, this study demonstrated that the 

effects of natural climate variability can be mediated at a local scale by proximity to human 

activities. 

6.2 Future directions for research 

Aerial photography 

One of the major limitations on the accuracy and reliability of the data layers used in this study was 

imposed by the accuracy of the DEMs that could be constructed from the available aerial 

photography. It is believed that the difference in the predictive power of the distribution models for 

Shirley I arid Whitney Pt was caused by the difference in the accuracy of the DEMs. Better aerial 

photography for both sites — with the same spatial resolution and taken on days with minimal snow 

cover — would improve the accuracy of the resulting DEMs and the DEM derivatives. In addition, 

the existing aerial photographs of Shirley I could be used to produce very fine resolution DEMs for 

small areas of the island, which would enable the investigation of the effect of microtopography on 

Adelie penguin colonies. 

Sample size 

This study examined distribution and population trend data for approximately 80 colonies in two 

breeding localities. The number of colonies included in the study enabled the data points to be 

replicated to account for local effects. However, the analyses could be repeated for other locations 

in the Windmill Is and elsewhere to test the applicability and generality of these results. In addition, 

examination of the effects of the landscape, snow accumulation and proximity to human activity 
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parameters at different spatial and temporal scales could improve understanding of the processes 

involved. 

Statistical improvements 

This study attempted to account for the effect of spatial autocorrelation by building predictive 

models on colony mean values as well as individual cell values. Future research could investigate 

the use of more sophisticated statistical methods to account for spatial autocorrelation. Different 

classification methods for population trends could produce more equal class-sizes, and hence avoid 

creating classes which could not be adequately examined in some of the models. The use of logistic 

regression, rather than discriminant analysis, would make fewer assumptions about the underlying 

structure of the data and would hence be more robust. Decision trees produced statistically-robust 

models, but cannot be readily applied in a GIS, without writing specific scripts, a task that is 

beyond the scope of this study. It would be worthwhile to develop a tool to readily translate the 

results of a decision tree into a format that could be applied in a GIS to produce predictive maps. 

Human impacts 

Given the increasing human presence in Antarctica, it is important to identify potential impacts on 

Adelie penguin populations. In particular, there is a need to separate the effects of natural variability 

from anthropogenic variability. This study identified significant relationships between proximity to 

human activities and Adelie penguin population trends. Further investigation of these results may 

involve examination of the full spectrum of station activities, including visits to Adelie penguin 

colonies by station personnel and station emissions such as noise, particulates and sewage, in a bid 

to establish causative relationships. 
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Appendix I 

Appendix 1: Summary Statistics 

Summary statistics for Whitney Pt Adelie penguin colony distribution 

Individual Cell 
Values 

Colonies 

ELEVATION WIND EXP PLAN 	PROFILE ROUGH NORM 	ROUGH STDEV SLOPE SNOW 2005 SNOW DIFF SOLAR WETNESS 
MEAN 14.89 57.27 0 0 2.31 0.36 0.2 0.5 0.04 3159.58 4.32 
MEDIAN 14.62 57 0 0 1.73 0.32 0.18 0.3 0.08 3154.47 3.89 
MIN 3.99 0 -0.54 -0.83 1.54 0.03 0 0 -2.64 1719.34 1.82 
MAX 29.82 175 0.83 0.62 351.47 1.67 0.92 8.74 2.9 4022.13 12.9 
ST DEV 1567.9 1592.38 1716.45 1729.66 6.14 6.13 - 	6.12 0.57 0.65 1503 1502.11 
<URTOSIS , 0.49 -0.08 13.89 13.89 1093.5 4.41 2.88 39.06 ' 	5.99 0.13 . 	2.89 

Control 
Plots 

MEAN 16.74 60.54 0 0 2.06 0.54 0.3 0.64 0.01 3061.2 4.07 
MEDIAN 16.4 57 -0.01 0 1.7 0.43 0.24 0.38 0.07 3197.75 3.72 
MIN 5.85 0 -0.84 -1.06 1.57 0.05 0.02 0 -7.7 1324.21 1.19 
MAX 27.36 198 1.07 0.74 22.7 2.19 1.35 11.77 5.22 4044.05 10.18 
ST DEV 3.93 49.06 0.13 0.17 1.46 0.36 0.22 1.08 0.89 606.51 1.63 
<URTOSIS 0.02 -0.32 9.09 8.75 77.26 2.68 3.39 52.21 28.39 -0.15 1.49 

Mean Values 

Colonies 

MEAN 16.49 61.79 0 0 2.8 0.4 0.22 . 0.46 0.06 3135.79 4.23 
MEDIAN 15.58 58.93 0 0 1.8 0.39 0.22 0.35 0.03 3099.24 4.14 
MIN 6.22 13.13 -0.1 • -0.13 1.62 0.12 0.01 0 -0.68 2446.3 2.75 
MAX 29.24 126 0.1 0.11 21.04 0.85 0.48 1.63 0.79 3824.11 7.91 
ST DEV .. 	5.75 30.93 0.04 0.05 3.76 0.15 0.09 ' 	0.38 0.34 327.82 0.97 
<URTOSIS -0.1 -0.74 1.18 1.1 18.14 1.03 1.22 1.89 0.4 -0.35 4.44 

Control 
Plots 

MEAN 16.75 60.52 0 0 2.06 0.54 0.3 0.64 0.01 3061.47 4.07 
MEDIAN 16.32 57.86 0 0 1.86 0.47 0.25 0.55 0 3183.4 4.15 
MIN 7.58 0 -0.13 -0.13 1.64 0.16 0.09 0 -1.41 1813.2 2.21 
MAX 26.6 174.84 0.07 0.09 4.13 1.53 0.91 3.91 0.76 3824 5.06 
ST DEV 3.86 39.68 0.03 0.04 0.51 0.31 0.18 0.65 0.41 517.5 0.65 
<URTOSIS 0.06 0.55 5.79 2.13 5.8 2.16 3.45 15.22 2.9 -0.37 1.14 
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Summary statistics for Shirley I Adelie penguin colony distribution 

Individual Cell 
Values 

Colonies 

ELEVATION WIND EXP PLAN 	PROFILE ROUGH NORM ROUGH STDEV SLOPE SNOW 2005 SNOW DIFF SOLAR WETNESS 

MEAN 20.7 50.37 0 0 1.67 0.15 0.09 0.92 0.2 3382.48 5.58 
MEDIAN 15.55 50 0 0 1.64 0.13 0.08 0.58 0.09 3381.23 5.22 

MIN 3.13 0 -0.07 -0.05 1.59 0.01 0 0 -4.72 2958.55 2.86 

MAX 35.46 101 0.04 0.07 6.96 0.41 0.25 14.05 8.04 3769.61 12.27 
ST DEV 10.18 15.18 0.01 0.01 0.17 0.07 0.05 1.62 0.84 120.37 1.52 

KURTOSIS -1.77 0.85 3.2 3.92 411.32 -0.06 -0.06 24.12 21.66 0.1 2.38 

Control 
Plots 

. 

MEAN 14.43 48.77 0 . 	0 1.69 0.27 0.17 1.03 0.02 333C 5.21 

MEDIAN 11.28 48 0 0 1.64 0.22 0.13 0.36 0 3309.12 4.94 

MIN 1.51 0 -0.09 -0.16 1.58 0.01 C 0 -9.22 2377.26 1.89 

MAX 34 153 0.06 0.09 9.67 1.34 0.82 20.6 7.22 4120.81 15.38 
ST DEV 9.04 32.48 0.01 0.02 0.29 0.22 0.13 2.41 1.14 310.99 1.57 

<URTOSIS -1.28 • 	-0.68 4.31 4.18 307.32 4.48 29.14 25.74 29.14 0.28 5.02 

' 

ean  M 	Va lues 

Colonies 

- 

MEAN 17.24 45.41 -0.01 0.01 1.7 0.15 0.09 1.43 0.26 3385.16 5.06 

MEDIAN 12.48 46.57 0 0.01 1.66 0.14 0.09 0.74 0.02 3384.63 4.93 
MIN 3.2 3 -0.03 -0.01 1.63 0.04 0.02 0 . 	-1.99 3043.7 3.56 
MAX 33.14 85.17 0.01 0.04 2.12 0.34 0.21 8.86 ' 4.77 3698.97 7.67 

ST DEV 10.9 15.98 0.01 0.01 0.09 0.07 0.04 2 0.89 139.78 0.88 

'KURTOSIS -1.72 0.48 0.91 3.56 8.91 0.2 0.1 5.23 12.47 -0.18 0.63 

Control 
Plots 

MEAN 14.74 46.92 0 0 1.69 0.27 0.16 1.06 0.03 3337.62 5.21 
MEDIAN 11.72 48.22 0 0 1.65 0.21 0.13 0.59 0 3298.62 5.06 

MIN 2.62 0 -0.02 -0.02 1.63 0.03 0.02 0 -1.99 2619 3.17 

MAX 32.16 111.71 0.01 0.03 2.06 1.11 0.68 6.48 1.02 4047.78 9.17 

ST DEV 9.11 29.99 0.01 0.01 0.09 0.2 0.12 1.35 0.5 292.99 1.13 

KURTOSIS -1.38 -0.76 0.57 0.94 6.3 4.9 4.87 5.56 4.91 0.48 1.43 
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Summary statistics for Whitney Pt Adelie penguin colony 
population trend classes 

SnowDiff 	Snow2005 WindExp Casey Dis 

INDIVIDUAL 
CELL 

VALUES 

TREND 1 
(n=13) 

MEAN 0.22 0.47 77.69 3464.04 
MEDIAN 0.47 0.6 81 3465.63 
MIN -0.52 0.12 47 3450.77 
MAX 0.67 0.67 89 3471.59 
ST DEV 0.42 0.21 12.63 6.25 
KURTOSIS -0.76 -1.18 2.01 0.87 

TREND 2 
(n=8) 

MEAN 0.29 0.3 85.75 3266.85 
MEDIAN 0.24 0.25 86.5 3267.1 
MIN 0.13 0.16 64 3264.1 
MAX 0.47 0.47 100 3268.12 
ST DEV 0.17 0.16 10.75 1.48 
KURTOSIS -2.51 -2.47 2.03 -0.14 

TREND 3 
(n=141) 

MEAN -0.01 1.21 20.38 3316.45 
MEDIAN 0.11 0.41 19 3300.81 
MIN -2.48 0 0 3262.27 
MAX 1.51 8.74 110 3615.75 
ST DEV 0.49 2.14 21 60.81 
KURTOSIS 4.43 4.77 3.34 11.87 

TREND 4 
(n=29) 

MEAN -0.31 . 	1.21 38 3544.35 
MEDIAN -0.05 0.54 30 3544.13 
MIN -2.15 0 0 3540.56 
MAX 0.85 5.51 120 3549.1 
ST DEV 0.9 1.78 37.3 2.52 
KURTOSIS 0.12 2.58 0.86 -0.88 

TREND 5 
(n=847) 

MEAN 0.07 0.37 61.81 3420.52 
MEDIAN 0.1 0.28 61 3415.65 
MIN -2.64 0 0 3270.35 
MAX 2.9 5.56 175 3665.54 
ST DEV 0.47 0.39 30.9 109.04 
KURTOSIS 7.04 46.7 0.51 -1.12 
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SnowDiff Snow2005 WindExp Ice Dist Casey Dis 

MEAN 
VALUES • 

• 

TREND 1 

MEAN 0.41 1.59 46.69 610.94 1350.6 
MEDIAN 0.02 0.71 47.83 679.26 1446.53 
MIN -1.99 0 20 159.82 857.39 
MAX 4.77 8.86 74.33 978.32 1766.43 
ST DEV 1.46 2.33 16.53 227.03 285.58 
KURTOSIS 6 6.84 -0.56 -0.2 -0.69 

TREND 2 

MEAN 0.42 0.83 41.28 ' 406.1 1080.85 
MEDIAN 0 0.04 40.16 333.47 997.84 
MIN -0.01 0 27.2 220.03 818.71 
MAX 2.16 2.84 52.33 674.22 1440.85 
ST DEV 0.81 1.21 7.68 191.45 278.62 
KURTOSIS 2.79 -0.78 0.99 -1.63 -2.11 

TREND 3 

MEAN -0.07 1.26 48.23 546.52 1277.58 
MEDIAN 0.01 0.02 45.5 588.23 1341.73 
MIN -1.72 0 15.18 221.62 849.4 
MAX 0.6 8.24 85.17 760.04 1546.64 
ST DEV 0.65 2.67 • 19.75 179.97 255.05 
KURTOSIS 6.83 8.05 • 1.03 0.03 0 

TREND 4 

MEAN 0.02 1.21 30.58 812.86 1602.67 
MEDIAN • 0.02 1.21 30.58 812.86 1602.67 
MIN -0.03 1.19 3 773.68 1563.68 
MAX 0.07 • 1.22 58.15 852.03 1641.66 
ST DEV 0.07 0.02 39 55.4 55.14 
KURTOSIS N/A N/A N/A N/A N/A 

TREND 5 

MEAN 2.31 2.31 42.24 744.96 1523.66 
MEDIAN 1.77 1.77 45.25 861.67 1649.56 
MIN 0.71 0.71 • 14.33 196.68 949.26 
MAX • 5.89 5.89 63.52 930.09 1718.65 
ST DEV • 1.7 1.7 13.77 235.49 251.35 
KURTOSIS 0.69 0.69 1.18 2.58 2.23 
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Summary statistics for Shirley I Adelie penguin colony 
population trend classes 

. 	SnowDiff 	Snow2005 WindExp 	Ice Dist 	Casey Dist 

INDIVIDUAL 
CELL 

VALUES 

• 

• 

• 

TREND 1 
(n=188) 

MEAN 0.18 1.02 44.56 607.05 1338.53 
MEDIAN 0.02 0.32 45 678.73 1443.92 
MIN -2.68 0 9 150.33 840.92 
MAX 4.77 12.37 82 1108.34 1896.85 
ST DEV 0.92 1.83 15.96 266.26 329.4 
KURTOSIS 6.61 16.29 -0.37 -1.08 -1.33 

TREND 2 
(n=117) 

MEAN 0.12 0.38 40.49 312.81 942.43 
MEDIAN 0 0 40 242.95 823.86 
MIN -1.46 0 16 149.31 791.25 
MAX 2.16 3.84 64 828.61 1610.33 
ST DEV 0.6 0.93 7.25 180.7 246.29 
KURTOSIS 4.67 6.92 1.27 1.48 1.39 

• 

TREND 3 
(n=789) 

MEAN 0.19 1.02 52.88 690.02 1466.44 
MEDIAN 0 0.6 54 776.1 1564.12 
MIN -4.72 0 2 148.5 844.33 
MAX 8.04 12.85 101 868.75 1658.03 
ST DEV 1.1 1.84 15.05 172.85 192.12 
KURTOSIS 17.47 15.64 0.15 2.72 2.97 

TREND 4 
(n=275) 

MEAN 0.05 1.2 49.86 841.05 1630.72 
MEDIAN -0.02 0.86 54 852.21 1642.19 
MIN -1.72 0.3 0 484.26 1274.19 
MAX 7.04 14.05 87 1032.01 1822 
ST DEV 0.87 1.58 23.9 126.31 126.27 
KURTOSIS 23.05 51.68 -0.15 -1.12 -1.12 

TREND 5 
(n=755) 

MEAN 0.25 1.46 51.38 867.36 1654.03 
MEDIAN 0.17 0.77 51 886.09 1674.48 
MIN -4.46 0 2 158.42 907.89 
MAX 4.99 12.18 • 96 1108.17 1896.75 
ST DEV 1.05 2.14 18.19 171.9 179.24 
KURTOSIS 9.39 10.68 -0.74 7.69 8.35 
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SnowDiff Snow2005 WindExp Ice Dist Casey Dist 

TREND 1 

MEAN 0.41 1.59 46.69 610.94 1350.6 
MEDIAN 0.02 0.71 47.83 •679.26 1446.53 
MIN -1.99 0 20 159.82 857.39 
MAX 4.77 8.86 74.33 978.32 1766.43 
ST DEV 1.46 2.33 16.53 227.03 285.58 
KURTOSIS 6 6.84 -0.56 -0.2 -0.69 

. 

MEAN 
VALUES 

TREND 2 

MEAN 0.42 0.83 41.28 406.1 1080.85 
MEDIAN 0 0.04 40.16 333.47 997.84 
MIN -0.01 0 27.2 220.03 818.71 
MAX 2.16 2.84 52.33. 674.22 1440.85 
ST DEV 0.81 1.21 7.68 191.45 278.62 
KURTOSIS 2.79 -0.78 0.99 -1.63 -2.11 

TREND 3 

MEAN -0.07 1.26 48.23 546.52 1277.58 
MEDIAN 0.01 0.02 45.5 588.23 1341.73 
MIN -1.72 . 0 15.18 221.62 849.4 
MAX 0.6 8.24 85.17 760.04 1546.64 
ST DEV 0.65 2.67 19.75 179.97 255.05 
KURTOSIS 6.83 8.05 1.03 0.03 0 

TREND 4 

MEAN 0.02 1.21 30.58 812.86 1602.67 
MEDIAN 0.02 1.21 30.58 812.86 1602.67 
MIN -0.03 1.19 3 773.68 1563.68 
MAX 0.07 1.22 58.15 852.03 1641.66 
ST DEV 0.07 0.02 39 55.4 55.14 
KURTOSIS N/A N/A N/A N/A N/A 

TREND 5 

MEAN 2.31 2.31 42.24 744.96 1523.66 
MEDIAN 1.77 1.77 45.25 861.67 1649.56 
MIN • 0.71 0.71 14.33 196.68 949.26 
MAX 5.89 5.89 63.52 930.09 1718.65 
ST DEV 1.7 1.7 13.77 235.49 251.35 
KURTOSIS 0.69 0.69 1.18 2.58 2.23 
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Appendix 2: Discriminant Analysis Formulae 

Adelie penguin colony distribution models: 

Whitney Pt 

Individual Cell Values: 

SqDist[0] = 0.0534627677653561 * [Elevation] * [Elevation] - 0.0925164711997984 * [Roughness 

(St Dev)] * [Elevation] + 20.7029979809649 * [Roughness (St Dev)] * [Roughness (St Dev)] - 

0.0000688508027802848 * [Solar Radiation] * [Elevation] + 0.0152541417947432 * [Solar 

Radiation] * [Roughness (St Dev)] + 0.00000708051487295363 * [Solar Radiation] * [Solar 

Radiation] 

SqDist[Absent] = [SqDist_0] - 1.53576999254331 * [Elevation] - 67.259504138339 * [Roughness 

(St Dev)] - 0.0504878121571665 * [Solar Radiation] + 108.363225246094 

SqDist[Present] = [ SqDist_0] - 1.33252540810463 * [Elevation] - 61.4041467733707 * 

[Roughness (St Dev)] - 0.0490763238411542 * [Solar Radiation] + 98.1724887963393 

Prob[0] = Exp(-0.5 * [SqDist_Absent]) + Exp(-0.5 *. [SqDist_Presp 

Prob[Absent] = Exp(-0.5 * [SqDist_Absent]) / [Prob_0] 

Prob[Present] = Exp(-0.5 * [SqDist_Pres]) / [Prob_0] 

Covariance Matrices 

Within Coy Elevation Roughness (St Solar Radiation 

Dev) 

Elevation 18.765722 0.0137889 76.385484 

Roughness (St 0.0137889 0.0800923 -86.20766 

Dev) 

Solar Radiation 76.385484 -86.20766 234466.22 

Within Corr Elevation Roughness (St Solar Radiation 
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Dev) 

Elevation 1 0.0112474 0.0364156 

Roughness (St 0.0112474 1 -0.629087 

Dev) 

Solar Radiation 0.0364156 -0.629087 1 

Colony/Control Plot Mean Values 

Sqdist[0] = 0.00123585320191969 * [Wind Exposure] * [Wind Exposure] + 0.00502152653063165 

* [Roughness (Norm)] * [Wind Exposure] + 0.134419706830413 * [Roughness (Norm)] * 

[Roughness (Norm)] - 0.16918291609256 * [Roughness (St Dev)] * [Wind Exposure] - 

0.668261971951428 * [Roughness (St Dev)] * [Roughness (Norm)] + 30.8273619561492 * 

[Roughness (St Dev)] * [Roughness (St Dev)] + 0.00241480625010695 * [Snow Difference] * 

[Wind Exposure] - 0.327590123794121 * [Snow Difference] * [Roughness (Norm)] - 

4.32336043329957 * [Snow Difference] * [Roughness (St Dev)] + 7.67254372659123 * [Snow 

Difference] * [Snow Difference] + 0.0153650948338209 * [Wetness Index] * [Wind Exposure] - 

0.182614364124296 * [Wetness Index] * [Roughness (Norm)] + 6.45260097269701 * [Wetness 

Index] * [Roughness (St Dev)] - 1.70088427916617 * [Wetness Index] * [Snow Difference] + 

2.08267825583303 * [Wetness Index] * [Wetness Index] 

SqDist[Absent] = [SqDist_0] - 0.13587102626854 * [Wind Exposure] + 0.250412667774322 * 

[Roughness (Norm)] - 48.2253944544141 * [Roughness (St Dev)] + 10.0453557821323 * [Snow 

Difference] - 21.4663798042278 * [Wetness Index] + 61.7725804826357 

SqDist[Present] = [SqDist_0] - 0.163644699622735 * [Wind Exposure] - 0.0199630328365665 * 

[Roughness (Norm)] - 40.0792313894895 * [Roughness (St Dev)] + 8.75502877854204 * [Snow 

Difference] - 20.6689377579887 * [Wetness Index] + 56.9842678626558 

• Prob[0] = Exp(-0.5 * [SqDist_Absent]) + Exp(-0.5 * [SqDist_Presnt]) 

Prob[Absent] Exp(-0.5 * [SqDistAbsent]) / [Prob_0] 

Prob[Present] = Exp(-0.5 * [SqDistPresent]) / [Prob_0] 

Covariance Matrices 

Within Coy 	 Wind Exposure Roughness (Norm) 
	

Roughness (St 	Wetness Index 
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Wind Exposure 1236.2676 -21.71073 4.4296762 -12.70849 

Roughness (Norm) -21.71073 8.5056587 -0.009638 0.5680598 

Roughness (St 4.4296762 -0.009638 0.0553056 -0.101015 

Dev) 

Wetness Index -12.70849 0.5680598 -0.101015 0.7358718 

Within Corr Wind Exposure Roughness (Norm) Roughness (St Wetness Index 

Dev) 

Wind Exposure 1 -0.211721 0.5357118 -0.421344 

Roughness (Norm) -0.211721 1 . -0.014053 0.2270591 

Roughness (St 0.5357118 -0.014053 1 -0.500727 

Dev) 

Wetness Index -0.421344 0.2270591 -0.500727 1 

Shirley I 

Individual Cell Values 

SqDist_O = 0.0113377884643721 * [Elevation] * [Elevation] - 4.82851112342201 * [Roughness 

(St Dev)] * [Elevation] + 74832.7309135573 * [Roughness (St Dev)] * [Roughness (St Dev)] + 

8.02386428357845 * [Slope] * [Elevation] - 242600.998925054 * [Slope] * [Roughness (St Dev)] 

+ 196767.480547947 * [Slope] * [Slope] - .0.0205322880802495 * [Snow 2005] * [Elevation] - 

.51.5057614003503 * [Snow 2005] * [Roughness (St Dev)] + 79.3789462336679 * [Snow 2005] * 

[Slope] + 0.309547430071808 * [Snow 2005] * [Snow 2005] - 0.00010016311324339 * [Solar 

Radiation] * [Elevation] - 0.204754187148813 * [Solar Radiation] * [Roughness (St Dev)] + 

0.240553758076989 * [Solar Radiation] * [Slope] + 0.000438272417241657 * [Solar Radiation] * 

[Snow 2005] + 0.0000748771944452865 * [Solar Radiation] * [Solar Radiation] - 

0.000889025855991192 * [Wind Exposure] * [Elevation] - 1.4307857133681 * [Wind Exposure] * 

[Roughness (St Dev)] + 1.59214065290944 * [Wind Exposure] * [Slope] + 0.0146210373872546 * 

[Wind Exposure] * [Snow 2005] + 0.00114857449769329 * [Wind Exposure] * [Solar Radiation] + 

0.00605288069706808 * [Wind Exposure] * [Wind Exposure] 
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SqDist[Absent] = [SqDist_0] + 0.0573220773726119 * [Elevation] + 280.824839256881 * 

[Roughness (St Dev)] - 162.184083778947 * [Slope] - 1.62884466997249 * [Snow 2005] - 

0.537634531946183 * [Solar Radiation] - 4.29046318269748 * [Wind Exposure] + 

975.155620783523 

SqDist[Present] = [SqDist_0] - 0.0754399651622438 * [Elevation] + 548.631913561636 * 

[Roughness (St Dev)] - 569.48612895412 * [Slope] - 1.87548518224877 * [Snow 2005] - 

0.554150222435931 * [Solar Radiation] - 4.42195651075929 * [Wind Exposure] + 

1035.425248205 

Prob[0] = Exp(-0.5 * [SqDistAbsent]) + Exp(-0.5 * [SqDistPresent]) 

Prob[Absent] = Exp(-0.5 * [SqDistAbsent]) / [Prob_0] 

Prob[Present] = Exp(-0.5 * [SqDistPresent]) / [Prob_0] 

Covariance Matrices 

Within Coy Elevation Wind Exposure Roughness (St 

Dev) 

Slope Solar Radiation Snow 2005 

Elevation 92.509461 -9.358537 0.1031595 0.0493347 134.05139 3.4770533 

Wind Exposure -9.358537 741.99684 -0.358132 -0.182939 -5651.381 -16.03334 

Roughness (St 0.1031595 -0.358132 0.0328354 0.0202113 11.99948 0.1370447 

Dev) 

Slope 0.0493347 -0.182939 0.0202113 0.0125644 7.638379 0.0832261 

Solar 134.05139 -5651.381 11.99948 7.2538379 70022.307 160.75684 

Radiation 

Snow 2005 3.4770533 -16.03334 0.1370447 0.0832261 160.75684 4.2967976 

Within Corr Elevation Wind Exposure Roughness (St Slope Solar Radiation Snow 2005 

Dev) 

Elevation 1 -0.03572 0.0591895 0.0457603 0.0526696 0.1743997 

Wind Exposure -0.03572 1 -0.072556 -0.059915 -0.784035 -0.283956 

Roughness (St 0.0591895 -0.072556 1 0.9950669 0.2502493 0.3648534 

Dev) 

Slope 0.0457603 -0..059915 0.9950669 1 0.2445565 0.3581929 
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•Solar 0.0526696 -0.784035 0.2502493 0.2445565 1 0.293075 

Radiation 

Snow 2005 0.1743997 -0.283956 0.3648534 0.3581929 0.293075 1 

Colony/ Control Plot Means 

SqDist[0] = 210.773103515622 * [Slope] * [Slope] - 3.20902949541339 * [Snow 2005] * [Slope] + 

0.414053198067366 * [Snow 2005] * [Snow 2005] - 0.124529483606092 * [Solar Radiation] * 

[Slope] - 0.000752518161675032 * [Solar Radiation] * [Snow 2005] + 0.0000882694767886766 * 

[Solar Radiation] * [Solar Radiation] + 16.4743238786638 * [Wetness Index] * [Slope] + 

0.295851270439193 * [Wetness Index] * [Snow 2005] - 0.00294815654533994 * [Wetness Index] 

* [Solar Radiation] + 1.40792200808666 * [Wetness Index] * [Wetness Index] - 

0.963648602576033 * [Wind Exposure] * [Slope] + 0.0120618995124814 * [Wind Exposure] * 

[Snow 2005] + 0.00135066786036723 * [Wind Exposure] * [Solar Radiation] - 

0.0251471618410039 * [Wind Exposure] * [Wetness Index] + 0.00707443125508775 * [Wind 

Exposure] * [Wind Exposure] 

Sqdist[Absent] = [SqDist_0] + 309.315479717998 * [Slope] + 0.0796705282217051 * [Snow 

2005] - 0.616022491955657*  [Solar Radiation] - 6.52142537217429 * [Wetness Index] - 

4.89146890176223 * [Wind Exposure] + 1133.89312820219 

SqDist[Present] = [SqDist_0] + 347.598422398211 * [Slope] - 0.483032411526596 * [Snow 2005] 

- 0.630506914397322 * [Solar Radiation] - 5.22651320557493 * [Wetness Index] - 

5.01468305062957 * [Wind Exposure] + 1177.41573294364 

Prob[0] = Exp(-0.5 * [SqDist_Absent]) + Exp(-0.5 * [SqDist_Presnt]) 

Prob[Absent] = Exp(-0.5 * [SqDist_Absent]) / [Prob_0] 

Prob[Present] = Exp(-0.5 * [SqDist_Present]) / [Prob_0] 

Covariance Matrices 

Within Coy 	 Slope 	Snow 2005 	Solar Radiation 	Wetness Index 	Wind Exposure 

Slope 	 0.0090767 	0.0667995 	8.2506729 	-0.054368 	-0.323004 
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Snow 2005 0.0667995 3.3080644 169.90928 -0.701024 -15.73625 

Solar Radiation 8.2506729 169.90928 53843.172 -52.7652 74816.629 

Wetness Index -0.054368 -0.701024 -52.7652 1.0811758 3.8533405 

Wind Exposure -0.323004 -15.73625 -4816.629 3.8533405 599.4201 

Within Con.  Slope Snow 2005 Solar Radiation Wetness Index Wind Exposure 

Slope 1 0.3854988 0.373215 -0.548827 -0.138478 

Snow 2005 0.3854988 1 0.4025917 -0.370679 -0.353385 

Solar Radiation 0.3732165 0.4025917 1 -0.218693 -0.847837 

Wetness Index -0.548827 -0.370679 -0.218693 1 0.1513643 

Wind Exposure -0.138478 -0.353385 -0.847837 0.1513643 1 

Snow accumulation patterns and Adelie penguin colony 
population trends 

Whitney Pt 

Individual Cell Values 

SqDist[0] = 0.00119480599248143 * [Wind Exposure] * [Wind Exposure] - 

0.00495075037305612 * [Snow 2005] * [Wind Exposure] + 1.28750499965548 ** [Snow 2005] * 

[Snow 2005] 

SqDist [1] = [SqDistO] - 0.181849610614292 * [Wind Exposure] + -0.737327811452706 * [Snow 

2005] + 7.16135062926116 

SqDist[2] = [SqDistO] + -0.210749485702305 * [Wind Exposure] + -0.384284916302041 * 

[Snow 2005] + 9.42479843636275 

SqDist[3] = [SqDistO] + -0.042176345676994 * [Wind Exposure] + -2.732731581583 * [Snow 

2005] + 1.9226510099326 
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SqDist[4] = [SqDistO] + -0.0928165607794011 * [Wind Exposure ]+ -3.17283096438601 * 

[Snow 2005] + 4.01021061450554 

SqDist[5] = [SqDistO] + -0.145561937355603 * [Wind Exposure] + -0.634467011940916 * 

[Snow 2005] + 4.60422355960992 

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 * 

[SqDist_4]) + Exp(-0.5 * [SqDist_5]) 

Prob[1] = Exp(-0.5 * [SqDist_1]) / [Prob_0] 

Prob[2] = Exp(-0.5 * [SqDist_2]) / [Prob_0] 

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0] 

Prob[4 1= Exp(-0.5 * [SqDist_4]) / [Prob_0] 

Prob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0] 

Covariance Matrices 

Within Coy 	Wind Exposure 	Snow 2005 

Wind Exposure 	840.30309 	1.6155785 

Snow 2005 	 1.6155785 	0.7798021 

Within Corr 	Wind Exposure 	Snow 2005 

Wind Exposure 	 1 	0.0631129 

Snow 2005 	 0.0631129 	 1 

Shirley I 

Individual Cell Values 

SqDist[0] = 0.00355133437660017 * [Wind Exposure] * [Wind Exposure] - 0.0122666431229158 

* [si_Snow Difference] * [Wind Exposure] + 1.44400609918618 * [si_Snow Difference] * 

[si_Snow Difference] + 0.0191491013415595 * [Snow 2005] * [Wind Exposure] - 

0.833530039669805 * [Snow 2005] * [si_Snow Difference] + 0.448077767126803 * [Snow 2005] 

* [Snow 2005] 
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SqDist[1] = [SqDist_0] - 0.326509096720394 * [Wind Exposure] + 0.931717261940955 * 

[si_Snow Difference] - 1.60042448751615 * [Snow 2005] + 7.83533108016429 

SqDist[2] = [SqDist_0] - 0.29111562134154 * [Wind Exposure] + 0.457877029907374 * [si_Snow 

Difference] - 0.999052890366228 * [Snow 2005] + 6.00768672435545 

SqDist[3] = [SqDist_0] - 0.391907053591727 * [Wind Exposure] + 0.867650398892529 * 

[si_Snow Difference] - 1.73080959359006 * [Snow 2005] + 11.128983294363 

SqDist[4] = [SqDist_0] - 0.374071002536028 * [Wind Exposure] + 1.49665824484529 * [si_Snow 

Difference] - 1.99495909001073 * [Snow 2005] + 10.428255516494 

SqDist[5] = [SqDist_0] - 0.38557381647713 * [Wind Exposure] + 1.11727824354657 * [si_Snow 

Difference] - 2.00858044222978 * [Snow 2005] + 11.0733093087087 

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 * 

[SqDist_4]) + Exp(-0.5 * [SqDist_5]) 

Covariance Matrices 

Within Coy Wind Exposure Snow Difference Snow Cover 2005 

Wind Exposure 299.4487 -0.785819 -7.129541 

Snow Difference -0.785819 0.9487041 0.8991978 

Snow Cover 2005 -7.129541 0.8991978 3.2204596 

Within Corr Wind Exposure Snow Difference Snow Cover 2005 

Wind Exposure 1 -0.046623 -0.229584 

Snow Difference -0.046623 • 1 0.5144355 

Snow Cover 2005 -0.229584 0.5144355 1 

Colony Mean Values 

SqDist[0] = 0.00418545304162922 * [Wind Exposure] * [Wind Exposure] - 0.0409177714949934 

* [si_Snow Difference] * [Wind Exposure] + 1.25394763665964 * [si_Snow Difference] * 
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[si_Snow Difference] + 0.0182112772863148 * [Snow 2005] * [Wind Exposure] - 

0.556128757926968 * [Snow 2005] * [si_Snow Difference] + 0.296192161457333 * [Snow 2005] 

* [Snow 2005] 

SqDist[1] = [SqDist_0] - 0.403009228852826 * [Wind Exposure] + 1.77255512481391 * [si_Snow 

Difference] - 1.56385985452615 * [Snow 2005] + 10.2864780106369 

SqDist[2] = [SqDist_0] - 0.339422180734924 * [Wind Exposure] + 1.07463220940373 * [si_Snow 

Difference] - 1.00045262612069 * [Snow 2005] + 7.11326805658983 

Sqdist[3] = [SqDist_0] - 0.429360758965208 * [Wind Exposure] + 2.83961653826747 * ' Snow 

Difference] - 1.65987525601527 * [Snow 2005] + 11.4921206070945 

SqDist[4] = [SqDist_0] - 0.276606287361157 * [Wind Exposure] + 1.86878763386281 * 	Snow 

Difference] - 1.25850871673196 * [Snow 2005] + 4.96057557062363 

SqDist[5] = [SqDist_0] - 0.381960186680773 * [Wind Exposure] + 1.93531116931298 * [si_Snow 

Difference] - 1.91015401314318 * [Snow 2005] + 9.9532437560013 

Prob[0] = 'Exp(-0.5 * [Sqdist_1]) + Exp(-0.5 * [Sqdist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 * • 

[SqDist_4]) + Exp(-0.5 * [SqDist_5]) 

Prob[1] = Exp(-0.5 * [Sqdist_1]) / [Prob_0] 

Prob[2] = Exp(-0.5 * [Sqdist 2]) / [Prob_0] 

Prob[3] = Exp(-0.5 * [Sqdist_3]) / [Prob_0] 

Prob[4] = Exp(-0.5 * [Sqdist_4) / [Prob_0] 

Prob[5] = Exp(-0.5 * [Sqdist_5]) / [Prob_0] 

Covariance Matrices 

Within Coy Wind Exposure Snow Difference Snow 2005 

Wind Exposure 265.77018 3.1880962 -5.17742 

Snow Difference c 	3.1880962 1.0453926 0.8834021 

Snow 2005 -5.17742 0.8834021 4.364688 

Within Corr Wind Exposure Snow Difference Snow 2005 

Wind Exposure 1 0.1912664 -0.152014 
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Snow Difference 0.1912664 1 0.4135634 

Snow 2005 -0.152014 0.4135634 1 

Proximity to human activities and population trends of Adelie 
penguin colonies 

Whitney Pt 

Individual Cell Values 

SqDist[0] = 0.0000980677348661567 * [Casey Distance] * [Casey Distance] 

SqDist[1] = [SqDistO] + -0.679268214076451 * [Casey Distance] + 1176.2413684897 

SqDist[2] = [SqDistO] + -0.640709630755633 * [Casey Distance] + 1046.49309863046 

SqDist[3] = [SqDistO] + -0.650437435608941 * [Casey Distance] + 1078.51185259592 

SqDist[4] = [SqDistO] + -0.695103006372688 * [Casey Distance] + 1231.72058100399 

SqDist[5] = [SqDistO] + -0.670647532859328 * [Casey Distance] + 1146.57515528463 

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 * 

[SqDist_4]) + Exp(-0.5 * [SqDist_5]) 

Prob[1] = Exp(-0.5 * [SqDist_1]) / [Prob_0] 

Prob[2] = Exp(-0.5 * [SqDist_2]) / [Prob_0] 

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0] 

Prob[4] Exp(-0.5 * [SqDist_4]) / [Prob_0] 

Prob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0] 

Covariance Matrices 

Within Coy 	 Casey Distance 

Casey Distance 	 10197.034 

Within Corr 	 Casey Distance 
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Casey Distance 

Colony Mean Values 

SqDist[0] = 0.0000641817780638834 * [Casey Distance] * [Casey Distance] 

SqDist[1] = [SqDistO] + -0.444012107917068 * [Casey Distance] + 767.923380763649 

SqDist[2] = [SqDistO] + -0.419344483335995 * [Casey Distance] + 684.967762693098 

SqDist[3] = [SqDistO] + -0.436944410516673 * [Casey Distance] + 743.670647811168 

SqDist[4] = [SqDistO] + -0.454879366578845 * [Casey Distance] + 805.973456879061 

SqDist[5] = [SqDistO] + -0.446269576387421 .* [Casey Distance] + 775.751859861134 

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 * 

[SqDist_4]) + Exp(-0.5 * [SqDist_5]) 

Prob[1] = Exp(-0.5 * [SqDist_1]) / [Prob_0] 

Prob[2] = Exp(-0.5 * [SqDist_2]) / [Prob_0] 

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0] 

Prob[4] = Exp(-0.5 * [SqDist_4]) / [Prob_0] 

F'rob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0] 

Covariance Matrices 

Within Coy 	 Casey Distance 

Casey Distance 	 15580.746 

Within Corr 	 Casey Distance 

Casey Distance 	 1 
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Shirley I 

Individual Cell Values: 

SqDist[0] = 0.00144737517073122 * [Casey Distance] * [Casey Distance] + 

0.000101932343677318 * [Wind Exposure] * [Casey Distance] + 0.00334570328953665 * [Wind 

Exposure] * [Wind Exposure] - 0.00328731675902068 * [Ice Distance] * [Casey Distance] - 

0.000141628145130919 * [Ice Distance] * [Wind Exposure] + 0.00190426355162413 * [Ice 

Distance] * [Ice Distance] 

SqDist[1] = [SqDist_0] - 1.8817955886733 * [Casey Distance] - 0.343253339763072*  Wind 

Exposure] + 2.09659673289585 * [Ice Distance] + 628.803805364984 

SqDist[2] = [SqDist_0] - 1.70098629110724 * [Casey Distance] - 0.320036974585171 * [Wind 

Exposure] + 1.90720816126373 * [Ice Distance] + 509.122367903401 

SqDist[3] = [SqDist_0] - 1.98865696402544 * [Casey Distance] - 0.405846574045663 * [Wind 

Exposure] + 2.20834597338445 * [Ice Distance] + 708.994535458669 

SqDist[4] = [SqDist_0] - 1.94552360935418 * [Casey Distance] - 0.377062838897193 * [Wind 

Exposure] + 2.14540130069008 * [Ice Distance] + 689.083977089765 

SqDist[5] = [SqDist_0] - 1.91746719390296 * [Casey Distance] - 0.384474528871473 * [Wind 

Exposure] + 2.10834255344528 * [Ice Distance] + 675.462971469201 

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 * 

[SqDist_4]) + Exp(-0.5 * [SqDist_5]) 

Prob[1] = Exp(-0.5 * [SqDist_1]) / [Prob_0] 

Prob[2] = Exp(-0.5 * [SqDist_2]) / [Prob_0] 

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0] 

Prob[4] = Exp(-0.5 * [SqDist_4]) / [Prob_0] 

Prob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0] 

Covariance Matrices 

Within Coy 
	 Casey Distance 	Wind Exposure 	Sea-Ice Distance 
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Casey Distance 34932.826 106.13114 30156.092 

Wind Exposure 106.13114 299.4487 102.74235 

Sea-Ice Distance 30156.092 102.74235 26558.083 

Within Corr Casey Distance Wind Exposure Sea-Ice Distance 

Casey Distance 1. 0.0328144 0.9900562 

Wind Exposure 0.0328144 1 0.0364326 

Sea-Ice Distance 0.9900562 0.0364326 1 

Colony Means 

SqDist[0] = 0.00377009434175355 * [Wind Exposure] * [Wind Exposure] + 

0.0000213494170722331 * [Ice Distance] * [Wind Exposure] + 0.0000153055246896057 * [Ice 

Distance] * [Ice Distance] 

SqDist[1] = [Sqdist_0] - 0.364588332443925 * [Wind Exposure] - 0.0190802926907297 * [Ice 

Distance] + 14.1454030938387 

Sqdist[2] = [Sqdist_0] - 0.316363528583488 * [Wind Exposure] - 0.013365901038925 * [Ice 

Distance] + 9.18186045334272 

SqDist[3] = [Sqdist_0] - 0.374055303559716 * [Wind Exposure] - 0.0159058835321895 * [Ice 

Distance] + 12.8856768822215 

SqDist[4] = [Sqdist_0] - 0.24822328525483 * [Wind Exposure] - 0.0265988871600862 * [Ice 

Distance] + 15.0610941863943 

SqDist[5] = [Sqdist_0] - 0.339762543620913 * [Wind Exposure] - 0.0261371093399869 * [Ice 

Distance] + 18.0276073022348 

Prob[0] = Exp(-0.5 * [Sqdist_1]) + Exp(-0.5 * [sqDist_2]) + Exp(-0.5 * [sqdist_3]) + Exp(-0.5 * 

[sqdist_4]) + Exp(-0.5 * [sqdist_5]) 

Prob[1] = Exp(-0.5 * [SqDist_1]) / [Prob_0] 

Prob[2] = Exp(-0.5 * [SqDist_2]) / [Prob_0] 

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0] 
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Prob[4] = Exp(-0.5* [SqDist_4])/ [Prob_0] 

Prob[5] = Exp(-0.5* [SqDist_5])/ [Prob_0] 

Covariance Matrices 

Within Coy 	 Wind Exposure 	Ice Distance 

Wind Exposure 	 265.77018 	-185.3592 

Ice Distance 	 -185.3592 	65465.162 

Within Corr 	 Wind Exposure 	Ice Distance 

Wind Exposure 	 1 	-0.044438 

Ice Distance 	 -0.044438 	 1 
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Appendix 3 Decision Trees 

Adelie penguin colony distributions 

Whitney Pt 
Individual cell values 

Solar Radiation <= 2434.05: Absent (154.0/14.0) 
Solar Radiation > 2434.05 

Elevation <= 13.43053: Present (449.0/97.0) 

Elevation > 13.43053 
I Aspect <= 139.285 

II Snow 2005 <= 0.488844 .  

I I I Elevation <= 15.65099: Present (101.0/47.0) 

II I Elevation > 15.65099: Absent (171.0/56.0) 

II Snow 2005 > 0.488844: Absent (155.0/38.0) 
Aspect 139.285 

I Wind Exposure <= 29: Absent (287.0/62.0) 

I Wind Exposure > 29: Present (403.0/103.0) 

Colony/control plot mean values 

• Roughness (St Dev) <= 0.85 

Wetness Index <= 3.46: Present (7.0) 
Wetness Index > 3.46 

I I Wetness Index <= 5.06: Absent (45.0/21.0) .  

I I Wetness Index > 5.06: Present (6.0) 

Roughness (St Dev) > 0.85: Absent (6.0) 
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Shirley I 

Individual cell values 

Slope <= 0.217657 

Elevation <= 29.38974 

Aspect <= 108.408 

Snow Difference <= 0.00002 

I Wind Exposure <= 48: Present (201.0/80.0) 

1 Wind Exposure > 48: Absent (285.0/111.0) 

Snow Difference > 0.00002: Present (1096.0/218.0) 
Aspect 108.408 

Roughness (St Dev) <= 0.135416 

I Elevation <= 15.0789 

1 1 1 1 Elevation <= 9.950747: Absent (333.0/83.0) 

1 1 1 1 Elevation > 9.950747: Present (200.0/52.0) 

1 1 I Elevation > 15.0789: Absent (200.0/38.0) 
I I Roughness (St Dev) > 0.135416: Absent (1139.0/147.0) 

Elevation > 29.38974: Present (1104.0/54.0) 
Slope > 0.217657: Absent (663.0/11.0) 

Colony/control plot mean values 

Slope <= 0.13 

Planar Curvature <= -0.02: Present (6.0) 
Planar Curvature > -0.02 

I Elevation <= 29 

I I Planar Curvature <= -0.01 

I I 
	

Snow 2005 <= 0.97: Absent (8.0/3.0) 

I I 
	

Snow 2005 > 0.97: Present (5.0) 

II Planar Curvature > -0.01 

II 
	

Elevation <= 12.65 

II 
	

Planar Curvature <=0 

1 1 I I I Slope <= 0.11 

1 1 I 	1 1 Solar Radiation <= 3254.44: Absent (4.0) 

1 1 I I 1 1 Solar Radiation > 3254.44 

1 1 I II I I Solar Radiation <= 3392.32 
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I 1 I I I I I I Roughness (St Dev) <= 0.04: Absent (3.0/1.0) 

I I I I I Roughness (St Dev) > 0.04: Present (10.0) 

11II Solar Radiation > 3392.32: Absent (6.0/1.0) 

1 I Slope > 0.11: Present (6.0) 

I Planar Curvature > 0: Present (2.0) 

I I  Elevation > 12.65: Absent (7.0) 
Elevation > 29: Present (10.0) 

Slope > 0.13: Absent (31.0/4.0) 

Snow accumulation patterns and Adelie penguin colony 
population trends 

Whitney Pt 
Individual cell values 

Wind Exposure <= 39 

I Snow 2005 <= 0.072101: Strong Increase (66.0/3.0) 

I Snow 2005 > 0.072101 
I I Wind Exposure <= 5: Stable (51.0/13.0) 

I I Wind Exposure > 5: Strong Increase (167.0/75.0) 
Wind Exposure > 39: Strong Increase (548.0/32.0) 

• Colony mean values 

Snow 2005 <= 1.14: Strong Increase (31.0/8.0) 
Snow 2005> 1.14: Stable (2.0/1.0) 

Shirley I 

Individual cell values 

Snow 2005 <= 0.201634 

Snow 2005 <= 0.000087 

I Wind Exposure <= 56: Moderate Decrease (139.0/58.0) 

I Wind Exposure > 56: Stable (64.0) 

Snow 2005 > 0.000087 

I Snow 2005 <= 0.003957: Stable (64.0/14.0) 

I Snow 2005 > 0.003957: Strong Decrease (89.0/39.0) 
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Snow ./ 2005 > 0.201634 

Wind Exposure <= 36 

Wind Exposure <= 16: Moderate Increase (54.0/19.0) 

Wind Exposure > 16 

I Snow Difference <= 0.755802: Strong Increase (181.0/69.0) 

I Snow Difference > 0.755802: Stable (54.0/32.0) 
Wind Exposure > 36 

Wind Exposure <= 67 

Snow 2005 <= 1.697746 

I Snow 2005 <= 1.139009 
Snow Difference <= 0.013476 

Snow 2005 <= 0.693254 

I Snow 2005 <= 0.390971: Strong Increase (54.0/29.0) 

I Snow 2005 >0.390971: Stable (152.0/70.0) 

Snow 2005 > 0.693254: Moderate Increase (77.0/41.0) 
Snow Difference > 0.013476 

Snow 2005 <= 0.571027: Stable (62.0/11.0) 

Snow 2005 > 0.571027 

I Wind Exposure <= 52: Strong Increase (111.0/46.0) 
I Wind Exposure > 52 

I Snow 2005 <= 0.842806: Strong Increase (70M/33.0) 

I I Snow 2005 > 0.842806: Stable (76.0/15.0) 
I Snow 2005 > 1.139009 

I I Snow Difference <= 0.414414: Moderate Increase (71.0/33.0) 

I Snow Difference > 0.414414: Stable (56.0/29.0) 

Snow 2005> 1.697746: Strong Increase (88.0/53.0) 

Wind Exposure > 67: Strong Increase (239.0/108.0) 
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Colony mean values 

Snow 2005 <= 0.02 

Snow Difference <= 0 

I Wind Exposure <= 36.98: Stable (2.0) 

I Wind Exposure > 36.98 

I I Wind Exposure <= 48.51: Moderate Decrease (4.0) 

I I Wind Exposure > 48.51: Strong Decrease (2.0/1.0) 
Snow Difference > 0: Stable (2.0) 

Snow 2005 > 0.02: Strong Decrease (2.0/1.0) 
Snow 2005 > 0.07 

Snow 2005 <= 0.38: Strong Decrease (5.0) 
Snow 2005 > 0.38 

Snow 2005 <= 1.22 

Wind Exposure <= -38.24: Strong Decrease (4.0/1.0) 

Wind Exposure > 38.24: Strong Increase (7.0/3.0) 
Snow 2005> 1.22 

Wind Exposure <= 53.3 
Snow 2005 <= 3.06 

I Snow Difference <= 0.85 
I I Wind Exposure <= 47.67: Strong Decrease (3.0/1.0) 

I I Wind Exp.osure > 47.67: Strong Increase (4.0/2.0) 
I Snow Difference > 0.85: Moderate Decrease (2.0) 

Snow 2005 > 3.06: Strong Increase (4.0/1.0) 
Wind Exposure > 53.3: Strong Decrease (3.0) 
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Proximity to human activities and population trends of Adelie 
penguin colonies 

Whitney Pt 

Individual cell values 

Casey Distance <= 3310.06 

I Casey Distance <= 3292.787: Strong Increase (75.0/8.0) 

I Casey Distance > 3292.787: Stable (139.0/38.0) 
Casey Distance > 3310.06 

I Casey Distance <= 3536.243: Strong Increase (435.0/11.0) 

1 Casey Distance > 3536.243 

I I Casey Distance <= 3549.416: Moderate Increase (50.0/25.0) 

1 1 Casey Distance > 3549.416: Strong Increase (133.0/1.0) 

Colony mean values 

Casey Distance <= 3303.17: Stable (5.0/2.0) 

Casey Distance > 3303.17: Strong Increase (28.0/6.0) 

Shirley I 

Individual cell values 

Ice Distance <= 814.8865 

Casey Distance <= 860.6161: Moderate Decrease (103.0/22.0) 

Casey Distance > 860.6161 
1 Casey Distance <= 1559.853 

I I Ice Distance <= 711.3762 

I I I Ice Distance <= 567.3976 

1 1 1 1 Ice Distance <= 176.9633: Stable (60.0/7.0) 

IIII Ice Distance > 176.9633: Strong Decrease (61.0/9.0) 

1 1 I Ice Distance > 567.3976: Stable (236.0/12.0) 

I I Ice Distance > 711.3762: Strong Decrease (67.0/12.0) 

I Casey Distance > 1559.853: Stable (326.0/31.0) 

Ice Distance > 814.8865 

1 Casey Distance <= 1682.517 

172 



Appendix 3 

Ice Distance <= 858.5243 
I Wind Exposure <= 30: Moderate Increase (51.0/19.0) 

I Wind Exposure > 30: Strong Increase (78.0/35.0) 

Ice Distance > 858.5243 
I Wind Exposure <= 39: Strong Increase (61.0/24.0) 

I Wind Exposure > 39: Moderate Increase (198.0/30.0) 

Casey Distance > 1682.517: Strong Increase (460.0/19.0) 

Colony mean values 

Casey Distance <= 1588.42 

Casey Distance <= 855.58: Moderate Decrease (5.0/1.0) 

Casey Distance > 855.58 

Wind Exposure <= 46.13 

Casey Distance <= 1470.6 

I Casey Distance <= 935.88: Stable (4.0/1.0) 
I Casey Distance > 935.88 

I I Casey Distance <= 1438.98: Moderate Decrease (3.0) 
I I Casey Distance > 1438.98: Stable .(3.0/1.0) 

Casey Distance > 1470.6: Strong Decrease (3.0) 

Wind Exposure > 46.13 

I Casey Distance <= 1547.58: Strong Decrease (11.0/1.0) 

I Casey Distance > 1547.58: Stable (3.0/1.0) 

Casey Distance > 1588.42 

I Casey Distance <= 1778.12: Strong Increase (10.0/2.0) 

I Casey Distance > 1.778.12: Strong Decrease (2.0) 
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