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Abstract

Adélie penguins have been widely studied as an “indicator” species for the health of the Southern
 Ocean ecosystem. However, the effects of climatic variability and human activities on Adélie
pengilin populations are poorly understood. As many of the Adélie penguin colonies used for long-
term demographic studies are located near research stations, there is a need to be able to' disentangle
the effects of human activities and environmental variability on Adélie penguin populations. This
- study investigates the landscépe properties that drive the locations of Adélie penguin colonies in the
Windmill Is, East Antarctica. It also examines whether potentiel changes in snow cover and/or
proximity to human activities best explain the varying population trends of colonies in two breeding
localities. While some colonies have been abandoned, or have undergone strong population

decreases, the populations of others have grown by more than 1000% in the past 38 years.

This study uses Geographic Information Systems to generate Aspatial data of landscape, snow
accumulation pattems and proximity to human activity parameters. Landscape parameters are
derived from fine-scale digital elevation models (DEMs) and snow accumulation pattems‘ are
modelled using a complex physically-based GIS model. The parameters are then combined into

multivariate statistical models to generate predictions of habitat suitability.

Individually, the landscape attributes, such as elevation, slope, solar 'radviatvion, and wetness index,
_ have little power to predict the distﬁbution of colonies within a breeding locality. On the other
hand, multivariate models (diécriminant analysis and decision tree) derived from these landscape
attributes predict the presence or absence of colonies. in test grid cellsWith up to 78.9% accuracy.
‘General rules to describe the distribution of Adélie penguin colonies are not easily derived, as -

habitat suitability appears to be driven by complex interactions between landscape attributes.

At Whitney Pt, the study site farthest from Casey, modelled snow accuinulation parameters e_xplain
most of the variation in population trends among colonies (up to 83.7% accuracy, for five classes).
At Shirley I, 500 m from Casey, models derived from proximity to human activity parameters
correctly predict the trend classes for up to 83.8% of test cellvs, while models derived from snow
accumulation parameters correctly classify up to 57.8% of test cells. This suggests that while snow

accumulation patterns are a primary driver of variation in population trends among colonies, the
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effect of snow accumulation is outweighed by the effects of human activities near Casey.
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1 Introduction

The effect of climate change on. the environment is an issue of current. public and scientific
concern. Some of the most significant climate alterations have been observed in polar regions
(e.g. Fraser and Patterson, 1997; Croxall. ét al., 2002; Aihley, 2002; Forcada et al., 2006). In
addition, Antarctica is designated as a wildemeés zone to be protected under the Antarctic
Tréaty.'Therefore, an understanding of the effects of élimate change is particularly crifical for

management of Antarctic environments.

Seabirds have been Widely used as indicators of chénges in the Southern Ocean ecosystem (e.g.
Micol and Jouventin, 2901; Croxall et al., 2002; Kato et al., 2002; Kato et al., 2004). There are a
number of reasons for this, including their perceived primary role in the Southern Ocean
e;osystem and the ease with whith they can b¢ monitored (Micol and Jouventin, 2001; Kato et
al., 2002). However, it has also been acknowledged that using birds as bioindicators of climate
| change is problematic because of the complex nature of the numerous interactions in the-
Southern Ocean écosystem (Croxall et al., 2002) and the potential confounding effects of human
impacts at local scales. Adélie penguin (Pygoscelis 'adeliaé) colonies are known to be abandoned

and recolonised as the climate changes (Ainley, 2002; Emslie and Woehler, 2005) and have

hence been termed “bellwethers of climate change” (Ainley, 2002).

- 1.1 Climate variability and Adélie penguin populations

The localities used by breeding Adélie penguins are affected by interactions between the terrain
and local climatic conditions. One of the key facéts of this study is the investigation of the
impact of snow accumulation on the distribution of colonies and on their. population trends over
46 years. One previous study attempted similar analyses (Fraser and Patterson, 1997). That study.
used a hillshade model as a surrogate for wind exposure to penguin colonies. Wind exposure
was, in turn, used as an indicator for areas where snow would be abraded. The present study
applies a more compiex snow accumulation model, based on the physics of drifting snow and

available meteorological data (Wallace, 2005).

Most recent investigations of Adélie penguin population trends have focused on climate change,

and especially changes in sea-ice extent (e.g. Trivelpiece and Fraser, 1996; Croxall et al., 2002;
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Kato et al., 2002; Kato et al., 2004; Forcada et al., 2006). Others have attempted to separaté the
effects of climate changes and human activities (e.g. Fraser and Patterson, 1997; Micol and
Jouventin, 2001). The present study followed the latter approach, and attempts to differentiate

between climatic and human-induced effects.

Many studies of the effects of climatic variation on Adélie penguin population trends have
focused on broader-scale variables, such as sea-ice extent. These studies have generated
somewhat contradictory results. There is debate about the extent to which these studies have
been able to show clear patterns or causal mechanisms for population fluctuations (Croxall et al.,
2002; Ainley et al., 2003). It is possible that part of the reason for these contradictory results is
that other environmental factors are confounding or exacerbating the effects of sea-ice changes at
different sites and in different years (Fraser and Trivelpiece, 1996; Fraser and Patterson, 1997;
~ Ainley et al., 2003). This study attempts to increase understanding of local environmental effects
that alter the suitability of individual colony sites. This Will, in turn, improve the interpretation of

local, regional and ecosystem-scale population trends.

1.2 Human impacts and Adélie penguins

Human activities have had substantial impacts on the physical environment of Antarctic coastal
areas (e.g. Young, 1990; Wilson et al., 1990; Micol and Jouventin, 2001). For Adélie penguins,
 this effect has been most severe where penguin colonies have been destrdyed for the construction "
of rt;,search stations and associated infrastructure (Wilson et al., 1990; Micol and Jouv-entin, :

2001). There is argument about the potential ifnpact of human activities outside the immediate
| footprint of research stations (Wilson et al, 1989; Culik et al., 1990; Wilson et al., 1991; Woehler
et al., 1994; Giese, 1996; Fraser and Patterson, 1997; Micol and Jouventin, 2001; Pfeiffer and )
Peter, 2004). Woehler et al. (1994) proposed that decreasing populations in some penguin

colonies were the result of pedestrian visits by station personnel.

As the number of people visiting Antarctica increases, so does concern about the potential '
impacts of human disturbance on Antarctic wildlife (Pfeiffer and Peter, 2004). In 2005/06, 26
245 tourists visited Antarctica on tourism vessels (IAATO, 2006). In addition to this, almost
4000 live in research stations located throughout Antarc‘tica .during summer (COMNAP, 2006).

The debate on the potential impact of human activities has been particularly intense on the



Antarctic Peninsula, where tourism is concentrated (Fraser and Patterson, 1997; Pfeiffer and

Peter, 2004). However, it is also potentially an issue around all Antarctic research stations.

Long-term studies of Ad¢lie penguin populations have typically been generally conducted near
research stations, where human activities are focused (e.g. Woehler et al., 1994, Fraser and
Patterson, 1997; Micol and Jouventin, 2001; Woehler et al;, 2001). Studies of Adélie penguins
have also generally involved nesting birds. This means that it may be difficult to disenténgle any
~effects of climatic variability and the role of human activities on numbers of breeding Adélie
penguins. Clarke and Kerry (1994) raised concerns about the effects of invasive monitori.ng
procedures bn the validity of scientific observations of Adélie penguins at Béchervaise Island,

near Mawson.

1.3 The role of GIS in studying these phenomena

In recent years, Geographic Information Systems (GIS) have been used extensively for habitat
analysis of plant and animal species across the globe (e.g. Glenz et al.; 1991; Manel et al., 1999;
" Lenton et al., 2000), as the development of GIS software has.made it possible to include spatial
variability data into ecological studies (Maurer, 1994). However, GISAhas rafely been used to
examine the land-based habitat requirements of Adélie penguins, with th.eA exception of Fraser
‘and Patterson (1997). Historically, attempts to stud'y the nest-site requirements of Adélie
penguins have been forced to ignore the spatial variability of terrain in and among colonies. This
was largeiy because of the inability of available analytic'alv techniqﬁés and computing power to
adequately examine spatial data (Yeates, 1975; Moczydlowski, 1986 and 1989; Maurer, 1994;
~ Evans, v1991). Somé studies of human impacts have incorporated some limited assessment of the
spatial variability of human activities. (e.g. Wilson et al.; 1990; Young, 1990; Woehler et al.,
1994; Fraser and Patterson, 1997; Patterson et al., 2003). |

A high-resolution digital elevation model allows fine-scale features to be captured and
quantified, and their role in the distribution and pdpulation trends of penguin colonies to be -
‘investigated. GIS modelling of landscape parameters such as drainage and snow accumulation is
more efficient than manually meaéuring these phenomena, and in the case of.snow accumulation,
alldws historical "trehds and relationships to be examined from available long-term datasets

(Orndorff and Van Hoesen, 2001). This enables an examination of the physical landscape



characteristics of Adélie penguin colonies in much greater detail than in previous studies, and an
assessment and quantification of the spatial variability of nesting sites (Yeates, 1968;

Moczydlowski, 1986, 1989). .

Historically, most studies have looked at pdpulatior_l trends for what are here termed bréedfng
localities — areas that contain several colonies (using the definition of Woehler et al. (1991,
1994). There has been little examinaﬁon of the épatial variability of demographic data within
breeding localities. Exceptions to this include Woehler et al. (1994) who reported correlations
between the population trends of colonies and their distance from Casey, Fraser and Patterson
(1997) who compared the role of variability in wind exposure with the population trends of
colonies, Wilson et al. (1990) who investigated the effects of human disturbance associated with
the Cape Hallett research station on penguin breeding success and Patterson ef al. (2003)» who
examined the relationships between snow accumulation, tourist visits and colony population

trends. -

In the Windmill Is, individual Adélie penguin colonies have exhibited different population
trends. Several of the colonies closest to Casey have undergone population decfeases auring the
50 years of human ocdupation in the Windmill Is region (Woehler et al., 1994; E.J. Woehler,
unpub. data). However, the overall Adélie penguin population of the Windmill Is trebled
" between 1961/62 -and 1989/90, with the populations of many colonies increasing, and new
colonies established at many breeding localities (Woehler et al., 1991). This trend has continued
to thevpresent (E.J. Wbehler, unpub. data). An analysis of fine-scale processes is needed to .

contribute to our understanding of the observed variability.’

1.4 Adélie penguins

Adélie penguins have been intensively studied because of their pérceived primary role in the
‘Southern Ocean ecosystem, and the ease of access to them for study (Giese, 1996; Micol and
Jouventin, '2001; Kato et al., 2002; Ainl.ey, 2002). Adélie penguins are considered an 'indicator’
species for the health of the whole ecosystem (e.g. Ainley, 2002). With the exception of Emperor
penguiné (Aptenodytes forsteri) penguin colonies are typically located on coastal ice-frée sites
(Trivefpiece and Fraser, 1996; Ainley, 2002). These are similar to the requirements for research

stations, and many stations have penguin colonies nearby. Adélie penguins are strongly



philopatric, and their colonies are easily observed, unlike cryptic-nesting species such as

. Wilson's storm-petrels (Oceanites oceanicus).

One of the advantages in studying the distribution of Adélie penguins is that their current and
former spatial distributions can be easily mapped. The birds form colonies of up to thousands of
pairs. Adults build nests from small pebbles, collected from surrbunding areas, to raise their
_eggs/chicks above the ground and so protect them from snow and meltwater (Ainley, 2002). In
the Windmill Islands, these aiccumulations of nest pebbles have been shown to be up to 9000
years old (Emslie and Woehler, 2005). 'The perimeters of existing and former colonies can be

clearly seen in aerial photographs and on the ground.

Regional trends have been identified in Adélie penguin populations across Antarctica. East
Antarctic populations have shown sustained increases; populations on the Antarctic Peninsula
~ have in_creased and decreased, and thése in the Ross Sea showed no clear pattern (Woehler and
Croxall, 1998; Woehler et ai., 2001). Most population studies have examined .regional trends,

and there is a need for better understanding of finer-scale variation within regions.

Adélie penguins can feed a considerable distance out to sea. A tracking study at Shirley I, near

Casey, found that breeding penguins travelled between 31 and 144 kilometres from the colony |

(Wienecke et al., 2000). Another study of the foragihg range of penguins at Shirley I found that
they. had a maximum foraging range of 135 kilometres (Kerry et al., 1997). These findings are
- broadly consistent with studies in other parts of the continent which have found that Adélie
penguins feed between 2 and 100 kilometres from the colonies, with the short distances

associated with extensive fast-ice (e.g. Kerry et al., 1995; Watanuki et él., 1997; Ainley, 2002).

Given the large distances Adélie penguins travel to feed, and the short distances _between’

colonies within a breeding locality, it is considered that land-based influences on Adélie penguin
colonies are more likely to explain population trend differences among colonies than differences

in the marine environment.

1.5 Definitions

2% . 66 2% 66

In the penguin literature, the terms “colony”, “rookery”, “sub-colony” and “breeding locality”
have been used in contradictory and ambiguous ways. The definition of what constitutes a

colony is unclear for many seabird species. Wittenberger and Hunt (1985) proposed that a
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continuum exists from solitary to colonial nesting, and that the decision on whether neighbouring
groups of birds should be described as discrete colonies depends on the degree of interaction
among -the groups. This study uses the definitions in Woehler.et al. (1991) and Woehler et al.
(1994): A breeding colony is here defined as an area of contiguous nest territories. In turn, a nest
territory is defined as an area containing a nest, and which is defended by a breeding pair, and is
typically.aﬁproximately 1m?. A breeding locality is a geographicai feature, either an island or a
discrete area of mainland, on which breeding colonies are found. Thus, Whitney Pt contains 48
colonies (sensu Woehier) and is consideted to be one breeding locality. This contrasts with the
definition of Ainley (2002) who used the term “colony” for what is here termed a breeding
locality (Fig. 1.1), and with the term “rookery” which was historically used to describe breeding

localities (e.g. Penney, 1968).

Sites that contain conspicuous and clearly outlined agglomerations of nest pebbles, and are not
known to have been used by breeding pairs of penguins during the period of human occupation
in Antarcticé have often been described as “relict” colonies (e.g. Penney, 1968; Woehler et al.,
1994; Emslie and Woehler,-2005). This'study follows that definition, but uses the term “relic”
rather than “relict” to refer to these unused colonies. This change follows the Oxford .

“Dictionary's (Pearsall, 1999) definitions as follows:

“Relic n. 1 an object of interest surviving from an earlier time”

“Relict n. 1 an organism or other thing which has survived from an
earlier period. > Ecology: a population, formerly more widespread, that
survives in only a few localities.”

By these definitions, the surviving remnant of a penguin colony whose population is decreasing
might be defined as relict. “Relic” is a more appropriate term to describe colonies that are not

used presently, and is thus used here.




I ~:elie penguin colonies

e

[ vand
Anley (2002) included both of these breeding localities
in a single "colony". In this paper, a "colony"” is defined
as an area of contiguous nest territories. Thus, Whitney |
Pt contains 41 extant colonies and Blakeney Pt contains

28 extant colonies.

Legend

Fig. 1.1: This area of the Windmill Is, East Antarctica, was identified by Ainley (2002) as a
single colony. However, using the definitions of Woehler et al. (1994), this map shows two
breeding localities, each containing several colonies.
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1.6 Aims and objectives

The study aims to:

X Quant.ify spaitial landscape parameters (slope, drainage, .aspect, solar radiation, planar and
profile curvature, surface roughness) and climatic parameters (wind exposure and snow

accumulation) from fine-scale digital elevation models (DEMs) of the two study sites

« Apply multivariate statistical analyses to investigate the importance of static landscape

parameters in inﬂuéncing the distributions of Adélie penguin colonies at the two study sites

« Determine the contribution of selected climatic variables (snow accumulation patterns and
wind exposure) to the observed long-term populatlon trends of Adélie penguin colonies at the

two study sites, using multivariate statistical analyses

« Investigate the ability of proximity to Casey and the main Shirley I access point and exposure
to potential air-borne emissions from Casey to explain the observed population trends of

colonies on the island using multivariate statistical analyses

1.7 Hypothes‘es

This study investigates selected aspects of the spatial écology of Adélie penguin breeding
localities. It examines whether selected parameters of the landscape can predict the locations of
Adélie penguin colonies within the breeding localities at Whltney Pt (66° 15'S, 110° 32'E) and
Shirley I (66°17'S, 110°29'E) near Casey, Wilkes Land, East Antarctica. The study also
investigates whether the interaction of these parameters and snow accumulation patterns, or

proximity to human activities can predict the population trends of penguin colonies at two sites.
This can be expressed as the following null hypotheses:

Hnuiel  Static landscape variables (slope, drainage, aspect, planar and profile curvature,
surface roughness, wind exposure, snow cover and solar radiation) cannot predict the

locations of current and relic Adélie penguin colonies at Shirley I and Whitney Pt.

Hyui 2 Interactions between the shape of the land and the weather conditions that drive snow

accumulation patterns cannot predict the population trends of Adélie penguin



colonies at Shirley I and Whitney Pt.

Hyure3  Proximity and exposure to human activities associated with Casey cannot predict the

population trends of Adélie penguin colonies at Shirley [ and Whitney Pt.



Chapter 2: Lite;ature'Review
2 Literature Review

2.1 Spatial ecology of Adélie pengums and the effects of Iandscape
processes

- 2.1.1 Adélie penguin distribution

Adélie penguins have a circumpolar breeding distribution between 60° and 77°S. The global
population has.been estimated at apbfoximately 24 miilion breeding pairs, at some 170 breeding
localities. The birds nest on ice-free rocky shores with landing beaches, where there is access to
open water for feedihg. Colony sites are believed to be chosen because they.have ready access to
the sea, are exposed -to prevailing winds, have gentle slopes that allow good drainagc and
discourage snow accumulation, and have a supply of suitable pebbles for nest construction (Yeates,

1975; Trivelpieée and Fraéer, 1996; Ainley, 2002). |

The spatial distribution of any species can be viewed at a nested hierarchy of scales, with the spctial
. pattern varying according to the scale (Maurer, .1994). At the broadest scale — that of the entire
Anterctic continent — Adélie penguins breed where there are exposed rocky areas with landing
beaches (Falla, 1937, in Ainley, 2002). Viewed from a regional scale, in an area such as the
Windmill Islands, breeding localities are patchily distributed. Within each b_reeding locality,
penguins are clustered into colonies and within an individual colony; the nest territories of penguins
are 'mostly contiguous. Most studies that address the spatial distribution of Adélie penguin colonies

have been conducted at the broader scales.

Many of those studies focused on the marine environment and variability in pafame';ers such as prey -
availability and sea-ice extent (e.g. Ainley and Le Resche, 1973; Fraser et al., 1992; Kerry. et al.,
1995; Fraser and Trivelpiece, 1996; Kato et al.,, 2002; Forcada et al., 2006). Earlier studies
suggested that the distributions of seabirds were primarily controlled by prey availability (e.g.
Voous, 1965, in Fraser and Trivelpiece, 1996). From the 1970s onwards, studies suggested that
distributions were also cohstrained by variability in the marine environment, such as sea-ice extent, -
and variations in sea temperatures, salinfty and mixing depths (e.g. Ainley and LeResche, 1973;

Fraser and Trivelpiece, 1996)
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Ainley (2002) argued that breedihg locali'tieé were geographically structured by a boiﬁbir{ation of
available resources and by intra- and inter-species competition (Ainley, 2002). The resources
included physical factors, such as suitable nesting sites, and biological factors, such as prey
aVailability. -Prey availability appeared to be the primary driver of the total number of birds in a
region, and combetition for food exacted a negative effect on population clumping (Ainley et al.,
1995; and reported in Ainley, 2002). Where a locality had a large bréeding population, the localities:
within a 150-200 kilometre radius were typicéily found to have small populations (Ainley et al.,
1995). In addition to thé breeding birds, each colony had a population of non-breeding birds that
visited the colony and fed farther out to sea (Birt et al., 1987; Ainley, 2002). In contrast to the
negative effect of competition for resources, the natal philopatry and social tendencies of Adélie
penguins were found to have a positive effect on the clumping of colonies, in that while nesting
~ sites and preyvresourées were available, Adélie penguins remained close to their birth colohy

(Ainley, 2002).

During the summer chick-reariﬁg' périod, breeding Adélié penguins are central place foragers
(Ropert—Cbudert et al,, 2004). The distances they travel to feeding areas vary throughout the
breeding season and arhong breeding localities. Satellite-tracking studies have found that the birds
travel up to 200 kilometres from the colohy to feed during the chick provisioning. period, with the
shortest distances associated with areas of fast-ice, where the penguins walk to the foraging grounds
| (e.g. Kerry et al., 1995; Watanuki et al., 1997; Ainley, 2002). Tracking studies at Shirley 1
(}Wienecké et al., 2000) found that breeding penguins feed up to 31-110km from the colony during
the guard stage and 94-144km during the créche vstage (Kent et al., 1998; W_ienecke et al., 2000). If
Adélie penguins in the Windmill Islands feed between 30 and 140 kilometres from the breeding
localities, it appears likely that differences in population ‘trends among colonies located less than
100m apart are driven by factors related to the terresfrial and social environment, rather than mafine

environment.

2.1.2 Coloniality

Adélie penguins are strongly colonial birds. Theories of why they nest colonially include nest-site
availability; anti-predator strategies; access to mates; and social factors related to breeding, such as
information transfer (Ainléy et al., 1995). Wittenberger and Hunt (1985) noted that 98% of marine

birds nest in colonies. They propoéed that many seabird nest sites are more clumped than they
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would be if simply constrained by the available suitable habitat. This is demonstrated in situations
where neighbouring potential nest habitat remains unoccupied while one colény becomes crowded.
This pattern occurs in the Windmill Islands, where relic colonies occur within 50m of extant
colonies that contain hundreds of pairs. Wittenberger and Hunt also noted that colonies prO\'/ide
protection against predation in the form of increased vigilance, but af the same time they attract
predators by providing a concentration of available food and they may also be more prone to

disease.

It may be that for Adélie penguins, a shortage of available rocky coast forces some degree of nest -
clumping, that makes them unable to take advantage of one of the benefits of solitary nesting — that
of concealment from predators. Studies have found that when Adélie penguin breeding localities are
under stress, the effects are most strongly exhxblted in smaller colonies (Giese, 1996 Fraser and
Patterson, 1997). Fraser and Patterson argued that a population below 25-30 palrs was unable to
maintain the colony's defences against predation by skuas (Catharaéta spp.) on the Antarctic

Peninsula.

2.1.3 Topographic influences on colony locations

Fraser and Patterson (1997) used the term “landscape effect” to describe the influence that the shape
of the land exerts on Adélie penguin colonies. This described a phenomenon recognised by the
earliest Antarctic explorers — that Adélie penguins not only require ice-free rocky areas for nesting,

but that they also select those sites where snow does not accumulate (Levick, 1915).

- It has since been argued that snow accumulation, meltwater runoff and sofar radiation influence the
selection of Adélie penguin nesting sites, and that the abandonment of a colony can occur rapidly
after twb or more years of failed breeding (Yeates, 1975; Moczydlowski, 1986, 1989; Trivelpiece
and Fraser, 1996; Fraser and Patterson, 1997).

Snow cover has repeatedly been found to be one of the most importanf drivers of nest site selection -
by Adélie penguins (Levick, 1915; Yeates, 1975; Moczydlowski, 1986; Moczydlowski, 1989;
Trivelpiece and- Fraser, 1996; Fraser and Patterson, 1997; Ainley, 2002). Therefore it is not
surprising that changeé inbsnowfall and wind regimes should also have been found to alter their

breeding success and influence population trends, as recently shown by Fraser and Patterson (1997).
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-Ainley (2002) wrote that Adélie penguin colonies typically occur on ridges and higher ground, and
that where they share breeding grounds with congeneric birdé, Adélies are found farther from
- landing beaches. He argued that this is related to the conditions at the sites during the Last Glacial
Maximum (19 000 y bp) when the species was under greater ecological pressure, and when land-ice
lowered the height of the land by several metres, submerging gently sloping beaches. In more
southern areas, where Adélie penguins nest in single- spec1es colomes and land is in greater demand

he found that they nest closer to sea level .

Adélie penguins are confined to areas where glaciers have formed moraines near the coasts, to
provide nest-pebbles. Ainley (2002) argued that the availability of nest pebbles is a crucial dri\}er of
colony locations. In the Windmill Islands, most relic and extant colonies occur on raised-beach
formations covered in rock debris measuring 2-6cm (Fig. 2.1). Keage (1982) argued that the
preference for these formations demonstrates the importarice of the availability of nest pebbles in
determining éolony locations. He wrote that the colony size and nest density are directly related to
the availability of nest pebbles, with colony populations increasing with distance from the ice cap.
Hdwever, he did not address the potential role played by penguins in building up these raised-beach

- formations by collecting nest-pebbles from suﬁounding areas.

The present study did not'addres_s the availability of nest pebbles for two reasons. First, it is difficult
to measure pebble évailab’ility and requirements. The number of pebbles used in nest construction is
highly Vaﬁable and ranges from nests built with a few pebbles to nests built from several hundred
stones. It is also difficult to measure the spatial distribution of suitably sized pebbles over the area
ofa breedihg locality. Second, if nest pebble availability were a limiting factqr on nésting sites in
the Windmill Islands, it is likely that the relic colonies would either be .occupied or denuded of
stones. At both Shirley I and Whitney Pt, there are numerous relic colonies in close proximity to -
colonies that contain hundreds of breeding pairs, and these relic colonies contain huge numbers of

pebbles.
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Fig 2.1: Adélie penguin colony at Whitney Pt, January, 2006. This colony is undergoing a strong
population increase (3900% more breeding pairs than when the colony was first counted in
1959/60).

Early studies of the relationship(s) between the shape of the landscape and nest site selection by
Adélie penguins occurred between the 1960s and 1980s (Yeates, 1975; Moczydlowski, 1986;
Moczydlowski, 1989). Both Yeates and Moczydlowski noted the importance of snow distribution in
determining the locations of colonies. Yeates found that microclimatic effects were vital for
successful breeding, with nest sites exposed to high levels of wind exposure and solar radiation,
compared with unoccupied areas. He argued that while microclimate played a vital role in site
selection, interannual variability was likely to be caused by macroclimatic variation. Yeates did not
address the role microclimate plays in determining the ultimate effect of macroclimate events. It
may be that some colonies are in locations that are more prone than others to being covered by

snow and hence become more or less suitable as snow cover conditions change (Fraser and
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Patterson, 1997).

Mocszlowski (1986; 1989) investigated the terrain properties of colony locations in the South
Shetland Is. He found that the common features of all colonies were good drainage and high levels
of solar radiation, with Adélie penguins nesting in the sites with the thinnest snow cover at the end
of winter. In addition, their colonial nature helped shed snow because their faeces pafried high
levels of sodium chloride, which iowered the freezihg point of water. This in tum éjded‘dispersion
of snow from colonies. From this, he concluded that Adélie penguins selected nest sites that are
naturally likely to have 'the. least amount of snow, and then, through the deposition of faeces, further
‘increase the site's suitability. In 1986, Moczydlowski found that when penguins were not present,
there was no difference in air .temperature between colony sites and other parts of the landscape. He
also argued that Adélie penguins did not nest in the most exposed sites. Instead, he proposed that |
they prefer sites with the least snow cover, but also with lower winds. Both Yeates and
Moczydlowski's studies were conducted before the widespread availability of GIS as a tool for
analysing spatial data. Their studies therefore did not take account‘ of spatial variability within and

among colonies.

At Cape Hallett, in the Ross Sea, Adélie penguins are found on well-drained mounds, and where
these were flattened by human activities associated with the now-abandoned research station,
Adélie penguins did not recolonise after the station closed. However, where those mounds remained
or were rebuilt as part of habitat rehabilitation, the penguins reoccupied after the humans left
(Wilson et al., 1990).

2.1.4 Climate variability and snow accumulation

As with studies of the geographic distribution of Adélie penguin colonies, most investigations of the
relationships between climate variability and Adélie penguin breeding success or population trends
have been conducted at broad scales. Many studies have examined the responses of breeding
localities to changes in sea-ice exten't’ and other climatic variables (e.g. Ainley and LeResche, 1973;
Fraser et al., 1992; Croxail et al., 2002; Kato et al., 2002; Kato et al., 2004; Olmastroni et al., 2004;
Fofcada et al., 2006). Such studies are useful in studying population trends for entire regions. They
are of limited value in attempting to interprét differences in population performance émong colonies

within a breeding locality, where all the colonies are likely to be subject-to similar sea ice |
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conditions and other, finer-scale processes are likely to be involved.

| A few studies have attefnpted to separate the effects of changes in sea-ice extent and snow
_accumulation patterns at local scales (Trivelpiece and Fraser, 1996;. Fraser and Patterson, 1997;
Patterson et al., 2003). On the Antarctic Peninsula, rising temperatures over the past 50 years have
been accompanied by increasing snowfall and decreases in sea-ice extent — both factors which have
been implicated in decreasing Adélie penguin breeding populations (Frasér and Patterson, 1997).
~ Trivelpiece and Fraser (1996) studied population trends at Litchfield I, near Palmer Station on the
Antarctic Peninsula. They noted that 18 of 21 colonies that have recently been abandoned were in -

the lee of prominent topographic features.

Patterson et al. (2003) used a GIS hillshade model as a proxy for snow accumulation on Litchfield I
and nearby Torgersen I, in a bid to determine whether snow accumulation or the effects of human
visitation could best explain the observed changes in colony population trends. The hillshade model
could be seen more accurately as a surrogate for exposure to the prevailing winds. Their.study |
found a strong correlation between wind exposure and population trends, and no. statistically
significant relationship between the rates of human visitation and population trends. One of the
limitations of a hillshade model as a surrogate for snow accumulation is that it modéls Ilight — which
has a laminar flow, whereas wind flows turbulently, and the transport of snow is physically
-~complex (e.g. Kind, 1986; Listoh and Sturm, 1998; Green et al., 1999). Thus, a hillshade can only
give a first approxifnation of the patterns of snow accumulation. Such an approximation is
appropriate in sites with simple topography, but potentially less useful for fine scale studies in sites
with more complex or ﬁner-scale td'pographies, such as those around Casey, where tlie maximum
alﬁtude is about 35m above mean sea level, and the landscape is dominated by a mix of low cliffs

and gently undulating plateaux.
2.1.5 Human impacts on Adélie penguins

The Adélie penguin col‘o'nies, for which long-term population records are available, such as those -
used in ékaminétions of responses to climate vadability, are typically located near Antarctic
research stations (Ainley and LeResche, 1973; Fraser et al., 1992; Trivelpiece and Fraser, 1996;
Fraser and Pattersbn, 1997; Fraser, 199v8; Micol and Jouventin, 2001; Olmastroni et al., 2004;
Emslie and Woehler, 2005). This makes it potentially difficult to separate the effects of climate
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variability from the effects of human activity at or near the colonies.

A number of studies have investigated the effect of human activities on Adélie penguins. Reasons
given for this research include public concern that man's presence in Antarctica may damage the
ecosystem (Wilson et al. 1991), the obligations of national research programs under the Antarctic ‘
Treaty and concerns that the effects- of human activity may affect the results of scientific research
(Clarke and Kerry, 1994; Wilson et al., 1989). National Antarctic science programs are obliged to
minimise their effect on wildlife and the environment, under the Antarctic Treaty and the Madrid
Protocol. The International Association of Antarctica Tour Operators (2006) stated that tourism
operators are also obliged to meet the requirements of the Antarctic Treaty. Young (1990) noted
that Adélie pehguins and humans have very similar requirements in Antarctica, namely access to
ice-free tefraih near water, and that as human activities increase, so too do the chances of significant

effects on Adélie penguins.

Adélie penguins have often been considered to be relatively immune to human disturbances because
. they do not always display overt distress behaviours (Giese, 1996). However, numerous studies
- have attempted to investigate the effects of human activities on pygoscelid penguins. These
activities include the destruction of penguin colonies (Micol and Jouventin, 2001); other alterations
to the terrain from station construction (Wilson et al., 1990); aircraft flying over colonies (Culik et
al., 1990; Wilson et al., 1991); manipulétion of the birds during scientific studies (Wilson et al.,
1990; Clark and Kerry, 1994, Giese, 1996) and pedestrian visits to colonies (Culik et al., 1990;
Wilson et al., 1991; Woehler et al., Giese? 1996; 1994; Fraser and‘Patvterson, 1997; Holmes et al.,
2006). Measures used to determine the effects on penguins include behavioural changes,
'physiologicalvchanges such as heart rate (Wilson et al., 1991), changes in feeding behaviour
(Wilson et al., 1989); and changes in breeding success or colony population trends (Woehler et al.,

1994; Giese, 1996; Fraser and'P'atterson, 1997, Patterson et al., 2003).

The results of these studies have been somewhat contradictory and ambiguous. Many of the studies
that have found a negative impacf have used short-term measures, such as heart rates or behavioural
respdnses. For example, Wilson et al., (1991) found that while birds may appear unconcerned by
the approach of humans, heart rates increased from 80 to 127 beats per minute when approached by
_ a researcher on foot. Another experiment showed that comparatively brief and non-invasive human

handling resulted in an approximate 50% increase in the duration of foraging trips (Wilson et al.,
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1989). The researchers in that_ study concluded that this represented a “psychological” effect on the
birds.

| There is also some direct evidence of a long-term effect on Adélie penguin numbers as a result of
human visits. Giese (1996) studied the effects of scientific nest checks conducted every second day
and tourist-style visits two to four times every day in Adélie penguin colonies that had previously
been exposed to little human activity. She found that colonies subjected to both treatments had
lower breeding success than control colonies. This difference was signiﬁ‘cant in small colonies (~40
pairs) and not significant for larger colonies (~70 pairs). Giese argued that the effect of disturbance
was exacerbatod in smaller colonies and that it was most closely linked to the frequency of

disturbance rather than the intensity of the disturbance.

Woehler et al., (1994) proposed that visits to colonies by station personnel were responsible for
“observed decreases in breeding success and populations of colonies at the end of Shirley I nearest
Casey. An examination of Adélie penguin population trends on two islands near Palmer Station on
the Antarctic Peninsula was unable to find a link between population trends and human activities
(Fraser and Patterson, 1997). In that study, the most heavily visited island, Torgersen I, was also the
one with the smallest decrease in Adélie penguin numbers. Youhg (1990) found that Adélie penguin
numbers in colonies close to the research station at Cape Bird declined significantly, while the
overa]l number of penguins in the breeding locality increased. Those colonies closest to the station
were the ones that had been most intensively studied and were. also within 200m of a helicopter

: landlng pad.

At Cape Hallett, in the Ross Sea, Adélie penguins are known to nest ‘on well-drained mounds
(Wilson et al., 1990). The total population decreased from 62 900 pairs to 37 000 between 1959 and
N 1968, when the Cape Hallett research station was in use. Station construction work led to the
destruction of some mounds ond the construction of buildings near others changin’g the snow
accumulation regime. The station was abandoned in 1973 and demolished in the 1980s. Wilsoo et
al. found that penguins reoccupled few areas where humans had altered the terram A combmatlon
of land acquisition by man, disturbance and scientific study was blamed for the observed population
decllne. Scientific practices such as banding and handling of the birds were most closely correlated
with population declines in individual colonies. It took 12-14 yeérs after the research station was

abandoned for the penguin population to reach the size it was before human occupation.
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Micol and Jouventin (2001) investigated the effects of station activities and the construction of a
runway on the populafions of 7 seabird species nesting neiar Dumont d'Urville, Antarctica. They
found that despite the destruction of 10% of the region's Ad¢lie penguin nests, the total number of
Adélies had increased by 50% during the study périod. On lle des Pétrels, where the station
buildings are located and helicopters operate each summéf, the number of Adélie penguins
increased by 250%. Micol and Jo_uVentiri noted- that they could not quantify the effect of
environmental factors such as sea-ice extent, food availability and nest-site availability. However,
they suggested that in the long term, these factors outweighed the apparently significant short-term -

effects of human construction activities.

-It 1s unclear why the penguin populations of Cape Hallett and Dumont d'Urville should display such
different responses to station activities. It may be that other environmental factors have confounded
the results of one or both of these studies. Little of the literature has involved examination of
variation among colonies within one breeding locality, which is thé scale at which such impacts are

most likely to be seen.

2.2 GIS habitat modelling

Geographic Information Sy.stem analysis has rarely been used to examine the spatial ecology of
Adélie penguins (Patterson et al., 2003). However, GIS has been widely used to investigate
relationships between the landscape and numerous other species across the world (e.g. Aspinall and
Veitch, 1993; Baker et al.l, 1995; Bian and West, 1997, Store and Kangas, 2001). GIS has enabled
ecological studies to quantifatively analyse spatial variability (Burrough and McDonnell, 2000;
Vogiatzakis, 2003). Store and Kangas (2001) also noted that GIS applications caﬁ generate new
data by spatial analysis of existing data. Typically, GIS-based habitat analyses have involved the
création of spatial data layers, each of which re;;resents one habitat parameter. These layers have

then been combined, using some function — derived from either expert knowledge or statistical .

" testing - to produce a map showing the relative quality of habitat for the species being examined

(Store and Kangas, 2001).

GIS habitat modelling has been widely used in autecology (Guisan and Zimmermann, 2000; Kidd
and Ritchie, 2000; Lenton et al., 2000, Osbomev et al., 2001; Lauver et al., 2002; Gibson et al.,
2004). 1t has also been used for many reasons related to the interactions between human land-uses

and the environment (Guisan and Zimmermann, 2000). These have included the identification of
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conservation priorities (Bian and West, 1997; Walker and .Craighead,v 1997), field work and
management planning (Curnutt et al., 2000), distribution and ahundance modelling (Aspinall and
Veitch, 1993), environmental impacf assessments, as a step in refining habitat maps (Breininger et
al., 1991), and to model Changes in habitat suitability and fragmentation through time (Hansen et
al., 2001). '

Habitat prediction models have been found to produce stronger results for species that are common,
range-restricted or more specialised than for species that are rare, wide-ranging and/or more
generalised in their habitat requirements (Pereira and Itami, 1991; Debinski et al., 1999). Adélie
penguins can be considered to be common within breeding localities, though their specific habitat

requirements are poorly understood (Yeates, 1975; Moczydlowski, 1986, 1989

Numerous approache§ have been used to drive GIS-based habitat. models, and one .common
classification method has been to split such models according to whether théy are informed by field -
data (empirical models) and or by expert knowledge (rule-based models) (Guisan -and
Zimmermann, 2000; Store and Kangas, 2001). Store and Kangas (2001) argued that rule-based
models were most suitable for situations in which it would be too expensive or lime consuming to

gather empirical data.

Rule-based models have been used for species for which good expert knowledge of habitat
requirements was available, and the distribution poorly understood (e.g. Lauver et al., 2002). This
~ approach has been considered suitable for those cryptic species whose presence/absence is difficult
to map (Gibson et al.; 2004). Rule-based models have often used similar -techniques to multi-criteria
decision making analysis (Pereira and Duckstein, 1993; Lenton et al., 2000), which is a common
technique in GIS. In models using._this apprbach, habitat parameters have typically been assigned
values based on expert knowledge, and these factors then combined to produce habitat suitability
maps (Breininger et al., 1991; Pereira and Duckstein, 1993; Curnutt et al., 2_000; Hansen et al.,
2001; Stote and Kangas, 2001). Areas of suitalble habitat have been defined as those areas in which
all habitat factors coincide (Kelly et al., 2001). One criticism of this approéch is that validation of
these models has also often relied on expert knowledge, making the entire process somewhat
circular (Pereira and Itami, 1991). -

! ’ .
Empirical models take a more objective approach to analysing habitat suitability. Such models have

typically attempted to quantify the relationship between observed distributions and habitat
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~ parameters. The classification of habitat parameters has generally been independent of the wildlife
data (Aspinall and Veitch, 1993). Adélie penguins are suited to emﬁirical inodelling because the
penguins' present and past distribution is relatively easy to measure. In contrast, there is little expert
knowledge available -appropriate for forming rules to determine the location of colonies, as such
prdcesses are poorly understood (Yeats, 1975; M'oczydlowski, 1986 and 1989; Wilson et al., 1990).
The conspicuousness of Adélie penguin nests is in contrast to the problems encountered by
researchers investigating bird species whose nest sites are cryptic and whose total populations and

distributions must be inferred (Guisan and Zimmermann, 2000; Gibson et al., 2004).

Store and Kangas (2001) argued that thev accuracy of the results of habitat analysis depends on the
quality of the source data and of the analytical techniques. The most important factors affecting the
quality of spatial data have been described as currehcy, completeness, consistency, acgessibility,
.ac.curacy and precision, as well as the error sources inherent in the data-gathering processes. Error
propagation also occurs throﬁgh the analysis process, particularly as a result of combining data sets
with different spatial and temporal scales (Burrough and McDonnell, 2000; Store and Kangas,
2001). | |

Input data for GIS habitat analyses have typically been derived from three main sources — remotely
sensed photographs and images (Breininger et al., 1991; Aspinall and Veitch, 1993; Bian and West,
'1997; Hansen et al., 2001; Osborne et al., 2001; Gibson et al., 2004); paper maps (Raphael et al.,
1995; Lenton et al., 2000); and DEM derivatives (Raphael et al., 1995;_B1ackard and Dean, 1999;
“Guisan and Zimmermann, 2000; Gibson et al., 2004). Input data of animal or plant distribution have
been gathered by survey (Aspinall and Veitch, 1993; Osborne et al., 2001; GiBson et al., 2004); or
by radio or satellite tracking (Bian and West, 1997).

It has been stated that empirical models tend to decline in accuracy as the number of input variables
and environmental éomplexity increases (Vogiatzakis, 2003). A common source of errors has been
in the conversion of the available data to spatial coverages. Guisan and Zimmermann (2000) npted
that many of the variables that determine habitat suitability, such as temperature or solar radiation
are often interpolated from widely spaced monitoring stations and are hence prbne_ to interpolation
errors. In contrast, they afgued that available DEMs and their derivatives tend to be highly spatially
accurate. An additional benefit of DEM derivatives is that they may be more cheaply and efficiently

. generated than manually measured directly causative variables (Lenton et al., 2000; Gibson et al.,
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2004). Guisan and Zimmermann, (2000) proposed that DEMs and their basic derivatives — slope,
aspect and curvature — are generally the most aceurate maps available, though they may not have
the highest predictive potential. DEM derivatives méy not have direct physiological relevance for a
species, but can act indirectly on causative variables, such as temperature (Gibson et al., 2004).

However, Vogiatzakis argued that these surrogate parameters may introduce errors into models.

One result of using DEM-derivatives in a model is that the model may not be readily applied to -
other geographic areas because the same topographic position in a different region may experience
a different environmental gradient (Guisan and Zimmermann, 2000; Austin, 2002; Gibson et al.,
2004). However, Guisan and Zimmermann (2000) showed that at local scales, DEM derivatives

may show strong correlations with species distributions.

Few GIS habitat analyses have accounted for temporal variability in habitat suitability (Curnutt et
al., 2000). Guisan and Zimmermann (2000) noted that historical conditions may have a signiﬁcaht
influence on the current distribution of organisms, and that most static models have failed to
~account for this: They urged researchers to incorporate historical data wherever possible. Guisan
and.Zimmermann also noted that since temporal data of species’ responses to environmental change
are rarely available, static models are often the only possible. approach. Curnutt et al. (2000)
developed a model to account for changing hydrological conditions between years and between
management scenarios. Baker et al. (1993) noted that selection of nest sites by sandhill cranes may )
have occurred when vegetation, climate patterns, water management or disturbance levels were
different and that the suitability of an individual nest-site may vary from year to year. However,
other studies that examined changing distributions of species have not considered temporal changes

in the habitat quality (e.g. Glenz et al., 2001).

The majority of GIS-based habitat analyses has used records of species presence/absence to
measure habitat suitability (e.g. Pereira and Itami, 1991; Aspinall and Veitch, 1993). Aspinall and
Veitch (1993) suggested that presence/absence data is appropriate for species where only a sample
‘survey is available. Breininger et al. (1991) warned that model deyelbpment and testing based on
animal sightings.of radio tracking may not reflect actual habitat suitability, because these rﬁay
detect a small subset of an area used by the. population. This was less of a problem in the present
sfudy because of the conspicuous nature of Adélie penguin nests, which reduced the risks of error

associated with one-off observations of the species in a particular location. One difficulty with
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calibrating habitat suitability models has been the fact that any species rarely. occupies all of its
potential range (Curnutt et al., 2000). Fielding and Bell (1997) noted that prediction errors can

occur in habitat mddels when the habitat is unsaturated. They wamed that if the speciés under |
exarﬁination is not using the entire available habitat, this will generate interference in the model. It
has also beén argued tﬁat it often cannot be determined whether an animal has never, or Will never
use a particular location (Breininger et al., 1991). However, Curnutt et al. (2000) argued that while
the species in question may not appear in all areas with suitable habitat indices, it should not appear
in sites deemed to be unsuitable. Fielding and Bell (1997) suggested that such “false negatives” are
likely to be the result of errors in either the statistical model or due to some relevant ecological
process. not being mapped. They warned that appropriate data may not be available for some
ecological processes. Guisan and Zimmermann (2000) argued that nature is too complex and
heterogeneous to be reduced a single predictive model, no matter how complex that model may be.
Breininger et al. (1991) argued that long-term studies of population dynamics are needed to
accurately quantify habitat suitability, but noted that this is beyond the scope of many mapping

applications.
Scale

It has - been arguéd that the scale at which habitat is ahalysed can have major implications for the '
conclusions that can be drawn (Maurer, 1994). Baker et al. (1995) argued that e_cologiéts need to be
able to understand how habitat requirements chénge across spatial scales. They argued that
- choosing the wrong écale can lead to researchers drawing incorrect conclusions or to an inability to
draw any conclusions. They found that as the resolution of analysis- increased, there was a
corresponding decrease in the ability to detect important habitat variables and draw conclusions.
-~ However, most GIS-based habitat analyses have been conducted at just one scale. The choice of
scale has typically been driven by a compromise between the scales perceived to be important for
the species under investigation, the resolution and extent of the available datasets and the available
computatibnal power (e.g. Aspinall and Veitch, 1993; Osborne et al., 2001). Pereira and Itami
(1991) noted that different variables are likely to be i_mportaﬁt at different spatial scales. Lauver et
al. (2002) found that loggerhcéd shrikes occurred in sites their model predicted as low quality
habitat, and proposed that this was because the birds were making use of habitat features ghat were
too small to be picked up at the 0.1ha resolutidn of their model. A few studies have investigated

~ landscape variability at more than one scale. Raphael et al. (1995) modelled murrelet nesting habitat
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requirements at river basin and site-specific scales. Osborne et al. (2001) used datasets that had

been acquired at different spatial scales before combining them into a single predictive model.

Most GIS-based studies have worked at broad scales, with resolutions typically larger than 1ha (e.g.
Manel et al., 1999; Glenz et al., 2001; Osborne et al., 2001; Gibson et al., 2004). Excepfions to this
include Sieg and Becker (1990), who measured landscape variables within an 11.3m radius of -
merlin (Falco columbarius) nests. If the ability to detect important landscape variables decreases as
the resolution increasés, as argued by Baker et al. (1995) it seems likely there's a need for more

studies that use GIS-techniques to examine spatial variability at fine scales.

2.3 Statistics in GIS-based habitat modellihg

A wide variety of multivariate statistical tests have been applied to GIS-based habitat modelling.
The simplest models have operated entirely within a‘GIS,' combining the data layers by some
mathematical function (Guisan and Zimmermann, 2000; Store and Kangas, 2001). However,
Guisan and Zimmermann (2000) warned that these .tests-have'typically been inadequate for model-
building as they did not allow stepwise selection procedures or graphicai tests of model-fitting.
'Mor_é complex models have made use of the more powerful statistical tools available ohly in
~ specialised statistical p'ackages (e.g. Blackard and Dean, 1999; Debinski et al., 1999; Manel et al.,
1999; Osbomé et al., 2001; Gibson et al., 2004). ’

2.3.1 Univariate testing

~ The first step of statistical modelling of habitat suitability has often involved univariate exploration
of the relationship between the dependent variable and each parameter (Manel et al., 1999). It has
been argued that if a species selects-habitat baséd on the measured parameters, those paraméters
should show differences in the mean and variance between sites. where the species is present and
absent. Larger variation in the distribution of values has typically been expected in sites where the

species is absent (Pereira and Itami, 1991).
2.3.2 Multivariate model selection

~ It has been noted that the large and evolving range of statistical approaches. available for ecological

modelling can make it difficult for ecologists to choose appropriate methods (Manel et al., 1999).
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Multivariate analyses-that have been widely used in GIS-based habitat suitability studies include

discriminant analysis (Raphael et al., 1995; Manel et al., 1999; Debinski et al., 1999; Kidd and
| Ritchie, 2000); logistic regression (Sieg and Becker, 1990; Osborne et al., 2001); decision trees
(Hansen et al., 2001), artificial neural networks (Blackard and Dean, 1999; Manel et al., 1999);
generaliséd linear models (Gibson et al., 2004); and Bayesian épproaches (Aspinall and Veitch,
1993).

~ One of the challenges in selecting an appropriate testing rhethpd is that few studies have compared
the performance of different models. Exceptions to this include Blackard and Dean (1999) who
compared the performance of two forms of discriminant analysis and artificial neural networks; and
Manel et al. (1999) who compared discriminant analysis, artificial neural networks and logistic
regression, in predicting the distribution of several Himalayan river bird species. Blackard and Dean

found that an artificial neural network was significantly more powerful than either of the

- discriminant analysis functions, but found no significant difference in the results of the linear- and _ ‘

non-parametric discriminant analyses. They also noted that the artificial neural network took 2500
hours of computer run time, compared with five minutes for the discriminant analysis. Manel et al.
(1999) found that the three methods they compared all had strong predictive power. When tested -
against calibration data, the artiﬁcial neural network outperformed the other two models, and
discriminant analysis p:erformed' slightly better than logistic regression. When tested against
datasets frorﬁ different geographic areas, logistic regression marginally, but significantly
outperformed the other two models, with the artificial neural nétwork the worst-performef. They

also found that the results from logistic regressions were most variable across species.

Discriminant analysis has been successfully used in drnithological studies to distinguish suitable
ﬁabitat and the effect of human visitors on breeding populations (Debinski et al., 1999; Manel et al.,
1999; Patterson et al., 2003). However, it is limited in its applicability because of the underlying
assumptions of normality, equal variance within each group and equal covariance matrices within

each group (Flury and Riedwyl, 1988; Hastie et al., 2001).

Many of the available multivariate statistical tests rely on data that is normally distributed, but
fn_any ecological datasets do not meet this requirement (Blackard and Dean, 1999). Guisan and
Zimmermann (2000) wrote that data sets can be normalised by a variety of functions, but warned

that models built on the artificially normalised data can make biological ihterpretations difficult.
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Manel et al. (1999) noted that multivariate normality can be hard to assess, especially with large
numbers of predictor variables. They argued that as normal distributions are an undeleing
.assumption of discriminant analysis, the results should always be treated with caution. However,
Blackard and Dean (1999) argued that in practice, the assumptions of discriminant analysis are

often violated with minimal apparent effect on the result.

Logistic regression has also been widely used in ecological models (Sieg and Becker, 1990; Pereira
and Itami, 1991; Bian and West, 1997; Glenz et al., 1999; Kelly et al., 2001; Osborne et al., 2001).
This approach has been considered the most suitable when some of the available data were

qualitative and did not meet assumptions of multivariate normality (e.g. Pereira and Itami, 1991). -

Hansen et al. (2001) used a hybrid decision tree to classify habitat units. They wrote that this
approach allowed them to- incorporate different data types in the data analysis. Decision trees are
non-parametric and hence make no assﬁmptions about the distribution of the data (Quinn and
Keough, 2002). Because decision trees attempt to predict each data point exactly, they avoid the
need to characterise the model fit (Guisan and Zimmermann, 2000). Such trees have been found to
generate almost as many terminal nedes as there are observations, and to' therefore not offer any
modelling parsimony. Pruning and cross-validation have typically been used to find an “optimal”
balance between the number of terminal nodes and the predictive power (Guisan and Zimmefmann,

£2000).

2.3.3 Model refinement

Once an initial statistical model has been generated, researchers have typically reduced the number
of explanatory variables to a “reasohable” number, in order to enhance the model's accuracy and
predictive power. Researchers have'done this either arbitrarily, automatically by the statistical
programs, by methods such as stepwise procedures, by following physiological principles or by -
following shrinkage rules (Guisan and Zimmermann, 2000). Guisan and Zimmermann suggested
that the number of explanatory variables should not exceed 10. A‘priori decisions about which
parameters to include in the model have been found to be useful in studies of rare epecies, with
small numbers of “present” data poinfs (Gibson et al.; 2004). For large datasets, it has been
considered more appropriate to allow the statistical results determine the choice of datasets to be

incorporated, using stepwise procedures (sensu Glenz et al., 1999; Debinski et al., 1999).
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2.3.4 Testing validity

- The most common method for assessing the performance of a statistical model has been to réport
the overall percentage of correct predictions (Sieg and Becker, 1990; Raphael et al., 1995; Debinski
et al., 1999); ‘Some researchers have tested model performance by cross-validation (Sieg and
Becker, 1990). However, it has been argued that cross-validation provides an overly optimistic
assessment of the predictive power of the model (Fielding and Bell, 1997, Guisan and

Zimmermann, 2000).

Blackard and Dean (1999) and Guisan and Zimmermann (2000) arguevd that the optimal method for
| validating a model is to test it on independently collected data. This approach has only been -
possible in situations where independent datasets were available (Lauver et al., 2002). Guisan and
Zimmermann suggested that where a single, large dataset is available, splitting that sét into training
and testing groups is appropriate. This approach was taken by Blackard and Dean (1999) and Manel
‘et al. (2000). Fielding and Bell suggested that splitting a dataset into training and test sets can cause
problems if the original data set is small. This has been a particular problem for studies of rare or

cryptic species, with few positive records (e.g. Gibson et al., 2004).

2.4 Snow accumulation modelling

2.41 Snow transport mebhanisms

Snow drift is an impoftant-element in mass-bélancing processes in polar and alpine environments
because of its potential to move large volum'eé of ‘snow during -strong surface wind events (Kind,
1986; Greene et al., 1999; Bintanja et al., 2001; Doorschot et al., 2004). Snow enters the

" environment as precipitation, which is not distributed uniférmly across the landscape when it occurs

in windy conditions. (Kind, 1986). Precipitation tends to accumulate on leeward slopes, but this

process is poorly understood and rarely incorporated in models of snoW accumulation (Lehning et

al., 2000).

It is generally understood that snow is ablated from windward surfaces, and deposited in low-
velocity zones, such as in the lee of topographic features . (Evans et al., 1989; Ishikawa and
“Sawagaki, 2001; Haehnel et al., 2001). Wind speeds increase on windward and convex slopes, and

decrease on leeward and concave slopes (Liston and Sturm, 1998). Exposed areas, such as ridges,
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may be almost snow-free, while gentle slopes may show é. uniform snow distribution (Jaedicke et
al,, 2000). Deep snowdrifts occur where the areas of ablation are larger than .the areas of
accumulation (Liston and Sturm, 1998). It has been argued that topography is a crucial driver of
snow accumulation patterﬁs be.cause changes in wind direction are more important than changes in
wind speed in detérmining snow deposition (Liston and Sturm, 1998). It has also been found that
the heaviest snow dﬁﬁ events occur during periods of roughly constant strong winds, and that short

but strong blasts do not produce signiﬁcaht snow drift (Michaux et al., 2002).

The dominant snow transport methods are saltation and turbulent suspehsion (Kind, 1986; Liston
and Sturm, 1998). Creep (the gradual down-slope movement of cfystals) also shifts snow, but it is
rarely incorporated in flux modelling because of its very small contribution to total flux (Uematsu et
al., 1991; Jaedicke et al., 2000). Saltation is the motion of snow crystals ibo'unciv,ng in a flow-layer
several centimetres above the snow layer (Kind, 1976; Kind, .1986; Pomeroy et al., 1997; Lehning
et al., 2000; .Whittow, 2000). Saltation occurs when the wind produces a shear stress that exceeds
the amount of stress needed to shatter the bonds of snow surface crystals. It is considered to be
responsible for up to 25% of annual snow transport; with the proportion dropping as wind speed
increases (Pomeroy et al., 1997; Haehnel et al. 2001). Once snow is moving by saltation, it is
available to become suspended in the zone of turbulent flow (Kind, 1976; Kind, 1986; Pomeroy et
al., 1997; Lehning et al., 2000). The term turbulent flow describes the net forward movement of air
in an irregular, eddying flow, and it stretches tens of metres above the snow surface (Whittow,

- 2000; Pomeroy et al., 1997).

In addition to snow being redistributed, a significant amount is lost through sublimation. This is the
conversion of ice crystals to vapour (Pomeroy et al., 1997). In one study in the Arctic, sublimation |
losses were calculated at 9-22% of the winter precipitation, with sublimation accounting for up to

half the winter precipitation falling on windward slopes (Liston and Sturm, 1998).

2.4.2 Why snow accumulation is modelled

Accurate models of sndw accumulation are needed for many applicatiohs. These include water-
catchment management (Greene et al., 1999; Daly et al., 2000; Walter et al., 2004), avalanche threat
abatement (Greene et al., 1999; Lehning et al., 2000; Doorschot et al., 2004), infrastructure
planning and méintenance (Kind, 1976; Purves et al., 1998; Jaedicke et al., 2000; Haehnel et al.,
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| 2001), ecological studies (Evans et al., 1989, Greene et al., 1999; Ishigawa and Sawagaki, 2001)

and management of recreational sites such as rock climbing areas and ski runs (Purves et al., 1998).

- 2.4.3 Available snow accumulation models

Snow accumulation models vary in both complexity and accuracy, depending on the available input
data and required results. Most of the early models operated in two dimensions (Greene et al.,
1999), and were designed to predict the evolution of snowdrifts and the distribution of snow along
the line of the prevailing wind direction (Liston and Sturm, 1998). Attempts to take into account. the
three-dimensional spatial variability of snow accumulation patterns are more recent (Daly et al.,
2000). One »method of classifying models is into those that attempt to provide numerical snow
depths (e.g. Pomeroy et al., 1997; Greene et al., 1999; Lehning et al., 2000); and those that provide

- arelative map of snow distribution (e.g. Purves et al., 1998; Ishigawa and Sawagaki, 2001).

Attempts to model snow accumulation are complicated by the challenges involved in measuring
precipitétion and snow ﬂux. These challenges include disturbing ihﬂuences such as low
temperatures, high humidity, riming and the difficulty of dist_inguishing fresh precipitét_ion from
drifting snow (Doorschot et al., 2004). Attempts to measure snow flux have used pulse-counting
sensors, mechanical traps, acoustic and optic sensors (Bintanja et al., 2001; Doorschot e_t-al., 2004).
These measurement difficulties are reflected in the fact that the Australian Bureau of Meteorology

does not record precipifation at its Antarctic weather stations (AADC, 2006).

A criticism of many snow accumulation models, such as those described in Pomero‘y et al. (1997)
and Lehning et al. (2000) has been that they are too complicated for easy assimilation into models
such as those used for hydrological management (Walter et al., 2004). There have been attempts in
recent years to develop relatively simple snow-distribution models, because of concern that the
earlier, rﬁechanistic models were overly complex (Walter et al., 2004). These s'impler models
typically set a constant value for variables such as snow density and threshold shear velocity,

“despite the spatial variability of these values (Liston and Sturm, 1998).

-Another problem with these physically detailed models is their intensive input requiréments. Many
of the available models require automatic weather stations to be distributed through the study area
(Jaedicke et al., 2000; Daly et al., 2000; Lehning et al.; 2004). These requirements are greatest for

models designed to cover large expanses of spatially variable terrain, across which the major inpuf
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parameters (typically solar radiation, wind speed, air temperature, humidity and precipitation) are

likely to vary significantly (Daly et al., 2000).

In addition to the meteorologicél inputs, models typically require an initial snow cover layer.
Researchers have used a variety of methods to assess the initial snow cover. These include using
radar to measure snow depth (Jaedicke et al., 2000) and manually measuring snow depths along
transects (Evans et al., 1989). Such approaches are inappropriate for modelling historic snow cover,

or for modelling snow cover in areas:that are not readily accessible.

Some of the most prominent snow accumulation models are briefly described here. The Prairie
Blowing Snow Model (Pomeroy et al., 1993) was physically based and was found to predict snow
accumulation to within 10% of observed snow depths. However, its complexity and data
requirements meant that its use was restricted to areas with major cl.imato,logical stations, and is
hence unsuitable for polar environments (Pomeroy et al., 1997). The Distributed Blowing Snow
Model was developed for Arctic conditions from the Prairie Blowing Snow Model. This model
divided the terrain into homogeneous landscape elements, based on vegetation, terrain, exposure
and fetch characteristics. Meteoroiogical observations were used to model the snow transportatibn
processes (Pomeroy et al., 1997). Such an approach ignores the continuous nature of landscape
variables, and is considered to be not suitable for adaptation to fine-scale applications such as this

study.

Another model, SnowPack (Lehning et al., 2000; Doorschbt et al., 2004) was designed for
avalanche prediction. Its focus is on modelling the stability of the snow-pack and it therefore
required input data related to crystal structure of the snow pack. The model was designed for steep
alpine environments, and 'reqﬁired input from a network of about 100 weather stations in the Swiss
Alps (Lehning et al., 2004). In steep terrain, there is also the potential to use remotely triggered
cameras to measure changes in snow.‘distribution, which can then be bused as inputs for the

development of a statisﬁcal model (e.'g. Tappeiner et al., 2001).

Daly et al. (2000) used spatially explicit temperatufe-index, precipitation and snow maps to specify
initial snow conditions, before running their model through- multiple time steps. Although the
authors described this model as “simple” (p. 3269) it relied on 97 air temperature sensors and 287

snow gauges reporting hourly measurements.
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The SnowTran-3D-model (Liston and Sturm, 1998; Greene et al,, 1999) attempted to model three-
dimensional snow movement for treeless terrain in the Alaskan Arctic. It was designed to help with
. water resource management and has been adapted for integration with a GIS (Haehnel et al., 2001).
This model accounted for transport variations resulting from acceleratlng and decelerating flow,
using solar radiation, precipitation, wind speed and d1lrect10n, air temperature, humidity, topography
and vegetation snow-holding. capacity. It has been argued that SnowTran is only suitable for areas
with gentle terrain (Lehning et al., 2000) because it assumes that the wind direction is not affected

by the topography.
Scale

One of the principle constraints on snow accumulation modelling is its demand for computational
power. Thus, attempts at snow modelling are typically limited in spatial and temporal scale scales
(Hégeli and McClung, 2000). Problems associated with scale are common with snow accumulation-
models. These include the inability of regular meteorological measurements to capture fine-scale
processes such as snow drift; the inability of snow profile measurements to capture spatial

variability and contradictions between input and output scales.

Temporal and spat1al scales can be defined as a comb1nat1on of extent and resolution (Greenberg et
. al,, 2002). ). The temporal extent has typically been one season. Models designed to cover large
extents have had commensurately large resolutions — up to 4km” and time-steps up to one month
(Evans et al., 1989; Daly et al., 2000; Orndorff and Van Hoesen, 2001). Studies with smaller
extents have generally also had finer resolutions — e.g. Greene et al. (1999) used cells of 30x30m,
and some models have operated at time-'steps as small as one to three hour time-steps (Daly et al.,
2000; Haehnel et al., 2001). Liston and Sturm (l998) wrote that more detailed DEMs can resolve
more landscape features, finer temporal scales for weather data can better capture short-term
weather events and more detailed wind models can improve the accuracy of the model. However,
the trade-off is in greater computational complexity. Naaim et al.. (1998) wrote that numerical
modelling of wind fields over complex terrain was computationally intensive and warned that

boundaries must be carefully chosen.
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2.4.4 Commonly used physical inputs

Wind F low Field -

prography alters the speed and direction of the ;Nind flow (Liston and Sturm, 1998; Lehning et al.,
2000). Therefore, a robust wind field model has been. considered to be an imponént part of many
snow accumulation models (Purves et al., 1998; Liston and Sturm, 1998; Haehnel et al., 2001;
Walter et al., 2005). Most of the available algorithms to measure this aré based on the slope and
aspect of cells. In contrast, Liston and Sturm (1998) elected nof to model a wind field becausc» their
model was designed for relatively gentle terrain, and excluding a wind field model reduced

computational expense.
Wind Shear Stress

The wind speed required to shift snow is dependent on factors such as the age and density of the
snow and the temperature and humidity of the air (Doorschot et al., 2004). However, some
snowdrift models have uséd a constant value for this threshold (Purves et al., 1998; Greene et al.,
1999). Once the wind shear stress exceeds the threshold, snow begins to move. Modelled wind
shear velocity has generally been calculated from the wind flow field and the surface roughneés
(Liston and Sturm, 1998; Haehnel et a.l., 2001) and may also take into account the air and snow
density (Jaedicke et al., 2000). Liston and Sturm (1998) argued that the threshold changes véry_
slowly in low temperatures, and that a constant value is suitable for environments Such as the winfer
Arctic. They found that attempts to introduce more complex and realistic shear thresholds did not

improve the results of their model.

" A few models have included no measure of wind shear (Tappeiner et al., 2001; Purves et al., 1998;
Orndorff and Van Hoesen, 2001). Tappeiner et al (2001) and Orndorff and Van Hoesen (2001)
attempted to explain snow accumulation based on terrain characteristics rather than on weather

inputs.
Saltation and Suspension

Most models have t‘aken» into account at least a single measure of snow transport through saltation
and suspension (e.g. Liston and Sturm, 1998; Haehnel et al., 2001; Walter et al., 2004). Many of the

authors used similar algorithms to calculate these factors, and the treatment outlined by Liston and
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Sturm (1998) has been followed by others (e.g. Haehnel et al., 2001; Walter et al., 2004; Parajka et
al., 2005). '

The availability of snow for drifting is largely density dependent. Some models operated on the
assuniption that old snow is too dense to be easily transpoited, and that only fresh snow is available
for transport (Walter et al., 2004). Purves et al. (1998) argued that during melting periods, no drift
would occur, apart from that of pfecipitating snow. They argued tiiat if a melt-freeze cyclé occurs
without. snow falling during the freeze period; it could be .assumed the shear velocity would be so

high as to prevent any erosion.
Sublimation

Sublimation is the evapbration of snow to water vapour (Whittow, 2000). The relative importance
of sublimation in snow dynamics.is driven by factors such as temperature and wind speed, with the
sublimation rate increasing as temperatures and wind speeds rise (Pomeroy et al., 1997; Liston and
Sturm, 1998). Sublimation calculations require information on the size of the snow crystals

(Pomeroy et al., 1993).
Precipitation

Precipitation was a key input for most snow accumulation models (Purves et al., 1998; Lehning et
al., 1999; Daly et al., 2000; Orndorff and Van Hoesen, 2001; Tappeiner et al., 2001). However, in
polar environments, precipitation may be a less important source of snow than accumulation by

horizontal transport (Liston and Sturm, 1998; Seppelt and Connell, 2005).
Initial snow layer

Various methods have been used to produce the initial snow cover inputs for snow models. Purves
et al. (1998) initialised their model ‘with a uniform layei o‘f snow over the entire study. area. Other
approaches have included measurements the snow depth along transects either manually or by using
radar (Jaedicke et al 2000) Ishikawa and Sawagaki (2001) used a fine scale (2m) DEM, and used

a pit-filling algorithm to 51mu1ate concave areas filling with snow.
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3 Chapter 3: Data and Methods

3.1 -_.3..1 Study areas
3.1.1 Windmill Is

The Windmill Is are the islands and coastline covering an area of about 75-80km® around Casey
(66°17'S, 110°32'E) Wilkes Land, East Antarctica (Fig. 3.1). They comprise four large peninsulas
and more than 30 islands (_Murray and Luders, 1990; Kirkup et al., 2002). During summer, the
Windmill Is contain the only extensive areas bf snow-free land for about 800km of coast around -

Casey (Murray and Luders, 1990; Kent et al., 1998).

The Windmill Is contain extant penguin colonies on fourféen islands and peninsulas. The region's - '
~ total population was estimated at 93 092 £9300 pairs in 1990 (Woehler ét al., 1991). Historicall_‘y,
~ colonies have also existed in other parts .of the region, such as the Bail’ey. Peninsula (Emslie énd
Woehler, 2005). Colonies have been monitored on Shirley I, Whitney Pt, Blakeney Pt, the Frazier
Is, Odbert 1, Ardery I and Peterson I during the périod of human habitation. |

v3.1 2. Geology'

The geology of the northem Windmill Is is dorhinated by metamorphic rocks, in particular schist,
gneiss and migmatite (Orton, 1963; Murray and Luders, 1990; Kirkup et al., 2002). At some point
during the late Pleistocene-early Holdcene, the' entire Windmill Is area was glaciated, and has
subsequently been subject to fluctuating sea levels (Kirkup et al., 2002). Shirley Is and Whitney Pt |
are topogrziphically characterised by gentle, rocky outcrops, with a maxim'um elevation of
-approximately 30m MSL. The Windmill Is are located to the west of Law Dome, but the inland
topography deflects the katabatic winds away from the immediate area (Murrdy and Luders, 1990).
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Fig. 3.1: Location of the study sites.
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3.1.3 Weather

The weather around Casey is frigid-Antarctic (Mel_ick et al., 1994). Weather observations between
1989 and 2004 showed that in the warmest month, January, the mean daily maximum temperature
was 2.1°C and the mean minimum was -2.6°C. October was the coldest month of the breeding
season and also the time when Adélie penguins arrived at the colonies. During October, the mean
daily temperature range was -15.3°C to -8.3°C. The area had a modelled mean annual snowfall of
224.6mm (snow water equivalent) (Bureau of Meteorology, 2004). Between 1996 and 2006,
monthly meen wind directions ranged between 92.3° and 186.1°, with the prevailing winds coming
from ESE. During the Adélie penguin breeding seasons in this decade, the mean wind speed was
12.64 knots, with a mean monthly maximum wind gust of 65.06 knots. During that decade,
breeding seasons had a mean 32.5 days in which winds exceeded gale force (37kts) (AADC, 2006).

3.1.4 Human histdry

Humans have visited and occupied the Windmill Is since the USA Navy's Operation Windmill in
1947-48. The USA established the Wilkes research station (66°15.4'S, 110°31.5'E) in 1957. The
Wilkes base was handed over to the Australian government in 1960. The Australians inhabited
Wilkes until 1969, when they shifted to the Casey Tunnel (66°16.7'S, 110°31.5E), which is located
between the current Casey eite (66°15.9'S, 1_10°31.8'E) and the coast. In 1989, the station was
shifted to its current site (Woehler et al., 1991; Bureau of Meteorelogy, 2006). Personnel in both the
Australiaﬁ and American programs undertook scientific research at both Shirley I and Whitney Pt
(e.g. Penney, 1968; Kent et al., 1998; Woehler et.al., 1994). In 2005/06, Casey hodsed 53-60

personnel durihg summer, and 20 during winter.

3.1.5 Shirley |

Shirley I (66°17'S, 110°29'E) lies about 750m west of Casey, across a 100m-wide channel that is
blocked with sea-ice for part of the year. In the 2005/06 summer, the island contained 46 extant
Adélie penguin colonies and 22 relic coldnies (E.J. Woehler, unpub. data). When Adélie penguins
~ were first counted there in 1968/69, the island was inhabited by approximately 7100 breeding pairs
(Woehler et al., 1994). By 2005/06, this had increased to about 11, 000 breeding pairs, an increase
of 54.9% (E.J. Woehler, unpub. data), |
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During the 2005/06 breeding season, nine pairs of 'south polar skuas (C. maccormicki) were
breeding on the _island (P.K. Bricher, unpub. data), along with an unknown number of .Wilson’s
storm-petrels (Oceanites bceanicus) and snow petrels (Pagodroma nivea).. The .island is frequently
visited by Weddell seals (Leptonychotes weddellii) and occasionally by male southern elephant
seals (Mirounga leonina). Leopard seals (Hydrurga leptonyx) patrol the seas around the island,
especially during February when the fledged penguin chicks depart for sea. Station personnel have
regularly visited the island since Wilkes.was established. It is within Casey's extended station limits
when the sea ice in the Shirley Channel is safe to cross on foot. This makes it is a popular
destination for station personnel during early summer (Woehler et al., 1994; E.J. Woehler, unpub.

data). Once the sea-ice has broken out, it is less frequently visited by groups using boats.

In 1963/64, the Adélie penguin population of the island was estimated at 3000 breédin’g pairs.
Formal counts on the island began in 1968 and were conducted on five occasions between 1968 and
1977. The counts lapsed until 1989, apart from a partial count in 1984. Between 1989 and 2005,
counts were conducted in 13 years. Most of the studies of penguins and other species on Shirley I
“have been non-invasive, and relied on observations and samples collected from outside the colonies
(e.g. Woehler et al., 1991; Woehler et al., 1994; Petz, 1997; McRae et al., l999§ Emslie and
Woehler, 2005). However there are some exceptions to this. In 1968, 140 adult Adélie penguins *
were banded (Murray and Luders, 1990). In 1992, researchers investigating Adélie penguin diet
marked 46 breeding adult pairs, and temporarily banded the flippers of their chicks. The stomachs
of 52 adult'birds were flushed using the wéter-ﬂushing technique, and 92 chické were flipper-
banded (Robertson et al., 1994; Kent et al., 1998). A totAa_l of 26 birds were fitted with satellite
trackers in two studies during the summers of 1995/96 and 1996/97 (Ketry et al., 1997; Wienecke et
al., 2000). | | | |

3.1.6 Whitney Pt

Whitney Pt (66° 15'S; 110° 32'E) is one of two mainland Adélié penguin breeding localities in the _
Windmill Islands. It is pért of the Clark Peninsula that was designated as a Site of Special Scientific
Interest in 1985. In 1996, the Clark Peninsula SSSI was redesignated Antarctic Specially Protected
Area No. 136 (AAD, 2006). The site was considered to be of particular value because it is largely
undisturbed and supports one of Antarctica’s most extensive and best-developed plant communities.

The Adélie penguin population in the 'ASPA was considered to be significant and relatively
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undisturbed, and so was listed among the values to be protecte({. The Australian Antarctic Division
(2006) stated that these populations provide valuable éomparafive data for human impacts at Shirley
- L. Under the rules of the ASPA, access to the site is restricted by a permit system. Permits are only
issued for scientific research or for essential management purposes consiétent -with the site's
management plan. Typically, permits to conduct seabird surveys are only issued for two people at a

time to enter the ASPA.

In the summer of 2005/06, Whitney Pt was occupied by 43 colonies of Adélie penguins, and
contained a further 4 relic colonies (E.J. Woehler, unpub. data). It is also inhabited by breeding
South polar skuas (10 pairs in 2005/06 (P.K. Bricher, unpub. data), at least three pairs of snow

petrels and approximately 10-20 pairs of Wilsons storm-petrels.

Adélie penguins were ﬁrst counted at Whitney Pt in 1959/60, when the population comprised
approximately 1100 breeding pairs in 14 colonies (Penney, 1968). By 1983/84, this had increased to '
4199 pairs in 28 colonies. Five of the new colonies were locétéd on relic sites as identified by

Penney (1968). During this peﬁod, the eight colonies at the western end increased in population by

33% and four new. colonies were established, bringing the total population increase in that area to

58%. In contrast, at the eastern end of the point_, 11 new colonies were established and the

population increased by 519% (Martin et al., 1990; Woehler et al., 1991). By the summer of
2005/06, the total breeding population at Whitney Pt was 8790 — an increase of 699% since 1959/60 -
.(E.J' . Woehler, unpub. data.). '

Whitney Pt is approximately 500m from the “Wilkes Hilton” - the radio hut for Wilkes, and now a
popular field hut for expeditioners at Casey. Since the SSSI declaration; éccess to Whitney Pt has
been limited to scientists conducting Adélie"penguin counts and botanical studies. Before that, it
was open to visitation by station personnel. In the summers of 1959/60 and 1960/61, Penney (1968)
lived in a small hut (known as “The.Wannigan”) near colony IV, observing penguin behaviour. In
Penney's study, 1528 adults, 66 juveniles a.nd 217 chicks were banded with aluminium flipper-

bands, and 25 birds were dissected. Nest locations in .colonies [-VI were marked with welding rods.

In 1964, a further 100 chicks were banded (Murray and Luders, 1990).
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- 3.2 Data sets '

3.2.1 Adélie penguin counts

Adélie penguin count data were available for the colonies at Whitney Pt for 22 seasons between
1959/60 and 2005/06, and for the Shirley I colonies for 18 seasons between 1968/69 and 2005/06.
" The number of breeding pairs was generally counted between 25 November and 5 December each
summer, when the females had laid their eggs and departed to sea, leaving the male to incﬁbate the -
eggs. In a number of years, bad weather delayed the counts, and in these years the counts were

conducted as soon after the planned dates as weather permitted.

'Penguins were counted using manual tally counters, while standing outside the colonies. In most
years, two people conducted the Whitney Pt count and three people conducted the Shirley I count.
Each colony was counted up to six times, and a mean of those counts calculated. To avoid bias in

the counting, repeat counts of an individual colony were not conducted consecutively.
3.2.2 Adélie penguin colony maps

In February 2006, the Adélie penguin colonies at Shirley I and Whitney Pt were niapped using a
‘Trimble Pro XH differential GPS (P.K. Bricher, unpub. data). The extents of currently occupied :
(extant) and abandoned colonies were mapped. The current perimeter was determined by the extent
of fresh guano. By February, the neatly defined pebble neéts seen at the start of the breeding season
were scattered, and hence could not be used to detefrnine the colony extent. Guano-covered areas
that were obviously p.athways to and from the colonies were excluded. The historic perimeters were
determined by the area covered by pebbles of a suitable size for nest building (Emslie and Woehler,
2005). This criterion meant that areas of bare rock, similar to those seen fo be occupied by nesting
birds in extant colonies, were excluded. Only those areas with clear evidence of past occupation

were mapped (Fig.. 3.2).

Observations on the ground suggested that the position of these perimeters could be reliably
identified to approximately +0.5 m. In many locations, the Vposition was more preéisely located, but
an error margin of £0.5 m was considered conservative and was used here. For Whitney Pt, the GPS

had a mean horizontal accuracy of £0.49 m. For Shirley I, the horizontal accuracy was +0.69 m.

The mapping was conducted at a time selected to minimise disturbance to nesting birds. In late
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February, the chicks had fledged and departed, and most adult birds were feeding at sea. Up to two
birds were still within the boundaries of some colonies. If birds were sitting near the colony

perimeter, mapping of that colony was delayed until the birds had moved away.

All mapping for this project was conducted in UTM WGS 84, zone 498S.
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Fig. 3.2 Adélie penguin colony maps for Shirley I and Whitney Pt.




Chdpter 3: Data and Methods
3.2.3 Ethics approval and permits |

All fieldwork for this study was conducted as part of Australian Antarctic Science Project 1219.
The chief investigator was Dr Eric Woehler. Permit number 05/06-1219 authorised the following;:
(i) while on foot, disturb |
(a) a concentration of birds, or
(b) a bird that is breeding or moulting;

~ (ii))  enteran Antarctic Specially Protected Area

Ethics approval was granted by the University of Tasmania Animal Ethics Committee, under

Animal Use Permit No A0008581.
3.2.4 Aerial photographs

‘The Australiah Antarcti¢ Division has acquired aerial photographs of Shirley I and Whitney Pt on a
number of occasions. Photographs were taken of Whithey Pt in 1990, 1994 and 2003. The 2003
aerial photographs were used for the creation of a fine-scale. Digital Elevation Model (DEM). The
photographs were taken using a Zeiss UMK 1318 photogrammetric camera, from a height of
approxirnately 828 m ASL, with a focal length of 100mm. These photographs showed Whitney Pt
in a stereo-pair of photographs, but the photographs were taken shortly after a snowfall event that
covered the entire site in a thin layer of snow (AADC, 2003). The snow cover limited the precision
of the DEM that could be created because of the difficulty of identifying ground control points and
in 1dent1fy1ng surface heights (Fig. 3.3).

The 1990 photographs, taken with a Linhof photogrammetric camera, did not include stereo-pairs.
They were hence inappropriate for extracting height data. These photographs show.ed areas of snow
~and ice in December 1990. The snow cover in these photographs corresporided with observations at
Whitney Pt during December 2005 (P.K. Bricher, unpub. data). As 2005/06 was considered a high-
melt summer, it was considered that these areas represented permanent snow and ice, and were
~ therefore considered to he unsuitable for Adélie penguin habitat. The Linhof photographs covered
all of Whitney Pt except for a small area, approximately 20 x 30 m in the northeast (AADC, 1990)

Therefore, permanent snow cover could not be mapped for this area (Fig. 3.4). .
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Fig. 3.3: Orthophoto of the aerial photographs of Whitney Pt, used for photogrammetry (AADC,
2003; Anders, 2005).

Fig. 3.4: Aerial photographs of Whitney Pt used for mapping permanent snow cover (AADC, 1990)
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The 1994 photographs were taken with a Zeiss UMK 1318 photogrammetric camera. Two sets of
photographs were taken at heights of approxifnately 500m ASL and 3000m ASL. The 500m altitude
: photograi)hs were. overexposed and covered in snow (AADC, 1994). They were thus considered
unsuitable for DEM creation. The combination of altitude and snow-cover in the photographs taken

from 3000m ASL meant they contained less precise height data than the 2003 photographs.

Aerial phbtographs were taken of Shirley I in 1994, 2001 and 2003. The photographs taken in
January 2001 were used for the creation of a photogrammetric DEM with cells 4 m’. T.hey were .
taken with a Wild RC8 camera, at an approximate height of 750m and a focal length of 210mm. 10
stereo-pairs of photographs covered the whole island. Similar to the 1990 images of Whitney Pt,
these photographs showed the areas of permanent snow cover that were considered unsuitable for
Adélie pe’ngﬁin nest-sites (Fig. 3.5). The snow cover in these images corresponded with
observations in January 2006 (P.K. Bricher,.unpub. data). However, the relatively high number of

photographs covering the island made the DEM construction complex.

The 1994 photographs were taken using the same camera and aircraft as those used for the 1994
Whitney Pt mission. These photographs had the same problems with snow and over-exposure as
- outlined above for Whitney Pt. The 2003 images were taken during the same mission as the 2003
photographs of Whitney Pt, and showed a light snow cover over the entire island. These images
could be used to construct a DEM, but the 2001 photographs Were considered to be more suitable

because of the low altitude, long focal length and minimal snow cover.
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Fig. 3.5: Orthophoto of aerial photographs of Shirley I (AADC, 2001; Anders, 2006).
3.2.5 Digital elevation models

For the present study, high-resolution photogrammetric DEMs were extracted from stereo-pairs of
aerial photographs of the study sites (Anders, 2005, 2006) using the software Virtuozo NT
(www.supresoft.com). For Whitney Pt, a DEM with 10x10 m cells was derived from the 2003 aerial
photographs (see section 3.2), with ground control collected using a differential GPS (Morgan,
2005). The GPS had a mean horizontal accuracy of +£0.8 m, and a mean vertical accuracy of +0.76
m. There was an additional horizontal error associated with the identification of the ground control
points estimated at +5m. The large size of this error was caused by difficulty in identifying the
ground control points due to the extensive snow cover in the aerial photographs. Positional errors
were greatest in the areas covered by snow. For areas of exposed rock, the vertical accuracy was

+2m, and the DEM's overall positional accuracy was 6.59 m £0.58 s.d. (Anders, 2005).

From this DEM, a Topogrid interpolation was used to generate a DEM with 2x2 m cells (Fig. 3.6: Lucieer,
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2005a). Topogrid uses an iterative finite difference interpolation method, and is effectively a
discretised thin-plate spline technique, where the roughness penalty has been modified to allow the
fitted DEM to follow abrupt changes in terrain, like streams and ridges (ESRI, 1999). Spline
interpolations are considered to be hy(._iro_graphically sound, but one of their limitations is that errors
cannot be quantified. Splines maintain small-scale features better than other interpolation methods,
such as trend surfaces and weighted averages but there is concern that they may produce an

‘unnaturally smooth surface (Burrough and McDonnell, 2000).

The Shirley I DEM was based on the 2001 photography (AAD 2001) using ground control collected
with a Trimble Pro XH differential GPS. The vertical accuracy for areas not covered by snow, ice
or Adélie penguin faeces was +2 m (90% certainty) of its true value. The surface heights for such
areas could not be accurately determined because ﬁon-texturcd surfaces cannot be viewed in stereo.
These areas were corrected for significant gross errors using a linear interpolation algorithm based
on surrounding elevation data. The errors in the faeces-covered Adélie penguin colonies are likely
to be smaller than those in the snow-cdvered areas, because of the small relative size of penguin
colonies compared to permanent snow coverage. However, as thié study was v_examiriing the terrain -
properties of Adélie penguin colonies, errors in thése areas were far more critical than errors in the

areas covered by permanent snow and ice.

The aerial photo.graphs (AADC, 2001) were of sufficiently fine resolution to allow the
identification of well-deﬁﬁed objects less than 0.5 m in diameter. The ground control points had a
mean horizontal accuracy of :!:0.68-m and a mean vertical accuracy of +£1.33 m. The large number of
stereo-models (10) needed to provide covérage of the island meant there were significant areas of
overl‘ap between the models. In‘these areas, the height values for an individual cell were calculated '
as the mean of the v'alués for that cell in each of the stereo-models. While the resulting cell heights
were still within specification for the DEM, they- resulted in artefactual “smoothing” in some of the
derived data layers. This was especially evident in the surface roughhess and curvature laye_rs (see
Chapter 4, Figs. 4.5-4.8). These artefacts did not affect the distance data layers, which were not
derived from the DEM, or the modelled snow accumulation layers, which were modelled using
5x5m cells. They appeared to have little effect on the aspect, .slope, solar radiation and wind
exposure layers. To minirﬁise the effects of these artefacts, a DEM was interpolated from the spot
~ height points of the original DEM using a sub-sample of one-third of the original data points. An
ordinéry kriging algorithm with anisotropy and a large neighbourhood was then applied to the data
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(Lucieer, 2006). The resulting DEM produced much less obvious artefacts in the curvature and
surface roughness layers. The 4 m” cell resolution was considered to be the minimum that couid
reliably be extraéted from the available photography. It was not possiblé t.o determine what effect

these residual artefacts and the +2m height error had on the analyses (Fig. 3.6).

~ For the snow accumulation models, the fine-scale DEMs of Shirley I and Whitney Pt were
resampled to 25 m? cells, and merged with a DEM of the Windmill Is, thét had 100 mzncells
(L_ﬁcieer, 2005b). This DEM was interpolated from an available DEM -of the Windmill Is with 625
m? cells using Topogrid (AADC, 1999; Lucieer, 2005b). Coastal features on these DEMs had a
claimed horizontal and vertical accuracy of d:im. However, they ‘were derived from aerial
photographs taken in several different summers, and at different dates, with varying sea-ice extents.
The aerial photographs of Shirley I taken in 2001 showed that the mapped coastline.for the island
‘was incorrect — in the photographs used for mapping Shirley I, the Shirley Channel was blocked
with sea ice. The 2001, ice-free photographs showed that about half the southern coast of Shirley Is
. and parts of the coves on the northern coast were mapped incorrectly. It is likely that the mapping

errors were concentrated around coastlines where sea ice obscured the coast.
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Fig. 3.6: Interpolated DEMs of Whitney Pt and Shirley I (Anders, 2005, 2006, Lucieer, 2005, 2006)
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3.2.6 NCEP/NCAR Weather reanalysis data

: This'study invesfigated‘ the effects of changes in modelled snow aceumulation patterns on Adélie
penguin colonies during the past fifty years. Bureau of Meteorelogy data were available for the
Windmill Islands region from 1960 onwards, but it was considered that any changes in weather
conditions were likely to have been obscured by changes in the locations'ef weather observing
equipment (N. Adarhs, pers. comm.). From 1960 until February 1969, the weather station was
located at the now-abandoned Wilkes (66 ° 15.3'S, 110° 31.5'E, 12m ASL) on the Clark Peninsula,
. near Whitney Pt. In February' 1969, the weather station was moved to the Cesey Tunnel (66°17'S,
110°32'E, 12m ASL) on Bailey Peninsula and in 1989, it was shlﬁed to Casey (66° 16.9' S 110°
- 31.8'E, 40m ASL: Bureau of Meteorology, 2006).

The NCEP/NCAR Reanalysis Project was the result of collaboration between the National Centers
for Environmental ‘Predicti-on and the National Center for Atmospheric Research. The project was
set up to rrrodel global weather data from 1948 onwards, based on the available weather
observations. It was-designed to resolve problems such as that outlined above, and variations in the
quality of weather observations. The project's authors claimed that the reanalysis data eliminated
- perceived climate jumps associated with operational data assimilation systems, though it was still
affected by changes in the observation systems (Kalnay et al., 1996; Kistler et al., 2001).

The NCEP/NCAR reanalysis ‘used observations of upper air temperature honzontal wind and
' spec1ﬁc humidity; land surface observations of surface pressure and oceanic reports of surface
pressure, temperature, horizontal winds and specific humidity. The values for surface variables,
such vas’ those ﬁsed in the current study, were calculated from a combination of direct obserVations

and the reanalysis model (Kistler et al., 2001).

Hihes et al. (2000) neted that the quality of any of the available weather reanalysis outputs is reliant
on the quantity and quality of the available data. The Southern Ocean and Antarctica have
historically contained fewer.weather reporting stations than the northern hemisphere, and Hines et
al. (2000) argued that this makes such reanalysis data increasingly important but also increases the
risk of errors because of the paucity of inpﬁt data. In additiorl, they found that the extreme weather
and often sharp topographic changes in Antarctica reduced the eccuracy of the NCEP/NCAR
results, compared with other parts of the world. They found that the data contained trends in surface

- pressure at 65°S that were not supported by available observations and warned that this could affect
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the results of studies involving changes in surface pressure. The spurious trend showed an
approximate 0.20hPa yr' over 50 years. It is unclear whether this same trend in the data is evident
at 62°S (the latitude of the current study sites) end what impact this trend may have had on the

predictions of snow accumulation patterns, which are partly determined by surface pressure data.

The NCEP/NCAR reanalysis data for the Casey region was extracted for three key periods in
1959/60, 1968/69 and 2005/06 (Kalnay, 1996). The first two periods correspond to the summers in
which the first Adélie penguin counts were conducted at Whitney Pt and Shirley I respectively, and
2005/06 with the most recent counts. The data were calculated for a grid-point located 63.14 km
north-northeast of Casey (65.7125°S, 110.625°E).

3.3 Methods
3.3.1 GIS processing methods

This study used the GIS package ArcGIS 9.0 (ESRI, 1999-2004) to create, store, manage and
display spatial data léyers. A freeware GIS package, PCRaster v2 (van Deursen et al., 2006), was
also used to generate DEM derivative. The derived layers were then exported back to ArcGIS for
further analysis. PCRaster is a dynamic modelling system that is largely used for environmental
modelling. Here it was used to develop static layers shoWing slope; drainage, solar radiation and

surface curvature.
Slope . -

Slope layers were calculated from the DEMs, based on a 3x3 cell neighbourhood. The slope was,
calculated using a third-order finite difference method. The resulting value for the central cell was
give.n as height difference (vertical distance / horizontal distance). Where a surrounding cell was
missing a height value, or the centre cell was at the edge of the DEM, a neighbourhood interpolator
.was used to fill in the missing values. This interpolator assigned each unvalued cell the mean value
of a11 existing cells in a 3x3 cell wind'ow- surrounding the cell with the missing value (vanl Deursen

et al., 2006).
Aspect

The PCRaster aspect function operates in a similar way to the slope algorithm. Each cell's aspect
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value was calculated based on the elevation of its 8 neighbours in a 3x3 cell kemel. The third-order
finite difference method was used. The résults were presented in 360 degrees, with north assigned
0/360 degrees. Where a cell in the ngighbourhood was rﬁissing a value, the neighbourhood
interpolator, described above, was used to fill in the missing values. The aspect data were only used

in decision tree analysis, for which they did not need to be converted to a linear scale.
Wetness Index

In PCRaster, the “wetness index” function éalculates the potential drainage of a cell, based on the
upstream area. This is a unitless measure as it models the shape of the land rather than actual runoff.
From the DEM, a local drain direction network was calculated, using an eight-point pour algorithm.
This created a layer describing the direction water flows from each cell to its steepest downslope
neighbour. Where a cell had two or more doWnslope neighbours of equal elevation, the drain
direction was assigned randomly. Flat areas werqdealt with by calculating flow directions from
cells at the edge of the flat area. A repair function was used to remove pits and hence ensure that the
dréin direction network was hydrologically sound. The 'decision was made to remove pits from the |
local drain direction layer; because observations of the shape of the landscape at Shirley I and
Whitney Pt suggested that any pits were most likely to be artefacts of the DEM, rather than
reflecting that actual shape of the land. From the repaifed local drain direction network, an»upstream
area value was calculated for each cell, showing the totai area of all upstream cells. The wétness

index was calculated by the following equation:

Wetness = In (ﬁpstream area/slope)
, (sensg Burrough'and McDonngil, 2000; PCRaster, 2005).
Planar and Profile Curvature

Planar (also known as planform) and profile curvature were calculated for eaéh cell, using the
elevation of neighbouring cells in a 3x3' cell neighbourhood. Planar curvature is a unitlesé measure
of the change in slope per distance in horizontal direction, in the direction of thg slope (such as that
shown by contour lines), where concave slopes (gullies) are négative and convex slopes are
poéitive. Profile curvature is a measure of the shape of the profile of the slope. Positive values occur

at sites where the steepness of the slope is increasing such as the tops of hills (convex slopes).
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Negative values occur where the steepness of the slope is decreasing, such as at the base of hills

' (concave slopes).
Solar Radiation

The PCRaster-based solar radiation model, PotRad (van Dam, 2001), was used to calculate the solar
radiation in MJ/m2 for each grid cell, based on the DEM and the latitude of the study sites. The
model worked in hourly ﬁme-steps, over a year. It did not take into account weather conditions,
such as cloud cover, which would reduce the amount of solar radiation. It was thus a measure of
maximum potential solar radiation, rather than actual radiation. The lack of weather input was not
éonsidéred significant as cloud cover over each study site was likely be largely homogeneous and

any variation in cloud cover over the study sites was likely to be random.
Surface Roughness

Using ArcGIS, surface roughness was measured by calculating‘the standard deviation of the
elevation of cells in a 3x3 cell neighbourhood. Standard deViation was selected as the measure of
roughness, as it was less sensitive to the effects of a single outlying value than other measures, such
as range. As surface roughness is correlated with slope, a normalised surface roughness layer was
calculated by dividing the surface roughness value of a cell by its slope value. Both the standard

.deviation and normalised values of surface roughness were incorporated in the statistical analyses.
Adjacency

A data layer was prbduced showing whether adjacent cells contained Adélie penguin nests. This '
was done’byv calculating the mean of a 3x3 céll neighbourhood from a binarsl penguin colony
presence/absenée layer, where cells that contained Adélie pengliin nests were given a value of 1,
and cells without colonies were given a value of zero. This layer was used to exclude the edge cells
~of colonies from the analysis of all the landscape parameters. Only cells with a mean value of 1
(presence) were incorporated in the analysis. This was done to ensure that the cells used- in the
analysis actually represented sites that contained Adélie penguins. The precision of the colony maps
was ﬂ:l m and excluding the edge cells from the analysis minimised the chance of incorrectly

labelling cells as containing penguin nests.
Wind Exposure
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The wind exposure layer was based on the prevailing winds for the breeding season as shown in the
NCEP/NCAR weather reanalysis data. Wind roses were constructed based on the three-hourly
averages for 15" October 1959 - 31 January 1960, 15™ October 1968 - 31 January 1969 and 15"
‘October 2005 - 31% January 2006, using the program Grapher 6 (Golden Soﬁwafe, 2005). These
~dates were selected to reflect the peﬁod between the approximate arrival dates for breeding birds
and the time when chicks reach the créche stage, and are capable of some limited movement to
avoid serious effécts from climatic conditions. The data showed that the majority of wind speeds

* came from east-southeast. It appeared that alnyb changes in prevailing wind

greater than 10m™
direction between the examined time periodé were within the annual variability and were hence not

considered to be significant (Neil Adams, pers. comm.)

A hillshade rriodelv was created from the DEMs, using the wind roses to set the prevailing wind
direction. A hillshade model has traditionally been used to model light and shadow baéed on an
illumination source at.a set direction and azimuth (ESRI, 1999)'. In the present study it was used to
model exposure to the wind, with the direction set at 122°, -and the azimuth at 5° to imitate wind
travelling just above the ground's surface, following the approaéh of Patterson et al. (2003). This
layer could be used as a 'surrdgate for three things — exposure to prévailihg winds, snow
accumulation (sensu Patterson et al., 2003) and on Shirley I, for exposure to potential airborne
pollutants from Casey. In this study, it was used in the analyses of the effect of snow accumulation
on population trends of Adélie penguin coldnies, as a surrogate for wind exposure, and in the
effects of human activities on the Adélie penguin colonies on Shirley I, vas a surrogate for exposure

to potential emissions from Casey.
Snow Accumulation Model

This study used a GIS-based model fo simulate the drifting of snow in the two study areas. The
model was developed for Antarctic conditions, and thus accounted for the absence of precipitation
data and limited access to the sites (Wallace, 2005). Without direct measures of precipitation or of
the starting shpw layer, it was impossible to derive numerical results, such as snow-depths. Instead, -
the model produced a map of. relative snow acéumulation, similar to the models of Ishikawa and

-Sawagaki (2001), Omdorff and van Hoesen (2001) and Purves et al. (1998).

Due to the physical complexity of the forces that drive snow transport, models of snow

accumulation have generally involved a balance between accuracy and available resources, suchas
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input data and computational power (e.g. Liston and Sturm, 1998) Therefore, factors which Were
considered less important for a particular application have typically been excluded in order to
minimise computational éxpehse (e.g. Walter et al., 2004; Tappeiner et al., 2001). The Windmill
“Islands model accounted for wind deflection, wind speed, wind shear stresses, saltation, suspension
and snow density (Wallace, 2005). Saltation and suspension were treated as one variable, after the -
approach taken by 'Kind (1981). Commorily incorporated factors that have been excluded from this:

. model include precipitation, sublimation, vegetation and snow melt.

Wallace's model used equations developed for snow accumulation models in other parts of the

-world, but adapted for the Windmill Islands.

Wind deflection and speed are crucial to accurate modeling of snow accumulation, and ére affected
by topography. Algorithms to model deﬂect_ions in wind direction have typically been based on the
slope and aspect of the ground (Purves et al., 1998). Wallace's model used the following wind

direction equation, which was developed by Ryan (1977): |
D= 02558 sin(z(A-ej) |
Where S= slopé (%)
A= aspect of the:slope (deg)
6= initial wind direction (deg)

Wind speeds tend to increase on windward slopes, and decrease in the lee of topogfaphic features,
dropping to almost zero just below ridges (Walter et al., 2004). Wallace's model followed Liston
~and Sturm's (1998) Weighting for wind speed based on the slope and curvature of the topbgraphy,

using the followiqg formula:
R = 1.0+ yefts + Yelle
‘Where ps= Topographic'slope, scaled to be §vithin the range -0.5<u<0;5
Pe= Topograph-i'c curvature, scgied to be within the range -0.5<u<0.5

.ys = 0.6 = Positive constant to weight the effect of slope on wind speed '
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Y. = 0.4 = Positive constant to weight the effect of curvature on wind speed

Snow transport only begins when the wind shear stress (U») exceeds the threshold velocity (Us)
(Gugolj, 2005). The wind shear stress was calculated by the following formula (Liston and Sturm,
1998; Gugolj, 2005)
" Us=W, K
In(H/S;)

Where W, = Wind speed at reference height (rhs") '

K =0.41 = von Karman's constant

H, = 10 = Reference height (m)
S,=0.1= Surface roughness length (m)

H, is the reference height at which the wind speed is measured. At Casey this height was unknown,
‘but it was assumed that the measurements were taken at 10m (Wallace, 2005). The surface
roughness length was set at a value suggested by Linacre and Geerts (1999) for areas with low-

lying vegetation and few sharb valleys and peaks (Wallace, 2005).

Saltation and suspension were modelled as one variablé, using the following algorithm which was

developed by Kind (1981):

p{l U'V Us U | |
o = g7[0~25+ U ][l - UT} (m3sf'/m perpendicular to the wind direction)
s T *

Where Us = Wind shear stress ms™
Ut = Threshold velocity ms™
Us;=0.75 ms-1 = Terminal fall velocity of snow
P,= Air density (kgm™)
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P, = Snow density (kgrn'3)

g = Gravitational acceleration (ms™)

Air density was calculated by the following formula:

Po=__p .
R.(T)

Where p = Air pressure (Pa)

R=287.05 J = @Gas constant

kg.K

T = temperature (K)

Snow density is assumed to varyvvyith elevation, and following Walter et al. (2004), this was
assumed to be 80kg1n¥3 for snow at elevations above 10m ASL, and 140kgm'3 for elevations below
10m ASL. Snow density is known to vary with age, and modelling to account for this requires daily
precipitation observations, which were not available for the Windmill Islands when the model was _

developed (Waltér et al., 2004; AADC, 2006).

Gravitational acceleration was calculated according to the following formula (International

Association Qf Geodesy, 2005):
g = ge(1+Bsin’(D) — B,sin®(209)) — 3.086 x 10° H
Where @ = Latitude of the point
. H= Elevation abové sea-level (m)
g.=9.7803184 ms™ = Gravitational acceleraiion at the equator
B1 = 0.0053024 ms™ = constant

B, = 0.0000059 ms™

As the model was developed for Antarctic conditions, Wallace considered that the generally low

annual temperatures would make sublimation and snow melt of limited importance in determining
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- . snow accumulation patterns. This assumption is unlikely to hold during summer, when .

“temperatures in the Windmill Islands regularly climb above O°C, and both snowmelt and
~ sublimation are likely to be significant factors. In this study, the model was run for periods in late
winter and spring, when it was considered that Wallace's (2005) assumptions would apply, and so '

sublimation and melt were not incorporated in the model.

Vegetation in the Windmill Is consists of low-lying mosses and lichens (Seppelt and Conﬁell,
- 2005). The vegetation's snow-holding capacity is little different to the rock.that is typical of the
region. It was considered unlikely that it wbuld have a significant effect on the surface roughness,
unlike the vegetation in other parts of the world where grasses; shrubs and trees have significantly
altered snow transport patterns (e.g. Pomeroy et al., 1993; Pomeroy et al., 1997, Liston and Sturm,
1998; Daly et al., 2000; Evans et al., 1989; Haehnel et al., 2001; Tappeiner et al., 2001). It was

therefore considered appropriate to use the constant value of 0.1 'm for surface roughness.

Reliable precipitation data has rarely been collected in polar environments, due to the difficulty in
. determining the difference between fresh precipitation and blowing snow (Bureau of Meteorology, -
2006). One study in the low Arctic measured “true” precipitation in a sméll_ glade well within an
open forest (Pomeroy et al., 1997). Such natural windbreaks do not exist in the Antarctic. The
Windmill Islands have been estimated to have an annual precipitation of 175mm, but this has not
been recorded directly (Seppelt and Connell, 2005; Bureau of Meteorology, 2006). The relatively
small amount of precipitation was considered to be of limited significance in predicting snow
distribution. The NCEP/NCAR Weather Reanalysis Project does prévide models of precipitation
for Antarctica for the past fifty years (NCEP/NCAR, 2006). However, those data were not based on
actuél observations so it is difficult tb know how accurate they are. In addition, they weére not

available to Wallace (2005) when he designed the model.

Wallace (2005) tested his rﬁodel against aerial photographs of Shirley I, taken in January 2001
(AADC, 2001). He used a DEM with grid cells of 20x20m, and ran the moael over three months
leading up to the day of the photography. This test showed strohg agreement with the observed
snow distribution shown in the photographs. He suggested that in'creasing the resolution of the

DEM would imprové this match still further.

The model was applied to a merged DEM that covered the northern Windmill Islands, in order to
proVide a source for transported snow into the study areas. The 2x2m cell DEMs of Whitney Pt and
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Shirley I were resampled to 5x5rh cells using a cubic resampling algorithm. The Windmill Island
10x10m DEM was also resampled to 5x5m by cubic resampling. The DEMs were then merged to
generate a DEM that provided surroﬁnding land for snow to blow from. The DEMs were resémpled
to 5x5m cells in order to combine two models of different resolutions. The model was run for three
months leading up to 15 November in 1959, 1968 and 2005. This date was chosen as it marks the.

| peak laying period for ‘Adélie penguins and hence the time when snow cover is likely to be most
crucial. The model required daily average temperature, wind speed, wind direction and air pressure
data, were derived from the NCEP/NCAR weather reanalysis project. The model produced a data

layer showing the relative distribution of snow for that day.

Once the snow accumulation data layers had been calculated for the yéars of first and last Adélie
penguin counts, the layers for 1959 and 1968 (first .counts for Whitney Pt and Shirley I,
respectively) were subtracted from the 2005 layer. This produced layers showing the changes in
snow: accumulation. Cells wheré the snow accumulation was the same in both years were given a -
value of zero. Positive values indicated increasing snow depth and negative values decreasing snow

| depth.
Permanent Snow and Ice

The snow accumulation model simulated the short-term distribution of snow. Areas of permanent
ice and compacted snow were evident in éerial phofographs taken of the study sites in mid-summer
(AADC, 1990; 2001). These were removed from the analysis. This was done by digitising the
extent of snow visible in aerial photogfaphs of both study sites. The extent and depth of snow
patches that last through summer varies between years. Ideally, this would be measured in multiple
. years, and some form of average, maximal and minimal measures calculated. However only one set

of suitable images was available for each study site.

The 1990 aerial photographs of Whitney Pt were georeferenced to the photogrammetric DEM
(which was based on a single stereo-pair of images), with an affine transformation. Positional
discrepancies between the three photographs and the DEM were typically 1-2 m, with errors of up
to 4 m in a small area in the northwest. From the transformed photographs, a vector layer was -
created showing those areas of permanent snow. To minimise the risk of incorrectly describing
- exposed terrain as snow-covered, a conservative approach was taken to the digitising process. The

vector layer showing permanent snow cover was digitised 1 m inside the extent of the snow visible
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in the photographs. This ensured that sites that fepresent actual Adélie penguin colonies were not
incorrectly described as unsuitable. This was espeeially importaht in areas like colonies I -IV on
Whitney Pt, which are situated near the base of a ciiff, with a narrow bank of snow (about 1 m

wide) between the colonies and the cliff.

For Shirley I, an orthophoto generated from the 2001 photographs was available (Anders, 2006;
AADC, 2001). From this, Anders (2006a) generated a vector layer showing the areas of permanent
ice. As the orthophoto was directly generated from the DEM, positional errors were limited, and the

permanent snow layer was more accurate than that for Whitney Pt.
Assigning'Population Trends

Each pengum colony was assigned a population trend The count data for each colony was
“converted into percentages, with the baseline year asmgned the value of 100%. Colonies in which
the population increased after the baseline year were given Values over 100%, while those that B
decreased were given values below 100%. The bas_eliné year was typically 1959/60 for Whitney Pt
and 1968/69 for Shirley 1. For colonies that were established after those yea.rs,. the baseline year was
the bﬁrst. year in which penguins were counted at that site. The trend was based on the percentage
difference between the year of first count and 2005. This method eliminated problems caused by the
wide.disparity in population size between colonies. For_exaniple, a population decrease of 10
breeding pairs in a colony of forty has far greater si-gniﬁcance on the colony as a whole, than an
identically sized decrease in a colony vof 2000. This method reflects the compounding effect of
population decrease in a small colony, as seen in studies which found that small colonies are less

resilient to environmental stressors than larger colonies (Giese, 1996; Patterson et al., 2003).

Assigning percentage values was problematic in newly founded colonies. Such colonies exist at
~ both study sites, and typically began with a few pairs of birds, before increasing. The 100% value
reflected a small count (e.g. 10 birds), and the percentage increases were up to 27 400% (Colony L,‘
Shirley I) in 15 years. The population trends were divided into classes (Table 3.1) to eliminate this
problem. Decreasiﬁg colonies were split into moderate (50-80%) and -strong (<50%), decrease
classes. Colohies in which the population of 2005 were within 20% of the baseline count were
considered to be stable. Those in which the populations were increasing were divided into moderate
(120-150%) and strong (<150%) increases. This classification resulted in a small sample size for

those that are decreasmg moderately, but meant that each class was internally homogeneous
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incorporating only colines that exhibited similaf trends. Those colonies that have not been inhabited
during the period of human occupation in the Windmill Islands wefe classed as relic. They were
included in the analysis of vaﬁableé which are unlikely to have changed in the past 9000 years, such

as elvevationv and slope, but were excluded from the analyses of population trends.

Table 3.1: Population trend classes for Adélie penguin colonies at Whitney Pt and Shirley I

Population Trend Class Number of Colonies

: Whitney Pt| Shirley I
<50% (Strong Decrease) 1 2 15
50-80% (Moderate Decrease) 2 1 8
80-120% (Stable) 3 5 9
120-150% (Moderate Increase 4 2 2
>150% (Strong Increase) 5 23 10
Total , 33. 44

Selection of random control plots

Control cells were selected randomly from those areas of exposed rock that had no evidence of
having historically contained Adélie penguin colonies. Hawth's random sampling tool

(www.spatialecology.com) was used to generate control plots. The tool was used to select random

points — 42 pointé at Whitney Pt and 66 points on Shirley I. On these points, équare control plots
were generated which contained a r'1un'1b'er‘0f cells equivalent to the mean number of cells in a
' ~ colony at that study sites. At Whitney Pt, this number was 25 cells, and at Shirley I it was 49. Some
of the control plots overlapped with colonies or areas of permanént snow. These were then shifted
the minimum distance required to ensure that the plots represented areas of exposed rock without

Adélie penguin colonies (Fig. 3.7).
Export of colony and control data frbm,ArcGIS

The vector layer showing the extent of Adélie penguin colonies was converted to raster, and this
‘was used to set the analysis extent for the extraction of data- from all the raster data layers. A
conversion tool (Lucieer, 2005c) was used to convert the cells within the analysis extent to a
comma separatéd file for import to statistical programs. The process was repeated for the control

cells.
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Fig. 3.7: Randomly selected control plots for Shirley I and Whitney Pt.
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3.3.2 Statistical Processing Methods -

Adélie penguin distribution univariate analysis

The statistical package, .J MP 5.1 (SAS Institute, 1989-2003); was used to generate histograms and
scatterplots for all the ‘_larrdscape parameters. Visual exploration of histograms of the parameters
showed that none was rl_orrrrally distributed. Thus, parametric tests for differences were considered
to be unsuitable (Zar, 1999). Instead, Wilcoxon two-group tests for difference were used to er(plore
whether the distribution of colony values was different to the distribution of the control plot values.
When applied to two groups of data, the Wilcoxon two-group test is also known as the Mann-
Whitney Test (Zar, 1999; Dytham,. 2003). The Wilcoxon/Mann-Whitney test has been found to
have 95% of the power of the equivalent parametric t-test, when applied to a normally distributed
dataset. However, if the data are not normally distributed, as in this study, the Wilco_xon test may be
much more powerful than the t-test (Zar, 1999). The Wilcoxon test compares ranks rather than raw-

values (Dytham, 2003).

In this study, the two groups were Adélie penguin colonies, and control plots. The Wilcoxon test
was applied to each of the static landscape parameters being investigated for its ability.to explain
the presence or absence of Adélie penguin colonies. These parameters were the modelled values for
elevation, slope, solar radiation, wetness index, wind exposure, snow accumulation (2005), planar
and profile curvature and surface roughness (standard deviation and normalised). The data for

Whitney Pt and Shirley I.were examined separately.

To minimise the effect of spatral autocorrelation, the tests were conducted on both the individual
cell values and the colony/control plot mean values. Spatial autocorrelation can be defined by
Tobler's vLaw‘, which states "Everything is related to everything else, but near thing:v are more
reldted than distant things" (Tobler, 1970). Thus, the values for a single parameter for two cells
within a colony or a control plot are likely to be more similar than._values for that parameter in two
different colonies or control plots. Spatial autocorrelation can either take the form.of patehes or
gradients (Legendre, 1993). In this study, the colonies and the control plots represented clumps, |
while the landseape data layers represented gradients. Legendre (1993) noted that this phenomenon
can cause problems for statistical tests because the data violate the assumption of independence of

observations that underlies most statistical techniques. Using colony/control plot mean values in
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| this study allowed the removal of within-colony spatial autocorrelation. However, this approach
also meant that much of the variance within colonies and control plots was lost. Therefore, it was
considered appropriate to use both the individual cell values and the mean values, despite the
limitations of each approach. Between-colony spatial autocorrelation is also likely to be present, but

accounting for it was beyond the scope of this study.
Multivariate analysis of Adélie penguin distribution

Univariate tests, such as the Wilcoxon two-group test, can only measure the relationship between
the response variable and one parameter at a time. This leads to a numbér of 1imitaﬁons: first,
univariate tests cannot account for interactions between two or more parameters. which may affect
habitat suitability; second, it is possible that variables that show no mean difference may contribute
to multivariate group separation; ahd third, test statistics génerated for individual parameters cannot
account for correlations between the parameters (Flury and Riedwyl, 1988). Therefore, in this
‘study, multivariate statistical tests were needed to investigate interactions between pérameters that
~may affect habitat suitability. As noted in section 2.3.2, a wide range of multivariate statistical
models is available for prédicting species distribution, based on GIS-derived parameters (Guisan
and Zimmermann, 2000). Here, discriminant analyses and decision trees were used. The data for
Whitney Pt and Shirley I were examined separately, and eaéh test was conducted on both the values

for individual cells and on the colony mean values.
Discriminant analysis

Discriminant analysis has often been used in bird ecoiogy studies (e.g. Fraser and Patterson, 1997,
Debinski et al., 1999; Manel ét al., 1999; Patterson et al., 2003). It is used when observations from
predetermined groups are characterised by two or more parameters (Quinn and Keough, 2002). In
this study, the predetermined groups were Adélie penguin colonies (present) and control plots
(absent). Discriminant anglysis generates a linear combination of variables that maximises the
probability of correctly assigning observations to their pre-determined groups and can also be used
to predict the group-membership of test observations. It is mathematically identical to a single
factor MANOVA, and where there are only two respohse groups, it derives a single discriminant
function from a linear combination of the original variables. This function maximises the
differences between the groups, and minimises the differences within thé groups (Quinn and

Keough, 2002).
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One of the limitations of discriminant analysis is its.assumption th_at. the input data has a normal
multivariate distribution. In addition, multivariaté normality cannot be inferred from the univariate
distribution of a parameter, and it has also been argued that discriminant analysis can still be
applied in situations where the normality assumption is violated, though it may no longer be the

~ optimal test (Flury and Riedwyl, 1988; Blackard and Dean, 1999).

The éomplexity of the discriminant analysis model increases as the number of variables increases.
Here, a stepwise variable selection process was used to ensure that only those parameters that
improved the proportion of correct classifications were incorporated in the final model. First, the
data were split into training and test sets, (see Model testing, below) with 80% of the data points |
used for the model construction. Then all the static landscape paraméters_ were iﬁgluded in a

discriminant analysis model; using JMP 5.1. Finally, all the parameters were removed, and added

back one-by-one until additional parameters did not further increase the proportion of correct

classifications. Once an optimal model had been constructed, it was validated with the tcs.t set of

data (see Model testing, below).v The discriminant analysis formulae were then applied to each grid -
“cell to predict the population trend class. This was done by.applying the formulae in ArcGIS to

generate maps of predicted Adélie penguin colony distributions.
Decision tree analysis

Decmon trees are non-parametric and are capable of handlmg different data types (such as
categorical and non- lmear data) and also non-normal data (Weka Manual, 2006). The datasets in
this study were not normally distributed, and as there is debate about the effect of non-nqrmahty on
the performance of discriminant analysis, it was considered that decision trees would provide a
~ check on the model performance of the discriminant énalyses. Each of the study sites was examined
individually, and each test was run on both the values of the individual cells and the colony/control -

plot mean values, as described above.

Each group in a decision tree is characterised by a typical value for the response variable, the
number of observations in the group and the values of the explanatory varizibles that define it
(De'Ath and Fabricius, 2000). This study used the J48 decision tree in Weka 3.4 (Witten and Frank, |
2005), which is derived from the C4.5 model developed by J.R. Quinlan (1993). The algorithm
chooses an attribute that best differentiates the output values and creates a separate branch for each

output value. These subgroups (nodes) are considered to be terminal if all members of that group
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have the same output value or no further distinguishing features can be found. If the node is not
terminal, the process is repeated (Weka Manual, 2006). An example of a decision tree is given in

F1g 38

| |
' . <= 814.8865 ’ > 814.8865
<=860.6161 » 860.6161 ) ) <= 1682.517 »1682.517
|
<= 1559.853 » 1559.853 <= 8§58.5243 > 858.5243
<=711.3762 » 711.3762 <= 30 . >30 «=39

ﬁ

s 070

. ==5B67.3976 » 567.3976

<= 1769633 > 176.9633

Fig. 3.8: Decision tree for population trends of Adelie penguin colonies at Shirley I, derived from
individual cell values for proximity to human activity parameters.

The decision tree process requires a minimum object size to be set. In this case, the minimum obj ect
size refers to the minimum number of cells in each terminal node. In this study, the minimum object
size was set by experimentally building decision trees with different objecf sizes to find the model
with the smallest minimum object size that prdduced a tree with fewer than 20 splits in fhe data
(leaves). As with the discriminant analyses, the decision tree models were constructed from training

- datasets (80% of the original data) and validated with the test sets.

In this study, the decision trees were used for statistical modelling but were not implemented in a
GiS to produce predictive maps. Unlike discriminant analysis, a decision tree does not prodﬁce
mathematical -formuiae that can be readily ifnplemented in a GIS. Instead, it produces a set of
conditional statements. Where a tree has only two or three leaves fhis may be applied in a GIS using
, avaiiable “tools. However, more complex trees result in complex sets of nested conditional

statements that would require scripting in order to be implemented efficiently.
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Model testing

It has been argued that the optimal method for testing model performance is to validate the model
with independently collected data (Blackard and Dean, 1999; Guisan and Zimmermann, 2000). This
was not possible in the present study, as independent test data were not available. Instead, each
model was tested by both cross-validation and validation. Cross-validation work; by taking out an
individual value from the training set and predicting its value, and it therefore tends to provide an

optimistic measure of a model's accuracy (Burrough and McDonnell, 2000).

In addition to cross-validation, the models in this study were validated by splitting data sets into
| training and test sets, with 80% of the data points used for training, and 20% for testing. This
approach has been recommended for studies in which independently collected data were not
available (Blackard and Dean, 1999; Guisan and Zimmermann, 2000; Manel et al., 2000). The
models based on colony mean values were validated using the test set for the individual cell value
‘data. This was done becéuse there were too few data points in the mean data sets to generate test
~ sets that could reliably validate the models' performances. In addition, any model applied in a GIS

would be applied to individual cell values, not colony means.

A purely random classifier, assigning observations into two groups could be expected to correctly
classify 50% of the observations. Therefore, a model here was assumed to have some predictive

power if validation showed that it correctly classified significantly more than 50% of the test data.
Univariate tests for Adélie penguin colony population trends and snow cover varz'ab_les"

Three variables associated with snow cover were examined for their ability to explain changes in
~ population trends of Adélié pengﬁin colony trends. These variables were the modelled snow cover
for November 15, 2005, changes in the modelled snow cover between the first year of Adélie -
'pengﬁin count dété (1959 for Whitney Pt and 1968 for Shirley I) and 2005, }énd exposure. to
prévailing winds. Only those.colonies in which Adélie penguins have been known to nest during the

period covered by éounf data were included in the populatioh trend analyses.

When a Wilcoxon test is applied to more than two groups of data, it is equivalent to the Kruskal-
Wallis non-parametric one-way analysis of variance test (Zar, 1999; Dytham, 2003). The Wilcoxon

or Kruskal-Wallis tests can be applied in any situation where the parametric ANOVA test is
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applicable. If it is applied to normally distributed data, the Wilcoxon test is 95% as powerful as
ANOVA, but if it is applied to non-ndrrnally distributed data, as in this study, it can be much more
powerful (Zaf, 1999). Here, Wilcoxon tests were used to assess the parameters for significant
differences among the five population trend classes, using JMP. In addition, histograms and

scatterplots were generated for visual exploration of the data.
Multivariate tests for Adélie penguin colony population trends and snow cover variables

The snow accumulation and wind exposure variables were tested for their ability to predict
- population trends for Adélie penguin colonies using the discriminant analysis and decision tree
procedures outlined above. As with the models of colony distribution, the two study sites Were
examined separately and both the individual cell values and colony mean values were tested. The
models were validated using the test sets of individual cell values. When classifying déta into five
groups, a purely random classifier could be expected to éorrectly' predict the class with
approximately 20% accuracy. Therefore, rhod_éls were considered to have some explanatory power
if they correctly classified significantly more than 20% of the test déta points. As with the
distribution investigations, maps of predicted Adélie penguin colony population trends were derived
* from the discriminant arialyses, but not from the decision trees, due to the difficulties outlined

above.
Adélie penguin colony population trends and proximity' to human activities

The exémination of the relationships between Adélie penguin colony population trends and the
colonies' proximity and exposure to human activities used similar methods to the examination of the
relationships between snow cover parameters and colony pbpulation trends. Wilcoxon tests were
used to explore univariate differences among colonies in the five population trend classes.
Discriminant analyses and decision trees were used to classify colonies into the five observed
population trend classes. As with the snow accumulation tests, only those colonies in which Adélie
penguins have been known to have nested during the period covered by the count data were
incorporated in the analyses. All of these tests were conducted on both the individual cell values

and the colony mean values, and validated with the test set of individual cell values.

The investigations into proximity to human activities differed from the. distribution and snow

accumulation analyses in that it used different parameters. for the two study sites. Shirley I is 500m
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~ directly downwind from Casey and is regularly visited by station personnel. Therefore, the
statistical tests investigated proximity to Casey, proximity to the sea-ice crossing point (used to
access the island While the sea-ice is safe to cross on foot) and wind exposure (as"a surrogate for
exposure to potential airborne emissions from Casey) for their ability to explain population trends.
The results of the aﬁalyses of wind exposure needed to bé interpreted cautiously, as wind eprsure
was a surrogate for the effects of both wind speeds and of potential human activities on the colony

population trends.

Access to Whitney Pt is restricted to scientists with permits (AAD, 2006). Therefore, a meaéufe of
proximity to a site access point, equivalent to the sea-ice crossing point on Shirley I, was not
appropriate. In addition, the wind exposure layer could give no information about exposure to
potential emissions from Casey because Whitney Pt is northeast of Casey, and the prevailing wind
blows from the southeast. Therefore, measures of proximity to humar activities for Whitney Pt
were restricted to the distance from Casey. All the statistical tests and models were applied in an

identical way to thqsé for Shirley L.
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4 Results

4.1 GIS landscape layers
4.1.1 Slope

The calculated slope data layers (Fig. 4.1) generally describe the terrain in the Windmill Is
accurately; they display large areas of gentle slopes, with most of the altitude variation confined to

areas of cliffs 10-15 m in height.

4.1.2 Aspect

The aspect data layers (Fig 4.2) displayed a strong.a_greemeht with the observed shape of the terrain.

4.1.3 Wetness index

The wetness index layers (Fig. 4.3) show that snow melt run-off for the two study sites is diverted
into small gullies and runnels, rather than into large stréam ﬂows.._ The layers show a strong
agreement with observed lakes and areas of ephemeral water, which occur in low-lying terrain
during sﬁmmer. The pattefn of drainage lines in some parts of Shirley I (Fig. 4.3a) appear to be
Qvérly regular, and hence affected by artefacts in the DEM. These areas coincide with the areas of .
permanent snow as shown in the aerial photographs. taken in mid-sumrrier, which resulted in iower

: accuraéy in those parts of the DEM (AADC, 1990; 2001).

4.1.4 Solar radiation

- The highestv modelled values for solar radiation are similar for Shirley I (4185.44 MJ/m?) and
Whitney Pt (4198.62 MJ/m?), but the lowest values were different. The lowest value for Shirley I
was 1840.91 MJ/m?; this compared with 1206.81 MJ/mz-for Whitney Pt. It is likely that this results
from the cliffs that run east-west on Whitney Pt; similar cliffs on Shirley I are oriented northeast-
southwest. The model results for both sites (Fig. 4.4) displayed strong agreement with calculated

slope and aspect.
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4.1.5 Planar and profilé curvatures

The planar and profile curvature layers generally show a reasonable agreement with the observed
shapes of slopes at -the two sites. A visual inspection shows no strong patterns between the
curvature patterns and the locations of Adélie penguin colonies. For Shirley 1, these are the layers
most obviously affected by artefacts in the DEM. These artefacts are reduced in .the interpolated
DEM used for the analyses, but smoothed areas where two or more stereo-models overlapped are
still visible in the curvature layers. This problem does not arise for the Whitney Pt models as the

Whitney Pt DEM was constructed from one stereo-péir of photographs (Figs. 4.5 and 4.6).

4.1.6 Surface roughness

The calculated surface roughneés (standard deviation) data layers show a strong agreement with the
calculated slopes, as they meas'ure‘ variability in elevations within a 3x3 cell neighbourhood (Fig.
4.7). The surface roughness (normalised) data layefs are dominated by very small values (less than
two) with values up to nine generally concentrated in areas where rough terrain was observed. In

these layers, smooth but steep slopes have values below two (Fig. 4.8).

4.1.7 Adjacency

The adjacency layers calcﬁlate the proportion of cells in a 3x3 cell neighbourhood that contain
Adélie penguins (Fig. 4.9). Only the cells that appear red in Fig. 4.9 were labelled as colony cells
for the statistical analyses reported here. This process removed all those cells on the edge of the

colonies.

4.1.8 Wind exposure

The wind exposure layers (Fig. 4.10) exhibit a negative relationship with solar radiation, as they
represent exposure to the direction of the prevailing winds (south-southeast) and the highest solar

radiation levels are recorded on north-facing slopes.

41.9 Snow'accumulation model

" The snow accumulation model generates maps of relative snow accumulation across the study sites

(Fig. 4.11), rather than numeric values for snow depth, with strong negative associations with wind
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- exposure. The model could only be validated visually, as there is no effective data available to
compare it to. The aerial photographs show areas of permanent snow and ice, which are not
available for transpoﬂ.. However, areas of snow ablation and accumulation show a general
agréement with snow accumulation patterns in the aerial photographs, and with those observed
during the summer of 2005/06 (AADC, 1990; 2‘001). The model does not predict the areas of
permanent snow and ice that occur along the eastern and southern coasts of the study sites, but it
does predict the snow that accumulates in the valley to the south of Whitney Pt. This suggests that
the model caﬁnot account for the effects of sea-ice that builds up around the Aﬁtarctic coast. The
model was applied for the spring months in 1959 and 2005 _fbr Whitney Pt and in 1968 and 2005 for
Shifley I. No area of either study sité shows consistent incréases or decreases of snow between the
two years for which snow cover was modelled. The large areas of modelled snow accumulation or
ablation in 2005 are little different to the other. years modelled, and other areas 'Showed fine-scale

spatial patterns of change (Fig. 4.12).
4.1.10 - Proximity to Human Activities

For Whitney 'Pt, only a distance from Casey Ivayer was generated (Fig. 4.13a).For Shirley I, the
~ layers showing distance from Casey and from the sea-ice crossing point show strong agreement

~(Fig. 4.13b and 4.14).

4.1.11 Population trends

The population trends for Adélie penguin colonies were calculated as the percentage difference in
the number of breeding pairs between the year in which a colony was first counted and 2005. The )

number of colonies in each trend classes is presented in Table 4.1.
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. Table 4.1: The nizmber of colonies in the five pof)ulation trend classes for Whitney Pt and Shirley I. .

Population Trend - Class Number of Colonies
y | Whitney Pt| Shirey I
<50% (Strong Decrease) 1 2 15
50-80% (Moderate Decrease) 2 1 8
80-120% (Stable) 3 5 9
120-150% (Moderate Increase 4 2 2
>150% (Strong Increase) 5 23 10
Total 33 44
4112 = Summary Statistics

Summary statistics for each data set are provided in appendix 1. The data are divided into Whitney

Pt and Shirley I sets, and further into individual cell values and colony/control plot mean values.

Summaries are -presentéd for each population trend class of colony cells. This provides an-

explanation of the spread of data used in the models.
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4.2 Adélie penguin colony distribution

This section presents the results of the tests for the ability of individual landscape pararrieters, and
of the discriminant analyses and decision trees derived from them to explain the distribution of

Adélie peﬁguin colonies within the two study sites as expressed in the following null hypothesis.

Hyyir 1 Static landscape variables (slope, drainage, aspect, planar and profile curvature, surface
roughness, wind exposure, snow cover and solar radiation) cannot predict the locations
of current and relic Adélie penguin colonies at Shirley I and Whitney Pt.

The results are presented separately for each study site and for the tests conducted using individual

cell values and colony mean values.

- 4.2.1 Univariate Analyses

4.2.1.1 ° Whitney Pt

Individual Cell Values

Wilcoxon tests show significant differences between those cells in colony sites and those in control
plots fdr the static landscape parameters of surface roughness (standard deviation), slope, elevation,
wetness index, surface roughness (normalised) and the modelled snow cover for 15 November 2005
(Table 4.2). Adélie penguin colbnies do not occur on the stéepest slopes irrespective of aspect, or on
the moderately steep, south-facing slopes that" have low solar radiation. The penguin colonies

occurred in several altitude “zones”, separated by 1-2m. It is likely that these zones are the result of

the terrain being dominated by a mixture of plateaux and cliffs. .

Table 4.2: Wilcoxon/Kruskal-Wallis rank sum tests for differences among zndzwdual cell values for
static landscape parameters in colonies and control plots at Whitney Pt.

Chi-Square|

Variable -Z Prob>Z DF |Prob>ChiSq|Significance
Roughness (St Dev) 12.642 0.000 159.823| . 1 <0.0001| Significant
Slope 11.308 0.000 127.866] 1 <0.0001 Significant
Elevation © 10.466 0.000 109.546| 1 <0.0001| Significant
Wetness Index -4.578| <0.0001 20.959] 1 <0.0001 Significant
Snow 2005 3.779 0.000 14.280] 1 0.000] Significant
Roughness (Norm) -2.301 0.021 5297 1 0.021 Significant
Profile Curvature -0.921 0.357 0.849] 1 0.357 N.S.
Solar Radiation -0.463 0.643 0.215| 1 0.643 N.S.
Wind Exposure --0.299 0.765 0.090[ 1 0.765 N.S.
Plan Curvature -0.284 0.777 0.008 1 0.777 N.S.
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Colony/Control Plot Mean Values

Wilcoxon tests showed significant differences between the mean values for colony sites and control
plofs for surface roughness (standard deviation) (Table 4.3). One result of using mean values rather
than individual cell values is that much of the within colony variance is lost. It is likely that this
explains the difference in the number of parameters found to have significant differences in
distribution. It is likely that the mean values represent a truer picture of significant differences,
because spatial autocorrelation means the values for the individual cells within any one colony
share information. Among-colony spatial autocorfelation is still likely to be a factor in-all the tests
on mean values, but within-colony autocorrelation is removed. At the same time, nb colony exists

on homogeneous terrain, and the mean values ignore within-colony variance.

Table 4.3: Wilcoxon/Kruskal-Wallis rank sum tests for differences between colony and control plot
mean values for static landscape variables on Whitney Pt.

Variable 4 Prob>Z|Chi-Square| DF |Prob>ChiSq Significance
Roughness (St Dev) -1.966| 0.049 3.883 1 0.049 Significant
Slope -1.903{ 0.057 3.639 1 0.057 N.S.
Snow 2005 -1.494| 0.135 2.247 1 0.134 N.S.
Roughness (Norm) | -0.909] 0.363 0.836 1 0.361 N.S.

" |Elevation -0.702] 0.482| - 0.500 1 0.479 N.S.
Wind Exposure 0.545| 0.586 . 0.303 1 0.582 N.S.
Wetness Index -0.285, 0.776 0.084 1 0.772 N.S.
Solar Radiation ’ -0.201] 0.840 0.043 1 0.837 N.S.
Profile Curvature 0.079 0.937 0.007 1 0.933 N.S.
Planar Curvature 0.000; 1.000 0.000 1 0.996 N.S.

4.2.1.2  Shirley 1

Individual Cell leues

Wilcoxon tests show significant differences between cells in colony sites and control plots on
Shirley I for all static landscape parameters excépt planar curvature (Table 4.4). Adélie penguin
colonies do not occur on steep slopes, rough terrain or in areas with especially high or low solar
radiation. These ‘variables tend to covary. That is, rough terrain is associated with slopes, and the
highest solar radiation is on north-facing slopes, which on Shirley I tend to be very steep. Likewise,

the steepest south-facing slopes have the lowest solar radiation.
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Table 4.4: Wilcoxon/Kruskal-Wallis rank sum tests for differences between individual cell values
for static landscape parameters in colonies and control plots on Shirley 1.

_ Variable z Prob>Z [ChiSquare| DF Prob>ChiSqSignificance
Elevation 30.025 0.000] 901.490 1 ~<0.0001 Significant
|Roughness (StDev) -28.173 0.000, 793.736 1 <0.0001 Significant
Slope -27.687 0.000] 766.572 1 <0.0001| - Significant
Snow 2005 13.321 0.000; 177.448 1 <0.0001 Significant
Solar Radiation 13.175 0.000] 173.583 1 <0.0001 Significant
Wetness Index 11.524 0.000, 132.811 1 <0.0001 Significant
Wind Exposure 4.064{ <0.0001 16.517 1 <0.0001 Significant
Profile Cunature 3.079 0.002 9.480 1 0.002 Significant
Roughness (Norm) 2111 0.035 4.456 1 0.035 Significant
Planar Curvature . -0.927 0.354 0.859 1 0.354 N.S.

Colony/Control Plot Means

Wilcoxon tests show significant differences between the mean values for colony sites and control

plots on Shirley I for planar 'curvature, surface roughness (standard deviation), and slope (Table

4.5). It is likely that a combination of the loss of variance associated with using mean valueé, and

the reduction of the effect of spatial autocorrelation  explains the differences in these results

compared with the tests on individual cell values. Again, colonies are rare in sites with steep slopes

and rough terrain.

Table 4.5: Wilcoxon/Kruskal-Wallis rank sum tests for differences between colony and control plot
mean values for static landscape parameters on Shirley 1. ‘
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_Variable 4 Prob>Z|ChiSquare| DF [Prob>ChiSq Significance
Slope -3.842| 0.000 14.782 1 0.000 Significant
Roughness (StDev) -3.810| 0.000 14.535] 1 0.000 Significant
Planar Curvature -1.969| 0.049 3.889 1 0.049 - Significant
SolarRad 1.887| 0.059 3.569 1 0.059 N.S.
Profile 1.698| 0.080 2.892 1 0.089 N.S.
Elevation 1.483| 0.138 2.207| 1 0.137| N.S.
Roughness (Norm) 1.415 0.157 2.008 1 0.156 N.S.
Snow 2005 0.803| 0.422 0.649 1 0.420 N.S.
Wetness Index -0.434| 0.664 0.191| 1 0.662 N.S.
Wind Exposure -0.196| 0.845 0.039 1 0.843 N.S.
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4.2.2 Discriminant Analyses

4.2.21 Whitney Pt

Individual Cell Values

A stepwise discriminant analysis model was constructed with elevation, surface roughness
, (standérd deviation) and solar radiation as input parameters (App. 2). These parameters increase the
predictive power of the model, and are listed in the order of their value in predicting presence or
absence. Other parameters were excluded because. they did not improve the model performance.
Cross- valldatlon shows that this model accurately predlcts the presence or absence of nesting
Adélie penguins in a cell with 68.1% accuracy. Validation, whlch is generally considered a more
robust assessment of accuracy'(Blackard and Dean, 1999; Guisan and Zlmmermarm, 2000), shows |
an overall predictive accuracy of 70.5%. The confusion matrix (Tablé 4.6) shows that this model
has a higher pr_oportibn of false positives than false negatives. Thus, the modél predicts more areas
of suitable habitat than are occupied. Visual comparison of the predicted and observed distribution -
of Adélie penguins (Fig. 4.15) shows agreement between predicted and observed distributions. The
use of elevation in this model is considered to be the result of the platéau-dominatéd terrain, rather
than the result of birds preferring particular elevations. Surface roughness. covaries with slope, and .
the distribution map predicts colony occurrence in areas with gentle slopes and at least moderate

levels of solar radiation.

Table 4.6: iConquzvon matrix for validation of the discriminant analysis model based on the
individual cell values of colonies and control plots in Whitney Pt. Percentage values in brackets are
the percentage of the observed total.

Observed Distribution
Absent Present Total

Predicted |Absent [132 (64.1%)53 (23.6%)[185 (42.9%)

Distribution |Present|74 (35.9%)|172 (76.4%)[246  (57.1%)
Total [206 225 .- 431
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Colohy/Control Plot Mean Values

The discriminant analysis model was constructed using wind exposure, surface roughness
(normalised), surface roughness (standard deviation) and wetness index as input parameters, entered
in the order listed (App. 2). The other static landscape parameters did not increase the predictive
power of the model. Cross-validaﬁon shows that this model has an overall accuracy of 65.6%.
When validated with the test set of individual cell values, the model shows an overall predictive
accuracy of 65.4%. The model most accurately predicts the presence of nesting penguins, and has a -
high proportion of false po.sitive errors (Table 4.7). In the resulting predictive map, areas of
predicted suitable and unsuitable habitat are more pétchily distributed than in the rr.1-ap derived from
individual cell values. It appears that this patchiness results from the inclﬁsion of the wetness index '
in the model, as many of the breaks in habitat suitability occur along drainage lines (Fig. 4.16). The
use of mean values reduces within-group 'variance, and the effects of spatial autocorrelation. This
model produces fewer false absences than the model based on individual cell values, but also
produceé more false presences. It is likely that collinearities in the data sets account for the
differences in the input parameters for the two models. Again, the map predicts penguin colonies in

sites with gentle slopes and with moderate degrees of wind exposure.

Table 4.7: Confusion matrix for the validation of the discriminant analysis model of Adélie penguin
distribution based on colony and control plot mean values for Whitney Pt. The percentage values in
brackets show the proportion of the observed total. '

Observed Distribution

i _ _ "Absent Present Total
Predicted |Absent 119 (57.8%)(62 (27.6%){181  (42%)
Distribution |Present 87 (42.2%){163 (72.4%)[250 (58%)

Total 206 225 431
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Fig. 4.15: Predicted Adélie penguin colony distribution at Whitney Pt based on discriminant
analysis of individual cell values for static landscape parameters.
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Fig. 4.16: Predicted Adélie penguin colony distribution at Whitney Pt based on discriminant
analysis of colony/control plot mean values for static landscape parameters.
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4.2.2.2 Shirley I

Individual Cell Values

Surface roughness (standard deviation), elevation, solar radiation, wind exposure, slope and the
2005 snow cover parameters increased the predictive power of the stepwise discriminant analysis
model (App. 2). The other static landscape parameters were excluded because they did not increase
the predictive powér of the model. Cross-validation shows that this model correctly classifies 79.6% |
of cells. Valida_tion shows the overall model accuracy is 78.9% (Table 4.8). The model predicts the
presences: of nesting penguins better than absences, with a high proportion of false positives (Fig.
4.17). Both predicted and obﬁerved extant presences are concentrated on the large plateau at the
western end of the island. Large aréas of predicted presences also océur near sea level at thevwestem
end of the island, in the area dominated by a relic colony, but partially covered by snow in the

available aerial photography.

Table 4.8: Confusion matrix for valzdatton of dzscrzmmant analysis model based on mdzvzdual cell
values in coIomes and control plots on Shirley 1.

Observed Distribution

: Absent Present Total
Predicted |Absent 433 (66.7%)|60 (9.1%)|493 (37.8%)
Distribution [Present 216 (33.3%)|597 (90.9%)(813 (62.3%)
: Total 649 657 1306

Colony/Control Plot Means

A discrirrvxinant- analysis model to predict Adélie penguin distribution on Shirley I was constructed
- using fhe colony and control plot mean values for slope, snow cover in November 2005, wetness
index, solar radiation and wind exposure as inputs (App. 2). Cross-validation shows that this model
predicts Adélie penguin colony distribution with 76.5% accuracy. Validation with the test set of.
individual écll values shows the overall model accuracy is 70.8% (Table 4.9). The model pr_édicts
colony presences more strongly than absences (Fig. 4.18). Again the wetness index influences the
" model based on colony means, but not the model derived from individual cell values. It appears that
this parameter is affected by spatial autocorrelation, and gains predictive power when within-colony
variance is removed. Surface roughness is not used as a parameter in this model, unlike that derived

from individual values. This may be because the roughness variables covary with slope.
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Table 4.9: Confusion matrix for validation of dzscrzmznant analysis model based on colony and
control plot mean values of Shirley 1.

Observed Distribution

Absent Present Total
Predicted |Absent 412 (63.5%)|114  (21.9%)556 (42.6%)
Distribution |Present 237 (36.5%)|513  (78.1%)|750 (57.4%)
Total ~ |649 657 1306
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Fig. 4.17: Predicted distribution of Adélie penguin colonies on Shirley I, based on discriminant
analysis of individual cell values for static landscape parameters.
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Fig. 4.18: Predicted Adélie penguin colony distribution based on discriminant analysis of
colony/control plot mean values for static landscape parameters. '
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4.2.3 Decision Tree Analyses

4.2.3.1  Whitney Pt _
Individual Cell Values

A decision tree was constructed based on individual cell values with a minimum object sizé of 100
and seven leaves (App. 3). Cross-validation shows that it correctly predicts 73.4% of Adélie
penguin colony presences or absences. Validation shows that the model has 74% accuracy. Soiar
radiation, elevation, aspect, snow cover in 2005 and wind exposure were used as inputs. The other
static landscape parameters did not impfove the predictive power of the model. The confusion
matrix (Table 4.10) shows that the model performance was similar for both presence and absence
predictions, though it predicted colony presences slightly better than absences. Howéver, decision
trees could not be assessed visually, because of the difficulty in implementing them within a GIS.
The tree predicts that Adélie penguins are generally absent where solar radiation is below 2434.05
MJ/m?., and that where solar radiation is higher than this, Adélie penguins will nesf at low altitudes
(below 13.4m ASL). After these splits, predictions are based on aspect (greater than or less than 130
degrees — the direction of the prevailing winds), modelled snow cover in November 2005 and '

elevation (App. 3).

“Table 4.10: Confusion matrix for validation of the decision tree model of Adelte penguin
distribution based on individual cell values for Whitney Pt.

Observed Distribution
Absent Present Total
Predicted |Absent 151 (73.3%)|57 (25.33%)208 (48.3%)
Distribution Present 55 (26.7%)|168 (74.67%)223 (51.7%)
Total 206 - |225 431

Colony/Control Plot Mean Values

A decision tree based on the colony and control blot mean values for static landscape parameters
predicts Adélie penguin :colony presence or absence with 59.4% accuracy as measured by cross-
validation, and with 51.7% accuracy as measured by validation with the test set of individual cell
values. The tree has a minimum object size of two and four leaves. Surface roughness (standard

- deviation) and drainage improvéd the predictive power of the model, but the other parameters were
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not selected because they did not increase the predictive powér (App. 3). The confusion matrix
(Table 4.11) shows that the model predicts colony presences slightly better than absences. The
model predicts Adélie penguins to be absent where the surface roughness has a standard deviation

greater than 0.85 and to be present where the wetness index is below 3.46 or above 5.06 (App. 3).

Table 4.11: Confusion matrix for validation of the decision tree model of Adélie penguin colony

distribution based on colony and control plot mean values for Whitney Pt.

Observed Distribution
: , Absent Present Total
Predicted |Absent 103 (50%)|105 (46.7%)/208 (48.3%)
Distribution |Present 103 (50%){120 (53.3%)223 (561.7%)
Total 206 125 431
4.2.3.2 Shirley I

Individual Cell Values

A decision tree with a minimum object size of 200 and nine leaves, predicts Adélie penguin colony
distlji_butioh with '82.8% accuracy, as measured by cross-validation and 84.5% accuracy, as
measured by validation. Slope, glevétion, aspect, the difference in snow cover between 1968 and
2005, surface roughness (standard deviation) and wind exposure were used as inputs (App. 3). The
confusion matrix (Table 4.12) shows that the model predicts colony presence slightly more
accurately than absence. The model predicts absences where the slope is less than 0.22, and present
at the h1ghest possible elevations (>29.39 m). Below this altitude, aspect, changes in snow cover

and elevatlon are used to further differentiate colonies from control plots.

T able‘4.1 2: Confusion matrixfor validation of the decision tree analysis of Adélie penguin colony
distribution based on individual cell values for colonies and control plots on Shirley L. .

Observed Distribution
Absent ‘Present | Total
Predicted |Absent 539  (83.1%)93 (14.2%)632 (42.9%)
Distribution|Present 110 (17%)|564 (85.8%)674 (57.1%)
Total 649 657 [1306
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Colony/Control Plot Means

A decision tree with a minimum object size of two and 12 leaves predicts Adélie penguin colony
presence or absence with 64.3%, as measured by.cross-validation and 68% accuracy, as measured
by validation (Table 4.13). Slope, pianar curvature,_elévati_on, Snow cerr 2005, solar radiation and
surface roughness (standard deviation) were used as inputs (App. 3). The other static landscape
parameters did not improve the model's predictive performance. The fnbdel predicts colony
absences bétter than colony presences (Table 4.13). The model predicts absences where the slope is
less than 0.13, a gentler slope than that used for splitting the tree derived from individual cell
values. Cellé in gullies (planar curvature <=-0.02) are predicted to cdntain penguins as are all sites -
above 29 m ASL. .Below 29 m, planar curvature, snow cover in November 2005, slope, solar

radiation, and surface roughness (standard deviation) are used to differentiate the groups (App. 3).

Table 4.13: Confusion matrix for decision tree analysis .of Adélie penguin colony distribution based

on cblony and control plot mean values for Shirley I ‘

Observed Distribution

Absent Present . Total
Predicted ' |Absent |494 (76.1%)[287 (43.7%)781 = (59.8%)
Distribution |Present (155 (23.9%)1370 - (56.3%),525 (40.2%)
Total 649 657 1306

The results of the discriminant analyses and decision trees suggest that the null hypothesis should
be rejected. Static landscape parameters, as calculated in this study, can be used to predict the
presence or absence of Adélie penguin nests in a given cell within the study site with up to 84.5%

accuracy.
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4.3 Snow Accumulation Patterns and Adélie Penguin Colony
Population Trends

This section presents the results of the tests for the ability of individual snow accumulation

parameters and the discriminant analyses and decision trees derived from these parameters to

explain the observed population trends of Adélie penguin colonies within the two study sites as

expressed in the following null hypothesis.

Hyur 2 Interactions between the shape of the land and the weather conditions that drive snow
accumulation patterns cannot predict the population trends of Adélie penguin colonies
at Shirley I and Whitney Pt.

The results are presented separately for each study'si-te and for the tests conducted using individual

cell values and colony mean values.

4.3.1 Univariate Analyses

4.3.1.1 Whitney Pt
Individual Cell Values .

Wilcoxon tests were used to-explore differences among the distributions of individual cell values in
colonies in five population trend classes at Wﬁitney Pt. These tests show significant differences for
all three data layers related to snow accumulation (Table 4.14). The colonies with str(')ng population
increases (>150% of the 1959 population) are associated with the thinnesf snow cover, while stable
~ colonies are found in areas with thicker snow cover. For the individual cell values, colonies in all
| population trend classes are associated with areas with minimal changes in the modelled snow

cover between 1959 and 2005.

Table 4.14: Wilcoxon tests for differences among individual cell values for colonies in the five
population trend classes on Whitney Pt.

Variable [Chi-Square| DF | Prob>ChiSq [Significance
Wind Exposure 234,772 4 <0.0001| Significant
Snow 2005 28.133 4 <0.0001| Significant
Snow Difference 12.638 0.013  Significant|

BN
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Colony Mean Values »

- Wilcoxon tests for difference. among the distributions of colony mean values show no significant
differences among the five population trend classes for any of the data layers related to snow
accumulation on Whitney Pt (Table 4.15). It is likely that the loss of variance associated with
* calculating mean values is responsible for the difference from the results of the Wilcoxon tests on

the iﬁdiyidual cell values for Whitney Pt.

Table 4.15: Wilcoxon tests for differences among colony mean values in the five population trend
classes on Whitney Pt. '

Variable |Chi-Square| DF [Prob>ChiSq| Significance
Wind Exposure 3.290 4| 0.511|Not Significant
Snow Differencg - 2.556 4 0.635|Not Significant
Snow 2005 2.316 4 0.678|Not Significant

4.3.1.2  ShirleyI

Individual Cell Values

Wilcoxon tests on the individual cell values show significant differences among the five population
trend classes for all the parameters associated with snow accumulation patterns (Table 4.16).
However, the summary statistics (App. 1) and visual inspection of scétterplots show few obvious

trends.

Table 4.16: Wilcoxon tests for difference among the distributions of individual cell values in
colonies in five population trend classes on Shirley L.

Variable Chi-Square| DF Prob>ChiSq Significance
Wind Exposure 103.146) 4 <0.0001 . Significant
Snow 2005 .302.697| 4 <0.0001 Significant
Snow Difference| - 33.110] 4 <0.0001 Significant
Colony Means

Wilcoxon tests on the colony mean values for colonies in five population trend classes show no

’si'gn.iﬁcant differences for any of the parameters associated with snow accumulation (Table 4.17). It
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is considered likely that the loss of variance associated with calculating mean values is responsible

for the difference from the results of the Wilcoxon tests on the individual cell values for Shirley I.

Table 4.17: Wilcoxon tests fbr difference among colony mean values in five population trend
classes on Shirley 1. '

Variable ChiSquare| DF |Prob>ChiSq| Significance
Snow 2005 8.366] 4 0.079| Not Significant
Snow Difference 3.013] 4 '0.556| Not Significant

" |Wind Exposure | 1.731] 4 0.785 Not Significant

4.3.2 Discriminant Anaiyses

4.3.2.1 Whitney Pt
Individual Cell Values

' Cross-validation shows that a discriminant analysis model using wind exposure and snow cover in
2005 as inputs predicted the colony population trend claés with 48.6% accuracy (App.2). The |
change in snow cover between 1959 and 2005 did not improve the predictive power of the model.
Validatioh shows the overall accuracy is 48.3%. The confusion matrix (Table 4.18) shows that the
model predicts stable coloniés (class 3) with the highest accuracy (58.1%) and moderately declining
colonies with the IOWest accuracy (0%). However, this class has only one data point in the test set,
so this is not statistically significant. The observed colony population trends are shown in Fig. 4.19 -
and the predicted trends in Fig. 4.23. The predictive map (Fig. 4.20) shows a mix of predicted trend
classes within each colony, rather than clear spatial trends. It is likely that the results are biased by
the lérge number of data points within the strongly increasing class 5 (n=847) compared with the
other classes (combined n=191). The inequality of sample sizes is the result of different population

trends at Shirley I and Whitney Pt, and makes the Whitney Pt results difficult to interpret.
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Table 4.18: Cdnfusion matrix for validation of the discriminant analysis model for population trend
predictions for Whitney Pt based on individual cell values. The percentage value in brackets
represents the percentage of the observed trend class total.

Observed Trend Class
: : Class1|Class2| Class3 [Class4| Class5 Total

Class 1 (Strong De(3 (75%)0 0 0 20 (11.9%)23 (11%)
- [Class 2 (Mod Dec.)|1 (25%)0 1 (3%)l0 40 (23.8%)42 (20.1%)
Z’?‘r’;ﬁ: Class 3 (Stable) |0 0 18 (58.1%)4 (80%)[25 (14.9%)47 (22.5%)
Clase | [Class 4 (Mod Inc.) [0 0 9  (29%)1 (20%)l4  (2.4%)14 (6.7%)

Class 5 (Strong Inc|0 1( 3 (9.7%)[0 79  (47%)83 (39.7%)

Total 4 1 31 5 168 209

Colony Mean Values

A discriminant analysis model was constructed using the modelled snow cover in 2005, change in

snow cover between 1959 and 2005 and wind exposure as inputs (App. 2). Cross-validation shows

that this model correctly predicts population trends in 42.4% of cells within colonies on Whitney Pt.

Validation with the test set of individual cell values shows that the model has an overall accuracy of

38.8% (Fig. 4.21). The. model performs best in predicting strongly increasing colonies (class 5

41.1%) as shown in the confusion matrix (Table 4.19). This model is even more hkely to be

. affected by the disparity in sample sizes than the model based on 1nd1v1dua1 cell values.

Table 4.19: Confusion matrix for validation of the discriminant analysis model predicting
population trends for Adélie pengum colonzes at Whu‘ney Pt based on colony mean values for snow
accumulation parameters. :

Observéd Trend Class

Class1 | Class2 Class 3 Class4 | Class5 Total
Class 1 (Strong Dec.)[1 (25%)0 ’ 2 (6.5%),0 25 (14.9%)28 (13.4%)
Predicted [Class 2 (Mod Dec.) |3 (75%)0 1 (3.2%)(0 45 (26.8%)/49 (23.4%)
Trend . |Class 3 (Stable) 0o 0 10  (32.3%)|2° (40%)|5 (3%)17 (8.1%)
Class Class 4 (Mod Inc.) 0 0 7 (22.6%)|1 (20%)124 (14.3%)32 - (15.3%)
Class 5 (Strong Inc.) |0 1 (100%)11  (35.5%)2 (40%)|69 . (41.1%)83 (39.7%)
Total 4 1 31 5 -~ |168 209
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Fig. 4.19: Observed population trend classes of Adélie penguin colonies at Whitney Pt.
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Fig. 4.20: Predicted population trend classes of Adélie penguin colonies at Whitney Pt, based on
discriminant analysis of individual cell values for snow accumulation parameters.
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Fig. 4.21: Predicted population trend classes of Adélie penguin colonies at Whitney Pt, based on
discriminant analysis of colony mean values for snow accumulation parameters.
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4.3.2.2  Shirley I

Individual Cell Values

»

A discriminant analysis model was constructed using wind exposure, the modelled snow cover in
November 2005 and the change in snow cover between 1959 and- 2005 (App. 2). Cross-validation
suggests this model predicted colony population trends with 31.4% accuracy and validation shows
it has an overall accuracy of 25.6%. The model most accurately predicts moderately decreasing
~(class 2: 63.6%) and stable (class 3: 54.7%) colonies (Table 4.20). The observed population trends
for Shirley I are presented in Fig. 4.22 and the predicted population trends in Fig. 4.23.

Table 4.20: Confusion matrix for the discriminant analysis model prediéting population trends
based on the individual cell values for snow accumulation parameters for Shirley I. :

Observed Trend Class
' Class 1 Class 2. Class 3 Class 4 Class 5 Total

Class 1 (Strong Dec.)2  (4.9%)1 (9.1%)[7 (5%)|9 (15.8%)[18 (10.1%)[37 (8.7%)
) Class 2 (Mod Dec.) |18 (43.9%)7 (63.6%)[30 (21.6%)7 (12.3%)[32  (18%)|94  (22.1%)|
?:Z::;‘ed Class 3 (Stable) 15 (36.6%)2 (18.2%)|76 (54.7%)28 (49.1%)|88 (49.4%)209  (49.1%)
Cronsl [Class4(Modinc) [3° (7.3%)[1  (OA%)16 (11.5%)7 (12.3%)[23 (125%)50  (11.7%)
Class 5 (Strong Inc.) |3 (7.3%)[0 10 (7.2%)|6 (10.5%)[17 (9.6%)/36 (8.5%)

Total . ;M 11 139 57 | 178 426

» Colony/Control Plot Means

- A discriminant analysis model was constructed using the cblony mean values for wind exposure,
snow cover in November 2005 and the difference in snow cover between 1959 and 2005 (App. 2).
~ Cross-validation shows that this .model has an accuracy of 31.8% and validation with the test set of
individual cell values shows it has an overall accuracy of 27.9% (Fig. 4.24). The confusion matrix-
(Table 4.21) shows that the model most accurately predicts moderately decreasing colonies (class 2:

62.5%)

Table 4.21: Confusion matrix for validation of the discriminant analysis model predicting colony
* population trends based on colony mean values for snow accumulation parameters for Shirley I.

Observed Trend Class
Class 1 Class2 | Class3 Class 4 Class 5 Total
v Class 1 (Strong Dec)3 (7.3%)2 (18.2%)[13 (9.5%)9 (15.8%)23 (13%)[50 (11.8%)
Predicted |Class 2 (Mod Dec.) |9 (22%)5 (45.5%)20 (14.6%)4 (7%)18 (10.2%)56 (13.2%)
Trend Class 3 (Stable) 17 (41.5%)2 (18.2%)|84 (61.3%)|34 (59.7%)93 (52.5%)230 (54.4%)
Class Class 4 (Mod Inc.) [8 (19.5%)2 (18.2%)[13 (9.5%)9 (15.8%)26 (14.7%),58 (13.7%)
. |Class 5 (Strong Inc.}4  (9.8%)0 7 (6.1%)1 = (1.8%)17 (9.6%)[29 (6.9%)
Total 41 [11 {137 57 177 423
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Fig. 4.22 Observed population trend classes of Adélie penguin colonies on Shirley I.
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Fig. 4.23: Predicted population trend classes of Adélie penguin colonies on Shirley I based on
discriminant analysis of individual cell values for snow accumulation parameters.
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Fig. 4.24: Predicted population trend classes of Adélie penguin colonies on Shirley I, based on
discriminant analysis of colony mean values for snow accumulation parameters.
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4.3.3 Decision Tree Analysis

433.1  Whitney Pt
Individual Cell Values

A decision tree analysie, with a minimum object size of 50, and with four leaQes wes constructed
using wind exposure and snow cover in November, 2005 (App 3). The difference in snow cover
‘between 1959 and 2005 did not improve the predictive power of the model. Cross-validation shows
that the model predicts population trends with 83.5% accuracy, while validation shows that the
model is 83.7% accurate. The confusion matrix (Table 4.22) shows that the model is most accurate
in predicting strongly increasing colonies (class 5: 98.8%). In contrast the model fails to accurately
predict any of the decreasing colonies (classes 1 and 2), although the sample size of these in the test
set is too small to draw conclusions about this aspect of the model. The tree predicts that those
colonies with wind exposure ratings greater than 39 or with snow cover in 2005 of less than 0.07
have strongly increasing populatlon trends. In areas with deeper snow cover, those with ‘wind
exposure greater than 5 are also predlcted to be 1ncreasmg, while colonies in other areas are listed as

stable (App. 3).

Table 4.22: Confusion matrix of the performance of the decision tree analysis of colony population
trends based on individual cell values for snow accumulation parameters.. ,

-‘Observed Trend Class .
Class1 |[Class 2| Class 3 | Class4.| Class$§ Total
Class 1 (Strong Dec|0 0 0 0 0 0o
: . Class 2 (Mod Dec.) |0 0 0 0 0 0
';:zg'd‘:‘ed Class 3 (Stable) |0 0 9 @29%)1 @0%)2 (12%)12  (5.7%)
Class Class 4 (Mod Inc.) (O 0 0 0 0 0
Class 5 (Strong Inc.J4 (100%)|1 (100%)[22 (71%)|4 (80%)[166 (98.8%)[197 (94.3%)
Total 4 1 31 5 168 209 )

Colony Mean Values

A decision tree analysis with a minimum object size of two and with two leaves, was constructed
" using the colony mean values for snow cover in November, 2005 (App. 2). Mean values for wind
exposure and the difference in snow cover between 1959 and 2005 did not improve the predictive

power of the model. Cross-validation of the model shggests that it predicts colony trends with
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63.6% accuracy and validation with the test set of individual cell values shows it has an overall
accuracy of 81.2% (Table 4.23). The model most accurately predicts strongly increasing colonies
(class 5: 95.2%) and fails to acéurately predict the trends of any declining or moderately increasing
colonies (classes 1, 2 and 4). In this model, those‘ cells with snow cover less than or equal to 1.14

are predicted to be increasing strongly, while all others are predicted as stable.

Table 4.23: Confusion matrix for validation of the decision tree analysis for colony trend

predictions based on the colony mean values for snow accumulation parameters.

Observed Trend Class
| Class1 | Class2 Class 3 ‘Class 4 Class5 Total =~
Class 1 (Strong Dec.)0 0 0 0 0 |0
. Class 2 (Mod Dec.) |0 0 0 0 : 0 - 10 :
’T’:ggg"gg « [Class3(Stable) [0 0 10 (323%)1  (20%)8  (48%)19  (9.1%)
Class 4 (Mod Inc.) |0 0 0 0 0 0
Class 5 (Strong Inc.) |4 (100%)|1 (100%)[21 (67.7%)4  (80%)160 (95.2%)[190  (90.9%)
Total : 4 1 31 |5 168 209

4.3.3.2 Shirley I
Individual Cell Values

A decision tree with a minimum object size of 50 and with 18 leaves was constructed using the
November 2005 snow cover, wind exposure and the change in snow cover between 1959 and 2005.
Cross-validation shows that the model éorrectly predicts 53.8% of colony trends. Validation shows
that it has an overall accuracy of 57.8%. The confusion matrix (Table 4.24) shows that the model
most accurately predicts 'strongly increasing colonies (class 5: 73%). This model predicts population
trends based on a complex interaction between the three variables, with snow cover in November

2005 and wind exposure explaining most of the variance (App. 3).
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Table 4.24: Cbnfdsion matrix for the decision tree prediction model of penguin colony population
trends for Shirley I based on individual cell values for snow accumulation parameters.

Observed Trend Class : .
. Class 1 Class 2 Class 3 Class 4 Class 5 Total
Class 1 (Strong Dec12 (29.3%),0 5 (3.6%)0 2 (1.1%)19 (4.5%)
. Class 2 (Mod Dec.) |0 7 (63.6%)5 (3.6%)0 1 (0.1%)13  (3.1%)
’;::g:;te Class 3 (Stable) 13 (31.7%)|0 "~ |78 (56.1%)[10 (17.5%)|34  (19.1%)|{135 (31.7%)
Class Class4 (ModInc.) 2 (4.9%)2 ,(18‘2%)9 (6.5%)19 (33.3%)|11 (6.2%)[43 (10.1%)
Class 5 (Strong Inc.[14 (34.2%)[2 (18.2%)[42 (30.2%)|28 (49.1%)#Ht  (73%)[216 (50.7%)
Total 41 11 139 57 178 426
Colony Means

A decision tree with a minimum object size of tWo and with 13 leaves was cbnétructéd u.sing the
November 2005 snow cover, the change in snov&./ cover between 1959 and 2005 and wind exposure
(App. 3). Cross-validation shows that this model has an overall accuracy of 27.3%. Validation wfth
the test sef of individual cell values shows that it correctly predicts 41.6% of colony trends. The
confusion matrix (Table 4.25) shows that the model most accurately predicts strongly increasing
colonies (class 5: 65%) and fails to correctly predict any cells in colonies with moderately
increasing populations (class 4). As with the previous model, snow cover in 2005 was ﬁsed to make
the first splits ih the data, followed by wind exposure, and the model uses a‘ complex mix of the

three variables to predict population trends.

Table 4.25: Confusion matrix for the decision tree prediction model of penguin colony population
trends for Shirley I based on colony mean values for snow accumulation parameters.

Observed Trend Class .
Class 1 Class 2 Class 3 Class 4 Class 5 Total
Class 1 (Strong Dec.) |25 (618%)2 (18.2%)[28 (20.4%)[17 (29.8%)| 56 (31.6%)|128 (30.1%)
_ Class2 (Mod Dec.) |1 (2.4%)6 (54.6%)4  (2.9%))0 7 @%)[18  (4.2%)
’;:‘;g’;tggss Class 3 (Stable) 6 (146%)2 (182%)31 (22.6%)0 0 39 (9.2%)
Class4 (Mod Inc.) |0 0 0 0 0 0
Class5 (Strong Inc.) |9 (22%)1 (9.1%)[76 (55.5%)/40 (70.2%)[115  (65%)[241 (56.6%)
Total 41 11 139 57 178 426

Thei results of the discrimihani analyses and decision trees show that the null hypothesis should be '
fej ected. Purely random classifications could be expected to accurately predict 20% of values across
five classes. The predicti\}e models derived from snow accumulation parameters produce significant
results for both sites, when based on both individual cell and colony mean values. The results are

stronger for Whitney Pt than for Shirley 1.

107



Chapter 4: Results
4.4 Proximity to human activities and population trends of Adélie |
penguin colonies
This section presents the results of the tests for the ability of individual parameters associated with
proximity or exposure to human activities, and the discriminant analyseé and decision trees derived
from these parameters to explain the observed population trends of Adélie penguin colonies within |

the two study sites as expressed in the following null hypothesis.

Hyur 3 Proximity and exposure to- human activities. associated with Casey cannot predict the

population trends of Adélie penguin colonies at Shirley I and Whitney Pt.

The results are presented separately for each study site and for the tests conducted using individual

- cell values and colony mean values.

4.4.1 Univariate Analyses

4.4.1.1 Whitney Pt
Individual Cell Values

A Wilcoxon test on individual cell values for colonies in five population trend classes demonstrates
a signiﬁéant difference among the classes for the distance from Casey (Table 4.26). Exploration of
the scatterplots and histograms showed that strongly increésing colonies oécurred at all distances
from Casey, while stable (class 3) and moderately decreasing (class 2) colonies were clustered
closest to Casey, and strongly decreasing (class 1) and moderately increasing (class 4) colonies

were found near the middle of the study site.

 Table 4.26: Wilcoxon test for difference between individual cell values for colonies in . five
population trend classes.

Variable Chi-Square| DF |Prob>ChiSq| Significance
Casey Distance - 221.307| 4 <0.0001 Significant
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Colony Mean Values |

A Wilcoxon test on colony mean values in five population trend classes shows no significant
difference among the population trend classes on Whitney Pt for the distance from Casey (Table -
4.27). It is likely that the decreased variance in the colony mean values reduced the significance of

the differences among the five classes.

Table 4.27: Wilcoxon test for difference between colony mean values in five population trend
classes for Whitney Pt.

Variable |[Chi-Square| DF |Prob>ChiSq|Significance
Casey Distanc 5.211 4 - 0.266 N.S.

4.4.1.2 Shirley I
Individual Cell Values

Wilcoxon tests shows significant differences among the five population trend classes for all the
parameters associated with proximity to human activity (Table 4.28). All population trend classes
are clustered around the median values for wind exposure. Almost all the strongly increasing
colonies are found at the farthest difference from Casey and from the sea-ice crossing point. Most
of the stable colonies occur at medium to long distances from Casey and the sea-ice crossing point.
Moderately decreasing colonies are clustered very. close to Casey, and close to the sea- ice crossing
point. Strongly decreasmg colonies are b1moda1 occurring close to Casey and the sea-ice crossing

point, and also at moderately long distances from both.

Table 4.28: Wilcoxon tests for significant difference among individual cell values for the five
population trend classes for Adélie penguin colonies on Shirley I. ‘

Variable ChiSquare [DF |Prob>ChiSq |Significance

Casey Distance . 1466.67 4 <0.0001 Significant
Sea-ice Crossing Point Distance 1446.62 4 <0.0001 Significant
Wind Exposure 103.15 4 <0.0001 Significant

109



‘ Chapter 4: Results
Colony Mean Values

Similarly to the individual cell tests, Wilcoxon tests show significant differences among the five
population trend classes for all the parameters associated with proximity to human activities, for
colony mean values (Table 4.29). They show no signiﬁcant differences among colonies for wind

- €Xposure.

Table 4.29: Wilcoxon tests for difference between colony mean values for the five populatzon trend
classes for Adélie penguin colomes on Shirley 1.

Variable : Chi-Square |DF Prob>ChiSqSignificance
Casey Distance 16.990 4 0.002| Significant
Sea-ice Crossing Point Distan 13.868 4 0.008] Significant|.
wWind Exposure 1.731 4 0.785| N.S.

4.4.2 Discriminant Analyses

44.2.1  Whitney Pt
Individual Cell Values

A dlscrlmmant analysis model to predlct populatlon trends - was constructed usmg the dlstance from
Casey (App. 2). Cross-validation suggests this model has an accuracy of 28 1%, whlle validation
.shows the overall accuracy is 26.8% (Fig. 4.25). The confusion matrix (Table 4.30) shows the
model predicts colony population trends with a high degree of accuracy for classes 1-4 (ranging
from 93.6% to 100%). The small numbe_r of data-points in the test set for classes 1, 2 and 4 reduces
the reliability of this result. The model accurately predicts 10.1% of the strongly increas-ing-colonies
(class 5). This class .represents 80.38% of the dataset, and so hgs‘ a large effect on the overall

accuracy. .
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Table 4.30: Confusion matrix of the discriminant analysi;v model predicting Adélie penguin colony |
population trends at Whitney Pt based on the individual cells’ distance from Casey.

Observed Trend Class : :
Class1 [Class2| Class3 |Class4| Class5 | Total

Class 1 (Strong Decl4  (100%)[0 0 0 31 (185%)35 (16.8%)
. Class 2 (Mod Dec.) [0 1 (100%)|0 0 119 (11.3%)[]20 (9.6%)
’T’:Z;‘::;" Class 3 (Stable) |0 0 29 (93.6%)0 57 (33.9%)86 (41.2%)
crond [Class 4 (Mod Inc.) [0 0 2 (6.5%)[5 (100%)/44 (26.2%)[51 (24.4%)
Class 5 (Strong Inc.]0 0 0 0 - N7 (101%)[17  (8.1%)

Total 4 1 31 5 168 209

Colony Mean_ Values

A discriminant analysis model predicting Adélie penguin population trends based on the colony
mean values for distance from Casey (App. 2) has .an overall accuracy. of 33.3%, as measul;ed by
cross-validation. Validation with the test set of individual cell values shows the model has an
overall accuracy 17.2% (Fig. 4.26). The confusion matrix (Tabl'e 4.31) shows the model most
accurately predicts colony trends. for .moderately decreasing colonies (class 2: 100%) and
moderately increasing colonies (class 4: 100%). Hdwever the low number of data points in these
classes in the test set reduces the reliability of these results. The model fails to correétly predict any

. cells in stable colonies.

Table 4.31: Confusion matrix for cross-validation of the discriminant analysis model predicting
population trends based on colony mean values for the distance of Whitney Pt colonies from Casey.

Observed Trend Class
Class1 | Class2 Class 3 Class 4 Class5 Total

Class 1 (Strong Dec.)|3  (75%)|0 0 0 8 @811 (5.3%)
, Class 2 (Mod Dec.) |0 1 (100%)29 (93.6%)0 47 (28%)77  (36.8%)
’;:ggg"é‘l‘: - [Class3 (Stable) [0 o o "o 44 (262%)44  (211%)
Class 4 (Mod Inc) |0 0 7 (6.6%)5 (100%)42 _ (5%)49  (23.4%)
Class 5 (Strong Inc.) 1 (25%),0 0 0 27 (161%)28  (13.4%)

Total PRE 31 5 168 209
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Fig. 4.25: Predicted population trends for Adélie penguin colonies at Whitney Pt, based on
discriminant analysis of individual cell values for distance from Casey.
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Fig. 4.26: Predicted population trends of Adélie penguin colonies at Whitney Pt, based on
discriminant analysis of colony mean values for distance from Casey.
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4.4.2.2 Shirley I

Ina’ividual Cell Values

A discriminant analysis model was constructed using the individual cell values for distance from
Casey, distance from the sea-ice crossing point and the wind exposure (App. 2). The wind exposure
layer was included as a surrogate for exposure to any potential airborne emissions from Casey, as |
Shirley 1 is directly downwind from Casey. However, wind exposure contributed only a small
amount to increasing the model's predictive power. Cross-validation suggests that this model
predicts population trends with 72.7% accuracy. Validation shows that the accuracy is 72.1% (Fig.
4.27). Distance from Casey is the most important factor in predicting observed colony population
- trends. A discriminant ahalysis model deﬁved from this one parameter, correctly predicts trends for
49.4% of the cells (as shown by cross-validation), compared with 26.8% for Whitney Pt for the
same model. The confusion matrix (Table 4.32) shows that the Shirley I model using all three
parameters most accurately predicfs the trends for moderately increasing colonies (class 4: 100%)

and strongly increasing colonies (class 5: 75.8%).

. Table 4.32: Confusion matrix for the _discriminaht analysis model predicting population trends of
- Shirley I colonies based on individual cells’ distance from Casey, distance from the sea-ice crossing
point and exposure to prevailing winds.

Observed Trend Class

Class 1 Class 2 Class3 |Class 4 . Class 5 Total

Class 1 (Strong Dec.[11 (26.8%)[0 3 (2.2%))0 4 2.3%)18  (4.2%)

) [Class 2 (Mod Dec.) |9 (22%)7 (63.6%)1 (0.7%)[0 0 17 (4%)
Predicted

e Class 3 (Stable) 9 (22%)2 (18.2%)97 (69.8%)[0 o 108 (25.4%)

Cje" Class 4 (Mod Inc.) |7 (17.1%)2 (18.2%)|38 (27.3%)[57 (100%)[39 (21.9%)143 (33.6%)

ass Class 5 (Strong Inc.)|5 (12.2%)0 0 0 135 (75.8%)140 (32.9%)

11 139 57 178|426

Total 41 |

Colony Mean Values

The discriminant analysis model of Adélie penguih colony population trends based on proximity to
human activities based on colony mean values was improved by the distance from the sea-iée
crossing i)oint and the wind-exposure (App. 2). Distance from Casey decreased the predictive
power of the model and was excluded from the final model. Cross-validation shows that the model

correctly predicts the population trend in 36.4% of test cells, while validation with the test set of
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individual cell values shows that the overall accuracy is 40.6% (Fig. 4.28). The model most
accurately predicts strongly increasing colonies (class 5: 75.3%) and least accuratély predicts

strongly decreasing (class 1: 7.3%) colonies (Table 4.33).

Table 4.33: Confusion matrix for validation of the discriminant analysis model predicting
population trends of Shirley I colonies based on the colony mean values for distance from the sea-
ice crossing point and exposure to prevailing winds.

Observed Trend Class
Class1 | Class2 Class 3 Class 4 Class 5 - Total
Class 1 (Strong Dec.)|3 = (7.3%)0 39 (28.1%)0 0 42 (9.9%
Predicted {Class 2 (Mod Dec.) (13 - (31.7%)7 (63.6%)5 (3.6%)0 3 (1.7%),28 (6.6%
Trend Class 3 (Stable) 11 (26.8%)0 19 (13.7%)0 0 30 (7%
Class Class 4 (Mod Inc.) |10 (24.4%)0 - |16 (11.5%)10 (17.5%)41 (23%)77  (18.1%
' Class 5 (Strong Inc.) |4  (9.8%)4 (36.4%)60 (43.2%)47 (82.5%)134 (75.3%)249 (58.5%
Total 41 " 1139 57 178 . |426
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Fig. 4.27: Predicted population trends for Adélie penguin colonies on Shirley I, based on
discriminant analysis of individual cell values for proximity to human activities parameters.
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Fig. 4.25: Predicted population trends for Adélie penguin colonies at Whitney Pt, based on
discriminant analysis of individual cell values for distance from Casey.
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Fig. 4.26: Predicted population trends of Adélie penguin colonies at Whitney Pt, based on
discriminant analysis of colony mean values for distance from Casey.
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Fig. 4.28: Predicted population trends of Adélie penguin colonies on Shirley I, based on
discriminant analysis of colony mean values for proximity to human activities.
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'4.4.3 Decision Tree Analyses

4.4.3.1 Whitney Pt
Individual Cell Values

A decision tree model was constructed with a minimum object size of 50 and with 5 leaves, using
the individual cell values for distance from Casey. Cross-validation shows that the model has an
overall accuracy of 88.9% ahd validation shows that it correctly predicts penguin colony population
trends for 90.9% of test cells. An examination of the decision tree shows three distinct bands. of
cells in class 5 (strong increase), interspersed by a band of cells with stable penguin populations and
a band of cells with mod'erately increasing penguin colony populations (class 4). Both the colonies -
closest to C‘asey and farthest away are classified as class 5 (App. 3). The model most accurately
predicts increasing colonies (class 4: 100% and class 5: 94.1%). It fails to accurately predict the
trends of any decreasing colonies (Table 4.34). However, the small size of the datasets showing

population decreases in the test set reduces the reliability of the model for these classes.

Table 4.34: Confusion matrix for the decision tree analysis predicting population trends of Whitney
Pt colonies based on the individual cells’ distances from Casey.

Observed Trend Class
: Class1 | Class2 | Class 3 |Class 4 . Class 5 Total

, Class 1 (Strong Dec|0 0 0 0 0 0

) Class2 (Mod Dec.) |0 0 0 0 0 0
’T’:zg'd“ed Class 3 (Stable) |0 . 0 27(87.1%)[0 5 (3%)32  (15.3%)
Class Class 4 (Mod Inc.) |0 0 2 (6.5%)5 (100%)5 (3%)12  (5.7%)

: Class 5 (Strong Inc.j4 (100%)]1 (100%)|2 (6.5%)|0 158 (94.1%)165 (79%)

Total 4 - 1 31 5 168 209

Colony Mean Values

- A decision tree based on thé colony mean values for distance from Casey predicted colony trend
with 66.7% accuracy, as measured by cross-validation. The model had a minimum object size of -
two and two leaves (App. 3). Validation with the test set bf individual cell values shows that the -
- model has an overall accuracy of 79.9%. The model (Table 4.35) predicts that the populations of all '
colonies less than.3.3km from Casey are stable (class 3) and the populations of all farther colonies

are increasing strongly (class 5).
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Table 4.35: Confusion matrix for the decision tree analysz.'sv predicting population trends of Whitney
Pt colonies based on the colony mean values for distance from Casey.

Observed Trend Class : .
' Class1 | Class2 Class 3 Class 4 Class 5 Total
Class 1 (Strong Dec.) |0 - 0 |0 0 0 0
. Class 2 (Mod Dec.) |0 0 0 0 0 0

’;: Z:Z"g,‘: « [Class3 (table) [0 1 (100%)21  (67.7%)[0 - 2 (131%)44  (21.1%)
Class4 (Mod inc.) |0 0 0 0 0 0.
Class 5 (Strong Inc.) |4  (100%)|0 10 (32.3%)[5 (100%)[146 (86.9%)[165  (79%)

4 . 1 31 15 168 209
4.4.3.2 Shirley I

Individual Cell Values v

A decision tree model based on the individual cell values for the parameters related to human

proximity predicts Shirley I population trends with 86.5% accuracy, as measured by cross-

validation and 83.8% accuracy, as measured by validation. The tree has a minimum object size of

50 and 11 leaves. The distance from the sea-ice crossing point and from Casey are the most

predictive parameters, with wind eprsure used for two terminal splits in the data. The model uses

interactions between the three variables to separate the population trends (App. 3). The confusion

matrix (Table 4.36) shows the model most accurately predicted trends for increasing colonies (class

4: 87.7% and class 5: 86.5%). It is difficult to interpret the relative importance of the two distances

measures because they covary strongly.

- Table 4.36: 'Confusion matrix for the decisioﬁ tree analysis predicting population trends of Shirley I
‘colonies based on the individual cell values for distance from the sea-ice crossing point, distance .

from Casey and wind exposure.

Observed Trend Ciass

v Class1 | Class2 Class 3 Class4 | Class5 Total '
Class 1 (Strong Dec|27 (65.9%)0 0 0 0 27 (6.3%)
_ Class2 (Mod Dec.) |4  (9.8%)7 (63.6%)1  (0.7%)0 0 12 (2.8%)
;::g:;:red_ Class 3 (Stable) |5 (12.2%)4 (36.4%)119 (85.6%)1 (1.8%)12. (6.7%)141_(33.1%)
frene Class 4 (Mod Inc.) |0 0 4 (2.9%)50 (87.7%)12 _(6.7%)66 (15.5%)
Class 5 (Strong Inc)|5  (12.2%)0 15 (10.8%)6 (10.5%)154 (86.5%)180 (42.3%)
Total 41 11 139 57 |178. 426

119



_ Chapter 4: Results
Colony Mean Values

A decision free model derived from the colony mean values related to human activities predicts
colony trends with 56.8% accuracy, as measured by cross-validation, and 57.3%, as measured by
validation. The tree had a minimum object size of two and nine leaves (App. 3). Distance from
Casey is the most ifnportanf predictor, with wind exposure used for one split in the middle of the
tree. Distance from the sea-ice crossing point was not identified as a predictor of observed colony
-population trends. The model most accurately predicts strongly increasing colonies (82.6%) and
strongly decreasing colonies (class 1: 78.1%). It fails to correctly predict any moderately increasing
(class 4) colonies (Table 4.37). In this model, those colonies less than 855.58 m from Casey are
| predicted to be decreasing moderately, while those furthest from Casey (>1778.12 m) are
decreasing strongly. However, the latter group has an object size of two and is hence too Small to
m.ake reliable assumptions from. Those colonies betweeﬁ 1588.42 and 1778.12 m from Casey are
predicted to be strongly increasing. For those colonies between 855.58 m and 1588.42 m, a
combination of distance from Casey, distance from the sea-ice crossing point and Wind exposure is

used to differentiate the population trend classes (App. 3).

Table 4.37: Confusion matrix for the decision tree analysis predicting population trends of Shirley I |
colonies based on the colony mean values for distance from Casey and wind exposure.

Observed Trend Class
Class 1 Class 2 Class 3 ‘Class 4 Class 5 - Total
Class 1 (Strong Dec.) |32 (78.1%)[3 (27.3%)38  (27.3%)0 28 (15.7%)103 (24.2%)
_ Class 2 (Mod Dec.) [0 5 (@55%)9  (6.5%)0 0 14 (3.3%)
?: i:f‘gis Class 3 (Stable) 9 (22%)3 (27.3%)60  (43.2%)0 3 (1.7%)75 (17.6%)
Class 4 (Mod Dec.) [0 0 0 0 0 0
Class 5 (Strong Dec.) |0 0 32 (23%)57 (100%)147 (82.6%)236 (55.4%)
Total 41 1 139 57, 178 426

The results of these modeis suggest that pfoximity to human activities partially explains the
population trends of Adélie penguin colonies on Shirley I. Distance from Casey appears to have
minimal predictive power for the observed population trends of colonies on Whitney Pt. The very
high values for the decision tree model based on individual cell values (90.9%) appear to be the
. result of “banding” in the colonies, with the strongest population trend increases found in the
colonies closest to and farthest from Casey. Thus, the null hypothesis should be rejected for Shirley
[ but not for Whitney Pt.
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5 Discussion

5.1 The effect of landscape on Adélie penguin distribution in the
Windmill Is

The modelled static landscape parameters have significant predictive power for the presence or
absence of Adélie penguin colonies within the study sites at Whitney Pt and Shirley I. A purely
random classification for two classes could be expected to predict class membership. with
approximately 50% accuracy. Both discriminant analysis and decision trees based on both
1nd1v1dual cell values and colony mean values predict the presence or absence of Adelle penguins in
cells with accuracies far higher than this, suggesting that landscape parameters, as modelled in this
study, are important drivers of Adélie penguin colony locations in the Windmill Is. The results are
strongest for the individual cell analyses and for the decision trees. The parameters associated with
elevation change - slope, surface roughness (standard deviation) and surface roughness
(normalised) — are repeatedly shown to be important predictors of colony locations. Surface
roughness (standard deviation), solar radiation and wind exposure are the most commonly selected:
variables in the discriminant analysis and decision tree models. These all improved the predictive
power of three of the four models. All of the measured landscape variables were used in at least one
of the models, except for the surface curvature layers and aspect, which could not be applied in
discriminant analyses or averaged because of the circular nature of the data. The models predict
Adélie penguin distribution with higher accuracy for Shirley I than for Whitney Pt by 5.4-16.3%. It
is likely that this difference is mostly driven by the difference in the accuracy of the DEMs.

No single static landscape paremeter, apart from the presence or absence of permanent snow, can be
-used to predict the presence or absence of Adélie penguins. Instead, it appears that a complex
interaction of several landscape parameters affect habitat suitability. However, a few generalisations
can be made. Adélie penguin colonies generally do not occur on the steepest slopes, regardless of
éspect, or on moderately steep south-facing slopes with 10w, solar radiation. Similarly, the birds
appear to choose colony sites with moderate levels of wind exposure. Beyond that, simple spatial
rules determining colony locations could not be discerned. The colonies occur on hilltops, valley
bottoms and the sides of hills, fdcing almost all directions, and with varying scores on the wetness

index.
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These results at least partially agree with previous studies into the relationships between static
landscape parameters and the distribution of Adélie penguin nest sites. Snow accumulation has
repeatedly been found to be a significant factor in the distribution of Adéli-e penguins in other parts
of Antarctica (e.g. Levick, 1915; Yeates, 1975; Moczydlowski, 1986, 1989; Trivelpiece and Fraser, |
1996, Fraser and Patterson, 1997; Patterson et al., 2003).

This study is the first to compare the observed distribution of Adélie penguin colonies with snow
distributions derived from a spatial, physically-based blowing snow model. Historically, studies
investigating the relationship between colonies and snow cover have relied on observations or direct
méasurements of snow depth in or near colonies on a given date. These approacheé were unable to
account for spatial variability within and among colonies, or to account for tempo.ral changes in
snow cover. A more spatially—exblicit approach was taken by Patterson et al. (2003), who used a
GIS hillshade model as a surrogate for snow accumulation. As has been discussed earlier in this
paper, that approach was more directly a surrogate for exposure to prevailing winds. Wind exposure
is not the same as snow accumulation, as may be highlighted by considering the case 6f a concave
cliff that faces prevailing winds. The area at the base of the cliff is likely to accumulate snow (this
can be seen near colonies I-IV at Whitney Pt, P.K. Bricher, pers. obs.), but a hilishade model would
display that area as highly exposed to the prevailing winds, and hence likely tb be free of snow.
However, there is a strong correlation between wind exposure and modelled snow accumulation,

and it is therefore dlfﬁcult to separate the relative effects of each parameter

Ainley (2002) proposed that Adélie penguins typically nest on ridges and on higher ground. He did -
- note that where they nested in singie—species colonies, they are found closer to sea-level. Similarly,
Wilson et al. (1990) found that Adélie penguin colonies occur on well-drained mounds. This study
found that Adélie penguins nest at all elevations in the study sites, although they appear to occur in
altitude “bands”. This may be because the terrain in the Windmill Is is dominated by plateaux and
low cliffs..There was no evidence that Adélie penguins nest only on'ridges. While many colonies on
Shirley I and at Whifney Pt do occur on ridges, others occur in valley bottoms and at the bases of
hills. Profile and planar curvature, which are measures of the shape of a slope were repeatedly

found not to improve the predictive power of the distribution models.

Yeates (1975) found that Adélie penguins select nest sites with the highest solar radiation and wind

exposure measures. In the present study, the highest modelled solar radiation levels were found on
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ﬁorth—facing sldpes (Fig. 4.4), and the highest wind exposure on south-east facing slopes (Fig.
4.10). An examination of the scatterplots of solar radiation and wind exposure showed that, Ad¢lie
penguin colonies did not occur at sites with either the highest or the lowest solar radiations,
especially at Whitney Pt. Instead, they were clustered in sites with modelled annual.solar radiation
- values between 3200 and 3700 MJ/m?, on a scale of 2500 to 4000 MJ/m?. In addition, the colonies
were clustered on sites with moderate wind exposure. Based on the ’re’sults obtained in this study, it
appears that in the Windmill Is, Adélie penguins select nest sites that balance their requirements for
sites with at least moderate levels of solar radiation and that are moderately eXposed to prevailing

winds.

Moczydlowski (1986; 1989) found that high levels of solar radiation and good drainage were
common features of all Adélie penguin colonies on the peri-Antarctic South Shetland Is and that
whille colonies were located in the sites with the thinnest snow cover, they did not occur in the most
exposed sites. In the present study, drainage appeared as a predictive factor in three of the four
distribution models based on mean values, but it did not incréase the predictive power of the other '
models. It is possible that drainage is less important as a predictor of Adélie penguin habitat in the
. Windmill Is, which have a drier continental Antarctic climate, than it is in wetter, maritime peri-
Antarctic regions. It is also likely that the wetness index values are more suscebtible to the effects .
of within-colony spatial autocorrelation than other variables. The results of the preseﬁt study also
agreed with Moczydlowski's finding that Adélie penguin colonies do not occur in the sites with the
_highest wind exposure. An examination of scatterplots and histograms of the wind exposure data for
both study sites showed that the colonies were clustered in sites with medium levels of wind

exposure.

The techniques applied here allowed an objective analysis of the spatial variability of all the
modelled static lanﬁscape variables, whereas previous studies have typically relied on subjective
descriptioné or individual measurements of the variables in a low number of colonies. The
multivariate models developed in this study are able to predict the presence or absence of Adélie

venguin nests within a 4m’ grid cell with up to 84.5% accuracy.
pengu _

5.2 The effect of snow accumulation patterns on Adélie penguin colony
population trends in the Windmill Is

On the Antarctic Peninsula, snow accumulation patterns have been found to be important predictors
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of Adélie penguin colony population trends and of colony distributions (Fraser and Patterson, 1997;
Pafterson et al., 2003). Results from this study support those findings. At Whitney Pt, the modelled
snow accumulation and wind exposure layers explain much of the variation in colony population
trends. These layers have less predictive power on Shirley I, where proximity to human activities

explain a large proportion of the variation on colony population trends (see section 5.4).

At Whitney Pt, the colonies with strong population increases (>150% of the 1959 population) are
associated with the thinnest modelled snow cover, while stable colonies are found in areas with
thicker snow cover. For the individual cell values, colonies of all population‘trend classes are
associated with areas with minimal changes in the modelled snow cover between 1959 and 2005.
However, the- colony mean values of colonies with the strongest decreases (<50% of the 1959
populatibn) are associated with the areas showing the greatest increases in snow accumulation.
Given the small sample size for decreasing colonies on Whitney Pt, this result should be interpreted

cautiously. The snow accumulation data for Shirley I do not show such obvious trends.

The Whitney Pt results agree with the findings of Patterson et al. (2003) who found that exposure to -
prevailing winds acted as a primary driver of colony population trends. Their study was conducted
in an area where increasing mean temperatures led to increased snowfall. In the Windmill Is, little
attentidn has been paid to potential climate change, and the modelled change in snow cover in this
study suggested that there was little broad-scale change in snow accumulation during the period
~under examination (1959-2005). This suggests that a broader process is driving the overall increase
in Adélie penguin numbers for the Windmill I's, but that snow accumulation may mediate that

increase in individual colonies, at the site furthest from human activities.

5.3 The effect of proximity to human activities on Adélie penguin
- colony population trends in the Windmill Is
‘Distance from Casey has some predictive poweri for the population trends of colonies at Whitney Pt.
The discriminant analysis based on individual cell values predicts colony trends with 26.7%
accuracy, a small but significant effect. In contrast, the decision tree based on individual cell values
predicts trends with 90.9% accuracy — a highly significant result. This highlights the differing
assumptions of discriminant analy'sis and decisior trees. As a parametric test, discriminant analysis
assumes that the values of all points in a class will be clustered around a single value. As a non-

parametric test, a decision tree is able to cope with multimodal data, such as those observed at
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Whitney Pt. The decision tree identified three distinct “bands” of colonies that had strongly
increasing populations. These bands were interspersed by a band of colonies with moderately '
increasing populations and a bahd of stable colonies. The fact that the colonjes both closest to and
farthest from Casey have strong population increases suggests that some other environmental factor,

that is not accounted for here, is causi_ng bands of terrain with different levels of suitability.

Shirley I is much closer to Casey, is regularly visited by station personnel and is immédiately
downwind of Casey. At this site, pfoximity to human activities has muph greatér predictive power
for colony population trends than at Whitney Pt. Wilcoxon tests show significant differences among
population trend classes for‘distance from Caséy and from the sea-ice crossing point used by
personnel to access the island. These differences are significant for both the individual cell values
“and the colony mean values. It is difficult to separate the effects of these two variables because of
the strong correlation between the distance from Casey and distance from the sea-ice crossing point.-
Wind exposure, which acts as a surrogate for both exposure to prevailing winds and to possible
exposure to noise and particulates from Casey, has little predictive power compared with the -

distance measures.

The results of the analyses based on indfviduél ceil values are stronger than those based on colony
‘mean values for Shirley I. The discrimiﬁant analysis based on individual cell Values has an overall
accuracy of 72.1%, compared with 40.6% for the discriminant analys.is based on colony means.
However, spatial autocorrelation is likely to have affected the results of the models based on
| individual cell values. The predictive map (Fig. 4.32)_'derived from the discriminant analysis based
on individual cell values, shows that the model strongly predicts the trends of the large colonies at
the western end of the island, but poo’riy predicts the trends of smaller colonies in other parts of the
island. Tﬁe predictive map (Fig. 4.33) derived from the discriminant analysis based on colony mean
values shows that this model more accurately predicts the trends of smaller colonies at the eastern
end of the island. The difficulty in applying decision tree results in a GIS precludes a visual
assessment of the performance of the decision tree models. Using the more conservative results of
the models based on colony mean values, the discriminant analysis has approximately twice the
predictive power that a purely raﬁdom classifier might be expected to have (40;6%, compared with
20%). The decision tree has almost three times-the predictive power than it would if proximity to
human activities had no effect on Adélie penguin colony population trends (57.3%, compared with

20%).
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It is difficult to determine whether the distance from Casey or the distance from the sea-ice crossing
point is» the most significant factor iﬁ explaining pengu.in colony population trends on Shirley I for
the period 1968-2005, because of correlations between these two variables. As a result, their
relative importance varied among the models. Therefore, these results should be interpreted with
caution. While these results suggest that proximity to human activities is a significant driver of
Adélie penguin colony population trends, further investigations are required to separate thé effects
of station-related activities, such as noise and particulate emission, and the effects of visits to the

colonies by station personnel.

Previous studies into the effects of human activities on ‘Adélie penguin population trends have
produced site-specific results. The results of the pfesént study at least partially support the
proposition of Woehler et al. (1994) that visits by station personnel bappear to cause decreases in
populations among some Adélie penguin colonies on Sﬁirley I. A similar situation was found at
Cape Bird, Ross I (Young, 1990) where Adélie penguin colonies close to the research station
-underwent signiﬁéant population decreases at a time when the overall penguin population was

increasing.

Giese (1996) reported significantly lower breeding success in Adélie penguin colonies that had been
| subjected to daily recreational visitors or to regulz;r scientific nest-checks. She concludéd thét the
frequency of disturbance drove the magnitude of the decrease in breeding success. Giese's study
wasvcond.ucted in a breeding locality that had been little disturbed by previous human activities. In
contrast, Patterson et al. (2003) investigated colonies on Torgersen I, near Palmer on the Antarctic
Peninsula that had beeﬁ regularly visited by tourists and researchers for many years.. They found
that tourism. had no detectable effect on Adélie penguin breeding population size or breeding
success. Similarly, Fraser and Patterson (1997) had found no correlation between Adélie penguin

population trends and human-use histories of breeding localities near Palmer.

Studies of the effects of proximity and/or exposure to human activities on the breeding success and
population trends of Adélie penguins have also examined the effects of habitat modification on the
birds. At Cape Hallett, Wilson et al. (1990) found that Adélie penguin populations decreased during
the period in which the station was inhabited, and that they subsequently returned to the numbers

present before human occupation, once the station had been abandoned. It is difficult to separate the
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effects of habitat modification from the effects of visitation or disturbance associated with station -
activities when hébitat modification directly impacts on nesting habitat. At Dumont d'Urville, Terre
Adélie, Micol and Jouventin (2000) found that Adélie penguin numbers had incréased by 49% in 14
years, despite the destruction of some colonies for the construction of a runway that spanned three
islands. They found above-average popnlation increases (154%) on the Ile des Pétrels, where the
station is located. Thé largest population increase (826%) over the same time period was found in
the breeding locality farthest from the station, at Cap Géodésie. However, extensive habitat
modification on islands around Dumont d'Urville makes it difficult to draw conclusmns about the

effects of proximity to human activities on these penguin populatlon trends.

From these studies, it appears that the effects of proximity and/or exposure to human activities are
determined by a combination of the types of activities involved and the history. of interactions -
between humans and Adélie penguins at a given site. They may also be confounded by
environmental trends at regional scales. The results of this study suggest that in the Windmill Is,

proximity and/or exposure to human activities may play a sngnlﬁcant role in mediating the observed
long-term increases in Adélie penguin numbers. Of the colomes for which long term census data
are available, the majonty of colonies with decreasing populatlon trends are located on Shirley I,
which is the closest breeding locality to Casey (Wo‘ehler et al., 1991). On Shirley I, discriminant
analysis and decision tree models based on proximity and exposure to human activity data predict

population trend classes with a'high degree of accuracy (40.6%-86.5%).

5.4 How this study bompares with other GIS-based habitat analyses

The majority of 'GIVS-based habitat analyses have focused on mapping or predicting the distribution
of a species (Guisan and Zimmermann, 2000; Lenton et al., 2000; Osborne, Alonso and Bryant,
2001; Lauver, Busby and Whistler, 2002; Gibson et al., 2004). Typically they have not investigated
temporal changes in habitat suitability (Curnutt et al., 2000). The present study was able to do this
because of the relative ease with which current and nelic Adélie penguin colonies can be mapped,
and because of the existence of 'long-term population data for Adélie penguin colonies in the

Windmill Is.

A common problem in-habitat suitability analyses is that it is rarely possible to determine that a site

lias never or will never be used by the species under examination (Breininger et al., 1991). In the

127



Chapter 5: Discussion
present study, it was possible to determine which sites have been used in the past because relic
Adélie penguin colonies are relatively easy to map. However, this does not preclude the possibility
that other suitable sites are available that have not yet been exploited by the birds. Fielding and Bell
(1997) warned that interference will occur in a model if a species is nnt using the entire available
suitable habitat. It is likely that this is the case in the Windmill Is, as evidenced by the high
proportion of recently established colonies at Whitney Pt on sites that had no evidence of previous
habitation (Martin et al., 1990). The strength of the predictive power of the distribution models in
the. present study was similar to the results of other GIS-based habitat analyses (e.g. Aspinall and

~ Veitch, 1993; Debinski et al., 1999; Guisan and Zimmermann', 2000; Osborne et al., 2001).

Most habitat analysis studies have uséd just one multivariate staﬁstical teéhnique (e.g. Debinski et
" al., 1999; Patterson et al., 2003; Gibson et al., 2004). This study followed the example of Blackard
and Dean (1999), Manel et al. (1999) and Guisan and Zimmermann (2000) and applied two
different statistical techniques, with differing underlying assumptions. The discriminant analyses
and decision trees produced similar results for each of the models, .except in the cases outlined
earlier in this discussion. The fact that different inputs were selected for the different models .
suggests collinearities between some of the data, and the use of two different tests enabled
confirmation of the results and the identification of wéaknesses in the models. The data used in this
study violate the assumption of normality, as well as assumptions about equality of variance and of
covariance matrices (Flury and Riedwyl, 1988) that nnderpin discriminant analysis. Although it has
been argued that violations of the normality assumptions of discriminant analysis have appafent
minimal effect on results (Blackard and Déan, 1999), it was considered appropriate to compare the
results of disciminant analysis models with the non-parametric decision tree analysis. The results
show that the non-parametric decision trees havé sfronger predictive power than the parametric

discriminant analyses.

This study used advanced GIS habitat analysis techniques, including complex models and
multivariate statistical tests. It used two différent multivariate modelling methods, and used ccilony
mean values to eliminate the effects of within-colony spatial autocorrelation. This study therefore
accounted for potential artefacts of the methods . that have often been ignored in previously
published studies (Legendre, 1993; Guisan and Zimmermann, 2000). Howevér, it does not
~ eliminate among-colony spatial autocorrelation, and this is an area for future investigation

(Legendre, 1993).
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5.5 Limitations on the study

The results of the anélyse"s based on DEM derivatives for Whitney Pt are less reliable than those for
Shirley [, because the accuracy of the- Whitney Pt DEM was severely limited by the snow cover in
the available aerial photograph. The DEM had a mean height accuracy of +2m for areas of exposed
rock and +6.6m for snow-covered areas. This, in turn, affected the reliability of the DEM
_derivatives. It is likely that the large differences in the predictive power of the models of Adélie.
penguin colony distribution between Shirley I and Whitney Pt are caused by the greater errors in the '
Whitney Pt DEM. The Shirley'1 DEM was much more accurate, but was affeéted by the
“smoothing” effect where stereo-models overlapped. This effect was reduced in the interpolated
DEM that was used for the analyses. The effects of these errors on the analyses were
unquantifiable; however, it was considered that they were less severe than the errors in the Whitney
Pt DEM. As outlined in Sect_ion 6.2, better aerial photography would greatly reduce the errors

resulting from positional uncertainty in the DEMs.

3

The Adélie penguin population tre_ﬁds were calculated from the changeé between counts conducted
in two breeding seasons (1959/60 and 2005/06 for Whitney Pt and between 1968/69 and 2005/06
for Shirley I). These calculated trends were potentially affected by counting errors and by data
aliasing issues associated with interannual fluctuations in breeding pair numbers. However, an
examination of the plotted long-term trends showed a strong agreement with the calculated trends
for these colbnies. In addition, the general trends for the population trends are. wéll-kn(')wn (Woehler
ef al., 1991; Woehler et al., 1994). Trends in colony populations were categorised into five classes.
'Doing this increased the power of the resulting statistical analyses, but reduced the sample size and
concorﬁitant degrees of freedom. Classifying the data into- regularly-spaced classes allowed
éomparison of “like” population trends, but it resulted in small sample sizes for some classes of
data. This was especially so for the moderately increasing class (class 4), and made interpretation of

the multivariate models difficult for these classes.

The boundary cells of curfént and relic Adélie penguih colonies were removed from the analyses
becéuse of the positional uncertainty of the colony boundaries. This ensured that all cells described
as having Adélie penguins present represented actual penguin colony habitat. However, it reduced
the number of data points in the analyses and resulted.in some very small colonies being entirely

excluded from the analyses. It is possible that the landscape properties of these small colonies are
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different to larger colonies. It is also possible that the effects of environmental or human-related
stressors are more severe for these small colonies, as has been shown in other parts of Antarctica

(Giese, 1996; Patterson et al., 2003).

The solar radiation model was a measure of pdtentiél, rather than actual solar radiation, and was
hence unable to account for the effect of cloud cover on actual rgdiatiori. As the PotRad model used
here was designed for use in the tropics, it did not account for the high albedo of snow and ice
present in the Antarctic‘(vain Dam, 2001). Thus, it is possible that the model underestimated the
total solar radiation for south-facing slopes. However, the results of the models here agree with
findings in other parts of Antarctica, where Adélie penguin colonies were found not to occur on the
sites With_ the lowest solar radiation (Moczydlowski, 1986; 1989). The solar radiation model used in
this study proved to be an important predictor of the distribution of Adélie penguin colonies, even if
it did not show actual solar radiation levels. The model could be tested by comparing its modelled

results with pyranometer observations along transects at the study sites.

The NCEP/NCAR weather reanalysis data were produced for a grid point located 63.ikm to sea off
Casey. Thus, the effects of local topographié features in mediating the weathef conditions at the
| study sites could not be exarhined in this study. It has also been argu.ed elsewhere that the paucity of
weather observations in the Southern Ocean reduced the accuracy of the reanalysis data for
Antarctica (Hines et al., 2000). The sensitivity of the> snow accumulation model to_different weather
data input could be tested in the future by comparing ‘results of a snow model based on
NCEP/NCAR data with one based on Bureau of Meteoroiogy observations for yearé where both

sets of data are available.

The snow accumulation model produced maps of relative spatial patterns of snow accumulation,
rather than numerical results of snow depths. It was not validated with ground-truth data, and so the
modelled snow distribution cannot be assumed to répresent actual snow distribﬁtion. Snow
accumulation patterns have long been: known to be important drivers of the distribution and
population trends of Adélie penguin colonies in the Antarctic (e.g. Levick, 1915; Moczydlowski
1986, 1989; Fraser and Patterson, 1997; Patterson et al., 2003). However, GIS-based snow
- accumulation models are rare and often rely on input data that is not available for Antarctic
environmenfs (Lisfon and Sturm, 1998). Although no snow accumulation model can expect to

capture all of the physical processes associated with snow transport, the model used in this study
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showed strong visual agreement with observed snow patterns and with Adélie penguin colony

~ distribution and population trends (Greene et al., 1999).

The disériminant analyses were likely to be adversely affected because some of the data violated the
assumptions of normality, independence of variables and equal variance that underpin discriminant
analysis (Flury and Riedle, 1988). Other multivariate statistical techniques, such' as logistic
regression, that do not make the same assumptions could have been used more effectively here.
Because of the data violations of the discriminant analysis, it was considered appropriate to repeat
the analyses using decision tree models. Decision trees are capable of handling data that are not
normally distributed. The resulting models consistently had stronger predictive power than the
discriminant’analyses, but could not be readily applied in a GIS. Both of the study sites consisted of
several hundred thousand cells, and it was unWieldy to produce predictiohs for each cell in Weka.
“To implement the models in ArcGIS would have involved complex sets of nested conditional
statefnents. This was a major limitation to the study, as the models with the greatest predictive
power could not be explored spatially. Hdwéver, there is potential for a tool to be developed to

enable the implementation of decision trees in a GIS environment.
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6 Conclusions

6.1 Conclusions of the study

This study used édvanced GIS-based analysis and multivariate statistical techniques to investigate
factors that affect the distribution and populatioh trends of Adélie penguin colbnies within bfeeding
localities. Landscape parameters were derived from fine-scale DEMs, and a physically-based snow
acéumulation model was used to simulate the pattems. of snow cover. Discﬁminant analysis and
decision tree analysis were used to construct predictive. models of distribution based on static
landscape parameters, and of population trends based oﬁ parameteré associated with snow

accumulation and proximity to human activities.

This study showed that landscape parameters can explain much of the distribution of Adélie
penguin colonies within breeding localities in the Windmill Is. In particular, slope, surface
roﬁghness, wind exposure and solar radiation were found to have the greatest predictive power for
Adélie penguin colony distribution. Further, the study showed that at Whitney Pt, which is 3km
upwind of Casey, parameters a;ssociated.with snow accumulation patterns ‘can explain much of the
variation in population trends. At Shirley I, proximity to activities associated with the station
explained much of the variation in population trends, with snow accumulatlon having reduced

predictive power.

The .distributio‘n analysis displayed a general agreéme'nt with the findings of previous Adélie
penguin habitat analyses, in that the penguins chose to nest in areas with modelled high solar
radiation, thin snow cover and with moderate exposure.to prevailing winds. However, it also found
that the distribution of Adélie penguin colonies at Whitney Pt and on Shirley I could not be easily
explained by general rules dr by the values of a few static landscape parameters, as has been
previously suggested (e.g. Moczydlowski, 1986; 1989). The colonies occurred on slopes facing
every compass direction; in the bottoms of gullies and on the tops of ridges; in sites with all but the
lowest modelled solar radiation and on all but the steepest or roughest ierrain. The distribution of

colonies appeared to be governed by a complex interaction of landscape parameters.

The analyses of the effects of snow accumulation parameters on Adélie penguin colony population
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trends for Whitney Pt showed strong agreement with the findings of Patterson et al. (2003). At
Whitney Pt, as on the Antarctic Peninsula the colonies with the highest modelled levels of snow
accumulation and lowest wind exposure had the strongest decrease in population. However, at
Shirley I, the snow accumulation layers had much less predictive power for Adélie penguin colony
trends. There, the layers showihg proximity to human activity had much more power to explain
observed population trends for colonies than the snow accumulation layers. It appears that at
Shirley I, local effects associated with Casey explain a large amount of the variability in population -
trends of colonies. Further research is needed to inQestigate potential causative factors, as it is
unclear whether the observed effects are the result of human visits to colonies, emissions from
Casey, some combination of these or another cause. However, this study demonstrated that the
effects of natural climate variability can be mediated at a local scale by proximity to human

activities.

6.2 Future directions for research

Aerial photography

One of the major limitations on the accuracy and reliability of the data layers used in this study was
imposed by the accuracy of the DEMs .that could be constructed from the available aerial
photography. It is believed that the difference in the predictive power of the distribution models for
Shirley I and Whitney Pt was caused by the difference in the accuracy of the DEMs. Better aerial
“photography for both s'i.tes — with the same ép'atial resolution and taken on days with minimal snow
cover — would improve the accuracy of the resulting DEMs and the DEM derivatiﬂles. In addition,
the existing aerial photographs of Shir]ey I could be used to produce very fine resolution DEMs for
small areas of the island, which would enable the investigation of the effect of microtopography on

Adélie pénguin colonies.
Sample size

This study examined distribution and population trend data for approximately 80 colonies in two .
breeding localities. The number of colonies included in the study enabled the data points to be
replicated to account for local effects. HoWever, the analyses could be repeated for other locations
in the Windmill Is and elsewhere to test the applicability and generality of these results. In addition, -

examination of the effects of the landséape,-snow accumulation and proximity to human activity
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parameters at different spatial and temporal scales could improve understanding of the processes

involved.
Statistical improvements .

- This study attempted to account for the effect of spatial autocorrelation by building predictive
models on colony mean values as well as individual cell values. Future research could investigate
the use of more sophisticéted statistical methods to account for spatial autocorrelation. Different
classification methods for population trends could produce more equal class-sizes, and hence avoid
creating classes which could not be adequately examined in some of the models. The use of logistic
regression, rather than discriminant analysis, would make fewer assumptions about the underlying
structure of the data and would hence be mofe robust. Decision trees produced statistically-robust
models, but cannot be readily applied in a GIS, without writing specific scripts, a task that is
beyond the scopé of this study. It would be worthwhile to develop a tool to readily translate the

results of a decision tree into a format that could be applied in a GIS to produce predictive maps.
Human impacts

Given the increasing human_presence in Antarctica, it is important to identify potential impacts on
Adélie penguin populations. In particular, there is a need to separate the effects of natural variability
from anthropogenic variability. This study identified significant relationships between proximity to
human activities and Adélie pe.nguvin population trends. Further investigation of these results may
>involve examination of the full spectrum of station activities, including visits to Adélie penguin
colonies by station personnel and station emissions such as noise, particulates and sewage, in a bid

to establish causative relationships.
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Narcissus: Adélie penguin on Shirley I, January 20035.
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Appendix 1

Appendix 1: Summary Statistics

- Summary statistics for Whitney Pt Adélie penguin colony distribution

[ELEVATION_ WIND EXP_PLAN __PROFILE_ROUGH NORM _ROUGH STDEV_SLOPE_SNOW 2005 SNOW DIFF_SOLAR _WETNESS

MEAN 14.89] . 57.27 0 0 2.31 0.36) 0.2 0.5 0.04] 3159.58 4.32

MEDIAN  14.62 57 0 0 1.73 v 032 - 01§ - 0.3 0.08| 3154.47, 3.80

Colonies MIN - 3.99 of 054 0.83 1.54 0.03 i 0 2.64] 1719.34 1.82
o Y33 2082 . 175 0.83 0.62 351.47 167 092 _ 8.74 2.9] 4022.13 12.9 .

nividual Ceil ST DEV 1567.9]  1592.38] 1716.45 1729.66 6.14 6.13-  6.12 057 068 1503 - 1502.11f
Valiss _KURTOSIS 0.49 0.08] __13.89] . 13.89 1093.5) 441 2.88 39.06 5.99 0.13 . 2.89)
MEAN 16.74) 60.54 0 0 2.06 0.54) 0.9 0.64 0.01] 3061.2 2.07]

_ MEDIAN 16.4] 57 0.01 0 17 0.43 0.2 0.38 0.07] 3197.79 3.72

Control MIN 5.85 0 0.84 -1.06 1.57 0.05) _ 0.02 0 7.7 132421 1.9

Plots [MAX 27.36 198 1.07 0.74 22.7) 2.9 1.35 11.77 5.22] 4044.05 10.18)

5T DEV 3.93 -  49.06 0.13 0.17 1.46 0.36] 0.2 1.08 0.89] 606.51 1.63

KURTOSIS 0.02 20.32 9.09 8.75 77.26] 2.68 __ 3.39 52.21 2839 -0.19 1.49

MEAN 16.49 61.79] 0 — 0 — 2.8 0.4, 0.2 > 0.46| 0.06] 3135.79 7.29

MEDIAN 15.58 58.93 0 0 1.8 0.39] 0.29 0.35 0.03] 3099.24) 4.14

NN 6.22 13.13 0.1 013 —1.62 0.12]  0.01 i 0 20.68] 24469 2.75

Colonies 7y 29.24 128 0.1 0.11 21.04 0.85|  0.4§ 1.63 0.79] 3824.11 7.91

ST DEV . 5.75 30.93 0.04) 0.05 3.76 0.15 _ 0.09 " 0.38 0.34] 327.82 0.97

Mean Values KURTOSIS 0.1 0.74 1.18] 1.1 18.14 103122 1.89] 0.4 -0.35 4.44
MEAN 16.75 60.52 0 0 2.06 0.54 0.3 0.64 0.01]_3061.47 4.07]

MEDAN 16.32] 57.86 0 0 1.86 0.47] _ 0.25 0.55 0 3183.4 .15

Control [MIN 7.58 o -0.13 0.13 1.64 0.16] _ 0.09 0 1.41] 1813.2 2.21

Plots [MAX 26.6 174.84 0.07 0.09 4.13 153 0.91 3.91 0.76] 3824 5.06)

: T DEV 3.86 3068 0.03 . 0.04 0.51 0.31 _ 0.18 - 0.65 0.41 517.5 0.65

URTOSIS 0.06 0.53 5.79 2.13 5.8 2.16] 345 15.22) 29 037 1.14)
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- Summary statistics for Shirley | Adélie penguin colony distribution

[ECEVATION_WIND EXP_PLAN___PROFILE_ ROUGH NORM_ROUGH STDEV_SLOPE SNOW 2005_SNOW DIFF_SOLAR__WETNESS
MEAN 20.7 50.37 0 0 167, 0.15__ 0.09 0.92 0.2] -3382.48 5.59
MEDIAN 15.55 50 0 0 1.64) 013 0.08 0.58 0.09] 3381.23 5.22
Colonies MIN 313 o 2007 20.05 1.59) 0.01 a 0 4.72] 2958.55 2.86
MAX 35.46 101 0.04 0.07 5.96 0.4 0.29 14.05 8.04] 3769.61 12.27]
hnaivicuar cenl 5TDEV . 10.18 15.18 0.01 0.01 0.17 0.07 _ 0.05 1.62 0.84]  120.37 1.59
Vahos KURTOSIS .77 085 3.2 3.92 411.32 0.06_ 006 24.12 21660 0. 2.38
MEAN 14.43 98.77 0 0 7.69 0.27  0.17 1.03 0.02] 3330 5.21|
MEDIAN. 11.28 28 0 0 1.64 0.22] 0.3 0.36 0| 3300.12 2.94
Control MIN 1.51 o 0.09 0.16 1.58 0.01 d 0 -9.22] 2377.26 1.89
Plots [MAX 34 153 0.06 0.09 9.67 134 0.82 20.6 7.22] 4120.81 15.38
5T DEV 9.04) 32.48 0.01 0.02 0.29 022 013 2.41 1.14] 310.99 1.57
- [KURTOS 1S 1.28 .68 4.31 2.18 ~307.32 4.48] 2914 25.74 29.14 __ 0.28 5.0}
MEAN 17.24) 45.41 0.01 0.01 Nl 0.15___ 0.09 1.43 0.26] 3385.16 5.0
MEDIAN 12.48 46.57] 0 0.01 1.66 0.14 _ 0.09 0.74 0.02] 3384.63 4.93
~ MN 32 3 003 0.01 1.63 0.04 _ 0.02 o . 1,99 3043.7 3.56
Colonies [2% 33.14 85.17 0.01 0.04 2.12 0.34 0.1 8.86 “4.77] 3698.97 7.67
5T DEV 10.9 15.08 0.01 0.01 0.09 0.07__ 0.04 2 0.89] _139.78 0.8
Mean Values KURTOSIS 172 0.48 0.91 3.56 8.91 0.2 0.1 5.23 1247015 0.63
MEAN 14.74 46.92 0 0 1.69 0.27] 0.1 1.06 0.03] 3337.62 5.21
MEDIAN 11.72 48.22 0 0 1.65 0.21 _ 0.13 0.59 0] 3298.62 5.08
Control N 2.62 o 20.02 0.02 1.63 0.03  0.02 0 199 2619 317
Plots [MAX 32.16 111.71 0.01 0.03 2.06 111 0.68 5.48 1.02 4047.78 9.1
5T DEV . 9.1 29.99 0.01 0.01 0.09 0.2 0.12 1.35 0.5 292.99 113
KURTOSIS -1.38 0.76 0.57 0.94 5.3 49 487 5.56 4.91 0.48 1.43
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Appendix 1

Summary statistics for Whitney Pt Adélie penguin colony
population trend classes

SnowDiff Snow2005 WindExp Casey Dis
MEAN 0.22 0.47 77.69 3464.04
MEDIAN -0.47 0.6 81 3465.6
- TREND 1 [MIN ' 0.52 0.12 47 3450.77]
(n=13) - |MAX 0.67 0.67 89 3471.59]
STDEV ~0.42 0.21]  12.63 6.25
KURTOSIS -0.76 -1.18 2.01 0.87]
MEAN 0.29 0.3 85.75 3266.85
MEDIAN 0.24 0.25 86.5 3267.1
TREND2 [MIN ~ 0.13 0.16] - 64 3264.1
(n=8) |MAX 0.47 0.47 100 3268.12
STDEV - 0.17 0.16 10.75] ©  1.48]
KURTOSIS -2.51 -2.47 2.03 0.14
MEAN -0.01 1.21 20.38 3316.45
INDIVIDUAL MEDIAN 0.1 0.41 19| 3300.81
CELL TREND 3 [MIN : -2.48 0 0 3262.27
VALUES (n=141) = |[MAX 1.51 8.74 110 3615.75)
STDEV 0.49 2.14 21 60.81
KURTOSIS 4.43 4.77| 3.34 11.87
MEAN 0.31 1.21 38 3544.39
MEDIAN -0.05 0.54 30] 3544.13
TREND 4 [MIN 215 0 0| 3540.56]
(n=29) [MAX 0.85] - 5.51 120 3549.1
STDEV 0.9 1.78 37.3 2.52)
KURTOSIS 0.12 2.58 0.86 -0.88]
MEAN 0.07 0.37 61.81] 3420.52
" [MEDIAN 0.1 0.28 61 3415.65}
"TREND 5 |MIN _ -2.64 o - 0 3270.39
(n=847) |MAX 2.9 5.56 175 3665.54]
STDEV 0.47 0.39) - 30.9] 109.04
KURTOSIS 7.04 46.7 0.51  -1.19
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L SnowDiff |Snow2005|WindExp |lce Dist |Casey Dis{
- MEAN 0.41 150 46.60 61004  1350.6|
MEDIAN 0.02 071  47.83  679.26| 1446.5g||

' MIN 1.99 0 20| 159.82]  857.3
TREND 1 /MaX 477 _ 8.86| 74.33 978.32 1766.43
STDEV 1.46 233 1653 227.03 _ 285.58
KURTOSIS 6 6.84 -0.56 0.2 -0.69

MEAN 0.42 0.83 4128 . 4061 108085
~ [MEDIAN 0 0.04 4016 333.47]. 997.84)

MIN 001 - 0o - 272 22003 818.71

TREND 2 1yjax 216 284 5233 674.22 1440.85
STDEV 0.81 121 768 191.45 278.62

KURTOSIS 279078 099 163 211
MEAN 0.07 106 48.23  546.52 1277.58)
| MEDIAN ~0.01 0.02 455 58823 1341.73
VMEAN MIN 1.72 o 1518 221.62]  849.4]
ALUES | TREND3 roax 0.6 824 8517 760.04 1546.64]
STDEV 0.65 267 1975 170.97]  255.05
KURTOSIS 6.83 8.05 1.03 0.03 o

MEAN 0.02 121 3058  812.86 1602.67

MEDIAN 0.02 121 3058  812.86 1602.67

MIN 20.03 1.19 3 773.68 15636
TREND 4 1yjAx 0.07 122 58.15| 852.03 1641.66)
STDEV 0.07, 0.02 39 55.4 55.14]

KURTOSIS |N/A NA  INA N/A N/A

MEAN 231 231 42.24]  744.00 1523.60)
MEDIAN 1.77 1.77] 4525 861.67 1649.53

MIN 0.71 071 1433 196.68] 949.2

TREND S f1ax 5.89 589 6352 930.09 1718.65
ST DEV 1.7 170 1377 23549 251.34
KURTOSIS 0.69 0.69 1.18 2.58 2.23}
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Summary statistics for Shirley | Adélie penguin colony
~ population trend classes

. _ SnowDiff Snow2005 WindExp Ice Dist  Casey Dist |
MEAN - 0.18 - 1.02 44.56  607.05 1338.53
MEDIAN ' 0.02 0.32 .45 678.73 1443.92
TREND 1 [MIN -2.68 0 9 150.33 840.92
(n=188) |[MAX 4.77 12.37 82 1108.34 1896.8
ST DEV 0.92 1.83 15.96 266.26 329.4]
KURTOSIS 6.61 16.29 -0.37 -1.08 -1.33%
MEAN 0.12 0.38 40.49 312.81 942.43
MEDIAN 0 0 40  242.95 823.86]
TREND 2 [MIN -1.46 o 16 149.31 791.25{
(n=117) |MAX 2.16 3.84 64  828.61 1610.33
STDEV 0.6 0.93 7.258 - 180.7 246.29]
KURTOSIS 4.67| 6.92 . 1.27 1.48 1.39]
MEAN 0.19] - 1.02 52.88  690.02 1466.4
INDIVIDUAL MEDIAN 0 0.6 54 776.1 1564.12]
CELL TREND 3 |MIN -4.72 0 2 148.5| . 844.33%
" VALUES (n=789) |MAX 8.04 12.85 101 868.75 1658.03]
ST DEV 1.1 1.84 15.05 172.85 192.12
KURTOSIS 17.47 15.64 0.15 2.72 2.97
MEAN 0.05 1.2 49.86) 841.05 1630.72]
- |MEDIAN 0.02] 086 54 852.21 1642.19]
TREND 4 MIN -1.72 0.3 0 484.26 1274.19|
(n=275) |MAX 7.04 14.05 87 1032.01 1822
ST DEV 0.87 1.58 23.9 126.31 126.27]
KURTOSIS 23.05 51.68 -0.15 -1.12 -1.12
IMEAN 0.25| . 1.46 51.38 867.36| 1654.03%
[MEDIAN 0.17 0.77 51 886.09 1674.48]
TREND 5 [MIN -4.46 0 2 158.42 907.89
(n=755) |MAX © 499 © 1218 96 1108.17 1896.75]
ST DEV - -1.05 2.14 18.19 171.9 179.24]
KURTOSIS 9.39 10.68 -0.74 7.69 8.354
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| SnowDiff |Snow2005|WindExp |lce Dist Casey Dist
MEAN 0.41 150 4669 61094 1350.0|
MEDIAN 0.02 0.71 4783 679.26)  1446.53
MIN 1.99 0 20 159.82 857.39]
TREND 1 ax 477 886 7433 978.32  1766.49
ST DEV 1.46 233 1653  227.03 285.58|
KURTOSIS 6 6.84] _ -0.56 02 2069
MEAN 0.42 0.83 41.28 406.1 1080.854
MEDIAN 0 0.04 4016  333.47 997.84
MIN 20.01 0 272 22003 818.71

TREND 2 \iax 216 . 284  52.33. 67422 14408
ST DEV 0.81 1.21 768  191.45 278.62)
KURTOSIS 279 0.78 099 163 211
MEAN 0.07 1.06| 4823  546.52  1277.58]

MEAN MEDIAN 0.01 0.02 455  588.23 13417
MIN 72 of 1518 221.62 849 4
VALUES | TREND3 |y x 0.6 824 8517  760.04] _ 1546.64
ST DEV 0.65 267 19.78  179.97 255.08|
KURTOSIS 6.83 8.05 1.03 0.03 0

MEAN 0.02 T21 3058 81286 16026
MEDIAN 0.02 121 3058 812.86]  1602.67]
MIN 20.03 119 3 77368 1563.68
TREND 4 yiax 0.07 122] 5815 85203  1641.66
STDEV 0.07 0.02 39 55.4 55.14

KURTOSIS |N/A N/A NIA N/A N/A

MEAN 2,31 231 4224 74406 1523.66
MEDIAN 1.77 177 4525  861.67 1649.56!
MIN - 0.71 071 1433 196.68 949.26
TREND S f\ax 5.89 580 6357 930.09  1718.65)
ST DEV 1.7 1.7 1377  235.49 251.35|
_ KURTOSIS 0.69 0.69 1.18 2.58 223
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Appendix 2: Discriminant Analysis Formulae

Adélie penguin colony distribution models:

Whitney Pt
Individual Cell Values:

Appendix 2

SqDist[0] =;0.0534627677653561 * [Elevation] * [Elevation] - 0.0925164711997984 * [Roughness
(St Dev)] * [Elevation] + 20.7029979809649 * [Roughness (St Dev)] * [Roughness (St Dev)] -

~ 0.0000688508027802848 * [Solar Radiation] * [Elevation] + 0.0152541417947432 * [Solar
Radiation] * [Roughness (St Dev)] + 0.00000708051487295363 * [Solar Radiation] * [Solar

Radiation]

SqDist[ Absent] = [SqDist 0] - 1.53576999254331 * [Elevation] - 67.259504138339 * [Roughness

(St Dev)] - 0.0504878121571665 * [Solar Radiation] + 108.363225246094

SqDist[Present] = [SqDist_0] - 1.33252540810463 * [Elevation] - 61.4041467733707 *

[Roughness (St Dev)] - 0.0490763238411542 * [Solar Radiatibn] +98.1724887963393

Prob[0] = Exp(-0.5 * [SqDist_Absent]) + Exp(-0.5 * [SqDist_Pres])

Prob[Absent] = Exp(-0.5 * [SqDist_Absent]) / [Prob_0]

Prob[Present] = Exp(-0.5 * [SqDist_Pres]) / [Prob_0]

Covariance Matrices

Within Cov " Elevation Roughness (St Solar Radiation

Dev)
Elevation | '1 8.765722 ©0.0137889 76.385484
Roughness (St 0.0137889 | 0.0800523 -86.20766
Dev) ' :
Solar Radiation 76.385484 -86.20766 234466.22

Within Corr Elevation Roughness (St Solar Radiation
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Dev)

Elevation : i 1 0.0112474 0.0364156
Roughness (St . 0.0112474 _ 1 -0.629087
Dev)

Solar Radiation 0.0364156 -0.629087 1

Colony/Control Plot Mean Values

- Sqdist[0] = 0.00123585320191969 * [Wind Exposure] * [Wind'EXposure] + 0.00502152653063165
* [Roughness (Norm)] * [Wind Exposure] +0.134419706830413 * [Roughness (Norm)] * -
[Roughness (Norm)] - 0.169.1 8291609256 * [Roughness (St Dev)] * [Wind Exposure] -
0.66.8261971951428 * [Roughness (St Dev)] * [Roughness (Norm)] + 30.8273619561492 *
[Roughness (St Dev)] * [Roughness (St Dev)] + 0.00241480625010695 * [Snow Difference]' *
[Wind Exposure] - 0.327590123794121 * [Snow Difference] * [Roughness (Norm)] -
4.32336043329957 * [Snow Difference] * [Roughness (St Dev)] + 7.67254372659123 * [Snow
Difference] * [Snow D'ifference] +0.0153650948338209 * [Wetness Index] * [Wind Exposure] -
0.182614364124296 * [Wetness Index] * [Roughness (Norm)] + 6.45260097269701 * [Wetness
Index] * [Roughness (St Dev)] - 1.70088427916617 * [Wetness Index] * [Snow Difference] +
2.08267825583303 * [Wetness Index] * [Wetness Index]

SqDist[Absent] = [SqDist_0] - 0.13587102626854 * [Wind Exposure] + 0.250412667774322 *

[Roughness (Norm)] - 48.2253944544141 * [Roughness (St Dev)] + 10.0453557821323 * [Snow
Difference] - 21.4663798042278 * [Wetness Index] + 61.7725804826357

SqDist[Present] = [SqDist_0] - 0.163644699622735 * [Wind Exposure] - 0.0199630328365665 *
[Roughness (Norm)] - 40.0792313894895 * [Ronghness (St Dev)] + 8.75502877854204 * [Snow
Difference] - 20.6689377579887 * [Wetness Index] + 56.9842678626558

. Prob[0] = Exp(-0.5 * [Squst_Absent]) + Exp(-0.5 * [SqDist_Presnt])
Prob[Absent] = Exp(-0.5 * [SqDistAbsent]) / [Prob_0]

Prob[Present] = Exp(-0.5 * [SqDistPresent]) / [Prob_0]

Covariance Matrices

* Within Cov Wind Exposure Roughness (Norm) Roughness (St Wetness Index
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* Dev)

 Individual Cell Values

Dev)

Wind Exposure 1236.2676 -21.71073 4.4296762 ) -12.70849
Roughness {(Norm) -21.71073 8.5056587 -0.009638 0.5680598
Roughness (St 4.4296762 -0.009638 . 0.0553056 -0.101015
Wetness Index -12;70849 0.568.0598 -0.101015 _- 0.7'35871'8
Within Corr - Wind Exposure Roughness (Norm) Roughness (St Wétnesslndex
’ Dev)
. Wind Exposure . 1 -0.21 175.1 0.5357118 -0.421344
" Roughness (Norm) -0.211721 1 .-0.014053 0.2270591
Roughness (St 0.5357118 -0.014053 1 -0.500727
Dev)
Wetness Index © -0.421344 0.2270591 -0.500727 1
~ Shirley |

Appendix 2

SqDist_ 0=10.0113377884643721 * [Elevation] * [Elevation] - 4.82851112342201 * [Roughness

~ (St Dev)] * [Elevation] + 74832.7309135573 * [Roughness (St Dev)] * [Roughness (St Dev)] +
8.02386428357845 * [Slope] * [Elevation] - 242600.998925054 * [Slope] * [Roughness (St Dev)]
+ 196767.480547947 * [Slopé] * '[_Slope] - 0.0205322880802495 * [Snow 2005] * [Elevation] -
'51.5057_614003503 * [Snow 2005] * [Roughness (St Dev)] + 79.3789462336679 * [Snow 2005] *
[Slope] + 0.309547430071808 * [Snbw 2005] * [.Snow 2005] - 0.00010016311324339 * [Solar
Radiation] * [Elevation] - 0.204754187148813 * [Solar Radiation] * [Roughness (St Dev)] +

10.240553758076989 * [Solar Radiation] * [Slope] + 0.000438272417241657 * [Solar Radiation] *

[Snow 2005] + 0.0000748771944452865 * [Solar Radiation] * [Solar Radiation] -
0.000889025855991 192 * [Wind Exposure] * [Elevation] - 1.4307857133681 * [Wind Exposure] *
[Roughness (St Dev)] + 1.59214065290944 * [Wind Exposure] * [Slope] + 0.0146210373872546 *
[Wind Exposure] * [Snow 2005] + 0.00114857449769329 * [Wind Exposure] * [Solar Radiation] +
0.00605288069706808 * [Wind Exposure] * [Wind Exposure] |
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[Roughness (St Dev)] - 162.184083778947 * [Slope] - 1.62884466997249 * [Snow 2005] -

0.537634531946183 * [Solar Radiation] - 4.20046318269748 * [Wind Exposure] +

975.155620783523

SqDist[Present] = [SqDist_0] - 0.0754399651622438 * [Elevation] + 548.631913561636 *
[Roughness (St Dev)] - 569.48612895412 * [Slope] - 1.87548518224877 * [Snow 2005] -

0.554150222435931 * [Solar Radiation] - 4.42195651075929 * [Wind Exposure] +

1035.425248205 .

| Prob[0] = Exp(-0.5 * [SqDistAbsent]) + Exp(-0.5 * [SqustPfesent])

" Prob[Absent] = Exp(-0.5 * [SqDistAbsent]) / [Prob_0]

Prob[Present] = Exp(-0.5 * [SqDistPresent]) / [Prob_0]

Covariance Matrices

Within Cov

Elevation
Wind Expdsure

Roughness (St
Dev)

Slope

Solar
Radiation

Snow 2005

Within Corr

Eleyation
Wind Exposure

Roughness (St
Dev)

Slope

Elevation

92.509461
-9.358537

0.1031595

0.0493347

134.05139

3.4770533

Elevation

1
-0.03572

0.0591895

0.0457603

Wind Exposure

-9.358537

741.99684

-0.358132

-0.182939

-5651.381

-16.03334

Wind Exposure

-0.03572
1

-0.072556

-0.059915

" Roughness (St

Dev)
0.1031595
-0.358132

0.0328354

0.0202113

11.99948

0.1370447

Roughness (St
Dev)

0.0591895

-0.072556

1
0.9950669
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Slope

0.0493347

-0.182939

0.0202113

0.0125644

7.2538379

0.0832261

Slope

0.0457603
-0.059915

0.9950669

Solar Radiation

134.05139
-5651.381

11.99948

7.2538379

70022.307

160.75684

Solar Radiation

0.0526696

-0.784035

0.2502493

0.2445565

Snow 2005

3.4770533

-16.03334 .

. 0.1370447

0.0832261

160.75684

4.2967976

Snow 2005

0.1743997
-0.283956

0.3648534

0.3581929

' : : _ Appendix 2
SqDist[Absent] = [SqDist_0] + 0.0573220773726119 * [Elevaﬁon] +280.824839256881 *



Appendix 2

Solar’ v ' 0.0526696 -0.784035 0.2502493 0.2445565 1 0.293075
Radiation ' o
Snow 2005 0.1 743997 -0.283956 0.3648534 0.3581929 . 0.293075 ' 1

Colony/ Control Plot Means

SqDist{0] = 21‘0.77310351562'2» * [Slope] * [Slope] - 3.20902949541339 * [Snow 2005] * [Slope] +
0.414053198067366 * [Snow 2005] * [Snow 2005] - 0.124529483606092 * [Solar Radiation] *
[Slope] - 0.000752518161675032 * [Solar Radiation] * [Snow 2005] + 0.0000882694767886766 *
[Solar Radiation] * [Solar Radiation] + 16.4743238786638 * [Wetness Index] * [Slope] +
0.295851270439193 * [Wetness Index] * [Snow 2005] - 0.00294815654533994 * [Wetness Index]
* [Solar Radiation] + 1.40792200808666 * [Wetness Index] * [Wetness Index] -
0.963648602576033 * [Wind Exposure] * [Slope] +0.0120618995124814 * [Wind Exposure] *
[Snow 2005] + 0.00135066786036723 * [Wind Exposure] * [Solar Radiation] -
0.0251471618410039 * [Wind Exposure] * [Wetness Index] + 0.00707443125508775 * [Wind
Exposure] * [Wind Exposure] | '

Sqdist[Absent] = [SqDist_0] + 309.315479717998 * [Slope] + 0.0796705282217051 * [Snow
2005] - 0.616022491955657 * [Solar Radiation] - 6.52142537217429 * [Wetness Index] -
4.89146890176223 * [Wind Exposure] + 1133.89312820219

Squst[PréSent] = [SqDist_0] + 347.598422398211 * [Slope] - 0.483032411526596 * [Snow 2005]
- 0.630506914397322 * [Solar Radiation] - 5.22651320557493 * [Wetness Index] -
5.01468305062957 * [Wind Exposure] + 1177.41573294364

Prob[0] = Exp(-0.5 * [Squst_Absent])i + Exp(-0.5 * [SqDist_Presnt})
Prob[Absent] = Exp(-0.5 * [SqDist_Absent]) / [Prob_0]

Prob[Present] = Exp(-0.5 * [SqDist_Present]) / [Prob_0]

Covariance Matrices

Within Cov ’ Slope Snow 2005 Solar Radiation Wetness Index Wind Exposure

Slope 0.0090767 0.06679395 8.2506729 -0.054368 -0.323004
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Appendix 2

Snow 2005 3.3080644 169.90928 -0.701024 -15.73625
Solar Radiation 8.2506729 169.90928 53843.172 -52.7652 -4816.629
. Wetness Index -0.054368 -0.701024 -52.7652 1.0811758 3.8533405
Wind Exposu;'e -0.323004 -15.73625 -4816.629 3.8533405 599.4201
Within Corr Slope Snow 2005 Solar Radiation Wetness Index Wind Exposure
Slope 1 0.3854988 0.3732165 -0.548827 -0.138478
Snow 2005 0.3854988 1 0.4025917 -0.370679 -0.353385
Solar Radiation 0.37321 65 6.402591 7 1 -0.218693 -0.847837
Wétness Index -0.548827 -0.370679 -0.218693 1 0 1513643
Wind Exposure -0.138478 - -0.353385 '-0.847837 0.1513643 1

Snow accumulation patterns and Adélie penguin colony
population trends |

Whitney Pt

Individual Cell Values

SqDist[0] = 0.00119480599248143 * [Wind Exposure] * [Wind Exposure] -
0.00495075037305612 * [Snow 2005] * [Wind Exposure] + 1.28750499965548 * [Snow 2005] *
[Snow 2005] ' ‘

SqDist [1] = [SqDist0] - 0.181849610614292 * [Wind Exposure] + -0.737327811452706 * [Snow
2005] + 7.16135062926116

SqDist[2] = [SqDist0] +-0.210749485702305 * [Wind Exposure] + -0.384284916302041 *
[Snow 2005] + 9.42479843636275 |

SqDist[3] = [SqDist0] + -0.042176345676994 * [Wind Exposure] + -2.732731581583 * [Snow
£ 2005] + 1.9226510099326 ‘ '
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SqDist[4] = [SqDist0] + -0.0928165607794011 * [Wind Exposure] + -3.17283096438601 *
[Snow 2005] + 4.01021061450554

~ SqDist[5] = [SqDist0] + -0.145561937355603 * [Wind Exposure] + -0.634467011940916 *
[Snow 2005] + 4.60422355960992 -

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-O.S * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 *
[SqDist_4]) + Exp(-0.5 * [SqDist_5]) |

Prob[1] = Exp(-0.5 * [SqDist_1])/ [Prob_0]
Préb[z] = Exp(-o.s * [Squst_zj)/ [Prob 0]
Prob[3] = Exp(-0.5 * [SqDist _3])/ [Prob_0]
Prob[4 }= Exp(-O.s * [SqDist_4])/ [Prob_0]

Prob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0]

Covariance Matrices

Within Cov Wind Exposure Snow 2005
Wir-1d Exposure 840.30309 1.6155785
Snow 2005 - ' 1.6155785 0.7798021
Within Corr Wind Exposure Snow 2005
Wind Exposure 1 0.0631129
Snow 2005 ~0.0631129 1
Shirley |
Individual Cell Values

SqDist[0] = 0.00355133437660017 * [Wind Exposure] * [Wind Exposure] - 0.0122666431229158
* [si_Snow Difference] * [Wind Exf)osure] +1.44400609918618 * [si_Snow Difference] *
[si_Snow Difference] + 0.0191491013415595 * [Snow 2005] * [Wind Exposure] - -
0.833530039669805 * [Snow 2005] * [si_Snow Difference] + 0.448077767126803 * [Snow 2005]
" % [Snow 2005] - v |
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SqDist[1] = [SqDlst 0] - 0.326509096720394 * [Wmd Exposure] +0.931717261940955 *
[si_ Snow leference] - 1.60042448751615 * [Snow 2005] + 7.83533108016429

SqDist[2] = [SqDist_0] - 0.29111562134154 * [Wind Exposure] + 0.457877029907374 * [si_Snow
Difference] - 0.999052890366228 * [Snow 2005] + 6.00768672435545

SqDist[3] = [SqDist_0] - 0.391907053591727 * [Wind Exposure] + 0.867650398892529 *
[si_Snow Difference] - 1.73080959359006 * [Snow 2005] + 11.128983294363

SqDist[4] = [SqDist_0] - 0.374071002536028 * [Wind Exposure] + 1.49665824484529 * [si_Snow
Difference] - 1.99495909001073 * [Snow 2005] + 10.428255516494

SqDist[5] = [SqDist O] 0.38557381647713 * [Wind Exposure] + 1. 11727824354657 * [si_Snow
Difference] - 2.00858044222978 * [Snow 2005] + 11.0733093087087 »

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist_3]) + Exp(-0.5 *
- [SqDist_4]) + Exp(-0.5 * [SqDist_5]) |

Covariance Matrices

'C'olony Mean Values

SqDist[0]

* [si_Snow Difference]

Within Cov Wind Exposure Snow Difference  Snow Cover 2005
Wind Exposure 299.4487 -0.785819 . -7.129541
énow Difference -0.785819 Q.§487041 0.8991978
~ Snow Cover 2005 -,7.12.9541 0.8991978 3.2204596
Within Corr Win‘d éxposure Snow Difference  Snow Cover 2005
Wind Exposure 1 -0.046623 . -0.229584
Snow Diﬁérence -0.046623 -. 1 0.5144355
Snow Cover 2005 -0.229584 0.5144355 1

= 0.00418545304162922 * [Wind Exposure] * [Wind Exposure] - 0.0409177714949934
* [WindvExposure] +1.25394763665964 * [si_Snow Difference] *

160



_ Appendix 2
[si_Snow Difference] +0.01821 12772863148 * [Snow 2005] * [Wind Exposure] -
0. 556128757926968 * [Snow 2005] * [si_Snow Difference] + 0. 296192161457333 * [Snow 2005]
* [Snow 2005]

SqDist[1] = [SqDist_0] - 0.403009228852826 * [Wind Exposure] + 1.77255512481391 * [si_Snow
Difference] - 1.56385985452615 * [Snow 2005] + 10.2864780106369

- SqDist[2] = [SqDist_0] - 0.339422180734924 * [Wind Exposure] + 1.07463220940373 * [si_Snow
Difference] - 1.00045262612069 * [Snow 2005] + 7.11326805658983 o

Sqdist[3] = [SqDist_0] - 0.429360758965208 * [Wind Exposure] + 2. 83961653826747 * [si_Snow
Difference] - 1. 65987525601527 * [Snow 20051+ 11 4921206070945

SqDist[4] = [SqDist_0] - 0.276606287361 157 * [Wind Exposure] +1.86878763386281 * [51 Snow
leference] 1.25850871673196 * [Snow 2005] + 4. 96057557062363

SqDist[5] = [SqDist_0] - 0.381960186680773 * [Wind Exposure] + 1.93531116931298 * [si_Snow
' Difference] - 1.91015401314318 * [Snow 2005] + 9.95382437560013

Prob[0] = Exp( -0.5 * [Sqdist_1]) + Exp(-0.5 *[Sqdist_2])+ Exp(-0.5 * [SqDlst 3]) + Exp(-0.5 * -
[SqDist_4]) + Exp(-0.5 * [SqDist_5])

Prob[1] = Exp(-0.5 * [Sqdist_1]) / [Prob_0]
Prob[2] = Exp(-0.5 * [Sqdist_2]) / [Prob_0]
Prob[3] = Exp( -0.5* [Sqdlst 3]) / [Prob_0]
Prob[4] = 'Exp(-O.S * [Sqdist_4) / [Prob. 0]

Prob[5] = Exp(-0.5 * [Sqdist_5]) / [Prob_0]

Covariance Matrices

'Within Cov Wind Exposure Snow Difference Snow 2005

Wind Exposure
Snew Difference
Snow 2005
Within Corr

Wind Exposure

265.77018

3.1880962

-5.17742

Wind Exposure

1

3.1880962

1.0453926

0.8834021

Snow Difference

0.1912664

-5.17742
0.8834021
4.364688

Snow 2005

-0.152014
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Snow Difference - . 0.1912664 1 . 0.4135634

Snow 2005 -0.152014 0.4135634 -1

Proximity to human activities and pbpulation trends of Adélie
penguin colonies

Whitney Pt
Individual Cell Values

SqDist[0] = 0.0000980677348661567 * [Casey Distance] * [Casey D}istance]

SqDist[1] = [SqDist0] +-0.679268214076451 * [Casey Disténce] +1176.2413684897
SciDist[Z] = [SqDist0] + -0.640709630755633 * [Casey Disfénce] + 1046.49309863046

* SqDist[3] = [SqDist0] + -0.650437435608941 * [Casey Distance] + 1078.51185259592
SqDist[4] = [SqustO] + ;0.695103006372688 * [Casey Distance] + 1231;72058100399 '
SqDist[5] = [SqDist0] + -0.67064753'2859328. * [Casey Distance] + 1146.57515528463

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist _2]) + Exp(-0.5 * [SqDist 3]) + Exp(-0.5 *
[SqDist_4]) + Exp(-0.5 * [SqDist_5])

Prob[1] = Exp(-0.5 * [SqDist_1])/ [Prob_0]
ProB[Z] = Exp(-0.5 * [Squst_Z])/ [Prob_0]
Prob[3] = Exp(-d.s * [SqDist_3])/ [Prob_0]
Prob[4] = Exp(-0.5 * [SqDist_4])/ [Prob_0]

Prob[5] = Exp(-0.5 * [SqDist _5])/ [Prob_0]

Covariance Matrices

_ Within Cov Casey Distance
Casey Distance i 10197.034
Within Corr Casey Distance
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Casey Distance : 1

Colony Mean Values

SqgDist[0] = 0.0000641817780638834 * [Casey Disfance] * [Casey Distance]_

SqDist[1] = [SqDist0] + -0.444012107917068 * [Casey Distance] + 767.923380763649 .
SqDist[2] = [SqDist0] + -0.419344483335995 * [Casey Distance] + 684.967762693098
SqDist[3] = [SqDist0] + -0.436944410516673 * [Casey Distance] + 743.670647811168
SqDist[4] = [SqDist0] + -0.454879366578845 * [Casey Distance] + 805.973456879061
Squst[Sv]'= [SqDist0] + -0.446269576387421 * [Casey Distance] + 775.751859861134

Prob[0] = Exp(-0.5 * [SqDist_1]) + Exp(-0.5 * [SqDist_2]) + Exp(-0.5 * [SqDist 3]) + Exp(-0.5 *
[SqDist_4]) + Exp(-0.5 * [SqDist_5]) - |
Prob[1] = Exp(-0.5 * [SqDist .1]) / [Prob_0]

Prob[2] = Exp(-0.5 * [SqDist 2])/ [Prob_0]-

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0]

Prob[4] = Exp(-0.5 * [SqDist_4])/ [Prob_0]

Prob[5] = Exp(-0.5 * [SqDist 5])/ [Prob_0] L

Covariance Matrices

Within Cov ) Casey Distance
Casey Distance 15580.746
Within Corr Casey Distance
Casey Distance 1
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~ Shirley |
Individual Cell Values:

SqDist[0] = 0.00144737517073122 * [Casey Distance] * [Casey Distance] +
0.000101932343677318 * [Wind Exposure] * [Casey Distance] + 0.00334570328953665 * [Wind
Exposure] * [Wind Exposure] - 0.0032873 1675902068 * [Ice Distance] * [Casey Distance] -
0.000141628145130919 * [Ice Distance] * [Wind Exposure] + 0._00190426355_162413 * [Ice

Distance] * [Ice Distance]

SqDist[1] = [SqDist_0] - 1.8817955886733 * [Casey Distance] - 0.343253339763072 * [Wind
Exposure] + 2.09659673289585 * [Ice Distance] + 628.803805364984 - '

SqDist[2] = [SqDist_0] - 1.70098629110724 * [Casey Distance] - 0.320036974585171 * [Wind
Exposure] + 1.90720816126373 * [Ice Distance] + 509.122367903401 | |

| SqDist[3] =[SqDist_0] - 1.98865696402544 * [Casey Distance] - 0.405846574045663 * [Wind
Exposure] + 2.20834597338445 * [Ice Distance] + 708.994535458669

SqDist[4] = [SqDist_0] - 1.94552360935418 * [Casey Distance] - 0.377062838897193 * [Wind
Exposure] + 2.14540130069008 * [Ice Distance] + 689.083977089765

SqDist[5] = [SqDist_0] - 1.91746719390296 * [Casey Distance] - 0.384474528871473 * [Wind
Exposure] + 2.10834255344528 * [Ice Distance] + 675.462971469201

Prob[O] Exp( -0.5 * [SgDist_1]) + Exp(-0.5 * [SqDlst 2]) + Exp(-0.5 * [SqDist 3]) + Exp(-0.5 *
- [SgDist _: 4]) + Exp( -0.5 * [SqDist_5])

Prob[1] = Exp(-0.5 * [SqDist_1]) / [Prob_0]
Prob[2] = Exp(’-o.s * [SqDist_2]) / '[P.rob_O]
Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_O]
Prob[4] = Exp(-0.5 * [SqDist_4]) / [Prob_0]

- Prob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0]

Covariance Matrices

Within-Cov Casey Distance Wind Exposure  Sea-lce Distance-
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Casey Distance 34932.826 106.13114 30156.092
Wind Exposure 106.13114 299.4487 102.74235
Sea-Ice Distance 30156.092 102.74235 26558.083

Within Corr Casey Distance Wind Exposure Sea-Ice Distance
Casey Distance 1 0.0328144 0.9900562
Wind Exposure 0..0328144 1 0.0364326
Sea-lce Distance 0.9900562 0.0364326 1

Appendix 2

Colony Means

SqDist[0] = 0.00377009434175355 * [Wind Exposure] * [Wind Exposure] +
0.0000213494170722331 * [Ice Distance] * [Wind Exposure] + 0.0000153055246896057 * [Ice

Distance] * [Ice Distance] -

SqDist[1] = [Sqdist_0] - 0.364588332443925 * [Wind Exposure] - 0.0190802926907297 * [Ice
Distance] + 14.1454030938387 |

Sqdist[2] = [Sqdist_0] - 0.316363528583488 * [Wind Exposure] - 0.013365901038925 * [Ice
" Distance] + 9.18186045334272

SgDist[3] = [Sqdist_0] - 0.374055303559716 * [Wind Exposure] - 0.0159058835321895 * [Ice
Distance] +12.8856768822215 ' '

SqDist[4] = [Sqdist_ 0] 0.24822328525483 * [Wind Exposure] 0. 0265988871600862 * [Ice
Distance] + 15.0610941863943

SqDist[5] = [Sqdist_0] - 0.339762543620913 * [Wind Exposure] - 0.0261371093399869 * [Ice
Dlstance] +18.0276073022348 ‘

Prob[0] = Exp( -0.5 * [Sqdist_1]) + Exp(-0.5 * [qu1st 2D+ Exp( -0.5 * [sqdist_3]) + Exp( -0.5*
[sqdist_4]) + Exp(-0.5 * [sqdist_5]) '

Prob[1] = Exp(-0.5 * [SqDist_1])/ [Prob_0]
Prob[2] = Exp(-0.5 * [SqDist_2]) / [Prob_0]

Prob[3] = Exp(-0.5 * [SqDist_3]) / [Prob_0]
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Prob[4] = Exp(-0.5 * [SqDist_4]) / [Prob_0]

Prob[5] = Exp(-0.5 * [SqDist_5]) / [Prob_0]

- Covariance Matrices

Within Cgv
Wind Exposure
Ice Distance
Within Corr
Wind Exposure

Ice Distance

/\Nind Exp.osure
265.77018
-185.3592

Wind Expés_ure

1

-0.044438

Ice Distance
-185.3592
65465.162

Ice Distancé

-0.044438
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‘Appendix 3 Decision Trees
Adélie penguin colony distributions

Whitney Pt

Individual cell values

Solar Radiation <= 2434.05: Absent (154.0/14.0)
Solar Radiation > 2434.05

| Elevation <= 13.43053: Present (449.0/97.0)

| Elevation > 13.43053

| | Aspect<=139.285

| | | Snow 2005 <= 0.488844

| | | | Elevation <= 15.65099: Present (101.0/47.0)
| ] | .| Elevation > 15.65099: Absent (171.0/56.0)

| | | Snow 2005 > 0.488844: Absent (155.0/38.0)

| | Aspect>139.285 |

| | | Wind Exposure <= 29: Absent (287.0/62.0)

| | | Wind Exposure > 29: Present (403.0/103.0)

Colony/control plot mean values

" Roughness (St Dev) <= 0.85

| | Wetness Index <= 3.46: Present (7.0)

| Wetness Index > 3.46

| | Wetness Index <= 5.06: Absent (45.0/21.0)
| | Wetness Index > 5.06: Present (6.0)
Roughness (St Dev) > 0.85: Absent (6.0)
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Shirley |

Individual cell values

Slope <=0.217657
Elevation <=29.38974
Aspect <= 108.408
| Snow Difference <= 0.00002 _
| | Wind Exposure <= 48: Present (201.0/80.0)
| | Wind Exposure > 48: Absent (285.0/111.0)
| Snow leference > 0.00002: Present (1096.0/218.0)
Aspect > 108.408 |
Roughness (St Dev) <= 0.135416
| Elevation <= 15.0789
| | Elevation <= 9.950747: Absent (333.0/83.0)
| | Elevation > 9.950747: Present (200.0/52.0)
| Elevation > 15.0789: Absent (200.0/38.0) ‘
Roughness (St Dev) > 0.135416: Absent (1139.0/147.0)
Elevation > 29.38974: Present (1104.0/54.0)
Slope > 0.217657: Absent (663.0/11.0)

|
|
l
|
|
|
I
|
|
l
|
|

|
|
|
l
|
l
|
1
|1
1
BN
1]
1
|

- Colony/control plot mean values

Slope <= 0.13

Planar Curvature <= -0.02: Present (6.0)

Planar Curvature > -0.02

Elevatxon <=29

Planar Curvature <=-0.01

| Snow 2005 <= 0.97: Absent (8.0/3.0)

| Snow 2005 > 0.97: Present (5.0)

Planar Curvature > -0.01 -

Elevation <= 12.65

Planar Curvature <=0

| Slope<=0.11" '

| | Solar Radiation <= 3254.44: Absent (4.0)
| | Solar Rad1at10n >3254.44
|

l
|
|
|
|
|
|
l
|
|
|
|
| | Solar Radiation <= 3392.32
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I
LT
L]
| | Slope>0.11: Present (6.0)

-I Planar Curvature > 0: Present (2.0)
-Elevation > 12.65: Absent (7.0).
Elevation-> 29: Present (10.0)

Slope > 0.13: Absent (31.0/4.0)

Roughness (St Dev) <= 0.04: Absent (3.0/1.0)
Roughness (St Dev) > 0.04: Present (10.0)
Solar Radiation > 3392.32: Absent (6.0/1.0)

Appendix 3

Snow accumulation patterns and Adélie p'enguin colony

population trends

Whitney Pt

Individual cell values

Wind Exposure <=139 :

| Snow 2005 <=0.072101: Strong Increase (66.0/3.0)
| Snow 2005 >0.072101

| l Wind Exposure <= 5: Stable (51.0/13.0)

| | Wind Exposure > 5: Strong Increase (167.0/75.0)
Wind Exposure > 39: Strong Increase (548.0/32.0)

" Colony mean values

Snow 2005 <= 1.14: Strong Increase (31.0/8.0)
Snow 2005 > 1.14: Stable (2.0/1.0)

Shirley 1

Individual cell values

Snow 2005 <= 0.201634

| Snow 2005 <= 0.000087

| | Wind Exposure <= 56: Moderate Decrease (139.0/58.0)
| | Wind Exposure > 56: Stable (64.0)

| Snow 2005 > 0.000087

| | Snow 2005 <= 0.003957: Stable (64.0/14.0)

| | Snow 2005 > 0.003957: Strong Decrease (89.0/39.0)
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Snow 2005 > 0.201634

|
|

|

|
|

|
|
1
BEN
NEN
RN
AN
REN
RN
NN
RER
RN
NEN
REN
BN
RN
RERE
RN
NN
1

|

|
|
|
|
|
|
’,
|
|
|
|
|

Appendix 3

Wind Exposure <= 36

| Wind Exposure <= 16: Moderate Increase (54.0/19. 0)

| Wind Exposure > 16

| | Snow Difference <= 0. 755802: Strong Increase (181, 0/69 0) .
| | Snow Difference > 0.755802: Stable (54.0/32. 0)

Wind Exposure > 36

~ Wind Exposure <= 67

Snow 2005 <= 1.697746

Snow 2005 <= 1.139009

Snow Difference <= 0.013476

Snow-2005 <= 0.693254 _

| Snow 2005 <=0.390971: Strong Increase (54.0/29.0)
| Snow 2005 > 0.390971: Stable (152.0/70.0)

Snow 2005 > 0.693254: Moderate Increase (77.0/41.0)

Snow Difference > 0.013476

|
I
|
I
|
|

Snow 2005 <= 0.571027: Stable (62.0/11.0)

Snow 2005 > 0.571027 |

| Wind Exposure <= 52: Strong Increase (111.0/46.0)

| Wind Exposure>52 | |

| | Snow 2005 <= 0.842806: Strong Increase (70.0/33.0)

| | |- Snow 2005 > 0.842806: Stable (76.0/15.0) | _ _
Snow 2005 > 1.139009 B -
| Snow Difference <= 0.414414: Moderate Increase (71.0/33.0) |

| Snow Difference > 0.414414: Stable (56.0/29.0) |

Snow 2005 > 1.697746: Strong Increase (88.0/53.0)

Wind Exposure > 67: Strong Increase (239.0/ 108.0)
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Colony mean values

|
|
|
l
|
|
I
|

Snow 2005 <= 0.02

| S.now Difference <=0

| | Wind Exposure <= 36.98: Stable (2.0)

[ | Wind Exposure > 36.98 '

| | | Wind Exposure <= 48.51: Moderate Decrease (4.0)
| | | Wind Exposure > 48.51: Strong Decrease (2.0/1.0)
| Snow Difference > 0: Stable (2.0) '
Snow 2005 > 0.02: Strong Decrease (2.0/1.0)

Snow 2005 > 0.07

|
|

| |
| |
| |
| |
| |
RN
BN
RN
REN
RN
RN
| |

|
|
|
l
|
|
|
|

Snow 2005 <= 0.38: Strong Decrease (5.0)

Snow 2005 > 0.38 '

Snow 2005 <= 1.22

| Wind Exposure <=38.24; Strong Decrease (4.0/1.0)
| Wind Exposure > 38.24: Strong Increase (7.0/3.0)
Snow 2005 > 1.22 -
Wind Exposure <= 53.3

~Snow 2005 <= 3.06

| Snow Difference <= 0.85 :

| | Wind Exposure <= 47.67: Strong Decrease (3.0/1.0)
| | Wind Exposure > 47.67: Strong Increase (4.0/2.0)

| Snow Difference > 0.85: Moderate Decrease (2.0)
Snoiw 2005 > 3.06: Strong Increase (4.0/1.0)

Wind EXposure > 53.3: Strong Decrease (3.0)
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Appendix 3

Proximity to human activities and population trends of Adélie
penguin colonies

Whitney Pt

Individual cell values

Casey Distance <= 3310.06 |

| Casey Distance <= 3292.787: Strong Increase (75.0/8.0)

| Casey Distance > 3292.787: Stable (139.0/38.0)

Casey Distance > 3310.06

| Casey Distance <= 3536.243: Strong Increase (435 0/11.0)

| Casey Distance > 3536.243 _

| | Casey Distance <= 3549.416: Moderate Increase (50.0/25.0)
| : | Casey Disfance >3549.416: Strong Increase (133.0/1.0)

Colony mean values

Casey Distance <= 3303.17: Stable (5.0/2.0)
* Casey Distance > 3303.17: Strong Increase (28.0/6.0)

Shirley |

Individﬁal cell values

. Ice Distance <= 814.8865

Casey Distance <= 860.6161: Moderate Decrease (103.0/22.0)
Casey Distance > 860.6161

| Casey Distance <= 1559.853

| | Ice Distance <=711.3762

| | | Ice Distance <= 567.3976

| | | | Ice Distance <= 176.9633: Stable (60.0/7.0)

| | | | Ice Distance > 176.9633: Strong Decrease (61.0/9.0)
| | | Ice Distance > 567.3976: Stable (236.0/12.0)

| | Ice Distance > 711.3762: Strong Decrease (67.0/12.0)

| Casey Distance > 1559.853: Stable (326 0/31. 0)

Ice Distance > 814.8865

v| Casey Distance <= 1682.517

|
|
|
|
|
|
|
|
l
|
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| Ice Distance <= 858.5243 .

| | Wind Exposure <= 30: Moderate Increase (51.0/19.0)
|| Wind Exposure > 30: Strong Increase (78.0/35;0)

| Ice Distance > 858.5243

| | Wind Exposure <= 39: Strong Increase (61.0/24.0) _
| | Wind Exposure > 39: Moderate Increase (198.0/30.0)
Casey _Distance > 1682.517: Strong Increase (460.0/19.0)

Colony mean values

Casey Distance <= 1588.42

Casey Distance <= 855.58: Moderate Decrease (5.0/ 1.0)

| Casey Distance > 855.58

- Wind Exposure <= 46.13
| Casey Distance <= 1470.6
| | Casey Distance <= 935.88: Stable (4.0/1. O)
| | Casey Distance > 935.88
| | | Casey Distance <= 1438. 98: Moderate Decrease (3. O)
| | | Casey Distance > 1438.98: Stable (3.0/1.0)
| Casey Distance > 1470.6: Strong Decrease (3.0)
Wmd Exposure > 46.13 |
| Casey Distance <= 1547.58: Strong Decrease (11.0/1.0)

|
|
|
|
|
I
|
|
|
| | Casey Distance > 1547.58: Stable (3.0/1.0)

Casey Distance > 1588.42
| Casey Distance <= 1778.12: Stfong Increase (10.0/2.0)

( | Casey Distance > 1.778.12: Strong Decrease (2.0)
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