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Abstract 

Speleothems, chemical cave deposits such as soda-straw stalactites, stalagmites and flowstones, 

have great potential as archives of high-resolution terrestrial palaeoenvironmental change at both 

short and long term temporal scales. In this study temporal control is achieved using various high 

precision radiometric techniques such as TIMS 230Th/234U dating, AMS radiocarbon dating, and 
210Pb excess dating, the latter two methods used to investigate contemporary speleothem material. 

An additional method adopted only with certain samples, but showing considerable promise, is 

autocorrelation of annual variations in speleothem minor element concentrations. 43 new TIMS 
230Th/234 U speleothem age estimates from several karst areas in Tasmania are presented as a 

cumulative frequency distribution and are compared with some previously published and 

unpublished speleothem data from southeast Australian continent. The distribution of ages allows 

some comments to be made on past environmental conditions and their effect on speleothem 

growth in southeastern Australia. 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to 

investigate minor element variations along the whole growth axis of several speleothems. Some 

soda-straw stalactites are found to contain quasi-periodical variations in their minor element 

composition, in some cases it is in phase with surface ridges, ie annual banding, sometimes visible 

on the surface. Measurements of the surface ridging using dendrochronological equipment allow a 

temporal framework to be developed and comparisons to be made between this chronology and 

one established using the annual cyclicity of certain minor elements. The chronologies agree very 

closely, indicating that soda-straw stalactites can potentially provide annually resolved records. 

Measurements of the minor element and stable isotope composition of flowstone material have 

been taken in order to provide records of palaeoenvironmental change in areas not previously 

studied in southeastern Australia using speleothems as an information source. Temporal control is 

provided by a suite of TIMS 230Th/234U age estimates. 
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Chapter 1 

Introduction 

"The farther backward you can look the farther forward you are likely to see" 

Winston Churchill 

1.1. Why Study Past Climate? 

In recent years there has been a tremendous growth of interest in global climate cycles 

particularly those of the last 2.4 million years, a period referred to as the Quaternary, and of 

their apparent hemispheric synchronicity (Bender et al., 1994; Bard et al., 1997). This interest 

reflects increasing global governmental concern regarding future climatic change, due to 

anthropogenic influence on the Earth's climate system, and the likely impacts on future 

generations. There is a certain degree of optimism that researchers will be able to predict 

future climate changes using Global Climate Models (GCM) with data from studies of various 

proxy records such as lake and marine cores, ice cores, tree rings, and speleothems. 

In order to accurately predict future global climate changes we must first understand what has 

happened to the Earth's climate in the past. As scientific interest grows so too does our 

understanding of both the external and internal processes driving climate change as well as 

the scales at which they operate. During the Quaternary period, global climate has been 

dominated by a series of glacial/interglacial cycles but our understanding of the mechanisms 

forcing these cycles is limited (Hays et al., 1976; Martinson et al., 1987; Winograd etal., 1992). 

Currently research is focussed on investigating and determining temporal relationships, the 

magnitude, and the global extent of key individual events within the Quaternary, for example 

the Younger Dryas, Last Glacial Maximum, and Little Ice Age, so that the GCM models which 

attempt to explain climate change can be tested. 

High-resolution studies of marine and ice cores have highlighted the dynamic and abrupt 

nature of the Earth's climate system (Dansgaard et al., 1993; Taylor et al., 1993; Adams et al., 

1999). Recent investigations of terrestrial sequences such as loess and lake sediment cores 

also support the dynamism and brusqueness of the global climate system (Ding et al., 1995; 

Kershaw etal., 1991). A common problem with all of these studies is the accuracy of their 

temporal frameworks as many of them rely on radiocarbon dating, palaeomagnetism, or on 

tuning the record to the oxygen isotope stage (01S) chronology. The chronology of a deposit 
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Chapter 1 Introduction 

has the potential to create considerable controversy, for example the Devils Hole calcite 

(Winograd et al., 1992 and associated papers) or the Lake George sediment core in Australia 

(Singh and Geissler, 1985). 

In terrestrial situations there are many sources of data on Quaternary climate change. 

However, apart from ice cores there are very few temporally continuous proxy records like those 

found in marine cores. Ice cores provide high-resolution palaeoclimate records spanning tens 

of thousands of years with the majority of cores taken from the polar ice sheets in Antarctica 

and Greenland. A major source of continental palaeoenvironmental information comes from 

the analysis of variations in the quantity and type of pollen found in sediment cores taken from 

lakes. The main problem with these deposits is the reliability of the chronologies, which are 

usually based on radiocarbon dating and modelling of the sedimentation rate, and their 

relatively low sampling resolution. Other sources of terrestrial palaeoenvironmental information 

include loess stratigraphy (Kukla, 1987) and uplifted marine terrace sequences, eg Huon 

Peninsula (Aharon and Chappell, 1986), however their usefulness is limited as they lack 

sufficient temporal resolution. 

Speleothems have considerable potential to provide reliable high-resolution terrestrial 

palaeoenvironmental records for the last 600 ka against which other terrestrial and marine 

records can be compared. Although speleothems have made relatively few significant 

contributions to the study of Quaternary climate they still have much unrealised potential 

(Hellstrom, 1998). Notable studies using speleothems as a data source include the constraint 

of sea-level changes by Li et al. (1989) and Richards etal. (1994) and the investigation of 

climate change in NW Europe using the growth frequency distribution through time (Baker et 

al., 1993a). The potential for speleothems to provide high-quality terrestrial records was 

demonstrated by the Devils Hole record (Winograd et al., 1992). Most palaeoenvironmental 

information from speleothems is gleaned from the analysis of the stable carbon and oxygen 

isotope composition of the carbonate. Some research effort is being directed to the minor 

element and organic acid content of speleothems, both of which have recently been shown to 

have annual resolution (Baker etal., 1993b; Roberts etal., 1998) illustrating the potential 

resolution possible. A significant advantage of speleothems is the ability to precisely constrain 

the growth of these chemical deposits with radiometric ages back to approximately 500 ka, 

particularly as they do not suffer from bioturbation or compaction effects and with prudent 

sampling, will be free from any post-depositional changes. The ability to resolve the temporal 

framework of speleothems at high resolution enables investigation of the rate of past global 

climatic changes and how quickly they influence the surface and cave environments. This 

information is critical to our understanding of global environmental change particularly in 

relation to modelling future climate change scenarios and how we might respond to them. 

Although it is speculative to suggest that climate change led directly to humans dominating the 

earth, it is not too presumptuous to suggest that this dominance could be curtailed by a 

dramatic change in climate. 
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Chapter 1 Introduction 

1.2. Thesis Aims 

The main aims of this thesis are: 

(1) To investigate the age distribution of speleothems in Tasmania and how it relates' 

to past global climate changes. 

(2) To compare stable isotope profiles of stalagmites with overlapping ages from 

different karst areas in order to investigate regional differences in past climate. 

(3) To examine the minor element composition of soda-straw stalactites as a proxy 

record for recent climate. 

(4) To investigate the minor element composition of speleothems using continuous 

scanning and discrete ablation techniques. 

1.3. Thesis Outline 

Chapter 2 introduces the reader to some important background information on the nature of 

speleothems including the factors influencing speleothem deposition, the types of speleothems 

used for palaeoenvironmental research, the kind of information acquired from speleothems, 

and the main methods of age determination that are applied to speleothems. Chapter 3 

discusses the regional setting, giving the reader some background information on the study 

areas, mechanisms and evidence for past climate changes, and sample descriptions. 

Chapter 4 describes the methods of age determination used in this study including a new 

method using autocorrelation together with the more conventional radiometric methods such as 

uranium series and radiocarbon dating. The results of four different age determination 

techniques are presented. 

Chapter 5 discusses the minor element composition of speleothems, an area of rapidly growing 

research. It includes some background information on the factors influencing the incorporation 

of minor elements into speleothem calcite, and the analytical techniques used in the study. 

The results from the analysis of several different types of speleothems are presented and the 

most significant results discussed. 

Chapter 6 discusses the stable isotope composition of speleothems on which most 

palaeoenvironmental reconstructions rely. The chapter examines the factors influencing the 

carbon and oxygen isotope composition of speleothems and their interpretation. The results of 

multiple stable isotope analyses of samples taken from the longitudinal profile of three different 

speleothems are presented and compared with several other palaeoenvironmental proxies. 

Chapter 7 presents a brief discussion of the results and the final conclusions. It also suggests 

avenues for further research. 
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Chapter 2 

The Nature of Speleothems 

2.1. Introduction 

Most caves are at near constant temperature (Gascoyne, 1992) and, when invaded by 

percolating solutions carrying various ions in solution, form an excellent environment for the 

deposition of minerals sometimes resulting in spectacular crystal formations (White, 1976). A 

speleothem is a secondary mineral deposit formed in caves (Moore, 1952), the term refers to 

the morphology of the mineral and not to its composition. 

Since only calcite speleothems are used for palaeoenvironmental analysis, discussion will focus 

on calcite, one of three polymorphs of calcium carbonate (CaCO 3) and the one most commonly 

found in caves. Calcite is deposited in various forms, most commonly as dripstone and 

flowstone speleothem types, for example stalactites, stalagmites, flowstone, draperies, 

columns, etc. but also as less common speleothem types, for example pearls, rafts, rims, 

rimstone dams, etc. (Hill and Forti, 1997). 

The aim of this chapter is to give some background information on speleothems and the 

physical processes that influence them. A brief account on the range of chemical deposits in 

caves is given together with a history of speleothem study. Dissolution and precipitation 

processes affecting speleothem deposition are discussed, as well as the specific types used 

for palaeoenvironmental studies. The chapter finishes with a review of the techniques used to 

obtain palaeoenvironmental information from speleothems. 

2.2. Chemical Deposits in Caves 

Approximately 250 different cave minerals are known. Cave minerals are defined as secondary 

minerals and are derived by a physio-chemical chemical reaction from a primary mineral in 

bedrock or detritus and deposited due to suitable environmental conditions within a cave (Hill 

and Forti, 1997). The most widely used classification scheme is by chemical class, for example 

arsenates, borates, carbonates, halides, nitrates, oxides and hydroxides, organic minerals, 

phosphates, silicates, sulphates, sulphides, and vanadates (Hill and Forti, 1997). 

The great majority of cave minerals are are rare and only found where certain environmental 

and geological conditions exist, in some cases the conditions causing mineral formation may 

be unique. Calcite is by far the most common cave mineral, followed in decreasing significance 

by aragonite, gypsum, other carbonates and hydrated carbonates, sulphates, halides, nitrates 
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Chapter 2 The Nature of Speleothems 

and phosphates, silica and silicates, manganese and hydrated iron oxides, and ore associated 

minerals (Ford and Williams, 1989). 

2.3. Carbonate Dissolution and Precipitation 

2.3.1. Dissolution of Host Limestone 

Karst landscapes develop in limestone bedrock due to the dissolution of calcium carbonate by 

carbonic acid. This is produced when rainfall absorbs carbon dioxide from the air and soil 

atmosphere which readily dissolves in water to give carbonic acid: 

Equation 2.1 	 CO 	1-1,2 0 —) H2  CO3  

Biological activity in the soil, microbial decomposition of organic matter and root respiration, 

provides the bulk of carbon dioxide in the acidification of percolation water (Figure 2.1). The 

dissolution of calcium carbonate is determined by the following reversible reaction equation: 

Equation 2.2 COg + H,0 + CaCO 3 ---> Ca 2 + + 2HCO 
2 	- 

The kinetics of dissolution and precipitation of calcium carbonate from thin water films can 

occur under both open and closed system conditions and is controlled by three main 

mechanisms which act independently but any one can determine the overall rate of dissolution 

(Buhmann and Dreybrodt, 1985a): 

(1) the kinetics of dissolution at the phase boundary between the CaCO3-H20-0O2 

system and the limestone; 

(2) the kinetics of the conversion of CO 2  to carbonic acid (H2CO3); and 

(3) mass transport of the dissolved ions by diffusion from and to the phase 

boundaries. 

2.3.2. Dissolution of Calcium Carbonate 

Buhmann and Dreybrodt (1985a, 1985b) developed a model to predict calcite dissolution rates 

in both open and closed systems, deducing that the dissolution rate is determined by the 

volume (V) of water to surface area (A) of the reacting mineral: 

V d[Ca] 
Equation 2.3  

A dt 
where [CO2] is the concentration of CO 2 , and R is the flux of Ca 2+  from the mineral surface, 

which depends on the chemical composition of the solution. R (mole cm -2  s -1 ) can be resolved 

using the PWP equation (Plummer et al., 1978): 

Equation 2.4 	 R = [H+] + ic 2  [H 2 CO 3 ] + ic3  - 1C4  [Ca2 +][HCO] 

where 1Ci , K2, and 13 are temperature dependent rate constants, and 14 is the expression for 

back reaction and is approximated by standard rate equations for calcite precipitation. 
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Figure 2.1. Diagram illustrating the processes influencing the formation of speleothems. 

Environmental conditions on the surface influence the seepage water chemistry 

which in turn govern the variations of stable isotope and minor element 

composition of speleothems (Adapted from Holland et al., 1964; Hellstrom, 1998). 
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These equations (page 5) demonstrate that CO2 conversion limits the dissolution rate, where 

the V/A ratios are small, but as the volume of water increases the limiting influence of CO2 

decreases considerably until dissolution is inhibited when CO2 approaches equilibrium with the 

water (Dreybrodt et al., 1996). This theoretical model agrees fairly closely with experimental 

data for V/A ratios in the range from 0.0002 cm to 0.1 cm (Dreybrodt and Buhmann, 1991, 

Dreybrodt et a/., 1996). 

2.3.3. Precipitation of Calcium Carbonate 

When a carbonate saturated solution reaches an air filled cavity, deposition of CaCO 3  occurs 

by one or more of three processes acting individually or in combination (Hill and Forti, 1997): 

(1) carbon dioxide diffusion (common); 

(2) evaporation (minor); and 

(3) common ion effect/incongruent dissolution (rare). 

Diffusion of CO 2  from solution, due to pressure differences between the host solution and the 

cavity air pressure, is by far the most common mechanism of CaCO 3  deposition in caves in 

humid environments (Figure 2.1). As percolation water moves through the soil, a high CO2 

partial pressure is imparted to the water by soil processes. This pressure can be up to 250 

times normal atmospheric pressure. When the water enters a cave, which may have a CO2 

pressure much lower than that of the overlying soil, CO 2  is lost until the CO2 pressure of the 

percolation water attains equilibrium with the CO 2  pressure of cave atmosphere. Degassing of 

CO 2  from solution occurs and causes it to become supersaturated and CaCO 3  is deposited: 

Equation 2.5 	 Ca 2+  + 2HCO-3  --> CaCO 3  + CO! + H 20 

It is important to note that the majority of studies on limestone dissolution and calcite 

precipitation have been conducted under laboratory conditions. They do not take into account 

the many possible interferences that occur in natural environments, for example those caused 

by minor elements and dissolved organic complexes. Some studies have attempted to 

address the problem of minor elements by using solutions containing varying concentrations of 

a particular element (eg. Katz et al., 1993, Mucci and Morse, 1983, Reddy and Wang, 1980). 

Lebron and Suarez (1998) have investigated the kinetics and precipitation mechanisms of 

calcite by varying the partial pressures of carbon dioxide and the concentrations of dissolved 

organic carbon in saturated solutions of calcium carbonate. 

2.4. History of Speleothem Study 

Recorded investigations of cave deposits are believed to have begun in the first century AD 

when it was postulated by scholars that speleothems formed by the petrification of seepage 

water. By the 17th century several theories about the formation of speleothems began to 

merge into one that explained speleothem formation by the solidification of some material 

carried in the water. It was not until 1812 that investigations using the "new" science of 
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chemistry revealed the role of limestone and carbonic acid in the formation of calcite 

speleothems, despite this several other theories explaining speleothem formation were still 

propounded. Shaw (1992) and Shaw (1997) contain reviews on the history of cave science 

and speleothem formation prior to 1900. 

Prior to the 20th century, palaeoenvironmental inferences from speleothems were isolated and 

discussion centred mainly on the effects of changes in the surface vegetation, of air circulation 

within the cave, and on speleothem growth rate. In the 19th century attention was focussed 

on the growth rate of speleothems as a means of assessing the antiquity of the earth. 

However, despite much investigation, the only conclusion reached was that speleothem growth 

rates were highly variable (Shaw, 1992). The first measurement of long-term speleothem 

growth rates was by Broecker et al. (1960) using conventional radiocarbon dating. Their study 

showed that a stalagmite had grown at 60 microns per year, on average, over a 1,400-year 

period. Radiocarbon dating has been used ever since by researchers to estimate ages and 

growth rates of speleothems but a major problem with the method, is incorporation of an 

unknown amount of ancient carbon derived from the carbonate bedrock. 

A more reliable method of dating speleothem calcite was tried initially by Rosholt and Antal 

(1962) using the 230Th/234U method but the attempt had limited success due to the impure 

nature of the speleothem material that was being analysed. A more thorough investigation of 

the technique by Duplessy et a/. (1970) yielded the first successful uranium-series ages by 

alpha spectrometry using speleothem material. The development of thermal ionisation mass 

spectrometry (TIMS) to directly measure the concentrations of uranium and thorium isotopes 

has resulted in a significant reduction in sample size and in analytical errors in comparison with 

the conventional alpha-spectrometric method (Edwards et al., 1987). 

Hendy and Wilson (1968) were one of the first (Galimov et al., 1965) to use the stable isotope 

ratios of oxygen and carbon in speleothems as a proxy for past terrestrial climate. Many 

researchers have since followed a similar path but temperature estimates are still of a semi-

quantitative nature and, until a method of analysing the isotopic composition of fluid inclusions 

trapped within the speleothem calcite is perfected, fully quantitative tempei.ature histories will 

remain elusive. However, recent work by Rowe et a/. (1998) suggests that a breakthrough in 

the development of fluid inclusion extraction methodology is very close and that fully 

quantitative temperature records may soon be produced from speleothems. 

2.5. Types of Speleothems 

Secondary mineral deposits formed in caves are called speleothems, "spelaion" = cave and 

"thema" = deposit (Moore, 1952). Hill and Forti (1997) use a classification system, divided into 

types, sub-types, and varieties, based primarily on morphology and secondly on the origin and 

crystallography of the speleothem. They describe over 38 different speleothem types and 

numerous sub-types and varieties. The type morphology is essentially controlled by eight 

different hydrologic mechanisms, dripping, flowing, pool, geyser, capillary, condensation, 
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aerosol, and phreatic water, which may act independently or in combination. For example, 
dripping types include stalactites and stalagmites, capillary types include coralloids and 

frostwork, aerosol types include sinter crusts, and phreatic water types include cave clouds and 
spar cr■istals. Sub-types are speleothems that are structurally similar to types but differ 
sufficiently in origin to produce a morphology with additional structural elements. For example, 
cave cones are a sub-type of cave rafts because they consist of piles of sunken cave rafts 
piled up into cones on the floor of a cave pool (Hill and Forti, 1997). 

The following discussion focuses on the three main types of speleothem used in 
palaeoenvironmental studies: soda-straw stalactites, stalagmites, and flowstone. 

2.5.1. Soda-straw Stalactites 

The name of these cave decorations comes from their remarkable resemblance to drinking 
straws. Their defining morphology is that they hang from the roof of a cave, are usually hollow, 
tubular in shape, with a diameter of approximately 5 mm, and vary from a few millimetres up to 
6 m in length. Water flows down through the central channel of the soda-straw stalactite with 
deposition occurring at the tip-water interface but a minor amount of deposition also occurs 
along the inner surface. In some cases deposition occurs mainly within the soda-straw 
stalactite with CaCO3  filling in some of the tube or even the entire void. Growth rates of soda-
straw stalactites vary enormously with estimations and observations ranging from a few microns 
per year up to several millimetres per year. Radiometric dating of soda-straw stalactites in order 
to estimate growth rate has been attempted using radiocarbon (Broecker et al., 1960), the 
230T. .234 ni U method (Gascoyne and Nelson, 1983) and more recently by excess 210Pb dating 
(Baskaran and Iliffe, 1993; Tanahara et al., 1998). 

2.5.2. Stalagmites 

Stalagmites are mineral deposits which rise from the floor of a cave as a result of water dripping 
directly from the roof or from stalactites (Ford and Williams, 1989). Stalagmites attain a wide 
variety of size, shapes and forms [see Hill and Forti (1997) for a comprehensive account] but 
generally their diameter is larger than the stalactite above and they usually have rounded tops. 
Many factors such as the amount of solution, distance of drip fall, evaporation, and solution 
chemistry influence the size and shape of stalagmite morphology (Hill and Forti, 1997). 

Most palaeoclimatic studies using stalagmites as a data source have used the uniform 
diameter type as they are assumed to grow continuously over long time periods and the long 
term growth rate often remains relatively constant. This appears to be a valid assumption but 
Hellstrom (1998) suggests that as stalagmites are predominantly fed by a single drip source 
they are very sensitive to microscale changes in the paths of the percolation waters, which 
could cause discontinuous growth independent of any variations in external climate. A solution 
would be to sample a number of stalagmites from the same cave and, using radiometric dating 
techniques, analyse those that have overlapping records (for example see Dorale et al., 1998). 
But this approach faces several ethical and conservation problems. 
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The internal structure of uniform diameter stalagmites consists of cuspate layers or caps and 
the equilibrium diameter, D, of these stalagmites can be specified by the following relation: 

Equation 2.6 
D 2  iCoQ 

Vir Z 

where Co equals the amount of CaCO 3  in solution available for deposition; Q equals the flow 
rate of the solution; and Z equals the vertical rate of growth. The minimum diameter is 
approximately 30 mm and any increase in diameter is broadly proportional to Q (Ford and 
Williams, 1989). Observation of uniform diameter stalagmites indicates that the flow rate is not 
constant and Q may be more appropriately identified as the most probable or modal value of 
the flow (Goede, pers. comm.). 

2.5.3. Flowstone 

According to Hill and Forti (1997), flowstones are one of the most common forms in caves. 
They consist of a planar deposit covering the cave floor/wall, reminiscent of a frozen "river" of 
calcium carbonate. In most cases deposition of subaerial flowstone occurs where thin films of 
water flow over an area of cave floor. The origin of water can either be from a single source 
or from multiple sources. Deposition occurs predominantly as fine layers, sometimes 
interbedded with detritus and other minerals [see Hill and Forti (1997) for a broader 
description of flowstone types]. 

There are very few published palaeoenvironmental records that specifically use flowstones as 
an information source (see Hellstrom et al., 1998). This is partly due to the relative ease of 
recovering stalagmite samples from caves and partly due to the fact that for stalagmites there 
is an accepted method for testing that deposition occurred under conditions of oxygen isotope 
equilibrium. A major advantage that flowstones have as a source of palaeoclimatic information 

is that they are often fed by several independent sources of seepage water and therefore 
more likely to grow continuously over long periods of time (Hellstrom, 1998). 

2.5.4. Crystallography of Calcite Speleothems 

An understanding of the processes operating at the solid-solution interface may be important 

in understanding the minor element composition of speleothem calcite. Precipitation of calcite 

can occur by one of two mechanisms, homogeneous or heterogeneous nucleation. The 

predominant formation process of crystals in natural waters is through heterogeneous 

nucleation, aided by dissolved ions and organic acids acting as catalysts. Crystals are seeded 

by nuclei, usually microscopic particulate matter which is common as "dust rain" in caves, but 

inorganic crystals, skeletal particles, sand, and biological surfaces also serve as suitable 

substrates (Stumm et al., 1992). Crystal growth occurs by ions, molecules, and ion pairs 

diffusing into the adsorption layer where they are adsorbed directly at "steps", "kinks", and 

other lattice defects. The "step and kink" model of crystal growth assumes that atoms and 

molecules in crystals are ordered into layers. At the solid surface steps, two sided, and kinks, 

three sided, are the preferred sites for precipitation (Ford and Williams, 1989). 
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Nucleation points are important for the continuing growth of individual crystals but it does not 

necessarily guarantee their survival given the variability in the orientation of the nuclei and 

adsorption surfaces. Interface roughness also has a bearing on nucleation success as a 

rougher substrate would tend to collect/trap more particulate matter (Gonzalez etal., 1992). 

The initial crystal form dictates the final form of the crystal, which grows by repetition in three 

dimensions, the crystal faces (limiting surfaces) depend on the shape of the initial structural 

unit. The environmental conditions under which the crystal is growing also influence the crystal 

morphology and these include factors such as temperature, pressure, conductivity, nature of 

the solution, flow direction, availability of space for free growth, and convection streams (Hill 

and Forti, 1997). 

As noted by Roberts (1998), recent work by Paquette and Reeder (1990; 1995) has 

highlighted the role of crystal surface microtopography in governing minor element partitioning. 

The results indicate that the minor element composition of time-equivalent regions precipitated 

from the same solution may in fact vary significantly between adjacent crystal sectors and 

within the crystal sectors themselves, this was termed "sector zoning" (Reeder and Grams, 

1987) and "intrasectoral zoning" (Paquette and Reeder, 1990), respectively. The zoning 

clearly indicates the importance of surface-structural controls on the incorporation of minor 

elements during crystal growth (Paquette and Reeder, 1995). The authors note that empirical 

partition coefficients are wholly dependent on the configuration of available adsorption sites, 

since these have been shown to vary over both the surface of the crystal and with growth 

conditions, the partition coefficients are unlikely to represent equilibrium ones and will therefore 

have a significant effect on any calculations derived from them. Roberts (1998) points out that 

the research by various workers on the microtopographical controls on minor element 

partitioning into calcite highlights the limitations of using equilibrium partition coefficients in 

natural settings. 

2.5.5. Cave Climatology 

Environmental factors influencing the climate of a cave include temperature, relative humidity, 

air flow, and the carbon dioxide content of the air, all are controlled by the regional climate on 

the surface. The near constant temperature of most caves is directly related to the surface 

mean annual temperature (Yonge et a/., 1985), in some cases to within approximately ± 1°C 

(Goede et al., 1982). Variable cave temperatures are mainly related to factors such as the 

presence of flowing water in the cave, the size and number of cave entrances, the extent of 

the cave system, the altitudinal extent of the cave system, and differences in the geothermal 

gradient (BOgli, 1980; Ford and Williams, 1989). 

Relative humidity is generally high (>90%) in caves located in humid climates and low in caves 

located in semi-arid to arid climates (<90%) but no definitive classification can be provided as 

great within cave variations can occur. Deposition of minerals is strongly influenced by relative 

humidity. Since evaporation occurs at low humidity, sulfate, halide, and nitrate minerals are 

deposited At high humidity, carbonates are deposited by carbon dioxide loss, however 

carbonates can also be deposited by evaporation (Hill and Forti, 1997). Seasonal variations in 
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relative humidity strongly influenced the carbonate mineralogy of a late Holocene stalagmite 

from Botswana. In the winter months low humidity resulted in aragonite being deposited and in 

summer high humidity resulted in calcite deposition (Railsback et a/., 1994). 

Airflow also has a strong influence on cave climatology. Air movement in a cave is influenced 

by exogenous and endogenous factors, acting independently or in combination, including 

differences between the cave and surface air pressure, differences between the cave and 

surface temperature, the number of cave entrances, the presence of flowing water, the 

dimensions of cave passages, and the distance from the surface. The carbon dioxide content 

of air within a cave can influence the deposition of minerals and speleothems (Cabrol and 

Coudray, 1982). Where air flow is negligible or non-existent the cave atmosphere may become 

stratified according to the density of the gases present, but where significant airflow exists, 

carbon dioxide concentrations are generally higher where water enters the cave. 

Condensation-corrosion can occur if high levels of carbon dioxide are present in water 

condensing on the limestone bedrock or on the surfaces of speleothems (Hill and Forti, 1997). 

2.6. Speleothems as Palaeoenvironmental Recorders 

Palaeoenvironmental interpretations using speleothems as an information source are based on 

variations in speleothem growth rates, the frequency distribution of speleothem growth in time, 

variations in speleothem mineralogy, analyses of stable oxygen and carbon isotope ratios, 

luminescence microbanding, minor element variations, the organic content of speleothems, 

and speleothem colour. Most speleothem research has focused on the interpretation of stable 

isotopes but in recent years a growing amount of research has been done on minor elements 

and how their variations relate to environmental parameters. Luminescence microbanding of 

speleothems is currently being investigated for its potential usefulness as a 

palaeoenvironmental information source as well as a dating tool. 

2.6.1. Variation in Growth Rates 

Speleothem growth rate is a potentially important palaeoenvironmental signal as the chemical 

kinetics of growth are dependent on several variables which can be determined by climate and 

vegetation changes (Baker et a/., 1998b). Early attempts to investigate speleothem growth 

rates were crude and consisted marking the growth surfaces in some way, for example using 

the soot from a candle, or noting the growth on human-made structures. 

Recent attempts at measuring speleothem growth rates have relied on selecting samples with 

a known age, for example speleothems from abandoned mines (Baker, 1993) or railway 

tunnels (Genty et al., 1996), or by using recently developed high precision dating techniques 

(Baker et al., 1993b; Roberts et at, 1998). These samples have been shown to have annual 

laminations enabling comparisons to be made between measurements of the growth lamina 

and other high resolution climatic records and predicted growth rates. Baker et al. (1998b) 

used annually laminated speleothems to compare theoretically predicted rates with measured 

rates in order to investigate which variables controlled or contributed to growth. The results 
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indicate that speleothem growth rate is sensitive to variations in Ca ion concentration and 

water supply, confirming that the Dreybrodt model (Buhmann and Dreybrodt, 1985a, 1985b; 

Dreybrodt and Buhmann, 1991), used for predicting speleothem growth, adequately predicts 

actual growth rates under present day conditions in the caves used in this study. 

2.6.2. Speleothem Growth Frequency Variations Through Time 

Several studies have used the growth frequency of secondary calcite deposits through time as 

an indicator of past climate change (Baker et al., 1993a; Gordon et al., 1989; Ayliffe et al., 

1998). Calcite deposition in caves is dependent, to a large extent, on the degassing of 

groundwaters which have elevated carbon dioxide concentrations. This raised level of carbon 

dioxide is a result of water passing through the soil atmosphere, where high carbon dioxide 

partial pressures are generated by microbiological processes and root respiration. Warm 

conditions are associated with high soil respiration rates and CO2 production (Miff and 

MUnnich, 1989) and, therefore, the higher probability of speleothem growth. In regions 

affected by ice sheets, where ice is situated over a cave or the area is influenced by 

permafrost, conditions will prevent or inhibit speleothem growth altogether (Baker et al., 

1993a). Regions which are not influenced by ice sheets may instead be limited either by a lack 

of surplus water inhibiting speleothem growth, or regional temperatures may have a greater 

role in determining soil CO 2  production and ultimately speleothem growth (Ayliffe etal., 1998). 

Good correlations have been found between marine oxygen isotope stratigraphy, pollen 

records, and insolation changes and the record of speleothem growth frequency in northwest 

Europe (Baker et al., 1993a; Gordon et al., 1989). In the southeastern region of South 

Australia the speleothem growth frequency record indicates that greater effective precipitation 

occurs during stadials and cool interstadials, thus providing ideal conditions for speleothem 

growth. Interglacials and glacial maxima inhibit speleothem growth as it appears that there is 

insufficient water available for speleothem growth (Ayliffe et al., 1998). 

2.6.3. Variations in Mineralogy 

The majority of secondary mineral deposits in caves are carbonates. In most situations the 

precipitation of carbonates occurs by carbon dioxide degassing and the resulting mineralogy of 

the deposit is either aragonite or calcite, or a combination of the two. For example, Railsback 

et al. (1994) analysed a stalagmite from Botswana with alternating layers of calcite and 

aragonite. Each calcite/aragonite pair, referred to by the authors as composite layers, 

represents one year and approximately 1,500 were counted. The model presented to explain 

the composite layers suggests that the main control is the highly seasonal nature of the 

precipitation and the quantity of water reaching the stalagmite. 

In some situations, usually in semi-arid and arid regions, evaporation is the dominant mode of 

deposition and secondary mineral deposits consist mainly of sulphates and halides. A good 

example of this occurs in caves on the Nullarbor Plain, Australia where a progressive drying out 

of the regional climate has occurred during the Pleistocene which is reflected in the mineralogy 

of the speleothems. Goede et al. (1990a) used alpha spectrometic 230Th/234U dating to 
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distinguish several different mineralogical phases of speleothem deposition in the Nullarbor 

caves. The analyses indicate that no significant calcite deposition has occurred in 

approximately the last 400,000 years and that gypsum and halite have been deposited 

sometime since thus indicating an extended period of aridity. 

Genty and Quinif (1996) used variations in the character of annual calcite layers in several 

modern stalagmites from four caves and a sealed tunnel to investigate what environmental 

conditions controlled their deposition. The layers consist of white-porous calcite (WPC) and 

dark-compact calcite (DPC) lamina, measured using a microscope and digital image processing. 

The lamina thickness is best explained by the high seasonality of the water excess, which has 

been calculated using the Thornthwaite equation based on monthly records of temperature 

and precipitation. 

2.6.4. Stable Isotope Ratios 

The majority of palaeoenvironmental reconstructions using speleothems as a data source 

rely on the analysis of the stable isotopes of oxygen and carbon (Goede et al., 1990b; 

Harmon et al., 1978; Thompson et al., 1974). The isotope variations are usually expressed 

as parts per mil relative to a standard, the PeeDee Belemnite standard in the case of 

carbonates (Craig, 1957): 

Equation 2.7 

Equation 2.8 

8 180 = 

513C 

(818%160)sample 	(5189/160)P DB 
X 1000 

X 1000 

(818
9// 

160)PDB 

(513%12 C)55mp1 e 	(813%12C)P DB 

(513%12C)PDB 

Oxygen isotope fractionation occurs between the speleothem calcite and the drip-water from 

which it forms. The degree of fractionation is sensitive to temperature and, under ideal 

conditions of constant oxygen isotope composition of the dripwater, records cave temperature 

changes in the calcite at a rate of -0.24 %0°C 1  (Hendy, 1971). Unfortunately conditions 

considered "ideal" are rarely attained as the isotopic composition of the dripwater changes over 

time. Palaeotemperature calculations based on the degree of fractionation can be used only if 

the oxygen isotope composition of the dripwater can be estimated and so far no reliable 

method has been developed (but see Dennis et al., 1996). 

Carbon isotope variations are interpreted mainly in relation to changes in the composition of 

vegetation through time (Brook et al., 1990; Dorale et al., 1992; Talma and Vogel, 1992) but 

several authors have pointed out problems with this (Baker et al., 1997b; Goede, 1994). As 

carbon is present only as a minor constituent in cave seepage water, it is susceptible to 

fractionation at all stages of transport from the soil right through to incorporation in speleothem 

calcite (Hendy, 1971). Therefore, while it can be relatively easy to predict the carbon isotope 

composition of soil CO2 for any given vegetation type and environmental conditions (Bird et al., 
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1996; Ceding etal., 1989; Dulinski and Rozanski, 1990), predicting the carbon isotope 

composition of speleothems derived from this soil CO 2  is in many cases not possible (Baker et 

al., 1997b). A more detailed discussion on stable isotopes is given in Chapter 6. 

2.6.5. Minor Elements 

Carbonate minerals, precipitated from solution, contain minor elements whose concentrations 

are governed by the composition of the parent solution and the conditions under which the 

carbonate was precipitated (Roberts, 1997). The minor element composition of speleothems is 

"largely unexplored" according to Gascoyne (1992) but studies by Gascoyne (1983), Goede 

and Vogel (1991), and Goede (1994) are early attempts to relate palaeoenvironmental 

conditions to minor element fluctuations in speleothems. Recent attempts to investigate the 

minor element composition of speleothems have used microprobe analytical techniques at very 

high resolution (Hellstrom, 1998; Roberts et al., 1998) and have lead to the discovery of 

annual variations in the content of magnesium, strontium, and barium. A more detailed review 

of the minor element composition of speleothems is given in Chapter 5. 

2.6.6. Colour 

In its pure form, and as a primary mineral, calcite is colourless. As a secondary mineral calcite 

is found in a range of colours from translucent, white, yellow through to dark brown or black. 

Various ionic species and organic acids, present in the parent water, substitute for Ca2+  or are 

included in the crystal structure. Prior to any analytical work, speleothem colour was attributed 

to specific elements, for example blue and green colours due to copper, brown and black due 

to iron or manganese oxide pigments, and yellow, orange, and brown colours due to hydrated 

iron oxide stains (White, 1981). Measurements of the minor/trace element and organic acid 

content of coloured speleothems disproves these simplistic observations, for example, 

Gascoyne (1977) analysed a number of speleothems and showed that there was no 

correlation between colour and the amount of iron present. 

A study by White (1981) used reflectance spectroscopy and chemical composition to 

investigate speleothem colour. The results suggest that some of the transition elements and 

Fe2+ , Ni2f  and Cu2+, act as colourants by replacing Ca 2+  in the crystal structure (Table 2.1). The 

ions of these elements are able to produce colour because they have only partially filled outer 

electron shells which allows some light energy to be absorbed and some to be reflected thus 

giving the sensation of colour (Battey, 1981). For example, the d-shell of the Zn 2+  ion is full 

and since there are no empty states to which electrons can be activated by light it can not 

serve as a colouring ion (White, 1981). 

Colour may also be influenced by pigmentation, that is the presence of impurities within the 

speleothem. The oxides and oxyhydroxides of iron, mainly haematite and goethite, and 

organic acids, probably humic and fulvic acids, act as pigments in calcite and are responsible 

for the commonly seen yellow, tan, orange, and brown speleothem colours. White (1981) was 

able to distinguish which pigments were responsible for colour by their spectral signatures, for 
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example 850 to 950 nm for the iron oxides whereas organic acids have a rising absorption 

"edge" in the red end of the spectrum. 

Table 2.1 
	

Qualitative chemical analyses of some coloured speleothems by White (1981). In all 

the samples analysed by White (1981) the following elements were not detected B, Be, 

Mo, Y, Cr, Ni, V, Ti, Co, Zr, and La (Source: White, 1981). 

Colour Minor Elements 
( 0.02-2 %) 

Trace Elements 
( < 0.02 %) 

Not Detected 

Stalactite 

Calcite Flowstone 

Aragonite Flowstone 

Aragonite 

Yellow 

Green 

Green 

Blue 

Mg 

Zn, Cu 

Zn, Cu, Sr 

Mg, Sr 

Si, Al, Yb, Sr 

Mg, Al, Sr 

Mg, Si, Ba 

Si, Al, Yb, Ba 

Mn, Ba 

Si, Mn, Al, Yb, Ba 

Mn, Al, Yb 

Mn 

2.6.7. Organic Content 

Humic and fulvic acids are products of organic matter breakdown and are introduced into the 

cave environment by percolation waters. Gascoyne (1977) has suggested that organic 

compounds such as humic and fulvic acids were responsible for the common yellow-tan-brown 

speleothem colours present in caves, this hypothesis was supported by White (1981) using 

reflectance spectroscopy. Samples with organic compounds present have most light absorbed 

in the blue wavelengths and significantly less light absorbed in the red wavelengths, thus a 

typical reflectance spectrum for a sample containing organic acids has a characteristic rising 

absorption edge. The yellow to tan to brown colours are due to the absorption edge moving 

further into the red and near infra-red wavelengths and the slope of the absorption edge 

becoming less steep (White, 1981; 1997). Much recent research has focused on the 

luminescence, produced by organic acids when calcite is exposed to ultraviolet light, and its 

potential as a palaeoclimate proxy. 

2.6.8. Luminescence Microbanding 

A recent development in attempts to reconstruct palaeoenvironmental conditions from 

speleothems is the use of luminescence microbanding. The luminescence phenomenon in 

speleothems is thought to be caused by humic and fulvic acids trapped within the calcite lattice 

during precipitation. When exposed to ultra-violet light some speleothems display a blue-green 

luminescence (White and Brennan, 1989), the luminescence is believed to be due to the 

excitation of the organic acids present in the speleothem calcite. The concentrations of 

organic acids are thought to vary in response to changes in the activity and rate of 

decomposition of surface vegetation (Baker etal., 1993; Shopov et al., 1994). 

Luminescence is not present in all speleothems, for example only 5 out of the 43 samples 

examined by Baker et al. (1993b) exhibited banding, but those that have it sometimes display 
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microscale banded patterns parallel to the growth layers. Thus our understanding of the nature 

of and the processes that control speleothem luminescence is still limited but several 

investigations are in progress (Baker and Barnes, 1998; Baker et al., 1998a; Baker et al., 

1999c). 

2.7. Age Determination of Speleothems 

Reliable, precise and accurate dating is of fundamental importance to palaeoenvironmental 

studies as without it, it would be impossible to match proxy records from different sources and 

assess the rate of past environmental change. For example, Richards etal. (1994) used the 

mass spectrometric 230Th/234U technique to date submerged speleothems from Blue Holes in the 

Bahamas to constrain maximum glacial sea levels. Without precise age estimates it would not 

have been possible to examine the several thousand year difference between the speleothem 

and coral ages (Bard et al., 1996) that record the Flandrian transgression. The discrepancy is 

attributed to a regional increase in aridity causing a reduction in groundwater recharge and 

ultimately the cessation of speleothem growth a few thousand years prior to flooding of the 

cave by rising sea levels. 

Most dating techniques applicable to the study of speleothems use radioactive isotopes. They 

measure either the rate of radioactive decay (radiometric dating) or the accumulation of 

damage to the crystal lattice caused by radiation (radiogenic methods). Incremental methods 

rely on the counting of regular cycles to discriminate time, for example the annual rings in trees 

or coral, or the annual layers of lake sediments (varves). Chemical methods rely on the gradual 

breakdown of either inorganic or organic substances that can be time related, for example 

weathering rinds of dolerite have been used to date Quaternary glacial deposits (Kiernan, 

1990). Table 2.2 lists the techniques used to date speleothems and their approximate 

temporal ranges. 

2.7.1. Radiometric Methods 

Radiometric techniques rely on the time-dependent decay/growth of parent and daughter 

nuclides as they restore equilibrium in the isotope series. The following three techniques have 

been used in this study and are discussed in detail in Chapter 4. 

2.7.1.1. Uranium-series Dating 

The uranium decay series provides several geochronometers capable of measuring time from 

several years up to several million years thus filling an important gap between radiocarbon and 

potassium-argon dating (Faure, 1986). The disequilibrium methods have proved the most 

useful in dating various materials used in studying events in the Pleistocene. The most 

common technique applied to speleothems exploiting the parent-daughter disequilibrium is the 

230Th/234U method. This method has used by many researchers to date speleothems, for 

example Edwards and Gallup (1993), Gascoyne et al. (1979), Li et al. (1989), and Richards et 

al. (1994), and reviews and methods are presented in Gascoyne (1985), and lvanovich and 

Harmon (1982; 1992). 
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2.7.1.2. Excess 210Pb 

The decay chain of 238 U contains the 210Pb isotope, a solid with a half-life of 22.26 years. This 

provides it a maximum age range of some two hundred years and making it useful tool for 

investigating late Holocene environmental history and recent anthropogenic impacts on the 

environment. 210Pb excess dating is therefore a useful technique for establishing the ages of 

recently deposited sediments such as marine, lake, and ice cores as well as speleothems 

(Tanahara et al., 1998). 

2.7.1.3. Radiocarbon 

One of the most common methods used to investigate late Quaternary palaeoenvironmental 

history is radiocarbon dating. It can be applied to a great range of materials such as peat, 

bone, wood, shells, marine and lacustrine sediments, and palaeosols. Radiocarbon dating is 

sometimes also applied to speleothems (Broecker etal., 1960; Hendy and Wilson, 1968; 

Pazdur et al., 1996) but its accuracy is low because while most of the carbon is derived from 

biological activity in overlying soils there is a variable amount of "dead" carbon contributed by 

the parent limestone (Genty and Massault, 1997), something that is highly variable both 

temporally and spatially. 

Table 2.2 
	

Table showing the methods used to date speleothems together with an indication of 

their temporal range, their frequency of application to speleothems, and an indication 

of their accuracy. 

Method Name Temporal Range 
(Years) 

Application to 
Speleothems 

Accuracy 

Radiometric Uranium/Thorium 

Alpha 	spectrometry 10,000 	4 	350,000 common  

Mass Spectrometry 230Th/234 U 0 	4 	500,000 common 
231 pa/235u 5,000 	4 	150,000 rare 

234U/238U 10,000 	4 	1,500,000 rare * 

Pb-210 0 4 	200 increasing ..* 

Radiocarbon 0 	4 	40,000 common * 

Radiogenic 

Thermoluminescence 10,000 	4 	1,000,000 rare * 

Electron Spin Resonance 2,000 	4 	1,000,000 rare * 

Isochron 

Palaeomagnetism 0 4 ? rare *. 

Incremental 

Luminescence microbanding 0 4 ? increasing ... 

Chemical 

Amino Acid Racemisation 0 4 500,000 rare * 
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2.7.2. Radiogenic Methods 

2.7.2.1. Thermoluminescence (TL) 

TL has rarely been applied to speleothems because it is a complex and time consuming 

method which sometimes yields anomalous results (Debenham, 1983). Geyh and Schleicher 

(1990) point out that calcites of the same age can yield results that deviate from each other by 

up to 200 percent. Where TL ages have been compared to uranium-series ages the 

correlations are sometimes excellent and sometimes poor (Ford and Williams, 1989). 

2.7.2.2. Electron Spin Resonance (ESR) 

Motoji lkeya (1975) pioneered the method of dating speleothem calcite using the ESR 

technique. The technique itself has undergone considerable development and refinement 

(Ikeya, 1988). Its application to speleothems has not been restricted to dating (Goede and 

Hitchman, 1984; Goede et al., 1990b) but variations in one of the spectral peaks (h 3) have also 

been found to be related to variations in the concentrations of some minor elements in 

speleothems bearing some relationship to palaeoenvironmental change (Goede, 1991; 1998). 

2.7.3. lsochron Methods 

2.7.3.1. Palaeomagnetism 

Palaeomagnetism relies on the preservation of the orientation of magnetic particles to record 

fluctuations in the Earth's magnetic field. Cave sediments and speleothems have long been 

recognised as recorders of remnant magnetism which may be either detrital or chemical in 

nature (Latham et al., 1979). As stalagmites and flowstones usually have a relatively simple 

stratigraphy, i.e. growth layers decrease in age towards the top, and they usually have a 

relatively slow growth rate, the past geomagnetic field variation must be recorded continuously 

in the sequence of growth layers as long as growth has been continuous (Latham et al., 1982; 

lnokuchi etal., 1981). 

However, as noted by Latham et al. (1979; 1982; 1986) the disadvantages of using 

speleothems is firstly that the remnant intensities are often low, frequently too low to provide 

useful records, and secondly in finding suitable specimens to allow multiple sampling of a 

single time horizon. A major drawback of the technique is that it only allows the identification of 

event horizons such as magnetic reversals or excursions that have already been dated by 

other methods. 

2.7.4. Chemical Methods 

2.7.4.1. Amino Acid Racemisation (AAR) 

Dating speleothems by AAR was attempted by Lauritzen et al. (1994) with conventional 

uranium-series dating providing an independent chronological control thereby effectively 

calibrating the AAR measurements. The AAR technique has some potential to allow dating 

beyond the range of uranium-series dating. 
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2.7.5. Incremental Methods 

2.7.5.1. Luminescence Microbanding 

Baker et al. (1993) have shown that luminescent banding present in speleothems is annual by 

using high precision mass spectrometric U-series dating. A feature of the bands used in this 

study is that they consist of pairs of high and low luminescence layers that are thought to 

reflect seasonal variations in organic acid formation. This study demonstrates that in some 

cases luminescence microbanding can be used as a powerful chronological tool. Roberts et al. 
(1997) used luminescence banding in a 2.4 mm section of stalagmite to establish a chronology 

and also investigate annual minor element variations and luminescence. TIMS 230Th/234U dating 

was used to establish and independently check the chronology. 

2.8. Advantages and Disadvantages of Studying Speleothems 

The growth record of secondary calcite deposits offers great potential as a proxy record of past 

regional climate change (see Table 2.3). When calcite precipitates onto the growing surface of 

a speleothem the minor element and stable isotope composition will reflect environmental 

conditions on the surface at the time of calcite deposition. The crystalline nature of 

speleothems ensures that they remain a closed system unlike marine, lake, and ice cores 

which are subject to temporal blurring through bioturbation and diffusion, respectively. The 

application of precise radiometric dating methods allows precise temporal assignment for the 

last 500,000 years and also allows comparisons with other proxy records. Temporal resolution 

is potentially very high and is dependent on speleothem growth rate which can vary from 20 to 

50 mm ka-1 , but rates of up to 600 mm ka -1  have been recorded. 

Speleothems do have great potential as palaeoenvironmental proxies but more research is 

required into the processes controlling their minor element and stable isotope compositions. 

Prior to percolation water entering a cave it has been subject to a number of environmental 

influences which may filter or significantly influence the environmental signal. Some of these 

aspects have been highlighted by Smart et al. (1996) in a critical review of speleothem 

research. They suggest that the use of individual speleothems for palaeoenvironmental 

interpretations is fraught with difficulty, subject to essentially random site specific controls which 

may filter or moderate the signal. But the need for duplication and reproducibility conflicts with 

the strict conservation ethic demanded by recreational cavers. 
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Table 2.3 	Potential palaeoenvironmental indicators based on speleothems. 

Indicator Potential palaeoclimatic significance 

Growth frequency LOW: cool, decreased effective precipitation or 
arid conditions 

HIGH: warm, increased effective precipitation, 
surface vegetated conditions 

Internal stratigraphy 
(eg growth hiatus, colour change, etc) 

possible sudden climate change 

. 

8 180 variation change in the 180 of water and/or temperature of 
deposition 

8 13C variation change in the 13C of source and/or calcite 
precipitation process 

Variation of SD in fluid inclusions change in 2H of water due to varying climate 

Pollen content indicates surface vegetation type 

Organic content indicates vegetation activity 

Variation of minor element content indicates change in water composition and/or 
temperature of deposition, investigations at an 
early stage 

may also indicate derivation from an exogenic 
source such as dust, sea-salt, and smoke 
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Chapter 3 

Regional Setting 

3.1. Introduction 

In southern Australia the late Tertiary was a period of marked dryness, lower temperatures, 

and increasing seasonality compared with the warm and humid climates of the early- and mid-

Tertiary (Jackson, 1999). The drying out of the continent was also accompanied by a change 

in the seasonal distribution of precipitation from a pattern of dominantly summer to winter 

precipitation receipts (Bowler, 1982). During the Pleistocene there have been repetitive 

cycles of glacial/interglacial climate oscillations influencing the Australia's climate system 

together with significant changes in moisture availability. The glacial/interglacial cycles have 

had major impacts on global climate particularly in areas which presently experience cool 

temperate climates. 

This chapter introduces the reader to the factors influencing environmental change both in a 

contemporary and antecedent context, and at a regional and global scale. No attempt will be 

made to cover all aspects relating to palaeoenvironmental change as the literature is 

extensive and beyond the scope of the thesis. A review of current and past environmental 

conditions will be given for the Australian region including details of studies outside this 

region where deemed relevant. 

3.2. Climate in the Australian Region 

The climate of the Southern Hemisphere is governed by an asymmetrical distribution of land and 

sea, the minor amount of land, and the extremely cold polar region (Markgraf et al., 1992). A 

steep pole-equator temperature gradient results in much more vigorous activity of the general 

circulation systems, the circum-polar lows with easterly wind flow, the Westerly Wind Belt (VVWB), 

the Sub-Tropical High pressure (STH) systems, and the tropical easterlies (Pittock et a/., 1978). 

Seasonal changes in the extent of Antarctic sea ice have a significant effect on the mean 

latitudinal position of the STH and VVVVB, shifting by up to 10° and resulting in strong seasonal 

precipitation variations in the southern parts of the continents (Markgraf et al., 1992). 

3.2.1. Present Day Climate 

The Australian continent stretches from latitude 10°S to 42°S and longitude 115°E to 155°E, 

and is bounded by the Indian, Pacific, and Southern Oceans. It has a variety of climate 
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regimes ranging from tropical monsoonal in the north, arid in central Australia, to westerly 

maritime in the far south. Past changes in the positions of major atmospheric and oceanic 

boundaries have had a significant impact on the climate of the region. 

3.2.1.1. Atmosphere 

The present climate of southeastern Australia is dominated by the STH, and a broad band of 

westerly winds, the Roaring Forties (Dodson, 1998). The high pressure systems move in an 

east-west direction, their mean latitude migrating seasonally from 37-38°S in summer to 29- 

32°S in winter (McTainsh, 1989). The prevailing westerly circulation, expanding and 

contracting seasonally with the STH and extent of Antarctic sea ice, affects southeast Australia 

throughout the year but is far more vigorous in the cooler half of the year (Derbyshire, 1971). 

The STH is furthest south in February, with a mean latitudinal track of approximately 40°S, 

when the westerlies that influence southern Australia are at their lowest ebb and when 

northern Australia is most affected by the northwest monsoon. In August, the STH moves to 

its most northerly track at approximately 30°S and the westerlies influence most of the southern 

part of the continent. 

In the north, the South East Tradewinds (SET) replace the monsoon with cooler, drier air. In 

summer, tropical cyclones form in the Arafura, Coral, and Timor Seas and the Gulf of 

Carpentaria. They cross the coast and move inland, bringing large amounts of precipitation to 

northern Australia. Sometimes they move south along the coast as rain bearing depressions, 

bringing heavy falls as far south as Tasmania (Colhoun, 1991). 

The southern part of the continent generally experiences mild to hot, dry summers and cool to 

mild, wet winters but the west coast of Tasmania experiences precipitation throughout the year. 

A steep west to east precipitation gradient presently exists in Tasmania, from approximately 

3,500 mm in the West Coast Range down to 500 mm in the interior basins of the Midlands 

(Figure 3.1.c). The high relief of the west coast and Central Plateau intercepts most of the 

moisture, although the Ben Lomond plateau in the northeast has precipitation in the 1,500 to 

2,000 mm range. The persistence of the precipitation gradient is evidenced by a gradient in 

relict glacial landforms, reflecting a change in ice accumulation, and therefore a reduction in 

the intensity of glacial activity, from west to east (Davies, 1967). Currently no permanent ice 

exists anywhere on the mountainous areas of Australia as the snowline lies some 300 m above 

the highest peaks (Colhoun and Peterson, 1986). 

On the Australian mainland the distribution of precipitation (Figure 3.1a and b) is mostly 

affected by onshore winds, topography, and distance from the coast. In the southeast 

mainland, precipitation ranges from 250 to 500 mm in sub-humid areas such as west of the 

Australian Alps, western Victoria, and South Australia, and between 800 to 1,500 mm in humid 

areas such as the Australian Alps, other high ranges, and the coastal river valleys (Gentilli, 

1986; Nanson et al., 1992). Regional rainfall is influenced by the mean position of the 

subtropical high pressure belt which shifts on a seasonal as well as a longer-term basis 

(Pittock, 1975; Pittock, 1978). 
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Figure 3.1. Temperature and precipitation maps for southeastern Australia. The lower maps, (a) to (c), are mean annual precipitation for southern South Australia, southeastern New South Wales, and Tasmania, 

respectively. The seasonal distribution of precipitation for southeastern Australia is shown in (d). The mean annual minimum and maximum temperature for southeastern Australia are shown in (e). 

(Figures adapted from maps provided by the National Climate Centre, Bureau of Meteorology, Commonwealth of Australia, 1999. http://www.bom.gov.au/)  
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3.2.1.2. Ocean Currents 

Seasonal changes in the extent of Antarctic sea ice strongly influence the southern part of the 

Australian continent, the sea ice limits vary from approximately 65°S in summer to 60°S in 

winter. The boundaries of major ocean features are also affected by the seasonal fluctuation 

in sea ice extent including the Polar Front (PF) or Antarctic Convergence, which has an 

average position of approximately 55°S, and the Sub-Tropical Convergence Zone (STCZ), 

between 36° and 45°S. 

The east coast of Australia is influenced by the warm East Australian Current (EAC), a series of 

disjointed gyres with an anticlockwise motion and flowing in a southerly direction as far as 

Tasmania (McGowran et al., 1997). The warm water forming the EAC originates from the 

westerly flowing South Equatorial Current (SEC) via the Coral Sea. The western and southern 

continental coasts are influenced by the cool, south to north/west to east flowing West 

Australian Current (WAC). These coasts are also affected by the warm, north to south flowing 

Leeuwin Current (LC), which is fed by the warm, low-salinity SEC via the Indonesian 

Throughflow (Colhoun, 1991; McGowran etal., 1997). 

The position of the STCZ is the most important feature influencing the present and past 

climates of the southern latitudes between 30° and 45°. Generally the STCZ is located at 

around latitude 40°S (Figure 3.2) but it can be forced to deviate to the south at times due to 

the influence of currents flowing north to south along the coasts of the southern continents. 

There is evidence to suggest minor changes in the mean latitudinal position of the STCZ and 

the West Wind Drift (VVVVD) during the Quaternary resulting in the shutting down of the LC 

(McGowran et al., 1997) and a strengthening/weakening of the EAC (Nees, 1997) when the 

ITCZ moves north during cool climate phases. 

3.2.2. Palaeoclimate 

3.2.2.1. Evidence for Palaeoenvironmental Changes 

Throughout Australia there is ample evidence to suggest major fluctuations in regional climate 

in response to past realignments of major synoptic and ocean current systems (Derbyshire, 

1971; Okada and Wells, 1997). During the Last Glaciation the Australian continent was 

influenced by a much drier and windier climatic regime due to the northward movement of the 

STH and the VVWB. The resultant compression of the synoptic systems, effectively forced by a 

significant expansion in the extent of sea ice, induced a significant increase in the meridional 

pressure gradient. This resulted in a major increase in average wind speeds, enough to 

induce significant dune and dust mobilisation (McTainsh, 1989). 

The land surface area of the Australian continent also grew in size due to an estimated 120 m 

drop in sea level at the Last Glacial Maximum resulting from significant expansion of global ice 

volume, therefore increased continentality is to be expected during glacial periods. Significant 

responses from several geomorphic systems including cold climate, desert, and fluvial 

landforms resulted from the progressive amelioration of climate during the Last Glacial. The 

Penultimate Glaciation is characterised by subdued moraines and lightly weathered drifts lying 
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several kilometres beyond the limits of the fresher and sharper features of the Last Glacial. 

However, the actual extent of the Penultimate Glacial is not particularly well documented or 

dated in the Southern Hemisphere (Clapperton, 1990). 

Additional evidence for climate fluctuations comes from aeolian, fluvial, and lacustral 

sediments. Dunefields occupy approximately 40 percent of the Australian land area (eg. 

Simpson dunefield), several large lakes with vast catchment areas (eg. Lake Eyre basin) are 

found in the arid interior, and there are several rivers (eg. Darling and Murray Rivers) that span 

the continent. These systems have reacted to past climate changes and the fluctuations are 

faithfully recorded in various sediment sequences. For example, age frequency histograms of 

aeolian, fluvial, and lacustral sediment dates indicate periods of enhanced aeolian and fluvial 

activity associated with changes in regional moisture availability. These variations are coupled 

to global fluctuations in climate and sea level (Nanson et al., 1992). 

Figure 3.2. Location of main ocean current systems influencing the Australian region. The East 

Australian and Leeuwin Currents are warm flows sourced from the warm, low 

salinity South Equatorial Current. These currents play significant roles in causing 

episodic warm and wet conditions in Southern Australia. The Leeuwin current shuts 

down when the West Wind Drift and Subtropical Convergence move north during 

cooler periods (McGowran etal., 1997). (Figure adapted from McGowran etal., 1997) 

26 



Chapter 3 Regional Setting 

Unlike New Zealand, which has experienced widespread vulcanism throughout the 

Quaternary, Australian chronologies do not have temporally discrete and spatially extensive 

tephras within their Quaternary sediment sequences. While tephrochronolgy provides a very 

powerful and independent means of dating sediment sequences in New Zealand (Lowe and 

Newnham, 1999), most chronologies from Australian sediments rely on radiocarbon and 

luminescence dating. 

Advances in dating techniques, such as optically stimulated luminescence (OSL), accelerator 

mass spectrometry (AMS), and exposure dating (ie l°Be, Cl)36 	allow more precise determinations 

of age using significantly smaller samples therefore producing better temporal control and 

higher quality chronologies. For example, the OSL technique can use a single grain of quartz 

to make an age estimate thereby avoiding contamination from material of different ages (eg 

Roberts, R. et al., 1998), a problem with some studies relying on thermoluminescence age 

estimates (eg Fullagar et al., 1996). Many radiocarbon dates on important Australian 

sequences and material are currently being revised using AMS radiocarbon dating in 

conjunction with refined chemical extraction methods (Bird et al., 1999). Tim Barrows (RSES, 

ANU, Canberra) is presently using ' °Be and 36C1 dating to date moraine sequences in the 

highlands of Australia in order to better understand their glacial history. 

A plethora of marine sediment cores from the oceans and seas bounding Australia provide a 

wealth of palaeoenvironmental information including variations in sea surface temperatures 

(Linsley, 1996), and productivity (Nees, 1997), displacement of currents (McGowran et al., 

1997), ice volume changes (Labeyrie et al., 1996), continental dust records (Hesse, 1994), 

terrestrial vegetation fluctuations (Heusser and Van de Geer, 1994; Harle, 1997), etc. The 

general findings, from several cores in the region, is that during glacial-interglacial cycles 

significant relocations occur of major oceanographic features such as the Tasman Front, the 

Subtropical Convergence, the East Australian Current (Nees, 1997). There also appears to be 

an on/off switching of the Leeuwin Current (McGowran et al., 1997). Records of ice volume 

changes, and thus the record of past glacial-interglacial cycles, are recorded by changes in the 

oxygen isotope composition of various species of marine organisms, for example planktonic 

and benthic foraminifera. These observations are supported by a remarkable record from the 

Huon Peninsula, Papua New Guinea, of sea-level fuctuations from tectonically uplifted coral 

terraces (Chappell and Shackleton, 1986). 

3.2.2.2. Late Quaternary Climate in Southeast Australia 

In Australia, periods of wetter conditions occurred between 270 to 220 ka years ago (01S 7), 

between 110 to 80 ka (01S 5), and between 55 and 30 ka (OIS 3). Drier conditions occurred 

between approximately 200 and 130 ka (01S 6) between 75 and 55 ka (OIS 4), and between 

25 to 15 ka (01S 2) (Wasson, 1986; Nanson et al., 1992). A common problem with many 

studies is the lack of rigid temporal control, a reflection of the sparsity of sites and quality of the 

material available for dating. 

Although the paucity and poor temporal fixing of most proxy records from Australia precludes 

making any unequivocal conclusions about past circulation patterns and the timing of their 

influence, some careful postulating using various assumptions has spawned a reasonably 
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detailed palaeoenvironmental history of the Australian continent as it responds to global 

climatic changes (Derbyshire, 1972; Markgraf et al., 1992). Chappell (1991) noted that, in 

some cases, low-quality chronologies lead to conflicting interpretations or inconsistencies 

between sites. Despite this, the weight of evidence clearly supports phases of wetting and 

drying, and cooling and warming in Australia. The use of speleothems, which can be 

accurately and precisely dated by independent means, will provide additional evidence for the 

timing and occurrence of past periods of fluctuating moisture availability and temperature. 

Evidence of several periods of glacial activity during the Quaternary in Tasmania comes from 

widespread moraine and till deposits, block streams, scree deposits, and cirques. Individual 

events can be distinguished by the degree of weathering of dolerite clasts contained within till 

and glacial outwash deposits but also with radiocarbon dates of organic material and charcoal. 

Recent work by Augustinus et al. (1999) used uranium/thorium dating of ferricrete bands within 

glacigenic sediments to estimate the ages of glacial advances in Tasmania. On the highlands 

of the southeastern Australian mainland no firm evidence has been found for multiple 

glaciations. In the last glacial episode some mainland mountains had limited cirque and short 

valley glaciation. Ice cover was limited to approximately 32 km 2  on the Snowy Mountains 

(Galloway, 1963). 

In Tasmania ice caps were developed on the West Coast Range (Margaret Glaciation), Central 

Plateau (St Clair and Rowallan Glaciations, south and north respectively), and on the Ben 

Lomond plateau (Cirque Glaciation), with an areal extent of around 2,000 km 2  (Derbyshire, 

1972). An older and more extensive glaciation, in the order of five to ten times larger in some 

areas, is evident from till and moraine deposits that encompass deposits of the Last Glaciation 

(Colhoun and Hannan, 1990). The Penultimate Glaciation has significant deposits on the 

West Coast (Henty/Comstock Glaciation), Central Plateau (Butlers Gorge and Arm Glaciations, 

south and north respectively), and on Ben Lomond (Plateau Glaciation). Deposits from the 

Penultimate Glaciation have soil profiles approximately 1.5 m thick and dolerite clast 

weathering rinds between 2 and 20 mm thick. In comparison, the Last Glaciation has soil 

profiles less than 0.5 m thick and weathering rinds less than 1.5 mm on average (Kiernan, 

1983; Colhoun and Peterson, 1986). 

3.3. Mechanisms and Evidence for Long-term Climatic Fluctuations 

Various theories have been put forward to explain the abundance of evidence for 

"catastrophic" environmental changes on Earth's landscape. The evolution of geology as a 

discipline came at a time of intellectual revolution evoking considerable debate in the mid- to 

late-18th century concerning the origin of humans and the environment they live in. At that 

time the Earth was thought to have been divinely created and the idea of a biblical "flood" 

used to explain many aspects of the contemporary landscape. This creationist view is still held 

today by some religous groups. As our knowledge and understanding of the Earth increases 

so to does the evidence against creationist theories. 
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The following discussion focuses on the now widely accepted astronomical theory and its 

influence on Earth's environmental history, and the evidence for past changes. For a brief 

synopsis on alternate theories of environmental change, Bell and Walker (1992) and Goudie 

(1992) are suggested. 

3.3.1. Orbital Forcing and Autovariation 

Until recently the available records of environmental change were temporally fragmented and it 

was not until ocean cores were investigated that the true cyclical nature and scale of climate 

change became clear and theories to explain it universally credible. Hays et al. (1976) have 

demonstrated that fluctuations in Earth's orbital parameters are reflected in the oxygen isotope 

record from the deep oceans. Prior to this, evidence of past environments has come from a 

variety of sources including historical records and investigations of terrestrial deposits and 

landforms (Bell and Walker, 1992). However, the majority of these studies are mere snapshots 

and do not indicate the true cyclical nature of long-term environmental changes. It is also very 

difficult to find consensus among Quaternary scientists on a universal theory to explain the 

causes of past global environmental change. Some early attempts at explaining climate 

fluctuations included the idea that variations in the Earth's orbit may act as a trigger, but this 

was generally disregarded due to the lack of evidence. 

3.3.1.1. Causes of Long-Term Climate Changes 

The astronomical theory was first proposed by Aldeman in 1842 and was further elaborated by 

James Croll (Imbrie and Imbrie, 1979). Milutin Milankovitch was the first to provide testable 

predictions about the geological record of climate by producing radiation curves for high 

northern latitudes based on changes in the Earth's orbital parameters, namely precession, 

obliquity, and eccentricity, that enabled him to predict the number of glacial episodes and their 

timing during the last 650,000 years (Imbrie and lmbrie, 1979). 

The eccentricity of the Earth's orbit has a period of approximately 100,000 years, obliquity of 

the ecliptic around 43,000 years, and precession of the equinoxes at 23,000 and a minor one 

at about 19,000 years (Bell and Walker, 1992). At the time of publication (Milankovitch, 1927) 

the fragmentary nature of the available evidence did not strongly support the hypothesis and it 

was not until long-term records were gleaned from ocean cores that it gained widespread 

support. Hays et al. (1976) have clearly demonstrated that the astronomical frequencies are 

present in the isotopic record of the deep ocean. 

Recent work has revealed that the magnitude of the 100,000-year palaeoclimatic cycle 

expected on theoretical grounds is not in agreement with the available geological evidence. 

Some doubt exists as to our current understanding of internal and external climate feedbacks 

and how they have operated in the past (Broecker, 1992; Winograd et al., 1988; lmbrie et al., 

1993b). Liu and Chao (1998) investigated orbital variations and palaeoclimatic cycles using 

wavelet time-frequency spectrum analysis. They found that a signal-noise resonance effect 

could explain the obliquity period variations and that "flickers" within cycles were due to 

amplitude variations of the obliquity and precession. 
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It is now generally accepted that the variability of insolation receipts on higher latitudes of the 

continental landmasses in the Northern Hemisphere exerts considerable influence over global 

temperature, albedo, and sea-level. In the Southern Hemisphere the ocean to land ratio is 

about four to one, the ratio in the Northern Hemisphere is almost equal. However, the effects 

of orbital variations on insolation alone are not sufficient to explain the large temperature 

fluctuations in the Quaternary. Other mechanisms must be amplifying or modulating their 

influence, so called positive and negative feedbacks (ie autovariation) such as albedo, 

greenhouse gases, ocean currents, etc. For example, a lowering of radiant energy on the 

surface leads to cooling of landmasses which results in increased snow and ice cover and 

therefore elevated surface albedo, this provides a positive feedback increasing the likelihood 

of ice accumulation. 

3.3.1.2. Causes of Shorter Term Climate Variation 

While the Milankovitch theory goes a long way to explaining some of the major features of 

Pleistocene climatic fluctuations it seems unable to account for small- to medium-term changes, 

particularly in the Holocene (Goudie, 1992). Using wavelet time-frequency spectral analysis of 

orbital variations and geological records, Liu and Chao (1998) have suggested that these 

climate "flickers" are induced by the amplitude variation of obliquity and precession. It is also 

likely that these shorter-term changes are responses to complex interactions between positive 

and negative feedbacks in the climate system and perhaps are only partially modulated by the 

long-term insolation variations. For example, the amount of carbon dioxide in the Earth's 

atmosphere influences the strength of the atmosphere's greenhouse effect. Natural variations 

in the concentration of carbon dioxide occur because of changes in global mean temperature. 

When average global temperatures are warmer there is a net movement of carbon dioxide from 

the oceans into the atmosphere but cooler temperatures reverse this process thereby lowering 

the concentration of carbon dioxide in the atmosphere. 

Another example of an autovariation variable are volcanic eruptions, which can cause short-

term cooling of the Earth's climate. Some of these eruptions can release large amounts of 

material into the stratosphere that effectively block the receipt of solar radiation by the Earth's 

surface therefore providing an additional negative feedback when climate is in a cooling phase 

or as a positive feedback by decreasing albedo for a short time during climate amelioration. 

However, the exact nature of its influence is still a matter of debate due to an apparent 

correlation between cool phases and increased vulcanism (Goudie, 1992). 

3.3.1.3. Abrupt Climate Changes 

Recent studies of marine cores from the North Atlantic have identified relatively short but 

sudden periods of climatic instability called Heinrich events (Heinrich, 1988), they are also 

found in ice-cores as Dansgaard-Oeschger events (Bond et al., 1993). In marine-cores these 

sudden events have been shown to relate to large inputs of ice and meltwater from Northern 

Hemisphere ice-sheets causing a marked reduction in the salinity of surface waters and 

temporarily bringing to a halt the thermohaline circulation in the Norwegian-Greenland Sea that 

provides a major constituent of the North Atlantic Deep Water (NADVV) ultimately affecting 

climate, both regionally and globally (Broecker and Denton, 1990; Rasmussen et al., 1997). 
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The causes of abrupt climatic events are not completely understood but most explanations 

refer to the inherent instability of large ice masses, a contemporary example is the Ross Ice 

Sheet in Antarctica. 

3.3.2. Evidence for Long-term Palaeoenvironmental Change 

Evidence to support long-term cyclicity of climate comes mainly from investigation of marine-

core records, some of which extend well back into the Tertiary, but also from ice-core (Vostok 

and GRIP) and loess records (Guo etal., 1996), which can encompass several glacial-

interglacial cycles. Most palaeoenvironmental evidence comes from the Northern Hemisphere 

due to the small number of marine and terrestrial records analysed so far from the Southern 

Hemisphere. The majority of temporally long palaeoenvironmental records provides supporting 

evidence for the Milankovitch orbital forcing theory and supports an apparent synchronicity of 

climate change between the Northern and Southern Hemispheres, the comparison of the 

Vostok and GRIP ice-cores is a classic example (Bender et al., 1994). However, most of the 

available records are not particularly well dated because currently there are no methods 

available to independently verify their chronologies. As Hellstrom (1998) suggests, most 

records are "tuned" to known orbital variations assuming that they are directly responsible for 

the isotopic variations recorded in the cores (Martinson et al., 1987) but it is apparent that this 

is a circular argument. 

Very few independently dated, extensive climate records exist and some do not fully support 

the orbital forcing theory, the Devils Hole calcite is a good example (VVinograd etal., 1992). It 

has a very good independent chronology (Ludwig et al., 1992) which spans several glacial-

interglacial cycles but it does not appear to support the premise of orbital theory, although this 

is somewhat controversial (Imbrie et al., 1993a; Crowley, 1994). The Devils Hole record 

indicates that speleothems have the potential to provide long-term records of climate change 

that are of a high quality and being independently dated, they may provide important evidence 

on the timing of key climatic events between the hemispheres. 

A popular paradigm to explain the apparent synchroneity between Northern and Southern 

Hemisphere palaeoclimate change is the "conveyor belt" theory (Charles etal., 1996). 

Changes in the high northern latitudes are propagated globally through the varying flux of the 

North Atlantic Deep Water (NADW). Various marine and ice core records indicate that during 

glacial times the North Atlantic conveyor is disrupted resulting in an alternate mode of 

operation and a major reorganisation of ocean circulation (Broecker and Denton, 1989). 

Currently there are few terrestrial records in the Southern Hemisphere that support global 

palaeoclimate synchronicity although Hellstrom etal. (1998) and Goede etal. (1996) are 

exceptions by demonstrating the existence of the Younger Dryas Stade in the Southern 

Hemisphere. Investigating the timing of key global climate events, such as the Younger Dryas 

and the Last Glacial Maximum, also enables examination of synchroneity between the 

hemispheres but such research requires rigorous and precise dating. The application of the 
230Th/234 U technique to speleothems, described in detail in Chapter 4, can provide accurate and 

precise age estimates allowing rigorous testing of the conveyor belt theory. 
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3.4. Sample Descriptions and Location Data 

A number of speleothems were collected from several karst localities in Tasmania with 

permission from the National Parks and Wildlife Service (NPWS) and Forestry Tasmania 

(ForTas). Figure 3.3 shows the locations of the karst areas used in this study and Table 3.1. 

gives sample details. Karst area descriptions given below are taken from the Australian Karst 

Index (Matthews, 1985). Samples were also taken from the Naracoorte Caves, southeast 

South Australia and the Yarrangobilly Caves, southern New South Wales. 

3.4.1. Tasmanian Karst 

The karst areas described below were selected as study sites because a significant amount of 

work has already been accomplished (for example Goede and Harmon., 1982; Goede et al., 

1986; Goede etal., 1998). Apart from the soda-straw stalactites no "live" speleothem samples 

were collected and most were either "recycled" from Dr Albert Goede's collection, or were found 

displaced or already in a broken state and collected under the supervision of Mr Ian Houshold 

(NPWS). Two samples, CTH-1 and PB-1, were contributed by Dr Kevin Kiernan (ForTas). 

3.4.1.1. Mole Creek Karst 

This karst area of approximately 150 km 2  is located in northern Tasmania between 41°30'S, 

146°10'E and 41°35'S, 146°30'E and is west of Deloraine and close to the township of Mole 

Creek (Figure 3.3d). The area is between approximately 200 and 600 metres above present 

sea-level and has extensive cave development in strongly folded Ordovician limestone of the 

Gordon Group (Burrett and Goede, 1987). Speleothems were collected with permission from 

several caves in the Mole Creek karst including Baldocks Cave (BC), Croesus Cave (CC), King 

Solomons Cave (KS), Little Trimmer Cave (LT), Marakoopa Cave (MC), My Cave (MYC), and 

Wet Cave (WC). 

The area has a cool, moist climate with a mean annual temperature of approximately 10.5°C 

and mean annual precipitation of around 1,100 mm with a pronounced winter maximum. The 

preceding figures are calculated using the two nearest climate stations Sheffield (41°23'S, 

146°20'E; 280 m a.s.I.) and Deloraine (41°32'S, 146°42'E; 250 m a.s.I.) with mean annual 

temperatures of 11.0 °C and 10.3°C respectively, and mean annual precipitation receipts of 

1,181.9 mm and 961.7 mm respectively (Bureau of Meteorology, 1999). The natural 

vegetation consists of wet sclerophyll (Eucalypt) forest, some areas of which in the past have 

been subject to forest management practices. Recently areas of the Mole Creek Karst 

containing significant features have been declared a National Park, although this does not 

necessarily ensure their protection given the nature of karst hydrology. Much of the Mole 

Creek and surrounding areas have been cleared of forest and are now open pasture. 

3.4.1.2. Junee-Florentine Valley Karst and Risbys Basin Karst 

The Junee-Florentine Valley (JF) karst area is located northwest of the Maydena township and 

west of Mt Field National Park between 42°30'S, 146°25'E and 42°50'S, 146°35'E (Figure 

3.3d). The area is between approximately 300 and 800 metres above sea-level and has 

extensive cave development in Ordovician limestone. Several stalagmites and soda-straw 
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stalactites have been collected with permission from Frankcombes Cave (FC) and several soda-

straw stalactites have also been collected from Burning Down the House Cave (BDTH). The 

Risbys Basin (RB) karst area is located south of the Maydena township at approximately 

42°46'S, 146°35'E. It has limited cave development in Ordovician limestone. Several soda-

straw stalactites were collected with permission from Risbys Basin Cave (RB). 

The area has a humid temperate climate with a mean annual temperature of approximately 

10.5°C and mean annual precipitation of around 1,500 mm. The nearest climate stations are 

Maydena (42°46'S, 146°36'E; 270 m a.s.I.) and Butlers Gorge (42°17'S, 146°16'E; 666 m 

a.s.I.) with mean annual temperatures of 10.7 °C and 7.6°C respectively, and mean annual 

precipitation receipts of 1,214.5 mm and 1,684.7 mm respectively (Bureau of Meteorology, 

1999). Vegetation in the Florentine Valley consists of a mixture of temperate rainforest, 

dominated by Nothofagus cunninhamii and Atherosperma moschota, and wet eucalypt forest 

consisting of mixed forest, in which Eucalyptus species dominate with rainforest species as 

understorey, and wet sclerophyll forest, in which there are no rainforest elements present in the 

subordinate forest layers (Gilbert, 1958; Kirkpatrick, 1991). Much of the area is subject to 

forest management practices (Eberhard, 1994; Eberhard, 1996). 

3.4.2. Naracoorte Karst, South Australia 

The Naracoorte area is part of the south-east karst province of South Australia, a coastal plain 

of low relief with many karst features (Marker, 1975; Grimes, 1984) and caves (Figure 3.3c). 

Speleothem SC-S11, used in this study, was collected from Spring Chamber in Victoria Fossil 

Cave near Naracoorte at latitude 36°58'S, longitude 140°45'E, at an elevation between 70 

and 80 meters above present mean sea level. The regional karst rock is a flat lying, soft, 

porous marine limestone of Oligocene-Miocene age (Gambier Limestone) and is locally overlain 

by Pliocene sands (PeriIla Sand) and by calcarenite dune limestones of the Pleistocene 

Bridgewater Formation. The Naracoorte caves are located under the East Naracoorte dune, 

which currently consists of a discontinuous capping of Plio- Pleistocene calcarenites and 

sands. The phreatic cave systems, developed in the underlying Gambier Limestone, have 

formed since the early Pliocene. 

The climate is sub-humid Mediterranean with a steep regional rainfall gradient from south to 

north (Penney, 1983). Mean annual precipitation at Naracoorte is between 550 and 600 mm. 

Low summer rain is due mainly to convectional activity while heavier winter rain is attributed to 

frontal activity. There is a marked moisture deficit during the summer months and slow cave 

drips are likely to derive their water supply from winter rain. The mean annual temperature 

recorded at Naracoorte (36°59'S, 140°29'E) is 14.4 °C, significantly lower than the 16.8 °C 

recorded in Spring Chamber of Victoria Fossil Cave. 

The natural vegetation of the East Naracoorte Range consists of Eucalyptus woodland with an 

open understorey. Only small patches remain as most of the land has been cleared to make 

way for improved pasture, Pinus radiata plantations and vineyards. 
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3.4.3. Yarrangobilly Karst, New South Wales 

The Yarrangobilly Limestone, a Late Silurian limestone member (VVyborn et al., 1990), is 

located in the Kosciuszko National Park, between 35°38'S and 35°44'S, 148°27'E and 

148°29'E, on the western slopes of Yarrangobilly Mountain (1,628 m). The caves used in this 

study are located in the southern most section of the Yarrangobilly Limestone, within the 

Yarrangobilly River valley at an altitude of approximately 300 to 600 m above sea level (see 

Figure 3.3b). The samples used in this study were collected from Jersey Cave by Mr Andy 

Spate, NSW National Parks and Wildlife Service (Scientific Licence #A2215). 

The area has a cool, moist climate with a mean annual temperature of approximately 12°C and 

mean annual precipitation of around 1,000 mm. The preceding figures are calculated using 

the several nearby meteorological stations, mean annual temperature and precipitation is given 

in Table 3.2. (Bureau of Meteorology, 1999). 

The Yarangobilly Limestone block, approximately 1.5 kilometres wide and 14 kilometres long, 

lies within the Great Dividing Range, a range of mountains and hills running parallel to the 

eastern coast of Australia extending from the Brindabella Range (ACT) through the Snowy 

Mountains, New South Wales and the Victorian Alps, Victoria to the highland areas of south 

eastern Tasmania, a latitudinal extent of approximately 15°. The north-south alignment of the 

range interrupts the moisture-laden Roaring Forties, bringing significantly more rain and snow 

to the western escarpment than to the lower rain-shadowed areas to the east. 

The higher areas of the Range have a much cooler and moister climate than the rest of the 

continent, precipitation is high throughout the year. Glaciation was not extensive in the 

Australian Alps and is not known in Victoria. Cirques and moraines are only found at the 

highest elevations of the Snowy Mountains on the south east facing slopes. Periglacial 

features such as terracing, soil movement, shattered boulders and boulder fields are much 

more extensive than glacial features in the Australian Alps (Costin at al., 1979). 
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Figure 3.3. Map (a) illustrates the location of the study areas in Australia. Maps (b) to (d) show 

the karst locations in New South Wales, South Australia, and Tasmania, respectively. 
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Table 3.1. Details of stalagmite (st) and flowstone (fl) samples used in this study. Cave names, 

the first two letters in the sample number, are given elsewhere. Figures in the 

238U/232Th column are results from solution introduction ICP-MS (Chapter 5) used to 

determine uranium concentrations and to aid in selecting samples for 230Th/234U TIMS 

dating (Chapter 4). 

Karst areas key: FV = Florentine Valley, IB = Ida Bay-Hastings, MC = Mole Creek, 

Tasmania; NC = Naracoorte, South Australia; YB = Yarrangobilly, New South Wales. 

Sample # Karst Area Type Height 
(mm) 

238U/2321h U 
(nmol g•1 ) 

BDTH-F1aa 

(2) 	
(2)
R
R
0
0
0
)

(2)
(2)

R
R

R
)

0
2

T_
T_

Tc3
  

fl 130 8.92 0.028 
BDTH-F1bb fl 70 5.77 0.039 

BDTH-F1cc fl 100 4.21 0.020 

FC-S3 St 150 95.55 0.346 
FC-S4 st 28 34.15 0.076 

BQ-S1 St 143 24.01 0.210 
I B-S1 St 350 40.55 0.117 
BC-S1a st 421 17.14 0.072 
BC-Sib St 487 4.65 0.112 
BC-Sic St 228 ' 	11.86 0.079 
BC-S2 s t 260 106.05 0.278 
BC-S3 St 120 19.14 0.108 
BC-S4 St 226 33.41 0.051 
BC-S5 st 287 1.83 0.049 
CTH-S1 St 1030 - - 
KK st 1070 - - 
KS-F1 fl 200 24.48 0.052 
KS-F2 fl 58 0.90 0.044 

KS-S1 st 452 - - 
KS-S2 St 488 1.44 0.016 

KS-S3 st 235 1.28 0.045 
KS-S4 St 229 0.96 0.020 
LT St 1965 - - 
MKC-S1 St 190 28.09 0.077 

MKC-S2 St 288 65.52 0.061 
WC-S1 St 208 34.49 0.716 

WC-S2 St 20 - - 

WC-S3 St 213 989.28 1.320 
WC-S4 St 50 - - 
WC-S5 St 142 74.17 0.402 

WC-S6 st 146 454.90 1.615 

WC-S7 St 92 206.37 0.638 

SC-S11 St 545 - - 

JC-F1aa fl 138 36.78 0.051 

JC-F1bb fl 100 152.29 0.125 

JC-F2 fl 100 36.18 0.010 

JC-F4 fl 49 37.64 0.085 
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Table 3.2. 	Climate averages for several meteorological stations close to the Yarrangobilly 

karst Data provided by Bureau of Meteorology (1999). 

Station Name Latitude Longitude 
Altitude 

(in) 
Mean Annual 
Temperature 

(°C) 

Mean Annual 
Precipitation 

(mm) 

Khancoban 36° 14' 148° 8' 337.0 13.8 1,001.7 

Cabramurra 35° 56' 148° 23' 1,475.0 7.7 1,710.3 

Tumbarumba PO 35° 47 148° 1' 645.0 11.5 986.9 

Kiandra Chalet 35° 53' 148° 30' 1,395.0 6.8 1,563.6 

3.5. Summary 

In Australia a number of glacial-interglacial cycles during the Late Quaternary had significant 

impacts on the environment with conditions very much different from that of the present time. 

Compared with many other regions Australia has limited material with which to investigate 

past environmental changes. As demonstrated in the previous chapter speleothems have 

great potential as palaeoenvironmental recorders and have provided reliable information on 

past conditions on other continents. Karst areas are widespread in Australia and thus 

provide an important information source. Speleothems from various caves in three karst 

areas located in southeastern Australia have been selected in order to try to investigate the 

extent of this change. 
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Speleothem Age Determination 

4.1. Introduction 

Of fundamental importance to any palaeoenvironmental study is the ability to correlate key 

climatic events between spatially variable, fragmentary and discontinuous deposits, something 

that can only be achieved by dating individual sites using very precise dating techniques 

(Smart, 1991). For example, Dorale etal. (1998) applied high-precision 230Th/234 U dating to the 

613C and 8180 profiles of 4 separate stalagmites in order to investigate mid-continental climate 

change. The precise dating established that all of the stalagmites overlapped in age. Cross-

correlation between individual stalagmites and other proxy records was possible because the 

dating was of a high enough quality and resolution. Thus the ability to precisely date and 

cross-correlate speleothem material with other proxy records potentially makes it a very 

important source of proxy records for both regional and global Quaternary 

palaeoenvironmental studies. 

This chapter focuses on the three methods of age determination used in this study namely 

230Th -2 U uranium-series, excess Pb-210, and radiocarbon dating. 

4.2. Mass Spectrometric Uranium Series Dating 

This section gives some background information on the method and then details the 

methodology used. The speleothem dating work was done while a visitor at the Research 

School of Earth Sciences (RSES), Australian National University (ANU), Canberra under the 

supervision of Professor Malcolm McCulloch. A successful outcome would not have occurred 

without his ardent and unqualified support. 

4.2.1. Background 

The radioactive decay of the parent isotopes uranium and thorium occurs by the spontaneous 

emission of either an alpha particle or a beta particle, together with several different 

wavelengths of gamma rays. Uranium series dating encompasses a range of techniques which 

exploit the decay products, or daughters, of the parent isotopes 238U and 235 U. The following 

discussion will focus on the 230Th-234 U technique, a method which has been applied to a wide 

range of materials including speleothems (Li et al., 1989, Richards et al., 1994), travertine 

(Schwarcz, 1980), coral (Chappell, 1996), bone (Ayliffe and Veeh, 1988), teeth, (Grun et al., 

1999), and lacustrine sediments (Szabo and Butzer, 1979). 
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Speleothems are an ideal material for the application of the 230Th-234U method as samples 

comprising non-porous, macrocrystalline calcite can be considered a closed system. The range 

of the method is from approximately 1 ka to 350 ka for conventional alpha-spectrometry and 

from around 50 years to 600 ka for thermal ionisation mass spectrometry (TIMS). 

Alpha-spectrometry relies on the passive counting of alpha particle emissions from each 

decaying nuclide. A complex chemical extraction procedure is required to separate them from 

the surrounding matrix and from other isotopes with overlapping spectra (Gascoyne et al., 1978). 

Errors are estimated by taking the standard deviation of the number of counts using the formula: 

Equation 4.1 

where m is the number of counts, for each isotope 10,000 counts are required to give a 1a 

error of ± 1 percent (Smart, 1991). Counting periods can be extended over a considerable 

length of time given that over a counting period of one week only one in 5 x 106230Th atoms will 

have been counted (Roberts, 1998). It is therefore essential that the chemical yields obtained 

are as high as possible and that the uranium concentrations of the detritus free sample are 

greater than 0.05 ppm (Gascoyne et al., 1978). 

The development of TIMS allows the direct counting of individual atoms and has revolutionised 

palaeoenvironmental research through the tremendous improvement in the precision of age 

estimates, with errors reduced to 0.1 percent. Additionally, much smaller sample sizes are 

used when applying the TIMS technique and that allows more samples to be dated, thus 

boosting temporal resolution, but also reduces time averaging as large samples integrate 

significant time slices, inevitable when the alpha-spectrometric method is used to date 

speleothem calcite with low uranium concentrations. 

4.2.2. Uranium Geochemistry 

The main source of uranium and thorium is the weathering of crustal rocks, the antiquity of 

which ensures that the rocks are in secular radioactive equilibrium with respect to uranium and 

thorium, that is, that the 230Th/234U and  234...238 
U/ U ratios are equal to one. At low temperatures the 

behaviour of uranium and thorium in the +4 valency/oxidation state is one of near chemical 

immobility in near-surface environments (Gascoyne, 1982). However, uranium is readily 

oxidised from the +4 to the +6 valency state: 

Equation 4.2. 	 U41-  + 2H2 0 —) UO22+  + 4H÷  + 2e" 

The uranyl ion may undergo further complexing depending on the pH and the presence of 

inorganic and organic ions. Uranium is transported in groundwater, in concentrations from 0.1 

to 3 ppb, as a uranyl complex, with either carbonate, sulphate, or dissolved organic species, as 

long as it remains in the hexavalent state. Thorium on the other hand is almost completely 

absent from groundwater due to its very low solubility and scavenging by clay minerals and 

other sediments (Langmuir and Herman, 1980; Gascoyne and Schwarcz, 1982). Calcite is 

precipitated by degassing of carbon dioxide from groundwater, saturated with respect to 
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calcium carbonate. Uranium, along with many other dissolved minor constituents, is deposited 

and the 238U and 234 U isotopes are fractionated. 

When the calcite is precipitated secular equilibrium is disturbed and disequilibrium between the 

parent and daughter nuclides results. By measuring the degree to which the system has 

returned to a state of secular equilibrium an estimate can be made of the timing of the 

depositional event, assuming that the system has remained closed and that no thorium was 

present at the time of deposition (Ivanovich, 1982). The age of a sample is determined using 

an iterative calculation because one of the decay systems has an unknown degree of 

disequilibrium. The time, t, of a speleothem sample is given by its 23°Th/234 U ratio by the 

relationship (Schwarcz, 1986): 

Equation 4.3. 

[n'Th/ 	_ [ 238 

/ 	
7234 ul (1 - 	+ A./ 

act 	
2.730 	A234  X (1 — [

238  U/234  uL t  )(1 e—(A23° —Ar4  

where the decay constants k234 and X.230 are the reciprocals of the half lives of 234 U (108,750 ± 

850 years) and 230Th (352,740 ± 710 years), respectively, and "act" denotes the activity ratio 

(Edwards et al., 1986). The selection of samples consisting of non-porous, macrocrystalline 

calcite with no evidence of post-depositional alteration usually satisfies the assumption of a 

closed system. 

At the time of deposition speleothem calcite is essentially free of thorium except where it occurs 

due to significant detrital contamination, or other impurities present in the speleothem calcite, 

the extent of which can be gauged from the presence of non-radiogenic 232Th (Schwarcz, 

1986). Detrital contamination can be detected by measuring the 230Th/232Th activity ratio, a ratio 

less than 20 (Schwarcz, 1980), or for TIMS dates, less than 100 (Li et al., 1989) indicates 

significant detrital contamination. There have been various attempts to correct for detrital 

contamination based on isochron methods (Bischoff and Fitzpatrick, 1991) and assumed 

isotope ratios (Dorale et al., 1992) but these have had limited success and are at best only 

crude estimations. A more robust and practical method is to avoid the analysis of visibly "dirty" 

speleothem calcite. 

Chen et al. (1998) used U-Th-Pa dating techniques to investigate non-concordant carbonate 

materials, ie. those that have behaved as open systems, in order to evaluate the use of 

models/concordia plots in a similar manner to U-Pb dating methods. The models aid in 

assessing what effects diagenetic processes have had on the uranium-series isotopic ratios in 

materials that have behaved as open systems, in some cases they allow the true age to be 

determined or at least better constrained. 

The precision of dating is highly dependent on the accuracy of measuring the 230Th/238 U activity 

ratio. In the chemical extraction procedure it is possible that the uranium and thorium isotopes 

will fractionate relative to one another in an unpredictable way. A known amount of spike, 

consisting of 233 U and 229Th, two isotopes not found in nature, is added to samples during 
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'dissolution. Any fractionation of the natural isotopes during the chemical extraction procedure 

or mass spectrometry can be accounted for by measurement relative to the artificial isotopes, 

therefore the absolute and relative concentrations in the speleothem sample can be resolved. 

In some laboratories a double spike mixture is added but the chemical procedure employed at 

RSES and described in Section 4.2.4 uses a single spike. 

4.2.3. Applications of Uranium-series Dating to Speleothems 

The majority of speleothem studies to date have used conventional alpha-spectrometry (a—S) 

to estimate the ages of samples (Goede and Harmon, 1983; Harmon etal., 1981;) Thompson 

et al., 1976). The main problem has been the lack of precision, traditionally the ages are 

quoted to 1a meaning that there is only a 68 % probability that the age is within the quoted 

limits, and consequently there has been a lack of temporal resolution (Winograd etal., 1992). 

The advent of high-quality mass spectrometric (MS) analysis has seen a significant 

improvement in the precision of dating, ages which are now quoted to 2a , ie. a 95% 

confidence interval. Baker etal. (1993b) used high precision 230Th/234U TIMS dating to 

demonstrate that the luminescent microbanding present in a stalagmite (SU-80-11) from 

Traligill, Scotland was annual. Other studies have used stable isotope analyses (Dorale et al., 

1992; Dorale etal., 1998), minor element analyses (Roberts etal., 1998), and luminescence 

intensity variations with high temporal resolution (Shopov et al., 1994; Baker et al., 1998a; 

1999c) to investigate palaeoenvironmental change with MS uranium-series dating providing 

precise chronological control. 

Another application of high precision 230Th/234 U MS dating to speleothems is the analysis of 

submerged speleothems (Richards et al., 1994) in order to investigate sea-level change. Since 

speleothem growth in this situation only occurs in subaerial conditions it provides an upper limit 

for the maximum elevation of past sea-levels. Richards et al. (1994) have analysed a number 

of speleothems from submerged caves in the Bahamas, an area tectonically stable and well 

suited to investigating sea level changes. Results indicate good agreement between sea-level 

records obtained using coral terraces (Aharon and Chappell, 1986) and those estimated by 

dating submerged speleothems. 

As speleothem growth is dependent on a constant supply of seepage water and soil CO 2 , a 

change in the surface environment to cold and dry conditions or extreme aridity will inhibit 

speleothem growth. Conversely warm and humid conditions are ideal for speleothem growth. 

Several studies have used the speleothem growth frequency distribution to investigate past 

climate change using both a—S and MS dates (Atkinson et al., 1978; Ayliffe et al., 1998; Baker 

et al., 1993a; Gordon et al., 1989; Hennig et al., 1983). The results of the studies show good 

agreement with other palaeoenvironmental records such as marine and ice cores although in 

some regions a continuous record is not obtained because growth is inhibited in interglacials, 

warm interglacials, and glacial maxima (Ayliffe etal., 1998). 

Subaqueous calcite crust from Devils Hole, Nevada was dated by 47 high precision 230Th/234U 

TIMS analyses, demonstrating that it grew from approximately 560,000 to 60,000 years. To 
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date this is the longest continuous speleothem record as it spans several glacial-interglacial 

cycles. However, its palaeoenvironmental interpretation and the implications for our 

understanding of the mechanisms forcing climate change is subject to some debate (Winograd 

et al., 1992). 

4.2.4. 230Th/234U Analytical Procedure 

Age estimates are determined by isotope dilution thermal ionisation mass spectrometry (TIMS) 

uranium series (238U-234U-230Th) dating. The weight of sample used for analysis is dependent on 

the uranium concentration and typical sample weights vary from approximately 1 up to 5 grams. 

Uranium concentrations were determined using solution introduction ICP-MS, discussed in 

Chapter 5. Samples were cut using a diamond saw and trimmed along prominent growth 

layers with a small dental grinding wheel. The subsamples are cleaned in an ultrasonic bath in 

alternate solutions of Milli-Q water and AR grade acetone. To avoid interference in the 

chemical procedure from any organic complexes present in the speleothem matrix, the samples 

are combusted in an oven at 800°C for 4 hours. 

Samples are dissolved by the stepwise addition of concentrated HNO 3  in acid cleaned teflon 

beakers, once dissolution is complete a measured amount of mixed 233U-229Th spike is added to 

the solution. A few drops of H 202  are added to ensure any residual organic compounds are 

destroyed. The sample-spike mixture is refluxed overnight to ensure the complete equilibration 

of the sample with the U and Th isotopes. Although co-precipitation with Fe(OH)2 removes the 

majority of U and Th isotopes from the Ca 2+, the co-precipitation step is often repeated. The U 

and Th isotopes are separated with HCI acid in a column containing an anion exchange resin. 

Samples are loaded onto single (Th) and double (U) zone refined rhenium filaments and the U 

and Th isotope ratios measured on a multicollector TIMS (Finnigan MAT 261). Aspects of 

uranium mass spectrometry and spike calibration are given in Stirling etal. (1995). 

4.2.5. Age Calculation 

This study follows the example of Hellstrom (1998) in its treatment and calculation of errors, and 

acknowledgment is given to the stimulating discussions and helpful advice he has provided. A 

spreadsheet is used to calculate ages using the ion and activity ratio output from the MAT 261, 

the software of which corrects for mass fractionation according to the spike isotope ratios. 

Equation 4.3 is used to calculate ages iteratively and errors are calculated using two different 

methods, error propagation and Monte Carlo simulation. Hellstrom (1998) notes that while some 

authors have treated age errors with great care (Edwards et al., 1987; Ludwig et al., 1992) 

others fail to mention how their age errors were calculated and in some cases whether they are 

quoted to 1a or 20 (Atkinson et al., 1978; Bar-Matthews et al., 1996; Falgueres et a/., 1992; 

Ford et al., 1993). In this study all ages are quoted to 2a, the 95 'Yo level. 

In conventional error propagation there are two assumptions, that the percentage error is small 

and that the probability distribution is symmetrical around the mean. In a uranium series age 
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estimate where the percentage error is very small, the error can be considered to be 

symmetrical about that age. Three components are associated with uranium-series errors: 

(1) systematic error is reproducible inaccuracy introduced by machine idiosyncrasies, 

calibration, or from uncertainty in the value of known decay constants; 

(2) error derived from uncertainty in the measurement of the isotopic ratios for any 

given sample; and 

(3) potential error resulting from failures in the assumptions of the method, such as 

inclusion of 230Th in the sample at the time of formation, or post-depositional 

alteration of the speleothem. 

In this study, as in the study by Hellstrom (1998), systematic errors are not propagated as they 

will reduce the precision of the ages unnecessarily. Stirling et al. (1995) noted that systematic 

error associated with the uranium isotope decay constants is small, and for an age of 

approximately 100,000 years it will contribute less than 1,000 years to the total age error if 

propagated. Errors associated with possible failures of the assumptions implicit in the method 

are also ignored as they are very difficult to quantify. No attempt has been made to correct 

ages for detrital 230Th contamination. 

Recently Chen et al. (1998) has investigated the use of TIMS 231 Pa/235U measurements to 

check the concordance of 230Th/234 U ages. Materials that were not concordant were 

investigated using concordia diagrams in a similar manner to U-Pb dating. For materials such 

as carbonates where the initial concentration of 238 U can vary between 0.1 ppm and 3 ppm, the 

models describe the variation of 5 234U, episodic U loss or gain, continuous U loss or gain, and 

u .., 2 30 continuous 234 U, 	and 231 Pa loss or gain. These models have the potential of allowing 

estimates of ages for materials that have behaved as open systems, thus the third error 

component may be more thoroughly investigated in order to provide a more precise age 

estimate. 

4.2.6. Error Calculation 

Age error estimates are calculated using two methods, error propagation and Monte Carlo 

simulation. All TIMS dates in this study are reported to the 2a (95 %) level. Calculated ages 

with near symmetrical errors will produce no discernible differences between results based on 

error propagation or Monte Carlo simulation. For ages over 100,000 years or with large 

percentage errors, error propagation inflates the lower error and underestimates the upper 

error, relative to the errors calculated by Monte Carlo simulation (Hellstrom, 1998). Error 

propagation calculates error estimates from the counting statistics reported by the MAT 261 

mass spectrometer, which are determined from the measurement of the uranium isotope 

activity ratios within a sample. 

Monte Carlo simulation calculates an error where error propagation or calculation by other 

means is impractical. Each input variable to the age equation is randomised, the uranium 

isotope decay constants are assumed to be constant, such that after enough iterations its 

mean and standard deviation correspond to its reported value and reported error respectively. 

In the spreadsheet developed by Hellstrom (1998) the age equation is calculated a thousand 
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times using the randomised input and the distribution of the resulting ages reflects the true 

precision of the date (Hellstrom, 1998). 

4.3. Excess 210Pb Dating 

This work was supported by Gary Hancock (CSIRO) and a grant to Dr Albert Goede from the 

Australian Institute of Nuclear Science and Engineering (AINSE) in 1997. Samples have been 

analysed at the Environmental Division, Australian Nuclear Science and Technology 

Organisation (ANSTO), Lucas Heights, NSW, under the supervision of Dr Henk Heijnis. 

4.3.1. Background 

Very few chemical cave deposits have been precisely dated with radiometric methods that 

span the last one thousand years, a period which offers the best opportunity to corroborate or 

calibrate speleothem records with recent climate variations or instrumental records. Dating 

speleothem material less than 1,000 years old by the 230Th/234 U method is difficult due to the 

extremely low concentrations of 230Th, the signal is sometimes not more than that of the 

machine background and therefore very difficult to measure accurately. Whitehead et al. 

(1999) suggest that the difficulty may also be due to the incorporation of 231 Pa and 230Th with 

uranium into the speleothem calcite, contrary to the most basic assumption for the U-series 

dating technique that no daughter radionuclides are precipitated with the parent U isotopes. • 

The excess 210Pb method lends itself to dating young speleothem material and several studies 

have borne this out. 

The decay of uranium and thorium produces isotopes of radium, of particular interest is 226 Ra 

(t112 = 1,622 years) which decays to an inert gas 222 Rn (t112 = 3.8 days) from the 238 U decay series 

(Dickin, 1995). This gas diffuses into the atmosphere from the cryosphere and is distributed 

globally eventually decaying to 210Pb (tir2 = 22.3 years) through a series of short-lived daughter 

isotopes (Faure, 1985). The change in phase disturbs the initial secular equilibrium between 
222 Rn and 226 Ra and a new secular equilibrium is established between 222 Rn and its decay 

products, 210Pb becoming the predominant radionuclide. When 210Pb is incorporated into 

sediments it is referred to as unsupported or excess 210Pb (Baskaran and Illiffe, 1993; Gale et 

al., 1995). 

The 210Pb excess method allows dating of very recent sediments, with a maximum age limit of 

approximately 200 years, such as snow (Crozaz etal., 1964), marine sediments (Koide et al., 

1972 ), and lake sediments (Gale et al., 1995). However, recent studies by Santschi et al. 

(1983) and Benoit and Hemond (1991) have illustrated several problems with the method when 

used to date some sediments. The main difficulty relates to 210Pb remobilisation and 

redistribution by pore-water diffusion (Dickin, 1995). An apparently ideal application of the 

excess 210Pb method is to date very young speleothem material as it can be considered a 

closed system once precipitation has occurred. 
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4.3.2. Previous Applications of Excess 210Pb Dating to Speleothems 

Baskaran and IIliffe (1993) used the excess 210Pb technique to determine the growth rates of a 

conical stalactite, a lateral growth rate of 0.028 mm yr -1  corresponding to a mass growth rate of 

78 mg yr-1 , and a soda-straw stalactite, longitudinal growth rate of 1.1 mm yr -1  corresponding to 

a mass growth rate of 149 mg y -1 . The study showed that speleothems may contain high 

concentrations of excess 210Pb and that the 210Pb excess can be successfully exploited to 

obtain ages and growth rates for speleothem material that has grown in the last two hundred 

years. Baskaran and Krishnamurthy (1993) measured the 6 13C profiles of several speleothem 

types to investigate the variations in atmospheric CO2 concentration using the excess 210Pb 

method for chronological control. 

Tanahara (1998) has used excess 210Pb dating to investigate the growth rate of two soda straw 

stalactites from a cave in southern Okinawa Island, Japan. In this study an attempt has been 
.-. made to address the problem of contamination by "fresh" 2  1°vb plating-out onto the outer and 

inner surfaces over the growth period of the straw. The outer surface can be contaminated by 

the adsorption of "fresh" 210Pb from the parent isotope 222Rn in the cave air. The inner surface 

can be contaminated by cave seepage water containing high levels of the parent isotope 222 Rn 

trickling down the inside of the straw stalactite. An improvement to the procedure is to rinse the 

surfaces with a dilute acid first prior to the chemical extraction or measurement procedure, 

something that was apparently not done in the study by Baskaran and IIliffe (1993). 

4.3.3. Excess 210 Pb Dating Analytical Procedure 

No preliminary treatments were applied in this study. In hindsight a preliminary treatment 

such as that suggested by Tanahara et al. (1998) to eliminate surface contamination should 

have been applied. It was not used as analysis preceded publication of the Tanahara et al. 

(1998) study. 

Several soda-straw stalactites were selected from various caves in Tasmania. Details are given 

in Table 4.1. Preliminary analyses indicate that 210Pb content is high enough to be analysed and 

that some variability in the level of 210Pb activity exists between cave locations. Samples were 

carefully broken into sections approximately 20 mm long and then weighed. 210Pb levels were 

sufficiently high to measure gamma emissions using a Compton Suppression gamma detector. 

Some measurements were performed at the Environmental Division, Australian Nuclear Science 

and Technology Organisation (ANSTO), Lucas Heights, NSW, and some analyses were done by 

Dr Gary Hancock at the Division of Water Resources, CSIRO, Canberra. 

As no certified calcite standard is currently available, the introduction of an unknown 

systematic error is possible, activities of the samples were determined against the IAEA-308 

Mixed Seaweed standard which has a nominal 210Pb activity of 73 Bq kg -1  as at 1-Jan-1988. 

The results are therefore semi-quantitative as the results may contain an unknown systematic 

error, however, it will not affect the calculation of a growth rate as the slope of the regression 

line is used. 
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Table 4.1. 	Details of soda-straw stalactites used in excess 210Pb and 14C dating. Details are also 

given for several samples which had laser ablation ICP-MS (Chapter 6) analysis 

applied to them. 

Name Length 
(mm) 

Cave and Location Analysis 

BDTH-SS1 

BDTH-SS3 

BDTH-SS5 

BDTH-SS6 

FC-SS1 

FC-SS5 

RB-SS1 

RB-SS4 

RB-SS5 

290 

110 

135 

85 

300 

151 

1,020 

270 

290 

Burning Down the House, Florentine Valley 

Burning Down the House, Florentine Valley 

Burning Down the House, Florentine Valley 

Burning Down the House, Florentine Valley 

Frankcombe Cave, Florentine Valley 

Frankcombe Cave, Florentine Valley 

Risbys Basin Cave, Risbys Basin 

Risbys Basin Cave, Risbys Basin 

Risbys Basin Cave, Risbys Basin 

210,• ,- + 14 

	

r 10 	C, ANSTO 
ICP-MS, ANU 

ICP-MS, ANU 

	

210,,, 	+ 	4 

	

1-'D 	1  C, ANSTO 
ICP-MS, ANU 

ICP-MS, ANU 

210Pb, CSIRO 

ICP-MS, ANU 

2I0Pb, CSIRO 

210,,,  + 

	

1-. o 	14C, ANSTO 

	

210.-.. 	+ 

	

yo 	14C, ANSTO 

4.4. Radiocarbon Dating 

This work was done as part of an AINSE grant (AINSIE 97/075R) given to Dr Albert Goede in 

1997, all samples were measured at the ANTARES Mass Spectrometry facility, Physics 

Division, ANSTO, Lucas Heights, NSW, by Dr E.M. Lawson. 

4.4.1. Background 

Carbon has two stable isotopes ( 12C and 13C) and a radioactive one ( 14C). Radiocarbon (t112 = 

5,730 ± 40 years) is produced continuously in the upper atmosphere by cosmic radiation 

bombardment of atmospheric nitrogen ( 14N). The 14C atoms are rapidly oxidised to form carbon 

dioxide (CO 2) which is taken up by the Earth's physical and biological processes (Dickin, 1995). 

A dynamic equilibrium exists between the biosphere and carbon dioxide but when an organism 

dies a closed system is created and the concentration of 14C will decline exponentially (Pilcher, 

1991). The 

accelerator mass spectrometry (AMS). 

Conventional radiocarbon dating requires the conversion of the sample into a gas or liquid and 

the number of 0-particles are counted, the age limit of this technique is about 30,000 years. 

The development of AMS allows direct measurement of the isotopes therefore enabling more 

precise calculation of the 14  C/ 17  -C ratio and a reduction in age errors, theoretically the limit of this 

technique is approximately 60,000 years. Sample contamination from "younger" or "older" 

carbon is the biggest problem with this method, for example, contamination by as little as one 

14 	2 C/1-C ratio is measured by conventional p-particle counting methods or by 
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percent modern carbon will give an apparent age of 37,000 years BP for material that may in 

reality be very much older. Chemical extraction procedures are becoming more sophisticated in 

order to deal with this problem. 

The fluctuation of 14C production due to variations in cosmic ray influx is also a potential source 

of error, a problem that can only be resolved by using special calibration curves (eg Bard et al., 

1990; Stuiver and Reimer, 1993). The above description does not describe several 

complexities associated with application of the technique to specific materials, the reader is 

referred to Bradley (1985) or Pilcher (1991) for a more extensive account of the method (or 

several VVWW sites such as http://c14.sci.waikato.ac.nziwebinfo/) . The following discussion will 

focus on radiocarbon dating speleothems. 

4.4.2: Previous Applications of Radiocarbon Dating to Speleothems 

The radiocarbon method has been used to date speleothems since the 1960's. Broecker et 

al. (1960) used the method to investigate speleothem growth layers to see if they were annual. 

Application of the method to speleothems is not straightforward because there are multiple 

sources of carbon or "mixing effects" (Hendy, 1970) which influence measurement of the 

radioactive nuclide. There are two principal sources of carbon in speleothems, the first is from 

carbon dioxide generated in the soil above the cave, and the second from carbon derived from 

dissolution of the host limestone (Genty and Massault, 1997). 

The precipitation of calcium carbonate to form speleothems is dependent on the supply of CO 2  

which contains ' 4C contributed both from the atmosphere and from soil processes, specifically 

the decomposition of soil organic matter (SOM) and plant root respiration. Genty et al. (1998) 

and Genty and Massault (1999) have described a model for carbon infiltration in the karst 

system incorporating several influences on the final carbon content of speleothems including soil 

and epikarst CO2 formation, soil CO2 dissolution and bicarbonate formation, limestone 

dissolution, mixing effects, and CaCO 3  precipitation in the cave (Figure 4.1). 

Some workers have tried to address the problem of carbon derived from limestone, termed the 

"reservoir effect", by estimating the percentage of "dead" carbon to be approximately 15 

percen. Recent studies by Genty and Massault (1997) have confirmed that 15 ± 5 percent, a 

dilution factor of 0.85 ± 0.5, is an acceptable value for estimating the dead carbon proportion 

(DCP). Genty and Massault (1997) have listed the methods used by different speleothem 

workers to estimate the DCP including measurement of the 14C activity of active stalagmites, by 

age-distance interpolation, by analysis of the pollen contained in the speleothem, or by 

comparison with uranium series ages. 

4.4.3. Analytical Procedure 

All samples and targets were prepared and analysed by Dr E.M. Lawson, Physics Division, 

ANSTO, Lucas Heights, NSW using the ANTARES tandem accelerator mass spectrometer 

(AMS) facility. 
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Figure 4.1. Model illustrating carbon infiltration into karst systems with three soil organic 

matter (SOM) components and the controls on the final 14C and carbon content of 

speleothems (adapted from Genty and Massault, 1999). 
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4.5. Results and Discussion 

4.5.1. Age Frequency Histogram of Uranium Series Analyses 

Table 4.2 gives the analytical details for each of the stalagmite samples examined in this study. 

The frequency distribution of 37 new Tasmanian speleothem ages is presented in Figure 

4.2(a). Histogram is produced by summing the individual age distributions for each of the age 

estimates, the width of of the age distributions is a gaussian function of the 2a errors. 

Samples with small errors have narrow age distributions and larger errors have broader age 

distributions (Ayliffe et al., 1998). Also plotted are several other palaeoenvironmental proxy 

records including the South Australian speleothem data from Ayliffe et al. (1998), a number of 

alpha-spectrometric speleothem dates from Tasmania (Goede and Harmon, 1983), and several 

marine core sequences. 

Figure 4.2(b) and Figure 4.2(c) show the Tasmanian speleothem age distribution at 0 to 200 ka 

and 0 to 50 ka, respectively. The Tasmanian TIMS ages are predominantly less than 130 ka 

old with a few greater than 200 ka, possibly reflecting a sampling bias. However, there are 

several observations that can be made about the frequency distribution of the Tasmanian 

TIMS ages and those from Naracoorte (Ayliffe et al., 1998). 

Beyond approximately 120 ka years ago age frequency data for Tasmania is sparse, however, 

the few dates available, ie prior to 150 ka, do overlap with the Naracoorte data but the small 

number of older dates from Tasmania prevents any meaningful comparisons. There are no 

speleothems aged between 150 ka and 125 ka in the 37 analyses presented by this author 

suggesting either a genuine climatic event during this period or a possible sampling bias. 

From 125 ka years ago to the present, speleothem deposition is more abundant. The 

distribution of ages provides meaningful insights into past climatic conditions affecting 

southeastern Australia. The data suggests that conditions in Tasmania were conducive to 

speleothem growth throughout this period except during the LGM with no speleothem age 

determinations falling between approximately 22 and 19 ka years. 
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Table 4.2. 	Analytical details for all sample analysed. Sample details are given in Table 3.1. 

Sample 238U 
(nm/g) 

+ 
238U 

(nm/g) 

23°Th 
(nm/g) 

23°Th ± 23°Th 2341h 23°Th Age 
(years) 

± 2_ 
error 238U 

(Act) 
238U 
(Act) 

238U 
(Act) 

232Th 
(Act) 

BC-S1(C) (Base) 0.5625 0.00064 2.50E-06 0.2631 0.05331 1.9067 4 15962 3446 

BC-S1A (Top) 0.2466 0.00021 3.06E-07 0.0736 0.00383 1.5551 3 5257 281 

BC-S2 (Base) 1.5291 0.02166 8.38E-06 0.3247 0.02435 2.0325 18 18661 1506 

BC-S2 (Top) 2.3271 0.02425 7.22E-06 0.1839 0.00305 1.7102 34 12277 217 

BC-S3 (Top) 0.3760 0.00023 3.68E-07 0.0580 0.01000 1.5529 5 4132 725 

BC-S4 (Base) 0.3332 0.00030 2.51E-06 0.4466 0.06451 1.3123 1 44443 7797 

BC-S4 (Top) 0.1414 0.00048 2.84E-07 0.1192 0.00303 1.4524 4 9275 254 

BC-S5 (Base) 0.2703 0.00017 6.77E-07 0.1485 0.00942 1.5132 2 11174 742 

BC-S5 (Top) 0.3470 0.00026 8.64E-07 0.1476 0.01338 1.4991 1 11208 1065 

BQ-S1 (Base) 0.5000 0.00190 7.87E-06 0.9326 0.03420 1.1564 96 166991 14024 

BQ-S1 (Top) 0.8012 0.00244 1.25E-05 0.9255 0.00840 1.1971 416 150686 3038 

CTH (Base) 0.6978 0.03117 2.90E-06 0.2463 0.01275 3.1674 12 8727 468 

CTH-Top 0.5783 0.00083 1.10E-06 0.1132 0.00337 2.9067 117 4302 131 

FC-S3 (Base) 1.2802 0.00080 1.19E-06 0.0552 0.00264 1.6732 17 3448 178 

FC-S3 (Top) 2.1007 0.00240 1.20E-07 0.0034 0.00097 1.7060 1 224 32 

FC-S5 (Base) 0.1243 0.00027 1.18E-06 0.5630 0.11169 1.3412 23 57672 14726 

FC-S5 (U-4) Top 0.0945 0.00004 6.90E-07 0.4348 0.00652 1.6680 16 30653 674 

IB-S1 (Base) 0.3961 0.00030 2.04E-06 0.3057 0.00948 3.2696 7 10560 341 

IB-S1 (Top) 0.2734 0.00021 1.29E-06 0.2801 0.01949 3.3030 74 9542 687 

KS-F1 (Top) 0.1506 0.00070 2.54E-06 1.0006 0.04434 1.0379 38 331307 94261 

LT (Top) 7.3362 0.01596 1.69E-04 1.3633 0.00968 2.3975 27849 83073 834 

LT (Base) 1.0084 0.00080 1.99E-05 1.1700 0.01044 1.8527 1226 98551 1346 

MC-S1 (Base) 0.3239 0.00018 7.29E-06 1.3348 0.00552 1.8509 521 121474 1889 

MC-S1 (BelowH) 0.3171 0.00026 7.45E-06 1:3925 0.00750 1.9095 98 119979 676 

MC-S1 (AboveH) 0.2779 0.00030 7.11E-06 1.5164 0.00627 2.2820 100 104401 740 

MC-S1 (Top) 0.3656 0.00034 7.53E-06 1.2206 0.00475 2.3474 134 73654 1349 

MC-S2 (Base) 0.2781 0.00025 5.06E-06 1.0776 0.00959 1.5175 183 121901 1274 

MC-S2 (Top) 0.2423 0.00025 4.24E-06 1.0362 0.00575 1.4759 113 120117 1349 

PB (Top) 0.2664 0.00037 4.89E-06 1.0881 0.01966 1.2159 99 211674 10991 

WC-S3 (Base) 5.8009 0.00277 3.99E-05 0.4078 0.00277 1.9476 1111 25071 189 

WC-S3 (Top) 4.8103 0.00336 3.36E-05 0.4139 0.00468 1.9857 231 24938 312 

WC-S5 (Base) 0.8956 0.00192 1.08E-05 0.7175 0.02262 1.8724 14 50457 1953 

WC-S5 (Top) 1.2550 0.00127 1.20E-05 0.5646 0.00801 1.9012 336 37234 616 

WC-S6 (Base) 5.3613 0.00362 3.40E-05 0.3761 0.01508 1.9291 36 23183 1019 

WC-S6 (Top) 5.6133 0.00338 4.01E-05 0.4236 0.00670 1.9643 20 25899 455 

WC-S7 (Base) 3.1366 0.01020 3.90E-05 0.7369 0.00440 1.8163 443 54225 412 

WC-S7 (Top) 0.7034 0.00344 7.06E-06 0.5951 0.02176 1.7716 20 43135 1901 
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Chapter 4 Speleothem Age Determination 

Figure 4.2(a). (i) Left axis plots a histogram (black line) of 37 new Tasmanian speleothem ages 
compiled by summing individual age distributions; calculated as a by-product of the 
age error calculation method (Section 4.2.6.) For a more detailed description of the 
histogram method see Ayliffe etal. (1998). Also plotted for comparison purposes is 
the SPECMAP record (right axis, grey line). Bottom axis is common to all graphs and 
covers the last 500 ka. 
(ii) 8234U(o) data for Tasmanian (crosses) and Naraccorte (open circles; Ayliffe et al., 
1998) TIMS dates together with Tasmanian (filled diamonds; Goede, 1998) and 
Naracoorte (filled circles; Ayliffe etal., 1998) a-spectrometric age estimates. Errors 
shown are 2o except for the Tasmanian a-spectrometric age estimates. 
(iii) Left axis plots the RC11-120 (Martinson et al., 1987) foramanifera 5180 record 

(black line) and the right axis plots the 30°S December insolation record (grey line; 
Berger and Loutre, 1991). 
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Figure 4.2(b). (i) Left axis plots a histogram (black line) of 37 new Tasmanian speleothem ages 
compiled by summing individual age distributions; calculated as a by-product of the 
age error calculation method (Section 4.2.6.) For a more detailed description of the 
histogram method see Ayliffe et al. (1998). Also plotted for comparison purposes is 
the SPECMAP record (right axis, grey line). Bottom axis is common to all graphs and 
covers the last 200 ka. 
(ii) 5234U(o) data for Tasmanian (crosses) and Naraccorte (open circles; Ayliffe et al., 
1998) TIMS dates together with Tasmanian (filled diamonds; Goede, 1998) and 
Naracoorte (filled circles; Ayliffe etal., 1998) a-spectrometric age estimates. Errors 
shown are 2o except for the Tasmanian a-spectrometric age estimates. 
(iii) Left axis plots the RC11-120 (Martinson et al., 1987) foramanifera 8 180 record 

(black line) and the right axis plots the 30°S December insolation record (grey line; 
Berger and Loutre, 1991). 
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Figure 4.2(c). (i) Left axis plots a histogram (black line) of 37 new Tasmanian speleothem ages 
compiled by summing individual age distributions; calculated as a by-product of the 
age error calculation method (Section 4.2.6.) For a more detailed description of the 
histogram method see Ayliffe etal. (1998). Also plotted for comparison purposes is 
the SPECMAP record (right axis, grey line). Bottom axis is common to all graphs and 
covers the last 50 ka. 
(ii) 8234U(o) data for Tasmanian (crosses) and Naraccorte (open circles; Ayliffe et al., 
1998) TIMS dates together with Tasmanian (filled diamonds; Goede, 1998) and 
Naracoorte (filled circles; Ayliffe et al., 1998) a-spectrometric age estimates. Errors 
shown are 2a except for the Tasmanian a-spectrometric age estimates. 
(iii) Left axis plots the RC11-120 (Martinson et a/., 1987) foramanifera 8180 record 

(black line) and the right axis plots the 30°S December insolation record (grey line; 
Berger and Loutre, 1991). 
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4.5.2. Age Frequency Histogram Discussion 

While it is possible to investigate climate change at relatively high resolution using cumulative 

probability plots a weakness of the method is the implicit assumption that speleothems of 

random age are sampled. As noted by Hellstrom (1998) there is an obvious bias towards 

younger ages apparent in all such records, presumably reflecting progressive burial or removal 

of older speleothems by cave processes. For example, the alteration of the flow path of water 

feeding a stalagmite or some other less obvious factors are also biasing sample selection. A 

better method of palaeoenvironmental investigation using cumulative speleothem growth 

frequency may be the mass dating of the prominent hiatuses present in many speleothems, 

that is, dating the time of cessation and resumption of speleothem growth on a regional basis, 

and "stacking" the results. This method may give a clearer and less biased picture of regional 

palaeonvironments and global climate change. There are problems with this as cessation is 

often associated with detrital contamination. 

Many caves in Tasmania seem to be in a cycle of excavation of detrital sediments. The alluvial 

and colluvial fills have been deposited at a time of greater sediment availability probably and 

have probably buried older speleothem material. More work is required to establish the 

temporal relationships between phases of clastic sedimentation and speleothem deposition. 

The factors discussed above may help to explain the apparent young age bias of the 

Tasmanian growth frequency histogram but at this stage that cannot be confirmed. It is 

expected that, with the gradual expansion of the number of Tasmanian and Australian 

speleothem dates, this deficiency will be more satisfactorily explained. However, some 

observations and comments will be made on the present data set. 

In Tasmania, the extent and timing of the Last Glacial (LG) is fairly well determined, however 

the timing of previous glaciations cannot be so tightly constrained (Hannan and Colhoun, 

1987). The lack of speleothem age between approximately 150 ka and 125 ka suggests that 

there was either an extended period of moisture deficiency and lower temperatures, inhibiting 

CO2 production and halting speleothem growth, or that glacial ice covered the area. The 

extensive Penultimate Glacial (PG) glaciation in Tasmania was characterised by its severity with 

ice limits almost everywhere well beyond those of the Last Glacial Maximum (LGM). The 

severity of the climate during the Penultimate Glacial Maximum (PGM) is also supported by the 

Devils Hole record and marine records from the North Pacific and Atlantic Oceans, all of which 

indicate that subpolar oceanic fronts were up to 50  further south than during the LG (Crowley, 

1994). Although some Tasmanian karst areas were covered by glacial ice during the PG there 

is no field evidence that this was the case in any of the areas where speleothems were 

collected for this study. 

Insolation values at 45°S had two minima at 150 ka (592 W m -2) and 127 ka (586 W m-2) and a .  

peak at 138 ka (642 W m -2) during stage 6 (Berger and Loutre, 1991). The Chinese (Xifeng 

Loess, Kukla, 1987) and New Zealand (Marton event, Pillans, 1988; 1991) loess records also 

support an extended period of severe and arid climate during this time. It is difficult to 

comment on the activity of dunes in Australia during the PG as very few dates are available for 

this time period (Wasson, 1986) but since climatic conditions would have been similar to the 
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LG, it has been argued that dune activity was similar to the LG. Oxygen and strontium isotope 

measurements of samples from a Porites coral from the Huon Peninsula, Papua New Guinea 

indicate that a substantial cooling of approximately 6°C (± 2°C) occurred in the equatorial 

oceans during the PG (McCulloch et al., 1999), a figure also supported by analysis of the ODP 

Site 769 marine core from the Sulu Sea (Linsley and Dunbar, 1994; Linsley, 1996). 

In contrast an abundance of speleothem age estimates exists in the period from approximately 

125 ka to present with only minor breaks in deposition suggesting less severe conditions than 

during the PG. No speleothem growth occurred in the LGM period, approximately 22 to 19 ka, 

supporting the idea that moisture availability and temperature reached their lowest values at 

this time, thus inhibiting speleothem growth. This period also corresponds to a peak, at 22 ka, 

of approximately 625 W re in total insolation at 45°S with higher summer and lower winter solar 

input (Berger and Loutre, 1991). No speleothem growth has been detected throughout the 

whole of the LGM and PG intervals. 

Periods of greater moisture availability in southeastern Australia are supported by abundant 

speleothem growth, particularly in the last 50 ka. However there are significant differences 

between the speleothem data of Ayliffe et al. (1998) and the Tasmanian speleothem data set. 

In the Naracoorte region speleothem deposition has been intermittent and appears to have 

been strongly influenced by available moisture (Ayliffe etal., 1998). In Tasmanian caves 

continuous growth has occurred since the Last Interglacial (LIG) with only one exception, the 

LGM. This indicates that speleothem growth in the Naracoorte area is more sensitive to 

moisture changes than in Tasmania where it is affected more strongly by low temperatures as 

has been shown to be the case in north-western Europe (Baker et al., 1993a). 

4.5.3. Age Determination of Yarrangobilly Flowstones 

Three sections of Yarrangobilly flowstone, JC-F1, JC-F2, and JC-F4, were analysed using the 

TIMS 230Th/234U dating technique and the results of 18 samples are given in Table 4.3. From 

these results, and due to the limited time-frame of the project, it was decided to concentrate 

the research effort on JC-F1. Minor elements were measured along the growth axis of JC-F1, 

JC-F2, and JC-F4 using a laser ablation ICP-MS, the results are given in Chapter 5. Stable 

isotope analyses were performed only on JC-F1, the results are described in Chapter 6. 

4.5.3.1. Yarrangobilly Flowstone Sample JC-F1 

Sample weights for TIMS 230Th/234 U dating varied from 4 to 5 grams, the amount of the JC-F1, 

approximately 3 or 4 kg, allowed the luxury of fairly capacious samples. The dimensions of 

individual samples varied from 2 to 3 mm for z-axis (vertical), 10 mm for y-axis, and 

approximately 50 to 90 mm for x-axis. The relatively large sample sizes ensured that ample U 

and Th was available for analysis. This was particularly helpful when measuring 230Th in the 

upper section of JC-F1 due to the low concentration found in young samples. The large 

sample sizes also compensate for the relatively low uranium concentration of JC-F1, 

approximately 100 nmol g -1 , and gives increased confidence in the age and error estimates. 

The age estimates from Yarrangobilly have not been included in the age frequency histogram 

calculations (Section 4.5.1) as the Yarrangobilly Karst is outside the main study area. 
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Table 4.3 	Results of Uranium-series dating of Yarrangobilly flowstone samples JC-F1aa, JC-F2, 

and JC-F4, error estimates are reported as ± 2a. The dashed lines indicate the 

position of hiatuses, the dotted lines are inferred hiatuses. 

Sample 
Name 

Distance 
From 

(

Base  
mm) 

238U 
(nm/g) 

+ 
238U 

(nm/g) 

23°Th 
(bm/g) 

23°Th ± 23°Th 2341h 23°Th Age 
(years) 

±2 
error 

Growth 
Rate 
(mm 
ka-1 ) 

23°U 
(Act) 

238U 
(Act) 

23°U 
(Act) 

2321h 
(Act) 

JC-F1(1) 267 0.1903 0.00015 5.82E-07 0.1812 0.00290 1.8411 57 11.04 0.23 

JC-F1(2) 260 0.4171 0.00025 1.90E-06 0.2699 0.00205 1.7333 68 17.91 0.17 

JC-F1(3) 235 0.5497 0.00050 3.05E-06 0.3289 0.00202 1.6996 99 22.65 0.16 
5.27 

JC-F1(4) 195 0.5989 0.00058 4.04E-06 0.3999 0.00117 1.8050 228 26.27 0.09 
11.07 

JC-F1(5) 180 0.5403 0.00035 3.72E-06 0.4077 0.00229 1.7800 283 27.26 0.17 
15.08 

JC-F1(6) 145 0.6545 0.00034 4.93E-06 0.4466 0.00282 1.7361 684 31.09 0.21 
9.15 

JC-F1(7) 100 1.1875 0.00162 1.44E-05 0.7200 0.00214 1.9656 111 46.74 0.14 
2.88 

JC-F1(8) 93 0.4856 0.00025 7.46E-06 0.9100 0.00230 1.6225 1042 82.02 0.23 
1.23 

JC-F1(9) 73 0.2715 0.00019 5.10E-06 1.1130 0.00789 1.7444 459 98.28 0.73 
	 0.53 

JC-F1(10) 26 0.1071_ 	 
0.00010 2.41E-06 1.3352 
	 - 	 

0.01701 1.2937 7 
	 - _ 	_   	

187.54 1.91 
. 

JC-F1(11) 18 0.1265 0.00014 3.80E-06 1.7808 0.01751 1.9464 22 338.61 4.48 
0.91 

JC-F1(12) 4 0.0923 0.00015 2.04E-06 1.3128 0.01036 1.2728 44 354.54 3.29 

JC-F2(1) 99 0.0377 0.00017 1.93E-07 0.3041 0.08819 1.7703 6 20.22 6.23 
-  	0.40 

JC-F2(5) 88 0.1086 0.00008 1.20E-06 0.6536 0.01646 1.7860 2 47.81 1.50 

JC-F2(2) 37 0.2256 0.00017 3.66E-06 0.9624 0.01876 1.8301 3 75.96 2.04 1 . 79  

JC-F2(3) 34 0.0578 0.00013 1.13E-06 1.1634 0.01538 1.8671 97 96.52 2.00 0.28 
JC-F2(4) 4 0.1302 0.00016 3.32E-06 1.5112 0.21267 1.6347 11 203.19 53.62 . 

JC-F4(1) 49 0.1267 0.00050 1.28E-06 0.5986 0.00924 1.9655 19 38.30 1.49 

JC-F4(2) 1.5 0.3913 0.00050 6.61E-06 1.0007 0.00568 1.6426 52 94.56 0.98 0 ' 85  

Detrital contamination was monitored with the 230Th/232Th activity ratio (230Th/232ThAct) and a figure 

greater than 20 (Schwarcz, 1980) indicates that no correction of the age is necessary, 

although a figure greater than 100 is considered a better threshold for TIMS age estimates (Li 

et at, 1989). Of the twelve JC-F1aa dates eleven 230Th/232ThAct values were above the minimum 

threshold of 20, with 5 greater than 100, with only one value below 20. This value 

corresponds to the sample immediately above hiatus H1 and probably indicates the presence 

of detrital material, clay and dust, accumulated on the surface as the hiatus spanned 

approximately 150,000 years. Roberts (1998) has observed similar results for samples that 

were adjacent to hiatuses. 
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Chapter 4 Speleothem Age Determination 

The results of twelve TIMS U-series age estimates for flowstone sample JC-F1aa are presented 

in Table 4.3. The flowstone started growing at approximately 354.6 ± 3.3 ka and ceased 

deposition sometime in the Holocene, however, the growth was discontinuous as indicated by 

three obvious hiatuses. These hiatuses occurred between 338.6 ± 4.5 and 187.5 ± 1.9 ka 

(H1), between 82.0 ± 0.2 and 46.7 ± 0.1 ka (H2), and between 17.9 ± 0.2 and 11.0 ± 0.2 ka 

(H3). The top date of the flowstone represents an averaged age as it was very difficult to 

extract enough material for two separate samples. This break in deposition corresponds to a 

period sometime after the LGM, not contemporaneous with it as might have been expected. A 

distance/age model is presented in Figure 4.3. 

Growth phases and hiatuses occur at or very close to MIS boundaries. The first section of 

growth started approximately mid-way through MIS 10 and ceased at or close to the boundary 

between MIS 10 and MIS 9. The first hiatus, H1, extended over several isotope stages 

including MIS 9, MIS 8, and MIS 7 before growth restarted at the boundary of MIS 7 and MIS 6, 

continuing until late MIS 5. The second hiatus, H2, spanned MIS 4 before deposition 

recommenced early MIS 3, continuing into the middle of MIS 2, ceasing at or close to the LGM. 

The duration of hiatus, H3, the growth period following this, and the final cessation of calcite 

deposition is unknown, further analyses are required to resolve the age range of the top section. 

0 
	

100 	 200 	 300x10 
3 

Age (years) 

Figure 4.3. Distance-Age model for Yarrangobilly flowstone sample, JC-Flaa, based on TIMS 
230T. ,234 n/ U dating, error bars are 20. The location of hiatuses are indicated by grey 

areas, inferred hiatuses by black arrows. 
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JC-F1aa growth rates varied considerably ranging from a minimum of 0.53 mm ka -1  to a 

maximum of 15.10 mm ka -1 , assuming that the calcite deposition rate was constant between 

samples, the average extension rate is 5.77 mm ka -1 . The fastest growth occurred in the upper 

section between 31.1 ± 0.2 and 22.6 ± 0.2 ka, and the slowest rate of growth between 187.5 ± 

1.9 and 98.3 ± 0.7 ka. This extended period of slow growth may be due to one or more 

indistinct hiatuses that may have escaped detection because of the spacing of dated samples. 

The calcite fabric changes with the growth rate. In the section below H2 the calcite is dense, 

columnar or palisade (Kendall and Broughton, 1978), macrocrystalline calcite. Above H2 the 

structure of the calcite consists of approximately 1 mm diameter, needle-like columns or fibrous, 

acicular calcite (Kendall and Broughton, 1978). Above H3 the calcite is more like that found 

below H2. Fluid inclusions are abundant throughout the flowstone but distinct layers of 

maximum density do occur. 

Gonzalez et al. (1992) have suggested that calcite crystal fabric and habit may give some 

clues on the degree of supersaturation of the parent solution as well as providing constraints 

on the nature of the water flow and whether the transport of reactants is fast or slow. In a 

detailed investigation of the petrography of speleothem calcite, Ayalon et al. (1999) observed 

that large, well-developed crystals with a preferred orientation occurred between 60 and 17 ka, 

a period of cooler and drier conditions in the region. They suggested that the large crystals 

were due to slow and constant water flow over the speleothem surface. After 17 ka, warmer 

and wetter conditions caused the speleothem calcite crystals to become small and anhedral. 

The dramatic decrease in crystal size is interpreted as reflecting a significant increase in the 

water flow over the spleothem surface. 

4.5.3.2. Yarrangobilly Flowstone Sample JC-F2 

This section of flowstone is approximately 100 mm thick and started growing at approximately 

203.2 ± 53.6 ka and deposition ceased at around 20.2 ± 6.2 ka (Table 4.3). A distance/age 

model is presented in Figure 4.4. The basal date requires a second measurement as some 

problems have been encountered during analysis, specifically beam instability during Th 

measurement, a factor that has contributed to the large error associated with the top date. 

Another contributing factor to the large error is the very low 230Th content of the basal sample 

which may have been due to detrital contamination, mainly clays, affecting the ion exchange 

resin during the chemical extraction procedure. One date, taken at approximately 67 mm from 

the base, had to be rejected outright as problems were encountered with both the uranium 

and thorium beam stability and the age estimate obtained was also not in stratigraphic order. 

Calcite deposition was not continuous as there are two obvious hiatuses at 35 mm, H1, 

occurring between 96.5 ± 2.0 and 76.0 ± 2.0 ka, and at 82 mm, H2, however this hiatus was 

not resolved temporally. The rate of growth of F2 varied from 0.28 mm ka -1  for the section 

below H1 and at 1.79 and 0.40 mm ke for the section above H1 assuming that there was no 

significant break in deposition at H2. The relatively slow growth rate is also reflected in the 

nature of the calcite as it is fairly uniform, except for the colour, and consists of dense, 

columnar macrocrystalline calcite. While detrital contamination was significant in 4 samples, as 

58 



D
is

ta
nc

e  
Ab

ov
e  

Ba
se

  (m
m

)  

Chapter 4 Speleothem Age Determination 

indicated by the 230Th/232Th ratios being less than 20 (Schwarcz, 1980) and 100 (Li et al., 

1989), no attempt has been made to correct the age estimates. 

0 
	

100 
	

150 
	

200 
Age (years) 

Figure 4.4. Distance/Age model for Yarrangobilly flowstone sample, JC-F2, based on TIMS 
230T. .234 n/ U dating, error bars are 2. The location of hiatuses are indicated by grey 

areas, inferred hiatuses by black arrows. 

4.5.3.3. Yarrangobilly Flowstone Sample JC-F4 

This section of flowstone is approximately 50 mm thick and started growing at approximately 

94.6 ± 1.0 ka and ceased deposition at around 38.3 ± 1.5 ka (Table 4.3). Calcite deposition 

was apparently continuous although there appears to be a hiatus at the very top of the sample 

and another analysis immediately below it is required to confirm its existence and duration. 

The flowstone grew at approximately 0.85 mm ka-1  assuming constant growth and no breaks in 

calcite deposition. The flowstone consisted of columnar, macrocrystalline calcite, although a 

characteristic of this sample was the tendency for it to come apart very easily suggesting little 

inter-crystalline strength, ie acicular (Kendall and Broughton, 1978), unlike the other two 

Yarrangobilly samples. 

It has been assumed that no significant detrital contamination occurred with this sample and 

no corrections have been attempted. Although the 230Th/232Th ratio for the top sample was 19, 

a figure slightly below the figure of 20 recommended by Schwarz (1980) and well below 100 (Li 

et al., 1989), this may have been due to an apparent hiatus but further analyses are required 
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to confirm this. The basal date had a 230Th/232Th ratio of 52 and is considered acceptable 

although not ideal. 

4.5.4. Patterns of Deposition of Yarrangobilly Flowstone Discussion 

The growth period of a speleothem and changes in the rate of calcite deposition both have the 

potential to provide very important palaeoenvironmental signals (Baker et at, 1998b; Hellstrom, 

1998). However, the growth of speleothems is controlled by a complex suite of factors 

including: 

(1) the concentration of Ca2+  in the seepage water; 

(2) the rate at which the CO2 outgasses from solution; 

(3) water supply and film thickness; 

(4) transport of reacting species to and away from the calcite surface; and 

(5) temperature and soil processes. 

Various attempts have been made to model the rate of calcite precipitation on the growth 

surface of a speleothem. Dreybrodt (1981) has proposed a numerical model of the rate of 

speleothem growth based on the calcium ion concentration of the seepage water and the rate 

at which CO2 outgasses from the water layer into the cave atmosphere. 

Recent observations of the growth rates of speleothems in the field by Baker et al. (1998b) 

show the calcium ion concentration to be the dominant effect. There are a number of factors 

controlling the concentration of Ca 2+  in solution, including the soil temperature, soil moisture, 

soil depth, climate seasonality, vegetation, bedrock characteristics such as purity, porosity, and 

permeability, and the equilibrium state of the seepage water (Baker etal., 1998b). These 

factors complicate attempts to interpret palaeoenvironmental conditions from speleothem 

growth rate variations. However, some of these conditions can be elucidated from other 

palaeoenvironmental proxy records such as pollen abundance in sediment cores from both 

marine and lake settings or stable isotope measurements of various calcareous marine 

microfossils in ocean sediment cores. 

The growth phases and hiatuses of the Yarrangobilly flowstone samples provide important 

additional evidence of Late Quaternary palaeoenvironmental history in southern NSW with 

strict temporal control. It appears that present day environmental conditions are not highly 

conducive to speleothem growth, although further investigations are needed to confirm this. 

While some speleothem deposition is occurring in sections of the tourist caves, as evidenced 

by calcite growth on chicken wire, a reconnaissance of "wild" caves in the Yarrangobilly Karst is 

required in order to gauge the full extent of modern calcite deposition, particularly of 

flowstones. Observations so far indicate that calcite precipitation is occurring on a limited scale 

in the Yarrangobilly Caves at present. 

The three Yarrangobilly flowstones have some overlapping growth periods, however, JC-F2 

requires more dates to confirm the full extent. None of the hiatuses correspond temporally 

suggesting that local factors may be affecting the flowstone's water supply thereby governing its 

growth. The use of age estimates as a climate signal requires a greater number of 

measurements, but a regional or global palaeoenvironmental signal may still be present in a 
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geochemical form ie variations in stable isotope ratios and minor element concentrations. 

Further sampling is required to investigate the timing of hiatuses, by stacking their ages, as this 

would help differentiate the degree to which local and global factors are determining flowstone 

growth. As Hellstrom (1998) has pointed out, flowstones are often fed by more than one source•

of seepage water and are therefore more likely to grow for extended periods. On the other 

hand stalagmites, while growing for shorter periods of time, may provide useful "windows" to 

check against extended palaeoenvironmental records from flowstones. 

A tentative palaeoenvironmental interpretation is presented for the Yarrangobilly flowstones, 

based on the 230Th/234U dates and the estimated growth rates. While some of the shortcomings 

of using flowstones have been mentioned previously, the author fully acknowledges the 

limitations of basing an interpretation on such a restricted data set. However, some important 

general observations can be made on an area where very little palaeoenvironmental 

information currently exists in the hope that this will stimulate discussion and further research. 

It is hypothesised that surface water availability plays a key role in the growth of speleothems at 

Yarrangobilly and that this has varied considerably in the past as evidenced by hiatuses and 

changes in the rate of growth. Periods of speleothem growth seem to occur during the cooler 

phases of glacial-interglacial cycles, although several more 230Th/234 U dates are required on JC-F1 

to investigate the relationship of growth phases to the Last Interglacial. A cessation of 

deposition would suggest that water supply is significantly reduced during the warmer phases of 

glacial-interglacial cycles due possibly to a change in atmospheric circulation. 

Supporting evidence, although lacking the strict temporal control possible with speleothems, 

comes from several Australian palaeoenvironmental records such as sequences of aeolian, 

fluvial, and lacustrine sediments dated by a variety of methods. These sequences provide 

evidence of wetter or drier conditions over many regions such as the Lake Ayre Basin, desert 

dunefields, and the large river systems that drain the Australian highlands. The growth record 

of JC-F1 suggests that wetter conditions were experienced by the Yarrangobilly area during 

MIS 6 and 5, and 3 through to the LGM. For other areas the evidence suggests wetter 

conditions during MIS 4 and a drier conditions in MIS 3 (Wasson, 1986; Nanson et a/.,1992). 

4.5.5. YB-1 Internal Standard 

The upper 150 mm of white/pale coloured, macrocrystalline calcite was cut from a section of 

flowstone similar to the YBJC-F1AA sample, previously collected from Yarrangobilly Caves by 

Dr John Stone. John Hellstrom initiated the idea to make an internal standard for U-series 

dating using the following method. The white horizon, thought to be around 25 ka in age, was 

cut into 2 kg of 30 mm cubes using a diamond-tipped rock saw and cleaned in an ultrasonic 

bath with alternating solutions of acetone and deionised water. 

The blocks were broken into smaller fragments, randomised, and crushed in a tungsten swing 

mill. The resulting powder was sieved through a 30 micron mesh, producing approximately 1.5 

kg of fine powder for use as an internal speleothem standard, YB-1, for TIMS 230Th/234 U dating 

(Hellstrom, 1998). The standard was run as a check on the performance of the machine and 
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user and, like the sample blank, provided a useful benchmark for gauging the quality of each 

batch. The YB-1 standard results are shown in Table 4.4. 

As has already been observed by Hellstrom (1998) the internal speleothem standard, YB-1, 

has proved a difficult one in which to measure the U and Th isotopes successfully. While the 

234U/238U ratio of the standard is fairly well established, the age of the standard is not as well 

known but an average age of 30.6 ± 1.1 ka (n = 8) has been determined. Repeat 

measurements of the standard indicate that speleothem dates from the RSES laboratory have 

an external precision fully consistent with their reported errors, despite a change of 233u/229Th 

spike in the chemical procedure and several replacement secondary electron multipliers on the 

Finnigan MAT 261 mass spectrometer. 

Continued measurements of the standard will improve the statistics of the sample but a better 

check would be to provide several samples to another laboratory to measure, this has been 

initiated but so far no results have become available. 

Table 4.4. 	Results of TIMS 234U/230Th analysis of YB-1 internal standard at RSES, ANU. The 

average age of the sample is 30.6 ± 1.1 ka where n = 8. (* = U-1 spike, t = U-2 spike, 

§ = values used in average calculation) 

Sample 
Name 

238U 
(nmol g-1 ) 

+ 
error (nmol g -1 ) 

23O  

act 

± 

error 

- 
234U/238U 

act 
23°Th/232Th 

act 
Age 

(years) 
± error 
(years) 

JD1*§ 0.4708 0.00083 3.55E-06 0.447 0.018 1.756 286 30294 1375 

JD2t§ 0.4690 0.00097 3.55E-06 0.449 0.018 1.759 286 31371 1408 

J D3t§ 0.4711 0.00067 3.55E-06 0.447 0.018 1.758 286 31245 1418 

J D4t§ 0.6055 0.00184 4.48E-06 0.438 0.008 1.751 445 30665 638 

JD#5t§ 0.6366 0.00125 4.61E-06 0.429 0.006 1.753 237 29920 481 

JD#6t 0.8010 0.00286 4.61E-06 0.341 0.005 1.760 236 23074 391 

JD#7t 0.8007 0.00174 4.61E-06 0.341 0.005 1.756 237 23134 374 

JD#8t§ 0.6372 0.00059 4.48E-06 0.416 0.018 1.751 357 28959 1370 

JD#9t 0.6189 0.00121 4.03E-06 0.385 0.071 1.756 290 26487 5290 

JD#10t§ 0.6164 0.00185 4.75E-06 0.449 0.010 1.757 535 31450 825 

JD#111-§ 0.6124 0.00053 4.49E-06 0.428 0.013 1.751 406 29870 984 
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4.5.6. Growth Rates of Soda Straw Stalactites 

4.5.6.1. Assessment of 210Pb Levels in Soda-straw Stalactites 

Preliminary work involved assessing the concentrations of 210Pb and 226Ra in fragments of soda-

straw stalactites from several caves, the results are given in Table 4.5. In all of the samples 

measured from Risbys Basin the concentrations of 226 Ra were less than 0.1 dpm g"' indicating 

that most of 210Pb in the calcite must be derived from the water feeding the speleothem and 

that there is a low risk of contamination of 210p b by 226 Ra from the cave atmosphere. The 

concentrations of 210Pb in soda-straw stalactites vary greatly with concentrations in Frankcombe 

Cave up to 100 times higher than those of other sites, a section of FC-SS1 has a level of 

2,028.92 dpm g -1  compared to an average figure of approximately 20 dpm g l  for Risbys Basin. 

The contrasting levels of 210Pb are probably related to the amount of 222Rn in the water feeding 

the speleothems as groundwaters may contain very high concentrations of 222Rn (Baskaran 

and lliffe, 1993; Tanahara et al., 1997). 

Table 4.5. 	210Pb analyses of soda-straw stalactite fragments from several Tasmanian caves. 

Measurements by Gary Hancock (CSIRO). 

Sample 210Pb Activity 
(dpm g-1 ) 

Error 
(dpm g-1 ) 

BDTH-Hollow 51.21 1.21 

BDTH-SS1 Average for all segments 221.71 26.00 

BDTH-SS5 Average for all segments 194.04 34.22 

FC-SS1 Average for all segments 823.05 20.41 

RB-Filled 12.41 0.78 

RB-Hollow 16.69 1.33 

RB-SS1 Average for all segments 31.54 1.17 

Average = 

 

192.95 

Standard Deviation = 

 

290.88 

4.5.6.2. Excess 210Pb Dating Results 

Four soda-straw stalactites, BDTH-SS1, BDTH-SS5, FC-SS1, and RB-SS1, were broken/cut into 

segments varying in length from 20 to 40 mm and measurements taken of the 210Pb 

concentration for each segment and the results of the analyses are given in Table 4.6. In 

theory the tip section should have the largest 210Pb activity and decrease as the distance from 

the tip increases. In most of the samples analysed in this study the 210Pb activity did .  not show a 

simple age related decline. This suggests that contamination, both from atmospheric 210Pb 

adsorbing onto the outer surface of the soda-straw stalacite and also from 210Pb from percolation 

water plating out on the inner surface of the soda-straw stalacite, may have influenced the 
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results. For example, BDTH-SS5 does not have the simple age related decline and instead has 

mixed 210Pb activities along its length which suggests that surface contamination may have 

influenced the measurements. Results of the three bottom segments from the sample RB-SS1 

are diametrically opposite to the age decline model and no reason can be given for this 

occurrence, therefore no ages have been calculated for this particular sample. 

Comparisons between 210Pb activity measurements of the matrix and the inner and outer 

surfaces of two soda-straw stalactites by Tanahara etal. (1998) observed that the activity in 

the inner margin is low in comparison to the innner and outer surfaces suggesting that 210Pb 

intake is confined to the growing tip. Measurements of the 210Pb activity of the outer surface of 

the soda-straw stalactites suggests that adsorption of 210Pb onto the outer surface contributes 

a significant amount of 210Pb therefore acid cleaning of the inner and outer surfaces is required. 

Since the Tasmanian samples were not pretreated in this way there is an unknown amount of 

atmospheric 210Pb contributed from both the inner and outer surfaces and this may be the 

reason for the indifferent results. 

In spite of this problem the ages and growth rates of the samples were calculated using a 

technique normally applied to calculating age models for sediment cores ie sedimentation 

rate using the Constant Initial Concentration (CIC) model (Gale etal., 1995). This method 

uses the y-intercept (m) and slope (b) data of log/linear regression lines (Table 4.7) in the 

following equation: 

Equation 4.4. 

The result is a sedimentation rate which can be used to calculate the age of a segment, 

however, the results are maximum estimates for growth rate and minimum ones for age. The 

average calculated growth rates for BDTH-SS1 and BDTH-SS5 are 4.17 and 0.91 mm year-1 , 

respectively. 

4.5.6.3. AMS Radiocarbon Dating Results 

Four soda-straw stalactites, BDTH-SS1, BDTH-SS5, RB-SS4 and RB-SS5, had samples of 

approximately 50 1.tg taken from the growing tip, base, and from various places along their 

lengths. The 14C content of the calcite was analysed by AMS and the results are given in 

Table 4.8. Ages are corrected for the apparent age effect (or DCP) by subtracting the y-

intercept, calculated from linear regression (Table 4.9), from the uncorrected ages, the results 

have not been calibrated to calendar years. The slope gives the distance from the tip of the 

"zero age". This methodology follows the example of Williams etal. (1999) using the same 

assumptions ie that the apparent age effect has been constant for the entire depositional 

period of the speleothem. All of the radiocarbon dates of the samples analysed are in 

stratigraphic order with no age inversions (Table 4.8). The calculated growth rates for the 

BDTH soda-straw stalactites vary between approximately 0.02 to 1.1 mm year l . No ages or 

growth rates were calculated for the Risby Basin Cave samples as an inadequate number of 

samples were analysed. 
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Table 4.6. 210Pb analyses of vertical segments of four soda-straw stalactites from three 

Tasmanian caves, Burning Down The House Cave (BDTH) and Frankcombe Cave (FC), 

Florentine Valley, and Risbys Basin Cave (RB), Risbys Basin, Tasmania. Average 

growth rates for BDTH-SS1 and BDTH-SS5 are 4.2 mm year' and 0.91 mm year', 

respectively. Measurements done at ANSTO (Dr Hendrik Heijnis) and CSIRO (Gary 

Hancock). The age (Age°  column) corresponds to the middle of the segment and the 

following column (Segment Age Range) gives the age of the base and top of the 

segment, respectively. 

Sample Mid-Segment 
Distance from 

Base (mm) 

210pb 

Activity 
@ 1-1-98 
(dpm g -1 ) 

Error 
(dpm g -1 ) 

Age°  
(years) 

Segment 
Age Range 

(years) 

BDTH-SS1 (0-33) 16.5 	base 82.90 6.60 63.5 57.2 - 69.7 
BDTH-SS1 (33-53) 43.0 79.20 14.20 54.7 52.2 - 57.2 
BDTH-SS1 (53-74) 63.5 161.00 13.50 48.9 46.2 - 52.2 
BDTH-SS1 (74-94) 84.0 158.10 32.20 43.7 41.3 - 46.2 
BDTH-SS1 (94-116) 105.0 192.70 21.60 38.9 36.5 -41.3 
BDTH-SS1 (116-136) 126.0 187.30 35.40 34.6 32.7 - 36.5 
BDTH-SS1 (136-152) 144.0 293.30 32.70 30.3 27.9 - 32.7 
BDTH-SS1 (152-172) 162.0 210.90 25.50 25.2 22.6 - 27.9 
BDTH-SS1 (172-192) 182.0 193.20 29.20 20.2 17.8 - 2.2.6 
BDTH-SS1 (192-217) 204.5 302.90 23.60 15.3 12.7 - 17.8 
BDTH-SS1 (217-238) 227.5 402.50 51.20 10.3 7.9 - 12.7 
BDTH-SS1 (238-290) 264.0 	tip 396.50 26.30 4.0 0.0 - 7.9 

BDTH-SS5 (0-20) 10.0 	base 153.20 22.20 108.2 96.2 -120.3 
BDTH-SS5 (20-44) 32.0 237.00 42.10 84.2 72.2 - 96.2 
BDTH-SS5 (44-66) 55.0 199.20 35.20 60.1 48.1 - 72.2 
BDTH-SS5 (66-88) 77.0 247.10 43.00 35.0 21.9 - 48.1 
BDTH-SS5 (88-110) 99.0 	tip 113.70 28.60 10.9 0.0 - 21.9 

FC-SS1 (Cl) thin 226.1 	base 322.29 7.23 - - 
FC-SS1 (C2) thick 226.1 178.92 2.71 103.12 n/c 
FC-SS1 (B) 320.5 2028.92 56.02 68.74 n/c 
FC-SS1 (A) 528.5 	tip 762.05 15.67 5.84 n/c 

RB-SS1 (41-80) 60.0 base 42.41 1.57 n/c n/c 
RB-SS1 (121-160) 140.0 48.92 1.87 n/c n/c 
RB-SS1 (201-240) 220.0 62.77 2.53 n/c n/c 
RB-SS1 (281-320) 300.0 36.71 1.26 n/c n/c 
RB-SS1 (361-400) 380.0 35.30 1.26 n/c n/c 
RB-SS1 (441-480) 460.0 29.82 1.08 n/c n/c 

RB-SS1 (521-560) 540.0 24.76 0.90 n/c n/c 
RB-SS1 (601-640) 620.0 22.53 0.66 n/c n/c 
RB-SS1 (681-720) 700.0 17.77 0.78 n/c n/c 
RB-SS1 (761-800) 780.0 24.04 0.96 n/c n/c 

RB-SS1 (841-880) 860.0 24.22 0.96 n/c n/c 

RB-SS1 (921-960) 940.0 22.65 0.66 n/c n/c 

RB-SS1 (1001-1040) 1020.0 	tip 18.07 0.72 n/c n/c 
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Table 4.7. Equations for logarithmic regression lines through 210Pb activity measurements of 

segments taken from the longitudinal axis of three Tasmanian soda-straw 

stalactites, BDTH-SS1, BDTH-SS5, and RB-SS1. Sub-sampled data are made up of 

those measurements closest to the tip section. Column "y" is calculated using 

equation Equation 4.4. 

Sample Regression Equation R2  n If 	, 
(mm year") 

BDTH-SS1 y = 133.6 * In(x) -570.98 0.8408 12 4.41 

sub-sample y = 101.11 * In(x) -375.61 0.4981 6 3.15 

BDTH-SS5 y = -29.372 * In(x) + 205.95 0.0586 5 0.91 

sub-sample y = -104.96 * In(x) -517.49 0.4362 5 3.27 

RB-SS1 y = -702.29 * In(x) -1832.8 .  0.7573 13 21.37 

sub-sample y = 237.8 * In(x) - 40.991 0.1944 5 7.18 

Table 4.8. AMS Radiocarbon results of several soda-straw stalactites from two Tasmanian caves. 

Ages are corrected for the apparent age effect by subtracting the y-intercept, calculated 

from linear regression (Table 4.9) and the distance from the tip is the slope of the 

regression line. Corrected ages have not been calibrated to calendar years. 

Sample Distance 
from Tip 

(mm) 

Percent 
Modem 
Carbon 

+/- 
i cy  

Uncorrected 
Age [BP] 
(years) 

+/- 
l a  

Corrected 
Age [BP] 
(years) 

Growth 
Rate 

(mm yearl ) 

BDTH-SS1 (0) base 

BDTH-SS1 (74) 

BDTH-SS1 (136) 

BDTH-SS1 (192) 

"Zero age" 

BDTH-SS1 (290) tip 

290 

192 

136 

74 

4 

0 

73.55 

74.33 

76.36 

81.23 

- 

82.89 

0.83 

0.71 

0.61 

0.81 

- 

1.17 

2470.0 

2380.0 

2170.0 

1670.0 

1532.5 

1510.0 

90 

80 

70 

80 

- 

120 

937.5 

847.5 

637.5 

137.5 

0 

160.0 

1.09 

0.27 

0.12 

0.51 

0.02 

BDTH-SS5 (0) base 

BDTH-SS5 (66) 

"Zero age" 

BDTH-SS5 (1. 10) tip 

110 

66 

10 

0 

69.05 

71.51 

- 

78.85 

0.61 

0.94 

- 

0.41 

2980.0 

2690.0 

1946.3 

1910.0 

80 

110 

- 

50 

1033.7 

743.7 

0 

36.3 

0.15 

0.08 

0.27 

RB-SS4 (Base) 

RB-SS4 (Tip) 

270 

0 

67.56 

96.03 

0.43 

1.05 

3150.0 

330.0 

60 

90 

2820.0 

0 
nc 

RB-SS5 (Base) 

RB-SS5 (Tip) 

290 

0 

64.36 

94.04 

0.76 

0.72 

3540.0 

490.0 

100 

65 

3050.0 

0 
nc 
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Table 4.9. 	Regression equations of AMS Radiocarbon results (Table 4.8) of several soda-straw 

stalactites from two Tasmanian caves. 

Sample Equation R2  n 

BDTH-SS1 y = 3.667x + 1532.5 0.8992 5 

BDTH-SS3 y = 9.982x + 1946.3 0.9795 3 

RB-SS4 y = 10.444x + 330 - 2 

RB-SS5 y = 10.517x + 490 - 2 

4.5.7. Excess 210Pb Dating of Soda -straw Stalactites Discussion 

As noted previously none of the segments of soda-straw stalactites analysed in this study were 

pretreated in any way. In hindsight, and following the example of Tanahara etal. (1998), a 

pre-treatment step is necessary in order to reduce contamination from atmospheric plating out 

of radon on the exterior surface and plating out of radon from the seepage water onto the 

inside surface. Tanahara (pers. comm.) states that the pretreatment step is important as the 

concentrations of 210Pb on the exterior and interior surfaces are much higher than the 210Pb 

levels in the soda-straw stalactites inner margin, only this latter 210Pb will reflect the age of the 

bulk of the sample. 

The error that may have been introduced by the lack of pretreatment of samples in this study 

will be treated as a systematic one by assuming it to be constant for all samples. This 

assumption may not be valid since the distribution of radon in the cave may vary in space and 

time. There is some support for the assumption from measurements made by Tanahara et al. 

(1998) of the 210Pb activities of rinsing solutions of the inner and outer surfaces of two soda-

straw stalactites. 

This study has highlighted the need for careful sample selection, a point also acknowledged by 

Tanahara (pers. comm.), who has recognised the problem of sampling bias. Much more work 

needs to be done on the factors controlling the sources and supply of the parent and 

daughter isotopes to speleothem calcite. Akiro Tanahara is currently investigating some of the 

environmental influences in caves on 210Pb and 226Ra and their eventual incorporation into 

calcite (Tanahara et al., 1997). 

4.5.8. AMS Radiocarbon Dating of Soda-straw Stalactites Discussion 

The application of radiocarbon dating to soda-straw stalactites relies on the assumption that 

the apparent age effect (dcp) has remained constant for the entire the depositional period. 

There is also the implicit assumption of continuous growth. A further complicating factor is that 
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the ' 4C activity in the atmosphere and other reservoirs, and thus in the initial activity of the 

samples dated, has varied over time (Stuiver etal., 1998). A calibration dataset is necessary 

to convert conventional radiocarbon ages into calibrated years (cal yr). 

Genty and Massault (1997) observed that the dcp in seepage water appears to be 

homogeneous between sites within a cave but will vary by up to 15 % between sites. There 

also appears to be a dependence on the type of surface vegetation. This is of particular 

concern given the potential rapidity of vegetation change and the effect it may have on the 

dcp, but further investigation is required. 

Genty et al. (1998) have demonstrated that 14C activity in speleothem calcite is affected by the 

rate of turnover of soil organic matter (SOM). At two different sites they observed that 

speleothem 14C activity rose dramatically after the bomb tests and peaked at approximately 

1970 but following this peak ' 4C activity remained constant at one site while at the other it has 

gradually fallen. The karst areas surrounding the caves from which the soda-straw stalactite 

samples used in this study were collected, have been subject to forestry plantation 

management practices. Although these activities occurred predominantly after the nuclear 

bomb tests their influence may be just a dramatic. 

Prior to these disturbances the wet sclerophyll forest in the Florentine Valley was inherently 

stable in its community structure and composition over the last several hundred years 

(Colhoun, 1988). Since the samples analysed in this study are unlikely to be more than 

several hundred years old, any major changes in the vegetation community can be attributed 

to anthropogenic activities or fire activity (Wells and Hickey, 1999). In Frankcombe Cave there 

are approximately fifty soda-straw stalactites growing along a fissure in the cave roof with 

almost all of them having several discrete dark brown rings. The feature has also been 

observed in several other soda-straw stalactites in another cave in the Florentine Valley. It is 

hypothesised that they are due to forestry activity causing a major short term increase in the 

mobility of SOM. 

The assumption of a linear growth rate may not be appropriate in accounting for the dcp in 

speleothem calcite. Major disturbances, such as fire or forestry activities, may have significant 

impacts on the SOM turnover and therefore the ' 4C activity of speleothem calcite. 

The application of excess 210Pb dating was supposed to aid in determining the apparent age 

effect but the major disparity between the calculated ages from the methods is not 

encouraging. However, there are still some problems with the excess 210Pb dating technique 

that require further investigation 

4.6. Conclusions 

The application of high resolution TIMS 230Th/234U age determination to a number of stalagmites 

and flowstones has yielded important information regarding terrestrial palaeoenvironments in 

southeast Australia in the Late Pleistocene. An age frequency histogram compiled from 37 

new TIMS 230Th/234 U dates together with a number of existing uranium series age estimates 
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provided clues on periods of greater moisture availability in southeastern Australia, especially 

during the last 50 ka. The timing of glacial maxima can also be inferred by the lack of 

speleothem growth. The age frequency results bear this out as there are two major periods in 

the last 200 ka where no speleothem growth occurs, from 150 to 125 ka and from 22 to 19 ka, 

suggesting that severe climatic conditions during the Penultimate Glacial may have been of 

much longer duration than during the Last Glacial. 

The growth phases and hiatuses of the Yarrangobilly flowstone samples, determined by high 

precision TIMS 230Th/234U age determinations, provide important information about 

palaeoenvironmental history in NSW. Periods of greater moisture availability are suggested by 

the dramatic increase in growth rates in the upper section of JC-F1, from approximately 30 to 

22 ka. Further sampling is required to investigate the timing of hiatuses as this will help to 

discriminate between local and global factors influencing flowstone growth. Although the 

number of samples is small the results are very enouraging and hopefully will stimulate further 

work in this karst area. 

In order to provide temporal frameworks for several soda-straw stalactites two radiometric 

methods were tried, excess 2 1°Pb and AMS 14C dating. Although the application of this 

techniques did not lead to a totally successful outcome, some important directions for future 

research have been identified. 

69 



Chapter 5 

Minor Elements in Speleothems 

5.1. Introduction 

In nature, pure calcium carbonate is exceptional and unlikely given the thermodynamic hurdles 

that need to be overcome during precipitation (Morse and Mackenzie, 1990). Usually calcium 

carbonate is contaminated during precipitation by numerous elements present in percolation 

water, derived from the weathering of rock and decomposition of vegetation and soil. The 

concentration of minor elements in calcite is controlled by both the composition of the parent 

solution and the conditions under which precipitation occurs. If an understanding of the 

factors controlling minor element concentrations in contemporary speleothem calcite under 

present day conditions is achieved then determining past environmental changes above the 

cave should be possible with more ancient samples. 

Note that in order to avoid confusion in this study, particularly when referring to minor (>1 % by 

weight) and trace (from 0.1 to 1 % by weight) elements, the term "minor element" refers to both 

minor and trace elements as some of the elements investigated are, by definition (Gill, 1997), 

minor and trace elements. 

Most early studies of the minor element composition of speleothems have concentrated on the 

controls of speleothem colour by minor elements (Gascoyne, 1977; Hill and Forti, 1997; White, 

1981; White and Brennan, 1989). Until quite recently very few studies have looked at the 

minor element composition of speleothems specifically to investigate their palaeoenvironmental 

significance, an area as yet poorly investigated, but with considerable potential (Gascoyne, 

1992). Exceptions are Gascoyne (1983), Goede and Vogel (1991), and Goede (1994). 

Technological advances in analytical techniques have further stimulated studies of the minor 

element composition of speleothems for the following reasons: 

(1) the precision and accuracy of analyses has increased; 

(2) the size of sample required for analysis has decreased considerably; 

(3) the - time taken to process a large number of samples is greatly reduced; and 

(4) the achievable sampling resolution has significantly increased. 

For example, Roberts et al. (1998) used an ion microprobe to investigate annual magnesium 

and strontium variations at intervals of approximately 2-4 pm, along a 2.4 mm section of 

stalagmite. 

This chapter provides some background information on possible factors influencing the minor 

element composition of speleothems and the partitioning of minor elements into calcite. A 
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review of the current literature on the theoretical background and environmental controls on 

the partitioning of minor elements, especially magnesium, strontium, barium, and uranium, into 

calcite is given. This is followed by a discussion on the sources of minor elements and their 

incorporation into speleothem calcite. The methodology of the study is discussed in detail 

starting with some background information on the techniques used, their application to 

speleothems, and finally the results of the study are presented and discussed. 

5.2. Theoretical Background 

A significant body of work exists on the environmental controls on the minor element 

composition of low temperature calcite cements and inorganic marine carbonates but, as has 

been pointed out previously, very little effort has been directed towards low temperature, 

inorganic secondary calcite deposits. The following sections discuss previous studies of 

speleothems that have investigated their minor element content followed by several sections 

discussing the main factors influencing the minor element composition of low temperature, 

freshwater carbonates, especially speleothems. 

5.2.1. Previous Studies of Minor Elements in Speleothems 

Many early studies of minor elements in speleothems were attempts to explain their colour 

variations. However, Gascoyne (1983) was the first to try to interpret minor element variations 

in terms of palaeoenvironmental change. Gascoyne (1983) observed that the partition 

coefficient of magnesium of contemporary cave water and calcite is temperature dependent, 

but this is not the case with the partition coefficient of strontium. It was suggested that 

variations in speleothem magnesium-calcium ratios could be used as a palaeothermometer, 

however, it was soon recognised that changes to the concentration of magnesium in waters 

feeding the speleothem would be the principal factor limiting its use as a palaeothermometer. 

Goede and Vogel (1991) demonstrated that many minor elements showed significant 

variations in concentration along the length of a stalagmite that they attributed to 

environmental change. Goede (1994) compared variations of magnesium and strontium 

concentrations in a stalagmite against stable isotope changes and found significant 

correlations. The results were encouraging and stimulated further research into minor 

elements, especially investigation of strontium isotope ratios as a proxy for aeolian dust 

(Goede et al., 1998). 

Recent work has shown that there are many factors influencing the variations in concentration 

of certain minor element species in speleothems, and that complex interactions, that are not 

yet fully understood, make interpretations in relation to past environmental change less than 

straight forward (Roberts, 1997). It should be possible, however, to calibrate the minor element 

records against other proxies or historic records in order to get a qualitative record for any 

given site. It has also been observed that fine scale variations in certain minor elements are 

useful in resolving annual cycles, therefore they can be applied as a dating tool in a similar 

fashion to UV luminescence records (Roberts et al., 1998). 
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In order to study palaeoenvironmental changes Hellstrom (1998) has used solution introduction 

and laser ablation ICP-MS to investigate variations in the concentrations of minor elements 

present in New Zealand speleothem calcite. Initial screening of 37 elements has found that 

magnesium, strontium, barium, thorium, and uranium are present in measurable quantities and 

that it is possible to obtain repeatable measurements with these particular elements. Attempts 

have also been made to analyse several other minor elements, including sodium, aluminium, 

zinc, yttrium, lanthanum, and lead, but these were unsuccessful as the ability to duplicate the 

results for these elements was questionable and there is little or no information pertaining to 

the factors controlling their incorporation into calcite. 

The study has been useful in constraining some of the main factors influencing variations in 

the concentration of five elements in New Zealand speleothems by comparing the minor 

element analyses with measurements of growth rate, 8180,  813 ,, ,  u and luminescence variations. 

Magnesium content has been interpreted as being influenced by water residence time, 

strontium and barium respond primarily to changes in the concentration of CO 2  in the soil 

atmosphere, thorium as an indicator of detrital contamination, and uranium may relate to 

changes in the water and soil chemistry. However, the author highlights the need for further 

investigations into the factors influencing minor element content, suggesting that a 

comprehensive water and environmental sampling program is the only way that significant 

progress will be made in this field of research. 

5.2.2. Minor Element Partition Coefficients 

The study and application of partition coefficients has been an important tool in trying to 

understand various earth processes and particularly the environments under which they 

formed, for example the deposition and diagenesis of carbonate minerals. An understanding 

of the factors controlling the co-precipitation of "foreign" ions into natural carbonates has 

considerable potential in the study of palaeoenvironments (Morse and Bender, 1990). The 

simplest form of describing the co-precipitation of minor elements from solutions into solids is 

the non-thermodynamic homogenous partition coefficient (D), first derived by Henderson and 

Kracek (1927 quoted in Morse and Mackenzie, 1990), and usually applied to compositionally 

homogeneous solids: 

where [Tr/Cr] is the molar ratio of a "trace", ie a particular minor element, to a "carrier", ie 

calcium, in the solid and liquid phases (Morse and Bender, 1990). The equation assumes that 

the solution composition remains constant during calcite precipitation, however, in many 

experiments aimed at establishing various minor element activity ratios, this has not been the 

case and significant difficulties can be encountered when applying the derived partition 

coefficients to natural waters. 

Morse and Bender (1990) note that, despite the large body of experimental work on the 

partition coefficients of calcite, researchers are still no closer to being able to precisely model 
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the composition of calcite even if many of the parameters are well established. Therefore, 

applying these derived partition coefficients to older carbonates, where only the composition is 

accurately known, in order to infer the conditions of formation via the partition coefficients is 

"nebulous" at the very least. 

It should also be obvious that the application of Equation 5.1 to natural carbonates is not 

without its problems as they are anything but homogeneous in composition. While some work 

has been done on the behaviour of minor element partition coefficients at different 

temperatures, little data exists on the effect of pressure on partition coefficients, therefore, it is 

generally regarded as having little if any impact (Morse and Mackenzie 1990). Factors 

affecting partition coefficients also include the reaction rate, precipitation rate, and the 

presence of other impurities. Several recent experimental studies (Lorens, 1981; Pingitoire 

and Eastman, 1986) strongly suggest that some partition coefficients are precipitation rate 

dependent therefore implying non-equilibrium conditions, and adding yet another 

compositional controlling variable (Morse and Bender, 1990). 

It was suggested by Morse and Bender (1990) that the application of partition coefficients to 

low temperature natural systems is valid only under the conditions with which they were 

determined. They also note that as further experimental investigations reveal an increasing 

number of parameters influencing partition coefficients, their application to natural systems 

becomes more questionable. As Roberts (1997) points out, the application of partition 

coefficients to speleothem calcite has severe limitations. At best it may provide a loose 

framework within which likely environmental influences can be implied. 

5.2.3. Factors Affecting Minor Element Partitioning into Calcite 

As noted by Roberts (1997) there are two main methods of determining empirical values for 

partition coefficients, laboratory experiments, where calcite is precipitated under controlled 

conditions, and field studies, where coexisting water and calcite are analysed. In the case of 

experimentally derived minor element partition coefficients, the limitations of applying the 

results to natural systems are many, given the multitude of possible controlling variables. The 

factors which have received the most attention are temperature, partial pressure of CO2, 

precipitation rate, and the effect of other minor elements present in the parent solution. 

This section discusses these factors and their influence on the partitioning (D) of the most 

commonly investigated minor elements, namely the alkaline earth elements magnesium, 

strontium, and barium, into calcite. Some observations and discussion on uranium will also be 

given. Hellstrom (1998) and Roberts (1997) have also given reviews of the factors influencing 

minor element partitioning into calcite. 

5.2.3.1. Effect of Temperature on Minor Element Partition Coefficients 

Temperature has been widely investigated as a possible controlling factor on some minor 

element partition coefficients, particularly magnesium (Gascoyne, 1983; Oomori etal., 1987; 

Burton and Walter, 1991). The results of temperature dependency experiments using 

inorganic marine settings (Mucci, 1987; Oomori etal., 1987; Burton and Walter, 1991) sharply 

contrast with the one study using field based observations of karst systems (Gascoyne, 1983). 
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In the latter study a significantly steeper regression line of temperature and D mg  is the 

distinguishing feature. Gascoyne (1983) has found that the temperature dependency of D mg  

was 0.0017 °C -1  but he did not consider the possibility of other factors influencing the results. 

Theoretically a temperature change of several degrees will significantly affect the magnesium 

content of calcite precipitated from a given solution (Hellstrom, 1998), while the strontium 

content has been shown to have no such temperature dependence (Katz et al., 1972; 

Gascoyne, 1983). If temperature is a controlling factor on the magnesium concentration of 

speleothems then the most dramatic changes should occur in response to large temperature 

variations such as those that occur in glacial to interglacial transitions or from stadials to 

interstadials. Several recent studies of speleothem minor element composition, including 

Goede (1994), Hellstrom (1998) and Roberts et al. (1998), support the notion that magnesium 

content is not directly influenced by temperature and that residence time of seepage waters in 

the overlying carbonate rocks may be a more important factor. 

5.2.3.2. Influence of Partial Pressure of CO2 on Minor Element Partition Coefficients 

Several studies have investigated the relationship between PCO 2  and minor element partition 

coefficients, however, the results of experimental data are not conclusive. Studies on the 

relationship between PCO 2  and Dmg  have so far not produced a clear answer (Gonzalez and .  

Lohmann, 1988; Burton and Walter, 1991; Hartley and Mucci, 1996). For example, Burton and 

Walter (1991) have claimed that partial pressure of CO2  has an important effect on the 

incorporation of magnesium in calcite. They found that the D mg  has an inverse linear 

relationship with PCO2. 

Hellstrom (1998) argues that there is a strong relationship between the 8 13C and PCO2 as 

variations in speleothem 6 13C have been shown to be caused by changes in vegetation activity 

through changes in the PCO 2  of the soil. He has observed that the close correlation between 

the Sr/Ca and Ba/Ca traces and the 5 13C results suggests that variations in soil PCO 2  may be a 

dominant influence on strontium and barium concentrations in speleothem calcite. 

5.2.3.3. Effect of Calcite Precipitation Rates on Minor Element Partioning 

Several studies have shown that the precipitation rate of calcite is a significant factor 

influencing minor element partition coefficients (Lorens, 1981; Morse and Bender, 1990; 

Tesoriero and Pankow, 1996). It has been observed that precipitation rate has a strong 

positive correlation with strontium (Lorens, 1981; Pingitore and Eastman, 1986) and barium 

partition coefficients (Tesoriero and Pankow, 1996), but its effect on magnesium partition 

coefficients is still unclear and controversial (Mucci and Morse, 1985; Given and Wilkinson, 

1986; Gonzalez and Lohmann, 1988). 

5.2.3.4. Changes to Ion-Calcium Ratios in the Precipitating Solution 

Experimental studies suggest that the partition coefficient of an element bears some 

relationship to the minor element to calcium ratio (Mucci and Morse, 1983; Pingitore and 

Eastman, 1986; Howson et al., 1987; Banner, 1995). The D mg  is inversely related to the Mg/Ca 

ratio of the precipitating solution at values between 1 and 5.13 (Mackenzie et al., 1983), but at 

Mg/Ca values less that one there is no observable effect on Dmg  (Howson etal., 1987). The 
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latter situation, where Mg/Ca is less than one and there is no change to Dmg , is the most likely 

situation in cave settings (Roberts, 1997). An inverse relationship exists between the Sr/Ca 

ratio of the precipitating solution and Ds, (Pingitore and Eastman, 1986; Banner, 1995). 

5.2.4. Factors Affecting Minor Element Sources and Supply 

It is apparent that the minor element composition of speleothems is influenced by two principal 

factors: 

(1) temporal changes in the minor element composition of seepage waters; and 

(2) variations in the depositional process which effects the partitioning of minor 

elements between the percolation water and the speleothem calcite. 

Concerning the first factor there are many influences on the evolution of percolation waters, that 

ultimately supply speleothems. Therefore, consideration must be given to the whole 

hydrogeochemical system, as the source of minor elements is highly variable in both time and 

space. In considering the above factors one must also take note of the temporal scale at which 

the minor element variations are being investigated as different factors may become dominant at 

different temporal scales, this may also be applicable to stable isotope records (Chapter 6). 

Goede (in prep) suggests that the factors influencing the composition of minor elements in 

speleothem calcite can be conveniently examined at three different temporal scales, 

glacial/interglacial (10 4-105  years), millenial (103-104  years), and secular (<10 2-103  years). 

At the glacial/interglacial scale large excursions in environmental conditions are to be expected 

and may possibly contain glacial to interglacial transitions (for example Hellstrom, 1998). It 

would be expected that at these scales the effects of temporal changes in such factors as 

cave temperature, supply of terrestrial dust (for example Goede et al., 1998), vegetation cover 

(Hellstrom et al., 1998), etc, would be maximised thus the response of the minor elements 

should be fairly dramatic. At the millenial scale minor element records are less likely to show 

the full range of environmental excursions, depending of course on where the record fits in 

time, however it is still possible that significant trends in the minor elements may be present 

although relating them to environmental changes can be more problematical. Secular scale 

changes may allow annual and other short term quasi-periodical environmental fluctuations to 

be investigated. In circumstances where the speleothem is collected with a known date the 

variations in minor element composition may be compared with historical climate records or with 

measurements of environmental variables in situ, for example drip water rates or seepage 

water composition. 

Influences on percolation water include the aerosol/dust content of precipitation, soil formation 

and weathering processes, and limestone bedrock dissolution (Gascoyne, 1983). The major 

causes of variation in the minor element composition of percolation water consist of changes in 

the partial pressure of soil CO2, water residence time, seepage pathways, and fluctuations in 

dissolved ions, from the carbonate bedrock, soil, and other rock types that may be present, 

and soil organic matter (Hellstrom, 1998). The influence of elements derived intermittently from 

incidental sources such as atmospheric dust, sea salt, pollen and spores, and fire products, 

should not be overlooked. 
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Sector zoning of calcite (described earlier in Section 2.5.4) may present major difficulties when 

studying minor element variations of speleothem calcite on a microscale, particularly as there is 

potential for significant lateral variation of minor element concentrations along temporal 

horizons (Reeder and Grams, 1987; Hellstrom, 1998). 

It is likely that considerable noise and possible site specific factors will be associated with any 

palaeoenvironmental signal in speleothem calcite, due to the complexity of the system. As 

many of the factors will interact with each other to a degree, working out the principal 

environmental factors or at least narrowing them down may be feasible in the current research 

climate. Relatively little research has been done on the variations in minor element 

composition of cave seepage waters, although Dr Ian Fairchild (University of Keele) and 

several of his students are currently investigating the minor element geochemistry of both 

seepage water and speleothems in several European karst areas (Fairchild etal., 1996). The 

following sections discuss those factors which are most likely to be the dominant factors 

controlling the minor element composition of speleothems. 

5.2.4.1. Changes in the Partial Pressure of Soil CO2 

Soil processes have a significant and direct impact on both the partial pressure of CO2 and the 

pH of percolation water. The high partial pressure of dissolved CO2in the soil atmosphere has 

been shown to be directly related to temperature, and will therefore vary seasonally. Derr and 

Munnich (1989) have found that the dissolved CO 2  partial pressure of soil moisture can be an 

order of magnitude higher in summer than in winter. This suggests that in areas where surface 

temperature fluctuates markedly between seasons, seasonal variations in the PCO 2  and pH of 

soil water will also occur. It follows then that significant changes in groundwater acidity will 

have major impacts not only on the absolute and relative concentrations of dissolved mineral 

species in the water but also on the dissolution of the carbonate bedrock. 

5.2.4.2. Fluctuations of Dissolved Ions and Soil Organic Matter 

Since soil CO2 directly affects the pH of seepage water it follows that the dissolution of 

organic and inorganic material will show seasonal fluctuations. Organic acids are also able to 

form complexes with many cations and in some cases this is the only way that those ions can 

be transported in natural waters. Binding of some metal ions by organic acids may also 

reduce certain ion species' activity (Benedetti et al., 1996). Accurately predicting these 

effects on the ion concentrations of natural waters temporally and spatially is very difficult. 

Since pH and possibly drip water temperature vary seasonally it is argued that the reactions 

between organic acids and some ionic species may be significantly altered by these changes. 

Roberts et a/. (1998) observed an inverse relationship between annual variations in the Sr/Ca 

ratio and luminescence intensity, high luminescence is interpreted as indicating high organic 

acid concentrations. 

Baker et a/. (1998a) have shown that organic material in speleothems and the waters that feed 

them consist mainly of humic and fulvic acids, derived from the decomposition of organic 

material and the activity of surface vegetation. It has also been demonstrated that annual 

variations exist in the organic acid content of speleothems (see Section 2.6.8). Shortwave UV 
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light stimulates the organic acids and the resultant luminescence differences are recorded and 

measured (Baker et al., 1993b; Shopov et al., 1994; Baker et al., 1996a). These studies 

support the notion that seasonal fluctuations of the organic acids in cave seepage water do 

occur but the mechanisms controlling them are still not well understood. Toth (1998) 

investigated seasonal differences in the dissolved organic carbon concentrations and 

luminescence characteristics of cave seepage waters. However, the author points out that the 

results are likely to be site-specific and will remain so until more is known about the factors 

controlling organic acids in seepage waters and more studies have been done of individual 

sites. 

5.2.4.3. Changes in Water Residence Time 

The path water takes from when it enters the surface until it infiltrates a cave may involve 

considerable distance and time. Longer residence times in soils and underlying bedrock will 

potentially increase the relative contribution of dissolved metals from resistant mineral phases to 

the seepage water. Therefore, if this contribution is significantly different from that of the more 

easily leached minerals, the geochemistry of the seepage waters is affected by the residence 

time (Hellstrom, 1998). For example, longer water residence times in carbonate rocks favour the 

dissolution of dolomite over calcite therefore increasing the magnesium concentration and 

possibly lowering the strontium concentration, as strontium is present in much lower 

concentrations in dolomite than in calcite (Roberts et al., 1998). The effect of longer water 

residence times on reactions between organic acids and cations should not be overlooked. 

Genty and Deflandre (1998) investigated the variation of a stalactite's drip rate and seepage 

water conductivity in relation to precipitation. They observed a strong positive correlation (R 2  

value of 0.98) between the interannual drip rate variation and the effective precipitation, 

calculated using the Thornthwaite formula, therefore the greater the water excess the greater 

is the drip rate and thus the volume of water flowing through the stalactite. The drip- and flow-

rate of the stalactite exhibit a distinct seasonal pattern consisting of three stages starting with 

an abrupt flow-rate increase in the autumn/early winter, then a high flow-rate regime in 

winter/early spring, followed by a gradual decrease through late spring/summer. Conductivity 

also shows a strong seasonality and a positive correlation with flow rate. 

5.2.4.4. Variations in the Dominant Pathway of Seepage Water 

The flowpath of water through the soil is relatively simple but on entering the pore and fracture 

space (subcutaneous zone, Williams, 1983) the flowpath can become much more complex. 

Aquifer volume and flow rate have the potential to influence the minor element geochemistry of 

groundwaters, for example high flow regimes may utilise rock pore space and fractures, 

whereas low flow regimes may favour transport primarily via rock pore space (Benedetti et al., 

1996; Genty and Deflandre, 1998). Therefore, the influence of temporally and, possibly, 

spatially variable flow regimes is very important on those factors affected by residence times. 

It is hypothesised that the residence time and mixing of waters of different ages may influence 

the degree of annual layering in speleothems as a longer residence time or longer flowpath 

may have the effect of "averaging" the seasonal signal. 
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5.3. Methodology 

Microbeam analytical techniques are greatly increasing our understanding of earth processes 

through the study of major- and minor-elements in a wide range of natural materials. In this 

study, two different microbeam instruments, an inductively coupled plasma-mass spectrometer 

(ICP-MS) and an electron microprobe, were used to collect high-resolution minor element data 

from speleothems. ICP-MS, although a relatively new analytical technique, is gaining wide 

acceptance in many earth science investigations. The technique allows for high resolution, 

multi-element analysis of natural materials with good sensitivity, very low detection limits, and 

good accuracy and precision (Rollinson, 1993). Electron microprobe analysis is a standard 

technique used, in mineralogy and petrology, although it has limited application to other 

geochemical investigations. Sample descriptions are given in Tables 3.1 and 4.1. 

5.3.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

5.3.1.1. Previous ICP-MS Studies of Speleothems 

The applications of ICP-MS are wide ranging and much of it is beyond the scope of this thesis. 

It is pertinent, however, to mention some of the applications related to this research. Hellstrom 

(1998) has been one of the first speleothem workers to utilise both solution-introduction and 

laser-ablation ICP-MS in minor element studies of speleothems. 

Published work, using ICP-MS specifically on speleothems, includes research by Halicz et al. 
(1997) who used solution introduction ICP-MS to measure low U and Th concentrations in cave 

deposits. Bar-Matthews et al. (1991) used ICP-Atomic Emission Spectrometry (AES) to 

investigate the major and minor element composition of a range of carbonate deposits from 

Soreq Cave, Israel. Railsback et al. (1994) used solution introduction ICP-MS to analyse 

concentrations of various ions in two water samples taken from Drotskys Cave, northwestern 

Botswana. Studies of other carbonates have used corals (Sinclair et al., 1998) and shells of 

various species to investigate pollution (Fuge et al., 1993), and sea water temperature and 

productivity (Girard and Albarede, 1996; Lea and Martin, 1999) Numerous papers have been 

published on the use of ICP-MS on geological materials (Eggins et al., 1998b; Butler and 

Nesbitt, 1999). 

Vadillo et al. (1998) used laser-induced breakdown spectrometry (LIBS) to investigate spatial 

distributions of Mg and Sr along the axial and radial growth axis of a stalactite from Nerjas 

Cave in Malaga, Spain. LIBS uses a precisely focused laser beam, a pulsed Nd:YAG laser, to 

irradiate the sample which at the interface between sample and laser beam produces a high-

temperature plasma where vaporisation and ionisation of the sample occurs (Vadillo et 

a/.,1998). Spectral analysis of the plasma in the spot area gives a precise elemental analysis 

of the sample. 

An advantage of this technique is the relative rapidity of data acquisition at a fraction of the 

cost of other microbeam techniques. However, Vadillo et al. (1998) have used a relatively 

coarse sampling resolution, a 1 mm sampling interval, which in comparison to other microbeam 
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techniques makes interpretation of minor element data problematical, especially if one is trying 

to identify seasonal variations. The authors highlight the need for more work on the analytical 

technique particularly on ablation efficiency, and the effects the quality of the sample surface 

has on results, standardisation of procedures and quantification of minor element 

concentrations (Vadillo et al., 1998). 

5.3.1.2. Laser Ablation and Solution Introduction ICP-MS Methodology 

ICP-MS is an analytical technique that uses a high temperature plasma, commonly argon, to 

dissociate molecules and ionise atoms. Ions are extracted through a pinhole-sized aperture 

into a pumped intermediate area, from which it is further sampled through a second aperature 

into a high-vacuum ion lens region of a mass spectrometer (Rollinson, 1993). The plasma (see 

Figure 5.1) is generated and sustained by an intense radio frequency (RE) field. The RF field 

is produced by a copper tube, coiled up to 4 times around the end of the quartz torch glass, 

acting as an antenna and through which cooling water flows. At the end of the torch glass, an 

induction region is created by the intense electromagnetic field within the bounds of the coil. 

The plasma torch is ignited by passing a high voltage spark through the argon gas, which 

ionises some of the argon atoms. 

The mixture of argon gas and ions passes into the induction area where it becomes coupled to 

the oscillating induction field. Continuous collisions occur within the field between electrons 

and argon atoms thereby producing more argon ions, and in effect creating a self-supporting 

plasma as long as the RE field maintains the induction and there is a continuous supply of 

argon gas. Sample ionisation occurs through heating by the central core of the plasma, which 

reaches a temperature of around 10,000 K. Sample ionisation is extremely efficient and 

occurs at temperatures between 5,000 and 7,000 K (Perkins and Pearce, 1995). Ions of all 

masses from the sample are extracted into a mass spectrometer which sorts the ions by mass 

using a quadrapole mass filter. 

All ICP-MS work was performed at the Research School of Earth Sciences (RSES), Australian 

National University (ANU) under the supervision of, and with assistance from, Mr Les Kinsley and 

John Hellstrom. The machine at RSES is a Fisions VG Plasmaquad PQ-2. This instrument can 

be set up to analyse samples using either solutions, by injection as an aerosol into the plasma, 

or by laser ablation where the sample is ablated directly by the laser, producing microparticulate 

material, and introduced into the plasma via a helium/argon carrier gas. 

RSES Laser Ablation Stage Setup 

The ablation setup utilises a Lambda Physik LPX 1201 argon-fluoride excimer laser with a 

wavelength of 193 nm. The maximum power output of the laser is approximately 60 W, but for 

most analyses of speleothems the laser is operated between 5 and 15 W with a pulse rate of 

between 5 and 30 Hz. Stalagmites and flowstones are polished to a flat planar surface prior to 

analysis, in order to clean the sample surface before an analysis scan. The power settings are 

varied depending on whether the laser was ablating the sample surface as a cleaning step, ie 

pre-ablation, or ablating the sample for data acquisition. Generally, the power settings for pre-

ablation runs are twice that of a sample scan. 
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The laser beam is masked through an aperture and, although a fairly wide range of sizes and 

shapes is possible, most work with speleothems uses a rectangular spot approximately 20 (x) 

by 200 (y) gm. It is found that with smaller spot sizes an increase in the number of pulses per 

second, with a maximum of approximately 30 Hz, is necessary to ensure that enough sample is 

ablated. Much also depends on the sensitivity and background noise of the machine. Sample 

ablation occurs in a chamber containing an argon-helium gas mixture, at atmospheric pressure, 

and this gas flow carries the ablated sample through the pulse-smoothing cell and from there 

to the ICP-MS. The RSES laser ablation ICP-MS system has been described in detail by 

Eggins et al. (1997) and in Sinclair etal. (1998). 

RSES Solution Introduction Setup 

Solution ICP-MS has been used to measure the uranium concentrations of samples used for 

age determination prior to analysis by the TIMS method (Chapter 4). The procedure involves 

dissolving 2-5 mg of speleothem sample in 9.0 ml of clean 2% HNO 3  in an acid cleaned test 

tube, and then adding 1,000 gl of previously prepared 233U/ 118In spike solution. A blank and 

standard are also prepared, the blank made up of 9.0 m/ of clean 2% HNO 3  and 1,000 g/ of 

233U1n8In spike solution, the standard containing 9.0 ml of clean 2% HNO 3  and 1,000 pi of a 

238U/232Th standard solution. The solutions are allowed to equilibrate overnight, then loaded 

into a Gilson auto-sampler attached to the ICP-MS. Sample, standard, and blank details, 

dilution factor, 233 U and 115 1n concentrations, are entered into the ICP-MS control software and 

after the analysis run is finished, uranium concentration results are output as blank subtracted, 

solid concentrations. The uranium concentrations from the ICP-MS analysis has an average 

analytical error of several percent. The results shown in Table 4.1 are used to calculate spike 

weights in the TIMS U-series dating of the speleothem samples. 

5.3.1.3. Application of ICP-MS to Speleothems in this Study 

Sample preparation for laser work has involved mounting the samples on a 50 mm by 60 mm 

glass "stage", prior to mounting on the sample cell stage. The sample cell restricts travel of the 

stage to approximately 50 mm, thus the maximum sample size is 50 mm (X-axis) x 50 mm (Y-

axis). The X- and Y-axial directions of the stage are controlled by two hand operated 

micrometers (± 5-10 gm), but an added capability on the Y-axis is a small DC electric motor 

which allows the micrometer to be turned at a constant rate from 1.5 gms -1  up to 85 gms -1 . The 

motor driven axis allows the user to scan continuously along the surface of the sample at a 

constant rate. 

For soda-straw stalactite mounts, the unbroken soda-straw stalactites were first sectioned into 

pieces up to 50 mm in length by carefully sawing with a razor blade until they broke or could be 

separated without causing shattering. The soda-straw stalactite sections are held in place on 

a glass microscope slide using "blue-tack", the slide is then put into the sample cell stage using 

"blue-tack" to hold it in place. The only cleaning process that the specimens are exposed to 

was a pre-ablation run. In hindsight, an ultrasonic cleaning step to get rid of any dust on the 

surface should have been added prior to mounting the soda-straw stalactite on the glass 

microscope slide. 
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Figure 5.1. Schematic diagram of ICP-MS apparatus at Research School of Earth Sciences, ANU, Canberra. Diagram shows both solution introduction tool as well as the laser ablation stage 

setup. The ICP-MS at RSES is a Fisions VG Plasmaquad PQ-2 and the laser ablation setup utilises a Lambda Physik LPX 1201 argon-fluoride excimer laser with a wavelength of 193 

nm. The sample mixer randomises the sample before it enters the plasma. 
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One potential problem with the analysis of the soda-straw stalactites is the uneven surface 

presented to the laser. The surface sometimes appears to have horizontal bands that may be 

physically manifested as ribs, several tens of microns in height. Hellstrom (1998) tried mounting 

a piece of soda-straw stalactite in epoxy resin and then polishing the sample to get a planar 

surface. The main problem with this approach is the potential loss of data. Since the outer 

surface of the soda-straw stalactite is deposited first, we can assume that its outside surface is 

a temporal sequence with the oldest calcite at the base and the youngest at the tip. Thus, 

any polishing may disturb the record by exposing calcite of a different age and thereby 

introducing uncertainty into the stratigraphic sequence of the surface to be sampled. Samples 

analysed with the electron microprobe have to be mounted in epoxy resin as there is no other 

way of preparing them for analysis due to the nature of the instrument. Studies using other 

microbeam techniques may have significant errors associated with temporal disturbance if the 

samples require similar preparation and polishing. 

Flowstone and stalagmite mounts were analysed in a similar manner to the soda-straw 

stalactite mounts but were cut into sections 50 mm by 5-10 mm using a diamond saw. The 

sections were glued to glass slides, using dyed epoxy resin, and the sample surface polished. 

The epoxy resin was dyed red in order to identify any areas of the surface contaminated by 

resin. It can also provide a useful marker in the ICP-MS data set if present on the sample 

surface as calcium ion intensity drops significantly when epoxy resin is sampled by the ICP-MS. 

It must be noted that all data collected in this study are qualitative and not semi-quantitative or 

quantitative. The data is reported as "normalised counts per second" ie all element 

measurements are normalised to calcium ( 48Ca) and no calibration of absolute concentration 

data is attempted. Normalising to calcium assumes that the mass ratios of the elements remain 

constant with fluctuations in total signal strength and that calcium content is always 4 x 108  

ppb. A disadvantage of this approach is the addition of any calcium signal noise to the noise 

associated with each element (Hellstrom, 1998). It has been considered unnecessary to 

convert the minor element data to a quantitative form given the nature of the study and, as 

Hellstrom (1998) points out, the relative internal variations of a speleothem are of more interest 

that the absolute concentrations. 

The lack of a suitable carbonate standard hinders a fully quantitative approach. Attempts with 

a silica glass standard, NBS-612, provided crude concentration estimates but in switching from 

a silicate- to a carbonate-matrix the machine sensitivity and some isotope background levels 

are adversely affected and take considerable time to return to normal levels (Hellstrom, 1998). 

Calibration of concentration data has not been attempted for these reasons especially 

considering the difficulty that Sinclair et al. (1998) have encountered in creating a standard for 

coral analysis. 

It must be pointed out that the magnesium ICP-MS data for some of the samples is of relatively 

poor quality because of contamination of the sample chamber by carbonate powder by 

another user prior to, and unknown by this researcher at the time and obviously beyond his 

control. Although the sample chamber had been cleaned, the results indicate that a much 
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more thorough cleaning procedure was required. The contamination significantly reduced the 

magnesium signal to noise ratio. It is estimated from previous measurements that the 

magnesium background signal was increased by a factor of approximately five or more. 

Unfortunately the analyses have not been repeated due to time and cost constraints but 

attempts will be made to repeat some at a future time. The contamination was treated as a 

systematic error on the assumption that the error remained constant throughout the analyses. 

The ICP-MS results were treated by bacground subtracting an additional twenty percent from 

the signal, assuming that this was the contamination contribution to the overall signal. This is 

valid given the qualitative nature of the results and the interest is predominantly in the pattern 

of variations over time. In order to get fully quantitative results a much more rigorous 

procedure for calibration will have to be followed. 

5.3.1.4. ICP-MS Data Processing 

Data from the laser ablation ICP-MS of speleothems have been processed using spreadsheets 

(MS ExcelTM) and signal processing software (Igor Pron^). It is necessary to remove the 

headers put in by the ICP-MS control software but this is easily done in a text editor, for 

example, BBEdItTM.  A later version of the ICP-MS control software allows the user to eliminate 

the headers prior to export. MS ExcelTM  has been used to pre-process the data prior to 

importing into Igor Pr0TM.  Pre-processing includes deleting unnecessary headers in the raw 

ICP-MS output, background subtraction, calcium normalisation, drift correction, and removal of 

"spikes" in the data. 

Background subtraction is necessary to eliminate machine noise. This is done by selecting a 

few hundred data points from the start and end of each element acquisition, calculating the 

average for each element, and subtracting this value from the data. Each element was 

normalised to 48Ca, or 46Ca if 48Ca was not analysed, on the presumption that the mass ratios 

are constant despite fluctuations in signal strength, caused mainly by sample surface defects 

in the speleothem such as holes, cracks and, on some occasions, epoxy resin. 

As acquisitions usually run for a considerable length of time, up to 50 minutes, it is necessary 

to correct for drift in the machine's sensitivity, as variation in the order of a few percent is likely 

to occur over a run of a few hours. A standard, AM-1 (Hellstrom, 1998), is usually analysed at 

the start and finish of each run, usually when the sample cell is opened to change samples or 

after the ICP-MS has been re-tuned, and an easily identifiable block of several hundred data 

points is used to correct the elemental data by interpolating over the time between 

measurements of the standard. See Sinclair et al. (1998) for a more detailed discussion of 

sensitivity drift. 

Temporal sequences of trace element data collected by the ICP-MS occasionally suffer from 

large spikes, described here as single extreme outliers and easily identified as being spurious. 

They are presumably caused by dislodgement and entrainment into the plasma of relatively 

large discrete particles resulting from the ablation of the sample. The data are spike filtered 

using a running standard deviation filter which works by rejecting any point that is more than 

three standard deviations from the mean of the twenty points immediately adjacent to it. The 
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rejected point is replaced with the mean value of the six closest points (Hellstrom, 1998; 

Sinclair et al., 1998). The data can be smoothed using a 15 point running triangular mean or it 

can be imported, unsmoothed, into the signal processing software. 

Wavemetrics Igor Prom was used to analyse and graph the laser ablation ICP-MS data as this 

package was able to deal with the very large files generated, the largest consists of 

approximately 60,000 measurements ie slice numbers. The large files are generated when 

scanning at very high resolution, that is, ablating the surface at speeds of a few microns per 

second. For example, a section of soda-straw stalactite around 50 mm long and scanned at 5 

gms" 1  will take approximately 160 minutes to complete, generating a file of up to 25,000 

measurements. As indicated by Hellstrom (1998), these large data sets require considerable 

desktop computing power in order to be analysed and graphed. 

Prior to analysis in Igor Prom', the majority of data files require trimming in order to get rid of the 

background component of the scan. In all acquisitions, the first few hundred analyses are 

measurements of machine background before commencing acquisition of sample data. 

Background measurements were also made close to the end of the acquisition. The cropped 

data were then smoothed in order to reduce high frequency noise in the signal. The majority 

of smoothing in the initial stages of analysis utilises a smoothing spline, a least squares variant 

of a cubic spline, Hellstrom (1998) has also tried band-pass and low-pass filtering using Fast 

Fourier transforms. Wavelet analysis has been applied with some success by Hellstrom (1998) 

and the technique has also been employed in this study. 

Following the example of Roberts et al. (1998) correlations between minor element pairs have 

been done on the low frequency data, ie untreated, and the high frequency data, ie 

detrended. The data were detrended by subtracting a 50-point running mean. This has the 

effect of enhancing the high frequency structure and removes any long term temporal trends. 

The sheer magnitude of some of the data sets has required specialist software and 

considerable desktop computing power for analysis. It has also required developing analytical 

procedures and applying specialist data analysis tools to the results. 

5.3.2. Electron Microprobe Microanalysis 

5.3.2.1. Electron Microprobe Methodology 

Electron microprobe analysis uses the X-ray spectrum emitted from the surface of a solid 

sample bombarded by a focused beam of electrons to acquire discrete chemical analyses 

(Reed, 1995). The technique is capable of measuring all elements heavier than boron in a 

wide range of natural earth and synthetic materials. All analyses used in this study were 

performed at the Central Science Laboratory (CSL), University of Tasmania (UTAS) using a 

Cameca SX-50 Electron Probe Microanalyser under the supervision of, and with assistance 

from, Mr VVis Jablonski and Dr Andrew McNeil. 

The Cameca SX-50 electron microprobe uses wavelength dispersive (WDS) detectors to 

perform analyses, employing crystals that diffract characteristic x-rays emitted from the sample 

according to their wavelength. X-rays are diffracted by a suitable analysing crystal (LiF: lithium 

fluoride; PET: penta-erythritol; TAP: thallium acid phthallate) and measured in counts per 
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second by gas flow proportional detectors. These detectors allow very high precision, 

quantitative chemical analysis to be performed by comparing the intensities of the characteristic 

X-rays generated by the elements in the sample by reference to X-ray intensities measured in 

standard materials. 

Instrumental calibration is carried out using standard reference materials, both internal and 

external, and employing either the ZAF (atomic number effects, absorption, and fluorescence) 

matrix correction procedure or a comparison standard technique. The diameter of the electron 

beam can be controlled to analyse sample volumes smaller than a few cubic micrometres 

(Reed, 1995; Rollinson, 1993) 

Relative to laser ablation ICP-MS analysis, sample preparation for electron microprobe analysis 

is more complicated. Samples must be conductive, provided with a planar, well polished 

surface, and must be physically compatible with the specimen stage. Maximum sample 

dimensions for the CSL SX-50 are either, a diameter of 24.5 mm or, a rectangular Slide of 40 

mm (X) by 18 mm (Y) by 4 mm (Z). The sample is first cut to size using a diamond saw, 

mounted in epoxy resin, polished, and coated with gold or carbon. 

5.3.2.2. Previous Electron Microprobe Studies of Speleothems 

Since its commercial development in the 1960s, the electron microprobe has become a 

standard analytical tool for mineralogists, petrologists, and other earth and materials scientists. 

Several authors have used electron microprobes to study, at very high resolutions, the trace 

element content of speleothems. Fairchild etal. (1996) used an electron microprobe, and also 

an ion microprobe, to study chemical variations in soda-straw stalactites from Belgium and Eire 

(Ireland), the soda-straw stalactites were analysed because they showed repetitive bands, 

between 2 to 5 per millimetre in width, along their entire length. The geochemistry of a 

stalagmite from Drotskys Cave in northern Botswana has been studied using an electron 

microprobe by Railsback et al. (1994). The study examined differences in Mg and Sr 

concentrations in annual aragonite and calcite layers. 

5.3.2.3. Application to Speleothems in This Study 

A 110 mm long soda-straw stalactite from Risbys Basin Cave, RB-SS2, has been cut up into six 

lengths of approximately 20 mm and individual sections mounted in 24.5 mm diameter epoxy 

resin mounts, followed by polishing and gold coating. Seven elements (F, Mg, Cl, Mn, Fe, Br, 

and Sr) were analysed using the CSL SX-50 electron probe micro-analyser, with Ca added to 

the element menu in another series of analyses. All samples were analysed using a 15 kV 

accelerating voltage, a 10 nano-amp beam current, a 10 to 15 gm beam diameter, and 30 

second counting times. Analyses were performed at 500 pm intervals. Two rectangular slides 

were also prepared using Yarrangobilly flowstone material, YBJC-F2 and YBJC-F3, and a 50 

mm stalagmite, FC-S4, from Frankcombe Cave in the Florentine Valley. 

5.3.3. Establishing Chronologies Using Non-Destructive Techniques 

This section describes attempts to date several soda-straw stalactites using two methods, 

counting the seasonal variations of minor elements, or autocorrelation, and the use of 
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dendrochronological equipment. Assistance was given by John Hellstrom who helped 

undertake the onerous task of processing some of the data by counting the peaks and 

troughs along the several metres of FC-SS5 ICP-MS printouts and demonstrating that a useful 

chronology could be created. The results have since been replicated by the author using the 

method developed by John Hellstrom. 

5.3.3.1. Incremental Counting 

The method assumes that the speleothem is active at the time of collection and that deposition 

has been continuous over the life of the speleothem, thereby giving a "zero" age ie the year of 

collection, or that an independent means of dating the sample has been used, for example 

AMS radiocarbon dating. The sample is analysed at high resolution using laser ablation ICP-

MS, an essentially non-destructive analytical technique. A rectangular laser ablation "spot" 

gives the best results and the X-dimension, perpendicular to the speleothem growth axis, 

should be at least five times greater than the Y-dimension. 

The results are processed according to the method described in Section 5.3.1.4. Establishing 

the chronology is done by counting the years from peak to peak, or trough to trough, back 

from the "zero" age. In some cases, the "years" are not particularly clear. However, with careful 

analysis the chronology can be established with several assumptions and "best guesses". 

5.3.3.2. Tree Ring Measuring Equipment 

Equipment normally used for dendrological analysis, a Velmex "TA" system, has been utilised in 

this study to investigate the ring features seen in soda-straw stalactites (Figure 5.2a) and 

stalagmite growth layers (Figure 5.2b and c). The Velmex "TA" system consists of a Unislide ®  

aluminium measuring stage with Acurite ®  Mini-scale digital linear encoder, with a resolution of 1 

gm or 0.001 mm ± 5.0 gm m -1 , attached to a Quick-Chek®  QC-1000 digital display unit. A 

microscope with a cross-hair reticule is used to view the sample at up to 40x magnification, the 

cross-hair aids in accurately identifying measurement points. Controlling software, PJK5.v5, 

was installed on a Macintosh computer. Data from the system have been processed in terms 

of distance in microns between consecutive rings, viewed through the microscope, in years 

from a starting date. COFECHA, a data quality control program, has been used to check the 

dating of samples. It identifies dating conflicts or mistakes by comparing segments of one 

sample against those of another, or a number of samples (Allen, 1998). 

One of the main problems involved in measuring soda-straw stalactites has been identification 

of a consistent marker to start/end a year. In tree ring studies, the identification of rings is 

much simpler as summer and winter growth, equal to one year, are conspicuous through 

abrupt phloem density differences. In order to overcome this problem, multiple measuring runs 

of up to 20 were performed on individual segments and the results checked in COFECHA. 

Where major conflicts occur, for example if series lengths do not correspond, the series has 

been rejected outright. The remaining series are averaged and the results used as the final 

chronology. 
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Figure 5.2. (a) Photograph of FC-SS5, a soda-straw stalactite from Frankcombe Cave, Florentine 

Valley, Tasmania. Note surface banding feature, arrow indicates growth direction. 

(b) Photograph of CTH-51, a stalagmite from Top Hole, Croesus Cave, Mole Creek, 

Tasmania. Note fine scale laminations, arrow indicates growth direction. 

(c) Photograph of BFM-J96, a stalagmite from Browns Folly Mine, Bath, England. 

Note fine scale laminations. 

(d) Photograph of JC-F1, a flowstone section from Jersey Cave, Yarrangobilly, New 

South Wales. Note grey colouring, hiatuses are marked with a letter, "H", and a 

number from 1 to 3, question marks are approximate positions of inferred hiatuses. 
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5.4. Laser Ablation ICP-MS Results 
This section presents the results for several soda-straw stalactites, stalagmites, and flowstones 

analysed, in almost all cases for their entire length, at low- and high-resolution using laser 

ablation ICP-MS. All samples used in this chapter are described in Chapter 3. Several soda-

straw stalactite samples have distinct and easily identifiable quasi-periodical minor element 

oscillations, these variations are inferred to be annual. Analysis of several stalagmite and 

flowstone sections by laser ablation ICP-MS enables investigation of long term minor element 

fluctuations and their relationship to past environmental conditions. Some of the stalagmite 

samples have high frequency minor element oscillations that are hypothesised to be annual. 

In several soda-straw stalactite and stalagmite samples, the extent of lateral variation in the 

minor element composition of the longitudinal growth axis has been investigated by parallel 

laser ablation ICP-MS analysis. 

5.4.1. ICP-MS Analysis of Browns Folly Mine Stalagmites 

Three stalagmite samples, BFM-92-5, BFM-93-2, and BFM-J96 (Figure 5.2c), from the Browns 

Folly Mine, Bathford, Wiltshire, England were analysed with laser ablation ICP-MS. These were 

investigated because some luminescence work on a number of samples and a detailed 

examination of the water chemistry at the site has already been done by Dr Andy Baker, 

results of which are published in Baker et al. (1998b). An additional advantage of these 

samples is that the minimum and maximum ages of the samples are well constrained as they 

were active at the time of collection, thereby giving a zero minimum age, and their maximum 

age is approximately 160 years since mining had been abandoned by 1836 in the section from 

where the samples were collected. Therefore the minimum theoretical growth rate for a 

speleothem can be calculated using the vertical height over the known maximum deposition 

period (Baker etal., 1998b). 

5.4.1.1. BFM-92-5 and BFM-93-2 Minor Element Screening Results 

Initially a suite of minor elements: magnesium, aluminium, calcium, iron, copper, strontium, 

yttrium, cadmium, iodine, caesium, barium, lanthanum, lead, thorium and uranium, are 

measured in order to establish which elements are present in high enough concentrations to 

analyse. Two stalagmites, 92-5 (16 mm high) and 93-2 (22 mm high), have been analysed with 

laser ablation ICP-MS at low resolution, ie the sample has been scanned at a fast speed with a 

relatively large spot size (75 pm), using the expanded set of elements. The results for these 

preliminary scans are presented in Figure 5.3 (a) and (b), and Figure 5.4 (a) and (b), together 

with luminescence profiles of the stalagmites provided by Dr Andy Baker. Note that all 

elements are normalised to calcium ("Ca). 

Almost all of the minor element analyses, specifically iron, copper, yttrium, caesium, and 

lanthanum, seem to be records of machine/background noise with occasional peaks thus they 

have not been investigated any further. The peaks may be related to ablation of clay or dust 

particles present in the calcite matrix or appear through molecular interference ie counting of 

compounds with the same molecular weight as the target species, an idiosyncrasy of the ICP-

MS system. 
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Lead is interesting as it may indicate increasing contamination of the environment by the 

burning of fuels with an additive (Figure 5.3b and Figure 5.4b) but further investigation is 

required to test this hypothesis. Some elements, aluminium, cadmium, iodine, and thorium, are 

present in concentrations high enough to be above background levels but, as in the study of 

Hellstrom (1998), the repeatability of the measurements is questionable. Hellstrom (1998) does 

not attempt to analyse these particular elements any further because of the instability of the 

counts per second, leading to poor counting statistics, and due to the low signal to 

background ratios. 

Drift of the machine's analytical sensitivity is apparent, as evidenced by an increase, for 

example aluminium, or decrease, for example caesium, in the overall minor element signal. 

Hellstrom (1998) discusses methods of treating ICP-MS results in order to account for drift. 

Subsequent analyses have all been treated to eliminate machine drift. In this case the results 

have not been treated in order to illustrate one of the potential problems associated with ICP-

MS analysis. Drift correction is achieved by measurement of a standard, AM-1 (Hellstrom, 

1998), at the beginning and end of a sampling run, usually when the sample chamber is 

opened in order to change samples. 

5.4.1.2. BFM-J96 Minor Element Results 

Subsequent laser ablation ICP-MS analyses has used a more restricted set of minor elements 

with only magnesium, strontium, barium, and uranium analysed. All are normalised to calcium 

(48Ca). This allows an increase in the "dwell" time for each element, ie the time spent counting 

on a given mass number by the instrument during each circa 1 second sweep of the mass 

range, such that elements of low abundance, eg uranium, were given higher dwell times than 

elements with high abundance, eg calcium or magnesium. The results of two separate scans, 

approximately 200 gm apart, of BFM-J96 (Figure 5.2c)using laser ablation ICP-MS at low-

resolution, approximately 50 gm s -1 , and high-resolution, approximately 15 gm s 1 , are 

presented in Figure 5.5 and Figure 5.6, respectively. 

There are some significant differences between the low- and high-resolution scans but this is 

most likely due to spatial variation because of the slight lateral offset of the scans. Since the 

fine scale structures of the results are relatively difficult to see in Figure 5.6, several "windows" 

of approximately 30 years along BFM-J96 are presented in Figure Figure 5.7 (a) to (e). The 

windows, from the high-resolution scan, show various features such as high- and low-frequency 

quasi-periodical minor element variations, positive and negative correlations between elements 

and pairs of elements, and possible growth rate variations. 

A correlation matrix of the low (untreated) and high (detrended) frequency records for the high 

resolution analysis of BFM-J96 is presented in Table 5.1. In the low frequency results there is 

a weak positive correlation (r = 0.61) between the Sr and Ba but no other elements correlate 

very strongly, there is no correlation (r = -0.0001) at low frequency between Mg and Sr. In the 

high frequency results there is a strong positive correlation between the Sr and Ba (r = 0.57) 

and a weak positive correlation between the Mg and Sr (r = 0.10). The strong positive 

correlations between the Sr and Ba suggests that the processes controlling Sr and Ba 

geochemistry are very similar and are not significantly influenced by different temporal scales. 
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Figure 5.3 (a). Results of laser ablation ICP-MS analysis of BFM-92-5 together with luminescence 

intensity (LI) results. These scans were done in order to select minor elements in 

speleothem calcite present in sufficient concentrations to enable further analysis. 

Axes are from the bottom magnesium, aluminium, iron, copper, strontium, 

yttrium, and cadmium, and units are in normalised counts second-I. 
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Figure 5.3 (b). Results of laser ablation ICP-MS analysis of BFM-92-5 together with luminescence 

intensity (LI) results. These scans were done in order to select minor elements in 

speleothem calcite present in sufficient concentrations to enable further analysis. 

Axes are from the bottom iodine, cesium, barium, lanthanum, lead, thorium, and 

uranium, and units are in normalised counts secone. 
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Figure 5.4 (a). Results of laser ablation ICP-MS analysis of BFM-93-2 together with luminescence 

intensity (LI) results. These scans were done in order to select minor elements in 

speleothem calcite present in sufficient concentrations to enable further analysis. 

Axes are from the bottom magnesium, aluminium, iron, copper, strontium, 

yttrium, and cadmium, and units are in normalised counts secone. 
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Figure 5.4 (b). Results of laser ablation ICP-MS analysis of BFM-93-2 together with luminescence 

intensity (LI) results. These scans were done in order to select minor elements in 

speleothem calcite present in sufficient concentrations to enable further analysis. 

Axes are from the bottom iodine, cesium, barium, lanthanum, lead, thorium, and 

uranium, and units are in normalised counts second -1 . 
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Visual inspection of the BFM-J96 results reveals that the relationships between the elements 

are complex, for example very strong positive correlations exist between Sr and Ba between 

1975 and 1980 in Figure 5.7 (a), 1930 and 1945 in Figure 5.7 (b), 1905 and 1920 in Figure 

5.7 (c), 1865 and 1872 in Figure 5.7 (d), 1851 and 1861 in Figure 5.7 (e), at both the high-

and low-frequencies in some cases. But also note that Mg and U appear to be negatively 

correlated in some sections and positively correlated in others. This clearly illustrates the 

problems of analysing discrete sections of a sample as the degree of correlation may change 

significantly between sections. 

Table 5.1. Correlation coefficients (r) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from high-resolution laser ablation ICP-MS analysis of BFM-

J96. DT correlation coefficients are shaded. 

Element Mg Sr Ba U 

?
 c'n-  8

  
= 

mluT  -0.001 0.02 0.29 

.. 0.10 D -AuT  0.61 0.06 

0 095 057 DIV'.  0.18 

01081 r:0:007 0.005f orluT  

5.3.1.3. BFM-J96 Chronology 

The minimum average growth rate of BFM-J96 is 0.163 mm year -1  (162.5 RR) yea( 1 ), calculated 

using the height of 26 mm and the maximum period of deposition of 160 years. Since the 

width of the laser ablation window (20 gm) is small enough to sample at sub-annual resolution, 

dating by autocorrelation was attempted by counting the seasonal cycles of the minor 

elements. The minimum growth rate suggests that the number of years per millimetre should 

be approximately 6, assuming that deposition of BFM-J96 has been constant and continuous. 

It is anticipated that identifying individual years would be straightforward given the large 

seasonal temperature differences between winter and summer, and that although precipitation 

is relatively constant throughout the year effective precipitation would be much reduced in 

summer. 

In order to construct a chronology, the seasonal patterns of minor elements are used to 

identify individual years. The slice number and corresponding year are recorded in order to 

create a time/distance function by linear interpolation. In comparison with other samples the 

identification of a seasonal pattern was extremely difficult, and the accuracy of the chronology 

is questionable. Instrumental temperature records, monthly from 1921 to 1991, and 

precipitation records, monthly from 1866 to 1991, for Bath, located approximately 50 km from 

Browns Folly Mine, are plotted against the minor element results of BFM-J96 in Figure 5.8 (a) 

and (b). Given the difficulty in establishing a chronology it is very difficult to see any clear 

relationship between the instrumental climatic data and the minor element variations. 
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Figure 5.5. Results of low resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus distance from base. Since mining was abandoned in 1886 tie 

maximum period of deposition is approximately 160 years, the sample was collected in 1996. Axes are from the bottom: magnesium, strontium, thoriJm, and 
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Figure 5.6. 	Results of high resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus distance from base. Since mining was abandoned in 1886 the 

maximum period of deposition is approximately 160 years, the sample was collected in 1996. Axes are from the bottom: magnesium, strontium, thorium, and 

uranium, and units are in normalised counts second -1 . 
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Figure 5.7 (a). 	Results of high resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus age in years, in this graph from 1965 to 1996. Since mining was 

abandoned in 1886 the maximum period of deposition is approximately 160 years, the sample was collected in 1996. The chronology was established by 

autocorrelation by counting the seasonal pattern of the minor elements and assuming that growth was continuous. Axes are from the bottom: magnesium, 

strontium, thorium, and uranium, and units are in normalised counts second -1 . 
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Figure 5.7 (b). 	Results of high resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus age in years, in this graph from 1930 to 1965. Since miring was 

abandoned in 1886 the maximum period of deposition is approximately 160 years, the sample was collected in 1996. The chronology was established by 

autocorrelation by counting the seasonal pattern of the minor elements and assuming that growth was continuous. Axes are from the bottom: magnesium, 

strontium, thorium, and uranium, and units are in normalised counts second -1 . 
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Figure 5.7 (d). 	Results of high resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus age in years, in this graph from 1865 to 1900. Since mining was 

abandoned in 1886 the maximum period of deposition is approximately 160 years, the sample was collected in 1996. The chronology was established by 

autocorrelation by counting the seasonal pattern of the minor elements and assuming that growth was continuous. Axes are from the bottom: magnesium, 

strontium, thorium, and uranium, and units are in normalised counts secone. 
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Figure 5.7 (e). Results of high resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus age in years, in this graph from 1835 to 1865. Since mining was 

abandoned in 1886 the maximum period of deposition is approximately 160 years, the sample was collected in 1996. The chronology was established by 

autocorrelation by counting the seasonal pattern of the minor elements and assuming that growth was continuous. Axes are from the bottom: magnesium, 

strontium, thorium, and uranium, and units are in normalised counts second I . 
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Results of high resolution laser ablation ICP-MS analysis of BFM-J96 (5.2c) plotted versus age in years, in this graph from 1960 to 1996, together with 

instrumental climate data from Bath, located approximately 50 km from Browns Folly Mine. The chronology was established by autocorrelation by counting 

the seasonal pattern of the minor elements and assuming that growth was continuous. Axes are from the bottom: monthly precipitation in mm, monthly 

temperature in °C, magnesium, strontium, thorium, and uranium, and units are in normalised counts second -1 . 
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5.4.2. FC-SS5 Minor Element Results 

This 151 mm long soda-straw stalactite has been collected from Frankcombe Cave, Florentine 

Valley, Tasmania, Australia, and is shown in Figure 5.2a. The results of a single high-resolution 

laser ablation ICP-MS analysis of magnesium, strontium, barium, and uranium along the growth 

axis of FC-SS5 are plotted against distance along the 151 mm analysis track in Figure 5.9. Two 

other analyses of the tip section were done only to investigate the lateral variation of minor 

elements in soda-straw stalactites, these results are presented in Figure 5.14. 

In Figure 5.9 it is relatively difficult to see the fine scale structure of the FC-SS5 results 

therefore several "windows" of up to approximately 15 years long are presented in Figure 5.10 

(a) to (i). These higher resolution windows show various features of the results such as high 

and low frequency oscillations, positive and negative correlations between elements and pairs 

of elements, and possible growth rate variations. Overall the most striking feature is the 

consistency of peaks and troughs in the Sr and Ba results, it is also evident in the Mg and U 

traces but not to the same extent. 

5.4.2.1. FC-SS5 Minor Element Relationships 

A correlation matrix of the low-frequency (untreated) and high-frequency (detrended) records 

for the whole length of FC-SS5 together with results for the upper, middle, and lower segments 

are presented in Table 5.2. Both the low and high frequency results have strong positive 

correlations between Sr and Ba and very similar r-values, 0.90 and 0.88 respectively. The 

strength of the association suggest that the processes controlling Sr and Ba geochemistry are 

very similar and do not vary significantly at different temporal scales. 

A positive correlation is also found between Mg and U, (r = 0.61) in the untreated results but 

in the detrended results the correlation is weaker (r = 0.32). In the untreated results the 

correlations between the other elements do not exceed r-values of 0.10 suggesting that 

there is no relationship at low frequencies. At the higher frequencies weak positive 

relationships occur between the Mg-Sr (r = 0.36) and Mg-U (r = 0.32) and a weak negative 

relationship between Mg-Ba (r = -0.35). It is interesting to compare the r-values with some of 

the high resolution windows in Figure 5.10 (c and d) and note that the majority of Mg peaks 

are synchronised with troughs in Sr content and have a positive correlation, yet the Sr and 

Ba are strongly correlated and Mg has a negative relationship with Ba. This highlights the 

need for several more higher quality analyses to investigate the elemental relationships as it 

is difficult to say whether these relationships are real or whether they are an artefact of the 

Mg data processing. 

5.4.2.2. Discrete Features in the FC-SS5 Minor Element Results 

Two very large peaks in the Sr and Ba results, at approximately 1959 (22 mm) and 1965 (27 

mm) and similar peaks in the Mg and U results at around 1959, in Figure 5.10(h), are related to 

a ridge feature on the surface of FC-SS5, that is visible under a microscope. It suggests that 

physical features on the surface may influence minor element composition but further 

investigation is required. 
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Table 5.2. 	Correlation coefficients (R) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from high-resolution laser ablation ICP-MS analysis of FC-

SS5. The numbers in brackets in the first column relate to the number of slices used 

and DT correlation coefficients are shaded. 

Segment Element Mg Sr Ba U 

All Mg orlin  0.04 -0.08 0.60 

(n = 56954) Sr 0.36 DIA" 0.90 0.03 

Ba -0.35 0.88 me i-  -0.03 

U 0.32 ,-0.10 -0.08 orkul.  

Several low frequency oscillations are evident in the FC-SS5 results, for example in Figure 

5.10(b) there is a broad high with a period of approximately 6 mm starting at about 1793 (132 

mm) and ending at around 1805 (138 mm). The length of the wave suggests that it may be 

related to a sunspot or Schwabe cycle but further investigation is required to confirm this. 

Interestingly the Sr and Ba scans and the Mg and U results at both low- and high-frequency 

correlate positively and the correlation between the pairs of scans, ie Sr and Ba versus Mg and 

U, correlate negatively. 

At approximately 1908 (66 mm) a significant reduction in all of the minor element 

concentrations is observed and shown in Figure 5.10(g). This type of feature is not observed 

anywhere else along the analysis track. It could be related to a surface defect, such as a hole 

or crack in the calcite surface or might have been caused by a surface event inducing a 

sudden change in the water chemistry. 

5.3.2.3. Spectral Analysis of FC-SS5 

The marked cyclicity of the Sr and Ba results, and to a certain extent the Mg results, strongly 

suggest the presence of an annual signal evidenced by the considerable structure at the 

higher frequencies. The quasi-periodic variations have been investigated by spectral analysis, 

using the multi-taper method (MTM) from Ghil and Yiou (1996) and the results presented in 

Figure 5.11(a) to (d). In order to test spectral analysis results, a subsample of the FC-SS5 

data was taken between approximately 1840 and 1880 and analysed separately. The results 

are shown in Figure 5.12 (a) to (d). There are no significant differences between the analyses, 

even more encouraging is that the dominant wavelengths remain very close. The frequency of 

0.0304, present as the dominant frequencies in the Sr and Ba spectral analysis results, 

corresponds to a figure of 240 sample slices in excellent agreement with the average number 

of slice numbers per year, 246 (± 72, 1o). 
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The dominant frequencies in the Mg and U spectral analysis results are 0.0266 or 274 sample 

slices and 0.0305 or 239 sample slices. All of these results strongly support the conclusion 

that the high-frequency oscillations observed in the Sr and Ba results are annual. The uranium 

trace of FC-SS5 does exhibit some cyclicity but not to the same degree as the other elements, 

the reason for this requires further investigation. This could be done by only measuring 

uranium and calcium with the instrument dwell time maximised for uranium, ensuring a good 

signal to background ratio. 

5.4.2.4. Shape and Phase Relationships Between Minor Elements in FC-SS5 

In order to investigate the shape and phase relationships of minor elements in a normal year, 

an average annual cycle for FC-SS5 has been derived. The method involves identifying each 

year and corresponding sample slice number. A linear interpolation is done with the same 

number of points as the minor element data and allows them to be plotted against time. A 

smoothing spline interpolation, a least squares variant of a cubic spline, is used to adjust each 

year to the same number of data points, in this case each year consists of a 30 point 

sequence. The smoothing spline data have been divided into two-yearly segments (60 points) 

in order to get a complete annual cycle and the data averaged, the result is an "average" year. 

The results for the full data set together with a data subsample that excludes the large peaks 

are presented in Figure 5.13. Strontium and barium variations represent summer peaks and 

the trough between them autumn/winter/spring, whereas the magnesium and uranium results 

are, at the very least, severely lagged or very close to being diametrically opposite. The 

patterns of strontium and barium concentrations look very similar except that the second 

barium peak is much smaller than the first whereas the strontium peaks are nearly equal. The 

patterns of magnesium and uranium concentrations are interesting because they appear to be 

inversely related to those of strontium and barium. Troughs in magnesium and uranium 

concentrations appear to lag behind the peaks in strontium and barium concentrations. 

5.4.2.5. Lateral Variation of Minor Elements in FC-SS5 

Investigation of lateral variation in the minor element composition of FC-SS5 was done by 

several parallel laser ablation ICP-MS analyses. The tip section was scanned along three 

different tracks using laser ablation ICP-MS and the results are presented in Figure 5.14. No 

correlation analysis has been attempted between the scans due to the differences in 

resolution of the scans which produce traces of different lengths. However, It is evident that 

some spatial variability exists in the minor element composition of FC-SS5, but the cyclicity of 

the minor elements is common to the three scans giving confidence in its reproducibility along 

different analysis tracks and their use for autocorrelation. Future attempts at analysing the 

lateral variations of minor elements in speleothems should try to ensure that the resolution of 

the analysis track is the same, that the tracks are parallel, and that the analyses are done 

consecutively in order to minimise experimental error. 

Chronologies were established by autocorrelation of minor element results, determined by 

laser ablation ICP-MS, and measurements of surface growth rings with dendrochronological 

equipment (Section 5.3.3). Both techniques rely on the assumption that the sample was 
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active at the time of collection and has been growing continuously. The minor element 
chronology is dependent on the assumption that the Sr and Ba peaks' at the tip of the 

sample ie the minimum age, represent a summer maximum as the sample was collected in 

late February. Using the autocorrelation method chronologies were determined 
independently by the author and by Mr John Hellstrom. They obtained activity periods of 
1765 to 1996 and 1769 to 1996. The author also used the dendrochronology method to 

obtain an activity period from 1774 to 1996. 

The closeness of the three results gives a great deal of confidence in the chronology 
particularly as one was established by a different method. Ideally a radiometric dating method 

such as AMS radiocarbon or 210Pb excess dating (Chapter 4) should have been applied in 
order to provide precise independent temporal control (for example, Genty et al., 1998 or 

Tanahara et al., 1998). Unfortunately this was not attempted with FC-SS5 as the AINSE 
dating work (Chapter 4), that could have provided such control, was done prior to the ICP-MS 

analysis being initiated. 

5.4.2.6. Comparison of FC-SS5 Minor Element Results with Instrumental Records 

Attempts were made to compare the growth record of FC-SS5 and instrumental climate records 
from several stations located in the vicinity of the Junee-Florentine Valley, including Maydena 
and Strathgordon. The growth record of FC-SS5 was calculated using the measured ring width 
results from the incremental counting and dendrochronological methods (see Section 5.3.3). 
Annual recharge/effective precipitation was calculated using the Thornthwaite model. No 
significant correlations (R < ± 0.4) were observed between the ring width data and climate 
records, including interannual variation and lagged data. Lag calculations of up to 12 months 
were done to simulate the delay that precipitation has in reaching the sample. Further 
investigation is required to see if the lack of correlation between the climate data and the 
growth rate is due to the climate stations being so far from the site, placing a station above the 
cave would be ideal, or due to other factors. 

5.4.2.7. Analysis of UV Luminescence Microbanding of FC-SS5 

Luminescence microbanding of FC-SS5 was investigated by photographing the sample under 
a UV fluorescent tube and data processing followed the method of Hellstrom (1998). 
Luminescence banding was present but sporadic thus no detailed analysis of a pattern or 
comparison with the minor element data was possible. The sections where luminescence 
banding was present appeared to have a similarly cyclic pattern in light intensity, measured by 
converting the image to grey scale, to the minor elements. Further work will be required to 
investigate the relationship between the minor elements and the luminescence banding. 
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Figure 5.9. Results of minor element analysis of FC-SS5 (Figure 5.2a), a  151  mm long soda-straw stalactite from Frankcombe Cave, Tasmania, using high resolution laser 

ablation ICP-MS. Axes are from the bottom magnesium, strontium, thorium, and uranium, and units are in normalised counts second -1 . The most striking feature is 

the regularity of the quasi-periodical minor element variations along the entire length of the sample. The two major peaks in the minor element scans at 

approximately 1959 and 1965 are associated with a ridge feature on the surface of the soda-straw stalactite. 



,\AJ 30  — 

20 — 

10 — 

Years c rs 

Chapter 5 Minor Elements in Speleothems 

15 — 

10 — 

6 — 

5 

4 

3 — 

8 — 

— 

4 — 

2 — 

1766 	1768 	1770 	1772 	1774 	1776 	1778 	1780 

Years 

40 — 

20 — 

8- 

20 

15 

10 

Figure 5.10 (a) to (c). 	Results of minor element analysis of FC-SS5 (Figure 5.2a), a 151 mm long soda-straw stalactite from Frankcombe Cave, Tasmania, using high resolution laser 

ablation ICP-MS. The three diagrams, (a), (b), and (c), correspond to the time periods, respectively 1766 to 1780, 1790 to 1810, and 1809 to 1825. The 
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continuous. Y-axis units are in normalised counts second -1 . 
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Figure 5.10 (d) to (f). Results of minor element analysis of FC-SS5 (Figure 5.2a), a 151 mm long soda-straw stalactite from Frankcombe Cave, Tasmania, using high resolution laser 

ablation ICP-MS. The three diagrams, (d), (e), and (1), correspond to the time periods, respectively 1825 to 1840, 1839 to 1855, and 1884 to 1900. The chronology 

is based on autocorrelation of minor element patterning on the assumption that the sample was active at the time of collection and that growth was continuous. 

Y-axis units are in normalised counts second-1. 
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Frequency 

Figure 5.11. Power spectra (n = 56954) of high-resolution laser ablation ICP-MS analysis of FC-

SS5 (see Figure 5.2a), a 151 mm long soda-straw stalactite from Frankcombe Cave, 

Tasmania. Curved lines are levels of significance starting at 50 % (light grey, 

bottom line), 90 %, 95 %, and 99 %, respectively. Data have been pretreated by 

subtracting the median and filtering the two ridge features, represented as two large 

spikes in the raw data (Figure 5.9) and likely to skew the spectral analysis. Graphs 

(a), (b), (c), and (d) correspond respectively to, magnesium, strontium, barium, and 

uranium scans, and units are in normalised counts second'. Numbers on graphs are 

frequencies and are discussed in Section 5.3.2.3. 
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Figure 5.12. Power spectra of a subsam pled data set (n = 8000) from the high-resolution laser 

ablation ICP-MS analysis of FC-SS5 (Figure 5.2a), a 151 mm long soda-straw stalactite 

from Frankcombe Cave, Tasmania. Curved lines are levels of significance starting at 

50 % (light grey, bottom line), 90 %, 95 %, and 99 %, respectively. Data have been 

pretreated by subtracting the median and filtering the two ridge features, represented 

as two large spikes in the raw data (shown in Figure 5.9) and likely to skew the 

spectral analysis. Graphs (a), (b), (c), and (d) correspond respectively to, magnesium, 

strontium, barium, and uranium scans, and units are in normalised counts second -1 . 

Numbers on graphs are frequencies and are discussed in Section 5.3.2.3. 
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Figure 5.13. Graph of an "average" year from the high-resolution laser ablation ICP-MS analysis of 

FC-SS5 (Figure 5.2a), a 151 mm long soda-straw stalactite from Frankcombe Cave, 

Tasmania. Graphs (a), (b), (c), and (d) correspond respectively to, magnesium, 

strontium, barium, and uranium scans, and units are in normalised counts second -1 . 

Light grey lines represent complete data sets and black traces are the data minus 

several years adjacent to and containing the two large spikes (shown in Figure 5.9). 

Strontium data (b) have a smoothing spline (black line) through the subsampled data 

(dark grey line) together with the complete data set (light grey line). 
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Figure 5.14. 	Strontium results of three separate high-resolution laser ablation ICP-MS analyses of FC-SS5 (Figure 5.2a), a 151 mm long soda-straw stalactite from Frankcombe Cave, Tasmania. The two 

lower scans, aa and bb axes, were done at 90° to the top, cc axis, scan, and parallel to each other, approximately 100 pm apart. Y-axis units are in normalised counts secone. 
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5.4.3. Results of ICP-MS Analysis of BDTH Soda-Straw Stalactites 

Samples were collected from Burning Down The House Cave, Florentine Valley, Tasmania, 

Australia. Since these samples came from the same chamber it was anticipated that they 

would be showing close similarity in their patterns of minor element variation due to their close 

proximity to one another and the possibility that they shared a common source of seepage 

water. It would in fact be a good test of the ability to duplicate minor element results in 

different samples. 

Analysis of the magnesium, strontium, barium, and uranium composition along the growth axis 

of BDTH-SS1 (35 mm long) and BDTH-SS3 (28 mm long) by laser ablation ICP-MS indicates 

that there are quasi-periodical variations in their minor element contents. Since the laser 

ablation ICP-MS results of BDTH-SS6 do not have similar minor element cyclicity this sample 

has not been analysed further. The minor element results of laser ablation ICP-MS analysis 

are plotted against distance for BDTH-SS6 in Figure 5.15, and for BDTH-SS1 (bottom) and 

BDTH-SS3 (top) in Figure 5.16. 

No chronologies could be constructed for these samples using either of the techniques used 

with FC-SS5 or BFM-J96 due to the relatively low growth rate, estimated to be approximately 

100 gm year -1 . 

5.4.3.1. Minor Element Relationships in BOTH Soda-straw Stalactites 

A correlation matrix of the low-frequency, ie untreated, and high-frequency, ie detrended, 

minor element records for both the whole and a subsample of BDTH-SS1 and BDTH-SS3 are 

presented in Table 5.3. Correlations between the minor elements have been obtained on 

subsamples of the data due to the presence of several large peaks/spikes in the data and 

also because the lower section of the data does not appear to have quasi-periodical minor 

element variations. In some cases there are major differences in the correlation coefficients 

between the complete and sub-sampled data therefore only the sub-sampled relationships 

will be considered. 

The Sr and Ba concentrations have a strong positive relationship in both the sub-sampled low 

and high frequency records of BDTH-SS1, r values of 0.83 and 0.90 respectively, and BDTH-

SS3, r values of 0.85 and 0.93 respectively. These results suggest that the processes 

controlling Sr and Ba geochemistry do not change very much over different temporal scales. 

Significant differences in the minor element relationships occur between the BDTH-SS1 and 

BDTH-SS3 data. In some cases the relationships are not consistent between samples, for 

example the Mg-Sr, Mg-Ba, Sr-U, and Ba-U have a negative relationship in BDTH-SS1 and a 

positive relationship in BDTH-SS3. It is difficult to account for these, particularly as the samples 

came from the same location, but it is possible that evaporation or other site specific factors 

may explain some of the variability. Although no clear explanation can be given for the 

observed differences between the minor element relationships, these results highlight the need 

for further investigations. 
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Table 5.3. Correlation coefficients (r) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from high-resolution laser ablation ICP-MS analysis of 

BDTH-SS1 and BDTH-SS3. Correlations were done on subsamples of the data as 

there are several large spikes and the first section of data does not appear to have 

quasi-periodical minor element variations. DT correlation coefficients are shaded. 

Sample Element Mg Sr Ba U 

BDTH-SS1 Mg Drkin  -0.15 -0.06 -0.02 

(n = 10860) Sr -0.24 DTluT  0.91 -0.05 

Ba 

U 

-0.17 
i, 

004  

0.90• ' orkuT  -0.06 

DTV T  
_  

Sub-sample Mg EnAuT  -0.36 -0.17 0.09 

(2500-6500) Sr - -0.69 caluT  0.84 -0.06 

(n= 4000) Ba - 0 33 ,i0.83 .  DTV T  -0.11 

U 0.21 -0.21 - 0.26 orkuT  

BDTH-SS3 Mg orluT  0.91 0.91 0.63 

(n = 10686) Sr 0 91 DTluT  0.92 0.57 

Ba .‘ 0.92 0.93 caluT  0.70 

U 0.60 0.54 0.64 orluT  

Sub-sample Mg orluT  0.7570 0.72 0.34 

(7000-10500) Sr 0 69 orkul.  0.87 0.39 

(n = 3500) Ba 0.64 .. 0.82 mei.  0.40 

U 0.35 0.41 0 40 ' DIV'.  
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Figure 5.15. Results of laser ablation ICP-MS analysis of tip section of BDTH-SS6, a soda-

straw stalactite from Burning Down The House Cave, Florentine Valley, 

Tasmania. Axes are from the bottom: magnesium, strontium, thorium, and 

uranium, and units are in normalised counts second -1 . Light grey line is raw 

data and black line is a smoothing spline. 
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Figure 5.16. 	Results of laser ablation ICP-MS analysis of tip sections of BDTH-SS1 (bottom) and BDTH-SS3 (top), two soda-straw stalactites from Burning Down The House Cave, Florentine 

Valley, Tasmania. Axes are from the bottom magnesium, strontium, barium, and uranium, and units are in normalised counts second -1 . Light grey line is raw data and black line 

is a smoothing spline. 
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5.4.4. Results of ICP-MS Analysis of a Section of Stalagmite from CTH-S1 

This stalagmite, from Top Hole, Croesus Cave, Mole Creek, Tasmania, has discernible 

laminations for almost its entire length and it is hypothesised that they may be annual, 

although counting of the laminations between two TIMS 230Th/234 U dates was inconclusive. The 

spectacular results of the soda-straw stalactite FC-SS5 analyses indicate that annual cyclicity in 

the minor element composition of speleothems is present but further investigation is required to 

see whether it was present in other speleothem samples. CTH-S1 has been selected because 

it has very clearly defined laminations and also has been dated by several TIMS 230Th/234U 

analyses, 8,647 ± 499 years for the basal age and 4,302 ± 131 years at 1,020 mm above the 

base, giving a calculated growth rate of 0.2347 mm year -1  between these samples. It is 

pertinent to investigate the relationships between the minor elements to see if they are similar 

to those of recent samples. The variation of the minor element composition of CTH-S1 was 

investigated by two parallel laser ablation ICP-MS analyses along the growth axis of the pre-

ablated surface of a sample taken from between 1,000 and 1,030 mm from the base (Figure 

5.2b). The results of the laser ablation ICP-MS are plotted against distance along the 30 mm 

analysis track in Figure 5.17. 

A correlation matrix of the low-frequency, ie untreated, and high-frequency, ie detrended, minor 

element records for the two parallel scans, A and B, of CTH-S1 is presented in Table 5.4 In 

both the low-frequency and detrended results of the CTH-S1A amd CTH-S1B results strong 

positive relationships occur between Sr and Ba concentrations. These results suggest that Sr 

and Ba are sensitive to similar controls but that the controls are not temporally dependent. All 

other element pairs are weakly positively correlated with no r values exceeding 0.30. It is 

interesting to note that the relationships do not change significantly between the untreated 

and detrended results. This suggests that the relationships are not significantly affected at 

different timescales. 

Table 5.4. 	Correlation coefficients (r) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from two parallel high-resolution laser ablation ICP-MS 

analyses of CTH-S1. DT correlation coefficients are shaded. 

Sample Element Mg Sr Ba U 

CTH-S1A DTI" -0.04 -0.001 0.04 

(n =11884) 0.12 DT  0.25 

8 0.20 0.87 mei- 0.31 

0.09 0.12 0.20 DIA" 

CTH-SIB 

?
 Eli)
 @  

m
 

DTI" -0.11 -0.06 -0.05 

(n = 11347) 0.08 orkur  0.90 0.19 

0.14 0.86' DTkuT 0.23 

0.05 0.11 , 	0.17 DTIur 
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Results of two parallel laser ablation ICP-MS analyses of a sub-sample taken at between 1000 and 1030 mm from the base of CTH-S1 (Figure 5.2b), stalagmite from Top Hole, 

Croesus Cave, Mole Creek, Tasmania. Axes are from the bottom: magnesium, strontium, barium, and uranium, and units are in normalised counts second I . Light grey line is raw 

data and black line is a smoothing spline. Distance from the base is marked on the x- axis. 

Figure 5.17. 
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5.4.5. Results of ICP-MS Analysis of Stalagmite FC-S4 

This stalagmite was collected from Frankcombe Cave, Florentine Valley, Tasmania, from the 

same chamber as the sample FC-SS5. The magnesium, strontium, barium, and uranium 

composition of FC-S4 was investigated by laser ablation ICP-MS analysis along the longitudinal 

axis of a pre-ablated surface. The results of the laser ablation ICP-MS are plotted against 

distance along the 28 mm analysis track in Figure 5.18. 

This stalagmite was found very close to FC-SS5 and, since this sample has been shown to 

exhibit very strong minor element cyclical variations, it had been expected that FC-S4 would 

show similar trends. FC-S4 has not been dated using any radiometric methods and it was 

hoped that dating by autocorrelation would be possible. However, this proved not to be the 

case. It is also relevant to investigate the relationships between the minor elements to see if 

they are similar to FC-SS5. A correlation matrix of the low-frequency, ie untreated, and high-

frequency, ie detrended, minor element data for two parallel scans, FC-S4aa and FC-S4bb, are 

presented in Table 5.5. In FC-S4aa and FC-S4bb a strong positive relationship occurs 

between Sr and Ba in both the untreated and detrended results, with r-values of 0.92 and 

0.81, and 0.83 and 0.75, respectively. The similarity between the untreated and detrended 

results suggests that there is little, if any, temporal control on the factors controlling Sr and Ba. 

In the untreated results the Mg-Sr and Mg-Ba relationships are not consistent between the two 

scans but in the detrended results the relationsips are very similar. In the case of the FC-S4aa 

scan the Mg-Ba relationship has an r-value of -0.30 in the low frequency and a r-value of 0.31 

in the high frequency results, a similar situation occurs with the Mg-Sr with r-values of -0.18 

and 0.20 respectively. The causes of these differences are not apparent and further analyses 

are required to investigate this, a two-dimensional scan of the surface may provide more 

information than several parallel one-dimensional tracks. 

Table 5.5. 	Correlation coefficients (r) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from high-resolution laser ablation ICP-MS analysis of FC-

S4 (n = 6172). DT correlation coefficients are shaded. 

Element Mg Sr Eta U 

Mg-aa me i.  -0.18 -0.30 -0.33 

Sr-aa ,. 031. DTIta 0.92 0.28 

Ba-aa 0.20 0.81 DTIuT 0.31 

U-aa 
. - 	. 
: 4).04 .9..12 0.13 DIALIT 

Mg-bb D -AuT  0.19 0.01 -0.24 

Sr-bb , PAT orluT  0.83 0.12 

Ba-bb 0.26 0.75 me i-  0.09 

U-bb -0.06 0.08 0.09 DT1u1.  
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Figure 5.18. 
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5.4.6. Results of ICP-MS Analysis of Flowstone Samples JC-Flaa and JC-Flbb 

The magnesium, strontium, barium, and uranium compositions of JC-F1aa (Figure 5.2d) and 

JC-F1bb were investigated by laser ablation ICP-MS analysis along the growth axis of a pre-

ablated surface. The results of laser ablation ICP-MS are plotted against distance along the 

analysis tracks of JC-F1aa in Figure 5.19 (a), and JC-F1bb in Figure 5.19 (b). The sample JC-

F1aa has been dated using TIMS 230 Th/234 U analyses. Investigation of the long-term variations 

of minor elements in speleothems was deemed a worthwhile exercise particularly as a stable 

isotope (Chapter 6) profile was also analysed for this sample. Hellstrom (1998) has observed a 

significant positive relationship between Ba concentration and 6 13C values in a New Zealand 

speleothem and has suggested that barium concentrations may also be indicative of 

vegetation productivity. 

A correlation matrix of the low-frequency, ie untreated, and high-frequency, ie detrended, minor 

element records for JC-F1aa and JC-F1bb is presented in Table 5.6. Again the most striking 

feature is the strong positive relationship between Sr and Ba in both the low- and high-

frequency results. The consistancy of the relationship supports the general observation that 

there is a distinct lack of temporal dependence by these elements and that similar geochemical 

factors govern their behaviour. In the untreated results weak negative relationships between 

Sr-U and Ba-U are observed and are consistent betweem the two JC-F1 samples. These 

relationships are significant as they may relate to changes in soil chemistry (Hellstrom, 1998). 

The weak positive relationship between the Mg-Sr and Mg-Ba pairs is consistent between the 

low- and high-frequency results in both samples. Roberts et al. (1998) attributed changes in 

the relationships to possible variations in the residence time of seepage waters. 

Table 5.6. 	Correlation coefficients (r) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from high-resolution laser ablation ICP-MS analysis of JC- 

F1aa (Figure 5.2d) and JC-F1bb. DT correlation coefficients are shaded. 

Sample Element Mg Sr Ba U 

JC-F1aa DTkuT 0.24 0.20 0.08 

(n = 11884) 

( '  , i 0.22 carT  0.78 -0.38 

0.16 0.81 our -0.25 

-0.02 -0.21  e0.60 DTVT  

JC-F1bb 

g  
c '  0 —  
8
 = 

Die l.  0.28 0.22 0.08 

(n = 11347) 0.30 Dip,- 0.78 -0.42 

0.23 0.79 orluT  -0.26 

/ 
0.08 -0.31 4  -0.12 DTVT  
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Figure 5.19 (b). Comparison of the results of laser ablation ICP-MS and stable isotope analysis of JC-F1aa (Figure 5.2d), a section of flowstone from Jersey Cave, Yarrangobilly, New South Wales, Australia. 

Graphs (a) to (c) are the minor element analyses. Axes are from the bottom: magnesium, strontium, barium, and uranium, and units are in normalised counts second -1 . Graphs (d) to (f) are oxygen 

(dark line) and carbon (grey line) isotope results of samples taken from the longitudinal profile, dashed grey line is the SPECMAP record. Black bars are age estimates with 2 sigma errors. Ages 

are in thousands of years and the gaps between the graphs are depositional hiatuses. The thickness of JC-F1aa (Figure 5.2d) is 138 mm and that of JC-F1bb is 110 mm. 
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5.4.7. Results of ICP-MS Analysis of Yarrangobilly Flowstone Sample JC-F2 

The magnesium, strontium, barium, and uranium composition of JC-F2 was investigated by 

laser ablation ICP-MS analysis along the growth axis of a pre-ablated surface. The results of 

laser ablation ICP-MS are plotted against distance along the 100 mm analysis track in Figure 

5.20. A correlation matrix of the low-frequency, ie untreated, and high-frequency, ie 

detrended, minor element records for JC-F2 is presented in Table 5.7. In this sample of 

Yarrangobilly material there are correlations between several minor element pairs not seen in 

other samples from this site. 

In both the low- and high-frequency results strong positive correlations between the pairs Mg-

Sr, Mg-Ba, and Sr-Ba are observed with r values greater than approximately 0.70, weak 

positive relationships occur with the pairs Mg-U, Sr-U, and Ba-U with r-values less than 

approximately 0.40 and greater than 0.20. The strong relationship between Sr and Ba is also 

observed here but it also has several relationships between elements that are not observed in 

other samples. Further ICP-MS scans together with stable isotope analyses are required to 

investigate the significance of these relationships and how they are affected by environmental 

change. 

Table 5.7. 	Correlation coefficients (r) for the low frequency (untreated, UT) and high 

frequency (detrended, DT) records from high-resolution laser ablation ICP-MS 

analysis of JC-F2 (n = 1177). DT correlation coefficients are shaded. 

Element Mg Sr Ba U 

Mg Om-  0.81 0.77 0.31 

Sr 0.75 ()TV /.  0.85 0.03 

Ba 0.68 0 72 caluT  0.24 

U 0.36 0 21 0.44 DIAUT 

5.4.8. Results of ICP-MS Analysis of Yarrangobilly Flowstone Sample JC-F4 

The magnesium, strontium, barium, and uranium composition of JC-F2 was investigated by 

laser ablation ICP-MS analysis along the growth axis of the pre-ablated surface. The results 

of laser ablation ICP-MS are plotted against distance along the 49 mm analysis track in 

Figure 5.21. A correlation matrix of the low-frequency, ie untreated, and high-frequency, ie 

detrended, records for JC-F4 is presented in Table 5.8. The consistent strong positive 

relationship between Sr and Ba in the low- and high-frequency correlations seen in the other 

samples is again present with r-values of 0.63 and 0.57, respectively. Relationships between 

the other minor elements vary considerably between the untreated and detrended results 

suggesting that there is a high degree of structure at the higher frequencies (Mg-Sr, Mg-Ba, 

and Ba-U) but in some cases the opposite is true (Sr-U). 
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Table 5.8. 	Correlation coefficients (r) for the low frequency (untreated, UT) and high frequency 

(detrended, DT) records from high-resolution laser ablation ICP-MS analysis of JC-F4 (n 

= 595). DT correlation coefficients are shaded. 

Element Mg Sr Ba U 

Mg MAUI.  0.37 0.07 -0.05 

Sr 0.57 OUT  0.63 -0.46 

Ba 0.24 0.57 DIAUT  0.03 

U -0.16 -0.19 0.37 DIAUT  

5.5. Electron Microprobe and Ion Chromatography 

This section presents the results of electron microprobe and ion chromatography analysis of 

several Australian speleothems, one from Risbys Basin Cave,Tasmania, RB-SS2, and two from 

Jersey Cave, Yarrangobilly, New South Wales, JC-F1 and JC-F2. Ion chromatography has 

been used to test the hypothesis that the dark grey to black layering present in the 

Yarrangobilly samples (Figure 5.2d) was caused by fire and that this effect could be identified 

by variations in bromine and chlorine (Mano and Andreae, 1994). Initial attempts to test this 

hypothesis have been made with electron microprobe analysis. However, despite the 

encouraging results obtained from the electron microprobe at the CSL at the University of 

Tasmania, Hobart, several problems were encountered with the electron microprobe used at 

RSES at ANU in Canberra, mainly to do with interferences from other elements during the 

analysis of bromine and chlorine. The RSES electron microprobe, although from the same 

manufacturer as the CSL instrument, is a much earlier model than the one located at the CSL 

and this may have contributed to the inability of the RSES machine to accurately resolve 

variations in bromine and chlorine. 

5.5.1. Results of Electron Microprobe Analysis of RB-SS2 

Electron microprobe analyses have been taken from the middle of the soda-straw stalactite wall 

at intervals of approximately 500 microns or 0.5 millimetres, a major disadvantage of this 

technique in comparison to laser ablation ICP-MS is the low level of temporal resolution due to 

the large sample interval. Seven elements: bromine, chlorine, fluorine, iron, manganese, 

magnesium and strontium, were present in sufficient concentrations to be sampled and multiple 

analyses were carried out to see if cyclic variations could be detected. The results are 

presented in Figure 5.22. Very few analyses of fluorine and strontium fall below the machine 

detection limits whereas a significant number of the bromine, chlorine, iron, manganese, and 

magnesium measurements do so. 

5.5.2. Ion Chromatograph Results for JC-F1 and JC-F2 

Results of ion chromatography indicate that neither bromine or chlorine are related to the 

observed grey and black layers. However, the method used to extract the elements may have 

been flawed and further investigation is required. 
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Figure 5.20. Results of a low-resolution laser ablation ICP-MS analysis of the flowstone JC-F2 from 
Jersey Cave, Yarangobilly, New South Wales, Australia. The thickness of sample is 100 
mm. Axes are from the bottom magnesium, strontium, barium, and uranium, and units 
are in normalised counts second-1. 
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Figure 5.21. Results of a low-resolution laser ablation ICP-MS analysis of the flowstone JC-F4 

from Jersey Cave, Yarangobilly, New South Wales, Australia. The thickness of 

sample is 50 mm. Axes are from the bottom: magnesium, strontium, barium, and 

uranium, and units are in normalised counts secone. 
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Figure 5.22. Results of minor element analysis of RB-SS2, a straw stalactite from Risbys Basin 

Cave, Tasmania, using an electron microprobe and sampled at 0.5 mm intervals. 

Seven elements: bromine (Br), chlorine (Cl), iron (Fe), fluorine (F), magnesium (Mg), 

manganese (Mn), and strontium (Sr), were analysed. The strongest peak in bromine 

and chlorine traces (marked by arrows) are tentatively interpreted as being due to 

1967 bushfires in Tasmania. Grey shading indicates the machine detection limits 

for each element. 
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5.6. Discussion 

The following discussion will not attempt to cover all of the ICP-MS results, but the more 

important findings will be examined in detail. The discussion will focus mainly on the soda-

straw results paying particular attention to FC-SS5, as this is the most outstanding of the laser 

ablation ICP-MS analyses, and to a lesser extent the BDTH soda straws, which are 

characterised by having similar cyclical variations in the minor elements. The ICP-MS results of 

the stalagmite, BFM-J96, will be discussed in relation to the water chemistry data provided by 

Dr Andy Baker. The impact of lateral variation will also be discussed using results from the FC-

SS5 tip comparison, from analyses of the stalagmites FC-S4 and CTH-S1, and from the 

analysis of the Yarrangobilly flowstone material JC-F1. Some attention will first be given to the 

advantages and disadvantages of using the laser ablation ICP-MS method. 

5.6.1. Comments on the Laser Ablation ICP-MS Methodology 

Both this study and that of Hellstrom (1998) clearly illustrate some of the advantages of the 

laser ablation ICP-MS technique over other microbeam analytical methods particularly in 

relation to sample preparation (ie very little is required in comparison to SIMS or electron 

microprobe analysis), to the speed of data acquisition and sample throughput. The laser 

ablation ICP-MS system lags behind other microbeam techniques in regard to the spatial 

resolution of the analysis, although this is being addressed by newer generations of laser 

ablation ICP-MS instrumentation. 

Of great concern, and requiring further investigation, are possible intra-crystalline minor 

element variations due to crystal zoning, an effect that may have detrimental impacts on the 

interpretation of very high resolution minor element analyses of speleothems (Reeder and 

Grams, 1997). Hellstrom (1998) has noted that it is very easy to disturb the temporal sequence 

of soda-straw stalactites when preparing samples for analysis particularly by those analyses 

that require a flat planar surface such as the SIMS or electron microprobe techniques. 

Therefore, results from the study of soda-straw stalactites that have been prepared for analysis 

by cutting and polishing should be treated with some caution. 

The lack of a calcite standard selected specifically for speleothems is a major drawback for this 

type of study, particularly if comparisons are going to be made with other geochemical 

analyses. Hellstrom (1998) demonstrated that there is good agreement between fully 

quantitative solution introduction ICP-MS results and qualitative laser ablation ICP-MS 

analyses, although the former technique will give more accurate results. As the results of this 

study are qualitative only with the principal intention to investigate the nature of minor element 

variations in speleothems, it was deemed unnecessary to develop a calcite standard, the 

difficulties of which are discussed by Sinclair et al. (1998). Further extension of this type of 

study using laser ablation ICP-MS will require development of a suitable speleothem calcite 

standard so that analyses can be treated as fully quantitative and comparable with results 

obtained from other geochemical analyses. 
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5.6.2. Correlations Between Minor Elements 

The positive correlations between several of the minor element pairs shown in Table 5.9 are of 

real significance in nearly all of the samples analysed with laser ablation ICP-MS, particularly as 

they agree very closely with the results of Roberts et al. (1998). In almost every sample the Sr 

and Ba minor element pairs have strong positive correlations and most r values are greater 

than 0.50 for both the low- and high-frequency results, notable exceptions are BFM-J96 and 

YBJC-F4 with relatively weak positive correlations. 

Roberts et al. (1998) argue that there is an indirect temperature effect on the partitioning of Sr 

and Ba into speleothem calcite, suggesting that it may be related to the calcite precipitation 

rate which is itself a complex function of temperature, water supply, and the concentration of 

PCO2  and Ca 2+. Since temperature directly affects PCO2 and Ca 2+  concentrations, the rate of 

precipitation of speleothem calcite increases with positive temperature fluctuations ie it will 

increase during spring with the maximum occurring in late summer, and decrease during 

autumn with the minimum occurring in late winter. 

The influence of lag effects between cause and effect have not been considered here, or in 

the FC-SS5 chronology as seepage water at these sites have not been sampled over time. 

Using monthly sampling intervals Goede (1981) found a lag time of up to two months in the 

hardness of seepage water relative to surface temperature changes at two drip sites in 

Frankcombe Cave, Florentine Valley, Tasmania. 

It has been shown that seasonal changes in temperature that induce oscillations in soil PCO 2  

also influence the pH of groundwaters (Derr and Munnich, 1989). It is argued that the 

variations observed in uranium are influenced by seasonal changes in pH as the uranyl ion is 

sensitive both to pH changes and to fluctuations in other dissolved species. Close scrutiny of 

variations in uranium content and its relationship to the other minor elements analysed (for 

example Figure 5.10d to Figure 5.10f) reveals that the majority of the U and Mg peaks coincide 

but have a negative relationship with Sr and Ba. These relationships are supported in the 

correlation matrix, although the middle and lower sections of FC-SS5 (Table 5.2) have stronger 

relationships between the elements. 

Although the Mg results in this study have an unknown systematic error, because of the sample 

chamber contamination problem reported earlier, this is assumed not to have affected the 

pattern of variation. Most samples have positive correlations between the Sr and Ba results, 

however FC-SS5 has weak negative correlations between the Mg and the Sr-Ba results, a 

pattern similar to that observed by Roberts et al. (1998). According to these authors the nature 

of the correlations is indicative of a size dependent relationship, reflected by variations in ionic 

radii, since Ba2+  and Sr 2÷  ions are larger than Ca 2+  ions they positively correlate but negatively 

correlate with Mg 2+ , which has a smaller ionic radius than Ca 2f . However, not all of the results fit 

this model indicating that there are other geochemical factors influencing the minor element 

relationships, both on a temporal and spatial scale. 

There are major differences in the correlations between the annual records, for example FC-

SS5, and the long term records, for example the Yarrangobilly samples, clearly illustrating that 
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the temporal scale does have a significant influence. Factors that may have the greatest 

influence over long time scales include changes in flow path resulting in longer residence times 

or exposure of geochemically different carbonate. Further investigation is required to establish 

whether the seepage water feeding the speleothems is a mixture of waters, ie the catchment 

area contains several lithologically different bedrock types, or if it is from a single source, ie the 

catchment contains a single bedrock type (Roberts, 1997). 

Table 5.9. Summary of the relationships between the four minor elements (Mg, Sr, Ba, and U) in 

all of the samples analysed by laser ablation ICP-MS. The table shows both the 

untreated (UT) and detrended (DT) results with positive relationship indicated by a 

"+" symbol and a negative relationship indicated by a "=" symbol. The number of 

symbols relates to the size of the r-value, one symbol equivalent to an r-value 

between 0 and ± 0.30, two symbols equivalent to an r-value between ± 0.31 and ± 

0.70, and three symbols equivalent to an r-value greater than ± 0.71. Roberts et a/. 

(1998) correlation coefficients are also shown for comparison. 

Sample Type T Mg-Sr Mg-Ba Mg-U Sr-Ba SrU Ba-U 

BFM-J96 st = + + ++ + + 

(n = 9663) 
01-
  + + + ++ = + 

FC-SS5 ss + = 
< 

+ + + + + + + = 

(n = 56954) ++ == ++ +++  = = 

BDTH-SS1 (sub) ss = = = + + + + = = 

(n = 4000) == == + +++ = = 

BDTH-SS3 (sub) ss + -+- + + + + + + + + + + + + + 

(n = 3500) ++ ++ ++ ,+++  + + ++ 

CTH-S1a st = = + +++  + ++ 

(n = 11884) + + + +++  + + 

CTH-S1b st = = = + + + + + 

(n = 11347) + + + +++  + + 

FC-S4aa st = = = = = + + + + + 

(n = 6172) ++ + = +++  + + 

FC-S4bb St + + = + ++ + + 

(n = 6172) ++ + = +++  + + 

JC-F1aa fl UT + + + +++  = = = 

(n = 11884) DT + + = ++.+.. = = 

JC-F1bb fl + + + + +!+ = = = 

(n = 11347) + + + +++  = = = 

JC-F2 fl UT +++  , -F + + ++ + + + + + 

(n = 1177) DT +++  + + ++ +++  + ++ 

JC-F4 fl + + + = + + = = + 

(n = 595) ++ + = + -F = ++ 

Roberts et al. (1998) st = + + + + 

(n = 1150) == = +++  
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5.6.3. ICP-MS Analysis of FC-SS5 

The minor element variations observed in FC-SS5 (Figure 5.9) are almost certainly annual 

and are remarkably similar to the results of a 2.4 mm section of stalagmite analysed by 

Roberts et al. (1998) using SIMS. One of the most significant results is that annual cyclicity of 

the minor elements can be traced for the whole length of the sample and a chronology 

established using autocorrelation. Another significant finding is that the surface ridging is 

also annual and that this morphological feature can be measured with dendrochronological 

equipment. The results can be used not only to determine sample ages, but also to 

investigate growth rate variations. 

The closeness of the FC-SS5 chronologies, established by two independent methods, 

indicates that soda-straw stalactites have great potential as a palaeoenvironmental proxy 

recorder over the last few hundred up to several thousand years. However, it does assume 

that deposition was continuous and continued right up to the time the specimen was 

collected. Considerable work is required to investigate further the parameters controlling 

surface ridges and the cyclicity of the minor element composition of soda-straw stalactites. 

The distinct cyclicity of the FC-SS5 minor element data indicates that there is a very strong 

seasonal influence controlling the partitioning of Sr and Ba into calcite, more or less in 

antiphase with the U and Mg. Table 5.10 outlines some of the factors that may influence the 

minor element composition of speleothem calcite and indicates their seasonal response. 

Previous studies have demonstrated very strong relationships between several of the 

variables listed in Table 5.10 such as water conductivity and calcium concentration (Langmuir, 

1971), or the concentration of organic acids and discharge (Baker et al., 1997a). 

A study of seepage water hardness at Frankcombe Cave by Goede (1981) has concluded that 

it has a strong positive correlation with mean monthly temperature but moisture availability has 

some influence. Moore (1962) has demonstrated that annual pH variations are related to the 

seasonal fluctuation of CO2, driven by the activity of soil microrganisms and vegetation, with 

seepage water slightly alkaline in winter with pH values of approximately 8, and slightly acidic in 

summer with pH values around 6.5. Fluctuations of CO 2  concentrations in the cave 

atmosphere change by almost two orders of magnitude between the seasons with higher CO2 

concentrations occurring in summer (Moore, 1962). Moore (1962) suggested that stalactite 

growth is subdued or retarded in winter with most of growth occurring in the warmer months. 

The FC-SS5 minor element results support this idea. 

The two climate stations nearest to Frankcombe Cave, Butlers Gorge (Lat: 42.28°S; Long: 

146.27°E: Elevation: 666 m) and Maydena (Lat: 42.76°S; Long: 146.60°E; Elevation: 270 m), 

have mean summer (DJF) temperatures of 12.0°C and 14.5°C respectively, and mean winter 

(JJA) temperatures of 3.7°C and 5.8°C respectively, mean daily potential evaporation at 

Maydena is 3.5 mm in summer and 0.7 mm in winter. Given the large temperature range 

between the summer and winter mean temperatures at Butlers Gorge and Maydena of 8.3°C 

and 8.7°C, respectively, it is likely that temperature fluctuations directly influence soil biological 

activity and PCO2 concentrations in seepage water, and consequently the pH of the seepage 
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water to such a degree as to produce the cyclic fluctuations not only of PCO 2  in solution but 

also of the minor elements observed in FC-SS5. A program of water collection and analysis of 

the minor element composition of the seepage water in Frankcombe Cave will be needed to 

investigate the seasonal concentrations and relationships of the major ion species, specifically 

Mg, Sr, Ba, and U together with concentrations of the organic acids and other relevant 

environmental data. 

Table 5.10 Some of the factors that may influence the minor element composition of 

speleothem calcite. Pitty (1966) lists a number of factors that could cause 

differences in the quantities of dissolved carbonate in karst groundwater together 

with their effects on the "solute concentration" and the possibility of temporal lags. 

Summer Winter 

Minor Element Ratios Mg and U 9 T 

Sr and Ba T 9 

Factors Surface Mean Annual Temperature 

fcu  co 

4
 
4

 4
  4

  4
  4

  
4-• 	

4
  
4

 4
  4

  
4

 4
  

Soil PCO2 

Vegetation activity 

Seepage Water pH 

Calcite Precipitation 

Residence Time 

Surface Water Excess 

Seepage Water Drip Rate 

4
  

Seepage Water Conductivity 

Organics 

Ca2+  Concentration 

Water Hardness 

Bedrock Weathering Rates 

Cave Mean Annual Temperature 

Seepage Water Temperature* 

The complete ICP-MS scan of FC-SS5 has two significant peaks at 1959 and 1965 (Figure 5.9) 

that may be related to some kind of surface crystal defect but its exact nature needs further 

study. Hellstrom (1998) and Roberts (1997) discuss the potential problems that crystal zoning 

may have both on the reliability of records obtained by micro-sampling and also to their lateral 

reproducibility within samples. They rightly point out that extreme caution should be exercised 

in interpreting results when relying on a single minor element trace along the longitudinal axis 

of a speleothem, and suggest that the lateral variation should first be assessed by two 

dimensional rastering, an application of laser ablation ICP-MS that has already been shown to 

be extremely useful (Hellstrom, 1998). 
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The results of three separate scans of varying lengths from the tip of the lowest section of FC-

SS5 (Figure 5.14) suggest that there is significant lateral variation in minor element 

composition. It is encouraging to note that the cyclicity of the minor elements is laterally 

continuous around the diameter of the soda-straw stalactite and congruous with surface 

banding. However, further investigation of other samples is required to confirm this, preferably 

using laser ablation ICP-MS analysis to produce two dimensional maps up to two mm wide. 

(Hellstrom, 1998). 

5.6.4. ICP-MS Analysis of Browns Folly Mine Stalagmite, BFM-J96 

It was anticipated that an annual scale chronology could be produced from the BFM-J96 minor 

element results using the peaks and troughs as yearly markers, however this has proved very 

difficult. Unlike FC-SS5, which has very clear and distinct annual cycles, an annular minor 

element pattern in BFM-J96 is difficult if not impossible to distinguish. An attempt was made to 

construct a chronology using the Ba and Sr traces in order to identify individual years. This 

attempt yielded a chronology that is very close to the 160 year maximum age but not much 

confidence is placed on its reliability. The main problem is in distinguishing one year from 

another by the annual minor element pattern given that the growth rate probably varies 

considerably. Measured growth rates, determined both from annual laminations and total 

sample thickness assuming 160 years growth, vary from approximately 0.05 to 0.25 mm year-1 , 

implying that the analysis may not have resolved some years, further complicated by the 

assumption that there have been no breaks in deposition. The difficulty in identifying yearly 

cycles not only in stalagmites but soda-straw stalactites as well raises several important issues 

regarding annual layering: 

(1) Are the factors controlling the minor element composition of stalagmites the same 

as those controlling soda-straw stalactites? 

(2) What key geochemical factors, for example pH, PCO 2 , Ca2  concentration, etc, 

govern the laying down of annual patterns of variation in minor element 

composition? 

(3) Does sample depth below the surface influence the degree of minor element 

cyclicity? 

(4) Is there a relationship between water temperature and small variations in cave 

temperature and does this influence minor element composition? 

One of the major differences between the soda-straw stalactites on the one hand and 

stalagmites and flowstones on the other is that the former are created by a hanging drop and 

the latter are formed by flowing water. The presence of flowing water considerably complicates 

interpretation of minor element deposition and may explain the lateral variation observed in 

stalagmites due to progressive minor element depletion of the solution as it moves across the 

growth surface. Further study is required to investigate the variation of minor elements along 

both stalagmite and flowstone growth surfaces. 
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5.6.5. ICP-MS Analysis of Yarrangobilly Flowstones 

Comparisons between minor element scans and a number of stable isotope analyses will be 
presented in Chapter 6 together with a more detailed discussion of the results since the factors 
controlling the composition of stable isotopes in speleothem calcite are better understood and 
may provide additional clues as to the possible influences on the minor element composition of 
speleothems. However some preliminary discussion of the Yarrangobilly flowstones will be 
presented. 

The positive correlation between Sr and Ba is consistent in all of the samples at both low- and 
high-frequency suggesting that strontium and barium respond to similar geochemical factors, a 
situation also observed in New Zealand flowstones by Hellstrom (1998). It has been 
suggested previously that variations in the strontium and barium composition of speleothem 
calcite may be caused by an indirect temperature effect (Roberts, 1997). The weak negative 
correlation between the minor element pairs Sr—U and Ba—U in the low frequency results of JC-
F1 may be related to changes in groundwater chemistry caused by variations in vegetation 
productivity, a similar situation was found in New Zealand flowstones by Hellstrom (1998). The 
stable isotope and growth rate data, calculated from the 230Th/234 U age estimates, may provide 
additional evidence to support these hypotheses and will be discussed further in Chapter 6. 

5.6.6. Lateral Variation in the Minor Element Composition of Speleothems 

In this study laser ablation ICP-MS analysis has been used exclusively to investigate minor 
element variations in the three types of speleothems used for palaeoenvironmental 
interpretations allowing both short and long term variations to be studied and, to a limited 
degree, lateral spatial variation. Most samples have been analysed with a single analysis 
scan but in several cases a repeat scan was done parallel to the first, approximately 200 pm 
from the first, allowing some assessment of lateral spatial variation. A raster map of the 
speleothem surface, following the procedure of Hellstrom (1998), would be a better method 
for studying the lateral variation of minor element composition in speleothems. This was not 
attempted with any of the samples due to the relative difficulty and time consuming nature of 
rastering with the current laser ablation stage set up. The current stage apparatus at the 
RSES, ANU, Canberra is in the process of being fully computerised thus making it significantly 
easier to collect and process data. At the same institution, installation of a new and more 
sensitive ICP-MS is imminent. 

The most significant result of all the lateral variation analyses was the similarity apparent 
between all three FC-SS5 scans, at least in the ability to be able to discriminate individual 
years but more work is needed to investigate the quantitative relationships between separate 
scans. The relative lack of similarity between the scans of the stalagmite samples is not 
surprising given the potential depletion of minor elements as the precipitating solution travels 
down the growth surface. The lack of similarity between the two JC-F1 scans is not surprising 
as these samples are essentially randomly picked samples from a flowstone and their exact 
orientation and location relative to each other is unknown. 
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5.7. Conclusions 

This study has shown that laser ablation ICP-MS is an extremely useful tool for the 

investigation of minor element fluctuations in the three main types of speleothems used for 

palaeoenvironmental investigations, namely soda-straw stalactites, stalagmites, and 

flowstones. Five elements: magnesium (26mg•, ) strontium (Sr), barium ( 138Ba) and uranium ( 238U) 

were selected for analysis as they were found in suitable concentrations for analysis and gave 

reproducible results from duplicate measurements. All results were normalised to calcium 

(48Ca). The technique has permitted extremely high resolution analyses to be done on samples 

which encompass three different temporal scales, interglacial/glacial (10 4-105  years), millenial 

(10 3-104  years), and secular (<10 2-103  years). 

Lateral variations in speleothem minor element composition have also been investigated by 

laser ablation ICP-MS and the results indicate that significant lateral variations can occur in 

stalagmites and flowstones due to the nature of their formation while soda-straw stalactites 

show only very minor lateral differences. Further investigation is required on the lateral 

fluctuation of absolute concentrations. 

Nearly all samples showed high positive correlations between the Sr and Bo results 

suggesting that strontium and barium concentrations are controlled by the same 

environmental parameters at all temporal scales, this appears not to hold true for Mg and U. 

At the secular scale the elements seem to be responding to seasonal changes in the acidity 

of the seepage water, responding to changes in the PCO2 and biological activity of the soil 

and vegetation above the cave. At the higher temporal scales several factors may be 

operating to produce discernible changes in the minor element composition of speleothems 

but the traces must be compared with other palaeoenvironmental records in order to narrow 

down the dominant factors (see Hellstrom, 1998 for an example). Ayalon etal. (1999) have 

shown that a close relationship between Sr and Ba occurs even when a significant amount of 

strontium has been derived from an exogenic source suggesting that barium may also be 

supplied from such a source. 

The most significant results have come from the study of the soda-straw stalactite, FC-SS5, 

which shows distinct cyclicity in its minor element content. The regularity of the quasi-periodical 

signal strongly supports an annual origin and on this basis a chronology for the sample has 

been constructed by autocorrelation using two independent methods, namely the minor 

element signal and the surface ridging of the sample, the results agreed with each other very 

closely (± 5 %). The method assumes that the sample has grown continuously and Was either 

active at the time of collection or that at least the minimum age of the youngest material is 

accurately known. Comparison of minor element results with instrumental climate data did not 

yield any significant correlation but this may be due to the climate stations for which data were 

available being at some considerable distance from the cave in an area with a local relief of 

approximately 1,000 metres. 
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Stable Isotopes in Speleothems 

6.1. Introduction 

There are approximately 300 stable isotope species in nature and 62 elements possess at least 

two or more isotopes with one usually predominant and the others present in trace quantities. 

The study of light stable iostopes such as oxygen, carbon, sulpur, hydrogen, etc has allowed a 

greater understanding of a whole suite of earth processes. Such studies were made possible with 

the development of the mass spectrometer by H.C. Urey and his collegues. The fractionation of 

light stable isotopes during physical and chemical processes records the environmental conditions 

under which they occurred by altering their relative abundances. 

Therefore analyses of stable isotope ratios can potentially be used to reconstruct changes in 

environmental conditions (Ehleringer and Rundel, 1988). However, the environmental signal may 

be masked by fractionation caused by other natural processes thereby making the reconstruction 

process more difficult. It is therefore vital to consider all of the possible influences on the final 

delta (5) value (Hellstrom, 1998). This chapter briefly examines the background of stable isotope 

studies and then discusses the main factors influencing oxygen and carbon isotope ratios with 

specific reference to speleothems. 

6.1.1. Stable Isotope Variations in Nature 

Variations in the stable isotope ratios of many minerals have been shown to reflect the 

environmental conditions prevalent during deposition (Gray, 1981). The isotopic composition of a 

sample is expressed using differential notation: 

Equation 6.1 (Rsam le — Rstandardy 
standard [ 	P 	 X 1000 

standard ]  

where X standard  is the isotope ratio in delta units relative to a standard. R sample  and Rstandard are the 

absolute isotope ratios of the sample and the standard, respectively. Multiplying by 1000 

enables the results to be expressed in parts per thousand (%0) or "per mil" (Ehleringer and 

Rundel, 1988). Samples of gas are prepared and the isotopic ratios of the elements measured 

by mass spectrometry. 

6.1.1.1. Oxygen 

Oxygen, the most abundant element in the terrestrial crust, has three stable isotopes with relative 

abundances of 99.7630 % for 160, 0.0375 % for 170, and 0.1905 % for 180 (Bowen, 1991). Most 
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8 research has focussed on the oxygen isotope ratio 1  0/ 1 -6 
0, particularly in relation to climate 

studies, because of their abundance, a large reservoir of oxygen exists in the oceans, and 

reactivity, as oxygen forms compounds with most other elements. The relative ease with which 

natural abundance variations can be measured also makes oxygen an ideal isotope for 

environmental studies (Gray, 1981). 

6.1.1.2. Carbon 

There are two stable isotopes of carbon with relative abundances of 98.89 % for 12C and 1.11 % 

for ' 3C (Bowen, 1991). For geological and biological materials, naturally occurring variations in 

the isotopic ratios of carbon are generally in the range between -40 and 20 96. Its participation 

in many biological and geological processes, along with oxygen, means that the study of 13c/12c 

ratios has made important contributions to our understanding of earth systems (Ehleringer and 

Runde!: 1988). 

6.1.1.3. Hydrogen 

Hydrogen has two stable isotopes with relative abundances of 99.9852 % for 1 H and 0.0148 % for 

2 H, or deuterium (Bowden, 1988). The large relative mass differences mean that the isotope ratios 

of hydrogen in geological and biological materials can vary by up to 70 %, the maximum possible in 

stable nuclides, in meteoric water the range is in the order 400 %0. Its abundance and participation 

in the hydrological cycle, particularly with isotopes of oxygen, make it ideal for investigating 

environmental change and various biological and geological processes (Faure, 1985). 

6.2. Isotopic Composition of Meteoric and Percolation Water 

In natural waters SD and 8 180 values are normally expressed relative to the Standard Mean 

Oceanic Water (SMOVV) standard (Craig, 1961). All figures in the following discussion are given 

relative to SMOW unless otherwise indicated. To convert 5 180 results from SMOW to PDB a figure 

of 29.94 %0 is subtracted. 

6.2.1. Meteoric Water 

Spatial and temporal variation of stable isotope ratios in precipitation occurs because of the 

preferential evaporation of lighter isotopes, due to vapour pressure differences between the 

isotope pairs 180 and 160 for oxygen and 2H and 1 1-I for hydrogen, in the moisture source areas 

resulting in water vapour enriched in the lighter isotopes relative to the moisture source 

(Dansgaard, 1964). When water vapour reaches the target area, with condensation processes 

forming raindrops or ice crystals, the heavier isotopes tend to condense preferentially and the 

fractionation process is reversed. The earth's atmospheric circulation, temperature and other 

geographical factors combine to produce the global pattern observed in the oxygen isotope ratios 

of precipitation (Schotterer et al., 1996). 

Dansgaard (1964) identified global patterns in the isotopic variations of oxygen (5 180) and 

hydrogen (813) of precipitation and concluded that they were influenced by several key factors. 
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The factors include a temperature dependence, termed the "temperature effect", a relationship 

with the amount of precipitation, the "amount effect", and a negative relationship between 

elevation and the isotopic ratio, the "altitude effect". The temperature at which vapour 

condensation takes place is the key factor governing the 8 180 of precipitation, and as the distance 

from the moisture source increases so to does the depletion of the heavier isotopes ( 2H and 180).  

Therefore, the greater the fall in temperature, the more condensation will occur resulting in lower 

heavy isotope concentrations relative to the original water source (Bradley, 1986). 

Investigations of the relationship between the mean annual 8 180 of precipitation and temperature 

allows calculation of the temperature effect, a value of approximately 0.7 %o °C -1 , assuming that 

the 8180 variation is controlled by local temperature. The amount effect is considered to be 

predominant in tropical precipitation (Dansgaard, 1964) but can significantly influence the isotopic 

composition of summer precipitation in temperate regions including Tasmania (Goede, 1982). 

6.2.2. Percolation Water 

Vadose seepage waters are isotopically homogenised to varying degrees depending on the 

extent of mixing within the soil and epikarst zone. Short mixing times combined with rapid 

recharge of water give rise to marked seasonal variation in the isotopic composition of water 

while the converse produces values that are relatively constant (Thompson et al., 1976, Yonge 

et al., 1985). Yonge et al. (1985) found that seepage water sampled throughout the year from 

a number of caves in North America approximated to the isotopic composition of the winter 

weighted mean annual precipitation for the region with values on or close to the Meteoric Water 

Line (Craig, 1961): 

Equation 6.2 	 6D = 8 x 8180 + d 

where d, deuterium excess, is equal to 10. In contrast, Goede (1998) has found that for 

Tasmanian cave sites the isotopic composition of seepage water approximates that of the 

weighted mean winter precipitation (SD = 7.0 x 8 180 + 6.9). This has been attributed to high 

evapotranspiration rates during the summer months leaving little surplus water for downward 

percolation. 

6.3. Stable Isotope Variations in Speleothems 

6.3.1. Calcite Deposition 

Karst landscapes and caves develop in limestone bedrock usually due to the dissolution of 

calcium carbonate by carbonic acid. High concentrations of CO 2  are frequently found in the soil 

atmosphere due to biological processes and partially dissolve in percolation water to yield 

carbonic acid thus greatly increasing the rate of dissolution of underlying limestone. When 

seepage waters subsequently come in contact with a cave atmosphere, where CO2 

concentrations are usually much lower than in soils, they quickly become highly supersaturated 
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due to outgassing of CO2 and calcium carbonate will be precipitated (Buhmann and Dreybrodt, 

1985; Dreybrodt, 1988). 

The temperature of the soil and the partial pressure of CO 2  in the soil, which are controlled by the 

surface temperature, govern the supersaturation of the seepage water (Dreybrodt, 1999). The 

depositional process can be characterised by the following equation: 

Equation 6.3 
	 Ca lf-  + 2HCO; ---> CO 2  + H 20 + CaCO 3  

Precipitation of calcium carbonate from thin water films is controlled by four main mechanisms that 

act independently but any one can determine the overall rate: 

(1) Kinetics of precipitation at the phase boundary between the CaCO3-H20-0O2 system 

and the limestone. 

(2) Kinetics of conversion of carbonic acid (H2CO3) to CO 2 . 

(3) Mass transport of dissolved ions by diffusion to phase boundaries. 

(4) Rate of outgassing of CO 2  from solution into the cave atmosphere. 

Palaeoenvironmental studies of speleothems have been concentrated on uniform diameter 

stalagmites because they grow relatively rapidly and often continuously over time periods in 

excess of 104  years. The rate of water supply is the main factor determining speleothem shape. 

The nature of their growth is well understood and a detailed discussion can be found in Dreybrodt 

(1988). It is notable that the supersaturation of the parent water and uniform diameter stalagmite 

shape are dependent on climatic variables therefore permitting palaeoenvironmental signals to be 

recorded by speleothems (Dreybrodt, 1999) 

6.3.2. Stable Isotope Fractionation During Speleothem Formation 

Hendy (1971) has suggested three modes of calcium carbonate deposition that might affect the 

isotopic composition of speleothems: 

(1) the equilibrium loss of carbon dioxide; 

(2) the kinetic loss of carbon dioxide; and 

(3) the evaporation of water. 

The use of isotopic ratios in speleothems as sources of palaeoenvironmental data depends on 

the maintenance of isotopic equilibrium conditions between bicarbonate ions (HCO 3 ) and 

aqueous carbon dioxide (CO20,0). Isotopic equilibrium is maintained only if carbon dioxide 

outgasses slowly from the host dripwater (Hendy, 1971). Under isotopic equilibrium conditions, 

the fractionation of oxygen isotopes between parent dripwater and speleothem calcite is 

temperature dependent at a rate of -0.24 %0°C -1  (Hendy and Wilson, 1968) and can yield 

important information about regional palaeoenvironments. 

The controlling mechanisms that affect the isotopic composition of speleothems will be discussed 

below. Hendy's modes (2) and (3 ) result in the formation of calcite with stable isotope ratios that 

cannot be used for palaeoenvironmental studies. Deposition under conditions of isotopic 

equilibrium is most likely when humidity of the cave atmosphere is at or close to 100 percent and 
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where air movement is restricted. Here thermal equilibrium is reached with the surrounding 

bedrock and cave temperatures will usually be equivalent to the surface mean annual 

temperature within approximately 1°C (Gascoyne, 1992). 

For most speleothems in temperate climate caves, oxygen isotope ratios can be used as a proxy 

of mean annual temperature only when seepage waters are homogenised isotopically and do not 

show significant seasonal variation in the rate of supply. In some temperate west coast 

environments the dominant influence affecting oxygen isotope ratios appears to be strong glacial-

interglacial latitudinal shift in the moisture source area, e.g. Vancouver Island, Tasmania and 

Norway (Gascoyne et al., 1980; Gascoyne et al., 1981; Goede et al., 1998; Lauritzen, 1995). In 

contrast, oxygen isotope values of speleothems from tropical environments are influenced 

predominantly by the amount of precipitation (Fisher et al., 1996). Many tropical regions are also 

subject to a strong seasonality in moisture receipts ie the wet and dry seasons. 

Goede (1998) has found that the bulk of seepage water in several Tasmanian caves has been 

derived from winter precipitation and argues that, since the oxygen isotope ratio of Tasmanian 

precipitation shows a strong seasonal dependence on temperature, Tasmanian 6 180 values in 

speleothem calcite should be interpreted in terms of mean winter temperature rather then mean 

annual temperature. Due to a dominance of winter precipitation and high evapotranspiration 

rates in summer, a similar situation is likely to exist at Naracoorte. 

6.3.3. Fluid Inclusions 

In certain circumstances small amounts of water are trapped in cavities and crystal boundary 

defects during calcite precipitation (Kendall and Broughton, 1978). These small reservoirs of 

ancient water, approximately 10 to 50 gm in size, are thought to be the remnants of the parent -

drip water responsible for the growth of the speleothem. Due to the possibility of oxygen isotopic 

exchange with the host calcite, the deuterium/hydrogen ratio (SD) is measured, a simple 

conversion via the empirical relationship of Craig (1961) allows the 6 180 to be estimated (Equation 

6.2). It has been demonstrated that the SD values of contemporary fluid inclusions from actively 

growing speleothems are similar to the modern percolation waters at a particular cave (Harmon et 

al., 1979; Yonge etal., 1985). 

As mentioned in Section 6.2.2, the SD of percolation water is closely related to the isotopic 

composition of the meteoric water on the surface above the cave (eg Yonge et al., 1985; Goede, 

1998). Estimates of cave palaeotemperatures are possible by converting the fluid inclusion SD 

measurements to 8 180 (Equation 6.2) and substituting the result into the following equation 

derived by O'Neil etal. (1975): 

Equation 6.4 	 10 3  In 	= 2.78 x 10' x T -2  — 2.89 

where ac., is the water-calcite fractionation constant and T is temperature in °K. 

The main problem with this approach has been the successful extraction of water from the fluid 

inclusions, firstly without fractionation occurring and secondly in such a way that a large enough 

sample is obtained for analysis. Early attempts used crushing techniques or a combination of 
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heating and crushing (Yonge, 1981; Goede etal., 1986) which significantly improved sample yield 

but made the extraction procedure very complicated because at high temperatures the limestone 

is decomposed yielding a large volume of CO 2  that has to be separated from the water vapor. 

Recent attempts at extracting water from fluid inclusions without significant fractionation occurring 

have been much more encouraging (Dennis et ai., 1996; Rowe et al., 1998). It is suggested that 

the method may be improved by direct extraction by laser ablation, eg UV laser, and analysis by a 

mass spectrometer able to analyse very small quantities of sample. Dr Michael Palin (RSES, ANU) 

is currently using this technique to analyse fluid inclusions in carbonate rocks in order to 

investigate their diagenetic history. It may be possible to apply the method with minor 

modifications to analyse fluid inclusions in speleothem calcite. 

6.3.4. Testing for Equilibrium Deposition 

To confirm that calcium carbonate has been deposited in isotopic equilibrium with the seepage 

water, that is that the loss of CO2 from solution during calcite precipitation is sufficiently slow so 

that isotopic equilibrium is maintained between the aqueous carbon dioxide, bicarbonate ions, 

and the water (Hellstrom, 1998), the following tests can be made (Hendy and Wilson, 1968; 

Schwarcz, 1986; Lauritzen, 1995): 

(1) Degree of positive correlation of paired values of 8 180 and VC taken from the centre of 

the core along the vertical axis of the speleothem. If strong positive correlation is 

absent it provides good evidence of deposition under equilibrium conditions. However, 

the presence of a strong positive correlation does not necessarily indicate absence of 

equilibrium conditions since such a relationship may also be due to common 

environmental factors causing covariation (Goede, 1998). 

(2) Paired values of 8 180 and 8' 3C of at least seven calcite samples taken in sequence 

along an individual growth layer should not show a significant trend towards 

progressively heavier isotopic values from the centre of the core outwards. The test 

should be repeated for a number of growth layers (Hendy and Wilson, 1968, Hendy, 

1971 ). 

(3) There should be no significant correlation between 8 180 and 8 13C values along a 

growth layer as it may indicate a kinetic isotopic effect such as rapid loss of CO2 

(Gascoyne, 1992). 

If any of these criteria are violated then it must be suspected that kinetic fractionation has 

occurred and that the spurious 8 180 and 8' 3C values have produced which may mask any variation 

specifically due to climatic effects. For example, evaporation causing a rapid loss of CO 2  will 

negate any relationship between temperature and final 8 180. 

Hellstrom (1998) investigated the validity of correlating 8 180 and 8 13C to infer isotopic equilibrium by 

using synthetic oxygen and carbon isotope records to simulate the effects of kinetic fractionation by 

the addition of a noise signal to these records. He suggested testing for covariation versus time 

using the first derivatives of 8 180 and 8 13C which should, theoretically, allow isolation of the variation 

due entirely to kinetic fractionation and, therefore, allow testing for it empirically. Repeated runs of 
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the simulation indicate that records with a first derivative correlation coefficient less than 

approximately 0.3 do not suffer from any significant bias due to kinetic fractionation (Hellstrom, 

1998), therefore the method may provide a powerful method of testing for equilibrium conditions. 

6.3.5. Controls on the Isotopic Composition of Speleothem Calcite 

6.1.1.1 	Oxygen Isotope Ratios 

In temperate environments, variations in oxygen isotope values of speleothems that are 

deposited under conditions of isotopic equilibrium are controlled by three main factors (Harmon et 
al., 1978): 

(1) Changes in the temperature of the cave environment during deposition (temperature 

effect). Such changes are usually related directly to changes in mean annual 

temperature at the surface. 

(2) Shifts in the isotopic composition of seawater due to the accumulation and ablation of 

glacial ice on land estimated by Shackleton (1987) at approximately 1.5 %o SMOW for 

a full glacial-interglacial cycle (ice volume effect) but it may be as small as 1.0 %o 

(Schrag et al., 1996). 

(3) Fluctuations in the isotopic composition of precipitation caused by temperature and 

humidity fluctuations at sites of evaporation and precipitation, sometimes 

accentuated by changes in the geographical location of moisture source areas 

(surface changes effect). 

Factors 1 and 2 will cause speleothem calcite to become enriched in 180 during cold periods while 

factor 3 generally has the opposite effect. The majority of stalagmites studied around the world 

show a negative relationship between 6 180 values of speleothem calcite and temperature 

indicating the dominance of factors 1 and 2. 

In some caves, particularly those in cooler temperate West Coast climates (e.g. Norway, 

Tasmania, and Vancouver Island), factor 3 is dominant causing a positive relationship between 

the 5 180 values of speleothem calcite and palaeotemperature (Gascoyne et al., 1980; Gascoyne 

et al., 1981; Goede et al., 1986; Lauritzen, 1995). 

6.3.5.1. Carbon Isotope Ratios 

Causes of variation of carbon isotope ratios within a single speleothem deposited under 

conditions of isotopic equilibrium has long been a contentious issue. However, the issue has 

been clarified by recent research results (e.g. Hellstrom et al., 1998). The carbon isotope 

composition of speleothems will be influenced by whether the water passes through the limestone 

as a closed or an open system (Baker etal., 1997). However, it is presumed unlikely that open 

and closed conditions would alternate during the growth of a single speleothem and this factor is 

therefore disregarded as being a major cause of internal variation. 

It has also been suggested that 8 13C variations could in part reflect variable amounts of calcite 

precipitation in the flow-path above the cave. If this were to be so, a positive correlation would be 

expected between 6 13C values and magnesium content (Baker et al., 1997, Roberts et al., 1998). 
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No such relationship has been found. Explanation of temporal changes can be considered in 

terms of three major hypotheses: 

(1) Changes in the relative abundance of two groups of plants that follow different 

photosynthetic pathways: C3 and C4 (Brook et al., 1990; Dorale et al., 1992; Talma 

and Vogel, 1992). C4 plants are predominantly tropical grasses and require high 

summer temperatures (Teen i and Stowe, 1976; Tieszen etal., 1979). 

(2) Changes in vegetation productivity, that control the amount of isotopically light 

organic matter supplied to the soil, which is broken down to provide CO2 derived 

directly from the atmosphere. Carbon isotope variations in soil carbonates (Quade et 

al., 1989) and subaqueous wallcrust in a karst spring (Coplen et al., 1994) have also 

been attributed to this cause. Provided that soil thickness and texture does not 

change significantly during the life of the stalagmite, CO2  concentrations in the soil 

can be expected to be function of the level of vegetation activity. 

(3) Changes in the isotopic composition of carbon in atmospheric CO2 , with glacial 

periods being characterised by less negative values. One of the most reliable 

estimates so far of glacial-interglacial change suggests a change of 0.7 %o (Marino et 

al., 1992). 

Since the third hypothesis can only account for relatively minor variations, major changes will be 

interpreted in terms of the first two hypotheses. 

6.4. Methodology 

6.4.1. Sampling 

Stalagmites are bisected longitudinally using a diamond-saw blade, one half is set aside for 

reference while the other half is used for isotope and/or minor element sampling and to provide 

samples for uranium series dating. Flowstones are cut perpendicular to the direction of growth in 

order to get a planar surface from which to acquire samples. In this study the flowstone samples 

used in this study were already broken into pieces and loosely followed the methodology of 

Hellstrom (1998) for cutting and preparing the samples for analysis. Hellstrom (1998) describes an 

excellent method for extracting cores from flowstones in situ and the techniques for mounting and 

extracting samples for age estimates, minor element, and stable isotope analyses. It is suggested 

that this methodology be followed by other speleothem workers in the future. 

Stable isotope samples are extracted using a 1.6 mm diameter tungsten-carbide dental drill. 

Growth layers are sampled in order to test for conditions of isotopic equilibrium. Using a dental 

drill, a set of seven closely spaced 1.6 mm diameter holes are drilled within each growth layer from 

the centre outwards and analysed for 5 180 and 5 13C. 

6.4.2. Stable 'Isotope Analysis 

For all oxygen and carbon isotopic analyses of calcite, carbon dioxide gas was prepared by 

reacting samples with 100% H3PO4 in a vacuum. Measurements of isotopic ratios are expressed 
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as per mil (%0) using the delta (5) notation relative to the PDB (PeeDee Belemnite) standard. The 

isotopic ratios were determined using a VG-SIRA Series II mass spectrometer with a minimum 

measurement precision of approximately 0.02 %o. 

Dripwaters were prepared for oxygen isotope analysis by equilibration with CO2 gas at 25°C for 

five hours in a VG-Isoprep 18. After drying, the gas samples were analysed on a VG-SIRA Series 

II mass spectrometer with a minimum analytical precision of around 0.02 %0 relative to the SMOW 

standard. 

To determine the nature of the relationship between 8180 values of speleothem calcite and past 

temperatures, the isotopic composition of contemporary calcite deposited at isotopic equilibrium 

has to be determined. This has been done by sampling actively growing soda-straw stalactites at 

various underground sites within the study areas. Analyses can show a wide range of 5180 values 

since some may not have been deposited under conditions of oxygen isotope equilibrium. 

However, it is assumed that a large enough sample was taken from individual caves for one or 

more individuals to have been deposited at or close to isotopic equilibrium and they can be 

identified by having the most negative values for both 5 180 and 513C (Goede and Hitchman, 1984; 

Goede et al., 1986). In order to independently test the value of contemporary calcite an estimate 

of present day cave temperature (T) can be made using the expression of Craig (1965): 

Equation 6.5 	 T (°C) = TmAT  4.2(8180 _518Q  ) 0.13(8 180 8180w  ) 2  

where TmAT equals the surface mean annual temperature. Using the mean value of drip water 

(5 180,) and the value for modern calcite (5 180,) and substituting these in Equation 6.5, a 

temperature estimate is obtained. This value can be checked by measuring the cave temperature 

with a thermometer. 

6.5. Results and Discussion 

Theoretically Australia is not the most ideal place in which to recover Quaternary 

palaeoenvironmental records due to its relatively stable geological context, resulting in much 

thinner sequences with which to study, especially when compared to a geologically active 

environment such as New Zealand. As such the Australian palaeoenvironmental record is best 

described as patchy and incomplete with most records having poor temporal frameworks. The 

majority of the continent is arid with a humid margin that does not extend much more than 100 

kilometres from the coast, thus in Australia most Quaternary palaeoenvironmental records 

predominantly reflect changes in available moisture (Kershaw and Nanson, 1993). Most of these 

records are severely limited by the material available with which to date them and rely mainly on a 

combination of radiocarbon dating and correlation to oxygen isotope stages (Chappell, 1991). 

Speleothems can be precisely dated with TIMS 230Th/234U dating (Chapter 4) and have been 

shown to reflect periods of greater moisture availability (for example, Ayliffe etal., 1998; 

Desmarchelier etal., 2000). 
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This section discusses the results of the analysis of contemporary calcite, dripwater, growth layer 

analyses, and stable isotope profiles of two stalagmites, LT and SC-S11 from Little Trimmer Cave, 

Tasmania and Victoria Fossil Cave, South Australia respectively, and a section of flowstone, JC-

F1 from Jersey Cave, New South Wales. The discussion sections will demonstrate the potential 

that speleothems have in providing precisely dated, high-resolution, terrestrial 

palaeoenvironmental records with which to compare other proxy records against. 

6.5.1. Modern Calcite and Growth Layer Analysis 

6.5.1.1. Tasmanian Modern Calcite and Growth Layer Analysis 

The present day isotopic composition of speleothem material from Little Trimmer Cave, Mole 

Creek, Tasmania, was determined by multiple analyses of calcite removed from two plastic funnels 

used to collect dripwater during 1979 (Goede et al., 1982). The values obtained were -3.75 %o 

(PDB) for the 8 180 and -12.21 %o (PDB) for the 8 13C. However, a 8 180 value of --4.0 Too (PDB) has 

been estimated from nearby Lynds Cave (Goede and Hitchman, 1983) by sampling sod-straw 

stalactite tips. This is regarded as a better estimate of the present day 8 180 of speleothem calcite 

as the Little Trimmer Cave drip site has a very fast mean drip rate and has been observed to 

respond quickly to isotopically heavy summer rainfall which may have biased the oxygen isotope 

composition of the lowstone towards a higher value (Goede, 1998: p. 185). 

The first test for isotopic equilibrium suggested by Hendy and Wilson (1968) involves the degree 

of positive correlation between 8 180 and 8 13C values of samples taken along the longitudinal axis. 

A weak but statistically significant negative correlation was found (Table 6.1) confirming deposition 

under conditions of isotopic equilibrium (Figure 6.1). The second test involves examination of sets 

of seven samples from each of twelve growth layers. These sets show no significant correlation 

beween paired 8 180 and 813C values with one exception where the changes are relatively small. 

Overall the evidence is strongly in favour of deposition under isotopic equilibrium conditions_ 

Table 6.1 
	

Descriptive statistics for two stalagmites, LT from Little Trimmer Cave, Mole Creek, 
Tasmania, and SC-S11 from Victoria Fossil Cave, Naracoorte, South Australia, and a 
flowstone, JC-F1 from Jersey Cave, Yarrangobilly, New South Wales. 

LT SC-S11 JC-F1 

8180  I 	8'3c 88c1 	1 813c 8180 I 	813c 

n 283 90 
_ 

74 

Minimum -5.58 -11.25 -4.95 -9.17 -7.06 -9.78 

Maximum -3.12 -5.45 -2.58 -3.70 -4.05 -1.53 

Mean -4.84 -8.44 -3.94 -6.58 -5.66 -5.64 

Correlation 
Coefficient 

-0.3843 0.7732 0.3093 

1 st  Derivative 0.0335 0.6586 0.3072 

Regression 
Equation 

y = -0.1563x - 6.1518 
R2= 0.1477 

y = 1.929x + 1.0191 
R2= 0.5978 

y = 0.1145x - 5.0119 
R 2= 0.0957 
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An additional test of equilibrium conditions suggested by Hellstrom (1998) is the analysis of the 

first derivatives from the longitudinal isotope profile. Longitudinal 6180 and 8' 3C profiles whose first 

derivatives have a correlation coefficient of less than approximately 0.3 suggests that the sample 

suffers from insignificant bias due to kinetic fractionation. The R-value of the first derivatives 

analysis of the LT stalagmite isotope profile is 0.0335 confirming that the LT stalagmite did grow in 

conditions of isotopic equilibrium. 

6.5.1.2. Naracoorte Modern Calcite and Growth Layer Analysis 

The isotopic composition of contemporary calcite was determined by sampling twelve actively 

growing soda-straw stalactites at two sites within Victoria Fossil Cave. Results of these analyses 

together with four dripwater samples from Spring Chamber are listed in Table 6.2. As expected, 

analyses show a wide isotopic range presumably because many were not deposited under 

conditions of oxygen isotope equilibrium. However, it is assumed that this is a large enough 

sample for one or more individuals to have been deposited at or close to isotopic equilibrium and 

they can be identified by having the most negative values of both 8 180 and 6 13C, as shown in 

Figure 6.2, (Goede and Hitchman, 1984; Goede et al., 1986). The technique provides an 

estimate of -4.76 %o PDB for the 6 180 of contemporary calcite. The modern calcite value was 

tested with Equation 6.5 using the mean value of drip water, -4.98 % SMOW (-4.76 Too PDB), - 

4.76 %0 PDB for modern calcite. A temperature estimate of 16.9°C is obtained and since this 

value is very close to the one actually measured (16.8°C) it confirms the estimate of the isotopic 

value of contemporary calcite. 

There is a significant degree of positive correlation between the 3 180 and 8 13C values of 90 

samples taken from the longitudinal profile of SC-S11 (Table 6.1 and Figure 6.3) so the first test is 

inconclusive. If correlation were due to fractionation effects, a linear relationship would have been 

expected but this is not the case. Paired values of 8 180 and 613C along four selected growth 

layers do not show a single trend towards heavier isotopic values from the centre of the core 

outwards and provide strong support for deposition under conditions of isotopic equilibrium. 

Statistically significant correlations between 6180 and 813C within a growth layer is absent in three 

of the four layers occurring only in growth layer GL-D which is located in the tapering tip of the 

speleothem. On examination of the data this appears to be due to a significant trend towards 

isotopically lighter values in VC (R2  = 0.783, df = 5, t = 4.2481, P < 0.01) but not in the case of 

8 180 values. This is indicative of rapid loss of CO 2  from the depositional surface as the drip rate 

declines, suggesting that the amount of dripwater is less, resulting in a thinner water film 

(Dreybrodt, 1999), as indicated by the tapering tip. The hypothesis that the material has been 

deposited predominantly under conditions of isotopic equilibrium is supported and allows 

interpretation of oxygen and carbon isotope changes along the growth axis in terms of 

environmental change over the growth period of the speleothem, except perhaps for a minor 

fractionation effect on carbon isotope values near the tip which will not affect the interpretation 

that follows. 
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Figure 6.1. Scatter plot of 283 8 180 and 813C values of samples taken from the longitudinal profile of 

the LT stalagmite. A weak but statistically significant negative correlation was found (r 

= -0.39), regression line is also plotted (y = -0.1563x — 6.1518). 

-10 	-8 	 -6 	 -4 	 -2 
6 3c PDB) 

Figure 6.2 Scatter plot of 8 180 and 813C results of twelve actively growing straw stalactites at two 

sites within Victoria Fossil Cave, Naracoorte. The most negative values (isotopically 
lightest) of the 8180 and 813C results are assumed to have been deposited at or close to 

isotopic equilibrium, thus the 6180 value for modern calcite is —4.76 (Yoo PDB (marked by 

arrow). A regression line is plotted, y = 0.305x — 1.372, with an r-value of 0.99. 
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Table 6.2. 	Results of 5180 and 513C analyses of twelve actively growing soda-straw stalactites from 

Spring and New Formation Chamber, Victoria Fossil Cave, Naracoorte, South Australia 

together with four dripwater samples from Spring Chamber. Isotopic ratios are given in 

per mil (%0) and versus the PDB standard unless otherwise indicated. 

Location Sample # Description 5180 513C 

Spring Chamber S1B 
S1A 
S2A 
S2B 

dripwater 
dripwater 
dripwater 
dripwater 

-4.878 ± 0.013 (SMOVV) 
-4.921 ± 0.013 (SMOVV) 
-5.123 ± 0.016 (SMOVV) 
-4.997 ± 0.004 (SMOVV) 

Spring Chamber NAS-1 straw stalactite -3.949 ± 0.011 -8.571 ± 0.012 
NAS-2 straw stalactite -3.981 ± 0.015 -9.199 ± 0.015 
NAS-3 straw stalactite -4.047 ± 0.005 -9.120 ± 0.006 
NAS-4 straw stalactite -3.602 ± 0.010 -7.484 ± 0.009 
NAS-5 straw stalactite -3.759 ± 0.008 -8.084 ± 0.005 
NAS-6 straw stalactite -3.878 ± 0.008 -6.659 ± 0.008 

New Formation NAN-7 straw stalactite -4.756 ± 0.017 -10.487 ± 0.004 
Chamber NAN-8 straw stalactite -4.022 ± 0.005 -8.635 ± 0.012 

NAN-9 straw stalactite -4 .234 ± 0.004 -9.200 ± 0.005 
NAN-10 straw stalactite -4.545 ± 0.008 -10.358 ± 0.009 
NAN-11 straw stalactite -3.288 ± 0.018 -6.227 ± 0.011 
NAN-12 straw stalactite -4.783 ± 0.023 -10.985 ± 0.017 
NAN-13 straw stalactite -1.818 ± 0.012 -2.026 ± 0.009 

Figure 6.3 Scatter plot of 90 8 180 and 813C values of samples taken from the longitudinal profile of 

the SC-S11 stalagmite. A significant positive correlation between the 8180 and 5 13C values 

is observed (r = 0.77), with the linear regression line shown (y = 1.929x + t0191). 
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6.5.1.3. Yarrangobilly Modern Calcite and Growth Layer Analysis 

To determine the nature of the relationship between 8 180 values of speleothem calcite and past 

temperatures in Jersey Cave, Yarrangobilly, five actively growing soda-straw stalactites were 

collected from several sites within Jersey Cave the results of these analyses are listed in Table 6.3. 

The results show a wide isotopic range since many were not deposited under conditions of oxygen 

isotope equilibrium. However, it is assumed that this is a large enough sample for one or more 

individuals to have been deposited at or close to isotopic equilibrium and they can be identified by 

having the most negative values of both 8 180 and 813C, as shown in Figure 6.4, (Goede and 

Hitchman, 1984; Goede et al., 1986). The technique provides a value of -7.49 %o (PDB) for the 

8180 and -10.3 %o (PDB) for the 8 13C of contemporary calcite. 

No growth layers were analysed in JC-F1 in order to test for deposition under equilibrium 

conditions due to financial constraints. The 8 180 and 813C isotope results from the longitudinal 

profile are positively correlated but it is not statistically significant (Table 6.1). An additional test 

suggested by Hellstrom (1998) using the correlation of the first derivatives of the isotopic profile 

also supports the hypothesis that sample has been deposited under conditions of isotopic 

equilibrium (Table 6.1), where records whose first derivatives have a correlation coefficient of 

approximately 0.3 suffer from insignificant bias due to kinetic fractionation. Attempts will be made 

to analyse several growth layers along the x- and y-axis ie perpendicular to one another. This will 

allow investigation of spatial variation as well as test for deposition under conditions of isotopic 

equilibrium. 

-1 0 	-8 	-6 	-4 	-2 
	

0 
	

2 

513C (700PDB) 

Figure 6.4 Scatter plot of 8180 and 813C results of five actively growing straw stalactites from 

Jersey Cave, Yarrangobilly. The most negative values (isotopically lightest) of the 8180 
and 8 13C results are assumed to have been deposited at or close to isotopic equilibrium, 

thus the 8180 value for modern calcite is estimated at —7.49 %o PDB (marked by arrow). 
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Table 6.3. 	Results of stable isotope analyses of actively growing soda-straw stalactites from Jersey 

Cave, Yarangobilly. All figures have an precision of 0.030 % or better. 

Sample 6"Cpoe (%e) 8180pDB (%D) 

. 	' 	Y-JC-Oa -8.214 -5.695 

Y-JC-Ob -8.109 -5.729 

Y-JC-la -2.836 -6.094 

Y-JC-1 b -3.751 -6.232 

Y-JC-lc 0.310 -4.783 

Y-JC-1d -0.995 -5.744 

Y-JC-2a 2.676 -4.632 

Y-JC-2b 3.235 -4.001 

Y-JC-2c -6.476 -5.786 

Y-JC-3a -2.781 -4.938 

Y-JC-3b -7.586 -5.852 

Y-JC-3c -8.293 -5.975 

Y-JC-4a -5.298 -6.438 

Y-JC-4b -6.475 -5.663 

Y-JC-4c -6.248 -5.808 

Y-JC-4d -10.331 -7.492 

Y-JC-4e -10.017 -6.083 

6.5.2. LT Stalagmite Isotope Profile Results 

The isotope profile is based on 283 samples taken at 5 mm intervals along the vertical axis and 

were analysed for both 8 180 and 8 13C and plotted as a time series against their estimated ages 

(Figure 6.5 and Figure 6.6) together with isotopic results from Goede et al. (1986). Also plotted 

for comparative purposes are the Vostok temperature record (Jouzel et al., 1993), the RC 11-120 

sea surface temperature record (Martinson et al., 1997), and December insolation values for 30°S 

(Berger and Loutre, 1991). Both the 8 180 and 6' 3C results are smoothed using a smoothing 

spline, a least squares variant of a cubic spline. 

6.1.1.1 LT Oxygen Isotope Profile Results 

The 8180 results are plotted against a timescale derived from the TIMS 230Th/234U age estimates in 

Figure 6.5. 8 180 values range from -5.6 to -3.8 %o PDB with a mean of -4.8 %o PDB (Table 6.1). 

The most significant change occurs between approximately 89 ka and 85 ka, where 8 180 values 

rise from around -5.5 to -4.3 %o PDB. The estimated value for contemporary calcite determined by 

Goede and Hitchman (1983) is -4.0 %o PDB. Earlier studies (Goede et al., 1986; Desmarchelier 
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and Goede, 1996) of the LT stalagmite have established that a positive relationship exists 

between temperature and the isotopic composition of speleothem calcite. 

Deposition of the LT stalagmite began approximately 98 ka years ago and corresponds to OIS 

5.3 (5c), a warm phase in OIS 5. An overall trend of slight cooling of approximately 0.5 to 1.0°C is 

suggested (Jouzel et al., 1993) until about 88 ka when temperatures began to rapidly rise until 

the termination of the record at 84 ka, the middle of OIS 5.2 (5b). The warming period represents 

the largest change in the 8 180 and interestingly seems to have has a stepped character with 

approximately three easily identifiable steps of around 1 ka duration. 

6.5.2.1. LT Carbon Isotope Profile Results 

The 8 13C results are plotted against the TIMS 230Th/234U age estimates in Figure 6.6. 6' 3C values 

range from -11.25 to -5.45 %o PDB with a mean of -8.44 Too PDB (Table 6.1). The wide range 

indicates fairly considerable surface environmental change during the depositional period. Three 

hypotheses were put forward in Section 6.3.5 to explain carbon isotope variations in speleothem 

calcite through time. The third hypothesis is considered to be only a minor factor because its 

maximum influence is approximately 0.7 %o PDB and will have limited impact on the overall 6' 3C 

isotopic signal of LT which has a range of around 6 Too. Earlier studies (Desmarchelier and 

Goede, 1996; Goede, 1998) have established that the 6 13C variation of speleothem calcite in 

Tasmania is highly unlikely to have been influenced by changes in the abundance of C3 and C4 

plants. Therefore, the 8 13C variation in the LT stalagmite is best explained by changes in activity 

of vegetation and soil processes. 
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Figure 6.5. Oxygen isotope results of samples taken from the longitudinal axis of the LT stalagmite, a 

1,800 mm high sample from Little Trimmer Cave, Mole Creek, Tasmania, plotted versus age. 

(a) Dark line is smoothed LT oxygen isotope record via a smoothing spline, light dots are the 
raw data. Black bars on the bottom of the graph are age estimates with 2 a errors. 

(b) Dark line is the temperature difference from present mean annual temperature (°C) 

calculated from the Vostok ice core record (Jouzel etal., 1993), light line is the 

temperature difference from present mean annual sea-surface temperature calculated 

from the ocean core RC11-120 (Martinson etal., 1987). 

(c) Dark line is the complete temperature difference record from Vostok with the square 

indicating the temporal relationship of LT to the Vostok ice core, light line is the 

December insolation record for 30°S (Berger and Loutre, 1991). 
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Figure 6.6. Carbon isotope results of samples taken from the longitudinal axis of the LT stalagmite, a 

1,800 mm high sample from Little Trimmer Cave, Mole Creek, Tasmania, plotted versus age. 

(a) Dark line is smoothed LT carbon isotope record via a smoothing spline, light dots are 

the raw data. Black bars on the bottom of the graph are age estimates with 2 o errors. 

(b) Dark line is the temperature difference from present mean annual temperature (°C) 

calculated from the Vostok ice core record (Jouzel et al., 1993). 

(c) Dark line is the complete temperature difference record from Vostok with the square 

indicating the temporal relationship of LT to the Vostok ice core, light line is the 

December insolation record for 30°S (Berger and Loutre, 1991). 
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6.5.3. LT Stalagmite Isotope Profile Discussion 

The stalagmite was originally dated by alpha spectrometry (Goede et al., 1986) but the stricter 

temporal constraints provided by seven TIMS 230Th/234U age determinations confirms that the 

stalagmite began growing early in OIS 5.3 (5c) and continued well into OIS 5.2 (5b). The TIMS 
230T. .234 nt U age estimates are a significant improvement on previous attempts at dating this sample 

using conventional alpha spectrometry, highlighting the considerable benefits that the TIMS 

technique has brought to speleothem age control. The date at which calcite deposition ceased is 

not known as there is a missing tip (Goede et al., 1986) above the uppermost (1400 mm) U-series 

date. It is hypothesised that growth continued well into OIS 5.1 (5a) but it is unlikely that this will 

ever be confirmed unless the missing tip is located. 

In Figure 6.5 the smoothed temperature record form the Vostok ice core record plotted against 

age, using the EGT model (ref), is compared to the LT 8 180 data. From approximately 89 ka to 84 

ka a stepped warming pattern, with a range of around 2°C, is evident and supported by similar 

events of almost 1 ka duration in the LT stalagmite 8 180 results. A slight difference in timing 

between the records is attributed to possible lag effects and to the limitations of the Vostok age 

model. The Vostok record is dominated by a 100 ka glacial-interglacial cycle with a temperature 

amplitude of approximately 6°C (Lorius etal., 1987). 

The isotope stages in the Vostok record are identified by capital letters, commencing with A for 

the Holocene epoch. Vostok stage E is an interstadial characterised by two well defined 

temperature maxima at approximately 100 ka and 81 ka as well as several minor oscillations. The 

LT record corresponds to Vostok stage E (mid- to late-OIS 5) post-dating the earlier maximum and 

pre-dating the latter, although it could be extended further if the missing tip section were located. 

In previous studies (Goede et al., 1986; Desmarchelier and Goede, 1996) it has been argued that 

in cool, temperate climates carbon isotope variations may be interpreted largely in terms of 

fluctuations in vegetation activity, with more negative values indicating higher levels of activity. In 

Tasmania vegetation activity is seasonal and strongly influenced by moisture availability, which 

can be expected to be at least partly modulated by fluctuations in summer insolation. Mid-month 

insolation data for December at 30°S (Berger and Loutre, 1991) show increasing radiation values 

from a minima at 105 ka (455 W m -2) to a maximum at 94 (535 W m -2) followed by decreasing 

values to a minima at 84 ka (462 W rr1 2). The early part of the LT stalagmite record, from 98 ka to 

94 ka, indicates that with higher summer insolation values and temperature vegetation productivity 

decreases due to increased evaporation and consequently reduced effective precipitation. From 

94 ka to 90 ka vegetation activity increases slightly as insolation decreases following the peak at 

94 ka, also mirroring a decreasing temperature trend. From approximately 90 ka onwards 

temperature seems to be the dominant control in governing the carbon isotope composition as 

the insolation values decrease to a minima at 84 ka (460 W m -2). 

6.5.4. SC-S11 Stalagmite Isotope Profile Results 

A profile of ninety samples, taken at close intervals along the vertical axis, were analysed for 610 0 

and VC and plotted as a time series against their estimated ages (Figure 6.7 and Figure 6.8). 
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Also plotted for comparitive purposes are the Vostok temperature record (Jouzel et al., 1993), the 

RC 11-120 sea surface temperature record (Martinson et al., 1987), and December insolation 

values for 300S (Berger and Loutre, 1991). No smoothing was applied to the 8 180 and 513C results 

as they are effectively averaged by the nature of the sampling method. 

6.5.4.1. SC-S11 Oxygen Isotope Results 

The 8180 results are plotted against estimated age in Figure 6.7, values range from —5.0 to -2.6 %o 

PDB with a mean value of -3.9 %o (Table 6.1). This should be compared with an estimated value 

of -4.8 % for contemporary calcite. Before any interpretation is attempted it is important to 

determine the sign of the relationship with temperature. It can be seen that with a small number 

of exceptions the vast majority of values are well above the present day value. 

The contemporary value represents temperature conditions which approach the maximum value of 

the range of temperatures experienced during the glacial-interglacial cycle of the Late 

Pleistocene. It appears therefore that the isotopically heaviest values of 8 180 represent colder 

climate conditions indicating a negative relationship with temperature. This is expected because 

examination of the time period of deposition in other palaeotemperature records such as the 

Vostok ice core indicates that temperatures were well below those of the Holocene and Last 

Interglacial (Jouzel et al., 1993). 

The stalagmite started growing under cold conditions (-2.5 %o) at about 185 ka but with 

temperature rising rapidly to values close to those prevailing today between 178 and 162 ka. This 

is followed by a drop to much lower temperatures by the time the record terminates at about 157 

ka. The record appears to include a mild interstadial of about 16 ka duration with temperatures 

similar to today that is both preceded and followed by cold climate conditions. The record shows 

marked similarities with the SPECMAP stack generated from deep sea core oxygen isotope data 

(Imbrie etal., 1992) and with the pattern of 8 180 variations of benthic foraminifera in marine core 

DSDP-594 (Heusser and Van de Geer, 1994) with which it is also compared in Figure 6.7. This 

core site is located on the southern margin of the Chatham Rise at a depth of 1204 m, circa 250 

km east of the South Island, New Zealand (45.52°S, 174.95°E). 

6.5.4.2. SC-S11 Carbon Isotope Results 

The 5 13C results are plotted against estimated age in Figure 6.8, values range from -9.2 to -3.7 %o 

PDB with a mean value of -6.6 %o (Table 6.1). The range is wide indicating considerable 

environmental change during the depositional period. In Section 6.3.5three hypotheses were put 

forward to explain temporal variations in carbon isotope ratios in speleothems. Hypothesis 3 is at 

best a minor factor since the amount of variation it could explain, approximately 0.7 %o PDB, is 

quite small. This leaves the bulk of the variance to be explained by either a change in the 

abundance of C3 and C4 plants and/or a change in the productivity of the vegetation provided 

that soil thickness has remained unchanged during the period of growth of the stalagmite. 
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Figure 6.7. Oxygen isotope results of samples taken from the longitudinal axis of the SC-S11 stalagmite, a 

sample from Victoria Fossil Cave, Naracoorte, South Australia, plotted versus age. 

(a) Dark line is the SC-S11 oxygen isotope record. Light line is the SPECMAP stack 

generated from deep-sea oxygen isotope data (Imbrie etal., 1992). Black bars on the 

bottom of the graph are age estimates with 2 sigma errors. 
(b) Dark line is the pattern of 8 180 variations of benthic foraminifera in marine core 

DSDP-594 (Heusser and Van de Geer, 1994). 
(c) Dark line is the complete SPECMAP record and light line is the complete record of 8 180 

variations of benthic foraminifera in marine core DSDP-594 (Heusser and Van de Geer, 

1994). The square indicates the temporal relationship of the SC-S11 record to SPECMAP. 
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Figure 6.8. Carbon isotope results of samples taken from the longitudinal axis of the SC-S11 stalagmite, 

a sample from Victoria Fossil Cave, Naracoorte, South Australia, plotted versus age. 

(a) Dark line is the SC-S11 carbon isotope record. Light line is the December insolation 

record for 30°S (Berger and Loutre, 1991). Black bars on the bottom of the graph are 

age estimates with 2 sigma errors. 
(b) Dark line is the pattern of 8 180 variations of benthic foraminifera in marine core 

DSDP-594 (Heusser and Van de Geer, 1994). 

(c) Dark line is the complete SPECMAP record and light line is the complete December 

insolation record for 30°S (Berger and Loutre, 1991). The square indicates the temporal 

relationship of the SC-S11 record to SPECMAP. 
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6.5.5. SC-S11 Stalagmite Isotope Profile Discussion 

Very few late Middle Pleistocene palaeoclimatic data sets from either hemisphere are sufficiently 

well dated to confirm the mild interstadial conditions inferred from this profile to have occurred 

between 178 and 162 ka. However, an interesting and well dated record has been obtained from 

an excavation site in the Western Chamber of Robin Hood's Cave in Derbyshire, Britain. The site 

consists of a pure 30 mm thick flowstone layer with two alpha-spectrometry uranium series dates 

indicating an age of 165.4 + 6.0/-5.6 ka (Rowe and Atkinson, 1985). Pollen in associated clastic 

sediments immediately above and below the flowstone indicate the presence of grasses, 

thermophile trees and shrubs. They are both preceded and followed by steppe and tundra-like 

floras (Coles et al., 1985). 

A minimum estimate of temperature lowering relative to today at the beginning of the record can 

be obtained using Equation 6.5, if the assumption is made that isotopic composition of 

precipitation has not changed during the glacial-interglacial cycle. This is plausible as during 

cooler periods it is likely that precipitation will continue to be derived from the westerlies with the 

subtropical front (STF) remaining south of the site. It provides a minimum estimate of mean 

annual temperature lowering of 8°C, a value that would indicate full glacial conditions. Such an 

estimate is in good agreement with another made by Miller et al. (1997) using amino-acid 

racemization of emu eggshell to estimate a temperature change of approximately 9°C for the Last 

Glacial-Holocene transition. 

During the interstadial, strongly negative carbon isotope ratios ranging predominantly between - 

8.0 and -9.0 %o occur. Such values are characteristic of a quite productive C3 vegetation 

dominating the growing season. They cannot be compared directly with the estimate of 

equilibrium deposition of -11 %0 obtained from modern straw stalactites (Table 6.2, Figure 6.2), 

firstly because burning of fossil fuels is believed to have caused changes estimated at -2.2 Too in 

the isotopic composition of atmospheric carbon (Baskaran and Krishnamurthy, 1993) and 

secondly because the atmospheric carbon isotope composition during an interstadial may have 

differed significantly from today (Marino et al., 1992). Geochemical models predict carbonate 5 13C 

values of between -14 and -6 Too PDB for C3 pathway plants and -6 and +2 %o PDB for C4 plants 

(Dreybrodt, 1980, quoted in Baker et al., 1997) and the generally positive correlation between 

oxygen and carbon isotope values (Table 6.1) suggests that mild interstadial conditions are 

associated with maximum available moisture during the growing season. 

If the less negative 5 13C values of between -6.0 and -3.5 °too PDB are indeed associated with the 

presence of C4 vegetation at the site, it would be expected that the time periods involved would 

coincide with times of high summer insolation as such a condition would favour the dominance of 

tropical grasses. To test this hypothesis, insolation values for 30°S in December (Berger and 

Loutre, 1991) have been plotted on the same diagram as the 5 13C variations (Figure 6.8). It can 

be seen that the two 5 13C peaks appear to trail summer insolation peaks by 3 ka and 6 ka 

respectively but these differences may not be real as they are comparable in magnitude to the 2cy 

errors quoted for the TIMS dates. 
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6.5.6. JC-F1 Isotope Profile Results 

A longitudinal profile of seventy-one samples, taken at 5 mm intervals along the growth axis of JC-

F1, were analysed for both 8 180 and the 813C content and plotted as a time series against their 

estimated ages (Figure 6.9 and Figure 6.10). Also plotted for comparitive purposes are the 

Vostok temperature record (Jouzel etal., 1993), the RC 11-120 sea surface temperature record 

(Martinson et al., 1987), and December insolation values for 30°S (Berger and Loutre, 1991). 

6.5.6.1. JC-F1 Oxygen Isotope Results 

The 8 180 results from the longitudinal profile of the flowstone JC-F1 are plotted against estimated 

age in Figure 6.9, values range from —7.06 to —4.05 Too PDB with a mean value of —5.66 %o PDB 

(Table 6.1). The estimated 8 180 value for modern speleothem calcite at Jersey Cave is —7.49 %0 

PDB. It can be seen that none of the 8 180 results in the JC-F1 profile fall below the present day 

8 180 value indicating that temperatures did not exceed those of today. The isotopically heaviest 

values of 8 180 represent cool climate conditions indicating a negative relationship with cave 

temperature. No smoothing was applied to the 8 180 and 8 13C results due to the limited sampling 

resolution, approximately 5 mm. 

6.5.6.2. JC-F1 Carbon Isotope Results 

The 8 13C results from the longitudinal profile of the flowstone JC-F1 are plotted against estimated 

age in Figure 6.10,values range from —9.78 to —1.53 %o PDB with a mean value of —5.64 Too PDB 

(Table 6.1). The estimated 8 13C value for modern calcite is —10.33 %o PDB. In Section 6.3.5 three 

hypotheses were put forward to explain temporal variations in carbon isotope ratios in the 

longitudinal profiles of speleothems. Hypothesis 3 is at best a minor factor since the amount of 

variation it could explain, approximately 0.7 %o PDB, is quite small in comparison to the overall 

range of around 8 %o for JC-F1. This leaves the bulk of the variance to be explained by either a 

change in the abundance of C3 and C4 plants and/or a change in the productivity of the 

vegetation provided that soil thickness has remained essentially unchanged during the 

depositional period of the stalagmite. 
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Figure 6.9. Oxygen isotope results of samples taken from the longitudinal profile of JC-F1aa, a section of flowstone from Jersey Cave, Yarrangobilly, plotted versus age. 

(a) Dark line is the JC-F1aa oxygen isotope record. Light line is the SPECMAP record. Black bars are age estimates with 2 sigma errors. 

(b) Dark line is the temperature difference from present mean annual temperature (°C) calculated from the Vostok ice core record (Jouzel et al., 1993), light line is the temperature 

difference from present mean annual sea-surface temperature calculated from the ocean core RC11-120 (Martinson et al., 1987). 

(c) Dark line is the complete SPECMAP record and light line is the complete temperature difference record from Vostok (Jouzel etal., 1993). The square indicates the temporal 
relationship of the JC-F1aa record. 
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Figure 6.10. Carbon isotope results of samples taken from the longitudinal profile of JC-F1aa, a section of flowstone from Jersey Cave, Yarrangobilly, plotted versus age. 

(a) Dark line is the JC-F1aa carbon isotope record. Light line is the December insolation record for 30°S (Berger and Loutre, 1991). Black bars are age estimates with 2 sigma errors. 

(b) Dark line is the temperature difference from present mean annual temperature (°C) calculated from the Vostok ice core record (Jouzel et al., 1993), light line is the temperature 

difference from present mean annual sea-surface temperature calculated from the ocean core RC11-120 (Martinson et al., 1987). 

(c) Dark line is the complete SPECMAP record and light line is the complete December insolation record for 30°S (Berger and Loutre, 1991). The square indicates the temporal 

relationship of the JC-F1aa record. 
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6.5.7. JC-F1 Flowstone Isotope Profile Discussion 

The youngest or top section of the three JC-F1 growth phases has the best temporal control out 

of the sections analysed with TIMS 230Th/234U age determinations. Therefore discussion will focus 

mainly on this period although there will be some brief discussion on the other sections. The 

middle section needs at least four more TIMS 230 Th/234 U measurements as there appears to be a 

hiatus somewhere in the section between approximately 100 ka and 160 ka which may 

correspond to a period between the Penultimate Glacial and the Last Interglacial. The basal 

section of JC-F1 has insufficient stable isotope analyses to gain any clear understanding of the 

palaeoenvironmental conditions at that time. 

The section between the two upper hiatuses of JC-F1 began growing at approximately 45 ka and 

ceased deposition at 18 ka. It therefore covers the latter part of the Late Pleistocene ie early OIS 

3 to mid OIS 2. The isotopically lightest values are found between approximately 42 ka and 30 ka 

indicating that this was the warmest period covered by the JC-F1 record but at no stage do the 

8 180 values exceed the contemporary value of —7.49 %o. This period corresponds to a major 

interstadial recorded by lake sediments in eastern Australia from about 44 ka to 30 ka. Most of 

the lakes have much higher lake levels than was the case during the Holocene, for example 

Willandra Lakes and Lake George (Singh et al., 1981), indicating a prolonged period of relatively 

high effective precipitation at this time (Kershaw et al., 1991). However, in some lake level records 

from southeastern Australia, for example Lake Terang, Victoria (D'Costa, 1989), the interstadial is 

not as distinct. 

Two possible explanations were put forward by Kershaw etal. (1991) to account for these 

differences, the first proposes that significant changes in atmospheric circulation patterns produce 

regional variations in effective precipitation during interglacial-glacial cycles and the second 

suggests that the timescale for one of the sequences is wrong. The JC-F1 isotope and growth 

rate record clearly shows that an interstadial influenced the Yarrangobilly region and that effective 

precipitation was probably higher than during OIS 5. 

Since the JC-F1 record has been independently dated by TIMS 230Th/234U age estimates and does 

not rely on correlating key events to oxygen isotope stages, as lake and marine cores do, its 

chronology is difficult to question. Harle (1997) analysed the palynology of a marine core, E55-6, 

taken offshore from Cape Bridgewater, western Victoria to investigate regional community and 

climatic change in southeastern Australia. The chronology of the record was established by 

oxygen isotope analysis of planktic foraminifera and nannofossil smears and directly correlating 

the results to the marine oxygen isotope stages. Interpretation of the pollen record suggests that 

the wettest phase of the Last Glacial-Interglacial cycle occurred at the height of the Last 

Interglacial period ie 5.5 (e) and not during the OIS 3 interstadial as suggested by Kershaw et al. 

(1991). The JC-F1 record suggests that the Harle (1997) chronology is either wrong or that 

Kershaw et al. (1991) are right in attributing some of the differences between cores taken from 

eastern and southeastern Australia to regional variations in effective .precipitation. 

The above discussion illustrates that great care must be taken when expressing views about 

changes in effective precipitation particularly when the dating of a record is open to question. 
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One factor not mentioned by Harle (1997) was insolation which may significantly influence 

effective precipitation. The highest December insolation values at 30 S occur at approximately 

118 ka (-530 W m -2) and 95 ka (-525 W m -2) and the next three insolation peaks, at around 72 

ka, 48 ka, and 22 ka, have insolation values of slightly less than 510 W m -2  (Berger and Loutre, 

1991). The lowest oxygen isotope values and the highest deposition rate in the JC-F1 record 

occur during the OIS 3 interstadial implying that effective precipitation was greater at this time 

than during OIS 5. It is suggested that the differences observed in effective precipitation are 

caused by both the slight variation in insolation receipts and also by the slightly lower 

temperatures in OIS 3 compared to OIS 5 as indicated by the Vostok temperature record. From 

30 ka until deposition ceased at 18 ka the JC-F1 oxygen isotope record indicates a progressive 

cooling and this is supported by the majority of lake (eg Lake Leake and VVyrie Swamp, 

southeastern South Australia, Dodson, 1975; Dodson, 1977) and marine cores (eg SPECMAP; 

Harle, 1997). Throughout the period from 30 ka to 10 ka herbaceous vegetation dominates in 

southeastern Australia indicating cooler and drier conditions and this is supported by the JC-F1 

8 180 values becoming isotopically heavier. 

As previously discussed in Section 6.3.5 carbon isotope variations in cool, temperate climates may 

be interpreted predominantly in terms of changes in vegetation activity, with more negative values 

indicating higher levels of activity (Goede 	al., 1986; Desmarchelier and Goede, 1996). High 

values in the JC-F1 carbon isotope record indicate higher vegetation activity. 

Although the two JO-Fl minor element scans (Figure 5.19) roadly correlate there are several major 

differences between them which make it difficult to fully reconcile the isotopic record with the minor 

element results. In the JC-F1bb record the Sr/Ca and Ba/Ca ratios are low from approximately 45 

ka until they suddenly increase rapidly at 30 ka. The Mg/Ca ratio is the only minor element in this 

period that shows similar trends between the two samples. In the JC-F1 bb scan the Mg/Ca ratio 

gradually decreases from 45 ka to approximately 30 ka where it rises and falls sharply whereupon 

it stays relatively stable until deposition ceases, the JC-F1aa results have a similar pattern except-

they lack the spike feature present in JC-F1bb scan. Hellstrom (1998) has argued that variations 

in magnesium content may reflect changes in the relative residence time of cave seepage water. 

Given that the growth rate from 45 ka to 31 ka is low (2.9 mm ka -1 ) compared to a rate of around 

11 mm from 31 ka to 22 ka supports his suggestion that the Mg/Ca ratio in JC-F1 may be an 

indicator of variations in residence time but further investigation is required to test this. 

As has been mentioned previously, the middle period of JO-Fl deposition occurred between 

approximately 180 ka and 80 ka (01S 6 and 5) but several more TIMS 230Th/234U age 

determinations are needed before a definitive interpretation can be presented. However, some 

preliminary observations can be made about the isotope profile. It is suggested that a hiatus may 

occur in the period from approximately 150 ka to 130 ka and that the early period of JC-F1 growth 

corresponds to an interstadial in OIS 6, an event recorded in the SC-S11 stalagmite (Section 

6.5.5), and that deposition of JC-F1 restarted sometime after 130 ka. The remaining isotope 

results seem to follow the same trends as the Vostok temperature profile. 
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6.6. Conclusions 

6.6.1. LT Stalagmite Isotope Profile Conclusions 

The LT stalagmite isotope profile covers an interval of approximately 15 ka, a period equivalent to 

mid- to late- OIS 5. The LT stalagmite oxygen isotope profile broadly correlates with the variations 

in surface mean annual temperature at Vostok (Jouzel et al., 1993) and a deep sea sediment 

core, RC11-120 (Martinson etal., 1987). As indicated by the Vostok ice core record, temperature 

conditions were up to 4°C cooler than present mean annual temperature. Overall the pattern is 

for a cooling trend for the first two-thirds of the record followed by rapid warming for the remainder, 

these trends are mirrored in the Vostok temperature record and also the sea-surface temperature 

record from RC11-120 (Martinson et al., 1987). In the latter half of the LT 5 180 isotope record 

there are several isotopic "steps" of approximately 1 ka duration, it is difficult to tell whether they 

are related to local climatic events or to regional and/or global influences such as Dansgaard-

Oeschger oscillations (Dansgaard et al., 1993). 

Carbon isotope variations indicate changes in vegetation activity with less negative isotopic values 

believed to be related to decreased vegetation activity. Previous studies (Desmarchelier and 

Goede, 1986, Hellstrom, 1998) have shown that summer insolation strongly influences effective 

precipitation, high moisture availability favours vegetation growth and speleothem deposition, and 

therefore insolation changes will have had significant effects on vegetation activity and 

speleothem deposition. In the LT stalagmite 6' 3C results indicate that biological activity was 

greatly influenced by available moisture and temperature. The early part of the -carbon isotope 

record corresponds to an insolation peak at approximately 94 ka and falling 5 13C values indicate 

that vegetation activity was decreasing as summer insolation was increasing indicating that 

available moisture was declining. As summer insolation continued to fall temperature became a 

more significant effect in controlling available moisture. 

6.6.2. SC-S11 Stalagmite Isotope Profile Conclusions 

The depositional record appears to be continuous and extends from approximately 185 to 157 ka, 

representing a period of approximately 28,000 years. In the deep sea oxygen isotope chronology 

it is the period equivalent of the earlier part of MIS 6, the Penultimate Glacial stage, extending 

from approximately 128 ka to 195 ka (Bradley, 1985). The oxygen isotope record indicates that 

growth commenced under full glacial conditions but that rapid warming took place leading to a 

major interstadial between 178 and 162 ka with mean annual temperatures in the region similar to 

today. It is followed by rapid cooling until the record terminates at around 157 ka. A mean 

annual temperature change of approximately 8°C is indicated on the assumption that there has 

been no change in the isotopic composition of precipitation. The indication of present day 

temperatures at a time when global climates are known to have-been significantly cooler may be 

due to increased continentality associated with low sealevels. 

Vegetation changes have also been dramatic. Interstadial conditions are associated with an 

active vegetation cover dominated by C3 plants as is the case today but probably with conditions 
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of greater moisture availability as speleothem deposition was more abundant than as it has been 

during the Holocene (Ayliffe et al., 1998). Full glacial conditions in contrast appear to be 

associated with a sparse vegetation cover dominated by C3 grasses. 

When the record is compared to the precessional cycle (Berger and Loutre, 1991), it is found likely 

that C3 vegetation flourished at a time when seasonality was increasing. C4 vegetation became 

dominant either at, or soon after, summer insolation values reached their maximum, a condition 

that would favour their dominance (Teed and Stowe, 1976; Tieszen et al., 1979). High moisture 

availability during the growing season favours both vegetation growth and speleothem deposition 

and appears to be strongly influenced by precessional cycles (Baker et al., 1993a; Baker et al., 

1995; Goede, 1998). 

6.6.3. JC-F1 Flowstone Isotope Profile Conclusions 

The flowstone sample, JC-F1, from Jersey Cave, Yarrangobilly, New South Wales, has had three 

major periods of deposition and covers several key periods in the Late Pleistocence including OIS 

2, 3, 5, and 6. Several more TIMS 230Th/234U age determinations are required to improve the 

correlation with the OIS 5 and 6 chronology but the OIS 2 and 3 period are very well constrained. 

The oxygen isotope results suggest that a major interstadial occurred during OIS 3 and that it was 

significantly wetter in the area than during the interstadials of OIS 5. Several studies of lake and 

marine cores from eastern and southeastern Australia have suggested that the opposite may 

have been true. Since these records are poorly dated in comparison to the JC-F1 record their 

evidence remains equivocal. Differences between the sites may also reflect regional differences 

in moisture receipts but more investigation on other samples and sites is required to confirm this 

hypothesis. 

Carbon isotope variation in JC-F1 is related to vegetation activity, and, since biological response is 

closely related to moisture availability, summer insolation and temperature are key factors in 

determining this. The carbon isotope results of JC-F1 reflect sensitivity to insolation and 

temperature changes as higher .5 13C values, indicating increased biological activity and moisture 

availability, are associated with declining summer insolation values and vice versa. 
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Summary 

7.1. Summary 

The overall aim of this thesis has been to investigate palaeoenvironmental change using 

speleothems as an information source with a range of analytical procedures at the highest 

resolution that is technically possible. The first aim was to investigate the age distribution of 

speleothems in Tasmania and how it relates to past global climate changes. The study has 

contributed a significant number of new TIMS age estimates to the current set of Australian 

speleothem dates, however many more samples are required to assess how the frequency of 

speleothem deposition has varied over time (for example Baker et al., 1993a). The second aim 

was to compare several stable isotope profiles of speleothems with overlapping ages from 

different karst areas in order to investigate regional differences in past climate. It was 

anticipated that several speleothems with significant temporal overlaps would be found given 

the number of samples analysed by TIMS, but this was not the case and this particular aim was 

not fully achieved. However, the stable isotope results of three speleothems from 

Southeastern Australia have yielded some important information relating to past environmental 

conditions in the region. The third and fourth aim are essentially complimentary. The third was 

to examine the minor element composition of soda-straw stalactites as a proxy record for recent 

climate, and the fourth was to investigate the minor element composition of speleothems using 

continuous scanning and discrete ablation techniques. Several recent studies (Roberts et al., 

1998; Hellstrom, 1998) have shown the potential of laser ablation techniques to analyse the 

minor element composition of speleothems at very high resolution, in the order of tens of 

microns rather than millimetres, and to provide high resolution records of terrestrial 

palaeoclimate. In certain cases it is possible that sub-annual records may be resolved 

therefore potentially allowing comparison of speleothem records to instrumental records. 

7.1.1. Speleothem Age Determination 

Three different radiometric techniques were used to estimate the ages of speleothem samples, 
the  230T ,234 ni U TIMS method, the excess 210Pb technique, and the AMS radiocarbon technique. 

The first method was applied to speleothem samples from southeastern Australia and an age 

frequency histogram compiled (aim 1). The main assumption of the histogram method is that 

speleothem growth is wholly dependent on climate and not on any other factors. It is 

suggested that the dating of speleothem hiatuses may be a better method of identifying 

climate induced changes. The histogram results, consisting of 37 new TIMS uranium series 
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age estimates together with a number of other MS and aS age determinations from other 

studies, reveals some important clues on past moisture availability and the timing of glacial 

events in southeastern Australia especially during the last 50 ka. The timing of glacial maxima 

can also be inferred by the lack of speleothem growth. The age frequency results bear this out 

as there are two major periods in the last 200 ka where no speleothem growth occurs, from 

150 to 125 ka and from 22 to 19 ka, suggesting that severe climatic conditions during the 

Penultimate Glacial may have been of much longer duration than during the Last Glacial. 

Several technical problems with the other two dating methods has prevented any meaningful 

results from being obtained. The main difficulty with the excess 210Pb technique has been not 

to pre-treat the samples by washing the inside and outside surfaces of the soda-straw 

stalactite with dilute acid prior to analysis thereby avoiding contamination by atmospheric radon 

plating out onto the exposed surfaces. There is also the problem of sample selection and the 

lack of knowledge of the factors controlling the sources and supply of the parent and daughter 

isotopes to the speleothem. The application of AMS radiocarbon dating was not entirely 

successful and is mainly due to restrictions in the number of samples that could be analysed. 

The main observation from the study is that the assumption of a linear growth rate may not be 

appropriate in accounting for the dead carbon proportion (dcp) in speleothem calcite. Major 

disturbances, such as fire or forestry activities, may have significant impacts on the soil organic 

matter (SOM) turnover and therefore the 14C activity of speleothem calcite (for example Genty 

etal., 1998). However, the experience gained from this study will help future work utilising 

these techniques. 

7.1.2. Minor Elements in Speleothems 

The application of laser ablation ICP-MS to speleothems (aim 4), namely soda-straw stalactites, 

stalagmites, and flowstones, has allowed investigation of the variations in their minor element 

composition encompassing three different temporal scales, interglacial/glacial (10 4-10 5  years), 

millenial (103-104  years), and secular (<102-10 3  years), at extremely high resolution. Four 

elements: magnesium (28Mg), strontium (88Sr), barium ( 13813a) and uranium (238U) were selected for 

analysis as they were found in suitable concentrations for analysis and gave reproducible 

results from duplicate measurements. Nearly all samples showed high positive correlations 

between the Sr and Ba results suggesting that strontium and barium concentrations are 

controlled by the same environmental parameters at all temporal scales, this appears not to 

hold true for Mg and U. At the secular scale the elements seem to be responding to seasonal ' 

changes in the acidity of the seepage water, responding to changes in the PCO2 and 

biological activity of the soil and vegetation above the cave. At the higher temporal scales 

several factors may be operating to produce discernible changes in the minor element 

composition of speleothems but the traces must be compared with other palaeoenvironmental 

records in order to narrow down the dominant factors (see Hellstrom, 1998 for an example). 

Lateral variations in speleothem minor element composition have also been investigated by 

laser ablation ICP-MS and the results indicate that significant lateral variations can occur in 

stalagmites and flowstones due to the nature of their formation while soda-straw stalactites 
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show only very minor lateral differences. Further investigation is required on the lateral 

fluctuation of absolute concentrations. 

The most significant results of the thesis have come from the study of the soda-straw 

stalactite, FC-SS5, which shows distinct cyclicity in its minor element content (aim 3). No other 

study using speleothems as an information source has demonstrated annual cyclicity in the 

minor element composition of speleothems along the entire length of the sample. The study 

also highlights the potential that LA-ICP-MS has in the analysis of minor elements in 

speleothems due to its relative speed and ease of sample preparation. A new method of 

dating was developed based on the autocorrelation of quasi-periodical minor element 

variations and the surface banding present on some soda-straw stalactites. Two 

chronologies were developed by two independent methods mentioned previously and they 

agreed to within 5%. Comparison of minor element results with instrumental climate data did 

not yield any significant correlation but this may be due to the climate stations for which data 

were available being located at some considerable distance from the cave in an area with a 

local relief of approximately 1,000 metres. 

7.1.3. Stable Isotopes in Speleothems 

Stable isotope profiles from three speleothems from southeastern Australia have yielded 

'important palaeoenvironmental information particularly on regional differences in moisture 

availability and the timing of glacial events (essentially aim 2). These profiles were compared 

with several other palaeoenvironmental proxy records. While a certain degree of conformity 

exists between them, there are significant differences that may either be attributed to regional 

differences in moisture availability or to problems with the age-distance model of the proxy. 

Temporal control was Orovided by multiple high precision 230Th/234U age determinations. 

The LT stalagmite isotope. profile covers an interval of approximately 15 ka, a period equivalent 

to mid- to late- Oxygen Isotope Stage (01S) 5. The LT stalagmite oxygen isotope profile 

broadly correlates with the variations in surface mean annual temperature at Vostok (Jouzel et 
al., 1993) and a deep sea sediment core, RC11120 (Martinson etal., 1987). Overall the 

pattern is for a cooling trend for the first two-thirds of the record followed by rapid warming for 

the remainder, these trends are mirrored in the Vostok temperature record and also the sea-

surface temperature record from RC11-120 (Martinson et al., 1987). In the latter half of the LT 

8 180 isotope record there are several isotopic "steps" of approximately :1 ka duration, it is 

difficult to tell whether they are related to local climatic events or to regional and/or global 

influences such as Dansgaard-Oeschger oscillations (Dansgaard et al., 1993). In the LT 

stalagmite 8 13C results indicate that biological activity was greatly influenced by available 

moisture and temperature variations. The early part of the carbon isotope record corresponds 

to an insolation peak at approximately 94 ka and falling 8 13C values indicate that vegetation 

activity was decreasing as summer insolation was increasing indicating that available moisture 

was declining. 

The depositional record for SC-S11 from Naracoorte, South Australia appears to be continuous 

and extends from approximately 185 to 157 ka, representing a period of approximately 28,000 

172 



Chapter 7 Summary 

years, a period equivalent to the earlier part of Marine Isotope Stage 6, the Penultimate 'Glacial 

stage, extending from approximately 128 ka to 195 ka (Bradley, 1985). The oxygen isotope 

record indicates that growth commenced under full glacial conditions but that rapid warming 

took place leading to a major interstadial between 178 and 162 ka with mean annual 

temperatures in the region similar to today. It is followed by rapid cooling until the record 

terminates at around 157 ka. Carbon isotope variations indicate that vegetation changes have 

also been dramatic. Interstadial conditions are interpreted to be associated with an active 

vegetation cover dominated by C3 plants as is the case today but probably with conditions of 

greater moisture availability as speleothem deposition was more abundant than as it has been 

during the Holocene (Ayliffe et al., 1998). When the record is compared to the precessional 

cycle (Berger and Loutre, 1991), it is found that C3 vegetation flourished at a time when 

seasonality was increasing. C4 vegetation became dominant either at, or soon after, summer 

insolation values reached their maximum, a condition that would favour their dominance (Teeni 

and Stowe, 1976; Tieszen etal., 1979). High moisture availability during the growing season 

favours both vegetation growth and speleothem deposition and appears to be strongly 

influenced by precessional cycles (Baker et al., 1993a; Baker et al., 1995; Goede, 1998). 

The flowstone sample, JC-F1, from Jersey Cave, Yarrangobilly, New South Wales, has had 

three major periods of deposition and covers several key periods in the Late Pleistocence 

including OIS 2, 3, 5, and 6. Several more TIMS 230Th/234U age determinations are required to 

improve the correlation with the OIS 5 and 6 chronology but the OIS 2 and 3 period are very 

well constrained. The oxygen isotope results suggest that a major interstadial occurred during 

OIS 3 and that it was significantly wetter in the area than during the interstadials of OIS 5. 

Several studies of lake and marine cores from eastern and southeastern Australia have 

suggested that the opposite may have been true (for example Harle, 1997; Harle et al., 1999). 

Since these records are poorly dated in comparison to the JC-F1 record their evidence remains 

equivocal. Differences between the sites may also reflect regional differences in moisture 

receipts but more investigation on other samples and sites is required to confirm this 

hypothesis. Carbon isotope variation in JC-F1 is believed to be related predominantly to 

vegetation activity, and, since biological response is closely related to moisture availability, 

summer insolation and temperature are key factors in determining this. The carbon isotope 

results of JC-F1 reflect sensitivity to insolation and temperature changes as higher VC values, 

indicating increased biological activity and moisture availability, are associated with declining 

summer insolation values and vice versa. 

7.2. Significance of the Research 

Several aspects of this research project have used high-resolution analysis techniques to 

produce new and encouraging results which will aid future palaeoenvironmental investigations 

using speleothems, particularly in the study of minor elements in speleothem carbonate. It has 

demonstrated the potential of laser ablation ICP-MS to easily and quickly analyse the minor 

element composition of speleothem carbonate. An exciting development for future 

speleothems research is the next generation of ICP-MS which allow the analysis of the 
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isotopes of stable minor elements. The presence of annual banding of surface ridges and 

minor elements in soda-straw stalactites was confirmed by novel use of dendrochronological 

tools and laser-ablation ICP-MS. These results are highly significant as they indicate that it 

may be possible to use soda-straw stalactites to investigate very recent palaeoenvironmental 

change and to calibrate speleothem records against modern instrumental records. The age 

histogram results have expanded our understanding of past climate changes and how they 

have influenced the southeast Australian region. The numerous TIMS age estimates will add 

to the current speleothem age database but many more results are required. The stable 

isotope results of JC-F1, a flowstone from Jewel Cave, Yarrangobilly, show that this karst area 

has great potential for significantly more palaeoenvironmental research. 

7.3. Suggestions for Future Speleothem Research 

Several studies, including this one, have observed significant variations in the minor element 

composition of speleothem calcite. While a number of studies have successfully demonstrated 

that they are related to palaeoenvironmental changes, very few have looked at the 

contemporary context. Any future study of minor element variations should aim to somehow 

calibrate the present day signal by analysing several of the variables; such as surface, soil, 

and cave temperature, precipitation, evaporation; over a one to two year period, preferably 

longer if possible, and to compare these environmental variables to the minor element 

composition of contemporaneous calcite. 

Further refinement of the excess 210Pb and radiocarbon dating techniques as they are applied 

to speleothems is required. The main problem with the excess 210Pb method applied to soda-

straw stalactites is in isolating the original content from contamination by later deposition on 

inner and outer surfaces. 

One avenue of speleothem research which has only recently begun to receive any attention is 

the stable isotope composition of various minor elements, for example strontium. It may be 

possible to gain valuable insights into past environmental change using the isotopic ratios of 

other elements such as magnesium or barium. 
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