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Thesis Outline 

Chapter I examines current vsage and 
existing theory of switching amplifieni, . Areas where 

existing or potential usage extend beyond published 

theory are defined, the most important area being the 
lack of adequate switching wave descriptions. The 
work aimed at redressing the imbalance between theory 
and practice is described and its relationship to the 

thesis outlined. 

In Chapter II the steps necessary to f orm 
a switching wave description are outlined. The 
amplifier features incorporated include details of the 
encoder, the switch array, and the control signals 
which flow between encodar and switch array. The 
input-output characteristic and other design features 
are combined with the requirements of the encoder and 
switch array to define xastrictions on the switch 
control signals and the switching wave. 

In Chapter III detailed switching waveform 
descriptions are derived for waves controlled by 
natural samplers, modified natural samplers, and 
regular samplers. The low frequency components of 
the descriptions are used to define the sampling wave 
shapes needed to achieve specific input-output 

characteristics for amplifiers with both d.c. and a.c. 
supply waveforms. A modified natural sampler is 

described which permits compensation for arbitary 

supply waveform perturbations. The high frequency 
components of the waveforms are an important by-product 
of the method of derivation. 



In Chapter IV the fidelity of information 
transfer through switching amplifiers is examined. 
The waveform descriptions are used to evaluate the 
spectrum of passband noise for natural and regular-

sampling control with both d.c. and a.c. supplies. 
The inter-relationship between signal quality, band- 
width, and sampling rate is derived for each amplifier, 

and comparisons are made between amplifiers. 

Chapter V provides a basis for the analysis 
of the low frequency performance of switching amplifiers 
embedded in feedback networks. The application of the 

analysis to amplifiers using any form of natural 
sampling is demonstrated and the extension to regular 
sampling outlined. The method described also provides 

criteria not previously described elsewhere. 

ch2EI212_yi deals with the class of self-
oscillating encoders based on a linear filter feedback 
path and a comparator with hysteresis. The performance 
limits of the simplest system are described. A method 
for predicting the d.c. input-output characteristic of 
all such encoders is presented and its application to 
two particular encoders discussed. 

Chapter VII describes a switching amplifier 

from the point of view of energy flow from source to 
load. The restrictions on amplifier structure and 
performance imposed by this view, andby real components, 

are outlined and some of the limits imposed by present 
hardware briefly discussed. An equivalent circuit for 
the energy flow path incorporates many of the features 
discussed. 



Chapter VIII  is a review of the material 
presented in previous chapters. Emphasis is on 
presenting the design tools which result from the 

attitudes and methods incorporated within the thesis. 
The chapter concludes with a brief look at those 
areas where theory or practice remains inadequate, 
thus providing direction for further research. 
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CHAPTER 1. 

AN INTRODUCTION 

Chapter 1 reviews current literature on 
switching amplifiers and allied topics. The 
incomplete and often inadequate past treatment in 
this area has prompted further research in an 
attempt to bridge the gap between theory and 
practice t and to extend the range of useful design 
criteria. 

In section 1.1 a survey of switching 
amplifier attractions, Potential usage, and 

limitations indicates the need for additional 
research in the area of information transfer from 
input signal to switching wave. Common switching 
waves and the terminology used throughout the 

thesis are presented in section 1.2. This back-
ground information is used in the literature survey 
of section 1.3 to pinpoint those areas where 
descriptions of existing waveforms are inadequate 
or non-existent. The research activities initiated 
by the omissions of existing waveform descriptions 
are indicated in section 1.4. Section 1.5 contains 
a brief outline of the relationship between the 
research and the contents of the thesis. 
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1.1. 	The Research Area 

1.1.1. Attractions of Switching Amplifiers. 

As a device for power control the switching 

amplifier has one major advantage over conventional 

amplifiers, namely its potential efficiency. A 

conventional amplifier uses its active devices (valves, 

transistors, etc.) as complements to the load in the 

power circuit. The resulting dissipation of power in 

these active devices is of the-same order of magnitude 

as that in the load. Control of the energy flow by 

this method is inherently inefficient. A switching 

amplifier uses its active devices as switches. These, 

and a filter, are in series with the load in the power 

circuit. Since ideal switches and filters are lossless, 

the potential efficiency of this form of amplifier is 

very high. In practice, efficiencies as high as 99% 
have been attained. 

This high efficie ncy has an important 
corollary, namely that a given active device can control 

a much larger energy flow when used in a switching 

amplifier than the same device when used in a conventional 

amplifier. This is possible only because the switch 

losses are very much less than the total energy flow. 

1.1.2. Principle of Ooeration.  

It is convenient to regard any amplifier as 

involving two flow paths: an energy flow path and an 

information flow path. Signals in the information flow 

path control the energy transmitted by the energy flow 

path. In a switching amplifier the flow paths meet at 

the switch array which forms the heart of the amplifier. 

The confluence of the flow paths is apparent in 

diagram 1.1.2 which also indicates the interconnections 

between the major subsections of an idealised switching 

amplifier. Note that the energy flows from the source 
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(supply) to the energy sink (load) via the switch 

array and output filter. Information abstracted from 

the control signal by the encoder flows to the switch 

array where it is impressed upon the energy flow. As 

already indicated the controlled energy flow generated 

by the switch array then passes through the filter to 

the load. 

From the control signal the encoder generates 

switch control signals which determine the duration of 

closure of the elements of the switch array. This 

enables the interaction of the switch array with the 

supply to create a switching wave, the spectrum of 

which will be determined in the first instance by the 

switch control signal and ultimately by the control 

signal processed by the encoder. The control signal 

defines the amplifier output, since this output is 

determined by the spectrum of the switching wave and 

the frequency response of the filter, 

The above description of a switching amplifier 

has been deliberately phrased in general terms because 

in theory the principle of synthesising and filtering 

a switching wave can be applied to the control of any 

energy flow. In practice, the application may be 

limited by the availability of appropriate switches 

and filters. 

While this discussion is confined to 

electronic amplifiers, it is possible to envisage 

analogous mechanical systems which embody this method 

of achieving an amplifier (see for example, 

appendix A 1.1.2.). 

1.1,3. Limitations 

The encoder, the switch array, and the oUtput 

filter each impose limitations on the performance of the 



1.04 

complete amplifier. The encoder circuitry imposes 

mutually dependent limits on the ratio of bandwidth 

to switching wave frequency and on the quality of 

reproduction of the amplifier. The switch array 

limits the efficiency, maximum frequency, and power 

control capacity of the switching wave. The output 

filter imposes mutually dependent limits on the 

mass*, efficiency and power transfer capacity. 

If these limits are traced to their sources 

they are found to arise from the properties of 

individual components and from the organisation of 

these components relative to one another. In a 

switch array or output filter the optimum organi- 

sations of components are well defined so that improve-

ments to these subsections must await developments in 

the fields of semi-conductor or electro-magnetic 
materials. In the encoder,limitations imposed by 

component technology are minimal. Existing hardware 
is sufficiently fast and powerful to implement all 

the known encoding techniques without significantly 

limiting amplifier performance. The limits imposed 

by encoders are those of the encoding method employed, 

not those of the components. Thus the performance 

limits of existing amplifiers can be traced to 

component technology in the switch array and filter, 

and to the encoding methods used to control the 

switching wave. 

1.1.4. Research  Area  Selection. 

The surplus capacity of encoder components 

gives this subsection the potential to be more complex. 

This tempts one to look for new encoder techniques, 

ones which increase the bandwidth or output signal 

quality attainable with present day switch and filter 

* physical mass of the filter assembly. 
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components. However not enough is known about many 

waveforms to clearly establish the limits of their 

encoding techniques. This makes it difficult to 

compare existing encoder limitations and thus to 

assess the value of new encoding techniques. 

Accordingly I the primary aim of the research was to 

• generate descriptions of all existing switching waves, 

descriptions which enable encoder techniques to be 

compared and thus characterised. A secondary aim was 

to use any increases in understanding of encoding 

techniques to form and evaluate new encoding methods. 

The remainder of chapter I is concerned with 

establishing the extent of existing waveform 

descriptions and the consequent direction of the work 

presented in this thesis. 

1.2. 	Switching Waveform Terminology_and Practice. 

1.2.1. Background of Waveform Synthesis. 

The way a switching wave is synthesised 

determines many of the important characteristics of 

the performance of the switching amplifier. This 

passage is intended to provide a background where 

each of the important, classifications of switching 

waves are discussed briefly. The Dim is to give the 

reader an intuitive grasp of the essential feature of 

all switching waves, that is their ability to provide 

a component, suitable as an amplifier output signal, 

and separable from other components by the filter. 

Terminology 

The switching wave, applied to the filter, 

may be either a voltage or current wave. This depends 

upon the type of energy source used. Since voltage 

sources are more common than current sources the more 

common switching waves are voltage waves. For this 
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reason there are many parts of the text where the word 

voltage may be replaced by the word current with no 

loss of meaning. Due to the analogy between electrical 

and mechanical systems these words may even be replaced 

by force and velocity since what is really discussed is 

the generation and processing of signals. 

Mechanics  

.There is no unique way to synthesise a given 

type of voltage wave using voltage sources and switches, 

however, to illustrate the following discussion it is 

helpful to have one means as an aid to understanding. 

Diagram D 1.2.1 shows an arrangement of switches and 

supplies suitable for this purpose. The operation of 

the circuit is as follows. At any instant only one 

switch is closed so that the voltage wave at the node 

traces the associated supply voltage. By Connecting 

the node to each supply in turn a switching wave with 

•Liree levels is formed. This type of structure may be 

extended to any number of supplies greater than one. 

The supply voltage waveforms define the switching 

wave during the intervals between steps. These wave-

form "levels" are important features of the switching 

wave and are used to classify switching waves. 

1.2.1.1. D.C. Levelled Waves.  
The d.c. levelled switching wave produced by 

the supply and switch array of diagram D 1 • 2.1.1a has 

levels of zero and E. A wave produced by this array 

has an average or d.c. component with value dependent 

on the proportions of a waveform cycle. The component 

is a fraction of E corresponding to the fraction of 

time for which the switching wave has the level E. 

This component has all the desirable characteristics 

of an output component since it can be filtered from 
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the remainder of the wave by a low pass filter, and can 

be controlled by the waveform proportions. 

There Ire many possible ways of arranging the 

control of waveform proportions but relatively few are 

commonly used and have distinctive names. The dominant 

characteristics of these are listed below and 

illustrated by diagram D 1 0 2 0 1.1b. 

Pulse width modulation has a waveform with 

constant frequency. The average output is proportional 

to the pulse width. 

Pulse frequency m3dulation has a waveform 

frequency proportional to output component. The width 

of pulses is constant. 

Pulse phase modulation is similar to pulse 

frequency modulation but since, the average frequency is 

constant it is incapable of generating a d.c. output 

component. 

The best known asynchronous system, other 

than pulse frequency modulation, has several names 

including Constant Area Sampler and PDM/PFM due to its 

independent use by a number of researchers. 

1.2.1.2. A.C. Levelled Waves 

The most common a.c. levelled waves have two 

or more symmetrically phased supplies of constant 

frequency. These are synchonously modulated by either 

pulse phase or pulse width modulation to produce 

switching waves with d.c. components controlled by the 

phase of the switching instants relative to the phase 

of the supplies. Diagram D 1.2.1 0 2a illustrates the 

two types of modulation for the two supply case. 

Other possible forms of modulation of a.c. 
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supplies include those shown in diagram D 1.2.1.2b. 

These forms are not considered in the thesis. 

1.2.2, Control of the Switching Wave. 

The switching wave is cyclic. The positions 

of the steps relative to one another during each cycle 

control the output component. To control the switching 

wave the input signal, or a signal derived from the 

input signal, issampled at least once per switching 

wave cycle. The signal level at the sampling instant 

controls the position of one or more steps of the cycle. 

In this way the amplifier input signal controls the 

relative phase of each of the steps during each cycle 

of the switching wave. 

Three basic classes of sampling are employed. 

The two better known, natural and regular sampling, 

generate fixed frequency waves, the third, an unnamed 

class, generates variable frequency switching waves. 

For regular sampling the phase of the sampling 

instant is fixed. The value of the sample controls the 

phase difference, or time delay, betwc.en the sampling 

point and the step or steps of the switching waves. 

A switching wave step, controlled by natural 

sampling, occurs at the instant the input signal satisfies 

a periodically varying condition. That is the step and 

sample occur at the same instant. 

The third unnamedclass of sampling is used by 

fm. coders, constant area samplers and other similar 

asynchronous coders. In essence steps in the switching 

wave occur when a signal derived from both coder input 

and coder output satisfies some condition. For example, 

the constant area sampler has positive steps when the 
integral of the difference between input and output 
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signal reaches a minimum critical value, and negative 

steps when the integral reaches a maximum critical value. 

This short introduction to waveform synthesis 

has outlined the common switching waves and sOme-of the 

control techniques used with them. The waveforms 

discussed should be considered as examples of a much 

wider class of switching waves since they do not include 

waveforms associated with many d.c. supplies or a.c. 

supplies with asymmetrical phases or d.c. components, 

or other variants of the simplest supply waveforms. 

Associated with variants of supply waveforms are 

modifications to the basic control techniques. The 

discussion has ignored these and a whole class of 

switching waves where the amplifier input is used to 

control not the d.c. component of the switching wave 

but one of the various harmonics of the switching wave 

cycle frequency. 

1.2.3. Common Switch  and Filter Arrangements. 

Common switching amplifiers use only a few 

switch array structures and a limited number of 

combinations of switch arrays and filters. These are 

outlined briefly below. 

1.2.3.1. Basic D.C. Supplied Array.  

Two switches are used with two supplies, one 

of which may be zero, to produce a switching wave with 

characteristics matching those of the waveforms of 

diagram D 1.2.1.1b. The voltage range of the low 
frequency component of the wave may be varied from one 

supply voltage to the other. The first and other 

harmonics may be varied in amplitude, phase, and 

frequency. A convenient representation of the circuit 

is shown in diagram D 1 • 2.3.1 •  The switches are 
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usually combinations of transistors and diodes, or 

thyristors with associated forced commutation networks. 
Valves have been used. 

1.2.3.2. Basic A.C. Supplied Array. 

Symmetrical phases of a single frequency sine—

wave voltage source are usually used in conjunction with 
a switch structure corresponding to diagram D 1.2.1. 

Two, thred, six and twelve phase systems are used in 

conjunction with thyristor switches to produce waveforms 

similar to those of diagram D 1.2.1.2a. Natural and 

forced commutation are both employed. Diagram D 1 • 2 • 3.2 

shows a convenient representation of the circuit. 

1.2.3.3. Combined Structures. 

Series Connection  

D.C. supplied arrays are often paired in the 

manner shown in diagram D 1.2.3.3. This bridge circuit 

is a form of "series connection which doubles the output 

range but requires no extra supplies. By suitable 

phasing of the switching waves produced at the nodes 

this arrangement can produce waves with three levels 

across the output terminals of the array. The frequency 

of this wave is twice the cycle frequency of any switch 

in the system. 

The same procedure may be used with a.c. 

supplied amplifiers though this is less common. The 

major disadvantage is that the output of the amplifier 

is floating with respect to the supply sources. 

Series connections of more than two units are 

rare since the supply sources can no longer be common 

and care must be taken to ensure that reverse voltages 

on switches cannot occur. 



Parallel Connection 
The terminals of independent arrays cannot be 

directly connected in parallel since each array would 

be short circuited by the others. After individual 

filtering switching amplifier outputs may be paralleled 

provided the outputs are similar in the filter passband 

regions of their spectrum. Provision must usually be 

made to prevent excessive circulatory currents between 

the amplifiers. Paralleling of amplifier outputs is 

used to increase output current, to reduce filter size 

by harmonic cancellation, and to provide bidirectional 

output current from pairs of complementary amplifiers 

each capable of unidirectional current output. 

Provided measures are taken to limit 

circulatory currents any number of amplifiers may be 

paralleled. 

1.3. 	Switching Waveform Literature. 

Descriptions of the waveforms within a 

switching amplifier are important for optimising the 

amplifier design. For this reason these waveforms have 
a central role in switching amplifier theory. The 

following review of the literature concerning these 

waveforms is intended to demonstrate how this role has 

developed in the past. It also defines the limitations 

of present waveform descriptions and indicates areas 

where future development is needed. The latter aspect 

leads naturally to an outline of the material embodied 

by this thesis. 

1.3.1. Linear Natural Samolers 

Three authors i '  2 ' 
 3 have produced descriptions 

of a wave with two d.c. levels for which the steps 

between these levels are controlled by "linear" natural 

sampling. The word linear is used here to indicate that 
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sampling waves employed by this encoder are periodic 

waves composed of two ramps, that is the sampling waves 

are piecewise linear. These authors appear to have 

developed their descriptions independently and 

consequently there is considerable variation in their 

approach to describing switching waveforms. 

BennetI formulated his description first as 

a double fourier series each coefficient being a double 

fourier integral with one integral having special 

integration limits, limits embodying the modulating 

signal as a sinewave function of time. This formulation 

is very-abrupt and does not show how the modulation 

process and the waveform de s cription are related to one 
another. 

Fitch2 and Kretzmer 3 based their initial 

development of descriptions on the conditions prevailing 

at the sampling instant, that is the instant at which a 

switching wave step is formed. Fitch used this 

information to formulate a similar double fourier series 

to that of Bennet. In contrast Kretzmer matched the 

conditions for a step in the switching wave with the 

conditions for a step in a periodic ramp, periodic with 

respect to an index which was a function of time rather 

than time itself. The matching process enabled this 

function to be determined in terms of the modulating 

signal so that by adding two opposite polarity ramps, 

one with positive steps •the other with negative steps, 

a 'complete description of the switching wave was 

synthesised. This description incorporated the modulation 

as an arbitary non-periodic function of time. Although 

this description can be generated by the approaches used 

by Bennet and Fitch this potential is camouflaged by 

their early adoption of periodic sinusoidal modulations. 
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Thus while Bennet was able to demonstrate a freedom 

from harmonic distortion and Fitch a freedom from 

intermodulation products Kretzmer was able to 

demonstrate the modulator linearity for any input 

signal. 

The waveforms actually used in class D 

amplifiers employing "linear" natural sampling are 

good approximations to those described by the similar 
expressions developed by Bennet, Fitch and Kretzmer. 

Consequently they have been widely used as a basis 

for switching amplifier design and for comparison 

with other amplifiers. 

The class D amplifiers designed by Mi1ler4 

and later by Bell and Sergent5 used these descriptions 

as the basis for the choice of sampling wave and for 

the design of the output filter. 

The descriptions allowed these designers to 

make necessary compromises between parameters such as 

amplifier bandwidth, amplifier output stage losses, 

amplifier sideband noise, and sampling rate. The 

design processes used by these authors can be applied 

to any switching amplifier design but accurate 

algebraic descriptions of the switching wave or 

equivalent bodies of experimental measurements are 

essential. 

1.3.2.  Linear Regular Sampling.  

Before continuing this review of natural 

sampling with the topic of "nonlinear" sampling waves, 

mention must be made of "linear" regular sampling. 

Black 6, in his book "Modulation Theory", published a 

• description, attributed to Bennet, of a two levelled 

wave employing regular rather than natural sampling. 

As for his description of the wave prcduced by the 
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natural sampler the modulation described is sinusoidal. 

This description appears to be the only one in the 

literature. It can be employed in the same manner as 

those of natural sampling to yield the important 

design interrelationships employed by Miller
4 and Bell 

and Sergent5 . 

1.3.3. Non-Linear Control of Switching 

Waves with two D.C. Levels.  

Brit7 pointed out that class D amplifiers need 

not be confined to triangular or ramp sampling waveforms 

but can employ other periodic waveforms to give non-

linear input-output characteristics. The same point is 

made by Turnbull and Townsend 8 in a more general 

discussion. Neither of these papers attempt to describe 

the associated switching waves in a manner corresponding 

to the earlier descriptions of Bennet, Fitch, or Kretzmer. 

1  3.4. Control of Waves with many D.C. Levels.  

Switching waves with more than two d.c. levels 

may be produced by several means. Pitman, Ravas, and 

Briggs9 used the paralleled outputs of several amplifiers 

with staggered phasing of the associated switching waves 
to produce an amplifier with a virtual multilevelled 

wave. The multilevelled switching wave has also arisen 

in the field of positional sensor arrays possessing 

quantizer like input-output characteristics. McVey 10 

and Chen11 have investigated the linearisation of such 

detectors by perturbing the input signal to the array 

with both sinusoidal and triangular vibrations. The 

electrical analogue is natural sampling with a guantizer 

as the switch control characteristic. The induction 

motor drives described by Pollack
12 employ multilevel 

waves controlled by natural sampling. 
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Of the multilevelled waves controlled by

•natural sampling f all but those of McVey and Chen use 

linear sampling waves and can also be synthesised by 

adding together a number of two levelled waves with 

separate but phase related natural samplers. 

Consequently i their switching wave descriptions can also 

be formed by adding the descriptions of their component 

waveforms. Although Pitman, Ravas, and Briggs obviously 

appreciated this they do not appear to have used such a 

synthesised description to estimate the undesirable 

passband components of the switching wave. The quantizer 

generated waves are not described in the switching 

amplifier literature. 

1.3.5. Control of  Waves  with A.C. Levels.  

The principles of cyclo-converters and 

controlled rectifiers were established very early but 

widespread recognition of these as amplifiers was 

inhibited until the advent of semiconductor switches. 

Milnes 13 foreshadowed the current development as early 

as 1965. McVey and Russel 14 investigated power supplies 

based upon a thyristor-switched sinusoidal supply and 

a nonlinear, natural sampling, controller. Barton and 

Birch15 described an impressive linear amplifier using 

natural sampling to control a thyristor array. 

malensini 16 developed a simple but effective generator 

of sanpling waves suitable for the linear control of 

all the thyristor generated sine-levelled switching 

waves. Evans 17 carried this process further to a fully 

protected linear amplifier similar in scale to that of 

Barton and Birch. 
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1.3.6. Note about Nonlinear Control.  
The rapid practical development of the useage 

of nonlinear sampling waves has proceeded solely on the 

basis of the d.c. input-output characteristic. By 

correlating the d.c. component of the switching wave 

with the phase angle of the steps in the wave the shape 

of sampling wave required to give a linear characteristic 

is easily established. However this approach cannot 

predict the a.c. input-output characteristic or the 

magnitude of switching frequency sidebands. In this 

area practical amplifiers outstrip the theory of 

switching waves. 

1.3.7. Natural Samolinq in the Presence of 

Feedback. 

Switching amplifiers are well suited to power 

amplification and this may be expected in such roles as 

motor drives and regulated power supplies. Many of these 

roles require the amplifier to form part of a feedback 

loop (pathway). These situations introduce a 

fundamental difference between conventional and 

switching amplifiers for it is impossible to apply 

directly the normal rules of feedback to switching 

amplifiers. 

For both natural and regular sampling the 

difficulty arises because the feedback signal to the 

switching amplifier input contains components at the 

same frequency as the sampling wave. These components, 

which come from the switching amplifier output, 

effectively change the shape of the sampling wave and 

thus change the input-output characteristic of the 

switching amplifier. The resultant changes in loop 

gain and linearity make feedback calculations of system 

stability and accuracy both interactive with loop gain, 

and signal dependent, and so vastly more complex than 

normal feedback computations. 
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The situation is complex for purely d.c. loop 

signals but this complexity is magnified when a.c. 

signals are considered for then each harmonic of the 

switching wave becomes split into many sidebands each 

of which is filtered differently so that the effective 

sampling wave becomes even more signal dependent and 

thus less amenable to accurate description. The 

situation can be further complicated by the phenomenon 

known as subharmonic instability. 

If the signal frequency is an integral sub-

multiple of the sampling frequency then two sidebands 

of each switching wave harmonic will match the input 

signal in frequency. The relative phasing of these 

components, which is set by the phasing of the input 

signal with the sampling wave(s), controls the 

effective input signal and thus the nominal amplifier 

gain at these frequencies. This results in the 

amplifier possessing a range of phase and gain values 

at each subharmonic frequency thereby complicating 

the concepts underlying the principles of feedback to 

a higher degree. 

Despite the fundamental role played by feed-

back ripple in changing the low frequency input-output 

characteristic of a switching amplifier .  this aspect 

of feedback is not discussed in the literature. The 

nearest approach is made by Fallside
18 in a paper 

concerning the half subharmonic instability of a 

thyristor amplifier. 

In the establishment of ad instability bound 

the analysis includes the input signal components due 

to feedback of the switching wave. Despite this no 

mention is made of the change in the input-output 

characteristic even though the analysis appears to be 
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calculating the slope of this characteristic in order 
to establish the stability criterion. The omission of 

this topic from the literature is difficult to comprehend 
since any exrerimental measurement of the input-output 

characteristic of the amplifier, after it is included in 

a feedback loop, will reveal the change in characteristics 

produced by the feedback ripple. One would expect these 

measurements to have been made by many designers checking 

the accuracy of their calculations. 

The several papers concerning subharmonic 

instability indicate a greater awareness of this aspect 

of the performance of feedback loops containing switching 

amplifiers. Fallside 18 has investigated the subharmonic 

stability of natural samplers used with controlled 

rectifiers in power supplies. This paper is concerned 

with the onset of instability. A later paper by Fallside 

and Farmer 19  concerns the use of describing functions as 

a means of predicting the onset and limit cycles of sub-

harmonic oscillations. Furmage
26 has examined equivalent 

aspects of the class D amplifier using similar approaches 

to the problem. All these analyses are of necessity 

approximate snd the accuracy of predictions is not high 

so that critical designs must be tested experimentally 

rather than relying upon theoretical analyses. In spite 

of these limitations, the results are useful since they 

can predict the direction of trends towards or away from 

stable operation and can thus yield useful qualitative 

information. 

1.3.8. Self  Oscillating Encoders 

All the encoders discussed here are used to 

control waves with two d.c. levels. The output switch 

positions are determined by a level detector, usually a 
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schmitt trigger though under certain conditions a 

comparator with zero hysteresis may be used. The level 

detector is provided with a signal representing the 

error between the outputs of two linear filters, one fed 

by the input signal and the other fed by the amplifier 

output. This structure is arranged so that any change 

in the error beyond one bound of level detector will 

cause the output to change state and so eventually 

cause the error to move towards the opposite bound of 

the level detector. When the error reaches this bound 

the process is reversed and the resulting oscillation 

forms a switching wave. The error between the filtereri 

switching wave and the filtered input signal is thus 

confined to within a definite error range and so the 

switching wave is forced tc adjust to a match with the 

input signal. 

The most convenient way to classify these 

encoders is on the basis cf the type of filter used to 
provide the switching wave component of the error signal. 

This same filter is usually used for the input signal as 

well. The actual matching of input signal and switching 

wave is then made at the filter input. The following 

reviews of the various papers in this field are 

classified by the type of filter used. 
20 

Shaefer 	investigated the encoder employing 

an integrator as the filter element. His interest arose 

from considerations of the use of pulsed jets in the 

attitude control systems of space vehicles and resulted 

in his comparison of the above system with other forms 

of switching wave. Among the desirable aspects of the 

encoder he included: finite output stage bandwidth, low 

complexity, and excellent input-output linearity for d.c. 

signals. His analysis included a computation of the 
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parabolic relationship between d.c. input signal level 

and oscillation frequency. He concluded that this encoder 

is preferable to both pulse width and pulse frequency 

modulation on the grounds of output signal quality after 

filtering, and output stage bandwidth requirements 

associated with the output signal range. 

The encoder examined by Bose21 employed a 

filter consisting of a single pole lowpass filter 

cascaded with a fixed delay. this examination yielded 

information concerning the d.c. input-output character-

istic and the relationship between input signal and 

oscillation frequency. 

Turnbull and Townsend 22 de s cribed the operation 

and also reported on the measured performance of several 

self-oscillating encoders with simple R.C. feedback 

filters. They concluded that this form of encoder had 

less sideband noise in the passband than equivalent 

pulse width encoders. Das and Sharma 23 investigated 

the performance of these encoders with first and second 

order R.C. filters, mainly with a view to its use as an 

alternative to delta modulation in communications 

systems. These authors have called the encoder a 

"Rectangular Wave Modulator". 

The encoder employing an integrator as the 

feedback filter can also be realised using saturable 

core magnetic devices. This form of the encoder 

utilises the fact that the volt seconds required to move 

between saturation flux density in one sense to saturation 

flux density in the other sense is constant just as the 

volt seconds required to move the integrator output 

across the hysteresis range of the level detector is 

constant. The core is thus used as both integrator and 
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level detector. This approach has been employed by 

Jackson and Weed24 and later by Yu and Wilson25. The 
latter authors have attempted to analyse the ac. 

modulation characteristics of the waveforms, in 

particular the variation of mean switching frequency 

with the amplitude of a sinewave a.c. input signal. 

These authors and Shaefer20 have all 

emphasised the constancy of the volt seconds per half 

cycle and this feature has thus given rise to the name 

constant area sampler" for this encoder. 

Although many of these authors have considered 

the problem of describing the waveforms produced by 

self oscillating encoders none of the encoder outputs 

have been described for a.c. input signals. Comput-

ations of oscillation frequency and output waveform 

proportions have been described for d.c. input signals 

but only for the constant area encoder and the encoder 
21  25 

described by Bose. Yu and Wilson 	attempted to 

evaluate the mean oscillation of the constant area 

encoder for a sinewave input signal but were forced to 

make approximations which effectively reduced their 

analysis to the evaluation of the mean square value of 

a sinewave, and their analysis is valid only for very 

low frequencies. 

For self oscillating encoders all filter 

designs and associated estimations of signal quality 

and bandwidth have had to rely on experimental measure- 

ment. There are no switching wave descriptions analogous 

to those for linear natural samplers. 



RESEARCH TOPICS AND THEIR CHRONOLOGY 

Topic 
	

Number 	Activity 
	

Relative order and duration 

Natural Minpling 1.11 Experimental conlirmation of Fitchs tneory 
	* * * 

Without feedback 1.12 Development of computer programs to evaluate 
switching wave spectra for linear sampling 

	* * * 
1.21 Development of a theory for nonlinear sampling 

waves 
1.22 Experimental measurements of input output relationships 

produced by nonlinear sampling 
1.31 Development of methods for generating theoretical 

descriptions of multilevel waveforms 
1.32 Development of computer programs to evaluate the spectra 

of sine levelled waveforms 
1.33 Experimental measurements of sine levelled waves 
1.41 Development of concept of modified natural sampling 
1.42 Formulation of theory for modified natural sampling 
1.43 Experimental measurements of waveforms of modified sampler 
1.51 Development of descriptions for waves in quantizer sampler 

Regular Sampling 2.1 Experimental confirmation of Bonnets theory 
without feedback 2.21 Development of theory applicable to all forms of regular sampler 

2.22 Development of computer program to evaluate waveform spectra 
2.23 Experimental measurements of waves controlled by regular sampling 

Feedback 
	

3. 1 Experimental trials with a simple natural sampling amplifier 
Amplifiers 
	

3.21 Development of programs to evaluate describing functions for 
linear samplers 

3.22 Experimental measurements of describing function boundaries 
3 ..31 Development of theory for d.c. input-output relationships 
3.32 Development of computer programs to evaluate input-output relationships 
3.33 Experimental measurements of input-eutput ralationships 
3.41 Attempts to develop descriptions of a.c. input-Output relationships 

Self oscillating 4. 1 Experimental trials with the encoder with integral feedback 
encoders 	" 4.21 Development of model to describe the d.c. characteristics 

4.22 Experimental measurements of selected amplifier waveforms 

* * * 

* * * 

* * * 

*** 
******* 

***** 
**** 

***** 
•**** 

**** 
** 

* * 

FIGURE D 1.4 
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1.4. 	The Research Activity upon which the Thesis  

is Based.  

Figure D 1.4 indicates the research areas, the 

nature of the research activities, and the time sequence 

of these activities. The earliest activity is to the 

left, the latest to the right., The following passage 

relates the sequence of motivations which prompted these 

activities. It also indicates the coupling between these 

activities and the material presented in later chapters. 

This passage is followed by an outline of the reasons 

for the existing structure of the thesis. 

1.4.1. Natural Samaling. 

Research began with a series of experimental 

measurements 1.1* intended to test the range of validity 

of the waveform descriptions proposed by Fitch
2
. This 

startIng point was chosen as a consequence of the use of 

these descriptions by Miller and by Bell and Sergent 5 

Their design procedures, based upon such descriptions, 

appeared to provide a firm foundation upon which all 

the various switching amplifiers could be designed in 

principle. 

The starting point for the extension of 

existing techniques was the evaluation of waveform 

descriptions for all these amplifiers. The first 

essential step in this direction is to examine the 

existing descriptions, their method of formation, their 

ranges of validity, and their useful prediction capacity. 

The initial experimental measurements 

indicated that the range of validity of these 

descriptions was not appreciably limited by any 

physical aspect of the switching amplifier apart from 

effects associated with its output impedance and its 

* These numbers refer to figure D 1.4. 
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finite speed ofl commutation from one level to another. 

Furthermore, these limitations are readily compensated 

by simple parasitic calculations. The real limit in 

the usefulness of the descriptions lay with the 

difficulty of using them to evaluate the sidebands 

associated with non-sinusoidal control signals. 

Bessel functions can be used to evaluate their 

amplitude and phase for sinusoidal control signals but 

other signals possess no equivalent source of 

tabulated data. 

While it would be very useful to be able to 

predict the energy distribution in the sidebands for any 

control signal, this is not feasible. However it is 

possible to evaluate the magnitude and phase of side-

bands associated with periodic control signals. This 

information was expected to increase a designers ability 

to predict output signal quality since existing data did 

not indicate whether design for sinusoidal control 

signals was conservative or not. Accordingly, research 

activity 1.12 was commenced. 

The theoretical background, numerical com-

putation techniques, numerical results and some 

conclusions regarding the relationships between signal 

to noise ratio and amplifier bandwidth associated with 

this research are presented throughout sections 4.2 to 

4.2,4 of the thesis. As far as the existing waveform 

descriptions were concerned their ability to predict 

the switching wave spectrum associated with non-

sinusoidal periodic control signals was confirmed by 

the close match between predictions based on computed 

results and the final measurements of research activity 
1.11. The range of these measurements is outlined in 

appendix E under section numbers 1.1 and 1,2, 
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The objects of activities 1.11 and 1.12 having 

been achieved, they constitute"the foundations upon 

which subsequent work proceeded. The next stage in 

developing the general design approach was a theor-

etical one. Previous descriptions of switching waves 

were confined to linear samplers, that is samplers 
employing triangular or ramp waveforms. Many 

practical encoders employ non-linear sampling waves or 

non-ideal linear sampling waves. Only the d.c. input-

output relationship and the harmonics associated with 

d.c. control signals could be adequately described by 

existing methods. No methods existed which were 

applicable to forming suitable descriptions of these 

waves for a.c. control signals. Activity 1.2 con-

cerned a generalisation of Fitch's
2 
 approach to 

include the shape of the sampling wave. This was found 

to be feasible. The approach and its use are outlined 

in chapter 3, sections 3.1,1 and 3.1.2 and in 

appendix A, sections 3.1.1a and 3.I.2a. The activity 

1.22, experimental measurements of input-output relation-

ships for non-linear sampling waves, consisted_of 

measurements similar to those described for linear 

sampling waves but were far fewer in number. They 

applied only to sinusoidal sampling waves and sampling 

waves produced by the low pass filtering of square waves. 

The consistency of these measurements with the 
predictions of the theory was excellent. 

The third phase of research activities 

concerning natural sampling was motivated by the 

inadequacies of the existing descriptions of switching 

waves with more than two levels. Although d.c. 

levelled waves are occasionally used, the bulk of multi- 
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levelled waves are based upon a.c. supplied switch 
arrays. The encoders controlling such waveforms can 

produce a linear amplifier characteristic if the 

sampling wave is non-linear and if the sampling period 

matches the supply period or an integral subdivision 

or product of the supply period. These encoders are 

used in practice but no complete descriptions of 

their waves have been found in the literature.- 

The simple approach outlined in chapter 2, 

section 2.4 is a convenient way of demonstrating a 

general method for synthesising the description of such 

waves. It relates the final description to the encoder 

generated signals which define the state of the array. 

This approach can be used in conjunction with the 

previously generated descriptions of encoder outputsr\ 

to synthesise complete waveform descriptions. The 

composite method is described in chapter 3, section 3.1,2. 

Examples of its use occur in section 3.1.3 and in 

appendix A 3.1.3. 

The major reason for activity 1.3 1 was the 

generation of descriptions for the sine-levelled waves 

of thyristor amplifiers. These descriptions form the 

basis of any assessment of output signal quality and 

the establishment of output filter design parameters. 

Before such activities can take place however it is 

necessary to establish the optimum shape of the 

sampling waves and then to evaluate the magnitude of 

the switching wave sidebands. Procedures for the first 

of these tasks are outlined in chapter 3, section 3.1.3. 

The second task, evaluation of the sidebands, is subject 

to the same difficulties as the analogous task for a 

linear, two levelled wave with clic. levels. The same 

approach can be used for evaluating the sidebands 

associated with periodic input signals. In this case 
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only the sidebands associated with sinewave control 

signals were evaluated. Results of these evaluations 

are presented as part of the material constituting 

chapter 4, section 4.2.3.3. The evaluations were 

checked by the experimental measurements outlined in 

appendix E 2.2. The good correlation between theory 

and experiment indicated the approach used to be 

accurate and thus enabled it to be used as a substitute 

for the trial and error designs of the past. 

The above research on natural sampling thus 

concludes the development of ways to generate 

descriptions for all switching waves controlled by this 
technique. It also enabled descriptions to be formed 
for waves not yet used but differing only in supply 

waveform or number of levels. These activities, 

especially the work on non-linear sampling waves, 

prompted a search for a more ideal sampling process 

than natural sampling. This led to a separate resLarch 

activity, 1.4 of diagram D 1.4. 

1.4.2, Modified Natural Samplina. 

The natural sampler employs a sampling wave 

shape which is explicity defined, at design time, by 

the input-output characteristic and the supply wave-

forms. These aspects are touched upoh in chapter 3, 

section 3.1.3. If the supply waveform is subject to 

variations of any kind then the input-output relation- 

ship of the working amplifier will also change. It has , 

no means of compensating for supply waveform changes 

except by means of matching changes in the sampling 
waveform. This essential relationship was appreciated 

early on but a proper definition of the necessary 
linkage between sampling wave shape and supply wave-

shape was delayed until the completion of activity 1.3. 
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The other aspect of the use of natural sampling to 

control a switching wave with a.c. levels, concerns the 

ratio of sampling wave frequency to supply wave frequency. 

Conventional samplers are constrained to have this ratio 

as a small integer. This constraint restricts the . 

amplifier bandwidth to a frequency close to the supply 

frequency. A more ideal control technique would sample 

at a much higher frequency and so expand the amplifier 

bandwidth accordingly. 

The key part of such an encoder would be the 

mechanism whereby the sampling wave shape is continuously 

varied to compensate for supply waveform variations over 

the sampling period. Activity 1.4 2 consisted of a trial 

and error search for such a mechanism. The second trial 

was successful in producing a technique which appeared 

to have the necessary properties. This encoder is 
described in chapter 3, sections 3.1.4.1 and 3.1.4,2. 

An algebraic investigation of the encoder input-output 

properties is outlined in appendix A 3.1.4. The sub-

sequent experimental checks of this theory were not 

completed prior to the writing of the thesis. Those 

tests which were carried out are described in 

appendix E3. They suggest that the approach is valid 

and should be investigated further. 

1.4 3. A Special Form of Natural Samplina. 

The final activity concerning natural sampling, 

activity 1.5, was prompted by the paper by Chen 10 

concerning the linearisation of a quantizer input-output 

relationship by means of a sinewave input signal pertur-

bation. The situation was recognised as a special form 

of natural sampler and since it was amenable to the 

existing algebraic approach this encoder was examined 
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with a view to fitting it into the existing pattern of 

natural samplers. A theoretical investigation of the 

properties required of a perturbation to produce a 

linear amplifier is outlined in appendix A 3•1•5•• 
Other aspects of this encoder are investigated in A 

3.1.5b, c, and d. Section 3.1.5 of chapter 3 

intioduces the subject and outlines the most important 

aspects discussed in the appendix. 

No experimental verification of these wave-

form descriptions was attempted due to the great 

similarity with the more usual varieties of natural 

sampler. One small difference is remarked upon in 

section 4.1.1.2 of chapter A. it is interesting to 

note that a later paper11 on this subject indicated 

that the unit amplitude triangular perturbation yields 

a linear input—output characteristic. This is one of 

the solutions yielded by the analysis mentioned above, 

and is a well known result for simpler encoders. 

1.4.4. Regular Samlinq. 

The general principles used to form 

descriptions for waves controlled by natural sampling 

can also be used to form descriptions of equivalent 

waveforms controlled by regular sampling. This fact 

prompted the activities of section 2 of figure D 1.4. 

The same goals and methods were employed as those for 

natural sampling. 

The first activity, 2.1, was an experimental 

confirmation of the linear sampler output waveform 

description attributed to Bennet 6. The description 

given is not accompanied by an explanation of its 

derivation and is confined to a wave formed by a 
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"linear" sampler when the control signal is a sinewave. 

The accuracy of this description was checked, by the 
experiment outlined in appendix E 6, and found to be an 

accurate description. Thus the existing descriptions 

formed a basis against which subsequent work could be 

compared and checked. 

Activity 2.2 1 was concerned with forming a 

description of the regular sampler output when the input 

signal was an arbitary waveform and the sampling waves 

were chosen to produce any form in input—output 

characteristic. The approach employed is described in 

concept in chapter 3, section 3 • 2 • 2 and is illustrated 

graphically in figure D 3 • 2,2. The corresponding 

algebraic result was derived with some difficulty and 

is subject to the constraint that the control signal 

be periodic. 

The algebraic description was used as the 

basis of a computer program to evaluate the waveform 

spectra of an encoder output when the encoder input is 
a bandlimited periodic control signal. This program, 

C 2.2.1, was used to produce estimates of signal and 

sideband components of the encoder output for several 

simple periodic waveforms. These were experimentally 

checked by measurements analogous to those outlined 

in E 6.0. In addition, the algebraic solution was 

used directly to estimate the distortion and inter—

modulation for a pair of sinewave'input signals. This 

was carried out algebraically in the manner outlined 

in appendix A 3.2.3 and is described in section 3•2.3• 

These results were checked by the measurements outlined 

in appendix E 6. 

These simple applications of the derived 

theory do not test its full range of validity. It was 
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• not considered worthwhile to do so because regular 

sampling has many disadvantages when compared to 

natural sampling and its practical uses are usually 

confined to siTple situations similar to those 

examined above. The validity of the theory for these 

examples neverthless indicates the range of validity 

is probably as wide as any future useage is likely to 

require. 

1.4.5. Feedback  Amplifiers. 

As figure D 1.4 indicates, the first 

experiments concerning feedback around a switching 

amplifier occurred at about the time of the develop-

ment of the theory for non-linear natural sampling. 

This preliminary investigation concerned a high gain 

amplifier employing "linear" natural sampling. The 

feedback employed produced an open loop gain 

corresponding to a high gain low pass filter. Under 

these conditions the sampling rate was observed to 

double and it was obvious that normal conditions for 

operation of the sampler did not prevail. At this 

point the experiment was abandoned in favour of 

experiments confirming the validity of the newly 

developed theory for non-linear natural samplers. . 

The experimental situation was not investigated again 

until after the conclusion of measurements validating 

the theoretical analysis of regular sampling. Other 

aspects of this work were investigated in the interim 

period. 

A colleague, Furmage26, undertook an 

investigation of the behaviour of class D amplifiers 

when operating within a feedback loop as part of his 

honours project. This work was based upon the 
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investigation of a similar situation, one involving 

thyristor amplifiers by Fallside18. One line of 

this investigation concerned the use of describing 

functions as a means of detailing the apparent 

behaviour of the amplifier near subharmonic 

frequencies. These were evaluated by vector summation 

of the sidebands which coincide at the input signal 

frequency whenever this is a subharmonic of the 

sampling rate. Furmage was inhibited in his work 

by a time limit and was forced to evaluate many 

describing functions by hand calculation based upon 
approximdtions which limited the accuracy of his 

estimates, Before continuing my own investigations 

into this situation I resolved to evaluate the sub—

harmonic gain functions by modifying the existing 

computer programs for estimating sideband amplitudes. 

This constituted activity 3.2 1. These programs, 

C 3.1 and C 3.2, evaluated the suoharmonic gain 

functions for both regular and natural sampling. The 

results produced by these programs and the computing 

techniques employed are described in section 4.3 of 

chapter 4. 

The computational activity was completed 

before the experimental investigation constituting 

activity 3 • 2 2 commenced. When this activity did 

commence it immediately became apparent that the whole 

basis of the sideband evaluation and thus the sub-

harmonic gain was invalidated by the occurrence of 

gloss changes in the conditions within the sampler 

itself. The complexity of the situation, already 

briefly described in preface to the literature survey 

on this topic, halted all further investigation of 

this topic while the isolation of basic parameters was 

considered. 
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The first outcome of this re-appraisal of 

the problem was a model for the changes which occur 

in the d.c. input-output characteristic of a natural 

sampler placed within a feedback loop. This model is 

described in chapter 5, section 5.1. The evaluation 

of the d.c. input-output characteristic is based upon 

the assumption that all the waveforms within the 

amplifier are periodic and have the same period, that 

of the sampling waves. Subject to this restriction 

the model is potentially applicable to the prediction 

of the d.c. input-output characteristic and the phase 

relationships between waveforms. Confirmation of the 

model accuracy was obtained by comparing computed 

input-output relationships, evaluated by programs 

C 4.1 and C 4.2, with the experimental measurements 

outlined in appendix E 4.1 and E 4.2 respectively. 

The algebraic solutions used as examples in section 5.1 

were also used to test the model accuracy. 

The method used to evaluate the d.c. input-

output characteristic cannot be applied directly to 

evaluate the a.c. input-output characteristic since it 

relies upon the feedback ripple possessing a periodic 

waveform. It is conceivable that the method could be 

extended to subharmonic situations such as those 
encountered in practice. When this was attempted no 

method was found for solving the static equations 

defining the situation. Attempts to predict the 

position of the stability boundary between normal and 

subharmonic conditions were also made but these were 

• not successful. These unsuccessful attempts to predict 

the a.c. characteristics of amplifiers influenced by 

feedback constituted activity 3.4. The general problem 

is briefly discussed in section 5.2, chapter 5. 
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1 4.6. Self Oscillating  _ Encoders  

There are close ties between amplifiers with 

feedback and self-oscillating encoders. The success-

ful prediction of the d.c 0  input-output characteristics 

of the former prompted an attempt to apply the same 

approach to self-oscillating encoders. Prior to this 

attempt some preliminary investigations of the integral 

feedback self-oscillating encoder had been completed. 

These investigations constituted activity 4.1. The 

aim of these investigations was to gain familiarity 

with these encoders and to confirm the basic features 

as described by Shaeffer 2°  and others. These 

measurements and their analysis are described in 

sections 6.1 and 6.2 (chapter 6) respectively. The 

main result of this early activity was an evaluation _ 

of the conditions for the onset of phaselocking and a 
subsequent theoretical derivation for this condition. 

For the integral encoder it is relatively easy to 

predict that the d.c. input-output encoder has a linear 

characteristic and that the oscillation frequency is a 

parabolic function of the d.c. input signal. The more 

complex encoders are not so easily predicted in their 

behaviour. 

Activity 4.2 1 was an attempt to produce a 

single approach applicable to the analysis of all 

members of this class of encoder. The goal of the 

approach was the prediction of the d.c. input-output 

characteristic and the variation of oscillator"frequency 

with d.c. input signal. The result of the attempt is 

the theory outlined in appendix A section 6.3. This 

theory yields two equations which must be solved to 

evaluate first the oscillation frequency and subse-

quently the d.c. input-output characteristic. 
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To verify the accuracy of this theory two 

specific examples were considered, the integral feed-

back filter, and the lowpass high Q, feedback filter. 

The theoretical predictions are evaluated in appendix A 

section 6 0 3b. The experimental measurements performed 

earlier for the integral filter were correctly deduced. 

The high Q filter system was experimentally measured 

after the analysis. These measurements and the 

accuracy of the predicted characteristic are discussed 

in appendix E 5. This successful development of a 

theory for self-oscillating encoder characteristics 

concluded the experimental investigations upon which 

this thesis is based. 

1.5. 	Thesis Content. 

From the references to the thesis body made 

in the chronological description of research activities, 

it will be apparent that this thesis contains much more 

than a description of this activity. In an attempt to 
introduce more cohesion into the diverse and frag-

mentary literature concerning the choice and design 

of switching waves, and the design of the amplifiers 

employing and controlling these waves, many attitudes 

and ideals have been included with the intention of 

guiding the designer away from undesirable or 

unfortunate design parameters and towards the best 

hardware attainable with whatever technology is avail-

able. These attitudes and ideals have been incorpor-

ated into a logical progression of the subject through 

a range of subtopics starting with encoders at the 

start of Chapter II and finishing with equivalent 

circuits at the end of Chapter VII. 	Although the 

progression is not complete and emphasis is placed 
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unequally on the various subtopics, it is hoped that 

the existence of the thesis will stimulate others in 

this area. 
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Chapter II 

Describing a Switching Wave and its Control Functions. 

In this chapter the switching wave of an amplifier 

is described in terms of the switching wave levels and the 

control functions which select the levels. The description 

is used to discuss encoder independent features of the wave 

including: output signal bounds, allocation of a dynamic 

range to each control function, and the concept of minimum 

energy waveforms. In later chapters where control functions 

are derived for specific encoders the encoder independent 

f eatures above help define the output requirements of the 

individual encoders. 

Aspects of switch array topology, switch control 

unit operation, and the switch control functions themselves, 

which must be introduced or defined before a switching wave 

can be described are incorporated into sections 2.1, 2,2, 

and 2.3 respectively. Section 2.4 deals with the switching 

wave description and the associated output signal dynamic 

range. The allocation of a dynamic range to each switch 

control signal and the introduction of the concept of 

minimum energy waveforms constitute sections 2.5 and 2.6 

respectively. 
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2.01 
2.1 	Switch Arrays. 

2.1.1 	The  Operating Restrictions placed on  a Switch Array 

The switch-array links the supply voltages, 

forming the switching wave, to a common port. The array 

may be regatded as a multiport network with many input 

ports and a single output port. The array must satisfy 

two important conditions. These are, first,. the output 

voltage must be defined by the -SWitchesand the supply 

voltages, second, the supply voltages must not be short-

circuited. These conditions are satisfied if the only 

complete circuit within the network connects one or more 

of the input ports in series with the output port. 

2.1.2 	The.Equivalence of a Comlex Array and  a 

Simple, ArraN ,  

The most fleXible form of switch array allows 

any one of a number of floating supply voltages to be 

added, subtracted, or omitted from a series circuit which 

includes the output port. Diag2am D 2.1.2a illustrates 

such an array. This array is capable of combining N 

supply voltages by means of 4N switches to produce 3 41'N 

voltages at the output port. This may be compared to the 

simple array shown in diagram D 2.1.2b, where N supplies 
are connected by N switches to provide N voltages at the 

output port. These two arrays represent extreme forms Of 

switch arrays. There are many intermediate forms such as 

series connections of simple arrays and series parallel 

connections of bridge and simple arrays. 

By drawing a Chart similar to that in diagram 

D 2.1.2c the switch statesofa complex array may be specified 

in terms of those of a simple array. This equivalence 

between complex and simple arrays is due to the one to one 

correspondence between output voltages and switch closures 

for a simple array. Since this equivalence is basic, and 

the one to one correspondence of switch closures and 

output state is convenient for discussion purposes, simple 

arrays will be used to illustrate the following discussions 

of waveforms. 
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2.2 	The Switch Control  Unit 

The switches of an. amplifier are operated by the 

switch control unit according to rule from the input signal. 

The input signal is converted to a number of switch control 

signals by the following sequence. First the amplifier 

input signal is presented to one or more, coders. Each coder 

converts the input signal, which may have any level within 

a particular range, to a signal which may take one of two 

definite levels. These binary coder outputs are then 

combined by a logic unit to produce the control signals for 

each switch in the amplifier array. 

A coder May be subdivided into two parts. The 

first modifies the input signal but retains the analogue 

form, while the second converts this analogue signal to a 

binary signal. The form of modification employed depends 

upon the method of .coding 'used. For example, the input 

signal may be added to the signal from a local oscillator 

if natural sampling is employed or it may be sampled and - 

held prior to the same process. if regular sampling is 

employed. The analogue to binary conversion is accomplished 

with a level detector such as a comparator or a schmitt 

trigger. 

The structure of the logic unit is determined by 

the type of coder used and by the form of the switch array. 

An amplifier with two switches and a single coder will only 

need one coder output and the inverse of this to control 

the switches. By comparison an amplifier With three supply 

voltages connected in the most flexible way possible, may 

require five coders as inputs to the logic unit which 

generates the twelve switch control signals so that all 

twenty seven possible output Voltages can be produced. 

Very efficient use of coders will result in 

complex logic units especially if the more flexible forms 

of switch array are used; The minimum number of coder 

outputs necessary to control an array may be found since 

each output voltage produced.by  an array corresponds to a 
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particular set of switch states.. The minimum number of 

binary signals, that is coder outputs, necessary to control 

a switch array with m states or output levels is the 

smallest integer greater than log 2  (m-1)0 This formula is 

illustrated for the previous example. 

In practice small numbers of output levels of a 

switch array are usually required and a simple but 

inefficient system is used with one coder per switch array 

state. 

2.3 	State Function for Switches 

An ideal switch has only two states, zero 

impedance and zero conductance. Any real switch, electronic 

or rrichahiCal, is non-ideal in that it has a range of states 

from near zero impedance to near zero conductance. In order 

to describe the basic waveforms of switching amplifiers it 

is convenient to use ideal switches as a first approximation , 

to real switches and then to detail the relatively minor 

adjustments to the idealised situation to describe the action 

of real switches. 

In order to describe the condition of an ideal 

. switch a state function is now defined. A switch has a 

state described by the state function, g(t), defined by 

g(t) = 1 if the switch conducts at time t 

0 if the switch insulates at time t 

This function can be described*by two variables, 

81 (t) and 02 (t) associated with the changes of switch state. 

If the switch changes from insulation to conduction when 

( G

i (t) increases through an integer or Q2 (t) decreases 

27C changesthrough an integer value and 	changes from 

conduction to insulation for the opposite rates of change 

of these variables through integer values then g(t) is 

described by the equation below. 

n=00 
g(t) =c1 (t)-e21+ Z 	i 	(sin(ne1 (t))-sin(ne2 (t))) 

--- n=1 nA 
27r 

*See Appendix A 2.3. 
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The variables e1 ( -t) and e2 (t) are sufficiently 
restricted by the inequality 

0 < e
1
(t) - e2  (t) < 2.n 

The state function and restriction of variables 

are derived and discussed inappendix A 2.3. 

2.4 	The Voltage Formed at a Node  of Switches 

A group Of M switches connect m voltage sources 

to a node. If all the switches are off the node voltageis 

defined by the load. If more than one switch is on then 

two or more voltage sources are connected together and the 

voltage at the node is undefined. Only when a single switch 

is conducting is the node voltage defined. Let the state 

function of the i th switch be gi(t), then the requirement 

that only one switch conducts at any time is described by 

i=m 

7 	gi(t) = 1 
i=1 

For a real node with real switches difficulty in 

changing switch states occurs and the restriction used is 

usually i=m 1 when no switch is changing state 

g i(t) 	0 when a switch is changing state • i=1 
This restriction is applied to prevent high 

switch currents during transitions between states should 

two switches conduct ast the same time. 

The voltage formed at the node may now be 

described in terms of each supply voltage V(t) and the 

switch state functions g(t). The component of the node 

voltage due to the i th  switch, Vni, is zero when the switch 

is open and the supply voltage, Vi(t), when the switch is 

closed. Thus if the switch state function is gi(t) the 

node voltage component is 

Vni(t) = Vi(t) -* gi(t) 

The complete node voltage, Vn, is formed by 

summing all the component voltages. 
i=m 

Vn(t)= Z Vi(t) ° gi(t) 
i=1 
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• The Limitations of Volta es Produced at a Node 

of Switches 

The instantaneous value of the node voltage is 

limited to the range between two voltages Vmax(t).and 

Vmin(t) •where Vmax(t) is the maximum voltage of the m 

supply voltages at time t and Vmin(t) is the minimum 

voltage of the m supply voltages. The expression 

Vmin(t) <Vn(t) < Vmax(t) describing this limitation is 

derived in appendix A 2.4. 

The range of values of d.c 0  component is 

frequently used to describe thP range of output voltage 

at a node. The d.c. component is subject to a restriction 

•which applies whenever the component approaches either of 

the supply voltage limits. This restriction is independent 

of the way in which the switching wave is formed because 

it is due to the spectrum of the switching wave envelope. 

Consider a d.c. component which approaches the upper supply 

voltage limit, Vmax(t). If the d.c. component exceeds the 

minimum value of Vmax(t) then the switching wave proportions 

cannot be adjusted to maintain the average value of the d.c. 

component without causing the switching wave to have a 

component with frequency matching the frequency of Vmax(t). 

The precise restriction is derived in appendix A 2.4.1. 

The d.c. component of the switching wave can of course rise 

to the average value of Vmax(t) but only if the spectrum of 

the switching wave contains components matching in frequency 

those of Vmax(t). 

Similar restrictions apply for a .c. components of 

the node voltage. Provided the sum of the a.c. and d.c. 

components lie between the minimum value of Vmax(t) and 

the maximum value of Vmin(t) then no restrictions need be 

placed on the remaining terms of the node voltage, however 

if the a.c. component exceed these limits then harmonics 

of the component modulated in amplitude by the associated 

'bound are required for the node voltage to remain within 

the prescribed bounds. Again the contribution of each 

harmonic is not explicitly defined although a minimum supply 

frequency harmonic may be specified which is sufficient for 
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node voltage to remain within the specified limits. The 

limiting amplitude of the sinewave component is obtained 

when the node voltage switches between Vmax(t) and Vmin(t) 

once each half cycle of the frequency of interest. When 

this limiting value is reached the amplitudes of each 

harmonic of the sinewave component and of the supply 

voltages as well as the intermodulation components are known. 

_ In switching amplifiers producing single 

frequency or narrow bandwidth .  outputs near a single fixed 

frequency the generation of harmonics in the output is not 

very important since they may be filtered from the amplifier 

output. In most switching amplifiers however generation of 

harmonics is undesirable. Thus most switching amplifiers 

'produce output components of the switching wave with 

amplitudes in the range between the minimum value .  of Vmax(t) 

and the maximum value of Vmin(t) to avoid having supply 

frequency components of the switching wave while amplifiers 

with less constraint on output components at .supply frequency 

limit the output voltage between the average value of VmaX(t) 

and the average value of Vmin(t) to avoid the presence of 

signal frequency harmonics. 

2.5 	Linear Amplification 

The node voltage, Vn, is synthesised in such a 

way that one component, Vn.1 0 , is•linedrly related to the 

amplifier input so that the amplifier output may be 

formed by filtering the node voltage. A node of m switches 

with state functions, gi, and associated supply voltages, 

Vi, has node voltage 	im 

Vn 	Z Vi.gi 
i=1 

The node voltage component related to the input 

signal e(t) is described by 
Vn]

o = Ke(t) 
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This relationship may be ensured if the component 

of Vn 	due to each switch, .Vni] o , is of the form 

Vni] o = Ke(t) + Ci 	where - 

i=m 

i=1 
This is a sufficient - rather than a necessary 

condition for linear amplification. However, of the many 

ways in which linear amplification is achieved the method 

of making each component a linear function of the input is 

one of the simplest and is widely used. The most common 

extension of this method uses components due to separate 

switches for different ranges. The node voltage due to - a 

particular switch Is of the form 
Ki.a

1 
+ Ci 	for e(t) < a 1 

Vni] o 	Ki.e(t) + Ci for a 1 
< e(t) <. a2 

Ki.a 2  + Ci 	for e(t) > (12 

The sum of two or more such individua.1 switch 

components with complementary limits and the same value of 

Ki produce a node voltage component which obeys the 

linearity condition. The major advantage of such a scheme 

is to reduce the size of step in the switching waveform so 

that filtering of the node voltage is less difficult. 

As an example consider the switch and supply 

array of diagram D 2.5. In this example g 1 (t) and g2 (t) 

control the output for positive input signals while g 2 (t) 

and g3 (t) control the output for negative inputs. The 

resUlting amplifier is linear over the range of outputs 

-V < Vn] o < +V with a gain-Urtat' The size of switching 
.  

steps is half that of a single amplifier operating from +V 

and -V and has maximum R.M.S. ripple on the output component 

on either side of zero output rather than atzero output. 

Against these advantages are the disadvantages of twice the 

complexity and the need for balanced gains and accurate 

fitting of limits of the active ranges of each amplifier half. 
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2.6 	Minimisation of Switching Wave Energy 

By providing N equally spaced d.c. levels 

for a waveform, rather than three as in tha previous 

example, the voltage error between the waveform and the 

desired output may be reduced to the fraction, 1/(N-1), 

of that for a waveform with two levels. At each output 

level corresponding to a waveform level the error 

signal is zero. Diagram D 2.6a shows the variation of 

error with output voltage. When N is odd one of the 

waveform levels will correspond to the centre of the 

output range giving a zero of error voltage at the zero 

of output. 

The method of generating an output level, by 

switching between the nearest waveform levels above and 

below the target, minimises the mean square error of 

the output waveform. This is demonstrated, in appendix 

A.2.6. to be true of both d.c. and a.c. waveform levels. 

Examples of a three level waveform with d.c. levels and 

a six level waveform with a.c. levels are shown in 

diagram D 206b. 

The waveform with d.c. levels is similar to 

a quantizer output when a small perturbation is added to 

the input signal. The waveform with a.c. levels is 

similar in some respects to the waveform produced by a 

cycloconverter. 
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2.7 	Summary  

. The switching wave may be described as a sum of 

components each due to a particular waveform level and an 

associated binary control signal. Each binary control 

signal corresponds to a particular set of switch states of 

the switch array and is defined by a bolean function of 

the outputs of one or more level detectors. Each level 

detector is provided with a modified form of the input or 

control signal, the form of modification being dependent 

on the type of switching wave to be produced, the switch 

array, the logic function, and the form of level detection 

employed. 

The switching wave is restricted to a range of 

levels between the instantaneous maximum and instantaneous 

minimum of the waveform levels possible. The switching 

waveform will contain components with frequencies 

corresponding to these levels if the output component of 

thc! waveform exceeds the range between the minimum of the 

former and the maximum of the latter. Should the output 

component of the waveform exceed the range between mean 

values of the above levels then the switching wave will 

contain components at the harmonics of the output component 

frequency. 

There are two commonly used restrictions giving 

linear amplification. The first kind requires that each 

component of the waveform contribute to the output an 

amount proportional to the control signal. This method is 

most suitable for waveforms with a. c, levels. The second 

kind requires that the contributions be proportional over a 

limited range of output component levels and a constant 

contribution outside this range. This method is readily 

applied to waveforms with d.c. levels. Although other 

techniques are possible the methods used depend on the 

situation and cannot be described in a general manner. 
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Minimisation of the error between the switching 

wave and the output component may be achieved by switching 

between the nearest levels above and below that of the 

output.  component. This minimisation is not usually 

regarded as a restriction since it may conflict with 'other 

requirements. It is regarded more as an ideal since it 

minimises some of the filter requirements for steady state 

outputs. 
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Chapter III. 

aYllt../ItEi.a_SILY12K2fax22_ 12taatEtto.11.LISI: 
Waves Controlled by Four Encoders  

,Employing  Periodic Sampling.  

3.0 	Introduction  

The need for switching wave descriptions was 

established in Chapter I, and a method for synthesising 

these was outlined in Chapter II. The synthesis method 

is based upon a knowledge of the switch array geometry, 

the switching wave levels, the linkage between encoder 

outputs and the switches of the array, the tactics used 

to acheive linearity over a wide signal range, and the 

input-output properties of the encoders. This chapter 

is concerned with the application of the method to 

describe switching waves controlled by four types of 

encoders: those using natural sampling, a modification 

of natural sampling, a special form of natural sampling, 

and regular sampling. In order to implement each syhthesis 

the encoder input-output characteristic is derived in its 

most general form, that is with the input signal as an 

arbitary function of time. It is this feature which 

enables the theory presented here to be set apart from 

that presented in the literature. 

The chapter is divided into two major parts, one 

concerned with natural sampling and its progeny, the other 

concerned with regular sampling. That dealing with 

natural sampling is subdivided into three sections the 

details of which are outlined below. 

The first section deals with natural sampling as it 

is applied to waves with d.c. levels and to waves with 

periodic ac. levels of constant waveform and having 

periods matching the sampling period. 
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The second section deals, with a new form of encoder, 

one where the shapes of the sampling waves are continuously 

adjusted to compensate automatically for changes in the 

levels of the switching wave. 

The third section deals with the control of switching 

waves employing many equally spaced levels by means of a 

variant of natural sampling where the analogue to digital 

interface is a quantiser and the sampling wave is a 

perturbation of the input signal. 

The second part, concerning regular sampling, 

parallels the first section of the first part in that it 

considers the control of waves with either d.c. levels or 

periodic, fixed waveform, a.c. levels commensurate with 
the sampling wave. 

The discussions associated with each encoder 

differ in structure since most of the methods and 

principles involved are common to all and need only be 

discussed in detail for the first. Consequently the largest 

section concerns the application of natural sampling to the 

control of d.c. and a .c. levelled waves. This section is 

structured with three subdivisions, namely, the encoder 

input-output relationship, the control of the waveform 

contribution of an individual waveform level, and the 

assembly of waveform components to acheive a linear 

amplifier. The structure thus mirrors the steps for 

synthesising waveform descriptions. The second and third 

encoders are more specific and material related to them 

does not need this ordering. Discussion of the fourth 

encoder, that employing regular sampling, follows the 

pattern of the first encoder discussion, that is, it 

mirrors the steps of the waveform description synthesis. 

The most important feature of each encoder analysis, the 

derivation of the encoder input-output characteristic is 

essentially algebraic and is thus confined to appendix A. 
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3.1 	Waveform Synthesis by Natural Sampling 

A natural sampler is a coder. The output is .a 

-state function formed by rule from two or three input 

signals. One input, the signal to be.sampled, is compared 

to periodic sampling waveforms present at the other two 

inputs. Each of the sampling waveforms influences the 

output during consecutive intervals of the period. During 

each interval the output state is determined by the .sign 

of the difference between the associated sampling wave and. 

the input signal. Transitions from one state to another 

occur when changes in polarity of the difference occur. 

The sampling waves have slope of constant sign over their 

respective sampling intervals and may be the two slopes of 

a single waveform or single slopes of separate waveforms. 

A typical example of natural sampling is shown 

in diagram D 3.1. The input waveform is compared to a 

triangular .wave. The positive slopes of the triangular 

wave determine when negative changes in the output state 

predominate while negative slopes Of the triangular wave 

determine when positive steps in the output predominate. 

In this example the width of the state function waveform 

between steps indicates the value of the input to the 

sampler and thus conveys information describing the, input 

signal. 

. Another form of natural sampling can produce an 

output with pulses of nominally constant width but with 

variable phase. The information describing the input 

signal is contained in the phase of the pulse relative to 

the sampling waveforms rather than in •the width of the pulse. 

3.1.1 	A Mathematical Description of Natural Sampling 

An input signal, e in (t), and monotonic sampling 

waves, S i (ft) and S2 (ft), are used in a natural sampler. 

An error signal EK (t) is produced by the difference between 

e in (t) and SK (ft) where K = 1,2. (K = 2 when dSK (ft) > 0) 

dt 



3.03 

Thus 
(t) = e in (t) - SK(ft) 

	
K = 1,2 

- A change in output from one state to another 
takes place when the error signal is zero. The direction 

of the change of state is indicated by d(t)  dt 	E(t) = 0 
The sign, P, of the direction of change in output is given 

by P = signiloc K  dEK (t)1 K 	= 1,2, 
• 	dt 	E(t) -= 0 

where oc
1 

= - 0c
2 = 1 for pulse phase modulated signals and 

oc1 = 6Dc2  = 1 - for pulse width modulated signals, 

It is shown in appendix A 3.1.1 that a state 

function g(t) of the form below has the desired properties 

for a natural sampler, 
n= 00 

g(t) = s 	- S 	+ 	1 	Sin2 	1 nn (ft-S-I [e(t)]) 2  n=1 nis 

-Sin2nn (ft-S7 I [e(t)] )1. 

where S [x] = L is the inverse function of S K(0)=x. In 
2n 

the derivation of this expression some restrictions on the 

form of the sampling waves and the range of inputs which 

may be modulated are necessary. 

The sampling waves must have constant polarity 

of slope for the range of input signals to be coded. This 

is necessary since the inverse functions cannot be 

adequately defined otherwise. Also over the range of input 

signals to be coded the sampling waves must not intersect 

one another. These restrictions are derived in appendix A 3.1.1.a. 

The component of the state function described 
by S-I  [e(t)] _s 	is the only component of the 1 	2 
state function independent of the sampling frequency. The 

component has a simple functional relationship between its 

amplitude and the amplitude of the input signal. The form 

of this relationship depends on the spacing of the sampling 

waves for a given amplitude of both. For pure phase 
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modulation the component is fixed and does not vary with 

the input signal. For pulse width modulation the transfer 

function between input and component amplitude has 6:.fiked 

part and a part with constant polarity of slope. Typical 

examples of sampling waveforms and transfer functions are 

shown in cliagram D 3.1.1 where,g(t).1 0  denotes the component 
-1 ST I..[e(t) ] --S 2  te(t) 	. 

The other components of the coder output 

waveform are sidebands of the frequency of the sampling 

wave and its harmonics. Natural sampling of both pulse 

phase and pulse width types produce sidebands due to phase 

modulation. The modulation angle 0 is related to the input 

by the equation 

= 2nn ST(' [e(t)] 

where n is the. number of the sampling wave frequency 

harmonic. When 9 and e(t) are linearly related the side-

bands may be described in terms of harmonics of the input 

frequency but this -  is difficult for-inputs other than 

sinewaves. When S K(ft) is not linear the sidebands are very 

difficult to describe in terms of harmonics of the input 

signal. 
One indication of the bandwidth of the 

sidebands of a phase modulated signal is provided by the 

instantaneous frequency vf the modulating signal. The 

instantaneous frequency is given by 

fi = d (2An(ft-S-1  [e(t)] ) 
dt 	1 

= 2nn (f - d ST I [e(t)] ) 

dt 

= 2nn (f - d ST'[e(t)] .d e(t) ) 

	

7 	
d t / 

-7-7--  

= 2Rn (f - f e°r  
5 ° ft)/ IS(ft) = e(t). 
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When this is zero the slope of thesampling 

wave and the input signal are the same. This criterion of 

equal slopes of input and sampling wave is useful for 

comparison of different natural samplers but is of little 

use in filter design for the switching waves produced by 

switches controlled by natural sampling. 

3.1.2 	Node Voltage Components Produced by Switches  

Controlled by Natural Sampling  

D.C.  Supoly Voltage. 

A d.c. supply voltage, Vi, when modulated by a 

switch state function, gi(t), produced by natural sampling, 

with sampling waves S i (ft) and S2 (ft), gives a node 

voltage component Vni(t) desribed by 

Vni(t) = Vi tS -2-1  [e(t)] - S-1 l [e(t)] + 	I 

(Sin 2nn (ft-ST I [e(t)] )-Sin 2nn(ft-c l [e(t)] )1 

Provided e(t) lies between the maxima of the 

sampling waves and the minima of the sampling waves the 

terms Vni(t), Vni] 0  corresponding to the input signal 

are described by 

Vni] 0  = (S-I  [e(t)] -S-1  [e(t)] ) 2 	1 
Thus the requirement for:linearity imposes the restriction .  

on S
1 
 (ft) and S2 (ft) defined by 

Vi (S 1  [e(t)] - ST' [e(t)] ) = Ki e(t) 	Ci 

or 	- 1 S2  [e(t)] -.571 [e(t)] = Ki(e(t))+(Ci) 
Vi 

If the form of either S1 (ft) or S2
(ft) is chosen 

then the form of the other is determined by the expression. 

Several forms of sampling waves are shown in diagram D 3.1.2a. 

The last three are commonly used waveforms. The first 

waveform is to demonstrate the arbitary nature of 

waveforms which may be chosen to satisfy the linearity 

conditions. 
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The two hicher.frequency components of Vni 

centered about the fundamental and harmonics of the 

sampling wave frequency are influenced by the shape of the 

sampling waves. - Since the filtering of the switching wave 

must suppress these components as strongly as possible, 

the distribution of energy in the sidebands of the sampling 

wave frequency is important. The choice of sampling wave 

shape is thus influenced by this Criterion after the 

condition for linearity is satisfied. 

In order to choose a "best" sampling wave the 

instantaneous frequency criterionrefered to earlier may be 

used. This expression would give the highest instantaneous 

frequency to a sampling waveform with maximum slope since 

- this would allow the greatest band width of input signal 

before the instantaneous frequency of the sidebands becomes 

zero. This would suggest that a symmetrical triangular 

wave Sampling is the best form of sampling wave. 

A.C. Supply Voltages  

When supply voltages other than d.c. are used two 

distinct switch state functions may be used. If the 

repetition rate of the supply voltage and the switch state 

function are the same then their frequencies are said to 

be commensurate otherwise they are non commensurate. When 

non commensurate switching is used with natural samplers as 

coders, difference frequencies are produced in the output. 
This is usually undesirable and a modified form of natural 

sampling which reduces these difference' frequencies is 

normally employed instead of natural sampling. The most 

common situation is that where commensurate natural 

sampling is used. 

Commensurate switch control for linear 

amplification based on natural sampling may take two forms 

The first, in which variable pulse width switch state 

functions are used, is analogous to the method used for d.c. 

signals. The second method is based on nominally constant 
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width pulses whose phase, relative to the supply voltage, 

is varied to change the output component. To produce 

linear amplification the relationships between the wave 

shape of the supply voltage Vi(t) and the sampling waves 

SKi (ft) may be determined explicitly. 

It is shown in appendix A 3.1.2b that a switch 

state function, gi(t), defined by sampling waves S i (ft) 

and S2 (ft) and a control voltage, e(t), may be used to 

modulate a supply voltage, Vi(ft), so that the node voltage 

component Vnik obeys the linearity equation 

Vnik = Ki e(t) + Ci 

provided rft=x 
Vi(ft) d(ft) = S i (x) - B1 = S2 (x) - B2 Jft=0 	A

1 	
A2 

where 	0 <x <1 
and 	Ki = [1 - 	, Bi  - B2  = Ci 

A
1 	

A ') 	A 	A2 1 
This solution suggest that the shape of the 

sampling wave be determined from the integral of the supply 

voltage waveshape. Because the definition of S K (ft) requires 

that the slope is monotonic over the sampling interval the 

supply voltage zeros' of amplitude will determine these 

interval limits since the slopes will be zero when the 

supply voltage is zero. If the waveform has more than one 

pair of zeros per period then there will be more than one 

pair of sampling waves per period. Each pair may be 

considered as belonging tO a separate natural sampler. 

The state function formed to control the switch is then the 

sum of the state function outputs of the natural samplers. 

The output of each coder is associated with the 

interval between two consecutive zeros of the supply 

voltage. Between each pair of zeros the integral of the 

supply voltage waveshape will have monotonic slopes of 

opposite polarity of slope. This means that the sampling 
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wave co-efficients A 1 
and A2 will have the same sign for 

pulse width modulation but opposite sign for pulse phase 

modulation. 

For given values of A i  and A2  the maximum 

output range is available when both extremes of the 
range are set by the amplitude of a single sampling wave. 

This can be arranged by suitable choice of B 1 
and B2' 

The difference between consecutive maxima and 

minima of the integral of he supply voltage will not be 

equal if the waveform contains a d. c, component over the 

interval. The larger difference is referred to as D 2  

and the samller as D 1 
 below. The variable 04 defined by 

.. 	D
i  

c.4  = 	D2 
is by the definition of D 1 

and D2 

restricted to the range 0 < c.,(: <1. The maximum range 

of input iSe in  is described by 

Aei n  = max.value of 	(mift.value of lAi Di l and 1A3 D2 1) arid

[ (min.value Of IA I D2 1 and 1A2D2 1) 

D2 Ix(ox.value of 1 (min.value of 	1BI and 1) and ) 

t (min.value of 1 , 13.1 and 

{

I 	if .1 B.I > I< 

	

'<led 	if 1 <1131 <81z 

c< 	if ex < I B,I <1 

1 B I 	if 1 3 1‹ e< 

The maximum value of input range and the 

valueofiCdetermines the output range. By suitable 1 
choice of A1 

 and A2 the maximum output range for a 
given situation may be determined from 

—2  

	

AVIA ()  maximum = Ae iri  x 	i - 

where B = A
l  

A2 
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Because D and D2 are normalised changes in 1 
the integral of the supply voltage they represent minimum 

and maximum average values for the positive and negative 

portions of the supply voltage. The maximum range of 

output for Pulse Width Modulation is thus only half that 

for Pulse Phase Modulation for a pure a.c. supply. For 

a supply voltage which equals but does not cross zero 

at some point in its cycle the two techniques give the 

same output range and have the same sampling waveforms. 

For supply voltages of constant polarity - the restrictions 

used to obtain the sampling wave intervals and ranges do 

not apply since the slope of the integral will have 

constant polarity. For this case maximum output range 

for pulse width modulation is the maximum possible. Pulse 

phase modulation for maximum output is a limitino case of 

the possible forms of 'Pulse Width Modulation. 

From the discussion above it is apparent that 

pulse width modulation is best suited for constant 

polarity supply voltages while Pulse Phase Modulation is 

best suited for supply voltages with alternating polarity. 

There is a second method for choosing sampling 

waveforms for pure phase modulation. The switch state 

function for pure phase modulation is described by g(t) 

- 

The restriction on S 1 (ft) and S2 (ft) to have 

identical waveforms shifted in time by (p., defines a 
sampling waveform derived from the 	supply 

voltage waveform but transformed in a different manner 

to an integral. If the supply voltage is described by 

Vi(ft) = . 
a
o + 	an.Sin [2rm ft 	0 ni ' then the 

n=1 

where 

where 

g(t) 

S721  

n 	C•45  

cx 	+ 	2 	• 

n=1 

p(t)] - ST 1 [e(t)] 

(Sin 

. in 

2nn(ft-ST I [e(t)] 

2nn( ft-S-2 1 [e( 

= 	0‹ 

t)] 

) 
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sampling waves which produce a node voltage according 

to the linearity condition, 

Vnil 	= Kie(t) + Ci , are described by 

S (ft) where SK (ft) = 	c< o-Ci + 2 riTi—  • (-1/ a 	
ri=0.0 an  

K+ 	

n=1 

[Si n (2nn(ft+(-1) .1  .V+ On ).1; Sin nnoC for K=1 and 2. 

The harthonic amplitudes of the supply voltage 

are transformed in a similar manner to integrationbut 

apart from a shift in time their phase is not altered. 

(S2 (ft) is the negative slope of the above waveform) 

As an example consider a supply voltage Vi(ft) = 

Sin (2nft) -. Then 

SK (x) = AK 	- Cos 2nx] + pi o(x<1. 

2n 
Now $

1 (x) has a negative slope while S 2 (x) has a 

positive slope if pulse width modulation is used. If 

S2 (x) is the sampling wave for o<x<1 and S2  (x) is the 2  
sampling wave for-<x<1  then A 1 and A2  arepositive. 
Tb produce a node component Vni] o  of the form 

Vni] o = e(t) the values of A 
	A2 , 

2' 
B 1 , and B2  are related by 

1 	I = 	and al = 132 A2 A
11  A2 

For maximum output, 

With A2 = 1 and B 2 	
0, then A

1 
 =c>=,  and B1 

= 0. 
-  

An input variation from 0-->1 will produce a change in 
"T1 

output from 0-.1 . This can be seen in diagram D 3.1.2b, 

where supply Zltage, sampling waves, switch state 

function and node Voltage are shown for an input in the 

centre of the range. 	 • 

The solution above, is optimum for pulse 

width modulation. The equivalent pulse phase modulation 
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1 system has A
1 
 = A2 	' = 	B

1 
 = B_ = 0. The input 

2ri  
variation from -1 to +1 will produce a change in output 

component from -1 to +1. The corresponding waveforms 

to those for the example above form diagram D 3.1.2c. 

3.1.3 	Assembly of Node ComEonents  Linearly  

Dependent on the Input  Signal 

A total node voltage is formed by summing the - 

components. A convenient method for visualizing the 

node voltage component contributions, when natural 

sampling is used, is a diagram showing all the sampling 

waves for one period of a wave. An example of such a 

diagram for the situation with three symmetrical supply 

voltages is diagram D 3.1.3a. (The situation shown is 

typical of thyristor arrays for unidirectional current 

output). Each area of the diagram is labeled with the 

conducting switch. For any pair of parameters, input 

voltage and phase angle, one and only one switch should 

be on. . This is the original restriction on the different 

switch states. In terms of the diagram this means that 

between the input voltage limits the sampling waves 

should not cross nor should any area represent no twitch 

connected to the node. The supply voltages and resultant 

node voltage are shown. for an input signal over one period 

of the sampling waves. 

The diagram above shows one period of each of 

the sampling waves. In theory it is possible that 

sampling waves be harmonics of a fundamental frequency. 

Although such a case does not occur commonly the 

sampling waves forming the diagram could be drawn and the 

diagram would represent several? periods of all except the 

lowest frequency sampling wave or waves. 

For the example shown above the sampling 

waveshapes were determined by the integral of the 
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effective supply voltage waveshape for each switch. 

The shaded area of the supply voltage indicates the 

effective value. This was dictated by the turning off 

characteristics of thyristors.. Notice that each node 

component is formed by a combination of pulse width and 

pulse phase modulations, as a result of this limitation. 

If it is desired to obtain a maximum range 

of output from a switching amplifier, for a given set 

of supply voltages, then some'of the supply voltages 

may not be needed. This is illustrated for the case 

where each node voltage component is linearly related 

to the input signal by the following arguement. 

The maximum output voltage at a node is 

obtained when the node voltage is equal to Vmax(t), the 

maximum of the supply voltages. Similarly the output 

voltage is minimum when the node voltage is equal to 

Vmin(t), the minimum of the supply voltages. These two 

limiting node voltages define the limiting values of 

each node voltage component. If a supply voltage is not 

connected by a switch to the node at either of these .  

limits then the contribution of that voltage to the 

node voltage is zero for maximum and minimum input 

signals. Since the mean voltage due to any component 

is linearly related to the input voltage this implies 

that such a supply voltage contributes nothing to the 

mean node voltage for any input value. 

This has important consequences for switching 

amplifiers operating from d.c. supplies. If more than 

two supply voltages are available then for maximum 

- output range of the amplifier only the two extreme 

voltages should be connected to the node if each supply 

and switch contributes linearly to the output voltage. 

For switching amplifiers with a.c. supply 

voltages the situation is not so simple; however if a 
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.supply - voltage does not form part of the envelope of the 

supply voltage waveforms then it may be replaced, with 

no effect on the cutput voltage range by a switch to the 

,zero voltage supply. 

If maximum output voltage range of a 

switching amplifier is used as a design criterion then — 
because this defines the contribution, of each switch at 

two input signal levels the sampling waveforms for each 

switch are defined by the linearity condition. An 

example of this method of choosing sampling waveforms is 

shown in diagram D 3.1.3b. In this example the sampling 

waves are those for natural phase modulation so that the 

limits are symmetrical except for a phase shift. Because 

of the supply voltage symmetry all sampling waves are the 

same shape differing only in phase. 

In some situations symmetry of sampling waves 

does not occur and since sampling waves for each switch 

cannot cross this may sometimes restrict the output range 

by requiring switches other than those.connecting supply 

voltages forming the envelope to be closed. Other 

conditions may arite . when sampling waves would be 

required to cross each other. In this situation a dead 

band between sampling waves is achieved by earthina the 

node over a narrow band of the diagram. 

When a switching amplifier output is not 

required to vary over a maximum output range the 

restrictions on samplihg waveforms are not sufficient 

to produce a unique solution. The final switching 

waveform is then determined by the switch characteristics 

or by minimisation of undesired output components in the 

switching wave. 
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3.1.4 	A New Form - of Encoder  

3.1.4.1 	A Switching Wave with Two Arbitarv Levels  

The natural sampling.discussed previously 

was based on sampling rates commensurate with the 

frequencies of any a.c. components of the waveform levels. 

The following version of a switching wave controlled by 

natural sampling relies on these frequencies being 

separated. The method is subject to the usual restrictions 

outlined in a previous chapter but within these is 

capable of providing linear amplification with arbitary 

waveform levels, 

It is shown in appendix A 3.1.4 that two 

waveform levels, not having components commensurate with 

the sampling frequency, may be used to provide linear 

amplification. A linear natural sampler, intended to 

control the switching between two equal d.c. levels of 

opposite sign is modified sos.that, first, the sampling 

waveforms are amplitude modulated by the difference in 

the waveform levels, and second, a component equal to 

the average of the two levels is subtracted from the 

input signal. The block diagram D 3.1.4 illustrates 

the case where the sampling waves are opposite slopes 

of a triangular wave. 

An intuitive model is easily formed by 

realising that the amplitude of the output is directly 

modulated by the supplies and the modulation of the 

sampling wave cancels this. The mean value of the 

output is then corrected by subtracting the mean of the 

levels from the input signal. 
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3.1.4.2 	Supply Wavefonm Rejection  for  Comex Waveforms 

The two supply amplifiers just outlined may 

be considered as a second amplifier part which follows 

a first part. The role of the first part is to select 

supply waveforms according to some set rule. This is 

easily envisaged for the case where a rectifier is 

used to provide the two.supply amplifier. The rule in 

this case is simply that the positive inner amplifier 

supply is the largest of the available supplies and 

the negative supply the smallest. The resulting 

switching wave has levels at each of these inner supply 

waveforms. 

This simple picture is the basis for the 

amplifier shown in diagram D 3.1.4.1b. Rather than 

form the supply waveforms for the inner amplifier 

supplies as outlined in figure 3.1.4.1a it is necessary 

only to produce waveforms for the coder part of the 

iJiner amplifier. A single switch array may then be 

instructed by the coder and virtual supply encoder to 

select the appropriate supply for the switching wave. 

This approach minimises the number of power switching 

devices required. (It should be appreciated that the 

use of a simple rectifier supply is not efficient nor 

approximatelyideal when it may be called upon to provide 

the reactive currents Present at a switch array.). 

This class of amplifier has a number of 

freedoms from supply waVeform imposed restrictions common 

to other. switching wavegeneratin .g systems. . • The major • 

freedom is the choice of effective supply levels. This 

class of amplifier could for instance produce the 

minimum energy waveform discussed in section 2,6. This 

is not feasible'by any other method. 

The second important freedom is that of 
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sampling frequency choice. Since the sampling frequency 

is not restricted to the supply frequency or a harmonic 

of this frequency, as it is for commensurate sampling, 

the maximum feasible switching rate may be chosen to 

minimise filter size and maximise amplifier bandwidth. 

There are of course a number of disadvantages 

or rather limitations. The main suchis the arbitary 

frequency of switch control signals to any one switch. 

In some circumstances, such as those where minimum 

energy waveforms are involved, two opposing control 

signals may be issued to the same element of the switch 

array with negligiable time separations. This is very 

often an undesirable feature. 

A second limitation in many circumstances 

is the need for symmetrical bi-directional switch elements. 

There is also a cost imposed by added circuit 

complexity since either analogue signal selection and 

switching or paralleled input coders with digital signal 

selection are necessary for the selection of the virtual 

supplies, and more complex gating is required for the 

generation of the switch control signal. 

The technique has the same rejection of supply .  

waveform changes as the two supply case, namely, 

rejection of supply waveform amplitude changes, to the 

point where limiting occurs, rejection of supply 

waveform frequency changes, and independence to a large 

degree from supply wave shape changes. 
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3,1.5 	Multi - d.c. - level Switching Waves  

A coder and switch array produce a switching 

wave which is a quantised version of the input signal. 

This multi level switching wave differs from.the input

•signal by an error signal. If this error is used to 

control a two level switching amplifier with a linear 

characteristic then the sum of the two output signals 

will be a . switching wave- with a linear relationship 

between its low frequency component and the input signal. 

Such a switching wave may in fact be produced by a 

single switching amplifier by a suitable choice of coders 

and switch control logic, but the visualization of two 

separate amplifiers is convenient for the design and 

understanding of such waveforms. Some examples are 

shown in diagram D 3.1.5a. 

The switching waves produced by quantizer and. 

complete amplifier differ in output spectrums. In the 

former case the error between the output and the input 

consists of components with frequencies of d.c. the 

input signal frequency, and the harmonics of this frequency. 

In the latter case the error signal consists of components 

with frequencies at the sampling frequency of the second 

amplifier, the harmonics of this frequency, and at 

sidebands of these frequencies due to harmonics of the 

input signal. In the latter case the separation in 

frequency of the output desired and the error waveform 

enables filtering to be used whereas in the former case 

this is not feasible. 

The descriptions of the methods used to 

produce the waveform and of the type of the waveform 

spectrum have not included any specification of the type 
of switching amplifier used to modify the quantizer error. 

Although any amplifier with a linear characteristic may 

be used, those most commonly employed are based on natural 
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sampling. This is due to the.simplicity of converting. 

a quantizing coder to a natural sampler; all that is 

required is that the input signal have a suitable 

sampling wave added to it. 

In appendix A 3.1:5a the conditions for a 
perturbation signal added to the input signal of a 

quantizer to give a linear characteristic are derived. 

The perturbation signal must have the following 

characteristics. First, it must have a linear 

probability distribution between maximum and minimum 

amplitudes. Second, it must have maxima and minima 

which differ by one or more steps of the quantizer input. 

Third, it must have zero d.c. component. Finally, it 

must have a lowest frequency component such that 

sidebands due to harmonics of the highest input frequency 

are of greater frequency than the input signal. 

. Although these requirements of the perturbation 

signal do not define a waveform they are adequate for 

the purpose of deciding whether a particular waveform 

is suitable. It is conceivable that a noise signal 

could satisfy all the requirements but this would not 

give natural sampling since the waveform is not periodic. 

Waveforms such as the triangular and sawtooth shapes 

with suitable amplitudes will give natural sampling and 

also satisfy the requirements. 

Linearity  and Perturbation  Properties  

The requirements of sampling waves just dealt 

with may be understood with the aid of the fallowing 

description of the relationship between the probability 

distribution of perturbation amplitude and the transfer 

characteristic of the system. In appendix A 3.1.5b the 

low frequency components of the sampling wave are shown 

to be described by 
m=k-1 

E = e + (1-1-pmax) - Z 	P(m-1) + C 
m=0 
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where these symbols have the following meanings: 

e is the input signalnormalised at one unit per 

quantizer step; .  

pmax is the maximum value of the normalised perturbation 

signal; 

k is the integer less than or. equal to the minimum value 

of the perturbation signal; -  

t is a variable such that 
-pmax 	e-En = 4 < 1-pmax.for En an integer; 

P(x) is the probability that the perturbation signal is 

less than x; 

C is a constant equal to the sum of the average of the 

perturbation waveform and the average of k.P(x) over 

the range of x such that 

pmax - k < x < pmax. 
To illustrate these parameters and their use consider a 

sinewave.perturbation with amplitude, a, less th..7n half 

a quantizer step. The probability that the perturbation 

is less than x is 

if x<a 

P(x) = 

0 
1/2 + arc Sin 	a)  if 

' if -aex 

The other parameters are: 
pmax = C = - a; k = 0. 

The characteristic is 

E = En + 1/2 - 

Diagram D 3.1.5b shows how the requirements for the 
perturbation apply by illustrating the characteristic 

for a case where some are invalid. The perturbation 

peak to peak amplitude controls the width of the flat 

regions corresponding to the original quantizer 

characteristics. A peak to peak amplitude equal to an 

integer multiple of one quantizer step eliminates these 
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regions. The probability distribution of amplitude 

controls the shape of the characteristic. A linear 

distribution _gives a linear characteristic. 

The Sensitivity to Perturbation Amplitude  

When a perturbation with a linear amplitude 

distribution is used it is important to maintain the 

peak to peak amplitude near an integer multiple of one 

quantizer step. The form of the nonlinearity when the 

perturbation peak to peak amplitude is not the above 

is examined in appendix A 3.1.5c. Diagram D 3.1.5c 

illustrates the deviation. 

The deviation is a periodic triangular wave 

with respect to e. The amplitude of the wave as a 

function of perturbation peak to peak amplitude, k, is 

shown in diagram D 3.1.5d. The function shown has 

minima at integer values of k. The slope of the function 

on either side of an integer value of k is a measure of 

the sensitivity of linearity to perturbation amplitude. 

If this slope is normalised with respect to the 

perturbation amplitude the peak nonlinearity as a function 

of percentage change in perturbation amplitude is 

Obtained. The relationship is 

peak error = (1/2), lAk/k1 

This sensitivity indicates that peak error 

near an integer value of k. is half the percentage 

deviation of k from an integer value: 

Output Waveforms with  Natural Sampling 

The complete description of the switching' 

waves produced by ramp and symmetrical triangular 

sampling waves satisfying the linearity conditions are 

derived in appendix A 3.1.5d. The expressions are 

valid for sampling waves with peak to peak amplitudes • 

of k quantizer steps for k an integer. The expressions 
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for the perturbation and associated output waveforms 

are given by: 
n=0.0  

p(t)=-1( 	Sin(n(wpt-n))/(nn 
n=1 
n= 

eo = e+2: [Sin( n(kwpt+2ne) ) -kSin(n(wpt- 7T))]/(n7c) , 
n=i 

n=0*(3 
p(t)=-k f 4Cos(mwpt)/(n-r) 2 , 

n=1,3 

n= 00 
e o 

= e+7 2.Sin(nn(e+))Cos(nwpt)/(nn), 	if k=1, 

m=0.0 
or 	eo 

= el-ZpSin(mn(e )).Cos(mkwpt)/(mn] 
m= ,4 
m=0.0 
+2- [2•Sir1( ( IF- ) 	) ( Sin(F-)/Sin(H) 
m=1,3 

.Cos(mwpt)/(mn) . 
for all values of k. 

The first pair describe the waveform of a ramp ar,J 

associated switching wave, the second a symmetrical 

triangular wave. For k equal to unity both expressions 

are identical to those for a normal, two level, d.c. 

supplied, switching amplifier using the same form of 

sampling wave. 



ee.sin4.,  samplec/ brvt 

 

i Saanphng 
Instants 

  

The rest/Ant swk149.7 ..a ire 

42.e. resuAnt waveform 

frrif 
EXAMPLES OF REGULAR SAMPLING 

D 3.2.1  



3,23 

3.2 	Waveform Synthesis by Regular Sampling  

3.2.1 	The  Coder Law 

The coder controlling a step between two levels 

of a switching wave is said to employ regular sampling if 

a periodic sample of the input signal determines the 

position of the step relative tb - the sampling instant. In 

a simple case the step may lag the sampling instant by a 

time proportional to the input signal amplitude at the 

sampling instant. In a more complex situation the time 

between the sdmpling and the step change may be a nonlinear 

function of the input signal value at the sampling instant. 

Examples are shown in diagram D 3.2.1. 

3.2.2 	The Relationship to Natural Sampling, 

A coder using natural sampling will produce the 

same output as one using regular sampling if the natural 

sampler is provided with the input signal to the regular 

Sampler after this has been sampled and held at the same 

instants the regular sampler does this. This relationship 

between the two forms of coding enables some relationships 

between the forms of output to be deduced. 

In natural sampling the coder output contains 

terms with frequencies corresponding to the input signal 

and others with frequencies which are sidebands of 

carriers at the sampling frequency and its harmonics. The 

sideband components are due to a modified form of phase 

modulation of the carrier components by the input signal. 

Now if the input signal of a regular sampler is a 

sinewave then the corresponding input to a natural sampler 

would be a sinewave subjected to sampling and holding at 

the sampling frequency of the natural sampler. This input 

signal will contain components at frequencies other than 

the basic frequency of the sinewave. The other 

frequencies correspond to filtered sidebands of the 
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sampling frequency where the sidebands are the same as

those for amplitude modulation and the filter has a 

sine (x)/x frequency characteristic with a delay in time 

as the phase characteristic. A representation of an 

input signal before and after sampling and holding is 

shown in diagram D 3.2.2. 

A natural sampler with this form of input will 

produce in the output signal components, due to the 

sidebands in the input, with frequencies corresponding 

the input signal and its harmonics. This is equivalent 

to distortion of the input signal. Due to the nulls in 

the sine (x)/x characteristic of the sample and hold 

process the distortion is small for low frequency input 

signals. This is consistent with the expected result 

that d.c. signals must remain undistorted. 

This difference between natural and regular 

sampling, whereby the former generates signals which are 

essentially distortionless and the latter signals with 

distortion, is the most fundamental one. In most other 

respects the two forms of sampling are very similar. 

They both produce phase modulated signals to form sidebands 

of the sampling frequency harmonics and both may be used 

with a wide range of supply voltages to produce linear 

d.c. characteristics for switching amplifiers. 

An example of Regular  SamEling  

The general expression for a coder step 

produced by regular sampling is derived in appendix A 3.2.2. 

In order to illustrate the use of this expression the 

following example is also developed. 

A switching waveform, with d.c. levels of plus 

and minus one unit, has steps displaced in phase relative 

to the sampling instants by angles defined by the equations 
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p 
= 0 and

n = n.(1 + a.Sin(w t s )). 

S and 0nare  phases for the positive and negative steps 

respectively. The expression for the sw.itching wave is 

E = Z 2a Jci(naqwm/ws ) Sin(qwm ( 
q=1 

))/(naqwm/ws ) 

n, .0cE  
- 7 	Z 	 )) q=1 2a0q(na(N+qwm/ws)))Sin(N(wst+n)+qwm(tq-41 
a=1 (na(N+qwm/w0-7 

The low frequency terms, the first group in the expression, 

correspond to the input signal and are the output component 

of the waveform. The second group have frequencies 

corresponding to the sampling rate and its harmonics. The 

last group have frequencies separated from the frequencies 

of the second group by multiples of the modulation 

frequency. This group are modulation . sidebands of the 

second group. 

3.2.3 	The Modulator Nonlinearity  

The nonlinearity of the modulator may be 

gauged with the aid of diagram D 3.2.3.. The amplitudes, 

normalised with respect to a, of •each of the first four 

harmonics are shown as functions of nawm/ws . The values 
of a and w m  /ws  are both less than unity due to the 

modulator characteristics so that the index, naw
M
/w 

has a range from zero to pi. 

For small values of the index, where a or 
w /w s  is small, the distortion is very low. If both a m  
and w 

m/w are half their maximum values then the second  s 
and third harmonic amplitudes are one third and one sixth 

respectively Of the desired output. The amplitude of the 

fundamental is also reduced by seven percent. As the 

input signal is increased further in either amplitude or 

= c>o 
— Z 

f 
2Sin(N(w

s t-n)) Jo (Nan)/(nN)-2Sin(Nw t)/Nn .} 
a=1 
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frequency the relative amplitudes of the distortion 

components increase rapidly. At an index of 4.5 the 

energy of the fundamental equals the sum of the energies 

of the harmonics. The maximum energy of the distortion 

terms is approximately one fifth of the fundamental at an 

index of 1.4. 

For a single sinewave input the distortion is 

worst when the frequency is near half the sampling 

frequency and the amplitude is the maximum possible . 

without modulator saturation. For very low frequencies 

or very small amplitudes the distortion is negligible. 

Regular Sampling with Combined Inputs  

The expression for a waveform with a control 

signal given by 

"SW = n(l+a Sin wa t + bSin wbt) is 

calculated in appendix A 3.2.3. The terms corresponding 

to the input signal are given by the expression below. 
m=o0r=z,0 

E. 2. 	Jr  ( n a ( rwa +rnwb ) 	m ( n b(rwa  +mwb )) . 
\  m=-00r=- 

7(r7a +mwb 7 

ws 	

) 
ws 

jej (rwa +m'wb )(t - 2  ). ws 
The terms giving the fundamental components of the output 

signal correspond to the cases when m=o, r=1,-I and r=o, 

m=1,-1. 
These are 

and 

( TN a 1.1;2.). Sin(w10 (t- 	)). 

nb (wa ) 
ws 

wa .  wa a. 2.J1 ( n a --) n b --) Sin(w (t-L3- ) ws 	a, w 
na (wa ) 

w
sw 

. b.(2J ( n b 1 	w s ° 
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When both a and b are small these terms are near their 

values for a linear modulator since J o (x) and 2J Ix) 
1'  

both tend to unity as x approaches unity. If either z 

or b is increased the value of the other decreases due 

to the Jo term. The sum and difference frequency terms 

are given by 

a. b. 7-1 (wa  + bW )/w J2J1  ( 11 a (wa+wb ) /ws ) 2J1 (  n b( wa +wb ) /w s  ) • 2 	s  

	

n a (wa +wb)/ws 	nb(wa+wb )/ws  

Sin((wIwb )(t- n/ws )) 	and 

-a . b •  72(w a  -wb  )/w /2J1  ( n a (wa -wb )/ws ).2J1 ( TT b(wa -wb )/ws ) • 2  
a b 	s 	nb(wa -wb )7ws 

Sin( (wa -wb )(t- n/ws )) 

As the indices of the Bessel functions become small 

these terms become assymptotic to the first group in 

their list of products. The higher order harmonics and 

intermodulation terms converge more rapidly than the 

terms so far discussed so that for small signals the 

output may be approximated by the expression 

E = aSin(wa (t-n/ws )) 	bSin(wb (t- n/ws )) 

+ a.b. 7/2 (wa +wb )/ws Sin((w w )(t- n/ws )) 

-(wa -wb )/wsSin( (wa -wb )(t- n/ws )) 

Two Step Modulation 
The output waveform of the examples is 

modulated only on the negative going step. As a 

consequence to obtain maximum and minimum output the 

phase of the step must be varied by pi in each direction 

from a mean phase of pi relative to the sampling instant. 

The mean phase controls the delay of the modulator so 
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that in the examples given this was half the switching 

wave period. 

By modulating both steps of the waveform the 

modulation index for a given output is halved as is the 

delay of the modulator. The maximum nonlinearity of the 

modulator is reduced by much more than this factor. . The 

effects of modulating both edges of the waveform rather 

than one are similar to those obtained by doubling the 

sampling frequency which is what in effect has been done. 

The worst distortion with symmetrical double 

edge modulated regular sampling with d.c. waveform levels 

occurs when the modulation index is that for full 

unsaturated output amplitude. If the maximum input 

frequency is taken as half the repetition frequency of the 

switching wave then the largest component ofthe error is 

the second harmonic which is one sixth of the output. The 

other harmonics are much smaller than this component.' 

3.2.4 	The Generation and Assembly of  Switching Waves 

Regular and Natural sampling produce identical 

coder outputs when the control signal is d.c. Thus for 

d.c. control signals the techniques used to give switching 

amplifiers using natural sampling linear characteristics 

will also give those using regular sampling a linear 

characteristic. The distortion due to regular sampling of 

a.c. control signals cannot be cancelled by a coder 

modification. This is only feasible if the frequency 

dependence of the distorted signal may be cancelled by 

means of a filter since it is possible to cancel 

distortion which is purely amplitude dependent by 

adjusting the sampling waveshape.. 

The methods used to assemble switching wave 

components controlled by natural samplers may not be 

sufficiently restrictive for regular sampling when a.c. 
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signals are to be processed. Where two or more samples 

per period are used to control adjacent waveform level 

segments whose turn on and turn off phase ranges may 

overlap, it is possible for a rapidly changing signal to 

cause the level, normally second to turn on, to turn on 

beforethe - other. This situation is likely to arise 

with multi phase a.c. level waveforms Using phase 

modulation. Situations involving switching sequences, 

based on order of turn on or on memory, may require some 

additional logic for switch control to prevent such 

situations causing failure. The possibility may also be 

avoided by filtering the input signal so that ratesof 

change greater than the critical value are prevented from 

occuring. 

The Features of Regular  Sampling 

The examples have illustrated the two main 

features of the low frequency components of a linearly 

controlled regular sampler. 

First, the output signal is nonlinearly related 

to the input signal. The nonlinearity is not a one to one 

relationship between instantaneous values of input and 

output but depends on the input signal spectrum, in 

particular on the ratio of input signal component 

frequencies to the sampling frequency for a given step. 

For small values of input signal amplitude and or frequency 

the nonlinearity is negligible. d.c. input signals are 

reproduced undistorted. 

Second, the output signal is delayed relative 

to the input signal. The magnitude of the delay is 

dependent on the mean period between the taking of a 

sample and the forming of a step. If the sampler produces 

a symmetrical switching wave for zero input and has a 

maximum range of positive and negative output levels then 
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the delay is half the sampling period for single edge 

'modulation and one clOarter the sampling period for 

symmetrical double'edge modulation when the input 

signal is sinusoidal. For an input signal with a. c. and 

d.c. components the delay is dependent on the d.c. level 

for single edged modulation but not for double edged 

modulation. 
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3.3 	Review 

The switching wave of an amplifier controlled 

by. natural sampling may be described by a low frequency 

component, a fui,damental component with frequency 

matching the sampling rate, and an. infinite set of - 

components with frequencies at harmonics of the fund-

amental. Each of these componeiits have magnitudes and, 

in the latter cases, phases which are mathematical 
functions of the input signal. The form of this function 

for a given amplitude or harmoniC phase is determined by 

the shapes of both the sampling waves in the encoder 

controlling the switches, and the energy source waveforms. 

Linear amplification requires the low frequency 

component of the switching wave to be a linear function of 

the control signal. For a given supply waveform this 

requirement restricts the range of possible sampling 

waveforms bY imposing relationships between the shapes of 

the waveforms controlling each switching wave step. In 

some circumstances the shape of these sampling waves is 

uniquely defined by this restriction, in others, design 

criteria such, as output range or sideband minimisation, 

are needed to completely define the waveforms. 

Although 	is not discussed here it should be 

appreciated that similar techniques to those used for the 

definition of sampling wave shapes for linear amplification 

can be used to define these shapes for linear modulators. 

The basic requirements are that the magnitude of a given 

harmonic be a linear function of the input signal, and the 

phase have constant value. These two requirements are 

-sufficient,A.n most cases, to completely specify the 

sampling waves. 

By modifying the shape of the sampling wave it 

is possible to produce switching waves with output 
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independent of supply ripple superimposed upon d.c. 

supplies. The technique may be applicable to waves with 

more than two levels though this is not discussed. 

Switching waves with many equally spaced 

levels are produced by quantizers and sensor arrays as 

well as by switching amplifiers. Natural sampling may 

be used to linearise . a quantizer characteristic. The 

low frequency component of the quantizer output is 

related to the input signal by the probability 

distribution of theperturbation used as a sampling signal. 

A linear characteristic is produced when the distribution 

is linear and the peak to peak amplitude is a multiple of 

one step size. Characteristics with periodic deviations 

from linearity can be predicted when these aspects of . 

sampling wave are not satisfied. 

If a natural sampler is used to encode a signal 

which is itself produced by sampling and holding the 

amplifier input signal then the encoded signal is 

identical to that produced by regular sampling. The 

description of waveforms due to regular sampling is 

achieved usind this model of the process. The switching 

waves of natural and regular sampling are identical for 

d.c. control signals and identical techniques may be used 

to achieve linear amplifier characteristics. 

The major difference between natural and 

regular sampling is the nonlinearity and intermodulation 

of the output of a regular sampler when a.c. control 

signals are used. The index of this distortion is the 

product of modulation amplitude and control signal 

frequency measured relative to the Sampling rate. For low 

frequencies the distortion signal is proportional to 

control signal frequency and amplitude with a value of 

about -25db. at an index .  of dc;2. 
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CHAPTER TV 

THE HIGH FREQUENCY COMPONENTS OF PERIODIC 

SWITCHING WAVES 
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4.0 	The Hioh Freouenc Com onents of Periodic 

Switchino Waves 

A switching amplifier controlled by natural 
sampling may be designed so that the low frequency 
component of the switching wave is an accurately magnified 
version of the input signal. In addition to this signal 
the switching wave has components with frequencies at the 
fundamental and harmonics/6f the sampling rate. Each such 
harmonic component has an amplitude and phase which is a 
function of the input signal. It is these modulated 

harmonics of the switching wave which must be rejected by 
the output filter. 

Each modulated harmonic is composed of a large 
number of unmodulated sidebands. These sidebands are 
separated from the nominal harmonic frequency by a 

multiple of the modulation frequency, that is the control 

signal frequency. Some of these sidebands have frequencies 

within the amplifier passband, others are incompletely 
rejected because the filter is not ideal. These unrejected 
and partially rejected sidebands form a noise signal at 
the amplifier output. The magnitude and type of noise vary 
with the switching wave, the filter, the control signal 
components, and the ratio of passLand width to sampling 
frequency. This chapter examines these features of the 
sidebands and places upper bounds on the noise to signal 
ratio of a number of switching waves in terms of the 

parameters outlined above. 

The sidebands of the switching wave may have 
frequencies which are identical with the control signal 

or its harmonics. In such circumstances there is an 
apparent distortion of the amplifier output. This 
distortion differs from that caused by nonlinearity and 

is similar in some respects to that due to regular 
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sampling. It is sensitive to the relative phase of 

control and sampling signals. This distortion is 

discussed under the heading of subharmonic gain. 
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Outline  

This chapter has three broad divisions. 

The first of these deals with the functions which modulate 

the harmonics of a number of common switching waves. The 

second examines the sidebands of these harmonics when 

periodic control signals are used. The third describes 

the subharmonic gain and its cOMputation. These 

divisions are now outlined in more detail. 

By specifying the shape and phase of the 

waveform levels and the modulation laws governing the turn 

on and turn off of each of the levels the particular 

expressions describing.Some common switching waves are 

formed. These examples include expressions for both 

d.c. and a.c. levelled waveforms. The variation of 

harmonic amplitude with both harmonic number and output 

component are discussed and comparisons are made of 

maximum harmonic amplitudes, maximum output components, 

and ratios of these. To suJimarise these features use 

is made of energy component diagrams which enable visual .  

comparisons of total harmonic energy, total waveform energy, 

and individual harmonic energy for a full range of output 

components. In the case of a.c. levelled waveforms where 

very complex functions. may occur this information is 

supplemented by tables. 

Since the simplest switching wave has sidebands 

produced by pure phase modulation the second division 

commences with a brief description of the theory, graphical 

description, and numerical calculation of sidebands due to 

phase modulation. This information is used to illustrate, 

by graphical means, the computation of passband noise 

energy and to demonstrate the variation of this noise with 

the amplitude and frequency of the sinewave control signal, 

and with the ratio of passband width to sampling frequency. 
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An ideal bandpass filter is assumed. From this background 

material graphs of minimum signal to noise ratio, as a 

function of the modulation parameters, are derived and 

described. The methods are then extended to-include 

multi-level waveforms, nonsinusoidal inputs, and d.c. 

levelled waves with two modulated steps. a.c. levelled _ 
.waves have more complex descriptions and graphical methods 

of.passband noise calculation are not adequate. Graphs 

based on computed sidebands are presented and their features 

compared with similar graphs for d.c. levelled waves. 

These graphs are all based on an ideal bandpass filter 

which rejects all sidebands except those in the passband. 

A short description is given of the use of nonideal filters 

of various orders to illustrate the relationship between 

the ideal and actual signal to noise ratios. 

The third division is concerned with the 

apparent amplifier gain when a harmonic Of a sinewave 

control signal has a frequency coincident with the 

sampling frequency. Expressions for the subharmonic gain 

vector are derived and numerical computation methods 

outlined. Graphs based on computed information are used 

to demonstrate the characteristics of this vector for two 

levelled switching wa\ies with single and double edged 

modulation. 
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4.1 	Spectra of  Waves  with d.c. Control Signals. 

It is shown in appendix A 4 that the switching 

waveform produced by natural sampling has the form of 

the expression 
= 00 

E = a o+ 7 a rCos(rws t)+brSin(rws t), where r=1 

The suffix, i, denotes the i th level of the I waveform.levels. 

A and B are functions of the controlling signal, e, and 

of the sampling waves, SA (ws t) and S-b (w st), where SA4  

controls the instant of switching to the i th level and 

S Bi controls the instant of switching from this level. 

The relationships between SA  and S B , and, A and B, are 

S(e)= A(e) and S-1 ( A . 
) = B(e). 

The coefficients of the Fourier series, a o , a r  , b r  , are 

functions of the control signal, e. The previous chapter 

examined the methods by which a o  could be a linear 

function of e. This imposed restrictions on the sampling 

waveshapes and the ranges of the functions A and B. These 

restrictions result in some restrictions, on the 

characteristics of the relationships between a r  and br  

with e. These relationships are now examined in greater 

detail. 

The Fourier series coefficients, a o ,a r' and 

br are described by integrals'of products involving as 

one factor the waveform level waveshapes. These may be 
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replaced by appropriate Fourier series of the form 

h=H 
Vsi(w t) 	Z a(h,i)Cos(hw t+(h,i)). 

s 	h=0 

The expression for the total switching wave then becomes 

6=Bi 
i=I h=H 

E = Z 	Z a(h,i) [Siii(he+S(h,i)) 	/(2nh) 
i=1 h=0 	• 

J
8=Ai 

r=o0i=I h=H 
+ 7 	2 	7 	f ach,i) [Sin(r(w st-0) •r=1 i=1 h=0 s'.=+1 

e.Bi 

+ s(he+igh,i)) I 	/(271(sh-d). 
0=Ai 

As an example consider the familiar situabion 

where two d.c. supplies of equal but opposite magnitude 

are used in conjunction with complementary control functions. 

The appropriate variables for the expression above in 

this case are 

Ii h=0 
= -a(h,2) = I 0 1TtO J.'' • 

A = Al = B2-2n B = B = 	H = 0, and I = 1 	2' 

The low frequency component is the limit as h tends to 

zero of the expression above. Thus 
Q=B 

• 7
9=A+2n 

E0 = (11 	-1.[G] 	)/27 ej
G=A 	G=B 

(B-A)/n.-1. 
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The rth harmonic is evaluated more directly and is 

given by 	0 	
8=B 

ER = 1. [2Sir(r(w5 t-8)) 	/(-2r7)- 

8=A 
8=A+2T), 

1. [2Sin(r(ws
t-8)) I 	/(- 27r). 

= 2.(Sin(r(w5 t-A))-Sin(r(w5 t-B))/(7 

• 4.1.1 	Switching Waves with d.c. Levels 

4.1.1.1 	Waves with Two  Levels 

For switching waves with d.c. 'levels there 

is a close link between the amplitude of •a given 

• harmonic and the output or low frequency component, E0.. 

This is illustrated for the example above by the following. 

sequence of manipulations. 

ER = 4.Sin(r/2(w s t-A-wst+B))Oos(r(w5 t-A+w5 t-B)/2)/(nr) 

= 4.Sin( (B-A)./2).Cos(r(w s t-(B+A)/2))/(nr) 

= 4.Sin(rn(E0+1)/2).Cos(r(w 9 t-(B+A)/2))/(nr). 

Thus a variation of EO from the lower limit of -1 to 

the upper limit of +1 causes the r th  harmonic to vary 

sinusoidally in amplitude, with a peak value of 4/rn,. 

through r half cycles. 

The amplitudes of all harmonics are zero 

when the Output is at either the maximum or minimum 

value, that is when the output is the same value as a 

waveform level. The odd harmonics have maxima at zero 

output. 

0=B- 
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Diagram D 4.1.1,1 shows the contributions of 

each harmonic to the total - energy of the switching wave. - 

The features mentioned above are very prominent. In 

addition it is easy to compare the relative amplitudes 

of the different components in a physical rather than 

a mathematical sense. Notice that the total energy of 

the wave is fixed at unity for this example. 

4.1.1.2 	Multi Level Waves 

The introductory example has some features 

in common with those multi level switching waveforms 

where Switching is restricted to those levels adjacent 

to the output component value; These waveforms were 

described in chapter II as minimum energy waveforms. 

For output components between two waveform levels, 

El and E2, the energy description is of the form shown 

in diagram D 4.1.1.2a, where only the total waveform 

energy, and the sum of the harmonic energies are shown. 

The total waveform energy varies linearly with output 

level over the range of output between El and E2. The 

parabolic variation of total harmonic energy with output 

corresponds directly to that of the introductory example. 

The proportions of the total harmonic energy contributed 

by the individual harmonics are also the same as those 

for the introductory example. 

A switching waveform with the three levels 

+1, 0, and —1, has two intervals of the form described 

above thus giving the 'energy components shown in diagram 

D 4.1.1.2b. This particular example has no switching 

. wave at zero output. This may be a . ,desirable feature 

of switching waves where zero output is common since 

power consumption is zeroand output ripple of the 

amplifier -is zero. Other switching waves With an even 

number of intervals between waveform levels may also 
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have this characteristic. 

If the range of the output component is 

fixed but the number of waveform levels is increased 

then the energy of the switching wave, as a function 

of output component, is a series of chords aroundthe 

'parabola of the output component energy. The points 

on the parabola corresponding to the ends of chords 

are levels of the waveform where there is no energy in 

the harmonics of the switching wave. The total energy 

of the harmonics has a value equal to the difference 

between chord and parabola and is thus parabolic. For 

waveform levels separated by equal intervals the 

maximum value of each harmonic is inversly proportional 

to the number of intervals. Notice that the number of 

cycles of each harmonic as the output component is varied 

over the full range it proportional to the number of 

intervals. 

There are two simple methods. for generating 

minimum energy multi-level waveforms with equal intervals 

between levels. The first is to sum a number of two 

level waveforms similar to the introductory waveform. 

If each waveform has the same control signal and an 

identical waveform as the others except that the phases 

of the waveforms are uniformly spread over one period 

then a multi-level waveform with minimum energy is 

generated. If the number of waveforms summed is n 

then the total waveform produced will have n+1 levels. 

The second method is based on the quantizer 

,system described in chapter III. The switching wave 

produced by a quantizer, when the input signal is 

perturbed by a suitable signal with a peak to peak 

amplitude of one quantizer input step, is a minimum 

energy waveform. The waveforms produced by this method 
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differ from those of the first method, when both the 

positiVe and negative going stop's are modulated, but are 

the same when - only one step is modulated. The.difference 

is a sudden jump in the phase of the two steps as the 

waveform average passes through a waveform level. In 

the first case the phases of the individual steps are -- 
continuous functions of the average waveform level. 

When Only one step of the waveform 'Is modulated the 

phase jump is one period and is.thus not noticeable. 

A Second difference in the two waveforms is their 

frequency scales. The frequency of the waveform 

produced by summing n waveforms is n times the frequency 

of the individual waveforms while the frequency of the 

quantizer produced waveform is the frequency of the 

perturbation signal. 

• The increase in effective switching frequency 

produced by the summing of a number of waveforms is one 

way of overcoming switching speed limitations encountered 

• in high power switching devices. In this case summing 

is often achieved .by paralleling separate switching 

amplifiers at their filter outputs. This enables the 

same d.c. supply rails to be used for all amplifiers 

and also allows all control circuits to be at similar 

voltage levels. A quantizer type structure does not 

have these properties. 

All d.c. levelled, minimum energy, switching 

waves have the same relationship between normalised 

harmonic energies and normalised output. Thus, for a 

given output and the adjacent waveform levels, the 

values of each harmonic amplitude are defined. This 

is a direct consequence of the restrictions placed on 

the switching wave by the minimum energy requirement. 
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By ignoring this requirement -  it is possibie.tc generate 

switching waveforms with different relationships between 

harmonic energies. The aim of choosing a non minimum 

waveform is usually to minimise filtering requirements, 

that is, to reduce the contribution of the lower harmonic 

energies. This reduction is at the expense of the 

higher harmOnic energies which must increase by the 

decrease in lower harmonic energy and the increase in 
total waveform energy above the minimum level. 

It is shown in appendix A 4.1.1.2a that one 

non minimum energy switching wave is produced by adding 

a number of two level waveforms subject to the same 

conditions as those for the minimum energy. waveform 

excepting that the phasing of the components is uniformly 

distributed over only one half period. This results in 

the cancellation of all even harmonics and results in. 

modified co-efficients for the reMaining harmonics. The . 

expression obtained when R two level unit energy waveforms 

are added is below. 

n=0,1  
. B = -7 Sink2n-1)(E04- 1)71/2).Sin.((2n,1)(w t+n/2R- B A)/2)) 

n=1 	 ' 	 s  

.4/(n(2n-1)Sin((2n-1)n/2R)) 	+ R(E0). 

This example shows the opposite trend to that 

desired since although the even harmonics are cancelled 

the energy of each of the remaining odd harmonics is 

increased above that for an equivalent minimum energy 

wave by the factor 1/(Sin((2n,1)n/2R)) 2 . 

Other noh minimum waveforms may be generated 

by the quantizer system when an input perturbation of two 

or more units peak to peak amplitude is used. These 
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waveforms are similar in form to the example when 

symmetrical modulation is used but differ greatly when 

assymmetrical modulation is used. The example for a 

sawtooth perturbation discussed in the prvious chapter 

is described by the expression below. 

n=oc 
E = EO+ 7 	pin(n(kw t+2nE0))-k.Sin(n(w t-n))]. 

n=i nn 

k is the peak to peak perturbation amplitude. The 

interval between levels is oneunit. The interesting 

feature of this eXample is the shift of modulated energy 

from the lower harmonics to the harmonics which are 

multiples of k. This shift is. balanced by the increase 

in energy of the lower harmonics over the peak of that 

for minimum energy by a factor of k/2. (In making this 

comparison remember the distance between steps of the 

. previous examples is two units). This form of switching-

wave would result in a ripple, after filtering, with 

only a small variation in amplitude as the output 

component is changed over a wide range. This contrasts 

strongly with the behaviour of minimum energy waveforms. 

These non minimum energy waveforms have 

one .feature in common. That is the energy in the 

harmonics relative to the total waveform energy. The 

form of the energy distribution for this type of 

waveform is derived in appendix A 4.1.1.2b and displayed 

in diagram D 4.1.1.2c. The main feature of interest 

is the extra energy of the harmonics which is independent 

of the modulation. The modulated component of the 

harmonic energy is the same function of output level as 

for the non minimum case. 

These three non minimum energy waveforms do 

not seem capable of satisfying the aim of the investigation. 
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They are a very small group of the possible non minimum 

waveforms and may not be representative of what is 

possible since they are very similar in form. 

4.1.2 	a.c. Waveform Levels  

The most common a.c. waveform level used in 

switching .amplifiers is a sinewave. The switching wave 

has the same period as the sinewaVe or a harmonic of the 

sinewave. The switch control signals have the same 

period as the sinewave. For this case the general 

expressions for the output component and harmonics of 

the switching wave are subject to the conditions below. 

a(h,i) = 	1 for h=11 [0(h,i). = 

0 	

93-A/2 

for h=i 

The output component is described by 

E0  
- The rth  of the harmonics is described by 

Sin(r(w5 t)-B(r-s) 4 	/2)) 
ER = 7 1 	 

2(s-r) _ Sin(r(wst)-A(r-s)+s-(/-n/2)) 

A and B are defined by the equations . 

A = S-1 (e) and B = S(e). A 

The output component is now a nonlinear function of two 

variables which contrasts with the case for d.c. waveform 

levels where the output component is a linear function 

of B-A. The harmonics are also described by more complex 

expressions. Each harmonic is the sum of four phase modulated 

sinewaves each of which has a different amount of phase 
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modulation. These terms cannot be grouped so that their 

total amplitude may be expressed as a simple function of 

the output component as is possiblefor d.c. levelled 

switching waves. The expression below, derived in 

appendix A.4.1.2 is the nearest approach to a similar 

form. 

ER = 1 [Sin(r(w -(B+A)/2)).Sin((A+B)/2+0-n/2) s 

• Z s.SinT-sliB-A)/21 
s=+ 	r-s) 

+ Cos(r(w3 t-(B+A)/2)).Cos((A+13)/2+0-7/2) 

. Sin((r-s).(8-A)/2  
s=+1 	r-s 

Notice in this expression and the last that the case 

r=s=+1 must be evaluated by taking the limit as s tends 

to unity. 

The two common methods of Modulation are single 

edged modulation and phase modulation. For single edged 

modulation one edge; usually 8, is held fixed while the 

Other is controlled to produce the desired output. For 

pulse phase modulation the sampling waves for A and B 

are identical, appart from a shift in time, so that B 

follows A by a fixed interval if a constant input is 

applied to both samplers. 

For a single edged modulation and other width 

modulations the amplitudes of all 'harmonics are zero for 

zero output since both the terms above, within the 

summations, are zero for .A = B. Normally a modulator 

only permits a single sign for B-A so that width 

modulators have zero outputat one end of'the output range. . 
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As the output increases so does each harmonic energy 

increase. The phase relatioriship is very complex. 

For pulse phase modulation the terms within 

the summation are constant .. The cosine component has 

an amplitude linearly dependent on the output component. 

The sine component has an amplitude.elliptically related 

to the output component. The phases of both components 

are nonlinearly related to the output component by an 

arcCos function. 

4.1.2.1 	Harmonic Cancellation 

By using I waveform levels with the same 

waveshape but with uniformly spaced phases and by 

using sampling waves with the same restrictions it is 

possible to cancel all the harmonics of the switching 

wave not integral multiples of I. 

The conditions may be stated mathematical 

a(h,i) = a(h,o) for all i, 

= i6(h,o) + 2nhi/I, 

S(e) = S(e) - 2ni/I, and 

S(e) = S(e) - 2ni/I, 

Under these conditions of symmetry the rth harmonic is•

described by 

h=H 	 i=I 
E = 2 	2 a(h,o)/(2m(shr)) I Z Sin(r(w 

h=o s=±l 	Li=1 

+2nir/I+s(he+0(h,o))) 



h=H 
E = 2 	Z 	I.a(h,o)/(2n(sh-r))* 

h=0 s=+1 
8=S-1Bo (e) 

Din(r(wst-8 + s(h8+0(h,o)))] for 
6=S-A1 (e) o f 0 	 for r=I,2I... 
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These conditions of symmetry are widely used as a means 

of increasing the effective supply frequency. It. is 

possible to cancel particular harmonics by other choices 

of sampling waveform phasing when assymetry of the waveform 

levels is .present but the situation is not easily 

described for a general case. 

. Notice that there is no restriction ,on the 

form of the supply voltage waveshape. It may have any 

waveform from a d. c, level to a square wave with a d. c. 

component, however, the conditions of symmetry require 

each waveform level to have the same d..c.. component so 

that levels with no a, c. component form trivial switching 

laves. 

Each of the I waveform levels may form part 
th of the switching wave for a maximum of one - 	of a 

period. This places an upper bound on the difference 

between, S(e) and S(e) of 2n/I radians. For 

differences less than this the switching wave has an 

interval of zero level between leaving one level and 

taking up the next level. 

It is .usually desired that the switching 

wave average have the largest possible range. To obtain 

maximuM output component the switching wave must follow 

• the envelope of the supply waveform. When this is done 

the switching wave follows each supply for the maximum 
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possible proportion of a period. Furthermore the phases

for taking up and relinquishing a given level are 

determined for this output level: Provided some law 

- relating the modulation of the switching instants is used 

these phases will define the proportions of the modulation. 

Thus for example pulse phase modulation, which has a 

nominally constant pulse width, has its pulse width 

defined by this criterion. Similarly single edged pulse 

width modulation has the phase of the fixed edge set by 

the same criterion. 

4.1.2.2 	Some Thiristor Generated Switching Waves 

As examples of a.c. levelled waveforms 

encountered in practice consider the thyristor based 

waveforms of diagram I. These are forms of pulse phase 

modulation and a mixed modulation with elements of pulse 

width and pulse phase modulations depending on the 

output level. The production of these waveforms is 

described in chapter 1 where they are referred to as 

continuous current waveforms without and with diode 

clamping respectively, these names being related to the 

method of aeneration. for small output components 

requiring pulse widths of less than the maximum allowed; 

the diode, clamped waveform exhibits pulse width modulation 

with the trailing edge fixed at the zero crossing of the 

waveform level. For larger output components the 

trailing edge of one waveform level coincides with the 

leading edge of the succeeding level so that pulse phase 

modulation occurs. Pulse phase modulation will not 

ocaur unless more than two waveform levels are used. 

The algebraic expressions describing an a.c. 

waveform are not very enlightening in that it is hard to 

visualise how the harmonic energy varies with output 

level. One method assisting in this regard is to consider. 
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approximations to the waveforms. Thus for phase modulation 

the switching wave is approximated by a triangular wave. 

The step of the approximate wave corresponds in 

magnitude and phase to the step of the switching wave 

but linear variation between steps is assumed rather than 

segments of sinewave. Obviously there will be large 

'percentage errors at the extremes of output range or when 

the number of waveform levels is small but the 

approximation is suprisingly accurate away from these 

extremes. If the average phase of the two pulse edges 

of a.level is denoted by )6 then the approximate switching 

wave is described by 

n=co 
E = (INSin(n/I)Sin0-2Sin(71/I)C 	7i Sin(ni(w 1- - )6)). 

n=1 nn 

The accuracy of the approximation may be 

gauged by comparing • harmonic amplitudes and phases with 

• the exact values for a range of values of the output 

component (which is written above as a-function •of )6). 

This is not feasible as a hand calculation and use was 

made of a digital .  computer. An Algol program was used 

to generate tables of harmonic components for 2, 3, 6 

•and 12 waveform level cases. The tables form appendix 

A 4.1.2.2a.. Comparison of the tables with the above 

expression show that for zero output component the error 

with six waveform levels is less. than 3% while for 

twelve levels the error is less than 1% of the true• 

harmonic amplitude. 	• 

Diagram D 4.1.2.2 shows the amplitudes of the 

fundamental harmonics of the actual and approximate 

waveforms, for two, three and six level cases, as functions 

of output component. Remembering that the fundamental 

of a'six.level waveform has the same percentage error as 



4. 19 

the third harmonic of a two level waveform, it.is  apparent 
that the third and subsequent harmonics of a two level 

waveform are close to the approximate curves. Examination 

of tables shows that the amplitude of 8 harmonic at 

maximum output is close to one third the value at zero,output. 

and that the phase change is less than that of the 

approximate waveform with the greatest departures near maximum 

output. 

Three features of the approximate waveform 

have equivalents or parallels with d.c. levelled switching 

waves with many levels. These are, first, harmonic 

amplitude is inversly proportional to harmonic number, 

second, th ratio of maximum output component to 

maxifflum harmonic amplitude is proportional to the number 
h of levels, and third, the phase of the n +- harmonic is 

modulated with an index proportional to the product of 

n and the number of levels. 

Some of the features which differ are, 

maximum output is not independent of the number of levels 

but is a nonlinear function of this number, harmonics 

are 'modulated by an elliptic function of output 

component rather than a cosine function, and phase 

modulation of the harmonics is not linearly dependent on 

output level but upon an arcsine function of this variable. 

The total energy of the switching wave is 

given by 	ki-n/I 

ET = (I/2T). 	Sin2G de = 1/2 [1-(I/27).Sin(2u/I). 

g3- TVI 
Cos2f6 1 	. 

The output component is described by 

EO = (I/n) Sin(n/I) Sin16. 
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The harmonic energy may be determined as a function of 

output level by replacing ;6 in the total energy 
expression by an expression derived from the last 

equation then suhtracting . the - energy of the output 

component. This yields the expression below. 

. EH = [1- ( I/2n) Sin ( 2TVI) -2E02  [1-7-VIcot(1VI)] 1 
• 2 

Diagram D 4.1.2.2b, which shows the energy 

distribution for a switching wave with three levels, may 

be used. in conjunction with the table to visualise the 

diagram for other numbers of levels. Notice that both 

the total energy and the output component are parabolic 

functions of output component. The .difference between 

the two curves is the harmonic energy. The table shows 

how the number of levels influences the harmonic energy. 

As the number of levels increases the harmonic energy 

becomes smaller so that a twelve level waveform has an 

harmonic energy of about two percent of the Maximum 

output for output components near zero. 

The form of convergence of the total energy 

to the output energy as the number of levels is increased 

differs markedly from that for the d.c. levelled 

waveform of the minimum energy variety. Both forms 

have parabolic curves representing the harmonic energy 

as a function of output level but whereas the d.c. 

levelled waveforms have distinct segments of parabola 

with cusps between corresponding to the levels of the 

waveform the a.c. levelled waveform is a single' curve. 

with a maximum at zero output and a zero point beyond 

the maximum possible output. 

Notice how the maximum output, designated by 

A in the table and on the diagram, varies with the 
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number of levels. Initially the convergence towards 

the limit of unity is rapid as the number of levels is 

increased but sloWsrapidly. The deviation from unity 

is approximately an inverse square functi3n of the 

number of levels so that doubling the number of levels 

quarters the difference between maximum output and 

unity. The functions describing - Ei and C are approximately 

inverse square and inverse fourth power functions of the 

number of levels for numbers of .levels greater than six. 

The diode clamped waveform differs from the 

phase mOdualted waveform when the lowest point of this 

switching wave equals or is less than the clamping 

voltage, in this case zero. The step size and width 

of the diode clamped switching wave vary with output 

level and are zero for zero output component.. 

A straight line approximation of the waveform 

may be used to form an estimate of the harmonic amplitudes

but is not as simple as that for phase modulation. The 

analysis of such an approximation, shown in appendix 

A 4.1.2.2b, indicates that, for situations where the 

product of pulse width and harmonic number are much 

greater than unity, the amplitude of a harmonic is 

approximately proportiOnai to pulse width divided by 

harmonic number. Calculated amplitudes, based on the 

exact expressions, form appendix A 4.1.2.2a and these 

differ from the estimates by as much as twenty five 

percent.' The phase of a harmonic varies approximately 

with the product of pulse width and harmonic number. 

The energy of the total switching wave is 

obtained from the expression 

7 
. 2 ET = (I/27) 	Sin 0 de = (I/4n) [B-Sin(2B)/2] . 
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The output component is given by 

n 
EO = (I/2n) 	Sine de = (I/2n) ":.-CosB] . 

n-B 

The energy of the total waveform as a function of EO 

may be found by eliminating B. , The energy diagrams for 

a number of waveform levels are shown in diagram D 4.1.2.2c. 

Each curve is terminated at the point where phase 

modulation begins and corresponds to the energy diagram 

of phase modulation at that particular output level. 

The curves are all based on the same expression but 

differ in their scales and their maximum output limits. 

The curve for twelve levels is the curve for two levels 

with the axes expanded six times, and thus correspond

to a short segment very close to the origin on the two 

level curve. 

Theenergy of the harmonics may be zero when 

the desired output component corresponds to the clamping 

level. Apart from this zero the curves are not touching 

the curve for output component but are nearest when the 

output reaches the level where phase modulation commences. 

In the case of two level waveforms the harmonic energy 

is less than the equivalent phase modulated wave for the 

entire output range. The other cases have lower harmonic 

energy near zero output but require phase modulation to 

reach full output and thus have the same energy at the 

point of change over and"thereafter. 

The two switching waves considered here are 

members of the very wide range of possible waveforms 

having a.c. levels. Their sinewave levels are rather 

simple compared to the possible shapes but even so the 

algebraic description of the switching waves is far from 

simple to visualise. The algebraic manipulation of more 



4.23 

complex waveforms is not really feasible and use of 

computer programs of the simple type outlined is almost 

essential. Valuable -insight as to the nature of the 

computed harmonics may be gained by the use of approximate 

waveform analysis. The aim of approximations should be 

towards compounds of triangular and sawtooth waveforms 

to give straight line approximations to the waveform. 

Some waveforms with complex fourier series have relatively 

simple piecewise time functions. Thecalculation of 	- 

harmonic amplitudes by the computer program may usually 	. 

be oriented.towards the use of these piecewise descriptions 

in the appropriate integrals rather than the fourier 

series expressions used in these examples. 

For these examples the amplitudes of the 

harmonics exceed those for switching waves with a 

comparable number of d.c. levels and similar ranges of 

output component. Compare the ratios • of maximum first 

harmonic amplitude to output component for the Minimum 

energy, d.c. levelled, waveform and the phase modulated 

waveform where both have R levels. For the former this 

ratio is 2:77R, for the latter 1:R so that the. d.c. 

levelled waveform has maximum fundamental component of . 

approximately 64% that for the a.c. levelled waveform. 

A second comparison may be made using the 

ratio of square root of the mean, over the output range, 

of the total harmonic energy, to the output range. These 

ratios are 1:Rg- and .approximately 7:2Rg- for d.c. and 

a.c. waveform levels respectively. The relative values 

are approximately 0.56:1 respectively. 

From these two comparisons it appear that 

a.c. levelled waveforms have a relatively poor ratio 

of output range to ripple. This is obviously true for 
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examples given but is not necessarily true in oeneral 

since it is easy to think of schemes where by the average 

ripple is halved at the fundamental harmonic 	One such 

scheme would be toadd to • the waveform levels a. fixed 

component which balances the fundamental at a particOlar 

output level. This has no effect on the mean of the 

switching wave or the output range but does cancel the 

harmonic over portion of the output range and thus 

reduces the -ratios described. The disadvantage of this 

course is the added complexity due to the provision of 

the desired waveform which will be a harmonic of the 

waveform levels. The principle way also be applied to 

d.c. levelled waveforms with similar effects. 

4.1.3 	The Assymototic Waveform 

All switching waves have steps. For some 

waveforms with a.c. levels these steps may have zero 

amplitude for particular values of output component 

but usually step amplitudes are non zero. Provided 

the steps of a wave are non zero there is a frequency 

above which the harmonic amplitudes may be estimated, 

to within some degree of accuracy, by the phase and 

amplitude of the steps of the wave. The interval between 

steps is neglected. The frequency depends on the waveform 

of levels used; it is zero for d.c. levelled wavefOrms 

and soMe - a.c. levelled waveforms. For those waveshapes 

where the frequency is non zero it is usually a function 

of output component as well. 

The amplitudes and phases of harmonics above 

this frequency converge as the harmonic number increases, 

to. those for a. switching wave with the same step size 

but with uniform slope between steps. If the switching 

wave to be estimated has N steps the n th  of which has 

amplitude a(E0,n) and phase ,S(E01-1) then the assymptotic 
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expression for the wave is 

r= a) n=N 
E = EO + Z 	2 a(E0,n)/(rn).Sin(r(w t-S(E0,n))); 

r=1 n=1 	s  

where EO denotes the output component. The r
th harmonic 

is a sum of N terms which when re-expressed as a single 

term is a function of EO and r yielding the equivalent 

expression 

r= 00 
E 	EO + 	ai(E0,r)/rn Sin(r(w t-g3(E0,n))). 

r=1 	s  

Limits may be found for both the amplitude and phase 

functions. For the amplitude function 

n=N 
/al(E0,r)/(Z /a(E0,n)/• 

n=1 

This is oniy an upper limit to the value and corresponds 

to a. situation where every step of the wave contributes 

the maximum possible to the expression. Most d,c. 

levelled waveforms reach this limit at one or more values 

of output component depending on the harmonic number. 

a.c. levelled waveforms with width modulation have 

similar properties but. those with phase modulation follow 

the limit as output component is varied. 

The range of the phase function is set by the 

range of the steps of the wave and is less than the range 

of the step with greatest range. In many cases step 

phases occur in pairs of opposite sign and the phase of 

the harmonics produced is zero or constant. 

The lower harmonics of many a.c. levelled 

waveforms exceed those of the assymptotic expression. 

A good example of this is the phase modulation example 

with sinewave levels discussed previously. The approximate 
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waveform used there corresponds exactly with the 

assymptotic waveform. 

4.1.4 	Harmonic Cancellation 

For switching waves with any form of level, 

a group of R waveforms differing only in their phasing 

relative to one another may be phased so that their 

addition results in cancellation - of all harmonics not 

integer multiples of R. The most convenient form of 

addition is parallel connection of the filtered outputs 

of the individual switching wave generators. The 

effective switching wave corresponds to the mean of the 

individual waveforms. The harmonics of this mean not 

cancelled by the averaging have their original amplitudes 

but the lowest frequency harmonic remaining is R times 

the frequency of the original. The output component 

range and range of step phases are not altered by the 

averaging process. 

The assymptotic expressions for the new and 

old waveforms have similar relationships to one another 

but the frequency at which the harmonics of the new 

waveforrr .  fall within a specified tolerance of those of 

the new assymptotic waveform is unaltered. Thus in 

terms of the number of.harmonics between this frequency 

and the lowest frequency of the switching waveform the 

difference between new and old waveforms is a reduction 

by the ratio 1:R. In this sense the summation process 

results in a waveform nearer the assymptotic expression 

than the original. 
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Summary of the  Characteristics of the Harmonics 

of. Waves due  to  Natural  Samolino  

The amplitude of a harmonic of a d.c. levelled 

waVe varies sihusoidally with output component with a 

period and magnitude inversely proportional to harmonic 

number. The total energy, of the d.c. .levelled waves 

examined, is a linear function of outputcomponent over 

each range of output component where the levels used by 

the switching wave do not change. For the minimum 

energy waves a new level is introduced and a previous 

one discarded when the output component passes through a 

waveform level. This results in a total energy curve 

which is a series of chords between points on the - 

parabola of output component energy corresponding to 

waveform levels. The total energy curves of the three 

non minimum energy waves examined have a similar shape 

but have an additional energy related to the extra 

number of wave levels involved. These switching waves 

have no obvious advantage over minimum energy waves. 

Multi phase a.c. supplies with symmetrical 

phasing may be used to produce switching waves with an 

effective frequency greater than the supplies by a factor 

equal to the number of phases. Two sinewave levelled 

waves of this type which are associated with thyristor 

controlled waves were examined in detail. Both exhibit 

a strong convergence of total wave energy to the output 

component energy as the number of phases is increased but 

differ from d.c. levelled waves in that these curves do 

not touch at many points as multi level waves do. The 

two a.c. levelled waves differ in that one has zero . 

harmonic energies at zero output while the other has a 

maximum at this output. 

All multi.phase and multi level waveforms have 
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spectrums which-may be approximated by the spectrum of 

a wave, with the same sizesteps but with linear chords 

between steps. All types of switching waves can be 

added to others of the same type when suitably phased, 

to produce cancellation of harmonics so that the 

effective sampling frequency is increased by the number 

of component waveforms and the number of levels is 

increased. d.c..levelled switching waves produced by 

equivalent hardware to a.c. levelled waves have 

approximatelly 0.6 the mean and peak harmonic energies 

for equivalent output component range. 
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CHAPTER IV PART B 

Some aspects of the high frequency components 

of switching waves produced by Natural Sampling. 

The discussion leads through the properties 

of the switching wave spectra to the formation of a 

graph of passband noise to signal ratio as a function 

of passband width. Curves are shown for waves with d.c. 

and sinewave levels. The discussion demonstrates the 

methods used, their limitations, and their application 

to other types of waveform level. As intermediate 

results the signal/sideband noise as a function of signal 

amplitude for the two wave types are derived. 
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4.2 	S ectra of Waves with a,c. Control  Sionals  

The description of switching waves discussed 

earlier concentratedon the allocation of components to 

particular harmonics of the switching wave repetition .  

rate. The output component is shown there to modUlate 

the amplitude and phase, often nonlineariy, of each 

harmonic. -Provided the output componenthas a periodic 

waveform each modulated harmonic may be represented by 

the sum of a number of unmodulated sinewave components. 

The frequency of each sinewave is separated from the 

harmonic frequency by an integer multiple of the output - 

component frequency. The amplitude and phase of each 

sideband of the harmonic frequency is determined, for a 

given type of switching wave, by the waveshape and 

amplitude of the a. c, part of the output cemponent, and 

by the d.c. part of the output component. These are 

the parameters by which sidebands are described. 

Earlier the general fourier series of a 

i=i h=H G=S-1 (e) 

ER = 7 	7 	7 a(h,i [iL B 	Sin(r(ws
t-e)+s(het(h,i))) 

i=1 h=0 s=+1 G=S-1 (e) 

/(2n(sh-r))] 

Each term of this expression is a phase 

modulated sinewave with a phase related to the control 

signal by either of the relationships 

Et = (sh-r)S E-3 1 (e) or (sh-r)c l (e). 

For a linear amplifier the control signal, e, 

and output component are linearly related so that these 

expressions also define the phase as a function of 

switching wave was derived. The expression for the r th 

harmonic is 



4. 31 

output component. Each phase modulated sinewave may bp 

resolved into its separate sik..iebands by standard techniques 

giving the transformation below. 

n=o3 
Sin(rw5 t+s0(h,i)+(sh-r)S-1 (e)):= 2 C(n)Sin((rw +nw )t s 	m n=-00 

/(h,i)+(n)) . 

The co-efficient, 0(n), and phase, (n), of each sideband 

are determined by the a.c. and d.c. parts of the output . 

component, by the shape of the sampling wave, S, and by 

the factor (sh-r). 

The amplitude and phase of the n th sideband 

of the rth switching wave harmonic is given by the • 

expression 

i=I h=H 
ERH = 2 	2 	2 a(h,i) 

i=1 h=0 s.+1 

+ sy3(h,i)+(n))] 

The form of the r th harmonic is re-expressed after the 

summations indicated giving the form shown by the 

expression 
n=cxt, 

ER = 7 CT [n]Sin( (rw +nw )t + 0 T(n)) . . 
n=-00 	s 	rri  

Usually both CT and OT are nonlinear functions of the a.c. 

amplitude and d..c. part of the output component. 

The sidebands may have frequencies above or 

below the harmonic frequencies with which they are 

, associated. The n th sideband of the r th harmonic has a 

_Sb 

CHSin((rw s  +nwm  )t 

7Sa 
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frequency less than that of the output component when 

n and r satisfy the inequalities 

I rws+nwm  I. < 
Since such a sideband cannot be filtered from 

the -output component without materially affecting the 

latter it is important to know the relative amplitudes 

of the sideband and the output component. This measure 

of the quality of the amplifier output provides one 

point for the comparison of different types of switching 

wave. 

The first step in obtaining this information 

is the examination of the characteristics of phase 

modulation, the 'second i8 the •estimation of the effects • 

of the summation process on the basic properties of the 

phase modulated wave. Both these are influenced by the 

type of switching wave used. 

4.2.1 	The Spectrum of Phase Modulation 

A phase modulated sine wave is described by 

E = Sin(w5 t+f(t)+f 0), where f(t) is the 

alternating component of the modulation angle and f o 
the direct component. The alternating component may be 

a single periodic waveform or a number of periodic 

waveforms or an aperiodic wavefOrm. The first two 

cases may be analysed in terms of Fourier series; the 

last requires the use of continuous spectra based on the 

use of the Fourier transform. The following analysis 

is restricted to the use of Fourier series. 
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• 4.2.1.1 • • 'A Single Periodic Modulation  
For a single periodic modulation, with 

angular frequency wm , the phase modulated sinewave is 
shown in appendix A 4.2.1.1 to be described by . 

r=00 
E = 2 a[r]Sin(wc t+f 0 )+b[r]Cos(w ti-f 0 ), where 

r=— co  , 

2n 
arti+jbfri= i 	ei r0)  de. 

2n 

The best know example is that for a cosine modulation 
angle where 

• f(wm 	= x.Cos(wmt). 

For this case 

aLl+jb[r] = Jr(x)[Cos(rn/2)+j Sin(rn/2)]. . 

The coefficients are Bessel functions. Tables of Bessel 
functions are readily available and may be used to find 
the coefficients when sinewave modulation is of intrest. 
Any other form of modulation requires the evaluation of 
the integral expression since tables do not exist for 
other waveshapes.. It is possible to express the coefficients 
for other waveshapes in terms of Bessel functions though 
this is usually difficult. 
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4.2.1.2 	Multiole Periodic Modulations 

A modulation angle may be the sum of a 

number of. periodic functions. Suppose such an. angle is 

composed of I functions, f(wt),  so that 

i=I 
f(t) = 2 fi ( 

i=1 

The it"  function coefficients may be 

evaluated separately and re-expressed in the form 

a[1,r +jbr r] = cp.,]ej e [i ' r] • 	•  

The fourier series representing the complete modulation 

of the sinewave is derived in appendix A 4.2.1.2. The 

expression is 	1=I 
= Sin(w.t+ 2 f i  (w.t)+f o ) 

czo. - i=I 
= 	n sin(w c t+f o+- 

q=-°0 i=1 

i=I 
)), 

i=1 

where each of the possible sequences of the I integers, 

r[1,q] to r[I,q] , corresponds to a single integer q in 

such a way that 

1=1 

i=1 

i=I 

i=1 
Z r[i 3 O]wi  

J > 

= 

i=i 
-2 rri,q-11w. J 

0. 

and 

The fourier series contains components with frequencies 

which correspond to the sums and difference of all the 

harmonics of each of the I components. . The coefficient 

). 
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of the term corresponding to a frequency awl  + bw2  + 

cw3 + •... is given by 

E = 	.c[2,11 .c[3,c] 	, while the phase 

is 	E = G[2,a]+9[2,b]+e[3,c]+ 

Provided no two periods of the individual 

modulations are integer multiples of a common period, 

none of the components of the series will have the 

same frequency except in the sense that positive and 

negative frequencies are the same. 

In the section dealing with single periodic 

modulation it was mentioned that the Fourier series 

co-efficients may be expressed in terms of Bessel functions. 

The form of this expression may be gauged by means of 

the above relationship. Each term of the fourier series, 

representing the periodic Llodulation is regarded as a 

separate modulation. Thus each term of the resultant 

fourier series has co-efficients which are products of 

Bessel functions. Furthermore, because the modulations 

have frequencies which are integer multiples of a basic 

frequency many terms have the same frequency. The end 

result is that for each harmonic of the basic frequency 

the co-efficient of the fourier series is an infinite 

sum of products of Bessel functions. The method is 

usually considered impracticable for modulation fourier 

series with more than two terms. 
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4.2.1.3 	The Energy Distribution Descriptions 

A phase modulated sinewave may have a sideband 

with zero frequency. This occurs when the frequency of 

a component, or intermodulation product, of the phase 

modulation function is related by an integer ratio to the 

sinewave frequency. Provided this is not the case, the 

energy of any phase modulated signal is independent of 

the form of phase modulation used. This property is 

convenient since the modulation.form influences only 

the distribution of the energy amongst the sidebands and 

not the total energy of these. 

One way of describing the energy distribution 

amongst the harmonics of a phase modulated sinewave i3 

the function 
m=n 

F(n) = ( 7  c[1]2)/( f c [r] 2 ) , where, c [r] 

is the modulus of the r th sideband below the carrier 

frequency. The function expresses the total energy of 

the sidebands below the n-1 th harmonic as a function 

of the total wave energy. Thus the range of values of 

the function is 

OF(n)<i , while the function has a 

positive step through each integer n as n increases. 

The function is illustrated in diagram D 4.2.1.3a for 

sinewave phase modulation with a peak phase of three 

radian. 

The energy distribution function can display 

only one set of sideband energies associated with a 

, single modulation function. It is more often desirable 

to see how the energy distribution varies as some 



•••4:1 

tv 

04.2136 

0 

Pe
ez

i( 
.4 f

oo
f ia

lio
n  

(i
-a

c h
a t

is
) 



4.37 

parameter of the modulation function is varied. By 

plotting the energy levels at which the steps of the 

energy distribution occur as functions of the modulation 

parameter a more informative display is produced. The 

example shown in diagram D 4.2.1.3b is that for a 

sinewave phase variation where the peak amplitude of 

the modulation is used as the parameter. 

The energy distribution function is redefined 

n=m 
F(m,x) = Z (C[M,x]) 2 , where C is also redefined 

n=-00 

as a function of a modulation parameter x, as well as -  of 

m. The curves plotted are versus x with m as a parameter 

identifying curves. 

A convenient way of identifying the energy of 

the sidebands is to label the spaces between curves since, 

for a given value of x, the vertical range between 

adjacent curves corresponds to the energy of a single 

sideband. 

The example has an energy distribution function 

defined by 
n=m 

F(m,x) = Z (Jn(x)) 2. It should be compared to 
n co 

the previous example at the section with 

An alternative display of the energy distribution 

may be formed by using the energy as a parameter and 

plotting m versus x. An example is shown in diagram 

D 4.2.1.3c. The energy contour map has a set of points 

for each energy value. Each point of a set corresponds 

to an integer value of m and an associated value of x. 

For each set of points the relationship, 

F(-m,x) = Energy of contour, is true. 

by 

= 3. 
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In order to identify the points of a set a 

line is used to join them. Points on the line not 

corresponding to integer values have no meaning for 

discrete spectra. 

The energy contour display, is best suited to 

description of only half the sidebands of a modulation. 

The display contrasts with the other forms of display in 

that the low energy values of the distribution 

corresponding to the higher -sideband numbers are very 

prominant features. For this reasbn it is used to 

describe the energy below a given sideband when the 

energy concerned is less than ten percent of the total. 

The contours for higher energies than this are seldom 

drawn since the values may be read directly from an 

energy distribution diagram similar to the previous 

example. 

4.2.1.4 	Sideband Amplitudes - Numerical Evaluation 

The amplitudes of the sine and cosine 

components of the mth  sideband of a phase modulated 

sinewave are described by the real and complex parts of 

the expression yr i 
e3( ,f(e)-mG) EM = 1 	dG, where f(G) is the 

2n modulation waveform. 

The expression may be re-arranged as two integrals of 

the form below. 2n 

EM = I 
2 T 	eim  cos(f(e)) de + 

271 
jme . Sin(f(G)) d6 

Jr 

These two integrals may be recognised as the coefficients 

of the mth harmonics 'of the Fourier series representing•
Cos(f(e)) and Sin(f(e)) respectively. Algebraic reduction 
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of these integrals to tabulated functions is feasible 

for only a few modulation waveforms such as sinewaves 

and piecewise linear functions of time. For the majority 

of modulation waveforms evaluation of the coefficients 

of these Fourier series must be by numerical methods. 

In a numerical process integration is replaced 

by summation. Ideally an infinitely closely spaced set 

of samples are used to define an approximation to the 

exact waveform. In practice it is desirable to use the 

minimum number of samples possible to attain a desired 

accuracy. Normally equally spaced samples are used. 
Thus the equivalent of the expression for the m th harmonic 

of a function, g(e), with 2N equally spaced samples over 

the period is the expression 
n=2N 

I(Dm+j Em) = 1 7 .(Cos(mnn/N)+j Sin(m7m/N) g(nn/N). 
N n=1 

The relationship between the true sine and cosine 

coefficients of the mth harmonic of the function, g(e), 

Am and Bm, to the numbers Dm and Em is examined in 

appendix A 4.2.1.4 where it is shown that the equation 

below is true. 

t 
Dm+j Em = 2N/E(m) FAm+A_-_ A 

2N m+  ')N+m-17A4N-m 

+j  [ Bin-B2N-m+B21=1 --  — 1 	' 
1 	where 

E(m) = [1 for m = 0 or I 

2 for 0 <(m.<(N 	. 

Accurate values for Am and Elm are obtained by using 

Dm and Em when the value of N is such that the terms 

with indexes other than m are small enough to be 

neglected. Most modulation waveforms have rapidly 

convergent phase modulation spectrums so that all 
sidebands having a coefficient index greater than some 
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critical number may be neglected. If this number is I 

then the minimum value of N reqOired to specify the ith  

harmonic to the degree of accuracy required is specified 

by the equation 

2N = I + i + I. 

As an example consider the Fourier series for Sin(xCos(e)). 

The mth odd harmonic has an amplitude Jm(x). Suppose 

it is desired to evaluate the coefficient of the third 

harmonic, for x at unity, correct to six decimal places. 

Now the harmonic with amplitude near 10 -6 is the seventh. 

The ninth harmonic is an order of magnitude smaller than 

this. Thus E3/2N will be within the desired tolerance of 

B3 [provided 

2N - 3:> 7, that is the number of samples 

used is greater than ten. 

In practice tables of the modulation form 

under investigation are not usually available so the 

information above must be found by trial and error. 

4.2.1.5 	Limitations of Numerical Processes 

The nature of the information processed by 

these numerical methods is restricted in several ways. 

The number of samples of the modulating signal must be 

finite, so must the decimal places of the answers 

calculated. These limitations have the following effects. 

The input signal must have a finite number of 

sampling points, say 2N. This number of samples can 

describe, without ambiguity, a signal with bandwidth 

corresponding to N harmonics or 'less. That is the 

bandwidth of the modulating signal is limited. 

Most phase modulated signals have an infinite 

number of finite sidebands. The numerical process sets 
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a limit on the number of sidebands which may be calculated 

if finite length arithmetic is used since the inevitable 

round of required causes errors in the calculated 

amplitude. This error is of similar absolute magnitude 

for all sidebands so those with smaller amplitudes are 

submerged in the error noise. There is no point in 

attempting to evaluate, - .1.clebands with such small 

amplitudes and since these are usually the higher 

sidebands this sets an upper limit on the number of 

sidebands which may be estimated. Should a numerical 

accuracy less than the limit imposed by finite arithmetic 

be required then a corresponding lesser number of 

sidebands need be evaluated. 

The number of sidebands, with amplitude greater 

than a value set by a numerical accuracy requirement, 

is a strong function of both modulation waveform and 

amplitude. To illustrate this point consider diagram 

D 4.2.1.5 where the energy diagram of a phase modulated . 

signal with sinewave modulation is presented. As 

modulation amplitude is increased the outer sidebands 

increase in energy until they reach a peak value when 

the modulation amplitude is comparable to the sideband 

number. Thus the number of significant sidebands 

increases with increase in modulation amplitude. Now 

since the number of sidebands evaluated equals the 

number of samples it may be appreciated that the choice 

of this latter number is.very much influenced by the 

exact modulation waveform being analysed. . This requirement 

usually controls the number of modulation waveform samples 

used since it is normally the maximum of the two minimum 

sample numbers required. 

Outline of Computation Sequence 

The process for evaluating the sideband 

amplitudes of.a phase modulatod wave thus consists of 
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three steps. First from the specification of the 

modulating signal and experience or tabulated functions, 

choose a value for the number of samples required so 

that both the modulating signal andmodulated signal 

will be specified to the desired accuracy. Second, 

perform the numerical operations outlined so that 

sideband estimates are formed. Third, confirm the 

accuracy of these estimates by checking that the 

sidebands converge to the permissable error level as 

the sideband number increases to N. In the event that 

convergence does not occur to the required degree 

increase 2N, the number of samples, and repeat the 

sequence. 

4.2.2 	The Sidebands of Switching Waves 

The introd-ctory passage to the section 

describing Periodic Outputs outlined in a general way 

the properties of the components of the switching 

wave. The phase modulated nature of these components 

was emphasised. Methods for the computation of band . 

limited.  phase modulated waves have been discussed 

briefly so that the essential information required for 

a detailed discussion of the sidetands which may effect 

the switching amplifier output may now proceed. Initially 

it is - intended to describe a relatively simple waveform 

to show the nature of the Sidebands, and their variation 

with switching wave parameters. The properties of more 

complex waves will then he described in terms of the 

features introduced during the discussion of this example. 
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A Switching  Wave with one Modulated Step 

Consider the expre'ssion below. 

r=00 
E = f(w t)+ 7 2 p 	s 	m in(r(wt+nf(wt)))-Sin(r(wst-n))] 

m 	r =.1 

The expression describes.a switching wave with the 

following features. First, the d.c. levels of the wave 

have values corresponding to the odd integers so that 

each step is of two units in magnitude. Second; the 

number of wave levels is determined by the range of 

mt). If, for instance, fwmt) is restricted to the 

range between plus and minus unity then the switching 

wave has levels above and below this range, that is plus 

and minus unity. Third, only the positive going step 

of the wave is modulated, furthermore the phase modulation 

is linearly related to the output component. 

Each harmonic of the wave is the difference 

between a modulated and unmodulated sinewave. The 

expression for the r th harmonic may be reformed in the 

manner below. 

ER = 2/rn Sin(r(ws t+nf(wmt)))-Sin(r(ws t-n)) 

= 2/rn 7 A [cri , ri S in( rw s t+mwmt)+B [m, ri Cos( rws t+ mwmt) 

	

+(-i) rSin(rw s t) 	. .  

- where A[m,r] and qm,r] are the inphase and quatrature 

components of the m th Sideband of the sinewave modulated in 

phase by nrf(w t). Notice the A[m.,r] and qm,r1 define the 

m 	sideband of the r th harmonic in such a way that variation 

of the d.c. component of f(wmt) varies only the sideband 

phase, not the sideband amplitude. One consequence of 

this is that variations of the d.c. component of f(wmt) 

do not alter any sideband amplitudes of the switching 
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wave though the zero order sidebands of each harmonic, 

which are formed by the vector urri of the phase modulated 

carrier and the unmodulated sinewave, do vary with the 

d.c .: component of f(wmt)• 

4.2.2.1 	The Switching Wave Components within the 

Passband 

Suppose that the switching amplifier passband 

extends from zero to w in frequency. The output filter 

would ideally pass all components of the switching wave 

with frequencies within this range. Normally all the 

components of f(wmt) would fall within this range, that 

is if f(wt) has finite harmonics for harmonic numbers 

less than N then the relationship 

wb > Nwrn is implied. 

The sidebands with frequencies within the 

passband are, lower sidebands of each harmonic with harmonic 

numbers, n, such that 

I rws  + nwm l< w 	is-valid. (n negative implies 

lower sideband) 

The number of sidebands, of a given harmonic, with 

frequencies within the passband is the integer below 

2w
P/wm •  

4.2.2.2 	Passband Energy Estimation bi_Contour MaE 

for Sinewave OuI2ut 

Suppose f(wmt) = x Sin wmt. The passband 

energy may be estimated for given values of w s/wm  and 

w /w by the following steps. First, the modulation of 
P mth the r 	harmonic is rnx. Second, the sidebands of intrest 

are those nearest in number to rw /w m 
 and within the band 

s  
WP/Wm on either side. These two features may be used to 
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draw short vertical.lines on the contour map for a phase 

modulated sinewave. Each line torresponds to the range 

of sidebands associated with a given harmnic and 

modulation index. The position in the X direction on the 

map is rnx. The vertical position and length correspond 

to the range of sidebands within the passband, that is 

the line extends from 

n = rw /w -w /w— to n = rw /w + w /w . s m 	P m 	s m 	P m 
Diagram D 4.2.2.2 shows the situation for 

W = wm and ws = 5wm when x is unity. 

Third, for each harmonic estimate the energy 

within the band of sidebands and use this to form a 

weighted sum corresponding to the expression 

r=00 	n<+w /w -rw /w 
E = 2 (2.) 2 2 P m 	s m ( A  Frl 	2+8  , 2 ) /2.  

r=1 rn n>-w /w -rw /w 
pm sm 

The energy so calculated is valid provided w s/wm  is not 

an integer ratio since there is a step at these values 

due to a phase sensitive vector sum of waveform .  components 

with coincident frequencies so that the independence of 

energies of components is not valid at such points. 

For the example shown in diagram D 4.2.2.2 

the energy contributed by sidebands of the first harmonic 

is approximately 3% of the total energy of this harmonic. 

The corresponding percentages for the sidebands of the 

second and third harmonics are approximately 0.1 and 0.01 

respectively. Thus the energy of the switching wave 

sidebands with frequencies Within the passband is given by 

a E = 	(2) 	.03 + (1)2*  .001 + 	*.0001 + ...1 
2.f (7) 	 37) 

units 

.006. units 
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Thus the noise to these sidebands is about 

.22 db below the energy of the ‘,Nive or 19 db below the 

output signal energy. 

This method for forming an estimate of the 

sideband energy in the passband may also be used in. 

conjunction with energy distribution maps with minor 

modifications. 

The method may be extended to calculate the 

ripple associated with a filter by placing weighting 

factors on the terms of the summation. Each weighting 

factor corresponds to the energy response of the filter 

at the sideband frequency. 

Because this method is based on measurements 

from graphs the accuracy is not high but the advantages 

of the method over "blind" numerical calculations are 

important. It is possible to see which terms are dominant 

in the summation visually. This allows the trends of 

passband energy to be appreciated quickly as functions 

of the switching wave parameters, passband width, modulation 

'frequency, and modulation amplitude. These features will 

now be examined.' 

4.2.2.3 	Passband Energy Variation with Modulation 

Amplitude 

Consider the previous example, in particular 

the lines on the diagram. Reducing the modulation has 

a similar effect to changing the 'stale in the X direction 

so that each of the lines specifying the sidebands is 

moved towards the X origin in proportion to their original 

values. This will result in a decrease in.energy for all 

harmonics. 

Thus for example reducing x from 1.0 to 0.5 

results in the following contributions, for each harmonic 
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to the passband energy, 4,05 * 10 -5 , 5 * 10-9 , and 
- 4.4 * j 14 , This change illustrates two interesting 

features. First, although the control signal is reduced 

by a factor of 2 in amplitude the sideband energy is 

reduced by three orders of magnitude. This very strong 

effect on signal to ripple ratio will be referred to 

again during the discussion of waves with two modulated 

steps. -Second, the relative magnitudes of the contributions 

of individual harmonics also .changed strongly. The second 

and third harmonic were approximately in the scale 1/30 

and 1/300 respectively of the first harmonic in the 

original example, but these ratios changed to approximately 

10
-5 and 10-9 for the example above. Thus for small 

modulation amplitudes the dominant sideband group is that 

of the first harmonic. 

For larger values of x some of the sidebands 

with frequencies within the passband, may fa -11 within 

the central band of diagl-am P 4.2.1.5. In this case 
passband energy must be calculated from this diagram since 

the contour map cannot be easily defined or used. The 

central band or fan has the following features. Each 

sideband mercjes with the fan after a monotonic increase 

to its maximum energy as peak modulation amplitude is 

increased. The modulation amplitude, a, at which maximum 

sideband energy occurs for the n th sideband is approximately 

given by 

= 1.1n-+ 0.9 radians. 

After reaching the peek. energy the sideband diminishes to 

zero energy for a value of modulation of approximately 

1.5n. As modulation amplitude is further increased the 

sideband energy oscillates between zero and an upper 

limit which* diminishes with increase in modulation amplitude. 
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Within the fan adjacent sideband pairs have a combined 

energy which is almost tonstant, that is their oscillations 

are almost orthogonal. The fan boundary, defined by the 

lines joining the first minima of the sidebands, gradually 

spreads as modulation amplitude is increased. 

Consider the example for x = 3.5. The peak 

phase for the 'Isth harmonic is 11r radians and the sidebands 

of intrest are 5rth and the (5r-1). th From diagram 

D 4.2.1.5 and other sources the passband energies 

corresponding to the sidebands of the first four harmonics 

are 

EP 	2 1.057 + .029/4 + .019/9 + .015/16 + 
712 t 

.0136. 

As x is increased this energy diminishes. The 

proportions of the various harmonic groups remain almost 

constant. It is shown in appendix A 4.2.2.3 that for x 

large the energy of the sidebands in the passband is 

approximately given by 

EP = .0493/x and that the proportions due to 

each harmonic group areappraximately inverse cubes of the 

harmonic number. 

4.2.2.4 	Passband Energy Variation with Bandwidth 

and Imut Frequency 

Note the effect of increasing the bandwidth 

on the lines used in diagram D 4.2.2.2. An increase 

in the parameter w b/ws  causes the lines to extend at 

both ends by equal amounts. Thus a greater number of 

sidebands are within the passband and passband energy 

will increase since the new set include the original 

sidebands. Thus for other parameters constant an increase 
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in bandwidth causes an increase in passband energy. 

The effect of a_variation in w m is more complex. 

Both ends of the lines move upwards if wm  is reduced but 

the length of the line is increased also. Thus more 

sidebands fall in the passband but their net energy will 

not necessarily increase since the original sidebands 

are not members of the new set. Provided the sidebands 

are not within the central fan of diagram D 4.2.1.5, the 

increase in their number will not offset their diminution 

in energy, that is reduction in w m  causes reduction in 

the energy of the passband sidebands. Should the 

sidebands be entirely in the fan then passband energy 

will increase with diminution in wm provided no sidebands 

Move outside the high energy region on the 'borders of 

the fan. 

Maximum Passband Energy 

Suppose the output amplitude and the bandwidth 

are fixed and wm is chosen to maximise the passband energy. 

What form will the curves for maximum passband energy 

take? Diagram D 4.2.2.4a shows the curves for several 

values of modulation amplitude when these are plotted 

versus ws/wb
. The portions of the curves such that 

ix wb/ws
> 1 , that is those portions for which 

maximum energy may correspond to more than two sidebands 

within the passband, are approximations based on hand 

calculations but are in error by less than I db. The 

modulation amplitudes shown are 0.1, 0.2,-0.5, 1.0 and 2.0. 

The rapid diminution of the energy of the 

sidebands within the passband as ws/wb  and as modulation 

depth, x, are reduced is easily seen. Notice that as 

modulation depth is increased the worst energy nears an 

upper limit of approximately -10 db.,. that is about one 
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tenth the total wave energy falls within the passband 

as sidebands. The relatively sthall size of the sidebands 

the higher harmonics may be seen from the size of steps 

between integer values of . ws/wb .. The steps at integer 

values are predominantly due to the first harmonic 

sidebands entering and leaving the passband. 

These curves give the passband noise for the 

best possible filtering of the switching wave. Any real 

filter will pass more unwanted Components of the switching .  

wave to the output of the amplifier. The corresponding 

curves of output "noise" energy of a switching amplifier 

would not have sharp steps, as these curves have, but 

smooth curves lying above those shown. In such a situation 

the noise would also contain sidebands outside the nominal 

passband and some sampling frequency components. For 

small values of modulation amplitude these latter components 

would exceed the sidebands in energy. 

In some circumstance it is necessary to know 

the ratio of signal energy to "noise" energy rather than 

the absolute noise energy. The ratio, hereafter referred . 

to by S/N, is a measure of the signal quality. The S/N 

ratio is a usefull way of comparing the properties of 

different classes of switching amplifier since the absolute 

signal and noise values do not require normalisation for 

comparison purposes. 

Consider the S/N as a function of x, that is 

with ws/wb constant. Because sideband energy varies 

very slowly with x for values of x and w s/wb  such that 

nx wb/ws
> 1 	the S/N ratio is almost 

proportional to modulation component energy in this region. 

Outside this region the sideband energy diminishes, as a 

function of x, more rapidly than the modulation component 
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energy, x 2/2 so that S/N increases with separation from 

the boundary in both - regions giving a minimum at the 

boundary. Diagram D 4.2.2.4b shows S/N as a function 

of modulation component, x, for several values. of w
s/wb' 

Notice the almost linear variation of S/N, measured'in 

db, with signal amplitude drawn on a log scale, when 

signal amplitude is small. The slope of this portion 

of the curves is approximately given by 

A(S/N)/decade of signal 	20(ws/wb-1)db/decade. 

The minimum ratio value also increases with 
ws/wb but not linearlY. 

4.2.2.5 	.Multi-jevel Waveforms 

By confining the output to the range between 

two adjacent levels, a two level switching wave capable 

of producing sinewave outputs, with amplitudes of at 

most one unit, is defined. Over this output range the 

S/N is a monotonic function of output level except for 

ws/wb below 2.5. For switching waves with higher numbers 

of levels the range of output signal is extended. A 

switching wave producing an output of amplitude ten units 

must have at least twenty one levels. Thus these curves 

describe waveforms with up to twenty levels. 

Normally, the number of switching wave 'levels 

of a given amplifier is fixed. The maximum output 

possible would produce a switching wave using all the 

levels. The worst.S/N may occurfor outputs other than 

maximum when the number of wave levels is large.. By 

using fewer waveform levels, but the same output range, a 

lower worst value of S/N may be obtained. On this basis 

it would appear that a two level switching wave has best 

performance. 

This is not realised in practice due to the 
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method used to produce multi-level waves. These are 

produced by summing a number of suitably phased two level 

waves. The value of w s 
chosen for the individual 

component waves is usually the maximum possible consistent 

with the switching speed of the components used, since 

this minimises the output and supply filtering 

requirements and maximises w s/wb . The phased addition 

process effectively cancels all harmonics, and their 

sidebands, of ws below the n
th when n waves are added. 

This means that the practical limit of w
s 

is n. times that 

of a two level wave. Any comparison of S/N ratio should 

weigh ws/wb  according to the number of levels used. 

Diagram .D 4.2..2.5 shows S/N, at maximum output, 

as a function of ws/w., for two, three, six, and eleven 

level waveforms. The value of 
ws/wb 

used is that of the 

component two level waveforms. The maximum outputs of 

these multi-level waves correspond to the minimum S/N 

ratio over the output range provided w s/wb  is greater , 

than 2.5. This may be verified by noting that each curve 

of S/N corresponding to a value of n w s/wb  in diagram . 

D 4.2.2.4b is below or near its maximum for an n unit 

sinewave output. 

This basis of comparison suggests that best 

performance is obtained with a larger number of levels. 

Thus, for instance, a two level wave with 100 db S/N ratio 

required ws/wb> 11 compared to 7.5 for a three levelled 

wave and 5 for a six level wave. If ws  is limited this 

implies that worthwhile improvements in passband width 

may be realised by using more than 2 levels.. 

It should be remembered that the improvement 

relies on the cancellation of harmonics and sidebands by 

phased addition of waveforms. Any unbalance of the 

waveforms or their phasing will reducethe indicated 
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improvement. The improvement is also gained at the expense 

of complexity though the additional advantages of more 

output power and smaller filters also counter balance 

this disadvantage, 
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square wave square - ramp triangular unit impulse 

P S C P S C P S C P ' S C P S 
- 

C 

•0 .845 .0 1.0 1.231 -.400 0 .1, 0 0 631 •0 -.75 •0 -.821 1.0  .0  -.400 
0.7 .0 .0 1.0 .0 .0 0,2 0,308 .0 -.50 .0 •0 1.0 •0 -.400 
0 ,7 .145 .0 1.0  -.200 -.400 I 0.196 .051 I 00 -.101 1.0 •0 -.400 
0.7 1.0 .0 •0 0,9 0.137 .0 1 .0 0 •0 .0  1 .0 .0 -.400 
0 0 0 1.0 .0 •200 0 .0 0.100 •0 075 .0 -.045 1.0 •0 -.200 
- 07 -1.0 -.9 0 .073 .051 I 00  .0  1 00 
- 07 -1.0 -.3 0 .051 •0  -1.0 .0 -.032 1,0 
-07 -1.0 I 0.032 .0 1.0 

-1.0 0 .0  0 .0 16 .0  1 00 
-1.0 -1.0 

Key 	P Points on the waveform 
S Sine fourier coeffic: ents 	Head of list is first harmonic 
C Cosine fourier coefficients 	tail is highest harmonic 

POINTS AND FOURI S ER1 ES FOR FIVE TEST WAVEFORMS  
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4.2.2.6 	Non Sinusoidal Control Signals 

The simple switching wave under discussion 

has characteristics which limit the usefull bandwidth 

of the amplifier. The discussion so far has shown how 

these limits apply to a sinewave control signal. The 

methods used are also applicable to non sinusoidal 

waveforms. 

The methods used do not permit non sinusoidal 

waveform to be analysed but are restricted to band 

limited signals. In order to illustrate the application 

of the method, data in the form of energy contour maps 

and energy distribution diagrams for a number of waveforms 

are presented and comparisons of the bandwidth and -

passband noise are made to those aspects of sinewave 

controlled signals. 

The waveforms discussed are controlled by 

band limited signals generated by fitting Fourier Series 

through sets of equally spaced points representing the 

following periodic shapes; rectangular waves, ramp waves, 

symmetrical triangular waves, and a pulse wave. Diagrams 

D 4.2.2.6a to D 4.2.2.6j show the waveforms and their 
energy distributions. The harmonic amplitudes and the 

number of harmonics of each are described in table 

D 4.2.2.6k. 

In order for comparisons to be made between 

different output spectrums some features of the 

modulating, or control, signals-must be assumed to be 

normalised. Two features will be assumed of a unit 

modulating waveform. First, the peak to peak amplitude 

is that required to just saturate the amplifier output. 

Second, the highest control signal harmonic with finite 

amplitude will always be.within'the bandwidth of the 
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amplifier. For the amplifier of the example the peak 

to peak control signal amplitude is two units. If the 
Nth  harmonic is the highest finite harmonic then the 

frequency of this harmonic, wm- N must be less than the 

amplifier passband, w. 

This last restriction requires that the nth 

sideband of the r th harmonic will have a frequency within 

the passband when n is such that the inequalities below 

are satisfied. 

(rw s  /w  m 
 —1)M<n<(rw /w +1)M for MN s m 

This inequality may be used, in a similar way to the 

corresponding inequality for sinewaves, to specify 

graphically the energy components due to sidebands of 

each harmonic of the waveform and so to calculate the 

total passband energy. The passband energy estimates 

may be analysed to display their variation with 

modulation amplitude and amplifier passband width in - 

the same way as for sinewaves. 

The curves of figure D 4.2.2.61 are based 

on this extension of the method for calculating 

passband noise. These curves are equivalent to the 

upper curve of diagram D 4.2.2.4b for sinewave 

modulation and this is shown in addition to the 

nonsinusoidal cases. The behaviour for input 

amplitudes larger than unity is not shown as computation 

is very tedious beyond this amplitude since possible 

values of wm less than w /m must be considered. 41en 

wm is diminished the. number of sidebands to be considered 

rises, thus increasing the computation greatly. 

The examples show a number of interesting 

features. First, for each value of w s  /wp  the curves have 

the same assymptotic slope for small x. Second, of the 
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waveforms examined, none have a larger N/S ratio than 

the simple sinewave. Third, the absolute S/N ratios 

for a given value of w 
s
/w differ by less than 10 db. 
 p 

from the sinewave curves. 

The reason for the similarity of asymptotic 

slopes as x diminishes is examined in appendix A 4.2.2.6 

where it is shown that for small x the sidebands of 

importance for each case tend to limits which are power 

functions of x as x is diminished and that these 

sidebands have the same power of x for a given value of 

w s 	' /w 	The actual value of the S/N ratio is difficult p 
to estimate by this technique but the variation with x 

is easily predicted. 

The similarity of several curves and the fact 

that none have N/S ratios greater than those for sinewaves 

suggest that the sinewaVe may give a worst S/N ratio . 

No proof of such a useful result has been found. The 

idea of an upper limit of the N/S being the property of 

a particular waveform suggests that by optimising the 

integral defining the sideband amplitude, (by manipulating 

the shape of the modulation waveform,) it may be possible 

to find a worst waveform. This is not so since the 

bandwidth of the resulted waveform changes with the 

shape thus nulifying, in an indeterminate way, the effects 

of the optimisation process. 

The possibility of a worst possible waveshape 

appears to be elusive. The search for such a waveform 

may be carried out by hand calculation but would best be 

done by a computer using a suitable search routine. 

The value of knowing of a worst possible 

waveshape would depend entirely on what this turned out 

to be. The numerical results here suggest that the 

upper limit of sideband energy is close to if not equal 
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to that for a sinewave modulation. If the worst possible 

waveform does not increase the sideband.energy appreciably 

from that of a sinewave then the value of-the knowledge 

is small. I suspect this is the case. 

4.2.3 	More Comnlex Switching Waves  

The example chosen to introduce the reader 

to some of the characteristics of switching waves with 

modulated steps has two simplifying features. First, 

the Waveform discussed hasd,o,levels, and second, only 

one of the two waveform steps is modulated. As a 

consequence of these two features the sidebands of each 

harmonic areindependent of the d. c. component of the 

modulating signal. The control signal d.c. component 

varies the energy of the switching waveform by controlling 

the harmonic components. This occurs due to the change 

in phase of the residual harmonics of the modulated 

step relative to those of the unmodulated step. 

The modulated step has an r th  harmonic 

described by 

E = (2/rn)C[rm].Sin(i(w s t+7IDC)+4.7x1) 

where x is the modulation amplitude, DC i8 the d.c. 

component of modulation, and Cl_rx11 qrn)c-I are functions 

defined by the waveshape of modulation. 

The unmodulated step is described by 

42/rn) Sin(r(Ws t-n)). 

The total r th harmonic is due to both these and is 

described by 

(2/rn)(C[nrx] Sin(r(wst+nDC)+0[r7x]-Sin(r(w5t-7))). 
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The aVerage energy of this component is 

ERa = (2 / rn) 2 ) (C[rAxl 2+1-2C[rp.x] Cos (rnDC-1-gS[rnxi -FrA) ) 

Thus. the rth harmonic energy is modulated by a sinusoidal 

function of the d.c. component of the control signal. 

The equivalent expression describing a wave 

with symmetrical modulation of step positions is 

ERa = 2/(r) 2  { Cprx/21 [-tnx/2] -2C [rnx/2] *Cprnx/21• 

Cos(rn(i+DC).+/[rnx/2]-/prnx/2:11q 

Diagrams D 4.2.3a and D 4.2.3b show these two expressions 
as functions of the d.c. component of modulation, DC, for 

several values of modulation depth, x. The major 

difference, shown by these curves, is that minima in the 

symmetrical modulation case are always zero while those 

of single step modulation are non zero for x non zero. 

Notice that, for rx near 0.8, C[nrx] =J0(nrx) is zero 

and the harmonic energy of the simple modulation is 

constant. The equivalent modulation depth for double 

modulation requires rx=1.6 but the harmonic energy is 

then zero. Non sinusoidal waveforms also have zeros in 

C[rrx]. 

Values of modulation index for which harmonic 

amplitude does not vary with the d. c. component of 

modulation may be found.from the zeros'of the central 

sidebands of diagrams D 4.2.2.6a to D 4.2.2.6j for the 

different types of waveforms described there. 

The difference between the curves for x=0 

and x at some other value in diagrams D 4.2.3a and 

D 4.2.3b is the energy of the sidebands and the energy 

distributed to other harmonics due to the presence of 
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the a. c. component of modulation. 

Non symmetrical modulation of the steps of 

the switching wave gives a harmonic energy of the form 

ERa = 2/(r7) 2CEzx] 2 [1-2k Cos(nr(DC+1)+04+k 2j .  where 

C[k.x] is the larger of the tWb sidebands and k is the 

ratio of the smaller to the larger. The harmonic energy 

is of similar form to diagram D 4.2.3a but the minimum 

energy is nearer zerb and approaches that of diagram 

D . 4.2.3b as k tends to unity. The value of modulation 
*q 

index, for aich variation of harmonic energy with the 

d.c. Value of control signal is zero is intermediate 

to those for the extremes given. 

4.2.3.1 	The. Sideband  Energy  

Expressions describing the energies of the 

mth sideband of the r th harmonic of the two switching 

1,;aves, one with a single edge modulated, the other with 

symmetrical modulation, are 

ERMI = 2/(rm) 2.. Cp7tx,mi 2  , and 

ERM2 = 4/(r7) 2  qrnx/2,M1 2 (1-Cos(Tr(1+DC)+/[rnx/2,m] 

4[7 nrx/2,m]). 

The energy of the a.c. control signal component is 

dependent on the control signal waveshape but may be 

described by 

ES = x 2 .F 	where F is the mean square of a unit 

amplitude wave. 

The N/S ratios of these sidebands are given by 

ERMI/ES = 2/(F(r7x) 2 )Cprx,T, and 

ERM2/ES = 2/(F(rnx/2) 2 )Cprx/2,m1 2 (1/2-1/2Cos(nr(l+DC) 

+ qrnx/2,ff]-0[-rAx/2,m])). 
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That part of the second expression not a function of DC 

is the maximum value of the expression; the remainder 

is of similar form to that for the harmonic energy. The 

other major difference in the expressions is the effective 
halving of the modulation index in the latter. 

This has a very 'useful' effect upon the S/N 

ratio. The passband signal to noise ratio is described by 

N/S = 	Z G(rw 
s 
 -mw 

m
) 2ERWES, where G(w) is the 

r=1 m=-00 

magnitude of the output filter response at frequency w. 

Since this is a weighted sum of the individual contributions 

of the various sidebands it follows that both waveforms 

produce minimum S/N ratios which are of similar form. 

The.only difference is the value of modulation index 

which produces a given S/N ratio ; twice the modulation, 

index of single step modulation is required for symmetrical 

!:iodulation to have the same S/N ratio. 

Diagram D 4.2.3.1 shows curves of S/N ratio 

as functions of modulation depth, x. Each curve assumes 

sinewave modulation and an ideal lowpass filter. The 

ratio of filter cut off frequency to the sampling 

frequency is used to identify the curves. Dashed curves 

are for a single edge modulation. 

For small modulation amplitudes the benefit 

of symmetrical modulation is a function of the sampling 

frequency to bandwidth ratio . The function is 

S/N2 . = S/N1 + 6(w 5/w10 -1) db. 

Thus, for example,- an. , amplifier with w /w at 4 has a s p 
worst possible S/N ratio which is 18 db higher if 

symmetrical modulation is used in preference to single 

step modulation. 

1,00 rn= 00 
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For large signal amplitudes double edge 

modulation has the inferior S/N ratio if w s/w is low.  p 
This is not very important for two level waves but a 

four level wave would require a filter cut off at 1/10 

the sampling frequency for symmetrical modulation to be 

better than single edged modulation at all values of 

-output. Under these circumstances the low amplitude 

difference in S/N ratio would. be  50 db though the 

difference at maximum output would be negligiable. 

The above comparison of symmetrical and 

simple modulation of switching waves are based on an 

upper bound of the sidebands of the symmetrical case. -

This upper bound assumes that all the sidebands of the 

wave have maximum values for the same value of the 

parameter d. c. This is not necessarily true so that 

the improvements described above are possible values. 

A more exact estimate of the upper bound would require 

a more complex analysis. 

Because the diagram is limited in dimensions 

the influence of the d.c. component of the control 

signal cannot be shown but for sinew:we modulation the 

energy of the sidebands is'shared between alternate 

sidebands. Thus, for example, for one value of d.c. 

component all the even sidebands may be small while for 

another value all the odd sidebands are small. This 

. effect is due to the phase relationships between the 

two sideband components produced by the two steps of 

the wave. Effects of this nature tend to reduce the 

upper bounds described above but are strongly dependent 

. on the modulating waveform. 
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4.2.3.2 	Multi-phase Waves with  Undamped  
Sinewave Levels 
A switching wave with m symmetrically 

phased levels, each with.waveshape F(ws t) is described 
by r= co 

E = 1/2 a[0,93.1 + 2 qr,4cos(mrws t)+b[ralSin(mrwst), r=1 

where the mean phase of the two edges of a - switching 
wave segment is 0, and where a and b are defined by the 
equation 

.a 
L

+j b Lr , 	=  F(e)Cis(me) de. 
e=0-n/m 

For a sinewave supply of unit amplitude the expression 
for the switching wave reduces to 

 

SiniZ+ 	 (..zi.1.1+1- Sin(mws t-(mr-i)0)11 
i=+1 r=1 (mr- iT- 

E = in Sin(n/m) 

  

The maximum output is not unity but m/r1Sin(n/m). This 
factor may be omitted if the expression is normalised 
on output range rather than supply waveform peak value. 
The peak supply will then be n/mSin(A/m) rather than 
unity. 

For linear amplification 	and the control 
signal, f(wmt) are related by the equation 

Sin(0) 	f(wmt) for -1<f(wmt)<1 

The expression for the waveform now becomes 
r= 00 

EN = f(w t)+ Z  7 i=1) 1.-/-1  Sin(mrws t-(mr-i)arcSin(f(wmt))) . m i=+1 r=1 (mr-i) 

Compare the r th harmonic of this waveform 
with that for an m interval d.c. levelled wave with the • 
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same output range. The two expressions are respectively 

ENR = 	(-1) 1'4' 1  Sin(mrws t-(mr-i)arcSin(f(wmt))), and i=4-1 (mr-ir- 

ENR = 	2 [Sin(mrwst mrnf(wmt))-Sin(rm(ws t-n))] 
(rnm) 

- 
Notice the similarities in form; both have 

two terms; both have amplitudes which decrease with 

both m and r; both have modulated components with 

amplitudes proportional to a function of mr; and in both 

cases the modulated components produce phase modulation. 

Notice the differences in details; the 

assymptotes for harmonic amplitude when mr is large 

differ by a factor of 2/A; the a.c. levelled wave 

harmonic is a sum of phase modulated vectors the other 

a difference; and the modulation of the first equation 

is a nonlinear function of input signal while the latter 

equation has a linear function. Other differences, in 

these particular examples, such as the assymmetry of the 

two terms for the second equation, the opposite signs 
' of modulation amplitudes, and the factor of (-1) -r+ 

  are 
not so important for comparison purposes since some are 

dependent on phase origins and scales, while others are 

very example dependent. One important difference not 

obvious here is a consequence of the type of step phasing. 

The a.c. levelled wave has pure phase modulation of the 

steps while the relative phases of steps in the d.c. 

•wave must vary with output component. Thus a symmetrically 

modulated wave with d.c. levels has opposite signs of 

modulation function while those for the a.c. levelled 

wave have the same sign. 

• Many of the similarities and differences may 

be related to the physical characteristics of the waveforms 
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in a simple way. This is especially true for the high 

harmonics of the a.c,; levelled wave. For mr large the 

expression may Le re-phrased to yield an approximation 

given below. 

ENR 	2L) 	f(wmt))Sin(mr(w t-arcSin(fwm
t))). 

mr 

This expression describes the approximate waveform which 

has the same size steps as the actual wave but has a chord, 

not a sinusoid, joining the steps. Both step amplitude 

and step phase are nonlinear functions of the output 

component and these determine the respective amplitude 

and phase of the - rth harmonic of the triangular 

approximation. 

The superficial similarity of form, that of 

the number of terms, is dispelled by the approximation. 

The more basic features, those pertaining to the harmonic 

amplitude and the phase modulation of the harmonic by the 

control signal are emphasised. The similarity to the 

first term of the expression for a d.c. levelled wave 

with single edged modulation is to be expected since this 

term is also a phase modulated triangular wave. (The 

other term of this exPression describes the other step 

of the waveform). 

The features described above help to form a 

picture of the waveform so that numerical results have 

some meaning. This is important when numerical results 

are obtained from complex (mathematically) formulae. 

Unless the searcher for limiting cases has some physical 

'basis for the search it is easy to become confused . 

about the meaning of numerical results. 
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4.2.3.3 	Sidebands of Sinewave Levelled Waves 

The numerical methods used to calculate 

sideband amplitudes for d.c. levelled weves may be used 

in conjunction with the expressions for a.c. levelled 

waves to calculate these sidebands. Two modifications 

are necessary. The simpler modification necessary allows 

for the more complex co-efficients of the phase 

modulated components of a harmonic. The other modification 

is required because the bandwidth of the phase modulation 

is not identical to the bandwidth of the control signal 

due to the nonlinearity of the arcSine function relating 

these. This nonlinearity is now described. 

Consider a sdnewave control signal for the 

two limiting cases, first, with very small amplitude, and 

second, with maximum possible amplitude. For small control 

signals there is no distortion of waveshape since the 

arcSine function is smooth but consider the influence of 

a d.c. component of the control signal. For zero d.c. 

component the modulation index is as though the arcSine 

function was a simple multiplier of value unity. As the 

d.c. component is increased the value of the multiplier 

increases. For a d.c. component, DC, the multiplier 

value, M, is 

M = (1-(DC) 2 ) -1/2  for -J.< DC <I. 

As DC approaches unity the slope of the arcSine function 

approaches infinity. Near this limit the amplitude of 

control signal for negligiable distortion of waveshape is 

very small. 

For a large control signal the phase signal 

is a triangular wave. The d.c. component of modulation • 

is zero since the peak modulation of phase in each 

direction is attained. The peak of the arcSine function 
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is A/2 when this unit control signal is used. 

The numerical methods require the phase 

modulating signal to be represented by a band limited 

fourier series. This is achieved by specifying the 

modulating signal by a number of uniformly spaced 

samples of the signal. The difficulty lies in knowing 

what is really being represented. A sinewave control 

signal will produce a phase modulating signal which may 

be assyMmetric and may also have sharp spikes if values 

near maximum output are used. This signal will not be 

band limited though most energy may be concentrated in 

the• lower harmonics. The samples of this signal can 

only represent a band limited approximation of the true 

signal. The question then becomes: how different will 

the sidebands calculated using these samples be from 

sidebands of the real signal? The only real way to find 

an answer may be to see how the spectrum varies as the 

number of samples is increased. When the change with 

sample number is small it is assumed the spectrum is 

near the actual spectrum. This approach was used to 

obtain the numerical results now discussed. 

Diagram D 4.2.3.3 shows the ratio of sideband 

energy to a.c. signal energy as a function of a.c. signal 

amplitude for the first harmonic of a two phase wave. 

Curves are shown for two 'values of d.c. signal component. 

The broken curves show the same ratio for a d.c. levelled 

wave with two levels and one modulated step. 

All these curves approach assymptotes as 

signal amplitude is diminished. For a given sideband 

the slope of these'assymptotes is fixed. This is a 

feature of all phase modulated waves since the modulation 

process will produce on nth sideband of a small signal 

of amplitude x with amplitude proportional to x n  and with 
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phase independent of x. 

The increase in sideband amplitude due to 

the d.c. signal component is apparent. The effect may 

be estimated from the zero offset curves since the 

. effective modulation is increased by the factor m 

referred to earlier. The factor .  for DC=0.8 is 1.67 

that is about 0.22 decades. This is approximately. 

correct though the separation is larger for the fourth 

sideband. 

The relationship between curves for 2 phase 

a.c. levelled waves and singl interval d.c. levelled 

waves may also be estimated. The respective approximate 

expressions for the DC=0 case are 

ENRAC = Sin(2ws t-2f(wmt))/r and 

ENRDC = 2Sin(w5 t-nf(wmt))/7r. 

The effeCtive modulation indexes differ by a factor of 

n/2 in favour of the d.c. levelled waves while their 

amplitudes differ by the same factor in favour of the 

a.c. levelled wave. On this basis a shift of the a.c. 

levelled curves 0.2 decades to the left and 4 db in 

• level would be expected to yield curves corresponding 

to those for d.c. levelled waves. This is an overestimate 

by about 4 db for the two lowest sidebands.. Sidebands of 

.higher harmonics and of waves with more phases are 

estimated more accurately. 
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4.2.3.4 	Worst Sideband Conditions 

Provided the modulation amplitude is smaller 

than some critical value the maximum sideband energy is 

achieved with the maximum d.c. offset possible for that. 

-.modulation level.. By choosing a.c. and d.c. signals so 

that phase saturation is just attained a maximum for 

the sideband energy results. Diagram D 4.2.3.4a shows 

curves of sideband energy to signal ratio as a function 

of signal amplitude for several sidebands of two, three 

and six phase waves. 

As for theprevious curves those for a given 

sideband have similar slopes for small signals. Notice 

that the slopes are much lower. The n th  'sideband with 

d.c. .component constant had a slope of 20(n—l)db per 

decade but these curves have assymptotes of slope near 

5n db per decade of signal amplitude. 

A more important feature is the maximum 

sideband to signal ratio over the range of signal 

amplitude. This is the source of passband noise for a 

switching amplifier. Notice that the a.c. signal 

amplitude for maximum passband noise does not correspond 

to maximum signal for waves with many phases. This 

feature was also present for d. c. levelled waves and is•
a generdl feature of phase modulated waves. Each 

sideband has a peak amplitude which is dependent on the 

modulation index. Since modulation index is approximately 

, proportional to phase number and proportional to harmonic 

nuMber as well as signal amplitude, the peak occurs for 

smaller signal amplitudes as the first two parameters 

increase. 

Table D 4.2.3.4b shows peak sideband energy 

to signal energy as a function of sideband number and 
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type of switching wave for several phases of a.c. 

levelled waves and for two and three levelled waves with 

d,c. levels and single edge modulation. Notice the 

higher sidebands of a.c levelled waves do not increase 

uniformly with sideband number but split into odd and 

even sideband groups each a smooth function of sideband 

number. 

	

4.2.3.5 	Maximum Passband Noise 

The evaluation cutves showing the maxima for 

sideband noise/signal for each switching wave harmonic 

allows the calculation of curves for maximum passband 

noise/signal ratio as a function of amplifier passband/ 

supply frequency ratio. The method used is identical to 

that for d.c. levelled waves. 

Diagram D 4.2.3.5 shows these results. Also 

shown are equivalent curves for.d.c. levelled waves. 

Only one curve is represented in the proper manner with 

abrupt steps in level. The other curves are drawn as 

chords between the tops of the steps. This has been 

done to prevent the confusion of curves apparent in 

diagram D 4.2.2.61. 

	

4.2.3.6 	Comparing a.c, and d.c. Levelled Waves 

a.c. levelled waves allow wider bandwidth 

amplifiers if S/N is small. The reasons for this are 

not obvious. One factor is the low modulation index of 

the dominant component of each harmonic. Another is 

the triangular modulation waveform associated with 

maximum sideband energy. The largest sidebands 

produced by such modulation are closer to the harmonic 
than are those for . sinewave modulation of equivalent 

index. 

The bandwidths of the a.c. levelled waves are 

as much as twice those for d.c. levelled.waves for S/N 

ratios near 25 db. This is for d.c. levelled waves with 
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single edge modulation. Double edged modulation reduces 

this advantage slightly. 

4.2.4 	The Ideal  Filter Assumption 

In order to compare different switching 

amplifiers a limiting case was assumed for the output 

filter. The ideal bandpass characteristic assumed 

enabled the estimation of passband energy due to switching 

wave components other than the desired output. The obvious 

question arrising from this assumption is "How close must 

the real filter characteristic be to the ideal 

characteristic before comparable S/N ratios are obtained?" 

As usual the answer depends to some extent on the 

circumstances however the ideal and actual S/N ratios 

are indicated by the following example. 

Filtering of a Two Level IiLave with a 

Modulated St2.2 

A d.c. levelled wave with one modulated step 

is filtered by a filter with flat response in the 

passband and falloff of 20n db per, decade in the 

stopband. The S/N ratio as a function of the filter 

parameter n is shown by diagram D 4.2.4.1. 

For the range of signal to noise ratio shown 

the fifth order filter is very close to the ideal 

bandpass characteristic. The fourth order filter 

begins to deviate at a signal to noise ratio of about 

45 db. The third order filter is less accurate and 

deviates from the ideal for a signal to noise ratio 

near 25 db. 

The order of filter required to approximate 

the ideal filter depends on the passband noise permitted. 

If a S/N .ratio of 40 db is required the bandwidth of 

the system with a second filter is 0.1 of the sampling 
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frequency. With a third order filter the bandwidth 

increases to about 0.15 but higher order filters will 

increase this b3ndwidth by an insignificant amount. 

This example illustrates.the design requirement foi' 

output filters. 
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4.2.5 	Summary 

As a first step to 'simplifying the analysis 

of passband noise it is convenient to aF.sume that 

identical ideal bandpass. filters are used to filter the 

control signal prior to amplification and the resultant 

switching wave which contains the output signal. The 

input signal is thus restricted in bandwidth to the 

same range as the amplifier output. The output contains 

only those sidebands which cannot be rejected by the 

filter. Under the restrictions so imposed a number of 

periodic control signals were used to find a worst 

noise producing input signal. Of the range of wayefozms 

and conditions considered the sinewave input signal had 

the greatest passband noise for a given peak to peak 

signal amplitude. The results indicate, but do not 

. prove, that aperiodic signals and other periodic signals 

produce less passband noise than sinewaves. 

The.examination of passband noise characteristics 

for all the control signals and switching waves • 

considered shows a number of common features. First, 

. the passband signal to noise ratio for small signal 

levels is dominated by the contributions to the noise 

by the sidebands of the first harmonic of the switching • 

wave. Under these conditions maximum passband noise 

is attained when the frequency of the control signal is 

the maximum consistent with the band limited input. The 

signal to noise ratio is then proportional to signal 

amplitude raised to a power determined the ratio of the 

amplifier passband width and the sampling frequency. 

Second, as the control signal amplitude 

increases the actual signal to noise ratio exceeds 

that of the-small signal relationship by an increasing 
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margin until the ratio reaches a Minimum value. After 

this signal level is attained the signal to noise ratio 

diminishes slowly as amplitude is increased and the 

frequency of input for maximum noise is reduced from 

the maximum allowable by the input filter. In some 

circumstances the -amplifier output range may be exceeded 

before the signal to noise ratio reachesthe minimum 

value described. 

Third, graphs of minimum signal to noise ratio 

obtained in the manner above as functions of amplifier 

passband show that the practice of phased addition of 

switching waves and use of multi-phased a.c. levelled 

waves does increase the allowable amplifier output for 

a given minimum signal to noise ratio. The increase in 

bandwidth is less than a factor equal to the nuMber of 

component waveforms so that the improvement in bandwidth 

does not match the increase in hardware. 

Since practical amplifiers cannot use ideal 

outpOt filters a brief examination of the amplifier output 

noise of a simple waveform with several filters of 

different order was made. The results indicate that the 

output noise is strongly dependent on the order of - 

filter used. For the example considered the signal to 

noise ratio was determined more by the noise from 

components with frequencies outside the passband than 

those within this band unless the bandwidth corresponded 

to a passband signal to noise of about 10 db, when a 

first order filter was used. Higher order filters 

improved the value. 

A fourth order filter gave signal to noise 

figures near the ideal until values near 60 db were 

reached. 
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The different forms of waveform level and 

modulation examined appear to indicate that a.c. 

levelled waves using phase modulation are superior to 

d. c. levelled waves produced by hardware of comparable 

complexity, at least for signal to noise ratios les 

than 60 db. 
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CHAPTER T7 

PART C 
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4.3 	Subharmonic  Gain 

Although switching amplifiers may be designed 

with linear input output characteristics, using the 

techniques outlined in chapter III, they have sidebands 

of the switching wave harmonics with frequencies within 

the passband. These sidebands were the subject of the 

previous section. The aim there was to obtain a measure 

of the energy of those sidebands within the passband so 

that S/N ratios could be estimated. This general view 

overlooks a situation where a distortion, similar to 

harmonic distortion in some respects, occurs-. 

If the sampling rate and the frequency of the 

control signal are both multiples of a common frequency, 

then some sidebands of the switching wave will have 

frequencies corresponding to the control signal frequency 

and its harmonics. When this occurs the output appears 

to have harmonic distortion though the distortion differs 

from the normal harmonic uistortion in several ways. 

First, the magnitude and phase of the distortion component 

relative to the control signal vary with the relative 

phase of the control signal and the sampling waveform. 

Second, the distortion may give components with frequencies 

which are fractions of the control frequency. Third, the 

distortion occurs only at the discrete control signal 

frequencies mentioned above. Between these frequencies 

the sidebands do not reinforce control signal harmonics. 

There are twO approaches to the estimation 

and description of the distortion arrising from this 

source. The sidebands which cause the distortion may be 

evaluated and summed to calculate the distortion 

component, or the dimensions of the switching wave may 

be used directly to calculate the component. The latter 
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approach is convenient for accurate numerical estimates 

formed with the aid of a digital computer while the 

former is convenient for creating a mental picture of 

what occurs from which the sensitivity of the component 

to modulation parameters may easily be perceived. 

4.3.1 	The Subharmonic Case 

The discussion from this point is concerned 

solely with the situation where the control signal 

frequency is 1/Nth the sampling frequency. This 

frequency is described here as the N
th subharmonic of 

the switching wave. The restriction implies that the 

distortion components have frequencies which are all 

harmonics of the control signal. Diagram D 4.3.1 shows 

a switching wave with a second subharmonic control signal. 

Notice how the restriction on relative frequencies implies 

that the sampling and control signals are stationary 

with respect to one another, though their relative phase' 

is not defined. The switching wave is thus a true 

periodic wave with a period of N sampling periods when 

the control signal is the N th subharmonic of the 

sampling frequency. 

Having defined the situation it is proposed 

to broaden the meaning of the phrase "N th  subharmonic" 

to convey this situation rather than writing phrases 

such as "when the control signal frequency is the Nth 

subharmonic of the sampling frequency.' 

4.3.1.1 	Computation of Distortion  

Because the switching wave is stationary it 

is possible to compute all waveform dimensions over one 

period, that is N sample cycles. Provided the waveform 

levels are analytic functions an accurate calculation 

of the harmonics of the wave may be made for any 
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modulation method and control signal and relative phase 

of these. For a given situation of amplifier and 

control signal the distortion may be calculated as a 

function of phase by repeating the process for the - 

desired number of phase values. Notice that the 

switching wave proportions area periodic function of 

the relative phase with a period- of 1/Nth that of the 

-control signal so that control signal phase values need 

only change by 1/Nth of a period for the full variation 

of distortion component to occur. 

The alternative calculation also yields the 

harmonic components of the distortion. The first step 

is the computation of the fourier co-efficients 

A Lm ' 
r 

s and B[M,s] by which the switching wave is defined 

by the expression 

s=.0 
EW = 0(wmt+6) + Z 	Z A[m,s1 Cos(mws t+s(w mt+e)) + 

m=1 

B[M,qSin(mws t+s(wmt+e)), where 

0(wmt 
th 
) is the output component under normal circumstances. 

The r distortion harmonic is then found by the summation 

of those sidebands with frequency rwmt. The expression is 
1117-: CK) 

ED[R] = 	7 A[M,j-Nm]Cos(j(wmt+6)-Nme) 
m=1 j=+r 

+ B[M,j-NM]Sin(j(wmt+e)-Nme) 

The difficulty with this method is the 

efficient calculation of A[m,j-Nm] and B[m,j-Nm] so that 

only the important or non infinitesimal values are 

calculated. In general A and B are results of fourier 

analysis and if the summation is taken over many terms 

the computation of EDft is very slow compared to the 

previous method which requires a single fourier analysis. 
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It has the advantage over the previous method that the 

function of e is obtained as a set of co-efficients of 

a fourier series. The periodicity of the error component 

with the relative phase,.e, is indicated by the expression. 

4.3.1.2 	Visualisation 

The expression for-the r th harmonic may be 

used to form a picture of the -harmonic as a function of 

19. Consider the component as a vector with a reference 

vector in phase with the control signal. The expression 

may be rephrased easily to describe a fourier series in 

e but consider only one term of the expression initially. 

The term is the (N-r) th lower sideband of the first. 

harmonit. 

This is 'described by the expression 

EDA = A[1,r-N]Cos(r(wmt+6)-Ne)+B[1,r-NiSin(r(wmt+e)-N8). 

As e is varied the phase cf the vector relative tc the 

reference phase bf (wmt+e) changes. The magnitude does 

not. Diagram D 4.3.1.2 illustrates the situation. The 

locus of the vector path is a circle. 

Now consider the terms in the complete 

expression with positive frequency, those with j=+r, The 

value of m will cause their vectors to rotate m times 

while the first component rotates once. These vectors 

are added to the original. Provided they are smaller 

than the component described above they represent a 

perturbation of the circular locus described above. The 

resultant curve is still a closed loop but may be of any 

shape. The average radius will still be described by the 

expression above. 

The terms of the expression with negative 
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frequency, those with j=-r, have a similar vector 

representation but the sense of rotation is reversed 

relative to the control signal vector. The sum of the 

vectors is a vector with, the same period of rotation 

but with different shape. In practice this second 

vector is usually much smaller than the first and the 

perturbation of the circle by the higher harmonic . 

sidebands is usually small so that the curves are 

nearly circular. 

4.3.1.3 	Subharmonic Gain 

The effective gain of a switching wave may 

vary considerably when the control frequency is a 

subharmonic of the sampling frequency. When the 

switching amplifier is within a feedback loop allowance 

for this gain variation must be made so that subharmonic 

oscillations .  are not set up. To make this allowance 

requires a knowledge of the gain of the wave. 

The effective gain may be defined as a vector 

with phase and magnitude proportional to phase difference 

and magnitude ratio respectively of the fundamental 

component of the switching wave output and a normalised 

sinewave input. The normalisation of input is such that 

the effective gain for very low frequency signals is 

unitY. 

The effective gain is usefull in the same. 

way as describing functions for dead space and 

hysteresis, that is, as an approximate way of describing 

a complex situation. The subject is developed more 

fully in the next chapter the aim here being to 

demonstrate the type of curve describing the locus of 

the vector for several common amplifier types. 
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The first harmonic of the distortion vector 

must be normalised by dividing by the control sinewave 

amplitude before it may be used to describe the 

deviation from unity of- the subharmonic gain. 

4.3.2 	Natural Sampling 

A d.c. levelled switching wave employing 

natural sampling to produce a sinewave output of amplitude 

x and with offset, DC, is discussed here. For d.c. 

levelled waves of this type to produce sinewave outputs 

the sideband amplitudes are related to Bessel functions. 

Tables of these functions are readily available and 

their properties are described in many handbooks. .Similar, 

but.untabulated functions describe the sidebands of waves 

with non d. c. levels. They have similar properties to 

those described for Bessel functions. so  that the 

discussion below is, in most cases, directly applicable 

to switching waves with other types of waveform levels. 

4.3.2.1 	Single Edge Modulation 

A switching wave with d.c. levels of plus 

and minus unity with the desired output is described by 
m=00 

EW = DC4- x-.Sin(wmt+6)+ 	2 Sin(m(ws t-n(DC+xSinkmt+G)))) m=1 mn 

-Sin(m(wc t-n)) 	, 

where G is the relative phase of the control and sampling 

signals and the positive going step is modulated. The 

sidebands of the modulated part of this expression are 
rn.00 	r= 00 

EWS = 2 2 	2 Jr( -mnx)Sin(m(w s t-71DC)+r(wm
t+e)). 

m=1 1-11TC r=-00 

The subharmonic restriction for the N th subharmonic is 

ws t = N w t. 
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The fundamental of the switching wave becomes 

WF = xSin(wmt+e) + 
in=c* 
Z  2  2Jri-mnx)Sin((Nm+r)(wm

t+e)-Nm6-mnDC). 
m=1 r=-Nm+1 	mn 

Substituting r for.r+Nm yields the expression 
fil= 00 

WF = xSin(w t+e)+ Z 	2 . JNm-r (mnx).r.Sin(\ mt+e-mr. m 	• m=1 MTN 
r=+1 

(Ne+nDC)). 

Thus the gain vector is 

m=00 
.GV = 1+ Z 	r.JN

, (mnx) e-imr(Ne+nDC) 

m=1 r=+1 -7-  
1/4MAX/L 

For x small compared to 2/RJN-r the Bessel functions - 

may be approximated to give the expression below . 

GV 	
m=00 

1+ 2  f  r,mnx 	e-jmr(N6+71DC) 

m=1 r=+1(m-r)k-
7-1 

For large x the expression may be approximated by 
,3

moo 
GV gt,- 1+ 2  f  2 7 Cos [:.(- (Em-r17 - 	. 

m=1 r=+1 m nx
) 

e-jmr(Ne+nDC) 

The Second Subharmonic 

For very small control signal amplitude the 

first sideband of the first harmonic is the sole 

contributor to the gain vector. This contributor has 

unit amplitude so the gain vector locus is a circle 

about unity gain. Where this circle touches the vertical 

axis at the origin the gain changes, with relative phase, 

2 	4 
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from quatrature in one direction to quadrature in the 

other direction as the magnitude passes through zero. 

Diagram D 4.3.2.1a shows loci for several 

non zero signal amplitudes. Notice that all the loci 

- touch the quadrature axis at the origin. A brief 

consideration of the waveforms of natural sampling 

suffices to show that for any d.c, component it is 

possible to choose a relative phase of control signal 

and sampling signal such that 'the switching wave has no 

subharmonic component. 

The values of control signal amplitude, x, 

for the loci shown are too large for the small signal 

model to be accurate. As x is increased the relative 

magnitudes of the various components change. The curve 

shapes reflect this chance. For the smallest value of 

x shown the third sideband of the second harmonic 

causes the apparent shift in circle centre while the 

diminution of circle radius is caused by the decrease 

in magnitude of the first harmonic first sideband 

component. The elliptical form of the loci for large 

x is due to the increase in relative magnitude of the 

third sideband of the first harmonic. 

The loci shown applies only to the range of 

output of a two level switching wave. The expressions 

apply equally well to mUlti-level waves. It is 

interesting to speculate on the possible shapes of the 

loci for larger values of x but appart from noting that 

the enclosed areas probably diminish in area due to the 

1/m term, and the shape may be much more complex due to 

the higher harmonics, little may be said, 
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Other Subharmonics 

The small signal expression indicates that 

all subharmohics have circular loci. The circle 

diameter is given by the expression 

LD = (mgx) 	. 1 
( 2 )  - 

For the . second subharmonic the diameter is 

unity but other subharmonics have small signal vectors 

with magnitudes which are proportional to x raised to 

an integer power. This means that small signal. loci 

are very close to unity and the loci expand away from 

unity as x is increased. This contrasts with the 

N=2 case where the loci contract as x increases. 

Diagram D 4.3.2.1b shows loci of third, 

fourth and fifth subharmonics for several values of . 

signal amplitude. Notice the drop in maximum size as 

N increases. The factor of 1/(N-1) has much greater 

influence than the other terms for N large. The 

influence of the third sidebands of the first and second 

harmonics are less for these loci than for the second 

subharmonic, though their influence is visible as an 

increase in the eccentricity and in the shift of the 

loci as x is increased. 

For the control signal amplitudes shown 

these subharmonic loci increase in diameter as x 

increases. The range of x shown is that corresponding 

to the two level wave maximum output. For the larger 

values of x associated with multi-level waves the loci 

. will reach maximum sizes then diminish in size and 

change shape, as the second subharmonic loci do, as x 

is increased. 
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Symmetrical Modulation 

The waveform expression 
m=o0 

EW = DC+x-Sin(wmt+0)+ -2 -2 	2s Sin(m(wt-sn. 
m=ls 	s =+1 mn 	2 

(1+DC+xSin(w t+0 )))) In 

has high frequency components described by 

EWM = 2 2 	2 	2 	s-Jr(-sxnm/2)Sin(m(w
s t-sn(l+DC)) 

	

m=1 mn s=+1 r=-m 	 2 

+r(wmt+0)) 

which may be simplified to give 

r=00 
EWM = 7 4 	7 	Jr(m7ix/2)Cos(mw s t+r(wmt+9) 

M=1 MA r=-m 

+rn).Sin(rn -mn(i+DC)). 
2 	2 2 

The contributors to the gain vector are 
m=e0 

FC.= x.Sin(w
m
t+e)+ Z 2 	4Jr(r9nx/2)Sin(n/2(r-m(l+DC))' 

m=1 r=-1\1m+1 	MA 

Cos ( r+Nm )(wmt+e+ n/2)-Nm( e+ n/2)) 

m=m _ 

	

= x.Sin(wmt+e)+ z  z  1_ J-Nm+r (mnx/2)Sin(n/2(r-gi m=1 r=+1 mn 

(N+1+DC)))* Co$(wmt+e+n/2-rNm(e+7/2). 

m=00 

	

= x.Sin(wmt+e)+Z  7 	4- JNm-r (mnx/2)Sin(7/2(r+m. 
m=1 r=4- 1 mn 

(N+1+DC)))* Sin(wmt+e-rNm(e+7/2)). 

4.3.2.2 
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Thus the gain vector is described by the complex fourier 

- series 
in= 00 

GVS = 1+ 'Z 	2 -r.JNm_ r (mmx/2) Sin(im/2(N+DC)). 

m=1 1'=±1 	rmnx/4) 

e
-jmNr(e+1/2) 	.- 
 . 

This'subharmonic gain vector differs in two important 

respects from that for single edge modulation. The 

index of the Besse' function is reduced by a factor of 

two. For subharmonics other than the second this means 

a reduction in the size of the loci. The other feature 

is the factor -Sin(nm/2(N+DC)). This factor influences 

the shape of the loci by weighting the various harmonics 

by factors between plus and minus unity depending on the 

value of the d.c. output component, DC. Thus for 

instance the odd harmonics of the second subharmonic 

are zero if DC is zero while the even harmonics of this 

subharmonic expression are zero if DC is unity. 

. The absence of the odd harmonics results in 

a basic loci of much smaller magnitude for a given 

signal level. The second harmonic sidebands require 

only half the phase change to be periodic. These two 

factors result in very complicated loci for small d.c. 

signal components when the lower harmonic is comparable 

with the second harmonic. The larger d.c. components 

have similar curves to those for single edge modulation. 

The fourth and fifth subharmonics have very small 

deviations from unity. 

Several examples of second and third 

subharmonics are shown in diagram D 4.3.2.2. 
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4.3.3 	Conclusion 
Viewed without consideration of their possible 

use in the analysis of feedback systems the subharmonic 
loci have limited usefullness. They are an approximate 
way of describing the apparent gain of an amplifier 
when some sidebands have the same frequency as the control 
signal. The loci described here provides information 
over a different range of amplifier parameters than the 
graphs of signal to noise ratio. The former are intended 
to provide information for the analysis of wideband 
control loops, the latter for narrow band signal to 
noise ratios. The two descriptions overlap at their 
extremes but do not provide the same aspects of a common 
source of information. •The signal to noise ratio curves 
describes the possible magnitudes of a passband noise 
energy due to many sidebands while the loci describes 
the magnitude and phase of particular sidebands, those 
synchronous with the input signal. 

For use in feedback analysis the gain loci 
are transformed, either numerically or graphically, to 
give describing functions. These may be used in the 
normal way to indicate system stability, stability of 
oscillations and the•growth of oscillations as input 
signalrarmeters are varied. These aspects of their 
use have been described previously by others ( 	3). 
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. 5. 	Feedback with  Natural Sampling 

The classical theory of linear feedback systems 

assumes the elements of the feedback loop have no 

variation of gain with signal amplitude. This is not 

true for switching amplifiers except in special circum-

stances since the presence of the feedback path causes 

the sampling process to be modified. 

There are two forms of modification which 

may occur separately or, more usually, simultaneously. 

First, the ripple produced by the filtering of a switching 

amplifier output modifies the effective shape of the 

sampling wave. The ripple is present for both d.c. and 

a.c. control signal inputs and may cause a gross chanoe 

in both characteristics from the open characteristic of 

the amplifier. Second, the gain at subharmonic frequencies 

is not linear nor even fixed due to the presence of 

sidebands. These sidebands of the sampling frequency 

harmonics inter-mingle with the control signal and are 

themselves amplified by the switching amplifier at all 

control signal frequencies. The sidebands of these 

sidebands although small compared to the signal in most 

circumstances may cause noticeable distortion similar to 

harmonic distortion and intermodulation distortion. 

An exact model for the d.c. characteristic of 

a switching amplifier when included in a feedback loop is 

described. Appart from a narrow band model of the 

subharmonic a.c. control signal no other situation may be 

modelled exactly. Despite this, switching amplifier 

performance may be estimated for other conditions by 

considering the changes in important parameters as 

conditions are changed from situations where exact analysis 

may be used. 
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5.1 	The Low  Frequency Characteristics of  Switching 

Amplifiers in Feedback Loops  

A change in the law frequency input to output 

transfer function occurs when a switching amplifier is 

placed within a feedback loop. The cause of the change 
- is the injection, into the amplifier input, of ripple 

from the output. Since this ripple has the same 

fundamental frequency as the sampling waveforms it changes 

their effective shapes and thus modifies the transfer 

characteristic. 

To appreciate some of the effects of. such a 

ripple consider diagram D 5.1 where a sequence of waveforms 

is presented. The upper waveform is the sampling 

waveform of a d.c. supplied switching amplifier with a 

d.c. input signal super-imposed. The second waveforia is 

the amplifier output associated with the conditions 

indicated by the sampling wave and input signal. The third 

waveform is a ripple wave, at the amplifier input, when the 

amplifier has a feedback from output to input. The fourth 

waveform shows the arrangement of input signal, and ripple 

signal relative to the sampling wave, necessary to produce 

the same output waveform as the conditions of the first 

diagram. 

The presence of the ripple changes the input 

signal required to produce the same output signal. Since 

the ripple waveform changes, in magnitude, shape, and 

phase relative to the sampling wave, as the output 

waveform and hence output component change, the difference 

between the amplifier input signals with and without 

signals is a function of the output voltage. 

To analyse the situation and predict the shape 

of the d.c. transfer characteristic of a switching 

amplifier within a feedback loop, a knowledge of 
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the spectrum of the amplifier output, the frequency 

characteristics of the feedback path, and the shape of 

the sampling waveform is necessary. In the following 

analysis these three subjects are related to the signals 

at the amplifier input, output, and switch control 

functions in a general manner. The relationships 

given are general enough to include most switching 

amplifiers employing natural sampling. For this reason 

many of the relationships will appear to be complicated, 

in the analysis, even though a given amplifier may have 

a very simple form for these relationships. 

5.1.1 	The Model 

5.1.1.1 	Average Output and the  Switching_Instants 

Each switch of a switching amplifier is 

controlled in such a manner that the average value of the 

switching wave is maintained constant. Provided the 

switch control functions associated with each switching 

wave component are symmetrical, in the case of a.c. 

supplied amplifiers, or complementary in the case of 

d.c. supplied amplifiers, then the instants at which 

the switches turn off, and the instants at which the 

switches turn on are related to one another by a 

relationship which does not vary with the input ripple. 

In the case of a switching wave with m a.c. levels, due 

to m symmetrical.phases, each level is switched on 

with the same phase relative to the respective supply 

voltage. Each level is also switched off at the same 

phase. 

A restriction of this form enables the d.c. 

component of the amplifier to be specified in terms of 

the phase angles at which a switch turns on and off. 

If the phase of switch turn on is en, the 



Formula for a.c. Levelled Wave S2ectra 

DC = d.c. compon ,?nt of switching wave 

a n and bn are fourier co-efficients of Cos and Sin 

MG) .  = function describing waveform levels shape 

(sinewave levels have W(6) = Sin(e).,) 

m = number of phases forming wave 

en = phase of turn on for a waveform level 

6f = phase of turn off of thesame waveforM level 
c ef 

DC = m/27 	W(G) de 

Jen 

a +j b = mhi  
n 	n 	

Gf 

W(G) . ej mne  de 
en 

For thyristor amplifiers using 

( i) phase modulation Gf = en + 27Vm 

(ii) diode clamped operation ef = f ez if Gz < en + 2n/m 

Gn + 27-1/m otherwise 

where Gz is defined by W(Gz) = 

components describing the n th harmonic 

D 5. I . !2 
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phase of switch turn off is ef, and the d.c. output is 

DC then the relationship is of the form 

DC = F(en,ef). 

Examples are the two level d.c. supplied amplifier 

where the normalised output (-l<DC<(1) is described 

by 

DC = (of-en-n)/7 where 0<ef-en<2n; 

and the a.c. 'supplied, m phase, amplifier where the 

normalised output is described by 

Of 

DC = m 	Sin(e/m)de/(27) where 0<ef-en<2n/m. 

en 

5.1.1.2 	Total Output Waveform and the  Switching Instants 

The complete output waveform is related to 

the switching instants in E more indirect manner than 

the d. c. component of the waveform but subject to the 

same conditions may be written in the form 

n=00 
f(G,E9n,ef) = DC + 	a n(en,ef)Cos(ne) 

, n=1 

+ bn (en,ef)Sin(ne), 

where a n and b n are similar expressions to that for DC. 

e is the phase of the output waveform relative to some 
reference instant. 

For the previously mentioned d.c. supplied 

amplifier the terms an and b n  are given by 

a n (en,ef) = 2.(Sin(n.ef) - Sin(n.en))/rm, and 

b n (en,ef) = 2.(Cos(n.en) - Cos(n.ef))/nn. 

The expressions for a.c. supplied amplifiers with 

symmetrically phased supply voltages and control functions 

are given in table D 5.1.1.2. 



5.05 

	

5.1.1.3 	The Ripple Waveform 

Since the filter is subject only to signals 

at d.c. and harmonics of the output waveform frequency, 

a series of magnitude and.phase pairs, describing the 

response at these frequencies, is sufficient to specify 

the filter. The magnitude of the filter response at the 
th 	 - n harmonic of the output waveform frequency will be 

described by An, and the phase byyn. The output of the 

filter when supplied by the amplifier output, that is 

the feedback signal, is described by 
n=00 

h(e,en,ef) = Ao.DC + 7 [An.a n (en,ef).Cos(ne+Pn) 
.n=1 

+An.b n (en,ef).Sin(ne+Pn) 	. 

	

5.1.1.4 	Amplifier  Input State  at Switching Instants 

The input signal to the switching amplifier 

is a d. c. signal with the ripple super-imposed. If the 

d.c..component is referred to as Ein then the amplifier 

input is given by 

e. 	= Ein-(h(e,en,Gf)-Ao.DC). in 

At the switching instants this signal equals 

the associated sampling waveform. If the sampling waves 

associated with the two switching instants, en and ef, 

are g(G) and g f (e) respectively, then at the switching 

instants the equations 

Ao.DC+Ein-h(en,en,ef) = g n (en), and 

Ao.DC+Ein-h(ef,en,ef) = g f (ef) must be satisfied. 

The d.c. component of the input signal, Ein, 

is derived from the control signal, E, and the feedback 

signal. Their relationship is described by 

Ein = E-Ao.DC, Ein is eliminated from the above 

equations by this means. 



and 	g (90 = Ein - 2 [An.a n (en,GO.Cos(nef+Pn) 
n=1 

n..0 
g(en) = Ein - Z [An.a n (en,G0.Cos(nen+Pn) 

+Bn.b n(en,19f).sin(nen+Pr)), 

+Bn.b n (Gn,ef).Sin(nen+Pn)1 . 
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5.1.2 	The Amolifier Characteristic 

The three equations below relate the four 

variables, DC, Gin, Gf, and Ein. They are 

DC = F(Gn,ef), 

The relationship between DC and Ein may be 

found by the simultaneous solution of the three equations. 

This relationship describes the effective low frequency 

transfer function of the switching amplifier. The low 

frequency characteristic of the entire system outside 

the feedback loop may be found by substituting the 

relat5.onship 

Ein = E-Ao DC, in the same manner as a 

conventional feedback circuit. 

It should be noted that the effective 

characteristic of the switching amplifier depends on the 

high frequency characteristic of the feedback filter and 

the shape of the sampling waves. It does not depend on 

the low frequency filter characteristic. 

5.1.2.1 	An Example  

The feedback path used for a loop containing 

a d.c. supplied amplifier is equivalent to an integrator 

with absolute gain at the fundamental frequency of the 

switching wave of A. The sampling waves are the two 

slopes of a triangular wave with the proportions indicated 

in diagram D 5.1.2.1. 



/155 tri eti7C T/Yan thr Samiolm Wave 

D 5.1•21 
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The amplifier output is described by 
n=oo 

f(w t ,en ,Gf) = DC + 	[Sin( 	nws t) . (Cos ( n.0n)-Cos( n. ef)) 

+Cos ( nws t) (Sin( n.Gf )-Sin( n. en) )1 

/(non) 

This may be re-expressed as 
n=o0 

f(w t ,en ,Gf) = DC + 	2/(nn). Sin( n(ws t-en) ) 
n=1 

-Sin(n(ws t-ef)) 

The ripple component of the feedback signal is 

R = - 	2.A/(n2 	f 
TN) Cos(n(ws t-en)) 

n=1 
( n(ws t-Gf ) ) 

The sampling waves are described over their respective 
ranges during one period by 

g n (ws .t) = -a .ws t/(k.n) for -k.7 <ws t <k.n , and 

g f (ws .t) = a (ws t-n)/( (1-k).p i ) for kai <ws t <(2-k) 

The three simultaneous equations are 

DC = (Gf-Gn- n)/n, 
n=00 

Ein =- -a .6n/(k.n)- 7Z-  2. A/( 	[1-Cos ( n(en-ef ) )1 , 
n=1 

• 

The analytical solution of this set of 
equations is described in appendix A 5.1.2.2. The three 
variables are related - to the d. c. component of the 
switching amplifier output by the equations 

Ein = a DC+A7/2. (1-DC 2 ) (1-2k) , 

• en = -nk(DC+n. (A/a) (1-k) (1-DC2 ) ) , and 

Gf = n+(j-k) (DC-T-N(A/a) k. (1-DC2)). 

n=00 
and Ein = a (ef-n)/( (1-k)n)- 	2.A/(n2 ) [Cos( n(ef-en) )-11. 

n=1 
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5.1.2.2 	Methods  for Eouation  Solution 

The example above is a particularly simple 

one in that the equations may be solved analytically. 

In general this is not so.. Some methods for re-expressing 

the equations as functions of the switching wave d. c. 

component are now discussed. They apply to particular 

circumstances but the range of amplifier types to which 

they apply includes most common amplifiers. 

In the example the ripple waveforms were 

found to be functions of the parameter DC, the d.c. 

component of the switching wave. This is a common 

feature.. It requires that each output level has only 

one possible ripple waveform. It is conceivable that 

some forms of switching wave with a.c. supply levels 

do not satisfy this condition but the most common 

amplifiers do.. If the ripple waveforms at the sampling 

instants are functions of the parameter DC then:they 

may be denoted by Gp(DC) and Gn(DC) corresponding to 

the positive and negative output steps respectively. 

The second two equations may now be re-expressed 

in the form 

ei = g7 1 (Ein-Gi(DC)) for i = n and p. 

These equations may be substituted in the first giving 

DC = F(g;1 [Ein-Gn(DC)],g --I- [Ein-Gp(DC)]). 

This equation relates Ein and DC. It may be 

further refined if some restrictions on F, g i , Gi are 

considered. For the example F, g n and g were linear 

functions. In this case the equation may be expressed as 

Ein = a+b.DC+c•Gn(DC)+d.Gp(DC) where 

a, b, c, d are constants. Thus the method is applicable 
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to d.c. supplied switching amplifiers with linear 

sampling waves. 

When F is a linear function but g 	g 

are nonlinear, graphical techniques may be used to solve 

the equation when it is re-expressed in the form 

DC = a.o-1  Ein-Gn(DC) + b o g-1  Ein-Gp(DC) . 

This method may be used when the sampling waves are non-

linear. 

Symmetrical a.c. supplied amplifiers satisfy 

the restriction that the ripple waves have equal 

amplitudes at each step in the switching wave. Since 

Gn and Gp are identical functions the equation reduces 

to the form 

DC = Fl(Ein-G1(DC) ) which may be re-expressed 

as Ein = Fl-1 (DC)+Gl(DC). 

The other two parameters, An and Qf may be expressed as 

functions of DC by substituting the solution for Ein 

back into the last two of the original equations then 

re-expressing these. 

It should be appreciated that only in very 

exceptional circumstances are the ripple waveforms 

recognisable as simple functions of DC as was the case 

for the example. In general Gn and Gp are nonlinear 

functions of DC which may be plotted or evaluated only 

by summation of the fourier series numerically for a 

range of values of DC. Thus the Calculation of a low 

frequency transfer characteristic is normally carried 

out numerically. Fortunately most feedback filters have 

low pass characteristics and only a few terms of the 

series are necessary to evaluate the ripple waveform to 

the required accuracy. 
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5.1.2.3 	Linearity 

The relationship between the input signal, Ein, 

and the output, CC, for the example is restated below. 
r.) 	

Ein = a.DC+r4A(1-2k)(1-DC2 )/2. 

The nonlinear component -is a parabolic shape with zero 

error at extreme values of DC. It is a function of the 

sampling waveform proportions and is directly proportional 

to the filter gain. 

This particular example is interesting because 

the nonlinearity is zero when the sampling wave slopes 

are equal. This condition is shown, in appendix A 5.1.2.3, 

to be sufficient, for other filters which have an odd 

multiple of ninety degrees phase shift at each harmonic 

of the sampling frequency, to give a linear characteristic. 

Thus third, fifth, •and.other odd order filters will give 

the same linear characteristic if sampling waves of equal 

slqpe are used. 

The property of, the nonlinear term being zero, 

at the extreme values of DC, is due to the absence of any 

switching wave at these values. It is generally true for 

d.c. supplied amplifiers with switching between the 

nearest supplies. It also applies to a.c. supplied 

amplifiers using width modulation, but not to those .  using 

phase, modulation. 

The situation :above where the nonlinearity may 

be zero is not common. Usually the ripple from the feedback 

loop produces a nonlinearity. In order to demonstrate the 

-form and type of nonlinearity a more general example is 

Considered. The same amplifier form as used in the previous 

example is coupled to the feedback filter specified by the 

response 	H(s) = 1/((1+1.8s)1.8s), where s, the complex 
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frequency is normalised with respect to the switching 

wave frequency. Diagrams •D 5.1.2.3a to e show the 

switching amplifier input signal, Ein, as a function of 

the amplifier output, DC. . Each diagram describes the 

switching amplifier characteristic for three values of 

k and a particular amplifier gain. 

The nonlinearity is appreciable, even for low 

values of loop gain. For values of loop gain greater 

than two the characteristic has infinite incremental 

gain near maximum and minimum output. The central . 

portion of each curve has lower incremental gain than 

the open loop characteristic of the amplifier. Notice 

that for k=0.5, that is for symmetrical modulation of the 

wave steps, the transfer functions are symmetrical. The 

transfer functions for k values of 0 and j .. lie to one 

side or the other of the symmetrical case. 

5.1.3 	Limits of the Comoutational Model 

There are two kinds of limit on the amplifier 

output range, which may be predicted from the model, but 

beyond which the output may go by a change in the mode 

of operation of the sampling unit. The computational 

model cannot describe operation beyond these limits 

because of the change in operation. - 

The first limit is indicated by diagram 

D 5.1.2.3c. The predicted incremental gain of the 

amplifier becomes infinite then changes sign as the 

output component nears maximum or minimum .  values. A 

real amplifier cannot have such a characteristic. The 

physical cause of this characteristic is easily 

appreciated. The loop gain becomes high enough for the 

ripple waveform to have the same slope as the sampling 

wave, at the point where these intersect. 
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The second limit is based on the limits of 

the sampling wave amplitude. This limit places a 

restriction on the possible phases of the switching 

instants and is referred to as phase saturation. 

hereafter. Figure D 5.1.3a shows the form of the phase 

at the switching instants according to the algebraic 

solution for the first example. The phase is expressed 

as a function of the output component of the switching 

wave, DC. The expressions describing the solutions are 

restated below. 

On = -kn(DC+ W4(1-0(1-DC2 )). 

Op. = n+n(1-k) (DC-Nk/a)k(1-DC 2 )) 

Phase saturation occurs when On = -kri or ef  kn. The 

range of output for which phase saturation does not 

occur DCR'  is described by the inequality 

DC Fl qa 
Ak) 	0ATI=k)) 

For this range to completely enclose the normal output 

range of plus and minus unity the following restriction 

must be enforced. 

1-k if l-k>k 
a/A > 2n 

k otherwise 	• 

Since A/a is the loop gain at the sampling frequency 

the restriction implies that this loop gain must be less 

than 1/n for phase saturation to be absent for all values 
of k. 

The input of a switching amplifier may be of 

sufficient magnitude for phase saturation to occur 

without there being a dramatic change in the d.c. 

characteristics of the amplifier. What happens is as 
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follows. 

The ripple magnitude is large enough for the 

d.c. input with ripple wave superimposed to miss one or 

more peaks of the sampling wave. The resulting switching 

wave has a frequency which is a subharmonic of the sampling 

frequency. The ripple waveshape changes and a new stable 

configuration is achieved. Usually the subharmonic 

number increases as the input signal nears the limit 

required to saturate the output. In some instances a 

jitter between two subharmonic waves or a subharmonic 

and, normal wave may occur. Diagram D 5.1.3b illustrates 

the form of the d.c. characteristic of a switching 

amplifier under these circum ,z.tances. 

5.1.4 	Double  Samlino, Multiole Sam2ling 

There is one other limitation to the use of 

the model for a switching amplifier whithin a feedback 

loop. There is a probability of the ripple cutting the 

sampling wave more than once every sampling interval. 

No attempt has been made to predict this behaviour. The 

following observations- have been made with respect to 

d.c. levelled switching waves. 

(i) Second and higher order feedback filters were 

used. The ripple waveshape thus changes slope smoothly 

and reaches a peak value well after sampling first occurs. 

(ii) The loop gains were' higherthan those required 

to appreciably limit the output range due to phase 

saturation but phase saturation did not occur in the range 

of.output.over which multiple sampling was observed. 

(iii) The number of intersections of the sampling 

wave with the ripple wave over one sampling interval 

Increased with the increase in loop gain. This causes 
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the effective switching frequency to increase with loop 

gain. 

Diagram D 5.1.41) shows the form of ripple 

involved in double sampling while diagram D 5.1:4a. shows 

the effect of this on the d.c. characteristic of a 

switching amplifier. The first_diagram indicates a 

necessary but not sufficient condition for double 

sampling to occur; the ripple waveform must have greater 

slope than the sampling wave. 

: Natural sampling with multiple sampling due 

to ripple feedback gives an amplifier with d.c. 

characteristic closer to the open loop characteristic 

than the normal feedback characteristic with feedback. 

The nonlinearity is reduced over that range of output 

where multiple sampling occurs. The effect is not . 

desirable however since switches may be operating at 

maximum rates consistent with some efficiency or power 

dissipation rating and the extra dissipation caused by 

doubling the sampling rate will double the switching 

loss. For thyristor amplifiers the situation is 

different. If forced commutation is employed the 

situation may be very undesirable and extra logic may 

be necessary to suppress the spurious pulses if it 
cannot be avoided in other ways. 

5.2 	a.c. Control  Signal Performance 

The model just discussed is 'exact' for d.c. 

control signals, approximate for low frequency signals, 

and inadequate for high frequency control signals. The 

presence of a.c. signal components invalidates the 

assumption that the switching wave consists of components 

with frequencies at the harmonics of the sampling 

frequency. An a.c. control signal causes the harmonics 
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of the d.c. case to divide into carrier and sideband 

components, the latter with frequencies separated from 

the harmonic frequencies by multiples of the control 

signal frequency. The assumption is made when the 

ripple output from the filter is calculated. The 

difference in filter response at sideband and harmonic 

frequencies is the limitation on the accuracy of the 

model. 

This description appears to offer a means to 

overcome the disability of the model. "Why not calculate 

the sideband amplitudes and their individual contributions 

to the ripple waveform in the same way as harmonic 

components?", the reader may ask. This apparently 	1 

simple extension of the model to the general a.b. 

situation is not as simple as it sounds. The object of 

the ripple calculation is to find the relative phase of 

the sampling signal and the switching wave steps, thus, 

the phase of the switching wave is a function of ripple 

at the sampling instants. Unfortunately the distribution 

of energy amongst the sidebands is also a function of the 

phase at the switching instants. This does not prevent 

a solution but greatly complicates the issue since some 

form of iterative search technique must be employed to 

calculate the effective ripple waveform. This has not 

been attempted. 

5.2.1 	AsEects of a.c. Models 

The a.c. characteristic may be very difficult 

to calculate but several aspects may be described in 

outline. First, the feedback ripple will have two parts, 

the modulated part due to the sidebands and the 

unmodulated part due to the residual components at 

harmonic frequencies. The former will influence the a.c. 

gain the latter the d.c. gain. Second, these two components 
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are not independent of one another since changes in 

either d.c. or a.c. signal components will cause a 

redistribution of energy amongst the harmonics and 

sidebands. 

5.2.1.1 	Narrowband Feedback  

An example of the interdependence of and 

difference between a.c. and d.c. characteristics is 

provided by the situation where a very sharp cut off 

filter in the feedback path allows only three sidebands 

of each harmonic within the passband. If the control 

signal is a subharmonic of the sampling signal then 

two of these sidebands have the same frequency as the. 

control signal while the third has zero frequency. The 

amplifier gain under these circumstances may be evaluated 

exactly using the techniques outlined in chapter 7. 

The examples of subharmonic gain loci described there 

are functions of the relative phase of the sampling 

and control signals of the switching amplifier. FOY* a 

given phase value conventional feedback theory may be 

used to calculate the stability and closed loop response 

of the system. • 

The d.c. characteristic with no a.c. signal 

is linear since harmonic ripple is excluded by the narrow 

band filter. The open loop amplifier has a nonlinear 

component due to the zero frequency sideband. Normally 

this sideband increases with the a.c. signal amplitude. 

If assymetric sampling is employed then the sideband is 

also a function of the d.c. component and Of the relative 
phase of the sampling and control signals. The presence 

of the feedback path makes no difference to these 

properties of the switching amplifier but does produce 

a reduction in the system nonlinearity as predicted by 

conventional feedback theory. 
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The same rules apply to the situation where 

control signal is not a subharmonic of the sampling 

wave. Those sidebandS within the passband are reduced 

at the amplifier output as though they resulted from 

conventional nonlinearity of the amplifier. 



-3 

-1 

LEGEND 
hand /andivi omelets 

o small syna/ mode/ 

• I de. mode/ 

ranye &food scales 

-3 	4 	-5 

Sipa/ /SamloAy Freret, 

Mcdels of Sunlikny Amfihners w,i% reediach 
11•=11.27•11., 

05•3 



5.18 

5.3 	Summary 

Diagram D 5.3 illustrates the parameters 

associated with the models just discussed. The model 

for d.c. input-output characteristics is indicated by 

the dotted vertical line on the left. The bandlimited 

feedback, subharmonic models are indicated by the fan of 

solid vertical lines terminated in circles. The small 

signal second subharmonic model of Fallside and Farmer 2 

is indicated by the small circle with double arrows. 

The describing function models, used by 

Fallside and Farmer and by Furmage 3  , correspond to the - 

bandlimited feedback, subharmonic models since these are 

based on the assumption that other feedback signals are 

negligible. The small signal second subharmonic model 

of Fallside and Farmer does appear to consider other 

feedback signals but their effects on the d.c. input-

output characteristic are not mentioned. 

The diagram has large areas where no exact 

models are known. At the present time designers assume 

amplifier behaviour for circumstances near a particular 

model is near the behaviour of the modelled amplifier. 

This is particularly true of the subharmonic models 

based on describing functions where experimental results 

appear to confirm the assumption. Similar assumptions 

appear reasonable for the d.c. model. 

For small a.c. signal components the energy 

of the sidebands is small and the ripple is not 

appreciably changed nor is the d.c. characteristic of 

the amplifier. For large a.c. signals residual harmonics 

may be much lower than for small signals and the linearity 

of the d.c. characteristic correspondingly improved. For 

small a.c. signal frequencies the a.c, and d.c. 

characteristics are very similar. For large a.c. signal 

, frequencies the amplifier produces sidebands in the pass- 

 band which may be regarded as spurious inputs rather than 
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modulation of the ripple. If the feedback loop has a 

high negative gain then these sidebands are suppressed. 
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CHAPTER VI 

SELF OSCILLATING ENCODERS 

The self oscillating encoders discussed in 

this chapter have the general structure outlined in 

figure D 6.3. These encoders have been investigated 

by many independent researchers with the consequence 

that even the simplest example, one employing an inte-

grator and 3 schmitt trigger, is known by many names. 

This encoder is known variously as: a constant area 

sampler, a rectangular wave modulator, an asynchronous 

sigma delta modulator, and a pulse ratio modulator. 

The first part of this chapter describes the 

operation of the constant area sampler and indicates 

those features which can be demonstrated experimentally. 

The second part indicates those experimentally known 

characteristics which can be predicted theoretically. 

The third part of the chapter describes a method for 
evaluating the d.c. input—output characteristic for all 

the encoders with the general structure indicated by 

figure D 6.3. The method itself and the worked examples 

are described in appendix A 6.3. The limited experimental 

verification forms appendix E 5. 
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6.0 	Operation of the Constant Area Sampler  

This switching amplifier has the block diagram 

shown in figure E. 6. The signal levels described there 

are normalised with respect to the output voltage levels. 

The total switching wave energy is independent of the 

modulation and has a constant value of unity. Note that 

the device with hysteresis could be normalised also by 

changing the integrator gain. 

The system will oscillate provided the input 

voltage is less than the maximum and greater than the 

minimum values of the output voltage. Operation may be 

visualised over one switching cycle by the following 

sequence of events. Initially, suppose the output has 

just switched to plus unity. The integrator output is 

equal to +a. The integrator input is e in  -1. The 

integrator output will move towards -a at a rate 

dependent on e in  -1. When the integrator output reaches 

-a the output switches to +1 and a new error signal is 

formed. emn 
+1 is greater than zero and the integrator 

output slews towards +a. The cycle is complete when the 

integrator output reaches +a. 

The difference between the integral of input 

and output after such a cycle is zero. This means the 

averages of input signal and output signal are equal 

over any output cycle. It is this property of system 

which makes it of interest as a switching amplifier. 

The name "Constant Area Sampler" is 

associated with the cycle of oscillation. Each half .  

cycle is complete when the integral of the error signal 

has the value +2a1. Thus each half cycle of error has 

the same area on a Voltage time curve. 
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6.1 	Emerimental Measurements 

In the absence of a detailed theory of 

performance or any detailed description of performance 

of this 'system the following facets were measured 

experimentally! Some of these observations may be 

matched with theory, others suggest theoretical models. 

6.1.1 	d.c. Performance  

d.c. gain is unity for any signal between 

maximum and minimum output. Beyond this range the 

system saturates. 

The cycle frequency is a parabolic function 

of d.c. output component, DC, with maximum at DC=0 and 

zero's when IDCI=1. The cycle frequency w s  is given by 

the expression 

w s  /wo  = 1-DC2 , where wo = 2n/( 4a). 

6.1.2 
	a.c. Performance  

6.1.2.1 
	

Oscillator Frequency 

For small d.c. offsets the mean oscillator 

frequency for sinewave control signals of amplitude A 

is described by 

ws/ws = 1-A
212-DC2 , for w.in  <: w s/10. 

The expression appears approximate for large 

values of A or DC. The error in w s  /wo  is about +2% for 

A=DC=0.5. The expression is exact for DC=0 or A=0. 

6.1.2.2 	Harmonic Distortion 

Any harmonic distortion is less than -60 db 

of the signal and intermodulation distortion is less 

than -80 db of the signal provided the maximum signal 

amplitude is less than saturation and the highest 

frequency of the control signaLcomponents is less than 

ws
/5. The maximum a.c. signal amplitude for negligible 

* See appendix E 5. 



3 

Rato clivvfanc I natural osciaton frequencies 

Loehd to third harmonie 

Locke/ 16 nrst harmonic 

 OD° 

4 	4 	4 	 1.0 2,4/It 

(2 fic). (Ra4o ("peed mix/ sra/ tomazonvm outo1(# 1 )) 

Cone://400s for PAase Loch 

6.1•2.5 

0 

0 



6.03 

distortion falls with frequency above this value. 

	

6.1.2.3 	Sidebands 

There are sidebands centered on the average. 

cycle frequency and separated from this by multiples of 

the control frequency. For no d.c. input the sidebands 

of the first harmonic are even._ With d.c. input both 

even and odd sidebnads are present in the passband. 

	

6.1.2.4 	Subharmonic Patterns .  

For large a.c. signals with frequencies.of the - 

order of w s
/4 or greater stationary switching waves 

synchronised with the input signal may occur at frequencies 

which are integer ratio fractions of ws . 

	

" 6.1.2.5 	Phase Lockina 

The system will phase lock to the input 

signal if this has sufficient magnitude. Phase lock to 

the first harmonic occurs when the input frequency, v1 1, 

and sinewave amplitude, A, Gatisfy the inequality 

l w in/wo 	I I < 2A  • 77 
The phase lock conditions for first and 

higher harmonics are indicated by the shaded areas of 

diagram D 6.1.2.5. 

	

6.1.2.6 	Frequency Response 

For frequencies below w 5/5 the gain appears 

to be unity. No phase shift was detected. Above this 

frequency low amplitude signals with no d.c. offset 

appear to have unity gain but high amplitude signals have 

gains which fluctuate in the vicinity of the subharmonic 

frequencies. All amplitude signals cause phase lock 

when their frequency is large enough. Phase capture 

appears to have little or no effect upon the gain until 

it occurs though the gain may show some fluctuation since 

these measurements were not accurate near the phase lock 

situation. 



6.04 

6.2 	Matching  Theory and Observation 

The frequency of oscillation as a function 

of a d.c. signal is derived and the extension to a.c. 

signals discussed in appendix A 6.2a. The only 

assumption required for the extension to the a.c. formula 

for oscillation frequency is that the input frequency is 

low. 

The phase locking properties of the system 

are described in detail in appendix A 6.2b. Although 

phase lock with sinewaves was investigated experimentally 

the theory indicates phase lock may occur for a wide 

variety of signal waveshapes. Stability and phase 

variatibn with frequency of the locked signal relative to 

the input signal are discussed. 

The most important feature of the system as 

a switching amplifier is the passband noise due to the 

sidebands. Experimental measurements measured only the 

first, second, third and fourth sidebands of the first 

harmonic. Other sidebands are Jess than —60 db of the 

maximum output signal. 

The experimental results suggest the switching 

wave has a form given by the expression 

n=00 
E = f(t)+ Z 4 Sin(nn(f(t)+1))Sin(nw 0 (1—f(t)

2
)) 

nl nrc  2 

The observed sidebands were compatible with this 

expression though only their frequency and presence or 

absence was noted. No detailed measurement of amplitudes 

was attempted. 

The expression above is similar in many respects 

to that for the symmetrical modulation of a fixed 

frequency wave by natural sampling. The sidebands when 

f(t) is a sinewave of small amplitude would be almost 



II More Genera/ Seh Oscihkr- Sampler 

D 6 .3 



6.05 

identical since the f(t) 2 component is small. For 

larger signal amplitudes the sidebands due to this 

component.  would extend the energy bandwidth causing larger 

sidebands within the passband than for natural sampling. 

Conclusions  

This modulator is relatively simple compared 

to the natural sampler. It has the obvious disadvantage 

of a variable period of the switching wave. Since the 

frequency of the wave falls to ero at maximum output 

there is a restriction of its use for audio amplifiers 

where the presence in the passband of large amounts of 

noise is intolerable. For small output signals its 

performance is comparable with the best two level wave 

produced by natural sampling. 

6.3 	Other Self-Oscillating Switch Controllers 

The. constant area sampler is one example of a 

class of self oscillating switch controllers. These 

controllers use a linear low pass filter rather than an 

integrater and may use a comparator rather than a device 

with separation between sensitive levels. Such coders 

have predictable d.c. input-output relationships but are 

very difficult to analyse to estimate their a.c. 

characteristics. 

The d.c. input-output characteristic, and the 

relationship between oscillation frequency and d.c. 

output level may be obtained using the theory outlined in 

appendix A 6.3. This theory is exact but may be 

complicated to use accurately. This is conveniently 

mechanised by computer program in a similar way to the 

analysis of the d.c. characteristics of natural samplers 

in the presence of feedback paths. The theory is very 

similar. 
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Two .examples of the application of this theory 

are given in appendix A 6.3b. These examples are 

integrator feedback and high Q filter feedback. The first 

is of course a constant area sampler analysis but differs 

so strongly from the earlier analysis that the result is 

quite striking. It is probably the only filter for which 

exact mathematical analysis is possible. The second 

example is basedon the assumption of a filter 

characteristic which restricts the oscillation fequency to 

a single value. The resultant input-output characteristic 

is very nonlinear. 

The theory indicates several strong 

relationships between filter characteristics and the d.c. 

characteristics. . First, the input-output characteristic 

is exactly linear if the filter response gives an odd 

multiple of 90 °  phase shift at the oscillation frequency 

and each of its harmonics. Second, when the first 

conditions is not satisfied the linearity may be improved 

by having a high loop gain at d.c. compared to that at 

the frequency Of oscillation. Third, the output 

nonlinearity is of the odd symmetric type while the 

variation of oscillation frequency is of the even 

symmetric type when both are considered as functions of 

the output or control signal level. 

The strong similarity of these results to 

those f6r the natural sampler with feedback is not 

accidental but a consequence of the similarity in 

physical structure. The major distinction is simply the 

lack of a sampling signal. 

This model has not been confirmed experimentally 

beyond the excellent agreement it yields with the simple 

cases outlined as examples. As such it must be treated as 

a plausible but unverified model for the d.c. characteristics' 

of this class of self oscillating switch controllers. 
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— 
Chapter VII 

Energy Flow Path Ideals, Structures, and Limits 

Whereas previous chapters have dealt with the 

information flow through switching amplifiers this 

chapter. examines the ideals associated with the flow of 

energy from sources to load. In making this examination 

some of the fundamental aspects of the structures 

necessary to achieve this task are considered, nys and 

means of synthesising these structures from existing 

circuit elements are .discussed. In the course of this 

discussion the factors defining the boundaries of feasible 

structures and limits of performance are introduced. 
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7.1 	Non-DisfAoative Energy Transfer 

Efficient operation of a switching amplifier 

requires more than the generation of a switching wave. 

It requires efficient filtering of the switching wave, 

that is, efficient, effective filters are required. 

The basic premise of a switching amplifier is that the 

switching wave may be separated into two components by 

the output filter and that the.undesirable components 

are not dissipated but rejected while the desired output 

component is passed freely to the load. There are 

consequently two aspects to filter performance. First, 

how well does it separate the desired output from the 

switching waves? And Second, how great are the losses 

in the filter? In the following discussion a 

miscellaneous collection of factors influencing the filter 
design are introduced and briefly discussed. 

7.1.1 	Filter Elements 

Some switching wave.  components must be 

rejected without dissipation by the filter. There are 

only two ways to achieve this. The impedance of the 

filter input at the frequencies of these components - 

must appear to be either reactive or else an extreme 

impedance. For the'first case the voltage and current 

are orthogonal in phase, for the second one or other is 

infinitesimal so that in both cases no power is 

dissipated. These restrictions on the filter impedance 

are achieved only if the filter contains only inductors 

and capacitors or has such a topology that all resistive 

components appear as extremes of impedance at the input 

terminals. 
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Topology.  

There are two types of storage element for 

electrical energy. Voltage sources and capacitors are 

examples of one type, current sources and inductors of 

the other type. To control by switches an efficient 

transfer of energy from one storage element to another 

it is necessary that they be of opposite types. In 

addition to this obvious requirement the switch array 

must satisfy several other requirements in order to 

prevent impulsive dissipation from the energy sources. 

First,. capacitors and voltage sources must not be short 

circuited and second, inductors and current generators 

must never be open circuited. 

Consider the implications of these restrictions 

for the switching amplifier shown in diagram D 7.1.1. 

They tell us that the inductive input element of the 

output filter is necessary since the switches generate 

a.wave from voltage sources. Similarly the switch 

structure must appear like a single pole two position 

switch so that voltages are not shorted to one another 

and so that the inductor always has a current path 

between its ends. 

The basic point is simply that a switching 

wave is formed at a node between storage elements of 

opposite types. 

7.1.2 	Current and  Voltage Analogues 

Switching amplifiers may have energy sources 

which are voltage or current sources. Voltage supplied 

amplifiers are discussed in the text as though current 

supplied amplifiers were non-existent. This is not so. 

The circuit of the current analogue of any voltage 

supplied amplifier may be constructed by a simple extension 
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of the standard method illustrated by diagram D 7.1.2. 

The switches of the switch array must be redrawn so' 

that each switch is replaced by a switch and so that 

open circuits become short circuits and vica versa. 

Notice that the filter input element becomes 

a capacitor and that the new switch array differs 

considerably from the old. 

• . One interesting point is the number of 

switches in the arrays of each type of system. Both 

systems have the same number even though the current 

sources -must be short circuited while not applied to 

the filter input. The switches are in parallel for 

the voltage case but in series for the current .  case. 

For ideal switches this is not important but real switches 

have resistance so that a voltage driven system has .a 

lower array resistance than a current driven system if 

more than two supplies are used. A system with n current 

sources has n-1 switches in the filter current path, a 

voltage source system has one.* 

7.1.3 	Reversible Power Flow 

The switch array controls the mean voltage 

(or mean current) supplied to the filter input. The 

amplifier load determines the mean current at the filter 

input. The current polarity depends only on the load. 

The power flow through the filter and array has a 

direction determined by the current flow. Provided a. 

switch array has bidirectional switches and the energy 

Sources are capable of bidirectional current flow a 

switching amplifier is a reversible device. 

There is a contrast here with conventional 

amplifiers which dissipate energy when Supplying a 

reactive load. The switching amplifier is able to recover 

*For switch leakages a complementary situation applies. 



7.04 

the stored energy of the load so that the net energy 

transferred over a . cycle of output is zero. 

It is worth mentioning here that an efficient 

switching amplifier must have bidirectional switches 

since the filter is in effect a reactive load to the 

switch array. The current and voltage of the filter — 
input at a frequency in the stop bancrwill be in 

-quadrature so that energy flows into the filter for 

half the cycle and is returned to the source during the 

other half ofAhe cycle. 

7.1.4 	Suaplv  Filtering 

The switch array produces a switching wave 

with either voltage or current levels'. This wave is 

applied to a filter which reflects the load and causes - 

a current or voltage to appear at the terminals. The 

switch array allocates this current or voltage to each 

supply for some interval of time each period. This means 

that each supply has a load dependent switching wave 

applied to it by the switch array. In order to provide 

the necessary current or voltage the supplies must appear 

to be ideal at high frequencies. This is not normally 

the case for practical power supplies and extra filtering 

is required, capacitors are placed across voltage sources 

and inductors in series with current sources. 

Supply filters are often necessary for another 

reason. The switching amplifier may be situated at a 

considerable distance from the source of energy with 

some form of supply line connecting the two. Any 

switching wave on this supply line can cause radio frequency 

interference. Supply filtering can eliminate or greatly 

reduce such undesirable features of switching amplifiers. 
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7.1.5 	. The Eouivalent  Circuit 

Ideally the supply and output filters of a 

switching amplifier remove all switching wave components 

other than the supply and load waveforms associated 

with the control signal. If the residual components of 

the switching waves are ignored then it is possible to 

draw an equivalent circuit of a switching amplifier. 

A general equivalent circuit is described by diagram 

D 7.1.5. 

The supply and output filters are identical 

to those actually used. The switch array is replaced 

by an array of ideal transformers in the case of a d.c. 

supplied amplifier. The a. c. supplied amplifier has the 

switch array replaced by a frequency converter and an 

ideal transformer so that supply energy and output energy 

balance for each supply arm of the circuit. The turns 

ratios of the ideal transformers are determined by the 

control signal of the amplifier, that is they vary with 

the amplifier input signal. 

The line diagram does not show all aspects of 

the equivalent circuit. In particular the summation 

point is not detailed. For an amplifier applying a 

voltage wave to the filter the transformer voltages are 

summed hy the placing them in series, the current 

analogue places the transformer outputa in parallel. 

The summation thus results in either the current or 

voltage respectively, at these transformer outputs being 

common to all the outputs. 

One interesting feature of the equivalent 

circuit is the output impedance. It is easily shown 

that this is a nonlinear function of the output.  signal 

due to the variation of the transformer ratios and hence 
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the reflected supply impedances with the output signal. 

This source of amplifier nonlinearity is not obvious 

. without the use of the equivalent circuit. 

7.1.6 	Circulation of Suo2ly  Energy 

The equivalent circuit enables one important 

feature of a switching amplifier to be seen. This is 

the circulation of energy during a switching cycle. The 

circulation is not that associated with switching ripple 

but that associated with the control signal and load 

conditions. To introduce the discussion consider the 

simple amplifier with two d.c. supplies for which an 

equivalent circuit is shown in diagram D 7.1.6a. 

The switch array restrictions require that the 

transformer ratios are as shown. The control signal 

determines the parameter cx. The output voltage Vo is 

given by 

Vo = (2.<-1)V . 

The powers supplied by the positive and 

negative load, P+ and P- respectively, and the power 

dissipated in the load resistor, 	are described by 

the equations 

P+ = «(20'<-1) V2/R , 

P- = (20<-1)(0(-1) V 2/R 	and 

P. = (4a2-4,x+1) 

These powers are displayed in a normalised form in diagram 

D 7.1.6b, as functions of the output signal. 

One feature is of interest. This is the 

negative power flow through one supply or the other at all 

• output levels except maximum, minimum, and zero. At the 

other levels energy from one supply passes into the load 
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filter during part of a switching cycle and is transferred 

to the other supply during the remainder of the cycle. 

This behaviour is due to the common current 

in the two transformers of the equivalent circuit, this 	fr 
load determined current flows against the voltage of the. 

smaller contributor to the output and thus transfers 

energy to the associated supply. 

Similar behaviour occurs for all switching 

amplifiers except those using symmetrical switch 

modulation with a.c. supplies so that all supplies 

contribute equally to the load at all output levels.. 

For such amplifiers there is a power flow reversal in the 

supplies for outputs other than maximum or minimum but 

the reversal is not associated with negative power flow 

over the whole of a switch closure but with a phase 

shift between voltage and current waveforms which causes 

reversal of power flow during . each switch closure. 

The essential feature is that all switching 

amplifiers have a movement of energy from source or 

sources to the output filter during part of the cycle 

then from the filter to the sources during another part 

• of the cycle. At the.same time the output filter may be 

transfering energy to or from the load. 
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Summary  of Ideals 

The important points of the discussion of 

lossless energy transfer are restated below. 

Filter elements are inductors or capacitors 

so that the filter impedance in the stop band is reactive 

not resistive. 

The switch array and power supplies must be 

capable of bidirectional power flow since efficient 

filters imply this phenomena must occur. 

Supply sources must appear to have ideal 

source impedances at high ,  frequencies, so that supply 

filters are often necessary, since switching waves of a 

load dependent nature are present on supply lines. 

Other Features Described 

Any voltage supplied switching amplifier has 

an analogue with current supplies. This analogue has•

the same number of switches,, supplies, and filter 

elements. 

Switching amplifiers are inherently reversible. 

The terminols normally regarded as the supply inputs and 

those regarded as the output terminals may have their 
roles changed if the control signal generates a switching 

wave which produces less output than that applied at the 

load terminals. No net energy is transferred into a 

reactive load by a cycle of output signal nor is there a 

net loss from the supplies. 

In the case of supplies with a d.c. component 

which differs between supplies power may be circulated 

between supplies for seme output signal levels. 

There is an equivalent circuit for any 

switching amplifier which satisfies the above ideals. 
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The equivalent circuit contains inductors, capacitors, 

ideal transformers and lossldss frequency convertei . s. 

The ideal transformers have turns ratios set by the 

control signal which by.this means controls the . aMplifier 

output signal. 



Description Examples of Device Described 

CC short circuit 	. 

II open circuit 

CI diode 

Al transistor in series with 

diode, 	valve 

AA transistor, 	Fat, 	ideal switch 

AC transistor in parallel with 

diode 

Ad I thyristor, thyratron 

AcAc triac 

Table D 7.2.1  

Switch Classification of some Devices and 

Combinations of Devices. 
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7:2.1 	A Classification for Switches 

Both the types of switch required by an 

amplifier and the type of device available may be 

described by the voltage current relationship of the 

device. Switches have characteristics which lie in 

the first and third quadrants of this relationship. 

An ideal switch has two possible states in each of these 

quadrants, states corresponding to conduction and 

insulation. A device may not have or need this ideal 

characteristic and some means for describing the 

possible quadrant behaviour is needed. Three symbols 

are adequate to indicate the gross characteristics, 

those used here are A, C, and I. An active device which 

may have either a conducting or an insulating characteristic 

within a quadrant is described in that quadrant by A. C .  

and I describe quadrants with conducting and insulating 

characteristics respectively. The complete specification 

of a switch is the two s,imbols describing the two 

quadrants. 

For example a device which conducts in the 

first quadrant but insulates in the third, the common 

diode is described by CI. Table D 7.2.1 lists the switch 

classifications of Some common devices and combinations - 

of devices. 

Note the use of the suffix, c, to denote an 

active switch which may be turned on by the control 

signal but must be commutated to turn off again. . 

The devices listed in table D 7.2.1 do not 

have ideal characteristics since all have finite on 

state voltage drop and finite off state leakage currents. 

The conduction characteristics of diodes,triacs, and 

thyristors are non linear, while those of transistors 
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and F.E.T.S. are - usually linear over the saturation 

resistance range. The conduction characteristics of' 

valves and vacuum diodes vary widely but high power 

devices have approximately constant saturation resistance. 

Thyratrons have a large voltage drop but low dynamic 

- resistance. The off state leakage is not uSually 

important for any of these devices unless germanium 

semi-conductor devices are used. 

.Transistors, the devices most commonly used 

as switches are shown by table D 7.2.1 to be bidirectional. 

They are not a practical form of bidirectional switch 

however unless they have symmetrical base-emitter and 

base-collectorjunctions. This is seldom the case. 

Usually the reverse base-emitter breakdown voltage is 

much smaller than the breakdown voltage of the other 

junction and the current gains of the device are 

different. This poses a problem, how may unidirectional 

active devices such as the transistor be used to provide 

the switches required of a switch array? One answer 

would .  appear to be the combination of the available 

devices to provide a bidirectional device. 

7.2.2 	Combined Elements as Switches 

The common active and passive devices may be 

combined with one another to produce other switch types. 

Diagram D 7.2.2 lists some examples. The convention 

adopted in these examples to define the quadrant 

orientation is as follows. 

The symbol nearest a terminal of a device 

describes the behaviour of the quadrant of the voltage 

current characteristic of the device for which a positive 

current flows into the terminal. Thus the diode of the 

fourth example allows current to flow through the diode 
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from left to right but the current cannot flow in the 

reverse direction. 

Examples (i) and (ii) are ways for combining 

two unidirectional active devices to achieve a bidirectional 

switch. The first is suited to transistor type 

characteristics, the second to valve like characteristics. 

Example (iii)indicates how a single active device may 

be used to control both directions of conduction to 

give a symmetrical switch characteristic. The remaining 

examples are transformations of one type of unidirectional 

device to the other type. 

Although the combinations outlined are often 

usefull most suffer from one or both of two basic defects. 

These are complexity of control circuit and accumulation 

of parasitics. Consider these aspects of example (iii), 

a diode bridge about a single active device. 

The control signal of most active devices 

is applied to a terminal of the device and a control 

terminal. For this example the control voltage must be 

floating with respect to the terminals of the compounded 

switch since each end of the active device has either the 

maximum or minimum of the voltages across the compounded 

switch. Examples (i) and (ii) have similar control 

problems. 

The off state leakage current of example (iii) 

is the sum of the leakages of two reverse biased diodes 

. and the active device. The on state voltage drop is the 

sum of the drops for two forward biased diodes and the 

active device. The terminal capacitance of the compound 

switch in the off state is the sum of that for two diodes 

and the active device. 



7,13 

The increase in porosities of a switch formed 

of component devices, by some or all the porosities of 

the individual devices used, is encountered with all 

combinations of devices. The important strategy is to 

choose those combinations which increase the least 

important of the parasitics.Thus devices suited to 

combination by the circuit of example (i) should have 

low voltage drops while low leakage currents and terminal 

capacities should be features of devices arranged as in 

example (ii). The arrangement of elements in circuit 

(iii) is not good from the point of view of porosities 

but is probably one of the easiest combined circuits 

to control since only one active device is involved. 

7.2.3 	Minimum Switch  Requirements of Common Circuits 

Since the synthesis of bidirectional switches 

from unidirectional elements is not always desirable it 

is important to produce and use switches with the 

minimum facilities required by a given circuit or system. 

It may, for instance, be desirable to produce two 

unidirectional amplifiers with complementary current 

characteristics and parallel these to attain a 

bidirectional amplifier rather than produce a single 

amplifier with bidirectional switches. In order. to make 

a decision as to the relative advantages and disadvantages 

of such a choice it is necessary to have a clear idea of 

the minimum switch requirements of the circuits 

considered. This section outlines the minimum requirements 

and other information necessary for such a comparison. 
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7.2.3.1 
	

Natural Voltage Steos 

A natural voltage step is said to occur when 

the voltage at a switch node is determined by the current 

into the node due to the connections at the node with all 

switches in a non-conducting state. The most common 

example of such a natural step occurs when an active 

device is switched off while an appreciable current is 

flowing into an inductive filter. The natural transient 

so caused results in a voltage across the inductor which 

causes current reduction in the inductor. 

The clamped sinusoidal transient formed in 

this way does not cause energy dissipation in the switches 

unless these breakdown due to the high voltage attained 

as the inductor energy is transferred to the stray node 

capacitance, or, they have appreciable leakage currents. 

The transient may be clamped to any voltage along its 

initial path by a diode which is reverse biased at the 

instant the active switch is turned off. The initial 

slope of the transient is proportional to the initial current 

so that the time interval between switch off of the active 

device and capture by a clamping diode is inversely 

proportional to the initial current. 

7.2.3.2 • 	d.c. Supplied Arrays  

An array with d. c. supplies and unidirectional 

output .current may have natural voltage steps for, all steps 

of one polarity. Forced steps are required for voltage 

changes of the polarity which increase output current. 

Forced steps may be applied in the other direction too 

but since the change in stray capacitance energy is 

dissipated in the switch this is not particularly 

desirable. The minimum switch requirements ofa uni-

directional output current array using natural voltage 
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steps for one step direction are shown in circuit (i) of 

diagram D 7.2.3. The insulating Part of the highest 

switch is not - -equired. The middle switch may in fact 

be many switches connecting many levels or may be absent 

.completely.' The lowest switch is a diode. 

An array with d.c.-supplies and a bidirectional 

output current has the switch arrangement-of circuit (ii). 

If the output current is of suitable sign and magnitude 

then natural steps may be used but since it may have 

either sign and may be very small, forced steps are 

necessary in some circumstances. Notice that the switch 

requirements are equivalent, to paralleled pairs of the 

switches of circuit (i) and its current complement. 

A two supply array, with unidirectional output 

current, has a number of simplifying features if natural 

commutation is employed. These are associated with the . 

need for only one active device. Unly one control signal' 

is needed and there is no danger of supply short circuits 

due to overlap of switch conduction times at switch state 

transitions. The two level array using forced commutation 

steps,. whether providing unidirectional or bidirectional 

output current, requires protection against overlap of 

switch conduction times 	This may be attained by 

modification of controlsignals for the switches or by 

inter switch impedances which limit currents during such 

overlap. In either case circuit complexity is increased. 
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7.2.3.3 	a.c. Supplied Arrays 

For unidirectional' output current circuits 

similar to example (iii) of diagram D 7,2.3 may be 

used. The control signals must be arranged so that the 

switch turning on forces the output current to flow 

through it rather than the previously active switch. 

For the example this means that all node voltage steps 

are positive, that is are forced. Despite the restriction 

on voltage step polarity the .output voltage range is as 

great as that for the bidirectional output current 

circuit shown as example (iv). 

The diode clamped circuit shown as example 

(v) is subject to the positive voltage step restriction 

also but has only half the output range as the other 

circuit. This disadvantage is balance to some-extent 

by the noise properties of the modulation form which may 

be used. 

Both these circuits may also use switches 

which turn on at zero voltage but may be turned off at 

any current. The associated waveforms are reversed in 

time order to those discussed, above but are otherwise 

identical. No switch commonly available has this 

characteristic which is the inverse of that for a 

thyristor. 

The bidirectional array has similar problems 

to those of the d.c. supplied array with forced.voltage 

steps in that high switch and supply currents during 

overlap of switch conduction times must be avoided. 

The problem is more intractable however since natural 

voltage Steps must be avoided due to the lack of suitable 

voltage sources for use as clamping levels for the node 

voltage. As a result switch conduction times must be 
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overlapped and inter-switch currents limited by impedances. 

This solution is unsatisfactory for . most.purposes. 

Summa/ 

The brief discussion indicates switches of 

arrays with unidirectional output current are better 

matched to available device characteristics and are easier 

to control than their counterparts in arrays with 

bidirectional output current. 

7.2.4 	Pairing Comolementary Unidirectional Aliplifiers 

An amplifier with bidirectional output current

may be formed by paralleling the outputs Of two amplifiers 

with complementary unidirectional output current 

capabilities. This technique requires some control 

circuitry to maintain non zero output currents in each 

amplifier, duplication of switch control circuitry and 

some parts of the output filter, and symmetrical designs. 

This added complexity must be balanced against the difficulty 

of controlling bidirectional switches in a single array. 

Each amplifier of the pair requires a non zero 

output current for all values of composite amplifier 

output voltage and current. The simplest, and least 

satisfactory, way to achieve this is to bias each 

amplifier to give a circulating current of half the 

maximum load current at zero output voltage and current 

for the composite amplifier. As the composite amplifier 

output current nears maximum the current in the subunit 

providing the opposite polarity current.falls to zero. 

The disadvantages of this technique are obvious. Even 

for low outputs the array elements are carrying high 

currents.. These currents wastepower on the switch 

elements and filter and cause a circulation of energy 

through the amplifier energy sources. 
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An untried solution to this problem may be to 

monitor the output .currents of the two sub units, select 

the lowest of these two signals, compare this minimum 

with a reference level for circulating current, and use 

the resulting error signal as a differential input to the 

two sub-amplifiers. Diagram D 7.2.4 illustrates the form 

of control circuit envisaged. The currents may be 

monitored by current transformers placedin the individual 

arrays in series with a switch. These could also be used 

to monitor maximum current levels and so control overload 

or protection circuits. Notice that although the two 

amplifier outputs vary with the output current level, 

,their mean value is constant so the output voltage is 

constant even while the bias current loop signals are 

moving towards equilibrium conditions. 

7.2.5 	Combinations of  Switchim Amplifiers 

An amplifier produced by paralleling two sub-

amplifiers is one example of a combination of switching 

amplifiers. In addition to specific advantages such as 

achieving bidirect ion output current capability with 

unidirectional sub-amplifiers there are a number of 

advantages associated with the possible forms of the 

effective switching wave. These are discussed below. The 

major disadvantage, appart from multiplicity of hardware, 

is the need to control output current distribution among 

the individual sub-amplifiers when these are connected in 

parallel. A fixed bias arrangement is feasible where 

output impedance is not too low and bidirectional sub-

amplifiers are used. For other situations feedback control 

methods,. similar to those outlined for the unidirectional 

situation, appear suitable. 

The phrase, effective switching wave, used 
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above is intended to describe a switching wave which 

when filtered produces an output equivalent to that of 

the combined amplifier. For paralleled sub-amplifiers 

the effective wave is the average of the individual 

switching waves. For series connected amplifiers the 

effective wave is the sum of_the. individual waves. It 

follows from this that many complex switching waves with 

a wide variety of properties may be produced. Several 

of these will now be discussed. 

The waveforms of diagram D 7.2.5a are those 

for d.c. levelled waves of the type produced by amplifiers 

with both unidirectional and bidirectional output current 

capability. The earlier discussions of waveforms of this 

type were concerned with the passband noise under various 

modulation conditions. It was shown that multi-level 

waveforms have appreciably lower passband noise than 

their component waveforms. For the unidirectional 

amplifier combination the use of phased switching waves 

reduces passband noise below that for an equivalent 

bidirectional amplifier realised with the same number of 

switches and supplies. 

• Sub-amplifiers with unidirectional output 

current and a.c. waveform levels have waveforms of the 

type shown in diagram D 7.2.5b. Notice that the voltage 

wave of the negative current sub-amplifier is the 	. 

reflection of that for the positive current sub-amplifier. 

The effective switching wave has double edged modulation 

and a zero level. The resultant wave has many desirable 

properties including zero outpOt ripple at zero output 

but does not have harmonic cancellation as the previous 

example has though harmonic amplitudes are reduced. The 

difference •n sideband energy is- similar, for small 
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outputs, to that between single and double edged 

modulation of d.c. levelled waves. 

Amplifiers employing many sub-amplifiers 

should combine these with phased addition of waves so 
that maximum reduction in harmonic amplitudes is achieved. 

The case for unidirectional a.c. supplied sub-amplifiers 

referred to above is exceptional in that the direction of 
steps must be opposite for the two sub-amplifiers due to 
the method of current transfer between switches of the 
simplest type available. Switches which may be turned 
off can be used in such amplifiers to produce waves which 
may be summed to give harmonic cancellation. 

7.3 	Switch and Filter Performance 

7.3.1 	Real Filters - Their Losses 
Real filters do not have lossless elements, 

nor do they reject all switching wave components. As a 
consequence the ideal model is not achieved. The 

relationships between filter losses and other parameters 

are discussed here. 

An inductor in the filter of a switching 

amplifier has three distinct types of loss. First, signal 
frequencies and d.c. components are attenuated by the 

winding resistance of the inductors. Second, the filter 
characteristic is not an ideal low pass one so that the 
load impedance and winding impedances of the inductors 

are reflected in the high frequency input admittance. 

The switching wave will dissipate some energy on this 
reflected resistance. Third, the material of the magnetic 
circuit is not ideal and losses associated with the flux 
density and volume of the magnetic circuit occur for the 
high frequency components of the switching wave. 

The first two losses may be analysed for a 

given filter and switching wave. For common designs the 
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first loss is dominant. This may best be illustrated 

by an example. 

A second order filter with damping of 0.6, 

corner frequency wc , and .having low attenuation. for d.c. 

signals is used to filter the output of a switching 

wave described by 

n=00 
ES = DC+ 2 4 Sin(nn/2(DC+1))Cos nw t. 

n=1 nn 	s 

The real part of the filter input admittance at the 

frequency of the nth harmonic may be calculated from 

the approximate expression derived in appendix A 7.3.1a, 

and the expression for the total losses for the harmonics 

formed. The expression is 

n= 00 
ELA = (1/R)(Ri/R).(11.5/n 2 )(w /w ) 2  Sin(nn/2(DC+1))./n 4 , c s 	n=1 

provided 4w < /s w 
c 	s° 

The loss due to the inductor winding resistance, 

Ri, attenuating the d.c. component is 

ELS = 	(DC21'R).(Ri/R) for Ri/R(1. 

The maximum output signal power is for DC = 1 and is 

1/R. The expressions show two things about the relative 

values of the maxima of these two losses as functions of 

DC. First,. the ratio,of the maxima of the two approximate 

expressions is approximately 

RL 	1 • 2(w c/ws ) 2 . 

A typical filter may have wc /ws ::,,  0.2. For this value 

signal loss is nearly twenty times the 'loss due to the 
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reflection of. inductor loss to the input of the filter. 

Second, since both losses are proportional to Ri/R, the 

ratio of inductor to load resistances, a filter efficient 

for d.c. signals will be efficient at high frequencies 

also. 

The expression for the relative losses maxima 

ratio is of similar form for higher order filters. The 

expressions differ slightly since the dominant high 

frequency loss is incurred in the input inductor while 

all the inductors contribute to the d.c. signal loss. 

The third type of loss, that due to magnetic path losses, 

is not so amenable for comparison since it depends on 

the core material and the flux density. Usually core 

materials are chosen so that this loss is small though 

even this policy is ill defined since the flux has a 

large signal component with a small superimposed a.c. 

component. The large signal component may cause the 

losses due to the a.c. component to fluctuate strongly 

especially if saturation flux density is approached. 

Saturation of the inductor material is usually avoided 

since this not only increases filter losses but may cause 

nonlinear signal transfer for a.c., signals with frequencies 

near the corner frequency of the filter. 

Real Filters - Inductor  Size Transferred 

Power 	Efficiency 

An efficient ,inductor stores most of its 

energy in an air gap and uses the magnetic circuit to . 

provide a flux path from one side of the air gap to the 

other... The volume of magnetic material required is thus 

minimised and the flux dependent loses reduced in 

proportion. Such an inductor has a maximum flux density 

in the core material set by saturation or high frequency 
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loses. For a given set of inductor proportions, defining 

the shape of the magnetic circuit and the windings, and 

for a given conductor resistivity there is a relationship 

between maximum stored energy, E, the inductor time 

constant, Ir , the maximum flux density , B, and a 

dimension of the inductor, D, such as the length or 

breadth. The relationship is independent of the length 

of the air gap provided the geometry of the flux path is 

not significantly altered. The expression is derived in 

appendix A 7.3.1.b and restated below. 

= K(B) 2D5 , where K is dependent on resistivity 

of the Winding and inductor proportions. 

For a given filter response the product of 

Emax and T may be related to the load power, P, the d.c, 

.filter efficiency, 71 , and the filter bandwidth, w c• This 

may be illustrated by an example. 

Diagram D 7.3.1 shows a second order 

Butterworth filter with each element described in terms of 

the load impedance R L , the d.c. efficiency, and th2 

corner frequency w c . 

The inductor energy stored is 

E = 1/2. 1,1 2  = PL(1474422-1/2)/(2 7Zw c ), where 

PL is the output power. The time constant of the inductor 

is 

= L/Ri =  
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The energy, time constant product is thus 

= PL (W7+171-1/2) 2/ ( 2w c2  )2( 1-7Z) 

--'--PLA1-7t)wc2 ) •  for TjR.-1, that is for high 

efficiency filters. 

Similar expressions may be derived for any 

filter configuration with a definite frequency response. 

The general form of such expressions is 

oc P /(1-7nw c2 ) . 

By combining the two expressions so that 

E.1 is eliminated the relationship between the inductor 

dimensions, flux density, and operating frequency and the 

circuit behaviour as defined by the d.c. efficiency and 

power transfer through the filter, may be obtained. The 

relationship is 

p L cc  ( i_
)
wc 2 (p)2 D5 

The relationship suggests that the power 

transferred by a given size inductor will diminish as 

efficiency is increased so that power transferred is 

proportional to, power lost per unit power transferred. 

The power transferred for a given efficiency, 

frequency, and flux density is proportion to the fifth 

power of the dimensions of the inductor, that is almost 

the square of the mass. 

If efficiency and size are adjusted while 

holding the other parameters fixed then a small increase 

in size reduces the losses appreciably. 
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The power transfer increases rapidly with 
frequency and flux density but these parameters have a 
very significant influence on the high frequency losses 
which may increase even more rapidly than a square law. 
The increase in dimensions is also accompanied by an 
increase in flux dependent losses since these are 
proportional to volume of magnetic material. This means 
there exists a trade-off between d.c. and high frequency 

efficiency when inductor dimensions are considered. Note 
that for a given flux density, frequency, and d.c. 

efficiency the high frequency efficiency increases with 
the dimensions and power level since the volumeincreases 

more slowly than the power transferred, D 3  compared to 

D5 . 
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7.3 • 2 	Measures of Switch Performance 

Power Control Capacity 

A switch can withstand a maximum off-state 

voltage of V and can carry a maximum on-state current of 

I. Such a switch when embedded in a circuit can change 

the flow of energy into any region of the circuit by at 

most Vi. It is convenient to call this volt-amp. 

product the power rating of the switch. 

Static Loss  Indices 

On state losses are due to the voltage drop 

across the switch. At maximum forward current the 

voltage drop on a switch is VD. The conduction loss 

factor, Fc, is defined as 

Fc = VD/V. 

This factor is the ratio, when the switch is on, of the 

power dissipated in the switch and the power rati -Ig of 

the switch. 

Off-state losses are due to current leakage 

through the switch. At maximum applied voltage the 

leakage current is IL. The off-state loss factor, Fo, 

is defined as 

Fo = IL/I. 

This factor is the ratio, when the switch is off, of the 

power dissipated in the switch and the power rating of 

the switch. 

Both these factors must be small for efficient 

switching amplifiers since the switches of an array vary 

their on and off times with the input signal of the 

amplifier.' 
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• Diagram D 7.3.2 shows conduction loss factor and switch 

power rating for a number of devices operating at maximum 

output power. These switch elements ar2 selected from 

data handbooks*available to the author and may not 

represent the best available devices. 

Transistors operating at maximum output power 

are operating at.minimum efficiency since reduction in 

conduction current increases efficiency at the expenso of 

output power. For a transistor operated at reduced power 

level the increase in efficiency may be visualised on 

the diagram by movement on a 45 0 line from the maximum 

power point towards the upper left hand corner of the 

diagram. For thyristors and diodes efficiency is only 

slightly improved by reduction in current levels since 

on-state voltage drop is almost independent of current. 

The 20 kwatt F.witch power rating attained by 

several of the thyristor and diode devices far exceeds 

that attained by other devices but conduction to -off-state 

voltage ratios of 1:500 limit the maximum conduction 

efficiency to less than 99.8%. 

Several N.P.N. 'power transistors have switch. 

power ratings of 5 kwatt at efficiencies near 99%. 

Derating these devices allows comparable efficiencies to 

those of thyristors at switch power levels near I kWatt. 

P.N.P. power transistors are not as common 

nor as high power at comparable efficiencies; the best 

shown is almost an order of magnitude inferior in either 

power or efficiency than the best N.P.N. devices while 

more common devices are of lower quality still :  Many 

N.P.N. devices have comparable efficiencies and power 

* Semiconductor Data Handbook 1973,  D.A.T.A. Inc., 
New Jersey. 
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ratings as the better P.N.P. 'devices. 

For transistors and thyristorS the power 

required to hold a device in the on-state is negligible 

compared to the conduction loss however if low efficienc 

driqe circuits are used their dissipation can exceed that 

of the transistors or thyristors. 

For vacuum tube devices cathode heaters have 

dissipations equal to or greater than conduction losses. 

Since this power loss is not included in diagram D 7.3.2 

it is easily appreciated that these devices are not 

competitive with semiconductor devices of comparable 

ratings however some high voltage high frequency vacuum 

.tubes have no semiconductor equivalents. 

Off-state leakage losses of silicon semiconductor 

are usually lower than on-state losses with typical loss . 

factors less than .002. 

Dynamic  Losses 

Careful commutation of the switches in an 

array is an essential for high efficiency operation. For 

most applications requiring low frequency cycling of 

switch states transition state losses can be neglected 

when compared with static losses. In the search for 

higher power and wider bandwidth amplifiers however limits 

to the rate of switching and the power handling capability 

of switches are reached. These limits are briefly 

outlined here. 

At the instant a switch changes state it 

dissipates energy due to a finite rate of change of its 

voltages and currents. This energy has a maximum value, 

assuming good commutation, given by the product of three 

quantities, the off-state voltage across the switch, the 
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on-state current through the switch, and the time taken 

for the transition between states. This maximum energy 

exceeds the dissipation of real switches by a factor of 

three or more but provides a useful' upper bound for 

comparisons with observed losses. 

Most high power thyristors have transition 

losses such that cyclic operation at full rated power 

cannot exceed 50hz.. Above this frequency operation at 

reduced power levels to cycle rates of 400hz is often 

permitted. Some devices may be used at khz'rates 

provided they are suitably derated from their static 

capability. 

Transistors change states at rates dependent 

on their drive waveforms. For optimum drive waveforms 

the transition energy is of the order of 0;5 VI/fT where 

V and I are the voltage and current referred to above 

and ft is the gain bandwidth product of the transistor. 

If the device, while at full rating, is cycled at a rate 

where the two transitions per cycle cause losses 

comparable with the conduction losses then the frequency 

of cycling, f, is related to fT  and the conduction loss 

factor Fc by the expression 

f = ft•F.c, where it is assumed that 

the conduction time is the entire cycle length. Lower 

duty cycles increase this frequency accordingly. 

For frequencies near or greater than this 

the transition losses require the switch rating to be 

reduced by an appropriate. factor. 

On this criteria derating of high power 

transistors, which have .4 	1Mhz, must begin at about 
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20khz while lower power devices with lower conduction 

losses but fT  50Mhz_,• can operate up to about 200khz 

without derating. 

By derating high power transistors efficient 

medium power switching can be achieved but a second 

frequency limit is encountered._ This occurs when 

transitions between states begin to overlap. Measurements 

by Chudabiak and Page- indicate this limit occurs at 

about 0.1 fT for transistors with dissipation less than 

10 watt and 0.01 	for transistors of somewhat higher 

dissipation. 
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Switch andmplifier Ratings for Simple Arrays. 

The simple node of switches array imposes 

relationships between switch power and amplifier output 

power. During its on time the current through a switch 

is the sum of output and filter currents, during its off 

time the voltage across the switch is the difference 

between that of the source it connects to the node and the 

node voltage. This voltage has a maximum value which is 

simply related to the output.voltage range of. the 

amplifier. For d.c. arrays and bidirectional many phased 

a.c. arrays the output voltage range almost equals the 

maximum off-state voltage of an array switch. Thus the 

product of the amplifier output voltage range with the 

maximum output current is of the same order as the switch 

rating of the highest rated switches of the array. 

This very simple relationship is typical of 

most effective arrays but is a first order approximation 

only since it makes no allowance for over voltages or 

currents, the duty cycles of on and off states, or the 

derating required by dynamic losses associated with 

commutation. The first two, and last factors can 

substantially increase the switch ratings required of an 

array switch, though some reduction is often possible . 

if higher peak currents than the average maximum on 

current are possible on a pulse basis. 

At any instant all the switches of an array, 

both those on and thoSe off, contribute to the static. 

array losses. For this reason the loss factor of an 

array is higher than that for any component switch. The 

effect of provisions for over voltage and current and 

dynamic losses also change the loss factor though some 

of these may cancel. 
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7.3.3 	Modifications for the Eauivalent Circuit 

The voltage drop on conducting switches 

causes the output voltage of the equivalent circuit to 

deviate from that predicted by the ideal equivalent 

described in section 7,1.5. The problem of adapting 

the circuit described there to include this loss is 

discussed here. 

While a switch is conducting the current flow 

is made up of two parts, the signal or output current 

and the filter current. The latter current is ignored 

for the. signal equivalent circuit. The output current 

flow produces a voltage across the switch. This 

voltage must also be represented by a voltage across 

some device in the equivalent circuit. If every switch 

in the circuit is identical, as in a.c. Supplied arrays 

controlled by phase modulation, then this presents no 

problem since one conducting switch placed in series 

with the output filter is exactly equivalent. If 

however the on characteristic of the switches are different 

then the equivalent signal impedance is related to the 

transformer ratios of the circuit but not in a manner 

suitable for representation as an impedance at the other 

side of the transformer. In this case the best 

approximation is an average switch characteristic. 

The supply filters of section 7.L.4 have 

.ideally zero high frequency resistance. In practice 

unfiltered and poorly filtered supplies may be used. 

The resistance of these supplies at high frequencies 

results in a voltage drop equivalent to that on the 

switches and may be transformed in a similar way as a 

resistance in series with the. output of an ideal supply 

system and array. 
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7.4 	Summary 

Chapter 7 describes some aspects of the 
implementation uf switching circuit hardware. The 
discussion is centered on the energy flow path from 
the energy source to the load as distinct from the 
information flow path from the input to the output. 
The work is concentrated on design philosophy rather 
than description of individual components. Various 
structures of switch arrays are briefly examined and 
their performance discussed. 

The discussion starts with various methods 
of combining elements to form switching arrays and 
filters to couple the energy source to the load. 
Attention is drawn to the limitations associated 
with non-ideal components in the switch array and 

filter and with the use of non-ideal energy sources. 

These limitations effect the overall performance of 
the circuit and are shown to influence the trade-off 
between efficiency, power capacity, bandwidth, structural 

complexity, and filter mass. 
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CHAPTER VIII. 

The more significant aspects of the material 
• 

presented in previous chapters are reviewed in this 

chapter in order to indicate those areas where 
significant advances have been made to switching 

amplifier design. In addition some areas are 

indicated which require further advances before 
design uncertainties can be removed. The sequence of 
topics is shown in the chapter subheadings listed Jn 

the opposite page. 
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8.1 	The d.c. Input-Output Characteristic of  

Natural SEmplinq 

The d.c. characteristics of all amplifiers 
employing natural sampling can be determined by a 
simple implication chain linking input signal level 
to the output signal level. The chain involves the 
phase of the encoder steps, the phase of switching 
wave steps, and the average of the switching wave 
passed by the output filter to the load. The chain 
can be used to numerically evaluate point by point 
the shape of the input-output characteristic. However 
it is more usual to regard the input signal as an 
algebraic variable j and to consider its transformation 
at each stage of the chain until the output signal is 

described as a function of the input signal. 

This widely used method for determining the 

. d.c. input-output characteristic is an accurate and 

convenient tool for the switching amplifier designer. 
By making allowances for non-ideal features such as 
voltage drops on switches and filters, it provides a 

precise method for analysing a design. Simple 
extensions of this method allow the sampling wave and 
supply waves to be recognised as distinct algebraic 
functions within the description of input-output 

characteristic. This extension enables the synthesis 
of the sampling wave shapes appropriate for a specific 

I/O characteristic. 

Chapter 2 and Chapter 3 used this method to 
describe switching waves, however the treatment there 
considered the input signal as an arbitary function of 
time. Here we are concerned with d.c. input signals. 
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In providing the most general possible 

description of the switching wave l the approach adopted 

has used a systematic method for subdividing the wave-
forms within the amplifier. This allows the component 
associated with each waveform level to be discussed in 
comparative isolation as its control waveforms are 
traced from the encoder to the switching wave. After 
forming descriptions for each component in isolation ;  

these are combined to form the composite waveform 
description. This may then be examined to determine 
the potential range of sampling wave shapes which can 
yield a specified input-output characteristic. 

The major distinction between the methods for 
determining the d.c. input-output characteristic 

described in this thesis and those employed by others 
is the use of a single unified approach using a very 

general analysis. 

8.2 	The ac. Input-Outout Characteristic for  

Natural Sampling  

While the analyses of natural sampling due to 

Bennet t , Fitch2 , and Kretzmer3  indicate that the a.c. 
input-output characteristic of an amplifier employing 
a linearly controlled binary switching wave with d.c. 
levels is identical to the d.c. input-output characteristic, 
no analysis presented in the literatures provides 
equivalent evidence to show a more general result, namely 
that the d.c. and a.c. input-output characteristics are 
identical for any switching amplifier employing natural 

sampling, 
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In order to demonstrate this identity, the 
methods used by the authors above were modified to 
incorporate the shapes of the sampling waves and the 

resultant waveform descriptions used to describe switch 
control functions. This enabled the switching wave to 
be described using the approach outlined in chapter 2, 
section 2.4. 

• The resultant switching wave description, 
derived in chapter 3, sections 3.1, 3.2, and 3.3, and 
re-stated in chapter 4, section 4.1, does show the 
identity between a.c. and d.c. input-output characteristics. 

The experimental measurements outlined in appendix ELI 
and E1.2 provide confirmaticn of the analysis for several 

common amplifiers. 

The identity is a very valuable tool to the 
designer of switching amplifiers, since it assures him 

that regardless of the manner in which he chooses his 
sampling and supply waveforms to achieve a specific d.c. 

input-output characteristic, and provided he uses natural 

sampling, then the input-output characteristic for a.c. 
control signals will also be defined and identical to the 

d.c. characteristic. . 

8.3 	The Spectrum of Waves controllestural  

Sampling  

The description of a linearly controlled binary 
switching wave with d.c. levels was established by the 

works of Bennet1 , Fitch2 , and Kretzmer 3 , however the 

•spectrum of this wave has been investigated for only one 

form of input signal, namely a sinewave or a pair of 
sinewaves. Although natural samplers are used with non-

linear encoders, and encoders controlling a  .c. levelled 



8.04 

waves, equivalent descriptions of these waves have not 
been formed and thus no spectral analyse; exist apart 

from specific experimental measurements. Since such 
spectral analyses are necessary for a systematic 

appraisal of output filter requirements it is clear 

that their omission from the literature severely 
handicaps the designer. 

As a first step to rectifying this situation 

experimental confirmation of the results of Bennet -
1

, 

Fitch2 , and Kretzmer 3, was necessary. This work is 
part of that described in Appendix E, section E1,2. 
Success in this confirmation encouraged the develop-
ment of waveform descriptions by the approach 
described in chapters 2 and 3 and also the development 
of spectral analyses of switching waves with steps 
position modulated by functions other than sinusoids. 

The developments are used in chapter 4 to 
analyse the spectrum of many common switching waves. 

The objective of these analyses is to establish 
profiles for worst case passband noise contributed by 
sidebands as functions of amplifier bandwidth normalised 

with respect to the sampling rate. These functions 
enable a designer to conveniently establish the inter-
relationship existing between the three design 
variables of output signal quality, amplifier bandwidth, 

and amplifier sampling rate for any of the common forms 

of switching wave. 

8,4 	Oetimisation of Sampling Wave Shape  

The published descriptions of the input-output 
characteristic design of amplifiers employing natural 
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sampling usually assume that the switching wave levels 

are invariant with time, that is they are either steady 

d.c. levels or periodic waveforms of fixed amplitude 
and shape. This is seldom so. Accordingly, one 

important aspect of encoder design is the realisation 
of sampling waves which are continuously modified in 
shape and amplitude to compensate for supply variations. 

This aspect of sampling wave design is greatly 

facilitated by the algebraic definitions of the sampling 
wave shapes automatically obtained by the approach 
outlined in chapter 3, sections 3 • 1.2 and 3.1.3. In 
theory these algebraic descriptions of the sampling 
waves may be realised literally as functions of the 
supply waveforms so that changes in the supply wave-

shapes are automatically compensated. In practice the 
direct realisation may not be realistic because of the 
complexity of the functions. Even so the ideals 
embodied within the functional descriptions make it 

possible to compensate for changes in supply amplitude 
and, in some cases, supply waveshape changes with very 

simple circuits. 

8.5 	The Asynchronous  Natural Sampler  

A conventional natural sampler assumes at the 
design stage that the supply waveforms are either in-

variant periodic functions of time or at least subject 
to only minor variations of the kind which can easily 
be compensated by encoder designs of the form just 
outlined. No natural sampler described in the 
literature is intended to control an array provided 
with a rbitary supply voltages. 
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It is shown in chapter 2, section 2.4 that there 

is no good reason why an encoder with the desired 
properties cannot exist provided the supplies can provide 
sufficient voltage. Furthermore an amplifier employing 
such an encoder is highly desirable. It would permit a 
sampling rate much higher in frequency than that employed 
by encoders using sampling waves synchronous with 
commercial a.c. supplies. This in turn allows a much 
wider amplifier bandwidth and a reduction in the size of 

the output filter. Unfortunately the normal natural 
sampler cannot be designed for this role since it will 
produce an output signal modulated by the supply 

variations unless the sampling rate is synchronous with 

the supply waveforms. 

Section 3.1.4.1 of chapter 3 describes a form 

of natural sampler which uses three sources of information 
to control the operation of the encoder. It uses the 

input signal, the positive supply voltage and the 

negative supply voltage to continuously control the shape 
and zero value of the sampling wave, so that the waveform 
steps of the switching wave are moved to compensate for 
supply variations as 'well as to transmit the input signal 
to the amplifier switching wave. 

The analysis of this encoder presented in 
appendix A3.1.4.1 defines the sampling wave shape as a 
simple function of the instantaneous supply voltages. 
The concept and the accuracy of predictions based on the 

analyses have been subjected to the experimental tests 
described in Appendix E3. These tests indicate the 
analysis to be valid for the limited range of conditions 

tested. 
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Section 3.1.4.1 of chapter 3 expands the 
application of the basic concept from a two to multiple 
supply situation and indicates some of the difficulties 
in the practical application of this modified form of 
natural sampler. These proposals have not been tested 
experimentally,nor have detailed theoretical analyses 
been made. 

In summary then, a new form of natural sampler 

has been proposed, analysed, and to a limited extent 

tested. Its practical use has been outlined but not 

yet implemented. Its application to amplifiers with 

A.C. supplies appears to have the benefits of wider 
bandwidth and smaller filter size, benefits which flow 

from increasing the sampling rate from the supply 

frequency to a much higher value. Its application to 
other amplifiers has the benefit of the ability to 
reject supply waveform fluctuations from the output 
signal. Its principle disadvantage is the extra 
complexity required. 

8.6 	Waves with Manx_d.c. Levels — staggered 
Phased Addition Method.  

Mokryzki4  , Pitman 5 etal, and Heuman 6 have 

described the staggered phase technique as a means of 
increasing the apparent switching wave frequency by 

summing together many two levelled switching waves. 

These authors did not however describe the spectrum 
of the resultant waves and so were unable to indicate 

how the amplifier bandwidth varies with the number of 

phases added together. 
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The analysis procedures and facilities 
introduced in chapter 4 are used there to examine the 

spectrum of such switching waves. In section 4.2.2.5 

the interactions between bandwidth, passband noise, 
and signal level for such switching waves are described. 

The analysis indicates that although the bandwidth does 

increase with the number of phases added it does so 

more nearly as the square root of the total number than 

linearly as might at first be expected. 

This result reduces the uncertainty of a 

designer as to whether this approach should be adopted 

or not, since it gives definite answers to questions 

concerning the relative magnitudes of signal to noise 

ratios of different forms of switching amplifier. 

8.7 	Waves with m3„jily___Ieyels  - Quantizer  Method  

In their approach to the linearising of the 
input-output characteristic of a quantizer Chen 7 , 

McVey8 , and Parrish etal9 have used an input signal 

perturbation and thus synthesised a new form of natural 
sampling. They do not appear to have recognised the 

quantiser output as a form of switching wave nor have 

they described it in detail, consequently they have 

embarked upon the development of a theory in parallel 

with that for conventional d.c. levelled switching waves. 

A series of papers considered the input-output 

characteristics resulting from perturbations ranging 

from a sinusoid to a triangular wave. This is the 

conventional conclusion regarding the shape of sampling 

wave required for a linear input-output characteristic. 

The use of quantisers by these authors is 
important to the theory of encoders since it expands 
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the concepts underlying the use of a single comparator 

to control a wave with two d.c. levels l to the use of an 

array of comparators to control a wave with many equally 

spaced levels. This concept is considered further in 

chapter 3, section 3.1.5. 

The results presented in section 3.1.5 are from 

an analysis(given in appendix A3.1.5)of the restrictions 

on the shape of sampling wave required for a given 

input-output characteristic with particular reference to 

a linear characteristic. These results do not depend 

strictly on the use of a periodic sampling wave but are 

based upon the amplitude distribution of the signal 

used as the sampling wave. Consequently the analysis 

is not confined to the conventional natural sampler but 

is more general in application. 

This new approach to switching wave control has 

not been used in any practical application, apart from 

obtaining high resolution from A/D converters. It has 

mainly been tested by comparing the theoretical results 

with those for natural sampling. It may be useful in 

areas where non-minimum energy switching waves may be 

desirable for reasons not now apparent. It is included 

here in an endeavour to make its existence known. 

8.8 	Regular Sampling 

The presentation by Black
10 of a description 

attributed to Bennet of a binary, d.c. levelled switching 

wave controlled by linear regular sampling of a sinu-

soidal control signal constitutes the sole theoretical 

contribution to the theory of this form of switching 

wave control. Black 10 has indicated the drawbacks of 
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this form of control, in particular the nonlinearity 
of the input-output characteristic for control signals 

other than d.c. The accuracy of the description 

presented by Black 10 was confirmed by measurements 
which form part of those outlined in Appendix E6. 

The summary of Bennet's work given by Black 10 

does not indicate the method of derivation of the wave-
form descriptions. This prevents the use of this 
description as the starting point for a more general 
analysis intended to provide descriptions for d.c. 
levelled waves controlled by mnlinear regular sampling, 
and thus of a.c. levelled waves linearly controlled by 
regular sampling. At most the above description can 
provide a check of one particular result provided by a 
more general analysis. 

As regular sampling can be and is used in 
situations beyond those at present described theoretically, 
a more general analysis method which can provide 
descriptions of the resulting switching waves appeared 
desirable. Such an analysis was undertaken and is 
presented in Appendix A 3.2.2a of this thesis. 

The analysis generates expressions which describe 
the output of a d.c. levelled, binary switching wave with 
any periodic input signal or any combination non-

commensurate periodic input signals. The description is 
partitioned to provide individual descriptions of the 
positive and negative steps of the wave and is couched 
in terms of the phase functions rather than the input 
signal. It is then possible to describe waves with the 
individual steps controlled by nonlinear functions of the 
input signal. Thus the sinusoidal input of Black's 
description is generalised to any combination of non-

commensurate signals, the linear input-output 
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characteristic is aeneralised to any monotonic 
nonlinear input-output characteristic, and the combined 
description of the two waveform edges is separated for 
individual analysis. This provides the flexibility of 
analysis necessary to synthesise the descriptions of 
encoder waveforms used to control multilevelled switching 

waves with a.c. levels. 

Although this last step is now possible in 
principle it is not to be lightly undertaken because of 
the complexity of the waveform descriptions of the 
encoder outputs. It is not attempted in this thesis for 
this reason. Accordingly the only tests of the analysis 
presently developed are its consistency with the measure-
ments outlined in Appendix E6 and with the expression 

previously presented by Black. 

8.9 	Natural Sampling with Feedback  

, Andeen11 , Fallside eta' 12  , and Furmage13 

describe theoretical analyses and practical measurements 

of feedback systems containing a switching amplifier. 
Andeen11 describes a situation where sampling akin-to 
regular sampling is used, the others describe systems 
with natural sampling. These analyses concern the 
stability of the feedback system and are based upon 
computation of the effective system gain at the sub-

harmonic frequencies. 

In attempting to experimentally confirm the 
works of these authors it became apparent that a 
fundamental change in the operation of natural samplers 
occurs when they are placed within feedback loops. It 
is these circumstances which are analysed in chapter 5, ' 

section 5.1. 
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The analysis provides a means whereby-the 
input-output characteristic of the amplifier can be 

described for d.c. control signals or control signals
•with frequencies low enough so that the feedback loop 

response at the frequency of each waveform harmonic is 
substantially valid for the most significant sidebands 
of that harmonic. No references for such an analysis 
have been found in the literature. 

The analysis is substantiated by experimental 
measurements of two amplifiers, one employing d.c. 
waveform levels, the other employing a.c. waveform 

levels, and a range of filter configurations based upon 

single and double pole loop responses. The measurements 
are outlined in Appendix E4. 

The prediction of input-output characteristic 

and of the positions of steps in the switching wave 
provided by the analysis enables two sources of system 
instability to be determined without recourse to high 

frequency analyses. These instabilities generate 
subharmonic switching wave patters of the form analysed 
by Andeen11 , Fallside12  , and Furmage13 but they are 
consequences of the modified d.c. characteristic, not 
of an inherent instability at a subharmonic frequency. 

Although the work presented in section 5.1 is 
basically an analysis technique it does provide synthesis 
guidance to designers since it relates the filter 
response to the form of the input-output characteristic 
nonlinearity. Its main role, that of providing a 

designer with an exact input-output characteristic of 

the amplifier, fills an important gap in the theory of 
switching amplifiers. 
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8.10 	Self Oscillating Systems  

Johnson14 , Bose15 , Turnbull etal 16, Sharma 17 , 

Camenzind18 and Yu etal 19  describe practice and theory 

for self oscillating switching amplifiers of the class 
outlined in chapter 6. The basic practice is described 

by Johnson14 , Bose 15 and Turnbull etal16 while models 

for various aspects of system performance are described 

by Bose15 , Sharma 17, and Yu etal 19 . Camenzind 18 

describes techniques for realising a number of the 

systems proposed by Bose15 . 

Diagram D 6.3 shows a general form of the 
systems proposed. The particular form shown in diagram 

D 6 is described by Turnbull etal 16 and Yu etal 19 while 
the form described by Bose 15  includes a delay with the 
integrator so that more complex filters may be 

approximated. 

The simple integrator feedback model has a 
linear d.c. input-output characteristic and a parabolic 
variation of oscillator frequency with output signal. 
These aspects are easily established. No exact analysis 
of the a.c. characteristics have been published. The 
only model published is that of Yu etal 19 . The measure-

ments outlined in chapter 6, section 6.1 and Appendix E5 
confirmed the accuracy of the descriptions provided by 
the above authors. At the same time they indicated that 

the phenomenon of phase locking of the self oscillation 

to the input signal was inadequately described. Further-
more, it was apparent that each theoretical analysis for 

the various self-oscillating encoders was specific to 
the particular filter used within that encoder. Analyses 

of these two problems are provided in Appendix A 6.2h 
and A 6.3 respectively and are outlined in the correspon-

ding sections of chapter 6. 
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The analysis of phase docking provided in 

A 6 0 2b allows the designer to accurately predict the 

conditions at the onset of phaselocking and thereby 

to determine a bound to the amplitude and or frequency 

of an input signal at which serious distortion will 

occur. As such it has a role as a design limit for the 

constant area sampler. 

A general approach is adopted by the analysis 

of oscillation frequency and input-output characteristics 

given in appendix A 6.3 so that it applies to encoders 

with any form of feedback filter provided the input 

signal is of low frequency compared to the self 

oscillation frequency. The analysis is verified for 

two particular filter configurations by the measurements 

described in E5. 

Chapter 6 thus provides two new tools for the 

use of designers of self oscillating encoders, namely a 

means for determining upper bounds for input signal 

amplitude and or frequency, and a means of analysing 

the operations of self-oscillating encoders employing 

feedback filters other than integrators and single section 

RC filters. 
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8.11 	Equivalent  Circuits 

Although equivalent circuits are widely used 

in electrical engineering equivalent circuits for 
20 

switching amplifiers are uncommon. Amato has described 

an equivalent circuit for the cyclo converter and also 

commented on the losses associated with unfiltered source - 
currents. While some aspects of the more general 

equivalent circuit proposed in chapter VII match those 

of Amato's circuit I the circuit described is an attempt to 

meld all the important features associated with switching 

amplifiers into a single unit. This aim is not totally 

achieved since off-state switch losses and dynamic losses 

are not included,since these depend on the form of 

switching wave and the type of switches; features which 

are not represented in the circuit. 

Two important concepts are included. The 

first of these is the notion that as far as energy flow 

is concerned,any switch of an array may be regarded as a 

variable transformer. The second is that the combined 

effect of all the switches of such an array is equivalent. 

to the summation of transformer outputs in the manner 

outlined. These two concepts would be almost valueless 

without the strict definitions of transformer ratios 

by the switCh control functions introduced in chapter Ii 

and illustrated in chapter III. 

The inner block defined by these two concepts 

is embedded between the supply and output filters as 

though it completely replaces the switch array. The 

process of placing switch conduction losses and high 

frequency supply losses at appropriate points within the 

ideal equivalent circuit is a simple extension which 

incorporates the losses described by Amato!° 
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8.12 	Areas for Further Research 

The method of supply ripple rejection outlined 

in section 3.1.4.1 was not investigated fully in either 

a practical or theoretical sense. Those aspects examined 

indicate an approach which can minimise both hardware of 

the high powered kind, and switching wave energy. To 

make the approach viable, suitable switches are needed 

and it is desirable to have a more detailed knowledge of 

the bandwidth restrictions imposed by the modulation of 

sidebands by the supply ripple. 

The concept of worst input signals introduced 

in section 4.2 is not fully developed. It may be 

possible to define such signals or & theoretical basis 

rather than the empirical basis adopted in this thesis. 

As an area for further research it may be more an 

academic exercise than a practical one since it appears 

unlikely to significantly modify the empirical results. 

Medium and high frequency input signal responses 

of feedback systems are not adequately dealt with in this 

thesis nor in the available literature. Attempts to 

predict such behavious must be based on approximations 

but the choice of approximations available is not clear. 

An empirical approach presents a rather fearsome measure-

ment problem but may well be necessary to find the most 

significant parameters of the situation. Exact numerical 

modeling by digital computer appears impossible for the 

• problem presently envisaged. 

Similar difficulties beset any analysis of the 

mid—frequency performance of self oscillating systems. 

A solution of one of these' two problems will greatly 

assist in the solution of the other. 
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• 	 There is one major practical problem associated 

with all switching amplifiers intended for speach or music 

reproduction. The outpOt impedance variation with current 

level causes lntermodulation of all filter input currents. 

For low impedance switches the effect is negligible but 

most switch arrays use diodes in the reverse current path 

and the step in voltage from conduction in the forward 

direction to conduction in the reverse direction causes 

the intermodulation. This problem is discussed by several 
le 

authors but no solutions have been proposed. 
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1,1,2 

• Mechanical Analogue of the Switching  

Amplifier  

The process whereby information is • 

transferred from a control source to a load by a 
controlled switching action of devices within the 
energy flow path is not unique to electrical 
circuits. Mechanical equivalents are readily 
envisaged. Consider for example the equivalent 
electrical and mechanical energy flow paths shown 
in figure F 1,1.2, 

In the analogues shown the energy 

sources are respectively a constant d.c. voltage 
and a constant speed drive shaft. These sources 

are coupled to their respective load filters by 

an electrical switch and a clutch respectively. 

The filters consist of series inductor and shunt 
capacitor for the electrical system while the 

mechanical system uses a torsion shaft and a 
flywheel. The electrical system has an equivalent 
circuit centred upon an infinitely variable voltage 
transformer; the mechanical system has an infinitely 
variable gear box in its ideal equivalent. 

Parasities such as switch capacitance and 

stray inductor capacitance have equivalents of clutch 
inertia and torsion shaft inertia respectively in the 
mechanical system. The time required to operate the 
electrical switches is paralleled by the time required 
to move the clutch from engagement in one position to 
engagement in the other position. 
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Consider the .function, G(e), defined by 

G(Q) = 1 - 0 1-1 for all On  = Q - 2 1c, N such that 0< On< 27K, 
2 2r; 

where N is an integer. The fourier series expression 

is 	, n=00 , 
G(e) = A 2.- 	Sin nO.  

n=1 n  
G(8) is sketched in diagram F 2.3 to show 

the form of variation with 0. 

The first equation describes G(6) in terms 

of N and /3 n which are the integral number of radians 

and remainder of 6. This equation may be re-expressed 

as 	8 G(e) = 	- 	+ N. 2 27 
Now a function of two variables el and e 

may be formed in the manner of the function below: 

ee 
G(e1 ) - G( 2  e ) = 

	

. 	
2 - 1 

2n 	+ N
1  - N2 

that is 	 8 1 - 82  - N2 - G(e
1
) - G(6

2
) + 

1 	 27 

Now N
1 

- N2  is a function, taking integer values, which 

changes values when e l or 2 pass through an integer 6 

27 	-fn 
value. The function required to indicate switch state, 

g(t), is one such that g(t) is either zero or unity.  

Thus if 19 and e2 are functions of time ,  0 1 (t) and 

02 (t), we may describe g(t) by 

g(t) 	e1 (t)-e2 (t) 	°=p°  	 _ z I [sin n 1 	. (t)-Sin n e2 (t)] 
2r1 	n  n=1 T - 

where 0 < N1  (t) - N2 (t) < L. A less general 

restriction which is sufficient is 

o < 61 (t)-e 2 (t)  < 1 
271 
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This may be proven by re-expressing in terms of N and 

n as 
o < N 1 (t)-N9 (t) + 0 1 (t)-$2 (t) < 

27 

which may be relaxed by using the inequality 

-1<;i62(t)-01 (t)<I, to give 

27-1 

-101 (t)-N2 (t)<2 and remembering that since 

N
I 

and N2 are integers this is equivalent to 

• 0 ‘N I (t)-N2 (t)(1. 
n=00 

	

Thus g(t) .= 6 (t)-(32 (-0+ i 	[Sin ne1 (t) 7Sin ne2 (t)] 
	 7  27 	n=1 n 

is a function which changes from 0 to 1 when el (t) 

27 
increases through an integer value or 62 (t) decreases 

through an integer value and changes from i to 0 wh&n 

6
1 (t) and 62

(t) vary in their respective opposite Senses 

27 	27 
through integer values, subject to the condition that 

0 . <N1  - N2  < 1 

or 

o < el ( t )  - e2 ( t )  < 1 . 
27 
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The two equations below have been derived in the text 
i=m 	. 

Vn(t) = f 	g(t) • Vi(t) 	1 
i=1 

i=m 
gi (t) = 1 	2 

i=1 

Now Vmax(t) is the maximum supply voltage at time t 

and Vmin(t) is the minimum supply voltage at time t 

Thus Vmin(t) Vi(t) Vmax(t) 

i=m 	i=m 
:.Vn(t) = 	Z 	g 4 (t) Vi(t) < Z 	g(t) Vmax(t) 

i=1 	i=1 

i=m 
( .Z 

1=1 
g i (t)) Vmax(t) < Vmax(t) 

Similarly Vn(t) 	Vmin(9

•Vmin(t) < V (t) < Vmax(t) 
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It may be shown that some components of a switching wave 
must have a frequency corresponding to the fundamental 
or harmonics of the Vmax(t) waveform whenever the d.c. 

component of the wave exceeds the minimum value of 

Vmax(t). 

This can be demonstrated by showing that a non-

zero correlation exists between the a.c. part of the 
switching wave and a function representing the sign of 
the difference between Vmax(t) and the average value of 
the switching wave even when such a correlation is 

minimised. 

If the switching wave is described by e(t) and 

the average of the switching wave by e 0  then the a.c. 

part of the wave is described by e(t) - e o . 

For the sign of the difference between Vmax(t) 
and sec) we will use the function S(Vmax(t)-e o

) where S is 
- 

defined by 

S(x) 1+1 if x> 0 
-1 if x< 0 

The correlation of the a.c. switching wave 
components and the sign function over an interval T is 

defined as 
R =11 T (e(t)-eo) S(Vmax-e0) dt. o 

Now when Vmax(t)< e o' S(Vmax-e0) = -1 and the 

contribution during such intervals will be 
1 	+1 R = (fteo _e(t)1 . dt) -7(1-S(Vmax-e 0)). 

0 
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Suppose we seek to minimise this. The minimum contribution 

is obtained when e(t)=Vmax(t) but even this extreme gives 

a positive contribution since Vmax< e o . The minimum 

contribution is 

1(1-S(Vmax-e 
. 

	

mi = 	
(e0-Vmax(t))dt t 7  . o 

n T 

When Vmax(t)› eo  the contribution to the cwrellation is 

1 

	

R+ = (T. f (e (t) -e o)dt) 	1+S (Vmax-e0 ) 
o 

But during these intervals the average value of e(t)-e 0  

must be maintained at zero so that it is required that 

rT 
1 	\ 

(e(t)-e_)dt)(2. (1+S(Vmax-e0))) = 

	

.o 	. 

1./f s (e0.4max(t)dt.,7 (1-S(Vmax-e (_))\i  \. f ' 1. 

	

u o 	ij  \ 	
u / 

Therefore the two correlation contributions must be equal 

and thus the minimum correlation will be 

/ PT 

 

Rjmin = (1-S(Vmax-e 0  ))(1 j 	(eo  -Vmax(t9. dt, /  

This shows that the minimum absolute correlation possible 

will be zero only when Vmax is greater than the average 

value of eo 
for the entire measured interval, hence this 

condition must be satisfied in order that the spectrum of 

the switching wave, e(t) is not constrained to contain 

components matching, in frequency, those of the maximum 

supply voltage waveform, Vmax(t). 
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Over a length of time, , three voltages 

Vi, Vj , and Vr form the level's of the switching wave. 

Each has a total time of presentation at the output of 

Ti, Tj, and Tr respectively. The voltages Vi and Vj 

will be defined as the nearest voltages above and 

below the desired average of the switching wave. The 

average voltage, a, is defined by 

Ti.Vi + Tj.Vj + Tr.Vr = a."C 

By combining this equation with the equation 

Ti + Tj + Tr = I 	it is possible to express 

Ti and Tj in terms of Tr and the other variables by the 

equations below 

Ti = (a:t-Vj.Z-Tr(Vr-Vj))/(Vi-Vj) 

Tj .  = (a:t-Vi.Z.-Tr(Vr-Vj))/(Vj-Vi) 

The mean square error between the switching wave and the 

desired average is given by the equation; 

M.S. (Ti(Vi-a)2 	Tj(vi-a)2 	Tr(Vr-a) 2)/% 

By substituting the expressions for Ti and Tj for these 

variables the error may be expressed as a function of Tr. 

M.S. = ((al-VjZ-Tr(yr-Vj))(Vi-a) 2-(a.Z-Vi. -t-Tr(Vr-Vi))• 

(Vj-a) 2 	(Vi-Vj)(Vr-a) 2Tr)/((Vi-Vj).Z). 

= Tr(Vr-Vi)(Vr-Vj )/Z -1- ( (a .-t -Vi't) (Vi-a) 2-(a.T-ViX) (Vi - a ) 2 )/ 

(Vi-Vj)/ -t 

The mean square error has a component with a positive 

co-efficient of Tr provided Vr lies outside the range 

between Vi and Vj. . Since the definitions of Vi and V) 

ensure that Vr does not lie within the above range it 
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follows that the mean square error is minimum when Tr 
is minimum, that is zero. 

Thus the minimum mean square error is 

attained for the switching wave when only the nearest 

voltages above and below the desired voltage form the 

levels of the waveform. 

The above analysis is valid only for d.c. 

supply voltages but may be extended to a.c. supply 

voltages. By considering the above analysis to be true 

for very short values of T, then it follows that it is 

true for longer intervals. 

Under the optimum conditions the mean square 

error is 

M.S. = (Vi-a)(a-V). 



A 	3.1.1 

Let two periodic sampling waves be described 

by Si (ft) and S2 (ft) where the repetition frequency is 

f. Define (-1) b oc k  Sk (ft), wherec‹1  = oc 2  = 1 for pulse 

width modulation and cc 	-cc2 = 1 for pulse phase 

modulation, to be monotonically_ decreasing during the 

time interval Pka + N < ft < pkb' where k is the integer 
part of ft and 0 < Pka 	Pkb < 2 ° 

With the restrictions above the function 

Sk (ft) = x 

may be used to define the inverse function by 

S-1 (x) = ft - N 

provided both restrictions below apply to x 

(-1)k+;Kksk(Pka) > x > ( -1 ) l's+Icc-kSk(Pkb) 	k =•1,2. 

Consider the variable, (9k (t), defined by the equation 

ek (t) = 2n(ft-ST( 1'(e in (t))). 

When ek (t) is an integer Sk (ft) = e(t), that is 

2n 	E(t)=e( .t)-Sk (ft) = 0. in 
k+1 Also sign (cck  dE k (t)i) 	= sign dek (1). 

dt 	 dt E(t) = 0 	e k (t) = 
integer. 
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Thus ek (t), k = 1,2, are variables of the 

form required to generate a two state function. Hence 

the state function defined by natural samc.ling is 
n=0-0 

g(t) = S ... 1 . (e in (t)) - ST 1 (e 1n (t))-+ f 1 
n=1 nn 

(Sin n(2nft-S-1 1 (e in (t))) - Sin n(27 -ft-S -24 (:e in (t)))) 

The restrictions onein(I). 
Provided 

k+1 	 k+1 
(-I) 	Sk(Pka) ).( 	> (-1) 	k. S (p k kb ) for k=1 and 2 in 	cc   

the inverse functions are defined. This restricts e. (t) ' 
to values between maxima and minima of the sampling 

waveforms. 

The restrictions on e k' k=1 and 2 

The restriction on variables, G k , defining 

the switch function g(t) is 

0< e l (t) - 92 (t) < 27 which may be re-expressed 

as 

o < sV-(e in(t)) - S(e(t)) < 

The sampling waveforms are composed of alternating, segments 

of S1 
 (ft-N) and S2  (ft-N). The requirement of the first 

part of the inequality is that S 1 (ft-N) does not intersect 

S2  (ft-N) while the second requires S 2 (ft-N) does not 

intersect S 1 (ft-N+1). That is the two sampling waves 

must not intersect one another. 
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Example  of Pulse Width Modulation  

. 	The example used to illustrate the process of 

natural samplino with a triangular sampling wave is 

given . a mathematical analysis to show how the expression 

for coder output may be derived. 

For this case a sampling wave with two 

monotonic sections is used to provide the two sampling 

waves required. Under the definitions given S 1 (ft) is 

the negative slope and S2 (ft) the positive slope. The 

allowable input range to the coder lies between the 

extremes of the sampling wave. For the waveform shown 

in diagram D 3.1.2a (iv) g(t) is derived as follows; 

S2 (ft) = 4(ft - N) 

S1
(ft) = -4(ft - N) +2 

82 (t) = ft 	pin (t) 
2n 	- 4 

= ft 	e(t) 

27 	4 
n-00 

hence g(t) = e(t) -1 + 1 	Z 1 (Sin2nn(ft+ e in  -2 )  
n n=1 n  4 

2 

The range of input values for e(t) is 

-1 < e in (t) < 1. 

-Sin27n(ft- e in)) 
4 
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A state function produced by natural sampling described by 

• 	

n=00 

	

g(t) = S(e(t))- S(e(t)) + 	1 

	

' • 	n=1 nn 

(Sin2nn(ft-S-1 1 (e(t)))-Sin2nn(ft-S1 1 (e(t)))) 

is used to modulate a supply voltage with the time 

function description 
n=0.0 

Vi(t) =b+ZbSin(2nnft+gg o n=1  n 

The modulated supply voltage contains terms not dependent 

on f which are described below as g(t) i  x Vi(t)1 0 . 
n= 

g i (t) x Vi(t)1 0  = bo (S; 1 (e(t))-ST 1 (e(t))) + Z bn 
n=1 2-nn 

[Cos(2nnSi 1 (e(t)) + 0n , 

	

-Cos(2nnS1(e(t)) 	14n1 

x=S-1(e(t)) 	n= 0. 
lbo  + Z b,Sin2nn(x+0 n ) dx 

" 

with 

and 

S 1 [x] 

S2 [x] 

1 

= A2 	
xo 

1 

	

bo + Z 	b nSin(2nnx+0 n ) 
n=1 

n=0.3 

	

+ Z 	b,Sin(2nnx+Sn ) ldx+B2  
n=1 	" 

dx+B
1 

g 1 (t) x Vi(t)1 0  = e(t) [I - 
A
2 

A
l 	

Al 	2 

n=1 
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Thus the component of the modulated signal not dependant 

on frequency of sampling will obey the linearity relation-

ship 

gi ( 

 

) x Vi(t)] 	= Ki e(t) + Ci 

when 
	

Ki = 1 - 1 
A2 A1 

and 
	

Ci = B1 - B2 
A1 A2 

This restriction on sampling waveform may be used for both 

pulse width and pulse phase state functions. 
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An alternative method of selecting sampling 

waveforms exists for pulse phase Modulation when the 

two sampling waves are identical in waveform appart 

from a shift in time of a .fraction,oc, of the period. 

The method is restricted to a.c. supply voltages, Vi(t), 

of the fOrm 
n=00 

Vi(t) =a +Za Sin [271nft + n n=1 

When modulated by the usual state function, g.(t), for a 

natural sampler output 'the component of the modulation 

not containing terms dependant on f, Vnil o  is given by 

n= 
Vni] )  =cAz.a

0 
 + Z 	a n Cos 2nn(S-1 (e(t)) + / n 1 	

- 
n=1 2nn 

x Sinknd 
where the relationship oc= S(e(t)) - ST I (e n (t)) has 

been used. 

Thus Vni]
o 
= Function (S -1 (e(t))) +oca o where the supply 1 

voltage waveshape and are parameters of the function, 

Function. In order for linear amplification to result 

the relationship 

Vni]
o 

= Ki e(t) = F(S-1 (e(t)))+0ca o must be satisfied. 1 

Cos (/ [1-2nn S(e(t)))1 

= 
 n=00 
oca f 	a n c+2 Sin(0n-hxlin+2n7ST(e(t))) 

°n=1 2nn 
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Thus 

S (ft) = 1F(ft) +ma o 1 	Ki Ki 
n=co 

=i 	Za _12 tSin(2nn(ft+cc)+S
n 
 )1. 

I  nn 	 2  
Sin(nA«) +(ccab) 

and 	 Ki n=00 
S2 (ft) = 1 Z a n  [Sin(27n(ft-ic)+S n )1 K i n=1 	 2 n7 

Sin(nn) +(cx1- a o ) 
Ki 

The more general linearity equation with constant Ci 
may be satisfied giving 

n=00 
S 1 (ft) = 1 	Z a, fSin(27n(ft+oc)+0 n )1 

.11=1  2 nn 
Sin(nrycc)-((Ci-ma o )) 

Ki and n=00 
-2 (ft) = 1 	Z. a [Sin(2nn(ft+oc)+/ n )) • 

1  nn 
Sin(nncc) - ((Ci-oca o ) ° ) 

Ki 
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A Sinewave Voltage with  Natural  Phase 
Modulation Switch Control 

A supply voltage, Vi(t), described by 

Yi(t).= Sin(ws t + 95) 

is modulated by a state function, g(t) arranged to give _ 
linear variation of Vni] o with input voltage, e(t). For 

this case the switch control function is described by 

n=6*() aiKle(t)+Ci  \11. 
g 	so i(t) = c + Z 	nn [Sin n(wst +/+noc-arSin [ 	Sin r oc  

n=1 

t 	.Kie(t)+Cil  
- Sin n(ws t+/-noc-arSin [Sin noc/7 . 1  

n=00 2 	 liKie_ij_clt.g.i-irj 1 =oc + Z 	nn (Sin nnoc)Cos n(w s t+/-arSin 	n n Sir 
n=1 

Thus the node voltage component Vni is described by 

n=00,2Sin  nmK 
• Vni = Sin(w s t+S) 0:+ 7  nn 	Cos n(ws t+/-arSin n=1 

• FiKi+cgan] )} 
• L Sin nix  

The expansion of this expression yields terms centred 

on ws , 2ws' 3ws and so on. These are collected and 
yield the expression for Vni given on the next page. 
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Vni = (t•i + Ci +0c Sin(ws t+0) - Sin2ncc  . 
• 2n 

m=00 
Sin(ws t+0+2arSiriKi  e(t)+Ci)n1+  

	

Sinoc n 	m=2,3... 

{Sip(rn-t)cci-K  Sin(m(wt+0)-(m-1)arSin [n(Ki e(t)+Cid ) 
(rn-u 	s n 	 Sinn 

-Sin( m+i)ocn  Sin(m(ws t+0)+(m+1)arSinEx(Ki e(t,l+Ci) -1)1  
m+1)71 	 Sinocn 

For a symmetrical R phase system the expression for the 
total node voltage is given by Vn for K 1  = K2  = K3 	 
= Ki., 	

= KRR 
Vn = e(t)RKi+ Z 1 Sin(w t+r2n)-Sin2ncc . 

r=1 R 	s 	R 	2noc 
1 m= 20 

• Sin(w t+r2n+2arSin n(Ki  e(t)+Ci)1,  )+ Z S 	R--. 	 Sin noc 	_1 	m=2,3... 

[Sini_m-1)noc Sin(m(w t+r2n)-(m-1)arSin eitiKi-I.Cilni,) 
(m-1r 	s 	R  Sin cc _1 _ 

-Sincm+1)noc  Sin(m(w t+r2n)+(m+1)arSin Be (t)Ki+Ci)ni  ) s (m+1)fl 	 R 	 Sin noc 

With ac at the maximum value of 1 the node voltage may 
be simplified giving 	R  

m=00 
Vn = e(t)RKi+ Z 	(Sin(m-112/2.  . 

m=R,2R... 	(m-1) n 

Sin fm(w t)7(m-1)arSin Ki flit +CLI__ nil -Sin( m+1)n/R  . 
1 	s 	 Sin /R 	(m+1)n 

Sin [ m(ws t)+(m+1)arSin Fi e(TCi)nl  I ) 
Sint /R 
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A supply voltage, Vi(t), described by 

Vi(t) = Sin(ws t + S) 

is modulated by a state function, g i (t), so that a control 

voltage e(t) is linearly reproduced as. the component .Vni 

not dependant on we t. 

The switch control function for this case is 

described by 

g1 (t) = i [arCos(21eLI1 - CI) 	arCos(217(t) - Cid 
2n 	-A2 	-A 

1 
n= 

+ f 	[Sin n(w t-orCo32n Felia - 	0) 
n=1 nn 	s 	

L-41 

- Sin n(ws t-arCos2n 	- 	+ S) 

[-A2 

where C = B j  = 62  so there is zero offset in Vni] o . The 
A1 A2 

resultant node voltage component Vni is given by 

Vni = Sin(ws t+S) x g(t) 

The complete expansion is shown on the next page. 
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r 
Vni = e(t) [

A  
i. - 11 +  = A 2 	LI 2 rin(w

s t+,  ) La rCos2nr(t) - C 
•

1 
-A2 

arCos2n[e(t) 
• 

Sin 	(w [ 

x Sin 

- C -11+ 1 	. 
J 	2n -Al 

t+$)- 1 s 	2 

arCos2n 

[arCos2n[e(t. ) 

- 

- C] +  arCos2t(t) 	- 
-A 

2 	
-Al 

11 
m=0.0 

- arCos2n [eLti - 	C11+ Z 
-A 	m=2,3 

[e(t) 
-A2 

TN  

	

 
1 1  1  Sirl[M(W s t+/)—(m-1) [arCos2n[e(t) 	- 1 

)(m-1) 2 	-A2 ,.. 
+ arCos2nrecti Cill x(Sin [1.m.4__ carCos2n 141t1 - 

	

L '-'1. 	 L. 	2 

- arCos2n [
11  - 1 )1 

) 

	

. 	
+ 	I Sin 

	

41 	
[m(wst+g1)-irla , 

TiTITTT 

Farcos27l 1--el _ 1 + arCos2n 
L 	L 1.. 	 [4\2 LL  - Cl 

x (Sin(m+1)  [arCos(2n [e( t)  -. Ci )- arCos(2 
2 	

n 
-A2 	 1 

  

  

 

1)1 
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Arbitary Waveform Levels 

A switch Control function, defined by the 

equation 

n=00 , 
g(t) = S-1 (e. (t))-S -1 (e 	(t)\-1- f L- 2 	in 	1 	in 	' 	nn 

n=1 

t Sin(n(ws t-2n5-1 1 (e in (t)))) 

-Sin(n(ws t-2nS .; 1 (e in (t))))1, 

is used to control two supply voltages V 1 (t) and.V2 (t) 
to give a switching wave described by the equation 

e o = 1(t)g(t) + 2 (t)(1 -g(t)). 

Provided the supply voltages are not commensurate with 

the sampling frequency the terms not dependent on the 

sampling frequency are given by 

e 	= V1 (t)+V2 (t)  + (V ( -4 )- V2  (t))(S-1 i (e 	(t))- -1 (e2 (t)-1) 1 	2 	n 	n 2 	 2 

The first requirement of S 1 and S2 is,that the term 

involving e(t) be proportional to this variable. At 

the sampling instants the equations 

e 1n (t 1 ) = S1 (w5 t1 ) and e in (t2 ) = S2  (w s  t) are  2 
true: Consider the case where 

Si (ws t) = Sp (ws t).f(t) and S 2 (wt) = S n (ws t).f(t) 

Where S and Sn are such that with d.c. supplies they 

give a linear characteristic that is they obey the 

equation 

S(e(t)) - S I-1 1 (e(t)) - 	= e(t). 2 
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Now at.the sampling instants the equations may be 

re-expressed as 

e(t1 ) = So (ws ti ).f(t) and e(t2 ) = Sn(w5 t2).f(t) 

Thus S I-3 1 (e 1n (t1 )/f(g) = ws t11.2n  = S-1 1 (e in (t1 ))and 

' 	• 	. 	1, 	„ 
S-1 (e..(t )/f(t )) = w t 	= S- '(e. (t )) so that 
n 	in 2 	'2 	s 2/211 	2 	in 2 

= (V1 (t)+V2 (t))/2 + e in (t).(Vi (t)-V2 (t))/f(t). 
Jo 

Thus with f(t) = V i (t) - V2 (t) the amplifier becomes 

linear. 

The conditions for linear amplification ,  are 

that the normal sampling waves be modulated with the 

difference in supply voltages and that the mean of the 

supply voltages be subtracted from the input. 

Note that for nonunity amplifier gain the 

amount subtracted must be suitably scaled.', 

The output switching wave under these 

conditions is described by 

n=00 
e o  = e 1 (t) + 	rin  ( 	(t)-(V2 (t)). 

n=1 

Sin(n(w5 t-2r1S-1 (x))) - Sin(n(w 5 t-2nS-1 (x)))1, where 

x = (e in (t) - (V1 (t) + V2 (t))/2)/(V 1 (t) -  

This waveform has sidebands due to the supply waveforms 

from both phase modulation and amplitude modulation. 
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HIGH FREQUENCY COMPONENTS OF THE WAVE - An Example. 

A symmetrical triangular sampling wave satisfying the 

condition 

(w
s
t
p - 

wstn 	5 )/2 - 1 = e (t) is described by 
7 

S (ws  t) = 2(wt) - 1 
p 	7"277 	7 

Sn (w st) = - 	- 2 (w s t\ 
2 	2 

This yields the inverse functions below 

Sp-1 (em (t)) = (em (t) + ,IfT)/2 

Sn-1 (em (t)) = - (em (t) + 

Thus the nth  harmonic of the modified modulator is 

described by 

em  
H = 1(V1  

(t) 	 - 1 
(t)-V2 (t)) Sin (n(w t 

+ " (-IT -Y v2  (t)  7))) 
fTc n - V s  1  

em (t) 	. 	 -1  
-))) 

c 
-Sin (n(ws t - 	V1 -11.C ‘kt)-V2 (t) 	2 	j 

When V1 (t)-V2 (t) is of the form V(l+p(t)) and p(t) is 

small then the harmonic 'description may be approximated by 

V  
e (t) 

( 1+ p(t) )Sin (nw s t + n7c( nv  ) (1-p(t)) - 

e2t) 
- Sin(nw st 	r17.(-1(2-v--) (1-p(t)) + ip, 
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For,em (t) = 0 the harmonic is simply amplitude modulated 

by the perturbation of the supplies. There is no phase 

modulation by the supply perturbation. (This is true 

whether the approximation is true or not). 

V For e 	_ (t) — 7  , that is, it is near its maximum value, 
the harmonic description is 

	

Hn  = 	(l+p(t) ) Sin (nws t '+ r*-c  p(t)) 

— Sin (nws t _ 	p(t i ) 

2V 

	

= 	(l+p(t)) Sin (S— p(t)) Cos (nwt) nn 

Now for n = I and p(t)<< I the harmonic H I  is given by 

= 27,Y (14-p(tr 0 ) 	 7c:.  2  (:11- Cos nws t 

= V p(t) (l+p(t)) Cos nw s t 

Thus the modulation is predominantly that of the phase 

component and it has one term equivalent to amplitude 

modulation by p(t) alone and a second term equivalent 

to modulation by p(t) 2  . 

Now suppose p(t) is a sinewave. The two situations 

examined, zero input signal'and maximum input signal, 

both yield first order sidebands but the latter alone 

yields small second order sidebands. In the former case 

the sideband amplitudes are of magnitude corresponding 
to Vp(I1  , in the latter, Vp(t). 

nn 
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Quantizer  Output  with _Input  Perturbation  
Two normalised quantizer characteristics are 

shown in diagram F 3.1.5a. One has zero output for inputs 

between plus and minus one half unit. The other has 

outputs of plus and minus one half unit for positive and 

negative small inputs. The transformation from one to 

the other is a shift of origin of both input and output 

axes of one half unit :  Each characteristic is described 

by the two alternative expressions 
n=040 

e = i + 7 Sin(2nn(e.+1 ))/(nn) 2 n=1 
• 

= k where - I <2nne.2-k<1  defines k, 2 	- . 	2 

and 
n=00 • 

e 0 	Sin(2nne i )/(nn) n=1 

= I + k where 0< e. -k<1 defines integer k. 2 	 . 

The latter form of characteristic requires fewer symbols 

and will be used in the following work. Should the other 

form of characteristic be of interest then the 

transformation outlined above may be applied to yield 

appropriate expressions in lieu of those presented. 

The perturbation component of Q . will be 

referred to as p and the remainder as e where these are 

understood to represent functions of time p(t) and e(t). 

The quantizer input is the sum of e and p. The output 

in terms of these variables is given by . 
• n=.0 	• 
• e0  = p+e + Z Sin(2nn(p+e))/(nn) 

n=1 n= 0'0  
.= p+e + 	(Sin(2nne)Cos(2nnp) + Cos(2nne)Sin(2nnp))/(nn) 

n=1 

Now ei 2nnP. = 	(A[n,m]+jqn,m])Coswmt+(4-p,m1+j41,m1)Sinwmt 
m=0 
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where wm represents the m
th lowest frequency 

formed by the cosine or sine of 2nnp(t). The 

co-efficients of these fourier series are specified by 

the following integrals taken over one period, T, of the 

-perturbation. The integrals are 
2n • 

-ej2nnp(t) d(2nt/T) and 41,1-d+j49,4=E(m) 	Cosw t 

	

2 	m 

) 2n 
C[n4+j*,rd=411J- 	Sinwmt ei 2nn i°(t) d(2nt/T), where 

E(m) = [1 if m=o 

2 if m>o 

Using these series the expression for e c,  may be 

regrcuped giving 

n=00 
e o = e+ f ((A[n,o]Sin(2nne)+4n,o1Cos(2nne))/(nn)) n=1 

m=00  
+ 	

[ n=00 
p + 	( .7 (41,mjSin(2nne)+4n,m1Cos(2nne)/(nn)). 

m=1 	n=1 
n=00 

Coswmt+( f (C[1,m]Sin(2nne)+4n,m1 Cos(2nne)/(nn))Sinwmt] 
n=1 

The output component independent of w m  is re-expressed 

by the equation 

E = e + 	2T1  p(x)d(2nx/T) 2n , 

n=00, (2n  
+ f (*_.\ 	Sin(2nn(e+p(x)))d(2nx/T))/(nn), 
n=1 'Jo 

2n 	n=00 .  
= e + (2n) 	(p( )+ Z Sin(27n(e;p(x)))/(7n))d(2nx/T), 

Jon=1 

where for the purposes of integration e may be regarded 

as a constant. 

This expression is in general a nonlinear 

function of e. The integral represents a periodic 
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function of e and must be zero to obtain a linear 

characteristic over a range of a exceeding one quantizer 

step interval. 

In order to demonstrate the form of this 

expression consider the case when p = a Cos(G). Now E 

may be recognised as the average value of the qua ntizer 

output over one cycle of p and may be expressed in the 

equivalent form 
f2n , 

E - - 3 	+ k)de where the integer k is defined by 2 2n o  

0 < e + a Co e - k < I. 

An example of the type of waveform over which 

the integral is takeniS shown in diagram F 3.1.5aii. 

The average value is given by the expression 
n=s 

E = (r+s+I)/2 + 	arcSin((e-h)/a)/n where 
n=r+1 

r and s are defined by the inequality pairs 

0 < r+a-e < 1 and 0-< s-a-e < 1. 

When a is less than half a quantizer step this expression 

simplifies to 

1  I k + 	if e,-k>a or 

E = 1 • k - -2- if e-k‹-a or 

L k 	arcSin((e-k)/a)/n otherwise, where le-kl< 

1  defines k. 2 

This expression is plotted versus e in diagram 

F 3.1.5aiii. The periodic nature of the nonlinearity is 

a prominent feature of the characteristic which is much 

nearer a linear characteristic than the basic quantizer 

characteristic. For a sinewave perturbation the r.m.s. 

error of the characteristic from a linear characteristic. 
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has minima 	for peak to peak perturbation values close 

to integer multiples of a quanti'zer step. The value of 

the minima decrease as the sinewave amplitude increase. 

Diagram F 3.1.5aiv shows the form of variation with 

perturbation amplitude. 

The conditions under_which a perturbation 

gives a linear response are now examined in more detail. 

For a linear characteristic the integral, 

2n 

El = 1- 	(p(x)+ 	Sin(2 nP(P+P(x)))Aln))d(2nx/T), 2n 	

n=00 

must be zero for all values of e. This may be re-expressed 
27-T 

n=00 	ç 2T1 

Z 	Sin(271np(x))d(271x/T)).Cos(2nne) 
n=i 	n  o 

(.2n 

+ 	Cos(2nnp(x))d(2nx/T)).Sin(2nne))/(nn). 
" o 

This expression is a fourier series in e and can be zero 

only if each of the co-efficients is zero and the d.c. 

component is zero. Thus p must satisfy the three integral 

equations 

27-1 	2n 

p(x).d(2nx/T) = 0, 	Cos(2nnp(x)).d(27x/T) = 0. 

o 	Jo. 

1271 
and 	Sin(2nnp(x)).d(2nx/T) = 0, 

Jo  

The last two equations may be transformed by change of 

variable giving equations 

n=1 

as 
1 El = 	p(x)d(2nx/T) 2n 
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i pmax 
Sin(2nnp).D(0),dp = 

pmax• 

and 
	

Cos(2nnp).D(p).dp = 0, where D(p) is the 

pmin 

probability density function of p. This function is 

defined by the expression 

D(P) = limit ((of the probability that the amplitude of 

dp40 	p lies between the values P+dp/2 and 

P-dp/2)/dpl. 

The two integrals are zero for all values of n if D(p) 

is of constant value between the two limits of integration 

and if the two limits of integration differ by an integer. 

When D(p) has a constant value between the 

maximum and minimum values of p the average of p, the 

first of the three integrals, is the average of the 

maximum and minimum values of p. For this to be zero the 

maximum and minimum values of p must be equal in magnitude 

but opposite in sign. 

The class of perturbation giving a linear 

characteristic to a quantizer are those satisfying the 

following three conditions. 

(a) The probability that p(x) exceeds a level 

P, must be a linear function of P provided P lies between 

the maximum and minimum values of p(x). 

(b) The difference between maximum and 

minimum values of p(x) must be an integer multiple of one 

coder step . . 

(c) The maximum and minimum values of p(x) 

must be symmetrical about zero. 
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Linearity  and Perturbation  Amplitude 

A perturbation with linear distribution of - 

amplitude but having a peak to peak amplitude not an 

integer multiple of a quantizer step will give a nonlinear 

characteristic. The shape of the nonlinearity is 

evaluated below for the case,when the peak to peak 

amplitude, k, is not necessarily an integer. 

The sampling wave is assumed to have the 

following properties; 

[

l/k for pmin<p<pmaxl 

0 . otherwise 

pmax = -pmin = k/2. 

The co-efficients for the fourier series are given by 

yk/2 

A[n,o] =Cos(2nnp)01/k0dP = Sin(nnk)/(nnk), and 

hk/2 

k/2 
qn,o] = 	Sin(2nnp).1/k.dp = 0. 

-k/2 

These co-efficients give the fourier series expression, 

for the Error, of 

n=.0 
Error = 1/(k) 2 Sin(nnk).Sin(2nne)/(n71) 2 . 

n=1 

The piece-wise description of this error, as a function 

of e over the period 

-1/2<e<1-1/2, where 1 is defined by 

0<k-K=1<1 for K an integer, is 

Error = 1/(k). 	 e(1-l) for 1/2<e<1/2, 
1/2(I-2e) for 1/2<e<1-1/2 

and 
D(p) = 



Error 

(VA) .  (I- 012 
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The function is sketched in diagram F 

When k is near zero the error function approaches 

the error for a quantizer and is described by the second 

function, of the two, over the major portion of - the period. 
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Perturbation Waveform and Linearity  

The section, dealing With quantizer produced . 

waveforms when a perturbation is added to the input, 

uses transformed integrals, representing the fourier 

co-efficients, with the probability density function as 

one term. The analysis below describes the low frequency 

terms of the qua ntizer output entirely with respect to 

the probability distribution function of the amplitude 

of the perturbation. 

The low frequency component is described by 

2n n= 
E = e+1 	p(x)dx+ 7 A[n] Cos(27ne)+B[n] Sin(27ne), 

27j 0 	n=1 

where the co-efficients A[n] and B[n] are defined by the 

real and complex parts respectively of 

27 

E = 1  
27 	 T- o 

This expression may be transformed then re-arranged in 

the manner below 

E= 
	pmax 

e
_J7(2np-1/2) .D(P).dp/(nm), 

pmin ' 
pmax 

e-j7(2np-1/2) dp  ( p ) dp/( nn ) 

pmax-k 
	dp 

where the inequality pain - 1 < pmax - k < pmin defines k. 
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Integration by parts yields 

p=pmax 

p=pmax-k 

e-j(2npmax n-n) P(2np/2n).d(2np/2n) 
2npmax 

2n(pmax-k) 

E  = p ( p).e-jn(2np-1/2) . ( 1/ n1 

2n(1-pmax) 
=k jnO m -1 = e-j(2npmax-1/2) 	Z 	P(m-0/2n)d0, 

	

. 	m=0 .,-2npmax 

where G = -2np. These co-efficients define two recognisable 

fourier series. The first describes a ramp with positive 

unit steps at values of e removed from -pmax by any 

integer. The second is the a.c. component of the function 

within the integral. The function representing the low 

frequency component of the quantizer output is 

m=k-1 

	

(i 	1 - pmax) - Z 	P(m-e)+C where 

	

2 	m=0 

-pmax<e-E = 1<C1-pmax for E an integer defined 1, and 

where 
2n(1-pmax) m=k-1 

	

C = 1 	p(x).d( 	

. 

2nx) + 	Z 	P(m-0/27).de. 
n 	2npmax 

	

2 	 m=0 -  

E = e 



PERTI/R8R770N WYE FORMS  

F 3•/5 d 



A 	3.1.5d 

- Natural Sampling and Multi-level Waveforms  

Two examples of waveforms satisfying the 

linearity conditions are discussed below, The waveforms 

are a ramp or sawtooth and a symmetrical triangular wave. 

Both satisfy the requirements outlined previously 

provided they have no d.c, component and have peak to 

peak amplitudes of an integer multiple quantizer step. 

A sawtooth waveform, shown in diagram F 3.1.5di, 

is described by the fourier series 
n=0° 

p(t) = -k Z Sin(n(w t-n))/nn. 
n=1 

The corresponding co-efficients for the waveform spectrum 

are evaluated by 	n 
A[in,m71 +j.B[n,m1 = A 	Cosme.ei 

	

-n 	

2nn(ke/2n)do 

tO if.crA-ik I = 	where w 	t 
ID  

=me 

	

, 	P 1 if m=nk 

defines the variable 6 used in the integral, and by 

) C[n,m]+j qn,m1 	Sinme.ej 2nn(ke/2n  de 

n- 

1
0 if nmk, 
j if n=mk • 

The expression giving the total waveform is 
II= 00  

e = e+p(t)+ Z ((Sin(2nne)Cos(nw tk)+Cos(2nne)Sin(nkw t))/(nn)) o n=1 
n=00 

= e+ Z (1/(nn) [Sin(n(kw t+2ne))-kSin(n(w t-n)) ..]). 
n=1 

A symmetrical triangular wave, shown in diagram 

F 3.1.5dii, is described by the fourier series 
n=00 

P(t) = k 7- -4/(nn)Cos(nw t) 
n=1,3,.. 
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The co-efficients of the output waveform 
fourier series are calculated below in two stages, one 
stage for each set 

Ap,rd+jqn,m]= 1 	Cosme ei21/2)) de 
0 

	

+ 1 	Cosme ei2"( k(3/2-0/70)de 

-TT 

	

/ 	\  = k-1 kn) (2/n) \ Cosme(Cos2nke+jSin2nke)d6 
Jo 

= (-1 kn 
1 if m=2nk 

n  
ai 0 
kn* f-1-(m/2k) 
0 all other m 

if m odd 

Sinme ei 2nn(k(6/7' - 1 /2)) de 

Co 
j2nn(k(3/2-0/71)) de + i . 	Sinme e 

n 	. 	. 
-n 

=0 for all m. 

C [n ' m] +ip [n ' m] =  

Thus the fourier series for the cosine term co-efficient 
of the waveform is 

n=00 	1, 	rin(2nne) if m = 2nk 
ELm] .= 	7 (-1) n-/(nn) 

-I 	n=1 .  
I2n coaL2nn2.1 if m odd Lkn' n2-(m/,)k) 2 

The series for m odd may be summed thus giving 

El = 2 	[ 	1 0 	7 	 ' n  2 2( m/777' 2Tm/2k) 

Cos( m/2k.27iie+k/2 ILL 1 
-fTF1(71m72k) 
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El = (t)2  - 2 	r _(Cos mc/k(e+1/2). 
MA 

Cos(mrc/2)-Sin(mr/k-(e+1/2)). 

Sin(mn/2))/Sin(mTV2k) 

= 4k 	+ 2 Sin(mr/k(e+1/2)) (7.17)2 

Sin(mr/2)/Sin(mn/2k).. 

The first term corresponds with'the series for p(t) and 

cancels this. The remaining term forms the co-efficient 

for m odd. The waveform is described by 
rnE 00 

e o = e + Z 	rSin(irm(e+k/2)).Cos(mkwpt).2/(mn)] 
m=2,4 

rn=00 
rSin((mn/k)(e+1)).Sin(mn/2)/Sin(mN/2k) 

.m=1,3 L 	2 

Cos ( mwp t) 2/( mn)1 . 

For the case of k = 1 the expressions simplify to the 

form 
nz GC)  

= e + Z F2/nn).Sin(rm(e+1/2)).Cos(nwpt)]. 
n=1 
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-The Spectrum of Regular Sampling  

The waveform shown in diagram F 3.2.2ai is 

described by the equation 
m=0.0 

E = a + 2 - 2 Sin(m(w s t-a))-b/n-R m=1 mn 

M=00 

7 2 Sin(m(w st-n+b)) . m=1 m7 

Two component waveforms, of the type shown 

in diagram F 3.2.2aii, may be combined to produce the 

above waveform. The following discussion will initially 

be concerned ' with the analysis of a single component 

waveform with a step controlled by regular sampling. 

The equation describing the component is 

E = wt - (1+2k) for 2nk<w st-e(t)<2n(k+1) 

where k is an integer. This may be expressed as the 

complex fourier series 
m=0.0 

E = e(t)  +  j m(wst-e(t)) * 

M=— co MTN 

rr40 

For regular sampling G(t) is formed by sampling 

and holding 0(t), the input sighal, at periodic intervals. 

In order to describe e(t) in terms of OW, and e - j me(t)  

in terms of e - i rri° (t)  use is made of the spectral 

descriptions of these functions. These are 

(t) = 

= 

=Zbm

r=co 

r=-c° 2n 

1 
2n 0  

cl= °Q  

arrlei wr t  where . L 	J 

e - j xr 0(X)dx, 	and 

e+j gt where 

a[r] 

-jmitS(t) e 

c1=-In 

b[M,g] = 1 	e - i xq.e -  i mi6(X) dx. 
2n 
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There is one feature of the operation of sampling and 

holding a signal pertaining to the use of nonlinear 

processing of the signal before or after the operation. 

The output signal is independent of the order of the 

sample and hold operator and the nonlinear processor. 

Thus if the sample and hold operator is referred to as 

H(x) then the equation below is valid 

e — J mH(0 ( t ) ) = li ce — J mo ( t ) ). 

The operation of sampling a signal of instants - 

when (wt_) = 2mn s then holding the value between 

instants results in a transformation of each spectral 

component of a waveform of the form below. 

n=00,1-  , 
eiwt -› Z e.-qpkw s t-4)+wt-n (w+nw s • .Sin( n (w+nws

)) 

	

11=-00 	 S 	 Wc  

7T-77Tnws
) 

ws 

The expression for the waveform when $(t) 

replaces G(t) becomes 

	

r=° n=0 	wr 
E= Z 	Z aNSin( (7v;+n)) ei[n(W s t-7-04-wr w

s 

	

n=-00 	 

m= 00 q=  n= 00 
+ Z 	-2- 	I ei[ mwst+n(w n t-n  

mn m=-00 q=_co n=„3  
• 

mAD 

)+w (t-w ) 

 

 

•r!.2 
Sin(17(w5+n)) 

/w 411) • q s 
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The term of the -series corresponding to w = 0 is given 

m = co 
b[71,01 e imws t. 

m--- 00 
J mA) 

After substituting N for m + n the term for 
the remaining values of w

q 	
--becomes 

N=00 m=00 
E2 = 	 j Sin(n—)b [rn,cd ei [N( wst- ° )+m,+wq ( t-T` )] ws N=-00 m=-00 

2 w 
ws 

The inner summation over the range of m may 
be made since wq/ws 	0. This is now carried out. 

m=0.0 

E3 = 	Z b[m,q] ei m54  Sin(nw q  /w s ) 
m=- 
1-V02 run 	TW-7w +N-m) 

7-  q s 

n 

)).dx 

Cosm((x).4/ 

( wol/ws +1,4 2 _ m2  

ME °° 
-tSiLi2(  gix ) -51) )  + MS i II IL(A(X  ) -0) )  11 . dx 

Twq
/ws +N) m=1 	m 	. 	( w  /w +N)  2_ m2 

' q/  s 	' 

by 
El = 

[ n= 00 

n=_. 
nAD 

m = co 

m,...„0 

11-10 

=i 
27 l 	 m=- L 

m=0,c) r 
) 

e -V X CIJ.Sin(77Wg
/VI

s
) 	7  cos(m(/(x)4)) 

m-i-'0 

- jSin(m(/(x)4)) //(m((wq/ws+N). - 
' 	27 

m
=00 

= I • e-(j xq).Sin(llwq/ws ). 2 I  Z 

27 0 M=1  ,77 

27 27T 
e-(3x q/.-Sin(rvw /w ) + Cos(( 

-2- s  2 
FITTAT7w q s 

/ws+N )($(x ) -#-7)) 
w5 4.1\47-171 

+ j(0(x)-0+7- )Sintv /ws n) + j Sin(w /wsT) 	 J .dx  
q 7W7Ns 	 (-I)q/ws+N) 
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The terms corresponding to w = 0, those with x = 0, 

may be neglected leaving two components one of which .  

corresponds with a[r], the other to a modified form of 

bp,q] which will be referred to as c[9,N1. Thus 

E3 = j.a[r]Sin(nwr/ws ) 

rwr/ws+N)  

+ clq,N] ejftwq/ws+N)(7-0)+Nn]where 

(wq77/771) 

2n 

= 1 	e-Oxti).e-j Rw q s
/w +N) (i/1(X 
 ) 	. dx . 

271 

Substituting E3 back into E2 and coMbining this with El 

yields the waveform component as the expression below 

N=oo 	N=00 
E = a[o] + 	j b FN  +-  Z 

N=-00  	N=-0o q=- co 
n N Nit° 	c10 

j.c[q,N] .e*wst+w (t-//ws )] 

	+N) 77q/w  s 

Note: In the definitions of br-m,q1 and c[ci,m] and in the 
L 	_J 

intervening algebra use is made of the symbols w and X. 

These are defined relative to the period, T, of ( -t .) by 

the expressions 

X = 	.x and 
2n 

w = q.2n/T 
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ExamEle of Regular  Sampling  

For the example the WaVeform of diagram F 3.2.2b 

is analysed. The only variable phase. step is the negative 

- going step. The samples controlling this step are taken 

at zero phase angle. It is assumed that the delay before 

the step is linearly related to the input signal which 

is a sinewave signal. Thus the phase of the step is 

controlled by the expression 

0(t) = n(1+aSinwmt); 

The calculations of b[m,e] , a[o] , and Cr_q, I are carried 

out below. 	2n 
brm,o1 = 1 	

e-jmn.e-jmanSin(x) dx 

= e-jmnJo(man) 

2n 

2n o 

	+N)(7)(I+aSin(x)) dx clq,N] = 1 	e-j qx . 

q0C 

= 

	
2n 

e- i (Ntm/wdq )n .1 e-J ([[Wm/w. 	naSin(x)+q. x) dx 
2n  

-j .(Ntm/wjq) 7  RI (73 [±f'qWm/W] ) 

a[o] 	= m/TN = 1 

The total waveform is then described by the equation 
N=00 

	

E = I + 7  j ej N(wst-7)  Jo(Nan) 
N=- oo  ' 
N#0 

N=.0 cE co 
+ 	Z 	j Jq(na [Ciw /w s+N] ) e j  [(ws t-7) • N+qwm (t-7":  )] m  

1\17-: ■ 00 	 +NT= 
Ci0 	'Li  M I " S 	" 

N=00 
-I + Z 2 Sin Nws t N=1 Nn 



A 	 3.2.2b 

= Z 
c1=1  

2aJci(n a ( qwm/ws  )) 	Sin wm. q ( - n/ws  ) 
(na(qwm/ws ) ) 

N= CX)  

— Z 2 I SinN(wc  t- 1-,t) 	Jo(Nan) 	- 	Sin( Nwst 
N=1 

N.00 

Nii 	 N iç  

cE 
— Z 

N=1 
Z 	2a Jq(ii 	( qwm/w +N) ) 	Sin (N ( ws t+n)+w s  ci( t-n-/w s  ) ) 

q=- 	na( ,w /w  

qO 	 s 



A 	 3.2.3 

Two Input  Components  to a  Regular  Sampler 
The same basic waveform as the previous example 

is generated with a new phase controlling function of the 
form 

$(t) = 	1+aSinwa t+bSinwbt). 

In this example only the passband, or more exactly the non 
sideband, terms of the output are examined. 

2n  e-jqx -j(ws )(S(X)) = 	 dx. 
2n 

The above expression defines c [q,o] but this term may be 
evaluated more directly as the torm of the following 
expression with complex frequency IN . 

E = e-j(wq rVws ) (1+,aSinwa t+bSinwbt) 

	

m°° 	• 
= 	2 +rwe-i wqm 4-mw t 	, s 	a 

rn-L=c)c, ±"=—.00 

Jm(nawq/ws ) .Jr(Tibwq/ws ) 

Thus c 	 -jwq n/ws Jm(naw /w ).Jr(nbw
q 

 /w 
s

) 

where w 	= mwa +rwb' 
The output components of the regular sampler corresponding 
to the input signal are 

r=00 

	

E = Z 	Z 
r- 

 jJm(naw /w s  ).Jr(nbw /w ).e jwq (t s ) 
_g s m=-00 =00 

where w 	= mwa + rwb  # 0. 



A 	4 

An I levelled switching wave has levels 

Vj(wt) and associated level Control functions 
- s 

g i (ws t). Immediately prior to a phase of Ai(e) the 

'th level control function is zero. After this instant 

and until a phase of Bi(e) is reached the function is 

unity. The function reverts to zero when the phase 

passes Bi(e). 

The general description of the waveform is 

i=I 
El= Z g i (w t).Vi(ws t). i=1 	s  

The components with frequency rw s t have amplitudes a r  

and br defined by 

By moving the summation outside the integral 

and taking advantage of the zero and unity values of 

g i (ws t) the expression becomes 
Bi i=I 

a +jb 	=ZELL) r 	r 	.Vi(w
s -0.eirwst.dw s t. i=1 2n 

r=o0 
Thus El = a o+ Z a' Cos(rwst)+brSin(rws t) r=1 

i=I 
where a 0 	Z 

0 
1  . 	

Vi(wst).dws t and 
1= 1 

The rth harmonic is described by 

Bi 

E = a r Cos(rws t)+brSin(rws t). 

2n 

a +jb 	= E(r) r 	r 	— 	a (w s ° t) Vi(wst).e) rws t  dws t. 2n 	i=1 

Ai 

Ai 

i=I Bi  

a r  +jb 	= 	7 	Vi(ws t).eirws t .dws t. r 	U i=1 

" 

Al 



By replacing a r  and br  by their respective integrals 

the rth harmonic may be re-expressed as 
-Bi •i=I 

E = 1 	Z 	Vsi(0).Cos(r(w s
t-6)).dG. 

W i=1 
Ai 

Now the ith  waveform level may. be  described by the 

Fourier series 

h=H 
Vsi(ws t)= 	a(h,i).Cos(hws t+f(h,i)), so that the rth  h=0 
harmonic is given by 

i=I -Bi  h=H • 
E = 1 Z 	Z a(h,i)Cos(he+ )23(h,i)).Cos(r(w t-e)).de 

\ i 

	

n 1=1 	h= 1  S 

i=I h=H _ 
=1 -2- ZZa(h,i)/2. 

i=1 h=0 s=+1 

Bi 

cos(r(ws t-e)+s(he+/ 
Ai 

(h,i))).de 
i=I h=H 

= 1 7 	7 	a(h,i)/(2(sh-r)) [Sin(r(ws t-6) F i=1 h=0 s=+1 	 6=Bi 

e=Ai 

This expression describes the r th harmonic of the 

switching wave in terms of the inverse sampling functions 

and the switching waveform levels. 



A 	 4.I.1.2a 

Consider the sum 
r=R-1 

	

E  = 7  .jrnn/R 
r=0 

= 1-e jnn  , (sum of a G.P.)(ifR#1), 
1-e jnn/R  

= 
(2-e3n1/R-e-1 nA/R)  

= (1 ( )n).2..1.qi2iDEL2R)(CosnELEmj.SinnEL2R) , 
4.(Sin(nn/2R)) 2  

= 

[ 

(jCoS(nn/2R)+Sin(nn/2R))/Siriln/2R)if n odd 
0 	 if n even• 

Thus the sum for R>1 and n even is 
rER-1 

	

E = Z 	Cos n(e-rn/R) , 
r=0 
r=R-1 

	

= Z 	Cos neCos(rn/IN-Sin - neSin(n/R), 
r=0 

= (CosneSin(nn/2tSin neCos(nn/2Sin(nn/2R) , 

= Sin(n(e+nu/2R))/Sin(nn/2R). 

Thus r=R-1 n=.0 
E =  7 (4/nn)Sin(nn/2(E0+1)).Cos(n(w s t- 

r=0 	n=1 , 
(B+A)/2-rn/R)) 

n= ,,0 
=z 
- n=1,3,5.. 

(4/nn)Sin(nn/2(E0+1)).Sin(n(w t+n/2R-

(B+A)/2))/Sin(nn/2R) 	
s 



a 

Wavelorm Level 

one period 

F 4•1•1.2 



4.1.1.2b 

A switching wave is produced by a quantizer 

when the input signal has a perturbation superimposed. . 

The mean of the switching wave is'linearly related to 

the average input signal provided the perturbation 

component has maximum and minimum symmetrical about 

zero, a uniform destribution of amplitude between 
-- 

maximum and minimum values, and peak to peak amplitude 

of an integer number of quantizer steps. The energy 

of such a switching wave may .be described in terms of 

the average input or output over.a range of one 

quantizer step. 

One quantizer step is taken as a unit of 

output and input amplitude. The perturbation is p units 

peak to peak. The peak combined quantizer input exceeds 

a critical level of the quantizer input by an amount 

x, a fraction of one unit. 

An example of the situation described forms 

diagram F 4.1.1.2. The description which follows 

applies to any form of perturbation obeying the restrictions 

above but is oriented to the situation shown in the 

diagram. 

The average value of the switching wave is a+(p-1)/2+x. 

The energy of the switching wave is given by 

E 

= up  p2+,3 24. a 2 4..... 4.a 21. a 2 

+0+2a+4a+...+2(p-2)a+2(p-1)a 

+04.124.22+...+ ( p_2 )2 4.( p1 )24.p ( 

= (a+(p-1)/2)2+x(2(6+(p-1)/2)+1)+(p2-1)/12 

2a+p).x 



A 	4.1.1.2b 

The energy of the average is (a+(p-1)/2 4. x) 2 . 
The energy of the remainder of the switching wave is 

E2 = x-x 2+(P 2-1)/12. Note that (=))(<1. 



A 	4:1.2 

Alternative Exoression for r th  Harmonic - a.c. 

Levelled Waveforms • 

	

ER = 1 	Z 1/(s-4r)f Sin(rw s t+(s-r).B+s(i6-71/2)) 
2n s=+1 

-Sin(rw5 t+(s-r)A+s(/-n/2))1 

= 1 Sin(r(wt-(B+A)/2)) 2 	fCos(r(A-B)/2+sB+s. 
n 	s 

	

2 	s=+1 
(/-n/2)) 

-Cos(r(B-A)/2+sA+s. 

• 	 (0-n/2)) 

+ 1 Cos(r(ws t-(B+A)/2)) 	f Sin(r(A-B)/2+8B+s. 
s=+1 	

($-A/2)) 

/(s-r) 

-Sin(r(B-A)/21-sA+s. 

(f/S-R/2) 	/(s-r) , 

= 1 [ Sin(r(ws t-(B+A)/2))Sin((A+B)/2+/-n/2) 7 
s=+1 

s.Sin(cr-s)(B-A)12) 
(r- s) 

+Cos(r(ws t-(B+A)/2))Cos((A+B)/2+16-n/2) s=t1 

Sin((r-s)(B-A)/2)  I . 
r-s 
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4.1.2.2b 

The Harmonic Amolitudes  of  a Periodic 

Triangular Pulse  
The pulse is a straight line approximation 

of a wave produced from.a sinewave and is illustrated 

by diagram F 4.1.2.2b. 

The quadrature and inphase components of the 

rth harmonic are specified by the real and complex parts 

of the expression ' 
n 

E  = l/n 	0.1...e)ejr0de  

n-A 
6=0 

=(_1) r/n [j6e-jre  r+e-ire/r2 1 
G=A 

Thus the r th harmonic is described by the expression 

E = ( -1) r/n [ Cos (rws t) (6Sin( re) /r+Cos ( re) /r 2 ) 
e=o 

+sin(rw t).(eco s (re) /r-si n (re )/r2 ). 
8=A 

i 6=0 

= (-1) r/n [ (e/r)Sir*(ws t+e))+(i/r2 )cos(c(ws t+e))] 
8=A 

1) r/n [(i/r 2 )Cosrw5t-(1/ ) sHw s t+A))- 

(A/ )Sin(r(ws t4-41 

= (-1) r+I (A/rn)-p in(r(ws t+A)-(2/rA).Sin(ws t+A/2). 

SinrA/2 I 	. 

Notice that this expression is thatfor the harmonics 

of the sum of a sawtooth waveform and an assymmetric 

triangular wave. The waveform above may be visualised 

in these terms quite readily. 

For ri-1> 2 the harmonic has magnitude A/rn and phase 

r(A+n)+n 



A 	4.1.2.2b 

It should be remembered that the original waveform was 

approximated with the proviso that A is small so the 

true restriction on the final approximation is that r 

is large compared to 2/A. 

If the waveform corresponds to one of the 

levels of a symmetrically m-level waveform then the 

rth harmonic of the total waveform is described by 

the expression 

E = (-1) rm+1 (A/nr)Sin rm(wst+A) 



A 	 4.2.1.1 

Phase  Modulation 
A function, f(wmt) , is • used to phase modulate 

a sinusoidal function of time. The following sequence 
of equivalent expressions enable the co-efficients of a 
Fourier series representing the phase modulated signal 
to be described. 

E = ei (w  ct÷f(wmt)  

= ei w tt (Cos( f (Nit) )+jSin(f (wnit) ) 
r= 00 

j ire+jb[r] ei re ) 	, = ei w ct ( 7, 	a Fri  
1"=•-oo " 

^2A 

\ 

	

where a [r] = 1 	Cos ( f (wmt) ) . e-irwmt dwmt 
2n 

	

and b[r] = 1 	Sin( f(w t)) ° 

	

m 	
rwmtdw 

m 2n 

Thus 
j(w t+f(w t)) 	 t+ m 	

r=0. 
e 	 7 ( a [1] +j .b [ r.] ) e i wc 	rw t) in  

Thus . r= 

	

Sin(wct+f (wmt) ) = 	( a [11 Sinkc t+rw t)+b[r] Cos ( w c t+rwmt) ) . 
r=-= 	in 

where 	 271 
e j(r(x)-rx) 

	

a [r] + j b [r] = 	 dx 
2n 0 



n=00 	 r 	, 
= 2 Z E(n)Jn(z) 	1, 	 ' 1112  Cosne, 	n 

n=0 ii (_ 1 )n-1/2 sinne,n  
even 
odd 

A 	 4.2.1.2 

Sinusoidal Phase Modulation  Notes 

( j zSin(e) '= - Cos(zSin(e+jSin )) Sin(e)) 

nEco 
= 2 Z E(n)Jn(z) 	Cos(ne), 	n even 

n=0 	 [jSin(n6), n odd 

n=00 
= Z Jn(z)ejne  

n=-00 

e jzCos(e) = Cos(zCos(e))+jSin(zCos(e)) 

n=00 
Z Jn(z)e in(e+n/2)  

n=-00 



4 .2.1.2 
A 

Multiple Signal Phase Modulation  

The following passage indicates the form of 
the spectrum of the signal 

m=w 
E  = ej 	a_ + 	Sin(wmt 

u  m=1 
on the identity 

r=.0 
eja mSin(wmt + o ) m = 2 Jr  (a m  

jr(wmt + p 

Substituting the identity into the expression gives 

E = ej a o m=M r=  J (a )ej r(wmt 	Pm)  7-\ 	7 	r rn,  
m=1 

This expression is the sum of terms each having the 
form 

_ 
f 

m=m 	 m=M 
A 	3. im,r1  (a ) 	e j (a o + '2 i • m, r -  (wmt + p m) ) 

m= 1 	1  L 	' 	
111 	 rt1=21. -. — 

where irm,r1 may have any integer value. These terms .1. 	J 

may be grouped according to their complex frequency, 
If Sq  terms have frequency wq  then the expression becomes 

wq
= 04' 	 rn=14A . 
• 41/d + v. 	ja n1=M 	 7 i in, rl p E = Z 	e'q 	e o 	J- ' Z 	7-1 	im rl (a ) ej • r 	, 	 i 	j . m 

1 .  L ' i 	in • 	ril=1 
W 

q 
 =—to 	 S

q 	
m11. 

where 

m=M 
= l 	i m, 1.1 w 	defines i 	ri for each of the 

m=1 L 	rn 	 j 

Sq terms. 

If each of the M components of the modulating 
signal are non commensurate with each other then Sq will 

be unity. Under any other circumstances Sq is infinite. 

and is based 
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The fourier series co-efficients may also 

be evaluated by the integral 
2m 	m=M 

I[q] 	 -jw t 	j(a + 2 Sin(wt4pm )) q .e 	o m=1  = 	 m e 	 d(2nt/T), 
2n 

where T is the period of the modulating signal. The two 

methods are useful in different situations. If the 

frequencies are not commensurate then the Bessel function 

series is convenient and easily applied while the integral 

expression is difficult to apply. If the frequencies are 

all commensurate then the reverse is true. If the 

modulation is not entirely of one form or the other then 

the best approach is to use the integral method for the 

commensurate part then to use the co-efficients so 

formed in a similar manner to the Bessel functions of 

the first method. 
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- Multiple Phase Modulation 

A modulation angle is composed of I 

individual components each of which have known co-efficients 

when used as a modulation separately. 	Thus the component 

satisfies the equation i 	1 

e j ( wct+f i ( w it) ) = ri") C[1, r 
r=-.0 

e j (wc t+rw1
. t+G [i , ) 

where s2n 
ej(fi) dx  

2n 

The total modulation angle is described by 

i=I 
f(t)+f = f 0 	f.(w.t). o 	o i=1  

The spectrum of the phase modulated • signal for this 

angle is given by the expressions . 
i=I 

E = ei (wc t+f o4".1Z1  f i (Wit)  = 

j (w t+f 	j f . ( w. t) =e 	c 	o. 	1 1 
i=1 

.1( nwi t+e[i = eJ  
i=1 n=-00 

. The co-efficient of a term with exponent 

i=I 
= w t-Ff—o+7 	1 	is given by c  

i=1 

i=I 
E2 = ( /I Cri , where R[i] is 

the ith element of a set of I integers. The integers of 



Z e3 (wct+fo+1q+ 1e [i ' R [i ' cal 
• i=I 

C i,R 
i=1 

i=I 

A 	4.2.1.2 

this set may. have any value. It is convenient to 

associate with each set of integers another integer, 

q, such that the variable w(4  defined by / 

i=I 
w -= 	Rri ' 9] w' . 	'satisfies the condition L 	i 

i=1 

wo • = 0, and w >w 

The complete series may now be described by 
i=I 

E = ej(wc t+f o71- 7 f i (w i t)) O = 
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Fourier Series  from Periodically Sampled Data 

A periodic function,. f, is sampled at uniform 

intervals over one period so that an even number of 

values 2N are known. The function is defined by a Fourier 
- series so that the n th   sample, f(n), is described by 

i=I 
f(n) = 	AHCos(2nin/N)+B[i]Sin(271in/N)] 

J  

where A[i] and B[i] are the Fourier series co-efficients. 

A new set of co-efficients related to these are defined' 

by the 2N samples from the expression 

n=2N 
D[m]-FjE[m] = z (Cos(mnn/N)+jSin(mnn/N)).f(n) 	• 

n=1 

By substituting the actual Fourier series for 

.f(n) into this expression the relationship S between these 

co-efficients and those of the Fourier series may be 

found. 

For m=0,2N,4N,...., the expression becomes 

n=2NC 	i=I 
D[m]+jE[m] = Z 	(1+0.j) Z (A[i].Cos(2nin/N) 

n=1 1 	i=1 
+BN.Sin(2nin/N))] 

Now 

n=2N 
2 Cos(2nni/N) = 2N for i=0,2N,....,K.21 
n=1 	10 

where K is an integer defined by I-2N<K.2N<I, while 

i=I 	• 	n=2N 
D[m] = Z (AD]( 2 Cos(2nni/N)) 

_ 

i=0 	n=1 	n=2N 
+B[11(z Sin(2nni/N))) . 

n=1 



4,2.1.4 
A 

For the expressions, D [m] and E [m] , to define 
. the th  3. 	harmonic of the Fourier series they must each be 

functions of only the appropriate co—efficient of the 
.th harmonic, and not of any other harmonic. This 
requires that the other harmonics in these expressions 
be zero. There is often more than one way of choosing 
the number of samples to satisfy this requirement but 
the usual method is to choose 2N large enough for the 
terms of these expressions corresponding to r greater 
than zero to be zero. This is true when 

2n—m> I when m=i is also true. 

For these conditions 

D [i] = A [i] , E 	= BrIl and the minimum 
number of samples possible for these results is 

If the i th  harmonic is estimated from 2N samples, where 

I <2N <2I , by evaluating D [i] and E , then 

the actual numbers obtained are related to the Fourier 
co—efficients by 

D 	= A rL iii 4: A [12N—i] , and 
E[i] = B 	— B 	. 

The last term of these series are not zero if i> 2N—I. 
The differences between D[i] and A[i] and between EEil 
and B[i] introduced by the latter terms of these series 
are referred to as al ia sing errors. A special case 
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n=2N 
Sin(2nni/N) = 0. 

n=1 
r=k 

D [m] = 2N 7 A [r.2N] 
r=0 

and E imj = 0 , when m is a multiple of 2N. 

For m not a multiple of 2N 
n=2N i=1 

	

DErni+jE Emj = 	2 (A [i] Cos (2nni/N) +B[i] Sin (27in/N) ) 
n=1 i=0 

(Cos (mnn/N) +jSin(mThn/N) ) 	, 
i=1 	I 	n=2N 

(cos( (m+si) n7VN) 
1=0 s=1, -1 	n=1 

+jSin( (m+si) nn/N))) 
n=2N 

- se 	( 	(Sin( (m+si) nrr/N) -jCos ( (m+si) 
" n=1 

/2 

The sire summations are zero. The cosine summations are 
zero except when 

m+si=r.2N for O‘KK, then they are unity. 

The complete expressions for DErni and E[m]for all in are 
thus 

r=k 
2N 7 A[2N.r] for in any multiple of 2N, 

r=0 
r=k + 1, -1 

N (A [m] + 7 	7 A[2N.r+s. m]) otherwise, 
r=1 	s 

O for m any multiple of 2N, 
r=k +1, -1 

N(B [rni+ 7 	7 	s. B [2N. r+s. ) otherwise, 
r=1 s 

D[m] 

and E[m] = 

where k is defined by I-2N<K.2NI. 
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Numerical Accuracy  of  Summation 

A function is formed from the sum of n 

numbers. If each number has an error compared to the 

correct value required for the function then-the actual 

number representing the function will have an error 

equal to the sum of the errors of the individual numbers. 

Now the exact errors of an answer derived from a 

nummerical process with a variable control are not known 

but the statistical nature of the error frequently is. 

From a statistical description of the error it is 

possible to estimate the statistical nature of the error 

of a sum of such answers. 

If a group of n numbers with the same 

statistical properties are summed then the total of the 

numbers has a distribution which approaches a normal 

distribution with root mean square deviation q'Tr■- as n 
approaches infinity where (1 is the mean square deviation 
of the numbers 'summed., Ho.145. 

Thus for a number error with a uniform 

distribution between +a and -a the function error, when 

a large group of numbers is summed, will approach a 

normal distribution with a root mean square error of a 

FI7 .7 when n approaches infinity. The maximum possible 
error is a.n. 

As an example consider the situation where 

100 numbers are added to form a fourier series and each 

number has a random error of one unit in the ninth 

decimal place due to the error in sine and cosine 

evaluations used in forming each term. For this case 

the maximum possible error from the addition process is 

one unit in the seventh decimal place while the root 

mean square error is less than six units in the ninth 

decimal place. 
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where aliaSipg error may be compensated occurs when 

the value of 2N = 21 and the Sine 'component of the 1 th  

harmonic is known to be zero. For this case 

D[i] = 2 A[i] and E[i] = 0. 

The physical situation may be.appreciated since the 

21 samples correspond to the zero positions of the sine 

component at this harmonic while they correspond to the 

peaks of the cosine component. 
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From the numbers above it is clear that 

numerical error in the summation process is insignificant 

unless very large numbers are summed to obtain a very 

small total. For the numbers to be accurate to within 

one percent the allowable dynamic range is of the order 

of five decimal places if numbers have nine decimal places. 
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An Estimate of Passband Energy .  

The pasband energy 'of a d.c. levelled 

switching wave using single edged .mdulat5.on controlled 

by natural sampling of a'sinewave input when two 

sidebands fall within the amplifier passband. 

The energy of the-sidebands within the 

passband is 

r=00 
ES = Z 2/(rn) 2 7 J2 1  .(rnx) where n = entier (rwm  /w s ) n-  r=1 	i=0,1 

Now Js(y) may be re-expressed as 

Js(y) = J2/(y) 	[00s(y-sn/2-n/4)+0(Y)] 

where 0(y) has a value of order I/y. The energy 

associated with one harmonic is thus 

ERS = 2/(rn 2 	
? 

2/(n(nrx)). Cos - (rnx-nn 2-n/4) 

+Cos2(rnx-nn 2-3n/4) 

+E 

= 4 [I+Ei /(r3n 4x) , 

where E is of the otder of 1/nxr. For x large this 

last t2rm may be neglected so that the total passband 

energy is approximately given by 

r=m 
EPB = 7 4 

r=1 3 4 r n x 
= -049361/x . 
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The Low  Amclitude  Performance Asym2tote 

Each harmonic of the modulation waveform .  

contributes individually to the sidebands of .a phase 

modulated wave. Each sideband is the sum of an infinite 

number of components. These components are contributed 

by all the harmonics of thesampling wave. The 

frequency of a component, which matches that of the 

sideband, is a sum of multiples of each of the harmonic 

frequencies. The amplitude of a component is a product 

- of Bessel functions whose indicies and numbers correspond 

to the amplitudes of the harmonics and multiples refered 

to above, respectively. The phase of the component is 

related to the individual harmonic phases as the component 

frequency is to the individual frequencies. 

To describe the situation more concisely the 

following symbols are used to represent the variables 

introduced above. 

The band limited modulating signal is assumed 

to posess no finite harmonics beyond the Nth . 

The 5 th harmonic has amplitude x s and a phase 

and is associated with the integer multiple. ms . is 

The component under examination is separated 

from the carrier frequency by the Rth harmonic of the 

modulating waveform, has amplitude A and phase 0. The 

variables are related to those of the modulating 

Waveform by the equations below. 

• 	s=N 
R= Z m

s° s 
s=1 
s=N 

= 2 m5 . 5  s s=1 
s=N 

= II Jm (x ) s s s=1 
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For small modulation waveforms x s is small 

for all s. This allows an approximation to be made for 

A since for small x the function Jm s 
 (x 

s
) is approximated 

by 

Jm (x 
S S 

= C—ifm s)( x/2 ) I ml• /m! 

(this is the limit of equation 807.22 DO.) 

Substitution of this into the equation for A gives 

s=N 
A = 71 (-lims)(x s/2)I ms 1  /ms ! 

For small values of x the components with • 

the largest contributions to a sideband are those with 

the minimum•values of • m since A is of the form (es=N s 

12-Al = (-x/2)1 z  I Ms 47 	
s 

s

=

1  

N 	

r( 	

im 1  

4.m (s=1  ic 	s  1/MS 	
S i L  =  • 

where a s is the value of x s-
for a modulating waveform 

of unit amplitude and where x is the modulation amplitude. 

To find the gradient of curves such as 

diagram D 4.2.2.4b the lowest power of x m  must be found. 

Thus the search is for the smallestvalue of sN  

	

= I 	I 
ms 

for a given value of R. 	s=1 • 

Call the index of x M I. 

s=N 	s=N 
I = 	Im

s
I • R = 7 m

s 
*s. 

s=1  s=1 

The object of the search is to find those sets of N 

• integers, m1,m2,...,mN, which satisfy the ecluation for 

R but give a minimum value for I. 	• 

Suppose I=1; what values of R are possible? 

For this value of I all Values of ms are zero except 

s=1 



one which must have unit modulus so that 

• < I I < N 
Suppose 1=2. There are two possibilities; there may be 

two non ero values of m s
, both unity, or one value 

with modulus 2. The range of-ftis thus 

O I R I 	2N 

For higher values of I there are many more possiblities 

but the restriction is of the same for m as below 

O CRI<NI. 

This is the reciprocal of the problem posed. 

The problem was to find the minimum value of I consistent 

with a particular value of R. From the equation above 

the restriction below follows and answers the problem. 

1.;>11/N = 1+entier(R/N) 

Substituting this into the equation for the 

sideband amplitude, 7A, yields 

(1+entier(R/N)) 	fs=N 
7A = (-x/2) 	* 7 11 aH ms' /m s !1 < 0.ms 3=1  s 

Thus the S/N power ratio for passband 

sidebands with x m small is of the form 

2.entier(R/N) 
S/N = (x/2) 	.K(a s ,ms ,R,jhs ) 

where 

ws/wn= 
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Plotted on log curves the ratio has slopes of 

20 entier (R/N) db/decade. 

The number of terms contributing to K are too 

complex to evaluate for more than a small number of 

modulation harmonics unless there is some simplifying 

pattern. The complexity is due to the multiplicity of 

the sets of m numbers which satisfy the minimum index 

criterion. 
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A switching wave with m symmetrically phased 
levels, each with waveshape Flws t) is described by 

r 00 
E = 2a [0 , 	+ 	a [r , y5] Cos( mrw t) +b [r ,,0] Sin( mrw mt) , 

r=1 

where 0 is the mean phase of the two edges of a segment 
of the switching wave and where -  a and b are defined by 

the equation 
8.0+Vm 

a [r , + j b [r , 	= m/n 	F(8)Cis(mre)de . 
n/rn 

For a sinewave supply this expression may be evaluated 
analytically to yield the expression 

r=co 
E 	m/Tc • [Si n(n/m)Sin7S+ 7 	7 	iSin .((rcZmqmr—i_jj_  Sin 

i=+1r=1 	(mr-i 

(mrw t- ( mr- i) 0)11 

For linear amplification 0 and the control signal are 

related by the equation 

. mbs•Sin(n/M)Sin(0) = f(wt) for If (w mt)I < m/n Sin(rim).  N 

Substituting for 	yields the waveform expression 
r=00 

E = f (w t) +m/ix • 7 	 Sin(mrwt- 
rn 	i=+1 r=1 L 	T1Th jY  

r=w,  
f(wmt)± 7 	7 .(.-1) r  Sin(mrws t-(mr-i)arcSin 

i=+J_ r=1 mr-i 
((n/rrk ( w m-t)/Sin(n/m) ) ) 

( mr-i) arcSin(t ME ( wmt)/Sin(7 /m) ) )i . 



m phased, sine wave supply. a. c. levelled \gave expression 
reduction 

e+itS+ A/m r=o° 
E = (3/2).Lo 	+ 	m/R 	Cos ( mrw mt-mre)Sinede  • r=1  

A 	 4. 2.3.2 

rth harmonic is described by -- 
eq+n/m 

ER = m/2A 	Sin ( mr( ws t-e)+e) -Sin ( mr( wst-e) -E)j de 
eq-n/m 

e=9S+7T/m 

= m/2[7-1 +Cos ( mrws t- ( mr-I ) G) - Cos ( mrws t- (mr+i) G) 
- (mr-1) 	 Trn- r-FIT- 	e=0-n/rn 

(mr-I) 

- Sin(  fmr+_1 A/m)  Sin( mrw s t- ( mr+1) 1  , 
mr+1 

G=S+71/m 
(1/2)a Lc , ,5] = m/2A 	(Sine)*1 de 

e=Ø-/m 

= m/2iT 5{Sin ( mre+e) -S in ( mre-e) 	de 
e=i6+n/rn 

= m/271 [Cose 

= m/rc Sin n/m Sin 	. 

= mnc [ Sin( ( mr-1)A/m) Sin ( cnrw s t- ( mr-1) 0) 

e=0-n/ro 
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• Filters, Triangular Sam2liag .  Waves and Linearity  

- For triangular sampling waves, the d.c. supplied - 

amplifier of the example and a general feedback filter 

the solution for the input signal is 
0= 00 

Ein =•a.DC- 2 2An/(n77) Sin(S n).(2k-1) 
n=1 

nn(11, DC))+Cos( n )* (1-210.Sin(/ n )Cos( 
Sin(nri(i+DC)) 

For the two fourier series terms of the 

variable r1(1+DC) to be zero, thus giving a linear character-

istic, the conditions 

Cos /n = 0, and (1-2k)Sin/0  = 0 must be satisfied. 

Thus /n  = (2m-1).m/2 for m any integer, and 

k = 1/2, are sufficient 

conditions for a linear characteristic. These conditions 

require that the sampling waves be of equal slope, and 

that the filter have an odd number of poles at frequencies 

much lower than the switching wave frequency. 
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The Cycle  Period of the Constant Area Sampler 
Diagram F 6.2a shows the output of the 

sampler and of the integrator for a d. c. control signal, 
DC. The triangular waveform of the latter has amplitude 
+a and slopes of (DC-1)/1 and (DC+1)tt. The period is 
thus the sum of the half cycle times and is given by the 
expression 

2rVws = 	2a 	-2a ) 
DC+1 DC-1 

= -4aT/(DC2-1) 

,w = 2n(1-DC2 )/(4aT) • 

0 (i-DC2 ) , where Wo  = n/ (2a -t) 

Provided the d. c. component varies slowly 
the above expression is valid and an average frequency 
may be calculated. The average period when the input is 
a sinewave of amplitude A is given by 

wsay, = Wo [average of (1-(DC+ASin n-0 2 ) I 
= Wo  [1-DC2-A2/2 
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Phase Lock of the Constant Area Samoler 

There are two aspects of phase locked operation 

which are important. The first concerns the ability for 

locking to occur. Conditions for locking may be derived 

which do not represent stable' coperating conditions. The 

second aspect of phase locked behaviour is the stability 

of operating conditions once established. 

• 	Conditions for Locking to  Occur 

At the instant a positive step of the output 

occurs the equation 
rt 	rt 

+a + 	eind(t/t)= \ e d(t/T) must be satisfied. Jo ° 

Similarly at the instant c negative step is formed a 

similar condition • with the opposite sign for a must be 

true. Diagram F 6.2b shows the situation when e mn  is a 

harmonic of e 0. For the stable conditions associated 

with phase lock the equation: 

2a = AT + DR must be true. 

AT, the peak to peak amplitude of the triangle 

is related to the output frequency w s  and d. c. component 

DC by the expression 

AT  

DR, the change in ripple amplitude during a half cycle of 

the outpUt waveform is described by the expression 
,f

A

ws t=6+7c(i+DC) 
DR = 1/(ws 	e(w t)dws t where e is s w t=e s .  

the phase of the positive step of the output waveform, 

and -eA is the a.c. component of em.  Substituting these 

expressions in place of their symbols gives the expression 

describing the relationship between relative phase )eof 
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the control and switching waveforms, and the output 

frequency. The expression is 	• 
c0+71(1+DC) 

2a = n(1-Dc2 )/(w5T)+1/(w5"t) 	eA(ws t)dws t. 

JO 

Re-arranging this and replacing some terms by w yields 

the expression 
e4-7(i+Dc) 

, /w0  = 1-DC2+(l/n) 	eA (ws t)d(ws t). 

e 

where . 	wo = 77/(2a -t). 

Sinewave Locking  

For a sine wave input with no d.c. component 

the expression is 

ws/wo  = 1+2A/(7n)Cosn(G+ 7
2
(1))Sin(nn(1)/2) 

where A is the sinewave amplitude and n is the harmonic 

number of the input frequency compared to the cycle 

frequency. 

The limits of the phase lock range occur when 

the cosine term is maximum or minimum so the boundary of 

the phase lock range for the nth odd harmonic is given 

by the expression 

we /wo  = 1+2A/(n7) 

i.e. 	/w0 	2A/(n7) 

Dy.namic Phase Error 

The equation 

s
/wo = 1+2AAri.Cos(e+7/2), has two solutions for G. 

These represent one stable and one unstable equilibrium 

point. For control waves of other shapes than sihewave 
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there may be more than one_pair of solutions. 

In order to find if a solution of the general 

equation is stable or unstable the behaviour of the 

system is examined when the output phase is not e but 
+ de. The small error, d6, may increase or decrease 

over one cycle depending whether the system is unstable 

or stable respectively. 

Diagram F 6,2c shows an example of two phase 

trajectories separated by de at t = 0. After the occurence 

of the positive output step de changes by a factor k given 
by the expression 

k = (I-DC2+2eA (e+T(l+DC)))/(1-DC2 ) 

After the negative output step the value of de is changed 

by a factor 1 given by the equation 

1 = 1-2eA (e)/(1-D02 ) 

Thus over one cycle de changes by; the factor 
lk = [ 1-2eA (e)/(1-Dc2 )1 f1+2e

A
(61- n( +DC+1))./(1-D02 )1. 

The system is stable if /1k/<1. The value of de 

dimishes exponentially ,  if 0 <lk <1 or oscillatory decay 

occurs if -1 <(1k <0. 

Stability of Sinewave Lock 

For a sinewave control signal of amplitude A, 

with no d.c. component, locked to the first harmonic, 

the factor lk is described by 

lk = (1-2ASin(e))(1-2ASine) 

lk>0 so exponential growth or decay occurs. If 

O<A Sin e<1 the system is stable. Provided 6 calculated 
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by the static condition satisfies this equation the 

system is stable. This implies that stable waveforms 

occur when the positive output step occurs during a 

negative input region and negative output steps during 

a positive input region. 
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d.c. Characteristics of Self  Oscillating 

Am2lifiers: . 

A d.c. levelled wave with levels of unit 

magnitude is described by the expression below. The 

symbols used have the following meanings 

f(ws t,en,ef) : The switching wave as a function 

of time, phase of negative step, 

en, and phase of positive step, ep. 

DC : The d.c. component of the switching - 

wave 

n=Qo 
f(ws t,en,ef) = DC+ 2 2[Sin(nw s t).(Cos(n.en)-Cos(n.ef)) n=1 

+ Cos(nws t)'.(Sin(nef)-Sin(n.Gn)) /(nn) 

This signal is passed through a filter and produces the 

ripple waveform below. The symbols describing the filter 

response have the following meanings 

A(nws ) : The amplitude of filter response at 

frequency nws . 

0(nws ) : The phase of filter response at 

R( ws t,en,ef) : 

R(w t,en,ef) = 

frequency nws
. 

The ripple waveform after filtering 

the switching wave. 
n= oo 

DC.A(o)+ 2 2A(nws ) (Sin(n(w s t-Gn) 
n=1 	n7 	+0(nws )) 

-Sin(n(ws t.7Gf) 

+i6(nws )Y j 

This ripple is the ripple at the input of the switch 

controller. 
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The ripple values at the instants of positive and negative 

steps are described by the functions below. 

R+ = R(6n,en,(9f) 
n=e3 

A(0).Dc+ Z 2A(nw s ) Isin( (nw ))-Sin en-ef) 

nn 	+ignws ))1 

	

n=1 	 

and 	R- = R(ef,en,ef) 

n=00 
= A(0).Dc+ 7 2A(nws )[SinWnws )+n(ef-en)) 

	

n=1 	nn 	-Sin(i(nw5 ))1 

The difference 	ripple values and the separation between• 

sensitive levels of the switch controller are equal. When 

this is so the equation below is satisfied. The symbols 

used have the following meanings. 

: Half the difference between sensitive 

levels of the switch controller 

n=c0 
2a 	2 2A(nws )t2Sin(anws ))-2Cos(n(Gf-gn))- 

n-I 

 

hr 	Sin(Ø(nws ))1 

n=00 
= 	Z 2A(nws )tSin(0(nw s ))(1-Cos(nn(DC+1))) 

n=1 nn 

since DO = (ef-en)/1-1 

For a given filter and value of output component, DC, 

this equation must be satisfied for a particular value 

of sampling frequency, w s . In some cases no solution 

exists. This implies that this value of output cannot 

be attained with the shape of output waveform described. 

In such cases the output assumed must be attained by 

more complex waveforms akin to those with subharmonic 
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components.encountered in natural sampling. This has 

. not been closely examined. 

In- other cases it may appear tnat several 

solutions exist. In these circumstances the ripple at 

the switching instant must be moving, as a function of 

time, away from the zone between detector sensitive 

levels. Mathematically this may be stated as follows. 

The product of, the output level prior to the switching 

instant, with, the derivative of the ripple at coder 

input, must be positive at the instant of switch transition': 

In the rare .cases where there are still several 

solutions the true solution is that with the highest 

value of ws* 

For the value of w s 
calculated from the equation 

the value of the ripple at either of the sampling instants 

can be calculated. Since the ripple, d.c. input and d.c. 

feedback component combine to reach the sensitive level of 

the switch controller at this instant the equation below 

is true. The symbols used have the following meanings 

Ein : The d. c. component of the input voltage 
n=00 

a = A(o)[131C+Ein]+ 	2A(nw s ) [Sin(Cnws )) 
n=1 	 

This expression may be simplified by noting that the 

expansion of the second term yields the terms of the 

identity for the determination of the frequency of 

oscillation. .The final relationships are restated below. 
n•00

•• a = Z 2A(nw s )Sin(0(nw s ))(1-Cos(nn(l+DC)))/( 	). 
• 	n=1 

n7 	+Sin(nn(DC+1)-4(nw )) 1  
s 	) n=00 

i.e. Ein = -DC+1/A(o) [ a- Z •2A(nw s ) t5ingS(nw s )+Sin(n7(DC+1) 

-0(nws ))11 
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n=00 • 
Ein = -(DC+ 2 2A(nws )Cos0/3(nw_))Sin(nm(1 4. DC))/ 

n=1 
(nnA(o)). 

Notice that the frequency of oscillation is determined 

by the quadrature component of the filter response 

while the nonlinearity is related to the direct part of 

the response. 
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Two simple examples of the theory for self 

oscillating systems. 

Integrator Feedback 

For this example A(nws )Sia(Ø(nws )) = 1/(nw9 T) 

and A(nws )Cos(,(nw s )) = 0 

The oscillator frequency is give -n by the equation 
n=cc) 

a = Z 2( 1-Cos( nn( 1+DC)))/(  n2w 'tn) 
n=1 	 s  n= 

2 i.e.w = n Z 4(1-Cosnn(l+DC))/(nA) S 	--aTn=1 

= n(I-DC2 )/2 aZ 

Although derived in an entirely different way to that in 

appendix A 6.2a the result is identical. It agrees with 

experimental measurements. 

The characteristic between input and output 

is linear since the second term, that corresponding to 

to the nonlinearity, is zero. 

High Q filter feedback 	0 	nAl 
For this example A(nws)Sin(0(aws))= 1_ ASin(-71+2Q((r71, )-1))n=1 , 

r. 

 

. 0  n#1 
. A( nws ) Cos (i( nws ) ) ';--- 1-ACos(-n+2Q((k)-1))n=1 

A(o)  = -1 

For a comparator with no backlash the Sin term must be 

zero se that w s = wr• The input signal is then 

described by 

Ein = -:DC-2ASin(n(i+DC))/T1 



6.3b 

The relationship. between the output and the error between 

output and input, E, is 

E = DC+Ein -,,2ASin(nDC)/7 -1. 

This is the average value of the filter output and is 

applied to the comparator input. Notice that the error 

is proportional to filter gain at the oscillation frequency, 

that is near . the . peak - of the high Q point of the filter 

• where phase passes 180 ° . Notice also that this result 

predicts a negative gain characteristic for part of the 

output range if the gain between comparator input and 

output is considered. 
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Second Order Filter imedance at Frecuencies-

Greater than 4w c 

Thc filter analysed has an input inductor of 

copper resistance RI and inductance L, a load resistance 

R, and a load shunting capacitance C. The analysis does 

not account for high frequency core losses. 

The input admittance, Y, of such a filter is 

given by 

Y = 1/R(ROS+1)/(LOS2+S(R1C+L/R)+1+Ri/R). 

After substituting jw for s the real part of Y is found 

to be 

YR = (1/R)(Ri/R)(R/Lw)(1+(l+Ri/R)/(RCw) 2)/((1 -F(1 1-Ri/R)/ 

(1,Cw) 2 ) 2+(Ri/Lv+1/ROw) 2 ) . 

When the filter damping is 0.6 and the d.c. voltage gain 

is near unity the values of R/Lw c  and 1/RCw 0  are near 1.2 

and Ri/R is small compared to unity. w c  is near \/1/(LO). 

• The real part of Y is then approximately described by 

YRA = (1/R)(1.2wc/w)2(Ri/R)(1+(1.2wc/w) 2)/((1+(wc/w)2)2 

+(1.2w c/w) 2 ) . 

For w>4wthe error in neglecting the last two terms of r c 
the expression is less. than 15% so that the real part of 
the filter admittance at these frequencies is approximately 

YRA = (1/R)(Ri/R)1.4(v1 c/w) 2  
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Inductor Energy  and Time Constant  due to 

Winding:Resistance  ' 

An inductor has a magnetic circuit with an 

airgap of area Ac, and length x. The effective length 

of the remainder of the magnetic circuit is equivalent 

to an airgap of length z. Let the winding be such that. 

N . turns of mean length l w  fill a proportion k w  of the 

winding area Aw. Let the winding material have 

resistivity /). 

The inductance, L, is given by 

L = 	N2Am/(x+z) 

The resistance, R, is given by 

R =/40 N21 kiAw w w 

The ampere turns, NI, required to achieve.a flux density 

B are given by 

NI =  

Now if B is the maximum flux densisty allowed. 

then the product of time constant and peak inductor energy 

is given by 

T.E = L/R.LI 2/2 = p oAcAw/(ol w(x+z)).B2Am(x+z)/(4 0 ) 

= Ac2 0  Aw. B2/(2/01 w ) 

This may be re-expressed in terms of D a . linear core 

dimension by the relationship 

E.% = kB2 D5 where k is defined by the expression 

k = (Ac/D2 ) 2 .(Aw/D2 )/(2p(lw/D)) . 
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Note that k does not vary between inductors of the same 

proportions nor does it vary IX/ith'any parameter of the 

magnetic circuit appart from the effective area. 



Appendix C 

The digital computer programs with titles 

listed in this appendix were developed for two 

purposes. First, since these programs generate 

numerical descriptions of those features of switching 

amplifiers described by the models. they enable stringent 

tests of the models by comparing these descriptions with 

actual measurements. Second, once the accuracy of a 

model is known the numerical descriptions generated by • 

the programs' may be used as a basis for design, 

especially where a design requires the equivalent of 

many experimental measurements. . 

The programs are written in Algol for Elliot 

503 machine of the Hydro-University Computing Centre at 

the University of Tasmania. 



Titles of Programs 

	

1. 	Phase Modulation • of Sinusoid Waveforms 

	

1. 1 
	

Sideband amplitudes, energies, and energy 

distribution profiles as functions of modulation 

amplitude and waveform. 

	

1.2 	Energy distribution contours on the sideband, 

modulation amplitude plane. 

Harmonic  and  Sideband Descriptions of Switching 

Waves 

2.1 	Natural Sampling 

2.1.1 	Amplitude and phase of sidebands of any 

specified harmonic of a wave with two unit d.c. 

levels for bandlimited periodic input signals. 

2.1.2 	Sideband energy distributions for each harmonic 

of a d.c. levelled wave with one step modulated 

by a control signal. 

2.1.3 	Passband energy as a function of passband to 

sampling frequency ratio for a d. c. levelled 

wave with a single modulated step. 

2.1.4 	Harmonic amplitudes of phase modulated, and 

diode-clamped, sine-levelled waves with d.c. 

control signals. 

2.1.5 	Sidebands and Harmonics of sine-levelled waves 

with sineWave'signals. 

2.2 	Regular Sampling 

2.2,1 	Sidebands of the first harmonic of a d.c. 

levelled wave with one step.modulated by 

bandlimited, periodic, control signals. 



3 	Subharmonic Gain and Describing Functions 

for d.c. Levelled Waves 

3.1 	Describing functions for natural sampling 

based on phased addition of coincident 

sidebands. 

3.2 	Gains and describing functions for natural 

and regular sampling based on the spectra 

of stationary waveforms. 

4 	Low Frequency  Input-Output Characteristics 

of Feedback Amplifiers 

4.1 	d.c. levelled waves controlled by natural 

sampling. 

4.2 	Sine-levelled waves with phase modulation 

controlled by natural sampling. 



Appendix E 

This appendix contains a brief outline of 

the conditions for measurements and range of measurements 

associated with the models of switching amplifiers 

proposed in this thesis. Although grouped under distinct 

headings which correspond roughly with chapter topics 

these experiments were conducted over a long period. 

Most measurements were taken prior to the development 

of the models proposed in this thesis but many were made 

after these models were formed in order to test the limits 

of the predicted behaviour or to explore avenues opened 

by increases in understanding. 
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E 1.0 	Spectra of a Switching Wave with two d.c.  

Levels  Controlled by Natural Sampling 

These experimental measurements were made in 
order to compare the spectra of a wave with two d.c. 
levels with an algebraic description based upon those 
of Bennet, Fitch, and Kretzmer. The attributes compared 
are split into two distinct groups, namely the low and 
high frequency components of the wave. The comparisons 
are described in sections E 1.1 and E 1.2 respectively. 

The experimental measurements were made at 
the output of an encoder produced by combining a comparator 
and switch array of the form shown in figure E 1.0 with 
a sampling wave generator consisting of one of the 
function generators listed in appendix E 10. Input 

signals and power supplies were provided by other items 

in this list. The encoder output was used to drive a 

light resistive load. 
The expression describing the switching wave is 

e0 (t) 	= 	i e. n  (t) 	1'17°4  + Z 
e s  r=1 

(r[wst +n(14.0Cre (t)17 n 	1) 	• 7 	L e s .1 _I 

- Sin(rr
L
w 
s
t-n(1+ 
 7 

(t), 11  ( ir  
J'i 

where e0 (t) is the instantaneous encoder output voltage, 

Vs  is the supply rail voltage (+Vs&-Vs ), 

e(t) 	is the encoder input voltage, 
e s  is the peak to peak sampling wave voltage, 

ws  is the sampling wave angular frequency, 

is the proportion of positive slope, in 
each period of the triangular sampling wave, and 

= 1-c . 

The expression can be derived directly from those 

given by Bennet, Fitch, and Kretzmer or it may be derived 

using the theory in Appendix A 3.1.1 in a similar way to the 

description derived in Appendix A 3.1.2a. 



E 1.1 	Low Frequency Components of Two Levelled 

Waves Controlled by Linear Natural Sampling 

The low frequency component of the switching 

wave, that described by e 1n (t) * (2V5/e 5 ) in the expression, 

was compared with the encoder input signal during these 
measurements. Both d.c. and a.c. input signals were 

used. 

The first measurements were of the d.c. input-

output characteristic. These were plotted and the 
linearity of the system measured. Sources of nonlinearity 
of the d.c. characteristic were isolated and corrected as 
much as possible. The second stage of the experiment was 
the measurement of a.c. signal input-output characteristics. 

Initially direct measurements of harmonic amplitudes were 
attempted but these were abandoned in favour of the 

balance technique outlined in section E 7.1. 

The range of parameters measured are listed below. 

range  
full range (saturation to 
saturation) 
full range 
Sine, square, and triangular 
1:1 
triangular with rise/fall 
time ratios from 1:1 to 1:9 
200Hz to 50khz 
d.c., and from 20hz to 
.85 sampling frequency 

parameter  

d.c. component of output 

a.c. component of output 
input waveform shape 

sampling waveform shape 

sampling wave frequency 

input waveform frequency 

For the range of conditions outlined above the 
d.c. and a.c. input-output characteristics matched very 

• closely. For low sampling rates the difference was of 
the order of 0.05%. This difference was of the order of 

stray capacitive and inductive couplings between input and 



output of the amplifier. For higher sampling rates and 

input signal frequencies the few micro seconds delay in 

the switching wave steps due to excessive forward bias 

of the output stage was a major cause of, error between 

input and output. Compensation or adjustment of measure-

ments to cancel the effect of the delay based upon the 

observed physical delay reduced the effective error to 

the noise level. 

For the range of parameters measured it appears 

from these measurements that an amplifier using natural 

sampling can accurately match the input signal with one 

component of the switching wave. The constancy of the 

characteristic with variation in signal parameters 

suggests good isolation of the basic principle of 

operation from any undesirable, that is unpredictable 

effects. The constancy of input-output characteristic 

is observed for both linear and nonlinear characteristics 

suggesting the input-output relationship is set purely 

by the sampling waveshape in the absence of comparator 

and switching stage errors or deficiencies. For the 

experimental amplifier such deficiencies cause a non-

linearity of less than 0.1% of the maximum output 

provided the delay mentioned above is not considered as 

a nonlinearity. Most of this nonlinearity was due to the 

comparator which exhibited a change in triggering level 

for signals with short times between positive and 

negative going steps. 



E 1.2 	Harmonics and Sidebaods of Two Levelled Waves 

Controlled by Linear Natural Sampling  

The aiw of the experimental work was to compare 

measurements of switching wave components other than the 

low frequency component with values estimated from the 

expression. The evaluation process followed the lines 

indicated in chapter IV, section 4.2. In order to 

minimise repeditive calculation computer program C 2.1.1 

was used to tabulate estimates of sideband and harmonic 

amplitudes and phases for the full field of experimental 

measurements. 

The range of conditions for which measurements 

were made are outlined below. 

parameter 	range 

d.c. component of output 	full range between saturation 
levels 

a.c. component of output 	full range 

input waveform shape 	sinewave and pairs of non- 
commensurate sinewaves 

sampling waveform shape 	triangular with rise:fall 
time ratios from 1:1 to 1:5 

input waveform frequency 	0-1khz for single sinewaves 
0-500hz for pairs 

sampling waveform frequency lkhz to 2khz 

Individual sidebands were measured and tracked 

through a band of frequencies as both modulation and 

sampling frequencies were changed. Profiles of sideband 

amplitude variation with d,c. and a.c. components of the 

modulation were measured for the first eight sidebands 

of the first and second harmonics of the switching wave. 

Selected sidebands of harmonics up to the 15th were also 

tracked and measured. 
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. Experimental results varied in accuracy with 

the quality of filtering and ptoximity to the measure-

ment frequency of unwanted sidebands. For this reason 

the accuracy of measurement varied from 1% for strong 

well spaced sidebands to 50% for closely spaced or very 

weak sidebands. In all cases the experimental results 

were consistent with computed amplitudes to within the 

tolerance of the experimental measurements. 

E 2 • 0 	Measurements of a "Linear" Thyristor Amplifier 

The waveforms produced by a linear thyristor 

amplifier were compared with algebraic descriptions 

computed using the methods outlined in chapter III. 

The introduction below describes the equipment used and 

the types of waveform measured. The ranges of measure-

ment parameters and the accuracy of their match with 

algebraic descriptions are described in sections 2.1 

and 2.2; the former Concerns the low frequency waveform 

components, the latter the high frequency components. 

The circuit of the amplifier is shown in 

figure E 2.0a . This circuit allows the initiation of 

thyristor conduction to be varied in phase from one 

supply waveform zero to the next. It is thus capable of 

controlling waveforms with or without.diode clamping of 

the array. Resistive loads were coupled to the array 

via inductors to give circuits of the form shown in 

figure E 2 ,O6. The amplifier operation is outlined below. 

A sampling wave is formed by integrating the 

voltage waveform produced by fullwave rectification of a 

6.3 volt output from the mains transformer. During each 

half cycle of the mains, supply the integrator output 

swings negative but is reset to zero as the supply wave-

form passes through zero at the end of the half cycle. 
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The sampling wave and the amplifier input signal 

are summed at the comparator input. Once each half cycle 

of the supply waveform the comparator input signal passes 

the comparator threshold from positive to negative and 

causes the output signal to initiate thyristor turn on. 

At the end of each half cycle the resetting of the 

sampling wave causes a positive going transition through 

the comparator threshold and removes the gate drive from 

the thyristors. 

For the sinewave supply used the sampling wave 

is a cosine segment so that as the input signal is varied 

positively away from the comparator threshold the phase 

of thyris'for turnon varies from 00  to 1600  and the 

average value of the resulting switching wave varies 

linearly with the input signal. This ideal is attained 

only if the load circuit causes a negligible change in 

thyristor conduction voltage over each half cycle. This 

is partially facilitated by the current source indicated 

as part of the load. This is set to a current greater 

than the negative peak of the filter input ripple current 

so that the thyristors are always biased on. 

E 2.1 	Low Frequency Measurements  

The objectives of the low frequency component 

measurements were first, to establish the degree of and 

sources of nonlinearity in the input-output characteristic, 

and second, to measure any variation of the input-output 

characteristic as the control signal frequency was 

increased to a significant fraction of the sampling 

frequency. Nonlinearities of the characteristic were 

measured using the balance technique outlined in section 

E 7.1. The calibration and measurement sequence adopted 

is described below. 



The sampling wave integrator was adjusted 

to give a true cosine waveform by adjusting the 

integrater bias. The d.c. input-output characteristic 

was then plotted for a load consisting of the current 

generator paralleled by a capacitor and a large resistor. 

With this load the output voltage could be varied from 

0.05 to 0.95 of maximum output with a deviation from a 

linear characteristic of less than 0.2% of maximum 

output. Input-output characteristics were then measured 

for a range of loads and for both d.c. and a .c. control 

signals, The ranges of the measurement parameters are 

summarised below. 

parameter 	range of parameter 

input signal: amplitude 	.05 max output to maximum output 

frequency 	d e c. to 30hz 

output load: constant current 100 ma to 1 amp 

resistive load 	100 ma to 1 amp peak load 
currents 

The maximum deviation from linearity was found 

to be less than 5% of the maximum output. This was 

measured with a resistive load and was due to the non-

linear vaziations in conduction voltage of the diode and 

thyristors as the load current varied over the range from 

minimum to maximum output. Careful measurements of the 

diode and thyristor conduction characteristics indicated 

that all the observed nonlinearity could be attributed to 

these sources. 

These measurements of the linearity of the input-

output characteristic thus indicate that the low frequency 

components of the switching wave are accurately described 

by the waveform descriptions formed using the analysis of 

natural sampling presented in chapter 3, provided the 

variations due to switch element conduction characteristics 

are accounted for. 



E 2.2 	Harmonics and Sidebands 

Comparisons were made of measured and 

calculated sideband and harmonic amplitudes for sine-

wave input signals. The ranges of conditions observed 

are outlined below. 

parameter 	range of parameter 

input signal frequency 	0 to 60hz 

amplitude 	0 to saturation 

d.c. offset 	0 to saturation 

switching wave 	100hz constant. 
frequency 

Sidebands were measured and tracked through 

a range of frequencies as input signal frequency was 

varied. Profiles of sideband amplitude as functions of 

both d.c. and a.c. components of modulation were 

measured for the first 5 sidebands above and below 

harmonir.is 1 to 6. 

The comparison of measured sidebands with 

those calculated for ideal waveforms by programs C 2.1.4 

and C 2.1.5 showed some differences greater than the 

experimental error of measurement. In each case the 

difference was consistent with the difference between 

ideal and observed waveshapes. This latter difference 

was entirely consistent with the voltage drops on the 

switch array elements due to load currents. 



E 3. 	Supply Rejection of a Modified Natural 

Samoler  

A theoretical model of a modified natural 

sampling encoder which enables supply ripple to be 
rejected from the output signal was proposed in section 
3,1,4. This experiment was intended as a necessary but 
not sufficient test of the major features indicated by 
the analysis presented in Appendix A 3.1.4, 

The circuit of Figure •E 1.0 was modified by 
placing a low impedance transformer winding in series 
with the supply to the switching stage. The sampling 

wave was modified in the manner outlined in section 
3.1.4.1, with the aid of an analogue multiplier, to 

reject ripple injected by the transformer. 

The range of conditions examined are outlined 

range or value of parameter 

O to 60% of d.c. supply voltage 

50hz sinewave 
sinewave with d.c. offset 

O to 50% sampling frequency 

O to saturation for ac. and 
d.c. components. 
.5 to 2khz 

• symmetrical triangular (for no 
ripple) 

below. 

parameter  

injected ripple 
amplitude 

frequency 
input signal waveform 

frequency 
amplitude 

sampling frequency 
waveshape 

Three aspects of the switching waveform were 
measured, the residual ripple at 50hz and its harmonics, 
the 50hz and input signal sideband amplitudes of the 
first two harmonics of the sampling frequency, and the 

modulation of the output component corresponding to the 

input signal by the 50hz ripple. 



The residual ripple at maximum unsaturated 

d.c. output was 55db below the level on the supply 

rail. The residual component was at the level produced 

by capacitive and other coupling of the supply rail to 

the comparator input. No sidebands of the input signal 

due to intermodulation with the 50hz ripple were 

detectable, that is they were at least 60db below the 

output signal level. 

The model predicts (see Appendix A 3.1.4b) 

that the harmonics and sidebands will be modulated by 

the 50hz supply ripple. Comparisons were made between 

the measured and predicted amplitudes of this modulation. 

Difficulties in calculating the theoretical amplitudes 

limited these comparisons to situations with d.c. irput 

signals and small supply perturbations. Within these 

restrictions excellent agreement was obtained. The 

largest difference between measured and predicted 

amplitudes was 5% of the measured amplitude, a value 

consistent with the uncertainty of measurement arising 

from the close proximity of the sidebands to their 

parent harmonics. 
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E 4.0 	Measurements of Linearity with Feedback 

The effects of feedback ripple on both d.c. 

and a. C. supplied amplifiers were investigated by 

placing these within the feedback loop outlined in 

figure E 4.0. The d.c. input-output characteristics 

of both the switching amplifier and the entire system 

were plotted as the input of the system was used to 

scan the output between saturation levels. In order to 

minimise the effects of load dependent features of the 

amplifiers light resistive loads and simulated filters 

based on RC networks or combinations of these-with op. 

amps. were used. 

The measurements so obtained were compared, 

where .applicable, with estimates computed on the basis . 

of the model'deScribed in chapter 5. Programs C 4.1 

and C 4.2 generated these estimates. The feedback filters 

used were first and second order low pass filters with 

variable gain and variable pole positions. 

E 4.1 	A d.c. Suoolied AmLlifier 

The amplifier used was that of figure E 1.0. 

The ranges of filter parameters and sampling waves are 

outlined below. . 

parameter 	range investigated 

pole positions 

damping 

gain 

sampling waveshape 

0 to 0.8 of sampling rate 

1 to 5 (for second order 
systems) 

0 to that giving oscillation 
at subharmonics for small d.c. 

offsets 

triangular with proportions 
from 1:1 to 1:20 



For the range ofconditions outlined the 

experimental results matched 'computed values to within 

3% of the total devidtipn.from . linearity. This 

accuracy was consistent .  with the accuracy of output 

measurement for small deviations from linearity and with 

the accuracy of filter gain and pole positions for 

larger deviations from linearity. 

E 4.2 	An a.c. Supplied Amplifier 

The amplifier used was that of figure E 2.0a. 

The sampling waveshape was held fixed at that required 

for a linear amplifier. Only two filter responses were 

examined; these are listed below. 

G(s) = G 0/(1+s/0.5) 

and G(S) = G 0/(1+3(s/0.5)+(s/0.5) 2 ). 

where Go was varied from zero to a value sufficient to 

cause subharmonic jitter. 

For the light load used the openloop non-

linearity of the amplifier was small. The error between 

experimental measurements and values estimated by the 

model was less than 5% of the deviation from linearity. 

The main source of this error appeared to be poor estimates 

of loop gain associated with loading effects which were 

neglected at the time of measurement. Two single spot 

measurements at a later date when this effect was 

considered matched computed values to within 1.5%. 



E 4.3 	Critical Gain Estimates 

The previous two experiments showed that for 

a given filter there was a maximum loop gain below which 

stable conditions apply. and above which oscillation of 

one form or another took place. In some cases these 

critical gains can be estimated and plotted as functions 

of the d.c. output of the switching amplifier. Where • 

the critical gain is associated with phase saturation 

the model of chapter V gives an accurate estimate but 

other conditions were not predictable either on the basis 

of this model or that using describing functions. 

Insufficient measurements were taken to determine the 

exact nature of these limits to open loop gain. 



frequency of oscillation - variation with d.c. input 
voltage, apparent value for 

• a.c. input, apparent value with 

both d.c. and ac. input. 

sideband amplitudes 	- presence and absence noted for 
two values of d.c. input and a 
range of values of a.c. input. 

phase lock 	- observed to occur but no 
numerical data taken. 

The characteristics for d.c. performance, 

both input-output characteristics and frequency of 
oscillation, were then established on a theoretical basis 
and checked immediately by more accurate measurements. 

The conditions for phase lock were established theoreti-

cally and tested at a later date. 

The circuit based on figure E 1.0 was used to 

check the a.c. performance, the form of the switching 
wave sidebands, and the model for phase lock. The 
results were those discussed in chapter VI. This second 
check was made to test the model on a system with higher 
frequencies of oscillation, 50khz rather than the 0.5khz 

of the analogue computer simulation. 

The high Q filter used for the third experi-

mental system had the response shown in figure E 5a. 
Input-output responses for the d.c. amplifier charac-
teristics were measured for a range of filter gains 

between .5 and .05. 

The central half of these input-output 
characteristics matched the predicted sinewave to within 

0.5%. Over this range the frequency of oscillation 
varied by 5% but immediately outside this range sub-
harmonic oscillations occured. At each change in the 

mode of self oscillation steps in the input-output 
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E 5 	Self Oscillating Amplifier Measurements  

The measurements described here were undertaken 

to establish the accuracy of the data in the literature 
and to check the computation methods described in 
chapter 6 as applied to the two examples detailed in 
appendix A 6.2. This passage describes the equipment 
used and the measurements taken. The comparisons made 
with the models of chapter 6, and the conclusions 
reached concerning the accuracy of the models are 
presented in chapter 6. 

In order to take these measurements three 

separate circuits were used to produce switching 
amplifier encoders •of the form shown in figure E 5.0. 
Initially the constant area sampler was simulated on 

the analogue computer. Later the encoder shown in 
figure E 1.0 was modified, first by the addition of an 
integrator to produce a constant area sampler, and later 

by replacing the integrator with a high Q filter. 

The initial analogue computer simulation 

provided an outline of the constant area sampler 
performance which stimulated the development of the 

theory for the calculation of oscillation frequency and 
phase lock boundaries. The features examined with this 

system are listed below. 

d.c. characteristic 

a.c. performance 

7  linearity of input—output 
characteristic. 

— variation of output component 
with frequency, variation of 

harmonic amplitudes with 
• frequency, variation of 
harmonic amplitudes and gain 
with input signal amplitude. • 
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characteristic occur but the overall form is still 

sinusoidal. The overall system response is substantially 

linear for the filter used since the ripple amplitude is 

small compared to the feedback signal. 

No attempt was made to measure the a.c. input-

output characteristic of this system or to investigate 

potential phase lock modes. 

E 6. 	Regular. Sampling  

d.c. leve]led waves with one modulated edge  

Section 3•2 of chapter 3 describes an encoder 

model from which are derived the waveform descriptions 

of appendix A 3.2. The purpose of the measurements 

described below was to check the predictions of waveformh, 

spectra derived from these descriptions. The waveform 

components measured corresponded (in frequency) to the 

sinewave input signals, their harmonics, and their 

intermodulaticn products. 

The circuit used to generate the switching 

waves is shown in E 6.0. Essentially, it is a monostable 

multivibrator. A periodic reset causes the monostable to 

leave its stable state for a period determined by the 

input signal at the reset instant, and by the charge 

injected into the capacitor subsequently. The capacitor 

charge waveform is ccntrolled by the current generator. 

This requires a d.c. control for a linear sampler and a 

periodic waveform synchronous with the reset signal for a 

nonlinear sampler. 



- These measurements were made for the range 

of conditions outlined below. 

parameter 

input signal - dec. 
component 

single ac. component 

a pair a e ce components 
with d.c. component at 

mid range amplitude 

range oLlaatImeter 
saturation to saturation 

amplitude 0 to saturation 

frequency 0 to 0.4 sampling 
rate 

amplitudes 0 to saturation 

frequencies 0.1 and 

0 to 0.4 sampling rate. 

Measurements of the waveform components 

corresponding in frequency with the input signals, their 

harmonics, and their intermodulation products were made 

using the techniques outlined in E 7.2. The accuracy of 

measurement of relative component magnitudes was 

approximately -2% for signals well isolated in frequency 

from other waveform components. 

Since the differences between measured signal 

amplitudes and those predicted by appendix A 3.2 matched 

to within the experimental tolerances outlined above it 

can be concluded that the model predicts the low frequency 

components of waves formed by regular sampling. Because 

the synthesis which yields the low frequency component 

simultaneously yields the high frequency component and 
any error in one will cause an error in the other, it may 

be infered from the experimental measurements that the 

high frequency components are correct also. 



E 7.0 	Some Measurement Technioues 

The measurement of switching wave components 

by direct methods such as tuned filter:: is not suited to 

highly accurate results.. By resorting to zero beat 

techniques higher precision can be attained. By using 

zero beat techniques in conjunction with balanced bridges 

high resolution can be acheived. 

E 7.1 	Measurement  of Amplifier Gain 

For the measurement of amplifier gain negative 

gain variants of the amplifier are used. Input and 

output may then be summed by resistive networks to give 

a null component at the frequency of the input. The 

proportions of the resistive divider then define the 

amplifier gain. By adopting suitable techniques the 

null can be detected with good accuracy even in the 

presence of switching wave components with frequencies 

near those of the signal of intrest. 

E 7.2 	Measurement of Filter Phase and Gain Response 

The procedure adopted is identical to that 

above except that the summing network included a capacitor 

in parallel or series with either input or output 

resistor branch so that cancellation of the phase component 

can occur. The response is then the ratio of the two 

branch impedances. . 



EIO 	Facilities and Eauipment Mentioned in  Text 

Laboratory Equipment. 

CRO: Tektronix Type 317 

Function Generators: 	Beckman 9010 

( 11) 1- Feedback TWG500 

(iii) Feedback TWG501 

( iv) BWD Model 112 

X/Y Recorder: 	H/P 7035 B 

Sianal - Analysers: 
	

( i) Muirhead - Pametrada 

Type D-4892-EM 

( ii) General Radio - 

Type 736-A 

d.c. Power Supplies: 	H/P 60123A, I2V, 

. Other Facilities 

Analogue Computer: 
	EAI TRIO, TR20 

with locally added analogue 

multipliers 

Digital Computer: 
	

Elliot 503 

with Algol Compiler, 8K 

mainstore, 16K backstore. 
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