
SINGULAR INTEGRAL EQUATIONS 

by 

M. L. DOW B.Sc. (Hons) 

Submitted in fulfilment of the requirements 

for the degree of Doctor of Philosophy 

I agree that, if this thesis is accepted 
for a degree of the Uhiversity of 
Tasmania, it may then be available for 
loan and copying. 

(signed) 

date 	•. -.3.12?... 

UNIVERSITY OF TASMANIA 

HOBART 

(January, 1977) 



Except as stated herein, this thesis contains no material 

which has been accepted for the award of any other degree or diploma 

in any university, and that, to the best of my knowledge and belief, 

this thesis contains no copy or paraphrase of material previously 

published or written by another person, except when due reference 

is made in the text. 

(Murray Dow) 



ACKNOWLEDGEMENTS  

I wish to thank my supervisor, Professor D. Elliott for 

his constant interest and advice. 

I also thank Miss G. Gafar for her diligent typing, the 

Australian Government for a Commonwealth post-graduate research 

award, the staffs of the Commonwealth department of education and 

University of Tasmania, and finally the Australian people, who 

provided the funds for this research. 



CONTENTS  

CHAPTER 1 

SUMMARY OF RELEVANT THEORY 

§ 1. Introduction  1 

§ 2. Cauchy integrals and Cauchy principal value integrals  9 

§ 3. The Riemann boundary problem on an open contour  14 

§ 4. The analytic solution of the dominant equation  21 

CHAPTER II 

THE ANALYTIC EVALUATION OF CAUCHY PRINCIPAL 

VALUE INTEGRALS 

§ 5. Introduction 
 

30 

§ 6. Cauchy principal value integrals of Z 
 

31 

§ 7. Alternative forms of the solution of the dominant 

equation 
 

37 

CHAPTER III 

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF 

THE DOMINANT EQUATION .  

§ 8. General description of the algorithm and proof of 

convergence  43 

§ . 9. Expansions of X and X -1  50 

§ 10. The polynomials R3  and Q
3 	

54 

§ 11. Examples - Dominant equation  56 



CHAPTER IV 

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF 

THE COMPLETE EQUATION 

§ 12. General description of the algorithm  68 

§ 13. Quadrature formulae  76 

§ 14. The modified moments  78 

§ 15. Examples - Complete equation  88 

§ 16. A computer program for the solution of the complete 

equation  99 

APPENDIX A.  A contour integral for the modified moments  113 

APPENDIX B.  A singular integral  116 

APPENDIX C.  List of important symbols  118 

REFERENCES  120 



SUMMARY  

The classical analytic solution of the dominant singular 

integral equation 

1
1 

a(t)(1)(t)  
b(t) 	(1)(i)  

dT = f(t) , -1<t<1 , 
T - t 7  J

-1 

is found by transforming the equation into a Riemann boundary 

problem. (The above integral is interpreted as a Cauchy principal 

value.) 

This analytic solution is not very useful for numerical 

work, since it requires the evaluation of a Cauchy principal value 

integral of a function Z, which has, in general, algebraic-

logarithmic singularities at ±1. 

Three alternative solutions are found which avoid this 

problem. These solutions are used as the basis of an algorithm for 

the numerical solution of the above singular integral equation. 

Convergence of this algorithm is proved, and four examples are 

given, including the H equation of Chandrasekhar. 

An algorithm and a computer program is also given for the 

solution of the complete singular integral equation 

1 
a(t)cp(t) + b l

(
rt)  1_ (- 1.)c  di + I  K(t, T)(13 , (T)di = f(t)  ,  -1<t<1 . 

-1 

Two examples are given, including the numerical solution 

of a singular integral equation arising in neutron transport theory. 



CHAPTER I 

SUMMARY OF RELEVANT THEORY 

§1.  Introduction  

We begin with a definition. 

Definition 1.1  Singular integral equations of the form 

cp l  
(1.1) a(t)(p(t)  

b(t) 1 1  (T) 
 dt 7  T  t  I- f -1  K(t,T)(1)(T)dT = f(t), -1<t<1, 

will be called "complete" singular integral equations, and equations 

of the form 

(1.2)  a(t)(1)(t)  
b(t) I I'  (T)  

dT = f(t) , -1<t<1, 
7 

will be called "dominant" singular integral equations. 

The singular integrals in (1.1) and (1.2) are interpreted 

as Cauchy principal value integrals, which are defined by 

(1.3)  f l  CT)  dT = lim  dT  E>0 
T - t  

E÷0 

.11 t-E f t+E _Led 
T - t 

 . 

A sufficient condition for the existence of this integral is given 

in Lemma 2.3. 

The dominant equation (1.2) was first solved by Carleman 

L:4_, in 1922, in the case b = constant.  In 1941, Muskhelishvili [32] 

and Gakhov [16J generalized this solution, allowing b to be a function 

of t. (For a historical summary, see Gakhov [16] ). 

Using these methods, (1.1) can be reduced to a Fredholm 

integral equation, which has a rather complicated kernel, see [32, 

§109 - 111]. While useful for studying the properties of (1.1), this 

reduction is not very useful for numerical work: 

1. 



The accurate numerical solution of (1.1) or (1.2) is very 

difficult, as it involves the evaluation of a Cauchy principal value 

integral of a function Z (see §4 - 5), which has algebraic-

logarithmic singularities at the points ±1. In fact, assuming that 

a and b are real, MacCamy [31] showed that if 

	

- 27i-t„ log a(-1) 	
b(-1)  

a(-1) -i 13 (.4) , -1q<0 , then 

	

00 	00 

(1.4)  cb'(t) - (1 + t) Y  C(1 +
m+n 

1 g
n
(1 +  , 

m=0 n=0 

where the symbol - means "asymptotically equal to as t+-1". (A 

similar result holds at t = 1). Hence, if an algorithm for the 

solution of (1.1) is to give good results, it must be able to cope 

with singularities of this type. 

Singular integral equations on an open contour (e.g., [-1, 1] 

or CO, 0.)) present a more difficult problem than those on a closed 

contour (e.g., the unit circle in the complex plane, or (-a., 0:))). 

For instance, consider the equation 

 

1  H(t, TMT)  dT  = f(t)  t E C (1.5)  a(t)¢(t) + ,n-T c  T _ t 

wnere c is a closed contour. Assuming that a, f, and H are analytic 

in the domain enclosed by c (H analytic in both variables), Case 

showed, under certain conditions, that the solution of (1.5) 

f(t)  
is simply  cp(t)  a(t) 	H ( t, t ) 

We note that (1.4) implies that, using only elementary 

functions, it is impossible to transform (1.1) into an equation on a 

closed contour without introducing singularities. Thus, the mappings 

given in Achieser and Glasmann [2, HO], and Ivanov [20, §11.1] 

introduce square root singularities, and while these are suitable 

2. 



3. 

for equations of the first kind, they only complicate equations of the 

second kind. 

We shall now summarise general numerical methods for the 

approximate solution of equation (1.1), which have been proposed 

previously. 

Singular integral equations of the first kind  

If a E 0, then (1.1) is said to be an equation of the first 

kind. The vast majority of singular integral equations discussed in 

the literature are of this type; efficient algorithms for their 

approximate solution can be constructed using the integrals 

i  

L 

1 T(T)  
dT  

(1.6)  2:- - U n _ i (t) , n=0, 1,...; -1<t<1 , 
IT  i  T - t  

where T n  , U n  are Chebyshev polynomials of the first and second kinds 

(U ..1  E 0). For example, Kalandiya C231 has used the trigonometric 

form of (1.6). It should be noted that the determinant of his 

system of equations (10) is zero, so that his method needs modifying. 

Singular integral equations of the second kind with constant  

coefficients  

If a and b are constant, then we shall call (1.1) an 

equation with constant coefficients. In his book on elasticity, 

riusknelishvili [33, §1101 proposed a method for solving equations of 

this form. While his approach seems quite viable (and is similar to 

the methods used in this thesis), a better method is to use the 

following identity in Jacobi polynomials, given by Karpenko [241 

(see also Tricomi C43J): 



4. 

(1.7)  l_fl  
(1-T)a(11-T)Op(a,G)( 

n 	 dT = cot(Tra)(1-0a (l+t)P rcia '° (t)- 
TT  -1  T - t 

2(11-   (-a) (0,  
sin(Tra) P n+a+13 

,  = -1,0,1,...  ;  -1<t<1 . 

Using this, Karpenko C243 in 1966 gave an algorithm for the 

numerical solution of equations with constant coefficients, and 

estimated the error incurred. 

Using similar methods, Erdogan and Gupta [12], Erdogan, 

Gupta and Cook C13_I and Krenk [271, [28] have also considered such 

equations. 

Singular integral equations with variable coefficients  

For equations in which a and b are variable, only 

Ivanov [19] in 1956 and in his book [20] (1968) has published a 

general method of solution. (The method proposed by MacCamy [31] 

does not appear to be practicable). 

In his first method [20, §13], Ivanov defines a polynomial 

R of degree 2r + 1 such that 

dv  
(1.8)  dtv {R(t) - log[a(t) - i b(t)1} , = 0 , 

= 0,1,...,r. 

Now, if a or b is not differentiable at ±1 (a common occurence), 

then it is necessary to choose r = 0, and consequently the convergence 

of his algorithm will be very poor. Ivanov then transforms the 

contour of the singular integral equation into the unit circle, the 



5. 

coefficients of the resulting equation having discontinuities in their 

r + 1
th 

derivatives. 

This approach is rather tedious, and completely obscures 

useful properties of the original equation. The same criticisms 

apply to the method given in [19]. 

In Ivanov's third method [20, §11.3], poor convergence will 

again result if a or b are not differentiable. Also required is the 

summation of an infinite series (eqn 11.45), the convergence of 

which is unknown, and whose coefficients are not easy to evaluate. 

Ivanov does not give any worked examples of these methods. 

In 1963, Pken [37] obtained a simple expression for the 

solution of 

i  1  At
T/ (1.9)  P

n
(t)(1)(t) + 1/17 Q(t)  T" - t dt = f(t) , -1<t<1 , 

by assuming that P n  and Qm  are polynomials. Using this result, he 

proposed a general numerical method for equations of the form 

IlLt) f l 	th(T)  a(t)(1)(t)  dT = f(t) , -1<t<1 , approximating a by 

P n  and b by AT  Qm . This approach, while quite good, is clearly 

limited by poor convergence if b does not have square root 

singularities at ±1, and if a is not a sufficiently smooth function. 

In §2, we give results from the theory of Cauchy integrals 

and Cauchy principal value integrals which we need in this thesis. 

As we have noted, the solution of (1.2). is given, •for example, 

by Muskhelishvili [32] and Gakhov [16]. These authors derive the 



6. 

solution of (1.2) by transforming it into a Riemann boundary 

problem (see §3), solving the Riemann boundary problem and then 

deriving the solution of (1.2). This is the approach used in this 

thesis; however, since we use a simpler form of the solution of 

(1.2), we will explain the differences between the form of this 

solution derived by Muskhelishvili and in this thesis. 

An important quantity in the theory of (1.2) is the index 

K; for its definition, see §4 •  The index takes only integral values, 

and, if a and b are continuous on [-1,1], depends only on the zeros 

of a and b on [-1,1]. If the index K is positive, then the 

general solution of (1.2) may be written as 

(1.10) (1)  = (PO 	C i 	' 1=1 

where cp o  satisfies (1.2), the  are a linearly independent set which 

satisfy the homogenous equation 

a(t)0(t)  
0 pkti  fl 	0(7  dT  ) 	

, - 1<t<1 , and the c. are arbitrary 
Tr  -1 T 	t 	

1 

constants. If the index is zero, then (1.2) has a unique solution. 

If the index K is negative, then a solution of (1.2) exists if and 

only if -K additional conditions are satisfied, such a solution being 

unique. 

In this thesis, we simply derive the general solution to 

(1.2), in the form (1.10), whereas by varying the index, Muskhelishvili 

is able to derive particular solutions which are bounded at ±1. Thus, 

if the general solution is of index K, then solutions bounded at 

+1 or -1 are of index K-1, and solutions bounded at both ±1 are of 

index K-2. (The only exception to this is if b is zero at +1 or -1, 



in which case the solution (I) is automatically bounded at that end-

point). Allowing the index to vary in this way leads to the necessity 

of classifying the solutions according to their behaviour at ±1. 

The inclusion of these particular solutions complicates the work and 

obscures the nature of the index. Because of these complications, 

and because these particular solutions (if they exist) may be derived 

from the general solution by suitable choice of the arbitrary 

constantsc.in (1.10), we will derive the general solution only of 

(1.2) in this thesis. 

Thus, in §3, we define and solve the Riemann boundary 

problem on the contour [-1,11 , and in §4 solve the dominant singular 

integral equation (1.2) by converting it into a Riemann boundary 

problem. Thus §1 - 4 consist mostly of known methods and results, 

and comprise chapter one. 

Chapter two consists of §5 - 7, §5 being an introduction. 

In §6, we give a method for the analytic evaluation of the type of 

Cauchy principal value integrals encountered in (1.1), and in §7 

apply these results to give an alternative analytic solution of 

(1.2), and two exact solutions which assume that b or f are 

polynomials. These three alternative solutions are used later in 

this thesis. 

Chapter three is concerned with the numerical solution of 

the dominant equation (1.2). The algorithm is given in §8, including 

a proof of convergence; A - 10 give details of the algorithm, and 

in §11 we give several examples. 

7 



8. 

In chapter four we consider the complete equation, §12 

giving the algorithm, §13 - 14 details of the algorithm, and in 

§15 give two examples, one of these being a complete singular integral 

equation arising in neutron transport theory. In §16 we give a 

computer program for the numerical solution of the complete equation. 

The methods of this thesis may be generalised to singular 

integral equations on arbitrary arcs in the complex plane; alternatively, 

if the arc is sufficiently smooth, it may be mapped on to [-1, 11. 



9. 

§2. 	Cauchy integrals and Cauchy principal value integrals  

In this section, we summarise various results from the 

theory of the Cauchy integral and Cauchy principal value integral, 

most of which is taken from Muskhelishvili L32J. First, we define 

the classes H and H*. 

Definition 2.1  A function is said to be Holder continuous on 

an interval I if there exists positive constants A, a, with 

0 < a 5_1, such that I0(s) - 0(01 	As - tl a  for any S ' t E I. 

We denote this by writing 0 E H(1). 

If the interval is omitted (i.e., 0 E H), then it will be 

assumed to be [-1, 1]. In §8, it will be necessary to refer 

explicitly to the exponent a of the class H to which 0 belongs, so 

we will write p E Ha . 

Definition 2.2  If (i) is /Older continuous on any closed subinterval 

of (-1, 1) which does not include ±1, and if 

0 1*(0(1+0 -Y for t near -1 T  
for t near +1 

where 0 < Re y < 1 and 01. , tt E H, then 0 is said to belong to the 

class H*. 

We now consider the Cauchy integral, defined by 

1 
(2.1) 0(z) = (I)(T)z  dT ,  z  [-1,  1]. 

-1 

Lemma 2.1  If 0 E H*, then 0 (defined by (2.1)) is analytic in 

the complex plane excluding [ - 1, 1], and is zero at infinity. 

(p(t)= 



1 0. 

Proof  That (I) is analytic in the complex plane excluding [-1, 1] 

1  
cp(T)  

follows because its derivative, V(z) -  dT , 
-1 (T-z)

2 

exists for all z  [-1, 1]. 

To show that  lim (1)(z) = 0, we substitute the series 
z÷ .0 

T  Z  
k0 

in (2.1), and since this series is uniformly 
-  Z L  

= 

convergent in a neighbourhood of the point at infinity, we may 

interchange the order of integration and summation in (2.1), thus 

proving the lemma. # 

We now consider the behaviour of (I) near the points ±1. 

In the following lemma, we assume that the functions log (z±1) are 

single-valued in the, complex plane near Fl, cut from T1 along 

[-1, 1] and then to infinity. 

Lemma 2.2 	Let gb E H, and 0 be defined by (2.1). Then, for z in a 

neighbourhood of - 1, but z I [ - 1, 1], we have 

0(z) - VI )  log (z+1) +  

where 00  is a bounded function near - 1, and tends to a definite limit 

as z÷- 1 along any path. 

A similar result holds for z near 1, z / [ - 1, 1], via: 

0(z) = T).1  log (z - 1) +  

whore
1 is bounded near the point 1. 

Proof  See juskhelishvili [32, .§29]. # 



1 1. 

We now consider the limiting value of (1)(z) as z tends to a point 

t E E-1, 1J, from either side of E-1, 1J. Thus we define the functions 

+  _ 
L-1, lj by 

0+ 	
= lim (1)(z) ,  Irn z > 0 ,  t  [-1, 1] 

z-±t 
(2.2) 

0 - (t) = lim'O(z) ,  Im z < 0 ,  t E [-1, 1], 
z±t 

provided that these limits exist. The following theorem, due to 

Sokhotski and Plemelj, gives an expression for these limits. 

Theorem 2.1  If (1) E H*, then the limits (2.2) exist everywhere on 

( - 1, 1), and are given by the formulae 

1  
cp 

(2.3)  Oi (t) = ±1/2 (1)(0  
(T) 

+  j  _ t  dT ,  t c E-1, 1J. 
-1 

However, 0 -  may not exist at either +1 or - 1 if (I) is non zero there. 

Proof  See Ouskhelishvili E32, §17j and Gakhov E16, §4i. # 

The integrals in equations (2.3) are interpreted in the sense of the 

Cauchy principal value, defined in §1. 

A sufficient condition for the existence of a Cauchy 

principal value integral is given by the following lemma. 

Lemma 2.3 	If a function (I), defined on E - 1, 11, is HaZder continuous 

in a neighbourhood of a point to  E ( - 1, 1), and integrable elsewhere, 

then II) , which is defined by the singular integral 

ip(t) = (15(T)  dT 

Proof  See Muskhelishvili [32, §19 -j and Gakhov E16, §5J. # 

The next two lemmas concern the change of order of integration of Cauchy 

principal value integrals. 

is HVlder continuous in a neighbourhood of t0 . 
0 



12. 

Lemma 2.4 	(Poincare - Bertrand) 	/-,t; (I) 	H*, (I) 	H* OHJ thc 

product WE H*. Then 

1• 	,1 	. 	1 	,f 	fl 	,f 

	T)  dTdS VO ) 	P ‘ I 	LPN  f • 4--LL- dSdT = 
- 1 T - 	

- 1 S - T 
- 1 S 	t 	- 1 . T 	S  

,li f 	1 	As ( 

+ f
1  

" Ti  dT j  4) k s)   ds - 72  qb(t)tp(t) , -1<t<1 . 
-t  S  t 

 

-1 T 
 

-1  
- 

 

Proof 	See, for example, Levinson [29] or Tricomi [43]. # 

Lonna 2.5 	Parseval) 	Let cp E H*, 4) E H*. and WE H*. Then 

1 1 ,to  
f 	cp(T) f 	,w` 	dsdT = I 	f 

-1 -1 	-1 	
s qV  dTdS I  	. 

Proof 	See Tricomi [43], or replace cp(T) in Lemma 2.4 with cp(T)(T-t). # 

In the following lemma, we give a representation for functions 

wnich are analytic in the complex plane excluding [-1, 1]. 

Lemma 2.6  Let x be an arbitrary function which is analytic in the 

complex plane excluding [ - 1, 1], and which is either analytic at 

infinity or has a pole of order n at infinity. Let h be a polynomial 

of degree n such that 

(2.4) 	lim {h(z) - x(z) 	= 0 

We assume that x E H* . 

Then the following representation for x is valid: 

(2.5) 	X(Z) -   
11 	xl-(T)  

x 	
) _( T. 

T  h(z) , 	z 	[-1, 1] . 
2 	J-1 	I  

Proof 	See Muskhelishvili [32, §78.J. # 

The following lemma provides a powerful technique for the 

evaluation of singular integrals. 



Lemma 2.7  Let X  and h be as in the preceding lemma. Then 

1  1 1 X+(T) 	* -(T)  dT = x + (t) 	X(t) - 2 h(t) , 
-1 

 

	

TT1 	T - 

 

Proof 	Follows immediately on applying Theorem 2.1 to the Cauchy 

integral in (2.5). # 

13. 



§3. The Riemann boundary problem on an open contour  

In this section, we shall solve a Riemann boundary problem, 

that is to say we seek a function (I) which is analytic in the complex 

plane excluding L-1, 1J, zero at infinity, subject to the following 

condition: 

(3.1) 	0+ (t) = G(t). 0 - (t) + g(t) , 	-1<t '<1 , 

where G and g are known functions. 

The material in this section is drawn from Muskhelishvili 

L32, Chap. 10J and Levinson 1 -_29i. 

Definition 3.1 	Given a non-vanishing function G E H, then the 

"canonical function" X of the Riemann boundary problem (3.1) is 

defined to be any function having the following properties: 

(i) X is analytic in the finite complex plane excluding [ - I., 1], 

and has finite degree at infinity, i.e. X(z) = 0(z
-K

) as z±0. 3 

where K is some integer (positive, negative or zero). 

(ii) e(t) = G(t) X(t)  - 1<t<1 . 

(iii) X has no zeros in the complex plane. 

(iv) X -  E H* , and X has the bounds 

B. 
0 < A l  5 IX(z)I < 

 
I 	for Z near -1 , and 

1 
lz+11 

14. 

0 < A
2   
< IXI 5 

B
2 for z near +1 , 

where 0 < 	
2 

< 1 and- 
' 

A  A
2' B1' B2 

 are constants. 



15. 

Equivalently, • we may say that the functions x -  arc iHtegrable 

and nonzero at the points ±1. 

- 

Lemma 3.1 	For G non-vanishing and HoZder continuous on [-1, 1], 

the canonical function X is given by 

(3. 2 ) 	X(z) = (1 - z)° (1 + z ) - K-0  exp1 	f 1 log G(T)  
2Tri 	T - Z 

dT) 

z / [-1, 1] , 

where a and K are given by (3.4), and the branch of the logarithm 

function is chosen such that log G is continuous and single valued on 

[-1, 1]. 

 

i  1 T  
Proof  Define F(z) -  

logG()
dT , z / [-1, 1]. Since G 

T - Z 

does not vanish on [-1, 1], we can always choose a branch of the 

logarithm function such that log G is continuous and single valued 

on C-1, 1J. Since G E H, then by Lemma 2.1, r is analytic in the 

complex plane excluding E-1, ii, and F(0.) = 0.  Hence 

X(z) = 0(z') as z÷0. , and so X satisfies (i). 

Using Theorem 2.1, it is not difficult to show that (3.2) 

satisfies (i ).  Clearly, condition (iii) is also satisfied. 

To show that (iv) is satisfied, we consider the behaviour 

of X at z = ±1. By Lemma 2.2, we can write 

1 
F(z) = F 0 (z) - 2711  log G(-1)-log(z+1) , where ro  is bounded in a 

neighbourhood of the point -1. Putting 

1  1 
(3.3)  y /  + I=  T2-  log G(-1) , y 2  + i 6 2  -  G(1) , 

we obtain 



-K-G+ 
Yl+  1 

X(z) = (1-z)0  (1+z)  exp F 0 (z) near z = -1 , 

and similarly 

0+12+"2  
-K-G 

X(z) = (-I)
Y241'  

(1-z) 
2  

(1+z)  exp F 1 (z) near z = 1 , 

where F 1 is bounded in a neighbourhood of the point 1. Using these 

two expressions, we now choose a and K so that (iv) is satisfied. Thus, 

to ensure that X ±  are nonzero and integrable at the points ±1, we need 

-1<04y 2  

(3. 4) 

5_  0 and 

a  = 

K = 

-1<-K-a+y 1  

[-Y2 1  

EY l i  - a  + 1  

Y1 - a  

0 , which together imply that 

if yi  is non integral 

if y i  is an integer, 

where [xJ denotes the largest integer not exceeding x. Thus we 

have shown that (3.2) satisfies the conditions of Definition 3.1, 

and the proof is complete. # 

It is possible to prove that under the conditions of 

Definition 3.1, the canonical function is unique up to an arbitrary 

multiplicative constant; however, it is not necessary that we do this, 

In Muskhelishvili [32, §79] , the canonical function is 

not unique, because it is allowed to be zero at ±1. This leads to the 

necessity of defining the class of the canonical function according to 

its behaviour at the endpoints ±1. While this approach is useful if 

particular solutions (bounded at -1 or +I) of the Riemann boundary 

problem (3.1) are required, our assumption that the canonical function 

is nonzero at ±1 does not cause loss of solutions to the Riemann 

boundary problem, as we shall prove in Theorem 3.1, below. 

16. 



We also note that (3.2) differs from Muskhelishvili's 

definition of the canonical function [32, §79] by the factor 

(-1) G , and from Gakhov's [16, §43] by the factor (-1f. 

Definition 3.2 	The integer K, defined bY (3.4), will be called the 

"index" of the canonical function X and of the associated Riemann 

boundary problem (3.1). 

As we shall see, the index determines the number of linearly 

independent solutions of the Riemann boundary problem: 

Definition 3.3  If y i  (y2 ) is integral, then the point -1 (+1) is 

called a "special end". 

From the definitions (3.3) of y i  and y2 , we see that an end 

is special if G is real and positive at that end,and it also follows 

that the canonical function is bounded at special ends . , and unbounded 

otherwise. 

Using the canonical function, we can now give the solution of 

the Riemann boundary problem (3.1). 

Let g, G E H , with G non-vanishing on L-1, 1]. Then the 

canonical function X exists, and is given by (3.2), and the index K 

is given by (3.4). 

Theorem 3.1 	Let (I) be analytic in the complex plane excluding -1, 1], 

zero at infinity, with P E H*. Suppose that (I) satisfies the Riemann 

boundary problem 

(3.5)  0+ (t) = G(t) (1) - (t) + g(t) , -1<t<1 . 

17. 
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Then 

1 	1
1 	

g(T) 	dT  
(3.6)  0(z) = X(z) ( 2-Tri 	P ,(z) ) 

j -1 X (T) T - Z 	K-1  

- z / L-1, 111 , 

where P K-1  is an arbitrary polynomial of degree K-1 if <>0 , and zero 

otherwise. If K<0 ,.then (3.5) is solvable if and only if 

(3.7)  f l AL/ T k-ldT = 0 , k = 1,  -K, 
-1 e(T) 

the solution 0 being given by (3.6). 

We shall refer to (3.7) as the "consistency condition". 

Proof  In the first part of this proof, we assume that (3.5) is solvable, 

and show that the solution 0 has the form (3.6). 

We define the function tp by 

1 
1 	/T) 	u \ 	A 

4'

1 	 T 	z  / [-1, 	. (3.8) 	
'z'  f 

 g(T) 

 e(T) T - Z 

Then from Theorem 2.1, we have 

(t) - tp - (t) = g(t)/e(t) 	, -1<t<1 , 

and recalling that G =  , we can write (3.5) as 

(3.9) 

Defining 

(3.10) 

o+ ( t) 	_ tp+ ( t ) _ 0  f t)  _ q) - ( t) , -1 < t <1 . 
X(t) 	x(t) 

_ 0(z)  
Y(z)  X(z)  

tp(z) ,  z / [-1, 1] , 

we see that Y is analytic in the complex plane; in particular, by (3.9), 
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Y is continuous across the arc (-1, 1), and its only possible 

singularities are at the points ±1 and co. Let us examine the behaviour 

of Y at these points. 

+ 
;low, X -  is nonzero at ±1, and 0 -  E H* , hence 0/X cannot 

have poles at ±1. Also, by Lemma 2.2, tp does not have poles at ±1. 

Thus, Y has no poles at ±1, and since Y is continuous across (-1, 1). 

the singularities at ±1 must be isolated and removable. Hence. Y is 

analytic in the complex plane. 

We now determine the behaviour of Y at infinity. Since 

= 0 , and  is analytic in a neighbourhood of infinity, we have 

(at most) Az) = 0(z -1 ) as z±.. . By Lemma 2.1, i(z) = 0(z -1 ) and 

from Definition 3.1, X(z) = 0(z -K ) as z÷.. . Then from (3.10), 

(3.11)  Y(z) = O(z 1 ) + 0(z -1 )  as z4.00 . 

We consider two cases. 

(i) Index K 	0  

If the index K is nonpositive, then by (3.11), Y(0.) = 0. 

Further, since Y is analytic in the complex plane, it follows from 

Liouville's Theorem that Y  0. Hence by (3.10) , 0 = xp , which is 

(3.6) with P K-1  E O. 

(ii) Index K >  

If the index is positive, then by (3.11), Y(z) = O(z) 

as  , and since Y is analytic, it must be a polynomial of degree 

K-1. Identifying Y with PK-1 , we have from (3.10) that 

= X ( -kp + P  , which again is (3.6). 



Thus we have shown that if (3.5) has a solution, then it is 

given by (3.6). 

In the second part of the proof, we show that (3.6) satisfies 

the conditions of the Theorem. Using Theorem 2.1, it is easy to show 

that  , defined by (3.6), satisfies (3.5). From Lemma 2.1 we can 

show that  is analytic in the complex plane excluding [-1, ii, 

and from Lemma 2.2 we can show that OI  E H*. If the index K 	0 , 

then, since X(z) = 0(z -K ) , ip(z) = 0(z -1 ), P1(z) = O(z1) as 

z40., it is evident that 0(00) = 0. If the index K<O, then to determine 

the behaviour of 0 at infinity, we expand tp in powers of.z -1 : 

G 	I 	\ 	1, 1 
li)(z) 	Z-N  f 	k.1)  T K-1  dT 	IZI>1 . 

k=1  -1 e(T) 

Then it follows that  = 4 will be zero at infinity if and only if 

1  
g(T) Tk-1 .T a = 0 , 	k=1,  -K . 

j - 1 x + ( T ) 
This completes the proof of the theorem. # 

20. 



§4. The analytic solution of the dominant equation  

In this section, we will solve the dominant singular integral 

equation 

(4.1) 
1 	cp(T)  a(t)(15(t)  

b(t)  1  
-  

dT = f(t) , -1<t<1 , 
j -1 T  t 

by converting it into a Riemann problem of the type considered in the 

last section. We will derive the general solution of (4.1), as we 

said in §1. 

We assume that a, b and f are real, that 

(4.2) 
 

a, b, f E H  (I) E H* 

and that 

(4.3) 
 

a2 (t) + b2 (t) # 0 for -15t<1 . 

Assuming that a solution (p,  of (4.1) exists, we define the 

function 0 by 

1 
(4.4)  0(z) -

-1 
1 	it,  T  

	

T - 	 5  
dT 	z 	[-1, 1J . Z  

Then by Lemma 2.1,  is analytic in the complex plane 

excluding [-1, 1], and is zero at infinity. Applying the Sokhotski-

Plemelj formulae (2.3) to (4.4), we obtain from (4.1) the following 

Riemann boundary problem for 0: 

(4.5)  0+(t) = G(t)CD(t) + g(t)  ,  -1<t<1 , 

where 

_ a(t) - i b(t)  
(4.6)  G(t)  

f(t)  
a(t) + i b(t)  '  g (t)  a(t) + i b(t)  

,  • 

Using the results of §3, we can write down the solution of 

21. 

(4.5). 



we can also write 

1 
arctan x + arctan T  = 

e(t)  arctan 
b(t).+ 

 N(t) + 

 

Ir7/2  , x > 0 

 

-7/2  , x < 0 , 

1....  if  b(t)  > 0  
2  a(t) 1 ..  if  b(t)  < 0  , 
2  a(t) 

First, we make the following definitions. 

Let Arctan denote the multivalued function, and arctan the 

principal value; thus -7/2 < arctan x < 7/2 for x real, and 

Arctan x = arctan x + 1(7 , k = 0, ±1, ±2,... 

Definition 4.1  Let 6 be a real continuous function, defined on. 

L - 1, 11 , such that for every t E [-1,.1], 8 equals one of the values 

b t  of the multivalued function 	Arctan 
at 

, and such that 

(4.7)  -I < 0(-1)  0 . 

b  t  
Thus e(t) =  arctan  + N(t) , where N is a possibly 

discontinuous function of t which takes only integral values. Using 

the identity 

22. 

which is useful if t is near a zero of a. We note that since 

a, b E H, then 0 E H. 

If we define 

,  % 
(4.8)  r(t) = [a 2  (t) + b

2 
 (t)1 2  , -151 , 

then we can write 

(4.9)  a(t) + i b(t) = r(t) exp rff i 0(t)1 , -1tA 

on choosing the positive sign of the square root in (4.2). Hence, 



(4.7), (4.9) imply that 

(4.10)  b(-1)  0 . 

It is important that this condition is satisfied; thus, it may be 

necessary to multiply (4.1) by -1. It would be possible to remove 

this restriction by changing (4.7), but this will complicate later 

equations, for example (4.13). 

From (4.9) we obtain a(t) - i b(t) = r(t) exp [-Tri 0(t)] , 

and so 4.6) can be written 

(4.11)  G(t) = exp [-271 0(t)] , -15_ts1 

It was specified in Lemma 3.1 that log G be continuous on C-1, 1.1., 

thus we choose that branch of the logarithm so that 

log G(t) = -27i 8(t) ,  .  From (3.3) and (3.4), it follows 

that K and o must satisfy 

(4.12) 
 

K  = 0 

and 

(4.13)  K = - [e(1)] , 

where [xi denotes the greatest integer not exceeding x. 

From (3.2), the canonical function is given by 

(4.14)  X(z) = (1-z)  exp{- I
1 

0( T ) 
 

 dT} , z  [-1,  . 
T  

We note that it follows from Lemma 2.1 that 

(4.15)  X(z) =  )  + 0(z 
-K  -K-1 ) 

as 

With these definitions, the solution of the Riemann 

boundary problem (4.5) is, by (3.6): 

23. 
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J1 
	g(T) 	di 	], ,z 	-1, 1 

	

/ 	11 	, (4.16)  0(z) = X(z)1[ 2 -7i- 	e (T)  T - Z 	
p 
K-1

(z)  

wnere P  is an arbitrary polynomial of degree K-1 if K>0, and K-1 

identically zero otherwise.  If K<O, then (4.16) is a solution of 

the Riemann problem if and only if 

1  
g(T)  Tk-1 ,T 

(4.17)  a = 0 ,  k = 1,  -K 
j -1  X +  (T 

We define 

1 
(4.18) 	Z (t ) = (1-t) -K  ex{- f  0`i./ L - 

	 di  , -1<t<1 , 
-1 

T  

and on applying the Sokhotski-Plemelj formulae (2.3) to (4.14), we 

have the useful expressions 

X 
 _ a(t) r -(t i)  b(t) 

 Z(t) , X (0 _ 
a(t) r+(t1 b(t)  z(t)  

(4.19) 

Z(t) = Le(t) X - (0_1 1/2  ,  -1<t<1 . 

Using (2.3) again, we have from (4.4) that (p(t) = 0 + (t) - 0 - (t) , 

-1<t<1 , and after some algebra we obtain the solution of (4.1), 

which we present as a theorem. 

Theorem 4.1 	The solution in the class H* of the singular integral 

equation 

(4.1)  a(t)(p(t)  
b(t)

1 	(1)(T)  
6 . di = f(t) , -1<t<1 , 

where a, b, f  H and a
2
(0 + b

2
(t) # 0 for - 15t5_1 , is 

(4.20)  (t) - 
a(t) f(t) 	b(t) Z(t)  I' 	f(T) 	di  

(p  0  
r'(t)  

r (t)  j 1  r(T)Z(T) T - t 

 

+ b(t) Z(t)  P  ttl  -1<t<1 • 
r(t)  K-1' " 
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If the index K is negative, then from (4.6), (4.17) and (4.19) 

that (4.1) is solvable if and only if 

r 1 
(4.21)  

f(T)  

j _ l  r(T) Z(T) T
k-1 

 di = 0 ,  k = 1, 2,..., -K 

the solution being given by (4.20). 

Since in deriving (4.20), we assumed that (4.1) had a 

solution, we will show that (4.20) satisfies (4.1). We note that 

jusknelishvili [32] and Gakhov [16] did not prove this,and Tricomi 

f_44, §4.4i proved this in the case b = constant only (i.e., index = 1 

First, we need the following lemma. 

Lemma 4.1  Let x i  be the polynomial of degree -K Which satisfies 

(4.2z) 

Then 

1 im 	
1 

x (z) - X(z)1 = 0 . If K > 0, we choose x i  E 0 . 
zco 

(4.23)  1  f l 	b(T) '-Z )  T T)  d
T 	_ 	a(t) Z(t)  
- t  r(t), -1  "E 
 X 1 (t)  , -1<t<1 . 

Also, let P 
K-1 

 be an arbitrary polynomial of degree K-1 (as above); 

then for K > 0, 

(4.24) 	1- f l  b(T) Z(T)  PK-1(T)  
a(t) Z(t) P 

K-1   di -  r(T)  T - t  r/t-) 

Proof  Define Q = X - x i  , with x l  given by (4.22), and X as in (4.14). 

i 
Then by (4.19), e(t)  

a(t)  b(t)
Z(t) - x l (t) , -1<t<1 , and 

r(t) 

since Q is zero at infinity, on applying Lemma 2.7, we obtain (4.23). 

To prove (4.24), proceed similarly with Q = X P K _ I.  . If 

The polynomial x l  may be constructed using the methods of 

§10, below. 



We now prove that (4.20) satisfies (4.1). 

Proof that (4: 20) satisfies (4.1)  First, it follows immediately 

bZ P. 
from (4.24) that, for K > 0,  K-1 satisfies the homogenous equation 

 

b(t) 1 1  cp(T)  
a(t)flt)  

_ 
dT - 0. Secondly, substituting (4.20) in 

the left side of (4.1), we obtain 

a(t)(t) 	b(t) 1 1  (1)(T)  dT  _ a 2 (t) f(t)  
7  j  T - t  r 2 (t)  

_ a(t7)T b(t)(f ()

t) fll r(T)Z(T) 
T  tdT  b(t) f l  a(T)f(T)  dT  - 

Tr  j _ 1 	r 2( T)  T - t 

b(t) 1 1  b(T)Z(T)  1 1 1  f(s)  ds  

1 
7  j  r(  dTT)(T-t)  j  r(s)Z(s)  s - T  • -  -1 

Reversing the order of the double singular integral using Lemma 2.4, 

and then using (4.23), we obtain 

(4.25)  a(t)cb(t)  
b(t)  f l  o( ) 

'' T ' dT = f(t) + 
IT  

-1 T 	t  

b(t) 1 1  f( T )  x 1 (T) - X 1 (t) 

J 1 
r(T)Z(T)  T - t 
  dT , -1<t<1  

Xl(T) - x i (t) 
Now, if the index K  0, then  

T -  
= 0 , (since x l  E 0 if 

 t 

K > 0 , and x i  is constant if K = 0) , and so (4.20) clearly satisfies 

x 1 (T) - X 1 (t) 
(4.1).  If K < 0, then  

-  
is a polynomial in T of degree 

 

T  t 

-K-1; if the consistency condition (4.21) is satisfied, then the 

integral on the right side of (4.25) is zero, and so (4.20) again 

satisfies (4.1). # 

We observe that if the consistency condition (4.21) is not 

satisfied, then (4.20) satisfies the equation (4.25), which is 

(4.1) with a modified right side. 

26. 
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In •uskhelishvili's notation [32, §791, (4.20) is the 

solution of the class h
0 ' 

and is the general solution of (4.1). 

We note that Khvedelidze [25], [261 has shown that Theorem 

4.1 holds (almost everywhere) if a, b and f are continuous, but not 

necessarily alder continuous. 

We now consider the function 0 and the calculation of the 

index in more detail. 

If a and b are differentiable, then we can derive a useful 

b(t)  
expression for 0 as follows. From Definition 4.1, 0(t) = 4- Arctan  

differentiating and integrating, we obtain 

1 f t  a(T)W(T) - a'(T)b(T)  
dT , -15t, t 0 1 . (4.26)  e(t) = e(t 0 ) + 

a 2( T )  b2( T ) 
' I  to  

It is clear that this expression holds, in particular, near those points 

at which the function a changes sign; thus, despite the change of branch 

of Arctan, 0 is continuous and differentiable, provided that a and b 

are differentiable. 

The following lemma provides a simple method of calculating 

the index without constructing the function 0. 

Let b have p zeros on [-1„ and A zeros f3 1 ,  A  

in the open interval (-1, 1), i.e. (3 i  # ±1, i = 1, 2,..., A.  Define 

i 	= 	1,  2,...,  A, 	y 	and  y -  by 

1 if b/a  is  increasing at  13 i  , and b changes sign there 

c . -1 if b/a is decreasing at , and b changes sign there 

0 if b does not change sign at 6i 



f1 if b/a is increasing at 1- [e(1)] = [e(1-)] + 
0 if b/a is decreasing at 1- 

1 if b has a zero at ±1 and b/a is increasing there 

Y 
0 otherwise 

Lemma 4.2  The index K of the dominant equation (4.1) and of its 

associated Riemann problem (4.5) is 

A 
K=1 -  y -y -  E 

i = 1 

Proof  Using (4.9), it is easy to show that if b/a is increasing at 

0. then L0(3+)] = [0(13.-)] + 1, and if b/a is decreasing at
' 
 then 

1 

[e( i +)] = [0(1 i -)) - 1, if b changes sign.  If b does not change sign 

at 10., then [19(3.+)] =coN._  . Now, if b has a zero at the point +1, 

then 

28. 

Then  [0(1)] = [0(1-)] + y +  

+ 

	

= [0(-1+)] + I  + 	E i  
i = 1 

+ 	+ 	+ X E. 	using (4.7), 
i=1 

and the lemma follows on applying (4.13). # 

Example  Choose a(t) = -t, b(t) = 4 - t 2  . At the point -1, we have 

e(-1) = (1/7) Arctan (-3/4), and so by (4.7) we must choose 

0(-1) = -(1/ff) arctan (3/4) = -0.204833 . 

Thus 

(4.27)  0(t) = (1/ff) arctan L(t 2  - 4)/t]  for  . 

At t = 0, a has a zero, and so we pass to another branch: 

(4.28)  0(t) = 1 + (1/Tr) arctan F(t 2  - 1/4)/ti for 0<t_1 

We can also derive 
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(4.29)  OM = 1/2 - (1/7) arctan It/(t 2  -  , 

Alternatively, using (4.26) and choosing t o  = -1, we obtain 

e(t) = e(-1) + (2/0 arctan 2 + (2/7) arctan (20 . 

As above, we have 0(-1) = -(1/7) arctan (3/4) , which gives 

 

(4.30)  0(t) = 1/2 + (2/7) arctan (20  ,  . 

Of course, (4.27) - (4.30) coincide over common intervals 

of definition. 

It is useful to draw graphs of b(t)/a(t) against t, and 0 

against b/a, to ensure that 0 is constructed correctly. If b/a 

is an increasing function, then 0 will be too, and vice versa. 



CHAPTER II 

THE ANALYTIC EVALUATION OF 

CAUCHY PRINCIPAL VALUE INTEGRALS 

§5,  Introduction  

While (4.20) gives the solution of the dominant singular 

integral equation (4.1), it is not very useful for numerical work, 

due to the difficulty of evaluating the Cauchy principal value integral 

of f/rZ. This numerical difficulty is due to the singularities of Z 

at ±1. Let us illustrate this by an example. 

Example 5.1  Let a(t) = cosu(a+a), b(t) = -sinfla+0t), and 

assume for simplicity that -1<8-a_<1 , -1<3+a‹ ,  . Then from Definition 

4.1, 0(t) = -a-0t , and by (4.13) the index is zero. From (4.18) 

we obtain (in this case) 

Z(t)e2T 
 ; tra  

-1<t<1 . 

However, the mathematical techniques required for the 

analytic evaluation of singular integrals involving the function Z 

are available in i•uskhelishvili [32] and Tricomi 143.i. For example, 

we have already used these methods in Lemma 4.1. 

In §6 we present two theorems which provide methods for the 

analytic evaluation of Cauchy principal value integrals involving Z. 

In §7 we use these theorems to evaluate the singular integral 

of f/rZ in various ways, and thus give alternative analytic solutions 

of the dominant equation (4.1). 
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§6. Cauchy principal value integrals of Z  

In this section, we give two theorems which provide a method 

for the analytic evaluation of Cauchy principal value integrals which 

involve the function Z. We also give some simple examples. 

First, we recall the definitions of Z, see (4.18), X, (4.14) 

and r (4.8). 

Let Q be meromorphic, that is a function whose only 

singularities in the finite plane are poles. Q may only have poles 

on [-1, 1] if 

(6.1)  bQZ/r  H* 

Thus the poles of Q on F-1, 1J must coincide with the zeros of b, and 

the order of these poles of Q must be no greater than the order of 

the corresponding zeros of b. 

Let R be a meromorphic function, with its poles lying at the 

poles of Q, such that QX - R is analytic in the finite plane excluding 

[-1, ii, and such that (on [-1, 1]) 

(6.2)  aQZ/r - R E H* 

Let Q be an entire function, that is a function whose only 

singularity is at infinity, such that QX - R - Q is zero (and analytic) 

at infinity. 

The following two theorems are applications of Lemma 2.7, 

but because of their importance, we present them as theorems. 



Theorem 6.1 	With Q, R and Q as above, then 

( 6. 3) 1 i 	b( Tr tQWzW  dT  _ _ a (t ) 19 (( d z (t )  + R(t) + Q(t) , -1<t<1. 

Proof  Consider the function F, defined by 

F(z) = Q(z)X(z) - R(z) - Q(z)  , z é [-1, 1] . 

By (4.19), its limiting values on [-1, 1] are 

F  
a(t)Tib(t)

I(t) = Q(t)Z(t)   R(t) - Q(t) , -1<t<1 . 
r(t) 

Because of the way Q, R and Q are chosen, F is analytic in the complex 

plane excluding E-1, 1] , and is zero at infinity. By (6.1) and 

(6.2), its limiting values F ±  E H*. Thus we can apply Lemma 2.7, and 

obtain (6.3). # 

Let Q be as above, except that we replace (6.1) by 

(6.4) bQ  * 
E H  , 

Let S be a meromorphic function, with its poles lying at the poles of 

Q, such that Q/X - S is analytic in the complex plane excluding 

[-1, 1], and 

(6. 5) aQ _ 
rZ E H* . 

Let x be an entire function such that Q/X 7  S - x is zero at infinity. 

Theorem 6.2 	With Q, S and x as above, then 

11 ' 
7 

b(T)Q(T) dT a(t)Q(t) 
S(t)  - x(t)  ,  -1<t<1 

-1  
r(T)Z(T) T - t r(t)Z(t) 

32. 
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Proof  Define the function G by 

G(z) = Q(z)/X(z) - S(z) - x(z) , z / [-1,11 , 

and proceed as in the previous proof. # 

In practice, the function Q is specified, and then R and 

are determined (or S and x). 

We need to consider the existence of the functions R, Q, S 

and x. It is sufficient to consider only R and Q. 

If Q has an infinity of poles, then the only possible limit 

point of these poles is at infinity. Then Q will have an essential 

singularity at infinity, and Q can be chosen to be the principal 

part in the Laurent expansion of QX - R at infinity. R can be 

constructed using Weierstrass's factor theorem - see, e.g. Copson 

[10, §7.2_1. 

In practice, Q will have a finite number of poles and 

perhaps a pole at infinity. Then Q will be a rational function, R 

will also be rational, and  will be a polynomial. 

Further generalizations of the above two theorems are 

possible; for example, we could allow Q to have a cut on r-1, 11, 

e.g.  Q(z) = (z 2  - 1) 1/2  . 

Example 6.1  With a, b as in Example 5.1, we choose Q = 1, and 

tnus R E 0. Since the index is zero, it follows from (4.15) that 

lim X(z) = 1, and hence we choose Q E 1. Then Theorem 6.1 gives the 

singular integral 
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l a+3t ,1TT I

1  

4.  
1 	

- Tr  )(1+13T  
T - 

sinTr(a+T)- 

L 
dT = cos Tr(a+Rt).(1  ) t 

-213 
- e  -1<t<1 . 

It can be shown that this result holds provided that 

[(1 - t)/(1 + t)la"t  sin Tr(a+a) E H* 

As further applications of these Theorems, we present the 

following two lemmas, which do not appear to have been published 

previously. 

In these lemmas, we assume that the singular integral equation 

(6.6)  a(t)(p(t) + 12-(-t—
) 
 f  (1)

1  
(T)  dT = f(t) ,  -1<t<1 

7 	-1 T  t  

is soluble; then under the conditions of Theorem 4.1, its solution is 

(6.7)  (t) 
a(t)f(t)  b(t)Z(t) 1 1  f(T)  dT  

cb,   
r2(t)  

ffr(t)  j_ r(T)Z(T) T - t 

b(t)Z(t)  

 

r(t)  P K-1 (t)  '  
-1<t<1  . 

Lemma 6.1  Let A 1 be a polynomial of degree n - K which satisfies 

( 6. d) linifA
1
(z) - z

n 
X(z)} = 0 , 

z±.) 

where n is an integer. If n - K < 0, put A l  E 0 . 

Then 

1  
f(T)Al(T) + i n  b(i)Z(i)P 1 (i) 

1 

Z(T) 
(b.9)  (1)(T)T n  dT = 



35. 

Proof 	Choose Q(z) = z n  , and Q = A 1 ' Since Q has no poles, put 

R = 0 . By (6.8), QX - A i  is zero at infinity, and so by Theorem 

6.1 we obtain 

(6.10) 	f l  b(T)Z(T) t n 	di 	ta(t)Z(t) t n 

r(T) 	T - t 	r(t) 	+ A 1 (t) ' -1<t<1 	/— 

Substituting (6.7) in the left side of (6.9), we have 

0(T)T n  dT = (1 f
1 

 b(T)Z(T) 
r(T) 	

1 1 	ds  

j - 1 r( 5)ZW 5  T  

+ b(T)Z(T) Pr-1 (T)  )TT di 

Inverting the double integral using Lemma 2.5, and using (6.10) to 

evaluate the resulting singular integral, we obtain (6.9), thus 

proving the lemma. # 

Lemffla 6.2 Let 	A2 	be a polynomial 

lim {A2 (z) 
z-÷03 

, we choose 	A2  E 

fl 	 (TN  f 	
di = 

of degree n + K such that 

- 	z nX -1 (z)i. 	= 	0 	. 

0  . 

1 
(1)(i) 	A2 (T)di 

-1 

A2  , S = 0. 	From Theorem 6.2 we have 

(6.11) 

If n + 

Then 

(6.12) 

Proof 

K < 0 

j 

Choose 

1 	r(i)Z(i) 

Q(z) 	= z n 	, x = 

f 1 	b(T)  Tn 	dT  _  a(t) t n  (6.13)  

j_ i  r(T)Z(i) T - t  r(t)Z(t) 	A2 (t)  ' -1<t<1  

Substituting (6.6) in the left side of (6.12), using Lemma 2.5, and 

(6.13), we obtain (6.12), thus proving the lemma. # 
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For example, if the index K is negative, by putting 

successively n = 0, 1,..., -K-1 in Lemma 6.2 we have in each case 

A2  E 0, and thus obtain 

1  r ,  n 
1 kT) T  

(6.14) 

 

r(T)Z(T)  
di = 0  , n = 0, 1,..., -K-1 , 

which is the consistency condition (4.21). Thus, by assuming that 

(6.6) had the solution (6.7) and that the index was negative, we 

have shown that (6.14) must be satisfied. 



§7. Alternative forms of the solution of the dominant equation  

In this section, we show how Theorem 6.2 may be used to 

write the solution of the dominant singular integral equation (4.1) in 

more useful forms, which do not involve Cauchy principal value 

integrals of the function Z. 

Theorem 7.1  Let x2  be the polynomial of degree K which satisfies 

(7.1)  lim f x2 (z) - X
-1 	

= 0 . (If K<0 , x2  E 0). 
Z -÷c° 	• 

Then under the conditions of Theorem 4.1, the solution of the dominant 

singular integral equation 

(7.2)  a(t)(t)  
b(t) 1 1  (T ) 

dT = f(t)  , TI 
 J-1 T 	t 	

-1<t<1 

can be written as 

(7.3) 	
/ _ 

z(t)  tr,t, 	,
2Yt) 	

1 fl f(T)b(t) - f(t)b(T)  dT  
" 	r(t)  IX  7 

-1 	T - t  r(T)Z(T7 

+ b(t) P K _ 1 (t)  ,  

Proof  Adding and subtracting a term, we can rewrite the solution 

(4.20) of (7.2) as 

f(0 1  b(T)  dT (7.4)  (p(t)  a(t)f(t)  
Z(t) 	1  

 

r2 (t)  Tw(t)  i f_ i  r(T)Z(T) T—=—f 
• 1 1  f(T)b(t) - b(T)f(t)  dT  

J-1 	T - t 	r(T)Z(T) 

▪ b(t)Z(t)  p 

 

r(t)  K-1(t)  . 

To evaluate the singular integral, we put Q E 1, X = X 2  , S E 0 

in Theorem 6.2 to obtain 

37. 
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1 
1 f  b(T)  dT 	a(t)  
TTL1 r(T) L (T) T - t 	r(t)Z(t) 	X2 (t)  ' -1<t<1  

where x2  satisfies (7.1). Substituting this in (7.4) and cancelling, 

we obtain (7.3), thus proving the theorem. # 

We note that (7.3) can also be written as 

(7.5) (OM - -11,M  f(t)x2 (t)  f(t) 1 1  b(T) - b(t)  

ir 	J- 1 	T 	t  

dT  
r(T)Z(T) 

b(t) 1 1  f(T) - f(t)  
r(T1(T) 	b(t) P  11 (t)}  -1<t<1 j 	T - t 	K- 

which we will use in §8. 

In tne next two theorems, we assume that bm  is a polynomial 

of degree m, with p zeros, which are at the points 13 i , and are of 

multiplicity ot i  ,  i = 1, 2,..., p.  Thus we have 

a. 

(7.6)  b
m
(z) = y  (z - i3 i)  1  m = y ai  , y = constant . 

i=1  i=1 

Theorem 7.2 	Let bm  be given by (7.6) . Let Q2  be a polynomial 

of degree K-M such that 

(7. 7) lim  Q
2
(z) 

b (z)X(z) j:  - 0 • 
1 	

- 	If K-m<0, Q2  

Let R
2 
be a polynomial of degree m-1 such that 

di. 4- R9 (z) _ 
X(z 
 1. 	0 if 	. 	E-1, 1] 

dzi L `  
) j 

(7.8) 

jr R 

	
a(t) 
)Z(t) 

= 0 
1 2' '  r(t 

dtJ  t=8i  
if E 	1] , 

j = 0, 1,..., a i -1, 	i = 1, 2,..., p. 	If m=0, put R2  E 
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To ensure that R2 exists, we assume that the first a. - 1 

derivatives of a are Holder continuous in a neighbourhood of the 

paints 3 1  ., if I 	E [-1, ii ■  I = 1, 2,...p. 1 

Then the solution of 

b (t) f 1 
(7.9)  a(t)cp(t) +  m 	JiddT  = f(t)  -1 < t < 1 

	

7 	T - t 

is given by 

(7.10)  
" 

12,(+N  _ z ( t)  

r t) /f(t)CR2
(0 + bm (t)Q2 (t)i - 

	

b(t) I 1 f(T) - f(t)  dT  
7  J

-1 	T  t  r(T)Z(T) + bm (t) P ic _ 1 (01 . 

Proof  The solution of (7.9) is given by (4.20); by adding and 

subtracting a term, it can be written as 

bm (t)Z(t) f f(t)  f1  1  (7.11) flt)  _ a(t)f(t)  dT  

r2(t)  r(t)  7 	j_ l  r(T)Z(T) T - t 

 

f l  f(T) - f(t)  dT  p  l 
TT 	T - t  r(T)Z(T)  K- 1

(e
' ' 

..1 < t< 1 
-1 

In Theorem 6.2 we choose Q = l/bm  , S = R 2/bm  and x = 0 2 . Since 

b 	is a polynomial, and the first a. - 1 derivatives of a are 

HOlder continuous it can be shown that the first a. - 1 derivatives of 

Z exist at  , if  (3.i  E 	1] ,  i = 1, 2,..., p .  Also, since 

X is analytic in the complex plane excluding F-1, 11 , and has no 

zeros, then it can be shown that R 2  exists and satisfies (7.8). It 

is evident that the choices of Q and x satisfy (6.4) and (6.5), and so 

from Theorem 6.2 we have 

1 1  1  dT  _  1  {  a_(t)  _ R,(0 .1 - Q 2 (t) , (7.12) — j 1 rk [ 17() T - t  bm (t)  r(t)Z(t)  6  T;L%T  
-1<t<1 . 



40. 

Substituting this in (7.11), we obtain (7.10), thus proving the 

theorem. # 

To construct R
2' it may be necessary to differentiate the 

function Z, which involves a Cauchy principal value integral. These 

may be differentiated using the identity 

d n 11(1  0(TI d  ( 1 0 (n) (T) dI  !i-1 (4)n _ 

(7.13)  -d t n  t
-1 T±f Ti- f -1 T - t 

j=0 
- 1) : x 

x  0 (j) (1)(t-1) j-n  - 0 (j) (-1)(t+1) j-n i , -1<t<1 . 

If derivatives of Z are required at or near +1, the following 

expression (which can be derived from (4.18)) is useful: 

1  nt 

 

Z(t) = (1+0 -K  ex{ - f  dT -.1 , -1<t<1 . 
-1 T  

We now assume that f n  is a polynomial of degree n. 

Theorem 7.3  Let f
n 
and b be polynomials of degree n and m 

respectively, with bm  as in (7.6) . Let Q3  be the polynomial of 

degree n+K -m such that 

fn  (7.14)  (z)  
=  . lim  { °3 (z)  b (z)X(zj = ° " if n+K-m<°  ' 3 - 0 z±..  m 

Let R
3 
be a polynomial of degree m - 1 such that 

f. (z) 

	

d 	
R
3 
 (z)  

rrir  
n  

JL z=13. = 0 
 ,  / [-1, ii 

dzs)   

(7.15) 

 

dj  
a(t)fn(t)1 

R  = 0  ,  E: 

 

dtj 	3  
r (t)Z(t) 

t=R i  

j = 0, 1,..., a i -1 ,  i = 1, 2,..., p .  If m=0,  R3  E 0 . 
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Again, we assume that the first a i  - 1 derivatives of a are Haider 

continuous at (S. , if 	E E - 1, 11. 

Then the solution of the singular integral equation 

 

b(t) f l  4, (I\  
(7.16)  a(t)p(t) +   dT = fn (t) , -1<t<1 , T-7—U I

t 

is given by 

(7.17)  (OM -  (( tt ))  R3 (t) + bm (t)Q3 (t) + b(t) P 1 (t)} , -1<t<1 . 

Proof  The solution of (7.16) is given by (4.20); to evaluate the 

1 1  fn (T)  dT singular integral  r(T)Z(T) T 

and S = R
3
/b

m ' and obtain from Theorem 6.2 

1
1  f (T) 

fi 	 dT  1  
fa(t)fn(t) 

R 	r(T I)Z(T) T - t 	b(t) 1,r(t)Z(t)  
R3 (4 - Q3 (t) , 

-1<t<1 . 

Substituting this in (4.20) we obtain (7.17). # 

The Construction of R
3 

and Q
3 

is discussed in §10; 

x2 , Q2  and R2  can be found similarly. 

We note that singular integral equations of the form 

Qi(t)1  (pmQ,(t) 
(7.18)  a(t)(P(t)  Q2(t)  T 

 +  WITTY 	-1<t<1 , 

wnere Q 1 , Q2 , Q3  and Q4  are polynomials (Q2  and Q4  have no zeros on 

ii) can be solved using Theorem 7.3 by first multiplying (7.18) by 

Q2Q4 • Alternatively (and equivalently), the singular integral 

Q3 (T) 
dT  

can be evaluated using Theorem 6,2, the 
1_ 1  Q4(T)r(T)Z(T) 

we choose Q =  



solution of (7.18) then being obtained using (4.20). 
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CHAPTER III 

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF THE 

DOMINANT EQUATION 

§3. General description of the algorithm and proof of convergence  

We will now give a numerical method for the approximate 

solution of the singular integral equation 

b 
M  

11  
(1)(T)  

(8.1)  a(tt) + m  
T  

t  dT = f(t) , -1<t<1 . 

We assume that b
m 

is a polynomial of degree m: 

(8. 2) 
a. 

bm (t) = y  (t -  
1 

6 i )  , with m =  a. 
i=1  i=1  1  

as in (7.6).  If, in a given equation 

C  
(8.3)  a*(t)(1)(t) + b*(t) 

 P(T) 
 dT = f*(t)  , -1<t<1 , 

R 	T - L 

b* is not a polynomial, or is a polynomial which has some or all its . 

zeros not on C-1, ii , then provided that the zeros of b* on E-1, 11 

are either simple or multiple (see examples below), we may multiply 

(8.3) by a function h, defined on [-1, 1] , such that b m  = b*h is 

a polynomial of degree m. If a* and b* are bounded on [-1, 1] , 

then h must be nonvanishing on 1-1, 11; otherwise b
m 

and a = a*h 

will vanish simultaneously, thus violating (4.3). 

We emphasise that we are not approximating b* by a polynomial. 

In the method below, we will be approximating f . by a polynomial f n  , 

and thus it may be necessary to choose h carefully to ensure that 

43. 
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f = f*h can be approximated readily by f n . 

Example 8.1  Consider (8.3) with b*(t) = sin(nt)(exP(t)-1) , -1<t<1 . 

Then b* has a double zero at t = 0, and simple zeros at ±1. We choose 

b
m
(t) = t

2
(1-t

2
), and so h = b

m/b* will be non-vanishing on [-1, 1]. 

Multiplying (8.3) by h, we obtain 

a*(t)h(t)(t)  
t2 (1-t 2 )  ,r4)T),t  p  dT = f*(t)h(t)  -1<t<1 , TT 	I 

which is now in the form (8.1). 

Example 8.2  Suppose b*(t) = exp(-1/1t1) , -1<t<1 . Since b* has 

a zero of infinite order at t = 0, there does not exist a polynomial 

b such that h = b
m/b* is a bounded non-vanishing function on [-1, 1]. 

Consequently, in this case, we cannot transform (8.3) into the form 

(3.1), and the following algorithm is not applicable. A similar 

statement holds, if b*(t) = (1+0 2  , for example. 

We return to the description of the algorithm. 

We approximate to f by a polynomial fn  of degree n, and 

using Theorem 7.3, we solve 

b„,(t) 11 cb,(T) 
(8.4)  a(t)n(t) +  m_  "  dT = f n (t) , 

7-77  

exactly, giving 

Z, (t) 
(  

_
8.5)  (On (t)  --RT [R3 (t) + bm 

 (00
3  

+ bM  P K  ,(t)]. -1<t<1 . - 1 	" 

If the index is negative, the integrals (4.21) may be evaluated 

using the quadrature formula in §13. R
3 

and Q
3 

can be found using the 

method of §9 and §10. 

We note that if K>0, and n5Jn-1 or if  and n9n-K, then it is 
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not necessary to construct 0 3 , since it is of no higher degree than the 

arbitrary polynomial P K _ 1  (see (8.5)), to which it is added. 

Examples of this method will be given in §11. 

We now examine the convergence of (O n  to the exact solution 

(1) of (8.1). First, we need the following results. 

Definition 8.1  Let F n denote the space of all polynomials of degree 

not greater than n. Then, assuming that f r Ha  , we define 

E
n  

=  min  max  If(x) - gn(x)I . 
g n EF n  

It is well known that there exists a unique polynomial p n  

say, for which max If(x) - p n (x)I = E n (f) . The polynomial p n  is 

called the polynomial of best approximation to f. 

The constants A
l' 
 used below are all positive and 

independent of n. 

Lemma 8.1 	If f E Ha  , then E n (f) 5 A3  n -a  . 

Proof  Jackson's theorem; see [21]. 

Definition 8.2 	Let -1)(6<x 1 <... 	be a set of n+1 distinct 

points. We define the Lagrangian interpolation polynomial of degree 

ntobeL
n
(f;•x)=.(x)f(x.), where Li  are polynomials of degree 

i=0 
n such that Z.(x.)=  j = 0,  n . 

j  1J 

Lemma 8.2  If we choose 

(8.6)
i+1 ) 

	

= cosCOS ( 7  • 1.-7F- 	, i = 0,  n 



Then 

l(x) - S n (s)I  A
5  sup  < not-213 

lx - sr 

x 	s , 

then 

max  X 12,.(x)1  A
l 

+ A
2 l og n . i=0  1  

Proof  See Rivlin  E38, Thm 4.51. # 

Lemma 8.3 	With x. as in (8.6), we have 

max  If(x) -  ; x)I  En (f) (A7  +A 2  log n) , 

where A
7 

= A
1 

+ 1 . 

Proof  See Rivlin E38 ., Thm 4.11. # 

Lemma 8.4  Let f E Ha  Let there be a polynomial g
n 
of degree 

• 

h such that for any n 

max If(x) - g n (x)I 5_ A4  n -a  . 
-15x1 

46. 

where 5 1 (x) = f(x) - g(x) , -15)1 , and °<28<a . 

Proof  See Kalandiya E221 . # 

Definition 8.3  With r and Z as above, and f E H , define the 

operator I by 

1 
1(f; 	= 	f(T)  f(t)  dT  

7  - 1 	T  t  r(T)L(T)  5 	
. 

Lemma 8.5 	If f E Ha  , then I is bounded on [-1, 1] . 

Proof  We have 



II(f; 01 5- 	If(x) - f(s)I 	

111 	

1 f l  IT - t  

-1x,s1  Ix - 

 A sup 

-1<aj  
1  

l  -  
uT 

r(T)Z(T) 
 sl a  

Since f E Ha the first quotient is bounded. Also, since rZ is 

nonzero in [-1, ii , it follows that the integral exists for a>0 , 

and thus I is bounded. # 

We can now prove that the solution (13, r1  of (8.4) converges to 

the solution of (8.1). Since (8.5) is an exact solution of (8.4), we can 

use (7.5) and Definition 8.3 to write the solution of (8.4) in the 

form 

(8 . 7 )  (O n (t) {fn (t)Ex2 (t) + I(bm;t)] - bm (t)I(f n ., t) + 

+ b(t ) PK_A , -1<t<1. 

Similarly, the exact solution of (8.1) is 

(8.8) (P(t)  f(t)I 2 (t)  I(bm ;t)] - bm (t)I(f;  + 

+ bm(t) 
PK-A ' 1<t<1 . 

Subtracting these and defining 

(8.9)  
n =f - f n  =  1P n  = O n/Z , 

we have 

(8.10) 11)(t) - 4) 11 (0 = 6 n (t)LX2(t) + I(bm;t)J - bm (t)I(S n ;t)  , 

-1<t<1 , 

where we have assumed that the arbitrary polynomial P K.1  is the same 

47. 
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in (8.7) and (8.8 

Theorem 8.1  1ff  " and fn is  chosen so  that f .(x / 	f()" n 	.1 

u 2i+1) where x i  = cos ( 2- -FTr  ,= 0,  n , then the solution (1) n 

of (8.4) converges to the solution (I) of (8.1) in the sense that 

lim 	max 	tp(x) - p(x)1 = 0 . 
n.÷.. -15)(51 

Proof 	Since f E H , then by Lemma 8.3 and Lemma 8.1 we have 

A3 	
A 

max Id (x)I5 	(A + A2 log n) 5 
L6- , where 0<a<c . a -15)(51 	n 	nc 	7 	n 

Then, since f is also in the class Ha  , Lemma 8.4 is applicable. 

From (8.10) we have 

max 	11P(t) - 4) 11 (01 5 	max 	16 11 (01 . max 	lX2(t)  + I(bm ; )1 + 
-15t51 	-15t51 	-15t51 

+ 	max 	lb (t)1 . max 	II0 n ;t)I . 
-15t51 	m 	-15t51 

Now 

IS(x) - 1 	
k3-1 

max max 11(6 ;01 5 	sup 	- 	 - tl  , 
-15x,s51 	lx 	s1 13 	-15t51 	( )Z(T) 	dT  

x 	s , 

where 0<213<a . We showed in Lemma 8.5 that the above integral is 

bounded. Applying Lemma 8.4, we have 

A 
maxITO n ;t)I 5 na-213 

Hence 



A 
max MO - 4)11(01 	—6 max 1x2(0  + I b .01 + m' -15_W 	n -1<t<1 

A5  max Ibm (01 . 
n 	m 

Since I, x2  and bm  are bounded and independent of n, and 0<213<ot 

on taking the limit, the theorem follows. # 
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§9. Expansions of X and X
-1 

In §8, and later in this thesis, we require expansions of 

X and X -1  in descending powers of z. 

From (4.14) we have 

(9.1) 

1  ,, 1  
X(z) = (1 - z) -K  exp (-I  °T ‘ T_J z  dT) 

X -1 (z) = (I - Z)  0(T)  dT) . 
T - Z 

-1 

We will consider the expansion for X in detail; the expansion for X -I 

will then follow analogously. 

Using the expansion 

(9.2) 1 - 	1 	7 
T 	Z 	Z  L 

k=0 

• 	Ill.< 1 , 

and defining the moments of 0 to be 

(9.3) C  = 
k 

1 

I -1 
0(T)T

k 
dT 

we can write (9.1) as 

,  k = 0, 1,..., 

(9.4)  X(z) = (I - z) 

 

y C k  z -k-1 ) ,  IzI > I. 
k=0 

The moments C k  , k = 0, 1,...,N say are found as accurately as 

possible. We then define the coefficients bbr )  (bb denoting a 

single symbol) by 

(9.5)  bb
(m) 

z
-k 

= exp  y c, z-k-1)  , m = 
k=0  k=0 

, N, 

Then it follows that 



(0) 
(9.6)  bb k  = Co

k 
 /k!  ,  k = 0, 1,... 

and for m > 0, 

,, 

m  z 
_m - 1, 

 

m-1  
--1  

exp lu (m) - k - exP  Ck zk 
-I bbk  z 

k=0 k=0 

(Cm ) j  c° 

k0  

(m-1) z -k  y 	z 

	

bbk 	
jto 

= 

r k  1 
k 1511-1  ( 

= k0 
 bb

m
1)j  (Cm ) 3 /j: 

=  j=0 

Hence we can write bb (m)  in terms of bb (m-1)  • 
k  • 

[k/(m+1)]  (  11  
(9.7)  bb \ml  =  bb l'( 111 1)i  (Cm ) i /j! , k = 0, 1,...; 

j=0 

 

m = 1,  N . 

Thus the bb (m) can be found using (9.6) and (9.7). 

If we define the e* by 

cc 

(9.8)  et z
-k 

= exp ( y 	z -k-1 ) , 
k=0  k=0 " 

then from (9.7) we see that e* = bb
(N) 

, k = 0, 1,..., N+1, and 
k  k 

(i) so in practice we only need to calculate bb k  , k = 0, 1,..., N+1, 

j = 0, 1,...,N to obtain et , k = 0, 1,..., N+1, for any given N. 

Substituting (9.8) in (9.4), we obtain the required expansion: 

cc 

(9.9)  X(z) = (I  z) -K 
	y et z

-k 	
lzl > I . 

k=0 

We shall give the first few et : 
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(9.10) e* = 1 0 

e* = C 
1  0 

= C0
2
/2:  + C 1  

e5 = CO
3
/3: + C 0C 1 + C2  

Similarly for the expansion of X -1  we define 

(9.11) X  aa l(,m)  z -k  = exp z -k-1  (-  C 
k=0  " 

k 
k=0 

and obtain 

(9.12) aa
(0)  

=(-C
0  ) 
 /k"  

'  
k  =  0,  1,... 

k  •  
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aa
k  ,J0  a k-(m4-1)i  (- 

(m)  J.Wm+ 1 )] a ( m _ i ) 
) j /P. , k = 0, 1,...; 

m = 1,  N , 

giving the expansion for X -1  

co 

(9.13)  X-1 (z) = (1-z) K  e  z -k  ,  IzI > 1 , 
-  k=0 k  

where  ek  = aa l(KN)  , k = 0, 1,..., N+1 . 

The first e
k 

are 



(9.14) e
3 

= -C
0
3
/3: + C C - C 2 

e4  = C04/4 - C o
2
C 1/2! + C 1

2
/2: + C 0C 2  - C 3  

, 

e 5  = -C0  5
/5. + C

0  3
C
1 
 /3' - C

1  2 C0  /2: - C
2 CO2/2: + C 1 C 2  + C oC 

•  

53. 
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§10.  The polynomials  R3  and Q3  

The solution (8.5) of the dominant equation required the 

polynomial Q
3 

(of degree n+K-m) defined by (see (7.14)) 

(10.1)  lim (fQ
3
(z)  

fn (z)  
bm(z)X(z)  

= 0 , 
z-K0 

and the polynomial R 3  (of degree m-1), whose definition can be 

written (see (7.15)): 

di  (10.2)—ER  
dzj  3

(z) - F(z)]  = 0 , j = 0, 1,..., 
z=8. 

1 

where 

fn (z )/X(z), 	 z  [-1, 1] 

F(z) = 

fn (z)a(z)/(r(z)Z(z)) 
 

Z E [-1, 1]  . 

We consider Q
3 

first. Now (10.1) implies that at most 

Q3 (z)  " 	0(Z -1%  as  z ) 
3'  b(z)X(z) 

Multiplying by bm  and using (9.13), this becomes 

( 

N+1 
(10.3)  b(z) 3 (z) - fn (z)(1-z) -, 

	
y e k z

-k 
+ 

o( 
 N2)) - 0(z m-1 ) . 

k=0 

If KA, we find Q
3 
by equating the powers z n+K  , zn+K-1 ! *** ! 

giving n--K -- 1-m equations for the coefficients of 03  . Clearly, 

we need to choose Nn+K-m-1 to ensure that sufficient e
k 

are known. 

If K<O, multiply (10.3) by (1-z ) -1(  and equate the powers z n 
 z n- 1 

m-K 
,z  to find

3 • 

Of course if n+K-m<0 , then Q3  E 0 . 

The calculation of R
3 

is straightforward if all the zeros 

of b are simple, i.e. if a i  = 1 for i = 1, 2,..., p . 
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Then m = p , and the Lagrangian interpolation formula gives 

m  m  z-.  
R 3 (z) = y  F(4)  IT , 	J  

k=1  "  j=.1 Pk - 13j 
j#k 

However, if bm  has multiple zeros, then the construction 

of R 3  may be more difficult. An explicit representation for R 3  

can be obtained using the method of Spitzbart [41] or Goncharov [17] . 

See also Ivanov [20, eqn. 11.171 . 
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§11.  Examples - Dominant Equation  

In this section we give four examples which illustrate the 

preceding theory. In Examples 11.2 and 11.4 •the solution of the 

dominant integral equation is reduced to the evaluation of the function 

Z by quadrature. In the other two examples, Z can be obtained 

analytically. 

Example 11 : 1  Constant coefficients 

Consider the singular integral equation 

, 1 +  f  YkT)  d
T 
 _ a + t  

7  T-t -1 	13 + t -1<t<1 , 

where a, 13, a and b are real constants, such that a 2 
+ b

2 
= 1 , 

161 > 1 , and to satisfy (4.10) , b 5 0. Karpenko [241 has considered 

equations of this form; however, he assumed that the right side of 

(11.1) was a polynomial. 

From Definition 4.1, we have 

(11.2)  0 = (1/70arctan(b/a) + N = constant , 

where 

 1 0  if b/a < 0 

 

-1  if b/a > 0 . 

Then from (4.13), the index K= , and from (4.18) 

(11.3)  Z(t) = (1 - 0 -14  (1 + 0 0  , -1<t<1 . 

From Theorem 4.1 the solution of (11.1) is 

(11.4) 	cp(t) _ a a+t  bZ(t)  f l  a+i1 	di 
+ 	7 	T 7(T) T 	t 

+ cZ(t) , -1<t<1 , 

	

t 	 -  
-1 
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where c is an arbitrary constant. To evaluate the singular integral, 

we use Theorem 6.2, and choose Q( z) = (a+z)/(b(13+z)) , 

S(z) = d/(13+z) where d is to be found, and x to be a polynomial of 

	

a + z  1 
degree one, such that  lim  

z  
xkz)) = 0 . To 

z.÷.0  

determine x, we have from (9.13) and (9.14) that X -1 (z) = -z + (1+C 0 ) + 

+ 0(z -1 ) , where C o  = j0(t)dt = 20 . 
-1 

Hence, after a little algebra, we obtain 

(11.5)  X(z) = (-z + 1 + 20 - a + 

The constant d is chosen so that QX
-1 

- S is analytic at the point 

-(3., hence we obtain 

(11.6) 

where, by (4.14), 

a - 
A - bX(-13)  ' 

 

X(-(3) -  1 
 +1 

 1-0 - 1 

Then applying Theorem 6.2 , we have the singular integral 

1 )1 1  a + T 	1 	di 	a a + t 	1 ,  

 

Z(T) T -  -t  b  +t Z(t)  +t -  X(t)  -1<t<1  
-1 

and substituting this in (11.4) we obtain 

(11.7)  = (1-0 -1-e  (1+0 6 ( (+   A - t  , 

-1<t<1  , 

where A = 1 + Co  - a + 	+ C  , which is arbitrary, since it includes 

C. 

This completes the solution of (11.1), but we will discuss 

the construction of some special solutions. 



Since Z is unbounded at ±1, the solution cb ,  will also be 

unbounded at ±1, except for particular choices of the arbitrary 

constant A. If we choose 

(11.8),_ 
0 

A = -(1 + 13) a  - 	1 13 	1 1 	- 1  - 1 

then (1)(-1) = 0 and cp(1) is unbounded, and for 

(11.9)  A = - (a - ) 1 	11 °  + 

(1)(1) will be zero and (1)(-1) unbounded. 

These two choices of A (or c) give solutions which, in 

Muskhelishvili's [32, §1071 method, are of index zero. The two 

values of A will in general be distinct, but if 

- 	+ 1  e 	a  1 e  
-(1 + (3) 	1 1 	- 1 = - (a -  + I 

then the values of A coincide, and so the corresponding particular 

solution (I) will be bounded at both ±1. In Muskhelishvili's method, 

this is a solution with an index of minus one, and (11.10) is the 

condition that such a solution exist. 

The general solution (11.7) has, of course, an index of one 

in this thesis and in Muskhelishvili's work. 

Example 11.2  b having a pair of complex conjugate zeros  

Consider 

(11.11)  -4(t)  
(t+a)

2 
+ P.

2 
f
1 	

(1)(T)  d, =  , -1<t<1 . 
T  t  

We assume for simplicity that (3 # 0 . 

From Definition 4.1, we have 
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e(t) = ilT arctan [(t + a) 2  + 

and by Lemma 4.2, the index K = 1. Z is given by (4.18), and r by 

(4.8). The degree of b is m = 2, the degree of f is n = 0. From 

Theorem 7.3, the solution of (11.11) is 

(11.12)  (P(t) - 
rZ((t1  

R3 (t) - C(t+a) 2  + (32 ] EQ
3 + Ci) 	-1<t<1 

where R 3  is of degree one, Q3  E 0 ;and ë is an arbitrary constant. 

From (7.15), R 3  is defined by 

R
3
(z) = -X -1 (z)  at  z = a ± iB . 

Putting R 3 (z) = A + Bz , then since X (and X -1 ) has the property 

Xci) = X(z) , we can put 1/X(a ±  = p ± iq, where p and q are 

found from the definition of X. 

From (11.13) we obtain A = -p + aq/13 , B = -q/ , and the 

solution of (11.11) is 

(PM - tZ4  ( + Bt - c[(t+a) 2 + e 3 )  

Thus we have reduced the problem to the evaluation of X(a ± il3) and 

Z, which would presumably be found by quadratures. 

Example 11.3  

Consider 

(11.14) 

a(t) = -yi - t 2  

1 _ t 2 (pm  t -  f  (T)  dT = 1 + t , -1<t<1 . 
IT  

We assume that -1<<1. The form of a(t) makes it possible to find 

the function Z without evaluating the singular integral of 0. 

2 
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X(t)  _  J(t)  
, -1<t<1 . 

x(t)  J+ (t) 

M(z) = 	 , z / [-1, 11 	, 

(11.19) 

We also define 

(11.20) 

60. 

We first note that (11.14) satisfies (4.10), i.e.  b(-1)5_0. 

From Lemma 4.2, since b/a is decreasing at the zero of b, the index 

K = 2. 

Z can be found numerically, but in this case it is possible 

to find Z analytically, as follows. We define 

b(z) = z -:8 

 

J(z) = _b( z ) _ v/z 2 
9 	z , € [ - 1, 1] , 

choosing that branch of /z2  - 1 which is 0(z) at infinity. We 

also define 

w(t) = 1/11 - t 2  ,  . 

Then the limiting values of J on [-1, 1] are 

J I M = -b(t) 	iw(t) , 

J(t)J(t) = r 2 (t) = 1 +  8
2 

- 28t ,  . 

From Definition 3.1, and (4.6), the canonical function X satisfies 

with the branch chosen so that M is zero at infinity. 

Then 

1  m ± ( t) = ± iw(t) 	' 
-1<t<1 , 



X ( t)J(t)  _ X(t) J (t)  (11.22) 
M+ (t)  M(t) 

Hence the function 

(11.26)  Z(t) =  2  -  
2 

r(t)w(t) 
[(1-t 2 )(1+e-2a)] 1/2  
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and so  e(t)/M - (t) = -1 . Thus we can write (11.19) as 

-1<t<1 . 

(11.23)  = XJ/M 

is analytic in the complex plane, and by (11.22) is continuous across 

(-1, 1), the singularities at ±1 being removable. 

To determine the behaviour of (I) at infinity, we proceed as 

follows. 

Since the index of (11.14) is two, then by (4.15), 

(11 .24) 
	

X(z) = z -2  + 0(z -3 ) as z  . 

Also, from (11.16) and (11.20) we have M(z) = z -1  + 0( -  
5 

J(z) = -2z + 0(1) as z  co and so c(z) = -2 + 0(z -  ) as z  co . 

Hence, by Liouville's Theorem, c1(z) E -2 , and so by (11.23) , 

( 11.25) 	X(z) z / [-1, 11  . 

It is easy to show that (11.25) satisfies the other conditions 

of Definition 3.1.  Finally, from (4.19), (11.25) and (11.18) we 

have, since Z is non-negative, 

	

, 	-1<t< 1 . 

 

We will solve (11.14) using Theorem 7.3.  is of degree 

two, and is given by (7.14): 

(11.27) lim (Q
3
(z) -  

z +  1  _ 
(z-  

- 
(3)X(z)  

0 . 
z+co 

Since Q3 will be added to the arbitrary polynomial P K
- 	

(which 
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is of degree one), it is only necessary to find the coefficient of z
2 

in 03 . Thus, from (11.24) we obtain 

(11.28) 
 

Q3
(z) =  + 0(z) . 

R3 is a constant, and is, by (7.15) and (11.26): 

(11.29) R3 -  
,  2

)
, 1 + 8  .  -1/2(1 + 8)k 1  - 8  •  Z(8) 

Hence the solution of (11.14) is, using (7.17): 

2  
- (11.30)  (W O  = 

/1-t (1+
28 -28t) ( 1/2(1+8)(1-8 2 ) 

 
t-8)(t 2+At+B)) , 

-1<t<1 , 

where A and B are arbitrary constants, obtained by adding 0 3  and 

K - 1 	' 

Example 11.4  The H functions of Chandrasekhar  

The H functions of Chandrasekhar satisfy the equation 

1 Hi v N 
dx = H(P) "i  1 + 1/2APHG) J

o 
x + p 

This equation is valid for any p in the complex plane excluding E-1, 

and for 05_111 , it becomes a nonlinear integral equation for H. 

Busbridge [3, §111 has shown that for A = 1 , (11.31) has a 

unique solution continuous in [0, 1] , and for 0<A<1 has two solutions; 

we shall consider only the solution which satisfies 

1 
(11.32) 
 

1/2A 	H(p)dp = 1 - il-A 
0 

Stibbs & Weir F421 have shown that the solution of (11.31) 
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which satisfies (11.32) is given by 

ff/2 

 

(11.33)  H(1.1) = exp ( _ ik f 
 log(1-Xccotc)  

IT  JO cos  1-  P2  sin 2 c dC  ' C)<P<" 131A<1  ' 

and have used this expression to tabulate values of H. 

Sobolev [40, p 106] , and Fox [15] in 1961 (by a different 

method) have transformed (11.31) into the linear singular integral 

equation 

1 

 

(11.34)  H(v)(1+1/2Avlogl  
+ 

v )  1/2Xv f H( C)  dc = 1 , Ckvl . 
1  v  

0 

We shall solve (11.34) using the methods of this thesis, and 

then, since (11.34) does not have a unique solution, use (11.32) to 

locate the particular solution of (11.34) which also satisfies (11.31). 

We do not suggest that solving (11.34) provides the best 

method of solving (11.31), because the logarithmic singularity at 

V = 1 makes it difficult to evaluate the Cauchy principal value integral 

of e, which is needed in Z, below. The expression (11.33) appears to 

be more practical. The equation (11.34) was chosen as an example 

because it was one of the few singular integral equations I could find 

in the literature which had been solved accurately by other methods. 

To transform (11.34) into the type of equation considered in 

this thesis, put t = 2v-1 , T = 2C-1 , c(t) = H(V) , which gives 

 

b(t)  f
1  

(T) 	_ 

 

(11.35)  a(t)q(t) +  dT - f(t) , -1<t<1 , 
1r  J -1 T  — t  

where 

 

(11.36)  a(t) = 1 + 4A(1+t)log 13  ; .tt  , b(t) = -47X(l+t) , f(t) = 1 , 
 • 

-1<t<1 . 
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Sobolev C40, p 109] gave an exact solution of (11.35) subject 

(11.32).  In terms of (I), (11.32) is 

(11.37) 
1 4A f (1)(T)dT 1 - /17=7,-  , . 
-1 

Sobolev's method was to substitute 

(11.38) 
 

(0(t) = CA - B b(t)] Z(t)/r(t)  , -1<t<1 

(where Z is given by (4.18) and r by (4.8)) in (11.35), and by noting 

that bZ/r satisfies the homogenous equation  a(t)(t) + 

+ b(t)f l 	)  
T  dT - 0  1<t<1 ,  (see Theorem 4.1), he obtained 

TI  T -1 T - t 	- 	 1  - 

the following condition on A: 

(11.39) 
1 Z(T) 

4 AA f 	- dT = 1 . 
-1 

With A given by this, since the index of (11.35) is one (see 

below), (11.38) gives the general solution of (11.35), with B an 

arbitrary parameter. Substituting (11.38) in (11.37), and using (11.39) 

Sobolev then obtained 

(11.40) 
1
- 1  

r(T) 
1  

4 BA  
b(T)Z(T)  dT 	if:T 

which can be used to determine B. 

Thus Sobolev has given the solution of (11.35) by (11.38), 

with A and B determined by integrals which involve Z. Since Z is not 

easy to evaluate, and has logarithmic singularities at ±1, we shall 

show how the methods of this thesis can be used to evaluate A and 

B analytically. 

We now solve (11.35) using Theorem 7.3. 
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We observe that in (11.36), a is infinite at t = 1. By 

dividing (11.35) by log((1-0/4), the corresponding a, b, and f 

become bounded but not Wilder continuous. However, as Khvedelidze 

[25] has shown, Theorem 4.1 still holds, and the method below is still 

applicable though we shall not prove this. 

In (11.36), a has a zero on [-1, 11, which we denote by t o  . 

For A = 1 , t o  = 0.667113 , and as A  0 , to  -> 1 . From Definition 

4.1 we obtain 

1 
— arctan (b(t)/a(t))  -1 -t<to IT 

-1/2 - 1 — arctan (a(t)/b(t))  -1<t1 7 

1- 
-1 + —arctan (b(t)/a(t)) ,  t0‹t5-1 . 

e(t) = 

Of course, these expressions coincide over common intervals of definition. 

Thus 0(1) = -1, and by (4.13), K = 1. The endpoint -1 is 

a special end, and so Z will be bounded there. 

In the notation of Theorem 7.3, we have n = 0 and m = 1, 

1  
and so Q 3 and R3 

are constants, given by Q
3 = 

lim 
b(z)X(z) ' z->co 

R
3 
= 1/Z(-1) . From (4.15) and (11.36) we have Q

3 
= 4/(7A)  , and 

so from (7.17) the general solution of (11.35) is 

cp(t) -   1  
4 

(11.41)  + b(t)(Ta- + c) )  

where c (= P  ) 
K-1  

is an arbitrary constant. 

To determine the value of c so that (11.41) corresponds to 

a solution of (11.31), proceed as follows. 
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In Lemma 6.1, we choose n = 0 , and since K = 1 , 

then A E 0 and (6.9) becomes 
1 

11 
(11.42)  j  (1)(T)dT = C fl 

b(T)Z(T)  
A  dT 

r(T) 

since c = P K-1 = constant. To evaluate the integral on the right, we 

choose in Theorem 6.1, Q(t, z) = z - t (where t is a parameter) . 

Since Q has no poles, RE() , and since by (4.15) 

X(z) = -z -1  + 0(z -2 ) , Q(t, z) = z + 0(1) as z  , then ip is a 

constant, given by IP = lim Q(t, z)X(z) = -1 . Hence, since 
z-, o 

Q(t, t) = 0 , Theorem 6.1 gives 

(11.43) 
1 1 1  b(T)Z(T)  A  r(l. )  uT = -1 , 

(We note that this integral can be obtained more directly using §14, or 

by integrating X round a contour enclosing [-1, 1].) 

Using this result, (11.42) and (11.37), we obtain 

4 
(11.44)  c = - TT  (1 - 

and so (11.41) becomes, with this choice of c: 

(11.45) 
(1)(t)  _ Z(t)  (  1  4 

r(t)  TFT.)  
b(t)  /1-A ) , -1<t<1 , 

which is the particular solution of (11.35), subject to (11.37), and 

corresponds to (11.33) using (p(t) = H(Y-) . Using (11.37) (11.43) 

and (11.45) we also obtain 

(11.46) 
( 1  Z(T)  dT  

( 	Z(-1) j 	rT) 	X -1 

Thus we see that (11.43) and (11.46) give simple expressions 

for the integrals (11.40), (11.39). 
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If A = 1 , then the solution of (11.35) becomes, from (11.45) 

(11.47) 
e" _ z(t)1  

r(t) • Z(-1)  ' 
-1<t<1 . 

But from Busbridge [3, §12] we have that 

ri 
J-1 ( 1 +T)(T)dT ' 8/ IT ' 

and so using (11.43), (11.36) and (11.46) we obtain , if A = 1 

that Z(-1) = //2 . 
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CHAPTER IV 

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF THE COMPLETE EQUATION 

§12. General description of the algorithm  

The complete equation 

(12.1)  a(t)(1)(t) + b(t)  f 
1 

TT 	
(T)  

1  
W dT +  K(t, TT)dT = f(t) , 

-1 T 	t  -1 
-1<t<1 

may be reduced to a Fredholm integral equation by defining 

(12.2)  g(t) = f(t) - f l
J  

K(t, T)(1)(T)dT  ,  -1<t<1 
-1 

and then using any of the solutions of the dominant equation. For 

example, this was done by Muskhelishvili [32, § 109] and Gakhov 

[16, § 48], using the solution of §4. However, the resulting Fredhom  LA 
integral equation is, in general, not useful for numerical work, as it 

involves Cauchy principal value integrals of the function Z. 

As we have seen in §7, there are many different ways of 

writing the solution of the dominant equation and consequently many 

possible algorithms for the olution of the complete equation. The 

algorithm which we describe in this chapter has been chosen in an 

attempt to minimize the amount of computation required. 

We assume that b is a polynomial of degree m, of the form 

a. 
(12.3)  b(z) = y H (z - 0.) 1 , where m = y a. 

i=1 
1 	

i=1  
. 

For this to be so, it may be necessary to multiply the 

original equation by some function h, as described in §8. 
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We approximate g (see 12.2) by a polynomial g n  of degree n, 

and solve 

b(t)  I
1

n
( ) 

(12.4)  a(t)(  
T -n (t) +  dT = g n (t)  , -1<t<1  , 

7  J-1  t  

exactly using Theorem (7.2), which gives 

Z(t)  (12
' 5) 	(1'n (t)  - r(t) ( g n (t)[R 2 (t) + b(t)Q2 (t)1 -

• 
b(t) 1

-1  
T - t  r(T)7(T) 

1  gn (T)-gn (t) 	dT  
+ b(t) P

K-1 
 (0 ) ,  7  

where Q
2 

and R
2 
are defined by (7.7) and (7.8), and Z, r and P

1 
 as in 

K- 

§4. Defining g* by 

1 
(12.6)  g*(t) = f(t) - IK(t,  (T)dT  -1<t<1 , 

-1 

we arbitrarily choose gn  so that it interpolates g* at the points 

(12.7)  x. = cos (
7 2j+1

)  j = 0,  n . 

Then g n  can be expressed in terms of the Chebyshev polynomials T i  

as follows see, for example, Hildebrand [18, §9.71): 

n , 
(12.8)  g(t) = y G. T.(t)  ,  -1<t<1 1=0  

where the dash indicates a sum whose first term is halved. The G. are 

given by 

2 
(12.9)  G

i 
= 

n+1
g*(x.)T.(x.)  ,  i = 0,  n , 

j=0 " 

the T. being defined by T(x) = cos (i arcos x) , i = 0, 1,...  5 

. We choose these Chebyshev polynomials and the points x j  

because of the simplicity of the relations (12.8), (12.9) . 
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Of course, any set of polynomials could be used. 

We note that the Chebyshev polynomials satisfy 

To  E 1 ,  Ti (t) = t , 

(12.10) 
T+1(t) = 2t T i (t) - T i _  = 1, 2,... 

 

7  m = n = 0 
To(t)Tm(t) dt = 

 7112'  m  = n  
/T-1 (1-t2)1/2.  0  m  h  

We define the polynomialsW, of degree i, by i  

1- Ti4. 1 (t) 
dT  

W(t) =  L i  1 I  T - t  r(T)L(T) ' 

Then (12.10) gives 

i = -1, 0, 1, . 

 

and the recurrence relation 

 

1  T ; (T) 
(12.13) W(t) = 2tW 1 _  - W 2 (t) +  r(T)z(T)  dT , i = 1, 2,... 

In practice, the W. will be evaluated using (12.12) and 

(12.13), which require the evaluation of the modified moments 

d  
j  r(T)Z(T) 
[
1  T i (T) 
  dT  ,  = 0, 1,..., n-1 . 

i  Tr 
-1 

Then using (12.5), (12.8) and (12.11) we have 

0 (t)  _ Z(t) ( 
(12.14)  G. [T.(t)(R

2 
 (t)+b(t)Q (t)) - b(t)Wi _ 1 (t)] + 

TTET j =0 J J  

 

+ b(t) P  (t) ) . 

Using (12.9) and by defining 
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2 
(12.15)  r 1 (t) - .77.17T 

 
T. 

"  j=0 
T.(0[R

2
(t)+b(t)Q

2
WI - 

b(t)Wj-1 
 (t)) , 

= 0, 1,..., n,  -1<t<1 , 

(12.14) can be written 

(12.16)  (pn(t) - 44/ 
r t  ri(t)g* (xi) + b(t)P K  (t)) , -1<t<1_ 

i=0 

We define a new dependent variable lj n by 

(12.17)  tP ri  = r cp ri /Z , 

and eliminating g* using (12.6), (12.16) becomes 

1  Z(T)  
(12:113) tP rI M 4-  'X r.(t) I 	K(X., T)  I 1 11)-(T)dT = 

j=0  -1  r°' ) n  

= r. F.(t)f(x.)-1- b(t)P  ,  -1<t<1 
j=0 

This is a Fredholm integral equation with a separable 

kernel, and can be solved in the usual way. Defining 

(12.19) 
1 = f 	K(x.  T) 

Z(T) 
 11) (T)dT 

J  -1  J'  r(T) n J = 0,  n , 

multiplying (12.18) by K(x i , t)Z(t)/r(t) and integrating, we obtain 

1 
(12.20)  y 	f 	16x. t) Z(t)  F (tldt 

1  j=0 J  -1  1'  r(t)  j  = 

1 
= y f(x) 	dx., t) z(c'd  r i (t)dt 

j=0 
.  j  _ 1  r 

1 Z(t)  
+ f  t) r(t)  .  V r _ 1 (t)dt , 

-1 
i = 0,  n . 

Defining 
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1 
F. =  f(x.)  K(x.  Z(t)  F..(t)dt 

 

j=0  j  r(t)  

r1  Z(t) Aij  = S i , + 
J  

K(x.„  Fj (t)dt ,  j = 0,  n , r(t) 

	

J  -1  ' 

1 
Q k (t) = f

-1  
K(t,  

Z(T) 
T) r(T)  b(T)L k _ 1 (T)dT , k = 

then (12.20) can be written 

(12.21)  y A.  =F + 
k1  k 
y p Q

k 
 (x.) , 

j=0  ij j  =  

l• • • 	K 

,  n , 

where the p k  are arbitrary constants and the L k  can be chosen to be 

polynomials of degree k, with  = 
k=1 
Yp

k
L k-1 • If the index K 

K-1  

is zero or negative, then the term  Y p
k 

Q
k
(x

i
) is omitted. 

k=1 

Thus we have reduced the complete singular integral equation 

(12.1) to the Fredholm integral equation (12.18), which was then 

reduced to the system of linear algebraic equations (12.21). 

Since (12.21) may still be soluble if the matrix A is singular, we , 

need to consider two cases. 

Matrix A non-singular  

If the matrix A is non-singular, then its inverse A
-1 exists, Thus 

(12.21) can be solved, giving formally 

n 
-1 

=yA.. F. +Yp  A.. Q1  ,i= 0, 1,...,n, 
j=0  ij j  k 

k-1  
j-0 ij k J  

)  
A-1 

oix„„pc_ ak 	4A-c"----t-  1  . 
Then, to find 'pr,  we use (12.18) and (12.19): 

(12.22)  tpn (t) = v(t)  

k=1 
ok uk ( t)  -1 ` t<1  ' 



where 
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v(t) =  F.(t) 
j=0 

-  AT 1  F 
k=0 Jk  

5 

(12.23) 

n 
u k (t) = b(t)L k _ 1 (t) - rf.  r.(t)  X A.i  

j=0  Z=0 J  

We then use (12.17) to obtain 0 , our approximate solution of (12.1). 

The first term on the right side of (12.22) corresponds 

to an approximate particular solution of (12.1), and the other 

term corresponds to the K approximate solutions of the homogenous 

equation 

b(t) f 1  (  1 
a(t)0(t) +  (P' T) 

 
1 dT +  K(t, T) 11)(T)dT = 0 9  -1<t<1 . 

TT  
-1 T  -1 

Matrix A singular  

If the matrix A in (12.21) is singular, then its inverse does not 

exist; however it may still be possible to solve (12.21). This 

corresponds to (12.1) being an eigenvalue problem. 

From Noble [34, Thm 10.22], we have that (12.21) is 

soluble if and only if 

(12.24) +  p k1  k Q (x.) ) y = 0 , =  -i 
1=0 

where y i  are any solutions of 

(12.25) 
 y A. y. = 0  ,  i = 0,  n . 

j=0 

If A is of rank s, then (12.25) has n+1-s linearly independent 
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solutions. If (12.24) is soluble, then the solution of (12.21) is of 

the form 

( 0 1 	"1-s  
=  +  B. z i( j )  = 0,  n , 

j=1 

( 
where the z. 0) are a particular solution of (12,21), with the p k  

satisfying (12.24), the z  the n+l-s linearly independent 

e arbitrary constants. 
j=0 1 J 

Negative index  If the index of (12.4) is negative, we need to check 

that the consistency condition (4.21) is satisfied; i.e., cp is a solution 

of (12.1) if and only if 

1  1  ,k 
(12.26)  f  [f(t) -  K(t, T)(1)(T)d-r] 

r(t)Z(t)  dt = 0 , 
-1  -1  k = 0, 1,..., -K-1 . 

We approximate cp by (I) 
n' 

and consider the numbers
k 

(12.27)
k 

= 
 

[f(t) - I  K(t, T)yb ri (T)dT]   dt  , 
r(t)Z(t) 

k = 0, 1,...,-K-1. 

If (12.1) is soluble, then (12.26) will be satisfied, and so the numbers 

S k' k = 0, 1,...,-K-1 should be zero to within the order of approximation 

of cp by cp n . 

The numerical evaluation of Cauchy principal value integrals  

To find cp n  from tpn  using (12.17), and if b has zeros on 

E-1, 11, then to find R
2 

(and R
1 
 below), it is necessary to evaluate 

the function Z accurately. In some cases Z can be found exactly by 

analytic means (sse examples in §11); however it may often be necessary 

to use numerical methods to evaluate the Cauchy principal value integral 

involved in Z (see (4.18)). For such methods see Paget [35] , Paget 

& Elliott F361 and Davis & Rabinowitz E11, §2.12.81. 
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This completes the general description of the method of 

numerical solution of the complete equation. This algorithm will be 

complete if we can evaluate the modified moments 

1 rl 	T i (T)  
d i  = -TT  r(T)z(T)  dT  ,  i = 0, 1,..., n-1  , 

and provide quadrature formulae for the integrals in (12.20) and 

(12.27). 

We have not had time to prove that this algorithm (for the 

solution of the complete equation) converges. However, it appears 

that Karpenko's [24] method for error estimates is applicable. 



§13. Quadrature formulae  

To evaluate the integrals in (12.20) and (12.27), we need 

quadrature formulae suitable for integrals of the form 

(13.1)  
= 1 1_1 rZT) dT  

I*  _ 1 1  Z(T)  
r ) 

h( T ) dT  

( T  

where h is an arbitrary, known function. 

A possible method of deriving suitable qOadrature formulae is 

to approximate h by a polynomial h v  of degree v, using (12.8) and 

(12.9): 

2 
(13.2)  h(t) = .y h  y 	T(t)T(x)  , 

J=0 	j v 	i=0 	1 	1 J 

2j+1 
where h interpolates h at the points x. = cos( 2- -\-571 -) 

j = 0, 1,...,  We then define I
v , I* , which are approximate values 

for I, I* by replacing h by h v  in (13.1). Thus defining 

2 
V ,  1.1  Ti 
  dT 

i=0  1  J  

(T) 
, - w. 

J  T- ( x -)  j _1 r(T)Z(T) )Z(T) v+  

(13.3) 

 

* _ 2  '  T (7-)A  = n -  v T1 (x) f l 	 
wj  v+1 •  j

-1 
r  1 

1=0 

we have 

(13.4) I =  w.mx.) , 	I* = y uyt h(x.) , 
V  j=0  v  j=0 

which will be our quadrature formulae for I, I* . 

Flowever,t0calculatew.and w , j = 0, 1,..., v , 

we will need the modified moments 
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1 7(T) 
7.(T)  

.* =  (  
T,(T)dT , 

 

d  = 1  ,  dT  di 	71- 	
" 1 

(13.5) 	i 	71.  r(T)aT)  

i = 0, 1 ,,.., v; 

a method for the evaluation of these integrals is given in the next 

section. 

In practice, it is easiest to choose v = n. 

We will now use these formulae for the approximate evaluation 

of the integrals (12.27). Applying the first formula of (13.4), 

with v = n , (12.27) becomes 

1 

 

6 =  w (f(x
j  
.) - f  K(x., T),:p (T)dT) x. k  + R , k  j  j  n 

j=0 

where R is the remainder which depends on n and k. From (12.19) and 

(12.17) this becomes 

(13.6) = y w. Ef(x.) -- x. k 
+ R  k = 0, 1,. 

j=0 J  J  J  
K-1 . 

Thus the
k 
can be readily evaluated to within the accuracy of the 

quadrature formula. 

Another method of using the modified moments to provide 

quadrature formulae is given by Sack & Donovan [391. This approach 

also generates the recurrence relations for a set of polynomials 

orthogonal to 1/rZ , and a set orthogonal to Z/r , and thus 

could possibly be used as the basis for another algorithm for the 

numerical solution of (12.1). However, we shall not pursue this 

here. 
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§14. The modified moments  

We complete the description of the algorithm for numerical 

solution of the complete singular integral equation by giving a 

method for the evaluation of the modified moments 

1  Ti(T) 
  dT (14.1)  d. =- 

1  'if  r(T)Z(T) 
-1  

, dt  _ 
11  _ 1  r T 

_ 1 f
1 91  NA ikT)UT 

= 0,  n, 

which are required in (12.12), (12.13) and (13.3). 

We first give several alternative expressions for the 

canonical function X, defined by (4.14). We note that similar methods 

have been used by other authors; for example, see Cercignani [8]. 

Lemma  14.1 Two alternative representations for X are 

b(T)Z(T)  dT  X(z) = - 1- 1
1 

r(T)  T- z  Xl (z)  

78. 

(14.2) 
1 i 

-1 (Z) X  = b(T) f 
_1  r(T)Z(T) Tr 

z / [-1, 11 
dT  

T _ z  X2(Z) 

where X '  is given by (4.22), and x2  by (7.1). 

Proof  From (4.19) we have 

X + (t) - X(t) = - 2ib(t)Z(t) 
 1  1  _ 2ib(t)  

r(t)'  r(t)Z(t)  ' 
X + (t)  x(t) 

-1<t<1 , 

and applying Lemma 2.6, (14.2) follows. # 

The value of this lemma is that it connects integrals of 

0 (see (4.14)) and integrals involving the function Z. 
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Since 

(14.3) 
1 

T - Z 

()a 

— — —
1 

y (T/z)
k 

z  k=0 
IT/zI < 1 , 

then by defining the moments 

(14.4) 
= 1.1 1  b(T)  k 

7  .1 -1 r(I)Z(T) 
T dT  

E* _ 1 11  b(T) Z(T)  k 
k  r(7)  T dT 

k = 0, 1,..., 

we can write (14.2) as 

X( z) = V E* z -k-1  +  'z' X i l ) 

(14.5) 

X 	(z) = — 	Ek 
z-k-1 

+ x2 (z) ,  1z1 > 1 . 
k=0 

But, from (9.9) and (9.13), we have expansions of X and 

-1 . 
X  in powers of z, and so the moments E k , E may be found in terms 

of the moments of e. This result is sometimes useful, but it is only 

sufficient to give the modified moments d i , dt if b is a constant. 

Thus, we prove the following lemma. 

 

0  cc. 
V Lemma 14.2 	Let b(z) = Y IT (z-6 0 .1  , with m =  

i=1 	 i=1 	1 - 

Let R
1 
be a polynomial of degree m - 1 such that 

dj  

dz j  "  4 
(z) - X(z)].,= 	= 0 , 	6 i  / C-1, 11 

p i  

(14.6) 
d j  

----- [R 1 (t)  a(t)Z(t)/r(t)]
t=6. 

= 0 , 6. E C-1, 11 , 
dt3  

j = 0, 1,..., a 1 -1  ,  i = 1, 2,..., p . 

Let R
2 
be as in (7.8), Q

2 
as in (7.7), and let. Q

1 
he a 

polynomial of degree -K-111 such that 

k=0 k  
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(14.7)  lim [Q
1  

. (z) - X(z)/b(z)] = 0  - K -w0, then Q E 0) 1 
z400 

In order that R 1  and R2  exist, we assume that the first Cti - 1 

derivative8 of a are HOZder continuous in a neighbourhood of the 

7474  point f3 i ,if 	E [-1, 1] , i = 1, p . 

Then the foZlowing alternative representation's for X are 

valid: 

(14.8) 

Proof 

1  r 1  
X(z)  =  b(z)  ( Qi(z) 

X1(z) 	= 	b(z)  ( Q2(z)  if' 

Define 

X(z)  
R1(z) 

Z(T)  dT  + R  (z) 

. 

1]. 

, 

r(T)  T  - Z  1 	' 
) 

f1  1 R 2 (Z) r(T)Z(T) T  ) 

 

Z  /  [-1,  11 

-1 X 	(z) 	- 	 R2 (z) 

(z) (14.9) 

Then 

- 
 ) 4) 1(z)  0 

b(z)  
-  

1(,  2 b(z)  

-

2

(z)  ,  z  /  [-1, 

1 and 2 
are analytic in the complex plane excluding [-1,  11 

and in particular are analytic at the zeros R i  of b, because of the 

way R 1  and R 2  are chosen. Similarly, 0 1  , 0 2
+ 

E H*. By the 

definitions of Q
1 
and Q

2' 
we see that

1 
and 0

2 
are zero at infinity. 

The limiting values of 0 1 , 02  on [-1, 1] can be obtained from (4.19), 

and applying Lemma 2.6 we obtain 

( 7 \ _ 	1 f
1 

Z(T)  dT 	1 f 1 	1  dT  

-TTJ FFTET-Z 

 

 (1)2‘ z)  7 j -1 r(T)Z(T)T- z -1 

z é [-1, 1] , 

and using (14.9), the lemma is proved. # 



Using (14.3) and defining the moments 

1 ri  	 1 1 (14.10)  D  Z(T)  TldT 	
i  0, 1,...i = 7 I 	_r A  t -  =  , 

	

r" 	dT  D 
).Z(T) 	 1 	TT 	r(T) -1 	- 

we can write (14.8) as 

 

X(z) = b(z)(  -k-11. Qi (z) +  Dt z  ) + R 1 (z) 
k=0 

co 

x -1  (z) = b(z) ( Q2 (z) — y Du 
z-k-1 

) + R
2
(z)  1z1 > 1 . 

k=0 " 

Clearly if we can evaluate the moments D k  , Dt then it 

will be easy to obtain the modified moments d i , dt . 

From (9.9) and (9.13) we have expansions for X, X
-1

; 

equating these with (14.11), we have the identities 

 

(14.12) X(z) = (1-z) -  K  e* z -k  = b(z) (Q
1 
 (z) +  D* z -k-1 ) ' " (-) 

k=0 k=0  
K 1 z  ' 

(14.13) X -1 (z) = 1-z) K  Xz -k  = b(z) (Q2 (z) -  D 
k=0 "  k=0 

+ R
2 (z) ' 

I z I > 

These identities provide our method of evaluating the 

moments D k . Dt, by relating them to the e k , et which can be found 

using the methods of §9. 

To find the D
k'  D* we proceed as follows. We assume that the k 

e k , et , k = 0, 1,..., N+1 have been found for a given N. The 

polynomials R i , R 2  can be constructed using the method of §10. If 

the index K is non-negative, we multiply (14.12) by (1-z) K  and equate 

0  -1 
the powers z, z  z

-N-1 
, obtaining Q i  and then Dt , 

81. 
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k = 0, 1,..., m+N+K.  If the index is negative, we equate z -K  , 

z
-K-1  z -K-N-1 

, obtaining Q
l' 

and then D*
' 
 k = 0,  m+N+K. 

k 

In (14.13), if the index is positive, we equate the powers z K , z k-1 ,..., 

K-N-1 
obtaining first Q

2 
and then D

k' 
k = 0, 1,..., m+N-K.  If in 

(14.13) the index is negative, we multiply by (1z)_K  and equate the 

powers z°, z
-1  

z
-N-1 

obtaining Q2 , then Dk , k = 0, 1,..., m+N-K. 

We note that it follows from Lemma 4.2 that Q
2 

is at most of 

degree one, and that if a is continuous (which we have been assuming) 

then Q 1 
E 0; however we have included Q

1 
for the purposes of Example 

15.2. 

Finally we show how the modified moments d i , dt are obtained 

from the moments D  0* k'  k • 

From Abramowitz and Stegun [1, §22.3.61, the expansion of 

T
n 

in powers is 

(14.14) 
[n/2] 

Tn (x) =  y 	(- 
m=0 

)m  cn-m-1)!  (2  n-2m  n  = 0 ,  ,... 1 ,  
m. (n-2m): 

which we write as T
n
(x) =  S• xj  . Thus, from (14.1) and (14.10) 

j=0 
nj 

we have 

d.  v  S.. D. ,  = 0, 1,..., m+N-K 
L  1J J 

j=0 

(14.15) 

d* = y 	Si. D* ,  i = 0, 1,..., m+N+K . 
.  j  j 
j=0 

We note that the S.  grow rapidly with increasing i, 

(in fact S  = 2
i-1

) , and the d, . d* tend to zero, so that the 
1 

growth of rounding errors will restrict the accuracy of the higher 
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order modified moments. A number of different algorithms for the 

solution of the complete equation were tried, but each suffered a 

similar loss of accuracy. Therefore it is recommended in practice 

that the modified moments are calculated using double precision 

arithmetic, unless in a particular case it is known that only low 

order moments are required. 

In Appendix A we derive a contour integral representation of 

the modified moments &- . 

Summary of the algorithm  

To solve a given complete equation using this algorithm, 

we need to find the function 0, and provide methods of evaluating Z, 

the polynomials R /  and R2 , and the moments C i , i = 0, 1,..., N. 

Then this section is used to give the polynomials Q 1 , 02  and the 

modified moments d i , dt , i = 0, 1,..., m+N±K. 

The d i , dt are needed for the quadrature rules of §13. 

The functions Fj  are constructed using 0 2 , R 2  and the polynomials 

W i , i = 0, 1,..., n-1 , which in turn depend on the d i . 

The system of equations (12.21) is then solved for the 

and then (12.22) and (12.17) are used to find the solution 

If the index is negative, then the consistency condition (12.26) 

must be checked. 

This completes the description of the algorithm for numerical 

solution of the complete singular integral equation. We will now 

illustrate the evaluation of the modified moments with two examples. 
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Example 14.1  With a, b as in Example 5.1, 0 is given by 

1 
= - a-f3t; thus the moments C, = I 

1
0(t)t dt (see 9.3) are 

'`  - 

2a . 
-k-T-r 

. 

- k + 2 

Then from (9.10) we obtain 

k even 

k odd 

e* = -2a  e* = 2a 2 
- 213/3 ' e*  -4a

3
/3 + 4W3 - '  1  2  3 - 

- 
 

- 2a/3 , 

etc., and so from (14.5) and (14.4) we obtain Eloc , E , etc., which 

give (provided the integrals exist) 

1  co-FA 
1 - t  dt = - E* = -e -I  sinE1- (a+(it)] 

0  7  -1 

E* = -e213 
1  1 
F 

' 
r7  t siaff(a+Rt)] (1 	Z) 

 a+P.t  2 
dt  = 2a  U - 23 1  

-1 

1 
2 U. 1  . 

E* = -e  —  sin[7(a+0t)]  tl  
- 

/1  _ 
dt  -4a

3
/3 + 4a0/3 - kl  

- 2a/3 , etc. 

Example 14.2  We will consider the accuracy of the above method of 

evaluating the modified moments in more detail. Consider the equation 

(14.16) 
1  Ar 

Ji-t 2  qb(t) -   dT = f(t)  -1<t<1 . 
7  -1 	- t  

Since b (= -1) has no zeros on F-1, 11 , the index is one; m = 0, 

QER 1  =R= 0 and Q2 is of degree one. We note that (14.16) 1  - 2 - 

satisfies (4.10), i.e. b(-1)  0. 
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We have 

(14.17)  = - 1/2 - Iarctan  t2  ,  -1<t<1 . 

To find the modified moments, we need e k  , et , and thus require the 

moments 
1 

	

C
k = I  0(t)tk dt , k = 0, 1,„. 

1 

For k odd, C k  = 0. The even moments can be found by integrating by 

parts, giving 

1  1 
C  = - 
2k  2k+1  2F-1717 c 2k 	, k = 0, 1,... , 

where qk  =li
1 210-2 dt  

t  2,1/2 
-1 2 - t

2 
(1 - t ) 

-2k (2k)' 
=-2  + 2c*  , k = 0, 1,... 

(kW-  2k-2 

and c*
2  = 1/1/  . - 

The e
k 
 e* can then be found using §9. From (14.12) we 
'  k 

co 
have  y et z -k  = (z - 1) X D* z -k-1  , and equating powers of z, 

k=0 '  k=0 k  

we obtain 

(14.18)  D* =  , k = 0 1 
j=0 

Finally the dt are found using (14.15): 

(14.19) d5 = D5 , dt = DI ,  =  D5 ,  = 4D5 - 3Dt , etc. 

Similarly, writing Q 2 (z) = A + Bz , (14.13) is 

(1 - z) y 	z -k  = X D z -k-1  - A - Bz , 
k=0 "  k=0 

CO 
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which gives B = e 0  , A = e
l 

- e
0 

and 

(14.20)  Dk  = e k+1  - ek+2  , k = 0, 1,...  the d being 

found as above. 

Using these expressions, the modified moments d  d* 
k'  k 

were calculated using single precision arithmetic (accurate to about 

11 figures), and are given in the table below. 

To check the accuracy of these figures we can also evaluate 

d
k and d* more directly (in this case) as follows. 

We have from (4.8), (4.18) and (14.17) that 

r(t) = /2 - t 2  and Z(t) = (1 - 2)-1/2 
exp(-1-  

arctan/41-T2 
 dT) 

-1  T 	t  

The singular integral is evaluated in Appendix B, giving 

Z(t) 	= 	(1 	- 	t 2 ) -1/2 

d  =11

1  T (T) 
k (1-t2) 1/2dt 

/12- 	t ) 	2  

9  

Then  (14.1) 

1  
dt 

- 7  J-1 

gives 

1 Tk(t) f 
dt 

1,..., 

/2 + t 

k 	7 	
- t /2-  t (1-t 2 ) 1/2  

k = 0, 

and evaluating these integrals we obtain 

d* = (1 - /2-)
k 	

k = 0, 1,... 

(14.21) 

d
o 

= /2 - 1 , d
1 
 = 1/2(3-2/2) , d

k 
= - (/7- 1)

k 	
k= 

In the following table, we give the d k  as found by the 

method of this section, i.e. (14.20), and the relative error = 

(exact - computed)/lexactl for both d k , dr<  using (14.21). 



Table 14.1 

k 
Using  (14.20) 

d
k 

Relative 
d
k 

error in 
d* 
k 

0 

5 

10 

12 

15 

16 

17 

0.4142 

-0.0121 

-0.0001 

-0.0000 

-0.0000 

0.0000 

-0.0000 

1356 

9330 

4867 

2550 

0152 

0109 

0228 

237 

900 

967 

114 

503 

199 

033 

8 x 10
-12 

-1 x 10
-8 

-2 x 10
-5 

3 x 10
-4 

0.16 

-0.4 

-6 

0 

1 x 10
-8 

-2 x  10
-5 

-4 x  10
-5 

0.04 

-0.4 

0.8 

We observe that the relative error increases with k, and 

has reached serious proportions for k =15. 
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§15.  Examples - Complete Equation  

Example 15.1  Equation with a known solution. 

We choose the complete singular integral equation 

(15.1) _ (1-t 2  ) (t) 
 t - 12.  gT) dT  1 (

1  
(T) dT f 	_ t  7 J -1 T-1-t+X 

 

= -1 + (t 2  + 2Xt + X
2
-1)  ,  

where  X are real, with 1131<1, XI>2 . This singular integral 

equation has, as a particular solution, 

(15.2)  cp(t) = (1-t 2 ) -1/2  ,  -1<t<1 . 

To test the methods of §14, we will calculate the modified 

moments d., dt from the moments C. of 0, rather than 

substitute the explicit expression (11.26), for the function Z, 

in (14.1). However, for the calculation of Z at the zero of b 

(for R
1' 

R
2
) and for use in (12.17), we will use the explicit expression 

(11.26). 

From Definition 4.1 we obtain 

 

-1 - larctan C(t-13)/(1-t 2 ) 1/2 1  ,  
7 

88. 

(15.3) 

e(t) = 
% 

-1/2  
1
-arctan [(1-t

2 
 ) 2/(t-8)]  ,  7 

-3/2 + 
1  
—arctan  ( 1-t) 1/2 

 /(t-8)]  , 7 

As in Example 11.3, the index is two, and by (4.8), 

r
2
(t) = 1 + IS

2 
- 2t  ,  . 
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To obtain the moments of 0 , the following method was used. 

Define 

 

(15.4)  h(t) = 7 (1-t2 ) 1/2  [0(t) + 1 + (1/7) arcsin t] , -1<t<1 

Then from (15.3) it follows that 

 

(15.5)  h(t) = (1-t 2 ) 1/2  arctan L13(1-t) 2/ 1430] , -1<t<1 , 

so we obtain 

c = 1  1 1  h ( t ) r,  dt - 
n  -1 (1-t 

2/(n+1)  , n even 

1/(n+1) - 2 -n-1  ni11-421)T, n odd . 

Since the nearest singularity of h to the arc [-1, 1] is at the point 

-1/2(t3 4.  13 -1 ), then provided R is not close to ±1, the above integral 

can be evaluated accurately by M point Gauss - Chebyshev quadrature 

(see Hildebrand [18, §8.8]): 

1I
1

. h(t)t n  dt  1  r  (M)  (M)  •. 
- —  remalnder , 

1 7 J-
1  (1-t2 ) 1/2  M  i=1  1  

where v(M)  n, (7 
Ai  Ct./a 	2  m  i = 1,  M . 

The method of §12-§14 was used to find the modified moments. 

The right side of (15.1) was approximated by a polynomial of degree n, 

and the integral  
1.1 
J   dT was evaluated using one of the 

quadrature formulae of §13, With v = n . 

The approximate solution of (15.1) is given by (12.22) and 

(11.26) as 
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21L(t) 
(15.6) 
 

(pn (t) -  2 "  t<1 -1 

where 

(15.7)  ti) (t) = v(t) - p 1 u 	p2 u 2 (t) 

The arbitrary constants p i , p 2  were chosen by specifying that 

(15.8)  cbn (±0.6) = 1.25 , 

so that (15.6) will be equal to the exact particular solution (15.2) 

at the points ±0.6. 

In Table 15.1 below, we give the relative error 

[(t) - cp ri (t)] r(t)/Z(t) = 1/2 r 2 (t) - tpn(t)  (q) given by (15.2)) for 

8 = 0.2 , n = 4, 10 and A = 2.1, 3  All calculations were 

carried out in single length arithmetic, to 11 figures. 
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Table 15.1 

Relative error of approximate solution of (15.1) 

1_0(t) - On (t)] r(t)/Z(t) ,  t = -1.0(0.2)1.0 

t 

A=3 =  2.1 

n=4 n=10 n=4 n=10 

-1.0 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

-0.0000 00505 

0.0000 00016 

0.0 

-0.0000 00087 

-0.0000 00101 

-0.0000 00056 

-0.0000 00010 

0.0000 00005 

0.0 

0.0000 00011 

0.0000 00021 

absolute 

value 

-11 <5 x 10 

" 

u 

H 

u 

u 

u 

u 

-0.00446 

0.00086 

0.0 

-0.00123 

-0.00126 

-0.00053 

0.00009 

0.00018 

0,0 

0.00017 

0.00028 

-0.0000 178 

-0.0000 044 

0,0 

-0.0000 030 

-0.0000 007 

-0.0000 006 

-0.0000 009 

0,0000 005 

0.0 

0.0000 009 

0.0000 009 

We also give values of the constants p l , p2  in (15.7) . 

Table 15.2  

Values of p l  and p2 

A = 3 A  =  2.1 

n=4 
n=10 n=4 n=10 

p
1  

p
2 

-0.1000 

1.0000 

0010 

001 

-0.1 

1.0 

-0.1008 

1.0006 

1311 

088 

-0.1000 0167 

1.0000 009 
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The computer program used for obtaining these results is 

given in §16. 

Using (11.26) and (14.1), it can be shown that 

d
0 
 = 4 , d

1 
 = 0 , d 2  = -1/8 , d i  = 0  ,. i = 3, 4, 5,... 

= 5
2-i

/12 
 

i = 0, 1,... 

which are useful in checking the program. 

The program was also run using these exact values for the 

modified moments, giving results identical with Table 15.1, indicating 

that in this example, single precision arithmetic was sufficient. 

Example 15.2  Zelazny's Equation  

In a problem of neutron transport theory, Zelazny [451 

obtained the following singular integral equation: 

1/2 c p log 1 	B(p) + 	c 1.1  (15.9)  ( 1 - 	
dv 

1 - p 	
vB(v)  

 0 
 v - 

1 1  -2d/v 
 B(v)dv - 1/2  

0  
e 

cv  
0/v 0 

+ 1/2 c  
v e 

 
v +  0 

d/v 
v0  0 

2 V + 

 

+  , 0<p<1 , p e -- 
 

0 

where v
0 
 satisfies 

(15.10) 1 = 1/2 c v log v + 1  
v - 1  ' 

v + 1  
the branch of the logarithm being chosen so that log  

-  
is 

v  1 

analytic in the complex v plane excluding F - 1, 11 , and is zero at 

infinity. Then for 0<c<1 ,(15.10) has two real roots tv o . For 
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c>1 , (15.10) has two imaginary roots which we denote by 
ie

1 	
ie

2 
v = ±ip , p>0 . Putting v-1 = r 1  e  , v+1 = r 2  e  , 

-Tr<0 1 <ff , -1 -r<0 2<Tr for v = ip we have r 1  = r 2  , 0 1  + 0 2  =  , 

and so (15.10) becomes 

(15.11)  1 = c p arctan (1/p) . 

In the singular integral equation (15.9), the parameter d is 

the half-thickness of the slab, and the parameter c is related to 

the average number of neutrons produced per collision. 

Physical considerations (see Case and Zweifel [6, §6.6]) 

indicate that (15.9) is •not soluble for o<c<1 , and for c>1 that 

(15.9) is not soluble if d is less than the "critical thickness", 

which will depend on c. 

We note that the dominant part of equation (15.9) is the 

same as in Example 11.4, except for the change of sign in b. Thus 

the methods used by Chandrasekhar [9] and others for the solution of 

(11.34) may be applicable to (15.9). However, we shall solve (15.9) 

by the methods of this thesis. 

We note again that a is unbounded at t = 1 , and refer 

the reader to our comments made in Example 11.4. 

To transform (15.9) into the form (1.1), we put 

T = 2v-1, t = 2p-1 , cp(t) = p B(p)  and after multiplying (15.9) 

by p , obtain 

b(t) 	1  (1)(T) 	1 
(15.12)  a(t)q)(t) +  f   dT + f  K(t, T)14)(T)dT = f(t) , 

 

T - t  
-1 

-1<t<1 , 



where 

(t) = 1 - 4 c(1+01og((3+0/(1-0) , b(t) = 4 ur(1+0 

(15.13) 

K(t, T) = ¼ c(1+0 exp [-4d/(1+T)]/(2+t+T) , -1<t<1, -1<T<1, 

and 

• (15.14) f(t) = 1/2 c vo (l+t)Eexp (d/v0 )/(2v0 -1-0 + exp(-d/v0 )/(2v0+1+0]. 

If c>1, then since vo  = ip , (15.14) becomes 

(15.15) f(t) = 1/2 c p(1+0E2p cos(d/p) - 1 Osin(d/p)]/E4p
2 
+ (1+0

2
] , 

-1<t<1 . 

In (15.13), a has a zero in [-1, 1] , which we denote by 

to . 

Case, Hoffmann and Placzek E7, fig 16, 171 give graphs of 

vo  (= 1/K0 ) against c for 0<c<1 , and p (= 1/k 0 ) against c for 

c>1. We note that the graphs have been reproduced in Case and 

Zweifel E6, fig 4.1, 4.21; however fig. 4.2 is incorrect. 

From Definition 4.1, we have 

(1/Tr) arctan (b(t)/a(0)  ,
o 

(15.16)  6(t) =  1/2 - (1/7) arctan (a(t)/b(0) , -1<t<1 

1 + (1/0 arctan (b(t)/a(0)  t
o<t5.1 

Thus 6(1) = 1 , and so by (4.13), the index is minus 

one. We note that since a is not continuous at the point 1, Lemma 

4.2 is not applicable unless we first divide (15.12) by 

log (1-t)/4) , say. 

94. 



95. 

Since the index is minus one, the function Z is given by 

(see (4.18)): 

1 
(15.17)  Z(t) = (1-t) exp  - f  

T  L 
e(T),_  dT)  ,  

J- 1  

We need a method of evaluating Z and the moments C. of 0: 

1 
(15.18)  Ci =  0(T)T i  dT  , i 

-1 

The logarithmic singularity of the function 0 at the point 

1 makes the accurate evaluation of (15.17) and (15.18) difficult. 

To evaluate the moments of 0 the following method was used. 

For brevity, write g(T) = 0(T) T i  , and so (15.1$) can be written 

(15.19) 1  C. =  g(T)dT + 1g(T)dT , 
1  

-1 

where O<E<1 . The first integral was evaluated by M point Gaussian 

quadrature; suppose the quadrature formula is of the form 

1 

 

(15.20)  f  F( T )d .  . yT=  W  )  remainder . 
-1  i=1 

W
. F(t 
 1 

Then after an elementary transformation, the first integral in 

(15.19) becomes 

 

(15.21)  fg(T)dT = 1/2(1+E)  y w. g(1/2[(1+E)t. - 1]) + remainder . 
-1  i=1 1  

In the second integral in (15.19), we put T = 1-exp(-1/u) 

= -1/log(1-E) , so we have 

a 

J
l  g(T)dT = g(1  exp [-1/u]) exp (-1/u)u -2  du 

0  
. 

From (15.16) we have 0(1-exp [-1/u]) = 1 - u + 0(u2) 
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and thus the logarithmic singularity has been removed. Applying the 

quadrature formula (15.20), and defining 

h(u) = g(1-exp C-1/u]) exp (-1/u) u -2  , 0<u<c).  , we have 

f1 
.g(T)dT = 1/20 	W. h (1/2olt.+1]) + remainder . 

i=1  1  

M was chosen to be 40. 

The function Z was found by writing (15.17) as 

	

fl 0(1  et  (t)  d T) _1<t<1 , Z(t) = (1-0
1-0 (t) (1+0 6(t)  exp ( - 

-1 

and evaluating the -Integral using the same method as above, that is 

putting g(T) = [0(T) - 0(01/(T-0 , with t a parameter. This 

gave good results, except for t near 1. 

Since the index of (15.12) is minus one, the integral 

euqation (15.12) will only be soluble if the consistency condition 

(12.26) is satisfied, i.e. if 

1  1 
I Li  -  K(t, T)(1)(T)d-cl  

dt  

1 -  r(t)Z(t) 

These integrals were evaluated numerically using the methods of 

§13, which gives the approximation 6 0 : 

(15.22)  
= j 10 

 wi [f(x) 
 

+ remainder . 

Given c>0 and d>0 , vo  or p was found from (15.10) or 

(15.11). The computer program of §16 was used to give cp n , and 

was found approximately from (15.22). 
0 

For 0<c<1 , several values of d were tried, but as 6 0  

was always found to be positive, no solutions of (15.12) were 
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found, in keeping with physical considerations. 

For c>1 , 6 0  was found to change sign as d was increased. 

Using a simple iterative method, these zeros of 6 	were refined 
0 

until  ly<10-1°  , giving values of c and d for which (15.12) is 

soluble. These values of c and d are given in Table 15.3. 

Using other methods, Case and Zweifel [6, Table 6.4] have 

given first and second order approximations to d, which we give in 

Table 15.3 for comparison. 

Table 15.3  

Critical slab half-thickness d 

Case and Zweifel This thesis 

c First order Second order 

1.1 2.1133 2.1132(5) 2.1132 7591 

1.5 0.6076 0.6044 0.6040 4712 

2.0 0.3268(5) 0.3198(5) 0.3089 5961 

It was observed that (15.12) was also solvable for larger 

values of d (for c>1) due to the periodic nature of (15.15). The 

physical interpretation of this result is uncertain. 

We also give the corresponding approximate solutions (P n  

of equation (15.12) in Table 15.4. 



Table 15.4 

Approximate solutions of (15.12), (15.13), (15.14) 

Values of q(t), t = -1.0(0.2) 0.8 

n = 10 

t 

c  =  1.1 c  =  1.5 c = 2.0 

-1.0 0.0 0.0 0.0 

-0.8 0.0192 8752 0.0451 6606 0.0667 4536 

-0.6 0.0258 0374 0.0605 1289 0.0856 5003 

-0.4 0.0288 8861 0.0673 8798 0.0901 4567 

-0.2 0.0331 1037 0.0745 6001 0.0929 0176 

0.0 0.0403 9662 0.0840 9360 0.0964 9583 

0.2 0.0507 1523 0.0944 9368 0.0997 1506 

0.4 0.0623 1702 0.1026 3817 0.1002 7167 

0.6 0.0715 1067 0.1043 5845 0.0954 4905 

0.8 0.0708 9022 0.0928 1006 0.0806 3954 

98. 
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§16. A computer program for the solution of the complete equation  

In this section, we describe the computer program which was 

used to give the numerical results in several of the examples discussed 

above. The program is far from perfect, but may be useful to other workers 

in this field. 

The program solves complete singular integral equations of the 

form (1.1), using the method of §12 - 14 , and is written in Burroughs 

algol. 

We first mention some assumptions made in the program. We 

require that (4.10) must be satisfied, that is 

(16.1) 	b(-1) 	0, 

and that b is a polynomial of degree m , which has only real simple 

zeros which lie in E-1, 11. This implies that m = p (see (22.3)). 

The program may be extended to allow b to have complex or multiple 

zeros, or zeros which are not in [-1, 1] , provided that the vectors 

RUNE, RTWO and PB are given, where 

m-1 m-1 
i R 1 (z) = y 	RONE [ii z 1 	R2 (z) = y 	RTWO [i] z 

i=0 	i=0 

	

b(z) = 	PB [ii z i  
i=0 

We assume that the matrix A in (12.21) (MAT in the program) 

is nonsingular. 

For a general purpose program, we recommend that the modified 

moments are calculated in double precision arithmetic, the remainder 

of the program being in single precision. (The program given below 

is in single precision). See the remarks on page 82 and Example 14.2. 
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To solve a singular integral equation, the user must provide 

the REAL PROCEDURES A, B, F, K, THETA and Z (which are of course 

a, b, f, K, 0 and Z in the thesis). THETA will be unnecessary if not 

used for the moments C[i] and the function Z. The user must also 

provide the moments CEil, i.e. 

1 
C[i] =  0(T)T dT , i = 0,  N 

-1 

The following data must be given: 

N, M, MPOINT , INDEX, MODE, CONCON 

X0, DEL 

if MODE = 1 then yO[i], PHI[i], i = 1, 2,..„ 

if MODE = 2 then RHOCi],i = 1,  K 

A heading card (any string of characters) 

BETA[i]  , i = 1,  m 

Cl 

Explanation of symbols  

We only explain the most important symbols. First, those 

which are mentioned in the thesis. 

Program  Thesis  

n = degree of polynomial approximation to f and 

number of nodes -1 in quadrature formulae of 13. 

m = degree of b 

INDEX  K = the index of (1.1). 

BETAIi]  (3. = position of the zeros of b. 

Cl  A in Example 15.1. 

C[i]  C. = moments of 0 



D[I, 1]  d. = modified moments 

D[i, 21  dt = 

W[i]  w. = weights for quadrature rule of §13 

WSTAR[i]  u4 = 

OMEGATWO[i] 
K-M 

Q 
 ' 
• Q

2 
 (z) = y OMEGATWO[i] z

i 
2  

i=1 

We now explain some symbols used only in the program. 
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MODE 

DEL 

CONCON 

Explanation  

number of nodes in the quadrature rule used for 

evaluating C[i]. 

If MODE = 1, then the user specifies YO[i] and 

PHI[i] , where  (1)(YO[il) = PHI[i] , i = 1, 2,...,K, 

and the program finds the constants RHO[i] , 

= 1,  K (p i _ l  in (12.22)) and prints this 

particular solution. 

If MODE = 2 then the user specifies the constants 

RHOEi] , i = 1, 2,..., K (p.i..1  in (12.22 )), and the 

computer prints the corresponding particular solution. 

If MODE = 0 , then the particular solution v, and 

K homogenous solutions u l , u 2 ,..., u K  in (12.22) 

are printed. 

The particular and homogenous solutions v(t) and 

u l (t),..., u K (t) are printed for 

t = -1.0 (DEL) 1,0 . 

If CONCON = 1 then no solutions are printed, but 

the numbers S
k' 

k = 0, 1,..., -K-1 are found 

(see (13.6)), i.e. the consistency condition 

(12.27) is checked. For any other value of 

CONCON, the solution is printed. 

Program  

MPOINT 
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XO 
	

May be chosen to be any number in 1-1, 11 

provided b(X0) t 0 ; is used to normalize the 

coefficients in the polynomial expansion of b. 

The procedure GAMMA(t, CA, v)  

Given the number t, the matrix CA[i, j] = T i (xxj ) 

• 
j = 0,  n where xx  1,  jj  = cos 0- 2 ++ 1 1  ) and T i  are the 

Chebyshev polynomials of the first kind, and given N, D[i, 11 , 

OMEGATWO[i] , RTWO[i] , B, M, as global variables,then GAMMA gives 

thevectorvsuchtliatvW=.(t)  j = 0,  n , where r. 

is defined by (12.15). 

The procedures SINGULAR, DECOMPOSE, SOLVE and IMPROVE  

The procedures SINGULAR, DECOMPOSE, SOLVE and IMPROVE are 

given in Forsythe and Moler [14, §16], although any library routine 

for solving linear systems of equations would suffice. 
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The procedures in the following program are those used for 

Example 15.1. We first give a typical set of data. 

10 1 30 2 

0.0 

0.2 

-0.6 

1.25 

0.6 

1.25 

EXAMPLE 15.1 

0.2 

2.1 
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BEGIN 
INTEGER N.INDEX,M.EE,MPCINT.NN.IND.ABSII\.LL.I.J.S.L.II, 

NP.MODE.CONCON; 
REAL Y.P.G,Q.PI.DEL.T.CCN.BXO.XJ.X0.8T.ERR. 

C1.C2.C3.C4.C5,C6.C7.C8,C9.C10; 
COMMENT BETA ARE THE ZEROS CF B. 

LARGER BOUNDS MAY BE NEEDED; 
ARRAY YO.RHO,PHI,BETAE1:61; 

COMMENT THE USER RUST SPECIFY THE FOLLOWING REAL PROCEDURES: 
ApB.F.K,THETA.Z; 

REAL PROCEDURE A(X); VALUE X; REAL X; 
BEGIN 

X:=1.0 — X*X; A:=IF X>0.0 THEN — SORT() ELSE 0.0; 
END; 

REAL PROCEDURE B(X); VALUE X); REAL X; 
B:=X—BETAC11; 

REAL PROCEDURE F(X) ; VALUE X; REAL X: 
F:= - 1.0+1.0/SQRT((*(X+2.0*C1)+C1**2-1.0); 

REAL PROCEDURE K(X.Y); VALUE X.Y; REAL 	. ■e; 
1)/PI; 

REAL PROCEDURE THETA(X); VALUE X; REAL X; 
THETA:=IF X<C2 THEN —0.5—ARCTAN(A(X)/E(X))/PI 
ELSE IF X<C3 THEN — 1.0.ARCTAN(B(X)/A(X))/PI 

ELSE —1.5—ARCTAN(A(X)/E(X))/PI; 

REAL PROCEDURE RU) ; VALUE X; REAL X; 
R:=SQRT(A(X)**2+6(X)**2); 

REAL PROCEDURE Z(X) ; VALUE X; REAL X; 
BEGIN 

REAL Y; 
Y:=1.0 —X*X; Y:=IF Y>0.0 THEN SQRT(Y) ELSE a-30; 
Z:=2.0/Y/R(X); 

END; 
REAL PROCEDURE H(X); VALUE X; REAL X; 

H:=A(X)*ARCTAN(BETAC11*A(X)/(1.0—BETA(11*X)); 
BOOLEAN PROCEDURE EVEN(I); VALUE I; INTEGER I; 
EVEN:=(I DIV 2)*2=I; 

INTEGER PROCEDURE MAX(I,J); VALUE I.J; INTEGER I.J; 
MAX:=IF I>J THEN I ELSE J; 

INTEGER PROCEDURE mIN(I.J); VALUE I.J; INTEGER I.J. 
MIN:=IF I<J THEN I ELSE J; 

EBCDIC ARRAY EA(0:79]; 
FILE IN(KIND=READER).OUT(KIND=PRINTER); 

FORMAT FB(I3.X2.8(E14.7.X2)), 
FG(F15.0); 

DEFINE RANGE=1=0 STEP I UNTIL N DO#. 
RAN=:=U STEP 1 UNTIL INDEX-1 DON; 

COMMENT THE USER MUST PROVIDE DATA FOR THE 
FOLLOwING 5 READ STATEMENTS; 

READ(IN.<10I3>,N,M.MPOINT.INDEX,MODE,CORCON); 
READ(IN,FG.X0.0EL); 
IF MODE=1 THEN FOR I RAN FEAD(IN.FG.Y0II+11.PHIII+11); 
IF MODE=2 THEN FOR I RAN RFAD(IN.FG.RHOEI+11); 
READ(IN.<ABO>.EAC0]); 
wRITE(OUT.<X20.A80>PEA(01); 
AESIN:=ABS(INDEX); 
EE :=N+1. 	NN:=N+ABSIN—M; 
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BEGIN 
ARRAY 
C[0:NN]. 	% MOMENTS OF THETA 
XX.U.V.FF[0:MAX(NN41,N)1,CAEO:N.O:N1. 
AA.BBC0:NN+11, 	% EXPANSION OF X & 1/X 
PPE-NN-1:0), 
OMEGA.X[1:MPOINT1, 	Z GIADRATURE FOR C 
OMEGATW000:11. 	% PRINCIPAL PART OF 1/BY AT INFINITY 
PBCO:M4.1]. 	% POLYNCMIAL COEFFICIENTS OF 8 
RONE,RTWOCO:M1, X INTERPOLATORS OF X & 1/X AT ZEROS OF B 
CCEO:M+ABSIN1, 
E[1:N+11. 
0[0:N.1:21. % THE MODIFIED MCMENTS D'OSTAR 
PINDCO:ABS(INDEX)1. % COEFFICIENTS OF (1 - T)**ABS(INDEX) 
GAM.KAY(0:N.0:N). 
WpWSTARCO:N1, 	Z WEIGHTS FOR OUADRATUREE OF SECTION 13 
KEEPCO:N.0:MAX(C.INDEX)1. 
PS.RS.SOLN[1:N41]. 
MAT,LU(1:N4.1.1:N+110,  
STWOC - ABSIN - NN-1:MAX(ARSIN.M-1)]; 
LABEL OPTION.ERROR; 

PROCEDURE GAMMA(T.CA.V); 
VALUE T; ARRAY VC01.CA(0.01; REAL T; 

BEGIN 
ARRAY UE0:N1.W(-1:N-11; 
INTEGER I.J; REAL CON.G,OMEGA2.R2.SUM.BT ; 
CON:=2.0/(N+1); U(0]:=1.0; W[01:=D(0.11; 
UC11:=T; G:=2.0*T; 	V[0]:=V[11:=WC-1]:=0.0; 
FOR J:=2 STEP 1 UNTIL N DO 

BEGIN 
V[J]:=0.0; 
U(.11:=G*U(J-11-U[J-21; 
W(J - 1]:=G*WIJ - 21-WIJ - 31+2.0*DCJ-1.1]; 

END; 
OMEGA2:=0MEGATWOCOD0MEGATWOC11*T; R2:=0.0; BT:=B(T); 
FOR J:=M-1 STEP -1 UNTIL 0 DO R2:=T*R24-RTImOIJI; 
G:=R2+BT*OMEGA2; 
FOR I RANGE 

BEGIN 
SUm:=0.5*G; 
FOR J:=1 STEP 1 UNTIL N DO 
SUM:=CACJ.I1*(U0)*G-BT*WCJ-11)+SUm; 

VII1:=CON*SUM; 
END; 

END GAMMA; 

PROCEDURE CLEAR(A,N.M); VALUE N.M; INTEGEF NM ; ARRAY AC*1; 
BEGIN INTEGER I; 

FOR I:=N STEP 1 UNTIL M DO ACI]:=0.0; 
END CLEAR; 

COMMENT THE PROCEDURES SING.DECOMPOSE.SOLVE & IMPRCVE 
SHOULD BE INCLUDED HERE. THEY ARE FROM FORSYTHE & OLER; 

IF B(-1.0) GEO @-10 THEN 
BEGIN 

WRITE(OUT.<//"ERROR. 8(-1.0) MUST NOT BE POSITIVE">); 
GO TO ERROR; 

END; 
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WRITE(OUT.</"N=".I3.X2."M=".I3.X2."MPOINT=".1.-!.X2. 
INDEX=".13.X2."MODE=".I3.X2."CONCON= .13>,Npt°.NPOINT. 

INDEX.MODE.CONCON); 
IF MODE=1 THEN 

FCR I RAN WRITE(OUT.<"PHI(".F7.4.")=".F7.4>.Y0II.1]. 
PHI(I+1)); 

IF MODE=2 THEN 
FOR I RAN WRITE(OUT.<"RHO(".12.")=".F7.4>.1.RHO(14 , 11); 

PI:=3.1415926536; 

COMMENT IF M>0 THEN USER MUST PROVIDE ZERCS OF B AS DATA; 

IF M>C THEN 
BEGIN 

WRITE(OUT.<//X13."ZERO5 OF B">); 
FOR I:=1 STEP 1 UNTIL M DO 

BEGIN 
REAO(IN.FG,BETACII); 
WRITE(OUT.<X11.F14.10>.BETA(I1); 

END; 
WRITE(OUT.<31("-")>); 

END; 
COMMENT THE NEXT SECTION FINDS THE MOMENTS C; 
C2:=(BETAI11-1.0)*0.5; C3:=(BETA(11+1.0)*C.5; BX0:=B(X0); 
WRITE(OUT,</"B(^,F7.4.").".F7.4>.X0.8X0); 
0:=0.25; 
FOR I:=0 STEP 1 UNTIL NN DO 

BEGIN 
CII]:=IF EVEN(I) THEN -2.01(I+1) ELSE -1.0/(I+1)+0; 
IF NOT EVEN(I) THEN Q:=Q*(I+1)*(I+2)/(I+3)**2; 

END; 
P:=PI*0.5/MPOINI; 
FOR J:=1 STEP 1 UNTIL MPOINT DC 

BEGIN 
XJ:=CO5((2.0*J-1.0)*P); 
Y:=H(XJ)/MPOINT; G:=1.0; 
FOR S:=0 STEP 1 UNTIL NA DC 

BEGIN 
C(S):=C[S)+Y*G; 
G:=G*XJ; 

END; 
END; % C[S]=INT( - 1.1)THETA(T)T**S*DT 

COMMENT-NEXT. AA AND BB ARE FOUND USING EGUATIONS 
(9.6).(9.7).(9.12) IN THESIS; 

	

U(01:=V(03:=1.0; 	XJ:=C(0); 
FOR S:=1 STEP 1 UNTIL NN+1 DO 

BEGIN 
G:=V[S1:=XJ*VIS-11/S; 
U[S]:=G*(IF EVEN(S) THEN 1.0 ELSE -1.C); 

END; 
FOR L:=2 STEP 1 UNTIL NN+1 00 

BEGIN 
XJ:=C[L-11; 
FOR S:=0 STEP 1 UNTIL NK+1 DO 

BEGIN 

	

Y:=U[S]; 	0:=V[S]; 	I:=S DIV L; 
IF I NE' 0 THEN 
BEGIN 

G:=1.0; 
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FOR J:=1 STEP 1 UNTIL I DO 
BEGIN 

II:=S-L*J; G:=XJ*G/J; 
Q:=Q+VIIII*G; 
Y:=Y+UCII)*G* 

(IF EVEN(J) THEN 1.0 ELSE -1.0); 
END; 

END; 
AACS]:=Y; 	BB(S]:=Q; 

ENO S; 
IF L NEG NN+1 THEN FOR S:=0 STEP 1 UNTIL NNfl CO 
BEGIN 

U[S]:=AA[S]; 
VCS]:=BSCS]; 

END; 
END L; 

WRITE(OUT.<//" 	I",)(7."AA[I]".X11."8BCII".X12."CCI-11">); 
WRITE(OUT.F8,O.AAC01.88[0]); 
FOR I:=1 STEP 1 UNTIL NN+1 DO 

WRITE(OUT.FB.I.AACII.BB (II.C[I-1]); 

COMMENT-THE POLYNOMIALS R1.F2 ARE FOUND. 
ASSUMING THAT ALL ZEROS OF E ARE SIMPLE 40 ARE IN (-1.1]; 

IF M>0 THEN 
BEGIN 

IF M=1 THEN 
BEGIN 

A:=BETACIA; P:=RONEC01:=Z(Q)*5IGN(A(0)); 
RTWOCO]:=1.0/P; 

END ELSE 
BEGIN 
FOR I:=1 STEP 1 UNTIL M DO 

BEGIN 
P:=BETACI]; RSCII:=Z(P)*SIGN(P(P)); 
FOR J:=1 STEP 1 UNTIL MOO MA1EI.JJ:=P**(J-1); 

END; 
DECOMPCSE(M.MAT.LL); SCLVE(M.LU.RE .SOLN); 
IMPROVE(M.MAT.LU.RS.SOLN,G); 
FOR I:=1 STEP 1 UNTIL M DO 

BEGIN 
RONECI-1]:=SOLNEW 
RSCI]:=1.0/RSCI1; 

END; 
SOLVE(M.LU.RS.SOLN); IMPROVE(M.MAT.LU •RS.SCLN.G); 
FOR I:=1 STEP 1 UNTIL M 00 RTWCCI-1):=SOLN[II; 

ENO; 
WRITE(OUT,<//"INTERPOLATORS OF Z AND I/Z AT 
." ZEROS OF B"/" 1".X4."R0NECI)".X9."RTWO(I1">); 

FOR I:=0 STEP 1 UNTIL M-1 DO 
WRITE(OUT,FA.I.RONECII.FTWCCII); 

END Mil 
PIND(C]:=1.0; S:=ABS(INDEX); 
FOR I:=1 STEP 1 UNTIL S DC PINOCII:=-PIND(I-1)*(S-I41)/I; 
CLEAR(PB.0,M); PBCO]:=1.0; L:=0; % POLY CCEFF OF B 
IF M>0 THEN 

BEGIN 
FOR I:=1 STEP 1 UNTIL M DO 

BEGIN 
L:=L+1; G:=BETAII]; 
Y:=PBC01; PB[0]:=-Y*G; 
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FOR S:=1 STEP 1 UNTIL L DO 
BEGIN 

XJ:=PB(Sl; PB(S]:=Y-G*XJ; Y:=)(J; 
END; 

END; 
ENO; 

Y!=0.0; P:=1.0; 
FOR I:=0 STEP 1 UNTIL M 00 

BEGIN 
Y:=PB(I)*P+Y; 
P:=P*X0; 

ENO; 
G:=BX0/Y; 
FOR I:=0 STEP 1 UNTIL M 00 PBEI]:=PB(Il*G; 
WRITE(OUT.<//"POLY COEFF OF B">); 
FOR I:=0 STEP 1 UNTIL M DO WRITE(OUT.FB,I.PB(Il); 

COMMENT NEXI.EOUATES POWERS OF Z TO GIVE C(I) FOR LL=1. 
0(I)STAR FOR LL=2. 
THE SAME METHOD IS USED FCR BOTH (14.12)8(14.13); 

Y:=OMEGATWO(0):=OMEGATWO(1]:=0.0; 
FOR I:=0 STEP 1 UNTIL M DC 

Y:=PB(I1*(IF EVEN(I) THEN 1.0 ELSE -1.C)+Y; 
IF Y>O-10 THEN 

BEGIN 
WRITE(OUT.<//"B(-1) MUST BE NONPOSITI%E">); 
GO TO ERROR; 

END; 
FOR LL:=2.1 DO 

BEGIN 
INO:=(3-2*LL)*INCEX; 	NK:=N+IND-M; % I■ N IS OVERWRITTEN 
IF LL=1 THEN 
BEGIN 

FOR I:=Q STEP 1 UNTIL NN+1 00 BB(I]:=AA[I); 
FOR I:=U STEP 1 UNTIL M-1 00 RONEII):=RTV40(Il; 

COMMENT BBFRONE ARE OVERWRITTEN; 
END; 

IF IND GEO 0 THEN 
BEGIN 
FOR S:=0 STEP 1 UNTIL NN+1 DO 

BEGIN 
KJ:=0.0; L:=MAX(0.S-NN-1); II:=MIN(S.INO); 
FOR J:=L STEP 1 UNTIL II DO 

XJ:=*+PINOCIND-J]*BB[S-Jl; 
PP[-S]:=XJ; 

ENO; 
CLEAR(STWO.INO-NN-1,MAX(IND.M-1)); 
FOR J:=0 STEP -1 UNTIL -NN-1 DC SfltO(J+IND]:=PP(J]; 
IF M>0 THEN FOR J:=0 STEP 1 UNTIL M - 1 00 
STWO[J]:=*-RONE(J]; 

I:=IND-M; 
IF I GEO 0 THEN 
BEGIN 
CASE I OF 
BEGIN 

OMEGATWO(0):=PP(0)/PB(M]; 
BEGIN 

OMEGATWO(11:=PP(01/PB(M1; 
OMEGATWO[0]:=(PP(-1]-0MEGATMOC1)* 

(IF M>0 THEN PB(M-11 ELSE 0.0))/PB(M1; 



END; 
END; 

FOR J:=0 STEP 1 UNTIL M DO 
STwO[J]:=*-OPEGATWO[01*PB[J]; 

IF I=1 THEN FOR J:=1 STEP 1 UNTIL m+1 DC 
STWO(J]:=*-0MEGATWOM*PB[J-11; 

END; 
E[1]:=STWOIM-11/PBEM]; 
FOR S:=M-2 STEP -1 UNTIL IND-NN-1 CO 

BEGIN 
Y:=0.0; J:=MIN(M.M-S-1); 
IF J>0 THEN FOR I:=1 STEP 1 UNTIL J 00 

Y:=Y.PBEM-I1*E(M-S-Il; 
E(M-S]:=(STWO[SI-Y)/PB[MI; 

END; 
END % IND GEQ 0 
ELSE % IND <0 
BEGIN 

S:=M-IND; 
OLEAR(STWO.INO-NN-1,MAX(INO.M-1)); 
FOR I:=0 STEP 1 UNTIL S-1 00 

BEGIN 
XJ:=Y:=0.C; L:=mAX(0.I-M); II:=MIN(I.-IND); 
FOR J:=L STEP 1 UNTIL II DO 

BEGIN 
XJ:=*4-PINDCJI*RONE(I-Jj; 
y:=*+PINOCA*PB[I-J]; 

END; 
STWO(IfIND]:=-XJ; 	CC[II:=y; 

ENO; 
COCM-INDI:=*+PINDE-IND]*PB(M]; 
FOR I:=1 STEP 1 UNTIL NN+1 DO STWO[INC-I]:=BB(I]; 
STWOCIND]:=*+BB(0]; 
E[1]:=STWO(S-1+IN01/0C[S]; 
FOR I:=2 STEP 1 UNTIL EE DC 

BEGIN 
Y:=0.0; 1:=MIN(I - 1,S); 
FOR J:=1 STEP 1 UNTIL L DO Y:=Y+CC(S-JI*E(I-J); 
E[I]:=(STWOIS-I+IN01-Y)/CC[S]; 

END; 
END; % 	IND<0 

• 

	

	 L:=3 - 2*LL; D(O.LL): - -E(11*L; 0(1,LL]:=-E[2]*L; XJ:= - 1.0; 
FOR I:=2 STEP 1 UNTIL EE-1 DO 

BEGIN 
G:=XJ:=2.0*XJ; S:=I DIV 2; Y:=0.0; 
FOR J:=0 STEP 1 UNTIL S DO 

BEGIN 
Y:=Y+G*E(I-2*J+17; 
IF J NE0 S THEN 
G:=-G*(I-J*2)*(I-2*J-1)/((J+1)*(I-J-1)*4); 

ENO; 
D(I.LL]:=L*Y; 

END; 
ENO LOOP LL; 

wRITE(OUT.</X10,"REQUIRED MOMENTS"/" I".X4."0[I]".X15. 
"DSTAR[Il">); 

FOR I:=0 STEP 1 UNTIL EE-1 00 
WRITE(OUT.<12.2(X2.E17.10)> , I.0(IP*1); 

Y:=PI*0.5/(N+1); 
FOR J RANGE 

109 
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BEGIN 
G:=XX(J]:=CO5(Y*(J*J4-1)); 
CA(0.J1:=1.0; P:=2.0*G; CA(1,J]:=G; 
FOR I:=1 STEP 1 UNTIL N - 1 00 

CACI+1.J]:=P*CA(I.J1-CA[I-1.J]; 
END; 

NP:=N+1; P:=2.0*PI/NP; 
WRITE(OUT.<//" I".X8."W(I)".X10."WSTAR(Il".X9,0•XX[I]">); 
FOR J RANGE 

BEGIN 
G:=-0.5 41, 0[0.2]; 0:= - 0.5*0[0.1]; T:=XX[J]; 
GAMMA(T,CA.V); 
FGR I RANGE 

BEGIN 
G:=0(I.2]*CACI.J14.G; G:=0[I.1]*CA[I.J]+0; 
GAM(I.J]:=V(I); 

END; 
WSTAR[J]:=P*G; W[J]:=P*0; 
WRITE(OUT.FB.J.WCMWSTAR[J].XX(JD; 

END; 
WHILE NOT READ(IN,FG.C1) DO 

BEGIN 
FOR J RANGE 

BEGIN 
T:=XX(Ji; FF(J]:=F(T); 
FOR I RANGE KAY[I.J]:=K(XX[I].T); 

END; 
WRITE(OUT.<//X10,"C1=".F15.10/>.C1); 

FOR I RANGE 
BEGIN 

Y:=0.0; L:=I+1; 
FOR J RANGE 

BEGIN 
G:=0.0; 
FOR S RANGE G:=G+WSTARCS]*KAYEI.S]*GAMEJ.S]; 
MATCL.J+1]:=G; 
Y:=Y+G*FF(J]; 

END; 
P5(1] :=y; 
MAT(L.L1:=*+1.0; 

END; 
DECOMPOSE(NP,MAT+LU); SOLVE(NP.LU.RS.SCLN); 
IMPROVE(NP,MAT,LU,RS.SOLN.G); 
WRITE(OUT.</"CONDITION OF EGUATIONS=".E10.3>,10**(11.0-G)); 
FOR I RANGE KEEP[I,O]:=FF(Il-SOLNCI+1]; %PARTICULAR SOLUTION 
IF CONCON=1 THEN GO TO OPTICN; 
FOR S RAN 

BEGIN 
CLEAR(RS'1,NP); 
FOR J RANGE 

BEGIN 
G:=WSTAR(J)*B(XX(J))*CA(S.JI; 
FOR I RANGE RS(I+1]:=*+G*KAY[I.J]; 

ENO; 
SOLVE(NP.LU.RS.SOLN); IPPRCVE(NP,MAT.I.U.RS.SOLN.G); 
COMMENT HOMOGENOUS SOLUTIONS; 
FOR J RANGE KEEP(J.S+1]:=SCLN(J41); 

END; 
IF MODE=1 THEN 
BEGIN 

FOR I:=1 STEP 1 UNTIL INDEX DO 



BEGIN 
T:=YO(IU 

G:=2.0*T: Q:=13(T): 
GAMMA(T.CA.V): 
CLEAR(U.0.MAX(0.INDEX-1)): 
C(0):=1.0i C[1]:=T: Z C IS OVERWRITTEN 
FOR J:=2 STEP 1 UNTIL INDEX-1 00 
C[J]:=G*C(J-11-C(J-2]: 

FOR S RANGE 
BEGIN 

XJ:=V[S]; 
P:=P+XJ*KEEP(S.0]: 
FOR J RAN U(J]:=UCA+XJ*KEEPC.J411: 

END: 
FOR J RAN UCJI:=0*C(J1-U[J]: 

RS(I]:=PHI(I7/G-P: 
FOR J RAN MAT(I.J+1):=UCJi: 

END; 
DECOMPOSE(INOEX.MAT,LU): SCLVE(INDEX.LU.RS.SOLN): 
IMPROVE(INDEX.MAT.LU.RS.SOLN.G)i 
WRITECOUT.<//"CONDITION OF EQUATIONS FOR ARBITRARY" 
." CONSTANTS=".E10.3>,10**(11.0-G)): 
WRITECOUT.<"ARBITRARY CONSTANTS">): 
FOR I RAN 

BEGIN 
J:=I+1; WRITE(OUT,FB.J,SOLNCJI): 
RHOEJJ:=SOLNEJ); 

END; 
END; 

WRITE(OUT.<90("-")>); 
IF MODE=1 THEN 
WRITE(OUT.<//X16."A".X29,"SOLUTION"./X3."X".X7, 

"PARTICULAR".X8,"Z(X)/R(X)".X6."WHICH EQUALS".X6.I3.XI. 
"HOMOGENOUS SOLUTIONS"/X12."SOLUTICN".X23."Pf, I[I] AT" 
." YO(I)">.MAX(0.INDEX)) 

ELSE IF MODE=2 THEN 
WRITE(OUT.<//X16,"A".X29."SOLUTION"./X3."X".X7, 

"PARTICULAR".X8."Z(X)/R(X)".X6."WITH 
"HOMOGENOUS SOLUTIONS"/X12."SOLUTION".X23."CONSTANTS". 
" RHO[I]">,MAX(OpINDEX)) 

ELSE 
WRITE(OUT.<// , X3."X".0."PARTICULAR".X9,"Z(X)/R(X)",X6, 

I3.X1." HOMOGENOUS SOLUTIONS"/X13."SCLLTION">. 
MAX(O.INDEX)); 

FOR T:=-1.0 STEP DEL UNTIL 1.0001 DO 
BEGIN 
P:=0.0; G:=2.0*T; Q:=B(T); 
GAMMA(T.CA.V): 
CLEAR(U.O.MAX(O.INDEX-1)): 
C[0]:=1.0: C(1):=T; 
FOR J:=2 STEP 1 UNTIL INDEX-1 DO C(J):=G*C(J 1) - C(J-fli 
FOR S RANGE 

BEGIN 
XJ:=VCS]; 
P:=P*XJ*KEEPC5,0]; 
FOR J RAN U(J]:=U[J)+XJ*KEEPCS.J+1J: 

END: 
FOR J RAN U[J]:=Q*C(J)-UCJ); 

IF MODE=0 THEN 
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WRITE(OUT.<F7.4.6(X2.F15.9)).T,P*G.C,FCR L RAN U[L]*G) 
ELSE 

BEGIN 
Y:=P; 
FOR I RAN Y:=Y+RHOCI+11*U[I]; 
ERR:=0.5*R(T)**Z-Y; Y:=Y*G; 
WRITE(OUT , <F 7 .4.6(X2 , F15.9)> , T.P*C.G.Y. 
FOR IRAN UEL1*G.ERR); 

COMMENT ERR=(EXACT MINUS APPROXIMATE SOLU1ICN)*R/Z; 
END; 

END; 
OPTION:IF INDEX<0 THEN 

BEGIN 
WRITE(OUT.</X20."CONSISTENCY CONDITIDS"/"SINCE THE 
."INDEX IS NEGATIVE.THE ABOVE IS A SOLITION IF THE " 
."FOLLOWING NUMBERS DELTA ARE ZERO TO WITHIN " 
."APPROXIMATION ERROR"/" S",X4."DELTACS1">); 
FOR S:=0 STEP 1 UNTIL -INDEX-1 DO AACEI:=0.0; 
FOR J RANGE 

BEGIN 
G:=XX(J1; 0:=14(.11*KEEP(J,0); 
FOR S:=0•STEP 1 UNTIL -INDEX-1 DO 

BEGIN 
AA(S):=AAIS1+0; 

END; 
END; 

FOR S:=0 STEP 1 UNTIL -INDEX-1 DO WRITE(OUT.FB.S,AACS1); 
END INDEX NEGATIVE; 
WRITE(OUT.<132("-")/>); 

END; 
ERROR :END 
ENO. 



APPENDIX A 

A contour integral for the modified moments 

In §14, we derived implicit expressions for the modified 

moments d. and d3 , by assuming that b was a polynomial. While 

this is the method we recommend for the evaluation of these moments, 

we can also derive an explicit expression for the modified moments in 

terms of a contour integral. 

We assume that b is a polynomial, given by (12.3), and 

consider dt ; d. can be treated analogously. 

In the proof of Lemma 14.2 , the function 0 , which was 
1 

defined by 

(A.1)  
X( z) - R 1 (z) 

(I) 1 (z)  b(z) z 4 [-1, 1] , 

was shown to be analytic in the complex plane excluding [-1, 11 , 

and zero at infinity. The alternative representation for 0
1 
was 

found: 

(A.2) 
1 I 1  Z(T)  dT 	0

1
(z) = - —  z  [-1, 11 . 

j  r(T) T - Z 	1 
-1 

To use this expression, we seek an expansion of  
1  

of the form 

(A.3) 
1 	

wi 

T  z 	y A,(z) T k (T)  ,  z  T , 
k=0 

-% 
where the A

k 
are to be found. Multiplying by T.(T)(1 - T

2 
 ) 2  

integrating, and using (12.10), we have 

(A.4) 
2 J

1 (1 	T 2 ) 1/2  

1  "T)  
A.(z)  —  dT  

,  j = 0, 1,...; 
7 
-.- 	T  

z / [-1, 11 , 
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T - Z 



A(Z) - - 
J  2  j 

(z - 1) 2
% 
  (z + 

j = 0, 1...; 

z / E-1, 11 . 

2 
(A.7) 

To evaluate this integral, consider the function . , Bj  

defined by 

(A.5) B(z) = 

 

2  %  / 
vz

2  j 

 

(z  - 1) 2 (z +  -1 )  . 

" 1 
To define the branch of the square root, put z - 1 = r 1  e 

i0
2 

z + 1 = r
2 e 	-7<0 1 <ff , -1T<0 2<7 . Then 

1/21(61
1
+0

2
) 

(z
2 

- 1) 1/2  = (r i r2 ) 2  e  is analytic in the complex plane 

excluding[-1,1].ThelimitingvaluesofB.on E-1, 11 are 

13 ±.(t) --.  
1  

-1<t<1 . 

±i A-t 2  (t ± i /1-t 2 ) i  

/ 2  tic 
Putting t = cos c , 0 5 c  7 , then t ± i vl-t = e  , and so 

using (12.10), we have 

2i T.(t) 
2i cos jc _ 

B  - B7  - -  -1<t<1 . 
(1-t

2 
 ) 2
%  
 (1-t2 ) 1/2  

Applying Lemma 2.7, and noting that lim Bi (z) = 0 , we have 
z-40. 

(A.6)  
1 f 1  Tj  

dT  
(T) 

B(z) = - y j -1 (1-T2)1/2 T - Z• z / F-1, 11 . 

Then, using this and (A.5), (A.4) becomes 

114. 

1 

and so using (A.3) and (14.1), we can write (A.2) as 

(A.8) 
c°1 

y z) -  2 2 ,  (z + )42 -1) -k  , z / E-1, 11 . 
(z  k=0 

To obtain an explicit expression for the dlic(  , we define 
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u = z + (z 2 - ) 1/2  , choosing the branch as above; then u -1  = z - (z 2 -1) 1/2  

and so z =  + u -1 ). Then (A.8) becomes 

1/2(z
2 
-1)

1/2 
0 1  (z) =  X  dr  

-k 
(' u  . 

k=0 

- 
Multiplying by uj1  and integrating in the positive direction around 

a contour c which encloses the unit circle, we obtain 

(A. 9) dt = 1  I j -1  
J  4ffi  u  1(u - u -1 ) 0 1  (1/2(u+u -1 )) du  , j  0  , 

•  c 

1  -1 . 
d* =  u  %(u - 

-1  
u ) 1 	2  0 (%(u u )) du  . 0  2711  2   

Using (A.1) and changing variables, we have the desired result: 

X(z) - R 1 (z) 

(z  /z2-1)j  b(z) 
  dz , j = 1, 2,... 

1  
1 X(z) - R

1 
 (z) 

—Tar j  b(z)  
dz 

(A.10) 

j =  0 , 

where L is any contour enclosing [-1, 11 , taken in the positive 

direction. 

If the contour L is shrunk down to the arc [-1, 1] , then 

the expression (14.1) can be obtained. 

Using (A.9), good approximations to dI were obtained by 

choosing the contour c to be a circle of radius greater than one, 

and using the quadrature formula of Lyness & Delves [30] . However, 

much computation was needed, since (A.10) is a double integral, 

the canonical function X being also given by an integral. 
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APPENDIX 

A singular integral  

To evaluate the singular integral 

(B.1)  1,0 (t ) = 1 f l  arctan  

7  -1  T  t  
dT , -1<t<1 , 

which appeared in Example 14.2, we proceed as follows. Differentiating 

and using (7.13), we obtain 

(B.2)  chi)  _  1 1 	T 	1 	dT  

2  1-  
dt  7 I-

-1  - T 2  7 -T  T  

Since  
1    dT  

= 0 , -1<t<1 , and using partial fractions, 
J-1 /1-T

2 T - L 

(B.2) can be written 

(B.3)  _  1 1 1  1  1  
dt  27 j  

(  1  

-1{  - T  12-  T  - t 

1 \1. 	1 	dT  

T 	t 

and after a little algebra this becomes 

(B.4)
dtp  C  
dt  + t  /— 2 - t 

 9 

1 
where  C =  I 	dT  

2 

-I  (/2-: + T) 

Hence, integrating (B.4), we get 

(t) = 1/2 log 12-7-- t  + d 
/2-  + t 

From (B.1), we have 11)(0) = 0 , and so the constant Of integration 

d = 0, and 
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(B.5) arctan  

T - t dT - 1/2 log 
	- t 

+ t 
, 	 -1<t<1 

 

 



Symbol 

a 

aar 

b 

b
m 

bb (m)  
k 

C
k 

d. 
1 

d* 
1 

D. 
1 

CI* 
1 

e k 

er<  

E
k 

E* 
k 

f 

f
n 

9 

G 

H 

H* 
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Page 

LIST OF IMPORTANT SYMBOLS 

Page Symbol 

1 

52 

1 

P 
K-1 

Q 

r 

18 

31 

22 

38 R 31 

50 R
1 79 

50 R
2 38 

70 R
3 40 

77 S 32 

81 T. 
J 

70 

81 u k 73 

52 v 73 

51 W. 70 
J 

79 x. 1 69 

79 X 14, 23 

1 X 1--  24 

40, 44 Z 24 

14, 21 

14, 21 a. 1 38 

9 R i  38 

9 38 

1 r. 71 

38 
k 

74 

40, 44, 69 A
1 34 

50 A2 35 



22 25 

14, 	16, 23 X2 37 

38 47 

71 
11) n 47, 71 

P k 
72 w. 76 

a 15, 	16, 23 w. 76 

1 31 

44,69 Q
1 80 

,c1) 9 Q
2 38 

(1) —  11 Q
3 40 

32 
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