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SUMMARY

The classical analytic solution of the dominant singular

integral equation

| 1
a(t)e(t) + ?—T(Tt—) ][-1 T“’fﬂz dt = f(t) , -1<t<l ,

is found by transforming the equation into a Riemann boundary
problem. (The above integral is interpreted as a Cauchy principal

value.)

This analytic solutioun is not very useful for numerical
work, since it requires the evaluation of a Cauchy principal value
integral of a function Z, which has, in general, algebraic-

logarithmic singularities at +1.

Three alternative solutions are found which avoid this
problem. These solutions are used as the basis of an algorithm for
the numerical solution of the above singular integral equation.

- Convergence of this algorithm is proved, and four examples are

given, including the H equation of Chandrasekhar.

An algorithm and a computer program is also given for the

solution of the complete singular integral equation

™ t

: 1 1
a(t)e(t) + 248 1 20 4o 4 | K, ol = (), -l

Two examples are given, including the numerical solution

of a singular integral equation arising in neutron transport theory.



CHAPTER I
SUMMARY OF RELEVANT THEORY

§1. FIntrOduction

We begin with a definition.

Definition 1.1 Singular integral equations of the form

1 1
(11 ) + ML 2l g [© ke = o), e,

will be called "complete' singular integral equations, and equations

of the form

1 ,
(1.2) a(t)o(t) + &Lt f 0) 4o = £(t) , -1etel,

will be called "dominant” singular integral equations.

The singular integrals in (1.1) and (1.2) are interpreted

as Cauchy principal value integrals, which are defined by

(1.3) fl (1) 4r = Tim I_l + [1 ) 4, w0

-1t - t >0

tt+e
A sufficient condition for the existence of this 1ntegra1bis givenv
in Lemma 2.3.
The dominant equation (1.2) was first solved by Carleman
t4j in 1922, in the case b = constant. In 1941, Muskhelishvili [32]
and Gakhov [16J generalized this solution, é]]owing b to be a function

of t. (For a historical summary, see Gakhov [16]_).

Using these methods, (1.1) can be reduced to a Fredho]m
integral equation, which has a rather complicated kernel, see [32,
§109 - 1i1j. While useful for studying the properties of (1.1), this

reduction is not very useful for numerical work..



The accurate numerical solution of (1.1) or (1.2) is very
difficult, as it involves the evaluation of a Cauchy principal value
integral of a function Z (see §4 - 5), which has a]gebkaic-
logarithmic singularities at fhe points #1. In fact, assuming that

a and b are real, iMacCamy [31] showed that if

21 a(-1) + i b(-1)
&= a7 199 eIy = b(=1) 1650 . then
(1.4) o) ~ 1+ )5y § oc (1+t) "M 10g"(1 + 1),
m=0 n=0
where the symbol ~ means "asymptotica]]y equal to as t»-1". (A

similar result holds at t = 1). Hence, if an algorithm for the
solution of (1.1) is to give good results, it must be able to cope

with singularities of this type.

Singular integral equations on an open contour (e.g., [-1, 1]
or (0, »)) present a more difficult problem than those on a closed
contour (e.g., the unit circle in the complex plane, or (-=, «)).

For instance, consider the equation

(1.5) aeyo(t) + o § MDD g rr) e ec,

mi T~1

wnere ¢ is a closed contour. Assuming that a, f, and H are analytic
in the domain enclosed by ¢ (H analytic in both variables), Case

[5] showed, under certain conditions, that the solution of (1.5)

is simply  ¢(t) = gxf)fit&(t, &y o tec

We note that (1.4) implies that, using only elementary
functions, it is impbssib]e to transform (1.1) into an equation on a
closed contour without introducing singularities. Thus, the mappings
given in Achieser and Glasmann [2, §50], and Ivanov [20, §11.1]

introduce square root singularities, and while these are suitable



for equations of the first kind, they only complicate equations of the

second kind.

We shall now summarise general numerical methods for the
approximate solution of eQuation (1.1), which have been proposed

previously.

Singular integral equations of the first kind

If a =0, then (1.1) is said to be an equation of the first
kind. The vast majority of singular integral equations discussed in
the literature are of this type; efficient algorithms for their

approximate solution can be constructed using the integrals

1 Tn(T) dt
-1 /ﬁ_TZ T -1t

1 ,
(1.6) E'{ = Un_l(t) , n=0, 1,...; -1<t<l ,

where Tn , Un are Chebyshev polynomials of the first and second kinds
(U_1 = 0). For example, Kalandiya [23] has used the trigonometric
form of (1.6). It should be noted that the determinant of his

system of equations (10) is zero, so that his method needs modifying.

Singular integral equations of the second kind with constant

coefficients

If a and b are constant, then we shall call (1.1) an
equation with éonstant coefficients. In his book on elasticity,
duskhelishvili [33, §110] proposed a method for solving equations of
this form. While his approach seems quite viable (and is similar to
the methods used in this thesis), a better method is to use the

following identity in Jacobi polynomials, given by Karpenko [24]

(see also Tricomi [43]):



dt = cot(noc)(1—t)a(1+t)BPr(]a’B) (t)-

1 (l-T)a(1+T)BP£a’B)(T)
f-l T-1

20{‘+B ('O"a‘B)
~ sin(ma) Pn+a+6 (t),

a36>-1 b} a'+8 =. ‘1,0,1,... ; '1<t<1 .

Using this, Karpenko (24} in 1966 gave an algorithm for the
numerical solution of equations with constant coefficients, and

estimated the error incurred.

~ Using similar methods, Erdogan and Gupta [12], Erdogan,
Gupta and Cook [13] and Krenk [27i, [28] have also considered such

equations.

Singular integral equations with variable coefficients

For equations in which a and b are variable, only
Ivanov (19] in 1956 and in his book [20] (1968) has published a
general method of solution. (The method proposed by MacCamy [31]

does not appear to be practicable).

In his first method [20, §13], Ivanov defines a polynomial

R of degree 2r + 1 such that

d .
(1.8) a-tv{R(t) - Togla(t) - 1 b(t)1}y =0

v =0,1,...,r.

Now, if a or b is not differentiable at #1 (a common occurence),
then it is necessary to choose r = 0, and consequently the convergence
of his algorithm will be very poor. Ivanov then transforms the

contour of the singular integral equation into the unit circle, the



coefficients of the resulting equation having discontinuities in their

t

r+1 h derivatives.

This approach is rather tedious, and completely obscures
useful properties of the original equation. The same criticisms

apply to the method given in [191].

In Ivanov's third method (20, §11.31, poor convergence will
again result if a or b are not differentiable. Also required is the
summation of an infinite series (eqn 11.45), the convergence of

which is unknown, and whose coefficients are not easy to evaluate.

Ivanov does not give any worked examples of these methods.

In 1963, Pken [37] obtained a simple expression for the

solution of
1
(1.9) P (t)o(t) + V1-t% g (t) %](_1 L) g - f(t) |, -aceet

by assuming that Pn and Qm are polynomials. Using this result, he

proposed a general numerical method for equations of the form

, 1
a(t)e(t) + b(t) (1) 4 - f(t) , -1<t<l , approximating a by
T 1 T-t

P, and b by /1-t2 Qq. This approach, while quite good, is clearly
limited by poor convergence if b does not have square root

singularities at *1, and if a is not a sufficiently smooth function.

In 82, we give results from the theory of Cauchy integrals

and Cauchy principal value integrals which we need in this thesis.

As we have noted, the solutjon of (1.2). is given, for example,

by Musknelishvili (32] and Gakhov [16]. These authors derive the



solution of (1.2) by transforming_it into a Riémann boundary
problem (sée §3), so]Ving the Rieménn boundary prob]em and thén
deriving the solution of (1.2). This is the approach used in this
thesis; however, since we use a simpler form of the solution of
(1.2), we will explain the differences between the form of this

-solution derived by Muskhelishvili and in this thesis.

An important quantity in the theory of (1.2) is the index
«; for its definition, see §4, The index takes only integral values,
and, if a and b are continuous on [-1,11, depends only on the zeros
of a and b on [-1,1]. .If the index K.iS positive, then the
general solution of (1.2) may be written as
K
(1.10) v = ¢, +.Z‘ Ci 95 »
i=1
where %0 satisfies (1.2), the ¢1 are a linearly independent set which
satisfy the homogenous equation

1 _
a(t)o(t) + Eéﬁl.f ;Qél%-dr =0, -1<t<l , and the c; are arbitrary
-1

constants. - If the index is zero, then (1.2) has a unique soiution.
If the index k is negative, then a solution of (1.2) exists if and
only if -x additional conditions are satisfied, such a solution being

unique.

In this thesis, we simply derive the general solution to
(1.2), in the form (1.10), whereas by varying the index, Muskhelishvili
is able to derive particular solutions which are bounded at 1. Thus,:
if the genéré] solution is of index k, ‘then solutions bounded at
+1 or -1 are of index k-1, and solutions bounded at both +1 are of

index k-2. (The only exception to this is if b is zero at +1 or -1,



in which case the solution ¢ is automaticé]]y bounded at that end-
point). Allowing the 1hdek to vary in this way leads to the necessity
of classifying the solutions according to their behaviour at +1.

The inclusion of these particular so]utiohs complicates the work and
obscures the nature of the index. Because of these complications,

and because these particular solutions (if they exist) may be derived
from the general solution by suitable choice of the érbitrary
constants c, in (1.10), we will derive the general solution only of

(1.2) in this thesis.

Thus, in §3, we define and solve the Riemann boundary
problem on the contour [-1,1] , and in &4 solve the dominant singular
integral equation (1.2) by converting it into a Riemann boundary
problem. Thus §1 - 4 consist mostly of known methods and results,

and comprise chapter one.

Chapter two consists of §5 - Z, 85 being an introduction.
In §6, we give a method for the dna]ytic evaluation of the type of
Cauchy principal value integrals encountered in (1.1), and in §7
apply these results to give an alternative analytic solution of
(1.2), and two exact solutions which assUme that b or f are
polynomials. These three alternative solutions are used later in

this thesis.

Chapter three is concerned with the numerical solution of
the dominant equation (1.2). The algorithm is given in §8, including
avproof of convergence; §9 - 10 give details of the algorithm, and

in 811 we give several examples.



In chahter_foqr we éonsider the comp]ete.equatidn, §12
giving the algorithm, §13 - 14 details of the algorithm, and in
§15 give two examples, one of these being a complete singular integral
equation arising in neutron traﬁsport theory. In §16 we give a

computer program for the numerical solution of the complete equation.

The methods of this thesis may be generalised to singular
integral equations on arbitrary arcs in the complex plane; alternatively,

if the arc is sufficiently smooth, it may be mapped on to [-1, 11].



§2. Cauéhy integrals and Cauchy principal value integrals

In this section, we summarise various results from the
theory of the Cauchy integral and Cauchy principal value integral,
most of which is taken from Muskhelishvili [32]. First, we define

the classes H and H*,

Definition 2.1 4 function ¢ is said to be HSlder continuous on

an interval 1 if there exists positive constants A, o, with
0 <a <1, such that |¢(s) - o(t)] < Als - tla for any s,t ¢ I.

We denote this by writing ¢ ¢ H(I).

If the interval is omitted (i.e., ¢ ¢ H), then it will be
assumed to be [-1, 11. In 88, it will be necessary to refer
explicitly to the exponent o of the class H to which ¢ belongs, so

we will write ¢ € Ha'

Definition 2.2 If ¢ is H¥lder continuous on any closed subinterval

of (-1, 1) which does not include *1, and if
<l>1*(t)(1+t)-Y for t near -1

o(t) - N
¢2*(t)(1-t) for t near +1

where 0 < Re v < 1 and ¢T, ¢§ € H, then ¢ is said to belong to the

class H*.-
We now consider the Cauchy integral, defined by
(2.1) 6(2) = > boeln) g z ¢ (-1, 1)
' 2mi 1Tz ’ o

Lemma 2.1 If ¢ ¢ H*, then ¢ (defined by (2.1)) is amalytic in

the complex pZ&ne excluding -1, 11, and is zero at infinity.



Proof That ¢ is analytic in the complex plane excluding [-1, 1]

-l
follows because its derivative, ¢'(z) = Z%T'J (¢(T; dt
' -1 (r-2z

3

exists for all z ¢ [-1, 1.

To show that 1im ®(z) = 0, we substitute the series

1L .13
T -2 Z 20

convergent in a neighbourhood of the point at infinity, we may

(%)k in (2.1), and since this series is uniformly

interchange the order of integration and summation in (2.1), thus

proving the lemma. #

- We now consider the behaviour of & near the points +1.
In the following lemma, we assume that the functions log (zt1) are
single-valued in the complex plane near ¥1, cut from ¥1 along

[-1, 11 and then to infinity.
Lemma 2.2 Let ¢ € H, and ¢ be defined by (2.1). Then, for z in a

neignbourhood of -1, but i ¢ L-1, 11, we have

o(z) = - 9%%%l~109 (z+1) + o4(z) ,

where @0 is a bounded function near -1, and tends to a definite limit
as z>-1 along any path.
A stmilar result holds for z near 1, z ¢ [-1, 11, viz:

ola) = ¥4

log (z-1) + ¢,(z) ,

wnere ¢1 s bounded near the point 1.

Proof  See iluskhelishvili (32, §297. #

10.



11.

We now consider the limiting value of @(z) as z tends to a point

t e [-1, 11, from either side of [-1, 1J. Thus we define the functions

o" on i-1, 1j by

o7 (t) = limo(z) , Imz>0, tel-1, 1]
>t
(2.2)
¢ (t) = limoe(z), Imz<O0, tecl-1, 17,

>t
provided that these limits exist. The following theorem, due to

Sokhotski and Plemelj, gives an expression for tnese limits.

Theorem 2.1 If ¢ e H*, then the limits (2.2) exist everywhere on
(-1, 1), and are given by the formulae

1 (P e |
(23) ¢ (t) = b ¢(t) + ZT-T][ ! T—_‘—.Ed’[ , tel-1, 11.

* 2 : . . . :
' However, ¢ may not exist at either *1 or -1 if ¢ is non zero there.

Proof  See iluskhelishvili [32, §175 and Gakhov [16, §41. #

The integrals in equations (2.3) are interpreted in the sense of the

Caucnhy principal value, defined in §1.

A sufficient condition for the existence of a Cauchy

principal value 1ntegra1 is given by the following lemma.

Lemma 2.3 If a function ¢, defined on [-1, 11, is Hblder continuous
in a neighbourhood of a point tg « (-1, 1), and integrable elsewhere,

then ¢ , which is defined by the singular integral

1
p(t) = { o(t) dt , is Holder continuous in a neighbourhood of tg.

Proof  See ifuskhelishvili £32, 8195 and Gakhov [16, §5]. #

The next two lemmas concern the change of order of integration of Cauchy

principal value integrals.
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Lemmna 2.4 (Poincaré - Bertrand) Let ¢ oo HY, & o WY and tihe

product ¢y e H*. Then

1 .,y 1 1 1 ’
Fo e f A o s

1 ' 1 - :
A f_l A o {_l sl as - g(thu(e) L -1<eel

Proof See, for example, Levinson [29] or Tricomi [43]. #

Lemma 2.5 '(Parseva]) Let ¢ e H*, y ¢ H* and ¢yp.e H*. Then

1 1 1 1
I—l ¢(1) f-l swssi dsdt = J-l v(s) {-1 Egél%'qus .

Proof  See Tricomi [43], or replace ¢(t) in Lemma 2.4 with ¢(t)(t-t). #

In the following lemma, we give a representation for functions

wnich are analytic in the complex plane excluding [-1, 11.

Lemma 2.6 Let x be an arbitrafy.function which is amlytic in the
complex plane excluding (-1, 1], and which is either analytic at
infinity or has a pole of order n at infinity. Let h be a polynomial
of degree n such that

(2.4) ~ vim{h(@) - x(2) F=0 .

. 7>

+
We assume that X~ € H* .

Then the following representation for ¥ is valid:

1 _+ -

. 1 x () - xAx) . :

(2.5) x(z) = 5= f - dt o+ h(z) , 24 (-1, 1) .
2™ -1 T z | |

Proof  See #Huskhelisnvili [32, §781. #

The following lemma provides a powerfu] technique for the

evaluation of singular integrals.



Lemna 2.7 Let X and h be as in the preceding lemma. Then

l (T-Z - X (T) dt = X+(t) + X-(t) -2 h(t) , -l<t<1 .

Proof  Follows immediately on applying Theorem 2.1 to the Cauchy

integral in (2.5). #

13.



§3. The Riemann boundary problem on an open contour

In this section, we shall solve a Riemann boundary problem,
that is to say we seek a function & which is analytic in tne complex
plane excluding (-1, 11, zero at infinity, subject to the following
condition:

(3.1) ot (t) = G(t) o (t) + g(t) , -1<t<l ,

where G and g are known functions.

Tne material in this section is drawn from Muskhelishvili

132, Cnap. 10J and Levinson [29].

Definition 3.1 Given a non-vanishing function G e H, then the

"eanonical function” X of the Riemann boundary problem (3.1) is

defined to be any function having the following properties:

(i) X is analytie in the finite complex plane exeluding (-1, 11,
and has finite degree at infinity, t.e. X(z) = 0(z™™) as zoo
where K 18 some integer (positive, negative or zero).

(ii) X+(t) = G(t) X (t) , -1<t<1 .

(iii) X has no zeros in the complex plane.

*

(iv) X e H* , and X has the bounds

B.
0 < A1 < |X(z)] < ———~ig—- for z near -1 , and
jz41| !
B
0 <A, < [X(2)] < —, for z near +1 ,
|z-1]

where 0 < Bl, BZ <1 and'Al, AZ’ Bl’ 82 are constants.

14.
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. n . + . ,
Equivalently, we may say that the functions X~ are iitegrable

and nonzero at the points *1.

Lenmma 3.1 For G non-vanishing and Holder continuous on (-1, 1]

the canonical function X is given by

1.
(3.2)  X(z) = (1-2)° (1+2z)<F° exp<2k [ log 6(z) dr> ,

ml )
Z é ['ls 1-] L)

where 0 and K are given by (3.4), and the branch of the Logarithm
function is chosen such that log G Zs continuous and single valued on

t-1, 173.

. : 1
Proof Define TI(z) = 2%1 J 129 GiT) dt , z ¢ [-1, 1]. Since G
- A -1 - :

does not vanish on [-1, 1], we can always choose a branch of the
logarithm function such that log G is continuous and single valued
on (-1, 14. Since G ¢ H, then by Lemma 271, r ié analytic in the
complex plane excluding [-1, 11, and T{~) = 0. Hence

X(z) = 0(z™F) as z+ , and so X satisfies (i).

Using Theorem 2.1, it is not difficult to show that (3.2)

satisfies (ii). Clearly, condition (iii) is also satisfied.

To show that (iv) is satisfied, we consider the behaviour

of X at z = *1. By Lemma 2.2, we can write

i 1 . 's bounded 1
r(z) = Fo(z) - log G(-1)-Tog(z+1) , where FO is bounded in a
neighbourhood of the point -1. Putting
. 1 . -1
(3.3) Yy ot 8, = - »ry log G(-1) , Yo t1 8, = 2572109 G(1) ,

we obtain
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o -K-0+Y +161
X(z) = (1-z)" (1+z) exp To(z) near z = -1,

and similarly -

Yotis aty,+id -K=0
2 72 (1-2) 272 (1+z) exp I'y(z) near z =1,

X(z) = (-1)

where T4 is bounded in a neighbourhood of the point 1. Using'these
two expressions, we now choose ¢ and k so that (iv) is satisfied. Thus,

to ensure that X* are nonzero and integrable at the points 1, we need

-1<o+y2 < 0 and —1<-K-O+Y1 < 0 , which together imply that

g = L‘Yz_] |
(3.4) [yl -o+1 if y; is non integral
K= Y| - O if y; is an integer,

where [xJ denotes the largest integer not exceeding x. Thus we
have shown that (3.2) satisfies the conditions of Definition 3.1,

and the proof is complete. #

It is possible to prove that under the conditions of
Definition 3.1, the canonical function is unique up to an arbitrary

multiplicative constant; however, it is not necessary that we do this,

In Muskhelishvili [32, §79] , the canbnica] function is
not unique, because it is a]]dwed to be zero at #1. This leads to the
necessity of defining the class of the canonical function according to
its behaviour at the endpoints #1. While this approach is useful if
particular solutions (bounded at -1 or +1) of the Riemann boundary
problem (3.1) are required, our assumption that'the canonical function
is nonzero at *1 does not cause loss of solutions to the Riemann

boundary problem, as we shall prove in Thebrem 3.1, be]ow.



17.

We also note that (3.2) differs from Muskhelishvili's
definition of the canonical function [32, §79] by the factor
(-1)°, and from Gakhov's [16, 5431 by the factor (-1)¥.

Definition 3.2 The integer k, defined by (3.4), will be called the

"index'" of the canonical function X and of the associated Riemann

boundary problem (3.1).

As we shall see, the index determines the number of linearly

independent solutions of the Riemann boundary problem.

Definition 3.3 If vg (Yp) is integral, then the point -1 (+1) is

called a "special end".

From the definitions (3.3) of Y1 and yz,.we see that an end
is special if w is real and positive at that end,and it also follows
that the canonical function is bounded at special ends, and unbounded

otherwise.

Using the canonical function, we can now give the solution of

the Riemann boundary problem (3.1).

Let g, G ¢ H , with G non-vanishing on I.-1, 17. Then the
canonical function X exists, and is given by (3.2), and the index «

is given by (3.4).

Theorem 3.1 Let ¢ be amalytic in the complex plane excluding (-1, 11,

+.
zgero at infinity, with ® e H*. Suppose that ¢ satisfies the Riemann

boundary problem

(3.5) ¢ (t) = G(t) ¢ (t) + g(t) , -1<t<l .



18.

1 .
(3.6)  (z) = X(z) ( 2%#.J_1 Xgi:; Tdf - P._1(2) ) ,

-z 4 (-1, 171,

where PK_1 18 an arbitrary polynomial of degree k-1 if x>0 , and zero

otherwise. If k<0 , then (3.5) is solvable if and énZy if

1
(3.7) J 9m) klyr oo k=1, 2. ... -,
-1

X" (r)
the soilution @ being given by (3.6).

We shall refer to (3.7) as the "consistency condition".

Proof In the first part of this proof, we assume that (3.5) is solvable,

and show that the solution ¢ has the form (3.6).

We define the function ¥ by

1
(3.8) ¥(z) = 2;1 J . XEET; Tdf > > z £ -1, 17 .
' - T

Then from Theorem 2.1, we have

Pt) - wT(t) = a(e)xt(t) L -l<t<l,

X+/X' , we can write (3.5) as

and recalling that G

| | . - )

(3.9) ®+(t) - w+(t) = Q_(t) -y (t) , -l<t<l .
X' (t) X (t)

Defining

(3.10) N2) = fE - w2 4, 10,

we see that Y is analytic in the complex plane; in particular, by (3.9),
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Y is continuous across the arc (-1, 1), and its only possible
singularities are at the points #1 and ». Let us examine the behaviour

of Y at these points.

Now,'Xi is nonzero at *1, and @i.e H*', hence /X cannot
nave poles at *1. Also, by Lemma 2.2, ¢ does not have poles at +1.
Thus, Y has no poles at 1, and since Y is continuous across (-1, 1).
thé singularities -at +1 must be isolated and removable. Hehce, Y is

analytic in the complex plane.

We now determine the behavicur of Y at infinity. Since
¢(®) = 0 , and @ is analytic in a neighbourhood of infinity, we have
-1

)

(at most) o(z) = O(z‘l) as z»~ . By Lemma 2.1, y(z) = 0(z and

from Definition 3.1, X(z) = O(Z_K) as z»~ -, Then from (3.10),
(3.11) Ykz) = O(ZK-I) + O(Z-l)' as z-o ;

We consider two cases.
(i) fndex Kk <0

If the index « is nonpositive, then by (3.11), Y{(«) = 0.
Further, since Y is analytic in the comp]ex plane, it follows from
- Liouville's Theorem that Y = 0. Hence by (3.10) , & = Xy , which is

(3.6) with P_, = 0.

1
(ii) Index « > 0

1
)

as z»>o , and since Y is analytic, it must be a polynomial of degree

If the index is positive, then by (3.11), Y(z) = 0(Z°"

k-1. Identifying Y with P we have from (3.10) that

K-12

=X ( v+ P1 ) , which again is (3.6).
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Thus we have shown that if (3.5) has a solution, then it is

~given by (3.6).

In the‘second part of the proof, we show thét (3.6) satisfies
the cqnditions of the Theorem. Using Theorem 2.1, it is easy to show
that & , defined by (3.6), satisfies (3.5). From Lemma 2.1 we can
show that ¢ is ana1ytic in the comp]exbplane excluding [-1, 17 ,
and from Lemma 2.2 we can show that " ¢ H*. If the index x > 0 ,
then, since X(z) = 0(z™F) , v(z) = 0(z~1), PK-I(Z) = O(ZK'l) as
z»w,'it is evident that &(«) = 0. If the index k<0, then to determine

the behaviour of ¢ at 1nfinify, we expand Y in powers of 271

o 1
¥(z) ?%T yoz7K f 9(1) k-1 4 |z|>1 .
k=1 -1

(1) g

" Then it follows that ¢ = Xy will be zero at infinity if and only if

1 | |
[kt ke, 2,
-1 X (1)

Tnis completes the proof of the theorem. #
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84, The analytic solution of the dominant equation

In this section, we will solve the dominant singular integral
equation

1

(4.1) a(t)e(t) + bfrt) }( d’fT) dt = f(t) , -l<t<l ,

by converting it into a Riemann problem of the type considered in the
last 'section. We will derive the ‘general solution of (4.1), as we

said in 81.

We assume that a, b and f are real, that

(4.2) : a, b, feH , ¢ e H*
and that
(4.3) a2(t) + bz(t) # 0 for -lst<l .

Assuming that a solution ¢ of (4.1) exists, we define the

function @ by

1
(44) @(Z) = 2.[];.' J (bET; drt, zZ £ [-1,17.

Then by Lemma 2.1, ¢ is analytic in the complex plane
excluding f-1, 137, and is zero at infinity. Applying the Sokhotski-
Plemelj formulae (2.3) to (4.4), we obtain from (4.1) the following

Riemann boundary problem for ¢:

(4.5) o' (t) = G(t)o7(t) + g(t) , -l<t<l
where
(4.6) G(t) = ) - 1 b(t) g(t) = f(t) , -lst<l .

“a(t)y + 9 () a(t) + i b(t)

Using the results of §3, we can write down the solution of
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First, we make the following definitions.

Let Arctan denote the multivalued function, and arctan the
principal value; thus -ﬂ/2 < arctan x < m/2 for x real, and

Arctan x = arctan x + kn , k =0, *1, +2,...

Definition 4.1 Let 6 be a real continuous function, defined on

(-1, 11, such that for every t e [-1, 11, 8 equals one of the values

b(t

at) and such that

of the multivalued function %‘Arctan
(4.7) -1 <6(-1) <0 .

Thus 6(t) = %—arctan g%%%-+ N(t) , where N is a possibly
discontinuous function of t wnich takes only integral values. Using

the identity

arctan x + arctan % =
-TT/2 > x <0 s
we can ajso write Log D(E) S g
2 a(t)

o if b(t
s if Erf%-< 0,

which is useful if t is near a zero of a. We note that since

a, b e H then 6 ¢ H.
If we define

(4.8) r(t) = [a
then we can write
(4.9) a(t) + i b(t) = r(t) exp [m i 6(t)1, -lst=l .

on choosing the posﬁtive sign of the square root in (4.2). Hence,
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(4.7), (4.9) imply that
(4.10) b(-1) < 0.

It is important that this condition is satisfied; thus, it may be
necessary to multiply (4.1) by -1. It would be possible to remove
this restriction by changing (4.7), but this will complicate later

equations, for example (4.13).

From (4.9) we obtain a(t) - i b(t) = r(t) exp [-mi 8(t)],

and so (4.6) can be written
(4.11) G(t) = exp [-2mi 0(t)) , -1st<l .

It wds specified in Lemma 3.1 that log G be continuous on [-1, 1];
thus we choose that branch of the logarithm so that
log G(t) = -2mi 6(t) , -1<t<l . From (3.3) and (3.4), it follows

that k and o must satisfy

(4.12) k+o0=0
and

(4.13) ' k= - [6(1)1,
where [x] denotes the greatest integer not exceeding x.

From (3.2), the canonical function is given by

T -2

(4.14)  X(z) = (1-2)™" exp-{- [ 0 (1) dT‘} , z £ [-1, 1] .
-1

We note that it follows from Lemma 2.1 that

4.15)  X(z) = (-2) +0(z ) as oz

With these definitions, the solution of the Riemann

boundary problem (4.5) is, by (3.6):



| 1 |
(4.16) ~ o(z) = X(zy{.Q%T-J_l ngz; A PK_l(z)}-,z £ 1-1, 1]

where PK_1 is an arbitrary polynomial of degree k-1 if x>0, and
identically zero otherwise. If k<0, then (4.16) is a solution of

the Riemann probiem if and only if

(4.17) | f ) klgr =0, k=1,2,..., «.
-1 X (1)
We define
' -K 1 0(1
(4.18). 2(t) = (1-t)™ expd - f ) g b et
-1

and on applying the Sokhotski-Plemelj formulae (2.3) to (4.14), we

nave the useful expressions

(4.19)  xt(e) = Al - T bt) Zipy ym(gy = 2Ll £ 1B Sy

r(t) r(t) ’

Z(t)

1}
—
><

+
-
o+
"
>

]
L
o+
S
[
»
1
[y

A

o+

N

T

Using (2.3) again, we have from (4.4) that ¢(t) = ¢+(t) -3 (t) ,

-1<t<1 , and after some algebra we obtain the solution of (4.1),

which we present as a theorem.

Theorem. 4.1 . The solution in the class H* of the singular integral

equation

1
(4.1)  a(t)e(t) + 2E) } OT) 4o = £(t) , -1<t<l ,
-1 |

where a, b, f ¢ H and a2(t) + b (t) #0 for -ls<t<l, is

1
. | t) f(t b(t) Z(t f d
(4.20)  ¢(t) = a(r)(tg ). § 3 £ ) {_1 r(T%E%Ti T f t "
+—-TT~b(t2 L) p (1), -l<ta

24.
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If the index K is negative, then from (4.6), (4.17) and (4.19) ¢ nave
that (4.1) is solvable if and only if

L) k1
(421) 4( m T dt =0 . k=1, 2,..., -K
. -1

the solution being given by (4.20).

Since in deriving (4.20), we assumed that (4.1) had a
solution, we will show that (4.20) satisfies (4.1). We note that
Ausknelishvili {32] and Gakhov [16] did not prove this and Tricomi

(44, 84.4) proved this in the case b = constant only (i.e., index ='1),
First, we need the following lemma.

Lenma 4.1 Let Xy be the polynomial of degree -k which satisfies

(4.22) 11ﬁ%{X1(Z) - X(Z)} =0. Ifx>0,wechosex, =0 .
20
fhen
1
1 b(t) Z(t) dt _ a(t) Z(t) : <
(4.23) m {_1 r(t T -t __“?1%77_.+ Xl(t) > -l<t<l .

Also, let PK_1 be an arbitrary polynomial of degree -1 (as above);

then for x > 0,

1 . P (1) a(t) Z(t)‘P (t)
(4.24) 1 {-1 b(Tz(%§T) f-} T dt = - FTE) -1 ,  =l<t<l .

Proof  Define Q = X - x; » With x; given by (4.22), and X as in (4.14).

Then by (4.19), Q(t) = aiﬁ);f;; b{t) 7(¢) - x;(t) , -l<t<l , and
since Q is zero at-infinity, on applying Lemma 2.7, we obtain (4.23).

To prove (4.24), proceed similarly with Q = X PK_1 . #

The polynomial Xq may be cbnstructed using the methods of

§10,'be10w.
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We now prove that (4.20) satisfies (4.1).

Proof that (4.20) satisfies (4.1) First, it follows immediately

bZ P.
from (4.24) that, for « > 0, rE;l satisfies the homogenous equation

1
a(t)e(t) + b(t) { T¢ET2 dt = 0. Secondly, substituting (4.20) in
-1

b(t) ](1 b(1)z(x) ;J(l £(s) ds
-1 r(t)(t-t) = 1 r(

Reversing the order of the double singular integral using Lemma 2.4,

and then using (4.23), we obtain

i T t
1 (1) - x;(t)
b(t) flx) X1 X1 ,
2] ey e e
Xl(T) - X1<t) :
Now, if the index x = 0, then —— =0, (since xg =0 if

k>0, and X1 is constant if « = 0) , and so (4.20) clearly satisfies

X (1) = xq(t)

(4.1). If x < 0, then e is a polynomial in 1 of degree

-k-1; if the consistency condition (4.21) is satisfied, then the

integral on the right side of (4.25) is zero, and so (4.20) again

satisfies (4.1). #

We observe that if the consistency condition (4.21) is not
satisfied, then (4.20) satisfies the equation (4.25), which is

(4.1) with a modified right side.
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In Muskhelishvili's notation (32, §791, (4.20) is the

solution of the class h0 , and is the general solution of (4.1).

We note that Khvedelidze [25]. [26] has shown that Theorem
4.1 holds (almost everywhere) if a, b and f are continuous, but not

necessarily Holder continuous.

We now cohsider the function 6 and the calculation of the

index in more detail.

If a and b are differentiab]e, then we can derive a useful

expression for 6 as follows. From Definitidn 4.1, o(t) = %-Arctan g%%%-;

differentiating and integrating, we obtain

N l_ft a(t)b’ (1) - a'(t)b(1) dr , -1<t, tbgl )

O) T t, al(1) + b%(1)

(4.26) 6(t) = o(t

It is clear that this expression holds, in particular, near those points
at which the function a changes sign; thus, despite the change of branch
of Arctan, 6 is continuous and differentiable, provided that a and b

are differentiable.

The following lemma provides a simple method of calculating

the index without constructing the function 6.

Let b have p zeros on [-1, 1j, and XA zeros 81, 62,..., 6X
in the opén interval (-1, 1), i.e. B, #t1,1i=1,2,..., A. Define

€cs i=1,2,..., A, v and ¥ by

1 if b/a is increasing at 61 , and b Changes sign there
€., = -1 if b/a is decreasing at Bi , and b changes sign there

0 if b does not change sign at Bi



N 1 if b has a zero at *1 and b/a is increasing there
0 otherwise |

Lenma 4.2 The index x of the dominant equation (4.1) and of its

assoctiated Riemann problem (4.5) is

+
kK=1-vy -~y - €.

1 1

e~

.i

Proof  Using (4.9), it is easy to show that if b/a is increasing at

5. s then (6(B;+)) = [8(8,-)] + 1, and if b/a is decreasing at 8., then

[6(8;+)] = [9(61-)3 - 1, if b changes sign. If b does not change sign

28.

at B, then [G(Bi+)] = 19(B.-)1 . Now, if b has a zero at the point +I,

j
tnen

1 if b/a is increasing at 1-
[6(1)] = [6(1-)] +

0 if b/a is decreasing at 1-

Then r6(1)7 = [68(1-)7 + v
A o,
[6(-1+)1 + vy + Y €
i=1

a1yt ey e; using (4.7),

.i

0~

. 1
and the lemma follows on applying (4.13). #

- t2 . At the point -1, we have

I\Ng

Example Choose a(t) = -t, b(t) =
6(-1) = (1/m) Arctan (-3/4), and so by (4.7) we must choose

0(-1) = -(1/7) arctan (3/4) = -0.204833 .
Thus

(4.27) ©(t) = (1/m) arctan L(t2 - %)/t]  for  -1<t<0 .

At t = 0, a has a zero, and so we pass to another branch:

(4.28) . G(t) =1+ (1/m) arctan [(t2 - 4%)/t1 for O0<tz1 .

We can also derive
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(4.29) o(t) =% - (1/m) arctan [t/(t2 - %), ~%<£<% .
Aiterngtive]y, using (4.26) and chbosing ty = -i, we obtain
o(t) = 6(-1) + (2/m) arctaﬁ 2 + (2/w) arctan (2t) .
As above; we have 6(-1) = -(1/7m) arctan (3/4) ,.which gives
(4.30) 6(t) = % + (2/7) arctan (2t) , -1<ts<l .

Of course, (4.27) - (4,30) coincide over common intervals

of definition.

It is useful to draw graphs of b(t)/a(t) against t, and ©
~against b/a, to ensure that 6 is constructed correctly. If b/a

is an increasing function, then 6 will be too, and vice versa.
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CHAPTER 11

THE ANALYTIC EVALUATION OF
CAUCHY PRINCIPAL VALUE INTEGRALS

§5. Introduction

While (4.20) gives the solution of the dominant singular
integral equation (4.1), it is not very useful for numerical work,
due to the difficulty of evaluating the Cauchy principal value integral
of f/rZ. This numerical difficulty is dﬁe to the singularities of Z

at £1. Let us illustrate this by an example.

Example 5.1 Let a(t) = cosm(at+Bt), b(t) = -sinm(a+Bt), and

assume for simplicity that -1<B-a<0 , -1<B+a<0 . Then from Definition
4.1, 0(t) = -a-Bt , and by (4.13) the index is zero. From (4.18)

we obtain (in this case)

»  -1<t<l .

However, the mathematical techniques required for the
analytic evaluation of singular integrals involving the function Z
are aVai]ab]e in Auskhelishvili (32] and Tricomi [43J. For example,

we have already used these methods in Lemma 4.1.

In 86 we present two theorems which provide methods for the

analytic evaluation of Cauchy principal value integrals involving Z.

In §7 we use these theorems to evaluate the singular integral
of f/rZ in various ways, and thus give alternative analytic solutions

of the dominant equation (4.1).
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86. Cauchy principal value integrals of Z

- In this section, we give two theorems which provide a method
for the analytic evaluation of Cauchy principal value integrals which

involve the function Z. We also give some simple examples.

First, we recall the definitions of Z, see (4.18), X, (4.14)

.and r (4.8).

Let Q be meromorphic, that is a function whose only
singﬁ]arities in the finite plane are poles. Q may only have poles

on [-1, 1] if
(6.1) -~ bQZ/r e H* .

Thus the poles of Q on [-1, 1) must coincide with the zeros of b, and
the order of these po]es of Q must be no greaterbthan the order of

the corresponding zeroé of b.
v f@A

Let R be a meromorphic function, with its poles lying at the

poles of Q, such that QX - R is analytic in the finite plane excluding

[-1, 13, and such that (on [-1, 11)
(0.2) . aQZ/r - R e H*

Let © be-an entire function, that is a function whose only
singularity is at infinity, such that QX - R - Q is zero (and analytic)
at infinity. »

The following two theorems are applications of Lemma 2.7,

Q
but because of their importance. we present tnem as theorems.
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Theorem 6.1 With Q, R aﬁd Q as above, then

(6.3) T_lT.)[l b(r)a(1)2(r) 4 . _ alt)a(t)z(t)

_é§ = - () + OR(t) +a(t) , -1<t<l.

Proof  Consider the function F, defined by

F(z) = Q(2)X(z) - R(z) - @(z) , z ¢ (-1, 11.
By (4.19), its limiting values on [-1, 1] are

+

F(e) = anz(e) HEFIE Ry g(r) , o1t

Because of the way Q, R and @ are chosen, F is analytic in the complex
plane excluding [-1, 1] , and is zero at infinity. By (6.1) and
(6.2), its 1imiting values F* ¢ H*. Thus we can apply Lemma 2.7, and

obtain (0.3). #
Let Q be as above, except that we replace (6.1) by
(6.4) T

Let S be a meromorphic function, with its poles lying at the poles of
Q, sgch that Q/X - S is analytic in the complex plane excluding

Lt-1, 1J, and
5 aQ _ *
(6.5) Fp TS e H
Let x be an entire function such that Q/X - S - x is zero at infinity.

r

Theorem 6.2  With Q, S and X as above, then

;_fl b(
T3 r{t

(1) dt _oa(t
(t) -1t r(t

%g . E) - S(t) - x(t) , -1<t<l .
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Proof Define the function G by

G(z) = Q(z)}/X(z) - S(z) - x(z) , z¢(-1,11,
and proceed as in the previous proof. #

In practice, the function Q is specified, and then R and

2 are determined (or S and ).

We need to consider the existence of the functions R, 2, S

and x. It is sufficient to consider only R and Q.

If Q has an ihfinity of poles, then the only possible limit
point of these poles is at infinity. Then Q will have an essential
singularity at infinity, and Q can be chosen to be the principal
part in the Laurent expansion of QX - R at infinity. R can be
constructed using weiekstrass's factor theorem - see, e.g. Copson

L10, §7.21.

In practice, Q will have a finite number of poles and
perhaps a pole at infinity. Then Q will be a rational function, R

will also be rational, and Q will be a polynomial.

Further generalizations of the above two theorems are
possible; for example, we could allow Q to have a cut on [-1, 17,

e.g. Q(z) = (zz-— 1)1/2 .

Example 6.1 With a, b as in Example 5.1, we choose Q = 1, and
thus R = 0. Since the index is‘zero, jt follows from (4.15) that
Tim X(z) = 1, and hence we choose @ = 1. Then Theorem 6.1 gives the

2>
singular integral
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1 atBt . wrat
1 1 -1 sinm(o+BT)- _ 1 -t
5-{_1 (1 + T ) Tt dt = cos ﬁ(u+8t)'(T—T*E) )
ST, Liceel

It can be snown that this result holds provided that

(1 - t)/(1+ )18 gin n(atpt) € H*

As further applications of these Theorems, we present the
following two lemmas, which do not appear to have been published

previously.

In these Temmas, we assume that the singular integral equation

| 1 |
(6.6)  a(t)e(t) + L) )[_1 () gr = £(t) , -1cta

is soluble; then under the conditions of Theorem 4.1, its solution is

- 1
| ey - alt)f(t b(t)Z(t f d
(6.7) o(t) = ai22t§ ? - #rztg ) f-l ririéEzS T E t

+ w——— PK-l(t) , ~1<t<l

Lemna 6.1 Let Al be a polynomial of degree n - kK which satisfies
(6.8) vin{, (z) - 2" @)} =0,
Vs 1 .

where n is an integer. If n -« <0, put A

t
o

. -
Then

1 1 /f(o)a (1)
(6.9) ’f-l o(t)" dt = [-1<(——277%7:-+ " b(T)Z(T)PK_l(T) > F%%j-.



Proof  Choose Q(z) = 2"

R=0. By (6.8), QX - Ay is zero at infinity, and so by Theorem

6.1 we obtain

-
(5.10) %f_l b(TZ%S) .y - (-ht =La(t)Z(’c) my Ca(e) . 1etel |

Substituting (6.7) in the left side of (6.9), we have

1 1 | 1
- f b(t)Z f d
s e[ ( R o
‘ n
+ b(t)Z(t) P _1(7) ) F%?T dr .

Inverting the double integral using Lemma 2.5, and using (6;10) to

evaluate the resulting singular integral, we obtain (6.9), thus

proving the lemma. #
Lemna 6.2 Let By ‘be a polynomial of degree n + « such that
A . n,-1 _ |
(6.11) Tim {TAZ(Z) -z X (z)} =0 .
Z2>°

If n + x <0 , we choose A2 = 0.
Then

1 n 1 .
(6.12) f ey Srde= [ a(0) aplodr .

ar 1

Proof  Choose Q(z) = z

1 n
(6.13) % f_l rb(T) t dr _ - _%i§%T%;‘ - B,(t) , -l<t<l .

T T T -t r{t

Substituting (6.6) in the left side of (6.12), using Lemma 2.5, and

(6.13), we obtain (6.12), thus proving the lemma. #

, and Q = by . Since Q has no poles, put

s X = A,y S = 0. From Theorem 6.2 we have

/</__
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For example, if the index x is negative, by putting
successively n =0, 1,..., -k-1 in Lemma 6.2 we have in each case
A2 = 0, and thus obtain

1 N N '
(6.14) » [lrf(T) T dt=0 ,n=0,1,.., 1,

which is the consistency condition (4.21). Thus, by assuming that
(6.6) had the solution (6.7) and that the index was negative, we

have shown that (6.14) must be satisfied.
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§7. Alternative forms of the solution of the dominant equation

In this section, we show how Theorem 6.2 may be used to
write the solution of the dominant singular integral equation (4.1) in
more useful forms, which do not involve Cauchy principal value

integrals of the function Z.

Theorem 7.1 Let Xo be the polynomial of degree Kk which satisfies
(7.1) vin { x,(2) - x'l(z)} = 0. (I£ k<0 , ¥, = 0).

Then under the conditions of Theorem 4.1, the solution of the dominant

singular integral equation

1
(7.2) a(t)o(t) + D) 1 o) e = (e) et

m

can be written as

: ' 1 '
(7.3) o(t) =._Zr7(%{f(t)xz(t) . %J 1 fﬁ)b(tr) - E(t)b(r)

dt +
r(t)Z(t)
+ b(t) P (t) } . -l<t<l

Proof  Adding and subtfacting a term, we can rewrite the solution
(4.20) of (7.2) as
| i 1
_a(t)f(t) zét% )[ b(t) dt
(7.4) o(t) rz(t) = f(t) _1 r(T)Z(x) T- T

1
f(t)b(t) - b(t)f(t) d
' J_l . A GO

To evaluate the singular integral, we put Q =1, x = Xp s S=z0

in Theorem 6.2 to obtaih
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1
1 b(1) d ,
ﬁ'f 1 P(T)}(T) T E T 7 ta(tg - Xz(t) » =1<t<1 .

where x, satisfies (7.1). Substituting this in (7.4) and cancelling,

we obtain (7.3), thus proving the theorem. #

We note that (7.3) can also be written as

which we will use in §8.

In tne next two theorems, we assume that bm is a polynomial
of degree m, with u zeros, which are at the points Bi’ and are of

‘multiplicity o

i s i=1,2,..., 4. Thus we have

8! U :
(7.6) b (z) =y (z-8.) T =.f a. , Y = constant .

Theorem 7.2 Let b, be given by (7.6) . Let Q, be a polynomial

of degree k-m such that

(7.7 Hm{szz-—l——-—}‘: o -

Let R2 be a polynomial of degree m-1 such that
—-qiR(z)—l} =O7Lf.8¢[-11]

dZJ 2 X<25 Z=61' : 1 ?

a(t) .
dta{z r(tZt}tzB__O if By el-1,11,
1 |

j =0, 1,-.-,oc--1, i=1,2,..., u. Ifm=0, put R, =0,
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To ensure that R2 exists, we assume that the first a; -1
dertvativesof a are Hoélder continuous in a neighbourhood of the

points By if By e [-1, 11, i=1,2,...u

Then the solution of

1
7.0 e+ B[ <) aaa

18 given by

(7.10) o(t) = 8L e(e)iry(e) + b, ()y(t) s -

on(E) (1 gr) - g d -
- f_l O Sy () PK-1(”} -

Proof The solution of (7.9) is given by (4.20); by adding and

subtracting a term, it can be written as

(7.11) o(t) =

In Theorem‘6.2_we choose Q = l/bm , S = R2/bm and' X = 92. Sihce
bm is a polynomial, and the first a; - 1 derivatives of a are
Holder continuous,it can be shown that the first a; - 1 derivatives of
Z exist at Bi , if Bi e (-1, 11, i =‘1, 2,..., U . Also, since

X is analytic in the complex plane excluding [-1, 1] , and has no
zeros, then it can be shown that R2 exists and satisfies (7.8). It

is evident that the choices of Q and x satisfy (6.4) and (6.5), and so

from Theorem 6.2 we have

1
1 1 dt  _ 1 agt) . N
(7.12) ﬁ’{_l r(7){{t) -1 bmfti { r(t)Z(t) - Rz(t{} QZ(t) ’

-1<t<l |
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Suostituting tiis in (7.11), we obtain (7.10), thus proving the

‘theorem. #

To construct R2, it may be necessary to differentiate the
function Z, which involves a Cauchy principal value integral. These

may be differentiated using the 1déntity

o d" I ey L eMy  omel
- (7.13) ) {]{,1 ?-—Tt"dT}‘ f_l T a4t 'jzo(-l)n I(n-j-1)! x

X{e(j)(l)(t-l)j-n - e(j)(_l)(t+1)j-n} , ~1<t<l |

If derivatives of Z are required at or near +1, the following

expression (which can be derived from (4.18)) is useful:

1 .
.Z(t) = (1+t)7" exp{ - f_l %L}){f-dr} , -l<t<l .

We now assume that fn is a polynomial of degree n.

Theorem 7.3 Let fn and bm be polynomials of degree n and m
respectively, with b as in (7.6) . Let 23 be the polynomial of

degree ntk-m such that

(7.14) llino {93(2):- Em_(;%‘z(‘i')’} =0 . Ifnk-m<0 , Q320 .
Let‘R3 be a polynomial of degree mji such that

_Qi R,(2) - fh(z)} =0 , B ¢C-1,1]

dzd 3 _ X(z) z=81 !
(7.15)

g [ a(t)fn(t) ) ‘ , y
-c-j—;j- R3(t) - F—(—t—m?:)_- t=B - 0 'Y B € [_-1, 1 )
) 1

j=o0, 1-,...,a1.-1; i=1,2,...,04. Ifm=0, R, =0 .
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Again, we assume that the first a, - 1 derivatives of a are Holder

continuous at Bi s, if Bi e -1, 17.

Then the solution of the singular integral equation

b
L (7.16)  a(t)e(t) + }[-1 ) g = £ (4) , -lcta

18 given by

(7.17)  o(e) = HEL L Ro(e) + 5 (0)ag(e) + b (e) P_y(0)} , -lctel

Proof The solution of (7.16) is given by (4.20); to evaluate the

. . ; 1 (1 fn(T) dt '
singular integral ﬁ-f ) FOIEY Tt ve choose (Q = fn/bm s

X = i and S = R3/bm , and obtain from Theorem 6.2

1 f (1) a(t)f (t)
1 it 1 ,
&?f X T Tet - 6(t) {r(t)Z?t) - R3(t)}' 2(t)

-1<t<l .

Substituting this in (4.20) we obtain (7.17). #

The Eonstruction of R3 and Q3 is discussed in §10;

Xo s 92 and R2 can be found §1m11ar]y.

We note that singular integral equations of the form
Q,(t) (1 . Q,(t) :
- 1 (1) _ 3 :
(7.18) a()e(t) * gy )[_1 M= gy L e
wnere Ql’ Q2’ 03 and Q4 are po]ynomja]s (02 and Q4 have no zeros on
{-1, 11) can be solved using Theorem 7.3 by first multiplying (7.18) by

Q2Q4. Alternatively (and. equivalently), the singular integral

LGOI T

can be evaluated using Theorem 6.2, the



solution of (7.18) then being obtained using (4.20).

42.
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CHAPTER IT1I

Ail ALGORITHM FOR THE NUMERICAL SOLUTION OF THE

DOMINANT EQUATION

§3. General description of the algorithm and proof of convergence

We will now give a numerical method for the approximate

solution of the singular integral equation

o(1) 4

(8.1) a(t)e(t) + I LTt

!
—
—~
—+
~
1
—
A
—+
N
—

b it) {1

We assume that b is a polynomial of degree m:

o U
(t - 8;) , With m=) o ,

—
x
N
N
o
——
c—’-
S’
1
=<
(=l =

as in (7.6). If, in a given equation

ey (1
(8.3)  a*(t)o(t) + 2 ét) f 1 T¢ET2 dr = F*(t) , -l<t<l ,

b* is not a polynomial, or is a polynomial which has some or all its
zeros not on -1, 1 , then provided that the zeros of b* on [-1, 1]
are either simple or multiple (see examples below), we may multiply
(¢.3) by a function h, defined on [-1, 11 , such that b_ = b*h is

a polynomnial of degree m. If a* and b* are bounded on [-1, 1] ,
vthen h inust be nonvanishing on (-1, 1]; otherwise bm and a = é*h

will vanish simultaneously, thus violating (4.3).

We emphasise that we are not approximating b* by a polynomial.
In the method below, we will be approximating f by a polynomial fn \

and thus it may be necessary to choose h carefully to ensure that
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f = f*n can be approximated readily by fn'

Example 8.1 Consider (8.3) with b*(t) = sin(mt)(exp(t)-1) , -1<t<1 .

Then b* has a double zero at t = 0, and simple zeros at t1. We choose

bm(t) = t2(1ft2), and so h = bm/b* will be non-vanishing on [-1, 13.

Multiplying (8.3) by h, we obtain

™ T -t

2 2y (1 ~
ax(t)n(t)e(t) + EUE) J 1 (1) 4o = fx(t)h(t) , -1<t<l ,

whicn is now in the form (8.1).

Example 8.2  Suppose b*(t) = exp(-1/|t|) , -1<t<l . Since b* has

a zero of infinite order at t = 0, there does not exist a polynomial

bm such that h = bm/b* is a bounded non-vanishing function on [-1, 1].
Consequently, in this case, we cannot transform (8.3) into the form
(3.1), and the following algorithm is not applicable. A similar

1
]

statement holds,  if b*(t) = (1+t)* , for example.

We return to the description of the algorithm.

We approximate to f by a polynomial fn of degree n, and

using Theorem 7.3, we solve

t) {1 ¢ (1)

n -
T ¥ dt =

A bm(
(8.4)  al(t)o (t) + M

fn(t) , -1l<t<1
exactly, givihg
(5.5)  o,(t) = HEL Ry (1) + b (t)ay(8) + b (8) P, (£)], -1<t<l .

If the index is negative, the integrals (4.21) may be evaluated
using tne quadrature formula in §13. R3 and 93 can be found using the

method of 89 and §10.

We note that if x>0, and n<m-1 or'if k<0 and n<m-k, then it is
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not necessary to construct 93, since it is of no higher degree than the
- arbitrary polynomial Pe_1 (see (8.5)), to which it is added.

Examples of this method will be given in §11.

We now examine the convergence of ¢n to the exact solution

¢ of (8.1). First, we need the following results.

Definition 8.1 Let F, denote the space of all polynomials of degree
not greater than n. Then, assuming that f ¢ Ha , we define

En(f) = min max |f(x) - gh(x)] .
gnan -1<x<1

It is well known that there exists a unique polynomial P

say, for which max |f(x) - pn(x)] =-En(f) . The polynomial pn’is
-1<x<1 :

called the polynomial of best approximation to f.

The constants Al’ Aé,..., A7 used below are all positive and

independent of n,

-0
Lemma 8.1 If f e H“ , then En(f) < A3 n - .

Proof  Jackson's theorem; see [21].

Definition 8.2 Let -15x0<x1<... <xnsl be a set of ntl distinct

points. We define the Lagrangian interpolation polynomial of degree

2. (x)f(x.) , where %5 are polynomials of degree

n to be Ln(f;»x) = o N i

;
N such that Qi(xj)

N Hp~13

Lemma 8.2 If we choose

(8.6) X. = cos | - 2i+l , i=0,1,...,n
2 ntl



46 .

then

n
max ) lzi(X)[ <A; tA,Togn .
-1sx<1  i=0

Proof See Rivlin  [38, Thm 4.5]. #
Lemma 8.3 With X; as in (8.6), we have

1max1 [f(x) -'Ln(f; x)| § E (f) (A +-A2 1ogvn) ,

Proof  See Rivlin (38, Thm 4.17. #

Lemma 8.4 Let f ¢ Ha‘ _Let there be a polynomial 9, of degree

N such that for any n

max {f(x) - g (x)] < Ay n -
n
-1<x<1
Then
[6,(x) - & (s)] A
sup L nB s OEZB s XEs,
-1sx,s<1 [x - s n

where dq(x) = f(x) - gn(x) , -1lsx<1 , and 0<2B<o .
Proof See Kalandiya [22] . #

Definition 8.3 With r and Z as above, and f ¢ H , define the

operator 1 by

ey = L [T f(r) - f(t) dr N
I(f9 t) I-]_ _‘_—?—:‘t‘—*— m 1<t<l .

2|

Lemma 8.5 If f e Ha , then 1 is bounded on [-1, 17 .

Proof We have
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-l<t<1

Since f ¢ Ha the first quotient is bounded. Also, since rZ 1is
nonzero in.[-1, 17 , it follows that the integral exists for a>0 ,

and thus I is bounded. #

We can now prove that the solution ¢n of (8.4) cbnverges to
the so]utidn of (8.1). Since (8.5) is an exact solution of (8.4), we can
use (7.5) and Definition 8.3 to write the solution of (8.4) in the

form

6.7) oy(6) = LE{r (©)xy(8) + 100,58 - B (EV1(F,3t) +
| b (t) Py (D}, -lctal,
Similarly, the exact solution of (8.1) is
8.8) o(t) = HE L(6)0xy(6) + 1b5t)T - by (0)I(F; t) +
| * b (t) PK-l(t)} , -1I<t<1 :

Subtracting these and defining

(8.9) 6y = F - fu v=r¥/Z, Yy =re/T,

we have
(8.10) () - (t) = &, (t)lxp(t) + Llbyst) s - b (t)I(8,5t)
-1<t<1 ,

where we have assumed that the arbitrary polynomial PK_1 is the same
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in (8.7) and (8.8).

Theorem 8.1 If f e HC and fn is chosen so that fn(xi) = f(xi) ,

where X; = cos AT i=0,1,..., n , then the solution ¢n

of (8.4) converges to the solution ¢ of (8.1) in the sense that

i 21+1)

1im max |¢(x) - wn(x)l =0 .

nro  -1<x<1

Proof Since f ¢ HC , then by Lemma 8.3 and Lemma 8.1 we have

. A

3 f

max |8 (x)| < (A, + A, log n) < = , where O<a<g .
e n 7 (A + A o |

=

Then, since f is also in the class Ha , Lemma 8.4 is applicable.

From (8.10) we have

max’blw(t) - wn(t)l < max |6n(t)| . max |x2(t) + I(bm}t)l +

-1<t<l -1<t<l -1<t<1
+  max |b_(t)] max |I(8 ;t)|
-1<t< -1st<1 n
Now
|8 (x) - 8 (s)] ol B-1
max |I(s ;t)| < sup L nB max 1;J l%—§7%17—- dr

-lst<l M -1sx,s51 [x - s S1st<l TS PATIEAT

X #s ,

vwhere 0<2B<a . We showed in Lemma 8.5 that the above integral is

bounded. Applying Lemma 8.4, we have

,AS
max I(8 3t < ==

Hence



A

nax |yp(t) - wn(t)l <2 ax IXz(t) + I(bm;t)l +
-1<t<1 n® -l<t<l _
As
+ max |b _(t)]
nu-ZB <t<] M

Since I, xzvand bm are bounded and independent of n, and 0<28<a

on taking the limit, the theorem follows. #

bl

49,
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§9. Expansions. of X and x~1

In 88, and later in this thesis, we require expansions of

X and X™1 in descending powers of z.

From (4.14) we have

o 1
X(z) = (1 -2)7% exp <-J71 3( )z dT>

z £10-1, 1]

. »
X_l(z) = (1 -2)¢ exp (J 8(x) dT> )

We will consider the expansion for X in detail; the expansion for_X'1

will then follow analogously.

Using the expansion

. . © k
1 .1 T ST

(92) %-Z Z kZO(Z) ’ IZI <1 ’

and defining the moments of 6 to be

(9.3) C = [ 6(t)t  dt , k=0,1,...,

: -1
we can write (9.1) as
_ -K s -k-1
(9.4) x(z) = (1 - z) -exp< ) €z ) , lz] > 1.
' k=0

The moments Ck , k=0, 1,...,N say are found as accurately as
possible. We then define the coefficients bbém) (bb denoting a

single symboi) by
. . .
(9.5) ) bbém) 2K - exp ( ) Cy z‘k'1> , m=0,1,..., N,
» . k=0 o

Then it follows that
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(9.6) o bb !

and form > 0,

o m-1 ’
gzo bbém) 2K - exp< kz Cp 27K 1> . exp (Cm z‘m'l)
- § bp(M-1) -k § (Cy) ~(m+1)5
4 k PN
k=0 j=0
mer]
_ 5 -k M (me1) 5 e
T o ‘ jzo bBy - (m+1)3 (Cp)*/3

- Hence we can write bbém) in terms of bbém'l) .

[k/(m+1)]
(9.7) bb{M) - % ) bb

¢ (m-1) = (¢ Y50 k=0,1,...;
i%0 |

k-(m+1)j ‘“m

Thus the bbém) can be found using (9.6) and (9.7);

If we define the eﬁ by

(9.8) J e 27 = exp ( I ¢, z'k'l) :
k=0 k=0
then from (9.7) we see that eﬁ = bbéN) , k=0,1,..., N+1, and
so in practice we only need to calculate bb(j) . k'= 0, 1,..., N+1,

k
j=0,1,...,N to obtain eﬁ », k=20,1,..., N+1, for any given N.

Substituting (9.8) in (9.4), we obtain the required expansion:
(9.9) X(z) = (1 - )™ 3 ef z szl > 1.

We shall give the first few eﬁ :
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(9.10) ex = 1

0
ef = CO
ex = C.2/2' + C
3 =0 /2t G
- 3 ' v
ey = C,2/3! ¥ Ciy + G,
Y S 2 . 2,
ef = Co /4 + Cp7Cy/2t + €772t ¥ Gy + Oy
ox = C.9/50 + €.3C./3" + C.2C/2" + C.C2/2! + CiCy + CoCq + C
5= Co /5 + CpCy/3- 6ty 2o 162 * Cols * Gy

Similarly for the expansion of X" we define

(9.11) ) aaém) 27k - exp (- ! Cy z7k-1 ) , m=0,1,..., N,
= k

k=0 - =
and obtain
(9.12) aal®) = (/! L k=0, 1,...
(k/(m+1)] .
(m) = (m_l) o J/si -
aak jzo aak-(m+1)j ( Cm) /J~ s k Os 1: )
m = 1, 2, s N )
giving the expansion for x~1
(9.13) xHz) = (1-2)° T e 2%, 2| > 1,
k=0
where e = aaéN) ,» k=0, 1,..., N+¥1 .

The first e, are

| ]
) —
(]

1]
N
1l
(@]
o
N
~
N
]
(@]
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. L
4, 2. 2. -
eg = Colrar - cfeysar o2 v e, - G
er = -C2/5' + Ca3C./3" = C12C /2! = C,CA2/20 + C1Cp + CoCa - C
5 = <Co /50 + CpCy/30 - C17Cp/20 - CxCh7 /20 + CiCy + Coly - Cy
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§10. The polynomials R, and 3

The~$o]ution (8.5) of the dominant equation required the
polynomial 93 (of degree n+k-m) defined by (see (7.14))
(10.1) i [ 0y02) - g0 ) °
. im [ Q,(z) - =0,
7300 3 : bm z)X(z
and the polynomial R3 (of degree m-1), whose definition can be

written (see (7.15)):

o’ i . .
(10.2) 823‘[R3(z) —‘F(z)]z=61 =0, 320, Liowwy opels
-i = 1, 2a ces U,
where ‘
fa(2)/X(2), z ¢ [-1, 1]
F(z) =
f (z)a(z)/(r(z)2(z2)) z e [-1, 1]

We consider Q3 first. Now (10.1) implies that at most
Q(2) - -0z’l) as zoew
3 b (z)X(z )

Multiplying by b~ and using (9.13), this becomes

N+1
(10.3) b _(2)25(z) - fn(z)(l-z)'((kf0 e 2 + o(z'N'2)> = o(z™ 1) .
‘If «=0, we find Q, by equating the powers A , zn+'<'1 N

3
giving n+k+1-m equations for the coefficients of

3 - Clearly,

we need to choose N>n+k~m-1 to ensure that sufficient ek are known.
Zn-l

b

If k<0, multiply (10.3) by (1-z)™ and equate the powers ",

, 2% to find Q

Of course if n+k-m<0 , then 93 =0.
The calculation of R3 is straightforward if all the zeros

of b are simple, i.e. if a; = 1 fori=1,2,...,u.
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Then m = u , and the Lagrangian interpolation formula gives

. m m Z?Bj

R.(z) = F(B,) T ——t

3 kzl k j;l_Bk - Bj
j#k

However, if bm has multiple zeros, then the construction
of R3 may be more difficult. An explicit represehtation for R,
~can be obtained using the method of Spitzbart [413 or Goncharov [17] .

See also Ivanov [20, egn. 11.171] .
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§11. Examples - Dominant: Equation

In this section we give'four examples which illustrate the
preceding theory. In Examples 11.2 and 11.4 ‘the solution of the
dominant integral equation is reduced to the eva1uétioﬁ of the function
Z by quadrature. In the other two examples, Z can be obtained

analytically.

Example 11.1 Constant coefficients

Consider the singular integral equation

1
b ¢(t) _att .
(11.1) ap(t) + %-f-l =% dt e A 1<t<1 ,
where a, B, a.and b are real constants, such that a2 + b2 =1,

|B| >1 , and to satisfy (4.10) , b < 0. Karpenko [24] has considered
equations of this form; however, he assumedAthat the right side of

(11.1) was a polynomial.

From Definition 4.1, we have

(11.2) ® = (1/m)arctan(b/a) + N = constant ,
0 if b/a <0
where N = '
-1 if b/a > 0 .
Then from (4.13), -the index k=1 , and from (4.18)
(11.3) 7(t) = (1 - )10 1+ )%, -1<tar .

From Theorem 4.1 the solution of (11.1) is

1 o
(11.4)  ¢(t) = a 22 L PZLL) ][ 1 ST gy et c2(t) -kt

b
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where c is an arbitrary constant. To evaluate the singular integral,
we use .Theorem 6.2, and choose Q(z) = (o+z)/(b(B+z)) ,

S(z) = d/(B+z) where d is to be found, and x to be a polynomial of

degree one, such that Tim %—;—%— BY%ET" X(z)) =0. To

Vanad

determine x, we have from (9.13) and (9.14) that X'l(z) = -z + (1+C0) +
. 1

+ O(z'l) , where C0 = J o(t)dt = 26 .
-1

Hence, after a little algebra, we obtain

(11.5) x(z) = (-z.+ 1+26 -0+ RB)/b.

.

The constant d is chosen so that QX'1 - S is analytic at the point

-B; hence we obtain
(11.6) d=%-8_

where, by (4.14),

X(-8) = g 1B

Then applying Theorem 6.2 , we have the singular integral

1 -
1 o+ T 1 dt _a at+tt 1 o d )
E-{_l B+t Z{t) T-t b B+t Z(t) B+t x(t) , -l<t<l ,

and substituting this in (11.4) we obtain

| | .
(11.7) o(t) = (1-t)71° (1+t)6< (1+8)352 [B53 + A - t) ,

-1<t<l

where A =1+ CO - o+ B+ C , which is arbitrary, since it includes

.

This éomp]etes the solution of (11.1), but we will discuss

the construction of some special solutions. ' ’
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Since Z is unbounded at #1, the solution ¢ will also be
unbounded at *1, except for particular choices of the arbitrary

constant A. If we choose
(11.8) A= -(1+p) 28 |B'+1|6--1'
then ¢(-1) = 0 and ¢(1) is unbounded, and for

(11.9) - A=-(a-8 |8+1| £ 1

b

(1) will be zero and ¢(-1) unbounded.

These two choices of A (or ¢) give solutions which, in
Muskhelishvili's (32, §107] method, are'of index zero. The two
values of A will in general be distinct, but if
1 0

Ry B”l
B -1

(11.10)  -(1 + B)

..1:-&-8[ + 1

a - B
B -1
then the values of A coincide, and so the corresponding particular
solution ¢ will be bounded at both +1. In Muskhelishvili's method,
this is a solution with an index of minus one, and (11.10) is the

condition that such a solution exist.

The general solution (11.7) has, of course, an index of one

in this thesis and in Muskhelishvili's work.

Example 11.2 b Having a pair of complex conjugate zeros
Consider
2 2 1
(11.11) -6(t) - (tra) + B { ¢(x) dt = -1 , -l<t<1 .
T 17" t '

We assume for simplicity that B # 0 .

From Definition 4.1, we have



59.

8(t) = %—arctan [(t+ a)z + 82] -1, -1st<l

and by Lemma 4.2, the index « = 1. Z is given by (4.18), and r by
(4.8). The degree of b is m = 2, the degree of f is n = 0. From
Theorem 7.3, the solution of (11.11) is

[(t+a)2

(11.12) o(t) = %-%)-( R3(t) + 52] [, + c1> ,  -l<t<l |,

where R3 is of degree one, _93 0 zand ¢ is an arbitrary constant,

From (7.15), Ry is defined by

(11.13) R3(z) =X "(z) at z=az*iB .

Putting R3(z) = A + Bz , then since X (and X'l) has the property

X(z) = X(z) , we can put 1/X(a * iB) = p + iq, where p and q are

found from the definition of X.

From (11.13) we obtain A = -p + ag/B , B = -q/B , and the
solution of (11.11) is

o(t) = % t (,A.+ Bt - c[(t+a)2 + 82]> , -l<t<l .

Thus we have reduced the problem to the evaluation of X(o + iB) and

Z, which would presumably be found by quadratufes._

Example 11.3 a(t) = -/ - t°
Consider
1
(11.14) A )+ BB f ) gro v, et
| -1

We assume that -1<g<l. The form of a(t) makes it possible to find

the function Z without evaluating the singular integral of 6.
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We first note that (11.14) satisfies (4.10), i.e. b(-1)<0.

From Lemma 4.2, since b/a is decreasing at the zero of b, the index

K = 2.

Z can be found numerically, but in this case it is possible
to find Z analytically, as follows. We define
(11.15) b(z) =z -:B
and

(11.16) J(z) = -b(z) - /z2 -1, ze(-1, 17,

choosing that branch of /22 - 1 which is 0(z) at infinity. We

also define
(11.17) w(t) = V1 - t2 , -ls<ts<l .

Then the limiting values of J on [-1, 17 are

(t) = -b(t) F iu(t) ,
(11.18)

(6)a7(t) = v2(t) = 1+ 8% - 28t , -lst<l .

From Definition'3.1;‘and (4.6), the canonical function X satisfies

(11.19) BRI T, de
X~ (t) J (t) -

We also define

2

1
=2

(11.20) M(z) = (z© - 1) , z ¢ 0[-1,11 ,

with the branch chosen so that M s zero at infinity.

Then

(11.21) mh(t) = ¢ o e kel



61.

and so M+(t)/M (t) = -1 . Thus we can write (11.19) as

(11.22) O L KO g
M (t) M™(t) '
Hence the function

(11.23) ' & = XJ/M
is analytic in the complex plane, and by (11.22) is continuous across
(-1, 1), the'sihgu1arit1es at *1 being removable. B

_ To determine the behaviour of ¢ at infinity, we proceed as

_fo]]ows.

Since the index of (11.14) is two, then by (4.15),

(11.24) : X(i) =272, 0(2'3) as z > »

Also, from (11.16) and (11.20) we have M(z) = 271y 0(2“2)

J(z) = -2z + 0(1) as z + » and so &(z) = -2 + 0(2-1) as z > » .,

Hence, by Liouvilles Theorem, ®(z) = -2 , and so by (11.23) ,

2 1

(11.25) X(z) = - 7 1’ Ty > z4 L1

‘It is easy to show that (11.25) satisfies the other conditions
of Definition 3.1. Finally, from (4.19), (11.25) and (11.18) we

have, since Z is non-negative,

2 2
rE)olt) 142y (148%-28t) 72

(11.26) Z(t) = -l<t<l .

We will solve (11.14) using Theorem 7.3. Q4 is of degree

two, and is given by (7.14):

z +1

(11.27) . ;—'I)Lno (93(2) - ‘(Z—_‘B—)-m) =0 .

Since 3 will be added to the arbitrary polynomial Pk-l (which
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is of degree one), it is only necessary to find the coefficient of z2

in Q3. Thus, from (11.24) we obtain
(11.28) Q4(z) = 2° + 0(2) .
Ry is a constant, and is, by (7.15) and (11.26):
. - _1+B _ oy v_2
(;1.29) | R3 O s(1 + g)(1 - %) .

Hence the solution of (11.14) is, using (7.17):

2 .
(11.30)  6(t) = A ( -5(1+8)(1-69) + (t-8)(tP+At+B) )
vV1-t% (1+8°-28t) . _

-1<t<l ,

where A and B are arbitrary constants, obtained by adding ., and

3
PK-l
Example 11.4 The H functions of Chandrasekhar
The H functions of Chandrasekhar satisfy the equation
1 H(x)
(11.31) . 1'+ LauH () JO T dx = H(n) .

This equation is valid for any u in the complex plane excluding (-1, O),

and for Os<u<l , it becomes a nonlinear integral equation for H.

Busbridge [3, §111 has shown that for » = 1, (11.31) has a
unique.so1ution continuous in [0, 13 , and for 0<A<l has two so]utiohs;

we shall consider only the solution which satisfies

1 )
(11.32) 1 [ Hwdy = 1 - vIoX
0

Stibbs & Weir [42]1 have shown that the solution of (11.31) B
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which satisfies (11.32) is given by

2

n/2 .
(11.33) H(u) = exp <' % J , 1ogél-Accgt;) dz | , Osps<l, O<i<l ,
0 cos“z + p” sin‘t

and have used this expression to tabulate values of H.

Sobolev (40, p 106] , and Fox [15] in 1961 (by a different
method) have transformed (11.31) into the linear singular integral

equation

1

(11.34)  H(v) (1+%Av1og%¥:—%) - v fo gi§);;dc =1, Osv<l .

We shall solve (11.34) using the methods of this thesis, and
then, since (11.34) does not have a unique solution, use (11.32) to

locate the particular solution of (11.34) which also satisfies (11.31).

We do not suggest that solving (11.34) provides the best
method of solving (11.31), because the legarithmic singularity at
v=1 makes it difficult to evaluate the Cauchy principal value integral
of 6, which is needed in Z, below. The expression (11.33) appears to
be more practical. The equation (11.34) was chosen as an example
because it was one of the few singular integral equations I could find

in the literature which had been solved accurately by other methods.

To transform (11.34) into the type of equation considered in

this thesis, put t = 2v-1, 1 = 2¢-1, ¢(t) = H(v) , which gives

1

(11.35) a(t)p(t) + DAL ](-'1 MU dr = #(1) , -1ctal

where

(11.36)  a(t) = 1 +%A(1+t)loggit , b(t) = Hma(let) , F(t) =1,
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Sobolev [40, p 1091 gave an exact solution of (11.35) subject
to (11.32). In terms of ¢, (11.32) is

1
(11.37) LA f . ¢(t)dt = 1 - /I-X , 0<xs<l .

Sobolev's method was to substitute
(11.38) » d(t) = [A - B b(t)I Z(t)/r(t) , -1l<t<1

(where Z is given by (4.18) and r by (4.8)) in (11.35), and by noting

that bZ/r satisfies the homogenous equation Ca(t)e(t) +

1 _
+ bit) } T¢ET% dt = 0 , -1<t<l | (see Theorem 4.1), he obtained
-1

the f0116w1ng condition on A:

1
(1) 4o =
(11.39) 4 A f dt =1 .
1 r(T)
With A given by this, since the index of (11.35) is one (see
below), (11.38) gives the general solution of (11.35), with B an

arbitrary parameter. Substituting (11;38) in (11.37), and using (11.39)

Sobolev then obtained

1
(11.40) S Lo

which can be used to determine B.

Thus Sobolev has given the solution of (11.35) by (11.38),
with A and B determined by 1ntegra1s which involve Z. Since Z is not
easy to evaluate, and has logarithmic singu]afities at il; we shall
show how the methods of this thesis can be used to evaluate A and

B analytically.

We now solve (11.35) using Theorem 7.3.
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we observe that in (11.36), a is infinite att = 1. By
dividing (11.35) by Tlog((1-t)/4), the corresponding a, b,_énd f
become boundedvbut not HGlder continuous. However, as Khvedelidze
[25] has shown, Theorem 4.1 still holds, and the method below is still

applicable,though we shall not prove this.

In (11.36), a has a zero on [-1; 1], which we denote by t

0
For A =1 |, ty = 0.667113 , and as A >0 , t,>1. From Definition
4.1 we obtain |
r 1
- arctan (b(t)/a(t)) o -lstety
o(t) = < S % arctan (a(t)/b(t)) ,. -1<ts<1
L -1+ %farctan (b(t)/a(t)) , t.<ts<l .

0

0f course, these expressions.coincide over common intervals of definition.

Thus 6(1) = -1, and by (4.13), « = 1. The endpoint -1 is

a special end, and so Z will be bounded there.

In the notation of Theorem 7.3, we have n =0 énd m=1,

. . _ . : 1
and so 3 and R3 are constants, given by Q3v— 1im XY

2o

R3 = 1/2(-1) . From (4.15) and (11.36) we have 93 =4/(mx) , and

so from (7.17) the general solution of (11.35) is

(11.41) o(t) = f E) (T(%TT+ b(t)(%\—+ c)) , -l<t<l

where c¢ (= PK-l) is an arbitrary constant.

To determine the value of ¢ so that (11.41) corresponds to

a solution of (11.31), proceed as follows.
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In Lemma 6.1, we choose n =0 , and since «x =1

3

then A, =0 and (6.9) becomes
(! b ob()z(n)
(11.42) J-l ¢(T)dT = C [-1 —7}7— dt N

since ¢ = PK_1 = constant. To evaluate the intégra] on the right, we
choose in Theorem 6.1, Q(t, z) = z - t (where t is a parameter) .
Since Q has no poles, R=0 , and since by (4.15)

X(z) = -z_1v+ 0(2'2) , Q(t, z) =z +0(1) as z ~ wv, then y {s a
constént, given by v = Tim Q(t, z)X(z) = -1 . Hence, since

Vina'sl

Q(t, t) = 0, Theorem 6.1 gives

1
(11.43) l-f 913%%é§l-dr =1,

L |

(We note that this integral can be obtained more direct]y using §14, or

by integrating X round a contour enclosing [-1, 11.)
Using this result, (11.42) and (11.37), we obtain

(11.48)  c=-x (1= /1)

and éo (11.41) becomes, with this choice of c:
(11.45) o(t) = %T%%-( ZT%T7-+ b(t) #7-V14X > , =l<t<l ,

which is the particular solution of (11.35), subject to (11.37), and

corresponds to (11.33) using ¢(t) = H(AE) . Using (11.37) (11.43)
and (11.45) we also obtain
1 L, |
' Z(T) _ 4
(11.46) f_l ) 4o = £ 70

Thus we see that (11.43) and (11.46) give simple expressions
for the integrals (11.40), (11.39).
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If X =1, then the solution of (11.35) becomes, from (11.45)
_ _ i
(11.47) Cb(t) = F-(‘t—)—" 7(-1 ’ -1<t<l

But from Busbridge [3, §12] we have that

1 .
f (e = 8/

and so using (11.43), (11.36) and (11.46) we obtain , if X =1 |,
that 2(-1) = v3/2 .
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CHAPTER IV
AN ALGORITHM FOR THE NUMERICAL SOLUTION OF THE COMPLETE EQUATION

§12. General description of the algorithm

The complete equation

‘ 1 1
(12.1) a(t)e(t) + L) f_l (1) 4 +,J_1 (e, De(rdr = H(e)

-1<t<1
may be reduced to a Fredholm integral equation by defining

1
(12.2)  g(t) = (t) - f KlE Dpde el

and then using any of the solutions of the dominant equation. For
eXamp]e, this was done by Muskhelishvili [32, & 109] and Gakhov

'.[16, § 481, using the solution of §4. However, the resulting FredhaT
integral equation is, in general, not useful for numerical work, as it

- involves Cauchy principal value integrals of the function Z.

As we have seen in §7, there are many different ways of
writing thé solution of the dominant equation and consequently hany
possible algorithms for the éo]htion of the complete equation. The
algorithm which we describe in this chapter has been chosen in an

attempt to minimize the amount of'computation required.

We assume that b is a polynomial of degree m, of the form

.
(z -8.) ", where m =
1 ! i

(&N
1 1.

I~

—
[y
N
w

o
o

——
N

g

i
=<
L o

For this to be so, it may be necessary to multiply the

original equation by some function h, as described in §8.

4
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We approximate g (see 12.2) by a po]ynomié] 9 of degree n,

and solve

b(t) fl o (1)

(12.4) -~ a(t)e () + . g dr =9, (t) , -l<t<d

exactly using Theorem (7.2), which gives

(12.5) ¢ (1) = Ll ( g ()R () + b(t)0,(t)] -

1 g (1)-g (t) -
o J-l _D“¥—:—{}—" FZ?%%T;7'+ b(t) P _q(t) ) , - -l<t<l

where Q, and R, are defined by (7.7) and (7.8), and Z, r and Py as in

2
§4. Defining g* by

1
(12.6) g (t) = £(t) - J O

we arbitrarily choose 9, so that it interpolates g* at the points

(12.7) 'xj = COoS (%_Z%;%) ,J=0,1,...,n.

Then g, can be éxpressed in terms of the Chebyshev polynomials Ti

as follows (see, for example, Hildebrand [18, §9.71):

(12.8) g (t) = ¥ 6 Ti(t) , -l<t<l,

n

I ™~13

-i=0

where the dash indicates a sum whose first term is halved. The Gi are

given by
o o N
(12.9) | G = 7 .Z 9*(Xj)Ti(Xj) , i=0,1,...,n,
Jj=0 _
“the Ti being defined by Ti(x) = cos (i arcos x) , i =0, 1,... ,

-1<x<1 . We choose these Chebyshev polynomials and the points xj

because of the simplicity of the relations (12.8), (12.9) .
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Of course, any set of polynomials could be used.
We note that the Chebyshev polynomials satisfy

T

1, T =t,

o 0
(12.10) _ . . _
T_i+l(t) = 2t T.i(t) - T.i_l(t) v,'» i = 1, 2,... N
. T =n=0
1T ()T (t) LE
i ——-——2-1/—'— dt = TT/2 = n_# 0
-1 (1-t°)7

0 m#n

‘We define the polynomials W, of degree f;vby

_1_[1 Tiv1(1) - Ty (8) dt

(12.11) () = 3 y — T 1L 01,

“Then (12.10) gives
. : _ ' _ 1
(12.12) . W =0 , W =T

and the recurrence relation

(12.13) W (t) = 2th,_;(t) - W, ,(t) + J FT?S?(?S-dT Li=1,2,...

In practice, the W, will be evaluated using (12.12) and
(12.13), which require the evaluation of the modified moments

d- 1 Jl T, (T)
n

md’[ s 'i'-'- 0, 1,..., n-1 .
Then using (12.5), (12.8) and (12.11) we have
(12.14) ¢ (t) = ( T 6 [T (6 Ry (6 (£)ay (1)) = bl 4 (8)1 +

+b(t) P (t) ) :

Using (12.9) and by definjng
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| 2 0 _ |
(12.15)  r.(t) = =2 J-Z T.(x.)( T, (E)IR,(1)+b(1)R,(£) 1 - b(t)wj_l(t)) ,

i =0, 1,...,n -I<t<l

(12.14) can be written
IOV
(12.16) ¢ (t) = FTf7'(-Z

Fi(t)g*(xi) + b(t)PK_i(t)> , =l<t<l |
i=0 _ .

We define a new dependent variable ¥, by
(12.17) wn =r ¢n/Z .

and eliminating g* using (12.6), (12.16) becomes

L0 21) | oyae -
(1218) 40+ T 1360 [ KOs ) E w0t -

- T T (0F(G) + bR (1), -letal

This is a Fredholm integral equation with a separable

kernel, and can be solved in the usual way. Defining

4 , |
(12.19) e, - f_l x> ) by (e 5 =0, 1,000,

multiplying (12.18) by K(xi, t)Z(t)/r(t) and integrating, we obtain

n 1
' . Z(t -
(12.20) £ + § . J_l clxgs t) HEL T (6)dt -

Defihing-
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then (12.20) can be written

-n K -
“(12.21) ) A.. E.=F. 4+ Y o, Q(x:) ,i=0,1,...,n,
where the Py are arbitrary constants and the Lk can be chosen to be
polynomials of degree k, with PK_1 = ) pkLk ] If the index «
k=1 B
K

is zero or negative, then the term E Py Qk(xi) is omitted.
L k=1 -

Thus we have reduced the complete singular integral equation
(12.1) to the Fredholm-integral equation (12.18), which was then
reduced to the system 6f Tinear algebraic equations (12.21).
Since (12.21) may still be soluble if the matrix A is singular, we

need to consider two cases.

Matrix A non-singular

If the matrix A is non-singular, then its inverse A"l exists. Thus

(12.21) can be solved, giving formally

E. = ) AL F.+ Y p AL Q(x.) , i=0,1,...,n,
LTS T NN I k js0 1 k*"J . ’

wkese AL] deweli B (1)) ) 2ot of A
Then, to find Y, we use (12.18) and (12.19):

(12.22) wn(t) = v(t) + kgl pk uk(t) . -1<t%1 ,
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where
v(t)=J§0r(t)<f(j) z AJk k) ;
(12.23)
n
uk(t) = b(t)Lk_l(t) - jZO Fj(t) 2 A Q Qk X.) .

We then use (12.17) to obtain 5 :0ur approximate solution of (12.1).

The first term on the right side of (12.22) corresponds
to an approximate particular solution of (12.1), and the other
term corresponds to the x approximate solutions of the homogenous

equation

0, -1<t<1 .

o1}

—~

t

N

<

—~

—+

~—

+

o

Camm ¥

t
~—
——
1 [
—
~
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1 o~
~ .
ot~
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+
—_—
t —
[e—

—

v

=

e

-

~~

~

S
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Matrix A singular

If the matrix A in (12.21) is singu]ér, then its inverse does not
exist; however it may still be possible to solve (12.21). This

- corresponds to (12.1) being an eigenvalue problem.

From Noble (34, Thm 10.22], we have that (12.21) is
soluble if and only if
' n K
(12.24) 1Zo(Fi ¥ kzl Pk A (x5) ) yi =0,
where y; are any solutions of

n

. - . < , 1=0,1,...,n.
(12.25) JEO AJ1 Y 0 j

If A is of rank s, then (12.25) has n+l-s "linearly independent
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solutions. If (12.24) is soluble, then the solution of (12.21) is of

the form
t1l-s .
_ o " (3) -
gi = z3 + 'jzl Bj Z; ,i=0,1, s N,
where the zgo) are a particular solution of (12.21), with the Py

satisfying (12.24), the ZgJ) are the n+l-s Tlinearly independent

n
solutions of ) Aij Z; = 0, 1=0, n,and the Bj are arbitrary constants.
J=0

Negative index If the index of (12.4) is negative, we need to check

that the consistency condition (4.21) is satisfied; i.e., ¢ is a solution

of (12.1) if and only if

k

1 1
(12.26) [ (e) - j_l K(t, Do(0)dT] ety dt 0.

-1

We approximate ¢ by ¢n, and consider the numbers 81

k

1 1

~ ) t

(12.27) s, = J-i [f(t) - J_l K(t, )¢ (1)) Tz 4

) : vk= O, 1,-..,-|<-].o

If (12.1) is so]ub]é, then (12.26) will be satisfied, and so the numbers

ak, k = 0, 1,...,-k~1 should be zero to within the order of approximation

of ¢ by ¢n.

The numerical evaluation of Cauchy principal value integrals

"To find ¢ from v using (12.17), and if b has zeros on
[-1, 11, then to find R2 (and R1 below), it is necessary to evaluate
the function Z accurately. In some‘cases Z can be found exactly by
analytic means (sse examp]es in §11); however it may often be necessary
to use numerical methods to evaluate the Cauchy principal value integral

involved in Z (see (4.18)). For such methods see Paget [35] , Paget

& E1liott (3671 and Davis & Rabinowitz [11, §2.12.8].
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This comp]etes the general description of the method of
numerical solution of the comp]éte equation. This algorithm will be
complete if we can evaluate the modified moments

1 el 'Ti(T) o ' | .

d1 == J-l FY?jiT?j-dT , 1=0,1,..., n-1 ,

and provide quadrature formulae for the integrals in (12.20) and

(12.27).

We have not had time to prove that this algorithm (for the
solution of the complete equation) converges. However, it appears

that Karpenko's [24] method for error estimates is applicable.
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To evaluate the integrals in (12.20) and (12.27), we need

quadrature formulae suitable for integrals of the form

1 1 '
(13.1) - J_l ;?$§%%?7.dT It = [‘1 %{%%—h(T)dT ,

where h is an arbitrary, known function.

A possible method of deriving suitable quadréture formulae is

to approximate h by a polynomial hv of degree v, using (12.8) and

(12.9): | .

(13.2)  h(t) =

I~

L, v
ik h (xj);;T-izO TOT;(x5)

. . _ m 2j*l
where hv interpolates h at the points xj = cos( 2 GTT_) ,

J=0,1,..., v. We then define Iv s 13 » which are aporoximate values

for I, I* by replacing h by hv'in (13.1). Thus defining
- ' 5 Vo 1 Ti(T)
Y57 GIT'.ZO Ti(xj) J-l r(t)Z(t) at
(13.3) ‘

€
*
n
bv
Ne~1<
-—
—
x
N
—
—
—
N
—
—‘

‘we have

]

v )
(13.4) I = _Z wjh(x.) . Is jzo wg hix.) ,

J
which will be our quadrature formulae for I, I* .

However, to calculate W and wg , 3 =0,1,..., v,

we will need the modified moments

At)dt , J =0, 1,...

9

b
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1 1 T, (1)
(13~5) d] = F J_l m dt s d

-ty

a method for the evaluation of these integrals is given in the next

section.
In practice, it is easiest to choose v = n.

We will now use these formulae for the approximate evaluation

of the integrals (12.27). AppTying the first formula of (13.4),
with v =n , (12.27) becomes

n 1 '

k

8§, = L) - . .

K 'Z wj (f(xJ) f_ K(xJ, T)¢n(T)dT'> X5+ R,
j=0 1

where R is'the remainder which depends on n and k. From (12.19) and

(12.17) this becomes

n
k :
) : = . [f(x.) - &, .+ R k=0, 1,..., -k-1 .
(13.6) | 6k -jZO Wy [ (xJ) gJ] X , 0, 1 k-1
Thus thevdk can be readily evaluated to within the accuracy of the

quadrature formula.

Another method of using the modified moments to provide
quadrature formulae is given by Sack & Donovan [39]. This approach
also generates the recurrence relations for a set of polynomials
orthogonal to 1/rZ , and a set orthogonal to Z/r , and thus
could possibly be used as the basis for another algorithm for the
numerical solution of (12.1). However, we shall nqt pursue this

here.
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814. The modified moménts

We complete the description of the algorithm for numerical
solution of the complete singular integral equation by giving a

method for the evaluation of the modified moments

" 1 1 Ti(T) L1
( -1) di—%—J_lde, d_l—;l?f *HT dT,

which are required in (12.12), (12.13) and (13.3).

‘We first give several alternative expressions for the
canonical function X, defined by (4.14). We note that similar methods

have been used by other authors; for example, see Cercignani [8].

Lemma  14.1 7Two alternative representations for X are

1
RN LR

- (14.2) : z ¢ [-1, 1]
1 b(t) dt

0 1 |
X (2) = ’J T 7ozt %lE)

where Xy is given by (4.22), and X2 by (7.1).

Proof From (4.19) we have

+ - . _ 2ib(t | 1 1 _ 2ib(t)
(e - Xt = - 1&(%7()’ o) x —r1t(t ’

and applying Lemma 2.6, (14.2) follows. #

The value of this lemma is that it connects integrals of

0 (see (4.14)) and 1htegra]s involving the function Z.



79.

Since

(14.3) L. %— Y (1/2
k=0

)k

P , Jt/z) <1,

then by defining the moments

» gl ' 1
(14.4) Ek = %—J _b(1) deT , E* = %-J X PLI%Zéll. deT R

1 r(t)Z(t) k riz
k = O_a 19 s

we can write (14.2) as

Xz) = 1 B2y ()

k=0

(14.5) N |

AX'l(z) =- 9 Ek k-1 XZ(Z) , lz] > 1.

k=0

But, from (9.9) and (9.13), we have expansions of X and
X'1 in powers of z, and so the moments Ek’ EE may be_found in terms
of the moments of 6. This result is sometimes useful, but it is oh]y
sufficient to give the modified moments di’ d? if b is a constant.

- Thus, we prove the following Temma.

.U O
Lemma 14.2 et b(z) =y T (z-8.) " L with m= ? a,
i=1 ! i=1 1

Let R1 be a poZynomiaZ of degree m - 1 such that

a;j‘[Rl(Z) - X(Z)]Zz&i =0 , Bi ¢ [-1, 1]
(14.6) j

d ‘ Do
E;j-[Rl(t) - a(t)Z(t)/r(t)]tzBi =0, Bi e [-1, 17,

5 be as in (7,8), Q, as in (7.7), and let. 2 be a

polynomial of degree -x-m such that

Let R
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(14.7) 1im [91(2) - X(2)/b(z)1 = 0 . (If -k-m<Q, then Q = 0)
2> ’
In order that R1 and R2 exist , wevassume thut the first A5 - 1

derivatives of @ are HSlder continmuous in a neighbourhood of the

point Bi’ iﬁv 61 e [-1, 13, 1i=1, Q .

Then the following alternative representations for X are

valid:
) 11 72(0) d
(18.8)  x(2) =) (92 - [ HE Lo er@)
1
X'l(z) = b(z) ( QZ(Z) * %.J—l r(T%Z(TS’Tdf Z ) ¥ RZ(Z)
z 4 0-1, 17

Proof Define

X(z) - Ry(2) | x"Lz) - R,(2)
(14.9) ®1(z)-= b(Z) - Ql(z) , @2(2) = 57 -

- QZ(Z) » z ¢ [-1, 11.

Then ¢, and %, are analytic in the'comp1ex plane excluding [-1, 11,

and in particular are analytic at the zeros B; of b, because of the

+ +
.. + + -
way R1 and R2 are chosen. Similarly, @1 , @2 € H_. By the

definitions of ©, and 92’ we see that &, and 9, are zero at infinity.

1 1 2
The Timiting values of ¢;, &, on (-1, 1] can be obtained from (4.19),

and applying Lemma 2.6 we obtain

1 1
1 Z(t) dt _ 1 1 dt
@1(2) = - ‘T-T_ f_l Y‘(_T; T - 2 > q)z(z) - ’;]'— J—l Y‘(T)Z(T) T~ Z s

z ¢ (-1, 13,

and using (14.9), the lemma is proved. #
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Using (14.3) and defining the moments

[1’ ' U 2(0)

-
_1 T _1 C o
(1410) D'i T 11 md‘[ s D? = 7?[_1 F-(_.:ETT dt s 1 = 0, 1,... ,

we can write (14.8) as

Kz) = bi2)(oy(2) + T op 27K e Ry(2)

1~ 8

k=0
(14.11)

x"1(2) = b(2) ( 0,(z) - ] D, 271 ) +R,(2) , 2] > 1.

k=0

, D¥

K then it

Clearly if we can evaluate the moments Dk

will be easy to obtain the modified moments d;, d¥
From (9.9) and (9;13) we have expansions for X, X'l;

equating these with‘(14.11), we have the identities

(14.12) X(z) = (1-2)7¢ kzq ez 2k b(z) (Ql(z) + kgo D¥ z'k‘l) + Rl(z) ,
(14.13) X'l(z)A= Kl-z)K kzg e, 27k - b(z) (Qz(z)— kZO Dk.z'k‘1> + Rz(z) ,

lz] > 1

These identities provide our method of evaluating the
moments Dk’ DE, by relating them to the € eﬁ which can be found

using the methods of §9.

To find the Dk’ DE we proceed as follows. We assume that the
e e; , k=0, 1,..., N+1 have been found for a given N. The

polynomials Rl, R, can be constructed using the method of §10. If

2
the index k is non-negative, we multiply (14.12) by (1-z)" and equate

1 Z—N-l

the powers zo, 2 7, ., , obtainihg-Ql and then D¥ ,
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k=0, 1,..., mN+c. If the index is negative, we equate z ¥
;-1 . ,K-N-1 » obtaining @, and then D}, k = 0, 1,..., mN+c,

In (14.13), if the index is positive, we equate the powers z", z“’l,..

k-N-1
z

obtaining first 2, and then D, k = 0, 1,..., mN-x. If in

k’
(14.13) the index is negative, we multiply by (1-z)™° and equate the
powers zo, z'l,..., 2~N-1

obtaining 92, then_Dk, k =0, 1,..., mN-x.

We note that it follows from Lemma 4.2 that 92 is at most of
degree one, and that if a is continuous (which we have been assuming)
then Ql = 0; however we have included Ql for the purposes of Example

15.2. ' ~

Finally we show how the modified moments di’ d? are obtained

from the moments Dk,'Dﬁ .

From Abramowitz and Stegun [1, §22.3.61, the expansion of

Tn in powers is

[n/21 . , A
(14.14) T(x)=5% ] (-1)" -iﬂiﬁi—léT- (2x)"2  n=o, 1,...

n -
which we write as T (x) = J S_. x3 . Thus, from (14.1) and (14.10)

we have
i . '
d = E S_ij DJ- Py 1 = 0, 1,..., m+N—|<

(14.15)

‘I .
d* = ) 3.035, =0, 1,..., mi+c |

We note that the Sij grow rapidly with increasing i,
(in fact Sii = 21'1) , and the di’ d? tend to zero, so that the

growth of rounding errors will restrict the accuracy of . the higher
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order modified moments. A number of different algorithms for the
solution of the complete equation were tried, but each suffered a
similar loss of accuracy. Therefore it is recommended in practice
that the modified moments are calculated using doubje precision
arithmetic, unless in a particular case it fs known that only low

order moments are required.

In Appendix A we derive a contour integrai representation of

the modified moments d? .

Summary -of the algorithm

To solve a given compTete equation using this algorithm,
we need to find the function 6, and provide methods of evaluating Z,
the polynomials R, and R,, and the moments C ., i= 0, l,..., N.
Then this section 1s»usedvto gjve the polynomials Ql, 92 and the

modified moments di’ d? , 1 =0, 1,..., mtN+k.

The di’ d¥ are needed for the quadrature rules of §13.
The functions Fj are constructed using 92, R2 and the polynomials

wi, j=0,1,..., n-1, which in turn depend on the di‘

The system of equations (12.21) is then solved for the

gi’ and then (12.22) and (12.17) are used to find the solution -
If the index is negative, then the consistency condition (12.26)

must be checked.

This completes the descriptfon of the algorithm for numerical
solution of the complete singular integral equatidn. We will now

illustrate the evaluation of the modified moments with two examples.
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Example 14.1 With a, b as in Example 5.1, 6 is given by

: 1
8(t) = - a-Bt; thus the moments Cy = J e(t)tk dt (see 9.3) are
-1

.2a

- m k even
Ck = ,
B 7’

Then from (9.10) we obtain

ef=1 , ef=-2u , e§=2°-28/3 , ef= -4’3 + 4ap/3 -
- 20/3 ,
etc., and so from (14.5) and (14.4) we obtain ES R E{ , etc., which
give (provided the integrals exist)
1 o+Rt
2 . -
Ea = -e B %—[_1 s1n[ﬂ(a+8t)] (%—~—%§) dt = - 2o
1 - o+t
2 . - 2
E} = -e B %~J_1 t sinln(a+Bt)] (% - E) dt = 2a” - 28/3
1 atft
Ex = -o2B l-f t2 sinfm(o+Bt) ] (% - E) dt = -405/3 + 4ag/3 -
2 T4

- 2a/3 , etc.

Example 14.2 We will consider the accuracy of the ébove method of

evaluating the modified moments in more detail. Consider the equation

(14.16) - /A-t° #(t) - %-f 0) g = (), -1ctar

-1 :
Since b (= -1) has no zeros on [-1, 1] , the index is one; m = 0,
2, = L Ry = and 2, is of degree one. We note that (14.16)

satisfies (4.10), i.e. b(-1) < 0.
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We have

(14.17) 0(t) = - % - Larctan /1-t° , -lst<l .
To find the modified moments, we need e, » ek » and thus require the
moments

1 7
C, = J o(t)tk dt , k =0, 1,..
kI

For k odd, Ck = 0. The even moments can be found by integrating by
parts, giving ‘

1 1

Cop =~ 2¢T ~ 2ksT S5 > k=0, 1....,
1 2k +2
where 3k = % J t 5 dt2 '
-12 -1t (1 -1t%)°
22k (2)! |
= -2 -+ 2c% k =0, 1
. 2 2k_2 b ] 3 9 e 0. b3
(k)
and cfz =1/v/2
The e, e can then be found using 9. From (14.12) we
have Y eﬁ 27k (z-1) 7§ DE z7k-1 , and equating powers of z,
k=0 k=0
we obtain
: k
(14.18) D* = Z e* , k=20,1,..
Tk j=0 J

Finally the d¥ are found using (14.15):

= D* =
(14.19) d6 DO , d D* , d

T 1 = 2D% - DX , d%¥ = 4D% - 3D* , etc.

*
2 2 0 3 3 1

Similarly, writing Qz(z) = A+ Bz, (14.13) is

(1-2) 7V e, k. y D 27kl a g ,

k=0 =
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which gives B = ey > A= e, - € and

(14;20) D

K = ek+1 BT k=20, 1,... , the dk being
found as above.
Using these expressions, the modified moments dk’ dﬁ

were calculated using single precision arithmetic (accurate to about

11 figures), and are given in the table below.

To check the accuracy of these figures we can also evaluate

dk and dﬁ ‘mdre directly (in this case) as follows.

We have from (4.8), (4.18) and (14.17) that

. 1
r(t) = v2 - 2 and Z(t) = (1 - tz)'I/2 exp(;% f arctan/l-t_ dT> ,
| o | -1 |

T -t

The singular integral is evaluated in Appendix B, giving

Z(t) = (1 - t?)7% (5%;5*%) " Then (14.1) gives

m

. — . k - 2—;2 s
-1v/2 - t -1/2+t (1-t9)
' k =0, 1, .
and evaluating these integrals we obtain
k .
di = 1-v2)" , k=0,1,...
(14.21) |
do=/2-1,d =%(3-22) ,d =-(Z-1", k=2,3,.

In the following table, we give the d, as. found by the

k
method of this section, i.e. (14.20), and the relative error =

(exact - computed)/|exact| for both d . d¥ using (14.21).
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Table 14.1
Using (14.20) Relative error in
K d d di
0 0.4142 1356 237 | 8 x 10712 0
5 ~0.0121 9330 900 | -1 x 1078 1 x 1078
10 | -0.0001 4867 967 | -2 x 107° 2 x 107
12 | -0.0000 2550 114 | 3 x 107% 4 x 1072
15 -0.0000 0152 503 | 0.16 0.04
16 0.0000 0109 199 0.4 ' -0.4
17 ~0.0000 0228 033 -6 0.8

We observe that the relative error increases with k, and

has reached serious proportions for k =.15.
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§15. Examples - Complete Equatidn

Exahp]e 15.1 Equation with a known solution.

We choose the complete singuTar integral equation

1 : 1
2y t-8 [0 o) g L[N 80) 4 -
(15.1) - (1-t%)%(t) + =8 fl;—:lt—dw+;;fl-1 dt =

=1+ (82 o+ A2l)E | letal

where 8, A are real, with |B|<l, |x|>2 . This singular integral

equation has, as avparticular solution,
_ | : .1 ’
(15.2) o(t) = (1-t%) 2 , -1<t<l .

To test the methods of 8§14, we will calculate the modified
moments di’ d? from the moments Ci of 6, rather than |
substitute the explicit expression (11.26), for fhe function Z,
in (14.1). However, for the ca1CU1a£ion of Z at the zero of b

(for Rl’ R2) and for use in (12.17), we will use the explicit expression

(11.26).

From Definition 4.1 we obtain

[ -1 - %?arctan [(t-B)/(l-tZ)%] , -l<t<1

(15.3) 1
o(t) =1-1/2 * %—arctan [(l-tz)é/(t-B)] , ~1st<B
\-3/2 + = arctan [(1-t°)%/(t-B)1 , B<t<l.

As in Example 11.3, the index is two, and by (4.8),

- rz(t) =1+ 82 - 2Bt , -l1s<ts<1 .
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To obtain the moments of 6, the following method was used.
Define
(15.4) h(t) =7 (1-t2)% [a(t) + 1 + (1/7) arcsin t1 , -1<t<l .

Then from (15.3) it follows that

(15.5)  h(t) = (1-t®)% arctan [8(1-t2)%/(1-8t)] , -1<t<1 ,
SO we'obtain

2/(n+1) , n even

V 1 n
C, = 1[ h(t)t 44
T

1
2

(1-t7) '
_t° v 5
1/(n+1) - 27" n!/ﬁn%ljf] , n odd

Since the nearest-singularity of h to the arc [-1, 1] is at the point
-5(B + B_l), then provided B is not c]oée to #1, the above integral
can be evaluated accurately by M point Gauss - Chebyshev quadratufe
(see Hildebrand [18, §8.8]):

1 one)thde 1
m 2\ 5 M.t
1 (1-t%) i

where xgm)

=C°5(?T
The method of §12-§14 was used to find the modified moments.

The right side of (15.1) was approximated by a polynomial of degree n,

1
and the integral f —%igl-dr was evaluated using one of the
-.].Tt'A '

quadrature formulae of §13, wfth v=on.

The approximate solution of (15.1) is given by (12.22) and
(11.26) as
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(15.6) (t) %) ]

. - o = »  -lst<l
B (1+6%-28t) (1-t2) 2

where

(15.7) () = v(t) - ppu(t) - pyu,(t)

The arbitkary constants Pys Py were chosen by specifying that

(15.8) : 6,(20.6) = 1.25 ,

so that (15.6) will be equal to the exact particular solution (15.2)

at the points +0.6.

In Table 15.1 below, we give the relative error
[o(t) - ¢ (£ r(t)/Z(t) = % r2(t) - v, (t) (¢ given by (15.2)) for
8=0.2 ,n=4,10 and A =2.1, 3 . All calculations were

carried out in single length arithmetic, to 11 figures.
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Table 15.1
Relative error of approximate solution of (15.1)

[o(t) - o, (t)1 r(t)/z(t) , t = -1.0(0.2)1.0

A =3 ’ A= 2.1

t | n=4 n=10 n=4 n=10
-1.0 -0.0000 00505 | absolute -0.00446 | -0.0000 178
-0.8 0.0000 00016 value 0.00086 -0.0000 044
0.6 | 0.0 s x 107 | g 0.0

-0.4 -0.0000 00087. " -0.00123 -0.0000 030
-0.2 -0.0000 00101 " -0.00126 -0.0000 007
0.0 -0.0000 00056 ! -0.00053 -0.0000 006
0.2 -0.0000 00010 " 0.00009 -0.0000 009
0.4 0.0000 00005 ! 0.00018 |~ 0.0000 005
0.6 |- 0.0 " 0.0 0.0

v0.8 0.0000 00011 " 0.00017 0.0000 009
1.0 0.0000 00021 " ~0.00028 0.0000 009

We also give values of the constants P1> Py in (15.7) .

Table '15.2

Values of p1 and Py

A =3 A= 21
n=4 n=10 n=4 n=10
Py -0.1000 0010 -0.1 -0.1008 1311 -0.1000 0167
P 1.0000 001 1.0 1.0006 088 1.0000 009
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The computer program used for obtaining these results is

given in §16.

Usihg (11.26) and (14.1), it can be shown that

dg=%.d, =0,dy=-1/8,d, =0 ., i=3,4,5,. .

2-1

d* = 527112 . i=0,1,...

 which are useful in checking the program.

The program was also run using these exact values for the
modified moments, giving results identical with Table 15.1, indicating

that in this example, single precision arithmetic was sufficient.

Example 15.2 Zelazny's Equation

In a problem of neutron transport theory, Zelazny [45]

obtained the following singular integral equation:

(15.9) ( 1-% ¢ u log 22 ”) B(u) + 1 ¢ f VB(V) 4, 4

1 - 0 Vo= U
- 1 -2d/v cv d/v
+Y ¢ f - B(v)dv =% —3 — ¢ O 4
o Vv H VO -M
S V) -d/v
0 -0
+ l/2 \)O + U e b} 0<U<1 b
where vo satisfies
. v+l
(15.10) : 1=%cvlog ST
v+l

the branch of the logarithm being chosen so that 1og‘v = is

analytic in the complex v plane excluding (-1, 1], and is zero at

infinity. Then for O0<c<l , (15.10) has two real roots V. For
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c>1 , (15.10) has two imaginary roots which we denote by

161 182
v =tip, p>0 . Putting v-1 = rye , vtl = ro, e s
: -n<el<n s -n<62<n for v = ip we have ry = r2_, 61 + 62 =7,
and so (15.10) becomes
(15.11) 1 =c parctan (1/o) .

In the singular integral equation (15.9), the parameter d is
the half-thickness of the slab, and the parameter c is related to

the averége number of neutrons produced per collision.

Physical considerations (see Case and Zweifel [6, §6.6])
indicate that (15.9) is notsoluble for o<c<l., and for c¢>1 that
(15.9) is not soluble if d is less than the "critical thickness",

which will depend on c.

We note that the dominant part of equation (15.9) is the
same as in Example 11.4, except for the change of sign in b. Thus
the methods used by Chandrasekhar [9) and others for the solution of
(11.34) may be applicable to (15.9). However, we sha]] so]vé (15.9)
by the methods of this thesis. | |

We note again that a is unbounded at t =1 , and refer

the reader to our comments made in Example 11.4.

To transform (15.9) into fhe form (1.1), we put
T =2v-1, t = 2u-1 , ¢(t) = u B(n) and after multiplying (15.9)

by u , obtain

: 1
(15.12)  a(t)a(t) + B

1 E
, T¢ET2 dt + f-] K(t, t)¢(r)dr = f(t) ,

-1<t<l
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where
Cat) =1 - % c(1+t)log((3+t)/(1-t)) , b(t) =% cm(1+t) ,
(15.13) |
K(t, t) = % c(1+t)bexp [-4d/(1+1) 1/ (2+t+T) , -1<t<l, -1<t<1,
and

-+ (15.14) f(t) =L ¢ v0(1+t)[exp (d/vo)/(Zvo—?-t) + exp(—d/vo)/(2v0+1+t)1.

If c>1, ‘then since vd = ip , (15.14) becomes

(15.15) f(t) = % c p(1+t)[20 cos(d/p) - (1+t)sin(d/o)1/[4o2 + (1+t)23 ,

C-1c<t<l .

In (15.13), a has a zero in [-1, 17, which we denote by -

Case, Hoffmann and Placzek {7, fig 16, 171 give graphs of
Vo (= 1/KO) against ¢ for O0O<c<l , and p (= l/ko) against ¢ for
c>1. We note that the graphs have been reproduced in Case and

Zweifel [6, fig 4.1, 4.2]; however fig. 4.2 is incorrect.

From Definition 4.1; we have-

(1/7) arctan (b(t)/a(t)) | , -1st<tO
‘(15@16) o(t) = 1/2 - (1/m) arctan (a(t)/b(t)) , -1<t<l

1+ (1/w) arctan (b(t)/a(t)) ’ to<tsl

Thus 6(1) =1, and so by (4.13), the index is minus
one. We note that since a-is not continuous at the point 1, Lemma
4.2 is not applicable unless we first divide (15.12) by

Tog (1-t)/4) , say.
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Since the index is minus one, the function Z is given by

(see (4.18)):

L 6
_lT"t

(15.17) Z(t) = (1-t) exp ( - } dT) , -l<t<l .

We need a method of evaluating .Z and the moments Ci of 6:

. 1 . _
(15.18) A C; = f 6(t)t' dt , i =0, 1,...,N.
-1

The logarithmic singularity of the function 6 at the point

1 makes the accurate evaluation of (15.17) and (15.18) difficult.

To evaluate the moments of 6 the following method was used.

For brevity, write g(t) = 6(1) ', and so (15.18) can be written

€ ' rl
(15.19) C. = J g(t)dr + f g(t)dr ,
o 1 -1 c . .
where 0<e<l . The first integral was evaluated by M point Gaussian

quadrature; suppose the quadrature formula is of.fhe form

' 1
(15.20) f F(t)dt = ) W, F(ti) + remainder .
-1 i=1

Then after an elementary transformation, the first integra] in

(15.19) becomes

ne~—=z

€
(15.21) f g(t)dt = L%(1+¢) W. g(g[(l+e)ti + ¢-1]) + remainder .
-1 :

j=1 !

In the second integral in (15.19), we put T = l-exp(-1/u) ,

o = -1/Tog(1l-¢) -, so we have

1 a 2
[ g(t)dt = [ g(1 - exp -1/ul) exp (-1/u)u ° du .
€ ‘0 '

From (15.16) we have o6(l-exp [-1/ul) =1 - u + 0(u2) ,
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and thus the logarithmic singularity has been removed. Applying the

quadrature formula (15.20), and defining

h(u) = g(l-exp [-1/ul) exp (-1/u) w2, 0<u<oc , we have
I g(r)dt = %0 ) W, h (h[t.+11) + remainder .
€ i=]1 .

M was chosen to be 40,

The function Z was found by writing (15.17) as

1 .
Z(t) = (l_t)l-e(t)(1+t)e(t) exp ( - J M__-_j:_(t_)_dr) -1<t<l |
- -1 T

and evaluating the integral using the same method as above, that is
“putting g(t) = [6(T) - 6(t))/(t-t) , with t a parameter. This

géve good results, except for t near 1.

“Since the index of (15.12) is minus one, the integral
eugation (15.12) will only be soluble if the consistency condition

(12.26) is satisfied, i.e. if

1 1. ’
dt _
J-l (f(t) - J—l K(t, t)o(t)dT] I - 0.

These integrals were evaluated numerically using the methods of
§13, which gives the approximation 60:

n

(15.22) 60 = jZO w; [f(xj) - EjJ + remainder .

Given ¢>0 and d>0 , Vo Or p was found from (15.10) or

(15.11). The cdmputer program of §16 was used to give ¢n, and

60 was found approximately from (15.22).

For 0<c<l , several values of d were tried, but as 60

was always found to be positive, no solutions of (15.12) were
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found, in keeping with physical considerations.

For c¢>1 . 60 was found to change sign as d was increased.
Using a simple iterative method, these zeros of 8o were refined

10

until |60|<10' , giving values of ¢ and d for which (15.12) is

soluble. These values of ¢ and d are given in Table 15.3.

Using other methods, Case and Iweifel [6, Table 6.47 have
given first and second order approximations to d, which we give in

Table 15.3 for comparison.

Table 15.3

Critical slab half-thickness: d

Case and Zweifel This thesis
C First order Second order
1.1 - 2.1133 2.1132(5) 2.1132 7591
1.5 | 0.6076 0.6044 0.6040 4712
2.0 0.3268(5) 0.3198(5) 0.3089 5961

It was observed that (15.12) was also solvable for larger
values of d (for c>1) due to the periodic nature of (15.15). The

physical interpretation of this result is uncertain.

We also give the corresponding approximate solutions @n

of equation (15.12) in Table 15.4.



Table 15.4

Approximate solutions of

Values of ¢n

(15.12), (15.13), (15.14)

(t), t = -1.0(0.2) 0.8

n =10
—
c=1.1 c=1.5 ¢ =2.0

t

-1.0 0.0 0.0 0.0

b-b.8 10.0192 8752 0.0451 6606 0.0667 4536
-0.6 0.0258 0374 0.0605 1289 0.0856 5003
-0.4 0.0288 8861 0.0673 8798 0.0901 4567
-0.2 0.0331 1037 0.0745 6001 0.0929 0176
0.0 0.0403 9662 0.0840 9360 0.0964 9583
0.2 0.0507 1523 0.0944 9368 0.0997 1506
0.4 0.0623 1702 0.1026 3817 0.1002 7167
0.6 0.0715 1067 0.1043. 5845 0.0954 4905
0.8 0.0708 9022 0.0928 1006 0.0806 3954

98.
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§16. A computer program for the solution of the complete equation

In this éection, we describe the computer program which was
used to give the numerical results in several of the examples discussed
above. The program is far from perfect, but may be useful to other workers

in this field.

The program solves complete singular integral equétions of the
form (1.1), using the method of §12 - 14 , and is written in Burroughs

algol.

We first mention some assumptions made in the program. We

require that (4.10) must be satisfied, that is
(16.1) b(-1) < 0,

and that b is a polynomial of degree m ', which has only real simple
zeros which lie in [-1, 11. This implies that m = u (see (22.3)).
The program may be extended to allow b to have complex or multiple
zeros, or zeros which are not in (-1, 11 , provided that the vectors
RONE, RTWO and PB are given, where

m-1 m-1

R.(z) = T RONE [ilz' , Ry(z)= ) RTWO [i]z' ,
! i=0 2 i=0

m i
b(z) = ) PB[i]z

We assume that the matrix A in (12.21) (MAT in the program)

is nonsingular.

For a general purpose program, we recommend that the modified
moments are calculated in double precision arithmetic, the remainder
of the program being in single precision. (The program given below

is in single precision). See:the remarks on page 82 and Example 14 2.
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To solve a singular integral equation, the user must provide
the REAL PROCEDURES A, B, F, K, THETA and Z (which are of course
a, b, f, K, Q and Z in the thesis). THETA will be unnecessary if not
used for the moments C[i] and the function Z. The user must also

provide the moments C[i], i.e.

1 . :
cm=J o(t)r! dr, =0, 1,..., N4+ |c| -M.
-1

The following data must be given:

N, M, MPOINT , INDEX, MODE, CONCON

X0, DEL
if MODE = 1 then YO[il, PHI[il, i =1, 2,..., K
if MODE = 2 then RHO[i],i =1, 2,..., K

A heading card (any string of characters)
BETALil , 1 =1, 2,...,m
Cl

Explanation of symbols

We only explain the most important symbols. First, those

which are mentioned in the thesis.

Program Thesis
N n = degree of polynomial approximation to f and

number of nodes -1 in quadrature formulae of Z213.

M ~ m = degree of b

INDEX : "~k = the index of (1.1)

BETAL1] Bi ? position of the zeros of b.
C1 : A in Example 15.1.

CLi) C; = moments of 6
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Dli, 1] di = modified moments

DCi, 2] d$ = " "

W] ws = weights for quadrature rule of 8§13

NSTAR[-i ] w.-'i( - " " . uv ] n "
K-m ;

OMEGATWOC[1 ] Qz 3 92(2) = Z OMEGATWOLi1] 2z

i=1

We now explain some symbols used only in the program.

Program Explanation
MPOINT number of nodes in the quadrature rule used for

evaluating C[i].

MODE ‘ If MODE = 1, then the user specifies YO[i] and
PHI[i] , where ¢(YO[i1) = PHILi] , 1 =1, 2,...,«,
and the program finds the constants RHO[i] ,

Ci=1,2,..., K (pi_1 in (12.22)) and prints this

particu]ar solution.
If MODE = 2 then the user specifies the constaﬁts
RHOLiD , 1 =1, 2,..., « (p;_; n (12.22)); and the
computer'prints the corresponding particular solution. .
If MODE = 0 , then the particular solution v, and
k homogenous solutions Ups Upsenns U in (12.22)
are printed.

~ DEL The particular and homogenous solutions v(t) and
ul(t),..., uK(t) are printed for
t = -1.0 (DEL) 1.0 .

CONCON ~If CONCON = 1 then no solutions are printed, but

the numbers 8, , k = 0, 1,..., -k-1 are found

k,
(see (13.6)), i.e. the consistency condition
(12.27) is checked. For any other value of

CONCON, the solution is printed.
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X0 May be chosen to be any number in (-1, 17
provided b(X0) # 0 ; is used to normalize the

coefficients in the polynomial expansion of b,

The procedure GAMMA(t, CA, v)

Given the number t, the matrix CA[i, j] = Ti(xxj) ,
.. _ m2j +1 ' A
i, J=0,1,..., n where xxj = cos( ?'ﬁ*i_T—') andvTi are the
Chebyshev polynomials of the first kind, and given N, D[, 11,
OMEGATWOCi] , RTWOCil , B, M, as global variables then GAMMA gives
the vector v such that v[j] = Fj(t) , 3=0,1,...,n, where-l‘j

is defined by (12.15).

The procedures SINGULAR, DECOMPOSE, SOLVE and IMPROVE

The procedures SINGULAR, DECOMPQOSE, SOLVE and IMPROVE are
given in Forsythe and Moler [14, §161, although any library routine

for solving linear systems of equations would suffice.
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The procedures in the following program are those used for

Example 15.1. We first give a typical set of data.

10 1 30 2 1 0
0.0
0.2
-0.6
1.25
0.6
1.25

EXAMPLE 15.1
0.2
2.1



104 .

CINToNNs INDoABSINsLL I o JsSslrIls
JrX0,BTV»ERR»
»

‘e

o

-

N& R
>N

. o
O ames
x0© o
OO L Ldea
a aOr™
Z~ Weo
QO VI e

Qea O aOZwd

(&} =D D=
W o <
Z~ <« WaQ
—Z W E
o~ x 2 <
o
(&)

=SQRT(X) ELSE €.0;

REAL X5

T SPECIFY THE FOLLOWING REAL PROCEDURES:
VALUE X3

A:=IF X>0.0 THEN

OCEDURE A(X);
1.0=X*X;

(LY
St g e

aa.a
NN\
_~ g~
[T -~
O > 2 X
O . N
[ 2P 0o <a
-t e NN
-] DE A~~~
(XN ca(\) <C 2 D 2
X M W N
X oaID<
-t et LW W e
< gL X222
W W <X <
X e~ o e
—->x XOOE
(TN T & s o fo
SN\ X ¥l Ll
QDD Dt ¢}
W we g anawm
D DAIT < s
- et 2Ovie
< aXx [}
> >wea e
& Z Ul
e e 2 O et DK L D
~N A A\QWwI I
M O e DN €L e )
Nt O et ™ b
O L CCxvitNmn

A ) LITOO
WwN W eV YV
et xOQ > XX
DD e Dé W
OO O Ll
L e i b L vy 2D 0t e
QUWHOO ONOD
OO +OOUI*e W
Xt et 6 QL

" 1l [LNs 47 V0]

S Z e e JeeQ T
<M WaIO<u <y -

W oW Wy
x ao oo <
W
[+ <4

[N TN
v B
LN - -
o —
~M (TN
] e x @
s ] ~— L W
> (S R &
W X W L
(7o Lot VO RN
- -O Zz Z
(¥ S Lbd — ol L1
P (1N =
-~ -z e YN ~ [am)
[TSERTN > el T3y M e 4 (=]
b 4 - > o .- . o8} .
[— [ IETN — | od Tk o
-~ a -~ < [wey |
< < [« << o W w Lol ox
W oW W weild 2O 2 [ < L
x o rwD o J a. ZO
Z ~N << T it =
. ea Totad e > > a -t
> X x > 2K > e Z —
S — N W) A -
Wi L <Com -— - o~ <
e ¥ X e o Se~ DWW w~ D
- . - a) s =0 <
< 4 < o Lods ) DX e D
>~ A D> ZeanvliwieaD o
> b et Z ™ AN Q. vt
e nson A || = ONS e )
-~ e~ () AWWNIE X NS Al
> & X — XM ¢ L Zeeldwt Ll
- O\ ol s L WL OW) —
xaN TLaNEXILIXTI wLw OV
* I D Db LW o )
W~ w wWwrOsn Q L e
x>xa OWWDIWD HNO |
Sw D DEOCODOAQV>OX ol ee
oo OO OO~ Z aiNJ N
L L LI e @ @Er-MeiZ >
OO0 O vA gl =, <<
oo (a4 1] [ R QXY g«
[rfeled el 1O 11 Zmoo
awna QL ZLdor Ldee Orli L)
i LI XX (D Z - =
e e e ca _Jor U LITUIi Ol
CXEICIE>NOISKTOWF-I -3 O . J<C  t.
W uwid 2w O Z < O~ X
[0 o W O w— »— W o

o
L

ATA FOR THE
»

av)

HICI+11)5

< <T
(V6] VSRR TN
[ A4 -
p—
ZL O ea
<<t E
rx «< ]
el 2

MPOINT»INCEX»MODE»CONCON)S
| 4
[ 4

aa ~A U
FAEETZTOO M
A JOOwO~ <
Ll u <X §
(o] W stz
AWZZ OC
MO IWJWANZ o
X T XX ~Z
D a0 V2

L] < .
VeV =0
s ail  «aDLoa

ZZLWWZO 1t et
[OYS R an Ten [T TP TRV S
wwOOwwZZ
COIIOmr )
<< < »4 ) o0
Wild bW bw
A~ X < LJ



105 .

o]
W
Q
>
-
- O
Z @
Lonl [Ve]
h N
< Z .
o - | ad
(V) <
T —
| o <X
~
[ Pa ) S ol
o [a ofan]
O OON  od
V) aN -t ()
a4 Q@ =X
< Z (=] VEp-4
Lwivrod L Ol
O —0
CeXx WO
= )
oL DOl
NOULVU AL O
et < L
<L X U0«
OO ooy
at Q. O
Lan X Vo TR 1 o0 U]
~nZ OO«
&« )
a Q. Pt
-4 [« A -4
+* LS QA < —
=z LI
Zre IR
~ - C
> Z Q o
« &« +4 & M
T ORI
weod () v o Z
DT ee Or

W ZO 0 O i)

—_

> ™

W e

o

Zz £

- O

L Pl

(7] —

o

< Wl

« w

*

~
e O
<1
- v)
Vv Ll
o [»<4
sl 2D
Q0 -

«C

wvy o
[l i e } .
Z2Z <« ~
W 2 ~
T O -
(818 ]
T x

L O L
ol L <
[F9]FY] ' —
—0 e w
W b~ fond
(] I > L
o Ow -
o —t ax
X & W& Lak -€1Y

L T L0 Wl e 4
[FYY_S'N ar 4 ve O)
ITXAROAZ e
2 b | XX

Qe XZet Z Ul

PNZO ac<Cer 0 Z o

— PN Foeivd | Z
S ZZ b ZC
PR 00 00 OO Z 22 bt bt

LZet w™mOM aNDOO adoo ) b=
Al e O T Crm ot Ly ZC e (G O
a0t XBEPdrledee > eeNWIO
ZOwWZ o TEI 4 OACC D!}
2 aMZ AL a0 ZZ X bt V) S )
L DM COOQUO e S aNQA @ «OW
ZEQ * AU Zu=OZ X XU a2 @
et X LA EEDOQ dted ™ <L & L) <
OCOXACAA OO0 XOWDLAL OO E W J
V]

m

REAL T35

-
14

Qe
D=
O
[P RE, ]
(& Jon ] 1Y
OJ
[s -4
a>

TN L)
—a O
e
. =t 00
E arm
PO
V)t §
[ W YUY
NHE
QZ ee H
are e
NO ™
<X \oad et
(SR 2o
w >
b AT R ]
QO e
« or=
INGE e P-4
Laan I W T IS
—Zee >
1 O
Z00 -
o i X
- JD—D
§ < *
SR VVEIN - X o)
ik 40 Ll ]
A ey
s ()Y
ZDZ 0o =
e S WOV
[ X0 BN oo o0 4
— Ol Py
20 o= N ZTHDD

-1 -
(J=2]-K[J=-3142.0+D(J=1,115

05
ytd=11-ytJ=21;
GeWl U=

o ¥ il
QD e
LU [ ]

aClajeer |y
X Ze 2D
X Z20w0O
€= Dl

e 1
b 00
y N
~
-4

— O
oo
x

0
<<

(Lo
g
2 -
oz
+ 2D
~

[« X ]
[

C e
xXON
-l
<+
QW
[TV N ]
X~O00
ol xZ
HE -

UNTIL N DO
(ULJI*G=BT+«W{J=11)eSUM’

— %
Laa KT
Q.+
LW «D
(XN e 175)
CN &
* <Z
N-HOO
L IRL I &)
O * oo |}
H e
) oDrm

e M Z X -
LI 1 20t it ta () ** &
DIt YOI >ODOXTOACOINONL. >OX

20 @ w
WXy am
FTOee O .

Ol Ol

XN

«

DO e X

Z«<
(PN ]

o
z
LJ

ARRAY A(=1];

NsM>

VALUE N»M5> INTEGEFR

UNTIL M DO A(Il:=0.97

Ns M)

1

B(=1.0) MUST NOT BE POSITIVE">);

/T"ERROR.

N

«0) GEQ 3-10 THEN



106 .

[N
~
I . -
b -~ i
= —t <+
— + It
(o) — o
oo [s—) QO
a2 (o] n o
WIS > o 4
X [ .
a a A bt
~MZ ~r ..
— . A
. A ~ . 4
t M . .
1= [N ~
. 14 L
Zt 1] .
— 1 - ]
oz 3 1
PD L Y ”~
FTO B4 L 4
Tt 2 . .
[ Yoo N o
NO W e
g [ LN
(9K s 1 4
MO e bt
X - o
[N T X
t M a o
§) -t 4 [ 4
b 3N v v
tt: . .
LT | od -
[gV VY] pe=l =2
woyes O o
alD ™~ - A
MmMEzZz W (9]
Ll 2 B L LN
“a) A e
tNNZ X X0
HXE Red XM
ZeZ +Z 0N
g M S UZIZ DO
Nl T LT aN
Vo Qe Q0 - TN
a O - o n
g F et QL O\t
o a il noo=
Ol XWX W
wOwaoa o e
wZoouw oumMm
——Z X X "
—p = (44
[+4 (e U
b 3 = -~ a

COMMENTY IF M>0 THEN USER MUST PROVIDE ZERCS OF B AS DATAS

LN
L)
o TN
> <
~’ <+
o -
n -
Y3 > on
Qo L]V
x ~—
m N
O~
[T [1op]
on -+
. 1 -
VI ~
b o Wi~
L1y =~~~ N~
-~ woo ~dO\J
~ Z eX [ o
(= O —t o
. [ X é& o -~ L ]
~ < ~o - X w3
A | Lad vt D > ~ &
z |9V} T o Ll ] ®
@ [an] e A [ Y
L3 —T bt () w -~
Lo A Nl o O~ o (] -
oo o O MOAN ] o x ~
oa v L4 ' N& | oad £ -4
NE ~ o 1« O " u Z aOZ —
[eh] ~ T [V LN 4 [an] .. — ~ 9 [F]
X et em Mo = O Qv I
i e ~ Z0O0~ Z W [ W N Lo
Nh= «f o A o [ 4 = r=2 T et - - ~
CE 2 pmvd A den a [ OoOuLZ [8a) -d
«D ™ ¢ N J X -4 * D « .
MY o XX [] [& 3 I L B ¥ bl b SN b -4
tod aVv t  WONM | od — [ ad [ ] + ]
> @ e w Vel < D ) < T2 . ~
NQA. L ~a D Zr D g=Q W -
NWw aD ™M +—Cp N VS O OLS i Z
Ve ZO Vv X o ed D>Z e b= O »
N s L= Wil = XV X "
— wid - 21 a. > 00 W\ e g o~
Ded O+ D ~N W ok Al wesO ™mO »
Z O ZC<r O WtV = . k= NI BZWMY (o]
Ll el oaw Twwa O e SN DK 0 bt 00 00 ()
T WO EIEOW Fak- e N OwNOLOO
- W Zr =220 0O Mz et X W ZzZre
= m Lt =L O I Z O Zee XM w
O X O R.'NBI\Z.-I[F-I' 00 Pt 00 OO . ew
AORL QLW QOO IO X > o
T ZE O W <ZQ W =z
[0 o} WX e NOrm [Lla fanl Wl
W OoNQ e O e O
— LCLOETOL a

USING ECGUATIGNS

(LN
~
L
.
-t
(] *a
-
LJ
wv >
| —t
L) [ ]
o
Q < w
. 1l
—t -4 (1]
o o -
o < O <
o Ll =z
o vy o ol -4 ELN
(o X ] YN “* - ~
—Z N = -
DZ N~ 2 b~ wwZ
i ~ ) Z >
o) e~ ) D T
g 1 2 » .o b=
X= Ll - - O -
< > Z Q QO
D >Ww 2D Q. .
"a * i w -4
Ot D = b M Z Y
. ¢ =t ™V WNZ e
O N~ QO e — QO
Nkl oo ¢ LJ [~ DLl
sob= pa(d bk SN ZH [a o]
~H N V) oo rdoe
o — eo O UID >
et D> N 1§ W
>nzZuwm NZee XD
1 *0 0o ldom 00 bt O
e NGUDO YO Xl
-~ W < w
X m waxom
- o
Dl [



107.

'100);

XJ*G/Js
THEN 1.0 ELSE

STEP 1 UNTIL I DO

- N>~
nZeen i
Tl KIRAJ
SC—-T >
L

xm

END;

0 STEP 1 UNTIL NN+¢1 CO

"»X11,"BBCI1",X12,"C(I=11">);
crI-11);

O s

(2 TN

NN¢1 THEN FOR S

AND ARE IN (-1-11]:

v
[SX - ¢

RONETQ1:=ZC(Q)*SIGNCACQ))

[IIEXN
so 00
.~
o
LN
e
-
[ YY)
. ]
—0w
it
OO J
ZIxWZ
Lol KIX —
[[RE&ReTo Jonli.]
=w Z L)
[a4] wm

THEN

=Pxx(J=1);

;g,Lu,Rs.SOLN);
»

~>2

et
1%}
xa.
d
L1 o
~uv
L
4
< i
= oo
W=
[=a]
HZnoe

1 STEP 1 uUANTIL M DO

ul
s o]
o
[T

VE
» G
00

-z
O X
wno
L
e & by
_~ -
<L Z
- D
D
b 4
< &
Q.
<Ol
ZX -
~ &)
WX

72l o

(LY

—

e
Nnd ™
= -
-
ov
wnx
1~
0D
~ 0
Lalad
I n
[ X 1)
Yt N
Ll

Ol | ZZ s
satmise Dea Q > oo mt O W00 \r 00
—=OALOTOIOXXOLI

20 W
woa

WEQO
Q.

LT

-
Dee

(P]e

o —t
I dand
Z2Z
2
o

(Va2 ]
-
wa
s ATY]
&
2V
-l
.-t
T u

Z>
W da

oo
]V

e
—
~
~~
—
+
(1N Pnd
~—~ r o
A (%)
L 3 4 ~ e
P * O
<> ~
— ot b
~NO [
N —uJ
Ll o Nt \d
(s 4 o0
(] =2
Z s —t D>
<O o J
> 10
N oA e 0o
" Ll .
wre rm e
Ot —
—d i SR TN
vl [l
rZox Z 1 o
(eleial g = o0 o
=l X el
g eiea ~ x
- & i~ X e
O*ZI~ WOOo -
AaxX w O . —t
e Juw ZVet [
uwig =~=Z »+4 i P4
el ad 59 ~ ) ee =
Z Z wu;rere
—_E D a OO -
TN =
NE A nom Q.
N @ e QO W
\"4 Q. Vet |
alild (TN w
Ok~ e -~
2 D owx —
o O ob= &
A OOQWw oW
Ouwaunw n e w0

o A PSR TR X TNE TR SN s o] ong (]
WN—Fr Q. ZTm
[« X Qe w OO
B XX ACK
T O ZO0O «aX W
w WZaow o
——_0OJdw
Al O

-0

Wz nu

90 had g0 00

- >



108 .

(1N
——
-
e
XN o
- Q.
» oa LN
th D+
. x [N
> —~ o
- L
[N (W] N
= @ -
> a D
o * " o
o o oo o0\
| 1l
- > —A -
n [Wy ]
o [safenle
" a x
[} (78
£ v} (e Jom J &0
o M o o o
Q L.
-t x Tu X
. ol
a ™ -l <O Jd
w v — —_ )
[ S V) [ oad L
v @ < >
Q. D s 2D
] > o
1w e - v L d -,
setd ) 00 © Q. 4
mAOXO G x a~Na.
w 2 L) ea WS w
xm W = =0 =\ -
o [XS [LX7, By —g (VolN N 7o}
(. Qo a M s =
& © a0 >O0oD0
W sapnZitn NHNO
olOoquoou.’Ooo(oo
QO O O it~
20 W ZMD -
wHnaem Qe
0.0 -QORO

bl ' Ol

S POWERS COF Z 1O GIVE CCI) FCR LL=1,»

S USED FOR BOTH (14.12)8(14.13);

£
2
I

=1.C)¢Y>

EN 1.0 ELSE
/"8(=1) MUST BE NONPOSITIVE">);

ITX o P9 v

~ ez O O
Oavw = o
wilde T D
Qbermap OUW) e
X had .
- O WO
<OMed | aad ol "
CNna § Zw e >
Ldoee || (Ot X OO0 ot
I AOXOO JD
O >>Ww 2 W
"o @ waem
v O W o
D=l ta

on

ca s
-0
-
e
<
< i
1] ve
° P~

¥ MN IS OVEFRWRITTEN

NNs=N+IND=M;
+
1
T

aa <
Wi
=t
e
o
(= =
LB TR Y
e M
N =t (D
!
Me Z o=

L)~INCEX?
N

* |
HE
GEQ 0 THEN

=

STEP 1 UNTIL NN+1 DO
(
D

ITs=MINCS, IND);

T T

Q>
LN L 1]
Ol & e
o o (| r
o™ eny
nZit e X |
TR o R TN > LW)

o

xom

w I=OOZa OO
N JOLLWoZOL
e JLJ T Z il

O o Ewd
<l Q.
bt (&) [

[e0]

1 4
ThOLJ+IND]:=PPLJ)
=1 DO

~D
~
vt O
1oz
xZ 2D
-t
O e
Z2Z
—Z A
~ )W)
>  od
< JdU
P N o BTN
o=
—~Z no
P Do
Z MOw
Z- 2
11 xo
o Oo
Za )
[ 1Y B
ab—Z i
O Wl ee

= T rmea

THEN

(=]

OO

w i - L ZVLY

NWTIO Araw e OO0OUIx®
Wxl A0 AXTZ OO

ZC Ty
Wi wn!
ol

~ Ol

D L —t et ped

THWOI01:=PP(01/PB(M];

7%
Qo <=
Gl
—ZWo
- L
woom

/PBIM];

-
s 2
COA
XXX
.
o <l

L L)
Tx
oo



109.

s 1IN
=) ~
Q o
- o <
+ ' it
> ] ]
[N
-~ - bt
— [on] — ~
n o (481 [ ond -~
—F Z (]
D e — > -5
("] ] ] L
Met™ Z -t o e
oG w z [T P [
Q+*ac ] a -~ ~ — 1N
il QO salidea X -4 [om B
FTCr- 4 Z A=y 1 [T =) -
——— e U et (D) = ~ ) oo
-t e ] [ A E e e
K et - Ve UIN o N o} § [
(S TN v — g~ P — W
ZL*E el Tt X —t Sl
DWW I MmZ ar=tig g ~ § Q- O
W « XD X e MUY b= (O
22X wX &V < xZ &0
QOW M Z20mw Xd D Mk
AITLE O =w—O o X e lg)
We O N T 1= et Ra i i
—Zy ~a W Z XX 1 Z L] [
Neelld & ld  se ) ZD A P qa)
~LTy § DOTOw > W eZ
O™ TN -0 o4 cab= (=
ea bt Y w A 4 O Q ov) +Q
O O~ ON OO>rm™ Za. 4 & +
ZeaMT il X cANN O L O " &
WO D =E D Ve [IN] ) [ 1" N Zee i
SV X NHINZn >F DOV . O e ee ™o
WO Wb=sn g serdooli e a X >V 2>
W =UVOenNO>»* WOOO O It L
. Zr W ZZZ ZNMN ZeXm
Wit (D Lt it bl 00 YOO
- ) =D L
[T Ve e X< w
Znuixom
ldrtoe JO
QOO L.
Z W
[FERFVTa o]

e
on o
~ .
. -3 -t
- ] [] IS
— — " -~
et ool (1] K 4
[s.2] i ) *
[a o] « > -—~
" Lo . —
(1] - (LN [
~ ] - =
— ) * ]
' (] ~ —
(o8] (W) N -
= (8] L .
>~ * w -~
ot b ] ) -
o [TICIN " LLN *
= o0 P e o -
LY [ o > L] [} -
b (%] -t wd o ~
It LI QO -4 [t} ~
e -~ []28) [ Y o -~
~ X0 ~ -t > -t
— [ o - o ]
— Ot e D e > a O ]
© A+ ~ -~ o NO *
(5 «Z N Ve D [yV]
~Z Ll .- -l > ]
o [&] —-~ZZ L o B o) LN ]
w Zd W [T - oJ ™ [}
e BT N <+ -t et x
> LI XN ] R g o T ] iy = e ZN
] —Z0Z 2 1 w nZ MwWN
1] QDO LD waWv 1 D «aTI &
e T vt T Ll Nt O =2
— d e (L) vl 1= 0 b -4 [} [ ]
[} Q. et se NEK ~Z o )bt
P4 +Q Q0 L - «D ML W W
— LRSI JVo I - - XLl wWo
+ el sl O ard X= 1O
oo et e Ne e OV Cee ll vo o WwWZi
Qs ™ ~E *T) e O Q. [} L J ]
ZO OO O ™ ZCLW NO >De
LWE ZUZVNHZHXr = - Hnzu Q
Pmaa b=t 00 bt || o0 bt 00 Ol v [INp) 0 ee bl oo |,
DO e (D> L WO I DO >
ZE¥ O~ w Zre N X w
BRI 2 o] o] W *NZNXo
QOO a(\jee pq o0 O
LWL o1 ~oOL
ZM W
wnaem
s D
Sl

(TN
>
L 3
-
1t
(1]
P

e )

[am 0
Z e
L) e

—

o

.
n
-
>
a
[ 4
~~
L]
-t
Q
4
[ Y
~5
>
[ N L1
| 4 -~
— [
L
t a
~ —t
[3 [
w o
[ oad -
=< "
[§9] -
X OA
o o~
x o
-t vt
(=] |
W W
Qx Wt
— [F8)
D e
[«- B ] o ¥
W =X
x 2w
[ =0
- LAY
Qonea NI

Y T T
LA XAQLV $+
ANE W e Z
Ve )
a a™nNIND
OkFw OnNZ
OD2xEOW oI
A WO
" [ T o ]
QAW I+ ™)
ZZ»=—0O &
Wl X it Q2
E O 0O
T oW >l



110.

O
~
-~
sa LD
- 1 J o
A o ~
14 (X7 (&
~ (1N -t LN
—t - -t O 2z
— (7] < |
» [N [N *® J o
> [« ] -y L ) [72]
3 + d oV .
[ 9 ~ M =l Yot S
o TN ] T - b o
> r— - [So] A .
[ - (] & e M pon
3 d od ” -~ [ Yl (XS -
~ > < " v Z O ~ -
—t b 4 [} (1N -~ [ - | -l - (S
TS () i L ~ [ -~ — [a8) [FNETN L Y L- 4 (TN
[&o] o . ~— —— o e [ ) ar — Y ™
" (XN Lo 4 - -t - -~ O >= - T L1 ) o e
e ~— | od - [ —t - - ¢ w il & > 8. +
[on B ] wv TN —t b d - A x ax = a2 7
- - x - () > > N\ *x a Zt XY o
. e [ 4 - o - x © ~ o oOZ NE W o
- [N - ] r= ~ e [7)] -4 =l -3 >N ’
st O o o . e x L — . 0O <+ OZ20 >
L- ¢ — -4t d (=] — LT ] [Ta o d O << [&X @xowm w
a O < > (=] [Ns ~ o € Ze D1 Z ® it Qe [an]
~ "o . L e [« 1 - ¢ —rt W | (Nl T ~ oo b > S 1 <
~ e Z A 4 wn [&o] - O ~ [N w L) Slad st ~r D o)
-t (D ~ ~ . -+ av o  * 1 4 = > a6 b e -t
PR I by | -t o ~ nx =y + wZllu 0 -t O+ -’
HOrt a () 1] - 0w o ~ 0 ot (€] QoJoucC M4 AN —
P ) = " Qe PN ey Ll NN ] " [Vp] us} 1" M 2 - —
N Z w2 el oo s DT O el S LIRLY VNZ e O W Ty P4
w il D Q. e (] et bt el a SR 54 [N O ea e AV = [ee]d 4 [ on Pee TS >
e O Z@ s TX®X O [V (=] 1~ . ANO ’ . * noa
>0 & ~N (TN Q> [ S T ot e (LN Ul ee = Q D O e =l aZll -l
- Q e oA L 3N T Ny [N @ X - O ¢ - A0 ~ NGO Vil
wead il Qs o~ e (D'a 2 “Z o\ + Zil - DO o -Z XOx a
OOLIse &= “> N ko ~a N [l L S "™ + =_JZaZ < << O wd
QL e~ O el e Al v W M Vv N e X™« * o Ot all <« DEW [
Tl ] (34 LD s a He QO O [N wlD O [ X&) 1} QWX -~ - -0 Z n
e N « NN OWVZ bt e O Z XNt - L X7 K L ) s ¥~ “Z “IrZ w
~eseded || N ¥y o QO mMmD W O« X > < © > > AXN N X O o« T et
It e VLW NRXZHE DO X XZIXE Ol a@Z e || Had Z aVided xXxxzix Zrex - 1
™) 00 bt Q. *W * bt 00 < 00 Lt et 00 (D00 (Y o bt 00 ()« 00 0 ** o - aON ' —e e Ora v Z 'y
Pr R Yo -Z OO0 00XW = "TOLOWZ CNOOLE>OM WZFZZZ XTO00LOWW™T -
O « DI L X V8] Zea= O (P2} ZrFra O (W Zedtwr NwIODadOa < W Z>x 1]
ZH—wXxQ ~OXxZnxdm Wikt ZZEm W 2Z XM Wi QUIODXOXZWXD WLJEX w2a
et LD e e LD NEea =0 X e O . NCeaQ.>w Z = _JO QOO DD
CUOL DSZWHOUO0L X 2OLWOW X D> L. EIFIOTQWOVNOOWL NOL-QO VL
w - W < W W ZOor- O W Z 3w
e} L se =02 OO LW xm . WO~y om w o
axro ps o o Wrorouo (¥

ZXW E 4 U QXL iy —



111 .

[ *n
-4 “ a ~
xg g LN [gV]
N > ) O (]
t Mg o - b4 -
> “— Mz . -
. OC .y — T '3 [8)
-~ O st L3 ~ []
< o >< T W > e ]
- - ] [ Y4 -~ A -
O e . et L At s 4 ]
o v @ N wva. N NZ =
~ .« . > 4B >l B ~O -
z -t v) - aaf & a4 a g (&)
(] <+ o g OV E OM D &
b - . XX AN >tV N (&) XS
b— . 2 0O £ LiXx ¢ Q. e J i} -~
— V) -l (VY LY LY ay) & aw) (1) -
e b . Laglw uf < L a T 4 [o 7} ~ -
xC Q. > e LI > (HZ T > > g - -
xo L W Z e - N~ N0 [N [ -
LJ J O Cmas s of 2] N g ™M (&) W
> X Z =D A - g X g X = e 2] —t
c * (X La KTN o I < (W] Z: D e 2D <> O o) o
> e B (RPN { o Y7, P4 O aJ [ I NP | <N O (=] w
TN TN T 1 V¥} >x 5 ~ WOD e -t 00 -0 0 et 4 W
~ A~ +* — ™ D> A=z o =D = N OV -t -4 (e
-~ Zes ~ D LR AL o g (7] 2D at Dt -2 O (] * (XN
~ () 4 r— - [ ] D Qo Wi [N -l a - & | ad * B - ] > e B
m (] o Ny ™ H NOL WV = O~N O~ et O ea  ea W >
1" X _J ~D D L4 Viox Z - VI et [Ve) &1 -4 . -~ e~ > —d
L1 Wi O ) ~ s OO [ae] E wiXem g wXem QD vt b o~ L ~ D
S Oeaba a e [&] - SNZO [0 aZE N~ AN~ o ~ v - ]
20 ViR g ead DO e [ ANE X OANNE X QO J @ 1 a  Pm
L T e | T O AT A A D> - NN N VL N M > ) o= ]
b Qee M [« WS 1} 1 e DM Den O XXZO HMXZO X —  ee (i) Qi —
& O edes WD 0 Ot =it o1 Qo awWwO2Z2 awOZ A Z D O INTHENS)
Oon wet ] LJd " N g a0 - ) E NEtre g Nttt 8 D D Zh—Z (Vo2 ] [ ]
(X {7, Whay ] X Z Dearip= XDt [PV [T <L = & L = a X w =D (S BN« |
N> CO v ~ R e . Ol —Z ~ DO £t DS £t Z g = s e 1
U aX QW VNI DX XIToem s | A A IS a0 Jw alideali) &« Ot WD e
v NS D X i W ag & & xo ~N OXOXWEXOX MOAGC Q'aw i -z
NMUOOO UZ »+M ZxIZz O\« k 375) 3 - aNCT= e NG XCTe [t 1. N Mgz e
— as e Nl naQ <INAQA X ZWSNNE " ' xg Xk~ g x aXXA N> R e~
A b Dot X e HXE AN O ViYyV on oo 4 N & N a \NOuwiu t X b=l VDI D=
Ol 80P ™ e Ooea b= wZ o2 a —t . WwWZNLCODANNDCSDIA NIOk w0 oo udX -
O * LT MTIVNUXAUL OV wrm™) WL =Z + ) CuUlv u0e VvV UOS VvV Zv CLOO0 Z >+ 2Z2xo
OFTam W Z N N Db Dl by O aTZM ) e DZm at we a o Nt nHa <\ N
ZIt  TwWoxopaxom W it X OouwWownoaxzio Vi reOW OO~ s aQ sl il X~
o 0 X _ i OO O Qe NO oA >>wZww 00 Toa 'S DO O DDt DO ¢ O il ®r ™ Oea =0
O O00L W LOXLOZQWOLIMFMUOMIXO FEOFOQOFOOO OXwe el e NI XAL-OMIWwO
W 20O Z Dl w3 > wET w aX) Oy <r w Z NX
o WA M W OWWAO LWWagOX wWManZ g Twoxcom Wy
WXt o e w QA XE ~=Q I bt F 00 bt g0 L _Js OO Qe lu
Q=X « Xl OWO 4t £ a g T g [oad 000000 L L (O e
Z=-—-F waoz o w
Lt o—e = wm= [T = a-
[« 4V -~ -l o

X w L [V



112 .

(XN
— _~
(8] ~
x t wv
~ -
- uis «
) I L= 4
o Lol 9 -
o o (%]
= . d — -
L4 ~N © ©
x ~ -4 'S SR NIN w
- —_— ~,O -
-J - « V) ZA e [
>~ T Zrit O o}
x . Z NOT™ 1 o
(&} o W T b= ()
. a U b et b L
- (&) | gad “— - B ]qQAV) -
o *« 2D O =t o —
. a < —-O00 Ja o o
w . O 2l TIE- 4 x
™ - W — [an] -
a . . Q<IOt O 4 [em]
- - A L Z X «O . o
— —a (e IV, JPURK 4 ~lJ
[ -0\ « QPN X et oo vl
A DE s X al “Z (]
~ L T XY >l X ] ] >
o )} e~ DC OS> VW [y | ud
. e, . Z0a O a (o]
[TalNS 4> a0 [F8]ee) z i =z
- - Nwa — g ™ Lad =t -t
L wiea > a Ol [T 2 A bl TN [ ]
. O>wuoe -l s vz @ .
o IO« NI W g _~es o+ o -
> N armW ZreQ 0O v -~ by~
~ > x D O a O+ et D - A
O > sz Z Luwnaxz = "t Z N
N [ =] ] w & >xWwD na «< Dea~
~r oL T T o=l el < Lit
. >wVZ - O DI = i on >0
~ X s << NICEIQ v s —
[V ZE PO O XUODma a . my A
v <N"ND <« vV NWZrw —~0 e [PR- 44V]
N @x O yXx X VZ Al TON Zs it =M
- Ow W W - WXL wdtarmie oo*a NLJwd
foo) ca =t N LIQE W QO FNZ- & XNOCOO ZV
o o O Z Drira Ot X LWJ Z O .
- ZxE-ua - O EQOHxZnaeom [P
W e O Kea MO e O At D ea
~ O>LWE WO L WwWJenOHIOO oONOoO O
) Z = OO0 [F8] Z Zw Z
xwom L e 220X XD Wt W
B Z Tl OO [ o TR S e
V] OOUVEE & slla e O

tad x

X Zw) a e . ZXeaD
2 Wem WEOXO
o Q. Zxr Z
o o Lt



113.

APPENDIX A

A contour integral for fhe mod{fied moments

In 8§14, we derived implicit expressions for the modified
moments dj and dg , by assuming that b was a polynomial. While
this is the method we recommend for the evaluation of these moments,
we can also derive an explicit expression for'the modified moments in

!

terms of a contour integral.

We assume that b is a polynomial, given by (12.3), and

consider dg H dj can be treated analogously.

In the proof of Lemma 14.2 , the function @1 , which was
defined by

. X(z) - R, (z)
(A.1) @1(2) = 36 , Zz #10[-1,11,

was shown to be analytic in the complex plane excluding [-1, 1] ,

and zero at infinity. The alternative representation for ¢

| vas
found:
(.2) o2y = L[N LD e,y
a 1 m)rtt) Tz » L

To use this expression, we seek an expansion of - E-z

of the form
1 L

(A.3) - = ZAMnTUﬂ', zFT

where the A, are to be found. Multiplying by Tj(T)(l - 12)'1/2 ,

k
integrating, and using (12.10), we have

) dt
2)1/2 T - 2

' : o 1 T.(t

(A.4) Aﬂz)=ﬁj - , 3 =0,1,...;
-1 (1 -1

z £0-1, 1] .
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To evaluate this integral, consider the function Bj .

defined by

(A.5) - B(2) = S
‘ L .
(2% - 1%z + /%1 )

, 161
To define the branch of the square root, put z -1 = rye ,
162 :
z+1-= r, e . -n<61<w , -n<62<n . Then
2 ) ,, %1(87%6,) .
(z° - 1)2 = (rlrz)2 e is analytic in the complex plane

excluding (-1, 11 . The 1imiting values of Bj on [-1, 1] are

1

i A-t2 (t £ 1 /-t2)I

Putting t =cosz , 0 <z <m, then t £ i /l-t2 = et1c , and so

H

B?(t) “1<t<l .

using (12.10), we have

21 Tj(t)
> 1 > , -=l<t<l .
(1-t%)* - (1-t7)

+

B (t) - 8] (t) = - ESg5dt - .

J

Ny

Applying Lemma 2.7, and noting that 1im B.(z) = 0 , we have

2000
1 T.(1)
-1 J dt
(A.6) Bj(z) = -z I—l (1_12)% 7 . 2 f -1, 171 .
Then, using this and (A.5), (A.4) becomes
A ) _

y = - =0, 1...;
(A.7) A(2) 5 s d=0, ;

) (22 - 1)% (z + /2°-1) z 40-1, 17 .

and so using (A.3) and (14.1), we can write (A.2) as

(A.8) 0, (2) = 2—2333;;k2$ (z + /52-1)7K &, oz 40-1, 10,
z°-1)2 k=

To obtain an explicit expression for the dx we define
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1 - i
u=z+ (22-1_)2 , choosing the branch as above; then u L z - (22-1)2
and so z = %(u + u'l). Then (A.8) becomes
L o -
W(2PD%e ()= ] aru K
k=0
Multiplying by u‘]'1 and integrating in the positive direction around

a contour ¢ which encloses the unit circle, we obtain

- 1
(A.9) d} I

[W s v o tte w570 ,
C

a5 = o | et -0 op Cstun ™) a
C

Using (A.1) and changing variables, we have the deéired result:

r ' . X - R
(A.10) alv-f (z + ./22-1)J ) 1(2) dz , j=1,2,...
L . -

b(z)

d* =
] 9

where L is any contour enclosing [-1, 1] , taken in the positive

direction.

If the contour L is shrunk down to the arc (-1, 13 , then

the expression (14.1) can be obtained.

Using (A.9), good approximations to dg were obtained by
choosing the contour ¢ to be a circle of radius greater than one,
and using the quadrature formula of Lyness & Delves [30] . However,
much computation was needed, since (A.10) is a double integral,

the canonical function X being also given by an integral.
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APPENDIX B

A singu]ar integral

To evaluate the singular integral

dt

- , -l<t<l

- S u(t) = 1 fl arctan v1-t
-1

| (B.1) =

which appeared in Example 14.2, we proceed as follows. Differentiating

and using (7.13), we obtain

(B.2) ®-. dr

l][l : 1 |
TJg2- 12 /ﬁf£2 T-t

1 . v
. 1 dt _ . . .
Since f - =0, -1<t<l , and using partial fractions,
-1 /1—T2 T-t

(B.2) can be written
_ ' 1 ' '
CRTNNNE T 11 (-
toamlal vEor vz VZ -t

_ 1 ) 1 dt
2+t - rzr T-t

and after a little algebra this becomes

dy C C
(B.4 T T - — - - ,
) at met 7ot
‘ 1
1 dt

where C = » = L

2 | =

' -1 (V2 + 1) A=t

Hence, integrating (B.4), we get

b(t) = % log 2=t 4 q
2+t

From (B.1), we have ¢(0) = 0 , and so the constant of integration

d = 0, and
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(B.5) 1 )(1 arctan /1-1° oL /2 -t
L T 7+t
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