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ABSTRACT

The frequency domain assembles gravity potential field information
into a more meaningful form then the spacial domain. The gravity
potential field becomes mgthematically well behaved, allowing, ideally,
an exact:ékpression for'the interpretation procedures of vertical
continuation and.derivatives; and the formulation of criteria to

examine previously proposed interpretation methods of this class.

Moreover, approximétions, which are an inevitable component of
interpretation, can be more clearly examined. Using the frequency
-domain it is shown that a discrete system of point masses, judiciously
chosen, adeduaﬁely synthesize any gravity field. The proposed
"Equivalent Source Technique" results in the projection of irregularly
spaced data on rough topography, onto a regularly gridded horizontal
plane. It also allows vertical continuation of the potential field

and the effective removal of the regional from the Bouguer Anomaly.
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1. INTRODUCTION

The determination of an area's geology”és an inttgguing and often
difficult process. Only the upper surface can be directly observed without
expensive drilling; so that in some way the surface iqformation must be
extrapolated downwards to discever what lies beneath. Geophysical measurements
can'be made to help carry out this process as they provide additional inform-
ation on the physical relationships between the geological structures fqrming

the area.

In fact all these measurements are linked in some way to the character-
istics of the surrounding geology. Such parameters as the elasticity,
conductivity, density and magnetism vary significantly between structures

setting them apart as individual entities capable of being interpreted.

Every geophysical measurement must always contain information
related to each geological body in its locality. To interpret the geology
from the measurements, however, is not a simple process. The measurements
are so much data that has to be manipulated, corrected and filtered in a

variety of ways to ‘strain off the useful information.

Yet while it is important to know what information can be extracted
from the data it is also important to present the data in a final form in which
the information is most readily accessible. Information gains clarity as it
becomes more directly related to its source in the eyes of the observer. 1In
this sense we say information gains order and coherence. The gravity potential
field was thus examined theoretically to find how data could be assembled into
a more meaningful form. It was found that the frequency domain we will denote

by F more clearly expressed gravity data than the spacial domain (denoted by S).



The concept that information should be translated into a domain
producing greater coherence than the domain of measurement is not new. The
frequency domain F has been‘commonly_used in seismic intérpretation, while
in geomagnetism the global coverage of magnetic variations has forced the
use of the spherical harmonic domain to express the otherwise complex

variations.

Usually transformations between domains are ideally made by an
integral transformation invol?ing everyupoint in the o0ld domain to define
" one point in the frequency domaip. A‘further condition is also imposed
that a one-to-one relationship can be established between the points of the

two domains.

The purpose of this %hesié is to examihe the behaviour of the gravity
potential field in F and in that way carry out interpretaﬁion of gravity
data. The-.transformation is carried out idéally by the Fourier integral
transform which does involve every'point in S to define one point in F while
maintaining the one-to-one relationship. -The importance of this last condit-
ion is that, if obeyed, information content is neither suppressed nor over

extended.

In practice,vhowever, there are only a finite number of measurements
and the value of every point.-in S is not known. To overcome this problem

“”traﬁsfdrmatign is carried out ﬁsing an orthogenal series
E R M_ '
g4t = 2. C.(AA®
=0

Which'ngines a new seﬁ,of N values éi;(?é) in F from the set of N values
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‘?A (%).in S by means of .the:. orthogonal functions ﬁ (¢> . The orthogonal
series, in general, sufficié?tly closely approximates the integral transll
form to the extent that the new dgﬁain defined on the basis of the
orthogonal series can be considered to have the desirable properties

of the domain defined by the integral transform. However, this is not

always the case, and limitations have to be realised.

The Fourier series is therefore used to transform points from S

into F.

The potential field, in this instance, the gravity potential
field, is shown in chapter 2 to become mathematically well-behaved in F
as the intensity varies smoothly independent of the disturbing body's shape.
This feature allows trends indicating orientation andvdepth of disturbing

bodies in the data to show up.

More importantly gravity field intensity in the frequency domain is
found to rapidly diminish as frequency increases. This allows the vertical
continuation and derivative processes on potential fields to be more
accurately expressed in F as a filter with a particular frequency responsé.
Thus various methods of vertical continuation such as Bullard and Cooper's
(1948), Elkins (1952), Peters (1948) and Henderson's (1960) afe compared

on the basis of their filter responses in chapter 2.

If the data is assumed perfect, to contain all information related to
gravity field variations and known on a regular horizontal grid, then a matrix
of coefficients can be found which carry out exactly the vertical continuation
and derivative processes. These matrices are found in chapter 3 from

theoretical relationships in the frequency domain. They may then be used to
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show up the limitations of these processes.

Gravity field measurements, however, are not generally made on a
regular horizontal grid. In order to project data onto this grid, a new
method, called "the equivalent source technique" is developed in chapter 4.
The equivalent source technique simply substitutes disturbing bodies at
depth which synthesize the field intensity measurements taken at irregular
points on rough topography. The intensity at the grid points is then found

directly by calculating the attraction of these bodies.

Similarly, methods are available to interpolate irregularly spaced
data (restricted to flat topography) onto a grid (Jones, 1965; Brown, 1955;
Saltzer, 1948) but as polynomials are used they are found to be unsatisfactory
for reasons discussed in chapter 4. The equivalent source technique is found

to have many useful applications.

Practical comput@r programs to carry out the new technique are
discussed in chapter 5. Fortunately, a new iterative approach to solving

matrices made the program development straight forward.

The analysis of gravity field intensity data from Derby-Winnaleah
is carried out in chapter 6. As the area was extremely varied in height due
to a valley being cut out in a basalt plateau by the Ringarooma river, the
data had to be projected onto a flat plane in order to be analysed correctly.
A'regional” variation was removed from the data using a further application
of the equivalent source technique. The object of the analysis was to find
the general structure of the area, particularly the old path of the Ringarooma

river before it was buried by Tertiary basalt flows.



o 2. THE FREQUENCY DOMAIN.

2.1 Fundamentals

The frequency domain is convenient for examining potential fields,

which by definition satisfy Laplace's Equation
2 -
VIV = O (2.1)

for the potential-b/ at points where there are no sources to the field. From

the identity

V2(_L) =0 | ) (2.2)
JL o

it is seen that V/ may be proportional to the inverse of the distance from the

origin of co-ordinates, as, -in fact is the case for the gravitational potential

field, V (x,y,2) at (x,y,2).

In three dimensional cartesian co-ordinates V (fig. 1) is given by

| \/(x)y/ z) = & mﬂ[a, R, Bj) 2.3

where J1L = [(3;_04)2-/- (7 _tg)Q% (2-3/)1;%'

61 the gravitational .co'nstant and the mass m@)/@) 2’) at (o()ﬁ)af)l,

is the source of the field.




A f‘P(x,y,Z)

FIGURE 1. The gravitational potential V(x,y,z) at P is
related to the mass m (d,/@)a’) at (05,8) )
by equation (2.3).
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Generally speaking, however, the geophysicist measures the gravitational

field intensityj?, where

(2.4)

7 = vV

FAY
more conveniently as the gravitymeter is designed to measure the vertical
component of 9 directly. As the gravitational attraction of the real earth
is sufficiently great that we may define the horizontal reference plane as
being perpendicular to it for practical purposes, the variations in‘jélnéed

only be considered.

Thus from eqns. (2.3) and (2.4)

'I

g (= - %) |
72( j ) ng(gc Q%> */y‘ﬁé) +/2 a/)f/z (2.5)

where the A/ masses M% at /0(4) ,0{) 22) are point masses we now

consider as representing approximately the mass deviations of the real earth

from. the model earth.

In the limit as /V-f>-oo , the approximation disappears as the masses
close infinitesimaly together and become a continuum. Thust; in eqn. (2.5)

may be expressed as

> A P(“ﬁ?) v ( - ) 2.6
72(2 )///é‘( q) +/7‘/6) +(zé,)%s/g, (2.6)

where %/%:;: /{ﬁ iy // /o(cc /a Z) AT 2.7
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f96&)/?ﬂaj> is the contrast density of the real from a model earth

at /O( F)a’) with integration being carried out over its volume T .
p) :

In practical gravimetric problems of the exploration:type .the
integration is confined to the region underlying the survey area and
encompasses all relatively significant mass deviations. Usually it is

sufficiently accurate to assume a flat earth.

As there is no pre-determined tendency for the contrast densit§ to
’ vary systematically, except-with respect to depth under some assumptions,
}the field 1nten31tyJ? (47 %) in the spacial domain will show an
" unsystematic variation with respect to the herizontal co-ordinates Yx,y) on

the plane z = h.

2.2 The spectrum of qux (DOV‘YLA)

However, the gravity field becomes mathematically better behaved in

the frequency domain as can be seen from its spectrum é;?%ge),

G/*M)’D‘) = f‘”/“ﬁ /7{/7/4) ‘e.q‘uac.-‘-vja&?é/ .

found using the two-dimensional Fourier Transform to map the spacial

parameters- (x,y) ohto the frequency parameters (u,v).

Hence from eqn. (2.5) considering the source of the field to be a

+ series of point masses

6 2o e 72) " L
@/«v Z[/ f(:c o; )H (7~ B)° # (h- ;)?( 2
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N
= Z &y KT (h ) fa v
L=y (2.10)

= G £ -e'//’V“°'+"".='

by the Mean Value Theorem

where /F/\< > W%

/7’)/0

(2.11)

In practice the anomalous masses will be some .distance below the

topography and thus /'/)) 0.

Therefore, frem,equation_(Z;le thg ggner§1'statement can be made that
the gravify field intensity‘sﬁéﬁtrum has.a'markedftendency to decrease as
the frequency parameters increasé.g.Thus.the gravity potential field becomes
mathematigally well behaveé no matter whatwthe;énomalous mass (or\contrast

density) distribution is.

As an éxamplei;bﬁéi&et a mass:peint, m, at the origin.  From.eqn. (2.9)

4
[

A I
5(%/ 0) = G g £V (2.12)

so that even for this highly irregular potential field, the amplitude
6;(&1‘99 of the-'spectrum smoothly and rapidly approached zero as u and v
/ .

increase.

These theoretical considerations and the relative ease by whichj? is
transformed into é; suggests that we use the frequency domain for

examining methods of potential field interpretation. In fact, Danes (1960).



Odeguard and Berg (1965), Bhattacharyya (1965, 1966) have recognized this

by using the domain in their interpretative procedures.

2.3 Transformation of 9% /ajvﬁz) into the frequency domain
7 V)

-As.-has been stated more generally in the introduction it is necessary
to approximate the Fourier Transform by the Fourier Series as‘;ér/% /{? will
not be known at-every point in the spacial domain«Sy. While ideally in

the one-dimensional case

o0
-t
G/M) - j (7(} 2) e OZX (2.13)
o OO Z
for a profilez /9/’ z) - ;,,,ﬂ.,_,,ss’ - ﬁ (9;% z) , gravitational intensity

will only be known over a finite area and therefore a finite length 3TT).along

its profile. That is
~Am £ x < ATT | (2.14)

It is then necessary to assume that the function;;a (Eg %) repeats

itself periodically in the intervals

/2%+/) A< Dc\<(?7q~/);\77“

ﬂence

;ou)ITA

G (=) Z/ /)rrA 7(%) e el (2.15)

-~OD
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. f/“) 2(x+ 27 AR)

2 A AT
- {- ﬁcu/o/ _4«74
(x+2rr)/e) (2.16)
/O:-co _—1
Y'L/’l 2 «,/a)\
A e / /x) TP (2.17)
/““
if 44)\ is non integer
=1 ~ 2t p A
E € 7 = 0O (2.18)

2=
Suppose ¢¢ = 97/)

6[@) X '(CM /\/-277-) = ( (2.19)

=<0 ”
. / Arr ~c~n(/)
AN /oc) A (2.20)
> 2r ) L

Thus our limited spacial knowledge of % /x) results in only the

amplitude of a finite number of frequencies _2%. fer:.integer 7/ beiﬁg‘--knoﬁn
272

oo

/x) Z “ﬂt/) (2.21)

 T-o0
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Furthermore, in practice, measurements of ‘? /x) are confined to
<
a discrete number so that there will only be N values, say Ax apart,
known along a profile. To";"'r'et'iip the one-to-one coi:respondence between
domains it is therefore only possible to find N values of Cn . For

' simplicity we take the smallest values such that if N is odd, then

. /_/1/2_:_/_) RS (%_—__Q (2.22)

If N is even

‘(_/\l‘/)\{”'\(_/\i (2.23)
2 2

therefore 2 77') = /\/ A=

A = N d=x

> 7 (2.24)
A .
Hence j(%) - Z (’H ex/O/imz 277//\/4:{)

vl & = 2 /N . = Z=c
Pt /Y Bt a4
.ZL _e-¢ﬂ”"" E - Z C et’n{w-%)g

g

'7)3‘-&4 '6

£
Z fﬂe‘””’f= Z ¢ VoSO

AT-a MT-A

= (a,+/{+ /)Cﬂ1

A-A
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Note & + /6* /= A/ - whether N odd or even.

Theref ‘( = A e “am & | (2.25)
ererore - m— . .
Y Z I |

7.z Z Co 2 o (2.26)
izz +( 50://17)_?)

+ < /( -C )suﬂ(ﬁmf)

Note ( = O for even N when 992 =&

- p |
7_,1 Z [/4,7 cos/ﬂ-nf) + 3; Sin /;w.f)j (2.27)

where

y | ]
2 Z j/.ﬂ Ax) cas(ﬂ'nf) (2.28)

A
B, 2_:?/” ) 192 %)

unless 7”0 or M= 4 for even N where the normalising factor = 1/N

i

- This may be extended . to two dimensions.

4
j/"Ax:A]) Z C'M,—»;AMEMS%: (2.29)

m:‘“* %:'4/ !

-wheref QX) d)’ are “\fief_:.lined similarly to: A
{ 4 " T " " "
%y "

e '
Wy .
' L

R T
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4
Thus fﬂ)$= Z UW”EZ/{Y C -e“‘nc

4«.
pinmE f: [(Cm,,+[ mﬁ,,;)

»»"-4 T O

-/-—c(( ~C_ }S/h Mf)f
= [P ca:(sn (‘)-/- th:mﬁmf)}

Z X‘ +‘P cospzm_s?ms(sn() (2.30)

MmT O MO

+ (Q‘“m + Qiﬂ)cos(ﬂmsp)sm ""g)
+ < (/2” - _/:“) S/h ﬂwf)cas(fh f)

+ (Q,‘h - Q"I”)cl'n(/sz)s'/nﬁh()}

This gives in Bhattacharyya'é (1966) notafion
cos/;nn f)cos ) C)

ZZ _;B co;/ﬂ,"fyg,n(:n() . (2.31)

™ +[ .S‘m/n'mf)Cas(shf)
+ F,n Sm//vmf):m (sn C)

where /4 . B . C and F;, " correspond to the
/

) m/’)) 9, M
amplitudes of the various 'waves'" shown in fig 2.
P

LN M
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Thus C:

/M2, /Ny

and substituting from eqn. (2.29) into (2.30) we find

K’mm = ;L[(Am,—n - Enm)——o'(zz’m +é;'m>j
<A+ ) (B £)]

¢ = _[( ’C:—,.«.>“"(E»nn _A_;m)f (2.32)

-».s—. {( i ™ /‘;”)4-1'(3,_,'_'4-&:”'”)}

is the complex amplitude of the wave with frequency

The modulus of ‘. " gives the amplitude of the two dimensional
(]
'wave with frequencies » : 1
M= NA]
= [C = L - +/ '2.33)
/ (’*‘ﬂ,m / -, - / 4 , (/4”";" En:,n) En,n-’.é,n

/'C‘""“/ 3 / -L/Am,,, + £ n n / (2.34)
et R
/Com/r,/ ) "" 4‘/ + ,':” (2.36)
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The amplitudes are seen to depend on whether 77 and 72 have the
same or opposite sign. Therefore only two quadrants of é"’” are required
to specify the ampi’itudes of all waves, that is half of the frequency
domain, while the remaining two quadraﬁts expre$s the phase. Analogously
in one dimension positive wavelengths only are required to specify

amplitude.

Geometrically two dimensional waves can be represented by contoured

diagrams. From fig. 2.we can see that the planar wave in fig. 3 a 1is the

result of
S - /? = 0 . .
/4“1,-»4 o ) except for a particular 7» and 4 (2.37)
.F = E = ¢ except for a particular?m and » .
™, ™ ~M, 0 )

This is also derived from eqn. (2.31)

Zu = A cos ﬂ‘mfv‘-fné')-/- S/nfwnfstrnf)} (2.38)

A M

showing that j" < is constant along any line

AmE + S» $ = consl, (2.39)

Similarly the planar waves in fig. 3b, c and d are seen to be cagbed

by the waves in fig. 2 cancelling out or amplifying each other.

This is expressed generally by putting eqn. (2.31) into the form
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(A;,,'n‘ A;m)_co:(nmka sn C)
=2

l
/Bm'n-'. f; s'/n/ﬁmf-l-swf)

= Z Z ”2 ) - (2.40)
P ” (Am,.q* m)COS(ﬁMf—Sh() v

2

| (BM" >S‘/n/}2mf--<‘b()
_.2

swartz (1956) discussed the application of these waves to trend analysis.

Communication theory may now be brought to bear on the analysis of

the two-dimensional waves forming j’B s

At this point we consider an important limitation in the traﬁsformed

frequency domain data.

2.3.1 Bandwidth

- A well-known f#ct from the study of light waves is that (Ditchburn,: ]:963’,)
:.Lt"is impossible to propagate 1light waves continuously. As a result
frequency broadening of an otherwise discrete spectral line occurs. This is
measured in terms of the bandwidth Af over which the amplitude density is
greater than ,2/77 times its maximum value. Af is related to the average

wave train length C’Azl (c is the velocity of light) by

.‘Af= //27741‘ (2.41)



PLANAR WAVES

a)

—— TS ey — o —

— —— e e e —

—— — —— o—

c)

FIGURE 3.
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where Atis the finite time that a wave train is received at a given point.
This is closely analogous to the -Uncertainty Principle of quantum mechanics.
We may consider this phenomenon as the uncertainty of a measured

frequency being directly related to the time over which it is recorded.

Similarly :Ln the‘spacial domain, it is only possible to measure the
gravity field 7 over a finite area or length. Uncertainty therefore
exists in the N discrete spacial frequencies M//VAZ assumed to

represent j in the frequency domain by eqn. (2.25).

As the Fourler Transform exactly transforms between the two domains

we find the exact.spectrum of

4277'4«;%//‘/4’5

yz(’x) = (_h € (2.42)

by equation (2.13).

As nothing is known ofz/x) beyond the area of measurement we put

ﬁ(x) = 0o for /"/ ) _/%4.35 (see egn. (2.14) and (2.24)

in order to investigate the uncertainty of the frequency ﬁ' = ’”/A/A-’C s

by finding the amplitude density spectrum G(u)

-
G (+) /N x il ) ol (2.43)

U sag e [l
Zﬁh//VAx

.2 C s:n[NA" u}/A»u. (2.44)

Y

]
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where A% = - 27T1’)/NAI

Thus 5(4») = Nd=x £, vhen dw =0
i.e. when 4 = -2’7’}4//\/436

= —2 NA% C,,, when Aﬂv: j&'

T : ‘
/ i.e. when £ :27’7"/71-5’[)

VA=

Hence the bandwidth |

Aag = -27_7/'/de (2.45)
and Af =
NAx
Thus each discrete frequency ‘fg making up the gravity field

contains information in the frequency range

n-x f <h+2
N Ax N 4=

and we say that the amplitude Ch predominantly represents the magnitude

of gravity potential field over this segment of F.

This limitation of using discrete .frequencies to represent what in
reaiit’y is a continuous spectrum should be especially noted when rapidly
varying filter functions sﬁch as the downward continuation filter is used.
As is seen from the limits of integration in equation (2.43) bandwidth is a
result of the uncertainty of the gravitational field intensity beyond the
survey limits. As will be seen in chapter 3 this uncertainty causes most

distortion near the edge of a survey.
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2.4 Vértical.Con;inuatipp and”Cbmmupica;ipn Theory

We now proceed to apply’communicatibn theory to the analysis of various:
methods of gravity field processing.

In pagticulgf”we consider vertical continuation as it has many
interesting applications'yet has been a difficult method to use judging
by the many different techniques so far proposed. Communication theory

offers an excellent medium by which to examine its intricacies.

2.4.1 Practicai'Applications of Vertical Conﬁinuation

The &ertiéal continuation method can be very uSeful in interpreting
gravity and mégpetic anomaly maps.':Basicaliy this method computes’ the

anomaly ‘at some height or depth from thefplane of measurement..

Downward continuation is able to directly calculate, at a known
depth, the surface-contrast density producing a given anomaly, from the

relationship:

N
G (%%)=ime %(574) .46

 where €Z?§O¢ is the surface contrast density at (x,y) and depth h; g(x,y,h)

is the anomaly at (x,y,h) and G is the gravitational cohstént.

The role of downward continuation in magnetic interpretation is seen

in the determination of structure from

55(95)‘% Z):/é%/? ,_\Z'/o,//g/aa)‘ ;/V(;L) A~ (.2.-1‘.7)
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assuming unit relative permeability where 5Z(E?QJ%’%) is the anomalous

scalar ﬁagnetic field potential due to the intensity of magnetization
I/q;ﬂa’) at ajﬁa') over the volume 7 , and

(e-=)*+ (-~ + (2-2)°f

can be derived (see AppendixA) the relationship that the undulating

Ya

magnetic basement surface 2 =‘jQégjﬂ of infinite depth and horizontal

~ extent is related to /é,f%f%37 the vertical anomalous field intensity at

(a}ﬁ,y) by
oA = Hy(4.84) ot g
#t9) = | [ (g% O

where the surface integral is over the surface S‘and 1; is the vertical

component of the intensity of magnetisation.

The surface integral can be approximated by a double summation, giving

the structure by a dirgct’cbmputation from a grid

o H, («d= i dy) 2.49
O e e s

z'4K/-~A/

where zﬂa64€,{are unit grid 1engths in the x and y.direction and N is a

value beyond which the truncation error is negligible.

Upward continuation may aléo be used to bring ground and airborne
vertical magnetic anomaly results to the ééme reference plane. However, as

will be seen later, this process can never be perfect.

2.4.2 Filter Response

As'Taﬂan and Sidorov- (1960) have pointed out the regional field,
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random errors and other unwanted influences on the geophysical data are
interference. Processing geophysical data mathematically is the elimination
of'interférencé gnd the ordering and collecting of the existing information.
In spite of the great diversity ofgmathematical_methods-used in processing
geophysical data, they are all basicallylfiltration‘methods that opefate

like electronic filters aﬁd have the object of detecting the anomaly (the
signal) in the background of more or less intense interference (the noise).
In these methods the infensity is not necessarily increased, in fact, it may
be.decreased. However; due to a certain decrease.in the unwanted information

(the noise), the anomaly to interference ratio is increased.

lThefprinciples of communication theory underlie these data processing
. methods. Operations on gepbhysical data are merely various types of space

filters.

. Dean (1958) proved the following rasults:

(1) If h is the distance of vertical continuation, taking the
positive direction as down, then the theoretical frequency response of the
upward and downward vertical continuation process is:

h,feRr ™
€~ (2.50)
where u and v are frequency parameters in the x and y direction such that
“w= 277'){ where f is the frequency of an anomaly in the cycles per unit

length. A= 41/[, where A is the wavelengthvo'f the anomaly in the

x-direction. An analogous relation can be derived for v.

‘Thus it can be seen that if thewanomalous field intensity varies .only
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in the x-direction then the frequency response of the vertical continuation

process is

(2) The frequency response of a general coefficient set é”,y) where
7

( is the coefficient at the point (MASr/nAf), assuming a uniform
) .
gi:'id. with station spacing in the x- and y-direction Ax and Aj respectively,

is
o

“ .
: > - -¢/a7ndx+'undy)
' €
o, 29 (2.51)
777200 £ =-00 :
In practice we would run over m and n only up to N where for /M/ and

/M/)/V the truncation error would be negligible.
Thus in the one dimensional case assuming (’n = (-'n the filter

response :would be

C, + ‘2 X(’” COSKZ”AI) . (2.52)

This is like a Fourier series which repeéts' itself with frequency 'uAZ

The period is

t

L N N — (2.53)
Ax Ax

Thus the maximum frequency at whieh the frequency response can be specified is

e e iaw 4%

& = 2rf = 2m = IT (2.54)

where the maximum frequency I/?A'Z follows directly from the sampling

theorems of communication theory (Goldman, 1955). The main effect of
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digitalizing data is to limit the high frequency response to one half
cycle per station spacing so that the frequency response of the coefficient
set need.only be considered up to 'I(:/QAX orﬂ=2dw. This makes vertical

continuation ‘possible.

Thus in the analyses of vertical continuation -coefficient sets which
follows, the coefficient sets frequency response will be compared. to the

theoretical response by examining the equality of

N
_e/a/“/' - CD + 2 Z Ch Cas(,u,,dx) (2.55)

” s

. 2.4.3. Error Control

In any analysis of an interpretation technique the influence of
errors must also be considered. Elkins (1952) and Fajklewicg (1965) both
discuss the problem, Elkins showing how errors can'giQe rise to erroneous
-dérivative maps while Fajklewicz shows how the error introduced by a

regional with extrema near local variations can cause problems.

Consider a set of random numbers 77 representing the noise component
4
of gravity intensity measurements. In accordance with definition the ;z % are
independent. 'We find that when transformed into the frequency domain the

random numbers produce random frequency amplitudes.

2y,
2.7,

‘From eqn. (2.26)

C =

»

[&1=

R 2

£

-1, — __L_
. /NZ

2), 2‘\
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Thus the C:ﬂ are merely linear combinations of the"zr1 and hence
must also be random. The spectrum of a set of random numbers is seen in
figure 4. This shows .that random errors (or noise) can be expected at
ali.frequencies with no systematic decrease in the higher or lower

frequencies.

Also in the special case where, for example, a tare occurs in a
gravitymeter, the resulting error could be represented by a step function

which is equivalent to the presence of all frequencies.

From its theoretical frequency response, downward vertical continuation
is seen to be unstable in its high frequencies. Physically downward
continuation is questionable because it appears that more detail is being

squeezed out of the data than it contains.

The fallacy of using a coefficient set which has the theoretical
response is seen by the effect on errors - the high frequency data would be
greatly magnified in relation to the low frequency data so that high

frequency noise would swamp low frequency information (or signal).

To overcome this problem distortion must be introduced into the
frequency response over the high frequency range. The distortion used is

smoothing which controls the high frequency errors.

In the analysis which follows, the various methods proposed in the
literature are discussed according to their filter response and error

control.
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2.5 Some Previous Vertical Continuation qufficient Sets Analysed

In the analysis of the downward continuation coefficient sets which
follows, the anomaly is assumed, for simplicity, to vary only in one
direction. For the various ring techniques the coefficients are projected
onto the x-axis. In this analysis it is assumed that anomalies have already
been put on a grid before interpretation begins. Fig: 5, 6 and 7 and
Tables I and II show the normalised filter responses of various coefficient

sets proposed in the literature.

As .discussed in Dampney (1964), Bullard and Cooper's (1948)
coefficient set is only one-dimensional and can, therefore, only be used

for interpreting profiles.

Bullard and Cooper in deriving the relationship between smoothed
— - |
gravity -72 fx) all’ x on the line at depth z andﬁ(x) use smoothing related

to the error function

207 2 79 e pi o
SRICEICE RS

= Z Vi ('ndx> )/mdx-oc)dx (2.56)
Thus ( = )(MAX-G%)A:C

»

They smooth by

7)< [0V e
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where /? is a smoothing parameter determining the severity of smoothing.

The function is simply related to the error function by

7= 2 [ st (/ =

o0

= D W g (ndx)

7 S ~00

\44 = i-L eﬂf%dx(nio}-@{[/lg—dx(nlg (2.58)

In Fig. 5 their.suggested set of coefficients is analysed using

where

.a station spacing of 0.125 units, over the range 0(‘“(77:

This normalised filter response was worked out for both average and
middle values in each range. Only variation of the order of 5% was noted

between the two responses.

The normalised filter responses in Fig. 5 and Table I were calculated
for various depths. Bullard and Cooper use a parameter704 in their
computation where h is the depth of continuation. As in both Fig. 5 and
Table I the parameter was unity, the filter response was worked out for
various depths-namely for h = 0.1; 0.125; 0.2; 0.5; 1; 2 and 10 units
corresponding to ﬁ = 100; 64; 25; 4; 1; 0.25; 0.01. Thus the

severity of smoothing is increased with depth satisfying error control.

Fig. 5 and Table I show the similarity in the variation of the

filter responses. In fact, it was calculated for other station spacings,
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TABLE 1

BULLARD AND COOPER'S (1948) COEFFICIENT SET FILTER RESPONSE!

2 S 0.5 0.2 - 0.125 0.1 radidns

1.0101 - . 1.0101 =~ 1.0101 . -1.0101 10101 - 1.0101  1.0101  0.0000
04932 ° 09245 . .1.0000  1.0401 . 1.0649  1.0711. 1.0733  0.0785
02417° ' 0.8491 ..0.9936 . 1.0748  1.1266  1.1400 -  1.1445  0.1571
01181 ° 07778 . 0984S  1.1076  1.1887  1.2099  1.2170  0.2356
00576 07106 09729  1.138¢  1.2509  1.2807  1.2908 .-  0.3142
'0.0280°  0.6471 09584 . 1.1663 . - 1.3122  1.3514  1.3647  0.3927
0.0135°  0.5872 09407 - 1.1906 - 1.3714  1.4207 14376  0.4712
0.0065 ~ 0.5308  09198: - 1.2109 -, 1.4280 = 1.4881  1.5087  0.5498
0.0031 ~ 04782  0.8964 12273 - 1.4818 - 1.5533 . 1.5779 - . 0.6283
0.0015 - 0.4295 . 0.8708.  1.2399  1.5328 *  1.6163  1.6451 ' 0.7069
0.0007 - 0.3844 . 0.8432°  1.2487  1.5805 .. 1.6764 17096  0.7854
0.0003 -0.3430 081370  1.2533.  1.6241  1.7328  1.7706  0.8639
0.0002 ' -0.3049° . .0.7825 . 1.2535.  1.6632  1.7850 - 1.8275  0.9425
0.0001 02702 = U.7501 ... 1.2498  1.6977  1.8328  1.8802 1.0210.
0.0000 02387 - 0.7169 1.2422  1.7277 . 1.8762 . 1.9285 " 1.0996
000000 02103 .. 0.6830 . 1.2309  1.7527  1.9147 19719 ' [1.178
100000  0.1846 . 0.6487 ' 1.2159 . 17727 "' 19479 20100  1.2566
0.0000  0.1616 ' 0.6142 ' - 1.1974 = 1.7873  1.9756  2.0427  1.3352
10.0000  0.1411 . 05799 ‘1.1758 _ 1.7970  1.9980  2.0698  1.4137
0.0000  0.1228 ~  0.5460.. 1.1515.- 1.8017 20151  2.0917  1.4923
0.0000 ' 0.1066  0.5128 - 1.1247-° 1.8017  2.0270 - 2.1081 - - 1.5708
0.0000  0.0923° 04803 . ..1.0956- 1.7969 - 20336 21192 . 1.6493
0.0000  0.0797 . 04487 1.0646  1.7878 20351 21249 . 1.7279
. 0.0000 - - 0.0687 04183  1.0321  1.7746 20320 21259 - 1.8064
©© 00000 ; 0.0591 . 03891 - 0998  1.7578 - 20248 21225  1.8850
0.0000 ' 0.0507 03613 - 09643  1.7379 20136 21149  1.9635
0.0000 -~ 0.0434 = 03348 09294  1.7150  1.9989  2.1036.  2.0420
0.0000  -0.0372 03098  0.8944  1.6897  1.9810  2.0889 - 2.1206
0.0000  0.0317-  0.2862  0.8595  1.6626  1.9607  2.0715 . 2.1991
0.0000 . 0.0271  0.2642  0.8251  1.6341 19385  2.0521 ° 2.2777
0.0000 = 00231 02436 07914  1.6046 ' 19148  2.0309 - 2.3562
0.0000  0.0197 02245  0.7584  1.5745  1.8899  2.0085  2.4347
0.0000 00167 02068 -0.7265  1)5442  1.8645  1.9854 . 2.5133
0.0000  0.0143 - -0.1904  0.6958  1.5142  1.8391  1.9622 _ 25918
0.0000 . 00121  0.1753  0.6664 .. 14848 - 1.8140  1.9393 26704
0.0000  0.0103  0.1615  0.6384  1.4563 - 1.7897° 19170  2.7489
0.0000  0.0088  0.1488 06118 14288  1.7663  1.8957 28274
0.0000  0.0075  0.1372  0.5866  1.4026  1.7442  1.8756  2.9060
0.0000  0.0064  0.1266  0.5628  1.3779  1.7235  1.8571  2.9845
0.0000  0.0055  0.1169  0.540S  1.3547  1.7046  1.8402  3.063!
00000 00047 01080 05194 1. Psso 1.6872  1.8251 ' 3.1416

! Each column is headed by the distance of vemcal continuation in units of station spacings
(Station spacing ='1.0 unit), or by “radians’ which is given in units of frequency. The unit of
the normalised filter response for-a given distance of vertical contmuauon and frequency: is.
dimensionless.
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. and displayed the same characteristics. However, at the smaller depths, the
coefficient set filter response does not match up with the theoretical

response over the lower frequencies.

The normalised filter response of Henderson's (1960) coefficient set,
is shown in Fig. 6 and Table II. Henderson's (1960) downw;rd continmation
can be seen to have smooth error control in relation to the filter
response increasing, as required with depth. Henderson's method is able

to most often satisfy error control and filter response requirements.

Fig. 7 shows the normalised filter response of Peters' (1949),
Henderson and Zeitz (1949) and the finite differences (Bullard and Cpoper,
1948) coefficient sets for the iédicated values of h, with unit station
spacing. The first 80 coefficients were used for the finite differences
method and the first 23 coefficients in the rapidly convérgent Henderson
and Zeitz method. All these filter responses appear unsatisfactory,
except the downward continuation finite differences coefficient set.
Upward continuation coefficient sets tend to oscillate and do not, in any

case, match the theoretical response, in the low-frequency range.

Upward vertical continuation is by contrast a very stable process.
Gravity and magnetic data have predominantly low frequencies even near
their source. Away from the source, upward continuation favours low
frequencies because it is a low mass filter (see eqn. (2.59))., The low
frequencies are essential for defining all gravity and magnetic anomalies.
The higher frequencies are relatively more important for the smaller

sharper anomalies and for defining details.
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Fig.lﬁ.HENDERSON’S (1960) downward continuation filter response.



TABLE 1l

HENDERSON'S (1960) COEFFICIENT SET FILTER RESPONSE? . : o N
—-5.0 —4.0 -3.0 -20 —1.0 1.0 20 - 3.0 4.0 5.0 radians
0.9019 0.9210 0.9404 09601  '0.9800: 1.0199 . 1.0398 1.0595 1.0790 1.0983 0.0000
1.0442 1.0318 1.0214 1.0128 1.0057 0.9953 0.9912 0.9874 0.9836 1 0.9794 0.0785
0.8704 0.9068 0.9371 . 0.9624 0.9832 1.0130 1.0221° 1.0275 1.0291 1.0269 0.1571
0.8972 0.9256 0.9495 0.9698 0.9866 1.0098 1.0158 1.0177 1.0154 1.0085 0.2356
1.0658 1.0232 1.0027 0.9957 0.9961 - 1.0043 © 1.0067 1.0050 0.9976" 0.9832 0.3142
0.9103 0.9276 0.9485 0.9685 0.9860 1.0091 1.0114 1.0040 - 0.9853 0.9542 0.3927
0.5527 0.7408 0.8577 0.9293 09732 " 1.0130 1.0111 0.9917 0.9538 0.8983 04712
—0.1267 0.4272 0.7226 0.8773 0.9581 1.0150 1.0040 0.9660 039027 0.8192 0.5498
—0.6403 0.2334 0.6544 0.8554 0.9528 1.0112 0.9858 - 0.9244 0.8333 0.7233 0.6283
1.3180 1.0650 0.9974 0.9638 0.9797 0.9971 0.9530 0.8666 0.7497 0.6193 0.7069
5.6484 2.6375 1.4962 1.1100 . . 1.0099 09819 - 0916l 0.8029 0.6626 0.5181 0.7854
10.5983 4.1176 1.8761 1.1840 1.0182 0.9698 0.8788 0.7376 0.5771 0.4250 0.8639
139335 - - 47438 1.8995 1.1391 - 0.9997 0.9592 0.8398 0.6711 0.4955 0.3424 0.9425
3.3950 1.1110 0.7090 0.7926 0.9271 09518 = 0.8007 0.6059 0.4203 0.2717 1.021
—8.9543 —2.5160. —0.3416 0.5154 - 0.8750 0.9366 0.7542 0.5393 0.3510 0.2120 1.100
41.3289 . 99167 2.4477 1.0549 0.9550 0.9047 0.6968 0.4712 0.2879 0.1625 1.178
113.263 24.8208 5.1729 1.4652 1.0012 08756 - 0.6423 0.4092 0.2341 0.1232 1.257
—2.5687 —4.2193 —1.6220 0.0740 . 0.7978 0.8627 0.5980 9.3562 0.1898 0.0928 1.33§
—284.999.  —63.9689 ' —13.4577 —1.9886 : . 0.5395 0.8472 0.5531 0.3075 0.1524 0.0692 1.414
—389.193 —83.6603 © —16.9052 —2.4989 0.4957 0.8151  0.5023 0.2614 0.1208 0.0510 1.492
—258.901 —60.4736 - —13.0092 —1.8937 0.5790 0.7762 = 0.4516 0.2202 0.0949 0.0373 1571
—69.0811 —29.6844 @ —8.3660 —1.2556 . 0.6581 0.7383 0.4047 0.1846 0.0741 0.0271 1.649
247.358 . 16.3920- —2.2226 < —0.5213 .. 0.7382 . 0.7009 . .0.3614 0.1540 0.0575 0.0195 1.728
-471.795 - 43.8706 0.5372 —0.2865 0.7680 0.6655. - 0.3219 0.1280 0.0445 0.0140 - 1.806
517.737  40.6837 —1.1287 - —0.5800 . 0.7555 '0.6315 0.2860 0.1095 0.0342 0.0100 1.88§
1019.64 , -83.8747 1.6006 - —0.4692 .- " 0.7764 0.5971 - 0.2529 0.0871 0.0261 0.0071 1.963
1272.97 82.0746 —1.6236 - —0.9501 0.7604 _ 0.5640 0.2230 0.0718 0.0199 0.0050 .2.042
—38.1514 —89.1489 —20.9338 —2.6827 - 0.6789 0.5325 . 0.1963 0.0584 0.0151 0.0035 2121
. —3629.34 —450.100 —53.3778 —5.0615 0.5864 0.5017 0.1723 0.0476 0.0114 0.0025 2.199
—14042.0 —1302.00 - —116.400 . —8.9480 0.4498 04722 0.1509 0.0387 0.0086 ° 0.0017 2278
—20779.4 —1664.00 —128.600 —8.5916 - - 0.5605 0.4412 0.1314 0.0313 0.0064 0.0012 - 2.356
16439.4 1277.12 88.8265 - -5.6824° 1.2921 0.4070 0.1133 0.0252 0.0048 0.0008 2438
81484.4 . 5697.48 369.627 - 21,5187 1.9954 0.37%9 - 0.0977 0.0202 0.0036 0.0006 ] K]
64480.0 - 4431.96 . 282.778 16.3556 1.8107 0.3522 0.0849 0.0162 0.0027 0.0004 2.592
—29810.7 —1150.00 —26.2928 1.2789 1.3123 0.3309 0.0737 0.0130 0.0020 0.0003 2.670
—37579.0 —1566.00 —45.6933 0.6764 1.3634 0.3078 - 0.0635 0.0104 0.0015 0.0002 2,749
33939.6 - 1819.16 106.070 6.9501 1.6295 0.2852 0.0546 0.0083 0.0011 0.0001 2.827
. 43212.8 1906.43 97.8603 - 6.4648 1.6924 -~ 0.2647 0.0469 0.0066 0.0008 0.0001 2.906 -
<. —12578.8: —807.300 —19.3035 .. 2.3692 -1.6786. . 0.2456 0.0403 0.0052 0.0006 0.0001 2.985
—241570 . —9903.00 —349.300 - - —7.7623 = 15538 - 0.2280 0.0345 0.0041 0.0004 0.0000 3.063
. ~—604221 —22410.0 —739.300 —17.8794 - 1.4840 0.2112 0.0296 0.0033 0.0003 0.0000 142

! Each column is headed by the distance of vertical continuation in units of station spacings (Static;n sp&éing -~ 1.0 unit), or by “ru&ié}\s".;\'l;ich is
given in units of frequency. The unit of the normalised filter response for a given distance of vertical continuation and frequency is dimensionless.
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Upward vertical cbntinuation smooths down the higper frequencies,
reducing information in this range. Low-frequency noise in a perfect
response coefficient set swamps high frequency information. Generally
this does notAmattey, so that error control is not nearly as important

in this process.

The normalised filter response of Henderson's (1960) coefficient
sets for various negative values of h‘with unit station spacing are shown
in Table II. The mismatch in the high frequencies is at once noticeable,
but the filter response decreases correctly in phe important low-frequency
range ppesefving the‘regional information. Howéver, Henderson's'method
would %ilow:high—f;equeﬁcy informét%qn to béfvast1y accentuated bgyond their
theoretical aﬁplification, produciné a aerived anomaly map contaiﬁing all
frequencies and thus looking corregt; but in actual fact not possessing

the correct relationship to its original data.

The uﬁward contipyatiqn process can therefore be only really useful
as' a numericaquilter, As é;rofs oécurring in magﬁetgmeters and gravity-
meters can not be made frequency dependent, it.is qot yet pqssihle to
matéh:up ground and airborne gﬁomaly résults thrbugh'all the fﬁgggancies

simui;apeously in the spacial domain.

Henderson's coefficient set for continuing upwards a theoretical
énomqu of a particular body, which, by definition, has no error, would

be highly unsatisfactory.

Strakhov (e.g. 1961, 1962a, 1962b, 1963a, 1963b, 1963c, 1964) and
Strakhov and Lapina (1962 and 1963) have written many articles on potential
field analysis including various methods and analysié_of second-derivative

and vertical continuation methods. The articles aré generally intensely
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mathematical using many unfamiliar inequalities and equalities of harmonic

analysis, though their truth is undoubted.

Strakhov's approach in'his articles is fundamentally different as he
uses the Fourier Transform to translate his information into the frequency
domain. This requires interpolation between his data points and he thus
derives optimum formula to carry out this process. However, it is felt here
that using the Fourier Transform is unnecessarily complicated because the

assumption that there are no frequencies in the field greater than

|

' — ' 2.59
max 2 Ax ¢ )

allows,thé'direct usé of coefficient sets derived by expanding eqn. (2.55)
to the‘fwo-digensional case. In fact at some point in the development of
the Fg#;ier Tgansfprm approach, a series of some sért has to be
substitqged.f;r an'integfal s0 th;; the discrete points can be used.

This maﬁlas wellibe_done immediately.

The reader is especially referred to his article, "The derivation of
opﬁimum numerical methods for the rramsformation of potential fields,"
(Strakhov, 1963c) as an excellent list of references, especially of many

Russian authors, is included.

Elkiﬁs (1952) showed the effect of taking the second derivative,
using his own coefficient sets, of a grid of random normally distributed
errors. The appearance of the anomalies he gets can be explained by

the filter response unequally affecting all the frequencies in the data.

Danes and Ondrey (1962) have analyseq second derivative methods and



compared them to the theoretical second derivative filter response
v

of in a similar fashion to the preceding vertical continuation

analysis. They do not consider the effect of errors in this comparison ,

however. As it turns out (see later), there is no need to consider error

control because the theoretical frequency response of second derivative

methods does not increase -sufficiently.
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3. DERIVATION OF COEFFICIENT SETS

Assuming that the measurements of the gravitational field intensity
are such that the frequencies present beyond the cut-off frequency are
negligible then the coefficient sets which follow, perfectly carry out the

analytical process they are supposed to.

The purpose of deriving these coefficient sets is to allow a

closer analysis of their effect on data and to demonstrate their limitatioms.:

3.1 Noise Level
Error control must first be satisfied in any process by cutting
out the high-frequency data with frequency greater than '/a,,/ beyond which

..-the errors are greater than the lowest-frequency information in the data.

The noise to signal (information) ratio in the data, assumed to be on

a grid, can be taken as being the ratio

standard deviation of anomaly

standard deviation of error

The error or noise in gravity data may be estimated from the loop
misclosures. However in calculating the Bouguer Anomaly further errors

are introduced into the data by the following éssumptions.
(a) The Freé Air Correction increases linearly with height above
the refereénce spheroid (the International Ellipsoid).

(b) In calculating the Bouguer Correction the earth is assumed to be

flat.
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The ervors introduced by these assumptions are systematic and in
particular for the Derby Survey are of the order of 10-3 mgal. between

stations.

The main source of error however is the.topographic correction. Even
an observe: of normal mass has a gravitational attraction of the order of
10-2 mgal. which affects the gravitymeter when he stoops over to read it.
‘This emphasizes the difficulty of allowing ‘for. the small but unfortunately
important local topographic variationef Hammer's (1943) terrain correction
tables for instance ignore the region within eight feet of the meter as

being too variable to be accounted for,

Gravitymeter drift -introduces errors. Tides (lunar and solar) cause
regular variations in the gravity fileld and may be allowed for, but atmos~
pheric distﬁfbgnégs moving great masses of air can, as Romanyuk (1959)
pointe out, result in gravity field fluctuations of a similar magnitude

! of a mgal, In fact, the onset of a

and hence errors of fhe order of 10~
storm will often cause erratic drift in the gravitymeter due to this latter
effect. All these influences contribute to the noise level. In the
Derby-Winnaleah survey discussed in chapter 6 for example we assumed,

giving consideration to the highly variable topography,a noise level of

the order of 0.25 mgal.

Gravity surveys are usually composed of a number of loops around
each of which a series of measurements are taken. Generally misclosures
occur, allowing an estimate of the errors due to drift and other time
dependent effects tq,be made atféach point.‘;Asqgm;qg-topography and the
. co-ordinates of each point of measurement t;‘hqvéfSeen exactly defined we

can take the standard deviation of these errors asthe noise level. The
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standard deviation of the anomaly is taken as the signal level. This ratio
is taken without any pretence of mathematical rigour, but is sufficiently

representative for practical purposes.

Thus if the distance of downward continuation is h then the

frequency above 4€, must be filtered out where

£ = (3.1)

because above this value of €€, the amplification of the errors will be

greater than the amplification of the zero frequency information.

Using this fact, the maximum anomaly size that can be interpreted
from downward continued data for a signal to noise ratio of 200 is shown

in fig. 8.

3.2 Smoothing

A numerical filter is therefore required which will cut out these
high frequencies. Smoothing by an erf function as used by Bullard and
' Cooper (1948) would be suitable, but, for simpiicity, a two-dimensional

symmetrical step function is used in the frequency domain.

The coefficient set which has the required filter response is

calcualted. Put

2 =  _ifumdxrnd
> > G © ( v y:__‘)]((uy) -

P2 =O0 e
whereifgzgﬂf) is a symmetric function with respect of u and v about O.

Suppose A" -‘Ay-'/ then
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G —L—Q ff/«,v)e( Dot
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In .the range 0 to « 77 put ==

T . ~TT
) = o - VM), «,1)0/1}
L C L, [ete O/zm( )-f o)

" e

Hone)= F %)
Comym = }%[TZ?(“V)M@’”) | (3.3)

as j[(a,'v—) ';-7[(- al'z}) Thus the coefficient set with the required
filter response is found.

The two dimensional symmetric step function is given by

f(ov)=1

~Y, \('u \< ’uo)‘ -, «”{aa ~or = 0 otherwise
Therefore
G, =L (2 “ ol
i /:;-,fo Ga-ﬂ(u'm)L cod (o) %
= —% X _.L..S/*')/“ *”) S‘/h/“,”) (3.4)
1 Yok o)

Note that (m/n’ %_” <o, 7 - o3
that is ('M‘h is eight-fold symmetric,

{
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Example: Suppose for a survey we find that x = 112, which means that
the errors are of thé-o:der'of 0.1 mgal and the variations of the anomaly

are about 11 mgal. We wish to continue this data downwards to a distance

of five units

et o 0

- (3.5)

Table III gives the right-hand quadrant of this coefficient set up to

n =10 and m = 10.

Smoothing is thus carried out on the data and then with no high
frequencies present a downward continuation coefficient set can how be

applied to the data.

3.3 Vertical Continuation

A vertical continuation coefficient set is found similarly to the

. smoothing coefficient set

Comm = __[f hf‘f;"‘(”’“)”‘ﬁ”)q/“"/" (3.6)

,



TABLE 111

SMOOTHING COEFFICIENT SET

m=4

15.78620  —5.84827 2.18630 —1.09070

0.16500 —0.13119

n m=0 m=]  m=2 m=3 m=35 m=6 m=7 m=8 m=29 m= 10

10 0.00000 0.00000 -  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000. 0.00000 0.00000
9 . 0.01768 ©  0.01126  0.00000 —0.00375 - 0.00000 0.00225  0.00000 —0.00161 " 0.00000 0.00125  0.00000

8 (.00000 0.00000  0.00000 0.00000  0.00000 0.00000 0.00000-  0.00000 0.00000  0.00000 . 0.00000
7 —0.02274 —0.01447  0.00000 0.00482  0.00000 —0.00289  0.00000 0.00201  0.00000 —0.00161  0.00000

"6 0.00000 0.00000 - 0.00000 0.00000 - 0.00000  0.00000 0.00000  0.00000  0.00000 0.00000  0.00000

5  '0.03183. 0.02026 0.00000 —0.00675  0.00000-. . 0.00405  0.00000 —0.00289  0.00000  0.00225  0.00000
4 0.00000  0.00000 -~ 0.00000 0.00000 ©  0.00000  0.00000  0.00000 0.00000  0.00000 ~  0.00000  0.00000
3 —0.05305  —0.03377 . 0.00000 001126  0.00000 —0.0067S  0.00000 0.00482  0.00000 —0.00375 . 0.00000
2 0.00000 0.00000 ~ 0.00000 0.00000  0.00000 " . 0.00000  0.00000 0.00000  0.00000 0.00000  0.00000
1 0.15916 0.10132  0.00000 ~ —0.03377 ° 0.00000 0.02026  0.00000 —0.01447  0.00000 0.01126  0.00000
0 0.25000 0.15916  0.00000 —0.05305 0.00000  "0.03183  0.00000 —0.02274  0.00000 0.01768  0.00000
TABLE IV

' DOWNWARD CONTINUATION COEFFICIENT SET

n m=0  m=1 m=2 m=3 m=4 m=235 m==6 m=7 m=28 m=29 m=10
10 0.10615 —0.02190 0.00714 —0.00361 ..0.00188 —0.00141 0.00081 . —0.00076 0.00044  —0.00047 0.00027 -
9 —0.13119 0.02660 —0.00918 0.00409 “—0.00263 .. 0.00146 —0.00124 0.00072  —0.00072 0.00042  —0.00047
8 016500 —0.03416  0.01107 —0.00565  0.00290 —0.00221  0.00126 —0.00117 0.00069 —0.00072 0.00044
7 —0.21547" 004366 —0.01518 - 0.00669 —0.00436 0.00239 —0.00204 - 0.00120 —0.00117 0.00072 —0.00076
6 0.29011 —0.06043 - 0.01943 —0.01005 0.00510  —0.00389 0.00224  —0.00204 0.00126 —0.00124 0.00081
5 —0.41562 0.08427 ' —0.02962 0.01287 —0.00846 0.00467 —0.00389 0.00239  —0.00221 0.00146 —0.00141
4 0.63311  —0.13375 0.04254  —0.02226 0.01131 - .--0.00846 0.00510  —0.00436 0.00290  —0.00263 0.00188
3 —1.09070 022317 —0.07954 003454 —002226 = 0.01287 —0.01005 0.00669 —0.00565 ~ 0.00409 —0.00361
2 218630 —0.48546 0.15438 —0.07954 - 0.04254  —0.02962 0.01943 —0.01518  0.01107 —0.00918 0.00714
] —5.84827 1.35202 —0.48546 0.22317 _ —0.13375 0.08427 —0.06043 0.04366 —0.03416 0.02660 —0.02190
0 0.63311 —0.41562 0.29011  —0.21547 0.10615




- 36 -

(»’,,’7 has been calculated by Takeuchi and Saito (1964) for h = 1 which
corresponds to a downward continuation of one station spacing. They
interpret (m,m following Tsuboi and Tomoda (1958) as giving the
surface mass density on square grid-points over a horizontal underground
surface, depth D below the earth's surface, from a gravity field with

unit gravity at the origin and zero gravity everywhere else on the earth's

surface.

Takeuchi and Saito transform equation (3.6) to the form

Cw,/'n = lﬁ/é/‘]’{(p)dg (3.7)

using polar co-ordinates and then calculate 4” 4, using a Simpson
/

approximation.

The right-hand upper quadrant of this coefficient set is given in

Table 1IV.
The coefficient set for h = -1 was computed using a double Simpson
approximation.
N
B 08 /) cos fono ) du ot
m 22, OOS( ) /n )
m 7
2 2 I
R Z //’ 4 b fe 2
7 0 Aro poi 41 (05(”7‘»")(,05%71«}&/«&/1)— (3.8)

where f/ S0 when J = 0

= Eﬁ—i) otherwise.
K 2

/0-2: 7/~ when j:M

' /
= g(f ""_5‘) otherwise.
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:? /= © when ;é::c;

- ,_.(é-_{) otherwise.
~ 2
? 2=TT vhen 'é-'-’ %

= ”_71-_0 +il) otherwise.

We thus have to calculate the function shown in fig. 9.

As is seen the use of the Simpson approximation for each double

integral in the summation over j and k is ideal.

In accordance with Forsythe (1964), the first integration with
respect to v had to be more accurate than the second with respect tq u.
This was done by making the sensitivity of the first integration ten times

smaller than the second integration.

Thus to calculate é;z*?)é%*96%¢o integrations had to be made. To

calculgte_ all the square matrix of C:”ﬁﬁ from (o) o to (M,M required

. M (M"' 1)(M ‘/"-2 )/3M '7"5/\ integrations (3.9)
/12

= 3850 integrations for M = 10

As the program required 3600 seconds to calculate the matrix, we

find that each integration requires 1 second.

The coefficient set is shown in Table V.

Second derivative

As Dean (1958) has shown the second differential theoretical filter
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TABIE V

[
o

O H PN W PH U o N ® W

mz 0

0.00007
0,00032
0,00017
0,00062
0,00048
0,00153
0,00176
0,00590
0.,0I242
0.05965
0,I3718

m=-1

0,00013
0,00024
0,00026
0.00049
0,00061I
0,00123
0,00193
0,00462
0,0I036
0,03260
0.05965

m=2

0,000I5

-0,00020

0.00028
0.00040
0.0006T
0.00097
0.00166
0.00303
0.00590
0,01036
0.01242

mz3

0,00014
0,000I8
0,00025
0,00035
0,0005I
0,00077
0,00120
0,00193
0,00303
0,00462

.0,00590

Upward Continuation Coefficient Set

ms &4

0,00013
0,00016
0,00022
0,00030

.0,00041

0,00058
0,00084
0,00I20
0,00I66
0.00193
0,00176

m= 5

0,000IX
0.000I4
0,00019
0.00025
0.00033
0.00044
0.00058
0,00077
0,00097
0,00123
0,001I53

m=6

.0,00010
-0,00012

0,00016
0.00020
0,00026
0,00033
0,00041
0,0005I
0,0006I
0,00063
0,00048

mz7

0,00009

.0,0001I

0,00013
0.00016
0.00020
0,00025

.0,00030

0.00035
0,00040
0.00049
0,00062

mzs8

0,00008
0,00009
0,0001I
0,00013
0,000I6
0,00019
0,00022
0,00025
0.00028
0,00026
0,00017

m=9

0,00006
0,00008
0,00009
0,000IT
0,00012
0,00014
0,.00016
0,00018
0,00020
0,00024
0,00032

m =10
0,00006

-0,00006

0,00008
0.00009
0.000I0
0.000I1
0.00013
0.000I4
0.00015

-0,00013

0,00007
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response is ¢¢2f1r2 . The highest frequency data is therefore amplified
by a factor of QTT'?' . In all practical cases this wvalue would be

far below the signal to noise ratio and no account need*be taken of

~

error control, other than realising unequal amplification of errors.

Therefofe a coefficient set having the perfect filter response

would be best for this process.

——'/0/4} COS/%‘!} ’U’f60$fnu)¥u

Co:” = _15_/777./»&97“ ’0‘2) aas/n-u) dvof
. 777 Jo %

= _j§2¢ é:2>s‘(?4 7TZ:)
4739

O (/ 2 # C$i>
= :277'2/.3

4

7, 7"

C

(3.10)
0,0

The upper quadrant of this coefficient set is found from Table VI.



TABLE VI

SECOND DERIVATIVE COEFFICIENT SET

n Co-,'nv"" Cn,o
10 0.02000
9 ~0.02469
8 | 0.03125
7 -0.04082
6 0.05556
5 ~0.08000
4 - 0.12500
3 . ' =0.22222
2 S 0.50000
1 ' -2.00000

0 ' 6.57972
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3.3.1 Discussion of vertical continuation

From eqn. (3.6)

(o] = g [T o) et

< ("[A) 02/__ Cosf/m«) ehj'/cno‘: mvje 1’c/v/(:%.n)
P (/{A(O) 72 /o o ,

> //'ﬁ/’)o CosS/m )€ a/aco:nz)e 6/7) (3.12)
(//{h(o)///) //)

- _—/ “cosfme) o = b (T ") 1) G

T T (R hE)
(hpo)| H2 [0 ) [T 4 ]
/ //> ("(O)/T’Ta Z_f(m 244°) J (n&+47) l//
4)0 -7 //)WM hT///} <L) )H?
)<(/A(q))/ r* me"‘MQ//% 22 h?) /

G 1 Wo// A"‘{ /m/mleh"//) S0 ]

hic 2 2 2 2
. /,,)0 </ ) %/v}/ﬁ + 4
rrA
, < = (m +/z )/% #A)
/C'»»/»;/ VS ¥ 230
it h< O TR (24 83) (2 47)
< 42 e - h

/ M”/ 7 (m ,4,53)/,, +42)

) i (3.15)
R W=vor s '
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Table VII shows ‘how this werks with h = 1 and h=--1.

- From these inequalities we can see that the farther the gravity
field is continued up or down the larger are the number of data points

required.

Physically this can be appreciated in the following way. The
farther: wp- an observer rises above the land surface, the larger is the

:volume of anomalous masses that can contribute significantly to this-

v

gravity field. In other words, while the intensity decreases with height,
it is{affecﬁed by a larger number of masses which now make smaller vertical

angles with the point of observation.

Similarly the deeper a planar surface. density source is, the

[

greater the area over which gravity is affected on the surface. Thus the

source

/

G (%) e I 1%

requires'an:incréésing number pfAdaté points on the surfacé to specify it as
the depth increases.
- In other words the farther information is translated in distance
above or below a finite number of data points the poorer the transmission.
While this method of Vertical Continuation is exact, it is never
possible to fulfill the condition thatJ?(%j‘f) is known over an infinite
area. Thus in any method of Vertical Continuation or Derivative Method the
continuation of the data-mear ithe edge of the fiﬁitefplane becomes poorer and

poorer as h increases positively or negatively.



Lower
bound

0.4698
0.1175
0.0138
0.0181
0.0017
0.0094
0.0028
0.0361
0.0181
0.0036
0.0143
0.0057
0.0003
0.0009
0.0003

O WO W 00 0 0 N N O Bt W NDO

=
o
o UL W NN W RHE O NN O W OO

=
(=)

2.3495

h=1
True
value
15.7862
2,1863
0.2232
0.0223
0.0296
0.0022

0.0152

0.0044
0.1650
0.0342
0.0057
0.0266
0.0092
0.0004
0.0014
0.0004

Upper
bound
54.5100
10.9000
2.7250
0.3200
0.4190
0.0390
0.2180
0.0640
0.8390
0.4200
0.0840
0.3320
0.1330
0.0080
0.0210
0.0080

Lower
bound
0.1100
*
0.0203
*
0.0051
0.0006
0.0008
0.0001
0.0004
0.0001
0.0016"
*
0.0007

1 0.0002

0.0006"
0.0002
0.0000
0.0000
0.0000

h =-1
True

value

0.1372
0.0124
0.0046
0.0017
0.0010
0.0003
0.0004
0.0003
0.0002
0.0003
0.0003
0.0002
0.0002
0.0001
0.0001
0.0001

Upper
bound
2.3495
0.4698
0.1175

0.0138 .

0.0181

0.0017

0.0094
0.0028
0.0361
0.0181
0.0036
0.0143
0.0057
0.0003
0.0009
0.0003

*
As Cm is not monotonic the approximation in equation (3J53 is

b

‘questionable and hence it breaks down for these cases.

C is correct to 4 places.

providing m and n are both large for h = -1,

TABLE VII

Note that

The lower bound however is correct

Selected coefficients illustrating equation (3./5).
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This limitation we call the "edge effect" is an important
restriction to the ‘continuation of data and together with bandwidth shows
why Bhattacharyya's (1965) theoretical continuation of a potential field

due to asphere breaks down near the sphere.

It is only possible to improve continuation:by increasing the
area over which the measurements are made, ensuring that the information

which escapes in frequencies beyond the cut-off is negligible.
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4, THE EQUIVALENT SOURCE<IECHMIGUE

4.1 Review

As has been shown in the preceding chapters, the interpretation
methods of vertical continuation and derivatives of potential fields

are more accurately expressed in the frequency than the spacial domain.

In fac¢t, it would be possible to exactly éxpress these methods

if the following three conditions were true:

(a) the data is known on a regular rectangular gridzﬁ X by zjy

which are the station spacings in the x and y directions.
(b) the data is infinite in extent over a horizontal plane.

(c) the data is sufficiently close spaced that no part of the
potential field amplitude spectrum exists for frequencies

greafer'than the cut-off frequency (see equation 2.54).

The first condition (a) is discussed in a following section.
The remaining two conditions are necessary only to ensure that the
spectrum is completely and continuously measured. Condition (b)
implies from eqn. (2.25) tﬁat the infinite number of amplitudes Cﬁ

as N —>=o measure the spectrum continuously over the range
,(;(:277'91,//\/425)' ——_/:/_ \< ’h\< _/\_{
2 el
Clearly this condition can never be satisfied, but provided we
limit the distance of vertical continuation and the order of the
derivative, we can assume the data has infinite extent - especially

some distance in from-the limits of the survey area as is seen from

tables IV, V and VI.
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It is not generally appreciated by many geophysicists that the
Bouguer Anomaly, as described by Heiskanén and Vening- Meinesz (1956), should
not be taken as being projectgd onto the geoid. This has been emphasized
by Naudy and Newmann (1965) and Grant and Elsaharty (1962). The former
proposed that

"It is sufficient to consider the Bouguer anomaly, as the

difference of two quantities, the first is the measurement

at a station S amended by instrument corrections (such as

drift); the second is the value of the gravitational field

at the same point S of a model obtained by superimposing

the ellipsoid and the topography. at constant density.

(Comment: There is no need to assume such a simple model.)

"The significance of the Bouguer anomaly is thus ridden of
ambiguity - it is the gravitational influence of'the
difference which exists between the real earth and the model.
The point of application is at the station S and not the

ellipsoid."
Figure 10 demonstrates the truth of this statément.

It is therefore necessary to vertically continue the individual
potential field measurements at S from the rough topography onto a flat
horizontal plane. This problem has received very little attention in the
literature, except Strakhov, (965) who applies his approach of using the

Fourier Transform to manipulate discrete gravity information. As has been

discussed in chapter 2 this approach is difficuit to apply to gravity data.



Plateau

River )
Valley ®L— Anomalous gravitating
_/\ ] body M
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Bouguer Anomaly Contours in mgal due to M

FIGURE 10.
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The equivalent source technique is therefore put forward as a

method to vertically project data onto a plane.

By contrast, a great deal of attention has been focused onto the
problem of projecting potential field information horizontally along a |
plane using interpolation. Measurementsgarg'usually made at convenient
locations on the topography, so that if we assume it is flat, interpolation

is required to project the:information at these points onto a regular grid.

The mathematics of t%o-dimentional interpolation quickly becomes
tedious when extending any of the conventional one-dimensional methods

(for example Lagrange's Method, Neville's Method (Stafford, 1965)).

Kunz k1957) points out ?ﬁét.a difficulty in bivariate and multi-
variate intérpolation is that it;h;s received énly a‘vefy small amount of
attention compared to that expound?d on}qnivariatg interpolation.
"Conseéuently one finds considéfabie Arbitrariness, complexity of statement

and notation, and even confusion in the various treatments of the subject.

Saltzer, particularly (1948), ér;nt (1957), Ho (1955) and
Southard (1956), Benglsson and Norbeck (;964) have étudied bivariate
interpolation, all 1nvpl§ing po;ynbmial techniqﬁes. The extensive use of
polynpmial techﬁiéues in mathéﬁatical‘interpolation has been carried over
to the géophysical literature. Brown (1955 and 1956) has given the most
comprehensive apﬁlicatiqn of polynomials to ;ﬁterpolation, vertical
continuétiﬁn and Qeriva;iVes of»thg poténtial'field. His method is complete
in that he also estimates ﬁhg errors involved in his least-polynomials method.

Essentially Brown fits a polynomial curve éo ordertn-to k data points where

C
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and then finds the standard deviation of -the data points from the curve,

: thereby finding the expected errors. The method does have the advantage of
minimizing random errors-in the data. Other authors such as Jones (1956) ,
Oldham and Sulterland (1955), Zilahi-Sebees. (1964) and Grant and Elsaharty

(1962) have used polynomial methods in processing potential field data.

As Kunz (1957) points out that probably the reason the gredtest
attention in univariate interpolation.has been given to parabolic.
interpolation (the approximation of a function by a polynomial) is that
polynomials are so nicely expressed in terms of elementary operations and
very convenient to hendle by.differEncinggtechniques, ‘This samekcomment,
applies to bivariete interpolation, but this extension into the second dim-
ension causes,ﬁroblemsvto arise. In particular, it becomes difficult to
use polynomials of sufficient order, N, to even remotely represent the
information contained over the entire erray of data. If there are N

measurements in a survey a polynomial

f' a.\ “arf
(:t:j) T/'x yJ (4.1)
¢~ O\/ =
of order N is required to represent and interpolate this data. Supposing
each measurement to have an error of ljﬁg , then the resulting coefficient

a,, will have an error of Nj¢5 if standard direct techniques are used to

ij
solve the resulting N by N system of equations by determinants.

-

Furthermore, there are numerical errors involved in representing
the data points by a polynomial, the greatest of which is the Kunz Class A
R
error - the magnitude.of the remainder term in replacing the tabulated function

f(x) by an interpolating polynomial Pﬁ(x) . This remainder term involves
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the (m + 1)th derivative of f(x). Thus "little can be said about the

remainder term unless one specifies something about the function" Kunz (1957).

Danes (1961) has shown that the filter which represents the (m + l)th

derivative of the potential field has a response
wa+/
a 2) 2
(a ‘/‘/U') (4.2)

As this amplification of the various frequencies increases as
. . th .
m increases, there is no tendency for the (m + 1) derivative and hence
the remainder term to become negligible. Generally, a high Kunz Class A

error must be expected for pérabolic interpolation of potential field data.

This leads us to suspect that while potential fields are very

well behaved in the frequency domain, polynomials are not by comparison.

Assume a 2-D potential field on a particular line represented

by a polynomial

N
j(%): ; /47796’” ; —L {2 € L (4.3)

The frequencies present in g(x) can be found by taking the

Fourier Transform over — . S o £ L ds j (‘x): o, /x/)L

. -

NN A '
. C;:{Cﬂf) = [f; ;g?;; l{::/zl1'2:14{2~1max:cyéz

where Cl is the Normalization factor.

Consider the zeroth, first and second terms.
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G () = //[ -m/
+A[xﬁ-m] M[w/

Hence by induction

G/M) A §/r)(al) + /4/5/;«;/14 £)

—’.'2/
’
o + Ao sinful)
, e
where //{:)./4,/,-'- s --v—/4; are linear combinations of the

/40) /4, .. /4” in equation (4.3).
4, 4 :
6-(4,(,) = S‘//’)/MA)[ o —/—/4‘ -+~ .. +_/ﬁ/” (4.4)
e o= e

as ¢« becomes large g/u) becomes small as

6(+) = O(4)

which in comparison with eqn. (2.12) is not sufficiently fast for

potential fields.

An interpolation method is thus sought which will match potential

field behaviour in the frequéncy domain.

For instance the form

7/;();\/): ZZ ( *etﬁme % (4.6)

is a direct measure of the spectrum of j?(éaz? as has already been shown in

Chapter 2, and must therefore have its frequency domaim characteristics.
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We find that

o = P75 7) €77 Tty

( /ﬁ? is the normalization constant).

Bhattacharyya (1965) uses this approach as discussed in chapter 2
to transform his data into the frequency domain. He.initially interpolates
his data onto a grid from the contours drawn around his originai points of
measurement. .By using hand contours his method is:subject to personal

bias. However as he deals with aero-magnetic anomalies the assumption of

measurements being on a flat plane is reasonable.

The problem of "aliasing", however, arises in the
determination of Cm by exact application of equation (4.7). Moreover
bl

the limiting assumption of flat topography for gravity measurements is

often not justifiable.

It is therefore desirable that a technique be developed which
can compute the Bouguer Anomalies on a regular gridded horizontal plane
from measurements at unsystematically scattered points' on rough topography,
yet stand up to analysis in the frequency domain. The equivalent source
technique described in the foilowing sections is put forward as fulfilling

these requirements.

4.2 Equivalent Source Technique

4.2.1 First Form

We first assume that the potential field values are on a regular

grid on non-planar topography.



e
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This field can be caused by an infinite variety of surface
density distributions which give rise to the ambiguity in geophysical

interpretation. Using the relationship

2 } e (&, 0) (2-7) Aol R e
‘7‘((/,%2) -GLL ZFZ""QQ'*/j'F)a’L /z~9r)2j'3/a -

we find the surface densitny'(5&Z) on any plane z = h, given the set

of values g(x,y,z) at the points (x,y,z). This was discussed in

Dampney (1964).

. Thus we may represent a particular gravity field by the CC; (x,y) -

which we call the Equivalent Source.

The following theorem and proof is given to show that the depth

of the source is immaterial.

Theorem. The gravitational field intensity measurements on a regularly
gridded infinite horizontal plane can be exactly represented by an
equivalent surface density source on a lower infinite horizontal plane

at any depth assuming no frequencies are present beyond the cut-off frequency.

Proof.

We prove this by finding g(x,y,hz) from two different sources on
planes B and C in f%g. 11 which both synthesize the field g(x,y,0) on plane

A, If g(x,y,hz):B the same in both cases the theorem is proved.

For simplicity consider the problem in two dimensions. The gravity

'g(x,;)) is related to the line density ;\(é_(’/))on plane C by
3

° Al b)) dx
j(ﬁcj /7) S é(b - Az)[% Z('(,C/_q)aj/é_i)? (4.9)




plane A JQ( DC/ O)

1

" h
{72
plane B Gﬂé(,/Z)

A&, /7,) ”7}\/7 i
e

\P/

plane C

D, 5

Both sources /\(é‘,/',) and ;\(OC,/I_,,) synthesize
the field originally measured a557(§;0) ‘in precisely
the same way in theory. In practice, imperfections in
the data place necessary restrictions on the depth of
the equivalent source to reduce error distortions.

FIGURE 11.
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using "k" instead of "G" to represent the gravitational constant to

avoid confusion.

Take Fourier Transforms ; A= o

[o 3G o e
= 2 é[“ A(x 4,) OZO_Z}’A‘%:):‘; {{j{c

= .2)4/06;1(%4)_)4‘{%:/0( ’“-4 e‘{qxa/)(

Loo "'[)(2»‘44'*’)?

where X= x -<¢

. 6‘(4() 0> = Qﬂé'i/fm}f)&)e'é/;‘/ (4.10)

where &/‘0(/ 0) and L/ﬁ/,é) are the Fourier Transforms of ‘7(9(/ Q) and
A/%Az) respectively.

Now as 6:/’“) 0)—‘0 for -u) 77

LAY o s DT

Also for every value-of <t that G =0, L = 0.

Thus the equivalent source only contains the freguencies present in the

gravity field.

Hence j(?(/ O) is approximated to as being made up of the discrete

frequencies

—64:__2_4__, where M=“_&—/ ZDE/.\_/ (/vewen)

- ;\(0(1 é): f gce{.-?n'noc/&/dz i
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Hence from equation (4.9)

q(x 4 2A L4 -4 \ j
¢ ) g )_w ;/';“.":a g(auq) A )E

27 e VA x
/ o=

C 4_@ .,?TTJ///)/A/ /// ///TT/J//\/J

Mg

kgl

3;, (4 12)
where D2C = 2 A
4 c ."!‘ITJUI') / /‘? o
’ / Rt T™_
y/ﬁn A’/f; U):JT?“/)Z‘(M e A YR /
HEns (4.13)
- C
gives (:a
Hence the gravity on plane B is glven by
i2Mmn -4 2/Th/
(mﬁw 4) _/j C2nke ~ o -(4~ )A/A>(
(4.14)

Also we have analagous to eqn. (4.13)

£
7 /ﬂ/l J J) -2/7'4 2_3 ‘_.:i'.;i.:' —Al /347: (4.15)

Mo I

where on B

4 ,
A e )
A/ 4) = 21 e (4.16)
i BT~

taking <& L % and using eqn. (2.46) in one dimension

AN RN o)

4
5? //kvv 4ﬂ:{) 4/ > = :277.445 ;;§§% C:;B e AN

From eqn. (4.10) L (a/ A, ) = Z_/,,,,/ A/) e-—//g -.4/)44.

hence for a specific value of 4.t = "/ N we have
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C» E’\ C c.1a"‘/‘x‘ 4g>(€?77‘7//7/‘ﬂ’5>

> . (4.17)

Then the two equivalent sources give precisely the same results and

hence the theorem is proved.

Thus as Og/’x)j)-"' 3.77'4 j/q( y 4)

We can put (from chapter 2)

o (7, y) Z 2 C -e‘ ol 254}%

-_“ PR IRY 4
- 27T 2 /L,O = LIT N,
U = M ) /\/4]

Thus from equation (4.8),

- e“awdx m?féza( -4
7(%472) // Z{(x-«)z’*/y -f)*+(2-4) f/ )

Then using a result from Erdelyi et al, 1954 a combination of equation (7)

page 11 and equation (44) page 56

= & Z'Z( e(* ffL:Z" ‘2””"7 (4.18)

N4
217/% 2;/?;72T’ ¢Y§v2t%>2

Putting G C"‘“ﬂv WZQ W/A—%—Z;)e"@)z} = [,,1 >

’
we can find C;w ,»  extending equation (2.25) to two dimensions.
[

Thus we can find éb,’h and hence the equivalent source OA"/?//]) or .
more particular1{7766;z A) now projected onto a horizontal plane of

height h.
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This equivalent source should exactly represent the gravity field
provided conditions (b) and (c) enunciated at the beginning of the chapter
are obeyed. If a direct measurement of the vertical derivations, as has
been done by S. Thiesson Bornemisza (1965) for example, disagrees with
the theoretical result; the difference will be dﬁe to two causes

(1) the effect of bandwidth as discussed in chapter 2

(1i) missing information in the gravity spectrum if condition (c)

is not true. This can be overcome by closing the station
spacing so that the small bodies previously undetected show

up on the gravity récord.

However, very rarely in practice isj/?/,j;z)measured at grid points
on the topography. Physical considerations in the field such as swamps,
cliffis, rivers, vegetation make it imposésible to measure gravity at regular

pre-determined locations.

If the points of measurement are scattered unsystematically on
the topography, the C:,:,, in eqn. (4.18) cannot be immediately expressed
as a linear combination of the g(x,y,z) but become MN coefficients
satisfying MN equations. Again, as with the polynomial technique a large
matrix has to be manipulated - thereby limiting the number of gravity

measurements in a survey if a conventional solution by determinants is

carried out.

"Aliasing'is a more immediate problem, however. 1In any ordinary

survey station demsity is not uniformy, inevitably resylting in some small
L

region having a high station density. To examine the consequences of this

consider three points on a particular travers line unusually close together.

Then if the middle point has an error in it, a sudden local jump would be present



- 54 -

in the gravity field as measured. The smaller the area in which the jump
is contained, the greater are the amplitudes of the high frequencies
present causing a few stations to have an unduly large influence on the
values of the 4;m¢7 - This phenomenon of aliasing is

well known in geomagnetism where the problem of having unevenly scattered

measurements due to the restricted distributions of continents becomes

acute in spherical harmonic analysis.

Also with data no longer on a regular grid the number of frequencies
present in the x and y direction are not uniquely defined. As shown in
fig. 12 1t would be possible in the extreme to make MN frequencies in
either the x or y directions fit the data where MN is the total number
of survey stations. These disadvantages make it impossible to apply
eqn. (4.18) directly to the transformation of gravity data to the

frequency domain.

A new approach 1s required to overcome these difficulties.

4,2,2 Second Form
Equation (2.5) shows that if we have a point mass m at a point(%ﬁ/e)

then

j(gly) -z) = -G m 2/177.«)‘.,0./@){,.2?3/5 (4.19)

Therefore the spectrum of g from eqn. (2.50)

-2 Ju® + =
G €, € (4.20)



The ambiguity of fitting a two-dimensional Fourier
Series to points on a plane.

FIGURE 12,
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whe;'e /Eﬁ/ = /e"‘q"” “F"/% 2

Putting e = 2IT ‘6(

v=2mt

where fx’ fy are frequencies measured in cycles per metre in the m.k.s.

system.

From eqn. (2.59)

£ = //Q.Ax

X

In eqn. (4.20) if z is large enough the amplitude of the spectrum
beyond the cut-off frequencies can be made arbitrxarily small. The
spectrum can be made to satisfy the condition (c) necessary toc exactly
represent g in the frequency domain. Hence it is possible to replace
cz’(ag:f by a series of point masses to synthesize the Bouguer
Anomalies. This approximation to a continuous equivalent source is
sufficiently accurate provided this discrete equivalent source 1s at a
sufficient depth below the surface. Otherwise the field at the surface

resulting from these masses will be distorted compared to the real field.

For instance consider the extreme case of the point source being
at the surface. Then the vertical component of the gravity field would be
zero everywhere surrounding the source except directly above it, Clearly
there would be large amplitudes in the spectrum beyond the cut-off
frequency so thgt the vertical continuation and derivatives of this
field would bear no relationship to reality. 1In fact from table IV and V
it can be seen that only one coefficient in the transforming matrices for

these processes would be needed.
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Thus if we have n data points we can find n point masses »y at a

suitable depth giving the equivalent source.

Thus (,é; 57-2)

- ) mm, T --F.a m
71 = a“m’ -6‘-@1%3--} ...,+am, Y 0
- »m R - S ¢/
72 -Q‘“ m’+dumz+ \\‘..+Q3£ ‘+ Sn .
(4.21)
- B 7 A
\%- c_'//nl-f-ﬂan«i-/»-ﬂ 1‘-@47«%1“-. . ",
o= o o a p
yn ﬁl’ﬂ/ thhl*- ; +5}t4 7‘”{7‘ 7= 1 *~
where the

D4 = ' ' (Z. - A) =37 422
§ (= ) (S )+ (- 4) 5

and z = h is the horizontal plane containing the point masses '”‘ at (%)%,}A)

(Q;."%_) 21) is the position of 7‘- .

This can be written vectorially
7 = A (4.23)

The matrix A tends to become ill-conditional if the equivalent
'

~

source is too far below the surface; that is if z - h is too large in the

eqn. (4.21).

Mathematically A is ill-conditioned if det A =—> 0

Thus if h is very large relative to the dimensions of the survey then
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a6 —> X, —> .. -——=—>’/'74-—->..--—*’anm——>a

where a = ’&’m /’) 3/

(2 -4) —>+=2 f(y af,:) +(1- ) (o 4)j2
,ﬁ:,,, S

s Tiestiaes sTE e € I

b = —e0 /@7 2

3
=/

{1t

and det A—> 0

resulting in great variation between the values of the 7/ as is seen from

a, %d—a aél:;, - ?/ % /
S S e ‘ 0/ Z:/4
i = - 1 <
1 U Gk Ghe o T
i

//

i

O/eZ“/AA) 4 c/f_f"[ le) (4.24)
a/eZ' A ol A

Therefore any variations in g will induce large vsriations in m.

{

Wild fluctuations will also vesulir frum the aromalous source

being near the points of measuremeni relative to the station spacing. As
Bullard and Cooper (1948) point out when g is centinued below the level

of the anomalous source large fluctuations cccug in the values of g along

a profile. If h is too large in relazion tc thz deprh o¢f the anomalous
scurce, then the values of m will vary in ampiified sympathy with the values
of g below the source. Therefore h musi be <h:sen to lie between these

two limits of being too small or tco large. It seems empirically, judging

from the area interpreted (chapter 6), that

Ao + A é? qé\/ & x A= #47
Ly 5 ((w Y, =

%Vis the average height of the survey area.



-~ 58 -

Substituting the lower value of Z “A into eqn. (2./0) we find

5(@) < Grr e x/D . ay)am“).w)v‘{-‘k

Therefore condition (¢) is almost satisfied.

The next step is to solve equation (4.23) which was carried out as. follows.

4.2.2.1 Solution of Q=é2,”
J

An iterative method which reduced thz influence of random ‘errors in

y on m was sought as direct solutions are unsuitable because of their
2 .
tendency to accumulate round-off errors and magnify random errors already
present. Genérally speaking, an iterative method for solving an equation
or set of equations is a rule for operating upon any approximate solution
/
éo) of the equationy /41 in order to obtain an improved solution xbﬂ&)

and. such that sequence [x@f so defined has the solution x in the limit

(Householder 1953, p. &45).

Zidarov (1965) has put forward a methed which finds a system of
masses in a spherical earth, satisfying a given gravity field, using
iteration. Zidarov's scheme uses 'the method of steepest descent'’ which

is based on the geometric nmotion that the equation

A= 2

' = -~ (4.25)

—~

can be solved by minimising

(é"é E)T(é'ﬁ 25) (4.26)

This is done by choosing a direction %J, , along the line of maximum
-~
i
change of R and along which the initial vector =x™is moved a distance A to

get 'DC/;) . '"Distance" and'direction' are meant in the sense of Ralston
-~
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(1965) (page 44) for a hyperspace of dimension A/ where A/ is the number

of variables IL‘ .

In general

Xoe) = X + ;].g i (4.27)

Naturally the minimization of R to zero by 2_‘ would give the

solution of equation (4.25).

Geometric considerations

Let xt=[xtzc,,_xi/be the true solution of /4)( J'J and let
~ 1) 2 " >~ ~

x==x"+¢ E=(5, . &)

For this X

LA +er A4 + £TAT A
—_ =~ -~ ™~ = 4 i
T

P:ngf;ZZ 65‘5 (4.28)
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The surface

R = const.

is therefore a hyperellipsoid in the variables EL’.,..“ %& with centre at
= ¢ = i
€ = © (i.e. the solution of:’<'42, /_é in the 2 .. ... X,

L d

co-ordinate system). Now because Jg: is symmetric, there exists an
-~

orthogonal matrix lf’ such that
< .

.PTC /O = D (4.29)

where D is a diagonal matrix with the eigen-values of C on the diagonal.

The eigenvaluesﬁ '62/ are the solutions of the characteristic

|A - I =2

Corresponding to each distinct eigenvalue ﬁz there exists a sol-

ution of
Le= g€
T T -
A = pEER
2
§r££ :/‘?-;ff'rf
_gg: f_f (4.30)

Thus each eigenvalue of C correspond to the square of each

of the eigenvalues of A.
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Making the change of variables

- PTe, E=(5 . &)

then

£
K

= frff

= e PPTCPPTE = £ D&

= ﬁ [@‘Q ‘Q | (4.31)
= T

Therefore the hyperellipsoid R = const. has axes in the direction

EE; of length. proportional tol/ﬁzb . Ralston (1965) has shown that

™
the condition of a matrix is represented by how nearly its hyperellipsoid

(4.3)) approaches a hypersphere. An ill-conditioned matrix has an
"elongated'" hyperellipsoid.

In the method of steepest descent if )4 is ill-conditioned the
direction of maximum change of R must point in a direction very differently

from the direction of the centre of the hyperellipsoid.

This is shown diagrammatrically in fig. 13 for the system.
o-5x + x, = [-&
0‘52%' + 2\’ = /'.5.2

for which the true solution is X, = /} X, = /

The eigenvalues are given by the determinant
-8 o5 4
! 0-52-04
(1-B)e52-F)-05=0
producing lg.—;{(p2£'£//->‘47£ )
= (-252; 0002




—p—

Path of ideal steepest descent
solution

FIGURE 13.

- Typical region

where non-convergencs
may take place
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This system is therefore ill-conditioned.

The equation of the ellipse is

(00088 + /- .2528%)=C

C = constant

In fig. 13 this ellipse is plotted for various values of C with the scalefg
expanded in relation to f; so that the true ellipse is even more

elorigated than shown.

For ideal convergence the magnitude of ;E Zz.”‘ . giving successive
)
iterations from the first approximation is shown. However in the region
encircled an incorrect value of A will throw the process of convergence

out and the solution diverges for that iteration.

Physically one sees in the solution ofj.‘!ﬂfc that if the true
lvalue of M4 is greatly different to the other ‘s then the
hyperellipsoid is very elongateq glong the 91% axis. This will occur if
94;{ is in a position where the actual source is shallow. In ¢hapter 5

a region of non-convergence will be described in the solution of

7= 4n
4w

~

~ haL

as the iteration procedure passes thrbugh a region in hyperspace with
B
geometric characteristics analogous to fig. 13.

We minimise

(9-4w)(7-4dw)= Y

to find the solution of M is equation (4.23).
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The direction of maximum change of ¢/ with respect to 7, 1is given by -l

am,;

the ith component of VU with respect to 7 ¢

Thus following Zidarov (1965)

Z [f (M) j(h)/m)] - (4.32)

Z »% cos(/?‘ 2) | (4.33)
7% '

R+ F (50 (12
yz {/{) is the mea,sulfecl' field due to the true masses M and '72/"%1) is

the nth approximation ofﬁ from the approximate masses m; .

We restrictv the position of discrete masses i, to pbsitions
( )% A) where the N co-ordinates ( }j'} correspond to the N positions |
of the measuredf and /) is the level of the horizontal plane for this
equivalent source. Thus each discrete mass lies vertically underneath one
of the N data points making up the survey. This resﬁriction gives U a
unique solution. We assume nothing about the matrix in eqn. (4.23) except

that it is square and its elements real.

Therefore

= f’.? __é_é AV -=f’2fféf (4.34)

aw : ‘ol Cdw

" 00 Hm s
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N 2
that is U = Z ]4' (4.35)
£

We find following equation (4.27) that

,{(P) = 7”’4(/3 ) -2 Pl , (4.36)
PRy

where %;{/70) is a closer approximation to the true value of W{ than

Wé/?’") .

Therefore
U = U(m//’) Aam)‘“”““ -~-/7«nh/’°)—-/'l_9_2>

2 m
is less than (/= U//«n,/’a)) ..-..,....M”/’y

Vel
To find A we maximise
(A) = U P Y P O R Y
", : 2 .,
In this way U will converge most rapidly for ;\ obeying this condition.

Developing tﬁ/;l) as a power series in ) from Taylor's Theorem,

2
and taking into consideration only the first two terms (as OZ 'é( =0

from equation 4.3 4) we obtain A
0(4/ AU 4 D2 22y
/2) U - >\ dM +5f7_ C/ 3/__ .3
Z??\,_"—{ ;{ZM fagl: (4.39)

Now dzf = O from equation (4.3))
%
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P =f2‘ 4Aj2é(é{)2+ 42?1@{_:{)7 (4.40)
f/) will have a maximum when :T({ =0

Thus

/() - E) = e
we 3 = fU)/ 21 (4L
AL f—’) ()

SPAW
= <=4 i (4.42)
p)

e /’{ ‘h}{Q?@()

which is Zidarov's (1965) equation (2) with ’%3{ substituted for @/4

This method assumed U only has one minimum. The condition for

a minimum is that 0/’([/%%4 =0

Suppose thatj 3’@ for some value of U other than U o .
m

Then for some value of U, 0( 0/0/?%3 -

l but o( 4( = ___z{) ) o (4.43)
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2

Hence G( fQ/ 55'C? and hence U only has one minimum. This is also seen
2

from

AU =0 i
Al 3

2
Thus 0( C} cannot change sign.
d‘dnz
Thus it is possible fo find the eguivalent Source of a gravitational
field in terms of discrete masses. In the limit it is seen that the second
form approaches the first form. Suppose the gravitational field is known
—z@t a number of points infinitesimally close together, then the discrete masses

would be infinitesimal distances apart and in the limit would become a

continuous surface density distribution.

Having found the equivalent source one then is able to calculate

the anomalous field at any point in space restricted by

(a) areal extent of the survey

(b) minimum height above equivalent source at which -
b0t s 2t 2mf,
£ is negligible for Mv)/ T rax ) 7}2/ 7[

)cuex

In this way the field can be calculated at regular grid points on

a horizontal plane at some height above the source.

In order to conserve the amount of information present in the
gravity measurements,.the number of grid points calculated should not

significantly exceed the number of data points.

This result should be nearly exact
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if
(a) no frequencies are present in the actual field beyond cut«é6ff

frequency.

(b) no information is missed by having non-uniform sampling over

the area.

It should be noted here that a significant difference in the two
forms is that the second form of the €quivalent Source ‘fechnique assumes
the field asymptotically approaches zero beyond the area, the first form

assumes periodic continuation horizontally.
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5. APPLICATION OF THE EQUIVALENT SQURCE TECHNIQUE

The fundamental assumption in using the gquivalent gource tech-
nique is that the data points (points of measuremént) sample sufficient
of the field for the purpose at hand. Thus a survey must have sufficient
measurements over its area that the amplitude of freéuencies missed by

the station spacing is negligible for the structure being sought.

With this assumption the gravitational field at any point in
space can be found as shown in the last chapter. However,lit is to be
noted that no more accurate way is available than actually:measuring the
. field at’ a particular point in space. Thus Thyssen-Bornemisza and Stackler
(13%%) measured gxévity at twé heights at each survey point to obtain the
gradient. In theory? the most accurate means available for finding the
gradient is to measurelit dixectly (providing the topography is flat).

But as this requires twice tﬁe number of readings the équivalent Source
Techniﬁue is more econemical to uée. In any case thg accuracy of measuring
the gradient directly is reéér%cted by the small height differences over
which gravity may be m;asured.'

The data used for the &quivalent source technique must bé ' ’
corrected for extranéous influences. That is the theoretical gravitatioﬁél
field intensity:ir due to the earth (particularly the surroundingzterfain
and geolqgical stratigraphic unit9 should be computed and then subtracted
from the pfaétical measurement :ZD » thus forming the Bouguer Anomaly
9o = 3 - |

Corrections for all the known geology of the area must be

included in :?p in order to further our knowledge of the deeper structures
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underlying the surface features. Essentially all available information
is used to "strip" away the effect of the shallow structures in the

sense of Hammer (1963).

In chapter 6 this is done using a method modified from Bott's
(1962) "Use of Electronic Computers for the Evaluation of Gravimetric

Terrain Corrections".

The Bouguer Anomalies j[%] found in this way make_ up the data
required for the Equivalent Source Technique. The only further inform-
ation needed is the depth h of the masses m[AJ which has to satisfy
equation (4.24). TFor convenience we make the horizontal co-ordinates
of the 2"[7{] the same as the data points, thus saving the amount of

information required for the technique.

Using this method of steepest descent the resulting /b/)&/«/
system of equations in bﬂ[{] is solved, keeping in mind that a minimum
amount of computer space should be used so as not to restrict the

technique to impractically small surveys.

From equation (4.42) it is seen that to calculate ;\ , the
variables 9%‘/0))92) % and 9%”% must be known.

Recall that

74 (2, -h) b
o [ﬁ — { (% H )+ e i

;)_ﬁ - _(z:-4)
g (7 )P (e K)o A R
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UV = 2?{- % (5.3)

¢91h@< ¢9*7Kgé
Py
« and = both depend on 4&%{ and therefore have to be
recomputed for each determination of A éyi><97¢€ however does mnot-
depend on #% ; but it has N > A/ values. Suppose N = 1000 then -
106 computer spaces would be required to store the J%/J’»% - clearly
impractically large for most computers. The computer used, an Elliott
* 503 had 8000 spaces with an additional 16,000 in a core backing store.

As the program took up about 3,000 spaces 21,000 spaces all told were

left for data storage.

Therefore o%/J;z/ or more particularly the kernel

(2;-4)
(e =202+ (1 )P+ (2 )T

was recomputed each time it was required.

The program was thus split up into three major loops as shown

in table VIII where

A
1
C/U[t'J = D(//o)mi- = ‘é‘/ 2//% 9/&//9,,”1

The program structure is 8een in the flow diagram fig. 1A.

Therefore seven arrays viz.

7) -7, 9’: :Z % % oAU -9



Outer Loop Inner Loop

Loop 1 | y[c] ’ Z[A]
A

—

6/ calculated and
compared with previous
value and final value
desired

[£]
it

Loop 2 l?éj
;_f[éj
[#]
{lu[é]
Loop 3 X [4‘7

2 [%]
7VL[2;] N.B. These arrays must be

quickly accessed to
speed computation

TABLE VIII Arrays required in equivalent source computation -
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Fig, 14, Fiow chart for equivalent Source program, /4[{, 4(‘_/-‘93‘:/&)“»% in eqn,(5,2) and is compuied each time it is

used, See fig.I5 for details, At B

the program continuss with data obtained at B,
external switches ng(I) and ng(2) respectively, allowing a bre2ak in computation,

+ This is controlled hy
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are necessary to compute ;A . These arrays required 7N:storage locations,

&
a considerable saving on the N~ locations required to store 9%/()12'

As seems inevitable in science, a saving at one point means a
loss somewhere else. Here the loss was in terms of computer time '~ to
the extent that 997 of the total program time was devoted to calculating

the 2%{)/9*1( . Even so computation time was reasonable.

Each loop required, to within 1%, the same computing time T,

found to be given by the equation

)

2 /.
7 /\///OOO secc, (5.5)

where N is the dimension of the arrays.

To achieve this the major loops were programmed into the machine
code of the Elliott 503 rather than the normal Algol - resulting in a

400% improvement in calculating time efficiency.

The square roct procedure used in the final step of calculating

the kernel _ 2 e
F(e= %) * () + (24)S

took up a large proportion of each kernels 1 millisecond (eqn. 5.5)
time requirements. This was concluded from the fact that dispite a
varying rumber (12 - 16) of similar machine code instructions in the
three loops apart from the square root operation, the same time (to

within 17) was spent in each loop.
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In the first loop the /;Qﬁﬁj were squared and summed to form
U (equation 4.35). At the end of the first loop U was compared with
its previous value to ensure convergence was taking place. It was
found that the rate of convergence tended to slow down as the computation
progressed. In order to speed up convergence a factor was introduced into

equation 4.36 forming

w/f)[%j = m(ﬁ"’[éj - a /’2 }Z
1

(5.6)

where "a" is the introduced factor.

By putting & > | it was possible to speed up convergence
(in fact make the method "over-relax" in the sense of Ralston (1965)).

However this led to the danger that the solution may become non-convergent.

This was overcome by reducing "a'" successively by a factor of

2 until U did converge when the solution entered a region of non-convergence.
Successive values of U arée shown in Tables IX @ and b for a small test

area of the Derby-Winnaleah survey and the whole survey respectively.

By forcing the convergence to over-relax, it became possible to
take the solution quickly through values of U where the hyperellipsoid

(see fig. 13) was elongated.

The bracketed portions in Table IX are attributed to regions in
the hyperspace of the solution where a small number of the dimensions of
497/:4J7 dominate the gradient 6/Z?9{]. However once this region was

passed convergence continued quickly until U became less than a predetermined



a) Derby-Winnaleah Area

Note slow{
convergence

Region.of non-—.
convergence

Note
fast
convergence

Note slow
convergence

convergenc

Region of{
non-—
e2~

Note fast

TABLE IX

~ N 1
E (?t ~7Q) Iteration |Convergence
<=1 “ V
3887.4597 1
1562.7364 2 con
1063.3290 3 con
739,07411 4 con
556.31239 5 con
556.31232 6 con
2896, 7126 7 not con
556.31234 8 not con
263.76229 9 con
139.69104 10 con
86, 758592 11 con
59.154730 12 con
44 .,441891 13 con
b) Test Area
1197.9390 1
384,77229 2 con
214.14105 3 con
118, 76362 4 con
84.163410 5 con
84.163409 6 con
467.92798 7 not con
84,163406 8 con
84.163423 9 not con
30.586830 10 con
19.190139 11 con

convergence
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value.

While theoretically it is possible to minimise U to zero, it
would require a large number of convergences and would be in practice
unnecessary. As U tends to follow the path of steepest descent in
hyperspace the random errors f‘- of ﬂ would tend to cancel out
and not influence the gradient. 1In accordance with normal practice
(e.g. Kempthorne, 1952, p. 129) we assume the 5' normal with mean zero

and variance T~

N
IV = .'24.91‘
s =2 LI

h / 5 a 22
where 7. j L ?774 /Zf‘A/V{/DQ-J’C{)-f/%—%é)Q; 21‘—4)
and 7:" is the_true value of \71-» ' stripped of its random error E; .

G=ATTE
A=A v,

As ;)%/074.,, (0 for all ¢ and é
then Zz fn K g F‘ —_— O (5.8)

=/ 97’7%

as/\/“"‘>°°

from the property of é;. having a zero mean.
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Thus a value ¢ was chosen so that when

U < ¢

(5.9)

the program terminated.

é' was worked out on the criterion that the random error in
each Bouguer Anomaly was of the order of 0.25 milligalg for the Derby-
Winnaleah survey. This is a reasonable value in view of. the precipitous
topography of part of the areé and .the associated difficulty of making
exact topographic corrections. Also by assuming this relatively large
randoﬁ error it is possible to smooth out small unwanted surface features

that we regard as noise in the data.

Thus

o X
U= 3. %

n
Mk
N\
™
~
&
&

As {75 —_— O as v — O despite tha influence of the

random numbers Ft

Mo
v o= Z(E) A0

Thus there is no point in reducing U much below the value
Al L
Z C?‘Q where O~ is E?e variance of the errors - i.e.
s ) ol
o2 = Z (F‘)
N oi=a

Thus the process of iteration should continue until
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U < Ne® (5.10)

. . 2 =3
From the preceding discussion o- = /0- 25)

Hence C/ <: Zf S when N
<: 2 0 when N

860 (Table IXa)

330 (Table IXb)

As the computer locations remaining after the equivalent source
technique program was compiled was 5000 location it was necessary to

use the core backing store when N = 860 (for the entire survey).

However it was only necessary to transfer 4 of the 7 arrays
between the core backing: store and the computer without even disrupting
the three major inner loop computations. In this way no significant

time was lost due to this information transfer.

By aralysing each double loop it is seen from Tabie VIII
that except for loop 1 only 5 variables are necessary in the computation
process. In loop 1,;? had to be transferred in the outer loop between

the backing store and computer.

Thus the equivalent source for the 860 data points making up
the Derby-Winnaleah survey could be stored within 5 x 860 = 4300

computer locations.

As is seen from Bl and B2 in the flow chart (fig. 14) the program
was designed so that it could be switched off at any stage and the output

would contain all necessary information for computation to proceed at a

later date without loss of time.

Fig. 15 shows the flow chart for Program 'Gravtwo part B" which
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FIGURE 15. Flow chart for program calculating gravity on a flat
horizontal grid. Residual is found by making two
computations at different heights (Zl ) and subtracting.



- 76 -

computed the Bouguer Anomalies on a regularly gridded horizontal

plane from the equiwvalent sources 777£Z]° The program required one major
loop very similar in character to each of the major loops in "Gravtwo part
A". By inputting the equivalent source . [k;] and'the positionsljzgyﬁgon
a plane at depth h it is possible to compute the gravity:%éﬂjﬂ7 at |
regular points(id:ﬁjdj) where At and ﬂ] are station spacing in the

x and y direction. Computing time for this program was exactly one-third

of the computing time for each convergence in 'part A",

Using the equivalent source it was possible to compute the field
at any height (with the restrictions as pointed out in chapter 3). In
this way it is possible to vertically continue the gravitational field

in either direction.

The "Regional'' and "Residual" gravity fields

As already pointed out the "regional' field is a purely relative
term. However, if we measure gravity at steadily increasing height
abovq,a certain point, we are being influenced by anomalous bodies over
g steadily increasing horizontal area. Also the deeper larger bodies
underlying the survey area have a larger relative influence on the
gravity field. Thus we can consider that the field at heighté?iis
"regional" relative to the field at heightAZEZif Z>/>'ZZL. In chapter 6
we find the 'residual' field by vertically continuing the field upwards to

500 metres and then subtracting it from the original field at 250 metrés.

Comparison with exact techniques

If the field is known on a regularly gridded horizontal plane it may



- 77 -

still be more economical in terms of computer time to use the équivalent
source technique. Bhattacharyya (1966) has shown how the two-dimensional

spacial frequency components of a field may be found.

To compute each frequency component requires a double summation
of trigonometrical functions times;? each over N terms. The field is
then continued vertically by filtering the frequency voefficients in the
appropriate manner. Hcwever, as cos@ and sin & are compafatively
slow processes for the computer, the method of computing the field from
an equivalent source may well be faster. In fact once the equivalent
source is found for any field further processing such asvertical contin-

uation and finding the residual will be very economical.

Analogue Technique

If the gravity field is known as a continuous function on a
horizontal plane then it is possible fo find its derivatives and

vertically continue the field by the following Analogue device (Green, 1966).

The field is first represented by a film having transmissibility
" properties proportional to the magnitude of j? . The intensity of

z
monochromatic and coherent light passed through the film then focussed,

is found at the focal plane to be given by

~t X - 1V

](“,1}) =£:i;o‘7(96y)“3 m&%\/ (5.11)

Thus appropriate filters at the focal plane can be made to

A+

attenuate the light according to either vertical continuation i.e.€

a o %3/& ' .
or derivative (44' +‘Uu) . The resultantprocessed field appears at
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the image plane. A similar method using diffraction is discussed by

Jackson (1965) for seismological interpretation.

This optical method would greatly speed up gravity

interpretation once the film representing the field is made.
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6. DERBY-WINNALEAH GRAVITY SURVEY

Description of Plates 1-7

The development of the Residual Bouguer Anomaly from the original
measurements on the topography is shown on the following plates.

Note - all contours are in units of milligals.

Plate 1. Geology of the area. Note all elevation contours are in units

of feet above mean sea level.
Plate 2. The Free Air Anomaly
Plate 3. The Simple Bouguer Anomaly with density = 2.67 gms/cc.

Plate 4. The Bouguer Anomaly with terrain correction using densities shown

on plate .l for the topography.

Plate 5. The Bouguer Anomaly (s din plate 4) projected onto a reference

plane 250 metres above mean sea level.

Plate 6. The Bouguer Anomaly projected onto a reference plane 500 metres

above mean sea level which we define as the regional.

Plate 7. The Residual Bouguer Anomaly at 250 metres with interpretation

of old river paths.

All maps drawn with reference to the Tasmanian Grid with the .
position of the base station (see fig. 18) taken as 566,438 yds. East;

932,670 yds. North,
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The data from this survey was.chosen as the area topographically
(see Frontispiece:and'fig. 16) was precipitous to the extent that the
gravity measurements should be projected analytically onto -a horizontal

- plane. The location of the survey is shown in fig. 17.

6.1 Geology of the area.

The geology of the Ringarooma Valley area which embréces the
area surveyed has been described in detail by Nye (1925). The geology
in plate 1 (also reproduced on a larger scale map 1 - #nside back cover)
‘1s due to Nye. Howland-Rose, however, observed an additional outcrop
of Mathlnna Sandstone in the region at 934 500yN and 564 OOOyE on the
map. These two outcrops were found to show up very clearly on the Bouguer

Anomaly Residual map plate 7.

g The oldest:rocké.of the survey area are the'elates and sandstones
making uo.the Silurian'Mathinna Group. ’This_group vas deposited over
a lerge erée'of Tasm;oié.

Deoosirion“vee brougﬁt to a close by a period of diastrophism which
intensélv foldeo‘aod‘feulted the Mathinne Sandetoneilea&ing up to rhe
intrusioo of granite in Devonian times. The intrusions are extensive
in the area and at Derby nov make op a group of relatively high hills

to the south.

The granite is thought to be part of the batholith of N.E. Tasmania,

Fig. 16. The plateau and the sharp cliffs leading down to the water-filled

Briseis Mine gre shown above and below on-thé. following page.
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As the granite magma cooled its residual vapours and fluids resulted in
the formation of tinﬁlqdes.in veins. These veins are the source of the
aliuvial tin deposited\ in later times as the granite was eroded away.
Geneially the granite ranges from the fine-grained tbf?barsely

porphyritic.

Following the grani;ic intrusions a very long period of erosion,
followed interspersed with periods:of marine sedimentation which were
subsequently eroded away. Permo—CarBoniferous sedimentation is known
to the north and south of the Ringarooma Valley énd so it is concluded

the Ringarooma River system which was now developing eroded them away.

This erosion and stream-development continued until Lower
Tertiary times as the then Ringarooma River developed i£S'course. The
ancient Ringarooma kiver according to Nye (1925) followed the present
-one from Branxholm to DerBy, but then took a more northerly course west
of the west end of. the Mt. Cameron Range. So far as the survey area is

concerned Nye appears to have been right to the first approximation.

The outcrops of Mathinna Sandstone found by Howland-Rose (1964)
suggest that the course of the old Ringarooma River was controlled by
these two ancient elevations above the flood plane such that the river

probably flowed between them.

A relativé.depression occurred in land surface in Lower Tertiary
times, causing the Ringarooma River to become dammed in places forming
lakes and estuaries into which €gssiterite bearing alluvium was

deposited forming the main tin leads now partially mined. This alluvium
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is made up of 300 feet ofvgravels,'grits and sands in the survey area -

typical lacustrine deposits.

This period of deposition abruﬁtly closed as Tertiary basalt lavas
were extruded forming flows covering the old Ringarooma system. In all,
three flows with a total thickness of 200 ft. formed at Derby. The

 flows are separated in time by short periods of erosion.

The RingarodmavRiver'system re-established itself, as sea level
subsequently recorded, as far down-stream as Derby but here the course
was-diverted to the south-eastern edge of the basalt. The river corroded
a course through the granité so that it was forced past the eastern
edge of the Mt. Cameron range and its new course goes to the east of

Mt. Cameron and theﬁ&e to the sea.

In the survey area the river follows the granite-basalt boundary

and now rests for the most part on Tertiary gravels and clays.

6.1.1 Topography

The present cycle of erosion has caused the long narrow plain

made up of- the basalt flow to be dissected by the Ringarooma River.

In the valley' of the Ringarooma River at Derby the erosion of.
the. river through the basalt and the underlying Tertiary sediments has

formed a cliff 300 feet high (see fig. 16).

The survey areé tbpographically can be divided into a plateau
region and a valiey region. This can be thought of as approximately

the idealised situation as shown in fig. 9 of two plains at different
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levels. The necessity of using some technique such as the equivalent

source technique is seen.

6.1.2 Derby Gravity Survey

The data was collected by Howland-Rose (1964) on behalf of the
Australian Commonwealth Bureau of Mineral Resources. The purpose of
the survey was to find frém Bouguer Anomalies the actual course of the
ancient Ringarooma River system. It was. reasoned that the deep leads of

tin such as those at the Briseis mine would continue along the river.

Measurements of the gravity field intensity at Derby_were made
at from 50 - 200 feet spacing on traverse lines as indicated on plate 2
to 7. In the area which was thought to be of most interest the line
spacing was made much closer. This area formed a test area (fig. 24)

over which the equivalent source technique could be tried.

The measurements were assumed to be corrected for drift and loop
adjustments to have been made in the original data given to me by the

Bureau of Mineral Resources.

6.2 Processing the Derby Gravity Data

6.2.1 Fundamental assumptions

Taking the Bouguer Anomaly in the sense of Naudy and Newmann (1965)
we have to calculate the theoretical gravity of the model of the earth

formulated from information at hand.

The model assumed consists of the International Ellipsoid plus a

model accounting for the local geology and topography so far as it is



- 84 -

known. The International Ellipsoid represents the form of a self
gravitating earth in hydrodynamic equilibrium. The local geology and
topography plus isostatic corrections accounts for the attraction
representing deviation of the earth from hydrodynamic equilibrium. Over
an area as small as this survey (9 square miles), the isostatic correction
will not vary significantly between stations unless one assumes the
extreme case of complete local compensation - a hypothesis discounted

by Vening Meinesz (Haiskanenand Vening Meinesz, 1958, p. 137). For this
reason only the effects of local geology and, topography need to be
calcujated. The geology below a certain height (the base level) should be
assumed to be uniform as Vajk (1956) points out otherwise nonexisting
‘gravity anomalies may be introduced into the results of the survey or
existing gravity anomalies may be distorted. Hence it is only necessary
to calculate the gravitational field intensity due to rocks above the

base level as the attraction of the rock below the base level would be

the same for every station in the survey if curvature of the earth is
neglected. As the survey only covered a few square miles curvature of the

earth was negligible.

As only relative Bouguer Anomalies were required, all corrections
were made so that the corrected value at the base station (see fig., 18)

was 0.

6.2.2 Free Air and Simple Bouguer Anomaly

The Free Air Anomaly and the Simple Bouguer Anomaly assuming density
= 2,67 gms. per cc. was calculated from the original data using a

program developed by Dr. R. Green (personal communication 1966). 2.67 was
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chosen as the density value because experience has indicated in the granite
areas of Tasmania that 2.67 gives a representative average density. Plates
2 and 3 show the contours of the Free-Air Anomaly and the Simple Bouguer

Anomaly at Derby.

It can be seen that the lack of terrain correction in plate 3
produced a steep grédient in the Simple Bouguer Anomaly map at the Briseis

Mine. v - -

6.2.3 The Extended Bouguer Anomaly

In order to-calculate the Bouguer Anomgly the topography shown on
plate 1 and'map.i was divided up into a number of square blocks extending
from a base iévél to‘the average. height of the équare area they covered.
Note that,‘althéugh not shown,.the elevation.éontours on map 1 were
known at 10'ft._intéryals. Thé blocks were assumgd to bé of uniform

density equal to the density‘of the rock outcropping on the surface.

A diagrammatic cross-section of the model of the local geology is

shown in fig. 19.

The effect of the topography was calculated over an area 9 times
the area of the survey, such that the topography unaccounted for was at
’ ) AN Y el : ‘-‘
least a distanece é7away from any gravity station where '{? is the approximate

length of the side of the area.

6.2.3.1 Rock Densities

Howland-Rose (1964) determined the densities of the rocks from

samples collected in the field.

These densities were taken and given on plate 1.
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The density for granite sandstone and the Tertiary gravels were

found to be quite typical,

As the basalt covers the majority of the area surveyed its
density was critical as it was important for the contrast density of the

Tertiary gravels to the basalt to be significant.

Basalt can have a density of the order of 2.00 gms/cc if it is
vescicular. Some vesicles were present in the basalt but results indicate
that the density was definitely not less than 2.8 gms/cc. The mineralogy
(described in Appendix B) and negative correlation of the Bouguer Anomaly
with topography (compare plate 1 and 4) supported this last observation

(Nettleton 1942).

Methods of checking the density by generalisations of profile

methods such as Grant and Elsaharty (1962) were not used.

6.2.3.2 Method of Calculation

While there are a number of methods available (Hammer, 1939;
Sandberg, 1958; Beckel, 1948) to calculate terrain correction graphically,
it was decided to modify Bott's (1963) method. Bott's method divides the
terrain into blocks and then calculates the influence of each block at

the point of measurement.

The blocks were chosen with an area of 200 yds. square as this
filled the grid of Eastings and Northings conveniently. The blocks are

mathematically idealised as vertical lines with a line density

A

(6.1)

-f
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where A is the area of the block.

From fig. 20 it can be seen that the difference 7_ between
assuming the block to be the height of the station with density _D and

assu?ing the bi'ock to be the average height of the terrain with density

d is

for Z }Z

T=60DA ek | ]
= & DA e TR ST

: /
+ 6(0-07/4[{()(-)()&+()/‘y)g+ (Z~2)2}V"' (6.2)
—_— !
L= (17)% (2 ba) £

LX< =z

| |
T = Gd A4 [[(X-z)z-/-/y.y)"j 72 — (6.3)
{(X'x).z"‘"(%y)g+/Z-Z)?"/é'_]

+G(D-d)A & o s

ST ey

giving for all =

T = D/f(x-x)% (Y- Y
-af. { (X "‘)'7"‘( V- )+ (Z-2) &
(D= Off (c-2)*+ (v )*+ (- barse)ff &

where 6‘ is the gravitational constant,/)g 3)/2) is the position of

(6.4)

'P the observation point, (Q;y 2) is the mid-point of the top of

the block and "base'" is the height above mean sea level of the bottom of
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the bloci.

Using the result that the vertical component of the gravitation
attraction of a mass line with line demsity Ajr»/u\, distance- 'O, from

f) to the top of the mass line and distance /QL to the bottom,

— | -
r R |
This idealisation is sufficiently accurate unless the blocks

are too close to ;D .

Fig. 21 shows how the blocks nearest to f’ were divided up into
first quarters then into sixteenths. The gravitational attraction of
the ‘terrain within the block containing'/p,waé worked out using Hammer's

method where necessary.

Fig. 22 shows the ratio. F? of the gravitational attraction of a
mass line distance fD approximating a given block of side f? and.
four mass lines approximating quarters of the same block. .As can be
seen the ratio. F—Q' / _ if F) 3-€ . Thus these mass lines give a very
good approximation. Fig. 23 shows the flow chart of the program

calculating the terrain correction.

The program required 130 minutes to calculate from 100pblocks and

the Free Air Anomaly, theBouguer Anomaly for 1200 stationms.

The Bouguer Anomaly is shown in plate 4. It is seen from this
map that the obvious variation of the Simple Bouguer Anomaly with terrain

is not present.
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This Bouguer Anomaly data was used to find the equivalent source

of the area after erratic values were omitted.

6.3 Testing the Equivalent Source Technique

Part of the survey was used as a test area fo test the validity of
the technique in describing the gravity field. Fig. 24 shows the 1.5
mgal contour of the vertical intensity at various heights (measured in
metres) above mean sea level (A.M.S.L.). The figure gives a gbod

description of the behaviour of the gravity intensity with height.

Geological evidence (see plate 1) indicates that the source of
the gravity field (the alluvium) is shallow and outcrops on the surface.
This bears out the interpretation from figure 24 that the source is close
to the surface as the lower contours begin to converge together. The

anomaly is thus interpreted as a small sediment-filled ancient lake.

Other contours drawn of the test area gravity field not shown here,
gave a good description of the type of gravity field intensity behaviour

expected.

In particular, the field of the entire survey at 250 metres and 500
metres (A.M.S.L.) on plates 6 and 7 respectively show the techniqués

ability to carry out vertical continuation.

6.4 Derby Bouguer Anomaly Projected onto a Flat Plane

The Bouguer Anomaly at a height of 250 metres corresponding to the
plateau level is shown in plate 5. Comparing this with plate 4 it can
be seen that this projection elliminates some distortion in the

»

gravitational field.
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Continuing the field up to 500 metres from the equivalent source
produces the Bouguer Anomaly contours shown on plate 6. The field at
this height will be considered to represent the regional as the large scalé
variations only remain as the high frequencies ha&e been highly

suppressed by the upward continuation process.

The  residual anomaly is thus found by suBﬁracting the field at 250
metres from the regional here defined as above. The residual Bouguer

Anomaly is shown on plate 7.

Hence the trend indicated is the ancient Ringarooma River. The
trend is continuous across the area and shows clearly the river as it used
to flow between the two ancient hills now represented by the Mathinna

Sandstone outcrops found by Hewland-Rose.

While other interpretations such as weathenng in the basalt or
lineament in the basement could be postulated to'explain these trends it

seems difficult to imagine that such effects would take the form shown.

The small relative positive anomaly over the Briseis Mine shows
up an error in the model. In calculating the Bouguer Anomaly it was
assumed that the 100 foot deep open-cut mine workings were empty of water.
However, it has since been learnt that the Mine was actually filled witﬁ

water and hence this appears as a small positive on the map.

The positive anomalies at the north-west and north-east corners of
the residual Bouguer Anomaly map are interpreted as old hills on the

pre-Tertiary land surface.
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6.5 Future Work

Drill-holes at the points indicated on map 2 inside the back cover
would confirm the interpretation of the gravity at Derby. It is
suggested that the holeé be drilled in the order indicated as the

numbers indicate decreasing likelihood of finding the old river.

6.6 Conclusion
Thus the equivalent source technique is able .in practise to find
the Bouguer Anomaly on a flat plane far more accurately than has been

previously possible.

The economics of the method are also reasonable. Assuming a cost
of $5.00 per station, the cost of 50 cents per station in terms of

computer time is quite reasonable for the equivalent source technique.



APPENDIX A

The magnetic anomalous scalar field potential ;( ) is

related to the intensity of magnetisation I( /Qa’) at (oc /32’) by

F(x 4,2) = S e /l[ T V() teetply o

\ .
v ' f s, T z :
Consider ’ Z% (5‘5) % J due to a basement

.\.

with upper surface described by Xzf@ff) '-:/) and infinite in all
other directions. The components of I/O(Ilé,a) are supposed constant.
B ~N-

Therefore:

}(oc z)x 477‘ I///ﬂ'a;) -af)a(ozp(gso(}’

To= sy e

’ I/q,//a, "4)”("”97277 ")/)M,/

The contributions of Ix and I are thus seen to be zero 1ff/)/6)~4

J

so that the integrations with respect to & F and Y are inter-

changeable.

x 2 .[ /z - 7.{(6‘/3)
Jz/ ) 4/.,77' //q;{?:'“) ";0’/92"(2’92&/ /f

~adf [ B () tutpet

= first integral - second integral, where:

first integral _Z_ )C/O(, ,8) {Z —ffﬂ’,,@yﬁéx 0{3
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Now as ][(OC,/?‘>;\\: A

* first integral = o]; g ooyc/dlﬁ) (2 -A)Q/olp([@
A /:_77*.,[ [.o [Ce) + 7R HPE
Now as vg&) =0
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. second integral “/A‘a // //' J[ )
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interchanging order of integration:
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= 9///@/ = ﬁ)o/cz
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From Roy""(1962) eq. 18 the field potential (magnetic or

© gravitational):

Vy2) « Heps)=k /[ 4 %V@F/f) et (O
- ly =4 -

where JU = { (x-q)%/y—,@)ﬂ/z-é)i}’/% . Now the field intensity:
Vfx
Pl ) = 5 CF



Thus differentiating with respect to Z :
#5797 ; [:/ Al s
Y=

/ (z-4) %fd,ﬁ)é)aﬁd/ﬁ

-27T—oo
Now as ;2{ satisfies V f/ this relation is a property of

potential functions, so that we may replace ;f by ; so that we
get in the magnetic field potential case:

Flo g4 )24 )etocAB
51(9/ Z) )/7/ / ;/x «) 7‘-/7/3)-#/2 /;)j‘

*, from eq. 2,3 and 6: /(c"]éf/dyé) = 2 5‘}&)/:'/4)

But oc::x) F:j then
S L flny) = Ty )3

From eq. 4:

) He(of#) et
j(/ ) 277‘//[/2-«)2+/y,@)f'

where /-6, is the vertical component of the magnetic field intensity.

Thus:

He (% £, 4) A= AR
> f) 2;;«2“/ w 5o -=) (1)







APPENDIX B

Mineralogy of Basalt (Nye, 1927)

The bottom 30' thick flow is slightly vescicular at the top and
is almost completely decomposed. The few unaltered portions consist of
a fine-grained olivine basalt, similar to the usual type occurring within
the district. fhe middle flow is 40 féet thick and rests directly on the
bottom one. It is almost completely decomposed in a similar manner.

The. unaltered kernels remaining are fine-grained, but somewhat coarser
than the lower flow. Glivine occurs sparingly and the rock appears less
basic and more feldspathic than the averags type. The middle flow is
slightly vescicular at the top and the layer of grits, from a few inches
to several feet thick, separate it from the upper flow. The upper

flow is a dense, fine-grained, basic type, with abundant olivine, and
slightly amygdaloidal in places. It is extremely resistant to the

weather at certain localities, and forms a very rocky surface.

This basalt, particularly the bottom flow, clearly belonged to
the Branxholm type of Edwards (1950). It did exhibit a tendency to
develop centres of crystallisation as noted by Nye (1927), and also had

a large proportion of pyroxene - probably titanaugite.

The mineralogy of the basalt is seen in plate 8 opposite. The
opaques are magnetite and ilmenite, which have high densities, -thus making
the density of 2.8 gms/cc for the basalt reasonable. The micropheno-

crysts are pyroxene, with a small amount of feldspar also being present.

The basalt is thus very basic - or tholeiitic, and therefore should
have a higher than normal density.
The mineralogy of ths.siide cpposiic @8 dua to Spry {personal

commenicaticn L954),
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SUMMARY

Vertical continuation is shown to have some important practical applications. The
practical applications of derivative methods are well known.

Various coefficient sets which compute vertical continuation and derivatives
of gravity or magnetic anomaly fields are analysed on the basis of their filter
response using methods from communication theory. The other important criteria
in judging their data-processing methods are the effect on errors and ambiguity.

New coeflicient sets are then proposed for upward and downward continua-
tion and second derivative using these three criteria.

INTRODUCTION

Many methods are available for the interpretation of gravity and magnetic anom-
aly maps and most fall into one of three categories, namely: (I) direct qualitative
interpretation of contours, (2) indirect interpretation in which hypothetical anom-
alies are fitted to the contours, and (3) data processing methods in which the
contours are put into a more easily recognisable form. '

Direct qualitative interpretation of contours is useful in working out initially
the gross structures of the area. For example, areas of basins and ridges are easily
picked out. However, generally speaking, without computation this first category
requires considerable experience on the part of the interpreter before it can give
numerical details of depth, size and shape of a probable structure producing the
anomaly.

The second category is useful provided ambiguity can be removed by well
supported assumptions of the body’s shape, as is often done in mining geophysics.
In fact, it can be proved by using Green’s “Theorem of equivalent layers” (Roy,
1962) that there are an infinite number of solutions of the body causing a given
anomaly. This type of method is only valid when the shape of the body is assumed.

Geoexploration, 4 (1966) 3-24




4 C. N. G. DAMPNEY

Data-processing methods include derivative methods of various orders and
vertical continuation. Derivative methods have their use in that they are able to
take out the “local’ componerit of a gravity or magnetic anomaly. As Nettleton
has pointed out (NETTLETON, 1954) it is impossible to uniquely define the “local”
or “regional” field. This is clearly seen in the very simple ring and point technique
used to find the first derivative, or gradient, of a gravity or magnetic anomaly field
intensity. For instance, what diameter do we make the ring whose average value
we subtract from the centre point to get the gradient?

PRACTICAL APPLICATIONS OF VERTICAL CONTINUATION

Vertical continuation method can be very useful in interpreting gravity and mag-
netic anomaly maps. Basically this method works out the anomaly at some height
or depth from the plane on which the anomaly is measured.

Downward continuation is able to directly calculate, at a known depth, the
sufface-contrast density which would produce a given anomaly, from the rela-
tionship:

T
(X, y) =~2—fIE g(x, y, h)

where 6,(x, y) is the surface contrast density at (x, y) at depth k; g(x, y, h) is the
anomaly at (x, y, h) and G is the gravitational constant.

The role of downward continuation in the determination of structure is seen
in the magnetic anomaly case. From:

9652 = [ [[ 1) - grad (l) dr

where Q(x, y, z) is the aqoma]ous magnetic, field potential at (x, y, z) due to the
intensity of magnetisation I(x, f, y) at (a, B, y) over the volume 1, and:
r={x-0)’+(-B)’+E—7)"}

can be derived (see Appendix I) the relationship that the undulating magnetic
basement surface z = f(x, y) = h of infinite depth and horizontal extent is related
to H/a, B, h) the vertical anomalous field intensity at («, §, &), by:

1 H(«, B, h) da df
Je ) = g, f f G-+ -pP

where the surface integral is over the surface S and 7, is the vertical component of
the intensity of magnetisation.

Geoexploration, 4 (1966) 3-24
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The surface integral can be approximated by a double summatlon giving
the structure by a direct computation from a grid:

% l H,(iAx,jAy)
AL, Sy 2y (= iAx) +(y—jAy)2Y

where Ax, Ay are unit grid lengths in the x- and y-direction and N is a value
beyond which the truncation error is negligible.

Upward continuation can be used to bring ground and airborne vertical
magnetic anomaly results to the same reference plane. However, as will be seen
later, this process can never be perfect.

Many different systems of the vertical continuation method, using coefficient
sets, have been proposed in the literature (see below). Some systems work better
than others, yet all fail in some way. Criteria are therefore needed by which each
system can be judged as best for the purpose at hand. This will be done, while
showing why some coefficient sets so far proposed fail.

J&x,y) =

FILTER RESPONSE, ERROR CONTROL AND AMBIGUITY

As TARKHOV and Siporov (1960) have pointed out the regional field, random
errors and other unwanted influences on the geophysical data are interference.
Processing geophysical data mathematically is the elimination of interference and
the ordering and collecting of the existing information. In spite of the great
diversity of mathematical methods used in processing geophysical data, they are
all basically filtration methods that operate like electronic filters and have the
object of detecting the anomaly (the signal) in the background of more or less
intense interference (the noise). In these methods the intensity is not necessarily
increased, in fact, it may be decreased. However, due to a certain decrease in the
unwanted information (the noise) the anomaly to interference ratio is increased.

The principles of communication theory underlie these data processing
methods. Operations on geophysical data are merely various types of space filters.
DEeAN (1958) proved the following results:

(1) If A is the distance of vertical continuation, taking the positive direction
as down, then the theoretical frequency response of the upward and downward
vertical continuation processes is:
N
where u and v are frequency parameters in the x and y direction such that
u = 2[1f/Ax, where f is the frequency of an anomaly in station spacing distance
Ax. A = Ax/f, where A is the wavelength of the anomaly in the x-direction. An
analogous relation can be derived for v.

Thus it can be seen that if the anomalous field intensity varies only in the

Geoexploration, 4 (1966) 3-24
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x-direction then the frequency response of the vertical continuation process is ¢ 1*!.

(2) The frequency response of a general coefficient set C,,, where C,,, is the
coefficient at the point (mAx, nAy), assuming a uniform grid with station spacing
in the x- and y-direction Ax and Ay respectively, is:

-] -]
Z Z Cm,n e—i(umdx+vnAy)
m=-—o n= —o0
In practice we would run over m and » only up to N where for | m | and
{n| > N the truncation error would be negligible.
Thus in the one dimensional case assuming C, = C_,, the filter response
would be:

N
C,+2 Y, C,cos (unAx)

n=1
This is like a fourier series which repeats itself with frequency uAx. The period is:
I II
— — S u S R
Ax Ax
Thus the maximum frequency that the frequency response can be specified is:

AMf,,, 21 i

Unax = = - _ " % =
Ax Ax Ax

The main effect of digitalizing data is to limit the high frequency response
to one half cycle per station spacing so that the frequency response of the coefficient
set need only be considered up to f = 4 or A = 2Ax. This makes vertical continua-
tion possible.

Thus, in vertical continuation coefficient sets, the coefficient sets’ frequency
response could be compared to the theoretical frequency response by examining
the equality of:

N
'l = Co+2 Y, C,cos (unAx)
n=1

This examination gives the first criterion of filter response by which coefficients
sets may be judged.

However, so far no account has been made of the effect of errors.

Two sets of 100 random samples of errors having a Gaussian distribution
with a probable value of 10 units were taken from a grid of numbers having that
property in ELKINS’ (1952) article. Their spectrum was examined using a finite
fourier transform. It was found, as would be expected, that the amplitudes of the
cosine term were scattered randomly through all frequencies from 0 to 0.5 using
0.01 intervals (see Fig.1). This shows that random errors (or noise) can be expected

Geoexploration, 4 (1966) 3-24
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Fig.1. Amplitude of random noise spectrum.

at all frequencies with no systematic decrease in the higher or lower frequencies.

Also in the special case where, for example, a tare occurs in a gravitymeter,
the resulting error could be represented by a step function and this is equivalent
to the presence of all frequencies.

From its theoretical frequency response, downward vertical continuation is
seen to be unstable in its high frequencies. Physically downward continuation is
questionable because it appears that more detail is being squeezed out of the data
than it contains. ' .

The fallacy of using a coefficient set which has the theoretical response is
seen by the effect on errors—the high frequency data would be greatly magnified
in relation to the low frequency data so that high frequency noise would swamp
low frequency information (or signal).

Error control is the second criterion by which coefficient sets should be judged.
DANEs and ONDREY (1962) have analysed second derivative methods and com-
pared them, using the first criterion, to the theoretical second derivative filter
response of u?+v2. They do not consider the effect of errors in their comparison.
As it turns out (see later), there is no need to use the second criterion in analysing
second derivative methods because the theoretical frequency response of second
derivative methods does not increase sufficiently.

To overcome the problem of high frequency noise, distortion must be in-
troduced into the frequency response in the high frequency part. The distortion
used is smoothing.

Data-processing methods are also open to the problem of ambiguity. For
example in the method of downward continuation the assumption of the depth of

bl Geoexploration, 4 (1966) 3-24



8 C. N. G. DAMPNEY

continuation has to be made. While SMiTH (1959a, b, 1960, 1961) and SMmiTH and
Botr (1958) have developed many theorems which link assumptions of density
contrast, density-contrast variation and other factors to the assumption of depth,
ambiguity must remain.

Thus the third criterion for judging data processing methods is ambiguity.
For example, DANES (1961) in his various methods including downward continu-
ation requires a knowledge of not only density contrast, but density-contrast vari-
ation to complete his method. His method by design, has a perfect filter response.
So Danes’ method in the case of a large distance of downward continuation (see
Fig.5) in an area where little is known of rock density would fail for the second and
third criterion, while perfectly satisfying the first criterion.

The interpreter must balance each method against these three criteria, decide

how strictly he should judge the filter response, error control and ambiguity of.

each and then use the method most closely satisfying his needs.

|, h=01
h=0125"
20— 2
[
0
a |
[
|
.k
2
=
15— ,
- h=0.5
10 : ' : i =
. 10 15 20 25 3o\w
Frequency (u)
05
ool h=10

Fig.2. BULLARD AND CoOPER’s (1948) downward continuation filter response.

Geoexploration, 4 (1966) 3-24

4



VERTICAL CONTINUATION AND DERIVATIVE METHODS 9

: ! —

1.0 .

: ' - + !
0 10 15 20 25 3o
Frequency (u)

Filter response
g 8 8
T T T

o)
T

&
[

04

=4

Q3r

oz#

(oX]

oo—
Fig.3. HENDERSON’s (1960) downward continuation filter response.

SOME PREVIOUS VERTICAL CONTINUATION COEFFICIENT SETS ANALYSED

In the analysis of the downward continuation coefficient sets which follows, the
anomaly is assumed, for simplicity, to vary only in one direction. For the various
ring techniques the coefficients are projected onto the x-axis. In this analysis it is
assumed that anomalies have already been put on a grid before interpretation
begins. No account is given here of the many dangers underlying the problem of
putting data on a grid, this being outside the scope of this paper. Fig.2, 3, and 4
and Table I and II show the normalised filter responses of various coefficient sets
proposed in the literature.

BuLLARD and CooPeR’s (1948) coefficient set is only one-dimensional and
can, therefore only be used for interpreting profiles.

Bullard and Cooper derive the relationship between smoothed gravity g,(x)
at x on the line at depth z and g4(x) and also use smoothing related to the error
function: )

Geoexploration, 4 (1966) 3-24
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o 1 ® ? - p2/4p pz
g.(0) = I go(x)e™ P7* e cos p(a—x) dx dp

- J " go(0)ilx—1)dx

-

1]

Y. go(nAx)2A(nAx—c)Ax

Thus:
C, = A(nAx—a)Ax
They smooth by:

— _ ﬂ @ —ﬂ(x—{)z
Jo®) = N[ﬁ f " g dx

Amplitude

u axis—l—

10 : t |
e v 2 307w

O5—

ool
Fig.4. Filter response of indicated coefficient sets. / = Finite difference method, h =1; 2 =
PETER’s (1949) method, & = 2; 3 = PETER’s (1949) method, # = 1; 4 = PETER’s (1949) method,
h = —2; 5 = finite difference method, 2 = —1; 6 = PETER’s (1949) method, # = —1; 7 = HEN-
DERSON AND ZEITZ’ (1949) method, h = —1.
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VERTICAL CONTINUATION AND DERIVATIVE METHODS 11

TABLE [

BULLARD AND COOPER’S (1948) COEFFICIENT SET FILTER RESPONSE!

10 2 1 0.5 0.2 0.125 0.1 radians

1.0101 1.0101 1.0101 1.0101 1.0101 1.0101 1.0101 0.0000
0.4932 0.9245 1.0000 1.0401 1.0649 1.0711 1.0733 0.0785
0.2417 0.8491 0.9936 1.0748 1.1266 1.1400 1.1445 0.1571
0.1181 0.7778 0.9845 1.1076 1.1887 1.2099 1.2170 0.2356
0.0576 0.7106 0.9729 1.1384 1.2509 1.2807 1.2908 0.3142
0.0280 0.6471 0.9584 1.1663 1.3122 1.3514 1.3647 0.3927
0.0135 0.5872 0.9407 1.1906 1.3714 1.4207 1.4376 0.4712
0.0065 0.5308 0.9198 1.2109 1.4280 1.4881 1.5087 0.5498
0.0031 0.4782 0.8964 1.2273 1.4818 1.5533 1.5779 0.6283
0.0015 0.4295 0.8708 1.2399 1.5328 1.6163 1.6451 0.7069
0.0007 0.3844 0.8432 1.2487 1.5805 1.6764 1.7096 0.7854
0.0003 0.3430 0.8137 1.2533 1.6241 1.7328 1.7706 0.863%
0.0002 0.3049 0.7825 1.2535 1.6632 1.7850 1.8275 0.9425
0.0001 0.2702 0.7501 1.2498 1.6977 1.8328 1.8802 1.0210
0.0000 0.2387 0.7169 1.2422 1.7277 1.8762 1.9285 1.0996
0.0000 0.2103 0.6830 1.2309 1.7527 1.9147 1.9719 1.1781
0.0000 0.1846 0.6487 1.2159 1.7727 1.9479  °~ 2.0100 1.2566
0.0000 0.1616 0.6142 1.1974 1.7873 1.9756 2.0427 1.3352
0.0000 0.1411 0.5799 1.1758 1.7970 1.9980 2.0698 1.4137
0.0000 0.1228 0.5460 1.1515 1.8017 2.0151 2.0917 1.4923
0.0000 0.1066 0.5128 1.1247 1.8017 2.0270 2.1081 1.5708
0.0000 0.0923 0.4803 1.0956 1.7969 2.0336 2.1192 1.6493
0.0000 0.0797 0.4487 1.0646 1.7878 2.0351 2.1249 1.7279
0.0000 0.0687 0.4183 1.0321 1.7746 2.0320 2.1259 1.8064
0.0000 0.0591 0.3891 0.9986 1.7578 2.0248 2.1225 1.8850
0.0000 0.0507 0.3613 0.9643 1.7379 2.0136 2.1149 1.9635
0.0000 0.0434 0.3348 0.9294 1.7150 1.9989 2.1036 2.0420
0.0000 0.0372 0.3098 0.8944 1.6897 1.9810 2.0889 2.1206

0.0000 0.0317 0.2862 0.8595 1.6626 1.9607 2.0715 2.1991
0.0000 - 0.0271 0.2642 0.8251 1.6341 1.9385 2.0521 2.2777
0.0000 0.0231 0.2436 0.7914 1.6046 1.9148 2.0309 2.3562

0.0000 0.0197 0.2245 0.7584 1.5745 1.8899 2.0085 2.4347
0.0000 0.0167 0.2068 0.7265 1.5442 1.8645 1.9854 2.5133
0.0000° 0.0143 0.1904 0.6958 1.5142 1.8391 1.9622 2.5918
0.0000 0.0121 0.1753 0.6664 1.4848 1.8140 1.9393 2.6704
0.0000 0.0103 0.1615 0.6384 1.4563 1.7897 1.9170 2.7489
0.0000 0.0088 0.1488 0.6118 1.4288 1.7663 1.8957 2.8274
0.0000 0.0075 0.1372 0.5866 1.4026 1.7442 1.8756 2.9060
0.0000 0.0064 0.1266 0.5628 1.3779 1.7235 1.8571 2.9845
0.0000 0.0055 0.1169 0.5405 1.3547 1.7046 1.8402 3.0631
~ 0.0000 0.0047 "0.1080 0.5194 1.3330 1.6872 1.8251 3.1416

! Each column is headed by the distance of vertical continuation in units of station spacings.
(Station spacing = 1.0 unit), or by ‘“‘radians’’ which is given in units of frequency. The unit of
the normalised filter response for.a given distance of vertical continuation and frequency is.
dimensionless.
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TABLE 11

HENDERSON'S (1960) COEFFICIENT SET FILTER RESPONSE!

—-5.0 —4.0 —3.0 —2.0 —1.0 1.0 2.0 3.0 4.0 5.0 radians
0.9019 0.9210 0.9404 0.9601 0.9800 1.0199 1.0398 1.0595 1.0790 1.0983 0.0000
1.0442 1.0318 1.0214 1.0128 1.0057 0.9953 0.9912 0.9874 0.9836 0.9794 0.0785
0.8704 0.9068 0.9371 0.9624 0.9832 1.0130 1.0221 1.0275 1.0291 1.0269 0.1571
0.8972 0.9256 0.9495 0.9698 0.9866 1.0098 1.0158 1.0177 1.0154 1.0085 0.2356
1.0658 1.0232 1.0027 0.9957 0.9961 1.0043 1.0067 1.0050 0.9976 0.9832 0.3142
0.9103 0.9276 0.9485 0.9685 0.9860 1.0091 1.0114 1.0040 0.9853 0.9542 0.3927
0.5527 0.7408 0.8577 0.9293 0.9732 1.0130 1.0111 0.9917 0.9538 0.8983 0.4712

—0.1267 0.4272 0.7226 0.8773 0.9581 1.0150 1.0040 0.9660 0.9027 0.8192 0.5498
—0.6403 0.2334 0.6544 0.8554 0.9528 1.0112 0.9858 0.9244 0.8333 0.7233 0.6283
1.3180 1.0650 0.9974 0.9638 0.9797 0.9971 0.9530 0.8666 0.7497 0.6193 0.7069
5.6484 2.6375 1.4962 1.1100 1.0099 0.9819 0.9161 0.8029 0.6626 0.5181 0.7854
10.5983 4,1176 1.8761 1.1840 1.0182 0.9698 0.8788 0.7376 0.5771 0.4250 0.8639
13.9335 4.7438 1.8995 1.1391 0.9997 0.9592 0.8398 0.6711 0.4955 0.3424 0.9425
3.3950 1.1110 0.7090 0.7926 0.9271 0.9518 0.8007 0.6059 0.4203 0.2717 1.021
—8.9543 —2.5160 —0.3416 0.5154 0.8750 0.9366 0.7542 0.5393 0.3510 0.2120 1.100
41.3289 9.9167 2.4477 1.0549 0.9550 0.9047 0.6968 0.4712 0.2879 0.1625 1.178
113.263 24.8208 5.1729 1.4652 1.0012 0.8756 0.6423 0.4092 0.2341 0.1232 1.257
—2.5687 —4.2193 —1.6220 0.0740 0.7978 0.8627 0.5980 9.3562 0.1898 - 0.0928 1.335
—284.999 —63.9689 —13.4577 —1.9886 0.5395 0.8472 0.5531 0.3075 0.1524 . 0.0692 1.414
—389.193 —83.6603 —16.9052 —2.4989 0.4957 0.8151 0.5023 0.2614 0.1208 0.0510 1.492
—258.901 —60.4736 —13.0092 —1.8937 0.5790 0.7762 0.4516 0.2202 0.0949 0.0373 1.571
—69.0811 —29.6844 —8.3660 —1.2556 0.6581 0.7383 0.4047 0.1846 0.0741 0.0271 1.649
247.358 16.3920 —2.2226 —0.5213 0.7382 0.7009 0.3614 0.1540 0.0575 0.0195 1.728
477.795 43.8706 0.5372 —0.2865 0.7680 0.6655 0.3219 0.1280 0.0445 0.0140 1.806
517.737 40.6837 —1.1287 —0.5800 0.7555 0.6315 0.2860 0.1095 0.0342 0.0100 1.885
1019.64 83.8747 1.6006 —0.4692 0.7764 0.5971 0.2529 0.0871 0.0261 0.0071 1.963
1272.97 " 82.0746 —1.6236 —0.9501 0.7604 0.5640 0.2230 0.0715 0.0199 0.0050 2.042
—38.1514 —89.1489 —20.9338 —2.6827 0.6789 0.5325 0.1963 0.0584 0.0151 0.0035 2.121
—3629.34 —450.100 —53.3778 —5.0615 0.5864 0.5017 0.1723 0.0476 0.0114 0.0025 2.199
—14042.0 —1302.00 ~116.400 —8.9480 0.4498 0.4722 0.1509 0.0387 0.0086 0.0017 2.278
—20779.4 —1664.00 —128.600 —8.5916 0.5605 0.4412 0.1314 0.0313 0.0064 0.0012 2.356
16439.4 1277.12 88.8265 5.6824 1.2921 0.4070 0.1133 0.0252 0.0048 0.0008 2.435
81484.4 5697.48 369.627 21.5187 1.9954 0.3759 0.0977 0.0202 0.0036 0.0006 2.513
64480.0 4431.96 282.778 16.3556 1.8107 0.3522 0.0849 0.0162 0.0027 0.0004 2.592
—29810.7 —1150.00 —26.2928 1.2789 1.3123 0.3309 0.0737 0.0130 0.0020 0.0003 2.670
—37579.0 —1566.00 —45.6933 0.6764 1.3634 0.3078 0.0635 0.0104 0.0015 0.0002 2.749
33939.6 1819.16 106.070 6.9501 1.6295 0.2852 0.0546 0.0083 0.0011 0.0001 2.827
43212.8 1906.43 97.8603 6.4648 1.6924 0.2647 0.0469 0.0066 0.0008 0.0001 2.906
—12578.8 —807.300 —19.3035 2.3692 . 1.6786 0.2456 0.0403 0.0052 0.0006 0.0001 2.985
—241570 —9903.00 —349.300 —7.7623 1.5538 0.2280 0.0345 0.0041 0.0004 0.0000 3.063
—604221 —22410.0 —739.300 —17.8794 1.4840 0.2112 0.0296 0.0033 0.0003 0.0000 3.142

! Each column is headed by the distance of vertical continuation in units of station spacings (Station spacing = 1.0 unit), or by “radians” which is
given in units of frequency. The unit of the normalised filter response for a given distance of vertical continuation and frequency is dimensionless.
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VERTICAL CONTINUATION AND DERIVATIVE METHODS 13

where B is a smoothing parameter determining the severity of smoothing. The
function is simply related to the error function by:

© B Ax(n+4) 5
Y I go(nAx) e P~ dx

n=-cow Ax(n—%)

§o(®

i W.go(nAx)

n= —w

where:

W, = 3lerf {{/BAx(n+ 9} —erf {/BAx(n—H)}]

In Fig.2 their suggested set of coefficients is analysed using a station spacing
of 0.125 units, over the range 0 < u < IT which is only part of the total range
between 0 and cut-off where u,,,,, = 8II.

However, this range represents the most important part of the frequency
response, serving as a useful part to compare with Table I which shows the com-
puted normalised filter response for a station spacing of one unit of a complete

. set of coeflicients, one for each grid point, worked out from Bullard and Cooper’s
table and approximation equation.

The normalised filter response for Bullard and Cooper’s suggested coefficient
set (Fig.2) was worked out for both average and middle values in each range. Only
variation of the order of 5% was noted between the two responses.

The normalised filter responses in Fig.2 and Table 1 were calculated for
various depths. Bullard and Cooper use a parameter = BA? in their computation,
where 4 is the depth of continuation. As in both Fig.2 and Table I, the parameter
was unity, the filter response was worked out for various depths namely for
h = 0.1; 0.125; 0.2; 0.5; 1; 2 and 10 units corresponding to § = 100; 64; 25; 4;
1; 0.25; 0.01. Thus the severity of smoothing is increased with depth.

Fig.2 and Table I show the similarity in the variation of the filter response.
In fact, the filter response was calculated for other station spacings, and showed
the same similarity, so that the cut-off frequency in Bullard and Cooper’s method
has little influence.

Bullard and Cooper’s coefficient sets show the increasing severity of smooth-
ing with depth thus satisfying error control. However, in the smaller depths, the
coefficient set filter response does not match up with the theoretical response over
this important part of the range.

The normalised filter response of HENDERSON’s (1960) coefficient set, is shown
in Fig.3 and Table II. HENDERSON’s (1960) downward continuation can be seen to
have smooth error control in relation to the filter response, increasing, as required,
with depth. Henderson’s method is able to most often satisfy error control and
filter response requirements.

Geoexploration, 4 (1966) 3-24



14 C. N. G. DAMPNEY

Fig.4 shows the normalised filter response of PETERS’ (1949), HENDERSON and
Ze11Z (1949) and the finite differences (BULLARD and COOPER, 1948) coefficient sets,
for the indicated values of A, with unit station spacing. The first 80 coefficients were
used for the finite differences method and the first 23 coefficients in the rapidly
convergent HENDERSON and ZEITz’ (1949) method. All these filter responses appear
unsatisfactory, except the downward continuation finite differences coefficient set.
Upward continuation coefficient sets tend to oscillate and do not, in any case,
match the theoretical response, in the low-frequency range.

Upward vertical continuation is by contrast a very stable process. Gravity
and magnetic data have predominantly low frequencies even near the source func-
tion. Away from the source, upward continuation introduces e~ "!*! which again
favours low frequencies. The low frequencies are essential for defining all gravity
and magnetic anomalies. The higher frequencies are relatively more important for
the smaller sharper anomalies and for defining sharp details.

Upward vertical continuation smooth down the higher frequencies, reducing
information in this range. Low-frequency noise in a perfect response coefficient set
. swamps high frequency information. Generally this does not matter, so that error

control is not nearly so important in this process.

' The normalised filter response of HENDERSON’s (1960) coefficient sets for .
various negative values of . with unit station spacing are shown in Table 1I. The
mismatch in the high frequencies is at once noticeable, but the filter response
decreases correctly in the important low-frequency range preserving the regional
information. However, Henderson’s method would allow high-frequency informa-
- tion to be vastly accentuated beyond their theoretical amplification, producing a
derived, anomaly map containing all frequencies and thus looking correct, but in
actual fact not possessing the correct relationship to its original data.

The upward continuation process can therefore be only really useful as a
numerical filter. As errors occurring in magnetometers and gravimeters can not be
made frequency dependent, it is not yet possible to match up ground and airborne-
anomaly results through all the frequencies.

Henderson’s coefficient set for continuing upwards a theoretical anomaly of
a particular body, which, by definition, has no error, would be highly unsatis-
factory.

STRAKHOV (e.g., 1961, 1962a, b, 1963a, b, c, 1964) and STRAKHOV and
LAPINA (1962 and 1963) have written many articles on potential field analysis
including various methods and analysis of second-derivative and vertical continua-
tion methods. The articles are generally intensely mathematical using many
unfamiliar inequalities and equalities of harmonic analysis, though their truth
is undoubted.

The reader is especially referred to his article, “The derivation of optimum
numerical methods for the transformation of potential fields, I”’ (STRAKHOV, 1963c),
as an excellent list of references, especially of many Russian authors, is included.

Geovexploration, 4 (1966) 3-24
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ELKINS (1952) showed the effect of taking the second derivative, using his
own coeficient sets, of a grid of random normally distributed errors. The appear-
ance of the anomalies he gets can be explained by the filter response unequally
affecting all the frequencies in the data.

So far, the examination of various vertical continuation systems has been
destructive, no better system has been proposed. Coefficient sets for vertical con-
tinuation and second derivative methods will now be derived aimed at satisfying
the first and second criteria.

DERIVATION OF COEFFICIENT SETS
Downward vertical continuation

The second criterion of error control is first satisfied in this unstable process by
cutting out the high-frequency data from the value of u beyond which the data
errors are greater than the lowest-frequency information.

The noise to signal (information) ratio in the data, assumed to be on a grid,
is taken as being the ratio: standard deviation of anomaly/standard deviation of
error = x.

In any survey containing closed loops the error at each grid point is known.
The standard deviation of these errors is taken as being the noise level. The
standard deviation of the anomaly is taken as the signal level. This ratio is taken
without any pretence of mathematical rigour, but the ratio is sufficiently represent-
ative for practical purposes. '

Thus if the distance of downward continuation is 4 then the frequency above
uy must be filtered out where:

Mo =x

because above this value of u, the amplification of the errors will be greater than
the amplification of the zero frequency information.

Using this fact, the maximum anomaly size that can be interpreted from
downward continued data for a signal to noise ratio of 200 is shown in Fig.5.

A numerical filter is therefore required which will cut out these high fre-
quencies. Smoothing by an erf function as used by BULLARD and CooPER (1948)
would be suitable, but, for simplicity, a two-dimensional symmetrical step function
is used in the frequency domain.

The coefficient set which has the required filter response is calculated. Put:

[} ©
Z Z C e—i(umAx+vnAy) = f(u U)
m,n b

m=—-own= —w

where f(u, v) is a symmetric function with respect to u and v about 0.
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Fig.5. Minimum anomaly size detectable at depth % in units of station spacing.

Suppose Ax = Ay = 1, then:

1 moen .
Cpn=—3 f(u, v)e” ¢ dy do
=] |

1 118 11 0 .
= H'l_zf <f + f >f(u, v)e”¢mrom qy do
-n\Jo -n

In the range O to —II putv = —uv:
n

1 n .
. C, = — due™™ | 2cosvmf(u,v)dv
mo =gz | dwe ™ [ 2cosom s,
as f(u, v) = f(u, —v).
1 I n
Cpn= e f j f(u, v)cos um cos vn du dv
JoJo

as f(u, v) = f(—u, v). Thus the coefficient set with the required filter response is
found.

The two dimensional symmetric step function is given by: f(u,v) = 1,
—Uy < u < Uy, —Uy < v < vyor = 0 otherwise, Therefore:

1 ) oy
C = — cos um cos vn du dv
m,n nz
0 0
1 1 . . . -
= —s X —— sin Ugm sin ugn
> nm
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Notethat:C,, ,=C,, ,=C_,,=C_, ,=C,n=Cp - n=C_,0n=C_, _p,
that is C,, , is eight-fold symmetric.

Example: Suppose for a survey we find that x = 112, which means that the
errors are of the order of 0.1 mgal and the variations of the anomaly of the order
of 11 mgal. We wish to continue this data downwards to a distance of five units:

e = 112
Coug &~ 1.571 =~ 10)2

Thus:
' 1 1 . IIm . IIn

Cpn = —3 X — sin —— sin —
’ I1 nm 2 2
1 1 IIm
mo = —— X —sin —
’ 21 m 2
Co,o=%

Table III gives the right-hand quadrant of this coefficient set up to » = 10 and
m = 10.

Smoothing is thus carried out on the data and then with no high frequencies
present a downward continuation coefficient set is applied to the data.

A downward vertical continuation coefficient set is found, similarly to the
smoothing coefficient set:

1 I In
Coin = o f f "+ cos mu cos nv du dv
: 0 0

Cn,» Was computed using a double Simpson approximation for A = 1 up to
n = m = 10. The right-hand upper quadrant of this coefficient set is given in
Table IV, ’

While C,, , appears an easy integral to work out it defied all attempts to
solve it in terms of simple functions.

It is seen that the downward continuation coefficient set converges very
slowly and more terms would need to be computed than are shown.

Upward vertical continuation

No error control is required for this process.
The upward continuation coefficient set was calculated exactly as the down-
ward continuation set except that & = —1.

1 It has since been pointed out that TAKEUCHI and Sarto (1964) have numerically approximated
the coefficient C,,, , for various positive values of h from # = 0.01 to & = 1. The values of C,, ,,
given in Table IV are in agreement with Takeuchi and Saito’s to the fourth decimal place.
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TABLE 111

SMOOTHING COEFFICIENT SET

n m=20 m=1 m=2 m=23 m=4 m=35 m=6 m=7 m=3_8 m=29 m =10
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.01768 0.01126 0.00000 —0.00375 0.00000 0.00225 0.00000 —0.00161 0.00000 0.00125 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 —0.02274 —0.01447 0.00000 0.00482 0.00000 —0.00289 0.00000 0.00201 0.00000 —0.00161 0.00000
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.03183 0.02026 0.00000 —0.00675 0.00000 0.00405 0.00000 —0.00289 0.00000 0.00225 0.00000
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 —0.05305 —0.03377 0.00000 0.01126 0.00000 —0.00675 0.00000 0.00482 0.00000 —0.00375 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 0.15916 0.10132 0.00000 —0.03377 0.00000 0.02026 0.00000 —0.01447 0.00000 0.01126 0.00000
0 0.25000 0.15916 0.00000 —0.05305 0.00000 0.03183 0.00000 —0.02274  0.00000 0.01768 0.00000
TABLE 1V
DOWNWARD CONTINUATION COEFFICIENT SET
n m=20 m=1 m=2 m=3 m=4 m=35 m=26 m=17 m=3_8 m=9 m =10
10 0.10615 —0.02190 0.00714 —0.00361 0.00188  —0.00141 0.00081 —0.00076 0.00044  —0.00047 0.00027
9 —0.13119 0.02660 —0.00918 0.00409  —0.00263 0.00146 —0.00124 0.00072  —0.00072 0.00042  —0.00047
8 0.16500 —0.03416 0.01107 —0.00565 0.00290 —0.00221 0.00126 —0.00117 0.00069 —0.00072 0.00044
7 —0.21547 0.04366 —0.01518 0.00669 —0.00436 0.00239  —0.00204 0.00120 —0.00117 0.00072  —0.00076
6 0.29011  —0.06043 0.01943  —0.01005 0.00510 —0.00389 0.00224  —0.00204 0.00126 —0.00124 0.00081
5 —0.41562 0.08427 —0.02962 0.01287 —0.00846 0.00467 —0.00389 0.00239  —0.00221 0.00146 —0.00141
4 0.63311 —0.13375 0.04254  —0.02226 0.01131  —0.00846 0.00510 —0.00436 0.00290 —0.00263 0.00188
3  —1.09070 0.22317 —0.07954 0.03454  —0.02226 0.01287 —0.01005 0.00669  —0.00565 0.00409 —0.00361
2 2.18630 —0.48546 0.15438 —0.07954 0.04254  —0.02962 0.01943 —0.01518 0.01107 —0.00918 0.00714
1 —5.84827 1.35202 —0.48546 0.22317 —0.13375 0.08427 —0.06043 0.04366 —0.03416 0.02660 —0.02190
0 15.78620 —5.84827 2.18630 —1.09070 0.63311  —0.41562 0.29011 —0.21547 0.16500 —0.13119 0.10615
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TABLE V

UPWARD CONTINUATION COEFFICIENT SET

n m=20 m=1 m=2 m=3 m=4 m=35 m=6 m=7 m=28 m=9 m= 10

10 0.00007 0.00013 0.00015 0.00014 0.00013 0.00011 0.00010 0.00009 0.00008 0.00006 0.00006
9 0.00032 0.00024 0.00020 0.00018 0.00016 0.00014 0.00012 0.00011 0.00009 0.00008 0.00006
8 0.00017 0.00026 0.00028 0.00025 0.00022 0.00019 0.00016 0.00013 0.00011 0.00009 0.00008
7 0.00062 0.00049 0.00040 0.00035 0.00030 0.00025 0.00020 0.00016 0.00013 0.00011 0.00009
6 0.00048 0.00061 0.00061 0.00051 0.00041 0.00033 0.00026 0.00020 0.00016 0.00012 0.00010
5 0.00153 0.00123 0.00097 0.00077 0.00058 0.00044 0.00033 0.00025 0.00019 0.00014 0.00011
4 0.00176 0.00193 0.00166 0.00120 0.00084 0.00058 0.00041 0.00030 0.00022 0.00016 0.00013
3  0.00590 0.00462 0.00303 0.00193 0.00120 0.00077 0.00051 0.00035 0.00025 0.00018 0.00014
2 0.01242 0.01036 0.00590 0.00303 0.00166 0.00097 0.00061 0.00040 0.00028 0.00020 0.00015
1 0.05965 0.03260 0.01036 0.00462 0.00193 0.00123 0.00061 0.00049 0.00026 0.00024 0.00013
0 0.13718 0.05965 0.01242 0.00590 0.00176 0.00153 0.00048 0.00062 0.00017 0.00032 0.00007
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20 C. N. G. DAMPNEY

The same comments concerning method apply here.
However, the upward continuation coefficient set converges sufficiently
quickly for practical purposes as seen in Table V.

Second derivative

As DEAN (1958) has shown the second differential theoretical filter response is
u? +v2. The highest frequency data is therefore amplified by a factor of 2I12. Thus
as in all practical cases this value would be far below the signal to noise ratio—no
account need be taken of error control, other than realising unequal amplification
of errors.

Thus a coefficient set having the perfect filter response would be best for
this process.

1 n I
Cpn = o f dv cos nv f (u* 4 %) cos mu du
o] 0

1 I n
= -—if dv cos nuj u? cos mu du
1-‘[ 0 0
1 I n
+ —zf dv cos o, vzf cos mu du
H 0 0

= 0 (for m and n # 0)
1 et 2
Co,n = I?fo fo w?+v*)cos nudu dv = Fcos nIl
C0'0= 2H2/3

The upper quadrant of this coefficient set is found from Table VI.

TABLE VI

SECOND DERIVATIVE COEFFICIENT SET

n Co,n = Cn, []
1

0.02000
—0.02469
0.03125
—0.04082
0.05556
—0.08000
0.12500
—0.22222
0.50000
—2.00000
6.57972

O~NWAULAN®OO
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VERTICAL CONTINUATION AND DERIVATIVE METHODS 21
CONCLUSION

The general comment on data processing methods is then made that their use must
be tempered by a full appreciation of their inadequacies. There may be much to
be gained by interpreting in the frequency domain, as done, for example, by
ODEGARD and BERG (1965).

TUKEY (1965) has summarised much of what remains to be done in interpre-
tation in seismology, much of which applies to gravity and magnetic interpretation.

Data-processing methods can be judged by using the three criteria of filter
response, error control and ambiguity considerations.

While much remains to be done in improving the various methods of inter-
pretation, these three criteria give a sound way of judging improvements.
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,  APPENDIX I p% 7. 9,4/[ ]’ fe //43’1:;;@_

. The magnetic anomalous field potential Q(x, y, z) is related to the intensity of
*  magnetisation I(a, B, y) at (o, B, y) by:

_ (77 (7 KB (—y)dadpdy
Q(x, y,2) = f_wf_wf A= 2F—P+ - (1)

Consider the vertical component of Q(x, y, z) due to a basement with upper
surface described by y = f(a, f) ~ h and infinite in all other directions. The
vertical component of I(a, f, y) is supposed constant—and denoted I,. Therefore:

N © e pf@h (z—y) de dB dy
Qx, v, 2) = 1. f_wf_wfw G= +O-PP+ -1
0 o ,y(z_,y) S, B)
’zf_ f_w [{(x—a)2+(y—ﬁ)2+(z—v>2}*L *dp

L e

= first integral —second integral, where:

. F(a, B) (2=, )} dar dB
first integral = 1, f -J o [G=a+ (B + = —f (@ P

Now as f(«, f) =~ h:

fla, B)(z—h)da dp .
. first integral = I, f_wf_m (= + OB+ —h} 2)

1
Now as V2 (—) = 0:
r

S(a, B) 62 62 1
\ . second integral = I, f f f [ ‘W] <;) da dp dy

interchanging order of integration:

Sf(a, B) 0 = 62 1
=1 d d —(-]d
sz y vf_w ﬂj_waoﬁ(r) «
S(a, B) o0 w0 62 1
I d d —(-]d
* ’L ? yf_w “f_wa/F(r) ¢
P S (2, B) P 3 /1\1®
[ e[ el
fes] -0 aa r -0
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N
)-“/“_

AN B _pf@B). ) ’ 8 /1\1®
+Iz’f~, df—dcx[— —)J =0 3
covdy o de s G ©))
From Roy (1962) eq. 18 the field potential (magnetic or gravitational):

V(x,y,z) at P(x,y,z) = % ffwffw ; [Z—:(a, B, y)]7 . da dp @

where r = {(x—a)>+(y —B)* +(z—h)*}*. Now the field intensity:

av
(I)(a, ﬁs ')’) = —a; (d, B’ '}’)

Thus differentiating with respect to z:

4 = o | : | 22 [o ) aap

y=

_ L r® r® (z-h)¢(a, B, y) dadf
_.ﬁf_wf-oo r3

Now as ¢ satisfies V2¢ = O this relation is a property of potential functions,
so that we may replace ¢ by Q so that we get in the magnetic field potential case:

. o T A Q(a, B, h) (z—h) da dB
R E S I I = v e
.. from eq.2,3 and 6: I, f(a, f) = Q(a, B, h)j2I1. But « = x, f = y then

sz(x’ y) = Q(x, ¥, h)/21'I
From eq.4:

1 ® (° Hfa, B, h)dadp
Qz(xaya Z)=_‘" 2 213
201 —wv - {(X—d) +(y_ﬁ) }
where H, is the vertical component of the magnetic field intensity. Thus:

~ _1_—‘ © © H).(a, ﬂ’ h) da dﬁ
S 9 = e f_wf_w {(x—0*=(y-B)*}*
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