
GEOPHYSICAL STUDIES IN TASMANIA 

Part A 

Interpretation of the Gravity Potential 

Field Using the Frequency Domain 

by 

C.N.G. Dampney, B.Sc. Hons.) (Sydney) 

submitted in fulfillment of the 

requirements for the Degree of 

Master of Science 

UNIVERSITY OF TASMANIA 

HOBART 

November, 1966 



Candidate's Declaration 

I hereby declare that except as stated herein, this 

thesis contains no material which has been accepted 

for the award of any other degree or diploma in any 

university, and that, to the best of my knowledge 

and belief, this thesis contains no copy or para-

phrase of material previously published or written by 

another person, except when due reference is made in 

the text of the thesis. 

(C.N.G. Dampney) 



GEOPHYSICAL STUDIES IN TASMANIA 

Part A  

Interpretation of the Gravity Potential Field Using the Frequenc? Domain  

Supporting paper: "Three Criteria for the Judgements of Vertical 

Continuation and Derivative Methods of Geophysical Interpretation". 

(inside front cover) 

Candidates Declaration 

Abstract 

Acknowledgements 

Frontispiece 

Page 

1. • Introduction 1 

2. The Frequency Domain 3 

.1 Fundamentals 

.2 The spectrum of ,,, (.1r,, j5z) 7 

.3 Transformation ofitz(yi z) into the frequency domain 9 

.31 Bandwidth 16 

.4 Vertical Continuation and Communication Theory 19 

.41 Practical Application of Vertical Continuation 19 

.42 Filter Response 20 

.43 Error Control 23 

.5 Some Previous Vertical Continuation Coefficient Sets 25 

Analysed 



Page 

3. Derivation of Coefficient Sets 31 

.1 Noise Level 31 

.2 Smoothing 33 

.3 Vertical Continuation 35 

.31 Discussion of Vertical Continuation 39 

4. The Equivalent Source Technique 42 

.1 Review 42 

.2 Equivalent Source Technique 48 

.21 First Form 48 

.22 Second Form 54 

.221 Solution of /r  58 

5. Application of Equivalent Source Technique 68 

6. Derby-Winnaleah Gravity Survey 79 

.1 Geology of the Area 80 

.11 Topography 82 

.2 Processing the Derby Gravity Data 83 

.21 Fundamental Assumptions 83 

.22 Free Air and Simple Bouguer Anomaly 84 

.23 The Extended Bouguer Anomaly 85 

.231 Rock Densities 85 

.232 Method of Calculation 86 

• .3 Testing the Equivalent Source 89 

.4 Derby Bouguer Anomaly Projected onto a Flat Plane 89 

.5 Future Work 91 

.6 Conclusion , 91 



Appendices 	A 

References 

Maps 
	 Inside back cover 

1. Geology of Derby-Winnaleah 

2. Interpretation of ancient Ringarooma river path 



ABSTRACT  

The frequency domain assembles gravity potential field information 

into a more meaningful form then the spacial domain. The gravity 

potential field becomes mathematically well behaved, allowing, ideally, 

an exact expression for the interpretation procedures of vertical 

continuation and derivatives; and the formulation of criteria to 

examine previously proposed interpretation methods of this class. 

Moreover, approximations, which are an inevitable component of 

interpretation, can be more clearly examined. Using the frequency 

• domain it is shown that a discrete system of point masses, judiciously 

chosen, adequately synthesize any gravity field. The proposed 

"Equivalent Source Technique" results in the projection of irregularly 

spaced data on rough topography, onto a regularly gridded horizontal 

plane. It also allows vertical continuation of the potential field 

and the effective removal of the regional from the Bouguer Anomaly. 
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FRONTISPIECE  

The Derby Winnaleah Area 

Plateau looking south 
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1. INTRODUCTION  

The determination of an area's geology -is an int4guing and often 

difficult process. Only the upper surface can be directly observed without 

expensive drilling; so that in some way the surface information must be 

extrapolated downwards to discover what lies beneath. Geophysical measurements 

can be made to help carry out this process as they provide additional inform-

ation on the physical relationships between the geological structures forming 

the area. 

In fact all these measurements are linked in some way to the character-

istics of the surrounding geology. Such parameters as the elasticity, 

conductivity, density and magnetism vary significantly between structures 

setting them apart as individual entities capable of being interpreted. 

Every geophysical measuremeat must always contain information 

related to each geological body in its locality. 	To interpret the geology 

from the measurements, however, is not a simple process. The measurements 

are so much data that has to be manipulated, corrected and filtered in a 

variety of ways to strain off the useful information. 

Yet while it is important to know what information can be extracted 

from the data it is also important to present the data in a final form in which 

the information is most readily accessible. Information gains clarity as it 

becomes more directly related to its source in the eyes of the observer. In 

this sense we say information gains order and coherence. The gravity potential 

field was thus examined theoretically to find how data could be assembled into 

a more meaningful form. It was found that the frequency domain we will denote 

by F more clearly expressed gravity data than the spacial domain (denoted by S). 
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The concept that information should be translated into a domain 

producing greater coherence than the domain of measurement is not new. The 

frequency domain F has been commonly used in seismic interpretation, while 

in geomagnetism the global coverage of magnetic variations has forced the 

use of the spherical harmonic domain to express the otherwise complex 

variations. 

Usually transformations between domains are ideally made by an 

integral transformation involving every point in the old domain to define 

one point in the frequency domain. A further condition is also imposed 

that a one-to-one relationship can be established between the points of the 

two domains. 

The purpose of this thesis is to examine the behaviour of the gravity 

potential field in F and in that way carry out interpretation of gravity 

data. The transformation is carried out ideally by the Fourier integral 

transform which does involve every point in S to define one point in F while 

maintaining the one-to-one relationship. The importance of this last condit-

ion is that, if obeyed, information content is neither suppressed nor over 

extended. 

In practice, however, there are only a finite number of measurements 

and the value of every point in S is not known. To overcome this problem 

which defines a new set of N values 6; 6e5)  in F from the set of N values 
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go(Min S by means of the orthogonal functions ft:  (0) • The orthogonal 
y 

series, in general, sufficiently closely approximates the integral trans- 

form to the extent that the new domain defined on the basis of the 

orthogonal series can be considered to have the desirable properties 

of the domain defined by the integral transform. However, this is not 

always the case, and limitations have to be realised. 

The Fourier series is therefore used to transform points from S 

into F. 

The potential field, in this instance, the gravity potential 

field, is shown in chapter 2 to become mathematically well-behaved in F 

as the intensity varies smoothly independent of the disturbing body's shape. 

This feature allows trends indicating orientation and depth of disturbing 

bodies in the data to show up. 

More importantly gravity field intensity in the frequency domain is 

found to rapidly diminish as frequency increases. This allows the vertical 

continuation and derivative processes on potential fields to be more 

accurately expressed in F as a filter with a particular frequency response. 

Thus various methods of vertical continuation such as Bullard and Cooper's 

(1948), Elkins (1952), Peters (1948) and Henderson's (1960) are compared 

on the basis of their filter responses in chapter 2. 

If the data is assumed perfect, to contain all information related to 

gravity field variations and known on a regular horizontal grid, then a matrix 

of coefficients can be found which carry out exactly the vertical continuation 

and derivative processes. These matrices are found in chapter 3 from 

theoretical relationships in the frequency domain. They may then be used to 



-4 

show up the limitations of these processes. 

Gravity field measurements, however, are not generally made on a 

regular horizontal grid. In order to project data onto this grid, a new 

method, called "the equivalent source technique" is developed in chapter 4. 

The equivalent source technique simply substitutes disturbing bodies at 

depth which synthesize the field intensity measurements taken at irregular 

points on rough topography. The intensity at the grid points is then found 

directly by calculating the attraction of these bodies. 

Similarly, methods are available to interpolate irregularly spaced 

data (restricted to flat topography) onto a grid (Jones, 1965; Brown, 1955; 

Saltzer, 1948) but as polynomials are used they are found to be unsatisfactory 

for reasons discussed in chapter 4. The equivalent source technique is found 

to have many useful applications. 

Practical computoi programs to carry out the new technique are 

discussed in chapter 5. Fortunately, a new iterative approach to solving 

matrices made the program development straight forward. 

The analysis of gravity field intensity data from Derby-Winnaleah 

is carried out in chapter 6. As the area was extremely varied in height due 

to a valley being cut out in a basalt plateau by the Ringarooma river, the 

data had to be projected onto a flat plane in order to be analysed correctly. 

A"regional" variation was removed from the data using a further application 

of the equivalent source technique. The object of the analysis was to find 

the general structure of the area, particularly the old path of the Ringarooma 

river before it was buried by Tertiary basalt flows. 



-5- 

2. THE FREQUENCY DOMAIN.. 

2.1 Fundamentals  

The frequency domain is convenient for examining potential fields, 

which by definition satisfy Laplace's Equation 

i/z-- 0 	 (2.1) 

for the potential V at points where there are no sources to the field. From 

the identity 

72(_9 	 (2.2) 

it is seen that V may be proportional to the inverse of the distance from the 

origin of co-ordinates, as, in fact is the case for the gravitational potential 

field, Vf (x,y,z) at (x,y,z). 

In three dimensional cartesian co-ordinates V (fig. 	is given by 

1/(z, y, z) = & 	ce,  

 

(2.3) 

a)Q  where jr, 	74.  ( 	/ ri 	z 
7Vz.. 

 

67 = the gravitational constant and the mass  

is the source of the field. 



FIGURE 1. The gravitational potential V(x,y,z) at P is 
related to the mass rn (oc) ff) ?- ) at (0() /9)  a- ) 
by equation (2.3). 



Thus from eqns. (2.3) and (2.4) 

A/ 

2 3/ (2.5) 
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Generally speaking, however, the geophysicist measures the gravitational 

field intensityy, where 

sr— 	viz 	
(2.4) 

more conveniently as the gravitymeter is designed to measure the vertical 

component of 
9 
 directly. As the gravitational attraction of the real earth 

"v.  

is sufficiently great that we may define the horizontal reference plane as 

being perpendicular to it for practical purposes, the variations in OP need ,/2:„ 

only be considered. 

where the M masses /5( at (%() 4,( ) 	are point masses we now 

consider as representing approximately the mass deviations of the rear earth 

from. the model earth. 

In the limit as N"-*C42 , the approximation disappears as the masses 

close infinitesimaly together and become a continuum. Thus q in eqn. (2.5) 
4/Z 

may be expressed as 

Yz (Dv 	f f(°1)fi)  dT  (2  

2-  a (x --  cs`) *2 +(7-/e) ,̀ (z  
(2.6) 

where 	 1A 
	 (2.7) 
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and /2&) /2) a-4) is the contrast density of the real from a model earth 

at 
 (

06 Azr) with integration being carried out over its volume -4: . 
if) 

In practical gravimetric problems of the exploration.type the 

integration is confined to the region underlying the survey area and 

encompasses all relatively signip.cant mass deviations. Usually it is 

sufficiently accurate to assume a flat earth. 

As there is no pre-determined tendency for the contrast density to 

vary systematically, except with respect to depth under some assumptions, 

:the field intensity Q ( y Z) in the spacial domain will show an 
wtZ 

unsystematic variation with .respect to the horizontal co-ordinates U,y) on 

the plane z = h. 

2.2 The spectrum of 	z X A 	• 

However, the gravity field becomes mathematically better behaved in 

the frequency dOMain as can be seen.from its spectrum  

Y. (  
.ce -co 

found using the two-dimensional Fourier Transform to map the spacial 

parameters-(x,y) onto the frequency parameters (u,v). 

Hence from eqn. (2.5) considering the source of the field to be a 

, series of point masses 

G(64 19-) 

00

if 	6 2794 - 	e-   

Gq-4) z  (Y-  fi4 2 	a tr13/4(-2  .9) 
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i-frc oto( - 

by the Mean Value Theorem 

where / 

H 

(2.10) 

(2.11) 

In practice the anomalous masses will be some Aistance below the 

topography and thus i'"/ /> 

Therefore, from . equation (2410): the general statement can be made that 

the gravity field intensity spectrum has.a marked tendency to decrease as 

the frequency parameters increase... .Thus the gravity potential field becomes 

mathematically well behaved no matter what,.theanomalous ma”- (or \contrast 

density) distribution is. 

As an example consider a tass point, m, at the origin. From eqn. (2.9) 

(2.12) 

so that even for this highly irregular potential field, the amplitude 

(;-(a -(9) of the .speCtrum smoothly and rapidly approached zero as u and v 

increase. 

These theoretical considerations and the relative ease by whichy is 

transformed into 6; suggests that we use the frequency domain for 

examining methods of potential field interpretation. In fact, Danes 	(1960). 



- 9 -  

Odeguard and Berg (1965), Bhattacharyya (1965, 1966) have recognized this 

by using the domain in their interpretative procedures. 

2.3 Transformation of yz  (q",y,2) into the frequency domain  

-As-has been stated more generally in the introduction it is necessary 

to approKimate the Fourier Transform by the Fourier Series as 1;(›)'ji z) will 

not be known at every point in the spacial domain-S '. While ideally in 

the one-dimensional case 

(2.13) 

for a profile/' (( 	 a.Jn-yS s — 	(' le 2) , gravitational intensity 
z 

will only be known over a finite area and therefore a finite length 2TTA along 

its profile. That is 

(2.14) 

It is then necessary to assume that the function.OP 	z) repeats 

itself periodically in the intervals 

(2-)-) 	Tr 	 77- 

C'(") = (2.15) 
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2771 1-77. 
(2.20) • 
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as 9(x) ,f(x7` 277  7') 

- ;117 

r• 

f (9c 	/:)) Cs/X 	(2.16) 

71  2/G 	> 
N —* 

- 44 j  
OfJe. 	(2.17) 

if 44. 	is non integer 
00 

io  

Suppose  

(2.18) 

6(rA) x h 1.1.7 /Vz 77- 	OM. 	 (2.19) 

Thus our limited spacial knowledge of yi N results in only the 

amplitude of a finite number of frequencies 1'1 	formipteger // being-known 
2 rr A 

    

(2.21) 



(2.24) 

Hence frX) 
pit_ 

•e 

11 = " A' 

2 rr/A/ 	f(A. 

6,7  .e 71-  (G" -11) 

,)t/  (4 x 2 Tr/A/.4,e) 

_ 
"207 	4  ,4  

— 
.J/ - 	- et. 

••••■ 

Furthermore, in practice, measurements of A(c) are confined to 

a discrete number so that there will only be Al  values, say 41=c apart, 

known along a profile. Toetttin the one-to-one correspondence between 

domains it is therefore only possible to find N values of C n . For 

simplicity we take the smallest values such that if N is odd, then 

- E=1-) ( ( 
	

(2.22) 

If N is even 

\<— 	 (2.23) 

therefore 2 77 	 Zlx 



m•=1, 
=NO 
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Note a* 41- / =iv whether N odd or even. 

4 

-71 f 
(2.26) 

Note c7 	0 for even N when .7.1 -11 

Therefore c' 

•••• 
WINO 

  

= 

. A-2.7 E 
(2.25) 

f) 

.9)1 
.••••1 p  (2.27) 

 

0 

 

Where ° 

(A lic) sv 	f) 

(2.28) 

unless 11 0 or 

A z - 

11 01 for even N where the normalising factor = 1/N 

This may be extended to two dimensions. 

cp s 	(„t  A .7). -4,7) = 
J I 

AM - 

where a. 	are defined similarly to : a )c )  

.1.(7 	 4 

-e 	 ( 2 . 29) 
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1.1 

=MI 
• =11. 

— C 	(s.) 

[.k,cos(s.fr, C).4-  

17 "f* 	.4.1) COS-(ft 7,4cos-(s-,,,r) (2.30) 

*MP 

= 0 

— ../7.) Sm(mF)cos(S- oi 

Vcipl(S,7 C)} 

This gives in Bhattacharyya's (1966) notation, 

f OS(S A'7  

4 B (s C) 

(717 )11)C 00/1 .c.) 
4-  

2.31) 

where . cII) " ) ) 	'11i? ■ 
and F 	correspond to the 

pa 

amplitudes of the various "waves" shown in fig 2. 
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Thus C 	is the complex amplitude of the wave with frequency *PI 

	

,11/ Aid 	1°7/NZly .  A 
and substituting from eqn. (2.29) into (2.30) we find 

(Af.,,, 	) 

4 (67hIm 	) 

l4:1 01) -‘ 6641 ,1 — 

471. - + EL,  

(2.32) 

The modulus of C N̂n  gives the amplitude of the two dimensional 

•

O 

wave  with frequencies 	91") 

MIN% 
•••• (2.33) 

C.Ovt,v1 

••• 
■•=1 _ e (4, „ 	,„,)2 

(2.34) 

I c I = 904,0 

•••• 
Mal 

4 /A a  74- 44.  
0+1,  

(2.35) 

=It (2.36) 
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The amplitudes are seen to depend on whether 7n and 407 have the 

same or opposite sign. Therefore only two quadrants of c- 	are required 

to specify the amplitudes of all Xaves, that is half of the frequency 

domain, while the remaining two quadrants express the phase. Analogously 

in one dimension positive wavelengths only are required to specify 

amplitude. 

Geometrically two dimensional waves can be :represented by contoured 

diagrams. From fig. 2 we can see that the planar wave in fig. 3 a is the 

result of 

- 0 except for a particular 2,) and .1,1 . 	(2.37) 

— 0 except for a particular 1» and 41 . 

This is also derived from eqn. (2.31) 

z- A 	ic os(,1 1114- r) .5 II 1,44.r f),.? (2.38) 
s 	"erti v, 

showing that 	is constant along any line 
C  

14.) 	14- 	 = 	s (2.39) 

Similarly the planar waves in fig. 3b, c and d are seen to be cauped 

by the waves in fig. 2 cancelling out or amplifying each other. 

This is expressed generally by putting eqn. (2.31) into the form 
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	a 

(  A in;  tre),,), C 0C e 4- s n 
a 

Em,$).  s-"/(;tmf'`gfr)f) 

ln(Ann 	C osei 	S' Air) 

.2 

( 	07 — S-1,„,,)sm(A or,f — h 

(2.40) 

Swartz (1966) discussed the application of these waves to trend analysis. 

Communication theory may now be brought to bear on the analysis of 

the two-dimensional waves forming q 
I 13 4 

At this point we consider an important limitation in the transformed 

frequency domain data. 

2.3.1 Bandwidth  

A well-known fact from the study of light waves is that (Ditchburn, , 19a) 

it is impossible to propagate light waves continuously. As a result 

frequency broadening of an otherwise discrete spectral line occurs. This is 

measured in terms of the bandwidth AiC over which the amplitude density is 

greater than 2/477 times its maximum value. Ai is related to the average 

wave train length rAr (c is the velocity of light) by 

(2.41) 



PLANAR WAVES 

b) 

 

     

    

   

    

     

       

Am,n = -Fm,n ;  Bm,n = Em,n.. A 	= Fmn'  • Bmn  = -Em,n m,n 	,, 

d) 

Amo = E , 	m,o Bo,n = Fo,n 

FIGURE 3. 
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where4tis the finite time that a wave train is received at a given point. 

This is closely analogous to the :Uncertainty Principle of quantum mechanics. 

We may consider this phenomenon as the uncertainty of a measured 

frequency being directly related to the time over which it is recorded. 

Similarly in the spacial domain, it is only possible to measure the 

gravity field y over a finite area or length. Uncertainty therefore 

exists in the Al discrete spacial frequencies •11/A442 assumed to 

represent jr in the frequency domain by eqn. (2.25). 

As the Fourier Transform exactly transforms between the two domains 

we find the exact.apectrum of 

2 Tr -7c/A/4 x  
(2.42) 

by equation (2.13). 

As nothing is known of cioN beyond the area of measurement we put 

(x) 	or // ,> L4 	(see eqn. (2.14) and (2.24) 

in order to investigate the uncertainty of the frequency 	=',7///414delaC 

by finding the amplitude density spectrum  

rEp. 
- 

A/4c "e 	A/4), 	dx- 

= 2 C Si 	 —  n Rt-4  - 	 l 
/•./ z 2—  

(4c_ — 2 rr 1-VN2x) 

=  

(2.43) 

(2.44) 
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where 211PC,  = 	- 27.7- 11/841X 

Thus 
6(44) = Ndx C„ when 14 = 0 

i.e. when 101. -=2 IT-)-//V4 

= Am 
Tr 

when 	Tr. 
Amx 

i.e. when •e,g- --1277(i911-2.)  
A/ZI 

Hence the bandwidth 

Jas :=7 —2777NAz 	(2.45) 

and 	

IVAx 
Thus each discrete frequency in 	making up the gravity field 

contains information in the frequency range 

_1_ 
i/ -- 

NAX- 
and we say that the amplitude C,, predominantly represents the 	magnitude 

of gravity potential field over this segment of F. 

This limitation of using discrete frequencies to represent what in 

reality is a continuous spectrum should be especially noted when rapidly 

varying filter functions such as the downward continuation lilter is used. 

As is seen from the limits of integration in equation (2.43) bandwidth is a 

result of the uncertainty of the gravitational field intensity beyond the 

survey limits. As will be seen in chapter 3 this uncertainty causes most 

distortion near the edge of a survey. 
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2.4 Vertical Continuation and Communication Theory  

We now proceed to apply communication theory to the analysis of various 

methods of gravity field processing. 

In particular we consider vertical continuation as it has many 

interesting applications yet has been a difficult method to use judging 

by the many different techniques so far proposed. Communication theory 

offers an excellent medium by which to examine its intricacies. 

2.4.1 Practical Applications of Vertical Continuation  

The vertical continuation method can be very useful in interpreting 

gravity and magnetic anomaly maps. Basically this method computes'the 

anomaly at some height or depth from the plane of measurement. 

Downward continuation is able to directly calculate, at a known 

depth, the surface-contrast density producing a given anomaly, from the 

relationship: 

GP; (z)Y) = TrG fz( 17) 
	

(2.46) 

where 041ky) is the surface contrast density at (x,y) and depth h; 

is the anomaly at (x,y,h) and G is the gravitational constant. 

The role of downward continuation in magnetic interpretation is seen 

in the determination of structure from 

L 	7(- 04" 
-77  

(2.'47) 
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assuming unit relative permeability where 4'(:)Cz) is the anomalous 

scalar magnetic field potential due to the intensity of magnetization 

at (04p) over the volume?' • and 

A = i(Dc" —Gt) 	161,) a  (z—ef 14  
can be derivet (see Appendix.) the relationship that the undulating 

magnetic basement surface Z = .1(Xil) of infinite depth and horizontal 

extent is related to it-6p, e) the vertical anomalous field intensity at 

(0/) /2) 2e) by 

= 	j  IS [(x cqz  (y - VF6  

  

 

(2.48) 

where the surface integral is over the surface and 21 is the vertical 

component of the intensity of magnetisation. 

The surface integral can be approximated by a double summation, giving 

the structure by a direct . .Computation from a grid 

(4:4d ,c,i47)  

' 	

(2.49) 

2.77/2.12 pi 	cr( e—  - .4")2-4(Y-1.47)2111.2' 
where 41.7( Ay are unit grid lengths in the x and y direction and N is a 

value beyond which the truncation error is negligible. 

Upward continuation may also be used to bring ground and airborne 

vertical magnetic, anomaly results to the same reference plane. However, as 

will be seen later, this process can never be. perfect. 

2.4.2 Filter Response  

As Tartklov and Sidorov (1960) have pointed out the regional field, 
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random errors and other unwanted influences on the geophysical data are 

interference. Processing geophysical data mathematically is the elimination 

of interference and the ordering and collecting of the existing information. 

In spite of the great diversity of Tmathematical methods used in processing 

geophysical data, they are all basically filtration methods that operate 

like electronic filters and have the object of detecting the anomaly (the 

signal) in the background of more or less intense interference (the noise). 

In these methods the intensity is not necessarily increased, in fact, it may 

be decreased. However, due to a certain decrease in the unwanted information 

(the noise), the anomaly to interference ratio is increased. 

The-principles of communication theory underlie these data processing 

methods. Operations on geophysical data are merely various types of space 

filters. 

Dean (1958) proved the following rasults: 

(1) If h is the distance of vertical continuation, taking the 

positive direction as down, then the theoretical frequency response of the 

upward and downward vertical continuation process is: 

(2.50) 

where u and v are frequency parameters in the x and y direction such that 

2 rrc where f is the frequency of an anomaly in the cycles per unit 

length. 1110:41^ , where A is the wavelength of the anomaly in the 

x-direction. An analogous relation can be derived for v. 

Thus it can be seen that if the , 'anomalous field intensity varies only 
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in the x-direction then the frequency response of the vertical continuation 

process is 

(2) The frequency response of a general coefficient set 67 	where lei li ) 

C is the coefficient at the point (4,1119cm4y), assuming a uniform 

grid with station spacing in the x- and y-direction 4..x and 47  respectively, 
is 

C -e 
- 4(4,1 7in 4X * 1)- 30) 

(2.51) 

011.1 ■00 /7=-00 

In practice we would run over "m and n only up to N where for 	/ and 

iiipA/the..truncation error would be negligible. 
Thus in the one dimensional case assuming (- = er  the filter - 

response would be 

C,„ cos- (te 1.7 z/..) 	 (2.52) 

This is like a Fourier series which repeats itself with frequency 444z. 

The period is 

(2.53) 

Thus the maximum frequency at whigA the frequency response can be specified is 

-ee 	= 2 rr 2 rr 
.2 zioc 

=MD (2.54) 

where the maximum frequency / 247C follows directly from the sampling 

theorems of communication theory (Goldman, 1955). The main effect of 
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digitalizing data is to limit the high frequency response to one half 

cycle per station spacing so that the frequency response of the coefficient 

set need only be considered up to cz-X2Z1.)c or=.247t. This makes vertical 

continuation possible. 

Thus in the analyses of vertical continuation coefficient sets which 

follows, the coefficient sets frequency response will be compared to the 

theoretical response by examining the equality of 

-e 4 = C7 oPS(:u. *1 4.1 	(2.55) 

2.4.3- 	Error Control  

In any analysis of an interpretation technique the influence of 

errors must also be considered. Elkins (1952) and Fajklewicg (1965) both 

discuss the problem, Elkins showing how errors can give rise to erroneous 

derivative maps while Fajklewicz shows how the error introduced by a 

regional with extreme near local variations can cause problems. 

Consider a set of random numbers 17 representing the noise component 
(1, 

of gravity intensity measurements. In accordance with definition the 
If  i

s are 

independent. 'We find that when transformed into the frequency domain the 

random numbers produce random frequency amplitudes. 

"From eqn. (2. - 26) 

14 

N A •A 
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Thus the 6' are merely linear combinations of the- 	and hence zi   

must also be random. The spectrum of a set of random numbers is seen in 

figure 4. This shows that random errors (ornoise) can be expected at 

all frequencies with no systematic decrease in the higher or lower 

frequencies. 

Also in the special case where, for example, a tare occurs in a 

gravitymeter, the resulting error could be represented by a step function 

which is equivalent to the presence of all frequencies. 

From its theoretical frequency response, downward vertical continuation 

is seen to be unstable in its high frequencies. Physically downteard 

continuation is questionable because it appears that more detail is being 

squeezed out of the data than it contains. 

The fallacy of using a coefficient set which has the theoretical 

response is seen by the effect on errors - the high frequency data would be 

greatly magnified in relation to the low frequency data so that high 

frequency noise would swamp low frequency information (or signal). 

To overcome this problem distortion must be introduced into the 

frequency response over the high frequency range. The distortion used is 

smoothing which controls the high frequency errors. 

In the analysis which follows, the various methods proposed in the 

literature are discussed according to their filter response and error 

control. 
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Fig.4. Amplitude of random noise spectrum. 
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2.5 Some Previous Vertical Continuation Coefficient Sets Analysed  

In the -analysis of the downward continuation coefficient sets which 

follows, the anomaly is assumed, for simplicity, to vary only in one 

direction. For the various ring techniques the coefficients are projected 

onto the x-axis. In this analysis it is assumed that anomalies have already 

been put on a grid before interpretation begins. Fig. 5, 6 and 7 and 

Tables I and II show the normalised filter responses of various coefficient 

sets proposed in the literature. 

As-discussed in Dampney (1964), Bullard and Cooper's (1948) 

coefficient set is only one-dimensional and can, therefore, only be used 

for interpreting profiles. 

Bullard and Cooper in deriving the relationship between smoothed 

gravity0
.72

()c) ait x on the line at ,depth z and le  (X) use smoothing related 

to the error function 
tor 

(6') 	11 q(z) e ."19 fi etzco s/tPe - a4c air 
77  ,0i-co 

f 

,  fo (11 4 )(-Aizx ci‹)-dr 
	

(2.56) 

Thus 	 cz.e.) 

They smooth by 

ye: (E) Affe  (z),e —fi — (2.57) 



=1=16 
i••=11 

co° 
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where 
if 
 is a smoothing parameter determining the severity of smoothing. 

The function is simply related to the error function by 

87C(71-iAl, 
&7 

1,9 

c  2x) 

where 

14‹ z 	(n42) ejn(lf4x(n4i 2.58) 
In Fig. 5 their. suggested set of coefficients is analysed using 

a station spacing of 0.125 units, over the range  

This normalised filter response was worked out for both average and 

middle values in each thnke. Only variation of the order of 5% was noted 

between the two responses. 

The normalised filter responses in Fig. 5 and Table I were calculated 

for various depths. Bullard and Cooper use a parameter 	in their 

computation where h is the depth of continuation. As in both Fig. 5 and 

Table I the parameter was unity, the filter response was worked out for 

various depths ,namely for .h 0.1; 0.125; 0.2; 0.5; 	1; 2 	and 10 units 

corresponding to le 	= 100; 64; 	25; 4; 	1; 0.25; 0.01. 	Thus the 

severity of smoothing is increased with depth satisfying error control. 

Fig. 5 and Table I show the similarity in the variation of the 

filter responses. In fact, it was calculated for other station spacings, 
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Frequency (u) 

Fig.45.BuLLARD AND COOPER'S (1948) downward continuation filter response 



TABLE I 
BULLARD AND COOPER'S (1948) COEFFICIENT SET FILTER .RESPONSE' 

' 10 	2 	1 	0.5 	0.2 	0.125 	0.1 	radians 

	

1.0101 	. 1.0101 	1.0101 	. 1.0101 	1.0101 	1.0101 

	

0.4932 	0.9245 	1.0000 	1.0401 . 	1.0649 	1.0711
•0.2417 	0.8491 	0.9936 	1.0748 	1.1266 	1:1400 

	

0.1181 	• 0.7778 	0.9845 	1.1076 	1.1887 	1.2099 
• 0.0576 	0.7106 	0.9729 	1.1384 	1.2509 	1.2807 

	

0.0280 	0.6471 	-0.9584 	1.1663 	. 1.3122 	1.3514 

	

0:0135 	0.5872 	0.9407 	1.1906 	1.3714 	1.4207 

	

0.0065 	0.5308 	0.1198 	, 	1.2109 	, 1.4280 	1.4881 

	

0.0031 	0.4782 	0.8964 	1.2273 	1.4818 	1.5533 

	

0.0015 	0.4295 • 0.8708: 	1.2399 	1.5328 	1.6163
•0.0007 	0.3844 	, 0.8432 	1.2487 	1.5805 	1.6764 

	

0.0003 	• '0.3430 	0,8137 	1.2533. 	1.6241 	1.7328 

	

0.0002 	0.3049 	6.7825 • 	1.2535 . . 	1. .6632 	1.7850• 

	

0.0001 	0.2702 	0.7501 	1.2498 	1.6977 	1.8328 

	

0.0000 	0.2387 	0.7169 	1.2422 	1.7277 	1.8762 

	

0.0000 	0.2103 	0.6830 	1.2309 	1.7527 	1.9147 
•0.0000 	0.1846 	0.6487 	1.2159 	1.7727 	1.9479 

	

0.0000 	0.1616 	0.6142 	1.1974 	1.7873 	1.9756 

	

0.0000 	0.1411' 	. 0.5799 	1-1758 	. 	1.7970 	1.9980 

	

0.0000 	0.1228 	0.5460 	1.1515 	. • 	1.8017 	2.0151 

	

0.0000 	• 0.1066 	0.5128 	1.1247 	. 1.8017 	2.0270 

	

0.0000 	. 0.0923 	• 	0.4803 	1,0956 	1.7969 	2.0336 

	

0.0000 	0.0797 	0.4487 	1.0646 	1.7878 	2.0351 

	

0.0000 	0.0687 	0.4183 	1.0321 	17746 	2.0320 

	

0.0000 	0.0591 	0.3891 	0.9986 	1.7578 	2.0248 

	

0.0000 	0.0507 	0.3613 	0.9643 	1.7379 	2.0136 

	

.0.0000 	0.0434 	0.3348 	0.9294 	1.7150 	1.9989 

	

0.0000 	. 0.0372 	0.3098 	0.8944 	1.6897 	1.9810 

	

0.0000 	0.0317 	0.2862 	0.8595 	1.6626 	1.9607 

	

0.0000 	0.0271 	0.2642 	0.8251 	1.6341 	1.9385 

	

0.0000 	•0.0231 	0.2436 	0.7914 	1.6046 	1.9148 

	

0.0000 	0.0197 	0.2245 	0.7584 	1.5745 	1.8899 

	

0.0000 	0.0167 	0.2068 	0.7265 	1.5442 	1.8645 

	

0.0000 	0.0143 • 	0.1904 	0.6958 	1.5142 	1.8391 

	

0.0000 	0.0121 	0.1753 	0.6664 	- _. 1.4848 	1.8140 

	

0.0000 	0.0103 	0.1615 	0.6384 	1.4563 	1.7897 

	

0.0000 	0.0088 	0.1488 	0.6118 	1.4288 	1.7663 

	

0.0000 	0.0075 	0.1372 	0.5866 	1.4026 	1.7442 

	

0.0000 	0.0064 	0.1266 	0.5628 	1.3779 	1.7235 

	

0.0000 	' 0.0055 	0.1169 	0.5405 	1.3547 	1.7046 

	

0.0000 	0.0047 	0.1080 	0.5194 	1.3330 	1.6872 

	

:1.0101 	0.0000 

	

1.0733 	0.0785 

	

1.1445 	0.1571 

	

1.2170 	0.2356 

	

1.2908 	0.3142 

	

1.3647 	0.3927 

	

1.4376 	0.4712 

	

1.5087 	0.5498 

	

1.5779 	0.6283 

	

1.6451 	0.7069 

	

1.7096 	0.7854 

	

1.7706 	0.8639 

	

1.8275 	0.9425 

	

1.8802 	1.0210 

	

1.9285 	1.0996 

	

1.9719 	1.1781 

	

2.0100 	1.2566 

	

2.0427 	1.3352 

	

2.0698 	1.4137 

	

2.0917 	1.4923 

	

2.1081 	1.5708 

	

2.1192 	1.6493 

	

2.1249 	1.7279 

	

2.1259 • 	1.8064 

	

2.1225 	1.8850 

	

2.1149 	1.9635 

	

2.1036 	2.0420 

	

2.0889 	2.1206 

	

2.0715 	2.1991 

	

2.0521 	2.2777 

	

2.0309 	2.3562 

	

2.0085 	2.4347 

	

1.9854 	2.5133 

	

1.9622 	2.5918 

	

1.9393 	2.6704 

	

1.9170 	2.7489 

	

1.8957 	2.8274 

	

1.8756 	2.9060 

	

1.8571 	2.9845 

	

1.8402 	3.0631 

	

1.8251 	3.1416 

• Each column is headed by the distance of vert cal continuation in units of station spacings 
(Station spacing =1.0 unit), or by "radians" which is given in units of frequency. The unit of 
the normalised filter response for •a given distance of vertical continuation and frequency is. 
dimensionless. 
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and displayed the same characteristics. However, at the smaller depths, the 

coefficient set filter response does not match up with the theoretical 

response over the lower frequencies. 

The normalised filter response of Hendersons (1960) coefficient set, 

is shown in Fig. 6 and Table II. Henderson's (1960) downward continuation 

can be seen to have smooth error control in relation to the filter 

response increasing, as required with depth. 	Henderson's method is able 

to most often satisfy error control and filter response requirements. 

Fig. 7 shows the normalised filter response of Peters' (1949), 

Henderson and Zeitz (1949) and the finite differences (Bullard and Cpoper, 

1948) coefficient sets for the itdicated values of h, with unit station 

spacing. The first 80 coefficients were used for the finite differences 

method and the first 23 coefficients in the rapidly convergent Henderson 

and Zeitz method. All these filter responses appear unsatisfactory, 

except the downward continuation finite differences coefficient set. 

Upward continuation coefficient sets tend to oscillate and do not, in any 

case, match the theoretical response, in the low-frequency range. 

Upward vertical continuation is by contrast a very stable process. 

Gravity and magnetic data have predominantly low frequencies even near 

their source. Away from the source, upward continuation favours low 

frequencies because it is a low mass filter (see eqn. (2.5t)). The low 

frequencies are essential for defining all gravity and magnetic anomalies. 

The higher frequencies are relatively more important for the smaller 

sharper anomalies and for defining details. 
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Fig.G.HENDERSON'S (1960) downward continuation filter response. 
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Fig2:7. Fi I ter response of indicated coefficient sets. / = Finite difference method, h = 1; 2 = 
PETER'S (1949) method, h 	2; 3 — PETER'S (1949) method, h -= 1; 4 = PETER'S (1949) method, 
h 	--2; 5 — finite difference method, h — - • 1; 6 — PETER'S (1949) method, F, = —1; 7 — HEN- 
DERSDN AND ZEITZ' (1949) method, h 	I. 
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- Upward vertical continuation smooths down the higher frequencies, 

reducing information in this range. Low-frequency noise in a perfect 

response coefficient set swamps high frequency information. Generally 

this does not matter, so that error control is not nearly as important 

in this process. 

The normalised filter response of Henderson's (1960) coefficient 

sets for various negative values of h with unit station spacing are shown 

in Table II. The mismatch in the high frequencies is at once noticeable, 

but the filter response decreases correctly in the important low-frequency 

range preserving the regional information. However, Henderson's method 

would allow high-frequency information to be vastly accentuated beyond their 

theoretical amplification, producing a derived anomaly map containing all 

frequencies and thus looking correct, but in actual fact not possessing 

the correct relationship to its original data. 

The upward continuation process can therefore be only really useful 

as• a numerical filter. As errors occurring in magnetometers and gravity-

meters can not be made frequency dependent, it is not yet possible to 

match up ground and airborne anomaly results through all the frequoncies 

simultaneously in the spacial domain. 

Henderson's coefficient set for continuing upwards a theoretical 

anomaly of a particular body, which, by definition, has no error, would 

be highly unsatisfactory. 

Strakhov (e.g. 1961, 1962a, 1962b, 1963a, 1963b, 1963c, 1964) and 

Strakhov and Lapina (1962 and 1963) have written many articles on potential 

field analysis including various methods and analysis of second-derivative 

and vertical continuation methods. The articles are generally intensely 
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mathematical using many unfamiliar inequalities and equalities of harmonic 

analysis, though their truth is undoubted. 

Strakhov's approach in his articles is fundamentally different as he 

uses the Fourier Transform to translate his information into the frequency 

domain. This requires interpolation between his data points and he thus 

derives optimum formula to carry out this process. However, it is felt here 

that using the Fourier Transform is unnecessarily complicated because the 

assumption that there are no frequencies in the field greater than 

(2.59) 

allows the direct use of coefficient sets derived by expanding eqn. (2.55) 

to the two-dimensional case. In fact at some point in the development of 

the Fourier Transform approach, a series of some sort has to be 

substituted for an integral so that the discrete points can be used. 

This may as well be done immediately. 

The reader is especially referred to his article, "The derivation of 

optimum numerical methods for the transformation of potential fields," 

(Strakhov, 1963c) as an excellent list of references, especially of many 

Russian authors, is included. 

Elkins (1952) showed the effect of taking the second derivative, 

using his own coefficient sets, of a grid of random normally distributed 

errors. The appearance of the anomalies he gets can be explained by 

the filter response unequally affecting all the frequencies in the data. 

Danes and Ondrey (1962) have analysed second derivative methods and 
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compared them to the theoretical second derivative filter response 

of'e, 	in a similar fashion to the preceding vertical continuation 

analysis. They do not consider the effect of errors in this comparison, 

however. .A it turns out (see later), there is no need to consider error 

control because the theoretical frequency response of second derivative 

methods does not increase sufficiently. 
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3. 	DERIVATION OF COEFFICIENT SETS  

Assuming that the measurements of the gravitational field intensity 

are such that the frequencies present beyond the cut-off frequency are 

negligible then the coefficient sets which follow, perfectly carry out the 

analytical process they are supposed to. 

The purpose of deriving these coefficient sets is to allow a 

closer analysis of their effect on data and to demonstrate their limitations. 

3.1 Noise Level  

Error control must first be satisfied in any process by cutting 

out the high-frequency data with frequency greater than fro/ beyond which 

the errors are greater than the lowest-frequency information in the data. 

The noise to signal (information) ratio in the data, assumed to be on 

a grid, can be taken as being the ratio 

standard deviation of anomaly 

standard deviation of error 

The error or noise in gravity data may be estimated from the loop 

misclosures. However in calculating the Bouguer Anomaly further errors 

are introduced into the data by the following assumptions. 

(a) The Free Air Correction increases linearly with height above 

the reference spheroid (the International Ellipsoid). 

(b) In calculating the Bouguer Correction the earth is assumed to be 

flat. 
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The errors introduced by these assumptions are systematic and in 

particular for the Derby Survey are of the order of 10
-3 mgal. between 

stations. 

The main source of error however is the.topographic correction. Even 

an observer of normal mass has a gravitational attraction of the order of 

10
-2 mgal. which affects the gravitymeter when he stoops over to read it. 

• This emphasizes the difficulty of allowing 'for, the small but unfortunately 

important local topographic variations. Hammer's (1943) terrain correction 

tables for instance ignore the region within eight feet of the meter as 

being. .too variable to be accounted for. 

Gravitymeter drift. introduces errors. Tides (lunar and solar) cause 

regular variations in the gravity field and may be allowed for, but atmos-

pheric disturbances moving great masses of air can, as Romanyuk (1959) 

points out, result in gravity field fluctuations of a similar magnitude 

and hence errors of the order of L0 	a mgal. In fact, the onset of a 

storm will often cause erratic drift in the gravitymeter due to this latter 

effect. Al]. these influences contribute to the noise level. In the 

Derby-Winnaleah survey discussed in chapter 6 for example we assumed, 

giving consideration to the highly variable topography,a noise level of 

the order of 0.25 mgal. 

Gravity surveys are usually composed of a number of loops around 

each of which a series of measurements are taken. Generally misclosures 

occur, allowing an estimate of the errors due to drift and other time 

dependent effects to be made at each point. , Assuming topography and the 

co-ordinates of each point of measurement to have been exactly defined we 

can take the standard deviation of these errors as the noise level. The 
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standard deviation of the anomaly is taken as the signal level. This ratio 

is taken without any pretence of mathematical rigour, but is sufficiently 

representative for practical purposes. 

Thus if the distance of downward continuation is h then the 

frequency above 'L,C, must be filtered out where 

h-u0  
— 	 (3.1) 

because above this value of-GC °  the amplification of the errors will be 

greater than the amplification of the zero frequency information. 

Using this fact, the maximum anomaly size that can be interpreted 

from downward continued data for a signal to noise ratio of 200 is shown 

in fig. 8. 

3.2 Smoothing  

A numerical filter is therefore required which will cut out these 

high frequencies. Smoothing by an erf function as used by Billiard and 

Cooper (1948) would be suitable, but, for simplicity, a two-dimensional 

symmetrical step function is used in the frequency domain. 

The coefficient set which has the required filter response is 

calcualted. Put 

"(44 44X4' 1")4Y) 

f(6ed 'IS) (3.2) 

where / ) is a symmetric function with respect of u and v about 0. 

Suppose 4aAczaely- / then 

t' 
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4.0 	6.0 	8.0 	10.0 12.0 
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Fig.. Minimum anomaly size detectable at depth h in units of station spacing.. 
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In the range 0 to - 77 put 1)- = -19-  
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Tr 

C = / s 
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/ 	4 772  frr 

as f(4, -tfr) f(44, - -v) 
rrrry , 

4-1  77 0 	
cvdt4c,9, 

(3.3) 

aS jr(Ci .19 = .1(- f,‘ •19 . Thus the coefficient set with the required 

filter response is found. 

The two dimensional symmetric step function is given by: 

f(e4,1fr).7. 

-r-t o  5 	 or a• 0 otherwise 

Therefore 

UN! 	

j0  co.d(e4.1.7) Jo co-e 	of,tt 
44 	 44 O r 

— x 	s/A/ e.‘e  bfrl) ciii(cc, 
Al) 

	
( 3 . 4 ) 

77 

Note that C  = 	C 	-c 
■ 4,1 	 xe, 7,7 	4w-41; 

C 

	

.„ 	. 
that is C • is eight-fold symmetric. 401i10) 
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Example: Suppose for a survey we find that x 112, which means that 

the errors are of the order of 0.1 mgal and the variations of the anomaly 

are about 11 mgal. We wish to continue this data downwards to a distance 

of five units 
• 

/ 

• / • 5 7 =,` 7 7/2 

CO3  0 

Table III gives the right-hand quadrant of this coefficient set up to 

n = 10 and m = 10. 

Smoothing is thus carried out on the data and then with no high 

frequencies present a downward continuation coefficient set can now be 

applied to the data. 

3.3 Vertical Continuation 

A vertical continuation coefficient set is found similarly to the 

smoothing coefficient set 

Trje-Tr 
hfit-4717- -e 	c  os- (A" c os v-)c/te 014.51- 

Tr 	0 	o 	 (3.6) 
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67110 

	has been calculated by Takeuchi and Saito (1964) for h = 1 which 

corresponds to a downward continuation of one station spacing. They 

interpret Clile.1,1  following Tsuboi and Tomoda (1958) as giving the 

surface mass density on square grid-points over a horizontal underground 

surface, depth D below the earth's surface, from a gravity field with 

unit gravity at the origin and zero gravity everywhere else on the earth's 

surface. 

Takeuchi and Saito transform equation 3.6) to the form 

(3.7) 

	

using polar co-ordinates and then calculate er 	using a Simpson 4-$1,•••••1 

approximation. 

The right-hand upper quadrant of this coefficient set is given in 

Table IV. 

The coefficient set for h = -1 was computed using a double Simpson 

approximation. 

	

= 	r Tr( Tr h  
7-r 0 10  2 

11 (702(1 2 4 „h.:7,c 1). a  

 

0  (3.8)  COS(1-P7 	os(nt.:-)04c  
i/ol 

where /0/ z 0 when jo z 67 

"Ph--9 otherwise. 
/ 2 1.1 

77—  when = 7v1 

) otherwise. 
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f 1 = 0 when A=0 
:7..74_ 9  otherwise. 

4i 2 

y2=77-  when 14.2 Vin 

77- 41.4 otherwise. 
(J 

We thus have to calculate the function shown in fig. 9. 

As is seen the use of the Simpson approximation for each double 

integral in the summation over j and k is ideal. 

In accordance with Forsythe (1964), the first integration with 

respect to v had to be more accurate than the second with respect tc) u. 

This was done by making the sensitivity of the first integration ten times 

smaller than the second integration. 

Thus to calculate ci, "..:);  (itapa9(,,,4 1) integrations had to be made. To 

calculate all the square matrix of LP 	from (." 	to (' c3  required 

(•14- ) (teht2 )(s/47 
	

integrations 	(3.9) 

= 3850 integrations for M = 10 

As the program required 3600 seconds to calculate the matrix, we 

find that each integration requires 1 second, 

The coefficient set is shown in Table V. 

Second derivative  

As Dean (1958) has shown the second differential theoretical filter 



FIGURE 9 

THE SURFACE 

S= exp(h (V77—tv2 ).cos(rnacos(nv) 

for m=4, n=3, h=I 



TABLE V 	Upward  Continuation Coefficient 

m:.0  mz I  m:2  m:3 

Set 

m4 m,5 m=6 m z 7 m:8 m z 9 m10 

10 0.00007 0.00013 0.00015 0.00014 0.00013 0.00011 0.00010 0.00009 0.00008 0.00006 0.00006 

9 0.00032 0.00024 0.00020 0.00018 0.00016 0.00014 0.00012 13.00011 0.00009 0.00008 0.00006 

8 0.00017 0.00026 0.00028 0.00025 0.00022 0.00019 0.00016 0.00013 0.00011 0.00009 0.00008 

7 0.00062 0.00049 0.00040 0.00035 0.00030 0.00025 0.00020 0.00016 0.00013 0.00011 0.00009 

6 0.00048 0.00061 0.00061 0.00051 0.00041 0.00033 0.00026 0.00020 0.00016 0.00012 0.00010 

5 0.00153 0.00123 0.00097 0.00077 0.00058 0.00044 0.00033 0.00025 0.00019 0.00014 0.00011 

4 0.00176 0.00193 0.00166 0.00120 0.00084 0.00058 0.00041 0.00030 0.00022 0.00016 0.00013 

3 0.00590 0.00462 0.00303 0.00193 0.00120 0.00077 0.00051 0.00035 0.00025 0.00018 0.00014 

2 0.01242 0.01036 0.00590 0.00303 0.00166 0.00097 0.00061 0.00040 0.00028 0.00020 0.00015 

I 0.05965 0.03260 0.01036 0.00462 0.00193 0.00123 0.00063 0.00049 0.00026 0.00024 0.00013 

0 0.13718 0.05965 0.01242 0.00590 0.00176 0.00153 0.00048 0.00062 0.00017 0.00032 0.00007 
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response is 42
fV2'. The highest frequency data is therefore amplified 

by a factor of .27 . In all practical cases this value would be 

far below the signal to noise ratio and no account needjbe taken of 

error control, other than realising unequal amplification of errors. 

Therefore a coefficient set having the perfect filter response 

would be best for this process. 

4f,*  1-19-9c- 04(0.i 
:7  COS(17 19)/ 

7 	77 
_ i 2  ) dip- cas- (6-9-)f 1. 	4,4a c os(frn i..,t) cht 

- rr 0 	 0 
i 	rr 	 77-  + --=-- _IWO-  C 001 	Os(410.2)0/4-1 

T 7-2  0 	 0 

7/77(4,t:* -7/4. 	c■OSI/A 	cludi 
TT I 0 

os() 77) 

1•11 , 7-) 

	 rkel) 	0) 

• Co 	- 	77 -V.7 
	 (3.10) 

The upper quadrant of this coefficient set is found from Table VI. 



TABLE VI  

SECOND DERIVATIVE COEFFICIENT SET 

CO3 	= Cn,o 

10 0.02000 

9 -0.02469 

8 0.03125 

7 -0.04082 

6 0.05556 

5 -0.08000 

4 0.12500 

3 -0.22222 

2 0.50000 

1 -2.00000 

0 6.57972 
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3.3.1 Discussion of vertical continuation 

From eqn. (3.6) 

7r Tr. ..e  c..os("ie) c 0: (fri dace/1,- 
77 z  o o 

< (4 7r Tr I 
cos t :sr? -(9 e 	cos (k-ri,-)e GA), (3.11) 

(11 0) I '774  

('-‘ A ) 0)  
i

r c 	c/-41074-v)  -e -6  C/v- 	(3.12) 
 rr 

\ 	a j 
lo 

Now /i OS(Ali ‘4..)c/44 = A (er(1"1fr")- 1) 	(3.13) 
7r h-t4 

77-  0 	 rr  

i ° . I C I 	 61) hz  re h171_- ), '.- 1  R .e 477(.,,r_ 1  
;' (11  () 15:z  L (rn*.' 74-4 Q) j (na  +172) j 

CN°) 

if 	0 

e Q 77,4 

hcl,)(7a 

e 7rA  
rr- 

e _ rr 

171  (frp,z AWAi x  -7L 

il 

(3.14) 

(3.15) 
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Table VII shows how this works with h = 1 and h = - 

From these inequalities we can see that the farther the gravity 

field is continued up or down the larger are the number of data points 

required. 

Physically this can be appreciated in the following way. The 

farther ,  up-an observer rises above the land surface, the larger is the 

volume of anomalous masses that can contribute significantly to his 

gravity field. In other words, while the intensity decreases with height, 

it is affected by a larger number of masses which now make smaller vertical 

angles with the point of observation. 

Similarly the deeper a planar surface density source is, the 

greater the area over which gravity is affected on the surface. Thus the 

source 

A, (7 /7) - Tr6 
requires an increasing number of data points on the surface to specify it as 

the dePth - inOreases. 

In other words the farther information is translated in distance 

above or below a finite number of data points the poorer the transmission. 

While this method of Vertical Continuation is exact, it is never 

possible to fulfill the condition thaty(V),) is known over an infinite 

area. Thus in any method of Vertical Continuation or Derivative Method the 

continuation of the data near the edge of the finite plane becomes poorer and 

poorer as h increases positively or negatively. 



m n 

Lower 
bound 

h = 1 

True 
value 

C
m,n 

Upper 
bound 

Lower 
bound 

h = -1 

True 
value 

Upper 
bound 

0 0 2.3495 15.7862 54.5100 0.1100 0.1372 2.3495 

2 0 0.4698 2.1863 10.9000 0.0203 0.0124 0.4698 

3 1 0.1175 0.2232 2.7250 0.0051 0.0046 0.1175 

4 3 0.0138 0.0223 0.3200 0.0006 0.0017 0.0138 

5 2 0.0181 0.0296 0.4190 0.0008 0.0010 0.0181 

6 6 0.0017 0.0022 0.0390 0.0001 0.0003 .0.0017 

7 2 0.0094 0.0152 0.2180 0.0004 0.0004 0.0094 

7 4 0.0028 0.0044 0.0640 0.0001 0.0003 0.0028 

8 0 0.0361 0.1650 0.8390 0.0016 0.0002 0.0361 

8 1 0.0181 0.0342 0.4200 0.0007 0.0003 0.0181 

8 3 0.0036 0.0057 0.0840 0.0002 0.0003 0.0036 

9 1 0.0143 0.0266 0.3320 0.0006 0.0002 0.0143 

9 2 0.0057 0.0092 0.1330 0.0002 0.0002 0.0057 

9 9 0.0003 0.0004 0.0080 0.0000 0.0001 0.0003 

10 5 0.0009 0.0014 0.0210 0.0000 0.0001 0.0009 

10 8 0.0003 0.0004 0.0080 0.0000 0.0001 0.0003 

As Cm ,n 
is not monotonic the approximation in equation (.IS) is 

questionable and hence it breaks down for these cases. Note that 

C
m,n 

is correct to 4 places. The lower bound however is correct 

providing m and n are both large for h = -1. 

TABLE VII 	Selected coefficients illustrating equation (3.15). 
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This limitation we call the "edge effect" is an important 

restriction to the -continuation of data and together with bandwidth shows 

why Bhattacharyya's (1965) theoretical continuation of a potential field 

due to aThere breaks down near the sphere. 

It is only possible to improve continuation\by increasing the 

area over which the measurements are made, ensuring that the information 

which escapes in frequencies beyond the cut-off is negligible. 
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4. 	THE EQUIVALENT SOURCEAECHIWE  

4.1 Review  

As has been shown in the preceding chapters, the interpretation 

methods of vertical continuation and derivatives of potential fields 

are more accurately expressed in the frequency than the spacial domain. 

In fact, it would be possible to exactly express these methods 

if the following three conditions were true: 

(a) the data is known on a regular rectangular gridA x by 4y 

which are the station spacings in the x and y directions. 

(b) the data is infinite in extent over a horizontal plane. 

(c) the data is sufficiently close spaced that no part of the 

potential field amplitude spectrum exists for frequencies 

greater than the cut-off frequency (see equation 2.54). 

The first condition (a) is discussed in a following section. 

The remaining two conditions are necessary only to ensure that the 

spectrum is completely and continuously measured. Condition (b) 

implies from eqn. (2.25) that the infinite number of amplitudes C n  

as N -->--=(=> 	measure the spectrum continuously over the range 

Trn/N4x.  -N 	A/ 

Clearly this condition can never be satisfied, but provided we 

limit the distance of vertical continuation and the order of the 

derivative, we can assume the data has infinite extent - especially 

some distance in from.,the limits of the survey area as is seen from 

tables IV, V and VI. 
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It is not generally appreciated by many geophysicists that the 

Bouguer Anomaly, as described by Heiskanen and Vening- Meinesz (1956), should 

not be taken as being projected onto the geoid. This has been emphasized 

by Nandy and Newmann (1965) and Grant and glsaharty (1962). The former 

proposed that 

"It is sufficient to consider the Bouguer anomaly, as the 

difference of two quantities, the first is the measurement 

at a station S amended by instrument corrections (such as 

drift); the second is the value of the gravitational field 

at the same point S of a model obtained by superimposing 

the ellipsoid and the topography at constant density. 

(Comment: There is no need to assume such a simple model.) 

"The significance of the Bouguer anomaly is thus ridden of 

ambiguity - it is the gravitational influence of the 

difference which exists between the real earth and the model. 

The point of application is at the station S and not the 

ellipsoid." 

Figure 10 demonstrates the truth of this statement. 

It is therefore necessary to vertically continue the individual 

potential field measurements at S from the rough topography onto a flat 

horizontal plane. This problem has received very little attention in the 

literature, except Strakhov, 11905)who applies his approach of using the 

Fourier Transform to manipulate discrete gravity information. As has been 

discussed in chapter 2 this approach is difficult to apply to gravity data. 



Plateau 

River 
Valle Anomalous gravitating 

body M 
Cliff 

Bouguer Anomaly Contours in mgal due to M 

FIGURE 10.  
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The equivalent source technique is therefore put forward as a 

method to vertically project data onto a plane. 

By contrast, a great deal of attention has been focused onto the 

problem of projecting potential field information horizontally along a 

plane using interpolation. Measurements are usually made at convenient 

locations on the topography, so that if we assume it is flat, interpolation 

is required to project the information at these points onto a regular grid. 

The mathematics of two-dimentional interpolation quickly becomes 

tedious when extending any of the conventional one-dimensional methods 

(for example Lagrange's Method,. Neville's Method (Stafford, 1965)). 

Kunz (1957) points out that a difficulty in bivariate and multi-

variate interpolation is that it. has received only a very small amount of 

attention compared to that expounded on . univariate interpolation. 

"Consequently one finds considerable arbitrariness, complexity of statement 

and notation, and even confusion in the various treatments of the subject. 

Saltzer, particularly (1948), Grant (1957), H (1955) and 

Southard (1956), Benglsson and Norbeck (1964) have studied bivariate 

interpolation, all involving polynomial techniques. The extensive use of 

polynomial techniques in mathematical interpolation has been carried over 

to the geophysical literature. Brown (1955 and 1956) has given the most 

comprehensive application of polynomials to interpolation, vertical 

continuattpn and derivatives of the potential field. His method is complete 

in that he also estimates the errors involved in his least-polynomials method. 

Essentially Brown fits a polynomial curve to order n to k data points where 

k 
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and then finds the standard deviation of the data points from the curve, 

thereby finding the expected errors. The method does have the advantage of 

minimizing random errors in the data. Other authors such as Jones (1956), 

Oldham and Sulterland (1955),Zilahl-Sebees (1964) and Grant and Elsaharty 

(1962) have used polynomial methods in processing potential field data. 

As Kunz (1957) points out that probably the reason the gre4test 

attention in univariate interpolation has been given to parabolic 

interpolation (the approximation of a function by a polynomial) is that 

polynomials are so nicely expressed in terms of elementary operations and 

very convenient to handle by differencinitechniques.. This same comment. 

applies to bivariate interpolation, but this.extension into the second dim-

ension causes problems to arise. In particular, it becomes difficult to 

use polynomials of sufficient order, N, to even remotely represent the 

information contained over the entire array of data. If there are N 

measurements in a survey a polynomial 

(4.1) 

of order N is required to represent and interpolate this data. Supposing 

each measurement to have an error of 1,1) , then the resulting coefficient 

aij 
will have an error of N,‘ if standard direct techniques are used to 

solve the resulting N by N system of equations by determinants. 

Furthermore, there are numerical errors involved in representing 

the data points by a polynomial, the greatest of which is the Kunz Class A 

error - the magnftude,of the remainder term in replacing the tabulated function 

f(x) by an interpolating polynomial F m(x) . This remainder term involves 
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the (m + 1)
th 

derivative of f(x). Thus "little can be said about the 

remainder term unless one specifies something about the function" Kunz (1957). 

Danes (1961) has shown that the filter which represents the (m + 1) th 

derivative of the potential field has a response 

(aa-, 	 (4.2) 

As this amplification of the various frequencies increases as 

m increases, there is no tendency for the (m + 1) th 
derivative and hence 

the remainder term to become negligible. Generally, a high Kunz Class A 

error must be expected for parabolic interpolation of potential field data. 

This leads us 	to suspect that while potential fields are very 

well behaved in the frequency domain, polynomials are not by comparison. 

Assume a 2-D potential field on a particular line represented 

by a polynomial 

y(x) A x L ( c < L (4.3) 

The frequencies present in g(x) can be found by taking the 

Fourier Transform over — L 	L 	y (x)-= 0 ,, /2c/,> L- 

A/ 

A ,C il e si-'"DC G/X 
o 

where C
1 is the normalization factor. 

.Consider the zeroth, first and second terms. 



1.€  lot 71 I- 

s (cc z.) 

l  -7A 4 	s- /*I ('rx 
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Hence by induction 

6- (-(A-) -- A I ci (6( 	A 
■et, a 

where Ao A 
	

.4 , 	are linear combinations of the 

A0  	 4 in equation (4.3). 
) 

c/A7 (7-t4 '40./  +  (4.4) 
-Lc 	-C-C 

as el becomes large 	becomes small as 

6  (4-() 	O() 
	

(4.5) 

which in comparison with eqn. (2.12) is not sufficiently fast for 

potential fields. 

An interpolation method is thus sought which will match potential 

field behaviour in the frequency domain. 

For instance the form 

C -e 	-2 rr (4.6) 

is a direct measure of the spectrum of y( y) as has already been shown in 

Chapter 2, and must therefore have its frequency domain characteristics. 
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We find that 

„(()1/47) 	r-VA-1 	(4.7) 

( /9 is the normalization constant). 

Bhattacharyya (1965) uses this approach as discussed in chapter 2 

to transform his data into the frequency domain. He initially interpolates 

his data onto a grid from the contours drawn around his original points of 

measurement. By using hand contours his method is subject to personal 

bias. However as he deals with aero-magnetic anomalies the assumption of 

measurements being on a flat plane is reasonable. 

The problem of "al:lasing", however, arises in the 

determination of C
m,n by exact application of equation (4.7). Moreover 

the limiting assumption of flat topography for gravity measurements is 

often not justifiable. 

It is therefore desirable that a technique be developed which 

can compute the Bouguer Anomalies on a regular gridded horizontal plane 

from measurements at unsystematically scattered point onrough topography, 

yet stand up to analysis in the frequency domain. The equivalent source 

technique described in the following sections is put forward as fulfilling 

these requirements. 

4.2 	Equivalent Source Technique  

4.2.1 First Form  

We first assume that the potential field values are on a regular 

grid on non-planar topography. 
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This field can be caused by an infinite variety of surface 

density distributions which give rise to the ambiguity in geophysical 

interpretation. Using the relationship 

y(x)y 	6'ico 	  
f(x -ocr+(yit+ (z -)74  (4.8) 

we find the surface density0Z(v) on any plane z = h, given the set 

of values g(x,y,z) at the points (x,y,z). This was discussed in 

Dampney (1964). 

, Thus we may represent a particular gravity field by the (74(x,y) 

which we call the Equivalent Source. 

The following theorem and proof is given to show that the depth 

of the source is immaterial. 

Theorem. 	The gravitational field intensity measurements on a regularly 

gridded infinite horizontal plane can be exactly represented by an 

equivalent surface density source on a lower infinite horizontal plane 

at any depth assuming no frequencies are present beyond the cut-off frequency. 

Proof. 

We prove this by finding g(x,y,h 2 ) from two different sources on 

planes B and C in fig. 11 which both synthesize the field g(x,y,o) on plane 

A. If g(x,y,h2 ) is the same in both cases the theorem is proved. 

For simplicity consider the problem in two dimensions. The gravity 

g(x4) is related to the line density ;-\()tA)on plane C by 
JP4 

y (x) 	(i)  
j-e'e irC-cie) 24(A - 4

2 ) 2i (4.9) 



plane A 

plane B 

plane C 

Both sources 24() )17,) and ..40 synthesize 
the field originally measured asy(xi o) in precisely 
the same way in theory. In practice, imperfections in 
the data place necessary restrictions on the depth of 
the equivalent source to reduce error distortions. 

FIGURE 11.  
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using "k" instead of "G" to represent the gravitational constant to 

avoid confusion. 

Take Vourier Transforms • A = 0 

"'WA- 
= 2  A (co ;1 (cc, 	oecc iroA,.e- c4"cdx  

Le. 
ob  

(Clei  

6-  (4-€) 	= 	2-(44,A)esh4/44-/ 	(4.10) 

where 61(0 c9 and4/..6.4are the Fourier Transforms of 	0)  and 

respectively. 

Now as 6 (t4  0)=C7 for 140) 77 

• • , 	Z (44) 	) 	for 4.A. 	77-  

Also for every value of 44- that G = 0, L =0. 

Thus the equivalent source only contains the frequencies present in the 

gravity field. 

Hence p(„, 0) is approximated to as being made up of the discrete 

frequencies 

•Gt. = 

	

	 where /*I 41 	— 	Co)2 N yee) 

A/4 

• , 	 ) = .2 rr 1.1 	4e1X 
(4.11) 



e  77‘ 	A,177';x.  
)) 

- 51 - 

Hence from equation (4.9) 

t rr, 	 p Tr VA/A:r  
(4.12) 

where JCL 

rr ()) 
)774 C 	- 	 - 	• e A/ A/  .:/ 

 

C  gives L .  

- 

 

(4.13) 

Hence the gravity on plane B is given by 
2 rt 	_Az _4)1.2,7 A, 

C c 2 77 e A/ -e 	%GT:727/ 
=--a (4.14) 

Also we have analagous to eqn. (4.13) 

4- 4)) a- 
_ct 

6 	•f  

where on B 

/-1 (0e, A,) 

(4.15) 

(4.16) 

and using eqn. (2.46) in one dimension 

,4 

taking 

From eqn. (4.10)  
((4, 	

(

44. 

AI ) 

!2-1 
C 4a A/ 

hence for a specific value of IA 71-24 /..d;( we have 
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(4.17) 
n•-a 

Then the two equivalent sources give precisely the same results and 

hence the theorem is proved. 

Thus as 

We can put (from chapter 2) 

4 
q-' Z 	1 	7.,1 , 11 C 

on = •'1 , 

. 	 . 2 77 7/  
/4 	A/t1 

-Gt 

 

 

Thus from equation (4.8), 

co 00 

2) 	 e PeNdx 	Worce)0'4,) 

Then using a result from Erdelyi et al, 1954 a combination of equation (7) 

page 11 and equation (44) page 56 

e (t. /17:41#;'x 	2Zf) 	(4.18) 

2"  7)10-44  -7&  *it 
Putting 

6  C  -exlc[2277(A-21/(m-c)24411 	7'7 

We can find 67 
	

extending equation (2.25) to two dimensions. 

Thus we can find e' 	and hence the equivalent sourceOZ( 	or 

more particularlyfi(2ei y A) now projected onto a horizontal plane of 

height h. 
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This equivalent source should exactly represent the gravity field 

provided conditions (b) and (c) enunciated at the beginning of the chapter 

are obeyed. If a direct measurement of the vertical derivations, as has 

been done by S. Thiesson Bornemisza (1965) for example, disagrees with 

the theoretical result; the difference will be due to two causes 

(i) the effect of bandwidth as discussed in chapter 2 

(ii) missing information in the gravity spectrum if condition (c) 

is not true. This can be overcome by closing the station 

spacing so that the small bodies previously undetected show 

up on the gravity record. 

However, very rarely in practice isi69 measured at grid points 

on the topography. Physical considerations in the field such as swamps, 

clifts, rivers, vegetation make it impossible to measure gravity at regular 

pre-determined locations. 

If the points of measurement are scattered unsystematically on 

the topography, the C. 	in eqn. (4.18) cannot be immediately expressed 

as a linear combination of the g(x,y,z) but become MN coefficients 

satisfying MN equations. Again, as with the polynomial technique a large 

matrix has to be manipulated - thereby limiting the number of gravity 

measurements in a survey if a conventional solution by determinants is 

carried out. 

"Aliasine'is a more immediate problem, however. In any ordinary 

survey station density is not uniforog, inevitably resqlting in some small 

region having a high station density. To examine the consequences of this 

consider three points on a particular travers line unusually close together. 

Then if the middle point has an error in it,a sudden local jump would be present 
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in the gravity field as measured. The smaller the area in which the jump 

is contained, the greater are the amplitudes of the high frequencies 

present causing a few stations to have an unduly large influence on the 

values of the c' 	. This phenomenon of aliasing is 1'7 11 

well known in geomagnetism where the problem of having unevenly scattered 

measurements due to the restricted distributions of continents becomes 

acute in spherical harmonic analysis. 

Also with data no longer on a regular grid the number of frequencies 

present in the x and y direction are not uniquely defined. As shown in 

fig. 12 it would be possible in the extreme to make MN frequencies in 

either the x or y directions fit the data where MN is the total number 

of survey stations. 	These disadvantages make it impossible to apply 

eqn. (4.18) directly to the transformation of gravity data to the 

frequency domain. 

A new approach is required to overcome these difficulties. 

4.2.2 	Second Form 

Equation (2.5) shows that if we have a point mass m at a pointo) 

then 

,f(") 	- 6 	zax-ceia+(y-p)24.2y3/4 (4.19) 

Therefore the spectrum of g from eqn. (2.50) 

4  — Z •Gt. 
(4.20) 



The ambiguity of fitting a two-dimensional Fourier 
Series to points on a plane. 

- 

FIGURE 12.  
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where 

Putting 

14, 

2 Tr 15, 

 

where f , f are frequencies measured in cycles per metre in the m.k.s. x y 

system. 

From eqn. (2.59) 

i/2 JC 
WI de 

In eqn. (4.20) if z is large enough the amplitude of the spectrum 

beyond the cut-off frequencies can be made arbitrarily small. The 

spectrum can be made to satisfy the condition (c) necessary to exactly 

represent g in the frequency domain. Hence it is possible to replace 

by a series of point masses to synthesize the Bouguer 

Anomalies. This approximation to a continuous equivalent source is 

sufficiently accurate provided this discrete equivalent source is at a 

sufficient depth below the surface. Otherwise the field at the surface 

resulting from these masses will be distorted compared to the real field. 

For instance consider the extreme case of the point source being 

at the surface. Then the vertical component of the gravity field would be 

zero everywhere surrounding the source except directly above it. Clearly 

there would be large amplitudes in the spectrum beyond the cut-off 

frequency so that the vertical continuation and derivatives of this 

field would bear no relationship to reality. In fact from table IV and V 

it can be seen that only one coefficient in the transforming matrices for 

these processes would be needed. 
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Thus if we have n data points we can find n point masses 	at a 

suitable depth giving the equivalent source. 

Thus ( 6 -; 1) 

a ._7 	re) is-a 9-4 * 	. +. cz -m 71  - _ 1.a. 

	

,l i 	/ 2... z 	 4 	X 	H, 01 

	

z a 	,11 -4- a m -IL • 4- 4' III + . . . -4. a A-,1 

	

.2, 	I 	a . 	1 	 • 	4 4  4, 	a oi 	41 

(4.21) 

, 4-n y2 1112, 71- 
	 1"71 	- - 	 ap, 

where the 

- A ) 

  

(4.22) 

 

—A2  (zi A)213/z  
and z = h is the horizontal plane containing the point masses AI( at(i)li A). 

(y' 2.) is the position of syc. . 
This can be written vectorially 

(4.23) 

The matrix A tends to become ill-conditional if the equivalent 

source is too far below the surface; that is if z - h is too large in the 

eqn. (4.21). 

Mathematically A is ill-conditioned if det A 	0 

Thus if h is very large relative to the dimensions of the survey then 
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cz 2 	. ,  6Z 	---> 6? 
fr7.401 

where 	a. 
(zt - A) 	 27'77-* 02  (Z-T Y34'  

- 

and det A --> 0 
resulting in great variation between the values of the e71,: as is seen from 

all • • • - - - 	 ; 	

^ 

= 

=f de t(4 
c/e t 

IQ6 tA  
axx-4 	- 

4- (4.24) 

Therefore any variations in g will induce large variations in m. 

Wild fluctuations will also result frm the anomalous source 

being near the points of measurement relative to the station spacing. As 

Bullard and Cooper (1948) point out when g is continued below the level 

of the anomalous source large fluctuations OCCUK in the values of g along 

a profile. If h is too large in relation Lc,  the depth of the anomalous 

source, then the values of m will vary in amplified sympathy with the values 

of g below the source. Therefore h must be th,:sen to lie between these 

two limits of being too small or too large. It seems empirically, judging 

from the area interpreted (chapter 6), that 

•  # 4 y 	 -t 4  

-2 

z is the average height of the survey area. av 
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Substituting the lower value of 	-d4 	into eqn. (2.10) we find 

4,- 

). 	Al 4 de' j 132 2?3,4-1e. 
Therefore condition (c) is almost satisfied. 

The next step is to solve equation (4.23) which was carried out as follows. 

4.2.2.1 Solution of 	=  

An iterative method which reduced the influence of random errors in 

y on m was sought as direct solutions are unsuitable because - of their 

tendency to accumulate round-off errors and magnify random errors already 

present. Generally speaking, an iterative method for solving an equation 

or set of equations is a rule for operating upon any-approximate solution 

7449  of the equation rAx in order to obtain an improved solution X 6je2") 

and such that sequence i-Dc6gy so defined has the solution x in the limit 

(Householder 1953, p. 45). 

Zidarov (1965) has put forward a method which finds a system of 

masses in a spherical earth, satisfying a given gravity field, using 

iteration. Zidarov's scheme uses "the method of steepest descent" which 

is based on the geometric notion that the equation 

(4.25) 

can be solved by minimising 

q 2c)-  ( " - A25 ) 
	

(4.26) 

This is done by choosing a direction 1. ,": , along the line of maximum 

4! 
change of R and along which the initial vector:r is moved a distance 	to 

get .174:61) . "Distance" and idirection" are meant in the sense of Ralston 



•••••■„,. 	^se" 

For this 'X 

R (46 - 	9/(-o 
. 44 	(xe- 
t ey  AT 4,4 ( 74   

4- 	e er.47% 	E.  A"' A E 
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(1965) (page 44) for a hyperdpace of dimension Al where Al is the number 

of variables 

In general 

.7C •x. ;1 

	

 I 	 .1..9 

	

t, ÷ 	 -t 1 (4.27) 

Naturally the minimization of R to zero by .7X would give the 

solution of equation (4.25). 

Geometric considerations  

Let 2CD=1;:,, TZ t.,Z rIbe the true solution of , 41;0( -4 and let 
•••••• 	 I ) 

'MIRO 
6 -r ATA 

•••••■• 

The matrix el: /id.1 must be symmetric. 

 

(4.28) 
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The surface 

= const. 

is therefore a hyperellipsoid in the variables E . 	E with centre at i) 

0 (i.e. the solution of,*9( = 45 in the 'X,  	Al 

co-ordinate system). Now because C is symmetric, there exists an 

orthogonal matrix T)  such that 

F 7-  C P 	 (4.29) 

where D is a diagonal matrix with the eigen-values of C on the diagonal. 

The eigenvalues 

equation 

are the solutions of the characteristic 

Corresponding to each distinct eigenvalue lei:  there exists a sol-

ution of 

(4.30) 

E TA TA E 

r C = 

C 	MEM  

= 
 fi

e  "t 

Thus each eigenvalue of C correspond to the square of each 

of the eigenvalues of A. 



= 
then 

(4.31) 

-4= I 
Therefore the hyperellipsoid R = const. has axes in the direction 
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Making the change of variables 

- 	p c p 	:7,  5-7- 0 f 

of length. proportional to A . Ralston (1965) has shown that 

the condition of a matrix is represented by how nearly its hyperel11ps44 

(4.3 1) approaches a hypersphere. An ill-conditioned matrix has an 

"elongated" hyperellipsoid. 

In the method of steepest descent if .4 is ill-conditioned the 

direction of maximum change of R must point in a direction very differently 

from the direction of the centre of the hyperellipsoid. 

This is shown diagrammatrically in fig. 13 for the system. 

0 	 = J- 
O , 5 2 	74- 	s- 

for which the true solution is 	1.) 	= / 

The eigenvalues are given by the determinant II_ g 	_ 

- ,e)(0.52 	_ 0. 	6 

producing 	4- 	2 6 2.4  /I• C 7 

1.25.2) 	006C) 



Typical region 
where non-convergence 
may take place 

Path of ideal steepest descent 
solution 

FIGURE 13. 



- 62 - 

This system is therefore ill-conditioned. 

The equation of the ellipse is 

(0.00 fm'-  / . .2 521,) == c 
C = constant 

In fig. 13 this ellipse is plotted for various values of C with the scaleg; 

expanded in relation to Fz 	so that the true ellipse is even more 

elongated than shown. 

For ideal convergence the magnitude of Ai)  ;1 2. 	. giving successive 

iterations from the first approximation is shown. However in the region 

encircled an incorrect value of will throw the process of convergence 

out and the solution diverges for that iteration. 

Physically one sees in the solution of1:441:2 that if the true 

value of MA is greatly different to the other AW:s then the 

hyperellipsoid is very elongated along the Ay* axis. This will occur if 

;114 is in a position where the actual source is shallow. In vhaptex 5 

a region of non-convergence will be described in the solution of 

A ov) •••••■■ 

•••••• 
as the iteration procedure passes through a region in hyperspace with 

geometric characteristics analogous to fig. 13. 

We minimise 

)7( - 	12-') -= 
to find the solution of Al7 is equation (4.23). 



4 -iz4 d ;Pt 
where 
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The direction of maximum change oft). with respect to PI.  is given by 

the ith component of V() with respect to 9.'1 
	01 7pc 

Thus following Zidarov (1965) 

V 71c/  [YZ  3261)(1914V 

	

(4.32) 
4= I 

(4.33) 

where 	

R10( = i(ze --x4a74(yt-74214(zt-ziez 

/1,)is the measured field due to the true masses 	and 61)(0.1 ) is 
( I 	. 	• 	 Z 	1  

the nth approximation of 
	

from the approximate masses 

We restrict the position of discrete masses 174 11; to positions 

(2eeiy4;) A) where the N co-ordinates (71. 1 1.1.) correspond to the N positions 

of the measured, and A is the level of the horizontal plane for this 

equivalent source. Thus each discrete mass lies vertically underneath one 

of the N data points making up the survey. This restriction gives U a 

unique solution. We assume nothing about the matrix in eqn.(4.23) except 

that it is square and its elements real. 

Therefore 

• du ...,zffed ) 

191.0. cos (te., 4( 2) 

(4.34) 
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that is (4.35) 

We find following equation(4.27)that 

(4.36) 

-i4,701( where 1014/4  is a closer approximation to the true value of 	than  

/P -1) 

Therefore 

is less thdn 

d- fli1 )  

= 

•. _ 	(I=9 	)t} 
- 

To find ;1 we maximise 

o0) 	u(krlfr)__ )a 	
— 	

d 
	(4.37) 

In this way U will converge most rapidly for ;1 obeying this condition. 

Developing 19(?)as a power series in ;) from Taylor's Theorem, 

and taking into consideration only the first two terms (as CP& -= 
,:eps.7 3  

from equation 4.310 we obtain 

0) 	- 	 aiLl 4 	ei) 2d 2  
-- 771 	 2! 

(4.38) 

( 4.39 ) 

Now 	= CP from equation (4.30 
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' . ?() 	— -A,/yoe.ip 4 y 

c,(4 will have a maximum when 	 

Thus 

Hence 

4/Z7) 8
= 

= froid-bY 1() 9  
= 	e 

di  
:4'—e-1 /(1- ( -v 

(4.41) 

(4.42) 

ii 	iv' 

1,/ 

1 
which is Zidarov's (1965) equation (2) with "Y)/( substituted for 

This method assumed U only has one minimum. The condition for 

a minimum is that 64e2.'//k4,..., 

Suppose tha
t 
gOlit9 for some value of U other than 	0 . 
af' 

Then for some value of U, d2o/d,"2- _- 0 

but oe 2  a (4.43) 
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Hence at2ei 	0 and hence U only has one minimum. This is also seen 
c7.7):T1  

from 

= 
a-7.1,1 3  

Thus OE- 	cannot change sign. 

a.1414  

Thus it is possible fo find the equivalent source of a gravitational 

field in terms of discrete masses. In the limit it is seen that the second 

form approaches the first form. Suppose the gravitational field is known 

a number of points infinitesimally close together, then the discrete masses 

would be infinitesimal distances apart and in the limit would become a 

continuous surface density distribution. 

Having found the equivalent source one then is able to calculate 

the anomalous field at any point in space restricted by 

(a) areal extent of the survey 

(b) minimum height above equivalent source at which - 

	

A ika-a . 	Tris 
-G 	is negligible for -ex,) 2 rr 

	

) 	Sei?  

In this way the field can be calculated at regular grid points on 

a horizontal plane at some height above the source. 

In order to conserve the amount of information present in the 

gravity measurements,.the number of grid points calculated should not 

significantly exceed the number of data points. 

This result should be nearly exact 

(4.44) 
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if 

(a) no frequencies are present in the actual field beyond cutciff 

frequency. 

(b) no information is missed by having non-uniform sampling over 

the area. 

It should be noted here that a significant difference in the two 

forms is that the second form of the •quivalent source Uchnique assumes 

the field asymptotically •approaches zero beyond the area, the first form 

assumes periodic continuation horizontally. 



- 

5. 	APPLICATION OF THE EQUIVALENT SOURCE TECHNIQUE  

The fundamental assumption in using the dquivalent source tech-

nique is that the data points (points of measurement) sample sufficient 

of the field for the purpose at hand. Thus a survey must have sufficient 

measurements over its area that the amplitude of frequencies missed by 

•the station spacing is negligible for the structure being sought. 

With this assumption the gravitational field at any point in 

space can be found as shown in the last chapter. However, it is to be 

noted that no more accurate way is available than actually measuring the 

field at a particular point in space. Thus Thyssen-Bornemisza and Stackler 

(19p6) measured gravity at two heights at each survey point to obtain the 

gradient. In theory, the most accurate means available for finding the 

gradient is to measure it directly (providing the topography is flat). 

But as this requires twice the number of readings the equivalent source 

technique is more economical to use. In any case the accuracy of measuring 

the gradient directly is restricted by the small height differenbes over 

which gravity may be measured. 

The data used for the :equivalent source technique must be 

corrected for extraneous influences. That is the theoretical gravitational 

field intensity ,r  due to the earth (particularly the surrounding terrain 

and geological stratigraphic unit 4 should be computed and then subtracted 

from the practical measurement CP , thus forming the Bouguer Anomaly 

- Yr • 

Corrections for all the known geology of the area must be 

' included in 5 	in order to further our knowledge of the deeper structures 
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underlying the surface features. Essentially all available information 

is used to "strip" away the effect of the shallow structures in the 

sense of Hammer (1963). 

In chapter 6 this is done using a method modified from Bott's 

(1962) "Use of Electronic Computers for the Evaluation of Gravimetric 

Terrain Corrections". 

The Bouguer AnomaliesirAi found in this way make up the data 

required for the Equivalent Source Technique. The only further inform-

ation needed is the depth h of the masses 2vi!Pik] which has to satisfy 

equation (4.24). For convenience we make the horizontal co-ordinates 

of the 	the same as the data points, thus saving the amount of 

information required for the technique. 

Using this method of steepest descent the resulting  

system of equations in )442is solved, keeping in mind that a minimum 

amount of computer space should be used so as not to restrict the 

technique to impractically small surveys. 

From equation (4.42) it is seen that to calculate ;k , the 

variables d/c/4),P,A )  	and egi 4 must be known. 

Recall that 

Al 

	 [ (z.v- 2 )7i-Kyt -140 (zi -A)13/.2.
(5.1) 

2-Zt• = 
dmx 	f(x, 	)424 	(5.2) 
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2y at: 
/eylf 	 frPlO 

(5.3) 

/
C) 6I  . and ---- both depend on 1,14 and therefore have to be 

recomputed for each determination of ,A . cX4)Arx hoWevei does not 

depend on / ; but it has Ao()c)9'  values. Suppose N = 1000 then 

106  computer spaces would be required to store the dk4)1w - clearly 

impractically large for most computers. The computer used, an Elliott 

503 had 8000 spaces with an additional 16,000 in a core backing store. 

As the program took up about 3,000 spaces 21,000 spaces all told were 

left for data storage. 

Therefore eXATor more particularly the kernel 

(2 c - h)  
2eXr *(Y1 Y/72+  (Z.' -. 1134  

was recomputed each time it was required. 

The program was thus split up into three major loops as shown 

in table VIII where 

010[1 .1 z: Del/din  -^z/1 
Qh.d4/d1-7,.. 

. The program structure is Seen in the flow diagram fig. 14. 

Therefore seven arrays viz. 

z}  (5.4) 



Outer Loop 	Inner Loop 

Loop 1 	SEid  

Ih[A3 

ftg 

\\N  
calculated and 

compared with previous 
value and final value 
desired 

Loop 2 

frAJ 
x[x] 
IC4-7  
zLh.:1 

Loop 3 

N.B. 	These arrays must be 
quickly accessed to 
speed computation 

TABLE VIII 	Arrays required in equivalent source computation - 



, Fig. 14. Flow chart for equivalent source program. A[c,11=-401,7&,./4 in eqn.(5.2) and is computed each time it is 
used See fig.15 for details. At B

I the program continues with data obtained at B
2* This is controlled b y 

external switches ng(I) and ng(2) respectively, allowirxg a break in computation. 
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are necessary to compute 2 . These arrays required 7N storage locations, 

a considerable saving on the /V locations required to store  

As seems inevitable in science, a saving at one point means a 

loss somewhere else. Here the loss was in terms of computer time - to 

the extent that 99% of the total program time was devoted to calculating 

the ,Yp',0V . Even so computation time was reasonable. 

Each loop required, to within 1%, the same computing time T, 

found to be given by the equation 

7- 	Al/ 7///  i 0  
(5.5) 

where N is the dimension of the arrays. 

To achieve this the major loops were programmed into the machine 

code of the Elliott 503 rather than the normal Algol - resulting in a 

400% improvement in calculating time efficiency. 

The square root procedure used in the final step of calculating 

the kernel 

(9` 

	

I 	(Yr 	+ (z. 4)2 

took up a large proportion of each kernel's 1 millisecond (eqn. 5.5) 

time requirements. This was concluded from the fact that dispite a 

varying number (12 - 16) of similar machine code instructions in the 

three loops apart from the square root operation, the same time (to 

within 1%) was spent in each loop. 
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In the first loop the /0T1,2 were squared and summed to form 

U (equation 4.35). At the end of the first loop U was compared with 

its previous value to ensure convergence was taking place. It was 

found that the rate of convergence tended to slow down as the computation 

progressed. In order to speed up convergence a factor was introduced into 

equation 4.36 forming 

(5.6) 

where "a" is the introduced factor. 

By putting Or.> / it was possible to speed up convergence 

(in fact make the method "over-relax" in the sense of Ralston (1965)). 

However this led to the danger that the solution may become non-convergent. 

This was overcome by reducing "a" successively by a factor of 

2 until U did converge when the solution entered a region of non-convergence. 

Successive values of U are shown in Tables IX 4 and b for a small test 

area of the Derby-Winnaleah survey and the whole survey respectively. 

By forcing the convergence tb ovef-relax, it became possible to 

take the solution quickly through values of U where the hyperellipsoid 

(see fig. 13) was elongated. 

The bracketed portions in Table IX are attributed to regions in 

the hyperspace of the solution where a small number of the dimensions of 

•?//-4./ dominate the gradient e.  However once this region was 

passed convergence continued quickly until U became less than a predetermined 



A, 

-.7t, 
Iteration 

1) 

Convergence 

4.--- / 

3887.4597 

r-1 	
cl) 	

\ 	
s
 co 	

ch 	
cn 

1
-4 	

r
i  

1562.7364 con 

1063.3290 con 

739.07411 con 

556.31239 con 

556.31232 con 

2896.7126 not con 

556.31234 not con 

263.76229 con 

139.69104 con 

86.758592 con 

59.154730 con 

44.441891 con 

Note slow5 
convergence/ 

Region of non-  

convergence 

Notet 

fast 

convergence 

TABLE IX 

a) DerbyWinnaleah Area 

b) Test Area 

1197.9390 1 

384.77229 2 con 

214.14105 3 con 

118.76362 4 con 

84.163410 5 con 

84.163409 6 con 

467.92798 7 not con 

84.163406 8 con 

84.163423 9 not con 

30.586830 10 con 

19.190139 11 con 

Note slowf 

convergencet 

Region ol 

non— 

Lconvergence 

Note fast{ 

convergence 
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value. 

While theoretically it is possible to minimise U to zero, it 

would require a large number of convergences and would be in practice 

unnecessary. As U tends to follow the path of steepest descent in 

hyperspace the random errors F. 	of I would tend to cancel out 

and not influence the gradient. In accordance with normal practice 

(e.g. Kempthorne, 1952, p. 129) we assume the E ,. normal with mean zero 

and variance .0": 

where r  

(5.7) 

d 

A/ r-1 

A = 

Kir and 	is the true value of J7 	stripped of its random error F . 

sit  - 	 F i.e. 

-/ 
14- Fc  

• • /e 

as Al 

from the property of ft. having a zero mean. 

(5.8) 
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Thus a value E 	was chosen so that when 

< E 	 (5.9) 

the program terminated. 

was worked out on the criterion that the random error in 

each Bouguer Anomaly was of the order of 0.25 milligals for the Derby-

Winnaleah survey. This is a reasonable value in view of the precipitous 

topography of part of the area and the associated difficulty of making 

exact topographic corrections. Also by assuming this relatively large 

random error it is possible to smooth out small unwanted surface features 

that we regard as noise in the data. 

? 

As 	C) 	as 	Li --7P 0 	despite this influence of the 
4 

random numbers 't 

u 
Thus there is no point in reducing U much below the value 

where is the variance of the errors - i.e. 
A/ 

    

(qa 

     

     

4 = 
Thus the process of iteration should continue until 
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(5.10) 

From the preceding discussion 	cr
a 	

(0- 25) 

Hence 	6/ < 	274 	when N = 860 (Table IXa) 

<2 0 	when N = 330 (Table IXb) 

As the computer locations remaining after the equivalent source 

technique program was compiled was 5000 location it was necessary to 

use the core backing store when N = 860 Or the entire survey). 

However it was only necessary to transfer 4 of the 7 arrays 

between the core backing:store"and the computer without even disrupting 

the three major inner loop computations. In this way no significant 

time was lost due to this information transfer. 

By analysing each double loop it is seen from Table VIII 

that except for loop I only 5 variables are necessary in the computation 

process. In loop 1,3 had to be transferred in the outer loop between 

the backing store and computer. 

Thus the equivalent source for the 860 data points making up 

the Derby-Winnaleah survey could be stored within_ 5.x 860 = 4300 

computer locations. 

As is seen from B 1 
and B 2 

in the flow chart (fig. 14) the program 

was designed so that it could be switched off at any stage and the output 

would contain all necessary information for computation to proceed at a 

later date without loss of time. 

Fig. 15 shows the flow chart for Program "Gravtwo part B" which 
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FIGURE 15.  Flow chart for program calculating gravity on a flat 
horizontal grid. Residual is found by making two 
computations at different heights (2:

1 ) and subtracting. 



- 76 - 

computed the Bouguer Anomalies on a regularly gridded horizontal 

plane from the equivalent sources 'MX/. The program required one major 

loop very similar in character to each of the major loops in "Gravtwo part 

A". By inputting the equivalent source Iv, X/ and the positions2rWifflon 

a plane at depth h it is possible to compute the gravityp ii] at 

regular points(t4,f)/47)whereeJle and 4.7  are station spacing in the 
x and y direction. Computing time for this program was exactly one-third 

of the computing time for each convergence in "part A". 

Using the equivalent source it was possible to compute the field 

at any height (with the restrictions as pointed out in chapter 3). In 

this way it is possible to vertically continue the gravitational field 

in either direction. 

The "Regional" and "Residual" gravity fields  

As already pointed out the "regional" field is a purely relative 

term. However, if we measure gravity at steadily increasing height 

above a certain point, we are being influenced by anomalous bodies over 

p. steadily increasing horizontal area. Also the deeper larger bodies 

underlying the survey area have a larger relative influence on the 

gravity field. Thus we can consider that the field at height Z, is 

"regional" relative to the field at height 47 if Zix:-  42.,  • In chapter 6 

we find the "residual" field by vertically continuing the field upwards to 

500 metres and then subtracting it from the original field at 250 metrd .s. 

Comparison with exact techniques  

If the field is known on a regularly gridded horizontal plane it may 
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still be more economical in terms of computer time to use the equivalent 

Source technique. Bhattacharyya (1966) has shown how the two-dimensional 

spacial frequency components of a field may be found. 

To compute each frequency component requires a double summation 

of trigonometrical functions times,' each over N terms. ,  The field is 

then continued vertically by filtering the frequency toefficients in the 

appropriate manner. However, as cose2 	and sing 	are compaLtively 

slow processes for the computer, the method of computing the field from 

an equivalent source may well be faster. In fact once the equivalent 

source is found for any field further processing such asvertical contin-

uation and finding the residual will be very economical. 

Analogue Technique  

If the gravity field is known as a continuous function on a 

horizontal plane then it is possible fo find its derivatives and 

vertically continue the field by the following Analogue device (Green, 1966). 

The field is first represented by a film having transmissibility 

properties proportional to the magnitude of OpP . The intensity of 

monochromatic and coherent light passed through the film, then focussed, 

is found at the focal plane to be given by 

Tooio, 	
- 	1)-fi 

-T(6€i 15) =./ 	Y(X1 Y) e 	
ei/x ory (5.11) 

Thus appropriate filters at the focal plane can be made to 

attenuate the light according to either vertical continuation i.e.e 
921-1/2 

or derivative (ArAr-a */) 	. The resultantprocessed field appears at 
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the image plane. A similar method using diffraction is discussed by 

Jackson (1965) for seismological interpretation. 

This optical method would greatly speed up gravity 

interpretation once the film representing the field is made. 
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6. 	DERBY-WINNALEAH GRAVITY SURVEY  

Description of Plates 1-7  

The development of the Residual Bouguer Anomaly from the original 

measurements on the topography is shown on the following plates. 

Note - all contours are in units of milligals. 

Plate 1.  Geology of the area. Note all elevation contours are in units 

of feet above mean sea level. 

Plate 2.  The Free Air Anomaly 

Plate 3.  The Simple Bouguer Anomaly with density = 2.67 gms/cc. 

Plate 4.  The Bouguer Anomaly with terrain correction using densities shown 

on plate.' for the topography. 

Plate 5.  The Bouguer Am/Largay tlas -in plate 4) projected onto a reference 

plane 250 metres above mean sea level. 

Plate 6.  The Bouguer Anomaly projected onto a reference plane 500 metres 

above mean sea level which we define as the regional. 

Plate 7.  The Residual Bouguer Anomaly at 250 metres with interpretation 

of old river paths. 

All maps drawn with reference to the Tasmanian Grid with the 

position of the base station (see fig. 18) taken as 566,438 yds. East; 

932,670 yds. North. 
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The data from this survey was chosen as the area topographically 

(see Frontispiece and fig. 16) was precipitous to the extent that the 

gravity measurements should be projected analytically onto a horizontal 

plane. The location of the survey is shown in fig. 17. 

6.1 Geology of the area. 

The geology of the Ringarooma Valley area which embraces the 

area surveyed has been described in detail by Nye (1925). The geology 

in plate I (also reproduced on a larger scale map 1 - inside back cover) 

is due to Nye. Howland-Rose, however, observed an additional outcrop 

of Mathirraa Sandstone in the region at 934,500y1■I and 564,000yRon the 

map. These two outcrops were found to show up very clearly on the Bouguer 

Anomaly Residual map plate 7. 

The oldest rock t of the survey area are the slates and sandstones 

making up the Silurian kathinna Group. This gr. oup was deposited over 

a large area of Tasmania. 

Deposition was bought to a close by a period of diastrophism which 

intensely folded and faulted the Mathinna Sandstone leading up to the 

intrusion of granite in Devonian times. The intrusions are extensive 

in the area and at Derby now make up a group of relatively high hills 

to the south. 

The granite is thought to be part of the batholith of N.E. Tasmania. 

Fig. 16. The plateau and the sharp cliffs leading down to the water-filled 

Bri.seis Mine ;re shown above and below on the following page. 
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As the granite magma cooled its residual vapours and fluids resulted in 

the formation of tift,lodes in veins. These veins are the source of the 

alluvial tin deposited in later times as the granite was eroded away. 

Genei-ally the granite ranges from the fine-grained to coarsely 

porphyritic. 

Following the granitic intrusions a very long period of erosion, 

followed interspersed with periods of marine sedimentation which were 

subsequently eroded away. Permo-Carboniferous sedimentation is known 

to the north and south of the Ringarooma Valley and so it is concluded 

the Ringarooma River system which was now developing eroded them away. 

This erosion and stream development continued until Lower 

Tertiary times as the then Ringarooma River developed its course. The 

ancient Ringarooma River according to Nye (1925) followed the present 

one from Branxholm to Derby, but then took a more northerly course west 

of the west end of the Mt. Cameron Range. So far as the survey area is 

concerned Nye appears to have been right to the first approximation. 

The outcrops of Mathinna Sandstone found by Awland-Rose (1964) 

suggest that the course of the old Ringarooma River was controlled by 

these two ancient elevations above the flood plane such that the river 

probably flowed between them. 

A relative_depression occurred in land surface in Lower Tertiary 

times, causing the Ringarooma River to become dammed in places forming 

lakes and estuaries into which Cgssiterite bearing alluvium was 

deposited forming the main tin leads now partially mined. This alluvium 
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is made up of 300 feet of gravels, grits and sands in the survey area - 

typical lacustrine deposits. 

This period of deposition abruptly closed as Tertiary basalt lavas 

were extruded forming flows covering the old Ringarooma system. In all, 

three flows with a total thickness of 200 ft. formed at Derby. The 

flows are separated in time by short periods of erosion. 

The Ringarooma River systemre-established itself, as sea level 

subsequently recorded, as far down-stream as Derby but here the course 

was diverted to the south-eastern edge of the basalt. The river corroded 

a course through the granite so that it was forced past the eastern 

edge of the Mt. Cameron range and its new course goes to the east of 

Mt. Cameron and theiiie to the sea. 

n the survey area the river follows the granite-basalt boundary 

and now rests for the most part on Tertiary gravels and clays. 

6.1.1 Topography  

The present cycle of erosion has caused the long narrow plain 

made up of the basalt flow to be dissected by the Ringarooma River. 

In.the valley' of the Ringarooma River at Derby the erosion of-

the-river through the basalt and the underlying Tertiary sediments has 

formed a.  cliff 300 feet high (see fig. 16). 

The survey area topographically can be divided into a plateau 

region and a valley region. This can be thought of as approximately 

the idealised situation as shown in fig. 9 of two plains at different 
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levels. The necessity of using some technique such as the equivalent 

source technique is seen. 

6.1.2 Derby Gravity Survey  

The data was collected by Howland-Rose (1964) on behalf of the 

Australian Commonwealth Bureau of Mineral Resources. The purpose of 

the survey was to find from Bouguer Anomalies the actual course of the 

ancient Ringarooma River system. It was reasoned that the deep leads of 

tin such as those at the Briseis mine would continue along the river. 

Measurements of the gravity field intensity at Derby were made 

at from 50 - 200 feet spacing on traverse lines as indicated on plate 2 

to 7. In the area which was thought to be of most interest the line 

spacing was made much closer. This area formed a test area (fig. 24) 

over which the equivalent source technique could be tried. 

The measurements were assumed to be corrected for drift and loop 

adjustments to have been made in the original data given to me by the 

Bureau of Mineral Resources. 

6.2 	Processing the Derby Gravity Data  

6.2.1 Fundamental assumptions  

Taking the Bouguer Anomaly in the sense of Naudy and Newmanil (1965) 

we have to calculate the theoretical gravity of the model of the earth 

formulated from information at hand. 

The model assumed consists of the International Ellipsoid plus a 

model accounting for the local geology and topography so far as it is 
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known. The International Ellipsoid represents the form of a self 

gravitating earth in hydrodynamic equilibrium. The local geology and 

topography plus isostatic corrections accounts for the attraction 

representing deviation of the 'earth from hydrodynamic equilibrium. Over 

an area as small as this survey (9 square miles), the isostatic correction 

will not vary significantly between stations unless one assumes the 

extreme case of complete local compensation - a hypothesis discounted 

by Vening Meinesz (H aiskanenand  Vening Meinesz, 1958, p. 137). For this 

reason only the effects of local geology and, topography need to be 

calcutated. The geology below a certain height (the base level) should be 

assumed to be uniform as Vajk (1956) points out otherwise nonexisting 

gravity anomalies may be introduced into the results of the survey or 

existing gravity anomalies may be distorted. Hence it is only necessary 

to calculate the gravitational field intensity due to rocks above the 

base level as the attraction of the rock below the base level would be 

the same for every station in the survey if curvature of the earth is 

neglected. As the survey only covered a few square miles curvature of the 

earth was negligible. 

As only relative Bouguer Anomalies were required, all corrections 

were made so that the corrected value at the base station (see fig. 18) 

was 0. 

6.2.2 Free Air and Simple Bouguer Anomaly  

The Free Air Anomaly and the Simple Bouguer Anomaly assuming density 

2.67 gms. per cc. was calculated from the original data using a 

program developed by Dr. R. Green (personal communication 1966). 2.67 was 
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chosen as the density value because experience has indicated in the granite 

areas of Tasmania that 2.67 gives a representative average density. Plates 

2 and 3 show the contours of the Free-Air Anomaly and the Simple Bouguer 

Anomaly at Derby. 

It can be seen that the lack of terrain correction in plate 3 

produced a steep gradient in the Simple Bouguer Anomaly map at the Briseis 

Mine. 

.6.2..3 The Extended Balmier Anomaly  

In order to calculate the Bouguer Anomaly the topography shown on 

plate 1 and map I was divided up into a number of square blocks extending 

from a base level to the average, height of the square area they covered. 

Note that, although not shownthe elevation. contours on map I were 

known at 10 'ft. intervals. The blocks were assumed to be of uniform 

density equal to the density of the rock outcropping on the surface. 

A diagrammatic cross-section of the model of the local geology is 

shown in fig, 19. 

The effect of the topography was calculated over an area 9 times 

the area of the survey, such that the topography unaccounted for was at 
%.■ 	'- 

least a distance eaway from any gravity station where -C. is the approximate 

length of the side of the area. 

6.2.3.1 Rock Densities  

Amwland-Rose (1964) determined the densities of the rocks from 

samples collected in the field. 

These densities were taken and given on plate 1. 
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The density for granite sandstone and the Tertiary gravels were 

found to be quite typical, 

As the basalt covers the majority of the area surveyed its 

density was critical as it was important for the contrast density of the 

Tertiary gravels to the basalt to be significant. 

Basalt can have a density of the order of 2.00 gms/cc if it is 

vescicular. Some vesicles were present in the basalt but results indicate 

that the density was definitely not less than 2.8 gms/cc. The mineralogy 

(described in Appendix B) and negative correlation of the Bouguer Anomaly 

with topography (compare plate 1 and 4) supported this last observation 

(Nettleton 1942). 

Methods of checking the 'density by generalisations of profile 

methods such as Grant and Elsaharty (1962) were not used. 

6.2.3.2 Method of Calculation  

While there are a number of methods available (Hamme 1939; 

Sandberg, 1958; Becke1,1948) to calculate terrain correction graphically, 

it was decided to modify Bott's (1963) method. Bou t s method divides the 

terrain into blocks and then calculates the influence of each block at 

the point of measurement. 

The blocks were chosen with an area of 200 yds. square as this 

filled the grid of Eastings and Northings conveniently. The blocks are 

mathematically idealised as vertical lines with a line density 

(6.1) 



- 87- 

where A is the area of the block. 

From fig. 20 it can be seen that the difference 77-  between 
assuming the block to be the height of the station with density .0 and 

assuming the block to be the average height of the terrain with density 

is 

for Z Z 
i 	_ 	1  

7—  = 6- 0 A  l( ()(--x) +  
1  + 6  (D -6)4[Rx-xt-+(/-y) 4 (z- z)21/  - 1  1 	

(6.2) 

— [()<-)c)"?.(\f,7)+(Z.- e?s-r4..] 

z < z 
---- 	a I' Al-   (6.3) 

_  -44/1)(-XY241 (xy)f 	es-(x_ 	4-(>/:4Q) (Z-b4s()Y] 
giving for all z 

7:7 D//(X- x)÷ (7-fl 
Vi(X - .x) ( Y- y)- - 	

(6.4) 

( — d)/(65'(—xt-74-, (y- y) -74  (z- bosti vz 
where 	is the gravitational constant,(X)  /fZ) is the position of 

the observation point,(2;y2.) is the mid-point of the top of 

the block and "base" is the height above mean sea level of the bottom of 
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the block. 

Using the result that the vertical component of the gravitation 

attraction of a mass line with line density 	distance 0 from 

P to the top of the mass line and distance 
	

to the bottom, 

(6.5) 

This idealisation is sufficiently accurate unless the blocks 

are too close to P . 

Fig. 21 shows how the blocks nearest to /7  were divided up into 

first quarters then into sixteenths. The gravitational attraction of 

the'terrain within the block containing p was worked out using Hammer's 
method where necessary. 

Fig. 22 shows the ratio F7  of the gravitational attraction of a 
mass line distance (2 approximating a given block of side e and 

four mass lines approximating quarters of the same block. As can be 

seen the ratio /7.;:- / if 034? . Thus these mass lines give a very 

good approximation. Fig. 23 shows the flow chart of the program 

calculating the terrain correction. 

The program required 130 minutes to calculate from 1000blocks and 

the Free Air Anomaly, theBouguer Anomaly for 1200 stations. 

The Bouguer Anomaly is shown in plate 4. It is seen from this 

map that the obvious variation of the Simple Bouguer Anomaly with terrain 

is not present. 
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This Bouguer Anomaly data was used to find the equivalent source 

of the area after erratic values were omitted. 

	

6.3 	Testing the Equivalent Source Technique  

Part of the survey was used as a test area to test the validity of 

the technique in describing the gravity field. Fig. 24 shows the 1.5 

mgal contour of the vertical intensity at various heights (measured in 

metres) above mean sea level (A.M.S.L.). The figure gives a good 

description of the behaviour of the gravity intensity with height. 

Geological evidence (see plate 1) indicates that the source of 

the gravity field (the alluvium) is shallow and outcrops on the surface. 

This bears out the interpretation from figure 24 that the source is close 

to the surface as the lower contours begin to converge together. The 

anomaly is thus interpreted as a small sediment-filled ancient lake. 

Other contours drawn of the test area gravity field not shown here, 

gave a good description of the type of gravity field intensity behaviour 

expected. 

In particular, the field of the entire survey at 250 metres and 500 

metres (A.M.S.L.) on plates 6 and 7 respectively show the techniquds 

ability to carry out vertical continuation. 

	

6.4 	Derby Bouguer Anomaly Projected onto a Flat Plane  

The Bouguer Anomaly at a height of 250 metres corresponding to the 

plateau level is shown in plate 5. Comparing this with plate 4 it can 

be seen that this projection elliminates some distortion in the 
11! 

gravitational field. 



FIGURE 24. 	The 1.5 mgal gravity intensity anomaly at various heights 
indicated in metres above mean sea level - referred to 
the Tasmanian grid. 
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Continuing the field up to 500 metres from the equivalent source 

produces the Bouguer Anomaly contours shown on plate 6. The field at 

this height will be considered to represent the regional as the large scale 

variations only remain as the high frequencies have been highly 

suppressed by the upward continuation process. 

The residual anomaly is thus found by subpracting the field at 250 

metres from the regional here defined as above. The residual Bouguer 

Anomaly is shown on plate 7. 

Hence the trend indicated is the ancient Ringarooma River. The 

trend is continuous across the area and shows clearly the river as it used 

to flow between the two ancient hills now represented by the Mathinna 

Sandstone outcrops found by Howland-Rose. 

While other interpretations such as weatheling in the basalt or 

lineament in the basement could be postulated to explain these trends it 

seems difficult to imagine that such effects would take the form shown. 

The small relative positive anomaly over the Briseis Mine shows 

up an error in the model. In calculating the Bouguer Anomaly it was 

assumed that the 100 foot deep open-cut mine workings were empty of water. 

However, it has since been learnt that the Mine was actually filled with 

water and hence this appears as a small positive on the map. 

The positive anomalies at the north-west and north-east corners of 

the residual Bouguer Anomaly map are interpreted as old hills on the 

pre-Tertiary land surface. 
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6.5 	Future Work  

Drill-holes at the points indicated on map 2 inside the back cover 

would confirm the interpretation of the gravity at Derby. It is 

suggested that the holes be drilled in the order indicated as the 

numbers indicate decreasing likelihood of finding the old river. 

	

6.6 	Conclusion  

Thus the equivalent source technique is able 'in practise to find 

the Bouguer Anomaly on a flat plane far more accurately than has been 

previously possible. 

The economics of the method are also reasonable. Assuming a cost 

of $5.00 per station, the cost of 50 cents per station in terms of 

computer time is quite reasonable for the equivalent source technique. 



APPENDIX A 
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Thus differentiating with respect to Z: 
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potential functions, so that we may replace p(  by 	so that we 

get in the magnetic field potential case: 
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APPENDIX B  

Mineralogy of Basalt (Nye, 1927)  

The bottom 30' thick flow is slightly vescicular at the top and 

is almost codpletely decomposed. The few unaltered portions consist of 

a fine-grained olivine basalt, similar to the usual type occurring within 

the district. The middle flow is 40 feet thick and rests directly on the 

bottom one. It is almost completely decomposed in a similar manner. 

The unaltered kernels remaining are fine-grained, but somewhat coarser 

than the lower flow. Olivine occurs sparingly and the rock appears less 

basic and more feldspathic than the average type. The middle flow is 

slightly vescicular at the top and the layer of grits, from a few inches 

to several feet thick, separate it from the upper flow. 	The upper 

flow is a dense, fine-grained, basic type, with abundant olivine, and 

slightly amygdaloidal in places. It is extremely resistant to the 

weather at certain localities, and forms a very rocky surface. 

This basalt, particularly the bottom flow, clearly belonged to 

the Branxholm type of Edwards (1950). It did exhibit a tendency to 

develop centres of crystallisation as noted by Nye (1927), and also had 

a large proportion of pyroxene - probably titanaugite. 

The mineralogy of the basalt is seen in plate 8 opposite. The 

opaques are magnetite and ilmenite, which have high densities, thus making 

the density of 2.8 gmsicc for the basalt reasonable. The micropheno-

crysts are pyroxene, with a small amount of feldspar also being present. 

The basalt is thus very basic - or tholeiitic, and therefore should 

have a higher than normal density. 

The mineralugy oft..-.- 	opr.,osi, is 	Sp.ff (pE-:fsonal 

communicatL,A 
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SUMMARY 

Vertical continuation is shown to have some important practical applications. The 
practical applications of derivative methods are well known. 

Various coefficient sets which compute vertical continuation and derivatives 
of gravity or magnetic anomaly fields are analysed on the basis of their filter 
response using methods from communication theory. The other important criteria 
in judging their data-processing methods are the effect on errors and ambiguity. 

New coefficient sets are then proposed for upward and downward continua-
tion and second derivative using these three criteria. 

INTRODUCTION 

Many methods are available for the interpretation of gravity and magnetic anom-
aly maps and most fall into one of three categories, namely: (1) direct qualitative 
interpretation of contours, (2) indirect interpretation in which hypothetical anom-
alies are fitted to the contours, and (3) data processing methods in which the 
contours are put into a more easily recognisable form. 

Direct qualitative interpretation of contours is useful in working Out initially 
the gross structures of the area. For example, areas of basins and ridges are easily 
picked out. However, generally speaking, without computation this first category 
requires considerable experience on the part of the interpreter before it can give 
numerical details of depth, size and shape of a probable structure producing the 
anomaly. 

The second category is useful provided ambiguity can be removed by well 
supported assumptions of the body's shape, as is often done in mining geophysics. 
In fact, it can be proved by using Green's "Theorem of equivalent layers" (Roy, 
1962) that there are an infinite number of solutions of the body causing a given 
anomaly. This type of method is only valid when the shape of the body is assumed. 
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Data-processing methods include derivative methods of various orders and 
vertical continuation. Derivative methods have their use in that they are able to 
take out the "local" component of a gravity or magnetic anomaly. As Nettleton 
has pointed out (NErrtEroN, 1954) it is impossible to uniquely define the "local" 
or "regional" field. This is clearly seen in the very simple ring and point technique 
used to find the first derivative, or gradient, of a gravity or magnetic anomaly field 
intensity. For instance, what diameter do we make the ring whose average value 
we subtract from the centre point to get the gradient ? 

PRACTICAL APPLICATIONS OF VERTICAL CONTINUATION 

Vertical continuation method can be very useful in interpreting gravity and mag-
netic anomaly maps. Basically this method works out the anomaly at some height 
or depth from the plane on which the anomaly is measured. 

Downward continuation is able to directly calculate, at a known depth, the 
sufface-contrast density which would produce a given anomaly, from the rela-
tionship: 

1 
cqx, — 211G

g(x, y, h) 

where o-h(x, y) is the surface contrast density at (x, y) at depth h; g(x, y, h) is the 
anomaly at (x, y, h) and G is the gravitational constant. 

The role of downward continuation in the determination of structure is seen 
in the magnetic anomaly case. From: 

1 
- 5-1(x, y, z) = jiff I(a, /3,y) • grad (--)di 

Acahvir 

where S-2(x, y, z) is the anomalous magnetic field potential at (x, y, z) due to the 
intensity of magnetisation 1(a, 13, y) at (a, 13, y) over the volume T, and : 

r = {(x — oc) 2  + (y — /3) 2  + (z — y)2 } 

can be derived (see Appendix I) the relationship that the undulating magnetic 
basement surface z = f(x, y) h of infinite depth and horizontal extent is related 
to Hy(a, fi,  h) the vertical anomalous field intensity at (a, 13, h), by: 

1 	Hy(a, 13, h) dc dfi 
f(x, Y) = 41121zii {(x -02 + (y -fi) 2 }f 

where the surface integral is over the surface S and 1z  is the vertical component of 
the intensity of magnetisation. 
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The surface integral can be approximated by a double summation, giving 
the structure by a direct computation from a grid: 

1 	N 	N 	Hz(iAx,jAy) 
f(x, Y) = 	 E E 	  41121z 	=- N {(x - AX) 2  (y — jAy) 2 1+ 

where Ax, Ay are unit grid lengths in the x- and y-direction and N is a value 
beyond which the truncation error is negligible. 

Upward continuation can be used to bring ground and airborne vertical 
magnetic anomaly results to the same reference plane. However, as will be seen 
later, this process can never be perfect. 

Many different systems of the vertical continuation method, using coefficient 
sets, have been proposed in the literature (see below). Some systems work better 
than others, yet all fail in some way. Criteria are therefore needed by which each 
system can be judged as best for the purpose at hand. This will be done, while 
showing why some coefficient sets so far proposed fail. 

FILTER RESPONSE, ERROR CONTROL AND AMBIGUITY 

As TARKHOV and SIDOROV (1960) have pointed out the regional field, random 
errors and other unwanted influences on the geophysical data are interference. 
Processing geophysical data mathematically is the elimination of interference and 
the ordering and collecting of the existing information. In spite of the great 
diversity of mathematical methods used in processing geophysical data, they are 
all basically filtration methods that operate like electronic filters and have the 
object of detecting the anomaly (the signal) in the background of more or less 
intense interference (the noise). In these methods the intensity is not necessarily 
increased, in fact, it may be decreased. However, due to a certain decrease in the 
unwanted information (the noise) the anomaly to interference ratio is increased. 

The principles of communication theory underlie these data processing 
methods. Operations on geophysical data are merely various types of space filters. 
DEAN (1958) proved the following results: 

(1) If h is the distance of vertical continuation, taking the positive direction 
as down, then the theoretical frequency response of the upward and downward 
vertical continuation processes is: 

eh  

where u and v are frequency parameters in the x and y direction such that 
u = 21-If/Ax, where f is the frequency of an anomaly in station spacing distance 
Ax. A = Ax/f, where A is the wavelength of the anomaly in the x-direction. An 
analogous relation can be derived for v. 

Thus it can be seen that if the anomalous field intensity varies only in the 
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)c-direction then the frequency response of the vertical continuation process is eh I " I. 
(2) The frequency response of a general coefficient set C„,„, where C„,„ is the 

coefficient at the point (mAx, nAy), assuming a uniform grid with station spacing 
in the x- and y-direction Ax and Ay respectively, is: 

EE c„,,„ e -i(umtlx+vntly) 
m= — co n= — co 

In practice we would run over m and n only up to N where for I m I and 
InI>N the truncation error would be negligible. 

Thus in the one dimensional case assuming C„ = C_„ the filter response 
would be : 

N 

C.+ 2 E c„ cos (unAx) 
n=1 

This is like a fourier series which repeats itself with frequency uAx. The period is: 

11 	II 
< u < — 

Ax 	Ax 

Thus the maximum frequency that the frequency response can be specified is: 

	

211f. 	211 	II ax  =  
2 — 

	

Umax  = Ax 	Ax 	Ax 

The main effect of digitalizing data is to limit the high frequency response 
to one half cycle per station spacing so that the frequency response of the coefficient 
set need only be considered up to f = 1 or A = 2Ax. This makes vertical continua-
tion possible. 

Thus, in vertical continuation coefficient sets, the coefficient sets' frequency 
response could be compared to the theoretical frequency response by examining 
the equality of: 

N 

eh  I u I = C0 +2 E c„ cos (unAx) 
n = 1 

This examination gives the first criterion offilter response by which coefficients 
sets may be judged. 

However, so far no account has been made of the effect of errors. 
Two sets of 100 random samples of errors having a Gaussian distribution 

with a probable value of 10 units were taken from a grid of numbers having that 
property in ELKINS' (1952) article. Their spectrum was examined using a finite 
fourier transform. It was found, as would be expected, that the amplitudes of the 
cosine term were scattered randomly through all frequencies from 0 to 0.5 using 
0.01 intervals (see Fig.1). This shows that random errors (or noise) can be expected 

, 
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Fig.l. Amplitude of random noise spectrum. 

at all frequencies with no systematic decrease in the higher or lower frequencies. 
Also in the special case where, for example, a tare occurs in a gravitymeter, 

the resulting error could be represented by a step function and this is equivalent 
to the presence of all frequencies. 

From its theoretical frequency response, downward vertical continuation is 
seen to be unstable in its high frequencies. Physically downward continuation is 
questionable because it appears that more detail is being squeezed out of the data 
than it contains. 

The fallacy of using a coefficient set which has the theoretical response is 
seen by the effect on errors—the high frequency data would be greatly magnified 
in relation to the low frequency data so that high frequency noise would swamp 
low frequency information (or signal). 

Error control is the second criterion by which coefficient sets should be judged. 
DANES and ONDREY (1962) have analysed second derivative methods and com-
pared them, using the first criterion, to the theoretical second derivative filter 
response of u 2  +v2  . They do not consider the effect of errors in their comparison. 
As it turns out (see later), there is no need to use the second criterion in analysing 
second derivative methods because the theoretical frequency response of second 
derivative methods does not increase sufficiently. 

To overcome the problem of high frequency noise, distortion must be in-
troduced into the frequency response in the high frequency part. The distortion 
used is smoothing. 

Data-processing methods are also open to the problem of ambiguity. For 
example in the method of downward continuation the assumption of the depth of 

Geoexploration, 4 (1966) 3-24 
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continuation has to be made. While SMITH (1959a, b, 1960, 1961) and SMITH and 
BOTT (1958) have developed many theorems which link assumptions of density 

° contrast, density-contrast variation and other factors to the assumption of depth, 
ambiguity must remain. 

Thus the third criterion for judging data processing methods is ambiguity. 
For example, DANES (1961) in his various methods including downward continu-
ation requires a knowledge of not only density contrast, but density-contrast vari-
ation to complete his method. His method by design, has a perfect filter response. 
So Danes' method in the case of a large distance of downward continuation (see 
Fig.5) in an area where little is known of rock density would fail for the second and 
third criterion, while perfectly satisfying the first criterion. 

The interpreter must balance each method against these three criteria, decide 
how strictly he should judge the filter response, error control and ambiguity of 
each and then use the method most closely satisfying his needs. 

Geoexploration, 4 (1966) 3-24 
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SOME PREVIOUS VERTICAL CONTINUATION COEFFICIENT SETS ANALYSED 

In the analysis of the downward continuation coefficient sets which follows, the 
anomaly is assumed, for simplicity, to vary only in one direction. For the various 
ring techniques the coefficients are projected onto the x-axis. In this analysis it is 
assumed that anomalies have already been put on a grid before interpretation 
begins. No account is given here of the many dangers underlying the problem of 
putting data on a grid, this being outside the scope of this paper. Fig.2, 3, and 4 
and Table I and II show the normalised filter responses of various coefficient sets 
proposed in the literature. 

BULLARD and COOPER'S (1948) coefficient set is only one-dimensional and 
can, therefore only be used for interpreting profiles. 

Bullard and Cooper derive the relationship between smoothed gravity g z(x) 
at x on the line at depth z and go(x) and also use smoothing related to the error 
function: 

Geoexploration, 4 (1966) 3-24 
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co 

2(0 ) = — 	g 0(x)e—
p2 4flepz cos p(a — x) dx dp 

jcO 

= 	go(x)),(x —a) dx 

= E g 0(nAx)A(nAx—a)Ax 

Thus: 

C„ = 

They smooth by : 

-n 	g o(x)e - P ( x -  "2  = 	dX 

to 

05 — 

0.0 — 
Fig 4. Filter response of indicated coefficient sets. / = Finite difference method, h = 1; 2 = 
PETER'S (1949) method, h = 2; 3 = PETER'S (1949) method, h = 1; 4 = PETER'S (1949) method, 
h = —2; 5 = finite difference method, h = —1; 6 = PETER'S (1949) method, h = —1; 7 = HEN-
DERSON AND ZEITZ' (1949) method, h = —1. 
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TABLE 1 

BULLARD AND COOPER'S (1948) COEFFICIENT SET FILTER RESPONSE 1  

10 2 1 0.5 0.2 0.125 0.1 radians 

1.0101 1.0101 1.0101 1.0101 1.0101 1.0101 1.0101 0.0000 
0.4932 0.9245 1.0000 1.0401 1.0649 1.0711 1.0733 0.0785 
0.2417 0.8491 0.9936 1.0748 1.1266 1.1400 1.1445 0.1571 
0.1181 0.7778 0.9845 1.1076 1.1887 1.2099 1.2170 0.2356 
0.0576 0.7106 0.9729 1.1384 1.2509 1.2807 1.2908 0.3142 
0.0280 0.6471 0.9584 1.1663 1.3122 1.3514 1.3647 0.3927 
0.0135 0.5872 0.9407 1.1906 1.3714 1.4207 1.4376 0.4712 
0.0065 0.5308 0.9198 1.2109 1.4280 1.4881 1.5087 0.5498 
0.0031 0.4782 0.8964 1.2273 1.4818 1.5533 1.5779 0.6283 
0.0015 0.4295 0.8708 1.2399 1.5328 1.6163 1.6451 0.7069 
0.0007 0.3844 0.8432 1.2487 1.5805 1.6764 1.7096 0.7854 
0.0003 0.3430 0.8137 1.2533 1.6241 1.7328 1.7706 0.8634 
0.0002 0.3049 0.7825 1.2535 1.6632 1.7850 1.8275 0.9425 
0.0001 0.2702 0.7501 1.2498 1.6977 1.8328 1.8802 1.0214 
0.0000 0.2387 0.7169 1.2422 1.7277 1.8762 1.9285 1.0996 
0.0000 0.2103 0.6830 1.2309 1.7527 1.9147 1.9719 1.1781 
0.0000 0.1846 0.6487 1.2159 1.7727 1.9479 2.0100 1.2566 
0.0000 0.1616 0.6142 1.1974 1.7873 1.9756 2.0427 1.3352 
0.0000 0.1411 0.5799 1.1758 1.7970 1.9980 2.0698 1.4137 
0.0000 0.1228 0.5460 1.1515 1.8017 2.0151 2.0917 1.4923 
0.0000 0.1066 0.5128 1.1247 1.8017 2.0270 2.1081 1.5708 
0.0000 0.0923 0.4803 1.0956 1.7969 2.0336 2.1192 1.6493 
0.0000 0.0797 0.4487 1.0646 1.7878 2.0351 2.1249 1.7274 
0.0000 0.0687 0.4183 1.0321 1.7746 2.0320 2.1259 1.8064 
0.0000 0.0591 0.3891 0.9986 1.7578 2.0248 2.1225 1.8854 
0.0000 0.0507 0.3613 0.9643 1.7379 2.0136 2.1149 1.9635 
0.0000 0.0434 0.3348 0.9294 1.7150 1.9989 2.1036 2.042P 
0.0000 0.0372 0.3098 0.8944 1.6897 1.9810 2.0889 2.1206 
0.0000 0.0317 0.2862 0.8595 1.6626 1.9607 2.0715 2.1991 
0.0000 0.0271 0.2642 0.8251 1.6341 1.9385 2.0521 2.2777 
0.0000 0.0231 0.2436 0.7914 1.6046 1.9148 2.0309 2.3562 
0.0000 0.0197 0.2245 0.7584 1.5745 1.8899 2.0085 2.4347 
0.0000 0.0167 0.2068 0.7265 1.5442 1.8645 1.9854 2.5133 
0.0000 0.0143 0.1904 0.6958 1.5142 1.8391 1.9622 2.5918 
0.0000 0.0121 0.1753 0.6664 1.4848 1.8140 1.9393 2.6704 
0.0000 0.0103 0.1615 0.6384 1.4563 1.7897 1.9170 2.7489 
0.0000 0.0088 0.1488 0.6118 1.4288 1.7663 1.8957 2.8274 
0.0000 0.0075 0.1372 0.5866 1.4026 1.7442 1.8756 2.9060 
0.0000 0.0064 0.1266 0.5628 1.3779 1.7235 1.8571 2.9845 
0.0000 0.0055 0.1169 0.5405 1.3547 1.7046 1.8402 3.0631 
0.0000 0.0047 0.1080 0.5194 1.3330 1.6872 1.8251 3.1416 

1  Each column is headed by the distance of vertical continuation in units of station spacings 
(Station spacing = 1.0 unit), or by "radians" which is given in units of frequency. The unit or 
the normalised filter response for. a given distance of vertical continuation and frequency is 
dimensionless. 
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TABLE II 
HENDERSON'S (1960) COEFFICIENT SET FILTER RESPONSE' 

	
ts.) 

-5.0 	-4.0 	-3.0 	-2.0 	-1.0 	1.0 	2.0 	3.0 	4.0 	5.0 	radians 

	

0.9019 	0.9210 	0.9404 	0.9601 	0.9800 	1.0199 	1.0398 	1.0595 	1.0790 	1.0983 	0.0000 

	

1.0442 	1.0318 	1.0214 	1.0128 	1.0057 	0.9953 	0.9912 	0.9874 	0.9836 	0.9794 	0.0785 

	

0.8704 	0.9068 	0.9371 	0.9624 	0.9832 	1.0130 	1.0221 	1.0275 	1.0291 	1.0269 	0.1571 

	

0.8972 	0.9256 	0.9495 	0.9698 	0.9866 	1.0098 	1.0158 	1.0177 	1.0154 	1.0085 	0.2356 

	

1.0658 	1.0232 	1.0027 	0.9957 	0.9961 	1.0043 	1.0067 	1.0050 	0.9976 	0.9832 	0.3142 

	

0.9103 	0.9276 	0.9485 	0.9685 	0.9860 	1.0091 	1.0114 	1.0040 	0.9853 	0.9542 	0.3927 

	

0.5527 	0.7408 	0.8577 	0.9293 	0.9732 	1.0130 	1.0111 	0.9917 	0.9538 	0.8983 	0.4712 

	

-0.1267 	0.4272 	0.7226 	0.8773 	0.9581 	1.0150 	1.0040 	0.9660 	0.9027 	0.8192 	0.5498 

	

-0.6403 	0.2334 	0.6544 	0.8554 	0.9528 	1.0112 	0.9858 	0.9244 	0.8333 	0.7233 	0.6283 

	

1.3180 	1.0650 	0.9974 	0.9638 	0.9797 	0.9971 	0.9530 	0.8666 	0.7497 	0.6193 	0.7069 

	

5.6484 	2.6375 	1.4962 	1.1100 	1.0099 	0.9819 	0.9161 	0.8029 	0.6626 	0.5181 	0.7854 

	

10.5983 	4.1176 	1.8761 	1.1840 	1.0182 	0.9698 	0.8788 	0.7376 	0.5771 	0.4250 	0.8639 

	

13.9335 	4.7438 	1.8995 	1.1391 	0.9997 	0.9592 	0.8398 	0.6711 	0.4955 	0.3424 	0.9425 

	

3.3950 	1.1110 	0.7090 	0.7926 	0.9271 	0.9518 	0.8007 	0.6059 	0.4203 	0.2717 	1.021 

	

- 8.9543 	-2.5160 	-0.3416 	0.5154 	0.8750 	0.9366 	0.7542 	0.5393 	0.3510 	0.2120 	1.100 

	

41.3289 	9.9167 	2.4477 	1.0549 	0.9550 	0.9047 	0.6968 	0.4712 	0.2879 	0.1625 	1.178 

	

113.263 	24.8208 	5.1729 	1.4652 	1.0012 	0.8756 	0.6423 	0.4092 	0.2341 	0.1232 	1.257 

	

-2.5687 	-4.2193 	-1.6220 	0.0740 	0.7978 	0.8627 	0.5980 	9.3562 	0.1898 	0.0928 	1.335 

	

-284.999 	-63.9689 	-13.4577 	-1.9886 	0.5395 	0.8472 	0.5531 	0.3075 	0.1524 	0.0692 	1.414 

	

-389.193 	-83.6603 	-16.9052 	-2.4989 	0.4957 	0.8151 	0.5023 	0.2614 	0.1208 	0.0510 	1.492 

	

-258.901 	-60.4736 	-13.0092 	-1.8937 	0.5790 	0.7762 	0.4516 	0.2202 	0.0949 	0.0373 	1.571 
- 69.0811 	-29.6844 	-8.3660 	-1.2556 	0.6581 	0.7383 	0.4047 	0.1846 	0.0741 	0.0271 	1.649 

	

247.358 	16.3920 	-2.2226 	-0.5213 	0.7382 	0.7009 	0.3614 	0.1540 	0.0575 	0.0195 	1.728 

	

477.795 	43.8706 	0.5372 	-0.2865 	0.7680 	0.6655 	0.3219 	0.1280 	0.0445 	0.0140 	1.806 

	

517.737 	40.6837 	-1.1287 	-0.5800 	0.7555 	0.6315 	0.2860 	0.1095 	0.0342 	0.0100 	1.885 

	

1019.64 	83.8747 	1.6006 	-0.4692 	0.7764 	0.5971 	0.2529 	0.0871 	0.0261 	0.0071 	1.963 

	

1272.97 	82.0746 	-1.6236 	-0.9501 	0.7604 	0.5640 	0.2230 	0.0715 	0.0199 	0.0050 	2.042 
- 38.1514 	-89.1489 	-20.9338 	-2.6827 	0.6789 	0.5325 	0.1963 	0.0584 	0.0151 	0.0035 	2.121 

t? 

 

	

-3629.34 	-450.100 	-53.3778 

	

-14042.0 	-1302.00 	-116.400 
	-5.0615 	0.5864 	0.5017 	0.1723 	0.0476 	0.0114 	0.0025 	2.199 

F  

	

-8.9480 	0.4498 	0.4722 	0.1509 	0.0387 	0.0086 	0.0017 	2.278 o • -20779.4 	-1664.00 	-128.600 	-8.5916 	0.5605 	0.4412 	0.1314 	0.0313 	0.0064 	0.0012 	2.356 
k t3 	16439.4 	1277.12 	88.8265 	5.6824 	1.2921 	0.4070 	0.1133 	0.0252 	0.0048 	0.0008 	2.435 
Z3' 	81484.4 	5697.48 	369.627 	21.5187 	1.9954 	0.3759 	0.0977 	0.0202 	0.0036 	0.0006 	2.513 -, z 	64480.0 	4431.96 	282.778 	16.3556 	1.8107 	0.3522 	0.0849 	0.0162 	0.0027 	0.0004 	2.592 
o -29810.7 	-1150.00 	-26.2928 	1.2789 	1.3123 	0.3309 	0.0737 	0.0130 	0.0020 	0.0003 	2.670 

	

-37579.0 	-1566.00 	-45.6933 	0.6764 	1.3634 	0.3078 	0.0635 	0.0104 	0.0015 	0.0002 	2.749 
A 	33939.6 	1819.16 	106.070 	6.9501 	1.6295 	0.2852 	0.0546 	0.0083 	0.0011 	0.0001 	2.827 
--• 	43212.8 	1906.43 	97.8603 	6.4648 	1.6924 	0.2647 	0.0469 	0.0066 	0.0008 	0.0001 	2.906 _ 

	

-12578.8 	-807.300 	-19.3035 	2.3692 	1.6786 	0.2456 	0.0403 	0.0052 	0.0006 	0.0001 	2.985 o, oN -241570 	-9903.00 	-349.300 	-7.7623 	1.5538 	0.2280 	0.0345 	0.0041 	0.0004 	0.0000 	3.063 ..., 
,...) -604221 	-22410.0 	-739.300 	-17.8794 	1.4840 	0.2112 	0.0296 	0.0033 	0.0003 	0.0000 	3.142 

1 ts.) Each column is headed by the distance of vertical continuation in units of station spacings (Station spacing = 1.0 unit), or by "radians" which is 
given in units of frequency. The unit of the normalised filter response for a given distance of vertical continuation and frequency is dimensionless. 

A
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where /3 is a smoothing parameter determining the severity of smoothing. The 
function is simply related to the error function by: 

0,- 
= E  

n = — 

fAx(n++) 

go(nAx) 	e -  flx 2  dx 
Ax(n— f) 

co 

= E Wng 0(nAx) 

where : 

= 	{V/3Ax(n + I)} —erf {,/flAx(n — 

In Fig.2 their suggested set of coefficients is analysed using a station spacing 
of 0.125 units, over the range 0 < u < H which is only part of the total range 
between 0 and cut-off where umax  = 811. 

However, this range represents the most important part of the frequency 
response, serving as a useful part to compare with Table I which shows the com-
puted normalised filter response for a station spacing of one unit of a complete 

. set of coefficients, one for each grid point, worked out from Bullard and Cooper's 
table and approximation equation. 

The normalised filter response for Bullard and Cooper's suggested coefficient 
set (Fig.2) was worked out for both average and middle values in each range. Only 
variation of the order of 5% was noted between the two responses. 

The normalised filter responses in Fig.2 and Table I were calculated for 
various depths. Bullard and Cooper use a parameter = fill' in their computation, 
where h is the depth of continuation. As in both Fig.2 and Table I, the parameter 
was unity, the filter response was worked out for various depths namely for 
h = 0.1; 0.125; 0.2; 0.5; 1; 2 and 10 units corresponding to 16 = 100; 64; 25; 4; 
1; 0.25; 0.01. Thus the severity of smoothing is increased with depth. 

Fig.2 and Table I show the similarity in the variation of the filter response. 
In fact, the filter response was calculated for other station spacings, and showed 
the same similarity, so that the cut-off frequency in Bullard and Cooper's method 
has little influence. 

Bullard and Cooper's coefficient sets show the increasing severity of smooth-
ing with depth thus satisfying error control. However, in the smaller depths, the 
coefficient set filter response does not match up with the theoretical response over 
this important part of the range. 

The normalised filter response of HENDERSON'S (1960) coefficient set, is shown 
in Fig.3 and Table II. HENDERSON'S (1960) downward continuation can be seen to 
have smooth error control in relation to the filter response, increasing, as required, 
with depth. Henderson's method is able to most often satisfy error control and 
filter response requirements. 

Geoexploration, 4 (1966) 3-24 
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Fig.4 shows the normalised filter response of PETERS' (1949), HENDERSON and 
ZEITZ (1949) and the finite differences (BULLARD and COOPER, 1948) coefficient sets, 
for the indicated values of h, with unit station spacing. The first 80 coefficients were 
used for the finite differences method and the first 23 coefficients in the rapidly 
convergent HENDERSON and ZEiTz' (1949) method. All these filter responses appear 
unsatisfactory, except the downward continuation finite differences coefficient set. 
Upward continuation coefficient sets tend to oscillate and do not, in any case, 
match the theoretical response, in the low-frequency range. 

Upward vertical continuation is by contrast a very stable process. Gravity 
and magnetic data have predominantly low frequencies even near the source func-
tion. Away from the source, upward continuation introduces C h lul which again 
favours low frequencies. The low frequencies are essential for defining all gravity 
and magnetic anomalies. The higher frequencies are relatively more important for 
the smaller sharper anomalies and for defining sharp details. 

Upward vertical continuation smooth down the higher frequencies, reducing 
information in this range. Low-frequency noise in a perfect response coefficient set 
swamps high frequency information. Generally this does not matter, so that error 
control is not nearly so important in this process. 

The normalised filter response of HENDERSON'S (1960) coefficient sets for 
various negative values of h with unit station spacing are shown in Table II. The 
mismatch in the high frequencies is at once noticeable, but the filter response 
decreases correctly in the important low-frequency range preserving the regional 
information. However, Henderson's method would allow high-frequency informa-
tion to be vastly accentuated beyond their theoretical amplification, producing a 
derived, anomaly map containing all frequencies and thus looking correct, but in 
actual fact not possessing the correct relationship to its original data. 

The upward continuation process can therefore be only really useful as a 
numerical filter. As errors occurring in magnetometers and gravimeters can not be 
made frequency dependent, it is not yet possible to match up ground and airborne-
anomaly results through all the frequencies. 

Henderson's coefficient set for continuing upwards a theoretical anomaly of 
a particular body, which, by definition, has no error, would be highly unsatis-
factory. 

STRAKHOV (e.g., 1961, 1962a, b, 1963a, b, c, 1964) and STRAKHOV and 
LAPINA (1962 and 1963) have written many articles on potential field analysis 
including various methods and analysis of second-derivative and vertical continua-
tion methods. The articles are generally intensely mathematical using many 
unfamiliar inequalities and equalities of harmonic analysis, though their truth 
is undoubted. 

The reader is especially referred to his article, "The derivation of optimum 
numerical methods for the transformation of potential fields, I" (STRAKHOV, 1963c), 
as an excellent list of references, especially of many Russian authors, is included. 

Geoexploration, 4 (1966) 3-24 
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ELKINS (1952) showed the effect of taking the second derivative, using his 
own coefficient sets, of a grid of random normally distributed errors. The appear-
ance of the anomalies he gets can be explained by the filter response unequally 
affecting all the frequencies in the data. 

So far, the examination of various vertical continuation systems has been 
destructive, no better system has been proposed. Coefficient sets for vertical con-
tinuation and second derivative methods will now be derived aimed at satisfying 
the first and second criteria. 

DERIVATION OF COEFFICIENT SETS 

Downward vertical continuation 

The second criterion of error control is first satisfied in this unstable process by 
cutting out the high-frequency data from the value of u beyond which the data 
errors are greater than the lowest-frequency information. 

The noise to signal (information) ratio in the data, assumed to be on a grid, 
is taken as being the ratio: standard deviation of anomaly/standard deviation of 
error = x. 

In any survey containing closed loops the error at each grid point is known. 
The standard deviation of these errors is taken as being the noise level. The 
standard deviation of the anomaly is taken as the signal level. This ratio is taken 
without any pretence of mathematical rigour, but the ratio is sufficiently represent-
ative for practical purposes. 

Thus if the distance of downward continuation is h then the frequency above 
u0  must be filtered out where: 

ehuo  = x  

because above this value of u 0  the amplification of the errors will be greater than 
the amplification of the zero frequency information. 

Using this fact, the maximum anomaly size that can be interpreted from 
downward continued data for a signal to noise ratio of 200 is shown in Fig.5. 

A numerical filter is therefore required which will cut out these high fre-
quencies. Smoothing by an erf function as used by BULLARD and COOPER (1948) 
would be suitable, but, for simplicity, a two-dimensional symmetrical step function 
is used in the frequency domain. 

The coefficient set which has the required filter response is calculated. Put: 

E 	E C„,,,,e -i("m" + "'" )  = f(u, v) 
m = — oo n = — oo 

where f(u, v) is a symmetric function with respect to u and u about 0. 

Geoexploration, 4 (1966) 3-24 
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Anomaly size 
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Fig.5. Minimum anomaly size detectable at depth h in units of station spacing. 

Suppose Ax = Ay = 1, then: 

Cm,

= 	

j  i

n in 
f(u,v)e -i("1" + ")  du dv 

n  411 2  _n _n 

1  
4n2 

r  li 	rll 

± 

r0 
f(u, v)e-i(" + ")  du dv 

_ n 	0  	_ n ) 

In the range 0 to -n put v = —v: 
1 in 	fn 

.". Cm
' " 

= — 	du em 1:
2cos vm f(u, v) dv 

411 2 
 - n 

as f(u, v) = f(u, —v). in 
Cm , „ = 	f(u, v) cos urn cos vn du dv 

o o 
as f(u, v) = f( — u, v). Thus the coefficient set with the required filter response is 
found. 

The two dimensional symmetric step function is given by: f(u, v) = 1, 
— u 0 	u 	u 0 , — u 0  < v v0  or = 0 otherwise .  Therefore: 

.0  o 
C„,, ^ n = — 	cos um cos vn du dv2 

T
0 

0 

1 
= — X —

1 
sin u o m sin u o n 

11 2 	nin 

Geoexploration, 4 (1966) 3-24 
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Note that : C„,, „ = C„,, _„ = C,, „ = C,, _„ = C„, „, = C„, „ = C_ „, = C_ 1, ,  _ m,  
that is C„,,„ is eight-fold symmetric. 

Example: Suppose for a survey we find that x = 112, which means that the 
• 	errors are of the order of 0.1 mgal and the variations of the anomaly of the order 

of 11 mgal. We wish to continue this data downwards to a distance of five units: 
... ehuo  = 112 

.*. u,„ ^-- 1.571 ,,--:-. 11/2 

Thus: 
1 	1 	IIm 	lin 

„,,, C, 	x — sin 	 sin — 
1-1 	nm 	2 	2 

1 	1 	llm 
C„, ,  0 = — X — sin 2n m 	2 

Co,o = i 

Table III gives the right-hand quadrant of this coefficient set up to n = 10 and 
m = 10. 

Smoothing is thus carried out on the data and then with no high frequencies 
present a downward continuation coefficient set is applied to the data. 

A downward vertical continuation coefficient set is found, similarly to the 
smoothing coefficient set: 

1 n n 
"..2- C„, , n 112

i 
= — 	e .1 	cos mu cos nv du du 

i 

0 i 0 

C,,,,„ was computed using a double Simpson approximation for h = 1 up to 
n = m = 10. The right-hand upper quadrant of this coefficient set is given in 
Table IV'. 

While C„,,„ appears an easy integral to work out it defied all attempts to 
solve it in terms of simple functions. 

It is seen that the downward continuation coefficient set converges very 
slowly and more terms would need to be computed than are shown. 

Upward vertical continuation 

No error control is required for this process. 
The upward continuation coefficient set was calculated exactly as the down-

ward continuation set except that h = — 1. 

1  It has since been pointed out that TAKEUCHI and SArro (1964) have numerically approximated 
the coefficient C., n  for various positive values of h from h = 0.01 to h = I. The values of C. ,  n  
given in Table IV are in agreement with Takeuchi and Saito's to the fourth decimal place. 

Geoexploration, 4 (1966) 3-24 



TABLE III 

SMOOTHING COEFFICIENT SET 

n m = 0 m = I m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 ,n= 1O 

10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
9 0.01768 0.01126 0.00000 -0.00375 0.00000 0.00225 0.00000 -0.00161 0.00000 0.00125 0.00000 
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
7 -0.02274 -0.01447 0.00000 0.00482 0.00000 -0.00289 0.00000 0.00201 0.00000 -0.00161 0.00000 
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
5 0.03183 0.02026 0.00000 -0.00675 0.00000 0.00405 0.00000 -0.00289 0.00000 0.00225 0.00000 
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
3 -0.05305 -0.03377 0.00000 0.01126 0.00000 -0.00675 0.00000 0.00482 0.00000 -0.00375 0.00000 
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.15916 0.10132 0.00000 -0.03377 0.00000 0.02026 0.00000 -0.01447 0.00000 0.01126 0.00000 
0 0.25000 0.15916 0.00000 -0.05305 0.00000 0.03183 0.00000 -0.02274 0.00000 0.01768 0.00000 

TABLE IV 
DOWNWARD CONTINUATION COEFFICIENT SET 

n m = 0 m = I m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 in = 8 m = 9 m = 10 

10 0.10615 -0.02190 0.00714 -0.00361 0.00188 -0.00141 0.00081 -0.00076 0.00044 -0.00047 0.00027 
9 - 0.13119 0.02660 -0.00918 0.00409 -0.00263 0.00146 -0.00124 0.00072 -0.00072 0.00042 -0.00047 
8 0.16500 -0.03416 0.01107 -0.00565 0.00290 -0.00221 0.00126 -0.00117 0.00069 -0.00072 0.00044 
7 -0.21547 0.04366 -0.01518 0.00669 -0.00436 0.00239 -0.00204 0.00120 -0.00117 0.00072 -0.00076 
6 
5 

0.29011 
-0.41562 

-0.06043 
0.08427 

0.01943 
-0.02962 

-0.01005 
0.01287 

0.00510 
-0.00846 

-0.00389 
0.00467 

0.00224 
-0.00389 

-0.00204 
0.00239 

0.00126 
-0.00221 

-0.00124 
0.00146 

0.00081 
-0.00141 P 

4 0.63311 -0.13375 0.04254 -0.02226 0.01131 -0.00846 0.00510 -0.00436 0.00290 -0.00263 0.00188 
3 - 1.09070 0.22317 -0.07954 0.03454 -0.02226 0.01287 -0.01005 0.00669 -0.00565 0.00409 -0.0036l P 
2 2.18630 -0.48546 0.15438 -0.07954 0.04254 -0.02962 0.01943 -0.01518 0.01107 -0.00918 0.00714 C) 
1 -5.84827 1.35202 -0.48546 0.22317 -0.13375 0.08427 -0.06043 0.04366 -0.03416 0.02660 -0.02190 
0 15.78620 -5.84827 2.18630 -1.09070 0.63311 -0.41562 0.29011 -0.2I547 0.16500 -0.131l9 0.10615 Z rn 

• 



TABLE V 	 g 
70 

UPWARD CONTINUATION COEFFICIENT SET  
C.) 
> it M = 0 	in = I 	m = 2 	m = 3 	m = 4 	m = 5 	m = 6 	rn = 7 	m = 8 	m = 9 	m = 10 	t" 
n 

10 0.00007 	0.00013 	0.00015 	0.00014 	0.00013 	0.00011 	0.00010 	0.00009 	0.00008 	0.00006 	0.00006 	0 
Z 9 0.00032 	0.00024 	0.00020 	0.00018 	0.00016 	0.00014 	0.00012 	0.00011 	0.00009 	0.00008 	0.00006  

8 0.00017 	0.00026 	0.00028 	0.00025 	0.00022 	0.00019 	0.00016 	0.00013 	0.00011 	0.00009 	0.00008 	2 a 7 0.00062 	0.00049 	0.00040 	0.00035 	0.00030 	0.00025 	0.00020 	0.00016 	0.00013 	0.00011 	0.00009 	> 
6 0.00048 	0.00061 	0.00061 	0.00051 	0.00041 	0.00033 	0.00026 	0.00020 	0.00016 	0.00012 	0.00010 	,--■ 

0 5 0.00153 	0.00123 	0.00097 	0.00077 	0.00058 	0.00044 	0.00033 	0.00025 	0.00019 	0.00014 	0.00011 	Z 
4 0.00176 	0.00193 	0.00166 	0.00120 	0.00084 	0.00058 	0.00041 	0.00030 	0.00022 	0.00016 	0.00013 	> 

Z 3 0.00590 	0.00462 	0.00303 	0.00193 	0.00120 	0.00077 	0.00051 	0.00035 	0.00025 	0.00018 	0.00014 	0 
2 0.01242 	0.01036 	0.00590 	0.00303 	0.00166 	0.00097 	0.00061 	0.00040 	0.00028 	0.00020 	0.00015 	0 
1 0.05965 	0.03260 	0.01036 	0.00462 	0.00193 	0.00123 	0.00061 	0.00049 	0.00026 	0.00024 	0.00013 	rri 

x 
0 0.13718 	0.05965 	0.01242 	0.00590 	0.00176 	0.00153 	0.00048 	0.00062 	0.00017 	0.00032 	0.00007 	'..' 

> 
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The same comments concerning method apply here. 
However, the upward continuation coefficient set converges sufficiently 

quickly for practical purposes as seen in Table V. 

Second derivative 

As DEAN (1958) has shown the second differential theoretical 'filter response is 
u2  +v2 . The highest frequency data is therefore amplified by a factor of NV. Thus 
as in all practical cases this value would be far below the signal to noise ratio—no 
account need be taken of error control, other than realising unequal amplification 
of errors. 

Thus a coefficient set having the perfect filter response would be best for 
this process. 

1  n 	n 
C„,, . = 	

i 
Tv 	dv cos nv f (u 2 

+ V
2
) cos mu du — 0 o 

1 n 	n 
= --i f 	j dv cos nv . u 2  cos mu du 

11 	o 	o 
1 n 	n 

+ n-2 f dv cos fly, v 2  i cos mu du 
o 	 o 

= 0 (for m and n # 0) 
1  n n 	 2 

II CO3 „ = 	
f 

— 
0

i

0
2- 	(u 2  + v 2) cos nu du dv = –i  cos n 

n 	 n 

Co,o = 2112/3  

The upper quadrant of this coefficient set is found from Table VI. 

TABLE VI 

SECOND DERIVATIVE COEFFICIENT SET 

n Co,. = Cn, 0 

/0 0.02000 
9 — 0.02469 
8 0.03125 
7 —0.04082 
6 0.05556 
5 — 0.08000 
4 0.12500 
3 —0.22222 
2 0.50000 
/ —2.00000 
0 6.57972 
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CONCLUSION 

The general comment on data processing methods is then made that their use must 
be tempered by a full appreciation of their inadequacies. There may be much to 
be gained by interpreting in the frequency domain, as done, for example, by 
ODEGARD and BERG (1965). 

TUKEY (1965) has summarised much of what remains to be done in interpre-
tation in seismology, much of which applies to gravity and magnetic interpretation. 

Data-processing methods can be judged by using the three criteria of filter 
response, error control and ambiguity considerations. 

While much remains to be done in improving the various methods of inter-
pretation, these three criteria give a sound way of judging improvements. 
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The magnetic anomalous field potential S-2(x, y, z) is related to the intensity of 
• 	magnetisation I(a, 	y) at (a, 11, y) by: 
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Consider the vertical component of il(x, y, z) due to a basement with upper 
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From ROY (1962) eq. 18 the 

v(x, y, z) at P(x, y, z) = 
211 

(-1-.1)roo  = 0 

field potential (magnetic 
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(3) 

or gravitational): 

da d/3 	(4) 
= h 

where r = {(x —oc) 2 +(y —fl) 2 +(z—h) 2 }I. Now the field intensity: 

OV 
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Thus differentiating with respect to z: 
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Now as 0 satisfies V 2 0 = 0 this relation is a property of potential functions, 
so that we may replace 0 by so that we get in the magnetic field potential case: 
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From eq.4 : 
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where Hy  is the vertical component of the magnetic field intensity. Thus: 
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