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Abstract 

A major factor limiting the growth of E. delegatensis is low 

temperature. This is important both in the natural distribution of the 

species and as a plantation species both within Australia and elsewhere. 

This project deals with aspects of the frost hardiness of E. delegatensis 

including the seasonal variation, genetic variation and comparison with 

other species of eucalypts. 

The diffusate electrical conductivity method for measuring frost 

hardiness of plant tissue was adapted and developed for use with an air-

filled frost chamber. The major adaptation was the addition of an ice 

nucleation agent, silver iodide, to tissue samples during test freezing to 

prevent supercooling. A thorough evaluation showed that this method is 

sensitive enough to detect differences of 0.3°C and would be useful for 

screening large numbers of plants for breeding. 

Seven provenances of E. delegatensis planted in two provenance trials 

(planted in 1979) at Tarraleah and Myrtle Bank, Tasmania, were tested for 

frost hardiness. Plants at Tarraleah were tested at approximately six week 

intervals throughout 1984, while at Myrtle Bank they were tested three 

times during the hardening phase. Seasonal differencesin frost hardiness 

ranged from 2.4°C for the Bicheno provenance (the least hardy) to 4.6°C 

for the Ben Lomond provenance (the most hardy) at Tarraleah. The maximum 

hardiness reached ranged from -6.0°C for the Bicheno provenance to -8.6°C 

for the Ben Lomond provenance at Tarraleah while at Myrtle Bank the range 

was from -4.7°C for the Bicheno provenance to -7.7°C for the Ben Lomond 

provenance. The same ranking of provenances at maximum frost hardiness 

was obtained at both trials. 

Laboratory simulation of hardening conditions with night temperatures 

of 12, 4 and 0°C showed that colder night temperatures resulted in greater 

development of frost hardiness for all provenances tested. The ranking of 

provenances for frost hardiness corresponded to the field trial. 

A field trial in the Esperance Valley, Tasmania, (planted in 1983) had 

two provenances each of E. delegatensis, E. nitens, E. regnans and E. 

globulus planted at altitudes of 60, 240, 440 and 650 m. One provenance 

of E. grah-dis was planted at the 60 and 240 m sites and one provenance of 

E. pauciflora at the 440 and 650 m sites. All species were tested for 
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frost hardiness in March and August of 1985. 	There was no significant 

difference between species or provenances in March. 	In August the only 

species with a significant difference between provenances was E. 

delegatensis, Significant differences between species were measured in 

August, when the species ranked in decreasing order of frost hardiness as 

follows: E. deIegatensis = E. nitens > E. pauciflora > . E. globulus > E. 

grandis > E. regnans. It was found that the lowest minimum temperatures 

occurred at the 60 m site followed by the 650 m site then the 440 m site 

with the 240 m site having the highest minimum temperatures. The frost 

hardiness of the plants tested also followed this pattern with the 

greatest development of frost hardiness at the 60 m site. Growth of the 

plants corresponded to the altitudinal sequence with most height and 

diameter growth at the 60 and 240 m sites which experienced the warmest 

maximum temperatures. 

The development of a reliable method of testing plant tissue for frost 

hardiness is important for plant breeding, since both seedlings and 

established plants can be tested. Testing of established E. delegatensis 

showed that there is significant variation in frost hardiness within the 

species and that there is no significant interaction between frost 

hardiness and site within Tasmania. Frost hardiness development in E. 

delegatensis is a response to low night temperatures and is independent of 

day temperature and growth rate. E. delegatensis compared favourably with 

other commercially planted species of eucalypts in terms of frost 

hardiness. It was shown that it is possible to achieve good growth of 

eucalypts on a frost-prone site provided suitable provenances are planted. 
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CHAPTER 1 

General Introduction 

The distribution of frost hardiness in the genus Eucalyptus and its 

variation within a species is assuming increasing importance particularly 

in its native environment. This has come about with a requirement for more 

efficient regeneration of cut-over native forests and the establishment of 

fast-growing eucalypt plantations. The establishment of plantations in 

marginal areas for the species overseas has also engendered much interest 

in frost tolerance of the species. 

In Tasmania a severe problem of poor growth has arisen in the high 

altitude forest dominated by E. delegatensis which have been clearfelled. 

Keenan and Candy. (1983) and Webb et al (1983) report observations 

referred to as "growth check" of E. delegatensis and describe the 

regeneration as trees having poor growth, rounded bushy crown shape, 

little apical dominance and heavy branching from the stem. These trees 

also have smaller leaf size, thicker leaf cuticles and greater leaf 

sclerophylly than faster growing trees. Webb et al (1983) suggested that 

frost is a major factor in causing growth check. 

The successful establishment of eucalypt plantations in Australia and 

overseas has demanded stricter selection criteria for choice of species 

and provenances. Tibbits (1986) reported that in Tasmania the area of 

eucalypt plantations has increased from 500 ha in 1970 to 11420 ha in 

1984. The total area of plantations in Australia was 50105 ha in 1983. It 

is interesting to note the change in species emphasis since the earlier 

plantations were established. . In this respect, provenance trials of a 

number of species (Tibbits, 1986) have been and remain essential for the 

selection of suitable material for commercial plantations. 

Eucalypts are planted overseas because of their good growth rates 

compared with other hardwoods (Potts and Potts, 1986) but there have been 

setbacks. In France, for example, there are approximately 400 ha of 

eucalypt plantations which were severely damaged by frosts in the winter

•of 1984-85 (Potts and Potts, 1986). 	Such high levels of damage are of 

course unacceptable and asa result the breeding of more frost resistant 



eucalypts by selection of frost hardy individuals (Marien, 1983) and by 

hybridization is being pursued (Cauvin, 1983). Plantations of E. grandis 

in the U.S.A. have inadvertently combined good growth with a high 

susceptibility to severe frosts (Franklin and Meskimen, 1983) and the 

immediate question arises about requirements for hardening in the genus. 

Frost resistance of trees has been studied extensively in the Northern 

Hemisphere. In general it has been found that species originating from 

higher latitudes are more frost resistant than those from lower latitudes 

but within this wide spectrum of response there is considerable seasonal 

variation. As a satisfactory basis for study it has been hypothesised by 

Weiser (1970) that there are three distinct stages in development of frost 

hardiness. 

1. Stage 1. Stimulation by shortening daylength or critical photoperiod. 

2. Stage 2. A period of low temperatures usually defined in terms of a 

critical night temperature which induces further hardening. 

3. Stage 3. A period of very low temperatures (-30 to -50°C) which induce 

even greater hardening which is quickly lost if warmer temperatures are 

experienced by the plant. 

The relative importance of the above has been considered for conifers 

and all three stages participate in the hardening process (Aronsson, 1975; 

Greer and Warrington, 1982). For example, short daylength is more 

important for hardening than low temperature for Pinus silvestris and 

'Picea abi ,=,s, in that plants would harden under short day/warm temperature 

conditions but would not harden under long day/ low temperature conditions. 

• ronsson (1975) also found that dehardening was a much faster process 

than hardening and that this was more dependent on temperature than on 

daylength. In Pinus radiata, a critical photoperiod of less than 11 hours 

was required for low-temperature hardening and only night temperatures 

less than 5°C were effective. Repeated exposure to nondamaging frosting 

treatments produced a maximum frost hardiness as low as -19°C (Greer and 

Warrington, 1982). 

The three stages of hardening are by no means as well defined in the 

eucalypts. Studies of frost hardening have shown that night temperatures 

of 4°C or lower are necessary to stimulate hardening (Eldridge, 1968; 

Harwood, 1980; Paton, 1980) but very little work has been done to examine 
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the role of photoperiod and that has been inconclusive. In this respect 

Eldridge (1968) reported that E. regnans from high altitudes suffered less 

frost damage when grown under short photoperiods than when grown under 

long photoperiods. However no response was found for E. regnans 

originating from low altitudes but similar latitudes. 

Several authors have reported altitudinal clines in frost hardiness of 

eucalypts viz. Grose, (1960) for E. delegatensis, Boden (1958) for E. 

fastigata, Ashton (1958) and Eldridge (1969) for E. regnans. Thus it 

would be anticipated that there may be considerable variation between 

provenances. In a comprehensive study Rook et al (1980) in New Zealand 

measured frost hardiness of thirty-eight provenances of E. regnans at 

three different times of the year. They found that the range in frost 

hardiness between provenances was approximately 2.0°C in autumn, 2.5°C in 

winter and 1.5°C in spring and that the most frost tolerant provenances 

would survive a temperature 2.5°C lower in winter than in spring. 

Since E. delegatensis occurs naturally at altitudes overlapping those 

of E. regnans and extends to higher altitudes (Boland et al, 1984), it 

would be expected to show at least as much variability in frost hardiness 

within the species as E. regnans and be more frost hardy on average. 

Measurement of seasonal and genetic variation in E. delegatensis is 

necessary to determine whether it is possible to select suitable material 

for regenerating frost prone sites and so avoid growth check. In addition, 

selection criteria for plantations should combine good growth rate 

as well as a suitable level of frost resistance for the site. 

In this thesis the genetic and physiological aspects of frost - 

hardiness of E. delegatensis are examined. Firstly a non destructive 

method of testing frost hardiness was developed so that established 

provenance and species trials could be sampled. Two provenance trials of 

E. delegatensis in Tasmania were sampled to establish the range of 

seasonal and genetic variation in frost hardiness within the species. 

Controlled environment chambers were used to test the effect of 

temperature on hardening and dehardening of E. delegatensis seedlings. 

Finally, the frost hardiness of E. delegatensis was compared with that of 

other Eucalyptus species at four sites at different altitudes and the 

effect of site maximum and minimum temperatures on growth rate and frost 

hardiness were evaluated. 



CHAPTER 2 

Determination of frost hardiness usinz diffusate 

electrical conductivity 

Introduction 

Frost hardiness may be measured either on whole plants or on samples 

of plant tissue. Ashton (1958) frosted whole seedlings of E. regnans 

artificially in a refrigerator. A scoring system was used to assess frost 

hardiness in which the proportion of each leaf damaged was estimated for 

all the leaves present and the number of buds killed were counted. A 

damage score was calculated for the whole plant. Similarly Rook et al 

(1980) ranked 38 provenances of E. regnans for frost hardiness by 

subjecting them to both natural and artificial frosts and assessing the 

leaves visually for damage. This type of method has several disadvantages. 

Firstly, it requires a large number of plants which can only be tested 

once (Rook et al used over 4000 seedlings). Secondly, if the plants are 

to be artificially frosted in a chamber, the size of plant that can be 

tested is restricted by the dimensions of the chamber. Thus it is not 

possible to test established trees, a potentially valuable asset to tree 

breeders wishing to select for frost hardiness. 

Methods have been developed for testing tissue samples and the most 

useful are electrical impedance (Van den Driessche, 1973; Timmis, 1976; 

Harwood, 1981) and electrical conductivity of diffusate (Dexter et a/, 

1932; Wilner, 1960; Green and Warrington, 1978; Eldridge et al, 1983; 

Raymond et al, 1986). Both have the advantage that the same plant can be 

sampled repeatedly and there is no limit to the size of the plant that can 

be tested. The main disadvantage is in relating the results back to the 

field. Small samples of plant tissue tend to supercool more than whole 

plants. Under certain conditions therefore, tissue samples may 

overestimate frost hardiness (Burke et al, 1976). 
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Electrical conductivity of diffusate was the preferred technique for 

this study as the measurement of electrical impedance requires special 

equipment, viz. an  A.C. bridge (de Plater and Greenham, 1959). Following 

frosting and subsequent incubation of leaf samples in water any damage to 

cellular structure will be expressed in leakage of cellular components of 

which ionic constituents can be measured by the conductivity of the water. 

The use of this principle for the measurement of 'frost hardiness in 

Eucalyptus is described and its development to suit the equipment 

available, enhance its efficiency and avoid supercooling is considered. 

Methods 

1. Standard Procedure 

(W.N. Tibbits, unpubl.) 
A paper punch (6 mm diameter) was used to remove six discs4of leaf 

tissue into 25 cm 3  glass vials. As Eucalyptus is evergreen, leaf tissue 

was more convenient for sampling throughout the year than stem, bud or 

root tissue. Leaves also show a greater increase in conductivity in 

response to exposure to damaging temperature than stem or bud tissue of 

Eucalyptus and therefore provide a more sensitive test for assessing 

differences in frost hardiness (Webb et al, 1983). The six discs formed a 

single sample and resulted in readings of diffusate electrical 

conductivity in the range 10-200 pS (pSiemens) cm - I. A small quantity 

(0.1 mg) of silver iodide (AgI) and 0.2 cm 3  of deionised water were added 

to the vials to prevent supercooling of the samples during frosting. 

Artificial frosting was done in an air-filled freezing chamber (height 

750 mm, width 500 mm and depth 520 mm, J. and A. Parr, Hobart, Australia). 

The chamber was painted black inside and had a freezing coil located 120 

mm from the top with a mixing fan above it (Fig. 2.1). The rate of 

cooling was controlled electronically in the range 0.05°C mind- to 1.05°C 

min-1  and a set temperature was controlled to within +/- 0.1°C. An 

aluminium tray located 25 mm above the floor of the chamber on wooden 

blocks was used to support up to 110 glass vials. Aluminium was used 

because its high thermal conductivity reduced minor fluctuations in 

temperature between vials. Temperature variation in the chamber was 

sensed and controlled by a transistor (Verster, 1972) during cooling and 

at the preset test temperature. 
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Th6 vials were placed randomly on the aluminium tray. The temperature 

, in the chamber was lowered rapidly at 1.05°C inin -1 , until it reached 0.5°C 

and then the rate of cooling was reduced to 0.2°C min- to the test 

temperature. Samples were held at the test temperature for 90 minutes and 

then removed from the chamber and allowed to thaw at 3.0°C. Samples from 

each plant were subjected to a minimum of three test temperatures, usually 

1°C apart. 

When the samples had thawed, 8 cm3  of deionised water, the minimum 

volume required for satisfactory immersion of the electrode, was added to 

the vials and they were incubated on a shaker for 18 h at room 

temperature. The electrical conductivity, Yf (pS cm - I), of the solution 

was read on a conductivity meter (Radiometer CDM3 with a cell type PP1042, 

Copenhagen, Denmark). The vials were then stood in boiling water for 10 

minutes to kill the tissue. The samples were incubated on the shaker for 

18 h and the electrical conductivity was remeasured (Yk)• 

The results were calculated as the ratio of the conductivity of the 

frozen tissue (Y0 to the conductivity of the killed tissue (Yk) expressed 

in percentage terms. 

(1) Relative Conductivity, Y = Yf/Yk x 100 

Relative conductivity was then plotted against temperature for each plant 

sampled (Fig. 2.2) and a lethal temperature (LT) was defined as the 

temperature at which Y = 50%. This definition of LT corresponds to that 

used by Green and Warrington(1978) for Pinus radiata and also to that used 

by Raymond et al (1986) for E. delegatensis and E. regnans where Y = 70% 

for LT and Y(RC*) = ((Yk -  

2. Evaluation 

The effectiveness of AgI in the prevention of supercooling was 

evaluated by a comparison of samples with and without AgI added. 
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The variation of temperature in the chamber during cooling and at the 

steady state was monitored by six copper-constantan thermocouples (1,7 

mm) suspended 10 mm above and diagonally across the aluminium tray at 60 

mm intervals (Fig. 2.3). Thermocouples were also placed in selected vials 

to record tissue temperature. 

The time required for incubation to obtain maximum values of Yf was 

measured by sampling both frozen and killed tissue at four-hourly 

intervals for 20 hours. The samples were selected from seedlings with 

known differences in frost hardiness and frosted at -4°C. Sample 

preparation otherwise followed the standard procedure. An alternative to 

killing the tissue and repeating the electrical conductivity measurement 

is to oven dry the samples and calculate, results on a dry weight basis 

(Dexter et al, 1932). To test the relationship between dry weight and Yk, 

67 samples were treated using the standard procedure. The tissue was oven-

dried at 80°C for seven days before being weighed. 

To estimate variability of results 9 samples taken from fully expanded 

leaves of one plant were tested using the standard procedure. 

As eucalypts may have juvenile, intermediate and adult foliage 

simultaneously the standard procedure was used to compare juvenile and 

adult, juvenile and intermediate, and current and one-year-old adult 

leaves of two provenances of four year old E. delegatensis in a field 

trial at Tarraleah (Chapter 3). 

Finally, to corroborate the definition of lethal temperature, discs 

from 32 seedlings (juvenile foliage) were tested using the standard 

procedure. The seedlings were then allocated to four groups and frosted as 

whole plants at one of the following temperatures, -4, -5, -6 or -7°C. The 

plants were observed for a period of six weeks, sufficient for symptoms of 

damage to develop, and scored for survival. 



Results and Discussion 

1. Supercooling 

Addition of AgI to the vial before frosting increased the relative 

conductivity (Y). The difference between the seeded vials and control 

(without AgI) were statistically significant at temperatures close to the 

lethal temperature (Table 2.1). Thus supercooling, in the absence of AgI 

lowered LT from -4.4°C to -5.5°C. The values of Y at -3°C were not 

significantly different because this temperature is not cold enough to 

cause damage. At -6.0°C the temperature was low enough that plants were 

not able to supercool enough to avoid damage and although the value of Y 

was lower without AgI than with it, it was not a statistically significant 

difference. 

Table 2.1. The effect of silver iodide during frosting on relative 

conductivity, Y. Frosting, to one of four temperatures, 

-3, -4, -5 and -6°C, and incubation followed the standard procedure. Each 

sample was replicated 10 times using fully expanded leaves from seedlings 

of E. delegatensis. 

Temp (°C) 	Relative conductivity, Y (Yf/Yk)% 

Without AgI With AgI 

-3 19.8 19.6 ns 

-4 19.1 27.1 * 

-5 21.7 76.1 *** 

-6 72.0 82.4 ns 

Addition of AgI and water effectively eliminated a potential problem 

arising from the occurrence of supercooling of tissue samples in an air-

filled chamber. Small plant samples tend to supercool more than whole 

plants such that the lethal temperature would be underestimated (Burke et 

al, 1976) though rapid intracellular freezing following supercooling may 

have the reverse effect (Olien, 1967). This is avoided in a liquid-filled 
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chamber (Dexter, 1956; Raymond et al, 1986) where the usual method of 

overcoming the problem is to seed the samples with ice crystals when the 

bath temperature reaches -2 to -3°C. This was not possible in the air-

filled chamber as the samples 	are not accessible during cooling, . 

necessitating addition of a suitable ice-nucleator prior to cooling. Of 

those available, crystalline AgI is the most effective at the test 

temperatures (Lindow, 1983). Silver iodide is relatively inert chemically 

and biologically, does not alter the electrical conductivity of the 

solution and can be added to the sample before cooling begins. The small 

amount of water added to the samples ensured contact between the leaf 

tissue and the AgT and provided an observable indicator of freezing. 

2. Frost chamber 

The horizontal variation in temperature 10 mm above the aluminium tray 

during frosting did not exceed 0.8°C and was at times as small as 0.1°C 

(Fig. 2.3). The two thermocouples which had the greatest difference were 
(mean difference, O.3 °C) 

consistently those at positions 1 and 5A and the temperatures at other 

positions always lay between these two extremes. Changes in sample 

temperatures (Fig. 2.4) closely followed those of the chamber temperature 

although sample temperatures were always warmer (by up to 1°C) than the 

chamber temperature until the test temperature was reached. As this could 

take up to 30 min. after the chamber temperature had stabilised at the 

test temperature, samples were routinely held for 90 min. at the test 

temperature before removal. 

Rates of cooling, rewarming and time held at the test temperature 

interact to determine the amount of damage to the plant tissue. The rate 

of cooling used in the standard procedure (12°C/h) lies within the range 

reported by other authors, which varies from 2°C/h (Emmert and Howlett, 

1953 ; Paton, 1981) to over 200°C/h (Aronsson and Eliasson, 1970) with the 

most commonly used rates of cooling being in the range 4 to 6°C/h (Van den 

Driessche, 1973; Christersson, 1978; Harwood, 1980; Greer and Warrington, 

1982; Raymond et al, 1986). The slower rates of cooling are generally 

intended to simulate field conditions. 
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Time held at the test temperature varies from very short i.e. the 

tissue reaches the test temperature and is immediately rewarmed (Van den 

Driessche, 1976; Harwood, 1981) to as long as 24 hours (Wilner, 1960). The 

1.5 h used in this study is within the range of 1 to 6 hours more usually 

reported (Emmert and Howlett, 1953; Aronsson and Eliasson, 1970; Greer and 

Warrington, 1982; Raymond et al, 1986). 

In this study, tissue was removed from the frost chamber and placed in 

a refrigerator at 3°C to rewarm. This relatively rapid rate of rewarming 

has also been used by Aronsson and Eliasson (1970) and Raymond et al 

(1986). The rates of cooling, rewarming and time at the test temperature 

are compromises between simulating what happens in the field and 

processing samples efficiently. The ultimate test of the procedure is 

whether it correlates with field observations and whether it is able to 

predict the effect of low temperature on whole plants (see below). 

3. Incubation time 

The electrical conductivity (Yf or Yk) of the solutions increased 

rapidly during the first 4 h of incubation and had reached at least 95% of 

maximum conductivity after 12 hours (Fig. 2.5). Although samples could have 

been read prior to 18 h, Hallam & Tibbits (1986) found that larger discs 

took longer to equilibrate than the 6 mm discs. It was decided to 

standardize on 18 hours, so that the test results would be comparable 

using any size of disc. Differences in conductivity between 12 and 20 

hours were not statistically significant (P<0.01) and were independent of 

Y and LT. Hence over the range from relatively little to full ionic 

leakage, maximum conductivities are achieved in similar times after 

addition of water. Aronsson and Eliasson (1970) used incubation periods of 

18 to 20 h and found that for periods of over 24 h increased conductivity 

readings were caused by bacterial contamination of the samples. 

A linear relationship was found between Yk and dry weight (Fig.2.6), 

but the degree of association (r 2  = 0.66) suggested that accurate 

estimates of frost hardiness require an estimate of Yk rather than dry 

weight since Yk is a direct measure of potential leakage of ions from the 

tissue. 



4. Plant tissue 

Testing 9 samples from the one plant resulted in a mean lethal 

temperature of -4.44°C with 95% confidence interval of -4.23 to -4.65. 

There was no significant difference in lethal temperature between 

juvenile and adult leaves or juvenile and intermediate leaves of similar 

age (Table 2.2). A difference (P<0.05) in mean lethal temperature was 

found between one-year-old (-7.0°C) and new adult leaves (-5.7°C) of the 

Ben Lomond provenance. 

Table 2.2. Comparison of mean lethal temperatures for different types of 

plant tissue. Leaves taken from two provenances of four year old E. 

delegatensis plants in the Tarraleah provenance trial (see Chapter 3). 

Values with similar letters are not significantly different (P<0.05,,n = 

Provenance 	Leaf form 	 Mean LT (°C) 

Ben Lomond 
	

one-year-old adult 	-7.0 a 

one-year-old juvenile 	-7.0 a 

new .  adult 	 -5.7 b 

Upper Howqua 	one-year-old juvenile 	-5.3 c 

one-year-old intermediate 	-5.5 c 

Different plant tissues have been used for frost testing. Timis 

(1976) showed for Douglas Fir that stem, bud and leaf tissue all followed 

essentially the same pattern of frost hardening. Webb et a/.(1983) showed 

that bud tissue of E. delegatensis is the most sensitive to frost followed 

by leaf tissue and then stem tissue. Leaf tissue has an advantage over 

stem, bud and root tissue in that it is easy to remove with minimal damage 

to the plant and it is easy to subsample. The results showed that the 

different leaf forms of E.delegatensis do not give a significantly 

different result when tested by the method described. Recently developed 

leaves may be more frost sensitive than older leaves however and this 

should be taken into account when samples are selected. 
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5. Whole plants vs discs 

The survival of whole trees subjected to test temperatures between -4 

and -7°C was similar to that anticipated from leaf discs. The mean lethal 

temperature determined by the leakage of solutes from leaf discs for the 

32 plants was -5.34°C with 95% confidence interval of -5.21 to -5.47°C. 

Probit analysis of data obtained by the frosting of whole plants (Table 

2.3) gave the regression - 

Probit = -6.16 - 1.231 Temp. 

with LD50 = -5.005 and 95% confidence interval -4.416 to -5.561, where 

LD50 is the lethal dose (temperature) which would kill 50% of the 

seedling. 

The mean LT from leaf discs and its 95% confidence interval for tissue 

samples thus lie within the 95% confidence interval for the results from 

the testing of whole plants. The means therefore are not significantly 

different. 

Table 2.3. Results of testing whole plants of E. delegatensis which had 

previously been tested using the standard procedure. Thirty-two seedlings 

were assigned to four different test temperatures and scored for survival 

six weeks after frosting. 

Test temp. (°C) 	 Proportion killed 

	

-4 	 1/9 

	

-5 	 4/8 

	

-6 	 7/8 

	

-7 	 7/7 

13 
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As there is no evidence of recovery of the whole plants which had not 

initially survived the test temperature, a value of relative conductivity, 

Y < 50% for leaf discs would appear to be an acceptable measure of 

potential survival of eucalypts in the field following a frost. Using stem 

sections, Green and Warrington (1980), also found that values of Y 50% 

were followed by death of seedlings of Pinus radiate. Similarly Raymond et 

al (1986) found that in the absence of post-frost recovery, measured 

values of Y, given a suitable range of test temperatures, could be used to 

predict leaf survival of eucalypts. 

Conclusions 

The modifications to the electrical conductivity method of Dexter et 

al (1932) have resulted in a reliable procedure for measuring frost 

hardiness of Eucalyptus species. Variation in results has been shown to 

be small and the results obtained by frosting whole seedlings are not 

significantly different from those obtained by testing leaf discs. 



Fig. 2.1 The frost chamber with its door removed to show the cooling 

coil in the top and the tissue samples in glass vials on 

an aluminium tray supported on blocks on the floor of the 

chamber. To the left of the chamber is a chart recorder which 

plots the temperature inside the chamber. 
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Fig 2.2  Relative Conductivity, Y, versus test temperature for five 

trees of the Upper Howqua provenance from the Tarraleah Provenance 

Trial, sampled in May 1984. 
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CHAPTER 3 

Seasonal and genetic variation in frost hardiness  

of E.delegatensis in the field  

Introduction 

Variation in frost hardiness of eucalypts has only rarely been 

measured for more than one provenance of a species over a complete year 

(Harwood, 1980). Either frost hardiness has been measured for a single 

provenance of several different species throughout the year or, where more 

than one provenance of a species has been studied, frost hardiness has 

only been measured on two or three occasions during the year (e.g. Menzies 

et al, 1981; Rook et a/, 1980). 

Menzies et al. (1981) determined frost hardiness by artificially 

frosting seedlings of Eucalyptus saligna, E. regnans and E. fastigata at 

monthly intervals. They were able to show that frost hardiness increased 

to a peak in midwinter and that the three species differed in their 

resistance to frost at all times of the year. E. saligna was the least 

frost hardy and E. fastigata the most frost hardy as would be expected 

from their natural distributions. 

Secondly, frost hardiness for 38 provenances of E. regnans was 

determined at three different times Of the year, autumn, winter and spring 

(Rook et al; 1980). The range of frost hardiness among provenances was 

greatest in winter, about 2.5°C, and there was a statistically significant 

interaction between season and provenance such that the Tasmanian 

provenances were ranked higher in frost hardiness in autumn than in winter 

and spring and the Victorian provenances ranked higher in winter and 

spring than in autumn. Thus the variation in frost hardiness even within a 

species can have a strong genetic and seasonal basis. A preliminary study 

suggested that large seasonal differences in frost hardiness between 

provenances were also a feature of E. delegatensis (Webb et al, 1983). 

In the present study an experiment was designed to follow the cycle of 

frost hardening and dehardening throughout a full year for seven different 

provenances of E. delegatensis. Since E. delegatensis occurs naturally 
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over a wide range of altitudes in Tasmania (200-1200 m), Victoria (900- 

- 1400 m) and New South Wales (900-1500 m), provenances originate from sites 

which experience different mean, maximum and minimum temperatures. It was 

hypothesised that the provenances selected for testing would show 

measurable differences in their genetic ability to survive low 

temperatures. The results presented express the cycle of frost hardening 

as the change in lethal temperature for each provenance throughout the 

year. 

Materials and Methods 

1.Test material 

During 1978 and 1979, the Genetics Section of CSIRO Division of Forest 

Research, in collaboration with the State Forestry Commissions of Tasmania 

and New South Wales, Australian Newsprint Mills Ltd and Australian Pulp 

and Paper Manufacturers, planted provenance trials of E. delegatensis at 

four sites in Tasmania (Tarraleah, Myrtle Bank, Parrawe and Diddleum 

Plains) and one site, Pilot Hill, in New South Wales (Fig.3.1). Each trial 

consists of an 8x8 balanced latin square with 64 provenances represented 

in each of nine replicates. Each replicate is divided into eight 

incomplete blocks of eight treatments. The layout of these trials was 

described in detail by Bell(1979). The collection sites of the provenances 

are shown in Fig. 3.1. 

Two of the Tasmanian trials were sampled, Tarraleah (Fig. 3.2) every 4 

to 8 weeks from February 1984 until March 1985, and Myrtle Bank (Fig. 3.3) 

on three occasions, in February, June and July 1984. 
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Table 3.1. Ranked adjusted means of provenances for frost damage as assessed 

in 1980 in the Pilot Hill field trial (from Boland and Dunn, 1985). An 

asterisk indicates a provenance chosen for testing. 

Provenance 

Number 

Provenance 

Name 

State Adjusted mean 

55 Bicheno Tas. 2.03464 * 

53 Middle Peak Tas 1.91481 

39 Dazzler Range Tas. 1.76925 

57 Bendover Hill Tas. 1.75556 

36 Plateau Rd. Tas. 1.72361 

35 Hartz Mtn. Tas. 1.70556 

54 Lake Tooms Tas. 1.7 

56 Fingal Tier- Tas. 1.63148 

51 Russell River Tas. 1.60185 

40 Cluan Tier Tas. 1.57151 

50 Lake Pedder Tas. 1.55185 

72 Eaglehawk Tier Tas. 1.49074 

45 Heemskirk River Tas. 1.48148 

49 Mt Dromedary Tas. 1.38889 

38 Ben Nevis Tas. 1.35926 * 

41 Maggs Mtn. Tas. 1.31852 

73 Misery Plateau Tas. 1.27963 

25 Razorback Spur Vic. 1.27778 

37 Ben Lomond Tas. 1.23148 * 

47 Miena Tas. 1.21481 

4 Mt Bogong N.S.W. 1.21481 

46 King William Saddle Tas. 1.20185 

27 Royston River Rd. Vic. 1.17963 

42 Guildford Tas. 1.16296 

29 Mt Macedon Vic. 1.12963 

75 Mt St Gwinear Vic. 1.11481 
(1 



23 Big Hill Vic. 1.11111. 

48 Tunbridge Tier Tas. 1.111 

62 Mt Ellery Vic. 1.10105 * 

10 Youngal N.S.W. 1.1 

28 Lake Mountain Vic. 1.0963 

43 Yellow Marsh Rd. Tas. 1.09259 

9 Cascade N.S.W. 1.09259 

44 Luina Tas. 1.08889 * 

7 Mt Nurenmerenmang N.S.W. 1.07778 

13 Dargals Range N.S.W. 1.07407 

19 Pilot Hill N.S.W. 1.07407 

24 Big Ben Vic. 1.06667 

12 The Pinnacle N.S.W. 1.06667 

16 Yarrangobilly N.S.W. 1.06667 

60 Bulls Head A.C.T. 1.06296 

14 Mt Flinders N.S.W. 1.06296 

21 Beecher Hill Vic. 1.06296 

18 Bald Hill N.S.W. 1.05926 

31 Mt Useful Vic. 1.05556 

22 Mt Buffalo Vic. 1.05556 

34 Mt Baldhead Vic. 1.04444 

30 Ada River Vic. 1.04074 

5 Clear Creek N.S.W. 1.03704 

1 Yaouk Bill Range N.S.W. 1.03704 

8 Mt Black Jack N.S.W. 1.02778 

3 Smokers Flat N.S.W. 1.02222 

20 Mt Wills Vic. 1.02222 

33 Mt Ewen Vic. 1.02222 

26 Upper Howqua Vic. 1.01852 * 

11 Geehi N.S.W. 1.0 

2 Leura Gap A.C.T. 1 

6 The Granites N.S.W. 1 

61 Mt Delegate N.S.W. 1 

15 Peppercorn Hill N.S.W. 1 

17 -- 	Gungarlin River N.S.W. 1 * 

24 



25 

Selection of provenances for testing was made using the data on frost 

damage in 1980 from the Pilot Hill trial in New South Wales (Table 3.1). 

It is particularly noticeable from this table that the Tasmanian 

provenances are listed as the 16 least hardy provenances. The provenances 

selected for testing were chosen to represent the full range of frost 

hardiness indicated by this ranking, while also being from a range of 

altitudes and a mixture of coastal and more continental sites. The Bicheno 

provenance was chosen because it was the least frost hardy and came from a 

low altitude coastal site in Tasmania. The Gungarlin R. provenance was the 

most hardy and was from a high altitude, continental site in New South 

Wales. The Ben Nevis provenance.was a less hardy one from an intermediate 

altitude in Tasmania. The Ben Lomond provenance was selected because it 

came from the highest altitude in Tasmania and was ranked as much less 

frost hardy than would have been expected. The Upper Howqua provenance 

represented an intermediate altitude, continental site in Victoria. The 

Luina provenance was selected because it was the most frost hardy of the 

Tasmanian provenances while also coming from a low altitude, coastal site. 

The Mt. Ellery provenance was selected because it was the only mainland 

provenance from a coastal site. 

An initial test sampling was done in August 1983 in which six of the 

seven provenances selected were tested. These provenances were rated 1, 2 

or 3 according to whether the lethal temperature was in the range -8 to - 

9°C, -9 to -10°C or lower than -10°C respectively (Table 3.2). Sampling 

was done from one replicate in each trial, replicate 2 at the Tarraleah 

trial (Fig. 3.4) since this replicate was located entirely on level ground 

unlike the other replicates which were unevenly sloped. At Myrtle Bank, 

replicates 9A and 9B (Fig. 3.5) were sampled as these were located on a 

relatively even slope. 
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Table 3.2. E. delegatensis provenances selected for testing of frost 

resistance. The hardiness rating is the result of a test sampling in 

August 1983. 

No. Provenance 	 State 	Altitude of 	Hardiness 

Collection(m) 	Rating 

44 Luina 	Tas. 	450 	1 

55 Bicheno 	Tas. 	450 	1 

38 Ben Nevis 	Tas. 	820 	3 

37 Ben Lomond 	Tas. 	1220 	2 

6 Upper Howqua 	 Vic. 	 1000 	 - 2 

.62 Mt. 	Ellery 	Vic. 	1150 	* 

17 Gungarlin R. 	N.S.W. 	1200 	2 

1 = lethal temperature, -8 to -9°C 

2 = lethal temperature, -9 to -10°C 

3 = lethal temperature, lower than -10°C 

* = provenance not tested in August 1983 

2.Temperature Measurement. 

At Tarraleah, maximum-minimum thermometers were placed near each 

provenance at a height of 350 mm above the ground (Fig 3.4). At the centre 

of the block, near the Upper Howqua provenance (26), additional maximum-

minimum thermometers were suspended at 830 mm and at 1550mm above the 

ground. At Myrtle Bank which was not visited as frequently, three 

maximum-minimum thermometers were located near the provenances which were 

_ sampled (Fig 3.5). All thermometers were fastened to wooden 

stakes in a vertical position and located so that they faced South. Wooden 
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flaps attached to the stakes shielded the thermometers from direct 

sunlight. Daily maximum and minimum temperatures recorded by the 

Meteorological Bureau from standard mercury-In-glass thermometers in a 

Stevenson Screen were available from Tarraleah Village approximately 5 km 

away for comparison with site temperatures (Fig. 3.2). Tarraleah village 

is at the same altitude and has the same aspect as the field trial. 

3.Experimental procedure. 

Six leaves were taken from each of 5 trees of each provenance and 
(Raymond et al, 1986) 

stored in a refrigerator overnightk The next day one disc was punched from 

each leaf and these six discs were combined to make a sample. Each sample 

was replicated once. Samples were tested at up to a maximum of 6 

temperatures using the standard procedure described in Chapter 2. 

Results 

1.Temperature Variation at Tarraleah. 

The maximum-minimum thermometers showed that there was very little 

variation in minimum temperatures over the area of the provenances 

sampled, (Table 3.3(a)). The maximum difference between the thermometers 

on the dates when measurements were recorded was 3°C but they were usually 

within 1°C of each other. 
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Table 3.3(a) Minimum temperatures (°C, missing values are indicated by *) 

recorded at Tarraleah at a height of 350 mm above the ground. 

Period 

44 

Provenance Number 

55 	38 	37 	26 	17 62 

Range Mean 

28/4/84 - 	28/5/84 -4 -4 -3 * -4 -4 -3 1 -3.7 

28/5/84 - 	25/6/84 -7 -7 -6 * -7 -6 -7 1 -6.7 

25/6/84 - 24/7/84 -6 -8 -7 * -7 -7 -7 2 -7.0 

24/7/84 - 20/8/84 -7 -6 -6 -6 -6 -6 -7 1 -6.3 

20/8/84 - 1/10/84 -3 -6 -4 -6 -3 -6 -4 3 -4.6 

1/10/84 - 29/10/84 -1 -1 -1 -1 -1 -1 -1 0 -1.0 

29/10/84 - 26/11/84 -2 -4 -4 -4 -4 -4 -5 3 -3.9 

26/11/84 - 14/1/85 1 1 2 2 2 1 1 1 1.4 

14/1/85 - 5/3/85 1 0 1 0 0 0 0 1 0.3 

The suspended thermometers also 	showed very little vertical 

stratification of minimum temperature with temperatures usually being 

within 1°C of each other (Table 3.3(b)). The lowest minimum temperature 

recorded at Tarraleah during 1984 was -8°C. 
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Table 3.3(b) Minimum temperatures (°C) recorded at different heights at 

Tarraleah . 

Period Height above the ground 

350 mm 	830 mm 	1550 mm 

28/4/84 - 28/5/84 -4 -3 -3 

28/5/84 - 25/6/84 -7 -6 -6 

25/6/84 - 24/7/84 -7 -6 -6 

24/7/84 - 20/8/84 -6 -6 -6 

20/8/84 - 1/10/84 -3 -3 -3 

1/10/84 - 29/10/84 -1 -1 -1 

29/10/84 - 26/11/84 -4 -3 -4 

26/11/84 - 14/1/85 2 3 1 

14/1/85 - 5/3/85 0 2 2 

2. Seasonal Variation at Tarraleah 

Hardening commenced in April 1984. Maximum hardiness and minimum 

temperatures (mean and lowest for the month) were recorded in the period 

between July and August (Fig 3.6). The greatest difference between maximum 

and minimum hardiness measured was 4.6°C for Ben Lomond provenance (Fig. 

3.7(b) and the smallest difference was 2.4°C for Bicheno provenance (Fig. 

3.7(a). 

The measurements of frost hardiness in August 1983 demonstrated that 

the maximum hardiness varies from year to year depending on the minimum 

temperatures experienced (Fig. 3.6). The Bicheno provenance was 3°C 

hardier in August 1983 than in August 1984, while the Ben Lomond 
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provenance was 1°C hardier in August 1983 than in August 1984. There was 

also variation in the summer level of minimum hardiness from year to year. 

The winter and spring of 1983 had colder minimum temperatures than the 

winter and spring of 1984 and this resulted in the trees dehardening less 

in the spring of 1983 than in 1984 (Fig 3.6). 

3. Genetic Variation at Tarraleah 

All provenances tested showed the same seasonal trends of frost 

hardiness (Fig. 3.7 a,b and c ), but different rates of hardening and 

dehardening showed that some provenances e.g. Ben Lomond, Gungarlin R. 

(Fig. 32.7 b) were able to respond to falling and rising minimum 

temperatures to a greater degree than others e.g. Bicheno (Fig. 3.7 a). 

The difference between mean lethal temperatures of the most hardy and 

least hardy provenances at maximum hardiness was 2.7°C. 

The Bicheno provenance proved to be the least frost hardy provenance 

at all times of the year, especially in winter when little hardening 

occurred, the mean lethal temperature in July being -6.0°C. Thus the 

minimum temperature in June 1984 at Tarraleah (Fig 3.6) was too cold for 

this provenance to grow successfully and there was a high incidence of 

frost damage. High mortality of this provenance was also observed 

following the very low minimum temperatures in July 1983. Although the Mt 

Ellery provenance also only lowered its mean lethal temperature to -6.0°C 

(Fig 3.7(a)) it hardened earlier in the year and thus did not suffer as 

much damage. 

The Ben Lomond provenance was the most frost hardy with a mean lethal 

temperature of -8.6°C in August. Although the Gungarlin R. provenance 

reached the same level of hardiness (-7.9°C) as the Ben Lomond provenance 

in July 1984(Fig. 3.7(b), the Ben Lomond provenance continued to harden 

during August while the Gungarlin R. provenance had already begun to 

• deharden (-6.7°C). The next most hardy provenance was the Luina provenance 

(Fig. 3.7(c)), with a mean lethal temperature of -7.2 in July, followed by 

the Upper Howqua provenances (Fig. 3.7(c)), and the Ben Nevis provenance 

(Fig. 3.7(a)) which both had mean lethal temperatures of -6.9°C in July. 



4. Temperature Variation at Myrtle Bank 

Minimum temperatures were only recorded for two time periods (Table 

3.4). These showed a maximum of 1°C variation over the experimental site. 

The lowest minimum temperature recorded at Myrtle Bank for 1984 was -4°C. 

Table 3.4 Minimum Temperatures recorded at the Myrtle Bank (°C) provenance 

trial. 

Period 	 Upper 	Middle 	Lower 

4/6/84 	- 31/7/84 -4 -4 -3 

31/7/84 - 	3/2/85 -4 -4 -4 

5. Genetic Variation at Myrtle Bank 

Lethal temperatures for the provenances sampled at Myrtle Bank are 

plotted with the Tarraleah results in Fig 3.7(a,b and c). In all cases the 
at 

trees/Myrtle Bank did not reach the same level of hardiness as at 

Tarraleah. The range of values of mean lethal temperatures at maximum 

hardiness at Myrtle Bank were from -4.7°C for the Bicheno provenance to 

-7.7°C for the Ben Lomond provenance. The values for lethal temperature at 

maximum hardiness for the two sites were highly correlated (r = 0.94, Fig 

3.10). 

6. .Frost hardiness at Pilot Hill, NSW 

It is interesting that the ranking of the provenances for frost 

hardiness is different in the Tasmanian trials than at the New South Wales 

trial (Table 3.5) The Tasmanian provenances appeared hardier in Tasmania 

than in New South Wales. Victorian provenances - hardened less 

effectively at the Tasmanian sites. Ben Lomond provenance which was the 

most frost hardy provenance in Tasmania was less hardy than the Gungarlin 

R, Upper Howqua, Luina and Mt Ellery provenances at Pilot Hill. 
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Table 3.5. Frost hardiness ranking 	at the Tasmanian provenance trials 

compared with the New South Wales trial (see Table 3.1). 

Tasmania 	New South Wales 

Least Hardy Bicheno 	Bicheno 

Mt Ellery 	Ben Nevis 
Ben Nevis 	Ben Lomond 
Upper Howqua 	Mt Ellery 

Luina 	Luina 

Gungarlin R. 	Upper Howqua 

Ben Lomond 	Gungarlin R. 

Discussion 

1. Seasonal Variation in Frost Hardiness 

The annual cycle of hardening and dehardening in E. delegatensiswas 

very similar to that reported by Menzies et al (1981) for E. saligna, E. 

regnans and E. fastigata. They also found that hardening began in April 

and continued until June for E. saligna whereas in the more hardy species, 

E. regnans and E. fastigata, and E. delegatensis in this study, hardening 

continued until July and August. Thus variation in ability to harden 

'exists both between and within species through different responses to low 

'temperature (Fig.3.7(a,b and c)). Thus Ben Lomond provenance, the hardiest 

provenance, was able to significantly decrease the lethal temperature 

between July and August (Fig.3.7(b)), presumably in response to the low 

minimum temperature experienced during this period (-6°C, Table 3.3(b)). 

For all other provenances differences in hardening were entirely due to 

their ability to harden between April and July (Fig 3.7 (a,b and c))as in 

some instances, significant dehardening occurred (Ben Nevis and Gungarlin 

R. provenances, Fig.3.7(a and b)) between July and August in spite of low 

, minimum temperatures. These differences cannot be explained from the 

present data but a photoperiodic response by some provenances is a 

possibility (Eldridge,1969). 
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It is apparent from the data that E. delegatensis does not reach the 

the same level of hardening every winter or the same level of dehardening 

every summer (Fig. 3.6). Minimum temperatures of -10, -13 and -11°C were 

recorded during the period 30 June to 1 July 1983 by the Meteorological 

Bureau at Tarraleah Village compared with a minimum of -6°C in 1984. 

These minimum temperatures in 1983 confirm the low mean lethal 

temperatures measured in August 1983 (Fig. 3.6) since the hardiest 

provenance in 1984 (Ben Lomond) would have been killed by a temperature of 

-8.6°C, (Fig. 3.6). Observations showed that only some trees of the more 

frost sensitive provenances were killed in 1983. Sakai (1956) reported 

that for a fixed time period, the effectiveness of hardening increases 

with decreasing temperature for artificially hardened mulberry twigs. The 

difference between the results from Tarraleah and Myrtle Bank can also be 

considered in this way. The lowest minimum temperature recorded in 1984 

for Tarraleah was -8°C while for Myrtle Bank it was -4°C. Since the 

rankings of maximum hardiness for provenances was the same for both sites, 

the difference in level of maximum hardiness may be simply due to the 

difference between minimum temperatures experienced by the two sites. 
,apparent 	'the ranking of 

Since there is noAinteraction betweenAprovenancesand site within Tasmania 
be 

for frost hardiness, it mayijeasonable to use the results from provenance 

trials when selecting provenances to plant at other sites within the 

state. 

2. Genetic Variation 

Altitudinal clines for frost hardiness have been reported for E. 

delegatensis by Grose(1960), for E. fastigata by Boden(1958) 

and for E. regnans by Ashton(1958) and Eldridge(1969). It was therefore 

anticipated that the different provenances of E. delegatensis used in this 

experiment would show differences in ability to frost harden. In this 
and 

study the maximum difference in winter between the most (Ben Lomond)Aleast 

hardy (Bicheno) provenances was found to be 2.7°C in 1984, a difference 

which would be very important when selecting for survival at low 

temperatures. At the Tarraleah trial only the Bicheno provenance (the 

least hardy) suffered from frost damage nearly every winter (Fig. 3.9) 

other more hardy provenances have suffered little or no damage at this 

site. 
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Comparing the data from Tarraleah and Myrtle Bank it can be seen that 

measurement of frost hardiness in field trials does not necessarily show 

the maximum genetic potential for frost hardiness. Unless the measurements 

are done during an extremely cold winter or on more extreme sites, only 

relative hardiness of the provenances will be obtained. It was however 

encouraging that the ranking of provenances was the same at both sites o a 

result which suggests that the testing procedure adopted is adequate for 

selecting suitable provenances for planting, at least in Tasmania. 

It appears from the data that preceding temperature is the main factor 

controlling development of frost hardiness. In temperate species in the 

Northern Hemisphere it is generally accepted that daylength is also a 

major factor controlling the development of frost hardiness, with short 

days and cold temperatures both being necessary to induce maximum 

hardiness (Weiser, 1970; Aronsson,1975, Glerum,1976). Eldridge (1968) has 

also observed that E. regnans seedlings which were artificially frosted 

suffered less damage if they had been grown under short rather than long 

daylengths. Daylength would not be a factor when comparing the hardening 

response at Tarraleah with Myrtle Bank since they are only 10  latitude 

apart,though between provenance differences may be in some way related to 

daylength. Daylength may also account for the difference in provenance 

ranking between the Tasmanian trials and the New South Wales trial, as the 

difference in latitude between Tarraleah and Pilot Hill is 7°. If 

Tasmanian provenances are more sensitive to daylength than the Victorian 

and New South Wales provenances, hardening would be more effective in 

Tasmania than when planted further north (Table 3.5). The role of 

daylength in the hardening of Eucalyptus requires further study. 
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Fig. 3.1  Distribution of seed collection sites for provenance trials. 

Underlined numbers indicate the provenances sampled and 0 

indicate locations of provenance trials used in this study. 

Inset map shows the natural distribution of E. delegatensis.  

(from Boland et al, 1980). 
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1 km 

Fig. 3.2 The location of the Tarraleah provenance trial (Lat. 42 ° 20', 

Long. 146 °26'). Contour lines are at 40 m intervals. 
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Fig. 3.3 The location of the Myrtle Bank provenance trial (Lat. 410 27', 

Long. 147 °21'). Contour lines are at 40 m intervals. 
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Fig. 3.4 The layout of replicates at the Tarraleah provenance trial. 

The positions of provenances in Rep. 2 are shown. Underlined 

numbers indicate the provenances which were sampled in this 

study. T indicates the locations of maximum-minimum thermometers. 
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Fig. 3.5 The layout of replicates in the Myrtle Bank provenance trial. 

The positions of provenances in Rep. 9A and B are shown. 

Underlined numbers indicate provenances which were sampled in 

this study. T indicates locations of maximum-minimum 

thermometers. 
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Fig. 3.6 Seasonal variation in mean lethal temperature of Bicheno (55) 

and Ben Lomond (37) provenances at Tarraleah provenance trial. 

Mean monthly minimum temperature and extreme minimum for the 

month are from the Meteorological Station at Tarraleah Village. 
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Fig. 3.8 A tree of the Bicheno provenance at the Tarraleah provenance 

trial showing severe frost damage. This occured during a 

period of unusually low minimum temperatures (-10, -13 and -11 ° C) 

in the winter of 1983. 



Fig. 3.9 A 5-year-old tree of the Bicheno provenance at the Tarraleah 

provenance trial. Its main stem has been killed by frost 

and it has resprouted from the base of the stem. 
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Fig. 3.10 The relationship between mean lethal temperature (n=5) at 

maximum hardiness of seven provenances at the Tarraleah and 

Myrtle Bank provenance trials. 
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CHAPTER 4 

Hardening of seedlings in controlled environment chambers 

Introduction 

Differences in frost hardiness, 	expressed in terms of lethal 

temperature between summer and winter, of provenances of E.delegatensis 

ranged from 2.4°C for the least hardy (Bicheno) to 4.6°C for the most hardy 

(Ben Lomond, see Chapter 3). The main seasonal changes during the hardening 

period were decreasing day and night temperatures and shortening 

photoperiod. It has been demonstrated for other Eucalyptus species in 

controlled environments that low night temperatures are necessary for 

satisfactory development of winter frost hardiness. For example, Eldridge 

(1969) showed that a night temperature of 4°C was more effective than 7°C 

in inducing hardiness of seedlings of E. regnans. Similarly, Harwood (1980) 

showed that 4°C nights were more effective in stimulating the development 

of frost hardiness of E. pauciflora than 9°C nights. 

The duration as well as the intensity of cold nights is also important. 

• Harwood (1980) found that 3-4 weeks of nights at 4°C hardened the seedlings 

to -8.5°C while 7-8 weeks of nights at 4°C resulted in seedlings surviving 

temperatures of -10.0°C. Paton (1980) suggested that hardening is a much 

faster process than reported above and that exposure of seedlings to a 

constant temperature of 2°C for two days increased the frost hardiness of 

E. viminalis to survive temperatures of -6.5°C which would previously have 

killed them. 

The facilities available for the measurement of temperature in the 

provenance trial at Tarraleah were not adequate to evaluate hardening and 

dehardening responses to an integrated measure of temperature. 

Experiments, described in this chapter, were therefore designed to measure 

the effect of different temperatures in controlled environments on the rate 

of frost hardening of E.delegatensis and their rate of dehardening when the 

hardened plants were placed in warm conditions. 
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Materials and Methods 

Seeds were supplied by the CSIRO, Division of Forest Research Seed Centre. 
Seeds were stratified by placing them on moist vermiculite in a cold 

Clay 23 °C/night 17 ° C) room at 4°C for one month. They were then placed in the glasshouseonder 

natural light to germinate, pricked into individual 60 mm by 150 mm plastic 

pots in a standard potting mix (see Tibbits and Reid, 1986) and kept in the 

glasshouse until they had produced sufficient leaves that sampling would 

only remove a small proportion of the total number (height, 500 - 800 mm). 

Leaf tissue was tested for frost hardiness as described in chapter 2. The 

origins of the provenances used in these experiments are the underlined 

numbers shown in Fig.3.1. The growth chambers in which the plants were 

hardened had a combination of incandescent and fluorescent lights with an 

average intensity of 200 p moles of quanta m -2  sec - I. This was a low light 

intensity relative to natural light, however the plants were able to 

continue to grow in this environment. 

1. Experiment 1 

To test whether it was possible to artificially frost harden seedlings 

in growth chambers, seedlings of two Tasmanian provenances, Guildford (42) 
(10 h) (14 h) .  

and Maydena (52) were subjected to the following dafnightAtemperature 

regimes: 14/10 and 8/4°C with 10 hour photoperiods 	for 53 

days. Nine seedlings of each provenance were treated at each temperature. 

Leaves from individual seedlings were tested separately. 

2. Experiment 2 

Seedlings of four provenances, Gungarlin R. (17), Ben Nevis (38), Luina 

(44) and Bicheno (55) were grown in the glasshouse until they were 

approximately 500mm high. Thirty seedlings of each provenance were selected 

for uniformity of size and six of each were placed in growth cabinets with 

10 hour photoperiods and the following day/night 

temperature regimes: 16/12, 12/8, 8/4, 4/0 and +2/-2 °C. These were chosen 

to have a 4°C difference between day and night. Using the method described 

in chapter 2 they were tested for frost hardiness before treatment and 

after 3 days and then at 1, 3 and 5 weeks of treatment. Samples for frost 
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testing were bulked for each treatment i.e. samples of 6 discs were made up 

of one disc from a leaf of each seedling of a provenance within a 

treatment. 

3. Experiment 3 

Seedlings of six provenances, Cungarlin R. (17), Ben Lomond (37), Ben 

Nevis (39), Upper Howqua (26), Luina (44) and Bicheno (55) were grown in 

the glasshouse until they were approximately 600 mm high. Twenty-four 

seedlings of each provenance were selected for uniformity of height and six 

of each were placed in growth cabinets with 8 hour photoperiods 

and the following day/night temperature regimes: 12/12, 12/4, 

12/0 and 4/4°C. These were tested using the method described in chapter 2 

at 0, 2, 4, 6, 8 and 10 weeks of treatment. At 10 weeks the seedlings in 

the 12/0°C regime were moved in with the ones in the 12/12°C treatment and 

these two groups of seedlings were retested after 4 weeks to determine 

whether dehardening was occurring. As in experiment 2, samples were 

combined within each provenance in a treatment. 

4. Experiment 4 

Seedlings of 3 provenances, Gungarlin R. (17), Ben Lomond (37) and 

Bicheno (55) were grown in the glasshouse until they were approximately 800 

mm high. Five seedlings of each provenance were moved to growth cabinets 

with 9 hour photoperiods and day/night temperature 

regimes of 12/12, 12/4 and 12/0°C. They were tested for frost hardiness 

after 0, 2, 4, 6, 8 and 10 weeks of treatment. All plants were then moved 

into the 12/12°C treatment and tested after further periods of 2 and 4 

weeks had elapsed. Five extra seedlings of Ben Lomond provenance were 

placed in the 12/0°C regime at week 0 and tested for frost hardiness after 

10, 12 and 14 weeks of treatment. Each seedling was tested individually. 
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Results 

1. Experiment 1 

Seedlings of both provenances showed significantly greater frost 

hardiness in the 8/4°C treatment than in the 14/10°C treatment (Table 4.1) 

and it was concluded that the controlled environment facilities available 

were adequate to induce hardening and to distinguish the ability of 

provenances to harden and deharden. In this instance the Guildford 

provenance developed significantly greater frost hardiness than Maydena 

provenance. 

Table 4.1. Mean lethal temperatures for Guildford and Maydena provenances 

(42 and 52) after 53 days at 14/10 and 8/4°C. Analysis of variance gave the 

result that all values were significantly different (P<0.01). 

Provenance 	 Treatment 

14/10 	8/4 

Maydena 	 -3.8 	-5.3 

Guildford 	 -4.3 	-6.5 

2. Experiment 2 

The lowest temperature regimes, 4/0 •and +2/-2°C, which were expected 

to stimulate the greatest amount of hardening were found to be 

unsatisfactory, as low temperatures during the day caused the seedlings to 

wilt. This problem has also been reported by Tibbits and Reid (1986) who 

suggested that it may be caused by low root temperatures, as the wilting 

did not occur in these treatments if the roots were kept warmed to 

approximately 8°C. These treatments were discontinued prior to the three 

week sampling, when the plants in the 4/0 and +2/-2°C treatments had 

deteriorated to the extent that further measurements were not possible. 

The 16/12, 12/8 and 8/4°C treatments were continued for 5 weeks until 
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cabinet breakdowns forced the ending of the experiment. During this time 

no significant hardening had occurred (Table 4.2). 

Table 4.2. The mean lethal temperatures for seedlings of provenances 

Gungarlin R. (17), Ben Nevis (38), Luina (44) and Bicheno (55) treated at 

five different day/night temperature combinations over 5 weeks. 

Day No. Provenance No. Day/Night Temperature 

16/12 	12/8 	8/4 

(°C) 

4/0  

0 17 -4.3 -4.4 -4.5 -4.4 -4.2 

38 -4.2 -4.5 -4.5 -4.4 -4.4 

44 -4.3 -4.5 -4.7 -4.4 -4.5 

55 -4.4 -4.4 -4.7 -4.3 -4.5 

3 17 -4.2 -4.0 -4.3 -4.1 -4.3 

38 -4.2 -4.3 -4.3 -4.2 -4.4 

44 -4.0 -4.3 -4.3 -4.5 -4.7 

55 -4.3 -3.5 -4.5 -4.4 -4.3 

7 17 -4.3 -4.4 -4.5 -4.1 -4.4 

38 -4.5 -4.3 -4.2 -4.4 -4.3 

44 -4.5 -4.1 -4.4 -4.3 -4.3 

55 -4.4 -4.2 -4.3 -4.4 -4.4 

21 17 -4.3 -4.6 -4.7 

38 -4.4 -4.1 -5.1 

44 -4.4 -4.3 -4.6 

55 -4.2 -3.7 -4.2 

35 17 -4.2 -4.4 

38 -4.2 -4.3 -4.5 

44 -3.5 -4.4 -4.2 

55 -3.5 -3.5 -4.2 
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3. Experiment 3 

Over the 10 weeks, the six provenances all developed increased frost 

hardiness (Fig 4.1. (a and b)). 	The 12/0°C treatment had induced th'e most 

frost hardiness 	at the eighth week in all but one case (Bicheno 

provenance). The mean lethal temperatures of plants in the 12/4 and 4/4°C 

treatments were intermediate between those in the 12/12 and 12/0°C 

treatments over the first eight weeks (Table 4.3). 

Table 4.3. Means of all lethal temperatures measured over the first 8 week 

period for each provenance at each day/night temperature treatment. 

Day/night Temp. Provenance Number 

(°C) 17 37 38 26 44 55 

12/12 -5.1 -5.1 -4.8 -4.8 -4.5 -5.0 

12/4 -5.3 -5.5 -5.4 -5.2 -5.8 -5.3 

4/4 -5.3 -5.8 -5.5 : 5.0 -5.6 -5.1 

12/0 -5.9 -6.0 -5.7 -5.8 -6.0 -5.5 

Analysis of variance gave a significant difference between provenances 

(P<0.01), between day/night temperature treatments (P<0.001), between 

sampling times (P<0.001) and the treatment-time interaction (P<0.001). The 

provenance-treatment and provenance-time interactions were nonsignificant. 

The Ben Lomond and Gungarlin R. provenances hardened the most and 

the Bicheno and Luina provenances the least with the Ben Nevis and Upper 

Howqua intermediate (Fig.4.1(a and b)). The Bicheno and Upper Howqua 

provenances reached maximum hardening at eight• weeks but the others 

continued to harden up to ten weeks although the rate of hardening of the 

Luina provenance appeared to be decreasing. 

The four weeks dehardening resulted in all of the provenances except 
and 

the Ben Lomond kBicheno provenances dehardening to within 0.3 °C of the 

original 12/12°C treatment. 



4 Experiment 4 

The Bicheno provenance showed a high degree of variability at the 

beginning of the experiment, but at 4 weeks the seedlings in the 12/0°C 

treatmnent were over 1°C hardier than the other treatments. All seedlings 

except ther Ben Lomond ones in the 12/0°C treatment (Fig. 4.2) dehardened 

to some extent over the first 2 weeks. This may have been a response to 

the low light levels in the growth chambers. 

After 4 weeks, seedlings of all provenances in the 12/0°C treatment 

were significantly hardier (P<0.05) than in the 12/12 or 12/4°C treatments 

(Table 4.4). At 6 weeks, mean lethal temperatures of seedlings of 

Gungarlin R. and Ben Lomond provenances were significantly different at 

• each night temperature. For the Bicheno provenance the 12/4°C treatment 

was not significantly different to the 12/12°C treatment for the duration 

of the experiment apart from the initial value at week 0. 

53 
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Table 4.4. Mean lethal temperatures of Ben Lomond (37), Cungarlin R.(17) 

and Bicheno (55) provenances which 	were 	treated to night temperatures of 

12, 4 and 0°C and sampled at two week intervals. 

Week 

No. 

Provenance 

No. 

Treatment (Day/night temperature °C) 

12/12 	12/4 	12/0 

Hardening Phase 

0 37 -3.96 aD -4.32 aD -3.88 	aD t  

17 -4.08 aD -4.38 aD -4.48 bD 

55 -3.66 aD -4.16 aE -4.36 bE 

2 37 -3.38 	RD -3.38 	RD -4.30 RE 

17 -3.36 	all -3.58 aD -4.22 	aE 

55 -3.28 	aD -3.36 aD -4.10 aE 

4 37 -3.96 	aD -4.18 bD -5.32 	aE 

17 -4.10 aD -4.44 bD -5.26 	aE 

55 -3.96 	aD -3.50 aD -5.12 	aE 

6 37 -4.14 aD -4.80 bE -5.42 abF 

17 -4.66 bD -5.18 bE -5.74 bF 

55 -4.08 aD -4.18 aD -5.24 aE 

8 37 -4.85 bD -4.98 bD -5.98 bE 

17 -4.68 bD -5.64 cE -6.06 bE 

55 -3.96 aD -4.30 aD -5.44 aE 

10 37 -4.68 bD -4.82 aD -5.76 bE 

17 -4.48 abD -5.68 bE -6.24 cF 

55 -4.02 aD -4.44 aD -5.16 	aE 



Dehardening Phase 

12 	37 	-4.64 bD 	-5.14 bE 	-5.52 abE 

17 	-4.82 bD 	-5.50 bE 	-5.86 bE 

55 	-4.00 aD 	-4.32 aD 	-5.22 aE 

14 	37 	-4.62 bD 	-5.02 bD 	-5.58 abE 

17 	-4.86 bD 	-5.56 cE 	-5.76 bE 

55 	-4.10 aD 	-4.30 aD 	-5.18 aE 

fDifferent upper case letters indicate a significant difference (P<0.05) 

between treatments within a provenance. Diferent lower case letters 

indicate a significant difference (P<0.05) between provenances within a 

treatment. The 5% least significant difference for assessing pairwise 

differences between means is lsd = 0.47. 

Maximum hardiness was reached at week 8 for the Ben Lomond and the 

Bicheno provenances but not for the Gungarlin R. provenance, However 

the values at weeks 8 and 10 were not significantly different (Fig.4.2). 

During the experiment some hardening of seedlings in the 12/12°C treatment 

occuiled, however this was small (less than 0.8°C) compared with the 12/0°C 

treatment. 

During the 4 weeks of dehardening after week 10 some but not complete 

dehardening occurred. Seedlings of Ben Lomond provenance which were left 

in the 12/0°C treatment after the other plants were removed continued to 

harden (Fig.4.2). 

Discussion 

The seedlings in Experiment 1 are the same provenances that were 

planted in the Esperance Valley (Chapter 5). The results from the growth 

chambers agree with those obtained by sampling from the field trial, in 

which Guildford provenance developed greater frost hardiness than Maydena 

provenance. 
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Although Experiment 2 was abandoned after 5 weeks, it did demonstrate 
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that even at low day and night temperatures (4/0 and +2/-2°C) E. 

delegaLensis does not develop significant, measurable increases in frost 

hardiness within days as reported by Paton (1980) for E. viminalis- It is 

not surprising that no measurable hardening occurred in the other 

treatments (16/12, 12/8 and 8/4°C) in five weeks since treatments with 4°C 

nights in Experiments 3 and 4 also showed little or no hardening in that 

period. 

Experiment 3 showed that colder nights result in greater frost 

hardiness and demonstrated that day temperature is not important in the 
(P) 0.05) 

development of frost hardiness since there was no significant difference/ 

between the 12/4 and the 4/4°G treatments. The provenances were ranked for 

maximum frost hardiness essentially in the same order as at the Tarraleah 

field trial. Dehardening was found to be faster than hardening as was 

expected from the results of Aronsson (1975) and Harwood (1981). In this 

experiment ten weeks hardening at 12/0°C followed by four weeks 

dehardening at 12/12°C resulted in four of the six provenances dehardening 

to within 0.3°C of the plants in the original 12/12°C treatment. This 

suggests that dehardening is approximately twice as fast as hardening for 

E. delegatensis. 

This experiment was repeated (Experiment 4) using samples from 

individual seedlings but fewer provenances. Experiment 4 confirmed that 

frost hardening is a relatively slow process in E. delegatensis, requiring 

a minimum of two weeks of cold nights (i.e. 0°C) to achieve 1°C of 

hardening. Maximum hardening rates occurred at between two and four weeks 

of treatment at 12/0°C for the three provenances. All three provenances 

had a maximum hardening rate of 0.07°C/day which was low compared with 

reported rates for other species (Table 4.5). 
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Table 4.5. Rates of frost hardening of different species (from 

Greer,1983) 

Source 	Species 	Day/Night 	Rate of hardening 

Temp. (°C) 	(°C day -1 ) 

Timis & Worrall Pseudotsuga 

(1975) menziessil 2.0/1.5 -0.07 to 	-0.14 

ChrisLersson Pinus silvesvris 2.0/2.0 -0.5 

(1978) 

Picea abies 2.0/2.0 -0.8 

Greer (1983) Pinus radiata 14.5/1.3 -0.182 

14.5/-1.0 -0.286 

Harrison et al Cornus stolonifera ?/-5.0 >-4.0 

(1978) 

Paton (1980) Eucalyptus 

viminalis 

2.0/2.0 -2.0? 

Harwood (1981) Eucalyptus 

pauciflora 

18/4 -0.25 

Tibbits and Reid Eucalyptus nitens 13/3 -0.07 

(1986) 

Hallam 

(this study) 

Eucalyptus 

delegatensis 

12/0 -0.07 
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The two Tasmanian provenances (Ben Lomond and Bicheno) appeared to 

respond differently to the New South Wales one (Gungarlin R.) in that the 

12/4°C treatment had more effect on mean lethal temperature for the 

Gungarlin R. provenance than the others. This suggests that the Tasmanian 

provenances require colder nights to stimulate the development of frost 

hardiness. 

All the experiments described in this chapter were done using short 

photoperiods (8-10 h) corresponding to winter daylengths in Tasmania. 

Further work on the control of frost hardiness is required to determine 

whether photoperiod is important for frost hardening of eucalypts. The 

difference in relative frost hardiness of E. delegatensis provenances 

planted in New South Wales and in Tasmania may be due Tasmanian 

provenances being adapted to respond to shorter daylengths (Chapter 3). 

Short days are known to be necessary for the development of frost 

hardiness in many Northern hemisphere species (Aronsson, 1975; 

Christersson, 1978; Greer and Warrington, 1982). Harwood (1981) reported 

that long days did not prevent development of frost hardiness in E. 

pauciflora, although short days may enhance it as reported for high 

altitude provenances of E. regnans (Eldridge, 1969). Eldridge did not 

find a significant response in low altitude provenances of E. regnans. 

In these experiments it was only possible to test the effect of fixed 

night temperatures. In attempting to simulate field conditions it would be 

more appropriate to test the effect of a sequence of progressively colder 

nights with correspondingly shortening daylength. Greer and Warrington 

(1982) attempted this with Pinus radiata by shortening the daylength at 11 

day intervals and decreasing the night temperature at 21 day intervals. 

They also imposed a series of nonlethal frosts on some plants. Plants 

which were treated with a final series of night temperatures of 2°C plus a 

series of frosts to -4°C were found to have hardened to -19°C compared to 

those with 2°C nights but no frosts which only hardened to -11°C. 

Unfortunately they did not have a treatment without the sequential drop in 

temperature for comparison. 
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Experiment 3 showed that for most provenances dehardening was 

virtually complete within four weeks which is consistent with reports that 

dehardening is a faster process than hardening (Aronsson, 1975; Paton, 

1979; Harwood, 1981). In the field a period of cold nights (<4°C) may be 

interrupted by one or more warmer nights (>4°C) which, depending on the 

number of warm nights, may cause the plant to begin dehardening. The 

minimum number of warm (>4°C) nights required to stimulate dehardening 

thus may be critical for plant survival in the field and requires further 

investigation. 
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Fig. 4.2  Change in mean lethal temperature over 10 weeks of the following 

day/night temperature regimes, 12/12 ° C (0---C, 12/4 ° C (o&---10) 

and 12/0 °C (A---A and b---6). At week 10, the seedlings from 

the 12/4 ° C and 12/0°C treatments were moved into the 12/12 ° C 

treatment. Seedlings in the 12/0 °C treatment indicated by 6---94 

were left in the 12/0 °C treatment for a further 4 weeks. 

T represents the standard error of the mean of 5 seedlings. 



CHAPTER 5 

Frost hardiness of E. delegatensis compared 

with other species  

Introduction 

Comparative studies of the frost hardiness of different Eucalyptus 

species have been done previously but these have generally been limited to 

observations of damage following a frost in the field (e.g. Mullin and 

Barnes, 1977; Davidson and Reid, 1985). In the latter study, species 

ranking according to hardiness following a severe frost at Snug Plains, 

Tasmania was E. gunnii > E. coccif era > E. johnstonii ---1> E. delegatensis 

> E. pulchella and their natural distribution was closely related to the 

distribution of minimum temperature. 

Other attempts have been made to rank the species for hardiness based 

on their performance when planted on more severe sites overseas (Martin, 

1948; Linnard, 1969; Hunt and Zobel, 1978). Marien (1979) has tested 

several Eucalyptus species in France, including E. delegatensis, to select 

frost hardy species for plantations. In New Zealand, Menzies et al (1981) 

found that E. fastigata was more frost hardy than E. regnans which was 

more frost hardy than E. saligna with the differences being greatest in 

winter.. However both Harwood (1980) and Paton (1981) have examined the 

relative hardiness of species and their seasonal variability using 

artificial frosting. 

It is important to know which species of Eucalyptus can be grown on 

different sites both locally and overseas particularly where low 

temperature is a feature of their growth cycle. In this study, samples 

were taken from two provenances of E. delegatensis, E. regnans, E. 

globulus and E. nitens and a single provenance of E. grandis and E. 
which had been 

pauciflorl4p1anted at four different altitudes in the Esperance Valley. 

These experiments form part of a wider study into the response of each 

eucalypt species to different climatic conditions. 
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It was anticipated that frost hardiness of all species would follow 

the altitudinal sequence with 	lowest mean .lethal temperature at the 

highest site (650 m). 	Further, based on the results of Martin (1948), 
it was expected 

Linnard (1969) and McKimm and Flynn (1979)Athat E. pauciflora, E. nitens 

and E. delegatensis would be significantly more frost hardy than E. 

regnans, E. globulus and E. grandis. Results from Chapter 3 suggested that 

there would also be differences between provenances of each species. 

Materials and methods 

1. Experimental sites 

Four experimental eucalypt plantations have been established in the 

Esperance valley (Fig. 5.1). The sites, numbers 1, 2, 3 and 4 are at 

altitudes of 60 m (Fig. 5.2(a)), 240 m (Fig. 2(b)), 440 m (Fig 5.2(c)) and 

650 m (Fig. 5.2(d)), respectively. Two provenances each of E. regnans, E. 

nitens, E. globulus and E. delegatensis have been planted at each site. 

One provenance of E. grandis has been planted at sites 1 and 2 and one 

provenance of E. pauciflora has been planted at sites 3 and 4. All trees 

were planted in August 1983. Each site has a meteorological station with 

maximum and minimum thermometers in a Stevenson Screen which were read 

weekly. 

2. Experimental material 

The seedlings were planted in blocks at 2 m x2mspacings, with a 

central group for nondestructive sampling and a buffer area of 4 rows of 

plants (Fig. 5.2). All destructive sampling including the removal of 

leaves for frost testing was taken from the buffer trees. 

• The species belong to two groups within the genus, E. regnans, E. 

delegatensis and E. 	pauciflora belong 	to 	the informal subgenus 
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Monocalyptus and E. globulus, E. nitens and E. grandis belong to the 

informal subgenus Symphyomyrtus (Pryor and Johnson, 1971). The species 

and provenances were chosen because of their different early growth 

patterns, resistance to stress and performance in the field. The origins 

of these species are shown in Table 5.1. 

Table 5.1. The locality and altitude of seed collected for planting at the 

four experimental sites in the Esperance Valley. 

Species Code Origin Altitude(m) 

E. regnans Al Moogara,Tas S50 

A2 Traralgon Ck,Vic 500 

E. globulus Bl Geeveston,Tas 200 

B2 Otways,Vic 125 

E. delegatensis Cl Guildford,Tas 580 

C2 Maydena,Tas 650 

E. nitens D1 Mt.Toorongo,Vic 900 

D2 Bendoc,Vic 1070 

E. pauciflora E Ben Lomond,Tas 500 

E. grandis F Coffs Hbr,NSW 135 



3. Experimental procedure 

Samples from all provenances for the measurement of frost hardiness 

were taken on 11 and 18 March 1985 and again on 12 and 19 August 1985. Six 

leaves were taken from each of four trees of each provenance and tested 

using the electrical conductivity method described in Chapter 2. Each 

sample was replicated once. The heights of all the trees in the central 

block of each species were measured in August 1985 to give a mean height 

for each provenance of each species. 

4 .. Treatment of results 

To find out whether frost hardiness can be predicted from temperature 

records, the relationship between weekly minimum temperatures from the 

Stephenson screens and mean lethal temperature was examined. A thermal 

time value, t th, was calculated for each site by summing the differences 

between the weekly minimum temperatures for the period 18th March and 12th 

August 1985 and a threshold minimum temperature of 5°C. Thus, 

tth = E (5 - tmin) (°C week) 

The threshold temperature was set at 5°C because previous studies have 

shown that night temperatures of less than 5°C are required for 

commencement of hardening whereas dehardening commences at 6°C (Paton, 

1980; Harwood, 1980; Tibbits and Reid, 1986). - 

Results 

1. Seasonal Response 

Analysis of variance showed that the mean lethal temperature measured 

in March was significantly higher than in August for all species 

(P < 0.001) (Fig. 5.4). The provenances of E. regnans had the 

smallest differences in lethal temperature between seasons 

of all the species and the Traralgon Crk provenance at Site 2 had a higher 

lethal temperature by 0.5°C in August than in March. However this 

difference was not statistically significant. For both provenances at the 
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other sites the difference in mean lethal temperature ranged from 0.8°C to 

2.1°C. 

The provenances of E. delegatensis behaved differently to each other. 

The Guildford provenance had a minimum seasonal difference of 2.3°C at 

site 2 and a maximum seasonal difference of 3.3°C at site 4. The Maydena 

provenance had a minimum difference of 1.6°C at site 4 and a maximum 

difference of 2.4°C at site 1. 

For E. globulus and E. 	nitens the difference in mean lethal 

temperature in March and August at all sites was in the range 1.6 to 2.4°C 

and 2.0 to 3.3°C respectively. 

For E. pauciflora the difference in mean lethal temperature was 2.4°C 

at site 3 and 1.9°C at site 4 while for E. grandis the difference was 

1.7°C at site 1 and 1.3°C at site 2. 

2. Species differences 

In March, the distribution of mean lethal temperatures was such that 

analysis of variance gave no significant differences between species or 

between sites (P>0.05). In contrast, there were significant differences 

in mean lethal temperatures in August (Fig. 5.4). 

The least hardy species was E.regnans (Fig.5.5). Although its mean lethal 

temperatures had not been significantly different to the other species in 

March, in August it consistently had the highest mean lethal temperatures 

at every site. The highest mean lethal temperature in August was -4.5°C 

for the Traralgon Crk provenance at site 2 while the lowest was -7.0°C for 

the Moogara provenance at site 1. 

Taking each species in order of ranking, the next most hardy species 

was E. grandis with a mean lethal temperature of -7.2°C at site 1 and - 

6.3°C at site 2, followed by E. globulus which had its highest lethal 

temperature, -6.0°C for the Otway provenance at site 2 and its lowest at - 

7.9°C for the Geeveston provenance at site 1. E. pauciflora at sites 3 and 

4 ranked between E. globulus and E. nitens with a mean lethal temperature 
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of -7.5°C at site 3 and -7.4°C at site 4. E. nitens had its highest mean 

lethal temperature, -7.2°C, at site 2 for Mt Toorongo provenance and its 

lowest, -8.1°C, at site 1 for Bendoc provenance. 

E. delegatensis was the only species to have a significant difference 

between provenances in August. For the less frost hardy provenance, 

Maydena, mean lethal temperature was in the range -6.6 to -8.1°C and for 

Guildford provenance, -7.3 to -8.7°C. The mean lethal temperature of the 

more frost hardy provenance, Guildford, was not significantly different 

from that of the E. nitens provenances. 

3. Site differences 

There was an altitudinal sequence of mean maximum temperatures with 

decreasing temperatures at increasing altitudes (Table 5.2). Mean minimum 

temperature however, did not follow this altitudinal sequence because of 

topography. Site 1 (60 m) is in a frost hollow and experienced similar 

temperature minima to site 4 (650 m) although its temperature maxima were 

similar to site 2 (240 m) (Table 5.2). Site 3 (440 m) experienced minimum 

and maximum temperatures intermediate to sites 2 and 4. 

Table 5.2 Temperature data for the four experimental sites in the 

Esperance Valley from 12 August 1984 based 12 August 1985 on weekly maxima 

and minima in Stevenson Screens. 

1 

Site 

2 3 4 

No. of weeks min. 

temp.<4°C 38 26 36 41 

Coldest temp.(°C) -2.9 -0.2 -1.7 -2.0 

Mean minimum temp (°C) 2.0 4.0 2.7 2.1 

No. of weeks max. 

temp. >15°C 44 36 30 24 

Warmest temp.(°C) 29.6 32.1 31.2 29.5 

Mean maximum temp (°C) 20.8 19.8 18.1 16.3 
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The level of frost hardiness developed during winter for all species 

corresponded in general to the pattern of minimum temperatures experienced 

at the four sites. Lowest mean lethal temperatures were measured at sites 

1 (60 m) and 4 (650 m), highest mean lethal temperatures occurred at site 

2 (240 m) and mean lethal temperatures at site 3 (440 m) intermediate 

(Fig. 5.4). 

Height and diameter growth corresponded to the pattern of maximum 

temperatures which were greatest at sites 1 and 2 (Table 5.3). E. 

globulus and E. nitens grew best at site 2, while E. regnans and E. 

delegatensis and E. grandis grew best at site 1 (Tables 5.3 and 5.4). 

Table 5.3 Mean tree heights (cm) for each provenance and species at the 

experimental sites measured on 13 August 1985 (age 2 years ,n = 60). 

Species 	Provenance 	Site 

1 2 3 4 

E. regnans Al 305 185 137 122 

A2 376 218 112 82 

E. globulus Bl 281 357 225 108 

B2 397 405 262 133 

E. delegatensis Cl 291 202 146 163 

C2 240 109 110 123 

E. nitens D1 311 325 256 239 

D2 290 298 241 188 

E. pauciflora E - 70 127 

E. grandis F 270 242 
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Table 5.4. Mean diameter (cm) of stems at 1.3 m height for each provenance and 

species at all sites on 13th August 1985 (age 2 years,n = 60). 

Species Provenance 

1 2 

Site 

3 4 

E. regnans Al 1.933 0.67 

A2 2.88 1.04 * 

E. globulus Bl 1.95 2.98 1.44 

B2 3.33 3.42 1.82 

E. delegatensis Cl 1.88 0.79 

C2 1.18 

E. nitens D1 2.85 2.60 1.82 1.54 

D2 1.76 1.78 1.21 0.63 

E. pauciflora E * * 

E. grandis F 1.65 1.32 

* denotes mean height less than 1.3 m. 

5. Relationship between mean lethal temperatures and screen minimum 

Since E. delegatensis was the only species with a significant difference 

in mean lethal temperature between provenances in August, two regressions, 

with four data points in each, were calculated for this species. For each of 

the other species one regression was calculated using the data points for both 

provenances (eight points). For E. nitens a poor correlation (r 2  = 0.40) was 

obtained. The regression was repeated omitting the data from site 1, this 

increased r 2  to 0.78. Using this regression a value for mean lethal 

temperature at site 1 was calculated to be -8.5°C. This was 0.7°c lower than 

the measured value. The thermal time values (°C weeks) were 85 for site 1, 49 

for site 2, 73 for site 3 and 75 for site 4. 

The regression coefficients of the linear regressions calculated for mean 

lethal temperature against thermal time are shown in Table 5.5. Regressions 
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for all species except E. nitens gave significant r 2  (P<0.01) and for E. 

nitens omitting site 1 data (P<0.05). Thus within the limits 49 to 85°C weeks 

temperature data can be used to predict mean lethal temperatures for these 

species. This allows the hardening regime as well as the extreme minimum at 

this site to be taken into account. 

Table 5.5. Regression coefficients and r 2  for mean lethal temperature (Y) 

against thermal time (X) where Y = aX + b and n = number of points. 

Species Provenance a b r 2  

E. regnans -2.78 -0.046 0.76 8 

E. globulus -4.10 -0.042 0.85 8 

E. delegatensis Guildford -5.88 -0.032 0.97 4 

Maydena -5.51 -0.022 0.96 4 

E. nitens -6.37 0.020 0.40 8 

E. nitens -5.53 -0.035 0.78 6 * 

* data from site 1 omitted 

Discussion 

1. Seasonal response 

The trees were sampled in March and August to obtain maximum seasonal 

differences in hardiness. Since all species had similar mean lethal 

temperatures in March those with the largest seasonal difference in mean 

lethal temperature were also those which became most hardy. However at 

Tarraleah significant differences between provenances of E. delegatensis were 

present even in summer (Chapter 3) and this clearly occurs between species in 

other studies (e.g. Menzies et al, 1981). 

Although there was no significant difference in mean lethal temperature 

between species at the Esperance sites in March, the difference was highly 

significant in August (P<0.001). E..regnans showed the smallest 

seasonal response varying from no significant difference for the Traralgon Crk 

provenance at site 2 to 2.1°C for the Moagara provenance at site. The largest 

seasonal differences (3.3°G) were shown by the Guildford provenance oE E. 
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delegatensis and the Bendoc 	provenance of E. nitens. To rank species in 

order of their frost hardiness it is necessary to sample when differences are 

greatest, which is usually in late winter (Rook et al, 1980; Menzies et al, 

1981). 

The seasonal difference in mean lethal temperature of E.delegatensis at 

Tarraleah (reported in Chapter 3) ranges from 2.4°C for the Bicheno provenance 

to 4.6°C for the Ben Lomond provenance. At the Esperance trial the minimum 

difference was 1.6°C for Maydena provenance at site 4 and the maximum 

difference is 3.3°C for Guildford provenance at site 4. The somewhat larger 

seasonal difference at Tarraleah appeared to be due to the plants dehardening 

more in summer rather than hardening more in winter. 

2. Species Response 

a. E. regnans 

The lowest mean lethal temperature for E. regnans was -7.0°C at site 1 

whereas at site 4 the mean lethal temperature was -6.5°C for Moogara 

provenance and -6.2°C for Traralgon Crk provenance (Fig 5.4). Site 4 was 

the only site however, at which E. regnans suffered frost damage mainly to 

the young leaves although some trees have been killed. This was at first 

sight a surprising result since the minimum screen temperature for site 4, 

-2.0°C, was greater than site 1, -2.9°C. The leaves at site 4 remain 

wetter for longer periods and windspeeds are higher than at site 1. As a 

result leaves possibly experience lower temperatures than indicated by the 

screen temperatures. Secondly, sampling trees at site 4 which had survived 

frosts in winter 1984 may have led to an underestimation of mean lethal 

temperature for the population, as it was of course only possible to 

remove discs from the hardier trees which remained. 

Nevertheless, the range of mean lethal temperatures in August across 

all sites, -7.0 to -4.5°C, are in close agreement with those of Rook et 

al(1980). In this study seedlings of the most to least frost hardy 

seedlings were expected to survive frosts of -7.0 to -5.5°C. It is 

interesting to note that Moogara was one of the most frost hardy (see also 

Menzies et al, 1981) while Traralgon Creek was one of the least frost 
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hardy provenances (see Tables 7 and 12 in Rook et al, 1980). The extent to 

which tolerance to low temperature contributes to growth as well as 

survival is not clear, but at the Esperance sites, the more productive 

provenance at low elevation was Traralgon Creek while that at high 

elevation which are exposed to low mean temperature as well as low minimum 

temperatures, was Moogara (Table 5.3 and 5.4). Griffin et al (1982) 

categorised the Moogara provenance as frost hardy and fast growing, while 

the Traralgon Creek provenance was frost tender and fast growing (Fig. 2 

in Griffin et al ,1982) based on results from provenance trials in 

Australia. An inherent resistance to low temperature where this is 

important for survival may result in better growth of that provenance at 

cooler sites than of a provenance which is less frost resistant. In 

E. regnans, perhaps not surprisingly, the provenances with the most frost 

resistance came from the upper altitudinal limits of the species ( 

Ashton,1958; Eldridge, 1968; Rook et al, 1980). The gain in rates of 

biomass production which can be made by planting a particular provenance 

will be determined by the microclimate at the site. 

b. E. grandis 

The E. grandis was only planted at sites 1 and 2 because it was 

thought that it would not be frost hardy enough to survive at the higher 

altitude sites. The plants which were sampled proved to be slightly more 

frost hardy than those of E. regnans at both sites with a mean lethal 

temperature of -7.2°C at site 1. Many trees at site 1 have had extensive 

leaf and stem damage (Fig 5.8) due to frost although the recorded screen 

minima (minimum -2.9°C) are not as low as the measured lethal 

temperatures. The reasons for this apparent anomaly are not clear. In 

general specific differences in the frost tolerance of eucalypts tends to 

follow their natural distribution (Menzies et a/,1981) and E. grandis, a 

native of New South Wales and southern Queensland from some studies would 

appear to be no exception (Hunt and Zobel, 1978; Meskimen and Franklin, 

1978). There is evidence however that given suitable preconditioning, i.e. 

night temperatures of 4°C or lower for several weeks before the frost, E. 

grandis may not be damaged by temperatures as low as -8.8°C (in Canberra, 

Burgess, 1983) and -8.5°C (in laboratory conditions, Paton,1980). At the 
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Esperance, the leaves have developed a red coloration (Fig 5.9) which can 

persist throughout the year, a clear indication that secondary pigments 

are being synthesised in response to low temperature stress (see also 

Paton 1980). The development of frost resistance may not be sufficient to 

prevent damage to the leaves should there be a sudden frost following warm 

conditions. Further reduction in lethal temperature may occur subsequently 

but symptoms of leaf damage would still develop. 

c. E. globulus 

The provenances of E. globulus planted were from low altitude sources 

(125 and 200m), but they were able to harden more than those of E. 

regnans which came from sources at higher altitude (550 and 500m) (Fig. 

5.5). E. globulus planted at site 4 has been badly damaged and some trees 

have been killed. Branches of this species appear to be very brittle at 

this altitude and many of the trees have been broken off or have lost 

branches through a combination of snow and strong winds. 

d. E. pauciflora 

This species did not harden as much as was expected from 

Harwood(1981), only reaching a mean lethal temperature of -7.5°C whereas 

Harwood reported that it was possible to harden E. pauciflora down to - 

14°C. There are two possible reasons for this large difference. First that 

the E. pauciflora from Ben Lomond (500 m altitude) in Tasmania may not be 

capable of hardening to the same degree as the provenance Harwood used 

which came from an altitude of 1260 m. Second, the provenance used may be 

capable of greater hardening if it is exposed to lower minimum 

temperatures. E. pauciflora grew better (Table 5.3) at site 4 than at site 

3 in contrast to the other species which all grew better at lower 

altitudes. 

e. E. nitens 

E. nitens was, with E. delegatensis, the most frost hardy species at 

all sites. There was no evidence that E. nitens was more frost hardy than 

E. delegatensis although this has been suggested by Martin (1983). The 

height and diameter •growth of E. nitens was better than that of E. 
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delegatensis at all sites with the difference increasing at the higher 

altitude sites (Table 5.3). Although there was no significant difference 

in frost hardiness between provenances of E. nitens, height and diameter 

growth of Mt Toorongo provenance was greater than for Bendoc provenance at 

all sites. 

Beadle and Turnbull (1986) have suggested that the greater early 

growth of this Symphyomyrtus eucalypt compared with E. delegatensis from 

the Monocalyptus group is related to its ability to produce greater leaf 

area during the early growth period. Its success at both low and high 

altitudes in this experiment suggests that it can also maintain growth 

over n wide range of temperntures. It is interesting to note 

(C.R.A.Turnbull, pers. comm.) that E. nitens has been able to keep growing 

during the winter months while E. delegatensis has not. E. nitens is 

increasingly being used to replace E. delegatensis in Tasmania because of 

its better early growth and equivalent resistance to frost. 

f. E. delegatensis 

This was the only species with a significant difference in mean lethal 

temperature between provenances. The Guildford provenance was more frost 

hardy than the Maydena provenance although both provenances originate from 

similar altitudes, 580 and 650 m. In general, frost resistance of this 

species increases with altitude while conversely height growth is 

inversely related to altitude of origin (Marien, 1983). At the Esperance 

sites, the more frost resistant provenance also had the higher growth 

rate. Artificial hardening of seedlings of these two provenances in growth 

chambers (Chapter 4) gave similar results in that there was a significant 

difference in mean lethal temperature with Guildford provenance having a 

lower mean lethal temperature than Maydena provenance. 

The frost hardiness of these two provenances was not measured at 

Tarraleah. The mean lethal temperatures measured at the Esperance sites 

were in the same range as for the E. delegatensis provenances at Tarraleah 

(Chapter 3). The least frost hardy provenance (Bicheno) had mean lethal 

temperatures of -5.9°C in August 1984 and -4.0°C in March 1985, while for 
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the most hardy provenance (Ben Lomond) they were -8.6°C in August 1984 and 

-5.8°C in March 1985. Although there were lower minimum temperatures at 

Tarraleah (-8.0°C) this did not result in greater frost hardening. 

Possibly the temperatures leading up to the frosts were more suitable for 

development of frost hardiness at the Esperance sites. 

The species can be ranked in order of decreasing frost hardiness as 

follows: E. delegatensis — E. nitens > E. pauciflora > E. globulus > E. 

grandis > E. regnans. It must be emphasised that the mean lethal 

temperatures presented here are specific to the temperature conditions 

that applied prior to the test and may change if different hardening 

temperatures occur. It is also possible that the species ranking for frost 

hardiness may change slightly if they are tested under different 

conditions. 

3. Site Response 

There was a significant difference in mean lethal temperatures between 

sites (P>0.001). Lowest mean lethal temperatures were measured at sites 1 

(60 m) (-6.4°C) and 4 (650 m) (-6.3°C) and were not significantly 

different from each other. The highest mean lethal temperature was 

measured at site 2 (-5.5°C) and at site 3 it was intermediate (-6.1°C). 

The measured mean lethal temperatures corresponded to the pattern of 

minimum temperatures (Table 5.2) at the four sites. 

Height and diameter growth (Tables 5.3 and 5.4) of all species (except 

E. pauciflora) were greatest at sites 1 and 2 corresponding to the highest 

maximum temperatures (Table 5.2). 

It is apparent from this data that temperature conditions which 

promote growth are not necessarily incompatible with the development of 

frost hardiness, since plants became as frost hardy at site 1 as they did 

at site 4. This is supported by the data in Chapter 4 which demonstrated 

that day temperature did not influence development of frost hardiness. 

This shows that both good growth and productivity are possible on quite 

frost prone sites provided suitable provenances are selected. 



4. Relationship between mean lethal temperature and thermal time 

Evaluating the suitability of sites for new planting of eucalypts 

requires not only some measure of their potential for growth but also for 

survival. The use of "°C week" to predict the mean lethal temperature is 

one approach. Provided a suitable threshold temperature is selected it 

may give satisfactory results, although the model was not tested 

independently. 

The relationship between thermal time and mean lethal temperature was 

strongly linear over the range of the data (49 to 85 °C weeks) for all 

species except E. nitens. Using the regression equation which omitted 

data from site 1 a mean lethal temperature of -8.5°C was calculated for 

site 1. This was 0.7°C lower than the measured value and suggests that E. 

nitens did not harden as much as expected at site 1. This may have been 

caused by the species having already started to deharden in August at this 

site. It has already been noted that in contrast to the other species 

this species continues to grow during winter (C.R.A. Turnbull, pers. comm) 

and thus it may be able to respond more quickly to rising temperatures and 

commence dehardening earlier. 

It is apparent that these calculated relationships between thermal 

time and mean lethal temperature are linear sections in a hardening curve. 

Since mean lethal temperatures in March do not correspond to the zero 

calculated from the regression, the curve before 49°C weeks must be 

nonlinear. Similarly with increasing thermal time beyond 85 °C weeks the 

rate of hardening would be expected to level off as it reached the maximum 

capability of the plant to harden. E. regnans does not appear to be able 

to respond to a thermal time of less than 49°C weeks since its mean lethal 

temperature is the same at that time as it was in March. In contrast the 

other three species do appear to be able to respond to a smaller thermal 

time, since their mean lethal temperatures at 49°C weeks are lower than 

they were in March. This also suggests that E. regnans is more likely than 

the other species to be damaged by frosts early in the winter when it has 

not received sufficient stimulus to begin hardening. 
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Better relationships between mean lethal temperature and thermal time 

should be obtained if they are calculated on a daily basis rather than on 

a weekly basis. If temperature records for a site to be planted were 

available this relationship could be used to determine whether a 

particular species would be likely to harden sufficiently to survive the 

minimum temperatures at the site 	i.e. it provides a technique for 

determining the suitability of hardening conditions for the species or 

provenance to be planted. 



79 

Fig. 5.1  Locations of the experimental sites in the Esperance Valley 

in Southern Tasmania (Lat. 43 0  ,Long. 147 ° ). Sites 1 to 4 (M) 

are at altitudes of 60, 240, 440 and 650 m respectively. 



Fig. 5.2(a) Site 1 (60 m) showing the Maydena provenance of 

E. delegatensis (mean height, 2.40 m, age 2 years). 
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Fig. 5.2(b) Site 2 (240 m) with the Guildford provenance of E. delegatensis 

(mean height, 2.02 m) in the foreground. The Traralgon Crk 

provenance of E. regnans (mean height, 2.18 m) can be seen 

in the background. (age 2 years) 
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Fig. 5.2(c) Site 3 showing the Maydena provenance of E. delegatensis  

(mean height, 1.10 m) in the foreground. The Bendoc provenance 

of E. nitens (mean height, 2.41 m) can be seen in the 

background. (age 2 years) 
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Fig. 5.2(d) Site 4 (650 m) showing the Guildford provenance of 

E. delegatensis (mean height, 1.63 m, age 2 years) 
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Fig. 5.3  The layout of species and provenances at the four sites in 

the Esperance Valley. *indicates the location of the 

meteorological instruments. 
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Fig. 5.7 E. regnans at site 4 (650 m) with frost-damaged leaves. 



Fig. 5.8 Frost damage to young leaves of E. grandis at site 1 (60 m) 



Fig. 5.9 E. grandis at site 1 with red leaves which are probably due 

to low temperature stress. 
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CHAPTER 6 

General Discussion 

The development of a nondestructive method of testing plants for 

frost hardiness is an important asset for plant breeding. It means that 

seedlings in tree improvement programs can be tested without killing them 

and that established trees of any size such as those with superior growth 

rates in existing provenance trials can be tested. In this study the 

diffusate electrical conductivity method of Dexter et al (1932) has been 

modified for use with an air-filled frost chamber. Testing leaf tissue by 

this method and comparing the results with the frosting of whole seedlings 

(see Chapter 2) showed that this technique reliably predicts lethal 

temperatures. 

While the above methodology can distinguish efficiently between 

species or provenances, sources of variation within trees must be reduced 

to a minimum. In this study the problem was avoided by taking six leaves 

from around the tree at a constant height and taking a disc from each leaf 

to form a combined sample. The problem of whether eucalypts frost harden 

as a whole plant or whether their leaves harden individually has not 

previously been investigated. Since cold air is known to stratify on still 

nights (Moore and Williams, 1976; Harwood, 1976; Davidson and Reid, 1985) 

some parts of the plant will experience lower temperatures than others. In 

the field gradation of damage with height on a tree is readily observable 

but it is not possible to say whether this gradation is due to the 

different temperatures experienced at different heights, causing different 

amounts of damage to leaves with the same degree of frost hardiness, or 

whether the leaves themselves are to some extent frost hardy to different 

temperatures. Timmis and Worrall (1975) found that for climatically 

'split' Douglas fir that a branch in a cold (2°C) environment increased 

its frost hardiness but did not transmit this to branches in a warm 

environment (20°C). Conversely, branches in the warm environment did 

appear to transmit a factor which prevented full hardening of branches in 

the cold environment. 
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In this study (Chapter 2, Table 2.2) it was found that one year old 

leaves were more frost hardy than new leaves, as would be expected from 

field observations (see Chapter 5, Fig. 5.8). There was no significant 

difference in frost hardiness between the juvenile, intermediate and adult 

leaf forms of similar age of E. delegatensis. This is an important result 

since different individuals change their leaf form at different stages of 

growth and may bear both types of leaf concurrently. 

Results from Chapter 3 showed that within Tasmania the ranking of 

seven provenances of E. delegatensis at maximum hardiness remained 

constant regardless of prior temperature conditions. Results from two 

sites at the same altitude, Tarraleah and Myrtle Bank were consistent, 

with the mean lethal temperature over all provenances being 1°C lower at 

Tarraleah in July than at Myrtle Bank, although the minimum temperatures 

reached at these sites differed by up to 4°C. Growth chamber results (see 

Chapter 4) also gave the same ranking of provenances although in this case 

the night temperatures were held constant throughout the hardening period 

in contrast to the field sites where the night temperatures showed an 

overall decline. At the Esperance sites (see Chapter 5) two provenances 

(Guildford and Maydena) of E. delegatensis maintained the same winter 

ranking at four different altitudes. Again the same ranking was found in 

growth chamber experiments with constant night temperatures. This result 
the ranking of provenances for 

is useful since it suggests that there is no interaction betweenkfrost 

hardiness and site within Tasmania. This is in agreement with Rook et al 

(1980) who reported that the provenance-site interaction for E. regnans at 

three sites in New Zealand was not statistically significant. They also 

found that the same rankings were obtained from artificial frosting as in 

scoring the damage by natural frosts in the field. 

Transfer of results of frost hardiness testing to other latitudes or 

quite different climatic types (eg. more continental climates) may not be 

satisfactory, since the results of an assessment of frost damage (Boland 

and Dunn, 1985) in New South Wales for E. delegatensis did not give the 

same ranking of provenances. It is particularly noticable that Tasmanian 

provenances did not perform as well relative to mainland provenances when 

planted in New South Wales as they did when planted in Tasmania (a 

difference of 7° latitude). The reasons for this difference are not clear 

though it is tempting to suggest that a response to photoperiod is being 
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observed by the Tasmanian provenances at Tarraleah and Myrtle Bank which 

was not triggered to the same extent at Pilot Hill in New South Wales. 

Without further experiment however there is little evidence in the 

literature to support this contention. A response to photoperiod was 

observed but only for high altitude provenances of E. regnans (Eldridge, 

1968) but in a comprehensive study of 38 provenances of this species, 

including three from high altitude (>800 m) there was no significant 

difference in their ranking for frost resistance at sites located over a 

range of 8° latitude in N.Z. 

A second explanation for differences in ranking in Tasmania with NSW 

may relate to conditions for hardening in a maritime compared to a 

continental climate. Thus in two maritime environments, Griffin et al. 

(1982) reported a strong correlation between their ranking of 25 

provenances of E. regnans at Maydena, Tasmania with those of Rook et al 

(1980) in New Zealand. Unfortunately Griffin (1982) did not present any 

results for frost hardiness for similar provenance trials in Victoria but 

in a continental environment. Burgess (1983) reported that E. grandis was 

able to survive frosts as cold as -8.8°C in Canberra. This was perhaps 

unexpected as this species suffered from severe frost damage following a 

frost of -8.5°C when planted in Florida (Franklin and Meskimen, 1983). 

Since it appears from the data from the Tarraleah provenance trial that 

frost hardiness, in E. delegatensls, is a dynamic process in which the 

plant continually adjusts to changes in temperature, the nature of the 

temperature environment is important. Whether the autumn and winter 

temperatures follow a steady decline with continuous low night 

temperatures (continental) or whether they decrease on average with many 

small increases and decreases (maritime) would influence the degree to 

which a plant hardened and its tolerance to a severe frost. 

Results from growth chamber experiments (Chapter 4) supported the 

idea of a dynamic equilibrium between frost hardiness development and 

temperature in that they demonstrated that colder nights induce greater 

frost hardiness and that dehardening is a faster process than hardening. 

Rates of hardening of E. delegatensis were slow (0.07°C/day) compared with 

reported rates for many other species e.g. E. pauciflora 0.25 ° C/day, (see 

Chapter 4, Table 4.5). However, Tibbits and Reid (1986) also reported that 

E. nitens hardened at 0.07°C/day. Further testing should be done to find 
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out whether nonlethal frosts would increase frost hardiness as reported by 

Greer and Warrington (1982) for Pinus radiata. The results from the field 

trial at Tarraleah appear to support this, as plants developed greater 

frost hardiness during the winter of 1983 than in 1984 (see Chapter 3, 

Fig. 3.6). Although the mean monthly minimum temperatures did not differ 

greatly in 1983 and 1984, the extreme minimum in 1983 was -13°C compared 

with -8°C in 1984. The mean lethal temperature for Ben Lomond provenance 

in August 1983 was -10°C and must have been lower in July to have survived 

the -13°C experienced that month. In August 1984 the mean lethal 

temperature for Ben Lomond provenance was -8.6°C. 

Since dehardening is a faster process than hardening (see Chapter 4), 

work should be done to find out if it is completely temperature controlled 

in eucaljrpts and what period of dehardening conditions is necessary to 

stimulate dehardening to begin. Aronsson (1975) reported that for Pinus 

silvesCris and Picea abies, which frost harden in response to shortening 

photoperiod, temperature was of more importance than day length for 

dehardening. Dehardening was a much faster process than hardening for 

these species. Whether dehardening can be reversed once begun or whether 

it is seasonally linked is important for plant survival. At Tarraleah 

(Chapter 3) plants did not appear to fully deharden each summer since 

after the severe winter of 1983 levels of frost hardiness remained higher 

than they did following the milder winter of 1984. It appears that some 

sort of equilibrium is established with the environmental conditions. It 

has been suggested that frost hardiness and growth rate are negatively 

linked genetically (Marien, 1983) since in general the most frost hardy 

plants come from high altitudes and growth is negatively related to 

altitude of seed source. This hypothesis has not been substantiated in 

provenance trials of E. regnans (Griffin et al., 1982) and this would also 

appear to be the case for E. delegatensis. At the Esperance sites 

(Chapter 5) the Guildford provenance was more frost hardy and had greater 

height and diameter growth than the Maydena provenance at all altitudes. 

Further, although the other species did not have a significant difference 

in frost hardiness between provenances there were significant differences 

in height and diameter growth. 

The results from the Esperance sites (Chapter 5) also demonstrated 

that it is possible for temperature conditions at a site to be suitable 
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for good growth rates as well as good frost hardiness development. The 60 

m site had both the warmest maximum temperatures and the coldest minimum 

temperatures and thus produced the greatest growth and frost hardiness for 

most species. This has not been demonstrated previously because 

information on frost hardiness has been obtained by assessing damage to 

provenance trials (e.g. Griffin, 1982; Boland and Dunn, 1985) and data has 

not been available from more than one site or altitude. Alternatively, 

frost hardiness has been measured over several sites, but no growth data 

has been presented (Rook et al., 1980). 

Thus 	a reliable method of testing frost hardiness 

nondestructively, such as that developed in the present study, has much 

potential for making comparisons between frost hardiness and growth 

performance of trees at sites experiencing different climatic conditions. 

Further, selection for both good growth at high temperatures and the 

ability to harden would appear essential ingredients for fast growing 

plantations of eucalypts both in Australia and overseas. Temperatures <5°C 

have been confirmed as the primary stimulus for hardening of eucalypts, 

but the role of shortening photoperiod still remains unclear. 
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