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ABSTRACT 

Studies were pursued in the snowfields of Ben Lomond in 

north-eastern Tasmania to establish the environmental 

factors affecting snowmelt. The approach through temporal 

and spatial analysis of ablation, was built upon a five 

year study of the climate which commenced in 1981. This 

was accompanied by an intensive measurement period in July 

to October, 1986. 

Climatic results indicated that the highest and most 

consistent rates of snowmelt were associated with a mean 

rise in the daily air temperature and a reduction in snow-

fall days towards the end of September. The days of 

strongest melt were most commonly accompanied by north-

westerly winds generating regional advection. As the 

snowfield boundaries decreased, local advective forces 

enhanced heat available for melt. 

The three dominant terms in the energy balance over snow 

were, in order of importance, net radiation, sensible and 

latent heat. Other , terms investigated, including heat from 

rain, the ground and internal energy, were of minor signif-

icance in providing energy for melt. The importance of any 

one term was observed to depend upon the prevailing synoptic 

situation. The seasonal changes in the energy balance were 

reflected in temporal variations in snowmelt. The spatial 



variability in snowmelt was not adequately described by 

variations in the energy balance. The differences could 

be explained by local characteristics in groundcover and 

topography. 

Snow melted most slowly in grassed gullies lying under 

steep southward facing slopes above an altitude of 1500 

metres. Within the study area, the rock domes and ridges 

which had the most easterly aspect and were below 1500 

metres lost their snowcover first. 

xiv 



CHAPTER 1 

A DESCRIPTION OF THE STUDY AND BEN LOMOND 

INTRODUCTION 1.1 

The global seasonal snowcover extends to approximately 12% 

of the earth's surface. All aspects of life are altered by 

its presence. Man has been particularly concerned with the 

social and economic ramifications of flood, storm, water 

supply and power resources from the seasonal cover. Other 

areas of concern involve the increasing impact of snow based 

recreational pursuits as well as the age old problems of 

travel and communication (McKay and Adams, 1981). 

The 20th century has seen the emergence of research investig-

ating specific aspects of snowmelt from the energy balance 

approach of Sverdrup (1936) and observational work of 

Seligman (1936) to recent work in the Cairngorms (Ferguson, 

1985) on melt rates and modelling the bulk transfer coefficient 

over snow (Kondo and Yamazawa, 1986) in Japan. However, 

studies are hampered by an environment that is alien to both 

1 
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man and instrumentation (Barry, 1981) with a resulting 

shortage of data. 

Snow studies in ski field areas have tended towards avalanche 

forecasting rather than ablation (Kattelman, 1984) whilst 

melt rates and patterns have been specifically observed in 

relation to skier usage and snow making (Farwell et al, 1983). 

However, ski fields differ from snow fields only in their 

commercial development for recreational usage and research 

into melt factors over snow and ice in general has been well 

documented (Light, 1941; Gerdel et al, 1954; Kuz'min, 1961; 

Yosida, 1972; Fitzharris et al, 1980 and Aguado, 1985). 

Consideration of environmental factors affecting snowmelt 

may be divided into climatic, biogeographic, geomorphic and 

geographic, with all these finally influencing the energy 

available for melt. Commonly snowmelt has been considered 

over a flat surface at low altitudes (U.S.A.C.E., 1956; O'Neill 

and Gray, 1973 and Male and Granger, 1979), whilst spatial 

variations due to slope and aspect typical of mountain regions 

have not been so well addressed (Hogg et al, 1982 and Munro 

and Young, 1982). The general approach is to consider a point 

representative of the snow field area concerned and calculate 

the energy budget from meteorological data available at that 

point. However this approach ignores the changing heat input 

from advective sources as reported by Treidl (1970) and 

Weisman (1977). 

Research into melt of the seasonal snowcover in the southern 

hemisphere has been extremely limited (Moore, 1983) with no 

work published on snowmelt in Australia prior to 1986. 
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The approach taken in this study commences with a description 

of the physical geography of Ben Lomond including details of 

the biogeographic and geomorphic features of the study area 

in the ski field. The results of the five year climatic survey 

are discussed and comparisons drawn with other meteorological 

stations in northern Tasmania as well as ski field areas in 

Victoria and New South Wales. 

Various estimates of the energy balance calculations over snow 

are discussed in Chapter 2. The three dominant terms, net 

radiation, sensible and latent heat, are argued in some detail 

whilst other expressions to describe the exchange of heat from 

rain, the ground and internal energy are also included. 

Chapter 3 describes the site of the meteorological station and 

data acquisition. Observations were hampered by financial 

constraints, poor weather, no reticulated power and difficult 

access. Characteristics within the snowpack were investigated 

in addition to the meteorological parameters essential for 

climatic studies and the energy balance. 

The results and summary are divided into two sections, both 

analysed with respect to the energy balance and resultant snow-

melt. In the first section dealing with temporal variability, 

the energy balance equation of Male and Gray (1981) was applied 

to construct a time series over the winter months of 1986. 

Further analysis was made with one week of high spring melt as 

well as several synoptic situations associated with high melt 

days, to determine the dominant energy balance terms. 

The study of spatial variability commenced in 1981 when snow-

melt was mapped against groundcover. Repetitions of the 
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patterns that emerged were noted throughout the next five 

years. In 1986 the energy balance was investigated for 

variation with space across the ski field. The model of 

Nunez (1980) was applied to reduce net radiation for mountain 

terrain and the ensuing calculated melt arising from the 

energy balance compared with observed data. The conclusions 

reached at the end of Chapter 5 draw attention to the dominant 

terms within the energy budget in consideration of seasonal 

snowmelt. The parameters arising from physical geography and 

synoptic events are included in the argument. 

PHYSICAL GEOGRAPHY  1.2 

Ben Lomond is situated in northern Tasmania and forms the 

southern boundary of the North Eastern Massif. This area 

rises immediately to the east of the Tamar Basin upon which 

is situated the City of Launceston. The massif is bounded 

to the north-west by Mt. Arthur and Mt. Victoria in the 

north-east (Figure 1.1). 

Two major rivers rise in the massif. The North Esk skirts the 

northern face of Ben Lomond and descends to Launceston from 

the east, while the South Esk encircles the other three sides 

eventually approaching Launceston from the south and west. 

The South Esk is particularly important to the rural community 

and the two rivers supply the fresh water needs of over 

100,000 people. The low lying areas are prone to violent 

flood and occasional drought. Knowledge of highland rainfall 

and snowcover is important in this regard. 

Legges Tor in latitude 41 °32.1'S and longitude 147 °39.5'E is 

the second highest point in the State at 1572 metres. From 

this peak the northern half of the plateau maintains an 
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Tasmania, Australia 

Source: The Reference Atlas for Australia and New Zealand, 

George Phillip and Son Limited, London, 1982. 
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altitude in excess of 1400 metres. The southern half is 

markedly lower being mostly between 1300 and 1400 metres with 

only Stacks Bluff rising above 1500 metres (Figure 1.2) to 

1527 metres. Rodway Valley splits the plateau and descends 

to 1240 metres carrying the Nile River to the Speke Gorge. 

This is the only breach in the rim of the plateau. 

Geomorphology 1.2.1 

The basement rocks, peneplanation and dolerite intrusion of 

the Ben Lomond Plateau match the descriptions of basement 

rocks, peneplanation and dolerite intrusion of the Tamar 

Basin by Leadman and Symonds (1973). However, faulting and 

uplift has raised the level of the Central Plateau and Ben 

Lomond more than 1300 metres higher than the Tamar Basin 

that divides them. 

The dolerite that is everywhere on the Ben Lomond Plateau 

is a silica and quartz poor igneous rock of medium grain 

(Holmes, 1964). The valleys of the uplands may have been 

caused by minor faulting along lines of weakness existing 

among the network of megajoints that cover the dolerite sheet. 

The rock has been further split into a series of hexagonal 

joints of 1.5 to 2 metres (Caine, 1968) clearly visible in 

the cliffs and exposed bedrock of the area today. 

The features of Ben Lomond observed today are thought to have 

been affected by the ice cap.  that it held during the Pleisto-

cene and the ensuing periglacial climate that still exists on 

the plateau today (Davies, 1969). However, attention must • be 

drawn to the lack of tillite evidence of glaciation. Tillite 
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The Ski Field Area in relation to the Ben Lomond 

Plateau. 

Source: Lands Department, Tasmap Series, 1:100,000, 

St. Pauls (1975). 



is regarded by many as absolutely necessary to indicate 

glacial activity (Caine, 1968). 

Apart from 

the upland 

the huge domes that appear in 

is marked by many blockfields 

the 

and 

glaciated areas, 

tors. 	Dolerite 

is subject to much chemical erosion when the right climate 

exists (Holmes, 1964), and it was thought by such investigat-

ors as Caine (1976B) and Davies (1969) that the tors were 

primarily due to such weathering, with particularly resistant 

plugs of dolerite standing out to heights of 10 metres from 

the general surface. 

Frost action rapidly accelerates the breakdown of rock 

surfaces, talus and soils (Johns, 1977). A clear indication 

of the periglacial climate that exists on the Ben Lomond 

plateau is exhibited in the action of piprakes (Davies, 

1969). These ice needles forming in the soil may be found 

to depths of 30 cm. They are a major factor in changing the 

•character of the soil in this type of climate. 

The frost process known as cryostatic pebble heaving has 

been held to account for sorted hexagonal patterns of stones 

found on the soils of periglacial regions. The huge domes 

of dolerite on the Ben Lomond plateau are also patterned 

with networks of hexagonals delineated by frost action 

(Davies, 1969). 

Snow produces its own patterns of erosion and deposition. 

As deep patches of snow dig slightly deeper holes, more snow 

accumulates. This process of nivation is amply illustrated 

on the south eastern slopes of Legges Tor on Ben Lomond in 

transverse, longitudinal and circular forms, relative to the 

slope. 
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Biogeography 1.2.2 

The ski field area (Figure 1.3) is typical of the plateau in 

terms of groundcover. Huge mammilated domes of dolerite 

intersperse the low alpine fellfield vegetation. This com-

prises shrubs, herbs, sedges and grasses (Figure 1.4). 

Blockfields lie at the base of the rock walls along the 

upper ridge and streams follow the major gullies. Small 

patches of bare soil are to be found here and there. 

Pinkard (1980) reported the Ben Lomond soils on dolerite as 

being of a strong clay loam of moderate permeability. He 

found a black soil with much organic material and many roots 

at an altitude of 1515 metres. Nichols (1958) suggested the 

soil is of an alpine humus type with poorly drained areas 

developing moor peat. The definitive work on alpine veget-

ation on Ben Lomond was done by Noble (1981). He found the 

plateau soil on dolerite to be strongly acidic and moderately 

to strongly leached. The sample he took near to the skifield 

area (and detailed in Appendix 2), supported other workers in 

that the soil was rich with organic material and roots, of 

colour 'dark brown grading to black. The soils in the ski-

field are in general, well drained. During the summer they 

are quite dry even at 10 cm depth. However, throughout the 

winter they are wet or frozen to a depth in excess of 30 cm. 

Noble (1981) identified more than 300 species of flora on 

Ben Lomond. Of particular significance to snoucover, are the 

distribution of shrublands in relation to herbs, sedges and 

grasslands (Figure 1.4). The most dominant of the woody 

shrubs are the Richeas and Orites, whilst the herb, Gentianella 

Diamensis is everywhere. 
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CLIMATE 1.3 

The snowcover and the climate of the Ben Lomond ski area 

(1460 m) was investigated in terms of the statistics of 

temperature, precipitation and wind. Comparisons were 

drawn with other meteorological stations in north-eastern 

Tasmania as well as other ski field areas in Australia. 

The study was made from June to October inclusive, these 

being defined as the winter months and when snowfall was 

most likely to occur. It commenced in 1981 and was still 

continuing in 1987 although this thesis concludes the five 

year period to 1985. 

The General Climate of Tasmania 1.3.1 

Tasmania has a temperate latitude, maritime climate. The 

prevailing weather is dominated by the mid-latitude westerly 

airstream (the "Roaring Forties") and the sub-tropical ridge. 

In the summer this belt of high pressure strengthens and is 

centred around 40 °S, bringing mild to warm conditions 

especially to the north-eastern part of the State. During 

the winter a northward movement of the sub-tropical ridge 

allows a more frequent penetration of temperate depressions 

and polar maritime air bringing cooler and more moist 

conditions to the State. Rainfall is primarily frontal or 

orographic during the winter months with the North Eastern 

Massif forcing the westerly air up to over 1400 metres from 

the Midlands Valley and Tamar Basin. 
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Temperature and Frost Days 1.3.2 

Temperature is perhaps the single most important indicator 

of snowcover (McKay and Gray, 1981). In Tasmania, the 

altitude above which heavy frost days occur with sufficient 

frequency to sustain seasonal snowcover, is referred to as 

the snowline, which occurs at approximately 1460 metres on 

Ben Lomond. 

The dry adiabatic lapse rate at which the temperature reduces 

.with altitude is 10 °C km -l . This lapse rate was altered by 

changing characteristics of the air mass and land mass so 

that the rate exhibited between Ben Lomond (1460 m) and 

Launceston Airport (166 m) was only 7.0 °C km" (Table 1.1) 

for the mean maximum air temperature which commonly occurred 

in the afternoon. This lapse rate was typical of a moist 

unstable air mass rising constantly. The mean minimum lapse, 

most often happening in the early Morning', was 4.0 °C km" 

and suggested a stable air mass with inversions probably due 

to night time radiative cooling under clear winter skies. 

Noble (1981) indicated an inversion ceiling between 880 metres 

and 480 metres with a base from 380 metres down to sea level. 

The mean minimum temperatures around which frost days are 

determined, did not 'differ markedly between Mt. Barrow ( 1 32) nO 

and Ben Lomond (Table 1.3). In accordance with their lower 

altitudes, Cradle Valley (914 m) and Launceston Airport were 

respectively warmer. The lowest temperature ever recorded in 

Region 3 for northern Tasmania by the Bureau of Meteorology 

was -10.3
o
C at Cradle Valley. However, in July, 1981 a 

temperature of -11 °C was recorded at the Ben Lomond meteoro-

logical station (Table 1.2). Minimum temperatures below -6 o C 



TABLE 1.1 
	

LAPSE RATE 

Temperature Jun Jul Aug Sep Oct 

Mean Maximum 

Mean Minimum 

6.7 

3.6 

6.7 

4.4 

7, 0  

3.8 

7.9 

3.9 

7.0 

4.3 

The mean monthly lapse rates between Ben Lomond village 

(1460 m) and Launceston Airport (166 m), expressed in 

degrees centigrade per kilometre. 

TABLE 1.2 CLIMATIC STATISTICS - BEN LOMOND VILLAGE 

Jun Jul Aug Sep Oct 

Mean Maxima 	°C 2.6 2.0 1.8 3.8 7.2 

Mean Minima -1.6 -3.4 -1.9 -0.9 -0.0 

Extreme Maxima 
o
C 7.5 11.1 9.0 11.2 13.0 

Extreme Minima -5.5 -11.0 -7.4 -7.0 -6.0 

Light Frost Days 26.2 30.2 30.1 29.6 27.5 

Heavy Frost Days 24.5 29.4 26.3 21.7 18.5 

Freeze Days 17.8 16.5 12.8 5.4 2.2 

The summary of winter climatic data for Den Lomond Village 

(1460 m) for the years 1981 to 1985 inclusive. 

Mean maxima and minima are daily data averaged for the month 

and expressed in degrees centigrade. 

Extreme maxima and minima represent the highest and lowest 

- recorded temperatures during each month in the observed 
period expressed in degrees centigrade. 

Frost and freeze days represent the mean number of days per 

month on which the phenomena was observed where: 

Light frost days have a minimum air temperature 2
o
C. 

Heavy frost days have a minimum air temperature LC. 0 °C. 

Freeze days have a mean daily air temperature 	0 C. 



TABLE 1.3 
	

MINIMUM AIR TEMPERATURES 

Jun Jul Aug Sep Oct 

Ben Lomond -1.6 -3.4 -1.9 -0.9 0.0 

Cradle Valley -0.2 -0.4 -0.6 0.3 1.3 

Launceston Airport 3.0 2.3 3.0 4.1 5.5 

Mt. Barrow -0.9 -2.3 -2.0 -1.4 -0.0 

Daily minimum air temperatures averaged per month and 

expressed in degrees centigrade. 

TABLE 1.4 
	

LIGHT FROST DAYS 

Jun Jul Aug Sep Oct 

Ben Lomond 26.2 30.2 30.1 29.6 27.5 

Cradle Valley 24.5 27.1 28.0 24.2 21.2 

Launceston Airport 13.6 15.4 14.5 9.0 4.7 

Mt. Barrow 26.0 29.5 30.0 29.0 22.8 

Averages of the number of days per month on which light 

frost occurred. 

TABLE 1 .5 
 

HEAVY FROST DAYS 

Jun Jul Aug Sep Oct 

Ben Lomond 24.5 29.4 26.3 21.7 18.5 

Cradle Valley 17.1 17.9 19.3, 14.6 11.3 

Launceston Airport 6.4 8.4 6.1 2.3 0.6 

Mt. Barrow - - - 

Average of the number of days per month on which heavy 

frost days occurred. 
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were uncommon based on records over the five years from 1981 

to 1985 on Ben Lomond. 

The number of light frost days with minimum temperatures equal 

to or less than 2
o
C did not greatly differ between the stations 

above 900 metres (Table 1.4). Ben Lomond experienced more 

heavy frost days when the minimum temperatures were equal to 

or less than 0 °C, when compared with Cradle Valley and 

Launceston Airport (Table 1.5). The coldest temperatures 

and the greatest number of days per month of frost coincided 

in July and August with the heaviest precipitation. 

Rainfall  :1 .3.3 

• Precipitation decreases from west to east across the State, 

a leaching function of the orographic -effect induced by the 

mountainous land mass on the prevailing westerly airstream 

. (Lewis, 1945). Cradle Valley is situated immediately north 

of Cradle Mountain (Figure 1.1) which rises to 1544 m and 

had a higher annual rainfall at 2777 mm than mountains in 

the North Eastern Massif typified by Mt. Barrow which had an 

•annual precipitation figure of 1401 mm. This latter value 

was considerably greater than that for Launceston Airport 

which received 719 mm of rain annually. Upper Blessington 

(420 m) is directly under the northern foothills of Ben Lomond 

and had the high precipitation figure of 1358 mm. All stations 

showed the heaviest precipitation to be in July and August 

(Table 1.8) with these two months supplying approximately 

22% of the annual total. 

The only rainfall figures for Ben Lomond stem from the work of 

Noble (1981) who applied regression analysis to three years 



STATION 083081: MOUNT HOTHAM 	Lat. 37 °00 Elevation 1750.0M 

Element 

Mean Daily 
Max. Temp. 

Mean Daily 
Min. Temp. 

Units 	Jun 	Jul 	Aug 	Sep 	Oct 	Annum  

oC 	3. 0 	0.9 	3.2 	5.1 	9.8 

oc 	-1.9 	-3.7 	-2.0 	-1.3 	1.4 

Snow Days 	Days 	15 	20 	17 	13 	6 

Frost Days 	Days 	20 	22 	21 	15 	11 

STATION 071032: THREDBO (CRACKENBACK) 	Lat. 36 °29'S 
Elevation 1957M 

Element 	Units 	Jun 	Jul 	Atlg 	Sep 	Oct 	Annum 

Mean Daily 	oC 	1.6 	-0.1 	0.3 	2.7 	7.1 	- 
Max. Temp. 

Mean Daily 	o
C 	73.7 	-5.7 	-5.1 	-3.6 	-0.5 

Min'. Temp. 

Snow Days 	Days 	13 	17 	17 	14 	7 

Frost Days 	Days 	21 	21. 	. 19 	21 	17 

Rainfall 	mm 	102.9 142.2 150.3 179.3 184.0 

STATION 071072: PERISBER VALLEY SNT CENTRE Lat. 36 °24'S 
Elevation 1720M • 

Mean Daily 
Max. Temp. 

Mean Daily 
Min. Temp. 

, 
Snow Days 

Frost Days 

Rainfall 

oc 

Days 

Days 

mm 

3.3 

-3.9 

13 

19 

178.5 

1.9 

-5.8 

16 

27 

184.6 

3.4 

-4.0 

13 

25 

224.6 

5.5 

-2.3 

11 	' 

21 

264.8 

9.2 

0.6 

6 

18 

204.3 

Element 	Units 	Jun 	Jul 	Aug 	Sep 	Oct 	Annum 

- 

_ 

- 

- 

1 8 

-TABLE 1.6 	AVERAGE STATION DATA 

Data for three stations which have an altitude above 

the seasonal snowline in the states of Victoria and 

New South Wales, where skiing occurs (Bureau of 

Meteorology, 1975). 
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TABLE 1.7 
	

SNOWFALL DAYS 

Altitude Jun Jul Aug Sep Oct Total 

Ben Lomond 1460m 5.6 8.8 10.4 5.2 0.8 30.8 

Cradle Valley 914m 5.1 7.8 9.6 6.6 5.5 34.6 

Launceston Airport 166m - - 0.2 0.1 - 0.3 

Mt. Barrow 1323m 2.6 5.9 8.1 6.3 3.7 26.6 

The average number of days per month on which snowfall 

was recorded. 

TABLE 1.8 
	

RAINFALL 

Jun Jul Aug Sep Oct Year 

Cradle Valley 275 320 307 275 251 2777 

Launceston Airport 63 84 80 65 68 719 

Mt. Darrow 133 151 180 144 98 1401 

Upper Dlessington 114 137 127 98 95 1358 

The mean monthly rainfall expressed in mm. 

With the exception of Ben Lomond, the data are published 

with permission of the Director, Commonwealth Bureau of 

Meteorology, with the reservation that base data had not 

been quality controlled by the Bureau of Meteorology 

(1979) at the time. 
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of summer data for several stations on the north face of the 

mountain, arriving at 1277 mm for 1260 m altitude and a steady 

increase in precipitation with altitude. The ski village 

(1460 m) is 137 .  m higher than Mt. Barrow and 200 m above the 

north face station. It is probable then, that greater 

precipitation wculd have been experienced over the ski field 

area than at Mt. Barrow, following the argument of precipit-

ation increasing with altitude (Barry, 1981). 

The winter rainfall is mainly the result of cold fronts 

ccnstantly sweeping across the State, generally moving at 

15-25 knots. Depressions moving at lower latitudes occasion-

ally cross the State and are sometimes "cut off" near the east 

coast. Such regimes produced heavy rains and snow on Ben Lomond 

accompanied by strong easterly winds. 

Snowcover  1,3,4 

All areas in Tasmania experience snowfall from time to time 

with more 'falls being recorded in the south-western region 

than elsewhere, a function of high precipitation in this area. 

Whilst snowfall is common in winter above 800 metres, only 

Ben Lomond of the mentioned stations had a regularly sustained 

seasonal . snowcover. Snowfall days (Table 1.7) did not show 

any strong variation amongst the higher three stations, and 

all three had the most frequently recorded falls coinciding 

with frosts and precipitation in July and August. 

For snawcover to be maintained, snowfall must exceed 'snowmelt. 

One outstanding factor was the higher number of heavy frost 

days Ben Lomond had when compared with the other stations in 

Tasmania. Other ski fields in Australia at Hotham, Thredbo, 
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and Perisher Valley had lower minimum temperatures and similar 

frost days to Ben Lomond (Table 1.6) but a distinctly higher 

frequency of snowfall days. Records showed a more sustained 

and deeper snowcover (Summit Sun, 1984) at these three other 

ski fields when compared with Ben Lomond. 

Snow and Wind 1.3.5 

The dominant westerlies that encompass the Southern Ocean 

are changed by atmospheric disturbance and landform until 

the winds experienced on Ben Lomond are distributed as shown 

in Table 1.9. The winter westerlies with their embedded cold 

fronts introduce air which is mainly of polar maritime origin. 

The resulting precipitation has been recorded falling as snow 

on more than one day in four during July and August on Ben 

Lomond (Table 1.7). 

Whilst not indicated by the mean data (Table 1.9), the 

heaviest early season snowfalls accompanied north-easterly 

winds presaging the passage of a front. Snowfall was more 

frequent during July and August, whilst more snowfall days 

accompanied winds from the westerly quarter than any other 

quarter. 
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BEN LOMOND SKI VILLAGE (1460m) 

CLIMATIC STATISTICS 

TABLE 1.9 
	

WIND DIRECTION AND SNOW DATA 

[Wind] N NE E SE S SW W NW CALM 

Jun 1 2 0 3 2 8 3 5 6 

Jul 1 3 0 3 3 7 2 6 6 

Aug 2 5 o 2 2 6 2 8 4 

Sep 2 3 o 2 1 9 2 9 2 

Oct 3 5 0 2 2 4 1 lo 3 

Tot 9 19 o 12 10 34 10 38 21 

[Snowfall] TOTAL 

Jun 0.4 0.2 0.0 0.6 0.4 1.4 0.8 1.6 0.2 5.6 

Jul 0.0 1.4 0.0 0.4 0.6 3.0 0.8 2.0 0.6 8.8 

Aug 0.8 1.2 0.0 0.6 0.6 2.8 1.0 2.8 0.6 10.4 

Sep 0.6 0.6 0.0 0.2 0.0 1.6 0.6 1.6 0.0 5.2 

Oct o.o 0.0 0.0 0.4 0.10 0.0 0.0 o.4 0.0 0.8 

Tot 1.8 3.4 0.0 2.2 1.6 8.8 3.2 8.4 1.4 30.8 

Period of Records: 1st June to 31st October from 1981 to 
1985 inclusive. 

The upper table shows the mean number of days each month the 
wind was recorded from the named sectors (rounded to the 
nearest day). 

The lower table shows the mean number of days each month on 
which snowfall was recorded, displayed in relation to the 
wind sectors (rounded to one decimal place). 

Source: After Caine (1968). 



CHAPTER 2 

THE ENERGY BALANCE 

THE GENERAL MODEL 2.1 

Sverdrup was the first to apply the energy budget to the 

snowcover in studies on West Spitzbergen Island in 1924 

(McKay and Thurtell, 1978). Since then it has gained in 

popularity as it allows the melting process to be studied 

in a systematic and objective way. 

For the calculations the pack is assumed to be ripe or 

. primed for melt. The temperature is at 0 °C and each grain • 

of snow is covered by a film of water. The water content or 

the pack may be 3% to 25% depending on the internal structure 

and grain characteristic. The application of any additional 

energy to the pack will result in more water being produced 

than the pack can hold in situ. The excess water percolates 

through the pack and is released as melt. 

2 3 

In terms of its energy balance components, the energy flux 
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available for melt can be written as (Male and Gray, 1981): 

Q fr, = K* + L* 	QH 	QE 	Q q  + Qp + Qz 

where 

Q m  - energy flux available for melt, 

K* - net shortwave radiation flux, 

L* - net longwave radiation flux, 

Q ■4 - convective or sensible heat flux, 

Qc - flux of the latent heat (evaporation, sublimation, 

condensation), 

Q4 - flux of heat from the ground, 

QP - flux of heat from rain and 

QT - internal flux of heat from water phase changes. 

Commonly the net longwave and shortwave radiation terms are 

reduced to a net radiation term (Q*) so that: 

= Q* +Q +Q 1  + Q +Q + Q. 

The flux of heat from the ground (Qq ) is generally a small 

quantity and may be considered negligible over a few days 

(Moore and Owens, 1984). In the longer term, over weeks or 

months, the amount of melt generated from this source may 

prove significant. The diurnal melt/freeze cycle of the 

pack produces an internal change of energy (Q x ) often ignored 

in field calculations (Treidl, 1970; Aguado, 1985) where the 

pack is deep. The energy derived from this source is small, 

measurements are difficult and the process complex. As these 

two sources supply less than 2% of the heat budget they are 

often omitted, and the equation becomes: 

Qm = Q* + 	+ (4. 	QP. 	 3 
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Of the four remaining terms, the energy derived from a rain 

on snow event (Qp) is usually of small significance compared 

to the other three (Fitzharris, et al, 1980). 

The equation is normally resolved for a horizontal surface. 

However, in mountainous terrain this is not usually the case. 

Net  radiation is reduced to allow for slope and aspect but 

all other terms are treated as for the horizontal surface in 

the absence of alternatives (Male, 1980). 

NET RADIATION 2.2 

An inspection of the sum of the first two terms in Equation 1 

concerning net shortwave (solar) and longwave radiation leads 

us to: 

where 
	

K* = K4 - 

and 
	

L* = L4 - Lt, 	 6 

for 
	

t- the upward flux and 

4- the downward flux. 

Problems in assessing net radiation are approached by isolat-

ing each term and investigating the impact of the atmosphere 

geographic position and topography of the area under investip;- 

ation upon them (Houghton, 1954;. Sellers, 1965; Munro, 1970; 

Kondratyev, 1969; Davies et al, 1975 and Nunez, 1980). 

During the resolution of the energy balance over snow it is 

seldom that all the terms are measured. It is common practice 

(Dozier, 1979; Hogg et al, 1982; and Munro and Young, 1982), 
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to construct a model to allow for variations occurring in 

mountainous regions after initial measurements have been 

taken over the horizontal surface. 

Downward Shortwave Radiation 2.2.1 

The extra terrestrial constant of the solar flux was reported 

as 1360 W M-2 (±1.5%) by Barry and Chorley (1982). Solar energy 

is attenuated through absorption and scattering by gases and 

dust in the atmosphere so that only a fraction is transmitted 

to the Earth's surface. Gamier and Ohmura (1970) suggested 

a transmission coefficient of 0.75 whilst Kondratyev (1969) 

argued that transmission was higher in winter than summer due 

to the lower water vapour content of the air. Accordingly a 

value of p = 0.8 was given to the transmission of global 

radiation over snow in European U.S.S.R. 

The question must always arise as to the minimum data necessary 

to ensure the proper functioning of a model. 'Houghton (1954) 

looked at transmission factors in more detail. He assumed 

that upon entering the atmosphere the solar beam was absorbed 

before scattering occurred and that half the scattered energy 

reached the surface of the Earth. 

Schertzer (1975) applied least squares regression to Houghton's 

data obtaining polynomial approximations for the transmission 

coefficients of water vapour absorption (wa) and scattering 

(ws) and Rayleigh scattering (rs) which are: 

At,s 	= 	1.0059 - 0.0224545 

= 0.9972 	0.0918415 

(wm), 

(wm) 	+ 0.0224301 (wm) 

7 

- 0.0026573 	(wm)3  + 	0.0001107 	(wm)4  , 8 



f4s = 0. 9716084 - 0.0826204 (m) + 0.0093269 (m) 2  

- 0.000946 (m)3  + 0.00oa437 (m) ,  9 

-or 	Ajs = 1 - 0.025 (wm), 	(McDonald, 1960) 	10.  

and 	giwo = 1 - 0.077 (wm)"  , 	(McDonald, 1960) 	11 

where 	w - the precipitable water vapour and 

the optical air mass expressed by Kasten 

(1966) as: 

m = [cos Z + 0.15 (93.885 - Z
)2s1 -1 

• 
	 12 

The length of the path of the direct solar beam through the 

atmosphere (the optical air mass) may be more simply stated 

by: 
m = sec Z, 	 13 

where 	z - the zenith angle of the sun. 

Barry (1981) suggested this should be adjusted for altitude 

so that: 

m = sec Z (1) /P0  ), 	 lLt 

where 	atmospheric pressure and 

- standard atmospheric pressure at mean sea level. 

The precipitable water vapour may be calculated or extracted 

. from List. (1968). However, the impact upon the expression is 

very small and Sellers (1965) suggested .a Value of 18.1 mm 

be adequate. Davies et al (1975) suggested that the use of 

surface humidity data as an approximation for precipitahle 

water be acceptable'. 

Houghton (1954) stated (with reservations) that absorption 

(da) and scattering (ds) due .to dust were equal and wrote: 
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= A's ==. 	0.975m  , 	 15 

so that the transmission coefficient for dust was: 

Pd 	= 	= (c ) • 	 16 

Considerable discussion (Houghton, 1954; Davies et al, 1975; 

Sqhertzer,1975; Nunez, 1980 and Barry, 1981) has centred 

around the constant (c) with values between 0.88 and 9.98 

being investigated and found a good fit. An atmosphere that 

is heavily polluted with a.high turbidity is expected to 

respond best to a low (0.88) value whilst a clear dust fre e  

atmosphere is best suited to a higher (0.98) constant. Nunez 

(1980) found 0.88 was the best fit for Tasmanian lowlands 

whilst Barry (1981) suggested that values in excess of 0.96 

might not be uncommon for higher altitudes in clean air. 

The solar radiation incident under cloudless conditions 

received on a horizontal surface (F4. ) is the sum of the 

direct (S.) and diffuse (D.) shortwave radiation components 

expressed by Davies et al (1975) as: 

Klo  = I cos Z + D, , 

so that 	S. = I cos Z , 	 18 

and 
	

I =1 0 A•111 Y'clo Availds 	 19 

also 	D. = So fbtyci 	(1 - 	ods 	)/2 	20 

where 	I - solar constant reduced by transmission through 

the atmosphere, 

and 	Io  - solar constant. 

Global radiation has so far only been considered for cloudless 

skies. Two approaches have generally been adopted for cloudy 
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conditions. The first and simplest method adopted (Paltridge 

and Platt, 1976; Munro and Young, 1982) was to consider the 

cloud cover as a single layer so that for direct radiation 

under cloudy skies: 

Sc  = Se  (1 - n) 	 21 

whore m - total fractional amount of cloud. 

The diffuse radiation was considered for the cloudless portion 

of the sky (D,) and the multiple reflections between the clouds 

and the ground (D 2 ). The sum then became: 

D e  = D, + D2 , 	 22 

where 	= De  (1 - n) 	n S o  (1 - a, - 011„; ) , 	23 

and 	= (Sc.  + D,) nci b ot.(1 	 , 	24 

for 	a, - absorbitivity of the cloud, 

GL - reflectivity of the ground (albedo), 

ck b  - reflectivity of the cloud base and 

cin- reflectivity of the cloud top. 

Munro and Young (1982) used a modified form of Fritz' (1954) 

expression for the cloud base reflectivity: 

Ck ti  = fexp (- 0.565 m X )[ X (1 - 1.484 + 3.54 m -1  

- 2.62] - 3.54 if( '  - 2.6211(X+5.24)+11-1 	25 

where 2(7 cloud thickness to the mean free path of light 

through the cloud. 

This expression accommodated the reduction in albedo MO as 

the optical air mass (m) became small. 

Suckling and Hay (1977) suggested that whilst observers tended 

to overestimate cloud cover, sunshine records underestimate, 
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and a better fit for cloud amount (n) was: 

n = [a (1 - f s  ) + b nell a + br i  , 	 26 

where a - weight = 1 , 

fs  - fractional sunshine recorded on sun cards, 

b - weight = 2 and 

ne  - observer estimate of cloud amount. 

Workers attempting a more detailed analysis of radiation 

receipt under cloudy skies have adopted a physical model 

rather than using the single layered empirical approach 

described above. Nunez et al (1971), Davies et al (1975) 

and Suckling and Hay (1977) used a multi layered cloud model. 

Considering three layers of cloud, high (h) Medium (m) and 

low (1), the global radiation incident on a horizontal 

surface for cloudy conditions was expressed (Nunez, 1980) as: 

= 140 All Am AL , 	 2 7 

where each cloud layer (i) transmission, assuming uniform 

distribution was: 

P6= 1 - ( - t ; ) c , , 	 28 

where 	ti - transmission of the cloud layer i and 

- the amount of cloud layer 

Utilizing data from Haurwitz (1948): 

ti = K4 /K1 0 , 

2  where K4 = 	exp (- b  

• 

29 

30 

Values for (a) and (b) are detailed in Appendix 3. 



Allowances for reflection from the lowest cloud base altered 

Equation 27 to: 

K 0  Øk 	 + o• 5 ct.C,} , 	 31 

where 	0.5 - mean lower cloud base albedo. 

Reductions in Shortwave Radiation in Hilly Terrain 2.2.2 

In .mountainous country a reduction in the global radiation 

receipt has been found due to topographical constraints 

(Dozier', 1979). The angle of elevation of the horizon is 

commonly increased, reducing the sky view; and all slopes, 

particularly those pole oriented, are subject to shadowing 

(Seligman, 1936). 

The initial problem of resolving global radiation for hilly 

conditions has traditionally commenced by reducing the zenith' 

angle of the direct solar beam for slope and aspect (Figure 

2.1). The three dimensional geometry applied to this problem 

was stated by Nunez (1980) in a similar manner to Sellers 

(1965) and Kondratyev (1969) so that the angle of incidence 

(a-) of the direct solar beam with an inclined surface became: 

cos?! = sin Z cost.) sin X sin Y + 

sin Z sin co sin X sin Y + cos Z cos Y. 	32 

Equation 18 describing the receipt of the direct solar beam 

may now be adjusted to allow for an inclined surface so that: 

S lo  . I cos 	 33 

. Hogg et al (1980 applied the model of Gamier and Ohmura 

(1970) to calculate the direct radiation receipt on a slope: 

=1 	cos (XAS) dH 	 34 
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The integration limits H, and H, are sunrise and sunset on the 

slope in question and cos (XAS) the angle of incidence of the 

direct solar beam upon the slope. The expression can be solved 

numerically by summing intervals (half-hourly or hourly) be-

tween H, and H 2 	Atmospheric transmissivity (p) was assumed 

to be 0.75 in the original study. 

FIGURE 2.1 Zenith and azimuth used in calculating 

the solar incidence angle 

	

where I 
	- direct beam solar radiation 

- normal to inclined surface 

	

V 	- vertical axis 

N,S,W,E - four compass points in a horizontal 

plane 

	

z,x 	- zenith angles for I and N respectively 

	

(0/Y 	- azimuth angles for I and N respectively 

	

'Y 	- angle of incidence of I with the 
inclined surface 

Calculations for the restricted access of the direct solar 

beam onto a slope have included modelling the topography in 

a suitable computer programme to allow for additional shadow-

ing that occurs due to concavity or convexity in any slope. 
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A typical programme (Nunez, 1980) details the area into grids 

or pixels and steps towards the direct solar beam according a 

grid area as either in sunlight or shadow. Further details 

are included in Appendix 3. 

In consideration of diffuse radiation an isotropic model under-

estimates the clear sky diffuse radiation on equator facing 

slopes as the incident flux is anisotropic. 75% of the dirfuse 

radiation flux is received from the circumsolar half of the 

sky; that is, the half bounded by the plane normal to the solar 

vertical (Kondratyev and Federova, 1977). This dependence on 

the azimuth of the sun causes differences according to the 

slope azimuth.. 

Hay (1977) has developed a model for anisotropic diffuse 

radiation on slopes which yield lower systematic and random 

errors than either the isotropic model or one using half 

circumsolar and half isotropic arguments: 

= 	. cos   ID01  + [0.5 D0 (1.0 + cos X) ( 1.0 - 
Ic 	cos Z 

35 

and 	cos  - an 'anisotropy index' for the slope. 
10  

The first term on the right is the circumsolar component. 

The last term is the isotropically distributed radiation 

flux. 

'It is difficult to calculate the component reflected from 

adjacent slopes. If a mean surface characteristic is assumed, 

Barry (1981) offers the following equation: 

Dr = (S. + D,, ) GIL sin2  ( X/2 ) 	0.5 (S. + 	) 	(1 .0 - cos X ) . 

36 
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However, he further stated that important discrepancies arose 

in the term D r  from the anisotropic diffuse radiation component, 

especially in the presence of snowcover. 

For practical reasons, isotropic models have been adopted for 

calculating diffuse radiation in hilly regions (Munro and Young, 

1982). The equation written for diffuse radiation received on 

a slope allowing for a reduced sky view has been expressed .  

(Nunez, 1980) as: 

= Do VF + ( - VF) K 
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Now, applying the zenith angle of the direct solar beam 

reduced for slope and aspect (Equation 33) and substituting 

Equation 37 in Equation 17, global radiation received on a 

slope under cloudless conditions is (Nunez, 1980): 

K f1. 	= I cos a' + 	9 	 38 

and under cloudy skies with a reduced sky view: 

KJ  = I (1 - C L )(1 - C,„)(1 - Ch) cos?,  

+ D, VF + 	0(.. (1 - VF), 	39 

where 	D, 	= 1{4, 	- I (1 -C L ) (1 - C m ) ( 1 - c 	cos Z. 40 

Upward Shortwave Radiation 2.2.3 

An inspection of Equation 5 reveals that net solar radiation 

requires the upward component (reflected) to be defined as 

well as the downward flux. This has been traditionally 

expressed as a function of the reflectivity or albedo of the 

surface (Male, 1980): 

Kt, = GCKJ. 0 	 41 
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There arises a heavy dependence upon the value given to albedo 

for net radiation calculations (Schneider and Gal Chen, 1973). 

Albedo 2.2.4 

Langham (1981) stated that albedo was a good measure of the 

ability of snow to absorb radiative energy. Investigations 

reveal that the radiative energy absorbed by the snow is a 

prime melt factor. 	Albedo (ct) may be expressed as the ratio 

of reflected shortwave radiation (K1) to the incident short-

wave radiation (14) (Male and Gray, 198.1).: 

• a =El 	. 	 42 

When snow is freshly fallen it is clean, dry and loose, with 

a density commonly of less than 200 kg m -3 . The albedo may 

be as high as ..88, values being typically dependent on the 

solar zenith angle. However, as the snow ages it becomes 

wetter and more compact; the albedo drops to 0.55 within six 

days, largely due to the increase in the free water content 

(Diamond, 1956). 	Even if this old snow is frozen, the albedo 

does not increase. Finally, old and dirty saturated sea ice 

will yield albedo values of less than 0.3. 

Snow cover of a shallow nature (<250 mm) has albedo values 

differing primarily due to ground showing through the cover. In 

addition, shortwave radiation has been shown to penetrate the 

shallow pack to be absorbed by the ground (Male and Gray, 1981). 

The snowpack grain size varies with texture and density 

which also alter with ageing. This, process known as meta-

morphism or firnification, affects albedo in two ways. 
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Initially the surface 'roughness' affects the albedo value, 

and the back-scattering due to subsurface grain characteristics 

add to the surface albedo to a varying degree. Albedo varies 

inversely as the square root of the grain size (Male and Gray, 

1981) whilst water in the snowpack also reduces the albedo 

values. 

Hubley (1954) found that daily albedo values over snow seldom 

varied by more than 30%. In mountain regions this variation 

may be increased in accord with the larger range of solar 

zenith angles due to the slope and aspect variability of 

mountain regions. 

Solar Radiation Attenuation Within the Snowpack 2.2.5 

Incoming solar radiation is absorbed to a certain extent within 

the snowpack. This has little effect on melt in deep snow as 

the energy reachinp the ground is very small. However, in 

shallow snow (depth < 250 mm) some incoming shortwave radiation 

will reach the ground and be returned to the pack in the form 

of longwave radiation or through conduction. Thus energy is 

provided for melt or for thawing the soil surface to permit 

water percolation from the snow (Male and Gray, 1981). 

If the pack is assumed homogenous, a typical state for low 

altitude temperate snow, then the attenuation of incoming 

solar radiation may be expressed by (Giddings and La Chapelle, 

1961): 

=. 	exp (- b z) 	 43 

where 	K. - radiation intensity at any depth (z) 

b - extinction coefficient. 
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There is uncertainty surrounding the extinction coefficient 

which has been shown to be more dependent on foreign matter 

(dust and organic matter) within thepack than either the 

wetness or density of the snow (Bohren and Barkstrom, 1974). 

Longwave Radiation 2.2.6 

A final consideration of net radiation: 

= K* + L*. 	 44 

After the net shortwave radiation (K*) has been either calcul-

ated or measured, a value for net longwave radiation is 

required (L*). It may be obtained as a residual from direct 

measurements: 

L* = Q* - K* 	 45 

or calculated, as shown below. 

Outgoing longwave radiation may be expressed in terms of ground 

temperature. Paltridge (1975) found that Over a day the mean 

surface temperature was equal to the mean air temperature, so 

that: 

Ll = ec5- 04  + L4 (1 — e ) ,  46 

where 	- surface emissivity, 

T - Stefan Holtzman constant and 

e - surface temperature. 

Snow has been reported (Sellers, 1965; Munn, 1966; Anderson, 

1976) as having longwave emissivities ranging between 0.97 

and 1.00, whilst Moore (1983) applied a value of 0.99 to long-

wave calculations over snow in New Zealand. 
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Several expressions have been applied for ascertaining down-

ward longwave radiation of which the most widely used, accord-

ing to Male (1980), is of the form first written by Brunt 

(1952): 

	

L1 = E T 1: (a + b e c‘  ) , 	 47 

where 	T 	air temperature, 

a and b - constants changing with time and space, and 

- vapour pressure. 

Kuzmin (1961) offered values for (a) and (b) based on long 

term measurements over snow in the Russian plains and steppe 

regions so that: 

L4 = E Cr 	( . 62 + . 005 ea. ) • 	 48 

However, Barry (1981) expressed reservations in applying the 

Brunt equation to high altitude areas due to the reduced water 

column in the atmosphere leading to overestimation in the model. 

A simple temperature and humidity profile was developed by 

Brutsaert (1975): 

L 4 = 0. 642 (ea  /Tc, r 	(Ta, ) , 	 49 

and modified by Marks (1979) for alpine use by assuming that 

relative humidity is constant with altitude but temperature 

reduces with the standard lapse rate. Prowse and Owens (1982) 

applied this for a net longwave radiation expression with 

further adjustments to allow for the reduced view factor 

(Lee, 1962) and cloud cover (Sellers, 1965): 

L* = 1.24 (ealT4.1 ) °."1.  (Pcd1013)o- T (l+ftri l)cos z  (90-) 

+ EcTe4 (1 - (cos 2  (90 -7z ) ) ) — cs- GI% 	 50 
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. where 	- air temperature adjusted to sea level, 

- cloud height and temperature c6efficient, and 

/1. 	- average horizon angle from the zenith. 

Many calculations in mountain regions at high altitude utilise 

sub zero air temperatures. Satterlund (1979) as reported by 

Male and Gray (1981) achieved more accurate results than Marks 

(1979) by applying: 

L1 = (crT,24  ) 1.08C 1 - exp ( - 
ect. To. /2.016 )] 51 

Swinbank (1963) suggested that the dependence of the downward 

longwave radiation receipt on water vapour present in the 

atmosphere was not warranted and a better fit relating the 

receipt to air temperature was more accurately expressed as: 

L. 	5.31 x 10-14  Tc,.6  . 	 52 

Nunez (1980) applied the Swinbank equation with allowances for 

hilly terrain, whilst following Paltridge's (1975) practise or 

assuming iSotropism for incoming longwave radiation and allowing 

-2 -1 
an increase of 6J-ms 	per one tenth cloud cover, to write: 

lc  = (5.31 x 10 3 	6.0ri)VF+E6A4(1 -VF). 	53 

Finally, net lbngwave radiation is simply the difference Arising 

between the incoming and outgoing components: 

L* = L4 - Li , 	 5 14 

which over snow nortrally assumes a negative value through 

nocturnal cooling of the pack. Ids° and Jackson (1969) expressed 

this as: 

L* = o- T7 	— c exp [ - d (273 - Ta. )1} , 
	55 
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where the constants (c) and (d) were given the values 0-.261 

and 7.77 x i0  whilst the air temperature was 

in degrees Kelvin. 

SENSIBLE AND LATENT HEAT 2.3 

An inspection of Equation 3 reveals that two of the three• 

most important sources of energy for melt are sensible and 

latent heat. The mathematics of heat transfer involved in 

- these two terms are dependent upon turbulent theory. Three 

approaches to the resolution of the problems will now be 

discussed. 

Eddy Correlation 2.3.1 

Measurements of temperature and vapour pressure gradients 

wiihin the millimetric boundary layers above the snow surface 

are exceedingly difficult, whilst Male and Gray (1981) suggest 

that sensible and latent heat fluxes are governed by complex 

turbulent exchange processes. Ignoring advection and assuming 

constant fluxes with height, the vertical transport of sensible 

and latent heat can be written (Munn, 1966): 

= Cp /O, 

and 
	

ucs, q' , 	 57 

where 	Cp - - specific heat of air at constant pressure, 

- density of air, 

- the fluctuating component of wind normal to 

the earth's surface, 

the rluctuating component of temperature, T, 

defined by the relationship, T ' = T - T. 
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L v  - latent heat of vaporization/sublimation, and 

- the fluctuating component of specific humidity, 

q, defined by the relationship, q''=. 

The instruments required in eddy correlation techniques are 

expensive and consideration of the data thought too dirricult 

for general application to snow hydrology. However, Hicks and 

Martin (1972) and McKay and Thurtell (1978) both used this 

approach in an endeavour to ascertain more accurate values for 

the turbulent exchange fluxes. Such accuracy was thought 

desirable before various models of the energy balance over 

snow (O'Neill, 1972; Outcalt et al, 1975; Anderson, 1968,1976) 

could. he properly tested. 

The Bowen Ratio 2.3.2 

The Bowen ratio approach in resolving the turbulent terms QH 

' and QE has been previously applied in micro-meteorology because 

of the simplicity of the instruments required and the theory. 

If other terms in the energy balance, net radiation and energy 

available for melt are known, the residual dominant terms may 

be represented as (Sellers, 1965): 

QH = Qm - 14* - Q E. 
	 5 8  

QE = QM - Q* - QH • 	 59 

Assuming no advection, constancy of turbulent fluxes, and that 

eddy diffusiyities of sensible heat (A H ) and latent heat (AL) 

are equal: 

A 
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Q m  and QE may now be expressed against each other in a manner 

known as the Bowen ratio: 

B r  = QH /Q 	 61 



This method was used by McKay and Thurtell (1978) to compare 

results for QH and QE arising from eddy correlation practises 

with those achieved through. applying gradient data for temper-

ature and vapour pressure. - . Under normal circumstances over 

snow, the melt term Q M  is difficult to measure and is therefore 

determined as a residual of the remaining terms (Equations 58 

and 59). Because of this the Bowen ratio is not commonly used 

in calculating turbulent fluxes over snowmelt. 

Aerodynamic Approach 2.3.3 

Alternate approaches centre around the constraints of instru-

mentation. To overcome the problems encountered in eddy 

correlation techniques without resorting to the Bowen ratio. 

an  aerodynamic approach has been applied. This assumes that 

the fluxes are proportional to the vertical gradients of 

temperature and water vapour. The relationships describing 

the turbulent fluxes for sensible and latent heat using this 

method have been expressed as (Owens, Marcus and Moore, 1984; 

Prowse and Owens, 1982; and Male and Granger, 1979): 

where 

QH =pct.Cp D 1. ( T, - Ts. ), 

QE =/0,L v  De  (0.622 P )(e, - e s ), 

- bulk exchange coefficient for sensible heat, 

air temperature, 

- snow surface temperature, 

DE — bulk exchange coefficient for latent heat, 

P, — air pressure, 

e, - vapour pressure in air, and 

- vapour pressure over ice. 

6 2 

63 



There is general agreement (Sellers, 1965 and Anderson, 1976) 

that under near neutral conditions when the change of temper-

ature with height approaches the adiabatic lapse rate: 

where Dm  , the bulk exchange coefficient for momentum can he 

described by: 

( k 2  u ) / [ 	( z / z 0  )] 	 65 

and 	- Von Karman's constant, 

u - wind speed, 

- height, 

also 	- roughness coefficient. 

Under normal melt conditions either neutral or stable conditions 

exist where the air temperature equals or exceeds the snow 

surface temperature. An expression applied to describe the 

dampening effect of stable conditions upon turbulent exchange 

pursuing the work of Price (1977) as reported by Moore (1983) 

is: 

= D, /(1 + a Ri ). 
	 66 

The constant (a) •was given a value of approximately 10 and the 

Richardson number (RI) may be approximated by (Price, 1977): 

Ri = [ g/T,] [ T, /u1 

where g - gravitational acceleration. 

This represents a mechanical energy rate for turbulent motion 

expressed as a ratio of free or naturally corrected bouyancy 

• forces to forced or inertial forces. Neutral conditions are 

represented when 'Rd< 0.012 so that: 

Ds  = Dm 	 68 



and stable conditions when the Richardson number is positive 

(Rosenberg, 1974) . , 

Central to all approaches in the estimation of turbulent 

exchanges is the wind profile term. For any height, the wind 

speed can be written in terms of the logarithm of the height 

-and a constant (f) (Sellers, 1965; Holmgren, 1971): 

u = f ln (z/z.). 	 69 

This relation assumes that the wind speed approaches zero at 

some non zero height ( 0 ). The constant (f) is a function of 

the rate of lateral momentum and the density of air so that, 

f = ( /k ) (7-/pc„ )c-  , 

where 'T - vertical momentum; 

alternately 	f = u*/k, 

and 
	

friction velocity; 

finally 	u = ( */k) in (z/z.). 

The roughness length (z.) may be calculated from: 

7, 0  = exp [ (u* in z)/k] • 

For practical snow hydrology, vertical momentum (7) has been 

considered constant with wind speed (u) at any height ( ) . 

Expressing the bulk exchange coefficient in terms of vertical 

momentum: 

D m  = (7-/p c,)(1/u), 	 7 14 

where 
	 75 

Rearranging Equation 71 in terms of the square of the friction 

velocity: 

*2  = (k 2 u2- ) / [in (z/z.)] 
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75 
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Substituting Equation 75 into Equation 73 the bulk exchange 

coefficient for momentum in neutral conditions is described by 

(Equation 65): 

Dm  = 	u)/ [in (z/z o )r. 

The bulk transfer coefficients have been given many Values by 

different investigators ranging from 1.06 x 10 	in-3 0 C"  for 

D H  (Hicks and Martin, 1972) and 2.17 x l0 	tn-3  Pa- ' for DE 

(6-anger, 1977) to 15 x 10 	.m:5° C"(D,) and 25 x 10-  kJ rn -3  

Pa-1  (D E ) (Gold and Williams, 1961), as reported by Male and 

Gray (1981). 

Recently, Kondo and Yamazawa (1986) investigating the bulk 

transfer coefficients for drag and sensible heat over snow 

found only a small dependence on the friction velocity ( *) 

and geometric roughness of the surface (z.). They suggested 

that for all'practical purposes a constant value could be 

assumed for the coefficient's -  so that at a reference height of 

1 metre, D, = 2.0 x 10 	ril-3 ° C -1  and DE = 2.1 x 10" kJ ni-3  Pa'. 

A study of the various investigations suggests that each value 

remains unique to the conditions prevailing at the time, and 

consequently the bulk transfer coefficients should he calculated 

afresh for each new meteorological situation. This would involve 

applying Equations 65, 66 and 67 to calculate D, and D E  using 

• u, .z and u*. 

The bulk aerodynamic models (Equations 62 and 63) discussed to 

date are one .dimensional and do not consider the conditions when 

moist warm air is advected over a snow field. Advection may be 

s aid to be significant when isotherms and surface wind stream-

lines intersect. Treidl (1970) studied the advection of warm 
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air over a snow surface during a nine hour passage. He noted 

that the heat of air advected into the area was reduced until 

the temperature of the air reached 0
o
C. The resultant loss in 

the snowpack implied that the heat advected into the area was 

used largely for melt. 

Weisman (1977) addressed this problem by creating a. two dimens-

ional model. A steady turbulent flow of moist warm air was 

assumed passing over flat bare homogenous ground to a flat 

homogenous snow surface. Net  radiation was taken as constant 

over the snow field and .minor terms in the energy balance 

ignored, so that only sensible and latent heat were examined 

for changes in space. The melt at the leading edge of the 

snow field was seen to decrease by one third in the first 

fifteen to twenty-five metres and thereafter • according to the 

power law. However, air temperature was observed as only • 

changing gradually and Weisman suggested that in the light of 

this, one dimensional measurements in the centre of a snow 

patch would suffice for the turbulent exchanges. 

Observations in mountain areas do not usually find steady 

turbulent flows, flat homogenous terrain or even a fetch (200 m) 

adequate for measurements at a height of two metres (Sellers, 

1965). Reservations should be exercised in viewing the results 

of the turbulent exchanges in all the models discussed under 

such conditions (Prowse and Owens, 1982). 

Consideration Of the latent heat flux should include the two 

possible exchanges which may occur. These are sublimation or 

evaporation and condensation. The former will lead to heat toss 

from the pack,whilst the latter needs to be considered for two 
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cases. Weisman's (1977) study considering warm moist air 

illustrated heat gained by the snow through condensation. 

However when condensation occurs at sub zero temperatures, a 

frequent event in temperate latitude snowfields, the resulting 

hoar frost contributes to the snowcover. 

THE GROUND FLUX  2.4 

• The problem of accurately measuring heat flux from the ground 

under varying snow conditions has yet to be solved (U.S.A.C.E. 

1956). For short periods of time, less than a week, the 

literature suggests that energy received by the snowpack rrom 

this source is insignificant (Male, 1980). This may not he so 

if the snowcover is shallow enough (-(50 mm) to allow incoming 

shortwave radiation to penetrate through the snowpack to the 

ground. Over a season the ground flux is likely to offer a 

small but significant heat flux to the snowpack to assist in 

melt. This heat conduction is given by Male and Gray (1981) 

as: 

Q. = -h a Ts  / a z , 	 77 

where 	T9 - ground temperature, and 

h - thermal conductivity of soil. 

Thermal conductivity values range from 0.4 to.2.1 W m., 	C 

for silt and clay soils to sand at 0.25 to 3.0 W 
	O c  - 

depending on density and moisture. Values of Qc„ available 

for snowmelt over a 24 hour period have been noted as 

270 kJ m -.2- 	(U.S.A.C.E., 1956) With values as high as 

860 kJ mc.2  e by Gold (1957) at Ottawa. 

The difficulties of ascertaining heat flux and water movement 

under snow covered ground lie in the changing phase of the 



ice/water content or the soil. Whilst under a deep snowpack 

conditions might be stable, under, a shallow snowpack freeze/ 

thaw conditions may exist on a daily basis Barry, 1981). 

THE FLUX OF HEAT FROM RAIN  2.5 

The energy received by a snowpack from a rain on snow event 

can be considered for two cases: 

(i) Rainfall on a melting pack where the rain does not 

freeze. 

Rainfall on a pack with a temperature helow 0 ° C where 

the water freezes and releases its latent heat of Cusion. 

The temperature for falling rain is usually taken as the wet 

bulb temperature and the equation offered by Male and Gray 

(1981) for the heat flux is: 

/0, Co. (Tr  - T5  ) Pr  /1000, 	78 

in which PL. - density of water, 

Cpi - specific heat of water, 

Tr  - temperature of rain, and 

Pr - depth of rain. 

Taking the density of water as 1000 .kg mb  and the specific 

heat of water as 4.2 kJ kg. 
o

" C , the equation reduces to: 

= L1.2 T r  Pr 	 79 

The second case is more complicated as rain falling on a 

freezing pack will release energy on freezing at the rate of 

333.5 kJ kg' (latent heat of fusion). The temperature of the 

snow will rise according to the specific heat of snow, 

2.1 kJ 'kg" until melt is reached at 0 °Cwhen water will 

penetrate the pack. 
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Rain on snow events are common in mountainous areas but McKay 

and Thurtell (1978) did not find this term dominant. In New 

Zealand (and Tasmania) under warm, moist north westerly 

conditions Fitzharris et al (1980) suggested that under 

exceptional conditions, the temperature and extent of the 

rainfall could offer sufficient heat to dominate the energy 

balance for snowmelt. 

INTERNAL ENERGY  2.6 

When considering the energy balance over deep snowpacks, the 

magnitude of the internal change has been found small enough 

to he ignored (Treldl, 1970). 

The shallow snowpack ( 250 mm. depth)experiences diurnal cycles 

• of melt and freeze throughout the pack. In deep snow, this 

only occurs in the upper layers. Each change from freeze to 

thaw to freeze implies a change in internal energy as phase 

changes occur in the water cycle. During .  daytime melt there 

is-an excess of. energy in the energy balance which must be 

lost before freezing can occur. The pack cools primarily due 

to longwave radiation emission at night. Again, before melt 

can proceed, the energy balance must indicate the excess of 

energy •necessary r.or water to move freely through the pack 

.after it has been primed for melt. 

The phase changes of water through solid, liquid and vapour 

generate the internal energy of the pack. Male and Gray (1981) 

suggest: 

= d 	C 'Pi 	i0 L, 	p v  Cpy ) 
	

80 

where 	d - depth of snow, 

- density 	snow, 



Cp - specific heat. 

Tm  - mean snow temperature, and. 

and v refer to - ice, liquid and vapour. 

In the equation, if the air in the snowpack is assumed to 

have 100% humidity, the term for the vapour phase becomes 

small enough to be disregarded. In addition, during freeze 

cycles the liquid term goes toward zero so that the equation 

reduces to: 

= d ( /0; 	) lm 
	 81 

This simple expression is not easy to apply in the field. 

Only microwave methods in remote sensing technology are 

available to measure ice and free water content (Goodison 

et al, 1981). For more detailed work calorimetry has to be 

pursued which is cumbersome and slow. 

Male and Granger (1979) indicate that discrepancies between 

observed and calculated melt in shallow packs where the energy 

balance is used, may be attributable to errors arising from 

the internal energy term. 

SNOWMELT 

When the energy available for snowmelt, represented by the 

term (QM ) has been determined, the ensuing snowmelt may be 

calculated using the following expression from Male and Gray 

(1981): 

82 

where 	M 	- snowmelt water equivalent, 

L. 	- latent heat of fusion, 
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/4 - density of water, and 

- thermal quality of the fraction of ice in 

a unit mass of wet snow. 

The latent heat of fusion is 33305 kJ kg" and for normal 

conditions the density of water is 1000 kg m -3  . The equation 

may now be reduced to: 

M = QM / (3335 B) 	 83 

The thermal quality may be determined from: 

B = 1 - Wf , 	 84 

• in which lq - free water content of a unit mass of wet snow 

(expressed as a decimal 

The free water content may be between ..03 and • 14 although 

values at the lower end, .03 to .05, are more common as 

representative of water held by the pack against water in 

free drainage through the pack. 



CHAPTER 3 

DATA ACQUISITION 

CLIMATE 3.1 

Temperature and Relative Humidity 3.1.1 

Wet and dry bulb thermometers manufactured by Dobbie with 

ranges of -30 to 50 °C were used in a Stevenson screen to 

measure air temperatures. Dobbie maximum and minimum 

thermometers, model numbers 4425 and 4430 respectively, 

were also used. The maximum thermometer-had a range 

between -30 and 55 °C whilst the minimum thermometer was 

-45 to 50
o
C. The stated accuracy for all the thermometers 

by Dobbie was ±0.2 °C and their graduations were to 0.5 °C. 

A Dobbie HI-Q seven day thermograph was also installed in 

the Stevenson screen. The range of the instrument was 60 °C 

with an accuracy of ±1%. 

The relative humidity was calculated using the dry bulb in 

conjunction with the wet bulb depression and standard, 

meteorology tables (List, 1968). Temperature and relative 

52 
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humidity were also measured with a Phys-Chemical model 201 

sensor which gave 2 millivolt signals and was interfaced 

to a Campbell Scientific CR21 Micrologger. The printed 

board contained a PCRC-11 RH sensor which had a ±1% 

deviation error, a range of 10% to 97% and a Fenwal 

UUT-51J1 thermistor for temperature with a calibrated 

. 	+ o  o 
error within -0 1C between -35 C and 4 o 

8C. 

Wind Direction and Speed 3.1.2 

Wind velocities were measured using hand held instruments 

as well as a sensor attached to the micrologger. The hand 

held instrument was a Davis 'Wind Wizard' anemometer. The 

graduations were to 0.5 ms -' with an accuracy of 0.4ms" 

The instrument was magnetically dampened and had an 

oscillating paddle settled on sapphire bearings with a 

gold plate spring balance. It was light and compact 

measuring only 60 x 60 x 20 mm. Wind speed was also 

monitored using a Met One, three cup anemometer. As the 

cups turned, a magnet-reed switch initiated a series of 

pulses through the contact closure at each revolution, 

which was proportional to the wind speed. The range of 

operation was 0.5 to 60 ms' with the lower threshold at 

0.5m 	and an accuracy of ±1.5%. 

Manual estimates of wind direction were made from an 

intimate knowledge of local mapping and topography. 

Occasionally a Silva pocket.  compass with graduations of 

100 was used to verify the direction. Data was only 

required to 45 0 
 (i.e. S,SW,W, etc.) of azimuth. A Met-

One wind vane was used for wind direction. The vane 

drove a potentiometer which produced an output varying 
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according to the direction of the vane. It had an 0.44 m s" 

lower threshold with an accuracy of - + 5 o  

Precipitation 3.1.3 

Precipitation was measured using a 25 mm standard raingauge 

bucket for manual observations. In addition a tipping rain-

gauge bucket accurate to ±0.5 mm was attached to the micro-

logger. For each tip of the bucket, 1 mm of water was 

measured and a pulse initiated to the micrologger. Four 

snowstakes recorded snowfall in the vicinity of the 

Stevenson screen. They were graduated in 5 cm divisions 

and a vernier was used to interpolate to .1 cm. 

Solar Radiation  3.1.4 

Incoming solar radiation was observed with a Li-Cor 200S 

pyranometer which is essentially a silicon photodiode. A 

second similar pyranometer was installed downward facing 

gain the net shortwave figure. These pyranometers were 

calibrated to deliver 6.55 and 6.61 mV.k1V -i m' a  respectively. 

The net longwave radiation was also available by comparing 

the net shortwave result with the net allwave radiation which 

was measured as well. The 200S pyranometer offered a signal 

normally between 6 and 9 millivolts for each kilowatt per 

square metre of shortwave radiation energy received. 

Calibration was against an Eppley PSP Pyranometer with an 

accuracy -6%. The relative spectral response was in the 

range of 0.4 to 1.2 microns peaking at 0.95 microns and 

reducing to zero at either end of the range. Great care 

was taken to ensure that the radiation sensors in particular 

were level. 
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A Fritschen type net radiometer (Model 3030) was used for 

allwave net radiation, with a calibration of 5.30 mV.kW -1 11( 2 . 

The spectral response ranged between 0.3 and 60 microns with 

a -2% accuracy against a factory standard. The emittance of 

a millivolt signal was in response to the temperature differ-

ences of two blackened plates with one facing up and the 

other down. The thermal contact between the plates was made 

by alternate junctions of a manganin-constantan thermopile. 

A protective dome of polyethylene covered each plate. 

SNOW 3.2 

Depth Measurements 3.2,1 

Methods of ascertaining snowcover characteristics vary from 

remote sensing to field stakes. Remote sensing was initially 

considered but rejected as not suitable for the purpose. The 

skifield area is only 13 hectares and the combination of 

specific dates and necessary resolution was not available in 

1981. Depth stakes are commonly used (Goodison et al, 1981) 

and 43 sites were chosen in the skifield area as detailed in 

Figure 3.1. The probe positions were fixed by attempting to 

encompass all types of ground including bushes, grasses, 

rock domes and gullies found along each ski tow. It was not 

possible to erect permanent stakes because of their danger 

to skiers. A portable depth probe was made of an old ski 

stock, graduated in 1 cm divisions. A 10 metre electrical 

conduit tube was used to sound the deepest drifts. 

Positions for the depths were taken by cross bearing and 

• transit from the ski tows. Where the surface of the snow. 



1 
Rock 

.Vegetation 

Commercial Dwelling r-]  
d1Private Dwelling 	l•  

Village Dam 

.FIGURE 3.1 	Snow depth and photographic sites on the 

Ben Lomond Ski Field. 

TOWS are numbered at their bases (1 - 7) whilst the 

photographic site is marked (C). 

The snow depth sites are numbered 1 to 43 and • represents 

the meteorological station. 

Source: Lands Department aerial map of Legges Tor, 1980. 

56 



57 

was smooth, every attempt was made to read depths to the 

nearest centimetre. However, if the surface was rutted 

(through skiing) the depths were averaged to the nearest 

5 cm for some practical solution. Various workers including 

Taylor (1953) and Bilello (1966) did not offer any guide-

lines in this area. 

Areal Measurements 3.2.2 

Aerial photography was Initially considered for the purpose 

of recording the areal snowcover (Sporns, 1976) but rejected 

on financial and operational grounds. Instead a series of 

photographs was taken on the 22nd and 28th September, and 

6th of October. The photographs overlapped and the site 

from which they were taken (Figure 3.1) encompassed a view 

of the entire skifield from an outcrop of rock facing the 

skifield slopes. Strip pictures of the total skifield 

were composed by putting the photographs together. Data 

from the photographs were supported by fieldwork observat-

ions and measurements. 

Mapping and Snowcover 3.2.3 

The first maps for this study were constructed on the base 

of the excellent aerial survey by the Department of Lands 

on 12th of April, 1980. The primary details required were 

the tow positions and ground cover, in particular dolerite 

domes. Legges Tor was used as a survey point. 

The aerial photograph was enlarged using a photocopier until 

a scale of 1:1500 was achieved. 	The copy was used as 'a 

base to draw the maps of the skifield area in terms of 
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groundcover. Details of flora were omitted from the maps 

showing Snowmelt patterns for the sake of clarity. 

Data from areal and depth studies of the snowcover for each 

of the three days in 1981 mentioned earlier in this chapter, 

were mapped on perspex overlay sheets superimposed on the 

1:1500 maps. These were then reduced to a format suitable 

for A4 presentation. 

The tow built in 1985 (Bill's) was not included in the 

aerial photograph or the mapping of the snowcover. However, 

it was marked on the descriptive maps of the area (Figures 

1.3 and 1.4). 

Snow Density 3.2.4 

Apparatus for measuring the density of snow was made. 

according to ideas from Seligman (1936), the U.S. Army 

Corps of Engineers (1956) and Kojima (1966). Two portable 

scales were used depending on the distance involved in field 

work. A Salter 200 gm spring scale with 2 g. graduations 

was portable and accurate (±2 g ) when checked in the 

laboratory. A small-Ohaus electronic balance (C200) was 

also used with a readout to 0.1 g and a range of 254 g . 

Laboratory checks indicated a field accuracy'of.±0.1 g . 

Two 100c2 tubes were used to collect snow samples for 

weighing. The first, an aluminium tube of bore 25 mm and 

wall 1 mm, cut very well through denser snow but did not 

perform well With new snow. Under these circumstances a 

density tube was cut from a sectiOn of plastio plumbing pipe 

of bore 35 mm and wall 3 mm. Each tube had one end serrated 



59 

for better penetration of the snowpack. Special cradles 

were made to allow easy handling of the tubes when weighing 

in slippery alpine conditions. 

The appropriate tube was screwed into the snow, the ends 

guillotined off and the contents weighed. A direct measure-

Ment .  of the density of the snow was possible with an accuracy 

of ±i20 kg m-3. 

The inside of the tubes was sprayed with a hydrophobic 

agent and polished to assist in a clean sample of sr-lbw being 

taken in particular in new, damp snow Which has a putty-like 

character and is made sticky by the crystal shape. 

Albedo 	3.2.5 

The albedo of snow was calculated using the formula from 

chapter 2: a = K17K1  (42.). The values, were obtained 

from two Li-Cor 200S pyranometers described in the solar 

radiation section of 3.1, one of which was mounted facing 

upward for the incoming shortwave radiation and one facing 

down for the reflected component. 

Temperature  3.2.6 

Snow as well as soil and groundcover temperatures were taken' 

with a Kane-May model 3002 thermocouple probe which had a 

range from -50oC t o 200
oC. The accuracy of the instrument 

+ 	o was stated as -0.02 C and a digital reading was possible to 

0.1 °C. The probe length was 30 cm and the instrument was 

battery powered. The instrument was checked at 0 °C each 

week in an ice bath in the Australian Maritime College 

laboratory. 
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Free Water Content  3.2. 

Kojima (1966) indicated that using calorimetry to determine 

free, water content was the most accurate method. It is 

limited in application to large areas but thought suitable 

• for this small study. Ordinary thermos calorimetry was used 

and details are shown in .Appendix 4 The instruments for 

calorimetry included the density tube, thermocouple and 

electronic scale described previously in this chapter. The 

calorimeter was a wide necked 750'ml thermos flask and a 

portable 'Gaz' stove heated the water. 

ASSEMBLAGE OF DATA 3.3 

Instrument Location and Height 3.3.1 

A meteorological station comprising the Stevenson screen 

contents and raingauge had been established by National Parks 

and Wildlife personnel prior to 1981. It was north of the 

Day hut and east of the foot of tow number 7, at an altitude 

of 1460 metres. The automatic weather station,, which 

comprised a Campbell Scientific CR21 micrologger and several 

meteorological sensors mounted on a galvanized iron mast, 

was sited within five metres of the meteorological station. 

Their combined position' is marked on Figure 3.1. All air 

temperatures were taken at a height above the ground of 

1.2 metres. The wind vane and anemometers on the micro-

logger were at a height of'3 metres as were the sensors 

for solar radiation. 
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Duration and Frequency of Observations  3.3.2 

Records have been kept constantly during the winter months 

on Ben Lomond from the 1st of June to the 30th of October 

each year during the period 1981 to 1986 inclusive. The 

frequency of observations taken manually, which were in 

accordance with the Bureau of Meteorology (1984) guidelines, 

are recorded in table 3.1. Data recorded automatically were 

logged every ten seconds. 

Table 3.1 
	

FREQUENCY OF MANUAL OBSERVATIONS 

Observation Frequency 

Wet bulb temperature 9 a.m. 	3 	p.m. 

Dry bulb temperature ' 9 a.m. 	3 p.m. 

,Relative humidity 9 a.m. 	3 p.m. 

Wind direction 9 a.m. 	3 p.m. 

Wind speed 9 	a.m. 	3 	p.m. 

Precipitation 9 	a.m. 	3 	p.m. 

Cloud 9 	a.m. 	3 	p.m. 

Maximum daily temperature 3 p.m. 

Minimum daily temperature 3 	p.m. 

Rainfall 3 P.m. 

Snowfall 3 P.m. 

Thermograph air temperatures Every 7 days 
_ 

The records of all manual observations persisted throughout 

the six year period from 1981 to 1986. However, the duration 

of records for solar and allwave. radiation was only possible 

after the micrologger system was installed in 1983, summar-

ized in Table 3.2. 
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On dayS selected for energy balance modelling, a temperature 

profile of a vertical column extending from 30 cm below 

ground level to 1 metre above the snow surface (Table 3.3) 

was taken every 3 hours. In addition at least two sets of 

.measurements of snow albedo, density and free water content 

were made near the meteorological station. 

Table 3.2 
	

DURATION OF RECORDS 

1981 	1982 	1983 	1984 	1985 1986 

Manual records 

Automatic records 

' 	Global radiation 

Net shortwave radiation 

Net allwave radiation 

A summary of the duration of records of meteorological 

data. 

Table 3.3 	TEMPERATURE PROFILE 

Medium Depth/Height 

Air 

Air.  

Snow 

Snow .  

Ground 

Ground 

1 metre 

1 	cm 

1 	cm 

1 	cm 

1 	cm 

30 cm 

above the snow surface 

above the snow surface 

below the snow surface 

above the ground 

below the ground 

below the ground 

A description of the relative heights and depths 

of the temperature observations in a column of 

air, snow and soil, after Sellers (1965). 
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Difficulties  3.3.3 

The problems experienced with the riming of instruments 

have been reported since last century (Buchan, 1890) by 

observers in alpine meteorology. Snowfall and heavy frosts 

on Ben Lomond have caused the Stevenson screen and automatic 

weather station to become covered in ice many centimetres 

thick. Rainfall monitoring was so badly affected by icing - 

that no reliable records are available for the period 1981 

to 1986. Poor data arising from other instruments icing up 

was not included in the climate summary given in Chapter 

One. 

A further problem with the net radiometer was internal 

condensation. This was reduced to some extent by silica 

gel on the intake tube. Blown air or a heating ring could 

not be used due to lack of power and restricted access. 

prevented the use of compressed air bottles. 

The automatic weather station was completely out of action 

for two days in 1985 due to vandalization; however, records 

• were retrieved intact for the preceeding period. During 

severe spells of cold weather, the cassette tape used for 

permanent record storage with the CR21 micrologger became d 

poor receptor and data retrieval was a delicate matter. It 

was suggested by technicians at the Australian Maritime 

College that this was possibly due to a change in tape 

stretch. 

Processing 3.3.4 

Vapour pressure was not measured directly but calculated from 

.air temperature and relative humidity using the formulae- 
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detailed in Appendix 4 	Atmospheric pressure was extrap- 

olated from readings taken at the Australian Maritime College 

meteorological station (altitude 40 m). A rate of reduction 

in pressure due to altitude was realized after 50 trials 

yielded a mean of 1140 Pa100 in -' with a standard deviation 

of 2: 30 	Pa. 

No compaction rate was allowed for in the spring snow depth 

measurements. Commonly fresh snow has a density less than 

200 kg 141 -3 	As the snow ages and metamorphosis occurs, the 

pack compacts and density can increase over several days to 

around 400 kg II1 -3  (Bilello, 1966). Spring snowfall on Ben 

Lomond is uncommonly wet and dense with readings within 

24 hours of snowfall varying between 380 and 440 kg m 3 . 

Measurements of snow density in 1981 did not show anymore 

denSification during the three weeks of snow melt observed 

and therefore no compaction of the snowpack. 

The CR21 micrologger in the automatic weather station 

scanned the sensors every 10 seconds, logging the data and 

eventually processing it in a variety of programmes detailed 

in Appendix /4 • A suite of input programmes converted 

the signals received from the sensors to engineering units, 

e.g. mV toW 114 -2" 	The readout was to the fourth decimal 

place, often implying a greater accuracy than the sensors 

could deliver. 

Output programmes were written for hourly, six hourly and 

daily analysis. Data processed for the hourly input was 

intended for use in the energy balance equation for snowmelt 

whilst the six hourly programme was written primarily for the - 

purposes of snowmaking so that factors of temperature, 
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relative humidity and wind were of importance. The daily 

analysis for meteorological records included maximum and 

minimum air temperatures In addition to total precipitation 

and other averages described in the programme outline in 

Appendix 4. 

The study of the climate of Ben Lomond incorporated both 

manual and automatic records, for temperature, wind, precipit-

ation and fallen snow data between 1981 and 1985. 

Temporal and spatial investigations applying the energy 

balance to snowmelt were pursued in 1985 and 1986 following 

-the installation of a net allwave radiation sensor linked to 

the micrologger. Automatic records were the primary data 

source whilst manual records were searched for data pertaining 

to cloud, precipitation, fallen snow and thermal soil regimes. 

Net  radiation data was applied directly to temporal analysis 

whereas spatial variations required both upward and downward. 

shortwave radiation data as well. 

Initial observations in spatial variability in snowmelt 

commenced in 1981 and concluded in 1986, although the main 

study was in 1981. These observations were confined to 

fallen snow and called on manual records for data in areal 

and depth analysis as well as free water content, density 

and crystal characteristics. 



CHAPTER 4 

RESULTS 

TEMPORAL VARIABILITY  4.1 

Introduction 4.1.1 

The energy available for snowmelt was calculated using the 

energy balance approach which required meteorological data. 

The model used for calculation is detailed, followed by the 

application to four common synoptic regimes. Finally a time 

series was constructed so that an investigation of the daily 

values for the dominant components of the energy budget for 

the winter months could be made. In addition, the calculated 

daily melt was set against selected weather parameters for 

analysis. 

Calculation of the Heat Balance  4.1.2 

As detailed in Equation 2 , the energy budget for the 

melting snow can be described as 

Qm = 	+ QM 	QE. 	QG 	QP + Qi 

Daily values for each of the above terms were either 

66 
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measured or calculated from daily meteorological data. 

Qp, (4 and Qx are shown to contribute less than 6% of QM  in 

the heat balance of the four common synoptic regimes (section 

4.1.3). Therefore, they were not included in the estimation 

of the energy balance time series. 

(a) Net radiation: This was measured directly using the 

Fritschen type net radiometer which was described in Chapter 

3. Hourly averages from the Campbell system CR21 micrologger 

were summed to yield a 24 hour daily value. 

(b) Sensible and latent heat fluxes: Bulk aerodynamic 

formulae were used for both sensible and latent heat fluxes. 

Applying Equation 62, calculations for the former were 

expressed as 

Q, = 1o Cp DH (TCL  TS) .  

Values for the density of air go ) were taken from standard 

meteorological tables (List, 1968) whilst the specific heat 

of air at constant pressure (Cp) was given a value of 

1 kJ kg" K . A mean air temperature (T..) was obtained as 

the average of a 24 hour value from the thermist'or linked to 

the micrologger. The snow surface temperature (T,) was taken 

as 0 0C under melt conditions (U.S.A.C.E., 1956). However, 

•under freeze day conditions (see Chapter 1) the mean daily. 

snow surface temperatures were measured and applied in the 

above relationships. 

The latent heat flux was described using Equation 63 where 

QE = pa L, ID, (0.622 13...)(e 	- e 5 ) . . 

The latent heat of vaporizationof water (W was taken as 

2500 kJ kg 	for melt conditions while the vapour pressure 
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at the snow air interface (e s ) was established by assuming 

that the air in contact with the snow was saturated. The 

standard meteorological tables for saturated vapour pcessivre 

over ice (List, 1968) were then consulted to obtain a value 

of 6.1 hPa when the temperature at the interface was zero. 

The vapour pressure of air (e,) was computed from the hourly 

average air temperatu7e and relative humidity and summed for 

the day as described in Chapter 3. The air pressure (P,) 

was a 24 hour meanfigure extrapolated from readings at the 

Australian Maritime College (Chapter 3). 

The exchange coefficient varied according to atmospheric 

stability so that applying Equations 64 and 65 under neutral 

conlitions (Prowse and Owens, 1982; Sellers, 1965): 

= DE 

and 	Dr.; =(kz u)/[1n (z/z )J 2- * 

Von Karman's constant (k) was taken as 0.4 (Businger, 1973) 

and the height (z) at which the wind speed was read was 1.2 m. 

The roughness parameter (z.) accepted was 2.5 x 10-3  m 

(Sverdrup ., 1936) whilst the wind speed (u) was calculated 

as a 24 hour average from Li-Cor cup anemometer measurements 

(Chapter 3), 

When a normal melt situation prevails, the air temperature 

exceeds the snow temperature and stable conditions exist 

(Barry, 1981). The stability adjustment to the exchange 

coefficient was given as a function of the Richardson number 

• described by Moore (1983) and Price (1977) in Equation .66 as 

.= D m  /(1 + aR; ) 
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Under unstable conditions the transfer coefficients were 

calculated from 

Du  = D m  /(1 - aR;) 	 85 

where the constant (a) was given a value of 10 (Price and 

'Dunne, 1976) and the Richardson number (RI) was described 

(Equation 67) by 

; =[g/T,( °10].[T(?c) z/A. 

(c) The ground heat flux: Calculations for heat conduction 

from the ground used the expression from (Equation 77): 

Q.;  = -h 	Piz 

where the thermal conductivity of the soil (h) was taken as 

.10 -1 
1.2 . Wm C 	(U.S.A.C.E., 1956). Temperatures were measured 

at the meteorological station at depths that were 1 cm and 

30 cm below the ground surface. Measurements were averaged 

every other day during July, August and September between 

1983 and 1985 with observations taken 'every 4 hours. 

Observations showed that the ground was frozen under snow at 

night during the study period. It was not possible to insert 

the probe under such conditions and therefore it was assumed 

that the heat flux to the snow was negligible. Similar results 

were assumed when the pack was below zero since the ground was 

nearly always frozen under such circumstances. Neglecting 

• this term under these conditions was felt justified since it 

has been shown (Table 4.2) that even under strong melt 

conditions the soil heat flux did not exceed 1% of.the total 

melt energy. 	 • 

(d) The flux of heat from rain:  The energy received by a 
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snowpack from a rain on snow event was only considered for 

the situation when rain was falling on a melting pack and 

freezing did-not occur. Equation 78 describing the heat 

flux is: 

Q p  = 	Cpi (Tr  - Ts  ) Pr  /1000. 

The density of water (,/oL)  was taken as 1000 kg M -3  and the 

heat capacity (Co.) to be 4.2 kJ kg °C -1  . Now taking the 

temperature of rain as the wet bulb temperature (T,) 

(Fitzharris et al, 1980) and expressing it in °C, whilst 

keeping the snow surface temperature (Ts) at 0 °C and 

expressing the daily aggregate rainfall in mm, Equation 79 

is: 

= 11.2 Ty. Pr  . 

(e) Internal energy 	Under non freezing conditions the 

exchange of energy due to water phase changes within the 

pack (Equation 80) is: 

= d (70; Cpi +,0,C 	+ fiCpv )Tm . 

This investigation considered the melting snowpack when the 

mean internal temperature (Tm ) was taken as near zero (Male 

and Gray, 1981) and the pack primed for melt. Under these 

circumstances, if the air in the snowpack was assumed to have 

WO% humidity, the vapour phase ( 10,Cpv ) became small enough 

to disregard. With the liquid term (/),Cpt. ) at zero, the 

expression reduced to only consider snow depth melt loss 

(d) in metres, against the temperature and ice term (p ; Cp; ) 

so that (Equation 81 ) became: 

= d (f); Cpi ) Th, , 

where the -specific heat of ice Cei 	was taken as 
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2.115 + 0.00779T kJ kg' and snow density ( , o ;  ) measured with 

the snow density tube described in Chapter 3 had a mean value 

of 380 kg m-3  . 

Synoptic Weather Regimes 4.1.3 

Light (1941) addressed the problem of predicting high melt 

rates in snow from specific meteorological events. Factors 

of high air temperature, humidity and wind velocity were all 

deemed important, and the situation when warm moist air was 

advected over the snowfield Investigated. Triedl (1970) and 

Weisman (1977) looked at similar synoptic events whilst McKay' 

and Thurtell (1978) compared advebtion of warm dry air with 

a stable air mass for snpwmelt terms that dominated the energy 

balance. 

Prowse and Owens (1982) and Moore and Owens (1983) were 

involved with smaller snow fields in New Zealand and noted 

the effects of regional advection when winds exceeded 5  m s 

against advection induced by heating of local valleys when 

winds were less than 5 m s . 

High snowmelt had been observed on Ben Lomond, when north 

west winds advected warm air into the region under both 

cloudy and clear conditions (Figures 4.ia and 4.1b). 

. Excessive snowmelt had also been found when a warm airmass 

with a small pressure gradient prevailed, particularly when 

accompanied by local advective conditions (Figures 4.1c and 

From the above discussion it was decided to partition the 

synoptic events into four dominant types as they would affect 
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FIGURE 4.1a 	 FIGURE 4.1b 

FIGURE 4.1c 

FIGURE 4.1 	Synoptic situations representative of the events 

described in section 4.1.3. . 

The synoptic charts are published with the kind permission of 

the Examiner, Launceston. 
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melt. Furthermore it was assumed that a particular weather 

type would persist for the entire day. Table k.1 lists the 

four categories considered. All have been denoted as 'warm', 

that is with a mean air temperature greater than the monthly 

mean. 9am and 3pm cloud observations, were used to define 

the days as cloudy or clear. In actual fact, in this 

mountain environment, days denoted as cloudy were nearly 

always overcast, with mountain cloud or uphill fog dominating. 

Clear days were typically less than one tenth cloud cover. A 

threshold mean daily wind speed of 5ms was used to separate 

regional from local advection. 

The daily energy balance (Equation 2) was resolved for the 

horizontal snow surface at the meteorological station and 

the results of 5 days of selected observations averaged for 

the mean day for each selected meteorological situation. 

Event 1 was typical of light wind conditions dominated by 

a high pressure region over the north east of the state 

(Figure 4.1c). Under such conditions, net radiation was by 

far the dominating melting agent, followed by sensible heat 

and with a very small component from latent heat (Table 14.1). 

It may be observed that net radiation for events 1 and 2 

differ by approximately 10%. Inspection of incoming global 

radiation for these same days revealed a difference of 90% 

(4.2 MJrri l d-I  to 0.4 MJm-z cl -j  ). The variability in these 

differences may be partially attributed to an increase in 

longwave radiation which according to Paltridge (1975) is 

6 Jm -2 s -I  per tenth cloud cover. 

Similar meteorological conditions existed for event 2. 

However, whereas clear skies prevailed for the former, 



TABLE 4.1 
	

DAILY ENERGY FLUX TRANSFER 

Event 
* 

Q QM QE QP Q 9  R. Qm 

1 4.2194 1.2107 0.0520 0.0180 0.072 5.5931 

2 3.7979 1.5224 -0.1935 0.134 0.0660 5.3268 

3 4.7118 5.8342 -1.1843 0.0370 0.114 9.5127 

4 3.1969 3.9533 1.1914 0.194 0.0770 8.5356 

Mean daily values (MJ m' d') of energy flux transfers for 

selected synoptic events during snowmelt on Den Lomond 

where the events were: 

1. Warm.  and sunny with 

2. Warm and cloudy with 

3. Warm and sunny with 

winds > jm s'. 

4. Warm 

winds 

and cloudy with 

5m 

local advection and winds < 5 m s'. 

local advection and winds < 5 in s. 

regional advective conditions and 

regional advective conditions and 

-TABLE 4.2 
	

DAILY ENERGY FLUX TRANSFER 

Event 
* 

Q QH Q. Qp Qg Q. 

1 75 22 1 

0
 

 

1 1 

2 71 28 -4 1 /. 

3 50 61 -12 0 1 

4 37 /16 14 1 

Mean daily values of energy flux transfers expressed in 

. percentage, where each term was rounded to the nearest 

percent. 
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cloudy skies marked the latter event (Figure 4.1d). Although 

there was a decrease in heat supplied by net radiation for 

snowmelt, the term still dominated over sensible heat which 

was found again to supply a significant amount of energy 

(Table 4,2). Whilst some rainfall was experienced, the heat 

supply was less than latent or sensible heat with heat from 

the ground providing only 1% towards melt. The internal 

energy which was a very small component in event 1, was not 

measured. The majority of events 1 and 2 occurred in Sep-

tember when local advection due to the decreased boundaries 

of the snow field and increased heat budget in the surrounding 

countryside assumed mounting importance. 

Event 3 was marked by warm dry north westerly winds brought 

down from the continent marking the trailing edge of a high 

pressure region (Figure 4.1a). Under clear skies, this was 

one of two situations where sensible heat was found to exceed 

net radiation, whilst latent heat indicated a significant 

cooling of the pack through evaporation (Table 4.1). 

The warm and cloudy conditions associated with moist north 

westerly air being advected into the region as a front 

passed through was again marked by sensible heat being more 

important than net radiation for snowmelt in event 4 •  The 

heat received by the pack through condensation in the latent 

heat term exceeded the other 3 events investigated (Figure 

4.11)) whilst the flux of heat from rain was again of minor 

importance. 

Net radiation provided most energy for melt under warm 

local conditions, whilst sensible heat dominated when 
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regional advection was associated with warm north westerly 

air. Latent heat was seen to play a small but significant 

.role in the energy budget whist the remaining terms repres-

enting heat from the ground, rainfall or internal energy 

were regarded as of only minor importance. Days when the 

highest melt rates Were observed occurred under regional 

advective conditions when net radiation and sensible heat 

provided between 80% and 90% of the total energy available 

for melt. 

Time Series 4.1.4 

The three most important sources of heat for snowmelt have 

been reported as net radiation, sensible and latent heat 

(Male, 1980; Owens, Marcus and Moore, 1984; and Aguado, 

1985). Similar results have been found in this study, with 

heat from the remaining terms (the ground, rain and internal 

energy) providing less than 6.% of the total flux on average.

•The energy balance was reduced to three terms so that 

Qm = Q* + QH 	Qa • 	 • 86 

The daily totals were investigated for July, August and 

September 1986, these being the months when sustained snow-

cover was most likely found on Ben Lomond. Only intermittent 

snowcover was recorded during June and October. The results 

were then plotted for each month (Figures 4.2, 4.3 and 4.4). 

Snowmelt was calculated from the total energy flux using 

(Equations 82 and 83 ): 

= QM/3335B, 

where 	B = 1 -Wç. 
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The snow on Den Lomond was typically dense and wet with 

values for the free water content being between 0.04 and 

0.14. The two meteorological parameters which were selected 

for analysis with snowmelt were the mean daily temperature 

and wind direction. Seligman (1930, U.S,A.C.E. (1956), 

Male and Gray (1981) and many other workers in the field 

have indicated the importance of air temperature to snowmelt 

whilst discussions in the previous section have highlighted 

the part that wind direction had to play' in estimating snow-

melt. Daily mean values were graphed and displayed over a 

monthly time scale (Figures 4.5, 4.6 and 4.7). 

High melt days were chosen as those exceeding 15 mm c1 -1  

arising from the sum of the seasonal daily mean of 104 mm (1 -1  

and the half standard deviation. It was these days that were 

of particular interest although all days for which data were 

available were plotted including those upon which no melt 

occurred. 

Missing data in Figures 4.2, 4.3 and 4.4 represent a 

malfunction of the micrologger. Zero ablation in Figures 

4.5, 4.6 and 4.7 is related to conditions where the energy 

available for melt (Equation • 86 ) indicated a heat loss by 

the snowpack- Stars represent days when energy Values were 

missing. 

.A barely discernible pattern was found apparent for all terms 

with values decreasing towards zero from the first week in 

July and then unsteadily increasing from the last week in 

August. Net  radiation continued to decrease throughout July 

despite the fact that the Shortest solar radiation was the 
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meteorological station on Ben Lomond for August, 1936. Stars represent 

days for which micrologger data were missing. 



6 

5 

--2 

SW NW NW 	NW SW SW S .  S SW SW SW 	 NW NW SW NW NW -NW NW NW NW SW SW W W NW 

WIND 

23 4 	5 	6 	7 	8 . 	9 	10 11 	12 	13 14 15 16 17 	18 	19 20 21 	22 23 • 24 25 26 27 	28 29 30 

DAYS OF THE MONTH 

FIGURE 4.7 Mean daily values for the wind direction and, air temperatures 

as well as snowmelt calculated from the energy balance at the 

meteorological station on Ben Lomond for September, 1986. Stars represent 

days for which micrologger data were missing. 



8 14 

21st of June. This decrease is undoubtedly due to increased .  

. cloud cover which arises as a function of the weakening and 

northward movement of the sub-tropical high pressure ridge, 

centred in summer around 400 south. This change is accompanied 

in winter by increasing intrusion of frontal systems over 

Tasmania. Lowest values are measnred in late July or early 

August when snow bearing clouds are most frequent. This 

period also encompasses the most frequent snowfall recorded 

for the year. 

The month of August saw HO discernible change in net radiation 

since the patern was highly variable.. With the onset of 

spring the combination of climatological factors and astro- 

nomic arguments marked a definite increase with time. The 
• 

.study had shown September,when spring occurs, to. be character- 

ized by a decrease in cloudiness and precipitation. 

Sensible heat gained by the pack occurred on only ten days 

in July as opposed.  to August, when this number of days was 

seen to increase to seventeen. It was only in mid-September 

that Qm consistently applied heat to the snowpack. This 

arose from warming regional and local advective conditions 

and a steadv. rise in air temperature. 

The contribution of energy for melt from latent heat during 

July and August was insignificant. These 'calculations must 

be treated with caution as temperatures often dropped below 

zero and heavy riming occurred on the sensor housing. 

Barton (1984) had noted the hazards of operating automatic 

• weather stations permanently exposed to heavy riming 

condition's. It was only in the second half of September 
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• that the latent heat term became an important component. 

During this period of early spring, heavy riming on the•

sensor housing became less frequent and a greater accuracy 

of data was assumed. 

During the early part of July, the ski field boundaries were 

relatively small and it was possible to see some local effect 

to the advective component in snow melt. Examples of this 

may be seen during high melt days accompanied by north-

westerly winds on the 2nd and 3rd of July. These days were 

. typically associated With a small ski .field area when local 

advection as evidenced by a high Q, value may be acting. As 

the season progressed the ski field area increased in size 

and localized advection was minimised. 

As Winter gave way to spring, increasingly warm air was 

brought in through regional advection. In addition the ski 

field boundaries were steadily reducing so that local 

advection could once more play a part in snowmelt. The 

importance of these mechanisms was highlighted on the 25th 

of September when both sensible and latent heat exceeded 

net radiation in providing energy for snowmelt. 

There were 54 melt days recorded during the three months 

with 17 of these designated as high melt days. These days 

occurred with increasing frequency as September progressed 

until the snowcover was no longer sustained. This pattern 

was reflected in the larger values recorded for net - 

radiation and sensible heat (Figures 4•4 and 4..7). North 

westerly winds were found associated with 9 of the 17 high 

melt days, with 6 of these 9 having winds exceeding 5  m s , 
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whilst no particular relationship appeared to link high melt 

days with high air temperatures. 

SPATIAI VARIABILITY 4.2 

Introduction 4.2.1 

As part of the study of snowmelt patterns, the energy balance 

was investigated for variations in space. There are two 

aspects to be considered. Firstly, the changes that occur 

in the energy available for melt with topographical variations 

within the ski field; secondly, the changing pattern of snow-

melt reflecting the results of the energy balance and other 

factors. These processes could include variations in the 

microclimate, altitude and groundcover. No specific attempt 

was made to relate the effects of skiing on snowmelt. 

Due to constraints in time, it was decided to observe the 

energy balance for one week only of the spring snowmelt in 

late September. The period chosen (25/9/86 - 2/10/86) included 

the reduction of the snowcover below 100%, so that some areas 

were clear of snow by the end of the week. If only one day 

had been observed, this reduction in snowcover might not have 

been representative of that single day. 

In the estimation of the energy balance, a point calculation 

of QM  was made at the meteorological station. All terms 

with the exception of Ce were applied across the skifield 

(Weisman, 1977; Male, 1980). Not radiation. , however, was 

resolved to allow for the variation in receipt due to the 

topography of the ski field. 
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A survey was made in the early spring of 1981 in the ski 

field area, to determine snowmelt patterns by measuring the 

areal and depth aspects of snowcover. Observations were 

made on the 22nd and 28th of September as well as the 6th 

of October, as this period included the reduction of the 

snowcover from 100% to 53%. 

Field work pursued information regarding surface as well as 

snow temperatures. The free water content and density of 

the snowpack was measured although no specific attempt was 

made to measure compaction rates (Taylor, 1953). 

Spatial Variation  in the Energy  Balance for Snowmelt 4.2.2 

Net radiation was adjusted for slope and aspect through 

application of the model of Nunez (1980). The solar radiat-

ion incident on a surface of arbitrary slope and aspect can 

be given as (Equation 39) (see Appendix 3): 

= I(1 - C L  )(1 - C„,)(1 - Ch )cos- + D c \TF +Kt, a(1 -VF) 

The reflected shortwave solar radiation component is a 

function of albedo and expressed as (Equation 41): 

K 1 	= 	, 

so that net shortwave radiation may be described as the 

difference between Equations 39 and 41. Similarly net long-

wave radiation is the difference between the upward and down-

ward components and pursuing the practice of Nunez (1980) is 

(Equations 53 and 46): 

	

L* = [(5.31 x 10 	+ 6.0n) VF +€0- 04(1 - VF)] 	87 

-[EcY0 4  + L  (1 -€)]. 
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In equation 39, the first term on the right denotes the 

receipt of direct solar radiation by the surface which 

presents an angle of incidence (7f) to the direct beam 

radiation. The second term is the contribution from sky 

radiation and term three the contribution from surface 

reflection. 

Equation 39 was calculated on an hourly basis to arrive at 

a daily total figure for each day of the study period 

(25/9/86 - 2/10/86). Values for the extra terrestrial 

radiation were taken for the 30th of September and assumed 

constant for the week in question. 

Hourly cloud data between 9 a.m. and 3 p.m. were obtained 

by interpolating the 9 a.m. and 3 p.m. cloud records from 

the National Parks and Wildlife Service. Sunrise to 9 a.m. 

and 3 p.m. to sunset required extrapolation from the same 

records. 

Albedo figures used in the estimation of reflected solar 

radiation (Equation 41) were adjusted each hour according 

to the mean zenith angle (') and snow conditions arising 

from observed September data from 1983 to 1986 inclusive. 

Hourly air temperatures were applied to Equations 53 and 46 

and a surface temperature of 0 °C was assumed. Hourly 

estimates of sensible and latent heat, as well as the flux 

of heat from rain were applied as described in the previous 

section (Equations 62, 63 and 78 ). 

The observed and modelled daily data were finally averaged 

for the week to produce a mean day in which the observed 
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net radiation exceeded that which was modelled by 1.2 NJ m"d" 

(Table 4.3). The majority of this margin may be seen re-

flected in the net longwave flux. It was thought that the 

observed net radiation had been affected by condensation in 

the instrument, particularly in the lower bowl, reducing 

the reflected shortwave flux as well as. the outgoing long-

wave component. Incoming global solar radiation values were 

within 9% with the model under-predicting. The mapping of 

the region is on a small scale and possibly the view factor 

and shading errors were slightly overestimated. Nunez (1983) 

found solar radiation within 10% with calculated values 

exceeding observed values. 

TABLE 4.3 
	

COMPARATIVE NET RADIATION DATA 

Ki L* Q* 

Modelled 9.74 73 5.9459 3.1513- 2.7946 

Observed 10.6333 	- 6.2737 2.2772- 3.99 6 5 

Differences 0..8860 0.3278 0.8741 1.2019 

Data (MJm"2 d" ) is designated positive where the net 

receipts for shortwave radiation (K*), longwave radiation 

(1,*) and allwave radiation (Q*) are downward. Downward 

solar radiation (K1) is also positive. 

To calculate spatial variation in WI , a grid was super-

imposed over the ski field area, each square being 50 m 

x 50 m. Altitude, slope and aspect were loaded into each 

square along with a view factor and shading error (see 

Appendix 3). Finally, isolines were drawn defining 

1 MJ m -2  d" differences in the energy available for melt 

calculated for each square (Figure 4.8). This interval was 
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chosen as a result of differences between measured and computed 

values for Q  4.3). Other terms in Equation 2; QH, 

QA, QP and QT, were assumed constant throughout the study area. 

Immediately adjacent to Legges Tor and crossing the head of 

towlines 2, 3 and 6, the ground topography changes quickly 

over a little distance. The isoline representing 5.0 MJn1 -2 d" 

was interpolated between calculated data for 4.0 and 

6.0 MJ m -2  d" . 

Overall the ski field enjoys an easterly aspect with slopes 

of less than 13.° . This is reflected in the small variation 

in the energy balance across the ski field. The small 

variability does HOU to ally reflect the variation in 

observed snow loss (see next section). The snow cover was 

not deep ( 30 cm) at this time and local differences in 

surface properties and elevation resulted in a greater 

variation in snow loss than is implied in the energy balance 

results. 

The weekly mean that is represented by the energy balance' 

comprises both clear and cloudy days. If the week had been 

clear, greater spatial variation might have been expected. 

Inversely, cloudy conditions throughout the week would have 

further reduced variability. 

. The differences arising between observed and calculated 

snowloss in 1986 could be split into two groups; areas that 

were clear of snow by the end of the week and areas still 

maintaining a good snow cover. The control area (.) at the 

meteorological station was clear of snow by the 30th of 

September and the calculated loss agreed within 10% to the 
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FIGURE. 4.8. 	Spatial variability in the energy balance 

The mean daily enprgy.balanoe available for .melt on a unit 

surface (MJ .m'e) for the week. from the 26th of September to 

the 2nd of October, 1986 for the Ben Lomond ski field area. 

Variability varies with net radiation since QH, QA, Qq , QP, 

and Q. are assumed constant and equal with the values at the 

station. 
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observed loss of snow (Table 4.4). 

It was not certain when the lower -slopes (Figure 4.9) 

became- clear of snow and therefore a direct comparisonof 

snowmelt rates could not be specifically stated. However, 

if it is assumed that these areas were finally clear some 

time between the fifth and sixth day of the week, the 

calculated rates agree within 10% to the observed rates. 

The middle and upper slopes showed some differences between 

calculated and observed values whilst mainly reflecting the 
• 

energy available for melt when reduced for slope and aspect 

(Figure 4.8). The lower melt rates that were observed in. 

these areas could be explained by local climatic differences 

that may be expected in any-mountain region according to 

Seligman (1936) and Barry (1981). It was not possible to 

obtain a climate profile for each area and therefore fully 

state how the differences in snowlosS arose. 

TABLE 4.4 
	

COMPARATIVE SNOWMELT 

Upper slopes 
(lowest) 

Melt rates 

Lower slopes 
(highest) 

Meteorological 
station 

Daily rate of 
energy receipt 4.4 6.9 6.5 
QM. (MJ m-Id") 

Calculated 
melt rate. 
(cm d") 

2.3 3.5 3.3 

Observed melt 
rate. (cm d") 2.1 3.3 3.0 

Melt rates were calculated for the period 26/9/86 to 2/10/86 

by applying Equation 2. to each 50 m x 50 m square and these 

averaged for the upper and lower slopes (Figure 4.9). The 

observed data were averaged from snow stake depths described 

in Chapter 3. 



FIGURE 4.9 Varying slopes on the Ben Lomond 

Ski Field 

*Letters A and D refer to the lower slopes. 

whilst C and r are the upper slopes. The middle 
slopes are denoted by the letters E and B. 

93 



9 14 

Observations of Spatial Variability in Snowmelt 4.2.3 

In the winter of 1981 the last heavy snowfall was recorded 

on the 16th and 17th of August and on the 14th September 

there was still a 100% snowcoVer in the skifield area. The 

north-west side of the ridge from Giblin to Legges Tor had 

only a sparse cover. The first survey day (22/9/81) 

indicated rock denuded of snow along the upper ridges and 

some rock domes (Figure 4.10). Field work showed that melt 

commenced on the upper section of the domes where they 

dipped towards vegetation, presenting a north-westerly 

aspect in contrast to the general south-easterly aspect 

of the area. 

Thermocouple temperature measurements taken of snow free 

.surfaces (Table 4.5) did not indicate any strong difference 

between rock and vegetated cover. Water that -flowed over 

the rock beneath the snowcover maintained a temperature of 

3 o c. 
 The base of the snowcover over running water was 0.5

o
C. 

Rock under snow tended to be generally wet with running water 

whilst vegetated areas were merely damp, with running water 

confined to specific water ccurses. 

The lower section of each tow has a lesser slope.( 6 0 ) than 

the centre or upper sections. These lower sections all had 

depths of less than 25 cm. The areas that had been most 

heavily skied in the lower sections of the ski field, across 

tows 5 and 6, had no snowcover at all. This is not a rock 

area but has a more easterly and northerly aspect than the 

lower areas of tows 1, 2 and 3, as well as being 30 metres 

lower in altitude. The upper rock ridge is a generally 
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FIGURE 4.10 	The Ben Lomond Ski Field Area 

The areal snowcover and melt patterns on September 22, 

1981, where ground clear of snow is denoted by: 



Rock 11.5 

Grasses .  11.0 

Water 3.0 

Richeas 11.0 

Air 10.0 

Snow 0.5 

. 
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TABLE 4. 5 	SURFACE TEMPERATURES 

Comparative surface temperatures of ground cover expressed 

degrees centigrade. The measurements were taken at the foot 

of tow No. 3 at an altitude of 1490 metres. Readings were 

averaged over a 4 hourly period from 10 am. to 2 pm. on 

October 4, 1981. 

TABLE 4. 6 
	

MELT CALCULATIONS 

Date 	198 1 
	

Area Covered 	Reduction 

14th September 
	100. 0% 

22nd September 
	80.3% 
	

19.7% 

28th September 
	78.8% 
	

1.5% 

6th October 
	53.0% 
	

25.8% 

Areal snowcover reduction expressed as a percentage. 
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flat area with no particular slope. This is the.second 

highest point in the State. It has no reduction in its sky 

view thereby accepting the maximum possible direct sunshine 

between sunrise and sunset, which for the 22nd of September 

was 13 hours. 

Between the 14th.and 22nd of September, the areal snowcover 

had been reduced to 80.3% (Table 4.6), with a mean depth of 

46.8 cm and a standard deviation of 9.7 cm. The depths 

varied between vegetated areas and the rock domes so that, 

in general, the domes had only one third the depth of cover 

of the adjacent gullies and bowls that were vegetated. The 

free water content of the snow varied considerably in the 

pack as did density, the mean figures being 14.6% and 443 kg m 

respectively. The mean figures did not vary particularly 

throughout the period and agree with data presented by 

Kojima (1966). 

A further reduction of 1.5% in the areal snowcover was noted 

on the 28th of September with an accompanying mean depth of 

383 mm . The upper ski field remained in nearly the same 

state whilst the lower tows, 4, 5 ., 6 and 7, all showed a 

marked increase in snow free zones (Figure 4.11) at their 

lower levels. There had been several light snowfalls during 

the week with no apparent increase in depth. It is possible 

that the falls were too light to be measured. Using a manual 

snow probe; snowfalls of less than 5 cm are difficult to 

measure due to irregularities in the snow surface and the 

underlying ground. 
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The Ben Lomond Ski Field Area FIGURE 4. 11 , 
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Upper IR(Ice 
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The areal snowcover and melt patterns on September 28, 

1981, where ground clear of snow is denoted by: 



99 

Snow depths and areal measurements made on the 6th of 

October indicated a week of strong melt. Areal reduction 

was 25.8% since the 28th of September, with depths averaging 

225 mm., a decrease of 41.3%. Nearly all rock areas were 

denuded of snow as were all the lower parts of the ski Field 

below 1470 metres (Figure 4.12). Of particular interest 

were the mean depths calculated for the skiable snowcover 

(Table 4.7). The vegetated gullies and bowls that still 

held snow represented more than half the ski field area 

- with depths averaging 350 mm 

The lower ridge areas at the head of tows 3 and 6 have 

slopes in excess of 50 0 . The reduced sky view means a loss 

Of direct solar radiation by 1500 L.N.T. at this time of 

year. There are no opposing slopes at a sufficient angle 

to offer. any reflected solar radiation to this area and 

drifts here were measured to depths of 8 metres. 	Snow was 

still evident on the 25th of November. Immediately to the 

north of tow 3 on the rock wall, an ice fall is formed as 

winter progresses each year. In 1981 this ice wall still 

held its integrity on the 13th of October and could be climbed 

using crampons and ice axes. This condition is clearly 

indicative of mean daily subzero temperatures prevailing 

in this area during spring. 

At a. lower altitude, deep drifts were also found exceeding -

4. metres under the south-east face of "Normans Folly", the 

large rock dome half way up tow 2 on the southern side 

However, this snow had all disappeared by the 3rd of November. 

Pits excavated in these regions did not disclose any undue 

departure from snowpack temperatures of ±0.5 °C and densities 
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• FIGURE 4.12 
	The Ben Lomond Ski Field Area 

Private Dwelling 

Village Dam . . 

The areal snowcover and melt patterns on October 6, 1981, 

410 where ground clear of Snow is denoted by: 



101 

TABLE 4.7 
	DEPTH AVERAGES 

DEPTH AVERAGES (mm) 1981 

Code 1 2 3 

Towlines 

5 6 7 Total Date 1 1  

1 488 308 463 540 533 310 411 468 ), 

2 557 463 463 540 533 517 528 568 ) 22/9/81 

3 483 463 463 425 533 517 386 525 ) 

1 306 300 426 490 425 270 333 383 ) 

2 350 450 425 490 425 450 500 478 ) 28/9/81 

3 350 450 425 363 425 450 400 14 14 3 

1 88 225 263 340 175 180 250 225 ) 

2 350 338 350 567 263 450 563 409 ) 6/10/81 

3 350 338 350 150 .  263 450 417 350 ) 

DEPTH LOSSES 	(•) 1981 

1. 37.3 2.6 8.2 9.3 20.3 12.9 18.8 18.1 ) 
' 22/9/81 

2 37.1 2.8 8.2 9.3 10.3 13.0 5.3 15.8 ) 

' 28/9/81 
3 27.5 2.8 8.2 14.6 20.3 13.0 +3.6 15.6 ) 

1 71.2 25.0 38.1 30.6 38.8 33.0 24.9 41.3 
- 

) 
' 

, 	. 
28/9/81 

2 0 24.9 16.5 +15.7 38.1 0 +12.6 14.4 
) 6/10/81 

3 o 24.9 16.5 3.5 38.1 o +4.1 21.0 ) 

1 82.0 26.9 43.2 37.0 67.2 41.0 19.1 51 ' 9  ) 22/9/81 
2 37.2 27.0 24.4 +5.0 31.9 13.0 +6.6 28.0 ) 

' 6/10/81 
3 37.2 27.0 24.4 17.7 31.9 13.0 +8.0 33.0 ) 

Code 

1 	Mean depths including all measurements ror each tow and the 
ski field area. 

2 	Mean depths excluding bare ground (zero dep'ths). 

3 	Mean depths excluding bare ground and drifts with depths 
exceeding 1 m. 

Code 2 was calculated to allow a more accurate volumetric analysis 
of snow. 

Code 3 was calculated to present data pertinent to skiable snow-
cover with regard to depth. 

Data expressing snowcover in terms of depth (mm) and loss 

of snow expressed as a percentage of depth. 



102 

approximating 433 kg m -5 . No particular layering was 

observed and the pack appeared to have similar character-

istics throughout with crystals typical of three months old 

firnified snow (la Chapelle, 1969). 

Environmental Factors Affecting Observed Spatial Variation 

in Snowmelt 	4.2.4 

Factors of ablation arising from the results generally accord 

with Moore (1983). The single area of contention surrounds 

the role of groundwater and snowmelt at the base of the pack. 

The flux of heat from the ground to the pack has been gener-

ally considered too difficult to evaluate (Male and Gray, 

1981) and not of short term significance. Each factor will 

now be discussed individually. 

(a) Altitude:  The rate of snowmelt was seen generally to 

vary as a function of altitude. The majority of the areal 

snow cover reduction (78.8 to 53%, Table 4.6) which occurred 

between the 28th of September and the 6th of October was 

found below an altitude of 1490 m in the ski field area. It 

was difficult to accurately assess the change in climatolog-

ical characteristics between the crest of the ridge (Legges 

Tor to Giblin) and the ski village. The rise is only 100 

metres and local anomalies in air mass characteristics 

typical of mountain weather (Barry, 1981) have been observed. 

Tows 6 and 7 commence at 1460 metres, rising to approximately 

1550 metres and have the greatest change in altitude. Depth 

measurements taken on the 6th of October showed more than 

50 cm of snow lying in areas above 1490 metres whilst most 
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of the ground below this level was clear of snow. Tow 4, 

which is contained completely in the lower zone of the ski 

field, had only a few small patches of snow left by the 6th 

of October (Figure 4.12). Tows 1, 2 and 3 are entirely above 

1490 metres and continuous snowcover could be found along the 

lengths of the tows with depths ranging from 100 mm at the 

'bottom to over 500 mm at the top. 

(b) Ground cover: The northern, half of the Ben Lomond 

plateau may he described in terms of ground that is covered 

by shrubs, herbs, sedges and grasses or rock. The skifield 

area is no exception. The non-vegetated areas identified as 

dolerite (rock) domes and illustrated in Figure i.4 have been 

noted to lose snowcover before any other ground except the 

upper ridge, which is also rock.. Areas that are grassed, 

particularly the gullies and bowls, were observed to hold 

snow even when the pack was shallow, for longer periods than 

adjacent areas covered in bush. This was highlighted in field 

work on the upper areas between tows 1 and 2. There are two 

grassed bowls, each 40 m x 20 m, surrounded by rock here. in 

1981 and again in 1986, there was still snow in the bowls in 

excess of 10 mm in depth in mid-October when all the surround-

ing rock was quite clear of snow. It Aid not appear to matter 

• what type of grasses and shrubs were compared, the essential 

boundary was between the two types of vegetation. 

The lower areas of tows 3, 5 and 7 have had the bushes cut 

down to the base exposing soil and bare stems above the ground. 

The Richeas in particular leave a mass of ground wood when this 

is done. The snow in these areas was found to have melted as 
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fast as over the shrubs that had been left and more quickly 

than adjacent grassed areas, such as found fifty metres up 

tow 5. 

(c) Ground water: The energy from water on the ground as a 

Melt factor against the base of the snow pack has not been 

established in this study. The area containing the larger 

water courses and pools, especially in the south-eastern 

region of the ski field adjacent to tow 4, was noted in 

particular to lose snowcover early in spring. The -area. 

between the lower levels of tows 5 and 6 which holds much 

ground water, also loses snow more readily than the adjacent 

areas. 

Studies comparing grassed areas and adjacent rock domes for 

•round water found the rock wet with a film of water coursing 

over the dome under the snowcover, whilst the grasses appeared 

dry enough to leave no moisture on the hand, after the snow 

had been excavated.- 

(d) Groundflux: 	In this study it was thought that the 

meltwater observed over the rock domes might play a signif-

icant part in a higher melt rate of snow. Snowdepth over the 

domes was generally - less than in the surrounding gullies so 

that an even melt rate would expose the domes first, despite 

other factors. Conclusions are complicated by the change in 

'energy flux as the pack reduces in depth to below 250 mm 

(O'Neill and Gray, 1973). The pack was observed to reduce 

below this depth over the domes first (Figure 4.13) and melt 

observed to be highest where the aspect of the domes was 

north-west. 
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FIGURE 4• 13 

The relative aspect and snowdepth over the major rock- 

domes in the Ski Field. 

Solar shortwave radiation penetrates the shallow pack (less 

than 250 mm) and is absorbed by the ground, some of which is 

returned to the pack as longwave radiation. In this instance 

the increased energy flux to the pack, a function of shallow 

snow, low rock albedo (0.17) and meltwater over the rock, 

could describe the mechanism that accelerates the melt in an 

already shallow area of the snowpack. As the rock domes 

become exposed to solar radiation, heat is conducted from the 

warmed surfaces to those immediately below the pack generating 

melt. In addition sensible heat from air warmed locally by 

the rock being advected over the snow again increases melt. 

In contrast, the vegetated gullies were observed to maintain 

a snowdepth of 35 cm even on the 6th of October when most of 

the domes were uncovered. If the rock and vegetated areas 

were to be covered at an even depth, the higher albedo of the 

vegetation (0.22) and the lack of meltwater would infer a 

smaller return of longwave energy to the pack in comparison 

with adjacent rock areas (Monteith, 1959). 



CHAPTER 5 

SUMMARY AND CONCLUSION 

SUMMARY  5.1 

Temporal Variability 5.1.1 

•(a) Climatic factors:  • Snow may be expected to fall and 

stay on the ground for periods in excess of 7 days during 

any of the winter months between :June and October inclusively•

above 1400 m on Den Lomond. This period is most commonly 

reduced to July, August and September with only unusually 

long winters providing seasonal snowcover extending into 

June and October (1981, 1986). 

The seasonal snowcover is a function of geographic factors 

and the climatic parameters of air temperature and precipit-

ation. Highland stations in north-eastern Tasmania (Table 

1.3) all show a reduction in the mean monthly minimum 

temperature with an accompanying increase in snowfall days 

(Table 1.7) from June to August. 
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The change in climate as winter gave way to spring was 

marked on Ben Lomond by a rise in the mean maximum air 

o 	. 	o 	. 
temperature from 1.8 C in August to 7.2 C in October 

(Table 1.2). This warming was further evidenced by a 

.reduction in freezing days from 12.8 to 2.2 per month, 

and a decrease in snowfall days from 10.4 to 0.8 per month 

(Table 1,7). 

Most snowfall days were accompanied by south-westerly winds 

which also dominated the months of June and July. More 

winds were recorded from the north-west than elsewhere 

during August, September and October (Table 1.9). These 

winds were also associated with the majority of days when 

(high) snowmelt exceeded 15 mm per day (Figures 4.5, 4.6 

and 4.7). 

Advective forces play an increasingly important role in 

snowmelt as snowcover diminishes and the edge of the snow-

pack is approached (Weisman, 1977; Treidl, 1970). In 

addition to warm air being brought in through regional 

advection, local winds moved air, warmed in the surrounding 

valleys over the mountainside during the latter half of 

winter as the mountain snowcover reduced. Most likely in 

July and early August, the snowcover on the plateau was 

generally too extensive to allow local advective warming 

to reach the skifield area. 

	

The energy balance: 	The energy balance was applied to 

• four specific: synoptic events (Figure 4.1) to determine the 

functions of various terms for snowmelt in each situation. 
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When warm conditions were associated with local advection, 

net radiation provided most energy for melt-. Sensible heat 

dominated under regional advection accompanied by warm north-

westerly winds (Tables 4.1 and 4.2). Of the remaining terms, 

latent heat contributed a small but significant component to 

the energy balance, whilst heat from rain, the ground and 

internal energy were only of minor importance. 

The three dominant terms (net radiation, sensible and latent 

heat) were applied to a 1986 time series incorporating the 

months of most common snowfall, these being July, August and 

September. During July and August a weak trend-was observed 

as the three terms converged toward zero. However, from the 

last week in August and throughout September there was a 

steady increase in net radiation and sensible heat (Figures 

4.2, 4 • 3 and 4,4). 

The increase in net radiation was in conjunction with • 

astronomic arguments and more favourable climatic conditions. 

Sensible heat dominated on 3 days when suitable regional 

advective conditions prevailed. In general, latent heat 

played a secondary role in the energy balance, hut as worm 

and moist advective conditions increased, accompanying the 

reducing ski field boundaries in late September, more heat 

became available from this source. Overall, net radiation 

followed. by sensible heat, emerged as providing the most energy 

for snowmelt throughout the winter. 

(c) Snowmelt: 	Temporal variability in snowmelt pursued 

the pattern outlined by energy balance results and.climatic 

studies (Figure 5.1). There were.only 4 high melt days 
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(M 15 mm d - ' ) in July and August as opposed_ to 13 days in 

September (Figures:4.5, 4.6 and 4.7). An investigation or 

the total number of days when melt was recorded reveals a 

similar pattern with 13 occurring in july, 15 in August and 

the balance of 26 days out of a season total of 54 days 

being in the month of September. 

In 1986 there was a sustained snowcover commencing at least 

7 days prior to the beginning of July which lasted until 

the end of September, with a mean depth of 350 mm being 

recorded on the 25th of September. The period of higher 

sustained melt, 163- mm in 5 days, during the final week 

in September, coincided with the end of the 100% snowcover 

for the winter in. the ski field area. 

Spatial Variability 5.1.2 

(a) Climatic factors: 	Barry (1981) indicated that each 

small valley or ridge in a mountainous area might be expected • 

to have its own climatic characteristics. It was not possible 

to monitor climatic parameters across the ski field area and 

the point measurement at the ski field meteorological station 

had to be applied throughout. 'However, profiles of temperature .  

change with altitude between the meteorological station (1460 

metres) and Legges Tor (1573 metres) were taken on many 

occasions during the period 1981 to 1986 "during the winter 

months, revealing a mean lapse rate of 6 o
C km. 

(b) The energy balance: 
	The energy balance (Equation 

was investigated for - correlF, tion with the differing melt' 

rates that had been observed in various parts of the ski 
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'field. The net radiation term was reduced for slope and 

aspect with allowances made for a reduced sky view and 

shadowing by applying the model of Nunez (1980). The 

remaining sources of energy were applied across the ski 

field from point .  measurement at the meteorological station. 

The model underestimated net radiation by 1.2 NJ m -2'd" 

.(Table 4.3) when compared with observed values, whilst 

• differences arising from changes in slope and aspect were 

primarily within 1 Mj m -I d" . There were only two areas 

where the variation in calculated rates exceeded the under-

estimated error. Directly under Legges Tor and Giblin Peak, 

calculations for daily melt were 4 and 5 MJ m -2 d" respectively 

as against 6 NJ m -2  d" for the majority of the• ski field 

.(Figure 4.8). Spatial variations in daily melt arising from 

the energy balance are indicative of differences of up to 1 cm 

per day in melt rates. (Figure 5.2). This is a significant 

margin over a week when seen against a mean ski field depth 

of 350 mm and a daily rate of Yi mm, 

These data suggest that whilst the energy balance and net 

radiation in particular may be seen to act as an agent in 

reduced snow melt rates for the steeper south-easterly slopes 

where strong afternoon shadowing occurs, some other factors 

must he held to account for the local variations in melt: 

with space in other parts of the ski field. 

(c) Other factors: 	In Figure 5.2, the effect of slope and 

aspect on the melting process can be seen. However, mechan-

isms other than slope and aspect are important factors in 

reducing snowcover. Observations of spatial variations in 
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Days (September, 1986 ) 

FIGURE 5.2 A five day moving average time series of 

the mean daily snowmelt calculated from the energy 

balance established at the meteorological station. 

Maximum and minimum rates of melt arising from spatial 

variations in the energy balance are also shown. 
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snowmelt (1981) have revealed a reduction in melt with 

increasing altitude (Figures 4.10, 4.11 and 4.12). Snow-

cover reduced by approximately 26% during the week following 

the 28th of September and the majority of this reduction may 

be seen contained below an altitude of 1490 metres (Figures 

4.11 and 4.12). 

Variations were observed in snowmelt within the confines of 

the maximum and minimum rates calculated in 1986 (Figure 5.2) 

which reflect local topographic changes and the differing 

nature of the groundcover. The entire ski field is comprised 

of small shallow gullies and ridges interspersed with rocky 

outcrops. Drifting processes ensured that snowfall accumul-

ated in the gullies, over the ridges and under the rocky 

outcrops until a fairly even surface was established. Melt 

quickly cleared the shallow snowcover on the ridges (Figure 

4.10) whilst some of the gullies still held snow two weeks 

later (Figure 4.12). This pattern was repeated each year of 

the study period (1981-1986) as the final snowmelt for the. 

season progressed. The gullies that held the snow longest 

were not water courses and had a grass or herb groundcover 

in preference to rock or scrub. 

CONCLUSIONS 5.2 

The effect of geographic position and climate have been 

observed and comparisons made with other meteorological 

stations above the seasonal snowline in Australia. Data 

suggested that the two most reliable indicators of seasonal 

snowcover were the number of heavy frost days and the number 

of snowfall days between the 1st of June and the 30th of 

October. 
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CONSTANTS and SYMBOLS 



Constants  (la) 
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Gravitational acceleration 

Solar constant 

Stefan Boltzman constant 

Universal gas constant 

Von Karman constant 

Density of air 

Density of water 

Latent heat for fusion 

Latent heat for sublimation 

Latent heat for vaporization 

Specific heat of air 

Specific heat of water 

Specific heat of water vapour 

Specific heat of ice 

Longwave emissivity for snow 

Melt temperature of snow 

Roughness parameter for snow 

Standard atmospheric pressure 

at sea level 

Vapour pressure over ice at 0 °C 

Thermal conductivity of soil 

9.81 m s -z  

1.353 kW m -2-  

5.67 x te kW 111 -2K -4.  

8.32 x 105  J kemole-  K 

0.4 

s.t.p.; 1.3 kg mi -3  

@ 85000 Pa_ & 0°C; 1.1 kg m -3  

1000 kg m -5  

333.5 kJ kg" 

333.5 + 2500 = 2833.5 kJ Kg" 

2500 kJ kg" 

1 kJ kg-I K -1  

4.2 kJ keK" 

1.86 kJ kg"K" 

2.115 + 0.00779T5  kJ kg"K" 

0.99 

0°C 

2.5 x 10 3 m (Sverdrup, 1936 ) 

1.01325 x 106  Flx. 

61 0 

1.2 W m"K" 



LIST OF SYMBOLS  (lb) 

eddy diffusivity coefficient for water vapour 

AH 	eddy diffusivity coefficient for air 

Am 	eddy diffusivity coefficient for momentum 

thermal quality of the fraction of ice in a unit 
mass of wet snow 

B, 	Bowen ratio 

Ch 	high cloud cover 

Ci 	amount of cloud layer (i) 

CL 	low cloud cover 

Cm 	medium cloud cover 

Cp 	specific heat of air at constant pressure 

Cpi 	specific heat of ice 

Co. 	specific heat of water 

Pv 	specific heat of water vapour 

diffuse solar radiation received on a horizontal 
surface 

diffuse solar radiation under cloudy conditions 
received on a horizontal surface 

D ie 	diffuse solar radiation under cloudy conditions 
received on a sloping surface 

DE 	bulk transfer coefficient for latent heat 

DH 	bulk transfer coefficient for sensible heat 

Dm 	bulk transfer coefficient for momentum 

Do 	diffuse solar radiation under cloudless conditions 
received on a horizontal surface 

diffuse solar radiation under cloudless conditions 
received on a sloping surface 

Dr 	solar radiation reflected from adjacent slopes 

Ds 	bulk transfer coefficient for momentum corrected 
for stability 

126 
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H, 	sunrise on •the study area 

112 	sunset on the study area 

solar constant reduced by transmission through 
the atmosphere 

le 	solar constant 

K
* 	

net solar or shortwave radiation 

Kt 	upward Cr outgoing solar radiation 

K4 	downward or incoming solar radiation 

K.1c 	downward solar radiation under cloudy conditions 
received on a horizontal surface 

14, 	downward solar radiation under cloudy conditions 
received on a sloping .  surface 

downward solar radiation under cloudless conditions 
received on a horizontal surface 

downward solar radiation under cloudless conditions 
received on a sloping surface 

Kz 	radiation intensity at any depth in snow 

net longwave radiation 

LI 	upward or outgoing longwave radiation 

IA 	downward or incoming longwave radiation 

downward longwave radiation under cloudy conditions 
received on a sloping surface 

L. 

diffusivity of water vapour in air 

latent heat of fusion 

latent heat of vaporization/condensation/sublimation 

change in depth due to snowmelt 

molecular weight of water 

atmospheric pressure 

standard atmospheric pressure at sea level 

depth of rainfall 

net radiation 

latent heat (evaporation, condensation or sublimation) 



heat from the ground 

Q.  sensible heat 

Q.  heat from water phase changes within the snowpack 

Q.  heat or energy available for snowmelt 

QR 	heat from rain 

universal gas constant 

R; 	Richardson number 

direct solar radiation received on a horizontal 
surface 

Se 	direct solar radiation received under cloudy 
conditions on a horizontal surface 

direct solar radiation received under cloudy 
conditions on a sloping surface 

direct solar radiation received under cloudless 
conditions on a horizontal surface 

direct solar radiation received under cloudless 
conditions on a sloping surface 

temperature 

fluctuating component of the temperature 	- T) 

mean temperature 

Tc„ 	air temperature (screen) 

ground temperature 

Tm 	mean. snow temperature 

Ts  snow temperature 

AT 	change in temperature 	- Ts ) 

absolute temperature 

VF 	view.factor 

Wç 	free water content of a unit mass of wet snow 

X 	zenith angle of the normal to the slope 

azimuth angle or aspect of the slope 

solar zenith angle 

1 28 



129 

a,b,c 	cbnstants as defined in the text 

depth of snow 

vapour pressure 

eq. 	vapour pressure of air (screen) 

e s 	vapour pressure over ice 

Ae 	change in vapour pressure (e. - es ) 

fs 
	 fractional sunshine recorded on a suncard 

gravitational acceleration 

'thermal conductivity of soil 

Von Karman constant 

optical air mass 

fractional amount of cloud cover 

n e 	observer estimate of cloud cover 

atmospheric transmissivity 

specific humidity 

fluctuating component of specific humidity 

mean specific humidity 

specific humidity. of air (screen) 

q s 
	specific humidity over ice 

q 	change in specific humidity (q a .- qs ) 

ti 	transmission of cloud layer (i) 

wind velocity 

ul„ 	fluctuating component of the wind normal to the 
surface 

friction velocity 

precipitable water vapour 

height 

z o 	roughness length 



albedo of snow 

(1.1, albedo of the cloud base 

albedo of the .cloud top CU, 

Qr 	angle of incidence of the direct solar beam to 
the slope 

8 	partial differential 

'change in' -  

E 	surface emissivity 

7/ 	elevation angle of the horizon 

surface temperature 

14, 	molecular diffusivity of air 

wavelength 

10
-6 

metres 

V 	kinematic viscosity 

7C 	3.1426 

/1 	density of snow 

/3c1, 	
density o.f air 

density of water 

o- 	Stefan BoltZman constant 

shearing stress or vertical momentum 

dimensionless parameter for turbulent exchange 

AL  vapour pressure gradient 

115,1 

	temperature gradient 

vertical velocity 

X 	cloud thickness to the mean path of light through 
the cloud 

atmospheric exchange coefficient for: 

)4;,,, 	high cloud 

any cloud layer 

130 
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Y4L low cloud 

Am medium cloud 

combined dust 

tad absorption by dust 

yrds  scattering by dust 

Yfes Rayleigh scattering 

11(„, absorption in water vapour 

Y/ws scattering by water vapour 

SI cloud height and temperature coefficient 

solar azimuth angle 



APPENDIX 

13 2 

DESCRIPTIVE DATA FOR BEN LOMOND 



133 

History  (2a) 

Ben Lomond was named by Colonel Patterson in 1804 and survey 

notes were found in Surveyor General Grimes' field note book 

of 1807 concerning the mountain. Nearly 100 years elapsed 

before further exploration took place. Between 1905 and 

1906 Colonel W.V. Legge and his parties made several trips. 

Legges Tor was properly surveyed and in his report to the 

A.A.A.S. (1907) Legge gave a most detailed description of 

all the aspects of the physical geography of the mountain 

including flora and fauna. Many of the names of outstanding 

features were given by Legge in 1913. 

Official recognition of the potential of the mountain for 

wilderness recreation came when it was gazetted as a National 

Park in 1947. Three years afterwards the government recom-

mended the development of a ski resort on the site that is 

now developed. Details of the tow development on the ski-

field are included in the appendix. 

Two major studies have been made more recently about the 

mountain. The blockfield geomorphology was investigated by 

Caine (1968) whilst the report on altitudinal variation in 

vegetation was written by Noble (1981). Davies (1969) had 

covered the history and effect of glaciation in Tasmania 

and included comment on Ben Lomond. 

To date there is no reticulated power and access along the 

unsealed road is subject to the weather and rockfall in the 

steeper sections on Jacobs Ladder. In the sixteen years 

since the road was completed to the plateau, the number of 

skiers using the mountain on any one day have grown from 



50 to 1500 (Faulkner, 1984) prompting calls for better 

management studies and a more scientific approach to snow 

usage to maximise the potential of the ski area (B.L.S.A., 

1981). 

The roadwas finally constructed to the skifield area by 

members of the Northern Tasmanian Alpine Club in 1967. 

Early meteorological observations were made as often as 

possible in the winter by Mr. W. Simpson, a member of the 

club. Records are kept by the National Parks and Wildlife 

ranger for the park as duty permits. However, no regular 

daily data was noted before 1981. Commercial development 

of the area commenced in 1970 and was still in progress in 

1985. 

1314 
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TABLE Al 
	

TOW SUMMARY (2b) 

No. Name Owner Built Type Length Descent Slope Azimuth 

1 Giblin A.E. 1975 Poma 253m 58m 13 °  292 °T 

2 Big Ben NTAC 1967 Rope 375m 59m 9
0 320o

T 

3 Fannies A.E. 1973 T Bar 273m 61m 13 °  328 °T 

4 Creek A.E. 1979 Poma 256m 35m 8°  250°T 

5 Beginners A.E. 1973 Poma 269m 55m 12°  250
o
T 

6 Thirty 
Second 

NTAC 1964 Rope 386m 92m 14
° 280oT 

Summit A.E. 1973 Poma 334m 87m 15°  285 °T 

Bill's A.E. 1985 T Bar 250m 51m 12
o  310

o
T 

A summary of the ski tow characterictics for the Ben Lomond Ski 

Field for 1985. 

Additional data: Tows 1,2 and 3 commence at 1490 -1500m altitude 

whilst tows 4 to 7 commence at approximately 1460m. All except 

tows 4 and 5 finish between 1550 and 1560m. Tows 4 and 5 finish 

at 1490 and 1518m respectively. In 1985 tows 2 and 6 were 

changed to a Poma type. 

Sources: Northern Tasmanian Alpine Club (N.T.A.C.), Alpine 

Enterprises (A.E.) and Tasmap publication of Ben Lomond National 

Park. 
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Vegetation and Soils 2c) 

Site and Sample (Noble, 1981) 

At grid reference 8414-537029 a core of soil 81 cm in depth 

was taken. The site is within 1 kilometre of the skifield 

area to the north west of Legges Tor in an area known as 

the Land of Little Sticks. 

Depth (cm) Description 

	

0-11 	Brown soil with thick mat of roots. 

	

11-29 	Brown soil. 

	

29-81 	Dark brown to black soil; clayey; numerous 

charcoal fragments with a distinct layer 3 mm 

thick at 35.5 cm; layer of small dolerite 

stones at 43 to 46 cm. 

	

81-90 	Dolerite stones and clay. 

	

90 	Dolerite bedrock. 

The present vegetation at the site consists of species-

rich shrublands and herbfields. The most common species 

in the immediate vicinity are: 

WOODY 	HERBACEOUS 

Baeckea gunniana 	Acaena novae-zelandiae 

Bellendena montana 	Astelia alpina 

Coprosma nitida 	Cardamine neterophylla 

Epacris serpyllifolia 	Carpha alpina 

Helichrysum backhousii 	Craspedia alpina 

Leucopagon hookeri 	Drosera arc turi 

Olearia algida 	empodisma minus 



Olearia ledifolia 

Olearia obcordata 

Orites acicularis 

Orites revoluta 

Richea scoparia 

Epilobium curtisiae 

Euphrasia diemenica 

Gentianella diemensis 

Geranium potentilloides 

Gnaphalium traversii 

Lycopodium fastigiatum 

Oreomyrrhis sessiliflora 

Plantago tasmanica 

Poa fawcettiae 

Restio australia 

Senecio pectinatus 

13 7 
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MODELLING NET RADIATION FOR MOUNTAINOUS TERRAIN 
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Modelling Net Radiation for Mountainous Terrain  

In this study the daily energy balance was initially calculated 

for the horizontal surface at the meteorological station by 

applying (Equation 3): 

QM = Q* + QM 4-  QL "I" QP . 

An investigation of spatial variability of energy available 

for melt necessitated adjustments within the energy equation 

to allow for the complex topography of the ski field. The 

practises of Male and Gray (1981), Munro and Young (1982) and 

Hogg et al (1982) were pursued so that all the heat fluxes 

with the exception of net radiation were applied from the 

point measurement, without adjustment, across the ski field. 

Net radiation was adjusted for slope and aspect, reduced sky 

view and shadowing through application of the model of Nunez 

(1980). The solar radiation incident on a horizontal surface 

was stated as (Equation 17): 

K4 0  = I cos Z + Do . 

The solar constant (1353 J nf2 s ) was adjusted for attenuation 

within the atmosphere by applying the transmission coefficients: 

1 	- 0.077  McDonald, 1960 

= 1 	- 	0.0025 	(win), McDonald, 1960 

= 0.972 - 0.8262 m + 0.0933 m 2  

- 0.00095 m3 	•4- 0.0000437 Ii14 , Houghton, 1954 

0.9757 

= AaAs 	(c ) "1 9 

= 0.95, 

= [cos Z 	0.15 (93.885 —Z )-1.255 
	

Kasten, 1966 

and 	w = precipitable water vapour. 	List, 1968 
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The direct solar beam received on a unit horizontal surface 

may now be described (Equation 19): 

I = 10 	Aa A/9 16r5 Al5 

Nunez (1980) reported that Houghton (1954) assumed absorption 

occurred before scattering and that half of the latter was 

incident to the earth's surface-allowing the diffuse solar 

radiation to be expressed by (Equation 20): 

D. = I cos Z 1 r wa do [ 	'Ws 146 frds /2  

The zenith angle of the direct solar beam to a horizontal 

surface was adjusted for slope and aspect so that the ensuing 

angle of incidence was (Equation 32): 

• cost' = sin Z cos co sin X cos Y + sin Z sin w. sin X sin Y 

+ cos Z cos Y . 

The nature of the surrounding terrain and the increase in 

slope at various points on the ski field caused shadowing as 

the direct solar beam was obstructed. The calculation of 

shadow areas may be described by first observing Figure Al. 

FIGURE Al. Schematic used in the calculation 

of shadow areas (Nunez, 1980) 



The surface of the ground is segmented into a series of 

cells of specific area and altitude. The direct solar beam 

radiation of zenith angle (z) is assumed incident on the 

centre of a cell of side (f). The altitude or height of 

each cell is defined as h (i, j) as illustrated in Figure 

Al. For each cell step, the height of the solar beam may 

•be expressed as nf/sin Z, where n is the number of cell 

steps. If the cell height is greater than the beam height, 

the solar beam is intercepted. 

Nunez (1980) has written a programme tracing the solar beam 

and identifying cells that are intercepted as receiving the 

direct solar beam. Those that do not intercept the solar 

beam are identified as being in shadow. The author used 

cells of 50 m x 50 m in determining shadow areas. 

Nunez (1980) assumed that diffuse radiation was isotropic 

so that any reduction of the sky view in turn reduced the 

diffuse radiation receipt. The sky view factor may be 

determined by taking a series of maximum angles subtended 

by the topography and averaging their projected radii. 

.Nunez (1980) suggested a hemispherical dome be projected 

over each cell. Four maximum elevation angles (1) are 

selected, determined by the topography and illustrated in 

Figure A2.. As each angle representing the lowest solar beam 

to illuminate the cell cuts the hemispherical dome, a perpen-

dicular is dropped. The distance from the foot of the 

perpendicular to the centre is the projected radius of each 

angle of elevation, which may be represented as r i  = cos. 

The 'view factor reported by Nunez (1980) according to Davies, 
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Robinson and Nunez (1970) is the ratio of the area determined 

by the radii to the area of the circle representative of the 

cell (Figure A2.) and may be written: 

VP - (r + r2  + r3  + r4,  ) /4 	 88 

r, + r2  + r3  + r4. 	 89 
4 

FIGURE A2, Schematic used in the calculation 

sky view factors. (Nunez, 1980) 

Applying the view factor, diffuse radiation was described 

by (Equation 37): 

D'o  = D. VF + ( 1 — VF) K 0  cC . 
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Now substituting Equations 32 and 37 in 17, the solar 

radiation incident received on a non horizontal surface 

under cloudless conditions was (Equation 38): 

Ki.. = I cos 3- + D o  . 

• The global solar radiation incident on a horizontal surface 

under cloudy skies was (Equation 27): 

1{4, = 1(4 0 Kt. fb. /bd., 

where the transmission for each cloud layer i was described 

by Equation 28 (Haurwitz, 1948): 

= 1 - ( 	- t )c ;  

and t ;  = (1/1(1 0  ) exp (-bm) a/m 

The values for a and b were as described below in Table A2. 

TABLE A2. 	CLOUD TRANSMISSION CONSTANTS 

Cloud Type 

Fog Sc Ac C 

a 

b 

(J m -2  s' l 	) 

(dimensionless) 

178.6 

0.028 

403 

0.104 

609 

0.112 

954 

0.079 

: Values for a and AD (after Haurwitz) used to evaluate 

cloud transmission. 

Equation 27 was adjusted to allow for reflection between the 

lowest cloud base and the ground so that Equation 31 was: 

Kt, = Kl o, 	fa„ frok ( 1 + 0.5 cc C L  ) 

The direct radiation reaching the surface under cloudy 

conditions was written as: 



1 It Li 

lc  . I ( 1 - c L )(1 - c m )(1 - Ch) cos z 	 91 

so that the diffuse radiation became: 

	

=K -I 	 92 

The solar radiation incident on a surface of arbitrary slope 

and aspect summarised in Chapter 4 was described by (Equation 

39): 

16, = I(1 - c )(1 - C m )(1 - Ch)cosT + D c VF+ K1, el. (1- VF) 

whilst the reflected solar radiation component was (Equation 

41): 

Kt 	= 	K /, . 

Net shortwave radiation became the difference between 

Equations 39 and 

K* = Ki c  - Kt, 	 93 

and net longwave radiation described by Equation 87 was: 

L* = [ (5.31 x 1 0 -15  To.. 6  + 6 . On )VF 	E eiP( 1 — VF).] 

-[E69 4  + L' c  (1 - E )3 

The net all wave radiation now may be expressed as the sum 

of K* and L* : 

94 
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DATA ACQUISITION 



The Calculation of the Free Water Content of Snow 4a) 

Thermos Calorimetric Method: 

1. Determine the calorimeter water equivalence. 

2. Weigh the calorimeter empty. 

3. Weigh the calorimeter and hot water. 

4. Measure the temperature of the hot water. 

5. Measure the temperature of the snow. 

6. Weigh the calorimeter, hot water and snow sample. 

7. Shake the mixture to ensure even cooling. 

8. Measure the temperature of the mixture in equilibrium. 

9. Calculate the free water content applying: 

M 	Ms 	M ; 	 95 

where 	= {(Mh + Mc )(Th - Te )/  - {  Ms (Te - T5  )1  96 
Lt + C. 

and 	MK - mass of hot water, 

Th - temperature of hot water, 

- mass of snow, 

Mi - mass of ice, 

M L  - mass of snow water, 

Te  - temperature of mixture of equilibrium, 

M. - calorimeter water equivalence. 

146 

so that 	WI 	 97 
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There are two cases to consider: 

1. When the temperature of the snow mass is zero or greater, 

2. When the temperature of the snow mass is less than zero. 

In case 2. the energy required to raise the temperature of 

the ice in the snow mass to 0 0 must be allowed for before 

the snow water mass can be calculated. 



The  Calculation  of Vapour  Pressure (4b) 

Campbell Scientific (1980) write a programme using temperature and relative 
humidity against saturation vapour pressure expressed:. 

= %RH/100 * e s. 	 9 8 

where 

ea, - vapour pressure ( AL.) 

- saturation vapour pressure ( 

%RH - precent relative humidity 

The saturation vapour pressure is derived from an approximating polynomial 
by Lowe (1976) applicable to a range + 50 ° C for water and -50 ° C to 0 °C for ice. 
The water reference polynomial is designed to utilize the minimum amount of 
time with an error of less than 1%. 

ap + T,Sal + Tja2 + T.(a3 + %Sa y  + Ti(a! 	T) ) H ) 

	

99 

where 

es..- saturation vapour pressure (1=6: 

- temperature in ° C (or K) 

a. - (i = 1, 2, 	6) the numerical coefficients for each term 
of the polynomial. 

The numerical coefficients for the water reference formula using ° C temper-
atures are: 

a = 6.107799961 
- a = 4.4365186521 x 10 1  

= 1.428945805 x 10 
-2  

a = 2.650648471 x 10 -4 
3 

_6 
a = 3.031240396 x 10 	a = 2.034080948 x 10 -8 

4  5 

a = 6.136820929 x 10
1

-  
6 

4 8 
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CR21 	PROGRAMME TABLES (4b) .  

Input Programme Table (4) 

TABLE A3 
Sensor 
Number 

Range 
E.U. 

Output 
(E.U.) 

Input 
Program 

Program 
Number 

Multiplier 
(EU/IU) 

Offset 
(E.U.) 

1 

2 

3 

4 

5 

8 

<1.3 

<1.3 

0-360 

-35-47 

15-97 

±1.7 

1-45 

kW ml 

kW 110- 

°c 

% 

kW rig 

m s 4 

mm 

mV 

mV 

DC Exc 
& volts 

DC Exc 
temp 

AC l Exc
Hum Re  

mV 

pulse 
counts 

pulse 
counts 

2 

2 

3 

7 

8 

2 

6 

6 

0.1513 

0.1526 

360 

1 

0.1887 

0.0800 

1 

0 

0 

0 

0.4770 

0 

(No.) 	Sensor Description and Calibration 

1. Silicon Pyranometer - 6.6 mV kW -I ni 2-  (IC t) 

2. Silicon Pyranometer - 6.55 mV kW."11i2  (KO 

3. Potentiometer Wind Vane 

4. Thermistor CS1 model 201 for Air Temperature (and 
Relative Humidity) 

5. Thermistor CS1 model 201 for Relative Humidity (and 
Air Temperature) 

6. Fritschen type 3030 Net Radiometer - 5.3 mV kW' 	(q) 

7. 

8. Wind Speed Contact Anemometer 

9. Tipping Bucket Rain Gauge (1 tip per mm) 
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CR21 Output Programme Table (1) 

Output Time Interval (minutes) : 60 

TABLE A4 
Output 
I.D.No. 

Output 	] Parameter 	Parameter 
Program 	1 	(Input) 	2 	(Input) 

Description 

L .  51 6 	0 Av. 	(C21  ) 

5 66 2 	1 Av. 	( K ) 

6 51 4 	0 Av. Air Temperature 

7 51 5 	0 Av. Relative Humidity 

8 51 3 0 Av. Wind Direction 

9 51 8 0 Av. Wind Speed 

1 0 71 4 5 Av. Vapour Pressure 

0 1 0 

CR21 	Output Programme Table (2) 

Output Time Interval (minutes) 	: 360 

TABLE A 
Output 
I.D.No. 

Output 
Program 

Parameter.[ Parameter 
1 	(Input) 	2 	(Input) 

- 
Description 

2 51 4 0 Av. Air Temperature 

3 51 5 0 Av. Relative Humidity 

4 51 3 0 Av. Wind Direction 

5 51 8 0 Av. Wind Speed 
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CR21 Output Programme Table. (3) 

Output Time Interval (minutes) : 1440 

ABLE A 
Output 
I.D.No. 

1 Output 
Program 

Parameter 
1 	(Input) 

Parameter 
2 	(Input) Description 

2 & 3 53 4 1 Maximise Air Temp. 

4 & 5 54 4 1 Minimise Air Temp. 

6 51 4 o Av. Air Temperature 

7 	' 66 2 1 Av. 	K7' 

• 	8 51 3 o Av. Wind Direction 

9 52 2 9 Total Precipitation 

.10 1 6 o Av. 	Ce.  

Table 1 outputs on the hour (E.S.T.) 

- Table 2 outputs at 0600, 1200, 1800 and 2400 (E.S.T.) 

Table 3 outputs at 2400 (E.S.T.) 

The Julian Day is registered in output table 1., I.D. 

Q*  - Net radiation 

K t - Outgoing shortwave radiation 

K 4 - Incoming shortwave radiation 

Net shortwave radiation 


