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Abstract 

The Lewis Ponds carbonate and volcanic-hosted Zn-Pb-Cu-Ag-Au-rich massive sulfide deposits 

are located near the western margin of the Hill End Trough, in the eastern Lachlan Fold Belt of 

New South Wales. Two stratabound massive sulfide zones, Main and Toms occur in a tightly 

folded Late Silurian marine succession of volcaniclastic sandstone, polymictic breccia, 

limestone-clast breccia, siltstone and mudstone. They have a combined indicated resource of 

5.7 Mt, grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au. Main zone occurs 

within a thick unit of poorly-sorted mixed provenance breccia, limestone-clast breccia and 

pebbly-granular sandstone, whereas Toms zone is hosted by siltstone. The sedimentary rocks 

unconformably overlie a thick succession of quartz-plagioclase phyric dacite and strongly 

foliated, chlorite-sericite-altered dacite. 

Variably recrystallised fossiliferous limestone occurs throughout the Lewis Ponds host sequence 

in thick, tabular units of poorly-sorted breccia and fault-bound lenses of megabreccia. 

Limestone clasts vary in size from small pebbles to 90 m boulders. The mixed provenance 

breccia, limestone-clast breccia and sandstone were deposited in a moderately deep water, 

below wave-base slope environment, around the margins of a high-level intrusive dacite centre. 

Detrital volcanic and sedimentary components were derived from multiple source areas within 

the basin and in the adjacent hinterland. 

The massive sulfide lenses occur along the eastern limb of a regional-scale D I  anticline. The 

adjacent syncline has been partly truncated by a 200-250 m wide, NNW-trending high strain 

zone termed the Lewis Ponds fault. Syn-tectonic quartz ± sulfide veins and steeply dipping, 

anastomosing shear zones surround the Toms massive sulfide lens. The variably folded and 

boudinaged quartz veins resulted from periodic brittle shear failure and extension during and 

after the D I  deformation. Pinch-and-swell structures, boudins, catalcastic breccia and kink folds 

occur in the massive sulfide. Main zone, located west of the fault is significantly less deformed 

than Toms zone. However, reversals in stratigraphic facing and vergence indicate that tight 

parasitic folds occur in the Main zone host sequence. Mineralisation at Lewis Ponds probably 

pre-dated shearing along the Lewis Ponds fault. 

An asymmetric, semiconformable Mg-Fe-Ca-Ba-rich hydrothermal alteration envelope 

surrounds the massive sulfide lenses. Mg-chlorite occurs at the top the footwall volcanic 

succession south of Main zone and grades outwards into a weak pervasive sericite-quartz ± 

Fe-Mg-chlorite assemblage. The compositions of recrystallised phyllosilicates vary 

systematically with whole rock geochemistry, alteration intensity and proximity to the Toms 

massive sulfide lens. Hydrothermal alteration of dacite in the Toms zone footwall involved 



MgO, Fe203, K20 and Ba enrichment and Na2O, CaO and Sr depletion. The addition or 

removal of Si02  contributed to net gains of 0-75 g/100g in dacite C and net losses of 

0-50 g/100g in dacite A, except where MgO and Fe 203  gains offset the loss of Si02. In contrast, 

weak sericite-chlorite-calcite alteration of coherent dacite in the Main zone footwall led to net 

losses of 10-40 g/100g. 

Conformable, texturally destructive alteration assemblages associated with the two mineralised 

zones include dolomite-chlorite-talc, chlorite-pyrite, quartz-dolomite-chlorite and quartz-sericite 

hyalophane. Dolomite, Mg-chlorite, talc, phlogopite, calcite, quartz and sulfides have 

overprinted the clasts and matrix in the breccia and sandstone units in Main zone. Relict crinoid 

fossils are preserved in even the most intensely altered rocks, where dolomite, chlorite and talc 

have replaced the original calcite. Irregular honeycomb vuggy and botryoidal sulfide-dolomite 

textures in the breccia and sandstone units indicate dissolution and precipitation of dolomite 

during mineralisation. 

Dolomite associated with the massive sulfide lenses is characterised by low 6 180vsmow 

(6 to 16%0) and S I3Cypot3 (-II to 0%00) values relative to the regional fossiliferous limestone. 

Fluid inclusion and stable isotope data indicate that the dolomite precipitated from a low 

temperature (166-232°C for 1 000 m water depth), weakly saline (1.4 to 7.7 eqiv wt % NaC1) 

fluid, possibly depleted in 0 and C isotopes (6 180 = -2.5 to 0.3%0, 6 13C = -14 to -4%0). The 

dolomite probably formed during diagenesis and hydrothermal alteration, by fluid-rock 

interactions between evolved seawater at 150-250°C and the limestone-bearing host sediment, 

and/or mixing between evolved seawater at 350°C and a seawater-dominant pore fluid at 100°C. 

The massive sulfide lenses consist of pyrite, sphalerite and galena, with subordinate tetrahedrite, 

chalcopyrite, arsenopyrite, pyrrhotite, stannite, pyrargyrite and electrum. Paragenetically early 

framboidal, dendritic, reticulate, botryoidal and spongy Fe-sulfide aggregates and bladed 

pyrrhotite pseudomorphs of sulfate occur throughout the breccia and sandstone beds that host 

Main zone, but are rarely preserved in the coarse grained, annealed massive sulfide in 

Toms zone. Pre-tectonic carbonate-chalcopyrite-pyrite veins in the footwall volcanic 

succession, immediately south of Toms zone may represent a stringer zone displaced from the 

Toms massive sulfide lens. The stringer veins also contain native bismuth, sphalerite and 

Se-Bi-Ag-rich galena. 

Sulfur isotope values in the massive sulfide (6 34S = 1.7-5.0%0) and footwall stringer veins 

(6345= 3.9-7.4%0), indicate that the hydrothermal fluid contained a homogenous mixture of 

magmatic S, derived from the host volcanics rocks and reduced seawater sulfate. The lower 



average 834S values in the massive sulfide lenses may have resulted from a component of 

partially reduced seawater sulfate or biogenic S, leached out of the host sediment. 

Textural, geochemical and isotopic data indicate that the Main zone massive sulfide lenses 

formed by lateral fluid flow and sub-sea floor replacement of the poorly-sorted, carbonate-

bearing breccia and sandstone beds. Low temperature dolomitisation of the carbonate-bearing 

sediment during diagenesis created secondary pore spaces and provided a reactive host for fluid-

rock interactions. Base metal sulfides, chlorite, dolomite, calcite, quartz and talc filled pore 

spaces throughout the carbonate-altered breccia and sandstone units. Toms zone probably 

formed in fine-grained sediment at or near the sea floor, above a zone of focused up-flowing 

hydrothermal fluids. 

Pyrite, pyrrhotite, sphalerite, galena, tetrahedrite and electrum precipitated from a relatively low 

temperature 150-250°C, reduced hydrothermal fluid. Paragenetically early dendritic, reticulate 

and spongy Fe-sulfide aggregates in the Main zone host sequence formed by rapid mixing 

between the hydrothermal fluid and cooler pore fluids in the matrix of the breccia and 

sandstone. Base metal sulfide deposition in Main zone probably resulted from fluid mixing, 

dissolution of dolomite and increased fluid pH. Galena, sphalerite and chalcopyrite overprinted 

the primitive Fe-sulfide textures. As the hydrothermal system intensified, a high temperature 

>280°C, strongly reduced fluid carrying Sn, Cu, Se and Bi was sourced from deep within the 

footwall volcanic succession. Carbonate-chalcopyrite-pyrite stringer veins and dolomite-

chalcopyrite-pyrite-stannite veins formed in the Footwall Copper zone and Toms zone Central 

lens respectively. Chalcopyrite partly replaced the Zn-Pb-rich massive sulfide in Main zone. 

During the D I  deformation, fracture-controlled fluids remobilised sulfides into syn-tectonic, 

quartz and carbonate veins within the Lewis Ponds fault zone and adjacent footwall volcanic 

succession, resulting in extensive Cu, Au and Zn anomalies. Massive sulfide remobilisation 

may have occurred over tens to hundreds of metres. Talc, quartz-sericite, chlorite and 

Fe-Mg-Mn-carbonate assemblages overprinted the dolomite, chlorite and sericite-altered rocks 

in the Toms zone host sequence. 

Lewis Ponds is an unusual stratabound, carbonate and volcanic-hosted massive sulfide deposit. 

The intimate spatial association between fossiliferous limestone, hydrothermal carbonate and 

base metal sulfides at Lewis Ponds provides a basis for new exploration targets in Siluro-

Devonian marine successions elsewhere in New South Wales. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Preamble 

Submarine volcanic successions host various types of precious and base metal rich deposits. 

These include "classical" sea floor exhalative volcanic hosted massive sulfide (VHMS) 

deposits, intrusion-related replacement deposits with transitional VHMS and high sulfidation 

epithermal characteristics, carbonate-hosted massive sulfide deposits and shallow water, 

Au-rich, stratabound replacement deposits. In the submarine environment, volcanic facies 

architecture, water depth, syn-volcanic structures, hydrothermal fluid chemistry and fluid 

temperature control the overall morphology, mineralogy and metal content of VH1VIS deposits 

(Sillitoe et al., 1996; Gibson et al., 1999; Hannington et al., 1999a; Hannington et al., 1999c; 

Large et al., 2001a). Zinc-rich, sea floor massive sulfide lenses and discordant, pipe-like 

Cu-Au deposits occur in volcanic successions dominated by lavas, volcaniclastic rocks and/or 

shallow subvolcanic intrusions. Porous volcanic facies host polymetallic, sheet-style 

replacement deposits (Gibson et al., 1999; Large et al., 2001a). Massive sulfide deposits 

undergo varying degrees of post-depositional metamorphism and remobilisation during 

diagenesis, basin inversion, regional deformation and orogenic granite emplacement. These 

processes may obscure or even destroy the primary mineralogy, mineral textures, paragenetic 

relationships and geochemical trends (Huston et al., 1995; Khin Zaw et al., 1999; 

Hutchinson, 2000; Marshall et al., 2000; Herrmann and Hill, 2001). 

Water depth influences the metal content of the deposit and volcanic facies architecture of the 

host sequence (Takahashi and Suga, 1974; Huston and Large, 1989; Sillitoe et al., 1996; 

Gibson et al., 1999). At depths of less than 1 500 m, sub-sea floor boiling of the hydrothermal 

fluid tends to produce epithermal-like accumulations with high precious to base metal ratios 

rather than sea floor massive sulfide mounds (Herzig and Hannington, 1995; Hannington and 

Herzig, 2000). Many ancient shallow water VHMS deposits lack chemical and physical 

evidence for boiling (eg. Huston and Large, 1989; Sainty, 1992; Halley and Roberts, 1997). 

Instead, palaeogeographic reconstructions rely on the occurrence of shallow marine 

sedimentary structures, marine faunal assemblages and pyroclastic textures (Table 1.1). 

However, limestone and pyroclastic facies are not necessarily indicative of water depth 

(Cas, 1992; Gibson et al., 1999; Huston and Cas, 2000). Fossiliferous limestone and shallow 
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marine faunal assemblages have to be in situ. Non-welded pyroclastic units may accumulate 

at considerable depths (>1 000 m) due to re-sedimentation of pre-existing debris or non-

explosive quench fragmentation of vesiculated lava. 

Deposit Water Depth Evidence Comments Reference 

Mt Chalmers, 
Queensland 

100-200 m Shallow faunal assemblage and 
pumiceous peperite 

In situ trace fossils 
located at ore equivalent 
horizon; exhalative 
deposit 

Large and Both 
(1980); Sainty 
(1992); Hunns and 
McPhie (1999) 

Henty, 
Tasmania 

"Shallow" Fossiliferous limestone lenses 
and welded ignimbrite 

Hydrothermal and 
sedimentary carbonate; 
replacement deposit 

Halley and Roberts 
(1997); Callaghan 
(2001) 

Lyell- 
Comstock, 
Tasmania 

Below wave- 
base 

Fossiliferous limestone lenses, 
polymictic breccia and 
limestone-clast breccia 

Hydrothermally altered 
and mineralised limestone 
and breccia; exhalative 
and replacement origin 

Jago et al., (1972); 
Corbett (2001) 

Dresser, 
Western 
Australia 

50 m Stromatolites, evaporites and 
sedimentary structures 

Associated with silicified 
sinters and chert-barite 
veins; exhalative 

Nijman et al., (1998) 

Selbaie, 
Quebec 

Very shallow 
to subaerial 

Thick sequence of welded 
tuffaceous rocks 

Inferred submarine, 
intracaldera setting; 
replacement deposit 

Larson and 
Hutchinson (1993) 

Horne, 
Quebec 

<500 m Cryptodomes comprising 
highly vesicular coherent facies 
and peperite and abundant 
volcaniclastic deposits 

Authors acknowledge that 
evidence is equivocal; 
replacement origin 

Kerr et al., (1993) 

Boliden, 
Sweden 

Initially above 
storm wave- 
base, then 
below 

Erosion of exposed dacite 
intrusion and overlying 
pyroclastic deposits 

Occurs close to intervals 
of shallow water to 
subaerial facies 
associations; epigenetic 
deposit 

Allen et al., (1996b) 

Eskay Creek, 
British 
Columbia 

Shallow to 
subaerial 

Welded ash flow tuff, terrestrial 
plant fossils 

Bimodal volcanic 
succession of pillow 
basalt, rhyolite flows and 
domes, hyaloclastite and 
mudstone; exhalative 
deposit 

Macdonald et al., 
(1996) 

Table 1.1 Ancient shallow water VHMS deposits where depositional depth is constrained by the 
lithofacies. Modified from Huston and Cas (2000). 

Massive and brecciated limestone facies occur in shallow and deep water settings adjacent to 

volcanic edifices and along the margins of sedimentary basins. Coral reef terraces commonly 

surround actively forming volcanic islands in water depths of 0-1 500 m (Moore and Clague, 

1992). Collapse of the submarine terraces may produce large quantities of fossiliferous 

limestone debris. On Lihir Island, Indonesia, raised fringing reefs adjacent to the Ladolam Au 

deposit are absent from the collapsed margin of the Luise Caldera (Moyle et al., 1990), 

indicating that volcaniclastic mass flows have re-deposited limestone debris further down-

slope. Late Silurian stratabound polymetallic massive sulfide deposits in New South Wales, 

Australia commonly occur in close proximity to fossiliferous limestone and felsic volcanic 

rocks (Stanton, 1955; Stevens, 1974; Davis, 1990). 
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Lewis Ponds is an unusual stratabound, Zn-Pb-Cu-Ag-Au-rich massive and disseminated base 

metal sulfide deposit, located 190 km northwest of Sydney in central western New South 

Wales (Fig. 1.1). Massive sulfide lenses are hosted in a strongly deformed, Late Silurian felsic 

volcanic and marine sedimentary succession. The mineralised zones are spatially associated 

with variably recrystallised, fossiliferous limestone, siltstone and hydrothermal carbonate. 

These deposits overlie a thick, massive succession of strongly foliated quartz phyric volcanics 

previously interpreted as lava flows, intrusions and pyroclastic or epiclastic facies (Australian 

Geophysical report, 1965; Shepherd, 1972; Castle, 1976; Valliant and Meares, 1998). Valliant 

and Meares (1998) provided the most recent published interpretation of the Lewis Ponds 

deposits. They suggested that the massive sulfide lenses formed on the sea floor, in shallow 

basins bound by limestone reefs or syn-volcanic growth faults. 

Figure 1.1 Locality map of Lewis Ponds and the Orange district. Compiled from the following base 
maps: Orange 1:25 000 topographic map, 8731-3-N, second edition; and Fremantle 1:25 000 
topographic map, 8731-2-N, second edition, Central Mapping Authority of New South Wales. 
Australian Map Grid. 

The Lewis Ponds prospect is at an advanced stage of exploration. Tri Origin NL, the operating 

company, has completed approximately 50 000 m of resource definition and exploration 

diamond drilling. Two stratabound massive sulfide lenses, Main and Toms zones have been 

delineated (Table 1.2). These have a combined indicated resource of 5.7 Mt, grading 3.5% Zn, 

2% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au (Tri Origin pers comm., 2002). Main zone 

consists of 4.9 Mt, grading 2.7% Zn, 1.3% Pb, 0.16% Cu, 78 g/t Ag and 1.93 g/t Au. Toms 

zone, although volumetrically smaller (0.8 Mt), has significantly higher Zn, Pb, Cu and Ag 

grades than Main zone: 8.0% Zn, 5.6% Pb, 0.33% Cu, 210 g/t Ag and 1.9 g/t Au. 
3 
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The Lewis Ponds district has a long history of prospecting, mining and exploration activity 

dating back to the 1850s. Many costeans, shafts and adits occur over the prospect 

(Figs. 1.2 and 1.3). Core trays are stored on a slag dump at the site of the abandoned 

New Lewis Ponds mine and smelter (Fig. 1.4). 

Total Zn % Pb % Cu % Au g/t Ag g/t 
Main zone 4.9 Mt 2.7 1.3 0.16 1.93 78 
Toms zone 0.8 Mt 8.0 5.6 0.33 1.9 210 
TOTAL 5.7 Mt 3.5 2.0 0.19 1.9 97 

Table 1.2 Lewis Ponds indicated resource (Tri Origin pers comm., 2002 and www.Tri Origin .com). 

1.2 	Rise and fall of the Lewis Ponds mining district 

Lewis Ponds is one of the oldest mining districts in Australia. Copper was discovered on land 

owned by Richard Lane and John Glasson, near a tributary of Lewis Ponds Creek in 1849 

(Carne, 1899). The discovery attracted Cornish miners from England (Rule, 1978; 

Weathersten, 1988). In January 1872, the Great Western Copper Mining Company 

commenced operations at numerous copper deposits north of the Cornish settlement, 

discovered between 1851 and 1865 including Britannia, Gurophian, Big Bell, Lady Belmore, 

Icely and Ophir (Carrie, 1899; Pittman, 1901; Rule, 1978; Weathersten, 1988). Under the 

management of Captain W. R. Renolds, the company produced 4 000 tons of ore from eight 

lodes near Lewis Ponds Creek to yield 640 tons of copper (Lucas, 1875; Carne 1899). 

However, all of the mines had closed by 1886. At this time, it was reported that land between 

Orange and Lewis Ponds, "had the appearance of being highly auriferous, argentiferous and 

cupriferous" (p. 112, Department of Mines annual report for 1887). 

William Williams, a Welshman who immigrated to Australia to manage the Cadia copper mine 

discovered silver on his Lewis Ponds property in about 1886 while extracting limestone from a 

nearby quarry (Folster, 1946). The limestone later provided flux for the smelters. His 

discovery coincided with a silver boom accompanying the enormous wealth generated from 

the Broken Hill lodes. Hundreds of prospectors and small mining companies sought money 

from investors keen to cash in on the over-inflated silver prices. Pittman (1901) noted that, 

"large fortunes were made on paper." However, falling metal prices in 1888 ended the short-

lived silver boom. 

By 1887, Williams' Lewis Ponds Silver Mining Company had sunk three shafts to 35 m and 

produced 293 tons of ore from a 1-6 m wide gossan lode (Department of Mines annual report 

for 1887; unpub. mine record). The ore was initially sent to Germany for treatment. In 1888, 

Williams sold his land at Lewis Ponds for a profitable 12 000 (Folster, 1946). 
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Figure 1.2 Map of Lewis Ponds prospect illustrating mine workings, gossan outcrops and soil 
geochemistry. The contoured Zn and Cu soil geochemistry data are from Shepherd (1972). Soil 
samples were collected at 30 m intervals along lines spaced 150 m apart. Approximate depths of the 
major mines are shown (Department of Mines annual report for 1887; Carrie, 1901; Mine record for 
Little Bell Mount, 1906; Shepherd, 1972). 
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Figure 1.3 Decline at the Toms Lewis Ponds pyrite mine. The mine produced 2 400 tons of gold-
silver-lead ore during 1887 and 1888. Approximately 30 000 tons of pyrite ore were extracted from 
Toms mine during World War I for sulfuric acid manufacture at Cockle Creek, Newcastle. Maximum 
depth of the workings was 90-92 m. 

Figure 1.4 New Lewis Ponds slag dump and smelter ruins surrounded by eucalypt forest in the 
foreground and open sheep grazing land in the background. Looking east from the limestone quarry. 
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The New Lewis Ponds Gold and Silver Mining Company, under the management of 

J. E. Potter erected a headframe and expensive smelting equipment, including a water jacket 

furnace (Fig. 1.5). Smelting commenced on the 2nd January, 1899. The company employed 

132 men. Toms Lewis Ponds Gold and Silver Mining Company sank three shafts into a 4.5 m 

wide lode near the old Gurophian mine to the south, initially producing 500 tons of ore at 

10% Pb, 30 oz (930 g/ton) Ag and 5 dwt (7 g/ton) Au. The mine, managed by Captain James 

Hebbard, employed 35 men in 1888 and 75 men in 1889 (Department of Mines, annual 

reports). Tom's company acquired the New Lewis Ponds mine and together, 8 116 tons of ore 

were produced during 1890. The Spicers Gold and Silver Mining Company worked a nearby 

lead, silver and gold prospect between 1887 and 1892. 

By the late 1880s the thriving Lewis Ponds village had a population exceeding 600 

(Daily Orange, 1954; 1956). There were three hotels — the Commercial, Royal and Clubhouse, 

three general stores, four butchers, two churches, a post office, police lock-up, public school 

and skating rink (Folster, 1946; Daily Orange, 1954; Daily Orange, 1956; Maroney, 1982; 

Cook and Garvey, 1999). The miners lived in modest huts and tents. A local sawmilling 

company provided timber for the buildings and mine shafts. Limestone and ironstone were 

obtained for flux in the smelters and silver bars supplied from Broken Hill assisted fusion of 

the complex ore. Some 300 horses and 16 wagons, employed to transport matte bars and silver 

bullion to Orange would return with coke and stores (Folster, 1946). The Lewis Ponds 

settlement is now deserted, except for several sheep grazing families. 

All mining and smelting activities ceased at Lewis Ponds during 1891 and 1892 amid claims 

by Warden John S. Lane of improper company practises including the release of misleading 

newspaper reports (Department of Mines, annual report for 1891). Demand for copper 

allowed several small operations to continue immediately south of Lewis Ponds. The 

Britannia, Mount Regan, Little Gem and Little Bell Mount mines produced small quantities of 

copper from quartz veins and cupriferous country rock in the early 1900s (Came, 1908). 

Brown and Party dewatered the Toms mine in 1913. They erected a new headframe and 

installed winches. Between 1915 and 1921, the Sulfide Corporation raised approximately 

30 000 tons of pyrite ore for sulfuric acid manufacture at Cockle Creek, Newcastle 

(Department of Mines annual reports for 1913 to 1930). Small amounts of gold were also 

recovered from the massive sulfide. Paine and Riley conducted minor surface prospecting 

around the flooded New Lewis Ponds and Spicers workings. They strip mined the gossan 

lodes in 1917 and sank a new shaft in 1918. 
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"Many will remember the immense smoke stack which stood like a beacon long 
after mining activity had died down...lt was the loftiest of all the chimneys in 
western New South Wales." 

William Folster, Daily Orange, 25th April, 1946 

Figure 1.5 A: New Lewis Ponds mine and smelter in 1890. Photo courtesy of Tri Origin and enhanced 
by M. Agnew. Quotation from newspaper report by William Folster. B: Remains of the smelter 
looking south toward Mt Britannia and Toms mine. Drill core trays are now stored on the slag dump. 
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1.3 	Modern exploration 

Modern exploration of the Lewis Ponds prospect commenced during the early 1960s. 

Numerous companies and joint ventures held the ground including Cominco Exploration, 

Amax Exploration, Aquitaine Australia Minerals, Shell Company of Australia Limited and 

Homestake Australia Limited. They conducted: 

• rock chip, soil and stream sediment sampling; 

• airborne electromagnetic and magnetometer surveys; 

• induced polarisation surveys; and 

• shallow reversed circulation and diamond drilling around the old workings. 

Tri Origin, a Canadian-based company, commenced exploration at Lewis Ponds in 1991 

(Valliant and Meares, 1998). Further geological mapping, soil and rock chip sampling and 

geophysical surveys were undertaken to delineate new targets. Induced polarisation data 

revealed steeply-dipping conductors at depth. A deep diamond drilling program proved 

successful in 1992. The third and forth holes intersected a new mineralised area at depth 

(Main zone), located 250 m northwest of the Spicers mine (Fig. 1.2; Valliant and Meares, 

1998). In 1995, further step-out exploration drilling encountered high-grade massive sulfide 

underneath the Toms mine workings (Toms zone). A conformable halo of anomalous Zn soil 

geochemistry surrounds the two mineralised zones (Fig. 1.2). Soil geochemical haloes of 

400-1 500 ppm Cu extend south of Toms mine. These are discordant to both bedding and the 

major NNW-trending structural fabric in the rocks. 

	

1.4 	Aims and methods 

The overall purpose of this study was to determine the volcanic-sedimentary setting, 

geological and geochemical characteristics and origin of the Lewis Ponds massive sulfide 

deposits. The specific aims were to: 

• characterise the volcanic-sedimentary facies architecture and depositional environment 

of the host sequence; 

• determine the origin of the footwall volcanic succession and overlying limestone-

bearing units; 

• identify any structures that may have controlled emplacement of the footwall volcanic 

succession or circulation of hydrothermal fluids; 

• study the mineralogy, mineral compositions, whole rock geochemistry and stable 

isotope geochemistry of the hydrothermal alteration envelope; 

• examine metal grades, sulfide mineral compositions and sulfide textures in the 

mineralised zones to determine metal distribution and paragenetic relationships; 
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• develop a genetic model for the formation and potential structural modification of the 

Lewis Ponds deposits; and 

• compare the geological and geochemical features of Lewis Ponds to other eastern 

Australian and worldwide Zn-Pb-Ag-rich massive sulfide deposits. 

These aims were achieved by undertaking a multidisciplinary study to characterise the 

volcano-sedimentary facies architecture, structures and regional context of the Lewis Ponds 

host sequence and the geochemical and mineralogical zonation in the hydrothermal alteration 

envelope. The following investigations were conducted: 

• 1:2 500 scale prospect mapping to supplement previous mapping carried out by the 

exploration companies; 

• detailed logging and sampling of drill core from thirty diamond drill holes to 

determine the spatial distribution of lithofacies and hydrothermal alteration mineral 

assemblages; 

• measurement and calculation of structural fabric orientations, vergence relationships 

and stratigraphic facing directions in drill core; 

• regional road and creek traverses of the volcanic-sedimentary succession; 

• petrological observation of mineralogy, textures and paragenetic relationships in 

unaltered, altered and mineralised samples; 

• whole rock, XRF analysis of selected drill core and surface samples to delineate 

magmatic suites in the footwall volcanic succession and to quantify geochemical 

gradients associated with the hydrothermal alteration envelope; 

• electron microprobe analysis of silicates, carbonates and sulfides for the purpose of 

identifying variations in mineral chemistry between mineralised zones; 

• examination of available assay data to determine any lateral or vertical metal zonation; 

• fluid inclusion and C-0 isotope study of limestone clasts, carbonate veins and 

hydrothermal carbonate surrounding the massive sulfides; 

• S isotope study of the sulfides to determine the source of S; and 

• fluid modelling of geochemical data to characterise the temperature, source and 

composition of the hydrothermal fluid(s) and the mechanisms of sulfide deposition. 
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CHAPTER 2 

GEOLOGICAL SETTING 

2.1 Introduction 

Lewis Ponds is located near the western margin of the Hill End Trough, in the eastern Lachlan 

Fold Belt (LFB) of New South Wales, Australia. The Hill End Trough is one of numerous 

elongate, fault-bound stratotectonic units comprising Middle Silurian to Early Devonian 

sedimentary and silicic volcanic rocks (Fig. 2.1). In New South Wales, the mixed volcanic-

sedimentary successions host significant polymetallic massive sulfide, barite and structurally 

controlled Cu-Au deposits, including Woodlawn, Mineral Hill, CSA, Elura, Kempfield, 

Peelwood and Wisemans Creek (Davis, 1990; Scheibner, 1998; Suppel etal., 1998). The 

distribution and general characteristics of these deposits reflects mineralisation in an evolving, 

active plate margin setting (Gray et al., 2002). This chapter focuses on the tectonic and 

structural evolution of the LFB in New South Wales and in particular, the development and 

closure of the Siluro-Devonian sedimentary basins. The local structural geology and 

stratigraphy of the Hill End Trough and adjacent Molong High are also introduced in this 

chapter. 

2.2 Tectonic setting of the Lachlan Fold Belt (LFB) 

The LFB is part of a 20 000 km long Palaeozoic orogenic belt extending around the margin of 

Gondwana, from the northern Andes, through Antarctica to eastern Australia (Foster and 

Gray, 2000; Gray et al., 2002). It comprises Ordovician to Devonian quartz turbidites, 

calcalkaline to shoshonitic volcanic and volcaniclastic rocks, granite, limestone and mudstone. 

In the western subprovince, the quartz turbidites overlie a Cambrian greenstone basement with 

oceanic affinities (Crawford and Keays, 1978). 

The stratotectonic units constituting the LFB were progressively accreted onto the Australian 

craton during a series of eastward migrating, Late Ordovician to Early Carboniferous 

(-455-360 Ma) deformation and metamorphic events, resulting in the closure of a marginal 

oceanic basin, fragmentation of a volcanic arc and tectonic inversion of numerous rift basins. 

These orogenic events were accompanied by voluminous granitic magmatism across the LFB 

(Collins and Vernon, 1992; Foster and Gray, 2000). 
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Figure 2.1 Distribution of Silurian, Devonian and Ordovician stratotectonic units  in  the Lachlan Fold 
Belt (modified from Scheibner, 1998). Outlines of the Lachlan Fold Belt and Tasman Line are from 
Fig. 178 (Scheibner and Veevers, 2000). Approximate position of the Lachlan Transverse Zone (urz) 
is based on figure 1 in Glen and Walshe (1999). 

Pre-Cambrian to Early Silurian  

The Tasman line marks the eastern margin of the Palaeo- to Meso-Proterozoic, Australian 

craton (Fig. 2.1; Scheibner, 1996; Scheibner and Veevers, 2000). East of this line, the oldest 

rocks exposed in the western subprovince of the LFB are Early to Middle Cambrian 

metavolcanics (tholeiitic basalt, boninite, andesite and ultramafic rocks), volcaniclastics and 

cherts (Crawford and Keays, 1978; Crawford et al., 1984). These were accreted onto the 

Australian craton to form the Kanmantoo Fold Belt in the Late Cambrian (Scheibner, 1998; 

Foster and Gray, 2000; Scheibner and Veevers, 2000). 
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During the Cambrian and Early Ordovician, an active, southwest Pacific-style convergent 

margin developed along the east coast of Australia. In New South Wales, this comprised an 

inferred west-dipping subduction zone, accretionary prism, forearc basin, volcanic arc and 

marginal basin (Fig. 2.2; Scheibner, 1996; Scheibner, 1998; Glen and Walshe, 1999; Scheibner 

and Veevers, 2000). The four Ordovician volcanic belts in the eastern LFB (Fig. 2.1) 

originally existed as a continuous volcanic arc system, termed the Macquarie Arc (Cas, 1983; 

Collins and Vernon, 1992; Glen et al., 1998; Glen and Walshe, 1999). High K, calcalkaline to 

shoshonitic volcanic and intrusive rocks formed in an ocean island arc, above a micro-

continental fragment or Pre-Cambrian to Cambrian substrate (Scheibner, 1998; Scheibner and 

Veevers, 2000). These rocks host the world class Cadia and Endeavour porphyry Cu-Au 

deposits. 

Middle Silurian to Late Devonian  

A re-organisation of the active continental margin of eastern Australia in the Early to Middle 

Silurian caused major changes in palaeogeography and the nature of magmatism across the 

LFB. The volcanic arc migrated eastward or re-developed further to the east due to roll-back 

of the subduction zone, oblique convergence and collapse of the Ordovician crust (Collins and 

Vernon, 1992; Scheibner, 1998; Foster and Gray, 2000; Gray et al., 2002). A broad area of 

backarc extension developed inboard of the Calliope Volcanic Arc (Fig. 2.2), resulting in 

widespread granite emplacement, subaerial to submarine silicic and rarely basic calcalkaline 

volcanism and the formation of shallow to deep marine grabens, half-grabens and pull-apart 

basins separated by shallow marine platforms (Cas, 1983; Powell, 1983; Scheibner, 1998; 

Scheibner and Veevers, 2000). Major volcanic centres existed predominantly along basin 

margin (Fig. 2.2). Late Silurian palaeogeography in the eastern LFB has been compared to 

the Philippines archipelago (Cas, 1983). The Hill End, Cowra, Captains Flat-Goulburn, 

Melbourne and Tumut troughs, Cowombat Rift and Cobar Basin (Fig. 2.1) progressively filled 

with sediment derided from the adjacent shallow marine areas. The term trough, although not 

ideal, is widely used in the literature to describe these Silurian and Devonian volcanic-

sedimentary successions. Backarc extension, subsidence and limited volcanism continued into 

the Early Devonian (Fig. 2.2). 

During the Middle to Late Devonian, contraction events were diachronous with extension and 

deposition of shallow marine to terrestrial sediment in the basins (Cas, 1983; Scheibner, 1998). 

The Middle Devonian Tabberabberan orogeny (-390-370 Ma) was part of an eastward 

migrating 'wave' of continuous or episodic deformation (Gray, 1997; Gray et al., 2002) which 

led to uplift, erosion and reactivation of syn-sedimentary faults (Cas, 1983; Glen and Watkins, 

1994, 1999). Deformation involved transpressional strike-slip movement and thrusting on 
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Figure  2.2  Tectonic  evolution of the Lachlan Fold Belt in New South Wales from the Cambrian to the 
Early Devonian (modified from Figs. 15.3 and 16.1 in Scheibner, 1998). 

faults linked to low-angle, mid-crustal detachments (Glen, 1992; Glen and Watkins, 1994; 

Glen, 1995). The contraction imparted a strong N- to NNW-trending structural grain across 

the eastern LFB due to the development of cleavage, upright chevron folds and steep, reverse 

faults. 

Although most authors attribute the complex facies architecture of Silurian and Devonian units 

to palaeogeography and basin inversion, the overall tectonic framework and geodynamics of 

the LFB during this time remain speculative. In particular, the following inter-related issues 

occur in the literature. 
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Overall crustal architecture of the Lachlan Fold Belt 

The Silurian and Devonian periods were characterised by high heat flow, voluminous granitoid 

emplacement, widespread silicic or rarely bimodal volcanism and local areas of high 

temperature-low pressure metamorphism (Cas, 1983; Coney et al., 1990; Gray, 1997; 

Gray et al., 2002). The silicic magmatism resulted from partial melting of thick continental 

crust (Cas, 1983; Coney et al., 1990; Collins and Hobbs, 2001). However, heat required for 

partial melting of the lower to middle crust has been attributed to mantle upwelling and 

subduction processes involving underplating (Stolz et al., 1997; Collins and Hobbs, 2001; 

Gray et al., 2002). The S-type granitoids are interpreted to originate from partial melting of 

Proterozoic crust (Chappell et al., 1988) or magma mixing of components derived from 

Cambrian metavolcanics and Ordovician metasediments (Collins and Vernon, 1992; 

Collins, 1998). 

Nature of the basement to the sedimentary basins 

The nature of the basement to the LFB is an unresolved issue. Previous models have included 

Proterozoic to Cambrian, oceanic and mixed oceanic-continental crust (references cited in 

Glen, 1992 and Stolz et al., 1997). Recent structural, geochemical and geophysical studies 

indicate that Ordovician volcanic rocks underlie at least part of the Hill End Trough. Evidence 

for an Ordovician basement comes from interpretation of structural cross-sections 

(eg. Glen, 1992), regional gravity data (Glen and Walshe, 1999; Glen et al., 2002) and the rare 

earth element compositions of Carboniferous, I-type granites (p. 262-264; Pogson and 

Watkins, 1998). 

Timing and mechanisms of basin formation 

The current geometry of Silurian-Devonian belts is an artefact of tectonic inversion rather than 

primary orientation of the basin axes (Cas, 1983; Glen and Walshe, 1999). Detailed facies 

analysis of the Merrions Formation, for example, indicated a northwest depositional strike 

despite stratigraphic units in the Hill End Trough currently trending north (Cas, 1983). Most 

of the sedimentary basins are interpreted to have opened obliquely by sinistral transpression 

during the Middle to Late Silurian and earliest Devonian, as in the Hill End Trough 

(Glen and Watkins, 1994; Glen and Walshe, 1999), Tumut Trough (Powell, 1983), Cobar 

Basin (Glen, 1990) and Cowombat Rift (Stolz et al., 1997). Recent interpretation of modelled 

gravity data over the Hill End Trough indicates that it may have formed in response to 

northwest and northeast-oriented components of extension (Glen et al., 2002). 
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2.3 	Introduction to the Hill End Trough 

Detailed structural and stratigraphic descriptions of the Molong High and western Hill End 

Trough are provided by Glen and Walshe (1999), Pogson and Watkins (1998), 

Glen and Watkins (1994) and Packham (1968). The Hill End Trough has an elliptical outline 

due to concave, curvilinear, fault-controlled boundaries with the adjacent Ordovician volcanic 

units (Fig. 2.3). Silurian and Devonian rocks in the northern part of the trough, are interpreted 

to narrow and terminate against Carboniferous granite (David et al., 2002). The Capertee High 

and Molong High define the eastern and western margins respectively (Fig. 2.3). Regional 

gravity data over the Hill End Trough indicate southward thickening of the volcanic-

sedimentary pile above a basement of interpreted Ordovician tilt blocks, cut by NE and NW to 

NNW-trending normal faults (Glen and Walshe, 1999; Glen et al., 2002). This complex 

geometry has been attributed to oblique extension/transtension during basin formation 

(Glen, 1992; Glen et al., 1999). 

Figure 2.3 Simplified geology of the Hill End Trough, Molong High and Capertee High showing the 
distribution of Palaeozoic units. Modified from Colquhoun et al. (1997) and Raymond, Pogson and 
others (1998). Location of the Lachlan Transverse Zone (LTZ) is based on figure  1  in Glen and Walshe 
(1999). 
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The Hill End Trough comprises an 8 km sequence of Ludlowvian to Emsian, hemipelagic 

siltstone, mudstone and minor sandstone (Fig. 2.4; Packham, 2002). These rocks are 

interbedded with coarse-grained pyroclastic and epiclastic mass flow deposits sourced from the 

south or southeast (Pogson and Watkins, 1998; Jagodzinslci and Gas, 2000; Packham, 2002). 

Limestone, mudstone, breccia, volcaniclastic sandstone and rhyolite occur along the Molong 

and Capertee highs (Pogson and Watkins, 1998). Sedimentary facies in the Hill End Trough 

and adjacent Molong and Capertee highs are interpreted to record progressively deepening 

conditions during the Late Silurian. Shallow marine deposits became restricted to the 

bounding platforms as the basin subsided (Pogson and Watkins, 1998). Active submarine or 

subaerial volcanic centres existed along the basin margins at this time. 

A two stage rift model has been proposed for the Hill End Trough (Glen, 2002). Crustal 

heating, magmatism and fault-controlled extension during the syn-rift phase were followed by 

a post-rift phase involving crustal cooling, deposition of low energy, fine-grained sediments 

and widening of the basin margins. Glen (2002) documented syn-rift and post-rift cycles 

extending from the Ludlow to Emsian (Fig. 2.4). The major volcanic/volcaniclastic units 

including the Mullions Range Volcanics, Bells Creek Volcanics, Turondale Formation, 

Merrions Formation, Bay Formation and Chesleigh Formation characterise the syn-rift phase. 

Deposition of the Cunningham Formation occurred during the subsequent sag phase. 

2.4 Local geology 

According to recent mapping carried out by the Geological Survey of New South Wales, the 

massive sulfide lenses at Lewis Ponds occur near the contact of the Anson Formation and 

overlying Mullions Range Volcanics (Figs. 2.4 and 2.5). These two units, together with the 

Barnby Hills Shale, are collectively known as the northwestern Mumbil Group or less 

conventionally, Mumbil shelf (Glen and Watkins, 1994; Pogson and Watkins, 1998). 

Contemporaneous Mumbil Group rocks also occur on the eastern side of the Hill End Trough. 

The Mumbil Group unconformably overlies Ordovician volcanic rocks (Fairbridge Volcanics, 

Oakdale Formation and Byng Volcanics). Although the Ordovician units predominantly crop 

out west of Lewis Ponds in the Molong Belt, small fault-bound lenses of Byng Volcanics and 

associated unnamed Ordovician ultramafic rocks occur 3 km south of Lewis Ponds (Fig. 2.5). 

The Anson Formation and Mullions Range Volcanics host numerous small (less than 1 Mt), 

stratabound, massive to semi-massive sulfide deposits including Mt Bulga, Mt Shorter, 

Pride of the Hills, Calula and Daydawn (Fig. 2.5). 
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Figure 2.4 Time-space plot for the Hill End Trough, Molong High and Capertee High. The Anson 
Formation and Mullions Range Volcanics are highlighted in red. Modified from Raymond, Pogson and 
others (1998). Basin evolution section is based on the interpretations of Glen (2002) and Glen et al. 
(1999). 

Byng Volcanics (early Late Ordovician)  

The Byng Volcanics (Fig. 2.5) consist of basalt-andesite flows and volcaniclastic sandstone. 

Unnamed ultramafic bodies, altered to serpentinite have intruded the volcanic rocks. The total 

estimated thickness of the unit is 2 000 m. Quench textures in the basalt and the occurrence of 

mass flow deposits indicate that the Byng Volcanics formed in a predominantly submarine 

environment (Pogson and Watkins, 1998). 

18 



euRupeuopueqe 
swgrAws72,3 

6uppeopouinpeAo4kAppeq solueoloA elipuciee 

upleullojeleple0 

epuozuoulueloWNDAD F77, 

solueoloAeOueg suomoN 

at 	

iquiliAj 

eLIS 	Acrweg 

auolseum mc71 cinoie 1 
eumsewq 

uoeeuuo uosuv [Li 

uoileuuod Aeg 

'pun Ono's autpruo 

uoeetwoj Luet.pouuno 

epuelgseuodsmel 

wee Apo! h +1 

' P'74i!OK!,01711111PrAolOrcr 
. 	A; 0.0.1 V 

$ 	

m  0  Y '4, 	■ 4 N I  ••■■ •  4  A 4 ■ 4 
A ,. .. 

AA ' 4,46* 

A 	 A A A A 

A AA 	ST 
4- 

A A 	 A 	A A A 	 A 	 A A 

AA 	AAAAA A..AA  
A A A 	A A A A A AAAAA 

AAA" V 
*AAA 
A A A AAAAA Jr 1 + 7(.. 11 AAAA 

*AA  
A A:A:A:A:A .  A 	

+ 

: A 01.A A. .A A A. 

A . A . A .  .A.A.A.A.A 	
aS-A04:0.:A:.AkX+ .;!4,*' 

A . A . A „ A .  
^ 1. *  4. 

A'A'A'A' 	
Ak+; 

.H 041 JO OPPd s  " t. A A A  AAA*  y+ 4: 
‘,... ■ \ 	A A A 	AAAAAA 	 A A A A 	 -r 

An 	n AAA A A*,  A AA  A 	k I 
 

AAA 6 	AAAAA 
AA AOA 	AAAAA

AAA*  

■ ‘1./... 	 ,, A  :410 AA A A I‘AAAA 	A A A A 	 + A A A A 	A  AAA A  A 	
AAAA 

IV /;%.' 
A A A 	AAA"  

AAAA 
A A A 

AAAA 

AAAA 

A 	AAA 

A A AAAA: : : : :A A A A  Am. 
/ 	 A: 	AAA 	AAAAA 

AAAA 	AAAAA 
AAAA 	AAAAA 	''' 

1 	 % 	 ' A A A 	 A . A . AJA A . A . A . A . A .  
A A 	 ii. - AAAA 	AAAAA ... 

// 
\i 4.... _ 

AAAAA 	 A 	AAAA 	 ..., 
AAAA 	AA 	AAAA  

AAA AAAAAAAA 
...11,:,• 	 A 

AAA 	AA 	
AAAAA 

A A A A A A A A 
■ % / 	 AA A  I AAASAAAAA 
/ ■ AAAAAAAA, 

AAAAAAA 
AAAAA010 
AAAAAA 

AAAAAAi 
AAAAAA 
AAAAA1 , 

"AAA 

A A A A 

AAAA 
*AAA/ 

A " A " A " 0 
-. ..164Aiehu01 A 

	

SOW 	ey4' 

	

1 	A . A . A . A 

69 )46,001 ^,  
A A A 0 

A . A . A ,  

A A A 
A A 

A A 
A 

A 
A / 

rej eletuuxoxiderpeueju — — — 

A Nnei - 

In : **. 

It 

A 	 A 
A A A 

A A A 
A A A 

AAAA 
. A . A . A 

A A 

A A ' A ' A A A 
AAAAA 
AAAAA 

AAAAAA 
AAAAAA 

A " A " A " A " A ' A "  
AAAAAA 

AAAAAA 

AA AAA4444 
AAAAA 
AAAAA 

AAAAA 
A „ A . A . A . A 

A „ A . A . A . A 

AAAA 
AAAA 
AAAA 

A . A . A .  

A . A .  

A . A .  

OC 

NVIOIA00b0 

NV1N0A30 

1 SflOH3dINOENVO 

AHV112131 

spuod syvta 

et 

(8661) SIOtpo pur uosSod `puouagN Pug (L661) le la unman 
wag powpow -Om Sump pug tignau, pugtt  'clno.uj imumw atp jo ASoloair isuoOlaw 	maid 

&nes leoleopao - 3 Jeldego 



Chapter 2 - Geological Setting 

Anson Formation (early Late Silurian)  

Part of the Anson Formation, as defined by Pogson and Watlkins (1998) was included in the 

Mumbil Formation of Pacicham (1968). More recently, Glen and Watkins (1994) briefly 

referred to it as the Clifton Grove Formation. Packham described the Mumbil Formation as a 

non-volcanic unit of fine-grained sedimentary rocks and limestone lenses, conformably 

overlying the Mullions Range Volcanics. However, the Anson Formation is now interpreted 

to pre-date the Mullions Range Volcanics (Fig. 2.4; Pogson and Watkins, 1998). Upper parts 

of the unit are exposed in the Lewis Ponds area and in the core of a large anticline to the north 

(Fig. 2.5). Lower parts crop out discontinuously west and southwest of Lewis Ponds, where 

conglomerate, limestone and siltstone unconformably overlie the Byng Volcanics. Bedding in 

the Anson formation is locally overturned in this area (Fig. 2.5). 

The basal conglomerate member of the Anson Formation (not shown in Fig. 2.5) comprises 

graded beds of conglomerate, sandstone and siltstone. Conglomerates contain chert, 

mudstone, basalt, basaltic-andesite and ultramafic clasts (Pogson and Watkins, 1998). These 

lithic clasts were probably derived locally from the underlying Ordovician units. The coarse-

grained deposits pass up into a 50-200 m thick limestone member containing broadly 

Ludlovian shallow marine fossils including algae, crinoids, brachiopods, conodonts and in situ 

corals (Pickett, 1993; Pogson and Watkins, 1998). The remainder of the unit consists of 

siltstone, mudstone and sandstone. Minor limestone lenses, rhyolitic lava and volcaniclastic 

sandstone occur toward the top of the unit (Pogson and Watkins, 1998). 

Pogson and Watkins (1998) argued that lower parts of the Anson Formation were deposited in 

a fluvial to shallow marine environment. The basal conglomerate member contains oxidised 

clasts that were probably derived from exposed Ordovician rocks. In situ corals and algae in 

the limestone member formed in the photic zone (Pickett, 1993; Pogson and Watkins, 1998). 

They suggested that limestone lenses near the top of the unit, in the Lewis Ponds-Mt Bulga 

area may also indicate a shallow marine setting. 

Mullions Range Volcanics (early Late Silurian)  

The Mullions Range Volcanics occur in three areas; a doubly-plunging anticline (Mullions 

Range anticline), structurally dismembered southern section and northerly-thinning western 

lobe (Fig. 2.5). Pacicham (1968) originally described the unit and defined a 460 m thick type 

section occurring along Kerrs Creek (see Chapter 3, section 3.10). However, approximately 

2 000 m of volcanic rocks are exposed on the eastern limb of the Mullions Range anticline 

(Pogson and Watkins, 1998). 
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The three areas are characterised by different facies associations (Hilyard, 1981). Quartz-

feldspar phyric rhyolite-dacite and volcaniclastic sandstone occur in the Mullions Range 

anticline and southern areas. The western lobe consists of flow-banded and columnar-jointed 

rhyolite and dacite, pumiceous volcaniclastic deposits and minor limestone lenses containing 

Ludlowvian fossils (Packham, 1968; Hilyard, 1981; Pogson and Watkins, 1998). 

The Mullions Range Volcanics is interpreted as a submarine to partly emergent silicic volcanic 

succession, for which numerous volcanic centres have been proposed (Hilyard, 1981; Pogson 

and Watkins, 1998). Hilyard (1981) suggested that variations in facies architecture and 

stratigraphic thickness in the western lobe reflect a source area to the south. Hudson et al. 

(1997) interpreted the Mullions Range anticline as a possible deformed rhyolite dome. 

Barnb_y Hills Shale (Late Silurian to earliest Early Devonian) 

The uppermost unit of the northwestern Mumbil Group, the Barnby Hills Shale has previously 

been included in the Molong Beds, Gamboola Formation, Panuara Formation and Mumbil 

Formation (Strusz, 1960; Packham, 1968; Pogson and Watkins, 1998). It occurs as a series of 

narrow folded/faulted belts, extending over 100 km. In the Orange district, shale and 

graptolite-bearing carbonaceous mudstone conformably overlie the Mullions Range Volcanics 

(Fig. 2.5). Limestone-clast breccia, siltstone and volcaniclastic sandstone occur elsewhere in 

the unit. Pogson and Watkins (1998) suggested that the Barnby Hills Shale was deposited in a 

deep, below wave-base environment. 

Bathurst Batholith (Middle to Late Carboniferous)  

Middle to Late Carboniferous, post-tectonic, I-type granites have intruded the Hill End Trough 

and Capertee High. The Bathurst Batholith is a large, discordant, multi-intrusion complex 

(Fig. 2.3). It is part of a 70 km long, NNW-trending belt of granite and gabbro intrusions with 

Rb/Sr ages of 340-312 Ma (Shaw and Flood, 1993). Small, Middle to Late Carboniferous 

granite bodies also occur in the Lewis Ponds district (Fig. 2.5). Volcanic equivalents of the 

Carboniferous granites do not occur in the LFB (Shaw and Flood, 1993; 

Pogson and Watkins, 1998). 

Structural geology and metamorphism  

The northwestern margin of the Hill End Trough is characterised by steep reverse faults and 

upright, open to tight folds (Fig. 2.5). North of Orange, folded Palaeozoic rocks are cut by a 

complex system of closely spaced, NNW-trending thrust faults. Glen (1998) interpreted this 

area, including Lewis Ponds as a major east-dipping thrust-imbrication zone, floored by the 

Lucknow fault to the west (Fig. 2.5). The Godolphin, Sawmill Hill and McDonalds Hill faults 
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are inferred roof thrusts on the eastern side. Faults in the Mullions Range imbricate zone show 

normal and reverse displacement, possibly indicating reactivation of syn-sedimentary structures 

(Glen and Watkins, 1994). 

WNW-trending faults and folds occur within a corridor, termed the Lachlan Transverse Zone 

(LTZ). Glen and Walshe, (1999) argue that this cross-orogen structure, which extends from the 

western margin of the LFB to the Sydney Basin in the east (Figs. 2.1 and 2.3), may have 

influenced Palaeozoic tectonics in the eastern LFB since at least the Middle Ordovician. The 

LTZ controls the distribution of numerous Ordovician Cu-Au deposits, Carboniferous and 

Jurassic intrusions and Triassic volcanics in the eastern LFB. North of the LTZ and Bathurst 

Batholith, Upper Silurian to Lower Devonian units on both sides of the Hill End Trough are 

flanked by the Mumbil Group (eg. Fig. 2.5). However, Lower Devonian rocks directly overlie 

the Mumbil Group south of the LTZ. Therefore, Glen and Walshe (1999) argued that the LTZ 

separated deep marine sediments to the north from shallow marine shelf deposits (Mumbil 

Group) to the south during the Late Silurian, thereby controlling the margin of the Hill End 

Trough. 

Glen et al. (1999) dated white mica and biotite growth during deformation in the Orange district 

using the 40Ar-39Ar technique and assuming relatively fast cooling rates. Samples were chosen 

from foliated Late Silurian volcanics adjacent to NNW-trending faults and Early Carboniferous 

granites (Table 2.1). Results were correlated with previous studies to define three deformations: 

• 387-378 Ma 	previously referred to as Tabberabberan Orogeny; 

• 370-371 Ma 	possible younger phase of the Tabberabberan Orogeny; and 

• — 340 Ma 	Kanimblan deformation, pre-dating Carboniferous granites. 

	

Unit 	Locality 	 Mineral Kinematics 	 Cooling Age 
Foliated granite 
Kangaloolah 
Volcanics 
Mullions Range 
Volcanics 
Mullions Range 
Volcanics 
Mullions Range 
Volcanics 

Reids Flat area 
Kempfield area near 
Copperhannia Thrust 
Ophir Road at Summerhill 
Creek 
Icely Road, — 4 km south of 
Lewis Ponds 
Icely Road, — 4 km south of 
Lewis Ponds 

Biotite 
White 
mica 
White 
mica 

Biotite 

White 
mica 

West-over-east thrusts 

Barnby Hills Shale thrust over 
Mullions Range Volcanics 
Byng Volcanics thrust over 
Mullions Range Volcanics 
Byng Volcanics thrust over 
Mullions Range Volcanics 

387 ±2 Ma 

358 ±2 Ma 

370 ± 4 Ma 

332 ±3 Ma 

340 ± 3 Ma 

Table 2.1 Selected results from 40Ar-39Ar dating of white mica and biotite in foliated granite and 
volcanic samples (Glen et al., 1999). 

The oldest deformation (387-378 Ma) is interpreted to result from both north-south and east-

west shortening during the initial phase of basin inversion, prior to deposition of the Upper 

Devonian Lambie Group on the Capertee High. Middle Devonian WNW-trending faults were 

recognised in the eastern part of the Hill End Trough, where Ordovician basement rocks are 
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thrust over Late Silurian deposits (Glen and Watkins, 1999). Many of these structures may 

have been reactivated during the Early to Middle Carboniferous, — 340 Ma Kanimblan 

deformation. In contrast, Powell and Edgecombe (1978) concluded that there was insufficient 

evidence in the northeastern LFB for a major orogenic event in the Middle Devonian and that 

many of the faults formed in response to local folding. 

The Hill End Trough and flanking areas are characterised by greenschist facies metamorphic 

assemblages. Biotite and actinolite have overprinted the Silurian and Devonian rocks 

(Barron, 1998). Extensive areas of overlapping biotite-actinolite and prehnite-pumpellyite 

assemblages occur throughout the Molong High. 

2.5 	Massive sulfide deposits 

Silurian and Devonian volcanic-sedimentary successions in New South Wales host 

polymetallic massive sulfide deposits, many of which were mined periodically between 1890 

and 1960 (Davis, 1990). They occur predominantly in the Hill End Trough, Captains Flat-

Goulburn Trough and Cobar Basin (Figs. 2.1 and 2.6). The following section outlines the 

overall deposit characteristics in these stratotectonic units. 

Base metal deposits in the Hill End and Captains Flat-Goulburn troughs are generally small 

(<5 Mt), with the exception of Woodlawn, which had a resource of 17.7 Mt grading 9.9% Zn, 

3.8% Pb, 1.7% Cu, 80 ppm Ag and 1.4 ppm Au (quoted in Large, 1992). Lake George, 

Captains Flat produced over 4 Mt at 10% Zn, 6% Pb, 0.67% Cu, 56 g/t Ag and 1.7 g/t Au, 

between 1937 and 1962 (Davis, 1975). The base metal occurrences include vein-controlled, 

skarn, iron oxide, barite and massive sulfide deposits (Gilligan, 1974; Stevens, 1974; 

Davis, 1990). Stratabound massive sulfide and barite lenses are hosted in siltstone, mudstone 

or fine-grained volcaniclastic rocks, adjacent to the contacts with rhyolitic and dacitic 

volcanics (Fig. 2.6). Woodlawn, however occurs in a bimodal volcanic succession 

characterised by pillow basalt, dolerite sills and rhyolite flows (McKay and Hazeldene, 1987). 

Extensive chlorite, sericite and pyrite haloes surround the stratabound massive sulfide lenses. 

Some of the deposits have Cu-rich footwall stocicwork zones consisting of disseminated pyrite 

and chalcopyrite or stringer veins (Gilligan, 1974; Chisholm, 1976; Seccombe et al., 1984). 

The massive sulfide consists of pyrite, sphalerite, galena, chalcopyrite, arsenopyrite and 

tetrahedrite with rare gold, electrum, bismuthinite and stannite (Mcleod and Stanton, 1984; 

Seccombe et al, 1984; Davis; 1990). 

The larger stratabound deposits occur in strongly folded successions adjacent to major north-

- trending structures including the Lake George fault (Fig. 2.6; Davis, 1990). 
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Figure 2.6 Massive sulfide, barite and iron oxide deposits in the Hill End and Captains Flat-Goulburn 
troughs, after Davis (1990). 
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Some of the faults may have controlled magma emplacement and hydrothermal fluid flow 

(Davis, 1990). Glen (1995) interpreted thrust faults at Woodlawn and Captains Flat as 

reactivated syn-sedimentary structures associated with extension of the Captains Flat-

Goulbum Trough. 

In contrast, the Cobar Basin hosts small to large Cu-Au and Cu-Pb-Zn-Ag deposits, including 

CSA, Elura and Peak. These occur in fine-grained sedimentary successions. However, fault-

bound units of flow-banded rhyolite and rhyolitic breccia have been documented in the 

footwall of the Peak deposit (Hinman and Scott, 1990). Cook et al. (1998) interpreted these 

bodies as subvolcanic rhyolite intrusions with quench-fragmented margins. The base metals 

occur in cleavage-parallel, quartz veins and discordant, pipe-like, semi-massive to massive 

sulfide bodies (Shi and Reed, 1998; Webster and Lutherborrow, 1998). Sulfides are associated 

with silicified rocks of varying alteration intensity. Mg-chlorite, dolomite and calcite occur 

locally in shears at the Peak deposit (Cook et al., 1998). The Cobar deposits occur adjacent to 

high strain zones or thrust faults (Cook et al., 1998; Shi and Reed, 1998). Many of these 

structures are interpreted to result from basin formation and inversion (Glen, 1995). 

2.6 Summary 

Lewis Ponds occurs in a Late Silurian succession of silicic volcanic and marine sedimentary 

rocks that flank the northwestern side of the Hill End Trough, north of the Bathurst Batholith 

and Lachlan Transverse Zone. The massive sulfide lenses are located at the contact of the 

Anson Formation and stratigraphically overlying Mullions Range Volcanics. These units host 

other small, stratabound massive sulfide deposits including Mt Bulga, Mt Shorter, Pride of the 

Hills, Calula and Daydawn. 

The Hill End Trough is one of numerous elongate belts of Silurian and Devonian volcanic-

sedimentary rocks in New South Wales. The basins opened obliquely in a backarc extensional 

environment, due to roll-back of the subducting slab, oblique convergence and collapse of the 

Ordovician crust. High heat flow resulted in partial melting of the crust, extensive granitic 

magmatism and widespread submarine to subaerial, silicic volcanism along the basin margins. 

granites (Table 2.1). 

The Lewis Ponds area is characterised by a complex system of NNW- to N- trending thrust 

faults, linked to an inferred low angle detachment. Fold and fault repetition of the Mullions 

Range Volcanics and Anson Formation occurs in this area. Deformation accompanied basin 

inversion during the Middle Devonian to Early Carboniferous and possibly involved 

reactivation of syn-sedimentary, basin marginal faults. 
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CHAPTER 3 

VOLCANIC-SEDIMENTARY SETTING OF THE HOST SEQUENCE 

3.1 Introduction 

The massive sulfide lenses at Lewis Ponds occur in a Late Silurian marine sedimentary 

succession (Figs. 3.1 and 3.2) of interbedded polymictic breccia, siltstone and quartz crystal-

rich sandstone (Transitional Unit) and massive siltstone (Hangingwall Siltstone Unit). These 

deposits unconformably overlie altered and metamorphosed, dacitic quartz ± feldspar crystal-

rich volcanics (Western Volcanic Succession). Limestone, quartz-feldspar phyric dacite, 

volcaniclastic sandstone and strongly foliated quartz-chlorite-sericite schist also occur in the 

Hangingwall Siltstone Unit. However, these lithologies are bound by steeply dipping faults. 

Figure 3.2 illustrates the lithological units and their interpreted stratigraphic and structural 

relationships. Polymictic limestone-clast breccia and mixed provenance breccia host the Main 

zone massive sulfide lenses. Toms zone occurs in the overlying siltstone unit. Massive granite 

and non-foliated quartz-feldspar porphyry dykes (Lewis Ponds Granite) have intruded Late 

Silurian rocks in eastern and southeastern parts of the prospect. 

Previous facies interpretations of the Lewis Ponds host sequence were based on the recognition 

of abundant fossiliferous limestone in outcrop and drill core. Workers interpreted the 

sedimentary facies to record a shallow marine to emergent depositional setting during the 

waning stages of volcanic activity in the area (Hilyard, 1981; Parton, 1981; Pogson and 

Watkins, 1998; Valliant and Meares, 1998). Numerous authors documented the occurrence of 

limestone 'beds' intercalated with schist or altered slate (Wilkinson, 1888; Carrie and Jones, 

1919; Australian Geophysical report, 1965). Valliant and Meares (1998) interpreted 

limestone-bearing polymictic breccia units in the Main zone footwall as gravity flow deposits 

derived from a nearby limestone reef. They suggested that the massive sulfide lenses formed 

in shallow sub-basins bound by limestone reefs or sedimentary growth faults. Distinguishing 

between in situ and transported (allochthonous) fossiliferous limestone has important 

implications for determining the depositional environment of the host sequence and genesis of 

the Lewis Ponds deposits. 

26 



75 
82 	Britannia \it 

8 
North 

^ Mt Regan 

61 80 

80 

60/ ,  , 

6 317 000 

58  projected  
Main zone 	

% 8;\ 
NO 

, 

28

4

\ New ‘, 
Lewis POnds 

8 

• 

101\  
57/ 

Cesars 	

72 6 316 000 \- 81 

oPicers 	NBelmo e 	' '''''' ............. ............................ 
\ 
\N,  s 	\ 

	

,,N 	7-• 

tO Orange  

Torpys 

C75 

• \ 	\ Torns‘:\ 

.•••i 	\ %..L1 N,,,, 

q.. 	 0 R.  
Big Bell 	

.•\,':' 

• 

% 

	

\- 86 \ 	'. 
\_53 	R , 1 	\ 

Little Bell. 	, 	\ 

• 

Mount  V, 	\ 

Noller 	' 
Syndicate .sk 88 

True 
North 

local grid 
North 

\--62 

Mt Regan 

7 5 I\ 

1000 m 
85 

75 

6 315 000 

5ts 

Chapter 3 - Volcanic-sedimentary Setting of Host Sequence 

geological contact 

approximate contact 

road 

	 quartz vein >20 cm width 

404_1_  
anticline showing plunge 

inferred syncline 

fault 

high strain zone 

abandoned mine 

/ )6'  bedding, overturned bedding 

S, cleavage 

TERTIARY 
r 
LA4 

I 	I 

alluvium 

siltstone hornfels 

massive granite 

quartz-plagioclase porphyry dyke 

dacitic volcanics 

siltstone, mudstone, minor 
quartz crystal-rich sandstone 

quartz-feldspar-volcanic lithic sandstone 

limestone-Gast breccia 

undifferentiated dackic volcanics 

siltstone & minor sandstone 

gossan outcrops 

Jasper lenses 

ICARBONIFEROUS 	Lewis Ponds Granite 

Eastern Volcanic Succession 

Hangingwall Siltstone Unit 

LATE SILURIAN 
Transitional Unit 

Western Volcanic Succession 

Alteration 

 

I 	I 

Figure 3.1 Lewis Ponds local surface geology map. Cross-sections referred to in this study are marked 
as dashed lines. 
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Chapter 3 - Volcanic-sedimentary Setting of Host Sequence 

The Western Volcanic Succession, previously termed Western Crystal Tuff has been 

interpreted as lava flows, intrusions and pyroclastic or epiclastic deposits (Australian 

Geophysical report, 1965; Shepherd, 1972; Castle, 1976; Valliant and Meares, 1998). 

Shepherd (1972) suggested that the footwall pyroclastics were sourced from a volcanic centre 

occurring in the vicinity of Main zone. Valliant and Meares (1998) found evidence for a 

rhyolite dome and associated clastic facies in the Toms zone footwall. Hydrothermal 

alteration and strong cleavage development have obscured primary textures in the matrix of the 

volcanic rocks, complicating the interpretation of their origin. Therefore petrological 

descriptions, drill logs and analysis of whole rock geochemical data are required to distinguish 

between different clastic and coherent facies in the footwall. 

This chapter outlines the volcanic and sedimentary facies observed at Lewis Ponds. 

Petrological descriptions, cross-sections and level plans are used to constrain the depositional 

environment and overall volcano-sedimentary facies architecture. The Lewis Ponds host 

sequence is placed in a regional context by considering the overall palaeogeography, eruption 

styles and volcanic provenance of the Mullions Range Volcanics. 

3.2 Methods 

Table 3.1 summarises the lithofacies defined in each of the local stratigraphic units at Lewis 

Ponds. Their definition is based on field observations, petrological descriptions and whole 

rock geochemistry (for the volcanic rocks). Field work involved prospect-scale mapping and 

logging the core from thirty diamond drill holes and wedges. The location and trend of these 

drill holes are presented on a level plan diagram in Appendix 1. In addition, Tri Origin logs 

were reinterpreted to generate cross-sections and level plans for determining the facies 

geometry (Fig. 3.3). 
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Figure 33 Flow diagram illustrating the use of primary data and drill log information provided by 
Tri Origin for the description and interpretation of volcanic and sedimentary facies at Lewis Ponds. 
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Lithofacies association Description Interpretation 

W
es

te
rn

  V
o

lc
an

ic
  S

u
cc

es
s i

on
  

Siltstone lenses 5-300 m wide, discontinuous, broadly 
concordant with bedding 

Siltstone beds or screens of 
host rock separating large 
porphyritic dacite sills 

Lithofacies association 
dacitic quartz- 

sericite schist and 
quartz-feldspar phyric 
dacite 

Massive, 5-10% 0.1-4 mm euhedral 
quartz phenocrysts ± 5-20% 
0.1-2.5 mm euhedral plagioclase 
phenocrysts in a very fine-grained 
microcrystalline groundmass 

Coherent dacite - lava flows 
or intrusions 

Lithofacies association 
quartz-plagioclase 

phyric dacite 

10-25% 0.2-1.5 mm euhedral-subhedral 
embayed quartz phenocrysts, 15-30% 
0.1-2.5 mm plagioclase phenocrysts 
and 2-5% altered biotite phenocrysts in 
weakly foliated, microcrystalline 
groundmass 

Syn-sedimentary porphyritic 
dacite cryptodome 

Lithofacies association 
dacitic quartz- 

chlorite-sericite schist 
and quartz-plagioclase 
phyric dacite 

5-20% 0.5-5 mm euhedral-subhedral 
embayed quartz phenocrysts + 5-20% 
0.5-3 mm plagioclase phenocrysts, 
trace K-feldspar and biotite phenocrysts 
in strongly foliated, tnicrocrystalline 
groundmass 

Syn-sedimentary porphyritic 
dacite sills 

Intermixed siltstone, 
quartz crystal-rich 
sandstone and quartz- 
plagioclase porphyry 

Non-stratified monomictic, consists of 
angular quartz-plagioclase porphyry 
clasts in silicified siltstone; and 
siltstone stringers in coherent quartz-
plagioclase porphyry 

Fluidal peperite, grading 
into massive quartz-
plagioclase phyric dacite 

Tr
an

s i
tio

na
l U

n i
t  

Lower lithofacies 
association: massive 
breccia and pebbly- 
granular sandstone; 
minor quartz crystal- 
rich sandstone and 
siltstone 

Monomictic to polymictic, matrix- 
supported, consists of elongate pebbles- 
boulders of fossiliferous limestone, 
siltstone, mudstone, dacite and 
sandstone in quartz crystal-rich, 
granular-sandy-mudstone matrix 

Thick subaqueous 
polymictic debris flow 
deposits 

Upper lithofacies 
association: interbedded 
siltstone, sandstone and 
breccia 

Massive or thinly-laminated siltstone, 
minor poorly-sorted fossiliferous quartz 
crystal-rich sandstone and polymictic 
breccia 

Subaqueous polymictic 
mass flow deposits 

Ha
ng

in
gw

al
l S

ilt
st

on
e  

Un
it  

Interbedded quartz 
crystal-rich sandstone 
and siltstone 

Sandstone: moderately to well-sorted, 
consists of 25-30% angular quartz 
crystal fragments in clay-rich matrix. 
Siltstone: light grey, sandy in part, 
fissile, massive or thinly laminated 

Turbidites and hemipelagic 
deposits 

Interbedded mudstone, 
siltstone and sandstone 

Sandstone: moderately to well-sorted 
strongly calcareous quartz crystal-rich 
sandstone 
Mudstone: medium to dark grey 

Turbidites and hemipelagic 
deposits 

Interbedded 
volcaniclastic breccia, 
sandstone and 
mudstone 

Breccia: polymictic, clast or matrix- 
supported, comprises mudstone, 
siltstone and aphyric-porphyritic dacite 
pebbles in feldspar crystal-rich muddy- 
sandstone matrix 
Mudstone: medium to dark grey 

Syn-eruptive to post- 
eruptive volcanic lastic, 
polymictic mass flow 
deposits and hemipelagic 
deposits 

Table 3.1 Lithofacies associations at Lewis Ponds. The term 'schist' is used to denote strongly foliated 
coherent or clastic volcanic rocks where hydrothermal alteration and deformation have destroyed 
primary textures in the rock. 
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Lithofacies association Description Interpretation 

fa
u

lt-
bo

u
nd

 s
tra

tig
ra

ph
y  

Massive and 
fragmented 
recrystallised 
fossiliferous limestone 

Angular pebbles to 90 m thick blocks 
of variably recrystallised limestone in 
siltstone or quartz crystal-rich 
sandstone matrix 

Fragmented bioherm, talus 
or mass flow deposits; 
possible lateral facies 
variation of the Transitional 
Unit 

Dacitic quartz-sericite 
schist and quartz- 
feldspar phyric dacite 

5-10% 0.1-2 mm euhedral-subhedral 
quartz phenocrysts, crystal fragments + 
0.1-2 mm plagioclase and pyroxene 
phenocrysts in strongly foliated, 
microcrystalline groundmass 

Porphyritic dacite, grading 
into volcaniclastic deposits 
along-strike south of Toms 
zone 

Interbedded 
volcaniclastic breccia, 
sandstone and siltstone 

Sandstone and breccia: contains 
5-30% siltstone and fine-grained, 
siliceous rhyolitic clasts in a quartz-
feldspar crystal-rich muddy-sandstone 
matrix 

Ea
st

er
n  

Vo
lc

an
ic 

 
Su

cc
es

si
on

  Dacitic quartz-sericite 
schist and quartz- 
feldspar phyric dacite 

3-4% 0.4-4.2 mm euhedral quartz 
phenocrysts and 20-25% 0.1-2.5 mm 
weakly albitised or sericitised 
plagioclase phenocrysts in chlorite 
altered microcrystalline groundmass 

Porphyritic dacite and minor 
quartz crystal-rich 
volcaniclastic deposits 

Table 3.1 continued. Lithofacies associations at Lewis Ponds. The term 'schist' is used to denote 
strongly foliated coherent or clastic volcanic rocks where hydrothermal alteration and deformation have 
destroyed primary textures in the rock. 

An attempt was made to estimate the true stratigraphic thickness of beds and units from cross-

sections and drill core. However, the host sequence is tightly folded, and dissected by high 

strain zones. 

An eight kilogram fossiliferous limestone sample (LPD001), collected from near the old 

quarry was dissolved in dilute acetic acid for palaeontological analysis and dating. After six 

weeks, components of the residue were examined under a low-magnification, binocular 

microscope. Non-calcareous fossils were separated from the residue using a dense sodium 

polytungstate solution. 

3.3 Western Volcanic Succession 

The Western Volcanic Succession is a thick (>1 000 m), massive unit of quartz ± plagioclase 

phyric volcanics, quartz-chlorite-sericite ± biotite schist and minor siltstone (Figs. 3.1 and 3.2). 

Phyllosilicate minerals have variably overprinted primary textures throughout the volcanic 

unit. The upper contact is rarely exposed in outcrop. It is characterized by local faults and a 

downward deflection of cleavage due to the competency contrast between the volcanics and 

stratigraphically overlying siltstone. 
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Three lithofacies associations; A, B and C were distinguished in the Western Volcanic 

Succession using overall texture, phenocryst abundance, crystal size and immobile element 

geochemistry. All of the rocks contain visible quartz phenocrysts, consistent with rhyolitic 

compositions and least altered rocks contain 68-76 wt % Si02 (Appendix 4). However, 

immobile element and major element compositions indicate that they are dacite and andesite 

(see Chapter 6, section 6.4). In this thesis, the rocks are referred to as dacite. 

Lithofacies association A 

A thick (>100 m) non-stratified package of dacitic quartz-chlorite-sericite ± biotite schist and 

weakly altered quartz-plagioclase phyric dacite occurs in the Toms zone footwall (Table 3.1; 

Figs. 3.4 and 3.5). These lithofacies differ from the remainder of the Western Volcanic 

Succession in having finer grained textures, a wide variation in crystal size and fewer quartz 

crystals. The weakly to strongly foliated rocks consist of glomerocrysts and euhedral to 

subhedral phenocrysts of quartz and plagioclase in a fine-grained chlorite-sericite-altered 

microcrystalline groundmass (Fig. 3.6A). 

Many samples have irregular pseudoclastic textures in thin section. Some consist of patchy 

biotite-rich and biotite-poor domains. Arcuate chlorite-biotite bands wrap around elongate 

fine-grained quartz lozenges in the biotite-poor domains (Fig. 3.6B). This texture may 

represent relict perlite or an anastomosing disjunctive cleavage. The groundmass rarely 

contains round, 0.2-1 mm quartz-biotite-chlorite-carbonate aggregates and wispy, cleavage-

parallel biotite lenses, up to 9 mm long (Fig. 3.6C and D). Radiating internal textures suggest 

that the round aggregates are altered amygdales or spherulites. The wispy lenses have 

identical textures to the surrounding fine-grained groundmass and are interpreted as flow-

banding rather than clasts. False pyroclastic textures resulting from phyllosilicate alteration of 

perlitic and flow-banded coherent volcanics have been documented by numerous authors 

(eg. Allen, 1988; Doyle, 2001). 

The weakly altered quartz-plagioclase phyric volcanics are interpreted as coherent dacite. 

Clastic textures including angular crystal fragments, volcanic lithics and glass shards are not 

present. The rocks contain texturally unmodified plagioclase glomerocrysts. False clastic 

textures resulting from hydration and alteration of coherent glassy domains or infilling of 

vesicles occur in numerous samples. The dacite, lacking internal structure may be a series of 

overlapping lava flows or thick massive intrusions. However, hydrothermal alteration and 

strong cleavage development prevents further interpretation of the rocks. 
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Figure 3.4 Line 425N section showing the Toms zone host sequence. Refer to Figure 3.1 for location 
of cross-section. 
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Figure 3.6 Lithofacies in the Western Volcanic Succession 

A Quartz-plagioclase phyric dacite A, consisting of euhedral to subhedral quartz phenocrysts, albitised 
plagioclase phenocrysts and plagioclase glomerocrysts in a weakly altered microcrystalline 
groundmass with secondary biotite and pyrite. TLPD-51A, 609 m. 

B Photomicrograph of dacitic quartz-sericite-biotite schist The arcuate, anastomosing biotite-muscovite 
bands, resembling perlitic fractures (p) wrap around lozenges of fine-grained quartz. 
TLPD-46A, 346 m. Plane polarised light. 

C Dacitic quartz-sericite-biotite schist with a false clastic texture. The round aggregates consist of 
quartz, biotite, chlorite and opaque minerals. TLPD-67B, 306 m. Plane polarised light. 

D Dacitic quartz-sericite-biotite schist characterised by elongate, wispy biotite-muscovite-quartz lenses. 
These lenses have similar internal textures to the surrounding fine-grained groundmass. TLPD-67B, 
306 m. Plane polarised light. 

E Quartz-plagioclase phyric dacite B. Consists of 20% euhedral to subhedral embayed quartz 
phenocrysts and 30% euhedral plagioclase phenocrysts in a microcrystalline groundmass. Weakly 
foliated. Sample LPD-024. 

F Photomicrograph of quartz-plagioclase phyric dacite B, characterised by embayed, euhedral to 
subhedral quartz phenocrysts, albitised plagioclase phenocrysts and chlorite-Fe oxide-altered biotite 
phenocrysts in a microcrystalline groundmass. Weak pervasive sericite-calcite alteration assemblage. 
TLPD-18, 532 m. 

G Chlorite-sericite-altered quartz-plagioclase phyric dacite B. Perlitic fractures (p) are preserved in the 
groundmass as overlapping, arcuate white mica bands. Sample LPD-24. 

H Quartz-plagioclase phyric dacite C. Consists of euhedral quartz and altered biotite phenocrysts in a 
non-foliated microcrystalline groundmass. Biotite phenocrysts have been replaced by chlorite and Fe-
Ti oxide minerals. TLPD-46A, 297 m. 

Abbreviations: qtz = quartz, fsp = plagioclase, bt = biotite, op = opaque, p = perlitic fractures. 
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Lithofacies association B 

Lithofacies association B occurs in the Main zone footwall (Fig. 3.2). Contacts with the 

adjacent volcanic rocks were not observed in drill holes or outcrop. The upper contact is 

characterised by a thin (<10 m) unit of intermixed quartz-plagioclase porphyry and siltstone. 

This unit grades down into massive, texturally homogeneous dacite. The highly porphyritic 

rocks consist of euhedral to subhedral, embayed phenocrysts and glomerocrysts of quartz, 

plagioclase and biotite in a microcrystalline groundmass (Fig. 3.6E and F). Biotite 

phenocrysts have been preferentially replaced by quartz, chlorite and Ti-Fe-oxides. Relict 

perlite textures occur in the groundmass of altered samples (Fig. 3.6G). The perlitic fractures 

are preserved as overlapping arcuate white mica bands. Dacite B is distinguished from the 

other volcanic rocks by the high phenocryst abundance and weakly-developed foliation. 

Intermixed siltstone, quartz crystal-rich sandstone and quartz porphyry 

The upper contact of lithofacies associations B and C is characterized by 1-10 m thick intervals 

of monomictic breccia (Fig. 3.7). This distinctive lithofacies also occurs within polymictic 

mass flow deposits in the Transitional Unit. It comprises very angular, ragged clasts of quartz-

plagioclase porphyry and quartz-chlorite schist in a silicified siltstone or fine-grained 

sandstone matrix (Fig. 3.8A and B), or ragged siltstone stringers in a matrix of quartz-

plagioclase porphyry (Fig. 3.8C and D). In one drill hole, massive porphyritic dacite grades up 

into siltstone with isolated quartz-plagioclase porphyry clasts (TLPD-36W in Fig. 3.7). 

The irregular porphyry-siltstone lithofacies could represent peperite, deformed sedimentary 

breccia or tectonic breccia. However, fluidal peperite is the preferred interpretation for the 

following reasons: 

• Siltstone adjacent to the quartz-plagioclase porphyry domains is indurated and 

occasionally bleached (eg. Fig. 3.8B), consistent with localised thermal 

metamorphism. 

• The quartz-plagioclase porphyry occurs in highly irregular patches, suggesting that it 

behaved in a ductile fashion before solidifying. The clasts were further attenuated by 

deformation and possibly the compaction of vesicles. 

• In places, individual quartz crystals occur within adjacent siltstone domains, implying 

fragmentation of the porphyry and mixing with unconsolidated, fine-grained sediment. 

• Although the overlying siltstone is interbedded with sandstone, the peperite host 

sedimentary rock is unstratified. This homogenisation is likely to reflect re-

arrangement of the grains during fluidisation and mixing with the porphyry. However, 

strong cleavage development could also contribute to the loss of bedding structures in 

the siltstone. 

36 



Fig. 3.8 C 

TLPD-43 

350 	 

•C.5 • 
<Z1) . 	cZ2D • 

. <Z2) • 
. • 

• • • •O 

355—  

TLPD-361N 

365 

90-95% 
siltstone 

370 

30-40% 
siltstone 

F. 3.8 A 

<5% 
siitstone 

• 

cap 

TLPD-45 

270 

275 

280— 

•-• 

Chapter 3 - Volcanic-sedimentary Setting of Host Sequence 

limestone-clast breccia 

non-stratified siltstone 

quartz crystal-rich sandstone 

quartz-plagiolcase porphyry domains within 
quartz crystal-rich sandstone 

quartz-plagiolcase porphyry domains within siltstone 

siltstone domains within quartz-plagiolcase porphyry 

siltstone stringers within quartz-plagiolcase porphyry 

massive porphyritic dacite 
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Figure 3.8 Photos of intermixed quartz-plagioclase porphyry and siltstone facies 

A Very angular, ragged quartz-plagioclase porphyry clasts in a matrix of indurated siltstone. Upper 
contact of dacite B. TLPD-36W, 374 m. 

B Coherent quartz-plagioclase porphyry domains in quartz crystal-rich sandstone. Bleached zones 
surround the quartz-feldspar porphyry. Upper contact of dacite B. TLPD-27, 771 m. 

C Indurated siltstone stringers in quartz-plagioclase porphyry from the upper contact of dacite B. 
TLPD-43, 361 m. 

D Wispy, indurated siltstone domains in a matrix of intensely altered quartz-chlorite schist. 
Transitional Unit, Main zone hangingwall. TLPD-12, 431 m. 

Abbreviations: d = quartz-plagioclase porphyry, s = siltstone, sst = sandstone, b = bleached rim. 
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• Jigsaw-fit clasts and angular blocky clasts are uncommon, indicating that in situ brittle 

fracturing was not the predominant mechanism of fragmentation, forming these 

breccias. 

Fluidal peperite associated with rhyolite or dacite has been documented by numerous authors 

(eg. Busby-Spera and White, 1987; Messenger et al., 1997; Hunns and McPhie, 1999). It 

forms when fine-grained wet sediment becomes fluidised due to the shallow intrusion or 

extrusion of magma. Displacement of the fluidised sediment is facilitated by a continuous 

vapour-film existing at the magma-sediment interface, preventing rapid cooling and brittle 

fracturing of the rock (Busby-Spera and White, 1987). Disintegration of the magma is aided 

by vesiculation when emplaced in shallow water (Hunns and McPhie, 1999). At Lewis Ponds, 

the lack of vesicles in porphyry and siltstone domains indicates a low volatile content in the 

magma or suppression of volatile exsolution due to high confining pressures. 

Intervals of intermixed quartz porphyry and siltstone occurring in the Transitional Unit 

(Fig. 3.8D) are not spatially associated with coherent dacite. These units may have developed 

as peperite beyond the margins of small porphyritic dacite lobes that intruded the polymictic 

breccia, but were not intersected by drill holes. Alternatively, they may represent altered and 

deformed siltstone-clast breccia deposited from subaqueous mass flows. In both cases, wispy 

quartz porphyry and siltstone domains may occur as the clasts. 

Interpretation of lithofacies association B 

Lithofacies association B is interpreted as a relatively thick, massive syn-sedimentary dacite 

cryptodome. In plan view, the discordant body is onlapped by tightly folded beds of 

polymictic breccia and siltstone to the north, suggesting thai it formed a topographic high on 

the seafloor or was associated with local up-doming of the host sediment. The intermixed 

siltstone and quartz-plagioclase porphyry facies occurring along the upper margin is probably 

dacitic fluidal peperite, resulting from magma-wet sediment interactions and quench 

fragmentation of the outer carapace. 

Lithofacies association C  

Lithofacies association C occurs in the Toms zone footwall within finer grained dacitic quartz-

chlorite-sericite schist (Figs. 3.4, 3.5 and 3.9). It defines an elongate concordant unit, 

700-800 m long and up to 100 m thick. Pervasive chlorite-sericite alteration has obscured the 

upper and lower contacts, which are only recognisable in drill core by the increased quartz 

crystal size and abundance. Texturally similar dacitic volcanics also crop out extensively 

south of Toms mine. 
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Lithofacies association C comprises dacitic quartz-chlorite-sericite schist and weakly altered 

quartz-plagioclase phyric dacite (Table 3.1). The volcanics consist of 5-20% euhedral to 

subhedral, embayed quartz phenocrysts in a strongly foliated, chlorite-sericite-altered, 

microcrystalline groundmass (Fig. 3.6H). Weakly altered samples contain sericitised 

plagioclase phenocrysts, rare K-feldspar phenocrysts, and chlorite-Fe-oxide-altered biotite. 

Parts of the upper contact are characterised by ragged quartz porphyry clasts in a siltstone 

matrix (see discussion of intermixed siltstone and quartz porphyry). 

Lithofacies association C is interpreted as a coherent porphyritic dacite sill that intruded the 

polymictic breccia to the north and quartz-feldspar phyric volcanics to the south (Fig. 3.9). 

The intermixed quartz-feldspar porphyry and siltstone lithofacies (peperite) probably results 

from emplacement of the intrusion into unconsolidated sediment. Extensive areas of quartz-

plagioclase phyric dacite C occurring south of Toms mine may occur as a large intrusive dome 

or series of stacked sills. 

Siltstone lenses  

Siltstone lenses occur in the southern part of the prospect within coherent dacite (Fig. 3.1). 

The 5-300 m wide, NNW-trending lenses have sharp, irregular margins characterised by small 

rounded clasts (<10 cm) and larger cleavage-parallel rafts (up to 1 m) of quartz-plagioclase 

phyric dacite in a siltstone matrix. These irregular lobate contacts may have been further 

attenuated by deformation. The sedimentary rock contains silt and sand grains of quartz. 

These lenses are interpreted as sections of host rock separating large sill-like porphyritic dacite 

intrusions (screens) or discontinuous siltstone beds deposited with the volcanics. Irregular 

contacts occurring between the siltstone and adjacent dacite may result from intrusion of a 

fine-grained sediment. The lenses are sub-parallel to bedding in the overlying Hangingwall 

Siltstone Unit. Although bedding is rarely observed, some of the siltstone lenses may be 

folded. Shepherd (1972) incorrectly interpreted a chlorite-biotite-altered siltstone lens at the 

Britannia mine (Fig. 3.1) as a body of ultramafic tremolite schist. 

3.4 	Transitional Unit 

The Transitional Unit has been described as a sequence of "tuff, siltstone, limestone and 

heterolitihc fragmental rock" (Valliant and Meares, 1998). Interbedded polymictic breccia, 

pebbly-granular sandstone and siltstone unconformably overlie the Western Volcanic 

Succession, forming a northerly-thickening wedge, north of Toms zone (Table 3.1; Figs. 3.9 

and 3.10). The unit occurs over at least 1 100 m strike length. Stratigraphic facing and 

bedding-cleavage (vergence) relationships obtained from drill core indicate the presence of a 
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tight syncline in the Main zone footwall (Fig. 3.10). These stratigraphic and structural 

relationships are discussed in Chapter 4. The Transitional Unit is subdivided into an upper and 

lower lithofacies association (Table 3.1; Fig. 3.11). 

Lithofacies associations 

Lower lithofacies association: massive breccia and pebbly-granular sandstone with 
minor siltstone and quartz crystal-rich sandstone 

The lower lithofacies association is characterised by very thick (10-100 m), massive, extremely 

poorly-sorted, monomictic to polymictic breccia and pebbly-granular sandstone units with 

sharp bases and tops (Figs. 3.10 and 3.11). These stratigraphically overlie a thin 

(<5 m) layer of siltstone at the top of the Western Volcanic Succession. A high strain zone 

separates the lower mixed provenance breccia from the Hangingwall Siltstone Unit in the Main 

zone hangingwall (Fig. 3.10). Although the lithofacies extends for 1 100 m strike length at 

depth, limestone-clast breccia only crops out over a small area surrounding the old quarry 

(Fig. 3.1 and map enclosure). The breccia deposits thin toward the north, laterally grading into 

interbedded limestone-clast breccia, siltstone and mixed provenance breccia (Figs. 3.9 and 

3.10). High-grade massive sulfide lenses overlie thick intervals of limestone-clast breccia. 

The matrix-supported breccia comprises lenticular and blocky, foliation-parallel pebbles, 

cobbles and boulders of recrystallised fossiliferous limestone, siltstone, dark grey mudstone, 

calcareous sandstone, feldspar crystal-rich sandstone and quartz porphyry, and aphyric felsic 

volcanic pebbles in a poorly-sorted, quartz crystal-rich, granular-sandy-mudstone matrix (Fig. 

3.12A and B). Variations in average clast size and abundance suggest that internal layering or 

numerous depositional units occur within the breccia. The upper 1-3 m consists of either finer 

grained, matrix-supported breccia or poorly-sorted, pebbly-granular sandstone (Fig. 3.11). 

Three types of breccia are recognised, each with a different clast population (Table 3.2). 

Siltstone-clast breccia and polymictic breccia with a mixed provenance overlie a 10-80 m thick 

monomictic to polymictic, limestone-rich unit (Figs. 3.10 and 3.11). The breccia deposits 

contain predominantly one clast type (limestone, siltstone, mudstone or felsic volcanic lithics) 

or a mixture of all clast types. 

Breccia Type Clast Type 
limestone sandstone siltstone mudstone volcanic lithics 

limestone-clast breccia 25-90% trace trace - 5% trace - 5% trace - 5% 
siltstone-c last breccia 5-10% trace - 5% 50-80% trace - 5% trace 
mixed provenance breccia 5-15% trace - 5% 5-30% trace - 5% trace - 5% 

Table 3.2 Approximate relative clast abundance in polymictic breccia deposits occurring in the 
Transitional Unit. Based on drill hole logs. 
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Figure 3.10 Line 1200N section (top) and Line 750N section (bottom) showing the Main zone and 
Lady Belmore zone host sequences. Refer to Figure 3.1 for location of cross-sections. 
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Upper lithofacies association: interbedded siltstone, breccia and sandstone 

Thinly-laminated siltstone, minor sandstone and breccia conformably overlie the massive 

polymictic breccia. These deposits occur in the core of the inferred syncline (Fig. 3.10). 

Isolated, elongate pebbles, cobbles and boulders of fossiliferous limestone, mudstone and 

quartz-feldspar phyric dacite occur sporadically in the siltstone (Fig. 3.12C and D). 

The siltstone is interbedded with 1-50 cm thick beds of very poorly-sorted to well-sorted 

quartz crystal-rich sandstone. These beds typically have graded tops. Basal load casts indicate 

rapid deposition and fluidisation of the underlying sediment. The sandstone consists of 

euhedral quartz crystals, angular crystal fragments, crinoid fossils and shelly fragments in a 

calcite-chlorite-altered matrix (Fig. 3.12E and F). 

Polymictic, matrix-supported breccia and pebbly-granular sandstone occurs in 5 cm to 4 m 

thick, massive or graded beds with sharp, planar bases and tops. Some of the beds fine upward 

into to pebbly-granular sandstone with siltstone laminations. The breccia and sandstone 

contain lenticular granules to boulders (predominantly pebbles) of recrystallised fossiliferous 

limestone, siltstone and mudstone and aphyric to porphyritic felsic volcanic lithics in a quartz 

crystal-rich sandstone matrix (eg. Fig. 3.12G). 

Limestone clasts 

Limestone crops out as large, recrystallised, massive or bedded rectangular boulders 

(up to 2x10 m), thin tabular blocks (up to 0.3x3m) with a high aspect ratio and smaller 

elongate pebbles and cobbles in a matrix of weathered quartz-chlorite-sericite schist or shale 

(Fig. 3.13A). The cleavage-parallel limestone boulders are fractured, boudinaged and weakly 

kink folded. Bedding is preserved in some of the clasts as crinoid-rich horizons, shelly layers 

or planar, calcareous mudstone laminations. Siltstone, mudstone and quartz porphyry clasts 

are not evident in the strongly weathered surface exposures in the limestone quarry. 

In drill core, limestone clasts vary from granules to 5 m long boulders. Many clasts have 

irregular foliation-parallel margins characterised by delicate interpenetration of the adjacent 

matrix. These textures are attributed to compaction of the breccia deposits during diagenesis, 

partial recrystallisation of the limestone and/or structural modification during subsequent 

deformation. Clast margins are obscured where recrystallised calcite-altered domains occur in 

the surrounding matrix (eg. Fig. 3.13H). 
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Figure 3.12 Lithofacies in the Transitional Unit 

A Matrix-supported limestone-clast breccia containing fractured and very angular, recrystallised 
fossiliferous limestone quartz-feldspar porphyry pebbles in a siltstone matrix with minor euhedral 
quartz crystals and angular crystal fragments. Crinoid ossicles (c) and shell fragments (s) are 
preserved in the limestone. TLPD-37, 238 m. 

B Strongly sheared polymictic breccia consisting of elongate, lenticular pebbles of siltstone, mudstone, 
limestone and aphyric dacite in a siltstone matrix. TLPD-12, 522 m. 

C Elongate mudstone pebbles in massive siltstone. TLPD-12, 576 m. 

D Very angular pebbles and cobbles of recrystallised fossiliferous limestone in massive siltstone. 
TLPD-18, 449 m. 

E Thin (1-1.5 cm) beds of poorly-sorted, coarse-grained calcareous sandstone in light gray siltstone. 
The sandstone contains angular quartz crystals, quartz crystal fragments, crinoid ossicles (c) and 
shelly fragments in a calcite-altered matrix. TLPD-20, 433 m. 

F Photomicrograph of very poorly-sorted quartz crystal-rich sandstone consisting of euhedral to 
subhedral quartz crystals and very angular crystal fragments in a sandy-mudstone matrix. 
TLPD-36W, 366 m. 

G Poorly-sorted, pebbly-granular sandstone characterised by elongate granules to pebbles of aphyric 
dacite or siltstone, angular quartz crystals and crystal fragments. Sphalerite and pyrite disseminations 
occur throughout the matrix. TLPD-18, 480 m. 

Abbreviations: c = crinoid ossicle, s = shell fragment, r = quartz-plagioclase phyric dacite clast, 
qtz = quartz, ca = calcite, py = pyrite, sph = sphalerite. 



Chapter 3 - Volcanic-sedimentary Setting of Host Sequence 

46 



Figure 3.13 Limestone clasts in the Transitional Unit breccia deposits 

A Exposure in the limestone quarry showing angular, blocky and lenticular boulders of variably 
recrystallised, massive and bedded crinoidal limestone in a strongly weathered, chalky matrix. Clasts 
are parallel to the regional cleavage orientation. Notebook for scale. 

B Fossiliferous limestone clast containing a brachiopod shell. TLPD-43, 273 m. 

C Photomicrograph of a crinoid stem segment. The central columella has been infilled by 
microcrystalline, sparry calcite. TLPD-37, 227 m. 

D Photomicrograph of a lenticular limestone pebble containing crinoid ossicles in a fine-grained, 
recrystallised sparry calcite matrix. Crinoids have narrow calcite overgrowths. TLPD-12, 531 m. 

E Scanning electron microscope image of a conodont similar to Oulodus sp. Extracted from LPD001, 
near limestone quarry. 

F Scanning electron microscope image of euhedral feldspar crystal. Sample LPD001. 

G Scanning electron microscope image of euhedral, detrital volcanic quartz crystal. Sample LPD001. 

H Crinoidal limestone and quartz porphyry clasts surrounded by irregular, patchy domains of 
recrystallised calcite. TLPD-33, 422 m. 

Abbreviations: c = crinoid ossicle, L = fossiliferous limestone clast, r = quartz porphyry clast. 
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Where primary textures are preserved, the variably recrystallised limestone consists of crinoid 

ossicles, crinoid stem fragments, brachiopods, bivalves, solitary corals and trace conodonts in 

an equigranular mosaic of polygonal calcite crystals (Fig. 3.13 B-E). Narrow calcite 

overgrowths and internal calcite cements have filled secondary porosity within and between 

the bioclasts. Euhedral detrital volcanic quartz, feldspar and zircon crystals also occur in trace 

amounts (eg. Fig. 3.13F and G). 

Quartz porphyry clasts 

Isolated, sub-rounded to very angular clasts and wispy patches of quartz ± feldspar porphyry 

occur throughout the limestone-clast breccia. Clasts have 'delicate' shapes characterised by 

irregular margins and narrow projections into the adjacent matrix or limestone clasts 

(Fig. 3.14A-E). Some of the patches occur in a bleached, strongly indurated, quartz crystal-

rich mudstone matrix (Fig. 3.14B and C). 

The highly porphyritic clasts consist of euhedral to subhedral, partly resorbed quartz and 

feldspar phenocrysts or glomerocrysts in a chlorite-sericite-calcite-altered microcrystalline 

groundmass (Fig. 3.14F). Relict perlite, occurring in several samples indicates that the 

groundmass was originally glassy. Perlitic fractures are preserved as overlapping, 

anastomosing white mica bands, whereas angular patches of fine-grained chlorite have 

replaced the glassy domains (Fig. 3.14G). The clasts have similar whole rock, immobile 

element compositions (see Chapter 6, section 6.4) and textures to lithofacies association B in 

the Western Volcanic Succession. 

Interpretation 

Thick, polymictic breccia units of the lower lithofacies association probably represent 

subaqueous debris flow deposits. The fine-grained, granular-sandy-mudstone matrix supports 

pebbles, cobbles and extremely large boulders, up to 10 m length. Normal-grading and an 

increase in matrix content in the upper 1-4 m of many beds is interpreted to record suspension 

settling. This reflects the tendency for subaqueous debris flows to evolve into high-density 

turbidity currents (Lowe, 1982; Nemec and Steel, 1984; Sohn, 2000). Abrupt changes in bed 

thickness, clast size, provenance and matrix content may indicate that channels or structural 

complexities (folds/faults) occur in the breccia units. Alternatively, the mass flows may have 

undergone rapid hydrological flow transformations (eg. Sohn, 2000). 
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Figure 3.14 Quartz porphyry pebbles in the Transitional Unit breccia deposits 

A Recrystallised limestone cobble penetrated by a very angular quartz porphyry clast. 
TLPD-37, 224 m. 

B & C Very angular fossiliferous limestone and chlorite-altered quartz porphyry pebbles in a bleached, 
poorly-sorted, sandy-siltstone matrix. TLPD-37, 223 m. 

D Elongate quartz porphyry clast in matrix-supported polymictic breccia. Diagenetic compaction and/or 
deformation has caused deflection of the matrix around the clast. 
TLPD-18, 393 m. 

E Matrix-supported polymictic breccia consisting of angular to sub-rounded quartz porphyry pebbles, 
mudstone clasts and fossiliferous limestone pebbles in a sandy-siltstone matrix. One of the clasts has 
perlitic fractures while the other does not. TLPD-37, 238 m. 

F Photomicrograph of quartz porphyry clast consisting of embayed, euhedral to subhedral quartz 
phenocrysts in a chlorite-calcite-altered groundmass. Feldspar phenocrysts have been entirely 
replaced by chlorite and calcite. TLPD36W, 262 m. 

G Photomicrograph of quartz porphyry clast with relict perlite texture. The perlitic fractures are 
preserved as anastomosing, curviplanar muscovite bands in a chlorite-altered groundmass that was 
originally glassy. TLPD-37, 238 m. 

Abbreviations: d = quartz phyric dacite clast, qtz = quartz. 
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The breccia deposits contain a mixture of volcanic and sedimentary components. A lithified 

bioherm or fringing reef provided fossiliferous limestone debris. Mudstone and siltstone 

pebbles were probably derived from the underlying substrate. The texturally immature 

porphyritic dacite clasts and angular quartz crystals were potentially sourced from a nearby 

quench-fragmented porphyritic dacite intrusion. However, the large volume of detrital quartz 

crystals and angular crystal fragments occurring in sandstone and breccia deposits throughout 

the Transitional Unit and Hangingwall Siltstone Unit suggests that a major explosive volcanic 

centre probably existed along the basin margin or in the adjacent hinterland. 

Fragmentation of the porphyritic dacite could have occurred before and after deposition of the 

breccias. A mixture of very angular to sub-rounded dacite clasts, some with perlitic fractures 

(eg. Fig. 3.14G) indicates minor reworking of the sediment, prior to deposition. In situ magma-

wet sediment interactions possibly accompanied emplacement of lithofacies association C 

within the breccia. Some of the dacite clasts occur in a bleached matrix, indicating local 

thermal induration. Coherent dacite was not identified. However, intense hydrothermal 

alteration and deformation have destroyed original textures in parts of the breccia unit. 

The upper lithofacies association records the transition from coarse to fine-grained elastic 

sedimentation at Lewis Ponds. Massive and normal-graded beds of sandstone and breccia were 

deposited from subaqueous mass flows. These deposits become less abundant and thinner up-

section. Limestone, siltstone and mudstone intraclasts were probably derived from the 

underling coarse-grained deposits. Unlike the lower lithofacies association, sandstone beds 

contain loose crinoid fossils and shell fragments, suggesting that unconsolidated bioclastic 

sediment existed in the source area of the mass flows at the time of deposition. 

Age of the limestone clasts  

The limestone clasts could not be dated accurately due to the poor representation of index 

fossils. A badly damaged white translucent conodont with missing denticles was recovered 

from a limestone quarry sample following partial dissolution in acetic acid (Fig. 3.13E). 

Ian Percival, Geological Survey of New South Wales (pers comm., 2000) suggested that it was 

similar to Sc' elements of Oulodus sp. This genus was widespread during the Early to 

Middle Silurian (Llandovery to Wenlock) in the Orange district. However, it ranged from 

Late Ordovician (though not locally) to the Early Devonian. 

I  The term, Sc refers to a specific type of skeletal element within the Conodont apparatus (Sweet, 1988). 
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Percival (1995) reported finding an Sb l  and Sa l  element belonging to the conodont 

Panderodus unicostatus, a rugose coral: Pseudoamplexus sp. and a Pb' element attributed to 

Ozarkodina excavata excavata in two samples extracted from limestone clasts in drill core from 

TLPD-19. These conodonts are known to range throughout most of the Silurian in southeastern 

Australia (Simpson and Talent, 1995). However, Cantrill (1991) proposed that 

Ozarkodina excavata excavata was a useful indicator for the commencement of the Sagitta 

zone (Middle Wenlock, Middle Silurian) in the Bunyarra district of New South Wales. 

Apart from crinoids, the Lewis Ponds limestone contains a different faunal assemblage to 

limestone lenses occurring elsewhere in the Mullions Range Volcanics and Anson Formation 

(this study; Pickett, 1972, 1993; Percival, 1995; Pogson and Watkins, 1998). Lishmund et al. 

(1986), argued that the bioclastic debris probably accumulated "on small topographic highs on 

the flanks of the Molong Rise." The restricted occurrence of limestone-clast breccia and 

angular, blocky shape of the clasts may indicate a local source. However, mass flows are 

capable of transporting clasts long distances on low-angle slopes with minor textural 

modification (Cook et al., 1972; Lowe, 1976; Loucks et al., 1985). 

3.5 	Hangingwall Siltstone Unit 

The Hangingwall Siltstone Unit unconformably overlies the Western Volcanic Succession in 

the Toms zone footwall and structurally overlies the Transitional Unit (Figs. 3.4 and 3.10). It is 

a thick (>200 m) unit of siltstone with minor mudstone, quartz crystal-rich sandstone, matrix-

supported volcaniclastic breccia and quartz-feldspar-volcanic lithic sandstone (Table 3.1; 

Fig. 3.15). A discordant, steeply dipping, fault-bound lens of limestone, dacitic quartz-chlorite-

sericite schist, quartz-plagioclase phyric dacite and pebbly-granular volcanic lithic sandstone 

occurs in the structural hangingwall of Main and Toms zones (Figs. 3.2 and 3.9). Over six 

hundred metres of siltstone are apparently exposed in the northern part of the prospect between 

the Transitional Unit and Eastern Volcanic Succession, where the Hangingwall Siltstone Unit 

occurs as a structurally controlled northerly-thickening wedge (Figs. 3.1 and 3.9). 

Lithofacies associations 

Massive to thinly-laminated sihstone 

Light grey, massive to thinly laminated siltstone and sandy-siltstone dominate the Hangingwall 

Siltstone Unit. Rare, medium to dark grey mudstone pebbles occur at the base of the unit in 

places (eg. TLPD-36W, 185 m), suggesting minor reworking of underlying polymictic breccia 

or mudstone deposits. The siltstone contains 1-5% disseminated pyrrhotite and rare pyrite. 

I  The terms Sa, Sb and Pb refer to various types of skeletal elements within the Conodont apparatus 
(Sweet, 1988). 	
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Interbedded quartz crystal-rich sandstone and siltstone 

Quartz crystal-rich sandstone constitutes up to 25% of the Hangingwall Siltstone Unit. The 

1 -130 cm thick, massive or normal-graded sandstone beds have sharp, planar or irregular 

contacts. Basal load casts, flames and ball and pillow structures result from rapid deposition 

and fluidisation of the underlying sediment. Individual beds consist of massive, very fine-

grained to very coarse-grained sandstone with siltstone laminations (Fig. 3.15). Upper parts 

are characterised by thin, planar to wavy laminations of sandstone and siltstone. The 

moderately-sorted to well-sorted quartz sandstone consists of angular quartz crystal fragments 

in a clay-rich matrix. Irregular, angular to rounded chlorite patches occurring in the sandstone 

may represent altered feldspar crystals. 

Interbedded mudstone, siltstone and calcareous quartz crystal-rich sandstone 

Dark grey mudstone occurs north and south of the two massive sulfide zones. Interbedded 

siltstone, sandstone and mudstone grades laterally into massive mudstone with minor 

volcaniclastic breccia, along strike, south of Toms zone (Figs. 3.2 and 3.15). The 

0.5-12 m thick mudstone units have sharp or gradational contacts with overlying and 

underlying siltstone and sandstone deposits. Pyrite and pyrrhotite disseminations occur 

throughout the sedimentary rocks. 

Very fine- to medium-grained quartz crystal-rich, calcareous sandstone beds occur in the 

mudstone (Fig 3.15, drill hole TLPD-65A). The 1-300 cm thick, massive or normal-graded 

sandstone beds have sharp, planar bases characterised by flame structures and load casts. 

Elongate mudstone pebbles occur in places. 

Interbedded pebbly-granular feldspar-volcanic lithic sandstone, polymictic 
volcaniclastic breccia, quartz crystal-rich sandstone and mudstone 

Pebbly-granular, feldspar-volcanic lithic sandstone and volcaniclastic breccia occur southeast 

of the Mt Regan mine (Fig. 3.1) and in drill holes south of Toms zone (Fig. 3.2). These 

lithofacies are interbedded with siltstone and mudstone. The 5-10 m thick, breccia beds have 

sharp, irregular contacts and basal load casts. Many grade vertically into pebbly-granular 

sandstone in the uppermost 1-2 m (Fig. 3.15). Sandstone occurs in 1-40 m thick massive units 

with sharp planar contacts. 

The poorly-sorted sandstone and breccia consist of very angular to sub-angular granules, 

pebbles and cobbles of aphyric to feldspar phyric dacite, siltstone, sandstone and mudstone in 

a muddy-sandstone matrix containing euhedral albitised plagioclase crystals, angular crystal 

fragments and rare quartz (Fig. 3.16A). The crystals are sub-rounded, indicating either 
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resorption in the magma chamber prior to eruption or textural modification during surface 

erosion and transport. The juvenile porphyritic volcanic clasts have very angular shapes with 

delicate interpenetrations of the surrounding matrix. They contain euhedral plagioclase and 

K-feldspar phenocrysts in a microcrystalline groundmass. 

Interpretation 

The Hangingwall Siltstone Unit is a predominantly fine-grained succession of hemipelagic 

volcanic detritus. Dark grey mudstone was deposited in local areas not diluted by 

volcanogenic sediment. Therefore, the southerly transition from light grey siltstone to dark 

grey mudstone is consistent with a progressively deeper, more restricted, possibly anoxic 

environment away from the interpreted volcanic centre at Lewis Ponds. 

The massive to normal-graded breccia and quartz-crystal-rich sandstone beds are interpreted as 

turbidite and debris flow deposits. Flame structures and load casts resulted from rapid 

deposition and liquefaction of the underlying sediment. Volcaniclastic deposits south of Toms 

zone are characterised by texturally immature volcanic lithics and feldspar crystals, indicating 

the rapid influx of juvenile pyroclasts into the basin. The massive internal structure, uniform 

composition and relatively narrow range of clast types is consistent with the products of 

syn-eruptive or post-eruptive mass flows, which re-deposit non-welded pyroclasts and 

intraclasts downslope (McPhie et al., 1993). These lithofacies have a discrete volcanic 

provenance, represented only in the southern part of the Lewis Ponds prospect. 

3.6 Fault-bound stratigraphy 

Two limestone lenses, separated by a 10-100 m thick unit of dacitic quartz-chlorite-sericite ± 

biotite schist, quartz-plagioclase phyric dacite, volcaniclastic breccia, sandstone and siltstone 

occur in the structural hangingwall of both mineralised zones (Table 3.1; Figs. 3.2 and 3.9). 

Although quartz crystal-rich volcanics are exposed near Toms mine, limestone does not crop 

out at the surface. The 5-100 m thick upper limestone lens extends over a strike length of 

700-1 200 m and is truncated by faults (Figs. 3.2 and 3.4). The lower, thinner (2-10 m) lens 

occurs discontinuously over 700 m. Limestone intervals do not occur in every drill hole. 

Numerous faults and high strain zones cut across the limestone and volcanic rocks. 

Lithofacies associations 

Limestone 

The lenses consist of massive recrystallised fossiliferous limestone, very large (1 to 90 m 

thick) angular limestone blocks and smaller, elongate pebbles and cobbles of limestone in a 
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siltstone matrix. Crinoid ossicles, crinoid stem fragments, brachiopods and embayed detrital 

volcanic quartz crystals are recognisable in areas where recrystallisation has not destroyed 

primary textures (Fig. 3.16B). Clast margins are irregular and parallel to the regional foliation. 

Irregular, elongate carbonate patches occur along the margins of larger clasts. Pseudobreccia 

textures are common in the lower limestone lens due to anastomosing, calcite veinlets. 

Dacitic quartz-chlorite -sericite schist and quartz -plagioclase phyric dacite 

Quartz-plagioclase phyric dacite underlies the upper limestone lens in the Toms zone 

hangingwall (Fig. 3.16C). It consists of euhedral to subhedral quartz, sericitised plagioclase, 

chlorite-epidote-altered biotite and pyroxene phenocrysts in a microcrystalline groundmass. 

The highly irregular upper contact is characterised by cleavage-parallel fragments of crinoidal 

limestone and calcite ribbons in a matrix of chlorite schist and may represent tectonic breccia 

(Fig. 3.16D). 

North of Toms zone, the quartz phyric rocks consist of micro-fractured euhedral quartz 

crystals and very angular, lenticular crystal fragments in a strongly foliated, sericite-altered 

groundmass (Fig. 3.16E). These volcanic rocks are termed schist because pervasive 

hydrothermal alteration, ductile deformation and cleavage development have destroyed the 

primary fabric. The quartz-chlorite-sericite schist has a similar immobile element composition 

to lithofacies association A in the Western Volcanic Succession and quartz-plagioclase phyric 

dacite overlying Toms zone (see Chapter 6, section 6.4). 

Interbedded volcaniclastic breccia, sandstone and siltstone 

South of Toms zone, the limestone is underlain by interbedded, matrix-supported, polymictic 

volcanicicastic breccia, pebbly-granular quartz-feldspar lithic sandstone and siltstone 

(Fig. 3.15). These deposits occur in 50-300 cm thick, massive beds with planar bases and 

sharp or normal-graded tops. The volcaniclastic breccia and poorly-sorted sandstone contains 

up to 30% elongate siltstone pebbles and angular, siliceous rhyolitic clasts in a quartz and 

feldspar crystal-rich, muddy-sandstone matrix. The massive beds are interpreted as 

subaqueous mass flow deposits. 

Interpretation 

The fault-bound unit is interpreted as a folded, fault repetition of the Transitional Unit and 

Western Volcanic Succession (see Chapter 4, sections 4.3 and 4.4). Quartz phyric volcanic 

rocks occurring within the unit have similar textures and immobile element compositions to 

lithofacies association A in the Western Volcanic Succession. The monornictic, clast- 
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supported limestone megabreccia may be a lateral facies variation of the polymictic breccia 

deposits in the Transitional Unit. 

The limestone represents a fragmented bioherm, mass flow or talus deposit. It may have been 

the source of limestone debris in the Transitional Unit. Clast sizes vary from large pebbles to 

90 m thick boulders. However, clast orientations cannot be determined from drill core because 

of cleavage-parallel margins, unrecognisable bedding and absence of geopetal fabrics. 

Therefore, although a mass flow origin is favoured for the limestone lenses, recrystallisation 

and deformation have overprinted the original disorganised clast fabric. 

Quartz-chlorite-sericite schist separating the limestone lenses may be part of a porphyritic 

dacite intrusion flanked by poorly-sorted quartz and feldspar crystal-rich volcaniclastics. 

Weakly altered coherent dacite occurs in the Toms zone hangingwall, suggesting possible 

intrusion of the overlying limestone lens. The dacitic volcanics grade into matrix-supported 

breccia, sandstone and siltstone, along strike, south of Toms zone. The volcaniclastic facies 

were deposited from subaqueous, quartz and feldspar crystal-rich mass flows. 

3.7 	Eastern Volcanic Succession 

The Eastern Volcanic Succession, previously termed Eastern Crystal Tuffby Valliant and 

Meares (1998), is a discordant body of poorly exposed quartz ± feldspar phyric volcanics 

surrounded by siltstone. It is located in the northeastern corner of the prospect (Fig. 3.1). 

Tertiary alluvium and Carboniferous granite obscure the western and southern parts of the unit. 

Two 15x150 m jasper lenses occur along the western margin of the Eastern Volcanic 

Succession (see Chapter 5, section 5.4). 

Lithofacies associations 

Dacitic quartz-feldspar-chlorite -sericite schist and quartz-plagioclase phyric dacite 

The volcanic rocks consist of euhedral to subhedral quartz and albitised plagioclase 

phenocrysts and glomerocrysts in a chlorite-sericite-altered microcrystalline groundmass 

(Fig. 3.16F). Schistose samples are characterised by a strong foliation and micro-fractured, 

lenticular quartz crystal fragments. 

Interpretation  

Contacts around the margins of the Eastern Volcanic Succession are poorly exposed. Irregular 

structural contours indicate that the shallowly-dipping northern and eastern margins are non-

planar and therefore unconformable. 
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Figure 3.16 Lithofacies in the Hangingwall Siltstone Unit, fault-bound stratigraphic unit, Eastern 
Volcanic Succession and Lewis Ponds Granite 

A Polymictic, clast-supported volcaniclastic breccia characterised by very angular to sub-rounded 
aphyric to feldspar phyric dacite pebbles, elongate mudstone clasts and abundant euhedral plagioclase 
crystals in a granular sandstone matrix. Many volcanic lithics have curviplanar or feathery margins, 
indicating that they were not texturally modified prior to deposition. TOD-10, 149 m. 

B Fossiliferous limestone from the upper limestone lens containing crinoid ossicles, crinoid stem 
segments and shelly fragments in a fine-grained, hematite-altered, sparry calcite matrix. It is 
overprinted by irregular, patches of chlorite and recrystallised calcite. TLPD-58, 155 m. 

C Quartz-plagioclase phyric dacite from the fault-bound stratigraphic unit, containing euhedral to 
subhedral quartz and plagioclase phenocrysts in a weakly foliated, chlorite-sericite-altered 
microcrystalline groundmass. TLPD-58, 205 m. 

D Lower contact of the upper limestone lens in TLPD-27. It is characterised by an interval of 
monomictic limestone breccia (b), occurring between a large limestone boulder (1) and quartz-
chlorite-sericite schist (chl). TLPD-27, 432-435 m. 

E Strongly foliated dacitic quartz-sericite-biotite schist (fault-bound stratigraphic unit). Most quartz 
crystals occur as very angular, lenticular fragments 'strung out' along the cleavage planes. 
TLPD-44, 197 m. 

F Photomicrograph of weakly altered quartz-plagioclase phyric dacite from the Eastern Volcanic 
Succession, characterised by embayed euhedral to subhedral quartz and sericitised plagioclase 
phenocrysts and glomerocrysts in a microcrystalline groundmass. Sample LPD009. 

G Non-foliated quartz-feldspar porphyry occurring as a post-tectonic dyke that intruded the Western 
Volcanic Succession. Note the very weak patchy sericite. TLPD-67B, 369 m. 

Abbreviations: d = plagioclase phyric dacite and dacite, m = mudstone, c = crinoid fragments, 
ca = calcite, qtz = quartz, fsp = plagioclase, L = limestone megaclast, hem = hematite, b = breccia, 
chl = chlorite schist, ser = sericite. 
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Previous studies have suggested that the western margin may be truncated by a NNW-trending 

strike-slip fault (Castle, 1976). The volcanic rocks have a similar texture and immobile element 

composition to lithofacies association A in the Western Volcanic Succession (see chapter 6, 

section 6.4). The Eastern Volcanic Succession is therefore interpreted as a discordant body of 

coherent quartz-plagioclase phyric dacite or quartz-plagioclase crystal-rich volcaniclastics. 

3.8 Lewis Ponds facies model 

Constraints on water depth 

Fossiliferous limestone occurs abundantly at Lewis Ponds. However, the host sequence is 

interpreted to record a moderately deep, below wave-base (>200 m) depositional setting due to 

the following consideratiOns: 

• There are no wave and current-generated sedimentary structures. 

• Shallow marine trace fossils are absent. 

• Loose body fossils only occur in mass flow deposits and are not a major component of 

the sedimentary package. 

• All of the limestone is allochthonous; occurring either in mass flow deposits 

(Transitional Unit) or fault-bound lenses (Hangingwall Siltstone Unit). 

• The host sequence consists of predominantly siltstone and mudstone, consistent with 

deposition in a relatively quiet submarine environment. 

• The intermixed quartz-plagioclase porphyry and siltstone facies is non-vesiculated, 

suggesting that confining pressures may have been too high for the release of volatiles. 

The near-basin margin setting of Lewis Ponds precludes water depths of greater than 1 500 m. 

Therefore, the most likely range of possible water depths is 200 to 1 500 m. 

The preservation of carbonate bioclasts and skeletal debris on the modern sea floor is 

constrained by the Calcite and Aragonite Compensation depths. The CCD and ACD represent 

the level below which calcium carbonate dissolves. In the southeast Pacific, the CCD varies 

from 3.5-4.5 km (Jenkyns, 1986; Stow, 1994, based on the preservation of foraminifera and 

coccoliths). Therefore, allochthonous limestone blocks originally sourced from a shallow water 

environment may be preserved in deep water settings. 

Depositional environment 

Submarine mass flow deposits dominate the Lewis Ponds host sequence. These deposits have a 

mixed volcanic-sedimentary provenance, indicative of post-eruptive reworking. The breccia, 

sandstone and siltstone beds were probably deposited in a moderately deep, below wave-base, 

submarine ramp or slope environment. The distribution of clast types reflects variations in the 

„ 
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source area, local topography and physical nature of the flows. 

In the Main zone host sequence, polymictic breccia and pebbly-granular quartz crystal-rich 

sandstone facies contain: 

• limestone clasts and loose crinoids derived from a bioclastic carbonate deposit 

(reef or bioherm), located within the basin or at the basin margin; 

• sandstone, siltstone and mudstone intraclasts and rip-up clasts; 

• texturally immature quartz phyric dacite fragments originating from exposed 

cryptodomes or intrusions within the breccia; and 

• abundant detrital quartz crystals and angular crystal fragments sourced from a major 

explosive volcanic centre, located along the basin margin or in the adjacent hinterland. 

In contrast, volcaniclastic breccia and sandstone deposits occurring south of Toms zone 

contain: texturally immature aphyric and feldspar phyric dacite clasts, euhedral plagioclase 

crystals and mudstone intraclasts, without a significant component of quartz and limestone. 

The Lewis Ponds facies model is summarised in Figure 3.17. Relative timing relationships 

between lithofacies in the Western Volcanic Succession and Transitional Unit are based on 

limited surface and drill core observation of lithological contacts and interpretation of sub-

surface structures and facies geometries. Dacite B is interpreted to pre-date deposition of the 

overlying polymictic breccia and sandstone deposits because a thin layer of indurated siltstone 

and peperite surrounds it. This suggests that dacite B did not directly intrude the overlying 

polymictic breccia deposits. Furthermore, quartz porphyry clasts with a similar magmatic 

affinity to dacite B occur throughout the limestone-clast breccia. 

Stage 1. Dacite (lithofacies association A) was emplaced as a series of lava flows or sill-like 

intrusions into fine-grained sediment. Some of the textures observed in thin sections may 

represent flow-banding, spherulites and amygdales. However, the dacite appears to lack 

internal structure. Siltstone lenses occurring in the Western Volcanic Succession, south of 

Toms zone are interpreted as screens of host rock or discontinuous beds. 

Stage 2. A porphyritic dacite cryptodome (lithofacies association B) intruded the thick 

sequence of dacite and fine-grained sediment. Angular rhyolite clasts and ragged peperitic 

fragments were liberated from the outer carapace of the cryptodome by quench fragmentation 

and magma-wet sediment interactions. 

Stage 3. Erosion of the overlying sediment partly exposed the cryptodome as a topographic 

high on the seafloor, allowing mass flows to deposit local and basin margin-derived debris 

around its flanks. Preferential erosion of sedimentary rocks surrounding rhyolite-dacite 
59 



Chapter 3 - Volcanic-sedimentary Setting of Host Sequence 

Stage 1 	 04  ----- 

	

V 	v  

	

V 	V 
V 

V 	 V 

V 	v 	v  

dacite A 	 v 

	

V 	V 	 V 	
V 	 V V 

	

V 	
V 	V 	

V 
V 

v 	 V 	V itstone 	s,  v 	 v v 	v 	v 	v 	v 	 ssicreen V 	 v 	 v 	v 	, 
v 	 v 	 v 	v 	 v 	 v v 	 v 

v 	 v 	 v 
v  

V 	 v 	 v 

	

V 	 V 	 V 
v 	 V 	 V 	 V 

Stage 2 

--, a, 
v V 

v 	 I v 
v v 

v 

v 	
v 	v  

v 
v 

v v 

v 
v 

• 	
v 

v 	v 
a 	 v 	v 

	

v 	v 	v 	v 

v 	 v 	v v 

	

v 	 v 
v 	v 	v 

v 	v 	 v 

Stage 3 
/7....,/ 

. 

4  'OD. 	:Cr . • P `,e. .... 

, 

■ 
.., • 

v 	 ■ 
v 	 I v 	v 	

v 

v 	 v 
v v 

v 

 

v 

v 

V 	v  v 	s, 

v 
v 

"` 

	

v 	v 
v 	 v 	v 

	

v 	v 	v 	
v 

v 	 v 	 v v 	v  v 

Stage 4 

zone 

— 
Main_ 	. . 	. 
zo ne 	. 	. 	 ,...,..., 	. 	v . : f"--17--r-x  .,--  •ax '  - . 	. 	

v 

.. ,  ...,..r.e.. 	. 

_ 
a, 	1 	0 

v v 	 , v v 	 I v 

v 	 % 
500 m approximately 

____  

x  

v 
x v 	 v 

v 	v 	v 

4  	 v v 	
v 

x 

v 

v 
. 	 v 

massive sulphide siltstone, mudstone & sandstone 
11 .  

dac.ite C 

dacite B 

dac4te A 

 

limestone-clast breccia & 
mixed provenance breccia 7 ..% 

  

 

pepente 

 

Figure 3.17 Facies model. Stage 1 Emplacement of dacite as a series of sill-like intrusions or lava 
flows. Stage 2 Passive, sub-sea  floor  emplacement of dacite cryptodome into unconsolidated fine-
grained sediment. Stage 3 Preferential erosion of the overlying sediment and partial exposure of the 
cryptodome on the seafloor. Limestone-clast breccia and mixed provenance breccia were then deposited 
from mass flows around the flanks of the eroded cryptodome. Stage 4 Intrusion of porphyritic dacite 
sills into the breccia and volcanic sequence followed by deposition of volcanogenic, quartz crystal-rich 
sandstone and siltstone. The massive sulfide lenses are shown for reference only. 
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cryptodomes has been recorded at other localities, such as the Miocene Momo-iwa dome, 

Hokkaido, Japan (Goto and McPhie, 1998). 

Stage 4. Porphyritic dacite sills (lithofacies association C) were emplaced into the siltstone, 

sandstone and breccia succession. Parts of the Transitional Unit consist of texturally immature 

quartz-feldspar porphyry clasts, indurated/metamorphosed siltstone (Fig. 3.14B and C) and 

irregular mixtures of siltstone and quartz-chlorite schist (Fig. 3.8D). However, pervasive 

alteration associated with Main zone has obscured most of the primary textures and contact 

relationships within these zones. 

Following cessation of volcanic activity in the region, fine-grained quartz and feldspar crystal-

rich, volcanogenic, hemipelagic sediments were deposited from subaqueous mass flows. Dark 

grey mudstone accumulated in restricted, possibly anoxic areas mainly south of Toms zone, 

where organic matter was not diluted by the volcanogenic sediment. 

Lewis Ponds is analogous to eastern Australian VHMS deposits in that high-level, syn-

sedimentary felsic volcanic intrusions occur in the host sequence. Other examples include 

Benambra (Allen, 1992), Mount Morgan (Messenger et al., 1997), Mount Chalmers 

(Hunns and McPhie, 1999) and Thalanga (Paulick and McPhie, 1999). The tuff cone model 

of Cas et al., (1990) describes the deposition of pyroclastic material down the flanks of partly 

emergent cryptodomes due to phreatic/phreatomagmatic eruptions. However the 

explosiveness of these eruptions depends on the temperature, viscosity and volatile content of 

the magma, eruption rate, vent geometry, water depth and thickness of the overlying sediment 

(Horikoshi, 1969; Allen, 1992; Gibson et al., 1999; Huston and Cas, 2000). 

Little evidence exists at Lewis Ponds for explosive volcanic activity accompanying the 

emplacement of the dacite cryptodome underlying Main zone. The polymictic mass flow 

deposits overlying dacite B have a mixed volcanic-sedimentary provenance, resulting from 

reworking of debris derived from multiple sources rather than emplacement and erosion of an 

underlying intrusion. 

3.9 Lewis Ponds Granite 

The Lewis Ponds Granite crops out southeast of Toms zone as small pods of massive pink 

granite (Fig. 3.1 and map enclosure). A 100-150 m wide aureole of hornfelsed siltstone 

surrounds the intrusion. NNW-trending, 0.5-1.5 m wide, non-foliated quartz-feldspar 

porphyry dykes crop out south of Toms zone. These cut across siltstone and mudstone in the 

Hangingwall Siltstone Unit (Fig. 3.1). Quartz-feldspar porphyry dykes have also intruded the 
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Western Volcanic Succession in the Toms zone footwall (Figs. 3.4 and 3.5). The porphyritic 

rocks consist of quartz, plagioclase and biotite phenocrysts in a microcrystalline groundmass 

containing secondary biotite and sericite (Fig. 3.16G). 

The quartz-plagioclase porphyry and granite plot within the volcanic arc granite field of Pearce 

et al. (1984). Samples contain 69-70 wt % Si02, 2-4 wt % K 20, 46-127 ppm Rb, 1-8 ppm Y 

and 2-4 ppm Nb (Appendix 4). Aluminium Saturation Index values range from 1.0 to 1.2, 

indicating that it is an I-type granite suite. The dykes probably represent a late phase of the 

Lewis Ponds granite as they have similar compositions to the massive, phaneritic granite. 

Pogson and Watkins (1998) interpreted post-tectonic granitic intrusions in the Lewis Ponds 

district as possible shallow apophyses of the Bathurst Batholith (Fig. 2.5). Geophysical data 

indicates that the batholith dips shallowly northwards at depth. Although contact 

metamorphism appears to be minimal, the authors suggested that granite emplacement may 

have been accompanied by sulfide remobilisation at Lewis Ponds. 

3.10 Fades of the Mullions Range Volcanics 

Previous studies of the Mullions Range Volcanics concentrated on areas north and northwest 

of Lewis Ponds. Packham (1968) defined a 460 m type section on Kerrs Creek (Fig. 3.18), 

comprising rhyolite to dacite flows, volcaniclastic breccia and sandstone. Hilyard (1981) 

divided the unit into a lower member of intercalated aphyric rhyolite, siltstone, volcaniclastic 

breccia and sandstone and an upper member of massive, coarsely porphyritic rhyolite. 

Following re-mapping of the Bathurst 1:250 000 sheet by the Geological Survey of New South 

Wales, Pogson and Watkins (1998) provided a thorough stratigraphic and lithological 

description of the unit. Pogson and Watkins interpreted the Mullions Range Volcanics as a 

predominantly submarine succession due to non-welded volcaniclastic gravity flow deposits, 

the sporadic occurrence of fossiliferous limestone lenses and massive sulfide deposits. They 

recognised the general lack of shallow water sedimentary structures in the unit and 

acknowledged that some of the limestone lenses might be allochthonous. Hilyard (1981) 

suggested that the volcanic pile accumulated in a moderately deep water (-500 m) 

environment which may have later become partly emergent. Other studies concluded that the 

volcanic pile was progressively submerged during the Late Silurian (Byrnes, 1976; 

Pogson and Watkins, 1998). 

The source area for the Mullions Range Volcanics remains speculative. Hilyard (1981) 

interpreted the southerly increase in stratigraphic thickness of the western lobe (Fig. 3.18) to 
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indicate proximity to a major silicic volcanic centre. The Mullions Range anticline has also 

been cited as a possible source area (Packham, 1968; Hudson et al., 1997). 

A regional study was undertaken to compare lithofacies throughout the Mullions Range 

Volcanics with the Lewis Ponds host sequence and to interpret the overall palaeogeography 

and volcanic provenance. This involved traverses along suitable roads and creeks, as well as 

examining abandoned quarries and mine sites north of Orange (Fig. 3.18). The lithofacies are 

summarised in Table 3.3. Three areas are described in detail below. 

Area Lithofacies associations Interpretation 

Summer Hill 
Creek 

Massive and flow-banded, quartz-feldspar phyric 
dacite; interbedded cherty siltstone, matrix-supported 
polymictic breccia and granular quartz-feldspar 
crystal-rich sandstone 

Quartz-feldspar-lithic mass flow 
deposits intercalated with 
porphyritic dacite lava flows or 
sill-like intrusions 

Long Point 
Road 

Thick, massive quartz-feldspar phyric daccite bodies 
overlying quartz-feldspar crystal-rich sandstone and 
siltstone 

Massive, porphyritic dacite 
intrusions? and quartz-feldspar 
crystal-rich volcaniclastics 

CuIlya Road 
quarry and 
surrounds 

Aphyric and quartz-feldspar phyric rhyolite; 
interbedded massive to diffusely-stratified siltstone, 
sandy-siltstone, pumiceous volcanic lithic sandstone 
and pumice breccia 

Cold, pumiceous mass flow 
deposits containing reworked and 
juvenile clasts, surrounded by 
lavas and porphyritic rhyolite 
intrusions 

Belgravia 
Road 

Massive and flow-banded aphyric to quartz-feldspar 
phyric rhyolite; minor siltstone 

Rhyolite lava flows and domes 

Coalmans 
Creek 

Massive and columnar-jointed aphyric to sparsely 
porphyritic rhyolite with rare amygdales 

Rhyolite lava flows and domes 

Calula Creek 
and 
surrounds 

Massive and flow-banded aphyric rhyolite and 
feldspar phyric dacite; interbedded thinly-laminated 
siltstone, pebbly-granular quartz-feldspar-lithic 
sandstone and monomictic volcaniclastic breccia; 
minor fossiliferous limestone lenses 

Lava flows and domes 
intercalated with re-sedimented 
autobreccia, pumiceous-volcanic 
lithic mass flow deposits and 
minor allochthonous? limestone 

Kerrs Creek 
to Calula 
Creek 

Laterally extensive volcanic lithic, shard-rich 
siltstone and sandstone; massive and flow-banded 
spherulitic aphyric rhyolite and feldspar phyric 
dacite 

Rhyolite lava flows and domes; 
minor intercalated pumiceous-
volcanic lithic mass flow 
deposits 

Kerrs Creek 
(type section) 

Thick, massive or flow-banded aphyric rhyolite; 
minor volcaniclastic sandstone and breccia 	- 

Rhyolite lava flows and domes; 
minor intercalated volcaniclastics 

Table 3.3 Lithofacies associations in the Mullions Range Volcanics. Refer to highlighted areas in 
Figure 3.18 for the localities. 

Summer Hill Creek 

Coherent and elastic, dacitic volcanics crop out discontinuously along Summer Hill Creek, 

northwest of Lewis Ponds (Fig. 3.18). The east-dipping sequence consists of interbedded 

siltstone, sandstone and breccia, intercalated with thick (>100 m) units of massive and flow-

banded, coarsely porphyritic dacite and quartz-feldspar crystal-rich sandstone (Table 3.3; 

Fig. 3.19). 

63 



•MRV15 

Fig. 3.21B.  87 

cce0 - c:-5  71 
MRV14*..; 

MULLIONS 
RANGE 

ANTICLINE 

64  53 • MRV33 
/ 73  

MRV18 

e, MRV3A..75 

MRV39 0,74,  

WESTERN 
LOBE 87 s_Road 

5Z3--  

7 . 3.20 

bedding, overturned bedding 

cleavage 

flow banding 

mine workings 

quarry 

Mullions Range Volcanics 

limestone lens 

basal limestone member, 
Anson Formation 

• sample location & number 

	 highway 

	 road 

	 creek 

6 340 0000 

6 339-6000 

Fig. 3.19 

72 

ee 

IL tOS; A 

74 

80 L5 7r  
5r L  72 

Mt Bulga 1   r 67y \ eg.  

c, 	da  
7 	cfla  LEWIS 	 82-sc 

PONDS 

Fig. 3.1 

78 

0 5 km 	 6 310 0000 

o Day Dawn North 

0  Day Dawn South 

\-84 

MRVO3 04.  k-i9  

q°\ 50 

82
1  

  

Chapter 3 - Volcanic-sedimentary Setting of Host Sequence 

   

Figure 3.18 Locality map illustrating the road and creek sections, quarries and abandoned mine sites 
studied in the Mullions Range Volcanics (highlighted in red). All bedding, cleavage and flow banding 
measurements are from the current study. Compiled from Meakin et al. (1997); Kerrs Creek 1:25 000 
topographic map, 8731-4-N, first edition; and Ophir 1:25 000 topographic map, 8731-4-S, first edition, 
Central Mapping Authority of New South Wales. 
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Interbedded cherty siltstone, pebbly-granular sandstone and breccia 

A thick (100-150 m) sequence of interbedded cherty siltstone, sandstone and breccia occurs in 

Summer Hill Creek (Fig. 3.19), southwest of the Fourth Crossing. The pebbly-granular 

sandstone and matrix-supported polymictic breccia includes angular to well rounded pebbles 

and cobbles of cherty siltstone or aphyric rhyolite/dacite and thinly-laminated siltstone 

(Fig. 3.19A). The thickness of individual beds could not be determined from outcrops. 

Granular quartz -feldspar crystal-rich sandstone 

Massive, diffusely-stratified, very coarse-grained, crystal-rich sandstone occurs in a 50-100 m 

thick unit, overlying the breccia and cherty siltstone deposits (Fig. 3.19; 250-350 m). The 

poorly sorted sandstone consists of 60-75% embayed, euhedral to subhedral quartz and albitised 

plagioclase crystals in a siltstone matrix. Wispy lenses of siltstone occur throughout the 

sandstone. These may represent siltstone rip-up clasts, disrupted siltstone beds or flattened 

pumice rafts (Fig. 3.19B). 

Quartz-feldspar phyric dacite 

Thick bodies (>50m) of massive and flow-banded porphyritic dacite are intercalated with the 

volcaniclastic rocks (Fig. 3.19C). The medium- to coarse-grained porphyritic dacite is 

characterised by 5-10% euhedral quartz phenocrysts, 10-15% plagioclase phenocrysts and 

1-2% biotite in a microcrystalline groundmass. 

Interpretation 

The Summer Hill creek sequence accumulated in a moderately deep, submarine environment in 

close proximity to an extrusive and/or intrusive dacitic volcanic centre. Polymictic breccia and 

quartz-feldspar crystal-rich sandstone occurs in thick, diffusely stratified, non-graded beds, 

interpreted as mass flow deposits. There are no wave or current-generated sedimentary 

structures preserved in the volcaniclastic deposits. Contacts between the coherent porphyritic 

dacite and adjacent volcaniclastics are not easily discernable in outcrop. The flow-banded 

dacite may represent the margins of lava flows or thick sill-like intrusions. 

Cullya Road quarry and surrounds  

An 80-100 m thick, east-dipping sequence of strongly weathered volcanielastic rocks occurs at 

the Cullya Road quarry, northwest of Lewis Ponds (Fig. 3.18). It comprises massive siltstone, 

overlain by interbedded diffusely-stratified pumice breccia, siltstone, sandy-siltstone and 

pebbly-granular volcanic lithic sandstone (Table 3.3; Fig. 3.20). Quartz-feldspar phyric 

rhyolite and aphyric rhyolite crop out poorly around the quarry and along Summerhill Creek. 
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Figure 3.19 Summerhill Creek section illustrating stratigraphic relationships between coherent and 
clastic units observed in the creek bed. The true thickness of individual sandstone and breccia beds is 
poorly constrained due to limited outcrop. From GR 704875E 6328100N to 702725E 632665N. 
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Pumiceous siltstone 

The massive to diffusely-stratified, cream to light green, clay-altered siltstone occurs in 

50-500 cm thick beds. Angular quartz and feldspar crystals and pumiceous pebbles occur 

throughout. 

Pebbly-granular pumice -lithic sandstone 

Poorly sorted, diffusely-stratified, fine to very coarse-grained pebbly-granular sandstone is 

interbedded with the siltstone (Fig. 3.20A and C). It contains poorly preserved, round pumice 

clasts to 5 cm, granules and cobbles of siltstone, euhedral quartz crystals and angular crystal 

fragments in a fine-grained matrix. The sandstone occurs in 5-350 cm thick, massive or 

normal-graded beds with sharp planar lower contacts. Some of the beds are laterally 

discontinuous, lensing out along strike over 1-5 m. Low-angle planar cross-bedding occurs in 

places (eg. Fig. 3.20 B). Foresets in the cross-stratification trend toward from the north-west 

and south-east. Many beds grade up into thinly-laminated, fine-grained sandstone and 

siltstone (Fig. 3.20B). 

Pumice breccia 

A ten metre thick, massive, diffusely-stratified pumice breccia unit grades up into pebbly-

granular pumiceous sandstone (Fig. 3.20; 30-40 m). The matrix-supported, polymictic breccia 

consists of elongate, wispy pebbles to one metre long boulders of siltstone, 5-40% rounded 

granules to pebbles of pumice - many showing tube-vesicle textures, and minor angular to very 

angular, small to large aphyric rhyolite pebbles in a poorly-sorted matrix of ash, quartz crystals 

and volcanic lithics. 

Interpretation 

The volcaniclastic succession exposed in Cullya Road quarry was probably deposited from 

dilute, subaqueous, pumiceous mass flows. These transported quartz and feldspar crystals, 

juvenile aphyric rhyolite clasts, pumice and ash away from an explosive submarine or 

subaerial volcanic centre. 

Pumice clasts are not flattened, suggesting that temperatures were too low for compaction 

welding. Lateral discontinuity of beds implies that some of the flows may have occurred in 

channels. Siltstone and volcanic lithic clasts are very angular to rounded, indicating minor 

reworking of the sediment prior to deposition. The low-angle cross-stratification indicates that 

sediment was sourced from the northwest or southeast. 
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Upper and lower contacts of the massive rhyolite unit are not exposed in the Cullya Road 

quarry. However, Hermann (1997) noted regular, conformable contacts between quartz 

feldspar phyric rhyolite and the adjacent siltstone units at nearby Mt Shorter (Fig. 3.18). He 

suggested that they may represent syn-sedimentary sills rather than coherent lava flows. 

Calula-Colemans-Kerrs creek area 

The Calula-Colemans-Kerrs creek area (Fig. 3.18) has a complex volcanic facies architecture 

characterised by coherent aphyric to porphyritic rhyolite and dacite, monomictic breccia, 

pumiceous volcanic lithic sandstone, siltstone and minor fossiliferous limestone (Table 3.3; 

Fig. 3.21). Numerous NNW-trending faults and folds have caused local repetition of the 

sequence. However, these were not mapped in detail during this study. 

Rhyolite and dacite 

Aphyric rhyolite and feldspar phyric dacite crop out extensively in the area. Planar, locally 

folded and brecciated flow banding occurs in Calula Creek, Kerrs Creek and Belgravia Creek 

(Fig. 3.22A). Columnar joints, spherulites, lithophysae and amygdales are present along 

sections of Colemans Creek and Calula Creek. Well-developed columns have a regular 

polygonal or hexagonal form and diameters of up to 30 cm (eg. Fig. 3.22B). The amygdales 

and lithophysae are filled with fine-grained quartz/silica. In thin section, the feldspar phyric 

dacite consists of euhedral, albitised plagioclase and K-feldspar phenocrysts in a 

microcrystalline, quartzo-feldspathic or glassy goundmass. Spherulites and perlitic fractures, 

resulting from devitrification and hydration are preserved throughout the groundmass of many 

samples (eg. Fig. 3.22C and D). 

Columnar jointing, amygdales and thin (<50 cm) flow-banded intervals occur between massive 

aphyric rhyolite units. The massive intervals have sharp planar contacts. Columnar joints are 

typically perpendicular to the flow foliation. The rhyolite and dacite units are therefore 

interpreted to occur as flows and/or domes. Hilyard (1981) documented 1-60 m thick 

individual flow units, comprising flow-banded or highly vesicular rhyolite overlying 

columnar-jointed rhyolite with an autobrecciated base. 

Massive monomictic vokaniclastic breccia 

Thick (2-40 m) deposits of non-stratified, monomictic, matrix-supported to clast-supported 

breccia are intercalated with the rhyolite (Figs. 3.21 and 3.22E-F). These consist of sub-

rounded to very angular, typically cuspate, pebbles and cobbles of massive and flow-banded, 

aphyric to sparsely porphyritic rhyolite in a fine-grained matrix containing crystals and 
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volcanic-lithics. The thick (>1 m) massive beds of breccia probably represent submarine mass 

flow deposits. They contain a mixture of juvenile and reworked volcanic lithics derived locally 

from the underlying rhyolite. 

Interbedded shard-rich pumiceous sandstone, quartz-feldspar crystal-rich sandstone 
and thinly-laminated cherty siltstone 

The coherent rhyolite and breccia facies are intercalated with a sequence of interbedded 

pebbly-granular quartz-feldspar-lithic sandstone, thinly-laminated, cherty siltstone and shard-

rich pumiceous sandstone. Pebbly-granular pumiceous sandstone crops out near the pyrite 

mine and along sections of Calula Creek (Fig. 3.18). The poorly-sorted volcaniclastic rocks 

consist of very angular to sub-rounded, massive and flow-banded rhyolite-dacite pebbles, 

wispy tube pumice clasts, and quartz and feldspar crystal fragments in a shard-rich matrix 

(Fig. 3.22G and H). Uncompacted cuspate, glass shards and pumice clasts indicate that 

deposition of the sandstone occurred at low temperatures. Diagenetic quartz filled tube 

vesicles in the pumice fragments, preventing compaction-induced flattening and allowing 

primary textures to be preserved (Fig. 3.22H). 

The sandstone and cherty siltstone deposits are interpreted to result from dilute, pumiceous 

mass flows. These transported juvenile pumice fragments, volcanic lithics, glass shards and 

ash away from a nearby explosive-effusive volcanic centre. Rounding of the rhyolite clasts 

(eg. Fig. 3.22H) indicates minor reworking prior to deposition. 

Limestone lenses 

Large (400-1 000 m long) fossiliferous limestone lenses occur in the Calula Creek area 

(Fig. 3.18). The largest of these is located at the Calula marble quarry. Poorly exposed, 

massive, volcaniclastic or coherent dacitic rocks surround them. The partly recrystallised, fine-

to very coarse-grained, massive limestone contains crinoids, branching rugose coral fragments 

and solitary corallites in a granular calcite matrix. 

Interpretation 

The Calula-Colemans-Kerrs creek area is characterised by proximal volcanic and volcaniclastic 

facies. Marked . variations in lithology and lithological thickness occur over relatively short 

distances. Extensive coherent flows or domes occurring along Colemans Creek and Belgravia 

Creek indicate a source area toward the south or southwest. This corresponds to an increase in 

stratigraphic thickness of the western lobe of the Mullions Range Volcanics. However, thick 

flows in the Kerrs Creek area, to the north suggest multiple eruptive volcanic centres may have 

existed in the area. The volcanic centres were effusive and partly explosive. 
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Fig. 3.22 E 
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Figure 3.21 Section 1. Generalised Calula Creek section. Based on discontinuous outcrops along 
Calula Creek. The true thickness of individual volcaniclastic sandstone and breccia beds is poorly 
constrained. Section 2. Calula Creek waterfall section, illustrating massive, matrix-supported breccia 
deposits occurring between aphyric rhyolite units with flow-banded bases and tops. Contacts between 
coherent and clastic facies were poorly exposed in outcrops. GR 689 851E 6336919N. 

The volcaniclastic breccia and sandstone deposits contain reworked, sub-rounded volcanic 

lithics derived from the underlying massive and flow-banded rhyolite. Therefore, some of the 

flows were exposed to surface erosion or submarine wave action. Uncompacted glass shards 

and pumice clasts suggest that the mass flows were not sufficiently hot to allow compaction 

welding to occur. The sandstone and breccia contains a limited range of clast types, indicating 

that they were deposited from syn-eruptive and/or proximal subaqueous flows. 
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Figure 3.22 Lithofacies in the Calula-Colemans-Kerrs Creek area 

A Flow-banded aphyric rhyolite with weakly folded flow bands. Sample MRV-14 from Kerrs Creek 
(type section for Mullions Range Volcanics), GR 689525E 6341550N. 

B Hexagonal columnar-jointed aphyric rhyolite. The horizontal polygonal columns are 5-10 cm wide. 
Coalmans Creek, GR 690164E 6335841N. 

C Photomicrograph of flow-banded, spherulitic feldspar phyric dacite consisting of euhedral, albitized 
plagioclase and K-feldspar phenocrysts in a glassy groundmass. Spherulites occur throughout the 
groundmass. Sample MRV-33, Calula Creek area, GR 691625E 6337625N. 
Plane polarised light. 

D Feldspar phyric dacite consisting of euhedral plagioclase and K-feldspar phenocrysts in a glassy 
groundmass with overlapping, arcuate perlitic fractures. Sample MRV-36, GR 691460E 6337135N. 
Plane polarised light. 

E Matrix-supported polymictic volcaniclastic breccia characterised by sub-rounded to very-angular 
flow-banded aphyric rhyolite pebbles in a feldspar crystal-rich, granular sandstone matrix. The 
breccia occurs in non-stratified beds between tabular units of massive and flow-banded rhyolite. 
Calula Creek waterfalls, GR 689857E 6336919N. 

F Clast-supported, polymictic volcaniclastic breccia consisting of sub-rounded to very-angular massive 
and flow-banded aphyric rhyolite pebbles in a granular sandstone matrix. Calula Creek, 
GR 690441E 6337578N. 

G Photomicrograph of uncompacted cuspate bubble-wall glass shards in chlorite-sericite-altered crystal-
rich siltstone. Sample MRV-15 from Calula Pyrite Mine area GR 690100E 6339375N. 
Plane polarised light. 

H Pumiceous-volcanic lithic sandstone containing angular to subrounded feldspar phyric rhyolite-dacite 
pebbles, wispy tube pumice clasts and angular quartz crystal fragments in a poorly-sorted, shard-rich 
matrix. Sample MRV-37, GR 691900E 6336275N. Plane polarised light. 

Abbreviations: s = spherulites, fsp = plagioclase and K-feldspar, p = perlitic fractures, r = flow-banded or 
massive rhyolite clasts, g = glass shards, p = pumice clast, qtz = quartz crystal fragment. 
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The limestone lenses may represent allochthonous blocks or in situ bioherms, which were 

engulfed by lava flows and sediments. Bedding discordance between the lenses and adjacent 

elastic rocks cannot be demonstrated. However, abundant rugose corals indicate that the 

limestone initially accumulated in a shallow marine environment prior to lithification and 

possible re-deposition by subaqueous mass flows. 

3.11 Palaeogeography of the Mullions Range Volcanics 

In summary, the products of subaerial or submarine, effusive to explosive volcanic centres 

dominate the western lobe of the Mullions Range Volcanics (Figs. 3.18 and 3.23). Coherent 

lithofacies include extensive, massive to flow-banded and columnar-jointed rhyolite-dacite 

lavas and/or domes. Associated volcaniclastic deposits contain reworked volcanic lithics, 

angular crystal fragments, uncompacted pumice clasts and glass shards. The pyroclasts 

probably resulted from explosive volcanic activity associated with rhyolite emplacement. The 

fossiliferous limestone lenses and mass flow deposits indicate broadly submarine conditions. 

However, facies characteristic of the submarine emplacement of lava flows and high-level 

intrusions were not recognised during this study. Therefore, partial emergence of the sequence 

cannot be discounted. 

In contrast, thick units of coarsely porphyritic, massive and flow-banded dacite dominate 

central and northern parts of the Mullions Range anticline (Figs. 3.18 and 3.23). These are 

intercalated with coarse-grained submarine mass flow deposits that contain angular quartz and 

feldspar crystals and intraclasts of chert and siltstone. Pumiceous deposits and aphyric rhyolite 

lavas were only observed at Cullya Road Quarry. 

The Lewis Ponds area is characterised by a mixed volcanic and sedimentary sequence of 

limestone-clast breccia, siltstone-clast breccia, volcaniclastic breccia, fossiliferous quartz 

crystal-rich sandstone and siltstone. The deposits overlie syn-sedimentary porphyritic dacite 

bodies and massive dacite. Facies analysis indicates deposition from submarine mass flows in 

a moderately deep, below-wave base slope environment (Fig. 3.23). 

Late Silurian fossiliferous limestone occurs sporadically throughout the Mumbil Group, 

indicating predominantly submarine conditions. The extensive basal limestone member of the 

Anson Formation (Fig. 3.18) contains algae and corals preserved in their growth position 

(Pogson and Watkins, 1998). Other occurrences in the Mullions Range Volcanics and Anson 

Formation may represent in situ fringing reefs, bioherms, fore-reef talus deposits, deep marine 

carbonate deposits or allochthonous megaclasts. The origin of limestone lenses in the Calula 

Creek area is uncertain, as contacts with the surrounding host rocks are not exposed. 
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Figure 3.23 Palaeogeography model of the Mumbil Group illustrating the Late Silurian acid volcanic 
pile and marine sedimentary succession, overlying Ordovician basement rocks at the faulted western 
margin of the Hill End Trough. Sediments occurring in the Lewis Ponds (A) and Mullions Range 
anticline (B) areas were deposited in moderately deep water, slope environments, around the margins of 
high-level intrusive and/or extrusive rhyolitic centres. Volcanic and sedimentary detritus was derived 
locally and from the basin margin. The western lobe of the Mullions Range Volcanics (C) and Cullya 
Road Quarry area (D) formed in close proximity to shallow submarine to subaerial, effusive to partly 
explosive volcanic centres located at the basin margin. The volcanic and intrusive centres may have 
been surrounded by fringing reefs. 

All of the limestone at Lewis Ponds is interpreted to be allochthonous. It occurs in mass flow 

deposits sourced from a lithified bioherm or fringing reef, possibly located on the flanks of a 

nearby submarine volcanic centre (Fig. 3.23). The limestone-clast breccia and megabreccia 

lithofacies have similarities to carbonate debris flow deposits outlined in Loucks et al. (1985) 

and Mountjoy et al.(1972), including an enormous range in clast size, wide variety of clast 

types and disorganised clast fabric (although this was not demonstrated in the fault-bound, 
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megabreccia). Deposits typically occur as sheets, beds or lenses in fine-gained siltstone / 

mudstone successions, adjacent to a reef complex or platform margin (Mountjoy et al., 1972). 

Debris flow deposits, talus and allochthonous reef blocks are important marginal-slope facies 

in many modern and ancient reef complexes (Enos and Moore, 1983; Playford, 1984; 

Loucks et al., 1985). They typically result from gravity-induced collapse of the platform 

margin or secondary debris flows initiated on the adjacent slope. 

Limestone megabreccia deposits have been documented in the Nubrigyn Formation, western 

margin of the Hill End Trough, northwest of Lewis Ponds. Large algal limestone lenses 

(up to 1 km length) occurring in mudstone and volcaniclastic sandstone were referred to as 

bioherms and biostromes by Wolf (1965). However, Conaghan et al. (1976) re-interpreted 

these lenses as allochthonous megaclasts due to a wide range in clast size and composition, 

bedding discordance between clasts and adjacent matrix, and random truncation of internal 

fabrics at the clast margins. The authors suggested that large individual blocks may have slid 

into the basin, up to 10 km from the inferred source area, which is now preserved in the Lower 

Devonian Garra Formation and Cuga Burga Volcanics to the west. Allochthonous limestone 

megaclasts also occur in fore-reef facies in the Canning Basin, northwestern Australia 

(Enos and Moore, 1983; Playford, 1984; George et al., 1995) and the Delaware Basin, 

New Mexico (Loucks et al., 1985). 

In the Late Devonian Lochenbar Beds, central Queensland, pebbles to five metre long boulders 

of fossiliferous limestone occur in a thick, massive unit of clast-supported volcaniclastic 

conglomerate. The limestone-bearing lithofacies is characterised by very angular, coralline 

limestone clasts and minor siltstone rip-up clasts in a matrix consisting of rounded aphyric, 

mafic to intermediate volcanic pebbles and rare crinoid and brachiopod fragments 

(Agnew, 1998). It occurs in a 12 m thick, laterally discontinuous bed with an erosive base that 

truncates the underlying thinly-laminated siltstone. The volcaniclastic succession is 

interpreted to overlie volcanic facies resulting from the submarine emplacement of lava, 

including hyaloclastite, re-sedimented hyaloclastite and pillow lavas (Bryan et al., 2001). 
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CHAPTER 4 

LOCAL STRUCTURAL GEOLOGY 

4.1 	Introduction 

The footwall volcanic succession at Lewis Ponds occurs in the core of a regional-scale, 

NNW-plunging anticline (Fig. 3.1). The adjacent tight parasitic syncline has been partly 

sheared out by a steeply dipping high strain zone, termed the Lewis Ponds fault. In Main zone, 

massive sulfide lenses occur in polymictic breccia units on the western limb of the syncline 

(Fig. 3.10). Toms zone (Fig. 3.4) and several smaller Au-Ag-base metal occurrences 

(Lady Belmore and New Lewis Ponds) lie within the Lewis Ponds fault. The host rocks are 

overprinted by an intense, NNW-trending cleavage and weakly developed kink folds and kink 

bands. 

Abundant variably folded and boudinaged, NNW-trending quartz veins occur throughout the 

Lewis Ponds fault zone and adjacent footwall volcanic succession (Fig. 3.1). Some of these 

contain base metal sulfides. Cleavage-parallel quartz veins surround the Toms zone massive 

sulfide lens. However, the quartz-sulfide veins do not occur in Main zone. 

Previous structural interpretations of the Lewis Ponds district have been limited by the lack of 

drill core, poor outcrop, inaccessible sub-surface exposures in abandoned mine workings and 

absence of marker horizons to allow correlation across faults. Some of the early studies found 

evidence for structural repetition of the mineralised zones on a fold limb cut by numerous 

northwest-trending sinistral, reverse-slip faults (Fig. 4.1). One of these faults was interpreted 

to pass through the New Lewis Ponds and Toms mines (Glasson, 1977). The structural 

complexity at New Lewis Ponds was recognised by Wright (1979), who argued that sulfide 

deposition was fault-controlled. 

Numerous studies concentrated on the abandoned Cu mines, located in the southern part of the 

prospect (Fig. 3.1). At the Britannia mine, quartz-chlorite-chalcopyrite veins occurring in a 

deformed siltstone lens lead to the suggestion that shearing had remobilised metals from the 

massive sulfide lenses (Parton, 1981). However, footwall Cu stocicwork zones were not 

discounted because Cu-Pb-Zn soil anomalies were observed at both the Britannia and 

Mt Regan mines (Parton, 1981; Heape, 1982). 
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Figure 4.1 Compilation structural geology map of Lewis Ponds prospect showing the inferred sinistral 
strike-slip faults described in Castle (1976) and Glasson (1977). Modified from the map of 
Castle (1976). 

In this chapter, the orientation and relative timing of major faults, folds and structural fabric 

elements are used to constrain the deformation history of the Lewis Ponds district. 

Comparisons are made with regional-scale structures occurring elsewhere in the Molong High. 

The chapter also assesses the potential role of deformation in focusing hydrothermal fluids into 

the host sequence and structurally modifying pre-existing massive sulfide. 

4.2 Methods 

Stratigraphic facing and structural fabric orientation data obtained from diamond drill core and 

surface observations were used to identify and interpret major structures occurring in the 

Lewis Ponds host sequence. Field mapping involved measuring bedding (S o), cleavage (S I ), 

stretching lineation (L I ) kink fold (F 12), dyke and quartz vein orientations on outcrops. 

Surface structures are summarised on the enclosed 1:10 000 scale map. However, this data 

was limited by poor exposure in northern and eastern parts of the prospect. 

Geometrical data derived from diamond drill core supplemented limited surface observations 

in the hangingwall and footwall of Main zone. As the core was not oriented prior to 

extraction, the true orientation of structural elements was lost due to core rotation in the barrel. 

However, useful geometric data can be obtained when the core contains a pervasive and 

consistently-oriented 'reference' foliation (Laing, 1977; Hinman, 1993). The method involves 
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measuring the orientation of an unknown fabric (eg. bedding or veins) relative to the reference 

foliation (Laing, 1977). The most likely orientation of the unknown fabric is estimated  by 

minimising the angle between possible orientations of the reference fabric in core and the 

prescribed reference foliation. This fixes the orientation of the core and therefore the 

orientation of other fabrics contained within it (Scott and Berry, in press). 

Robert Scott and Ron Berry (University of Tasmania) developed a Microsoft Excel-based 

program for reorienting drill core to determine the `best-fit' orientation of down-hole structural 

fabrics. Measurements were made easily and quickly using a specially modified protractor, 

that wraps around the core. The measurement parameters are schematically illustrated in 

Appendix 2. Table 4.1 provides an example of field measurements for drill hole TLPD-12. 

The aim of the down-hole structural analysis at Lewis Ponds was to compliment surface 

measurements with geometric data from diamond drill core. Bedding (S o), cleavage (S I ), 
stretching lineation (L I ) and kink band (F 12) orientations were obtained from thirteen drill 

holes. The reference fabric orientation, S I  = 78-061 was the numerical average of all surface 

cleavage measurements. In figures 4.2 and 4.6, the results are presented on contoured equal 

area stereonets for comparison with surface structural orientations. All results are listed in 

Appendix 2. 

Drill hole Depth (m) S 1  So  Li F12 QV 
13 13 f2 8 8 13 f2 

TLPD-12 397.15 29 25 37 185 
TLPD-12 402.5 42 354 37 195 
TLPD-12 417.94 58 52 343 
TLPD-12 515.7 43 39 0 18 
TLPD-12 516.0 47 37 82 10 
TLPD-12 516.3 60 40 323 18 
TLPD-12 567.4 42 321 32 185 
TLPD-12 569.1 33 49 5 344 
TLPD-12 569.7 55 29 330 335 
TLPD-12 570.4 53 30 355 323 323 

Table 4.1 Example of data collected from TLPD-12 for down-hole structural calculations. Refer to drill 
core diagram in Appendix 2 for the measurement parameters. 

where: So = bedding 
SI = cleavage (reference foliation) 
F 1 2 = kink bands (measured on S i ) 
L I  = mineral stretching lineation (measured on S i ) 
QV = quartz veins 
13 = the angle between the core axis and the planar fabric (eg. S o  or Si) 
f2= angle between the down-hole ends of the long-axes of ellipses formed by the S o  and S I  
fabrics, measured anticlockwise from SI in a plane perpendicular to the core axis, looking down 
hole 
8 = angle between a lineation (eg. L I  or F 12) and the down-hole end of the long axis of the plane 
in which it is contained, measured anticlockwise in the S I  plane, looking down-hole 
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4.3 	Folds and structural fabric elements 

Two generations of structures and structural fabric elements occur in the Lewis Ponds host 

sequence (Tables 4.2 and 4.3). The first generation consists of a strong pervasive NNW-

trending cleavage (S I ), steeply-plunging mineral stretching lineation (L 1 ) and open to tight 

cylindrical folds in bedding (F 1 ). Weakly developed second generation, sub-horizontal and 

sub-vertical kink folds post-date the S i  cleavage. In addition, high strain zones are 

characterised by a strongly developed shear fabric (S e), kink folds and a weak S-C fabric, 

interpreted to be late-D 1  in age. The preferred orientations of D I  and D2 structures are 

summarised in Table 4.4. 

Age Fold Lithology Description 

D I  F 1  First generation 
folds in So  

Sandstone 
and siltstone 

Large-scale anticline-syncline 

Small-scale isoclinal folds in drill core and 
reversals in stratigraphic facing and vergence 

Late- 
D I  Fs  

Kink folds in high 
strain zones in S o , S 1  
and quartz veins 

Siltstone and 
fine-grained 
sericite schist 

Sub-vertical and sub-horizontal open to tight 
kink folds observed around Lewis Ponds fault 

D2 F2 Second generation 
folds in S I  

Siltstone and 
limestone 
breccia 

Sub-horizontal SW-verging monoclinic kink 
folds observed in limestone quarry 

Table 4.2 Fold generations. 

Age Fabric Lithology Description Intensity 

D I  

, 

S I  First axial 
planar cleavage 

Fine-grained 
schist, siltstone 
and limestone 

Closely-spaced, rough 
to smooth disjunctive 
cleavage 

Strong  Coarse grained 
schist and 
porphyritic 
volcanic rocks 

Anastomosing 
disjunctive cleavage 

L I  
Mineral 
stretching 
lineation on S I  

Siltstone Elongate pyrrhotite or 
pyrite blebs Weakly developed 

Fine-grained 
schist 

Alignment of 
phyllosilicate minerals Strong 

Late- 
D I  

C' 
or 
C 

S-C fabric Siltstone 

Bands of aligned white 
mica (C'-type and C-
type) cut across 
anastomosing, folded 
white mica bands (S) 

Weak 

Ss  
Shear fabric 
within high 
strain zones 

Fine-grained 
schist and 
siltstone 

Smooth disjunctive 
cleavage Strong 

D2 F 12  
Kink band 
intersection 
lineation on S I  

All lithologies 
Sub-horizontal, 
oblique and sub-vertical 
kink bands in S I  

Weakly-developed 

Table 4.3 Structural fabric elements. Cleavage classification is based on Powell (1979) and 
Passhier and Trouw (1996). 
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Fabric Calculation Surface measurements Calculated orientations 
from drill core 

So Beta axis (F, fold axis) 41-331 37-334 
L 10  Preferred mean direction (F 1  fold axes) 32-340 44-345 
S I  / Ss  Preferred mean orientation 78-061 79-061 

L1 Preferred mean direction 84-103 66-118 
F 12  Preferred mean direction 65-358 70-007 

F2 Preferred mean orientation (F 2  fold axes) 16-325 and 69-153 

QV Preferred mean orientations 87-230 81-060 and 11-202 

Table 4.4 Calculated surface and drill hole bedding, cleavage, lineation, fold axis and quartz vein 
orientations. 

First generation structures 

Fl  folds 

Surface bedding orientations in the Hangingwall Siltstone Unit and Transitional Unit define a 

broad, NNW-trending, open cylindrical anticline, plunging 41-331 (Figs. 3.1 and 4.2A). 

Apparent synclinal fold closures occur in the Transitional Unit south of Toms mine, adjacent to 

and within the Lewis Ponds fault. Small-scale isoclinally folded or kink folded sandstone beds 

occur in drill core from the Transitional Unit (Fig. 4.3A). Calculated down-hole bedding 

measurements from the eastern limb of the anticline have steep southwest to northeast dipping 

orientations (Fig 4.2A). 

SI  cleavage 

S I  is a strongly developed, generally northeast dipping cleavage, with a preferred orientation 

trending 78-061 (Table 4.4; Fig. 4.2B). Significant scatter occurs in surface measurements due 

to outcrop slumping and reorientation around F2 kink folds. Calculated S I  cleavage orientations 

from drill core dip toward the northwest and southwest. Scott and Berry (in preparation) found 

that 70% of calculated solutions for down-hole S i  orientations at Lewis Ponds were within 11 0  

of their reference foliation of 77-060. 

S i  morphology varies with the type of host rock. The closely-spaced, smooth disjunctive 

cleavage, occurring in siltstone and fine-grained schistose rocks is defined by aligned white 

mica or chlorite laths and strain shadows (Figs. 4.3 B and C). Anastomosing disjunctive 

cleavage domains wrap around quartz and feldspar phenocrysts in coarse-grained schists and 

porphyritic volcanic rocks. Throughout the host sequence, a greater proportion of micro-

fractured quartz phenocrysts and angular, lozenge-shaped crystal fragments indicate high strain 

in the volcanic units (eg. Fig. 4.3B). Irregular, anastomosing, S i -parallel bands of fine-grained 

polygonal calcite and epidote-chlorite cut across relatively undeformed, coarse-grained 

fossiliferous domains in the weakly foliated limestone clasts (Fig. 4.3D). 
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Figure 4.2 Surface and calculated drill core structural fabric orientations plotted  on  density-contoured 
equal area stereonets. A. Poles to bedding. B. Poles to S I  cleavage. C. Calculated L 1 0 bedding-first 
cleavage intersection lineations. 

L10  bedding-first cleavage intersection lineation 

Most calculated surface bedding-cleavage intersection lineations have a similar orientation to 

the F1 fold axis (Table 4.4; Fig. 4.2C), suggesting that S i  is an axial planar foliation. However 

both surface and drill hole data are distributed on great circles. This scatter is likely to reflect 

the low angle between bedding and, cleavage on the eastern limb of the regional anticline. 

Uncertainties in measured and calculated bedding orientations significantly affect the 

orientation of individual intersection lineations. 
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Figure 4.3 Structural fabric elements and folds 

A Kink folded, calcite-altered quartz crystal-rich sandstone bed in siltstone from the Transitional Unit. 
TLPD-20, 431 m. 

B Strongly sheared quartz-sericite schist characterised by aligned white mica and a smooth, disjunctive 
S i  cleavage. Subhedral quartz phenocrysts are associated with symmetrical strain shadows (a). 
Aggregates of lenticular crystal fragments 'strung out' along cleavage planes (b) are likely to result 
from the disintegration of pre-existing micro-faulted quartz crystals. TLPD-63, 314 m. 

C Strongly-developed, disjunctive S I  cleavage in a quartz-chlorite schist, defined by discontinuous, 
wispy domains of aligned chlorite. TLPD-63, 454 m. 

D Fossiliferous limestone with a weak disjunctive S I  cleavage. Anastomosing, cleavage-parallel bands 
of fine-grained, recrystallised, polygonal calcite cut across coarse-grained fossiliferous limestone 
domains, which contain crinoid ossicles (c). TLPD-58, 155 m. 

E L I  stretching lineation defined by elongate, oxidised pyrrhotite aggregates on an S I  cleavage plane in 
siltstone. The cleavage and stretching lineations are overprinted by anastomosing F12 kink bands. 
TLPD-12, 400 m. 

F S-C' fabric developed in siltstone adjacent to a deformed quartz-pyrite vein. The shear bands (C') cut 
across anastomosing cleavage bands (S 1 ) of aligned white mica. The shear bands are oblique to the 
interpreted margin of the Lewis Ponds fault zone. TLPD-65A, 907 m. 

G Anastomosing sub-horizontal (1), oblique (2) and sub-vertical (3) F12 kink bands on an S I  cleavage 
plane, in siltstone. Sub-horizontal bands are overprinted by the sub-vertical kink bands. 
GR 709510E 6316847N. 

H Photomicrograph of F2 kink folds in quartz-sericite schist, defined by folded S i  cleavage domains. 
Hangingwall Siltstone Unit. TLPD-51A, 556 m. 
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Stratigraphic facing and bedding-cleavage relationships 

Many sandstone beds in the Transitional Unit and Hangingwall Siltstone Unit have basal load 

casts and flame structures and/or graded tops (see Chapter 3, sections 3.4 and 3.5). These 

sedimentary structures indicate the sub-surface stratigraphic facing of the beds. Calculated 

and observed down-hole bedding-cleavage relationships constrain the vergence direction and 

therefore, the relative location of fold hinges. Reversals in stratigraphic facing and vergence 

indicate that small-scale parasitic folds and locally overturned beds occur in the Transitional 

Unit and Hangingwall Siltstone Unit. 

A tight parasitic syncline occurs in the Transitional Unit, in the Main zone footwall (letter A in 

Figs. 4.4 and 4.5). The western limb of the syncline is characterised by west-verging, east-

facing stratigraphy. Bedding on the overturned, eastern limb of the syncline verges toward the 

east and youngs toward the west. Vergence and stratigraphic facing directions could not be 

obtained from within the thick, massive polymictic breccia unit that hosts Main zone. 

However, apparent thickening of the limestone-clast breccia unit occurs in the area of the 

inferred fold hinge. 

In the Hangingwall Siltstone Unit, a fault-bound siltstone wedge occurs in the Main zone 

hangingwall (letter B in Figs. 4.4 and 4.5). Sandstone beds within this wedge predominantly 

young toward the east. The vergence cannot be determined accurately because bedding and 

cleavage orientations are almost identical. 

A fault-bound limestone-dacite unit occurs in the Lewis Ponds fault zone (letter C in 

Figs. 4.4 and 4.5). Sandstone beds in the hangingwall of the Lewis Ponds fault predominantly 

young toward the east. Bedding on the western side of the limestone-dacite unit verges toward 

the east and youngs toward the west. This reversal in stratigraphic facing suggests that the 

quartz-chlorite-sericite schist occurs in the core of a tight anticline, surrounded by a laterally 

continuous limestone megabreccia lens. 

South of Toms zone, stratigraphic facing directions in the Hangingwall Siltstone Unit are 

highly variable (Fig. 4.6). However, a change in the predominant facing direction of 

volcaniclastic sandstone beds from east to west indicates the presence of a tight syncline. This 

syncline occurs in the equivalent stratigraphic position to the Toms zone massive sulfide lens. 

L I  mineral stretching lineation 

Elongate pyrrhotite or pyrite blebs define a steep southeast-plunging mineral stretching 

lineation throughout the host sequence, on S I  cleavage surfaces (Figs. 4.3E and 4.7A). 
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Disseminated pyrrhotite is most abundant in the immediate hangingwall and footwall of Main 

zone. A similarly-oriented, sub-vertical alignment of white mica and chlorite occurs in the 

Lewis Ponds fault at Toms zone. 

Figure 4.4 Line 1300N section showing observed and inferred structures, stratigraphic facing 
directions, observed vergence, calculated vergence and calculated bedding orientations (as apparent 
dips) in the hangingwall and footwall of Main zone. Letters A to F are referenced in the text. 
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Figure 4.5 Line 1200N section showing observed and inferred structures, stratigraphic facing 
directions, observed vergence, calculated vergence and calculated bedding orientations (as apparent 
dips) in the hangingwall and footwall of Main zone. Letters  A  to F are referenced in the text. 
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Figure 4.6 Line 200N section showing observed and inferred structures, stratigraphic facing directions, 
observed vergence, calculated vergence and calculated bedding orientations (as apparent dips), 
immediately south of Toms zone. 
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Figure 4.7 Density-contoured equal area steroenets of surface and calculated drill core structural 
orientation data. A. L I  mineral stretching lineations. B. F12 kink bands measured  on  S I . C. Quartz veins 
plotted as poles. Quartz veins in drill hole TLPD-65A occur in two preferred orientations. Most veins 
are sub-parallel to the S I  cleavage and trend 81-060. Another set of sub-horizontal veins trend 
11-202. 

Late-first generation and second generation structures 

Shear fabrics 

Highly strained rocks within the Lewis Ponds fault zone are characterised by a sub-vertical, 

almost mylonitic Ss foliation. However, the Ss shear fabric could not be differentiated from 

the S I  axial planar foliation described above. Mineral stretching lineations and kink folds 

typically plunge steeply toward the southeast. Weakly developed shear bands occur in the 

Hangingwall Siltstone Unit (Fig. 4.3F). The shear bands are both parallel and oblique to the 

Lewis Ponds fault. 
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F12 kink bands and F2 kink folds 

Sub-horizontal, oblique, and sub-vertical to vertical, anastomosing kink bands occur 

throughout the Western Volcanic Succession, Transitional Unit and Hangingwall Siltstone 

Unit, where small-scale kink folds intersect the S I  cleavage (Figs. 4.3G and 4.7 B). Closely-

spaced kink bands occur in high strain zones. Steeply plunging kink bands typically post-date 

the sub-horizontal ones. In thin-section, the kink bands are visible within white mica or 

chlorite-rich domains of the S 1  foliation (Fig. 4.311). Large 50-100 cm amplitude, southwest 

verging, sub-horizontal monoclinic folds occur in the limestone quarry (Fig. 4.8). These are 

defmed by kink folded limestone clasts and cleavage. 

Fs  folds 

Sub-vertical, southeast-plunging kink folds occur in the Lewis Ponds fault zone. These 

structures post-date the S I  cleavage and syn-D 1  quartz veins. Many have hinges parallel to the 

steep southwest-trending mineral stretching lineation. 

4.4 	Faults 

Lewis Ponds fault 

The Lewis Ponds fault is a 200-250 m wide corridor of steep, NNW-trending, parallel or 

anastomosing, brittle and ductile structures. In the northern part of the prospect, quartz veins 

and chlorite-altered siltstone are the only surface expression of the fault. However, a broad 

high strain zone surrounding Toms mine consists of a sub-vertical cleavage, mineral stretching 

lineation, kink folds, foliation boudinage and abundant variably deformed, S i -parallel quartz 

veins (Fig. 4.9). In drill core, the host rocks are cut by intervals of cataclastic breccia and fault 

gouge. Fewer kink folds and quartz veins occur in the chlorite-sericite-altered porphyritic 

dacite south of Toms mine. Here, the high strain zone apparently broadens, becoming less 

intense in the footwall volcanic succession (Fig. 3.1). However, transfer structures may 

connect the Lewis Ponds fault to NNW-trending faults occurring immediately south of the 

prospect which have brought Ordovician rocks into contact with the Mullions Range Volcanics 

(Fig. 2.5). 

The Lewis Ponds fault consists of two strongly deformed intervals at depth. The most easterly 

of these truncates the top of the limestone megabreccia lens in the structural hangingwall of 

the massive sulfide deposits (letter D in Figs. 4.4 and 4.5). Zones of cataclasite, rock flour and 

strongly fragmented vein quartz, siltstone and limestone overlie or occur within the limestone 

megabreccia over a 5-25 m thick interval. SI cleavage and F12 kink band orientations are 

highly variable within the fault. 
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Figure 4.8 Structures exposed in the western wall of the limestone quarry. 
A. Angular, blocky and lenticular boulders of recrystallised limestone, oriented sub-parallel to S I  
(40-053). Limestone clasts occur is a strongly foliated matrix of quartz-chlorite-sericite schist. The 
fabric has been folded into southwest verging, sub-horizontal F2 kink folds. Hammer for scale. 
B. The S I  cleavage becomes steeper toward the northern side of the quarry (62-059) and limestone 
clasts, more flattened, suggesting increased strain. The limestone clast occurring  at  the top of the 
outcrop has an aspect ratio of approximately 50:1. Pencil for scale. C. Northwest-trending F2 kink fold 
hinge orientations plotted on an equal area stereonet. 

The western high strain zone truncates the polymictic breccia deposits that host Main zone at 

depth (letter E in Figs. 4.4 and 4.5). South of Main zone, the fault splays into numerous 

parallel to anastomosing shears separated by intervals of siltstone, chlorite ± talc-dolomite-

sericite schist and fossiliferous limestone (Fig. 3.10, line 750N section). Alternating limestone 

and schistose intervals are likely to represent fold or fault repetitions of the same lithologies. 
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At Lady Belmore zone, disseminated sulfides and boudinaged, kink folded, S i -parallel quartz-

sulfide veins occur in strongly deformed, chlorite-talc-altered rocks. 

Kinematic indicators occur throughout the Lewis Ponds fault. These include foliation 

boudinage, mica fish, carbonate fish, asymmetric strain shadows on quartz phenocrysts and 

lithic pebbles, asymmetric quartz vein boudins, pyrite porphyroblasts and shear bands 

(eg. Figs. 4.3F and 4.9A). The majority indicate east-over-west relative displacement across 

the fault. However, west-over-east shear sense indicators also occur in drill core and outcrops. 

A high strain zone separates the Transitional Unit from an eastward facing, fault-bound wedge 

of the Hangingwall Siltstone Unit in the Main zone hangingwall (letter F in Figs. 4.4 and 4.5). 

The contact between the siltstone and intensely altered, mixed provenance breccia appears 

conformable in many drill holes. However, strongly deformed intervals occur within the 

siltstone and the breccia, indicating the presence of a high strain zone. On the surface, 

limestone clasts exposed in the western wall of the quarry become more attenuated toward the 

north, consistent with increasing strain (Fig. 4.8). The bedding-parallel structure is interpreted 

as a lateral branch of the Lewis Ponds fault. It separates westward facing stratigraphy in the 

Transitional Unit from siltstone and sandstone beds in the Main zone hangingwall that young 

toward the east. The fault may therefore occur in the hinge zone of a tight, parasitic anticline. 

Footwall faults  

Numerous faults occur throughout the footwall volcanic succession. A narrow high strain 

zone that truncates the Western Volcanic Succession south of Toms mine may be a branch of 

the Lewis Ponds fault (Figs. 3.1 and 4.6). It is associated with quartz veins and anastomosing 

ferroan magnesite/dolomite veinlets. The associated quartz-sericite alteration assemblage 

overprints the pervasive chlorite-altered volcanics. Faulted contacts between siltstone and 

quartz phyric volcanic rocks may also occur at the Little Bell Mount, Britannia and Mount 

Regan mines (Fig. 3.1). 

Interpretation  

The Lewis Ponds fault is a 200-250 m wide brittle-ductile shear zone. Its complex 

anastomosing geometry reflects the presence of competent lithologies such as coherent dacite 

and massive limestone, surrounded by less competent siltstone. The competent units behaved 

as rigid objects, with most of the strain focused in the adjacent siltstone. Furthermore, 

mechanically weak chlorite-sericite-talc-altered rocks locally concentrated the strain around 

the New Lewis Ponds, Lady Belmore, Main and Toms zones. 
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Figure 4.9 Structures in the Lewis Ponds fault zone 
A. Outcrop photo showing boudinaged and kink folded, cleavage-parallel quartz veins in strongly 
sheared, fine-grained sericite-chlorite schist near Toms mine. Asymmetric quartz vein boudin (b) 
indicates west-over-east relative displacement. Photographed looking south at GR 709968E 6316015N. 
Hammer for scale. B. Kink folded, boudinaged and fractured quartz vein near Toms mine. S s  cleavage 
has also been boudinaged (f) and kink folded. Photographed looking south at GR 710050E 6315916N. 
Hammer for scale. C. Strongly sheared pebbly-granular, quartz-feldspar-lithic sandstone consisting of 
elongate, lenticular siliceous pebbles (r) in a fine-grained, quartz crystal-rich matrix. 
Near GR 710050E 6315916N. Lens cap for scale. 

The fault-bound limestone-dacite unit (letter C in Figs. 4.4 and 4.5) is interpreted as a possible 

folded, fault repetition of the Transitional Unit and Western Volcanic succession. It is 

discordant to bedding in the surrounding Transitional Unit (Figs. 3.1 and 3.9). Quartz phyric 

rocks occurring between the limestone megabreccia lenses have similar textures and immobile 

element compositions to lithofacies association A in the Western Volcanic Succession. 

The Lewis Ponds fault is parallel to the NNW-trending regional faults, indicating that it is a 

D I  structure. Sub-vertical, southeast-dipping mineral stretching lineations, asymmetrical folds 

and shear sense indicators suggest that it resulted from east-block-up movement with a minor 
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sinistral component. However, opposing shear sense indicators suggest that normal and reverse 

displacement occurred at different times either due to fault reactivation or roll-back of the fault. 

4.5 Vein generations 

Five generations of veins are recognised at Lewis Ponds (Table 4.5). Each generation is 

characterised by a different morphology, orientation and relationship to the S I  cleavage. 

Composition Morphology Location / host Age 

lA Ca ± dol-ccp-py-sph-ga-Bi Isoclinally folded and Toms zone footwall Pre-D, to 

1B 

± po 

Qtz-py ± ccp 

boudinaged 

Isoclinally folded and 
boudinaged 

Toms zone footwall 

early-D, 

Pre-D 1  to 
early-D I  

2 Dol-ccp-py-sph-ga-st ± td ± 
as 

S i -parallel, pinch & swell 
structures, boudinaged 

Toms zone massive 
sulfide lens 

? Pre-D, 
to late-D I  

3A Qtz-py ± sph ± ccp ± ga 
and 

S i -sub-parallel, weakly folded, 
or well developed pinch & 

Lewis Ponds fault zone 
and Western Volcanic 

Early to 
late-D I  

qtz-po ± sph ± ccp ± ga swell structures; massive, 
banded or crustiform 

Succession 

3B Ca ± mag-hem S i -parallel, weakly folded or Lewis Ponds fault zone Early to 
well developed pinch and 
swell structures; transposed 
and boudinaged in strongly' 
sheared areas 

and Hangingwall 
Siltstone Unit 

late-D, 

3C Carbonate veinlets: 
mgs, sid, dol, Fe-dol 

S i -parallel, anastomosing, 
banded internal structure; 
weakly kink folded 

Lewis Ponds fault zone Early to 
late-D I  

4 Qtz-ms ± ca ± ab ± py ± S i -perpendicular, undeformed Lewis Ponds fault zone Late-D I  / 
ccp ± sph ± ga to weakly kink folded and Western Volcanic pre-D2  

Succession 

5 Qtz-py ± sph ± ga S 1 -parallel, undeformed Lewis Ponds Granite - 
quartz-feldspar porphyry 
dykes 

Post-D2 , 

Table 4.5 Composition, morphology and relative age of veins. Qtz = quartz, ca = calcite, sid = siderite, 
dol = dolomite, mgs = magnesite, ab = albite, ms = muscovite, ccp = chalcopyrite, py = pyrite, 
po = pyrrhotite, sph = sphalerite, ga = galena, Bi = native bismuth, st = starmite, td = tetrahedrite, 
mag = magnetite, hem = hematite. 

Isoclinally folded and boudinaged, 1-300 mm wide, type 1 quartz-pyrite and calcite ± dolomite-

chalcopyrite-pyrite veins occur in the footwall and hangingwall of Toms zone 

(Fig. 4.10A and B). These are typically associated with a strong to intense pervasive chlorite 

halo. The veins contain fractured pyrite with minor sphalerite, galena, native bismuth and 

pyrrhotite. These paragenetically early veins are overprinted by the S I  cleavage. They formed 

prior to, or early during the Di deformation. 
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Boudinaged or anastomosing, 5-500 mm wide, type 2 dolomite veins occur in the Central 

massive sulfide lens and immediate footwall of Toms zone (Fig. 4.10C). They are parallel to 

S 1  and sulfide banding. Chalcopyrite, pyrite, sphalerite, galena, tetrahedrite, stannite and 

arsenopyrite occur in many of the veins, especially in lower parts of the massive sulfide lens. 

Most veins are boudinaged and kink folded, indicating a pre-tectonic to early syn-tectonic age. 

Variably folded and boudinaged, type 3 quartz-sulfide and barren calcite ± magnetite-hematite 

veins occur throughout the Lewis Ponds fault zone and adjacent footwall volcanics. These 

massive to crustiform, 1 mm to 1 m wide, planar or anastomosing veins have a preferred 

orientation parallel or sub-parallel to S I  and the Lewis Ponds fault (Figs. 4.7C, 4.9 and 4.10D). 

However, many veins mapped in the footwall volcanic succession trend northwest rather than 

NNW, possibly indicating a separate generation (Fig. 3.2). Many veins contain pyrite-

sphalerite-chalcopyrite-galena or pyrrhotite-sphalerite-chalcopyrite-galena assemblages. 

Type 3B calcite veins are restricted to the quartz phyric volcanic rocks in the Lewis Ponds 

fault zone and carbonaceous mudstone, south of Toms mine (Fig. 4.10E and F). Isoclinally 

folded and transposed veins with pinch-and-swell structures occur in quartz-chlorite-sericite 

schist. These become less abundant away from the fault-bound limestone megabreccia lenses. 

Pyrite has replaced the euhedral magnetite crystals in carbonate veins that are overprinted by 

younger quartz-pyrite veins. Type 3C Fe, Mn or Mg carbonate veinlets locally constitute 20% 

of the rock in the Lewis Ponds fault zone. These closely spaced, 0.1-1 mm thick, 

anastomosing, cleavage-parallel veinlets and lenses typically surround type 3A quartz veins. 

Type 3A, B and C veins are interpreted as syn-tectonic shear or extension veins, that formed at 

a low angle to the major NNW-trending structures during D I . Some may represent pre-D I  
veins rotafed into the flattening plane during subsequent deformation. The type 3 veins are 

likely to have resulted from periodic brittle shear failure and extension in and around the 

Lewis Ponds fault. 

Undeformed to weakly kink folded, 1-20 mm wide, type 4 quartz ± carbonate ± muscovite 

veins occur in drill core from the Lewis Ponds fault zone and footwall volcanic succession. 

These sub-horizontal extension veins have a preferred orientation of 15-218, perpendicular to 

S I  (Fig. 4.7C). In drill core, weakly deformed type 4 veins cut across the type 3 quartz and 

calcite veins. Although generally barren, some of the veins contain chalcopyrite or sphalerite 

and galena in addition to pyrite. The S I  cleavage is deflected around many of the weakly 

deformed veins, indicating they formed late during D I , simultaneously with cleavage 

development (Fig. 4.10G). 
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Figure 4.10 Vein morphology, compositions and cross-cutting relationships 

A Type 1A, isoclinally folded and boudinaged, pre-D 1  to early-D 1  calcite-chalcopyrite-pyrite vein cut by 
a late-D 1  weakly folded type 4 quartz-pyrite vein. Note remobilised sulfides along the margins of the 
late cross-cutting vein. TLPD-66, 375 m, Toms zone footwall. 

B Type IB, pre-D 1  to early-D 1 , boudinaged quartz-pyrite veinlets which are oblique to the S I  cleavage. 
TLPD-65A, 803 m, Toms zone footwall. 

C Type 2 boudinaged, pre-D 1  to syn-D 1  dolomite-chalcopyrite vein occurring in banded polymetallic 
massive sulphide. The vein also contains minor pyrite, sphalerite, stannite, galena and tetrahedrite. 
TLPD-51A, 479 m, Toms Central lens. 

D Anastomosing type 3A and type 4 quartz veins and veinlets in silicified siltstone, Toms zone footwall. 
The largest vein contains disseminated pyrite, sphalerite, galena and chalcopyrite. TLPD-67B, 742 m. 

E Type 3B, S 1 -parallel, syn-D 1  calcite-magnetite-hematite vein with pinch-and-swell structure, from the 
fault-bound stratigraphic unit. The euhedral pyrite crystals, which partly pseudomorph magnetite 
crystals, are associated with a late-D 1  cross-cutting quartz-pyrite vein, not in the field of view. 
TLPD-27, 468 m. 

F Type 3B, early-D 1 , isoclinally folded, S 1 -parallel calcite veinlets in mudstone cut by a later, 
S 1 -perpendicular calcite veinlet. TOD-10, 365 m. 

G Type 4, late syn-D 1 , weakly folded quartz-muscovite-pyrite-chalcopyrite vein. Note deflection of 
S I  across the vein and the cross-cutting fractures, indicating that it formed simultaneously with the 
S I  cleavage. TLPD-46A, 334 m, Toms zone footwall. 

H Type 5, post-D 2  quartz vein which cuts across a non-foliated quartz-feldspar porphyry dyke in the 
Western Volcanic Succession. It contains minor galena (ga), sphalerite (sph) and pyrite (py). 
TLPD-67B, 905 m, Toms zone footwall. 
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Type 5 quartz-pyrite veins cut across non-foliated quartz-feldspar porphyry dykes in the Toms 

zone footwall (Fig. 4.10H). They are typically associated with broad (up to 3 cm), sericite-

biotite halos in the adjacent host rock. Some of the veins contain coarse-grained sphalerite, 

chalcopyrite and galena. They are interpreted to post-date the D2 deformation. 

In addition to those described above, barren, anastomosing carbonate veins with no preferred 

orientation cut limestone clasts in the Transitional Unit and pervasive dolomite-altered rocks 

hosting the massive sulfide. Their timing is apparently not constrained to any particular fabric 

or deformation event. 

Interpretation of syn-tectonic veins  

Cox (2000) and Cox et al., (1991) summarised the processes involved in formation of syn-

tectonic vein arrays. At high crustal levels, rapid episodic slip events within shear zones lead 

to transient increases in fault permeability. Fluid pressures are required to exceed the 

lithostatic lode to reactivate high-angle reverse faults. Following failure, shear stresses acting 

along the faults are significantly reduced, allowing hydrothermal fluids to circulate and 

precipitate veins. Once the fracture network is sealed, fluid pressure and differential stress 

gradually rise again. This cycle of permeability creation through brittle failure and 

permeability destruction by self-sealing veins was termed fault-valve behaviour by 

Sibson et al. (1988). 

Arrays of variably deformed sub-vertical (type 3) shear and extension veins and less abundant, 

weakly deformed, sub-horizontal (type 4) extension veins, occur throughout the Lewis Ponds 

fault zone and adjacent footwall volcanics. The sub-vertical veins probably resulted from 

periodic brittle shear failure and extension at a low angle to the direction of maximum 

compressive stress along pre-existing planes of weakness, prior to or during development of 

the Si/Ss cleavage (Fig. 4.11A-C). The late, cross-cutting, type 4 extension veins are 

interpreted to reflect fault-valve behaviour associated with episodic brittle failure at a high 

angle to the direction of maximum compressive stress due to high fluid pressure 

(Fig. 4.11D and E). Many type 3 and 4 veins contain small amounts of chalcopyrite, sphalerite 

and galena. If the Lewis Ponds fault is linked to a low-angle detachment surface, as proposed 

by Glen (1998), fluids sourced from deeper crustal levels beneath the Late Silurian felsic 

volcanic pile may have been tapped. 

The morphology and cross-cutting relationships of syn-tectonic veins at Lewis Ponds are 

similar to vein arrays documented in the Kambalda area of Western Australia. Nguyen et al. 

(1998) interpreted a transition from brittle shear failure to more ductile deformation and 
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Figure 4.11 Model for the formation and progressive deformation of syn-tectonic veins at Lewis Ponds 
shown as schematic cross-sections and a Mohr circle diagram. Based in part on the 
'fault-valve' model proposed by Sibson et al. (1988). 
cs, = direction of maximum compressive stress at a high angle to the shear zone 
a3  = direction of minimum compressive stress at a low angle to the shear zone 
Tc  = tensile strength across cohesionless pre-fractured/cleaved rock 
TR = original tensile strength of the rock 
PF = fluid pressure 

A and B. Brittle shear failure at a high strain rate and low angle to the direction of maximum 
compressive stress. The presence of pre-existing planes of weakness, such as fractures or the S I  
cleavage reduces the cohesion and tensile strength of the rock. Brittle shear failure, represented by 
Mohr circles A and B, may result in the formation of sub-vertical shear and extension veins along 
fracture planes and in small dilational jogs. 

C. Repeated brittle failure and sealing of the fractures over time produces an array of progressively 
deformed veins. Boudinage results from a competency contrast between the veins and adjacent 
chlorite-sericite-altered host rock. With further incremental strain, the oldest veins are completely 
boudinaged and surrounded by strain shadows. The foliation may also be kink folded and 
boudinaged. 

D. Once cohesion is attained in the fault zone, local areas of high fluid pressure may cause effective 
stresses to exceed the tensile strength of the rock, allowing brittle failure to occur at a high angle to the 
direction of maximum compressive stress (Mohr circle D). This produces late sub-horizontal 
extension veins (cross-section D). 

E. Mohr circle E shows possible effective stress conditions immediately following brittle failure at a high 
angle to the direction of maximum compressive stress. With increasing fluid pressure, the Mohr circle 
moves toward the left, ultimately resulting in brittle failure (D) and the formation of extension veins 
under transient conditions of low effective normal stress. 
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foliation development, followed by brittle deformation and fault-valve behaviour associated 

with increased fluid pressure and overall decreased shear stresses at the Revenge gold mine. 

The cleavage and syn-tectonic veins at Lewis Ponds are similarly interpreted to record 

increased fluid pressure and a transition from ductile to brittle behaviour. 

4.6 	Structures within the massive sulfide lenses 

This section outlines macroscopic and microscopic structures occurring in the massive sulfide 

lenses. Structures resulting from ductile deformation are strongly developed in Main and 

Toms zones. However, structures attributed to brittle behaviour occur mainly in Toms zone. 

Massive sulfide bands in Main zone are sub-parallel or parallel to the S I  cleavage. Elongate 

aggregates of pyrrhotite, chalcopyrite, sphalerite, mica and quartz fibres define the S I  cleavage 

(Fig. 4.12). In schositose rocks, unevenly spaced, anastomosing cleavage bands, containing 

strongly aligned chlorite, phlogopite and talc crystals, wrap around structurally competent, 

rigid dolomite-quartz-sulfide domains (Fig. 4.12B). Pyrite-sphalerite aggregates, carbonate-

quartz clasts and rounded porphyroblasts are typically associated with talc, dolomite or quartz 

fibre strain shadows (eg. Fig. 4.12C and D). Quartz veins, folds and transposed layering are 

rarely observed (eg. Fig. 4.12E and F). However, pinch-and-swell structures occur between 

pyrite and sphalerite-rich massive sulfide bands. 

Fossiliferous limestone, siltstone and dacite pebbles in the polymictic breccia and pebbly-

granular sandstone deposits are elongate and lenticular (Figs. 3.12A and 3.13B). In the 

limestone quarry, the clasts become more flattened and boudinaged toward the north, where 

there is an apparent increase in strain (Fig. 4.8B). Weakly deformed clasts generally have 

more equant shapes (eg. Fig. 3.16A). 

Toms zone is overprinted by brittle and ductile structures. The massive sulfide lens and its 

constituent pyrite and sphalerite-galena-rich bands are sub-parallel to S. However, the 

cleavage and sulfide band orientations have been re-oriented around open to isoclinal F s  kink 

folds (Fig. 4.13A, C and D). Fe-carbonate gash veins and small accommodation tear faults 

occur in the structurally thickened fold hinges. The kink folds are attributed to late-D 1  

shearing or reactivation of the Lewis Ponds fault during D2. 

Pinch-and-swell structures, occurring throughout the Toms massive sulfide lens reflect 

competency differences between sulfide minerals and the quartz, dolomite, talc or chlorite 

gangue. Anastomosing pyrite, sphalerite galena and chlorite bands wrap around isolated 

quartz and dolomite boudins (Fig. 4.13B). These represent either deformed, boudinaged veins 

or 'islands' of mechanically strong, intensely altered host rock. 
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Figure 4.12 Main zone structures 
A. Photomicrograph of elongate, S i -parallel chalcopyrite and sphalerite aggregates in the matrix of a 
strongly foliated limestone-clast breccia. TLPD-12W3, 439 m. Reflected light. B. Strongly aligned 
phlogopite crystals wrapping around dolomite-quartz domains. TLPD-18, 373 m. Transmitted light. 
C. Asymmetric quartz fibre strain shadow adjacent to a rounded pyrite porphyroblast, indicating relative 
sense of shear. TLPD-12, 503 m. Transmitted light. D. Quartz fibres and a talc strain shadow adjacent 
to a pyrite aggregate. TLPD-12, 428 m. Transmitted light. E. Tightly folded dolomite band in talc 
schist. TLPD-18, 373 m. Transmitted light. F. Folded and boudinaged quartz-chlorite vein. Coarse-
grained galena and sphalerite occur in the fold hinges. TLPD-12, 457 m. 

Abbreviations: ccp = chalcopyrite, sph = sphalerite, py = pyrite, qtz = quartz, phi = phlogopite, 
tic = talc, ga = galena, chl = chlorite. 
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Figure 4.13 Toms zone structures 

A Folded massive quartz-pyrite bands separated by chlorite and quartz-sericite layers. Accommodation 
tear faults, boudinaged layering and Fe-carbonate gash veins occur in the structurally thickened fold 
hinges. TLPD-53, 295 m. 

B Dolomite-quartz and dolomite-talc boudins occurring in banded pyrite-sphalerite-rich massive 
sulphide. TLPD-51A, 477 m. 

C Kink folds in chlorite-dolomite-talc schist. TLPD-51AW2, 428 m. 

D Elongate S 1 -parallel chalcopyrite, sphalerite and tetrahedrite aggregate or veinlet in massive sulphide. 
Note the F2 kink fold. TLPD-51A, 489 m. 

E Recrystallised pyrite aggregate overprinted by anastomosing and orthogonal brittle fractures. The 
fractures are filled by ductile minerals including chalcopyrite, galena and sphalerite. TLPD-51A, 
488 m. 

F Cataclastic massive sulfide breccia consisting of 1-40 mm wide, rounded to very angular and 
splintery, rotated massive sulfide clasts in a vuggy quartz matrix. Clasts are corroded and partly 
overprinted by the quartz. TLPD-49, 264 m. 

Abbreviations: qtz = quartz, py = pyrite, chl = chlorite, Fe-carb = Fe carbonate, tic = talc, dol = dolomite, 
sph = sphalerite, ccp = chalcopyrite, td = tetrahedrite, ga = galena. 
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The cleavage is strongly developed in chlorite-dolomite-talc-rich areas and weak within 

polymetallic massive sulfide bands. Aligned mica laths and elongate, typically anastomosing 

chalcopyrite, galena, sphalerite, pyrrhotite and tetrahedrite aggregates define the S i  foliation 

(Fig. 4.13D). Pyrite and arsenopyrite grains are undeformed or cut by brittle fractures. Some 

of these fractures have been filled with chalcopyrite, sphalerite and galena (Fig. 4.13E). 

Breccia textures occur rarely in the massive sulfide at Toms zone (Fig. 4.13F). The breccia 

comprises 5-80 mm wide, rounded and very-angular clasts of pyrite-rich massive sulfide in a 

vuggy quartz matrix. Quartz partly overprints the corroded massive sulfide clasts. The 

occurrence of randomly-oriented, splintery and rounded massive sulfide clasts in a vuggy 

quartz matrix indicate that the breccia developed in situ. These textures probably resulted 

from cataclasis in areas where brittle structures cut the massive sulfide lens. Quartz 

precipitated in open spaces between the massive sulfide clasts. 

4.7 Structural history of Lewis Ponds 

Prior to the D I  deformation, the Lewis Ponds host sequence consisted of (in stratigraphic 

order) quartz-plagioclase phyric volcanics overlain by polymictic breccia, pebbly-granular, 

quartz crystal-rich sandstone and massive siltstone and mudstone. D I  was a strong 

deformation characterised by east-west horizontal compression. This resulted in the formation 

of NNW-trending, open to tight cylindrical folds and steeply dipping, sinistral reverse faults, 

an axial planar disjunctive cleavage and southeast-plunging mineral stretching lineation. The 

compression also caused tight to isoclinal folding of beds in the Transitional Unit and 

paragenetically early veins in the Toms zone footwall. 

Strain was partitioned into brittle and ductile structures within the Hangingwall Siltstone Unit, 

Transitional Unit and Western Volcanic Succession. The presence of thick, massive limestone 

lenses and mechanically strong coherent dacite surrounded by less competent siltstone and 

chlorite-talc-sericite-altered rocks produced complex anastomosing fault geometries with 

structural repetition in the fault-bound stratigraphic unit. Shearing also occurred within the 

intensely altered polymictic breccia deposits that host Main zone. Opposing shear sense 

indicators are consistent with normal and reverse displacement, indicating either reactivation 

or late reversal in movement across the Lewis Ponds fault. 

Five generations of veins are recognised at Lewis Ponds. Type 1 and 2 veins were probably 

emplaced prior to D I . High strain rates and periodic shear failure at a low angle to the 

direction of maximum compressive stress resulted in arrays of variably deformed, type 3, sub-

vertical shear or extension veins in the Lewis Ponds fault zone and adjacent footwall volcanic 
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succession. These accompanied ductile deformation and cleavage development. Episodic 

brittle failure, at a high angle to the direction of maximum compressive stress produced the 

late, type 4, sub-horizontal extension veins observed in drill core. Brittle failure occurred in 

local areas where elevated fluid pressure exceeded the tensile strength of the rock. The weakly 

deformed, type 4 veins indicate a decrease in overall strain rate, recovery of cohesion within 

the fault and high fluid pressure. Type 5 veins precipitated after intrusion of the Lewis Ponds 

granite and non-foliated quartz-plagioclase porphyry dykes. 

The weak D2 deformation, possibly accompanying late reactivation or roll-back of the Lewis 

Ponds fault, produced sub-horizontal and sub-vertical kink bands and kink folds in the host 

sequence. These weakly developed structures are most common in highly strained, 

phylosilicate-altered rocks. Kink bands occur throughout the Hangingwall Siltstone Unit and 

Transitional Unit. Southwest verging kink folds in the limestone quarry overprint the Si 

cleavage and highly attenuated limestone clasts. 

Toms zone was overprinted by brittle and ductile structures associated with shearing along the 

Lewis Ponds fault. Boudins and pinch-and-swell structures resulted from competency 

differences between the massive sulfide and gangue minerals. Chalcopyrite, sphalerite, 

tetrahedrite and pyrrhotite formed elongate, cleavage-parallel blebs within mica-rich domains. 

Cataclastic breccia resulted from brittle deformation of the massive sulfide. 

Main zone was not significantly affected by brittle shear failure within the Lewis Ponds fault. 

The S I  cleavage resulted from alignment of chlorite, talc and white mica in phyllosilicate-rich 

domains. Quartz fibres grew in dilatant strain shadows adjacent to quartz, plagioclase and 

pyrite crystals. Limestone, siltstone, mudstone and dacite clasts in the polymictic breccia 

deposits were flattened, kink folded and boudinaged. 

Brittle and ductile structures are more strongly developed in Toms zone than Main zone, 

suggesting that the massive sulfide lenses were emplaced prior to shearing along the Lewis 

Ponds fault. Variations in sulfide textures and compositions and lateral metal zonation also 

support this argument (see Chapter 7, sections 7.8 to 7.11). Strain was concentrated in the 

chlorite-talc and sericite-altered rocks. However, the relative timing of cleavage development 

and formation of compositional banding in the massive sulfide lenses is poorly constrained 

because the two fabrics appear sub-parallel and underground exposures are not available. The 

S I  cleavage may have overprinted primary compositional layering in the massive sulfide. 

This study highlights the possibility of structural repetition in the massive sulfide lenses at 

Lewis Ponds. Reversals in stratigraphic facing direction and vergence indicate that tight, 
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parasitic folds occur in the host sequence, east of the regional-scale anticline. These folds 

occur within and adjacent to the Lewis Ponds fault. Limestone-clast breccia, quartz-chlorite-

sericite schist and volcaniclastic sandstone deposits in the Transitional Unit and Hangingwall 

Siltstone Unit are structurally thickened in the hinge zone of the folds. The massive sulfide 

lens at Toms zone is dissected by brittle faults, syn-tectonic quartz veins and high strain zones. 

At Toms zone, diamond drill holes intersected a single massive sulfide lens, or numerous 

thinner massive sulfide lenses, separated by strongly deformed, intensely altered rock. This 

indicates that fault repetition may occur in the massive sulfide lens at Toms zone. 

4.8 	Regional correlations 

Large-scale, NNW-trending second generation faults and folds predominate in the Mumbil 

Group northeast of Orange (Fig. 2.5). Plunge changes and small amplitude symmetrical 

F2 folds have been cited as evidence for pre-existing latitudinal folds (Glen and Watkins, 1994; 

Glen, 1998). Mumbil Group rocks are dismembered by a complex system of N to NNW 

striking faults in the Mullions Range imbricate zone (Fig. 4.14). Some of these are associated 

with local mylonite formation, sub-horizontal kink folds and both older-over-younger and 

younger-over-older stratigraphic relationships (Glen and Watkins, 1994; Glen, 1998). 

First generation structures resulting from meridional compression have been recognised within 

the Lachlan Transverse Zone (Fig. 2.5). The LTZ is interpreted as an area of decreased 

regional metamorphic grade and D2 intensity (Glen and Watkins, 1994; Glen and Wyborn, 

1997). However, not all WNW-trending structures correspond to the proposed D I  

deformation. Scott (1999) interpreted a fault occurring near Big Bald Hill (located 4.5 km 

southwest of Lewis Ponds) as a lateral ramp segment of a fault resulting from east to northeast-

directed extension, due to the presence of normal shear sense indicators and northeast plunging 

stretching lineations. 

The first generation WNW and W-trending structures apparently do not occur at Lewis Ponds. 

Therefore D I  in this study equates to the D2 deformation of Glen and Watkins (1994). The 

strong S i  cleavage is likely to have obliterated earlier foliations and fabrics. D2 kink bands and 

kink folds overprint S I  and possibly result from late reactivation of the Lewis Ponds fault. 

Similar structures are associated with NNW-trending faults elsewhere in the Orange district 

(Glen, 1998). 

Structural analysis of the Lewis Ponds prospect highlights a number of discrepancies with 

previous mapping carried out by the Geological Survey of New South Wales (Fig. 4.14A and 

B). Timing and structural relationships between the footwall volcanic succession (Mullions 
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Range Volcanics) and overlying, tightly folded sedimentary rocks (Anson Formation) are 

complex and variable. The shallow emplacement of porphyritic dacite bodies into 

unconsolidated sediment produced irregular peperitic contacts in the Main zone footwall (see 

Chapter 3; section 3.3). However, sedimentary units occurring higher in the stratigraphy 

contain reworked epiclastic material, deposited after volcanism had ceased in the area. 

Figure 4.14 Mullions Range imbricate zone 
A. Geology map of the Lewis Ponds — Mt Bulga area as it appears on the Orange 1:100 000 map sheet. 
B. Modified map showing preferred position of the Lewis Ponds fault and fold hinges occurring to the 
west. Note continuation of the Barnby Hills Shale east of Lewis Ponds. The cross-hatched area 
between the Lewis Ponds and Mt Bulga deposits is a prospective target area for base metal sulfide 
occurrences. Based in part on interpretation of prospect-scale structures. C. Interpreted cross-section 
based on modified geology map. 
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Field mapping and drill core logging failed to locate an extensive fault marked on the Orange 

1:100 000 map separating the Mullions Range Volcanics and Anson Formation at Lewis Ponds 

(Fig. 4.14A). The unconformable contact is characterised by only minor deflection of the S i  

cleavage due to a competency contrast between lithologies. However, local faults truncate the 

footwall volcanic succession in Main zone and south of Toms zone. 

At Lewis Ponds, the siltstone, sandstone and polymictic breccia host rocks appear to post-date 

emplacement of the Mullions Range Volcanics. However, the Geological Survey of New 

South Wales have included these lithologies in the Anson Formation, which is elsewhere 

interpreted to stratigraphically underlie the Mullions Range Volcanics because: 

• fine-grained sedimentary rocks occur in the core of the Mullions Range Anticline; and 

• the basal mixed provenance conglomerate member of the Anson Formation includes 

basalt, basaltic-andesite and ultramafic clasts derived from the underlying Ordovician 

volcanic rocks (Pogson and Watkins, 1998). 

The siltstone and breccia deposits hosting the massive sulfide lenses at Lewis Ponds should 

therefore be included in the unit stratigraphically overlying the Mullions Range Volcanics 

- the Bamby Hills Shale (Fig 4.14 B and C). 

Previous maps indicate that the Lewis Ponds fault truncates the hinge zone of a regional-scale 

anticline occurring immediately west of the Lewis Ponds massive sulfide deposits 

(Fig. 414A). However, this fault occurs further to the east, where it truncates the adjacent 

syncline (Figs. 3.1 and 4.14B). 

The Lewis Ponds host rocks probably continue on the western limb of the regional-scale 

anticline (Fig.4.14B). These predominantly fine-grained sedimentary rocks may extend as far 

west as the Mt Bulga deposit, where massive sulfide occurs in a similar host sequence of 

siltstone, rhyolite and dacite (Chisholm, 1976). Mt Bulga has an indicated resource of 

850 000 t, grading 3.6% Zn, 1.0% Pb, 1.0% Cu, 2.5 g/t Ag and 0.4 g/t Au (Stevens, 1974). 

The area between the two base metal deposits is therefore a highly prospective target for 

massive sulfide occurrences, especially in the regional fold hinges. 
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CHAPTER 5 

ALTERATION MINERALOGY AND DISTRIBUTION 

5.1 	Introduction 

Secondary mineral assemblages at Lewis Ponds result from a complex history of diagenesis, 

hydrothermal alteration, fault-controlled fluid flow, cleavage development, regional 

greenschist facies metamorphism and post-tectonic granite emplacement. The extent of initial 

fluid-rock interaction was influenced by primary porosity and permeability in the volcanic and 

sedimentary units. Reactions between the hydrothermal fluid and host sequence produced 

discrete mineral assemblages depending on the temperature, fluid chemistry and lithology. 

The distribution and intensity of these assemblages reflects the overall fluid-rock ratio and 

proximity to fluid pathways such as faults or permeable units. 

A dolomite-chlorite-talc envelope surrounds the massive sulfide lenses at Lewis Ponds. This 

unusual Mg-rich, carbonate-bearing assemblage is spatially associated with polymictic breccia 

and siltstone in Main and Toms zones respectively. Carbonate alteration has been documented 

in the host sequence of numerous eastern Australian VHMS deposits including Henty, Lyell 

Comstock, Hercules, Rosebery and Thalanga (Khin Zaw and Large, 1992; Halley and Roberts, 

1997; Corbett, 2001; Herrmann and Hill, 2001; Large et al., 2001c). Early studies of these 

deposits concluded that carbonate resulted from sea floor exhalation of hydrothermal fluids 

(eg. Large and Both, 1980; McLeod and Stanton, 1984; Halley and Roberts, 1997). More 

recently, authors consider the carbonate-bearing assemblages to indicate sub-sea floor mixing 

between hydrothermal fluids and seawater in the unconsolidated volcanics (Khin Zaw and 

Large, 1992; Herrmann and Hill, 2001; Large et al., 2001a) or fluid-rock interactions involving 

pre-existing carbonate (Callaghan, 2001). Herrmann and Hill (2001) interpreted the dolomite-

chlorite-tremolite assemblage at Thalanga, north Queensland as metamorphosed, altered 

rhyolite based on immobile element and isotope compositions. 

In this chapter, the distribution and intensity of diagenetic, hydrothermal and metamorphic 

mineral assemblages within the Lewis Ponds host sequence are used to establish paragenetic 

relations. Factors influencing the distribution of hydrothermal and metamorphic mineral 

assemblages are considered in the interpretation section. Lithogeochemical trends associated 

with the alteration zones are summarised in the following chapter. 
105 



Chapter 5 - Alteration Mineralogy and Distribution 

5.2 Methods 

The study of alteration and metamorphic mineralogy at Lewis Ponds involved: petrological 

examination of thin sections, core samples and surface rock samples; short wavelength 

infrared (SW1R) spectral analysis; staining; and microprobe mineral analysis. 

Drill core and surface rock samples were analysed with a portable infrared mineral analyser 

(PIMA) spectrometer at the Centre for Ore Deposit Research to determine white mica, 

chlorite, carbonate and clay compositions. Comparisons were made with the short wavelength 

infrared spectra of reference minerals using The Spectral Geologist software. Results from the 

PIMA study were checked using microprobe analyses, thin section descriptions, HC1 acid tests 

and staining (see below). 

The PIMA is a useful field-based tool for fast identification of clays, fine-grained micas and 

carbonates. The instrument measures mineral reflectance in the short wavelength infrared 

(SWIR) range from 1300 to 2500 nanometres on clean, dry rock surfaces. Each mineral 

produces a different short wavelength spectrum characterised by distinctive absorption features 

corresponding to H20, OH, CO2  and NI-14  covalent bonds and A10H, Mg0H and Fe0H ionic 

bonds (Thompson et al., 1999). In VHMS deposits, the compositions and relative abundance 

of white mica and chlorite may be determined. Herrmann et al. (2001) and Jones (2001) 

identified a trend from distal phengitic white mica to orebody-proximal sodic muscovite using 

SWIR spectral analysis at the Rosebery and Myra Falls deposits respectively. 

Microprobe analyses of selected samples and detailed petrological thin section descriptions 

complimented the SWIR study. Numerous samples were stained with sodium cobaltinitrite or 

a solution of alizarin red and potassium ferricyanide to test for K-feldspar and ferroan dolomite 

respectively. 

Polished thin sections were carbon coated and analysed by a Cameca SX-50 electron 

microprobe at the University of Tasmania's Central Science Laboratory to determine mica, 

carbonate and clay compositions. Traverses across zoned dolomite crystals allowed 

identification of lateral variations in mineral chemistry. Microprobe analyses are presented in 

Appendix 3. 

In the following chapter, the terms 'carbonate', 'sericite' and 'feldspar' denote types of 

alteration assemblages. PIMA analyses indicate the presence of both phengite and muscovite 

in samples characterised by pervasive sericite. However, fine-grained white micas analysed by 

the microprobe are phengitic, with Si to tetrahedral Al ratios of greater than 3:1. 
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5.3 Alteration assemblages in the Mullions Range Volcanics 

Coherent and elastic facies in the Mullions Range Volcanics are characterised by weak to 

moderate pervasive sericite, K-feldspar-quartz-sericite-hematite and chlorite-epidote 

assemblages. These alteration assemblages have resulted from diagenesis and greenschist 

facies metamorphism. Perlitic fractures, spherulites, flow-banding, pumice and rarely volcanic 

glass are preserved in the rocks (Figs. 3.19-3.22). Elongate chlorite and white mica laths 

define the regional cleavage. The following assemblages were observed in eighteen samples 

collected during regional traverses of the Mullions Range Volcanics. 

Sericite 

Fine-grained white mica is the most widespread phyllosilicate, occupying the groundmass or 

matrix of coherent and elastic facies (eg. Figs. 3.6 and 3.22). The mica has partially to 

completely replaced plagioclase phenocrysts and glomerocrysts. A fine dusting of sericite 

overprints glass shards and volcanic lithics in elastic units. Uncompacted pumice clasts with 

relic tube vesicle textures have been replaced by quartz, sericite and biotite (Fig. 3.2211). 

Sericite-K-feldspar-quartz ± magnetite -hematite 

Coherent facies in the Mullions Range Volcanics are characterised by K-feldspar-quartz-

sericite ± magnetite-hematite alteration of the feldspar phenocrysts and/or groundmass. 

Euhedral phenocrysts and patches of coarse-grained polygonal quartz occur in a 

microcrystalline mosaic consisting of fine-grained K-feldspar and quartz. Flow-banded, 

spherulitic dacite contains radiating aggregates of quartz and feldspar (Fig. 3.22C). The 

spherulites alternate with microcrystalline or glassy domains. Fine-grained quartz fills vesicles 

in amygdaloidal rhyolite. Perlitic fractures in coherent feldspar phyric dacite are preserved as 

overlapping acuate sericite or quartz bands (Fig. 3.22D). 

Chlorite-epidote-sericite ± clinozoisite 

Chlorite-epidote-altered rocks occur throughout the Mullions Range Volcanics, in elastic and 

coherent facies (eg. Fig. 3.22G). At Lewis Ponds, aggregates of euhedral to subhedral epidote 

and aligned chlorite occupy the groundmass of quartz-plagioclase phyric dacite and schistose 

rocks in the fault-bound stratigraphic unit, Eastern Volcanic Succession and Western Volcanic 

Succession. Epidote patches also occur throughout the matrix and limestone clasts in the 

polymictic breccia and megabreccia deposits. 
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5.4 Hydrothermal alteration assemblages at Lewis Ponds 

An asymmetric, semiconformable alteration envelope surrounds the massive sulfide lenses at 

Lewis Ponds (Figs. 5.1 and 5.2). Chlorite-pyrite and sericite-quartz ± chlorite assemblages 

extend more than 200 m into the footwall volcanic succession immediately south of Toms 

zone (Fig. 5.3). Large areas dominated by chlorite and sericite have been documented in the 

Toms zone footwall (Castle, 1976; Glasson, 1977; Valliant, 1998). 

In Main zone, alteration mineral distribution and intensity depends on proximity to the massive 

sulfide lenses and the lithology (Fig. 5.1). Strong to intense pervasive chlorite, dolomite-

chlorite-talc, quartz-dolomite-chlorite and calcite-chlorite-sericite assemblages occur in the 

polymictic breccia and sandstone deposits, whereas siltstone and the footwall volcanic rocks 

are overprinted by a weak to moderate pervasive sericite-rich assemblage. 

Texturally destructive, dolomite-chlorite-talc, chlorite-pyrite, quartz-dolomite-chlorite and 

quartz-sericite ± hyalophane assemblages host the massive sulfide in Main and Toms zones 

(Table 5.1). These assemblages are surrounded by an asymmetric, 100-200 m thick 

phyllosilicate halo characterised by texturally destructive chlorite-pyrite, grading outward into 

moderate to strong pervasive chlorite or sericite-quartz ± chlorite in the footwall volcanics. 

Assemblage Intensity, pervasiveness Location/host Interpretation 

Dolomite-chlorite-talc Intense, patchy to pervasive Main & Toms 
zones 

Diagenetic & 
Hydrothermal 

Quartz-sericite ± 
hyalophane 

Texturally destructive, pervasive Toms zone 
footwall 

Hydrothermal 

Quartz-dolomite-chlorite Texturally destructive, pervasive Main zone Hydrothermal 

Chlorite-sericite-pyrite Strong to intense, pervasive Footwall of Main 
& Toms zones 

Hydrothermal 

Sericite-chlorite ± calcite 
± quartz, 
sericite-quartz ± chlorite 

Moderate to strong, pervasive Hangingwall & 
footwall of Main 
& Toms zones 

Hydrothermal 

Calcite-sericite-chlorite Strong to intense, pervasive, 
texturally destructive 

Main zone 
footwall 

Diagenetic & 
hydrothermal 

Magnetite-hematite Moderate, locally intense 
pervasive alteration 

Fault-bound 
stratigraphic unit 

Metamorphic, 
hydrothermal 
or fault-related 

Table 5.1 Hydrothermal alteration assemblages at Lewis Ponds listed in order of proximity to the 
massive sulfide lenses. 

Alteration mineral assemblages are weakly developed in the hangingwall. A strong pervasive 

chlorite-sericite-pyrite assemblage extends several metres into the siltstone overlying Main 

zone (Fig. 5.1). Schistose volcanics in the fault-bound stratigraphic unit are overprinted by 
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calcite-magnetite-hematite veins, disseminated magnetite and moderate to intense pervasive 

chlorite-epidote-sericite and sericite-biotite assemblages, extending the entire length of the 

prospect. 
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Figure 5.1 Main zone hydrothermal alteration and metamorphic mineral assemblages. 
Line 1300N section. 
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Figure 5.2 Toms zone hydrothermal alteration and metamorphic mineral assemblages. 
Line 425N section. 
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Figure 5.3 Hydrothermal alteration and metamorphic mineral assemblages from south of Toms zone. 
Line 200N section. 
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Dolomite-chlorite-talc 

A 10-75 m thick, dolomite-chlorite-talc envelope surrounds the massive sulfide lens in 

Main zone. This assemblage is restricted to the mixed provenance breccia and pebbly-granular 

sandstone units (Fig. 5.1). Intensity varies from texturally destructive replacement of the 

breccia and sandstone to patchy, partial replacement of the matrix and the preservation of 

primary clasts (Fig. 5.4A-D). Dolomite also occurs in the fine-grained deposits hosting Toms 

zone (Fig. 5.2) and in patches along the Lewis Ponds fault. The following assemblages are 

recognised: dolomite-chlorite-talc-altered polymictic breccia and pebbly-granular sandstone; 

texturally destructive vuggy dolomite with quartz, calcite, chlorite, talc and sulfide patches; 

massive talc; and texturally destructive dolomite-chlorite-quartz ± talc ± phlogopite schist. 

Intervals of massive talc and dolomite-quartz-chlorite schist occur within Main zone and the 

Lewis Ponds fault zone. Altered polymictic breccia and vuggy dolomite are restricted to the 

massive sulfide lenses in Main and Toms zones. 

Alteration intensity and mineral assemblages vary throughout the polymictic breccia and 

sandstone deposits in Main zone. Clasts, crinoid fossils and detrital volcanic quartz crystals 

are recognisable in strongly altered rocks (Fig. 5.4A, B, C and E). Very fine-grained dolomite, 

chlorite, talc and hematite have replaced the calcite in fossiliferous limestone clasts 

(Fig. 5.4B). Chlorite, sericite and dolomite occur in the groundmass of porphyritic dacite 

pebbles. Weakly altered mudstone, siltstone and felsic volcanic lithics contain dolomite, 

sericite and disseminated pyrite (Fig. 5.4C and E). Sphalerite, pyrite, rutile dolomite, chlorite, 

phlogopite and quartz-sulfide patches occur in the breccia matrix. Dolomite occurs as 

aggregates of anhedral crystals (Fig. 5.4F), spheroids (Fig. 5.4G) and euhedral rhombs 

(see section 5.8 for detailed descriptions). 

The schistose rocks are characterised by dolomite, quartz and sulfide aggregates, surrounded 

by anastomosing and rarely folded, cleavage bands of chlorite, phlogopite and talc (Fig. 5.4D). 

These cleavage bands cut across pre-existing pyrite-sphalerite aggregates. Within cleavage 

bands, the very fine-grained phyllosilicates are strongly aligned with the regional foliation or 

local shear fabric. Chlorite, phlogopite, and talc occur less abundantly within the dolomite-

quartz-sulfide domains. However, the talc is generally coarser-grained and randomly-oriented. 

Talc and quartz fibres commonly occupy strain shadows adjacent to sulfide aggregates, 

carbonate-quartz clasts and euhedral pyrite crystals. The dolomite-chlorite-talc schist 

alternates with intervals of massive, vuggy dolomite and dolomite-chlorite-talc-altered breccia. 

Vuggy dolomite is characterised by medium to coarse-grained, euhedral to anhedral crystals 

and spheroids of dolomite in a very fine-grained dolomite matrix. Quartz, talc, calcite, 

chlorite, pyrite, sphalerite and galena have filled vugs and channels in the dolomite (Fig. 5.5). 
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Figure 5.4 Dolomite-chlorite-talc assemblage 

A Intensely altered limestone-clast breccia consisting of patchy dolomite-chlorite-talc-altered pebbles (a) 
surrounded by chlorite schist. Transitional Unit. TLPD-45, 257 m. 

B Intensely altered fossiliferous limestone clast characterised by very fine-grained dolomite with minor 
talc, hematite and chlorite patches. Note preservation of crinoid ossicle (c). Transitional Unit. 
TLPD-45, 261 m. 

C Matrix-supported polymictic volcaniclastic breccia containing sub-rounded to sub-angular siltstone or 
felsic volcanic pebbles (a) and quartz porphyry pebbles (b & c) in a matrix entirely replaced by very 
fine-grained dolomite. Minor patches of talc and chlorite occur throughout the dolomite-altered 
matrix. Pebble c is characterised by an intense pervasive chlorite-dolomite assemblage, resulting in 
the dark colouration, whereas weakly altered clasts a and b are overprinted by minor chlorite, 
dolomite and phengite. Main zone, Transitional Unit. TLPD-33, 379 m. 

D Dolomite-chlorite-talc schist. Irregular dolomite-quartz patches surrounded by discontinuous 
anastomosing cleavage-bands of aligned Mg-chlorite, phlogopite and talc. Disseminated fine-grained 
pyrite throughout. Main zone, Transitional Unit. TLPD-37, 166 m. 

E Photomicrograph of weakly altered siliceous pebbles (a) and euhedral volcanic quartz crystals in a 
very fine-grained dolomite-altered matrix. Siliceous clasts are overprinted by disseminated pyrite and 
phengite patches. TLPD-33, 379 m. 

F Fine-grained dolomite mosaic consisting of anhedral inclusion-rich crystals with curved and serrated, 
non-planar margins. Polymodal size distribution. Main zone, Transitional Unit. TLPD-12, 440 m. 

G Dolomite spheroid characterised by wedge-shaped zoned dolomite crystals with strong radial 
extinction surrounding very fine-grained dolomite in the core. TLPD-36W, 214 m. 

Abbreviations: dol = dolomite, tic = talc, chl = chlorite, hem = hematite. 
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Figure 5.5 Dolomite textures 

A Massive vuggy dolomite consisting of vugs and channels filled with clear, amorphous quartz. 
Transitional Unit. TLPD-33, 389 m. 

B Quartz- and calcite-filled vugs in very fine-grained dolomite. Inward-facing prismatic quartz crystals 
result from unimpeded growth into a fluid-filled cavity. Main zone hangingwall, Transitional Unit. 
TLPD-12, 440 m. 

C Photomicrograph of a vug filled with pyrite, sphalerite and clear, rhombic dolomite crystals. The vug 
is surrounded by inward facing prismatic dolomite crystals and very fine-grained dolomite. 
Unimpeded growth of rhombic dolomite crystals was followed by simultaneous deposition of pyrite, 
sphalerite and dolomite to fill the vug. Plane polarized light. TLPD-12, 440 m. 

D Vuggy dolomite sample consisting of zoned euhedral dolomite crystals and aggregates of very fine-
grained dolomite lined with chlorite and surrounded by clear, platy calcite. Calcite and chlorite 
precipitated around the zoned dolomite crystals and fine-grained dolomite to fill the remaining space. 
Main zone, Transitional Unit. TLPD-12, 493 m. 

E Elongate patch of very fine-grained talc surrounded by inward-facing rhombic dolomite crystals and 
very fme-grained dolomite. TLPD-33, 405 m. 

F Photomicrograph of chlorite-filled vug surrounded by very fine-grained dolomite and disseminated 
euhedral pyrite crystals. Main zone footwall. TLPD-36W, 206 m. 

G Very fine-grained dolomite cut by anastomosing white dolomite veins. Irregular, angular patches of 
chlorite and talc occur throughout the dolomite matrix. Toms zone Central massive sulfide lens, 
Hangingwall Siltstone Unit. TLPD-51A, 484 m. 

H Pseudobreccia consisting of angular chlorite patches in a matrix of very fine-grained vuggy dolomite. 
Concentric bands in the dolomite matrix result from unidirectional growth. TLPD-33, 409 m. 

Abbreviations: dol -= dolomite, qtz = quartz, ca = calcite, py = pyrite, sph = sphalerite, chl = chlorite, 
tic = talc. 
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The vugs are lined with inward facing quartz and dolomite crystals, chlorite laths and fine-

grained quartz, indicating unidirectional, unimpeded growth into open cavities. Anastomosing 

dolomite veins and veinlets containing minor phengite, pyrite and sphalerite cut across the 

carbonate-altered rock (Fig. 5.5G). Pseudobreccia textures occur where very fine-grained 

dolomite surrounds angular chlorite patches (Fig. 5.5H). 

Quartz-sericite ± hyalophane and quartz -dolomite-chlorite 

Thin (5-20 m) lenses of intensely silicified rock occur within the massive sulfide lenses or in 

the immediate footwall (Figs. 5.1-5.3). In Main zone, patchy silicified intervals alternate with 

massive sulfide. The rock comprises phengitic muscovite, chlorite, dolomite and coarse-

grained quartz in a microcrystalline quartz mosaic (Fig. 5.6A). In Toms zone, the 

quartz-sericite assemblage includes 5-10 modal % euhedral or poilciloblastic hyalophane 

crystals (barium feldspar; Fig. 5.6B). This assemblage, observed only in two thin sections, 

corresponds to anomalous whole rock Ba concentrations in the Toms zone footwall. 

Anastomosing quartz and carbonate veinlets cut across the silicified rocks. 

Chlorite-sericite-pyrite (chlorite >> sericite)  

Chlorite with subordinate sericite and pyrite surrounds the dolomite and quartz-bearing 

assemblages (Figs. 5.1-5.3). Dark green to black chlorite occurs throughout the polymictic 

breccia matrix in Main zone. The chlorite envelope becomes more widespread to the south, 

where it extends 150 m into the footwall volcanic succession and 50 m into hangingwall 

siltstone immediately south of Toms zone (Fig. 5.3). Here, chlorite occupies the groundmass 

or matrix of quartz phyric volcanic rocks and siltstone. Chlorite abundance decreases from 

90 modal % at the top of the footwall volcanic succession to 15% with distance from the Toms 

massive sulfide lens. Chlorite selvages locally surround calcite-chalcopyrite-pyrite veins in 

the Toms zone footwall. Two types of chlorite occur in thin section. Intensely altered rocks 

are characterised by fibrous, radial aggregates of chlorite with no preferred orientation 

(Fig. 5.6C). Fine-grained, aligned chlorite laths define the S 1  cleavage in strongly altered ° 

rocks away from these areas (Fig. 5.6D). The preservation of primary chlorite may reflect 

inhomogeneous strain or the presence of mechanically strong lithologies and lithic clasts 

within the rocks. 

Sericite-chlorite ± calcite and sericite -quartz ± chlorite (sericite > chlorite)  

A weak to moderate pervasive sericite-chlorite ± calcite assemblage occurs in the footwall 

volcanics at Main zone (Fig. 5.1). Sericite-quartz ± chlorite also occurs in a 250 m thick 

symmetrical envelope that surrounds chlorite-altered rocks at Toms zone (Fig. 5.2). This 

assemblage extends into the footwall volcanic succession and Hangingwall Siltstone Unit. 
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Very fine-grained white mica and chlorite partly to completely overprint plagioclase 

phenocrysts and the microcrystalline groundmass in quartz-plagioclase phyric dacite. Feldspar 

destructive sericite assemblages occur only in the hangingwall and footwall of Toms zone. 

White mica in the Main zone footwall lacks a preferred orientation, whereas fine-grained laths 

occurring throughout quartz phyric volcanic and pelitic rocks in Toms and Lady Belmore zones 

are strongly aligned with the S I  cleavage (Fig. 5.6E) 

False-elastic textures are common in the quartz-feldspar phyric dacite (B) underlying Main 

zone. Elongate, cleavage-parallel chlorite pseudoclasts with sharp or wispy margins are 

surrounded by quartz-sericite-altered domains. Coherent porphyritic textures occur within the 

chlorite patches. Allen (1988) interpreted this type of pseudobreccia to result from two phase 

alteration involving fracture-controlled silicification of coherent lava, followed by 

phyllosilicate growth between the silicified domains. 

Calcite-sericite-chlorite 

The strong pervasive calcite-sericite-chlorite assemblage is restricted to fossiliferous quartz 

crystal-rich sandstone and pebbly-siltstone beds underlying Main zone. Patches of fine-grained 

polygonal calcite and large platy calcite crystals occur throughout the matrix (Fig. 5.6F). Some 

of these represent crinoid fossils, shell fragments and recrystallised limestone clasts. Aligned 

chlorite and sericite laths define the S I  cleavage. 

Magnetite-hematite 

Disseminated and vein-controlled magnetite crystals occur throughout the Western Volcanic 

Succession, Transitional Unit and Hangingwall Siltstone Unit. These are commonly corroded 

and partly altered to hematite. Cleavage-parallel calcite-magnetite-hematite veins in the fault-

bound stratigraphic unit become less abundant away from the limestone lenses. Anastomosing, 

cleavage-parallel, magnetite-hematite bands also cut the limestone megabreccia. 

Jasper lenses  

Discontinuous, 10-15 m wide jasper lenses occur along the western contact of the Eastern 

Volcanic Succession (Fig. 3.1). A jasper lens also occurs at the upper contact of the Western 

Volcanic Succession near the Ceasars workings. The rock comprises fine-grained polygonal 

quartz with minor disseminated hematite and martitised euhedral magnetite crystals (Fig 5.6G). 

Sphalerite veinlets cut the jasper in places. Where this occurs, adjacent magnetite crystals are 

partly altered to sphalerite and/or hematite (Fig. 5.611). The jasper consists of 85 wt % Si02, 

15 wt % Fe203  5-35 ppm Ba, V, Ni, Cu, and Zn and 1.7 ppm TI (sample LPD014, 

Appendix 4). Rock chip samples contain up to 900 ppm Zn (Tri Origin, unpublished data). 
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Figure 5.6 Hangingwall and footwall alteration assemblages 

A Intense pervasive quartz-dolomite-chlorite assemblage. Consists of chlorite laths and poikilitic 
dolomite patches in a very fine-grained, equigranular quartz mosaic. Main zone, Transitional Unit. 
TLPD-12, 465 m. 

B Ba-rich, silicified rock from Toms zone footwall consisting of poikilitic hyalophane crystals and 
minor phengite in a very fine-grained equigranular quartz mosaic. Hangingwall Siltstone Unit. 
TLPD-46A, 134 m. 

C Texturally destructive chlorite-phlogopite assemblage characterised by medium-grained, fibrous, 
typically radiating, chlorite and phlogopite laths which have not been recrystallised during 
metamorphism. Western Volcanic Succession. TLPD-66, 267 m. 

D Quartz-chlorite schist consisting of fine-grained chlorite laths aligned with the 
S I  cleavage. Western Volcanic Succession. TLPD-63, 454 m. 

E Quartz-sericite schist dominated by fine-grained phengite aligned with the S I  cleavage. Western 
Volcanic succession. TLPD-63, 284 m. 

F Intense pervasive calcite-chlorite-sericite assemblage in quartz crystal-rich sandstone from Main zone 
footwall. Some of the calcite patches may represent recrystallised primary limestone clasts. 
Transitional Unit, TLPD-36W, 277 m. 

G Jasper from the western contact of the Eastern Volcanic succession consisting of disseminated 
magnetite and hematite in an equigranular quartz mosaic. LPD014, GR 710242E 6315970N. 

H Photomicrograph of jasper cut by an anastomosing sphalerite veinlet. Martitised euhedral magnetite 
crystals, adjacent to the veinlet are partly replaced by hematite and sphalerite. Toms zone 
hangingwall. LPD014. 

Abbreviations: qtz = quartz, dol = dolomite, chl = chlorite, phg = phengite, hly = hyalophane, ca = calcite, 
mag = magnetite, hem = hematite, sph = sphalerite. 
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5.5 	Fault-controlled and deformation-related assemblages 

Hydrothermal alteration assemblages attributed to the D I  deformation are confined to the Lewis 

Ponds fault zone and host rock adjacent to type 3A quartz veins. The variably deformed, 

cleavage-parallel, type 3A quartz-sulfide veins resulted from periodic brittle shear failure and 

extension (see Chapter 4, section 4.5). The veins are surrounded by quartz-sericite-carbonate 

selvages, that overprint pre-existing chlorite and sericite assemblages. 

Patches of fine-grained talc occur in chlorite-sericite-altered schistose rocks in Toms zone, 

Lady Belmore zone and New Lewis Ponds (Fig. 3.1). Talc is most abundant in the breccia and 

sandstone units in Main zone, adjacent to the Lewis Pond fault. These massive intervals 

represent intensely altered, polymictic breccia. The massive talc occurs with dolomite. 

Iron, Mn and Mg carbonates occur in closely spaced, 0.1-1 mm thick, anastomosing cleavage-

parallel, type 3C veinlets, carbonate lenes and rare tectonic fish adjacent to the type 3A quartz 

veins (Fig. 5.8A-C). The carbonate veins are considered an alteration type due to their 

abundance throughout the Lewis Ponds fault zone. They are composed of very fine-grained 

dusty inclusion-rich or clear dolomite, ferroan-dolomite, siderite or sidero-magnesite crystals 

(Fig. 5.7, Appendix 3). Most have banded, crustiform internal textures characteristic of a 

crack-seal mechanism of formation. The deformed veins are truncated by F12 kink bands, 

indicating that they precipitated prior to the D2 deformation. 

MgCO3  

CaCO3 	 FeCO, 

Figure 5.7 Triangular diagram showing composition of type 3C carbonate veinlets occurring in the 
Lewis Ponds fault zone. Based on 18 microprobe analyses. 

5.6 Metamorphic assemblages 

The following section outlines mineral assemblages that post-date hydrothermal activity at 

Lewis Ponds. These typically overprint the S I  cleavage or non-foliated quartz-feldspar 

porphyry dykes. 
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Figure 5.8 Metamorphic and fault-related alteration assemblages 

A Anastomosing, weakly kink folded, cleavage-parallel magnesite veinlets in a chlorite matrix. 
Toms zone footwall. TLPD-51AW2, 406 m. 

B Type 3A cleavage-parallel quartz vein with pinch and swell structure, associated with intense 
pervasive quartz-sericite assemblage and magnesite veinlets in the adjacent siltstone. Toms zone 
footwall, Hangingwall Siltstone Unit. TLPD-51AW2, 424 m. 

C Photomicrograph of tectonic fish composed of dolomite, cutting a deformed quartz veinlet. 
Crustiform texture results from precipitation of dolomite in a dilation zone opened during shearing. 
Western Volcanic Succession. TLPD-66, 311 m. 

D Photomicrograph of aligned, pale brown Mg-F-rich phlogopite occurring in anastomosing cleavage 
bands that wrap around dolomite-quartz domains. Main zone, Transitional Unit. TLPD-12, 503 m. 
Plane Polarised Light. 

E Photomicrograph of cleavage-aligned, pale red-brown Fe-Ti-rich phlogopite surrounded by chlorite. 
Associated with type lA calcite-chalcopyrite-pyrite veins. Toms zone footwall, Western Volcanic 
Succession. TLPD-66, 374 m. Plane polarised light. 

F Quartz-feldspar porphyry dyke characterised by weak pervasive sericite-chlorite-biotite assemblage. 
Primary biotite phenocrysts (bt 1) have been partly replaced by chlorite and white mica. Toms zone 
footwall. TLPD-67B, 440 m. Plane polarised light. 

G Hornblende-dolomite-epidote assemblage comprising hornblende laths with no preferred orientation, 
and minor epidote. Toms zone footwall. TLPD-67B, 687 m. 

H Photomicrograph of a rounded sericite-chlorite aggregate possibly replacing a cordierite 
porphyroblast. The internal alignment of phengite is oblique to the SI cleavage orientation in the 
surrounding siltstone. TLPD-67B, 841 m. 

Abbreviations: chl = chlorite, mgs = magnesite, qtz = quartz, phg = phengite, dol = dolomite, 
phi = phlogopite, bt = biotite, fsp = plagioclase, hbl = hornblende, ep = epidote. 
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Biotite, phlogopite and sphene 

Biotite occurs south of Main zone in the Western Volcanic Succession, Hangingwall Siltstone 

Unit and quartz-feldspar porphyry dykes. Phlogopite and sphene, however are confined to the 

dolomite-chlorite-talc and chlorite-sericite-pyrite envelopes surrounding the two massive 

sulfide zones (Figs. 5.1-5.3). Pale brown to red-brown phlogopite and red-brown to green 

biotite occur throughout the matrix or groundmass of elastic and coherent rocks 

(Fig. 5.8D and E). Phlogopite in Main zone is very pale and easily mistaken for white mica. 

Biotite and phlogopite laths are randomly oriented or aligned with the S I  cleavage. They have 

partially to completely replaced aligned chlorite in strongly foliated rocks. The mica occupies 

strain shadows on quartz and feldspar crystals in weakly altered rocks. Type 1 and 3 veins are 

locally associated with 0.5-3 mm wide selvages of biotite or phlogopite overprinting earlier 

chlorite. 

Non-foliated quartz-feldspar porphyry dykes are characterised by a weak, patchy to pervasive 

sericite-biotite-chlorite assemblage. Fine-grained white mica and pale green biotite occurs 

throughout the groundmass (Fig. 5.8F). Chlorite and white mica typically overprint the large 

primary biotite phenocrysts. 

Hornblende-dolomite-epidote 

Hornblende-dolomite-epidote patches occur rarely in the footwall and hangingwall of Toms 

zone (Fig. 5.8G). The intensely altered, fine-grained sedimentary rocks comprise elongate 

dolomite patches and disseminated pyrite in a matrix dominated by bluish-green hornblende 

with no preferred orientation and minor epidote. The hornblende compositions are 

characterised by 1.5 tetrahedral Al atoms substituting for Si (Appendix 3). The Hornblende 

may have resulted from reactions involving epidote and chlorite (Yardley, 1989). 

Cord ierite 

Fine-grained sedimentary rocks hosting Toms zone rarely contain irregular rounded 

phyllosilicate patches. The 1-5 mm wide aggregates of aligned phengite and chlorite occur in 

a chlorite-altered matrix with secondary biotite (Fig. 5.8H). The internal fabric is oblique to S i  
in the surrounding matrix. These irregular patches may represent retrogressed cordierite 

porphyroblasts, which overprinted the S I  cleavage. 

5.7 Geochemistry of hydrothermal and metamorphic minerals 

The following section presents the results of the microprobe analyses of phyllosilicate and 

carbonate minerals at Lewis Ponds. 
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Dolomite 

The dolomite and ferroan-dolomite contains 33-43 wt % MgCO 3, 51-61 wt % CaCO3, 

0.2-7 wt % MnCO3 , 0-7 wt % FeCO3, up to 2300 ppm ZnCO3 and 4200 ppm SrCO3 

(Appendix 3). Unusually high Mn concentrations in several analyses from Main zone may 

result from mineral inclusions. The dolomite compositions do not reflect lithology because there 

are no systematic variations between Main and Toms zones. Euhedral dolomite crystals have 

highly variable CaCO3, MgCO3, MnCO 3, and FeCO3 contents within and between samples 

(Appendix 3). Cores are depleted in FeCO3  and enriched or depleted in MnCO3 relative to the 

outer rims (Fig. 5.9). However, compositions do not vary systematically between zoned 

crystals, suggesting that the dolomite nuclei may have precipitated at different times. 

Figure 5.9 Microprobe traverses of zoned dolomite rhombs in Main (A) and Toms (B) zones showing 
variations in FeCO3 and MnCO3 concentrations. A = TLPD-33, 390 m, B = TLPD-51A, 484 m. 

Chlorite 

Chlorite crystals in the polymictic breccia in Main zone contain 7.0 to 8.5 Mg cations. They 

have Mg numbers 100[Mg/(Fe + Mg)],  that range from 80 to 90 (Fig. 5.10). Chlorite laths 

occurring in the siltstone and footwall volcanics in Toms zone have 5.3 to 8.6 Mg cations and 

variable Mg numbers, ranging from 59 to 92. Lewis Ponds chlorite compositions are therefore 

closer to the chlinochlore, (Mg 10Al2)(Si6Al2020(OH)16, end-member than the chamosite, 

(Fe2+ 10Al2)(Si6Al202a0F1)16 end-member. 
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Figure 5.10 Chlorite compositions plotted in terms of mineralised zone and stratigraphic location. 
Based on 107 microprobe analyses. 

SWIR spectral analysis provided inaccurate estimates of chlorite compositions from the 

footwall and hangingwall. No positive correlation exists between Mg numbers obtained from 

chlorite microprobe analyses and the Mg0H absorption feature measured on the same samples 

by the PIMA (Fig. 5.11). The Mg0H spectral feature may be affected by Mg-carbonates or 

AIOH features occurring in white mica. These observations are consistent with Herrmann et al. 

(2001), who found the instrument unreliable at estimating chlorite compositions in mixtures of 

chlorite and white mica. 
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Figure 5.11 Chlorite Mg number versus Mg0H short wavelength absorption features measured by the 
electron microprobe and PIMA respectively. 

White mica 

The fine-grained white mica contains 2-4 octahedral Al cations and up to 2 K cations and 

0.1 Ba cations (Fig. 5.12). These compositions are consistent with phengitic muscovite 

(Bailey, 1984; Deer et al., 1992). Phengite compositions do not vary systematically between 
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host lithologies (Fig. 5.12). However, white micas occurring in syn-tectonic quartz veins 

generally contain less Mg, Si and K and more Na and Al(VI) than pervasive sericite 

surrounding the massive sulfide lenses. 

2.5 

2.0 

4.0 

3.5 

2.0 

1.9 

1.8 

0 
1.7 

1.6 

1.5 

1.4 
60 

60 6.2 6.4 
Si cations 

6.6 68 	 60 6.2 6.4 	6.6 
Si cations 

68 

Hangingwall Siltstone Unit 

o Transitional Unit 

o VVestem Volcanic Succession 

• white mica in veins 
(Toms zone tootwall) 

A A 

• 

0 

0 

	

OS 	0 

	

a 	crak 
A  n A  

	

A 	'a  
A 

0 

002 °D  

0 	a 

0  
40 0 ap 

o a, DO 
a 

o • 

la 

0 

LA  a o A  

on a 	o % 0 
% 13%13 Z cat 01  ° 

0.10 
(r) 

as 
03 

0.05 

0.00 
60 

A 

6.2 6.4 
Si cations 

6.6 68 6.2 6.4 	6.6 
Si cations 

68 

Figure 5.12 White mica compositions plotted in terms of stratigraphic unit. 5 analyses are from type 
3A and type 4 quartz veins occurring in the Toms zone footwall. Based on 73 microprobe analyses. 

Phlogopite and biotite 

Microprobe analyses yielded highly variable phlogopite and biotite compositions, depending 

on lithology and proximity to the massive sulfide lenses (Fig. 5.13). Phlogopite grains in the 

breccia deposits in Main zone have higher F and Mg and lower Al, Fe and Ti concentrations 

than those in the volcanic and siltstone units in Toms zone. The inverse relationship between 

F and Fe concentration is known as Fe-F avoidance (Munoz, 1984). Biotite grains have higher 

Fe and Ti concentrations than phlogopite, reflecting substitution for Al in octahedral sites. 

5.8 	Interpretation 

Diagenetic alteration of the Mullions Range Volcanics  

Perlitic fractures, spherulites, glass shards and pumice indicate that glassy domains formerly 

occurred in the coherent and elastic facies of the Mullions Range Volcanics. Phyllosilicate 

assemblages (sericite, sericite-K-feldspar-quartz ± magnetite-hematite and chlorite-epidote) 

have overprinted glassy and non-glassy domains. Quartz and sericite fill primary pore spaces 

including vesicles in coherent rhyolite and tube pumice clasts. The epidote and clinozoisite 
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Figure 5.13 Biotite and phlogopite compositions plotted in terms of mineralised zone and stratigraphic 
unit. Based on 87 microprobe analyses. 

are likely to result from low temperature diagenesis or metamorphism of calcium-bearing 

lithologies such as limestone or plagioclase phyric volcanic rocks. Recrystallisation and 

alignment of the chlorite and sericite during deformation produced the regional cleavage. 

Volcanic glass is metastable and therefore susceptible to hydration and devitrification during 

cooling and diagenesis (Lofigen, 1971; McPhie et al., 1993). Devitrification involves crystal 

nucleation and the development of a granular microcrystalline groundmass containing quartz 
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and K-feldspar. Hydration results from the absorption of water, which consequently modifies 

the glass structure. Perlitic cracks are attributed to either hydration of the glass or stress 

release during cooling (Doyle, 2001). 

Sericite, chlorite-epidote and sericite-K-feldspar-quartz assemblages occurring in the Mullions 

Range Volcanics probably resulted from devitrification, diagenesis and low-temperature 

metamorphism of clastic and coherent rocks. Phyllosilicate-bearing assemblages have 

replaced the primary diagenetic clays, zeolites and chlorite that lined vesicle walls and altered 

glassy domains (Noh and Boles, 1989; Gifkins and Allen, 2001). 

Dolomite textures 

Figure 5.15 summarises the five dolomite textures recognised at Lewis Ponds. Type 1 

dolomite occurs in most sulfide-bearing, carbonate altered rocks. It is characterised by a 

unimodal mosaic of very fine-grained (<0.2 mm) clear or dusty, subhedral to anhedral crystals. 

In Main zone, irregular patches of type 1 dolomite occur within pyrite and sphalerite 

aggregates (Fig. 5.14). Contacts between the sulfide and surrounding type  1  dolomite matrix 

are also highly irregular. 

Figure 5.14 Honeycomb texture consisting of an irregular aggregate of massive sphalerite (sph) with 
minor galena, pyrrhotite and pyrite surrounded by very fine-grained type 1 dolomite (dol) and quartz 
(qtz). Irregular patches of type 1 dolomite also occur within the sphalerite. Main zone, 
Central massive sulfide lens. TLPD-18, 365 m. Transmitted light. 

The type 1 dolomite is interpreted to pre-date deposition of the massive sulfide in Main zone. 

Fragments of wall rock occurring within irregular patches of pyrite and sphalerite indicate 

corrosion of the massive dolomite by the mineralising fluid. Amthor and Friedman (1991) 

interpreted aggregates of very fine-grained dolomite as an early replacement texture. The 

small crystal size results from either a high density of nucleation sites or high level of 

supersaturation regardless of temperature (Sibley and Gregg, 1987). The unimodal size 

distribution may indicate a single nucleation event with uniform growth rates. 
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Type 1 (represented by dots) - mosaic of very 
fine- to fine-grained (<0.2 mm) dusty 
subhedral to anhedral crystals, eg. Fig. 5.5F. 
Unimodal size distribution. 

Type 2 - clear or zoned medium- to very 
coarse-grained (0.2-1.5 mm) euhedral to 
subhedral crystals occurring individually or 
in aggregates with planar or 'compromise' 
boundaries, eg. Fig. 5.5C, D and E and 5.9. 
Unimodal to polymodal size distribution. 

Type 3 - mosaic of medium- to coarse-
grained (0.2-1 mm) clear or dusty, anhedral 
crystals with non-planar margins and 
undulatory extinction, eg. Fig. 5.4F. 
Polymodal size distribution. 

Type 4 - 1-4 mm wide spheroids consisting 
of wedge-shaped laths of zoned dolomite 
with strong undulatory extinction, 
eg. Fig. 5.4G. Fine-grained type 1 dolomite 
typically occurs in the core (shown as dots). 
The spheroids partly overprint type 2, zoned 
rhombic dolomite crystals. 

Type 5 - very coarse grained (2-8 mm) 
anhedral dusty crystals occurring in veins, 
eg. Fig. 5.5G. Partly overprinted by type  1 
dolomite. Polymodal size distribution. 

Here the vein is surrounded by type 1 
dolomite (shown as dots) and patches of 
type 3 dolomite. 

Figure 5.15 Types of dolomite occurring at Lewis Ponds. 
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Type 2 dolomite consists of medium- to very coarse-grained (0.2-1.5 mm), euhedral to 

subhedral rhombs with planar, typically corroded margins or 'compromise' boundaries and 

sharp to weakly undulatory extinction (Fig. 5.15). Zoned rhombs have a dusty, inclusion-rich 

core surrounded by 5-200 lam wide, alternating clear and dusty bands. Patches of rhombic 

crystals with a unimodal or polymodal size distribution occur in a matrix of very fine-grained, 

type 1 dolomite. Aggregates of inward-facing rhombic dolomite crystals commonly line vugs 

and channels filled with quartz, calcite, chlorite, pyrite or sphalerite (Fig. 5.5C-F). Clear and 

zoned, type 2 dolomite rhombs surround patches and disseminations of pyrite, sphalerite and 

galena throughout the mineralised, Main zone host rocks (eg. Fig. 5.5C). 

Type 2 dolomite is interpreted to have precipitated prior to and during mineralisation in Main 

zone. Medium to coarse-grained rhombic crystals occur within and adjacent to pyrite, galena 

and sphalerite aggregates in the dolomite-altered, breccia and pebbly-granular sandstone 

deposits. Individual or coalesced euhedral rhombs result from in situ, simultaneous growth at 

different nucleation sites over an extended period. They generally form at low temperatures or 

low levels of supersaturation (Gregg and Sibley, 1984; Rao, 1997). The growth rate and 

nucleation kinetics depend on the level of supersaturation, type of substrate and fluid 

composition (Sibley and Gregg, 1987) and the involvement of impurities such as Fe 2+  ions 

(Gregg and Sibley, 1984; Meyer, 1984). Consequently, coarsely crystalline euhedral dolomite 

also forms at higher temperatures. Variations in the growth rate, fluid composition or 

numerous crystallisation episodes produces zoned crystals with a polymodal size distribution. 

Growth of the dolomite ceases when the majority of intercrystalline space had been consumed 

or conditions prevent diffusion through the substrate or delivery of cations to the growing 

crystals. 

Type 3 consists of polymodal aggregates of medium- to coarse-grained (0.2-1 mm) inclusion-

rich, anhedral dolomite crystals with serrated or curved, non-planar margins and undulatory 

extinction (Figs. 5.4F and 5.15). These occur in a fine-grained dolomite matrix. This texture 

has been referred to as xenotopic dolomite (Gregg and Sibley, 1984). Anhedral crystals with 

non-planar interfaces result from high temperature (>50°C) dolomitisation of limestone or 

recrystallisation of pre-existing dolomite (Gregg and Sibley, 1984). The undulatory extinction 

reflects a distorted crystal lattice due to asymmetric growth (see discussion on following page). 

Elongate, wedge-shaped anhedral dolomite crystals occurring in 1-4 mm wide, spheroidal 

aggregates define type 4 dolomite (Figs. 5.4G and 5.15). The curved crystals are characterised 

by anhedral or euhedral outer terminations and undulatory (radial) extinction. Very fine-

grained type 1 dolomite typically occurs in the core of the spheroids. 
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The spheroids result from rapid asymmetric growth from a single nucleus at high temperatures. 

Alternating clear and inclusion-rich bands indicate variations in the growth rate, diffusion rate, 

fluid composition and level of supersaturation. The radial habit, dusty appearance and strong 

undulatory extinction is analogous to radiaxial calcite (Kendall, 1985) and saddle dolomite 

(Radke and Mathis, 1980). Asymmetric growth and distortion of the crystal lattice is 

attributed to crystal-splitting due to the interference of dissolved species or growth from highly 

supersaturated fluids (Radke and Mathis, 1980; Kendall, 1985). Saddle dolomite commonly 

occurs as a void-filling cement or replacement carbonate in hydrocarbon reservoirs and base-

metal sulfide deposits. It forms at temperatures of 60-150°C (Radke and Mathis, 1980). 

Type 5 dolomite occupies anastomosing veins and veinlets in Toms zone (Figs. 5.5G and 

5.15). The large (2-8mm), dusty, anhedral crystals have irregular serrated, nonplanar margins 

and sharp extinction. Veins formed after brittle fractures opened in the carbonate-altered rock. 

These were transient conduits characterised by high permeability and fluid flow. Anhedral 

dolomite crystals are interpreted to result from high temperature (>50°C) fluids. The large 

crystal size suggests high growth rates relative to nucleation rate within the fractures 

(Sibley and Gregg, 1987). 

Carbonate alteration assemblages  

Hydrothermal alteration in Main zone involved partial to complete replacement of the mixed 

provenance breccia, limestone-clast breccia and quartz crystal-rich sandstone by dolomite, 

calcite, Mg-chlorite, talc, quartz, white mica and sulfides. Limestone clasts are preserved as 

calcite patches in weakly altered areas. Relict crinoid fossils occur in even the most intensely 

altered rocks, where dolomite, chlorite and talc have replaced the calcite (Fig. 5.4B). Sharp 

irregular contacts between dolomite-quartz and chlorite-talc-phlogopite domains may represent 

former clast margins. However many of these contacts are parallel to the S I  cleavage and 

therefore structurally controlled. The dolomite-quartz-chlorite schist is a texturally destructive 

assemblage that has replaced fine or coarse-grained lithologies. 

Alteration intensity in the polymictic breccia deposits partly reflects the initial clast 

composition. Chlorite, dolomite and talc occur throughout the groundmass of intensely altered 

quartz porphyry pebbles. The chlorite has probably replaced Al-bearing, diagenetic clays and 

micas. Perlitic fractures may have promoted diagenetic alteration of the groundmass in 

porphyritic dacite clasts (eg. Fig. 3.14G). In contrast, a weak patchy sericite-dolomite-pyrite 

assemblage overprints the felsic volcanic, siltstone and mudstone pebbles because they are 

predominantly composed of fine-grained quartz with little clay. 
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The Toms zone host rocks are characterised by vuggy dolomite-chlorite-talc and dolomite-

quartz-chlorite schist. The texturally destructive assemblages probably overprint siltstone or 

fine-grained sandstone because polymictic breccia does not host the Toms massive sulfide lens. 

The dolomite-chlorite-talc and calcite-sericite-chlorite assemblages resulted from selective 

replacement of limestone clasts, cementation in open cavities, massive replacement of the 

matrix and precipitation in fractures. Circulation of hydrothermal fluids through the substrate 

was therefore strongly dependent on secondary porosity, permeability and rock type. Rapid, 

episodic fluid flow along transient interconnected fractures produced the veins. 

Carbonate-bearing assemblages typically form at the periphery of stratiform Pb-Zn deposits 

such as Thalanga (Herrmann and Hill, 2001), Rosebery (Large et al., 2001c) and Mt Chalmers 

(Large and Both, 1980). Herrmann and Hill (2001) suggested that rhombic and spheroidal 

textures in the Thalanga dolomites developed at an early hydrothermal stage. Spheroids, 

rhombs and anhedral dolomite crystals grow during 60-150°C dolomitisation of carbonate-rich 

sediments (Radke and Mathis, 1980; Gregg and Sibley, 1984). In low salinity fluids with 

constant pH and X032, carbonate solubility decreases with increasing temperature (Rimstidt, 

1997), causing carbonate minerals to precipitate. 

Dolomite and calcite surrounding Main and Toms zones may have precipitated during 

diagenesis and low temperature hydrothermal alteration. The carbonates rapidly filled pore 

spaces in the sediment and overprinted diagenetic clays. Zoned euhedral dolomite rhombs 

resulted from unimpeded growth into open cavities or replacement of the surrounding matrix. 

Dolomitisation increased permeability in the host sediment by creating secondary pore spaces. 

Quartz, calcite, chlorite, talc, pyrite and sphalerite filled secondary vugs, channels and 

intercrystalline spaces in the dolomite at Lewis Ponds (Fig. 5.5). Amthor and Friedman (1991) 

suggested that secondary vugs and channels result from dissolution and enlargement of 

intercrystalline porosity. Porous dolomite successions host stratabound Pb-Zn-Ag-rich sulfide 

lenses in Irish-style and Mississippi Valley Type deposits (Sverjensky, 1981; 

Hitzman et al., 2002; Peace et al., 2003). 

Talc is unusual in volcanic-hosted massive sulfide deposits. Extensive talc-bearing alteration 

assemblages have been documented at Mount Chalmers, Central Queensland (Large and Both, 

1980); Woodlawn, New South Wales (McLeod and Stanton, 1984; McKay, 1989); 

Mattabi Lake, Abitibi District, Canada (Costa et al., 1983); Stirling, Cape Breton Island, Nova 

Scotia (Kontak, 1999); Onedin prospect, northwestern Australia (Orth, 2002) and numerous 

deposits in the Eastern Desert of Egypt (Botros, 2003). 
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Talc occurs within the massive sulfide lenses, in the immediate footwall or in local shear 

zones. Talc-bearing VHIMS deposits have a number of similar features (Large, 1977; 

Costa et al., 1983; McLeod and Stanton, 1984; McKay, 1989; Bodon and Valenta, 1985; 

Kontak, 1999; Herrmann and Hill, 2001; Botros, 2003). 1. They commonly occur in bimodal 

volcanic successions and mixed silicic and intermediate volcanic successions or in close 

proximity to genetically unrelated mafic/ultramafic rocks. 2. The talc is intergrown, or 

associated with base metal sulfides and other Mg- and Ca-bearing minerals including 

phlogopite, Mg-chlorite, actinolite, tremolite, stipnomelane, dolomite and calcite. 3. The 

compositions of talc, chlorite, phlogopite and sericite in the footwall may vary systematically 

with proximity to the massive sulfide lens. Costa et al. (1983) and McKay (1989) suggested 

that talc resulted from incorporation of seawater Mg by intermittent turbulent mixing of brine 

pools with the overlying marine water. 

Talc forms by direct precipitation from hydrothermal fluids, replacement of clays, low-grade 

metamorphism and hydrothermal alteration of mafic rocks and contact or regional 

metamorphism of calcareous rocks (McLeod and Stanton, 1984; Deer et al., 1992). It typically 

forms by the following decarbonation reaction during metamorphism and hydrothermal 

alteration: 

3CaMgCO3 + 4Si02 + H20 = Mg3Si 40 1 0(OH)2 + 3CaCO 3  + 3CO2(g)  (Yardley, 1989) 	(1) 

dolomite 	quartz 	 talc 	calcite 

Reaction 1 occurs at less than 400°C in shallow environments with low confining pressures of 

approximately 1 000 bars (Slaughter et al., 1975). Although talc at Lewis Ponds is spatially 

associated with dolomite, the lack of associated calcite (a product of Reaction 1) suggests that 

talc may have precipitated directly from a low temperature Mg-rich hydrothermal or 

metasomatic fluid, or that the calcite was involved in other reactions. The relatively coarse-

gained, randomly-oriented talc, preserved within dolomite-quartz-sulfide domains probably 

formed prior to the S I  cleavage and S s  shear fabric. 

The occurrence of talc, Mg-chlorite and phlogopite indicates abundant Mg, Al and K in the 

hydrothermal fluid and/or proximal carbonate-bearing host rocks at Lewis Ponds. High Ca 

concentrations in the limestone-bearing facies may have favoured the formation of tremolite at 

higher metamorphic grades because talc reacts with quartz and calcite or dolomite to produce 

tremolite at temperatures of greater than 400°C (Slaughter et al. 1972; Yardly, 1989). The 

preferential formation of talc rather than tremolite at lower temperatures may also indicate low 

CO2 concentrations in the fluid. Carbonate-tremolite assemblages occur at Garpenberg, 

Sweden (Vivallo, 1985) and Thalanga, northern Queensland (Herrmann and Hill, 2001). 

However, since no tremolite was observed at Lewis Ponds, peak metamorphic temperatures 

were probably less than 400°C. 
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Quartz-sericite ± hyalophane and quartz-dolomite-chlorite 

The intense, texturally destructive silicified zones probably result from high fluid flux 

accompanying massive sulfide deposition or the emplacement of syn-tectonic quartz veins. 

Some of the quartz-rich lenses surrounding cleavage-parallel veins in the Toms zone footwall 

overprint earlier hydrothermal chlorite-sericite assemblages. Similar quartz-rich lenses have 

been documented in stratabound (eg. Large et al., 2001c) and pipe-like (eg. Gemmell and 

Fulton, 2001) alteration systems. Thermodynamic modelling suggests that the siliceous core of 

the footwall alteration plume at Hellyer formed at approximately 350°C (Schardt et al., 2001). 

Phyllosilicate-bearing assemblages  

Footwall alteration assemblages vary significantly between the two mineralised zones. In Toms 

zone, chlorite overprinting the footwall volcanic succession grades into a sericite-quartz-rich 

assemblage. Chlorite, phengite, biotite and phlogopite compositions become progressively 

enriched in Fe away from the massive sulfide lens (Fig. 5.16). Proximal phyllosilicates contain 

higher average Mg, Ba and F concentrations. In contrast, the chlorite envelope surrounding 

Main zone only occurs in the polymictic breccia and pebble-granular sandstone deposits. The 

underlying quartz-plagioclase phyric dacite is overprinted by a weak to moderate pervasive 

sericite-chlorite-calcite assemblage. There are no progressive changes in mineral composition 

in the immediate footwall to Main zone. 

Mineralogical trends in the Toms zone footwall rocks are similar to eastern Australian VHMS 

deposits. Sericite-rich assemblages surround stratabound chlorite em elopes at Rosebery 

(Large et al., 2001c), Thalanga (Herrmann and Hill, 2001), Currawong (Allen, 1992; Bodon and 

Valenta, 1995) and Captains Flat (Davis, 1990). In pipe-like alteration systems, chlorite grades 

laterally into sericite-quartz away from the silicious core (Large, 1992; Genunell and 

Fulton, 2001). Systematic variations in chlorite Mg number have been documented at VHMS 

deposits in Australia, Japan and Canada (Urabe and Scott, 1983; Urabe et al., 1983; McLeod 

and Stanton, 1984; McLeod et al., 1987; Paulick et al., 2001). Rosebery is a notable exception, 

since there is no obvious relationship between alteration intensity and chlorite composition 

(Large et al., 2001c). 

Mineral zonation in the footwall of VHMS deposits is controlled by fluid composition, 

temperature, redox state, and fluid/rock ratio (Walshe and Solomon, 1981; Galley, 1995; 

Schardt et al., 2001). The alteration assemblages result from progressive fluid-rock interaction 

and chemical evolution of the hydrothermal fluid. Thermodynamic and oxygen isotope 

modelling of footwall alteration predicts that chlorite precipitates from high temperature (250- 

300°C), weakly acidic (4.5-5.5), Mg-bearing fluids while lower temperature (<250°C), 
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more acidic (4-4.5) fluids produce the surrounding sericite-quartz zones (Urabe et al., 1983; 

Gemmell and Fulton, 2001; Schardt et al., 2001). Chlorite occurs with dolomite and talc in the 

polymictic breccia and siltstone deposits in Main and Toms zones. This chlorite may result 

from near neutral fluids passing through the carbonate-bearing host rocks. Thermodynamic 

modelling of the Hellyer footwall alteration plume indicates that hydrothermal fluids with high 

pH stabilise Mg-chlorite precipitation at lower temperatures (<200°C; Schardt et al., 2001). 

Jasper lenses 

The jasper may represent chemical sediment, altered host rock or quartz-magnetite-hematite 

veins formed during hydrothermal or deformation-related activity. The jasper contains 

anomalous Cu, Zn, and TI concentrations. Immobile element concentrations are significantly 

lower (below XRF detection limits) than the surrounding siltstone and dacite. The Valliant 

and Meares (1998) facies model for Lewis Ponds featured a continuous jasper horizon. Their 

interpretation assumed that a conformable contact separated the Eastern Volcanic Succession 

from the structurally underlying siltstone. However, poor outcrop prevented accurate 

observation of the contact during this study. Castle (1976) proposed that the western margin 

of the Eastern Volcanic Succession was truncated by a NNW-trending fault (Fig. 4.1). More 

work is required to interpret the formation of the jasper lenses. 

Metamorphic assemblages  

Regional greenschist facies metamorphism produced biotite throughout the Mullions Range 

Volcanics and Anson Formation, east of Orange. Cordierite, sphene and randomly oriented 

biotite, hornblende and phlogopite laths post-date the S i  cleavage in the Lewis Ponds host 

rocks. These minerals also overprint pre-existing aligned chlorite and white mica. Secondary 

biotite in southern and eastern areas of the prospect may result from localised contact 

metamorphism accompanying emplacement of the Lewis Ponds granite and non-foliated 

quartz-feldspar porphyry dykes or a later regional metamorphic event. 

The first appearance of biotite together with muscovite results from the following reaction, 

occurring at 300-400°C: 

chlorite + K-feldspar = biotite + muscovite + quartz + H 2O (Spear, 1993) 	 (2) 

Since K-feldspar does not usually occur in pelitic rocks, biotite also forms by: 

chlorite + phengite = biotite + phengite-poor muscovite + quartz + H 20 (Yardley, 1989) (3) 

Although chlorite is consumed by Reactions 2 and 3, the remaining phyllosilicates may 

become enriched in Mg2+  due to preferential diffusion of Fe2+  into biotite. Therefore, chlorite 

compositions may be reset during deformation and metamorphism. 
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Secondary phlogopite replaces pre-exiting mica during high-grade regional metamorphism or 

precipitates directly from low temperature (eg. <250°C), F-Mg-bearing hydrothermal fluids. It 

occurs in metamorphosed limestone or Al-poor pelites (Deer et al., 1962; Kearns et al., 1980; 

Spear, 1993), contact aureoles surrounding intrusions (Rice, 1977) and active geothermal 

systems (Bellcin et al., 1988; Carman, 1994). High fluorine concentrations increase thermal 

stability of the phlogopite-calcite-quartz assemblage, allowing the mineral to exist in 

amphibolite to granulite facies rocks (Kearns et al., 1980; Munoz, 1984; Abercrombie et al., 

1987). 

At Lewis Ponds, phlogopite was probably stabilised at relatively low temperatures due to high 

Mg and/or F concentrations in the dolomite and chlorite envelopes surrounding the massive 

sulfide lenses. Higher F concentrations in the Main zone phlogopite may reflect original 

composition of the carbonate-rich host rocks. 

Phyllosilicate compositions at Toms zone vary systematically with whole rock geochemistry, 

alteration intensity and proximity to the massive sulfide lens (Fig. 5.16). Identical trends occur 

in chlorite, phengite, biotite and phlogopite Mg number. Proximal phyllosilicates are enriched 

in Mg, F and Ba. Chlorite and phlogopite occurring in the Main zone host rocks have higher 

Mg concentrations than phyllosilicates in the siltstone and volcanic rocks in Toms zone, 

suggesting that whole rock compositions also depend on the original lithology. 

5.9 	Paragenesis 

Spatial and paragenetic relationships among alteration and metamorphic minerals are 

summarised in Figures 5.17 and 5.18. Diagenesis of the Mullions Range Volcanics involved 

devitrification, hydration and development of perlitic fractures in the glassy domains of 

coherent facies and porphyritic rhyolite clasts. Early clays occurring throughout coherent and 

elastic facies were replaced by K-feldspar, sericite and chlorite. Plagioclase crystals in elastic 

and coherent rocks were partly overprinted by fine-grained white mica. Calcite and dolomite 

may have precipitated in the polymictic breccia and fossiliferous quartz crystal-rich sandstone 

deposits, due to reactions involving cold seawater. 

Low temperature hydrothermal activity resulted in dolomite-altered limestone clasts and 

dolomite cement throughout the polymictic breccia, sandstone and siltstone (Figs. 5.17 and 

5.18). Quartz, dolomite, calcite, Mg-chlorite, talc and sulfides filled secondary porosity (vugs 

and channels) and replaced the dolomite matrix. The clasts were overprinted by patchy to 

pervasive chlorite-dolomite-talc-pyrite assemblages. Dolomite-sulfide textures occurring 

throughout Main zone indicate that dolomite precipitated both before and during mineralisation. 
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The distribution of alteration minerals in the breccia and sandstone deposits was 

predominantly controlled by clast type and permeability. 

Mineral 	 Diagenesis Hydrothermal D, deformation D, Syn-/post- dyke 
emplacement 

quartz 

muscovite phengitic 

Mg chlorite 

talc 

biotite 

phlogopite 

hyalophane 

K-feldspar 

/ epidote 	clinozoisite 

sphene 

hornblende 

cordierite ? 

calcite 

dolomite 

siderite 

magnetite 	, 

Figure 5.17 Paragenesis of diagenetic, hydrothermal and metamorphic minerals. 

Sericite-chlorite-calcite, chlorite-pyrite and sericite-quartz ± chlorite assemblages developed 

throughout the breccia deposits and footwall volcanics at higher temperatures and fluid-rock 

ratios (Figs. 5.17 and 5.18). Patchy lenses of texturally destructive quartz-sericite and quartz-

dolomite-chlorite formed in the mineralised host rocks. However, some of these silicified 

zones may be attributed to later fault-related activity. 

Quartz-sulfide shear and extension veins resulted from episodic brittle failure in and around 

the Lewis Ponds fault zone. Many of the larger veins are associated with quartz-sericite and 

magnesite, siderite or dolomite selvages. Massive talc precipitated along the fault and in the 

adjacent polymictic breccia deposits, replacing dolomite-altered fossiliferous limestone clasts 

and the breccia matrix. 

Regional greenschist facies metamorphism and cleavage development involved 

recrystallisation of pre-existing phyllosilicates and growth of new minerals throughout the host 

sequence. Biotite overprinted sericite in quartz phyric volcanic rocks and non-foliated quartz-

feldspar porphyry dykes south of Main zone. Phlogopite formed in the chlorite and dolomite 
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envelopes surrounding the massive sulfide lenses and replaced pre-existing chlorite. Sphene, 
epidote and hornblende grew in areas enriched in Ca and Mg. 
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Figure 5.18 Alteration model showing spatial distribution of hydrothermal alteration assemblages at 
Lewis Ponds. Based on interpreted 600 InRL level plan, compiled from drill hole data. 
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CHAPTER 6 

LITHOGEOCHEMISTRY 

6.1 	Introduction 

Hydrothermal fluid-rock interactions produce distinct alteration mineral zonation in submarine 

volcanic successions. Lithogeochemical studies have traditionally focussed on: 

• separating altered volcanic successions into magmatic affinity groups and rock types 

(Crawford et al., 1992; Barrett and MacLean, 1994; Barrett et al., 1996); 

• determining mass changes in altered volcanic rocks (Barrett and MacLean, 1994; 

Herrmann and Hill, 2001); 

• defining the extent of proximal alteration halos (Gemmell and Fulton, 2001; 

Large et al., 2001c); 

• interpreting the composition and thermal characteristics of the fluid 

(Sangster and Scott, 1976; Galley, 1995); and 

• modelling fluid-rock interactions in the source rocks (Stolz and Large, 1992; 

Callaghan, 2001). 

The regional application of quantitative lithogeochemical techniques serves to delineate 

prospective areas, favourable horizons and large-scale alteration halos (Galley, 1995; 

Brauhart et al., 2001). Recent studies have developed methods for vectoring in to massive 

sulfide deposits by identifying proximal and distal geochemical gradients in whole rock and 

stable isotope geochemistry and mineral compositions (eg. Large et al., 2001a). 

In this chapter, mass balance calculations, alteration indices and element ratios are used to 

quantify the intensity and spatial extent of hydrothermal alteration in the Lewis Ponds host 

sequence, thereby determining the nature of the mass changes. A geochemical model is 

presented for Lewis Ponds based on lithogeochemical trends associated with the massive 

sulfide lenses. Some of the alteration indices and element ratios are useful exploration vectors 

for identifying carbonate and volcanic-hosted massive sulfide deposits at the regional scale. 
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Figure 6.1 Geochemistry of least altered rocks from the Mullions Range Volcanics, including five 
samples from this study, two from Tri Origin (listed on page 13 of Appendix 4)  and  sample ORMS0310 
from the Geological Survey of New South Wales database. A. Si0 2  versus K20 diagram using the 
subdivisions outlined in Rollinson (1993). B. Si02  versus total alkali (Na20 +  K20)  diagram (after 
Le Maitre, 1989). C. Nb/Y versus Zr/Ti02  discrimination diagram (after Winchester and Floyd, 1977). 
Variable Si02, Na20 and K20 concentrations result from weak diagenetic or hydrothermal alteration. 

X-Y scatter plots of compatible-incompatible and compatible-compatible immobile element 

pairs are useful for identifying individual units and quantifying mass changes in altered 

volcanic successions (Crawford et al., 1992; Herrmann and Hill, 2001). Net mass gains and 

losses of mobile components produce highly-correlated (r 0.85 to 0.99) linear trends, passing 

through the origin and precursor compositions due to immobile element dilution or 

concentration (MacLean, 1990; MacLean and Barrett, 1993; Barrett et al., 1996). In multiple 

precursor systems, an array of lines result from hydrothermal alteration of  a  fractionated 

magmatic series (MacLean and Barrett, 1993). 

The footwall volcanic succession at Lewis Ponds consists of three lithofacies associations; A, B 

and C, distinguishable in drill core by the abundance and size of the phenocrysts (Chapter 3, 

section 3.3). The variably altered rocks have similar Zr/TiO 2  and Nb/Y values to least altered 

rocks in the Mullions Range Volcanics, indicating that Zr, Ti, Y and Nb were relatively 

immobile during hydrothermal alteration (Fig. 6.2). Although samples contain visible quartz 

phenocrysts, they predominantly plot as dacite on immobile element discrimination diagrams. 
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Sample compositions lie along three linear trends on immobile element X-Y scatter plots, with 

correlation coefficients (r) generally greater than 0.85 (Fig. 6.3). Least altered rocks define an 

approximate fractionation trend of decreasing TiO 2  and Cr and increasing Zr. Quartz-feldspar 

porphyry clasts from the overlying polymictic breccia unit occur on the same alteration line as 

lithofacies association B. Figure 6.3 demonstrates that Zr, Ti0 2 , Cr, Sc and V were immobile 

in the footwall volcanic succession. Variability of Al203, Y and Nb concentrations may reflect 

primary chemical heterogeneities in the volcanic units or remobilisation during hydrothermal 

alteration. 

Immobile element concentrations in strongly foliated, quartz phyric rocks from the fault-bound 

stratigraphic unit and Eastern Volcanic Succession also define an alteration line (Fig. 6.4). 

Comparisons of this line to those of the footwall volcanic succession indicate that quartz 

phyric dacite in the structural hangingwall of Lewis Ponds has a similar immobile element 

composition and probably magmatic affinity to lithofacies association A. 

6.5 	Alteration indices and element ratios 

Lithogeochemical indices and element ratios have been developed to quantify alteration 

zonation and changes in alteration intensity associated with VHMS deposits. 

Ishikawa Alteration Index: 

AI= 	100(K 20  + Mg0)  
(K 2 0 + Na 20 + Mg0 + Ca0) varies from 0 to 100 	 (1) 

The alteration index (Equation 1), defined by Ishikawa (1976), quantifies phyllosilicate 

alteration of footwall volcanic rocks. Sericite and chlorite progressively replace plagioclase 

phenocrysts and glassy domains in the groundmass by the following reactions: 

3NaAlSi308+ K+  + 2J{ KA13Si3010(OH)2 + 6Si0 2  + 3Na+  (Large et al., 2001b) 	(2) 
albite 	 sericite 	quartz 

21(A13Si3010(OH)2 3H4SiO4 + 9Fe 2+  + 6Mg2+  + 18H20 = 
sericite 
3Mg2Fe3Al2Si3010(OH)8 + 2K+  + 28H+ 

	
(3) 

chlorite 

The replacement of albite by sericite (Equation 2) involves addition of K20 and removal of 

Na20 in outer parts of the hydrothermal system. This may produce district-scale quartz-

sericite assemblages (eg. Eastoe et al., 1987; Brauhart et al., 2001). Chlorite results from 

higher temperature MgO and FeO metasomatism and replacement of sericite (Equation 3) 

adjacent to the massive sulfide body (Urabe et al., 1983; Large, 1992; Gemmell et al., 1998; 

Schardt et al., 2001). 
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Figure 6.3 Immobile element composition of footwall volcanics and porphyritic dacite clasts. Samples 
from lithofacies associations A, B and C lie along three highly correlated linear trends which extend 
toward the origin. The spread of data reflects concentration or dilution of immobile elements by mass 
exchange of mobile components during hydrothermal alteration. Least altered equivalent rocks 
(highlighted in red) define a fractionation trend  of  decreasing Ti02 and Cr and increasing Zr. Strongly 
altered porphyritic dacite pebbles in the limestone-clast breccia have a similar magmatic affinity to 
dacite B. Calculated linear regression lines and correlation coefficients are shown. Note that Cr, Sc and 
V analyses are not available for whole rock compositions provided by Tri Origin. Based on 54 XRF 
analyses from the Western Volcanic Succession and 3 from the Transitional Unit. 
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Figure 6.4 Immobile element geochemistry of volcanic rocks in the structural hangingwall. Samples 
define an alteration trend corresponding to lithofacies association A in the footwall volcanic succession. 
Calculated linear regression lines and correlation coefficients are shown. Based on 17 XRF analyses. 

Iron and Mg-bearing minerals such as chlorite, dolomite, siderite, and pyrite dominate 

proximal alteration assemblages in VHMS deposits (McLeod and Stanton, 1984; Herrmann 

and Hill, 2001; Large et al., 2001c). Chlorite surrounds and partly overprints the siliceous core 

underlying mound-style deposits such as Hellyer, north western Tasmania (Gemmell and 

Fulton, 2001). Conformable chlorite and carbonate envelopes are strongly developed in the 

immediate footwall or hangingwall of stratabound massive sulfide lenses (eg. Herrmann and 

Hill, 2001; Large et al., 2001c). The Chlorite-Carbonate-Pyrite Index (Equation 4) was 

developed to quantify the addition of FeO and MgO (Large et al., 2001b). 

Chlorite-Carbonate-Pyrite Index: 

= 	100(Mg0 + FeO)  CCPI  
(MgO + FeO + Na 2 0 + K 20) 

varies from 1 to 100 	(4) 
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Other whole rock lithogeochemical vectors applied to VHMS deposits include the S/Na 20 and 

Ba/Sr ratios (eg. Large et al., 2001c). The S/Na20 ratio increases by three or four orders of 

magnitude in host rock surrounding massive sulfide lenses due to disseminated sulfides and 

chlorite-sericite alteration of the footwall volcanics. Barium substitutes for Al in white micas, 

whereas Sr occurs in albite (Deer et al., 1992; Large et al., 2001c). Therefore elevated Ba/Sr 

ratios result from feldspar destructive sericite alteration of plagioclase phenocrysts and glassy 

domains. Low Ba/Sr ratios may indicate carbonate alteration because Sr also substitutes for 

Ca in carbonate. 

6.6 Geochemistry of alteration halos 

The following section summarises whole rock geochemical trends associated with the two 

massive sulfide zones at Lewis Ponds. Lithogeochemical data are presented as logs (Figs. 6.5, 

6.6 and 6.8) and contoured cross-sections (Fig. 6.7). 

Main zone 

The broad asymmetric alteration halo surrounding Main zone consists of >1.5 wt % S, 

>100 ppm As, Cu, Pb and Zn, 4-30 ppm Tl and >20 ppm Ni. Polymictic breccia and pebbly-

granular sandstone units hosting the massive sulfide lenses are characterised by: 

• Al values ranging from 32 to 98 (Fig. 6.5); 

• variable CaO (2-35 wt %), MgO (3-21 wt %) and Fe203 (0-15 wt %) concentrations; 

• high CCPI (>80) and S/Na20 (>2) values; and 

• generally low 5i02  (40 wt % avg.), K20 (1.5 wt % avg.) and Ba (<250 ppm). 

AT and CCPI values, in the overlying and underlying siltstone increase systematically from 

60 to 97 toward the massive sulfide lens and Ba/Sr varies from 10 to 275 (Fig. 6.5). Quartz-

plagioclase phyric dacite in the footwall volcanic succession has higher average Na 20 and Sr 

concentrations than the overlying siltstone. However, Al and CCPI values are significantly 

lower in the footwall volcanic rocks. 

High Al, CCPI and S/Na 20 values coincide with chlorite-pyrite, dolomite-chlorite-talc and 

sulfide-dominant assemblages occurring in the altered polymictic breccia, sandstone and 

siltstone surrounding the Main zone Central massive sulfide lens. Lower Al and Ba/Sr values 

in the breccia deposits reflect variable CaO and Sr concentrations due to the limestone clasts 

and patchy carbonate-altered matrix. Relatively high Na 20 and Sr concentrations and low Al 

values in the footwall dacite (lithofacies association B) indicate the preservation of plagioclase 

phenocrysts. 
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Toms zone 

Toms zone is associated with a strongly-developed, asymmetric alteration envelope that 

extends from the hangingwall to the footwall volcanic rocks (Figs. 6.6 and 6.7). Al and CCPI 

values progressively increase from 50 to 99 with alteration intensity, toward the massive 

sulfide lens. Barium, SiO, and S/Na20 values also increase systematically within this 

envelope. Anomalous Zn (100-500 ppm) and Ba/Sr (>10) values extend more than 100 m into 

the footwall volcanic succession (Fig. 6.7). Dolomite-chlorite-talc-altered rocks hosting the 

massive sulfide lens have relatively low Si0 2 , K20 and Ba concentrations and low Al values 

(Fig. 6.6). Higher average K20 and Na20 concentrations occur in the hangingwall and 

footwall volcanic rocks due to pervasive sericite and variable preservation of plagioclase 

phenocrysts (Figs. 6.6 and 6.7). 

Immediately south of Toms zone, the quartz-sulfide veins, disseminated sulfides and calcite-

chalcopyrite-pyrite veins are surrounded by a broad alteration envelope consisting of 

4-22 wt % MgO, 2-10 wt % Fe203, 0-4 wt % K20 and less than 0.5 wt % Na 20 (Fig. 6.8). 

Al values within the alteration envelope range from 90 to 99. CCPI values are considerably 

higher in the footwall (80-97) than in the hangingwall (40-61). 

Lithogeochemical indices and element ratios associated with Toms zone reflect alteration 

mineralogy and proximity to the massive sulfide lens. High Al, CCPI and S/Na 20 values 

result from extensive, feldspar destructive chlorite and sericite alteration of the footwall and 

hangingwall volcanic rocks. Anomalous Ba concentrations (0.2-2 wt %) coincide with quartz-

sericite ± hyalophane assemblages occurring in the immediate footwall  (see  Chapter 5, 

section 5.4). As with Main zone, the dolomite-chlorite-talc assemblage hosting the massive 

sulfide is characterised by relatively low Al values due to the predominance of dolomite 

(CaO occurs in the denominator  in  Equation 1). 

The box plot is a simple graphical representation of hydrothermal and diagenetic alteration 

trends in coherent volcanic units (Large et al., 2001b). Changes in Al and CCPI reflect the 

alteration intensity and the relative abundance of alteration minerals. Least altered rocks at 

Lewis Ponds plot within a box, arbitrarily defined by Al = 20-60 and CCPI = 15-50 (Fig. 6.9). 

Volcanic rocks in the Toms zone footwall (dacite A and C) extend radially from the least 

altered box to higher Al and CCPI values depending on the relative abundance of chlorite and 

sericite, ie. the intensity of plagioclase destructive phyllosilicate alteration. In Main zone, 

lower Al and CCPI values in volcanic rocks at the top of the footwall volcanic succession 

(dacite B) reflect moderate to strong pervasive sericite-chlorite-calcite alteration of the 

groundmass and the preservation of plagioclase phenocrysts. 
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Figure 6.6 Lithogeochemical trends associated with Toms zone. Drill logs showing lithology, 
alteration assemblages, element abundance and Al, CCP1, Ba/Sr and S/Na,0 values in TLPD-51A. 
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Figure 6.7 Contoured cross-sections illustrating spatial variations in Alteration Index, Ba/Sr, S/Na20 
and Chlorite-Carbonate-Pyrite Index values and K 20 and Zn concentrations associated with Toms zone. 
Based on 49 whole rock analyses from this study and four unpublished analyses from Tri Origin. Drill 
core sample locations are shown as red dots on the lithological section. The highest Al, CCPI, Ba/Sr, 
S/Na20 and Zn values occur in host rocks immediately surrounding the Toms Central massive sulfide 
lens. Dolomite-bearing alteration assemblages account for the low Al and Ba/Sr values. The highest 
K20 concentrations occur in the hangingwall and footwall volcanic successions, where alteration 
mineral assemblages contain phengitic white mica. 
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Figure 6.8 Lithogeochemical trends associated with the Footwall Copper zone. Drill logs showing lithology, 
alteration assemblages,  element  abundance and Al, CCPI, Ba/Sr  and  S/Nap  values in TLPD-66. 
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Main zone footwall 

Toms zone footwall 

Figure 6.9 Box plots illustrating footwall hydrothermal alteration trends in dacite A (blue), 
dacite B (orange) and dacite C (red). The common hydrothermal minerals, chlorite, sericite, dolomite 
and calcite plot along the right hand Al axis and upper CCPI axis. Least altered rocks occur in a box 
arbitrarily defined by Al = 20-60 and CCPI = 15-50. Data from the Toms zone footwall (dacite A and 
dacite C) extend radially toward the right hand side of the diagram due to variations in chlorite and 
sericite abundance throughout the groundmass. Quartz-plagioclase phyric dacite in the Main zone 
footwall (dacite B) has lower Al and CCPI values due to moderate to strong pervasive 
sericite-chlorite-calcite alteration of the groundmass. Abbreviations: chl = chlorite and ser = sericite. 
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6.7 	Mass changes in altered dacite 

Mass changes are determined for each mobile element using the relative amount of dilution or 

concentration of an immobile component such as Zr (MacLean and Barrett, 1993; Barrett and 

MacLean, 1994). Equation 5 compares the concentrations of mobile elements in an altered 

rock to those of an equivalent precursor. This method requires an accurate estimation of the 

precursor composition. However, many deposit-scale studies compare variably altered rocks to 

the least altered equivalent rather than an unaltered precursor (eg. Herrmann and Hill, 2001). 

Absolute mass change = 
[[ Zr: C a l — C °  z 
  (MacLean and Barrett, 1993) (5) 

where: Zr° = wt % concentration of Zr in precursor rock 

Zra = wt % concentration of Zr in altered rock 

C° = wt % concentration of mobile component in precursor rock 
Ca = wt % concentration of mobile component in altered rock 

Coherent samples with the lowest combined Al + CCPI value were considered the least altered 

equivalents of the dacite (Table 6.1). These samples contained weak pervasive sericite-biotite 

or sericite-chlorite-calcite assemblages. Mass changes in the Main zone footwall were 

calculated using coherent dacite and porphyritic dacite pebbles in the footwall volcanic 

succession and limestone-clast breccia unit. Immobile element ratios indicate that the clasts 

have similar magmatic affinities to lithofacies association B (Fig. 6.2). Samples of dacite A 

and C provided the basis for determining mass changes in the Toms zone footwall and 

hangingwall volcanics. Mass changes were not calculated for alteration assemblages in the 

sedimentary rocks because immobile element concentrations are highly variable (Appendix 4). 

Footwall unit Sample AI CCPI AI + CCPI Ba/Sr S/Na20 
Dacite A LP67B651 48 41 89 1.6 - 
Dacite B LP43386 23 40 63 0.38 <0.002 
Dacite C MRV24 44 32 76 3.2 <0.002 

Table 6.1 Least altered porphyritic dacite samples from the footwall volcanic succession used in mass 
change calculations. LP67B561 is a Tri Origin drill core sample from the Toms zone footwall. LP43386 
and MRV24 are drill core and surface samples analysed at the University of Tasmania. Elevated Ba/Sr 
ratios in LP67B651 and MRV24 indicate the occurrence of minor sericite and/or biotite. Sulfur was 
below XRF detection limits in LP43386 and MRV24. 

Mass changes in selected samples from the footwall and hangingwall dacites are presented in 

Table 6.2 and Figure 6.10. Hydrothermal alteration in the Main zone footwall resulted in CaO, 

MgO, Fe203 and K20 enrichment and depletion of Si02, Al203 and Na20. This produced net 

losses of 0-40 g/100g in the coherent dacite and 40-60 g/100g in the porphyritic dacite clasts. 

Primary variations in plagioclase phenocryst abundance may account for the apparent depletion 

of Al203 , which is usually considered immobile (Winchester and Floyd, 1977). 
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-0.4 
-3.8 
1.2 
0.0 
0.0 
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Net 
change -55.7 -38.1 -13.4 -10.6 -50.4 24.8 20.0 53.0 -17.9 

Table 6.2 Absolute mass changes in hangingwall and footwall quartz phyric dacite samples based on 
comparison of least altered rocks in Table 6.1 with whole rock compositions from two drill holes: 
TLPD-36W and TLPD-46A (all in g/100g). Calculated using Equation 5 (MacLean and Barrett, 1993; 
Barrett and MacLean, 1994). Positive values indicate mass gains. MgO additions in the Toms zone 
footwall vary with proximity to the massive sulfide lens. 

Hydrothermal alteration in Toms zone involved additions of MgO, Fe203 and K20 with losses 

of CaO and Na20 (Fig. 6.10). Calcium enrichment occurred in parts of the hangingwall due to 

the emplacement of syn-tectonic calcite veins. The removal of Si0 2  from dacite A contributed 

to net losses of 0-50 g/100g in the Toms zone hangingwall and footwall. However, significant 

additions of Fe203  and MgO to chlorite-altered rocks surrounding the Footwall Copper zone 

resulted in small gains of 1-2 g/100g. In contrast, dacite C gained 0-75 g/100g due mainly to 

Si02 enrichment in the immediate footwall of Toms zone. 

Trace element exchanges were similar in the footwall volcanic rocks of both mineralised 

zones. Mass changes involved additions of Ba (0-3000 g/10 6g), Zn (0-480 g/10 6g), 

Ni (0-20 g/10 6g) and As (0-12 g/106g) and removal of 50-250 g/106g of Sr (Fig. 6.10). 

Hydrothermal alteration resulted in Cu, Pb, Sc, Ce, Y and Nd enrichment or depletion relative 

to the least altered rocks. However, only Ba contributed significantly to the overall net mass 

changes. 
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Figure 6.10 Mass changes in selected footwall and hangingwall dacite samples from Main and Toms 
zones. Calculated using Equation 5. Mass change data are listed in Appendix 4. 

Coherent dacite at the top of the footwall volcanic succession and porphyritic dacite clasts in 

the polymictic breccia unit underwent the largest net mass changes at Lewis Ponds due to 

enrichment of MgO and enrichment or depletion of Si0 2  during hydrothermal alteration and 

mineralisation. Calculated absolute mass changes in the Toms zone footwall compare closely 

with those in the footwall chlorite and sericite zones at Hellyer, north western Tasmania 

(Gemmell and Fulton, 2001) and Thalanga, north Queensland (Herrmann and Hill, 2001). 

Although net mass changes do not vary systematically with proximity to the Toms massive 

sulfide lens, progressive increases in chlorite abundance correspond to larger amounts of MgO 

added (Table 6.2). Similarly, the amount of K20 added varies with sericite abundance. The 
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trend of increasing MgO addition toward the massive sulfide lens does not occur in the footwall 

volcanic succession at Main zone. 

6.8 Geochemical model 

Variations in whole rock element abundance, lithogeochemical indices and mineral chemistry 

provide useful exploration tools for vectoring in on regional and proximal alteration haloes 

surrounding massive sulfide lenses. The alteration halo associated with Main zone extends into 

massive siltstone directly overlying and underlying the polymictic breccia deposits (Fig 6.11). 

However, lithogeochemical trends are more strongly developed in the altered footwall volcanic 

succession south of Main zone. 

Element abundance 

Breccia, sandstone and siltstone facies hosting the massive sulfide lenses at Lewis Ponds are 

enriched in MgO, Fe203, CaO, Ba, Sr, S, As, Cu, Pb and Zn. However, relatively high Sr and 

CaO concentrations occurred in the limestone-clast breccia and sandstone prior to hydrothermal 

alteration. Main zone is associated with a Tl halo (2-30 ppm) of at least 30 to 100 m thickness. 

Anomalous Ba concentrations (0.2-2 wt %; Fig. 6.11) in Main and Toms zones correspond to a 

symmetrical halo containing hyalophane (Ba,K,Na(A1,Si) 408) and/or Ba-rich white micas. 

Extensive areas of K20 enrichment and Na20 and CaO depletion occur in the footwall and 

hangingwall volcanic successions at Toms zone (Fig. 6.11). High Ba/Sr and S/Na20 values in 

these units reflect feldspar-destructive sericite and chlorite alteration assemblages and 

disseminated sulfides. 

Alteration indices  

Alteration indices vary systematically with proximity to the massive sulfide lenses. Al and 

CCP' values in the footwall volcanic and sedimentary rocks progressively increase from 70 to 

90 within 200 to 300 m of Toms zone and 50 m of Main zone (Fig. 6.11). High Al and CCPI 

values in the Toms zone footwall correspond to widespread feldspar destructive, chlorite and 

sericite alteration of the porphyritic &cite. Low At values within the Toms Central massive 

sulfide lens reflect dolomite alteration of the fine-grained sedimentary host rocks. 

Alteration indices are of limited use in Main zone because the proximal alteration halo occurs 

only in coarse-grained sedimentary rocks. Lower average Al values reflect the carbonate-

bearing alteration assemblages and the limestone-bearing, polymictic breccia and sandstone 

deposits. Elevated AT and CCPI values in the Main zone host rocks are attributed to chlorite-

pyrite and dolomite-chlorite-talc alteration assemblages in the breccia and sandstone matrix. 
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The preservation of plagioclase phenocrysts accounts for the lower AT and CCPI values in the 

weakly altered footwall volcanic rocks (Fig. 6.11). 

limestone megabreccia 	II  massive / semi-massive sulfide 

dacitic quartz-sericite-chlorite schist 
II. 	

quartz-dolomite-chlorite 8 
quartz-sericite n hyalophane 

polymictic breccia & sandstone 
1. 	

dolomite-chlorite-talc n quartz 

siltstone minor sandstone El chionte-sencite-pyrite 

dacitic volcanics 	 I 	I 	sencite-quartz I: chlorite I calcite 

  

>2000 ppm Ba 

CCPI >70 

Al >90 and Ba/Sr >10 
(except in breccia) 

lower limit of Zn >100 ppm 

  

  

  

Figure 6.11 Geochemical model for Lewis Ponds illustrating mass changes in hangingwall and 
footwall volcanics and lithogeochemical trends associated with the massive sulfide lenses. Main and 
Toms zones are surrounded by a halo of high Alteration Index (>90), Chlorite-Carbonate-Pyrite Index 
(>70) and Ba/Sr (>10) values and high Ba concentrations (> 2000 ppm). However, lower average Al 
and Ba/Sr values occur in the carbonate-altered polymictic breccia, sandstone and siltstone deposits 
hosting the massive sulfide lenses, due to calcite and dolomite. Systematic variations in mica 
compositions occur only in the Toms zone footwall. Coherent dacitic volcanic rocks in the Main zone 
footwall are only weakly altered. Compiled from drill hole logs and whole rock geochemical data. 

Mineral chemistry 

The compositions of primary and recrystallised micas in the Toms Zone footwall correlate 

strongly with whole rock lithogeochemical trends associated with the massive sulfide lens 

(Fig. 5.16). Chlorite, phengite phlogopite and biotite Mg numbers progressively increase from 

55 in the sericite-quartz ± chlorite envelope to 92 in the chlorite-pyrite zone. Proximal white 

mica and phlogopite grains contain higher average Ba and F concentrations than those in the 

surrounding sericite-quartz ± chlorite envelope. In contrast, alteration minerals occurring in 

the breccia and sandstone units in Main zone have relatively uniform compositions. 
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6.9 Summary 

The asymmetric, stratabound alteration halo surrounding Main zone has: 

• high Al, CCPI, Ba/Sr and S/Na20 values; and 

• variable, but generally high MgO, CaO, Fe 203, Ba, Sr, S, As, Ni, Cu, Pb Zn and Tl 

concentrations. 

However, the carbonate-rich breccia and sandstone facies have lower average Al and 

Ba/Sr values due to the occurrence of dolomite and calcite. Mass changes in the porphyritic 

dacite clasts and weakly altered footwall volcanic succession (dacite B) involved additions of 

MgO, Fe203, CaO and K 20 with removal of Si02  and Na20, producing net losses of 

0-60 g/100g. 

The asymmetric, semiconformable alteration envelope surrounding Toms zone is associated 

with strongly developed lithogeochemical gradients in the footwall. The chlorite-sericite-

altered sedimentary host rocks are characterised by: 

• high AI, CCPI, Ba/Sr and S/Na20 values; and 

• high MgO, CaO, Fe203 , Ba, S, As, and Zn concentrations. 

Hydrothermal alteration of the footwall and hangingwall volcanics resulted in MgO, Fe203, 

K20 and Ba enrichment and Na20, CaO and Sr depletion. The addition of Si0 2  to dacite C 

contributed to overall net gains of 0-75 g/100g. The leaching of Si0 2  from dacite A led to net 

losses of 0-50 g/100g except in the Footwall Copper zone, where Si02  depletion was offset by 

significant additions of MgO and Fe203 . 

Elevated AI values (>70) and whole rock Zn concentrations (>100 ppm) in the Toms zone 

footwall are a useful proximity guide to the massive sulfide lens. A feldspar destructive 

alteration envelope characterised by pervasive chlorite and sericite extends more than 300 m 

into the footwall immediately south of Toms zone. These exploration vectors may assist in 

exploring for massive sulfide deposits elsewhere in the Mullions Range Volcanics and eastern 

Lachlan Fold Belt. 
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CHAPTER 7 

GEOLOGY AND GEOCHEMISTRY OF THE MINERALISED ZONES 

7.1 	Introduction 

The Lewis Ponds indicated resource includes two stratabound lenses of polymetallic massive 

sulfide. Main zone is hosted in mixed provenance breccia and pebbly-granular sandstone. It 

comprises a 10-15 m thick, Central massive to semi-massive sulfide lens and two smaller lenses 

(Fig. 7.1; Table 7.1). These occur in a 20-100 m thick envelope of disseminated sulfides that 

extends over 800 m strike length. Toms zone occurs in the overlying siltstone, along strike 

south of Main zone (Fig. 7.1). The 5 m thick, Toms Central massive sulfide lens passes 

laterally into disseminated sulfides and variably deformed, cleavage-parallel, quartz-sulfide 

veins. These veins also occur in the immediate hangingwall and footwall of the lens. Toms 

zone has significantly higher overall Zn, Pb, Cu and Ag grades than Main zone (Table 1.2). 

Lower average grades in Main zone reflect intercalation of massive sulfide bands with 

disseminated sulfides in the breccia matrix (Valliant and Meares, 1998). 

The two massive sulfide zones have been structurally modified (see Chapter 4). Toms zone 

occurs within the Lewis Ponds fault (Fig. 7.1). Strongly foliated rocks, characterised by 

abundant shear and extension veins host the Toms Central massive sulfide lens. In contrast, the 

Main zone Central lens occurs west of the Lewis Ponds fault. However, the chlorite-dolomite-

talc-altered Main zone host rocks are truncated by the fault at 200-600 m depth (Fig. 3.10). 

In addition to the 5.7 Mt resource at Lewis Ponds, vein-hosted and disseminated sulfides occur 

at numerous abandoned mines (Fig. 3.1). Quartz-chalcopyrite veins in the footwall volcanic 

succession, south of Toms mine have been interpreted as deformed stringers (Valliant and 

Meares, 1998) and shear-controlled veins (Shepherd, 1972; Glasson, 1977; Parton, 1981). In 

the following chapter, the Little Bell Mount, Big Bell, Britannia and Mt Regan areas are 

collectively referred to as the footwall copper zone. The Lady Belmore and New Lewis Ponds 

zones occur within the Lewis Ponds fault (Fig. 7.1). 

This chapter provides a description of the stratigraphic location, disti -ibution, mineralogy, 

textures and geochemistry of the mineralised zones at Lewis Ponds. Primitive and diagenetic 

sulfide textures are differentiated from those resulting from deformation and metamorphism. 
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Assays, microprobe analyses and whole rock compositions are used to constrain trace element 

distribution among sulfides and metal abundance throughout the mineralised zones. 

Main zone: 

Thickness 	Length 	Sulfide associations 

Hangingwall lens 	1-5 m 	800 m 	- Banded pyrite-sphalerite-galena 
- Semi-massive sulfide 

Central lens 	10-15 m 	200 m 	- Massive to banded pyrite-sphalerite-galena and 
pyrrhotite-chalcopyrite 

- Semi-massive sulphide 
- Pyrite-altered limestone clasts 

Southern lens 	8-10 m 	100 m 	- Banded pyrite-sphalerite-galena 
- Semi-massive to disseminated sulphide 

Footwall zone 	20-100 m 	800 m 	- Disseminated sulphides in breccia matrix and 
rare massive pyrite-sphalerite-galena bands 

Toms zone: 

Hangingwall zone 2.5-5 m 	200 m 	- Massive pyrite 
- Type 3A quartz-sulfide veins 

Central lens 	5-10 m 	200 m 	- Banded pyrite-sphalerite-galena, 
average 5 	- Massive pyrite, 

- Type 2 dolomite-chalcopyrite-sphalerite-galena-stannite 
veins 

Footwall zone 	5-30 m 	200 m 	- Semi-massive to disseminated sulfide 
- Type 3 carbonate and quartz-chalcopyrite veins 

Footwall Copper zone: 

25-300 m 	—2 000 m - Type IA carbonate-chalcopyrite-pyrite veins 
- Type 1B and type 3A quartz-chalcopyrite-pyrite veins 
- Disseminated chalcopyrite-pyrite 	. 

New Lewis Ponds zone: 

5-20 m 	150 m 	- Banded pyrite-sphalerite-galena 
- Type 3A quartz-pyrite-sphalerite-galena veins 

Lady Belmore zone: 

50 m 	300 m 	- Type 3A quartz-pyrite-sphalerite-galena veins 
- Type 3A quartz-pyrrhotite-sphalerite-chalcopyrite veins 
- Arsenopyrite-pyrite-rich carbonate bands/veinlets 
- Disseminated sulfide 

Table 7.1 Mineralised zones at Lewis Ponds. Refer to Figure 7.1 on following page for location of 
mineralised zones in the host sequence. 

7.2 	Methods 

This study involved petrological observations and analysis of new and acquired analytical 

data. Microscopic textures, paragenetic relationships and modal sulfide abundance were 

determined from polished thin sections during a detailed petrological study of available 

mineralised samples. 
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Figure 7.1 Interpreted 600 m RL level plan showing distribution of mineralised zones. Compiled from 
drill hole data. Diamond drill holes TLPD-18, TLPD-36W and TLPD-51A are projected onto the level 
plan for reference to logs in Figures 7.2, 7.3 and 7.4. 

Tri Origin provided assay data from diamond drill core and rock chip samples. Routine assays 

of Cu, Pb, Zn, Au and Ag were carried out on predominantly one metre drill core intervals and 

analysed by Australian Laboratory Services, between 1992 and 1997. Tri Origin also supplied 

assays from older holes, drilled by previous exploration companies. Copper, Pb, Zn, Au and 

Ag assays were gridded and contoured as long sections in Surfer version 7. The uneven 

distribution and wide spacing of data meant that the 'natural neighbour' gridding method was 

more appropriate than conventional kriging. A ten metre grid spacing was chosen. Assays 

included in the metal contoured long sections were manually selected from diamond drill hole 

intersections of the massive sulfide lenses. 

XRAL Laboratories, Ontario conducted multi-element analysis on selected drill holes; six 

from Main zone, three from Toms zone and five holes drilled by previous companies. One 

metre intervals were re-analysed for Cu, Pb, Zn, Au and Ag, using conventional fire assay and 

atomic absorption techniques. XRAL also analysed for the following trace elements: Cd, As, 

Sb, Sn, Hg, Ba, Co, W, Bi, Mo and Te, using X-Ray Fluorescence and Atomic Absorption 

Spectroscopy. The trace element data used in this study were contained in unpublished 

company reports: Perkins (1995; 1996). 

Approximately 230 microprobe analyses were carried out to identify unknown minerals and 

compare sulfide compositions. The major and trace element compositions of sphalerite, 
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galena, tetrahedrite, stannite, pyrite, pyrrhotite, arsenopyrite, chalcopyrite and electrum were 

determined in selected samples using the Cameca SX-50 electron microprobe at the University 

of Tasmania's Central Science Laboratory. Long count times (eg. 120 sec) and high beam 

current (50-60 nA) enabled lower, unconventional detection limits for trace elements in the 

sulfides. Dr. David Steele, Electron Microscopy Facility, used the background count times, 

sample count times, sensitivity and beam current to calculate approximate detection limits for 

most of the elements analysed during this study. Microprobe data and the detection limits are 

listed in Appendix 5. Tri Origin provided 385 additional microprobe analyses of sphalerite, 

galena, tetrahedrite and stannite from seven polished thin sections. 

7.3 	Main zone 

Main zone consists of three stratabound massive to semi-massive sulfide lenses, dipping 

70-051 (Fig. 7.1, Table 7.1). The 10-15 m thick Central lens extends from 150 to 550 m depth 

(Fig. 5.1). It constitutes the total indicated resource for Main zone of 4.9 Mt. The Southern 

massive sulfide lens occurs in the Toms zone footwall and is truncated by the Lewis Ponds 

fault. A thin, discontinuous Hangingwall lens overlies the Central and Southern lenses. These 

massive and semi-massive sulfide lenses occur within a broad envelope of disseminated 

sulfides that extends over 800 m strike length. 

A two metre wide gossan crops out discontinuously north of Spicers mine, up-plunge from the 

Central lens (Fig. 3.1). The gossan consists of Fe-oxide domains with extensive boxwork 

texture, intercalated with siliceous bands. Anomalous assays in shallow, reversed circulation 

drill holes, including 2 m at 9% Cu (TLPRC-01) and 3 m at 4 g/t Au (TLPRC-02) probably 

indicate supergene Cu-Au enrichment in this area. Ferrugenous, puggy zones occur in the 

walls of the abandoned limestone quarry. Shepherd (1972) described these as high grade pods 

of cerussite and smithsonite. Rock chip sampling carried out by Homestake yielded up to 

3.0% Zn, 2.8% Pb, 410 ppm As, 103 ppm Ag and 1.6 ppm Au in the quarry walls (unpublished 

company data). 

The Hangingwall, Central and Southern lenses occur in the mixed provenance breccia and 

pebbly-granular sandstone unit (Figs. 7.2 and 7.3). Unevenly distributed, five millimetre to 

five metre thick massive pyrite or banded pyrite-sphalerite-galena intervals and disseminated 

sulfides occur in chlorite-dolomite-talc schist or strongly altered breccia. Irregular, patchy 

zones of massive chalcopyrite and pyrrhotite locally overprint the pyrite, sphalerite and galena 

bands (Fig. 7.3B). The discontinuous, 1-5 m thick Hangingwall lens occurs in strongly 

sheared rocks, near the stratigraphic base of the mixed provenance breccia deposit (Fig. 7.2). 

It is characterised by banded pyrite-sphalerite-galena, massive pyrite and semi-massive sulfide. 
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Figure 7.2 Drill log showing Main zone Hangingwall and Central lenses hosted in mixed provenance 
breccia. Assays are plotted on the left hand side. A. Disseminated pyrite in matrix-supported 
polymictic breccia. 351 m. B. Banded massive sulfide comprising pyrite and sphalerite-galena bands. 
373 m C. Matrix-supported, limestone-clast breccia cut by a massive pyrite-sphalerite-galena band. 
Two limestone clasts (a) have been overprinted by pyrite and sphalerite. 383 m. D. Massive pyrite-
sphalerite band in limestone-clast breccia. 392 m. 
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Figure 7.3 Drill log of Main zone Central lens hosted in the mixed provenance breccia. A. Disseminated 
pyrite, sphalerite and galena in granular-sandy mudstone matrix. 197 m. B. Banded pyrite-sphalerite-
galena and massive pyrrhotite-chalcopyrite. A transitional zone (t) occurs between the two assemblages 
where chalcopyrite and pyrrhotite have overprinted the banded massive sulfide. 204 m. C. Disseminated 
pyrite in massive vuggy dolomite with angular chlorite patches. 206 m. D. polymictic breccia consisting 
of siltstone and fossiliferous limestone clasts in a chlorite-altered mudstone matrix with disseminated 
pyrite. The limestone clast has been partly replaced by patchy dolomite, Mg-chlorite and disseminated 
pyrite. Note preserved crinoid stem fragment (c). 207 m. 
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The Main zone footwall consists of patchy, disseminated sulfides and rare, cleavage-parallel, 

massive pyrite-sphalerite lenses (Figs. 7.2 and 7.3). These occur throughout the limestone-

clast breccia, pebbly-siltstone and quartz crystal-rich sandstone beds. Disseminated pyrite 

overprints some of the limestone pebbles (Fig. 7.2C). Modal sulfide abundance decreases 

progressively from 30% at the top of the Footwall zone to <5% at the bottom. Base metal 

sulfides do not occur in the adjacent siltstone beds. 

7.4 	Toms zone 

Toms zone consists of a 5 m thick Central massive sulfide lens that extends from surface to 

500 m depth (Fig. 5.2, Table 7.1) and dips steeply to the northeast (88-030) or southwest 

(80-210). The indicated resource is currently 0.8 Mt. The uppermost 100 m were 

predominantly mined out between 1887 and 1921 (Department of Mines, annual reports, 1887- 

1930). Diffuse hangingwall and footwall zones of disseminated and vein-hosted sulfide 

surround the Central lens. 

Gossan crops out discontinuously for 500 m strike length, south of Toms mine (Fig. 3.1). The 

steeply dipping, one metre wide gossan consists of massive hematite with minor goethite and 

quartz. A rock chip sample from the collapsed stope near Toms mine assayed 3 125 ppm Zn, 

8 500 ppm Pb, 3 000 ppm Cu and 45 ppm Ag (Cominco Exploration report, 1969). 

The Toms zone Central lens consists of fine to very coarse-grained massive pyrite and banded 

pyrite-sphalerite-galena (Fig. 7.4). Pyrite-chlorite, pyrite-sphalerite and sphalerite-galena-

tetrahedrite bands occur in a quartz-dolomite-chlorite matrix. The massive sulfide bands wrap 

around dolomite boudins and kink folded or boudinaged dolomite-chalcopyrite-pyrite veins. 

Below 300 m depth, two or more, narrow massive sulfide lenses separated by intervals of 

quartz-chlorite-sericite schist or dolomite-chlorite-talc, suggest possible fold or fault repetition 

of the Central lens (Fig. 7.4). Cleavage-parallel, deformed, type 3 and 4 quartz-sulfide veins 

and disseminated sulfides predominate along strike and down plunge from the Central lens. 

These 1-20 mm thick, closely spaced, anastomosing veins typically occur in two or three 

groups over a 50 m interval. The veins contain minor sphalerite, galena and chalcopyrite 

together with pyrite or pyrrhotite. 

The Hangingwall sulfide zone is characterised by massive pyrite, disseminated sulfides and 

variably deformed, anastomosing type 3 and 4 quartz-pyrite-sphalerite-galena veins. These 

veins extend along the Lewis Ponds fault to the Lady Belmore and New Lewis Ponds zones 

(Fig. 7.1). 
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siltstone 

Figure 7.4 Drill log of Toms zone Central lens. Assays are plotted on the left hand side. A. Banded 
massive sulfide consisting of pyrite, sphalerite, galena and chlorite-rich bands, cut by a type 2 dolomite-
chalcopyrite-sphalerite-stannite vein. 477 m. B. Disseminated pyrite, chalcopyrite, sphalerite and galena 
in vuggy dolomite matrix. 492 m. C. Semi-massive sulfide in a dolomite, chlorite and talc matrix. 
496 m. D. Anastomosing quartz-pyrite-sphalerite bands surrounding dolomite boudins. 503 m. 
Abbreviations: py = pyrite, sph = sphalerite, ga = galena, ccp = chalcopyrite, chl = chlorite, ser = sericite, 
dol = dolomite. 
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7.5 	Footwall Copper zone 

The Footwall Copper zone occupies a 2 000 x 700 m area of the Western Volcanic Succession 

south of Toms mine (Fig. 3.1). Discordant, north-trending soil geochemical anomalies 

consisting of 400-1 500 ppm Cu occur in this area (Fig. 1.2). Abandoned workings are located 

within porphyritic dacite or along sheared contacts between siltstone and dacite at the Big Bell, 

Little Bell Mount, Britannia and Mount Regan Cu mines. These areas are characterised by 

discontinuous gossan outcrops, 5-100 cm wide, cleavage-parallel quartz-pyrite ± chalcopyrite 

veins and patches of pyrite, chalcopyrite, chalcocite, malachite and azurite in chlorite-altered 

siltstone and volcanic schist (Shepherd, 1972; Parton, 1981; this study). 

In drill core south of Toms mine, 2-50 mm wide type 1 carbonate-chalcopyrite-pyrite and 

quartz-pyrite veins occur in chlorite-phlogopite-altered dacitic schist (Fig. 7.5A) or the 

overlying siltstone. Many veins are isoclinally folded, indicating that they predate cleavage 

development (eg. Fig. 4.10A and B). The carbonate veins contain minor sphalerite, galena, 

pyrrhotite and native bismuth in addition to chalcopyrite. Drill hole intersections of the 

Footwall Copper zone include 4 m at 1.7 To Cu (TLPD-66) and 3 m at 3.9 To Cu (TOD-2). 

These intervals contained less than 0.1 ppm Au and 20 ppm Ag (Tri Origin assays). 

	

7.6 	New Lewis Ponds and Lady Belmore zones 

New Lewis Ponds and Lady Belmore (named after the abandoned mines) are located within the 

Lewis Ponds fault zone (Figs. 3.1 and 7.1). The Lady Belmore zone consists of disseminated 

sulfides, arsenopyrite-pyrite-rich carbonate bands/veinlets, groups of cleavage-parallel, type 3 

and type 4 quartz ± sulfide veins and minor 5-50 cm thick, massive to semi-massive sulfide 

bands in chlorite-carbonate-talc-altered rock (Table 7.1; Fig. 7.5B). The kink folded and 

boudinaged veins contain chalcopyrite, sphalerite, galena and pyrite or pynthotite. 

Figure 7.5 A. Type 1A calcite-chalcopyrite-pyrite vein in chlorite schist. The vein contains minor 
Se-Bi-rich galena, sphalerite, pyrrhotite and native bismuth. Footwall Copper zone, TLPD-66, 374 m. 
B. Cleavage-parallel, type 3A, quartz-pyrite-sphalerite-chalcopyrite-galena veins and disseminated pyrite 
and chalcopyrite in chlorite schist. Lady Belmore zone, TLPD-69, 411 m. Abbreviations: 
chl = chlorite phl = phlogopite, ccp = chalcopyrite, py = pyrite, sph = sphalerite, ga = galena. 
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Massive to semi-massive sulfide lenses were reported in Tri Origin drill logs at New Lewis 

Ponds. Samples obtained from mullock heaps adjacent to the New Lewis Ponds mine 

consisted of fine-grained, massive to banded pyrite-sphalerite-galena-chalcopyrite in a vein 

quartz matrix. In drill core, the New Lewis Ponds zone consists of disseminated and vein-

hosted sulfides in chlorite-talc schist. 

7.7 	Sulfide mineralogy and textures 

The massive sulfide in Main zone and Toms zone consists of pyrite, sphalerite and galena with 

subordinate chalcopyrite, tetrahedrite and arsenopyrite (Table 7.2). Stannite, tennantite, 

pyrargyrite and electrum are rarely observed. Pyrrhotite occurs in association with sphalerite, 

chalcopyrite or pyrite in the Main zone Central lens and Toms zone footwall. The massive 

sulfide has textural and mineralogical banding, sub-parallel to the regional S I  cleavage. Very 

fine-grained pyrite ± arsenopyrite bands alternate with sphalerite-galena-tetrahedrite bands 

(eg. Fig. 7.4A). The base metal layers consist of fine to very coarse-grained (up to 2 mm), 

corroded subhedral pyrite crystals and cuspate galena grains enclosed in sphalerite. Base 

metal bands in Main zone are overprinted by massive pyrrhotite and chalcopyrite (Fig. 7.3B). 
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Table 7.2 Relative modal abundance of minerals observed during this study in the mineralised zones. 
Abbreviations: m = >10%, n = 1-10%, t = <1%, r = rarely observed. Estimations are based on point 
counts and petrological observations. 

Type lA veins in the Toms zone footwall (eg. Figs.4.10A and 7.5A) consist of chalcopyrite, 

pyrite, sphalerite, galena, pyrrhotite, native bismuth and rare Bi-Se sulfides in a fine-grained 

matrix of calcite, dolomite, quartz, chlorite and phlogopite. Pyrite occurs as corroded, 
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euhedral crystals and irregular lattices. Chalcopyrite, native bismuth and galena fill brittle 

fractures in the pyrite aggregates. An emulsion of small (<751.1m), rounded native bismuth 

blebs and galena occur in large chalcopyrite grains. Sphalerite aggregates contain small 

inclusions of chalcopyrite as oriented intergrowth and emulsion textures. 

Boudinaged or anastomosing, type 2 dolomite veins occur within the massive sulfide in Toms 

zone (Figs. 4.10C and 7.4A). The dolomite veins consist of large chalcopyrite aggregates and 

minor tetrahedrite, sphalerite, galena, arsenopyrite, stannite and pyrite in a fine to medium-

grained dolomite matrix. Small (<200 [tm) rounded or angular grains of stannite occur within 

larger chalcopyrite and sphalerite aggregates. Chalcopyrite surrounds corroded, euhedral to 

subhedral pyrite crystals and sphalerite grains at the vein margins. These textures indicate that 

chalcopyrite partly replaced the adjacent base metal sulfide bands. 

The Lady Belmore zone and outer parts of Toms zone are dominated by type 3A quartz veins 

and disseminated sulfides (eg. Fig. 7.5B). Many veins consist of 0.05-5 mm euhedral pyrite 

crystals and cuspate galena grains surrounded by large sphalerite aggregates, in a 

microcrystalline quartz matrix. Others contain pyrrhotite, chalcopyrite and sphalerite with 

minor galena and no pyrite. 

Pyrite  

The following types of pyrite occur at Lewis Ponds: 

• microcrystals (< 5 jim) and very fine-grained (5 jim - 0.1 mm) euhedra; 

• fine to very coarse-grained (0.1-2 mm) euhedra; 

• recrystallised or annealed aggregates; and 

• large (0.5-1.5 mm) rounded porphyroblasts. 

Very fine to medium-grained euhedra, dispersed microcrystals and recrystallised aggregates 

are the most common types of pyrite in Main zone (eg. Fig. 7.6A). The microcrystals occur in 

framboidal, spongy, concentrically banded and bladed aggregates. Large masses of 

recrystallised pyrite contain minor amounts of sphalerite, galena, chalcopyrite and tetrahedrite. 

Rare, 0.5-1.5 mm wide porphyroblasts with ragged margins and no internal fabric occur in the 

dolomite-chlorite-talc schist (Fig. 7.6B). Asymmetric quartz fibre strain shadows and lack of 

internal fabric indicate that many porphyrob lasts formed prior to the S I  cleavage. 

In contrast, Toms zone is dominated by fine to very coarse-grained, typically corroded pyrite 

euhedra (Fig. 7.6C) and large pyrite aggregates. Pyrite aggregates are extensively micro-

fractured. Type lA veins contain aggregates of recrsytallised pyrite, partly corroded euhedra 
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and irregular lattices that fill intercrystalline spaces or mineral cleavage planes in the matrix 

(Fig. 7.6D-E). Fine to very coarse-grained pyrite euhedra occur in types 3 and 4 quartz veins. 

Sphalerite 

Sphalerite is a major constituent of the massive sulfide at Lewis Ponds (up to 35 modal %). 

Large, irregular sphalerite aggregates surround pyrite euhedra and rounded to angular 

chalcopyrite, tetrahedrite, galena and pyrrhotite grains (eg. Fig. 7.6F-H). Elongate, cleavage-

parallel sphalerite aggregates also occur in banded massive sulfide. Quartz and dolomite veins 

contain large grains of sphalerite. 

Galena 

Galena occurs as small, very angular, cuspate aggregates surrounded by pyrite, pyrrhotite, 

sphalerite, tetrahedrite or chalcopyrite (eg. Fig. 7.6F). Galena-rich bands in the massive 

sulfide in Toms zone consist of elongate, cleavage-parallel aggregates. Galena also occurs in 

fractures that cut across recrystallised pyrite aggregates. 

Chalcopyrite  

The massive sulfide lenses, quartz veins and carbonate veins contain minor to trace amounts of 

chalcopyrite. Large chalcopyrite aggregates surround pyrite, sphalerite, galena, tetrahedrite or 

stannite. Chalcopyrite also occurs in brittle fractures. Small (<50 gm), rounded, dispersed 

inclusions rarely occur as emulsion and oriented intergrowth textures in sphalerite. Trails of 

chalcopyrite blebs are parallel to grain boundaries (Fig. 7.6G) or cleavage planes (Fig. 7.6H) in 

the sphalerite. Many chalcopyrite blebs appear to have segregated toward grain boundaries, 

mineral cleavage planes or fractures during deformation and recrystallisation of the sphalerite. 

This texture, commonly referred to as 'chalcopyrite disease' is also attributed to exsolution 

during cooling (Ramdohr, 1979; Solomon and Gaspar, 2001) or partial replacement of the 

sphalerite by chalcopyrite (Barton, 1978; Eldridge et al., 1983; Deer et al., 1992). 

Tetrahedrite -tennantite 

Tetrahedrite is a minor component of the massive sulphide in Main and Toms zones 

(up to 2 modal %). Trace amounts occur in semi-massive sulfide and type 2 dolomite veins. 

Rare tennantite grains were identified in samples from the Toms Central lens by microprobe 

analyses. The more abundant minerals such as sphalerite, chalcopyrite and galena typically 

surround large (0.02-1.2 mm) anhedral tetrahedrite grains (Fig. 7.6F). Elongate blebs of 

tetrahedrite locally define the S I  cleavage. Dispersed tetrahedrite inclusions occur with 

chalcopyrite and arsenopyrite as an emulsion texture in type 2 veins (Fig. 7.61). 
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Figure 7.6 Photomicrographs of sulfides I 

A Very fine-grained pyrite euhedra and recrystallised pyrite aggregates surrounded by galena and 
sphalerite. Main zone Central lens. TLPD-18, 365 m. 

B Rounded pyrite porphyroblast with ragged margins occurring in chlorite-phlogopite-talc schist. 
Main zone Hangingwall lens. TLPD-12, 450 m. 

C Medium-grained, corroded subhedral pyrite crystals surrounded by sphalerite. Toms zone Central 
lens. TLPD-51A, 482 m. 

D Atoll texture consisting of a corroded euhedral pyrite crystal surrounded by chalcopyrite. Type IA 
calcite-chalcopyrite-pyrite vein. TLPD-70, 127 m. 

E Pyrite filling interstitial spaces and rhombic cleavage planes in calcite aggregate. Type lA 
calcite-chalcopyrite-pyrite vein. TLPD-66, 374 m. 

F Massive sulfide consisting of anhedral tetrahedrite, chalcopyrite, pyrrhotite, sphalerite and galena 
aggregates and rare pyrargyrite. Main zone Central lens, TLPD-18, 365 m. 

G Chalcopyrite inclusions occurring near grain boundaries in a recrystallised sphalerite aggregate. 
Main zone Central lens, TLPD-18, 365 m. 

H 'oriented intergrowth, emulsion texture consisting of dispersed chalcopyrite inclusions in sphalerite. 
Type IA calcite-chalcopyrite-pyrite vein. TLPD-66, 361 m. 

I Irregular intergrowth of chalcopyrite, tetrahedrite and arsenopyrite with minor sphalerite and galena. 
Type 2 dolomite-chalcopyrite-sphalerite-starmite vein. Toms zone Central lens. TLPD-51A, 488 m. 

Abbreviations: sph = sphalerite, ga = galena, py = pyrite, ccp = chalcopyrite, ca = calcite, 
td = tetrahedrite, p0= pyrrhotite, pg = pyrargyrite, as = arsenopyrite. 
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Arsenopyrite 

Arsenopyrite is most abundant in the Toms Central lens (locally up to 5 modal %). Trace 

amounts occur in Main and Lady Belmore zones as disseminations or arsenopyrite-pyrite-rich 

bands. Euhedral to subhedral rhombs (Fig. 7.61), recrystallised aggregates and very-angular 

splintery laths are the most common forms of arsenopyrite. 

Pyrrhotite 

Numerous types of pyrrhotite occur in the host sequence and mineralised zones. 

Elongate crystals up to 10 mm long define the L 1  stretching lineation (see Chapter 4, Fig. 4.3E). 

These are dispersed throughout siltstone and sandstone units in the Hangingwall Siltstone Unit 

and Transitional Unit. Large anhedral aggregates or small (<50 pim) inclusions of pyrrhotite 

are associated with pyrite, chalcopyrite and sphalerite in type 3A quartz veins and in Main zone 

massive sulfide (Fig. 7.7A). Corroded, acicular and tabular, 100-2000 [tm long, pyrrhotite laths 

occur in semi-massive sulfide throughout Main zone (Fig. 7.7B). Some of these bladed crystals 

have an orthorhombic crystal form, indicating pseudomorphic replacement of an orthorhombic 

mineral such as barite or anhydrite (Fig. 7.7B inset). 

Stannite  

Trace amounts of stannite occur in the polymetallic massive sulfide in association with 

chalcopyrite and/or sphalerite (Fig. 7.7C). Stannite is most abundant in type 2 dolomite-

chalcopyrite veins in the Toms Central massive sulfide lens. Dispersed, rounded or angular 

inclusions occur in large chalcopyrite aggregates or in tetrahedrite and sphalerite to a lesser 

extent. Rounded blebs and lamellae typically define myrmelcitic and oriented intergrowth, 

emulsion textures in sphalerite aggregates (Fig. 7.7D). 

Digenite  

Digenite rarely surrounds large chalcopyrite aggregates in quartz veins south of Toms zone 

(Fig. 7.7E). The mineral, found immediately beneath the weathered zone, probably resulted 

from oxidation of chalcopyrite. 

Pyrargyrite 

Pyrargyrite occurs rarely in the Main zone Central lens and Lady Belmore zone. Small 

15-100 pm, rounded or angular pyrargyrite grains occur within tetrahedrite aggregates 

(Fig. 7.7F) or along the margins of tetrahedrite and chalcopyrite grains. The pyrargyrite 

contains 60-64 wt % Ag, 21-24 wt % Sb and trace amounts of Zn, Fe, Co, Mo and Sn 

(microprobe analyses in Appendix 5). 
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Figure 7.7 Photomicrographs of sulfides II 

A Massive pyrrhotite, chalcopyrite and sphalerite from Main zone Central lens. TLPD-12, 457 m. 

B Partly corroded, bladed pyrrhotite crystals surrounded by sphalerite and galena. 
Inset photo: Orthorhombic bladed pyrrhotite crystal, looking down the long axis of the crystal. 
Main zone Central lens. TLPD-18, 365 m. 

C Massive sulfide from Toms Central lens consisting of chalcopyrite, tetrahedrite, pyrite, galena, 
stannite, sphalerite and arsenopyrite. TLPD-51A, 488 m. 

D Emulsion texture characterised by oriented intergrowths of stannite in sphalerite. Type 2 dolomite-
chalcopyrite-pyrite-stannite vein in Toms Central lens. TLPD-51A, 488 m. 

E Chalcopyrite rimmed by digenite. Type 1 quartz-chalcopyrite vein occurring south of Toms zone. 
TLPD-70, 69 m. 

F Anhedral pyrargyrite bleb surrounded by tetrahedrite and chalcopyrite. Main zone Central lens. 
TLPD-18, 365 m. 

G Emulsion texture characterised by native bismuth and galena surrounded by chalcopyrite. Type lA 
calcite-chalcopyrite-pyrite vein. Toms zone footwall. TLPD-66, 374 m 

H Small, 0.2 mm electrum grain surrounded by galena, chalcopyrite, pyrrhotite and pyrite. The electrum 
contains 58 wt % Ag, 37 wt % Au and 5 wt % Hg. Main zone Central lens. TLPD-18, 365 m. 

Abbreviations: py = pyrite, sph = sphalerite, ccp = chalcopyrite, po = pyrrhotite, ga = galena, 
St = stannite, td = tetrahedrite, as = arsenopyrite, dg = digenite, pg = pyrargyrite, Bi = native bismuth, 
el = electrum. 
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Native bismuth and Bi-bearing sulfides 

Native bismuth and rare Bi-bearing sulfides (Ph 7Bi2S10) occur in type IA carbonate veins in 

the Toms zone footwall. Small, 5-75 um, rounded inclusions of native bismuth are dispersed 

throughout galena aggregates as an emulsion texture in chalcopyrite (Fig. 7.7G). Bismuth also 

occurs in brittle fractures within large masses of pyrite or chalcopyrite. The mineral contains 

>99 wt % Bi and up to 1030 ppm Sb and 700 ppm Se (Appendix 5). 

Electrum 

A 0.2 mm wide electrum grain identified in a sample from Main zone (Fig. 7.7H) contains 

37 wt % Au, 58 wt % Ag and 5 wt % Hg. It has a uniform composition across the grain. 

7.8 	Primitive sulfide textures 

Various textures resulting from primary crystallisation of Fe-sulfides occur at Lewis Ponds. 

Framboidal, spongy, concentrically banded, bladed, dendritic and reticulate textures are 

common in semi-massive sulfide areas of Main zone and rarely in Toms zone. These textures 

have been infilled and partly replaced by base metal sulfides. 

Framboids, spongy pyrite and atoll structures  

Pyrite framboids occur in the matrix of polymictic breccia, quartz crystal-rich sandstone and 

siltstone deposits in Main zone. They are most abundant (locally up to 20 modal %) in 

polymetallic or pyrite-rich semi-massive sulfide samples. The variably recrystallised and 

deformed framboids have diameters that ranging from 4 to 70 um and average diameters of 

12 to 13 um (Table 7.3). They are composed of cubic, pyritohedral or octahedral pyrite 

microcrystals, loosely or densely packed into a spherical aggregate (Fig. 7.8A-B). Deformed 

framboids are surrounded by elongate, cleavage-parallel base metal sulfide aggregates or 

chlorite pressure shadows in highly strained rocks. 

Sample N Diameter (j.tm) Mean (l.tm) St. Dev. Skewness 

LP12450 394 6-40 12.9 3.7 1.4 
LP36W195 506 4-66 13.6 5.1 3.1 
LP36W281 573 5-28 13.3 3.6 0.3 
LP44243 449 4-27 12.0 3.4 0.8 

Table 7.3 Framboid size distribution, measured on polished thin sections using a digitising stage. 

Many framboids have been partly to completely replaced by pyrrhotite, sphalerite, 

chalcopyrite, galena, stannite, or a combination of sulfides (Fig. 7.8C-J). Galena occupies 

interstitial spaces between pyrite microcrystals (Fig. 7.8B). Atoll structures consist of 
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Figure 7.8 Framboidal textures in Main zone 

A Loosely packed framboidal aggregate of pyritohedrons in a dolomite matrix. TLPD-36W, 195 m. 

B Framboid consisting of pyrite microcrystals densely packed into a spherical aggregate with minor 
interstitial galena. TLPD-36W, 195 m. 

C Chalcopyrite pseudomorphs of pyrite framboids, surrounded by botryoidal pyrite band. 
TLPD-36W, 195 m. 

D Framboids? replaced by sphalerite and stannite emulsion. TLPD-36W, 195 m. 

E Recrystallised pyrite framboids partly replaced by galena and enclosed in a large sphalerite mass. 
TLPD-36W, 197 m. 

F Recrystallised framboid relic? consisting of chalcopyrite in the core and galena in the rim. 
TLPD-36W, 195 m. 

G & II Pyrite framboids overgrown by galena and coarser grained pyrite. Galena has filled interstitial 
spaces between the pyrite microcrystals. TLPD-18, 365 m and TLPD-36W, 202 m. 

I Irregular, spongy mass of very fme-grained pyrite, galena and arsenopyrite. TLPD-36W, 195 m. 

J Framboidal aggregates pseudomorphed by pyrrhotite. Occurs in the matrix of a thin pebbly-siltstone 
bed. Main zone footwall. TLPD-36W, 281 m. 

K Relict framboidal aggregate consisting of galena and sphalerite patches rimmed by pyrite. 
TLPD-36W, 195 m. 

L Dispersed atoll structures and framboids (fr) in a fine-grained chlorite matrix. The atolls comprise a 
central core of recrystallised pyrite microcrystals and galena, sphalerite or chalcopyrite surrounded by 
pyrite. TLPD12, 450 m. 

. M Unaltered recrystallised pyrite framboids enclosed in a chalcopyrite band. TLPD-36W, 195 m. 

Abbreviations: do! = dolomite, ccp = chalcopyrite, sph = sphalerite, st = stannite, ga = galena, py = pyrite, 
po = pyrrhotite, chl = chlorite. 
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rings of recrystallised pyrite surrounding a central core of sphalerite, galena, chalcopyrite, 

pyrite microcrystals or framboids (Fig. 7.8K and L). Individual framboidal relics and ring 

structures occur within large masses of sphalerite, galena chalcopyrite and coarse-grained 

pyrite (eg. Fig. 7.8E and M). 

Large (up to 2.5 mm width), irregular spongy aggregates of pyrite microcrystals also occur in 

the Main zone massive sulfide (Fig 7.81). These contain minor interstitial galena, sphalerite 

and arsenopyrite. Dolomite, sphalerite, pyrrhotite and coarser grained, euhedral pyrite 

typically surround the spongy aggregates. 

Bladed, dendritic and reticulate textures 

Bladed textures involving pyrrhotite, pyrite, arsenopyrite, galena, chalcopyrite and quartz 

occur in the Main zone Central lens and rarely in Toms zone. Corroded, acicular or tabular 

pyrrhotite crystals are the most common bladed mineral (Fig. 7.7B). Some of these are 

probably pseudomorphs of barite or anhydrite (Fig. 7.7B inset). Many bladed pyrrhotite 

crystals have been partly replaced by pyrite, sphalerite and galena (Fig. 7.9A-C). Quartz 

pseudomorphs of twinned sulfate crystals rarely occur in Main zone (Fig. 7.9D). Aggregates 

of acicular or bladed pyrite and pyrrhotite crystals are arranged in 100-500 gm wide radial 

dendritic patterns (Fig. 7.9E-F) or reticulate networks (Fig. 7.9G-H), with interstitial 

sphalerite, galena and chalcopyrite. 

Concentrically banded, vuggy and crustiform textures  

Vuggy, crustiform and concentrically banded or botryoidal textures occur throughout the Main 

zone and rarely Toms zone Central lenses in semi-massive and massive sulfide. Very 

fine-grained dog-tooth pyrite encrustations and narrow, pyrite bands occur around the margins 

of large sphalerite, galena, chalcopyrite and tetrahedrite masses (Fig. 7.10A-B) and dolomite-

filled vugs (Fig. 7.10C-D). Stannite, chalcopyrite, sphalerite, galena and dolomite bands 

alternate with the pyrite bands and framboidal pyrite aggregates (Fig. 7.10E-H). Some of the 

pyrite bands surround a central core of galena, sphalerite or chalcopyrite (eg. 7.10F). 

Interpretation of primitive sulfide textures  

The framboidal, bladed, botryoidal and spongy textures pre-date deformation and 

metamorphism of the massive sulfide at Lewis Ponds. They commonly occur in well 

preserved or strongly deformed, ancient VHMS deposits (Eldridge et al., 1983; England and 

Ostwald, 1993; McArthur, 1996; Peter et al., 1999; Martin, 2002) and modern sea floor 

sulfide mounds in back-arc basins (Halbach et al., 1993) and sediment-covered ocean rift 

valleys (Zierenberg et al., 1993; Duckworth et al., 1994). 
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Figure 7.9 Bladed textures in Main and Toms zones 

A Corroded, tabular pyrrhotite crystal partly replaced by galena and overgrown by a large sphalerite 
mass. Some of the replacement has occurred along mineral cleavage planes. Main zone Central lens. 
TLPD-18, 365 m. 

B Bladed pyrrhotite overgrown and partly replaced by galena and recrystallised pyrite. Main zone 
Central lens. TLPD-18, 365 m. 

C Bladed pyrrhotite encrusted with a dendritic aggregate of bladed crystals pseudomorphed by galena 
and pyrite. Main zone Central lens. TLPD-18, 365 m. 

D Rectangular aggregates of fine-grained quartz as pseudomorphs of twinned, bladed crystals, in a very 
fine-grained dolomite matrix. TLPD-18, 365 m. Main zone Central lens. Plane polarised light. 

E Dendritic aggregate of acicular pyrite crystals infilled with chalcopyrite, sphalerite and galena and 
overgrown by pyrite around the margin. Crystals grew outward from the mass of pyrite microcrystals 
at the right-hand side of the photomicrograph. Limestone-clast breccia matrix, Main zone footwall. 
TLPD-12, 490 m. 

F Possible dendritic aggregate of bladed crystals preserved in massive pyrite and galena. Toms zone 
Central lens. TLPD-51A, 488 m. 

G Irregular network of acicular spongy crystals pseudomorphed by very fine-grained pyrite and 
arsenopyrite, and infilled with sphalerite. Mixed provenance breccia matrix, Main zone Central lens. 
TLPD-36W, 207 m. 

H Reticulate and dendritic network of bladed, acicular pyrite crystals infilled with sphalerite, 
chalcopyrite and galena. Limestone-clast breccia matrix, Main zone footwall. TLPD-12, 490 m. 

Abbreviations: po = pyrrhotite, sph = sphalerite, ga = galena, py = pyrite, qtz = quartz, dol = dolomite, 
ccp = chalcopyrite, as = arsenopyrite. 
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Figure 7.10 Concentrically banded and crustiform textures in Main and Toms zones 

A Vuggy massive sulfide consisting of chalcopyrite, tetrahedrite and botryoidal galena-sphalerite masses 
lined with pyrite, and bladed chalcopyrite pseudomorphs encrusted with very fine-grained dog-tooth 
pyrite. Main zone Central lens. TLPD-36W, 195 m. 

B Concentric circular bands of pyrite rimming a large botryoidal sphalerite mass. Main zone Central 
lens. TLPD-36W, 197 m. 

C Dolomite-filled vugs lined with pyrite and surrounded by massive sphalerite-pyrite. A framboid relic 
has been preserved in the pyrite (fr). Main zone Central lens. TLPD-36W, 195 m. 

D Dolomite-filled vug lined with very fine-grained dog-tooth pyrite, in massive chalcopyrite-galena. 
Main zone Central lens. TLPD-36W, 195 m. 

E Semi-massive sulfide characterised by concentric framboidal pyrite (A) and microcrystalline pyrite 
(B) bands in a dolomite matrix, partly infilled and replaced by chalcopyrite parallel to the banding (C). 
Main zone Central lens. TLPD-36W, 195 m. 

F Concentric pyrite and galena bands surrounding a central core of galena. Main zone Central lens. 
TLPD-36W, 195 m. 

G Botryoidal pyrite aggregate characterised by alternating pyrite and dolomite bands. Chalcopyrite 
partly infills some of the bands. Main zone Central lens. TLPD-36W, 195 m. 

H Relict botryoidal pyrite aggregate partly infilled by galena. Toms zone Central lens. 
TLPD-67B, 965 m. 

Abbreviations: dol = dolomite, td = tetrahedrite, ga = galena, ccp = chalcopyrite, sph = sphalerite, 
py = pyrite, qtz = quartz. 
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Paragenetically early, primitive sulfide textures provide information about the mechanisms of 

sulfide deposition and chemistry of the mineralising fluid. 

Fine-grained primitive sulfide textures, including dispersed microcrystals and spongy, 

framboidal, dendritic and reticulate aggregates of pyrite and pyrrhotite result from quenching 

of a reduced fluid, highly supersaturated in Fe and S species (Paradis et al., 1988; Mullin, 

1993; Rimstidt, 1997; Solomon and Gaspar, 2001). The very fine grain size indicates rapid 

nucleation and limited growth of the crystals (Herzig and Hannington, 1995). Butler and 

Rickard (2000) synthesised framboids by oxidising mackinawite (FeS) in a weakly acidic 

solution containing H2S, without oxygen. The early metastable phases including amorphous 

FeS, malcinawite and hexagonal pyrrhotite rapidly transform into pyrite, marcasite or 

pyrrhotite by low temperature sulfidation reactions, provided H2 S(aq)  is present 

(Schoonen and Barnes, 1991). 

Framboids may form in the water column or anoxic, unconsolidated sediment several 

centimetres beneath the sea floor (Wilkin and Barnes, 1997). Wilkin et al. (1996) 

demonstrated that iron sulfide microcrystals, precipitating in sediments beneath oxygenated 

water, produce framboids that are more variable in size than those growing in the water 

column of anoxic basins due to longer growth times. The relatively large framboids occurring 

at Lewis Ponds (Table 7.3) may result from very rapid diffusion rates through the substrate, an 

extended period of microcrystal growth, or precipitation of secondary diagenetic or 

hydrothermal pyrite overgrowths. 

Bladed crystals of barite, anhydrite, sphalerite or hexagonal pyrrhotite occur in well preserved, 

modern and ancient VHMS deposits. These paragenetically early minerals are commonly 

pseudomorphed by quartz, carbonate, pyrite, chalcopyrite, pyrrhotite and marcasite 

(Paradis et al., 1988; Sharpe, 1991; Goodfellow and Franldin, 1993; Halbach et al., 1993; 

McArthur, 1996). Euhedral, bladed barite, pyrite, chalcopyrite and hexagonal pyrrhotite 

crystals occur in sea floor sulfidic muds and black smoker chimney fragments associated with 

sediment-covered mid-ocean rifts (Oudin et al., 1981; Davis et al., 1987; Goodfellow and 

Franldin, 1993; Zierenberg et al., 1993). The bladed crystals form open networks partly 

infilled by sphalerite, isocubanite and chalcopyrite. Bladed sulfate crystals commonly occur in 

ocean-rift (Davis et al., 1987) or back-arc (Eldridge et al., 1983; Halbach et al., 1993) 

environments. 

The vuggy, concentrically banded, botryoidal and encrustation textures resulted from 

replacement of the fine-grained dolomite matrix and unimpeded, unidirectional growth into 

open cavities. Botryoidal pyrite or marcasite occurs in many modern and ancient VHMS 
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deposits (eg. Eldridge et al., 1983; Halbach et al., 1993; Bodon and Valenta, 1995; 

Solomon and Gaspar, 2001; Martin, 2002). Base metal sulfides may preferentially replace 

some of the older pyrite bands. Solomon and Gaspar (2001) interpreted dome-like, banded 

pyrite textures at Hellyer, western Tasmania to indicate progressive unidirectional growth into 

cavities. Botryoidal textures, commonly referred to as colloform textures, are thought to result 

from homogenous nucleation of colloidal particles in a highly supersaturated solution 

(Saunders, 1990; Rollinson, 1993). 

Primitive Fe-sulfide textures at Lewis Ponds indicate rapid quenching of a reduced, highly 

supersaturated fluid prior to the base metal mineralising event. The bladed pyrrhotite crystals 

are probably pseudomorphs of barite or anhydrite. Pyrite framboids, pyrrhotite blades with an 

orthorhombic crystal form and botryoidal pyrite textures predominantly occur in the matrix of 

the tightly folded polymictic breccia unit hosting Main zone. These extremely poorly-sorted 

deposits probably allowed hydrothermal fluids to circulate through a permeable matrix. The 

surrounding chlorite, dolomite and quartz protected framboidal, bladed and botryoidal 

aggregates from recrystallisation during deformation and metamorphism. 

7.9 	Textures resulting from deformation and metamorphism 

The massive sulfide at Lewis Ponds is characterised by recrystallised/annealed textures that 

overprinted primitive sulfide textures during deformation and metamorphism. Fractured pyrite 

and cataclastic breccia predominantly occur in the Toms zone Central lens, Lady Belmore 

zone and pre-tectonic to early syn-tectonic veins. 

Annealed textures are strongly developed in the banded massive sulfide in Toms zone. 

Aggregates of pyrite have 120° interfacial angles between adjacent crystals (Fig. 7.11A). 

Cuspate grains of interstitial galena, chalcopyrite and sphalerite occur along the pyrite grain 

boundaries. The base metal bands consist of fine to very coarse-grained pyrite euhedra and 

cuspate gains of galena, chalcopyrite and tetrahedrite, surrounded by large aggregates of 

sphalerite (Fig. 7.11B). The subordinate sulfides are rounded where galena and chalcopyrite 

are the predominant enclosing phase (eg. Fig. 7.11C). 

Textures resulting from ductile deformation of the massive sulfide and syn-tectonic quartz 

veins include kink folds, boudins, pinch-and-swell structures and microscopic flattening 

fabrics. These textures occur in Main, Toms and Lady Belmore zones. Elongate, kink folded 

blebs of chalcopyrite, tetrahedrite, galena and pyrrhotite define the regional cleavage 

(eg. Fig. 7.11 D). Kink folds, pinch-and-swell structures and boudins occur throughout the 

Toms zone and rarely Main zone Central lenses (Figs. 4.12 and 4.13). 
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Figure 7.11 Textures resulting from metamorphism and deformation 

A Fractured aggregate of annealed pyrite characterised by 120 0  interfacial angles between adjacent 
crystals. Toms zone hangingwall. TLPD-51AW2, 355 m. 

B Annealed textures in a base metal band consisting of cuspate galena grains where sphalerite is the 
predominant phase, and rounded sphalerite grains where galena is the predominant phase. Toms zone 
Central lens. TLPD-51A, 479 m. 

C Annealed massive pyrrhotite-galena-sphalerite characterised by rounded pyrrhotite blebs in galena. 
Main zone Central lens. TLPD-18, 365 m. 

D Elongate pyrrhotite grains in sphalerite, aligned with the S I  flattening orientation. Type 3A 
quartz-sphalerite-pyrrhotite-chalcopyrite vein, Lady Belmore zone. TLPD-63, 415 m. 

E Anastomosing fractures in pyrite-arsenopyrite aggregates. Fractures end abruptly at the margin of the 
large chalcopyrite-galena-sphalerite mass in the centre of the photomicrograph. Toms zone Central 
lens. TLPD-51A, 479 m. 

F Fractures developed along grain boundaries in annealed, coarse-grained pyrite. Fractures are filled 
with galena and chalcopyrite. Toms zone Central lens. TLPD-51A, 488 m. 

G Orthogonal fractures in pyrite, parallel to the mineral cleavage planes. Toms zone Central lens. 
TLPD-46A, 126 m. 

H In situ cataclastic breccia resulting from intense brittle fracturing of pyrite and arsenopyrite aggregate. 
Toms zone Central lens. TLPD-46A, 126 m. 

Abbreviations: ga = galena, ccp = chalcopyrite, sph = sphalerite, po = pyrrhotite, as = arsenopyrite: 
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Orthogonal, dendritic and anastomosing fracture networks occur in pyrite and arsenopyrite 

aggregates in Toms zone (Fig 7.11E-H). These are parallel to the tectonic cleavage, gain 

boundaries or mineral cleavage planes. Ductile minerals such as chalcopyrite and galena have 

filled the brittle fractures (Fig. 7.11F). Microscopic to macroscopic areas of in situ cataclastic 

breccia occur throughout Toms zone, where brittle structures cut across the massive sulfide 

(Figs. 4.13F and 7.11G). 

Interpretation of annealed textures 

Regional deformation and metamorphism cause significant textural modification of massive 

sulfide. Annealing involves the rearrangement of grain boundaries to reduce free energy 

resulting from plastic deformation of the crystal lattice. This is achieved by decreasing the 

surface area, thereby increasing grain size (Stanton, 1972). In monomineralic aggregates, 

120 0  interfacial angles develop when textural equilibrium exists between adjacent grains 

(Stanton, 1965). 

In aggregates of two or more sulfides, the minor phase segregates along grain boundaries of 

the more abundant mineral. Cuspate galena grains occur where sphalerite is the most abundant 

phase. Rounded tetrahedrite, chalcopyrite and pyrrhotite grains occupy interstitial spaces in 

large galena aggregates. Euhedral pyrite crystals develop in the base metal bands because 

their surface energies are significantly lower than the surrounding base metal sulfide 

(Stanton, 1965). 

7.10 Sulfide Geochemistry 

In the following section, whole rock geochemistry of selected samples, microprobe analyses of 

sulfides and modal sulfide abundance are used to compare the major and trace element 

distribution among sulfides in each of the mineralised zones. 

Whole rock geochemistry 

Individual and averaged whole rock geochemical analyses from the mineralised zones are 

presented in Tables 7.4 and 7.5. The Lewis Ponds massive sulfide is enriched in Fe, S, Cu, Pb, 

Zn, As, Ag, Sb, Sn, Cd, Hy, Au, Bi and Se, relative to the surrounding, intensely altered host 

rock. Toms zone has higher and more variable Zn, Pb, Cu, Ag, Sb, Sn, Cd, Bi, Mo and Ba 

concentrations than Main zone. These differences in whole rock geochemistry partly reflect 

the more massive nature of the Toms zone Central lens and fine-grained sedimentary host 

rock. Main zone occurs in poorly-sorted polymictic breccia and pebbly-granular sandstone. 

The Main zone Central lens has higher average As and Au concentrations than Toms zone. 
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Disseminated pyrite-rich rocks in Main and Toms zones are characterised by higher Ni and Cr 

concentrations than the massive sulfide. Whole rock geochemical data is not available for the 

New Lewis Ponds, Lady Belmore, and Footwall Copper zones. 

Main zone Toms zone 
Sample: LP12450 LP12465 LP12476 LP36W195 LP51A482 LP51A484 LP51A488 

Major (wt %1 

Si02 44.33 77.94 42.28 1.03 13.16 9.47 8.28 

TiO2 0.38 0.04 0.05 -0.01 -0.01 0.09 0.02 

Al203 11.81 0.69 1.61 0.02 1.02 2.05 0.18 

MgO 17.35 1.11 10.22 0.45 20.20 19.58 1.49 

CaO 0.37 2.81 8.54 12.64 21.08 24.16 2.24 

Na20 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

K20 2.71 0.03 0.60 -0.01 -0.01 0.01 0.04 

MnO 0.08 0.05 0.27 0.66 1.36 0.87 0.14 

P205 0.27 0.01 0.08 0.04 0.1 0.08 0.16 

S 5.06 6.41 9.84 32.50 3.36 2.86 37.30 

Fe203 11.67 7.89 15.34 30.93 3.48 4.50 36.57 

Zn 0.43 1.18 1.72 13.75 2.72 1.41 10.60 

Pb 0.22 1.14 1.12 6.51 1.43 1.06 10.32 

Cu 0.05 0.06 0.05 0.13 0.26 0.02 0.33 

Total 94.75 99.39 91.75 98.68 68.21 66.19 107.7 

LOI 8.42 6.89 17.85 13.5 27.59 34.68 24.62 

Trace (P0m) 

As 5 323 330 1 392 11 200 37 183 7 800 

Ba 454 32 67 12 71 23 380 

Ag na na 39 403 101 na 730 

Sb na na 67 815 107 na 1 090 

Sn na na 8 240 62 na 376 

Cd na na 44 202 67 na 265 

Cr 419 19 100 5 -1 -1 12 

Ni 118 14 38 25 5 -1 4 

Se 2 4 6 na na -1 na 

Bi -2 5 -2 -2 -2 -2 -2 

Table 7.4 Whole rock analyses of disseminated sulfide and massive sulfide samples from Toms zone 
and Main zone (this study). Negative numbers are below XRF detection limits. Low totals in 
LP12450, LP12476, LP51A482 and LP51A484 result from high ignition losses due to CO2  in 
carbonates and oxidation of SO2  in sulfides (Potts, 1987). LP51A488 has a high total (>100%) because 
total iron is expressed as Fe203 rather than FeS. Na = not analysed. 
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Main zone Central lens Toms zone Central lens 

Drill Hole TLPD-3 TLPD-12 TLPD-21 TLPD-34W TLP D-49 TLPD-51AW1 TLPD-51AW2 

Interval (m) 177-189 453-483 435-446 241-250 261-267 475-480 388-395 

Major (wt %) 

Zn 2.51 7.16 3.70 1.91 6.60 8.80 13.76 

Pb 1.19 4.65 2.38 0.95 2.22 7.11 8.36 

Cu 0.11 0.21 0.24 0.10 0.20 0.56 0.27 

Trace (ppm) 

As 1 461 3 893 2 162 2 072 3 242 1 300 1 823 

Ba na 114 344 348 252 7 141 2 202 

Ag 64 151 127 57 72 450 176 

Sb 344 662 129 108 206 1 330 751 

Sn 41 62 45 30 , 	110 210 77 

Cd 79 182 94 56 204 225 338 

Co 15 13 na na na na na 

Bi 12.1 na 7.8 10.5 39.5 5.3 6.5 

Mo 2 6 na na 5 15 11 

Au 1.89 4.27 3.17 1.40 1.34 4.89 1.83 

Hg 8.4 20.7 12.1 7.77 8.4 12.6 20.8 

Te na na 0.41 0.17 0 0 0.02 

Table 7.5 Major and trace element composition of the Central massive sulfide lenses expressed as 
numerical averages of one metre samples from selected drill hole intervals. Data occurs in unpublished 
company reports: Perkins (1995; 1996). Analyses were carried out by XRAL Laboratories, Ontario. 
Na = not analysed. All major and trace element concentrations were significantly higher than the 
minimum detection limits except for Te. 

Figure 7.12 presents the whole rock, major and trace element composition of one metre 

samples from the massive sulfide lenses. Moderate to strong positive correlations exist 

between all of the elements plotted. However, whole rock compositions are more variable in 

Toms zone than Main zone. Two discrete linear trends occur on the Ag-Pb, Au-As, Hg-Au, 

Hg-Zn, Hg-Sn and Bi-Pb scatter plots. The Toms zone Central massive sulfide lens has 

consistently higher Zn:Hg, Sn:Hg and Pb-Bi ratios than Main zone. This may indicate that 

galena grains in Toms zone generally have lower Bi concentrations and that sphalerite grains 

have lower Hg or higher Zn concentrations than those in Main zone. The linear trends in 

Figure 7.12 are attributed to variations in the relative modal abundance and composition of 

tetrahedrite, galena, arsenopyrite, electrum, sphalerite and stannite. 

• The whole rock geochemical trends are consistent with observed sulfide mineralogy and 

indicate that: 

• Au is associated with Hg, As and Cu; 

• Ag occurs with Pb and Sb; 

• Zn and Sn-bearing minerals contain Cd and Hg; and 

• Bi occurs in Pb-bearing minerals. 

181 



Chapter 7 - Geology and Geochemistry of Mineralised Zones 

a 

• Main zone Central lens 

ci Toms zone Central lens 

• 5 - 

0.  gee 

• lev-‘  
0 	 5 

15 

10 

Cl- 
5 

2500 

2000 

• 

?• • 
•• • • 

o 

1.•  gt 

lett • 

1 .0 

0.8 

0.6 

0.5 

0 • 
A  o • o 	• • 

- 	. 	• I • • 0 • 
- " 

• tb ••9,1t 	• 
••• • • Si• 
letA 

• 

• 
• 

0.2 

o 
o 

• 

o • 

.•2 ° 

at la 
t- 

.0 4. 

• CI 

20 

15 

F 
g 10 
NJ 

5 

• 

• 
0 

at 
00 

o 0 

• • 
• • 

" 
• o 	 n  

• o 	• • 	• • 

	

_ • 	st, 	t . • 	• 

• • .0 	° • • 	° • 
- , 

6 

F 

182 

300 15 

0 
• 

10 - 

F 
200 Vo • •• 

• J.. 
0 ° 

• • • o 
n 	 n  • • 	• . • 

• . 	. ° 	• 

0• i s •0  
• p 

C/) 
100 

	

& t•-t • 	• 	0

• 

z 
•1. re. 	t • 

o;tt '  o 
o 10 

Zn (wt %) 
15 20 5 	10 

Zn (wt %) 
15 20 

• 

0 1500 

0. 

co 

• 

1000 • 
• 

• 
500 

• 

o 
o 

o
o 250 	 500 

Ag (ppm) 
750 250 	 500 

Ag (ppm) 
750 

• 
0.4 

0.6 

si 0.4 

", • • 
. 	 . 

•0 
- • .•. 

• - 

0.3 

0.2 

•• A.. 	
1. 

 

aa4  • 	A  • • 
,11.• 	• 	• 

0.1 

0.0 
2 4 	6 

Au (ppm) 
8 10 2 4 	6 

Au (ppm) 
8 10 

300 20 

15 

-g 

200 

10 

CI) NJ 
100 

•41.13 ° • & • ' •• • 
o 

• • 	• 
• ° trt.... • 0. 11 .• • • 

%dr 
,  

5 

0 o
o 200 	300 

Cd (ppm) 
400 500 200 	300 

Cd (ppm) 
400 100 0 100 500 

10 

n o 8 
• 

• • 
• 6 

si 4 • • • 0 	• ?1  .• • 
' 

.1104116i4• 1.°  

2 

6 2 	 4 
Hg (ppm) 

2 	 4 
Hg (ppm) 

Figure 7.12 Scatter plots of whole rock geochemical data from the Central massive sulfide lenses. 
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Figure 7.12 continued. Scatter plots of whole rock geochemical data from the Central massive sulfide 
lenses at Main and Toms zones. Based on 96 unpublished analyses taken over one metre intervals from 
drill holes: TLPD-3, TLPD-12, TLPD-21, TLPD-34W, TLPD-49, TLPD-51AW1 and TLPD-51AW2 
(Perkins 1995; 1996) and 8 samples from this study. 

Sulfide mineral compositions 

Pyrite 

The pyrite contains up to 0.9 wt % As, 4 370 ppm Co, 3 170 ppm Zn, 2 320 ppm Bi, 

1 140 ppm Ag, 910 ppm Mn, 520 ppm Cu, and 360 ppm Ni (Table 7.6; Appendix 5). These 

elements are interpreted to occur as non-stoichiometric lattice substitutions for Fe or sub-

microscopic arsenopyrite, sphalerite, tetrahedrite, galena and chalcopyrite inclusions within the 

pyrite. Gold, Bi, Co and Ni concentrations were mostly at or below microprobe detection 

limits. Framboidal and spongy pyrite aggregates in Main zone have higher average As, Ag 

and Mn concentrations than the recrystallised pyrite in Toms zone. 
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Zone N Co (ppm) Ni (ppm) Cu (ppm) Zn (ppm) As (ppm) Ag (ppm) 

Main 10 <120 — 4 370 <150 — 170 <250-340 <250 — 3 170 600 — 8 830 <90 — 490 

Toms 5 <120 <150 <250 — 320 <250 — 2 250 <70— 1 350 <90 

Lady Belmore 4 <120 <150 <250 — 520 <250 <70 — 2 380 <90 — 1 140 

FW Copper 6 <120 — 380 <150 - 360 <250 <250 <70 <90 — 140 

Table 7.6 Pyrite trace element compositions. Based on 25 microprobe analyses from 11 polished thin 
sections. Detection limits: 120 ppm Co, 150 ppm Ni, 250 ppm Cu, 250 ppm Zn, 70 ppm As, 90 ppm Ag. 

Sphalerite 

Sphalerite trace element compositions are highly variable (Table 7.7; Appendix 5). The Cu and 

Ag probably occur in sub-microscopic chalcopyrite, tetrahedrite and galena inclusions. 

Unpublished microprobe data provided by Tri Origin indicate that the Fe and Zn concentrations 

do not vary significantly within individual samples or polished thin sections. Average Mn 

concentrations in the sphalerite are higher in Toms zone than other mineralised zones 

(Fig. 7.13). Sphalerite grains in the Footwall Cu zone generally contain more Cd than those in 

the massive sulfide lenses. Iron and Zn concentrations do not vary systematically between the 

mineralised zones at Lewis Ponds (Fig. 7.13). 

Zone N Fe (wt %) Cu (ppm) Mn (ppm) 

Main 23 3.4 — 7.4 <250— 1 330 80— 1 590 
Toms 15 0.1 — 6.8 <250 — 4 280 <50 — 2 570 
Lady Belmore 2 6.4 — 6.9 <250 770—..! 180 
FW Copper 8 3.2 — 7.3 <250 — 1 910 430 — 2 020 

N Cd (ppm) Ag (ppm) Hg (ppm) 

Main 23 <90 — 2 290 <290 — 2 730 <260 — 670 

Toms 15 <90 — 2 090 <290 — 3 780 <260 
Lady Belmore 2 <90 — 1 780 <290 — 2 040 <260 

FW Copper 8 <90— 3 380 <290— 1 650 <260 

Table 7.7 Sphalerite compositions. Based on 48 microprobe analyses from 34 polished thin sections. 
Detection limits: 180 ppm Fe, 250 ppm Cu, 50 ppm Mn, 90 ppm Cd, 290 ppm Ag, 260 ppm Hg. 
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Figure 7.13 Sphalerite compositions from Main, Toms, Lady Belmore and Footwall Copper zones. 
Detection limit for Mn is 50 ppm. 
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Significant amounts of Fe, Mn and Cd may substitute for Zn in sphalerite (Deer et al., 1992). 

Huston et al., (1995) interpreted that Cu, Ag, Ni, In, Mo, and Te also substitute into the 

sphalerite lattice. High temperature (400-800°C) experiments determined that Mn and Cd 

concentrations in sphalerite and wurtzite are strongly dependent on temperature and pressure 

(Bethke and Barton, 1971; Kubo et al., 1992). Since Mn occurs in numerous oxidation states, 

the activity of Mn in hydrothermal fluids also varies with f02 (Mishra and Mookherjee, 1988). 

Therefore, the Mn content of sphalerite at Lewis Ponds may also indicate variations in the 

chemistry and temperature of the hydrothermal fluid. 

Galena 

The galena contains up to 2.4 wt % Se, 2.0 wt % Bi, 2.2 wt % Ag, 9 010 ppm Fe, 

1 910 ppm Sb and 550 ppm Te (Table 7.8 and Appendix 5). Antimony, Te and Bi were not 

included in all of the microprobe analyses. Galena grains occurring in type IA carbonate-

chalcopyrite-pyrite veins in the Footwall Copper zone have significantly higher (up to 100x) 

the Se, Ag, Bi and Fe concentrations than those in the massive sulfide (Table 7.8; Fig. 7.14). 

The galena grains in Toms zone generally contain less Fe than those in Main zone and the 

Footwall Copper zone. Trace amounts of Fe, Ag, Sb and Bi may occur as stoichiometric 

substitutions for Pb or non-stoichiometric mineral inclusions such as pyrite, argentite and 

tetrahedrite (Deer et al., 1992). Selenium and Te readily substitute for S as a complete solid 

solution between galena (PbS), clausthalite (PbSe) and altaite (PbTe). 

Zone N Fe (ppm) Ag (ppm) Se (ppm) N Bi (ppm) 
Main 20 <280 — 9 010 870 — 4 290 <260 — 2 620 2 2 550 — 2 840 
Toms 16 <280 — 5 140 2 060 — 5 050 330 — 19 030 2 2 710 — 2 800 
Lady Belmore 3 <280 — 4 860 300 — 6 000 <260 — 13 390 0 - 
Footwall Cu 17 <280 — 6 680 5 140 — 8 950 7 600 — 23 890 14 13 700 — 19 900 

Table 7.8 Galena trace element compositions. Based on microprobe analyses from 32 thin sections. 
Detection limits: 280 ppm Fe, 200 ppm Ag, 260 ppm Se, 300 ppm Bi. 
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Figure 7.14 Galena compositions from Main, Toms, Lady Belmore and Footwall Copper zones. 
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Chalcopyrite 

The chalcopyrite grains analysed during this study contain up to 6 790 ppm Zn, 1 250 ppm Sn, 

990 ppm Ag and 590 ppm Se (Table 7.9; Appendix 5). These elements may occur as 

sphalerite, stannite, tetrahedrite and galena mineral inclusions or as lattice substitutions for Cu 

and S. Chalcopyrite grains occurring in the Main zone Central massive sulfide lens and 

Footwall Copper zones have higher average Ag concentrations than those in Toms zone. 

Zone N Zn (ppm) Ag (ppm) Se (ppm) 
Main 4 <250 - 1 780 <90 -990 <260 - 590 

Toms 3 <250 - 6 790 <90 <260 - 190 

Footwall Cu 11 <250 - 590 <90 - 560 <260 - 500 

Table 7.9 Chalcopyrite trace element compositions. Based on 18 microprobe analyses from 9 polished 
thin sections. Detection limits: 250 ppm Zn, 90 ppm Ag, 260 ppm Se. 

Tetrahedrite and tennantite 

The major and trace element compositions of tennantite and tetrahedrite gains are presented in 

Table 7.10. Coupled substitutions occur between the following sets of elements: Cu-Ag, 

Fe-Zn and Sb-As (Fig. 7.15). The Sb/(Sb+As+Bi) values vary from 0.4 to 1.0 and 

Ag/(Ag+Cu) values vary from 0.05 to 0.5 (Fig. 7.15). The tetrahedrite contains significant 

amounts of Ag (6-28 wt %), Sb (12-28 wt %) and Cu (17-36 wt %). Nickel, Te, Au, Hg, Pb 

and Bi concentrations were mostly below microprobe detection limits. The trace element 

compositions of the tetrahedrite sulfosalts do not vary systematically between mineralised 

zones or within individual samples at Lewis Ponds. 

Zone N Sb (wt %) Cu (wt %) Ag (wt %) Fe (wt %) 
Main 25 25.3 - 27.6 18.7 - 36.1 3.1 - 26.9 4.3 - 5.6 
Toms 19 12.1 - 27.7 22.3 - 35.4 7.6 - 21.6 4.7 - 5.5 
Lady Belmore 2 26.2 17.7 - 18.4 27.1 -28.3 5.3 

N Zn (wt %) As (ppm) Cd (ppm) Se (ppm) 
Main 25 0.5 - 2.8 <180 - 22 450 <180 - 630 <200 - 560 
Toms 19 1.2 - 1.9 <180 - 1 1 1 250 <180 - 480 <200 - 800 
Lady Belmore 2 1.0- 1.2 <180 <180 - 260 <200 - 240 

Table 7.10 Tetrahedrite and tennantite major and trace element compositions. Based on 46 microprobe 
analyses in 17 polished thin sections. Detection limits: 200 ppm Sb, 200 ppm Cu, 210 ppm Ag, 
140 ppm Fe, 170 ppm Zn, 180 ppm As, 180 ppm Cd, 200 ppm Se. 

Tetrahedrite-tennantite sulfosalts are represented by the following general formula: 

(Cu,Ag)6 [Cu213(Fe,Zn,Cd,Hg,Pb)1/3]6 (Sb,As,B04 (S,Se)13 (Sack and Loucks, 1985). 

The compositions of tetrahedrite and tennantite minerals at Lewis Ponds, when normalised to 

four Sb+As+Bi atoms, are summarised as: 

(Cu 	AP 	(Cu3 9.3Fe1 .2-  18Zn0•1 07)6  (S 13 1.6_4AS0-2.4)4 SI3- 
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Figure 7.15 Tetrahedrite-tennantite compositions from Main, Toms and Lady Belmore zones. 
Detection limits: 210 ppm Ag, 200 ppm Sb, 180 ppm As, 170 ppm Zn, 140 ppm Fe and 240 ppm Hg. 
Based on 46 analyses. 

Stannite 

At Lewis Ponds, stannite has the general formula, Cu1.9-2.o(Feo.8-0.9,Zn0.i-o.4)SnS4,  when 

normalised to four S+Se+Te atoms. The stannite contains up to 5 750 ppm Mo, 3 310 ppm Te, 

1 890 ppm Se, 1 110 ppm Cd, 890 ppm As and 440 ppm Ag. (Table 7.11; Appendix 5). 

Zone N Zn (wt %) Cd (ppm) Ag (ppm) As (ppm) Te (ppm) Se (ppm) 
Main 

Toms 

6 
19 

1.9 
1.9 

— 5.5 
— 4.6 

<520 — 1 110 
<520 — 860 

<350 - 440 

<350 
<380 

<380 
— 480 

— 890 
<320 

<320 
- 2 

- 3 
170 

310 
<280 

<280 
— 1 

— 1 
860 

890 

Table 7.11 Stannite trace element compositions expressed as wt % and ppm. Based on 25 microprobe 
analyses from 10 polished thin sections. Detection limits: 470 ppm Zn, 520 ppm Cd, 350 ppm Ag, 
380 ppm As, 320 ppm Te, 280 ppm Se. 

A solid solution exists between stannite, chalcopyrite and sphalerite. Zinc and Cu sulfide 

readily dissolve into stannite at high temperatures (Ramdohr, 1979). Experimental studies 

have determined that sphalerite precipitated in equilibrium with stannite may contain up to 

1.7 wt % Sn at 500°C (Nekrasov et al., 1981). The Sn content of sphalerite increases with 

temperature and decreases with S activity. During slow cooling, sphalerite, chalcopyrite and 

stannite grains dissociate into the component sulfides, resulting in the characteristic 

intergrowth textures (eg. Fig. 7.7D). Rapid cooling prevents exsolution of stannite from 

Sn-rich sphalerite (Nekrasov et al., 1981). 
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Whole rock geochemistry and trace element distribution among sulfides 

Manganese (Mn) 

Manganese occurs as a major element in the dolomite (to 7 wt % MnCO 3) and a trace element 

in the sphalerite, pyrite and pyrrhotite (Appendix 5). Sphalerite grains in Toms zone have 

higher Mn concentrations than those in Main zone (Fig. 7.13). However, primitive sulfides in 

Main zone, including pyrite framboids and bladed pyrrhotite crystals contain more Mn than the 

recrystallised sulfides. Therefore, trends in whole rock Mn content depend on the relative 

abundance of pyrite, pyrrhotite, sphalerite and dolomite and the amount of recrystallisation. 

Arsenic (As) and Antimony ( Sb) 

Significant amounts of As occur in the arsenopyrite (40 wt %) and tetrahedrite (0-11 wt %). 

Arsenic also occurs as sub-microscopic arsenopyrite inclusions or non-stoichiometric 

substitutions for Fe in pyrite and stannite (Tables 7.6-7.11; Appendix 5). Pyrite grains in Main 

zone have significantly higher average As concentrations than those in Toms Zone and the 

Footwall Copper zone. Therefore, although arsenopyrite and tetrahedrite are more abundant in 

Toms zone, the higher, more variable whole rock As concentrations in Main zone are attributed 

to arsenian pyrite compositions, because pyrite is the most abundant sulfide. 

Antimony occurs in tetrahedrite, tennantite, pyrargyrite and galena. Antimony concentrations 

in these minerals do not vary systematically between the mineralised zones. However, Toms 

zone has higher average whole rock Sb concentrations than Main zone. This variation reflects 

a greater modal abundance of galena and tetrahedrite in the Toms Central lens. • 

Silver (Ag) 

Silver is a major element in the tetrahedrite, tennantite and pyrargyrite. Trace amounts occur in 

galena, sphalerite, pyrite and chalcopyrite as mineral inclusions or lattice substitutions 

(Tables 7.6-7.10; Appendix 5). The massive sulfide contains up to 8 modal % galena and 

2 modal % tetrahedrite. Rare Ag sulfosalts such as pyrargyrite do not contribute significantly 

to the total Ag content. Pyrite grains in Main zone contain more Ag than the those in Toms 

zone. Silver concentrations in tetrahedrite and galena do not vary systematically between the 

two massive sulfide zones. Toms zone therefore has higher overall Ag grades than Main zone 

because tetrahedrite and galena are more abundant in the massive sulfide. 

Cadmium (Cd) 

Cadmium occurs in the sphalerite, stannite and tetrahedrite (Tables 7.7, 7.10 and 7.11). 

Substitution of Cd for Zn in sphalerite and stannite accounts for the strong positive correlation 
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between Cd, Zn and Sn in whole rock analyses from Main and Toms zones (Fig. 7.12). Cd 

concentrations in the sphalerite and stannite do not vary systematically between the mineralised 

zones. Whole rock Cd concentrations appear to reflect the abundance of these sulfides. 

Nickel (Ni) and Cobalt ( Co) 

Trace amounts of Ni (<150 - 2 770 ppm) and Co (to 1 420 ppm) occur in the pyrite, pyrrhotite, 

pyrargyrite and tetrahedrite (Appendix 5). However, pyrite and pyrrhotite contain significantly 

higher Co and Ni concentrations than the other minerals. Pyrite is the most abundant sulfide at 

Lewis Ponds. Pyrrhotite occurs throughout Main zone and in the Toms zone footwall. In these 

areas, whole rock Ni concentrations typically vary from 25 to 350 ppm. Nickel concentrations 

are significantly lower in the polymetallic massive sulfide than in areas of disseminated sulfide 

due to dilution of pyrite and pyrrhotite by sphalerite, galena and tetrahedrite. 

Tin (Sn) 

Tin occurs in sphalerite (<170 — 260 ppm) and chalcopyrite (<170— 1 250 ppm) in addition to 

stannite (Appendix 5). Positive correlations exist between Sn, Zn, and Cu in whole rock 

analyses. The variation in whole rock Sn concentrations between mineralised zones (Fig.7.12) 

probably reflects the relative modal abundance of stannite, chalcopyrite and sphalerite. Most of 

the visible stannite in Toms zone occurs in type 2 dolomite-chalcopyrite-pyrite veins. These 

veins do not occur in the Main zone Central massive sulfide lens. 

Bismuth (Bi) 

Trace amounts of Bi occur throughout the massive sulfide lenses in galena, tetrahedrite, pyrite 

and chalcopyrite (Appendix 5). Bi may also substitute into the lattice of sphalerite 

(Deer et al., 1992). These observations account for the strong positive correlation between Bi, 

Pb, Cu and Zn in whole rock analyses (Fig. 7.12). Native bismuth and Bi-Se-rich galena occur 

in type lA calcite-chalcopyrite-pyrite veins in Footwall Copper zone. However, these minerals 

were not observed in either massive sulfide zone. 

Gold (Au) and Mercury (Hg) 

A strong positive correlation exists between Hg, Zn, Au and Sn in whole rock compositions 

(Fig. 7.12). The highest Hg concentrations occur in sphalerite (670 ppm) and electrum 

(5.6 wt %). Mercury and Au concentrations in pyrite, pyrrhotite and tetrahedrite were mostly 

below microprobe detection limits. Some of the Au occurs in electrum (eg. Fig 7.7H). The 

remainder probably occurs in pyrite and sphalerite. Higher overall Zn:Hg ratios in the Toms 

zone massive sulfide may reflect lower average Hg concentrations in the sphalerite. 
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7.11 	Metal distribution and zonation 

Main zone 

The Main zone Central lens is characterised by irregularly distributed massive sulfide and 

shows no systematic vertical or lateral variations in metal content. Thicker intervals of 

massive sulfide occur in upper parts of the Central lens and in the Hangingwall lens. Zinc, Pb, 

Cu, Ag and Au grades are highly erratic. However, the highest Au ± Zn, Ag, Sb and Hg 

grades generally occur toward the top of the Central lens and throughout the Hangingwall lens 

in numerous drill holes. Metal contoured long sections of the Central lens define an area of 

greater than 2 wt % Zn, 2 wt % Pb, 0.2 wt % Cu, 80 ppm Ag and 2 ppm Au, extending over 

200 m strike length and from 700 to 400 m RL (Fig 7.16). High-grade massive sulfide occurs 

within a broad envelope grading 1 wt % Zn, 0.5 wt % Pb, 0.1 wt % Cu and 40 ppm Ag, with 

Zn ratios of 60-75. 

In the Main zone footwall, massive to disseminated sulfide occurs in the matrix of the mixed 

provenance breccia, limestone-clast breccia and pebbly-granular sandstone deposits. 

However, these do not constitute a discrete lens. Intervals of massive siltstone are weakly 

altered and devoid of base metal sulfides. 

Toms zone 

Metal concentrations vary from the structural footwall to the hangingwall of the Toms Central 

lens. Copper (Fig. 7.4), ± Ag, Sb, Sn and Mo are relatively enriched in the lowest one to two 

metres of the massive sulfide lens. High Cu grades also extend into the immediate footwall. 

Whole rock Bi concentrations progressively increase upward through the Central massive 

sulfide lens, whereas Sn, Sb and Mo appear to decrease. The high Cu and Sn grades probably 

reflect a greater abundance of disseminated chalcopyrite and type 2 dolomite-chalcopyrite-

pyrite-stannite veins. 

Metal contoured long sections of the Toms Central lens outline a patchy area of greater than 

4 wt % Zn, 2 wt % Pb, 0.2 wt % Cu, 80 ppm Ag and 0.5 ppm Au, extending over 200 m strike 

length and from 750 to 300 m RL (Fig. 7.17). This occurs within a 400-500 m long, low grade 

envelope of greater than 1 wt % Zn, 0.5 wt % Pb, 20 ppm Ag and 0.5 ppm Au. Zinc is evenly 

distributed throughout the lens. However, higher overall Ag, Pb and Cu concentrations occur 

at depths below 400 m RL. Shallower parts of the Central lens are characterised by pyrite-

sphalerite-rich massive sulfide. 
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Figure 7.16 Metal contoured long sections of the Main zone Central lens based on 590 assays. Gridded 
at 10 m line spacing using the 'natural neighbour' gridding method in Suffer version 7.0. 'Bulls-eyes' 
result from the uneven distribution of assays and are not representative of the true  metal  distribution. 
Data points are represented by small black dots and lines. Viewed looking toward  the  hangingwall. 
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Figure 7.17 Metal contoured long sections of the Toms zone Central lens based on 614 assays. Gridded 
at 10 m line spacing using the 'natural neighbour' gridding method in Suffer  version 7.0. 'Bulls-eyes' 
result from the uneven distribution of assays and are not representative of the true metal distribution. 
Data points are represented by small black dots and lines. Viewed looking toward the hangingwall. 
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Lewis Ponds fault zone 

Overall metal grades within the Lewis Ponds fault zone are variable and highly depleted 

relative to the massive sulfide lenses. Available assays indicate that the area between Main 

zone and Toms zone has average grades of 0.5-1 wt % Zn, 0.2-0.4 wt % Pb, 0.04-0.1 wt % Cu, 

6-19 ppm Ag and 0.1-0.4 ppm Au (Fig. 7.18). Copper, Au and Zn anomalies extend along the 

fault for 700-800 m from Toms zone to New Lewis Ponds. Relatively high Au grades occur 

adjacent to Main, Lady Belmore and Toms zones. There is a strong Au-As association within 

parts of the Lady Belmore zone. These intervals are characterised by numerous cleavage-

parallel arsenopyrite-pyrite-rich carbonate veinlets and have overall Au grades of 1-4 ppm. A 

significant proportion of assays from the Lewis Ponds fault zone were at or below detection 

limits (up to 50% for Cu and Au). 

Effect of deformation and metamorphism on metal distribution 

Thermal metamorphism involves textural and mineralogical changes to rocks. However, 

processes of solid-state, mechanical transfer do not significantly modify the overall grade and 

bulk composition of sulfide-bearing rocks (Marshall et al., 2000). Annealing and 

recrystallisation typically involves expulsion of non-stoichiometric elements and mineral 

inclusions from pyrite, chalcopyrite, and sphalerite (eg. Huston et al., 1995). Sulfur activity 

increases in pyrite-pyrrhotite assemblages during high temperature (> 300°C) prograde 

metamorphism, resulting in progressive corrosion and pseudomorphic replacement of pyrite by 

pyrrhotite (Craig and Vokes, 1993). This may be accompanied by increased FeS 

concentrations in coexisting sphalerite (Sangster and Scott, 1976). Fluid flow through 

transient fracture networks in a shear zone has a greater potential to upgrade or disperse the 

massive sulfide. Remobilisation may occur over tens to hundreds of metres 

(Marshall and Gilligan, 1993; Marshall et al., 2000). 

Huston et al. (1995) determined that elements occurring in mineral inclusions or as non-

stoichiometric substitutions (eg. Cu, Zn, Ag, As, Au and Mo) are removed from pyrite crystals 

during metamorphic and hydrothermal recrystallisation. However, elements occurring as 

stoidhiometric substitutions for Fe (Ni, Co) or S (Sc) remain in the lattice and provide 

information about the chemistry and temperature of the hydrothermal fluid. Mercury, Se and 

Ag are interpreted to occur predominantly as lattice substitutions in sphalerite, galena and 

tetrahedrite respectively (Deer et al., 1992; Huston et al., 1995). 
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Figure 7.18 Bar graphs showing average Zn, Pb, Cu, Ag and Au grades within the Lewis Ponds fault, 
averaged over 100 m intervals. Includes all available assay data extending from 100 m east of the 
baseline to 75 m west of the baseline. All assays at or below the detection limits (0.01% Cu, Pb, Zn; 
0.01 ppm Au and 1 ppm Ag) have been assigned half the value of the detection limit for consistency. 
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Trace element concentrations in pyrite, sphalerite, galena and chalcopyrite vary between 

mineralised zones at Lewis Ponds. Sphalerite grains in Toms zone have higher average 

Mn concentrations than those in Main zone. Frabmboidal and spongy pyrite aggregates in 

Main zone contain more As and Mn than recrystallised pyrite in Toms zone. Galena, 

sphalerite and chalcopyrite grains in the Footwall Copper zone have significantly higher 

Se, Ag, Bi and Cd concentrations than those in the massive sulfide. 

These variations in sulfide mineral composition are interpreted to reflect the chemistry and 

temperature of the mineralising fluid(s). Massive sulfide in Toms zone is coarser grained and 

more strongly annealed than in Main zone. Therefore, recrystallisation, annealing and the 

rearrangement of grain boundaries in the Toms zone massive sulfide probably accounts for the 

lower average As, Ag, and Fe content in pyrite, chalcopyrite and galena respectively. 

Pyrrhotite pseudomorphs of pyrite rarely occur in the Transitional Unit and Hangingwall 

Siltstone Unit. Pyrrhotite has replaced pyrite framboids (eg. Fig. 7.8J) and euhedral pyrite 

crystals. The pyrrhotite may have resulted from an increase in S activity during prograde 

regional greenschist facies metamorphism. 

Remobilisation has occurred along the Lewis Ponds fault and in the adjacent footwall 

volcanics. Syn-tectonic quartz-sulfide veins surround the Central massive sulfide lens at Toms 

zone. Numerous centres dominated by disseminated and vein-hosted sulfides occur along the 

fault at the New Lewis Ponds and Lady Belmore zones. NNW-trending quartz-chalcopyrite 

veins occupy a large area of the Western Volcanic Succession, south of Toms mine. Initial 

migration of sulfides along the Lewis Ponds fault was probably limited by low fluid flux, since 

the majority of syn-tectonic, cleavage-parallel quartz veins (type 3A) resulted from brittle 

shear failure and extension only (see Chapter 4, section 4.5). However, the late sub-horizontal, 

type 4 quartz-sulfide veins developed in response to brittle failure when fluid pressures 

exceeded the lithostatic load. Many syn-tectonic quartz veins contain chalcopyrite, sphalerite 

and galena. Therefore significant remobilisation of the massive sulfide in Main and Toms 

zones may have occurred under these conditions. 
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7.12 	Paragenesis 

Figure 7.19 summarises paragenetic relationships between sulfide minerals and the textural 

evolution of the massive sulfide at Lewis Ponds. 

1. Development of primitive textures  

Dispersed nuclei and bladed, acicular minerals crystallised rapidly from a highly 

supersaturated fluid in the breccia, sandstone and siltstone matrix. Primary growth of iron (II) 

monosulfide nuclei was probably limited by the diffusion rate, fluid supply and occurrence of 

a suitable substrate. Progressive growth of the bladed crystals and microcrystals led to the 

formation of spongy, framboidal, banded, botryoidal, crustiform, dendritic and reticulate 

aggregates. Pyrite and pyrrhotite probably replaced the early sulfate minerals and metastable 

iron (II) monosulfide phases. Dendritic and reticulate networks of bladed crystals and 

aggregates of micrcocrystals provided a substrate for the subsequent growth of interstitial base 

metal sulfides. 
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Figure 7.19 Paragenesis of sulfide minerals. 
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2. Emplacement of massive sulfide lenses and type I veins  

Primitive textures of pyrite and pyrrhotite were overgrown and infilled by base metal sulfides. 

Chalcopyrite, sphalerite, galena, tetrahedrite and pyrite partly replaced the fine-grained 

dolomite matrix. The unimpeded growth of sulfides into secondary pore spaces produced 

vuggy, botryoidal and crustiform textures. Chalcopyrite, pyrite, Se-Bi-rich galena, sphalerite 

and native bismuth precipitated in type 1A carbonate veins in the Toms zone footwall. Type 2 

dolomite veins, containing chalcopyrite, sphalerite, tetrahedrite, arsenopyrite and stannite were 

emplaced into lower parts of the Toms Central massive sulfide lens. A chalcopyrite ± 

pyrrhotite assemblage partly overprinted sphalerite, galena and pyrite bands in the massive 

sulfide at Main zone. 

3. Deformation and metamorphism  

The massive sulfide was overprinted by brittle and ductile structures during the D I  
deformation. Type 3 and type 4, shear and extension quartz ± sulfide veins developed in 

response to brittle failure of the host rocks at low and high angles to the direction of maximum 

compressive stress. Microfractures formed throughout aggregates of pyrite and arsenopyrite in 

the Toms Central massive sulfide lens. Fracture orientations reflected the flattening direction, 

gain boundaries and mineral cleavage planes. Ductile sulfides such as chalcopyrite, 

tetrahedrite and sphalerite were flattened into elongate, cleavage-parallel aggregates and were 

later kink folded. 

Prograde greenschist facies metamorphism annealed the massive sulfide and produced coarser 

grained pyrite, with 120 0  interfacial angles between adjacent grains. Annealed and 

recrystallised textures developed throughout the Toms zone Central lens and Main zone to a 

lesser extent. These textures overprinted the paragenetically early bladed, framboidal, spongy 

and botryoidal aggregates of pyrite and pyrrhotite. Tetrahedrite, stannite, galena, sphalerite 

and chalcopyrite were segregated along grain boundaries of the pyrite. Expulsion of mineral 

inclusions and non-stoichiometric elements during metamorphic recrystallisation resulted in 

lower average As, Ag and Fe concentrations in pyrite, chalcopyrite and galena in Toms zone. 

Some of the framboids and euhedral crystals of pyrite converted to pyrrhotite. 
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CHAPTER 8 

STABLE AND RADIOGENIC ISOTOPE GEOCHEMISTRY 

8.1 	Introduction 

In this chapter, stable isotopes, radiogenic isotopes, fluid inclusions and metal ratios are used to 

predict the composition temperature and source of the fluids responsible for hydrothermal 

alteration and massive sulfide deposition at Lewis Ponds. Part A deals with fluid chemistry 

during low temperature hydrothermal alteration of the polymictic breccia and silt stone, prior to 

and during mineralisation. Part B considers the source of metals and S in the mineralising 

fluid. 

8.2 Methods 

This study uses fluid inclusion, S isotope and C-0 isotope data acquired during this study, 

together with geochemical data obtained from other sources. Graham Carr, CSIRO division of 

Exploration and Mining, provided six well constrained Pb isotope analyses from pre-Tri Origin 

diamond drill holes at Lewis Ponds. Fourteen S isotope analyses were obtained from the 

Geological Survey of New South Wales. Diamond drill hole assays were provided by 

Tri Origin. 

The 8 13CpDB and d i8Ovsmow values of calcite and dolomite were measured using the CO2 

extraction technique outlined in Swart et al. (1991) and a stable isotope mass spectrometer at 

the University of Tasmania, Central Science Laboratory. Fine-grained carbonate powder was 

extracted from samples using a dentist's drill. The sixty-seven samples submitted for 

C-0 isotope analysis included: fossiliferous limestone from the Anson Formation and Mullions 

Range Volcanics; recrystallised limestone clasts from the polymictic breccia and fault-bound 

stratigraphic unit at Lewis Ponds; hydrothermal dolomite surrounding the massive sulfide 

lenses; patchy and pervasive hydrothermal calcite; and calcite and dolomite veins. 

Three moderately coarse-grained, vuggy dolomite samples, containing abundant liquid-vapour 

fluid inclusions were chosen for heating and freezing experiments to determine the 

homogenisation temperature (T h) and freezing point depression or final melting temperature (0) 

of the inclusions; two from Main zone and one from Toms zone. The thick (100 gm) wafers 
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were cut into smaller pieces and placed, individually in a sealed Linkam fluid inclusion stage 

for the experiments. Results are listed in Appendix 7. 

Sulfur isotope compositions were obtained using the SO 2  combustion method of Robinson and 

Kusakabe (1975). Sample preparation involved carefully drilling out 8-30 mg of pyrite, 

pyrrhotite, galena, sphalerite and chalcopyrite from relatively coarse-grained, mineralised 

rocks using a dentist's drill. These samples were submitted for S isotope analysis at the 

University of Tasmania, Central Science Laboratory. The results are listed in Appendix 8. 

8.3 PART A — carbon-oxygen isotopes and fluid inclusions 

The Lewis Ponds host sequence contains abundant primary (sedimentary) and secondary 

(diagenetic or hydrothermal) carbonate. Fossiliferous limestone-bearing breccia and sandstone 

occur in Main zone. Fault-bound limestone megabreccia lenses structurally overlie both 

mineralised zones. A proximal, texturally destructive dolomite-chlorite-talc assemblage 

surrounds the massive sulfide lenses in Main and Toms zones. Calcite and dolomite veins 

occur throughout the Lewis Ponds fault and the adjacent footwall volcanic succession. 

The relative timing of dolomitisation at Lewis Ponds is well constrained. Sulfide-dolomite 

textures in Main zone resulted from partial dissolution of the fine-grained dolomite matrix by 

the mineralising fluid (see Chapter 5, Fig. 5.14). Dolomite also fills secondary pore spaces in 

the polymictic breccia and massive sulfide (see Chapter 7, Fig. 7.10). The dolomite is 

spatially associated with primitive sulfide textures including pyrite framboids and acicular 

pyrrhotite crystals. Therefore, dolomite precipitated prior to and during sulfide mineralisation. 

Fracture-controlled hydrothermal fluids circulating through the Lewis Ponds fault during the 

D I  deformation may have modified the isotopic composition of dolomite in Toms zone. 

The purpose of PART A is to: investigate the effects that hydrothermal fluid-rock interactions 

had on the isotopic composition of the fossiliferous limestone; and determine the possible 

temperature, composition and source of the fluid from which the dolomite precipitated. The 

isotopic composition of carbonates depends on the 1) initial isotopic composition of the fluid 

and reactive host rock, 2) temperature, 3) relative proportion of aqueous C species and 

4) amount of CO2  degassing (Zheng, 1990; Zheng and Hoefs, 1993). In this chapter, two 

isotopic exchange processes are modelled using mass balance equations and variables 1, 2 and 

3, defined above, to predict the isotopic composition of hydrothermal carbonates. 

The first isotopic exchange process involves reacting a hydrothermal fluid with pre-existing 

carbonate (fluid-rock interaction models). In the fluid mixing models, two fluids of differing 

isotopic composition and temperature are mixed. 
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Introduction to carbon and oxygen isotope geochemistry 

Carbon and 0 isotopes behave differently to one another in hydrothermal fluids. Minerals 

precipitating from a fluid attain equilibrium with 8 180 fluid  under most temperature and pH 

conditions. 6180flold  does not vary during mineral precipitation because the relative amount of 

0 removed from the fluid is negligible (Ohmoto, 1986). However, 8 13C flud  is strongly 

dependent on the relative proportions of aqueous C species involved. Mineral precipitation 

may remove significant amounts of C, causing large variations in 8 13C fluid  and therefore, 

"Ccarbonate (Ohmoto, 1986). 

The common C species in fluids are H2CO300 HCO3 -(aq), CO32-(aq), CO2( g ,aq) and CH4(g,aq)- 

Temperature, pH and oxygen fugacity determine the relative proportion of oxidised and 

reduced ionic C species in hydrothermal fluids (Ohmoto and Rye, 1979). The predominant 

C-bearing species in seawater is HCO 3-00  (Ripperdan, 2001). In hydrothermal fluids 2100°C, 

the amount of HCO 3 -00  is negligible compared to H2CO300  (Ohmoto, 1986). The total 

amount of dissolved carbon dioxide and bicarbonate (H 2CO3  apparent) is the sum of the molar 

concentrations of CO200  and H2CO3(ao . However, since the isotopic fractionation factors 

between CO32-00  and CO2(g)  are significantly less than those between CO 2(g)  and CH4(g ,aq)  at 

temperatures above 100°C, the following approximation is made: 

613 C FI 2CO 3  (apparent) -= 13 C  CO2 
(Ohmoto 1972) 	 (1) 

Hydrothermal fluids may also acquire a component of organic C by oxidation reactions. 

Oxidation of organic CH4  to CO2  produces a zone of coupled sulfate reduction — methane 

oxidation in sediments containing bacteria (Burns, 1998). The resulting range of 8 13Cc02  
values (-10%o to -35%0; Ohmoto and Rye, 1979), is considerably lower than 6,13Cco2 values 

predicted from thermodynamic equilibria due to kinetic effects. Final 8 13C values therefore 

depend on the rate of isotopic exchange between CH 4  and CO2  (Ohmoto, 1986). 

The isotopic composition of carbonate depends on fractionation between the minerals and 

fluid; and the temperature, pH, oxygen fugacity and isotopic composition of the fluid 

(Ohmoto and Rye, 1979; Ohmoto, 1986). The fractionation factors relative to temperature are 

calculated using Equation 2 for 0 (Ohmoto and Rye, 1979), Equation 3 for C (Ohmoto and 

- Goldhaber, 1997) and the coefficients listed in Table 8.1. 

10001na = A + B(103)  + C(106)  + D 	 where T(°K) 	 (2) 
T 2  

10001na = A + B(103)  + C(106)  +  D(109)  + E 	where T(°K) 	 (3 ) 
T 2 	T 3  
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Sample description N Mineral 8180vsmow  (%0)  S"CvpuB (%0) 
Regional fossiliferous limestone 3 Ca 24 to 28 2 to 5 

Recrystallised limestone clasts 27 Ca 11 to 20 -5 to 2 

Dol-altered limestone clasts 7 Dol 11 to 16 -11 to -1 

Intense pervasive dol (Main zone) 13 Do! 11 to 15 -11 to 1 

Intense pervasive dol (Toms zone) " 6 Do! 8 to 11 -7 to -1 

Do!-ccp-sph-st veins (Toms zone) 5 Dol 6 to 13 -9 to -3 

Ca-ccp-py veins (FW Copper zone) 2 Ca 9 -3 to -1 

Intense patchy / pervasive ca 4 Ca 10 to 11 -5 to -1 
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A B C D E Temperature range 

Al8 Oca - H 2 0 -2.89 '0 2.78 0 0-500°C 

418 0dot - H 2 0 -2.0 0 3.2 0 300-510°C 

Al3Cco - co 2  2.962 41.346 5.358 0.388 0 <600°C 

Al3Cdoi - co 2  3.132 -11.346 5.538 -0.388 0 <600°C 

Al3 Cdoi - FICO; 38.832 -31.506 7.698 -0.388 0 <290°C 

Table 8.1 Fractionation coefficients for carbonate minerals from Northorp and Clayton (1966) 
Friedman and O'Neil (1977) and Olunoto and Goldhaber (1997). ca = calcite, do! = dolomite. 

Results of carbon-oxygen isotope study at Lewis Ponds 

Results of the C-0 isotope study at Lewis Ponds are presented in Figures 8.1, 8.2 and 

Table 8.2. 

Table 8.2 Range of 5 180 and 8' 3C values in primary and secondary carbonate from the Lewis Ponds 
host sequence and fossiliferous limestone lenses from the Mullions Range Volcanics and Anson 
Formation. Refer to Figure 3.18 for locations of regional limestone samples. Mineral abbreviations: 
ca = calcite, do! = dolomite, ccp = chalcopyrite, sph = sphalerite, py = pyrite, st = stannite. 

The isotopic compositions of primary and secondary carbonate in the Lewis Ponds host 

sequence are significantly lighter than the regional limestone (Table 8.2). Data obtained 

during this study indicate that limestone in the Mullions Range Volcanics and Anson 

1  Formation has high 880vsmow  24-28%0) and 8 13CvpDe (2-5%0) values. At Lewis Ponds, 

limestone clasts in the Transitional Unit and fault-bound stratigaphic unit have variable, 

generally lower 8 180vsmow  values of 11 to 20%0 and 8 13CvpDB  values of-5 to 2%o. Pervasive 

carbonate surrounding the massive sulfide lenses, dolomite-altered limestone clasts in Main 

zone and carbonate-sulfide veins in Toms zone are enriched in light C isotopes. The 8 13Cvpou 

values range from -11 to 0%0 and 8 180vsmow  values range from 6 to 16%0. Toms zone 

dolomite has lighter average 0 isotope compositions than dolomite in Main zone. In 

summary, S I 80vsmow and 8 13CvpDB values in primary and secondary carbonate at Lewis Ponds 

decrease toward the mineralised zones (Fig. 8.2). 
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A regional fossiliferous limestone 

o recrystallised limestone clasts 

• dot-altered limestone clasts 

o intense pervasive dot (Main zone) 

• intense pervasive dot (Toms zone) 

* dol-ccp-sph-ga-st veins (Toms zone) 

• ca-ccpy-py veins (FW Copper zone) 

O intense patchy/pervasive ca 
(Lady Belmore & Toms zone) 

Figure 8.1 C-0 isotopes in primary and secondary carbonate at Lewis Ponds and fossiliferous limestone 
lenses from the Mullions Range Volcanics and Anson Formation. Based on 67 analyses. Field of 
Silurian marine and freshwater carbonate is from figures 4 and 5 in Veizer and Hoefs (1976). 

Temperature, salinity and isotopic composition of dolomite-forming fluid 

Fluid inclusions constrain the temperature, salinity and composition of hydrothermal fluids. At 

Lewis Ponds, medium to coarse-grained, zoned rhombic dolomite crystals contain abundant 

two phase, liquid-vapour inclusions (Fig. 8.3). These occur in the proximal dolomite-chlorite-

talc assemblage associated with the two massive sulphide lenses (see Chapter 5, section 5.4). 

The rhombic, rectangular or amoeboid fluid inclusions range from one to sixteen micrometres 

length. Individual inclusions commonly occur in trails, parallel to growth and cleavage planes. 

Gas bubbles occupy 5-30% of the total volume of the inclusion. 

The zoned dolomite crystals occur within structurally competent, rigid patches or lenses of 

dolomite, with most of the strain focussed in the surrounding chlorite-phlogopite-talc-sulfide-

altered polymictic breccia matrix. They are interpreted to have precipitated during diagenesis 

and low temperature hydrothermal alteration. Dolomite-sulfide textures in Main zone 

(eg. Figs. 5.5C and 5.14) indicate that the dolomite formed prior to and during mineralisation. 

The fluid inclusions are therefore likely to contain fluids trapped during diagenetic and 

hydrothermal alteration of the poylmictic breccia and siltstone deposits. 

Minimum trapping temperatures were calculated using the equation: T = Th q, 	(4) 

where Th is the homogenisation temperature and q is a pressure correction factor (Roedder, 

1984, p. 262) to account for the overlying water column. Assuming that Lewis Ponds formed at 

200 to! 000 m water depth and 2 to 10 MPa pressure, the pressure correction factor varies from 

2 to 10°C. Therefore, minimum trapping temperatures of fluid inclusions in Main zone range 

from 166°C to 232°C and fluid inclusions in the dolomite in Toms zone range from 170°C to 

232°C (Table 8.3). Homogenisation temperatures have standard deviations of 5 to 5.5. The 

fluid inclusions generally did not stretch or decrepitate during heating experiments. 
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Figure 8.2 Spatial distribution of 6 180vsmow and 5 13 CvpDB  values in limestone clasts, massive dolomite 
and dolomite-altered limestone clasts in Main zone and Lady Belmore zone. Line 1300 m N section 
(top) and line 750 m N section (bottom). 
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Figure 8.3 Photomicrograph of primary two phase fluid inclusions in zoned rhombic dolomite crystal. 
TLPD-12, 493 m. 

Sample Size (A) 	Salinity (equiv wt % NaC1) Pressure corrected homogenisation temp. 

N Range Mean SD N Range Mean SD 

LP12493 2-13  59 2.9 — 7.7 4.2 1.0 40 166 — 198°C 180°C 5.2 

LP36W214 1-16  55 1.6 — 5.8 4.1 1.0 58 170 — 232°C 183°C 5.5 

LP51A484 2-13  53 1.4 — 7.3 3.9 1.0 41 170 - 232°C 187°C 5.5 

Table 8.3 Data from fluid inclusions in rhombic dolomite crystals. The pressure correction factor 
added to homogenisation temperatures is 10°C for 1 000 m depth below sea level. Samples LP12493 
and LP36W214 are from Main zone. LP51A484 is from Toms zone. 

Salinities in equivalent weight percent NaCl (w s) were calculated using the equation: 

ws = (1.76958 x 0) — (4.2384X 10 -20) + (5.2778X 10 -403) 
	

(Potter II et al., 1978) 	(5) 
where 0 is the freezing point depression in °C. Fluid inclusions in the dolomite at Lewis Ponds 

have salinities that range from 1.4 to 7.7 eqiv wt % NaC1 (Table 8.3). The average salinities 

are similar to modern seawater: 3.2 wt % NaC1 (Roedder, 1984; Lydon, 1988). However, the 

fluid inclusions at Lewis Ponds probably contain Mg 2+, Ca2+ , HCO3 -  and H2CO3 ions in 

addition to NaC1 since they occur within dolomite. 

Given the pressure corrected homogenisation temperatures, the isotopic composition of the 

fluid from which the dolomite precipitated was calculated using equations 6 and 7: 
R18n 	_l8 	_ A' 8  n doloznite 
' ' fluid — ' ' dolomite " ' H 20 

8 —  A 13 r dolomite " c fluid = 813 c dolomite " ' CO 2  

where: 
A 18 0 dHo2lomio  te = fractionation factor between secondary dolomite and H 20 
A  13 0 dolomite _ 

' CO2  — fractionation factor between secondary dolomite and CO2 

818° dolonite = 8 180 of secondary dolomite 

813 C  dolomite = 8 13C of secondary dolomite 

(6) 

(7) 
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Table 8.4 presents calculated fluid compositions for the three samples. 

Sample Mean Th (°C) 6 180dolomite 8 13 Cdolomite (%0) 8 180floi1 (%0)  O BCfloid (%0) 
LP12493 180 11.3 -11.0 -2.3 -13.6 
LP36W214 183 13.7 -7.5 0.3 -10.2 

LP51A484 187 10.6 -1.3 -2.5 -4.0 

Table 8.4 Calculated isotopic fluid compositions based on average pressure corrected fluid inclusion 
homogenisation temperatures listed in Table 8.3 and the measured 8 180vsmow  and •5 13CvpDB  values in 
the dolomite. Calculated using Equations 6 and 7. 

Fluid inclusions from Lewis Ponds fall into the range of relatively low temperature (<350°C), 

low salinity (<10 NaCl equiv wt %) inclusions occurring in Japanese and eastern Australian 

VHMS deposits (eg. Pisutha-Arnond and Ohmoto, 1983; Roedder, 1984; Khin Zaw and 

Large, 1992). However, the extent to which syn-tectonic or metamorphic fluids modified 

these inclusions is difficult to determine. If dolomite precipitated prior to mineralisation, 

during diagenesis and low temperature hydrothermal activity, a greater range in 

homogenisation temperatures may be expected. 

Interpretation of carbon -oxygen isotopes at Lewis Ponds  

The wide distribution of 8, 13C values at Lewis Ponds probably reflects isotopic exchange 

reactions involving carbonate minerals and aqueous C species. In Main zone, hydrothermal 

alteration of pre-existing fossiliferous limestone clasts and diagenetic carbonate assemblages 

could have involved precipitation of secondary calcite and/or dolomite. Alternatively, the 

intense, texturally destructive hydrothermal dolomite assemblage in Main and Toms zones 

may have resulted from mixing between seawater and a hydrothermal fluid. These two 

possible isotopic exchange processes are tested in the following sections. 

The hydrothermal fluid, from which the dolomite precipitated may have contained H2CO300, 

HCO3-0,0 , CO32-00 and CH400 molecules. However, HCO3 (ao predominates in low 

temperature (<100°C), alkaline hydrothermal fluids and H 2CO3/CO2  predominates in higher 

temperature, more acidic fluids (Ohmoto, 1972, 1986; Large et al., 2001d). Since 

813CH2CO3 (apparent) -= 813Cco2 (Ohmoto, 1972), fractionation factors involving carbonate minerals 

and CO200 are used in the following models. Results of the fluid modelling are presented in 

Appendix 6. 

Fluid-rock interaction models  

When limestone undergoes hydrothermal alteration, H2CO3(aq), HCO3 -(ac) and CO200  may be 

removed by dissolution or thermal decarbonation (Ohmoto, 1986). The resulting 6 13Cfloid, 
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from which secondary carbonate precipitates, depends on the initial 8 I3C of the limestone, the 

relative proportions of aqueous C species, the fractionation factors and the amount of 

decomposition (Ohmoto, 1986). 

The isotopic composition of secondary carbonate is determined by the general mass balance 

equation: 

W8 i nuid R8irock = W8ff1uid ROfrock, 
	 (8 ) 

where Wand R denote the atomic percentage of isotopes in the fluid and rock respectively; and 

i andf represent the initial and final isotopic composition (Taylor, 1977). Zheng and Hoefs 

(1993) applied this equation to fluid-rock interaction models in open (Equations 9 and 10) and 

closed (Equations 11 and 12) systems. In an open system, fluid is replenished by fluid with 

the same initial isotopic composition and temperature. Closed systems are characterised by 

continuous equilibrium between the fluid and rock (Taylor, 1987; Zheng and Hoefs, 1993). 

618 °carb = 0 18  ° ifluid 
Al8 0 cHarbo  ) 018 oifluid  + Al8 0 cHarbo  

618° Calcite )e -WIR  

6130 	=(C  B i 	-1-  j_ A  B r, cart, _ '3c 	A 13 r carb 	
8 13 C 	)e carb 	fluid 	CO 2 	fluid 	CO 2 	calcite 	Xco2 

6 18 n  
carb 

(1 W/R) 

s Bc 	 = 
	calcite cath 	 W/RX CO 2  0 13 C 	A I 3C  CCa:2  

( 1  ± W/RX  CO2 ) 

where: 
o ls ocath  = 8 180 of secondary carbonate 

S I3 C carb = 8' 3C of secondary carbonate 
s i8n i 

v calcite = initial 8' 80 of fossiliferous limestone 

613C  Calcite = initial 8' 3C of fossiliferous limestone 
6180 ifluid initial 8' 80 of fluid 

813 C ifluid = initial 8 I3C of fluid 

Xco2 = mole fraction of CO2  in fluid 

A' 8 0cat = fractionation factor between secondary carbonate and H 20 

A n Cecaorb  = fractionation factor between secondary carbonate and CO2 

W/R = atomic ratio of water to rock during interaction 

Figure 8.4 illustrates the theoretical isotopic composition of secondary calcite and dolomite 

precipitated by fluid-rock interactions involving unaltered, regional fossiliferous limestone 

(8 180vsmow  = 24.25%0, 8 13CvpDB = 2.5%0) and a 112CO3/CO2-bearing hydrothermal fluid (A). 

180  Calcite + W/R(818°ifluid + 
A  18 0 cHa2rbo  ) 
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The composition of fluid A ( 180 = -2°/00, 8 13C = -9°/00) and the temperature range (150-250°C) 

are constrained by the fluid inclusion data and calculated isotopic fluid compositions presented 

in Tables 8.3 and 8.4. 
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Figure 8.4 A. Modelled covariance trends of calcite precipitated by reacting a hydrothermal fluid 
(ö180 = -2%0, 8 13C = -9%0) at 150°C and 250°C with unaltered, fossiliferous limestone or diagenetic 
carbonate (ö180 = 24.25%0, 8 13C = 2.5%0) in an open and closed system. Calculated using 
Equations 9 to 12. B. Modelled covariance trends of dolomite precipitated by reacting a hydrothermal 
fluid ( 180 = -2%0, o l3C = -9%0) at 150°C and 250°C with unaltered limestone or diagenetic carbonate as 
above, in an open and closed system. The modeled dolomite compositions become progressively 
enriched in light C and 0 isotopes with increasing water-rock ratio. 

Fluid-rock interaction at 150-250°C and water/rock ratios of 0.5 to 5 may account for the 

isotopic composition of limestone clasts in the Lewis host sequence. The observed 

compositions vary with proximity to the massive sulfide lenses (eg. Fig 8.2) and therefore are 

likely to reflect increased water/rock ratios. In this model, calcite veins and intense pervasive 

calcite assemblages precipitated from a higher temperature fluid (>250°C). The massive 

dolomite in Main and Toms zone may have resulted from fluid-rock interactions involving the 
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regional fossiliferous limestone and a hydrothermal fluid at 150-250°C and water/rock ratios 

of 2 to 100. The modelled isotopic compositions have a similar range of 8 13C and 8 180 values 

to the Lewis Ponds dolomites. A simple fluid-rock interaction model involving alteration of 

fossiliferous limestone clasts in the carbonate-bearing host sediment and precipitation of 

secondary carbonate over a temperature range of 150-250°C may therefore account for the 

observed distribution of 8 180 and 8 13C values. 

Fluid mixing models 

Fluid mixing is an efficient mechanism of precipitating hydrothermal carbonates, at or below 

the seafloor, in porous volcanic successions. Recent studies have indicated that the VHMS-

related carbonates result from mixing between seawater and a hydrothermal fluid (Khin Zaw 

and Large, 1992; Goodfellow et al., 1993; Callaghan, 2001; Herrmann and Hill, 2001). 

Zheng and Hoeffs (1993) modelled the isotopic composition of fluid mixtures and the resulting 

carbonates by varying the relative proportion of two different fluids (A and B) and specifying 

the relative C contents in the two fluids (P). Equations 13 and 14 (Zheng and Hoefs, 1993) 

were used to determine the composition of secondary, hydrothermal dolomite precipitated 

from the fluid mixture. This study employed a simple linear fluid mixing model, similar to 

that of Williams (2000). For example, the temperature of a mixture containing half of fluid A 

and B will be half-way between the initial temperature of each fluid. The results are listed in 

Appendix 6. 

180 dolomite 
= 6

18 0 b + At8 0:17 it e  ± X a  0 18  CI  a 618°0 

X a  (613Ca Al3cad0l0m1te ) + P(1— Xa
)(ucb Auccbmomite 

C dolomite (P + X a  — PX a  ) 

where: 

8180  dolomite = 8 180 of secondary dolomite 

613 C dolomite — 8 13C of secondary dolomite 
ou30a= 6' 80 of fluid A 

8 13 C a  = 8 13C of fluid A 

8 180 b  = 6' 80 of fluid B 

8 13 C b  = 8' 3C of fluid B 

X a  = mole fraction of fluid A in the mixed fluid 
180 	mite = fractionation factor between secondary dolomite and 1120 H 20 

A  I 3r dolomite fractionation factor between secondary dolomite and CO2 —co, 
P = relative proportion of C in fluids A and B, such that P = C b/Ca  

(13) 

(14) 
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Figure 8.5 presents the theoretical isotopic compositions of dolomite precipitated by mixing 

three isotopically different hydrothermal fluids at 350°C (fluid B) with a seawater-dominant 

pore fluid at 100°C (fluid A). The isotopic composition of fluid A (6 180vsmow = -2%o, 

8 13CvpuB = -0.5%o), is similar to interstitial pore fluids that have reacted with marine carbonate 

or volcanic rocks, several hundred metres below the seawater-sediment interface 

(eg. De Carlo et al., 2001; De Carlo et al., 2002). In the first model (Fig. 8.5A), the 

hydrothermal fluid is interpreted to be magmatic in origin. The footwall volcanic succession at 

Lewis Ponds consists of S-type porphyritic dacite intrusions (see Chapter 6, section 6.3). 

8 180vsmow  values in S-type granites (9 to 13%o) are significantly higher than 8 180 values in 

typical arc-related rocks with I-type affinities (Ohmoto, 1986). 6 13CpDB  values probably range 

from -10 to 2%0 in fluids exsolved from granitic magmas because CO 2  is the predominant C 

species and 8 13Cmagmatic fluid a 813Cmelt (Ohmoto and Rye, 1979). Therefore, the magmatic 

hydrothermal fluid (fluid B) used in this model had the composition, 6 180vsmow = 10%0 and 

8 13CvpuB = -9%o. In the second and third models (Fig. 8.5B-C), the initial seawater-dominant 

hydrothermal fluid (8 180vsmow = 2%0, 8 13CvpDB = -5%0 or —9%o) had reacted extensively with 

the footwall volcanic rocks and acquired a component of reduced organic C. The isotopic 

composition of this evolved seawater is similar to vent fluids observed in some modem seafloor 

hydrothermal systems (eg. de Ronde, 1995; Shanks, 2001). 

In the magmatic mixing model (Fig. 8.5A), the modelled dolomite compositions are 

characterised by higher 8 180 values than most of the actual samples. The modelled dolomite 

compositions in Figure 8.5B, for P = 0.1 and 1 are similar to observed 8 180 and 8 13C values in 

Toms zone and indicate that the dolomite may have precipitated from a mixed hydrothermal 

fluid at 150-350°C. However, the range in modelled fluid compositions does not overlap 

completely with the calculated fluid compositions for samples LP12493, LP36W214 and 

LP51A484. The majority of dolomite samples from Main zone plot near the modelled trend line 

for P = 1, in Figure 8.5C and are consistent with fluid temperatures of 150-225°C. None of the 

trend lines account for the wide distribution of 6 13C values in the dolomite from Main zone. 

The modelled fluid compositions presented in Figure 8.5 have higher 8 180 and 8 13C values than 

the fluid compositions calculated for the dolomite samples, but are best explained by model C. 

In summary, the hydrothermal dolomite at Lewis Ponds is more likely to have resulted from 

mixing between a low temperature, seawater-dominant pore fluid and higher temperature 

evolved seawater (Fig. 8.5B-C) than by mixing between seawater and a purely magmatic 

hydrothermal fluid (Fig. 8.5A). The fluid mixing models presented in Figure 8.5 do not fully 

account for the wide distribution of 8 13C values in the dolomite from Main zone or the 

calculated isotopic fluid compositions for LP12493, LP36W214 and LP51A484. 

211 



t)  -6 

-2 e 
8 

-10 

-14 

A - magmatic 
6 

2 

C - evolved seawater + organic C 
6 

2 

', -2 e 
1 

P -6 Go 

-10 

-14 

Xa=1 
T=100°C 

Chapter 8 - Stable and Radiogenic Isotope Geochemistry 

Xa=1 
T=100°C 

-5 
	

0 
	

5 	10 
8'80,„,,,v, (Too) 

B - evolved seawater 
6 

2 

-2 

1 
P -6 00 

-10 

-14 
-5 	0 	5 	10 

(0/00) 

Xa=1 
T=100°C 

• dol-altered limestone clasts 

o intense pervasive dolomite (Main zone) 

• intense pervasive dolomite (Toms zone) 

* dol-ccp-sph-st veins (Toms zone) 

	  modelled dolomite (P = 0.1) 

	  modelled dolomite (P = 1) 

	  calculated dolomite (P = 10) 

	  modelled fluid compositions 

A LP36VV214 calculated fluid compositions 

15 
	

20 

15 
	

20 

-5 	0 	5 	10 
	

15 
	

20 

8 180,,,o, (%0) 

Figure 8.5 Modelled covariance trends of dolomite precipitated by mixing a seawater-dominant pore 
fluid (fluid A; 6 180 = -2%0, 6' 3C = -0.5%0) at 100°C with each of three isotopically different hydrothermal 
fluids (fluid B) at 350°C. The isotopic compositions of fluid B are 6 180 = 10%0, 6 I3C = -9%0 (model A), 
6 180 = 2%0, 6' 3C = -5%0 (model B), and 6 180 = 2%0, 6 13C = -9%0 (model C). P is the relative proportion 
of carbon in fluids A and B: 0.01, 1 and 10. Xa is the amount of fluid A in the mixture such that when 
Xa = 1, the mixture consists entirely of fluid A. In both fluids, CO2 is the predominant C-bearing 
species. The isotopic compositions of the modelled fluid mixtures are shown. The triangles represent 
calculated isotopic fluid compositions for dolomite samples LP12493, LP36W214 and LP51A484. 
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Discussion: reasons for carbon and oxygen isotopic fractionation 
in carbonate at Lewis Ponds  

The C isotopic compositions of recrystallised fossiliferous limestone clasts in the Lewis Ponds 

host sequence compare with typical Silurian, marine and freshwater carbonates (Veizer and 

Hoefs, 1976; Ripperdan, 2001). The narrow range of 8 13CpDB  values (-2 to 2%0; except for one 

sample with -4.5%0) indicates that the limestone may have precipitated in equilibrium with 

HCO3 -(aq)  in the seawater at approximately 25°C. 

Secondary (hydrothermal) carbonates at Lewis Ponds have a relatively wide range in 8 13Cpna 

values (-11 to 1%0). In contrast, eastern Australian VHMS deposits including South Hercules 

and Henty, western Tasmania (Khin Zaw and Large, 1992; Callaghan, 2001) and Mt Chalmers, 

central Queensland (Huston et al., 1999) have a narrow range of 8 13CpDB values (-5 to 1%0). 

Two possible processes may account for the low 8 13 CpDB values at Lewis Ponds: reduction of 

organic C or decarbonation reactions :  

Some of the C isotopic fractionation may result from the incorporation of organic C into the 

hydrothermal fluid. Eastoe and Nelson (1988) attributed low 8 13 C values (-12 to 0%0) in 

carbonates at the Afterthought-Ingot area, California to mixing of seawater carbonate with 

oxidised organic C. At Lewis Ponds, dark grey mudstone in the Hangingwall Siltstone Unit 

may indicate the presence of sulfate-reducing bacteria during diagenesis. However, no other 

mineralogical or textural evidence exists for oxidation reactions in the host sequence. 

Dolomite occurs with talc and quartz in the polymictic breccia and siltstone units, within and 

adjacent to the Lewis Ponds fault (eg. Figs. 5.4 and 5.5). The talc may have formed by thermal 

decarbonation reactions involving dolomite and quartz, during hydrothermal alteration or 

regional metamorphism (see Chapter 5, Equation 1). Decarbonat ion reactions cause 

8 13C values in pre-existing limestone to decrease because 13C preferentially fractionates into 

CO2(g)  (Faure, 1977). Therefore reactions involving the formation of talc may have caused the 

dolomite to become enriched in lighter C isotopes. This metasomatism possibly occurred 

during hydrothermal alteration and metamorphism. 

The 0 isotopic compositions of primary and secondary carbonate in the Lewis Ponds host 

sequence (8 180vsmow = 6 to 20%0) are 5 to 10%0 lower than typical Silurian, marine and 

freshwater carbonates (Veizer and Hoefs, 1976). Secondary dolomite surrounding Main and 

Toms zones has a similar range of 8180vsmow  values to hydrothermal carbonate in VHMS 

deposits including South Hercules (Khin Zaw and Large, 1992) and Henty (Callaghan, 1998). 

Oxygen isotopic fractionation of hydrothermal carbonates in VHMS deposits is attributed to 
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variations in depositional temperature, between 100°C and 300°C (Huston et al., 1999). The 

amount of fractionation decreases at higher temperatures (Equation 2). 

Massive and vein dolomite samples in Toms zone have lighter, more variable 0 isotopic 

compositions than dolomite surrounding Main zone. This variation may indicate higher 

temperature deposition of dolomite in Toms zone. Alternatively, the dolomite may have 

re-equilibrated with fracture-controlled fluids, localised along the Lewis Ponds fault during the 

D I  deformation. 

In conclusion, the distribution of 6 180 and 6 13C values in the Lewis Ponds host sequence may 

have resulted from fluid-rock interactions involving the limestone-bearing host rocks and a 

hydrothermal fluid, and/or mixing between seawater-dominant pore fluids at 100°C and 

evolved seawater at 350°C. Both types of models indicate that the dolomite in Toms zone 

precipitated at higher temperatures than the dolomite in Main zone, despite little variation in 

fluid inclusion homogenisation temperatures. Fluid-rock interactions and fluid mixing do not 

account for the observed variation in 6 13C values or the calculated fluid isotopic compositions 

for samples LP12493, LP36W214 and LP51A484. Decarbonation reactions or the 

involvement of reduced organic C may have decreased 6 13C values in the massive dolomite 

and dolomite-altered limestone clasts in Main zone. The lighter, more variable 0 isotopic 

signature of dolomite in Toms zone possibly reflects deposition from a higher temperature 

fluid or isotopic re-equilibration due to the circulation of younger fracture-controlled fluids 

within the Lewis Ponds fault zone during the D I  deformation. 

8.4 PART B — sulfur and lead isotopes and metal ratios 

The purpose of part B is to use the isotopic composition of sulfides and metal ratios to 

interpret the composition of the mineralising fluid and the source of metals at Lewis Ponds. 

Sulfur isotopes  

Sulfur isotopic relationships among co-existing minerals help to constrain the S source, 

temperature and chemistry of the mineralising fluid and mechanisms of mineral deposition 

(Ohmoto and Goldhaber, 1997). Sulfur has four isotopes, in order of decreasing abundance: 
32s ,  34- ,  S 33S and 36S• The isotope ratio of compound i is expressed as: 

[ 6 34 S ;  = 	R ' 	1 x1000 %o 	(Ohmoto and Rye 1979) 
R VCDT 

(15) 

where: R.; = 34S/32 S Of Compound i and RVCDT = 34S/32S of troilite in the Vienna standard. 
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Fractionation of S isotopes in hydrothermal systems may occur during phase separation of a 

fluid from magma, reduction of seawater sulfate, cooling of the fluid, mineral precipitation and 

mineral dissolution. In high temperature fluids (>400° C), H2S and SO 2  are the predominant 

aqueous S species. At lower temperatures (<350° C), fluids may contain H 2 S, HS-  and various 

oxidised sulfate species including SO4 2-, HSO4-, NaSO4-, CaSO4  and MgSO4  (Ohmoto and 

Rye, 1979). Therefore, S isotope fractionation between minerals and the hydrothermal fluid 

depends on temperature, pH, oxygen fugacity and 8 34S of the fluid and the precipitation of 

sulfide or sulfate minerals. 

In VHMS deposits, 834Svco-t  values range from -20 to 27%0 in sulfides and 10 to 40%0 in 

sulfates (Ohmoto and Rye, 1979; Huston et al., 1999). The small variation within individual 

deposits and massive sulfide lenses, typically less than 5%0, indicates a relatively 

homogeneous source area. Possible sources of S include direct input from magmatic fluids, 

leaching of volcanic rocks, biogenic reduction of seawater sulfate (Sangster, 1968) and 

inorganic reduction of diagenetic or hydrothermal sulfate (Ohmoto et al., 1983). 

Sangster (1968) and Large (1992) demonstrated the involvement of reduced seawater sulfate in 

VHMS deposits through time by correlating average 834S values in massive sulfide deposits 

and contemporaneous marine sulfate deposits. Gemmell and Large (1992) interpreted the 

distribution of S isotope ratios at Hellyer to indicate evolution of a seawater-dominated 

hydrothermal fluid into a fluid containing S leached from the volcanic host rocks, as the 

hydrothermal system intensified. 

At Lewis Ponds, 834S vcDT  values in sulfides vary from 0.1 to 7.4%0 (Table 8.5; Fig. 8.6). Main 

zone, Toms zone and the quartz-sulfide veins have a similar range of 834Svcur values (0.1 to 

5.0%0). Calcite-chalcopyrite-pyrite veins in the Footwall Copper zone are characterised by 

higher average 834Svco-r  values (5.7%o). 

Location N Range 834SvcDT (°/00) Average 834 SvcDT MO 
Main zone 11 1.7 — 4.9 3.4 
Toms zone 8 2.4 — 5.0 4.0 
Footwall Copper zone 9 3.9 — 7.4 5.7 
syn-tectonic quartz-sulfide veins 9 0.1 — 5.0 3.4 
total (includes one other analysis) 38 0.1 —7.4 4.1 

Table 8.5 834Svayr  values from massive sulfide, quartz-sulfide veins and calcite-chalcopyrite veins at 
Lewis Ponds. Includes 24 analyses from this study and 14 unpublished analyses from the Geological 
Survey of New South Wales. All data are listed in Appendix 8. 

The average S isotopic composition of acid volcanic rocks is 0 ± 3%0 (Ohmoto and Rye, 1979). 

Late Silurian marine sulfate deposits have 834Svair  values of 25-30%0 (Claypool et al., 1980). 
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Therefore, the distribution of 6 34S data at Lewis Ponds indicates that the mineralising fluid 

probably contained a relatively homogeneous mixture of magmatic S derived from the host 

volcanic rocks or a magmatic fluid, and a minor component of reduced seawater sulfate. 

Bladed quartz and pyrrhotite pseudomorphs (Fig. 7.9D) indicate that anhydrite or barite may 

have co-existed with pyrite and pyrrhotite during mineralisation. Sulfides occurring in 

cleavage-parallel, syn-tectonic quartz veins have a similar range of 6 34S vcDT  values (0.1-5.0%o) 

to the massive sulfide. This indicates that fracture-controlled fluids may have leached S from 

the host volcanic rocks or pre-existing massive sulfide during the D I  deformation. 
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Figure 8.6 Distribution of 6 34Svon  values at Lewis Ponds plotted in terms of sulfide mineral and 
location: Main zone, Toms zone, Footwall Copper zone and quartz-sulfide veins in the Lewis Ponds 
fault. Includes 24 analyses from this study and 14 analyses from the Geological Survey of New South 
Wales. 

Numerous factors may have caused the observed variation in average 6 34S values between the 

massive sulfide and Footwall Copper zone at Lewis Ponds. A trend of decreasing 6 34S in 

sulfides from the footwall stockwork zone to the overlying massive sulfide lens occurred at the 

Shakanai mine, Japan (Kajiwara, 1972) and Iron Mountain mine, California (South and 

Taylor, 1985). Kajiwara (1972) attributed this trend to increased oxygen fugacity and fluid pH 

due to a greater contribution of seawater to the hydrothermal fluid. Under equilibrium 

conditions, sulfides become enriched in light S with increased fluid pH or oxygen fugacity 

(Ohmoto and Rye, 1979). However, in many modern and ancient sea floor exhalative deposits, 
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mineralisation occurs by rapid, disequilibrium mixing of hydrothermal fluids with cooler 

seawater (Ohmoto et al., 1983). Lydon (1996) attributed higher 8 34S values in Cu-rich 

assemblages to the temperature dependence of the inorganic reduction of seawater sulfate. 

Alternatively, hydrothermal fluids at Lewis Ponds may have acquired a component of lighter S 

from the host sedimentary rocks by partial reduction of trace amounts of seawater sulfate 

occurring in the fossiliferous limestone clasts or incorporation of biogenic S, derived from 

diagenetic pyrite and pyrrhotite in the Hangingwall Siltstone Unit. 

The isotopic compositions of sufides at Lewis Ponds compare with other Silurian base metal 

and barite deposits in the Hill End and Captains Flat-Goulburn troughs (Table 8.6). 

834S values in sulfides from the Mt Bulga deposit range from -1.7 to 3.7%). The Calula deposit 

also has a small range of values: 4.0-7.6°/00. Deposits with higher average 834S values 

including Sunny Corner, Commonwealth, Peelwood and Gurrundah may result from a greater 

contribution of reduced seawater sulfate to the hydrothermal fluid. 

Deposit Range 834svcDT (%o) Avg. 834SvcoT  (%o) Reference 

Mt Bulga -1.7 to 3.7 1.6 Chisholm (1976) 

Sunny Corner 1.7 to 10.7 7.4 Seccombe et al. (1984) 

Gurrundah 6.0 to 11.6 9.1 Maier (2002) 

Woodlawn 2.8 to 9.2 6.6 Ayres etal. (1979) 

Commonwealth 3.1 to 10.1 7.6 

Calula 4.0 to 7.6 6.1 References cited in Downes 
and Seccombe (2000) 

Peelwood 11.9 to 13.7 13.0 

Table 8.6 Sulfur isotopes from massive sulfide and barite deposits in the Hill End Trough and Captains 
Flat-Goulburn Trough. Refer to Figures 2.5 and 2.6 for the location of these deposits. 

Lead isotopes  

Ore deposit studies have traditionally used lead isotopes to: 

• determine the model age of mineralising events; 

• interpret the composition and age of the source reservoir; and 

• constrain the geological history of the deposit (Franklin et al., 1981). 

Regional-scale studies compare the Pb isotope ratios in sulfides, orthoclase and detrital 

minerals to identify favourable horizons (Gulson, 1977), evaluate prospects 

(Delevaux et al., 1967) and determine the source of Pb (Carr et al., 1995) in areas surrounding 

existing deposits. 

Chemical and physical processes responsible for fractionation of U, Pb and Th isotopes 

include partial melting, separation of a fluid phase from a magma, metamorphism, deformation 

and weathering (Faure, 1977; Gulson, 1986). During partial melting, U and Th remain in the 
217 



Chapter 8 - Stable and Radiogenic Isotope Geochemistry 

melt and become concentrated in evolved silicic rocks relative to primitive rocks (Faure, 1977). 

Therefore, the crustal and mantle reservoirs are likely to have significantly different Pb isotope 

ratios due to fractionation and unique geological histories. 

Terrain-specific models have been developed to date individual deposits and metallogenic 

events. Can et al. (1995) relied on well constrained Pb isotopes from sulfides and igneous 

rocks together with Ar-Ar ages to construct mixing isochrons between the Lachlan Fold Belt, 

crustal and mantle growth curves. The following section reviews the results of Carr et al. 

(1995) and highlights the implications for the source of Pb in Late Silurian massive sulfide 

deposits such as Lewis Ponds. 

Lead isotopes in the Lachlan Fold Belt 

The Pb isotope signature of hydrothermal deposits in the LFB appear to reflect the age of the 

host rock, source of Pb and the type of deposit. Epithermal and porphyry Cu-Au occurrences 

in the Ordovician shoshonitic volcanics have variable 02 6pb/204
Pb (17.68-18.21) and very low 

207pb/204Pb 
(15.40-15.49) and 208Pb/204rb (37.21-37.83) values. The deposits lie along linear 

arrays, interpreted to indicate mixing of Pb from two or more mantle reservoirs (Fig. 8.7). 

In contrast, Pb-Zn-rich massive sulfide deposits hosted in Late Silurian felsic volcanic rocks 

have a more radiogenic Pb isotope signature. The restricted range ofo2 7pb,204-•-,+ / no (15.56-15.63) 

and 208Pb/204Pb (37.95-38.22) values indicates a relatively homogenous crustal source of Pb. 

At Lewis Ponds, 02 	' 
YID/

204  Pb = 18.05-18.08, 207.-..204 ' r ID/ Pb = 15.56-15.60 and 208pbpoapb  _ 37.98- 

38.07 (Fig. 8.7). The majority of analyses from Lewis Ponds drill core samples plot within a 

95% confidence interval ellipse, in the Silurian VHMS field of Can et al. (1995). 

Stratabound massive sulfide deposits in the Hill End and Captains Flat-Goulburn troughs occur 

in two groups, with model ages of 450-400 Ma (Carr et al., 1995). John Fardy, Peelwood, 

Sunny Corner and Lewis Ponds plot near the crustal growth curve on the 207Pb/204Pb versus 
206p. '204 Pb diagram. Mt Bulga, Calula, Wisemans Creek, Mt Shorter and Pride of the Hills 

have lower, less radiogenic 02 7pb/204pb and  208p ,  '204 
11/ Pb values, and plot along steep, inferred 

mixing trend lines. 

The Late Silurian massive sulphide deposits have a strong crustal Pb isotope signature due to 

magmatic assimilation of crustal rocks or the circulation of hydrothermal fluids. Deposits with 

a less radiogenic Pb isotope signature, including Mt Bulga, Calula, Wisemans Creek, 

Mt Shorter and Pride of the Hills contain a mixture of Pb, sourced from primitive mantle-

derived rocks and a homogeneous crustal reservoir. 
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Deposit  type 

I 	I Devonian granite-related 

I I Devonian VHMS 

Silurian VHMS 

Silurian-Devonian Cu-Au 

Ordovician Beasts 

Ordovician Cu-Au 

Massive  sulfide deposit 

* Lewis Ponds - Main zone 

# Lewis Ponds - Toms zone 

• Lewis Ponds - Lady Belmont 

X 	Calula 

+ Mt Bulga - gossans 

* Mt Bulga - sulfides 

• Mt Shorter & Pride of the Hills 

O Wisemans Creek 

O John Fardy 

* Peelwood 

0 Sunny Corner 

Figure 8.7 Plots of Pb isotope data from polymetallic massive sulfide deposits in the Hill End and 
Captains Flat-Goulburn troughs combined with the plumbo-tectonic model of Carr etal. (1995) for the 
Lachlan Fold Belt in New South Wales. Mineral deposit fields are from Carr et al. (1995). Mt Shorter 
and Pride of the Hills samples are from an unpublished company report. All other data are from 
Carr et al. (1995). Analyses from Lewis Ponds are highlighted in red. Refer to Figures 2.5 and 2.6 for 
location of massive sulfide deposits. 
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Metal ratios and metal distribution  

The Zn ratio, 100[Zn/(Zn+Pb)] and Cu ratio, 100[Cu/(Cu+Zn)] allows massive sulfide deposits 

to be differentiated using the relative metal content (Lydon, 1984; Large, 1992; Antony, 1999). 

Huston and Large (1987) highlighted the geochernical significance of base metal ratios and 

their relationship to the mineralising fluid. 

Massive sulfide lenses at Lewis Ponds have a restricted range of Zn ratios, with average values 

of 60 to 68 and standard deviations of less than 11 (Figs. 8.8 and 8.9). Areas dominated by 

disseminated sulfides and syn-tectonic quartz-sulfide veins, including Lady Belmore zone, 

New Lewis Ponds, Toms zone hangingwall and the extremities of Toms zone have widely 

distributed Zn ratios with more variable averages, and higher standard deviations. The assay 

data define lines of constant Zn ratio on Zn versus Pb scatter plots (Fig. 8.9). Data from the 

Central massive sulfide lenses occur on a line represented by the equation, Zn 1.5Pb. 

However, trend lines from New Lewis Ponds and Lady Belmore zone have variable 

orientations given by Zn = 1.5Pb to Zn = 2.6Pb. 

Similar trends exist in the Cu ratios at Lewis Ponds. The massive sulfide lenses have 

consistently low average values of 4 to 9 (Fig. 8.10). Copper ratios in the Lady Belmore zone, 

New Lewis Ponds and outer low-grade extensions of Toms zone are higher and more variable, 

with average values of 10-30 and standard deviations ranging from 12 to 30. Copper 

enrichment is greatest in the Footwall Cu zone and Toms zone footwall. 

The tight distribution of Zn and Cu ratios in the massive sulfide lenses at Lewis Ponds 

compare closely with values occurring at Australian and Canadian Zn-Pb-Cu-rich VHMS 

deposits (Lydon, 1984; Huston and Large, 1987). Huston and Large demonstrated that 

Zn ratios reflect temperature and salinity of the mineralising fluid. For a given salinity, a 

solution saturated in Zn and Pb will deposit massive sulfide with a unique ratio at a particular 

temperature. Assuming the involvement of chloride complexes, Zn ratios in the resulting 

massive sulfide will decrease with increasing temperature. 

At Lewis Ponds, the highly variable Zn ratios occurring in areas dominated by syn-tectonic 

quartz-sulfide veins partly reflect the extremely low average metal grades; less than 2% 

combined Cu+Zn+Pb. However, fluctuations in fluid chemistry within the Lewis Ponds fault 

zone may have controlled the dissolution rate of metals in the source rock and the level of Cu, 

Pb and Zn saturation in the fluid. Since type 3 and type 4 quartz veins resulted from brittle 

failure over an extended period, the temperature and salinity of fracture-controlled fluids 

migrating through the fault zone may have varied considerably. 
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Figure 8.8 Zn ratios from the massive sulfide lenses at Main zone and Toms zone, and from areas of 
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>0.05% Zn and >0.05% Pb are included. Mean and standard deviation are presented for each 
mineralised zone. 
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Figure 8.9 Scatter plots of Zn ratio versus total Zn and Pb versus Zn, using the same assay data as in 
Figure 8.8. 
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Discussion: source of metals 

The massive sulfide lenses in Main and Toms zones have relatively homogenous S and Pb 

isotopic compositions. Zn-Pb sulfides precipitated from the hydrothermal fluid over a similar 

range of temperatures, resulting in tightly distributed Zn ratios. Sulfur isotopes indicate that 

the fluid contained magmatic S and a component of reduced seawater sulfate. The 

hydrothermal fluid may have therefore leached metals out of the underlying Late Silurian, 

rhyolitic and dacitic volcanic host rocks. Direct input of a reduced, high temperature 

magmatic fluid could have also contributed metal chloride complexes to the solution. The 

chemistry of the mineralising fluid and conditions of massive sulfide deposition are discussed 

in Chapter 9. 

The syn-tectonic quartz-sulfide veins appear to result from younger, fracture-controlled 

hydrothermal fluids with variable chemistry, migrating through the Late Silurian, volcanic-

sedimentary package, during the D I  deformation (Middle Devonian to Early Carboniferous). 

Pyrite, sphalerite, galena and chalcopyrite occurring in the veins have similar 8 34S values to 

the massive sulfide. The S isotopes, metal ratios and overall metal grades indicate that sulfides 

were leached out of the massive sulfide lenses and mineralised host rocks. 

The Pb isotopic signature of Late Silurian, stratabound Zn-Pb deposits in New South Wales 

reflects the host rock composition and source of metals. Can et al. (1995) demonstrated that 

Au-rich massive sulphide deposits, located close to the structural boundary of the sedimentary 

troughs including Wisemans Creek, Mt Bulga and Calula contain a greater component of 

mantle-derived Pb than the more radiogenic deposits. This interpretation is consistent with 

Wyborn et al. (1992), who predicted that Au-rich massive sulfide deposits would occur in 

areas where Late Silurian hydrothermal systems penetrated into the underlying Ordovician 

shoshonitic rocks. 
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CHAPTER 9 

GENETIC MODEL AND DISCUSSION 

9.1 	Introduction 

The distribution of hydrothermal alteration mineral assemblages, geochemical trends, sulfide 

mineralogy and textures in Main and Toms zones indicate that Lewis Ponds is a strongly 

deformed, stratabound VHMS deposit with characteristics that are intermediate between 

VHMS and carbonate-hosted replacement deposits. Table 9.1 summarises the major features of 

the two mineralised zones outlined in previous chapters. Other critical observations that relate 

to the genesis of the deposits are listed below: 

1. The polymictic breccia, pebbly-granular sandstone and siltstone units that host the massive 

sulfide lenses overlie a thick footwall succession of massive quartz-plagioclase phyric dacite 

and syn-sedimentary porphyritic dacite intrusions. 

2. The massive sulfide lenses are surrounded by an asymmetric, semiconformable hydrothermal 

alteration envelope characterised by Mg, Fe, S, Ba and K enrichment and Na depletion. 

Texturally destructive chlorite-dolomite-talc, quartz-dolomite-chlorite and quartz-sericite ± 

hyalophane assemblages occur within the polymictic breccia, pebbly-granular sandstone and 

siltstone units. 

3. Coherent porphyritic dacite in the immediate footwall of Main zone has not undergone 

significant hydrothermal alteration or mass change (Table 6.2, Fig. 6.10). However, strong 

pervasive sericite and chlorite assemblages,extend several hundred metres into the footwall 

volcanic succession south of Main zone (Figs. 5.2 and 5.3). Chlorite-pyrite grades outward into 

sericite-quartz ± chlorite with distance from the Toms Central lens. 

4. Bladed, dendritic, reticulate, botryoidal, spongy and framboidal aggregates of pyrite and 

pyrrhotite occur throughout the breccia, sandstone and siltstone in Main zone and rarely in 

Toms zone. These aggregates have been overgrown and partly replaced by base metal sulfides. 

5. The Toms Central massive sulfide lens occurs within a 200-250 m wide corridor of 

anastomosing high strain zones. Quartz-sulfide shear and extension veins surround the massive 
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sulfide lens. These veins formed by brittle failure and extension in the strongly foliated host 

rocks, during and after cleavage development (see Chapter 4, section 4.5). Other features 

resulting from brittle and ductile deformation include pinch-and-swell structures, kink folds, 

cataclastic breccia, gash veins, tear faults and cleavage-aligned sulfide aggregates. 

Main zone Toms zone 

Overall: 

10-15 m thick, 500x200 m long 
Central massive sulfide lens 

Stratabound 

Polymictic limestone-clast breccia, 
mixed provenance breccia, pebbly-
granular siltstone and sandstone 

Qtz-plag phyric dacite cryptodome 
and associated peperite facies 

5 m thick, 600x200 m long 
Central massive sulfide lens 

Fault-bound ± stratabound 

Siltstone & minor sandstone 

Massive dacite & qtz-plag phyric 
dacite sills 

Size and geometry 

Type 

Host rock 

Interpreted footwall 
volcanic facies 

Alteration: 

Asymmetric, conformable, texturally 
destructive assemblages confined to 
breccia-sandstone unit 

Qtz-dol-chl, dol-chl-tic and chl-py in 
breccia unit 

Fe, Mg, Ba, Sr, As, S, TI 

Asymmetric, stratabound, strongly 
developed, semiconformable to 
discordant chlorite-sericite envelope 
extending into footwall volcanic 
succession 	, 
Qtz-ser ± hly, dol-chl-tic and chl-py 
grading out into ser-qtz ± chi in FW 

Fe, Mg, Ba, Sr, As, S, Zn ± K 

Envelope geometry 
and distribution 

Assemblages 

Element enrichment 
surrounding massive 
sulfide lens 

Sulfides: 

Py, sph, ga, ccp, td, as, po, st, pg, 
electrum 

More po than Toms zone 

Banded py-sph-ga, massive po-ccp, 
semi-massive to disseminated 
sulfides, mineralised limestone clasts 

Primitive textures (framboidal, 
dendritic, botryoidal, encrustation), 
vuggy and recrystallised textures 

Py, sph, ga, ccp, td, as, st, tn, pg 

More st, td, sph, ga & as than Main 
zone 

Banded py-sph-ga, massive py, semi-
massive to disseminated sulfides, qtz-
sulfide veins, dol-sulfide veins 

Annealed, coarse-grained sulfides, 
cataclastic breccia, kink folds and 
pinch-and-swell structures and rare 
primitive textures 

Observed mineralogy 

Relative modal 
abundance 

Sulfide associations 

Sulfide textures 

Metal zonation: 

None observed 

Higher Au ± Ag, Sb, Hg grades 
toward the top of the Central lens and 
throughout the HW lens 

Lower Cu, Pb, Zn & Ag grades along 
L.P. fault, away from massive sulfide 

Higher Cu ± Ag, Sb, Sn, Mo grades 
in the lower 1-2 m of the Central lens; 
progressive upward increase in Bi 

Lateral 
(along strike) 

Vertical 
(from FW to HW) 

Table 9.1 Comparison of Main zone with Toms zone. Mineral abbreviations: qtz = quartz, 
plag = plagioclase, dol = dolomite, chl = chlorite, ser = sericite, tic = talc, hly = hyalophane, py = pyrite, 
sph = sphalerite, ga = galena, ccp = chalcopyrite, td = tetrahedrite, tn = tennantite, as = arsenopyrite, 
po = pyrrhotite, St = stannite, pg = pyrargyrite Bi = native bismuth. 
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6. Type 1 quartz-pyrite and carbonate-chalcopyrite-pyrite veins (see Chapter 4, section 4.5) in 

the Toms zone footwall and Footwall Copper zone probably represent pre-tectonic stringers. 

However, the relative timing of vein emplacement and massive sulfide deposition is uncertain 

as the type 1 veins are displaced along strike from Toms zone, and the host sedimentary rocks 

are tightly folded (Figs. 5.2 and 5.3). The stringer zone may have formed above syn-volcanic 

extensional faults within the footwall. 

7. Trace element distribution among sulfides varies between the mineralised zones 

(Table 9.2). Galena grains in the Footwall Copper zone have significantly higher average Se, 

Ag, Bi and Fe concentrations than those in the massive sulfide. Sphalerite grains in Main zone 

contain less Mn and Cd than those in Toms zone. These variations are interpreted to reflect the 

chemistry and temperature of the mineralising fluid (see Chapter 7, sections 7.10 and 7.11). 

Mineral Main zone Toms zone FW Copper zone 
Avg. N MDL Avg. N MDL Avg. N MDL 

Sphalerite Cd 540 23 100 420 15 100 1 540 8 100 
Mn 590 23 100 1 640 15 100 880 8 100 

Galena Fe 1 250 20 40 330 16 12 1 200 17 47 
Se 900 20 75 2 030 16 81 16 450 17 100 
Ag 1 700 20 100 1 750 16 100 7 170 17 100 
Bi 2 700 2 100 2 750 2 100 28 760 14 100 

Table 9.2 Average trace element concentrations in sulfide minerals (all in ppm). N is the number of 
microprobe analyses. MDL is the percentage of analyses above the minimum detection limit. 

In this chapter, a genetic model for the formation and post-depositional modification of the 

Lewis Ponds deposits is presented by considering the source of metals, composition and 

temperature of the hydrothermal fluids and the factors that controlled metal deposition at the 

trap site. Comparisons are made between Lewis Ponds and other stratabound massive sulfide 

deposits both within the Lachlan Fold Belt and worldwide. 

9.2 	Sea floor exhalative or sub-sea floor replacement origin 

Main zone 

Mineralogical, geochemical and textural evidence presented in chapters 5, 6 and 7 indicate that 

Main zone formed by lateral fluid flow and sub-sea floor replacement of the permeable, pebbly-

granular sandstone and polymictic breccia in the Transitional Unit. Chlorite, dolomite, talc, 

phlogopite and sulfides occur throughout the sandstone and breccia matrix. Intervals of massive 

siltstone in the Main zone footwall are weakly altered and devoid of base metal sulfides. A 

weak to moderate pervasive sericite-chlorite-calcite assemblage has overprinted the footwall 

volcanic rocks, indicating minimal fluid-rock interaction. Facies variations in the Transitional 

Unit controlled the distribution of hydrothermal alteration assemblages. The more permeable, 
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coarse-grained breccia and sandstone units were aquifers for hydrothermal fluids. Chlorite, 

dolomite, talc and sulfides have partly to completely replaced the lithic clasts and matrix of the 

breccia. Irregular honeycomb, vuggy, botryoidal and encrustation sulfide-dolomite textures 

(Figs. 5.5C, 5.14 and 7.10) resulted from dissolution of the massive dolomite and unimpeded 

growth of dolomite, calcite, quartz, chlorite, talc, sphalerite, pyrite, chalcopyrite, tetrahedrite 

and galena into open cavities (vugs and channels). Clastic sulfide textures, indicative of 

erosion and re-working of an exposed massive sulfide lens do not occur in Main zone. Brittle 

deformation has produced pseudoclastic textures within arsenopyrite and pyrrhotite aggregates. 

Toms zone 

Toms zone may represent either a sea floor exhalative or sub-sea floor replacement deposit. 

Siltstone, hosting the Central massive sulfide lens was deposited in a relatively quiet, deep 

water environment which may have allowed the preservation of a sea floor massive sulfide lens. 

However, there are no constraints on the relative position of the sea floor during mineralisation 

at Lewis Ponds. Recrystallisation and annealing would have destroyed any primary elastic 

sulfide textures. The apparent absence of barite in Toms zone is not necessarily indicative of a 

sub-sea floor environment of formation because the massive sulfide lens is surrounded by a 

symmetrical halo of anomalous Ba (0.1-1.9 wt %) and primitive sulfide textures are not 

preserved. Furthermore, the replacement of bladed barite or anhydrite crystals by pyrrhotite in 

Main zone, indicates sulfate reduction after deposition of the sediment. 

VHMS deposits are commonly overlain by chemical sediments resulting from exhalation of 

hydrothermal fluids on the sea floor or mixing between hydrothermal fluids and seawater in 

unconsolidated sediments (Ohmoto et al., 1983; Lydon, 1988; Large, 1992). At Lewis Ponds, 

jasper lenses crop out discontinuously around the margins of the Western and Eastern volcanic 

successions (see Chapter 5, section 5.4). Anomalous Zn and Tl concentrations in one sample 

from the Toms zone hangingwall (LPD014, Appendix 4) may indicate submarine exhalative 

activity. Very low immobile element concentrations suggest that the jasper does not represent 

an altered volcanic or sedimentary rock. Jasper occupied a discrete horizon in the Lewis Ponds 

facies model proposed by Valliant and Meares (1998). However, faults and tight folds separate 

the jasper from the massive sulfide lenses, thereby limiting any genetic interpretation. 

9.3 	Temperature and chemistry of the hydrothermal fluids 

In the following section, mineral assemblages, textures and paragenetic relationships are used to 

infer the temperature and pH of the hydrothermal fluids at Lewis Ponds, the redox conditions 

and the mechanisms of sulfide deposition. These interpretations rely on published 

thermodynamic modelling studies and genetic models of VHMS deposits. Mineral 
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assemblages, metal zonation, paragenetic relationships and theoretical thermodynamic models 

help to constrain the: solubility of metals in hydrothermal fluids; pH, oxidation and 

temperature conditions from which metals precipitate; and partitioning of trace elements 

among sulfides. 

Temperature of the fluids 

Fluid inclusions provide the most direct evidence for the temperature of mineralising fluids. 

These were rarely preserved in the strongly deformed and recrystallised massive sulfide at 

Lewis Ponds. However, zoned dolomite crystals occurring in the mineralised host rocks 

contain primary two phase liquid-vapour inclusions with pressure corrected homogenisation 

temperatures of 166-232°C (for 1 000 m water depth). The spheroidal and anhedral dolomite 

aggregates may have formed at temperatures as low as 50-60°C (eg. Radke and Mathis, 1980; 

Gregg and Sibley, 1984). Dolomitisation at Lewis Ponds probably occurred during diagenesis 

and low temperature hydrothermal alteration, prior to and during mineralisation. Both fluid-

rock interaction and fluid mixing models indicate that dolomite in Toms zone precipitated at 

higher temperatures than dolomite in Main zone, despite little variation in fluid inclusion 

homogenisation temperatures (see Chapter 8). 

Many VIIMS deposits show a characteristic upward and/or outward decrease in Cu/(Cu+Zn) 

ratio and chalcopyrite abundance (Large, 1977; Solomon and Walshe, 1979; Eldridge et al., 

1983; Hannington et al., 1999a). This zonation is thought to result from progressive cooling of 

high temperature fluids introduced into the footwall stockwork zone and lower parts of the 

massive sulfide lens (Ohmoto et al., 1983; Lydon, 1988; Large et al., 1989; Hannington et al., 

1999a). Textural and fluid inclusion studies in the Kuroko deposits suggested that 

temperatures in the hydrothermal system progressively increased, reached a thermal maximum 

and then decreased (Eldridge et al., 1983; Pisutha-Arnond and Ohmoto, 1983). 

Metal solubilities in hydrothermal fluids are dependent on temperature (Sato, 1973; Large, 

1977; Ohmoto et al., 1983; Hannington et al., 1999a). Low temperature fluids (<280°C) carry 

Zn, Pb and Ag as bisulfide or chloride complexes. Copper is only soluble in higher temperature 

(>300°C) fluids with low pH. A temperature-solubility model for the Kidd Creek deposit 

predicted that sphalerite and galena were saturated in the fluid at 150-250°C whereas 

chalcopyrite became saturated at 350°C (Hannington et al., 1999a). In the genetic models of 

Eldridge et al. (1983) and Huston and Large (1989), high temperature Cu-rich fluids leach 

sphalerite and galena from the base of the massive sulfide lens and deposit chalcopyrite. As 

the upward-migrating fluid cools, sphalerite, galena, and barite precipitate in outer parts of the 

massive sulfide lens. 
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At Lewis Ponds, the massive sulfide consists of pyrite, sphalerite, galena and tetrahedrite. 

Chalcopyrite and pyrrhotite have locally overprinted the Zn-Pb sulfide in Main zone. 

Pre-tectonic to early syn-tectonic dolomite-chalcopyrite-pyrite veins and chalcopyrite stringer 

veins occur throughout the Toms Central massive sulfide lens and Footwall Copper zone 

respectively. The Zn-Pb-Au-Ag-rich massive sulfide probably resulted from relatively low 

temperature, 150-250°C fluids. A late high temperature, >280°C, acidic fluid may account for 

the chalcopyrite-rich assemblages in the massive sulfide lenses and Footwall Copper zone. 

Fluid pH  

Alteration mineral assemblages surrounding VHNIS deposits reflect temperature, composition 

and pH of the hydrothermal fluid and the amount of fluid-rock interaction (see Chapter 5, 

section 5.8). Recent thermodynamic modelling by Schardt et al. (2001) suggested that high 

temperature (250-350°C), weakly acidic (pH = 4.5-5.5) fluids produce the characteristic 

mineral zonation of chlorite grading out into sericite-quartz, observed in the footwall of many 

VHMS deposits. An asymmetric envelope of sericite and Mg-chlorite surrounds the Toms 

Central massive sulfide lens and Lady Belmore zone. Mg-chlorite also occurs throughout the 

polymictic breccia and pebbly-granular sandstone in Main zone. Pervasive chlorite-sericite 

alteration of the footwall volcanic succession probably resulted from fluid-rock interactions 

involving a weakly acidic, Mg-bearing hydrothermal fluid (Fig. 9.1). However, dolomite, 

calcite and primary fossiliferous limestone clasts in the host sedimentary rocks may have 

buffered the fluid pH at the site of massive sulfide deposition. 

I 	 I  3.5 	4.5 	5.5 	6 	6.5  

pH 

Figure 9.1 Stability fields of muscovite and chlorite as a function of pH and temperature, based on 
thermodynamic modelling, after Schardt et al. (2001). Calculated using the following activities: 
Mg2+  = 0.017 and K+  = 0.051. 

Pyrite, sphalerite and galena aggregates are associated with very fine-gained type 1 dolomite 

and medium to very coarse-grained type 2 rhombic dolomite crystals. In the Main zone host 

rocks, irregular honeycomb, vuggy and botryoidal sulfide-dolomite textures resulted from 

dissolution and precipitation of dolomite during mineralisation (eg. Figs. 5.14 and Fig. 5.5C). 

These textures are poorly preserved in Toms zone due to the strong foliation, pinch-and-swell 
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structures and abundance of quartz. The dissolution of dolomite by acidic hydrothermal fluids 

(Equation 1), results in the production of a weak acid containing H2CO3, Ca2+  and Mg2+  ions: 

MgCa(CO 3 )2(s)  + 4H +  = 2H 2 CO300  + Mg (2a+0  + Ca (2a+0 	
(1) 

Lead and Zn occur in saline, weakly acidic fluids as chloride complexes, for example: 

ZnCl°(aq) + H 2 S(aq) = ZnS (s) + 2H+aq)  + 2C1 (-aq) 2 	 ( 	 (Huston and Lage, 1989) 	 (2) 

PbC1 °  + H S = PbS + 2H +  + 2C1 -  2(aq) 	2 (aq) 	(s) 	(aq) 	(aq) 	 (3) 
Equations 2 and 3 indicate that sulfide deposition may result from increased fluid pH, dilution 

or increased activity of reduced S. Therefore, the dissolution of dolomite and precipitation of 

Zn-Pb-rich sulfide in Main zone is summarised by combining Equations 2 and 3 with 1: 

2ZnCl°200  +2 H 2Soo  + MgCa(CO3 )2(s)  = 2ZnS(S)  + 2H 2CO300  + Mg (2a+0  + Ca (2a+0  + 4C1 (-ao  (4) 

2+ 	2+ 2PbC1°2(aq)  ± 2 H 2 Soo  + MgCa(CO3 )2(s)  = 2PbS (S)  + 2H 2 CO300  + Mg )  + Laoo  + 4CI (-ao  ( 5 ) 

The role of increased fluid pH on massive sulfide deposition in Main zone was tested using a 

simple thermodynamic model in Geochemist's Workbench version 3.2. This involved 

progressively reacting 600 mg of dolomite with an acidic, 250°C fluid (Figs. 9.2 and 9.3). The 

initial fluid composition chosen for this model was similar to hydrothermal fluids currently 

venting in the Okinawa Trough. It also contained seawater concentrations of Mg 2+00  and 
HCO3-00 . Pyrite, sphalerite, galena and talc precipitated over a pH range of 4.5 to 5.5 due to 

dolomite dissolution and increased fluid pH (Fig. 9.3). During the final part of the titration 

experiment, dolomite precipitated as the fluid approached equilibrium with the reactant 

carbonate. 

Command 
T = 250 
pH =3 
Na+ = 0.4 molal 
Ca++ = 0.02 molal 
Mg++ = 0.01 molal 
Fe++ = 0.0001 molal 
Cl- = 0.5 molal 
HCO3- = 0.002 molal 
SO4-- = 0.01 molal 
02(aq) = 0.000001 molal 
Si02(aq) = 0.013 molal 
Zn++ = 0.00003 molal 
Pb++ = 0.000001 molal 
swap H2S(aq) for SO4-- 

Annotation 
Fluid temperature 
Fluid pH 

Starting fluid composition 

Converts all SO4002-  to H2S( aq) 

Fig. 9.2 Script entered into Geochemist's Workbench for simple titration experiment. 
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Fig. 9.2 continued. 
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Command  
suppress Tremolite 
suppress Anthophyllite 
suppress Enstatite 
suppress Tridymite 
suppress Antigorite 
suppress Chrysotile 
suppress Anhydrite 
fix 02(g) 

flow-through 

react 600 mg Dolomite 
go 

Annotation 

Prevents minerals from precipitating 

Fixes the oxygen fugacity 
Removes precipitated minerals from the 
system so they cannot be dissolved 
Mass of dolomite reacted 

200 	 400 
dolomite reacted (mg) 
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Figure 9.3 Modelled titration paths resulting from the reaction of an acidic (pH=3), 250°C hydrothermal 
fluid with 600 mg of dolomite under 40 bars pressure. The hydrothermal fluid composition is similar to 
modern vent fluids in the Okinawa Trough (references cited in de Ronde, 1995): 500 mmolal Cr, 
400 mmolal Na+ , 20 mmolal Ca2+ , 13 mmolal Si0200 , 3.5 mmolal H2Sequiv., 	,umolal Zn2+  and 
1 ,umolal Pb2+ . The fluid also contains seawater concentrations of Mg 2+  (10 mmolal ) and 
HCO3 -  (2 mmolal). Precipitation of pyrite, sphalerite, galena and talc takes places over a pH range of 
4.5 to 5.5. Dolomite precipitates at a pH of 5.5. Horizontal lines indicate saturation of the minerals in the 
fluid. Modelled in Geochemist's Workbench version 3.2. The program re-calculates equilibrium 
conditions in the fluid after each titration step. 
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Redox conditions in the basin and at the site of massive sulfide deposition  

Marine sedimentary facies in the Mumbil Group (Pogson and Watkins, 1998) record 

progressively deepening conditions along the margin of the Hill End Trough during the Late 

Silurian. At Lewis Ponds, siltstone grades laterally into carbonaceous mudstone / black shale 

along strike south of Toms zone and vertically into mudstone beds north of Main zone 

(see Chapter 3, section 3.5). Disseminations of pyrrhotite occur throughout siltstone and 

sandstone beds in the Hangingwall Siltstone Unit and Transitional Unit. Disseminated 

pyrrhotite may reflect the activity of S reducing bacteria during early diagenesis. Therefore, 

reduced conditions probably existed in the basin after deposition of the host sediments. 

A symmetrical halo of anomalous Ba (0.1-1.9 wt %) surrounds the massive sulfide lenses in 

Main and Toms zones. High Ba concentrations in the Toms zone footwall are associated with 

hyalophane (Ba,K,Na(A1,SO408) rather than barite (BaSO 4). However, orthorhombic 

pyrrhotite crystals and rectangular quartz aggregates (eg. Figs. 7.7B and 7.9D) have replaced 

paragenetically early twinned barite or anhydrite crystals in the breccia and sandstone beds in 

Main zone. The apparent absence of barite at Lewis Ponds therefore indicates low SO 42-  

concentrations in the depositional environment and/or post-depositional replacement of sulfate 

by Fe-sulfides and quartz. 

Sulfide assemblages provide information about redox conditions during massive sulfide 

deposition. Paragenetically early dendritic, botryoidal, and framboidal aggregates of pyrite 

and pyrrhotite occur in the Transitional Unit in Main zone and rarely in the Hangingwall 

Siltstone Unit. Pyrite and pyrrhotite in the Main zone Central massive sulfide lens and 

Footwall Copper zone indicate that sulfides were deposited under a narrow range of oxygen 

fugacity conditions, within the pyrite and pyrrhotite stability fields (Fig. 9.4). The apparent 

lack of pyrrhotite in the Toms Central massive sulfide lens suggests mineralisation in a slightly 

more oxidised environment, possibly closer to the sea floor. 

Tetrahedrite and galena occur throughout the massive sulfide lenses at Lewis Ponds. The 

tetrahedrite contains significantly more Ag than the galena (see Chapter 7, section 7.10). 

Huston et al. (1996) studied the geochemical controls on Ag distribution in eastern Australian 

VHMS deposits. Silver preferentially fractionates into tetrahedrite rather than galena in 

relatively low temperature, more oxidised environments. The relative abundance of 

tetrahedrite at Lewis Ponds (up to 2 modal % in Toms zone) suggests that mineralisation 

occurred in a slightly lower temperature, more oxidised environment than the source region of 

the hydrothermal fluid. 
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Figure 94 Log f02  versus pH diagram showing stability fields of Fe-oxides, Fe-sulfides, carbonate 
minerals and aqueous carbonate species at 250°C and 100 bars pressure. Shaded area represents possible 
pH and f02 conditions during massive sulfide deposition at Lewis Ponds. Vuggy textures in the Main 
zone Central lens indicate that dolomite precipitated with pyrite and sphalerite. Based on the following 
concentrations (all as log activity): Mg 2+  = -2.5, Ca2+  = -3, HCO 3" = -3, SO42" = -2.5, Fe2+  = -5. 

The massive sulfide lenses have anomalous Sn concentrations (Tables 7.4 and 7.5). Most of the 

Sn occurs in sphalerite, chalcopyrite and stannite (see Chapter 7, section 7.10). Mymelcitic and 

oriented intergrowth, emulsion textures (eg. Fig. 7.7 D) indicate that at least some of the 

stannite exsolved from Sn-rich sphalerite during gradual cooling (eg. Ramdohr, 1979; Nelcrasov 

et al., 1981). Angular stannite inclusions in chalcopyrite aggregates probably resulted from the 

rearrangement of grain boundaries and expulsion of stannite during recrystallisation. 

Tin-rich VHMS deposits including Kidd Creek in the Abitibi subprovince, Canada; Gecko, 

Ontario, Canada and Neves-Corvo in the Iberian Pyrite Belt and modern seafloor deposits in the 

Escanaba Trough are characterised by low Au grades and low f02 mineral assemblages 

containing pyrrhotite, arsenopyrite, siderite, cassiterite and/or stannite (Petersen, 1986; 

Zienberg et al., 1993; Hannington et al., 1999a). At 250°C, Sn is transported as chloride 

complexes under reduced, acid conditions (Petersen, 1986; Hannington et al., 1999a), whereas 

Au and Ag are soluble in more oxidised, acid to near neutral hydrothermal fluids (Seward, 

1976; Huston and Large, 1989; Huston et al., 1996). Consequently, Sn-rich VIEVIS deposits 

typically have low Au grades. 

Stannite would not have co-precipitated with galena, tetrahedrite and electrum in the massive 

sulfide lenses at Lewis Ponds. The stannite occurs mostly in pre-tectonic to early syn-tectonic, 

type 2 dolomite-chalcopyrite-pyrite veins within Toms zone. Trace amounts occur in the 

massive sulfide in Main and Toms zones. A late high temperature, highly reduced fluid either 

introduced Sn into the system or remobilised Sn out of recrystallised sphalerite and chalcopyrite 

aggregates in the massive sulfide. Overall, the stannite, pyrite, pyrrhotite and Fe-bearing 
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sphalerite indicate that the massive sulfide lenses at Lewis Ponds formed under moderately to 

strongly reduced conditions. A change in redox state and the late introduction of Sn from 

hotter, more strongly reduced fluids may explain why Lewis Ponds has relatively high Sn and 

Au concentrations. 

9.4 	Source of the metals and fluids 

VHMS-forming hydrothermal systems involve convection of heated fluids deep within 

permeable submarine volcanic successions. The mineralising fluids consist of seawater, 

evolved seawater, magmatic water or a combination of fluid types (Solomon and Walshe, 

1979; Franklin et al., 1981; Pisutha-Arnond and Ohmoto, 1983; Davis et al., 1987; 

Lydon, 1996; Hannington et al., 1999a). Studies of the Kuroko deposits concluded that 

seawater-dominant pore fluids reacted continuously with the volcanic host rocks in an 

intensifying hydrothermal system (Ohmoto et al., 1983; Pisutha-Arnond and Ohmoto, 1983). 

According to Ohmoto et al. (1983), the Kuroko mineralising fluids acquired S by inorganic 

reduction of diagenetic sulfates in the volcanic host rocks. The following evidence may 

indicate involvement of a magmatic component in VHMS-forming fluids: 

• high salinity (>> seawater) fluid inclusions (Bryndzia et al., 1983); 

• high sulfidation alteration assemblages (Sillitoe et al., 1996); 

• presence of Cu-Se-Bi-Co-rich sulfide assemblages (Marcoux et al., 1996; 

Hannington et al., 1999b); 

• spatial and temporal association of most VHMS deposits with submarine felsic 

volcanic centres (Stanton, 1990; Allen, 1992; Allen et al., 1996b; Lydon, 1996): and 

• occurrence of VHMS deposits in mixed felsic and intermediate to mafic volcanic 

successions (Stolz et al., 1997). 

Determining the nature of the hydrothermal system responsible for mineralisation at Lewis 

Ponds is complicated by syn-tectonic, fracture-controlled fluids, which have significantly 

modified parts of the deposit, particularly along strike from Toms zone and in the Toms zone 

hangingwall. Highly variable Zn ratios in areas dominated by syn-tectonic quartz-sulfide veins 

may reflect fluctuations in the chemistry and temperature of fluids circulating through the host 

sequence during the D I  deformation (see Chapter 8, discussion). The following section is a 

discussion of the potential sources of mineralising fluids and metals at Lewis Ponds. 

Evidence for the involvement of seawater or evolved seawater 

Hydrothermal alteration and mineralisation at Lewis Ponds may have involved pure seawater 

or evolved seawater for the reasons outlined below: 

1. Proximal alteration assemblages contain dolomite, Mg-chlorite, talc and phlogopite. The 
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extensive Mg-rich alteration halo indicates involvement of a Mg-bearing hydrothermal fluid. 

Limestone clasts and dolomite were a potential source of Mg 2÷  ions in the host sediment. 

Least altered felsic volcanic rocks in the footwall only contain 0.9-2.6 wt % Mg. However, 

deeply circulating hydrothermal fluids potentially leached Mg 2+  out of the Ordovician, mafic 

and ultramafic volcanic basement rocks. Seawater may have also contributed Mg2+  to the 

hydrothermal fluid. Schardt et al. (2001) demonstrated that chlorite precipitates from fluids 

carrying as little as 400 ppm Mg, whereas seawater typically contains 50,000 ppm Mg 

(eg. de Ronde, 1995). 

2. Paragenetically early, very fine-grained dendritic, reticulate and spongy textures occurring 

in the Main zone Central lens indicate limited crystal growth and quenching of a 

supersaturated fluid. This probably resulted from rapid mixing between the hydrothermal fluid 

and cooler pore fluids (eg. seawater) in the matrix of the breccia, sandstone and siltstone. 

3. Rectangular quartz aggregates (Fig. 7.9D) and orthorhombic bladed pyrrhotite crystals in 

Main zone are interpreted as pseudomorphs of barite or anhydrite. Sulfate minerals occur 

abundantly throughout well preserved, modern and ancient sea floor exhalative VHMS 

deposits (see section 7.8, Chapter 7). Sulfate-rich crusts and chimneys are thought to result 

from mixing between the hydrothermal fluid and seawater (eg. Zienberg et al., 1993). 

4. Sulfur isotope values in the massive sulfide (8 34S = 1.7-5%0) and chalcopyrite stringer veins 

(834S = 3.9-7.4%0) indicate that the hydrothermal fluid probably contained a minor component 

of partially reduced seawater sulfate. Fluids may have leached this S from the host volcanic 

and sedimentary rocks. 

5. Fluid inclusion and stable isotope data indicate that the dolomite precipitated from a low 

temperature (166-232°C for 1000 m water depth), weakly saline (1.4 to 7.7 eqiv wt % NaC1) 

fluid that was possibly depleted in 0 and C isotopes ( 180 = -2.5 to 0.3%0, 8 13C = -14 to -4%0). 

Dolomitisation may have resulted from reactions between the limestone-bearing host sediment 

and evolved seawater at 150-250°C, and/or mixing between heated pore fluids at 100°C and 

evolved seawater at 350°C. 

Evidence for the involvement of magmatic fluids 

1. Type lA stringer veins in the Footwall Copper zone contain chalcopyrite, sphalerite, 

Bi-Se-rich galena and native bismuth. This assemblage was not observed in either massive 

sulfide zone. Galena grains in the stringer veins have significantly higher Fe, Se, Bi and Ag 

concentrations than those in the massive sulfide (Table 9.2). 
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Cu-Bi-Se-Co-rich stockworks underlie the Kidd Creek deposit (Hannington et al., 1999a; 

1999b) and a number of deposits in the Iberian Pyrite Belt (Marcoux et al., 1996). These 

paragenetically late chalcopyrite-bearing veins are attributed to high temperature (>300°C) 

fluids. The Se content in sulfides is not affected by recrystallisation or annealing (Huston 

et al., 1995). Trace amounts of Sc substitute for S in pyrite chalcopyrite, galena and 

tetrahedrite. Selenium is transported as volatile phases such as H 2 Se and partitioned into high 

temperature mineral assemblages (Hannington et al., 1999a). Cu-Se-rich assemblages in 

VHMS deposits are interpreted to result from the direct involvement of a reduced magmatic 

fluid (Hannington et al., 1999b; Serranti et al., 2002). 

Based on this previous work, it is possible to conclude that chalcopyrite stringer veins in the 

Footwall Copper zone at Lewis Ponds precipitated from a high temperature, moderately 

reduced (pyrite-pyrrhotite stable), Cu-Se-Bi-Ag-Pb-Zn-bearing fluid containing a magmatic 

component. These fluids may have also contributed metals to the massive sulfide lenses. A 

reduced magmatic fluid could account for high Sn concentrations in massive sulfide zones and 

Footwall Copper zone. The Toms Central lens, which is closer to the inferred source of 

magmatic fluids has higher overall Cu, Ag, Sb, Sn and Bi grades than Main zone (Table 9.1). 

However, this variation partly reflects the more massive nature of the Toms Central lens. 

2. The Lewis Ponds host sedimentary rocks were deposited in close proximity to a high-level 

intrusive dacite centre. This interpretation may provide further evidence for the involvement 

of a magmatic component in the hydrothermal fluid if mineralisation was syn-volcanic. 

Points 1 and 2, listed above, do not provide definitive evidence for the involvement of a 

magmatic fluid as seawater-dominant hydrothermal fluids circulating through the footwall 

volcanic rocks may have also acquired a magmatic signature, and the absolute age of 

mineralisation is not known. Therefore, the isotope data, mineral assemblages and textures 

tend to indicate that the hydrothermal fluid responsible for alteration and mineralisation at 

Lewis Ponds was most probably a mixture of seawater and evolved seawater. 

Source of metals 

Lewis Ponds has a radiogenic, crustal Pb isotope signature (see Chapter 8, section 8.4). 

Can et al. (1995) noted that both hydrothermal convection in felsic volcanic rocks and 

magmatic incorporation of older continental crust would produce a similar isotopic signature 

in the Late Silurian VHMS deposits of New South Wales. Of more significance was their 

suggestion that Au-rich massive sulfide deposits, located close to the structural boundaries of 

the Silurian-Devonian troughs acquired a component of primitive Pb from the underlying 
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Ordovician, shoshonitic volcanics (Fig. 2.1). These rocks host the world class Cadia and 

Endeavour porphyry Cu-Au deposits. Deeply circulating hydrothermal fluids potentially 

leached metals from the Ordovician rocks in addition to the overlying Silurian felsic volcanics. 

A magmatic fluid may have directly contributed Cu, Se, Bi, Sn, Ag, Pb and Zn to the Lewis 

Ponds deposits. However, some of these metals, eg. Ag, Sn, Zn and Pb, could also occur in the 

reduced, S-type dacitic and rhyolitic volcanic rocks in the footwall. Sulfur isotopes in the 

sulfides indicate that the hydrothermal fluid contained a component of magmatic S, derived 

from a magmatic fluid or leached from the volcanic rocks. 

Later magmatic fluids could have exsolved from the Middle Carboniferous granites. Non-

foliated quartz-feldspar porphyry dykes in the Toms zone footwall and hangingwall are 

probably genetically related to the Lewis Ponds granite (Chapter 3, section 3.9). Emplacement 

of the granite took place after cleavage development and ductile shearing. Quartz veins cutting 

the dykes in the Toms zone footwall rarely contain galena and sphalerite (Fig. 4.10 H), 

indicating minor sulfide remobilisation. 

9.5 	Genetic model 

Stage 1  

Dolomite played an important role in mineralisation at Lewis Ponds. Dolomitisation created 

secondary pore spaces and provided a reactive host, suitable for fluid-rock interactions and 

massive sulfide deposition beneath the sea floor. Dolomitc .  probably formed by reactions 

between the hydrothermal fluid and carbonate-bearing host sediment at 50-250°C or by mixing 

between heated seawater-dominant pore fluids and the hydrothermal fluid at 350°C. 

Diagenetic/hydrothermal dolomite may result from several processes. Regional dolomitisation 

involves low temperature fluid mixing at the site of sediment deposition and high temperature 

burial processes (Amthor and Friedman, 1991; Hitzman and Beaty, 1997). In modern sea floor 

exhalative deposits and ancient VHIMS deposits, hydrothermal carbonate typically occurs at the 

margins of the hydrothermal system, where fluids mix with cooler seawater in the poorly 

consolidated host sediments (Khin Zaw and Large, 1992; Goodfellow et al., 1993; Herrmann 

and Hill, 2001). 

Stage 2  

Pyrite, pyrrhotite, sphalerite, galena, tetrahedrite and electrum precipitated in the Lewis Ponds 

host sequence from a relatively low temperature, 150-250°C reduced fluid (Fig. 9.5). Dendritic, 
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reticulate and spongy Fe-sulfide aggregates and microcrystals probably formed by rapid 

mixing between the hydrothermal fluid and cooler seawater-dominant pore fluids in the 

permeable, dolomite-altered breccia, sandstone and siltstone units. Base metal sulfide 

deposition may have resulted from fluid mixing, dissolution of dolomite and increased fluid 

pH. Networks of paragenetically early bladed crystals and microcrystals provided a substrate 

for the subsequent deposition of base metal sulfides. In situ reduction of sulfate minerals 

occurred during diagenesis or hydrothermal alteration of the sediment. Base metal sulfides, 

chlorite, dolomite, talc, quartz and calcite filled secondary pore spaces and partly replaced the 

carbonate-bearing polymictic breccia and pebbly-granular sandstone units in Main zone. The 

stage 2 hydrothermal fluid contained S leached from the footwall volcanic succession and a 

minor component of partially reduced seawater sulfate. 

Stage 3  

As the hydrothermal system intensified, a high temperature >280°C, strongly reduced fluid 

was sourced from deep within the footwall volcanic succession (Fig. 9.5). This may have 

coincided with a discrete magmatic event such as the emplacement of porphyritic dacite sills in 

the Toms zone footwall. Chalcopyrite, pyrite, Se-Bi-rich galena, sphalerite and native bismuth 

precipitated as stringer veins in the Toms zone footwall and Footwall Copper zone. 

Chalcopyrite and pyrrhotite locally overprinted pyrite, sphalerite and galena in the Main zone 

Central massive sulfide lens. Type 2 dolomite-chalcopyrite-pyrite veins were emplaced in the 

Toms Central massive sulfide lens. Stage 3 fluids probably introduced Sn into the massive 

sulfide lenses. The extensive Mg-chlorite halo surrounding type lA stringer veins in the 

footwall volcanic succession (Figs. 5.3 and 9.5) may have resulted from high temperature 

fluid-rock interactions in a structurally controlled zone of focused up-flowing, Mg-bearing 

hydrothermal fluids. 

Stage 4 

Hydrothermal fluids were focused into transient, brittle fracture networks in the Lewis Ponds 

fault and surrounding areas, during and after the D I  deformation. The S isotopes, metal ratios 

and overall metal grades within the Lewis Ponds fault zone indicate that sulfides were leached 

out of the massive sulfide lenses and mineralised host rocks (Fig. 9.5). Broad Cu, Au and Zn 

anomalies extending along the fault and surrounding the massive sulfide lenses (Fig. 7.18), 

probably resulted from metal remobilisation. Sulfide remobilisation potentially occurred over 

tens to hundreds of metres. 
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Figure 9.5 Genetic model for mineralisation and remobilisation of sulfides at Lewis Ponds. 
Stages 1 and 2. Dolomitisation of host sediment followed by deposition of Zn-Pb-Ag-Au-rich massive 
sulfide in the siltstone, sandstone and breccia matrix, from a low temperature (150-250°C), reduced fluid 
due to fluid mixing, dissolution of dolomite and increased fluid pH. Stage 3. Precipitation of Cu-Bi-Se-
Ag-rich stringer veins in the Toms zone footwall from a deeply circulating, higher temperature (>280°C), 
reduced fluid. Cu- and Sn-rich sulfides were also deposited within the massive sulfide lenses. 
Stage 4. Deformation and remobilisation of massive sulfide along the Lewis Ponds fault by fracture-
controlled fluids to form the New Lewis Ponds and Lady Belmore zones. Stringer veins in the Toms zone 
footwall were also remobilised into syn-tectonic quartz-sulfide veins. The final cartoon is based on the 
interpreted 600 m RL level plan, with a vertical exaggeration of 1.3:1. 
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Talc, quartz-sericite, Mg-chlorite and Fe-Mg-Mn-carbonate assemblages overprinted chlorite, 

dolomite and sericite-altered host rocks in the Lady Belmore and Toms zones. Chalcopyrite 

stringers in the Toms zone footwall were probably also remobilised into syn-tectonic quartz 

veins and local shear zones during the D I  deformation (Fig. 9.5). This remobilisation resulted 

in an extensive area of chalcopyrite-bearing, syn-tectonic quartz veins and disseminated 

sulfides south of Toms mine. 

9.6 	Discussion 

Sulfide mineralisation at Lewis Ponds may have coincided with Late Silurian felsic magmatism 

and volcanism in the area. The massive sulfide lenses probably formed within 300 m of a high-

level intrusive dacite centre. Texturally destructive chlorite-pyrite and sericite-quartz ± chlorite 

assemblages overprinted rhyolitic and dacitic volcanics in the footwall of Toms zone due to 

reactions involving weakly acidic hydrothermal fluids. Heat produced from the cooling 

intrusions may have driven local, secondary hydrothermal convection to leach metals and S 

from the volcanic pile. Numerous small, stratabound massive sulfide deposits occur within or 

adjacent to the Mullions Range Volcanics, including Mt Bulga, Calula, Mt Shorter and Pride of 

the Hills (Figs. 2.5 and 2.6). 

The unusual hybrid characteristics of Lewis Ponds are attributed to a unique combination of 

factors controlling the fluid source, fluid pathways and mineralisation at the trap site. Although 

recrystallised fossiliferous limestone occurs throughout the host sequence, Lewis Ponds did not 

form in a shallow water environment where boiling may have caused sub-sea floor deposition 

of metals. The Zn-Pb-Au-Ag and Cu-Se-Bi-Sn-Ag-rich metal associations indicate that the 

hydrothermal system evolved from low temperature to higher temperature, more reduced 

conditions. Toms zone probably formed at or near the seafloor, above a zone of focussed up-

flowing fluids. In Main zone, a thick permeable unit of unconsolidated, poorly-sorted breccia, 

containing abundant limestone clasts and diagenetic/hydrothermal dolomite allowed lateral sub-

sea floor circulation of hydrothermal fluids. Sulfide deposition resulted from increased pH and 

reactions between the hydrothermal fluid and carbonate-bearing host sediment. 

Toms zone is similar to other eastern Australian, stratabound VHMS deposits, including 

Rosebery, Woodlawn, Currawong, Thalanga, Mount Chalmers and Mt Bulga (Table 9.3). 

Individual or stacked, sheet-like massive sulfide lenses occur in fine-grained epiclastic rocks 

above a footwall of coherent or elastic rhyolitic and dacitic facies. Basaltic to andesitic lava 

flows and/or dolerite sills overlie the rhyolite and dacite in the Currawang and Woodlawn 

deposits only (McKay and Hazeldene, 1987; Allen, 1992). The massive sulfide lenses are 

surrounded by broadly conformable, chlorite and sericite-quartz ± chlorite alteration haloes. 
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Thalanga Rosebery Woodlawn Currawong Toms zone, LP Mt Chalmers 	Mt Bulga 

0.8 Mt 28.3 Mt 17.7 Mt 9.4 Mt 6.6 Mt 3.6 Mt 	 0.8 Mt Size 

Host rock Volcaniclastic silt- 
stone 

Volcaniclastic silt- 
stone & sandstone 

Mudstone, & vol- 
caniclastic sand- 

stone 

Siltstone & sand- 
stone 

Barite, magnetite 
quartzite 

Fossiliferous, vol- 
caniclastic mud- 
stone & sandstone 

Siltstone & shale 

Dacite sills and 
massive dacite 

Dol-chl-tic 
qtz-ser-hly 

chl-py 

Ser-qtz ± chi 

1 sheet-like MS 
lens 

Dacitic to rhyolitic 
pumice breccia & 

porphyry sills 

Fe-Mn carb-ser 
chi 

chi ± ser ± carb-py 
qtz-ser-py 

Ser-qtz ± chl-py 

Stacked sheet-like 
MS lenses 

Dolerite, rhyolitic 
volcanics & vol- 

caniclastics 

Chl-tic-carb 

Ser-qtz ± chl 

1 sheet-like MS 
lens 

Rhyolitic to dacitic 
volcanics & shal- 

low intrusives 

Qtz-chl 
chl-py 

Ser-qtz ± chi 

2 sheet-like MS 
lenses 

Rhyolitic lava 
flows and domes 

Chl-trm-carb 

Ser-qtz ± chl 

1 sheet-like MS 
lens 

Dacite, pumice 	Dacite & rhyolite 
breccia & ignim- 	sills 

brite 

Chl-ser-py ± carb 	Qtz-chl-ser 
qtz-chl-ser-py 

dol-ca-chl-ser-py 

Ser-qtz ± chl 	Ser ± chl 

1 sheet-like MS 	1 sheet-like MS 
lens 	 lens 

Table 9.3 Characteristics of selected eastern Australian, stratabound VHMS deposits including Toms zone at Lewis Ponds. Based on the following references: Cambrell 
and Kirk (1974), Chisholm (1976), McKay and Hazeldene (1987), McKay (1989), Allen and Barr (1990), Davis (1990), Gregory et al. (1990), Large et al. (1992), 
Sainty (1992), Boden and Valenta (1995), Berry et al. (1998), Herrmann and Hill (2001), Large et al. (2001c). Abbreviations: dol = dolomite, chi = chlorite, tic = talc, 
hly = hyalophane, qtz = quartz, carb = carbonate, ser = sericite, trm = tremolite, ca = calcite, ccp = chalcopyrite, py = pyrite , sph = sphalerite, ga = galena, 
Bi = native bismuth, MS = massive sulfide. 
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Chapter 9 - Genetic Model and Discussion 

Extensive carbonate-chlorite envelopes occur at Thalanga, Rosebery and Woodlawn. The 

deposits have a footwall stockwork zone of pyrite and chalcopyrite stringers and disseminated 

sulfides (Table 9.3). However, these zones are commonly displaced from the massive sulfide 

lenses during deformation. 

Despite tight folding and faulting of the host sequence, primitive sulfide textures are preserved 

throughout Main zone and rarely in Toms zone (Table 9.3). Framboidal and colloform pyrite 

textures also occur in Rosebery (Martin, 2002), Woodlawn (McKay, 1989), Currawong 

(Bodon and Valenta, 1995), Mt Chalmers (Large, 1992) and Mt Bulga (Chisholm, 1976). 

Main zone has some features in common with the carbonate-hosted, Mississippi Valley Type 

and Irish-style, stratabound Zn-Pb deposits (Table 9.4). Low temperature dolomitisation of 

limestone or carbonate-rich sediment creates secondary porosity. During mineralisation, 

massive sulfide and hydrothermal dolomite fill dissolution cavities and collapse breccias in the 

host rock (Misra et al., 1997; Peace et al, 2003). Metal deposition results from increased pH, 

dilution or cooling of the hydrothermal fluid (Hitzman et al., 2002). Massive limestone facies 

host the Irish-style and Mississippi Valley Type deposits, whereas Main zone occurs in 

carbonate-bearing volcaniclastic deposits overlying a submarine intrusive dacite centre. The 

Mg-Fe-rich alteration assemblages and Zn-Pb-Cu-Ag-Au metal association at Main zone are 

more characteristic of VHMS deposits. 

Main zone, Lewis Ponds MVT deposits Irish-style deposits 

Commodities Zn, Pb, Cu, Ag, Au Zn, Pb Zn, Pb 

Host rock Polymictic breccia, limestone- 
clast breccia, pebbly-granular 

sandstone 

Dolomitised limestone, 
limestone, mudstone 

Dolomitised limestone, 
limestone, mudstone 

Dolomite types Diagenetic dolomite, 
hydrothermal dolomite 

Regional dolomite, 
dissolution-collapse breccia, 

hydrothermal dolomite 

Regional dolomite, 
hrdothermal dolomite breccia 

Accessory 
minerals 

Pyrrhotite, Mg-chlorite, dolomite, 
quartz, talc, phlogopite 

Dolomite, calcite, barite, 
fluorite, quartz, bitumen 

Dolomite, calcite, barite, 
quartz 

Overall deposit 
form 

Stratabound MS lenses, 
disseminated sulfides 

MS, open-space fillings, 
disseminated sulfides in 
collapse breccia matrix 

Stratabound MS lenses, 
disseminated sulfides, 

veinlet-controlled sulfides 

Sulfide textures MS, vuggy textures, bladed, 
botryoidal & framboidal 

aggregates 

MS, 
vuggy textures, 

breccia fill 

MS. Colloform textures, 
vuggy textures, 

breccia fill 

Inferred fluid T= 150- >280°C T = 100-200°C T= 150-240°C 
conditions low salinity ?? highly saline highly saline 

Interpretation Stratatigraphic replacement Stratatigraphic replacement Structurally-controlled, 
stratatigraphic replacement 

Table 9.4 General characteristics of MVT and Irish-style, carbonate-hosted replacement deposits 
compared with Main zone, Lewis Ponds. Based on the following references: Tomkins et al. (1994), 
Hutchinson (1997), Kesler (1997), Misra et al. (1997), Hitzman and Beaty (1997), Hiztman et al. (2002), 
Peace et al. (2003). MS = massive sulfide. 
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Carbonate-bearing mixed provenance volcaniclastic breccia, pebbly-granular sandstone and 

limestone-clast breccia units host the massive sulfide in Main zone. There are few examples in 

the literature of sea floor/sub-sea floor hydrothermal systems developed within elastic 

fossiliferous limestone facies. Corbett (2001) noted thin crustiform, pyrite-galena-sphalerite 

bands in an altered limestone body at Comstock, Mt Lye11 mining district, western Tasmania. 

Although many limestone lenses in the Lower Tyndall Complex contain trilobites, crinoids, 

gastropods, brachiopods and trace fossils (Jago et al., 1972, Corbett, 2001), Corbett (2001) 

attributed most of the vein-carbonate and breccia-fill carbonate to exhalative activity. 

Limestone or marble lenses also occur at the Wisemans Creek and Cow Flat deposits, Hill End 

Trough, New South Wales (Stanton, 1955), the Currawong deposit in Benambra, Victoria 

(Allen, 1992) and numerous deposits in the Bergslagen district of Sweden (Vivallo, 1985; 

Allen et al., 1996a). However, these limestone lenses are not spatially associated with massive 

sulfide. 
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CHAPTER 10 

CONCLUSIONS 

10.1 Conclusions 

The Lewis Ponds host sequence consists of Late Silurian marine sedimentary rocks, deposited 

from subaqueous mass flows in a moderately deep, below wave-base slope environment. The 

volcaniclastic breccia, limestone-clast breccia, mixed provenance breccia and quartz crystal-

rich sandstone beds have a mixed volcanic and sedimentary provenance, indicating post-

eruptive re-working of the sediment prior to deposition. Clasts and crystal fragments were 

derived from numerous sources within the basin and in the adjacent hinterland. 

Recrystallised, fossiliferous limestone occurs as allochthonous clasts in the breccia and 

sandstone units and as megaclasts in the fault-bound stratigraphic unit (within the Lewis Ponds 

fault). Where primary textures are preserved, the limestone contains crinoid fragments, 

brachiopods, bivalves, solitary corals and rare conodonts in an equigranular mosaic of calcite. 

The clean, coarse-grained limestone was sourced from a Late Silurian, bioclastic deposit (reef 

or bioherm) located within the basin or at the basin margin. 

The footwall volcanic succession consists of three texturally distinct lithofacies associations, 

with different immobile element compositions. Lithofacies association A (Ti/Z -22) lacks 

internal structure and may represent a series of dacitic lava flows or intrusions. Hydrothermal 

alteration and cleavage development have obscured primary textures in the dacite. Lithofacies 

association B (Ti/Zi--- 14) occurs as a syn-sedimentary porphyritic dacite cryptodome with 

associated peperite in the Main zone footwall. Texturally immature quartz porphyry clasts with 

similar geochernical affinities to dacite B occur in the overlying polymictic breccia units. 

Lithofacies association C (Ti/Zr -,- 11) is a porphyritic dacite sill that intruded the quartz-

plagioclase phyric dacite and polymictic breccia units. 

The Mullions Range Volcanics is a predominantly submarine succession of coherent rhyolite 

and dacite, volcaniclastic breccia, crystal-rich sandstone, siltstone and minor limestone. The 

Lewis Ponds and Mullions Range Anticline areas consist of siltstone, volcaniclastic breccia and 

quartz-feldspar crystal-rich sandstone. These facies were deposited in moderately deep water 

environments around the margins of intrusive and/or extrusive volcanic centres comprising 
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massive and flow-banded coarsely porphyritic dacite. In contrast, the western lobe and Cullya 

Road areas are dominated by the products of shallow, submarine to subaerial, effusive to 

locally explosive rhyolitic to dacitic volcanoes and lava domes. 

The massive sulfide lenses at Lewis Ponds occur along the eastern limb of a regional-scale 

D I  anticline, trending 41-331. The adjacent syncline has been partly truncated by a shear zone 

termed the Lewis Ponds fault. First generation folds are associated with a strongly developed, 

NNW-trending axial-planar cleavage and steeply plunging stretching lineation. Kink bands 

and kink folds locally overprint the S I  cleavage. The calculated best-fit orientations of 

structural fabrics observed in drill core (bedding, cleavage, stretching lineations, kink bands 

and quartz veins) are similar to those measured on outcrops. 

Reversals in stratigraphic facing directions and vergence indicate that tight parasitic folds and 

overturned beds occur throughout the host sequence. Pebbly-granular, quartz crystal-rich 

sandstone beds define a tight, overturned syncline in the Main zone footwall. A syncline also 

occurs in the Hangingwall Siltstone Unit, south of Toms zone. Folds and faults may have 

caused structural repetition of the massive sulfide lenses. 

The Lewis Ponds fault is a 200-250 m wide, NNW-trending zone of steeply dipping, 

anastomosing brittle and ductile shears, kink folds and syn-tectonic quartz veins. Its complex 

anastomosing geometry reflects the presence of competent lithologies such as coherent dacite 

and massive limestone, surrounded by less competent siltstone. The fault probably resulted 

from east-block-up movement with a minor sinistral component. Shearing took place during 

the D I  deformation. The associated kink folds and opposing shear sense indicators may have 

resulted from late reactivation or roll-back of the fault. The Lewis Ponds fault surrounds Toms 

zone and truncates Main zone at depth. 

Four generations of veins were differentiated in the Lewis Ponds host sequence. Tightly 

folded, pre-tectonic carbonate-chalcopyrite-pyrite and quartz-pyrite stringer veins occur in the 

Western Volcanic Succession, south of Toms zone. Variably deformed, sub-vertical and sub-

horizontal quartz ± sulfide veins, within and adjacent to the Lewis Ponds fault resulted from 

brittle shear failure and extension, during and after cleavage development. The sub-horizontal 

veins indicate fault-valve-behaviour associated with local areas of high fluid pressure. Post-

tectonic quartz ± sulfide veins cut across non-foliated quartz-plagioclase porphyry dykes in the 

Toms zone footwall. Many syn-tectonic veins contain sphalerite, galena, chalcopyrite and 

pyrite or pyrrhotite. 
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The asymmetric, semiconformable hydrothermal alteration envelope surrounding the massive 

sulfide lenses is strongly developed in the footwall volcanic succession, south of Main zone. 

Mg-chlorite occurring at the top the footwall volcanic succession grades outwards into a weak 

pervasive sericite-quartz ± Mg-Fe-chlorite assemblage. The compositions of recrystallised 

phyllosilicates in the Toms zone footwall vary systematically with whole rock geochemistry, 

alteration intensity and proximity to the massive sulfide lens, indicating that hydrothermal 

alteration of the volcanics occurred prior to recrystallisation and cleavage development. 

Conformable, texturally destructive alteration assemblages associated with the mineralised 

zones and sedimentary host rocks include dolomite-chlorite-talc, chlorite-pyrite, quartz-

dolomite-chlorite and quartz-sericite ± hyalophane. The dolomite assemblage resulted from 

low temperature alteration of the siltstone, sandstone and breccia facies during diagenesis and 

hydrothermal activity. In Main zone, hydrothermal alteration and subsequent metamorphism 

involved partial to complete replacement of the clasts and polymictic breccia matrix by 

dolomite, ferroan-dolomite, Mg-chlorite, talc, phlogopite, calcite, quartz and sulfides. High 

temperature fluid-rock interactions produced the chlorite and quartz-rich assemblages. 

The asymmetric, conformable alteration halo surrounding Main zone is characterised by: 

• high Alteration Index, Chlorite-Carbonate-Pyrite Index, Ba/Sr and S/Na 20 values; and 

• generally high MgO, CaO, Fe203, Ba, Sr, S, As, Ni, Cu, Pb, Zn and T1 concentrations. 

Lower average Alteration Index and Ba/Sr values in the polymictic breccia indicate the 

presence of dolomite and calcite. Lithogeochemical trends associated with Main zone reflect 

chlorite-dolomite-talc alteration of the limestone-bearing breccia and sandstone deposits and - 

the introduction of sulfides. Mass changes in the porphyritic dacite clasts and weakly altered, 

footwall dacite involved minor additions of MgO, Fe 203 , CaO and 1(20 and removal of Si0 2  

and Na20, resulting in net mass losses of 0-60 g/100g. 

Chlorite-sericite-altered sedimentary rocks hosting the Toms zone massive sulfide lens are 

characterised by: 

• high Alteration Index, Chlorite-Carbonate-Pyrite Index, Ba/Sr and S/Na 20 values; and 

• high MgO, CaO, Fe203, Ba, S, As, and Zn concentrations. 

Hydrothermal alteration of the footwall and hangingwall volcanics resulted in MgO, Fe203, 

K20 and Ba enrichment and Na20, CaO and Sr depletion. The addition of Si0 2  to dacite C 

contributed to overall net gains of 0-75 g/1 00g. The removal of Si0 2  from dacite A led to net 

losses of 0-50 g/100g except in the Footwall Copper zone, where MgO and Fe 203  enrichment 

offset the loss of Si02 . Lithogeochemical trends associated with Toms zone reflect feldspar 

destructive chlorite-sericite alteration of the footwall and hangingwall volcanics and chlorite-

dolomite-talc alteration of the sedimentary rocks. 
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Metamorphic minerals in the host sequence include phlogopite, sphene, epidote, hornblende, 

biotite ± talc and cordierite. Phlogopite and sphene occur within the chlorite alteration 

envelope. Biotite is found throughout the Western Volcanic Succession and Hangingwall 

Siltstone Unit, south of Toms zone. Epidote and hornblende occur in rocks with high Ca 

concentrations. Phlogopite was stabilised at lower temperatures due to high Mg and F 

concentrations in the fluids or host rock. Biotite crystals are relatively coarse-grained and 

randomly oriented, indicating that peak metamorphic conditions occurred after cleavage 

development. Some of the biotite may have resulted from thermal metamorphism associated 

with emplacement of the Lewis Ponds granite and quartz-plagioclase porphyry dykes. 

Main zone consists of three stratabound massive to semi-massive sulfide lenses, in a broad 

envelope of disseminated sulfides. These are hosted in mixed provenance breccia, limestone-

clast breccia and pebbly-granular sandstone. A smaller, fault-bound and possibly stratabound 

massive sulfide lens occurs in Toms zone, in the overlying siltstone. Disseminated sulfides and 

cleavage-parallel, syn-tectonic quartz-sulfide veins occur along the Lewis Ponds fault in Toms 

zone, Lady Belmore zone and New Lewis Ponds, and throughout the footwall volcanic 

succession. 

The massive sulfide lenses consist of pyrite, sphalerite and galena, with subordinate 

tetrahedrite, tennantite chalcopyrite, arsenopyrite, pyrrhotite, stannite, electrum and pyrargyrite. 

Native bismuth and Se-Ag-Bi-rich galena occur only in the chalcopyrite stringer veins in the 

Toms zone footwall. Primitive sulfide textures occur throughout Main zone and rarely in Toms 

zone. These include dispersed pyrite microcrsytals, bladed orthorhombic pyrrhotite crystals 

after sulfate and spongy, botryoidal, framboidal, dendritic and reticulate aggregates of pyrite 

and pyrrhotite. The massive sulfide is characterised by annealed, recrystallised textures. Brittle 

fractures, syn-tectonic quartz veins, cataclastic breccia, boudins, pinch-and-swell structures and 

kink folds occurring throughout Toms zone resulted from deformation and shearing along the 

Lewis Ponds fault. Brittle sulfide textures and quartz veins are less common in Main zone. 

The whole rock geochemistry and trace element composition of sulfides varies between the 

mineralised zones. Average Se, Ag, Bi and Fe concentrations in galena and Cd concentrations 

in sphalerite are significantly higher in the Footwall Copper zone than either massive sulfide 

zone. Sphalerite gains in Toms zone have higher average Mn concentrations than those in 

Main zone. Frabmboidal and spongy pyrite aggregates in Main zone contain more As and Mn 

than recrystallised pyrite in Toms zone. Extensive annealing of the massive sulfide in Toms 

zone accounts for the lower average As, Ag and Fe concentrations in pyrite, chalcopyrite and 

galena. Variations in whole rock geochemistry reflect the greater modal abundance of base 

metal sulfides in the Toms Central lens. 
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Main zone has highly erratic metal grades. The highest Au + Zn, Ag, Sb and Hg grades occur 

toward the top of the Central lens and throughout the Hangingwall lens. In contrast, metal 

grades vary from the structural footwall to the hangingwall of Toms zone. Copper ± Ag, Sb, 

Sn and Mo are enriched in the lowest one to two metres of the Central massive sulfide lens. 

High Cu grades also extend into the immediate footwall. 

Dolomite associated with the massive sulfide lenses and dolomite veins in Toms zone are 

characterised by low 6 180 and 6 13C values relative to the regional limestone. Decarbonation 

reactions or the involvement of organic C could account for the low 6 13C values in 

hydrothermal carbonate from Main zone. The lighter, more variable 0 isotopic signature of 

dolomite in Toms zone may reflect precipitation from a higher temperature fluid or isotopic 

re-equilibration due to circulation of younger fracture-controlled fluids along the Lewis Ponds 

fault zone. Fluid inclusion and stable isotope data indicate that the dolomite precipitated from 

a low temperature (166-232°C for 1000 m water depth), weakly saline (1.4 to 7.7 eqiv wt % 

NaC1) fluid that was possibly depleted in 0 and C isotopes (6 180 = -2.5 to 0.3°Ao, 

6 13C = -14 to -4°/00). The dolomite probably precipitated during diagenesis or hydrothermal 

alteration by ractions between evolved seawater and the limestone-bearing host sediment at 

150-250°C, and/or fluid mixing between evolved seawater at 350°C and a seawater-dominant 

pore fluid at 100°C. 

Sulfur isotope values in the massive sulfide (6 345 = 1.7-5.0°A0) and footwall stringer veins 

(6345 = 3.9-7.4°A0), indicate that the hydrothermal fluid probably contained a homogenous 

mixture of magmatic S and reduced seawater sulfate. Lower average 6 34S values in the 

massive sulfide lenses may indicate that the fluid acquired a component of lighter S from the 

host sedimentary rocks either by partial reduction of seawater sulfate or incorporation of 

biogenic S, derived from the host sediments. 

The massive sulfide lenses have a small range of metal ratios with standard deviations of less 

than 11. Average Zn ratios vary from 60 to 68 and average Cu ratios range from 4 to 9. Areas 

dominated by syn-tectonic quartz-sulfide veins including New Lewis Ponds, Lady Belmore 

and the Toms zone hangingwall have more variable Zn and Cu ratios. In these areas, average 

Zn ratios vary from 57 to 75, with standard deviations of 13 to 24. 

Lewis Ponds is a strongly deformed, stratabound carbonate and volcanic-hosted massive 

sulfide deposit. Main zone formed by lateral fluid flow and sub-sea floor replacement of the 

poorly-sorted, carbonate-bearing breccia and sandstone beds. Low temperature, 50-250°C 

dolomitisation of the sediments created secondary pore spaces and a reactive host rock for sub- 
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sea floor fluid-rock interactions. Sulfides, chlorite, dolomite, calcite, quartz and talc filled 

pore spaces throughout the carbonate-altered breccia and sandstone matrix. In contrast, the 

Toms Central massive sulfide lens probably formed in fine-grained sediment at or near the sea 

floor, above a zone of focused up-flowing hydrothermal fluids. 

Dendritic, reticulate and spongy Fe-sulfide aggregates resulted from rapid mixing between the 

mineralising fluid and cooler pore fluids (eg. seawater) in the matrix of the poorly-sorted 

breccia, sandstone and siltstone. Bladed sulfate crystals were pseudomorphed by pyrrhotite 

and rarely quartz in the Main zone host rocks. The bladed pyrrhotite crystals probably formed 

by in situ sulfate reduction prior to or during mineralisation. 

The Zn-Pb-Ag-Au-rich massive sulfide precipitated from a low temperature 150-280°C, 

reduced fluid due to a combination of fluid mixing, fluid-rock interactions with the carbonate 

(limestone clasts and hydrothermal dolomite) and increased fluid pH. As the hydrothermal 

system intensified, a high temperature >280°C, reduced fluid sourced from deep in the 

footwall volcanic succession brought Cu, Se, Bi, Sn, Ag, Zn and Pb into the Footwall Copper 

zone and massive sulfide lenses. These higher temperature fluids may have coincided with a 

discrete magmatic event such as the emplacement of dacite sills in the Toms zone footwall. 

Fracture-controlled fluids of unknown origin remobilised sulfides into syn-tectonic quartz and 

carbonate veins within the Lewis Ponds fault zone and footwall volcanic succession, during 

and after the D I  deformation. Remobilisation may have occurred over tens to hundreds of 

metres. Talc, quartz-sericite, chlorite and Fe-Mg-Mn-carbonate assemblages overprinted 

dolomite, chlorite and sericite-altered rocks in the Toms zone host sequence. Brittle and 

ductile structures developed throughout Toms zone and Main zone a lesser extent. 

At Lewis Ponds, base metal sulfides are intimately associated with fossiliferous limestone 

clasts and hydrothermal carbonate. This observed spatial association provides a basis for new 

exploration targets in New South Wales as many small massive sulfide deposits occur in 

marine successions containing fossiliferous limestone lenses and felsic volcanic rocks. The 

occurrence of fossiliferous limestone does not necessarily indicate a shallow water 

environment of deposition because mass flows readily transport limestone debris, including 

large megaclasts from carbonate platforms to deeper parts of the basin. 

10.2 Recommendations for further research 

The Mullions Range Volcanics is a prospective host unit for stratabound massive sulfide 

deposits such as Lewis Ponds. The volcanic and sedimentary facies architecture of the Calula- 
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Coalmans-Kerrs Creek area is complex and highly variable. Detailed mapping of this area is 

required to determine the facies geometry and contact relationships. This would help to 

constrain the local palaeogeography and volcanic-sedimentary setting of massive sulfide 

deposits occurring in the area. 

This study demonstrated that tight isoclinal folds occur in the Lewis Ponds host sequence. 

Folds and faults may have caused structural repetition within the massive sulfide lenses. The 

core from thirty drill holes did not provide sufficient data to fully characterise the fold 

geometries and stratigraphic contacts in the host sequence. Further re-interpretation of 

available drill core is recommended to obtain more bedding orientations, stratigraphic facing 

and vergence directions from around the massive sulfide lenses. The drill core re-orientation 

program of Scott and Berry, University of Tasmania produced reliable best-fit estimations of 

structural fabric orientations in drill core, assuming that S I  = 79-061. 

A preliminary study using the electron microprobe indicated that trace element compositions in 

sulfides vary between the mineralised zones at Lewis Ponds. Variations in Bi, Se, Mn and Ag 

were interpreted to reflect the temperature and chemistry of the mineralising fluid. However, 

many trace elements were below detection limits of the microprobe (especially Au, Co and Ni). 

A detailed study using laser ablation ICP-MS is recommended to characterise vertical and 

lateral zonation in the trace element composition of sulfides. This would provide more 

information about the physio-chemical conditions of sulfide deposition and the effects of 

thermal annealing during metamorphism. 

Mineralisation at Lewis Ponds may have broadly coincided with the emplacement of high-level 

porphyritic dacite intrusions in the footwall volcanic succession. However, the absolute age of 

the intrusions and massive sulfide remains speculative. Ar-Ar and Re-Os dating may constrain 

the timing of magmatism and mineralisation respectively. 

Determining the composition of fault- and fracture-controlled fluids was not a primary aim of 

this project. The ultimate source of the fluid remains unknown. However, it may be similar to 

Pb-Zn mineralising fluids in the Cobar Basin. Lawrie and Hinman (1998) suggested that the 

Cobar deposits originated from a high temperature (>250°C), low salinity, oxidised basement 

(magmatic or metamorphic) fluid and a more saline, reduced, hydrocarbon-bearing basinal 

fluid derived from thermal maturation of the sediments. Analysis of Pb isotopes and fluid 

inclusions in disseminated and vein-hosted sulfides within the Lewis Ponds fault may constrain 

the source of metals and chemistry of the metamorphic/magmatic fluid that was responsible for 

sulfide remobilisation during the D I  deformation. 
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normal to reference plane 

lineation on reference plane 
(e.g. intersection lineation) plane angle 
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long-axis of 
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axis I 

orientation mark 

drilling direction 	 reference plane 
(e.g. cleavage, S 1 ) 

fabric of unknown 
orientation 

(e.g. bedding, So) 

bottom-of-core line 

Appendix 2 

Calculated drill hole structural fabric orientations 
and stratigraphic facing directions 

# (plane angle) 
angle between long axis of ellipse 
formed by planar fabric and core axis. 

a 
angle between pole to planar fabric and 
core axis (usually determined from 
i.e. a= 90° — 

5 (lineation angle) 
angle between lineation and the long-
axis of elliptical section of the plane in 
which it lies. Measured anticlockwise 
(+ve) from the long-axis, looking down-
hole. 

angle between a lineation and the core 
axis 

0 (bottom-of-core reference angle) 
angle in plane perpendicular to the core 
axis, between bottom-of-core line and 
down-hole end of elliptical section 
formed by plane. Measured 
anticlockwise from down-hole end of 
ellipse, looking down-hole. 

12 (separation angle) 
angle in plane perpendicular to the core 
axis, between the down-hole ends of 
ellipses formed by planar fabrics. 
Measured anticlockwise from the 
reference fabric, looking down-hole. 

Diagram showing the parameters required for calculating the 'best-fir orientation of unknown 
planes and lineations in oriented or un-oriented drill core (from Scott and Berry, in press). 

Notes: 
The lineation angle (8) and separation angle (52) were measured on the drill core using a 
modified protractor which wraps around the core. 

Excell spreadsheet was used for calculating the 'best-fit' orientation of So, LI, F12 and 
quartz veins 

S I  cleavage used as reference foliation: S 1  = 78-061 

Data calculated using the core re-orientation spreadsheet developed by R. Scott and R. Berry, 
School of Earth Sciences, University of Tasmania 



drill hole 
Drill hole data 

depth 	plunge azimuth p 	8 
"known" fabric 

min. error 	ideal 13/6 	Ref.() name 
Plane 1 

dip 	dip dim 
Line 1 

name plunge trend 
"unknown" fabric 
12 	p 	Ref.0 name 

Plane 2 
dip 	dip dim 

int. lineation 
plunge 	trend 

TLPD-12 397.2 -57.4 235.5 29 	25 15 44 8 Si 87 242 F12 69 323 185 37 183 QV 21 241 
TLPD-12 402.5 -57.0 235.8 42 354 3 45 7 Si 81 61 L1 76 109 195 37 172 QV 21 218 
TLPD-12 417.9 -56.4 236.2 58 	- 13 45 7 51 65 60 - - - 343 52 24 SO 70 71 59 18 
TLPD-12 515.7 -54.5 237.1 43 	18 4 47 6 Si 82 61 L1 73 358 0 39 6 SO 86 61 3 332 
TLPD-12 516.0 -54.5 237,1 47 	10 0 47 6 51 78 61 L1 77 31 82 37 284 SO 68 0 68 1 
TLPD-12 516.3 -54.5 237.1 60 	18 13 47 6 Si 65 60 L1 62 29 323 40 43 SO 79 89 58 18 
TLPD-12 567.4 -52.4 238.2 42 321 8 50 4 Si 86 61 L1 48 146 185 32 179 QV 20 236 
TLPD-12 569.1 -52.3 238.3 33 344 17 50 4 51 85 242 L1 71 165 5 49 359 SO 79 58 14 331 
TLPD-12 569.7 -52.2 238.4 55 335 5 50 4 Si 73 61 L1 58 121 330 29 34 SO 86 268 51 353 
TLPD-12 570.4 -52.2 238.4 53 323 3 50 4 Si 75 61 L1 48 133 355 30 9 SO 83 246 13 334 
TLPD-12 576.9 -51.7 238.9 41 343 9 50 3 Si 87 61 L1 71 144 10 37 353 SO 89 233 64 146 
TLPD-12 576.9 -51.7 238.9 41 	20 9 50 3 Si 87 61 F12 72 340 - - - - - 
TLPD-12W3 331.9 -47.2 238.6 58 22 3 55 4 51 75 61 F12 66 8 - - - - 
TLPD-12W3 363.3 -39.7 248.5 58 	10 3 61 344 Si 81 60 F12 66 351 - -  - -  - - 
TLPD-12W3 390.4 -37.7 245.6 69 337 5 64 350 Si 73 62 L1 68 103 - - - -  
TLPD-12W3 390.4 -37.7 245.6 69 328 5 64 350 Si 73 62 F12 61 118 - - - - - - 
TLPD-12W3 491.1 -33.0 246.1 67 	82 1 68 346 Si 79 61 L1 4 150 30 62 316 SO 79 47 79 37 
TLPD-12W3 503.1 -33.0 246.1 70 340 2 68 346 Si 77 61 L1 74 93 45 66 301 SO 71 45 66 4 

TLPD-12W3 505.6 -33.0 246.1 74 320 6 68 346 Si 73 62 L1 57 123 330 70 16 SO 76 72 63 11 
TLPD-12W3 512.2 -33.0 246.1 72 297 4 68 346 Si 75 62 L1 37 140 318 63 28 SO 81 79 65 7 
TLPD-12W3 513.6 -33.0 246.1 72 295 4 68 346 Si 75 62 L1 35 140 310 40 36 SO 80 273 51 351 
TLPD-12W3 513.6 -33.0 246.1 72 	- 4 68 346 Si 75 62 - - - 335 68 11 SO 79 70 61 2 
TLPD-18 145.0 -61.0 227.6 23 	23 17 40 17 Si 85 243 F12 75 315 - - - - - - 
TLPD-18 165.0 -59.2 228.5 27 	11 15 42 16 Si 87 243 F12 86 288 - - - - - - 
TLPD - 18 198.3 -55.8 230.2 50 	8 5 45 15 Si 73 60 F12 73 63 180 40 195 QV 19 269 

TLPD-18 207.0 -55.4 230.4 38 356 8 46 15 Si 86 62 L1 77 133 - - - - -  - 
TLPD-18 207.0 -55.4 230.4 38 	30 8 46 15 Si 86 62 F12 68 343 - - - - - -  
TLPD-18 223.1 -54.7 230.5 47 	- 1 46 15 Si 77 61 - - - 0 52 15 SO 73 60 9 333 
TLPD-18 223.8 -54.7 230.5 46 	- o 46 15 Si 78 61 - - - 0 46 15 SO 78 61 

TLPD-18 234.4 -54.3 230.3 21 355 26 47 15 Si 76 245 L1 70 198 - - - - - 
TLPD-18 234.4 -54.3 230.3 21 	10 26 47 15 Si 76 245 F12 76 249 - - - - - - 

Appendix 2 - calculated structural fabric orientations page 1 of 10 



drill hole depth plunge azimuth p 	8 min. error 	ideal 196 	Ref.0 name dip dip dim name plunge trend f2 p Ref.0 name dip dip dim plunge trend 
TLPD-18 250.5 -53.7 230.1 32 	30 15 47 , 16 Si 87 244 F12 69 325 - - - - - - 
TLPD-18 330.9 -50.5 237.5 55 340 4 51 6 51 74 61 L1 62 119 - - - - - - 
TLPD-18 330.9 -50.5 237.5 55 	4 4 51 6 Si 74 61 F12 74 60 - - - - - - 
TLPD-18 430.3 -48.7 235.3 60 321 7 53 9 Si 71 60 L1 42 132 21 45 348 SO 86 47 40 133 
TLPD-18 440.4 -48.4 236.0 61 323 8 53 8 Si 70 60 L1 44 130 349 53 19 SO 77 68 44 350 
TLPD-18 444.1 -48.2 236.2 52 	- 2 54 8 Si 80 61 - - - 350 44 18 SO 86• 69 48 343 
TLPD-18 448.0 -48.1 236.5 60 	- 6 54 8 Si 72 60 - - - 350 40 18 SO 89 250 26 340 
TLPD-18 453.8 -47.9 236.3 52 	37 2 54 8 Si 80 61 F12 57. 347 40 47 328 SO 81 35 80 63 
TLPD-18 460.9 -47.7 235.9 62 350 8 54 9 Si 70 60 L1 65 101 0 17 9 SO 65 245 6 332 
TLPD-18 463.8 -47.6 235.7 66 	- 12 54 9 Si 66 60 - - - 265 57 104 SO 45 104 43 125 
TLPD-18 465.4 -47.5 235:5 58 328 4 54 9 Si 74 61 L1 49 132 95 74 274 SO . 46 33 32 341 
TLPD-18 465.9 -47.5 235.5 59 348 5 54 9 Si 73 60 L1 65 110 25 54 344 SO 78 46 67 104 
TLPD-18 
TLPD-18 

465.9 
466.5 

-47.5 
-47.5 

235.5 
235.5 

59 272 
59 	59 

5 
5 

54 
54 

9 
9 

Si 
Si 

73 
73 

60 
60 

F12 
F12 

4 
36 

332 
343 

- 
75 

- 
74 

- 
294 

- 
SO 

- 
51 

- 
37 36 343 

TLPD-18 468.2 ' -47.5 235.4 58 345 4 54 9 51 74 61 L1 63 116 58 65 311 SO 61 34 54 354 
TLPD-18 472.4 -47.3 235.1 62 324 8 54 10 Si 70 60 L1 43 130 58 63 312 SO 63 33 62 11 
TLPD-18 476.2 -47.2 234.8 58 323 4 54 10 Si 74 61 L1 . 44 135 70 61 300 SO 62 26 58 357 
TLPD-18 480.6 -47.1 234.5 60 	- 6 54 11 Si 73 60 - - - 45 55 326 SO 74 35 73 59 
TLPD-20 295.9 -49.8 234.8 50 355 2 52 10 Si 80 61 L1 75 110 0 55 10 SO 75 61 6 332 
TLPD-20 295.9 -49.8 234.8 50 330 2 52 10 Si 80 61 F12 52 138 - - - - - - 
TLPD -20 302.7 -49.5 234.9 56 345 4 52 10 51 74 61 . L1 63 116 7 55 3 SO 75 57 . 66 110 
TLPD-20 303.6 -49.4 234.9 55 	- 3 52 10 Si 75 61 - - - 10 56 360 SO 75 55 73 33 
TLPD-20 310.8 -49.1 234.9 56 	3 3 53 10 Si 75 61 L1 74 74 25 56 345 SO 74 46 74 47 
TLPD-20 310.8 -49.1 234.9 56 	40 3 53 10 Si 75 61 F12 54 353 - - - - - - 
TLPD,20 325.0 -48.4 235.0 62 335 9 53 ' 10 Si 69 60 L1 53 120 - - - - 
TLPD-20 325.0 -48.4 235.0 62 354 9 53 10 Si 69 60 F12 66 93 - - - - - - 
TLPD-20 340.0 -47.6 235.4 58 325 4 54 9 Si 74 61 L1 46 133 5 67 4 SO 65 57 18 336 

• TLPD-20 380.2 -45.9 236.3 63 	- 7 56 8 Si 71 60 - - - 15 74 353 SO 60 54 24 339 
TLPD-20 383.9 -45.8 236.1 60 290 4 56 9 51 74 61 L1 13 147 0 49 9 SO 85 62 6 332 
TLPD-20 420.0 -45.1 234.0 57 	- 1 56 13 Si 77 61 - - - 310 51 63 SO 70 90 67 118 
TLPD-20 422.0 -45.1 233.8 60 339 4 56 13 Si 74 60 L1 56 126 350 39 23 SO 87 251 29 339 
TLPD-20 422.0 -45.1 233.8 60 344 4 56 13 Si 74 60 F12 61 121 - - - - - - 
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drill hole depth plunge azimuth 13 5 min. error 	ideal 13/5 	Ref.0 name dip dip dim name plunge trend 12 13 Ref.° name dip dip dim plunge trend 
TLPD-20 . 425.8 -45.0 233.6 62 338 6 56 13 Si 72 60 L1 	54 124 348 50 25 SO 83 70 42 346 
TLPD-20 429.9 -45.0 233.6 62 - 6 56 13 Si 72 60 - - - 350 47 23 SO 86 69 33 342 
TLPD-20 431.6 -45.0 233.6 63 325 7 56 13 Si 71 60 L1 42 132 344 34 29 SO 83 258 34 343 
TLPD-20 435.3 -45.0 233.6 63 - 7 56 13 Si 71 60 - - - 20 48 353 SO - 	87 49 34 137 
TLPD-20 443.3 -45.0 233.6 57 - 1 56 13 Si 77 61 - - - 327 45 46 SO 81 85 76 32 
TLPD-20 436.5 -45.0 233.6 40 345 16 56 13 Si 86 244 L1 65 163 7 14 6 SO 59 241 6 154 
TLPD-20 436.5 -45.0 233.6 40 358 16 56 13 Si 86 244 F12 78 174 - - - - 
TLPD-20 440.3 -45.0 233.6 60 317 4 56 13 Si 74 60 L1 36 139 315 35 58 SO 84 98 71 25 
TLPD-20 450.5 -45.0 233.6 64 333 8 56 13 Si 71 60 L1 49 126 344 62 29 SO 70 68 70 65 
TLPD-20 452.6 -45.0 233.6 67 - 11, 56 13 Si 68 59 - - - 35 58 338 SO 75 42 59 107 
TLP D-20 457.0 -45.0 233.6 65 - 9 56 13 Si 70 59 - - - 15 25 358 , SO 70 232 10 146 
TLPD-20 459.7 -45.0 233.6 62 314 6 56 13 Si 72 60 L1 32 138 338 53 35 SO 77 74 65 13 
TLPD-20 462.8 -45.0 233.6 69 325 13 56 13 Si 66 59 L1 40 126 15 5 358 SO 50 231 6 146 
TLPD-20 464.6 -45.0 233.6 69 330 13 56 13 Si 66 59 L1 44 123 15 7 358 SO 52 231 6 146 
TLPD-27 39.0 -79.2 219.7 7 - 15 22 23 Si 87 242 - - - 185 35 198 SO 45 240 2 152 
TLPD-27 44.9 -79.4 216.0 5 - 17 22 26 Si 86 242 - - 185 30 201 SO 50 240 3 153 
TLPD-27 44.9 -79.4 216.0 5 - 27 22 206 Si 76 243 - - - 185 30 21 SO 70 56 12 330 
TLPD-27 59.7 -79.1 215.7 5 - 17 22 27 Si 85 242 - - - 185 25 202 SO 55 240 4 153 
TLPD-27 59.7 -79.1 215.7 5 - 27 22 207 Si 75 243 - - - 185 25 22 SO 75 . 56 14 330 
TLPD-27 585.4 -67.2 229.1 48 - 14 34 14 Si 64 60 - - - 200 42 174 SO 25 219 8 146 
TLPD-27 587.7 -67.1 229.1 46 10 12 34 14 Si 66 60 L1 66 50 28 20 346 SO 88 216 40 128 
TLPD-27 637.5 -60.7 231.5 47 356 6 41 12 Si 72 60 L1 69 91 - - - - - - 
TLPD-27 637.5 -60.7 231.5 47 13 6 41 12 Si 72 60 F12 71 40 - - - - - - 
TLPD-27 645.3 -59.5 232.0 51 12 9 42 12 Si 69 60 F12 69 46 57 40 315 SO 74 18 69 58 
TLP D-27 655.5 -57.9 232.6 47 333 3 44 11 Si 75 61 L1 54 129 180 23 191 QV 36 251 
TLP D -27 655.5 -57.9 232.6 47 353 3 44 11 Si 75 61 F12 70 102 - - - - 

TLPD-27 665.7 -57.4 232.7 54 - 10 44 11 Si 68 60 - - - 0 54 11 SO 68 60 
TLPD-27 683.5 -56.4 232.9 53 338 8 45 11 Si 70 60 L1 56 118 - - - - - - 
TLPD-27 683.5 -56.4 232.9 53 5 8 45 11 Si 70 60 F12 70 65 - - - - - - 
TLPD-27 746.1 -53.0 232.3 62 337 14 48 13 Si 65 59 L1 50 114 0 60 13 SO 66 59 8 333 
TLPD-27 760.6 -52.3 232.2 61 12 49 13 SiS1 66 59 340  L1 53 113 - - - - - 
TLPD-27 760.6 -52.3 232.2 61 22 12 49 13 Si 66 59 F12 63 29 - - - - - 
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drill hole depth plunge azimuth 13 	8 min. error ideal 3/8 	Ref.0 name dip dip dim name plunge trend 12 p Ref.O name dip dip dim plunge trend 
TLPD-33 190.7 -78.6 235.6 21 	352 2 23 6 Si 80 61 L1 77 105 10 26 356 QV 75 52 
TLPD-33 215.7 -78.5 236.1 10 329 13 23 5 Si 89 241 L1 58 154 - - - - - -  

TLPD-33 215.7 -78.5 236.1 10 	60 13 23 5 Si 89 241 F12 31 330 - - - - -  

TLPD-33 216.5 -78.5 236.1 19 340 4 23 5 Si 82 61 L1 68 132 - - - - -  
TLPD-33 216.5 -78.5 236.1 19 	77 4 23 5 Si 82 61 F12 14 333 - - - - - - 

TLPD-33 299.8 -71.9 241.7 22 338 8 30 359 Si 86 61 L1 68 141 - - - - - - 

TLPD-33 299.8 -71.9 241.7 22 	62 8 30 359 Si 86 61 F12 28 333 - - - - - - 

TLPD-33 327.8 -65.2 241.1 30 	- 7 37 360 Si 85 61 - - 	. - 44 60 316 QV 51 34 

TLPD-33 427.1 -60.7 239.6 41 	5 0 41 2 Si 78 61 L1 78 42 - - - - - - 

TLPD-33 427.1 -60.7 239.6 41 	5 0 41 2 Si 78 61 F12 78 42 - - - - - - 
TLPD-33 464.9 -59.0 241.1 45 345 2 43 360 Si 76 61 L1 70 109 12 30 348 SO 90 231 35 141 
TLPD - 33 465.1 -59.0 241.1 47 345 4 43 360 Si 74 61 L1 68 105 20 40 340 SO 80 46 66 112 
TLPD-33 467.7 -59.0 241.1 42 335 1 43 360 Si 79 61 L1 63 129 3 43 357 SO 78 59 62 353 
TLPD-33 467.7 -59.0 241.1 42 323 1 43 360 Si 79 61 F12 52 137 - - - - - - 
TLPD-33 470.6 -59.0 241.1 42 337 1 43 360 Si 79 61 L1 65 127 0 43 360 SO 78 . 61 0 151 
TLPD-33 489.8 -59.0 241.1 42 	- 1 43 360 Si 79 61 - - - 9 33 351 SO 88 53 40 141 
TLPD-34 203.5 -55.0 237.1 47 341 0 47 6 Si 78 61 L1 65 124 - - - - - 

TLPD-34 203.5 -55.0 237.1 47 	26 0 47 6 Si 78 61 F12 64 358 - - - - - 

TLPD-34 204.5 -55.0 237.1 48 	- 1 47 6 Si 77 61 - - - 15 53 351 SO 72 51 57 352 
TLPD-34 209.4 -55.0 237.2 49 347 2 47 5 Si 76 61 L1 69 111 0 51 5 SO 74 61 3 332 
TLPD -34 209.4 -55.0 237.2 49 	24 2 47 5 Si 76 61 F12 65 4 - - - _ 

- 

TLPD-34 215.5 -54.9 237.3 53 	12 6 47 5 Si 72 61 F12 70 34 20 55 345 SO 69 48 67 21 
TLPD-34 216.2 -54.9 237.3 52 341 5 47 5 Si 73 61 L1 62 115 - - - - - - 
TLPD-34 216.2 -54.9 237.3 52 	25 5 47 5 Si 73 61 F12 63 7 - - - - - - 
TLPD-34 217.8 -54.9 237.3 52 330 5 47 5 Si 73 61 L1 53 127 355 57 10 SO 68 63 24 143 
TLPD-34 217.8 -54.9 237.3 52 	25 5 47 5 Si 73 61 F12 63 7 - - - - - - 
TLPD-34 218.4 -54.9 237.3 50 	42 3 47 5 Si 75 61 F12 49 349 42 53 323 SO 68 34 65 6 
TLPD-34 301.6 -54.1 237.3 54 337 6 48 5 Si 72 61 L1 58 118 355 54 10 SO 72 64 71 77 
TLPD-34 314.5 -54.0 237.1 51 348 3 48 6 Si 75 61 L1 69 108 345 38 21 SO 86 73 46 347 

TLPD-34 317.4 -54.0 237.1 40 348 8 48 6 Si 86 61 L1 74 137 355 42 11 SO 84 65 57 145 
TLPD-34 320.6 -54.0 237.1 45 	7 3 48 6 Si 81 61 L1 80 39 12 32 354 SO 86 232 36 145 
TLPD-34 322.4 -54.0 237.1 50 352 2 48 6 Si 76 61 L1 72 101 0 48 6 SO 78 61 3 332 
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drill hole depth plunge azimuth p 	8 min. error ideal p/s Rae name dip dip dim name plunge trend 0 p Ref.0 name dip dip dim plunge trend 

TLPD-34 322.4 -54.0 237.1 50 	75 2 48 6 Si 76 61 F12 18 336 - - - - - - 

TLPD-36W 110.0 -58.5 235.5 48 22 5 43 7 Si 73 61 L1 66 12 36 52 331 SO 67 37 65 10 

TLPD-36W 110.0 -58.5 235.5 48 	35 5 43 7 Si 73 61 F12 55 . 356 - - - - - - 

TLPD-36W 222.0 -51.8 236.3 55 346 5 50 7 Si 73 61 L1 65 110 35 50 332 SO 76 38 73 72 

TLPD-36W 222.7 -51.8 236.3 48 	3 2 50 7 51 80 61 L1 80 70 345 5 22 SO 60 262 26 336 

TLPD-36W 222.7 -51.8 236.3 48 350 2 50 7 Si 80 61 F12 72 117 - - -  - - -  

TLPD-36W 226.3 -51.6 236.4 54 340 4 50 7 Si 74 61 L1 61 120 355 40 12 SO 88 66 19 336 

TLPD-36W 231.7 -51.3 236.6 57 346 6 51 7 Si 72 60 L1 64 107 0 33 7 SO 85 242 4 332 

TLPD-36W 237.3 -51.1 236.8 56 342 5 51 7 Si 73 61 L1 62 115 5 31 2 SO 82 238 6 149 

TLPD-36W 244.5 -50.7 237.1 64 	- 13 51 6 Si 65 60 - - - 339 26 27 SO 80 262 31 346 

TLPD-36W 251.5 -50.4 237.3 58 337 7 51 6 Si 72 61 L1 58 119 356 59 10 SO 70 63 54 123 

TLPD-36W 251.5 -50.4 237.3 58 	4 7 51 6 Si 72 61 F12 72 60 - - -  - - -  

TLPD-36W 255.1 -50.2 237.4 58 	- 6 52 6 Si 72 61 - - - 27 35 339 SO 87 220 43 133 

TLPD-36W 269.1 -49.3 237.8 61 	- 8 53 5 Si 70 60 - - - 357 47 8 SO 83 63 11 335 

TLPD-36W 269.4 -49.2 237.8 61 	- 8 53 5 Si 70 60 - - - 335 20 30 SO 74 267 35 346 

TLP D-36W 277.5 -48.6 238.0 62 337 9 53 5 Si 69 60 L1 57 115 350 42 15 SO 88 69 23 340 

TLPD-36W 
f 

286.1 -47.9 238.2 59 350 5 54 5 Si 73 61 L1 69 100 10 50 355 SO 82 55 32 140 

TLPD-36W 292.6 -47.4 238.3 61 346 7 54 4 Si 72 61 F12 65 105 355 36 9 SO 84 246 12 335 

TLPD-36W 301.0 -46.8 238.5 66 	- 11 55 4 Si 67 60 - - - 113 45 251 SO 48 354 48 358 

TLPD-36W 314.6 -45.5 238.6 61 	314 5 56 4 51 73 61 L1 39 137 337 37 27 SO 86 260 42 347 

TLPD-36W 328.0 -44.3 238.6 63 	- 5 58 4 Si 73 61 - - - 55 53 309 SO 73 30 72 50 

TLPD-36W 338.2 -43.3 238.6 60 341 1 59 5 Si 77 61 L1 64 122 70 58 295 SO 65 . 26 62 357 

TLPD-37 -72.4 236.7 30 	- 0 84.7  30 5 SiS1 78 . 61 - - 0 33 5 SO 75 61 1 331 

TLPD-37 103.2 -70.2 237.8 33 	13 1 32 4 Si 77 61 F12 72 19 60 37 304 SO 65 11 65 1 

TLPD-37 112.0 -68.9 238.2 35 	- 2 33 3 51 76 61 - - - 60 31 303 SO 72 9 72 19 

TLPD-37 118.2 -67.9 238.6 31 	- 3 34 3 Si 81 61 - - - 5 32 358 SO 80 57 74 4 

TLP D-37 124.1 -67.0 238.9 45 	- 10 35 2 Si 68 61 - - - 0 40 2 SO 73 61 1 331 

TLPD-37 128.5 -66.4 239.2 30 	- 6 36 2 Si 84 61 - - 35 36 327 SO 75 32 69 348 

TLPD-37 136.6 -65.3 239.6 45 	- 8 37 2 Si 70 61 - - - - - - - - - 

TLPD-37 143.1 -64.4 239.9 50 340 12 38 1 Si 66 61 L1 58 103 10 51 351 SO 64 54 63 33 

TLP D-37 192.9 -58.2 242.2 56 330 12 44 358 Si 66 61 L1 53 115 10 57 , 348 SO 64 55 62 27 

TLP D-37 192.9 -58.2 242.2 56 	4 12 44 358 Si 66 61 F12 65 49 - - . 	- - - -  
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drill hole depth plunge azimuth 13 	8 min. error ideal IA 	Ref.0 name dip dip dim name plunge trend 0 13 Ref.0 name dip dip dim plunge trend 

TLIDD-37 201.5 -57.7 242.3 35 353 9 44 358 Si 87 61 L1 83 127 32 64 326 SO 56 45 23 332 

Ttl_PD-37 211.0 -57.2 242.4 52 347 7 45 358 51 71 61 L1 68 94 5 25 353 SO 82 236 10 147 

TL
I
PD-37 219.0 -56.7 242.5 58 	2 13 45 358 Si 65 61 F12 65 53 335 23 23 SO 82 264 33 349 

TLI PD-37 239.0 -55.6 242.6 59 	- 13 46 358 Si 65 61 - - - 195 17 163 SO 41 217 15 144 

TLPD-37 242.3 -55.4 242.6 50 329 3 47 358 Si. 75 61 L1 57 126 353 38 5 SO 86 66 23 338 

TLPD-37 248.5 -55.0 242.7 53 	- 6 47 358 Si 72 61 - - 143 24 215 SO 40 296 30 342 

TLPD-45 194.3 -60.9 231.2 40 	- 1 41 13 Si 79 61 - - 15 29 358 SO 90 229 45 139 

TLPD-45 194.9 -60.9 231.3 40 354 1 41 13 Si 79 61 L1 73- 109 24 35 349 SO 84 42 73 111 

TLPD-45 194.9 -60.9 231.3 40 	89 1 41 13 Si 79 61 F12 7 332 - - - - - - 

TLPD-45 210.8 -59.9 232.6 50 	- 8 42 11 Si 70 60 - - 120 18 251 QV 65 315 

TLPD-45 216.8 -59.5 233.1 37 	5 5 42 10 Si 83 61 F12 83 64 0 34 10 SO 86 62 5 332 

TLPD - 45 220.2 -59.3 233.4 39 	30 3 42 10 Si 81 61 L1 64 349 - - - - - 

TLPD-45 220.2 -59.3 233.4 39 	50 3 42 10 Si 81 61 F12 45 340 - - - - - - 

TLPD-45 220.2 -59.3 233.4 39 	16 3 42 10 Si 81 61 F12 76 10 - - - - - - 

TLPD-45 230.3 -58.7 234.2 62 339 19 43 9 Si 59 59 F12 50 103 5 64 4 SO 57 56 42 2 

TLPD-45 230.3 -58.7 234.2 62 	50 19 43 9 51 59 59 F12 38 357 - - - - - - 

TLPD-45 243.1 -57.9 235.2 62 	13 18 44 8 Si 60 59 L1 59 44 - - - -  - - 

TLPD-45 243.1 -57.9 235.2 62 321 18 44 8 Si 60 59 F12 39 122 - - - .. - - 

TLPD-45 243.1 -57.9 235.2 62 	38 18 44 8 Si 60 59 F12 46 7 - - - - - 

TLPD-53 219.6 -66.9 214.9 30 	12 2 32 31 Si 80 62 L1 80 60 - - - - - 
TLPD-53 219.6 -66.9 214.9 30 271 2 32 31 51 80 62 F12 11 333 - - - - - 

TLPD - 53 224.0 -66.8 215.4 12 283 21 33 30 Si 82 245 F12 1 155 - - - - - 

TLPD-53 237.1 -66.6 216.6 40 	75 7 33 29 Si 71 60 F12 25 339 - - - - - - 

TLPD-53 266.1 -66.0 218.1 50 	- 16 34 27 Si 62 58 - - - - - - - - - 

TLPD-53 331.5 -65.1 219.8 30 	8 5 35 26 Si 83 62 L1 82 81 - - - - - - 

TLPD-53 331.5 -65.1 219.8 30 283 5 35 26 Si 83 62 F12 2 152 - - - - - 

TLPD-53 339.2 -65.1 220.2 33 	70 2 35 25 Si 80 61 F12 30 337 - - - - - 

TLPD-53 339.7 -65.1 220.3 33 271 2 35 25 Si 80 61 F12 9 333 - - - - - - 

TLPD-65A 712.3 -55.2 49.3 27 	- 5 22 12 Si 83 60 - - - 0 27 12 SO 83 60 

TLPD-65A 739.4 -53.2 49.9 37 	- 13 24 12 Si 89 239 - - - 345 19 27 SO 76 76 47 150 

TLPD-65A 802.7 -48.3 52.9 30 	- 1 29 9 Si 79 61 - - 0 30 9 SO 79 61 

TLPD-65A 803.8 -48.2 52.9 31 	- 2 29 9 Si 80 61 - - - 0 31 9 SO 80 61 
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drill hole depth plunge azimuth 13 5 min. error 	ideal 13/5 	Ref.9 name dip dip dim name plunge trend SI 13 Ref.0 name dip dip dim plunge trend 

TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD -65A 

TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 

831.3 
943.7 
944.1 
959.6 
709.7 
710.6 
728.2 
729.9 
731.3 
747.3 
747.5 
783.2 
785.7 
798.5 
799.4 
803.7 
813.3 
814.7 
815.7 
816.2 
817.1 
818.0 
819.3 
820.2 
821.8 
829.8 

830.3 
830.7 
831.2 
831.4 
831.5 
831.6 

-44.6 
-37.1 
-37.1 
-36.6 
-55.4 
-55.4 
-54.0 
-53.9 
-53.8 
-52.6 
-52.6 
-49.8 
-49.7 
-48.7 
-48.6 
-48.3 
-47.1 
-46.9 
-46.8 
-46.7 
-46.6 
-46.5 
-46.3 
-46.2 
-45.9 
-44.8 

-44.8 
-44.7 
-44.6 
-44.6 
-44.6 
-44.6 

53.1 
56.8 
56.9 
57.1 
49.3 
49.3 
49.7 
49.7 
49.7 
50.1 
50.1 
51.9 
52.0 
52.7 
52.7 
52.9 
53.1 
53.1 
53.1 
53.1 
53.1 
53.1 
53.1 
53.1 
53.1 
53.1 

53.1 
53.1 
53.1 
53.1 
53.1 
53.1 

36 
44 
42 
37 
35 
42 
29 
20 
45 
23 
24 
66 
62 
40 
40 
33 
40 
32 
20 
20 
18 
18 
35 
23 
25 
32 

32 
32 
32 
41 
31 
34 

- 
15 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 

- 

3 
3 
1 
4 
13 
20 
6 
3 

22 
2 
1 

38 
34 
11 
11 
4 
10 

1 
11 
11 
13 
13 
4 
8 
7 
1 

1 
1 
1 
8 
2 
1 

33 
41 
41 
41 
22 
22 
23 
23 
23 
25 
25 
28 
28 
29 
29 
29 
30 
31 
31 
31 
31 
31 
31 
31 
32 
33 

33 
33 
33 
33 
33 
33 

9 
5 
5 
5 
12 
12 
12 
12 
12 
12 
12 
10 
10 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

9 
9 
9 
9 
9 
9 

Si 
51 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 

Si 
Si 
Si 
Si 
Si 
Si 

81 
81 
79 
74 
89 
82 
84 
75 
81 
76 
77 
64 
68 
89 
89 
82 
87 
79 
67 
67 
65 
65 
82 
70 
71 
77 

77 
77 
77 
86 
76 
79 

61 
61 
61 
61 
239 
239 
60 
61 
238 
61 
61 
236 
237 
60 
60 
61 
60 
61 
62 
62 
63 
63 
61 
62 
62 
61

61
61
61
60 
61
61 

- 
L1 
- 

- 

- 
- 

- 
- 
-
-
-
-
- 
- 
- 
-
-
-
-
- 
- 
-
- 

- 
- 
- 
- 
- 
- 

- 
76 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

- 

- 
- 
- 
- 
- 

- 
112 

- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

335 
0 
0 
0 
0 
4 
0 

180 
185 
180 
0 

180 
0 

25 
180 
180 
178 
187 
0 

180 
180 
0 
0 

20 
0 
0 

0 
30 
0 
10 
0 
0 

42 
42 
42 
37 
30 
36 
29 
52 
57 
70 
24 
63 
62 
40 
74 
38 
52 
65 
13 
57 
30 
11 
35 
23 
25 
23 

23 
26 
3 
30 
32 
30 

34 
5 
5 
5 
12 
8 
12 

192 
187 
192 
12 

190 
10 

344 
189 
189 
191 
182 
9 

189 
189 

9 
9 

349 
9 
9 

9 
339 

9 
359 

9 
9 

SO 
SO 
SO 
SO 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 
QV 

QV 
QV 
QV 
QV 
QV 
QV 

88 
79 
79 
74 
86 
88 
84 
8 
5 
18 
77 
14 
68 
90 
26 
12 
9 
18 
60 
12 
18 
58 
82 
70 
71 
68 

68 
73 
48 
75 
77 
75 

258 
61 
61 
61 
60 
236 
60 
130 
181 
217 
61 

213 
237 
41 
227 
89 
182 
230 
63 
208 
79 
64 
61 
42 
62 
62 

62 
34 
65 
52 
61 
61 

57 
4 

345 
150 
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drill hole depth plunge azimuth ft 8 	min. error 	ideal 13/8 	Ref.9 name dip dip dim name plunge 	trend CI ft Ref.° name dip dip dim plunge 	trend 
TLPD-65A 831.7 -44.6 53.1 34 - 	1 33 9 Si 79 61 - 	- 	- 175 57 194 QV 15 203 
TLPD-65A 832.2 -44.5 53.1 41 - 	8 33 9 Si 86 60 - 	- 	- 310 25 59 QV 88 104 
TLPD-65A 835.2 -44.1 53.1 35 - 	2 33 9 Si 80 61 - 	- 	- 340 30 29 QV 79 79 

TLPD-65A 836.0 -44.0 53.1 43 - 	9 34 9 Si 87 60 - 	- 0 30 9 QV 74 61 
TLPD-65A 836.8 -43.9 53.1 51 - 	17 34 9 Si 85 239 - 	- 	- 180 60 189 QV 17 217 

TLPD-65A 837.0 -43.8 53.1 40 - 	6 34 9 Si 84 60 - 	- 180 64 189 QV 21 222 

TLPD-65A 838.9 -43.6 53.1 48 - 	14 34 9 Si 88 239 - 	- 	- 0 48 9 QV 88 239 

TLPD-65A 839.4 -43.5 53.1 40 - 	6 34 9 Si 84 60 - 	 - 0 40 9 QV 84 60 

TLPD-65A 839.4 -43.5 53.1 40 - 	6 34 9 Si 84 60 - 	- 	- 180 44 189 QV 7 151 

TLPD-65A 846.5 -42.6 53.2 50 - 	15 35 9 Si 87 239 - 	- 	- 0 50 9 QV 87 239 

TLPD-65A 847.7 -42.5 53.2 40 - 	5 35 9 Si 83 60 - 	- 	- 0 40 9 QV 83 60 
TLPD -65A 848.1 -42.4 53.2 51 16 35 9 Si 86 239 - 	 - 	 - 180 52 189 QV 11 203 

TLPD-65A 848.3 -42.4 53.2 51 - 	16 35 9 Si 86 239 - 	- 	- 215 78 154 QV 37 242 

TLPD-65A 856.0 -41.6 53.5 40 - 	4 36 9 Si 82 61 - 	- 	- 335 48 34 QV ' 85 256 
TLPD-65A 856.3 -41.5 53.5 44 - 	8 36 9 Si 86 60 - 	- 	- 0 44 9 QV 86 60 
TLPD-65A 857.9 -41.3 53.5 42 - 	6 36 9 51 84 60 - 	- 	- 180 30 189 QV 14 89 
TLPD-65A 858.3 -41.3 53.5 45 - 	9 36 9 Si 87 60 - 	- 	- 180 64 189 QV 23 223 

TLPD-65A 867.1 -40.3 53.8 43 - 	6 37 9 Si 84 60 - 	. 	- 	- 0 43 9 QV 84 60 
TLPD-65A 868.4 -40.2 53.8 41 - 	4 37 9 Si 82 61 - 	- 	- 325 30 44 QV 81 91 

TLPD-65A 868.9 -40.1 53.8 41 - 	4 37 9 Si 82 61 - 	- 	- 180 72 189 QV 32 229 
TLPD - 65A 869.3 -40.1 53.8 33 - 	 4 37 9 Si 74 62 - 	 - 	 - 0 33 9 QV 74 62 

TLPD-65A 869.3 -40.1 53.8 33 - 	4 37 9 Si 74 62 - 	- 	- 180 50 189 QV 12 205 
TLPD-65A 869.8 -40.0 53.8 40 - 	2 38 9 51 80 61 - 	- 	- 180 72 189 QV 32 229 
TLPD-65A 872.5 -39.7 53.9 10 - 	28 38 9 Si 50 65 - 	- 	- 0 10 9 QV 50 65 
TLPD-65A 872.5 -39.7 53.9 10 - 	28 38 9 Si 50 65 - 	- 180 51 189 QV 13 208 
TLPD-65A 873.0 -39.7 53.9 45 - 	7 38 9 Si 85 60 - 	- 	- 0 45 9 QV 85 60 
TLPD-65A 873.2 -39.7 53.9 50 - 	12 38 9 Si 90 60 - 	- 	- 0 50 9 QV 90 60 
TLPD-65A 874.0 -39.6 54.0 50 - 	12 38 9 Si 90 60 - 	- 	- 15 50 354 QV 90 50 

TLPD-65A 874.7 -39.5 54.0 50 - 	12 38 9 51 90 60 - 	- 0 47 9 QV 87 60 

TLPD-65A 885.5 -38.8 54.3 51 - 	12 39 8 Si 90 240 - 	- 25 40 343 QV 80 41 

TLPD-65A 885.7 -38.8 54.3 60 - 	21 39 8 Si 81 239 - 	- 	- 20 45 348 QV 84 46 

TLPD-65A 885.7 -38.8 54.3 60 - 	21 39 8 51 81 239 - 	- 	• 45 42 323 QV 87 28 
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drill hole depth plunge azimuth 13 	8 min. error 	ideal 13/8 	Ref.0 name dip dip dim name plunge 	trend il 13 Ref.() name dip dip dim plunge 	trend 
TLPD-65A 886.3 -38.8 54.3 61 	- 22 39 8 Si 80 238 - 	- 	- 45 42 323 QV 87 28 
TLPD-65A 887.8 -38.7 54.4 57 	- 18 39 8 Si 84 239 - 	- 	- 170 45 198 QV 15 175 
TLPD-65A 888.9 -38.7 54.4 43 	- 4 39 8 Si 82 61 - 	- 	- 175 29 193 QV 15 107 
TLPD-65A 889.3 -38.7 54.4 50 	- 11 39 8 Si 89 60 - 	- 	- 145 36 223 QV 34 154 
TLPD-65A 889.6 -38.6 54.5 45 	- 6 39 8 Si 84 60 - 	- 	- 180 29 188 QV 12 92 
TLPD-65A 889.9 -38.6 54.5 44 	- 5 39 8 Si 83 60 - 	- 	- 165 35 203 QV 19 141 
TLPD-65A 889.9 -38.6 54.5 40 	- 1 39 8 51 79 61 - 	- 	- 180 27 , 188 QV 14 88 
TLPD-65A 890.1 -38.6 54.5 45 	- 6 39 8 Si 84 60 - 	 - 0 43 8 QV 82 61 
TLPD-65A 890.2 -38.6 54.5 45 	- 6 39 8 Si 84 60 - 	- 	- 12 58 356 QV 83 232 
TLPD-65A 890.3 -38.6 54.5 45 	- 6 39 8 Si 84 60 - 	- 	- 0 40 8 QV 79 61 
TLPD-65A 891.2 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 322 32 46 QV 83 93 
TLPD-65A 891.7 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 	- 180 60 188 QV 22 224 
TLPD-65A 891.8 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 	- 180 60 188 QV 22 224 
TLPD-65A 891.8 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 	- 155 40 213 QV 26 158 
TLPD-65A 892.0 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 	- 330 50 38 QV 85 258 
TLPD-65A 892.1 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 180 49 188 QV 12 208 
TLPD-65A 892.2 -38.6 54.5 50 	- 11 39 8 Si 89 60 - 	- 0 50 8 QV 89 60 
TLPD-65A 893.5 -38.5 54.6 44 	- 5 39 8 Si 83 60 - 	- 	- 0 44 8 QV 83 60 
TLPD-65A 894.7 -38.5 54.6 52 	- 13 39 8 Si 89 240 - 	- 	- 0 52 8 QV 89 240 
TLPD-65A 902.5 -38.2 54.9 43 	- 4 39 8 Si 82 61 - 	- 	- 10 37 358 QV 75 53 
TLPD-65A 908.2 -38.0 55.1 48 	- 8 40 8 Si 86 60 - 	- 0 50 8 QV 88 60 
TLPD-65A 908.3 -38.0 55.1 48 	- 8 40 8 Si 86 60 - 322 48 46 QV 85 264 
TLPD-65A 908.6 -38.0 55.1 50 	- 10 40 8 Si 88 60 - 	- 	- 315 23 53 QV 78 103 
TLPD-65A 908.7 -38.0 55.1 50 	- 10 40 8 Si 88 60 - 	- 	- 340 20 28 . QV 64 84 
TLPD-65A 908.8 -38.0 55.1 45 	- 5 40 8 Si 83 60 - 	- 0 43 8 QV 81 61 
TLPD-65A 908.9 -38.0 55.1 45 	- 5 40 8 Si 83 60 - 	- 	- 42 48 326 QV 89 213 
TLPD-65A 909.1 -38.0 55.1 60 	- 20 40 8 Si 82 239 - 	- 	- 335 50 33 QV 87 255 
TLPD-65A 909.1 -38.0 55.1 60 	- 20 40 8 Si 82 239 - 	- 	- 110 3 258 QV 78 140 
TLPD-65A 909.2 -38.0 55.1 60 	- 20 40 7 Si 82 239 - 	- 	- 270 88 97 QV 52 238 
TLPD-65A 909.6 -38.0 55.1 51 	- 11 40 7 Si 89 60 - 	- 	- 355 46 12 QV 85 64 
TLPD-65A 909.7 -38.0 55.1 51 	- 11 40 7 Si 89 60 - 	- 	- 310 35 57 QV 90 279 
TLPD-65A 910.0 -38.0 55.1 44 	- 4 40 7 Si 82 61 - 	- 	- 350 51 17 QV 90 246 
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drill hole depth plunge 	azimuth 13 	.5 min. error 	ideal WS 	Ref.0 name dip dip dim name plunge trend SI 13 Ref.9 name dip dip dim plunge trend 
TLPD•65A 910.4 -38.0 55.2 45 	- 5 40 7 Si 83 60 - - - 15 49 352 QV 87 50 
TLPD-65A 910.7 -38.0 55.2 55 	- 15 40 7 Si 87 239 - - - 65 44 302 QV 83 197 
TLPD-65A 919.1 -37.7 55.6 33 	- 7 40 7 Si 71 62 - - - 28 33 339 QV 73 37 
TLPD-65A 919.4 -37.7 55.6 33 	- 7 40 7 Si 71 62 - - - 338 33 29 QV 76 80 
TLPD-65A 919.6 -37.7 55.6 33 	- 7 40 7 Si 71 62 - - - 0 33 7 QV 71 62 
TLPD-65A 920.2 -37.7 55.7 41 	- 1 40 7 Si 79 61 - - - 10 41 357 QV 79 53 
TLPD-65A 921.1 -37.7 55.7 40 	- 0 40 7 Si 78 61 - - - 0 40 7 QV 78 61 
TLPD-65A 922.6 -37.7 55.8 41 1 40 7 Si 79 61 - - 	. - 175 73 192 QV 36 230 
TLPD-65A 922.8 -37.7 55.8 41 	- 1 40 7 Si 79 61 - - - 0 43 7 QV 81 61 
TLPD-65A 923.1 -37.6 55.8 40 	- 0 40 7 Si 78 61 - - - 15 40 352 QV 78 49 
TLPD-65A 926.0 -37.6 56.0 41 	- 1 40 6 51 79 61 - - 0 41 6 QV 79 61 
TLPD -65A 927.0 -37.6 56.0 45 	- 5 40 6 Si 83 61 - - - 0 45 6 QV 83 61 
TLPD-65A 944.7 -37.1 56.9 45 	- 4 41 5 Si 82 61 - - - 215 29 150 QV 26 336 
TLPD-65A 946.0 -37.1 57.0 40 	- 1 41 5 Si 77 61 - - 180 28 185 QV 10 84 
TLPD-65A 946.1 -37.1 57.0 41 	- 0 41 5 Si 78 61 - - - 0 41 5 QV 78 61 
TLPD-65A 947.2 -37.0 57.0 43 	- 2 41 5 Si 80 61 - - - 0 43 5 QV 80 61 
TLPD-65A 947.4 -37.0 57.0 43 	- 2 41 5 Si 80 61 - - - 212 44 153 QV 21 300 
TLPD-65A 982.0 -35.8 57.4 45 	- 3 42 5 Si 81 61 - - 0 40 5 QV 76 61 
TLPD-65A 983.1 -35.8 57.5 42 	- 0 42 5 Si 78 61 - - 0 35 5 QV 71 61 
TLPD-65A 983.3 -35.8 57.5 42 	- 0 42 5 Si 78 61 - - - 70 23 295 QV 85 0 
TLPD -66 40.9 -60.0 239.1 33 345 9 42 3 Si 87 61 L1 73 141 - - - - - 

TLPD-66 46.5 -60.0 239.1 25 	28 17 42 3 Si 85 241 L1 63 322 345 28 18 SO 89 254 72 167 
TLPD-66 52.8 -60.0 239.1 30 	- 12 42 3 Si 90 61 - - - 330 30 33 SO 86 87 81 151 
TLPD-66 54.7 -60.0 239.1 25 	- 17 42 3 51 85 241 - - - 5 30 358 SO N 57 42 327 
TLPD-66 56.3 -60.0 239.1 30 	- 12 42 3 Si 90 61 - - - 20 35 343 SO 84 45 69 331 
TLPD-66 65.3 -59.8 239.1 21 349 21 42 3 Si 81 241 L1 75 188 - - - - - 
TLPD-66 65.3 -59.8 239.1 21 348 21 42 3 Si 81 241 F12 74 185 - - - - - -  
TLPD-66 78.1 -59.4 239.1 25 	• 18 43 3 51 84 241 - - - 14 25 349 SO 85 229 84 258 
TLPD-66 79.5 -59.4 239.1 23 	- 20 43 3 51 82 241 - - - - - - - -  
TLPD-66 114.5 -55.1 241.2 44 	- 3 47 360 Si 81 61 - - 65 39 295 SO 71 13 70 357 
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Drill hole De th Relative facin Evidence Reliabili 
TLPD-12 552.35 down-hole load cast 3 
TLPD-12 575 up-hole load cast 4 
TLPD-12W3 379.7 up-hole graded 4 
TLPD-12W3 381.4 up-hole graded 4 
TLPD-12W3 500.2 down-hole graded & ball & pillow 3 
TLPD-17W 472 up-hole graded 4 
TLPD-17W 484.2 up-hole load cast 4 
TLPD-17W 485.3 up-hole graded 5 
TLPD-18 137 down-hole graded 3 
TLPD-18 223.5 up-hole graded 5 
TLPD-18 292.5 up-hole graded 5 
TLPD-18 293 up-hole graded 5 
TLPD-18 435 up-hole graded 5 
TLPD-18 442 up-hole ball & pillow 4 
TLPD-18 480.2 up-hole load cast 4 
TLPD-20 295.8 up-hole graded 5 
TLPD-20 301.35 up-hole load cast 3 
TLPD-20 303.4 up-hole graded 5 
TLPD-20 423.9 down-hole ball & pillow 4 
TLPD-20 458.3 up-hole graded 4 
TLPD-27 39 up-hole flame 5 
TLPD-27 39.45 down-hole flame 5 
TLPD-27 40.25 up-hole load cast 4 
TLPD-27 40.9 up-hole load cast 4 
TLPD-27 57.25 down-hole graded 5 
TLPD-27 58.7 up-hole flame 5 
TLPD-27 58.8 down-hole ball & pillow 3 
TLPD-27 59.2 up-hole load cast 3 
TLPD-27 59.75 up-hole flame 5 
TLPD-27 200.7 up-hole load cast 5 
TLPD-27 585 down-hole load cast 5 
TLPD-27 585.8 down-hole graded 5 
TLPD-27 587 down-hole load cast 5 
TLPD-27 587.5 down-hole ball & pillow 5 
TLPD-27 594.2 down-hole load cast 4 

Drill hole De h Relative facin Evidence Reliabili 
TLPD-27 644.7 down-hole load cast 5 
TLPD-27 645.5 down-hole graded 5 
TLPD-28A 40.9 down-hole load cast 
TLPD-28A 60 down-hole ball & pillow 
TLPD-28A 564.25 up-hole load cast 
TLPD-33 61 up-hole graded 5 
TLPD-33 246.5 up-hole load cast 5 
TLPD-33 465.15 down-hole load cast 3 
TLPD-34 103.5 up-hole graded 3 
TLPD-34 315.2 down-hole load cast 4 
TLPD-36W 222 down-hole load cast 4 
TLPD-36W 270.75 up-hole graded 4 
TLPD-36W 277.05 down-hole load cast 5 
TLPD-36W 277.8 down-hole graded 4 
TLPD-36W 279 down-hole graded 5 
TLPD-36W 341 up-hole graded 5 
TLPD-36W 343.3 up-hole graded 3 
TLPD-37 129.5 down-hole load cast 4 
TLPD-37 249 down-hole load cast 3 
TLPD-37 249.4 down-hole graded 4 
TLPD-37 266.5 down-hole load cast 5 
TLPD-43 15.4 up-hole graded 5 
TLPD-43 25.5 up-hole graded 5 
TLPD-43 106.8 up-hole graded 5 
TLPD-43 286.75 up-hole load cast 3 
TLPD-44 274.6 down-hole graded 4 
TLPD-44 280.3 down-hole graded 4 
TLPD-46A 146.3 up-hole load cast 5 
TLPD-63 423.15 up-hole load cast 5 
TLPD-65A 647 down-hole graded 4 
TLPD-65A 730.1 down-hole load cast 5 
TLPD-65A 730.5 down-hole graded 5 
TLPD-65A 739.3 down-hole load cast 5 
TLPD-65A 739.6 down-hole graded 5 
TLPD-65A 802.1 ,3 down-hole load cast 4 
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Drill hole De th Relative facin Evidence Reliabili 
TLPD-65A 804.2 down-hole load cast 4 
TLPD-65A 804.7 down-hole load cast 4 
TLPD-65A 807.3 up-hole load cast 4 
TLPD-65A 830.7 up-hole graded 5 
TLPD-65A 843 down-hole load cast 4 
TLPD-65A 860.5 down-hole load cast 4 
TLPD-65A 911.5 down-hole graded 3 
TLPD-65A 939.9 up-hole load cast ? 
TLPD-65A 943.55 down-hole flame 5 
TLPD-65A 944.2 down-hole flame 5 
TLPD-65A 944.35 down-hole flame 5 
TLPD-65A 949.3 up-hole load cast 
TLPD-65A 949.7 up-hole load cast 

TLPD-65A 956.1 up-hole flame 5 
TLPD-65A 956.3 up-hole flame 5 
TLPD-65A 963 up-hole graded 4 
TLPD-65A 988 up-hole graded 5 
TLPD-66 45 up-hole graded 5 
TLPD-66 53 up-hole load cast 5 
TLPD-66 53.5 up-hole graded 4 
TLPD-66 77 up-hole graded 4 
TLPD-66 103 up-hole graded 3 
TLPD-66 115 up-hole graded 5 

Drill hole De th Relative facin Evidence Reliabilit 
TLPD-69 64 up-hole graded ? 
TLPD-69 78 up-hole graded 
TLPD-69 92.5 up-hole graded ? 
TLPD-69 112 up-hole graded 4 
TLPD-69 134 up-hole graded 5 
TLPD-69 303.25 down-hole load cast 5 
TLPD-69 304.3 down-hole load cast 5 
TLPD-69 403 up-hole graded 3 
TLPD-69 433.4 down-hole graded ? 
TLPD-69 452.5 down-hole load cast 5 
TLPD-69 453.4 down-hole load cast 5 
TLPD-69 479.3 up-hole load cast 5 
TLPD-69W1 303.3 down -hole load cast 5 
TLPD-69W1 304.35 down-hole load cast 5 
TLPD-69W1 435 up-hole load cast 5 
TLPD-69W1 520 up-hole load cast 4 
TLPD-70 438.3 up-hole graded 4 
TLPD-70 472.6 up-hole load cast 4 
TOD-10 59.5 up-hole load cast 
TOD-10 81.3 up-hole load cast 
TOD-10 149 down-hole load cast 
TOD-10 153.5 up-hole graded 
TOD-10 226.7 up-hole load cast 

Notes: 
Reliability index varies from = poor to 5 = excellent 
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Label 	 Oxides: Mineral Si02 FeCO3 MnCO3 MgCO3 CaCO3 BaCO3 SrCO3 Na2Ca*2 K2Ca*2 ZnCO3 Sum Ox 
LP 12428_perv carb 1-8-1 Fe-dol 0.01 4.29 2.24 39.56 52.67 0.00 0.06 0.02 0.08 0.00 98.95 
Lp12440 perv fine carb2-5-1 Fe-dol 0.03 3.04 2.36 40.42 53.01 0.03 0.00 0.23 0.00 0.03 99.15 
Lp12440 carb trav1-1 dol 0.08 0.15 0.26 43.21 55.61 0.09 0.06 0.07 0.11 0.12 99.75 
Lp12440 carb trav1-2 dol 0.23 0.14 0.28 42.67 57.10 0.04 0.01 0.04 0.00 0.00 100.51 
Lp12440 carb trav1-3 dol 0.24 0.19 0.65 43.26 53.48 0.00 0.07 0.00 0.00 0.03 97.93 
Lp12440 carb trav1-4 dol 0.19 0.01 0.71 43.28 54.23 0.00 0.05 0.00 0.00 0.05 98.51 
Lp12440 carb trav1-5 dol 0.13 0.13 0.88 42.08 54.24 0.00 0.11 0.00 0.00 0.00 97.57 
Lp12440 carb trav1-6 dol 0.14 0.82 1.06 41.27 54.19 0.00 0.09 0.13 0.00 0.06 97.78 
Lp12440 carb trav1-7 dol 0.17 0.12 1.29 39.67 56.61 0.06 0.00 0.00 0.01 0.11 98.04 
Lp12440 carb trav1-8 dol 0.24 0.23 1.05 40.12 56.21 0.00 0.10 0.40 0.00 0.04 98.39 
Lp12440 carb trav1-9 dol 0.09 0.19 0.49 40.50 57.99 0.03 0.16 0.00 0.00 0.06 99.52 
Lp12440 carb trav1-10 dol 0.20 0.14 0.32 41.57 56.49 0.02 0.13 0.27 0.16 0.07 99.37 
Lp12440 carb trav1-11 dol 0.29 0.34 0.38 41.87 55.88 0.03 0.00 0.00 0.19 0.05 99.04 
Lp12440 carb trav1-12 dol 0.29 0.54 0.36 41.53 54.38 0.02 0.02 0.01 0.00 0.00 97.16 
Lp12440 carb trav1-13 dol 0.27 0.86 0.51 41.48 55.17 0.01 0.06 0.46 0.00 0.00 98.83 
Lp12440 carb trav1-14 dol 0.14 0.07 0.26 41.62 56.78 0.00 0.00 0.00 0.01 0.00 98.88 
Lp12440 carb trav1-15 dol 0.11 0.03 0.37 40.75 56.79 0.00 0.00 0.17 0.00 0.03 98.25 

Label 	 Cations: Si Fe2+ Mn2+ Mg Ca Ba Sr Na K Zn Sum Cat mgs sid ca smt rhd 
LP12428_perv carb1-8-1 0.00 0.04 0.02 0.45 0.50 0.00 0.00 0.00 0.00 0.00 1.00 44.55 3.52 49.97 0.00 1.85 
Lp12440 perv fine carb2-5-1 0.00 0.03 0.02 0.45 0.50 0.00 0.00 0.00 0.00 0.00 1.00 45.34 2.48 50.08 0.02 1.94 
Lp12440 carb trav1-1 0.00 0.00 0.00 0.48 0.52 0.00 0.00 0.00 0.00 0.00 1.00 47.64 0.12 51.65 0.09 0.21 
Lp12440 carb trav1-2 0.00 0.00 0.00 0.47 0.52 0.00 0.00 0.00 0.00 0.00 1.00 46.50 0.11 52.42 0.00 0.22 
Lp12440 carb trav1-3 0.00 0.00 0.01 0.48 0.50 0.00 0.00 0.00 0.00 0.00 1.00 48.26 0.16 50.26 0.02 0.53 
Lp12440 carb trav1-4 0.00 0.00 0.01 0.48 0.51 0.00 0.00 0.00 0.00 0.00 1.00 48.06 0.01 50.73 0.04 0.58 
Lp12440 carb trav1-5 0.00 0.00 0.01 0.47 0.51 0.00 0.00 0.00 0.00 0.00 1.00 47.30 0.11 51.37 0.00 0.73 
Lp12440 carb trav1-6 0.00 0.01 0.01 0.47 0.52 0.00 0.00 0.00 0.00 0.00 1.00 46.49 0.67 51.43 0.05 0.88 
Lp12440 carb trav1-7 0.00 0.00 0.01 0.45 0.54 0.00 0.00 0.00 0.00 0.00 1.00 44.63 0.10 53.65 0.09 1.06 
Lp12440 carb trav1-8 0.00 0.00 0.01 0.45 0.53 0.00 0.00 0.00 0.00 0.00 1.00 44.97 0.19 53.06 0.03 0.86 
Lp12440 carb trav1-9 0.00 0.00 0.00 0.45 0.54 0.00 0.00 	, 0.00 0.00 0.00 1.00 44.90 0.16 54.15 0.05 0.40 
Lp12440 carb trav1-10 0.00 0.00 0.00 0.46 0.53 0.00 0.00 0.00 0.00 0.00 1.00 46.06 0.11 52.74 0.06 0.26 
Lp12440 carb trav1-11 0.01 0.00 0.00 0.46 0.52 0.00 0.00 0.00 0.00 0.00 1.00 46.34 0.28 52.10 0.04 0.31 
Lp12440 carb trav1-12 0.01 0.00 0.00 0.47 0.52 0.00 0.00 0.00 0.00 0.00 1.00 46.75 0.44 51.56 0.00 0.30 
Lp12440 carb trav1-13 0.00 0.01 0.00 0.46 0.52 0.00 0.00 0.00 0.00 0.00 1.00 46.15 0.69 51.71 0.00 0.41 
Lp12440 carb trav1-14 0.00 0.00 0.00 0.46 0.53 0.00 0.00 0.00 0.00 0.00 1.00 46.20 0.06 53.10 0.00 0.21 
Lp12440 carb trav1-15 0.00 0.00 0.00 0.46 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.30 45.66 0.02 0.00 0.00 
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Label 	 Oxides: Mineral Si02 FeCO3 MnCO3 MgCO3  CaCO3 BaCO3 SrCO3 Na2Ca*2 K2Ca*2 ZnCO3 Sum Ox 
Lp12440 carb trav1-16 dol 0.24 0.12 0.39 41.83 57.10 0.00 0.09 0.10 0.00 0.03 99.91 
Lp12440 carb trav1-17 dot 0.12 0.84 1.10 41.40 54.70 0.00 0.01 0.00 0.07 0.18 98.41 
Lp12440 carb trav1-18 dot 0.35 0.27 0.83 42.83 54.14 0.00 0.00 0.00 0.00 0.00 98.43 
Lp12440 carb trav1-19 dot 0.12 0.21 0.36 43.23 55.62 0.01 0.06 0.22 0.00 0.00 99.84 
Lp12440 carb trav1-20 dot 0.05 0.06 0.22 42.88 55.69 0.03 0.02 0.00 0.00 0.08 99.03 
Lp12476 perv carb1-4-1 Fe-dol 0.02 5.05 1.51 38.54 51.84 0.01 0.00 0.09 0.00 0.00 97.06 
LP12503_perv carb2-7-1 Fe-dot 0.03 4.71 1.35 39.83 52.70 0.00 0.02 0.02 0.08 0.00 98.75 
Lp12511_perv carb1-6-1 Fe-dot 0.02 5.23 2.05 38.18 51.97 0.00 0.09 0.00 0.00 0.00 97.55 
Lp18365_perv clear dol 1-1-1 dot 0.00 7.08 1.64 38.22 52.34 0.00 0.05 0.04 0.09 0.00 99.46 
Lp33390_dol traverse 1-3-1 dot 0.04 3.05 1.20 40.49 53.61 0.00 0.11 0.09 0.00 0.16 98.75 
Lp33390_dol traverse 2-4-1 dol 0.01 2.10 0.50 38.47 57.25 0.01 0.00 0.18 0.00 0.09 98.62 
Lp33390_dol traverse 3-5-1 dot 0.00 1.73 2.22 37.01 59.33 0.00 0.00 0.00 0.00 0.00 100.30 
Lp33390_dol traverse 4-6-1 dot 0.03 1.85 0.40 39.36 57.55 0.00 0.01 0.00 0.04 0.00 99.25 
Lp33390_dol traverse 5 -7- 1 Fe-dot 0.00 3.18 1.20 37.59 57.58 0.00 0.01 0.00 0.02 0.00 99.58 

Lp36w197_dol rhomb 1-2-1 Fe-dol 0.00 4.26 2.45 39.09 54.03 0.04 0.02 0.00 0.00 0.05 99.95 

LP36W214 carb traverse1-1 Fe-dot 0.07 5.98 5.73 34.80 51.19 0.00 0.12 0.00 0.25 0.19 98.34 
LP36W214 carb traverse1-5 dot 0.09 0.02 3.72 38.30 58.40 0.08 0.04 0.02 0.00 0.14 100.80 

Label 	 Cations: Si Fe2+ Mn2+ Mg Ca Ba Sr Na K Zn Sum Cat mgs sid ca smt rhd 
Lp12440 carb trav1-16 0.00 0.00 0.00 0.46 0.53 0.00 0.00 0.00 0.00 0.00 1.00 0.31 45.94 0.10 0.00 0.06 
Lp12440 carb trav1-17 0.00 0.01 0.01 0.46 0.52 0.00 0.00 0.00 0.00 0.00 1.00 0.90 46.39 0.69 0.00 0.01 
Lp12440 carb trav1-18 0.01 0.00 0.01 0.48 0.51 0.00 0.00 0.00 0.00 0.00 1.00 0.68 47.48 0.22 0.00 0.00 
Lp12440 carb trav1-19 0.00 0.00 0.00 0.48 0.52 0.00 0.00 0.00 0.00 0.00 1.00 0.29 47.53 0.17 0.00 0.04 
Lp12440 carb trav1 -20 0.00 0.00 0.00 0.48 0.52 0.00 0.00 0.00 0.00 0.00 1.00 0.18 47.56 0.05 0.00 0.01 

Lp12476 perv carb1-4-1 0.00 0.04 0.01 0.44 0.50 0.00 0.00 0.00 0.00 0.00 1.00 1.27 44.27 4.22 0.00 0.00 
LP12503_perv carb2-7-1 0.00 0.04 0.01 0.45 0.50 0.00 0.00 0.00 0.00 0.00 1.00 1.11 44.88 3.86 0.00 0.01 
Lp12511_perv carb1-6-1 0.00 0.04 0.02 0.44 0.50 0.00 0.00 0.00 0.00 0.00 1.00 1.72 43.69 4.36 0.00 0.06 
Lp18365_perv clear dot 1-1-1 0.00 0.06 0.01 0.43 0.50 0.00 0.00 0.00 0.00 • 0.00 1.00 1.36 43.07 5.81 0.00 0.03 
Lp33390_dol traverse 1-3-1 0.00 0.03 0.01 0.46 0.51 0.00 0.00 0.00 0.00 0.00 1.00 0.99 45.53 2.50 0.00 0.07 
Lp33390_dol traverse 2-4-1 0.00 0.02 0.00 0.43 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.42 43.38 1.73 0.00 0.00 
Lp33390_dol traverse 3-5-1 0.00 0.01 0.02 0.41 0.56 0.00 0.00 0.00 0.00 0.00 1.00 1.81 41.17 1.40 0.00 0.00 
Lp33390_dol traverse 4-6-1 0.00 0.02 0.00 0.44 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.33 43.91 1.50 0.00 0.00 
Lp33390_dol traverse 5-7-1 0.00 0.03 0.01 0.42 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.99 42.07 2.59 0.00 0.01 
Lp36w197_dol rhomb 1-2-1 0.00 0.04 0.02 0.44 0.51 0.00 0.00 0.00 0.00 0.00 1.00 2.01 43.65 3.46 0.00 0.01 
LP36W214 carb traverse1-1 0.00 0.05 0.05 0.40 0.50 0.00 0.00 0.00 0.00 0.00 1.00 4.85 40.08 5.02 0.00 0.08 
LP36W214 carb traverse1-5 0.00 0.00 0.03 0.42 0.54 0.00 0.00 0.00 0.00 0.00 1.00 3.01 42.30 0.02 0.00 0.02 
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Label 	 Oxides: Mineral Si02  FeCO3 MnCO3 MgCO3  CaCO3 BaCO3 SrCO3  Na2Ca*2 K2Ca*2 ZnCO3 Sum Ox 
LP36W214 carb traverse1-14 ank 2.63 0.40 2.99 41.98 47.85 0.00 0.00 3.37 0.74 0.06 100.04 
LP36W214 carb traverse1-18 do) 0.11 0.01 3.36 38.90 55.29 0.00 0.01 0.51 0.17 0.00 98.37 
Lp36w214_dol traverse 1-1-1 Fe-do) 0.02 5.61 6.84 33.04 53.27 0.01 0.06 0.27 0.00 0.17 99.29 
Lp36w214_dol traverse 2-2-1 do) 0.08 0.75 6.92 35.77 54.86 0.01 0.00 0.02 0.00 0.00 98.40 
Lp36w214_dol traverse 4-4-1 do) 0.09 0.13 3.67 39.81 57.07 0.00 0.08 0.28 0.23 0.00 101.36 
Lp36w214_dol traverse 5-5-1 do) 0.02 0.09 4.62 39.89 54.01 0.03 0.01 0.08 0.04 0.00 98.80 
Lp36w214_dol traverse 5-6-1 do) 0.01 0.15 5.22 39.88 53.98 0.00 0.11 0.00 0.02 0.05 99.41 
LP46A113_carb band 1 Mg-sid 0.11 50.97 1.50 48.45 0.54 0.08 0.07 0.67 0.26 0.25 102.90 
Lp51a477_carb in ms band 1-1-1 do) 0.00 1.97 3.39 33.57 61.09 0.00 0.06 0.19 0.00 0.06 100.34 
Lp51a482_clear do) rhomb 1-2-1 dol 0.00 2.93 4.78 37.49 54.22 0.02 0.12 0.03 0.00 0.00 99.58 
Lp51a484_clear do) patch 1-5-1 do) 0.01 0.25 0.25 40.93 57.64 0.03 0.17 0.38 0.15 0.00 99.81 
Lp51a484_type 5 do) in vein 1-6-1 do) 0.00 0.50 2.72 41.50 53.72 0.00 0.11 0.32 0.05 0.00 98.92 
Lp51a484_type 1 dol in vein 1-7-1 do) 0.00 0.55 1.65 41.90 54.56 0.06 0.14 0.24 0.00 0.00 99.10 
Lp51a484_zoned do) traverse 1-1 Fe-do) 0.03 2.88 2.66 39.73 53.80 0.00 0.42 0.06 0.03 0.12 99.72 
Lp51a484_zoned dol traverse 1-2 Fe-do) 0.01 1.77 2.93 39.91 53.10 0.02 0.00 0.25 0.06 0.00 98.05 
Lp51a484_zoned do) traverse 1-3 Fe-do) 0.03 1.31 0.95 41.36 55.33 0.00 0.01 0.14 0.00 0.05 99.18 
Lp51a484_zoned do) traverse 1-4 Fe-do) 0.00 3.12 1.65 40.01 53.42 0.00 0.05 0.00 0.00 0.00 98.25 

Label 	 Cations: Si Fe2+ Mn2+ Mg Ca Ba Sr Na K Zn Sum Cat mgs sid ca smt rhd 
LP36W214 carb trave rse1-14 0.04 0.00 0.02 0.45 0.44 0.00 0.00 0.01 0.00 0.00 0.96 2.36 45.06 0.32 0.00 0.00 
LP36W214 carb traverse1-18 0.00 0.00 0.03 0.44 0.53 0.00 0.00 0.00 0.00 0.00 1.00 2.79 43.99 0.01 0.00 0.01 
Lp36w214_dol traverse 1-1-1 0.00 0.05 0.06 0.38 0.51 0.00 0.00 0.00 0.00 0.00 1.00 5.75 37.84 4.68 0.00 0.04 
Lp36w214_dol traverse 2-2-1 0.00 0.01 0.06 0.41 0.53 0.00 0.00 0.00 0.00 0.00 1.00 5.78 40.73 0.62 0.00 0.00 
Lp36w214_dol traverse 4-4-1 0.00 0.00 0.03 0.44 0.53 0.00 0.00 0.00 0.00 0.00 1.00 2.95 43.61 0.10 0.00 0.05 
Lp36w214_dol traverse 5-5-1 0.00 0.00 0.04 0.45 0.51 0.00 0.00 `. 0.00 0.00 0.00 1.00 3.80 44.73 0.07 0.00 0.01 
Lp36w214_dol traverse 5-6-1 0.00 0.00 0.04 0.45 0.51 0.00 0.00 0.00 0.00 0.00 1.00 4.28 44.60 0.12 0.00 0.07 
LP46A113_carb band1 0.00 0.42 0.01 0.55 0.01 0.00 0.00 0.00 0.00 0.00 1.00 1.26 55.24 42.30 0.00 0.05 
Lp51a477_carb in ms band 1-1-1 0.00 0.02 0.03 0.38 0.58 0.00 0.00 0.00 0.00 0.00 1.00 2.80 37.70 1.61 0.00 0.04 
Lp51a482_clear dol rhomb 1-2-1 0.00 0.02 0.04 0.42 0.51 0.00 0.00 0.00 0.00 0.00 1.00 3.94 42.18 2.40 0.00 0.07 
Lp51a484_clear dol patch 1-5-1 0.00 0.00 0.00 0.45 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.21 45.42 0.20 0.00 0.11 
Lp51a484_type 5 do) in vein 1-6-1 0.00 0.00 0.02 0.47 0.51 0.00 0.00 0.00 0.00 0.00 1.00 2.23 46.48 0.41 0.00 0.07 
Lp51a484_type 1 do) in vein 1-7-1 0.00 0.00 0.01 0.47 0.51 0.00 0.00 0.00 0.00 0.00 1.00 1.35 46.75 0.45 0.00 0.09 
Lp51a484_zoned do) traverse 1-1 0.00 0.02 0.02 0.44 0.51 0.00 0.00 0.00 0.00 0.00 1.00 2.18 44.38 2.34 0.00 0.27 
Lp51a484_zoned do) traverse 1-2 0.00 0.02 0.02 0.45 0.51 0.00 0.00 0.00 0.00 0.00 1.00 2.43 45.16 1.46 0.00 0.00 
Lp51a484_zoned do) traverse 1-3 0.00 0.01 0.01 0.46 0.52 0.00 0.00 0.00 0.00 0.00 1.00 0.77 45.99 1.06 0.00 0.00 
Lp51a484_zoned do) traverse 1-4 0.00 0.03 0.01 0.45 0.51 0.00 0.00 0.00 0.00 0.00 1.00 1.37 45.12 2.56 0.00 0.03 
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Label 	 Oxides: Mineral S102 FeCO3 MnCO3 MgCO3  CaCO3 BaCO3 SrCO3 Na2Ca*2 K2Ca*2 ZnCO3 Sum Ox 
Lp51a484_zoned dol traverse 1-5 Fe-dol 0.04 4.07 1.64 39.31 53.42 0.00 0.00 0.00 0.00 0.23 98.70 
Lp51a484_zoned dol traverse 1-6 dol 0.07 0.54 3.01 42.13 52.32 0.00 0.00 0.32 0.00 0.14 98.55 
Lp51a484_zoned dol traverse 1-7 Fe-do) 0.05 1.48 3.20 41.21 52.91 0.02 0.00 0.00 0.00 0.19 99.06 
Lp51a484_zoned dol traverse 1-8 dol 0.00 0.62 3.66 41.43 52.85 0.00 0.10 0.17 0.15 0.00 98.98 
Lp51a484_zoned dol traverse 1-9 Fe-dol 0.01 4.28 1.66 39.07 53.66 0.04 0.03 0.00 0.04 0.16 98.96 
Lp51a484_zoned do) traverse 1-10 Fe-do) 0.27 1.72 0.32 42.35 54.33 0.04 0.02 0.06 0.14 0.18 99.45 
LP51AW2302_carb band trav1_3 Fe-do) 0.80 7.81 0.64 47.23 41.47 0.06 0.31 0.89 1.15 0.00 100.36 
Lp51aw2433_dol 1-1-1 ank 0.00 14.32 2.53 29.26 54.19 0.04 0.19 0.00 0.00 0.00 100.53 
Lp51aw2433_carb band 1-5-1 Fe-dol 0.53 7.43 0.22 46.42 46.10 0.00 0.11 0.26 0.27 0.16 101.51 
LP66112_carb band2-4-1 do) 0.19 11.35 0.66 34.60 51.51 0.02 0.10 0.00 1.04 0.12 99.58 
LP66153_patchy carb1-6-1 do) 0.05 3.18 2.01 37.41 52.14 0.01 0.14 6.67 0.07 0.00 101.67 
LP66155_patchy carb1-1-1 Fe-do) 0.00 13.45 2.02 25.07 58.54 0.00 0.01 0.09 0.00 0.15 99.33 
LP66155_patchy carb2-3-1 Fe-do) 0.06 13.96 1.57 24.64 58.66 0.02 0.13 0.20 0.00 0.02 99.26 
LP66155_carb band1-5-1 Mg-sid 0.65 84.86 0.80 12.78 1.07 0.05 0.00 0.42 1.99 0.12 102.74 
LP66179_patchy carb1-1-1 dol 0.01 4.07 1.07 40.68 52.53 0.01 0.06 0.41 0.00 0.00 98.84 
LP66202_carb band1-6-1 do) 0.02 6.11 3.16 37.42 51.42 0.02 0.24 0.00 0.06 0.00 98.43 
LP66233_vein carb1-6-1 sid 0.00 61.87 1.63 36.30 2.50 0.00 0.08 0.23 0.00 0.00 102.61 
LP66233_carb band2-9-1 sid 0.00 63.37 0.60 35.40 2.46 0.03 0.00 0.11 0.11 0.00 102.09 

Label 	 Cations: Si Fe2+ Mn2+ Mg Ca Ba Sr Na K Zn Sum Cat mgs sid ca smt rhd 
Lp51a484_zoned do) traverse 1-5 0.00 0.03 0.01 0.44 0.51 0.00 0.00 0.00 0.00 0.00 1.00 1.35 44.32 3.34 0.00 0.00 
Lp51a484_zoned do) traverse 1-6 0.00 0.00 0.03 0.47 0.50 0.00 0.00 0.00 0.00 0.00 1.00 2.48 47.24 0.44 0.00 0.00 
Lp51a484_zoned do) traverse 1-7 0.00 0.01 0.03 0.46 0.50 0.00 0.00 0.00 0.00 0.00 1.00 2.63 46.08 1.20 0.00 0.00 
Lp51a484_zoned do) traverse 1 -8 0.00 0.01 0.03 0.46 0.50 0.00 0.00 0.00 0.00 0.00 1.00 3.01 46.44 0.51 0.00 0.06 
Lp51a484_zoned do) traverse 1-9 0.00 0.04 0.01 0.44 0.51 0.00 0.00 0.00 0.00 0.00 1.00 1.37 44.05 3.51 0.00 0.02 
Lp51a484_zoned do) traverse 1-10 0.00 0.01 0.00 0.47 0.51 0.00 0.00 0.00 0.00 0.00 1.00 0.26 46.77 1.39 0.00 0.01 
LP51AW2302_carb band trav1_3 0.01 0.06 0.01 0.52 0.39 0.00 0.00 0.00 0.00 0.00 0.99 0.52 51.77 6.23 0.00 0.19 
Lp51aw2433_dol 1-1-1 0.00 0.12 0.02 0.34 0.52 0.00 0.00 0.00 0.00 0.00 1.00 2.13 33.51 11.93 0.00 0.12 
Lp51aw2433_carb band 1-5-1 0.01 0.06 0.00 0.50 0.42 0.00 0.00 0.00 0.00 0.00 0.99 0.18 50.18 5.85 0.00 0.07 
LP66112_carb band2-4-1 0.00 0.09 0.01 0.40 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.55 39.52 9.43 0.00 0.07 
LP66153_patchy carb1-6-1 0.00 0.03 0.02 0.43 0.52 0.00 0.00 0.01 0.00 0.00 1.01 1.69 42.97 2.66 0.00 0.09 
LP66155_patchy carb1-1-1 0.00 0.11 0.02 0.29 0.58 0.00 0.00 0.00 0.00 0.00 1.00 1.73 29.26 11.42 0.00 0.01 
LP66155_patchy carb2-3-1 0.00 0.12 0.01 0.29 0.58 0.00 0.00 0.00 0.00 0.00 1.00 1.35 28.76 11.86 0.00 0.09 
LP66155_carb band1-5-1 0.01 0.79 0.01 0.16 0.02 0.00 0.00 0.00 0.00 0.00 0.99 0.75 16.30 78.77 0.00 0.00 
LP66179_patchy carb1-1-1 0.00 0.03 0.01 0.46 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.89 45.79 3.33 0.00 0.04 
LP66202_carb band1-6-1 0.00 0.05 0.03 0.43 0.49 0.00 0.00 0.00 0.00 0.00 1.00 2.64 42.67 5.07 0.00 0.15 
LP66233_vein carb1-6-1 0.00 0.53 0.01 0.43 0.03 0.00 0.00 0.00 0.00 0.00 1.00 1.41 42.85 53.13 0.00 0.05 
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Label 	 Oxides: Mineral Si02  FeCO3 MnCO3 MgCO3  CaCO3 BaCO3  SrCO3 Na2Ca*2 K2Ca*2 ZnCO3 Sum Ox 
LP66254_strain shadow carb1-5-1 Fe-dol 0.22 3.16 0.80 42.18 50.97 0.00 0.21 0.04 0.38 0.00 97.96 
LP66311_carb band1-3-1 dol 0.20 5.00 3.17 37.45 51.84 0.00 0.12 0.00 0.53 0.09 98.42 
LP67B687 perv carb-5-1 dol 0.04 2.37 1.99 34.10 59.08 0.04 0.12 0.00 0.22 0.03 97.99 
Lp67b760_carb in qtz vein 1-4-1 dol 0.00 0.63 0.24 44.22 54.24 0.00 0.08 0.05 0.00 0.15 99.61 
Lp67b760_carb vein 1-8-1 Fe-dol 0.04 8.23 0.61 29.62 61.18 0.03 0.22 0.21 0.11 0.00 100.25 
LP67B790_vein carb1-2-1 dol 0.03 6.67 3.51 31.44 55.31 0.00 0.10 1.85 0.00 0.08 98.98 
LP67B841_vein veinlet1-6-1 Elol 0.02 9.16 0.64 32.76 54.86 0.00 0.09 1.53 0.00 0.00 99.07 
LP67B986 perv carb1-5-1 Fe-dol 0.00 11.14 2.60 27.43 55.94 0.01 0.04 0.02 0.00 0.20 97.37 

Label 	 Cations: Si Fe2+ Mn2+ Mg Ca Ba Sr Na K Zn Sum Cat mgs sid ca smt rhd 
LP66233_carb band2-9-1 0.00 0.55 0.01 0.42 0.03 0.00 0.00 0.00 0.00 0.00 1.00 0.52 42.09 54.83 0.00 0.00 
LP66254_strain shadow carb1•5-1 0.00 0.03 0.01 0.48 0.48 0.00 0.00 0.00 0.00 0.00 1.00 0.66 47.48 2.59 0.00 0.14 
LP66311_carb band 1-3-1 0.00 0.04 0.03 0.43 0.50 0.00 0.00 0.00 0.00 0.00 1.00 2.65 42.64 4.15 0.00 0.08 
LP67B687 perv carb-5-1 0.00 0.02 0.02 0.39 0.57 0.00 0.00 0.00 0.00 0.00 1.00 1.68 39.07 1.98 0.00 0.08 
Lp67b760_carb in qtz vein 1-4-1 0.00 0.01 0.00 0.49 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.19 48.81 0.51 0.00 0.05 
Lp67b760_carb vein 1-8-1 0.00 0.07 0.01 0.34 0.59 0.00 0.00 0.00 0.00 0.00 1.00 0.51 33.63 6.80 0.00 0.14 
LP67B790_vein carb1-2-1 0.00 0.06 0.03 0.37 0.55 0.00 0.00 0.00 0.00 0.00 1.00 2.99 36.53 5.64 0.00 0.06 
LP67B841_vein veinlet1-6-1 0.00 0.08 0.01 0.38 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.54 37.83 7.70 0.00 0.06 
LP67B986 perv carb1-5-1 0.00 0.10 0.02 0.32 0.56 0.00 0.00 0.00 0.00 0.00 1.00 2.26 32.42 9.58 0.00 0.03 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO MnO MgO Ca0 Na20 K20 ZnO NiO H20(c) Sum Ox% 
LP12428_perv ch11-1-1 Mg-chl 32.53 0.06 18.31 0.44 6.40 0.05 28.58 0.04 0.01 0.54 0.01 0.01 12.55 99.52 
LP12428_perv ch12-2-1 Mg-chl 31.43 0.03 19.34 0.61 7.02 0.15 29.10 0.02 0.01 0.21 0.09 0.02 12.63 100.67 
LP12434_chl patch1-1-1 Mg-chl 29.76 0.05 21.32 0.00 7.81 0.22 27.22 0.00 0.02 0.21 0.05 0.01 12.40 99.07 
LP12434_chl patch2-2-1 Mg-chl 29.98 0.01 21.11 0.03 8.11 0.23 27.79 0.01 0.02 0.02 0.00 0.07 12.49 99.88 
LP12434_chl patch3-2-,  1 Mg-chl 32.34 1.80 19.43 0.03 7.22 0.11 25.07 0.01 0.00 2.80 0.00 0.00 12.60 101.42 
Lp12440 perv ch11-1-1 Mg-chl 30.33 0.02 19.94 0.28 7.32 0.16 28.82 0.01 0.00 0.02 0.12 0.04 12.48 99.53 
Lp12440 perv ch12-2-1 ,  Mg-chl 30.67 0.02 19.78 0.41 7.65 0.08 28.49 0.02 0.02 0.03 0.06 0.07 12.50 99.80 
Lp12440 perv ch13-3-1 Mg-chl 30.47 0.03 20.11 0.19 7.12 0.11 28.35 0.04 0.00 0.11 0.00 0.00 12.44 98.96 
LP12450_strain shadow ch11-3-1 Mg-chl 30.07 0.00 20.62 0.11 7.74 0.14 27.51 0.02 0.01 0.09 0.05 0.00 12.37 98.72 
LP12450_strain shadow ch12-4-1 Mg-chl 29.90 0.04 20.62 0.10 7.80 0.09 27.45 0.03 0.00 0.09 0.01 0.02 12.34 98.50 
LP12450_perv ch11-8-1 Mg-chl 29.90 0.01 20.37 0.11 7.84 0.11 27.49 0.04 0.01 0.01 0.11 0.00 12.31 98.33 
LP12457 perv ch11-2-1 Mg-chl 29.80 0.03 21.37 0.03 7.69 0.03 27.68 0.01 0.02 0.04 0.48 0.05 12.48 99.72 
LP12457 perv ch12-4-1 Mg-chl 30.71 0.03 19.08 0.03 9.46 0.08 26.80 0.02 0.03 0.32 0.12 0.00 12.29 98.96 
LP12465 perv ch12•6-1 Mg-chl 29.98 0.01 19.62 0.00 8.44 0.08 27.14 0.03 0.01 0.05 0.00 0.00 12.19 97.54 
LP12465 perv ch13-7-1 Mg-chl 29.57 0.02 19.39 0.03 8.83 0.05 26.40 0.01 0.00 0.04 0.01 0.08 12.02 96.44 
Lp12476 perv ch11-5,1 Mg-chl 30.63 0.03 20.28 0.12 7.58 0.07 28.70 0.01 0.01 0.01 0.00 0.04 12.55 100.01 
Lp12476 perv ch12-9-1 Mg-chl 29.84 0.03 20.35 0.29 7.30 0.13 27.52 0.02 0.00 0.03 0.15 0.00 12.29 97.95 

Label 	 Cations: Si Ti Al IV AI VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 
LP12428_perv ch11:-1-1 6.22 0.01 1.78 2.35 0.07 1.02 0.01 8.14 0.01 0.01 0.13 0.00 0.00 16.00 35.74 0.89 
LP12428_perv ch12-2-1 5.97 0.01 2.03 2.30 0.09 1.12 0.02 8.24 0.01 0.00 0.05 0.01 0.00 16.00 35.84 0.88 
LP12434_chl patch1-1-1 5.76 0.01 2.24 2.62 0.00 1.26 0.04 7.85 0.00 0.01 0.05 0.01 0.00 16.00 35.84 0.86 
LP12434_chl patch2-2-1 5.76 0.00 2.24 2.53 0.01 1.30 0.04 7.95 0.00 0.01 0.01 0.00 0.01 16.00 35.86 0.86 
LP12434_chl patch3 -2- 1 6.16 0.26 1.84 2.52 0.01 1.15 0.02 7.12 0.00 0.00 0.68 0.00 0.00 16.00 35.74 0.86 
Lp12440 perv ch11-1-1 5.83 0.00 2.17 2.35 0.04 1.18 0.03 8.26 0.00 0.00 0.00 0.02 0.01 16.00 35.89 0.88 
Lp12440 perv ch12-2-1 5.89 0.00 2.11 2.36 0.06 1.23 0.01 8.15 0.01 0.01 0.01 0.01 0.01 16.00 35.85 0.87 
Lp12440 perv ch13-3-1 5.88 0.00 2.12 2.45 0.03 1.15 0.02 8.15 0.01 0.00 0.03 0.00 0.00 16.00 35.83 0.88 
LP12450_strain shadow ch11-3-1 5.83 0.00 2.17 2.54 0.02 1.25 0.02 7.95 0.00 0.00 0.02 0.01 0.00 16.00 35.82 0.86 
LP12450._strain shadow ch12-4-1 5.81 0.01 2.19 2.53 0.02 1.27 0.02 7.95 0.01 0.00 0.02 0.00 0.00 16.00 35.83 0.86 
LP12450_perv ch11-8-1 5.82 0.00 2.18 2.50 0.02 1.28 0.02 7.98 0.01 0.00 0.00 0.02 0.00 16.00 35.83 0.86 
LP12457 perv ch11-2-1 5.73 0.00 2.27 2.57 0.01 1.24 0.01 7.93 0.00 0.01 0.01 0.07 0.01 16.00 35.85 0.87 
LP12457 perv ch12-4-1 5.99 0.00 2.01 2.38 0.01 1.54 0.01 7.79 0.00 0.01 0.08 0.02 0.00 16.00 35.85 0.84 
LP12465 perv ch12-6-1 5.90 0.00 2.10 2.45 0.00 1.39 0.01 7.96 0.01 0.00 0.01 0.00 0.00 16.00 35.83 0.85 
LP12465 perv ch13-7-1 5.90 0.00 2.10 2.46 0.01 1.47 0.01 7.85 0.00 0.00 0.01 0.00 0.01 16.00 35.82 0.84 
Lp12476 perv ch11-5-1.  5.85 0.00 2.15 2.42 0.02 1.21 0.01 8.18 0.00 0.00 0.00 0.00 0.01 16.00 35.85 0.87 
Lp12476 perv ch12-9-1 5.83 0.00 2.18 2.51 0.05 1.19 0.02 8.01 0.00 0.00 0.01 0.02 0.00 16.00 35.81 0.87 
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Label Oxides: Mineral Si02 TiO2 Al203 Cr2O3 FeO MnO MgO CaO Na20 K20 ZnO NiO H20(c) Sum Ox% 
LP12493 perv ch11-3-1 Mg-chl 30.99 0.05 19.27 0.00 6.06 0.05 28.85 0.05 0.01 0.01 0.00 0.00 12.36 97.69 
LP12493 perv ch12-4-1 Mg-chl 30.00 0.02 21.16 0.00 6.19 0.07 28.10 0.06 0.00 0.03 0.02 0.00 12.39 98.04 
Lp12490 perv ch11-1-1 Mg-chl 30.09 0.03 20.31 0.00 6.93 0.04 27.88 0.04 0.01 0.05 0.05 0.00 12.30 97.73 
Lp12490 perv ch12-2-1 Mg-chl 30.48 0.04 20.73 0.07 7.17 0.06 28.14 0.03 0.00 0.13 0.05 0.00 12.50 99.40 
Lp12490 perv ch13-3-1 Mg-chl 30.38 0.07 20.92 0.02 6.93 0.09 28.41 0.00 0.00 0.28 0.00 0.01 12.53 99.64 
LP12511_perv ch11-4-1 Mg-chl 29.87 0.00 20.02 0.35 9.05 0.15 27.07 0.02 0.00 0.05 0.19 0.05 12.32 99.14 
LP12511_perv ch12-5-1 Mg-chl 30.66 0.03 19.50 0.14 10.01 0.10 26.56 0.01 0.02 0.24 0.21 0.01 12.37 99.85 
LP12516_chl patch1-1-1 Mg-chl 29.48 0.16 21.43 0.02 10.16 0.15 26.17 0.00 0.00 0.01 0.09 0.01 12.41 100.09 
LP12516_chl patch2-2-1 Mg-chl 29.18 0.03 21.41 0.01 9.81 0.16 25.82 0.00 0.00 0.04 0.04 0.00 12.26 98.76 
LP12516_vein ch12-5-1 Mg-chl 29.37 0.06 21.37 0.03 10.08 0.11 26.07 0.02 0.00 0.02 0.00 0.00 12.34 99.47 
LP12523_chl patch1-1-1 Mg-chl 29.12 0.08 21.55 0.00 10.37 0.19 25.76 0.01 0.01 0.00 0.13 0.01 12.32 99.55 
LP12523_chl patch2-2-1 Mg-chl 29.30 0.05 21.74 0.00 9.96 0.08 25.96 0.00 0.00 0.02 0.00 0.01 12.35 99.47 
LP12531_perv ch11-1-1 Mg-chl 28.86 0.02 21.48 0.02 8.93 0.10 26.53 0.05 0.02 0.02 0.01 0.00 12.25 98.30 
LP12531_perv ch12-2-1 Mg-chl 28.61 0.04 21.44 0.00 9.43 0.04 25.80 0.04 0.00 0.00 0.06 0.03 12.14 97.63 
LP12531_perv ch13-3-1 Mg-chl 30.22 0.92 21.69 0.02 8.42 0.06 24.51 0.03 0.03 0.66 0.07 0.08 12.37 99.08 
LP12539 perv ch11-1-1 Mg-chl 29.65 0.00 21.33 0.00 7.22 0.04 27.68 0.04 0.00 0.02 0.06 0.09 12.38 98.51 
LP12539 perv ch12-2-1 Mg-chl 29.76 0.01 20.74 0.00 7.09 0.02 27.85 0.00 0.01 0.00 0.03 0.02 12.31 97.85 

Label Cations: Si Ti Al IV Al VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 
LP12493 perv ch11-3-1 6.01 0.01 1.99 2.42 0.00 0.98 0.01 8.35 0.01 0.00 0.00 0.00 0.00 16.00 35.78 0.90 
LP12493 perv ch12-4-1 5.81 0.00 2.19 2.63 0.00 1.00 0.01 8.11 0.01 0.00 0.01 0.00 0.00 16.00 35.78 0.89 
Lp12490 perv ch11-1-1 5.87 0.00 2.13 2.53 0.00 1.13 0.01 8.10 0.01 0.00 0.01 0.01 0.00 16.00 35.80 0.88 
Lp12490 perv ch12-2-1 5.85 0.01 2.15 2.54 0.01 1.15 0.01 8.05 0.01 0.00 0.03 0.01 0.00 16.00 35.81 0.88 
Lp12490 perv ch13-3-1 5.82 0.01 2.19 2.54 0.00 1.11 0.02 8.11 0.00 0.00 0.07 0.00 0.00 16.00 35.85 0.88 
LP12511_perv ch11-4-1 5.82 0.00 2.18 2.41 0.05 1.47 0.02 7.86 0.00 0.00 0.01 0.03 0.01 16.00 35.87 0.84 
LP12511_perv ch12-5-1 5.95 0.00 2.05 2.40 0.02 1.62 0.02 7.68 0.00 0.01 0.06 0.03 0.00 16.00 35.84 0.83 
LP12516_chl patch1-1-1 5.70 0.02 2.30 2.58 0.00 1.64 0.02 7.54 0.00 0.00 0.00 0.01 0.00 16.00 35.84 0.82 
LP12516_chl patch2-2-1 5.71 0.00 2.29 2.64 0.00 1.61 0.03 7.53 0.00 0.00 0.01 0.01 0.00 16.00 35.82 0.82 
LP12516_vein ch12-5-1 5.71 0.01 2.29 2.60 0.01 1.64 0.02 7.55 0.00 0.00 0.01 0.00 0.00 16.00 35.84 0.82 
LP12523_chl patch1-1-1 5.67 0.01 2.33 2.62 0.00 1.69 0.03 7.48 0.00 0.00 0.00 0.02 0.00 16.00 35.85 0.82 
LP12523_chl patch2-2-1 5.69 0.01 2.31 2.66 0.00 1.62 0.01 7.51 0.00 0.00 0.00 0.00 0.00 16.00 35.82 0.82 
LP12531_perv ch11-1-1 5.65 0.00 2.35 2.61 0.00 1.46 0.02 7.75 0.01 0.01 0.01 0.00 0.00 16.00 35.87 0.84 
LP12531_perv ch12-2-1 5.65 0.01 2.35 2.65 0.00 1.56 0.01 7.60 0.01 0.00 0.00 0.01 0.01 16.00 35.84 0.83 
LP12531_perv ch13-3-1 5.86 0.14 2.14 2.82 0.00 1.37 0.01 7.08 0.01 0.01 0.16 0.01 0.01 16.00 35.61 0.84 
LP12539 perv ch11-1-1 5.74 0.00 2.26 2.62 0.00 1.17 0.01 7.99 0.01 0.00 0.00 0.01 0.01 16.00 35.82 0.87 
LP12539 perv ch12-2-1 5.80 0.00 2.20 2.56 0.00 1.16 0.00 8.09 0.00 0.00 0.00 0.00 0.00 16.00 35.82 0.88 
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Label 	 Oxides: Mineral Si02 TiO2 Al203  Cr203 FeO MnO MgO Ca0 Na20 1(20 ZnO NiO H20(c) Sum Ox% 
Lp12555_perv ch11-5-1 Mg-chl 29.91 0.05 21.61 0.02 8.41 0.36 27.16 0.00 0.00 0.01 0.09 0.01 12.51 100.13 
Lp12555_perv ch12-6-1 Mg-chl 29.20 0.00 21.75 0.00 8.08 0.33 26.75 0.04 0.01 0.01 0.05 0.00 12.32 98.55 
Lp18365_perv chl 1-3-1 Mg-chl 30.28 0.04 19.61 0.00 9.52 0.09 27.12 0.01 0.01 0.05 0.02 0.00 12.32 99.08 
Lp18365_chl patch 1-4-1 Mg-chl 29.28 0.06 20.89 0.00 9.70 0.17 26.55 0.02 0.01 0.00 0.06 0.06 12.30 99.10 
Lp33390_chl in chl patch 1-2-1 Mg-chl 32.92 0.01 17.86 0.31 5.60 0.09 29.81 0.11 0.02 0.01 0.05 0.00 12.61 99.39 
Lp36w197_S1 prallel chl 1-3-1 Mg-chl 30.83 0.03 20.25 0.29 7.94 0.20 28.34 0.04 0.00 0.07 0.09 0.00 12.60 100.67 
LP36W214 perv ch11-1-1 Mg-chl 29.16 0.05 20.77 0.30 9.68 0.40 26.23 0.04 0.01 0.01 0.10 0.00 12.26 99.01 
LP36W214 perv ch12-2-1 Mg-chl 29.45 0.04 20.65 0.10 9.48 0.38 25.96 0.00 0.00 0.09 0.00 0.01 12.22 98.38 
Lp44243_chl in ca-as band 1-6-1 Mg-chl 28.97 0.02 22.14 0.01 8.77 0.38 26.43 0.01 0.01 0.03 0.11 0.00 12.36 99.26 
Lp44243_chl in ca-as band 1-11-1 Mg-chl 29.44 0.04 21.91 0.04 9.92 0.36 25.82 0.01 0.01 0.04 0.35 0.02 12.43 100.39 
LP46A103_perv ch11-2-1 Mg-chl 29.60 0.04 21.75 0.01 9.24 0.48 25.70 0.02 0.03 0.07 0.06 0.02 12.36 99.38 
LP46A103_perv ch12-3-1 Mg-chl 28.56 0.05 22.00 0.00 9.37 0.61 26.08 0.03 0.03 0.05 0.06 0.00 12.29 99.13 
LP46A103_perv ch13-7-1 Mg-chl 29.96 0.02 20.72 0.04 9.45 0.39 26.54 0.06 0.02 0.07 0.08 0.02 12.39 99.76 
LP46A113_perv ch11-9-1 Mg-chl 29.66 0.01 19.59 0.05 10.66 0.35 25.79 0.03 0.00 0.04 0.37 0.11 12.17 98.83 
LP46Al24_perv ch11-5-1 Mg-chl 30.00 0.03 20.62 0.02 9.73 0.25 26.11 0.04 0.02 0.24 0.13 0.00 12.34 99.53 
LP46Al24_perv ch12-6-1 Mg-chl 29.53 0.00 21.95 0.00 9.97 0.25 25.45 0.01 0.01 0.00 0.12 0.03 12.38 99.70 
LP46A177_1rg ch11-1-1 Mg-chl 30.69 0.04 20.42 0.07 5.40 0.22 28.88 0.02 0.02 0.19 0.03 0.01 12.47 98.47 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 
Lp12555_perv ch11-5- .1 5.74 0.01 2.26 2.62 0.00 1.35 0.06 7.76 0.00 0.00 0.00 0.01 0.00 16.00 35.81 0.85 
Lp12555_perv ch12-6-1 5.68 0.00 2.32 2.67 0.00 1.32 0.06 7.76 0.01 0.00 0.00 0.01 0.00 16.00 35.83 0.86 
Lp18365_perv chl 1-3L1 5.90 0.01 2.11 2.39 0.00 1.55 0.02 7.87 0.00 0.01 0.01 0.00 0.00 16.00 35.86 0.84 
Lp18365_chl patch 1-4-1 5.71 0.01 2.29 2.51 0.00 1.58 0.03 7.72 0.00 0.00 0.00 0.01 0.01 16.00 35.88 0.83 
Lp33390_chl in chi patch 1 -2- 1 6.26 0.00 1.74 2.27 0.05 0.89 0.01 8.45 0.02 0.01 0.00 0.01 0.00 16.00 35.71 0.91 
Lp36w197_S1 prallel chl 1-3-1 5.87 0.01 2.13 2.41 0.04 1.26 0.03 8.04 0.01 0.00 0.02 0.01 0.00 16.00 35.84 0.86 
LP36W214 perv ch11-1-1 5.70 0.01 2.30 2.49 0.05 1.58 0.07 7.65 0.01 0.01 0.00 0.01 0.00 16.00 35.88 0.83 
LP36W214 perv ch12-2-1 5.78 0.01 2.22 2.56 0.02 1.56 0.06 7.60 0.00 0.00 0.02 0.00 0.00 16.00 35.83 0.83 
Lp44243_chl in ca-as band 1-6-1 5.62 0.00 2.38 2.68 0.00 1.42 0.06 7.64 0.00 0.01 0.01 0.02 0.00 16.00 35.85 0.84 
Lp44243_chl in ca-as band 1-11-1 5.68 0.01 2.32 2.66 0.01 1.60 0.06 7.43 0.00 0.00 0.01 0.05 0.00 16.00 35.83 0.82 
LP46A103_perv ch11-2-1 5.74 0.01 2.26 2.72 0.00 1.50 0.08 7.43 0.01 0.01 0.02 0.01 0.00 16.00 35.78 0.83 
LP46A103_perv ch12-3-1 5.58 0.01 2.43 2.64 0.00 1.53 0.10 7.59 0.01 0.01 0.01 0.01 0.00 16.00 35.90 0.83 
LP46A103_perv ch13-7-1 5.80 0.00 2.20 2.53 0.01 1.53 0.06 7.66 0.01 0.01 0.02 0.01 0.00 16.00 35.84 0.83 
LP46A113_perv ch11-9-1 5.84 0.00 2.16 2.39 0.01 1.76 0.06 7.57 0.01 0.00 0.01 0.05 0.02 16.00 35.88 0.81 
LP46Al24_perv ch11-5-1 5.83 0.00 2.17 2.55 0.00 1.58 0.04 7.56 0.01 0.01 0.06 0.02 0.00 16.00 35.84 0.83 
LP46Al24_perv ch12-6-1 5.72 0.00 2.28 2.74 0.00 1.62 0.04 7.35 0.00 0.00 0.00 0.02 0.01 16.00 35.77 0.82 
LP46A177_Irg ch11-1-1 5.90 0.01 2.10 2.53 0.01 0.87 0.04 8.28 0.01 0.01 0.05 0.01 0.00 16.00 35.80 0.91 
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Label Oxides: Mineral S102 TiO2 Al203 Cr203 FeO MnO MgO CaO Na20 K20 ZnO NiO H20(c) Sum Ox% 
LP46A177 perv ch12-3-1 Mg-chl 30.56 0.02 20.97 0.00 5.36 0.25 29.34 0.02 0.00 0.01 0.00 0.03 12.57 99.14 
LP46A177 perv ch14-5-1 Mg-chl 30.16 0.01 21.43 0.03 5.83 0.18 29.29 0.01 0.00 0.00 0.00 0.00 12.59 99.51 
LP46A177 perv ch15-6-1 Mg-chl 30.03 0.33 21.20 0.03 5.75 0.31 28.95 0.03 0.00 0.02 0.00 0.03 12.54 99.22 
LP46A177 perv ch16-7-1 Mg-chl 30.63 0.05 20.99 0.00 5.71 0.22 29.32 0.01 0.00 0.16 0.01 0.03 12.62 99.75 
LP46A187_perv ch11-1-1 Mg-chl 29.19 0.06 22.12 0.04 9.62 0.29 26.43 0.00 0.01 0.02 0.00 0.00 12.45 100.23 
LP46A187_perv ch12-2-1 Mg-chl 29.35 0.04 21.99 0.01 9.47 0.40 26.44 0.01 0.00 0.01 0.01 0.05 12.45 100.23 
LP46A204 chl patch 1-1-1 Mg-chl 27.82 2.87 21.59 0.03 9.32 0.29 25.34 0.01 0.01 0.01 0.05 0.05 12.34 99.72 
LP46A204 chl patch2-2-1 Mg-chl 28.82 0.05 22.07 0.03 10.00 0.31 26.12 0.01 0.00 0.00 0.00 0.05 12.37 99.83 
LP46A204 chl patch3-3-1 Mg-chl 28.76 0.04 22.46 0.01 9.82 0.32 25.82 0.00 0.01 0.01 0.06 0.01 12.36 99.68 
LP46A204 chl patch4-4-1 Mg-chl 29.31 0.08 22.04 0.00 9.22 0.31 25.84 0.02 0.00 0.20 0.01 0.06 12.37 99.46 
LP46A250 chl patch1-2-1 Mg-Fe-chl 28.18 0.04 22.85 0.00 15.04 0.44 20.67 0.03 0.00 0.37 0.19 0.00 12.08 99.87 
LP46A250 chl patch2-4-1 Mg-Fe-chl 27.32 0.06 22.56 0.00 14.58 0.45 21.21 0.02 0.00 0.01 0.21 0.00 11.91 98.33 
LP46A250 perv ch11-7-1 Mg-Fe-chl 27.19 0.02 22.94 0.00 14.45 0.40 22.07 0.01 0.02 0.02 0.00 0.01 12.02 99.14 
LP46A250 chl patch3-9-1 Mg-Fe-chl 27.69 0.06 21.99 0.05 15.49 0.44 21.62 0.02 0.00 0.05 0.20 0.00 12.01 99.62 
LP46A250 chl patch4-10-1 Mg-Fe-chl 27.14 0.06 22.15 0.00 15.83 0.46 21.57 0.01 0.01 0.00 0.00 0.01 11.94 99.17 
LP46A250 perv ch12-11-1 Mg-Fe-chl 28.32 0.05 23.23 0.02 14.65 0.41 20.29 0.03 0.04 0.62 0.08 0.01 12.10 99.85 
LP46A297 chi patch1-1-1 Mg-Fe-chl 26.30 0.04 22.33 0.02 21.11 0.38 18.06 0.01 0.00 0.00 0.19 0.00 11.75 100.20 

Label Cations: Si Ti Al IV Al VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 
LP46A177 perv ch12-3-1 5.83 0.00 2.17 2.55 0.00 0.86 0.04 8.35 0.00 0.00 0.00 0.00 0.00 16.00 35.81 0.91 
LP46A177 perv ch14-5-1 5.75 0.00 2.25 2.56 0.00 0.93 0.03 8.32 0.00 0.00 0.00 0.00 0.00 16.00 35.84 0.90 
LP46A177 pent ch15-6-1 5.75 0.05 2.26 2.52 0.01 0.92 0.05 8.26 0.01 0.00 0.01 0.00 0.01 16.00 35.82 0.90 
LP46A177 perv ch16-7-1 5.82 0.01 2.18 2.53 0.00 0.91 0.04 8.31 0.00 0.00 0.04 0.00 0.00 16.00 35.84 0.90 
LP46A187_perv ch11-1-1 5.62 0.01 2.38 2.65 0.01 1.55 0.05 7.59 0.00 0.00 0.01 0.00 0.00 16.00 35.86 0.83 
LP46A187_perv ch12-2-1 5.65 0.01 2.35 2.64 0.00 1.53 0.07 7.59 0.00 0.00 0.00 0.00 0.01 16.00 35.85 0.83 
LP46A204 chl patch1-1-1 5.41 0.42 2.59 2.35 0.00 1.52 0.05 7.34 0.00 0.00 0.00 0.01 0.01 16.00 35.70 0.83 
LP46A204 chl patch2-2-1 5.59 0.01 2.41 2.64 0.01 1.62 0.05 7.55 0.00 0.00 0.00 0.00 0.01 16.00 35.88 0.82 
LP46A204 chl patch3-3-1 5.58 0.01 2.42 2.72 0.00 1.59 0.05 7.47 0.00 0.00 0.00 0.01 0.00 16.00 35.85 0.82 
LP46A204 chl patch4-4-1 5.68 0.01 2.32 2.72 0.00 1.50 0.05 7.47 0.01 0.00 0.05 0.00 0.01 16.00 35.81 0.83 
LP46A250 chi patch1-2-1 5.60 0.01 2.40 2.95 0.00 2.50 0.07 6.12 0.01 0.00 0.09 0.03 0.00 16.00 35.77 0.71 
LP46A250 chl patch2-4-1 5.50 0.01 2.50 2.86 0.00 2.46 0.08 6.37 0.01 0.00 0.00 0.03 0.00 16.00 35.81 0.72 
LP46A250 perv ch11-7-1 5.43 0.00 2.58 2.82 0.00 2.41 0.07 6.57 0.00 0.01 0.00 0.00 0.00 16.00 35.88 0.73 
LP46A250 chl patch3-9-1 5.53 0.01 2.47 2.71 0.01 2.59 0.08 6.44 0.00 0.00 0.01 0.03 0.00 16.00 35.87 0.71 
LP46A250 chi patch4-10-1 5.45 0.01 2.55 2.70 0.00 2.66 0.08 6.46 0.00 0.00 0.00 0.00 0.00 16.00 35.92 0.71 
LP46A250 perv ch12-11-1 5.62 0.01 2.38 3.05 0.00 2.43 0.07 6.00 0.01 0.02 0.16 0.01 0.00 16.00 35.75 0.71 
LP46A297 chl patch 1-1-1 5.37 0.01 2.63 2.74 0.00 3.60 0.07 5.49 0.00 0.00 0.00 0.03 0.00 16.00 35.94 0.60 
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Label 	 Oxides: Mineral Si02  TiO2  Al203  Cr2O3  FeO MnO MgO CaO Na20 K20 ZnO NiO H20(c) Sum Ox% 
LP46A297 chl patch2-2-1 Mg-Fe-chl 25.94 0.05 21.84 0.01 21.24 0.43 17.30 0.01 0.00 0.02 0.16 0.06 11.54 98.57 
LP46A297 chl patch3-3-1 Mg-Fe-chl 25.96 0.08 22.03 0.00 20.85 0.40 17.79 0.02 0.00 0.00 0.14 0.00 11.60 98.87 
LP46A297 chl patch4-4-1 Mg-Fe-chl 26.31 0.04 22.36 0.00 21.59 0.44 17.87 0.02 0.00 0.01 0.05 0.00 11.77 100.46 
LP46A348_perv ch11-4-1 Mg-Fe-chl 27.54 0.10 21.48 0.00 17.32 0.66 20.18 0.02 0.03 0.05 0.12 0.00 11.86 99.36 
LP46A348_perv ch12-6-1 Mg-Fe-chl 27.27 0.09 21.44 0.00 17.55 0.74 20.40 0.00 0.03 0.01 0.07 0.09 11.86 99.56 
Lp51a477_chl in ms band 1-2-1 Mg-chl 31.45 0.04 19.31 0.00 4.89 0.34 30.22 0.02 0.01 0.07 0.04 0.01 12.56 98.95 
Lp51a482_perv chl 1-3-1 Mg-chl 31.22 0.02 19.63 0.05 5.19 0.38 30.19 0.01 0.00 0.11 0.02 0.07 12.60 99.49 
Lp51a484_cht 1-2-1 Mg-chl 32.45 0.05 19.41 0.00 4.30 0.37 30.26 0.08 0.00 0.00 0.12 0.00 12.72 99.75 
LP51AW2302_chl patch1-4-1 Mg-chl 29.80 0.07 21.91 0.00 4.89 0.19 29.16 0.00 0.00 0.02 0.29 0.07 12.55 98.97 
LP51AW2302_chl patch2-5-1 Mg-chl 29.88 0.02 21.59 0.02 5.22 0.14 28.93 0.02 0.01 0.01 0.09 0.00 12.48 98.39 
Lp51aw2433chl 2-4-1 Mg-Fe-chl 31.28 0.04 18.67 0.40 13.75 0.11 22.60 0.05 0.02 0.27 0.21 0.00 12.15 99.54 
LP66202_vein ch12-2-1 Mg-chl 28.37 0.05 21.58 0.00 11.88 0.53 24.10 0.02 0.00 0.02 0.05 0.00 12.11 98.74 
LP66233_chl patch1-1-1 Mg-chl 28.88 0.02 21.56 0.01 9.77 0.87 25.39 0.03 0.00 0.02 0.00 0.00 12.23 98.78 
LP66267_perv ch11-1-1 Mg-chl 29.64 0.05 21.02 0.02 8.44 0.37 26.45 0.01 0.01 0.02 0.06 0.01 12.29 98.38 
LP66267_perv ch12-2-1 Mg-chl 29.69 0.00 21.10 0.00 8.72 0.38 26.15 0.01 0.02 0.00 0.06 0.01 12.28 98.42 
LP66282 perv chl 1,-1-1 Mg-Fe-chl 30.66 0.03 23.80 0.00 9.66 0.28 22.95 0.01 0.00 0.00 0.06 0.04 12.51 99.99 
LP66282_perv ch13-6-1 Mg-Fe-chl 30.67 0.06 23.99 0.00 9.61 0.23 22.69 0.01 0.00 0.00 0.04 0.00 12.50 99.80 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 
LP46A297 chl patch2-2-1 5.39 0.01 2.61 2.75 0.00 3.69 0.08 5.36 0.00 0.00 0.00 0.02 0.01 16.00 35.92 0.59 
LP46A297 chl patch3-3-1 5.37 0.01 2.63 2.74 0.00 3.61 0.07 5.49 0.00 0.00 0.00 0.02 0.00 16.00 35.94 0.60 
LP46A297 chl patch4-4-1 5.36 0.01 2.64 2.74 0.00 3.68 0.08 5.43 0.01 0.00 0.00 0.01 0.00 16.00 35.95 0.60 
LP46A348_perv ch11-4-1 5.57 0.02 2.43 2.69 0.00 2.93 0.11 6.08 0.00 0.01 0.01 0.02 0.00 16.00 35.87 0.68 
LP46A348_perv ch12-6-1 5.52 0.01 2.49 2.63 0.00 2.97 0.13 6.15 0.00 0.01 0.00 0.01 0.01 16.00 35.92 0.67 
Lp51a477_chl in ms band 1-2-1 6.01 0.01 1.99 2.35 0.00 0.78 0.06 8.60 0.00 0.00 0.02 0.01 0.00 16.00 35.83 0.92 
Lp51a482_perv chl 1-3-1 5.94 0.00 2.06 2.35 0.01 0.83 0.06 8.57 0.00 0.00 0.03 0.00 0.01 16.00 35.86 0.91 
Lp51a484_chl 1-2-1 6.12 0.01 1.88 2.43 0.00 0.68 0.06 8.51 0.02 0.00 0.00 0.02 0.00 16.00 35.72 0.93 
LP51AW2302_chl patch1-4-1 5.70 0.01 2.30 2.64 0.00 0.78 0.03 8.31 0.00 0.00 0.01 0.04 0.01 16.00 35.83 0.91 
LP51AW2302_chl patch2-5-1 5.74 0.00 2.26 2.63 0.00 0.84 0.02 8.29 0.00 0.00 0.00 0.01 0.00 16.00 35.81 0.91 
Lp51aw2433_chl 2-4-1 6.18 0.01 1.82 2.52 0.06 2.27 0.02 6.65 0.01 0.01 0.07 0.03 0.00 16.00 35.65 0.75 
LP66202_vein ch12-2-1 5.62 0.01 2.38 2.66 0.00 1.97 0.09 7.12 0.01 0.00 0.01 0.01 0.00 16.00 35.86 0.78 
LP66233_chl patch1-1-1 5.67 0.00 2.33 2.65 0.00 1.60 0.15 7.42 0.01 0.00 0.00 0.00 0.00 16.00 35.84 0.82 
LP66267_perv chl 1-1-1 5.79 0.01 2.21 2.62 0.00 1.38 0.06 7.70 0.00 0.00 0.01 0.01 0.00 16.00 35.79 0.85 
LP66267_perv ch12-2-1 5.80 0.00 2.20 2.66 0.00 1.42 0.06 7.61 0.00 0.01 0.00 0.01 0.00 16.00 35.78 0.84 
LP66282 perv chl 1-1-1 5.88 0.00 2.12 3.26 0.00 1.55 0.05 6.56 0.00 0.00 0.00 0.01 0.01 16.00 35.43 0.81 
LP66282_perv ch13-6-1 5.89 0.01 2.12 3.31 0.00 1.54 0.04 6.49 0.00 0.00 0.00 0.01 0.00 16.00 35.39 0.81 
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Label Oxides: Mineral Si02  TiO2 Al203  Cr203 FeO MnO MgO CaO Na20 K20 ZnO NiO H20(c) Sum Ox% 
LP66296_perv chl 1-1-1 Mg-Fe-chl 27.79 0.05 22.06 0.00 11.89 0.39 23.74 0.02 0.01 0.00 0.00 0.00 12.03 98.00 
LP66296_perv ch12-3-1 Mg-Fe-chl 27.54 0.04 22.26 0.05 12.55 0.29 23.74 0.00 0.02 0.01 0.05 0.00 12.06 98.62 
LP66296_perv ch13-4-1 Mg-Fe-chl 28.47 0.03 22.17 0.01 12.18 0.26 23.69 0.03 0.00 0.13 0.02 0.03 12.17 99.18 
LP66296_perv ch14-5-1 Mg-chl 28.28 0.03 22.10 0.04 12.18 0.26 24.03 0.02 0.01 0.01 0.00 0.00 12.16 99.13 
LP66311_perv ch12-2-1 Mg-chl 29.47 0.05 21.62 0.00 8.58 0.37 26.48 0.03 0.00 0.10 0.03 0.00 12.36 99.09 
LP66311_perv ch13-5-1 Mg-chl 29.10 0.04 21.92 0.00 8.92 0.34 26.49 0.05 0.00 0.05 0.05 0.00 12.37 99.30 
LP66339_perv ch12-3-1 Mg-Fe-chl 28.28 0.03 21.55 0.02 13.77 0.32 22.98 0.02 0.00 0.00 0.04 0.05 12.07 99.12 
LP66339_perv ch13-4-1 Mg-Fe-chl 28.43 0.02 21.46 0.04 13.87 0.26 23.15 0.01 0.00 0.01 0.00 0.00 12.10 99.35 
LP66350_petv ch11-3-1 Mg-Fe-chl 27.46 0.05 21.35 0.04 15.58 0.36 21.26 0.02 0.00 0.00 0.04 0.03 11.81 97.99 
LP66350_chl patch1-4-1 Mg-Fe-chl 27.81 0.07 21.65 0.05 15.66 0.34 22.01 0.00 0.00 0.02 0.12 0.00 12.02 99.75 
LP66350_perv ch12-5-1 Mg-Fe-chl 27.88 0.03 20.96 0.01 15.32 0.35 22.01 0.02 0.01 0.01 0.04 0.00 11.89 98.53 
Lp66361_perv chl 1-1-1 Mg-Fe-chl 27.45 0.06 21.77 0.00 17.77 0.42 20.71 0.01 0.00 0.03 0.16 0.00 11.97 100.35 
LP66374_perv ch11-1-1 Mg-Fe-chl 27.92 0.03 20.46 0.01 17.74 0.40 21.04 0.01 0.00 0.01 0.05 0.00 11.88 99.56 
LP66374_perv ch12-3-1 Mg-Fe-chl 28.47 0.02 20.30 0.00 16.03 0.28 21.73 0.02 0.00 0.03 0.14 0.00 11.91 98.93 
LP66391_perv Mgch11-1-1 Mg-Fe-chl 27.57 0.05 20.62 0.00 18.18 0.42 20.67 0.00 0.01 0.00 0.00 0.00 11.83 99.36 
LP66391_perv Mgch12-2-1 Mg-Fe-chl 27.30 0.03 21.65 0.00 18.66 0.32 19.71 0.01 0.00 0.00 0.02 0.00 11.84 99.54 
LP66391_perv Fech11-3-1 Mg-Fe-chl 26.99 0.06 21.59 0.03 18.34 0.36 20.04 0.04 0.00 0.01 0.04 0.00 11.81 99.31 

Label Cations: Si Ti Al IV Al VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 
LP66296_perv ch11-1-1 5.54 0.01 2.46 2.73 0.00 1.98 0.07 7.06 0.01 0.01 0.00 0.00 0.00 16.00 35.86 0.78 
LP66296_perv ch12-3-1 5.48 0.01 2.52 2.70 0.01 2.09 0.05 7.04 0.00 0.01 0.00 0.01 0.00 16.00 35.91 0.77 
LP66296_perv ch13-4-1 5.61 0.01 2.39 2.76 0.00 2.01 0.04 6.96 0.01 0.00 0.03 0.00 0.01 16.00 35.82 0.78 
LP66296_perv ch14-5-1 5.58 0.00 2.42 2.71 0.01 2.01 0.04 7.06 0.00 0.00 0.00 0.00 0.00 16.00 35.85 0.78 
LP66311_perv ch12-2-1 5.72 0.01 2.28 2.66 0.00 1.39 0.06 7.66 0.01 0.00 0.03 0.01 0.00 16.00 35.82 0.85 
LP66311_perv ch13-5-1 5.65 0.01 2.36 2.66 0.00 1.45 0.06 7.66 0.01 0.00 0.01 0.01 0.00 16.00 35.85 0.84 
LP66339_perv ch12-3-1 5.62 0.00 2.38 2.67 0.00 2.29 0.05 6.81 0.00 0.00 0.00 0.01 0.01 16.00 35.85 0.75 
LP66339_perv ch13-4-1 5.64 0.00 2.36 2.65 0.01 2.30 0.04 6.84 0.00 0.00 0.00 0.00 0.00 16.00 35.85 0.75 
LP66350_perv ch11-3-1 5.58 0.01 2.42 2.69 0.01 2.65 0.06 6.44 0.00 0.00 0.00 0.01 0.00 16.00 35.86 0.71 
LP66350_chl patch1-4-1 5.55 0.01 2.45 2.64 0.01 2.61 0.06 6.55 0.00 0.00 0.00 0.02 0.00 16.00 35.90 0.72 
LP66350_perv ch12-5-1 5.62 0.01 2.38 2.61 0.00 2.58 0.06 6.62 0.00 0.00 0.00 0.01 0.00 16.00 35.88 0.72 
Lp66361_perv chl 1-1-1 5.50 0.01 2.50 2.64 0.00 2.98 0.07 6.19 0.00 0.00 0.01 0.02 0.00 16.00 35.92 0.68 
LP66374_perv ch11-1-1 5.64 0.01 2.36 2.51 0.00 3.00 0.07 6.33 0.00 0.00 0.00 0.01 0.00 16.00 35.92 0.68 
LP66374_perv ch12-3-1 5.73 0.00 2.27 2.55 0.00 2.70 0.05 6.52 0.01 0.00 0.01 0.02 0.00 16.00 35.86 0.71 
LP66391_perv Mgch11-1-1 5.59 0.01 2.41 2.52 0.00 3.08 -0.07 6.25 0.00 0.00 0.00 0.00 0.00 16.00 35.94 0.67 
LP66391_perv Mgch12-2-1 5.53 0.00 2.47 2.70 0.00 3.16 0.06 5.95 0.00 0.00 0.00 0.00 0.00 16.00 35.88 0.65 
LP66391_perv Fech11-3-1 5.48 0.01 2.52 2.65 0.01 3.12 0.06 6.07 0.01 0.00 0.00 0.01 0.00 16.00 35.93 0.66 
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Label 	 Oxides: Mineral S102 TiO2  Al 203 Cr203  FeO MnO MgO Ca0 Na20 1(20 ZnO Ni0 H20(c) Sum Ox% 

LP66419_perv ch11-3-1 Mg-Fe-chl 27.48 0.04 21.13 0.06 16.68 0.24 20.77 0.00 0.02 0.03 0.00 0.06 11.79 98.30 

LP66419_perv ch12-4-1 Mg-Fe-chl 28.15 0.04 20.75 0.06 16.68 0.27 21.75 0.02 0.01 0.00 0.05 0.05 11.98 99.81 

LP67B841_perv ch11-1-1 Mg-chl 28.61 0.08 23.79 0.03 8.71 0.35 26.36 0.02 0.00 0.00 0.00 0.00 12.54 100.50 

LP67B841_perv ch12-2-1 Mg-chl 28.26 0.08 22.99 0.08 8.69 0.40 26.04 0.03 0.00 0.00 0.07 0.07 12.33 99.03 

Ip67b903 perv ch11-2-1 Mg-Fe-chl 29.75 0.03 23.09 0.04 10.57 0.57 22.19 0.04 0.00 0.00 0.36 0.01 12.26 98.93 

LP67b986 perv ch11-1-1 Mg-Fe-chl 27.92 0.05 22.30 0.00 11.78 0.78 24.22 0.02 0.01 0.01 0.21 0.05 12.18 99.51 

LP67b986 perv ch12-2-1 Mg-Fe-chl 27.72 0.07 21.98 0.00 13.57 0.69 22.75 0.01 0.00 0.04 0.00 0.00 12.02 98.86 

Ip67bw11037 perv ch11-2-1 Mg-chl 28.36 0.03 21.78 0.00 10.59 0.30 25.25 0.02 0.00 0.00 0.03 0.03 12.17 98.58 

Ip67bw11037 perv ch12-4-1 Mg-chl 28.43 0.03 21.67 0.06 10.80 0.39 24.63 0.03 0.01 0.19 0.00 0.11 12.13 98.49 

LP67BW11063 perv ch11-1-1 Mg-Fe-chl 28.54 0.04 21.97 0.07 11.97 0.28 23.42 0.02 0.01 0.14 0.02 0.00 12.11 98.60 

LP67BW11063 perv ch12-2-1 Mg-Fe-chl 28.65 0.07 21.86 0.05 12.11 0.27 24.11 0.03 0.00 0.38 0.00 0.01 12.22 99.77 
LP67BW11132 perv bt1-4-1 Mg-Fe-chl 28.81 0.08 21.47 0.00 17.23 0.19 19.08 0.02 0.46 0.06 0.06 0.00 11.93 99.38 

LP678W11132 perv ch11-6-1 Mg-Fe-chl 29.17 0.07 21.58 0.00 17.97 0.26 18.73 0.03 0.00 0.01 0.17 0.00 11.99 100.00 
LP67BW11132 perv ch12-8-1 Mg-Fe-chl 26.70 0.05 21.96 0.00 18.13 0.18 19.78 0.03 0.01 0.02 0.12 0.06 11.76 98.80 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ Mn2+ Mg Ca Na K Zn Ni OH Sum Cat Mg # 

LP66419_perv ch11-3-1 5.59 0.01 2.41 2.66 0.01 2.84 0.04 6.30 0.00 0.01 0.01 0.00 0.01 16.00 35.87 0.69 

LP66419_perv ch12-4-1, 5.64 0.01 2.36 2.54 0.01 2.79 0.05 6.49 0.00 0.01 0.00 0.01 0.01 16.00 35.91 0.70 

LP67B841_perv ch11-1-1 5.48 0.01 2.53 2.84 0.01 1.39 0.06 7.52 0.01 0.00 0.00 0.00 0.00 16.00 35.83 0.84 

LP67B841_perv ch12-2-1 5.50 0.01 2.50 2.77 0.01 1.41 0.07 7.55 0.01 0.00 0.00 0.01 0.01 16.00 35.85 0.84 

Ip67b903 perv ch11-2-1 5.82 0.00 2.18 3.14 0.01 1.73 0.09 6.47 0.01 0.00 0.00 0.05 0.00 16.00 35.51 0.79 

LP67b986 perv ch11-1-1 5.50 0.01 2.50 2.67 0.00 1.94 0.13 7.11 0.00 0.00 0.00 0.03 0.01 16.00 35.91 0.79 

LP67b986 perv ch12-2-1 5.53 0.01 2.47 2.70 0.00 2.27 0.12 6.77 0.00 0.00 0.01 0.00 0.00 16.00 35.88 0.75 
Ip67bw11037 perv ch11 -2- 1 5.59 0.00 2.41 2.65 0.00 1.75 0.05 7.42 0.00 0.00 0.00 0.01 0.01 16.00 35.88 0.81 

Ip67bw11037 perv ch12-4-1 5.62 0.01 2.38 2.67 0.01 1.79 0.07 7.26 0.01 0.00 0.05 0.00 0.02 16.00 35.87 0.80 

LP67BW11063 perv ch11-1-1 5.65 0.01 2.35 2.78 0.01 1.98 0.05 6.92 0.00 0.00 0.04 0.00 0.00 16.00 35.79 0.78 

LP67BW11063 perv ch12-2-1 5.62 0.01 2.38 2.68 0.01 1.99 0.05 7.05 0.01 0.00 0.10 0.00 0.00 16.00 35.88 0.78 

LP67BW11132 perv bt1-4-1 5.79 0.01 2.21 2.88 0.00 2.90 0.03 5.72 0.00 0.18 0.02 0.01 0.00 16.00 35.75 0.66 

LP67BW11132 perv ch11-6-1 5.84 0.01 2.16 2.93 0.00 3.01 0.04 5.59 0.01 0.00 0.00 0.03 0.00 16.00 35.61 0.65 

LP67BVV11132 perv ch12-8-1 5.45 0.01 2.56 2.73 0.00 3.09 0.03 6.01 0.01 0.00 0.01 0.02 0.01 16.00 35.91 0.66 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203  FeO V203 ZnO MnO MgO CaO Na20 1(20 BaO Sr0 NiO F Cl H20 0=F 0=CI Sum Ox 
LP12434_perv m ica1-3-1 phg 46.24 0.65 26.59 0.04 1.74 0.00 0.00 0.09 6.07 0.02 0.12 10.34 1.17 0.00 0.00 0.43 0.01 4.11 0.18 0.00 97.43 
LP12434_perv mica2-4-1 phg 46.64 0.56 25.39 0.01 2.41 0.00 0.00 0.00 8.36 0.06 0.10 10.35 0.98 0.00 0.00 0.62 0.00 4.08 0.26 0.00 99.32 
LP12434_perv mica3-5-1 phg 48.29 0.66 29.94 0.04 1.12 0.00 0.13 0.04 3.71 0.03 0.16 10.49 1.53 0.00 0.00 0.13 0.00 4.43 0.05 0.00 100.65 
LP12516_perv mica1-9-1 phg 49.39 0.65 29.37 0.04 1.19 0.03 0.19 0.01 3.49 0.00 0.14 10.72 0.48 0.00 0.01 0.25 0.02 4.38 0.11 0.00 100.27 
LP12523_perv mica1-3-1 phg 50.00 0.52 30.08 0.07 1.08 0.00 0.01 0.01 3.24 0.07 0.16 10.84 0.47 0.00 0.04 0.32 0.01 4.40 0.14 0.00 101.18 
LP12523_perv mica 2-5-1 phg 50.74 0.47 28.95 0.15 1.39 0.03 0.00 0.03 3.68 0.01 0.16 10.41 0.50 0.00 0.00 0.28 0.00 4.43 0.12 0.00 101.11 
LP12523_perv mica 3-7-1 phg 49.69 0.44 29.12 0.00 1.13 0.01 0.27 0.00 3.67 0.02 0.12 10.77 0.49 0.00 0.00 0.30 0.00 4.36 0.13 0.00 100.25 
LP12531_perv mica1-4-1 phg 48.13 0.59 29.79 0.08 0.92 0.04 0.00 0.00 3.11 0.02 0.15 10.77 0.57 0.00 0.00 0.23 0.01 4.32 0.10 0.00 98.62 
LP12539 perv bt1-3-1 •phg 47.60 0.09 30.21 0.00 1.29 0.03 0.62 0.03 4.63 0.04 0.12 8.47 0.26 0.00 0.00 0.23 0.00 4.33 0.10 0.00 97.84 
LP12539 perv bt3-5-1 	. phg 47.17 0.09 27.86 0.00 1.52 0.02 0.05 0.00 6.27 0.08 0.13 9.46 0.29 0.00 0.04 0.29 0.00 4.24 0.12 0.00 97.41 
Lp12555_perv mica 1 -3- 1 phg 49.42 0.51 30.10 0.00 0.92 0.00 0.00 0.05 3.51 0.00 0.15 10.72 0.40 0.00 0.00 0.32 0.00 4.37 0.13 0.00 100.33 
Lp12555_perv mica 2-4-1 phg 47.82 0.49 29.89 0.05 1.36 0.01 0.12 0.07 4.66 0.01 0.13 9.78 0.35 0.00 0.01 0.35 0.00 4.30 0.15 0.00 99.25 
Lp44243_perv tic 1-1-1 ms 48.87 0.52 28.90 0.05 1.93 0.01 0.04 0.00 3.85 0.01 0.14 10.88 0.31 0.02 0.00 0.17 0.01 4.39 0.07 0.00 100.03 
LP46A103_perv mica1-5-1 phg 50.14 0.43 30.47 0.00 0.48 0.02 0.00 0.04 3.41 0.07 0.13 8.63 0.25 0.00 0.00 0.22 0.01 4.42 0.09 0.00 98.62 
LP46A113_perv mica1-5-1 phg 47.17 0.83 28.87 0.03 1.73 0.00 0.00 0.01 3.81 0.05 0.17 10.52 1.72 0.00 0.02 0.12 0.02 4.34 0.05 0.00 99.35 
LP46A113_perv mica2-6-1 phg 47.69 0.73 29.42 0.03 1.47 0.00 0.01 0.08 3.44 0.00 0.15 10.55 1.68 0.00 0.00 0.09 0.01 4.39 0.04 0.00 99.70 
LP46A113_perv mica3-7-1 phg 46.88 0.77 28.77 0.07 1.76 0.00 0.04 0.01 4.02 0.00 0.17 9.97 1.72 0.00 0.00 0.16 0.02 4.29 0.07 0.01 98.58 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 
LP12434_perv mica1-3-1 6.43 0.07 1.57 2.78 0.00 0.20 0.00 0.00 0.01 1.26 0.00 0.03 1.83 0.06 0.00 0.00 0.19 0.00 3.81 18.26 0.86 4.08 
LP12434_perv mica2-4-1 6.39 0.06 1.61 2.49 0.00 0.28 0.00 0.00 0.00 1.71 0.01 0.03 1.81 0.05 0.00 0.00 0.27 0.00 3.73 18.42 0.86 3.96 
LP12434_perv mica3-5-1 6.45 0.07 1.55 3.17 0.01 0.13 0.00 0.01 0.01 0.74 0.01 0.04 1.79 0.08 0.00 0.00 0.05 0.00 3.95 18.04 0.86 4.17 
LP12516_perv mica1-9-1 6.57 0.07 1.43 3.18 0.00 0.13 0.00 0.02 0.00 0.69 0.00 0.04 1.82 0.03 0.00 0.00 0.11 0.01 3.89 17.98 0.84 4.61 
LP 12523_perv mica 1-3-1 6.58 0.05 1.42 3.25 0.01 0.12 0.00 0.00 0.00 0.64 0.01 0.04 1.82 0.02 0.00 0.00 0.13 0.00 3.87 17.96 0.84 4.64 
L.P12523_perv mica 2-5-1 6.67 0.05 1.33 3.16 0.02 0.15 0.00 0.00 0.00 0.72 0.00 0.04 1.75 0.03 0.00 0.00 0.12 0.00 3.88 17.92 0.83 5.03 
LP 12523_perv mica 3-7-1 6.61 0.04 1.39 3.18 0.00 0.13 0.00 0.03 0.00 0.73 0.00 0.03 1.83 0.03 0.00 0.00 0.13 0.00 3.87 17.99 0.85 4.76 
LP12531_perv mica1-4-1 6.51 0.06 1.49 3.26 0.01 0.10 0.00 0.00 0.00 0.63 0.00 0.04 1.86 0.03 0.00 0.00 0.10 0.00 3.90 18.00 0.86 4.38 
LP12539 perv bt1-3-1 6.43 0.01 1.57 3.24 0.00 0.15 0.00 0.06 0.00 0.93 0.01 0.03 1.46 0.01 0.00 0.00 0.10 0.00 3.90 17.90 0.87 4.09 
LP12539 perv bt3-5-1 6.45 0.01 1.55 2.95 0.00 0.17 0.00 0.01 0.00 1.28 0.01 0.04 1.65 0.02 0.00 0.01 0.13 0.00 3.87 18.13 0.88 4.17 
Lp12555_perv mica .1-3-1 6.55 0.05 1.45 3.25 0.00 0.10 0.00 0.00 0.01 0.69 0.00 0.04 1.81 0.02 0.00 0.00 0.13 0.00 3.87 17.97 0.87 4.52 
Lp12555_perv mica 2-4-1 6.41 0.05 1.59 3.14 0.01 0.15 0.00 0.01 0.01 0.93 0.00 0.03 1.67 0.02 0.00 0.00 0.15 0.00 3.85 18.02 0.86 4.04 
Lp44243_perv mica 1-1-1 6.54 0.05 1.46 3.11 0.01 0.22 0.00 0.00 0.00 0.77 0.00 0.04 1.86 0.02 0.00 0.00 0.07 0.00 3.93 18.07 0.78 4.49 
LP46A103_perv m ica1-5-1 6.64 0.04 1.36 3.40 0.00 0.05 0.00 0.00 0.01 0.67 0.01 0.03 1.46 0.01 0.00 0.00 0.09 0.00 3.90 17.68 0.93 4.88 
LP46A113_perv m ica1-5-1 6.43 0.09 1.57 3.07 0.00 0.20 0.00 0.00 0.00 0.78 0.01 0.05 1.83 0.09 0.00 0.00 0.05 0.01 3.94 18.10 0.80 4.10 
LP46A113_perv mica2-6-1 6.46 0.07 1.54 3.15 0.00 0.17 0.00 0.00 0.01 0.70 0.00 0.04 1.82 0.09 0.00 0.00 0.04 0.00 3.96 18.05 0.81 4.18 
LP46A113_perv mica3-7-1 6.42 0.08 1.58 3.07 0.01 0.20 0.00 0.00 0.00 0.82 0.00 0.05 1.74 0.09 0.00 0.00 0.07 0.01 3.92 18.06 0.80 4.08 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO V203 ZnO MnO MgO CaO Na20 K20 BaO Sr0 NiO F CI I420 0=F 0=CI Sum Ox 

LP46A134 perv mica3-10-1 phg 47.14 0.20 31.79 0.03 0.58 0.00 0.00 0.00 2.71 0.00 0.20 10.80 2.23 0.00 0.00 0.11 0.00 4.40 0.05 0.00 100.14 
LP46A150_perv mica3-5-1 phg 49.40 0.46 29.62 0.02 1.82 0.00 0.00 0.01 2.76 0.00 0.14 10.88 0.27 0.00 0.03 0.17 0.01 4.41 0.07 0.00 99.93 
LP46A150_perv mica1-6-1 phg 50.04 0.49 28.86 0.02 1.55 0.03 0.00 0.06 3.12 0.00 0.13 10.95 0.17 0.00 0.00 0.25 0.00 4.38 0.11 0.00 99.93 
LP46A177 perv mica2-9:1 phg 47.77 0.52 22.56 0.00 1.69 0.04 0.04 0.09 11.51 0.00 0.03 10.77 0.16 0.00 0.01 1.03 0.02 3.92 0.43 0.00 99.71 
LP46A187_perv m phg 49.09 0.50 30.29 0.00 0.95 0.00 0.00 0.06 3.17 0.00 0.15 11.41 0.28 0.00 0.00 0.21 0.00 4.42 0.09 0.00 100.45 
LP46A187_perv m ica2-4-1 phg 49.06 0.46 30.34 0.05 0.94 0.00 0.16 0.00 2.98 0.01 0.13 11.17 0.22 0.00 0.03 0.17 0.00 4.42 0.07 0.00 100.06 
LP46A204 perv mica3-7-1 phg 49.34 0.33 30.86 0.00 0.87 0.01 0.00 0.00 2.90 0.02 0.16 11.34 0.20 0.00 0.00 0.20 0.00 4.44 0.08 0.00 100.59 
LP46A204 perv mica4-8-1 phg 47.82 0.39 30.43 0.00 1.22 0.01 0.04 0.05 4.00 0.00 0.14 10.80 0.24 0.00 0.00 0.18 0.00 4.39 0.08 0.00 99.65 
LP46A250 perv mica1-1-1 phg 47.46 0.32 33.33 0.00 0.83 0.00 0.01 0.00 1.61 0.03 0.19 11.15 0.26 0.00 0.03 0.20 0.02 4.40 0.08 0.00 99.75 
LP46A250 perv mica2-3-1 phg 48.45 0.32 32.89 0.00 0.84 0.01 0.06 0.08 1.98 0.00 0.21 11.30 0.17 0.00 0.01 0.24 0.01 4.43 0.10 0.00 100.89 
LP46A250 perv mica4-6-1 phg 47.77 0.21 33.48 0.00 0.93 0.00 0.00 0.04 1.75 0.00 0.22 11.42 0.18 0.00 0.00 0.21 0.03 4.42 0.09 0.01 100.56 
LP46A250 perv mica7-13-1 phg 46.79 0.27 32.00 0.04 0.87 0.00 0.09 0.00 1.88 0.06 0.23 10.80 0.09 0.00 0.03 0.18 0.05 4.30 0.08 0.01 97.59 
LP46A297 perv mica1-5-1 phg 49.48 0.42 29.96 0.01 1.75 0.01 0.07 0.04 2.46 0.02 0.15 11.24 0.25 0.00 0.06 0.22 0.00 4.40 0.09 0.00 100.45 
LP46A297 perv mica2-6-1 phg 48.52 0.41 30.62 0.00 1.94 0.00 0.09 0.01 2.35 0.00 0.20 11.19 0.39 0.00 0.02 0.17 0.00 4.40 0.07 0.00 100.26 
LP 46A297 perv mica4-8-1 phg 48.42 0.51 31.16 0.02 1.96 0.00 0.11 0.04 2.21 0.00 0.24 11.23 0.29 0.00 0.03 0.13 0.00 4.44 0.06 0.00 100.73 
LP46A297 perv mica5-9-1 phg 48.27 0.46 30.61 0.00 1.58 0.02 0.00 0.02 2.30 0.00 0.22 11.43 0.33 0.00 0.09 0.19 0.00 4.38 0.08 0.00 99.83 
LP46A324_mica in vein1-1 phg 46.41 0.55 34.17 0.03 2.21 0.17 0.07 0.00 0.90 0.00 0.56 10.66 0.58 0.00 0.00 0.00 0.00 4.50 0.00 0.00 100.81 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 

LP46A134 perv mica3-10-1 6.35 0.02 1.65 3.40 0.00 0.07 0.00 0.00 0.00 0.54 0.00 0.05 1.86 0.12 0.00 0.00 0.05 0.00 3.95 18.06 0.89 3.85 
LP46A150_perv mica3-5-1 6.60 0.05 1.40 3.26 0.00 0.20 0.00 0.00 0.00 0.55 0.00 0.04 1.85 0.01 0.00 0.00 0.07 0.00 3.93 17.97 0.73 4.70 
LP46A150_perv mica1-6-1 6.67 0.05 1.33 3.20 0.00 0.17 0.00 0.00 0.01 0.62 0.00 0.03 1.86 0.01 0.00 0.00 0.11 0.00 3.89 17.96 0.78 5.01 
LP46A177 perv mica2-9-1 6.49 0.05 1.51 2.11 0.00 0.19 0.01 0.00 0.01 2.33 0.00 0.01 1.87 0.01 0.00 0.00 0.44 0.00 3.55 18.58 0.92 4.31 
LP46A187_perv mica1 -3- 1 6.52 0.05 1.48 3.27 0.00 0.11 0.00 0.00 0.01 0.63 0.00 0.04 1.93 0.01 0.00 0.00 0.09 0.00 3.91 18.04 0.86 4.41 

LP46A187_perv mica2-4-1 6.53 0.05 1.47 3.29 0.01 0.10 0.00 0.02 0.00 0.59 0.00 0.03 1.90 0.01 0.00 0.00 0.07 0.00 3.93 18.00 0.85 4.45 
LP46A204 perv mica3-7-1 6.53 0.03 1.47 3.34 0.00 0.10 0.00 0.00 0.00 0.57 0.00 0.04 1.91 0.01 0.00 0.00 0.08 0.00 3.92 18.01 0.86 4.43 
LP46A204 perv mica4-8-1 6.41 0.04 1.59 3.21 0.00 0.14 0.00 0.00 0.01 0.80 0.00 0.04 1.85 0.01 0.00 0.00 0.08 0.00 3.92 18.09 0.85 4.02 
LP46A250 perv mica1-1-1 6.33 0.03 1.67 3.57 0.00 0.09 0.00 0.00 0.00 0.32 0.01 0.05 1.90 0.01 0.00 0.00 0.08 0.00 3.91 17.99 0.78 3.80 
LP46A250 perv mica2-3-1 6.39 0.03 1.61 3.50 0.00 0.09 0.00 0.01 0.01 0.39 0.00 0.06 1.90 0.01 0.00 0.00 0.10 0.00 3.90 18.00 0.81 3.97 
LP46A250 perv mica4-6-1 6.33 0.02 1.67 3.56 0.00 0.10 0.00 0.00 0.00 0.35 0.00 0.06 1.93 0.01 0.00 0.00 0.09 0.01 3.91 18.03 0.77 3.79 
LP46A250 perv mica7-13-1 6.38 0.03 1.62 3.52 0.00 0.10 0.00 0.01 0.00 0.38 0.01 0.06 1.88 0.01 0.00 0.00 0.08 0.01 3.91 17.99 0.79 3.93 
LP46A297 perv mica1-5-1 6.59 0.04 1.41 3.29 0.00 0.19 0.00 0.01 0.00 0.49 0.00 0.04 1.91 0.01 0.00 0.01 0.09 0.00 3.91 17.99 0.72 4.66 
LP46A297 perv mica2-6-1 6.49 0.04 1.51 3.32 0.00 0.22 0.00 0.01 0.00 0.47 0.00 0.05 1.91 0.02 0.00 0.00 0.07 0.00 3.93 18.04 0.68 4.29 
LP46A297 perv mica4-8-1 6.44 0.05 1.56 3.33 0.00 0.22 0.00 0.01 0.00 0.44 0.00 0.06 1.91 0.02 0.00 0.00 0.06 0.00 3.94 18.04 0.67 4.14 
LP46A297 perv mica5-9-1 6.48 0.05 1.52 3.33 0.00 0.18 0.00 0.00 0.00 0.46 0.00 0.06 1.96 0.02 0.00 0.01 0.08 0.00 3.92 18.06 0.72 4.27 
LP46A324_mica in vein1-1 6.18 0.06 1.82 3.55 0.00 0.25 0.02 0.01 0.00 0.18 0.00 0.15 1.81 0.03 0.00 0.00 0.00 0.00 4.00 18.05 0.42 3.41 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr2O3 FeO V203 ZnO MnO MgO CaO Na20 K20 BaO Sr0 NiO F Cl H20 0=F 0=CI 'Sum Ox 

LP46A324_mica in vein2-2 phg 45.25 0.05 35.36 0.04 1.97 0.00 0.12 0.00 0.63 0.00 0.59 10.02 1.77 0.00 0.00 0.00 0.00 4.45 0.00 0.00 100.25 

LP46A334_perv mica2-7-1 phg 41.19 0.51 25.79 0.04 2.31 0.02 0.20 0.00 2.05 0.09 0.38 8.20 0.32 0.00 0.01 0.08 0.09 3.75 0.03 0.02 84.97 
LP46A334_mica in vein1-4 phg 46.60 0.29 33.81 0.02 2.07 0.16 0.03 0.00 1.18 0.00 0.58 10.51 0.60 0.00 0.00 0.00 0.01 4.49 0.00 0.00 100.35 

LP46A334_mica in vein2-5 phg 46.65 0.24 33.97 0.00 2.21 0.10 0.01 0.00 1.18 0.01 0.61 10.31 0.44 0.00 0.06 0.03 0.01 4.48 0.01 0.00 100.31 
LP46A348_perv mica1-5-1 phg 47.74 0.75 30.44 0.06 2.50 0.07 0.00 0.00 2.35 0.00 0.43 10.70 0.47 0.00 0.00 0.00 0.00 4.46 0.00 0.00 99.96 
LP46A348_perv mica2-7-1 phg 47.72 0.78 29.42 0.06 2.70 0.07 0.02 0.05 2.74 0.00 0.38 10.79 0.21 0.00 0.00 0.03 0.03 4.40 0.01 0.01 99.39 
LP46A348_perv mica3-8-1 phg 47.47 0.73 30.44 0.03 2.57 0.01 0.00 0.02 2.66 0.00 0.40 10.63 0.36 0.00 0.00 0.00 0.00 4.45 0.00 0.00 99.77 
LP51AW2302_perv mica1 phg 49.78 0.55 29.42 0.01 0.56 0.03 0.00 0.00 3.52 0.01 0.15 10.97 0.22 0.00 0.09 0.26 0.01 4.38 0.11 0.00 99.88 
LP51AW2302_perv mica2 phg 50.02 0.56 29.43 0.02 0.49 0.05 0.27 0.00 3.53 0.00 0.13 11.21 0.30 0.00 0.04 0.15 0.02 4.46 0.06 0.00 100.61 
LP66112_perv mica2-2-1 phg 49.61 0.58 30.85 0.00 1.44 0.01 0.05 0.01 3.15 0.01 0.24 10.93 0.33 0.03 0.00 0.15 0.01 4.50 0.06 0.00 101.84 
LP66153_perv mica2-2-1 phg 49.08 0.84 28.57 0.00 2.71 0.02 0.05 0.00 3.70 0.00 0.13 11.14 0.21 0.00 0.06 0.16 0.01 4.42 0.07 0.00 101.05 
LP66155_perv mica3-6-1 phg 50.44 0.38 29.12 0.08 1.85 0.03 0.00 0.00 3.26 0.00 0.20 11.33 0.16 0.00 0.03 0.12 0.02 4.49 0.05 0.00 101.44 
LP66179_perv mica2-3-1 phg 48.11 0.30 29.07 0.04 1.45 0.00 0.00 0.15 5.04 0.00 0.17 10.45 1.15 0.00 0.02 0.08 0.00 4.44 0.03 0.00 100.44 
LP66233_perv mica1-8-1 phg 48.60 0.29 31.12 0.04 1.87 0.00 0.08 0.06 2.82 0.00 0.24 10.64 0.24 0.00 0.02 0.20 0.00 4.42 0.08 0.00 100.56 
LP66254_perv mica2-2-1 phg 49.39 0.49 29.51 0.01 0.97 0.03 0.01 0.01 3.17 0.00 0.13 9.66 0.66 0.00 0.00 0.22 0.02 4.36 0.09 0.00 98.54 
LP66282_perv mica2-5-1 phg 49.73 0.63 30.80 0.00 1.30 0.00 0.03 0.00 3.04 0.00 0.17 10.65 0.56 0.00 0.05 0.12 0.00 4.51 0.05 0.00 101.53 
LP66296_perv m ica1-2-1 phg 49.28 0.38 31.29 0.00 1.13 0.03 0.07 0.05 2.67 0.00 0.17 11.26 0.24 0.00 0.00 0.15 0.00 4.48 0.06 0.00 101.13 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F Cl OH Sum Cat Mg # Si / Al IV 

LP46A324_mica in vein2-2 6.09 0.01 1.91 3.70 0.00 0.22 0.00 0.01 0.00 0.13 0.00 0.15 1.72 0.09 0.00 0.00 0.00 0.00 4.00 18.04 0.36 3.19 
LP46A334_perv mica2-7-1 6.48 0.06 1.52 3.27 0.01 0.30 0.00 0.02 0.00 0.48 0.02 0.12 1.65 0.02 0.00 0.00 0.04 0.02 3.94 17.94 0.61 4.27 

LP46A334_mica in vei n1-4 6.23 0.03 1.77 3.55 0.00 0.23 0.02 0.00 0.00 0.24 0.00 0.15 1.79 0.03 0.00 0.00 0.00 0.00 4.00 18.04 0.51 3.51 
LP46A334_mica in vein2-5 6.23 0.02 1.78 3.57 0.00 0.25 0.01 0.00 0.00 0.24 0.00 0.16 1.76 0.02 0.00 0.01 0.01 0.00 3.99 18.03 0.49 3.51 
LP46A348_perv m ica1-5-1 6.42 0.08 1.58 3.25 0.01 0.28 0.01 0.00 0.00 0.47 0.00 0.11 1.84 0.03 0.00 0.00 0.00 0.00 4.00 18.06 0.63 4.07 
LP46A348_perv mica2-7-1 6.46 0.08 1.54 3.15 0.01 0.31 0.01 0.00 0.01 0.55 0.00 0.10 1.86 0.01 0.00 0.00 0.02 0.01 3.98 18.09 0.64 4.19 
LP46A348_perv mica3-8.:1 6.39 0.07 1.61 3.23 0.00 0.29 0.00 0.00 0.00 0.53 0.00 0.11 1.83 0.02 0.00 0.00 0.00 0.00 4.00 18.08 0:65 3.98 
LP51AW2302_perv mica1 6.62 0.06 1.38 3.23 0.00 0.06 0.00 0.00 0.00 0.70 0.00 0.04 1.86 0.01 0.00 0.01 0.11 0.00 3.89 17.97 0.92 4.79 
LP51AW2302_perv mica2 6.62 0.06 1.38 3.21 0.00 0.06 0.01 0.03 0.00 0.70 0.00 0.03 1.89 0.02 0.00 0.00 0.06 0.00 3.93 17.99 0.93 4.78 
LP66112_perv mica2-2-1 6.50 0.06 1.50 3.26 0.00 0.16 0.00 0.01 0.00 0.62 0.00 0.06 1.83 0.02 0.00 0.00 0.06 0.00 3.94 18.01 0.80 4.33 
LP66153_perv mica2-2-1 6.54 0.08 1.46 3.02 0.00 0.30 0.00 0.01 0.00 0.73 0.00 0.03 1.89 0.01 0.00 0.01 0.07 0.00 3.93 18.10 0.71 4.48 
LP66155_perv mica3-671 6.65 0.04 1.35 3.17 0.01 0.20 0.00 0.00 0.00 0.64 0.00 0.05 1.90 0.01 0.00 0.00 0.05 0.00 3.95 18.03 0.76 4.91 
LP66179_perv mica2-3-1 6.44 0.03 1.56 3.03 0.00 0.16 0.00 0.00 0.02 1.01 0.00 0.05 1.79 0.06 0.00 0.00 0.03 0.00 3.97 18.15 0.86 4.14 
LP66233_perv mica1-8-1 6.45 0.03 1.55 3.32 0.00 0.21 0.00 0.01 0.01 0.56 0.00 0.06 1.80 0.01 0.00 0.00 0.08 0.00 3.92 18.01 0.73 4.17 

LP66254_perv mica2-2-1 6.63 0.05 1.37 3.30 0.00 0.11 0.00 0.00 0.00 0.63 0.00 0.04 1.65 0.04 0.00 0.00 0.09 0.00 3.90 17.83 0.85 4.85 

LP66282_perv mica2-5-1 6.52 0.06 1.48 3.29 0.00 0.14 0.00 0.00 0.00 0.59 0.00 0.04 1.78 0.03 0.00 0.01 0.05 0.00 3.95 17.95 0.81 4.42 
LP66296_perv m ica1-2-1 6.49 0.04 1.51 3.35 0.00 0.12 0.00 0.01 0.01 0.53 0.00 0.05 1.89 0.01 0.00 0.00 0.06 0.00 3.94 18.01 0.81 4.31 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO V203 ZnO MnO MgO CaO Na20 1(20 BaO Sr0 NiO F Cl H20 0=F 0=01 Sum Ox 
LP66296_perv mica2-6-1 phg 45.13 0.38 29.81 0.02 3.02 0.05 0.06 0.04 6.32 0.01 0.10 8.94 0.29 0.00 0.00 0.17 0.00 4.32 0.07 0.00 98.62 
LP66311_perv mica1-4-1 phg 48.49 0.46 28.62 0.03 1.05 0.03 0.10 0.00 3.58 0.02 0.10 10.59 0.36 0.00 0.00 0.22 0.01 4.30 0.09 0.00 97.89 
LP66391_perv bt1-4-1 phg 46.70 0.24 30.23 0.01 4.16 0.05 0.00 0.03 5.02 0.00 0.19 9.40 0.20 0.00 0.06 0.11 0.00 4.44 0.04 0.00 100.79 
LP66419_perv mica1 75-1 phg 46.44 0.77 27.18 0.02 3.80 0.04 0.05 0.06 5.58 0.01 0.15 10.83 0.20 0.00 0.00 0.36 0.01 4.21 0.15 0.00 99.58 
LP67B140 perv mica1-3-1 phg 48.20 0.38 30.98 0.01 2.07 0.02 0.00 0.04 2.27 0.02 0.38 10.05 0.04 0.00 0.02 0.11 0.00 4.41 0.04 0.00 98.93 
LP678140 perv mica2-4-1 phg 47.71 0.31 29.00 0.01 2.05 0.00 0.02 0.08 2.59 0.04 0.36 10.34 0.14 0.00 0.00 0.13 0.01 4.30 0.05 0.00 97.02 
LP67B476 perv mica1-3-1 phg 47.17 0.60 31.79 0.09 2.47 0.05 0.00 0.01 2.16 0.01 0.48 10.88 0.15 0.00 0.03 0.03 0.01 4.46 0.01 0.00 100.38 
LP67B476 perv mica2-4-1 phg 45.22 0.70 30.42 0.02 2.30 0.00 0.00 0.00 1.77 0.00 0.39 10.26 0.24 0.00 0.00 0.05 0.01 4.25 0.02 0.00 95.61 
Ip67b663 perv mica1-3-1 phg 47.70 0.59 30.26 0.02 2.64 0.03 0.09 0.02 2.72 0.00 0.37 10.67 0.33 0.00 0.00 0.06 0.00 4.43 0.03 0.00 99.92 
Ip67b663 perv mica2-4-1 phg 47.39 0.37 29.34 0.02 2.61 0.05 0.00 0.04 3.77 0.00 0.22 11.07 0.24 0.00 0.00 0.04 0.00 4.41 0.02 0.00 99.53 
LP678687 perv mica2-6-1 phg 48.68 0.06 27.68 0.06 4.43 0.00 0.00 0.11 3.20 0.04 0.16 11.31 0.13 0.00 0.00 0.05 0.01 4.40 0.02 0.00 100.29 
Lp67b760_ser in vein 1-6-1 ms 48.08 0.21 28.47 0.00 2.96 0.00 0.00 0.06 4.40 0.00 0.19 10.85 0.31 0.03 0.00 0.00 0.00 4.45 0.00 0.00 100.00 
LP678790_perv mica1-3-1 phg 47.80 0.45 30.33 0.03 1.93 0.03 0.01 0.00 3.70 0.00 0.32 10.58 1.21 0.00 0.00 0.04 0.00 4.47 0.02 0.00 100.86 
LP678841_mica patch 1-3 phg 45.91 0.43 34.53 0.00 1.62 0.05 0.07 0.01 2.69 0.00 0.57 10.42 0.78 0.00 0.05 0.02 0.00 4.53 0.01 0.00 101.67 
LP678841_mica patch2-5 phg 46.07 0.41 33.87 0.02 1.66 0.00 0.00 0.09 2.88 0.00 0.59 10.39 0.82 0.00 0.00 0.01 0.00 4.52 0.01 0.00 101.34 
Ip67b903 perv mica1-5-1 phg 47.69 0.83 31.59 0.03 1.34 0.00 0.02 0.04 2.51 0.00 0.43 10.63 1.16 0.00 0.07 0.01 0.00 4.50 0.00 0.00 100.84 
Ip67b903 perv mica2-6-1 phg 47.10 0.79 30.85 0.06 1.75 0.01 0.10 0.04 3.01 0.00 0.37 10.32 1.22 0.00 0.01 0.01 0.01 4.45 0.00 0.00 100.10 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 
LP66296_perv mica2-6-1 6.15 0.04 1.86 2.93 0.00 0.34 0.01 0.01 0.00 1.28 0.00 0.03 1.55 0.02 0.00 0.00 0.08 0.00 3.93 18.21 0.79 3.31 
LP66311_perv mica1-4-1 6.60 0.05 1.40 3.19 0.00 0.12 0.00 0.01 0.00 0.73 0.00 0.03 1.84 0.02 0.00 0.00 0.09 0.00 3.90 17.99 0.86 4.71 
LP66391_perv bt1-4-1 6.24 0.03 1.76 3.01 0.00 0.47 0.01 0.00 0.00 1.00 0.00 0.05 1.60 0.01 0.00 0.01 0.05 0.00 3.96 18.17 0.68 3.55 
LP66419_perv mica1-5-1 6.35 0.08 1.65 2.73 0.00 0.43 0.00 0.01 0.01 1.14 0.00 0.04 1.89 0.01 0.00 0.00 0.16 0.00 3.84 18.34 0.72 3.85 
LP678140 perv micai -3-1 6.48 0.04 1.52 3.38 0.00 0.23 0.00 0.00 0.00 0.45 0.00 0.10 1.72 0.00 0.00 0.00 0.05 0.00 3.96 17.94 0.66 4.25 
LP678140 perv mica2-4-1 6.57 0.03 1.43 3.27 0.00 0.24 0.00 0.00 0.01 0.53 0.01 0.10 1.81 0.01 0.00 0.00 0.06 0.00 3.94 18.00 0.69 4.58 
LP67B476 perv mica1-3-1 6.31 0.06 1.69 3.33 0.01 0.28 0.01 0.00 0.00 0.43 0.00 0.13 1.86 0.01 0.00 0.00 0.01 0.00 3.98 18.11 0.61 3.74 
LP678476 perv mica2-4-1 6.34 0.07 1.66 3.37 0.00 0.27 0.00 0.00 0.00 0.37 0.00 0.11 1.84 0.01 0.00 0.00 0.02 0.00 3.98 18.04 0.58 3.83 
Ip67b663 perv mica1-3-1 6.42 0.06 1.58 3.22 0.00 0.30 0.00 0.01 0.00 0.55 0.00 0.10 1.83 0.02 0.00 0.00 0.03 0.00 3.97 18.08 0.65 4.06 
Ip67b663 perv mica2-4-1 6.42 0.04 1.58 3.10 0.00 0.30 0.01 0.00 0.01 0.76 0.00 0.06 1.91 0.01 0.00 0.00 0.02 0.00 3.98 18.19 0.72 4.05 
LP678687 perv mica2-6-1 6.59 0.01 1.41 3.01 0.01 0.50 0.00 0.00 0.01 0.65 0.01 0.04 1.95 0.01 0.00 0.00 0.02 0.00 3.98 18.19 0.56 4.68 
Lp67b760_ser in vein 1-6-1 6.48 0.02 1.52 3.01 0.00 0.33 0.00 0.00 0.01 0.88 0.00 0.05 1.87 0.02 0.00 0.00 0.00 0.00 4.00 18.19 0.73 4.28 
LP678790_perv mica1-3-1 6.39 0.05 1.61 3.16 0.00 0.22 0.00 0.00 0.00 0.74 0.00 0.08 1.80 0.06 0.00 0.00 0.02 0.00 3.98 18.12 0.77 3.96 
LP678841_mica patch 1-3 6.07 0.04 1.94 3.44 0.00 0.18 0.01 0.01 0.00 0.53 0.00 0.15 1.76 0.04 0.00 0.01 0.01 0.00 3.99 18.15 0.75 3.13 
LP678841_mica patch2-5 6.11 0.04 1.89 3.40 0.00 0.18 0.00 0.00 0.01 0.57 0.00 0.15 1.76 0.04 0.00 0.00 0.01 0.00 3.99 18.16 0.76 3.23 
Ip67b903 perv mica1 -5-1 6.35 0.08 1.65 3.31 0.00 0.15 0.00 0.00 0.01 0.50 0.00 0.11 1.81 0.06 0.00 0.01 0.00 0.00 4.00 18.04 0.77 3.86 
Ip67b903 perv mica2-6-1 6.34 0.08 1.66 3.23 0.01 0.20 0.00 0.01 0.01 0.60 0.00 0.10 1.77 0.07 0.00 0.00 0.01 0.00 3.99 18.07 0.75 3.81 

Appendix 3 - carbonate and silicate microprobe analyses page 16 of 23 



Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO V203 ZnO MnO MgO CaO Na20 1(20 BaO Sr0 NiO F Cl H20 0=F 0=CI Sum Ox 
Ip67bw11037 perv mica1-3 phg 48.58 0.53 29.07 0.00 1.80 0.05 0.02 0.05 3.92 0.00 0.24 10.69 0.11 0.00 0.00 0.06 0.01 4.44 0.02 0.00 99.54 
Ip67bw11037 perv mica2-6 phg 48.14 0.62 29.13 0.02 2.00 0.06 0.00 0.09 3.85 0.00 0.16 10.73 0.20 0.00 0.01 0.11 0.02 4.40 0.05 0.00 99.46 
LP67BW 11063 mica2-7-1 phg 49.19 0.54 29.63 0.00 1.43 0.03 0.00 0.00 3.34 0.00 0.18 11.27 0.07 0.00 0.01 0.01 0.01 4.50 0.00 0.00 100.20 
LP67BW11132 perv mica1 phg 49.03 0.59 30.34 0.00 1.87 0.02 0.00 0.01 2.54 0.02 0.20 11.13 0.00 0.00 0.00 0.14 0.00 4.44 0.06 0.00 100.27 
LP67BW11132 perv mica2 phg 49.33 0.58 29.94 0.00 2.01 0.01 0.00 0.00 2.67 0.00 0.18 10.92 0.08 0.00 0.00 0.23 0.00 4.40 0.10 0.00 100.26 
LP12428_perv mica2-4 phi 47.43 0.07 9.58 0.03 3.94 0.00 0.06 0.00 25.70 0.00 0.02 8.34 0.00 0.00 0.00 2.37 0.00 3.21 1.00 0.00 99.74 
LP12450_perv mica1-1 phi 42.24 0.64 13.98 0.01 5.49 0.04 0.07 0.07 22.78 0.01 0.02 9.55 0.06 0.00 0.01 2.36 0.00 3.11 0.99 0.00 99.45 
LP12450_perv mica2-5 phi 41.37 0.60 14.67 0.05 5.67 0.06 0.08 0.02 22.91 0.00 0.02 9.21 0.29 0.00 0.00 2.12 0.01 3.21 0.89 0.00 99.41 
LP12450_perv bt1-6-1 phi 42.01 0.63 13.97 0.04 5.25 0.06 0.12 0.10 22.45 0.00 0.04 10.08 0.10 0.00 0.00 2.27 0.03 3.12 0.95 0.01 99.30 
LP12450_perv mica3-7-1 phi 42.64 0.58 13.51 0.05 5.61 0.00 0.00 0.06 22.73 0.00 0.02 9.95 0.08 0.00 0.01 2.49 0.00 3.05 1.05 0.00 99.72 
LP12457 perv bt1-3-1 phi 39.76 0.49 14.30 0.02 6.42 0.00 0.00 0.07 22.89 0.00 0.05 8.33 0.15 0.00 0.00 1.72 0.00 3.29 0.72 0.00 96.76 
LP12457 perv bt2-5-1 phi 41.56 0.61 13.55 0.01 5.93 0.01 0.00 0.07 21.89 0.02 0.06 9.81 0.21 0.00 0.01 1.84 0.01 3.27 0.77 0.00 98.10 
LP12465 perv bt1-1-1 phi 41.52 0.68 13.83 0.00 5.80 0.08 0.05 0.10 21.88 0.00 0.05 9.84 0.17 0.00 0.03 1.85 0.00 3.28 0.78 0.00 98.38 
Lp12476 perv mica1-2-1 phi 42.82 0.32 13.05 0.09 4.97 0.03 0.07 0.08 23.87 0.01 0.04 9.86 0.00 0.00 0.00 2.58 0.00 3.02 1.09 0.00 99.72 
Lp12476 pew bt1-8-1 phi 42.66 0.25 12.93 0.04 5.34 0.04 0.12 0.08 23.77 0.00 0.04 9.84 0.04 0.00 0.00 2.58 0.00 3.00 1.09 0.00 99.67 
LP12493 pew bt1-1-1 phi 41.87 0.55 14.11 0.00 4.50 0.05 0.13 0.05 22.92 0.01 0.06 9.82 0.29 0.00 0.00 2.06 0.01 3.22 0.87 0.00 98.79 
LP12493 pew bt2-2-1 phi 40.84 0.46 14.60 0.03 4.35 0.01 0.09 0.00 23.25 0.03 0.07 8.97 0.13 0.00 0.00 1.91 0.00 3.25 0.80 0.00 97.20 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 
Ip67bw11037 pew mica1-3 6.52 0.05 1.48 3.12 0.00 0.20 0.01 0.00 0.01 0.79 0.00 0.06 1.83 0.01 0.00 0.00 0.03 0.00 3.97 18.07 0.80 4.41 
Ip67bw11037 pew mica2-6 6.48 0.06 1.52 3.11 0.00 0.23 0.01 0.00 0.01 0.77 0.00 0.04 1.84 0.01 0.00 0.00 0.05 0.00 3.95 18.08 0.78 4.27 
LP67BW11063 mica2-7-1 6.55 0.05 1.45 3.20 0.00 0.16 0.00 0.00 0.00 0.66 0.00 0.05 1.91 0.00 0.00 0.00 0.00 0.00 3.99 18.05 0.81 4.52 
LP67BW 11132 pew m ica1 6.53 0.06 1.47 3.29 0.00 0.21 0.00 0.00 0.00 0.51 0.00 0.05 1.89 0.00 0.00 0.00 0.06 0.00 3.94 18.01 0.71 4.43 
LP67BW11132 pew mica2 6.57 0.06 1.44 3.26 0.00 0.22 0.00 0.00 0.00 0.53 0.00 0.05 1.85 0.00 0.00 0.00 0.10 0.00 3.90 17.98 0.70 4.57 
LP12428_perv mica2-4 6.57 0.01 1.43 0.13 0.00 0.46 0.00 0.01 0.00 5.30 0.00 0.01 1.47 0.00 0.00 0.00 1.04 0.00 2.96 19.38 0.92 4.58 
LP12450_perv mica1-1 5.99 0.07 2.01 0.33 0.00 0.65 0.01 0.01 0.01 4.82 0.00 0.00 1.73 0.00 0.00 0.00 1.06 0.00 2.94 19.63 0.88 2.99 
LP12450_perv mica2-5 5.88 0.07 2.12 0.34 0.01 0.67 0.01 0.01 0.00 4.86 0.00 0.01 1.67 0.02 0.00 0.00 0.96 0.00 3.04 19.66 0.88 2.78 
LP12450_perv bt 1-6-1 5.99 0.07 2.01 0.34 0.00 0.63 0.01 0.01 0.01 4.77 0.00 0.01 1.83 0.01 0.00 0.00 1.02 0.01 2.97 19.69 0.88 2.98 
LP12450_perv mica3-7-1 6.05 0.06 1.95 0.31 0.01 0.67 0.00 0.00 0.01 4.80 0.00 0.01 1.80 0.01 0.00 0.00 1.12 0.00 2.88 19.66 0.88 3.10 
LP12457 perv bt1-3-1 5.81 0.05 2.19 0.27 0.00 0.79 0.00 0.00 0.01 4.99 0.00 0.01 1.55 0.01 0.00 0.00 0.79 0.00 3.21 19.69 0.86 2.65 
LP12457 pew bt2-5-1 6.01 0.07 1.99 0.32 0.00 0.72 0.00 0.00 0.01 4.72 0.00 0.02 1.81 0.01 0.00 0.00 0.84 0.00 3.16 19.68 0.87 3.02 
LP12465 pew bt1-1-1 5.99 0.07 2.01 0.34 0.00 0.70 0.01 0.01 0.01 4.70 0.00 0.01 1.81 0.01 0.00 0.00 0.85 0.00 3.15 19.67 0.87 2.97 
Lp12476 pew mica1-2-1 6.06 0.03 1.94 0.23 0.01 0.59 0.00 0.01 0.01 5.03 0.00 0.01 1.78 0.00 0.00 0.00 1.16 0.00 2.85 19.71 0.90 3.12 
Lp12476 perv bt1-8-1 6.05 0.03 1.95 0.22 0.01 0.63 0.00 0.01 0.01 5.03 0.00 0.01 1.78 0.00 0.00 0.00 1.16 0.00 2.84 19.73 0.89 3.11 
LP12493 pew bt1-1-1 5.98 0.06 2.02 0.35 0.00 0.54 0.01 0.01 0.01 4.88 0.00 0.02 1.79 0.02 0.00 0.00 0.93 0.00 3.07 19.68 0.90 2.96 
LP12493 pew bt2-2-1 5.89 0.05 2.11 0.38 0.00 0.53 0.00 0.01 0.00 5.00 0.01 0.02 1.65 0.01 0.00 0.00 0.87 0.00 3.13 19.65 0.91 2.80 
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Label 	Oxides: Mineral Si02 T102 Al203 Cr203 FeO V203  ZnO MnO MgO Ca0 Na20 K20 BaO Sr0 NiO F CI H20 0=F 0=CI Sum Ox 

LP12503_wht mica1-1-1 phi 42.99 0.46 13.87 0.02 4.03 0.00 0.23 0.07 24.30 0.00 0.08 9.83 0.01 0.00 0.00 2.49 0.00 3.11 1.05 0.00 100.45 
LP12503_perv bt1-2-1 phi 42.45 0.45 13.85 0.03 4.34 0.01 0.00 0.05 24.60 0.02 0.05 9.55 0.09 0.00 0.01 2.53 0.00 3.07 1.06 0.00 100.02 
LP12503_perv chi l-8-1 	' phi 42.77 0.44 13.20 0.05 4.31 0.09 0.16 0.03 24.27 0.07 0.03 9.49 0.09 0.00 0.02 2.52 0.00 3.05 1.06 0.00 99.54 
LP 12503_perv wht mica2-3 phi 43.14 0.43 12.50 0.00 4.69 0.04 0.24 0.03 24.66 0.00 0.04 9.78 0.03 0.00 0.00 2.66 0.00 3.00 1.12 0.00 100.13 
LP 12511_perv wht mica1-1 phi 41.82 0.67 14.28 0.06 5.91 0.07 0.17 0.14 • 22.42 0.03 0.08 9.90 0.12 0.00 0.09 2.38 0.00 3.10 1.00 0.00 100.25 

LP12511_perv wht m ica2 -2 phi 43.79 0.29 12.26 0.00 5.65 0.06 0.02 0.11 23.21 0.11 0.05 9.20 0.07 0.00 0.00 2.71 0.00 2.95 1.14 0.00 99.32 

LP12511_perv wht mica3-3 phi 44.01 0.19 11.86 0.00 5.60 0.00 0.12 0.05 23.42 0.04 0.03 9.33 0.06 0.00 0.00 2.87 0.00 2.86 1.21 0.00 99.23 

LP16A450 perv talc1-1-1 phi 46.56 0.33 10.20 0.00 3.51 0.00 0.06 0.07 25.59 0.02 0.02 8.13 0.00 0.00 0.00 1.73 0.00 3.49 0.73 0.00 99.00 

LP16A450 wh mica2-2-1 phi 43.06 0.45 13.00 0.03 3.52 0.01 0.03 0.08 24.62 0.00 aop 10.20 0.16 0.00 0.00 2.15 0.00 3.23 0.91 0.00 99.66 
Lp18365_perv phi 1-2-1 phi 42.20 0.59 11.92 0.00 7.05 0.02 0.00 0.05 22.21 0.01 0.01 9.30 0.05 0.00 0.00 2.18 0.01 3.09 0.92 0.00 97.76 

Lp18365_near perv phi 1-2 phi 43.43 0.53 11.79 0.00 6.21 0.00 0.07 0.00 22.96 0.01 0.02 9.24 0.01 0.04 0.01 2.35 0.02 3.08 0.99 0.00 98.76 
Lp33390_mica in ch11-1-1 phi 41.44 0.30 13.95 0.03 4.28 0.03 0.00 0.06 25.67 0.04 0.03 8.04 0.01 0.00 0.00 2.53 0.00 3.03 1.07 0.00 98.39 
Lp36w197_phl 1-1-1 phi 42.42 0.64 13.79 0.08 5.32 0.01 0.17 0.11 23.00 0.00 0.06 9.61 0.11 0.00 0.00 2.31 0.01 3.14 0.97 0.00 99.81 
Lp44243_ph11-9-1 phi 40.36 0.97 15.82 0.03 8.72 0.07 0.21 0.19 19.14 0.00 0.04 10.14 0.07 0.00 0.00 1.26 0.01 3.57 0.53 0.00 100.06 
LP46A090_perv wht mica phi 40.55 0.98 16.21 0.00 7.04 0.00 0.14 0.37 19.35 0.00 0.05 10.31 0.11 0.00 0.00 0.72 0.01 3.83 0.30 0.00 99.37 
LP46A090_perv wht mica phi 40.12 0.83 16.52 0.00 7.14 0.00 0.08 0.33 19.19 0.00 0.12 9.95 0.09 0.00 0.00 0.65 0.01 3.84 0.27 0.00 98.59 
LP46A103_perv bt 1-4-1 phi 40.08 0.96 15.26 0.00 7.47 0.01 0.00 0.30 19.58 0.00 0.08 10.19 0.03 0.00 0.04 1.60 0.01 3.35 0.67 0.00 98.27 

Label 	Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 

LP12503_wht mica1-1-1 6.01 0.05 1.99 0.29 0.00 0.47 0.00 0.02 0.01 5.06 0.00 0.02 1.75 0.00 0.00 0.00 1.10 0.00 2.90 19.69 0.92 3.02 
LP12503_perv bt1-2-1 5.96 0.05 2.04 0.26 0.00 0.51 0.00 0.00 0.01 5.15 0.00 0.01 1.71 0.01 0.00 0.00 1.12 0.00 2.88 19.70 0.91 2.93 
LP12503_perv ch11-8-1 6.04 0.05 1.96 0.23 0.01 0.51 0.01 0.02 0.00 5.11 0.01 0.01 1.71 0.01 0.00 0.00 1.12 0.00 2.88 19.67 0.91 3.08 
LP12503_perv wht mica2-3 6.08 0.05 1.93 0.15 0.00 0.55 0.00 0.03 0.00 5.18 0.00 0.01 1.76 0.00 0.00 0.00 1.18 0.00 2.82 19.73 0.90 3.16 
LP 12511_perv wht mica1 - 1 5.93 0.07 2.07 0.31 0.01 0.70 0.01 0.02 0.02 4.74 0.00 0.02 1.79 0.01 0.00 0.01 1.07 0.00 2.93 19.71 0.87 2.86 

LP12511_perv wht mica2-2 6.21 0.03 1.79 0.25 0.00 0.67 0.01 0.00 0.01 4.90 0.02 0.01 1.66 0.00 0.00 0.00 1.21 0.00 2.79 19.58 0.88 3.46 
LP12511_perv wht mica3-3 6.24 0.02 1.76 0.23 0.00 0.67 0.00 0.01 0.01 4.95 0.01 0.01 1.69 0.00 0.00 0.00 1.29 0.00 2.71 19.59 0.88 3.56 
LP16A450 perv talc1-1-1 6.48 0.04 1.52 0.15 0.00 0.41 0.00 0.01 0.01 5.31 0.00 0.01 1.44 0.00 0.00 0.00 0.76 0.00 3.24 19.37 0.93 4.26 
LP16A450 wh mica2-2-1 , 6.07 0.05 1.93 0.23 0.00 0.42 0.00 0.00 0.01 5.17 0.00 0.01 1.83 0.01 0.00 0.00 0.96 0.00 3.04 19.73 0.93 3.14 
Lp18365_perv phi 1-2-1 6.13 0.06 1.87 0.17 0.00 0.86 0.00 0.00 0.01 4.81 0.00 0.00 1.72 0.00 0.00 0.00 1.00 0.00 3.00 19.64 0.85 3.28 
Lp18365_near perv phi 1-2 6.21 0.06 1.79 0.19 0.00 0.74 0.00 0.01 0.00 4.89 0.00 0.01 1.68 0.00 0.00 0.00 1.06 0.00 2.93 19.59 0.87 3.46 
Lp33390_mica in chl 1-1-1 5.88 0.03 2.12 0.21 0.00 0.51 0.00 0.00 0.01 5.42 0.01 0.01 1.46 0.00 0.00 0.00 1.14 0.00 2.87 19.66 0.91 2.77 
Lp36w197_phl 1-1-1 6.00 0.07 2.00 0.30 0.01 0.63 0.00 0.02 0.01 4.85 0.00 0.02 1.73 0.01 0.00 0.00 1.03 0.00 2.97 19.65 0.89 3.01 
Lp44243_ph11-9-1 5.81 0.11 2.19 0.49 0.00 1.05 0.01 0.02 0.02 4.10 0.00 0.01 1.86 0.00 0.00 0.00 0.57 0.00 3.43 19.68 0.80 2.65 
LP46A090_perv wht mica 5.83 0.11 2.17 0.58 0.00 0.85 0.00 0.02 0.05 4.15 0.00 0.01 1.89 0.01 0.00 0.00 0.33 0.00 3.67 19.64 0.83 2.68 
LP46A090_perv wht mica 5.80 0.09 2.20 0.62 0.00 0.86 0.00 0.01 0.04 4.14 0.00 0.04 1.84 0.01 0.00 0.00 0.30 0.00 3.70 19.63 0.83 2.64 
LP46A103_perv bt1-4-1 5.84 0.11 2.16 0.47 0.00 0.91 0.00 0.00 0.04 4.26 0.00 0.02 1.89 0.00 0.00 0.01 0.74 0.00 3.26 19.70 0.82 2.71 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO V203 ZnO MnO MgO CaO Na20 K20 BaO Sr0 NiO F CI H20 0=F 0=CI Sum Ox 
LP46A113_perv bt1-1-1 phi 39.81 1.16 16.30 0.00 8.19 0.03 0.18 0.26 18.48 0.01 0.04 10.17 0.22 0.00 0.02 0.53 0.01 3.88 0.22 0.00 99.09 
LP46A113_perv bt2-2-1 phi 40.15 1.18 15.94 0.00 8.34 0.05 0.00 0.21 18.45 0.04 0.03 10.31 0.32 0.00 0.03 0.65 0.00 3.83 0.27 0.00 99.25 
LP46A113_perv bt3-8-1 phl 40.26 1.05 15.80 0.00 8.60 0.00 0.05 0.23 18.85 0.00 0.03 10.30 0.06 0.00 0.04 0.72 0.01 3.80 0.30 0.00 99.51 
LP46Al24_perv bt 1-1-1 phl 40.16 0.71 16.08 0.00 8.12 0.01 0.10 0.17 20.26 0.00 0.07 9.45 0.25 0.00 0.05 1.21 0.00 3.60 0.51 0.00 99.73 
LP46Al24_wht m ica1-2-1 phl 40.31 0.75 16.24 0.00 7.53 0.00 0.00 0.24 19.32 0.00 0.08 10.26 0.39 0.00 0.02 1.13 0.01 3.62 0.48 0.00 99.41 
LP46Al24_perv bt2-3-1 phl 40.02 0.97 16.48 0.00 8.11 0.00 0.08 0.13 19.18 0.02 0.06 9.83 0.31 0.00 0.06 1.02 0.02 3.67 0.43 0.00 99.53 
LP46Al24_wht mica2-4-1 phi 39.68 0.93 16.59 0.00 8.10 0.00 0.07 0.25 18.87 0.00 0.07 10.43 0.23 0.00 0.00 1.06 0.00 3.64 0.45 0.00 99.48 
LP46A134 perv bt1-6-1 phi 41.10 0.57 15.99 0.02 6.38 0.00 0.00 0.18 20.47 0.00 0.09 10.00 0.29 0.00 0.00 1.41 0.00 3.53 0.59 0.00 99.44 
LP46A134 perv bt2-7-1 phl 40.89 0.67 15.86 0.01 6.17 0.01 0.00 0.12 20.31 0.00 0.05 10.57 0.38 0.00 0.04 1.42 0.01 3.50 0.60 0.00 99.39 
LP46A134 perv bt3-9-1 phl 40.38 0.70 15.65 0.06 6.46 0.05 0.08 0.19 19.90 0.00 0.07 10.08 0.36 0.00 0.03 1.54 0.03 3.39 0.65 0.01 98.31 
LP46A134 perv mica1-5-1 phi 40.84 0.58 16.09 0.00 6.20 0.00 0.07 0.19 20.36 0.00 0.12 10.10 0.41 0.00 0.00 1.33 0.02 3.55 0.56 0.00 99.31 
LP46A134 perv mica2-8-1 phi 41.02 0.58 17.49 0.00 6.16 0.03 0.03 0.08 19.20 0.00 0.08 9.71 0.39 0.00 0.00 1.35 0.01 3.56 0.57 0.00 99.10 
LP46A134 perv mica4-12-1 phi 41.39 0.52 17.51 0.02 6.05 0.03 0.02 0.16 19.44 0.00 0.10 9.94 0.33 0.00 0.00 1.26 0.01 3.63 0.53 0.00 99.86 
LP46A134 perv mica5-13-1 phi 39.00 0.77 15.88 0.02 6.49 0.07 0.00 0.15 18.35 0.01 0.06 10.09 0.44 0.00 0.00 1.32 0.02 3.38 0.55 0.01 95.50 
LP46A177 perv mica3-10-1 phi 43.43 0.50 14.07 0.03 3.89 0.02 0.00 0.14 23.37 0.00 0.03 9.98 0.01 0.00 0.00 2.34 0.00 3.18 0.98 0.00 100.01 
LP46A177 perv mica4-11-1 phi 40.51 0.49 15.01 0.01 3.95 0.03 0.00 0.18 23.14 0.02 0.04 9.11 0.07 0.00 0.07 1.99 0.01 3.21 0.84 0.00 96.98 
LP46A334_perv bt 1-1-1 bt 37.67 1.34 19.52 0.00 13.99 0.00 0.07 0.20 12.23 0.07 0.04 9.17 0.03 0.00 0.05 0.38 0.02 3.85 0.16 0.00 98.48 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 
LP46A113_perv bt 1-1-1 5.78 0.13 2.22 0.56 0.00 0.99 0.00 0.02 0.03 4.00 0.00 0.01 1.88 0.01 0.00 0.00 0.24 0.00 3.76 19.65 0.80 2.60 
LP46A113_perv bt2-2-1 5.82 0.13 2.18 0.54 0.00 1.01 0.01 0.00 0.03 3.99 0.01 0.01 1.91 0.02 0.00 0.00 0.30 0.00 3.70 19.64 0.80 2.67 
LP46A113_perv bt3-8-1 5.82 0.12 2.18 0.51 0.00 1.04 0.00 0.01 0.03 4.06 0.00 0.01 1.90 0.00 0.00 0.01 0.33 0.00 3.67 19.68 0.80 2.67 
LP46Al24_perv bt1-1-1 5.77 0.08 2.23 0.49 0.00 0.98 0.00 0.01 0.02 4.33 0.00 0.02 1.73 0.01 0.00 0.01 0.55 0.00 3.45 19.67 0.82 2.58 
LP46Al24_wht m ica1-2-1 5.81 0.08 2.19 0.57 0.00 0.91 0.00 0.00 0.03 4.15 0.00 0.02 1.89 0.02 0.00 0.00 0.52 0.00 3.48 19.68 0.82 2.66 
LP46Al24_perv bt2-3-1 5.77 0.11 2.23 0.56 0.00 0.98 0.00 0.01 0.02 4.12 0.00 0.02 1.81 0.02 0.00 0.01 0.47 0.00 3.53 19.64 0.81 2.58 
LP46Al24_wht mica2-4-1 5.74 0.10 2.26 0.57 0.00 0.98 0.00 0.01 0.03 4.07 0.00 0.02 1.92 0.01 0.00 0.00 0.49 0.00 3.51 19.72 0.81 2.54 
LP46A134 perv bt1-6-1 5.87 0.06 2.13 0.57 0.00 0.76 0.00 0.00 0.02 4.36 0.00 0.03 1.82 0.02 0.00 0.00 0.64 0.00 3.36 19.64 0.85 2.76 
LP46A134 perv bt2-7-1 5.87 0.07 2.13 0.55 0.00 0.74 0.00 0.00 0.01 4.34 0.00 0.01 1.94 0.02 0.00 0.00 0.65 0.00 3.35 19.69 0.85 2.75 
LP46A134 perv bt3-9-1 5.86 0.08 2.14 0.54 0.01 0.78 0.01 0.01 0.02 4.31 0.00 0.02 1.87 0.02 0.00 0.00 0.71 0.01 3.29 19.66 0.85 2.74 
LP46A134 perv mica1-5-1 5.86 0.06 2.15 0.57 0.00 0.74 0.00 0.01 0.02 4.35 0.00 0.04 1.85 0.02 0.00 0.00 0.60 0.01 3.39 19.67 0.85 2.73 
LP46A134 pen/ mica2-8-1 5.86 0.06 2.15 0.80 0.00 0.74 0.00 0.00 0.01 4.08 0.00 0.02 1.77 0.02 0.00 0.00 0.61 0.00 3.39 19.51 0.85 2.73 
LP46A134 perv mica4-12-1 5.86 0.06 2.14 0.79 0.00 0.72 0.00 0.00 0.02 4.10 0.00 0.03 1.80 0.02 0.00 0.00 0.57 0.00 3.43 19.53 0.85 2.74 
LP46A134 perv mica5-13-1 5.84 0.09 2.16 0.64 0.00 0.81 0.01 0.00 0.02 4.10 0.00 0.02 1.93 0.03 0.00 0.00 0.62 0.01 3.37 19.64 0.83 2.70 
LP46A177 perv mica3-10-1 6.08 0.05 1.92 0.40 0.00 0.46 0.00 0.00 0.02 4.88 0.00 0.01 1.78 0.00 0.00 0.00 1.03 0.00 2.97 19.60 0.92 3.17 
LP46A177 perv mica4-11-1 5.85 0.05 2.15 0.41 0.00 0.48 0.00 0.00 0.02 4.98 0.00 0.01 1.68 0.00 0.00 0.01 0.91 0.00 3.09 19.66 0.91 2.73 
LP46A334_perv bt 1-1-1 5.60 0.15 2.40 1.02 0.00 1.74 0.00 0.01 0.03 2.71 0.01 0.01 1.74 0.00 0.00 0.01 0.18 0.01 3.82 19.42 0.61 2.33 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr2O3 FeO V203 ZnO MnO MgO CaO Na20 K20 BaO Sr0 NiO F Cl H20 0=F 0=CI Sum Ox 

LP46A334_perv bt2-2-1 bt 38.12 1.88 16.62 0.00 14.80 0.00 0.16 0.19 13.87 0.08 0.03 9.94 0.00 0.00 0.13 0.48 0.04 3.81 0.20 0.01 99.94 

LP46A348_perv bt1-1-1 bt 38.38 1.76 17.49 0.02 14.15 0.01 0.06 0.45 13.04 0.00 0.07 10.23 0.00 0.00 0.04 0.20 0.01 3.96 0.08 0.00 99.79 

LP46A348_perv bt3-3-1 bt 37.85 1.85 16.86 0.00 15.11 0.00 0.00 0.52 13.15 0.03 0.04 10.25 0.00 0.00 0.00 0.28 0.00 3.89 0.12 0.00 99.72 

Lp51aw2433_phl 1-2-1 phl 41.73 1.40 12.86 0.33 11.81 0.05 0.00 0.12 17.95 0.05 0.02 9.32 0.00 0.00 0.00 1.19 0.01 3.56 0.50 0.00 99.89 

LP66153_perv bt2-4-1 bt 38.61 1.30 16.92 0.34 13.37 0.00 0.02 0.22 14.80 0.00 0.05 10.18 0.00 0.00 0.00 0.57 0.01 3.80 0.24 0.00 99.97 

LP66153_perv bt1-5-1 phi 38.06 0.34 17.41 0.15 12.65 0.02 0.05 0.20 15.09 0.05 0.04 10.26 0.00 0.00 0.00 0.57 0.00 3.75 0.24 0.00 98.39 

LP66179_perv mica1-2-1 phl 40.68 0.53 17.11 0.00 5.78 0.01 0.04 0.43 19.95 0.00 0.04 10.01 0.00 0.00 0.03 0.33 0.01 4.03 0.14 0.00 98.85 

LP66179_perv bt1-5-1 phi 41.01 0.61 16.00 0.02 5.63 0.03 0.00 0.53 20.48 0.00 0.02 10.34 0.06 0.00 0.01 0.34 0.00 4.03 0.14 0.00 98.95 

LP66179_perv bt2-6-1 phi 40.62 0.51 17.08 0.00 5.85 0.00 0.03 0.50 20.05 0.00 0.03 10.24 0.00 0.00 0.03 0.36 0.01 4.02 0.15 0.00 99.17 

LP66202_perv bt1-3-1 phi 39.75 0.85 16.66 0.02 9.45 0.03 0.09 0.32 17.67 0.00 0.03 10.38 0.23 0.00 0.00 0.60 0.00 3.85 0.25 0.00 99.69 

LP66202_perv bt2-4-1 phi 39.98 0.74 16.78 0.00 9.42 0.00 0.12 0.24 18.11 0.01 0.05 10.23 0.22 0.00 0.05 0.60 0.00 3.88 0.25 0.00 100.18 

LP66233_perv bt2-7-1 phi 41.40 0.73 15.13 0.00 6.75 0.09 0.05 0.46 20.59 0.00 0.09 10.10 0.23 0.00 0.00 1.89 0.00 3.30 0.80 0.00 100.03 
LP66267_perv bt1-4-1 phi 41.30 0.87 16.37 0.00 6.13 0.00 0.10 0.16 19.95 0.00 0.05 10.38 0.08 0.00 0.03 1.15 0.00 3.67 0.48 0.00 99.77 
LP66267_perv bt2-5-1 phi 41.34 0.90 16.02 0.00 6.19 0.02 0.11 0.27 20.16 0.00 0.06 10.32 0.03 0.01 0.02 1.08 0.00 3.70 0.45 0.00 99.79 

LP66339_perv bt2-5-1 phi 37.08 0.39 17.35 0.00 10.68 0.00 0.05 0.22 19.46 0.02 0.08 7.65 0.08 0.00 0.05 1.38 0.02 3.39 0.58 0.00 97.33 

LP66350_perv bt1-1-1 phi 39.81 0.92 15.62 0.05 10.99 0.01 0.04 0.19 17.13 0.00 0.12 10.29 0.07 0.00 0.00 1.73 0.02 3.27 0.73 0.01 99.54 

Lp66361_perv phi 1-2-1 phi 38.04 1.10 16.33 0.00 13.11 0.00 0.16 0.20 16.84 0.02 0.07 8.58 0.03 0.01 0.00 1.20 0.00 3.48 0.51 0.00 98.68 

Label 	Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 

LP46A334_perv bt2-2-1 5.65 0.21 2.35 0.56 0.00 1.84 0.00 0.02 0.02 3.07 0.01 0.01 1.88 0.00 0.00 0.02 0.23 0.01 3.77 19.63 0.63 2.41 

LP46A348_perv bt1-1-1 5.68 0.20 2.32 0.73 0.00 1.75 0.00 0.01 0.06 2.88 0.00 0.02 1.93 0.00 0.00 0.01 0.09 0.00 3.91 19.57 0.62 2.45 

LP46A348_perv bt3-3-1 5.64 0.21 2.36 0.60 0.00 1.88 0.00 0.00 0.07 2.92 0.01 0.01 1.95 0.00 0.00 0.00 0.13 0.00 3.87 19.65 0.61 2.39 

Lp51aw2433_phl 1-2-1 6.06 0.15 1.94 0.26 0.04 1.43 0.01 0.00 0.02 3.89 0.01 0.01 1.73 0.00 0.00 0.00 0.55 0.00 3.45 19.53 0.73 3.12 
LP66153_perv bt2-4-1 5.68 0.14 2.32 0.62 0.04 1.65 0.00 0.00 0.03 3.25 0.00 0.02 1.91 0.00 0.00 0.00 0.26 0.00 3.73 19.65 0.66 2.45 

LP66153_perv bt1-5-1 5.68 0.04 2.32 0.74 0.02 1.58 0.00 0.01 0.03 3.36 0.01 0.01 1.95 0.00 0.00 0.00 0.27 0.00 3.73 19.73 0.68 2.44 

LP66179_perv mica1-2-1 5.82 0.06 2.18 0.70 0.00 0.69 0.00 0.00 0.05 4.25 0.00 0.01 1.83 0.00 0.00 0.00 0.15 0.00 3.85 19.60 0.86 2.67 
LP66179_perv bt1-5-1 5.87 0.07 2.13 0.58 0.00 0.67 0.00 0.00 0.06 4.37 0.00 0.00 1.89 0.00 0.00 0.00 0.15 0.00 3.85 19.65 0.87 2.76 

LP66179_perv bt2-6-1 5.80 0.05 2.20 0.68 0.00 0.70 0.00 0.00 0.06 4.27 0.00 0.01 1.87 0.00 0.00 0.00 0.16 0.00 3.84 19.64 0.86 2.64 

LP66202_perv bt1-3-1 5.77 0.09 2.23 0.62 0.00 1.15 0.00 0.01 0.04 3.82 0.00 0.01 1.92 0.01 0.00 0.00 0.28 0.00 3.72 19.68 0.77 2.58 

LP66202_perv bt2-4-1 5.76 0.08 2.24 0.61 0.00 1.14 0.00 0.01 0.03 3.89 0.00 0.02 1.88 0.01 0.00 0.01 0.27 0.00 3.73 19.68 0.77 2.58 

LP66233_perv bt2-7-1 5.91 0.08 2.09 0.45 0.00 0.81 0.01 0.01 0.06 4.38 0.00 0.03 1.84 0.01 0.00 0.00 0.85 0.00 3.15 19.67 0.85 2.83 

LP66267_perv bt1-4-1 5.88 0.09 2.13 0.62 0.00 0.73 0.00 0.01 0.02 4.23 0.00 0.01 1.88 0.01 0.00 0.00 0.52 0.00 3.48 19.61 0.85 2.76 

LP66267_perv bt2-5-1 5.88 0.10 2.12 0.57 0.00 0.74 0.00 0.01 0.03 4.28 0.00 0.02 1.87 0.00 0.00 0.00 0.49 0.00 3.51 19.62 0.85 2.78 

LP66339_perv bt2-5-1 5.49 0.04 2.51 0.52 0.00 1.32 0.00 0.01 0.03 4.29 0.00 0.02 1.45 0.01 0.00 0.01 0.65 0.01 3.35 19.69 0.77 2.18 

LP66350_perv bt1-1-1 5.83 0.10 2.17 0.52 0.01 1.35 0.00 0.00 0.02 3.74 0.00 0.03 1.92 0.00 0.00 0.00 0.80 0.01 3.19 19.70 0.74 2.68 

Lp66361_perv phi 1-2-1 5.63 0.12 2.37 0.48 0.00 1.62 0.00 0.02 0.03 3.72 0.00 0.02 1.62 0.00 0.00 0.00 0.56 0.00 3.44 19.64 0.70 2.38 
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Label 	Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO V203 ZnO MnO MgO CaO Na20 K20 BaO Sr() NiO F Cl H20 0=F 0=CI Sum Ox 
LP66374_perv bt 1-2-1 phi 41.07 0.51 12.90 0.00 11.33 0.00 0.11 0.15 18.98 0.02 0.07 9.43 0.02 0.00 0.00 1.76 0.00 3.25 0.74 0.00 98.84 
LP66374_perv bt2-4-1 phi 41.22 0.59 12.85 0.03 10.93 0.06 0.05 0.23 19.74 0.01 0.05 9.43 0.00 0.00 0.06 1.73 0.00 3.30 0.73 0.00 99.54 
LP66419_perv bt1-1-1 phl 39.12 1.34 16.05 0.00 13.24 0.00 0.00 0.21 15.68 0.00 0.10 9.91 0.15 0.00 0.00 1.14 0.01 3.54 0.48 0.00 100.01 
LP66419_perv bt2-2-1 phl 39.07 1.41 16.20 0.01 12.70 0.00 0.00 0.14 15.66 0.00 0.09 10.13 0.05 0.00 0.00 1.14 0.00 3.54 0.48 0.00 99.65 
LP67B140 perv bt1-1-1 bt 39.14 1.28 18.06 0.00 12.38 0.00 0.00 0.08 13.83 0.00 0.05 10.08 0.00 0.00 0.03 0.93 0.00 3.64 0.39 0.00 99.11 
LP67B140 perv bt2-2-1 bt 38.23 1.29 18.46 0.03 12.73 0.04 0.16 0.08 13.50 0.03 0.02 9.92 0.00 0.00 0.00 0.83 0.02 3.65 0.35 0.00 98.63 
LP67B476 perv bt1-1-1 bt 36.38 1.71 19.53 0.02 12.72 0.00 0.05 0.29 13.39 0.01 0.07 10.19 0.00 0.00 0.00 0.22 0.02 3.91 0.09 0.00 98.41 
LP67B476 perv bt2-2-1 bt 37.45 1.56 18.02 0.03 13.23 0.01 0.05 0.25 14.52 0.00 0.02 10.55 0.00 0.00 0.03 0.31 0.03 3.90 0.13 0.01 99.84 
Ip67b663 perv bt1-1-1 phi 39.05 1.43 16.88 0.01 11.02 0.03 0.01 0.17 15.81 0.03 0.05 10.28 0.00 0.00 0.00 0.30 0.00 3.94 0.13 0.00 98.89 
LP67B790-perv bt1-1-1 phi 40.62 1.01 17.45 0.00 8.73 0.04 0.07 0.27 17.72 0.03 0.05 10.31 0.16 0.00 0.05 0.39 0.00 4.02 0.17 0.00 100.75 
LP67B790_perv mica2-4-1 phi 39.82 1.40 16.84 0.02 9.59 0.06 0.14 0.16 17.19 0.00 0.04 10.29 0.12 0.00 0.00 0.35 0.01 3.98 0.15 0.00 99.86 
LP67B790_perv bt2-5-1 phi 40.17 1.18 16.94 0.01 8.47 0.00 0.00 0.22 17.15 0.00 0.03 10.45 0.00 0.00 0.02 0.43 0.00 3.93 0.18 0.00 98.82 
LP67B809 perv bt1-4-1 phi 37.99 0.37 14.05 0.06 10.06 0.03 0.06 0.42 18.81 0.94 0.03 8.93 0.03 0.00 0.07 1.27 0.01 3.35 0.54 0.00 95.96 
LP67B841_perv bt 1-7-1 phi 40.96 0.84 16.33 0.08 7.15 0.03 0.04 0.22 19.41 0.00 0.02 10.38 0.03 0.00 0.03 0.41 0.01 4.00 0.17 0.00 99.78 
LP67B841_perv bt2-8-1 phi 40.80 1.03 16.85 0.03 7.30 0.04 0.00 0.21 19.11 0.01 0.02 10.50 0.00 0.00 0.04 0.41 0.00 4.02 0.17 0.00 100.21 
Ip67b903 perv bt2-3-1 phi 39.41 1.36 17.78 0.08 9.27 0.00 0.00 0.44 16.51 0.00 0.05 10.44 0.24 0.00 0.03 0.28 0.02 4.01 0.12 0.00 99.79 
LP67B940 perv bt1-1-1 phi 39.73 0.81 16.81 0.06 8.37 0.03 0.10 0.39 18.02 0.03 0.05 10.54 0.00 0.00 0.03 0.34 0.01 3.97 0.14 0.00 99.15 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Al IV 
LP66374_perv bt1-2-1 6.03 0.06 1.97 0.27 0.00 1.39 0.00 0.01 0.02 4.16 0.00 0.02 1.77 0.00 0.00 0.00 0.82 0.00 3.18 19.69 0.75 3.07 
LP66374_perv bt2-4-1 6.00 0.07 2.00 0.21 0.00 1.33 0.01 0.01 0.03 4.28 0.00 0.01 1.75 0.00 0.00 0.01 0.80 0.00 3.20 19.71 0.76 3.01 
LP66419_perv bt 1-1-1 5.75 0.15 2.25 0.53 0.00 1.63 0.00 0.00 0.03 3.44 0.00 0.03 1.86 0.01 0.00 0.00 0.53 0.00 3.47 19.66 0.68 2.55 
LP66419_perv bt2-2-1 5.75 0.16 2.25 0.56 0.00 1.56 0.00 0.00 0.02 3.43 0.00 0.02 1.90 0.00 0.00 0.00 0.53 0.00 3.47 19.66 0.69 2.55 
LP67B140 perv bt1-1-1 5.75 0.14 2.25 0.88 0.00 1.52 0.00 0.00 0.01 3.03 0.00 0.02 1.89 0.00 0.00 0.00 0.43 0.00 3.57 19.49 0.67 2.56 
LP67B140 perv bt2-2-1 5.67 0.14 2.33 0.89 0.00 1.58 0.01 0.02 0.01 2.98 0.00 0.01 1.87 0.00 0.00 0.00 0.39 0.00 3.61 19.51 0.65 2.43 
LP67B476 perv bt1-1-1 5.43 0.19 2.57 0.87 0.00 1.59 0.00 0.01 0.04 2.98 0.00 0.02 1.94 0.00 0.00 0.00 0.11 0.00 3.89 19.64 0.65 2.12 
LP67B476 perv bt2-2-1 5.53 0.17 2.47 0.67 0.00 1.64 0.00 0.01 0.03 3.20 0.00 0.01 1.99 0.00 0.00 0.00 0.14 0.01 3.85 19.72 0.66 2.24 
I p67b663 perv bt1-1-1 5.74 0.16 2.26 ,0.66 0.00 1.35 0.00 0.00 0.02 3.46 0.01 0.02 1.93 0.00 0.00 0.00 0.14 0.00 3.86 19.61 0.72 2.54 
LP678790-perv bt1-1-1 5.79 0.11 2.21 0.72 0.00 1.04 0.00 0.01 0.03 3.76 0.01 0.01 1.87 0.01 0.00 0.01 0.18 0.00 3.82 19.58 0.78 2.62 
LP67B790_perv mica2-4-1 5.76 0.15 2.24 0.63 0.00 1.16 0.01 0.01 0.02 3.71 0.00 0.01 1.90 0.01 0.00 0.00 0.16 0.00 3.84 19.61 0.76 2.57 
LP67B790_perv bt2-5-1 5.83 0.13 2.17 0.73 0.00 1.03 0.00 0.00 0.03 3.71 0.00 0.01 1.93 0.00 0.00 0.00 0.20 0.00 3.80 19.56 0.78 2.68 
LP67B809 perv bt1-4-1 5.76 0.04 2.24 0.27 0.01 1.28 0.00 0.01 0.05 4.25 0.15 0.01 1.73 0.00 0.00 0.01 0.61 0.00 3.39 19.81 0.77 2.57 
LP67B841_perv bt 1-7-1 5.85 0.09 2.15 0.60 0.01 0.86 0.00 0.00 0.03 4.13 0.00 0.01 1.89 0.00 0.00 0.00 0.19 0.00 3.81 19.63 0.83 2.72 
LP67B841_perv bt2-8-1 5.81 0.11 2.19 0.64 0.00 0.87 0.01 0.00 0.03 4.06 0.00 0.01 1.91 0.00 0.00 0.00 0.19 0.00 3.82 19.62 0.82 2.65 
Ip67b903 perv bt2-3-1 5.71 0.15 2.29 0.74 0.01 1.12 0.00 0.00 0.05 3.56 0.00 0.02 1.93 0.01 0.00 0.00 0.13 0.00 3.87 19.60 0.76 2.49 
LP67B940 perv bt1-1-1 5.77 0.09 2.23 0.64 0.01 1.02 0.00 0.01 0.05 3.90 0.00 0.02 1.95 0.00 0.00 0.00 0.16 0.00 3.84 19.69 0.79 2.58 
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Label 	 Oxides: Mineral Si02 T102 Al203 Cr203 FeO V203 ZnO MnO MgO CaO Na20 K20 BaO Sr0 NiO F CI H20 0=F 0=CI Sum Ox 

LP67B940 perv bt2-2-1 phl 40.55 0.85 16.06 0.03 7.99 0.04 0.01 0.30 18.47 0.00 0.03 10.34 0.07 0.00 0.00 0.42 0.01 3.94 0.18 0.00 98.94 

LP67b986 perv bt1-3-1 phi 38.17 0.57 15.53 0.00 11.99 0.01 0.03 0.49 16.99 0.02 0.03 9.23 0.02 0.00 0.00 0.44 0.00 3.78 0.18 0.00 97.12 
LP67b986 perv bt2-4-1 phi 39.52 0.66 16.16 0.02 10.12 0.01 0.07 0.45 17.34 0.00 0.03 10.11 0.00 0.00 0.00 0.42 0.00 3.88 0.18 0.00 98.63 
Ip67bw11037 perv bt1-1-1 phi 39.77 0.87 15.79 0.02 8.03 0.00 0.05 0.25 18.72 0.00 0.02 10.23 0.00 0.00 0.00 0.79 0.00 3.72 0.33 0.00 97.93 
1p67bw11037 perv b12-5-1 phi 41.13 0.17 14.47 0.00 7.81 0.00 0.10 0.17 20.78 0.01 , 0.06 9.92 0.00 0.00 0.00 1.02 0.02 3.66 0.43 0.00 98.89 

LP67BW 11063 perv bt1-3 phi 39.72 1.05 16.73 0.01 9.64 0.03 0.06 0.13 17.31 0.04 0.05 10.24 0.00 0.00 0.00 0.53 0.01 3.87 0.22 0.00 99.20 
LP67BW11063 perv bt2-4 phi 40.10 1.09 16.64 0.01 9.22 0.04 0.00 0.19 17.65 0.03 0.09 10.00 0.00 0.00 0.00 0.51 0.00 3.90 0.22 0.00 99.26 
LP12428_perv mica1-3-1 tic 63.12 0.01 0.15 0.00 2.27 0.00 0.00 0.00 29.27 0.00 0.03 0.00 0.00 0.00 0.00 0.62 0.00 4.39 0.26 0.00 99.62 
LP12428_perv talc1-5-1 tic 62.66 0.00 0.14 0.00 2.65 0.05 0.05 0.05 29.07 0.02 0.02 0.01 0.06 0.00 0.05 0.50 0.04 4.42 0.21 0.01 99.56 
LP12428_perv talc2-6-1 tic 62.64 0.00 0.24 0.00 2.40 0.00 0.00 0.03 29.00 0.01 0.01 0.14 0.00 0.00 0.03 0.53 0.04 4.40 0.22 0.01 99.24 
LP12428_perv talc3-7-1 tic 62.17 0.04 0.24 0.00 2.70 0.02 0.03 0.02 28.88 0.02 0.03 0.02 0.05 0.00 0.01 0.53 0.03 4.38 0.22 0.01 98.93 
Lp12476 perv talc 1-1-1 tic 62.39 0.02 0.12 0.04 2.38 0.02 0.05 0.00 28.62 0.04 0.02 0.01 0.00 0.00 0.00 0.58 0.02 4.35 0.24 0.01 98.40 
Lp12476 perv talc2-3-1 tic 61.38 0.00 0.92 0.00 3.48 0.00 0.07 0.00 28.61 0.01 0.03 0.69 0.02 0.00 0.00 0.81 0.01 4.26 0.34 0.00 99.95 
LP16A450 perv talc2-2-1 tic 61.86 0.01 0.38 0.00 1.94 0.00 0.00 0.05 29.12 0.02 0.01 0.26 0.04 0.00 0.02 0.47 0.02 4.40 0.20 0.00 98.38 
LP16A450 perv talc3-3-1 tic 62.74 0.01 0.10 0.05 1.70 0.01 0,00 0.07 29.61 0.03 0.02 0.02 0.00 0.00 0.00 0.42 0.03 4.47 0.18 0.01 99.09 
LP16A450 perv talc4-4-1 tic 62.75 0.00 0.05 0.00 1.99 0.01 0.00 0.09 29.99 0.00 0.02 0.02 0.09 0.00 0.03 0.52 0.02 4.44 0.22 0.00 99.80 
LP16A450 perv talc5-5-1 tic 62.74 0.00 0.06 0.00 1.62 0.00 0.30 0.01 29.82 0.02 0.02 0.00 0.00 0.00 0.00 0.45 0.01 4.46 0.19 0.00 99.32 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Sum Cat Mg # Si / Ai IV 

LP67B940 perv bt2-2-1 5.87 0.09 2.13 0.61 0.00 0.97 0.01 0.00 0.04 3.99 0.00 0.01 1.91 0.00 0.00 0.00 0.19 0.00 3.81 19.62 0.81 2.75 

LP67b986 perv bt1-3-1 5.74 0.07 2.26 0.49 0.00 1.51 0.00 0.00 0.06 3.81 0.00 0.01 1.77 0.00 0.00 0.00 0.21 0.00 3.79 19.71 0.72 2.53 

LP67b986 perv bt2-4-1 5.80 0.07 2.20 0.60 0.00 1.24 0.00 0.01 0.06 3.79 0.00 0.01 1.89 0.00 0.00 0.00 0.20 0.00 3.80 19.68 0.75 2.64 
1p67bw11037 perv bt1-1-1 5.83 0.10 2.18 0.55 0.00 0.98 0.00 0.01 0.03 4.09 0.00 0.01 1.91 0.00 0.00 0.00 0.36 0.00 3.64 19.68 0.81 2.68 
1p67bw11037 perv bt2 -5- 1 5.94 0.02 2.06 0.41 0.00 0.94 0.00 0.01 0.02 4.48 0.00 0.02 1.83 0.00 0.00 0.00 0.47 0.00 3.53 19.73 0.83 2.89 

LP67BW11063 perv bt1-3 5.78 0.12 2.22 0.64 0.00 1.17 0.00 0.01 0.02 3.75 0.01 0.02 1.90 0.00 0.00 0.00 0.24 0.00 3.76 19.63 0.76 2.60 

LP67BW11063 perv bt2-4 5.80 0.12 2.20 0.64 0.00 1.12 0.00 0.00 0.02 3.81 0.00 0.03 1.85 0.00 0.00 0.00 0.23 0.00 3.77 19.59 0.77 2.64 

LP12428_perv mica1-3-1 .  8.07 0.00 0.00 0.02 0.00 0.24 0.00 0.00 0.00 5.58 0.00 0.01 0.00 0.00 0.00 0.00 0.25 0.00 3.75 17.92 0.96 

LP 12428_perv talc1-5-1 8.05 0.00 0.00 0.02 0.00 0.29 0.01 0.01 0.01 5.56 0.00 0.01 0.00 0.00 0.00 0.01 0.20 0.01 3.79 17.95 0.95 
LP12428_perv talc2-6-1 8.05 0.00 0.00 0.04 0.00 0.26 0.00 0.00 0.00 5.56 0.00 0.00 0.02 0.00 0.00 0.00 0.22 0.01 3.78 17.94 0.96 
LP12428_perv talc3-7-1 8.03 0.00 0.00 0.04 0.00 0.29 0.00 0.00 0.00 5.56 0.00 0.01 0.00 0.00 0.00 0.00 0.22 0.01 3.78 17.95 0.95 

Lp12476 perv talc 1-1-1 8.08 0.00 0.00 0.02 0.00 0.26 0.00 0.01 0.00 5.53 0.01 0.01 0.00 0.00 0.00 0.00 0.24 0.01 3.76 17.91 0.96 
Lp12476 perv talc2-3-1 7.92 0.00 0.08 0.06 0.00 0.38 0.00 0.01 0.00 5.50 0.00 0.01 0.11 0.00 0.00 0.00 0.33 0.00 3.67 18.07 0.94 
LP16A450 perv talc2-2-1 8.02 0.00 0.00 0.06 0.00 0.21 0.00 0.00 0.01 5.63 0.00 0.00 0.04 0.00 0.00 0.00 0.19 0.00 3.81 17.97 0.96 
LP16A450 perv talc3•3-1 8.05 0.00 0.00 0.02 0.01 0.18 0.00 0.00 0.01 5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.01 3.83 17.94 0.97 
LP16A450 perv talc4-4-1 8.02 0.00 0.00 0.01 0.00 0.21 0.00 0.00 0.01 5.71 0.00 0.01 0.00 0.01 0.00 0.00 0.21 0.00 3.79 17.98 0.96 
LP16A450 perv talc5-5-1 8.04 0.00 0.00 0.01 0.00 0.17 0.00 0.03 0.00 5.70 0.00 0.01 0.00 0.00 0.00 0.00 0.18 0.00 3.82 17.96 0.97 
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Label 	 Oxides: Mineral Si02 TiO2 Al203 Cr203 FeO V203 ZhO MnO MgO CaO Na20 1(20 BaO Sr0 NiO F CI H20 0=F 0=CI Sum Ox 
LP16A450 perv talc6-6-1 tic 62.00 0.01 0.09 0.00 1.87 0.00 0.02 0.02 29.35 0.03 0.03 0.02 0.00 0.00 0.03 0.49 0.00 4.39 0.20 0.00 98.16 
Lp51a482_perv ser 1-1-1 tic 63.33 0.00 0.09 0.07 1.54 0.00 0.05 0.01 29.94 0.00 0.02 0.00 0.00 0.01 0.00 0.42 0.00 4.51 0.18 0.00 99.81 
Lp51a484_mica in chl 1-1-1 tic 61.83 0.01 0.09 0.03 1.69 0.00 0.00 0.06 29.06 0.03 0.01 0.00 0.03 0.00 0.01 0.35 0.00 4.43 0.15 0.00 97.49 
Lp51a484_ser in vein 1-8-1 tic 63.06 0.01 0.12 0.02 1.76 0.03 0.00 0.04 29.73 0.02 0.02 0.00 0.00 0.05 0.00 0.36 0.01 4.52 0.15 0.00 99.59 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe2+ V Zn Mn2+ Mg Ca Na K Ba Sr Ni F CI OH Mg # Sum Cat 
LP16A450 perv talc6-6-1 8.04 0.00 0.00 0.01 0.00 0.20 0.00 0.00 0.00 5.67 0.00 0.01 0.00 0.00 0.00 0.00 0.20 0.00 3.80 0.97 17.96 
Lp51a482_perv ser 1-1-1 8.06 0.00 0.00 0.01 0.01 0.16 0.00 0.00 0.00 5.68 0.00 0.01 0.00 0.00 0.00 0.00 0.17 0.00 3.83 0.97 17.93 
Lp51a484_mica in ch11-1-1 8.06 0.00 0.00 0.01 0.00 0.19 0.00 0.00 0.01 5.65 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 3.86 0.97 17.93 
Lp51a484_ser in vein 1-8-1 8.05 0.00 0.00 0.02 0.00 0.19 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 3.85 0.97 17.94 

Label 	 Oxides: Mineral .. 	_ _ SiO2_ - TiO2 Al203 Cr203 Fe203 FeO MnO MgO CaO Na20 K2O BaO Sr0 Zr02 F CI H20 0=F 0=CI Sum Ox 
LP67B687 perv hb11-1-1 hbl 43.8 0.75 11.75 0.29 3.48 9.82 0.51 12.4 12.1 1.74 0.73 0 0 0.06 0.25 0.01 1.91 0.11 0 99.5 
LP678687 perv hb12-2-1 hbl 44.5 0.61 11.65 0.18 4.26 7.86 0.61 13.3 12.2 1.62 0.55 0 0 0.04 0.29 0 1.92 0.12 0 99.5 

Label 	 Cations: Si Ti Al IV Al VI Cr Fe3+ Fe2+ Mn2+ Mg Ca Na K Ba Sr Zr F Ci OH Sum Cat 
LP678687 perv hb11-1-1 6.46 0.083 1.545 0.5 0.03 0.39 1.21 0.06 2.72 1.91 0.5 0.14 0 0 0 0.12 0.002 1.88 17.544 
LP678687 perv hb12-2-1 6.5 0.067 1.5 0.51 0.02 0.47 0.96 0.08 2.9 1.9 0.46 0.1 0 0 0 0.13 0 1.867 17.464 

Label 	 Oxides: Mineral S102 TiO2 AI203 Fez% MnO MgO CaO Sr0 BaO Na2O K20 P2O5 Sum Ox 
LP46A134 feld1-1-1 hiy 57.8 0 20.46 0 0 0 0 0 7.99 0.38 13.2 0 99.9 
LP46A134 feld2-2-1 hly 56.1 0.01 21 0.04 0 0.01 0 0 10.4 0.42 12.4 0.03 100 
LP46A134 feld3-3-1 hly 56.9 0 20.77 0 0 0.07 0 0 8.9 0.4 12.7 0 99.7 
Lp67b760Jeld in vein 3-3 ab 67.9 0.02 20.92 0 0 0.02 0.8 0.14 0.06 10.7 0.09 0 101 

Label 	 Cations: Si Ti Al IV Al VI Fe3+ Mn2+ Mg Ca Sr Ba Na K P Sum Ab An Or Ceisla 
n Rb-Feld Sr- 

Feld 
LP46A134 feld1-1-1 2.83 0 1.178 0 0 0 0 0 0 0.15 0.04 0.82 0 5.02 3.52 0 81.37 15.1 0 0 
LP46A134 feld2-2-1 2.77 0 1.224 0 0 0 0 0 0 0.2 0.04 0.79 0 5.03 3.9 0 76.46 19.65 0 0 
LP46A134 feld3-3-1 2.8 0 1.205 0 0 0 0.01 0 0 0.17 0.04 0.8 0 5.02 3.79 0 79.16 17.05 0 0 
Lp67b760_feld in vein 3-3 2.95 0.001 1.07 0 0 0 0 0.04 0 0 0.9 0.01 0 4.97 95.1 3.91 0.549 0.106 0 0.38 

Notes: 
Mineral abbreviations: chl = chlorite, phg = phengite, ms = muscovite, phi = phlogopite, bt = biotite, tic = talc, hbl = hornblende, hly = hyalophane, ab = albite, 
dol = dolomite, Fe-dol = ferroan dolomite, mgs = magnesite, ca = calcite, sid = siderite, Mg-sid = magneso-siderite, ank = ankerite, smt = smithsonite, rhd = rhodocrosite 
All oxide data in weight % 
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SUMMARY OF XRF ANALYSIS (X-Ray Fluorescence Analysis) 

School of Earth Sciences, University of Tasmania 	 Phil.Robinson 29/03/2000 

Instrument 
	 Philips PW1480 X-Ray Spectrometer 

X-Ray Tubes 	 3kW max. ScMo anode side window. 
Elements analysed: Majors, S and Y, Rb, U, Th, Cu, Pb, Zn, Ni; As, Bi, Co, 
Ga, TI, Se, W, Br 

• 3kW max. Au anode side window. 
Elements analysed: Nb, Zr, Sr, Ba, Cr, V, Sc, La, Ce, Nd, Sb, Sn 

3kW max. Rh anode side window. 
Elements analysed: Mo, occasionally Nb 

Crystals: 

Collimators: 

Detectors: 

Trace Elements 

LiF 200, LiF 220, PX-1 (for Na and Mg), PE002, Ge Ill 

Coarse (0.7mm) and fine (0.3mm) with auxiliary (0.14mm) 

Gas flow proportional counter with P10 gas (10% methane in 
argon) and Scintillation Counter. 

Philips 30 position sample holder 

Fusion discs prepared at 1100 °C in 5%Au195%Pt crucibles 
0.77g sample, 4.125g Norrish Flux (Lithium borates/La 203  mix), 0.055g 
LiNO 3  for silicates.Platinum/gold moulds used for cooling. 
Sulphide bearing samples have a mix with more LiNO3 as oxidising agent and 
the mix is preignited at 700 ° C for 10 minutes. Ore samples and ironstones 
use 12/22 flux and a higher flux/sample ratio. Dolomites and limestones need 
pure lithium tetraborate as a flux. 

Pressed powder pills (3.5 tonnes/cm -2) with 10 grams sample. 
Binder used is PVP-MC. 

Sample Changer: 

Sample Preparation 

Major Elements: 

Corrections 

Corrections for mass absorption are calculated using Philips X40 software with De Jongh's calibration 
model and Philips (or CSIRO) alpha coefficients. Compton scattering is also used for many trace 
elements. 

Calibration 

Pure element oxide mixes in pure silica, along with international and Tasmanian standard rocks are used. 
Numerous checks of standard rocks and pure silica blanks are run with each program. 
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Detection Limits 
oxide 	wt % trace element ppm trace element ppm 
Si02 	0.01 Nb 1 Th 1.5 
TiO2 	0.01 Zr 1 Bi 2 

Al203 	0.01 Cr 1 Ni 1 
Fe204 	0.01 Ba 4 Se 1 
MnO 	0.01 Sc 2 As 3 
MgO 	0.01 V 2 Cu 1 
CaO 	0.01 La 2 Pb 1.5 

Na20 	0.01 Ce 4 Zn 1 
K20 	0.01 Nd 2 Ag 2 
P205 	0.01 Y 1 Sb 2 

S 	0.01 U 1.5 Sn 2 
Rb 1 Cd 1 

TI 1 

Additional Notes 
Drill core samples are numbered: `LP, drill hole number and depth (last 3 digits)' 

Samples crushed in a jaw crusher and milled in a tungston-carbide mill by Michael Agnew 

All samples analysed by Phil Robinson 

Samples below detection limits were assigned half the value of the detection limit for calculations in this 
thesis 

Fusion discs were used for high (>2000ppm) Ba, Pb and Zn concentrations 

Pb, As and Ba interference, where indicated 

Tri Origin provided unpublished XRF data. Cu, Pb, Zn, Ag, and Hg analysed by atomic absorption, Au 
analysed by fire assaying. 

Unit abbreviations: HSU = Hangingwall Siltstone Unit, f-b = fault-bound stratigraphic unit, 
TU = Transitional Unit, WVS = Western Volcanic succession, EVS = Eastern Volcanic Succession, 
LPG = Lewis Ponds Granite, MRV = Mullions Range Volcanics. 

Trace elements in ppm unless otherwise stated 

Additional trace element XRF data from this study: 

Sample Ag 
PPm 

Sb 
PPm 

Sn 
PPm 

Cd 
PPm 

LP12476 39 67 8 44 
LP36W 195 403 815 240 202 
LP51A482 101 107 62 67 
LP51A488 730 1 090 376 265 
LP66391 <2 <2 10 <1 
LP66419 <2 <2 6 <1 
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Unit Si02 TiO2 Al203 Fe2O3 MnO MgO CaO Na20 1<20 P205 BaO Total LOI S Total Nb Zr Sr Cr 
% % % % % ok  % ok  % % % oxides % % % ppm ppm ppm ppm 

HSU 77.00 0.32 9.87 2.39 0.02 3.08 0.11 0.11 3.48 0.09 0.27 96.74 3.09 1.52 99.84 8 97 9 32 

TU 42.53 0.21 4.62 9.67 0.40 15.38 8.20 <0.05 0.78 0.20 0.01 82.00 17.05 5.29 99.16 <1 10 111 972• 

TU 29.64 0.09 3.97 5.98 0.55 15.79 16.20 <0.05 0.11 0.11 0.00 72.44 22.95 2.63 96.72 <1 7 205 318 

TU 44.33 0.38 11.81 11.67 0.08 17.35 0.37 <0.05 2.71 0.27 0.06 89.03 8.42 5.06 98.28 5 116 11 419 

TU 77.94 0.04 0.69 7.89 0.05 1.11 2.81 <0.05 0.03 0.01 0.00 90.57 6.89 6.41 100.24 1 15 28 19 
TU 42.28 0.05 1.61 15.34 0.27 10.22 8.54 <0.05 0.60 0.08 0.01 79.00 17.85 9.84 100.26 <1 15 112 100 

TU 1.93 0.01 0.70 0.68 0.26 16.81 34.91 <0.05 0.04 0.01 0.00 55.35 44.13 0.05 99.51 <1 2 228 <1 
TU 51.09 0.08 2.91 4.23 0.23 11.17 9.60 <0.05 1.74 0.05 0.02 81.12 16.68 2.30 100.08 2 24 121 8 
TU 44.73 0.68 16.89 8.07 0.09 9.59 4.23 0.18 3.79 0.21 0.20 88.66 17.85 2.95 99.22 13 200 39 104 

TU 67.09 0.48 12.99 2.96 0.09 3.14 2.59 0.04 4.09 0.13 0.23 93.83 5.38 1.57 99.21 10 184 31 23 
TU 51.12 0.45 11.47 6.17 0.22 7.34 7.07 <0.05 2.42 0.14 0.13 86.53 11.19 3.33 99.70 8 145 63 29 
TU 75.31 0.43 9.27 3.59 0.15 3.35 1.52 0.07 2.52 0.09 0.11 96.41 3.62 0.94 100.13 9 121 26 52 

TU 70.11 0.48 12.97 3.21 0.02 4.94 0.68 0.55 3.40 0.11 0.21 96.68 3.79 0.48 100.51 11 131 13 58 
TU 58.46 0.21 10.19 1.29 0.10 2.73 11.47 0.65 3.14 0.15 0.17 88.56 11.49 0.22 100.05 7 101 106 9 

TU 55.39 0.75 16.85 3.02 0.03 8.61 2.64 1.81 3.13 0.17 - 92.40 , 6.81 0.44 99.21 12 290 35 33 

WVS 65.28 0.57 16.67 3.44 0.03 1.89 2.52 2.56 3.16 0.18 0.12 96.42 3.43 0.01 99.85 12 216 264 26 

Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn TI Al CCP! 

PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PP" PPm PPm PPm PPm PPm PPm PPm 
2400 7 39 15 38 17 17 1.7 101 8.7 <2 10 <1 102 56 23 52 4 96.8 46.2 

56 27 148 3 Pb, As 3 6 <1.5 ,  54 <1.5 <2 185 1 2707 527 .  163 323 5 66.3 95.0 

24 11 43 1 Pb, As 5 6 <1.5 7 8.1 <2 68 14 2754 5500 1048 4800 4 49.5 99.2 

454 17 134 9 Pb, As 12 17 5.0 160 10.7 <2 118 2 5323 2200 505 4250 30 98.1 , 86.4 

32 2 19 1 Pb, As 4 4 <1.5 4 17.9 5 14 4 330 1.14% 603 118 Pb 28.7 95.3 

67 7 35 2 Pb, As 5 9 1.7 38 18.7 <2 38 6 1392 1.12% 537 1.72% Pb 55.8 94.2 
16 7 4 4 9 6 9 <1.5 2 <1.5 <2 1 <1 19 170 .30 59 <1 32.5 99.6 

126 4 25 2 Pb, As 6 5 5.7 121 17.1 <2 4 <1 1692 8500 608 1.04% Pb 57.3 86.4 

1772 17 133 36 Pb, As 42 31 6.6 145 21.0 3 38 2 884 3900 253 7200 9 75.2 70.7 
2066 10 48 26 65 29 32 2.3 188 13.7 <2 6 <1 74 180 25 461 5 73.3 43.2 
1020 9 44 23 Pb, As 23 30 4.0 102 17.4 3 13 8 357 4100 1500 1.07% 7 57.9 75.0 

996 10 84 30 58 25 19 2.0 101 11.1 <2 22 1 25 253 155 387 <1 78.7 56.4 

1900 13 100 30 61 26 20 3.2 125 11.6 <2 15 <1 <3 45 89 138 6 87.1 55.6 
1521 7 16 20 51 21 16 2.3 93 10.8 <2 5 <1 6 5 58 19 2 32.6 41.9 

2000 14 96 19 47 26 15 4.6 114 22.0 <2 5 15 332 53 285 72.5 63.5 
1044 12 65 40 90 38 47 4.7 130 17.8 <2 8 <1 17 80 7 50 <1 49.9 24.8 

Sample 	Depth Descriptive Name 

LP12425 	425.4 sltst 
LP12428 	428.3 dol-qtz-chl-tic schist 
LP12440 	440.5 vuggy dolomite 
LP12450 	450.4 chl-phl-tIc-qtz schist 
LP12465 	465.5 qtz-dol-chl-altered rock 
LP12476 	476.3 dol-qtz-tic schist 
LP12493 	493.0 massive dolomite 
LP12503 	503.0 dol-qtz-phl schist 
LP12523 	523.2 qtz-lithic sst matrix 
LP12553 	553.4 qtz crystal-rich sst matrx 
LP12555 	555.0 qtz crystal-rich sst 
LP12570 	570.2 sltst 
LP12516 	516.4 sltst clast in breccia 
LP16A548 	548.3 qtz crystal-rich sst matrx 
LP18383 	383.7 qtz-feld porphyry clast 
LP18532 	532.4 qtz-feld porphyry 

Sample 

LP 12425 
LP 12428 
LP 12440 
LP 12450 
LP 12465 
LP 12476 
LP 12493 
LP12503 
LP12523 
LP12553 
LP 12555 
LP 12570 
LP12516 
LP 16A548 
LP 18383 
LP 18532 
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Unit Si02 TiO2 Al203 Fe2O3 MnO MgO CaO Na20 K20 P205 BaO Total LOI S Total Nb Zr Sr Cr 
°A, % % % % % % % % % oxides % % % p p m p p m p p m p p m 

WVS 68.44 0.47 14.31 2.58 0.03 1.80 2.52 3.57 2.88 0.14 - 96.74 3.51 0.09 100.25 11 179 158 21 
f-b 78.43 0.29 7.20 2.72 0.29 2.08 2.63 0.18 2.04 0.06 0.08 96.00 3.95 0.03 99.97 8 81 93 33 
f-b 69.67 0.59 12.21 4.60 0.10 4.71 0.19 0.17 3.23 0.15 0.39 96.01 3.74 1.05 99.77 13 167 17 70 
TU 1.03 <0.01 0.02 30.93 0.66 0.45 12.64 <0.05 <0.01 0.04 - 45.76 13.50 32.50 85.27 <1 Pb 240 5 
TU 47.10 0.08 2.23 11.04 0.17 21.28 2.10 <0.05 1.69 0.06 0.02 85.77 8.39 5.94 99.53 <1 7 46 296 
TU 10.91 0.25 4.82 7.47 2.99 18.20 22.49 <0.05 0.01 0.19 0.00 67.33 31.62 3.03 98.98 <1 12 248 587 
TU 46.19 0.38 16.11 11.15 0.24 14.31 0.17 0.68 1.40 0.13 0.15 90.91 7.19 2.20 99.57 10 183 17 82 
TU 74.00 0.53 10.81 4.36 0.17 2.79 0.55 0.45. 2.80 0.11 0.14 96.71 2.99 0.47 99.73 11 153 18 61 
TU 48.57 0.88 8.95 7.52 0.33 4.78 13.59 0.84 0.70 0.25 - 86.41 13.89 0.11 100.30 17 314 153 38 
TU 36.03 0.53 10.26 5.06 0.72 3.25 21.14 0.85 1.93 0.14 0.09 80.00 19.68 0.03 99.71 12 181 310 33 
TU 70.50 0.61 12.19 4.95 0.26 2.70 1.12 0.33 2.99 0.10 - 95.75 3.77 0.17 99.52 13 168 37 67 
TU 62.71 0.51 16.16 6.95 0.10 3.68 0.74 0.28 4.09 0.08 0.17 95.47 4.19 0.02 99.72 12 234 37 26 
TU 88.06 0.12 4.48 2.90 0.03 1.39 0.45 0.34 0.70 0.07 - 98.54 1.60 <0.01 100.14 3 49 24 10 

WVS 67.04 0.62 17.24 3.14 0.03 1.96 0.44 3.98 3.06 0.11 0.15 97.77 2.44 <0.01 100.21 13 252 184 28 
WVS 70.99 0.46 13.51 3.57 0.03 2.24 1.08 2.72 2.26 0.14 - 97.00 2.83 0.30 99.83 10 179 189 20 
TU 44.49 0.86 15.70 9.26 0.19 7.32 7.51 0.60 2.43 0.16 0.11 88.63 10.75 0.02 99.43 16 338 91 43 

Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn TI Al CCP! 
PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm 
908 10 41 27 54 27 31 2.9 118 14.0 <2 4 <3 26 7 45 43.5 21.8 
743 7 44 24 47 20 20 1.9 89 7.3 <2 21 <1 10 51 24 53 <1 59.5 48.4 

3500 14 102 41 87 35 28 2.7 106 14.1 <2 27 <1 162 37 36 117 3 95.7 58.1 
12 8 4 Pb Pb Pb Pb <1.5 - - 25 1.12% 6.51% 1300 13.70% - 3.5 93.8 

228 4 45 3 Pb, As 7 13 3.3 128 24.0 <2 56 1 296 1.78% 686.9 2.70% Pb 91.5 92.5 
12 26 124 7 7 2 7 <1.5 <1 <1.5 <2 125 <1 101 43 35 127 <1 44.7 99.8 

1412 11 109 42 Pb 42 53 4.4 48 19.8 3 51 9 132 4800 153 7500 2 94.9 87.3 
1292 12 91 33 69 27 21 2.9 110 12.7 <2 25 <1 51 44 37 97 4 84.8 46.2 
273 10 49 45 99 46 21 3.3 29 29.0 3 42 24 219 31 167 - 27.5 75.6 
749 14 58 36 80 36 29 2.8 78 14.3 <2 24 <1 5 69 11 126 <1 19.1 53.9 
815 11 97 34 72 32 26 2.4 138 17.0 <2 38 12 72 51 96 - 79.7 44.9 
1484 11 85 79 147 67 41 1.8 190 30.3 5 26 <1 8 472 19 128 <1 88.4 45.7 
276 4 19 15 28 14 17 <1.5 34 4.0 <2 10 6 <1.5 2 36 - 72.6 57.2 
1367 13 66 27 66 32 36 4.3 148 17.7 <2 7 <1 <3 4 2 39 <1 53.2 21.8 
807 9 47 42 80 36 41 2.6 113 15.0 <2 9 6 17 52 54 - 54.2 31.0 
936 13 78 33 69 34 20 2.3 100 22.7 3 102 <1 113 177 11 237 <1 54.6 70.7 

Sample 	Depth Descriptive Name 

LP27786 	786.9 qtz-feld porphyry clast 
LP36170 	170.4 sltst 
LP36W190 	190.6 sltst 
LP36W 195 	195.1 massive sulphide 
LP36W202 	202.7 tic-dol schist 
LP36W214 	214.1 vuggy dol with mnr chl 
LP36W222 	222.1 qtz crystal-rich sst matrix 
LP36W245 	245.5 sltst 
LP36W262 	262.1 qtz-feld porphyry clast 
LP36W277 	277.8 qtz crystal-rich sst 
LP36W313 	313.4 sltst 
LP36W366 	366.4 qtz crystal-rich sst 
LP36W370 	370.9 sltst 
LP36W374 	374.7 qtz-feld porphyry 
LP36W391 	391.3 qtz-feld porphyry 
LP37238 	238.7 qtz-feld porphyry clast 

Sample 

LP27786 
LP36170 
LP36W190 
LP36W 195 
LP36W202 
LP36W214 
LP36W222 
LP36W245 
LP36W262 
LP36W277 
LP36W313 
LP36W366 
LP36W370 
LP36W374 
LP36W391 
LP37238 
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Unit Si02 TiO2 Al203 Fe203 MnO MgO CaO Na20 K20 P205 BaO Total LO I S Total Nb Zr Sr Cr 
% % % % % % % % % % % oxides % % % p p m p p m p p m p p m 

WVS 76.32 0.40 11.70 2.36 0.01 1.45 1.02 5.04 0.40 0.08 98.78 1.47 <0.01 100.25 8 157 252 18 
f-b 61.45 0.66 15.06 5.37 0.06 2.57 2.14 0.17 9.00 0.18 0.09 96.75 3.14 0.01 99.89 10 176 41 52 

WVS 75.75 0.18 9.28 4.24 0.05 5.10 0.12 0.12. 1.73 0.11 0.04 96.72 3.12 0.09 99.84 6 90 8 7 
WVS 64.05 0.20 11.19 7.20 0.10 9.87 0.15 0.06 1.93 0.11 94.86 4.65 0.30 99.51 7 105 12 8 

f-b 70.86 0.58 13.28 2.56 0.07 3.27 0.19 0.06 4.62 0.15 0.20 95.84 4.42 0.57 100.33 9 149 29 48 
HSU 79.97 0.22 8.53 1.78 0.03 1.91 0.08 0.07 4.68 0.07 1.42 98.76 1.42 0.71 100.27 7 68 164 17 
HSU 79.18 0.29 7.82 3.02 0.02 1.97 0.14 0.07 3.45 0.08 1.09 97.13 2.58 1.98 99.87 5 76 51 35 
HSU 89.58 0.07 3.75 1.26 0.01 0.25 0.24 0.08 1.88 0.03 2.21 99.36 1.13 0.95 100.57 2 56 123 2 
HSU 87.23 0.16 5.06 2.02 0.01 0.64 0.92 0.17 1.61 0.03 0.06 97.91 2.56 1.07 100.48 6 76 22 16 
WVS 29.43 0.95 20.59 6.46 0.18 30.14 0.33 0.07 0.01 0.16 <0.01 88.32 12.00 <0.01 100.32 16 253 10 87 
WVS 69.00 0.25 14.86 3.05 0.05 4.75 0.15 0.08 3.91 0.14 0.11 96.35 3.59 0.38 99.94 10 125 9 10 
WVS 69.99 0.25 15.21 2.77 0.05 3.69 0.12 0.08 3.88 0.12 96.16 3.28 0.10 99.44 10 130 12 9 
WVS 76.76 0.21 12.29 2.11 0.03 1.96 0.21 0.11 4.01 0.18 97.87 2.30 0.03 100.17 7 103 16 10 
WVS 66.07 0.65 14.16 5.46 0.13 4.25 0.22 1.40 4.65 0.15 0.15 97.29 2.72 0.39 100.01 10 165 43 57 

f-b 52.04 0.81 19.01 5.51 0.04 3.27 4.20 0.14 7.95 0.19 0.06 93.22 6.48 0.01 99.72 14 215 39 67 
f-b 61.44 0.58 14.82 5.00 0.04 1.51 3.66 0.14 7.32 0.19 0.07 94.77 4.73 0.01 99.51 10 159 72 46 

Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn T1 Al CC PI 
ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 
95 6 30 24 49 23 24 2.0 14 13.0 <2 8 <3 4 27 45 23.4 21.0 
808 17 76 29 58 25 25 2.2 192 10.2 <2 18 <1 <3 14 4 73 2 83.4 21.9 
338 5 16 22 42 18 22 1.9 50 10.6 <2 2 <1 <3 3 7 81 <1 96.6 73.4 
448 5 17 23 50 23 22 2.7 77 11.6 <2 3 <1 <3 3 32 269 <1 98.3 83.2 
1772 16 101 25 54 26 24 2.6 137 9.7 <2 13 <1 14 2 25 583 <1 96.9 41.1 
12700 7 21 22 48 24 17 2.7 73 10.3 <2 7 <1 50 55 57 639 Ba 97.8 28.7 
9800 9 52 15 34 16 12 5.0 87 5.5 <2 20 2 136 87 18 1143 Ba 96.3 35.9 
19800 3 1 13 24 16 15 3.5 25 <1.5 <2 11 2 76 56 18 608 Ba 86.9 11.3 
549 3 19 20 41 18 29 2.2 58 11.6 <2 8 <1 66 38 15 46 Ba 67.4 26.4 

4 28 208 12 29 14 25 5.9 1 15.8 <2 29 <1 <3 <1.5 <1 186 <1 98.7 99.7 
952 8 24 24 56 26 38 4.2 128 14.4 <2 5 2 4 29 59 " 120 1 97.4 54.3 
832 7 23 29 61 30 34 2.6 138 16.0 3 • 5 <3 129 47 1367 97.4 48.2 
1015 5 19 21 48 21 28 2.6 135 10.2 <2 3 <1 <3 2 12 42 1 94.9 32.2 
1384 18 114 26 54 22 27 2.5 158 10.1 <2 16 1 <3 35 37 209 1 84.6 41.3 
574 23 98 34 75 34 29 2.7 206 14.6 <2 28 <1 <3 5 5 119 <1 72.1 28.8 
592 17 77 28 61 31 22 <1.5 164 12.0 <2 21 <1 <3 13 8 61 <1 69.9 16.8 

Sample 	Depth Descriptive Name 

LP43386 	386.0 qtz-feld porphyry 
LP44176 	176.1 qtz-feld-ser-bt schist 
LP44362 	362.9 qtz-feld-chl-ser schist 
LP44397 	397.6 qtz-chl-ser-bt schist 
LP46A090 	90.7 qtz-ser-chl schist 
LP46A113 	113.5 sltst 
LP46Al29 	129.8 sltst 
LP46A134 	134.4 qtz-ser-altered rock 
LP46A150 	150.4 sltst 
LP46A177 	177.2 chl-alt rock 
LP46A210 	210.0 qtz-chl-ser schist 
LP46A 250 	250.6 qtz-chl-ser schist 
LP46A297 	297.6 qtz-chl schist 
LP46A346 	346.3 qtz-ser-bt schist 
LP51A216 	216.6 qtz-chl-ser schist 
LP51A257 	257.4 qtz-ser-bt schist 

Sample 

LP43386 
LP44176 
LP44362 
LP44397 
LP46A090 
LP46A113 
LP46Al29 
LP46A134 
LP46A150 
LP46A177 
LP46A210 
LP46A 250 
LP46A297 
LP46A346 
LP51A216 
LP51A257 
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Sample Depth Descriptive Name Unit Si02 TiO2 Al203 Fe203 MnO MgO CaO Na20 K20 P205 BaO Total LOI S Total Nb Zr Sr Cr 
% % % % % % % % % % % oxides  °/0 % % p p m p p m p p m p p m 

LP51A309 309.4 qtz-ser schist f-b 68.22 0.53 14.02 3.18 0.03 2.23 1.19 0.24 5.31 0.13 0.10 95.18 4.68 0.51 99.86 10 153 50 42 
LP51A371 371.0 sltst HSU 56.47 0.52 13.88 4.54 0.08 7.09 3.36 0.03 4.33 0.14 - 90.44 8.83 1.89 99.27 9 146 89 29 
LP51A408 408.5 sltst HSU 75.00 0.06 7.26 3.95 0.12 8.81 0.00 0.01 0.77 0.01 - 95.99 3.77 <0.01 99.76 5 82 4 2 
LP51A443 443.4 sltst HSU 70.85 0.43 9.72 4.02 0.19 7.69 0.18 0.08 2.51 0.11 - 95.78 3.70 0.02 99.68 8 103 21 64 
LP51A474 474.1 sltst HSU 69.68 0.46 10.46 4.14 0.10 7.76 0.17 <0.05 1.88 0.12 0.52 95.29 4.28 1.02 99.70 9 99 • 30 68 
LP51A482 482.5 vuggy dolomite HSU 13.16 <0.01 1.02 3.48 1.36 20.20 21.08 <0.05 0.050 0.10 - 60.45 27.59 3.36 93.24 <1 31 427 <1 
LP51A484 484.6 vuggy dol with mnr chl HSU 9.47 0.09 2.05 4.50 0.87 19.58 24.16 <0.05 0.01 0.08 0.00 60.81 34.68 2.86 98.42 <1 21 243 <1 
LP51A488 488.6 massive sulphide HSU 8.28 0.02 0.18 36.57 0.14 1.49 2.24 <0.05.  0.04 0.16 - 49.12 24.62 37.30 99.66 <1 Pb 12 
LP51A508 508.4 sltst HSU 81.94 0.09 8.72 1.54 0.01 1.37 0.01 0.06 2.90 0.02 - 96.66 2.46 0.94 99.12 5 71 25 4 
LP51A539 539.4 sltst HSU 89.77 0.20 4.74 1.67 0.01 0.56 0.12 0.07 1.77 0.06 0.19 99.16 1.71 1.20 100.95 4 45 9 32 
LP51A556 556.1 qtz-ser-bt schist HSU 64.83 0.56 13.47 3.46 0.08 3.87 1.69 0.09 5.39 0.14 - 93.58 5.94 0.32 99.52 10 161 73 45 
LP515A596 596.1 sltst HSU 61.15 0.31 8.54 3.30 0.03 9.83 0.16 0.08 2.87 0.09 0.01 86.37 13.05 0.37 99.43 8 212 28 7 
LP51A610 610.1 qtz-feld porphyry WVS 60.94 0.63 15.58 4.81 0.06 6.60 0.46 3.95 2.02 0.12 0.04 95.21 4.46 0.53 99.67 11 177 92 55 
LP51AW2302 302.0 qtz-carb-ser-chl schist HSU 59.64 0.42 12.01 3.67 0.06 10.02 0.32 0.06 1.87 0.12 0.05 88.24 11.02 0.97 99.29 8 134 41 38 
LP51AW2374 374.7 sltst HSU 73.06 0.12 8.79 4.70 0.13 5.25 0.35 0.06 2.65 0.03 0.46 95.60 4.13 1.23 99.87 5 77 64 11 
LP51AW2406 406.1 carb-ser-chl schist HSU 34.88 0.83 19.30 6.62 0.15 12.49 0.79 0.13 4.60 0.17 0.56 80.52 19.52 1.50 100.09 18 253 112 122 

Sample Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn TI Al CCP' 
PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm 

LP51A309 923 15 80 27 56 23 23 1.9 146 11.6 <2 6 <1 <3 2 8 49 <1 84.1 28.7 
LP51A371 639 14 98 17 35 18 19 <1.5 134 7.0 <2 9 21 12 11 61 77.1 61.9 
LP51A408 128 2 6 13 21 12 19 3.3 33 7.0 <2 1 <3 8 5 237 99.9 91.9 
LP51A443 1931 12 87 25 47 21 12 2.6 76 10.6 <2 30 <1 30 45 9 91 	. <1 97.5 74.8 
LP51A474 4700 14 96 35 64 32 21 2.2 52 10.6 <2 21 <1 9 84 66 862 Ba 98.0 80.3 
LP51A482 71 7 14 Pb Pb Pb Pb 7.0 3 - <2 5 37 1.43% 2600 2.72% 49.0 99.6 
LP51A484 23 8 14 1 Pb 7 14 6.2 2 16.6 <2 <1 <1 183 1.06% 212 1.41% Ba 44.8 99.8 
LP51A488 380 7 26 Pb Pb Pb Pb 8.0 - - <2 4 7800 10.32% 3300 10.60% - 40.3 95.8 
LP51A508 5700 3 9 17 36 19 19 3.6 75 7.0 <2 3 27 333 38 636 - 98.4 31.6 
LP51A539 1689 6 54 15 30 14 9 2.7 46 4.9 <2 7 2 41 177 79 396 3 92.5 23.3 
LP51A556 1045 13 93 23 49 24 25 2.1 152 13.0 <2 15 <3 <1.5 30 64 - 83.9 41.4 
LP515A596 54 14 32 10 22 11 17 1.9 91 6.0 <2 4 <1 4 4 3 71 <1 98.1 76.9 
LP51A610 368 19 119 30 66 28 29 3.3 50 13.4 <2 16 <1 <3 2 11 69 1 66.2 52.5 
LP51AW2302 430 15 88 17 39 18 29 3.3 62 10.0 <2 10 <1 17 117 7 116 <1 96.9 83.8 
LP51AW2374 4100 5 15 16 36 17 20 2.1 50 7.8 <2 3 2 9 181 94 867 Ba 95.1 66.0 
LP51AW2406 4700 26 154 45 94 47 59 4.7 159 16.5 <2 28 <1 41 12 139 247 Ba 94.9 72.5 
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Unit Si02 TiO2 Al203 Fe203 MnO MgO CaO Na20 K20 P205 BaO Total LOI S Total Nb Zr Sr Cr 
% % % % % % % % % % % oxides % % % pp m ppm ppm pp m 

HSU 90.67 0.08 4.43 1.14 0.01 0.51 0.02 <0.05 1.59 0.02 0.26 98.73 1.39 0.77 100.16 2 47 11 7 
HSU 40.63 0.15 3.34 16.68 0.22 16.79 4.23 0.05 0.31 0.14 0.01 82.55 15.24 4.87 98.05 1 8 133 1228 
HSU 30.50 0.28 8.42 12.10 0.17 18.48 0.42 0.06- 3.19 0.27 0.01 73.90 26.10 2.30 100.14 1 17 51 1318 
f-b 60.63 0.85 17.05 6.70 0.04 2.86 4.61 0.37 3.24 0.15 0.09 96.59 3.68 <0.01 100.27 13 218 209 64 
f-b 61.57 0.78 16.39 5.81 0.10 4.55 2.80 147 1.22 0.15 - 96.84 3.17 <0.01 100.01 13 213 209 66 
f-b 52.92 0.47 25.24 3.29 0.02 4.80 1.13 0.81 5.00 0.08 - 93.76 5.96 0.09 99.72 15 235 164 14 
f-b 59.69 0.58 14.21 1.84 0.05 0.83 7.09 0.60 7.99 0.15 0.09 93.12 6.91 <0.01 100.03 10 164 138 51 

HSU 67.36 0.47 12.62 4.26 0.11 4.97 0.23 1.19 3.81 0.13 1.60 96.75 2.82 0.71 99.57 8 132 154 35 
WVS 56.68 0.54 12.09 9.01 0.11 14.14 0.29 0.06 0.05 0.12 - 93.09 6.71 0.19 99.80 9 148 12 52 
WVS 63.23 0.30 16.97 4.41 0.06 5.09 0.14 0.09 4.98 0.12 0.11 95.50 4.35 0.02 99.85 11 150 22 12 
WVS 69.32 0.55 13.07 4.16-- 0.07 2.87 0.22 0.12 7.35 0.14 0.25 98.12 1.61 0.22 99.73 9 156 133 45 
WVS 59.90 0.67 16.59 5.10 0.06 5.82 0.59 6.29 1.96 0.14 - 97.12 2.76 0.12 99.88 12 181 782 61 
HSU 64.28 0.48 16.14 3.41 0.04 4.74 0.30 0.15 4.84 0.15 - 9433 4.96 0.03 99.49 12 193 34 23 
f-b 59.17 0.74 19.65 3.42 0.04 2.75 0.78 1.14 7.86 0.20 - 95.75 3.90 0.48 99.65 13 208 79 57 
f-b 7230 0.15 11.35 2.14 0.09 4.17 0.21 0.12 5.07 0.06 0.54 96.50 2.98 0.64 99.48 8 83 65 6 

HSU 81.58 0.12 8.08 1.72 0.04 3.06 0.04 0.52 2.51 0.03 - 97.70 1.97 <0.01 99.67 5 150 73 2 

Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn TI Al CCP! 
ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 
2300 3 12 11 23 9 6 <1.5 49 4.3 <2 . 2 <1 25 10 5 360 <1 97.9 24.0 
102 19 107 1 5 <2 4 <1.5 18 <1.5 34 222 13 8 84 1670 307 <1 80.0 97.9 
69 37 214 6 9 4 6 <1.5 119 <1.5 <2 349 3 71 2 715 386 <1 97.8 85.0 
768 17 73 25 60 28 27 1.7 157 14.7 <2 28 <1 <3 17 3 102 2 55.1 44.2 
191 17 108 35 72 34 37 2.8 44 15.5 <2 25 <1 <3 17 20 79 1 47.9 49.2 
871 7 61 13 37 15 19 <1.5 209 30.6 <2 45 <1 <3 3 9 74 2 83.5 45.2 
797 17 123 28 62 26 27 3.1 154 11.0 <2 16 <1 <3 15 2 30 <1 53.4 8.8 

14300 12 84 21 47 20 19 3.5 55 10.2 <2 12 5 <3 143 159 414 <1 86.1 49.8 
19 16 104 23 43 21 19 2.4 2 10.1 <2 11 <1 <3 0 12 101 <1 97.6 99.2 

1013 9 26 35 76 34 38 2.7 151 16.9 <2 5 <1 <3 2 3 96 2 97.8 50.1 
2273 15 91 24 55 24 28 3.2 157 9.3 <2 14 <1 <3 3 54 56 <1 96.8 27.8 
379 20 104 24 55 25 22 2.6 63 11.1 <2 18 <1 <3 3 122 138 <1 53.1 41.4 
924 12 88 50 93 43 37 5.4 162 26.0 <2 9 - <3 2 7 93 - 95.5 48.7 
1554 18 121 44 80 37 41 2.4 221 17.0 <2 13 <3 7 11 65 84.7 23.4 
4800 9 19 18 42 16 24 2.7 113 10.1 <2 3 <1 10 192 6 509 <1 96.6 44.6 
3200 5 4 18 32 19 21 2.5 53 6.0 <2 1 <3 <1.5 3 89 90.9 50.2 

Sample 	Depth Descriptive Name 

LP51AW2414 414.8 sltst 
LP51AW2437 437.0 ser-carb-chl schist 
LP51AW2499 499.7 ser-carb schist 
LP58163 	163.7 qtz-feld porphyry 
LP58205 	205.8 qtz-feld porphyry 
LP63115 	115.3 qtz-chl-ser schist 
LP63314 	314.4 qtz-feld-ser-ca schist 
LP63411 	411.1 qtz-feld-chl-ser-bt schist 
LP63454 	454.7 qtz-chl schist 
LP63485 	485.5 qtz-chl-ser schist 
LP65A305 	305.1 qtz-ser-bt schist 
LP65A587 	587.5 qtz-feld-bt schist 
LP66112 	112.7 qtz-ser schist / sst 
LP66153 	153.6 qtz-feld-ser schist 
LP66179 	179.3 qtz-feld-ser schist 
LP66202 	202.2 sltst 

Sample 

LP51AW2414 
LP51AW2437 
LP51AW2499 
LP58163 
LP58205 
LP63115 
LP63314 
LP63411 
LP63454 
LP63485 
LP65A305 
LP65A587 
LP66112 
LP66153 
LP66179 
LP66202 
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Sample Depth Descriptive Name Unit Si02 TiO2 Al203 Fe203 MnO MgO CaO Na20 K20 P205 BaO Total LOI S Total Nb Zr Sr Cr 
% % '5k 3̀/0 % % ok % To % c Yo oxides % % % ppm ppm ppm ppm 

LP66233 233.3 sltst HSU 64.30 0.39 10.01 6.67 0.26 10.18 0.13 0.06 0.89 0.09 - 92.98 6.53 1.03 99.51 9 85 23 65 
LP66254 254.8 sltst HSU 73.54 0.32 8.02 2.77 0.06 4.34 0.62 0.03 1.86 0.09 91.65 7.91 1.24 99.56 8 65 65 51 
LP66267 267.0 chl-phl-altered rock HSU 31.92 0.32 20.10 9.67 0.26 21.90 0.11 0.05 1.19 0.04 85.56 13.70 1.00 99.26 7 124 17 34 
LP66282 282.8 qtz-ser-chl schist WVS 55.91 0.41 11.53 4.82 0.08 10.44 0.15 0.06 1.94 0.10 85.44 14.22 <0.01 99.66 8 135 76 33 
LP66296 296.5 qtz-chl-ser schist WVS 55.46 0.69 17.14 6.22 0.11 10.81 0.18 0.11 2.84 0.15 93.71 5.77 0.19 99.48 11 189 10 57 
LP66311 311.5 qtz-chl-ser schist WVS 71.66 0.51 11.00 2.66 0.08 7.43 0.23 0.06 2.08 0.12 95.83 4.08 <0.01 99.91 9 150 12 43 
LP66350 350.7 qtz-chl schist WVS 62.05 0.49 10.98 8.59 0.13 10.92 0.22 0.51 0.06 0.12 <0.01 94.07 5.45 0.09 99.52 8 128 15 40 
LP66391 391.6 qtz-chl-bt schist WVS 61.36 0.49 11.97 10.06 0.11 9.42 0.16 0.07 . 0.90 0.09 94.63 5.09 0.21 99.72 8 128 5 43 
LP66419 419.3 qtz-chl-ser schist WVS 55.41 0.75 15.41 8.90 0.10 10.10 0.19 0.11 2.48 0.12 - 93.57 5.65 0.03 99.22 11 191 19 61 
LP678140 140.7 qtz-feld-ser-bt schist WVS 70.19 0.26 14.95 2.52 0.05 1.81 0.34 1.74 4.36 0.13 0.07 96.42 3.05 0.28 99.47 10 137 49 12 
LP678306 306.5 qtz-ser-bt schist WVS 64.87 0.68 15.16 5.30 0.08 3.20 0.81 1.42 4.40 0.18 - 96.10 3.64 0.45 99.74 11 187 70 64 
LP67B476 476.2 qtz-feld-ser-bt schist WVS 63.67 0.57 15.16 4.94 0.10 4.77 0.48 0.83 5.68 0.13 - 96.33 3.37 0.04 99.70 9 164 91 45 
LP6713663 662.9 qtz-feld porphyry WVS 69.51 0.52 13.46 3.09 0.06 2.48 0.72 4.54 2.66 0.17 0.07 97.28 2.50 0.85 99.81 9 137 176 41 
LP678687 687.8 dol-hbl-ep-altered rock HSU 46.34 0.41 11.57 7.80 0.34 9.52 9.68 2.79 1.59 0.25 0.08 90.37 9.08 0.70 99.51 4 53 484 545 
LP678715 715.3 sltst HSU 78.25 0.20 4.63 2.57 0.04 3.57 1.76 0.06 2.04 0.05 0.01 93.18 6.43 0.75 99.64 3 77 86 44 
LP67B739 738.9 sltst HSU 85.36 0.24 5.46 2.85 0.01 0.24 0.18 0.18 3.76 0.12 0.33 98.73 1.85 2.22 100.63 2 42 87 58 

Sample Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn TI Al CCP! 
PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm 

LP66233 952 9 101 27 42 22 19 2.8 28 10.0 <2 27 <3 14 8 114 98.3 91.5 
LP66254 1334 8 71 22 45 21 12 2.2 54 8.0 <2 22 56 33 11 82 90.5 69.7 
LP66267 162 7 71 15 26 13 20 3.4 50 12.0 <2 24 <3 2 41 678 99.3 94.6 
LP66282 1095 10 71 20 40 20 23 1.5 54 13.0 <2 13 <3 <1.5 2 69 98.3 83.9 
LP66296 804 21 120 30 61 27 30 3.5 71 13.6 <2 19 <1 <3 <1.5 7 120 <1 97.9 78.6 
LP66311 513 13 92 17 37 18 21 2.6 65 10.0 <2 18 <3 6 5 75 97.0 77.6 
LP66350 13 12 78 21 41 18 22 2.1 2 12.0 <2 11 1 <3 6 27 206 <1 93.8 95.0 
LP66391 176 14 100 23 41 19 20 3.1 29 9.1 <2 10 <1 <3 <1.5 26 116 <1 97.8 90.7 
LP66419 734 18 125 23 46 22 25 5.0 70 14.0 <2 •23 <3 <1.5 4 80 97.7 79.6 
LP678140 646 7 22 34 69 33 37 <1.5 174 13.8 <2 4 <1 <3 9 18 281 2 74.8 22.9 
LP678306 885 21 131 38 72 35 29 2.8 135 12.0 <2 13 <1 <3 29 22 111 <1 77.3 35.5 
LP678476 853 15 101 35 74 32 31 3.0 155 12.4 <2 13 <1 <3 9 51 127 1 88.9 42.3 
LP6713663 639 14 76 33 67 31 29 2.9 67 11.7 <2 11 <1 <3 15 135 111 <1 49.4 25.6 
LP67B687 699 26 163 11 27 12 15 <1.5 43 1.9 <2 132 <1 <3 12 210 249 <1 47.1 68.5 
LP678715 68 5 37 12 18 7 7 <1.5 82 3.2 <2 21 1.0 50 72 18 175 3 75.5 63.0 
LP67B739 3000 8 72 8 19 9 5 <1.5 41 2.4 <2 15 1.4 81 88 133 157 5 91.7 5.7 
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Unit Si02 TiO2 Al203 Fe203 MnO MgO CaO Na20 K20 P206 BaO Total LOI S Total Nb Zr Sr Cr 

% % % % % % % % % % % oxides % % % ppm ppm p pm ppm 

HSU 34.51 0.37 8.85 5.90 0.35 5.15 24.03 0.87 1.88 0.19 0.13 82.23 16.81 0.09 99.16 6 53 541 80 
HSU 42.10 1.09 20.85 6.54 0.15 15.54 0.40 0.26 6.13 0.22 0.30 93.58 5.97 0.13 99.57 22 369 30 99 
HSU 64.53 0.59 11.21 5.77 0.17 7.34 0.37 0.10. 4.39 0.14 0.20 94.81 4.17 0.60 99.66 11 145 19 61 
HSU 53.46 0.47 10.94 6.29 0.41 14.10 4.32 0.68 4.50 0.23 0.06 95.46 4.51 <0.01 100.02 4 55 56 135 
HSU 71.34 0.20 8.08 5.80 0.19 8.78 0.08 0.06 2.86 0.04 0.04 97.47 2.55 0.05 100.06 4 86 3 11 
f-b 50.37 0.82 18.99 6.30 0.13 10.92 0.60 0.17 4.37 0.22 0.07 92.96 6.32 0.83 99.31 14 220 23 69 
f-b 62.66 0.69 15.19 4.57 0.06 6.30 0.95 0.47 4.43 0.15 0.05 95.52 3.90 0.44 99.44 11 183 46 62 

HSU 65.34 0.32 11.89 2.85 0.08 1.55 5.84 1.39 3.40 0.10 0.03 92.79 6.83 0.59 99.62 8 233 129 4 
HSU 75.68 0.16 11.32 2.37 0.02 1.39 1.38 2.33 2.43 0.03 0.02 97.13 2.73 0.35 99.87 6 241 55 1 
LPG 69.17 0.30 14.84 2.69 0.02 1.55 1.25 4.86 2.09 0.08 0.10 96.95 2.90 0.23 99.85 4 129 1082 15 
LPG 69.62 0.24 15.14 1.74 0.04 0.71 1.98 4.94 2.36 0.10 0.15 97.02 2.92 0.26 99.94 2 86 771 4 
f-b 62.84 0.63 16.90 4.56 0.03 4.35 0.70 1.39 4.68 0.14 0.06 96.48 3.64 0.19 100.12 12 184 47 56 

WVS 73.92 0.21 13.35 2.30 0.03 1.57 0.53 0.30 5.08 0.13 97.42 2.33 <0.01 99.75 9 114 48 9 
TU 4.01 0.03 0.97 0.14 0.12 0.67 52.52 <0.05 0.26 0.01 0.03 58.76 40.75 0.02 99.52 <1 9 334 <1 

EVS 77.41 0.55 14.06 0.75 <0.01 0.35 0.10 0.06 2.15 0.10 95.53 4.33 <0.01 99.86 10 159 47 42 
LPG 70.40 0.22 14.74 1.63 0.03 0.70 1.81 4.91 2.75 0.08 97.27 2.59 0.10 99.86 2 89 472 7 

Ba Sc V La Ce Nd Y U Rb Th Bi Ni Se As Pb Cu Zn TI Al CCPI 

PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm 
1111 19 155 13 24 14 10 2.5 63 3.2 <2 46 <1 <3 22 247 663 <1 22.0 65.2 
2700 24 189 45 91 40 33 4.8 140 29.7 <2 55 <1 <3 3 5 139 <1 97.0 70.9 
1800 12 92 20 42 19 16 4.4 92 13.8 <2 17 <1 <3 2 290 5200 <1 96.1 62.0 
503 16 154 10 22 12 15 1.5 102 <1.5 <2 40 <1 <3 5 9 439 <1 78.8 73.1 
330 7 22 10 17 9 17 2.7 74 7.7 <2 3 <1 <3 16 18 286 <1 98.8 75.0 

636 22 137 28 56 29 37 3.2 129 14.6 <2 18 <1 <3 2 36 225 <1 95.2 70.6 
491 18 117 25 58 26 32 1.7 132 12.3 <2 12 <1 <3 5 12 70 <1 88.3 56.3 
224 10 15 17 39 21 43 2.5 119 8.5 <2 2 <1 <3 16 9 37 <1 40.6 24.4 
189 7 5 22 50 24 36 3.4 86 10.0 <2 2 <1 <3 11 8 43 <1 50.7 22.6 
866 7 51 11 33 14 8 1.5 56 8.5 <2 5 <1 <3 13 76 72 2 37.3 18.2 
1366 3 26 5 17 5 3 <1.5 47 <1.5 <2 2 <1 <3 16 65 96 <1 30.7 8.9 
570 18 99 37 75 33 30 2.4 159 14.2 <2 12 <1 <3 <1.5 14 67 1 81.5 41.0 

2360 6 20 24 54 25 28 2.8 132 11.4 <2 4 <1 <3 <1.5 6 18 1 88.9 22.6 
204 <2 3 2 9 6 5 <1.5 10 <1.5 <2 <1 <1 <3 14 6 36 <1 1.7 70.2 
546 10 81 30 58 32 17 2.1 48 11.3 <2 3 <1 <3 19 4 13 <1 94.0 13.7 
589 3 19 3 - 	14 8 6 2.3 65 1.8 <2 3 <1 <3 10 4 39 <1 33.9 8.4 

Sample 	Depth Descriptive Name 

LP678809 	809.7 dol-hbl-ep-altered rock 
LP678878 	878.3 qtz-chl-ser-bt schist 
LP678903 	903.9 sltst 
LP67B948 	948.7 chl-alt rock 
LP67B986 	986.6 chl-alt rock 
LP67BW11037 1037.1 qtz-chl-ser schist 
LP67BW11063 1063.2 qtz-chl-ser schist 
LP67BW11132 1132.7 sltst 
LP676W11159 1158.9 sltst 
LP678369 	368.9 qtz-feld porphyry 
LP678907 	907.4 qtz-feld porphyry 
LP69238 	238.0 qtz-ser-bt schist 
LP70438 	438.7 qtz porphyry 
LPD001 	 crinoidal limestone clast 
LPD007 	 feld porphyry 
LPD008 	 qtz-feld porphyry 

Sample . 

LP678809 
LP67B878 
LP678903 
LP678948 
LP67B986 
LP67BW11037 
LP67BW 11063 
LP67BW11132 
LP67BW11159 
LP67B369 
LP678907 
LP69238 
LP70438 
LPD001 
LPD007 
LPD008 

Appendix 4 - XRF analyses page 9 of 13 



Sample 

LPD018 
LPD014 
LP D049 
LPD070 
LPD024 
LPD099 
MRVO1 
M RVO3 
MRVO4 
MRVO6 
MRV11 
MRV14 
mRV24 

Sample 

LPD018 
LPD014 
LPD049 
LPD070 
LPD024 
LP D099 
MRVO1 
M RVO3 
M RVO4 
MRVO6 
MRV11 
MRV14 
M RV24 

feld porphyry 
jasper 
granite 
qtz-feld crystal-rich matrx 
qtz-feld porphyry 
qtz-feld porphyry 
qtz-feld porphyry 
qtz-feld-lithic sst 
qtz-feld porphyry 
obsidian 
qtz porphyry 
flow-banded rhyolite 
qtz-feld porphyry 

Depth Descriptive Name Unit Sin -. -2 Tin .. -2 AI (1 FP n . 	3 MgO CaO Nn K n P n • 2...5 BaO Total ni S Total Nb Zr Sr Cr 
% % % % % '3/0 % % % % % oxides % % % p p m p p m p p m p p m 

EVS 63.88 0.60 14.57 7.76 0.08 3.90 1.54 1.81 1.13 0.10 - 95.37 4.34 <0.01 99.71 10 159 246 52 
84.74 <0.01 <0.01 14.69 0.00 0.02 <0.01 <0.05 <0.01 0.02 - 99.47 0.18 <0.01 99.66 <1 <1 <1 2 

LPG 69.85 0.19 15.63 1.31 0.02 0.60 1.71 5.06 3.41 0.08 - 97.86 1.86 0.04 99.72 5 98 509 11 
TU 60.00 0.71 19.52 3.25 0.03 3.19 1.28 0.69 5.96 0.13 0.46 95.22 4.67 <0.01 100.06 14 247 10 32 

MRV 59.89 0.67 17.60 6.26 0.10 3.92 1.33 2.72 3.06 0.20 ' 95.75 4.10 <0.01 99.85 15 257 238 30 
MRV 80.23 0.19 11.00 0.97 0.02 0.93 0.55 2.47 2.33 0.11 - 98.80 1.51 <0.01 100.31 8 102 120 6 
MRV 77.07 0.32 11.56 1.74 0.02 0.47 0.73 1.93 5.79 0.11 99.74 0.83 <0.01 100.57 9 148 82 14 
MRV 71.57 0.56 13.01 3.89 0.02 1.88 0.67 1.73 .  4.76 0.14 98.23 1.68 <0.01 99.91 11 206 80 36 
MRV 71.65 0.50 13.70 3.10 0.02 0.90 1.46 3.56 4.06 0.14 99.09 0.87 0.01 99.96 10 201 164 22 
M RV 70.90 0.22 14.89 0.72 0.02 0.32 0.33 1.71 10.53 0.07 99.71 0.43 0.01 100.14 8 152 34 3 
MRV 80.07 0.28 11.68 1.30 <0.01 0.66 0.01 0.07 4.18 0.06 98.31 1.93 <0.01 100.24 8 130 19 11 
MRV 73.63 0.10 13.68 1.74 0.03 0.44 0.03 0.91 8.53 0.03 99.12 1.10 0.02 100.22 11 138 68 1 
MRV 72.13 0.34 14.44 2.18 0.01 1.63 0.27 5.04 2.59 0.13 98.76 1.29 <0.01 100.05 10 160 139 12 

Ba Sc V La Ce •Nd Y U Rb Th Bi Ni 	. Se As Pb Cu Zn TI Al CCPI 
PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm PPm 
678 13 104 19 40 20 22 1.8 64 12.5 <2 20 <1 <3 19 23 92 <1 60.0 57.0 
13 <2 35 <2 <4 <2 3 <1.5 <1 <1.5 <2 8 <1 <3 0 3 9 2 33.3 40.0 

738 3 22 12 24 14 8 1.9 127 8.2 <2 4 <1 <3 28 2 37 1 37.2 6.6 
4100 15 66 43 97 47 34 <1.5 255 18.1 <2 9 <1 <3 13 27 1384 Ba 82.3 32.4 
1125 13 79 40 86 40 40 5.2 165 23.0 <2 13 <3 56 5 106 63.3 40.4 
744 4 14 22 40 22 31 4.4 110 12.0 <2 3 <3 9 9 18 51.9 16.2 
715 5 27 26 51 28 44 2.5 184 13.2 <2 6 <1 4 24 7 23 <1 70.2 5.7 
651 11 64 42 66 39 53 3.6 165 13.6 <2 15 <1 <3 16 7 48 1 73.5 22.5 
648 9 48 31 67 33 35 3.1 136 14.7 <2 9 <1 <3 19 8 46 <1 49.7 10.6 
1364 3 9 28 69 34 36 4.3 211 18.9 <2 2 <1 <3 9 4 11 1 84.2 2.5 
901 7 23 20 28 39 70 5.6 139 12.7 <2 4 <1 <3 15 2 21 <1 98.4 13.4 
789 3 4 29 58 31 47 4.2 242 13.1 <2 2 <1 <3 21 6 60 <1 90.5 4.5 
450 8 32 58 73 35 34 2.2 . 	95 16.0 <2 6 <3 13 11 28 44.3 17.6 
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Unit SiO -. -2 Tin - 2 Ai cipi -.2 - 3 FA an 
. -2 - 3 MnO m ...g_ _a_ Na 0  

--2 - 
K 0  

-2 - 
p 0  

2 - 5 
or 
- 2 - 3 Tota l - .a Nb Total Zr Sr Ba Y 

% % % % % % % % % % % oxides % p p m % p p m p p m p p m p p m 
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2 2 2 20 2 

WVS 76.50 0.20 10.60 4.11 0.06 2.67 0.14 1.13 2.33 0.11 <0.01 97.85 2.23 13 100.20 124 19 515 29 
WVS 70.90 0.22 9.50 8.97 0.15 4.93 0.48 0.05 1.29 0.09 <0.01 96.58 3.31 26 100.00 105 0 951 12 
WVS 72.00 0.19 11.00 4.59 0.05 3.26 0.17 0.07 3.35 0.10 0.04 94.82 3.40 6 98.30 92 10 1110 28 
WVS 43.90 0.52 12.30 5.15 0.19 27.50 0.19 0.09 0.28 0.14 <0.01 90.26 9.08 28 99.40 212 0 131 24 
WVS 69.10 0.25 14.20 2.61 0.05 3.34 0.23 1.42 4.68 0.14 0.02 96.04 2.70 9 98.90 120 40 582 35 
WVS 60.10 0.25 13.20 5.44 0.12 11.70 0.19 0.05 1.72 0.12 0.01 92.90 5.40 6 98.30 103 8 424 29 
WVS 56.40 0.69 18.10 5.13 0.04 4.47 2.50 1.10 4.74 0.20 0.03 93.40 4.60 11 98.10 225 71 1180 73 
WVS 60.80 0.68 19.00 3.08 0.04 6.23 0.39 0.98 5.01 0.17 0.02 96.40 3.80 10 100.60 205 16 2890 49 
WVS 64.40 0.57 16.60 3.06 0.02 3.65 0.27 0.96 6.36 0.16 0.02 96.07 2.50 8 98.80 190 20 1420 47 
WVS 65.10 0.61 15.90 4.60 0.04 4.05 1.46 1.74 3.00 0.19 0.02 96.71 3.40 10 100.30 187 111 844 47 
TU 66.00 0.54 15.30 3.64 0.02 4.41 0.24 1.15 4.66 0.15 0.11 96.22 2.60 8 99.00 188 20 1050 40 
TU 61.60 0.56 15.80 3.64 0.01 6.00 0.20 0.81 5.22 0.13 0.02 93.99 3.95 8 98.30 170 15 3090 41 
TU 65.80 0.51 13.40 3.36 0.02 4.37 1.83 0.33 5.09 0.66 0.02 95.39 2.65 8 98.10 176 30 514 52 

WVS 71.80 0.45 12.40 3.48 0.03 1.87 1.29 3.80 1.21 0.12 0.02 96.47 2.05 6 98.60 157 179 397 31 
WVS 42.50 0.30 15.50 11.00 0.22 20.30 0.18 <0.01 0.05 0.12 0.02 90.19 9.15 7 99.10 141 7 <20 16 

Rb Cu Pb Zn Ag Hg Au Al CCP! 
PPm PPm PPm PPm PPm PPm PPb 

Trl Origin data: 
Drill Hole 	Depth Descriptive Name 

Detection Limits: 
BOA-103 	146.0 crystal tuff 
BOA-103 	167.0 crystal tuff 
BOA-108 	63.8 	lapilli crystal tuff 
SLP-1 	258.0 felsic tuff (chlorite schist) 
SLP-3 	401.3 crystal tuff 
TLPD-01 	251.4 crystal tuff 
TLPD-02W 	327.0 tuff (quartz poor) 
TLPD-03 	191.8 lapilli crystal tuff 
TLPD-08 	273.8 crystal tuff 
TLPD-08 	428.6 crystal tuff 
TLPD-09A 	303.1 crystal tuff 
TLPD-16A 	492.0 lapilli crystal tuff 
TLPD-17 	588.0 crystal tuff 
TLPD-18 	539.4 crystal tuff 
TLPD-25 	246.0 felspar crystal tuff 

Drill Hole 

Detection Limits: 	2 1 2 1 0 1 1 
121 79.7 43.6 
63 92.1 78.6 
130 43 87.0 111 2 <1 20 96.5 48.8 
31 99.0 98.7 
132 20 <2 40 2 <1 2 82.9 35.4 
55 2 24.0 122 2 <1 2 98.2 86.9 
189 3 11.0 99 2 <1 2 71.9 43.4 
197 37 77.0 444 3 <1 44 89.1 51.0 
190 19 5.0 32 2 <1 4 89.1 33.3 
133 13 32.0 85 2 <1 1 68.8 46.1 
149 14 14.0 52 2 <1 2 86.7 43.2 
155 9 30.0 40 2 <1 24 91.7 49.9 
146 16 4.0 56 2 <1 1 81.4 44.6 
47 13 15.0 52 2 <1 3 37.7 27.2 
3 1520 351.0 7960 3 <1 37 99.2 99.8 

BOA-103 
BOA-103 
BOA-108 
SLP-1 
SLP-3 
TLPD-01 
TLPD-02W 
TLPD-03 
TLPD-08 
TLPD-08 
TLPD-09A 
TLPD-16A 
TLPD-17 
TLPD-18 
TLPD-25 
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Unit . Si02 
% 

0.01 

TiO2 
% 

0.01 

Al203 
% 

0.01 

Fe203 
% 

0.01 

MnO 
% 

0.01 

MgO 
% 

0.01 

Ca0 
% 

0.01 

Na20 
% 

0.01 

K20 
% 

0.01 

P205 
% 

0.01 

Cr203 	Total 
% 	oxides 

0.01 

LOI 
% 

Nb.  
ppm 

2 

Total 
% 

Zr 
ppm 

2 

Sr 
ppm 

2 

Ba 
ppm 
20 

Y 
ppm 

2 
WVS 73.40 0.43 12.00 2.93 0.02 2.19 0.82 1.53 3.38 0.13 0.02 96.85 1.80 8 98.80 141 56 726 35 
WVS 70.50 0.46 13.20 3.06 0.01 2.81 1.21 1.28 3.18 0.13 0.02 95.86 2.80 7 98.80 154 53 889 33 
WVS 69.50 0.46 13.30 3.91 0.05 4.33 0.45 1.64 2.21 0.13 0.03 96.01 3.00 7 99.20 155 34 652 31 
WVS 67.60 0.50 16.50 3.49 0.03 1.73 0.27 0.11 5.45 0.14 0.04 95.86 3.70 8 99.70 179 10 1090 49 
WVS 63.90 0.68 14.60 4.91 0.08 4.85 0.23 1.19 4.76 0.15 0.02 95.37 2.60 10 98.20 174 50 1610 38 
WVS 63.40 0.51 12.90 4.79 0.06 3.55 0.22 1.07 5.54 0.12 0.03 92.19 5.85 7 98.20 130 51 1730 30 

f-b 80.90 0.08 9.38 1.16 0.02 1.15 0.23 0.48 3.24 0.01 0.02 96.67 2.00 5 98.90 87 43 1930 26 
f-b 55.60 0.73 17.80 6.33 0.06 7.41 1.18 1.16 3.90 0.14 0.03 94.34 3.90 10 98.30 195 65 542 40 

WVS 66.70 0.53 14.80 3.96 0.08 4.41 0.44 1.93 3.82 0.19 0.03 96.89 2.10 7 99.10 136 61 363 36 
WVS 68.10 0.55 14.70 2.98 0.06 2.56 0.56 4.97 2.55 0.17 0.02 97.22 •2.75 8 100.00 134 242 393 28 
LPG 69.30 0.23 15.10 2.05 0.05 1.09 1.20 3.78 3.66 0.10 0.02 2.00 2 98.90 87 469 1230 <2 
f-b 62.30 0.66 15.10 4.65 0.12 9.39 0.28 0.13 3.05 0.15 0.02 95.85 4.60 9 100.60 144 16 573 33 

WVS 56.30 0.86 18.20 6.72 0.09 3.65 0.46 0.64 7.95 0.20 0.03 95.10 2.65 12 98.30 170 65 4740 52 
WVS 69.00 0.51 13.40 5.00 0.07 3.48 0.45 0.96 3.81 0.14 0.02 96.84 2.55 8 99.50 121 28 1760 28 

Rb Cu Pb Zn Ag Hg Au Al CCPI 
PPm PPm PPm PPm PPm PPm PPb 

Tri Origin data: 
Drill Hole 	Depth Descriptive Name 

Detection Limits: 
TLPD-27 	773.0 crystal tuff 
TLPD-28 	746.0 crystal tuff 
TLPD-30 	794.0 crystal tuff 
TLPD-47A 	150.0 felsic tuff (sericite schist) 
TLPD-65A 	554.0 tuff (quartz poor) - 
TLPD-65A 	625.0 crystal tuff 
TLPD-65A 	899.0 felsic tuff (sericite schist) 
TLPD-65A 	984.0 crystal tuff 
TLPD-67B 	598.4 tuff (quartz poor) 
TLPD-67B 	651.4 felsic tuff 
TLPD-67BW 	915.0 qtz-feld porphyry 
TLPD-67BW 	1026.0 crystal tuff 
TLPD-68 	396.8 crystal tuff 
TLPD-70 	200.3 lapilli crystal tuff 

Drill Hole 

Detection Limits: 	2 1 2 1 0 1 1 
123 13 10.0 44 2 <1 5 70.3 30.8 
104 15 5.0 44 2 <1 4 70.6 38.7 
85 21 46.0 128 2 <1 3 75.8 52.9 

228 43 30.0 86 2 <1 14 95.0 23.7 
109 0 4.0 47 2 <1 2 87.1 44.9 
112 109 4.0 47 2 <1 2 87.6 34.9 
78 6 <2 36 2 <1 2 86.1 23.6 
96 12 5.0 78 2 <1 <1 82.9 59.4 
96 25 5.0 53 2 <1 2 77.6 43.4 
74 82 8.0 43 2 <1 21 48.0 25.4 
74 147 20.0 80 2 <1 1 48.8 12.8 
93 8 <2 157 2 <1 2 96.8 74.7 

203 <1 11.0 45 2 <1 2 91.3 29.8 
103 113 5.0 48 2 <1 4 83.8 42.2 

TLPD-27 
TLPD-28 
TLPD-30 
TLPD-47A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-65A 
TLPD-67B 
TLPD-67B 
TLPD-67BW 
TLPD-67BW 
TLPD-68 
TLPD-70 
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Least-altered samples used in figure 6.1: 

Sample Depth 

TLPD-18 539.4 
LP36W374 374.7 
LP36W391 391.3 
LP43386 386.0 
TLPD-67B 651.4 
LP67B663 662.9 
MRV24 

Descriptive Name 

crystal tuff 
qtz-feld porphyry 
qtz-feld porphyry 
qtz-feld porphyry 
felsic tuff 
qtz-feld porphyry 
qtz-feld porphyry 

Detection Limits: 	2 1 2 1 0 1 1 
158 3 6.0 53 2 <1 7 75.1 17.9 
69 1 <2 34 2 <1 2 97.2 76.6 
158 10 <2 76 2 <1 3 96.7 59.2 
210 26 8.0 50 2 <1 7 95.7 29.9 
146 21 4.0 47 2 <1 <1 97.1 37.3 
168 24 4.0 41 2 <1 <1 88.1 32.3 
107 2 7.0 17 2 <1 11 84.4 25.3 

TLPD-70 
TLPD-72 
TLPD-72 
TOD-11 

, TOD-11 
TOD-11 
TOD-11 

Unit Si02 
ok 

0.01 

TiO2 
ok 

0.01 

Al203 
% 

0.01 

Fe203 
% 

0.01 

MnO 
ok 

0.01 

MgO 
% 

0.01 

CaO 
ok 

0.01 

Na20 
% 

0.01 

K20 
% 

0.01 

P205 
% 

0.01 

Cr203 	Total 
% 	oxides 

0.01 

LOI 
% 

Nb 
ppm 

2 

Total 
% 

Zr 
ppm 

2 

Sr 
ppm 

2 

Ba 
ppm 
20 

Y 
ppm 

2 
WVS 70.40 0.25 14.60 1.71 0.05 1.67 0.44 1.99 ' 5.66 0.14 0.02 96.93 1.65 9 98.70 110 61 934 39 
WVS 69.90 0.20 11.80 1.84 0.05 7.71 0.23 0.06 2.29 0.12 0.03 94.23 3.85 6 98.20 89 13 303 32 
WVS 58.00 0.81 18.00 6.83 0.11 6.57 0.25 0.12 4.40 0.16 0.03 95.28 4.15 9 99.50 204 16 594 41 
WVS 68.00 0.28 16.00 2.77 0.03 2.65 0.30 0.09 6.12 0.15 0.03 96.42 2.85 8 99.50 124 26 1320 44 
WVS 66.30 0.52 14.10 4.62 0.07 3.80 0.23 0.07 6.31 0.13 0.02 96.17 1.95 9 98.30 122 20 1730 29 
WVS 62.50 0.76 15.80 5.01 0.07 3.68 0.42 0.98 6.73 0.16 0.02 96.13 1.80 8 98.20 171 63 1870 37 
HSU 72.40 0.22 12.60 2.88 0.03 2.00 0.25 1.02 4.87 0.13 0.03 96.43 1.50 7 98.40 92 61 3810 29 

Rb Cu Pb Zn Ag Hg Au Al CCP! 

PPm PPm PPm PPm PPm PPm PPb 

Unit Si02 TiO2 Al203 Fe203 MnO MgO CaO Na20 1(20 P205 BaO Total LOI S Total Al CCPI Ti/Zr 
% % % % % % oh % % % % oxides % % ok 

WVS 71.80 0.45 12.40 3.48 0.03 1.87 1.29 3.80 1.21 0.12 0.02 96.47 2.05 6 98.60 37.7 50.0 17.3 
WVS 67.04 0.62 17.24 3.14 0.03 1.96 0.44 3.98 3.06 0.11 0.15 97.77 2.44 <0.01 100.21 53.2 40.5 14.8 
WVS 70.99 0.46 13.51 3.57 0.03 2.24 1.08 2.72 2.26 0.14 97.00 2.83 0.30 99.83 54.2 52.3 15.4 
WVS 76.32 0.40 11.70 2.36 0.01 1.45 1.02 5.04 0.40 0.08 - 98.78 1.47 <0.01 100.25 23.4 39.6 15.3 
WVS 68.10 0.55 14.70 2.98 0.06 2.56 0.56 4.97 2.55 0.17 0.02 97.22 2.75 8 100.00 48.0 41.1 24.6 
WVS 69.51 0.52 13.46 3.09 0.06 2.48 0.72 4.54 2.66 0.17 0.07 97.28 2.50 0.85 99.81 49.4 42.2 22.7 
MRV 72.13 0.34 14.44 2.18 0.01 1.63 0.27 5.04 2.59 0.13 - 98.76 1.29 <0.01 100.05 44.3 32 12.8 

TN Origin data: 
Drill Hole 	Depth Descriptive Name 

Detection Limits: 
TLPD-70 	543.5 crystal tuff 
TLPD-72 	137.6 crystal tuff 
TLPD-72 	328.3 tuff (quartz poor) 
TOD-11 	125.0 crystal tuff 
TOD-11 	265.0 crystal tuff 
TOD-11 	380.5 tuff (quartz poor) 
TOD-11 	491.4 crystal tuff 

Drill Hole 
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Sample 	 Uthofacies Net gain/loss 	Si02 	TiO2 Al203 Fe203 MnO MgO CaO Na20 K20 	P205 	S  
LP46A090 	 A 	-10.79 	-4.46 	-0.03 	-2.77 	-0.68 	0.00 	0.38 	-0.39 	-4.92 	1.60 	-0.04 	0.51 
LP46A177 	 A 	-50.42 	-52.51 	-0.05 	-3.79 	0.44 	0.04 	13.40 -0.39 	-4.93 -2.54 -0.09 	0.00 
LP46A346 	 A 	-17.99 	-14.44 	-0.02 	-3.20 	1.45 	0.05 	0.89 	-0.38 	-3.83 	1.23 	-0.05 	0.32 Notes: 
LP51A216 	 A 	-39.16 	-35.68 	-0.05 -2.86 	0.45 	-0.04 -0.52 	2.06 	-4.88 	2.40 	-0.05 	0.01 Major elements expressed as g/100 g 
LP51A309 	 A 	-13.32 	-8.23 	-0.08 -2.40 -0.19 -0.03 -0.60 	0.48 	-4.76 	2.11 	-0.06 	0.45 Trace elements expressed as g/1e g 
LP51A610 	 A 	-24.79 	-21.99 	-0.07 	-2.91 	0.66 	-0.01 	2.43 	-0.21 	-1.98 	-1.02 	-0.08 	0.40 Zr used as the immobile reference element 
LP58205 	 A 	-36.27 	-29.37 	-0.06 	-4.39 	0.68 	0.00 	0.30 	1.20 	-2.79 	-1.78 	-0.08 	0.00 
LP63314 	 A 	-21.37 	-19.45 	-0.08 	-3.12 	-1.48 	-0.02 	-1.88 	5.22 	-4.48 	3.96 	-0.05 	0.00 Least altered reference samples- 
LP63454 	 A 	-12.51 	-16.64 	-0.06 	-3.72 	5.20 	0.04 	10.28 -0.30 	-4.92 	-2.50 	-0.06 	0.17 dacite A: LP67B651, dacite B: LP43386, 
LP65A305 	 A 	-12.73 	-8.40 	-0.08 -3.44 	0.60 	0.00 	-0.09 -0.37 -4.87 	3.78 	-0.05 	0.19 dacite C: MRV24 
LP65A587 	 A 	-25.25 	-23.78 	-0.05 	-2.42 	0.79 	-0.02 	1.75 	-0.12 	-0.32 	-1.10 	-0.07 	0.09 
LP66 282 	 A 	-12.33 	-12.56 	-0.14 	-3.25 	1.81 	0.02 	7.81 	-0.41 	-4.91 	-0.62 	-0.07 	0.00 Includes XRF data from this study and from 
LP66 311 	 A 	-11.70 	-4.17 	-0.10 	-4.89 	-0.61 	0.01 	4.07 	-0.35 	-4.92 	-0.69 	-0.06 	0.00 Tri Origin 
LP66 419 	 A 	-31.43 	-29.16 	-0.02 	-3.87 	3.27 	0.01 	4.54 	-0.43 	-4.89 	-0.81 	-0.09 	0.02 
LP66153 	 A 	-35.06 	-29.89 	-0.07 	-2.01 	-0.77 	-0.03 	-0.78 	-0.06 	-4.23 	2.53 	-0.04 	0.31 
LP66296 	 A 	-30.70 	-28.82 	-0.06 -2.56 	1.43 	0.02 	5.10 	-0.43 -4.89 	-0.54 	-0.06 	0.13 
LP66350 	 A 	1.14 	-3.29 	-0.04 	-3.23 	5.99 	0.08 	8.85 	-0.33 -4.44 	-2.49 	-0.04 	0.09 
LP66391 	 A 	1.85 	-4.01 	-0.04 	-2.20 	7.53 	0.05 	7.28 	-0.39 	-4.90 	-1.61 	-0.08 	0.22 
LP67B306 	 A 	-27.98 	-21.59 	-0.06 -3.83 	0.82 	0.00 	-0.27 	0.02 	-3.95 	0.60 	-0.04 	0.32 
LP67B663 	 A 	-1.34 	-0.15 	-0.04 	-1.54 	0.04 	0.00 	-0.14 	0.14 	-0.53 	0.05 	0.00 	0.83 

Sample 	 Lithofacies 	 Zr 	Sr 	Cr 	Ba 	Nd 	Sc 	V 	La 	Ce 	Y 	Rb 	Ni 	As 	Cu 	Pb 	Zn  
LP46A090 	 A 	 -216 	43 	1564 	16 	-60 	69 	20 	-34 	-21 	123 	11 	12 	-60 	-6 	481 
LP46A177 	 A 	 -237 	46 	-26 	-1 	-59 	89 	4 	-67 	-30 	0 	15 	1 	-83 	-8 	56 
LP46A346 	 A 	 -207 	46 	1096 	10 	-59 	72 	19 	-38 	-21 	128 	13 	1 	-53 	20 	127 
LP51A216 	 A 	 -218 	42 	329 	13 	-60 	40 	19 	-36 	-25 	128 	17 	1 	-79 	-5 	31 
LP51A309 	 A 	 - 198 	37 	782 	12 	-61 	49 	22 	-33 	-23 	128 	5 	1 	-75 	-6 	0 
LP51A610 	 A 	 -173 	42 	251 	13 	-60 	69 	21 	-33 	-21 	38 	12 	1 	-74 	-6 	9 
LP58205 	 A 	 -110 	42 	92 	13 	-63 	47 	20 	-37 	-19 	28 	16 	1 	-70 	3 	7 
LP63314 	 A. 	 -129 	42 	621 	13 	-60 	79 	21 	-32 	-21 	125 	13 	1 	-80 	4 	-18 
LP63454 	 A 	 -232 	47 	-11 	11 	-60 	74 	19 	-43 	-26 	2 	10 	1 	-72 	-8 	48 
LP65A305 	 A 	 -127 	39 	1930 	13 	-61 	57 	19 	-35 	-19 	135 	12 	1 	-36 	-6 	5 
LP65A587 	 A 	 336 	45 	252 	11 	-59 	56 	16 	-42 	-27 	47 	13 	1 	8 	-6 	59 
LP66 282 	 A 	 -166 	32 	1059 	11 	-64 	49 	18 	-42 	-21 	53 	13 	1 	-81 	-7 	25 
LP66 311 	 A 	 -231 	38 	429 	8 	-63 	61 	13 	-49 	-24 	58 	16 	1 	-78 	-3 	24 
LP66 419 	 A 	 -229 	43 	488 	8 	, -62 	67 	14 	-50 	-25 	49 	16 	1 	-80 	-7 	13 
LP66153 	 A 	 -191 	37 	975 	16 	-63 	57 	26 	-31 	-16 	142 	8 	1 	-75 	-4 	-1 
LP66296 	 A 	 -235 	40 	541 	11 	-59 	64 	19 	-40 	-21 	51 	13 	1 	-77 	-8 	42 
LP66350 	 A 	 -227 	42 	-15 	11 	-61 	61 	20 	-39 	-20 	2 	12 	2 	-54 	-1 	172 
LP66391 	 A 	 -236 	45 	156 	12 	-59 	83 	22 	-40 	-22 	31 	10 	2 	-56 	-8 	78 
LP67B306 	 A 	 -192 	46 	607 	17 	-59 	73 	25 	-31 	-22 	96 	9 	1 	-67 	13 	37 
LP67B663 	 A 	 -70 	40 	597 	22 	-60 	53 	30 	-17 	-14 	65 	11 	1 	49 	6 	65 
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Sample 	 Lithofacies Net gain/loss 	Si02 	TiO2 Al203 Fe 2O3  MnO Mg0 CaO Na20 K20 	P205 	S  
LP67BW11037 	A 	-40.14 	-37.43 	-0.05 	-3.14 	0.86 	0.02 	4.09 	-0.19 	-4.87 	0.11 	-0.04 	0.51 
LP67BW11063 	A 	-26.93 	-22.19 	-0.04 -3.57 	0.37 	-0.02 	2.06 	0.14 	-4.63 	0.70 	-0.06 	0.32 
LP18532 	 B 	-28.97 	-29.00 	0.01 	0.38 	0.13 	0.01 	-0.08 	0.81 	-3.18 	1.89 	0.05 	0.00 
TLPD-18 539.4 	B 	-2.64 	-4.75 	0.05 	0.66 	1.11 	0.02 	0.41 	0.27 	-1.25 	0.81 	0.04 	-0.01 Notes: 
LP36W374 	 B 	-38.16 	-34.69 	-0.01 	-0.99 -0.41 	0.01 	-0.23 -0.75 -2.57 	1.50 	-0.01 	0.00 Major elements expressed as g/100 g 
LP36W 391 	 B 	-13.48 	-14.08 	0.00 	0.14 	0.77 	0.02 	0.51 	-0.07 -2.66 	1.58 	0.04 	0.26 Trace elements expressed as g/106  g 
TLPD-28746 	 B 	-1.39 	-4.68 	0.06 	1.71 	0.75 	0.00 	1.41 	0.21 	-3.74 	2.83 	0.05 	-0.01 Zr used as the immobile reference element 
TLPD-30794 	 B 	-1.88 	-6.15 	0.06 	1.73 	1.59 	0.04 	2.92 	-0.57 -3.38 	1.83 	0.05 	-0.01 
LPD024 	 B 	-40.36 	-39.78 	0.01 	-0.96 	1.46 	0.05 	0.94 	-0.21 	-3.38 	1.47 	0.04 	0.00 Least altered reference samples- 
LP18383 	 clast 	-48.61 	-46.39 	0.01 	-2.59 	-0.73 	0.01 	3.20 	0.41 	-4.06 	1.29 	0.01 	0.23 dacite A: LP67B651, dacite B: LP43386, 
LP36W 262 	 clast 	-55.70 	-52.14 	0.04 	-7.24 	1.38 	0.15 	0.93 	5.75 	-4.62 -0.05 	0.04 	0.05 dacite C: MRV24 
LP37238 	 clast 	-57.76 	-55.70 	0.00 	-4.43 	1.93 	0.08 	1.94 	2.46 	-4.76 	0.73 	-0.01 	0.00 
LP44362 	 C 	73.33 	62.58 	-0.02 	2.06 	5.36 	0.08 	7.44 	-0.06 -4.83 	0.49 	0.07 	0.16 Includes XRF data from this study and from 
LP44397 	 C 	45.97 	25.29 	-0.04 	2.58 	8.77 	0.14 	13.38 -0.04 -4.95 	0.35 	0.04 	0.45 Tri Origin 
LP46A210 	 C 	24.68 	16.02 	-0.02 	4.55 	1.72 	0.05 	4.44 	-0.08 -4.94 	2.41 	0.05 	0.48 
LP46A 250 	 C 	19.76 	14.05 	-0.03 	4.29 	1.23 	0.05 	2.91 	-0.12 	-4.94 	2.19 	0.02 	0.12 
LP46A297 	 C 	52.88 	46.77 	-0.01 	4.60 	1.09 	0.04 	1.41 	0.06 	-4.87 	3.62 	0.15 	0.04 
LP63485 	 C 	2.88 	-4.77 	-0.02 	3.64 	2.52 	0.05 	3.79 	-0.12 -4.94 	2.72 	0.00 	0.02 
LP70438 	 C 	38.08 	31.70 	-0.05 	4.31 	1.05 	0.03 	0.58 	0.47 	-4.62 	4.55 	0.05 	0.00 
BOA-103-146 	 C 	27.26 	26.39 	-0.08 	-0.79 	3.11 	0.07 	1.81 	-0.09 	-3.58 	0.41 	0.01 	-0.01 

Sample 	 Lithofacies 	 Zr 	Sr 	Cr 	Ba 	Nd 	Sc 	V 	La 	Ce 	Y 	Rb 	Ni 	As 	Cu 	Pb 	Zn  
LP67BW11037 	A 	 0 	-228 	42 	359 	9 	-61 	62 	15 	-48 	-21 	78 	11 	1 	-60 	-7 	94 
LP67BW11063 	A 	 0 	-208 	45 	332 	11 	-61 	65 	16 	-40 	-19 	97 	9 	1 	-74 	-5 	8 
LP18532 	 B 	 0 	-61 	1 	661 	4 	3 	17 	6 	16 	10 	80 	-3 	11 	-22 	54 	-8 
TLPD-18 539.4 	B 	 0 	-74 	-18 	301 	-23 	-6 	-30 	-24 	-49 	7 	32 	-8 	-2 	-14 	11 	7 
LP36W374 	 B 	 0 	-138 	-1 	754 	-4 	2 	11 	-7 	-8 	-2 	77 	-4 	-1 	-26 	-2 	-21 
LP36W 391 	 B 	 0 	-86 	0 	613 	8 	2 	11 	13 	21 	12 	85 	0 	3 	18 	10 	2 
TLPD-28746 	 B 	 0 	-198 	-18 	808 	-23 	-6 	-30 	-24 	-49 	10 	91 	-8 	-2 	-12 	1 	0 
TLPD-30794 	 B 	 0 	-218 	-18 	563 	-23 	-6 	-30 	-24 	-49 	8 	71 	-8 	-2 	-6 	42 	85 
LP0024 	 B 	 0 	-107 	1 	591 	1 	2 	18 	1 	3 	1 	86 	0 	-1 	-24 	30 	20 
LP18383 	 clast 	 0 	-233 	0 	986 	-9 	2 	22 	-13 	-24 	-16 	47 	-5 	7 	2 	175 	109 
LP36W 262 	 clast 	 0 	-176 	1 	41 	-1 	-1 	-5 	-1 	0 	-14 	0 	13 	11 	-12 	105 	38 
LP37238 	 clast 	 0 	-210 	2 	338 	-8 	0 	6 	-8 	-17 	-14 	32 	39 	51 	-22 	78 	65 
LP44362 	 C 	 0 	-124 	-1 	152 	-2 	1 	-3 	-20 	2 	4 	-6 	-2 	1 	1 	-8 	116 
LP44397 	 C 	 0 	-121 	0 	231 	0 	0 	-6 	-24 	3 	-1 	22 	-1 	1 	38 	-9 	381 
LP46A210 	 C 	 0 	-127 	0 	766 	-2 	2 	-2 	-27 	-1 	14 	68 	0 	3 	64 	24 	124 
LP46A 250 	 C 	 0 	-124 	-1 	574 	2 	0 	-4 	-22 	1 	8 	75 	0 	0 	46 	146 	1655 
LP46A297 	 C 	 0 	-114 	3 	1121 	-3 	1 	-2 	-26 	1 	10 	113 	-2 	1 	7 	-9 	36 
LP63485 	 C 	 0 	-115 	0 	629 	1 	1 	-4 	-21 	8 	6 	65 	-1 	0 	-8 	-10 	74 
LP70438 	 C 	 0 	-72 	0 	2865 	0 	0 	-4 	-24 	3 	6 	90 	-1 	1 	-3 	-13 	-3 
BOA-103-146 	 C 	 0 	-114 	-12 	213 	-35 	-8 	-32 	-58 	-73 	3 	61 	-6 	-2 	-11 	-13 	-28 
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The University of Tasmania 
Electron Microscope Facility 
Central Science Laboratory 

Hobart 

Trace level sulphide analytical methodology, 
Cameca SX50 electron probe microanalyser. 

Quantitative analyses of sulphides were obtained using a Cameca SX50 electron probe 
microanalyser equipped with four wavelength dispersive spectrometers (WDS) utilising LiF, 
PET and TAP analysing crystals. The instrument was operated at an accelerating voltage of 
20kV with a regulated beam current of 50 - 60nA (faraday cup). The nominal incident beam 
size was 1-2 um in diameter. 

X-ray lines were calibrated and verified against pure metals and natural sulphides. 
X-ray line peak and background positions were carefully selected for trace level analyses to 
minimise interferences from adjacent lines. On-line overlap corrections were employed when 
necessary. Data reduction and matrix corrections were performed using the PAP algorithm 
(Pouchou & Pichoir, 1984). 

The analytical conditions for each element together with peak and background counting times, 
standards used and the derivative 2 sigma detection limits are given below 
(Table A). 

Table A 
Analytical conditions, sulphideTE analysis. 

Element Line Spec/FPC Crystal Peak + bkgd 2sigma dl* Standard Matrix* 
(secs) (PPrn) 

S Ka 2/HP PET 10+10 270 AMARC 
V Ka 3/HP LiF 10+10 210 V 

Mn Ka 3/HP LiF 40+40 50 Mn 
Fe Ka 3/HP LiF 10+10 320 AMARC 

40+40 80 AMARC 
Co Ka 3/HP LiF 20+20 120 ACOB 
Ni Ka 3/HP ' 	LiF 20+20 150 APENT 
Cu Ka 3/HP LiF 20+20 200 ACUP 
Zn Ka 3/HP LiF 40+40 165 ASPH 
As La 4/LP TAP 90+90 75 AGAAS 
Se La 4/LP TAP 60+60 70 ABISE 

60+60 260 ABISE Galena 
Ag La 1/LP PET 20+20 215 Ag 

2/HP PET 90+90 100 Ag Galena 
Cd La 1/LP PET 30+30 185 Cd 
Sn La 2/HP PET 60+60 170 ACASS 
Sb La 2/HP PET 20+20 170 ASTIB 
Te La 1/LP PET 30+30 125 AANTE 
Au La 3/HP LiF 60+60 350 Au 
Hg Ma 2/HP PET 60+60 215 ACINN 
Pb Ma 2/HP PET 20+20 365 AGAL 
Bi Ma 1/LP PET 60+60 230 ABISE 

*2 sigma detection limit calculations based on a tennantite-tetrahedrite matrix unless otherwise stated. 

Appendix 5 — sulfide microprobe analyses page 1 of 15 



Equation for calculating analytical detection limits (2a): 

2a =1000 000 x13 3  x t 
1 2  

where: 
2a = detection limit (ppm) 

= sensitivity factor (counts / sect nA / 100% element) 
= background counts per second for unknown 

t = total peak and background count time (secs) 

Reference: 
Pouchou, J.L., and Pichoir, F., 1984. Un nouveau modele de calcul pour la microanalyse 
quantitative par spectrometrie de rayons X. L'application a l'analyses d'echantillons homogenes. 
Recherche Aerospatiale, 3, 167-192. 

Additional notes for this study: 
All microprobe data are presented as analysed weight % and calculated molar %. 

Approximate detection limits for analytical data are in ppm 

Only analytical data greater than the minimum detection limit are included 

All element abundances are in ppm except where indicated by the % sign. 

Abbreviations: py = pyrite, po = pyrrhotite, sph = sphalerite, ga = galena, 
td = tetrahedrite, tn = tennantite, St = stannite, ccp = chalcopyrite, Bi = native bismuth, 
pg = pyrargyrite, dg = digenite, el = electrum. 

Zone codes: MH = Main zone Hangingwall lens 
MCM = Main zone Central lens, massive sulfide 
MCS = Main zone Central lens, semi-massive sulfide 
MFS = Main zone footwall, semi-massive sulfide 
LBZ = Lady Belmore zone 
TH = Toms zone hangingwall, vein sulfide 
TCM = Toms zone Central lens, massive sulfide 
TCS = Toms zone Central lens, semi-massive sulfide 
CCP = Footwall Copper zone 
NLP = New Lewis Ponds 

I b  
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Zone Label 	Weight "Ye: Mineral S% Mn Fe% Co Ni Cu Zn As Ag Au Bi Sum W% 
detection limits (ppm): 160 100 180 120 150 250 250 70 90 440 	. 1060/380 

MCM LP18365b_py euhedra py 52.38 <100 46.23 465 158 <250 <250 605 102 <440 <1060 98.78 
MCM LP18365b_vf py 1-19-1 py 51.92 <100 46.10 <120 <150 <250 658 4732 <90 <440 <1060 98.56 
MCM LP18365b_py ring py 51.46 <100 45.28 124 <150 <250 <250 8833 97 <440 <1060 97.66 
MFS LP12555_py 2-9-1 py 52.04 <100 46.01 <120 174 343 1664 2853 115 <440 <1060 98.57 
MCM LP36W195_euhed py py 52.61 <100 46.13 <120 <150 295 3165 623 <90 <440 <1060 99.16 
MCM LP36W195_frann bold py 51.84 513 45.54 <120 <150 <250 <250 4536 461 <440 <380 97.96 
MCM LP36W195_framboid py 52.13 371 45.86 <120 178 <250 <250 4727 492 <440 <380 98.61 
MCM Lp36W195_spongy py py 53.15 213 46.67 <120 <150 <250 <250 697 163 <440 1759 100.12 
TCS LP67B695_py 1-2-1 py 50.96 <100 44.42 <120 <150 <250 <250 1351 <90 <440 <1060 95.54 
TOM LP51A479_py in vein py 51.85 <100 46.15 <120 <150 <250 <250 76 <90 <440 <1060 98.05 
TOM LP51A479_py 1-16-1 py 51.91 <100 46.37 <120 <150 <250 <250 288 <90 <440 <1060 98.34 
TCM LP51A479_py 1-22-1 py 51.96 <100 46.38 <120 <150 316 2247 143 <90 626 <1060 98.68 
TOM Lp51a488_subhed py py 53.28 <100 47.05 <120 <150 <250 <250 <70 <90 <440 2111 100.59 
LBZ LP63415_py 1-4-1 py 52.48 <100 46.56 <120 <150 <250 <250 <70 <90 <440 <1060 99.11 
LBZ LP44243_spongy py py 52.36 <100 46.03 <120 <150 <250 <250 224 1139 <440 <1060 98.55 
LBZ LP44243_spongy py py 51.53 <100 45.89 <120 <150 519 283 184 1002 <440 <1060 97.63 

Zone Label 	Atomic `Ye: Mineral S% Mn% Fe% Co% Ni% Cu% Zn% As% Ag% Au% Bi% Sum A% 
MOM LP18365b_py euhedra py 66.30 0.00 33.60 0.03 0.01 0.01 0.01 0.03 0.00 0.00 0.00 100.00 
MOM LP18365b_vf py 1-19-1 py 66.04 0.00 33.66 0.00 0.00 0.00 0.04 0.26 0.00 0.00 0.00 100.00 
MOM LP18365b_py ring py 66.09 0.01 33.39 0.01 0.01 0.00 0.00 0.49 0.00 0.00 0.00 100.00 
MFS LP12555_py 2-9-1 py 66.13 0.00 33.57 0.00 0.01 0.02 0.10 0.16 0.00 0.00 0.00 100.00 
MOM LP36W195_euhed py py 66.35 0.00 33.40 0.00 0.00 0.02 0.20 0.03 0.00 0.00 0.00 100.00 
MOM LP36W195.:framboid py 66.25 0.04 33.42 0.00 0.01 0.01 0.00 0.25 0.02 0.00 0.00 100.00 
MOM LP36W195_framboid py 66.22 0.03 33.44 0.00 0.01 0.01 0.01 0.26 0.02 0.00 0.00 100.00 
MOM Lp36W195_spongy py py 66.42 0.02 33.48 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.03 100.00 
TCS LP67B695_py 1-2-1 py 66.59 0.00 33.32 0.01 0.01 0.00 0.00 0.08 0.00 0.00 0.00 100.00 
TOM LP51A479_py in vein py 66.16 0.00 33.81 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 100.00 
TOM LP51A479_py 1-16-1 py 66.07 0.00 33.89 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 100.00 
TOM LP51A479_py 1-22-1 py 65.99 0.00 33.82 0.00 0.00 0.02 0.14 0.01 0.00 0.01 0.00 100.00 
TOM Lp51a488_subhed py py 66.31 0.00 33.62 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.04 100.00 
LBZ LP63415_py 1-4-1 py 66.24 0.00 33.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 100.00 
LBZ LP44243_spongy py PY 66.41 0.00 33.52 0.00 0.00 0.02 0.00 0.01 0.04 0.00 0.00 100.00 
LBZ LP44243_spongy py py 66.10 0.00 33.80 0.00 0.00 0.03 0.02 0.01 0.04 0.00 0.00 100.00 
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Zone Label 	Weight c./.: Mineral S% Mn Fe% Co Ni Cu Zn As Ag Au Bi Sum W% 
LBZ LP44243_framboid py 51.92 208 45.99 <120 <150 466 <250 2379 <90 <440 <1060 98.24 
CCP Lp66361_py 2-12-1 py 53.27 <100 46.63 381 361 <250 <250 <70 <90 <440 2195 100.27 
CCP LP66361_py 1-13-1 py 52.59 <100 46.52 <120 <150 <250 <250 <70 <90 <440 <1060 99.13 
CCP LP66361_py 2-14-1 py 52.31 <100 46.26 167 <150 <250 <250 <70 134 <440 <1060 98.60 
CCP LP66374_po-11-1 py 53.16 <100 46.90 <120 <150 <250 <250 <70 <90 <440 1964 100.28 
CCP LP66374_py agg 1-4-1 py 52.32 <100 46.98 123 <150 <250 <250 <70 <90 <440 2064 99.59 
CCP Lp70127_py-6-1 py 53.16 <100 47.02 <120 <150 <250 <250 <70 <90 <440 2072 100.46 
MCM LP18365b_po blade po 37.96 <100 59.31 <120 <150 <250 <250 <70 <90 <440 <1060 97.30 
MCM LP18365_po, 1-3-1 pa 37.72 <100 59.50 <120 <150 251 <250 <70 <90 <440 <1060 97.28 
MCM LP36W195_po blade po 38.54 385 58.40 <120 <150 348 <250 <70 <90 <440 <1060 97.04 
MCM Lp36W195_po agg-16-1 pa 38.84 <100 59.48 <120 <150 <250 <250 <70 <90 <440 1309 98.50 
LBZ LP63415_po 1-6-1 pa 38.96 <100 59.03 458 225 <250 <250 <70 177 <440 <1060 98.08 
CCP Lp51aw2433_po agg pa 39.31 <100 58.92 <120 2773 <250 <250 <70 123 <440 1378 98.68 
CCP LP51AW2433_po 2 - 6 - 1 pa 39.07 <100 58.62 179 2242 <250 <250 <70 <90 <440 <1060 97.93 
CCP Lp66361_po in ccp 1-5-1 pa 38.94 <100 58.79 2167 732 1421 2060 <70 147 <440 1733 98.59 
CCP Lp66361_po in ccp-10-1 pa 39.13 <100 59.37 746 296 1198 <250 <70 <90 <440 1588 98.93 
CCP LP66361_po within ccp po 38.37 <100 58.26 674 311 600 <250 <70 <90 <440 <1060 96.82 

Zone Label 	Atomic `Yo: Mineral S% Mn°/0 Fe% Co% NicY0 Cu% Zn% As% Ag% Au% Bi% Sum A% 
LBZ LP44243 Jramboid py 66.17 0.02 33.65 0.00 0.00 0.03 0.01 0.13 0.00 0.00 0.00 100.00 
CCP Lp66361_py 2-12-1 py 66.46 0.00 33.40 0.03 0.02 0.00 0.01 0.00 0.00 0.00 0.04 100.00 
CCP LP66361_py 1-13-1 py 66.31 0.00 33.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
COP LP66361_py 2-14-1 py 66.31 0.00 33.67 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 100.00 
CCP LP66374_po-11-1 py 66.35 0.00 33.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 100.00 
COP LP66374_py agg 1-4-1 py 65.93 0.00 33.99 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 100.00 
COP Lp70127_py-6-1 py 66.27' 0.00 33.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 100.00 
MCM LP18365b_po blade po 52.70 0.00 47.28 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 100.00 
MCM LP18365_po 1-3-1 pa 52.45 0.00 47.51 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 100.00 
MCM LP36W195_po blade po 53.43 0.03 46.49 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 100.00 
MCM Lp36W195_po agg-16-1 pa 53.19 0.00 46.76 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 100.00 
LBZ LP63415_po 1-6-1 pa 53.45 0.00 46.49 0.03 0.02 0.00 0.00 0.00 0.01 0.00 0.00 100.00 
CCP Lp51aw2433_po agg po 53.61 0.00 46.14 0.01 0.21 0.00 0.00 0.00 0.01 0.00 0.03 100.00 
CCP LP51AW2433_po 2-6-1 pa 53.62 0.00 46.19 0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
CCP Lp66361_po in ccp 1-5-1 po 53.29 0.00 46.19 0.16 0.05 0.10 0.14 0.00 0.01 0.00 0.04 100.00 
CCP Lp66361_po in ccp-10-1 pa 53.33 0.00 46.45 0.06 0.02 0.08 0.00 0.00 0.00 0.00 0.03 100.00 
CCP LP66361_po within ccp pa 53.35 0.00 46.52 0.05 0.02 0.04 0.01 0.00 0.00 0.00 0.00 100.00 
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Zone Label 
detection limits (ppm): 

S% 
130 

Mn 
50 

Fe% 
180 

Analysed weight % 
Cu 	Zn% 	Se 	Ag 
250 	640 	260 	290 

Cd 
90 

Hg 
260 

Sum % S% Mn% Fe% Cu% 
Calculated atomic % 

Zn% 	Se% Ag% Cd% Hg% Sum % 

MCS Lp12440_sph 2-3-1 sph 31.89 269 5.35 <250 62.52 <260 1441 187 <260 99.95 48.55 0.02 4.67 0.00 46.68 0.00 0.07 0.01 0.00 100.00 
MCS Lp12450_sph 1-1-1 sph 32.27 269 3.50 421 64.05 <260  1229 <90 <260 100.D3 49.07 0.02 3.05 0.03 47.76 0.00 0.06 0.00 0.00 100.00 
MH Lp12450_sph in ring sph 31.11 194 3.72 1332 62.48 <260 1488 179 <260 97.63 48.60 0.02 3.33 0.10 47.87 0.00 0.07 0.01 0.00 100.00 
MH Lp12457_sph 2-4-1 sph 32.90 842 6.98 <250 59.11 <260 1739 <90 <260 99.27 49.85 0.07 6.07 0.01 43.92 0.00 0.08 0.00 0.00 100.00 
MCM Lp12539 sph 32.14 81 4.09 <250 63.24 <260 2622 <90 <260 99.77 49.00 0.01 3.58 0.01 47.27 0.00 0.12 0.00 0.00 100.00 
MH Lp12476_sph 1-3-1 sph 32.24 262 6.60 <250 61.40 <260 1849 324 <260 100.48 48.69 0.02 5.72 0.00 45.47 0.00 0.08 0.01 0.00 100.00 
MFS Lp12539_sph 1-3-1 sph 31.94 169 4.97 <250  61.82 <260 2728 <90 562 99.08 48.98 0.02 4.38 0.00 46.48 0.00 0.12 0.00 0.01 100.00 
MFS LP12555Lsph 1-1 sph 32.84 583 3.44 <250  64.50 <260 <290 2285 <260 101.07 49.35 0.05 2.97 0.00 47.53 0.00 0.00 0.10 0.00 100.00 
MFS LP12555_sph 1-5 sph 33.98 680 3.56 <250 64.00 <260 <290 2172 <260 101.84 50.33 0.06 3.03 0.00 46.49 0.00 0.00 0.09 0.00 100.00 
MFS LP12555_sph 1-3 sph 33.13 545 5.78 <250 61.32 <260  2221 <90 667 100.57 49.73 0.05 4.98 0.00 45.13 0.00 ( 0.10 0.00 0.02 100.00 
MFS Lp12w3439_sph 1-4-1 sph 32.60 182 4.27 <250 62.36 <260 1970 <90 <260 99.46 49.62 0.02 3.73 0.01 46.53 0.00 0.09 0.00 0.00 100.00 
MFS Lp12w3439_sph 2-7-1 sph 31.94 273 4.25 <250 63.40 <260 1994 <90 <260 99.83 48.73 0.02 3.72 0.01 47.43 0.00 0.09 0.00 0.00 100.00 
NLP LP16A450_sp 1-1-1 sph 33.14 827 4.98 <250 62.03 <260 415 1253 296 101.33 49.49 0.07 4.27 0.01 46.09 0.00 0.02 0.05 0.01 100.00 
NLP LP16A450_sph 2-2-1 sph 32.67 1037 5.03 <250 63.14 <260 <290 1107 <260 101.09 49.03 0.09 4.34 0.02 46.47 0.00 0.00 0.05 0.00 100.00 
MH Lp18334_sph 3-8-1 sph 32.72 1021 7.42 <250 59.17 <260 1992 <90 <260 99.61 49.49 0.09 6.44 0.00 43.89 0.00 0.09 0.00 0.00 100.00 
MCM Lp18365 sph 1 sph 33.05 226 7.11 <250  60.06 <260 1671 <90 <260 100.42 49.59 0.02 6.13 0.00 44.19 0.00 0.07 0.00 0.00 100.00 
MCM Lp18365 sph 2 sph 32.86 263 6.99 300 59.92 <260 1760 <90 389 100.05 49.52 0.02 6.05 0.02 44.29 0.00 0.08 0.00 0.01 100.00 
MFS Lp18433_sph 2-5-1 sph 32.14 754 5.65 352 61.58 <260  2396 458 <260 99.76 48.90 0.07 4.93 0.03 45.95 0.00 0.11 0.02 0.00 100.00 
MCM LP36W195_sph 1-1-1 sph 33.78 1588 7.18 <250 60.66 <260 <290 1090 <260 101.89 49.84 0.14 6.08 0.00 43.89 0.00 0.00 0.05 0.00 100.00 
MCM LP36W195_sph in ring sph 33.43 797 6.31 713 59.78 <260 <290 1359 <260 99.80 50.28 0.07 5.45 0.05 44.09 0.00 0.00 0.06 0.00 100.00 
MCS Lp36w197_sph 1-2-1 sph 32.75 922 5.59 <250 62.16 <260 1747 <90 <260 100.76 49.21 0.08 4.82 0.00 45.81 0.00 0.08 0.00 0.00 100.00 
MFS Lp36w206_sph 1-1-1 sph 32.25 1115 7.44 <250 59.92 <260 1651 <90 437 99.94 48.85 0.10 6.47 0.00 44.50 0.00 0.07 0.00 0.01 100.00 
MFS LP36W207_sph 1-5-1 sph 32.91 662 6.08 <250 61.90 <260 <290 1721 <260 101.22 49.20 0.06 5.22 0.00 45.45 0.00 0.00 0.07 0.00 100.00 
LBZ LP44243_sph 1-7-1 sph 34.22 772 6.45 <250 60.84 <260 <290 1779 <260 101.78 50.43 0.07 5.45 0.01 43.96 0.00 0.00 0.07 0.00 100.00 
LBZ Lp44317_sph 2-4-1 sph 31.93 1177 6.00 <250 60.60  <260 2042 <90 <260 99.76 48.58 0.10 6.02 0.00 45.20 0.00 0.09 0.00 0.00 100.00 
TCM Lp46Al26_sph 1-4-1 sph 32.06 2229 4.41 <250  63.31  <260 2174 <90 <260 100.23 48.70 0.20 3.85 0.01 47.15 0.00 0.10 0.00 0.00 100.00 
TH LP51A418_sph 1 - 1 - 1 sph 33.15 2090 6.71 <250 60.40 <260 <290 2090 <260 100.72 49.61 0.18 5.77 0.00 44.33 0.00 0.01 0.09 0.00 100.00 
TCM Lp51a477_sph 2-8-1 sph 32.13 2568 5.28 <250 62.05 <260 1737 277 <260 99.93 48.83 0.23 4.60 0.01 46.24 0.00 0.08 0.01 0.00 100.00 
TCM LP51A479_sph in vein sph 33.25 1231 4.71 832 63.62 <260 <290 1737 <260 101.98 49.39 0.11 4.02 0.06 46.34 0.00 0.01 0.07 0.00 100.00 
TCM LP51A479_sph 1-14-1 sph 33.48 2377 4.15 <250 64.20 <260 <290 1444 <260 102.23 49.58 0.21 3.53 0.00 46.62 0.00 0.00 0.06 0.00 100.00 
TCS Lp51a482_sph 1-1-1 sph 31 ,.46 1722 5.27 <250 62.59 <260 1352 185 <260 99.65 48.16 0.15 4.63 0.00 46.98 0.00 0.06 0.01 0.00 100.00 
TCS Lp51a484_sph 1-2-1 sph 31.46 1549 4.06 <250  63.39  <260 1419 <90 <260 99.22 48.39 0.14 3.59 0.00 47.81 0.00 0.06 0.00 0.00 100.00 
TCM Lp51a488_sph 1-10-1 sph 31.74 2167 4.14 <250 63.17 <260 1616 <90 <260 99.45 48.63 0.19 3.64 0.01 47.45 0.00 0.07 0.00 0.00 100.00 

Appendix 5 - sulfide microprobe analyses page 5 of 15 



Zone Label S% Mn Fe% 
Analysed weight % 

Cu 	Zn% 	Se 	Ag Cd Hg Sum % S% Mn% Fe% Cu% 
Calculated atomic % 

Zn% 	Se% Ag% Cd% Hg% Sum % 
TCM Lp51a488_sph1-16-1 sph 31.59 2227 3.24 527 64.22 <260 1506 <90 <260 99.47 48.49 0.20 2.86 0.04 48.34 0.00 0.07 0.00 0.00 100.00 
TCM Lp51a489_sph 1-2-1 sph 32.08 2096 5.26 372 62.22 <260 2222 <90 <260 100.04 48.74 0.19 4.59 0.03 46.36 0.00 0.10 0.00 0.00 100.00 
TCM Lp51a489_sph in vein sph 32.13 2033 5.46 982 61.96 <260 2016 90 <260 100.06 48.78 0.18 4.75 0.08 46.12 0.00 0.09 0.00 0.00 100.00 
TH Lp51aw2355_sph sph 31.83 616 5.59 <250 61.77 <260 1921 <90 <260 99.47 48.65 0.05 4.90 0.02 46.29 0.00 0.09 0.00 0.00 100.00 
TCS Lp67b742_ga 1-1-1 sph 31.46 <50 0.14 327 67.87 <260  3777 <90 <260 99.88 48.44 0.00 0.13 0.03 51.24 0.00 0.17 0.00 0.00 100.00 
TCS Lp67b742_sph 2-4-1 sph 30.93 <50 0.58 4280 66.46 <260 2839 <90 <260 98.68 48.21 0.00 0.52 0.34 50.80 0.00 0.13 0.00 0.00 100.00 
TCS LP67B965_sph 1-1-1 sph 33.58 1129 6.81 <250 61.25 <260 <290 1836 <260 101.94 49.65 0.10 5.78 0.00 44.40 0.00 0.00 0.08 0.00 100.00 
CCP LP51AW2433_sph sph 33.34 434 6.95 <250  60.71 <260 <290 3377 <260 101:40 49.59 0.04 5.94 0.01 44.28 0.00 0.00 0.14 0.00 100.00 
CCP LP51AW2433_sph sph 33.58 2021 7.32 <250 59.42 <260 <290 2085 <260 100.79 50.03 0.18 6.26 0.01 43.41 0.01 0.01 0.09 0.00 '100.00 
CCP • LP66361_sph 1-11-1 sph 34.00 521 6.68 450 60.27 <260 <290 1304 <260 101.18 50.39 0.05 5.68 0.03 43.80 0.00 0.00 0.06 0.00 100.00 
CCP LP66361_sph 1-4-1 sph 34.07 428 6.83 325 60.05 <260 555 1689 <260 101.26 50.44 0.04 5.81 0.02 43.60 0.00 0.02 0.07 0.00 100.00 
CCP Lp66374 sph in vein sph 32.04 962 7.27 1910 59.40 <260 1651 180 <260 99.18 48.88 0.09 6.37 0.15 44.44 0.00 0.07 0.01 0.00 100.00 
CCP Lp70127_sph 1-1-1 sph 32.27 1076 6.70 <250 60.18 <260 1231 <90 <260 99.38 49.10 0.10 5.85 0.00 44.90 0.00 0.06 0.00 0.00 100.00 
CCP LP70069_sph in vein sph 33.09 929 3.47 <250 62.99 <260 <290 1776 <260 99.86 50.07 0.08 3.02 0.00 46.74 0.01 0.00 0.08 0.00 100.00 
CCP LP70069_sph in vein sph 33.39 682 3.20 <250 63.31 <260 <290 1889 <260 100.17 50.31 0.06 2.77 0.00 46.78 0.01 0.00 0.08 0.00 100.00 
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Zone Label 	 Mineral 
detection limits (ppm): 

S% 
390 

Fe 
280 

Analysed weight % 
Se 	Ag 	Pb% 
260 	200 	790 

Bi 
300 

Sum % S% Fe% 
Calculated atomic % 

Se% 	Ag% 	Pb% Bi% 
• 

Sum % 

MH Lp12440_ga 1-2-1 ga 14.43 <280 2619 1817 86.07 100.94 51.69 0.00 0.38 0.19 47.73 100.00 
MH Lp12450_ga 2-6-1 ga 14.39 6597 1576 1060 85.36 100.67 • 51.25 1.35 0.23 0.11 47.06 100.00 
MH Lp12450_ga in ring 2-7-1 ga 14.51 9010 1404 931 87.38 103.02 50.67 1.81 0.20 0.10 47.23 100.00 
MCS Lp12476_ga 2-2-1 ga 14.65 <280 511 1943 86.35 101.25 52.15 0.00 0.07 0.21 47.57 100.00 
MCM Lp12457_ga 1-5-1 ga 14.47 963 <260 1443 86.04 100.75 51.89 0.20 0.00 0.15 47.76 100.00 
MFS Lp12539 ga 1-5-1 ga 14.40 <280 1418 1265 86.61 101.27 51.61 0.00 0.21 0.13 48.05 100.00 
MFS Lp12539_ga 1-5-1 ga 14.59 <280 1349 1111 86.22 101.06 52.07 0.00 0.20 0.12 47.62 100.00 
MFS LP12555_ga 1-2-1 ga 14.37 <280 977 1725 86.41 101.06 51.64 0.00 0.14 0.18 48.04 100.00 
MFS Lp12w3439_ga 1-5-1 ga 14.36 1718 1720 1638 86.51 101.37 51.35 0.35 0.25 0.17 47.88 100.00 
NLP LP16A450_ga 2-4-1 ga 14.27 <280 1220 872 87.10 101.58 51.28 0.00 0.18 0.09 48.45 100.00 
MH Lp18334_ga 1 ga 14.62 1952 382 1572 87.01 102.03 51.74 0.40 0.05 0.17 47.64 100.00 
MH Lp18334_ga 2 ga 14.63 2888 341 1599 86.18 101.30 51.90 0.59 0.05 0.17 47.30 100.00 
MCM LP18365b_ga 1-10-1 ga 14.29 <280 278 1563 86.55 101.03 51.51 0.00 0.04 0.17 48.28 100.00 
MFS Lp18433_ga 1-3-1 ga 14.58 <280 1644 1513 86.40 101.32 51.94 0.03 0.24 0.16 47.63 100.00 
MCM LP36W195-ga 1-3-1 ga 14.45 760 <260 1787 86.07 100.77 51.85 0.16 0.01 0.19 47.80 100.00 
MCM Lp36W195_ga in MS ga 13.38 <280 <260 1500 85.42 2844 99.25 50.12 0.00 0.03 0.17 49.52 0.16 100.00 
MCM Lp36W195_ga agg ga 13.17 <280 <260 1746 85.25 2546 98.87 49.76 0.00 0.04 0.20 49.86 0.15 100.00 
MCS Lp36w197_ga 1-4-1 ga 14.58 <280 <260 3033 86.66 101.56 51.91 0.00 0.03 0.32 47.74 100.00 
MFS Lp36w206_ga 1-7-1 ga 14.60 629 1123 4291 85.82 101.02 51.97 0.13 0.16 0.45 47.28 100.00 
MFS LP36W207_ga 2-14-1 ga 14.24 <280 738 1523 85.81 100.30 51.57 0.05 0.11 0.16 48.10 100.00 
LBZ LP44243_ga 1-11-1 ga 14.46 <280 328 2056 85.71 100.41 52.02 0.00 0.05 0.22 47.72 100.00 
LBZ Lp44317_6a 1-2-1 ga 14.46 <280 2284 2731 86.16 101.13 51.69 0.03 0.33 0.29 47.66 100.00 
LBZ LP63415_ga 1-7-1 ga 13.47 5143 19025 5049 83.81 100.20 48.70 1.07 2.79 0.54 46.89 100.00 
TCM Lp46Al26_ga 2-8-1 ga 14.57 <280 448 1063 86.21 100.93 52.11 0.00 0.07 0.11 47.71 100.00 
TH LP51A418_ga 1-2-1 ga 14.04 329 6914 3571 85.02 100.14 50.86 0.07 1.02 0.38 47.67 100.00 
TCM Lp51a477_ga 2-3-1 ga 14.68 <280 703 2763 87.14 102.17 51.92 0.00 0.10 0.29 47.69 100.00 
TCM LP51A479_ga in vein ga 14.23 <280 332 671 86.39 100.72 51.50 0.00 0.05 0.07 48.38 100.00 
TCM LP51A479_ga 1-15-1 ga 14.14 <280 344 1235 86.19 100.49 51.37 0.00 V  0.05 0.13 48.44 100.00 
TCS Lp51a482_ga 1-4-1 ga 14.47 <280 282 1897 85.52 100.21 52.10 0.00 0.04 0.20 47.65 100.00 
TCS Lp51a484_ga 1-1-1 ga 14.62 <280 <260 534 86.58 101.28 52.14 0.00 0.03 0.06 47.77 100.00 
TCM Lp51a488_ga 2-13-1 ga 14.62 4856 373 1779 85.98 101.30 51.72 0.99 0.05 0.19 47.06 100.00 
TCM Lp51a488_ga 1-17-1 ga 14.63 <280 368 1678 86.57 - 101.41 52.08 0.00 0.05 0.18 47.69 100.00 
TCM Lp51a488_ga in vein ga 13.36 <280 432 1422 85.76 2709 99.58 49.98 0.00 0.07 0.16 49.64 0.16 100.00 
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Analysed weight % 	 Calculated atomic % 

Zone 	Label 	 Mineral S% 	Fe 	Se 	Ag 	Pb% 	Bi 	Sum % S% Fe% Se% Ag% Pb% Bi% Sum %  

TCM 	Lp51a488_ga in ms 	 ga 	13.25 <280 	290 	1111 86.11 	2799 	99.78 49.69 0.00 	0.04 	0.12 49.98 0.16 100.00 
TCM 	Lp51a489_ga 1-1-1 	 ga 	14.65 <280 <260 	820 	86.75 	- 	101.51 52.12 0.00 	0.04 	0.09 47.76 	- 	100.00 
TCM 	Lp51a489_ga in vein 	ga 	14.67 <280 <260 1675 87.60 	 102.46 51.87 0.00 	0.02 	0.18 47.93 	- 	100.00 

TCS 	LP67B965_ga 1-5-1 	 ga 	13.79 <280 13390 6004 83.93 	 99.66 50.14 0.00 	1.98 	0.65 47.23 	100.00 

TCS 	Lp67b742_ga 1-1-1 	 ga 	14.25 <280 4582 	298 	86.47 	 101.22 51.22 0.00 	0.67 	0.03 48.08 	100.00 

TH 	Lp51aw2355_ga 1-3-1 	ga 	14.21 <280 3399 	1436 86.81 	 101.50 51.06 0.00 	0.50 	0.15 48.29 	100.00 

CCP 	LP51AW2433_ga-3-1 	ga 	13.66 1742 16238 7798 84.34 	- 	100.57 49.30 0.36 	2.38 	0.84 47.12 	100.00 
COP 	Lp51aw2433_ga py-8-1 	ga 	12.13 	738 23890 5140 82.38 	13697 	98.85 46.20 0.16 	3.70 	0.58 48.56 0.80 100.00 

CCP 	Lp51aw2433_ga 1-10-1 	Bi-Se 	14.84 6679 	8097 21507 67.82 199905 106.28 49.87 	1.29 	1.11 	2.15 35.28 10.31 100.00 
CCP 	Lp51aw2433_ga 2-11-1 	ga 	13.12 3735 7601 	6542 83.44 	15986 	99.95 48.60 0.79 	1.14 	0.72 47.84 0.91 	100.00 

CCP 	Lp51aw2433_ga 	 ga 	12.31 3174 20826 5998 82.75 	15647 	99.61 46.34 0.69 	3.18 	0.67 48.22 0.90 100.00 
CCP 	LP66361_ga 1 -6- 1 	 ga 	13.63 <280 11643 7069 83.16 	 98.66 50.13 0.00 	1.74 	0.77 47.35 	100.00 

COP 	Lp66361_ga 1-4-1 	 ga 	12.93 <280 11838 8584 82.49 	24443 	99.90 48.23 0.00 	1.79 	0.95 47.63 1.40 100.00 
COP 	Lp66361_ga 2-6-1 	 ga 	11.94 <280 14873 6051 81.31 	15045 	96.85 46.76 0.00 	2.36 	0.70 49.27 0.90 100.00 
COP 	Lp66374 ga 	 ga 	13.33 <280 23688 7398 83.39 	 99.83 48.61 0.02 	3.51 	0.80 47.07 	100.00 

COP 	LP66374_ga 1-2-1 	 ga 	12.79 <280 14870 6341 82.71 	16252 	99.24 48.03 0.00 	2.27 	0.71 48.06 0.94 100.00 
COP 	LP66374_ga 2-3-1 	 ga 	12.09 	560 27284 6452 82.20 	15647 	99.28 45.83 0.12 	4.20 	0.73 48.21 	0.91 100.00 
COP 	LP66374_ga-6-1 	 ga 	12.56 1504 17821 7503 81.89 	18005 	98.94 47.32 0.33 	2.73 	0.84 47.75 	1.04 100.00 

COP 	LP66374_ga-5-1 	 ga 	12.57 2032 14162 8953 81.77 	20644 	98.91 47.43 0.44 	2.17 	1.00 47.76 	1.20 100.00 

COP 	Lp70127_ga 1-1-1 	 ga 	12.17 <280 24303 4807 81.86 	12594 	98.20 46.51 	0.01 	3.77 	0.55 . 48.43 0.74 100.00 ' 

COP 	Lp70127_ga 3-8-1 	 ga 	12.62 <280 15248 4009 83.50 	11778 	99.23 47.70 0.00 	2.34 	0.45 48.83 0.68 100.00 
CCP 	Lp70127_ga 2 -3- 12 	 ga 	12.87 <280 11528 4144 84.35 	11925 	99.98 48.21 	0.00 	1.75 	0.46 48.89 0.69 100.00 

COP 	Lp70127_ga 4 	 ga 	12.56 <280 15682 3655 84.23 	11029 	99.84 47.37 0.02 	2.40 	0.41 	49.16 0.64 100.00  

Analysed weight % 

Label 	 Mineral S% 	Fe 	Se 	Ag 	Pb% 	Bi 	Te 	Sum 

	

detection  limits (ppm): 270 	320 	280 	350 	1030 	1060 	320  
MCS 	Lp36w197_ga 1-4-1 	 ga 	12.56 <320 	348 	1523 85.47 	<1060 	<320 98.25 
MCS 	Lp36w197_ga 2-7-1 	 ga 	12.62 <320 <280 1288 85.42 <1060 	484 	98.24 
TOM 	Lp51a489_ga 1-1-1 	 ga 	12.68 <320 <280 <350 85.92 	<1060 	394 	98.68 
TOM 	Lp51a489_ga 2-4-1 	 ga 	12.65 866 	<280 	810 	86.6 	<1060 	<320 99.48 
TOM 	Lp51a489_ga in vein 	ga 	12.64 <320 	378 	986 85.64 <1060 	547 	98.46 
TOM 	Lp51a489_ga in vein 	ga 	12.64 <320 	401 	1007 85.38 <1060 	395 	98.2 

Calculated atomic % 

S% Fe% Se% Ag% Pb% Bi% Te% Sum % 

	

48.59 	0.00 	0.05 	0.18 	51.16 	0.00 	0.02 100.00 

	

48.73 	0.00 	0.04 	0.15 	51.04 	0.00 	0.05 100.00 

	

48.77 	0.00 	0.03 	0.02 	51.14 	0.00 	0.04 100.00 

	

48.39 	0.19 	0.04 	0.09 	51.26 	0.00 	0.03 100.00 

	

48.70 	0.00 	0.06 	0.11 	51.07 	0.00 	0.05 100.00 

	

48.80 0.00 	0.06 	0.12 	50.98 	0.00 	0.04 100.00 
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Zone Label 	Weight c'/0: Mineral S% Fe% Ni Cu% Zn% As Se Ag% Cd Sb% Te Au Hg Pb Bi Sum W% 
detection limits (ppm): 130 140 150 200 170 180 200 210 180 200 140 750 240 380 240 

MCM Lp12457_td 1-1-1 td 23.15 5.35 <150 24.56 1.13 843 236 18.60 631 27.14 <140 <750 <240 <380 <240 100.12 
MCM Lp12457_td 2-2-1 td 23.10 5.36 <150 24.50 1.09 <180 237 18.68 346 27.15 <140 <750 <240 <380 <240 99.97 
MOM Lp12457_td 3-6-1 td 22.96 5.29 <150 24.41 1.10 975 <200 18.59 233 27.04 <140 <750 <240 <380 <240 99.54 
M FS Lp12490_td 1-1-1 td 24.41 4.28 <150 34.06 2.72 4901 463 6.12 <180 27.43 <140 <750 <240 <380 <240 99.63 
MFS Lp12490_td 2-2-1 td 24.37 4.29 <150 34.16 2.70 7738 390 5.84 267 27.28 <140 <750 <240 <380 <240 99.54 
MFS Lp12539_td 1-1-1 td 24.96 4.26 <150 36.07 2.84 12288 406 3.05 607 27.00 <140 785 <240 <380 <240 99.61 
MFS Lp12539_td 2-2-1 td 24.97 4.30 <150 35.97 2.77 22448 559 3.51 355 25.30 <140 <750 <240 <380 <240 99.22 
MFS LP12555_td 1-1-1 td 23.84 4.35 <150 28.58 2.24 <180 291 12.71 553 27.60 <140 <750 <240 <380 <240 99.41 
MFS LP12555_td 2-10-1 td 23.87 4.43 <150 28.56 2.62 1982 344 13.37 396 27.34 <140 <750 <240 <380 <240 100.46 
MFS Lp12w3439_td 1-1-1 td 23.90 4.37 <150 29.66 2.39 4765 200 12.01 223 26.88 <140 <750 <240 <380 <240 99.75 
MFS Lp12w3439_td 2-2-1 td 23.86 4.35 <150 29.87 2.39 3753 364 11.75 488 27.16 <140 <750 <240 <380 <240 99.86 
M FS Lp18334_td 1-1-1 td 23.44 5.19 <150 25.92 1.58 2081 351 16.97 450 26.90 <140 <750 <240 <380 <240 100.30 
MFS Lp18334_td 2-2-1 td 22.95 5.17 <150 25.10 1.24 1779 226 17.72 436 26.74 <140 <750 <240 <380 <240 99.17 
MFS Lp18334_td 3-7-1 td 23.13 5.35 <150 24.81 1.05 <180 279 18.51 555 26.78 <140 <750 <240 <380 <240 99.73 
MCS Lp18365b_td 1-3-1 td 22.75 5.32 <150 22.45 0.99 <180 <200 22.08 262 26.60 <140 <750 <240 <380 <240 100.24 
MCS Lp18365b_td 2-7-1 td 23.07 5.20 <150 24.41 1.19 <180 <200 18.83 329 26.88 <140 <750 <240 <380 <240 99.62 

Zone Label 	Atomic To: Mineral S% Fe% Ni°/0 Cu% ZncY0 As% Se% Ag% Cd% Sb% Te% Au% Hg% Pb% BicY. Sum A% 
MOM Lp12457_td 2-2-1 td 44.60 5.94 0.01 23.86 1.03 0.00 0.02 10.72 0.02 13.80 0.00 0.00 0.00 0.00 0.00 100.00 
MOM Lp12457_td 3-6-1 td 44.52 5.89 0.00 23.89 1.05 0.08 0.01 10.72 0.01 13.81 0.00 0.00 0.00 0.00 0.00 100.00 
MFS Lp12490_td 1-1-1 td 44.64 4.50 0.00 31.44 2.44 0.38 0.03 3.33 0.00 13.21 0.00 0.02 0.00 0.00 0.00 100.00 
MFS Lp12490_td 2-2-1 td 44.56 4.50 0.00 31.53 2.42 0.61 0.03 3.18 0.01 13.14 0.00 0.01 0.00 0.00 0.00 100.00 
MFS Lp12539_td 1-1-1 td 44.90 4.40 0.01 32.74 2.50 0.95 0.03 1.63 0.03 12.79 0.00 0.02 0.00 0.00 0.00 100.00 
MFS Lp12539_td 2-2-1 td 44.86 4.44 0.01 32.61 2.44 1.73 0.04 1.87 0.02 11.97 0.00 0.01 0.00 0.00 0.01 100.00 
MFS LP12555_td 1-1-1 td 45.03 4.72 0.00 27.25 2.08 0.00 0.02 7.14 0.03 13.73 0.00 0.00 0.00 0.00 0.00 100.00 
MFS LP12555_td 2-10-1 td 44.70 4.76 0.00 26.99 2.41 0.16 0.03 7.44 0.02 13.49 0.00 0.00 0.00 0.00 0.00 100.00 
MFS Lp12w3439_td 1-1-1 td 44.74 4.69 0.01 28.01 2.20 0.38 0.02 6.68 0.01 13.25 0.00 0.00 0.00 0.00 0.00 100.00 
MFS Lp12w3439 _td 2-2-1 td 44.65 4.68 0.00 28.20 2.19 0.30 0.03 6.54 0.03 13.38 0.00 0.00 0.00 0.00 0.00 100.00 

MFS Lp18334_td 1-1-1 td 44.63 5.68 0.01 24.90 1.47 0.17 0.03 9.60 0.02 13.49 0.00 0.00 0.00 0.00 0.00 100.00 
MFS Lp18334_td 2-2-1 td 44.47 5.76 0.00 24.55 1.18 0.15 0.02 10.21 0.02 13.65 0.00 0.00 0.00 0.00 0.00 100.00 
MFS Lp18334_td 3-7-1 td 44.63 5.93 0.00 24.16 0.99 0.00 0.02 10.62 0.03 13.61 0.00 0.00 0.00 0.00 0.00 100.00 
MCS Lp18365b_td 1-3-1 td 44.43 5.97 0.00 22.13 0.95 0.00 0.01 12.82 0.01 13.68 0.00 0.00 0.00 0.00 0.00 100.00 
MCS Lp18365b_td 2-7-1 td 44.66 5.78 0.00 23.85 1.13 0.00 0.01 10.84 0.02 13.71 0.00 0.00 0.00 0.00 0.00 100.00 
MH Lp18433_td 1-1-1 td 44.64 5.63 0.00 22.95 1.28 0.07 0.03 11.79 0.00 13.61 0.00 0.00 0.00 0.00 0.00 100.00 
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Zone Label 	Weight %: Mineral S% Fe% Ni Cu% Zn% As Se Ag% Cd Sb% Te Au Hg Pb Bi Sum W% 

MH Lp18433_td 1-1-1 td 22.97 5.04 <150 23.40 1.35 838 380 20.40 <180 26.59 <140 <750 <240 <380 <240 99.89 

MH Lp18433_td 3-7-1 td 21.60 5.56 <150 18.71 0.47 <180 346 26.94 203 26.35 <140 <750 <240 <380 <240 99.72 

MCM LP36W195_td in MS 1-1-1 td 23.10 5.29 <150 24.77 1.24 <180 264 18.58 <180 27.09 <140 <750 <240 <380 <240 100.10 

MCM LP36W195_td in MS 2-2-1 td 23.04 5.41 <150 24.91 1.16 <180 234 18.16 293 26.84 <140 <750 <240 <380 <240 99.58 

MCM LP36W195_td in MS 3-3-1 td 23.08 5.30 <150 23.82 1.03 1658 <200 19.86 554 26.36 <140 <750 <240 <380 <240 99.71 

MCM LP36W195_td 1-1-1 td 23.15 5.32 <150 24.00 1.16 <180 257 19.46 478 26.86 <140 <750 <240 <380 <240 100.02 

MCS Lp36w197_td 1-6-1 td 23.05 4.98 <150 25.52 1.60 2145 <200 16.73 534 26.65 <140 <750 <240 <380 <240 98.81 

MCS Lp36w197_td 2-8-1 td 23.06 4.83 <150 25.56 1.72 3666 266 16.26 221 26.36 <140 <750 <240 <380 <240 98.21 

MCS Lp36w197_td 3-9-1 td 23.02 4.76 <150 25.58 1.78 700 260 16:51 224 26.84 <140 <750 <240 <380 <240 98.62 

LBZ LP44243_td 1-1-1 td 21.79 5.32 <150 18.38 0.99 <180 <200 27.16 258 26.21 <140 <750 <240 <380 248 99.92 

LBZ LP44243_td 2-16-1 td 21.31 5.25 <150 17.74 1.16 <180 243 28.33 <180 26.19 <140 <750 <240 <380 <240 100.01 

TCM Lp46Al262d 1-1-1 td 23.70 4.75 <150 28.45 1.86 <180 <200 13.47 309 27.66 <140 <750 <240 <380 <240 99.96 
TCM Lp46Al26_td 2 -7- 1 td 23.39 4.70 <150 27.54 1.74 <180 <200 14.22 199 27.59 <140 <750 <240 <380 <240 99.22 

TCM Lp46Al26_td 3-11-1 td 23.95 4.98 <150 29.14 1.75 6631 301 12.97 396 26.72 <140 <750 <240 <380 <240 100.25 

TCM Lp51a477_td 1-2-1 td 22.74 4.80 <150 23.04 1.47 478 <200 20.54 466 26.65 <140 <750 <240 <380 <240 99.35 
TCM Lp51a477_td 2-4-1 td 22.63 5.02 <150 22.66 1.31 <180 243 20.67 336 26.62 <140 <750. <240 <380 <240 98.98 

Zone Label. 	Atomic %: Mineral S% Fe% Ni% Cu% ZncY. As% Se% Ag% Cd% Sb% TeX:, Au% Hg% Pb% Bi% Sum A% 

MCM Lp12457_td 1-1-1 td 44.59 5.92 0.01 23.87 1.07 0.07 0.02 10.65 0.03 13.77 0.00 0.00 0.00 0.00 0.01 100.00 

MH Lp18433_td 3-7-1 td 43.70 6.46 0.00 19.10 0.46 0.00 0.03 16.20 0.01 14.03 0.00 0.00 0.00 0.00 0.01 100.00 

MCM LP36W1952d in MS 1-1-1 td 44.49 5.85 0.00 24.08 1.17 0.00 0.02 10.64 0.00 13.74 0.00 0.00 0.00 0.00 0.00 100.00 

MCM LP36W1952d in MS 2-2-1 td 44.50 6.00 0.00 24.28 1.10 0.00 0.02 10.43 0.02 13.65 0.00 0.00 0.00 0.00 0.00 100.00 
MCM LP36w195_td in MS 3 -3- 1 td 44.74 5.90 0.00 23.30 0.98 0.14 0.01 11.44 0.03 13.46 0.00 0.00 0.00 0.00 0.01 100.00 

MCM LP36W195_td 1-1-1 td 44.72 5.90 0.00 23.40 1.10 0.00 0.02 11.17 0.03 13.67 0.00 0.00 0.00 0.00 0.00 100.00 

MCS Lp36w197_td 1-6-1 td 44.60 5.53 0.00 24.92 1.52 0.18 0.01 9.62 0.03 13.58 0.00 0.00 0.00 0.00 0.00 100.00 

MCS Lp36w197_td 2-8-1 td 44.76 5.38 0.01 25.03 1.63 0.30 0.02 9.38 0.01 13.47 0.00 0.00 0.00 0.00 0.00 100.00 

MCS Lp36w197_td 3-9-1 td 44.64 5.30 0.01 25.04 1.69 0.06 0.02 9.52 0.01 13.71 0.00 0.00 0.00 0.00 0.00 100.00 

LBZ LP44243_td 1-1-1 td 43.93 6.16 0.00 18.70 0.98 0.00 0.01 16.28 0.01 13.92 0.00 0.00 0.00 0.00 0.01 100.00 

LBZ LP44243_td 2-16-1 td 43.34 6.13 0.00 18.20 1.15 0.00 0.02 17.12 0.00 14.02 0.01 0.00 0.00 0.00 0.00 100.00 

TCM Lp46Al26_td 1-1-1 td 44.71 5.15 0.00 27.09 1.72 0.00 0.01 7.56 0.02 13.74 0.00 0.00 0.00 0.00 0.00 100.00 

TCM Lp46Al26_td 2-7-1 td 44.68 5.16 0.00 26.55 1.63 0.00 0.01 8.07 0.01 13.88 0.00 0.00 0.00 0.00 0.00 100.00 

TCM Lp46Al26_td 3-11-1 td 44.71 5.34 0.00 27.45 1.60 0.53 0.02 7.19 0.02 13.13 0.00 0.00 0.00 0.00 0.00 100.00 

TCM Lp51a477_td 1-2-1 td 44.59 5.40 0.00 22.79 1.41 0.04 0.02 11.97 0.03 13.76 0.00 0.00 0.00 0.00 0.00 100.00 

TCM Lp51a477_td 2-4-1 td 44.58 5.67 0.01 22.53 1.27 0.00 0.02 12.10 0.02 13.81 0.00 0.00 0.00 0.00 0.00 100.00 
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Zone Label 	Weight 3̀/0: Mineral S% Fe% Ni Cu% Zn% As Se Ag% Cd Sb% Te Au Hg Pb Bi Sum W% 
TCM Lp51a477_td 1-6-1 td 23.09 5.20 <150 22.91 1.22 <180 <200 20.55 <180 26.81 <140 <750 <240 <380 <240 99.83 
TCM Lp51a477_td 2-9-1 td 23.04 5.19 <150 23.85 1.22 8439 229 19.35 362 25.76 <140 <750 <240 <380 <240 99.31 
TCM LP51A479_td in vein 1-1-1 td 23.29 4.93 <150 25.36 1.62 7222 203 18.01 278 25.76 <140 <750 <240 <380 <240 99.74 
TCM LP51A479_td in vein 2-3-1 td 23.36 5.03 <150 25.40 1.55 12783 <200 17:90 264 25.12 <140 <750 <240 <380 <240 99.69 
TCM LP51A479_td in MS 1-5-1 td 23.20 5.33 <150 24.60 1.46 477 321 18.33 484 26.82 <140 <750 <240 <380 <240 99.87 
TCM Lp51a482_td 1-2-1 td 22.71 5.09 <150 22.36 1.24 <180 <200 20.76 353 26.62 <140 <750 <240 <380 <240 98.85 
TCM LP51A488_td in vein 1-1-1 tn 26.42 5.52 <150 35.36 1.71 111253 797 7.61 <180 12.08 <140 <750 <240 <380 <240 99.92 
TCM LP51A488_td in vein 2-2-1 td 23.60 4.78 <150 26.54 1.77 14568 338 16.83 282 24.73 <140 <750 <240 <380 <240 99.78 
TCM LP51A488_td in MS 1-4-1 td 23.74 5.15 <150 27.50 1.49 28142 522 16.05 <180 23.01 <140 <750 <240 <380 <240 99.82 
TCM LP51A488_td in MS 2-5-1 td 23.29 5.11 <150 26.42 1.45 11290 269 16.89 <180 25.55 <140 <750 <240 <380 <240 99.86 
TCM Lp51a489_td 1-3-1 td 22.53 5.35 <150 22.50 1.79 <180 253 21.07 <180 26.68 <140 <750 <240 <380 <240 99.97 
TCM Lp51a489_td 2-7-1 td 22.78 5.29 <150 22.98 1.20 693 227 20.35 472 26.61 <140 <750 <240 <380 409 99.40 
TCM Lp51a489_td 1-3-1 td 22.73 5.45 <150 22.59 1.64 <180 <200 21.64 230 26.61 <140 <750 <240 <380 <240 100.69 
TCM Lp51a489_td 2-7-1 td 22.81 5.19 213 23.57 1.22 <180 351 20.39 <180 26.60 <140 <750 <240 <380 <240 99.84 

Zone Label 	Atomic °A: Mineral S% Fe% Ni% Cu% Zn% As% Se% Ag% Cd% Sb% Te% Au% Hg% Pb% Bi% Sum A% 
TCM Lp51a477_td 1-6-1 td 44.90 5.81 0.00 22.49 1.17 0.00 0.01 11.88 0.01 13.73 0.00 0.00 0.00 0.00 0.01 100.00 
TCM Lp51a477_td 2-9-1 td 44.67 5.77 0.00 23.34 1.16 0.70 0.02 11.15 0.02 13.16 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A479_td in vein 1-1-1 td 44.63 5.42 0.00 24.53 1.52 0.59 0.02 10.26 0.02 13.00 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A4792d in vein 2-3-1 td 44.64 5.52 0.00 24.50 1.45 1.05 0.01 10.17 0.01 12.64 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A479_td in MS 1-5-1 td 44.66 5.89 0.00 23.90 1.37 0.04 0.03 10.49 0.03 13.60 0.00 0.00 0.00 0.00 0.00 100.00 
TCM Lp51a4822d 1-2-1 td 44.77 5.76 0.00 22.24 1.20 0.00 0.02 12.17 0.02 13.82 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A488_td in vein 1-1-1 tn 45.15 5.41 0.01 30.49 1.43 8.14 0.06 3.87 0.00 5.44 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A488_td in vein 2-2-1 td 44.72 5.20 0.00 25.38 1.64 1.18 0.03 9.48 0.02 12.34 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A488_td in MS 1-4-1 td 44.49 5.54 0.00 26.01 1.37 2.26 0.04 8.94 0.00 11.35 0.00 0.00 0.00 0.00 0.00 100.00 
TCM LP51A488_td in MS 2-5-1 td 44.36 5.58 0.00 25.39 1.35 0.92 0.02 9.56 0.00 12.81 0.00 0.00 0.00 0.00 0.00 100.00 
TCM Lp51a489_td 1-3-1 td 44.06 6.01 0.00 22.20 1.72 0.00 0.02 12.24 0.01 13.74 0.00 0.00 0.00 0.00 0.00 100.00 
TCM Lp51a489_td 2-7-1 td 44.55 5.94 0.01 22.69 1.15 0.06 0.02 11.83 0.03 13.71 0.00 0.00 0.00 0.00 0.01 100.00 
TCM Lp51a489_td 1 -3- 1 td 44.13 6.07 0.01 22.13 1.56 0.00 0.01 12.49 0.01 13.61 0.00 0.00 0.00 0.00 0.00 100.00 
TCM Lp51a4892d 2-7-1 td 44.40 5.80 0.02 23.15 1.16 0.00 0.03 11.80 0.01 13.64 0.00 0.00 0.00 0.00 0.00 100.00 
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Zone Label 	 Weight To: Mineral S% 	Mn Fe% Cu% Zn% Ge 	As 	Se 	Mo 	Ag 	Cd 	Sn% 	Sb 	Te 	Bi 	Sum W% 
detection limits (ppm): 270 	260 	320 	370 	470 	820 	380 	280 	560 	350 	520 500/170 380 	320 1060 

MCM LP36W195_tn 1-4-1 	 st 	29.13 <260 11.75 29.38 1.92 <820 475 1477 5751 <350 <520 	28.20 	<380 <320 <1060 101.27 
MCM LP36W195_tn 2-5-1 	 st 	29.37 <260 11.51 28.33 3.97 <820 <380 1039 5163 , 440 <520 	27.59 	<380 <320 <1060 	101.51 
MCS Ip36w197_st 1-5-1 	 St 	28.96 <260 11.21 28.45 2.94 	- 	<380 1368 	- 	<350 564 	27.61 	<380 2172 <1060 	99.61 
MCS 1p36w197_st 2-10-1 	 st 	29.41 <260 10.94 27.47 5.45 	- 	<380 1860 	<350 1112 	28.02 	<380 1597 <1060 	101.75 
MFS LP36W207_tn 1-2-1 	 St 	29.63 <260 11.31 29.17 2.26 <820 <380 1261 4989 <350 <520 	29.09 	<380 <320 <1060 	102.14 
MFS LP36W207in 2-8-1 	 st 	29.19 303 11.59 28.77 2.85 <820 <380 873 5607 <350 <520 	29.12 	<380 <320 <1060 102.41 
TCM LP46a126_st-1-5-1 	 st 	29.67 <260 11.04 29.29 2.14 	- 	<380 1452 	- 	<350 658 	28.25 	<380 2801 <1060 	100.95 
TCM LP46a126_st-2-6-1 	 St 	29.62 <260 11.08 27.63 4.31 	- 	<380 985" 	- 	<350 <520 	26.77 	<380 2134 <1060 	99.75 
TCM LP46a126_st-3-13-1 	 St 	29.92 <260 11.00 29.27 2.55 	<380 1562 	<350 <520 	28.68 	<380 1958 <1060 	101.78 
TCM LP51a477_st-1-10-1 	 St 	29.46 <260 11.54 29.17 2.58 	<380 1608 	<350 <520 	27.47 	<380 2209 <1060 	100.74 
TCM LP51a477_st-2-11-1 	 St 	29.68 <260 11.33 28.95 3.09 	<380 1889 	<350 <520 	27.71 	<380 2674 <1060 	101.30 
TCM LP51a477_st-3- 12- 1 	 st 	30.44 <260 11.20 28.52 3.48 	 <380 1889 	 <350 <520 	27.50 	<380 2748 <1060 	101.66 
TCM LP51a479_st- in vein-1-2-1 	St 	29.71 <260 10.57 28.36 4.61 	513 	1577 	<350 553 	27.18 	<380 2713 <1060 	100.99 
TCM 	LP51a479_st- in vein-2-4-1 	St 	30.03 <260 11.34 29.31 	2.46 	- 	672 	1255 	- 	<350 <520 	27.82 	<380 1889 <1060 	101.39 
TCM LP51A479_ 	 st 	29.10 269 10.89 29.10 3.15 <820 771 	737 4650 <350 546 	28.59 	<380 <320 <1060 101.61 
TCM LP51A479_ 	 St 	28.95 <260 11.22 29.46 2.26 2313 <380 1239 5162 <350 <520 	28.80 	<380 <320 <1060 101.74 

Zone Label 	Atomic %: Mineral S% Mn% Fe% Cu% Zn% Ge% As% Se% Mo% Ag% Cd% Sn% Sb% Te% Bi°/c. Sum  A%  
MCM LP36W195_tn 1-4-1 	 St 	48.89 0.00 11.32 24.88 	1.58 	0.06 0.03 0.10 	0.32 	0.00 0.00 	12.78 	0.00 0.00 	0.00 	100.00 
MCM LP36W195_tn 2-5-1 	 St 	49.01 	0.00 11.03 23.86 	3.25 	0.00 0.00 0.07 	0.29 	0.02 0.01 	12.44 	0.00 0.00 	0.00 	100.00 
MCS Ip36w197_st 1-5-1 	 St 	49.25 	10.95 24.42 	2.45 	0.02 0.09 	0.00 0.03 	12.69 	0.00 0.09 	0.00 	100.00 
mCS 1p36w197_st 2- 10 - 1 	 St 	49.06 	 10.48 23.13 	4.46 	 0.00 	0.13 	 0.00 0.05 	12.63 	0.00 	0.07 	0.00 	100.00 
MFS 	LP36W207_tn 1-2-1 	 St 	49.35 0.00 10.82 24.51 	1.85 	0.00 0.00 0.09 	0.28 0.00 0.01 	13.09 	0.00 0.00 	0.00 	100.00 
MFS 	LP36W207_tn 2-8-1 	 st 	48.71 	0.03 11.10 24.23 	2.33 	0.05 0.00 0.06 	0.31 	0.01 	0.00 	13.13 	0.00 0.00 	0.02 	100.00 
TCM 	LP46a126_st-1-5-1 	 St 	49.75 	10.63 24.78 	1.76 	0.02 	0.10 	0.00 	0.03 	12.79 	0.00 	0.12 	0.01 	100.00 
TCM 	LP46a126_st-2-6-1 	 St 	49.89 	10.72 23.48 	3.56 	0.00 0.07 	- 	0.00 0.01 	12.18 	0.00 0.09 	0.00 	100.00 
TCM 	LP46a126_st-3-13-1 	 St 	49.76 	10.51 24.57 	2.08 	0.00 0.11 	0.00 0.00 	12.89 	0.00 0.08 	0.00 	100.00 
TCM 	LP51a477_st-1-10-1 	 st 	49.39 	11.11 24.68 	2.12 	0.02 	0.11 	0.02 	0.01 	12.44 	0.00 	0.09 	0.02 	100.00 
TCM 	LP51a477_st 72-11-1 	 St 	49.50 	 10.85 24.36 	2.52 	 0.01 	0.13 	 0.00 	0.02 	12.48 	0.01 	0.11 	0.00 	100.00 
TCM 	LP51a477_st-.3-12-1 	 St 	50.27 	 10.61 23.76 	2.82 	 0.01 	0.13 	 0.00 	0.01 	12.27 	0.00 	0.11 	0.00 	100.00 
TCM 	LP51a479_st-in vein-1-2-1 	st 	49.63 	10.13 23.90 	3.77 	0.04 	0.11 	0.00 	0.03 	12.26 	0.00 	0.11 	0.01 	100.00 
TCM 	LP51a479_st- in vein-2-4-1 	St 	49.89 	10.82 24.57 	2.00 	0.05 0.08 	0.01 	0.02 	12.48 	0.00 0.08 	0.00 	100.00 
TCM 	LP51A479_- 	 st 	48.85 0.03 10.50 24.65 	2.59 	0.00 0.06 0.05 	0.26 0.00 0.03 	12.97 	0.00 0.00 	0.01 	100.00 
TCM 	LP51A479_ - 	 St 	48.64 0.00 10.82 24.98 	1.86 	0.17 0.02 0.08 	0.29 	0.00 0.01 	13.07 	0.00 0.00 	0.00 	100.00 
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Zone Label 	 Weight %: Mineral S% Mn Fe% Cu% Zn% Ge As Se Mo Ag Cd Sn% Sb Te Bi Sum W% 
TCM LP51a482_st-1-6-1 St 29.41 11.17 27.85 4.64 893 1662 <350 803 27.02 <380 2425 <1060 100.68 
TCM LP51a482_st-2-7-1 St 29.56 11.53 28.38 3.85 <380 1555 <350 <520 27.62 <380 3229 <1060 101.49 
TCM LP51a488_st in vein 1-3-1 St 29.70 10.42 28.98 4.11 <380 1254 <350 856 27.47 <380 2798 <1060 101.22 
TCM LP51a488_st in MS 1-6-1 st 29.77 11.26 28.98 3.10 <380 1531 <350 <520 28.21 <380 2095 <1060 101.74 
TCM LP51a488_st in MS 2-7-1 St 29.43 10.93 29.32 3.46 <380 1537 <350 605 28.23 <380 2534 <1060 101.87 
TCM 1p51a489_st in vein 1-8-1 St 29.89 11.42 29.06 2.12 518 1093 <350 <520 29.21 <380 3308 <1060 102.34 
TCM 1p51a489_st in vein 2-14-1 St 29.26 11.47 28.94 1.90 489 1442 <350 <520 29.24 <380 2186 <1060 101.24 
TCM LP51A489_st in vein-1-8-1 St 30.05 11.27 29.51 2.41 <380 1625 <350 <520 27.79 <380 2468 <1060 101.46 
TCM LP51A489_st in vein-2-14-1 St 29.83 11.41 29.34 1.90 <380 1143 <350 <520 28.20 <380 3023 <1060 101.15 
MFS Lp12w3439_st-1-8-1 st/sph 29.86 10.45 26.20 7.25 <380 1210 <350 <520 23.74 <380 2074 <1060 97.85 
MFS Lp12w3439_st-2-9-1 st/sph 30.21 8.52 20.70 19.15 <380 1319 <350 712 19.70 <380 1569 <1060 98.63 
CCP LP66374_ccp agg 1-1-1 ccp 34.86 30.87 34.63 0.04 <380 470 536 <520 0.08 <380 <320 1338 100.71 
CCP LP66374_ccp agg 2-7-1 ccp 34.83 30.21 34.16 0.03 <380 301 556 <520 0.12 <380 <320 1226 99.57 
CCP Lp66361_ccp agg 1-3-1 ccp 34.88 30.46 34.29 0.06 <380 314 500 641 0.07 <380 <320 1132 100.02 
CCP Lp66361_ccp agg 2-7-1 ccp 34.74 30.57 34.43 0.03 <380 305 370 <520 0.08 <380 <320 1141 100.05 
CCP Lp51aw2433_ccp agg 1-2-1 ccp 0.00 0.00 0.00 0.00 <380 <280 <350 <520 0.00 <380 <320 <1060 0.00 

Zone Label 	 Atomic .3/0: Mineral S% Mn% Fe% Cu% Zn% Ge% As% Se% Mo% Ag% Cd% Sn% Sb% Te% Bi% Sum A% 
TCM LP51a482_st-1-6-1 St 49.31 10.75 23.56 3.82 0.06 0.11 0.00 0.04 12.24 0.00 0.10 0.00 100.00 
TCM LP51a482_st-2-7-1 St 49.26 11.03 23.86 3.15 0.00 0.11 0.00 0.02 12.43 0.00 0.14 0.01 100.00 
TCM LP51a488_st in vein 1-3-1 St 49.58 9.99 24.41 3.36 0.03 0.09 0.00 0.04 12.39 0.01 0.12 0.00 100.00 
TCM LP51a488_st in MS 1-6-1 St 49.51 10.75 24.32 2.53 0.02 0.10 0.00 0.00 12.67 0.01 0.09 0.00 100.00 
TCM LP51a488_st in MS 2-7-1 St 49.07 10.46 24.67 2.83 0.01 0.10 0.00 0.03 12.72 0.01 0.11 0.00 100.00 
TCM 1p51a489_st in vein 1-8-1 St 49.63 10.89 24.35 1.73 0.04 0.07 0.01 0.02 13.10 0.00 0.14 0.02 100.00 
TCM 1p51a489_st in vein 2-14-1 St 49.24 11.08 24.58 1.57 0.04 0.10 0.00 0.01 13.29 0.00 0.09 0.00 100.00 
TCM LP51A489_st in vein-1-8-1 St 49.89 10.74 24.72 1.96 0.01 0.11 0.00 0.01 12.46 0.00 0.10 0.00 100.00 
TCM LP51A489_st in vein-2-14-1 St 49.81 10.94 24.73 1.56 0.02 0.08 0.00 0.01 12.72 0.00 0.13 0.00 100.00 
MFS Lp12w3439_st- 1 -8- 1 st/sph 50.48 10.14 22.35 6.01 0.00 0.08 0.00 0.01 10.84 0.00 0.09 0.00 100.00 
MFS Lp12w3439_st-2-9-1 st/sph 50.04 8.10 17.31 15.56 0.00 0.09 0.00 0.03 8.81 0.00 0.07 0.00 100.00 
CCP LP66374_ccp agg 1-1-1 ccp 49.69 25.26 24.91 0.03 0.00 0.03 0.02 0.00 0.03 0.00 0.00 0.03 100.00 
CCP LP66374_ccp agg 2-7-1 ccp 50.10 24.96 24.80 0.02 0.00 0.02 0.02 0.00 0.05 0.00 0.00 0.03 100.00 
CCP Lp66361_cc-p agg 1-3-1 ccp 49.98 25.06 24.80 0.04 0.00 0.02 0.02 0.03 0.03 0.00 0.00 0.02 100.00 
CCP Lp66361_ccp agg 2-7-1 ccp 49.81 25.17 24.91 0.02 0.00 0.02 0.02 0.00 0.03 0.00 0.00 0.03 100.00 
CCP Lp51aw2433_ccp agg 1-2-1 ccp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Zone Label 	Weight To: Mineral S% 	Mn 	Fe% Cu% Zncro Ge 	As 	Se 	Mo 	Ag 	Cd 	Sn% 	Sb 	Te 	Bi 	Sum W%  
CCP Lp70127_ccp agg 2-5-1 	ccp 	0.00 	0.00 	0.00 	0.00 	<380 <280 	<350 <520 	0.00 	<380 <320 <1060 	0.00 
CCP Lp51aw2433_ccp agg 1-2-1 	ccp 	35.18 	29.99 34.20 0.03 	<380 500 	464 <520 	0.10 	<380 <320 1097 	99.72 
COP Lp70127_ccp agg 2-5-1 	ccp 	34.96 	30.53 34.38 0.00 	<380 281 	407 <520 	0.03 	<380 <320 1679 	100.15 
MCM Lp36W195_sph 2-6-1 	sph 	32.92 	5.15 	0.15 61.71 	<380 <280 	<350 735 	0.03 	<380 <320 <1060 	100.18 
MCM Lp36W195_sph 2-3-1 	sph 	32.96 	7.17 	0.00 58.66 	<380 <280 	<350 923 	0.01 	<380 <320 1204 	99.07 
TOM Lp51a488_sph 2-3-1 	 sph 	32.96 	3.16 	0.14 63.00 	<380 <280 	<350 907 	0.02 	<380 <320 2083 	99.63 

Zone Label 	Atomic %: Mineral S% Mn% Fe% Cu% Zn% Ge% As% Se% Mo% Aro Cd% Sn% Sb% Te% Bi% Sum A%  
CCP 	Lp70127_ccp agg 2-5-1 	ccp 	0.00 	0.00 	0.00 	0.00 	0.00 0.00 	0.00 0.00 	0.00 	0.00 0.00 	0.00 	0.00 
CCP 	Lp51aw2433_ccp agg 1-2-1 	ccp 	50.44 	24.69 24.74 0.02 	0.00 0.03 	0.02 0.00 	0.04 	0.00 0.00 	0.02 	100.00 
COP 	Lp70127_ccp agg 2-5-1 	ccp 	50.02 	25.08 24.82 	0.00 	0.00 0.02 	0.02 0.00 	0.61 	0.00 0.00 	0.04 	100.00 
MCM Lp36W195_sph 2-6-1 	sph 	49.67 	4.46 	0.11 	45.67 	0.00 0.01 	0.01 	0.03 	0.01 	0.01 	0.00 	0.02 	100.00 
MOM Lp36W195_sph 2-3-1 	sph 	50.00 	- 	6.25 	0.00 43.65 	0.00 0.01 	0.01 	0.04 	0.00 	0.00 0.00 	0.03 	100.00 
TOM 	Lp51a488_sph 2-3-1 	 sph 	50.07 	2.76 	0.11 	46.94 	0.00 0.02 	0.01 	0.04 	0.01 	0.00 0.00 	0.05 	100.00 

Zone Label 	 Mineral 
detection limits (ppm): 

S% 
130 

Fe% 
180 

Cu% 
250 

Analysed weight % 
Zn 	Se 

250 	260 
Ag 
90 

Pb 
1000 

Sum W% S% Fe% Cu% 
Calculated atomic % 

Zn% • 	Se% Ag% PV/0 Sum W% 

MCM LP18365b_ccp 1-7-1 ccp 38.39 30.01 33.63 1072 <260 <90 <1000 102.16 52.84 23.72 23.36 0.07 - 0.01 0.00 0.00 100.00 
TCM LP51A479_ccp in vein ccp 38.37 29.64 33.59 542 <260 <90 <1000 101.68 53.02 23.51 23.42 0.04 0.01 0.00 0.00 100.00 
TCM LP51A479_ccp 2-21-1 ccp 38.80 29.88 33.57 6786 <260 <90 <1000 102.94 52.98 23.42 23.13 0.45 0.00 0.00 0.00 100.00 
CCP LP66361_ccp 2-2-1 ccp 38.54 29.80 34.04 <250 <260 191 <1000 102.42 52.91 23.49 23.58 0.00 0.01 0.01 0.00 100.00 
CCP LP66361_ccp 1-1-1 ccp 38.63 29.66 33.91 306 342 134 <1000 102.27 53.06 23.39 23.50 0.02 0.02 0.01 0.00 100.00 
LBZ LP63415_ccp 1-3-1 ccp 38.76 29.99 34.21 356 <260 <90 <1000 103.03 52.90 23.50 23.56 0.02 0.01 0.00 0.00 100.00 
COP LP51AW2433_ccp 2-5-1 ccp 38.99 30.35 34.40 <250 301 <90 <1000 103.80 52.84 23.61 23.52 0.01 0.02 0.00 0.00 100.00 
TCS LP6713965_ccp 1-4-1 ccp 38.91 29.81 33.86 <250 <260 <90 <1000 102.61 53.21 23.40 23.36. 0.01 0.01 0.00 0.00 100.00 
MCM LP36W195_ccp 1-9-1 ccp 38.52 29.95 34.00 998 593 146 <1000 102.65 52.80 23.57 23.52 0.07 0.03 0.01 0.00 100.00 
MCM LP36W195_ccp 2-20-1 ccp 38.70 29.61 33.59 <250 <260 130 <1000 101.95 53.25 23.40 23.32 0.01 0.01 0.01 0.00 100.00 
MFS LP12555_ccp 1-6-1 ccp 38.93 29.91 34.57 1783 <260 154 <1000 103.64 52.86 23.32 23.69 0.12 0.00 0.01 0.01 100.00 
LBZ LP44243_ccp 1-6-1 ccp 38.74 29.93 33.94 <250 <260 994 <1000 102.73 53.00 23.51 23.44 0.00 0.01 0.04 0.00 100.00 
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Zone Label 	 Weight %: Mineral S% Mn Fe Cu% Zn Se Mo Ag`)/0 Sn Sb% To Bi% Sum W% 
detection limits (ppm): 270 260 320 370 470 280 560 350 500 380 320 1060 

CCP LP66361_mineral x Bi 0 490 <320 0 <470 <280 1150 0 <500 0.103 <320 101.51 101.88 
CCP LP66361_mineral x1 Bi 0.029 <260 730 0.5 <470 <280 <560 0 <500 0.036 <320 99.90 100.58 
CCP LP700695_pg in vein 1-5-1 dg 22.57 <260 3570 77.22 <470 <280 3740 0.041 <500 0.037 <320 1.00 101.66 
CCP LP700695_pg in vein 2-6-1 dg 22.52 <260 16830 77.76 <470 <280 4340 0.002 <500 0 <320 1.00 103.50 
MCM Lp18365b_co 4-9-1 Pg 19.71 <260 1980 1.249 540 <280 2780 60.77 <500 23.33 <320 1.00 106.60 
MCM Lp18365b_co 2-2-1 Pg 18.51 <260 750 1.038 490 <280 2750 63.56 2070 21.39 <320 1.00 106.10 

Zone Label 	 Atomic %: Mineral S% Mn% Fe% Cu% Zn% Se% Mo% Ag% Sn% Sb% Te% Bi% Sum A% 
CCP LP66361_mineral x Bi 0.00 0.18 0.00 0.00 0.06 0.07 0.25 0.00 0.06 0.17 0.04 99.17 100.00 
CCP LP66361_mineral x1 Bi 0.19 0.03 0.27 1.61 0.07 0.03 0.00 0.00 0.00 0.06 0.00 97.75 100.00 
CCP LP700695_pg in vein 1-5-1 dg 36.37 0.00 0.33 62.78 0.00 0.01 0.20 0.02 0.02 0.02 0.00 0.25 100.00 
CCP LP700695_pg in vein 2-6-1 dg 35.72 0.00 1.53 62.21 0.03 0.02 0.23 0.00 0.00 0.00 0.01 0.24 100.00 
MCM Lp18365b_co 4-9-1 pg 43.87 0.00 0.25 1.40 0.06 0.00 0.21 40.19 0.00 13.67 0.00 0.34 100.00 
MCM Lp18365b_co 2-2-1 pg 42.14 0.00 0.10 1.19 0.05 0.00 0.21 43.01 0.13 12.82 0.00 0.35 100.00 

Analysed weight % Calculated atomic % 
Zone Label Mineral Cu% Aro Au% Hg% Bi% Sum % Cu% Ag% Au% Hg% Bi% Sum % 

detection limits (ppm): 210 152 1440 750 450 
MCM LP18365b_el el 0.03 57.48 37.54 5.52 0.00 100.57 0.06 70.91 25.36 3.66 0.00 100.00 
MCM LP18365b_el el 0.01 58.67 35.95 5.62 0.00 100.25 0.01 72.09 24.19 3.71 0.00 100.00 
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Sample Mineral Location Unit 
LPD103 ca Licking Hole Creek Anson Fm 
MRV18 ca Calula creek MRV 
MRV39 ca Calula limestone quarry M RV 
LP44201A ca upper limstone lens fault-bound 
LP44201B ca upper limstone lens fault-bound 
LP44211 ca upper limstone lens fault-bound 
LP44229A ca lower limestone lens fault-bound 
LP44229B ca lower limestone lens fault-bound 
LP58087 ca upper limstone lens fault-bound 
LP58155 impure ca upper limstone lens fault-bound 
LP63201 ca upper limstone lens fault-bound 
LP63223 impure ca upper limstone lens fault-bound 
LP63266 ca upper limstone lens fault-bound 
LP63376 ca lower limestone lens fault-bound 
LP69191 ca upper limstone lens fault-bound 
LP12530 ca Main zone footwall Transitional 
LP12539 ca Main zone footwall Transitional 
LP18392 ca Main zone footwall Transitional 
LP 18405 ca Main zone footwall Transitional 
LP20388 ca Main zone footwall Transitional 
LP20388 ca Main zone footwall Transitional 
LP20388 ca Main zone footwall Transitional 
LP20388 ca Main zone footwall Transitional 
LP33427 ca Main zone footwall Transitional 
LP36W262 ca Main zone footwall Transitional 
LP37238 ca Main zone footwall Transitional 
LPD001 ca Main zone footwall Transitional 
LP12530 ca + dol Main zone footwall Transitional 
LP12530 impure ca Main zone footwall Transitional 
LF43231 ca Main zone footwall Transitional 
LP66374 impure ca footwall Cu zone WVS 
LP66376 impure ca footwall Cu zone WVS 
LP44243 impure ca Lady Be!more zone HST 
LP44290 ca + dol Lady Belmore zone HST 
LP63392 impure ca Lady Belmore zone HST 
LP67BW11132 ca Toms Zone hangingwall HST 
LP12440 dol Main zone hangingwall Transitional 

Description 
crinoidal limestone 
coralline limestone 
crinoidal limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
massive limestone 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast 
limestone clast from quarry 
altered limestone clast 
altered limestone clast 
altered limestone clast 
type lA ca-ccp-py vein 
type lA ca-ccp-py vein 
ca-py-sph-ga band 
perv ca-dol-chl 
pervasive qtz-ca 
patchy calcite 
massive dolomite 

8 13C (PDB) Precision 8 180 (PDB) Precision 8 180 (V-SMOW) 
2.181 0.010 -6.411 0.012 24.251 
2.778 0.023 -6.366 0.016 24.298 
5.056 0.014 -2.779 0.012 27.995 
0.825 0.009 -17.179 0.021 13.151 
0.314 0.011 -17.076 0.01 13.257 
0.667 0.011 -17.409 0.015 12.914 
-0.199 0.019 -18.045 0.024 12.258 
-1.762 0.015 -18.468 0.016 11.822 
1.747 0.005 -10.295 0.014 20.248 
0.088 0.005 -17.345 0.010 12.979 
1.565 0.005 -13.200 0.007 17.253 
1.901 0.003 -13.935 0.006 16.495 
1.321 0.002 -15.952 0.013 14.416 
0.712 0.002 -20.279 0.019 9.955 
0.938 0.033 -16.483 0.017 13.868 
1.239 0.011 -14.185 0.009 16.237 
0.008 0.011 -14.899 0.014 15.502 
0.944 0.007 -14.996 0.011 15.402 
1.311 0.008 -13.893 0.011 16.538 
0.594 0.041 -15.804 0.01 14.568 
0.268 0.028 -15.609 0.008 14.769 
0.501 0.079 -15.639 0.016 14.738 
0.056 0.041 -15.626 0.015 14.752 
-0.19 0.025 -15.688 0.014 14.688 
1.309 0.009 -14.407 0.006 16.008 
1.522 0.005 -14.500 0.011 15.912 
-0.150 0.006 -14.018 0.009 16.409 
-4.54 0.024 -15.123 0.015 15.270 

-0.641 0.035 -15.372 0.014 15.014 
-1.526 0.004 -19.281 0.010 10.984 
-3.236 0.019 -20.622 0.025 9.602 
-1.09 0.012 -20.494 0.031 9.734 
-3.483 0.018 -18.896 0.033 11.381 
-5.263 0.009 -19.88 0.015 10.367 
-1.382 0.024 -19.289 0.007 10.976 
-3.672 0.023 -19.352 0.01 10.911 
-2.757 0.010 -17.275 0.004 13.052 

Appendix 6 - carbon -oxygen isotope data and models page 1 of 5 



Sample Mineral Location Unit 
LP12476 impure ca Main zone Transitional 
LP12493 dol Main zone footwal I Transitional 
LP12503 impure ca Main zone footwall Transitional 
LP12521 dol Main zone footwall Transitional 
LP18371 dol Main zone footwall Transitional 
LP33346 dol Main zone hangingwall Transitional 
LP33379 dol Main zone hangingwall Transitional 
LP33390 dol Main zone hangingwall Transitional 
LP33405 dol Main zone Transitional 
LP36W195 impure ca Main zone Transitional 
LP36W214 dol Main zone footwall Transitional 
LP37165 impure ca Main zone Transitional 
LP18336 dol Main zone footwall Transitional 
LP18382 dol Main zone footwall Transitional 
LP36W206 impure dol Main zone Transitional 
LP36W206 impure dol Main zone Transitional 
LP43231B dol Main zone footwall Transitional 
LP43235A dol Main zone footwall Transitional 
LP45260 dol Main zone footwall Transitional 
LP51A496 impure dol Toms zone HST 

LP51A484 dol Toms zone HST 
LP51A492 impure dol Toms zone HST 
LP51A496 dol Toms zone HST 
LP51A503 dol Toms zone footwall HST 
LP67B687 dol Toms Zone footwall HST 
LP51A479 . impure dol Toms zone HST 
LP51A484 dol Toms zone HST 
LP51A489 impure dol Toms zone HST 
LP51AW2433 impure dol Toms zone footwall HST 
LP65A899 dol south of Toms zone HST 

intense perv dol-tIc-chl 
massive dolomite 
massive dolomite 
massive dolomite 
patchy dolomite 
massive dolomite 
massive dolomite 
massive dolomite 
patchy dolomite-chlorite 
massive calcite 
massive dolomite 
patchy dolomite-chlorite 
altered limestone clast 
altered limestone clast 
altered limestone clast 
altered limestone clast 
altered limestone clast 
altered limestone clast 
altered limestone clast 
massive dolomite 
massive dolomite 
massive dolomite 
patchy dolomite 
patchy dolomite 
pervasive dolomite 
type 2 dol-ccp vein 
type 2 dol vein 
type 2 dol-ccp vein 
type 2 dol-ccp vein 
type 2 dol-ccp vein 

-1.588 0.009 -17.279 0.010 13.048 
-10.971 0.012 -18.978 0.011 11.296 
0.050 0.017 -16.486 0.012 13.865 
-2.361 0.015 -15.495 0.011 14.887 
0.851 0.021 -15.741 0.017 14.634 
0.901 0.011 -15.690 0.018 14.686 
-2.016 0.020 -17.334 0.018 12.991 
0.086 0.029 -17.527 0.016 12.792 
-0.531 0.010 -16.051 0.016 14.314 
-5.292 0.017 -18.738 0.031 11.544 
-7.517 0.007 -16.690 0.009 13.655 
-5.696 0.026 -17.087 0.014 13.246 
-3.973 0.005 -17.688 0.006 12.627 
-4.676 0.008 -14.138 0.013 16.285 
-4.757 0.009 -14.105 0.008 16.320 
-6.179 0.013 -16.315 0.014 14.042 
-1.593 0.006 -18.595 0.013 11.691 
0.033 0.005 -18.290 0.005 12.006 

-11.001 0.029 -19.046 0.033 11.226 
-3.487 0.023 -19.487 0.024 10.772 
-1.296 0.004 -19.628 0.006 10.626 
-4.871 0.007 -20.322 0.009 9.911 
-6.320 0.004 -19.576 0.005 10.680 
-6.834 0.009 -21.347 0.009 8.854 
-8.283 0.005 -23.502 0.013 6.633 
-3.781 0.016 -17.198 0.024 13.131 
-4.980 0.008 -23.566 0.004 6.566 
-3.865 0.014 -20.199 0.018 10.038 
-8.968 0.018 -22.535 0.022 7.630 
-7.679 0.012 -21.952 0.014 8.231 

Description 	 8 13C(PDB) Precision 8 180(PDB) 	Precision 	8 ' 80(V-SMOW) 

Notes: 
All samples analysed at the University of Tasmania, Central Science Laboratory 
Powdered carbonate samples were dissolved in H3PO4 and placed in a sealed vessel for analyis by a stable isotope mass spectrometer 
Mineral abbreviations: ca = calcite, dol = dolomite, qtz = quartz, py = pyrite, sph = sphalerite, ccp = chaclopyrite 
Unit abbreviations: WVS = Western Volcanic Succession, HST = Hangingwall Siltstone Unit 
Drill core samples are numbered: 'LP, drill hole number and depth (last 3 digits)' 
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Fluid-Rock Interaction Models: 

X CO  T(°C) system W/R 	2 

Rock 

8 180 1 	8 13 C'  calcite 	ealcue 

Fluid 

818 0flutd  1 	Vc, 
Fractionation Factors 

ei'oVc 	6."C`t ," 

Calcite  Compositions 
8180.1.e 	613ccaic.  

150 open 0.02 0.1 

T
q
'

9)  

("1 	
c;1 	

c;i 	
c;i 	

c;i  c;i 	
c;1 	

C:1  C
:1 	

C:1  C
;I  C

;I  C
.

1  C
:1 	

C;I 	
C:1  C

1  C
:1  C

1  C
1 	

C
1 	

C:1 

 

C
C

J
C

C
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24.25 2.50 12.64 0.95 2.48 23.98 
150 open 0.5 0.1 24.25 2.50 12.64 0.95 1.99 18.89 
150 open 1 0.1 24.25 2.50 12.64 0.95 1.50 15.64 
150 open 2 0.1 24.25 2.50 12.64 0.95 0.59 12.48 
150 open 5 0.1 24.25 2.50 12.64 0.95 -1.65 10.73 
150 open 10 0.1 24.25 2.50 12.64 0.95 -4.17 10.64 
150 open 50 0.1 24.25 2.50 12.64 0.95 -7.98 10.64 
150 open 100 0.1 24.25 2.50 12.64 0.95 -8.05 10.64 
150 open 500 0.1 24.25 2.50 12.64 0.95 -8.05 10.64 
150 closed 0.02 0.1 24.25 2.50 12.64 0.95 2.48 23.98 
150 closed 0.5 0.1 24.25 2.50 12.64 0.95 2.00 19.71 
150 closed 1 0.1 24.25 2.50 12.64 0.95 1.54 17.44 
150 closed 2 0.1 24.25 2.50 12.64 0.95 0.74 15.17 
150 closed 5 0.1 24.25 2.50 12.64 0.95 -1.02 12.90 
150 closed 10 0.1 24.25 2.50 12.64 0.95 -2.77 11.87 
150 closed 50 0.1 24.25 2.50 12.64 0.95 -6.29 10.90 
150 closed 100 0.1 24.25 2.50 12.64 0.95 -7.09 10.77 
150 closed 500 0.1 24.25 2.50 12.64 0.95 -7.84 10.66 
250 open 0.02 0.1 24.25 2.50 7.27 -1.86 2.47 23.87 
250 open 0.5 0.1 24.25 2.50 7.27 -1.86 1.85 16.78 
250 open 1 0.1 24.25 2.50 7.27 -1.86 1.23 12.25 
250 open 2 0.1 24.25 2.50 7.27 -1.86 0.08 7.84 
250 open 5 0.1 24.25 2.50 7.27 -1.86 -2.76 5.40 
250 open 10 0.1 24.25 2.50 7.27 -1.86 -5.94 5.27 
250 open 50 0.1 24.25 2.50 7.27 -1.86 -10.77 5.27 
250 open 100 0.1 24.25 2.50 7.27 -1.86 -10.86 5.27 
250 open 500 0.1 24.25 2.50 7.27 -1.86 -10.86 5.27 
250 closed 0.02 0.1 24.25 2.50 7.27 -1.86 2.47 23.88 
250 closed 0.5 0.1 24.25 2.50 7.27 -1.86 1.86 17.92 
250 closed 1 0.1 24.25 2.50 7.27 -1.86 1.29 14.76 
250 closed 2 0.1 24.25 2.50 7.27 -1.86 0.27 11.60 
250 closed 5 0.1 24.25 2.50 7.27 -1.86 -1.95 8.43 
250 closed 10 0.1 24.25 2.50 7.27 -1.86 -4.18 6.99 
250 closed 50 0.1 24.25 2.50 7.27 -1.86 -8.63 5.64 
250 closed 100 0.1 24.25 2.50 7.27 -1.86 -9.64 5.46 
250 closed 500 0.1 24.25 2.50 7.27 -1.86 -10.60 5.31 
150 open 0.02 0.1 24.25 2.50 15.87 2.13 2.48 24.04 
150 open 0.5 0.1 24.25 2.50 15.87 2.13 2.04 20.17 
150 open 1 0.1 24.25 2.50 15.87 2.13 1.61 17.69 
150 open 2 0.1 24.25 2.50 15.87 2.13 0.80 15.28 
150 open 5 0.1 24.25 2.50 15.87 2.13 -1.19 13.94 
150 open 10 0.1 24.25 2.50 15.87 2.13 -3.43 13.87 
150 open 50 0.1 24.25 2.50 15.87 2.13 -6.81 13.87 
150 open 100 0.1 24.25 2.50 15.87 2.13 -6.87 13.87 
150 open 500 0.1 24.25 2.50 • 15.87 2.13 -6.87 13.87 
150 closed 0.02 0.1 24.25 2.50 15.87 2.13 2.48 24.05 
150 closed 0.5 0.1 24.25 2.50 15.87 2.13 2.05 20.79 
150 closed 1 0.1 24.25 2.50 15.87 2.13 1.65 19.06 
150 closed 2 0.1 24.25 2.50 15.87 2.13 0.94 17.33 
150 closed 5 0.1 24.25 2.50 15.87 2.13 -0.62 15.60 
150 closed 10 0.1 24.25 2.50 15.87 2.13 -2.19 14.82 
150 closed 50 0.1 24.25 2.50 15.87 2.13 -5.31 14.08 
150 closed 100 0.1 24.25 2.50 15.87 2.13 -6.02 13.97 
150 closed 500 0.1 24.25 2.50 15.87 2.13 -6.69 13.89 
250 open 0.02 0.1 24.25 2.50 9.69 -1.03 2.47 23.92 
250 open 0.5 0.1 24.25 2.50 9.69 -1.03 1.89 17.74 
250 open 1 0.1 24.25 2.50 9.69 -1.03 1.31 13.78 
250 open 2 0.1 24.25 2.50 9.69 -1.03 0.23 9.93 
250 open 5 0.1 24.25 2.50 9.69 -1.03 -2.43 7.80 
250 open 10 0.1 24.25 2.50 9.69 -1.03 -5.42 7.69 
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X TrC) system W/R 	CO2 

Rock 

818dcalcite 	813 Cci  alche 

. 	Fluid 

818  ° :luid 	613C 'fluid 

Fractionation. Factors 

A1813ca-k(>1' 	Al3Ccg,fie  

Calcite -
Compositions 

8 180calcitc 	813CcaId1e 

250 open - 	50 0.1 

9)
9)

T
T

9
)  

cic
ic

J
(;4c;Ic

Jc
ic

ic
i

ci
c;1

.1  

24.25 2.50 9.69 -1.03 -9.95 7.69 
250 open 100 0.1 24.25 2.50 9.69 -1.03 -10.03 7.69 
250 open 500 0.1 24.25 2.50 9.69 -1.03 -10.03 7.69 
250 closed 0.02 0.1 24.25 2.50 9.69 -1.03 2.47 23.93 
250 closed 0.5 0.1 24.25 2.50 9.69 1.03 1.90 18.73 
250 closed 1 0.1 24.25 2.50 9.69 -1.03 1.36 15.97 	. 
250 closed 2 0.1 24.25 2.50 9.69 -1.03 0.41 13.21 
250 closed 5 0.1 24.25 2.50 9.69 -1.03 -1.68 10.45 
250 closed 10 0.1 -24.25 2.50 9.69 -1.03 -3.77 9.20 
250 closed 50 0.1 24.25 2.50 9.69 -1.03 -7.94 8.02 
250 closed 100 . 0.1 24.25 2.50 9.69 -1.03 -8.89 7.86 	. 
250 closed 500 0.1 24.25 2.50 9.69 -1.03 -9.79 7.73 

Fluid Mixina Models: 
Fluid A 	Fluid B 	Fractionation factors 	Dolomite compositions 	Fluid compositions 

Xa 	P 	T(°C) 	8180. 	813Ca 	8180b 	813Cb 	.6,180 	.6.13Cckril` 	8180dbionute 	513ccwom8e 	8180f md 	813cfluid 

0.00 	0.10 	350 	-2 	-0.50 	10 	-9 	6.24 	-2.42 	-11.42 	16.24 	-9.00 	10.00 
0.10 	0.10 	325 	-2 	-0.50 	10 	-9 	6.94 	-2.17 	-6.70 	15.74 	-4.53 	8.80 
0.20 	0.10 	300 	-2 	-0.50 	10 	-9 	7.74 	-1.87 	-4.79 	15.34 	-2.93 	7.60 
0.30 	0.10 	275 	-2 	-0.50 	10 	-9 	8.65 	-1.49 	-3.60 	15.05 	-2.11 	6.40 
0.40 	0.10 	250 	-2 	-0.50 	10 	-9 	9.69 	-1.03 	-2.64 	14.89 	-1.61 	5.20 
0.50 	0.10 	225 	-2 	-0.50 	10 	-9 	10.90 	-0.47 	-1.74 	14.90 	-1.27 	4.00 
0.60 	0.10 	200 	-2 	-0.50 	10 	-9 	12.29 	0.23 	-0.80 	15.09 	-1.03 	2.80 
0.70 	0.10 	175 	-2 	-0.50 	10 	-9 	13.93 	1.08 	0.23 	15.53 	-0.85 	1.60 
0.80 	0.10 	150 	-2 	70.50 	10 	-9 	15.87 	2.13 	1.42 	16.27 	-0.71 	0.40 
0.90 	0.10 	125 	-2 	-0.50 	10 	-9 	18.19 	3.42 	2.83 	17.39 	-0.59 	-0.80 
1.00 	0.10 	100 	-2 	-0.50 	10 	-9 	20.98 	5.03 	4.53 	18.98 	-0.50 	-2.00 
0.00 	1 	350 	-2 	-0.50 	10 	-9 	6.24 	-2.42 	-11.42 	16.24 	-9.00 	10.00 
0.10 	1 	325 	-2 	-0.50 	10 	-9 	6.94 	-2.17 	-10.32 	15.74 	-8.15 	8.80 
0.20 	1 	300 	-2 	-0.50 	10 	-9 	7.74 	-1.87 	-9.17 	15.34 	-7.30 	7.60 
0.30 	1 	275 	-2 	-0.50 	10 	-9 	8.65 	-1.49 	-7.94 	15.05 	-6.45 	6.40 
0.40 	1 	250 	-2 	-0.50 	10 	-9 	9.69 	-1.03 	-6.63 	14.89 	-5.60 	5.20 
0.50 	1 	225 	-2 	-0.50 	10 	-9 	10.90 	-0.47 	-5.22 	14.90 	-4.75 	4.00 
0.60 	1 	200 	-2 	-0.50 	10 	-9 	12.29 	0.23 	-3.67 	15.09 	-3.90 	2.80 
0.70 	1 	175 	-2 	-0.50 	10 	-9 	13.93 	1.08 	-1.97 	15.53 	-3.05 	1.60 
0.80 	1 	150 	-2 	-0.50 	10 	-9 	15.87 	2.13 	-0.07 	16.27 	-2.20 	0.40 
0.90 	1 	125 	-2 	-0.50 	10 	-9 	18.19 	3.42 	2.07 	17.39 	-1.35 	-0.80 
1.00 	1 	100 	-2 	-0.50 	10 	-9 	20.98 	5.03 	4.53 	18.98 	-0.50 	-2.00 
0.00 	10 	350 	-2 	-0.50 	10 	-9 	6.24 	-2.42 	-11.42 	16.24 	-9.00 	10.00 
0.10 	10 	325 	-2 	-0.50 	10 	-9 	6.94 	-2.17 	-11.08 	15.74 	-8.91 	8.80 
0.20 	10 	300 	-2 	-0.50 	10 	-9 	7.74 	-1.87 	-10.66 	15.34 	-8.79 	7.60 
0.30 	10 	275 	-2 	-0.50 	10 	-9 	8.65 	-1.49 	-10.14 	15.05 	-8.65 	6.40 
0.40 	10 	250 	-2 	-0.50 	10 	-9 	9.69 	-1.03 	-9.50 	14.89 	-8.47 	5.20 
0.50 	10 	225 	-2 	-0.50 	10 	-9 	10.90 	-0.47 	-8.69 	14.90 	-8.23 	4.00 
0.60 	10 	200 	-2 	-0.50 	10 	-9 	12.29 	0.23 	-7.66 	15.09 	-7.89 	2.80 
0.70 	10 	175 	-2 	-0.50 	10 	-9 	13.93 	1.08 	-6.31 	15.53 	-7.39 	1.60 
0.80 	10 	150 	-2 	-0.50 	10 	-9 	15.87 	2.13 	-4.44 	16.27 	-6.57 	0.40 
0.90 	10 	125 	-2 	-0.50 	10 	-9 	18.19 	3.42 	-1.55 	17.39 	-4.97 	-0.80 
1.00 	10 	100 	-2 	-0.50 	10 	-9 	20.98 	5.03 	4.53 	18.98 	-0.50 	-2.00 
0.00 	0.10 	350 	-2 	-0.50 	2 	-5 	6.24 	-2.42 	-7.42 	8.24 	-5.00 	2.00 
0.10 	0.10 	325 	-2 	-0.50 	2 	-5 	6.94 	-2.17 	-4.80 	8.54 	-2.63 	1.60 
0.20 	0.10 	300 	-2 	-0.50 	2 	-5 	7.74 	-1.87 	-3.65 	8.94 	-1.79 	1.20 
0.30 	0.10 	275 	-2 	-0.50 	2 	-5 	8.65 	-1.49 	-2.84 	9.45 	-1.35 	0.80 
0.40 	0.10 	250 	-2 	-0.50 	2 	-5 	9.69 	-1.03 	-2.12 	_ 	10.09 	-1.09 	0.40 
0.50 	0.10 	225 	-2 	-0.50 	2 	-5 	10.90 	-0.47 	-1.38 	10.90 	-0.91  
0.60 	0.10 	200 	-2 	-0.50 	2 	-5 	12.29 	0.23 	-0.55 	11.89 	-0.78 	-0.40 
0.70 	0.10 	175 	-2 	-0.50 	2 	-5 	13.93 	1.08 	0.39 	13.13 	-0.68 	-0.80 
0.80 	0.10 	150 	-2 	-0.50 	2 	-5 	15.87 	2.13 	1.52 	14.67 	-0.61 	-1.20 
0.90 	0.10 	125 	-2 	-0.50 	2 	-5 	18.19 	3.42 	2.87 	16.59 	-0.55 	-1.60 
1.00 	0.10 	100 	-2 	-0.50 	2 	-5 	20.98 	5.03 	4.53 	18.98 	-0.50 	-2.00 
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00' 3- 	09' 0- 8684 	ETV E0'9 	86'0Z 6- 	Z 090- 	Z- 004 	01. 	001. 

09' 4 - 	L6' V- 6991. 	99' I.- 31E 	6481. 6- 	3 09'0- 	Z- 931. 	01. 	060 
LT 9- L9174 	17117-  L891. 6- 	Z 09'0- 	Z- 091. 	01. 	080 

080- 6E'L- EVE!. 	1-E*9-  80'1. 	86'E I. 6- 	Z 09'0- 	Z- 9L1. 	01. 	0E0 
01°- 	68'L- 68' 	991-  EZ'O 	6331. 6- 	Z 09'0- 	3-  003 	01. 	090 
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Sample Chip Label Shape Size Tm Th Salinity Final Temp 
m) (°C) (°C) (at 1000m) 

LP12493 1 A r 9.45 2.2 3.7 
LP12493 1 B r 4.12 2.1 165 3.5 175 
LP12493 1 C r 4.8 2.3 168 3.9 178 
LP12493 1 D r 2.14 3.1 5.1 
LP12493 1 E r 2 2.4 166 4.0 176 
LP12493 1 F r 2.74 2.1 3.5 
LP12493 1 G r 2.89 3.2 5.2 
LP12493 1 H r 3.84 3.2 5.2 
LP12493 1 I r 4.8 3.1 5.1 
LP12493 1 J r 3.73 2.4 4.0 
LP12493 1 M r 7.26 2.9 166 4.8 176 
LP12493 1 N r 6.37 3.3 168 5.4 178 
LP12493 2 A r 5.86 2.8 168 4.6 178 
LP12493 2 B r 8.81 3 170 4.9 180 
LP12493 2 C e 6.21 1.9 171 3.2 181 
LP12493 2 D e 5.69 1.7 171 2.9 181 
LP12493 2 E r 9.13 2.1 175 3.5 185 
LP12493 2 F e 6.9 2 172 3.4 182 
LP12493 3 A r 10.6 2.2 187 3.7 197 
LP12493 3 B e 3.5 2.8 188 4.6 198 
LP12493 3 D r 4.4 2.5 165 4.2 175 
LP12493 3 E e 4.56 2.3 168 3.9 178 
LP12493 3 F r 5.68 2.1 169 3.5 179 
LP12493 3 G r 5.74 2.1 170 3.5 180 
LP12493 3 H r 5.82 2.2 3.7 
LP12493 3 I r 5.61 2.5 4.2 
LP12493 3 J r 4.04 2.2 169 3.7 179 
LP12493 3 K e 7.76 2.6 172 4.3 182 
LP12493 3 L e 7.03 2.3 170 3.9 180 
LP12493 3 M e 4.01 1.9 169 3.2 179 
LP12493 3 0 r 6.23 2 3.4 
LP12493 3 0 r 7.72 2.8 4.6 
LP12493 3 R e 4.67 1.9 3.2 
LP12493 3 S r 5 2 169 3.4 179 
LP12493 3 T e 4.89 1.9 169 3.2 179 
LP12493 3 U r 11.4 1.8 172 3.1 182 
LP12493 3 A r 6.86 2.4 170 4.0 180 
LP12493 3 B r 5.87 2.4 169 4.0 179 
LP12493 3 C r 8.3 2.5 4.2 
LP12493 3 E e 7.76 2.9 171 4.8 181 
LP12493 3 F r 8.04 2.2 3.7 
LP12493 3 G r 5.93 2.5 4.2 
LP12493 3 H r 12.93 2.2 169 3.7 179 
LP12493 3 I r 11.8 2 3.4 
LP12493 3 J r 9.31 2.6 4.3 
LP12493 3 K r 5.69 2.2 168 3.7 178 
LP12493 3 L r 5.67 2.3 168 3.9 178 
LP12493 3 M r 3.11 2.3 3.9 
LP12493 3 N r 6.19 2.2 170 3.7 180 
LP12493 4 A r 8.92 2.8 170 4.6 180 
LP12493 4 B c 8.75 2.7 171 4.5 181 
LP12493 4 C e 3.89 2.2 178 3.7 188 
LP12493 4 E r 3.59 2.5 4.2 
LP12493 4 F c 5.59 2.4 156 4.0 166 
LP12493 4 H c 5.12 4.9 166 7.7 176 
LP12493 4 I r 7.42 4 171 6.4 181 
LP12493 4 J c 9.5 3.9 171 6.3 181 
LP12493 4 K r 6.12 4.1 167 6.6 177 
LP12493 4` L r 11.56 3.8 173 6.1 183 

LP36W214 1 A r 8.42 1.2 183 2.1 193 
LP36W214 1 B r 5.6 2.2 175 3.7 185 
LP36W214 1 C r 2.78 2.5 4.2 
LP36W214 1 D r 5.15 3.1 174 5.1 184 
LP36W214 1 E r 6.07 2.8 173 4.6 183 
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Sample Chip Label Shape Size Tm Th Salinity Final Temp 
(p m) (°C) (°C) (at 1000m) 

LP36W214 1 F r 4.41 2.5 173 4.2 183 
LP36W214 1 G r 4.25 2.4 170 4.0 180 
LP36W214 1 H r 5.34 2.5 170 4.2 180 
LP36W214 1 I r 3.84 2.5 170 4.2 180 
LP36W214 2 A r 8.92 1.9 3.2 
LP36W214 2 • B e 4.18 1.8 3.1 
LP36W214 2 C r 5.39 1.9 3.2 
LP36W214 2 D r 10.03 1.5 2.6 
LP36W214 2 E r 15.88 0.9 205 1.6 215 
LP36W214 2 F r 3.23 1.5 2.6 
LP36W214 2 G r 5.01 2 3.4 
LP36W214 2 H r 4.6 2.1 3.5 
LP36W214 2 I r 4.45 2.2 174 3.7 184 
LP36W214 2 J e 1.72 2 3.4 
LP36W214 2 K e 2.92 2 3.4 
LP36W214 2 L e 2.4 2.1 3.5 
LP36W214 2 M r 4.53 3.6 5.8 
LP36W214 3 A r 4.01 2.5 172 4.2 182 
LP36W214 3 B r 3.53 2.9 172 4.8 182 
LP36W214 3 C r 5.45 2.6 180 4.3 190 
LP36W214 3 D r 2.58 2.9 170 4.8 180 
LP36W214 3 E r 6.44 3 179 4.9 189 
LP36W214 3 F r 2.47 3 173 4.9 183 
LP36W214 3 G r 5.47 3.5 172 5.7 182 
LP36W214 3 H r 6.95 2.9 175 4.8 185 
LP36W214 3 I r 2.88 3.5 5.7 
LP36W214 3 J r 4.87 2.4 170 4.0 180 
LP36W214 3 K r 3.73 2.8 170 4.6 180 
LP36W214 3 L r 3.9 2.7 172 4.5 182 
LP36W214 4 A r 5.29 2.6 170 4.3 180 
LP36W214 4 B r 3.18 2.5 170 4.2 180 
LP36W214 4 D r 3.63 2.8 170 4.6 180 
LP36W214 4 E r 2 3.2 170 5.2 180 
LP36W214 4 F r 4.44 2.5 173 4.2 183 
LP36W214 4 G r 3.34 2 171 3.4 181 
LP36W214 4 H r 2.56 2.5 171 4.2 181 
LP36W214 4 I r 3.93 2.5 165 4.2 175 
LP36W214 4 J r 5.52 2.3 165 3.9 175 
LP36W214 5 A r 3.97 2.5 175 4.2 185 
LP36W214 5 B r 4.68 2.6 177 4.3 187 
LP36W214 5 C r 6.21 2.6 179 4.3 189 
LP36W214 5 D r 9.89 2.6 174 4.3 184 
LP36W214 5 E r 3.64 2.6 175 4.3 185 
LP36W214 5 F r 6.45 1.9 186 3.2 196 
LP36W214 5 G r 6.33 1.8 175 3.1 185 
LP36W214 5 H r 4.01 2.8 172 4.6 182 
LP36W214 5 I r 7.74 2.6 173 4.3 183 
LP36W214 5 J r 3.53 2.6 172 4.3 182 
LP36W214 5 K r 3.78 2.6 175 4.3 185 
LP36W214 5 L r 4.86 2.5 4.2 
LP36W214 5 M r 6.9 172 182 
LP36W214 5 N r 7.7 186 196 
LP36W214 5 0 r 3.34 222 232 
LP36W214 6 A r 4.04 175 185 
LP36W214 6 B r 3.49 173 183 
LP36W214 7 A r 6.33 171 181 
LP36W214 7 B r 4.71 172 182 
LP36W214 7 C r 7.01 171 181 
LP36W214 7 D r 2.9 168 178 
LP36W214 7 E r 3.75 171 181 
LP36W214 7 F e 2.47 171 181 
LP36W214 7 G r 4.45 168 178 
LP36W214 7 H r 4.08 168 178 
LP36W214 7 I r 3.8 163 173 
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Sample 	Chip 	Label 	Shape 	Size 	Tm 	Th 	Salinity Final Temp 
(u m) 	(°C) 	(°C) 	 (at 1000m) 

LP36W214 	7 	J 	e 	2.5 	 163 	 173 
LP36W214 	7 	K 	r 	4.89 	 167 	 177 
LP36W214 	7 	L 	r 	3.4 	 160 	 170 
LP51A484 	1 	A 	r 	8.11 	2.8 	174 	4.6 	184 
LP51A484 	1 	B 	r 	9.25 	2.4 	177 	4.0 	187 
LP51A484 	1 	C 	e 	6.07 	2.9 	174 	4.8 	184 
LP51A484 	1 	D 	r 	4.01 	4.6 	 7.3 
LP51A484 	1 	E 	r 	6 	2.8 	174 	4.6 	184 
LP51A484 	1 	F 	r 	9.62 	2.4 	 4.0 
LP51A484 	1 	G 	r 	5.17 	2.8 	177 	4.6 	187 
LP51A484 	2 	A 	r 	4.04 	2.9 	 4.8 
LP51A484 	2 	C 	r 	5.53 	2.7 	 4.5 
LP51A484 	2 	D 	r 	4.64 	1.8 	173 	3.1 	183 
LP51A484 	2 	E 	r 	7.82 	2.4 	175 	4.0 	185 
LP51A484 	2 	F 	r 	4.72 	2.5 	197 	4.2 	207 
LP51A484 	2 	H 	r 	4.58 	2.5 	180 	4.2 	190 
LP51A484 	2 	I 	r 	7.9 	2.3 	181 	3.9 	191 
LP51A484 	2 	L 	r 	4.01 	1.5 	181 	2.6 	191 
LP51A484 	2 	K 	r 	5.4 	2.9 	180 	4.8 	190 
LP51A484 	2 	L 	r 	4.64 	2.7 	177 	4.5 	187 
LP51A484 	2 	M 	c 	6.32 	2.1 	 3.5 
LP51A484 	2 	N 	r 	4.15 	1.9 	 3.2 
LP51A484 	2 	0 	r 	6.44 	2.3 	 3.9 
LP51A484 	2 	P 	r 	3.89 	2.5 	192 	4.2 	202 
LP51A484 	3 	A 	e 	7.31 	2 	 3.4 
LP51A484 	3 	C 	r 	6.62 	2.4 	172 	4.0 	182 
LP51A484 	3 	D 	r 	6.45 	2.7 	 4.5 
LP51A484 	3 	E 	r 	8.15 	2.6 	173 	4.3 	183 
LP51A484 	3 	F 	r 	4.92 	 172 	 182 
LP51A484 	3 	I 	r 	5.38 	2.7 	176 	4.5 	186 
LP51A484 	3 	J 	r 	5.76 	2.8 	180 	4.6 	190 
LP51A484 	3 	K 	r 	4.87 	2.8 	170 	4.6 	180 
LP51A484 	3 	L 	r 	5.36 	2.6 	170 	4.3 	180 
LP51A484 	3 	M 	r 	6.69 	2.3 	175 	3.9 	185 
LP51A484 	3 	N 	r 	7.12 	2.4 	175 	4.0 
LP51A484 	3 	0 	r 	8.85 	2.4 	 4.0 
LP51A484 	3 	P 	r 	9.49 	2.4 	182 	4.0 	192 
LP51A484 	3 	Q 	r 	7.33 	2.4 	174 	4.0 	184 
LP51A484 	4 	A 	r 	4.58 	2 	174 	3.4 	184 
LP51A484 	4 	B 	r 	2.83 	2.2 	174 	3.7 	184 
LP51A484 	4 	C 	r 	6.09 	2.3 	175 	3.9 	185 
LP51A484 	4 	D 	r 	3.79 	2.2 	176 	3.7 	186 
LP51A484 	4 	E 	r 	3.48 	2.2 	 3.7 
LP51A484 	4 	F 	r 	10.91 	2.2 	174 	3.7 	184 
LP51A484 	4 	G 	r 	6.34 	2.6 	173 	4.3 	183 
LP51A484 	4 	H 	r 	3.83 	2.4 	173 	4.0 	183 
LP51A484 	5 	A 	r 	13.6 	1.4 	 2.4 
LP51A484 	5 	B 	r 	5.82 	1.2 	178 	2.1 	188 
LP51A484 	5 	C 	r 	6.38 	1.1 	175 	1.9 	185 
LP51A484 	5 	D 	r 	3.91 	1.3 	 2.2 
LP51A484 	5 	E 	r 	5.28 	0.8 	190 	1.4 	200 
LP51A484 	5 	F 	r 	3.98 	2.1 	180 	3.5 	190 
LP51A484 	5 	G 	r 	3.65 	2.9 	178 	4.8 	188 
LP51A484 	5 	H 	r 	9.55 	2 	195 	3.4 	205 
LP51A484 	5 	I 	r 	3.46 	1.6 	182 	2.7 	192 
LP51A484 	5 	J 	r 	4.27 	2.2 	181 	3.7 	191 
LP51A484 	5 	K 	r 	6.03 	1.5 	181 	2.6 	191 
Notes: 
All fluid inclusions are 2 phase, liquid-vapour inclusions occurring in dolomite 
Abbreviations: Tm = freezing point depression, Th = homogenisation temperature 
Shape codes: r = rectangular, e = equant, c = amoeboid 
Salinity (equivalent wt cro NaCl) 
Pressure correction factor is -10°C at 1000 m depth & 10MPa pressure (Roedder, 1984) 
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Sample  
Main zone: 
LP36W195 	py 
LP12457 	ccp 
LP18334 	py 
LP12531 	py 
LP16A450 
	sph 

LP12539 	sph 
LP18334 	py 
LP18372 
	ga 

LP18372 
	sph 

LP18374 	py 
LP18386 	py 

Toms zone: 
LP51A479 	ccp 
LP51A479 	py 
LP51AW2355 	py 
LP53275 	py 
LP53275 	cop 
LP53294 	py 
LP53302 	py 
LP53312 	py 

Footwall Cu zone: 
LP66367 	ccp 
LP66374 	py 
LP66374 	ccp 
LP70127 	py 
LP70127 	ccp 
LP51AW2433 	py 
LP51AW2433 ccp 
LP51AW2433 	po 
LP66367 	PY 

Qtz-sulfide veins: 
LP51A418 	py 
LP51A418 	sph 
LP65A802 	py 
LP65A802 	ga 
LP67B760 	ccp 
LP66240 	py 
LP66240 	sph 
LP66240 	py 
LP66240 	sph 

Central lens 
Central lens 
Hangingwall lens 
Footwall zone 
L. P. fault zone 
Footwall zone 
Hangingwall lens 
Central lens 
Central lens 
Central lens 
Central lens 

Central lens 
Central lens 
Hangingwall zone 
Hangingwall zone 
Hangingwall zone 
Central lens 
Central lens 
Central lens 

Toms zone footwall 
Toms zone footwall 
Toms zone footwall 
south of Toms zone 
south of Toms zone 
Toms zone footwall 
Toms zone footwall 
Toms zone footwall 
Toms zone footwall 

Toms zone footwall 
Toms zone footwall 
Toms zone footwall 
Toms zone footwall 
Toms zone footwall 
South of Toms 
South of Toms 
South of Toms 
South of Toms 

py-rich massive sulfide 
massive ccp-po 
py-rich massive sulfide 
semi-massive sulfide 
disseminated sulfides 
semi-massive sulfide 
py-rich massive sulfide 
semi-massive sulfide 
semi-massive sulfide 
semi-massive sulfide 
semi-massive sulfide 

type 2 dol-ccp-py vein 
type 2 dol-ccp-py vein 
py-rich massive sulfide 
py-rich massive sulfide 
py-rich massive sulfide 
massive sulfide 
massive sulfide 
massive sulfide 

type lA ca-ccp-py vein 
type lA ca-cop-py vein 
type lA ca-ccp-py vein 
type lA ca-ccp-py vein 
type lA ca-ccp-py vein 
type 2 dol-ccp-py-po vein 
type 2 dol-ccp-py-po vein 
type 2 dol-ccp-py-po vein 
type lA ca-ccp-py vein 

type 3A qtz-py-sph vein 
type 3A qtz-py-sph vein 
type 4 qtz-ccp-py-ga yein 
type 4 qtz-ccp-py-ga vein 
type 4 qtz-ccp vein 
type 3A qtz-sph-py vein 
type 3A qtz-sph-py vein 
type 3A qtz-sph-py vein 
type 3A qtz-sph-py vein 

po crystal 

3.1 	CSL 
2.0 	CSL 
2.5 	CSL 
4.3 	CSL 
2.5 	CSL 
3.3 	CSL 
4.9 	DMR 
1.7 	DMA 
3.3 	DMA 
4.8 	DMA 
4.9 	DMR 

2.4 	CSL 
3.1 	CSL 
5.0 	CSL 
5.0 	DMA 
4.3 	DMA 
4.5 	DMA 
3.8 	DMA 
4.2 	DMR 

5.1 	DMA 
6.3 	CSL 
3.9 	CSL 
4.6 	CSL 
5.9 	CSL 
7.4 	CSL 
6.0 	CSL 
6.6 	CSL 
5.9 	DMA 

4.1 	CSL 
4.6 	CSL 
2.4 	CSL 
1.9 	CSL 
0.1 	CSL 
4.5 	CSL 
5.0 	CSL 
4.7 	DMA 
3.5 	DMA 

3.4 	CSL 

Mineral Location 	Description 	 8 34S (V-CDT) Source 

Host sedimentary rocks: 
LP65A768 	po carb mudstone 

Notes: All samples analysed by conventional S isotope technique 
Samples marked CSL were analysed at the Univeristy of Tasmania, Central Science Laboratory 
Samples marked DMR were sent away for analysis by the Department of Mineral Resources, N.S.W. 
Abbreviations: py = pyrite, sph = sphalerite, ccp = chalcopyrite, ga = galena and po = pyrrhotite 

Appendix 8 - sulfur isotope data 



Utas No. Field No. Descriptive Name Drill Hole Depth (m) AMG east AMG north Formation Local Unit TS M IXRFI  C-0 S Thesis ref (page No.) 

152168 LP12425 siltstone TLPD-12 425.4 	709533 6316620 Anson HST 

x 	
x
 x 	

x 

152169 LP12428 dolomite-quartz-chlorite-talc schist TLPD-12 428.3 	709532 6316619 Anson Transitional 98 
152170 LP12431 siltstone-clast breccia TLPD-12 431.5 	709530 6316618 Anson Transitional 38 
152171 LP12434 siltstone-clast breccia TLPD-12 434.5 	709529 6316617 Anson Transitional . 
152172 LP12440 massive, vuggy dolomite TLPD-12 440.5 	709526 6316615 Anson Transitional X 113, 114, 205 
152173 LP12447 patchy dolomite-chlorite breccia TLPD-12 447.4 	709523 6316613 Anson Transitional 
152174 LP12450 chlorite-phlogopite-talc schist TLPD-12 450.4 	709521 6316612 Anson Transitional 168, 172, 180 
152175 LP12457 massive sulfide TLPD-12 457.5 	709518 6316610 Anson Transitional 98, 170 
152176 LP12461 massive sulfide TLPD-12 461.7 	709516 6316609 Anson Transitional 
152177 LP12464 siltstone-clast breccia TLPD-12 464.8 	709515 6316608 Anson Transitional 
152178 LP12465 quartz-dolomite-chlorite-altered rock TLPD-12 465.5 	709514 6316608 Anson Transitional 117, 180 
152179 LP12476 dolomite-quartz-talc schist TLPD-12 476.3 	709509 6316605 Anson Transitional X 180 
152180 LP12480 semi-massive sulfide TLPD-12 480.0 	709507 6316603 Anson Transitional 
152181 LP12483 crinoidal limestone clast TLPD-12 483.8 	709505 6316602 Anson Transitional 
152182 LP12490 limestone-clast breccia TLPD-12 490.6 	. 	709502 6316600 Anson Transitional 174 
152183 LP12493 massive dolomite TLPD-12 493.0 	709501 6316600 Anson Transitional X 114, 205, 206, 207, 211, 212 

152184 LP12498 sandstone TLPD-12 498.9 	709498 6316598 Anson Transitional 
152185 LP12503 dolomite-quartz-phlogopite schist TLPD-12 503.0 	709496 6316597 Anson Transitional X 98, 119, 205 
152186 LP12511 dolomite-quartz-phlogopite schist TLPD-12 511.0 	709492 6316594 Anson Transitional 
152187 LP12516 siltstone clast TLPD-12 516.4 	709490 6316592 Anson Transitional 
152188 LP12521 polymictic breccia TLPD-12 521.4 	709487 6316591 Anson Transitional X 
152189 LP12522 siltstone-clast breccia TLPD-12 522.0 	709487 6316591 Anson Transitional 46 
152190 LP12523 quartz crystal-rich sandstone TLPD-12 523.2 	709486 6316590 Anson Transitional 
152191 LP12530 polymictic breccia TLPD-12 530.8 	709482 6316588 Anson Transitional X 205 

152192 LP12531 polymictic breccia TLPD-12 531.4 	709482 6316588 Anson Transitional 
152193 LP12539 vuggy dolomite TLPD-12 539.3 	709478 6316585 Anson Transitional X 205 
152194 LP12542 polymictic breccia TLPD-12 542.9 	709476 6316584 Anson Transitional 
152195 LP12551 limestone-clast breccia TLPD-12 551.7 	709472 6316581 Anson Transitional 47 
152196 LP12553 quartz crystal-rich sandstone TLPD-12 553.4 	709471 6316581 Anson Transitional 
152197 LP12555 quartz crystal-rich sandstone TLPD-12 555.0 	709470 6316580 Anson Transitional 
152198 LP12570 siltstone TLPD-12 570.2 	709462 6316576 Anson Transitional 
152199 LP12W3439 limestone-clast breccia TLPD-12W3 439.9 	709483 6316605 Anson Transitional 98 
152200 LP16A131 quartz crystal-rich sandstone TLPD-16A 131.1 	709665 6316635 Anson HST 
152201 LP16A450 massive talc TLPD-16A 450.4 	709588 6316571 Anson Transitional 
152202 LP16A548 quartz crystal-rich sandstone TLPD-16A 548.3 	709557 6316549 Anson Transitional 
152203 LP18134 quartz-volcanic lithic sandstone TLPD-18 134.2 	709638 6316614 Anson HST 
152204 LP18211 siltstone TLPD-18 211.0 	709608 6316588 Anson HST 
152205 LP18224 granular siltstone TLPD-18 224.0 	709602 6316583 Anson HST 
152206 LP18228 quartz vein TLPD-18 228.2 	709600 6316582 Anson HST 
152207 LP18250 siltstone TLPD-18 250.2 	709590 6316574 Anson HST 
152208 LP18285 siltstone TLPD-18 285.6 	709573 6316560 Anson HST 
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Utas No. Field No. Descriptive Name Drill Hole Depth (m) AMG east AMG north Formation Local Unit TS M XRF C-0 S Thesis ref (page No.) 
152209 LP18323 siltstone TLPD-18 323.8 709554 6316547 Anson HST 

X
 	

X
 	

X
 X

 	
X

 X
  
X

X
X

X
X

  

152210 LP18333 siltstone-clast breccia TLPD-18 333.4 709548 6316544 Anson Transitional 
152211 LP18334 massive sulfide TLPD-18 334.2 709548 6316543 Anson Transitional X X 
152212 LP18336 bioclastic limestone clast TLPD-18 336.5 709547 6316543 Anson Transitional 
152213 LP18342 quartz crystal-rich.  sandstone TLPD-18 342.9 709543 6316541 Anson Transitional 
152214 LP18346 siltstone-clast breccia TLPD-18 346.8 709541 6316539 Anson Transitional 
152215 LP18351 polymictic breccia TLPD-18 351.1 709539 6316538 Anson Transitional 160 
152216 LP18358 chlorite-talc schist TLPD-18 358.8 709534 6316535 Anson Transitional 
152217 LP18365 massive sulfide TLPD-18 365.3 709531 6316533 Anson Transitional X 125, 168, 170, 172, 174, 178 
152218 LP18366 polymictic breccia TLPD-18 366.2 709530 6316533 Anson Transitional 
152219 LP18370 semi-massive sulfide TLPD-18 370.2 709528 6316532 Anson Transitional 
152220 LP18371 semi-massive sulfide TLPD-18 371.2 709527 6316531 Anson Transitional 
152221 LP18372 siltstone-clast breccia TLPD-18 372.8 709527 6316531 Anson Transitional 
152222 LP18373 dolomite-chlorite-talc schist TLPD-18 373.0 709526 6316531 Anson Transitional 98, 160 
152223 LP18381 limestone -clast breccia TLPD-18 381.9 709522 6316527 Anson Transitional 
152224 LP18382 patchy dolomite-chlorite breccia TLPD-18 382.5 709521 6316527 Anson Transitional 
152225 LP18383 polymictic breccia TLPD-18 383.7 709521 6316527 Anson Transitional 160 
152226 LP18392 limestone-clast breccia TLPD-18 392.0 709517 6316524 Anson Transitional 160 
152227 LP18393 polymictic breccia TLPD-18 393.4 709516 6316523 Anson Transitional 49 
152228 LP18413 limestone-clast breccia TLPD-18 413.5 709505 6316515 Anson Transitional 
152229 LP18430 siltstone with sandstone lamination TLPD-18 430.1 709496 6316509 Anson Transitional 

X
 

152230 LP18433 quartz crystal-rich sandstone TLPD-18 433.3 709495 6316508 Anson Transitional X 
152231 LP18444 siltstone 	• TLPD-18 444.2 709488 6316504 Anson Transitional 
152232 LP18480 sandstone bed in siltstone TLPD-18 480.0 709468 ' 6316491 MRV WVS 46 
152233 LP18494 quartz-feldspar porphyry TLPD-18 494.0 709460 6316486 MRV WVS 
152234 LP18507 quartz-feldspar porphyry TLPD- 18 507.4 709453 6316480 MRV WVS 
152235 LP18532 	- quartz-feldspar porphyry TLPD-18 532.4 709439 6316470 MRV WVS 35 
152236 LP18539 quartz-feldspar porphyry ' TLPD-18 539.7 709434 6316467 MRV WVS 
152237 LP20388 limestone clast TLPD-20 388.8 709432 6316624 Anson Transitional 205 
152238 LP27439 quartz-lithic sandstone TLPD-27 439.3 709730 6316614 MRV FBS 
152239 LP27468 quartz-lithic sandstone TLPD-27 468.8 709724 6316608 MRV FBS 94 
152240 LP27782 quartz-feldspar porphyry TLPD-27 782.8 709610 6316518 MRV WVS 
152241 LP27786 quartz-feldspar porphyry TLPD-27 786.9 709607 6316517 MRV WVS 
152242 LP33346 dolomite-talc altered polymictic breccia TLPD-33 346.4 709562 6316563 Anson Transitional 
152243 LP33379 dolomite-talc altered polymictic breccia TLPD-33 379.5 709549 6316555 Anson Transitional 113 
152244 LP33390 chlorite-dolomite-talc-altered breccia TLPD-33 390.2 709544 6316553 Anson Transitional X 121 
152245 LP33405 chlorite-dolomite-talc-altered breccia TLPD-33 405.1 709538 6316549 Anson Transitional 114 
152246 LP33427 limestone-clast breccia TLPD-33 427.1 709530 6316544 Anson Transitional 
152247 LP361.70 siltstone TLPD-36 170.4 709451 6316596 Anson HST 
152248 LP36W 190 siltstone TLPD-36W 190.6 709442 6316590 Anson HST 
152249 LP36W194 siltstone-clast breccia TLPD-36W 194.6 709440 6316588 Anson Transitional 
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152250 LP36W195 massive sulfide TLPD-36W 195.1 	709440 6316588 Anson Transitional 

X
 	

X
  
X

 	
X

 	
X

  
X

  
X

X
 	

X
X

X
X

X
X

  

X 172, 175, 180, 205 
152251 LP36W196 patchy dolomite-chlorite breccia TLPD-36W 196.8 	709439 6316588 Anson Transitional 
152252 LP36W197 siltstone-clast breccia TLPD-36W 197.0 	709439 6316588 Anson Transitional 161, 172, 175 
152253 LP36W202 talc-dolomite-phlogopite schist TLPD-36W 202.7 	709436 6316586 Anson Transitional 172 
152254 LP36W206 massive dolomite TLPD-36W 206.3 	709435 6316585 Anson Transitional 114, 161, 205 
152255 LP36W207 polymictic breccia TLPD-36W 207.0 	709434 6316584 Anson Transitional 161, 174 
152256 LP36W208 polymictic breccia TLPD-36W 208.6 	709434 6316584 Anson Transitional 
152257 LP36W214 massive, vuggy dolomite TLPD-36W 214.1 	709431 6316582 Anson Transitional 113, 205, 206, 207, 211, 212 
152258 LP36W216 siltstone-clast breccia TLPD-36W 216.3 	709430 6316581 Anson Transitional 
152259 LP36W22 quartz crystal-rich sandstone TLPD-36W 222.1 	709427 6316580 Anson Transitional 
152260 LP36W242 sandstone lamination in siltstone TLPD-36W 242.1 	709417 6316573 Anson Transitional 
152261 LP36W245 siltstone TLPD-36W 245.5 	709415 6316572 Anson Transitional 
152262 LP36W262 limestone-clast breccia matrix TLPD-36W 262.1 	709406 6316566 Anson Transitional 49, 150, 151, 205 
152263 LP36W277 quartz crystal-rich sandstone TLPD-36W 277.8 	709397 6316561 Anson Transitional 117 
152264 LP36W281 sandstone lamination in siltstone TLPD-36W 281.5 	709395 6316560 Anson Transitional 172 
152265 LP36W313 siltstone TLPD-36W 313.4 	709376 6316548 Anson Transitional 
152266 LP36W342 fossil, quartz crystal-rich sandstone TLPD-36W 342.0 	709359 6316538 Anson Transitional 
152267 LP36W366 siltstone with sandstone lamination TLPD-36W 366.4 	709343 6316529 Anson Transitional 46 
152268 LP36W370 quartz porphyry clast in siltstone TLPD-36W 370.9 	709340 6316527 MRV WVS 
152269 LP36W373 quartz porphyry clast in siltstone TLPD-36W 373.8 	709338 6316526 MRV WVS 
152270 LP36W374, quartz porphyry clast in siltstone TLPD-36W 374.7 	709338 6316526 MRV WVS 

X
  

X
  38, 150 

152271 LP36W391 quartz porphyry clast in siltstone TLPD-36W 391.3 	709327 6316520 MRV WVS 150, 151 
152272 LP37165 chlorite-dolomite schist TLPD-37 165.9 	709487 6316509 Anson Transitional 113 
152273 LP37224 limestone-clast breccia TLPD-37 224.5 	709459 6316495 Anson Transitional 49 
152274 LP37227 crinoidal limestone clast TLPD-37 227.1 	709458 6316494 Anson Transitional 47 
152275 LP37238 limestone-clast breccia TLPD-37 238.7 	709452 6316491 Anson Transitional 46 
152276 LP37277 siltstone with sandstone lamination TLPD-37 277.4 	709432 6316481 Anson Transitional 
152277 LP43231 limestone TLPD-43 231.2 	709606 6316368 Anson Transitional 
152278 LP43235 limestone TLPD-43 235.0 	709604 6316366 Anson Transitional 
152279 LP43361 quartz-feldspar porphyry TLPD-43 361.3 	709532 6316296 MRV WVS 38 
152280 LP43386 quartz-feldspar porphyry TLPD-43 386.8 	709519 6316281 MRV WVS 150 
152281 LP44176 quartz-sericite-biotite schist TLPD-44 176.1 	709890 6316216 MRV FBS 
152282 LP44201 po-chl vein bioclastic limestone TLPD-44 200.9 	709884 6316211 Anson Transitional 205 

152283 L P442.11 limestone TLPD-44 211.0 	709881 6316209 Anson Transitional 205 
152284 LP44229 massive dolomite TLPD-44 229.2 	709876 6316205 Anson Transitional 205 
152285 LP44243 semi-massive sulfide TLPD-44 243.4 	709872 6316202 Anson Transitional 
152286 LP44290 massive dolomite TLPD-44 290.6 	709858 6316193 Anson Transitional 205 
152287 LP44314 chlorite-altered rock TLPD-44 314.7 	709850 6316187 Anson Transitional 
152288 LP44317 quartz veins TLPD-44 317.0 	709850 6316186 Anson Transitional 
152289 LP44347 quartz-chlorite-sericite schist TLPD-44 347.7 	709839 6316179 MRV WVS 
152290 LP44362 quartz-chlorite-sericite schist TLPD-44 362.9 	709834 6316175 MRV WVS 
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152291 LP44397 quartz-chlorite-sericite-biotite schist TLPD-44 397.6 709821 6316165 MRV WVS 
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152292 LP45260 chlorite-talc-altered limestone clast TLPD-45 260.8 709836 6316163 Anson Transitional X 205 
152293 LP46A090 quartz-sericite-chlorite schist TLPD-46A 90.7 710055 6315957 Anson FBS 150 
152294 LP46A103 quartz-chlorite-sericite schist TLPD-46A 103.0 710049 6315950 Anson HST 
152295 LP46A107 quart vein + semi-massive sulfide TLPD-46A 107.5 . 710047 6315948 Anson HST 
152296 LP46A113 thinly-laminated siltstone TLPD-46A 113.5 710045 6315944 Anson HST 
152297 LP46Al24 quartz crystal-rich sandstone TLPD-46A 124.0 710041 6315938 Anson HST 
152298 LP46Al26 massive sulfide TLPD-46A 126.2 710040 6315936 Anson HST 178 
152299 LP46Al29 siltstone TLPD-46A 129.8 710038 6315934 Anson HST 
152300 LP46A134 quartz-sericite-altered rock TLPD-46A 134.4 710036 6315931 Anson HST 117 
152301 LP46A150 siltstone TLPD-46A 150.4 710029 6315922 Anson HST 
152302 LP46A177 chlorite TLPD-46A 177.2 710016 6315907 Anson HST 150, 151 
152303 LP46A187 quartz-chlorite-sericite schist TLPD-46A 187.5 710011 6315901 Anson HST 
152304 LP46A204 quartz-chlorite-sericite schist TLPD-46A 204.0 710002 6315891 MRV WVS 
152305 LP46A210 quartz-chlorite-sericite schist TLPD-46A 210.0 709999 6315888 MRV WVS 150, 151 
152306 LP46A250 quartz-chlorite-sericite schist TLPD-46A 250.6 709978 6315864 MRV WVS 150 
152307 LP46A297 quartz-chlorite-sericite schist TLPD-46A 297.6 709951 6315838 MRV WVS 35, 150 
152308 LP46A324 quartz vein TLPD-46A 324.0 709936 6315823 MRV WVS 
152309 LP46A334 quartz-sericite-biotite schist TLPD-46A 334.4 709930 6315817 MRV WVS 94 
152310 LP46A346 quartz-sericite-biotite schist TLPD-46A 346.3 709923 6315810 MRV WVS 35, 150 
152311 LP51A211 limestone TLPD-51A 211.5 710109 6315946 Anson FBS 
152312 LP51A216 quartz-sericite-biotite schist TLPD-51A 216.6 710108 6315945 MRV FBS 151 
152313 LP51A220 quartz-chlorite-sericite schist TLPD-51A 220.8 710106 6315945 MRV FBS 
152314 LP51A235 quartz-chlorite-sericite schist TLPD-51A 235.7 710102 6315942 MRV FBS 
152315 LP51A257 quartz-sericite-biotite schist TLPD-51A 257.4 710096 6315938 MRV FBS 
152316 LP51A281 quartz-sericite-biotite schist TLPD-51A 281.4 710088 6315934 MRV FBS 
152317 LP51A309 quartz-sericite schist TLPD-51A 309.4 710077 6315929 MRV FBS 
152318 LP51A322 quartz-sericite-biotite schist TLPD-51A 322.2 710072 6315927 MRV FBS 
152319 LP51A371 quartz-sericite schist TLPD-51A 371.0 710053 6315919 Anson HST 
152320 LP51A382 quartz-sericite schist TLPD-51A 382.5 710048 6315917 Anson HST 
152321 LP51A408 quartz-chlorite-biotite schist TLPD-51A 408.5 710037 6315912 Anson HST 
152322 LP51A409 quartz-sulfide veins in siltstone TLPD-51A 409.1 710037 6315912 Anson HST 
152323 LP51A418 quartz-sulfide veins in siltstone TLPD-51A 418.9 710033 6315910 Anson HST X 
152324 LP51A443 quartz-sulfide veins in siltstone TLPD-51A 443.4 710023 6315906 Anson HST 
152325 LP51A474 siltstone TLPD-51A 474.1 710009 6315901 Anson HST 
152326 LP51A477 massive sulfide TLPD-51A 477.6 710008 6315900 Anson HST 163 
152327 LP51A479 massive sulfide TLPD-51A 479.7 710007 6315900 Anson HST X X 94, 178 
152328 LP51A481 dolomite-talc-chlorite schist TLPD-51A 481.5 710006 6315900 Anson HST 
152329 LP51A482 semi-massive sulfide TLPD-51A 482.5 710006 6315900 Anson HST 168, 170, 180 
152330 LP51A484 massive, vuggy dolomite TLPD-51A 484.6 710005 6315899 Anson HST X 114, 121, 180, 206, 207, 211, 212 
152331 LP51A488 massive sulfide TLPD-51A 488.6 710003 6315899 Anson HST 99, 168, 170, 174, 178, 180 

Appendix 9- list of rock samples page 4 of 8 



Utas No. Field No. Descriptive Name Drill Hole Depth (m) AMG east AMG north Formation Local Unit TS I M XRF I C-0 I S Thesis ref (page No.) 

152332 LP51A489 massive sulfide TLPD-51A 489.1 	710003 6315899 Anson HST 
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152333 LP51A492 massive, vuggy dolomite TLPD-51A 492.7 	710001 6315898 Anson HST 163 

152334 LP51A496 massive sulfide TLPD-51A 496.3 	710000 6315897 Anson HST 163 " 
152335 LP51A503 semi-massive sulfide TLPD-51A 503.0 	709997 6315896 Anson HST 163 

152336 LP51A508 quartz-sericite-biotite schist TLPD-51A 508.4 	709994 6315895 Anson HST 
152337 LP51A513 siltstone TLPD-51A 513.8 	709992 6315894 Anson HST 
152338 LP51A539 siltstone TLPD-51A 539.4 	709980 6315890 Anson HST 
152339 LP51A548 quartz-sericite-biotite schist TLPD-51A 548.4 	709975 6315888 Anson HST 
152340 LP51A556 quartz-sericite-biotite schist TLPD-51A 556.1 	709972 6315887 Anson HST 82 
152341 LP51A559 quartz-sericite-biotite schist TLPD-51A 559.7 	709970 6315886 Anson HST 
152342 LP51A560 sandstone TLPD-51A 560.5 	709969 6315886 Anson HST 
152343 LP51A567 siltstone TLPD-51A 567.2 	709966 6315885 Anson HST 
152344 LP51A580 quartz porphyry TLPD-51A 580.5 	709959 6315883 Aneon HST 
152345 LP51A596 siltstone TLPD-51A 596.1 	709951 6315880 Anson HST 
152346 LP51A602 patchy quartz-sericite-carbonate rock TLPD-51A 602.9 	709947 6315879 Anson HST 
152347 LP51A609 quartz-feldspar porphyry TLPD-51A 609.0 	709944 6315878 MRV WVS 35 

152348 LP51A610 quartz-feldspar porphyry TLPD-51A . 	610.1 	709943 6315877 MRV WVS 
152349 LP67B440 quartz-feldspar-biotite porphyry dyke TLPD-67B 440.7 	709864 6315811 LPG LPG 119 

152350 LP51AW2302 dolomite-chlorite-sericite schist TLPD-51AW2 302.0 	710072 6315924 Anson HST X 
152351 LP51AW2355 massive sulfide TLPD-51AW2 355.7 	710046 6315909 Anson HST X 178 

152352 LP51AW2374 siltstone TLPD-51AW2 374.7 	710037 6315904 Anson HST 

X
  

X
  

152353 LP51AW2406 dolomite-chlorite-sericite schist TLPD-51AW2 406.1 	710021 6315896 Anson HST 119 

152354 LP51AW2414 siltstone TLPD-51AW2 414.8 	710017 6315893 Anson HST 
152355 LP51AW2433 dolomite-chlorite-sericite schist TLPD-51AW2 433.0 	710008 6315888 Anson HST X X 

152356 LP51AW2437 dolomite-chlorite-sericite schist TLPD-51AW2 437.0 	710006 6315887 Anson HST 
152357 LP51AW2492 dolomite-chlorite-sericite schist TLPD-51AW2 492.5 	709978 6315872 Anson HST 
152358 LP51AW2499 dolomite-chlorite-sericite schist TLPD-51AW2 499.7 	709974 6315870 Anson HST 
152359 LP58087 limestone TLPD-58 87.9 	710173 6315988 Anson FBS 
152360 LP58155 crinoidal limestone TLPD-58 155.0 	710168 6315984 Anson FBS 57, 82 
152361 LP58163 quartz-feldspar porphyry TLPD-58 163.7 	710167 6315983 MRV FBS 
152362 LP58205 quartz-feldspar porphyry TLPD-58 205.8 	710162 6315981 MRV FBS 57 
152363 LP63115 quartz-chlorite-sericite schist TLPD-63 115.3 	710014 6316291 MRV FBS 
152364 LP63201 limestone TLPD-63 201.8 	709987 6316269 Anson FBS 205 
152365 LP6323 limestone TLPD-63 223.0 	709979 6316264 Anson FBS 205 

152366 LP63266 quartz-calcite-sericite schist TLPD-63 266.1 	709960 6316251 MRV FBS 205 

152367 LP63284 quartz-calcite-sericite schist TLPD-63 284.4 	709952 6316245 MRV FBS 117 

152368 LP63290 quartz-calcite-sericite schist TLPD-63 290.9 	709948 6316242 MRV FBS 
152369 LP63314 quartz-calcite-sericite schist TLPD-63 314.4 	709936 6316234 MRV FBS 82 

152370 LP63333 quartz-calcite-sericite schist TLPD-63 333.2 	709926 6316228 MRV FBS 
152371 LP63335 silty sandstone TLPD-63 335.5 	709925 6316227 Anson FBS 
162372 LP63376 limestone TLPD-63 376.4 	709901 6316212 Anson FBS 205 
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152373 LP63392 quartz vein TLPD-63 392.7 	709891 6316206 Anson HST X

  
X

X
X

X
 	

X
X

  
X

X
X

  
X

X
X

X
X

  
X

 
X

X
X

X
X

X
X

X
X

X
  

X 205 
152374 LP63411 quartz-chlorite-sericite-biotite schist TLPD-63 411.1 	709880 6316199 Anson HST 
152375 LP63415 semi-massive sulfide TLPD-63 415.3 	709878 6316197 Anson HST 178 
152376 LP63454 quartz-chlorite schist TLPD-63 454.7 	709855 6316181 MRV WVS 82, 117 
152377 LP63485 quartz-chlorite-sericite schist TLPD-63 485.5 	709837 6316169 MRV WVS 
152378 LP65A305 quartz-sericite-biotite schist TLPD-65A 305.1 	709916 6315587 MRV WVS 
152379 LP65A587 quartz-feldspar-biotite schist TLPD-65A 587.5 	709991 6315642 MRV WVS 
152380 LP65A669 siltstone TLPD-65A 669.3 	710025 6315669 Anson HST 
152381 LP65A802 sandstone TLPD-65A 802.8 	710087 6315719 Anson HST X 
152382 LP65A803 siltstone and sandstone TLPD-65A 803.7 	710087 6315719 Anson HST 94 
152383 LP65A858 feldspar porphyry TLPD-65A 858.8 	710119 6315742 Anson HST 
152384 LP65A899 quartz vein TLPD-65A 899.0 	710145 6315760 Anson HST X 
152385 LP65A907 sandstone TLPD-65A 907.0 	710150 6315764 Anson HST 82 
152386 LP65A986 polymictic breccia TLPD-65A 986.5 	710203 6315798 Anson FBS 
152387 LP66112 quartz -sericite schist TLPD-66 112.7 	710225 6315788 Anson HST 
152388 LP66153 quartz-feldspar-sericite schist TLPD-66 153.6 	710202 6315776 MRV FBS 
152389 LP66155 quartz-feldspar-sericite schist TLPD-66 155.3 	710201 6315775 MRV FBS 
152390 LP66179 quartz-feldspar-sericite schist TLPD-66 179.3 	710186 6315767 MRV FBS 
152391 LP66202 sandy siltstone TLPD-66 202.2 	710171 6315759 Anson HST . 
152392 LP66233 siltstone TLPD-66 233.3 	710150 6315748 Anson HST 
152393 LP66240 semi-massive sulfide TLPD-66 240.6 	710145 6315746 Anson HST X 
152394 LP66254 siltstone TLPD-66 254.8 	710135 6315740 Anson HST 
152395 LP66267 chlorite-phlogopite-altered rock TLPD-66 267.0 	710127 6315736 Anson HST 117 
152396 LP66282 quartz-sericite-chlorite schist TLPD-66 282.8 	710116 6315730 MRV WVS X 
152397 LP66296 quartz-chlorite-sericite schist TLPD-66 296.5 	710107 6315725 MRV WVS 
152398 LP66311 quartz-chlorite-sericite schist TLPD-66 311.5 	710096 6315720 MRV WVS 119 
152399 LP66339 quartz-chlorite schist TLPD-66 339.1 	710077 6315710 MRV WVS 
152400 LP66350 quartz-chlorite schist TLPD-66 350.7 	710069 6315705 MRV WVS 
152401 LP66361 ccp-carb vein in quartz-chlorite schist TLPD-66 361.1 	710061 6315701 MRV WVS 168 
152402 LP66374 ccp-carb vein in quartz-chlorite schist TLPD-66 374.8 	710052 6315696 MRV WVS X X 119, 164, 168, 170 
152403 LP66391 quartz-chlorite-biotite schist TLP.D-66 391.6 	710039 6315690 MRV WVS 
152404 LP66419 quartz-chlorite-sericite schist TLPD-66 419.3 	710018 6315679 MRV WVS 
152405 LP678140 quartz-feldspar-sericite-biotite schist TLPD-67B 140.7 	709808 6315791 MRV WVS 
152406 LP67B306 quartz-sericite-biotite schist TLPD-67B 306.5 	709840 6315804 MRV WVS 35 
152407 LP67B369 quartz-feldspar-biotite porphyry dyke TLPD-67B 368.9 	709850 6315807 LPG LPG 57 
152408 
152409 

LP67B476 
LP67B663 

quartz-feldspar-sericite-biotite schist 
quartz-feldspar porphyry 

TLPD-67B 
TLPD-67B 

	

476.2 	709874 

	

662.9 	709926 
6315815 
6315850 

MRV 
MRV 

WVS 
WVS 1 

152410 LP67B687 dolomite-hornblende-epidote rock TLPD-67B 687.8 	709933 6315856 Anson HST X 119 
152411 LP67B715 intensely silicified siltstone TLPD-67B 715.3 	709940 6315862 Anson HST 
152412 LP67B739 siltstone TLPD-67B 738.9 	709947 6315868 Anson HST 
152413 LP67B742 intensely silicified siltstone TLPD-67B 742.2 	709948 6315869 Anson HST 94 
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152414 LP67B760 	qtz-ccp-py vein in siltstone TLPD-67B 760.3 709953 6315873 Anson HST 

X
 X

 	
X

 	
X

 	
X

  X
  

X 
152415 LP67B790 	siltstone TLPD-67B 790.5 709963 6315881 Anson HST 

. 152416 LP67B809 	dolomite-hornblende-epidote schist TLPD-67B 809.7 709969 6315887 Anson HST 
152417 LP67B841 	sandy siltstone TLPD-67B 841.2 709979 6315896 Anson . HST 119 
152418 LP67B878 	quartz-chlorite-sericite-biotite schist TLPD-67B 878.3 709992 6315907 Anson / HST 
152419 LP67B903 	biotite-sericite schist TLPD-67B 903.9 710000 6315916 Anson HST 
152420 LP676907 	quartz-feldspar-biotite porphyry dyke TLPD-67B 907.4 710002 6315917 LPG LPG 
152421 LP67B948 	quartz-chlorite-biotite schist TLPD-67B 948.7 710016 6315932 Anson HST 
152422 LP67B965 	semi-massive sulfide 	' TLPD-67B 965.5 710022 6315938 Anson HST 175 
152423 LP67B983 	semi-massive sulfide TLPD-67B 983.9 710029 6315945 Anson HST 
152424 LP67B986 	sandstone TLPD-67B ' 986.6 710030 6315947 Anson HST 
152425 LP67BW11037 quartz-chlorite-sericite schist TLPD-67BW1 1037.1 710048 6315965 MRV FBS 
152426 LP67BW11063 quartz-chlorite-sericite schist TLPD-67BW1 1063.2 710058 6315976 MRV FBS 
152427 LP67BW11132 siltstone TLPD-67BW1 1132.7 710088 6316013 Anson HST 
152428 LP67BW11159 siltstone TLPD-67BW1 1158.9 710101 6316029 Anson HST 
152429 LP69191 	limestone TLPD-69 191.3 710218 6315781 Anson HST 
152430 LP69238 	quartz-sericite-biotite schist TLPD-69 238.0 710201 6315770 Anson HST 
152431 LP70069 	quartz porphyry TLPD-70 69.7 710303 6315266 MRV WVS 170 
152432 LP70127 	quartz porphyry TLPD-70 127.5 710272 6315251 MRV VVVS X 168 
152433 LP70253 	quartz-feldspar-biotite porphyry TLPD-70 253.8 710201 6315217 MRV WVS 
152434 LP70438 	quartz porphyry TLPD-70 438.7 710085 6315163 MRV WVS 

X
  

X
 

152435 LP70472 	feldspar porphyry TLPD-70 472.0 710063 6315152 MRV WVS 
152436 T0D10149 	volcaniclastic breccia TOD-10 149.7 711297 6314443 Anson HST 57 
152437 TOD10177 	feldspar-volcanic lithic sandstone TOD-10 177.5 711286 6314436 Anson HST 
152438 T0D10365 	sandstone TOD-10 365.1 711197 6314371 Anson HST 94 
152439 MRVO1 	quartz-feldspar porphyry 698278 6331445 MRV - 64 
152440 MRVO3 	quartz-feldspar-lithic sandstone 702375 6336100 MRV - 64 
152441 MRVO4 	quartz-feldspar porphyry 702690 6336280 MRV - 64 
152442 MRVO6 	obsidian 700820 6340130 MRV - 64 
152443 MRV11 	quartz porphyry 699130 6323090 MRV 64 
152444 MRV12 	quartz-feldspar crystal-rich sandstone 704179 6328142 MRV - 64, 66 
152445 MRV14 	flow-banded rhyolite 689525 6341550 MRV 64, 72 
152446 MRV15 	shard-lithic rich sandstone 690100 6339375 MRV - 64, 72 
152447 MRV18 	limestone 691325 6337150 MRV - 64 
152448 MRV24 	quartz-feldspar porphyry 711075 6311905 MRV " - 64,150 
152449 MRV33 	flow-banded spherulitic rhyolite 691625 6337625 MRV - 64, 72 
152450 MRV36 	perlitic feldspar phyric dacite 691460 6337135 MRV - 64, 72 
152451 MRV37 	pumiceous shard-rich sandstone 691900 6336275 MRV - 64, 72 
152452 MRV39 	crinoidal limestone 692440 6335775 MRV - 64 
152453 LPD001 	crinoidal limestone clast 709399 6316448 Anson - 47 
152454 LPD007 	quartz-feldspar porphyry 710285 6316451 MRV - 
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152455 LPD008 quartz-feldspar-biotite porphyry 710200 6316557 MRV EVS 

X
 X

X
X

X
X

X
  

152456 LPD009 quartz-feldspar porphyry 710020 6316588 MRV EVS 57 
152457 LPD014 hematitic chert / jaspilite 710242 6315970 Anson 117 
152458 LPD018 feldspar porphyry 709880 6316920 MRV EVS 
152459 LPD024 quartz porphyry 708848 6316212 MRV WVS 

X
 35 

152460 LPD049 granite 711650 6316250 LPG LPG 
152461 LPD070 quartz crystal-rich sandstone 709437 6316445 Anson Transitional 
152462 LPD099 quartz-feldspar porphyry 707650 6315380 MRV WVS 
152463 LPD103 crinoidal limestone 703225 6314500 Anson Transitional X 

Abbreviated unit names: 
MRV = Mullions Range Volcanics, LPG = Lewis Ponds Granite, EVS = Eastern Volcanic Succession, 
FBS = fault-bound stratigraphy, HST = Hangingwall Siltstone Unit, WVS = Western Volcanic Succession. 

Analytical work: 
Thin Section or polished Thin Section, Microprobe, XRF whole rock analysis, 
Carbon-Oxygen isotope analysis, Sulfur isotope analysis. 
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