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ABSTRACT 

The family Anaspididae is a relictual Gondwanan group of malacostracan crustaceans now surviving 

only in cool waters and caves of Tasmania. Its most widespread species, Anaspides tasmaniae, is also 

the most morphologically plesiomorphic of the order Anaspidacea, and shows very little development 

since Triassic fossil anaspid forms. A number of issues relating to the systematics and taxonomy of the 

family Anaspididae have been raised since the first discovery of the extant species. In particular, the 

separate species status of Anaspides spinulae has been questioned. The level of genetic differentiation 

among populations of Anaspides tasmaniae has never been ascertained, but has been presumed to be 

high due to the long periods of isolation between populations. The relationships between the three 

anaspid genera are also of interest as they elucidate the early evolution of the family in Tasmania. 

In order to clarify the systematics of the genus Anaspides, an allozyme and mitochondrial 

DNA study of populations of Anaspides tasmaniae, A. spinulae, Paranaspides lacustris, 

Allanaspides helonomus and Allanaspides hickmani was undertaken. Anaspides populations 

were sampled over the entire geographic range of the genus and a wide variety of habitats, 

including caves. Genetic affinities ascertained from the allozyme and 16S mtDNA analyses were 

largely congruent. The allozyme study also provided information on within-population processes and 

the mtDNA analysis provided confidence levels on phylogenies and molecular clock estimates for 

divergence times. The results showed that: 

• Anaspides spinulae was not supported as a species separate from A. tasmaniae. 

• Cave populations do not form a distinct genetic group despite the common loss of 

pigmentation. All cave populations sampled shared genotypes with the nearest epigean 

populations. 

• Populations of Anaspides tasmaniae (including A. spinulae) were characterised by generally 

low levels of within-population genetic variation, with many instances of fixed differences 

and private alleles, and often high levels of among-population genetic differentiation. 

• The genus Anaspides contains three distinct geographical groups all of which were supported 

genetically as separate species. These are found in the south (Huon area), the southwest and 

the Central Plateau / Derwent areas. It is proposed that these groups be considered as separate 

species requiring detailed description. 

• Differentiation among Anaspides populations within the Central Plateau was significantly less 

than that within the southern and southwestern group. Speciation appears to be continuing in 

isolated populations, particularly in the southwest. 



• The Central Plateau group has a core group of 8 populations, and 5 populations on the fringe 

of the Plateau that are more distant. An isolation by distance test found a significant 

correlation between inter-population structure and geographical distance. 

• The southern group of Anaspides showed the same high level of differentiation from the other 

two Anaspides groups as from Paranaspides. This level of differentiation is similar to genus-

level divergence in other crustacean groups. As a result, it is recommended that the southern 

Anaspides group be described as a new genus. A thorough examination of morphological 

characters should be undertaken in order to establish the southern Anaspides as a new genus. 

• The emergence of Allanaspides was found to be the earliest divergence from the anaspid 

lineage, estimated at about 43 million years ago by molecular clock calculations. The 

separation of Paranaspides lacustris and the southern group of Anaspides, and the divergence 

of the two Allanaspides species is likely to have occurred between about 20 and 25 million 

years ago. The Central Plateau and southwest groups appear to have diverged approximately 

10 million years ago. The estimated time at which the last common ancestor occurred within 

geographical groups is approximately 6 my for the southwestern group, 3.5 my for the 

southern group and 2 my for the Central Plateau. 

• Biogeographical explanations for divergences in the family Anaspididae are suggested. These 

include climatic warming in the Eocene, increasing aridity in the late Oligocene and Miocene, 

various geological faulting and tectonic events in the Tertiary and the invasion of Tasmanian 

freshwaters by fish predators. Vicariant speciation in the Tertiary appears to have been the 

major influence on evolution in the Anaspididae, with Pleistocene glaciation and/or recent 

warming possibly forcing populations into cave refugia. There is evidence that glacial 

meltwater may have allowed some populations to mix, having a homogenising effect on 

genotypes, and possibly overlaying more ancient relationships between populations. 
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'Goethe somewhere remarks that the most insignificant natural object is, as it were, a window through 

which we can look into infinity. And certainly when I first saw the Mountain Shrimp walking quietly 

about in its crystal-clear habitations, as if nothing of any great consequence had happened since its 

ancestors walked in a sea peopled with strange reptiles, by a shore on which none but cold-blooded 

creatures plashed among the rank forests of fern-like trees, before ever bird flew or youngling was 

suckled with milk, time for me was annihilated and the imposing kingdom of man shrunk indeed to a 

little measure.' 

Geoffrey Smith, A Naturalist in Tasmania, 1909. 
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1. Introduction 1 

Chapter 1. Introduction 

The fauna and flora of Tasmania exhibit a degree of isolation, discreteness, relative simplicity and 
relictual elements which make it an area of great interest for biological study (Williams, 1974). 
Tasmania is unique in that it contrasts in climate and geological history with its nearest continental 
landmass, mainland Australia; Tasmania is more temperate and well-watered, with many permanent 
rivers, streams and freshwater lakes, and unlike mainland Australia has large areas that were glaciated 
during Pleistocene times. 

The influence of Tasmania s past conjunctions and disjunctions with other land masses can still be 
seen in the distributions of many of its plant and animal species. Tasmania s connection with the 
Antarctic continent persisted for about 60 million years after the separation of mainland Australia 
from Antarctica, finally being severed about 30 million years ago (Veevers, 1991). This was the latest 
separation from Antarctica of all the former Gondwanan land masses. Tasmania s cool climate and 
the intermittent marine barrier in Bass Strait have afforded protection for some of the ancient 
Gondwanan biota, many of which have high endemicity and diversity within Tasmania. It is also 
climatically and geographically most distant from the invasion routes into Australia of biota from 
South-East Asia (Williams, 1974). 

Tasmania is well-known for its abundant and diverse marsupial fauna, whose existence has been 
attributed largely to the lack of placental mammals which have become established on mainland 
Australia since Quaternary times. The persistence and abundance of marsupial species such as the 
Tasmanian devil, bettong, potoroo, pademelon and quoll, which are now extinct or uncommon on 
mainland Australia, and the presence of different forms of mainland species, indicating continuing 
divergence of mammalian lines, make Tasmania an important faunal area for mammalian studies 
(Green, 1974). With the increasing recognition of the uniqueness of our Gondwanan faunal heritage, 
more interest has recently been shown in the associated Tasmanian invertebrate fauna, such as the 
onychophoran velvet worm, the ptunurra brown butterfly, endemic stoneflies and caddis-flies, and 
especially crustaceans. Presumably due to the abundance and diversity of freshwater habitats, 
Tasmanian freshwater crustaceans are particularly well-represented among the relictual invertebrate 
groups; these include members of the isopod suborder Phreatoicidea, the freshwater crayfish genera 
Spinastacoides and Ombrastacoides (formerly Parastacoides; Hansen, 2001), Engaeus and 
Astacopsis, the amphipod family Gammaridae and the syncarid order Anaspidacea, of which the 
family Anaspididae is the subject of this thesis. 

Biogeography and Systematics of Anaspididae 
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The Division Syncarida is thought to have arisen in marine environments in the Early Carboniferous, 
about 350 million years ago (Schminke, 1982; Schram, 1982). The group is believed to have 
undergone a radiation around the Paleozoic continent of Laurentia during the Carboniferous and a 
more extensive radiation to other regions with the formation of the supercontinent Pangea in the 
Permian. Syncarids appear to have been common and widespread throughout brackish and near-shore 
marine environments in the later Paleozoic. A number of syncarid fossils have been identified from 
North America and Europe from this period, from both marine and brackish water assemblages 

(Brooks, 1962; Schram, 1984). 

The Syncarida today contains three orders, the extinct Paleocaridacea, the extant Anaspidacea and 
the extant Bathynellacea (Brooks, 1962; Schram, 1984). Apart from 2 species in Lake Baikal, all the 
Bathynellacea are interstitial or groundwater forms. In adapting to subterranean life, they have tended 
towards paedomorphosis, being greatly reduced in size (0.5 - 3.5 mm) and complexity of form. They 
are found on all continents except Antarctica, but are not found in recently glaciated areas of the 

Northern Hemisphere (Schminke, 1982). 

Of fossil forms, the majority have been placed in the Paleocaridacea, and are of Paleozoic age 
(Schram, 1984). The earliest examples are very small, Lower Carboniferous syncarids of the family 
Minicarididae, which apparently lacked abdominal appendage and are therefore considered to be a 
possible origin of the Bathynellacea (Schram, 1984). The great interest shown in the living 
Anaspidacea is largely because they share a generalised form with the larger Paleocaridacea. The 
shared characters include the lack of a carapace, the number of free segments of the body and the 
general form of the antennae, antennules, pleopods and tail fan (Calman, 1896; Schram, 1982). The 
family Anaspidacea is considered to be the most primitive of the extant syncarids (Schram and 
Hessler, 1984).The earliest descriptions of living anaspidaceans by Thomson (1893, 1894) did not 
recognise their affinities with fossil forms, and placed them in a now defunct group, the Schizopoda. 
It was not until 1896 that Calman (1896) first aligned them with their fossil relatives and established 
a new division, Syncarida, to accommodate both the living Tasmanian and the fossil animals. 

In the following century, a small number of South American and Australian fossil syncarids were 
found and allocated to the Anaspidacea, as they are morphologically more similar to living 
anaspidaceans than are the Paleocaridacea. These include Clarkecaris brasilicus from the Brazilian 

Permian (Schram, 1982), Anaspidites antiquus from Triassic deposits near Sydney, NSW (Chilton, 

1929), and Koonaspides indistinctus from the Cretaceous in southeastern Victoria (Jell and Duncan, 

1986). All inhabited swamps or shallow lakes, but there is disagreement as to whether Clarkecaris was 

from fresh or saline water; the latter two were freshwater species (Brooks, 1962; Schram, 1982; Jell 
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and Duncan, 1986). Anaspidites antiquus reached a length of 42 mm, and Clarkecaris brasilicus and 

Koonaspides indistinctus 21 — 30 mm and 23 mm respectively (Brooks, 1962; Schram, 1984; Jell and 
Duncan, 1986). The extant members of the anaspidacean family Anaspididae are morphologically 
almost indistinguishable from the 200 million year old fossil Anaspidites antiquus. 

The order Anaspidacea has been found only in Australia, South America and New Zealand, indicating 
a Gondwanan history. There are four extant families, the Stygocarididae, Psammaspididae, 
Koonungidae and Anaspididae, all of which occur in Tasmania. Only the Stygocarididae have been 
found outside Australia (Williams, 1980). These are small (1.4 - 42 mm) interstitial forms, and are 
similar to the Bathynellacae in their habitat and general reduction in form; for example, they have no 
eyes, tail fan, antennal exopodite, mandibular palp or pleopods except for the uropod and petasma 
(Schminke, 1982). 

The Psammaspididae occupy interstitial water in coarse substrates and are known from New England, 
NSW, and Devonport, Tasmania. The family contains two genera and two species, Psammaspides 
williamsi Schminke (1974) and Eucrenonaspides oinotheke Knott and Lake (1980). These are both 
medium-sized (7 - 14 mm), 'eyeless and have somewhat reduced appendages, particularly on the 
abdomen where they are very rudimentary (Schminke, 1982). Their adaptation to coarse interstitial 
habitats has obviously led to some paedomorphosis, although not as extreme as that seen in the 
Bathynellacae or the Stygocarididae. 

The family Koonungidae contains three species in two genera: Koonunga cursor Sayce (1908) and K 
crenarum Zeidler (1985) from north-western Tasmania, Victoria and South Australia, and 
Micraspides calmani Nicholls (1931) from the west coast of Tasmania. Drummond (1959) and 
Zeidler (1985) suggest that undescribed species of Koonunga exist on the Australian mainland and 
Bass Strait islands. Koonunga cursor is about 10 mm in length, has small sessile eyes and is found in 
crayfish (Engaeus species) burrows and neighbouring surface pools and swamps after rainfall. It 
appears that this species has adapted to arid conditions by using crayfish burrows to allow access to 
the water table in times of drought (Drummond, 1959), and its size has reduced accordingly. 
Koonunga crenarum is found in sinkholes and caves, lacks eyes and is about twice as large as K 
cursor, at over 20 mm (Zeidler, 1985). Micraspides calmani occurs in waters associated with 
freshwater crayfish (Parastacoides species) burrows in swampy areas in the western half of Tasmania. -  
It lacks eyes, attains lengths of no more than 8 mm and has an elongate, rounded body ideally suited 
to subterranean habitats, with more reduced appendages than those of Koonunga (Nicholls, 1931). 
No members of the Koonungidae swim strongly (Drummond, 1959; Zeidler, 1985), although 
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Micraspides is able to swim and may also move by a wriggling motion (Nicholls, 1931). Koonunga 

cursor is reportedly able to burrow in soft substrates (Drummond, 1952). 

All three of the anaspidacean families discussed so far are adapted to a subterranean existence through 
reduction in size, number and type of appendages and restriction of sight and locomotory function. 
The least hypogean species, K. cursor, which sometimes occurs in surface water, is the largest and the 
only species with eyes. All the permanently subterranean anaspidacean species lack eyes. The 
interstitial forms are the smallest and most paedomorphic and in these features resemble the 
Bathynellacea. It appears that in the Syncarida, particular morphological characters have a certain 
amount of plasticity and have responded to different subterranean environments, such as caves, 
crayfish burrows and interstitial water, in similar ways, indicating convergent evolution of the reduced 
features of subterranean syncarid species. An alternative hypothesis is that at some time in the past 
all syncarids were subterranean and the family Anaspididae has since colonised surface water. This 
scenario is possible, but unlikely to have occurred any later than the Paleozoic, for a number of 
reasons, including evidence from the fossil record of early syncarids showing them to have been 
surface-water dwellers (from their size and ecological assemblages; Schram, 1984) and the accepted 
plesiomorphy of extant surface-water anaspidaceans. Whether it was anaspidaceans or 
paleocaridaceans which first colonised surface waters, and when this occurred, cannot be answered 
without further fossil data, and is beyond the scope of this work. 

The family Anaspididae is endemic to Tasmania and is the only extant syncarid taxon commonly 
found in surface waters. There are two fossil genera, Anaspidites and Koonaspides, containing the 2 
species described above, and three extant genera containing 5 named species, Anaspides tasmaniae 
Thomson 1893, Anaspides spinulae Williams 1965, Paranaspides lacustris Smith 1908, Allanaspides 
helonomus Swain, Wilson, Hickman and Ong 1970 and Allanaspides hickmani Swain, Wilson and 
Ong 1971. All the Anaspididae have pedunculate eyes. 

Knott (1975) compared the relative lengths of segments and tagma of the fossil Anaspidites antiquus 
with those of the extant anaspid genera. He concluded that Anaspides was most similar to Anaspidites 
on the basis of similar proportions of the segments within the head and thorax and of the tagma over 
the whole body; Allanaspides and Paranaspides have a reduced thorax and elongated abdomen. 
Paranaspides shared with Anaspidites similar proportions of the abdomenal segments, specifically the 
proportionally greater length of the uropod when compared with Allanaspides and Anaspides (Knott, 
1975). 

Biogeography and Systematics of Anaspididae 
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Paranaspides lacustris is the only pelagic syncarid and occurs in association with patches of aquatic 
vegetation in Great Lake, Penstock Lagoon, Shannon Lagoon, Arthurs Lake and Woods Lake on the 
southeastern side of the Central Plateau (Fulton, 1982) (Figure 1.1). It is usually found at depths of 
between 1 and 8 m, although will occur in shallower water (0.2 — 1.0 m) when the weed-beds are more 
exposed at low lake levels (Fulton, 1982). It is up to 25 mm in length, is the most shrimp-like in 
appearance, due to a pronounced dorsal flexure between the thorax and abdomen, and is the strongest 
swimmer of the anaspids (Wells et al., 1983). 

The genus Allanaspides has been found to be abundant at a number of sites around the shores of Lake 
Pedder (Allanaspides helonomus) and a small area at McPartlans Pass between Lake Pedder and Lake 
Gordon (A. helonomus and A. hickmani) (Figure 1.1). It has been assumed that the two species 
originated in different drainage systems, although one specimen of A. hickmani has been found on the 
western shore of Lake Pedder (Horwitz, 1988). It is likely that the damming of these two lakes has 
restricted the distribution of the genus considerably (Swain et al., 1970), but may also have created 
new opportunities for the two species to cohabit. Both species occur in button-grass plains, in the 
burrows of freshwater crayfish (Ombrastacoides spp.) and associated surface water. They are the 
smallest anaspids (7 — 12 mm; Swain et al., 1970, 1971) and are not strong swimmers. The initial 
description of the genus by Swain et al. (1970) reports many features of its morphology to be 
intermediate between Paranaspides and Anaspides, and describes four new characters to justify its 
generic status. The most significant of these is the presence of a unique structure, the fenestra 
dorsalis, on the dorsal surface of the cephalothorax. This is believed to be a deeply invaginated 
active ion transport system with numerous inner and outer mitochondrial pumps (Lake et al., 1974; 

McConnell, 1987). It is possible that the structure developed in response to the low ionic content of 
the waters of southwestern Tasmania, coupled with the inhibitory effect on ion absorption of high 
acidity from an excess of organic matter in buttongrass swamps (Swain et al., 1970). The size, shape 
and colour of the fenestra dorsalis differs between Allanaspides species (Swain et al., 1971). 

Anaspides species are the largest living syncarids, growing to 40 — 50 mm in most environments, 
although in many areas its growth is restricted to about 25 mm; the largest specimen recorded is 63 
mm and females attain a considerably larger size than males (Swain and Reid, 1983). Anaspides can 
swim effectively, but is usually found walking among stones or submerged vegetation. Its walking and 
swimming activity are similar, and are apparently mediated by the same coordination of the nervous 
system, a feature that is presumed to be primitive (Macmillan et al., 1981). It has no dorsal flexure, 
but has a well-developed caridoid reflex (the flicking movement used by decapod crayfish as an 
escape mechanism), which in Anaspides can be maintained for longer than is seen in crustaceans with 
carapaces, and is probably its only defence against predators (Silvey and Wilson, 1979). It sometimes 
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emerges from the water and has been found to survive and remain active for up to several days out of 

the water if humidity is high (Swain and Reid, 1983). It is omnivorous and prone to cannibalism, but 

usually feeds on detritus, algae, mosses, small invertebrates and worms (Manton, 1930; Smith, 1908). 

It does not brood its eggs, but sheds them freely into the water, and lacks a larval stage (Schminke, 

1982; Hickman, 1937). 

Figure 1.1 Distribution of three genera of the family Anaspididae. Anaspides distributional range based 

on O'Brien (1990). 
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Anaspides is an ecological generalist and is locally abundant in a wide range of alpine and subalpine 
habitats throughout central, western and southern Tasmania, including small streams, rivers, small 

alpine tarns, lakes, moorland and sedgeland pools and sphagnum runnels. It is also found in streams 
and pools in a many limestone caves throughout Tasmania, including the Ida Bay, Hastings, Junee-
Florentine and Mole Creek systems (0 Brien, 1990). Figure 1.1 shows the extent of the distribution 
of the genus. A population of unusually large individuals (about 60 mm) occurs in Wet Cave, in the 

north of its range. It is not found in still, shallow, surface waters, presumably because it is not 

resistant to desiccation and is sensitive to water temperatures over about 22 °C (Swain and Reid, 

1983). It appears to survive in smaller water bodies such as small tams, runnels and highland streams 

only where there is access to deep water or shelter from overhanging rocks, banks or bolster 

vegetation.In an electrophoretic study, Andrew (1999) showed that there was no genetic 
differentiation between Anaspides populations from flowing and still water. The distribution of the 

genus has probably diminished over the last 150 years through predation by the introduced brown 
trout, Salmo trutta, and climatic warming. There is evidence that one large population, in Hartz Lake 
in the far southeast of its range, has disappeared entirely since trout were introduced about 30 years 

ago. Anaspides and trout co-exist in the highland Clarence Lagoon and Lake St Clair, possibly as 

there is a variety of habitats available to Anaspides in these large lakes which afford some protection, 
such as weed beds (Isoetes sp.), exfoliating rock sheets in Lake St Clair, and stoney outcrops in 
Clarence Lagoon (Ron Mawbey pers. comm.; 0 Brien, 1990). There is some doubt whether 

Anaspides are preyed upon by native galaxiid fish, but it seems likely that large galaxiids would prey 
on them. There are few, if any, waters where these species cohabit (Fulton and Horwitz, 1987), but 

the influence of predation by trout on both native fish and anaspids confuses this argument (0 Brien, 
1990). 

Many physiological and morphological studies of Anaspides have been undertaken because the genus 
is considered likely to display plesiomorphic character states. The morphology, physiology and 

embryology of Anaspides are seen as potentially informative on the nature of the early 

malacostracan line, despite the fact that some derived characters will probably be found in any extant 
form. Studies of the giant lateral neurone (Silvey and Wilson, 1979), foregut morphology (Wallis and 
Macmillan, 1998), mouthparts and feeding (Cannon and Manton, 1928; Manton, 1930a; Gordon, 

1961), transport tissues (McConnell, 1987), organ of Bellonci (Kauri and Lake, 1972), maxillary 
glands (Manton, 1930b), embryology (Hickman, 1937), locomotory function (Macmillan et al., 
1981), spermiogenesis (Jespersen, 1983) and heart ultrastructure (Tjonneland et al., 1984) have all 
contributed to a relatively high level of understanding of the genus and the evolution of crustacean 
structure and function. 

Biogeography and Systematics of Anaspidiciae 
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The genus contains two described species, Anaspides tasmaniae Thomson 1893 and Anaspides 

spinulae Williams 1965, but its taxonomy has been questioned by a number of authors. The spination 

and serrations on the margins of the epimera, abdominal segments and telson were used by Williams 

(1965) to describe Anaspides spinulae, but these characters have been found to be variable in 

populations of A. tasmaniae, with intermediate forms in a number of locations on the Central Plateau 

(0 Brien, 1990). Cave forms have also been suggested as warranting taxonomic investigation. All 

cave forms are unpigmented and Lake and Coleman (1977) described a third pattern of telson 
spination and anophthalmia in the Wolfe Hole population. 0 Brien (1990) presents data showing the 

occurrence of this cave type of telson spination in Anaspides from some 16 caves in the south of 

the state, but it is by no means clear that this character is phylogenetically useful rather than merely 
highly variable, and it is not always fixed within populations (S. Eberhard pers. comm.). Knott 

(1975), the IUCN Invertebrate Red Data Book (Wells et al. 1983), 0 Brien (1990), Andrew (1999) 

and Jarman and Elliot (2000) suggest a need to revise the taxonomy of the genus and Swain et al. 

(1970) called for a redescription of the entire family, as the original characters used by Thomson to 

describe it became invalid with the discovery of Allanaspides. 

Numerous studies of isolated populations of freshwater crustaceans have found morphological stasis 

coupled with genetic divergence (Penton et al., 2004; Witt et al., 2003; Lee and Frost, 2002; 

Grandjean et al., 1998; Daniels, 2003; Vainola, et al., 1994; Witt and Hebert, 2000; Gomez et al., 

2002; Muller, 2000; Hansen, 2001). Among-population genetic divergence is obviously related to 
genetic drift and the limited dispersal capability of most freshwater crustaceans, but morphological 

conservatism is harder to explain; maybe it is the result of past selection pressures, whereby a limited 
number of crustacean body plans that are well-suited to their particular niches while still being able to 
accommodate some environmental fluctuation became fixed. The converse, morphological variability 

in certain characters in genetically homogeneous populations, is well known in most animal taxa. 

For these reasons we could argue that in the genus Anaspides a single character (spination) which has 

variable rather than discrete states is not enough to delineate species, while at the same time 

predicting that the numerous isolated populations throughout the state have probably accumulated 

genetic differences, through selection or genetic drift. It is highly likely that the extraordinarily long 

history of the Anaspididae within Australia, and the geological, climatic and biotic changes during that 

time, would have led to the accumulation of phylogenetically significant amounts of genetic 

differentiation between isolated populations, or groups of populations. Examining these questions is 

the subject of the current work. 
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1.1 Project objectives 

The primary aim of this thesis is to assess the genetic relationships among populations of the genus 

Anaspides, to establish a reliable phylogeny for the family Anaspididae, and to attempt to account 
for the phylogenetic relationships biogeographically. Allozyme and 16S mt DNA markers are used to 

examine genetic differentiation within populations, among populations, among species, and among 
genera. The phylogenetic relationships are used to suggest a valid taxonomy. All species in the family 

have been included in the study and A. tasmaniae was sampled across its entire geographical range. 

The thesis consists of 5 chapters: 
Chapter 1 summarises background information on the evolutionary history and taxonomy of the 

syncarids, their history and present-day distribution in Australia, and includes a more detailed 

examination of the family Anaspididae. 
Chapter 2 provides details of the sample populations used in the study, their habitats and locations, 

and a map showing sampling sites. 
Chapter 3 reports on the allozyme electrophoresis study, which establishes relationships among 
populations, levels of differentiation within populations and a preliminary phylogeny in the form of 

a cluster analysis. 
In Chapter 4 mitochondrial DNA sequencing provides further phylogenetic information to validate 

the allozyme study, resulting in three phylogenies produced by different analytical methodologies. It 

includes a discussion of how to ensure a valid and useful phylogenetic analysis of sequence data. A 
molecular clock is applied to the results to estimate times of divergence of anaspid lineages. 

Chapter 5 consolidates the phylogenetic information from the allozyme and mt DNA studies, and 
suggests geological, biotic and climatic causes for the relationships within the family and the current 
distribution. Changes to the taxonomy and further work needed are also suggested. 

Specific questions which will be addressed are: 

1. Are there genetically distinct geographical groups within the genus Anaspides and if so what 
are the relationships between them? 

2. Is Anaspides spinulae supported as a genetically distinct taxon? 
3. Is the cave form a monophyletic group? 
4. How might any geographical groups have originated? 
5. Are there any differences in the levels of divergence within geographical groups? 
6. What are the phylogenetic relationships between the three genera Anaspides, Paranaspides 

and Allanaspides? Which is the most basal? 
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7. What are the estimated times that each of the genera, species and populations diverged from 
each other? 

8. What geological, climatic or biotic causes can be established for the reported levels of 
divergence and time estimates? 
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Chapter 2. Material 

Specimens of Anaspides tasmaniae were collected by hand net from eighteen sites, including both 
lacustrine and riverine habitats. Sites were chosen to represent much of the geographical distribution 
of the species. Three of these populations were from subterranean waters within limestone cave 
systems. Specimens of A. spinulae were collected from Lake St Clair and Clarence Lagoon on the 
Central Plateau by diving and electroshocking respectively. 

The remaining three species in the family Anaspididae were sampled to be used as outgroups, in order 
to relate intrageneric levels of genetic diversity to those found between genera. Specimens of 
Paranaspides lacustris were collected from Woods Lake on the eastern side of the Central Plateau by 
hand net. Populations of Allanaspides hickmani and Allanaspides helonomus were sampled, also by 
hand net, at McPartlans Pass near Lake Gordon, and further specimens of Allanaspides helonomus 
were collected in the Harlequin Hill region near Lake Pedder. 

The location and details of the collection sites can be found in Figure 2.1 and Table 2.1. Details of 
people who collected material used in this study can be found in Appendix 3. Type localities were 
sampled for all species, except for P. lacustris, and are noted in Table 2.1. P. lacustris was not able to 
be sampled from its type locality, Great Lake, so was taken from nearby Woods Lake. 

Animals collected during this study were transported live to the laboratory where they were frozen in 
liquid nitrogen, except those from Clarence Lagoon and Woods Lake, which were frozen in liquid 

nitrogen immediately on collection. Samples were stored at -80 iC at the CSIRO Division of Marine 
Research Genetics laboratory for the duration of the study. 

Frozen homogenates of specimens of A. tasmaniae, collected by S. Jarman from five southwestern 
populations, were included in the DNA study. Additional sequence data originating from work by 
Jarman and Elliot (2000) were obtained from Genbank for a further five populations and added to the 
sequence database. These populations are noted in Table 2.1. Only one population of Allanaspides 
helonomus (from the Harlequin Hill area) was used in the DNA study, otherwise all populations from 
the allozyme work were also represented in the DNA study. 
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Location Numbe Habitat description Grid 
reference # 

Anaspides tasmaniae - surface populations 

Central Plateau - near Lake Ball 

Central Plateau - near Powena 
Creek 

Central Plateau - near Olive 
Lagoon 

Central Plateau - Hydro Creek 

Central Plateau - Lonely Lake 

Central Plateau - Jacks Lagoon 
outflow 

Central Plateau - tributary of 
Clarence Lagoon 

Mount Wellington (type locality) 

Hartz Mountains 

Adamsons Peak 

Weld River 

Mount Field 

Mount Anne 

Frenchmans Cap 

Western Arthur Range - Lake 
Oberon 

*Western Arthur Range - Square 
Lake 

*Western Arthur Range - Haven 
Lake 

*Coronation Peak 

*Lake Picton 

*Lake Rhona 

	

15 	Small deep pools among and under sphagnum, Richea 
spp. and pencil pine, almost no exposed surface water 

	

16 	Deep open pools, overhanging sphagnum and coral fern 
banks 

	

15 	Slow-flowing deep open runnels, overhanging 
sphagnum banks 

	

16 	Deep pool in fast flowing rocky creek in tea-tree and 
heathland 

	

9 	Shaded boulders in alpine lake 

	

14 	On boulders in fast flowing alpine creek 

	

7 	Deep open runnels with overhanging sphagnum banks 

	

9 	Pool with boulder and cement substrate in small rocky 
stream 

	

17 	Rocky substrate in alpine tarn 

	

19 	Fast-flowing alpine creek with gravelly substrate; 
partitioning of size-classes — small and large 
individuals separated by fast-flowing water over a steep 
gradient. 

	

21 	On logs in fast-flowing river in wet sclerophyll forest 

	

16 	Alpine tarn with silty substrate 

	

22 	Alpine tams 

	

14 	Alpine lake 

	

15 	Cobble substrate around shore of lake in alpine 
heathland 

	

2 	Cobble substrate around shore of lake in alpine 
heathland 

	

2 	Alpine lake 

	

2 	Alpine tarn 

	

1 	Alpine lake 

	

1 	Alpine lake 

4416 53668 

4483 53634 

4458 53550 

4877 5358 

4588 53787 

4454 53835 

4416 53401 

5191 52512 

4812 52127 

4863 52004 

4536 52599 

4653 52741 

4526 52438 

4040 53199 

4405 52224 

4405 52221 

4457 52198 

4193 52483 

4705 52214 

4414 52885 
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Table 2.1 Details of collection sites of members of Anaspididae used in this study 
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Table 2.1 cont. 

'Snowy North 

'Sandbanks Tier 

'Zion Hill 

"Mt Rufus 

aMt Ossa 

1 

1 

1 

1 

1 

Stream flowing into Styx River 

Stream flowing from beneath boulders 

Stream at base of hill 

Stream flowing into Lake St Clair 

Ridge between Mt Ossa and Mt Doris 

4718 52574 

4878 53678 

4433 53705 

4262 53365 

4236 53643 

Anaspides tasmaniae - limestone cave populations 
Wolfe Hole 9 Underground lake (Lake Pluto) with silty 

substrate 
4866 51963 

- 
Newdegate Cave 

Wet Cave 	- 

5 

13 

Small underground stream, intermittent 
flow 

Stream fed by three surface creeks - 0.15 to 

4876 51966 

4502 53944 
6 km underground before Wet Cave site 

Anaspides spinulae 
Lake St Clair, south of Pumphouse 
Point 	(type locality) 

7 Weedbeds at depths of about 2 metres in 
large highland lake 

4340 53381 

Clarence Lagoon 15 Rocky substrate about 1.5 metres deep in 
lake in alpine heathland 

4437 53403 

Paranaspides lacustris 
Woods Lake 20 Lake in wet sclerophyll forest 5010 53430 

Allanaspides hickmani 
McPartlans Pass 	(type locality) 8 Small shallow pools with crayfish burrows 

in buttongrass plains 
4344 52542 

Allanaspides helonomus 
Harlequin Hill area (type locality) 8 Extensive pools in buttongrass plains 4476 52434 

McPartlans Pass 2 Small shallow pools with crayfish burrows 
in buttongrass plains 

4344 52542 

All grid references are based on Australian Geodetic Datum 1966 (to nearest 100 m). 

* Provided as homogenates for DNA analysis only; not collected in this study. 
a DNA sequence data from work reported in Jarman and Elliot (2000); not collected or sequenced in this study. 

To summarise, a total of 24 populations were collected and underwent allozyme analysis, 28 
underwent DNA sequencing during this work, and 33 populations were available for DNA sequence 
analysis. 

Biogeography and Systematics of Anaspididae 



oWet Cave 
Jacks Lagoon 0  

°Lonely Lake 
Zion Hill IDL,I, Bail 

CSandbanks Tier 
Mt Ossa0 	'Jr -Powena Ck 

O 	 0 Hydro Creek Olive Lagoon°  
Lake St Clair 	Clarence Lagoon •Woods Lake 

Mt Rufus°  ° Clarence L. tnbutaiy 

Frenchmans Cap° 

0 Lake Rhona 

0 Mt Field 

• Anaspides spp. 

• Paranaspides lacustris 	 Lake Oberon 

O Allanaspides spp. 	 Haven Lake 

McPartlans Pass 	oWeld River. 

Coronation Peak 0 0 	°Snowy North  
00 Mount Anne 

----\\.\ Harlequin Hill 

Square Lake "01  oMt Picton,  
0 Hartz Mins 

e.s  A darn; o ns Peak 
ONewdegate Cave 
Wolfe Men,/ 

2. Material 14 

Figure 2.1 Locations of populations used in this study 
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Chapter 3. Mlozyme differentiation among and between populations 

3.1 Introduction 

Protein electrophoresis is the differential migration of proteins through a gel matrix under the 

influence of an electrical field. Homogenised samples are applied to a gel matrix of starch, 

acrylamide or cellulose acetate which has been infused with a buffer solution in order to avoid 

the denaturing of proteins by pH changes during electrophoresis. Differences in migration rate 

between samples are indicative of a different electrical charge, size or shape of the protein 

molecules. As these molecular features are dependent on the amino acid sequence of the 

protein, which is itself determined by the genetic code, it can be assumed that differences in 

migration rate between samples indicate genetic differences. Electrophoresis of both enzymes 

and non-enzymatic proteins has been used to visualise differences among the underlying 

genetic codes of proteins which are functionally similar, by using specific stains for each 

protein. Allozymes are variant forms of an enzyme which represent different alleles at the 

same gene locus. 

Since its inception in the 1960s, enzyme electrophoresis has been widely used in taxonomic 

and phylogenetic studies of a vast range of organisms and at different taxonomic levels. 

Results may also be applied in conservation programs where species boundaries (geographic 

and taxonomic) need to be established or where protection of genetic diversity itself is an 

objective. Although it has been partially replaced by the various DNA approaches, allozyme 

electrophoresis remains a valid genetic analysis technique, with many advantages over DNA 

sequencing in terms of cost and ease of operation. 

3.1.1 Issues arising from the use of allozyme electrophoresis 

Problems with the use of allozyme electrophoresis in systematics may arise as a result of 

different substitution rates at different loci, too much or too little variability, the presence of 

null (unexpressed) alleles, non-genetic sources of variability, and an inability to resolve 

electrophoretically all genetic differences at loci through coincidental similarity in molecular 

structure between allozymes, leading to the potential for underestimating the amount of 

variation (Thorpe, 1982; Hillis et al., 1996). The impact of these factors can be diminished to 

a large extent by the use of many loci. Confidence in results can be increased through the use 

of bootstrapping techniques and consideration of standard errors during statistical analysis. 
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A general area of debate in systematics has been the relative influence of the various forces 

driving evolutionary change in phenotypic character traits — selection, drift, mutation and 

migration. For any species a combination of these forces has determined its present-day 

genotype, phenotype, distribution and population structure; however large-scale selection 

decreases the reliability of phylogenetic inferences from systematic studies. With the advent 

of the use of allozyme data in such studies, the origin of protein polymorphism became the 

focus of the debate, and the two opposing theories of neutralism and selectionism were 

proposed. The neutral theory holds that most protein polymorphisms are explained by random 

genetic drift of mutant genes that are functionally equivalent. Under this theory selection is 

largely negative, acting to remove deleterious mutants, although some positive adaptive 

genetic change may also occur, albeit slowly over geological time. By contrast, under the 

selectionist theory molecular evolution is caused largely by selection for variants and their 

subsequent preservation in populations. Selective mechanisms are seen to act similarly on 

genotypes as they do on phenotypes, where certain conditions may favour one variant over 

another. Spatially or temporally diverse environments are believed by selectionists to be 

responsible for maintaining a large proportion of protein polymorphism (Nevo, 1983). 

In trying to substantiate either theory, reviews of the levels of polymorphism in the same loci 

over different taxa have confirmed that certain loci are more subject to selection than others 

(Nevo, 1983; Hedgecock, Tracey and Nelson, 1982). Furthermore, modelling of predicted 

levels of heterozygosity in the absence of selection in crustaceans found that expected levels 

were much higher than actual levels, possibly implying that selection was occurring or had 

occurred (Hedgecock, Tracey and Nelson, 1982). Reservations about this method included the 

inability to accurately estimate population sizes or the number of generations since 

divergence, possibly resulting in unreliable estimates of the number of accumulated mutations 

(Hedgecock, Tracey and Nelson, 1982). 

Other studies have found examples of selection for certain alleles occurring under particular 

environmental conditions. Rodriguez et al. (2002) describe significant differences in allele 

frequency and heterozygosity among samples of a single population of Artemia ranciscana 

which had been held at different temperatures and salinities. Likewise, environmental stress in 

intertidal barnacles (Schmidt and Rand, 2001) and amphipods (Duan et al., 2001) was found 

to be associated with between-population polymorphism at from one to four loci. A similar 

study of the freshwater fish Hoplias malabaricus found four out of 24 loci varying between 

habitats (Peres et al., 2002). The effect of the environment on multiallelic systems, and 
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epistatic processes in general, is more likely to be the source of selective pressure, but harder 

to verify. 

Gillespie and Kojima (1968) proposed that enzymes used in allozyme electrophoresis be 

grouped according to their metabolic functioning. Enzymes using substrates produced within 

the organism (Group 1 enzymes) were compared to those utilising substrates provided by the 

environment (Group 2 enzymes). Evidence of lower heterozygosity in the former group, 

which would imply selective pressure, has not been widely established, and the allocation of 

enzymes to either group is not always obvious (Ward, Skibinski and Woodwark, 1992). 

A novel approach by Nelson and Hedgecock (1980) established differences between Group 1 

and Group 2 enzymes in their relationships with environmental heterogeneity, trophic state 

and other ecological descriptors, using data pooled from diverse decapod crustacean taxa. 

Although there was considerable taxon- and enzyme-dependent variation, their general 

conclusions were that for the decapods heterozygosities in Group 1 enzymes are positively 

correlated with environmental variability and negatively correlated with trophic state, whereas 

heterozygosities in Group 2 enzymes are positively correlated with trophic state and 

negatively correlated with environmental variability. The environmental heterogeneity — 

trophic diversity model was proposed to explain the results, by contrasting Groupl and 2 

heterozygosities found in decapod species with coarse grain adaptive strategies against those 

found in species on a fine-grain path (Nelson and Hedgecock, 1980). 

The difficulty of distinguishing between the effects of genetic drift and selection in long-

isolated populations remains as much a problem for electrophoretic studies as for 

morphological ones. The conservative option is that neutrality should be assumed in the 

absence of evidence for selection, and therefore that mutation and drift are assumed to be the 

likely sources of genetic variation (Allendorf and Phelps, 1981; Varvio-Aho, 1983). A large 

number of electrophoretic loci is normally used to ensure that if selection has occurred at one 
or more loci its influence will be minimised. 

3.1.2 The interpretation of allozyme data for taxonomic and systematic purposes 

Relationships between taxonomic status, genetic variation and population structure have been 

established for many organisms using allele frequency data from electrophoretic studies. 

Statistical analyses can be grouped broadly as measures of the amount of genetic variation 

within a taxonomic unit (usually a population or species) and the distribution of genetic 
variation among units. 
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Measures of the amount of genetic variation within a taxonomic unit include heterozygo sity 

(H, the proportion of heterozygotes observed or expected from allele frequencies), the mean 

proportion of polymorphic loci per individual (P) and the number of alleles per locus (N a). 

The proportion of polymorphic loci per individual and the number of alleles per locus may 

vary with sample size and number and choice of loci. Heterozygosity is an independent 

measure, but if it is being calculated as observed rather than expected H for a species, the 

possibility of additional interpopulation variation must be considered. Expected 

heterozygosity is considered more accurate as it is estimated from allele rather than genotype 

sample frequencies. 

Mean values of P and H in 242 mostly animal species were calculated using data from studies 

using over 14 loci at P = 0.26 + s.d. 0.15 and H = 0.07 + s.d. 0.05 (Nevo, 1983). Ward etal. 

(1992) reviewed levels of heterozygosity of more than one thousand species over all major 

taxonomic groupings and compared them with results of a later review by Nevo etal. (1984, 

cited in Ward et al., 1992). Both studies found crustaceans to have by far the lowest 

heterozygosity of the invertebrates (Table 3.1). 

Table 3.1 Estimates of heterozygosity in major taxonomic groupings (adapted from Ward et 

al., 1992) 

Ward et al. (1992) 	 Nevo et al. (1984) 

Mean II' (± SE) No of species Mean H (± SE) No of species 

Invertebrates - total 0.122 + 0.004 370 0.100 + 0.005 361 

-crustaceans 0.052 + 0.005 80 0.082 + 0.007 122 

Vertebrates-total 0.071 + 0.02 648 0.054 + 0.003 551 

Note that Ward et al. (1992) used He  (Hardy-Weinberg expected) values calculated from the 

pooled allele frequency data for all populations of each species, while Nevo et al. (1984) used 

mean observed H values, which are the mean of values from sampled populations, ignoring 

possible between-population differentiation. Thus Ward s values should be higher than those 

of Nevo et al. where interpopulation differentiation occurs. The aberrant low value of H e  for 

crustaceans is explained as an artifact caused by one large study of twelve species of prawn 

which had very low overall heterozygosity. Further analysis by Ward et al. (1992) revealed 
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that partitioning the H e  between total and subpopulation heterozygosity resulted in mean 

subpopulation values which were more similar to those of Nevo etal. (1984). 

A review of electrophoretic studies of crustaceans by Hedgecock, Tracey and Nelson (1982) 

summarised allozyme variation in ten taxonomic subgroups and in the Crustacea as a whole. 

The average number of alleles per locus, N a, across 97 species cited was 1.5 (S.D. = 0.39, 

range 1 — 3.2), mean proportion of loci polymorphic per individual 0.305 (0.99 criterion, 

S.D.= 0.177, range 0.00 — 0.92) and expected proportion of loci heterozygous per individual 

0.073 (S.D.= 0.052, range 0.000 — 0.241). Table 3.2 gives a detailed summary of the same 

parameters for crustacean subgroups. 

More recent allozyme studies of genetic variation in crustaceans report values falling broadly 

within the ranges cited above. Studies include work by Sugama et al. (2002) on tiger prawns 

(Na  = 1 .3 - 1.5; H0  = 0.018 - 0.047); by de la Rosa-Velez etal.. (2000) on two Penaeus 

species (P = 0.125 - 0.313; H. = 0.023 - 0.086); by Daniels (2003) on a freshwater crab (Na = 

1 - 1.5, P = 0 - 0.2 and H. = 0.0 - 0.035); by Balalcirev and Fedoseev (2000) on the red king 

crab (P = 0.065 and He = 0.027 + 0.008); by Wang and Schreiber (1999) on an isopod 

woodlouse (Na  = 1.72, P = 0.329 and H. = 0.155); and by Coelho et al. (2002) on the 

amphipod Gammarus locusta (P = 0.116; He = 0.023). 

The distribution of genetic variation among taxonomic units is measured as pairwise genetic 

distance (or identity), which is based on the presence of alleles in common Distance or 

identity matrices are used in clustering algorithms to demonstrate levels of relatedness and 

displayed as dendrograms, or in tests of correlation, most commonly with geographical 

distance as a test of genetic isolation by distance. 

Population structure (genetic variation among subpopulations) is analysed using F- or G-

statistics (shown by Swofford and Selander, 1989, to be theoretically identical), which 

separate the total heterozygosity into that found within populations and that found between 

populations. Significant results from these tests are used to demonstrate spatial population 

differentiation; if a higher proportion of the total heterozygosity occurs between samples than 

within samples then significant substructure is indicated and the assumption that all samples 

came from one population is disproved. Within-population structure is indicated where the 

test for conformity with Hardy-Weinberg equilibrium shows a heterozygote deficit, and in a 

sexually reproducing population generally means a restriction of gene flow among 

components of the population. 
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Table 3.2 Summary of allozyme variation in various taxonomic subgroups and in the 

Crustacea as,a wholea (from Hedgecocic, Tracey and Nelson, 1982). 

Taxonomic 
Group 

No of 
species 

Mean 
number of 

loci per 
species (SD) 

(range) 

Mean 
number of 
alleles per 
locus (SD) 

(range) 

Mean 
proportionb  loci 

polymorphic 
per species (SD) 

(range) 

Mean expected 
proportion of 

loci heterozygous 
Per individual 
(SD) (range) 

Branchiopoda 
Diplostraca 3 14.3 (2.1) 1.56 0.385 (0.140) 0.135 (0.044) 

(12-16) (1.50-1.62) (0.333-0.530) (0.100-0.185) 
Maxillopoda 

Copepoda 5 19.0 (2.8) 1.71 (0.41) 0.414 (0.220) 0.142 (0.078) 
(15-23) (1.16-2.16) (0.105-0.600) (0.054-0.241) 

Cirripedia 15 19.2 (5.1) 1.90 (0.34) 0.552 (0.156) 0.120c (0.059) 
(12-27) (1.54-2.46) (0.389-0.92) (0.048-0.253) 

Hoplocarida 2 22.5 1.21 0.193 0.034 
(33, 12)d (1.33, 1.08)d  (0.303, 0.083)d (0.045, 0.022)d 

Eumalacostraca 
Peracarida 4 18.5 (4.7) 1.47 (0.24) 0.214 (0.075) 0.073 (0.067) 

(13-24) (1.24-1.81) (0.118-0.300) (0.057-0.104) 
Eucarida 
Euphausiacea 3 31.3 (4.2) 2.52 (0.69) 0.625 (0.233) 0.137 (0.078) 

(28-36) (1.81-3.20) (0.361-0.800) (0.057-0.213) 
Decapoda 

Penaeoidea + 12 24.9 (5.1) 1.64 (0.39) 0.267 (0.099) 0.051` (0.027) 
Caridea (15-30) (1.18-2.17) (0.107-0.458) (0.008-0.089) 

Astacidea + 11 25.6 (9.4) 1.24 (0.06) 0.185 (0.053) 0.050 (0.014) 
Palinura (15-43) (1.11-1.49) (0.100-0.276) (0.025-0.066) 

Anomura 19 23.3 (6.6) 1.38 (0.16) 0.271 (0.074) 0.068 (0.031) 
(12-38) (1.11-1.77) (0.105-0.455) (0.009-0.125) 

Brachyura 23 24.0 (4.9) 1.26 (0.17) 0.200 (0.105) 0.039 (0.031) 
(13-32) (1.00-1.70) (0.000-0.455) (0.000-0.128) 

Totals for 97 22.8 (6.9) 1.50 (0.39) 0.305 (0.177) 0.073 (0.052) 
Crustacea (12-43) (1.00-3.20) (0.000-0.92) (0.000-0.241) 

a  Means are arithmetic averages; 

'Polymorphism defined as frequency of most common allele no greater than 0.99; 

c Observed H used when expected values not given: Cirripedia (5); Penaeoidea + Caridea (1); 

Actual values for the two species. 

In a major review by Thorpe (1983), over eight thousand estimates of genetic identity 

between units at the same taxonomic level were compiled from electrophoretic studies of all 

major taxa (mammals, birds, reptiles, amphibians, fish, invertebrates and plants). With the 

exception of birds, levels of electrophoretically detectable genetic divergence at the family, 

genus and species levels were found to show very little difference between the major taxa. 

Nei s genetic distance D (Nei, 1972) was found to be below 0.3 for conspecific populations, 
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between 0.3 and 0.8 for congeneric species and above 0.8 for confamilial genera (Thorpe, 

1983). 

The results of a similar literature review of crustaceans by Hedgecocic, Tracey and Nelson 

(1982) are shown in Table 3.3. The levels of genetic identity (I; I = 1 — Nei s D) for 

congeneric species fall within Thorpe s reported range, with the exception of species in four 

decapod genera, in which the genetic identity values between species are higher and fall 

within Thorpe s range for conspecific populations (I > 0.7; D < 0.3). The identity values 

between three confamilial crayfish genera are likewise larger than Thorpe s quoted levels for 

confamilial genera (I < 0.2; D> 0.8). 

Table 3.3 Heterozygosities within and genic similarities between species and genera in the 

Crustacea. (Hedgecock et al., 1982) 

Comparisons Number of 

species 

Heterozygosity 

He  

Nei s Identity 

I 

Number of 

loci 

Between species 

Cirripedia 

Chthamalus spp. 5 0.049 — 0.104 0.20 —0.61 12— 16 

Hoplocarida 

Squilla spp. 2 0.028 — 0.035 0.54 30 

Peracarida 

Isopoda 

Excirolana . spp. 2 0.065 — 0.086 0.45 15 

Eucarida 

Euphausiacea 

Euphausia spp. 3 0.058 — 0.211 0.33 —0.51 28 — 30 

Decapoda 

Pandalus spp. 3 0.025 — 0.082 0.50 —0.68 21 — 24 

Crangon spp. 2 0.037 — 0.056 0.83 29 

Homarus spp. 2 0.033 — 0.039 0.90 30 

Orconectes spp. 3 0.029 — 0.060 0.67 —0.74 12— 14 

Cambarus spp. 3 0.040 — 0.083 0.50 — 0.53 14 — 17 

Procambarus spp. 2 0.032 — 0.051 0.68 15 

Callianassa spp. 2 0.105 — 0.126 0.36 19 

Cakinus spp. 2 0.046 — 0.048 0.74 18 

Clibanarius spp. 3 0.017 — 0.094 0.41 —0.67 14— 16 

Coenobita spp. 2 0.094 — 0.111 0.58 9 

Matuta spp. 2 0.0005 — 0.001 0.81 20 
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Comparisons Number of 

species 

Heterozygosity 

He 

Nei s Identity 

I 

Number of 

loci 

Cancer spp. 2 0.017 — 0.054 0.65 21 

Callinectes spp. 2 0.085 — 0.113 0.55 20 

Charybdis spp. 2 0.032 — 0.054 0.74 17 

Pachygrapsus spp. 2 0.025 — 0.026 0.68 21 

Ocypode spp. 3 0.012 — 0.120 0.83 — 0.92 22 

Uca spp. 4 (2 and 2) 0.029 — 0.075 0.50 ; 0.62 16; 19 

Total = 53 Mean = 0.59 

Between genera 

Orconectes and Cambarus 0.41 12 

Orconectes and Procambarus 0.74 12 

Cambarus and Procambarus 0.46 14 
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Table 3.3 cont. 

3.1.3 Allozyme electrophoresis in phylogenetic and biogeographic studies 

As biochemical genetic distance is correlated with taxonomic distance and both are functions 

of evolutionary time, the phylogenetic and systematic implications of electrophoretic data can 

also be considered (Avise, 1974, 1983). Freshwater crustaceans often lack morphological 

differentiation between species and populations whilst showing substantial genetic 

differentiation (Hedgecock et al., 1982). Morphological conservatism, relatively low 

heterozygosity and high levels of between-population differentiation within an ancient lineage 

distinguish systematic and evolutionary studies of crustaceans. 

Numerous taxonomic, systematic or phylogenetic electrophoretic studies of crustaceans have 

been undertaken, including the systematics of Australian Daphnia (Benzie, 1988), population 

structure in the American lobster Homarus americanus (Tracey et al., 1975), phylogeography 

of Mediterranean Proasellus isopods (Ketmaier, 2002), genetic zoogeography and systematics 

of Mysis relicta in north America and Europe (Vainola et al., 1994), taxonomy and evolution 

in brine shrimp (Beardmore and Abreu-Grobois, 1983), taxonomic relations of Atyid prawns 

(Benzie and de Silva, 1984), systematics and affinities within Western Australian shrimp 

species (Boulton and Knott, 1984) and speciation in the Jaera albifrons isopod complex 

(Carvalho, 1988). 

Biogeographic studies using allozyme data have reported relationships between genetic 

differentiation and isolation by distance (Arnaud, 2003; Jordaens et al., 2001), past sea-level 

changes (Stevens and Hogg, 2004), glaciation (Vainola et al., 1994; Alexandrino et al., 2000), 
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climatic change, vicariance (Planes and Fauvelot, 2002) or combinations of these factors 

(Ketmaier, 2002). 

Previous electrophoretic work on freshwater Tasmanian crustaceans includes a taxonomic and 

biogeographic review of the freshwater crayfish genus Parastacoides (Hansen, 2000), 

systematics and taxonomy of the freshwater crayfish Engaeus (Horwitz, 1990) and an 

unpublished systematics study of janirid isopods (Horwitz and Andrew, 1997). Low levels of 

genetic variability were found in the two freshwater crayfish genera, Engaeus (P = 0 - 0.15; 

He  = 0 - 0.048; Horwitz, 1990) and Parastacoides (mean Ho  = 0.026, range 0 - 0.114; Hansen, 

2001). Low heterozygosity is a common feature of freshwater 'crayfish in Australia (Horwitz, 

1990; Austin, 1996; Austin and Knott, 1996; Avery and Austin, 1997) and elsewhere (Nemeth 

and Tracey, 1979). 

3.1.4 The genetics of Anaspides tasmaniae : aims of this study 

There are two possible genetic bases for the survival of Anaspides species. Its survival for 

long periods through greatly differing climatic regimes and in various habitat types may be 

due to high levels of genetic diversity within populations. This would have provided the 

genetic flexibility to enable populations to adapt to different environmental conditions. It 

would be expected that eventually morphological differences would also arise, especially in 

isolated populations where genetic drift and adaptation have a greater impact. The second 

possibility is that although the genus may have limited genetic diversity it could have 

evolved, through selection, a specific genome that allows it to inhabit varied habitats with 

little phenotypic variation. Such a species would thus be a genetic as well as an ecological 

generalist, but would present low genetic diversity. As Anaspides is morphologically 

conservative one could predict the latter to be the case, implying low levels of genetic 

diversity within populations. In a study of marine fish, Smith and Fujio (1982) found high 

levels of variability in habitat specialists and low variability in habitat generalists. 

The aim of this study is to clarify taxonomic relationships within the family Anaspididae by 

using allozyme electrophoresis to assess the amount of genetic diversity within and between 

isolated populations of Anaspides species. Hypotheses may then be established regarding their 

evolutionary history and the biogeographic forces which have shaped the distribution of the 

genus. 

Information on the number of species of Anaspides and their distribution is needed (Swain et 
al., 1970; Wells etal., 1983; Horwitz, 1989; O'Brien, 1990) in order that the requirements for 
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conservation management of the genus can be identified. The resolution of the status of 
Anaspides spinulae as a separate species or as a synonym for A. tasmaniae is a priority. 

Although there appear to be distinct morphological differences in the spination on the 

posterior segments of the abdomen of the Lake St Clair and Clarence Lagoon Anaspides 

populations, doubt has been expressed about the specific status of these animals following the 

discovery of two intermediate forms at a number of Central Plateau sites (O'Brien, 1990) and 

a mitochondrial DNA study of the two groups (Jarman and Elliot, 2000); If the distinctive 
spination on the putative A. spinulae group justifies separate species status, A. spinulae would 
form a monophyletic branch separate from all A. tasmaniae populations in phylogenetic 
analyses. 

3.2 Methods 

3.2.1 Laboratory procedures 

An approximately 0.5 cm x 0.5 cm portion of tissue was dissected from each animal for 

electrophoresis. Most specimens were too small to dissect different tissues separately so 

samples were taken from the abdomen which is predominantly muscle tissue. Sample 

preparation was carried out at 4 i C and samples were kept on ice or frozen at all times. Each 

sample was ground in a 1.5 ml microcentrifuge tube with an approximately equal volume of a 

homogenizing solution, which consisted of 100 ml distilled water, 100 microlitres of §- 

mercaptoethanol and 10 mg NADP (Richardson, Baverstock and Adams, 1986). Ground 

samples were spun at 10 000g for 3 minutes and the supernatant was used for electrophoresis. 

Electrophoretic runs were carried out on Helena Titan HI cellulose acetate plates, using either 
200 volts through a tris-glycine buffer (0.02 M tris, 0.192 M glycine, pH 8.5) at room 

temperature, or 150 v through a tris-citrate buffer (75 mM tris, 25 mM citrate, pH 7.0) at 4 C. 

Thirty-three enzyme systems were examined, eighteen of which were able to be stained and 

scored reliably. Three of these encoded two loci, so a total of twenty-one loci was examined 

in the study. Electrophoretic conditions and quaternary structure for all loci used are given in 

Table 3.4. For those enzyme systems in which two loci were scored, the suffix 1 is used for 

the more anodally migrating enzyme and the suffix 2 for the more slowly migrating enzyme. 

Staining procedures followed those given in Hebert and Beaton (1989) or Richardson et al. 
(1986). Banding on gels was scored and interpreted conservatively. Differences in allozyme 
mobility between populations were always verified from more than one gel. 
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Table 3.4 Enzyme names and structure and electrophoretic conditions. 

Enzyme EC Locus Bufferg  Run time Subunit 
number (mins) number* 

Aspartate aminotransferase 2.6.1.1 Aat-1 B 65 2 
Aat-2 B 65 2 

Alcohol dehydrogenase 1.1.1.1 Adh A 25 unknown 

Aldolase 4.1.2.13 Aid A 25 unknown 

Aldehyde oxidase 1.2.3.1 Ao A 30 2 

Arginine phospholdnase 2.7.3.3 Apk A 45 unknown 

Fumarase 4.2.1.2 Fum B 65 unknown 

Glyceraldhyde-3-phosphate 
dehydrogenase 

1.2.1.12 G3pdh A 30 3 

Isocitrate dehydrogenase 1.1.1.42 Idh B 70 unknown 

Lactate dehydrogenase 1.1.1.27 Ldh A 30 2 

Malic dehydrogenase 1.1.1.37 Mdh-1 B 65 2 
Mdh-2 B 65 unknown 

Malic enzyme 1.1.1.40 Me A 25 unknown 

Mannosephosphate 
isomerase 

5.3.1.8 Mpi A 20 1 

Peptidase (leucine-tyrosine) 3.4.11.- Pep-It-1 B 70 2 
Pep-it -2 B 70 uncertain 

6-phosphogluconate 
dehydrogenase 

1.1.1.44 6pgdh, B 50 2 

Glucosephosphate isomerase 5.3.1.9 Pgi A 20 2 

Phosphoglucomutase 5.4.2.2 Pgm A 20 1 

Sorbitol dehydrogenase 1.1.1.14 Sdh A 40 uncertain 

Unknown dehydrogenase Nildh B 70 unknown 

Buffers : A=Tris-glycine ; B=Tris citrate. 

* Although all loci in this study were polymorphic, no within-site variation was found at some 

loci. Where all variation was between sites (i.e. no heterozygotes were found), the sub-unit 

number is unknown. 
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3.2.2 Statistical analysis 

Individual genotype data were analysed using statistical software Biosys-1 (Swofford and 

Selander, 1989) and Genepop v1.2 (Raymond and Rousset, 1995). 

For all populations, including outgroups, allele frequencies, and indices of genetic variability 

(mean number of alleles per locus, percentage of loci polymorphic and mean heterozygosity) 

were calculated. Tests of Hardy Weinberg equilibrium were performed by Markov chain 

iterations with 1000 dememorisations in 100 batches and 1000 iterations, and chi-squared 

tests using Fisher s exact method (Genepop v1.2; Raymond and Rousset, 1995). 

Nei s unbiased genetic distance (Nei, 1978) and the modified Rogers distance (Wright, 1978, 

cited in Swofford and Selander, 1989) were calculated for each pair of populations including 

outgroups by Biosys-1 (Swofford and Selander, 1989). Genetic distances were then subjected 

to cluster analysis to show relationships between populations. UPGMA (unweighted pair 

group method with averaging) cluster analysis and the related dendrogram of relationships 

between the sites were derived. This method assumes that all lineages have evolved at a 

constant rate. The use of the Wagner method to derive a dendrogram rooted by outgroups was 

also included as this method does not assume a constant rate of evolution and relates 

development within Anaspides to that between Anaspides and outgroup genera. 

Genetic substructure across the geographical range was assessed through calculation of F-

statistics (Raymond and Rousset, 1995) to further examine the variance revealed by the 

cluster analysis. F15 and FTT are fixation indices which characterise the distribution of 

genotypes within (F 15) and between (F IT) populations. FsT is the proportion of the total 

variation which is found between subpopulations and is thus a measure of spatial 

differentiation : 

( 1 - FIT  ) = ( 1 - F s )( 1 - FS-r ) 

In practical terms, F51 = ,I5  (= Nei s GsT, Swofford and Selander, 1989), where H is the 

HT 

Hardy-Weinberg expectation of heterozygosity, S relates to the subpopulation and T relates to 

the total across all subpopulations, that is : 

Hs = 1 — ( p2+ q2 ) for each subpopulation, and 

HT = 1 — ( [mean p2] + [mean q]2  ) , where p and q are allele frequencies. 
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FsT ranges from 0 toll'. 

F-statistics were calculated for individual loci across all Anaspides populations and then 

combined over loci. Matrices of FsT values between pairs of populations were also calculated 

over all loci in order to determine the spatial distribution of genetic variance. The methods for 

combining values from multiallelic loci and over many loci were as given by Genepop 

(Raymond and Rousset, 1995), from Weir and Cockerham (1984). 

An isolation by distance model was used to test correlations of pairwise genetic differences 

between subpopulations (expressed as FsT / 1 - FsT) with physical distance, both direct and 

along watercourses. These calculations were performed using Genepop version 1.2 (Raymond 

and Rousset, 1995), incorporating Mantel tests, a permutation procedure which tests the null 

hypothesis of independence between genotype and distance. In this study, 1000 permutations 

were performed for each analysis. Direct geographical distance was calculated arithmetically 

using grid references and distances along waterways were measured using Mapinfo 

Geographical Information Systems software with data of 1:25,000 resolution. Where 

populations were separated by sea, distances in marine waters were measured by the shortest 

possible route. 

Each of the groups of populations revealed by the previous analyses was analysed separately 

using F-statistics and isolation by distance to examine more detailed affinities and processes 

within the groups. 

To test the hypothesis that adaptation to the two basic habitat types, flowing and still water, 

had led to selection, the heterozygosity of the two groups was compared. Differentiation 

between the two groups was also tested using F-statistics applied to two datasets containing 

all the individuals in each habitat type. 

3.3 Results 

Allele frequencies in all samples are shown in Table 3.5. All loci were variable across all 

genera, but two loci, Adh and Idh, were monomorphic within Anaspides. Fixed differences 

among Anaspides samples (where there were no alleles in common) were found at all loci 

except Adh, Idh, G3pdh, Mdh - land Pep- I, and appear to indicate considerable clustering of 

alleles within groups of populations over many loci. 
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Private alleles among Anaspides samples (where alleles were present in only one sample) 

were found at seven loci in seven samples (Table 3.6). Private alleles among all three genera 

were found at three loci in four Anaspides samples. The Wolfe Hole sample was 

monomorphic for private alleles at two loci, and the Mount Wellington and Hydro Creek 

samples were monomorphic for private alleles at one locus each. An allele at Sdh which was 

monomorphic in both southern cave populations was also unique across genera (Table 3.5). 

This allele ran cathodally, could be seen clearly on gels, and was scored as the slowest allele 

in that locus. 
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Table 3.5 Allele frequencies in all populations 

Population 

Locus B P 0 HC L J WC HM WH NC AP W MF MA FC WA MW SC C Ct PI Ahi AIiH AhP 

AAT-1 
(N) 15 16 12 16 9 14 13 17 9 5 16 20 16 22 14 15 9 7 14 7 18 8 8 2 

A 0.067 0.031 0.111 0.036 0.156 0.286 0.071 
B - - - - - 0.389 

C 0.933 0.969 1 0.969 0.889 0.964 1 0.063 1 0.844 1 1 1 1 0.714 0.929 1 1 1 

D 0.031 - - - 
E 1 1 1 0.938 0.611 

AAT-2 
(N) 15 16 12 16 9 14 13 17 9 5 16 19 16 22 14 15 9 7 15 7 18 8 8 2 

A 0.059 0.5 0.563 - 0.056 

B 0.941 1 0.5 0.438 0.929 0.944 - 

C - - - - 1 1 1 0.071 1 1 - 0.063 1 

D 1 1 1 1 1 1 1 - 1 1 1 0.938 1 

ADH 
(N) 15 16 12 13 9 14 13 17 9 3 14 20 16 19 14 13 9 7 13 5 20 8 8 2 

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
B - - 1 

C 1 1 

ALD 
(N) 15 15 12 16 9 14 13 14 9 5 16 20 16 18 14 15 9 7 15 7 18 4 4 2 

A 1 1 1 1 
B - - 1 

C 1 1 1 1 1 1 0.269 1 0.031 1 1 1 1 1 1 1 1 

D 0.731 0.969 1 
E_ - 0.972 

F 0.028 

AO 
(N) 15 16 10 16 9 14 13 15 9 5 16 20 16 22 14- 15 9 7 15 7 18 8 8 2 

A 1 

B 1 

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t i 
D 1 1 1 1 
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Locus B P 0 HC L J WC HM Will NC AP W MF MA FC WA MW SC C Ct PI Ahi AhH AhP 

APK 
(N) 15 16 10 16 9 14 13 15 9 5 16 20 12 14 14 15 9 7 15 7 20 8 8 2 

A 0.889 1 0.313 - - 

B 1 0.111 0.688 0.958 0.722 - - 1 

C - _ _ _ _ _• _ 	- 0.125 0.938 1 

D 0.267 0.781 0.15 0.179 0.346 0.825 0.042 0.929 0.286 0.733 0.278 0.143 0.267 0.429 0.8 

E 0.733 0.219 0.85 1 1 0.821 0.654 0.175 0.071 0.714 0.267 - 0.857 0.733 0.571 0.075 0.063 

FUM 
(N) 14 16 12 16 9 14 13 15 9 5 15 20 16 22 14 12 9 7 15 7 20 8 8 2 

A 1 
B - - 1 1 1 1 

C 1 1 1 1 1 1 1 1 1 1 1 1 

D - - - 1 I 1 

E 1 1 1 0.625 

F - _ 0.375 

G3PD 
(N) 11 16 12 15 9 14 13 15 9 5 16 20 12 21 14 15 9 7 14 5 17 8 8 2 

A - _ _ _ _ 1 1 1 

B - 0.111 0.1 0.219 0.292 0.071 0.107 0.167 

C 0.636 1 1 0.967 0.889 1 1 1 1 0.9 0.781 1 0.708 0.929 0.893 1 0.833 1 1 1 1 

D 0.364 0.033 - - 

IDH 
(N) 15 14 10 16 9 14 13 10 9 5 16 15 , 16 22 14 15 9 7 15 7 20 8 8 2 

A - 1 1 1 1 

B 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 

LDH 
(N) 15 13 10 16 9 14 13 15 9 5 13 20 14 21 13 15 9 7 15 7 19 8 8 2 

A - 1 1 1 1 0.033 0.053 

B 1 1 1 1 1 1 1 1 	. 1 1 1 - 

C 1 1 1 0.967 0.921 

D 1 0.026 

E - 1 

F - 1 1 
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Locus B P 0 HC L J WC HM WI! NC AP W MF MA FC WA MW SC C Ct PI Ahi AhH AhP 

MDH-1 
(N) 15 16 15 13 9 14 13 15 9 5 16 20 16 15 14 15 9 7 15 7 20 8 8 2 

A 1 1 1 1 1 1 1 1 1 1 0.969 0.975 1 1 1 1 1 1 1 1 1 

B 0.938 

C 0.031 0.025 0.063 0.25 1 

D - 0.75 

MDH-2 
(N) 14 16 15 12 9 14 13 15 9 5 16 20 12 14 14 14 9 5 15 6 20 8 8 2 

A 1 - 0.025 

B 1 1 1 

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.975 

D - 1 - - - 1 

E 1 1 

ME 
(N) 14 13 12 13 9 14 . 13 15 9 5 11 20 16 22 14 15 9 7 15 6 20 6 6 2 

A 1 

B I 1 1 I 1 1 1 

C 1 1 1 1 1 1 1 1 I 1 1 1 1 I I 1 

MPI 
(N) 15 16 12 16 9 14 13 15 9 5 16 20 16 22 14 15 9 7 15 7 20 8 7 2 

A . 	- 0.8 1 0.9 I 0.929 1 

B - - - 0.2 0.1 - 

C 0.967 1 1 1 0.889 0.893 1 - I - 0.929 0.6 0.857 1 0.071 

D 0.075 0.023 

E 0.033 0.111 0.107 0.925 0.977 I 1 1 0.071 0.2 0.071 0.075 

F _ - 0.2 0.071 0.825 

G 0.1 

PEP-1 

(N) 15 16 15 16 9 14 13 15 9 5 16 20 16 22 14 15 9 7 15 7 20 8 8 2 

A 0.071 0.125 

B 1 1 0.933 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.929 1 1 0.1 0.438 I 

C 0.067 - 0.9 

D 1 _ 

E 0.438 

31 
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Locus B P 0 HC L J WC HM WI! NC AP W MF MA FC WA MW SC C Ct Ahi AhH AhP 

PEP-2 
(N) 15 16 15 16 9 14 13 15 9 5 16 20 16 22 14 15 9 7 15 7 20 8 8 2 
A 0.031 1 1 1 1 - 
B 1 0.969 1 1 1 1 - - 1 0.643 1 1 
C 1 1 1 1 0.357 
D - 1 1 1 
E _ 1 1 1 

6PGDH 
(N) 15 16 12 16 9 14 13 15 9 5 16 20 16 22 14 15 9 5 11 4 18 8 8 2 
A - 1 1 
B- - - - - 1 
C 0.133 0.625 0.125 0.111 0.179 - 0.025 0.2 0.227 0.028 
D 0.1 - - 1 1 1 1 - - 0.2 0.917 
E 0.767 0.375 0.875 1 0.889 0.821 0.923 - 0.975 0.875 0.977 1 1 1 0.6 0.773 1 0.056 
F - 0.077 - 0.125 0.023 - 

PGI 
(N) 15 16 12 16 9 14 13 15 9 5 14 21 16 22 14 15 9 7 15 7 20 8 6 2 
A - 0.071 0.667 1 

B 0.25 1 0.107 - 1 
C 1 1 1 0.156 1 1 1 1 1 0.821 1 1 - 1 1 1 0.833 1 0.333 
D 0.594 - 1 - 
E - - 1 0.167 - 
F _ _ 0.975 
G 0.025 

PGM 
(N) 15 16 12 16 9 14 13 15 9 5 16 20 16 22 14 15 9 7 15 7 20 8 8 2 

A - - - - - 0.156 - 
B 0.967 0.813 0.875 1 0.833 0.893 1 0.3 0.594 0.975 1 1 0.714 0.967 - 1 1 1 1 
C - 0.188 0.125 0.167 0.107 0.433 1 1 0.25 0.025 0.286 0.033 1 - 
D 0.033 0.267 _ - 0.075 
E - 0.675 - 
F 0.25 0.313 0.5 
G 0.688 0.5 
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Locus B P 0 HC L J WC HM WH NC AP W MF MA FC WA MW SC C Ct PI Ahi AhH AhP 

SDH 
(N) 15 16 10 13 9 14 13 15 9 5 16 20 7 10 14 12 9 6 15 6 17 3 2 
A 1 1 1 

1 1 1 1 1 1 1 0.067 1 1 1 
0.933 1 

1 1 1 
1 

1 1 

NILDH 
(N) 15 16 12 16 9 14 13 15 9 5 16 21 16 22 11 15 9 7 15 7 17 6 4 1 
A 1 

1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 
1 

Key to populations 

Lake Ball 

Powena Ck 

0 Olive Lagoon 

HC Hydro Ck 

Lonely Lake 

Jacks Lagoon 

WC Wet Cave 

HM Hartz Mtns 

WH Wolfe Hole 

NC Newdegate Cave 

AP Adamsons Peak 

Weld River 

MF Mount Field 

MA Mount Anne 

FC Frenchmans Cap 

WA Western Arthurs 

MW Mt Wellington 

SC Lake St Clair (A. spinulae) 

C Clarence Lagoon (A. spinulae) 

Ct Clarence Lagoon tributary 

PI Paranaspides lacustris 

Ahi Allanaspides hickmani 

AhH Allanaspides helonomus Harlequin Hill 

AhP Allanaspides helonomus McPartlans Pass 

zs 
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Table 3.6 Private alleles among samples of the Anaspides genus and three anaspid genera. 

Locus Allele 	Population 	Monomorphic 	Private among 	Private among 

Anaspides species 	all genera 

Aat-1 	D 	Hydro Creek 

Fum 	A 	Wolfe Hole 

Fum 	F 	Western Arthurs 

Ldh 	D 	Mount Wellington 

Mdh-2 	A 	Hydro Creek 

Mdh-2 	D 	Wolfe Hole 

Pep-1 	A 	Lake St Clair 

Pep- 1 	C 	Olive Lagoon 

Pgi 	A 	Adamsons Peak 

Pgm 	A 	Adamsons Peak 

Hardy-Weinberg tests confirmed that all samples are likely to have come from randomly 

mating populations. Probability values for all loci and all populations are given in Table 3.7, 

with no p-values indicating significant deviation from Hardy-Weinberg equilibrium. An 

anomaly was found at the Mpi locus for the Clarence Lagoon tributary population of A. 

tasmaniae (p = 0.070), as one heterozygote was found to have alleles not present in the 

remaining samples, which were homozygous for a third allele. Interestingly, the two alleles in 

the heterozygote were both found in the downstream Clarence Lagoon population of A. 

spinulae, indicating possible gene flow between the two populations. Further sampling of the 

Clarence Lagoon tributary population may reveal more widespread variation as only seven 

animals were sampled. 

Measures of genetic variability for eighteen populations of A. tasmaniae, two populations of 

A. spinulae and three outgroup species of Anaspididae are shown in Table 3.8. Mean expected 

heterozygosity for eighteen A. tasmaniae populations was 0.048, with a range of 0.010 to 

0.114. The Mount Anne and Wolfe Hole samples had the lowest H e  values (< 0.02), and the 

Adamsons Peak sample had the highest value of 0.114. The A. spinulae populations had 

somewhat higher variability (He = 0.100 and 0.085; He  = 0.113 and 0.082), as did 

Paranaspides lacustris with He  = 0.114 and proportion of polymorphic loci of 52.4%. 

Allanaspides helonomus was much more heterozygous than Allanaspides hickmani (He  of 

0.107 compared to 0.012). 
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Table 3.7 Tests for Hardy-Weinberg equilibrium and chi -squared tests 

Population & 
Locus P-value S.E. F15 * 

All loci ** 
chi-squared 	d.f. P-value 

Anaspides species 

Lake Ball 5.358 8 0.716 
AAT-1 1 0 -0.037 
AO 1 0 +0.012 
G3PDH 0.537 0.002 +0.259 
6PGDH 0.126 0.004 +0.337 

Powena Creek 3.973 6 0.680 
AO 1 0 +0.118 
6PGDH 0.317 0.002 -0.304 
PGM 0.433 0.002 +0.211 

Olive Lagoon . 0 8 1.00 
AO 1 0 -0.125 
PEP-1 1 0 -0.037 
6PGDH 1 0 -0.100 
PGM 1 0 -0.100 

Hydro Creek 
PGI 0.653 0.004 +0.140 

Lonely Lake 0 10 1.00 
AAT-1 1 0 -0.067 
G3PD 1 0 -0.067 
MPI 1 0 -0.067 
6PGDH 1 0 -0.067 
PGM 1 0 -0.143 

Jacks Lagoon 8.598 8 0.377 
AO 0.346 0.002 +0.304 
MPI 1 0 -0.083 
6PGDH 0.348 0.002 +0.304 
PGM 0.113 0.002 +0.649 ' 

Wet Cave 4.664 6 0.588 
ALD 0.168 0.002 +0.446 
AO 0.578 0.002 +0.189 
6PGDH 1 0 -0.043 

Hartz Mtns 2.745 8 0.949 
AAT-2 1 0 -0.032 
Mil 0.458 0.002 +0.200 
PGM 0.554 0.004 +0.113 
SDH 1 0 -0.037 

Wolfe Hole 
AO 1 0 -0.067 

Newdegate Cave 
AAT-2 1 0 -0.091 
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Table 3.7 (cont.) 

Population & 
Locus 	P-value S.E. Fis * 

All loci ** 
chi-squared 	d.f. P-value 

Adamsons Peak 5.216 12 0.950 
AAT-1 	 1 0 -0.034 
AAT-2 	 0.348 0.002 +0.268 
AO 	 0.594 0.002 +0.159 
G3PDH 	 0.543 0.002 -0.250 
PGI 	 1 0 -0.121 
PGM 	 0.656 0.004 +0.140 

Weld River 1.537 4 0.820 
AO 	 0.464 0.002 +0.159 
MPI 	 1 0 -0.056 

Mount Field 4.770 6 0.574 
AAT-1 	 1 0 -0.154 
G3PDH 	 0.487 0.002 -0.375 
6PGDH 	 0.189 0.002 +0.455 

Mount Anne 0 4 1 
AO 	 1 0 -0.040 
G3PDH 	 1 0 -0.053 

Frenchmans Cap 2.694 8 0.952 
AAT-2 	 1 0 -0.040 
AO 	 0.260 0.002 +0.333 
G3PDH 	 1 0 -0.083 
PGM 	 1 0 -0.013 

Western Arthurs 0 4 1 
AO 	 1 0 +0.012 
FUM 	 1 0 +0.154 

Mt Wellington 0 4 1 
AO 	 1 0 -0.333 
G3PDH 	 1 0 -0.143 

Lake St Clair 0 8 1 
AAT-1 	 1 0 -0.333 
AO 	 1 0 -0.091 
PEP-2 	 1 0 +0.143 
6PGDH 	 1 0 -0.333 

Clarence Lagoon 3.595 10 0.964 
AAT-1 	 1 0 -0.040 
AO 	 1 0 +0.012 
MPI 	 0.509 0.004 +0.082 
6PGDH 	 1 0 -0.250 
PGI 	 0.326 0.002 +0.311 

Clarence Lagoon Tributary 5.249 4 0.263 
AO 	 1 ' 0 -0.091 
MPI 	 0.073 0.003 +0.500 
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Table 3.7 (cont.) 

Population & 
Locus 	P-value 	S.E. Fis * 

All loci ** 
chi-squared 	d.f. P-value 

Paranaspides lacustris 5.662 16 0.991 
AAT-1 	 0.646 	0.002 -0.141 
AAT-2 	 1 	0 -0.030 
AO 	 0.589 	0.006 -0.008 
LDH 	 1 	0 -0.038 
MPI 	 0.459 	0.006 +0.038 
PEP-1 	 1 	0 -0.086 
6PGDH 	 1 	0 -0.041 
PGM 	 0.338 	0.004 +0.081 
, 
Allanaspides hickmani 

Allanaspides helonomus (Harlequin Hill) 5.848 8 0.664 
MDH-1 	 0.381 	0.002 +0.391 
PEP-1 	 0.288 	0.004 -0.400 
PGI 	 1 	0 -0.429 
PGM 	 0.490 	0.002 -0.400 

Allanaspides helonomus (McPartlans Pass) 
PGM 	 1 	0 -1 

* Weir & Cockerham, 1984 
** Fisher s Method 

Mean observed heterozygosity for Anaspides tasmaniae was 0.046 (range 0.011 - 0.106) and 

the mean percentage polymorphic loci (95% criterion for polymorphism, where the most 

common allele does not have a frequency of over 95%) was 19% (range 4.8 - 33.3%). The 

mean number of alleles per locus was 1.2 (range 1.0 - 1.4). 

Five loci used here were categorised according to substrate source by Hedgecock et al.. 

(1982) as Goup 11 enzymes, Adh, Ao, Pep-1, Pep-2 and Sdh. These loci have mean He values 

across all Anaspides populations of 0, 0.271, 0.014, 0.028 and 0.006 respectively (mean 

0.064), and mean number of alleles (Na) of 3.2. The remaining loci belong to Group I, with 

the exception of Nildh which was excluded as its substrate is unknown, and have He values 

ranging from 0 to 0.154 (mean 0.053) and mean N a  of 3.5. A t-test revealed no significant 

difference between the two groups (p = 0.84). 
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Table 3.8 Genetic variability at 21 loci in all populations [*Unbiased estimate (Nei, 1978)] 

Population 	Mean 	Mean no. 	% loci 
	

Mean 	Mean 
sample size of alleles polymorphic: heterozygosity heterozygosity 
per locus 	per locus 95% (100%) Direct-count 

	HW expected* 
(S.E.) 
	

(S.E.) 	criterion 	(S.E.) 
	(S.E.) 

Anaspides tasmaniae - surface populations 
Central Plateau - near 14.7 (0.2) 1.33 (0.1) 19.0 (28.6) 0.062 (0.027) 0.074 (0.033) 

Lake Ball 

Central Plateau - near 15.6 (0.2) 1.2 (0.1) 14.3 (23.8) 0.063 (0.034) 0.061 (0.030) 
Powena Creek 

Central Plateau - near 12.1 (0.4) 1.2 (0.1) 19.0 (19.0) 0.044 (0.021) 0.041 (0.019) 
Olive Lagoon 

Central Plateau - Hydro 15.2 (0.3) 1.2 (0.1) 4.8 (14.3) 0.030 (0.024) 0.034 (0.028) 
Creek 

Central Plateau - Lonely Lake 9.0 (0.0) 1.2 (0.1) 23.8 (23.8) 0.058 (0.024) 0.054 (0.022) 

Central Plateau - Jacks 14.0 (0.0) 1.2 (0.1) 19.0 (23.8) 0.037 (0.017) 0.051 (0.023) 
Lagoon outflow 

Central Plateau - Clarence 6.5 (0.2) 1.1 (0.1) 9.5 (9.5 ) 0.034 (0.028) 0.038 (0.028) 
Lagoon tributary 

Mount Wellington 9.0 (0.0) 1.1 (0.1) 9.5 (9.5 ) 0.042 (0.030) 0.034 (0.024) 

Hartz Mountains 15.0 (0.3) 1.2 (0.1) 19.0 (19.0) 0.053 (0.031) 0.059 (0.035) 

Adamsons Peak 15.4 (0.3) 1.4 (0.1) 28.6 (33.3) 0.106 (0.039) 0.114 (0.043) 

Weld River 19.8 (0.3) 1.2 (0.1) 9.5 (23.8) 0.026 (0.014) 0.028 (0.015) 

Mount Field 14.9 (0.5) 1.2 (0.1) 14.3 (23.8) 0.056 (0.031) 0.051 (0.025) 

Mount Anne 19.9 (0.8) 1.2 (0.1) 9.5 (19.0) 0.018 (0.010) 0.017 (0.009) 

Frenchmans Cap 13.8 (0.1) 1.2 (0.1) 19.0 (19.0) 0.051 (0.026) 0.056 (0.029) 

Western Arthur Range - 14.6 (0.2) 1.2 (0.1) 9.5 (19.0) 0.045 (0.027) 0.049 (0.029) 
Lake Oberon 

Anaspides tasmaniae - cave populations 
Wolfe Hole 	 9.0 (0.0) 1.0 (0.0) 4.8 (4.8) 0.011 (0.011) 0.010 (0.010) 

Newdegate Cave 4.9 (0.1) 1.1 (0.1) 14.3 (14.3) 0.048 (0.031) 0.046 (0.029) 

Wet Cave 13.0 (0.0) 1.1 (0.1) 14.3 (14.3) 0.037 (0.022) 0.049 (0.029) 

Mean A. tasmaniae 13.1 1.19 14.5 0.046 0.048 
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Table 3.8 Genetic variability (cont.) 

Population Mean 
sample size 
per locus 

(S.E.) 

Mean no. 
of alleles 
per locus 

(S.E.) 

Percentage of 
loci 

polymorphic: 
95% (100%) 

criterion 

Mean 
heterozygosity 
Direct-count 

(S.E.) 

Mean 
heterozygosity 

Hardy- 
Weinberg 

expected* (S.E.) 

Anaspides spinulae 
Lake St Clair 6.8 (0.1) 1.3 (0.1) 28.6 (28.6) 0.113 (0.049) 0.100 (0.042) 

Clarence Lagoon 14.6 (0.2) 1.3 (0.1) 23.8 (23.8) 0.082 (0.037) 0.085 (0.037) 

Mean A. spinulae 10.7 1.3 26.2 0.098 0.093 

Paranaspides lacustris 
Woods Lake 19.0 (0.3) 1.8 (0.2) 38.1 (52.4) 0.117 (0.036) 0.114 (0.035) 

Allanaspides hickmani 
McPartlans Pass 7.4 (0.3) 1.1 (0.1) 9.5 (9.5) 0.012 (0.008) 0.012 (0.008) 

Allanaspides helonomus 
Harlequin Hill area 7.2 (0.3) 1.3 (0.1) 28.6 (28.6) 0.128 (0.057) 0.107 (0.044) 

McPartlans Pass 2.0 (0.0) 1.0 (0.0) 4.8 (4.8) 0.048 (0.048) 0.032 (0.032) 

Mean Allan. helonomus 4.6 1.2 16.7 0.088 0.07 

Values of Nei s unbiased genetic distance D (Nei, 1978) for intraspecific Anaspides 

populations varied widely, from 0.001 to 1.435, indicating significant genetic similarities 

among some populations and differentiation between others (Table 3.9). The highest 

intraspecific genetic distances were those between Newdegate Cave and other A. tasmaniae, 

except for the three neighbouring populations in the Huon area (range 0.810 - 1.435). The 

lowest intraspecific values were those amongst the six Central Plateau sites, Lake Ball, 

Powena Creek, Olive Lagoon, Lonely Lake, Jacks Lagoon and Clarence Lagoon tributary, 

and between the two A. spinulae populations. Distances between Jacks Lagoon and the other 

Central Plateau populations consistently gave the lowest distance values in the study. 

Genetic distances between A. spinulae and A. tasmaniae populations fell within the lower end 

of the intraspecific range, from 0.003 to 0.935. The genetic distance between the two 

Allanaspides species was a high interspecific value at 0.899. 
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Table 3.9 Genetic distance matrices - Nei s unbiased D (1978) below diagonal; modified Rogers D above diagonal. A. All populations and taxa. 

rt P 0 HC L J WC 11M WH NC AP W MF MA FC WA MW SC C Ct PI Ahi AhH AhP 
B 0.174 0.092 0.292 0.102 0.088 0.359 0.709 0.737 0.761 0.693 0.702 0.368 0.636 0.727 0.657 0.560 0.129 0.114 0.101 0.844 0.882 0.798 0.847 

P 0.030 0.177 0.352 0.208 0.166 0.383 0.703 0.727 0.752 0.692 0.699 0.388 0.631 0.741 0.658 0.555 0.192 0.170 0.164 0.830 0.888 0.802 0.850 

0 0.007 0.032 0.278 0.056 0.032 0.352 0.713 0.738 0.762 0.701 0.704 0.372 0.641 0.724 0.658 0.554 0.119 0.097 0.078 0.847 0.891 0.807 0.857 

HC 0.092 0.137 0.082 0.279 0.281 0.449 0.742 0.770 0.759 0.723 0.715 0.467 0.704 0.750 0.718 0.632 0.302 0.284 0.290 0.880 0.883 0.817 0.857 

L 0.008 0.044 0.001 0.083 0.053 0.360 0.710 0.734 0.758 0.697 0.706 0.377 0.643 0.719 0.659 0.548 0.118 0.102 0.110 0.851 0.894 0.806 0.854 

J 0.006 0.028 0.000 0.084 0.000 0.353 0.707 0.733 0.757 0.695 0.696 0.371 0.632 0.718 0.650 0.546 0.110 0.075 0.073 0.844 0.891 0.804 0.853 

WC 0.145 0.166 0.137 0.234 0.144 0.138 0.674 0.737 0.730 0.659 0.680 0.430 0.685 0.659 0.635 0.579 0.322 0.361 0.349 0.815 0.885 0.825 0.873 

JIM 0.767 0.743 0.761 0.858 0.759 0.749 0.650 0.489 0.402 0.166 0.840 0.685 0.816 0.808 0.804 0.692 0.675 0.702 0.712 0.776 0.951 0.868 0.882 

WH 0.834 0.790 0.815 0.928 0.808 0.804 0.817 0.282 0.452 0.497 0.862 0.742 0.839 0.823 0.826 0.678 0.717 0.731 0.741 0.790 0.968 . 0.877 0.890 

NC 0.945 0.900 0.926 0.910 0.917 0.915 0.810 0.183 0.232 0.359 0.856 0.768 0.861 0.829 0.848 0.739 0.731 0.750 0.765 0.796 0.962 0.880 0.884 

AP 0.746 0.738 0.753 0.823 0.748 0.740 0.634 0.027 0.302 0.145 	. 0.822 0.677 ' 	0.801 0.805 0.790 0.698 0.661 0.687 0.698 0.782 0.933 0.846 0.857 

W 0.728 0.713 0.718 0.748 0.729 0.701 0.-652 1.336 1.416 1.418 1.288 0.716 0.379 0.449 0.235 0.633 0.698 0.679 0.686 0.810 0.914 0.879 0.857 

MF 0.153 0.171 0.155 0.256 0.160 0.155 0.214 0.682 0.837 0.958 0.684 0.761 0.649 0.716 0.674 0.537 0.384 0.376 0.364 0.858 0.886 0.865 0.855 

MA 0.549 0.532 0.548 0.709 0.557 0.531 0.662 1.176 1.251 1.435 1.153 0.158 0.571 0.456 0.320 0.597 0.634 0.618 0.619 0.839 0.917 0.873 0.861 

FC 0.826 0.870 0.796 0.887 0.785 0.782 0.608 1.176 1.201 1.276 1.223 0.235 0.776 0.241 0.451 0.686 0.720 0.700 0.719 0.789 0.915 0.897 0.903 

WA 0.611 0.609 0.601 0.770 0.607 0.585 0.547 1.142 1.212 1.393 1.127 0.058 0.646 0.111 0.240 0.581 0.652 0.638 0.641 0.806 0.909 0.864 0.852 

MW 0.398 0.387 0.381 0.531 0.374 0.370 0.428 0.695 0.632 0.833 0.738 0.531 0.355 0.454 0.676 0.432 0.557 • 0.542 0.546 0.822 0.945 0.841 0.828 

SC 0.012 0.035 0.009 0.097 0.009 0.007 0.112 0.673 0.775 0.842 0.660 0.724 0.167 0.547 0.814 0.604 0.395 0.127 0.142 0.828 0.882 0.799 0.849 

C 0.011 0.029 0.007 0.087 0.008 0.003 0.147 0.750 0.817 0.910 0.733 0.667 0.161 0.512 0.744 0.569 0.370 0.012 0.087 0.828 0.888 0.798 0.844 

Ct 0.008 0.026 0.004 0.089 0.010 0.003 0.134 0.757 0.823 0.935 0.743 0.665 0.146 0.497 0.776 0.557 0.367 0.015 0.005 0.842 0.892 0.808 0.856 

P1 1.529 1.393 1.490 1.797 1.545 1.490 1.277 1.067 1.088 1.156 1.159 1.217 1.606 1.390 1.134 1.218 1.301 1.433 1.420 1.443 0.944 0.914 0.932 

Ahi 1.664 1.694 1.679 	. 1.597 1.744 1.707 1.643 2.746 2.928 3.015 2.605 1.913 1.660 1.911 2.009 1.905 2.442 1.710 1.751 1.685 2.978 0.750 0.802 

AhH 1.188 1.194 1.198 1.249 1.205 1.195 1.323 1.700 1.675 1.779 1.604 1.734 1.649 1.651 2.050 1.631 1.408 1.215 1.197 1.199 2.709 0.899 0.307 

AhP 1.394 1.394 1.412 1.408 1.414 1.400 1.552 1.663 1.637 1.644 1.541 1.400 1.418W 1.410 1.877 1.394 1.219 1.440 1.389 1.399 2.668 1.059 0.097 
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Population 

B Lake Ball 

P Powena Creek 

0 Olive Lagoon 

HC Hydro Creek 

L Lonely Lake 

J Jacks Lagoon 

WC Wet Cave 

HM Hartz Mtns 

WH Wolfe Hole 

NC Newdegate Cave 

AP Adamsons Peak 

W Weld River 

MF Mount Field 

MA Mount Anne 

FC Frenchmans Cap 

WA Western Arthurs 

MW Mount Wellington 

SC Lake St Clair (A. spinulae) 

C Clarence Lagoon (A. spinulae) 

Ct Clarence Tributary 

PI Paranaspides lacustris 

Ahe Allanaspides hickmani 

AhH Allanaspides helonomus Harlequin Hill 

AhP Allanaspides helonomus McPartlans Pass 

Table 3.9 (cont.) 

B. Central Plateau / Derwent catchment populations - A.tasmaniatand A. spinulae 
B P 0 HC L J WC MF MW SC C Ct 

B 0.174 0.092 0.292 0.102 0.088 0.359 0.368 0.560 0.129 0.114 0.101 

P 0.030 0.177 0.352 0.208 0.166 0.383 0.388 0.555 0.192 0.170 0.164 

0 0.007 0.032 0.278 0.056 0.032 0.352 0.372 0.554 0.119 0.097 0.078 

HC 0.092 0.137 0.082 0.279 0.281 0.449 0.467 0.632 0.302 0.284 0.290 

L 0.008 0.044 0.001 0.083 0.053 0.360 0.377 0.548 0.118 0.102 0.110 

0.006 0.028 0.000 0.084 0.000 0.353 0.371 0.546 0.110 0.075 0.073 

WC 0.145 0.166 0.137 0.234 0.144 0.138 0.430 0.579 0.322 0.361 0.349 

MF 0.153 0.171 0.155 0.256 0.160 0.155 0.214 0.537 0.384 0.376 0.364 

MW 0.398 0.387 0.381 0.531 0.374 0.370 0.428 0.355 0.557 0.542 0.546 

SC 0.012 0.035 0.009 0.097 0.009 0.007 0.112 0.167 0.395 0.127 0.142 

C 0.011 0.029 0.007 0.087 0.008 0.003 0.147 0.161 0.370 0.012 0.087 

Ct 0.008 0.026 0.004 0.089 0.010 0.003 0.134 0.146 0.367 0.015 0.005 

C. Southern populations - A. tasmaniae 	D. Southwestern populations - A. tasmaniae 
HM Wil NC AP 

HM 0.489 0.402 0.166 

W 0.282 0.452 0.497 
H 

NC 0.183 0.232 0.359 

AP 0.027 0.302 0.145 
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W MA FC WA 
W 0.379 0.449 0.235 

MA 0.158 0.456 0.320 

FC 0.235 0.241 0.451 

WA 0.058 0.111 0.240 
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3. Allozyme differentiation 42 

Intergeneric values ranged from 1.067 to 3.015 and were generally highest between 

Paranaspides and Allanaspides. In some instances intraspecific comparisons of Nei s D 

values, between populations of Anaspides tasmaniae, exceeded those between different 

genera (Table 3.9). 

The cluster analyses and dendrograms from both the Nei s and modified Rogers distance 

values revealed each of the three genera to be monophyletic but the unrooted Wagner tree 

(using modified Rogers D) grouped Paranaspides lacustris with Allanaspides whereas the 

UPGMA tree (using Nei s D) placed it closer to the Anaspides. No differentiation between 

the two named species of Anaspides, A. spinulae and A. tasmaniae, was found (Figures 3.1 

and 3.2). 

Very high levels of differentiation were revealed between three geographically separate 

groups of populations in the Anaspides genus, based in the Central Plateau / Derwent 

catchment, the southern Huon region, and the southwest. 

The Central Plateau group included the Lake Ball, Olive Lagoon, Jacks Lagoon, Lonely 

Lake, Clarence Lagoon tributary, Powena Creek, Hydro Creek, Wet Cave and Mt Field 

populations of A. tasmaniae as well as both the A. spinulae populations of Clarence Lagoon 

and Lake St Clair. Hydro Creek, Wet Cave and Mount Field, in that order, appeared 

increasingly genetically distant from the other populations in the group. Mt Wellington was 

considerably more distant; it clustered with the Central Plateau group in the UPGMA tree and 

with the southwest group in the Wagner tree. Using Thorpe s (1983) guidelines, all the 

Central Plateau group belongs to the same species (Nei s unbiased D < 0.3); however, the 

Mount Wellington population did not join this group (D values with Central Plateau 

populations of 0.355 - 0.531). Whether Mt Wellington should be considered as the same 

species as the Central Plateau group may be elucidated by further morphological and 

molecular comparisons. 

The southwest group consisted of populations from Mount Anne, the Western Arthur Range, 

Weld River and Frenchmans Cap and appeared to have greater affinities with the Central 

Plateau group than with the southern group, despite the fact that Mount Anne and the Weld 

River are both in the Huon catchment. 

The southern group consists of Adamsons Peak, Hartz Mountains and the two cave 

populations, Wolfe Hole and Newdegate Cave. The surface populations are very closely 
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Figure 3.1 UPGMA dendrogram 
*LakeBall 

* Olive Lagoon 
** 

** Jacks Lagoon 
** 

** Lonely Lake 
* * * 
*** Clarence Lagoon 
*** 

****** Clarence tributary 
* * * 
* *** Lake St Clair 

* * *** Powena Creek 
*** * 

* * ****** Hydro Creek 
************* * 

* ********* Wet Cave 
*************** 

*********** Mount Field 

*********************** Mount Wellington 
**************** 

**** Weld River 
***** 

******* 	**** Western Arthurs 

************************ 	******** Mount Anne 
************************* 

************** Frenchmans Cap 

*** Hartz Mountains 
******** 

******************** 	 ******* 	*** Adamsons Peak 

************************************* 	********** Newdegate Cave 

**************** Wolfe Hole 

**************************************************************************** paranaspides  

lacustris 
******************************************************* All anaspides  

***************************************** 	 hickmani 
****** Allanaspides 

************************************************** 	helonomus H 
****** Allanaspides 

helonomus P. 
1.80 	1.62 	1.44 	1.26 	1.08 	.90 	.72 	.54 	.36 	.18 	.00 

Nei s unbiased genetic distance 
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Figure 3.2 Wagner tree rooted using outgroup method 
********* Lake Ball 

**** Olive Lagoon 
** 	** 

** ************ Lonely Lake 
** * 
**** 	** Jacks Lagoon 
** * 

** ********** Clarence Lagoon 
** ** 

* * * * * * * * * 	******* Clarence tributary 
** 

********************* Powena Creek 
* ******* * 

************ Lake St Clair 
********* 

- ******************************** Hydro creek 
************** 

********** ************************ wet cave  

****************************** mount Field 

*** ** *********** ** ** 	 ************************* weld River  
************** 

******* 	*************** Western Arthurs 

***************************** 	************************* mount Anne  

**** 	******* 	 ********************************************* F renchmans  cap  
* * 
* * 	 **************************************** mount  Wellington  
* * 
* * 	 *************** Hartz Mountains 
* * 	 * * ******** 
* * 	 ************* Adamsons Peak 
* ************************** 

********************************************** W olfe  Hole  
************ 

***************************** Newdegate Cave 

• ********************************************************************* p aranaspides  lanns tris  
******** 

*********************************************************************** Allanaspides  hi ckmani 
************************ 

************************ Allanaspides helonomus H 
********************************** 

*************************** Allanaspides helonomus P 

.00 	.06 	.12 	.19 	.25 	.31 	.37 	.43 	.49 	.56 	.62 

Modified Rogers genetic distance from root 
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related, and appear to be somewhat distinct from both cave samples, which are also distinct from 

each other. The Wolfe Hole population appears to be the most differentiated within this group. 

By Thorpe s (1983) levels of genetic distances for taxonomic categories, the entire southern 

group displays generic level distance from other A. tasmaniae, with the largest distances between 

the southern and southwestern groups (Nei s unbiased D ranging from 1.127-1.435). 

The only major differences in the topology of the two dendrograms were in the position of Mount 

Wellington in relation to the Central Plateau and southwestern groups, the position of 

Paranaspides in relation to Anaspides and A-  llanaspides and the position of Wolfe Hole in 

relation to Newdegate Cave. 

It is clear from the dendrograrns that no parallel genetic development has occurred among the 

three cave populations, which cluster with the geographically neighbouring surface populations 

rather than each other. However, genetic differences between all three cave populations and the 

nearby surface populations were greater than those among the surface populations themselves, 

probably as a result of the fixed allelic differences, so some differentiation in cave populations 

has occurred. 

F-statistics for all Anaspides populations were calculated at F is  = 0.0530, FsT = 0.8791 and F rr  = 

0.8855 over all loci, confirming substantial spatial genetic heterogeneity (Table 3.10). Of 21 loci, 

all but 3 (G3pdh, Pep- 1 and Mdh -I) had substantially more variation between populations than 

within populations. The matrix of pairwise FsT values for population pairs (Table 3.9) shows that 

there is a wide range of levels of differentiation between population pairs. FsT values of over 0.8 

for most population pairs indicate large spatial disjunctions between most populations. The 

lowest FsT value of 0.0008 was between the Lonely Lake and Jacks Lagoon pop.  Illations. 

When calculated within the groupings identified by the cluster analysis, F-statistics revealed that 

there was still spatial differentiation at moderate to high levels within all three groups, with FST 

values of between 0.657 and 0.823 over all loci (Table 3.10). However, on removing populations 

sequentially which were in the Central Plateau cluster but genetically distinct from it, FsT values 

fell to 0.1738 for the Central Plateau group without Mount Wellington, Mount Field, Wet Cave 

and Hydro Creek (Table 3.11). The core Central Plateau group displayed the least geographic 

differentiation in the study. The proportion of variable loci for which the difference between FIT 

and FsT was less than 0.05 also indicated that very little heterogeneity was found between the 

group of 8 Central Plateau populations (Table 3.11). 
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i for 000ulation nairs. A. All Anas ides 

B P 0 HC 
x 	. 

L 
x 
J WC HM WIT NC AP W MF MA FC WA MW SC C 

P 0.298 

0 0.094 0.360 

HC 0.615 0.722 0.676 

L 0.098 0.412 0.024 0.650 

J 0.077 0.312 -0.024 0.646 0.001 

WC 0.675 0.721 0.726 0.831 0.713 0.706 

HM 0.885 0.891 0.908 0.922 0.897 0.899 0.891 

WI! 0.917 0.925 0.952 0.959 0.944 0.937 0.942 0.851 

NC 0.896 0.907 0.933 0.940 0.918 0.919 0.916 0.738 0.901 

Al' 0.836 0.846 0.855 0.874 0.840 0.850 0.836 0.222 0.761 0.555 

W 0.915 0.920 0.938 0.944 0.933 0.928 0.927 0.944 0.971 0.959 0.911 

MF 0.677 0.729 0.750 0.840 0.734 0.728 0.785 0.896 0.939 0.923 0.846 0.931 

MA 0.909 0.916 0.940 0.955 0.939 0.927 0.936 0.950 0.978 0.972 0.915 0.859 0.932 

FC 0.891 0.903 0.913 0.927 0.903 0.905 0.890 0.918 0.946 0.927 0.882 0.835 0.904 0.858 

WA 0.880 0.889 0.906 0.928 0.897 0.896 0.893 0.923 0.953 0.938 0.884 0.602 0.903 0.771 . 	0.797 

MW 0.841 0.857 0.889 0.921 0.872 0.868 0.885 0.905 0.955 0.935 0.850 0.930 0.863 0.938 0.908 0.889 

SC 0.130 0.316 0.157 0.634 0.119 0.107 0.606 0.867 0.917 0.877 0.801 0.916 0.695 0.919 0.883 0.873 0.837 

C 0.112 0.268 0.095 0.581 0.089 0.040 0.654 0.874 0.905 0.882 0.826 0.901 0.675 0.895 0.875 0.864 0.818 0.113 

C t 0.073 0.296 0.078 0.698 0.149 0.031 0.718 0.904 0.961 0.932 0.839 0.938 0.720 0.940 0.909 0.902 0.889 0.175 0.046 

L 
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Table 3.10 (cont.) Fst estimates over all loci in population pairs 

B. In pairs of Central Plateau / Derwent catchment populations 

B P 0 HC L J WC MF SC C 
P 0.298 

0 0.094 0.360 

HC 0.615 0.722 0.676 

L 0.098 0.412 0.024 0.650 

J 0.077 0.312 -0.024 0.646 0.001 

WC 0.675 0.721 0.726 0.831 0.713 0.706 

MF 0.677 0.729 0.750 0.840 0.734 0.728 0.785 

SC 0.130 0.316 0.157 0.634 0.119 0.107 0.606 0.695 

C 0.112 0.268 0.095 0.581 0.089 0.040 0.654 0.675 0.113 

Ct 0.073 0.296 0.078 0.698 0.149 0.031 0.718 0.720 0.175 0.046 

C. In pairs of southern populations 

HM WH NC 
WH 0.851 

NC 0.738 0.901 

AP 0.222 0.761 0.555 

D.In pairs of southwestern populations  

MA FC WA 
FC 0.858 

WA 0.771 0.797 

W 0.859 0.835 0.602 

B Lake Ball 
P Powena Creek 
O Olive Lagoon 

HC Hydro Creek 
L Lonely Lake 
J Jacks Lagoon 

WC Wet Cave 
MF Mount Field 
SC Lake St Clair 
C 	Clarence Lagoon 
Ct 	Clarence Lagoon tributary 

HM Hartz Mountains 
WH Wolfe Hole 
NC Newdegate Cave 
AP Adamsons Peak 
MA Mount Anne 
FC Frenchmans Cap 
WA Western Arthurs 
W Weld River 
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Table 3.11 Summary of F-statistics and isolation by distance tests over all loci, 
for all populations of Anaspides together and for geographically-grouped populations. 

Group 	Number of 
populations 

F(Is) F(ST) Fan Proportion of 
variable loci 

where 
Fffr) 	F(ST) 

<=0.05 

Isolation by 
distance 

test 
p-values 

linear 	waterway 

All Anaspides 20 0.053 0.879 0.886 0.95 0.000 0.395 

Central Plateau all 12 0.046 0.657 0.673 0.86 0.000 0.557 

Central Plateau 
excluding MW 

11 0.057 0.570 0.595 0.77 0.010 0.555 

Central Plateau 
excluding MVV,MF 

10 0.069 0.484 0.519 0.58 0.056 0.241 

Central Plateau 
excluding MW,MF,WC 

9 0.050 0.350 0.383 0.5 0.129 0.145 

Central Plateau 
excluding MVV,MF,WC,HC 

8 0.045 0.174 0.211 0.44 0.795 0.702 

Southern 4 0.075 0.682 0.705 0.75 0.610 0.467 

Southwestern 4 0.066 0.823 0.835 0.83 0.655 0.553 

The pairwise FsT matrix showed that the Central Plateau group of populations (including A. spinulae) 

had FsT values ranging from 0.001 to 0.840, the southern group had values ranging from 0.222 to 0.901 

and the southwestern group s values ranged from 0.602 to 0.859 (Table 3.10 B to D). Mt Wellington 

showed high levels of structural variation when compared with all other sites, with values between 

0.818 and 0.955 (Table 3.10 A). 

Isolation by distance was tested by correlating physical distance (direct geographical and along 

watercourses) between pairs of populations with the pairwise Fs1  / 1 - FsT values. Calculation of 
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distances along watercourses was problematic in that, at current sea levels, only 14% of population 

pairs are linked by freshwater and a further 4% are linked by estuarine water. Between-population 

distances by sea are probably meaningless when discussing isolation by distance for an animal whose 

fossil record supports a freshwater history of at least 200 million years (Banarescu, 1995). 

Over all population pairs, the correlation of FsT / 1 - FsT with direct geographic distance was found to 

be highly significant, with none of the values from 1000 permutations under the Mantel test greater than 

the observed value (Fig. 3.3 A). It is likely that the geographical separation of groups of populations 

rather than of individual populations dominated this analysis. No correlations with watercourse distance 

were found to be significant. 

Tests of isolation by distance within the three Anaspides groups revealed highly significant correlations 

for,the Central Plateau group (Fig. 3.3 B). Significance decreased as populations were removed from 

the test until the results were no longer significant for the core group of 8 populations (as described 

above), it appears that the Mount Wellington, Mount Field and to a lesser extent Wet Cave populations 

were the main contributors to the significant result (Table 3.11). Tests of isolation by distance within 

the southern and southwestern groups were not significant (Table 3.11). 

Figure 3.3 Isolation by distance 

A. All Anaspides (20 populations) 

Fitting Fst/(1-Fst) to a + b 1n(distance) 

a = -6.2077736, b = 3.36392170 

1000 permutations (statistic: Spearman Rank 

correlation coefficient): 

Test of isolation by distance (One tailed P-value): 

P(correlation > observed correlation) =0.00000 

under null hypothesis 
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Figure 3.3 (cont.) Isolation by distance 

B. Central Plateau / Derwent catchment Anaspides (12 populations) 

Fitting Fst/(1-Fst) to a + b ln(distance) 

a = -5.1612999, b = 2.00732722 

1000 permutations (statistic: Spearman Rank 

correlation coefficient): 

Test of isolation by distance (One tailed P-value): 

P(correlation > observed correlation) =0.00000 

under null hypothesis 

A t-test found no significant difference between the heterozygosity (He) values of populations from 

running (n=7) and still (n=10) surface water habitats (p = 0.385), although excluding the Adamsons 

Peak population resulted in a significant result (p = 0.012). F-statistics using Anaspides data assigned to 

groups according to these habitat types showed that almost all of the total variation was within the two 

groups rather than between them (F15 = 0.8724; FsT = 0.0339; FIT = 0.8768). 

3.4 Discussion 

Fossil evidence shows that anaspid syncarids have existed in Australian freshwater environments for at 

least the last 200 million years (Brooks, 1962; Schminke, 1982) and have survived enormous climatic 

and geological change over that period. It is likely that the distribution of genetic variation among 

extant anaspid populations reflects this sequence of influences, but its length and complexity make 

substantial gaps in our understanding of anaspid biogeography inevitable. Despite this, patterns of 

allozyme variation can give an indication of evolutionary processes, without providing any certainty of 

their timing or duration. 

The genus Anaspides is characterised by very high levels of genetic variation across populations, many 

fixed differences between populations, generally low levels of variation within populations with a 
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prevalence of single-allele fixation, and the frequent occurrence of private alleles. Populations appear to 

have had a long history of genetic isolation during which differences have accumulated to the point of 

fixation, probably exacerbated by small population sizes at some time during their history. It is likely 

that the more extreme forms of genetic drift ( founder effect and bottlenecks) are largely responsible 

for the low heterozygosity and high levels of population differentiation. 

Where populations are monomorphic for rare or private alleles, such as the Wolfe Hole, Mount 

Wellington and Hydro Creek populations, selection for a rare or newly mutated allele at some time 

cannot be ruled out. These three sites represent extreme habitats (an underground lake and two small 

surface streams respectively) for Anaspides populations, which may have been reduced to low numbers 

and / or had to adapt to unusual conditions. The low heterozygosity over all loci in these populations 

indicates organismal processes rather than impacts on particular loci, so selection is unlikely. The 

overall similarity of heterozygosity levels for loci grouped according to enzyme function also uphold 

this conclusion. However, the fixation of rare alleles, whatever its original cause, does indicate a long 

history of isolation as even one migrant per generation from a neighbouring population would have 

resulted in greater polymorphism (Allendorf and Phelps, 1981). 

Instances of geographically related populations monomorphic for an allele absent in other populations 

are common. If corresponding patterns of environmental discontinuities also occurred, selection could 

be considered a factor. However, no evidence of current assortative mating or active selection in the 

form of deviance from genotype equilibrium was found in any study population, so selection followed 

by fixation would have had to have occurred in the order of hundreds of generations ago, depending on 

population size (Futuyma, 1998). 

Genetic variation in the study populations falls at the very low end of the range for crustaceans cited by 

Hedgecock et al. (1982) and is slightly lower than that reported by Ward et al. (1992). Anaspides shows 

levels of variation comparable to that seen in the hoplocarids and some decapods, including the astacid 

and Palinura group of freshwater crayfish and lobsters. The genus appears to have somewhat higher 

heterozygosity than the two Tasmanian freshwater crayfish genera, Engaeus and Parastacoides, 

perhaps reflecting its potential for maintaining larger populations. 

There seems to be no genetic differentiation associated with survival in flowing or still water. In 

general, still surface water populations have higher heterozygosity than those in flowing surface water, 

with the exception of the Adamsons Peak creek population. This trend could reflect the limitations on 

habitat availability within streams, which would impact on population sizes and thus on heterozygosity. 
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Although individual animals do not seem to actively avoid areas with high flow rates, reproductive 

success may be reduced by high flows in the winter when eggs are developing. Two of the flowing 

water sites, the tributaries of Olive and Clarence Lagoons, are runnels between deep sphagnum moss 

beds and do not reach the high rates of flow of the true creek sites - Hydro Creek, Jacks Lagoon 

outflow, Mount Wellington, Weld River and Adamsons Peak. The combination of high flows with rock 

or boulder substrates might have caused occasional reproductive failure at these sites, with the 

exception of the Adamsons Peak site which has a gravel bed in which eggs might be protected from 
flows. 

Alternatively, smaller surface creeks are more vulnerable to desiccation and raised water temperatures 

in hot dry periods, and populations without access to deep water may be adversely impacted at these 

times. Those populations in lakes, deep pools, deep runnels beneath sphagnum, the deeper creek sites 

(such as the Jacks Lagoon outflow) or gravel beds (such as the Adamsons Peak site) would have an 

improved chance of survival by using deeper water as a refuge from high temperatures. The same 

refuges would also be available for protection from low temperatures. Swain and Reid (1983) suggested 

that some animals in the Mount Field population of A. tasmaniae may survive winter in a relatively 
shallow alpine tarn by burrowing into the silty substrate. 

Considering that syncarids generally have a tendency towards interstitial or hypogean life (the entire 

Order Bathynellacea, and anaspidaceans in the Psammaspididae, Koonungidae and Stygocaridae, as 
well as cave populations of Anaspides demonstrate this tendency), the higher heterozygosity of those 

populations with access to either very deep water (such as in the larger lakes, St Clair and Clarence 

Lagoon, or beneath sphagnum beds such as the Lake Ball site) or a gravel substrate (such as Adamsons 

Peak) should not be surprising. Suitable habitat, particularly where refuge from adverse conditions is 

provided, helps maintain a consistently high population size, resulting in the retention of rare alleles. 

The partitioning of size classes in the Adamsons Creek population is an interesting phenomenon not 

noted elsewhere, and may also contribute to higher juvenile survival rates in this population, as 

cannibalism of juveniles occurs in this genus (personal observation). 

In general the loss of genetic variability within populations can be seen as the result of genetic drift in 

two forms - a long history of population isolation leading to the fixation of single alleles, and reductions 

in population sizes to varying degrees, probably as a result of environmental pressures. The possibilities 

of past mutation, selection and founder effects also cannot be ruled out. 
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Genetic distances between populations of Anaspides show clear geographic differentiation between 

three groups - a southern, a southwestern, and a Central Plateau / Derwent catchment group, which 

includes A. spinulae. Using Thorpe s (1983) guidelines, pairwise genetic distances within each of these 

groups indicate conspecific relationships. Between these groups the genetic distance levels are in the 

congeneric (interspecific) range, although the southern group is rather more differentiated, with the cave 

populations in particular showing confamilial (intergeneric) levels of genetic distance with Anaspides 

from other areas. Between the three genera, differentiation levels are appropriate for confamilial taxa. 

Very high levels of population substructure are also common across the whole study, with only a few 

pairs of populations on the Central Plateau, and the two southern surface water populations, showing 

genetic homogeneity. 

The southern group includes populations from two caves (Wolfe Hole and Newdegate Cave) and two 

surface water bodies, on the Hartz Mountains and Adamsons Peak. These populations are from waters 

which flow eastward into the D Entrecasteaux Channel south of the Huon River mouth. The creeks 

draining Adamsons Peak and Ladies Tarn on the Hartz Mountains both flow into the Esperance River 

estuary, while the Newdegate Cave creek flows into Lune River, about 12 km south. It is not clear 

whether Lake Pluto in the Wolfe Hole ever connects with surface waters as it appears to be part of the 

groundwater system. 

Genetic relationships within the southern group indicate close affinities between the two surface water 

populations. The cave populations may have differentiated by adaptation to subterranean habitats, or the 

surface populations may have greater genetic similarity because they shared the same freshwater 

catchment when sea levels were lower during glaciations. The former is unlikely as the Newdegate 

Cave population shows closer affinities to the surface populations and the Wolfe Hole population is 

greatly differentiated from all three. The Wolfe Hole population is also more highly morphologically 

differentiated than any other population, through its lack of eyes as well as body pigmentation (as in 

other cave populations), and so may represent a much older, relict population. These relationships 

probably reflect the timing of separation of each population from an ancestral group which would have 

been centred in lowland freshwater bodies either during wetter climatic conditions or during glaciation. 

At the height of the Pleistocene glaciations, the Esperance, Lune and Huon Rivers were tributaries of 

the same river system, which ran into the sea south-east of Bruny Island. 

The southwestern group includes the Weld River, Mount Anne, Western Arthur Range (Lake Oberon) 

and Frenchmans Cap populations. The Weld River and Mount Anne waterways are part of the Huon 

River catchment which flows eastward, the Western Arthurs drain into Port Davey to the southwest and 
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Frenchmans Cap drains into Macquarie Harbour, to the west. The Frenchmans Cap population is 

slightly differentiated from the other three populations, and the closest affinities are between the Weld 

River and Western Arthurs populations. Although these four populations are found in very mountainous 

terrain and are more widely separated than populations in the other two groups, they are nevertheless 

genetically similar, and may indicate relatively recent gene flow. It is interesting to note that while the 

southern group appears to be related on the basis of sharing a catchment, the south-western group shows 

no such tendency. The Mount Anne and Weld River sites would also have shared the ancient Huon 

catchment but exhibit intergeneric levels of genetic distance from the southern group, by Thorpe s 

(1983) criteria. 

The Central Plateau / Derwent catchment group of twelve populations includes those described by 

Williams (1962?) as A. spinulae. My data throw further doubt on the current taxonomy, originally 

questioned by 0 Brien (1990) after the discovery of intermediate morphotypes. The conclusions of 

Jarman and Elliot (2000), namely that the two morphological forms are phylogenetically a single 

species, are reinforced by the addition of this allozyme data to their smaller study of mitochondrial 

DNA sequences. The two putative A. spinulae populations fall within the core group of 8 populations 

which show a homogeneous structure. There has clearly been substantial mixing of genetic material 

within this core group (possibly somewhere near the north-western edge of the Plateau) more recently 

than within the other two geographical groupings. 

The outlying populations in the Central Plateau / Derwent catchment group are an intriguing feature of 

this study, occurring in a cave to the north, an isolated creek to the east, and two mountains to the south. 

Fixation of alleles private within the group are the main contributor to the differentiation of these 

populations from the core group of 8 Central Plateau populations. This, together with the increasing 

genetic distance with geographical isolation, indicates that these populations may have been colonised 

from a single Central Plateau population by a limited number of individuals. Further reductions in 

genetic variability may then have been imposed by environmental conditions (through bottlenecking or 

selection). It appears that the Mount Wellington population has diverged considerably from the Central 

Plateau group, and is likely to constitute a species in its own right. 

The response of populations to Pleistocene glaciation has often been proposed as the likely mechanism 

by which distributions of freshwater species have been determined. With their vagility restricted to 

waterways, dispersal pathways should be more easily traceable, at least in the recent past. However, the 

influences of other geologically recent factors, including the invasion by other species (in this case 

particularly the galaxiid freshwater fish), climatic changes and changes to drainages, such as river 
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capture and reversal, need to be considered. Earlier geological episodes also leave their mark on today s 

landscape and biota, but the ability to distinguish deep from shallow history in biogeographical 

studies is methodologically difficult and requires evidence from many taxa (Cracraft, 1988). Molecular 

evidence points to speciation within the Anaspididae occurring between 7 and 25 million years ago 

(Jarman and Elliot, 2000). Little is known of the biogeography of other central Tasmanian biota in the 

intervening period. 

Stevens and Hogg (2003) review the theoretical framework of the role of Pleistocene glaciation in 

genetic differentiation, describing two opposing views. Divergence caused by habitat fragmentation 

during glacial advances (vicariance) is contrasted with the homogenising effect of cycles of population 

expansion and contraction. It is possible that the Central Plateau Anaspides populations were subject to 

mixing in one or more postglacial phases when waterways were connected by meltwater, or in 

interglacial periods when the climate was warmer and wetter. 

In summary, the allozyme data identify three distinct geographical groupings of populations that are 

characterised by large between-group genetic differentiation and low within-group and within-

population differentiation. The three groups display interspecific levels of genetic distance. There is 

some evidence for lower variability in flowing water populations and for the earlier differentiation of 

cave populations. 
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Chapter 4 Mitochondrial DNA phylogeny 

4.1 Introduction 

In crustaceans mitochondrial DNA (mtDNA) is typically a single circular molecule consisting of up 

to 17,000 bases (Raimond et al., 1999). As in other animals it is characterised by maternal inheritance 

and so has an effectively haploid nature. This mode of inheritance affects the pattern of genetic 

variation within species by increasing the effect of drift and the rate of turnover within a population, 

and thus increases variation among populations (Moore, 1995; Hillis et al., 1996). Combined with a 

higher rate of base substitution, sorting of ancestral alleles within and between species is then 

considerably more rapid than in nuclear genes (Hillis et al., 1996), resulting in an abundance of 

genotypes. 

Mitochondrial genes, particularly the small and large subunit ribosomal DNA (12S and 16S rDNA 

respectively) and the protein-coding genes cytochrome oxidase 1 (C01) and cytochrome b (cyt b), 

are routinely used for phylogenetic and population genetic studies, due to their relatively rapid rate of 

base substitution and interspecific polymorphism (Hillis et al., 1996; Raimond et al., 1999). The two 

ribosomal genes appear to be relatively conserved in sequence and secondary structure among taxa, 

but 16S has regions with enough variability to be phylogenetically informative at the species and 

genus level, and at a population level in some taxa (Hillis etal., 1996). 

In this study, a 479 bp sequence of 16S mtDNA from a total of 58 samples of all three genera of the 

family Anaspididae, from 33 sites across Tasmania, was compared in order to assess the phylogenetic 

affinities suggested by the allozyme study and to establish confidence levels in the groupings. The 

absolute times of divergence of genera, species, geographical groups and populations were estimated 

by the application of a molecular clock. 

4.1.1 16S mitochondrial rDNA phylogenetic studies of crustaceans 

Many phylogenetic studies of crustaceans have used 16S mtDNA sequence data, in conjunction with 

other DNA sequences (Giessler et al., 1999; Maggioni et al., 2001; Matthews et al., 2002; Muller et 

al., 2002; Wetzer, 2001; Munasinghe etal., 2003; Cristescu and Hebert, 2002; Crandall et al., 2000a; 

Taylor et al., 1998), in conjunction with allozymes (Giessler etal., 1999; Muller, 2000; Maggioni et 

al., 2001; Muller etal., 2002; Grandjean etal., 2002; Munasinghe etal., 2003; Taylor etal., 1998), 

and alone (de Bruyn et al., 2004; Jarman and Elliot, 2000; Crandall et al., 1999; Crandall et al., 
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2000b; Camacho et al., 2002). These studies have typically been used to elucidate a species or genus 

taxonomy and/or biogeography. 

In the above studies, where 16S mtDNA was used alongside other DNA sequences, seven out of nine 

studies reported phylogenetic congruence between the markers, and five out of seven studies 

combining 16S mtDNA and allozymes reported congruence. The fact that many of the combined 

DNA studies used other mitochondrial genes may have contributed to the high rate of congruence, as 

different mitochondrial genes might be subject to similar functional constraints and possibly 

coevolution (Flook and Rowell, 1997). 

These findings appear to indicate that problems arising from deep coalescence and secondary 

structure are not particularly widespread in crustacean phylogenetics, the former possibly because 

lineage sorting should not be a problem with relatively ancient organisms. A protocol involving 

ensuring that separate data sets are homogeneous before combining them for phylogenetic analysis is 

often adopted (Cristescu and Hebert, 2002; Crandall et al., 2000a). 

Two previous studies of Tasmanian crustaceans have used 16S mitochondrial rDNA sequences. 

Hansen (2000) combined allozyme and 16S mitochondrial data in a major systematic review of the 

freshwater crayfish Parastacoides. Jarman and Elliot (2000) sequenced the 16S rDNA of 28 

Anaspides individuals from 13 sites, and one each of Paranaspides lacustris, Allanaspides hickmani 

and Allanaspides helonomus, in a 'study of evolutionary rates and cryptic speciation in the 

Anaspididae. They found a stochastically constant rate of evolution within the Anaspididae and used 

a relative rate methodology to calibrate a molecular clock at 0.2871 % ± 0.1344 % SE change per 

million years. 

The use of molecular clocks to estimate absolute time is controversial. Hillis et a/.(1996) have 

summarised many sources of inaccuracy and recommend the use of externally calibrated evolutionary 

rates and confidence intervals. The work by Jarman and Elliot (2000) used a 16S clock for the 

malacostracan family Lithodidae calibrated through vicariant divergence associated with three 

separate well-supported dates of geological events from fossil evidence (Cunningham et al., 1992), 

and supplied 95% confidence limits for the estimates. 
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The present study of Anaspides greatly increases the numbers of individuals and populations sampled 

and the breadth of geographical coverage in the central, western, southwestern and subterranean 

environments, and seeks to emphasise biogeography rather than species evolution. 

4.1.2 Comparison of analytical methods for molecular phylogenies 

The many analytical methods available for the construction of phylogenetic trees can be grouped 

broadly into three categories based on character state, distance and maximum likelihood (Sherry and 

Batzer, 1997). 

Character state analysis assesses all possible trees using the maximum parsimony (MP) criterion. 

Under this criterion a score representing the minimum number of base substitutions needed to 

produce the current data is calculated for each tree and the tree with the lowest score is chosen as the 

most parsimonious tree. If many trees with the same score are found, it is possible to form a 

consensus tree, although multiple most-parsimonious trees are sometimes taken to indicate the 

inappropriateness of the method for that data set (Hillis and Huelsenbeck, 1992; Sourdis and Nei, 

1988). Farris (1970) proposed the first algorithm for MP searching, but the methods have since been 

substantially modified and many variations of parsimony are now used (Hillis et al., 1996). 

Distance-based methods express data as measures of pairwise evolutionary distance (analogous to the 

genetic distance measures used in allozyme analysis) and construct trees using either UPGMA 

(chapter 3) or neighbour-joining (NJ, Saitou and Nei, 1987). NJ is a stepwise additive-distance 

method which groups taxa as neighbours so as to minimise the total length of the tree. Unlike the 

previous methods, NJ is an algorithmic method which builds a single tree rather than assessing 

possible trees using optimality criteria. Variations may include the use of different distance measures 

and incorporation of among-site rate differences and character weighting (Hillis et al., 1996). 

The maximum likelihood method (ML, Felsenstein, 1981) assesses trees by comparing probability 

scores (the sum of the likelihoods of a certain series of substitutions resulting in the data set). The tree 

with the highest probability is selected as the preferred tree. As in MP, it uses an evolutionary model 

to examine randomly constructed trees and assigns a score to each, but unlike MP, among site rate 

variation is able to be incorporated into the model for ML (Yang, 1993). 

The most commonly used methods are maximum parsimony and neighbour-joining, with maximum 

likelihood also favoured but considered computationally intensive for large data sets. No one method 
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is appropriate for all data sets as all have problems with efficiency, consistency or robustness in 

certain circumstances (Hasegawa and Fujiwara, 1993). A number of authors have compared the 

accuracy and robustness of common phylogenetic methods through simulations of varying 

complexity. 

All methods rely on assumptions concerning the evolutionary history of the organism and, since these 

are often violated (Yang, 1993; Huelsenbeck, 1995a; Fukami-Kobayashi and Tateno, 1991), the 

robustness of a method to the violation of assumptions is important. Assumptions likely to be 

unrealistic are that the rate of substitution is constant at different nucleotide sites, that the rate of 

evolution is constant for different taxa, and that the ratio of transitions to transversions is constant 

across taxa (Yang, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck, 1995a). 

Shortcomings of the maximum parsimony method appeared to be common to all simulations that 

have tested it. Situations where MP was outperformed by neighbour joining and /or maximum 

likelihood included: when sequences were long (Saitou and Imanishi, 1989); when substitution rates 

varied among branches (Felsenstein, 1978; Jill and Nei, 1990; Kuhner and Felsenstein, 1994) and 

among nucleotide sites (Jin and Nei, 1990); when rates of substitution were high (Sourdis and Nei, 

1988; Saitou and Imanishi, 1989); and when the ratio of transitions to transversions was biased (Jin 

and Nei, 1990). No simulations found MP to be more accurate or robust than NJ or ML. 

Comparisons of methods including maximum likelihood and neighbour joining showed that both 

approaches are very likely to recover the correct tree; however, maximum likelihood was found to be 

generally more robust to the violation of assumptions (Fukami-Kobayashi and Tateno, 1991; Saitou 

and Imanishi, 1989; Kuhner and Felsenstein, 1994; Huelsenbeck, 1995a and 1995b). The violation of 

the assumption that evolutionary rates are constant among nucleotide sites caused the most 

inaccuracy and bias for both methods (Kuhner and Felsenstein, 1994). All these studies found that 

ML is most likely to retrieve the correct tree, but recommended using NJ with care where 

computation time is a constraint. Saitou and Nei (1987) showed that NJ was preferable to other 

additive-distance methods and Huelsenbeck (1995a and 1995b) and Jin and Nei (1990) showed that 

gamma correction for rate heterogeneity of distance values greatly improved the accuracy of tree 

topology under NJ. Yang (1993) also showed that variation in substitution rates among sites could be 

corrected by using the gamma distribution in ML for greater accuracy. 
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The above studies typically simulated phylogenies for between 4 and 8 taxa and the effect of adding 

more taxa is unknown, although Huelsenbeck (1995b) and Kuhner and Felsenstein (1994) expected 

less accuracy in all methods with more taxa. Saitou and Imanishi (1989) found that increasing the 

sequence length from 300 to 600 bp doubled the number of correct trees recovered. 

Confidence in tree accuracy may be tested by resampling methods such as bootstrapping (Felsenstein, 

1985) or jacicnifing. Hillis and Bull (1993) showed that bootstrap values are highly conservative 

estimates of correct inference under most conditions. However, for large data sets bootstrapping can 

be prohibitively time-consuming, particularly with the more intensive maximum likelihood analysis. 

Mort et al. (2000) found that for data sets of over 25 taxa, fast bootstrapping methods, which omit 

branch-swapping in order to reduce the computational intensity of the normal exhaustive methods, 

result in bootstrap support levels that are similar to branch-swapping methods, provided moderate 

(between 500 and 1000) numbers of replicates are used. These support values were shown to be 

typically slightly lower and have lower standard deviations than full bootstrap values, and are thus 

reliable, if conservative, estimates of nodal support. Fast jaclmife analysis is similar to the fast 

bootstrap, but is even faster as the size of the data set is reduced at each resampling. Although it is 

not often used as it is considered to contain less phylogenetic information, Mort et al. (2000) found 

that with fewer replicates and 50% deletion, the fast jacknife produced support levels which were 

generally closer to or lower than those of a full bootstrap than did the fast bootstrap. In this work, a 

fast bootstrap support value of 70% or over is considered moderate to strong support for a node and 

between 50% and 70% is considered weak support. 

An ingenious approach described by Hillis and Huelsenbeck (1992) addresses the problem of 

separating phylogenetic signal from the random noise which results from saturation by change at 

variable sites, particularly in older lineages. A frequency distribution of branch lengths is produced 

from the original data, randomised but with base frequencies maintained for each site. The authors 

show that increased hierarchical structure (true signal) causes a skew to the left in the branch length 

distribution. A skew to the right indicates increased noise. The g i  skewness statistic is calculated, 

which becomes more negative with increasing left skew. A table of critical values (1)=0.05 and 0.01) 

of g i  with number of taxa and characters was presented (Hillis and Huelsenbeck, 1992). Swofford et 
al. (1996) expressed some reservations about this method as strong skewness can be related to very 

localised structure, such as the duplication of taxa, which would create very short branches, so 
extreme values of g i  should probably be disregarded. 
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4.2 Methods 

4.2.1 DNA extraction and amplification 

DNA was extracted from 2 individuals from each of the populations of Anaspides species listed in 

Table 2.1 (except for the 10 asterisked populations), and from specimens of Allanaspides hickmani, 
All. helonomus and Paranaspides lacustris. Approximately 1.5 mg of tissue from each individual was 

macerated and digested in a QIAGENThl  Dneasy Tissue Kit using Proteinase K. All procedures 

followed the manufacturer s instructions. The resulting total DNA was stored in 1.5 ml centrifuge 

tubes at -20 °C to be used as templates in amplification by polymerase chain reaction (PCR). 

Synthetic oligonucleotide primers 16Sar-L (5 -cgcctgtttatcaaaaacat-3 ) and 16Sbr-H (5 - 

ccggtctgaactcagatcacgt-3 ) were used to PCR amplify a region of 16S mitochondrial rDNA of 

approximately 542 base pairs. Initial reactions were 50 pL, containing 25 ,uL Promegem Master Mix 

(50 units mL -1  Tag DNA polymerase; 400 ,uM each dNTP; 3mM MgC1 2; pH 8.5 buffer), 0.5 ,uL each 

primer, 12.5 ,uL DNA template and distilled water. These quantities were corrected when test runs 

showed that optimal results were achieved with 5 ,uL DNA, additional MgC12(1 mM) and additional 

Taq DNA polymerase (0.25 units). 

All PCR runs contained both positive (krill, Euphausia sp., DNA) and negative (distilled water) 

controls. An annealing gradient run was performed to determine the optimum annealing temperature. 

Cycle conditions were denaturation at 94 iC (30 seconds), annealing at 54 iC (1 minute) and 

extension at 72 iC (1 minute 30 seconds) for 40 cycles, followed by 72° iC (6 minutes). 

PCR product was electrophoresed through a 1.2% agarose, 0.5 ,ug mU l  ethidium bromide gel for 60 

minutes at 90 V. The bands of DNA were excised from the gel under ultra-violet light and stored at - 

20 °C until extraction using a Qiaquick Gel Extraction kit (Qiagen Tn. The manufacturer s 

instructions were followed with the exception of step 5 (addition of isopropanol). DNA concentration 

was measured in the product using a Picoflour flourimeter and Big Dye Terminator sequencing PCR 

reactions were run using 10 pi, reactions with 13 ng sample DNA and the forward primer 16Sar only. 

4.2.2 Sequencing and sequence alignment 

Sequence analysis was undertaken at CSIRO Marine Research laboratories (Hobart) using an ABI 

377 automated DNA sequencer (Applied Biosystems).Sequences were first checked and manually 

aligned using Sequence Navigator software (ABI) and then transferred to ClustalX (Thompson et al., 
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Table 4.1 Numbers and source of sequences used in the mtDNA study. Refer to Table 2.1 for further details. 

Population Allozyme study Genbank* New samples °  

Anaspides tasmaniae 

Wolfe Hole 

Newdegate Cave 

Wet Cave 

Adamsons Peak 

3 

1 

2 

3 

WH7, WH9 

NCI 

WC7, WCIO 

AP5, AP9 

AF133694 

- 

AF133693 

Hartz Mountains 3 AF133692 a,b 

Square Lake (Western Arthurs) 2 a, b 

Haven Tarn (Western Arthurs) 2 - a, b 

Snowy North 1 - AF133691 - 

Lake Picton 1 a 

Weld River 2 W16, W18 - - 

Lake Oberon (Western Arthurs) 2 WA4, WA8 

Coronation Peak 2 - a, b 

Mount Anne 3 MA8, MA10 AF133689 - 

Lake Rhona 1 a 

Frenclunans Cap 2 FC3, FC11 

Near Lake Ball 2 - a, b 

Zion Hill 1 AF133688 - 

Jacks Lagoon 2 - a, b 

Mt Rufus 1 AF133687 - 

Mt Ossa 1 AF133686 

Sandbank Tier 1 AF133685 

Mt Field 3 MI6 AF133684 b 

Powena Creek 1 - a 

Lonely Lake 2 Li, L5 - 

Hydro Creek 2 - - a, b 

Olive Lagoon 1 - a 

Mt Wellington 1 AF133683 

Clarence Lagoon tributary 1 Ct3 

A.spinulae Clarence Lagoon 2 C9 a 

Lake St Clair 2 SC1 AF133679 

Allanaspides hickmani 3 Ahi5, Ahi6 AF133681 

Allanaspides helonomus 1 AF133680 

Paranaspides lacustris 1 AF133682 

Total 58 23 15 20 

* Sequences from study by Jarman and Elliot (2000), with permission from the authors. 
* Samples not used previously, designated a and b to distinguish them. 
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1997) for full alignment. The initial sequence of 542 nucleotides was trimmed to 479 by 

removing sites at both ends where data was missing or ambiguous in some samples. Samples 

without useful sequences were discarded, and Genbank sequences (from Jarman and Elliot 

(2000)) were added to provide additional data, including sequences from five new populations - 

Snowy North, Sandbank Tier, Zion Hill, Mt Rufus and Mt Ossa. 

4.2.3 Phylogenetic analysis 

Analysis of 16S mtDNA sequence data was performed using PA UP*  v4.0 b10 for Macintosh 

(Swofford, 1996) on a Macintosh G3 PowerBook. Maximum parsimony, neighbour joining and 

maximum likelihood analyses were applied to a total of 58 sequences. Of these, 35 sequences 

were from populations previously used in the allozyme study, 8 were from individuals 

representing new populations and 15 were sequences deposited in Genbank by Jarman and Elliot 

(2000). The data set included sequences from 3 samples of Allanaspides hickmani,1 from each of 

Allanaspides helonomus and Paranaspides lacustris, 4 from Anaspides spinulae and the 

remaining 49 from Anaspides tasmaniae. Further details of samples used in the mtDNA analysis 

are shown in Table 4.1. 

The HKY85 + r (discrete gamma) model of nucleotide evolution (Hasegawa et al., 1985; Yang, 

1993) was used in the maximum likelihood and neighbour joining analyses to correct for rate 

heterogeneity among taxa, unequal equilibrium base frequencies, and different transition and 

transversion rates. An initital assessment of the rates of nucleotide substitutions among sites was 

undertaken by maximum likelihood analysis with minimum evolution as the objective function, in 

order to estimate the shape parameter (a) for discrete-gamma correction of rate heterogeneity. 

This value was subsequently used in the 11KY85 + I-  model for calculation of the pairwise 

distance matrix (for neighbour joining) and the maximum likelihood phylogeny. 

The same initial analysis also yielded base frequencies, the number of variable and parsimony-

informative characters and the ratio of transitions to transversions. The assumption of equal base 

frequencies was tested using a X2  - test. 

The g i  skewness statistic was calculated from 100,000 random trees, for the whole data set, for 

the data set without duplicate samples from the same population, and for the Anaspides samples 

only, without duplicates. 
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Maximum parsimony 

Character data were weighted using a stepmairix assumption set, under which gaps and 

transversions were defined as 5 and 2 times as significant as transitions respectively. Gaps were 

treated as a 5 th  base . Brown (1982) showed that transitions are more likely than transversions; 

therefore transversions are less likely to be homoplasious and should be treated as more 

significant. The same reasoning applies to insertion and deletion event which cause gaps. 

Maximum parsimony analysis was undertaken by heuristic searches with stepwise addition and 

branch-swapping using the TBR (tree-bisection-reconnection) algorithm. Branches of effectively 

zero length were collapsed. The initial number of trees to be saved was set to 100 and increased 

automatically, but a maximum of 100 trees with scores over 250 was saved from each replication, 

as the number of sequences was large and the number of trees able to be stored was limited. A 

strict consensus tree of all saved trees, which maintains only groupings present in all the most-

parsimonious trees, was found. 

Use of outgroups followed the revised outgroup method for simultaneous analysis proposed by 

Nixon and Carpenter (1993) and justified theoretically by Smith (1994). Unrooted trees were 

produced initially, as ingyoup relationships are more likely to be correctly resolved without the 

confounding influence of unknown changes in the outgroup since the divergence of the ingroup 

(Nixon and Carpenter, 1993). In this stage the two sister genera of Anaspides (two Allanaspides 

and one Paranaspides species) were included as though they were part of the ingroup 

(simultaneous outgroup analysis as described by Nixon and Carpenter, 1993). The consensus tree 

was then rooted using the four Allanaspides sequences as the outgroup, as they are a single close 

sister clade as recommended by Smith (1994). Using two non-anaspidacean outgroups (an 

anostracan and a stomatopod), Jarman and Elliot (2000) had determined that the most basal split 

among the three anaspid genera lay where Allanaspides diverged, a result supported in the current 

work. 

Confidence in the consensus tree was assessed by resampling the data using the bootstrap 

technique (Felsenstein, 1985) with 5,000 pseudoreplicates in PA UP*  s fast stepwise option. 

Neighbour-joining 

The distance matrix of pairwise nucleotide sequence divergence was calculated using the HKY85 

+ F nucleotide evolution model (Hasegawa et al., 1985) and used to construct a neighbour-joining 
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phylogram. All substitutions were included, minimum evolution was selected as the objective 

function, and negative branch lengths were set to zero. 

The 16S mtDNA evolutionary rate of Jarman and Elliot (2000) was applied to the distance data 

averaged over the major clades, to give estimated times (with 95% confidence limits) of 

divergence within and among the geographical groups. 

Maximum likelihood 

Data were weighted using the stepmatrix described previously, but the likelihood method does 

not consider gaps so these were not weighted. The default settings in PA UP*  were retained for all 

likelihood settings, with the exception that the gamma distribution was invoked to take variable 

rates among sites into account. The shape parameter a was set to the value found in the initial 

analysis. Heuristic searches were conducted as described above, but the number of trees to be 

saved was not constrained by a score value. The procedure used for rooting the maximum 

likelihood tree was the same as that described for maximum parsimony. 

Bootstrap resampling (Felsenstein, 1985) by fast stepwise search was performed with 100 

pseudoreplicates, due to computational constraints. As fast bootstrapping with only 100 

replicates has been found to overestimate support values at up to 30% of nodes (Mort etal., 

2000). A fast jacicnife with 50% deletion and 300 replicates was also performed, which should 

give support values equal to or less than a full bootstrap at approximately 85% to 90% of nodes 

(Mort et al., 2000). As this is a more conservative measure than bootstrapping, 50% jacicnife 

support is considered to be significant. 

4.3 Results 

4.3.1 DNA sequencing and alignment 

Of 56 samples from which DNA was extracted and amplified, 12 did not have enough DNA to 

proceed to sequencing and another one did not produce an interpretable sequence. However, with 

the addition of 15 sequences from Genbank, all populations were represented by at least one 

individual (Table 4.1). 

Alignment of 58 sequences revealed two deletions and three insertions. These consisted of a one- 

character deletion in sequences from all 10 southwestern populations and all Allanaspides, a one- 
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character deletion in all sequences from the 4 southern populations, a four-character insertion in 

Allanaspides hickmani, a two-character insertion at the same site in Allanaspides helonomus, and 

single-character insertions in Allanaspides helonomus, A. hickmani, and in one Frenchmans Cap 

sample. Appendix 1 contains the full data set of 58 taxa and 479 bp after alignment. 

4.3.2 Phylogenetic analysis 

Of 479 characters, 363 were constant, 21 were variable but parsimony-uninformative and 95 were 

parsimony-informative. Frequencies of bases averaged over all sequences, including outgroups, 

were A - 0.393, C - 0.114, G - 0.173 and T - 0.321, indicating a strong A - T bias of 71.7%. A x 2 - 

test confirmed the consistency of base frequencies across taxa (p = 1.000). The ratio of transitions 

to transversions was 2.203. 

The shape parameter (a) for use in discrete-gamma correction for rate heterogeneity was 

estimated at 0.1666, indicating that most nucleotide sites have evolved slowly, but a small 

number has evolved quite rapidly (Hillis etal., 1996). The sequence data show three relatively 

more variable regions of approximately 40 to 50 bp (Appendix 1). 

The g i  skewness statistic was calculated at -1.128 for the whole data set, -1.063 for the whole data 

set without duplicate samples and -0.714 for Anaspides samples only, without duplicates. All 

values were highly significant (p <0.05) indicating that the performance of parsimony in 

detecting the true phylogeny should be excellent (Hillis and Huelsenbeck, 1992). Interestingly, 

the statistic became less extreme when the more distant samples, Paranaspides and Allanaspides, 

were removed (relevant critical values for p = 0.05 of g i  = -0.10). This appears to indicate that 
localised structure among the Anaspides sequences was probably not increasing skewness. 

Maximum parsimony 

A large number (2,778) of equally parsimonious trees were found, with a tree length score of 196. 

Although such a high number of equal-scoring trees might cast doubt on the value of the analysis, 

the evidence from the skewness test described above, the levels of bootstrap support and the 

moderately low homoplasy index of 0.245 all indicate that it should not be discounted. It is 

possible that the large number of closely related samples within the three major clades 

contributed to the high number of equally parsimonious trees. The strict consensus tree with 

bootstrap values, rooted with the Allanaspides clade, is shown in Figure 4.1. 
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Maximum parsimony analysis grouped populations into three major geographical clades which 

corresponded with those found in the allozyme analysis (chapter 3). Of the populations not 

included in the allozyme study, Square Lake, Haven Tarn, Snowy North, Lake Picton, Coronation 

Peak and Lake Rhona were included in the southwestern group; Zion Hill, Mount Rufus, Mount 

Ossa and Sandbanks Tier were included in the Central Plateau group (Figure 4.1). 

Bootstrap values strongly supported the basal split of Allanaspides and the divergence of 

Paranaspides, the southern clade, the southwestern clade and the Central Plateau clade (including 

Mt Field and Mount Wellington). The divergence of the Mount Wellington population from the 

Central Plateau group was weakly supported. 

Within the southern and southwestern clades, populations showed significant levels of divergence 

from each other, although Lake Rhona and Frenchmans Cap together formed a well-supported 

clade. Square Lake and Haven Tarn, both on the Western Arthur Range showed some similarity 

to each other, but were distinct from Lake Oberon, the third Western Arthur population. In 

contrast, the Central Plateau populations displayed little inter-population divergence. Only Mount 

Field and Hydro Creek were found to be significantly distinct and weak support was shown for 

the Clarence Lagoon population of A. spinulae. 

Within-population structure in Allanaspides hickmani and the Lake St Clair Anaspides spinulae 

population was suggested by moderate support values. 

Neighbour-joining 

The HKY85 + F distance matrix shows average distances within and between the three 

geographical groupings of Anaspides and the three outgroup species. It is attached as Appendix 2 

and summarised in Table 4.2. 

The distance between the Central Plateau and southwestern groups is significantly lower than 

other comparisons (Table 4.2). These groups clearly share an affinity. The southern group is 

highly divergent from both these groups and shows approximately the same amount of divergence 

from Paranaspides as from other Anaspides. Both Allanaspides and Paranaspides are more 

similar to the southern than to the southwest and central groups. Allanaspides hickmani is 

consistently the most differentiated anaspid species. Differentiation among populations within the 

same geographical area is highest in the southwestern group. 
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Table 4.2 Mean 16S mtDNA distances within and among Anaspides population groups and 

outgroup species, summarised from the full pairwise 1{KY85+F distance matrix (Appendix 2). 

Central 
Mean distance 

(HICY85+1' measure) 

Southern 

group 

Southwest 

group 
Plateau 

group 

P. lacustris 
AIL 

hickmani 

Southern group 10 0.010 

Southwest group 18 0.065 0.018 

Central Plateau group 25 0.056 0.030 0.006 

Paranaspides lacustris 1 0.058 0.070 0.066 

Allanaspides hickmani 3 0.115 0.138 0.131 0.130 0.001 

Allanaspides helonomus 1 0.102 0.122 0.103 0.112 0.072 

HKY85 distances were used to construct the neighbour-joining phenogram (minimum evolution 

score 0.5009) shown in Figure 4.2. The phenogram was not rooted and the Allanaspides clade 

was positioned within the southern group, with very long branches due to the large number of 

substitutions separating the clades. Otherwise the topology was very similar to the maximum 

parsimony tree and had the same major groupings, although slightly more structure is shown 

within these groups. The Mount Wellington population was placed outside all three of the 

geographical groups. Populations which were clearly differentiated within their geographical 

groups were Hartz Mountains in the south; Haven Tarn, Snowy North, Lake Picton, the Lake 

Rhona / Frenchmans Cap clade, Lake Oberon and Coronation Peak in the southwest, and 

Sandbanks Tier, Hydro Creek and Mount Field in the central group. 

The 16S rDNA evolutionary rates of Jarman and Elliot (2000) applied to the distance data gave 

estimated times of divergence within and among geographical groups (Table 4.3). The 95% 

confidence intervals are large, so these values can only be considered to suggest a broad range of 

times. The last common ancestor of Allanaspides and the other two anaspid genera existed 

around 43 million years ago (between 30 and 82mya). The divergence of Paranaspides and the 

southern clade of Anaspides both occurred at about 20 mya (13 to 45 mya) and the southwest and 

Central Plateau clade diverged at about 10 mya (7 to 20 mya). The estimated time since the last 

common ancestor of populations within geographical groups ranges from 350,000 years for 
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Million years 	 Southern 	Southwest 	Central 	Paranaspides 

(95% confidence limits) 	group 	group 	Plateau group 	lacustris 

Southern group 

Southwest group 

Central Plateau group 

Paranaspides lacustris 

All Allanaspides 

3.48 
(2.37-6.55) 

22.64 
(15.42-42.57) 

19.51 
(13.29-36.67) 

20.20 
(13.76-37.98) 

6.27 
(4.27-11.79) 

10.45 
(7.12-19.65) 

24.38 
(16.61-45.84) 

2.09 
(1.42-3.93) 

22.99 
(15.66-43.22) 

43.54 
(29.66-81.86) all Anaspides 	43.54 (29.66-81.86) 

Divergence of Allanaspides helonomus from All. hickmani 	25.08 (17.08-47.15) 

Divergence of populations within Allanaspides hickmani 	0.35 (0.24-0.65) 
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populations of Allanaspides hickmani to approximately 6 million years for the southwestern 

Anaspides tasmaniae. 

Table 4.3 Estimated times of divergence (million years) calculated using the BKY+1" evolution 

model and an absolute rate of 16S rDNA evolution of 0.002871 ±0.001344 distance units per 

million years. Times of divergence between populations within groups are italicised. 

Maximum likelihood 

The maximum likelihood phylogeny, rooted with Allanaspides and showing bootstrap and 

jacknife support values, is displayed in Figure 4.3. The tree has a log likelihood score (-In L) of 

1654 and a topology which is similar to the previous analyses, differing only in that the Central 

Plateau and southwestern groups form a single clade. The southwestern populations nevertheless 

form a well-supported clade within that group. Jacknife values are more conservative than 

bootstrap values, as expected. 

The southern and southwestern groups again contained many populations which were clearly 

differentiated. Well-supported distinct clades within these geographical groups include the 

southern cave populations, Hartz Mountains, Lake Oberon, Coronation Peak, Mount Anne, Lake 

Rhona / Frenchmans Cap and Haven Tarn. Mount Field and Hydro Creek are the only well-

differentiated Central Plateau populations. Mount Wellington was included in the Central Plateau 

/ southwestern group in this phylogeny. 
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4.4 Discussion 

The application of molecular data to phylogenetic analysis is characterised by the enormous 

amount of information potentially available from large data sets balanced by the need to manage 

the limitations of the data and various methodologies. This discussion begins with the 

consideration of some of the limitations on the use of molecular data. This balance can be attained 

by defining and testing assumptions, choosing analytical techniques appropriate for the 

assumptions, using more than one technique and assessing confidence in results statistically. 

4.4.1 Possible limitations on the use of molecular data 

Evolutionary time for which mtDNA phylogenies are appropriate 

There is considerable difference among taxa with regard to the level of evolutionary relatedness 

for which particular genes are useful. The amount of genetic variability of the marker molecule 

must be appropriate for the level of relationship being studied but has been found to vary among 

taxa depending on factors such as mutation rate, molecular structure and function (Hillis et al., 
1996). In general nuclear genes are used for clarifying ancient relationships and mitochondrial 

genes for more recently separated taxa. Over sufficiently long periods, the rapid rate of 

mitochondrial evolution means that early base substitutions are overwritten by later ones, so 

mitochondrial genes tend to increasingly underestimate the number of substitutions with time 

(Futuyma, 1998). Consequently rates of evolution (numbers of base substitutions with time) along 

branches of mtDNA phylogenies are probably only linear for recently evolved groups (Hillis et 
al., 1996), although exactly how recently this applies varies among taxa (Futuyma, 1998). 

Assumptions of linear rates of evolution in the phylogeny of organisms with a long history may 

not be reliable, and are not easily tested. 

Lineage sorting 

As mitochondrial DNA is a single linkage group, lacking recombination, it is analogous to a 

single allozyme locus with many alleles, providing only one independent estimate of a species 

phylogeny, regardless of how many variable sites are found. The phylogeny of the alleles within a 

mitochondrial sequence therefore may not represent that of the species itself. Allelic lineages are 

sorted stochastically over time, and paraphyly or polyphyly is likely in the short term as each 
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allele follows an individual pathway, with monophyly developing after a specific length of time 

as some alleles become extinct. If populations are sampled while paraphyly or polyphyly is still 

occurring, the gene tree may not be congruent with the species tree (Avise and Wollenberg, 

1997), and any conclusions drawn from such a phylogeny would be unreliable. 

The length of time since a particular extant allele was found in only one line has significance for 

whether the allelic tree will correspond with the species tree. Only if this time of coalescence 

falls between the first and second node of the species tree (that is, at some point after the common 

ancestor first diverged but before any further mutation events (Slowinsld and Page, 1999)) will 

congruence of the species and gene trees occur. A large body of literature has considered the 

problems and various theoretical and statistical solutions to the application of coalescence 

theory to phylogeny. The methods proposed in these studies agree that a single mitochondrial 

gene sequence is insufficient evidence on which to base a phylogeny, but differ in the 

recommended treatment of multiple data sets (Avise and Wollenberg,1997; Slowinski and Page, 

1999; Hillis et al., 1996; Futuyma, 1998). 

Moore (1995) showed that the drawbacks arising from so-called deep coalescence are somewhat 

less for mitochondrial genes than for nuclear genes. It has been agreed that, under neutral theory, 

the smaller the effective population size the more likely that coalescence occurred in the 

appropriate phylogenetic window. The uniparental and haploid nature of mitochondrial 

inheritance means that the effective population size for the genetics of the mitochondrial genome 

is only one-quarter that for a nuclear-autosomal sequence with the same number of genes. Thus it 

is more likely that a mtDNA sequence phylogeny will provide an accurate species tree than a 

nuclear sequence, and furthermore a larger number of nuclear than mitochondrial gene trees is 

needed to attain the same confidence level in the species tree (Moore, 1995). This does not negate 

the need for more than one marker when using mtDNA, however. 

Secondary structure 

A recent area of discussion is the relative rates of molecular evolution of nucleotides in stems and 

loops of the mitochondrial genome (Hillis et al., 1996). Where models of the secondary structure 

of mitochondrial genes have been prepared, a statistical approach comparing functional regions 

has shown that loops can be more variable than stems or connecting regions and complex 

compensatory mechanisms may confound unambiguous sequence alignment. Smith and Bond 

(2003) found that down-weighting or excluding regions of greater variability in 16S in spiders 
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improved the phylogeny, leading to a tree which was congruent with that produced by combined 

analysis of other DNA markers and morphology. 

Incorporating knowledge of secondary structure into mtDNA phylogenetic studies would be 

useful, but such knowledge is not always available. This area of molecular phylogenetics is in its 

infancy, with structural models continuing to improve but as yet available for few organisms 

(Flook and Rowell, 1997). It is unclear in which genes secondary structure is conserved across 

taxa. 

4.4.2 Conclusions from this study 

The general problems of saturation by change, lineage sorting and secondary structure have been 

addressed as far as possible by statistical resampling to assess confidence levels and by the test 

for skewed branch length distribution, which tests specifically for random signal. The high 

bootstrap values supporting the most basal node indicate that this region of the 16S molecule is 

probably not yet saturated with change. The presence of short areas of fast-evolving nucleotides 

offers potential for the future study of secondary structure of 16S in the Anaspididae but does not 

appear to have unduly influenced the results. 

Rate variation and substitution type bias are seen as potentially problematic assumptions in 

phylogenetic reconstruction. Rate variation among nucleotide sites was accommodated in the 

current study by discrete-gamma correction of distance and likelihood calculations. Rate variation 

among populations of anaspid taxa has previously been ruled out by log likelihood test (Jarman 

and Elliot, 2000). 

The ratio of transitions to transversions was not high (-2:1), possibly due to the bias towards A 

and T across all taxa. Substitution types were weighted by 2 towards transversions to compensate 

for the possible randomness of transitional change. Crozier and Crozier (1993) suggested that a 

high frequency of A and T nucleotides means that transitions are unlikely to predominate over 

transversions to any great extent, unless some mechanism for rapid reversal of transitions were to 

occur. Predominance of A and T is not unusual in arthropods (Stevens and Hogg, 2003). Crozier 

and Crozier (1993) found a combined A-T frequency of 84.9% in the whole mitochondrial 

genome (with 85.1% in 16S alone) of the honeybee Apis mellifera and quoted previous data for 

Drosophila yakuba of 78.6%. The tendency for A and T to act as a resting state may somehow 

function as a means of avoiding saturation by change. 
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Three phylogenetic methods produced topologically very similar trees. High bootstrap confidence 

levels confirm that Allanaspides was the earliest group to diverge from the anaspid lineage. The 

genera Anaspides and Paranaspides together form a monophyletic clade, casting doubt on the 

generic status of the southern group of Anaspides, which is as distant from the other Anaspides 

populations as is Paranaspides. There is no evidence of greater genetic similarity between the 

two populations of Anaspides spinulae than between either population and the remaining Central 

Plateau populations, so its separate species status is not supported here. 

In all trees, the southern and southwestern groups form distinct clades and the Central Plateau 

group is related to the southwestern group. The three phylogenies differ in whether the southwest 

group is included within or placed as a sister group to the Central Plateau group. Maximum 

likelihood analysis, considered the most likely to produce the correct phylogeny, places the 

southwestern clade within the Central Plateau group, while the neighbour-joining analysis, also 

considered highly accurate, separates these two groups by a small distance only. Maximum 

parsimony shows bootstrap support for the Central Plateau and southwest groups as distinct 

clades. It appears likely that these two groups have been part of a single population or have 

undergone mixing, and are now in the process of differentiating. The divergence of the southern 

group is far greater. Figure 4.4 shows the geographic groups of genetically distinct populations. 

The genus Anaspides appears to be undergoing continued speciation. As well as the evolution of 

genetically distinct broad geographical groups, almost all populations within the southern and 

southwestern groups are accumulating genetic changes that are causing them to become 

differentiated. The populations from Square Lake and Adamsons Peak are exceptions, with the 

latter weakly supported as a distinct clade. The southern cave populations together form a distinct 

group. All phylogenies found a strong association between the Lake Rhona and Frenchmans Cap 

populations. These lie close to the southern edge of the Central Plateau and are separated by about 

20 km. As only one sample from Snowy North and Lake Picton was included, it is not possible to 

comment on the differentiation of these populations, although the distance measures indicate a 

large separation in both cases. 
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Figure 4.4 Genetically distinct geographical groups as determined by molecular analysis. 
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In contrast, populations in the Central Plateau group appear to have relatively similar 16S 

sequences. All phylogenies support only the Mount Field and Hydro Creek populations as well-

differentiated populations. The northern cave population (Wet Cave) is not supported as a distinct 

clade. Both parsimony and neighbour joining separate the Mount Wellington population from the 

major geographical groups, whereas likelihood analysis places it within the Central Plateau 

group. The single sequence from the Sandbanks Tier population appears from the distance data 

(and consequently the neighbour joining phenogram) to be substantially differentiated. It is 

interesting that both this and the Hydro Creek populations are the most highly differentiated of 

the Central Plateau populations and show no similarity to each other despite being separated by 

only about 5 km. 

The timing of all divergences within the anaspid lineage have been estimated by robust molecular 

clock methodology as occurring since the early to mid Tertiary. The divergence of the genus 

Allanaspides was estimated at about 43 million years ago (mya), that of Paranaspides and the 

southern group of Anaspides at about 20 mya and that of the southwestern group at about 10 mya. 

The differentiation of populations within the geographical groupings apparently occurred about 6 

mya for populations in the southwest group, about 3.5 mya for populations in the southern group, 

about 2 mya for populations in the Central Plateau group and about 350,000 years ago for 

Allanaspides hickmani populations. (The latter differentiation was based on a small sample size 

so should be regarded as inconclusive). It is interesting that the separation of populations in the 

southwest group appears either to have occurred earlier or to have been more complete than that 

of other Anaspides populations. 

Jarman and Elliot (2000) proposed that the three groups identified by the 16S phylogeny be 

recognised as three phylogenetic species on the basis of exclusive monophyly diagnosed by 

unique synapomorphies (Jarman and Elliot, 2000). From the results of the current study, it is 

arguable whether the speciation of the southwestern group from the Central Plateau group is 

complete, and whether applying the same phylogenetic criteria should lead us to consider the 

southern group for status as a separate genus as well as a separate species. The use of other 

genetic markers is critical in evaluating the systematics of the group, as a single gene phylogeny 

may not reflect the organismal phylogeny. A comparison of the allozyme and mt DNA analyses 

will be made in chapter 5. Morphological markers will also be essential for the description of new 

taxa. 
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Considering the long evolutionary history of the anaspidacean lineage (at least 200 million years 

from the fossil record), the development of the Tasmanian Anaspididae is relatively recent, 

occurring since the mid-Eocene. For a morphologically highly conservative group, the amount of 

genetic evolution occurring over a relatively short time-span is remarkable. It would probably be 

wise to confirm the estimated evolutionary rate of the Anaspididae by using the same molecular 

clock methodology with another malacostracan crustacean the evolution of which has also been 

confidently dated. 

From molecular evidence it appears that anaspid evolution in Tasmania has been dominated 

largely by vicariance events and that this geography-mediated divergence is continuing. The 

biogeographical factors influencing the current distributions and relationships of Anaspides will 

be considered in the following chapter. 
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Chapter 5 General Discussion 

5.1 Early syncarid biogeography 

The earliest recorded syncarids are marine Carboniferous fossils of the order Paleocaridacea 
from the tropical northern continent of Laurasia (Brooks, 1962). By the late Carboniferous 
era, these syncarids were occupying warm, brackish and fresh lagoonal habitats in North 
America and Europe (Schram and Schram, 1974; Schram, 1981). A radiation from Laurasia 
and the invasion of freshwater habitats apparently both occurred in the late Paleozoic and 
coincided with the formation of Pangea and the marine radiation of peracarid and eucarid 
malacostracans. These seem to have replaced marine paleocaridacean syncarids in the fossil 
record by the late Paleozoic, leading to the hypothesis that Paleozoic syncarids moved into 
freshwater as a result of competition with later, more efficient crustaceans (Schram and 
Schram, 1974). However, the recent discovery of freshwater crayfish fossils from the early 
Permian in Antarctica indicates that eucarid decapod crustaceans had also radiated into 
freshwater in the late Paleozoic (Babcock et al., 1998) and does not support the competition 
hypothesis. The loss of much of the near-shore habitat when Pangea formed in the Permian 
(Campbell, 1993) is likely to have put pressure on both syncarids and decapods to adapt to 
terrestrial or freshwater habitats. No records of marine syncarids later than the Permian 
occur, and nearly all extant syncarids inhabit freshwater (Brooks, 1962). It is accepted that 
syncarids have been almost exclusively freshwater since the Triassic (Banarescu, 1990). 

The Permian occurrence in South America of Clarkecaris, in what is presumed to have been 
brackish water, is the earliest record of the order Anaspidacea (Brooks, 1962). The 
significance of this early South American fossil is confounded by the apomorphic nature of 
the current South American anaspidaceans (stygocarids), and by the plesiomorphic form and 
diversity of the exclusively Tasmanian family Anaspididae. The origin, direction and path of 
the radiation between continents is therefore a matter of conjecture, but must have included 
an occupation of Antarctica, as the present distribution of anaspidaceans in South America, 
New Zealand and Australia is classically circum-Antarctic (Banarescu, 1990). The very sparse 
fossil record indicates that anaspidaceans were occupying shallow freshwater lakes in 
mainland Australia in the Triassic and the Cretaceous (Brooks, 1962; Jell and Duncan, 1986). 
Unlike much of the world, the uplifted terrain of south-east Australia was experiencing cool 
to cold conditions with extreme seasonality throughout much of the Mesozoic (Frakes and 
Barron, 2001), so aquatic fauna with low vagility would have adapted to cool conditions at 
that time. 
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Banarescu (1995) lists a number of freshwater taxa which today share the same general 
distribution as the Anaspidacea, including the bathynellacean syncarid group Chilibathynella. 
Many other combinations of Gondwanan continental affinities exist among Tasmanian 
crustaceans, such as the New Zealand / Australia / South Africa (East Gondwanan) pattern 
shown by the phreatoicid isopods and chiltoniine amphipods, and the pan-Gondwanan 
distribution of the parastacid crayfish and notonemourid stoneflies (Banarescu, 1995). 

5.2 Family-level divergence in the order Anaspidacea 

The early records of syncarid distribution, the restriction of all extant families but one to 
hypogean habitats, and the current distribution of the primitive Anaspididae all reflect a 
refugial history. Like many other Gondwanan relicts, anaspidaceans are cold-adapted and are 
not found in seasonally warm waters or at latitudes lower than about 30 0 ; in addition they 

may have been unable to compete with more recent fauna (Banarescu, 1990) or have been 
vulnerable to predation (Schram and Hessler, 1984). The four extant anaspidacean families 
probably evolved as the result of the development of different survival strategies in the face 
of these susceptibilities. For example, the family Stygocarididae probably developed in the 
late Paleozoic / early Mesozoic as an adaptation to hypogean habitats, possibly as a refuge 
from warm temperatures or predators such as decapod crustaceans. In the case of the 
Anaspididae, competition from more recent fauna is an unlikely cause of divergence, as their 
persistence in similar habitats over tens of millions of years alongside a variety of other 
ancient crustaceans and aquatic insects is proof of successful survival strategies (Knott, 
1975). 

This study aims to shed light on the evolution and biogeography of the most plesiomorphic 
extant anaspidacean family, the Tasmanian Anaspididae. The sequence of influences that has 
led the Anaspididae from the shallow lakes of Mesozoic mainland Australia to their present 
refugial Tasmanian distribution is necessarily a matter of conjecture, but the island s 
geological and climatic history (as far as is known), the use of a molecular clock and the 
biogeography of other Tasmanian freshwater animals of Gondwanan lineage, can all 
contribute to a conceivable if necessarily somewhat speculative history of the family. 

Fossil evidence shows that the early Anaspididae such as Anaspidites and Koonaspides, were 
occupying shallow, open, freshwater lakes in southeastern Australia up to at least 100 million 
years ago (mya) and possibly longer. The climate across southern Australia by that time had 
changed from the wetter Triassic and Jurassic, and become dry and very cold in the 
Cretaceous, with estimated average annual temperatures in Victoria of between —3 and 5 °C 
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(Frakes and Barron, 2001; Veevers, 1991). The closely related family Koonungidae possibly 
diverged and became adapted to opportunistic use of refugial subterranean habitats in response 
to the drying of the climate in the Cretaceous, but no fossil evidence exists to suggest the 
time of divergence. From comparisons of segmental proportions, Knott (1975) suggested 

that the Koonungidae evolved directly from Anaspidites antiquus or a close relative. It is 

perhaps significant that the distribution of the modern Koonungidae includes Victoria, South 
Australia, Bass Strait islands and the northern Tasmanian lowlands, up to the bottom of the 
Great Western Tiers escarpment, while the range of the Anaspididae is bounded to the north 
by this escarpment, with the exception of the caves lying at its foot. 

A molecular study including all four anaspidacean families would reveal much about the 
phylogenetic relationships and evolutionary history of the order, and may help clarify the 
origin of the syncarids as a whole, including whether they originated as a hypogean group and 
repeatedly emerged into surface waters, or, as is more commonly accepted, originated as a 
surface form and repeatedly retreated to refugial hypogean environments. Riddle (1996) 
advocates the use of molecular phylogeography to try to separate recent from older patterns 
of diversity and distribution. He suggests that biotic responses to recent glacial / interglacial 
events are not large enough to erase biogeographical structure produced by earlier episodes of 

isolation and divergence. 

5.3 Origin of currently recognised anaspid genera 

5.3.1 Mid-to-late Eocene — Allan aspides 
Mitochondrial DNA sequence analysis in this study indicates that the first divergence from 
the anaspid lineage in Tasmania, that of the genus Allanaspides, occurred between 30 and 80 

mya, probably about 43 mya, in the mid to late Eocene. Possible causes of the divergence of 

Allanaspides at this time include climatic change and geological upheaval. 

The Paleocene-Eocene transitional period at 55 mya marked the change from a 
homogeneous, moist, warm greenhouse world to a more climatically varied icehouse world 
(Crouch, 2002). Global warming began at –59 mya, peaked at 50 — 52 mya and then 
diminished, and was associated with major biotic perturbations not unlike the effects of 
current global warming (Crouch, 2002). It is possible that the relatively sudden increase in 
temperatures and the unprecedented high temperatures at the maximum caused a sympatric 
speciation through anaspids inhabiting crayfish burrows around the edges of lakes for shelter 
from high water temperature. This scenario relies on a slight inaccuracy of the molecular 
clock, but within the 95% confidence limits. By 38 mya, in the late Eocene, the annual mean 
temperature in Victoria was still about 18 °C (Frakes and Barron, 2001). The temperature 
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difference between Victoria and Tasmania was probably not as marked as it is today, as the 
circum-Antarctic current had not yet become established (Veevers, 1991), so Tasmania can 
be assumed to have been quite warm throughout the period during which the divergence of 
Allanaspides occurred. 

The late Eocene was also characterised by intense geological activity in Tasmania, as 
tensions associated with the break-up of Gondwana caused extensive faulting. Rifting uplifted 
plateaus, reactivated older fault systems and created fault troughs in the Bass Basin, Tamar 
Valley, Midlands, Macquarie Harbour and Derwent Valley (Sutherland, 1980). The area in 
which Allanaspides is now found is home to a group of endemic freshwater species, which 
includes other Gondwanan types such as phreatoicid isopods, parastacid crayfish and ceinid 
amphipods. Knott (1975) speculated that these are relicts of the fauna of four shallow lakes 
in the region, including one in the Serpentine-Huon drainage and one straddling the Wedge 
and Gordon Rivers. Carey (1961) discovered faulting which had created these extinct lakes, 
and assigned them a Quatemary age because Lake Edgar (in the same vicinity and also created 
by faulting) appears to be relatively young. However, faulting was much more widespread 
during the Tertiary than the Quaternary, and the lakes in question were almost completely 
filled in by the time the area was flooded for hydro-electric development in the early 1970s, 
so a synchronous development with Lake Edgar may not be valid. The age of the fauna, 
including Allanaspides, of the button-grass plains which now occupy the area of the ancient 
lakes, suggests that the lakes may have originated through Tertiary faulting (Knott, 1975) 
and thus Allanaspides probably adapted to a marshland existence after the lakes began filling 
with sediment. 

Knott (1975) also suggested that A. helonomus evolved in lakes of the Serpentine system and 
A. hickmani in lakes of the Gordon system. Their current distribution has probably been 
influenced by anthropogenic cross-catchment ,flooding and cannot be used to validate this 
assertion, but it appears likely from the earliest records. The present molecular clock study 
found that a general form of Allanaspides existed for about 20 million years before the two 
species became differentiated (see below). The climate in the southwest was probably wet 
through the Miocene (Frakes and Barron, 2001), so that the populations in the 
Serpentine/Huon and Gordon/Wedge lakes would probably have been genetically similar 
through migration or mixing of the drainages across low-lying areas or in downstream river 
stretches. 

Horwitz (1988) undertook a detailed study of subterranean syncarid distribution in southwest 
Tasmania and found no anomalies with Knott s suggested origin for Allanaspides, pointing 
out that the genus is now not a lake dweller but relies on buttongrass plains and crayfish 
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burrows, implying a long history of divergence from the generalised anaspid type and 
adaptation to life in shallow weedy marshland. 

If the anaspid ancestor was widespread in Tasmania as well as southern Australia, as we have 
no reason to doubt (Bass Strait was not flooded prior to the Oligocene), then it seems clear 

that Allanaspides could well have evolved in situ in the Tasmanian southwest. Vicariant 
speciation as suggested by Knott s model fits with the molecular clock estimate of a Tertiary 
divergence and climatic warming may have determined Allanaspides dependence on crayfish 
burrows as refuges from high water temperatures. 

5.3.2 Late Oligocene - Early Miocene — Paranaspides and southern Anaspides 
The genetic distances between the southern and the central / southwestern groups of 
Anaspides were found to be at the intergeneric level for most population comparisons in both 
the allozyme and mtDNA studies, by comparison of distances between Anaspides and 
Paranaspides and by Thorpe s (1983) estimations using allozyme distances. As a result, 
either Paranaspides should be reclassified as a species of Anaspides (as suggested by Knott, 
1975) or the southern Anaspides group should be described as a new genus. The former is not 
warranted due to the generic level of morphological differentiation displayed by 
Paranaspides (Swain et al., 1970) and the extremely high genetic distances between 
Anaspides and Paranaspides (using the criteria of Thorpe, 1983). Doubt about the status of 
the southern group as a new genus should be addressed through morphometric or further 
molecular studies, but for the purpose of this discussion the level of phylogenetic separation 
will be taken to indicate putative generic status. 

Between 20 and 25 million years ago, the southern group of Anaspides and Paranaspides 
both diverged from the anaspid lineage. This node on the phylogenetic tree is a three-way 
polytomy, with one clade containing the southern Anaspides, another containing 
Paranaspides and the third containing the central and southwestern Anaspides. Speciation 
within the genus Allanaspides occurred at about the same time (see 5.4.1). Whether the same 
mechanisms influenced all three speciation events is unknown, so in the following discussion I 
consider first separate and then general possible causes. 

Southern Anaspides 
The two most significant environmental events of this time were the rising sea level and the 
volcanic activity in parts of the state. The sea level rose in the late Oligocene and remained 
high from then until the end of the Miocene (-25 - 5 mya) (Davies, 1965). The rise in sea 
level may have caused the separation of the southern populations from remaining anaspid 
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populations, which probably occupied lowland as well as highland waterways. As the 
D Entrecasteaux Channel was progressively flooded from the south, anaspids in the Hastings 
area would have been isolated first, followed by the Adamsons Peak and Hartz Mountains 
populations. The slightly greater genetic distances between the Hastings caves populations 
and the Esperance catchment populations appear to reflect this progression. This hypothesis 
proposes vicariance as the mode of speciation (allopatric Type 1 as defmed by Bush, 1975) 
and is supported by the restriction of southern genotypes to east-flowing waterways between 
the Huon River and the sea; geographically close populations in the Huon catchment such as 
Mt Picton and Snowy North are members of the southwest group. 

Paranaspides 
The genus Paranaspides probably evolved as an adaptation to lacustrine conditions. The 
timing of its emergence can probably elucidate the origin of Great Lake, apparently the 
centre of its dispersal. The age of Great Lake (or more accurately, the 2 lakes existing prior 
to the creation for hydro-electric purposes of the current single Great Lake) has been 
something of a mystery, with the most common estimates ranging from quite recent (as a 
result of tilting of the plateau; Davies, 1965) to an Oligocene origin (Sutherland et al., 1973). 
The molecular clock in this work supports the latter suggestion. 

Geologically, Tasmania was structurally stable throughout the Oligocene and Miocene, except 
for a number of basalt eruptions that occurred across the state (Banks, 1965). Sutherland 
(1980) shows 9 extinct volcanoes within about 15 km of Great Lake, and extensive basalt 
lava fields adjacent to the western shore and to the south of the lake. Sutherland et al. (1973) 
aged the basalt surrounding the Ouse River 3 km west of Great Lake at 23.6 million years. It 
is highly likely that shallow lakes were formed by the damming of watercourses running into 
the Ouse River after this or other eruptions to the west of Great Lake. The continuity of 
water bodies in the Great Lake area since the start of the Miocene is likely to have been 
maintained through a series of minor lakes rather than one or two larger lakes (Sutherland et 
al., 1973). The ancestors of Paranaspides adopted a pelagic existence, relying on weedbeds 
for food and shelter, while the remaining anaspids either retreated upstream in tributary 
creeks where they still persist, or possibly coexisted with Paranaspides in the lakes for an 
indeterminate period before succumbing to predation or unsuitable environmental conditions. 
There were no obvious genetic affmities between populations of A. tasmaniae from 
tributaries of Great Lake and P. lacustris, adding weight to the older age estimates for Great 
Lake. The agreement between the age of the lava flows and the molecular clock for 
Paranaspides is striking, and adds considerable support to this hypothesis. Speciation in this 
case would have been sympatric according to the definition of Bush (1975). 
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Widespread effects 

The icehouse conditions that developed in the mid-Eocene continued through the late 
Oligocene and early Miocene (20 — 25 mya), which was increasingly cold and arid as moisture 
became bound in the polar ice-caps. By about 30 mya, the separation of Tasmania and 
Antarctica was sufficiently wide for the circumpolar ocean current to be established (Veevers, 
1991) and Tasmania then became much cooler. By the early Miocene, mean temperatures in 
central Tasmania were 6-8 IC cooler than Victorian temperatures, but rainfall may not yet 
have significantly diminished (Frakes and Barron, 2001; Hill et al., 1999). The desiccation of 
water bodies may have brought about the separation of the southern Anaspides from the 
anaspid line,but is unlikely to have contributed to the divergence of the Paranaspides line. 
Climatic variation across Tasmania at the time (Frakes and Barron, 2001) is likely to have 
kept the central and southwestern areas wetter than the south-east coast, so desiccation could 
have been severe enough to cut off the southern from the central and southwest groups 
without isolating these two from each other, or isolating populations within groups, at this 
time. Discussion of this issue with relation to intra-generic differentiation can be found in 
section 5.4. 

A further possible consequence of the rise of sea levels in the Oligocene — Miocene 
transitional period is its effect on the fauna of lowland water bodies, which would probably 
have moved upstream as much as ecological constraints would allow, increasing the likelihood 
of predation on resident freshwater animals. In this way, predation might have forced 
resident anaspids to move into more marginal habitats at this time. The presence of 
freshwater galaxiid fish in Tasmanian waters during this period is plausible, as their basic 
distribution is Gondwanan and a number of authors have indicated an ancient origin for these 
fish, at least predating the Pleistocene (McDowall, 2002; Waters and Burridge, 1999; Waters 
and Wallis, 2001). White (1997) proposed southeast Australia as the Darwinian centre of 
origin of local species prior to a Quaternary marine dispersal to New Zealand. Fossil evidence 
of a galaxiid from the Miocene in New Zealand (McDowall, 2002) and a molecular clock 
estimate by Waters and Burridge (1999) indicating that galaxiids were already in the west 
Pacific region during the Miocene add some credence to this scenario, but the timing of the 
first invasion of Tasmanian freshwater bodies by these fish remains unknown. The majority 
of extant galaxiid species are found predominantly at low altitudes (Frankenburg, 1974), so if 
they did in fact occur in Tasmania in the early Miocene, they would probably have been 
present in coastal streams and lagoons, such as the large lagoon that occupied the Macquarie 
Harbour basin (Knott, 1975). If true, these events may explain the concurrent separation of 
the southern group of Anaspides, the speciation within the genus Allanaspides and, more 
improbably, the disappearance of benthic anaspids from Great Lake. Fulton and Horwitz 
(1987) report that predation by freshwater fish has influenced the distribution of Anaspides 
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in Tasmania, as populations are only abundant where native and introduced fish are absent. 
The coexistence of galaxiids and Allanaspides in the Lake Pedder region can probably be 
explained by the reliance of the latter on refugial habitat, particularly the subterranean. 

5.4 Intra-generic divergence 

5.4.1 Speciation within the genus Allanaspides 
The divergence of Allanaspides hickmani and A. helonomus occurred at the end of the 
Oligocene around 25 mya, at approximately the same time as the divergence events described 
in the previous section. The most likely cause of separation is the infilling of lakes and the 
increasing climatic dryness that would have contributed to a reduction in the size of the lakes, 
isolating the populations and bringing about speciation by vicariance. 

Knott (1975) suggests parallel speciations of Allanaspides hickmani and the fish Galaxias 
parvus in the ancient Gordon lake and A. helonomus and G. pedderensis in the ancient 
Serpentine lake, as their current distributions would suggest. The influence of predation by 
these freshwater fish (or their ancestral species) on speciation in Allanaspides, by isolating 
populations in the marshy verges of the two lakes and preventing mixing between lakes could 
be suggested, although no fossil or molecular evidence exists for the time of emergence of 
these fish. A combination of different factors is possible. 

5.4.2 Divergence of Central Plateau and southwest Anaspides 
The split between the southwestern and Central Plateau / Derwent catchment populations 
constitutes an interspecific divergence and occurred approximately 10 mya, in the mid-
Miocene. The Miocene has been identified as a time of great environmental change and 
speciation in Australia, caused by increasing aridity, decreasing atmospheric CO 2 , vulcanism, 
the separation of Tasmania from Australia and the increasing dominance of C4 plants 
(Vickers-Rich and Rich, 1993; Hill et al., 1999; Hansen, 2001). There has also been 
speculation about the possibility of widespread glaciation in Tasmania in the Oligocene and 
Miocene epochs (Vickers-Rich and Rich, 1993; Hill et al., 1999), with the discovery of 
palynological evidence of an Oligocene glaciation in the upper Forth Valley (Macphail et al., 
1993). 

Dry conditions became more severe globally during the mid to late Miocene (Vickers-Rich 
and Rich, 1993; Hill et al., 1999) and may have had substantial impacts on Tasmanian 
freshwater fauna, limiting the availability of suitable habitat and isolating populations. The 
progressive isolation of all Anaspides groups, and populations within groups can most 
parsimoniously be explained by ongoing climatic drying since the Miocene. 
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It is conceivable that the populations of Anaspides in the Central Plateau and southwest had 

already been isolated by the drying conditions in the early Miocene, and were then able to 
mix during the melting phase of an Oligocene / Miocene glaciation, before finally separating 

again due to the greatly increasing aridity of the mid-Miocene. This mechanism has been 
shown in freshwater fauna in Northern Hemisphere Pleistocene glaciations (in mysids by 

Vainola et al., 1994, and in gudgeons by Schreiber, 2002). Stevens and Hogg (2003) have 

examined the possibility that as well as causing speciation through habitat fragmentation, 

glaciation can also cause cycles of population contraction and expansion that act as a 

homogenising force. This would be especially applicable to freshwater fauna as large volumes 
of glacial meltwater are released into the environment over relatively long timespans. The 
times of isolation given by the molecular clock may in fact be times of the most recent 

separation, overlaid on older relationships. Waters and Burridge (1999) and McDowall (2002) 
describe similar effects on genetic affinities of recent marine dispersals over ancient 

Gondwanan relationships. The use of molecular markers with different rates of evolution 

would be needed to separate these associations. 

The invasion of freshwater habitats by galaxiid fish may also have occurred during the mid-
Miocene and isolated Anaspides populations in headwaters and other refugial habitats. 

The southwest group is wholly found to the west of the major faunal discontinuity known as 

Tyler s Line. This break was first described by Shiel et al. (1989) on the basis of rotifer 

assemblages, but is now known to apply to a large range of other animals, including frogs, 

grasshoppers, landhoppers, land snails, millipedes, velvet worms, stoneflies, centipedes and 

freshwater crayfish (Mesibov, 1996). The line repesents a marked ecotone, with steep 
environmental gradients for climate, rainfall, geology, vegetation and ionic concentrations in 

water bodies (Mesibov, 1994; Tyler, 1974; Bucicney and Tyler, 1973). Paranaspides and the 
southern and Central Plateau / Derwent Anaspides lie to the east of the line, and Allanaspides 
and the southwestern Anaspides lie to the west, adding support to separate species status for 
the latter group. 

5.4.3 Divergence .within geographical groups 

The divergence times of populations within groups were estimated at 6 mya within the 

southwest group, at 3.5 mya within the southern group and at 2 mya within the Central 

Plateau. These figures represent an average for all pairs of populations within each group, so 
should be accepted with caution. 
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The core group of Central Plateau populations (Jacks Lagoon, Lonely Lake, Clarence 
Lagoon, Clarence Lagoon tributary, Lake St Clair, Lake Ball, Powena Creek, Olive Lagoon, 
Mt Rufus, Mt Ossa and Zion Hill) are genetically indistinguishable, and the Wet Cave 
population is also similar (although more divergent in allozymes than mt DNA). Hydro 
Creek, Sandbanks Tier, Mount Field and Mount Wellington are increasingly divergent, the 
latter possibly at species level. The acceptance of an isolation by distance model for the 
Central Plateau may indicate the frequent partial mixing of populations on the Plateau that 
would have occurred after each Pleistocene glaciation, hence the more recent time of 
divergence. Meltwater lakes were common features of periglacial regions during and after 
glaciations (Davies, 1965). Clearly, the four non-core populations are found in areas where 
periglacial mixing did not occur. 

The differentiation of populations in the southern and southwestern groups probably reflects 
ongoing climatic drying and the isolating influence of predation by native and introduced fish. 
The steepness of the terrain in the southwest may have caused earlier fragmentation of 
populations as migration between populations would have been more difficult and smaller 
streams are at greater risk of drying up. On the other hand, the steepness and colder 
temperatures may also have protected the fauna of highland waters from both galaxiids and 
trout, as well as providing invertebrate fauna with more habitat in tarns through higher 
precipitation and lower evaporation. 

The clade formed by Frenchmans Cap and Lake Rhona in the southwest may be the remnants 
of a widespread population throughout the Franklin and Gordon drainages. However, they 
clearly show a closer affinity than that between other southwest populations and the same 
factors (aridity, climatic warming, predation) should have led to similar levels of 
interpopulation divergence. Periglacial mixing may have caused recent genetic congruence. 
Kiernan (1990, 1999) reports Pleistocene glaciers flowing from the Central Plateau ice cap 
into the Franklin and Derwent Valleys, with the latter bifurcating above Lake St Clair and 
spreading through the Cuvier Valley. This and/or the Franldin Valley glacier probably formed 
periglacial lakes in the vicinity of the Navarre and King William Plains, which would have fed 
into the Derwent, Franklin and Gordon Rivers. Although this reasoning satisfactorily 
accounts for the close affinities between the Lake Rhona and Frenchmans Cap populations, 
•their much more distant relationship with the Lake St Clair and other western Central Plateau 
populations is puzzling. 

The most significant feature of the southern populations is the use of caves as refugia, most 
likely from climatic extremes during and since the last glaciations, as caves offer more stable 
conditions than surface environments. (This probably partially explains the extremely large 
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individuals found in Wet Cave.) There are no separate cave genetic types, so the use of 
caves is likely to have been relatively recent. Some authors have described morphological 
differences in cave populations in addition to a lack of pigmentation, but none of these are 
constant across all cave populations, and most are not constant within populations (0 Brien, 
1990; S. Eberhard, pers. comm ) All three cave populations in this study exhibit similar 
genotypes to the closest epigean populations, although the Newdegate Cave and Wolfe Hole 
populations are the most genetically divergent populations from Anaspides elsewhere in 

Tasmania. 

Allanaspides hickmani appears to be actively differentiating. Unfortunately, not enough 
information on the source population of each animal sampled was available to indicate the 
reasons for divergence in this species. 

5.4.5 Anaspides genetics — general features 

The genus is characterised by a large proportion of fixed differences, many private alleles and 
low heterozygosity, reflecting an ancient lineage that has probably been serially affected by 
bottlenecking and founder effects. This is not surprising considering the range of climatic 
conditions since the Oligocene, particularly those since the last glaciation that have resulted 
in increasingly high water temperatures, and the threats posed by invading predators. 

Populations with low heterozygosity and large interpopulation distances, such as those from 
the southern caves, Mount Anne, Mount Wellington and Hydro Creek, appear to have been 
reduced in numbers quite often. Founder effects and/or historically low numbers are likely to 
have exaggerated the effects of vicariance, and may well explain the large genetic distances 
between some populations within the same geographical group, such as mountain populations 
in the southwest. Conversely, the higher heterozygosity found in the Adamsons Peak and 
Lake St Clair (previously Anaspides spinulae) populations (and Paranaspides lacustris) 

indicate that these populations have been able to maintain high numbers. 

5.5 Taxonomic implications 

This work clearly contains implications for the taxonomy of the family Anaspididae. It is 
recommended that: 

• the genus Anaspides needs to be redefined, based on the type locality (Mt 
Wellington) population, 

• A. tasmaniae needs to be redescribed, based on the type locality (Mt Wellington) 
population, 
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• southwestern samples should be examined morphologically and redescribed as a new 
species of Anaspides, 

• morphological characters which define the southern group of Anaspides tasmaniae 
should be investigated, leading to its description as a new genus and new species, 

• morphological examination of the Central Plateau / Derwent catchment group is 
needed to assess whether it should be retained in A. tasmaniae or redescribed as a new 
species of Anaspides, 

• Anaspides spinulae should be discarded and the Lake St Clair and Clarence Lagoon 
populations included with the Central Plateau group. Although it would be normal 
procedure to call this group by the older name (A. spinulae), this name refers to the 
spination, which is variable across the Central Plateau populations. The name of this 
new species should be decided when it is formally described. 
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16S mtDNA sequence data from 58 samples of three genera 

of the Family Anaspididae 
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Appendix 2 

H1CY85 distance matrix from 16S mtDNA sequence data 
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Appendix 3 

People who collected samples of anaspids used in this study 

Collectors Organisation Location 
Central Plateau - near Lake Ball 
Central Plateau - near Powena Creek 
Central Plateau - near Olive Lagoon 
Central Plateau - Hydro Creek 

Central Plateau - Lonely Lake 
Central Plateau - Jacks Lagoon outflow 
Central Plateau - Clarence Lagoon trib. 

Mount Wellington 

Hartz Mountains - Ladies Tarn 

Adamsons Peak 
Weld River 
Mount Field 
Mount Anne 
Frenchmans Cap 

Western Arthur Range - Lake Oberon 

Western Arthur Range - Square Lake 
Western Arthur Range - Haven Lake 

Coronation Peak 
Lake Picton 
Lake Rhona 
Snowy North 
Sandbanks Tier 

Zion Hill 

Mt Rufus 

Mt Ossa 
Wolfe Hole 

Newdegate Cave 
Wet Cave 
Lake St Clair 

Clarence Lagoon 

Woods Lake 

McPartlans Pass 

Harlequin Hill area 
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