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ABSTRACT 
Granulocyte macrophage colony stimulating factor (GM-CSF) is a potent regulator of 

haemopoiesis and is vital for immune function. GM-CSF is rapidly, but transiently activated 

in response to T cell activating signals. It is now well established that activation of the GM-

CSF gene in T cells is accompanied by distinct changes in chromatin structure across the 

promoter region. The aim of this thesis was to investigate these chromatin remodelling events 

and their association with gene transcription. 

Analysis of GM-CSF promoter accessibility and transcription in response to various 

pharmacological stimulations demonstrated that the processes of transcription and promoter 

chromatin remodelling were distinct, with each requiring different factors and signals. While 

chromatin remodelling was found to be dependent on factors activated downstream of PKC 

signalling, transcription required both PKC and calcium signalling pathways. Nuclear 

activation of the NF-KB transcription factor, c-Rel was strongly correlated with chromatin 

remodelling events. In contrast NFAT transcription factors were demonstrated to be required 

for GM-CSF transcription but not chromatin remodelling. In addition, remodelling of the 

GM-CSF promoter was found to be relatively stable in contrast to the more transient profile 

observed for transcription. 

The ATPase component of the SWI/SNF chromatin remodelling complex has 

previously been shown to associate with the GM-CSF promoter in vitro. To determine 

whether Brgl was involved in activation of the GM-CSF gene in vivo, T cells were 

transfected with an ATPase defective Brgl mutant construct. Analysis of these cells 

demonstrated that efficient activation of the GM-CSF gene is dependent on Brgl. 

Surprisingly, chromatin immunoprecipitation experiments revealed that Brgl is bound to the 

GM-CSF promoter in resting T cells and is depleted concomitant with chromatin 

remodelling. These data lead to the hypothesis that Brgl is involved in forming a basal 

chromatin state that is transcriptionally competent. In support of this, Brgl is not bound to 

the GM-CSF promoter in B cells, which do not express GM-CSF. However a competent 

chromatin environment can be created in these cells by increasing histone acetylation levels. 

Data presented here are consistent with a model in which the basal state of the GM-CSF 

promoter is maintained in a transcriptionally competent state in resting T cells via histone 

acetylation and Brg I recruitment. Such a chromatin environment may ensure that GM-CSF 

can be activated rapidly in response to T cell activation signals. Microarray analysis was 

subsequently used to identify genes which may be similarly poised to respond to T cell 
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activation signals by the constitutive recruitment of Brgl. A number of cytokine genes were 

identified as Brgl targets. One of these, Interferon gamma (IFNy) was found to share a 

similar activation profile to GM-CSF and data presented here suggests it may be regulated by 

a common mechanism. As observed for GM-CSF, Brgl is constitutively poised at the WNy 

promoter in resting EL-4 T cells and lost from the promoter concomitant with gene 

activation. 
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CHAPTER 1. 

INTRODUCTION 

1.1 IMMUNE GENE REGULATION 
The immune system is a complex network of cells, tissues and organs which 

provide host defense against invading pathogens. Capable of providing remarkable 

surveillance, the immune system helps to fight bacterial and viral infections and eradicate 

cancerous body cells. The innate immune system includes cells which provide the initial 

line of defense against infection and helps to detect and eliminate invading pathogens 

before infection can take hold. Adaptive immunity occurs once immune cells gain the 

ability to recognize a pathogen and allows the immune system to mount an even stronger 

attack. The primary response to infection is inflammation which results in chemokine 

mediated recruitment of innate immune cells to the site of injury or infection (reviewed in 

Schluger and Rom, 1997). These cells move from capillaries into infected tissue to 

scavenge bacteria and cellular debris and help to prevent the spread of infection. A range of 

cell types derived from myeloid and lymphoid lineages help to mediate the immune 

response including T cells, B cells, macrophages, neutrophils, mast cells, granulocytic and 

dendritic cells. Helper T cells, also known as CD4 positive (CD4+) T cells, aid in both 

cellular and humoral immunity. They help to trigger antibody production by B cells and 

activate other T cells and macrophages. CD8 positive (CD8+) T cells, also known as 

cytotoxic T cells, can differentiate into killer T cells which attack and destroy infected 

cells. Infection stimulates the differentiation and proliferation of immune cells by 

triggering changes in gene expression programs and cytokine profiles. The swift responses 

characteristic of the immune system, rely on the rapid and co-ordinate activation and 

silencing of various genes (reviewed in Holloway et al, 2002). The activation of these 

immune genes helps to protect the organism from disease, however when the regulation of 

these genes is compromised, the ability to defend against infection and disease is 

weakened. Therefore, understanding the precise mechanisms underlying immune gene 

regulation is vital. 
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1.1.1 T CELL ACTIVATION 
T cell activation plays a central role in cell mediated immunity. During infection, 

antigens are taken up by antigen presenting cells (APCs) which process and present them to 

T cells. APCs (including macrophages, B cells and dendritic cells) present the processed 

antigen bound to major histocompatibility complex (MFIC) antigens. These self-antigens 

aid T cells in the recognition of foreign antigens (reviewed in Stefanova et al, 2003). T cell 

activation is a complex process requiring two signals, which are occupancy of the T cell 

receptor (TCR) and interaction with costimulatory ligands on the APC. When a T cell 

comes in contact with an APC, the TCR is stimulated along with the co-stimulatory 

molecule. The TCR recognises and binds to antigen fragments presented together with 

MHC molecules (reviewed in van der Merwe and Davis, 2003). The second signal is 

provided by stimulation of the costimulatory molecule which augments TCR activation. 

The main costimulatory molecules are CD2, LFA-1 and CD28 which bind the LFA-3, 

ICAM-1 and B7 ligands respectively (reviewed in Wingren et al, 1995). A specialized 

junction formed between the APC and T cell is stabilized by costimulators and helps to 

sustain and amplify signalling from the TCR (reviewed in Acuto and Cantrell, 2000). 

T cell stimulation triggers an intracellular cascade of signalling which leads to the 

nuclear translocation of numerous transcriptional activators required for activating immune 

genes. TCR activation and stimulation of the costimulatory molecule initiate signalling 

cascades by activating protein tyrosine kinases (reviewed in Acuto and Cantrell, 2000). The 

tyrosine kinases regulate the metabolism of inositol phospholipids via the Ras and Rho 

family of GTPases. Changes in inositol phospholipid metabolism directly influence 

calcium levels and the activity of numerous serine/threonine lcinases including PKC and 

phosphatidyl inosito1-3 kinase (PI3K). The TCR controls the production of inositol 1, 4, 5 

triphosphate (IP3) and diacylglycerol (DAG) through the hydrolysis of phosphatidylinositol 

(4, 5) biphosphate (PIP2) (reviewed in Gupta, 1989). Therefore these tyrosine kinases help 

to regulate the intracellular levels of calcium and the activity of protein kinase C (PKC; 

Figure 1.1) which plays a significant role in immune responses (reviewed in Tan and 

Parker, 2003). These signalling cascades ultimately result in the activation of an array of 

cytokine genes which help trigger the proliferation and differentiation of cells required for 

an immune response. 
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Figure 1.1. Overview of the signalling pathways leading to cytokine gene 
expression following TCR ligation and CD28 stimulation. 
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1.1.2 CYTOKINES 
Activated T cells produce an array of cytokines which relay signals between cells 

within the immune system. These small protein hormones play an important role in the 

development of the immune system and the immune response. The types of cytokines 

produced depend on the cell type, stimulus and the environment and can enhance or inhibit 

cellular functions such as cell growth and differentiation (Lotem et al, 1991; Gasson, 

1991). Most cytokines act locally in a paracrine manner and stimulate the proliferation of 

progenitor blood cells in the bone marrow. Cytokine expression is controlled primarily at 

the level of transcription. The genes encoding cytokines are often highly inducible and are 

rapidly switched on and off during an immune response. Cytolcine genes are often silent or 

expressed at very low levels in resting cells, however following immune stimulation, 

expression is induced to high levels for a short period of time following which levels return 

to basal (reviewed in Holloway et al, 2002). 

Cytokine gene expression is restricted to particular cell types and often only 

expressed following exposure to a specific set of signals. While some cytokines are widely 

expressed across a range of cell types, certain cytokines are restricted to a single cell type. 

Restricted cytokine expression profiles are observed in differentiated Th 1 and Th2 cells. 

Naïve T cells are capable of differentiating into two distinct subtypes, Th 1 and Th2 cells 

which are characterized by distinct patterns of cytokine gene expression. Thl cells produce 

IFN-y and are involved in protecting against intracellular bacterial and viral infections. Th2 

cells express IL-4, IL-5 and IL-13 to fight extracellular parasites. The types of cytokines 

produced therefore depend on the stimulus. 

1.2 	GRANULOCYTE-MACROPHAGE 	COLONY- 

STIMULATING FACTOR (GM-CSF) 
Granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2) is a 22 lcDa 

glycoprotein consisting of 127 amino acids derived from a 144 amino acid precursor. It was 

first purified from mouse lung conditioned medium almost 30 years ago (Burgess et al, 

1977) and identified as a factor which could stimulate cell proliferation from immature 

bone-marrow derived progenitors (reviewed in Gasson, 1991). GM-CSF is a cytokine 

4 



involved in regulating the differentiation, maturation and survival of inflammatory cells. It 

plays a role in host defense and homeostatic maintenance of myelopoiesis. Compared to 

other cytokines, GM-CSF is relatively widely expressed. Following immune stimulation a 

wide range of cell types including Th 1 and Th2 cells, macrophages, fibroblasts and 

endothelial cells secrete GM-CSF (reviewed in Gasson et al, 1990). Specific high affinity 

receptors are found on the surface of target cells which include multipotential haemopoietic 

stem cells, mature neutrophils, monocytes and macrophages. The major progeny of 

haemopoietic progenitor cells stimulated by GM-CSF are granulocytes and macrophages. 

In vitro research has shown that GM-CSF stimulates the growth and differentiation of GM 

lineage cells from bone marrow progenitor cells (Burgess et al, 1977). In vivo studies 

indicate that GM-CSF is predominantly involved in the recruitment and activation of 

myeloid lineage cells at sites of inflammation (Mock and English, 1990). 

The role of GM-CSF in immune regulation has been highlighted by studies 

involving GM-CSF knockout mice. While the GM-CSF/-  mouse is viable with no 

abnormalities in haemopoiesis for up to 12 weeks, lung development is abnormal as is the 

accumulation of surfactant and protein in the alveolar spaces, suggesting that GM-CSF has 

a role in pulmonary homeostasis (Stanley et al, 1994). In addition the response to infection 

is significantly reduced in GM-CSF deficient mice demonstrating that this cytokine is 

critical for proper immune function (Lieschke et al, 1994; Zhan et al, 1998). Transgenic 

mice overexpressing GM-CSF have enlarged livers and spleens and increased numbers of 

macrophages and granulocytes (Burke et al, 2004) providing further evidence of a role for 

GM-CSF in regulating haemopoesis. 

Aberrant expression of GM-CSF has been linked to a number of disease states 

including asthma (Stanley et al, 1994), atopy (Cousins et al, 1996), rheumatoid arthritis 

(Campbell et al, 1997) and myeloid leukemias (Young et al, 1987). Myeloid leukemias are 

clonal neoplasms of the granulocyte-macrophage precursor cells. This type of leukemia is 

thought to arise from the over-expression of GM-CSF via the action of viral or cellular 

oncogenes (Metcalf, 1985). GM-CSF has also been suggested as a tumor marker due to its 

critical role in regulating haemopoetic growth and differentiation (reviewed in Mroczko 

and Szmitkowski, 2004). In asthma it is thought GM-CSF plays a role in establishing the 

level of surfactant in the lungs (Stanley et al, 1994) and inflammation of the synovial fluid 
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in the arthritic joint is exacerbated by GM-CSF (reviewed in Feldmann et al, 1996). 

1.2.1 REGULATION OF GM-CSF 
GM-CSF expression is regulated primarily at the level of transcription (Chan et al, 

1986). The rapid induction of GM-CSF gene expression following immune stimulation 

involves the activation and nuclear translocation of a range of transcription factors which 

bind to regulatory regions of the GM-CSF gene. The human GM-CSF gene is located on 

chromosome 5q31.1 (Miyatake et al, 1985). The murine equivalent is located on sub-band 

B1 on chromosome 11 (Barlow et al, 1987). Both the murine and human genes are 

approximately 2.5kb in length and comprise 4 exons and 3 introns (Miyatake et al, 1985). 

Expression of the GM-CSF gene is controlled by the proximal promoter comprising of the 

first 120 bp upstream of the transcription start site and an enhancer located a further 3 kb 

upstream of the human promoter (Cockerill et al, 1993) and 2 kb upstream of the mouse 

promoter (Osborne et al, 1995). Both the promoter and enhancer elements are required for 

the induction of GM-CSF gene expression. The GM-CSF gene in mice and humans is 

highly conserved with their promoters sharing approximately 90% sequence homology 

(Miyatake et al, 1985). However sequence analysis of cloned human and murine GM-CSF 

cDNA revealed only a 54% homology in the protein coding region (Wong et al, 1985) 

suggesting that while the gene products may differ, they are regulated in a similar fashion. 

The GM-CSF promoter has been relatively well defined. It contains an array of 

transcription factor binding sites including the CD28 response region (CD28RR) and 

conserved lymphokine element 0 (CLEO). It contains binding sites for NFAT, NF-KB, SP1, 

Ets, CBF and AP1 transcription factors (Dunn et al, 1994;-Wang et al, 1994; Himes et al, 

1996; Cockerill et al, 1996; Schreck and Baeuerle, 1990; Shang et al, 1999) as outlined in 

Figure 1.2. The CD28RR consists of the CK-1 region (also termed the CD28RE), a 10bp 

element which responds specifically to signals delivered to T cells via the CD28 surface 

receptor, and an adjacent NF-KB and a Sp 1 binding site. The CK-1 region is a variant NF-

KB site which binds Rel A homodimers and c-Rel containing complexes (Himes et al, 

1996). The CLEO is shared between a number of cytokine genes including GM-CSF, IL-4 

and IL-5. This element binds NFAT, Ets and AP-1 transcription factors (Masuda et al, 
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1993). 

Studies in transgenic mice and cell lines determined that the GM-CSF enhancer is 

essential for the highly inducible activation of the human GM-CSF gene (Cockerill et al, 

1999). The GM-CSF enhancer element is approximately 400bp in mice (Osborne et al, 

1995) and 716bp in humans (Cockerill et al, 1993). It contains binding sites for Spl, 

AML1, CBF, AP1 transcription factors and four NFAT binding sites (Cockerill et al, 1993; 

Cockerill et al, 1995; Cockerill et al, 1996). 

1.2.2 Factors involved in transcriptional activation of the GM-

CSF promoter 

1.2.2.1 NFAT 
The nuclear factor of activated T cells (NFAT) family of transcription factors 

regulates expression of a number of cytolcine genes. Members include NFATc 1 (NFATc), 

NFATc2 (NFATp), NFATn, NFATc3 (NFAT4 or NFATx) and NFATc4 (NFAT3), all of 

which share a conserved DNA binding domain. These factors are activated via the calcium 

dependent protein phosphatase, calcineurin following TCR ligation (Jain et al, 1993; Luo et 

al, 1996). In resting T cells, NFAT proteins can be found in the cytoplasm in a 

phosphorylated form with low affinity for DNA. T cell activation results in increased 

intracellular calcium levels. This leads to the dephosphorylation of NFAT by the calcium-

dependent phosphatase, calcineurin and their subsequent nuclear translocation (Beals et al, 

1997). While NFATp is constitutively expressed, NFATc is newly synthesized in response 

to T cell activating signals (Chuvpilo et al, 1999). 

The involvement of NFAT in GM-CSF expression has been studied in considerable 

detail and subsequently its role in activating GM-CSF expression is well established. Using 

the electrophoretic mobility shift assay (EMSA) recombinant NFATp proteins were found 

to bind to the CD28RR of a GM-CSF promoter probe (Shang et al, 1999). However, 

reporter assays involving the cotransfection of Jurkat T cells with an NFATp construct and 

a construct containing two copies of the CD28RR attached to a luciferase reporter 

demonstrated that NFATp alone is not capable of activating this region. NFATp can 

however cooperate with signals which mimic T cell activation to enhance transcription 

7 



AP1 NFAT/ETs 	> KB 

 

-100 	 -50 	 +1 

CD28RR 	CLEO 

Figure 1.2. Schematic representation of transcription factor binding sites 
across the GM-CSF promoter. 
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from this element (Shang et al, 1999). NFAT has also been shown to bind to the CLEO 

region of the GM-CSF promoter (Tsuboi et al, 1994). Furthermore, it is clear that NFAT 

members play an important role in GM-CSF induction as inhibition of NFAT activation 

using the immunosuppressant Cyclosporin A prevents GM-CSF transcriptional activation 

(Cockerill et al, 1993). 

1.2.2.2 NF-KB 
The NF-KB family of transcription factors is responsible for mediating immune and 

inflammatory responses by coordinating the expression of an array of immune genes. There 

are five mammalian NF-KB/Rel family members; p65 (Rel A), c-Rel, RelB, p50 (NF-KB 1) 

and p52 (NF-KB2) (reviewed in Baldwin, 1996). The NF-KB family members share the Rel 

homology domain consisting of approximately 300 amino acids. NF-KB binds as homo and 

heterodimers to decameric sequence motifs within promoter and enhancer elements. While 

all members bind to DNA only the Rel A, c-Re! and Rel B factors have carboxy-terminal 

transactivation functions (Verma et al, 1995). Many target genes produce proteins which 

are quickly expressed in immune and inflammatory responses. NF-KB transcription factors 

are rapidly activated in response to a number of stimuli and thus are involved in rapid gene 

induction. NF-KB exists in the cytoplasm of resting cells bound to its inhibitory protein 

partner IfcB which masks its nuclear localisation signal to sequester NF-KB in the 

cytoplasm (Antonsson et al, 2003). Numerous extracellular signals, including T cell 

activation, activate the Itc13 lcinase complex which phosphorylates serine residues on the 

inhibitory IKB targeting it for ubiquitination and degradation. NF-KB is then free to 

translocate into the nucleus (reviewed in Baldwin, 1996). NF-KB proteins are activated in 

two waves following T cell stimulation with levels of Rel A and p50 peaking within 30 

minutes. Levels of c-Rel and Rel B accumulate during the second wave of activation, 

peaking at approximately 6 hours following T cell activation (Kalli et al, 1998). 

NF-KB binds at two sites in the CD28RR of the GM-CSF promoter (at positions -82 

to -91 and -98 to -108) as determined by EMSA (Schreck and Baeuerle, 1990). These sites 

are referred to as the CK-1 element and the classical NF-KB/Spl site. Following on from 

this, the NF-KB family members c-Rel and Rel A were found to bind to the CK-1 element 
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and were reported as being vital for the activity of the CD28RR in vitro (Himes et al, 

1996). Previous work has also identified the NF-KB/Spl region of the CD28RR in the GM-

CSF promoter as critical for GM-CSF induction in primary T cells (Cakouros et al, 2001). 

GM-CSF transcription was inhibited in transgenic mice carrying the human GM-CSF 

transgene with an NF-KB/Sp 1 mutation. This mutation exhibited an effect only when 

integrated into chromosomal DNA, either in transgenic mice or stably transfected cell lines 

while reporter expression was unaffected in cells transiently transfected with the mutant 

NF-KB/Sp 1 construct. These data suggest that the NF-KB/Spl region of the GM-CSF 

promoter plays an important role in the activation of the GM-CSF gene in a chromatin 

context. 

1.3 CHROMATIN 

1.3.1 CHROMATIN STRUCTURE 
Within the eukaryotic nucleus DNA is assembled into a DNA-protein complex 

called chromatin. The concept that DNA is organized into small repeating units was 

proposed more than thirty years ago by Hewish and Burgoyne (1973) when they found that 

a DNA ladder was produced when chromatin was digested. These repeating units called 

nucleosomes were subsequently found to consist of DNA associated with an octamer of 

histone proteins, consisting of two copies each of histones H2A, H2B, H3 and H4 (Thomas 

and Kornberg, 1975). The structure of the nucleosome core particle was resolved many 

years later by X-ray crystallography (Luger et al, 1997) and showed 147 base pairs of DNA 

helix super-coiled around the histone octamer, contacting the histone proteins with 

approximately two turns aligned with grooves between the histone proteins. Neighboring 

nucleosomes are then linked by short segments of DNA of variable length referred to as 

linker DNA (Morris, 1976). The four core histones (H2A, H2B, H3 and H4) are small, 

proteins which consist of a highly conserved histone fold domain (Zhong et al, 1983) and a 

less conserved N-terminal tail. The histone fold domains mediate histone-histone and 

histone-DNA interactions which are involved in formation of the core nucleosome structure 

(reviewed in Luger and Richmond, 1998). The amino-terminal tails have random coil 

segments extending out of the nucleosome core and while not involved in the formation of 
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the nucleosome structure facilitate the assembly of nucleosomes into higher order 

chromatin structures (reviewed in Peterson and Laniel, 2004). These higher order structures 

are then stabilized by linker histone H1, which is structurally unrelated to the core histones 

(reviewed in Lu and Hansen, 2003). Nucleosomal arrays are coiled together to form a 30 

nm chromatin filament, which is then further condensed to form the interphase 

chromosomes or the more highly compacted metaphase chromosomes. 

1.3.2 REGULATION OF GENE EXPRESSION 
While the role of chromatin in packaging DNA into the confines of the nucleus has 

long been established (Eikbush and Moudrianakis, 1978), a second equally important role it 

plays in gene regulation has emerged only more recently (reviewed in Struhl, 1999). The 

assembly of DNA into nucleosomes is generally considered inhibitory to the binding of 

transcription factors. For example, in the case of the yeast PHO5 promoter the Pho4 

transcription factor can bind to the active promoter yet is unable to bind to the repressed 

promoter (Venter et al, 1994). It has long been known that more tightly compacted 

chromatin structures form a repressive transcriptional environment (Wasylyk and 

Chambon, 1980). For example, on a global scale chromatin within the cell nucleus can be 

classified as the more condensed heterochromatin, which is generally gene poor and 

inhibitory to gene transcription and euchromatin which corresponds to more relaxed 

chromatin domains associated with actively transcribed regions of the genome (reviewed in 

Yasuhara and Wakimoto, 2006). However even within these classifications it is now clear 

that chromatin is highly dynamic and can change in both structure and composition in 

response to cellular signals. Furthermore, it is clear that such changes are often required to 

facilitate gene activation. There are two general mechanisms by which changes in 

chromatin can occur broadly classified as histone modification and chromatin remodelling. 

1.3.3 HISTONE MODIFYING COMPLEXES 
Chromatin structure can be altered directly or indirectly through covalent 

modifications to the N-terminal tails of the core histone proteins (reviewed in Turner, 

2000). Intense study over the last decade has uncovered a vast number of sites in the N- 
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terminal tails of histones which can be subjected to a variety of post translational 

modifications. These include acetylation, methylation, phosphorylation, or ubiquitylation 

(Alfrey et al, 1964; Stevely and Stocken, 1966; Henry et al, 2003). 

While the addition of acetyl and phosphate groups to histone proteins can change 

the charge of the protein and alter chromatin by electrostatic means, such changes are 

unlikely to alter nucleosome structure although they may influence higher order chromatin 

packaging (Shogren-Knaak et al, 2006). However the major mechanism by which the tail 

modifications are thought to act is by facilitating interactions with non-histone proteins 

(Jenuwein and Allis, 2001). While most study has focused on modifications to histone 

tails, with the use of mass spectroscopy in studying histones it has become clear that 

residues outside of the N-terminal tail can also be modified (reviewed in Mersfelder and 

Parthun, 2006). Initial work demonstrated that lysine 79 on histone H3 within the core 

domain could be methylated in yeast (Ng et al, 2002) and since then a number of other core 

modifications have been identified. Unlike modifications to the histone tails, these core 

modifications are thought to influence the structure of the nucleosome. 

The modification of histone proteins is carried out by enzymes which catalyze the 

addition and removal of covalent groups. Interestingly, many of these histone modifying 

proteins such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone 

methyltransferases and kinases were initially identified as transcriptional activators and 

repressors (reviewed in Nar et al, 2001). These enzymes have been shown to play a central 

role in modifying histones to alter chromatin structure. For example, the coactivator CREB 

binding protein (CBP) was one of the first HATs identified and reported to have intrinsic 

acetyltransferase activity (Bannister and Kouzarides, 1996) while in contrast class I, II and 

III histone deacetylases are found in corepressor complexes (reviewed in Verdin et al, 

2003). 

Initially histone modifications were considered to disrupt chromatin stability 

however it is emerging that the major mechanism by which the tail modifications function 

is by acting as docking sites for non-histone proteins which are able to modify chromatin 

structure and function (reviewed in de la Cruz et al, 2005). There is now evidence that 

specific histone marks can be recognized and bound by particular proteins and this has 

given rise to the histone code hypothesis. This hypothesis suggests that just as DNA 
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provides the code for every mRNA and protein required by an organism, the code present 

in histone modifications acts as a means of adding to the information held within the 

genetic code by stipulating when genes should be turned on or off (Jenuwein and Allis, 

2001). Thus, site specific and domain wide histone modifications help to dictate the 

transcriptional potential of a gene by tagging genes with activating or repressive marks. 

Acetylation of histone proteins is generally associated with gene activation in euchromatic 

domains while heterochromatin corresponds with transcriptionally repressed, deacetylated 

chromatin environment (reviewed in Kornberg and Lorch, 1999). The acetylation of lysine 

residues on H3 and H4 are associated with active genes while methylation of H3-K9 and 

H3-K27 is linked to repression (Zhang and Reinberg, 2001). Therefore certain methylating 

marks are associated with activation while others are linked to repression. 

The code established by various histone marks is recognized by particular proteins. 

Chromodomains are common domains found in numerous regulators of chromatin 

structure. These domains have been found to interact with histones, DNA and RNA. 

Heterochromatin protein 1 (HP1) directs the binding of other proteins to regulate chromatin 

structure and transcription. The chromodomain of HP1 recognizes methylation of lysine 9 

in histone H3 (Nielsen et al, 2002). Bromodomains, present in a number of HAT co-

activators, have been shown to act as acetyl-lysine-binding domains (Dhalluin et al, 1999) 

and are likely to be important in the assembly and activity of multiprotein complexes 

during transcriptional activation. 

In addition to the covalent modification of histone proteins, the core histone 

proteins can also be altered by the inclusion of histone variants (reviewed in Hake and 

Allis, 2006). Recently several H3 variants were identified as having either repressive marks 

(H3.2) or activating marks (H3.3) while the histone variant H3.1 contained both activating 

and repressive marks (Hake et al, 2006). The histone variant H2A.Z is often associated 

with regions of chromatin which have potential to be actively transcribed (Allis et al, 1986) 

and is considered to stop the spreading of silenced chromatin (Meneghini et al, 2003). 

1.3.4 CHROMATIN REMODELLING 
Chromatin remodelling refers to any detectable change in either a single 

nucleosome or chromatin domain. Chromatin remodelling may therefore involve global or 
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localized changes and can be detected using a number of different assays which rely on 

changes to DNA accessibility using endonucleases. The complexes involved in remodelling 

chromatin have been identified in a wide range of organisms from yeast to humans 

(Peterson and Herskowitz, 1992; Kwon et al, 1994) indicating the inherent importance of 

chromatin remodelling complexes in transcription of the eukaryotic genome. These 

chromatin remodelling complexes are large multi-subunit protein complexes which use the 

energy from ATP hydrolysis to move histones by disrupting the DNA-histone bonds 

(reviewed in Becker and Horz, 2002). A number of ATP dependent chromatin remodeling 

complexes have been identified including the ISWI, Mi-2 and SWI/SNF complexes 

(reviewed in Vignali et al, 2000). The SWI/SNF complex is the most widely studied ATP 

dependent chromatin remodelling complex and is well conserved from yeast to humans 

(Kwon et al, 1994). SWI/SNF was first discovered in yeast as having DNA dependent 

ATPase activity (Laurent et al, 1993). Its name hails from its function in activating 

particular genes involved in mating type switching and sucrose non-fermenting 

metabolism. It comprises 10-15 subunits, with a combined molecular mass of 

approximately 2 MDa. The ATPase component of the mammalian SWI/SNF complex, 

Brg 1 or Brm, is central to its function. Other Brgl/Brm associated factors (BAFs) are 

found within SWI/SNF and are important in regulating the interaction between SWI/SNF 

and other factors. For example BAF57 mediates the interaction of SWI/SNF with estrogen 

and androgen receptors (Belandia et al, 2002). 

Histone loss and nucleosome sliding have both been proposed as mechanisms by 

which SWI/SNF drives the displacement of nucleosomes from gene regulatory regions. 

Previous in vitro work demonstrated that SWI/SNF can displace histone octamers from one 

piece of DNA to another (Lorch et al, 1999). Nucleosome sliding was first demonstrated in 

vitro with the detection of short range nucleosome mobility in response to the action of the 

ATP dependent GAGA factor remodelling complex (Varga-Weisz et al, 1995). SWI/SNF 

has also been shown to slide nucleosomes to an acceptor site on the same molecule of DNA 

in vitro (Whitehouse et al, 1999). There is also evidence to support both mechanisms in 

vivo. Histone loss was demonstrated in vivo at the yeast PI105 and PHO8 promoters 

(Reinke and Horz, 2003; Adkins et al, 2004). By embedding the PHO5 promoter within a 

small plasmid which limits the ability for nucleosome sliding, Korber et al (2004) 
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demonstrated that histone loss at the PHO5 promoter is most likely due to histone eviction 

in trans rather than nucleosome sliding. The nucleosome transfer observed at the PHO5 

and PHO8 promoters requires the histone chaperone, Asfl (Korber et al, 2006). Histone 

chaperones aid the displacement of nucleosomes through the disassembly of the histone 

octamer (Walter et al, 1995). Nucleosome sliding has been demonstrated in vivo by 

Lomvardas and Thanos (2001) who showed that the nucleosome encompassing the IFN-13 

promoter slides in response to virus infection. Thus, it appears that different nucleosome 

remodelling mechanisms may operate at different genes. 

The SWI/SNF complex lacks DNA sequence specific binding and is therefore 

thought to be recruited to specific promoter and enhancer regions via interactions with 

specific transcription factors and histone modifications. This is supported by evidence in 

which components of the SWI/SNF complex interact with a variety of activators and 

factors which bind to specific DNA sites (Nie et al, 2000; Zhao et al, 2005). BAF250 has 

been shown to directly bind to the beta-globin locus and in addition, it is capable of 

interacting with the glucocorticoid receptor thereby conferring binding specificity to the 

SWI/SNF complex (Nie et al, 2000). Thus, BAF250 has been suggested to recruit the 

complex to gene regulatory elements by directly binding DNA or interacting with other 

sequence specific transcription factors. In vitro work has demonstrated that SWI/SNF 

interacts with the transcription factor EKLF and the recruitment of the SWI/SNF complex 

to the beta-globin promoter is via an interaction with this transcription factor (Lee et al, 

1999; Brown et al, 2002). The SWI/SNF complex has also been found to associate with the 

RNA polymerase II holoenzyme (Wilson et al, 1996). Recent reports have shown that RNA 

polymerase II is associated with the mediator complex, CBP and other proteins suggesting 

that the holoenzyme can be recruited as a unit to promoter regions therefore supporting the 

role of Brgl in helping to initiate gene transcription. 

It is becoming clear that ATP dependent remodelling complexes act cooperatively 

along side histone modifying proteins. Histone marks and the recruitment of chromatin 

remodelling activities help define whether or not a particular gene will be activated or not. 

Acetylated histones have been found to stabilize SWI/SNF association (Hassan et al, 2002) 

and this is due to the interaction of the bromodomain present in the ATPase subunit of the 

SWI/SNF complex with acetylated histones. Conversely, the HDAC Rpd3, causes 
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transcriptional repression by inhibiting the recruitment of SWI/SNF (Deckert and Struhl, 

2002). SWUSNF is recruited to the IFN-13 promoter by prior acetylation of lysine 8 on 

histone H4 (Agalioti et al, 2002) and to the myogenin promoter following hyperacetylation 

of H4 (de la Sema et al, 2005). This facilitated by bromodomains within the complex 

acting as acetyl-lysine-binding domains (Dhalluin et al, 1999). 

Although BAF complexes comprise multiple subunits it is now evident that only 

four of these are essential in vitro for the complete known range of activities (Narlikar et al, 

2002). Of particular interest, Brgl alone was found to be capable of increasing accessibility 

to a nucleosome which is unable to slide due to the position of neighboring nucleosomes 

(Fan et al, 2003). Other components of the SWI/SNF complex may exert their role by 

interacting with targets and co-activators or controlling the extent of the remodelling. It is 

also possible that they possess other important roles yet to be identified. 

1.3.5 BRG1 
The SWI/SNF complex in mammalian cells has two different catalytic subunits; 

Brahma (Brm, also called SNF2cc or Smarca2) and Brahma related gene 1 (Brgl, also 

known as Snf213 or Smarca4). Brm and Brgl are the ATPase components of the SWUSNF 

complex and therefore central to its function. Disruption of Brm increases cellular 

proliferation (Reyes et al, 1998) while the targeted deletion of Brgl in mice is embryonic 

lethal (Bultman et al, 2000) with the embryo dying during the pen-implantation stage. The 

heterozygote survives but develops exancephaly and tumors (Bultman et al 2000). 

While the genes encoding Brgl and Brm share 70% sequence homology, the two 

proteins differ in some of their activities and properties. While showing some functional 

redundancy in some cases, both Brgl and Brm have been found to interact with the Rb 

protein to suppress the cancerous phenotype displayed in tumor lines (Strobeck et al, 

2002). However these proteins display distinct tissue and developmentally specific patterns 

of expression. Work carried out by Reisman et al (2005) demonstrated the differential 

expression of the Brgl and Brm components of the SWI/SNF complex. While Brgl was 

found predominantly in tissues undergoing self renewal, Brm was consistently present in 

tissues such as brain, liver and endothelial which undergo limited proliferation. In addition, 

the non-conserved regions of Brgl and Brm allow binding to specific transcription factors 
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or co-activators permitting recruitment to different gene promoters and enhancers. In 

support of this Brg 1 has been found to bind zinc finger proteins via its unique N-terminal 

domain while Brm lacks this capability (Kadam and Emerson, 2003). 

Loss of Brgl has also been associated with increased DNA methylation. Banine et 

al (2005) demonstrated that the CD44 and E-cadherin promoters are hypermethylated in 

non-expressing SW13 and C33A cell lines which are deficient in Brg 1 and Brm. The 

restoration of Brgl function in these cells resulted in the demethylation of the CD44 and E-

cadherin promoter. This study suggests that the loss of Brgl may result in increased DNA 

methylation in some cases. Therefore the loss of SWI/SNF mediated transcription is a 

possible mechanism to increase DNA methylation in cancer cells. In addition they found 

that the dominant negative Brgl and Brm proteins still interact with the promoters of these 

genes however transcription is inhibited. Thus while the ATPase domain is essential for 

transcriptional activity, recruitment to promoter regions is regulated by a different domain. 

1.3.6 CHROMATIN REMODELLING IN THE IMMUNE 

SYSTEM 
The rapid and precisely controlled expression of a range of genes, including 

cytolcines, in response to immune and inflammatory signals is critical for the orchestration 

of an effective and appropriate immune response. Data accumulated over the last decade 

has begun to reveal the critical role that chromatin plays in facilitating activation of these 

genes (reviewed in Smale and Fisher, 2002). It is now becoming clear that the activation of 

genes in a chromatin context involves a complex interplay between transcription factors, 

chromatin modifiers and chromatin remodellers. 

Initial work demonstrated the appearance of inducible DNase I hypersensitive sites 

in gene regulatory regions. The appearance of these sites was thought to represent changes 

in accessibility brought about by changes in chromatin structure. Early studies examined 

the position and appearance of DNase I hypersensitive sites across the IFN-13 gene upon 

induction. Inducible DNase I hypersensitive sites were detected 100, 430 and 580bp 

upstream of the transcription start site indicating changes in chromatin structure during 

IFN-f3 activation (Higashi, 1985). Since these earlier studies, the accessibility of hundreds 
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of genes has been mapped to varying levels. Inducible DNase I hypersensitive sites have 

been detected in a number of immune gene promoters and enhancer elements 

demonstrating that transcriptional induction of genes such as GM-CSF, IL-2, IL-13 and IL-

4 is associated with changes in chromatin structure (Cockerill et al, 1993; Ward et al, 1998; 

Takemoto et al, 1998). 

Basal chromatin environment is now considered to play a vital role in regulating 

immune gene expression. For example, the appearance of DNase I hypersensitive sites is 

associated with cytokine gene expression programs in Thl versus Th2 cells (Agarwal and 

Rao, 1998). Following TCR ligation naive T cells differentiate into two distinct T helper 

(Th) subsets, Th 1 and Th2 cells. Thl cells are capable of producing IFN-y while Th2 cells 

are capable of producing IL-4. Differentiated Thl and Th2 cells show differences in 

chromatin structure and DNA methylation status at these particular gene loci. Avni and 

colleagues (2002) showed that culturing naive T cells in polarizing conditions created a 

selective pattern of histone acetylation on the IL-4 and IFN-y genes. Chromatin 

immunoprecipitation revealed that the IL-4 locus is hyperacetylated in Th2 cells (Avni et 

al, 2002; Yamashita et al, 2004; Grogan et al, 2003) while the IFN-y promoter is 

hyperacetylated in Th 1 cells (Avni et al, 2002) with acetylation status strongly correlated 

with gene expression. In addtition DNA methylation of the IFN-y and IL-4 promoters in 

Th 1 versus Th2 cells has been correlated with gene expression. While the IFN-y promoter 

is hypomethylated in Th0 and Th 1 cells, it undergoes hypermethylation during Th2 

differentiation (Winders et al, 2004). Conversely, the 5' region of the IL-4 locus is 

hypermethylated in naive T cells and undergoes extensive demethylation during Th2 

differentiation (Lee et al, 2002). 

While these studies demonstrate that histone modifications play an important role in 

immune gene regulation, numerous studies have also demonstrated that changes in 

nucleosome structure accompany the induction of cytokine gene transcription (Cockerill et 

al, 1993; Rao et al, 2001; Weinmann et al, 1999). Activation of the IL-2 gene in EL-4 and 

primary T cells is accompanied by changes in chromatin structure restricted to the first 

300bp covering the proximal promoter (Rao et al, 2001). Increased accessibility is detected 

within the first 2 hours of T cell activation and maintained for at least 16 hours post-

stimulation. In addition the kinetics of remodelling preceded transcription of the IL-2 gene. 
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Similarly rapid and selective remodelling is observed at the IL-12 p40 promoter 

(Weinmann et al, 1999) with nucleosome remodelling detected within one hour of 

macrophage activation with LPS. 

The precise manner in which signals, transcription factors, chromatin remodellers 

and the transcriptional machinery interact to drive remodelling and transcription has only 

been elucidated for a handful of eukaryotic genes (Agalioti et al, 2000; de la Serna et al, 

2005). One of the best defined activation profiles is that of the IFN-13 gene which is 

activated in response to viral infection. A nucleosome positioned over the TATA box and 

start site of transcription is remodelled following a series of ordered recruitment events 

(Yie et al, 1999; Agalioti et al, 2000; Lomvardas and Thanos, 2001; Agalioti et al, 2002). 

Agalioti et al (2000) found that following infection, an enhanceosome is assembled at the 

nucleosome free enhancer region of the IFN-13 gene. The enhanceosome directs the ordered 

recruitment of factors required for chromatin remodelling and transcription with the HAT, 

GCN5 initially recruited to the enhancer region followed by the CBP/PolII holoenzyme 

complex. Histone acetylation by GCN5 then acts as a signal for CBP mediated SWI/SNF 

recruitment. SWI/SNF then remodels the nucleosome covering the transcriptional start site 

and transcription of the IFN-13 gene is then activated by the recruitment of THID. 

Activation of the genes encoding the cytokines GM-CSF, IL-2 and IL-12 is also 

likely to be dependent on the recruitment of chromatin modifying activities as the 

transcription factor binding sites in the promoter regions of these genes are covered by 

nucleosomes (Weinmann et al, 1999; Rao et al, 2001; Holloway et al, 2003). However it is 

possible that these genes activate in a similar manner to the yeast PHO5 promoter which is 

activated in the presence of low phosphate. The binding of Pho4, a key PHO5 activator, is 

inhibited by nucleosomes encompassing the PHO5 promoter region. While Pho4 can bind 

to the active promoter it is unable to bind to the repressed promoter (Venter et al, 1994). 

Svaren et al (1994) showed that deletion of the Pho4 activation domain prevented 

remodelling of the nucleosome encompassing the PHO5 promoter suggesting it recruited 

remodelling activities. This was confirmed in later work by Barbaric et al (2003), who 

demonstrated that Pho4 was required for the recruitment of the histone acetyltransferase 

complex, SAGA. Histones are then lost from the promoter at a rate determined by 

SWI/SNF recruitment (Gaudreau et al, 1997). 
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1.3.7 GM-CSF ACTIVATION IN A CHROMATIN CONTEXT 
There is substantial evidence that chromatin remodelling plays a vital role in 

regulation of the GM-CSF gene. The discovery of an inducible DNase I hypersensitive site 

in the GM-CSF enhancer following T cell stimulation provided the first evidence that the 

chromatin structure of the GM-CSF gene is altered following immune stimulation 

(Cockerill et al, 1993). Further investigations revealed that the appearance of this site was 

restricted to cells capable of GM-CSF expression, therefore highlighting the importance of 

chromatin remodelling in GM-CSF activation (Cockerill et al, 1999). The NFAT family of 

transcription factors were implicated in GM-CSF enhancer remodelling as treatment of 

Jurkat T cells with cyclosporin A prevented the appearance of the DNase I hypersensitive 

site (Cockerill et al, 1993). Using DNase footprinting Johnson et al (2004) recently 

demonstrated that GM-CSF enhancer core elements are spanned by two adjacent 

nucleosomes. Following T cell activation remodelling is not restricted to the enhancer 

region, but rather spans a 3 kb domain. NFAT dependent chromatin remodelling at the 

GM-CSF enhancer was also confirmed by site directed mutagenesis, with mutations in 

NFAT binding sites preventing GM-CSF enhancer remodelling (Johnson et al, 2004). 

The detection of an inducible DNase I hypersensitive site at the GM-CSF promoter 

following T cell stimulation suggested the chromatin structure of the promoter is also 

altered during T cell activation (Cockerill et al, 1999). Carrying on from this, Holloway et 

al (2003) mapped accessibility across the GM-CSF promoter region and demonstrated that 

a single nucleosome is positioned across the resting GM-CSF promoter between -174 and 

+24. Following T cell stimulation this nucleosome is rapidly and selectively remodelled. 

Mutation of the NF-K13/Sp1 site within the GM-CSF promoter has been shown to limit 

remodelling in primary mouse lymphocytes (Cakouros et al, 2001). Further evidence of a 

role for NF-tc13 in GM-CSF promoter remodelling was provided by Holloway et al, (2003) 

who demonstrated that the stable expression of an IKI3a, mutant construct, which prevents 

NF-K13 nuclear translocation, inhibited GM-CSF promoter chromatin remodelling events. 

Most recently, Chen et al (2005) demonstrated that the increase in GM-CSF promoter 

accessibility following T cell activation is due to histone loss. However, the mechanism 

behind the loss of histones from the GM-CSF promoter following T cell stimulation and 
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the signals and factors involved in this process remain to be elucidated, and this is the focus 

of the studies outlined in this thesis. 

1.4 RESEARCH PROJECT AIMS 
The aim of this study was to identify the role of signals and factors activated 

following T cell stimulation in regulating chromatin remodelling and transcription of the 

murine GM-CSF promoter. The specific aims were to: 

1) Identify the signals, factors and kinetics involved in increasing accessibility to the GM-

CSF promoter 

2) Determine the role of Brgl in activating the GM-CSF gene 

3) Determine whether other genes are activated in a similar manner. 
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CHAPTER 2. 

MATERIALS AND METHODS 

2.1.1 Cell culture 
Murine EL-4 T cells (ATCC) were cultured in RPMI 1640 medium (Gibco()) 

supplemented with 10% FCS (JRH Biosciences), 2mM L-glutamine (JRH Biosciences), 

100U/m1 penicillin and 1001..tg/m1 streptomycin (JRH Biosciences). The murine A-20 B cell 

line (provided by Prof. Lyn Corcoran, WEHI) was grown in DMEM (Gibco(D) 

supplemented with 10% FCS (JRH Biosciences), 2mM L-glutamine (JRH Biosciences), 

100U/m1 penicillin, 100i,tg/m1 streptomycin (JRH Biosciences) and 0.05mM p-

mercaptoethanol (Sigma-Aldrich). Cultures were incubated at 37 °C and 5% CO2 in 

humidified air. EL-4 T cells and A-20 B cells were maintained at a density between 2x10 5  

and 5x105 cells/m1 by addition of fresh medium every 24 to 48 hours. 

2.1.2 Freezing cells 
Cells (50m1 at 5x105  cells/m1) were centrifuged at 500g for 5 minutes. The 

supernatant was removed and the cells were resuspended in 2.5ml of culture medium. 

DMSO (500111) was added to 2m1 of medium then added slowly to the cells. The cell 

suspension was aliquoted between 5 cryovials, wrapped in cotton wool to allow gradual 

freezing and stored at -80°C or the vapour phase of liquid nitrogen. 

2.1.3 Thawing cells 
Frozen stocks of EL-4 T cells or A-20 B cells were thawed in a water bath at 37 °C. 

The cell suspension was then transferred to a 15m1 Falcon tube along with 10m1 of culture 

medium and centrifuged at 500g for 5 minutes. The supernatant, containing DMSO was 

then discarded. The pelleted cells were resuspended in lml of media which was transferred 

to a 25cm2  culture flask with another 9m1 of medium. The cells were then cultured at 37 °C 

and 5% CO2in humidified air (section 2.1.1). 
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2.1.4 Stimulation of cultured cells 
Table 2.1. Reagents used to treat EL-4 T cells and A-20 B cells. 

Stimuli Stock concentration Treatment 

Phorbol myristate acetate 

(PMA/P; Boehringer Mannheim) 

1mg/m1 in DMSO 2Ong/m1 for various 

times as indicated 

Calcium ionophore A23187 

(I, Sigma-Aldrich) 

10mM in DMSO 111M for various 

times as indicated 

Cyclohexamide 

(CHX; Calbiochem) 

100mg/m1 in ethanol 1012g/m1 for 30 minutes 

Cyclosporin A 

(CsA; Calbiochem) 

100 mg/ml in ethanol 5Ong/m1 for 30 minutes 

Ro-32-0432 

(Roche Pharmaceuticals) 

10mM in DMSO 101.IM for 1 hour 

Trichostatin A 

(TSA; Sigma-Aldrich) 

Img/m1 in DMSO 200ng/m1 for 4/16 hours 

In some experiments stimuli were withdrawn from EL-4 T following treatment. In this case 

cells were treated with P/I for 2 hours, before pelleting cells at 500g, washing cells twice in 

- fresh RPMI medium before resuspending in RPMI medium free of stimuli. 

2.2 Analysis of RNA by real-time PCR 
Cytolcine mRNA levels in EL-4 T cells and A-20 B cells were determined by real-

time PCR according to the following protocols. 

• 

2.2.1 Isolation of RNA 
Total RNA was isolated from 5x10 5 -1x106  cells. Following centrifugation at 700g at 

room temperature, the pelleted cells were lysed by the addition of 500111 of Tri-reagent 

(Sigma) with repeated pipetting. The cell lysates were then transferred to eppendorf tubes 

and incubated at room temperature for 5 minutes. Chloroform (1001.11) was added to each 

sample tube which was then shaken vigorously for approximately 15 seconds. The samples 

were incubated at room temperature for 10 minutes. Samples were then centrifuged at 

12000g for 15 minutes at 4°C. The upper aqueous phase was transferred to new eppendorf 

tubes, to which 300111 of isopropanol was added. Each tube was gently inverted several 
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times and then placed at —80 °C for 30 minutes to overnight to precipitate the RNA. The 

samples were centrifuged at 13000g for 10 to 30 minutes at 4 °C and the supernatant 

removed. The pellets were washed with 75% ethanol and air dried for several minutes. 

MilliQ water (201.t1 to 501.11 depending on pellet size) was added to each pellet which was 

then vortexed and heated at 60°C for several minutes on a heating block. The RNA was 

snap frozen in liquid nitrogen and stored at —80 °C. 

2.2.2 Quantitation of RNA 
Isolated RNA was diluted 1 in 20 with MilliQ water and absorbance readings were 

determined using the BioRad SmartSpec 3000TM  spectrophotometer. Absorbance at 260, 

280 and 320 nm was measured for each sample. RNA was quantified according to the 

formula 1 O.D. at 260nm = 40.01.1g/m1. RNA quality was assessed by agarose gel 

electrophoresis. RNA (500ng) and 2.5gg of Lambda molecular weight marker (New 

England Biolabs) were separated on a 1% agarose gel in 1xTAE (refer to section 2.9.1) at 

100V for 1 hour before staining with ethidium bromide. 

2.2.3 cDNA synthesis 
RNA (0.514 to 114) was added to an eppendorf tube along with 21./1 of 5x first 

strand buffer (Invitrogen) and 1111 of 1U/111 DNase (Sigma). MilliQ water was added to a 

total volume of lOptl. This reaction was then incubated at 37 °C for 30 minutes and the 

DNase then inactivated at 75 °C for 5 minutes. Another 21.11 of first strand buffer was added 

to each tube along with 1xl of 1ps/111 oligodT (Sigma) and 3.5g1 of MilliQ water. This 

reaction was incubated at 70 °C for 10 minutes and then cooled on ice. A 2111 aliquot of 

0.1M DTT (Invitrogen), 1111 of 10mM dNTPs (Promega) and 0.5g1 of Superscript reverse 

transcriptase (Invitrogen) was added to each reaction. This mixture was incubated at 42 °C 

for 50 minutes and then the enzyme inactivated at 70°C for 15 minutes. The cDNA was 

stored at —20°C. 
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2.2.4 Real-time PCR 

2.2.4.1 Primers 
The primer sequences used in the amplification of target cDNA are outlined in the table 

below. 

Table 2.2 Primers used in the quantification of cytokine mRNA by real-time PCR. 
Name Sequence (5' to 3') Amplicon (bp) Reference 

mGM+II Forward primer AAGGTCCTGAGGAGGATGTG 140 Holloway 

et al, 2003 mGM+II Reverse primer GAGGTTCAGGGCTTCTTTGA 

mM-CSF Forward primer CGAGTCAACAGAGCAACCAA 236 

mM-CSF Reverse primer TGCTTCCTGGGTCAAAAATC 

mIL-4 Forward primer TCAACCCCCAGCTAGTTGTC 177 

mIL-4 Reverse primer TG1TCTTCGTTGCTGTGAGG 

mIL-5 Forward primer ATGGAGATTCCCATGAGCAC 177 

mIL-5 Reverse primer CCCACGGACAGTTTGATTCT 

mIFNy Forward primer GCTTTGCAGCTCTTCCTCAT 162 

mIFNy Reverse primer GTCACCATCC ITITGCCAGT 

mGAPDH Forward primer AAGTATGATGACATCAAGAAGGTGGT 67 

mGAPDH Reverse primer AGCCCAGGATGCCCTTTAGT 

All primers were supplied by Sigma. 

2.2.4.2 SYBR green real-time PCR 
cDNA was diluted lOng/1.11 with MilliQ water and 5p1 (50ng) was used in each 

reaction. A PCR was prepared containing 12.5p1 Qiagen QuantiTect SYBR green master 

mix, 1.5p1 forward primer (5gM), 1.5111 reverse primer (5pM) and 4.5g1 MilliQ water to 

give a total reaction volume of 25p1. A no template control (NTC) was prepared for each 

primer set to detect any contaminating DNA. This reaction replaced 51.11 of cDNA with 5p1 

of MilliQ water. The Rotor-gene 2000 real-time PCR machine (Corbett Research, 

Australia) was used for the amplification of cDNA. The optimized PCR cycle conditions 

were; 95 °C for 15 minutes (hold); 95 °C for 15 seconds, 60°C for 60 seconds (30-45 cycles, 

acquiring to channel 1); 60 °C to 95 °C increasing 1 °C every 5 seconds (melt). Reactions 

were prepared in an area designated "PCR only" to reduce the occurrence of 
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contamination. Melt analysis was used to assess the presence of a single PCR species and 

this was verified by separating PCR products on a 2% agarose gel in lx TAE (section 

2.9.1) at 100V for 40 minutes. Molecular weight marker (2.51ag of 100 bp ladder from New 

England BioLabs) was also electrophoresed on each gel. PCR products were visualized 

using ethidium bromide. 

Standard curves for each primer set were used to quantify cytokine mRNA levels 

and glyceraldehyde phosphate dehydrogenase (GAPDH) expression was used for 

normalization of data. A mouse GAPDH PCR plasmid containing a 67bp fragment of the 

mouse GAPDH gene was prepared by cloning the PCR product formed using the GAPDH 

primers into the PCR® 2.1 vector (Section 2.5). This plasmid was used in the construction 

of a GAPDH standard curve. The mouse GM-CSF construct, AOGM provided by Dr. P 

Cockerill (Osborne et al, 1995) was used for construction of the GM-CSF standard curve. 

The mM-CSF, mIL-4 and mIL-5 standard curves were generated using serial dilutions of 

quantified gel extracted PCR product. 

2.2.4.3 Gel extraction of PCR product 
PCR products were extracted from 2% agarose gels using the Qiagen Gel 

Extraction kit according to the manufacturers' protocol. Briefly, the DNA fragment was 

excised from the gel and weighed before adding 3 volumes of buffer QG. The sample was 

then incubated at 50 °C for 10 minutes with occasional vortexing. Isopropanol (1 gel 

volume) was then added to the sample and mixed by inversion. The sample was then 

applied to the MinElute column and centrifuged for 1 minute. The flow-through was 

discarded and the column washed with 750g1 of buffer PE by centrifuging again for 1 

minute. The flow-through was discarded and the sample centrifuged for 1 minute at 

10,000g. The column was then transferred to a fresh eppendorf tube and 10m1 of MilliQ 

water applied to the membrane. The sample was incubated for 1 minute at room 

temperature before centrifuging once again for 1 minute. 
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2.3 Chromatin Accessibility by real-time PCR (CHART PCR) 
Accessibility of regions of cytokine genes to MNase and restriction enzymes was 

determined by CHART-PCR (Rao et al, 2001) according to the following protocols. 

2.3.1 Isolation of nuclei 
Nuclei were isolated from EL-4 T cells and A-20 B cells as described previously 

(Schreiber et al, 1989). The entire protocol was carried out in the cold room at 4 °C. Briefly, 

cells (2x106) were pelleted at 500g for 5 minutes. The media was aspirated and cells 

washed in ice cold PBS (ICN Biomedicals). The supernatant was removed and the pellet 

was resuspended in 0.5m1 of nuclei buffer (10mM Tris, pH 7.5, 10mM NaC1, 3mM MgC12, 

0.1mM EDTA, 0.5% Igepal, 16.5nM Spermine (Sigma-Aldrich) and 0.321aM Spermidine 

(Sigma-Aldrich)) and transferred to eppendorf tubes, using cut pipette tips to prevent cell 

lysis. The cells were incubated for 5 minutes on ice and then centrifuged at 700g for 4 

minutes. The supernatant was discarded and the nuclei were resuspended in 400m1 of nuclei 

wash buffer (10mM Tris pH 7.5, 50mM NaC1, 10mM MgC12, 0.2mM EDTA, 0.2mM 

EGTA, 18nM Spermine and 0.32pM Spermidine). The nuclei were then centrifuged at 

700g for 4 minutes. The wash buffer was removed and the nuclei were gently resuspended 

in 250p1 of restriction enzyme buffer diluted 1:10 with MilliQ water (New England Biolabs 

buffer 2) or 200111 of MNase buffer (10mM Tris pH 7.5, 15mM NaC1, 60mM KC1, 18nM 

spermine and 0.32gM spermidine) supplemented with the following protease inhibitors; 

Aprotinin (214/m1; Calbiochem), Leupeptin (114/m1; Calbiochem) and PMSF (100gM; 

Sigma-Aldrich). 

2.3.2 Restriction digest 
For each treatment, 97111 aliquots of EL-4 nuclei resuspended in restriction enzyme 

buffer were transferred to two eppendorf tubes. Hinfl (150 units; New England Biolabs) 

was added to one sample (as determined empirically) and the other sample was left 

untreated. Both samples were incubated at 37 °C for 30 minutes with occasional flicking to 
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resuspend nuclei. Samples were then removed from the heating block and 100111 of PBS 

added to each sample and DNA isolated immediately (Section 2.3.4). 

2.3.3 MNase digest 
EL-4 or A-20 nuclei resuspended in MNase buffer (94111) were transferred to 

eppendorf tubes containing 11.11 of ice cold CaCl 2  (0.1M). MNase (5U/ Boehringer) was 

then added to one tube and the other was left untreated. Both samples were then incubated 

at room temperature for 5 minutes before adding 20p1 stop buffer (0.1M EDTA, pH8 and 

50mM EGTA, pH 8) and placing on ice. A further 801.11 of MNase buffer was added and 

DNA isolated immediately (Section 2.3.4). 

2.3.4 DNA isolation 
DNA was isolated from cell nuclei using the Qiagen QIAamp DNA blood mini kit 

according to the manufacturers' instructions. Briefly, 20111 of Qiagen protease was added to 

each cell nuclei sample along with 4g1 of RNase (Roche; 10mg/m1 in 0.01M sodium 

acetate, pH 5.2) and 200111 of buffer AL. The samples were then vortexed for 15 seconds, 

incubated at 56 °C for 10 minutes and then centrifuged briefly. Ethanol (200g1) was added 

to each sample and pulse vortexed for 15 seconds. The samples were then centrifuged 

briefly. The contents in each eppendorf tube were then applied to QIAamp spin columns. 

The tubes were centrifuged at 8000g for 1 minute. The filtrate was discarded and the 

column was placed in a new collection tube. Buffer AW1 (500g1) was carefully applied to 

each column. The spin columns were then centrifuged at 8000g for 1 minute. The filtrate 

was again discarded and the column was placed in a fresh collection tube. Buffer AW2 

(500111) was then carefully applied to each column. The samples were centrifuged at 

13000g for 3 minutes. The collection tube was discarded and the spin column was placed in 

a 1.5m1 microcentrifuge tube. Buffer AE (200111) was then applied to each column and 

incubated at room temperature for 5 minutes. The tubes were then centrifuged at 8000g for 

1 minute. The spin column was discarded and the flow through containing DNA was stored 

at -20°C. 
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2.3.5 Quantification of DNA 
Prior to PCR amplification the concentration of DNA was determined using a 

spectrophotometer. Isolated DNA was diluted 1:20 with MilliQ water and absorbance 

readings determined using the BioRad SmartSpec 3000 1m  spectrophotometer. Absorbance 

at 260, 280 and 320nm was measured for each sample. DNA was quantified according to 

the formula 1 0.D. at 260nm=50pg/ml. DNA quality was assessed by agarose gel 

electrophoresis. DNA (50Ong) and 2.5pg of the Lambda molecular weight marker (New 

England Biolabs) were separated on a 1% agarose gel in 1xTAE (section 2.9.1) at 100V for 

1 hour before staining with ethidium bromide. 

2.3.6 Real-time PCR of CHART samples 

2.3.6.1 Primers 
The primers used in the amplification of genomic DNA in the CHART assay are outlined 

below. 

Table 2.3. Primers used in the quantification of genomic DNA by real-time PCR. 
Name Sequence (5' to 3') Amplicon (bp) Reference 

mGM-I Forward primer GCCTGACAACCTGGGGGAAG 116 Holloway 

et al, 2003 mGM-I Reverse primer TGATTAATGGTGACCACAGAACTC 

mGM+I Forward primer GAGTTCTGTGGTCACCATTAATCA 147 Holloway 

et al, 2003 mGM+I Reverse primer CACATCCTCCTCAGGACCT'T 

mGM-V Forward primer TGGAATGAGCCACCAGAGTA 75 Holloway 

et al, 2003 mGM-V Reverse primer GGCTCTTGCTTCCATAGCAC 

nnIL-4E Forward primer GCACCAGGGCACTTAAACAT 158 

mIL-4E Reverse primer CTGTGCAGTGCCACAATGAT 

mIL-5p Forward primer ACCCTGAGTTTCAGGACTCG 94 Wang 

et al, 2006 mIL-5p Reverse primer TCCCCAAGCAATTTATTCTCTC 

mIFN-yp Forward primer AACATGCCACAAAACCATAGC 156 

mIFN-yp Reverse primer CACCTCTCTGGCTTCCAGTT 

All primers were supplied by Sigma. 
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2.3.6.2 Real-time PCR 
DNA was diluted to lOng4t1 for real-time PCR amplification. A PCR was prepared 

containing 12.4t1 SYBR, 1.4d forward primer (511M), 1.5111 reverse primer (511M), and 

4.5111 MilliQ water to which 5p1 (50ng) of DNA was added to give a total reaction volume 

of 25111. A NTC reaction was set up for each primer set which included 5111 of MilliQ water 

in place of DNA. Amplification of DNA was performed by and detected with the Rotor-

gene 2000 real-time PCR machine (Corbett Research, Australia). The PCR conditions 

were; 95 °C for 15 minutes seconds (hold); 95°C for 15 seconds followed by 60°C for 60 

seconds (35-45 cycles, acquiring to channel 1); 60 °C to 95 °C increasing by 1 °C every 5 

seconds (melt). Reactions were set up in an area designated "PCR only" to reduce 

contamination. Melt analysis was used to assess the presence of a single PCR species and 

this was verified by separating PCR products on a 2% agarose gel in lx TAE (section 

2.9.1) at 100V for 40 minutes. Molecular weight marker (2.51.1g of 100 bp ladder from New 

England BioLabs) was also electrophoresed on each gel. Electrophoresed PCR products 

were visualized with ethidium bromide. PCR products were quantified using standard 

curves for each primer set. Accessibility was determined by correlating the Ct values from 

the amplification plots to a standard curve for each primer set and was expressed as a 

percentage of undigested genomic DNA for each primer set. 

The mouse GM-CSF construct, AOGM was used for construction of the mGM-I, 

mGM+I and mGM-V standard curves. The IFNyp, IL-4p and IL-5p standard curves were 

generated separately using quantified and serially diluted gel extracted PCR product 

(section 2.2.4.3). 

2.4 Analysis of nuclear proteins 
Nuclear levels of various transcription factors in EL-4 T cells were determined 

according to the following protocols. 
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2.4.1 Preparation of nuclear extracts 
Nuclear extracts were prepared as described previously (Schreiber et al, 1989). 

Cells (5x105  cells/nil) were centrifuged at 500g for 5 minutes. The supernatant was 

removed and the pellet washed in PBS. Cell pellets were resuspended in 1.25 ml buffer A 

(10mM Tris pH 7.4, 10mM NaCl, 3mM MgC12, 0.1mM EDTA pH 8 and 0.5% Igepal) and 

transferred to eppendorf tubes. The samples were then incubated on ice for 5 minutes and 

centrifuged at 700g for 5 minutes. The supernatant was removed and the pellets were 

resuspended in 1.25m1 of buffer A minus Igepal. The tubes were then centrifuged at 700g 

for 5 minutes. The supernatant containing the cytoplasmic extracts was removed and 

transferred to a new eppendorf tube. The pelleted nuclei were resuspended in 2411 of buffer 

C (400mM NaC1, 7.5mM MgC12, 0.2mM EDTA pH 8 and 1mM DTT with protease 

inhibitors added just prior to use; aprotinin (10m.g/m1), leupeptin (51.1,g/m1) and PMSF 

(5001.1M). The nuclei were then incubated in buffer C for 15 minutes on ice then 

centrifuged at 13000g for 5 minutes. The supernatant containing the nuclear proteins was 

then transferred to a new eppendorf tube. The nuclear extracts were stored at -80 °C. 

2.4.2 Quantification of protein 
Protein concentrations of nuclear extracts were determined using the Bradford 

protein assay (Bradford, 1976) using bovine serum albumin (BSA) as the protein standard. 

Serial dilutions of BSA were prepared from 1.0 to 0.1mg/m1 for construction of a standard 

curve. Nuclear extracts were diluted 1:10. Bradford dye reagent (BioRad) was prepared by 

filtering 1 part dye to 4 parts water through filter paper (Whatman, Number 1). The dye 

reagent (1m1) was added to 10[11 of the standards and samples. The standards and samples 

were vortexed and incubated at room temperature for 5 minutes. Absorbance was measured 

at 595nm using the BioRad SmartSpec 3000TM  spectrophotometer. The concentration of the 

nuclear extracts was determined from the BSA standard curve. 
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2.4.3 Separation and transfer of nuclear proteins 

2.4.3.1 SDS PAGE and Western Blotting 
Nuclear extracts (3-1514) were added to an equal volume of 2x sample buffer 

(section 2.9.2) and heated at 95°C for 5 minutes. A 12.5% acrylamide gel was poured and 

assembled in a gel apparatus (BioRad). The tank was filled with lx SDS PAGE running 

buffer (section 2.9.2). The samples were then loaded onto the gel along with 51.1,1 of 

Multimark® multi-coloured standard (Invitrogen). The samples were electrophoresed at 

125V for 90 minutes. The gel was removed from its cassette and placed into the transfer 

apparatus (BioRad). The chambers were filled with Western transfer buffer (section 2.9.2) 

and proteins were transferred to a nitrocellulose membrane (Micro Filtration Systems) at 

20V for 18 hours at 4°C. 

The membrane was placed in blocking solution (section 2.9.2) and incubated on a 

platform shaker at room temperature for 1 hour. Following this the membrane was sealed in 

plastic with the appropriate primary antibody (Table 2.4) diluted with lx TNT (section 

2.9.2) and incubated for another hour at room temperature on a shaker. The membrane was 

washed three times in lx TNT (10 minutes per wash) and sealed in plastic along with the 

appropriate secondary antibody dilution in lx TNT. The membrane was incubated in this 

secondary antibody solution for 1 hour at room temperature on a shaker then washed 

another three times (10 minutes per wash) in lx TNT. The membrane was then sealed in 

plastic and incubated for 5 minutes in 2.5ml of Pierce SuperSignal 0 West Pico Luminol 

enhancer solution and 2.5ml of stable peroxide solution (Pierce). The solution was removed 

and the membrane was exposed to high performance autoradiography film (Amersham 

Pharmacia Biotech) for 1 minute. The film was then agitated in developer (Kodak) for 1 

minute, rinsed in water and placed in fixing solution (Ilford) for 1 minute. Shorter or longer 

exposures were carried out as required. 
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Table 2.4. Antibodies used in the analysis of proteins in EL-4 T cells. 
Primary Antibody Concentration Secondary Antibody Concentration 

Anti—p65 (Rel A) 1:1000 Goat anti-rabbit 1:1000 

Anti-c-Rel 1:1000 Goat anti-rabbit 1:1000 

Anti-Spl 1:1000 Goat anti-rabbit 1:1000 

Anti NFATp 1:1000 Rabbit anti-mouse 1:1000 

Anti -NFATc 1:1000 Rabbit anti-mouse 1:1000 

Anti-HA 1:1000 Goat anti-rabbit 1:1000 

Anti-Brgl 1:1000 Goat anti-rabbit 1:1000 

All primary antibodies were provided by Santa Cruz Biotechnology. Peroxidase-conjugated 

secondary antibodies were provided by Dako. 

2.4.3.2 Stripping and Reprobing Blots 
Antibodies were removed from blots to enable reprobing for analysis of additional 

proteins. Blots were incubated at 65 °C in stripping buffer (section 2.9.2) for 30 minutes 

with shaking, followed by three washes (10 minutes per wash) in lx TNT. The membrane 

was then placed in blocking solution for 1 hour. The remainder of the protocol was carried 

out as described in section 2.4.3.1. 

2.5 Cloning 

2.5.1 Ligation 
PCR product was ligated into the appropriate vector by combining fresh PCR 

product, 1111 of 10x ligation buffer (Invitrogen), 2111 PCR® 2.1 vector (50ng total; 

Invitrogen), 1 pi T4 DNA ligase (New England Biolabs) and MilliQ water to a total volume 

of 101,11. The ligation reaction was then incubated for a minimum of 4 hours at 14°C. 

2.5.2 Preparation of competent cells 
L-broth (100m1; section 2.9.1) was inoculated with lml of a saturated MC1061 

E.Coli culture and incubated with shaking at 37°C. The optical density of the cells was then 

measured at 650nm using the BioRad SmartSpec 3000Tm  spectrophotometer. Once the 
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bacterial culture had reached an 0.D650 of 0.4 to 0.5 the culture was transferred to 

centrifuge tubes and centrifuged at 7000g for 5 minutes. The bacterial pellet was then 

resuspended in 20m1 of ice cold 50mM CaC12 and incubated on ice for 30 minutes. The 

cells were then pelleted at 7000g for 5 minutes and resuspended in 3m1 ice cold 50mM 

CaC12. 

2.5.3 Transformation of competent cells 
A 200111 aliquot of the freshly prepared competent cells was used for each 

transformation. A 21.11 aliquot of the ligation reaction was pipetted into the competent cells 

and mixed well prior to incubating on ice for 30 minutes. The cells were then heat shocked 

at 42°C for 30 seconds and placed on ice. SOC medium (250111; section 2.9.1) was added to 

each sample and the vials placed on a shaking platform at 37°C for 1 hour at 225rpm. 

Transformed cells (10-200g1) were then spread on LB agar plates (section 2.9.1) containing 

antibiotic. The plates were inverted and incubated at 37 °C for 18 hours before incubating at 

4°C for 3 hours to allow colour development. A single colony was then inoculated into 2m1 

of L-broth containing the appropriate antibiotics for further propagation and preparation of 

stocks. Glycerol stocks of transformed bacterial cultures were prepared by adding 850111 

bacterial culture to 150111 of sterile glycerol in an eppendorf tube. Stocks were stored at - 

80°C. 

2.6 Transfection of EL-4 T cells 
EL-4 T cells were transfected with plasmids targeting NFAT or Brg 1 action 

according to the following protocols. 

2.6.1 Plasmids 
The mutant Brg 1 construct, pBJ5-brg 1 K/R and the pBJ5 plasmid were provided by 

Dr G. Crabtree (Khavari et al, 1993). The pEGFP-VIVIT and pEGFP plasmids were 

provided by Dr. A. Rao (Aramburu et al, 1999). The KKII plasmid used for magnetically 
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activated cell sorting was provided with the MACSelect kit (Miltenyi Biotech). Plasmids 

were propagated in MC1061 E.Coli cells. 

2.6.2 Plasmid purification 
Plasmids were isolated either by alkaline lysis/CsC12 purification or using the 

Qiagen Midi prep kit. In each case, glycerol stocks of MC1061 cells, transformed with the 

relevant plasmids, were inoculated in 2m1 of L-broth containing either ampicillin 

(10011g/m1) or kanamycin (1001..tg/m1) depending on the resistance provided by the plasmid. 

The starter cultures were incubated at 37 °C in a shaking incubator for 6 to 8 hours before 

transferring to larger (100-400m1) cultures (containing antibiotics) for overnight 

incubation. 

2.6.2.1 Plasmid preparation by alkaline lysis 
The pEGFP and pEGFP-VIVIT plasmids were isolated by alkaline lysis and 

subsequent cesium chloride (CsC12) purification, essentially as described previously 

(Sambrook and Russel, 2001). Bacterial cultures grown overnight were transferred to 

500m1 centrifuge bottles and bacteria pelleted at 3200g for 15 minutes at 4 °C. The 

supernatant was removed and the pellet resuspended in 8m1 alkaline lysis buffer 1 (50mM 

glucose, 25mM Tris HC1 pH 7.4, 10mM EDTA pH 8) with repeated pipetting and 

transferred to sorvall tubes. Lysozyme (80mg) was then added to each sample and 

incubated at room temperature for 5 minutes. Freshly prepared lysis buffer 2 (16m1; 0.2M 

NaOH, 1% SDS) was then added and the samples inverted several times before incubating 

on ice for 10 minutes. Ice cold buffer 3 (12m1; 5M ICAc, pH 4.8) was then added to each 

sample and mixed by inverting several times. The lysate was incubated on ice for another 

10 minutes before centrifuging at 17000g for 20 minutes at 4°C. The supernatant was then 

transferred to a new tube and 0.6 volumes of isopropanol was added and mixed well before 

incubating at room temperature for 30 minutes. The samples were then centrifuged at 

12000g for 15 minutes at room temperature and the pellets resuspended in 1 ml TE 

(100mM Tris pH 7.4, 10mM EDTA pH 8). RNase (Roche; 1001.tg/m1) was then added to 

each sample and incubated at 37 °C for 30 minutes. TE (9m1) and CsC12 (10.9g) was added 
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to each sample. Ethidium bromide (5mg) was added and the centrifuge tubes balanced and 

sealed. The tubes were then centrifuged at 120,000g for 40 hours in the Beckman L8-70M 

Ultracentrifuge. The plasmid bands were extracted using a 5m1 syringe and transferred to 

50m1 falcon tubes. Ethidium bromide was removed by extracting several times with an 

equal volume of MilliQ saturated butanol. Once the lower DNA phase was colourless, 2 

volumes of water was added along with 0.1 volume of 3M sodium acetate (pH 6.5) and 2.5 

volumes ethanol (100%). The DNA was then precipitated at -20°C for 6 hours before 

transferring to sorval tubes and pelleting at 12000g for 15 minutes. The pellet was then 

washed in 70% ethanol and resuspended in 4001A1 TE. DNA was then reprecipitated by 

adding 40p1 3M sodium acetate (pH 6.5) and lml ethanol before incubation at -20 °C for 48 

hours. The plasmid DNA was then pelleted at 13000g for 15 minutes. The pellet was 

washed in 70% ethanol and allowed to air dry before resuspending in 200111 TE. The DNA 

was then quantitated by measuring absorbance at A260 (section 2.3.5), the plasmid stock 

diluted to 1p,g4t1 and stored at -20°C. 

2.6.2.2 Plasmid purification using the Qiagen Midi Prep kit 
Plasmid DNA was extracted from MC1061 E.Coli bacterial cultures transformed 

with the pBJ5, pBJ5-brg1K/R and KKII plasmids using the Qiagen midiprep kit according 

to the manufacturers' instructions, with some modification as outlined below. 

Overnight bacterial cultures (400m1) were pelleted at 6000g for 15 minutes at 4 °C. 

Pellets were resuspended in 20m1 of buffer P1 to which 20m1 of buffer P2 was added 

before inverting several times. Lysates were incubated at room temperature for 5 minutes, 

20m1 of chilled buffer P3 added and samples mixed by inverting several times before 

incubating on ice for 30 minutes. Samples were then centrifuged at 20000g for 30 minutes 

at 4°C following which the supernatant was removed and centrifuged again at 20000g for 

15 minutes. The supernatant was transferred to a fresh tube and DNA was precipitated by 

adding 0.7 volumes of isopropanol. After inverting to mix, samples were centrifuged at 

15000g for 30 minutes at 4°C. The supernatant was then carefully removed and the pellet 

resuspended in 500p1 TE and RNase treated (1001...tg/m1) for 30 minutes at 37 °C. Samples 

were then phenol/chloroform extracted and ethanol/NaAc precipitated (section 2.9.3). DNA 
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was resuspended in 500111 TE and 4.5ml of buffer QBT was added. The columns (Qiagen-

tip 100) were equilibrated by washing with 4m1 of buffer QBT and allowed to empty by 

gravity flow. The DNA solution was then applied to the column and emptied by gravity 

flow. The column was washed twice with 10m1 of buffer QC and plasmid DNA was eluted 

with 5m1 of buffer QF into a glass sorvall tube. Isopropanol (3.5m1) was added to 

precipitate the DNA. Samples were mixed before centrifuging at 15000g for 30 minutes at 

4°C. The pellet was washed in 70% ethanol, air dried for 10 minutes then resuspended in 

40011,1 TE. Plasmid DNA was then reprecipitated and resuspended in a smaller volume 

before quantitation by spectrophotometry reading at A260  (Section 2.3.5) and diluting to 

Plasmid stocks were stored at -20 °C. 

2.6.3 Electroporation of EL-4 T cells 
EL-4 T cells were co-transfected by electroporation with 814 of either pBJ5, pBJ5- 

brg1K/R, pEGFP or pEGFP-VWIT plasmids along with 314 of the K KII selection plasmid 

in 4mm cuvettes using the BioRad Gene Pulser X cell. Briefly, EL-4 T cells at a density of 

5x105  cells/ml were pelleted at 1000g for 5 minutes. The supernatant was removed and the 

cells resuspended in RPMI containing 20% FCS at 1.5x10 7  cells/ml. Plasmid DNA was 

then added to the side of each cuvette (BioRad) followed by the addition of 300W of the 

cell suspension. Cells were then electroporated at 270V with a capacitance of 974tF. 

RPMI medium (1m1) was then added to each cuvette and the cells left to recover for 5 

minutes. The transfected cells were then transferred to 75cm2  culture flasks containing the 

appropriate amount of medium (5m1 per electroporation) and returned to the incubator for 

24 hours. 

2.6.4 Magnetic labelling and, sorting of transfected cells 
Transfected cells were enriched 24 hours post transfection using the MACSelect 

magnetically activated cell sorting kit (Miltenyi Biotech) according to the manufacturers' 

instructions. Transfected cells (2x107) were pelleted at 200g for 5 minutes and resuspended 

in lml PBS supplemented with 5mM EDTA pH 8. The cell suspension was then layered 

over 2m1 of FCS in a 15ml Falcon tube before pelleting once again at 200g for 5 minutes to 
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remove dead cells. The cell pellet was resuspended in 3201.,t1 degassed PBE (PBS 

containing 5mM EDTA and 0.5% BSA) per 107  cells and 80111 of MACSelect K KII 

microbeads were added. The cells and beads were mixed well and incubated at 4 °C for 15 

minutes, with occasional flicking. The cell suspensions were made up to 2m1 with PBE. 

Two MS/RS + columns (Miltenyi Biotech) were set up in the magnetic separation apparatus 

and washed with 500111 PBE. The magnetically labelled cells were then applied to the 

columns in 4x 5001A1 aliquots (half over each column). The columns were then washed 

twice with 5001A1 PBE before removing from the magnetic field and placing into a 15m1 

Falcon tube. RPM! medium (500ptl) was then added to the column and the plunger used to 

force cells through. Cells were then transferred to 6 well culture plates at a density of 5x10 5  
cells/ml. 

2.7 Chromatin Immunoprecipitation (ChIP) 
ChIP analysis of Brg 1 binding was performed according to the Upstate protocol 

(http://www.upstate.com/misc/protocol)  with some modifications. EL-4 T cells or A-20 B 

cells (15ml at 5x10 5  cells/nil) were incubated in RPM! or DMEM respectively containing 

1% formaldehyde for 15 minutes with shaking at room temperature to crosslink chromatin. 

Crosslinlcing was stopped by adding glycine to a final concentration of 0.125M and 

incubating for 10 minutes with shaking. Cells were collected after two PBS washes 

(supplemented with 214/m1 Aprotinin, 114/m1 Leupeptin and 1001AM PMSF) at 500g for 4 

minutes. Cells (2x106) were resuspended in 250111 lysis buffer (1% SDS, 10mM EDTA, 

50mM Tris HC1 pH 8.1 supplemented with protease inhibitors). Following incubation on 

ice for 10 minutes samples were sonicated five times with 30 second pulses at output 2 

(Microson XL 2000) to generate DNA fragments ranging from 200 to 1000bp. Samples 

were diluted to 1.25m1 with IP dilution buffer (1.2mM EDTA pH8, 0.1% SDS, 1% Triton 

X, 16.7mM Tris HC1 pH 8.1, 167mM NaC1) and pre-cleared with 60111 salmon sperm 

DNA/Protein A agarose (Upstate) for 30 minutes at 4 °C. The protein A agarose was 

pelleted by centrifuging at 500g for 1 minute and 1001A1 of the supernatant removed for the 

total input. The remaining supernatant was aliquoted as either a no antibody control or 

immunoprecipitated with 114 of Brg-1 antibody (Santa Cruz Biotechnology) overnight at 
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4°C with rotation. Immune complexes were recovered by incubation at 4 °C for one hour 

with 60p1 salmon sperm DNA/Protein A agarose. Samples were washed for 3 minutes on 

the rotary wheel at 4°C followed by pelleting at 500g for 1 minute. Immune complexes 

were washed once in low salt buffer (2mM EDTA, 0.1% SDS, 1% Triton X, 20mM Tris 

HC1 pH 8.1, 150mM NaCl), high salt buffer (2mM EDTA, 0.1% SDS, 1% Triton X, 20mM 

Tris HC1 pH 8.1, 500mM NaCl) and LiC1 buffer (1mM EDTA, 10mM Tris HC1 pH 8.1, 

250mM LiC1, 1% Igepal, 1% deoxycholate) and washed twice with TE (1mM EDTA pH 8, 

10mM Tris HCI pH 8.1). All wash buffers were supplemented with protease inhibitors. 

Chromatin was eluted by adding 200g1 of elution buffer (1% SDS, 0.1M NaHCO3) and 

incubating at room temperature for 1 hour on the rotary wheel. Protein A agarose was 

pelleted by centrifuging at 500g for 1 minute and the supernatant containing chromatin 

removed. The elution step was repeated and supernatants combined to give 4001.41 total 

volume. Crosslinks were reversed with 0.2M NaC1 overnight at 65 °C. DNA was then 

purified by phenol/chloroform extraction and ethanol/NaAc precipitation (section 2.9.3). 

DNA was resuspended in 501.11 of MilliQ water and amplified by real-time PCR using 

primer sets outlined in Table 2.5. 
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Table 2.5. Primers used in real-time PCR analysis of ChIP samples. 
Name Sequence (5' to 3') Amplicon 

(bp) 

Reference 

mGM-I Forward primer GCCTGACAACCTGGGGGAAG 116 Holloway 

et al, 2003 mGM-I Reverse primer TGATTAATGGTGACCACAGAACTC 

mGM+I Forward primer GAGTTCTGTGGTCACCATTAATCA 147 Holloway 

et al, 2003 mGM+I Reverse primer CACATCCTCCTCAGGACCTT 

mGM-V Forward primer TGGAATGAGCCACCAGAGTA 75 Holloway 

et al, 2003 mGM-V Reverse primer GGCTCTTGCTTCCATAGCAC 

m1L-4E Forward primer GCACCAGGGCACTTAAACAT 158 

m1L-4E Reverse primer CTGTGCAGTGCCACAATGAT 

mIL-5p Forward primer ACCCTGAGTTTCAGGACTCG 94 Wang 

et al, 2006 mIL-5p Reverse primer TCCCCAAGCAATTTATTCTCTC 

m1FN-yp Forward primer AACATGCCACAAAACCATAGC 156 

mIFN-yp Reverse primer CACCTCTCTGGCTTCCAGTT 

mGM-3' Forward primer ATTTGGGCATAGGTGGAGTG 89 

mGM-3' Reverse primer CCTCGATTTCACCTCCCTTT 

mGM-5' Forward primer GAGCTTCTGGAGAGGGAGGT 60 

mGM-5' Reverse primer TCCCAGGCTTAGTCTGTTGC 

mGAPDH Forward primer AAGTATGATGACATCAAGAAGGTGGT 67 Brettingham-

Moore et al, 2005 mGAPDH Reverse primer AGCCCAGGATGCCCTTTAGT 

All primers were supplied by Sigma. Real-time PCR was carried out as described in section 

2.3.6.2. Brgl recruitment was determined as the percentage of immunoprecipitated sample, 

minus the "No Antibody" control, compared to the total input. 

2.8 Microarrays 
The expression of T cell genes in response to the introduction of an ATPase 

defective Brgl mutant construct (pBJ5-brg1K/R) was determined by microarray analysis 

according to the following protocols. 

2.8.1 Sample preparation from Brgl mutant cells 
EL-4 T cells co-transfected with either the pBJ5 or pBJ5brg1K/R and K KII 

plasmids were sorted for transfected cells (section 2.6.3 and 2.6.4) then either left untreated 
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or stimulated for 6 hours in the presence of P/I as described in sections 2.1.4. Total RNA 

was isolated as described in section 2.2.1. 

2.8.2 RNA quality assessment 
The quality of the RNA to be used in the microarray experiments was assessed 

using the Agilent 2100 BioAnalyzer which determines sample integrity and the 

NanoDrop@ which determines sample concentration and purity. cRNA was prepared and 

microarrays hybridized with Dr. Kaiman Peng at the Biomolecular Resource Facility, John 

Curtin School of Medical Research at the Australian National University, according to the 

recommended Affymetrix protocols as outlined below. 

2.8.3 First strand cDNA synthesis 
RNA (3[1g) was made up to a total volume of 8ial with MilliQ water. RNA along 

with 2111 PolyA RNA control (Invitrogen Life Technologies) and 2111 T7-(dT)24 oligomer 

(Affymetrix) were combined into 100g1 PCR tubes. The reaction components were mixed 

and incubated at 70°C for 10 minutes before cooling at 4°C for 2 minutes. To each sample 

4111 of 5x first strand reaction mix (Invitrogen Life Technologies), 2pi 0.1 M DTT 

(Invitrogen Life Technologies) and 11.11 10mM dNTPs was added along with 1111 

Superscript II (Invitrogen Life Technologies). The reactions were incubated at 42°C for 1 

hour before cooling for 2 minutes at 4°C. 

2.8.4 Second strand cDNA synthesis 
Following first strand cDNA synthesis, 91p1 DEPC treated water, 30111 5x second 

strand reaction (Invitrogen Life Technologies), 3i,t1 10mM dNTPs (Invitrogen Life 

Technologies), 1111 10U4t1 E. coli DNA ligase (Invitrogen Life Technologies), 4[E1 10U4t1 

E. coli DNA polymerase I (Invitrogen Life Technologies) and 1121 2U/111 E. coli RNase H 

(Invitrogen Life Technologies) were added to each sample. Each sample was then 

incubated at 16°C for 2 hours. T4 DNA polymerase (2R1; Invitrogen Life Technologies) 

was then added and the samples incubated at 16 °C for a further 5 minutes. Following this 
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10i.t1 of 0.5M EDTA was added. Double stranded cDNA was purified using phase lock gel 

GeneChip sample clean up modules (Affymetrix). 

2.8.5 Synthesis of Biotin labelled cRNA 
In Vitro Transcription (IVT) and biotin labelling of cRNA was carried out using the 

BioArray HighYield RNA transcript labelling kit (Affymetrix). Briefly, template cDNA 

(12111) was transferred to an RNase free microfuge tube along with 811,1 RNase free water, 

followed by 12R1 labelling NTP mix (Affymetrix), 4g1 10x IVT labelling buffer 

(Affymetrix) and 4111 IVT labelling enzyme mix (Affymetrix). The reactions were 

incubated at 37°C for 16 hours. 

2.8.6 Purification and quantification of cRNA 
Unincorporated NTPs were removed from the cRNA using the Genechip sample 

clean up module (Affymetrix). IVT reactions were made up to 10041 with RNase free 

water and mixed by vortexing for 3 seconds. IVT cRNA binding buffer (350111; Qiagen) 

was added and vortexed, followed by 250111 of 100% ethanol which was mixed by 

pipetting. The sample was then applied to the IVT cRNA clean up spin column which was 

then centrifuged for 15 seconds at 8000g. The flow through was discarded and IVT cRNA 

wash buffer (50041; Qiagen) was added to each column followed by centrifugation at 

8000g for 15 seconds before discarding the flow through. This step was repeated using 

500111 of 80% ethanol. The spin column was then centrifuged at maximum speed for 5 

minutes before discarding the collection tube and its contents. RNase free water (35111) was 

pipetted directly onto the membrane before centrifuging at 13000g for 1 minute and the 

eluate collected in a new collection tube. Another 3411 of RNase free water was added to 

the column and the eluate collected by centrifugation at 13000g for 1 minute. The 

concentration and purity of the cRNA was determined using the NanoDrop®. 

2.8.7 Fragmentation of cRNA 
Fragmentation reactions were set up using 2014 cRNA along with 6.41.11 5x 

42 



Fragmentation buffer (Affymetrix) and RNase free water to a total volume of 321A1. cRNA 

was then incubated at 94°C for 35 minutes. A small aliquot of non fragmented and 

fragmented cRNA was analyzed using the BioAnalyzer (Agilent) to determine 

concentration and purity. Samples were stored at -20 °C before hybridization. 

2.8.8 Target hybridization 
A hybridization mixture was prepared containing 1511g fragmented cRNA, 50pM 

control oligonucleotide B2 (Affymetrix), lx eukaryotic hybridization buffer (Affymetrix), 

100pM DMSO, 1.5/5/25/100pM controls (bioB, bioC, bioD, cre; Affymetrix), 0.1mg/m1 

herring sperm DNA (Affymetrix) in a total volume of 300111. 

cRNA hybridization cocktails were initially hybridized to Affymetrix Test3 arrays 

to ensure sample quality before proceeding onto the Mouse Genome 430 2.0 GeneChips ® . 

The arrays were equilibrated to room temperature and the hybridization cocktails were 

heated at 99°C for 5 minutes then 45 °C for 5 minutes. The hybridization cocktails were 

then centrifuged at 13000g for 5 minutes to remove insoluble material. The array was wet 

with lx hybridization buffer (Affymetrix) by pipetting through one of the septa, and 

incubated in the hybridization oven for 10 minutes with rotation at 45 °C. Buffer solution 

was then removed from the array chamber and the chamber filled with 80g1 of the 

hybridization cocktail. The arrays were then placed in the hybridization oven at 45 °C and 

rotated at 60rpm for 16 hours. 

2.8.9 Washing and staining the arrays 
Arrays were washed and scanned using the GeneChip° Operating System (GCOS, 

Affymetrix). Arrays were removed from the hybridization oven and the hybridization 

cocktail removed. The array was then filled with 1001.11 of non stringent wash buffer after 

equilibrating to room temperature. The following dye and antibody solutions were prepared 

and 6001.11 of each placed into eppendorfs and fitted to the fluidics station. 
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SAPE Stain solution 

2x MES stain buffer (Affymetrix) 600111 

50mg/m1 acetylated BSA (Affymetrix) 48g1 

1mg/m1 SAPE 	(Affymetrix) 12111 

ddH20 540111 

Total volume 1200A1 

Antibody solution 

2x MES stain buffer (Affymetrix) 3001.11 

50mg/m1 acetylated BSA (Affymetrix) 24111 

10mg/m1 goat IgG (Affymetrix) 61.11 

0.5mg/m1 biotinylated antibody (Affymetrix) 3.6111 

ddH20 266.4g1 

Total volume 600111 

After washing the lines in the fluidics station and placing the wash and stain solutions in 

the station, the arrays were fitted to the station and the wash and dye steps carried out 

according to the program set. The arrays were then scanned using the Affymetrix 

GeneChip@ Scanner 3000. 

2.9 General Techniques 

2.9.1 General reagents 

TAE buffer (50x) 
24.2g Tris base 

10111 0.5M EDTA 

5.7 ml Glacial acetic acid 

Distilled water to 100mIs 

pH to 7.0 using acetic acid 

Agarose gel loading buffer 

0.25g sucrose 

12.5111 0.5M EDTA 

125R1 10% SDS 

0.25% BPB 

MilliQ water to lml 
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L-Broth 

5g tryptone 

2.5g yeast extract 

2.5g NaCl 

200 1115M NaOH 

MilliQ water to 500 ml 

1.5g agar 

LB agar plates 

lg tryptone 

0.5g yeast extract 

0.5g NaC1 

MilliQ water to 100m1 

401115M NaOH 

SOC medium 
20g tryptone 

5g yeast extract 

0.5g NaC1 

2.5m1 1M KC1 

MilliQ water to 1000m1 

pH to 7 with NaOH 

20m1 sterile glycerol 

2.9.2 Reagents for SDS PAGE and western blotting 

10x SDS-PAGE running buffer 

14.5g Tris base 

72g Glycine 

5g SDS 

To 500m1 with distilled water 

Distilled water tolOml 

13-mercaptoethanol (10%) added before use. 

2x Sample buffer 
0.5M Tris HC1, pH 6.8 

Glycerol 

10% SDS 

0.1% BPB 

2.5 ml 

2.0 ml 

4.0 ml 

0.5 ml 
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SDS-PAGE Upper buffer 
30g Tris Base 

2g SDS 

pH to 6.8 with HC1 

Distilled water to 500m1 

SDS-PAGE Running gel 
2m1 lower buffer 

3.4ml 30% acrylamide 

20111 10% APS 

10g1 TEMED 

2.7m1 distilled water  

SDS-PAGE Lower buffer 
91g Tris Base 

2g SDS 

pH to 8.8 with HC1 

Distilled water to 500m1 

SDS-PAGE Stacking gel 
0.7m1 Upper buffer 

0.4m1 30% acrylamide 

15g1 10% APS 

5g1 TEMED 

1.5m1 distilled water 

Western transfer buffer 
2.4g Tris 

11.2g Glycine 

200m1 Methanol 

1.0g SDS 

Distilled water to 1000m1  

10x TNT, pH 8 
12.11g Tris 

87.6g NaC1 

5m1 Tween 

Distilled water to 1000m1 

Blocking solution 
Western blocking reagent (Roche) diluted 1:10 with lx TNT 

Stripping buffer 
6.25m1 1M Tris 

0.7m1 P-mercaptoethanol 

20m1 10% SDS 

Distilled water to 100m1 
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2.9.3 Phenol/chloroform extraction and ethanol precipitation of 

DNA 
DNA was extracted and concentrated by adding an equal volume of 

phenol:chloroform to samples. Samples were vortexed and centrifuged at 10000g for 10 

minutes. The upper phase was then removed and 0.1 volumes of NaAc pH 6.5 and 2 

volumes of 100% ethanol added. Samples were then precipitated at -20 °C overnight before 

centrifuging at 13000g for 20 minutes. The DNA pellet was then washed with 70% ethanol 

and air-dried for 5 minutes before resuspending in an appropriate amount of MilliQ water. 
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CHAPTER 3. 

GM-CSF PROMOTER REMODELLING AND 

TRANSCRIPTION ARE DISTINCT PROCESSES. 

3.1 Introduction 
The induction of cytolcine gene expression is primarily controlled at the level of 

transcription, through the assembly of specific transcription factor complexes across gene 

regulatory regions. It is now evident that the transcriptional machinery must first access the 

relevant DNA binding sites within a repressive chromatin environment which provides an 

additional level of regulatory control (reviewed in Smale and Fisher, 2002; Holloway et al, 

2002). While it is well recognized that GM-CSF transcription is induced when stimulated 

by signals arising from T cell activation, (reviewed in Shannon et al, 1997; Jenkins et al, 

1995) the role of the pathways and factors activated downstream of TCR ligation in 

chromatin remodelling events at the GM-CSF gene remain largely unknown. 

The rapid increase in GM-CSF gene expression following T cell activation is 

regulated by a proximal promoter limited to 100 bp upstream of the transcription start site 

as well as an upstream enhancer (reviewed in Shannon et al, 1997). Earlier work by 

Cocker!! et al (1999) has identified an inducible DNase I hypersensitive site in the GM-

CSF promoter in response to stimulation with PMA and ionophore. The presence of this 

inducible DNase I hypersensitive site suggests that the chromatin structure of the GM-CSF 

promoter is altered following T cell stimulation. Indeed, a more detailed analysis by 

Holloway et al (2003) has revealed that GM-CSF gene expression is preceded by changes 

in chromatin structure across the proximal promoter region of the gene. While the GM-CSF 

promoter is slightly accessible to agents such as MNase and restriction enzymes in the 

resting T cell, immune stimulation promotes a dramatic rise in accessibility. Upon T cell 

stimulation changes in chromatin structure occur across the GM-CSF promoter in the 

region between -174 and +24, suggesting the targeted remodelling of a single nucleosome 

encompassing the proximal promoter (Holloway et al, 2003). 

Limited data is available regarding the activation of the endogenous GM-CSF 
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promoter, although a number of studies have considered the role of various transcription 

factors and signals in GM-CSF reporter driven expression (Jenkins et al, 1995; Shang et al, 

1999). An important role for NF-KB in GM-CSF gene activation has been identified as 

mutation of the NF-KB site in the human GM-CSF promoter reduces luciferase reporter 

expression by half (Jenkins et al, 1995). In addition, Shang et al (1999) demonstrated using 

gel shift assays, that NFAT binds the GM-CSF promoter to drive expression of a GM-CSF 

reporter construct in response to P/I signalling. 

While it is clear that inducible transcription factors play a major role in activating 

transcription from the GM-CSF promoter (Shang et al, 1999; Cakouros et al, 2001), 

activation of the endogenous GM-CSF gene is accompanied by remodelling of the 

proximal promoter region (Holloway et al, 2003) and the signals and factors responsible 

for increasing GM-CSF promoter accessibility have yet to be elucidated. However, 

previous work has implicated NF-KB proteins in GM-CSF promoter remodelling 

(Cakouros et al, 2001; Holloway et al, 2003). Mutation of the NF-KB/Sp 1 region in the 

GM-CSF promoter has been shown to drastically reduce GM-CSF expression, and this 

effect was only observed in a chromatin context and not in transiently transfected plasmids 

(Cakouros et al, 2001). Adding further support to a role for NF-K13 in GM-CSF promoter 

remodelling, Holloway et al (2003) stably transfected EL-4 T cells with a mutant IKE 

construct which prevented the nuclear translocation of NF-1(13 following T cell stimulation. 

T cells expressing this mutant construct failed to display the typical increase in promoter 

accessibility following T cell stimulation. This suggests that chromatin remodelling across 

the GM-CSF promoter region may be regulated by NF-x13 proteins. In contrast, NFAT 

family members have been implicated in remodelling of the GM-CSF enhancer region 

(Cockerill et al, 1993; Johnson et al, 2004), with inhibition of NFAT by the 

immunosuppressant, Cyclosporin A, preventing the appearance of an inducible DNase I 

hypersensitive site. 

While strong evidence for the NF-K.13 and NFAT transcription factors in regulating 

the GM-CSF promoter has been provided in the past, the precise role of individual factors 

in activating the endogenous GM-CSF gene have yet to be identified. This chapter aims to 

address how the GM-CSF gene is activated in a chromatin context. More precisely, roles of 

the PKC and calcium signalling pathways, along with the NP-KB and NFAT family 
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members were investigated. 

3.2 Results 

3.2.1 Distinct signals are required for chromatin remodelling 

and gene transcription at the GM-CSF promoter. 
In order to determine the transcription factor and signal requirements for GM-CSF 

promoter remodelling and gene transcription, these two events were examined following 

the activation of different intracellular signalling pathways in T cells. T cell receptor 

ligation activates two major signalling pathways involving the mobilization of PKC and the 

increase in free intracellular calcium levels (Altman et al, 1992). Phorbol esters and 

calcium ionophores are often used to activate T cells in vitro to mimic the activation of the 

PKC and calcium signalling pathways respectively (Takahama and Nakauchi, 1996). These 

agents are therefore able to trigger T cell activation and have previously been shown to 

induce the transcription of a number of cytokine genes including GM-CSF (Tsuboi et al, 

1994). 

Previous work by the author has demonstrated that both the PKC and calcium 

sigalling pathways are required for full transcriptional induction of GM-CSF gene 

expression (Brettingham-Moore, 2002, Honours Thesis). Little GM-CSF mRNA was 

detected in resting EL-4 T cells, however following the combined P/I treatment, GM-CSF 

mRNA levels increased approximately 200 fold (Figure 3.1a). In contrast I alone had 

minimal impact on GM-CSF transcription (approximately 4 fold increase) while treatment 

with P resulted in only a small (20 fold) increase. In addition these studies found using a 

real-time PCR based accessibility assay (CHART PCR, Rao et al, 2001) that a Hinfl site in 

the CK1 element in the GM-CSF promoter has an inherent basal accessibility of 

approximately 40% in non stimulated cells (Figure 3.1b). Following stimulation with P/I, 

Hint" accessibility increased to approximately 70%. Similar accessibility levels were 

observed at the GM-CSF promoter in P stimulated cells, while accessibility in I treated 

cells remained at basal levels (Brettingham-Moore, 2002, Honours thesis). 

Next it was necessary to determine whether accessibility changes observed at the 

Hinfl site were seen across the entire promoter and had the same signal requirements. 

50 



Fo
ld

 c
ha

ng
e  

in
  in

R
N

A
 le

ve
ls  

B 

%
 a

cc
es

sib
ili

ty
  to

  H
in
fl

 (s
et

  -I
)  

300 

200 - 

100 - 

0 	 IIIITM 	I 
NS 	P 	I 	P/I 

Treatment 

100 

75 

50 

25 

0 	  
NS 	P 	I 	P/I 

Treatment 

Figure 3.1. Distinct signals are required for GM-CSF gene transcription and 
promoter remodelling. (Brettingham-Moore, 2002, Honours thesis). (A) GM-
CSF mRNA levels were determined by real-time PCR analysis of cDNA prepared 
from EL-4 T cells either left untreated (NS) or stimulated for 4 hours with P and I, 
alone or in combination. Data is graphed as fold change in GM-CSF mRNA levels 
compared to non-stimulated. The mean and standard error of three replicate assays 
are shown. (B) Nuclei from NS EL-4 T cells or cells stimulated for 4 hours with P 
and I as indicated were incubated with Hinfl. Genomic DNA was analyzed by 
real-time PCR with primer set —I. The mean and standard error of three replicate 
assays are shown. 
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CK-I KB Sp I 	API NFAT/Ets 
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Set -V 

Figure 3.2. Schematic representation of the GM-CSF promoter with 
transcription factor binding sites, the CD28RR, Hinfl cutting site and regions 
amplified by primer sets —V, -I, +I and +II. 
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Therefore the effect of the different stimuli on the accessibility of the promoter region to 

MNase digestion was assessed using primer sets mGM-I, mGM+I and mGM-V (Figure 

3.2). Primer set -I covers the CD28RR and the Hinfl recognition sequence, while primer set 

+I (-63 to +44) spans the transcription start site and the AN, NFAT/Ets transcription factor 

binding sites. In addition, accessibility at a site spanned by primer set —V, which binds 

further upstream of the transcription start site was analyzed (Figure 3.2). While Hinfl cuts 

at a specific site, MNase will cleave all internucleosomal sites. EL-4 T cells were left 

untreated or stimulated with P, I or P/I for 4 hours. Nuclei were then isolated and chromatin 

digested using MNase. Accessibility across the promoter region mirrored the results 

previously obtained using Hinfl. In unstimulated cells both the CD28RR (primer set -I, 

Figure 3.3a) and NFAT/AP-1 region (primer set +I, Figure 3.3b) showed an inherent 

accessibility to MNase of approximately 50%. Stimulation with P alone or P/I resulted in 

an increase in accessibility to approximately 75% across the entire promoter. I alone 

however was not able to increase accessibility above basal levels. Previous data (Holloway 

et al, 2003) has shown that changes in accessibility are confined to the GM-CSF promoter 

region. In agreement with this a lower basal accessibility was observed in the region 

amplified by primer set -V, located -422 to -347 base pairs upstream of the transcription 

start site. In addition stimulation with P, I and P/I failed to cause any change in 

accessibility in this region (Figure 3.3c). Put together, these data provide evidence for a 

role for factors activated downstream of PKC signalling in chromatin remodelling events at 

the GM-CSF promoter. However, full transcriptional induction of the GM-CSF gene 

requires factors activated downstream of the PKC and calcium signalling pathways. 

The GM-CSF promoter contains an array of transcription factor binding sites 

including sites for NF-x13 and NFAT proteins and these transcription factor families have 

been implicated in GM-CSF gene expression (Shang et al, 1999; Cakouros et al, 2001). In 

order to determine which transcription factors are likely to be involved in directing 

promoter remodelling compared to transcription, the presence of different transcription 

factors in the nucleus was correlated with different signalling events. Nuclear extracts were 

prepared from EL-4 T cells either left untreated (NS) or stimulated with P, I or P/I for 4 

hours. The presence of NF-K13 family members, c-Rel, Rel A along with NFAT family 

members, NFATc and NFATp in the nucleus was determined by western blotting. It is 
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Figure 3.3. PKC signalling is sufficient to induce GM-CSF promoter remodelling. 
Nuclei were isolated from non-stimulated (NS) EL-4 T cells or cells stimulated for 4 
hours with P and I as indicated and incubated with MNase. Genomic DNA was 
analyzed by real-time PCR with primer set -I (A), +I (B) and —V (C). The mean and 
standard error of three replicate assays are shown. 
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clear that while P can induce the nuclear translocation of c-Rel and Rel A, stimulation with 

P/I results in an increased accumulation of these proteins (Figure 3.4). Stimulation with P 

alone can induce the nuclear translocation of NFATc and once again stimulation with P/I 

results in an increase in nuclear accumulation. Combined P/I stimulation is required for the 

nuclear translocation of NFATp. I is capable of allowing a small amount of NFATc to enter 

the nucleus. Combined PKC (P) and calcium (I) signals ensures the nuclear translocation of 

all 4 factors. The blot was reprobed using an Sp 1 antibody to ensure even loading of all 

samples. From these results it is clear that the presence of c-Rel, Rel A and NFATc in the 

nucleus correlate with chromatin remodelling (Figure 3.3a-b) and suggest that these factors 

could play a role in increasing accessibility to the GM-CSF promoter in P treated cells. 

The PKC inhibitor, Ro-32-0432 (Wilkinson et al, 1993) was used to confirm the 

role of PKC signalling in GM-CSF promoter remodelling and gene transcription. To 

ascertain whether the PKC inhibitor had an effect on transcription factor activation EL-4 T 

cells were either left untreated or pre-treated with Ro-32-0432 for 1 hour before being 

stimulated with P/I for 4 hours. Nuclear extracts were then prepared and analyzed by 

western blotting (Figure 3.5). The inhibition of PKC signalling prevented the nuclear 

translocation of both NFATc and NFATp along with c-Rel and to a lesser extent Rel A. 

The blot was reprobed using an Spl antibody to ensure even loading of all samples. 

The effect of PKC inhibition on GM-CSF transcription was then determined by 

real-time PCR analysis of cDNA prepared from Ro-32-0432 treated EL-4 T cells. cDNA 

was analyzed by real-time PCR using the mGM+II primer set and primers designed to the 

"housekeeping" gene GAPDH (Table 2.2 chapter 2). PCR amplification was monitored by 

SYBR green incorporation and standard curves used to correlate Ct values with copy 

number. GM-CSF mRNA levels were then normalized to GAPDH. Cells activated in the 

absence of Ro-32-0432 showed an approximately 150 fold increase in GM-CSF expression 

(Figure 3.6a). In contrast pre-treatment with the PKC inhibitor markedly inhibited GM-

CSF transcription in response to T cell activation. To determine whether the reduction in 

GM-CSF activation was due to the inhibition of GM-CSF promoter remodelling, EL-4 T 

cells were either left untreated or pre-treated with Ro-32-0432 prior to incubating with or 

without P/I. Accessibility of the GM-CSF promoter to Hid.' was then determined using 

CHART-PCR. While control treated cells displayed a typical increase in accessibility 
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Figure 3.4. The nuclear translocation of NF-KB and NFAT proteins require 
distinct signals. Nuclear extracts from EL-4 T cells either left untreated (NS) or 
stimulated for 4 hours with P and I or P/I were subjected to SDS-PAGE and 
analyzed by western blotting with the indicated antibodies. 
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Figure 3.5. The inhibition of PKC signalling prevents the nuclear accumulation 
of NF-KB and NFAT proteins. Nuclear extracts from EL-4 T cells pre-treated with 
or without the PKC inhibitor Ro-32-0432 followed by stimulation with P/I for 4 
hours were subjected to SDS-PAGE and analyzed by western blotting with the 
indicated antibodies. 
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Figure 3.6. The PKC signalling pathway is required for transcription and 
GM-CSF promoter remodelling. (A) EL-4 T cells were either untreated or pre-
treated with Ro-32-0432, then incubated with or without P/I for 4 hours before 
isolating RNA. cDNA was then prepared and GM-CSF mRNA levels were 
determined by real-time PCR analysis. The mean and standard error of three 
replicate assays are shown. (B) Nuclei from EL-4 T cells as treated in A were 
incubated with HinfI and genomic DNA analyzed by real-time PCR using primer 
set -I. The mean and standard error of three replicate assays are shown. 
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across the GM-CSF promoter following T cell activation, chromatin remodelling was 

prevented in cells treated with the PKC inhibitor (Figure 3.6b). Therefore, the inhibition of 

the PKC signalling pathway prevented remodelling from occurring at the GM-CSF 

promoter in stimulated cells and confirms that PKC signalling is essential for remodelling. 

In order to verify the role of calcium signalling in GM-CSF gene transcription and 

remodelling the immunosuppressant cyclosporin A (CsA) was used to block this pathway. 

CsA binds cyclophillin and inhibits the action of the phosphatase calcineurin which is 

required to dephosphorylate NFAT for nuclear translocation (Liu et al, 1991). To 

determine the transcription factors affected by inhibition of calcium signalling by CsA 

nuclear extracts were prepared from control and CsA pre-treated EL-4 T cells either left 

unstimulated or P/I stimulated. Western analysis revealed that pre-treatment with CsA 

blocked the nuclear accumulation of NFATc and NFATp (Figure 3.7). In addition, CsA 

was also found to slightly inhibit the translocation of Rel A and c-Rel to the nucleus. 

To assess the role of NFAT proteins in GM-CSF promoter remodelling and gene 

transcription genomic DNA was analyzed by CHART-PCR. Nuclei isolated from EL-4 T 

cells either left untreated or treated with CsA before incubating with or without P/I for 4 

hours, were digested with HinfT and the accessibility of the GM-CSF promoter determined 

by real-time PCR analysis. Compared to the control treated cells, treatment with CsA did 

not alter the basal or stimulated levels of accessibility at the GM-CSF promoter (Figure 

3.8a). This result demonstrates that NFATc and NFATp are not required for chromatin 

remodelling events at the GM-CSF promoter in response to P/I. However, the reduction of 

NFATc and NFATp brought about by CsA pretreatment resulted in a dramatic decrease in 

GM-CSF mRNA levels (Figure 3.8b). While P/I induced a 300 fold increase in GM-CSF 

mRNA levels in control cells, only a 100 fold increase was detected in CsA treated cells. 

These data suggest that NFAT is required for transcription of the endogenous GM-

CSF gene. To confirm this, NFAT nuclear accumulation was specifically inhibited using 

the VIVIT peptide (Aramburu et al, 1999). In order to assess the role of NFAT further and 

in a more specific manner EL-4 T cells were transfected with a pEGFP-VIVIT expression 

construct. This peptide prevents the nuclear translocation of NFAT proteins by blocking the 

calcineurin binding site thereby preventing dephosphorylation (Aramburu et al, 1999). EL- 
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Figure 3.7. Cyclosporin A prevents the nuclear accumulation of NFAT proteins. 
Nuclear extracts from EL-4 T cells either left untreated or pre-treated with CsA before 
incubating with or without P/I for 4 hours were subjected to SDS-PAGE and analyzed 
by western blotting with the indicated antibodies. 
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Figure 3.8. CsA inhibits GM-CSF gene transcription but not promoter 
remodelling in response to P/I. (A) Nuclei from EL-4 T cells either left untreated 
or treated with CsA before incubating with or without P/I for 4 hours were 
incubated with Hinfl and genomic DNA analyzed by real-time PCR using primer 
set -I. The mean and standard error of three replicate assays are shown. (B) cDNA 
prepared from EL-4 T cells as treated in A was analyzed by real-time PCR. The 
mean and standard error of three replicate assays are shown. 
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4 T cells were co-transfected with the K KII plasmid and the control pEGFP plasmid or the 

pEGFP-VIVIT plasmid. The KKII plasmid drives the expression of the mouse H-2K' 

receptor protein with a truncated cytoplasmic domain. This enables attachment of 

transfected cells to magnetic beads coated with a monoclonal antibody directed against the 

surface marker encoded by the KKII plasmid. The transfected cells were sorted 24 hours 

post transfection by virtue of expression of the H-2K k  receptor. Cells were then either left 

untreated or stimulated for 4 hours before isolating RNA and analyzing by real-time PCR. 

While the cells transfected with the control plasmid showed a 160 fold increase in GM-

CSF expression following stimulation, transcription was reduced 5 fold in pEGFP-VIVIT 

transfected cells (Figure 3.9). Therefore, while not required for promoter remodelling, 

NFAT is essential for the optimal induction of GM-CSF transcription. 

To determine whether new protein synthesis is required for chromatin remodelling 

at the GM-CSF promoter and subsequent transcriptional activation, EL-4 T cells were 

treated with the protein synthesis inhibitor cyclohexamide (CHX). Nuclear translocation of 

the NF-KB and NFAT transcription factors in response to P/I was determined by western 

analysis. As seen previously Rel A, c-Rel, NFATp and NFATc were all absent from the 

nuclei of non-stimulated cells and all four factors translocated to the nucleus following 

stimulation with P/I (Figure 3.10a). CHX pre-treatment blocked the nuclear translocation of 

c-Rel and NFATc, while Rel A and NFATp were unaffected. This result is in keeping with 

Rel A and NFATp being retained in the cytoplasm of resting T cells and translocated to the 

nucleus in response to P/I (reviewed in Karin and Ben-Neriah, 2000; Northrop et al, 1994) 

but c-Rel and NFATc being newly synthesized in response to T cell activation. 

Interestingly, Rel A appeared in the nuclei of non-stimulated cells treated with CHX in 

keeping with the findings of Han and Brasier (1997) who demonstrated that this is due to 

the role of the CHX sensitive factor, IKB in the cytoplasmic retention of Rel A. Reprobing 

with the Spl antibody demonstrated equivalent loading in each lane. 

The effect of CHX pre-treatment on transcription and chromatin remodelling was 

then examined. EL-4 T cells were pre-treated with CHX for 30 minutes before being 

stimulated with P/I for 4 hours or left untreated. GM-CSF mRNA levels were then 

determined by real-time PCR. While cells untreated with CHX displayed a 350 fold 

increase in GM-CSF mRNA levels, T cells pretreated with the protein synthesis inhibitor 
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Figure 3.9. Inhibition of NFAT proteins reduces GM-CSF transcription. EL-4 T 
cells were co-transfected with the K KII and GFP or GFP-VIVIT plasinids prior to 
magnetically activated cell sorting before incubating with or without P/I for 4 hours. 
cDNA was prepared and levels of GM-CSF mRNA analyzed by real-time PCR. The 
mean and standard error of three replicate assays are shown. 
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Figure 3.10. New protein synthesis is required for GM-CSF promoter 
remodelling but not transciption. (A) Nuclear extracts from EL-4 T cells either 
untreated or pre-treated with cyclohexamide (CHX) before incubating with or 
without P/I for 4 hours were subjected to SDS-PAGE and analyzed by western 
blotting with the indicated antibodies. (B) cDNA prepared from EL-4 T cells as 
treated in A was analyzed by real-time PCR. The mean and standard error of three 
replicate assays are shown. (C) Nuclei prepared from EL-4 T cells as treated in A 
were digested with Hinfl and genomic DNA analyzed by real-time PCR with primer 
set -I. The mean and standard error of three replicate assays are shown. 
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displayed only a 100 fold increase in GM-CSF mRNA levels (Figure 3.10b). Next, the 

possibility that this reduction in transcription was due to inhibition of promoter remodelling 

was investigated. Nuclei were isolated from cells treated as above and promoter 

accessibility to Hinfl analyzed by CHART-PCR. As observed previously, non-stimulated 

cells displayed an inherent basal accessibility (-50%) which increased to 80% following T 

cell stimulation (Figure 3.10c). EL-4 T cells pre-treated with CHX, showed similar basal 

accessibility (50%) however remodelling of the promoter region following T cell 

stimulation was inhibited. These data suggest that chromatin remodelling requires new 

protein synthesis and implicates c-Rel or NFATc in this process, however previous results 

(Figure 3.8a) have ruled NFAT proteins out as contributing to remodelling. The results also 

demonstrate that some gene transcription can occur in the absence of promoter 

remodelling. 

3.2.2 GM-CSF gene transcription and promoter remodelling 

display distinct kinetics. 
The data outlined above demonstrate that the processes of chromatin remodelling 

across the GM-CSF promoter and gene transcription are distinct events. To determine 

whether the kinetics of these events were also distinct, each process was studied over time 

following T cell activation. EL-4 T cells were stimulated with P/I at various time points, up 

to 48 hours before extracting RNA and analyzing GM-CSF mRNA levels by real-time 

PCR. GM-CSF mRNA levels increased within 2 hours post stimulation and continued to 

increase to 600 fold at 6 hours (Figure 3.11a). Levels had decreased considerably by 24 and 

48 hours, however GM-CSF expression remained elevated for at least 48 hours following 

stimulation. In order to determine whether the kinetics of GM-CSF promoter remodelling 

were similar to transcription, accessibility to the promoter over time was analyzed. Nuclei 

from EL-4 T cells stimulated for 0, 2, 6, 24 and 48 hours with P/I were incubated with 

Hinfl before analyzing genomic DNA by real-time PCR. Accessibility of the Hinfl site in 

the GM-CSF promoter increased from 40% to 60% within 2 hours of the initial stimulation 

(Figure 3.11b) and continued to increase for at least 24 hours when accessibility reached 

maximal levels of approximately 80%. By 48 hours accessibility had begun to decline. To 

64 



750 - 

Fo
ld

 c
ha

ng
e  

in
  m

R
N

A
 

  

500 - 

 

  

250 - 

 

0 

 

 

0 	2 
Treatment with P/I (h) 

100-  
z 

75 

25- 

0 I I I I 1 
Treatment with P/I (h) 

100 - 

'11111  
0 	2 	4 	6 24 48 

Treatment with Pa (h) 

Figure 3.11. GM-CSF promoter remodelling and gene transciption display 
distinct kinetics. (A) GM-CSF mRNA levels were determined by real-time PCR 
analysis of cDNA prepared from EL-4 T cells stimulated with P/I for the indicated 
time periods. The mean and standard error of 3 replicate assays are shown. Nuclei 
from cells stimulated with P/I for the indicated time periods were incubated with 
HinfT (B) or MNase (C). Genomic DNA was analyzed by real-time PCR using 
primer set -I. The mean and standard error of three replicate assays are shown. 
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determine whether similar kinetics were observed across the entire promoter nuclei were 

again isolated from EL-4 T cells stimulated with P/I for up to 48 hours before digesting 

with MNase and analyzing genomic DNA by real-time PCR. Analysis of accessibility 

across the GM-CSF promoter to MNase showed slightly different kinetics to accessibility 

at the single HinfI site. Within 2 hours following stimulation there was a dramatic increase 

in accessibility across the promoter region, reaching maximal levels of 80%, by 4 hours 

and this was maintained for at least 48 hours (Figure 3.11c). Thus while GM-CSF mRNA 

levels gradually increased following stimulation before peaking at 6 hours and declining by 

24 hours, chromatin changes at the GM-CSF promoter were relatively stable, being 

maintained in a highly accessible state for at least 48 hours. 

Next, the timing of transcription factor nuclear translocation was determined to 

correlate transcription factor presence with GM-CSF gene transcription and chromatin 

remodelling events. Nuclear extracts were prepared from EL-4 T cells stimulated at various 

time points over a 24 hour time period and analyzed by western blotting with Rel A, c-Rel, 

NFATp and NFATc antibodies. Rel A and NFATp showed similar nuclear translocation 

profiles (Figure 3.12). Both of these factors translocated to the nucleus within 30 minutes 

of T cell stimulation, and remained in the nucleus for at least 8 hours. By 16 and 24 hours 

post stimulation the levels of Rel A declined significantly, and NFATp was barely 

detectable in the nucleus. Meanwhile c-Rel entered the nucleus within 2 hours of 

stimulation and persisted for at least 24 hours. Similarly, NFATc translocated to the 

nucleus by 4 hours following stimulation and persisted for at least 24 hours. Thus NFATp 

and Rel A presence appears to correlate well with the transcriptional profile of GM-CSF, 

while the persistence of c-Rel and NFATc in the nucleus for a prolonged time period 

correlated with the more stable, longer term chromatin remodelling events at the promoter. 

While GM-CSF promoter remodelling appears to be a relatively stable event 

following T cell stimulation, transcription is a more transient process. To determine 

whether the remodelled state needed to be stably maintained by continued stimulation, 

stimulus withdrawal experiments were conducted. In order to determine whether stimulus 

withdrawal had an effect on GM-CSF transcription, EL-4 T cells were stimulated for 2 

hours before stimulus withdrawal. Cells were left for a further 4 or 22 hours before 

isolating RNA. EL-4 T cells were also stimulated with P/I in parallel for 0, 2, 6, and 24 
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Figure 3.12. The kinetics of NF-KB and NFAT nuclear translocation. Nuclear 
extracts prepared from EL-4 T cells stimulated with pn for the indicated time 
periods were subjected to SDS-PAGE and analyzed by western blotting with the 
indicated antibodies. 
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hours before isolating RNA. GM-CSF mRNA levels were then determined by real-time 

PCR analysis of cDNA. Cells treated with P/I displayed a transient increase in GM-CSF 

mRNA levels which peaked at 6 hours with a 500 fold induction before levels decreased to 

300 fold by 24 hours (Figure 3.13). In the stimulus withdrawal treatment GM-CSF mRNA 

levels at 6 hours only reached 40 fold. Following stimulus removal for 24 hours GM-CSF 

mRNA levels remained at basal levels. Thus in the absence of persistent stimulation GM-

CSF mRNA levels fail to reach the peak in expression seen in the control samples. 

The stability of GM-CSF promoter remodelling in the absence of persistent 

stimulation was then analyzed. EL-4 T cells were either left untreated or stimulated for 2 

hours with P/I at which time chromatin remodelling had occurred at the promoter (see 

Figure 3.11b and c). The stimulus was then withdrawn and cells were left for a further 4 or 

22 hours. Nuclei were then harvested from these samples along with cells stimulated for up 

to 24 hours and accessibility of the promoter Hinfl site examined by CHART-PCR. As 

seen before, stimulation resulted in an increase in GM-CSF promoter accessibility to 60% 

within 2 hours which increased further to 70% by 6 hours and was maintained for 24 hours 

(Figure 3.14a). Cells stimulated for 2 hours, followed by a 4 hour stimulus withdrawal only 

showed a slight decrease in accessibility (to approximately 65%). In comparison, promoter 

accessibility in EL-4 T cells stimulated for 2 hours followed by a 22 hour stimulus 

withdrawal decreased 20-25% compared to cells undergoing persistent stimulation for the 

same period (24 hours). However, even after stimulus removal for 22 hours accessibility 

had not returned to basal levels. 

In order to determine when accessibility returns to basal levels following stimulus 

withdrawal the effect of stimulus withdrawal over a longer time period was analyzed. EL-4 

T cells were either left untreated or stimulated with P/I for 24, 48 and 72 hours before 

isolating nuclei, digesting with MNase and analyzing by CHART-PCR. Nuclei from EL-4 

T cells treated for 2 hours to facilitate chromatin remodelling before stimulus withdrawal 

for 22, 46 and 70 hours were also isolated and analyzed by CHART-PCR in parallel. 

MNase accessibility across the GM-CSF promoter increased from a basal level of 

approximately 25% to 85% by 24 hours, remained at this level at 48 hours post stimulation 

(Figure 3.14b) and at 72 hours had decreased to 70%. In contrast, when the stimulus was 

withdrawn at 2 hours, promoter accessibility to MNase had decreased at 24 hours 
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Figure 3.13. The effect of brief versus continuous T cell stimulation on GM-
CSF gene transcription. EL-4 T cells were either left unstimulated or stimulated 
with WI for 2 hours, before the stimulus was withdrawn and the cells incubated for 
the indicated time periods. GM-CSF mRNA levels were determined by real-time 
PCR analysis of cDNA. The mean and standard error of three replicate assays are 
shown. 
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Figure 3.14. The effect of stimulus withdrawal on GM-CSF promoter 
remodelling. EL-4 T cells were incubated with P/I for 2 hours before the stimulus 
was withdrawn. In parallel, EL-4 T cells were stimulated with P/I for the indicated 
time periods. Nuclei were prepared and digested with Hinfi (A) or MNase (B). 
Genomic DNA was analyzed by real-time PCR using primer set -1. The mean and 
standard error of three replicate assays are shown. 
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compared to cells undergoing persistent stimulation and had returned to basal levels by 48 

hours. It is therefore clear that the remodelled GM-CSF promoter returns to its basal state 

following stimulus withdrawal although with significantly delayed kinetics compared to 

mRNA levels. 

Put together these data show GM-CSF transcriptional activation needs persistent 

stimulation while chromatin remodelling is relatively stably maintained. In order to 

determine how the nuclear translocation of transcription factors correlates with this, the 

effect of stimulus withdrawal on the nuclear accumulation of NF-K13 and NFAT was 

determined. Nuclear extracts were prepared from EL-4 T cells either left untreated, 

stimulated for 2, 6 and 24 hours or stimulated for 2 hours followed by a 4 or 22 hour 

stimulus withdrawal. Rel A was detected in the nucleus at 2 hours (Figure 3.15). At 6 hours 

post stimulation Rel A protein levels peaked but had dramatically decreased by 24 hours. 

However if stimulation was withdrawn after 2 hours, levels of Rel A decreased 

considerably by 4 hours and were undetectable by 22 hours. c-Rel nuclear translocation 

occurred within 2 hours post-stimulation and increased further at 6 and 24 hours. Stimulus 

withdrawal for 4 hours caused a slight decrease in c-Rel and by 22 hours the levels of c-Rel 

were barely detectable. In contrast NFATc and NFATp could not be detected in the nucleus 

following stimulus withdrawal. Therefore the more stable presence of NF-KB correlates 

with remodelling while the pattern of NFAT nuclear translocation correlates more closely 

with transcription. 

GM-CSF promoter remodelling is a stable event with chromatin accessibility 

remaining high for up to 72 hours post stimulation. In order to determine whether 

remodelling at the promoter is the rate limiting step in GM-CSF gene activation, 

subsequent reactivation of the gene was analyzed. EL-4 T cells were either left untreated or 

stimulated with P/I for 2 hours. The stimulus was then withdrawn and cells left for a further 

22 hours at which time mRNA levels return to basal but the promoter remains accessible 

(Figure 3.11). Cells were then restimulated with P, I or P/I. Stimulation with P alone had a 

minimal impact on GM-CSF transcription only causing a 20 fold increase in mRNA levels 

(Figure 3.16a). Restimulation with I caused no increase in transcription while restimulation 

with P/I resulted in a 300 fold increase in GM-CSF mRNA levels. These data suggest that 

while remodelling has already occurred in these previously stimulated cells, both PKC and 
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Figure 3.15. The stability of NF-KB and NFAT proteins in the nucleus. Nuclear 
extracts from EL-4 T cells which were either left unstimulated or stimulated with P/I 
for 2 hours, before the stimulus was withdrawn and the cells incubated for the indicated 
time periods, were subjected to SDS-PAGE and analyzed by western blotting with the 
indicated antibodies. 
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Figure 3.16. Restimulation of EL-4 T cells causes a more rapid and robust GM-
CSF transcriptional response. (A) GM-CSF mRNA levels were determined by 
real-time PCR analysis of cDNA prepared from EL-4 T cells stimulated for 2 hours 
followed by 22 hours of stimulus withdrawal. Cells were then left untreated (NS) or 
restimulated with P or I alone or in combination. The mean and standard error of 
three replicate assays are shown. (B) cDNA was prepared from EL-4 T cells either 
left untreated or stimulated with P/I over the indicated time periods. In parallel, 
cDNA was prepared from EL-4 T cells stimulated with P/I for 2 hours prior to 22 
hours of stimulus withdrawal. Cells were then restimulated over the indicated time 
periods. GM-CSF mRNA levels were determined by real-time PCR analysis. The 
mean and standard error of three replicate assays are shown. 
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calcium signalling pathways are still required for full transcriptional induction of GM-CSF. 

Next the effect of restimulation with P/I over time was analyzed. Following 

stimulation with P/I for 2 hours, stimulus was withdrawn for 22 hours before restimulating 

with P/I for 0 to 6 hours. cDNA was also prepared from EL-4 T cells stimulated for 0 to 6 

hours. Cells stimulated with P/I showed a typical profile of GM-CSF mRNA accumulation 

(Figure 3.16b) and levels reached approximately 400 fold by 6 hours. In contrast, in EL-4 T 

cells which were restimulated an approximately 800 fold increase in mRNA levels was 

detected by 6 hours. Restimulated cells showed a much more rapid induction of 

transcription. Therefore, cells in which remodelling has already occurred, due to prior 

stimulation, are capable of more rapid reactivation. 

3.3 DISCUSSION 
The data outlined in this chapter demonstrate that GM-CSF promoter remodelling 

and subsequent gene transcription are independent events. These two distinct events have 

different signal and transcription factor requirements. While remodelling of the GM-CSF 

promoter requires PKC activated factors, full transcriptional induction requires both the 

PKC and calcium signalling pathways. The PKC pathway may influence chromatin 

remodelling events at the GM-CSF promoter by activating transcription factors which bind 

to the GM-CSF promoter and recruit chromatin remodelling activities. In support of this 

NF-KB, which can be activated by PKC signalling alone, has been implicated in GM-CSF 

promoter remodelling (Cakouros et al, 2001; Holloway et al, 2003; Brettingham-Moore et 

al, 2005). Alternatively PKC signalling may lead to the activation of co-activators and 

remodelling complexes required for these remodelling events or may directly affect histone 

proteins. PKC has been found to directly phosphorylate a serine residue on histone H3 in 

vitro (Huang et al, 2004) which could directly influence chromatin accessibility at the 

promoter. Interestingly, remodelling of the GM-CSF promoter by PKC signalling alone 

caused a slight increase in transcription. This suggests that the increase in accessibility is 

sufficient to drive a low level of transcription, however other factors are clearly required 

for optimal gene expression. It is also interesting to note that the inhibition of PKC 

signalling caused a very slight increase in the basal accessibility of the promoter indicating 
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that perhaps a PKC activated factor is not only responsible for increasing promoter 

accessibility, but also necessary for maintaining the basal chromatin structure of the GM-

CSF promoter. 

While remodelling of the GM-CSF promoter can occur following PKC mobilization 

alone, other signals generated from the calcium signalling pathway are required to induce 

high levels of GM-CSF gene transcription. The requirement for both signalling pathways in 

full GM-CSF expression is supported by Jenkins et al (1995) whose work revealed that the 

activity of the human GM-CSF promoter attached to a luciferase reporter relies on both 

signals. The data presented in this chapter demonstrates that NFAT proteins are not 

essential for GM-CSF promoter remodelling, however, the nuclear translocation of NFAT 

appears to be critical for the optimal activation of transcription. CsA, which inhibits the 

nuclear translocation of NFAT, has previously been shown to inhibit endogenous GM-CSF 

gene transcription in Jurkat T cells (Tsuboi et al, 1994) and this finding was confirmed by 

specific inhibition of NFAT proteins using the VIVIT peptide. NFAT has previously been 

shown to play a role in GM-CSF enhancer remodelling (Cockerill et al, 1993), therefore 

the decrease in GM-CSF transcription due to the absence of NFAT may also be due to 

limited enhancer remodelling and activity. Another possibility is highlighted by the 

findings of Johnson et al (2004) who revealed that NFAT has the potential to cooperate 

with other co-activators at the GM-CSF enhancer. 

c-Rel has previously been implicated in GM-CSF induction in T cells (Himes et al, 

1996; Gerondakis et al, 1996). The results here clearly demonstrate that nuclear 

translocation of the NF-x13 family member c-Rel mirrors the increase in accessibility to the 

GM-CSF promoter across a range of treatments (Table 3.1). Remodelling of the GM-CSF 

promoter has been detected as early as 1 hour post stimulation (Holloway et al, 2003) and 

c-Rel has previously been detected in the nuclei of EL-4 T cells within 1 hour of 

stimulation (Rao et al, 2001). The delayed nuclear activation of c-Rel is concomitant with 

promoter remodelling and a large increase in protein binding to the CD28RR (Himes et al, 

1996; Shannon et al, 1995). Therefore it is possible that c-Rel is involved in the initial 

chromatin remodelling events at the GM-CSF promoter and/or maintaining increased 

accessibility at the remodelled promoter. The observation that CsA caused a slight 

reduction in c-Rel levels yet remodelling was not prevented would suggest that a certain 
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Chromatin 

Remodelling 

Table 3.1. Correlation between transcription factor presence in the nucleus 
and chromatin remodelling at the GM-CSF promoter. 

Treatment Rel A NFATc NFATp 

PMA 
4., 

X 

Ro-32-0432 X X 

CsA X X 

CHX X 

24 hour stim X 

24 hour stim removal X X X 



threshold of this NF-KB member is sufficient for chromatin remodelling. The role of c-Rel 

in chromatin remodelling events at the GM-CSF promoter is supported by findings that 

inhibition of c-Rel by Pentoxifylline inhibits the increase in GM-CSF promoter 

accessibility following T cell activation (Brettingham-Moore, 2002, Honours Thesis). In 

addition, Shannon and colleagues found that stimulation of c-Re1 4-  T cells failed to induce 

GM-CSF promoter remodeling (Brettingham-Moore et al, 2005). It is interesting to note 

that NF-KB proteins have been found to have DNA bending properties in vitro (Schreck et 

al, 1990). This feature may help c-Rel to access DNA binding sites within the repressive 

chromatin environment and aid other factors in gaining access. 

Similar to the findings presented here for GM-CSF, c-Rel has also been identified 

as critical for IL-2 gene transcription in a reporter based system (Wang et al, 1997) and the 

accumulation of c-Rel has also been correlated with IL-2 promoter accessibility changes. 

Accessibility to the CD28RR in the IL-2 promoter upon stimulation was reduced in T cells 

from c-Rel -/-  mice (Rao et al, 2003). In contrast, c-Rel does not play a role in IL-12 

promoter remodelling as increased accessibility in response to IFN-y and LPS stimulation 

was still observed in c-Re1 4-  macrophages (Weinmann et al, 2001). However, c-Rel was 

found to be important for the transcription of IL-12. These differences highlight the 

specific way in which each gene is likely to be activated, with c-Rel playing different roles 

in different circumstances. 

This work also highlights the different roles played by different transcription factor 

family members. The CHX data demonstrated that while Rel A and NFATp are pre-

existing, both NFATc and c-Rel are newly synthesized, or require continual replacement. 

The appearance of Rel A in the nuclei of non stimulated CHX treated cells indicates that 

Rel A alone is incapable of remodelling the GM-CSF promoter. It is also evident from the 

CHX data that transcription of the GM-CSF gene can occur without any detectable changes 

in promoter accessibility. It is therefore possible that the transcriptional machinery can be 

assembled at the promoter and drive transcription at a low level in the absence of any 

changes to chromatin structure. This may be attributed to the inherent basal accessibility of 

the GM-CSF promoter or alternatively the influence of the enhancer element, either of 

which may allow low levels of transcription without full promoter remodelling. However, 

CHX has also previously been shown to block the appearance of an inducible DNase 
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hypersensitive site in the GM-CSF enhancer (Cockerill et al, 1993). 

Chromatin remodelling at the GM-CSF promoter is a relatively stable event while 

transcription is a transient event. The stability of GM-CSF promoter remodelling is 

biologically relevant in regard to the immune system as previously activated T cells may be 

able to respond more swiftly to subsequent attacks on the immune system. Restimulation of 

T cells results in a more rapid and robust GM-CSF transcriptional response suggesting that 

remodelling of the GM-CSF promoter is the rate limiting step for transcription. It also 

suggests that the altered structure of the promoter and stability of this event helps confer a 

type of "memory" to the cells. EL-4 T cells divide every 16 to 24 hours, thus the 

remodelled state would appear to be retained following cell division. It is possible that the 

stability of this increased accessibility is due to active maintenance of the remodelled state 

through cell division. The nuclear accumulation of c-Rel correlates with the stability of the 

remodelled promoter. Therefore it is possible that c-Rel may be involved in maintaining the 

increased accessibility. Alternatively, continuous signalling may allow the altered 

chromatin structure to be reset following cell division. In agreement with this, BAF 

remodelling complexes have been shown to be phosphorylated and inactivated during 

mitosis (Sif et al, 1998) indicating that remodelling is prevented during cell division and 

chromatin must be reset following division. Yet another possibility is the generation of 

transient, short-term epigenetic marks. Histone modifications in activated cells may help 

mark certain regions of the genome and impart memory to daughter cells (Smith et al, 

2002). 

It is also important to note, that as with any technique which studies cell 

populations rather than individual cells, an average value is obtained and thus it is 

impossible to determine whether the results from the CHART assay reflect the accessibility 

of all cells within the population or a small number within a heterogeneous population. For 

example an accessibility value of 50% may reflect a population in which 50% of the cells 

have 100% accessibility or alternatively a case in which 100% of cells have 50% 

accessibility. Therefore it is possible that accessibility remains at an increased level in 

some cells which have failed to divide over the time period examined. 

The data presented here are consistent with a two step model for GM-CSF 

activation in which remodelling precedes transcription. The first step in GM-CSF 
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activation being initiated by the activation of the PKC signalling pathway downstream of 

TCR ligation and resulting in chromatin remodelling and increased accessibility at the GM-

CSF promoter. This induces the nuclear translocation of NF-KB proteins. These 

transcription factors may then be able to bind to the promoter region due to the inherent 

basal accessibility of the GM-CSF promoter. c-Rel may then interact with chromatin 

remodelling factors to increase accessibility to the promoter region. This step ensures the 

second stage of activation can occur, by permitting other transcription factors and 

transcriptional machinery to access their relevant DNA binding sites. Only then, can GM-

CSF gene expression occur. 

79 



CHAPTER 4. 

BRG1 IS POISED AT THE GM-CSF PROMOTER IN T 

CELLS AND IS REQUIRED FOR GENE 

ACTIVATION. 

4.1 INTRODUCTION 
The data presented in the previous chapter and published reports have now clearly 

demonstrated that activation of the GM-CSF gene in T cells involves changes to the 

chromatin structure across its proximal promoter region (Cockerill et al, 1999; Holloway et 

al, 2003, Brettingham-Moore et al, 2005). However, very little is known about the 

mechanisms which underpin these chromatin remodelling events. Recent work by Chen et 

al (2005) has demonstrated using ChIP that total histone levels and histone acetylation at 

the GM-CSF promoter decrease following T cell activation, implying that remodelling 

involves the loss of histones from the promoter region. However, the complexes 

responsible for this chromatin remodelling and the mechanisms involved remain 

unidentified. 

The exact mechanism underlying the activation of inducible genes in a chromatin 

context has only been elucidated for a small number of mammalian genes. One of the best 

examples is the step by step assembly of an enhanceosome at the enhancer region of the 

IFN-I3 gene following viral infection (Agalioti et al, 2000). IFN-13 transcription is activated 

6 hours post infection, prior to which a highly ordered recruitment profile has occurred. 

This involves the binding of transcription factors to the nucleosome-free enhancer, 

followed by local increases in histone acetylation, subsequent SWI/SNF recruitment and 

finally remodelling of adjacent nucleosomes (Agalioti et al, 2000). During skeletal muscle 

differentiation a slightly different Brg I recruitment profile is observed at the myogenin 

promoter. A two-step mechanism was observed in which the homeodomain factor Pbxl is 

constitutively bound to the myogenin promoter and indirectly helps to recruit the 

transcription factor, MyoD. Following induction of myogenic differentiation increased H4 
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acetylation was observed followed by MyoD dependent binding of Brg 1 (de la Serna et al, 

2005). Brgl binding facilitates and strengthens MyoD binding even further and results in 

transcriptional induction of myogenin. 

Similar to the histone loss detected at the GM-CSF promoter (Chen et al, 2005) 

histone depletion has also been observed at the yeast PHO5 (Reinke and Horz, 2003; 

Korber et al, 2004) and PHO8 promoters (Adkins et al, 2004). In addition this histone loss 

has been shown to be dependent on SWI/SNF recruitment. While PHO8 activation requires 

SWI/SNF and GCN5 histone acetyltransferase activity (Gregory et al, 1999), the PHO5 

promoter is still remodelled in the absence of SWI/SNF and GCN5 but with delayed 

kinetics (Gadreau et al, 1997). The different requirements for PHO5 and PHO8 activation 

have recently been shown to be due to the inherent differences in chromatin structure, with 

the nucleosomes encompassing the PHO8 promoter being more stable than those at the 

PHO5 promoter (Hertel et al, 2005). Histone acetylation has also been demonstrated to 

precede promoter remodelling at the PHO5 promoter (Reinke and Horz, 2003) and this 

appears to be a common feature for gene activation (Agalioti et al, 2001; de la Serna et al, 

2005). 

Previous in vitro work by Holloway et al (2003) has suggested a role for the 

ATPase component of the SWI/SNF complex, Brgl, in GM-CSF gene activation. An 

immobilized GM-CSF promoter template was incubated with nuclear extracts from 

unstimulated and stimulated Jurkat T cells to demonstrate that Brg 1 could interact with the 

GM-CSF promoter in an NF-KB dependent manner (Holloway et al 2003). Brg 1 has 

previously been implicated in immune gene activation and, following T cell activation, the 

SWI/SNF complex has been found to associate with chromatin in a Brgl dependent manner 

(Zhao et al, 1998). However whether or not this ATPase interacts directly with the 

endogenous GM-CSF promoter is yet to be determined. 

Therefore, the role of Brgl in GM-CSF gene activation was analyzed and Brgl 

binding at the GM-CSF promoter was determined using the ChIP assay. In addition, the 

role of histone acetylation in GM-CSF activation was investigated. The basal state of the 

GM-CSF promoter in expressing and non-expressing cells was also analyzed to investigate 

whether the inherent chromatin environment determines GM-CSF expression capabilities. 
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4.2 RESULTS 

4.2.1 Brgl is required for GM-CSF gene activation 
In order to determine whether the Brgl-containing SWI/SNF complex is required 

for GM-CSF gene activation, GM-CSF expression was monitored in EL-4 T cells 

transfected with an ATPase mutant Brgl construct (pBJ5-brgl IC/R) in which lysine 774 has 

been mutated to an arginine (Khavari et al, 1993). This Brgl mutant protein has been found 

to assemble into the SWI/SNF complex, but is unable to remodel nucleosomes (de la Serna 

et al, 2000). The Brgl cDNA is cloned in frame with a C-terminal haemoglutanin (HA) tag 

which can be used to monitor expression of the mutant protein. To ensure the Brgl mutant 

protein was expressed in the transfected cells, EL-4 T cells were transfected with the 

control pBJ5 plasmid or pBJ5-brgl IC/R plasmid. Nuclear extracts were prepared, subjected 

to SDS-PAGE and analyzed by western blotting with the HA antibody. A band of over 180 

kDa was detected in the cells transfected with the pBJ5-brg1K/R plasmid but not in the 

control transfected cells (Figure 4.1a) confirming expression of the mutant Brgl protein in 

transfected cells. 

While the mutant protein can be expressed in EL-4 T cells, the transfection 

efficiency of these cells is relatively low (-15%) and therefore it was necessary to enrich 

for the transfected cells in order to monitor the functional effect of the Brgl mutant on 

GM-CSF gene activation. EL-4 T cells were therefore transfected with the pBJ5-brg1K/R 

plasmid or the empty pBJ5 control vector along with the K KII plasmid. This plasmid 

enables the expression of a truncated H-2K K receptor protein. Transfected cells expressing 

H-2K' can bind to magnetic beads coated with antibody directed against this cell surface 

marker to allow the transfected cell population to be enriched. Sorted cells were either left 

unstimulated or stimulated with P/I for 6 hours and GM-CSF expression monitored by real-

time PCR. GM-CSF mRNA levels increased approximately 500 fold following P/I 

stimulation in cells transfected with the control plasmid. In contrast, accumulation of GM-

CSF mRNA was reduced by 50% in cells expressing the Brgl ATPase mutant (Figure 

4.1b). This demonstrates that Brgl is required for optimal activation of the GM-CSF gene. 

It was hypothesised that the reduction in GM-CSF expression in cells transfected 

with the Brgl mutant could be due to the inability of the ATPase defective protein to 
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Figure 4.1. Brgl is required for efficient transcription of the GM-CSF gene. (A) 
Nuclear extracts prepared from EL-4 T cells transfected with either the pBJ5 or 
pBJ5-brg1K/R-HA plasmid were subjected to SDS-PAGE and analyzed by western 
blotting using an anti-HA antibody. (B) EL-4 T cells were co-transfected with the 
KKII and pBJ5 or pBJ5-brg1K/R plasmids prior to magnetically activated cell sorting 
before incubating with or without P/I for 6 hours. cDNA was prepared and levels of 
GM-CSF mRNA analyzed by real-time PCR. The mean and standard error of three 
replicate assays are shown. 
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remodel the GM-CSF promoter. To determine whether Brgl is involved in chromatin 

remodelling events at the GM-CSF promoter EL-4 T cells were transfected with either the 

pBJ5 or pBJ5-brg1K/R constructs along with the K KII plasmid. Following cell sorting 24 

hours post-transfection, cells were either left unstimulated or stimulated with P/I for 6 

hours. Nuclei were then isolated and incubated with or without MNase. Accessibility to the 

GM-CSF promoter was then determined by CHART-PCR analysis of genomic DNA using 

primer set —I which covers the proximal promoter. An inherent level of accessibility to 

MNase of approximately 50% was observed at the GM-CSF promoter in unstimulated cells 

transfected with the control plasmids (Figure 4.2) as seen previously at the GM-CSF 

promoter (Chapter 3). Accessibility to the promoter region increased to approximately 80% 

following stimulation. While a similar increased level of accessibility was detected in Brgl 

mutant expressing cells following stimulation, these cells displayed a slightly higher basal 

level of accessibility prior to stimulation in addition to increased variability. Surprisingly, 

these data suggest that Brgl is not required to generate the remodelled state across the 

promoter upon stimulation but may be involved in generating the basal chromatin structure. 

4.2.2 Brgl is enriched at the GM-CSF promoter in resting T 

cells and is lost from the promoter upon stimulation. 
Previous in vitro analysis of proteins recruited to the GM-CSF promoter has 

implicated Brgl in GM-CSF gene activation (Holloway et al, 2003). Therefore in order to 

determine whether Brgl is associated with the GM-CSF promoter in T cells, ChIP analysis 

was performed on EL-4 T cells with Brgl antibodies, before and after stimulation with P/I 

for 4 hours. Immunoprecipitated DNA was measured by real-time PCR using PCR primers 

designed to regions of the GM-CSF gene and the constitutively expressed GAPDH gene 

(Figure 4.3a). Brgl recruitment was calculated as a percentage of the DNA levels prior to 

immunoprecipitation (i.e. % total input). Using primer sets —I and +I which cover the GM-

CSF promoter, Brgl was found to be associated with the promoter in resting T cells 

however, Brgl levels at the promoter decreased upon T cell stimulation (Figure 4.3b). In 

contrast, there was little change in Brgl levels associated with distal 5' and 3' regions of 

the gene or the constitutively expressed GAPDH gene following stimulation (Figure 4.3b). 
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Figure 4.2. Brgl is not required for chromatin remodelling of the GM-CSF 
promoter. EL-4 T cells were co-transfected with the KKII and pBJ5 or pBJ5- 
brg1K/R plasmids prior to magnetically activated cell sorting before incubating with 
or without P/I for 6 hours. Nuclei were isolated and digested with MNase and 
genomic DNA analyzed by real-time PCR using primer set -I. The mean and 
standard error of three replicate assays are shown. 
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Figure 4.3. Brgl is bound to the GM-CSF promoter in resting T cells. (A) 
Schematic representation of the GM-CSF promoter with positions of primer 
sets 5', -I, +I and 3'. (B) EL-4 T cells were stimulated with P/I for 4 hours 
before performing ChIP with Brgl antibodies. Enrichment of Brgl at the GM-
CSF promoter, a 5' region, a 3' region and at the GAPDH gene was determined 
by real-time PCR. The mean and standard error of 3 replicate assays are shown. 
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In addition, in resting cells the relative levels of Brg 1 were considerably higher at the GM-

CSF promoter (primer sets —I and +I) than the 3' and 5' regions of the gene or the GAPDH 

gene suggesting enrichment of Brgl at the promoter region. These data therefore suggest 

that Brg 1 is enriched at the GM-CSF promoter in resting T cells and lost from the promoter 

region following T cell activation, concomitant with chromatin remodelling. Put together, 

these data suggest a role for Brg 1 in establishing the basal chromatin environment at the 

GM-CSF promoter that is conducive to gene activation. 

4.2.3 Increasing promoter acetylation facilitates Brgl 

recruitment and GM-CSF gene activation 
The data presented above demonstrate that Brg 1 is enriched at the GM-CSF 

promoter in resting T cells. This raises the question of how Brgl might be constitutively 

recruited to the GM-CSF promoter. The recruitment of Brg 1 has previously been linked to 

increased histone acetylation (Hassan et al, 2002). Therefore, to determine whether histone 

acetylation levels influence GM-CSF gene activation and chromatin remodelling, the effect 

of the histone deacetylase inhibitor, TSA on these two processes was examined. EL-4 T 

cells were pre-treated with TSA for 4 hours and left unstimulated or stimulated with P/I for 

4 hours. GM-CSF mRNA levels were then determined by real-time PCR analysis of cDNA. 

GM-CSF was induced 400 fold following stimulation with P/I (Figure 4.4). TSA pre-

treatment augmented GM-CSF expression in stimulated cells to approximately 1200 fold 

(Figure 4.4). Treatment of EL-4 T cells with TSA has been shown to increase global 

acetylated H3 levels and specifically increase acetylated histone H3 levels across the GM-

CSF gene (Chen and Shannon, personal communication). Therefore, increasing histone 

acetylation at the GM-CSF promoter results in increased gene transcription. 

In order to determine how increasing histone acetylation levels influenced 

chromatin remodelling events at the GM-CSF promoter, chromatin accessibility was 

monitored using CHART-PCR. EL-4 T cells were either left untreated or pre-treated with 

TSA for 4 hours prior to incubating with or without P/I for 4 hours. The GM-CSF promoter 

displayed an inherent accessibility to MNase of approximately 50% in the control treatment 

as expected, and following stimulation, this accessibility increased further to approximately 
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Figure 4.4. Increased acetylation increases GM-CSF gene transcription. 
EL-4 T cells were either left untreated or pre-treated with TSA prior to 
incubating with or without P/I for 4 hours. GM-CSF mRNA levels were 
determined by real-time PCR analysis of cDNA. The mean and standard error 
of 3 replicate assays are shown. 
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80% (Figure 4.5a). Cells which were pre-treated with TSA similarly displayed 

approximately 50% accessibility in untreated cells, increasing to 80% upon stimulation. 

Thus, despite enhancing GM-CSF gene transcription, TSA pre-treatment did not alter either 

basal or induced levels of accessibility at the GM-CSF promoter. This result failed to 

answer the question of how increasing histone acetylation augmented GM-CSF mRNA 

accumulation. Therefore to determine whether pre-treatment with TSA affected the kinetics 

of chromatin remodelling across the GM-CSF promoter. EL-4 T cells were either left 

untreated or pre-treated with TSA for 4 hours before incubating with P/I for 0, 0.5, 1 or 4 

hours. In the absence of TSA little change in chromatin accessibility across the GM-CSF 

promoter was observed 30 minutes following P/I stimulation and only a small increase in 

accessibility was observed 1 hour after P/I stimulation. As seen previously, a dramatic 

increase in accessibility was then observed 4 hours post stimulation with P/I (Fig 4.5b). In 

contrast, in cells pre-treated with TSA, increased chromatin accessibility was observed 

within 30 minutes post-stimulation and had almost reached maximal induced accessibility 

by 1 hour (Figure 4.5b) increasing only slightly further at 4 hours. These results suggest 

that increasing histone acetylation levels across the GM-CSF gene, while not affecting 

basal accessibility, allowed chromatin remodelling events to occur more rapidly following 

stimulation. 

To investigate the possibility that Brg 1 may be enriched at the GM-CSF promoter 

through association with acetylated histones, Brgl recruitment at the promoter was 

measured using the ChIP assay. EL-4 T cells were either left untreated or pre-treated with 

TSA for 16 hours before incubating with or without P/I for 4 hours. Chromatin was then 

crosslinked and immunoprecipitated with the Brg 1 antibody. Immunoprecipitated DNA 

was amplified by real-time PCR using primer set +I. As seen previously (Figure 4.3b), 

Brgl was enriched at the GM-CSF promoter in unstimulated T cells with levels decreasing 

upon stimulation (Figure 4.6). Treatment with TSA increased Brg 1 levels at the promoter 

by approximately 3 fold although the typical decrease in Brgl levels was not detected 

following P/I treatment in TSA treated cells. These data suggest that increasing acetylation 

at the GM-CSF promoter increases Brg 1 levels at the GM-CSF promoter, and are 

consistent with Brg 1 recruitment via acetylated histones. 
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Figure 4.5. Increased acetylation increases the rate of remodelling at the 
GM-CSF promoter. (A) EL-4 T cells were either left untreated or pre-treated 
with TSA prior to incubation with or without P/I for 4 hours. Nuclei were then 
isolated, incubated with MNase and accessibility at the GM-CSF promoter 
determined by real-time PCR analysis of genomic DNA using primer set —I. The 
mean and standard error of 3 replicate assays are shown. (B) EL-4 T cells were 
treated as in A prior to stimulating with P/I for the indicated times. Promoter 
accessibility was determined as in A. The mean and standard error of 3 replicate 
assays are shown. 
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Figure 4.6. TSA increases Brgl recruitment to the GM-CSF promoter. EL-4 
T cells were either left untreated or treated with TSA for 16 hours prior to 
incubating with or without P/I for 4 hours. Chromatin was then crosslinked and 
immunoprecipitated using Brgl antibodies. The relative enrichment of Brg 1 
compared to the unstimulated control was determined by real-time PCR analysis 
of DNA using primer set +I. The mean and standard error of 3 replicate assays 
are shown. 
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4.2.4 Chromatin remodelling at the GM-CSF promoter is 

inhibited in non-expressing cell types 
The data presented so far suggests that enrichment of Brg 1 at the GM-CSF 

promoter maybe a requirement of GM-CSF gene activation. To investigate this further, 

chromatin remodelling events were analyzed in B cells which do not normally express GM-

CSF. EL-4 T cells and A-20 B cells were either left untreated or stimulated with P/I for 4 

hours and GM-CSF mRNA levels determined by real-time PCR. As expected, GM-CSF 

was highly inducible in EL-4 T cells by P/I stimulation with an approximately 600 fold 

induction, while its expression was essentially uninducible in the B cell line (Table 4.1). In 

order to determine whether the difference in GM-CSF expression was due to disparity in 

chromatin accessibility across the GM-CSF promoter, non-stimulated and stimulated EL-4 

T cells and A-20 B cells were analyzed by CHART-PCR using primer set -I. As seen 

previously, EL-4 T cells displayed inherent basal accessibility to MNase which increased 

dramatically following stimulation with WI (Figure 4.7). While A-20 B cells displayed a 

similar level of basal accessibility, no increase in accessibility was observed upon 

stimulation with P/I (Figure 4.7). Therefore, chromatin analysis of the A-20 cells suggests 

that their inability to express GM-CSF maybe due to a blockage in chromatin remodelling 

events at the promoter. 

Brg 1 is associated with the GM-CSF promoter in T cells, and is required for GM-

CSF gene activation. Therefore ChIP assays were used to investigate whether there is a 

difference between the association of Brgl with the GM-CSF promoter in B cells compared 

to T cells. EL-4 T cells and A-20 B cells were either left untreated or stimulated with P/I 

for 4 hours before crosslinking chromatin followed by immunoprecipitation with Brg 1 

antibodies. hnmunoprecipitated DNA was then quantitated by real-time PCR analysis using 

primer set +I. As seen previously, Brg 1 was detected at the GM-CSF promoter in 

unstimulated T cells and levels decreased 2 fold upon stimulation (Fig 4.8). In contrast, 

very little Brgl was detected at the GM-CSF promoter in B cells in both resting and 

stimulated cells. Importantly, the Brg 1 levels detected in either unstimulated or stimulated 

B cells were lower than observed in T cells even following stimulation. Therefore it 

appears that Brgl is absent from the GM-CSF promoter in B cells. 
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Table 4.1. GM-CSF mRNA copy number in EL-4 T cells and A-20 B cells. EL-4 T 
cells and A-20 B cells were either left untreated or stimulated for 4 hours with P/I. 
cDNA was prepared and GM-CSF mRNA levels determined by real-time PCR. 
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Figure 4.7. The GM-CSF promoter is not remodelled in non expressing B 
cells. EL-4 T cells and A-20 B cells were either left untreated or stimulated 
with P/I for 4 hours. Nuclei were isolated and incubated with MNase prior to 
real-time PCR analysis of genomic DNA using primer set —I. The mean and 
standard error of 3 replicate assays are shown. 
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Figure 4.8. Brgl is not bound to the GM-CSF promoter in B cells. EL-4 T 
cells and A-20 B cells were incubated with or without WI for 4 hours before 
crosslinlcing chromatin and immunoprecipitating against Brgl. Recruitment of 
Brgl was then determined by real-time PCR analysis of DNA using primer set 
+I. The mean and standard error of three replicate assays are shown. 
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Figure 4.9. Increasing acetylation in B cells overcomes the block in GM-CSF 
expression by facilitating remodelling of the GM-CSF promoter. (A) A-20 B 
cells were either left untreated or treated with TSA prior to incubating with PII 
for 4 hours. GM-CSF mRNA levels were then determined by real-time PCR 
analysis of cDNA. The mean and standard error of 3 replicate assays are shown. 
(B) A-20 B cells were either left untreated or pre-treated with TSA before 
incubating with or without PII for 4 hours. Nuclei were then isolated and 
digested with MNase before analyzing genomic DNA by real-time PCR analysis 
using primer set -1. The mean and standard error of 3 replicate assays are shown. 
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Increasing histone acetylation levels was found to augment GM-CSF gene 

activation and increase the kinetics of chromatin remodelling events in T cells (Figure 4.5). 

Therefore to determine whether increasing histone acetylation could also alter the 

inducibility of the GM-CSF gene in B cells, A-20 B cells were pre-treated with TSA for 4 

hours. Cells were then either left untreated or stimulated with P/I for 4 hours before 

measuring GM-CSF mRNA levels using real-time PCR. As before, little GM-CSF mRNA 

was detected in B cells following stimulation with P/I. However, there was a dramatic 200 

fold increase in GM-CSF mRNA levels following stimulation with P/I in B cells pre-

treated with TSA (Figure 4.9a). Therefore, increasing acetylation of the GM-CSF promoter 

in B cells allows transcription to occur in response to P/I. However, it should be noted that 

while GM-CSF expression could be induced in B cells by pre-treatment with TSA, these 

levels are still much lower than those typically observed in T cells (Figure 4.4). 

In order to determine whether increasing histone acetylation levels by TSA 

treatment also facilitated chromatin remodelling events at the GM-CSF promoter, A-20 B 

cells were either left untreated or TSA pre-treated for 4 hours before incubating with or 

without P/I for 4 hours. Accessibility of the GM-CSF promoter to MNase was determined 

by CHART-PCR using primer set -I. As before, in non-stimulated B cells, the GM-CSF 

promoter displayed an inherent basal accessibility which remained unchanged following 

stimulation with P/I. Pre-treatment of B cells with TSA did not alter basal chromatin 

accessibility across the promoter, however it facilitated an increase in chromatin 

accessibility in response to P/I stimulation with levels increasing to 70% (Figure 4.9b), 

which is similar to levels observed in T cells upon stimulation. 

Collectively, these data indicate that Brg I is not associated with the GM-CSF 

promoter in B cells, which do not express GM-CSF in response to P/I stimulation. 

However chromatin remodelling events and GM-CSF gene expression can be induced by 

modification of the histone acetylation status of the gene. 

4.3 DISCUSSION 
Activation of the GM-CSF gene in T cells involves targeted chromatin remodelling 

events that result in increased accessibility across the promoter region (Holloway et al, 
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2003; Brettingham-Moore et al, 2005). Recently, this increased accessibility was shown to 

be due to the loss of histones from the GM-CSF promoter (Chen et al, 2005). The data 

presented in this chapter demonstrate that the ATPase component of the SWI/SNF 

remodelling complex, Brgl, is required for GM-CSF gene activation. Using a Brg 1 

dominant negative approach it was shown that Brgl is essential for the optimal activation 

of GM-CSF expression. ChIP analysis confirmed a direct role for Brgl in GM-CSF 

activation. Brgl is bound to the GM-CSF promoter in resting T cells and lost from the 

promoter region upon T cell activation. Combining this result with the findings of Chen et 

al (2005), it is evident that Brgl is poised at the GM-CSF promoter in resting T cells and 

lost concomitant with histone loss following T cell stimulation. 

The association of Brgl with the GM-CSF promoter in the resting state was 

somewhat unexpected, however Brgl has previously been found constitutively associated 

with a number of other promoters including the M-CSF (Lui et al, 2001), CIITA pIV 

promoter (Ni et al, 2005) and IFITM1 promoters (Cui et al, 2004). These genes are also 

rapidly activated, suggesting that the chromatin structure of these promoters is poised for 

swift transcriptional induction. The activation of the IFN responsive IFITM1 gene is 

remarkably similar to GM-CSF. It is expressed constitutively at low levels and induced 

rapidly following stimulation with IFNa or IFNy. In addition, the promoter has increased 

basal levels of H4 acetylation and the promoter is partially accessible to restriction 

digestion indicating that the nucleosome is partially disrupted in the basal state (Cui et al, 

2004). Brgl is constitutively bound to the nucleosome covering the IFITM1 promoter 

region. Therefore, the chromatin environment of the IF1TM1 gene suggests that it maybe 

prepared in anticipation of IFNa or IFNy signalling. 

Recently, Liang et al (2006) showed that the interleulcin-113 	gene is poised 

for rapid activation. Liang et al (2006) demonstrated that in resting monocytic cells capable 

of rapid transcriptional activation, the IL-1(3 promoter is assembled into a poised chromatin 

architecture, with the promoter nucleosome free in the basal state as determined by 

CHART-PCR and ChIP analysis of histone acetylation. In addition, it was demonstrated 

that promoter accessibility alone is not sufficient for transcription. Some promoters, such as 

those belonging to heat-shock genes exist in an open chromatin structure, sometimes with 

pre-initiated paused RNA polymerase II molecules. This indicates that not all genes require 
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nucleosome remodelling for transcriptional activation (Boehm et al, 2003). 

The constitutive recruitment of Brg 1 to the GM-CSF promoter may help establish a 

basal chromatin environment permissive to the rapid induction of transcription. Adding 

support to this hypothesis, the delayed recruitment of Brg 1 to the IFN-13 promoter 

correlates with the delayed up-regulation of transcription 6 hours post-infection (Agalioti et 

al, 2000). This slower transcriptional activation can be attributed to the requirement for 

histone acetylation and Brgl recruitment before the nucleosome covering the promoter can 

be remodelled. In contrast, histone loss is detectable across the GM-CSF promoter as early 

as 30 minutes after stimulation (Chen et al, 2005), with GM-CSF transcription increasing 

rapidly after this time and peaking at 6-8 hours (Chapter 3). It is possible that such rapid 

induction of GM-CSF gene expression can occur because the promoter is already primed 

for activation with an inherent basal level of acetylation and the presence of Brg 1. In the 

case of IFN-I3 activation, Brgl is associated with the promoter transiently, for only a few 

hours, while transcription continues for close to 24 hours (Agalioti et al, 2000). This 

suggests that Brg 1 functions within a short time frame to remodel the promoter region 

which remains in an accessible configuration for an extended period. The stability of the 

accessible state at the IFN-13 promoter is comparable to the stability of GM-CSF promoter 

remodelling (Chapter 3). 

Brgl may not only prime the GM-CSF gene for rapid activation by establishing a 

competent chromatin environment, it may also help to recruit other transcription factors to 

the GM-CSF promoter. Chromatin remodellers have been suggested to accelerate 

transcription factor interactions with non-specific DNA sites by speeding up genome wide 

scanning (Karpova et al, 2004). In fact, Brgl has been found to be responsible for the 

initial recruitment of the STAT1 co-activator to the CIITA promoter (Ni et al, 2005). It is 

therefore possible that Brgl enhances recruitment of the transcription factors required to 

drive GM-CSF expression. 

Adding further support to the hypothesis that Brg 1 recruitment is associated with 

priming genes for activation, Brgl was not detected at the promoter of non expressing B 

cells. While Brg 1 maintains a transcriptionally competent state in T cells it is possible that 

this signal can be overridden by increased histone acetylation in B cells. However, even 

though GM-CSF can be activated in TSA treated B cells the levels of activation are much 
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lower than those observed in T cells suggesting that Brgl binding is required for the 

optimal activation of transcription. This is supported by the reduction in GM-CSF 

transcription observed in T cells expressing the Brgl ATPase mutant. 

There are a number of possibilities to explain the mechanism behind the 

constitutive recruitment of Brgl at the GM-CSF promoter in T cells. In the case of the 

PHO5 promoter, chromatin remodelling and Brgl recruitment is dependent on prior 

histone hyperacetylation (Reinke and Horz, 2003). Similarly, a transient increase in histone 

acetylation occurs prior to Brgl recruitment to the IFN-0 promoter (Agalioti et al, 2000). 

Brg I is known to associate with acetylated histones via its bromodomain (Hassan et al, 

2002). This raises the possibility that Brg 1 is associated with the GM-CSF promoter via 

interactions with acetylated histones. In support of this, increasing histone acetylation by 

TSA treatment resulted in an associated increase in Brg 1 levels at the promoter and an 

increase in the rate of remodelling. It is important to note that the typical decrease in Brgl 

levels was not detected following P/I treatment in TSA treated cells. This may possibly be 

due to saturation of the nucleosome with Brgl and equilibrium between nucleosome 

assembly and disassembly. Alternatively, increasing histone acetylation may increase Brg 1 

recruitment across the entire gene and loss of Brg 1 did not occur on the neighbouring 

nucleosomes as detected in the ChIP assay. Acetylated histones are enriched at the GM-

CSF promoter (Chen and Shannon, unpublished data) and this may potentially enable the 

constitutive recruitment of Brgl. This would also explain why a transient increase in 

histone acetylation, as observed at the PHO5 and IFN-13 promoters (Reinke and Horz, 

2003; Agalioti et al, 2000), is not required at the GM-CSF promoter prior to chromatin 

remodelling (Chen et al, 2005). 

Alternatively, Brg 1 may be recruited to the GM-CSF promoter via an interaction 

with a constitutively expressed transcription factor. Liu et al (2002) have revealed that Spl 

binds Brg 1 and recruits SWI/SNF to the IFN-a responsive IFITM3 locus and perhaps a 

similar mechanism operates at the GM-CSF promoter. Indeed, Brgl has previously been 

shown to be recruited in a NF-KB/Spl dependent manner to the GM-CSF promoter in vitro 

(Holloway et al, 2003). This region has previously been shown as vital for GM-CSF 

promoter remodelling and transcription and thus makes it a potential candidate for the basal 

recruitment of Brgl. Alternatively, an unidentified, constantly bound transcription factor 
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may recruit Brgl. Whether Brgl is constitutively bound to the GM-CSF promoter in T cells 

throughout the cell cycle or if, following cell division, the basal state must be re-established 

remains to be elucidated. Interestingly, Brgl has previously been found to be excluded 

from condensed chromosomes during mitosis (Muchardt et al, 1996) suggesting that the 

basal chromatin state must be re-set following cell division. 

Unexpectedly, chromatin remodelling events across the GM-CSF promoter were 

still able to occur in the presence of the Brg 1 ATPase mutant. However, the basal 

accessibility of the GM-CSF was altered in Brgl mutant cells. This suggests that Brgl may 

be involved in maintaining a basal chromatin structure which is permissive to gene 

activation. In addition, it is possible that remodelling may occur less efficiently in the 

ATPase mutant cells, and this may have not been detected at the 6 hour time point 

examined. In support of this, chromatin remodelling can still occur at the PHO5 promoter 

in the absence of SWI/SNF but with delayed kinetics (Gaudreau et al, 1997; Barbaric et al, 

2001). In addition, wild type Brgl would still be operating in the transfected cells. It is also 

interesting to note that the ATPase domain of Brg 1 is not only required for its remodelling 

function but also for interactions with other factors (Bultman et al, 2005). Therefore the 

reduction in GM-CSF transcription in Brg 1 mutant cells may be attributed to interactions 

with other transcription factors being inhibited. Bultman et al (2005) generated a mutant 

Brgl in which the ATPase domain was mutated but ATPase activity was restored. They 

found that while the mutant Brgl is still recruited to the P-globin locus, remodelling and 

transcription were inhibited. By uncoupling ATPase activity and chromatin remodelling in 

this case it became evident that the ATPase domain is also essential for interactions with 

other co-activators 

GM-CSF is constitutively expressed at very low levels in resting T cells and rapidly 

induced in response to T cell activation signals. The promoter is relatively accessible in the 

resting state suggesting that the nucleosome is remodelled incompletely and constitutively. 

It is therefore conceivable that GM-CSF is a few steps further along in its activation 

profile. These data are in keeping with a model in which in resting T cells, Brgl is bound to 

the GM-CSF promoter due to increased basal acetylation, priming the gene for activation 

by establishing an inherent level of basal accessibility. Following stimulation an entire 

nucleosome is then lost from the promoter in a c-Rel dependent manner. c-Rel may drive or 
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Figure 4.10. Model for activation of the GM-CSF gene. Schematic 
representation of the GM-C SF promoter in the resting and activated state in B 
and T cells showing increased histone acetylation and Brg 1 recruitment in 
resting T cells. 
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maintain Brg 1 loss from the promoter thereby exposing DNA to the transcriptional 

machinery required for switching on gene expression (Figure 4.10). Many examples in the 

literature have demonstrated a delayed recruitment of Brgl to activated promoters. 

However, for immune genes such as GM-CSF which are rapidly activated, the basal 

recruitment of the SWI/SNF complex at sites which need to be remodelled may ensure the 

activating signal can operate much more efficiently. 
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CHAPTER 5. 

IFN-y, IL-4 AND IL-5 GENE ACTIVATION IN T 

CELLS IS BRG1 DEPENDENT. 

5.1 INTRODUCTION 
While a number of studies have investigated the role of Brgl in activating various 

genes, little work has been done to determine the role of Brgl in T cells (Yeh et al, 2002; 

Holloway et al, 2003; Gebuhr et al, 2003). To date, the involvement of Brgl during T cell 

activation is yet to be determined. The previous chapter highlighted a role for Brgl in GM-

CSF gene activation, raising the question of whether other genes are activated in a similar 

Brgl dependent manner in T cells. 

The role of Brg 1 in gene activation has been studied using a variety of different 

approaches. While knockout of the Brgl gene is embryonic lethal in mice (Bultman et al, 

2000) conditional Brgl knockouts have been used successfully in the past to elucidate Brgl 

function. Previous research has demonstrated that Brgl is vital for immune development 

and the immune response. The specific deletion of Brgl in thymocytes using the Cre-/oxP 

conditional mutagenesis system has revealed a role for this protein in T cell development 

(Gebuhr et al, 2003). Profound thymic abnormalities were observed in T cell specific Brgl 

deficient mice. Staining of these Brgl deficient cells with 5'-bromo-2'-deoxyuridine 

demonstrated that Brg 1 was required for thymocyte proliferation and survival. In 

agreement with Gebuhr et al (2003), Vradii et al (2006) recently demonstrated that Brgl is 

critical for haematopoietic cell maturation. A dominant negative Brg 1 mutant was stably 

expressed in myeloid cells. The forced expression of the mutant Brg 1 was found to inhibit 

G-CSF dependent differentiation of myeloid cells towards the granulocytic stage. 

Indeed, a vital role for Brgl in immune gene regulation has begun to emerge 

(reviewed in Chi, 2004). Cui et al (2004) revealed that the inhibition of Brgl reduces a 

cells ability to control viral growth by reducing the expression of IFN-P and other antiviral 

proteins. Cells were transfected with siRNA directed against the SWI/SNF component 

BAF47. The inhibition of BAF47 using this siRNA approach was shown to down-regulate 
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Brgl and its remodelling activity which in turn reduced the activity of IFN-f -3. In addition, 

Brgl appears to be essential for cytokine induced gene regulation and is responsible for the 

activation of IFN-a responsive genes (Huang et al, 2002). Brgl has also previously been 

shown to play an important role in T cell activation. Zhao et al (1998) found that T cell 

receptor signalling results in the rapid association of the Brgl complex with chromatin. 

This suggests that SWI/SNF might be involved in regulating the expression of genes 

typically activated following immune stimulation. This evidence strongly implicates Brgl 

in immune gene regulation and therefore highlights the importance of determining the 

targets of Brgl in T cells. 

A number of microarray studies investigating the role of Brgl have been conducted 

in the past. The ALAB, SW-13 and C33A cell lines all lack functional Brgl protein. These 

cell lines are derived from breast carcinoma, adenocarcinoma and cervical carcinomas 

respectively. The reintroduction of wildtype Brgl into these deficient cell lines has proved 

to be a useful means for elucidating the function of Brgl. In a study by Liu et al (2001) 

SW-13 cells were transfected with a wildtype Brgl construct. Brgl expressing cells were 

then enriched by FACS and differentially activated transcripts determined by microarray 

analysis. This group demonstrated that Brgl was involved in the activation of 

approximately 80 genes including the cytokine, M-CSF. 

Brgl has been shown to play a role in the regulation of cellular proliferation 

(Dunaief et al, 1994) and is frequently deleted or mutated in tumour cell lines (Wong et al, 

2000). It is therefore extremely important to determine the targets of this ATPase. Previous 

work by Hendricks et al (2004) used microarrays to identify novel Brgl targets in ALAB 

cells, a breast tumor cell line. This cell line lacks Brgl due to a premature stop codon 

mutation in exon 10. The adenovirus mediated reintroduction of Brgl into these cells 

resulted in the activation of numerous genes involved in cell adhesion, proliferation and 

motility. Targets included the protooncogenes, cJun and cMyc. Of greatest clinical 

relevance however, the reintroduction of Brgl into this tumor cell line was shown to induce 

growth arrest. In another microarray study, de la Sema et al (2005) used stably transfected 

myocytes capable of the inducible expression of a dominant negative Brgl protein for 

microarray analysis. This group found that the activation of one third of myoD induced 

genes were dependent on Brgl. Therefore, there are a variety of different ways which have 
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been used successfully in the past to elucidate targets of Brgl. 

Studies in yeast have shown that SWI/SNF is only required for the normal 

transcription of a small subset of genes. Expression studies have revealed that SWI/SNF 

regulates the transcription of 5-6% of the yeast genome (Sudarsanam et al, 2000). 

Furthermore, a genome wide study in yeast found that SWI/SNF dependent genes were 

scattered through out the genome suggesting that this complex controls transcription at the 

level of individual genes and not at the level of chromosomal domains (Sudarsanam et al, 

2000). Further complexity in Brgl function became evident as SWI/SNF has been found to 

have activating (DiRenzo et al, 2000; Liu et al, 2001) and repressive functions (Murphy et 

al, 1999; Pal et al, 2003). Thus, gene regulation by Brgl is extremely complex and is likely 

to be slightly different at each target gene. 

Very few direct targets of Brgl have been confirmed in mammalian cells. However, 

ChIP analysis has been successfully used to demonstrate that Brgl directly interacts with a 

number of promoters. Brgl has been shown to bind to the IFN-f3 promoter in HeLa cells 

following viral stimulation (Agalioti et al, 2000). ChIP analysis also revealed that Brgl is 

recruited to the myogenin promoter during myocyte differentiation (de la Serna et al, 2005) 

and Brg 1 has been found to be constitutively associated with the M-CSF promoter in the 

WI-38 fibroblast cell line (Liu et al, 2001). The P21 and metallothionein-1 promoters have 

also been identified as direct targets of Brg 1 (Hendricks et al, 2004; Datta et al, 2005). In 

each instance its recruitment appears to be cell type specific and requires different factors 

and signals. 

While the role of Brgl in regulating gene expression has been analyzed in a number 

of cell types, there is a lack of array studies investigating the role of Brgl in T cell 

function. The aim of this chapter is to identify T cell gene targets which rely on Brgl for 

activation. Gene targeting experiments in mice have demonstrated that while Brm is 

dispensable (Reyes et al, 1998) Brgl is essential for development (Bultman et al, 2000) 

and therefore the use of the Brgl knockout is not possible for studying the function of Brgl 

in T cells. Hence, the transient introduction of a dominant negative ATPase mutant (K—>R) 

Brgl followed by cell sorting was used to assess the effect of Brgl on gene activation in 

EL-4 T cells. Microarrays were used here for the first time to identify a subset of Brgl 

dependent inducible T cell genes. 
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5.2 RESULTS 

5.2.1 Experimental design 
To determine the set of inducible genes in T cells which are dependent on Brgl for 

their activation, EL-4 T cells in which Brgl activity is disrupted were generated and 

subsequently analyzed using microarrays. SWI/SNF function was disrupted by over-

expression of the ATPase defective Brgl K774R mutant (Khavari et al, 1993). Cells 

expressing this mutant have previously been used to determine Brgl target genes in mouse 

NIB 3T3 fibroblasts (de la Serna et al, 2000). 

Attempts were made at generating stably transfected pBJ5-brglIC/R EL-4 T cells. 

However, while the stable transfection of the pBJ5 control was successful, the cells 

transfected with the Brgl mutant failed to grow (Ray and Holloway, personal 

communication). Therefore cells were transiently transfected with the Brgl mutant 

construct and the transfected cell population purified and analyzed using microarrays since 

this strategy had been used successfully to investigate the role of Brgl in GM-CSF gene 

activation (Figure 4.1b, Chapter 4). In addition Liu et al (2001) used a similar technique to 

demonstrate a role for Brgl in M-CSF activation by transient transfection followed by 

FACS. Liu and co-workers transfected Brgl deficient SWI 13 cells with a GFP tagged 

Brgl expression vector. Transfected cells were then enriched by FACS 24 hours post 

transfection and gene expression changes determined by microarray analysis. 

EL-4 T cells were transfected with either the pBJ5 parent vector or pBJ5-brg1K/R 

plasmids along with the KKII plasmid which expresses a truncated form of the KKII 

receptor (as described in Material and Methods and Chapter 4). After 24 hours transfected 

cells were purified by virtue of expressing the K KII receptor and incubated with or without 

P/I for 6 hours. RNA was then extracted from each of these four cell samples for 

microarray analysis (Table 5.1). The experiment was then repeated to generate a second 

replicate set of RNA. 
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Table 5.1 RNA samples generated for microarray analysis. 
Sample I.D. Transfection WI (hrs) 

NS-pBJ5 -1 pBJ5 0 

PI-pBJ5- 1 pBJ5 6 

NS-Brgm- 1 pBJ5-brgIK/R 0 

PI-Brgm- 1 pBJ5-brgIK/R 6 

NS-pBJ5 -2 pBJ5 0 

PI-pBJ5 -2 pBJ5 6 

NS-Brgm-2 pBJ5-brg 1 IC/R 0 

PI-Brgm-2 pBJ5-brglIC/R 6 

5.2.2 Quality Assurance 

5.2.2.1 RNA quality 
The quality of data generated from microarray experiments is to a large extent a 

reflection of sample quality. Therefore the RNA was subjected to a number of quality 

assurance assessments before the microarray experiments were undertaken. RNA quality 

was verified using the Agilent 2100 BioAnalyzer which can accurately determine sample 

integrity. This chip based capillary electrophoresis system was used to determine the ratio 

of the 28S ribosomal peak to the 18S ribosomal peak. All samples were within an 

acceptable range of 1.6 to 1.9 (Table 5.2) which confirmed that the starting RNA was of 

high quality. Sample concentration and A260/280 ratios were determined using the 

NanoDropa Each ratio was within the acceptable range of 1.8-2.1 suggesting the RNA 

was relatively pure (Table 5.2). 

5.2.2.2 Confirmation of functional depletion of Brgl 
Since disruption of Brg 1 function is known to affect GM-CSF gene activation 

(Chapter 4) GM-CSF mRNA levels were analyzed in the RNA samples in order to confirm 

a functional effect from the introduction of the Brgl mutant. An aliquot of each RNA 

sample was converted to cDNA and analyzed by real-time PCR to determine GM-CSF 

mRNA levels. In cells transfected with the control pBJ5 plasmid a greater than 500 fold 

increase in GM-CSF mRNA was detected following stimulation with P/I for 6 hours 
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Table 5.2. The A260/280 and 28S/18S rRNA ratios of the microarray 
samples. The integrity of RNA isolated from KKII and pBJ5 or pBJ5-brg1K/R 
co-transfected cells was determined using the Agilent 2100 BioAnalyzer and 
RNA purity determined using the NanoDrop®. 

A260/2440 28Si18S rRNA 
ratio 

NS PB,J5 :=I 2.11 

PI ppJ5 1 1.96 1.7 

NS13r 2! 1 6 

PI B 2.13 1 6 

iNS::01315,2 2,  1.7 

P1 pB.15-2 2:07 1.7 

NS B rgm-2 2:03 

PI Brgm-2 2.09 1.6 
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Figure 5.1. Brgl is required for transcription of the GM-CSF gene. EL-4 T cells 
were co-transfected with the KKII and pBJ5 or pBJ5-brg1K/R plasmids prior to 
magnetically activated cell sorting before incubating with or without P/I for 6 hours. 
cDNA was prepared and levels of GM-CSF mRNA analyzed by real-time PCR. The 
data for replicate 1 (A) and replicate 2 (B) are shown. 
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(Figure 5.1; 500 fold in replicate 1, 600 fold in replicate 2). As seen previously (Chapter 4) 

GM-CSF activation in response to WI was reduced almost 50% in cells transfected with the 

pBJ5-brgliC/R plasmid (Figure 5.1) with cells expressing the mutant construct only capable 

of producing a 300 (replicate 1) or 250 fold (replicate 2) induction in GM-CSF mRNA 

upon T cell activation. This demonstrated that Brg 1 function had been disrupted in the cells 

containing the Brg 1 mutant protein, and that this translated into reduced expression of a 

known Brg 1 candidate gene, and suggested that these samples would be useful to screen for 

novel Brgl targets. 

5.2.2.3 Sample processing and array quality 

5.2.2.3.1 Test Arrays 
Affymetrix GeneChip@ Test3 arrays were used as a verification of sample quality 

and sample processing from total RNA through to the hybridization. These test arrays 

provide an accurate means of determining the quality of the labelled target prior to analysis 

on the GeneChip@ Mouse Genome 430 2.0 arrays. The test arrays comprise probes 

representing a subset of characterised genes from various organisms. For each gene 

represented, probes derived from the 5', middle and 3' portions of the gene are represented 

thereby enabling the identification of samples containing degraded RNA or inefficiencies 

in cDNA synthesis which would lead to poor experimental results. The control 

hybridization probes are identical to those used on the GeneChip@ Mouse Genome 430 2.0 

arrays and include a subset of mouse housekeeping genes. Briefly, RNA was converted to 

fragmented cRNA and hybridized to the Test3 arrays overnight before scanning. The 5' to 

3' ratios of two housekeeping genes were analyzed. This ratio is an indication of sample 

integrity, input, the number of full length transcripts and cDNA reaction efficiency. For 

each experiment 3'15' ratios for the housekeeping genes (3 -actin  and GAPDH were close to 

1, ranging from 0.74 to 1.37 (Table 5.3), indicating efficient cDNA synthesis. 

Background values reflect the autofluorescence of the array and non-specific 

binding of target or stain molecules. Typical background values on arrays analyzed through 

the JCSMR Biomolecular Resource Facility are approximately 45 (S. Rao, personal 

communication) and should be similar within the one experiment to ensure accurate 
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comparisons can be made. High background levels result in an overall loss of sensitivity in 

the experiment. The test arrays had an average background of approximately 45, ranging 

from 34.33 to 53.93 (Table 5.3). Together, these data suggested that the 8 samples were of 

high quality and therefore were hybridized to the GeneChip@ Mouse Genome 430 2.0 

arrays to screen for Brgl target genes. 

5.2.2.3.2 Affymetrix Mouse Genome 430 2.0 Array Quality 
The Affymetrix Mouse Genome 430 2.0 arrays allow the analysis of over 39,000 

transcripts and variants, including 34,000 well characterized mouse genes. Oligonucleotide 

probes (11 pairs of 25-mers) including perfect match and mismatch probes are used to 

measure the level of transcription for each gene represented on the array. Before analyzing 

the data generated from the Mouse Genome 430 2.0 Arrays, the quality of sample 

processing and hybridization was confirmed. As seen with the Test3 Arrays, the 5' to 3' 

ratio for the housekeeping genes (3 -actin and GAPDH were close to 1 (Table 5.4) and the 

arrays had an average background of 45 ranging from 41.67 to 54.34 for the 8 arrays 

indicating consistency across the arrays (Table 5.5). 

Each Affymetrix array represents a separate experiment therefore data must be 

normalized to account for variability in starting amounts of RNA, sample procesing, 

staining and scanning. Arrays must be scaled or normalized to one target intensity to allow 

comparison between experiments. The signal intensities were imported into GeneChip@ 

Operating Software version 1.2 (GCOS; Affymetrix) and all arrays were normalized using 

the MAS 5.0 algorithm for comparison purposes to a target intensity (TGT) of 150. 

Optimally, scale factors should be very close to one another (within three-fold) indicating 

that minimal scaling of the data is required. The scale factor for the 8 arrays in this 

experiment ranged from 1.1 to 2.1 which indicated that the scaling due to background 

across the arrays was minimal (Table 5.5). 

The number of probe sets called "present" relative to the entire number of probe 

sets on the array is dependent on the type of cell, stimuli and overall RNA quality. The call 

of "presence" or "absence" was determined by signal intensity above or below background 

respectively. Extremely low percentage of genes present values are often an indication of 

poor sample quality or hybridization. The percentage of genes present or absent was similar 
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Table 5.3. Efficiency of cDNA synthesis and levels of non specific binding on the 
Affymetrix Test3 arrays. RNA from EL-4 T cells co-transfected with the pBJ5 or 
pBJ5-brg1K/R and KKII plasmids was processed and hybridized to the Affymetrix 
Test3 arrays. Signal intensities were measured and 5' to 3' ratio for 2 housekeeping 
genes generated. Background signal levels were also measured on the test arrays. 

Array Beta actin 
signal 
375' 

GAPDH 
signal 

3:6'  

Background 

N 1.13 0.78 34.33 

PI pBJ5-1 1.26 0.86 

NS8ighl 1.16 ,  0.81 36.01 

PI Brgm- L37 0.77 

074 

41.08 

115 ;ili:;85 NS45815:-2 

P1 pBJ5-2 1.16 0.90 46.15 

8rgrtv.:_ 1. 	 0;78 

PI Brgm-2 1.24 45.89 

Table 5.4. Efficiency of cDNA synthesis for the Affymetrix Mouse Genome 430 
2.0 arrays. RNA from EL-4 T cells co-transfected with the pBJ5 or pBJ5-brg1K/R 
and KKII plasmids was processed and hybridized to the Affymetrix GeneChip@ 
mouse genome 430 2.0 arrays. The arrays were scanned and signal intensities were 
measured to calculate the 5' to 3' ratio for 2 housekeeping genes. 

Array Beta-actin 
sigaal (3'/57) 

GAPDH 
signal (375.) 

NS pB15-1 1.14 0.78 

PI pl3J5-1 1.26 0.82 

Nw tli-1 113 as3 

PI Brgm-I 1.20 0.79 
,,.: .... _. 

NS OBJ5-2 1.15 QM 
PI OBJ5-2..: 1.14 0:4P 
Ns iyito-2 115 0.78 

PI Brgin- 2  _ 	 1.19 q Vii§ ,.....$,.0A 
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Table 5.5. Relative hybridization efficiency, non specific binding and % genes 
present on the arrays. Following sample hybridization and scanning, the signal 
intensities of each array were used to generate the scale factor, background and 
percentage of genes present using GCOS. 

Array Scale Factor Average 
background 

% genes 
present 

NS pBJ5-1 1.474623561 42.44 45.4 

PI pBJ5-1 1.773011446 54.34 40.0 

NS Brgm-1 2.098287106 41.67 42.6 

PI Brgm-1 1.551655054 41.79 44.] 

NS pBJ5-2 1.158938408 50.61 46.1 

PI pBJ5-2 1.895966768 44.09 42.4 

NS Brgm-2 1.10244453 44.39 46.3 

PI Brgm-2 1.63254261 	_ 41.95 43.3 

— 
E 

sample 

Figure 5.2. Box plots of the log 2  Affymetrix signal values for all the samples as 
output by Bioconductor. 
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across the replicate arrays with the % present ranging between 40.0 to 46.3% (Table 5.5). 

This result is typical of array experiments which have been conducted in the JCSMR 

Biomolecular Resource Facility (S. Rao, personal communication). Together these analyses 

confirmed that the 8 RNA samples and hybridizations were of high quality. 

Statistical analysis was initially -  carried out by Dr. Stephen Ohms of the 

Biomoleeular Resource Facility. Plots of the log 2  CEL file intensities were generated using 

the box plot function in the base package R (Bioconductor version 1.8.0) with all input 

parameters set to default values. The 8 arrays were found to be highly reproducible with 

background equivalent among all samples as demonstrated in Figure 5.2. Using unbiased 

statistical analysis it was shown that all arrays had performed with equal efficiency. 

Therefore it was concluded that all 8 arrays were of good quality and suitable for 

comparison across samples. 

5.2.3 Microarray data analysis 

5.2.3.1 Absolute analysis 
Once the quality of the samples and arrays had been confirmed absolute data 

analysis was performed using the computational analysis program GCOS. Since GM-CSF 

is known to be regulated by Brgl and this had been confirmed in the samples prior to array 

analysis GM-CSF data was extracted to confirm that changes in expression could be 

detected on the arrays and the target intensity values (TGTs) are shown in Table 5.6. For 

both replicates an increase in GM-CSF expression was detected following stimulation to a 

TGT of 1600 and 1100 for replicates 1 and 2 respectively. In the mutant transfected cells 

TGTs of approximately 800 were detected (Table 5.6). This demonstrated that expression 

of the Brg 1 mutant resulted in reduced GM-CSF expression in both replicates (Figure 5.3) 

confirming the real-time PCR analysis of these samples (Figure 5.1). 

5.2.3.2 Comparative analysis 
Normalized data was transferred to GeneSpring 7.2 (Silicon Genetics) for 

comparative analysis. The extremely defined aim of this analysis was to identify inducible 

T cell genes which, like GM-CSF, were Brgl dependent. The loss of Brgl was found to 

113 



NS pp.'s 20.0 15.2 

PBJA 1091.3 1593.5 

24.2 

8848 

NS Brgm 

Br,grn 

11.2 

• 

Replicate 1 
GM-CSF 

TGT 

Replicate 2 
GM-CSF 

TGT 

Sample 

Table 5.6. GM-CSF TGTs for the two replicate experiments. EL-4 T cells 
were co-transfected with either the pBJ5 or pBJ5-brg1K/R and KKII plasmids 
prior to magnetically activated cell sorting and incubation with or without P/I for 
6 hours. Fragmented cRNA was prepared and hybridized to the Affymetrix 
GeneChip@ mouse genome 430 2.0 arrays. The arrays were scanned and signal 
intensities (TGTs) used to determine the relative levels of GM-CSF mRNA. 

2000- 
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y 1000- 
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P/1 

  

   

control 	 mutant 

Figure 5.3. GM-CSF TGTs for the two replicate experiments. EL-4 T cells 
were co-transfected with either the pBJ5 or pBJ5-brglIUR and KKII plasmids 
prior to magnetically activated cell sorting and incubation with or without P/I for 6 
hours. Fragmented cRNA was prepared and hybridized to the Affymetrix 
GeneChip@ mouse genome 430 2.0 arrays. The relative levels of GM-CSF mRNA 
were determined by scanning signal intensities (TGTs). The mean and standard 
error of the two replicate assays are shown. 
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disrupt the activation of 0.3% of genes in EL-4 T cells. Altered basal expression in the 

mutant transfected cells was also determined. Upregulated basal levels of 2 fold or greater 

were observed in 32 genes (data not shown). In addition, 47 genes were down-regulated 2 

fold or greater in the Brgl mutant cells (both replicates). 

Data was filtered to determine the genes differentially expressed between the 

control and Brg 1 mutant samples. The Advanced Filter tool in GeneSpring was used to 

generate a list of inducible genes which had a reduction in activation in the Brgl mutant 

expressing cells compared to the control cells (i.e. genes with flags present in P/I control 

AND genes induced greater than 2 fold in P/I control compared to the NS control NOT 

genes induced greater than 1.4 fold in the P/I control compared to the P/I mutant). The 

stringency of the filters set was adapted to generate a list of genes with similar profiles to 

GM-CSF. In replicate 1, 1071 genes were affected according to the filters set and 2570 

genes were affected in replicate 2 (Figure 5.4). The difference betweent the genes identified 

in each replicate can be explained by slight variations in signal intensity across replicate 

arrays. A number of genes may be excluded from replicate 1 as they fall just outside the 2 

or 1.4 fold cutoffs. The gene lists generated for each experimental replicate were combined 

and genes common to both lists and therefore reproducibly differentially expressed 

identified. Of the genes induced greater than 2 fold in response to P/I stimulation, 101 

displayed reduced expression in the pBJ5-brg1K/R cells compared to the control stimulated 

cells and are listed in Appendix A. A subset of "known" genes is displayed in Table 5.7. 

These genes were then grouped according to functional classification by using the 

"Build Ontology" function in GeneSpring. It was evident that genes involved in a wide 

range of processes were affected by the Brgl mutant including a large number of genes 

involved in cell communication (Figure 5.5). As GM-CSF was not included in the 

combined data (Table 5.7) a less stringent means of identifying Brg 1 targets was used. The 

cytokine and immune genes which fell into the cell communication category for replicate 1 

were identified and are listed along with signal intensity values in Table 5.8. This group 

included M-CSF, IL-4, IL-5, IL-25, GM-CSF, and IFN-y. Genes differentially expressed in 

both replicates included IL-4 and IFN-y. 
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Replicate 2 
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Figure 5.4. Venn diagram of genes identified as inducible Brgl targets in EL-
4 T cells for replicate 1 and 2. 
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Table 5.7. Genes with reduced activation in the Brgl mutant cells. Data from 
the microarray experiments was imported into GeneSpring and inducible genes 
which were downregulated in the presence of the Brgl mutant in both replicates 
identified using the advanced filter. Only a subset of genes are shown. 
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• Cell communication 
D Gene expression 
CI Development 
• Cell growth 
D Differentiation 
0 Other 

Figure 5.5. Functional classification of genes differentially expressed in the 
pBJ5-brglIUR transfected cells. Data from the microarray experiments was 
imported into GeneSpring and inducible genes which were downregulated by the 
expression of the Brg 1 mutant were grouped according to function using the build 
ontology tool. 
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Table 5.8. Immune genes with reduced activation in the Brgl mutant. Data 
from the microarray experiments was imported into GeneSpring and inducible 
genes which were downregulated in the presence of the Brgl mutant (m) in 
replicate 1 identified using the advanced filter. Genes were then sorted according 
to ontology and immune genes which fell into the "cell communication" category 
are listed. 
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5.2.4 Expression of the cytokines M-CSF, IFN-y, IL-4 and IL-5 is 

dependent on Brgl 
Of the genes found to be dependent on Brgl for activation in T cells, a number were 

cytokines, including M-CSF, IFN- y, IL-4 and IL-5. To validate the Brg 1 dependence of 

these genes, EL-4 T cells were again co-transfected with KKII and pBJ5 or the pBJ5- 

brg1K/R mutant plasmids and transfected cells purified 24 hours later. Cells were then left 

unstimulated or stimulated with P/I for 6 hours before isolating RNA. M-CSF, IFN- y, IL-4 

and IL-5 mRNA levels were then determined by real-time PCR analysis of cDNA. The 

disruption of Brgl function in EL-4 T cells reduced M-CSF mRNA accumulation (Figure 

5.6a). An 11 fold increase in M-CSF mRNA levels was observed in control transfected 

cells following stimulation with P/I. In contrast, M-CSF mRNA only increased 7 fold in P/I 

stimulated cells expressing the Brgl mutant. Stimulation of control transfected cells 

produced a 1500 fold increase in IFN-y mRNA levels, however the response to stimulation 

in the mutant transfected cells was reduced to 500 fold (Figure 5.6b). The Brgl mutant also 

inhibited IL-4 expression (Figure 5.6c). Control transfected cells displayed an 

approximately 60 fold increase in IL-4 mRNA levels following stimulation, while the Brgl 

mutant transfected cells exhibited only a 10 fold increase in IL-4 expression. IL-5 

expression was almost completely abolished by Brgl mutant expression. While control 

transfected cells displayed a 60 fold induction in IL-5 mRNA levels, IL-5 transcription was 

inhibited in cells transfected with the Brgl mutant (Figure 5.6d). These data validated the 

microarray results and confirmed that Brgl is involved in the expression of M-CSF, IFN-y, 

IL-4 and IL-5. M-CSF has previously been identified as a target of Brgl by Liu et at (2000) 

and the identification of a known Brgl target therefore confirms the validity of data 

generated from the microarrays. 

5.2.5 IFN-y, IL-4 and IL-5 display distinct activation profiles 
As M-CSF has previously been identified as a direct target of Brg 1 (Lui et al, 

2001), the remaining candidates IFN-y, IL-4 and IL-5 were chosen for further analysis. In 

order to determine the activation profiles of the IFN-y, IL-4 and IL-5 genes in response to 

WI stimulation in EL-4 T cells, RNA was isolated from EL-4 T cells stimulated with P/I for 
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Figure 5.6. Induction of M-CSF, IFN-y, IL-4 and IL-5 genes is Brgl dependent. 
EL-4 T cells were transfected with the pBJ5 or pBJ5-brg1K/R plasmids. Transfected 
cells were purified before incubation with or without WI for 6 hours. cDNA was 
prepared and levels of M-CSF (A), IFN-y (B), 11,-4 (C) and IL-5 (D) mRNA 
determined by real-time PCR. The results for a single assay are shown. 
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0, 0.5, 2, 4, 6 and 24 hours. cDNA was prepared and IFN-y, IL-4 and IL-5 mRNA levels 

determined by real-time PCR. An increase in IFN-y mRNA levels was detected within 30 

minutes of stimulation and peaked at 6 hours with a 300 fold induction before returning to 

near basal levels by 24 hours (Figure 5.7a). The IL-4 gene was induced more rapidly with 

mRNA levels peaking at 4 hours post-stimulation with levels reaching approximately 60 

fold basal levels, declining after this time and returning to basal levels by 24 hours post-

stimulation (Figure 5.7b). The IL-5 mRNA time course displayed distinctly different 

kinetics with little increase in mRNA levels detected before 6 hours of stimulation but had 

significantly increased by 24 hours to 30 fold basal levels (Figure 5.7c). Thus while the 

IFN-y and IL-4 genes, like GM-CSF are rapidly activated in response to P/I, the IL-5 gene 

showed a more delayed activation profile. 

5.2.6 The IFN-y, IL-4 and IL-5 promoters display distinct 

remodelling profiles 
To determine whether the different activation profiles of the IFN-y, IL-4 and IL-5 

genes reflected differences in basal chromatin structure and remodelling kinetics chromatin 

accessibility across their promoters was examined prior to and following stimulation. EL-4 

T cells were either left untreated or stimulated with P/I for 4 and 24 hours. Nuclei were 

then isolated and digested with MNase. Accessibility was determined by real-time PCR 

analysis of genomic DNA using primer sets designed to the IFN-y, IL-4 or IL-5 promoters. 

A low level of basal accessibility was detected at the IFN-y promoter (20%) which 

increased to 30% at 4 hours post-stimulation and by 24 hours had decreased to 

approximately 25% (Figure 5.8a). The IL-4 promoter had a higher inherent level of basal 

accessibility, with accessibility in the non-stimulated cells at 45% (Figure 5.8b). 

Stimulation for 4 hours resulted in increased promoter accessibility with levels increasing 

to 60% and remained at this level for 24 hours. The IL-5 promoter was relatively 

inaccessible in resting T cells with basal accessibility at approximately 20%. Accessibility 

remained at this level at 4 hours post stimulation, however at 24 hours post stimulation the 

promoter had opened up to approximately 50% (Figure 5.8c). Chromatin accessibility 

changes at the IFN- y, IL-4 and IL-5 promoters reflected the transcriptional activation 
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Figure 5.7. The IFN-y, IL-4 and IL-5 genes show distinct activation profiles. 
cDNA was prepared from EL-4 T cells stimulated with P/1 for the indicated time 
periods. IFN-y (A) IL-4 (B) and IL-5 (C) mRNA levels were then analyzed by real­
time PCR. The mean and standard error of three replicate assays are shown. 
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Figure 5.8. The IFN-y, IL-4 and IL-5 promoters display different remodelling 
profiles. Nuclei isolated from EL-4 T cells stimulated for the indicated time periods 
were digested with MNase before analyzing genomic DNA by real-time PCR with 
primers designed to the IFN-y (A) IL-4 promoter (B) and 1L-5 promoter (C). The 
mean and standard error for two replicate assays are shown 
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kinetics of these genes. 

5.2.7 Brgl is bound to the IFN-y promoter in resting cells and is 

recruited to the IL-4 promoter following stimulation 
IFN-y, IL-4 and IL-5 expression in activated T cells, like GM-CSF, is dependent on 

Brgl. To determine whether Brgl is directly involved in the activation of these genes, ChIP 

assays were used to investigate whether Brgl is associated with the 'gene promoters. EL-4 

T cells were left unstimulated or stimulated for 4 hours with P/I before cross linking and 

immunoprecipitating chromatin using a Brgl antibody. ChIP revealed that Brgl is enriched 

at the IFN-y promoter in resting T cells, and Brgl levels decrease following stimulation 

(Figure 5.9a). In contrast only relatively low levels of Brgl were detected at the IL-4 

promoter in resting cells, however following stimulation Brgl levels increased 3 fold 

(Figure 5.9b). In contrast, little Brgl was detected at the IL-5 promoter in resting and 

stimulated cells (Figure 5.9c). Therefore, IFN-y shows a similar Brgl recruitment profile to 

GM-CSF with Brgl bound to the resting promoter and lost following stimulation. In 

contrast, while IL-4 has a similar activation profile to GM-CSF and IFN- y, Brgl is not 

present at the IL-4 promoter in the resting state but is recruited following stimulation. Brgl 

could not be detected at the IL-5 promoter at the time points analyzed. 
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Figure 5.9. Brgl binding at the IFN-y, IL-4 and IL-5 promoters. EL-4 T cells 
were either left untreated or stimulated for 4 hours with P/I before 
immunoprecipitating chromatin using a Brgl antibody. Enrichment of Brgl was 
determined by real-time PCR analysis using primers designed to the IFN-y (A) IL-4 
(B) and IL-5 (C) promoter regions. The mean and standard error of three replicate 
assays are shown 
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5.3 DISCUSSION 
Microarray experiments have proved to be incredibly powerful tools for 

determining the function of Brgl (Liu et al, 2001; Hendricks et al, 2004; de la Serna et al, 

2005). Here, tnicroarray analysis was used to address the extremely focussed question of 

whether other immune genes are regulated by Brgl in a similar manner to GM-CSF in 

response to T cell activation. This study identified 101 targets of Brgl from 34,000 known 

mouse transcripts which were reproducibly differentially expressed. Other studies have 

found similarly small sets of genes regulated by Brgl. Hendricks et al (2004) found 70 

genes induced 2 fold or more following the restoration of Brgl in SW-13 and ALAB cells 

and 65 genes repressed 2 fold or greater, out of 40,000 genes screened. While Liu et al 

(2001) found 80 genes induced 3 fold or greater and 2 repressed 3 fold or more out of 

22,000 genes in SW-13 cells following reintroduction of Brgl. The data mining techniques 

used differ between research groups and depend on the aim of the experiment. The number 

of genes identified is therefore restricted by the cut-offs used in data analysis and of course 

the cell type, experimental system and treatments used. In this case GM-CSF, a previously 

identified target of Brgl, was actually omitted from the gene list generated for replicate 2. 

It is therefore clear that less stringent filtering could be used to identify more Brgl 

dependent genes. Thus, Brgl targets which are activated via different signalling cascades 

would be omitted from this study along with genes which failed to meet the restrictions set 

during data analysis. 

The microarray data presented in this chapter demonstrates that Brgl is essential for 

the activation of a number of cytolcine genes in T cells. M-CSF, IFN-y, IL-4 and IL-5 were 

all identified as targets of Brgl. The fact that M-CSF has previously been identified as a 

Brgl target in a past microarray study validates the data presented in this chapter (Liu et al, 

2001). IFN-y expression is associated with Th 1 cells, while IL-4 and IL-5 are Th2 

cytokines. EL-4 T cells have Th 1 and Th2 expression capabilities and are thus considered 

Th0 like. It is therefore interesting to note that both Th1 and Th2 cytokines were identified 

as targets of Brgl. 

This is not the first time a role for Brgl in cytokine signalling has been identified. 

Pattenden et al (2002) have previously shown that Brgl is linked to immune surveillance as 

Brgl interacts with the CIITA promoter in an IFN-y inducible manner. Recent evidence has 
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pointed to a role for Brg 1 in immune regulation (Zhao et al, 1998; Huang et al, 2002; Cui 

et al, 2004) and Brg 1 has previously been identified as playing a major role in the immune 

response due to its requirement in inducing IFN-y and IFN-a responsive genes (Pattenden 

et al, 2002; Ni et al, 2005). The findings presented in this chapter add further support to the 

role of Brgl in immune regulation. 

While IFN-y, IL-4 and IL-5 were all identified as Brg 1 targets, each has a distinct 

activation profile. IFN-y is rapidly activated, with an increase in promoter accessibility 

detected within a short time frame. In addition, Brg 1 was found to be constitutively 

associated with the IFN-y promoter. These features suggest that IFN-y gene is poised for 

activation in a similar manner to GM-CSF. The data presented in this chapter supports the 

very recent findings of Zhang and Boothby (2006) in which Brgl was shown to be 

constitutively associated with the IFN-y promoter in mouse primary Th 1 cells. Their work 

demonstrated that, like GM-CSF, the rapid activation of IFN-y is associated with basal 

recruitment of Brgl. Three days following differentiation under Thl or Th2 conditions 

Brgl was found to be associated with the IFN-y promoter in Th 1 but not Th2 cells with 

recruitment therefore being associated with locus activation. The association of Brg 1 with 

the promoter region was also linked to increased accessibility and transcriptional 

competence. Similar to the findings for GM-CSF and IFN-y, Brgl has also been found 

constitutively associated with the M-CSF promoter in SW-13 and WI38 cells (Liu et al, 

2001), suggesting a similar mechanism for gene activation. It is also interesting to note 

however, that unlike GM-CSF, the IFN-y promoter is relatively inaccessible in its basal and 

activated state. It would therefore be important to study remodelling of the IFN-y gene over 

a series of time points and at a number of different sites. 

Precisely which factor is responsible for anchoring Brg 1 to the promoter region 

remains unclear. Constitutively expressed factors or basal histone acetylation may be 

involved in the basal recruitment of Brgl to the IFN-y and GM-CSF promoters. Indeed, the 

data presented in Chapter 4 indicates that the basal recruitment of Brgl to the GM-CSF 

promoter may be attributed to increased basal histone acetylation. In support of this 

hypothesis de la Serna et al (2005) have shown that histone H4 hyperacetylation precedes 

Brg 1 recruitment to the myogenin promoter. Recently, it has been suggested that Brg 1 
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association with the IFN-y promoter in Thl cells is dependent on NFAT members as Brgl 

recruitment is CsA sensitive and Brgl can co-immunoprecipitate with NFAT (Zhang and 

Boothby, 2006). This hypothesis may be flawed however, as NFAT only translocates to the 

nucleus following T cell activation. In addition, this study failed to address whether basal 

histone acetylation of the IFN-y promoter influences Brgl recruitment. Increased histone 

acetylation has previously been observed at the IFN-y locus in Thl cells (Avni et al, 2002), 

which correlates with the basal Brgl recruitment identified by Zhang and Boothby (2006). 

However, the role of histone acetylation in Brgl recruitment needs to be studied in more 

detail. 

Unlike GM-CSF and IFN-y, which share a common mechanism of activation with 

promoter priming by basal Brgl recruitment, the IL-4 gene is activated using a different 

Brg 1 dependent mechanism. Intriguingly, while the IL-4 gene displayed a slightly more 

rapid activation profile than IFN-y and GM-CSF, Brgl recruitment was delayed. However, 

the peak in IL-4 expression and promoter remodelling did occur concomitant with Brgl 

recruitment highlighting the importance of Brgl in 11,4 activation. While Brgl was not 

detected at the IL-4 promoter in resting cells, it may be recruited to the IL-4 promoter 

relatively quickly, at a time point omitted from the ChIP experiment. Alternatively, the 

delay in Brgl binding may be due to a more central role for histone acetylation in IL-4 

activation. The IL-4 promoter in naive and Th2 cells is modified in the basal state, with the 

promoter region immunoprecipitating with acetylated H3 (Grogan et al 2003). This basal 

chromatin modification may help to establish a permissive chromatin environment and 

prime the gene for rapid induction as IL-4 transcription is dependent on hyperacetylation of 

the promoter region (Valapour et al, 2002; Grogan et al, 2003). Thus, it appears that the IL-

4 promoter is primed for activation in a manner distinct to GM-CSF, with increased basal 

accessibility and histone acetylation playing a primary role in rapid activation with 

SWI/SNF binding occurring with more delayed kinetics. Perhaps this permissive chromatin 

environment helps mark the IL-4 promoter for rapid recruitment of Brgl. 

In comparison to GM-CSF, IFN- y and IL-4, the IL-5 gene is significantly delayed 

in its activation with levels elevated only at 24 hours post stimulation. It is therefore 

surprising that IL-5 was identified as a target of Brgl in the microarray experiments as 

these cells only received 6 hours of P/I stimulation. This appears to be due to IL-5 being 
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more responsive to WI in transfected cells as this result was validated by replicate real-time 

PCR experiments. The IL-5 promoter is highly compacted with basal accessibility 

extremely low with only a slight increase observed 24 hours post stimulation concomitant 

with transcriptional induction. This is supported by the findings of Siegel et al, (1995) who 

found that the IL-5 promoter region is protected from DNase I digestion. In addition 

increased sensitivity to DNase I was observed in regions bordering this site suggesting that 

like GM-CSF, the IL-5 proximal promoter is covered by a nucleosome (Cousins et al, 

2000). The delayed activation of IL-5 may therefore be attributed to the highly compacted 

promoter region. It is also possible that other co-activators are delayed in their nuclear 

translocation. In support of this, the activation of an IL-5 promoter-driven luciferase 

reporter in EL-4 T cells has previously been observed to take approximately 9 to 12 hours 

to become fully activated post stimulation (Wang et al, 2006). It is clear that activation in a 

chromatin context would be considerably slower due to the chromatin remodelling 

requirement. The delay in IL-5 activation may also be attributed to the delay in Brgl 

recruitment. At the two time points analyzed, Brg 1 was not detected at the IL-5 promoter, 

however it would be interesting to analyze Brgl recruitment over 24 hours to correlate 

gene activity and the presence of Brgl. Alternatively, IL-5 may be a secondary target of 

Brgl. 

It is evident that Brg 1 is involved in the activation of genes switched on rapidly and 

others which are activated with more delayed kinetics. Previous work in macrophages in 

which the ATPase was disrupted through the retroviral delivery of siRNA hairpins directed 

against Brgl found that Brgl is involved in the activation of late primary and secondary 

response genes (Ramirez-CatTozzi et al, 2006). Brg 1 was also found to be constitutively 

associated with the promoter regions of early primary response genes which parallels the 

findings presented here for the rapidly activated GM-CSF and IFN-y genes, although Brg 1 

did not appear to be required for their subsequent activation. 

The data presented in this chapter highlight a role for Brgl in immune regulation. 

Microarray analysis was successfully used to identify T cell genes dependent on Brgl for 

their activation. A number of cytokine genes were identified as Brgl targets including IFN-

y, IL-4 and IL-5. While each of these cytokines requires Brgl for optimal expression, there 

is some distinction between the transcription and chromatin remodelling profiles for each 
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gene. The divergent regulation of IFN-y, IL-4, IL-5 and GM-CSF suggests that although 

each gene requires Brg 1 for activation, IL-4 and IL-5 adopt a slightly different mechanism 

to GM-CSF and IFN-y for transcriptional induction. The inaccessible nature of the IL-5 

promoter and absence of Brg 1 recruitment may contribute to delayed transcription of the 

IL-5 gene. While the rapidly activated IL-4 gene exhibits increased basal promoter 

accessibility, IL-4 is not primed for activation by basal recruitment of Brgl. IFN-y was 

found to share a similar activation profile to GM-CSF and data presented here suggests it 

may be regulated by a common mechanism. As observed for GM-CSF, Brg 1 is 

constitutively poised at the IFN-y promoter in resting EL-4 T cells and lost from the 

promoter concomitant with gene activation. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

Activation of the GM-CSF gene following immune stimulation has been studied 

extensively in the past however the mechanism underlying activation of the GM-CSF gene 

in a chromatin context has remained largely unstudied. The data presented in this thesis 

clearly demonstrate that GM-CSF promoter remodelling and gene transcription are distinct 

events. Each process can occur independently of the other and has different signalling and 

transcription factor requirements and different kinetics. While GM-CSF gene transcription 

relies on PKC and calcium signalling pathways, GM-CSF promoter remodelling requires 

the action of PKC alone. In addition the transcription factors activated downstream of T 

cell stimulation are involved in different processes. NFAT members are required for the 

optimal induction of GM-CSF gene transcription but are dispensable for promoter 

remodelling and this may be attributed to the requirement of NFAT in enhancer 

remodelling (Cockerill et al, 1993; Johnson et al, 2004). In contrast, NF-KB members, in 

particular c-Rel, are essential for chromatin remodelling events at the GM-CSF promoter. It 

is also clear that GM-CSF gene transcription and promoter remodelling show quite 

different kinetics. While transcription displays a transient profile, peaking within several 

hours of T cell activation, remodelling events at the GM-CSF promoter were relatively 

stable, being maintained over several days. The stability of promoter remodelling was 

closely correlated with the nuclear translocation of c-Rel, suggesting this factor may be 

involved in maintaining the remodelled state. The stability of remodelling also raises the 

question of whether increased accessibility to the GM-CSF promoter is maintained through 

cell division or reset at the beginning of the cell cycle and this would be interesting for 

further investigation. 

The precise mechanism involved in remodelling the GM-CSF promoter remains 

largely unknown. However, recently Chen et al (2005) demonstrated that the increase in 

GM-CSF promoter accessibility, observed during T cell activation, is due to loss of 

histones from the promoter. Here, an important role for the ATPase component of the 

SWI/SNF complex, Brg 1 was identified in GM-CSF transcriptional activation. Brg 1 is 
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essential for the optimal transcriptional activation of the GM-CSF gene, as a reduction in 

GM-CSF mRNA production was detected in T cells expressing a Brg 1 mutant protein. 

While Brgl defective T cells were still capable of GM-CSF promoter remodelling upon T 

cell stimulation, basal levels of accessibility were slightly increased and displayed more 

variability suggesting Brg 1 may be involved in maintaining the basal state of the promoter. 

Interestingly, the PI105 promoter can still be remodelled in the absence of SWI/SNF, 

however with delayed kinetics (Gadreau et al, 1997) thus it is possible that the kinetics of 

GM-CSF promoter remodelling was affected in a similar manner which was not detectable 

at the time point analyzed. 

A direct role for Brg 1 in GM-CSF gene activation was confirmed using the ChIP 

assay, which unexpectedly demonstrated that Brg 1 was constitutively recruited to the GM-

CSF promoter in resting T cells and lost from the promoter concomitant with histone loss, 

following T cell activation. Analysis of Brgl enrichment at the GM-CSF promoter in non-

expressing B cells demonstrated that Brg 1 is absent, providing further support for a role for 

Brg 1 in GM-CSF activation in T cells. This raised the question as to how Brgl is 

constitutively associated with the GM-CSF promoter in T cells. Evidently, the classic 

model in which SWI/SNF is recruited to gene regulatory elements by inducible 

transcription factors (eg. Agalioti et al, 2000, de la Serna et al, 2005) does not hold true in 

this case. It is possible that a constitutively expressed factor helps tether Brgl to the GM-

CSF promoter and this has been demonstrated in the case of the IFITM3 gene with Spl 

recruiting Brgl (Liu et al, 2002). Alternatively, Brg 1 may bind to the resting GM-CSF 

promoter via an interaction with acetylated histones as Brg 1 contains a bromodomain 

capable of such an interaction (Hassan et al, 2002). The data presented here suggest that the 

basal recruitment of Brg 1 may in fact be due to increased basal levels of histone acetylation 

as increasing the levels of acetylation lead to increased Brgl recruitment at the promoter 

and increased the rate of remodelling. In support of this increased histone acetylation has 

been detected across the GM-CSF promoter in T cells (Chen and Shannon, personal 

communication). 

The signal that drives histone loss and remodelling of the GM-CSF promoter 

remains unclear. Combining the Brg 1 data with the findings from Chapter 3 it is possible 

that the NF-KB family member, c-Rel, which is associated with GM-CSF promoter 
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remodelling, interacts with Brgl following T cell activation to drive histone loss. 

Confirmation of a role for c-Re! in GM-CSF promoter remodelling could be provided by 

determining Brg 1 recruitment and histone loss in c-Re14-  or PTX treated T cells. A role for 

PKC signalling in chromatin remodelling at the GM-CSF promoter was also highlighted in 

Chapter 3. Previous work by Rando and colleagues (2002) found that phosphatidylinositol, 

activated downstream of PKC signalling, interacts with Brg 1 in vitro and enhances its 

affinity for chromatin. In addition, Zhao et al, (1998) also found that SWI/SNF binding 

after T cell activation was dependent on phosphoinositol. Therefore, it is possible that PKC 

signalling helps to increase the activity of Brg 1 and its affinity with chromatin to drive the 

loss of the nucleosome encompassing the GM-CSF promoter. PKC has also been found to 

directly phosphorylate a serine residue on histone H3 in vitro (Huang et al, 2004) and this 

ability to modify histone marks may influence the docking of other factors which direct 

nucleosome loss. Determining the role of histone chaperones in the loss of histones from 

the GM-CSF promoter would help to elucidate how this process occurs. 

The constitutive basal recruitment of Brg 1 to the GM-CSF promoter in T cells may 

be involved in generating a poised state with increased basal acetylation and increased 

Brg 1 recruitment priming the gene for rapid activation. Work by Ramirez-Carrozzi et al 

(2006) supports this hypothesis as Brgl was found to be constitutively associated with a 

number of early response genes including Cxcl2, Tnf and Ptgs2 in macrophages which are 

activated within minutes of LPS stimulation. However, in this case Brg I was not found to 

be essential for the transcriptional activation of these genes. 

The data presented in this thesis is consistent with a model in which GM-CSF is 

primed for rapid activation in T cells (Figure 6.1). An enrichment of acetylated histones is 

evident at the resting GM-CSF promoter (Chen and Shannon, unpublished data). This 

histone mark may potentially act as a docking site for the constitutive basal recruitment of 

Brg 1 . The enrichment of Brgl at the promoter may then help to establish a competent 

chromatin environment which can be remodelled rapidly. In response to T cell activating 

signals the nuclear translocation of c-Rel may direct the loss of histones from the GM-CSF 

promoter creating a highly accessible promoter region capable of binding the 

transcriptional machinery. Nucleosome loss is stably maintained potentially via prevention 

of nucleosome reassembly by c-Rel (Figure 6.1). Future work investigating the role of Brgl 
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Figure 6.1. Model for activation of the GM-CSF gene. Schematic 
representation of the GM-CSF promoter in the resting and activated state. 
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in remodelling the GM-CSF enhancer and the precise order of transcription factor 

recruitment events at the promoter would help to further clarify this model. 

In order to determine whether this mechanism is common to immune genes 

microarray analysis of Brg 1 defective T cells was used to identify Brg 1 targets. Transcripts 

from resting and activated T cells expressing a Brg 1 mutant construct were analyzed 

following hybridization to Affymetrix mouse genome arrays. An extremely defined 

question was asked in order to identify immune genes which were activated in a Brg 1 

dependent manner similar to GM-CSF. The cytokines IFN-y, IL-4 and IL-5 were identified 

as potential Brg 1 targets and chosen for futher analysis as these genes share a similar role 

in immune regulation as GM-CSF. It is important to note that only a small portion of the 

microarray data was used in this study and therefore these data could be further analyzed to 

consider the role of Brgl in other aspects of T cell activation. Analysis of the activation and 

remodelling profiles for each of the candidate genes demonstrated that while IL-4 and IFN-

y shared similar activation profiles to GM-CSF, the IL-5 gene was relatively delayed in its 

activation and promoter remodelling. Brgl recruitment was found to be different at each of 

these promoters. Brg 1 was bound to the IFN-y promoter in resting T cells and lost 

following T cell activation. In contrast, recruitment of Brgl to the IL-4 promoter required T 

cell activating signals. Brg 1 was not detected at the IL-5 promoter in resting T cells or 

those which had been activated for 4 hours and therefore could not be confirmed as a direct 

Brg 1 target. Future work should define Brg 1 recruitment over an extended time course in 

order to determine whether Brgl is recruited to the IL-4 promoter rapidly and the IL-5 

promoter in a more delayed manner. 

IL-4 and IFN-y have similar activation and remodelling profiles and ChIP 

demonstrated they are direct targets of Brgl. The constitutive recruitment of Brgl to the 

IFN-y and GM-CSF promoters suggests they may share a common model of activation. 

Perhaps IFN-y is poised in a similar manner to GM-CSF with increased levels of basal 

acetylation acting as a docking site for Brg 1 recruitment. Following T cell activation, the 

nucleosome covering the IFN-y promoter is rapidly remodelled, allowing the 

transcriptional machinery to assemble at a much faster rate. The delayed recruitment of 

Brgl to the IL-4 promoter is consistent with a number of published reports detailing a more 

traditional model of transcription factor mediated recruitment of remodelling activities 
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(Agalioti et al, 2000; de la Serna et al, 2005). In the case of IL-4, the promoter is relatively 

accessible in the basal state perhaps with slightly increased levels of histone acetylation. T 

cell activation signals are then required to trigger relatively rapid Brg 1 binding. Brg 1 can 

then further increase accessibility to the IL-4 promoter and enhance binding of the 

transcriptional machinery. The IL-5 gene is activated with much more delayed kinetics and 

this may be attributed to the requirement for histone acetylation and Brgl recruitment 

before chromatin remodelling can occur. 

It is possible that both the IFN-y and IL-4 promoters have slightly increased levels 

of histone acetylation to enhance Brg 1 recruitment. During Thl differentiation the IFN-y 

locus undergoes extensive H3 and H4 acetylation (Morinobu et al, 2004) and it is therefore 

possible that the constitutive recruitment of Brg 1 is via histone acetylation in Th 1 cells. 

Meanwhile, the IL-4 promoter is associated with acetylated H3 in Th2 cells (Grogan et al, 

2003) which could serve to mark the gene for rapid Brg 1 recruitment following T cell 

activation. 

The mechanisms involved in remodelling cytokine promoters to facilitate gene 

activation are known for only a small number of genes, however a common theme appears 

to be emerging. At the IFN-P promoter, NF-KB is bound first, within 2 hours of viral 

infection, followed by recruitment of the HAT, GCN5 at 5 hours. Brg 1 is then recruited at 

6 hours, at which point mRNA levels increase (Agalioti et al, 2000). The data presented in 

this thesis suggests that there may be a unifying theme in cytolcine gene regulation. While 

each gene is activated in a very specific, tightly co-ordinated manner, there appear to be 

some common features. The delay in IL-5 activation may be attributed to delays in histone 

acetylation and Brg 1 recruitment. Thus, transcription following T cell activation is slower, 

taking up to 24 hours for mRNA to accumulate. IFN-13 is potentially a few steps further 

along the activation profile, with acetylation and Brg 1 recruitment occurring more rapidly 

to ensure mRNA accumulates within 6 hours of viral infection (Agalioti et al, 2000). GM-

CSF and IFN-y activate even more rapidly, with increased transcription detected within less 

than an hour. This faster activation profile could be attributed to promoter priming, with 

increased levels of basal histone acetylation and Brgl recruitment. Even faster activation is 

observed at the IL-113 gene in macrophages, with transcription increasing within a matter of 

minutes of activation with LPS and peaking within three to four hours (Liang et al, 2006). 
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Figure 6.2. An emerging theme for the activation of cytokine genes. Schematic 
representation of the IL-5, IFN-13, IFN-y, GM-CSF and IL-10 promoters, their 
remodelling requirements and transcriptional profiles showing the role of histone 
acetylation and Brg 1 in activation. 
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The IL-113 promoter is nucleosome free in the basal state with high levels of accessibility. 

This means that the only rate limiting step in transcription in this case is the assembly of 

the transcriptional machinery (Figure 6.2). 

The role of Brgl in the activation of early versus delayed response immune genes is 

interesting to consider. A clear example of a role for Brgl in activating immune genes is 

provided by studies on the IL-12b promoter. Brg 1 is required for IL-12b promoter and 

enhancer remodelling as depletion of Brgl by siRNA in macrophages inhibits LPS induced 

increases in accessibility (Ramirez-Carrozzi et al, 2006). Similar to GM-CSF, IL-12b 

mRNA accumulates approximately 2 hours post stimulation, however unlike GM-CSF, 

Brgl is recruited to the IL-12b promoter following LPS stimulation of macrophages. The 

loss of Brgl did not impact on expression of early primary response genes (activated within 

minutes of stimulation) however while Brgl was found to be recruited to late primary 

response and secondary response genes in an LPS induced manner, Brgl was actually 

found to be constitutively associated with the early primary response promoters. This 

suggests that Brgl may establish or maintain a poised chromatin environment for rapidly 

activated genes in macrophages (Ramirez-Carrozzi et al, 2006). 

The link between Brg 1 and DNA methylation in priming genes for activation is also 

interesting to consider. Banine et al (2005) found that the restoration of Brg 1 to deficient 

cells lead to demethylation of target promoters. Aberrant DNA methylation has long been 

established as a feature of cancerous cells (reviewed in Baylin, 2005) and therefore the loss 

of Brgl and its role in cancer requires further study. Indeed, a number of published reports 

have revealed that Brg 1 is mutated in cancerous cell lines (Wong et al, 2000; Reisman et 

al, 2002) and primary tumors (Medina et al, 2004). Therefore, in terms of the clinical 

implications of this work, it will be important to screen myeloid leukemias in which GM-

CSF is aberrantly expressed for mutations in Brg 1 and investigate how Brg 1 impacts the 

methylation status of the GM-CSF gene. Investigating changes in the methylation status of 

the GM-CSF gene in cells transfected with the Brg 1 mutant could provide further insight 

into the mechanisms involved in GM-CSF gene activation. Indeed, the GM-CSF promoter 

has found to be methylated in Brg 1 deficient C33A cells and is demethylated in expressing 

EL-4 T cells (Sprod and Holloway, personal communication). 

By defining the molecular events in GM-CSF gene activation, some insight has 
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been gained into the mechanisms operating to activate immune genes in a chromatin 

context. Highly ordered and specific signals and recruitment events are required to drive 

remodelling and transcription of the GM-CSF gene. Most importantly, all these features 

contribute to the most important aspect of GM-CSF induction, its rapid and transient 

nature. In addition, from these data, together with studies emerging in the literature, 

common themes underlying activation of immune genes are beginning to emerge. 
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APPENDIX A 
Combined gene list for replicate 1 and 2 for genes with reduced activation in Brgl 
mutant expressing cells. 

Gene Name 
1445937_at 
1446082_at 

1445521_at 

1446430_at 
1445097_at 

1448039_at 

1449235_at 
1449298_a_at 
1447087_at 
1447135_at 
1447041_at 

1447647_at 
1447374_at 

1441298_at 
1441044_at 

1442178_at 
1441662_at 
1440716_at 

1440893_at 
1441738_at 

1440742_at 
1440558_at 
1443474_at 
1443919_at 

Description 
Transcribed sequences 
15 days embryo head cDNA, RIKEN full-length enriched 
library, clone:D930048E06 product:unknown EST, full insert 
sequence 
ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 
(Hu antigen R) 
RIKEN cDNA A630025009 gene 
L0210E07-3 NIA Mouse Newborn Ovary cDNA Library Mus 
musculus cDNA clone L0210E07 3', mRNA sequence. 
ujO4e02.xl Sugano mouse liver mlia Mus musculus cDNA clone 
IMAGE: 1890938 3' similar to gb:M29281 Mouse complement 
receptor (MOUSE);, mRNA sequence. 
tumor necrosis factor (ligand) superfamily, member 6 
phosphodiesterase 1A, calmodulin-dependent 
Transcribed sequences 
Transcribed sequences 
BB124417 RIKEN full-length enriched, adult male urinary 
bladder Mus musculus cDNA clone 9530097L15 3', mRNA 
sequence. 
wingless-related MMTV integration site 7A 
0 day neonate lung cDNA, RIKEN full-length enriched library, 
clone:E030033D05 product:weakly similar to DNA-BINDING 
PROTEIN [Rattus norvegicus], full insert sequence 
spectrin beta 3 
16 days embryo head cDNA, RIKEN full-length enriched 
library, clone:C130002M15 product:unknown EST, full insert 
sequence 
Transcribed sequences 
cytochrome P450, family 4, subfamily x, polypeptide 1 
Adult male spinal cord cDNA, RIKEN full-length enriched 
library, clone:A330051C14 product:unknown EST, full insert 
sequence 
RIO kinase 1 (yeast) 
CO502C08-3 MA Mouse E13.5 VMB Dopamine cell cDNA 
Library Mus musculus cDNA clone CO502C08 3', mRNA 
sequence. 
Transcribed sequences 
ATPase, class II, type 9B 
Transcribed sequences 
RIKEN cDNA B230206N24 gene 
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Gene Name 	Description 
1442550_at 	Transcribed sequences 
1442600_at 	0 day neonate cerebellum cDNA, RIKEN full-length enriched 

library, clone:C230008G15 product:unknown EST, full insert 
sequence 

1457423_at 	Transcribed sequence with moderate similarity to protein 
pdb:1LBG (E. coli) B Chain B, Lactose Operon Repressor 
Bound To 21-Base Pair Symmetric Operator Dna, Alpha 
Carbons Only 

1457608_at 	BB236014 RIKEN full-length enriched, 3 days neonate thymus 
Mus musculus cDNA clone A630056003 3', mRNA sequence. 

1456847_at 	Transcribed sequence with strong similarity to protein sp:P00722 
(E. coli) BGAL_ECOLI Beta-galactosidase 

1456564_at 	 RIKEN cDNA CO30046101 gene 
1459447_at 	Transcribed sequences 
1460271_at 	 triggering receptor expressed on myeloid cells 3 
1460088_at 	AV209518 RIKEN full-length enriched, adult male testis Mus 

musculus cDNA clone 1700120A01 3', mRNA sequence. 
1460104_at 	 vacuolar protein sorting 4b (yeast) 
1458025_at 	Transcribed sequences 
1452309_at 	RIKEN cDNA 4933421H10 gene 
1451837_at 	 adaptor-related protein complex 3, beta 2 subunit 
1452028_a_at 	cadherin 23 (otocadherin) 
1449864_at 	 interleukin 4 
1449903_at 	cytotoxic and regulatory T cell molecule 
1449900_at 	 601776377F1 NCI_CGAP_Lu29 Mus musculus cDNA clone 

IMAGE:4017906 5', mRNA sequence. 
1449988_at 	 immunity-associated protein 
1449652_at 	AV318995 RIKEN full-length enriched, 13 days embryo male 

testis Mus musculus cDNA clone 6030403F05 3', mRNA 
sequence. 

1450716_at 	 a disintegrin-like and metalloprotease (reprolysin type) with 
thrombospondin type 1 motif, 1 

1450869_at 	 fibroblast growth factor 1 
1450829_at 	 tumor necrosis factor, alpha-induced protein 3 
1450375_at 	 persephin 
1455186_a_at 	RIKEN cDNA 1190003J15 gene 
1453075_at 	 RIKEN cDNA 1600012P17 gene 
1453210_at 	Mus musculus 8 days embryo whole body cDNA, RIKEN full- 

length enriched library, clone:5730507C01 product:similar to 
ZINC FINGER PROTEIN 125 (FRAGMENT) [Mus musculus], 
full insert sequence. 

1453874_at 	 RIKEN cDNA 4933401B06 gene 
1453437_at 	RIKEN cDNA A230020K05 gene 
1425071_s_at 	neurotrophic tyrosine kinase, receptor, type 3 
1424376_at 	CDC42 effector protein (Rho GTPase binding) 1 
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Gene Name 	Description 
1424647_at 	gamma-aminobutyric acid (GABA-A) receptor, pi 
1425569_a_at 	signaling lymphocytic activation molecule family member 1 
1425471_x_at 	Mus musculus cDNA clone MGC:6439 IMAGE:3601769, 

complete cds. 
1425720_at 	CDNA clone MGC:12025 IMAGE:3603243, complete cds 
1425225_at 	Fc receptor-like 3 
1423061_at 	armadillo repeat gene deleted in velo-cardio-facial syndrome 
1422397_a_at 	interleulcin 15 receptor, alpha chain 
1427828_at 	Mus musculus murine retrovirus readthrough RNA sequence. 
1426632_at 	Similar to hypothetical protein MGC2376 (L0C233529), mRNA 
1425947_at 	 interferon gamma 
1426180_a_at 	submaxillary gland androgen regulated protein 2 
1426176_a_at 	prokineticin 2 
1426071_at 	progressive ankylosis 
1419431_at 	epiregulin 
1418900_at 	RIKEN cDNA 1810045K17 gene 
1418018_at 	carboxypeptidase D 
1417496_at 	BB332449 RIKEN full-length enriched, 6 days neonate medulla 

oblongata Mus musculus cDNA clone B730048G11 3', mRNA 
sequence. 

1419651_at 	RIKEN cDNA 2610200G18 gene 
1419628_at 	C. elegans ceh-10 homeo domain containing homolog 
1420593_a_at 	TEA domain family member 3 
1420888_at 	Bc12-like 
1420887_a_at 	Bc12-like 
1420700_s_at 	folate receptor 4 (delta) 
1420532_at 	activin receptor interacting protein 1 
1435523_s_at 	11 days embryo head cDNA, RIKEN full-length enriched 

library, clone:6230415F21 product:unknown EST, full insert 
sequence 

1435508_x_at 	RIKEN cDNA 0610009D07 gene 
1439043_at 	RIKEN cDNA 1500010G04 gene 
1438927_x_at 	Similar to 60S ribosomal protein L23a (L0C270584), mRNA 
1439110_at 	RIKEN cDNA A930012016 gene 
1439816_at 	Transcribed sequences 
1439485_at 	RIKEN cDNA 4932417D18 gene 
1437937_at 	chemokine binding protein 2 
1438570_at 	Transcribed sequences 
1437360_at 	RIKEN cDNA B530002L05 gene 
1430070_at 	RIKEN cDNA 1500035N22 gene 
1430843_at 	RIKEN cDNA 1110027M19 gene 
1428943_at 	RIKEN cDNA 4933433B15 gene 
1429657_at 	 UI-M-BH1-anr-b-02-0-UI.s1 NIH BMAP M S2 Mus musculus 

cDNA clone UI-M-BH1-anr-b-02--0-UI 3',—mR1\1—  A sequence. 
1433573_x_at 	protease, serine, 2 
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Gene Name 	Description' 
143297 l_at 	 Adult male testis cDNA, RIKEN full-length enriched library, 

clone:4921518B13 product:unclassifiable, full insert sequence 
1432891_at 	 dehydrogenase/reductase (SDR family) member 7 
1432888_at 	Adult male testis cDNA, RIICEN full-length enriched library, 

clone:4930455M05 product: unclassifiable, full insert sequence 
1432864_at 	 10 days lactation, adult female mammary gland cDNA, RIKEN 

full-length enriched library, clone:D730050C22 
product:unclassifiable, full insert sequence 

1432959_at 	 Adult male testis cDNA, RIKEN full-length enriched library, 
clone:4930447122 product:unknown EST, full insert sequence 

1431626_at 	Adult male testis cDNA, RIKEN full-length enriched library, 
clone:4933429K18 product:unclassifiable, full insert sequence 

1432795_at 	Adult male tongue cDNA, RIKEN full-length enriched library, 
clone:2310058F05 product:unclassifiable, full insert sequence 

1432155_at 	Wiskott-Aldrich syndrome-like (human) 
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