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ABSTRACT 

Electrolytic hydrogen production can be seen as the binding element in utilising and 

storing renewable energies towards a sustainable and environmentally compatible 

energy supply. 

In this thesis comprehensive literature review on hydrogen production with 

emphasises on electrolysis of water and various conventional models has been 

conducted. Furthermore, literature survey on applied Artificial Neural Networks 

(ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) elucidates 

architecture, functionality and application in detail. 

This study provided predictive hydrogen production performance models for a 

commercial PEM-electrolyzer. Two different approaches using intelligent techniques 

have been conducted. The first employs ANN and the second uses a hybrid model 

ANFIS as time series prediction combining fuzzy logic and Neural Networks. 

An experimental apparatus has been developed to measure and model specific 

performance parameters such as hydrogen flow rate, system-efficiency and stack-

efficiency. A comprehensive range of experimental conditions were tested as part of 

the investigation that covers a wide range of input variables and their influence on 

the output performance. The various parameters have been obtained using the 

electrolyzers' internal software (windows diagnostic) and additional sensors 

measuring power and feed water parameters, such as water quality, water pressure, 

system temperature, stack current, stack voltage, system power consumption, system 

pressure, product pressure and lower explosive limit. Synchronous data-acquisition 

of all parameters was carried out with National Instruments LabVIEW software to 

build a database. The database formed the foundation for the predictive models, 

where experimental data were used to train and test the developed hydrogen 

production performance models. Verification of those models was carried out by 

comparison of predicted and measured data. It is argued that, due to the high costs 

associated with the hydrogen measuring equipment; these reliable predictive models 

can be implemented as virtual sensors. 
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Hydrogen production performance models were built using ANN and ANFIS for 

parameter prediction of hydrogen flow rate, system-efficiency and stack-efficiency 

respectively. The quantitative accuracy of the predictive models is appraised using 

statistical techniques. These mathematical models are found to be reliable predictive 

tools with a maximum RMS error of ±3% compared with the experimental values. 

The predictive nature of these models did not show any significant bias to either over 

prediction or under prediction. 

These predictive models, built on a sound mathematical and quantitative basis, can 

be seen as a step towards establishing hydrogen performance prediction models as 

generic virtual sensors for wider safety and monitoring applications. This work is a 

significant advancement for understanding of dynamic electrolyzer behaviour and 

intelligent modelling to build virtual sensors. 
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CHAPTER 1 
INTRODUCTION 

"I believe that water will one day be employed as fuel, that hydrogen and oxygen 

which constitute it, used singly or together, will furnish an inexhaustible source of 

heat and light, of an intensity of which coal is not capable." 

Jules Verne, The Mysterious Island (1874) 
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Chapter I: Introduction 

1.1 Present Global Energy Supply and Forecast 

The primary energy is the energy contained in raw fuels and other forms of energy. It 

also includes renewable energies and is usually transformed to a more convenient 

form of energy such as electricity and petrol. The global primary energy demand is 

mainly driven by conventional use of fossil fuels, such as coal, crude oil, natural gas 

and nuclear resources. As an example, Australia's primary energy demand or 

generation from 1984- 2004 is shown in figure 1.1 [1]. The graph shows, that the 

main provider for electricity in Australia comes from conventional thermal and 

hydro power. About 75% of generated electricity in Australia is derived from coal. A 

small fraction of renewable energies is displayed in the figure at the beginning of 

2000. There is a steady increase in overall generation or consumption over the last 20 

years, in other words it has doubled from 1984-2004. 

Australia's Electricity Generation, by Source, 19114-2044 

•  Conventional Thermal  •  Hydroelectricity  •  Renewables 

250 

e  200 
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CCI 50 
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1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 

Year 
Source: EIA International Energy Annual 2004 

Figure 1.1: Rising primary energy demand in Australia Ill 
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Chapter 1: Introduction 

An outlook over the transportation sector established the dependency on fossil 

resources of our oil based economies, as most of the fuels to power cars and trucks 

are also derived from fossil energy resources, such as crude oil. 

The International Energy Agency (IEA) states, in the latest energy outlook for the 

transportation sector, an average increase of 2.7% for non-OECD (Organization for 

Economic Co-operation and Development) nations compared to an average growth 

of 0.3% per year for OECD countries from 2006- 2030. The transportation systems 

are generally well established in OECD countries, hence a comparative higher 

growth in energy consumption in developing countries, such as non-OECD nations 

[2]. 

1.2 Energy Supply Challenges 

1.2.1 Pollution and global warming 

The cause for global warming has been clearly identified by increasing rates of 

greenhouse gases such as carbon dioxide into the atmosphere since the 

industrialisation of the early 19th century. This fact directly reflects human activity 

through burning of fossil fuels as the cause for greenhouse gas emissions according 

to the latest report of the Intergovernmental Panel on Climate Change (IPCC) [3]. 

3 
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Figure 1.2: Changes in Carbon Dioxide from Ice-Core from IPCC assessment report 

2007 [3] 

Figure 1.2 shows the increase of carbon dioxide as one particular greenhouse gas 

over the last 10000 years. The evidence supporting this fact has been discovered by 

ice-core drilling. The figure shows a slow increase of carbon dioxide from the 

atmosphere until the mid 18th century. An exponential increase from the beginning 

of the industrial revolution 250 years ago is due to burning of fossil fuels. 

The burning of fossil fuels is polluting on a global scale. The impacts of pollution 

from burning of fossil fuels are widely felt on personal and political levels. Major 

cities are experiencing lower air quality, which is directly linked to emissions from 

power generation, residential heating and motor vehicles [4-6]. Motor vehicles emit 

carbon dioxide into the atmosphere contributing to global warming. Other harmful 

emissions include Carbon Monoxide (CO), Hydrocarbons (HC), Nitrogen Oxides 

(N0x) and Sulphur Dioxide (SO2). A number of these compounds have mutagenic 

and carcinogenic effects in humans [7]. Carbon Monoxide produces severe health 

effects in humans reducing the oxygen carrying capacity of blood. This can cause 

4 



Chapter 1: Introduction 

chronic poisoning and shows first symptoms as headaches, blurry vision and 

difficulty in concentration [8]. Some HC's have been proven to be carcinogenic 

(lung cancer) [9]. Nitrogen Oxides, especially nitrogen dioxide, contribute to 

morbidity and mortality as affects the lung directly and can lead to inflammatory 

reactions [10]. 

1.2.2 Decrease of fossil fuels 

Fossil fuels are exhaustible resources. Reports on fossil fuel reserves vary, as 

released data about production and depletion rates are scarce and uncertain. British 

Petroleum (BP) and OPEC (Organisation of Petroleum Exporting Countries) for 

example, frequently vary their assumptions of undiscovered reserves, keeping in 

mind that controversial statistics have political and economical impact. A recent 

model by Topal and Sharhriar [11] assumes a continuous compound rate and 

computes depletion times for oil, coal and gas of approximately 35, 107 and 137 

years respectively [11]. The models for oil and gas show a positive and significant 

relationship with consumption, compared to a negative and significant relationship 

with price [11]. As the transport sector heavily relies upon oil production, the 35 

years to come indicate a growing gap between production and demand. 

A phenomenon termed Peak Oil (PO) describes the associated with growing 

demand and maximum production capacity and was initially introduced by Hubbert 

[12]. The concept was at first disputed, but the general idea is now well accepted [13, 

14]. However, the time frame for the PO production is still under discussion and 

varies from "already happening" to the next 2-3 decades. 

According to Hubbert [12] it is impossible to keep up with rising energy demand 

as new discoveries of oil and gas fields are decreasing. Even if mankind will not run 

out of fossil resources in the next decades, the effect of shortage in global energy 

supply will increase the price of those resources [11]. For example, the price of crude 

oil rose 57% to about $100 USD per barrel in 2007, increasing to $147 USD in 2008. 

5 



Chapter I: Introduction 

The high price could be a result of fewer discoveries in crude oil deposits and 

growing demand as expected by Hubbert [12]. 

Spending the inheritance 

60 

50 

40 
.0 0 30 

20 

10 

0 

    

    

1950 	1960 	1970 	1980 	1990 	2000 	2010 	2020 

I  -*-  Discovery  *  Disc. Trend -A-Prod +2%  -A-  Reality 

Figure 1.3: Discovery vs. Production 1151 

Figure 1.3 [15] illustrates the basic idea of the Peak Oil scenario according to 

Campbell [15, 16]. The red line shows the discovery of crude oil deposits with a ten 

year moving average. It shows a decline since the 1970's with a clear downward 

trend. The green line shows the production with an extrapolated 2% growth in 

demand. The 'inheritance' or reserves is defined as the area between the red and 

green line. As the discovery trend crosses the production trend in the early 1990's, 

the 'inheritance' is declining as discoveries are insufficient to match the growing 

demand. Therefore production will peak at some point in future, indicated at the 

downward trend of the blue line (reality) [15, 16]. The crude oil peak scenario shows 

another need for alternatives in the energy sector of our oil based economies. This is 

turning point for mankind. At the actual peak production, little or no time for 

reaction remains to find alternatives for oil and the economic pressure will be 

enormous [15]. 
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Chapter I: Introduction 

1.3 Future Energy Supply 

1.3.1 Renewable energies 

Renewable energies, such as hydro power, wind power and solar power offer the 

potential for a new form of energy supply compared to the traditional approach based 

on foSsil fuels. The term renewable applies as they are freely available and "renew" 

themselves on a steady basis, so the supply will not suddenly come to an end 

compared to the non-renewable fossil energy resources. Renewable energies can 

greatly assist in cutting greenhouse gas emissions as technology available allows to 

produce electricity directly, without emitting greenhouse gases compared to 

electricity generation from coal and oil. Renewable energies provide a substantial 

part in the primary energy generation in several countries around the world. In 

addition, those technologies help to develop new industries and create new jobs, 

which ultimately provide diversity in energy supply and economic growth. 

Denmark for example has a share of renewable energies in primary energy 

consumption of approximately 15% in 2005 as shown in figure 1.4. The figure also 

shows a steady increase from 1980 until 2005. Some of their share is covered by net 

imports, e.g. the import of feed stock for biomass production. The government of 

Denmark laid the foundation for the growth of renewable energies and industries by 

government incentives in response to the oil crisis in 1973 [17]. 
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Production and Consumption of Renewable 
Energy - Share of Gross Energy Consumption 
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Figure 1.4: Share of renewable energy in gross energy consumption from in Denmark 

[18] 

In Australia, Tasmania provides approximately 90% of primary energy from hydro 

power [19] compared to the national power generation, which generates 75% 

electricity from coal [1]. The dominance of coal as the primary energy source 

demonstrates the necessity of a nation wide (and global) energy strategy to cut 

greenhouse gas emission to an acceptable level. A 50-60% global reduction by 2050 

has been recommended by the IPCC in order to bring climate changes back under 

control [3]. 

The drawback with renewable energies is often seen in their fluctuating nature as 

wind and solar radiation are not always present. An energy mix, such as the 

combination of solar power and wind power can provide a step towards a more 

sustainable system, but still it is not a definite solution. There is need for a storage 

medium to store renewable energies in times of greater supply than needed, in order 

to compensate for insufficient supply times. 
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Chapter I: Introduction 

1.3.2 Hydrogen as a prospective solution in a future energy supply 

Hydrogen is the most abundant element on the earth, however it is mostly bound to 

other elements such as hydrocarbons and water. It has some distinct benefits for its 

high energy content per mass basis compared to hydrocarbon fuels, hence its 

application in electricity generation, combustion engines and aerospace. It is 

especially of great interest in such applications as there is nearly zero pollution in its 

conversion, e.g. fuel cell vehicles only emit water. 

Hydrogen is considered to play a key role in the future energy supply, as it can be 

used as an energy storage and transportation medium. It has the potential as a 

renewable and sustainable solution for reducing fossil fuel consumption and 

emissions and thus combating global warming and pollution [20, 21]. Due to its 

bonds to other elements it has to be produced. Several technologies are available for 

the production of hydrogen, to name the most common such as the steam reforming 

of natural gas and electrolysis of water. As the reformation of natural gas is further' 

exploiting fossil energy resources and the need for alternative energy supply has 

been described in section 1.2, the electrolysis of water only uses electric current and 

water as resources. If the electric current for the electrolytic hydrogen generation is 

provided by renewable sources, emissions are cut severely and a step towards a more 

sustainable energy supply can be established. 

9 
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Figure 1.5: Example for a grid connected hydrogen application and research focus 

Figure 1.5 shows an example for a possible hydrogen application in conjunction 

with renewable energies. The renewable sources such as wind power or solar power 

are connected to the grid. In times of over supply of electricity an electrolyzer is 

converting the electricity to a more suitable storage medium, hydrogen gas. 

Depending on the setup of the overall system, it can either be compressed and stored 

or directly stored. When the energy demand cannot be matched by the renewable 

sources, the stored hydrogen can be re-electrified, e.g. by a fuel cell or hydrogen 

assisted generator and fed back into the grid. In other words hydrogen can be seen as 

the binding element for the exploitation of renewable energies as a storage medium 

to compensate for the fluctuating nature of renewable sources. 
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1.4 Thesis Objective and Structure 

The specific objectives of this thesis are the investigation of a commercial Proton 

Exchange Membrane (PEM)-electrolyzer and then to apply the experimental findings 

from a custom designed test rig to several models based on intelligent techniques. 

The developed neural network based models, after sufficient training and testing, 

operate as a virtual sensor to accurately predict basic electrolyzer performance 

parameters. 

This work also investigates the potential application of intelligent technologies, 

such as Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), as an alternative modelling approach to predict hydrogen 

production performance parameters. In order to develop the predictive models, a 

comprehensive range of experimental conditions is tested to build a database. The 

experimental data cover a wide range of input variables and their influence on the 

output performance and represent a realistic industrial hydrogen production process. 

The thesis is structured in 6 chapters. Chapter 2 represents literature reviews on 

hydrogen production with emphasis on electrolysis of water, fundamentals and 

conventional modelling techniques. Chapter 3 elucidates applied alternative 

modelling approaches based on intelligent techniques, such as ANNs and ANFIS, 

with respect to architecture, functionality and application in detail. That is followed 

by chapter 4, which describes the design and construction of the experimental rig, 

including data-aqusisition and -collection of various system parameters. The 

obtained experimental data build the foundation for the applied neural network based 

modelling approaches previously discussed in chapter 3. Construction, results and 

discussion of developed predictive models for hydrogen production performance are 

presented in chapter 5. Final concluding remarks and proposed future work are 

discussed in chapter 6. 
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2.1 Hydrogen Production 

2.1.1 Introduction to hydrogen and production technologies 

Declining crude oil supplies, environmental problems and political instability in 

regions with large oil deposits are creating a need for alternative fuels in our oil 

based economies. Within a number of potential alternative fuels such as biodiesel, 

methanol, ethanol, natural gas, liquefied petroleum gas (LPG), it seems hydrogen is 

having the best prospective to fulfil the attributes of alternative fuels to be 

technically feasible, economically competitive, environmentally friendly and 

available [22]. 

Historically, hydrogen was first discovered by von Hohenheim, also known as 

Paracelsus (1493-1541). He was the first to artificially produce hydrogen via the 

mixing of metals with strong acids, unaware that the flammable gas produced by this 

chemical reaction was a new chemical element. About a century later, in 1671, 

Robert Boyle's research describes the reaction between iron fillings and diluted 

acids, resulting in the production of hydrogen gas. Another century had to pass by, 

before Henry Cavendish first recognized hydrogen gas as "inflammable air" and 

produces water when burned. He also was able to accurately describe several key 

properties of hydrogen gas as a discrete substance. Although he is usually given 

credit for hydrogen discovery, its name was given by Antoine Lavoisier in 1783. In 

conjunction with the prior findings of Cavendish and his own experiments its name 

was derived from the Greek words of "hydro" and "genes", which means "water" 

and "born of" [23, 24]. 

Hydrogen is the most abundant element on the earth, but it is usually bound to 

other elements. Therefore it requires a production or generation method. The 

schematic in figure 2.1 gives an overview about current production methods. The 

present hydrogen generation can be divided into three major methods: thermal, 

electrochemical and biological respectively. These primary production methods can 

be further divided. Characteristically every generation method depends on the 

feedstock or the source of hydrogen and the procedure respectively. 
13 
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Properties for hydrogen as an alternative fuel have been briefly outlined in the next 

subsection, followed by a number of quantitatively significant methods for present 

hydrogen production. A special emphasises is given to the electrolysis of water, as it 

can be seen as a step towards utilising intermitted renewable energy sources into a 

sustainable future energy management. 

Figure 2.1: Current hydrogen production methods 

2.1.2 Properties of hydrogen as a fuel 

Hydrogen is an odourless, colourless, tasteless and non-toxic gas. It can be found in 

air at concentrations of approximately 100ppm or 0.01% respectively. The universe 

composes of 75% of normal matter by mass and over 90% by number of atoms of 

hydrogen, making it the most abundant element [25]. Table 2.1 [25] shows the 

combustion and explosion properties of hydrogen in comparison to other fuels such 

as methane, propane and gasoline vapour. However, it should be noted that gasoline 

is normally used in its liquid form and is approximately 12000 times denser and 

contains about 4000 times more energy per unit of volume compared to hydrogen. 

Some distinct properties that contribute to its use as a fuel can be derived from the 

table. Hydrogen accounts for a high energy density by mass ranging from 

119.93 x103kJ/ kg (Lower Heating Value, LHV) to 141.8x10 3kJ/ kg (Higher Heating 

Value, HHV), which is about 2.5 times greater compared to other hydrocarbon fuels. 
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Conversely hydrogen is also the lightest element with a very low density of 

0.08988g/1 indicating its energy content by volume is very small with approximately 

2.9x10 -3kWhil (LHV) under standard conditions (100kPa and 15.5°C). This fact 

leads to challenges within the automotive sector, in particular to store a sufficient 

amount of hydrogen in vehicles to provide adequate driving ranges [26]. The storage 

options for hydrogen in general and especially vehicles vary from high pressure gas 

storage, liquidation of hydrogen to absorption by metal hydrides [27-29]. It should 

also be noted that the flammability limits for hydrogen are exceptionally wide, 

ranging from 4-75% of hydrogen concentration in air. Hydrogen's use in combustion 

engines allows high compression ratios and efficiencies in addition to less nitrogen 

oxide emissions compared to gasoline operated engines [30]. Fuel cell operated 

vehicles have indeed negligible emissions as hydrogen reacts with oxygen, directly 

produces electricity and only emits water. 

Table 2.1: Properties of hydrogen, methane, propane and gasoline 

Hydrogen Methane Propane Gasoline 

0.084 0.65 2.42 4.4 
(100kPa and 

15.5 °C) 

445.6 509.9 250-400 

119.93x 103  50.02x10 3  46.35x10 3  44.5x10 3  

141.8x10 3  55.3x10 3  50.41x10 3  48x103  

1.897 0.33 0.18 0.112 

0.61 0.16 0.12 0.05 

4.0-75 5.3-15 2.1-9.5 1-7.6 

18.3-59 6.3-13.5 1.1-3.3 

Density of gas at 
standard conditions 
[kgni3( STP)] 

Heat of vaporisation 
[kJ kg-I ] 

Lower heating value 
[kJ kg-1 ] 

Higher heating value 
[kJ kg-1 ] 

Thermal conductivity of 
gas at standard 
conditions 
[m W cm-1  K-1 ] 

Diffusion coefficient in 
air at standard 
conditions 
[cm2  s-I ] 

Flammability limits in 
air Ivol%] 

Detonability limits in 
air Ivol%i 
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Limiting oxygen index 	5 
	

12.1 	 11.6 
Ivor/o] 
	

(average value for a 
mixture) 

Stoichiometric 	 29.53 	9.48 	 4.03 	 1.76 
composition in air 
[vol%] 

Minimum energy for 	0.02 	0.29 	 0.26 	 0.24 
ignition in air [NU] 

Autoignition 	 858 	813 	 760 	 500-744 
temperature IICI 
Flame temperature in 	2318 	2148 	 2385 	 2470 
air [K] 

Maximum burning 	 3.46 	0.45 	 0.47 	 1.76 

1.48-2.15 	1.4-1.64 	1.85 	1.4-1.7 (based on 
properties of n- 

pentane and 
benzene) 

Energy of explosion, 	24 	 I I 	 10 	 10 
mass- related 
[gTNT g -1 1 

velocity in air at 
standard conditions 
1m s' i l 

Detonation velocity in 
air at standard 
conditions [km s -1 1 

Furthermore hydrogen has a very high diffusion coefficient which represents its 

ability to disperse in air. This fact in particularly is of advantage for two reasons 

[26]. One, it supports the formation of a uniform mixture in the combustion process 

and two, it is advantageous if possible leaks within the fuel or storage system occur, 

as it disperses rapidly. This fact also supports the safety aspects for use and handling 

of hydrogen. For a more detailed compilation of hydrogen safety characteristics and 

hazard on handling see references [32 -33]. 

2.1.3 Hydrogen production from fossil resources and biomass 

Principally hydrogen can be derived from all primary energy sources [23]. As shown 

in table 2.2 [34], most of the hydrogen produced today, approximately 96% 

worldwide, is derived from fossil energy resources such as natural gas, oil and coal. 
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The hydrogen of present production is mainly used in oil refineries and 

petrochemical plants to refine fuels and to manufacture industrial commodities such 

as ammonia, steel and polymers. Furthermore hydrogen can be utilised for generator 

cooling, as rocket fuel in liquid form because of its high energy content by mass and 

in several other industries, e.g. pharmaceutical, glass, ceramic, electronic etc. [35]. 

Table 2.2: Hydrogen production share by source (annual) 

Source 	 Billion Nm3/year 	Share (°/0) 

Natural gas 	 240 	 48 

Oil 	 150 	 30 

Coal 	 90 	 18 

Water (Electrolysis) 	 20 	 4 

Total 	 500 	 100 

The most common and widely used methods for hydrogen production from fossil 

fuels are the Steam Methane Reformation (SMR) [36-39] and partial oxidation [40- 

44] of hydrocarbon fuels. 

The feedstock for the SMR process is usually natural gas, which accounts for 

almost 48% of the entire hydrogen production (table 2.2). The chemical composition 

of natural gas consists primarily of methane, hence SMR, but includes also 

significant quantities of ethane, butane and pentane as shown in table 2.3. Natural 

Gas (NG), which contains hydrocarbons other than methane, is often referred in the 

literature as wet NG compared to dry natural gas that only consists of methane. SMR 

is currently the least expensive method with an energy consumption rate of about 

1.23-1.35GJ-NG per GJ hydrogen [45]. It is a three step process, involving a 

catalytic reformation of methane at elevated temperature and pressure to produce a 

mixture (syngas) of hydrogen and Carbon Monoxide (CO) in the first step, followed 

by a catalytic shift reaction to combine CO and water to produce the hydrogen 
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product. In the third step purification of the hydrogen product is carried out by 

adsorption. The reforming reaction can be described as follows: 

CH4  + H2 0 <=> CO + 3H2  

AH = +206kJ I mol 	 (2.1) 

Table 2.3: Typical composition of natural gas 

Component 	 Typical weight rol 

Methane (C H4) 
	

70-90 

Ethane (C2H6) 	 5-15 

Propane (C3H8) and Butane (C4H10) 	<5 

CO2, N2, H2S, etc. 	 Balance 

Partial oxidation of hydrocarbons is usually achieved by a reaction of the 

hydrocarbon with steam and air at high temperature. The process requires energy to 

produce steam and heat for the steam-fuel mixture. A controlled amount of air 

(oxygen) allows partial oxidation (equation 2.2) of the fuel during the heating 

process of the mixture, followed by adding steam in the downstream process in order 

to complete the water-gas shift and fully oxidize the carbon (see equation 2.3). An 

example of the partial oxidation for methane is given below [44]. 

CH4  + 0.502  —> CO + 2H2 	 (2.2) 

CO + 112 0 -) CO2  + H2 	 (2.3) 

Hydrogen production from coal accounts for 18% of the world's hydrogen 

production. Gasification is the dominant process for hydrogen production from coal 
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and petroleum products [46-49], but other feedstock materials such as waste [50, 511 

and biomass [52-54] can also be used. Generally speaking gasification is mature 

compared to SMR, with an energy consumption of about 1.54-1.69GJ-coal per GJ 

hydrogen [45]. Recent developments in the field of carbon capturing and 

sequestration [55, 56] give the opportunity for this method to keep the emissions to a 

minimum. Nevertheless the gasification process is complex and expensive, 

especially when carbon capturing technologies are implemented. Gasification of coal 

for hydrogen production can be supportive matching the hydrogen demand in a 

future hydrogen economy mainly in the transition stage [57, 58]. 

Additionally hydrogen can also be produced from biomass by a number of 

processes, such as pyrolysis [59-61], partial oxidation [62], steam reforming [63-65] 

and biological conversion methods [66-68]. Yields are generally low, since the 

hydrogen content of biomass is approximately 6% compared to methane with 25% 

[69]. This fact demonstrates the limitations of hydrogen production from biomass. 

Another concerning fact related to hydrogen and alternative fuel production from 

biomass fact can be seen in the exploitation of valuable agricultural land for fuel 

production. The increasing world population and the accompanied rising demand for 

food oppose the hydrogen production from biomass. 

Hydrogen production from fossil energy sources exploits those declining resources 

and increases CO2 emissions, especially when hydrogen is used as a fuel, centrally 

produced and distributed to its end users [70]. Carbon capture technologies are 

relatively new and expensive. Long-term testing of these technologies is necessary to 

proof their reliability and success. The production of hydrogen from fossil resources 

is also highly dependent on the price of the feedstock, which is subject to demand 

and availability. The most economical productions methods today might not be 

sustainable in a possible future hydrogen economy, but can assist in the transition 

phase to match the future hydrogen demand. 
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2.1.4 Hydrogen from water 

Hydrogen production from water offers a possible alternative to hydrogen production 

from fossil resources, especially in conjunction with renewable energies towards a 

sustainable energy management [25]. The electrolysis of water is an electrochemical 

method to produce hydrogen and was found to be major technology for hydrogen 

production from sea water and fresh water, respectively [71]. Currently electrolysis 

accounts for about 4% of the global hydrogen production [34], with varying reports 

on system efficiencies ranging from 39-73% [72]. System efficiencies include 

auxiliaries and consider the power of the entire electrolysis system required to 

produce hydrogen based on the HHV. 

As water is an available resource in most areas, the necessary electricity can be 

supplied by a number of sources. Nuclear energy has been taken into consideration 

for large scale hydrogen production in order to match the future hydrogen demand 

[73-76]. In particular, hydrogen production from renewable sources such as solar 

[77-79], wind [80-82], geothermal [83, 84] and hydropower [85-87] offer the 

potential for energy storage of fluctuating renewable sources and an emission free 

hydrogen production. 

The fundamentals of electrolysis, their application in technology and several 

modelling approaches have been further discussed in the next sections. 

2.2 Electrolysis of Water 

The history of electrolysis can be seen within the history of electrochemistry. 

William Nicholson and Johann Ritter were the first who succeeded in decomposing 

water into hydrogen and oxygen in 1800. Ritter discovered the process of 

electroplating and also observed that the amount of metal deposited and the amount 

of oxygen produced during an electrolytic process depended on the distance between 
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the electrodes. After the invention of the voltaic pile, one of  the  early batteries, 

Nicholson and Ritter utilised it for the electrolysis of water [88]. 

Strictly speaking electrolysis is a method of separating bonded elements by 

passing electric current through an electrolyte. Figure 2.2 [89] shows the so called 

Hoffmann voltameter. Developed by August Wilhelm von Hofmann (1818-1892), it 

demonstrates the principle for electrolytic hydrogen production  as  one of the early 

alkaline electrolyzers. 

Pure water or distilled water is normally a non electrolyte. A few drops of an ionic 

compound like sulphuric acid makes it become an electrolyte. The electrodes, anode 

and cathode respectively, have a platinum layer and are connected to a battery. The 

cell generates a small current of a few milliamps, which generates hydrogen gas on 

the cathode (negative electrode) side and oxygen (positive electrode) on the anode 

side [89]. 

2.2.1 Thermodynamic fundamentals and general theory 

The thermodynamic fundamentals for the electrolysis process are briefly described in 

this section. Generally speaking, the general process in all technologies for 
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electrolysis of water is the same. Figure 2.3 shows the basic principle of an 

electrolysis cell. Water supply to an electrochemical cell produces hydrogen at the 

cathode and oxygen at the anode when a sufficient voltage, which is above the zero-

current potential E0, is provided. The released ions travel through an electrolyte and a 

diaphragm ensures the separation of oxygen and hydrogen. 

Ecel I 

Figure 2.3: Principle of an electrolysis cell 

The total reaction for splitting water can be expressed as 

H2 0 + elcectrical energy —> H2  + 0.502 	 (2.4) 

where the minimum electrical energy required to split water is given by the Gibbs 

energy AGR of the reaction in equation 2.4. At standard conditions (298.15K and 

101.3kPa) AGR for splitting water is 237.19kJ mol -I . The change in Gibbs energy is 

positive since it is a non-spontaneous reaction as reported by Ulleberg [90]. 

Consequently the zero-current cell potential E0 can be derived as follows [25]: 
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E = 
AG

R 
0  nF 

(2.5) 

where F represents the Faraday constant (96 485C mol -1 ) and n the number of 

electrons exchanged per mole of water split (n = 2). Therefore the standard zero-cell 

potential (at standard conditions) for the formation of hydrogen and oxygen from 

water is 1.23V. 

As standard conditions are mostly applied in theory, it should be noted that Gibbs 

energy is dependent on temperature and pressure and thus also affect the zero-cell 

potential Eo. Higher pressure increases the cell potential Eo, whereas increasing 

temperatures decreases Eo. 

The energy contained in one mole of water is defined by its enthalpy of reaction 

AHR (286kJ mol l ), which is equivalent total amount of energy needed for the 

reaction to take place. A part of the enthalpy of reaction can be applied as thermal 

energy TASR, which is equal to the heat demand for a reversible process. The thermal 

energy TASR is the amount of energy related to the entropy of reaction ASR at 

thermodynamic temperature T as given in equation 2.6 [25]. 

AHR  = AGR  + TAS R  . 	 (2.6) 

Therefore the rest of the energy required to achieve AHR or thermo-neutral 

potential Eth is supplied as thermal energy TASR (equation 2.6) and can be formulated 

as in equation 2.7 [90]. 

Eth = 
AHR 
nF 

(2.7) 
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The thermo-neutral potential Ed, under standard conditions is 1.48V. The total 

energy required for the reaction to take place can be provided by electricity and heat. 

Where heat is available as by-product, the electrical power required, can be reduced 

at higher operating temperatures, e.g. high temperature electrolysis process [91-93]. 

Under real conditions the electrical energy required is significantly higher 

compared to the theoretical minimum of the zero-current cell potential from equation 

2.5. The total voltage of an electrolysis cell Ecell under real conditions can be 

expressed as follows [25]: 

Ecell  = E0 +iR+1E:th 1+1E:1 
	

(2.8) 

As a result the total cell voltage depends on 

• the current in the cell, 

• the voltage drop iR, 

• and overvoltages of anode E: and cathode E d,, respectively. 

The voltage drop iR is caused by Ohmic resistance and can be seen as a function of 

conductivity of electrodes, electrolyte and diaphragm, the distance between 

electrodes and the contact resistance between cell components. The anodic and 

cathodic overvoltages Ea°„" and ELvd, correspond to the surplus of electrical energy 

required to activate the electrode reactions and to conquer concentration gradients 

[94]. 

The efficiency of an electrolysis process can be estimated by the energetic ratio of 

the generated amount of hydrogen over a period of time Pm,  over the electrical 

power consumed Pei  as stated in equation 2.9. 

24 



Chapter 2: Literature Survey 

(2.9) 

The electrical power consumed Pd  can either refer to the power consumption of 

the cell stack or the entire electrolysis system, including auxiliaries. In the first case 

the efficiency is regarded as stack-efficiency and as system-efficiency for the latter. 

It should be noted, that efficiency reports vary in literature and in most cases the 

Lower Heating Value (LHV) of hydrogen is used. Theoretically, the energy needed 

to split water is 39kWh per kg of hydrogen. This value represents the Higher Heating 

Value (HHV) of hydrogen. In order to overcome misrepresentations, the HHV 

should be used instead of the LHV for steam with 33.3kWh per kg of hydrogen; 

hence the produced hydrogen is derived from water. Even for an electrolyzer with no 

losses, the maximum efficiency that can be achieved is 84.5%, which can be derived 

by dividing the LHV by the HHV [72]. 

Aside from the approach stated in equation 2.9, efficiencies of the electrolysis 

process can be described more in detail. The cell efficiency n ' cell of an electrolytic cell 

is defined as the ratio between the actual cell voltage E (at operating conditions with 

temperature T and pressure p) and the minimum theoretical voltage or E0 as shown in 

equation 2.10 [25]. 

E(T,p)  
rice Eo (To , po ) 

(2.10) 

Furthermore, the Faraday efficiency describes the ratio of produced hydrogen gas 

(real operating conditions) and the theoretical amount of produced hydrogen based 

on the current flow in the cell. It accounts for parasitic current losses in the cell and 

also for diffusion losses caused by hydrogen travel between cathode and anode and 

oxygen travel respectively (anode to cathode). Barbir [95] reports these currents and 
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diffusion losses to be less than 1% of operating current density and as a result 

Faraday efficiencies of over 90% are typically achieved [95]. Faradays law of 

electrolysis relates the current needed to split water directly to moles of gas 

produced. Therefore the Faraday efficiency /Faraday  for ideal gases can be described 

as stated in equation 2.11 [25]: 

V  H2 ,real r 'T 	 I 
71 Faraday = 7-'7 	with vH2 ,ideal = ----nF - A 1  mor 

v H2 ddeal 
(2.11) 

where F and n are the same as in equation 2.5., I is current of the electrolyzer and 

Mmoi being the molar mass of the• hydrogen atom with 1.00797g/mol and 

2.01588g1mo1 for the hydrogen molecule, respectively, which includes the number of 

atoms per molecule as a factor. 

In order to describe the overall or system efficiency 'n 
' system Of an electrolzyer, 

power losses due to the operation of peripheral devices n • pertpheral have also to be 

taken into account as shown in equation 2.12 [25]. 

71 system = 71 cell • Faraday • 71 peripheral 
	 (2.12) 

2.2.2 Electrolyzer 

Electrolyzers are the technical realisation of hydrogen production through water 

electrolysis. The general theory has been elucidated in the previous section 2.2.1. 

Presently, two types of electrolyzers are commercially available for the electrolysis 

of water. Distinction can be made according to the state of electrolyte. The first type 

involves an aqueous solution (electrolyte), usually potassium hydroxide (KOH), and 

is often referred to as alkaline electrolyzer. The second type involves a Proton 
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Exchange Membrane or Polymer Electrolyte Membrane (PEM) as  a  solid electrolyte 

instead of an aqueous potassium hydroxide solution. 

2.2.2.1 Alkaline electrolyzer 

The alkaline electrolysis is a mature technology using aqueous potassium hydroxide 

solution as electrolyte. The concentration usually applied ranges between 20- 

30wt.%, because of optimal conductivity and extraordinary corrosion resistance of 

stainless steel [94]. Typical operating temperatures range between 70 and 100°C, 

while product pressures of hydrogen vary from 0.3psig for atmospheric electrolyzers 

up to usually 360psi and even up to 10,000psig for ultra high pressure electrolyzer 

systems (see table 2.4). 

From the physical point of view an electrolyzer stack consists of several cells 

linked in series. Two separate cell designs, specifically monopolar (unipolar) and 

bipolar can be distinguished [96, 97]. In the monopolar design shown in figure 2.4 

[90], electrodes are either positive or negative with parallel electrical connection of 

each cell. 
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Figure 2.4: Monopolar cell design 
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Alternative to the monopolar design, bipolar technology is presently used in most 

alkaline electrolyzers. The bipolar cell design from figure 2.5 [90] demonstrates this 

design principle, where the individual cells are electrically and geometrically linked 

in series and one electrode serves as anode and cathode at the same time. This 

compact design has a number of advantages opposed to the monopolar design: 

• Ohmic losses are reduced as the distance between electrodes and diaphragm 

are greatly reduced (equation 2.7) 

• operation at high pressures (monopolar systems operate usually at 

atmospheric pressure) allow compression work for storage to be reduced. 

Therefore the electrolyzer efficiency can be increased by using the bipolar design 

concept [96, 97]. 

H, 0 

cathode anode 
(bipolar plate) 	diaphragm 

	container 

Figure 2.5: Bipolar cell design 

In the so called zero-gap design of advanced alkaline electrolyzers, (bipolar) 

electrodes are directly placed on the diaphragm, which further reduces the distance 

of electrodes and the contact resistance of cell components. The aim of those 

advanced systems is to increase the current density (reduce investment costs as more 
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hydrogen is produced) and also reduce of cell voltages to reduce the power 

consumed and so reduce operation costs. 

The technical realisation from the above stated aim leads to a conflict of interest, 

as increased current densities yield in increased cell voltages because of increased 

Ohmic resistance and overpotentials of anode and cathode. In order to overcome 

those problems a number of improvements had to be made. The application of low 

resistance diaphragms, operation at higher process temperatures to increase the 

conductivity of the electrolyte and so reduce the electric cell resistance and the 

development of new electrocatalysts such as mixed-metal coating containing cobalt 

oxide for anode and Raney-nickel at the cathode are partially employed in current 

advance alkaline electrolyzer systems to improve their performance [96,97]. 

The stack assembly of individual cells in an electrolyzer allows the generation of 

hydrogen in various quantities ranging from a few litres per hour to several hundred 

Nm3  per hour. An overview of some manufacturers for alkaline electrolyzers is 

shown in table 2.4 [72, 98-100]. Most of them listed in the table 2.4 using bipolar 

technology with varying pressures. The system energy requirement gives an 

indication of the efficiency of the overall system, ranging from 4.3-6.1kWh per Nm 3  

or 57-81% efficiency (HHV) respectively. 

Table 2.4: Overview of alkaline electrolyzer manufacturers 

Manufacturer Technology 	Hydrogen 

production 

rate, 

min-max 

(Nm3/hr) 

Hydrogen 

product 

pressure (psig) 

System 

Energy 

requirement 

(kWhiNm3) 

Norsk Hydro ASA 

Norsk Hydro ASA 

Bipolar, 
alkaline, 
atmospheric 

Bipolar, 
alkaline, 	high 
pressure 

50-485 

10-60 

0.3 	 4.8 

232 	 4.8 
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Stuart Energy 	Bipolar, alkaline 	1-90 	360 	4.8-4.9 
Systems 

Teledyne Energy 	Bipolar, alkaline 	2.8-42 	60-115 	5.3-6.1 
Systems 

Avalence LLC 	Monopolar, 	0.45-5 	Up to 10,000 	5.07-5.44 
alkaline 

ELT Elektrolyse 	Bipolar, 	 3-330 	0.3 	4.3-4.6 
Technik GmbH 	alkaline, 
[78] 	 atmospheric 

Linde AG [79] 	Bipolar, alkaline 	5-250 	145-363 

Hydrogenics 	Bipolar, alkaline 	10-60 	363 	 5.4 
Corporation [80] 

Aside from the cell stack, a number of peripheral devices are included in the 

electrolyzer system. Feed water needs to undergo deionisation to facilitate non-

fouling of the system. Furthermore the electrolyte has to maintain its ideal 

concentration. For this purpose a process control system is employed, which controls 

feed water supply as well as lye (electrolyte) management. As the power supply for 

the stack is direct current (DC) and most systems use AC power supply, an internal 

AC/DC converter (rectifier) is necessary. Purification systems have to be employed, 

if high purity levels of the product hydrogen are necessary, e.g. for fuel cell 

application. 

2.2.2.2 PEM -electrolyzer 

Proton Exchange Membrane or Polymer Exchange Membrane (PEM)-electrolzyers 

use a solid electrolyte instead of an aqueous solution. General Electric was the 

original developer of the Solid Polymer Electrolyte (SPE) in 1967, another synonym 

for PEM. The material typically used is perfluorinated sulphuric acid polymer, such 

as Nafion® from DuPont. Those membranes act as a diaphragm and electrolyte 

simultaneously and are widely used in PEM fuel cells and water electrolyzers [101]. 
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Figure 2.6: PEM-electrolyzer cell 

Figure 2.6 [115] shows the schematic of a PEM-electrolyzer cell. The electrodes 

are directly applied on the PEM as a thin layer and deionised water is circulates in 

the cell. At the anode side (the positive pole) oxidation or electron loss occurs and 

oxygen is produced as in equation 2.13. 

H2 0-40.502  +2H +2e - 	 (2.13) 

The membrane, containing H+  ions for electricity conductivity, supports the proton 

exchange (electron transfer) to the cathode side where reduction or electron gain 

occurs and hydrogen is produced (see equation 2.14). 

2H+ + 2e -  -> H2 	 (2.14) 

An overview about a number of current PEM-electrolyzer manufacturers is given 

in table 2.5 [102-106]. Few commercial systems besides the Hogeng series from 

Proton Energy Systems are currently available, but the development of prototypes 

indicate high potential for further future development. The compact design of PEM- 
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electrolzyer including the use of solid electrolytes instead of an alkaline solution 

allow better sealing options and offer the possibility for high pressure hydrogen 

production [ 1 07]. 

Table 2.5: Overview of PEM-electrolyzer manufacturers 

Manufacturer Model/ 

Development 

status 

Hydrogen Hydrogen 

production product 

rate, 	pressure 

min-max 	(psig) 

(Nm3/hr) 

System 

Energy 

requirement 

(kWh/Nm 3) 

Proton Energy 	Hogen GC series 0.018-0.036 
	

200 
Systems 
(Distributed Energy 
Systems) 

Giner, Inc 

Treadwell 
Corporation 

Mitsubishi 
Corporation 

h-tec Wasserstoff-
Energie-Systeme 
Gmbh 

Hogen S series 	0.265-1.05 	200 

HP 	(high 0.265-1.05 	2400 
pressure) 

Hogen H series 	2-6 	218-435 

Prototypes 	 3.7 	Up to 1250 

Prototype 	1.2-10.2 	Up to 1100 

• 
Prototype 	 2.5 	5000 

Prototype 	Up to 2.4 	Up to 435 

6.7 

6.8-7.3 
5.4 

Compared to alkaline electrolysis different electrode materials (compounds) such 

as platinum for the anode electrode and iridium for the anode are used. The 

application of noble metals in PEM-electrolysis lead to higher material costs 

compared to conventional alkaline electrolysis. Efficiencies and hydrogen generation 

volumes (up to IONm 3  per hour) of PEM-electrolyzers are generally lower as their 

alkaline counterparts. Nevertheless, PEM-electrolyzer cover the range of low 

production capacities with efficiencies reported from research and development 
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projects of above 80% per cell [108]. This was achieved on laboratory scale using 

different compositions of electrocatalysts for anode electrodes with the cell operating 

temperature at 80 °C and low current densities as depicted in figure 2.7 [108]. 

o ; p 	05 ' 	 1,0 	1;5 
Current density /A cni-2. 

Figure 2.7: Examples of a PEM water electrolysis cell polarization curves using 

different anode electrocatalysts and Nafion 115 electrolyte 

The performance benefits of PEM-electrolyzer offer the potential for further 

development and improvement in the near future. The next sections describe the 

application of PEM-electrolysis as a preferred method in industrial use with a view 

on future development followed by electrolyzer modelling approaches. 
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2.3 Use of PEM-Electrolysis and Broader Applications of Hydrogen 

Generation On-line 

PEM-electrolysis technology offers some significant advantages compared to 

conventional alkaline electrolysis. Those advantages along with applications in 

industry and sustainable energy management will be discussed in detail in the 

following subsections. 

2.3.1 PEM -electrolysis as a preferred method in industrial use 

Extended incremental application of PEM-electrolyzers can be found in analytical 

instrument making, hydrogen welding, correction systems of a water-chemical mode 

of nuclear reactors, manufacturing of pure substances in electronic industry, 

analytical chemistry and fuel cells [109]. 

The inherent advantages from PEM-electrolysis over alkaline electrolysis can be 

summarised as follows: 

• membrane sustainability of high differential pressures, whilst inhibiting 

mixing of product gases, 

• greater safety and reliability, since no caustic electrolyte is circulated in the 

cell stack, 

• operation of cells under high current density (up to several amps per square 

centimetre) is possible, 

• higher gas quality with purity levels up to 99.999% and more, especially in 

part load operation. 

As PEM technology uses solid electrolytes, a recycling of an alkaline solution is 

unnecessary. Furthermore the proton exchange membrane maintains a constant 

electrolyte concentration, which in turn needs to be addressed in alkaline systems 

where a lye management control system is usually employed. 
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Significant improvements in high pressure PEM-electrolysis 	70bar) have been 

made and are currently in research and development phase [107, 1101. Such 

improvements are possible due to the chemical modification of the membrane, to 

sustain high differential pressures and reduce cross-permeation of the product gases, 

which increases under high pressure operation. The generation of high pressure 

hydrogen allows a storage option without a compressor and thus reduce the 

complexity of hydrogen generation and storage system and additionally increase the 

overall efficiency [1111. 

The implemented compact zero-gap design of PEM-electrolyzer stacks 

accompanied by the improved durability of the membrane allows the operation of 

high current densities of up to 2A cm -2  in the cells and also low energy consumption 

of 4.0-4.2kW Nm -3  [107]. Therefore more hydrogen per active electrode area can be 

produced compared to alkaline systems, where usually lower current densities and 

voltages are applied. 

The high purity levels, around 99.999% of the produced hydrogen and oxygen 

make a direct application in the upcoming market of fuel cells attractive and 

possible, as impurities of hydrogen gas in fuel cells significantly shorten their life 

time span. Besides hydrogen, oxygen can be alternatively used instead of air in the 

fuel cell, since both gases are produced in the electrolysis process. 

Although costs are still higher for PEM-electrolysis, costs are expected to be 

further reduced as research and development on low-cost electrocatalysts is ongoing 

and new families of cheap compounds are being developed and expected to appear in 

the short-term as reported by Millet et al. [113]. Additionally reduced energy 

consumption by improved electrocatalysts further increases the performance and 

efficiencies of PEM-electrolysis [115]. Many materials for catalysts and cell 

components in PEM-electrolyzer could also benefit from large scale PEM fuel cell 

production; hence PEM fuel cells are similar in design [112]. The principle of a 

PEM-electrolyzer cell operation can be seen as the reverse process to a PEM fuel 

cell. According to Barbir [95] and Grigoriev et al [109, 112] few modifications are 

necessary to convert a PEM-electrolyzer cell into a PEM fuel cell, as same 

membrane and catalysts on the bases of platinum metals and same production 
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techniques of catalyst synthesis are applied. Research is currently undertaken in the 

development of reversible fuel cell-electrolyzer systems, in order to combine the 

technologies in one compact system for hydrogen or electricity generation 

respectively [114]. 

2.3.2 PEM -electrolysis in conjunction with renewable energies 

Hydrogen production via PEM-electrolysis can realised with renewable energy 

sources. Most of the systems described in the literature refer to Stand Alone Power 

Systems (SAPS) in remote areas with no grid connection, where hydrogen is 

generated from renewable sources and used as energy storage before re-

electrification on power demand, e.g. in fuel cells. 

Barbir [95] and Clarke et al. [117] state, that PEM-electrolysis is a viable 

alternative for hydrogen production from photovoltaic (PV), where it may be 

coupled directly to the electrolyzer if polarisation curves of both systems are well 

matched [95, 117]. Figure 2.8 [95] shows an example of a grid independent SAPS. 

Handling of variable power input to the electrolyzer requires a DC/DC power 

regulator, which powers the cell stack, and must be part of the power conditioning 

and controls as depicted in figure 2.8. In this particular case, hydrogen can be 

generated via electrolysis from PV and either stored for re-electrification on demand 

by a fuel cell or used as a fuel for various applications, such as cooking, heating, 

cars. One essential task of the power conditioning and control is to match and 

optimise the polarisation curves of electrolyzer and PV array, to ensure stable and 

efficient operation. Additionally a permanent AC connection may be required to run 

the auxiliaries of the electrolyzer [95]. 
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fuel cell 

Figure 2.8: Example of a grid independent PV-hydrogen energy system 

Such a system could also be grid coupled and supply high quality back-up power, 

where high reliability of power needs is desired [95, 116]. The combination of 

photovoltaic, PEM-electrolyzer and fuel cell system as an Auxiliary Power Unit 

(APU) has been investigated by Doucet et al. [118]. The maximum output power of 

the fuel cell was limited to lkW and potential application as domestic power source 

and remote power supply were suggested for this APU. 

The research in the field of SAPS currently deals with optimal coupling of PV 

arrays to PEM-electrolyzers [117, 119] and power management or control strategies 

of the individual system components, such as wind, photovoltaic, electrolyzer, 

hydrogen storage, fuel cell etc. in order to optimise such systems [120, 121]. Solar to 

hydrogen conversion efficiency of 18% have been reported by Peharz, Dimroth and 

Wittstadt [122] from the Fraunhofer Institute/ Germany. These prototypes of solar-

hydrogen systems used solar cells with optical concentrator system that were directly 

connected to the electrodes of a PEM-electrolyzer cell. Further research focuses on 

improvement of the conversion efficiencies and also cost competitive development 

of cheaper polymer materials for large scale production. 

PV array 
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2.4 Concluding Remarks 

Several dynamic modelling approaches have been carried out based on mathematical 

and fundamental theory, such as thermodynamics and thermal behaviour of the 

electrolyzer components with different viewpoints for application, e.g. in control, 

monitoring, safety and overall system integration. 

Models of system components, in this case an electrolyzer, are used to express 

their general behaviour under different operating conditions. They are also useful for 

determine optimal operating conditions or efficiencies respectively. Integrated in 

transient system simulation programs, they can be particularly used for design and 

optimisation of control strategies for sustainable energy systems or SAPS. 

Ulleberg [90] developed a dynamic mathematical model for an advanced alkaline 

electrolyzer. It is based on a combination of fundamental thermodynamics, heat 

transfer theory and empirical electrochemical relationships. The model predicts 

system parameters such as cell voltage, hydrogen production, electrolyzer system 

temperature and efficiencies with varying reported RMS errors ranging from 0.15- 

5.3% between measured and predicted values. It can be applied for system design or 

re-design and for optimisation of control strategies [90]. 

Gorgtin [123] proposed a dynamical modelling approach based on a PEM-

electrolyzer consisting of four ancillaries, anode, cathode, membrane and voltage. 

Physical experiments were not carried out; however, a simulation was conducted 

with Matlab simulink software with a view to integrate the proposed model in 

renewable energy systems [123]. 

Onda et al. [124] investigated the performance of a single electrolysis cell and 

applied his findings to a large cell-stack. This approach is mainly built on 

conservation equations of mass, mole balance at anode and cathode, charge, energy 

flow and membrane characteristics [124]. 

The safety handling and monitoring of hydrogen gas is becoming increasingly 

important with an emphasis on its use as alternative fuel or energy carrier. Whether 

the application of hydrogen is in automobiles [125, 126] or for stationary 
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applications, the need for equipment to monitor and measure explosion limit of any 

leakage increases with the pressure and flow. Lecceuche and Lebbal [127] developed 

a hybrid model dedicated to control and monitoring for a PEM-electrolyzer based on 

an analytical model and experimental data from open literature to estimate dynamic 

model parameters. Following this a model-based diagnosis was used to monitor the 

system and ensure its safety [127]. 

An intelligent model proposed by Karri et al. [128] predicts hydrogen pressure 

which is directly related to the flow rate. In this work accurate estimation of 

hydrogen pressure as a function of different input conditions of power supplied 

(voltage, current), the feed of de-ionized water and various PEM-electrolyzer system 

parameters is carried out. The predictive capability tested encompasses a range of 

hydrogen pressure that represents varied production rates. It is argued, that the 

reliable estimation greatly assists in avoiding expensive instrumentation for safety 

measurements [128]. 

However, most of the relevant electrolyzer models used conventional analytical 

approaches, empirical curve fitting techniques based on mathematical and 

fundamental relationships [90, 96, 123, 124, 129]. Those models are highly complex 

and using regression analysis or statistical modelling based on 'empirical approach', 

which makes a decision on the performance for a given set of process variables. 

From control point of view, the quantitative accuracy of the regression models is 

directly dependent on the number of process variables tested (data from open 

literature is often applied) and the rigour to which the complex curve fitting 

techniques are applied [130]. The decision on the performance will be of doubtful 

accuracy when an 'alien' process variable, not previously tested, is introduced into 

the decision making process. The strength of a regression model is dependent on the 

extent of experimental investigation and the number of process variables covered to 

develop such complex curve fitting techniques. The reliability of the predictive 

equations depend on the number of process parameters included in the equation and 

the extent of investigation will often result in expensive and prohibitive investigation 

to build such models. There is no 'intelligence' or 'training' as inherent features 
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within the models. They are used as mere 'mathematical tool' for a 'quick answer' 

from the developed empirical equations. 

Neural Network based models or intelligent models, by contrast, differ to 

conventional models by the way the algorithm is built. They undergo a process of 

'training', which essentially covers a comprehensive range of inputs provided to 

develop a decision making model. This training stage involves a constant up date of 

'inherent weights' to match the provided target value, which otherwise is not part of 

regression analysis. This 'training' stage constantly updates all the weights in the 

algorithm to 'settle for' a minimum RMS error. This iterative process towards 

arriving at optimum minimum is not a feature in the regression models. Moreover, 

the decision making is carried out by 'pattern recognition' techniques that usually 

require minimum number of process parameters to make a comparable decision to 

the statistical models. This makes them most suitable for industrial cases where a 

data-acquisition is an expensive exercise which otherwise is not catered by the 

regression models. The Neural Networks provide a 'testing stage' which is a final 

stage for assessment of the developed model after the training event. This stage is a 

result of 'most up dated' weights that best represent and suit the given target values 

to estimate the performance. This dual stage is not part of the regression models 

where 'once off' curve fitting is carried out with out any 'second chance' for either 

adjustment or 'super fitting'. 

From a control point of view, when we have over 7 process variables, in the case 

of electrolysis process, that affect any given performance, any , reliable regression 

model would need to be extremely complex with no chance for any 'on line' 

adjustment or improvement. When only few process variables are given for neural 

network models, the extent to which they interpolate results and arrive at decisions 

are more quantitatively reliable than the regression models. 

This chapter presented an overview about the most common and widely used 

hydrogen production technologies. Special emphasises is given to the process of 

water electrolysis via electrolyzer. Furthermore, electrolyzer modelling approaches 

for hydrogen production have been discussed. Due to the complexity of those 

mathematical models, which rely on extensive and expensive experimental 
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investigations, an approach with intelligent techniques, such as Neural Networks and 

hybrid models is suggested. Intelligent techniques and their application in various 

non-linear dynamic processes will be further elucidated in the next chapter. 
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3.1 Introduction to Artificial Neural Networks 

By definition, an Artificial Neural Network (ANN) is type of information processing 

system adopted from the functionality of the human brain or biological nervous 

system. The average human brain of an adult has probably about 100 billion neurons 

of which each is connected by approximately 5000 synapses. A brain is able to create 

or break one million connections per second, making it one of the most remarkable 

processing mechanism created by nature. 

An ANN derives its computational power through a massively parallel distributed 

structure and its learning ability, inspired by the way the biological nervous system 

works. The learning ability and structure of ANNs, which is composed of a large 

number of highly interconnected neurons enables them to solve complex, non-linear 

problems. The ANN system learns to perform a function from data, e.g. an 

input/output map. Generally, Neural Networks are adaptive systems, where system 

parameters are changed during operation in the training phase and learning occurs. 

Following the training phase the ANN parameters are fixed and the system is tested 

to solve a specific problem (testing phase). As the ability to learn requires some sort 

of intelligence, ANNs have also been allocated to the field of Artificial Intelligence 

(Al) and intelligent systems [131-133]. 

3.1.1 Biological function of neurons 

Figure 3.1 [134] shows the biological structure of a nerve cell (neuron). The neuron 

consists of the cell body or soma including the nucleus, a number of dendrites 

(incoming fibres) and the axon (outgoing fibre) with its connection (synapse) to the 

neighbouring cell. 
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i 
Cell Body  or  Soma 

Figure 3.1: Biological structure of a nerve cell 

The cell body can be seen as the main processing unit. It accepts various inputs 

through incoming dendrites from other neurons and processes these inputs. Outputs 

are sent via the axon through synapses to dendrites of other neurons. The 

communication or electrical signal transmission across the synapse occurs when 

chemical substances (neurotransmitter) in the synapse are released. This effect 

causes a change in the electrical potential of the cell body until a threshold value is 

reached and an electrical pulse is sent through the axon. The electrical pulse in turn 

changes the potential of the synapse. A large number of synapses show plasticity 

behaviour. In other words their potential can increase or decrease in strength and 

therefore have different strength and synaptic weights [135]. The learning 

mechanism of the human brain is most probably connected to the ability of changing 

synaptic weights of the synapses [136]. 
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3.1.2 Artificial neurons 

An artificial neuron is a fundamental information processing unit of a neural 

network, which consists of a number of interconnected neurons.  It  should be noted, 

that artificial neurons are truly primitive compared to their biological counterparts. 

Where ANNs try to imitate the sophisticated biological neural system, they are 

presently are not capable of actually replicate the human brain. 

Figure 3.2: Architecture of an artificial neuron 

The basic architecture of an artificial neuron is depicted in figure 3.2. The various 

inputs to the network are represented by the symbol xi. Each input is multiplied by a 

connection weight, wji, where the index j represents the index and array of the 

neuron and i the index of the input of the neuron (source neuron). The neuron 

computes the output, after summation of the input products and feeding through an 

activation function occurs. 
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Mathematically, this process can be described as follows: 

net J  . = 	x.w.. 
1=1 

1+ 1  if net 9 
output = f (net j

) = {-1 if net < 

where 

nets : 	net weighted input 

n: 	number of inputs 

x: 	input 

w: 	connection weight 

f: 	activation function 

threshold of neuron. 

The activation function used in the above case is referred to as a sign function, 

where the net input netj is either greater or less than the threshold 0 and the 

corresponding output is +1 (activated neuron) or-1, respectively. 

Apart from the sign function, several other types of activation functions, such as 

linear, step and sigmoid functions are commonly used as depicted in figure 3.3. 

(3.1) 

(3.2) 
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Figure 3.3: Activation functions 

3.2 Neural Network Classification 

Neural network models differ in the way they operate. They are classified as either 

feed-forward or recurrent Neural Networks. 

3.2.1 Feed-forward networks 

A feed-forward network is said to be one of the simplest form of Neural Networks, 

where source nodes (neurons) of an input layer are projected onto an output layer. 

Inputs are connected to each neuron in the hidden layer with corresponding weights. 

The information only moves one-directional, hence feed-forward. In other words, 

there are no lateral connections between neurons in a given layer and also none back 

to previous layers [131, 132]. A basic feed-forward network is shown in figure 3.4. 

In this case it consists of three layers, such as input, hidden and output layer. 
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Figure 3.4: Feed-forward Neural Network 

The output of a feed-forward network at any given instance is a function the inputs 

at that instance. The Back-propagation network [137] is one of the most popular 

networks among feed-forward networks. 

3.2.2 Recurrent Neural Networks 

In contrast to a feed-forward Neural Network, a recurrent Neural Network utilises at 

least one feedback loop. The output of a neuron is fed back in a previous layer. This 

process is repeated until the network converges. Therefore the output of a recurrent 

network is a function of inputs from previous layers and its own generated output 

(input) from an earlier time. In other words, those networks demonstrate some kind 

of short-term memory. Figure 3.5 illustrates such a recurrent Neural Network with 

external inputs and feedback loops (time-delayed) from generated outputs. 
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Figure 3.5: Recurrent Neural Network 

Recurrent networks are used to solve computationally intense problems. They 

demonstrate dynamic behaviour due to the feedback loop and their outputs reflect 

current inputs as well as previous outputs (input). Feedback algorithms have been 

incorporated in a number of networks, such as the Hopefield [138] and Elman 

networks [139]. 

3.3 Training of Neural Networks 

Prior to training of an ANN, the data set has to be normalized. Normalisation is a 

critical step in ANN as it converts input and output data to the same order of 

magnitude. Since original data sets (before normalisation) and their variables have 

values in various ranges, their corresponding influence to the predicted output might 
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vary and could be incorrect. In order to overcome this problem normalization of the 

data set to the range of 0-1 is generally performed as described in equation 3.3: 

v 	VA —Vmin  
N 	Vmax  — rimi nmm 

	 (3.3) 

where 

VN: 	normalised value in range from 0 to 1 

VA: 	actual value 

Vmin: minimum value 

Vmax : maximum value. 

After the normalisation process, training of Neural Networks can be commenced. 

ANN is using a representative training data set and learns the connection weights 

from training patterns. This is done by creating rules through iteratively updating the 

inherent connection weights. Two types of training in Neural Networks can be 

differentiated: supervised learning and unsupervised learning, which will be 

discussed in the following sections. 

3.3.1 Supervised learning of Neural Networks 

Supervised learning of Neural Networks involves an external supervisor or teacher. 

The teacher controls the learning and provides information, which could a training 

set of data with actual inputs and their corresponding outputs. The performance of 

the network is graded by comparison of the actual output and the target output. 
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Initially the network weights are randomly set and gradually adjusted for each 

iteration or epoch in a way to minimise the error of actual and predicted values. Once 

an acceptable error is reached, which is usually a minimum error given by the 

supervisor the weights are set permanently before the network is tested by a set of 

data excluded from the training set. The testing phase ensures that the network has 

learned the patterns from the training phase. The testing error determines whether the 

training phase has been successful. 

Examples of supervised learning algorithms include the Back-propagation network 

[137], Radial Basis Function network [140] and Optimisation Layer-by-Layer 

network (OLL) [141]. 

3.3.2 Unsupervised learning of Neural Networks 

In comparison to supervised learning, unsupervised learning of Neural Networks 

does not require an external teacher. It is also referred to as self-organising learning, 

where the system organises itself by internal criteria local information. The 

performance is monitored internally and adaptations are made according to the 

function of the network. 

The Kohonen network represents an example of an unsupervised learning network 

[142]. During the training phase the network discovers significant features in the 

input patterns and automatically learns to classify them into categories with similar 

features. In other words learning takes place by observation and discovery, where 

regularities and trends are extracted and explain the observation. 
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3.4 Neural Network Models 

Up to date, an enormous number of Neural Network models have been developed. 

Since ANNs represent an alternative approach in solving complex non-linear 

dynamic problems, their application is extremely broad. 

As the scope of this research lays in the development of predictive models for 

performance parameter estimation of a PEM-electrolyzer, the following Neural 

Networks have been selected to perform this task and being described in detail. 

3.4.1 Back-propagation Neural Network 

A Back-propagation Neural Network is classified as a multi-layered feed-forward 

network. It is utilising the supervised training method called the error back-

propagation procedure. 

An example of a Back-propagation network is depicted in figure 3.6. The network 

consists of an input layer with i number of inputs, the hidden layer with j neurons 

and the output layer neurons k. 
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Input layer 	Hidden layer 	Output layer 

Figure 3.6: Schematic of a Back-propagation Neural Network model with one hidden 

layer 

As the Back-propagation network is a feed-forward network, the information flow 

is one directional and the inputs are passed through hidden layer to the output layer. 

The weight of the connection between the neurons is represented by the letter w, 

where the first index indicates the target neuron and the second index the source 

neuron. 

Similarly to section 3.1.2, three functions are assigned to each neuron: input 

function, activation function and output function. 

Input function 

The input function is shown in equation (3.4) and is derived by the sum of 

products of inputs and their corresponding weights as following: 

net 	Ex,w,, 	 (3.4) 
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where 

nets : 	sum of weighted input (neuron j) 

xi: 	input to neuron j 

connection weight. 

Activation function 

A commonly used activation function in Back-propagation Neural Network is the 

non-linear sigmoid function: 

1  f (net) = 	 (3.5) 
I+ e (' )  

The output function basically passes the output of the activation function to the 

neuron of the following layer. 

While the information flow of the input data is feed-forward, the network output 

errors generate a backward flow from output layer to the input layer (error back-

propagation). A gradient descent method is being used by the error back-propagation 

training, where weights are being adjusted by an amount proportional to the partial 

derivative of the error function [133]. The calculation of the errors at the output layer 

and hidden layer is given in equation 3.6 and 3.7 respectively. 

Errors in output layer 

8k — (4 Yk)f . (netk) 
	

(3.6) 
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The error value ok  is calculated by the product of the difference between the target 

output tk and the actual output yk (of neuron k, see figure 3.6) and the derivative of 

the activation function r (netk). 

Errors in hidden layer 

of  =[Egk wki ]f'(neti ) 	 (3.7) 

For the calculation of the neuron k error value, Si  in the hidden layer, equation 3.7 

can be applied. The connection weight from neuron j to k is represented by wki. 

The connection weight adjustment is being performed by taking into account the 

error value of the input receiving neuron. It can be mathematically expressed as 

follows: 

= 	ix, 	 (3.8) 

where wii is the connection weight from neuron i to j, 1  is the learning rate 

constant ranging form 0 to 1 and xi is the input i of neuron j. The learning rate is 

usually varied during training as high values can cause instability and low values of 

ri could slow down the training process [143]. 

In order to improve the training process of the network, a momentum constant has 

been incorporated in the weight adjustment formula of equation 3.9 as follows [144]: 

Awn. = 	. x. + aAw'' .1 1 	 t  (3.9) 
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where 

a: 	momentum constant from 0 to 1 

Awik" 	weight adjustment at iteration n 

Awik r1-1 	weight adjustment at n-1 iteration 

Each portion of the weight adjustment n-1 is applied at the next iteration n. As a 

consequence the fluctuation in weight changes are minimised and the convergence of 

the weight training is enhanced. 

A commonly used evaluation method of the training process is the calculation of 

the root mean square error (RMS). RMS error values below 10% are usually 

considered acceptable. The RMS error is commonly used as a measure of accuracy 

and can be derived from equation 3.10 below [143]. 

%RiVIS error =AI 	
p 	k p 2  i (t  k - Y ) 

PK 	
x100% (3.10) 

From the above equation P represents the number of training data, K is the number 

of output neurons, tkp  is the target output of neuron k and ykp .is  the actual output of 

neuron k after the training data p has been presented. 

The general training algorithm for a Back-propagation Neural Network can be 

summarised as follows: 

Step 1 	Initialisation of connection weights at small random numbers 

Step 2 	Presentation of initial input pattern (inputs and outputs) to the 

network 

Step 3 	Outputs are computed by using input function (equation 3.4) and 

activation function (equation 3.5) 
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Step 4 	Calculation of error values from output layer (equation 3.6) and 

hidden layer (equation 3.7) 

Step 5 	Weight adjustment calculation using the error back-propagation 

algorithm from equation 3.8 or 3.9 (introduced momentum constant) 

Step 6 Repetition of steps 2 to 5 with the complete set of input pattern 

including actual outputs and calculation of % RMS error using 

equation 3.10. 

Step 7 	Termination of training process only if the error is in acceptable 

range. In all other cases repeat steps 2 to 6. 

3.4.2 Optimisation Layer -by-Layer Neural Network 

The Optimisation Layer-by-Layer (OLL) Neural Network is a supervised feed-

forward learning process similar to Back-propagation models [132, 133]. It was 

initially introduced by Ergezinger and Thomsen [141] and has been identified to 

reduce the amount of time the Back-propagation algorithm would normally take for 

the network to converge. Its learning process is accelerated since the weights during 

training are optimised layer-by-layer. In other words, there is a dependency of 

individually weights per layer on each other, but no influence of weights from other 

layers. By doing so, the OLL network is creating an accurately solvable linear 

problem from the connection weight optimisation process in each layer. 

Linearisation errors are compensated by the introducing a penalty term to the 

algorithm, where optimisation of layers takes place in alternating method [141]. 

Applications of OLL Neural Networks have been proven to be a reliable tool for 

parameter estimation in several industrial processes [145, 146]. 

The architecture of an OLL network is shown in Figure 3.7. It consists of an input 

layer, one or more hidden layers and an output layer. All input nodes (neurons) are 

connected to all hidden nodes through weighted connections, Wp, and all hidden 

nodes are connected to all output nodes through weighted connections, I/kJ . 
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Input Layer 
i = 0..M 

Wji 	 Vkj 

Hidden Layer 
j = 0..H 

Ouput Layer 
k =1..N 

Figure 3.7: Basic structure of an Optimisation Layer-by-Layer network with one 

hidden layer 

The sigmoid function (equation 3.5) is used as the activation function in the hidden 

layer, where linear activation function is used by output neurons as shown in 

equation 3.11 below: 

f (net) = net 	 (3.11) 

where net represents the sum of the weighted input to the neuron (see equation 

3.1). 

The weight matrix W of the input connections to the hidden layer and the weight 

connection V to the output layer is optimised by minimisation of the cost function. 

The cost function is the mean squared error between actual and target output and can 

be expressed as follows: 
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E (W ,V)=-P-1  EYtP -y1 	 (3.12) 

where F is the target output (training data p) and yP is the predicted (actual) output. 

The number of training data is represented by P. 

Adjustments of the weight matrix from hidden layer and output layer respectively 

have to be performed individually (layer-by-layer). 

Output layer optimisation 

In order to find the optimum weight V of the output layer, the gradient of the cost 

function (equation 3.12) with respect to v is calculated and set to 0, where the input 

weights of the hidden layer W are regarded as constant values for the optimisation of 

the output layer. 

dE i, 1 P 

tP)oP 
dv 	P =i  (3.13) 

The network output yP of the training data p from number of training data P is 

written as vToP in the above equation, oP represents the scalar output of the hidden 

neuron from training data p and F is the target output as in equation 3.12. 

The optimised weight matrix V°Pt  of the output layer can be generated from the 

following equation: 

V °Pt  = A -1  b 	 (3.14) 
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where 

A = {a 1 }; 	a11  =EV 

	

.1 	 = 0,...,H 
p=1 

b={b}; 	b1 =It 1'o il! 	j = 0,...,H 
p=1 

V0 I1  from the above equation 3.14 represents the optimal output layer weights for 

the current value of the hidden layer weights W. 

Hidden layer optimisation 

In order to estimate the optimal hidden layer weight matrix W °P t  it is necessary to 

transform the non-linear sigmoid activation functions into linear equations. The 

linearisation is being performed using Taylor series expansion. By using equation 

3.15, the linearised connection weights between hidden and output layer (Vlinj) can 

be calculated as follows: 

Vlin . = f'(net ) .1 	 .1 v  .1 (3.15) 

For the above equation, the first derivative of the summed weighted inputs to 

neuron j is represented by r(net) and vj is the connection weight from neuron j to the 

output layer. The optimisation of the hidden layer weight matrix is based on the 

linearised network structure shown in figure 3.8. The change of the linearised 

network output Ayk can be expressed in the following equation 3.16 [141]: 

Ay k  = Vlinj  x EAwfixi  
J=1 	 i=0 

(3.16) 
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-> Ayk 

Input Layer 	Hidden Layer 	 Ouput Layer 

Figure 3.8: Linearised network structure for hidden layer optimisation 

Following the linearisation process of hidden layer weights, the overall error 

function (cost function) for the hidden layer is defined as [141]: 

E  hid = E1 + 	pen 
	 (3.17) 

where 

Elin 	 error function of linearised activation function 

Epen 	 penalty term to compensate the linearisations error 

penalty constant. 

The minimisation of the Cost function in equation 3.17 is carried out similarly to 

the optimisation of output layer cost function in equation 3.12. However, the 
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calculation of the partial derivatives of Ehid is performed separately for Elm and Epen. 

It should also be noted, that the penalty constant tt. determines the influence of 

penalty term Epen to compensate for the linearisation errors [141]. 

The optimal solution for the weight change matrix in the hidden layer connection 

can be calculated by using the following equation: 

A w opt =A—
' 
	

(3.18) 

where 

A = 

for j 
P N „ 

= EE rlinki x,XV1inkfixm  
p=1 k=1 

for j = h 
P N 

a(joun) = E E [(J/lin ki x i XV1in kh x.)+ Ilf" (neti)lx,xm 
H 

=vector {b/i } 
P N 

b = z I Ktk  - yk )J/lin kh xm l 
p=1 k=1 

M 	M ; j ,h = 	H ; k = N 

For training data p in the above equations, the linearised weights from neuron k in 

the output layer to neuron j and h in the hidden layer is represented by Vlin kj and 

Vlinkh, the input of neuron I and m in the input layer are x i  and xm , Vkj is the 

connection weight from neuron k (output layer) to neuron j (hidden layer) and 

p=1 k=1 
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?'(net) is the second derivative of the sigmoid activation function of net s . The target 

output for the output neuron k is given by tk and the network (actual) output is yk. 

Following the calculation of AW °P` the new weight matrix Wnew  can be identified: 

w new = w old = A  w  opi 	 (3.19) 

In order to find the optimal weights W and V for the entire network, iterative and 

alternating optimisation procedure for input and output layers is necessary. The 

overall training algorithm for the OLL Neural Network summarised as follows [141]: 

Step 1 

Step 2 

Step 3 

Step 4 

Initialisation of network weights (W, V) for hidden and output layer 

at small random values; define number of iterations, set penalty 

constant p. (g=0.0001) and select desired prediction error. 

Optimisation of the ouput layer weights by using equation 3.14 for 

V°Pt, update output layer weight matrix and calculate RMS error. 

Optimisation of the hidden layer weights by calculating optimal 

weight change AVII  (equation 3.18). Compute new updated weight 
wtest from equation 3.19. 

Determine the new RMS error Etest  from weight matrix West  and 

output layer weight matrix V or V °P` .Compare Et's' with current RMS 

error Ecurrent  from step 2. 

If Etest < Ecurrent 

Update the hidden layer weight matrix to W=W test  and decrease the 

influence of the penalty term by reducing the penalty constant 

according to g= 1.i13, where 0<0<1 (13=0.9). Continue to step 5. 

If Etest > Ecurrent 

Increase the penalty constant p. using p.= gy, where y>1 (7=- 1.2) and 

continue with step 3. 
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Step 5 
	If RMS error is within the desired range, terminate the training 

process and save final network parameters. Otherwise go back to step 

2. 

3.5 Hybrid Intelligent Systems 

Hybrid intelligent systems are a combination of at least two intelligent technologies. 

The application of such a system to solve a single problem can be of advantage as 

thoughtfully combined systems may overcome problems and boundaries of 

individual subsystems leading towards a more successful end result. In order to 

produce a successful end result, the system requirements as well as advantages and 

disadvantages of the individual subsystems have to be taken into consideration. On 

the other hand inadequately combined technologies can have the opposite effect and 

may lead to a poorer end result [133]. 

ANN and fuzzy systems have been recognised as complementary technologies for 

hybrid intelligent systems. Fuzziness concerns the uncertainty associated with a 

system and is based on the premise that nothing can be predicted with the exact 

precision. With the introduction of fuzzy set theory from Lofti in 1965 [147], a more 

flexible sense of membership could be achieved to adequately express uncertainty or 

vagueness. Fuzzy logic is designed to represent knowledge and human reasoning in 

an appropriate way to be processed by a computer .In other words, it allows the 

system to compute data with a degree of imprecision, specified by phrases of human 

reasoning such as fairly, very and quite possible conversely to traditional predicate 

logic of true or false [131]. 

Neural Networks are simple computational structures with the ability to solve 

complex tasks through learning, but they do not have good explanation capability. In 

contrast, fuzzy logic has a higher level of human reasoning and can facilitate 

consistent outcomes, but require the ability to learn and self adjustment of Neural 

Networks. In consequence, these two intelligent technologies naturally complement 
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each other and provide the possibility of predictive modelling approaches for non-

linear dynamic processes, such as electrolyzer performance. 

3.6 Adaptive Neuro-Fuzzy Inference Systems 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are hybrid systems incorporating 

the technologies of Neural Networks and fuzzy systems. First introduced by Jang in 

1993 [148], the ANFIS is able to construct an input-output mapping based on fuzzy 

if-then rules and stipulated input-output data pairs in order to be employed to model 

non-linear functions, identify non-linear components and predict chaotic time series 

with remarkable results [148]. 

The basic idea behind neuro-adaptive learning techniques is simple. ANFIS 

provides a method for the fuzzy modelling procedure to learn information about a 

data set. Through this learning and training procedure, the membership function 

parameters and the number of epochs can be estimated by trial and error that best 

allow the associated fuzzy inference system to track the given input/output data. 

While the learning (training) method works correspondingly to that of Neural 

Networks [133, 149], the system operation (after the training process) is identical to 

a fuzzy expert system using the developed rules during the training procedure. 

ANFIS is usually represented by a six-layer supervised feed forward neural 

network. Figure 3.9 depicts an example of a typical ANFIS architecture that 

corresponds to the first order Sugeno-fuzzy model [133]. The following sequence of 

mathematical representations has been adopted from the following references [133, 

148]. 
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xi x2 

xl 

X2 

 

 

 

Layer 1 Layer 2 
	

Layer 3 
	

Layer 4 
	

Layer 5 
	

Layer 6 

Figure 3.9: Typical ANFIS structure with 2 inputs 

In layer 1 (input layer) inputs xl and x2 are passed to a number of neurons in the 

second Layer. In the second layer, known as the fuzzification layer, the neurons 

perform fuzzification of the incoming inputs (equation 3.20). 

Y Ai = P Ai 

Y Bi = Bi 
	 (3.20) 

The third layer can be descript as the rule layer. Each neuron corresponds to a 

single Sugeno-fuzzy type fuzzy rule. The firing strength calculated by the rule 

neurons then is determined by the product of the incoming signals (equation 3.21). 

YTJI = nx .„ 	 (3.21) 
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The output of the first neuron in layer 3 is calculated as follows: 

YID = PAIPBI 	 (3.22) 

where pAI is the firing strength of rule 1. 

Layer 4 is known as the normalisation layer. Here the neurons receive inputs from 

all neurons of the third layer in order to calculate the normalised firing strength of a 

given rule. This firing strength is determined as the ratio of the firing strength of a 

given rule to the sum of all rules (equation 3.23). In other words, the output stands 

for the contribution of a particular rule to the final result. 

YNii = 	= Pi 
E 

i=1 

(3.23) 

Layer 5 is the so called defuzzification layer. Each neuron in this layer receives the 

outputs of the 4th layer as well as the original inputs xi and x2. Here, the neuron 

(deftizzification neuron) calculates the weighted consequent value of a particular rule 

and can be mathematically described in the following equation: 

yi  = (k 0  + k ix, + k 2x2 	 (3.24) 

Where ill, is the input of the defuzzification neuron i in layer 5; y, is the output of 

layer 5 and kio, ku and and k,2 represent a set of consequent parameters of rule 1. 
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Layer 6 contains a single summation neuron. Here, the sum of all defuzzification 

outputs is calculated and the overall ANFIS output y is obtained as in equation 3.25. 

Y ANFIS = Yi 
	 (3.25) 

1=1 

3.7 Application of ANN and ANFIS 

The applications of Neural Networks and hybrid systems such as ANFIS are 

numerous, ranging from character recognition to signal processing and financial 

problems. Through their ability of finding complex, non-linear relationships between 

input and output data, they are of great interest by researchers worldwide to be 

integrated into current technologies. 

From an engineering perspective, ANN and ANFIS have been successfully applied 

to solve and optimise various engineering related problems in several industrial 

processes, such as arc furnace response prediction [153], parameter estimation of 

thrust and torque in drilling applications [145, 146, 154] and several other 

manufacturing applications [155]. 

Within the field of this research the potential use of intelligent techniques for 

electrolyzer performance prediction has been investigated. As reviewed in section 

2.4, only very few studies can be found in the literature investigating the potential 

application of predictive models for electrolyzer performance [150-152] and 

associated hydrogen safety [128] using intelligent techniques. As the electrolytic 

hydrogen production represents a dynamic process with a large number of process 

parameters, the application of intelligent techniques to accurately predict electrolyzer 

performance parameters achieved promising results. 
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3.8 Concluding Remarks 

This chapter presented a general knowledge about ANNs and hybrid system ANFIS 

including their theoretical concepts. The neural network based models explored 

throughout the scope of this research, such as Back-propagation, OLL and ANFIS 

have been explained in detail. Amongst those models, the OLL network and the 

ANFIS network are fast learning networks. 

Furthermore this chapter has also provided information about applying intelligent 

techniques to solve engineering related problems. The lack of literature investigating 

the potential use of predictive models for electrolyzer performance and safety shows 

the need for predictive modelling utilising intelligent techniques as an alternative 

approach in this area. 

In the following chapter, the design and development of the experimental test rig 

will be described. The focus of chapter 4 will be on investigating the capability of 

electrolyzer performance prediction using the models examined in this chapter. 

Those models are to be incorporated into the experimental rig to perform prediction 

of electrolyzer performance parameters and act as virtual sensors. 
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4.1 Introduction 

This chapter describes the experimental setup in the hydrogen laboratory. The 

experiments provide the database for the development of the predictive models, 

which can be employed as virtual sensors. Extensive testing and data-acquisition is 

necessary to assist the learning stage of the models and to provide a wide range of 

operating conditions to prove their applicability and practicality. Components of the 

test rig are being described including the data-acquisition of experiments. 

Furthermore the range of conditions is being presented. 

4.2 Hydrogen Test Rig Facility and Safety Aspects 

The experimental setup is located in the UTAS hydrogen laboratory. The laboratory 

was designed for applied hydrogen use with the latest safety equipment due to the 

hydrogen gas properties. It also complies with Australian and International standards 

[31, 156]. The layout of the laboratory is shown in Figure 4.1 [156]. 
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Figure 4.1: UTAS hydrogen laboratory layout 

The test rig was placed into zone 2 (figure 4.1) according to Australian Standard 

AS 2430.1-1987 [31]. A combustible gas sensor, type R61-0203-02RK, was used to 

determine and monitor the hydrogen concentration in air. As shown in figure 4.2 

[157] the fan was placed at the highest point of the ceiling in front of a ventilation 

fan, type Bal-400 wall fan (Pacific Fans), as the low density characteristics of 

hydrogen allow higher concentration in the highest point. Furthermore the fan 

airflow characteristics with an air drag of 17001/s ensures safe operation environment 

[157]. 
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Figure 4.2: Combustible gas sensor and wall fan 

4.3 Experimental Setup and Components 

This section illustrates the experimental setup and gives a description of the applied 

components used in the experiments. 

4.3.1 Hydrogen generator 

The hydrogen generator used in the experiments (see figure 4.3) is a PEM-

electrolyzer, type Hogeng 20 from Distributed Energy Systems, based in the United 

States. The PEM cell stack consists of 10 cells linked in series with a Nation® 115 

membrane [158]. 
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Figure 4.3: Hogen® 20 PEM-electrolyzer setup in hydrogen laboratory 

The electrolyzer is capable of operating in two modes: 

• Load following and 

• Tank filling mode. 

In the load following mode the electrolyzer follows a prior set pressure set point. If 

the output pressure falls below or rises above the pressure set point, it automatically 

adjusts the output pressure to its set value. In tank filling mode the output pressure 

rises to the maximum pressure set point before going into idle state. If the pressure 

falls below the pressure set point, it will start generating hydrogen once the 

minimum pressure set point (refill point) is reached. 

Specifications of the Hogen® 20 electrolyzer are given in table 4.1 [158]. In 

addition, table 4.1 also includes specifications for an electrolyzer type Hogen® RE, a 
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similar aggregate, but specially designed for handling fluctuating power input from 

renewable sources, such as photovoltaic for comparison. 

Table 4.1: Specifications for HogenORE and Hogen®20 

Specifications 
	Hogen® RE (20/40) 

	
Hogen® 20 

Hydrogen output 

Max. delivery pressure 

Hydrogen purity 

Water usage 

Water quality required 

Power consumption 

Electrical supply 

required 

Operating 

environment 

Dimensions 

Weight 

Installation 

Controls and 

automation 

0,5 or 1.05Nm 3/h 

200psi 

> 99,9%-99,999% 

Approx. 11,41 or 22,71/24h 

Deionised (ASTM Type 11) 

6,6kWh/Nm 3  

AC: 190-240VAC, 1 phase, 

50/60Hz, 7.2 or 12kVA 

DC: 60-200VDC, 

150A(max) 

Indoor (optionally outdoor) 

970mm*1050mm*1056mm 

220kg 

"Plug and play" 

Fully automatic & 

unattended 

0.53Nm3/h 

200psi 

> 99,9%-99,999% 

Approx. 11,41/24h 

Deionised (ASTM Type 

11) 

6.3-9kWh/Nm 3  

AC: 190-240VAC, 1 

phase, 50/60Hz 

Indoor (optionally 

outdoor) 

970mm*785mm* 

1056mm 

227kg 

"Plug and play" 

Fully automatic and & 

unattended 

The inside view of the electrolyzer is given in figure 4.4 [157]. It shows the 

location of the main components: 

• A200 Oxygen/ water phase separator, 
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• A300 Hydrogen/water phase separator, 

• X334 Dryer, 

• Z350 Hydrogen management manifold 

in correspondence with the flow schematic of figure 4.5 [158]. Additionally the 

combustible gas detector (CG 220), the guard bed resin cartridge (GB 208), the 

coalescing filter (F 328) and the cell stack (EM 100) have also been located from 

figure 4.5 for better transparency and understanding. 

Combustible 
gas detector - 	 Hydrogen 

(CG220) 	 —  management 
manifold (Z350) 

Guard bed ___ 
resin cartridge 	 Hydrogen/water 
(GB208) 	 phase separator•  

II I 	
(A300) 
Oxygen/water 

Coalescing _ 	 phase separator 
filter (F328) 	 (A200) 

Dryer 
(X334) 

Cell stack 
(EM100) 

_ Circulation 
pump (CP205) 

Figure 4.4: Inside view of electrolyzer with location of components 

The fluid and gas flow schematic is shown in figure 4.5 [158]. The feed water inlet 

port is given with A, B corresponds to the Oxygen vent port, C to the Water outlet 

port and D to the Product hydrogen outlet port. In start up operation, in other words 
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before the system is fully operational, hydrogen is vented out to the hydrogen vent 

port (E). 

Figure 4.5: Flow schematic of Hogeng 20 electrolyzer 

4.3.2 Storage unit 

In order to investigate the Hogen® 20 PEM-electrolyzer a suitable storage unit has 

been developed. Figure 4.6 shows the assembly drawing of the hydrogen storage unit 

trolley. It consists of seven 12,21 tanks joint together as one storage unit with a 

physical volume of approx. 85.41. It has been designed with an inlet port (Swagelok 

quick connector) for storage and an outlet port for application usage. A needle valve 

and swaged connections ensure to keep leakage of hydrogen gas to a minimum. A 

pressure gauge serves as a reference value to the output pressure given by the 
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manufacturers' internal diagnostic software (see section 4.4.1). The tanks are placed 

in a trolley to enable mobility of the storage unit for various hydrogen applications. 

Figure 4.6: Hydrogen storage unit trolley 

4.3.2.1 Material and assembly 

The components and materials used for the storage unit had to be suitable for 

hydrogen use and the related operating conditions of the electrolyzer. The operating 

conditions to be considered and expected throughout the experimental rig are as 

follows: 

• temperature range of operating environment (5-40°C), 

• temperature of product hydrogen gas (5-40°C) and 
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• pressure range (0 up to 250psi) and maximum hydrogen flow rate (up to 

121/min) of product hydrogen gas. 

The components and materials for the storage unit are listed in Table 4.2. 

Swagelok Fluid Systems technologies has been the main provider for the piping of 

the separate tanks, valves and pressure gauge respectively. The stainless steel tanks 

are provided by Faber. 

Table 4.2: Part list of hydrogen storage unit 

Quantity Part Unit price Price Supplier 

AU$ AU$ 

7 Weld Connector 22.2 155.4 Swagelok 

8 Tube Fitting Union Tee 61.3 490.4 Swagelok 

2 Tube Fitting Union Cross 80.5 161 Swagelok 

1 Tube Stub Reducer 14.6 14.6 Swagelok 

1 Pressure Gauge 57.5 57.5 Swagelok 

1 Female Connector 15.7 15.7 Swagelok 

1 Turn Plug Valve 141 141 Swagelok 

1 Needle Valve 275.5 275.5 Swagelok 

1 Quick Connect Body 96 96 Swagelok 

1 Quick Connect Stem 74.2 74.2 Swagelok 

1 6 m of 0.5 Inch Tubing 56.1 56.1 Swagelok 

7 Storage Tanks 289 2023 Faber 

Estimated Trolley costs 500 UTAS 

(steel, roles, sheets, labour 

etc.) 

Workshop 

Total costs 4060.4 
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The components for the trolley from table 4.2 have been assembled to the hydrogen 

storage unit as shown in figure 4.7 and 4.6 including trolley respectively. 

Figure 4.7: Connected tanks and piping 

The parts are basically all of the shelf components, provided  by  Swagelok with 

swaged sealed (metal to metal) connections, to ensure to keep leakage of hydrogen 

gas to a minimum. Except for the connection from the tanks to the pipe work a 

custom designed connector was used. Figure 4.8 and 4.9 show the connector (custom 

designed to fit the storage tank thread) and weld connector assembly (Swagelok). 
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Figure 4.8: Connector and weld connector assembly 

Figure 4.9: Connector welded with thread for each storage tank including o-ring 

Figure 4.10 illustrates the main valve of the storage unit. This type of valve is a 

needle valve, which integrates a special safety feature. It can be closed even if the 

sealing in the valve fails, because the tip of the needle (see red circle) blocks the inlet 

of the valve when it is closed with a metal against metal solution. 
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Figure 4.10: Main needle valve with metal against metal solution for safety 

4.3.2.2 Permeability and sealing 

As most of the components are swaged fitted as a solution from the provider 

(Swagelok), leakage is expected to be a minimum, except where the sealing is 

carried out with an o-ring solution. Materials for those o-rings have to be selected in 

order to provide minimum leaking. Leaking is usually represented by permeation of 

the gas through and passing around the sealing material. Therefore permeability is 

defined as the rate of which a permeate (liquid or gas) passes through a solid material 

by diffusion. An approximate leak rate can be calculated by using the following 

equation from Parker Seal Group [159]: 

L= 0.7 -F•D•P-Q-(1-S) 2 	 (4.1) 
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Where: 	L = 	is the approximate leak rate of the seal (std. cm3/sec) 

F = 	Permeability rate of the gas through the elastomer at the 

anticipated operating temperature (std. cm 3 cm/cm2  sec bar) 

D = 	Inside diameter of the o-ring, in inches (1") 

P -= 	Pressure differential across the seal, (200 PSI) 

Q 	Factor depending on the percent squeeze and whether the o- 

ring is lubricated or dry (1.2) 

S 	Percent squeeze on the o-ring cross section expressed as a 

decimal (25% squeeze is recommended, S = 0.25) 

The above formula contains mixed units, as D and P are given in inches or pounds 

per square inch respectively and the permeability rate is given in metric units. The 

factor of 0.7 resolves these inconsistencies. Furthermore the permeability is 

expressed in atmospheric cm 3  per second, thorough an elastomeric material of one 

centimetre squared and one centimetre thickness. It also varies between compounds 

in the same polymer and therefore gives only a rough order of magnitude 

approximation. Permeability rates of hydrogen for several materials can be found in 

table 4.3 [159]. 

Table 4.3: Permeability of hydrogen for several o-ring materials 

Sealing material 	 Working temperature °C Permeability (x10 -8) 

Butadine 	 25 	 31.6 

Butyl (IIR) 	 35 	 16.1 

Ethylene Propylene (EPR) 	40 	 111 

Fluorocarbon (Viton) 	93 	 160 

Neoprene (CR) 	 38 	 180 

Nitrile (NBR) 	 39 	 11.9 

Polyacrylate (ACM) 	38 	 49.6 
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Polysulfide (PSR) 25 1.2 

Polyurethane (EU) 39 4.89 

Styrene butadine (SBR) 38 46.2 

Silicone (PVMQ) 39 2070 

FEP Teflon 38 10.1 

TFE Teflon 30 42 

From the above table fluorocarbon (Viton) was chosen as a suitable o-ring material 

for the storage unit (connector in figure 4.9). It has a higher working temperature (90 

°C) as most of the materials are very close to the 40 °C operating temperature 

boundary of the test rig and creates an additional safety zone. 

According to equation 4.1, the leak rate through one o-ring for fluorocarbon is 

approximately 1.51*10 -4cm3/s and for the entire storage unit, taking into account 

seven o-rings, equals 0.38161/hr. In accordance with the safety aspects from section 

4.2, the installed fan with an air drag capacity of 17001/s or 6.12*10 61/hr respectively, 

removes approximately 16 million times the amount of hydrogen from possible 

leaking. It is therefore not considered to be a safety risk. 

4.3.2.3 Purification procedure and pressurisation 

Before the first use of the unit, the safety and quality of the hydrogen to store have to 

be taken into account. To ensure elimination Of remaining air from the storage 

system, the unit was connected to a vacuum pump, type `Speedivac' by W. Edwards 

and Company (London) Ltd as shown in Figure 4.11. 
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Figure 4.11: Vacuum pump 

After the vacuuming process to -100kPa the storage unit was pressurised with 

nitrogen of up to 2500kPa or 25bar respectively. A reference value for the inserted 

pressure was given by the pressure gauge of the nitrogen dispenser and pressure 

regulator as shown in figure 4.12. 

Figure 4.12: Pressurisation with nitrogen 
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Thus the pressure can be seen as an accurate value. The pressurisation with 

nitrogen is mainly performed to check for possible leaks in the system and to bind 

any remaining contaminating elements from air. No leaks have been found during 

the pressurization test. Therefore the system is ready for initial fill process after 

releasing the nitrogen and vacuuming to OkPa as illustrated in figure 4.13. 

Storage Assembly 

Vaccuming up to 
-100 kPa 

Pressurized with 
nitrogen up to 

2500 kPa 

Release and 
Vaccuming to 0 kPa 

Figure 4.13: Hydrogen storage purification procedure before initial operation of the 

storage unit to ensure safety handling and quality of hydrogen 

4.3.3 Water deionisation 

Due to the fact that the PEM-electrolyzer requires deionised (distilled) water, a 

purification unit in figure 4.14 is directly coupled to the hydrogen generator water 

inlet port. 
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Figure 4.14: Water deionisation system with water container (1),RTD (resistance 

temperature device) (2), water deionisation (3), feed-water pump (4), pressure 

transducer (5), flow-meter (6) and data-acquisition connection box (7) 

The above figure displays the basic setup of the water purifying unit. Tap water is 

fed into the deionisation (3) and enters the water container (1) after the process. An 

RTD (PT 100) (2) measures water temperature. A feed water pump (4) operates on 

demand for the electrolyzer feed water requirements. Connections of each sensor, 

such as RTD, pressure transducer and flow meter to the data-acquisition box (7) have 

been made to obtain feed water parameters. 
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4.3.4 Power analyser 

For the purpose of overall power monitoring a power analyser, type PM 3000 

(Voltech Instruments), has been employed to measure voltage, amps, power factor 

and watt-hours respectively. This will give an indication of  the  system-efficiency. 

Accuracy according to the manufacturers specifications are 0.1% for reading, 0.1% 

for range and 200 mA or 1 mV respectively [160]. 

Load 

PM 3000 

Serial 
Port ■ 

    

 

/ 

  

       

       

  

PC 

 

       

       

Hogan& 20 
Electrolyzer 

Figure 4.15: PM 3000 wiring diagram 

The wiring diagram for the measurement of the power parameters is shown in 

figure 4.15. The PM 3000 power analys er measures the 240  VAC  line voltage and 

line current flowing into the Hogen® 20 (load). These parameters, along with power 

factor and watt-hours (which are calculated by the PM 3000) are passed to the PC via 

serial interface. 
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4.4 Data-Acquisition 

Data-acquisition was controlled with National Instruments (NI) LabVIEW software, 

which ensured synchronous data collection from the electrolyzer, power analyser and 

feed water sensors. Feed water parameters were acquired by an NI 6025 E data-

acquisition card, with 12-bit input resolution and a maximum sample rate of 200kS/s, 

as shown in figure 4.16. Internal electrolyzer system parameters and power 

parameters are acquired by the PC via serial port. 

                             

  

Main Power 

                         

                             

                      

Windows 
Diagnostic 
Software 

     

  

Power 
Pa rani eters 

PM 3000 
A 

           

EleCtrOlyier 
Hogan® 20 

       

•EleOtrOlyZer 
$'9sterr 

Parameters 

 

                       

                       

                           

                             

                             

                             

               

Feed Water 
Parameters  

Analog 
signal 

            

                           

                             

                             

             

National Instruments 
Data-Acquisition Card 

PCI 6025E 

         

       

Serial port 

        

Serial port 

     

                    

                     

                             

                

Digitalization 

          

                             

              

Labview Interface 

           

                             

       

PC 

        

Extract 
Data4-Preprocessing 

 

PC 

     

               

Database 

            

                             

                             

               

Neural Network 
based Model/s 

            

                             

                             

                             

Figure 4.16: Data-acquisition schematic 
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4.4.1 On board diagnostic software of electrolyzer 

The electrolyzer internal operating parameters can be programmed and/or monitored 

from a PC via an RS232 serial link. (Windows-based diagnostic software provided 

by the manufacturer is installed on the PC). A screenshot of the diagnostic software 

running under Windows is given in figure 4.17. This software allows sampling of the 

operating parameters from the electrolyzer. However, feed water and power 

parameters detailed in sections 4.3.3 and 4.3.4 respectively, are obtained from 

additional external sensors and cannot be sampled with the manufacturer's Windows 

diagnostic software. Therefore, new software which acquired power, flow and 

electrolyzer system parameters was developed and is outlined in section 4.4.2. 

Reverse engineering was employed to determine the serial communications link 

parameters and serial data protocols for the electrolyzer. 
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Figure 4.17: Electrolyzer diagnostic software 

4.4.2 Determination of electrolyzer serial link parameters and data protocols 

Serial communications and data protocols for the electrolyzer needed to be 

determined for their incorporation into LabVIEW software. Firstly, the serial 

communications parameters for the electrolyzer were determined, by using an 

oscilloscope to observe serial traffic between the host PC and electrolyzer. This was 

achieved whilst the PC was running commercial software provided by the 

electrolyzer manufacturer. 
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Hogen020 serial communications parameters: 

• 115200 bits/sec 

• 8 data bits 

• No parity 

• I stop bit 

Following the determination of the serial communication parameters, an 

interrogator byte sequence was then deduced by running the commercial software 

and simultaneously monitoring serial traffic with a second serial port on the host PC 

as shown in figure 4.18. 

Hogent 20 
Electrolyzer 

Serial Port 

Figure 4.18: Hardware setup for deduction of interrogator byte sequence 

Interrogator byte sequence for communication between host PC and electrolyzer: 

2A 07 52 FF E0 FO 20 8D 80 

Further reverse engineering yielded the following data format used by the 

electrolyzer in replying to the interrogator sequence: 

Host PC 

  

 

COM 1 

  

 

1/‘.• COM 2 
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06 XI X2 X3 X4• • •X34 

Where Xn  is a byte and n c [1, 2, 3, 4,...,34]. 

Pairs of bytes, where X2n-1 X2n  and n 8 [1, 2, 3, 4,..., 17], are concatenated (linked 

together as a unit) to produce 16-bit binary words representing various electrolyzer 

parameters as given in table 4.4 and table 4.5. 

Table 4.4: Concatenated data pairs (1-7) representing electrolyzer system parameters 

X1+ X2 X3+ X4 X5+ X6 X7+ X8 X9+ X10 X11+ X1 2 X13+ X14 

Gas Product System Water Stack Stack System 

Detect Pressure pressure quality voltage current temperature 

Table 4.5: Data pairs (8-14) for electrolyzer system parameters 

X15+ X16 X17+ X18 X19+ X20 X21+ X22 X23+ X24 X25+ X26 	X27+ X28 

3.3V DC 24V DC 	Spare 	5V DC 	2.5V 	Board 	-5V DC 

Sense 	Sense 	therrnisto 	sense 	reference temperatu 	sense 

re 

93 



300.00 - 

200.00 - 

100.00 - 

0.00 

Pressure (kPa) Temperature (deg) I 
100,00 

frequency (Hz) 

0.00 
80.00 

60,00 - 

40.00 - 

20.00 - 

0.00 - 

0.00 	j lo 

CSV Output String 

ereseernr ne 

Hon 
now 
CW1 

FNe Edit 	ew Project L-,jper ate Tools Window Help 

 

13pt Application Font .01. 0).1 

Chapter 4: Experimental Setup and Design 

4.4.3 Implementation with National Instruments Lab VIEW software 

Custom software was written in LabVIEW to enable synchronous acquisition of 

electrolyzer, power and feed water parameters. Virtual Instruments were created for 

each of the following tasks: 

• Acquisition of data pertaining to feed water flow into the electrolyzer 

• Acquisition of data pertaining to electrical power flow into the electrolyzer 

• Acquisition of electrolyzer process parameters 

Figure 4.19: Feed water parameters front panel 

The front panel of the feed water parameter virtual instrument is shown in figure 

4.19. Water pressure, water temperature and flow sensor output frequency are 

monitored directly. Actual flow rate is subsequently calculated from frequency data. 

The power analyser virtual instrument is depicted in figure 4.20. Power analyser 

output parameters are selected for subsequent storage in the PC database 
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Figure 4.20: Power analyser setup front panel 

The front panel of the electrolyzer system parameter virtual instrument is shown in 

figure 4.21. The interrogator byte sequence (which is depicted on the front panel) is 

sent to the electrolyzer. The electrolyzer reply is read and system parameters are 

decoded and displayed. The front panel in figure 4.21 shows the electrolyzer system 

parameters, the interrogator string and the electrolyzer reply string (decoded). 

95 



HOGEN System Parameters 
Gas Detect (%) 0 2.5V Stab. (V) 

10 Product Pressure (Psi) O 3.3V Status (V) 

40 System Pressure (PP) o SV aatus (V) 

Compensated WQ (blegCbms) 0 -5V Status (V) 

i0 Stack Voltage (V) 0 24V Status (V) 

F-----  Stack Current (A) 

System TemP (dm3C) 

Hoorn Interrogator Strilg 

i2A7. 7  52F. 

HOGEN reply string 

1 

Reply String 
No.of Bytes read 

— 
F0 

delay before 
read (ms) 

' Hogan Returned-Parametess String (After Decoding) 

%ota sat* 

Chapter 4: Experimental Setup and Design 

Figure 4.21: Electrolyzer system parameter front panel 

The three virtual instruments detailed above were then integrated into the -main 

program" virtual instrument which is shown in figure 4.22. Data-acquisition 

start/stop and system sample rate are controlled from the front panel. The main 

program concatenates text-string data from the feed water, power analyser, and 

electrolyzer system virtual instruments. Furthermore the main program dates and 

time stamp data, before storing the concatenated string into a text file on the PC hard 

drive. 

Edt View Protect gaerate It& aVndort Help 

    

     

     

1010 13p0 Appic 	Font 	• l 

 

I 

   

SON 

  

Fientrre for CSV Stage 
C \ Documents and 5ettngs4coges \ DeakcsO,aeckerbicgeoCestMatf c  

sexrds between series 

Figure 4.22: Virtual instrument front panel of main program 
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4.5 Range of Operating Conditions and Testing 

The range of various operating conditions can be found in the appendix. It comprises 

of 244 cases resulting in a 12x244 operation condition matrix. The experimental data 

has been published in the following references [150-152]. 

The manufacturers' specification for the hydrogen flow rate of the electrolyzer was 

provided with an average value of 0.53Nm31h or 8.8331/min, respectively [158]. 

Given that this value is averaged over the period of one hour, a more accurate 

method to estimate the hydrogen flow has been used. The ideal gas law is given in 

equation 4.2 and 4.3 below: 

PV = nRT 

m n =— 
M 

where 

P 	pressure in storage (kPa), 

V 	volume (physical) of the storage (85.41), 

n 	number of moles, 

M 	molar mass of hydrogen molecule (2.01588g/mol), 

m 	mass (g), 

R 	Universal gas constant, 8.31451 (J*K -1 *mo1 -1 ) and 

T 	temperature of gas (298K). 

According to equation 4.2 and 4.3, the mass of the produced hydrogen can be 

calculated. The experiments were conducted for a filling process of a storage tank 

(4.2) 

(4.3) 
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(V=const.) over a period of approximately two hours. The gas temperature was 

assumed to be constant at 298K and the pressure was obtained from the experimental 

setup as described in the previous section(s). A plot of the hydrogen flow rate over 

the output pressure (equals storage pressure) is depicted in figure 4.23. 

Figure 4.23: Experimental hydrogen flow for tank filling process 

These results show an average hydrogen flow rate of 8.621/min and a more 

accurate estimation of individual values. The experimental results replicate the 

averaged manufacturers' specification of 8.8331/min by ±3%. Therefore the gathered 

data are reliable and present a more accurate estimation of hydrogen flow rate. 

The power consumption given by the manufacturer with 6.3-9kWh/Nm 3  

corresponds to an average system-efficiency of 39-56% [158]. The experimental 

system-efficiency with an average 46% (0.46) lies within the manufacturers' 

specifications and is therefore considered reliable. The average stack-efficiency was 

found to be at 55% as it includes only the power consumed by the stack and not the 
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entire electrolysis system compared the system-efficiency. Therefore, the peripheral 

devices account for an average loss of approximately 9% efficiency. 

A comprehensive range of experimental conditions were tested as part of the 

investigation that covers a wide range of input variables and their influence on the 

output performance. The various input parameters that have been obtained include 

feed water quality (WTQ, Mean = 36.17MS -1), water pressure (Mean = 275.93kPa), 

system temperature (STM, Mean = 27.56° C), stack current (SCT, Mean = 142.78A), 

stack voltage (SVG, Mean = 23.72V), system power (Mean = 4172.28W), system 

pressure (SPS, Mean = 1332.69kPa), product pressure (PPS, Mean = 706.19kPa) and 

lower explosive limit (LEL, Mean = 36.17%). 

The obtained experimental data represent a realistic hydrogen production process 

using a commercial PEM-electrolyzer. The hydrogen production performance 

parameter, such as hydrogen flow rate, system-efficiency and stack-efficiency can be 

seen as a function of various input parameter. 
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4.6 Concluding Remarks 

This chapter provided a detailed description of the experimental setup and individual 

components in the hydrogen laboratory. The development of the hydrogen storage 

unit has been outlined in detail. Furthermore, custom built software incorporating 

virtual instruments of various sensors to enable synchronous data-acquisition has 

been presented for NI LabVIEW. 

The software signifies a new approach for obtaining electrolyzer system 

parameters through LabVIEW and can be useful for further research using the 

Hogen® 20 PEM-electrolyzer. The data-acquisition system has been successfully 

applied to obtain a database comprising of various operating conditions, which 

characterise the dynamic behaviour of the electrolysis process. 

As reviewed in section 4.5, the obtained data are reliable and represent a realistic 

hydrogen production process using a commercial PEM-electrolyzer. The 

experimental database is therefore suitable for predictive modelling of hydrogen 

production performance parameters. This database provides the foundation for the 

development of predictive models, which will be discussed in the following chapter. 
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Chapter 5: Predictive Models for Hydrogen Production Performance in a PEM-Electrolyzer 

5.1 Introduction 

This chapter presents the development of a Performance Prediction Model (PPM) of 

a PEM-electrolyzer. The common procedure of modelling will be presented and 

described under consideration of the fundamentals from chapter 3 and the obtained 

experimental data in chapter 4. 

The experimental data were used to train and test the developed models. Various 

approaches using ANN and ANFIS hybrid models for electrolyzer production 

performance parameter prediction, such as hydrogen flow rate, system-efficiency and 

stack-efficiency have been investigated and discussed. Comparison and assessment 

of those developed models has also been conducted based on error between 

experimental and predicted data. Results and appraisal for each performance 

parameter will be presented followed by summary and conclusion. Based on the 

error generated, the most suitable model for each performance parameter was 

selected for the PPM. 

Neural Network modelling process has been implemented on the Neural Network 

Analysis Package and the ANFIS time-series prediction models have been built in 

Matlab Simulink. Results of this chapter have been partially published in the 

International Journal of Hydrogen Energy and international conferences [150-152]. 

5.2 Hydrogen Production Performance Prediction Model of a PEM-

Electrolyzer 

The Performance Prediction Model (PPM) consists of 3 different neural network 

based models corresponding to each hydrogen production performance parameter, 

such as hydrogen flow rate, system-efficiency and stack-efficiency (see figure 5.1) 

Three individual types of models have been applied in order to determine the best 

suitable model. 
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Implementation of the PPM has been performed using the  Neural Network 

Analysis Package tool for the ANN and Matlab Simulink environment for the hybrid 

network ANFIS. The analysis package was developed by the HART Research Team 

from the School of Engineering, University of Tasmania for Neural Network 

approaches. The following sections (5.2.1; 5.2.2) present a summary of pertinent 

information regarding this analysis tool. Additional literature can be found in the 

following references [161-163]. 

Electrolyzer Operating Conditions 

Hydrogen 
Flow 

Stack- 
Efficiency 

System- 
Efficiency 

ANN 1 
ANN 2 
ANFIS 

Model Selection 
based on Error 

Performance Prediction Model 

Figure 5.1: Performance Prediction Model (PPM) schematic 

5.2.1 Neural Network Analysis Package 

The Neural Network Analysis Package has been implemented in Microsoft Excel 

with the user interface based on Visual Basic macros. The Pascal programmed kernel 
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does most of the Neural Network processing tasks. The following summary 

describes the processing steps to perform an analysis with this tool: 

I. Conducting analysis and choose number of data patterns, number of inputs 

and outputs to be filled into spreadsheet. 

2. Insert test data. 

3. Normalisation of test data patterns from 0 to 1 and automatically saving into 

a separate work sheet without altering the original test data. 

4. Manually or randomly separation of normalised data patterns into training 

and testing data. 

5. Selection of a Neural Network model for a given application from figure 5.2 

following the definition of specific parameter such as number of hidden 

nodes, iterations etc.. 

6. Generation of output files after successful network training and testing of the 

chosen model with its corresponding parameters. 

7. Finally results can be uploaded including RMS errors and graphical charts. 

Figure 5.2: User interface of Neural Network Model Selection 

104 



Hydrogen flow rate 

Stack-efkiency 

System-efficiency 

Figure 5.3: General Neural Network structure for PPM 
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5.2.2 General procedure of performance prediction modelling using ANN 

Hydrogen production performance parameters, such as hydrogen flow rate (1/min), 

stack-efficiency (%) and system-efficiency (%) have been obtained according to 

experimental setup previously discussed in chapter 4. Each of those parameters has 

been modelled based on experimental data collection (operating conditions). Figure 

5.3 shows the input and output parameters in a general neural network organisation 

for the PPM. 

Water Quality 

Water Pressure 

System 
Temperature 

Stack Current 

Stack Voltage 

System Power 

System 
Pressure 

Product 
Pressure 

Lower Explosive 
Limit 

For each of the performance parameter to be modelled, two different Neural 

Networks such as 
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• Back-propagation Neural Network with one and two hidden layers (BPI; 

BP2) and 

• Optimisation Layer-by-Layer Neural Network 

have been applied. Their functionality and logic has been widely described in chapter 

3. 

The following steps were applied to model each performance parameter using the 

Neural Network Analysis Package: 

1. Processing of experimental data 

2. Nedra! Network training and testing 

3. Network selection 

Step I — Processing of experimental data 

Normalisation of experimental data, ranging from 0-1 (see equation 3.3), was 

performed on a total of 244 data patterns produced by the experiments at different 

operating conditions. Subsequent to the normalisation process 80% (220 data 

patterns) of the data was assigned to training and the remaining 20% was reserved 

for testing. 

Step 2 — Neural Network training and testing 

Following a network model chosen from figure 5.2, specific parameters such as 

number of hidden nodes and iterations have to be defined. Those individual network 

settings were tested and yielding in an average RMS error (equation 3.10) between 

the experimental and predicted data. 

Step 3 - Network Selection 

The RMS error can be seen as an overall performance parameter or qualitative 

measure of the individually tested model. Thus, the specific model with the 

106 



Chapter 5: Predictive Models for Hydrogen Production Performance in a PEM-Electrolyzer 

minimum RMS error can be identified. Testing results can be graphically depicted 

and assist the selection process of the most suitable model for each performance 

parameter. 

5.2.3 ANFIS implementation 

In addition to the Neural Network models, ANFIS time-series prediction hybrid 

model as discussed in chapter 3 has been developed and tested using the Matlab 

Simulink environment. Unlike ANN the data are not normalised and randomised. A 

set of 134 data has been used for testing of the models and the remaining 101 

accounted for training and checking. ANFIS is used as a tool to predict future values 

of hydrogen flow rate, stack-efficiency and system-efficiency based on precision 

data collection of the experiments in tank filling mode (TF). The time-series 

prediction uses past values of the parameters until time t in order to predict the value 

at a point in the future (t +1) as follows: 

x(t +1) = fkx(t -3)x(t -2)x(t -1)x(t))1 	 (5.1) 

5.2.4 ANFIS parameter selection 

The ANFIS network parameters, such as the order of the Membership Function (MF) 

and epochs, have been varied to obtain best results in terms of model validation 

corresponding to a low average RMS error. A number of distributions were tested to 

obtain the most suitable type of MF. The generalised bell function gives the 

distribution of parameters close to its mean value. Due to the nature of the data-sets 

and their distribution close to its mean value, the generalized bell function was found 

to be the most suitable for the parameter prediction. One epoch or iteration is a single 

pass through the entire training set followed by testing. Increasing the number of 
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epochs might improve the performance of the ANFIS, however it increases the 

training time. Changing the MF to a higher order can improve the performance 

slightly, but also adds significantly to the training and evaluation time. It should also 

be noted to consider the capacity of the computational facilities when training the 

model with a higher order of MFs. 

5.3 Results and Model Evaluation 

5.3.1 Stack-efficiency prediction model 

Back-propagation Neural Networks with one hidden layer (BPI) and a changing 

architecture of 2-10 neurons in the hidden layer were tested first. Figure 5.4 shows 

the RMS errors for training and testing in this category. From this figure, the 

network with 2 hidden neurons has resulted in the minimum RMS error with a 

corresponding value of 8.43% for the testing set and 7.22% for the training set. As a 

result it was chosen as the optimal one hidden layer Back-propagation network for 

prediction of stack-efficiency. 
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Figure 5.4: Back-propagation Neural Network (BP1) RMS error with changing 

architecture for prediction of Stack-efficiency 

Testing results for the two hidden layer Back-propagation network (BP2) are 

shown in figure 5.5. The network with 13 neurons in the first hidden layer and 3 

neurons in the second hidden layer has resulted in the minimum RMS error for the 

two hidden layer Back-propagation Neural Networks. This optimum network was 

selected for the prediction of the stack-efficiency. It yielded in a slightly lower RMS 

error compared to the one hidden layer Back-propagation network with RMS error 

values of 6.53% and 7.96% for the training set and testing set, respectively. 
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Training 

Testing 

Figure 5.5: Two hidden layer Back-propagation Neural Network (BP2) RMS error 

with changing architecture for prediction of Stack-efficiency 
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The testing results for the Optimisation Layer-by-Layer (OLL) Neural Network are 

depicted in figure 5.6. This category presented an improvement compared to the 

Back-propagation Neural Networks. The network with 5 hidden neurons was chosen 

as the best of this category for prediction of stack-efficiency. It resulted in RMS 

errors of 2.96% for the training set and 1.95% for the testing set. 

Figure 5.6: OLL Neural Network RIVIS error with changing architecture for prediction 

of Stack-efficiency 

In the hybrid category, the approach with ANF1S produced  the  following results as 

shown in table 5.1. The number of epochs and MFs have  been  varied to obtain 

optimum results. 
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Table 5.1: ANFIS performance for prediction of stack-efficiency with variation of MFs 

and epochs based on RMS error 

Stack-efficiency RMS error (%) 

Number of Epochs MF 2 MF 3 MF 4 

3 0.36 0.7 0.77 

5 0.5 0.77 3.04 

10 0.87 0.8 1.89 

The best results based on RMS error were achieved by using MF 2 ranging from 

0.36%-0.87%. However, models which follow the trend at best are essential for 

control strategies. In order to identify those models, a comparison of the plotted 

diagrams for each of the investigated models from table I was conducted. The 

predictive model with the best performance in terms of trend following was found 

for MF 3 with an average RMS testing error of 0.7%. A plot of the testing data with 

actual and predicted parameters is shown in figure 5.7. Additionally the numerical 

error between the actual and predicted data is also depicted in this figure [151]. 
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Figure 5.7: ANFIS network with 3 membership functions for prediction of stack- 

efficiency 

A summary of the optimum models for the prediction of stack-efficiency is presented 

in table 2 below. 

Table 5.2: Summary of best performing model in each category 

Model 
	

Architecture 	 RMS testing error (°/0) 

BP 1 
	

2 hidden neurons 	 8.43 

BP2 	13 hidden neurons 1 St  layer; 2 hidden 	 7.96 

neurons 2nd  layer 

OLL 	 5 hidden neuron ,, 	 1.95 

ANF1S 
	

3M1 	 0.7 
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From those results, it can be concluded that the OLL and ANFIS networks show 

excellent results with an average RMS error of 1.95% and 0.7% respectively. The 

performance of those models is significantly better compared to the Back-

propagation models. 

5.3.2 Hydrogen flow rate prediction model 

For the prediction of hydrogen flow rate, Back-propagation Neural Networks with 

one hidden layer (BPI) and a changing architecture of 2-10 neurons in the hidden 

layer were initially tested as shown in figure 5.8. From this figure, the optimum 

network with 10 neurons in the hidden layer resulted in a minimum RMS error of 

6.47% for the training set and 6.09% for the testing set. It was therefore chosen as 

the optimum model for hydrogen flow rate prediction in this network category. 

Figure 5.8: Back-propagation Neural Network (BP1) RMS error with changing 

architecture for prediction of Hydrogen flow rate 
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The testing results with changing architecture for the two hidden layer Back-

propagation network (BP2) are illustrated in figure 5.9. The model with 11 neurons 

in the first hidden layer and 3 neurons in the second hidden layer resulted in the 

minimum RMS error and was selected as the optimum model for hydrogen flow rate 

prediction. This particular model architecture produced RMS errors of 6.92% for the 

training set and 6.39% for the testing set. In comparison to the BPI model, no further 

improvement could be made. 
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Training 

Testing 

Figure 5.9: Two hidden layer Back-propagation Neural Network (BP2) RMS error 

with changing architecture for prediction of Hydrogen flow rate 

Based on the testing results for the OLL neural network in figure 5.10, accuracy of 

this model category has improved compared to the BPI and BP2 models. The best 
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model for prediction of hydrogen flow rate contained 8 neurons  in  the hidden layer 

and yielded RMS errors of 0.71% for the training set and 2.13% for the testing set. 

Figure 5.10: OLL Neural Network RMS error with changing architecture for 

prediction of Hydrogen flow rate 

Table 5.3 highlights the results produced with ANFIS in the hybrid network 

category. The best result could be achieved using 4 MFs and produced an average 

RMS testing error of 3.47%. This network was selected as the optimum model in the 

time-series prediction of hydrogen flow rate. 

Table 5.3: ANFIS performance for prediction of hydrogen flow rate with variation of 

MFs and epochs 

Hydrogen flow rate RMS error (°/0) 

Number of Epochs 	MF 2 	 MF 3 	 MF 4 

3 4.5 4.71 4.83 

5 4.29 4.59 7.77 
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10 	 4.82 	 4.58 	 3.47 

According to the summary of the optimum models in each category presented in 

table 5.4, the OLL network and the ANFIS approach outperform Back-propagation 

models. In the hybrid category, the ANFIS network achieved acceptable results with 

an RMS error of 3.47%. On the other hand the OLL Neural Network produced 

excellent results with an average RMS error of 2.13%. 

Table 5.4: Summary of best performing model for hydrogen flow rate prediction in 

each category 

Model 	 Architecture 	 RMS testing error (Y0) 

BPI 	 10 hidden neurons 	 6.09 

BP2 	11 hidden neurons 1 st  layer; 3 hidden 	 6.39 

neurons 2nd  layer 

OLL 	 8 hidden neurons 	 2.13 

ANFIS 	 4 MF 	 3.47 

A plot of the best model for the prediction of hydrogen flow rate is shown in figure 

5.11. It can be seen, that qualitative and quantitative trends between predicted and 

experimental data are matched accurately. 

118 



1:-..,...:...-^■••■•-•,,-4,".1 ....e.'"I\-•""-""77" --•-..:%-  

14 

- 1 
= 

12 
3 o 

11 C • 

1 

15 

Experimental Data 

Predicted Data 

J 	 
1 

, 

1 	5 	9 	13 	17 	21 	25 	29 	33 	37 	41 	45 	49 

Number of test data 
	4 

Chapter 5: Predictive Models  for  Hydrogen Production Performance  in  a PEM-Electrolyzer 

Figure 5.11: Experimental and predicted data for OLL Neural Network with 8 neurons 

in hidden layer for Hydrogen flow rate prediction 

5.3.3 System-efficiency prediction model 

Back-propagation Neural Networks with one hidden layer (BP  I)  were initially tested 

for the prediction of system-efficiency. The results of the investigated models are 

shown in figure 5.12. The network with 10 hidden neurons produced minimal RMS 

error in this network category. Consequently, this model was chosen as the optimum 

network for system-efficiency prediction with RMS errors of 6.91% for the training 

set and 3.05% for the testing set respectively. 
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Figure 5.12: Back-propagation Neural Network (BP1) RMS error with changing 

architecture for prediction of System-efficiency 

Training and testing results for the two hidden layer Back-propagation Neural 

Network are presented in figure 5.13. The RMS error varied according to the 

changing architecture and a slight improvement compared to BPI could be made. 

The best performing model, with 20 neurons in the first layer and 6 neurons in the 

second layer yielded minimum RMS error of 6.79% for the training set and 2.4% for 

the testing set. Thus it was selected as the optimum model for system-efficiency 

prediction in this network category. 
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Figure 5.13: Two hidden layer Back-propagation Neural Network (BP2) RMS error 

with changing architecture for prediction of System-efficiency 

Significant improvement in comparison to BPI and BP2 for prediction of system-

efficiency was achieved using the OLL Neural Network. Based on the results from 

figure 5.14, the model with 9 neurons in the hidden layer yielded minimum RMS 
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error. This model, with a corresponding RMS error of 1.21% and 1.54% for the 

training and testing set respectively, was selected as the optimum model in this 

network category. 

Figure 5.14: OLL Neural Network RMS error with changing architecture for 

prediction of System-efficiency 

The results of the ANFIS network in the hybrid category are shown in table 5.5. 

Further improvement compared to the OLL model was achieved. Excellent results of 

0.38% RMS testing error were produced using 3 MFs. 

Table 5.5: ANFIS hybrid network performance for prediction of system-efficiency with 

variation of MFs and epochs 

System-efficiency RMS error (%) 

Number of Epochs MF 2 MF 3 MF 4 

3 1.49 0.39 0.75 

5 1.67 0.38 0.68 

10 2.22 0.59 1.59 
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Following the summary of the optimum models from each category in table 5.6, 

the ANFIS time-series prediction model using 3 MFs was selected as the best 

performing model for the prediction of electrolyzer system-efficiency. 

Table 5.6: Summary of best performing model for system -efficiency in each category 

Model 
	

Architecture 	 RMS testing error (%) 

BP1 
	

10 hidden neurons 	 3.05 

BP2 	20 hidden neurons 1st  layer; 6 hidden 	 2.4 

neuron 2nd  layer 

OLL 
	

9 hidden neurons 	 1.54 

ANFIS 
	

3 MF 	 0.38 

A plot of the ANFIS prediction model is shown in figure 5.15. It can be seen, that 

the predicted data (green) are following the qualitative and quantitative trend of the 

actual data (black) at a very high accuracy. 
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5.4 Concluding Remarks 

Various neural network based models have been investigated to predict three specific 

hydrogen production performance parameters, such as stack-efficiency, hydrogen 

flow rate and system-efficiency. The models for the PPM proved to be highly 

accurate with very low average RMS error as shown in table 5.7. 

Table 5.7: Selected models for the PPM of the PEM-electrolyzer 

Performance Parameter 	RMS testing error (%) 	Prediction Model 

Stack-efficiency 	 0.7 	 ANF1S (3 MF) 

Hydrogen flow rate 	 2.13 	 OLL (8 hidden neurons) 

System-efficiency 	 0.38 	 ANFIS (3 MF) 

The ANFIS model, using 3 MFs has been chosen as the best suitable model for the 

prediction of the stack-efficiency with an average RMS testing error of 0.7%. For the 

prediction of hydrogen flow rate the OLL neural network model with 8 neurons in 

the hidden layer was selected as the optimum model for the PPM. It yielded average 

RMS error of 2.13%. Finally, the most suitable model for prediction of system-

efficiency could be identified as the ANFIS hybrid network with 3 MFs and an 

average RMS testing error of 0.38%. 

This study of performance prediction modelling for an industrial process of a 

PEM-electrolzyer provides an alternative method to conventional mathematical 

modelling approaches, where operating conditions have to be determined initially. 

The PPM, consisting of neural network based models, utilised the operating 

conditions from experimental database in order to predict the hydrogen performance 

parameters. 

The high accuracy of those predictive models enables on-line adaptation for wider 

monitor and safety application, where the PPM could be implemented as a virtual 

sensor and replace expensive instrumentation for hydrogen production. 
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Increasing global warming and pollution present a serious problem of mankind in 

today's world. The decrease of fossil fuels accompanied by increasing global energy 

demand requires alternative energy solutions. Hydrogen production technologies are 

gaining increasing importance in the search of an alternative energy supply for the 

future. Electrolytic hydrogen production can be seen as the binding element in 

utilising and storing fluctuating renewable energies towards a sustainable and 

environmentally compatible energy supply. 

This thesis provided a comprehensive study in predictive performance modelling 

for a commercial PEM-electrolyzer. An extensive literature survey on the most 

common and widely used hydrogen production technologies was presented. A 

special emphasises on the process of water electrolysis and electrolyzer technology 

was also provided. Furthermore, various existing electrolyzer models and modelling 

approaches, which are mainly based on fundamental theories, have been discussed. 

Due to the complexity of those mathematical models, which rely on extensive and 

expensive experimental investigations, an approach with intelligent techniques, such 

as Neural Networks and hybrid models was suggested. 

As part of the literature review, neural network based models and their application 

for non-linear processes have been investigated. A general knowledge about 

Artificial Neural Networks and hybrid model ANFIS was presented. The theory and 

mathematical logic behind each of the models used in this work has also been 

discussed. By using the Neural Networks Analysis Package, which was developed by 

the School of Engineering at the University of Tasmania and the Matlab Simulink 

environment for the development of the ANFIS models, a good understanding of 

neural network based models has been demonstrated. 

The design and development of the experimental test facility has been described. 

The test rig was used to measure and predict specific electrolyzer performance 

parameters, such as hydrogen flow rate, stack-efficiency and system-efficiency. 

Comprehensive experimental data, which cover a wide range of operating 

conditions, were obtained with National Instruments LabVIEW software. The 

database formed the foundation for the training and verification of the predictive 
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performance models. The verification was carried out between by comparison of the 

experimental and predicted values. 

Various neural network based models have been investigated to predict three 

specific hydrogen production performance parameters, such as stack-efficiency, 

hydrogen flow rate and system-efficiency. The models for the PPM proved to be 

highly accurate with very low average RMS error. 

The ANFIS model, using 3 MFs has been chosen as the best suitable model for the 

prediction of the stack-efficiency with an average RMS testing error of 0.7%. 

For the prediction of hydrogen flow rate the OLL neural network model with 8 

neurons in the hidden layer was selected as the optimum model for the PPM. It 

yielded average RMS error of 2.13%. 

The most suitable model for prediction of the system-efficiency could be identified 

as the ANFIS hybrid network with 3 MFs and an average RMS testing error of 

0.38%. 

This study of performance prediction modelling for an industrial process of a 

PEM-electrolzyer provides an alternative method to conventional mathematical 

modelling approaches, where operating conditions have to be determined initially. 

The PPM, consisting of neural network based models, utilised the operating 

conditions from experimental database in order to predict the hydrogen performance 

parameters. 

Based on this work further research could be conducted. The dynamic electrolyzer 

behaviour could be further investigated, especially when coupled directly with a 

renewable source, such as wind generator or a photovoltaic system. This would 

provide a greater range of data, where the capability of neural network based 

predictive models could be further investigated. The high accuracy of the predictive 

models presented here enables on-line adaptation for wider monitor and safety 

application, where the PPM could be implemented as a virtual sensor and replace 

expensive instrumentation for hydrogen production. 
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APPENDIX 

EXPERIMENTAL DATA 

LEL 	Lower Explosive Limit 

PPS 	Product Pressure 

SPS 	System Pressure 

WTQ 	Feed Water Quality 

SVG 	Stack Voltage 

SCT 	Stack Current 

STM 	Electrolyzer System Temperature 
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Appendix: Experimental Data 

LEL 

1%1 

PPS 

[1(Pal 

SPS 

[1(Pa] 

WTQ 

[MIZ] 

SVG 

[V] 

SCT 

[A] 

STM 

1°C] 

Water- 

pressure 

[1(Pa] 

System 

Power 

[WI 

System- 

efficiency 

Hydrogen 

flow 

[1/min] 

Stack- 

efficiency 

31 13.7898 1089.394 15.1 24.7 144.1 21 268.95 4279 0.3141 3.5523 0.4192 

31 27.5796 1344.506 15.1 24.6 144.1 21 268.55 4286 0.4857 6.0896 0.5808 

31 27.5796 1344.506 15.2 24.5 144.1 22 268.55 4309 0.3949 5.3284 0.4860 

31 48.2643 1344.506 15 24.4 143.7 22 268.55 4260 0.5828 8.2887 0.6399 

31 55.1592 1330.716 15.2 24.4 144.1 22 268.75 4266 0.5756 8.5255 0.6404 

31 68.949 1344.506 15.1 24.4 144.1 23 268.36 4258 0.6335 9.6880 0.7120 

31 75.8439 1344.506 15.2 24.4 144.1 23 268.55 4254 0.6226 9.7688 0.7052 

32 89.6337 1344.506 15.5 24.3 144.1 23 268.55 4249 0.6651 10.6568 0.7582 

32 96.5286 1344.506 15.3 24.3 144.1 23 268.55 4245 0.6532 10.6568 0.7490 

32 110.3184 1344.506 15.4 24.3 143.9 24 268.75 4241 0.6866 11.3673 0.7906 

32 124.1082 1344.506 15.1 24.3 143.9 24 268.55 4220 0.7150 11.9890 0.8264 
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Appendix: Experimental Data 

33 137.898 	1323.821 15.3 24.2 144.1 24 268.75 4236 0.6916 11.8409 0.8046 

33 137.898 	1344.506 15.3 24.2 144.1 24 268.75 4231 0.6498 11.2177 0.7576 

33 137.898 	1344.506 15.1 24.2 144.1 24 268.75 4227 0.6126 10.6568 0.7158 

34 144.7929 	1344.506 15.5 24.2 144.1 25 268.55 4225 0.6083 10.6568 0.7124 

34 151.6878 	1351.4 15.3 24.1 144.1 25 268.16 4223 0.6045 10.6568 0.7094 

35 151.6878 	1344.506 15.5 24.1 144.1 25 268.55 4219 0.5751 10.1935 0.6759 

35 158.5827 	1351.4 15.2 24.1 144.1 25 268.36 4200 0.5733 10.2128 0.6748 

35 158.5827 	1344.506 15.4 24.1 143.7 25 268.36 4198 0.5478 9.8043 0.6459 

35 124.1082 	1310.031 15.2 24.1 144.1 25 269.34 4217 0.4105 7.3778 0.4846 

36 172.3725 	1344.506 15.3 24.1 144.1 25 268.16 4214 0.5471 9.8674 0.6463 

36 172.3725 	1344.506 15.3 24.1 144.1 25 268.36 4212 0.5257 9.5150 0.6217 

36 172.3725 	1344.506 15.2 24.1 144.1 26 268.16 4202 0.5059 9.1869 0.5988 

37 186.1623 	1351.4 15.4 23.9 143.7 26 268.55 4192 0.5265 9.5912 0.6241 

37 193.0572 	1351.4 15.3 23.9 143.7 26 268.75 4192 0.5269 9.6255 0.6252 

36 193.0572 	1344.506 15.4 23.9 143.7 26 268.36 4171 0.5093 9.3247 0.6048 

34 199.9521 	1351.4 15.3 23.9 143.5 26 268.16 4172 0.5103 9.3651 0.6065 
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32 206.847 	1351.4 15.3 23.9 143.9 26 268.16 4205 0.4956 9.1344 0.5900 

32 213.7419 	1330.716 15.3 23.9 144.1 26 268.36 4204 0.4970 9.1767 0.5919 

32 213.7419 	1323.821 15.2 23.9 144.1 26 268.16 4204 0.4826 8.9287 0.5752 

32 220.6368 	1330.716 15.4 23.9 144.1 26 267.97 4202 0.4841 8.9742 0.5775 

34 227.5317 	1330.716 15.2 23.9 144.1 26 268.55 4202 0.4856 9.0173 0.5796 

35 234.4266 	1330.716 15.3 23.9 144.1 26 268.36 4183 0.4870 9.0583 0.5816 

36 241.3215 	1330.716 15.2 23.9 143.7 26 268.16 4183 0.4884 9.0973 0.5836 

36 220.6368 	1275.557 15.1 23.9 143.7 26 268.16 4202 0.4353 8.1195 0.5204 

37 248.2164 	1344.506 15.3 23.9 144.1 26 268.36 4201 0.4777 8.9220 0.5713 

37 248.2164 	1344.506 15.4 23.9 144.1 26 268.55 4202 0.4662 8.7192 0.5579 

37 255.1113 	1344.506 15.5 23.9 144.1 27 267.97 4200 0.4679 8.7623 0.5601 

37 262.0062 1344.506 15.4 23.9 144.1 27 268.16 4198 0.4695 8.8035 0.5623 

37 268.9011 	1344.506 15.1 23.9 144.1 27 268.55 4198 0.4711 8.8429 0.5644 

37 268.9011 	1344.506 15.4 23.9 144.1 27 268.36 4181 0.4608 8.6587 0.5523 

37 268.9011 	1344.506 15.3 23.9 143.7 27 267.97 4180 0.4509 8.4820 0.5407 
37 282.6909 1344.506 15.2 23.9 143.9 27 268.16 4200 0.4642 8.7386 0.5567 
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Appendix: Experimental Data 

37 282.6909 1344.506 15.5 23.9 144.1 27 267.97 4198 0.4455 8.4025 0.5346 

37 282.6909 	1344.506 15.5 23.9 144.1 27 267.38 4197 0.4367 8.2440 0.5242 

37 296.4807 1344.506 15.3 23.9 144.1 27 268.16 4195 0.4491 8.4860 0.5393 

37 303.3756 	1344.506 15.3 23.9 144.1 27 267.97 4196 0.4508 8.5255 0.5415 

37 303.3756 	1344.506 15.3 23.9 144.1 27 267.97 4178 0.4424 8.3732 0.5315 

37 317.1654 	1344.506 15.2 23.9 143.7 27 268.75 4162 0.4541 8.6003 0.5457 

37 324.0603 	1344.506 15.2 23.8 143.5 27 267.97 4182 0.4556 8.6357 0.5477 

37 324.0603 	1344.506 15.4 23.9 143.9 27 267.77 4178 0.4476 8.4894 0.5382 

37 337.8501 	1344.506 15.5 23.8 143.7 27 267.97 4177 0.4587 8.7031 0.5516 

35 337.8501 	1344.506 15.4 23.8 143.7 27 267.58 4177 0.4509 8.5604 0.5423 

34 344.745 	1344.506 15.4 23.8 143.7 27 267.38 4176 0.4524 8.5942 0.5443 

33 358.5348 	1344.506 15.1 23.8 143.7 27 267.58 4193 0.4627 8.7961 0.5569 

33 351.6399 	1316.926 15.2 23.8 144.1 27 267.19 4175 0.4464 8.4922 0.5375 

33 358.5348 	1316.926 15.1 23.8 143.7 27 266.99 4175 0.4481 8.5255 0.5394 

33 358.5348 	1323.821 15.4 23.8 143.7 27 267.38 4194 0.4411 8.3963 0.5311 

35 365.4297 1344.506 15.3 23.8 144.1 27 267.58 4193 0.4426 8.4300 0.5331 
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Appendix: Experimental Data 

37 379.2195 	1344.506 15.4 23.8 144.1 27 267.19 4193 0.4455 8.4946 0.5368 

37 379.2195 	1344.506 15.1 23.8 144.1 27 267.58 4192 0.4389 8.3732 0.5290 

37 393.0093 	1344.506 15 23.8 144.1 27 267.58 4192 0.4482 8.5555 0.5404 

37 393.0093 	1344.506 15.1 23.8 144.1 27 267.38 4175 0.4418 8.4367 0.5327 

37 399.9042 1344.506 15.2 23.8 143.7 27 267.77 4175 0.4432 8.4671 0.5345 

37 406.7991 	1344.506 15.3 23.8 143.7 27 267.77 4194 0.4445 8.4967 0.5363 

37 406.7991 	1344.506 15.1 23.8 144.1 27 267.38 4193 0.4385 8.3834 0.5290 

37 413.694 	1344.506 15.2 23.8 144.1 27 267.38 4193 0.4399 8.4133 0.5307 

37 420.5889 	1344.506 15.3 23.8 144.1 27 266.8 4191 0.4412 8.4424 0.5325 

37 427.4838 	1344.506 15.1 23.8 144.1 27 266.99 4190 0.4425 8.4708 0.5341 

37 427.4838 	1344.506 15.2 23.8 144.1 27 267.19 4191 0.4367 8.3636 0.5272 

37 434.3787 	1344.506 15.1 23.8 144.1 27 267.58 4173 0.4381 8.3923 0.5289 

37 441.2736 	1337.611 15.1 23.8 143.7 27 266.99 4173 0.4394 8.4202 0.5306 

37 448.1685 	1344.506 15.2 23.8 143.7 27 266.6 4193 0.4406 8.4475 0.5322 

38 448.1685 	1344.506 15 23.8 144.1 28 266.41 4192 0.4351 8.3457 0.5257 

37 448.1685 	1344.506 15.3 23.8 144.1 28 265.43 4173 0.4299 8.2464 0.5193 
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Appendix: Experimental Data 

37 468.8532 	1344.506 15.3 23.8 143.7 28 266.6 4173 0.4390 8.4263 0.5305 

36 475.7481 	1344.506 15.2 23.8 143.9 28 266.8 4172 0.4402 8.4520 0.5320 

35 482.643 	1344.506 15.2 23.8 143.7 28 266.6 4154 0.4414 8.4770 0.5335 

34 489.5379 1344.506 15.1 23.8 143.5 28 266.41 4170 0.4426 8.5015 0.5350 

33 489.5379 	1323.821 15.2 23.8 143.7 28 266.6 4191 0.4376 8.4071 0.5290 

33 489.5379 	1344.506 15.1 23.8 144.1 28 266.41 4190 0.4326 8.3147 0.5230 

33 503.3277 	1344.506 15 23.8 144.1 28 266.8 4188 0.4398 8.4560 0.5318 

35 503.3277 	1337.611 15.1 23.8 144.1 28 266.21 4188 0.4350 8.3651 0.5260 

37 510.2226 	1337.611 15.2 23.8 144.1 28 266.6 4188 0.4361 8.3894 0.5275 

37 517.1175 	1337.611 15.4 23.8 144.1 28 266.41 4186 0.4372 8.4133 0.5289 

37 524.0124 	1337.611 15 23.8 144.1 28 266.6 4169 0.4384 8.4367 0.5303 

37 524.0124 	1337.611 15.3 23.8 143.7 28 266.41 4170 0.4338 8.3497 0.5248 

37 530.9073 	1337.611 15.2 23.8 143.7 28 266.21 4190 0.4349 8.3732 	, 0.5262 

37 537.8022 	1337.611 15 23.8 144.1 28 266.21 4187 0.4360 8.3963 0.5275 

37 544.6971 	1330.716 15.1 23.8 144.1 28 266.41 4187 0.4370 8.4189 0.5289 

37 544.6971 	1330.716 15 23.8 144.1 28 266.41 4187 0.4326 8.3356 0.5236 
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Appendix: Experimental Data 

37 655.0155 1316.926 15.2 23.8 144.1 28 265.82 4175 0.4365 8.4367 0.5289 

37 661.9104 1310.031 15 23.8 143.7 28 266.41 4169 0.4373 8.4550 0.5300 

37 661.9104 1316.926 15.1 23.8 143.7 28 265.82 4188 0.4337 8.3857 0.5256 

37 668.8053 1337.611 15.3 23.8 144.1 28 266.02 4186 0.4345 8.4042 0.5267 

37 675.7002 1330.716 15 23.8 144.1 28 266.02 4186 0.4354 8.4223 0.5278 

37 675.7002 1330.716 15 23.8 144.1 28 266.02 4186 0.4318 8.3550 0.5235 

38 682.5951 1330.716 14.9 23.8 144.1 28 266.02 4185 0.4328 8.3732 - 0.5246 

37 689.49 1330.716 15 23.8 144.1 28 265.82 4184 0.4337 8.3912 0.5257 

38 696.3849 1330.716 15.2 23.8 144.1 28 265.82 4174 0.4345 8.4089 0.5309 

37 703.2798 1330.716 15.4 23.8 143.7 28 267.38 4166 0.4353 8.4263 0.5320 

38 703.2798 1330.716 15.4 23.8 143.7 28 265.82 4189 0.4319 8.3615 0.5278 

38 710.1747 1330.716 15 23.8 144.1 28 265.62 4187 0.4328 8.3790 0.5288 

38 717.0696 1330.716 15.1 23.8 144.1 28 265.82 4186 0.4336 8.3963 0.5299 

38 723.9645 1330.716 15.1 23.8 144.1 28 265.82 4186 0.4344 8.4133 0.5308 

38 723.9645 1330.716 15.2 23.8 144.1 28 265.62 4185 0.4311 8.3505 0.5268 

38 737.7543 1330.716 14.9 23.8 144.1 28 265.62 4181 0.4360 8.4465 0.5328 
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Appendix: Experimental Data 

38 744.6492 	1330.716 15 23.8 143.5 28 265.82 4152 0.4336 8.4010 0.5298 

38 758.439 	1330.716 15 23.8 143.5 28 265.43 4171 0.4383 8.4946 0.5357 

37 758.439 	1330.716 15.1 23.8 143.9 28 265.62 4169 0.4352 8.4335 0.5317 

35 772.2288 	1337.611 15.3 23.8 143.9 28 265.43 4177 0.4399 8.5255 0.5375 

35 772.2288 	1330.716 15.1 23.8 143.9 28 288.67 4184 0.4367 8.4650 0.5336 

34 779.1237 	1310.031 15.1 23.8 144.1 28 285.35 4186 0.4375 8.4804 0.5345 

34 779.1237 	1310.031 15.1 23.8 144.1 28 284.18 4185 0.4344 8.4211 0.5307 

34 786.0186 	1310.031 15 23.8 144.1 28 284.37 4181 0.4352 8.4367 0.5316 

36 792.9135 	1310.031 15.1 23.8 143.7 28 284.18 4168 0.4359 8.4520 0.5325 

37 799.8084 	1310.031 15.1 23.8 143.7 28 283.79 4189 0.4366 8.4671 0.5334 

37 799.8084 	1330.716 15.2 23.8 144.1 28 284.18 4187 0.4336 8.4095 0.5297 

37 813.5982 	1330.716 15.1 23.8 144.1 28 284.18 4185 0.4380 8.4967 0.5352 

37 813.5982 	1330.716 15.2 23.8 144.1 28 284.18 4184 0.4350 8.4396 0.5315 

37 820.4931 	1330.716 15.2 23.8 144.1 28 284.37 4185 0.4358 8.4544 0.5324 

37 827.388 	1330.716 15.1 23.8 144.1 28 284.37 4184 0.4365 8.4690 0.5332 

38 834.2829 	1330.716 15.2 23.8 144.1 28 284.18 4182 0.4372 8.4834 0.5341 
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Appendix: Experimental Data 

38 841.1778 	1330.716 15.2 23.8 143.7 28 284.37 4187 0.4350 8.4424 0.5314 

38 848.0727 	1330.716 15.3 23.8 144.1 28 284.57 4185 0.4357 8.4567 0.5323 

38 848.0727 	1330.716 15 23.8 144.1 28 284.37 4185 0.4329 8.4025 0.5288 

38 854.9676 	1330.716 15.2 23.8 144.1 28 284.18 4184 0.4336 8.4169 0.5296 

38 868.7574 	1330.716 14.9 23.8 144.1 28 284.57 4184 0.4377 8.4985 0.5347 

38 868.7574 	1330.716 15.3 23.8 144.1 28 284.37 4184 0.4349 8.4450 0.5313 

37 868.7574 	1330.716 15.2 23.8 144.1 28 284.18 4183 0.4322 8.3923 0.5279 

37 875.6523 	1330.716 14.9 23.8 143.7 28 284.57 4150 0.4328 8.4063 0.5288 

38 882.5472 	1330.716 15.2 23.8 143.5 28 284.57 4172 0.4336 8.4202 0.5296 

38 889.4421 	1330.716 15.1 23.8 143.9 28 282.81 4171 0.4342 8.4339 0.5304 

37 896.337 	1330.716 15.1 23.8 143.9 28 284.37 4168 0.4349 8.4475 0.5312 

35 903.2319 	1330.716 14.9 23.8 143.7 28 284.77 4168 0.4355 8.4609 0.5320 

35 910.1268 	1330.716 15.1 . 23.8 143.9 28 284.77 4184 0.4363 8.4741 0.5328 

34 910.1268 	1316.926 15 23.8 144.1 28 284.77 4184 0.4336 8.4234 0.5296 

34 923.9166 	1310.031 14.9 23.8 144.1 28 284.77 4184 0.4375 8.5001 0.5344 

34 923.9166 	1310.031 14.9 23.8 144.1 28 284.96 4168 0.4349 8.4498 0.5312 
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Appendix: Experimental Data 

37 937.7064 	1330.716 15.2 23.8 144.1 28 284.77 4187 0.4362 8.4756 0.5327 

37 937.7064 	1330.716 14.9 23.8 144.1 28 284.96 4187 0.4336 8.4263 0.5296 

37 944.6013 	1330.716 15.1 23.8 144.1 28 284.77 4184 0.4342 8.4392 0.5303 

37 951.4962 	1330.716 15.1 23.8 144.1 28 284.96 4186 0.4348 8.4520 0.5311 

37 958.3911 	1330.716 15 23.8 144.1 28 284.77 4186 0.4354 8.4646 0.5318 

37 965.286 	1330.716 14.9 23.8 144.1 28 284.77 4184 0.4360 8.4770 0.5326 

37 965.286 	1330.716 15 23.8 144.1 28 285.16 4168 0.4335 8.4291 0.5295 

37 972.1809 	1330.716 15.1 23.8 143.7 28 284.37 4189 0.4341 8.4417 0.5303 

37 979.0758 	1330.716 15.2 23.8 144.1 28 282.23 4189 0.4348 8.4540 0.5310 

37 979.0758 	1323.821 15.2 23.8 144.1 28 284.96 4187 0.4323 8.4071 0.5280 

38 985.9707 	1323.821 14.9 23.8 144.1 28 284.57 4185 0.4329 8.4195 0.5287 

38 992.8656 	1330.716 15.1 23.8 144.1 28 284.57 4185 0.4335 8.4318 0.5295 

38 999.7605 	1323.821 15.1 23.8 144.1 28 284.57 4186 0.4341 8.4439 0.5302 

38 1006.655 	1330.716 14.9 23.8 144.1 28 285.74 4186 0.4347 8.4560 0.5309 

37 1013.55 	1323.821 14.9 23.8 143.9 28 284.57 4168 0.4353 8.4679 0.5316 

38 1013.55 	1330.716 15 23.8 143.7 28 285.16 4175 0.4330 8.4223 0.5287 
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Appendix: Experimental Data 

38 1034.235 	1330.716 14.9 23.8 143.9 28 284.18 4171 0.4370 8.5028 0.5337 

37 1027.34 	1330.716 15.1 23.8 143.7 28 284.37 4171 0.4318 8.4014 0.5273 

35 1048.025 	1330.716 15.1 23.8 143.7 28 284.57 4170 0.4382 8.5255 0.5351 

35 1048.025 	1330.716 15.1 23.8 143.7 28 284.57 4191 0.4358 8.4808 0.5323 

35 1054.92 	1330.716 15 23.8 144.3 28 285.75 4187 0.4364 8.4922 0.5329 

34 1054.92 	1310.031 15 23.8 144.1 28 293.55 4170 0.4341 8.4482 0.5301 

34 1061.815 	1316.926 15.3 23.8 143.7 28 293.36 4192 0.4346 8.4596 0.5308 

35 1068.71 	1323.821 15.3 23.8 144.1 28 293.16 4190 0.4352 8.4708 0.5315 

37 1075.604 	1330.716 15.1 23.8 144.1 28 293.36 4191 0.4358 8.4820 0.5322 

37 1075.604 	1330.716 15.1 23.8 144.1 28 293.36 4188 0.4335 8.4389 0.5294 

37 1082.499 	1330.716 15 23.8 144.1 28 293.55 4189 0.4341 8.4501 0.5301 

37 1089.394 	1330.716 15.2 23.8 144.1 28 293.75 4188 0.4346 8.4612 0.5307 

37 1096.289 	1330.716 15.3 23.8 144.1 28 294.34 4188 0.4351 8.4722 0.5314 

37 1096.289 	1330.716 15.2 23.8 144.1 28 294.14 4171 0.4329 8.4300 0.5287 

37 1110.079 	1330.716 15.2 23.8 143.7 28 294.14 4188 0.4362 8.4938 0.5327 

38 1110.079 	1330.716 14.9 23.8 144.1 28 294.34 4188 0.4340 8.4520 0.5300 
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Appendix: Experimental Data 

38 1123.869 	1330.716 15.2 23.8 144.1 28 294.53 4186 0.4350 8.4735 0.5313 

38 1123.869 	1330.716 15.2 23.8 144.1 29 294.73 4186 0.4330 8.4324 0.5287 

38 1130.764 	1330.716 15 23.8 144.1 28 294.53 4185 0.4335 8.4431 0.5294 

38 1144.553 	1330.716 15 23.8 144.1 28 294.73 4186 0.4366 8.5050 0.5332 

37 1144.553 	1330.716 14.9 23.8 144.1 28 294.73 4169 0.4346 8.4643 0.5306 

37 1158.343 	1330.716 15.3 23.8 143.7 28 294.73 4186 0.4376 8.5255 0.5344 

38 1158.343 	1330.716 15.1 23.8 144.1 28 293.95 4173 0.4355 8.4851 0.5319 

37 1165.238 	1330.716 14.8 23.8 143.7 28 294.53 4172 0.4361 8.4953 0.5325 

38 1172.133 	1330.716 15.1 23.8 143.9 28 294.73 4172 0.4366 8.5055 0.5331 

37 1179.028 	1337.611 15.1 23.8 143.7 28 294.34 4172 0.4371 8.5155 0.5337 

35 1185.923 	1337.611 15 23.8 143.9 28 294.34 4171 0.4375 8.5255 0.5343 

35 1192.818 	1344.506 15.1 23.8 143.9 28 294.34 4184 0.4381 8.5353 0.5349 

35 1192.818 	1330.716 15 23.8 144.1 28 294.14 4171 0.4360 8.4960 0.5324 

34 1199.713 	1330.716 15 23.8 143.7 28 294.34 4182 0.4365 8.5059 0.5330 

34 1199.713 	1330.716 14.9 23.8 144.1 28 293.95 4191 0.4345 8.4671 0.5305 

35 1213.502 	1330.716 15 23.8 144.1 28 292.97 4189 0.4375 8.5255 0.5342 
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Appendix: Experimental Data 

36 1316.926 1365.19 14.9 23.8 143.7 28 293.55 4172 0.4366 8.5166 0.5332 
35 1323.821 1365.19 15 23.8 143.7 28 293.75 4177 0.4371 8.5255 0.5337 
34 1330.716 1365.19 14.8 23.8 144.3 28 294.77 4171 0.4376 8.5343 0.5342 
34 1330.716 1365.19 14.8 23.8 143.7 28 295.51 4175 0.4357 8.4991 0.5320 
34 1330.716 1337.611 15 23.8 144.1 28 295.51 4192 0.4339 8.4641 0.5298 
35 1344.506 1372.085 14.8 23.8 144.1 28 295.9 4191 0.4366 8.5167 0.5331 
37 1344.506 1372.085 15.1 23.8 144.1 28 296.09 4189 0.4348 8.4820 0.5309 
37 1358.295 1378.98 14.8 23.8 144.1 28 296.48 4187 0.4374 8.5341 0.5341 
37 1365.19 1378.98 15 23.8 144.1 28 296.68 4189 0.4379 8.5427 0.5346 
38 1365.19 1385.875 14.8 23.8 144.1 28 296.09 4189 0.4361 8.5083 0.5324 	. 
38 1378.98 1385.875 15.1 23.8 144.1 28 296.68 4279 0.4387 8.5597 0.5356 
38 1365.19 1365.19 14.2 14.9 0.5 26 296.68 363.7 0.4336 8.4402 0.5303 
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