The biology and molecular ecology of Oreixenica and related southeast Australian Satyrinae

Rachel Anderson

The biology and molecular ecology of Oreixenica and related southeast Australian Satyrinae

by

Rachel Anna Louise Anderson
BSc (Hons) BPrimEdStud

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Geography and Environmental Studies,
University of Tasmania
Hobart

May 2010

THE
UNIVERSITY
OF TASMANIA
LIBRARY

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, and contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, except where due reference is made in the text.

Signed

Rachel A.L. Anderson

May 2010

Statement of Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Signed

Rachel A.L. Anderson
May 2010

Abstract

In the Australian region, the family Nymphalidae contributes one fifth of the butterfly fauna, with the endemic species and genera all belonging to the subfamily Satyrinae, which is most diverse in the south eastern part of the continent. Here, extensive geographical variation has developed in the phenotype of many satyrines. This is best illustrated in the genus Oreixenica, which is endemic to the cooler parts of southeast Australia.

This thesis comprehensively examines the relationships of a cross section of five genera and fourteen species from this group. New morphological data from the eggs and genitalia of these taxa are provided and used to test existing hypotheses of relationships. On this basis, it can be shown that the southeast Australian Satyrinae conform to a monophyletic group.

Further evidence was sought from molecular data. Sequence data from three genes: the mitochondrial Cytochrome Oxidase Subunit 1 gene (CO1), the nuclear Elongation Factor $1 \alpha(E F-1 \alpha)$ protein-coding gene, and the nuclear Wingless gene, were utilised to construct a phylogeny of twelve satyrine species plus two nymphalid outgroup genera. Phylogenetic trees derived from all data sets recovered very similar, well-supported relationships. The major findings from these analyses are: the temperate zone southeast Australian Satyrinae are indeed a monophyletic group based upon molecular evidence; the Heteronympha clade is sister to the Oreixenica clade; O. latialis from the Australian Alps is the sister species to the Tasmanian endemic O. ptunarra; H. cordace is derived from the ancestor of H. penelope and H. merope; and, G. klugii is placed basally within the group. Estimated ages of divergence for the taxa are presented and these are related to the broad evolutionary history of the expansion of native grasslands in southern Australia.

Whilst these results have implications for the conservation management of Australian Satyrinae, particular attention is focussed on the threatened Tasmanian O. ptunarra, which has a fragmented and restricted distribution. Since European settlement a considerable reduction and modification of O. ptunarra habitat has occurred, particularly throughout the Midlands, a major agricultural region. The genetic relationships between sampled populations suggest that O.ptunarra does broadly interact within the traditional subspecies ranges, and some populations are becoming increasingly genetically isolated particularly in the Midlands and eastern regions of Tasmania. This detail is presently overlooked in current management plans and conservation efforts which are opportunistic in their approach to butterfly protection.

Acknowledgements

My initial thanks must go to my family, whose love, forbearance, encouragement and understanding and not least financial support has kept me going to the end. My parents Lee and John, brother Peter, husband Eli and dog Jess have been tireless field workers, proofreaders, IT support, providores of boundless love, hugs, and cheering up. The fact that I have finally completed my thesis is a tribute to their support.

Next I must thank my two supervisors Dr Peter McQuillan, and Dr Cathy Young. I would like to express my gratitude and appreciation of both Peter and Cathy. Peter has offered me constructive advice, enthusiasm, criticism and guidance over many years. With Cathy I have shared numerous trials and tribulations, many good memories and above all Cathy has always been a dear friend and mentor. My sincere thanks to both Peter and Cathy.

Much thanks also goes to Adam Smolenski, the director of the Molecular Laboratory. I really appreciate his friendly advice, guidance and determination to keep me on the right track. David Steele also deserves special thanks for his many hours of assistance with the Scanning Electron Microscope. I would also like to thank the diligent staff of the Document Delivery Service and Science Library.

Finally I would like to express my gratitude and appreciate for all the support and help my dear friends Joey and Marc Durdin, Jeremy O'Reilly, and Alec and Greta Reavell have provided me. Thanks for all your understanding and assistance.

Table of Contents

Certificate of Originality ii
Statement of Authority of Access ii
Abstract iii
Acknowledgements v
Table of Contents vii
Table of Figures xv
List of Tables $x x i$
List of Plates. xxiii
Chapter 1: General Introduction 1
1 Context of Research 1
1.1 Background1
1.2 Taxonomy and Phylogenetic Relationships of the Nymphalidae. 4
1.3 Australian Satyrinae 7
1.4 Species used in this research 8
1.5 Currently recognised Apomorphies 10
1.5.1 Character(s) that define Nymphalidae 10
1.5.2 Character(s) that define Satyrinae 10
1.5.3 Character(s) that define Satyrini 11
1.5.4 Character(s) that define Hypocystina 11
1.5.5 Character(s) that define Oreixenica 11
2 Research Approach / Structure of Study 12
2.1 Aims 12
Chapter 2: Adult Morphology 15
1 Introduction. 15
2 Materials and Methods 17
2.1 Terminology 17
2.2 Taxa 21
2.3 Preparation of Genitalia for Examination and Description 21
3 Results 22
3.1 Oreixenica Waterhouse \& Lyell 22
3.1.1 Habitat 22
3.1.2 Habitus 23
3.1.3 Male genitalia 23
3.1.4 Female genitalia 23
3.1.5 Remarks 24
3.1.6 Diagnosis 24
3.2 O. ptunarra Couchman 26
3.2.1 Habitat 26
3.2.2 Habitus 26
3.2.3 Male genitalia 27
3.2.4 Female genitalia 27
3.2.5 Remarks 27
3.2.6 Diagnosis 28
3.3 O. latialis Waterhouse \& Lyell 29
3.3.1 Habitat 29
3.3.2 Habitus 29
3.3.3 Male genitalia 29
3.3.4 Female genitalia 30
3.3.5 Remarks 30
3.3.6 Diagnosis 30
3.4 O. lathoniella Westwood 32
3.4.1 Habitat 32
3.4.2 Habitus 32
3.4.3 Male genitalia 32
3.4.4 Female genitalia 33
3.4.5 Diagnosis 33
3.5 O. orichora Lucas 34
3.5.1 Habitat 34
3.5.2 Habitus 34
3.5.3 Male genitalia 34
3.5.4 Female genitalia 35
3.5.5 Diagnosis 35
3.6 O. correae Olliff 36
3.6.1 Habitat 36
3.6.2 Habitus 36
3.6.3 Male genitalia 36
3.6.4 Female genitalia 37
3.6.5 Diagnosis 37
3.7 O. kershawi Miskin 38
3.7.1 Habitat 38
3.7.2 Habitus 38
3.7.3 Male genitalia 38
3.7.4 Female genitalia 38
3.7.5 Remarks. 39
3.7.6 Diagnosis 39
3.8 Nesoxenica Waterhouse \& Lyell 44
3.8.1 Habitat 44
3.8.2 Habitus 44
3.8.3 Male genitalia. 45
3.8.4 Female genitalia 45
3.9 Argynnina Butler 47
3.9.1 Habitat 47
3.9.2 Habitus 47
3.9.3 Diagnosis 47
3.10 A. hobartia Butler 48
3.10.1 Habitat 48
3.10.2 Habitus 48
3.10.3 Male genitalia 49
3.10.4 Female genitalia 49
3.10.5 Remarks 51
3.10.6 Diagnosis 51
3.11 Heteronympha Wallengren 52
3.11.1 Habitat 52
3.11.2 Habitus 52
3.11.3 Male genitalia 52
3.11.4 Female genitalia 53
3.11.5 Summary of Morphological Characters 53
3.12 H. cordace Geyer 55
3.12.1 Habitat 55
3.12.2 Habitus 55
3.12.3 Male genitalia 55
3.12.4 Female genitalia 56
3.12.5 Remarks 56
3.12.6 Diagnosis 57
3.13 H. penelope Waterhouse 58
3.13.1 Habitat 58
3.13.2 Habitus 58
3.13.3 Male genitalia 59
3.13.4 Female genitalia 59
3.13.5 Remarks 59
3.13.6 Diagnosis 60
3.14 H. merope Fabricius 61
3.14.1 Habitat 61
3.14.2 Habitus 61
3.14.3 Male genitalia 62
3.14.4 Female genitalia 62
3.14.5 Remarks 62
3.14.6 Diagnosis 62
3.15 Geitoneura Butler 66
3.15.1 Habitat 66
3.15.2 Habitus 66
3.15.3 Summary of Morphological Characters 66
3.16 G. klugii Guérin-Méneville 67
3.16.1 Habitat 67
3.16.2 Habitus 67
3.16.3 Male genitalia 68
3.16.4 Female genitalia 68
3.16.5 Summary of morphological characteristics 68
3.17 G. acantha Donovan 69
3.17.1 Habitat 69
3.17.2 Habitus 69
3.17.3 Male genitalia 69
3.17.4 Summary of morphological characteristics. 69
3.18 Vanessa Fabricius 71
3.19 V. kershawi McCoy 71
3.19.1 Habitat 71
3.19.2 Habitus 71
3.19.3 Male genitalia 72
3.19.4 Female genitalia 73
3.20 Junonia Hübner 75
3.21 J. villida Godart 75
3.21.1 Habitat 75
3.21.2 Habitus 75
3.21.3 Male genitalia 76
3.21.4 Female genitalia 76
4 Key to species based upon genitalic characters 78
4.1 Male 78
4.2 Female 80
5 Discussion 82
5.1 Morphology 82
5.2 Genitalia 85
5.2.1 Male Genitalia 85
5.2.1.1 Male Genitalic Autapomorphy 1: 85
5.2.1.2 Male Genitalic Autapomorphy 2: 86
5.2.1.3 Male Genitalic Autapomorphy 3 86
5.2.1.4 Other Male Genitalic Apomorphies 87
5.2.2 Female Genitalia 87
5.2.2.1 Female Genitalic Autapomorphy 1: 88
5.2.2.2 Female Genitalic Autapomorphy 2: 88
5.2.2.3 Female Genitalic Autapomorphy 3: 88
5.2.2.4 Other Female Genitalic Apomorphies 88
6 Conclusion 88
Chapter 3: The Immature Stages of Oreixenica with notes on associated Temperate Zone Southeast Australian Satyrinae 89
1 Introduction. 89
1.1 Brief history of Satyrinae taxonomy 89
1.2 Aims 90
2 Materials and Methods 91
2.1 Fresh Egg Collection 91
2.2 Egg Collection from Pinned / Dried Specimens 92
2.2.1 Protease digestion 92
2.2.2 LIFTON Buffer 93
2.3 Egg and Larva Photography 93
2.4 Larva Data Collection. 93
2.5 Glossary of terms used to describe eggs 94
3 Results 95
3.1 Egg Descriptions 95
3.1.1 Oreixenica 95
3.1.1.1 O. ptunarra 95
3.1.1.2 O. latialis 98
3.1.1.3 O. lathoniella 100
3.1.1.4 O. orichora paludosa 102
3.1.1.5 O. correae 104
3.1.1.6 O. kershawi 106
3.1.2 Nesoxenica leprea 110
3.1.3 Argynnina hobartia 112
3.1.4 Heteronympha 116
3.1.4.1 H. cordace 116
3.1.4.2 H. penelope 118
3.1.4.3 H. merope salazar 120
3.1.5 Geitoneura klugii 122
3.1.6 Vanessa kershawi 125
3.1.7 Junonia villida 127
3.2 O. ptunarra larval characteristics. 128
3.2.1 O. ptunarra 1st Instar Larva- 128
3.2.2 O. ptunarra $5^{\text {th }}$ Instar Larva 130
3.2.2.1 Green Colour Morph 130
3.2.2.2 Brown Colour Morph 132
3.2.3 Field observations of mature O. ptunarra larva 134
3.3 Satyrinae larval characteristics 136
3.3.1 Larval food plants 141
3.4 Pupal Characteristics 142
3.4.1 Oreixenica ptunarra 142
3.4.2 Satyrinae Pupae 144
3.5 General characteristics of immature stages of O. ptunarra 146
3.5.1 Spermatophores 146
3.5.2 Hatching success 146
4 Discussion 147
4.1 Eggs 147
4.1.1 Egg morphology 147
4.1.2 Fecundity and egg size 148
4.1.3 Egg size and latitude 150
4.2 Larvae 151
4.2.1 Larval phenology 151
4.2.2 Comparison with larval fauna 152
4.2.3 Food plants 152
4.3 Pupae 153
Chapter 4: Molecular relationships of the Temperate Zone Southeast Australian Satyrinae 155
1 Introduction 155
2 Materials and Methods 155
2.1 Taxa Examined 155
2.2 Gene Fragments 155
2.3 DNA Extraction 157
2.4 Polymerase Chain Reaction (PCR) 157
2.5 CO1, EF-1a and Wingless Primers 158
2.6 Sequence analysis and alignment 159
2.7 Phylogenetic analysis 159
2.8 Age of Divergences. 162
3 Results 163
3.1 CO 163
3.2 EF-1a 165
3.3 Wingless 167
3.4 Combined Gene Fragment 169
3.5 Age of Divergences 171
4 Discussion 175
4.1 CO1 175
4.2 EF-1a 177
4.3 Wingless 178
4.4 Combined Gene Fragment 179
4.5 The utility of the different Gene Regions 180
4.6 Age of Divergence 181
5 Conclusion 181
Chapter 5: Propositions for understanding the phylogeny and evolutionary history of temperate zone southeast Australian Satyrinae 183
1 Historical biogeography of Australia's Butterfly Fauna 183
1.1 The Age of Butterflies 183
1.2 The origins of Australia's Butterfly Fauna 184
1.3 Butterflies and Grasslands 185
2 Propositions for understanding the evolution of temperate zone southeast Australian Satyrinae 187
2.1 Larval food plant specialisation 187
2.2 Pleistocene Climate Change 189
3 Implications for the evolutionary relationships for and within the temperate zone southeast Australian Satyrinae 190
3.1 Geitoneura klugii as basal species 190
3.2 Argynnina and Nesoxenica as sister species 190
3.3 Heteronympha as sister species to Oreixenica 190
4 Hypothesis of Oreixenica speciation 192
Chapter 6: Population management of Oreixenica ptunarra 195
1 Introduction 195
1.1 Background 195
1.2 Aims 197
2 The Genetic Diversity of O. ptunarra Populations 198
2.1 Materials and Methods 198
2.1.1 Individuals and Populations Examined 198
2.1.2 Primers and PCR 198
2.1.3 Sequence analysis \& alignment and phylogenetic analysis 198
2.1.4 Mantel tests 199
2.2 Results 199
2.2.1 Statistical Analysis of population genetics 206
3 Discussion. 208
4 Structure \& Spatial Distribution of O. ptunarra Populations 210
4.1 Is genetic diversity reflected in the spatial distribution of populations? 210
4.2 What is the scale of movement within and between populations 210
5 Suitability of habitat patches for the long term survival of O. ptunarra 211
5.1 The sustainability of habitat patches for O. ptunarra survival in the Southern Midlands region of Tasmania 211
5.2 Major factors affecting the sustainability of habitat patches 214
5.3 Attributes for suitability 215
Chapter 7: Concluding Comments 217
Future research 219
References 221
Appendices 253
Appendix 1 - Collection details for species dissected for genitalia analysis 253
Appendix 2 -List of specimens used in phylogenetic analysis and their province. 257
Appendix 3 -Field Site Descriptions 262
Appendix 4 - CTAB Extraction Protocol modified from Grewe et al. (1994) 353
Appendix 5 - CEQ Dye Terminator Cycle Sequencing with Quick Start Kit 354
Appendix 6-Genus Sequences 357
Appendix 7 -Log/Det sequence divergence values 369
Appendix 8 - Phylogenetic Trees 373
Appendix 9-O. ptunarra population sequences 381
Appendix 10-O. ptunarra Population Log/Det sequence divergence values 397

Table of Figures

Figure 2.1 Structure of wings of adult butterflies: A venation and B areas 17
Figure 2.2 Labelled photograph of the female genitalia of O correae, ventral view 18
Figure 2.3 Labelled photograph of the corpus bursae of H merope detailing signum 18
Figure 2.4 Structure of the female genitalia of V kershawi, ventral view 19
Figure 2.5 Labelled photograph of the male genitalia of O correae 20
Figure 2.6 Structure of the male genitalia of A cyrila, 20
Figure 2.7 Habitus of Oreixenica species 25
Figure 2.8 O ptunarra male, Lake Augusta, Tasmania 31
Figure 2.9 O ptunarra female, Tunbridge Tiers, Tasmania. 31
Figure 2.10 O latialis theddora, Lake Catania, M+ Buffalo Victoria. 31
Figure 2.11 O latialis theddora, Lake Catania, M+ Buffalo Victoria 31
Figure 2.12 O lathoniella male, Tunbridge Tiers, Tasmania. 31
Figure 2.13 O. orichora Canal Drive, Liawenee, Tasmania. 40
Figure 2.14 O correae male, Lake Mountain, Victoria 40
Figure 2.15 O correae male, Lake Mountain, Victoria 40
Figure 2.16 O kershawi, dorsal side, M+ Donna Buang, Victoria 40
Figure 2.17 O kershawi, ventral side, M† Donna Buang, Victoria. 40
Figure 2.18 O. ptunarra male genitalia 41
Figure 2.19 O. latialis male genitalia 41
Figure 2.20 O. lathoniella male genitalia 41
Figure 2.210 . orichora male genitalia 41
Figure 2.22 0 . correae male genitalia 41
Figure 2.23 O. kershawimale genitalia 41
Figure 2.24 O. ptunarra aedeagus 42
Figure 2.25 O. latialis aedeagus 42
Figure 2.26 O. lathoniella aedeagus 42
Figure 2.27 O. orichora aedeagus 42
Figure 2.280 . correae aedeagus 42
Figure 2.29 O. Kershawi aedeagus 42
Figure 2.30 O. ptunarra female genitalia 43
Figure $2.31 O$. latialis female genitalia 43
Figure 2.32 O. lathoniella female genitalia. 43
Figure 2.33 O. orichora female genitalia 43
Figure 2.34 O. correae female genitalia 43
Figure 2.35 O. kershawi female genitalia 43
Figure 2.36 Habitus of Nesoxenica 45
Figure 2.37 N. leprea male genitalia 46
Figure 2.38 N . leprea aedeagus 46
Figure 2.39 N . leprea female genitalia 46
Figure 2.40 Habitus of A hobartia 49
Figure 2.41 A. hobartia male genitalia 50
Figure 2.42 A. hobartia aedeagus 50
Figure 2.43 A. hobartia female genitalia 50
Figure 2.44 Habitus of Heteronympha species 54
Figure 2.45 Sphragis attached beneath female H. penelope abdomen 59
Figure 2.46 H penelope male, Lake Crescent, Interlaken, Tasmania. 60
Figure 2.47 H merope male, Glenlusk, Tasmania 63
Figure 2.48 H . cordace male genitalia 64
Figure 2.49 H . cordace aedeagus 64
Figure 2.50 H . penelope male genitalia 64
Figure 2.51 H . penelope aedeagus 64
Figure 2.52 H . merope male genitalia 64
Figure 2.53 H . merope aedeagus 64
Figure 2.54 H . cordace female genitalia 65
Figure 2.55 H . penelope female genitalia 65
Figure 2.56 H . merope female genitalia 65
Figure 2.57 Habitus of G. k/ugii 67
Figure 2.58 G. klugii male genitalia 70
Figure 2.59 G. acantha male genitalia 70
Figure 2.60 G. klugii aedeagus 70
Figure 2.61 G. acantha aedeagus 70
Figure 2.62 G. klugii female genitalia 70
Figure 2.63 Habitus of V. kershawi 72
Figure 2.64 V kershawi, Lake Catania, Mt Buffalo Victoria 73
Figure 2.65 V . kershawi male genitalia 74
Figure 2.66 V. Kershawi aedeagus 74
Figure 2.67 V. kershawi female genitalia 74
Figure 2.68 Habitus of J. villida. 75
Figure 2.69 J . villida male genitalia 77
Figure 2.70 J . villida aedeagus 77
Figure 2.71 J . villida female genitalia 77
Figure 3.1 Oriexenica ptunarra, mating pair 96
Figure 3.2 O. ptunarra, SEM egg 97
Figure 3.3 O. latialis, SEM egg 99
Figure 3.4 O. lathoniella, SEM egg 101
Figure 3.5 O. orichora, SEM egg 103
Figure 3.6 O. correae, SEM egg 105
Figure 3.7 O. kershawi, SEM egg 107
Figure 3.8 O. ptunarra, newly laid egg 108
Figure 3.9 O. ptunarra, mature eggs 108
Figure 3.10 O. latialis, newly laid egg 108
Figure 3.110 . latialis, maturing eggs 108
Figure 3.12 O. lathoniella, eggs 108
Figure 3.13 O. lathoniella, mature eggs 108
Figure 3.14 O. lathoniella, eggs hatching 109
Figure 3.15 O. orichora, newly laid egg 109
Figure 3.160 . correae, semi-mature egg 109
Figure 3.17 O. kershawi, semi-mature eggs 109
Figure 3.18 N . leprea, SEM egg 111
Figure 3.19 Argynnina hobartia, SEM egg 113
Figure 3.20 N . leprea, fresh eggs 115
Figure 3.21 A. hobartia, fresh eggs 115
Figure 3.22 A. hobartia, maturing eggs 115
Figure 3.23 A. hobartia, mature eggs. 115
Figure 3.24 H . cordace, SEM egg 117
Figure 3.25 H . penelope, SEM egg 119
Figure 3.26 H . merope, SEM egg 121
Figure 3.27 G. k/ugii, SEM egg 123
Figure 3.28 H . cordace, fresh eggs 124
Figure 3.29 H . cordace, mature eggs 124
Figure 3.30 H . merope, fresh eggs 124
Figure 3.31 G. k/ugii, maturing eggs 124
Figure 3.32 V. kershawi, fresh egg lateral view 125
Figure 3.33 V . kershawi, fresh egg dorsal view. 125
Figure 3.34 V. kershawi, SEM egg 126
Figure 3.35 J . villida, fresh egg lateral view 127
Figure 3.36 J . villida, fresh egg dorsal view 127
Figure 3.37 J . villida, mature egg with emerging larva 127
Figure 3.38 O. ptunarra $1^{\text {st }}$ instar larva. 129
Figure 3.39 O. ptunarra $1^{\text {st }}$ instar larva, legs and claws. 129
Figure 3.40 O. ptunarra $1^{\text {st }}$ instar larva, head and abdominal section. 129
Figure 3.41 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm 131
Figure 3.42 . ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm 131
Figure 3.43 O. ptunarra, mature larva green colour morph, ventral surface. Scale bar 20 mm 131
Figure 3.44 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm 131
Figure 3.45 O. ptunarra, mature larva green colour morph, ventral surface. Scale bar 20 mm 131
Figure 3.46 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm 131
Figure 3.47 O. ptunarra, mature larva brown colour morph, dorsal surface 133
Figure 3.48 O. ptunarra, mature larva head capsule brown colour morph 133
Figure 3.49 O. ptunarra, mature larva anal claspers brown colour morph 133
Figure 3.50 Field collection site looking towards the southeast, Lake Crescent, Interlaken, Tasmania 134
Figure 3.51 Dusk Field collection site, Lake Crescent, Interlaken, Tasmania. 134
Figure 3.52 Field collecting mature O. ptunarralarva, Lake Crescent, Interlaken, Tasmania. 134
Figure 3.53 O. ptunarra, mature larva 135
Figure 3.540 . ptunarra, mature larva 135
Figure 3.55 O. lathoniella, first Instar larva 138
Figure 3.56 O. orichora, first Instar larva 138
Figure 3.57 O latialis, mature larva 138
Figure 3.58 O kershawi, mature larva. 138
Figure 3.59 N . leprea, 1 st Instar larva, dorso-lateral view. 138
Figure 3.60 N . leprea, 1st Instar larva, ventral view. 139
Figure 3.61 A. hobartia, 1st Instar larva, dorso-lateral view. 139
Figure 3.62 A. hobartia, 1st Instar larva, ventral view. 139
Figure 3.63 H . cordace, 1st Instar larva, dorso-lateral view. 139
Figure 3.64 H. merope, 1st Instar larva, dorso-lateral view 140
Figure 3.65 H . merope 1st Instar larva, ventral view 140
Figure 3.66 G. klugii, mature larva, dorso-lateral view 140
Figure 3.67 V . kershawi, mature larva, dorso-lateral view 140
Figure 3.68 J . villida, mature larva, dorso-lateral view 140
Figure 3.69 O. ptunarra exuviae, dorsal view 143
Figure 3.70 O. ptunarra exuviae, ventral view 143
Figure 3.71 O. ptunarra exuviae, lateral view 143
Figure 3.72 O. ptunarra pupa resting in Poa tussock 143
Figure 3.73 O. ptunarra pupa resting in Poa tussock. 143
Figure 3.74 H . merope pupa 145
Figure 4.1 Bootstrap Consensus Tree CO1 173
Figure 4.2 Bootstrap Consensus Tree EF-1a 173
Figure 4.3 Bootstrap Consensus Tree Wingless 174
Figure 4.4 Bootstrap Consensus Combined Gene Fragments 174
Figure 5.1 Cladogram of Heteronympha and Oreixenica clades detailing pupal state 191
Figure 5.2 Alpine Grassland Extent at the maximum of the last glacial period 192
Figure 5.3 Current Extent of Tasmanian Grassland Habitat 192
Figure 6.1 Bootstrap consensus tree resulting from analysis of the Lep 12S / Met 20 population sequences 200
Figure 6.2 O. ptunarra subspecies localities (after Couchman \& Couchman 1978) 201
Figure 6.3 Locality of Highlands Clade Populations 201
Figure 6.4 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from analysis of the Lep $12 \mathrm{~S} /$ Met 20 population sequences (length $467, C I=0.499$, $R I=0.813$) 202
Figure 6.5 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from analysis of the Lep 12S / Met 20 population sequences (length 498, $C I=0.468, R I=0.788$) 203
Figure 6.6 Bootstrap consensus of the minimum likelihood tree (ML analysis) retrieved from analysis of the Lep 12 S / Met 20 population sequences (length 458, $C I=0.545, R I=0.715$) 204
Figure 6.7 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved, from the Lep 12 S / Met 20 population sequences (length 2736, $C I=0.444, R I=0.796$) 205
Figure 6.8 scatter plot of pair wise comparisons of Regional Mantel Test comparing genetic distances between populations grouped by region 207
Figure A8.1 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from CO sequence, unweighted analysis. 373
Figure A8.2 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from CO1 sequence, unweighted analysis 373
Figure A8.3 Maximum likelihood tree (ML analysis) retrieved from CO1 sequence unweighted analysis 373
Figure A8.4 Bootstrap consensus tree resulting from the down weighting of third position nucleotide retrieved from CO1 sequence, unweighted analysis. 374
Figure A8.5 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from CO1 sequence, unweighted analysis 374
Figure A8.6 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from EF-la sequence, unweighted analysis 375
Figure A8.7 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from EF-1a sequence, unweighted analysis 375
Figure A8.8 Maximum likelihood tree (ML analysis) retrieved from EF-1a sequence, unweighted analysis 375
Figure A8.9 Bootstrap consensus tree resulting from the down weighting off third position nucleotide retrieved from EF-1a sequence, unweighted analysis. 376
Figure A8.10 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from EF-1a sequence, unweighted analysis 376
Figure A8.11 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from wingless sequence, unweighted analysis 377
Figure A8.12 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from wingless sequence, unweighted analysis 377
Figure A8.13 Maximum likelihood tree (ML analysis) retrieved from wingless sequence, unweighted analysis 377
Figure A8.14 Bootstrap consensus tree resulting from the down weighting off third position nucleotide retrieved from wingless sequence, unweighted analysis. 378
Figure A8.15 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from wingless sequence, unweighted analysis 378
Figure A8.16 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from combined sequences, unweighted analysis. 379
Figure A8.17 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from combined sequences, unweighted analysis. 379
Figure A8.18 Maximum likelihood tree (ML analysis) retrieved from combined sequences, unweighted analysis 379
Figure A8.19 Bootstrap consensus tree resulting from the down weighting off third position nucleotide retrieved from combined sequences, unweighted analysis. 380
Figure A8.20 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from combined sequences, unweighted analysis 380

List of Tables

Table 3.1 Glossary of terms used to describe eggs 94
Table 3.2 Comparison of Satyrinae larva 136
Table 3.3 Larval Food Plants 141
Table 3.4 Comparison of Satyrinae Pupae 144
Table 4.1 PCR conditions 157
Table 4.2 PCR reagents and final concentrations 158
Table 4.3 ModelTest (Posada \& Crandall 1998) likelihood models 171
Table 4.4 Approximate age of divergence for each species (mya) 172
Table 6.1 PCR conditions used in population study 198

List of Plates

Plate 1 O. kershawi male, Lake Mountain Victoria 6
Plate 2 O. ptunarra male, sunning on dandelion Liawenee Moor 2001 9
Plate 3 O. Iatialis, Lake Catania, M+ Buffalo Victoria 13
Plate 4 O. ptunarra male, Pikes Hill March 2006 162
Plate 5 O. ptunarra male, sunning on Poa labillardieri, Pikes Hill March 2006 188
Plate 6 O. ptunarra male, resting on Poa, Pikes Hill March 2006 194
Plate 7 O ptunarra male, Tunbridge Tiers, 2004 197
Plate 8 O. ptunarra male, Liawenee Moor, 2004 215
Plate 9 O. ptunarra male, Tunbridge Tiers, March 2004 219
Plate 10 Bellevue Hill, view to north from edge of site 271
Plate 11 Bellevue Hill, view to northeast from edge of site 272
Plate 12 Bellevue Hill, view to northwest from edge of site 272
Plate 13 Bowsden Gullies, view to east from edge of plateau 274
Plate 14 Bowsden Gullies, view to north from edge of plateau 274
Plate 15 Little China Tier, view towards southern end 275
Plate 16 Little China Tier, view towards northern end 275
Plate 17360° views from Little China Tier Study Site 276
Plate 18 Muddy Plains Road, view towards the west from Muddy Plains Road 277
Plate 19 Pikes Hill Study Site, from top of Pikes Hill 278
Plate 20 Pikes Hill Study Site, Poa detail 278
Plate 21 Pikes Hill, view towards south-west into burnt area from edge of unburnt area 279
Plate 22 Pikes Hill, view to the south from Stonor Road 280
Plate 23 Spring Hill, view east 281
Plate 24 Spring Hill, view west 281
Plate 25 St Peters Pass, view towest from Midland Highway 282
Plate 26 Tunbridge Tiers, view to east from Tunbridge Road 283
Plate 27 Tunbridge Tiers Power Pole 59, view to west from Tunbridge Tier Road 284
Plate 28 Tunbridge Tiers Power Pole 76, view to east from Tunbridge Tier Road 285
Plate 29 Dennistoun Road, view to west from edge of site 286
Plate 30 Dennistoun Road, view to west from edge of site following fire 286
Plate 31 Lake Crescent, 180° view towards the south from east to west 287
Plate 32 Lake Crescent, view to southwest from road 288
Plate 33 Lake Crescent, view to south from road 288
Plate 34 Barren Tier Tods Corner, view to north 289
Plate 35 Barren Tier South, view to the north 290
Plate 36 Big Bend Projection Bluff, view to northwest 291
Plate 37 Liawenee Moor Liawenee End, view to west from Lake Highway 292
Plate 38 Liawenee Moor Liawenee End, view to north from Lake Highway 293
Plate 39 Liawenee Moor Liawenee End, view to east from Lake Highway 293
Plate 40 Liawenee Moor middle, view towards the east from Lake Highway 294
Plate 41 Liawenee Moor, Miena end, view to north across moor from access track 295
Plate 42 Liawenee Turning Circle, view to north from Lake Highway 296
Plate 43 Liffey (Bernes Paddocks), plain off Lake Highway, view to east 297
Plate 44 Pine Lake, view towards east from top of ridge 298
Plate 45 Ripple Creek, view towards the southwest from Lake Highway 299
Plate 46 Shannon River, view towards the south 300
Plate 47 Shannon River, view towards south 301
Plate 48 Shannon River, view towards north 301
Plate 49 St Patrick's Plain Church End overview, view towards Miena End 302
Plate 50 St Patrick's Plain Church End detail, view towards Miena End 302
Plate 51 St Patrick's Plain Miena End, view towards the north 303
Plate 52 Steppes Highway Hill, view to the north 304
Plate 53 Steppes, view from edge of car park 305
Plate 54 Bronte Park Junction, view towards south-west 306
Plate 55 Canal Drive, view towards northwest from Canal Drive 307
Plate 56 Canal Drive Flying Fox, Lower marsh area of site where H. cordace flies. 308
Plate 57 Canal Drive Flying Fox, lower marsh area 309
Plate 58 Canal Drive, top section view towards the southeast 309
Plate 59 Farm House Marsh, Miena, view towards the north 310
Plate 60 Lake Augusta Road, view down onto study site from Lake Augusta Road 311
Plate 61 Lake Augusta Road, site detail from Lake Augusta Road 312
Plate 62 Lake Augusta Road, March 2006 312
Plate 63 Little Pine Lagoon Boat Ramp, view towards the south 313
Plate 64 Marlborough Highway, view towards the east 314
Plate 65 North Bronte, view towards the east 315
Plate 66 Ouse River Bridge, view towards the southeast from Marlborough Highway 316
Plate 67 Ouse River Bridge, view towards the northeast from Marlborough Highway 317
Plate 68 Ouse River Bridge, view towards the southeast from Marlborough Highway 317
Plate 69 Pine Tier Dam, view towards the north 318
Plate 70 Flagstaff Marsh, view south into unburnt half from access track 320
Plate 71 Flagstaff Marsh, view north into burnt half from access track 322
Plate 72 Ladies Mile Marsh, view towards south 324
Plate 73 Cattle grazing at Ladies Mile Marsh 324
Plate 74 Lake Leake, view towards the east 325
Plate 75 view south into Long Marsh Study Site from northern end of Long Marsh 326
Plate 76 Stony Gully Road, view towards the east 328
Plate 77 Stony Gully Road, view towards the south 328
Plate 78 Glenlusk, view towards the north 329
Plate 79 Springs Hotel site, Mt Wellington, view towards the southeast 330
Plate 80 Waterworks, view towards the south 331
Plate 81 Dairy Maids Plain, view towards the east 332
Plate 82 Hatfield Plain, view towards the south 333
Plate 83 Hatfield Plain, view towards the east 334
Plate 84 Hatfield Plain, view towards the north 334
Plate 85 Morey Road, view towards the east 335
Plate 86 Peak Plain, Side 1, view towards the west 337
Plate 87 Peak Plain, Side 2, view towards the north 338
Plate 88 Peak Plain, Far End, view towards the west 339
Plate 89 Racecourse Plain, view towards the east 340
Plate 90 Weather Station Corner, view towards the east 341
Plate 91 Hartz, view towards the northeast 342
Plate 92 Mt King William, view towards the west 343
Plate 93 Paradise Plain, views towards the north 344
Plate 94 Ronny Creek Car Park, views towards the southeast 345
Plate 95 Weymouth, views towards northeast 346
Plate 96 Lake Mountain , view of flight area 348
Plate 97 Mt Buffalo, Lake Catani, view towards the east 349
Plate 98 Mt Donna Buang, view over flight area 350
Plate 99 Mt Donna Buang, view towards north 351
Plate 100 Mt Hotham, view into site from road 352

Chapter 1
 General Introduction

1 CONTEXT OF RESEARCH

1.1 Background

Butterflies and other grassland species are disappearing due to human activity. In Tasmania less than 3% of the pre European extent of native grassland still exists (Reid et al. 1999). Much of the grassland remaining is on south facing, rocky hill slopes, that were left because the land was too poor to plough and cultivate. This marginal habitat is now all that remains of Tasmania's native tussock grassland which is one of the most threatened natural habitats (Kirkpatrick 1991). Consequently invertebrates that depend on these grasslands are threatened with decline.

The butterfly subfamily Satyrinae depends on grasses as foodplant for their larvae (Ackery 1988). Prior to European settlement, the Midlands of Tasmania was a mosaic of grasslands, woodlands and open forest, but over 90% of this habitat has now been converted to improved pasture (Fensham \& Kirkpatrick 1989). Many Tasmanian butterfly species, which rely on these grasslands and grassy woodlands, are therefore prone to local extinction. Much remains to be learnt about the butterflies of Tasmania, in particular: how they interact with their environment; how they react to disturbances; what factors control their population sizes; their evolutionary relationships; and their patterns of movement.

Globally lepidopteran conservation has had a chequered history since Pyle (1967) first raised the issue. In Australia, lepidopteran conservation has only very recently started to appear on scientific and political agendas, as part of a growing concern over the future of the Australian environment and biota, but has not yet developed to encompass the broad public and scientific concern it engenders in much of the northern hemisphere (New 1990(92); Sands 1999; New \& Sands 2004).

Butterflies are recognised as important flagship taxa for invertebrate conservation (New et al. 1995; New \& Sands 2004); single-species butterfly management has become well established where knowledge and expertise on habitat management and butterfly
ecology are relatively advanced in the northern hemisphere (Pullin 1994; New et al. 1995). However, despite the advances in butterfly conservation management globally over recent decades, many species remain poorly understood (New et al. 1995), particularly in the Australasian region, where there is not a bank of conservation experience equivalent to that available for parts of the northern hemisphere (New 1990(92); New et al. 1995; New 1999; New \& Sands 2002a, 2002b; Sands \& New 2002; New 2007).

Oreixenica ptunarra, which is currently listed as vulnerable under the Tasmanian Threatened Species Protection Act 1995 (Parliament of Tasmania 1995) and indeed the genus Oreixenica in general, is a case in point. The phylogeny and biology of Oreixenica is not clear. To date, there is little available published data relating to this question. In order to advance the effective conservation of O. ptunarra it is vital that the species be better understood.

Unfortunately lepidopteran conservation is littered with examples of conservation efforts which have failed due to a lack of understanding the biology of the species in question or its habitat requirements. In many butterfly species adults may have particular needs with regard to topography for mating, nectar sources for food, and larval foodplant for oviposition. Caterpillars may need certain foodplants, sometimes in specific growth stages or combinations thereof, or in the case of many Lycaenidae may need to cohabit with particular ant species (New et al. 1995). These various complementary resource suites determine the suitability of a habitat and need to be understood if conservation measures are to be successful. A classic example is the attempt in Britain to conserve the Large Blue - Maculinea arion (Lycaenidae) by fencing grassland habitat, to exclude grazing stock. These actions ultimately lead to the extinction of the butterfly, as the biology of the species was not understood and the relationship between the butterfly and attendant ants was overlooked. Fencing to exclude grazing resulted in the vegetation growing too tall, thereby changing the microclimate for the attendant ants (Thomas 1980). It is therefore vital that conservation efforts are based on a sound ecological understanding.

Two main themes recur in butterfly conservation; the first concerns conservation of butterflies per se, the second concerns the use of butterflies to indicate community or
habitat 'health' (New 1997b). Both of these themes prevail in relation to the conservation of Oreixenica (Neyland 1992, 1993; Bell 1998; Anderson 2001b; New \& Sands 2003).

By using butterflies as targets and tools for fostering interest in conservation, many other coexisting and co-dependent organisms (such as food plants and natural enemies) may also be safeguarded effectively (New et al. 1995). The relatively precise and restricted environmental requirements of particular butterflies means that these species can have considerable value as 'indicator taxa' - groups which can shortcut total community documentation by furnishing information which indicates the broader effects of environmental change or reflects a particular suite of ecological conditions (New 1997b). Few butterflies in Australia are regarded as umbrella species (New 1990(92)). Some species of Oreixenica are potentially strong candidates as umbrella species as they are restricted to alpine herbfield/grassland communities, and they are abundant over limited altitudinal ranges. Any pronounced diminution in abundance of the species may reflect wider-reaching effects on these communities (New 1997a). If Oreixenica species are going to be promoted as umbrella taxa it is even more important that we fully understand the biology and phylogenetics of the genus.

1.2 Taxonom y and Phylogenetic Relationships of the Nymphalidae

The large butterfly family Nymphalidae was first described by Rafinesque in 1815. Since then the systematic relationships among its many different taxa has been the subject of much dispute and are still fairly poorly understood; most subfamilies are only vaguely defined or supported by few characters (Freitas \& Brown 2004).

Müller (1886) first proposed a number of subordinate lineages within Nymphalidae, and provided a foundation for the widely accepted infra-familial classification. Many of Müller's characters were based on early stages (Freitas \& Brown 2004). Most European literature in the nineteenth century elevated the "browns" to family rank, as Satyridae, due to their distinctive phenotype. The first higher classification of the Satyridae (Herrich-Schäffer 1844) defined all but one of the currently accepted satyrid subfamilies. More recently Clark $(1947 ; 1949)$ subdivided the Satyridae into five subfamilies; unfortunately he gave no definitive reasons for his classification. Following a critique of this work, Ehrlich (1958) attempted a coherent classification of all butterfly groups, using a large character set based on early stages and adults. On this evidence he argued a case for downgrading Satyrinae to a subfamily of Nymphalidae (Ehrlich 1958). Ehrlich and Ehrlich (1967) then went on to present a phenetic taxonomy for butterflies. Unfortunately, phenetic taxonomies do not always give convincing insights into evolutionary relationships between the taxa, since they are biased by features, which may be homoplasious (Farris 1979; Sokal 1985; Michael 1990). In contrast, phylogenetic taxonomies based on cladistic approaches, which produce taxonomies based on monophyletic groups generally better reflect evolutionary relationship among taxa (deQueiroz \& Good 1997; King \& Stansfield 1997; Lincoln et al. 1998; Nogrady 1998).

Miller's (1968) higher classification and phylogeny of the Satyridae was arguably the most influential classification of Satyridae in the latter half of the twentieth century. Miller employed an orthogenetic criterion to develop his phylogeny, apportioning genera to subfamilies, tribes and in some cases, to subtribes. Miller (1968) following Clark (1947; 1949) considered the "browns" to have family rank as Satyridae. Two decades later, Ackery and Vane-Wright (1984) and Ackery (1988) attempted to define the main groups within the superfamily Papilionoidea producing quite conservative results, especially for the subfamilies of Nymphalidae. Unfortunately neither
contribution sought to define the relationships within the different subfamilies of Nymphalidae (Freitas \& Brown 2004).

The nymhalid classification of Harvey (1991) became popular in the final decade of the twentieth century. Harvey's classification, partly based on the larval characters of Müller (1886), listed genera for each group, although the relationships within and among the subgroups were still not fully resolved. Drawing heavily on Miller (1968) Harvey's classification treated Satyrinae as only a subfamily of Nymphalidae, and similarly down-ranked many of Miller's subordinate taxa. Harvey's classification was widely accepted until recent molecular data and more thorough cladistic analysis contributed new insights leading to several changes. The.review of de Jong et al. (1996) summarised progress in Nymphalidae systematics until then, however, it was general in scope and did not focus on the subdivisions of the family.

In the last decade, the application of new molecular data and phylogenetic methods has assisted in resolving the relationships within Nymphalidae at a higher level. Brower (2000) using the wingless gene and Wahlberg et al. (2003b), using the Cytochrome Oxidase Subunit $1(\mathrm{CO} 1)$, Elongate Factor $1 \alpha(\mathrm{EF}-1 \alpha)$ and Wingless gene fragments, showed that many of the traditional subgroups in Nymphalidae are indeed monophyletic (Freitas \& Brown 2004). The comprehensive review of Freitas \& Brown (2004), supported by the work of Brower (2000), Wahlberg et al. (2003b), and Wahlberg et al. (2005b), provided a well supported higher level phylogeny of Nymphalidae and showed that satyrine butterflies form a clade within the family Nymphalidae. However, at subdivisions below family, there are many unresolved relationships. The work of Viloria (1998; 2003) and Murray \& Prowell (2005) seeks to resolve the other major lineages within the Satyrinae.

In recent years The Nymphalidae Systematics Group headed by Niklas Wahlberg, has made several significant contributions to understanding the phylogenetic relationships of taxa in the family, using mainly molecular methods (Wahlberg 2008a). The study by Peña et al. (2006) provides the most comprehensive higher level phylogeny of the Satyrinae to date. In regard to the subtribe Hypocystina, the genera placed in the Hypocystina by Peña et al. (2006) corresponded with Miller's (1968) taxa, but not with Viloria (2003).

Within the Australian butterfly literature, nomenclature has been conservative. All major works (e.g. Waterhouse \& Lyell 1914; Common \& Waterhouse 1981; Braby 2000) starting with the first detailed book on the Australian butterflies Waterhouse \& Lyell (1914), have apportioned genera on the basis of well-established families and subfamilies only. Waterhouse \& Lyell (1914) provided detailed descriptions of adults and keys for identification, including a scheme of classification and systematic index. In 1972 Common \& Waterhouse published the landmark Butterflies of Australia revised as Common \& Waterhouse (1981). Butterflies of Australia: their identification, biology and distribution (Braby 2000) is the current culmination of the monographic literature on Australian butterflies. Braby (2000) aimed to provide a manual for identification and a comprehensive, authoritative and up-to-date summary of the Australian fauna.

Plate 1 O. kershawi male, Lake Mountain Victoria

1.3 Australian Satyrinae

In the Australian subregion, the Nymphalidae comprise one fifth of the butterfly fauna, with the endemic species and genera all belonging to the sub-family Satyrinae (Braby 2000). In southeast Australia, Satyrinae are represented by the tribe Hypocystini (Miller 1968). One current school of thought is that this group may be Gondwanan in origin (Braby 2000; Peña et al. 2006), however Miller (1968) suggested that Australian Hypocystina were derived from the Indo-Malayan region and recent work by de Jong (2003) casts further doubt on a Gondwanan origin.

Michael Braby has been the most prolific recent author contributing to our understanding of Australian Satyrine. Much of his Australian work has focused on tropical and sub-tropical region (Braby \& Jones 1994; Braby 1995a, 1995b, 1995d; Braby \& Jones 1995; Braby 1996, 2002) and species and genera endemic to this region particularly Tisiphone and Mycalesis (Braby 1993, 1994a, 1995c). Braby's work in southern Australia has focused mainly on Geitoneura (Braby \& New 1988a, 1988b, 1999). Other authors who have studied Australian Satyrine include: Edwards (1973) and Pearse \& Murrary $(1981 ; 1982)$ who focused on Heteronympha; Neyland (1993), McQuillan \& Ek (1997) and Anderson \& McQuillan (2003) who studied aspects of Oreixenica ptunarra biology; and finally studies by Lucas (1969) on Tisiphone abeona, Wood (1988) on Hypocysta genus and Johnson et al (1995) on the early stages of Orsotriaena medus and Melanitis constantia.

My work will substantially contribute to filling the gap in our understanding of the temperate zone southeast Australian Satyrinae fauna. Whist this work focuses on endemic Australian genera and species it will significantly contribute to the global understanding of the origins and morphological and molecular relationships of the Satyrinae.

1.4 Spec ies used in this research

Seven genera of temperate zone southeast Australian Nymphalidae were used in my research: Argynnina (Butler 1867), Geitoneura (Butler 1867), Heteronympha (Wallengren 1858), Nesoxenica (Waterhouse \& Lyell 1914), and Oreixenica (Waterhouse \& Lyell 1914) as representatives of the subfamily Satyrinae ('in group'), and two genera Junonia (Hübner 1819) and Vanessa (Fabricius 1807) subfamily Nymphalinae were included as 'out groups'. Junonia and Vanessa are the only Nymphalinae that occur in southeast Australia (Braby 2000).

The choice of species within each genus was based on local abundance and to represent the diversity within the genera. In total fourteen different species were used in my research: O. ptunarra, O. latialis, O. lathoniella, O. orichora, O. correae, O. kershawi, N. leprea, A. hobartia, H. cordace, H. penelope, H. merope, G. klugii, V. kershawi, and $J . ~ v i l l i d a$. Three of these species and one genus are endemic to Tasmania.

For the genera discussed within my study, I have followed a family and subfamily arrangement as accepted by modern Australian authors, and underpinned by the following classification (Wahlberg 2008b):

Family: Nymphalidae (Rafinesque 1815)
subfamily: Satyrinae (Boisduval 1833)
tribe: Satyrini (Boisduval 1833)
subtribe: Hypocystina (Miller 1968)
genus: Argynnina (Butler 1867)
Geitoneura (Butler 1867)
Heteronympha (Wallengren 1858)
Nesoxenica (Waterhouse \& Lyell 1914)
Oreixenica (Waterhouse \& Lyell 1914) species: A. hobartia (Butler 1867)
G. klugii (Guérin-Méneville 1830 [1830-32])
H. cordace (Geyer 1832 [1827-1837])
H. merope (Fabricius 1775)
H. penelope (Waterhouse 1937)
N. leprea (Hewitson 1864 [1863-1878])
O. correae (Olliff 1890)
O. kershawi (Miskin 1876)
O. lathoniella (Westwood 1851 [1850-1852])
O. latialis, (Waterhouse \& Lyell 1914)
O. orichora (Lucas 1892)
O. ptunarra (Couchman 1953)
subfamily: Nymphalinae (Rafinesque 1815)
tribe: Nymphalini (Rafinesque 1815)
genus: Vanessa (Fabricius 1807)
species: V. kershawi (McCoy 1868)
tribe: Junoniini (Reuter 1896)
genus: Junonia (Hübner 1819)
species: J. villida (Godart 1819)

Plate 2 O. ptunarra male, sunning on dandelion Liawenee Moor 2001

1.5 Currently recognised Apomorphies

The following characteristics are often cited as synapomorphies, however there are numerous exceptions, and many of these traits are not unique.

1.5.1 Character(s) that define Nymphalidae

The Nymphalidae are characterised by the tri-carinate antenna and the elongate chaetosemata being parallel to the eye margin (Nielsen \& Common 1991).

The following character state combination has been used to define the Nymphalidae: small to large; most antennal segments are relatively close together at the base; in the forewing the radial vein has five branches, some of which are stalked, and there is one anal vein; in the hindwing the humeral vein is usually present but sometimes is vestigial or absent, there are two anal veins, and the tornus is usually rounded, rarely tailed; legs reduced in size, pressed against the thorax and not used for walking; male forelegs lack pretarsus, the fore tarsus is often reduced to a single elongated segment and may be clubbed or brush-like without an apical claw; female forelegs usually have five segments and is clawed apically (Nielsen \& Common 1991; Braby 2000; Freitas \& Brown 2004).

Egg: variable in shape, taller than diameter, with vertical and horizontal ribs, or nearly spherical and sometimes nearly smooth. Larva with long, paired filaments, branching spines, or with fine, secondary setae and bifid anal segment or horned head; crochets multiordinal. Pupa suspended by cremaster or, rarely, loose on ground beneath debris (Nielsen \& Common 1991).

1.5.2 Character(s) that define Satyrinae

No unique and universal characters, have been found to distinguish the Satyrinae from other Nymphalidae (de Jong et al. 1996; Ackery et al. 1998; Braby 2000).

The following character state combination has been used to define the Satyrinae: adults are usually orange and black, with eye-spots; at least one vein of the forewing is swollen basally (except in Melanitis); vein 3A is generally not free basally; the cells of
both wings are usually closed by tubular veins; and the precostal cell is absent except in Elymnias (Ackery 1984; Nielsen \& Common 1991; Braby 2000).

The antenna is always scaled, at least near the base, with the club varying from narrow in Melanitis, to broad, rounded and flat in Oreixenica. The male frequently has a patch of sex-scales on the forewing, and sometimes has tufts of hairs or patches of sex-scales, on the hindwing. The valvae of the male genitalia are simplified and dentate (Braby 2000; Peña et al. 2006).

The larvae feed on grasses or sedges; the posterior abdominal segment is always forked and often a pair of horns are present on the head (Nielsen \& Common 1991; Braby 2000).

1.5.3 Character(s) that define Satyrini

Midtibia with a long dorsal spine at the distal end (Miller 1968);
Third segment of palpus less than one-fourth the length of the second (Miller 1968).

1.5.4 Character(s) that define Hypocystina

The less miniaturised forelegs in both sexes serves to distinguish the hypocystines from all other Satyrinae (Miller 1968).

1.5.5 Character(s) that define Oreixenica

The following character state combination has been used to define the genus Oreixenica: veins of forewing swollen at base; eyes smooth; vein 10 from subcosta close to end of cell (Waterhouse \& Lyell 1914).

2 Research Approach / Structure of Study

Through the use of field based research, laboratory examination and molecular phylogenetics this project will examine the relationships within the southeast temperate zone Australian Satyrinae. A particular focus of this study is the endemic Tasmanian species Oreixenica ptunarra.

2.1 Ai ms

The aims of this research project are to:

1. Increase the pool of knowledge and understanding of the genus Oreixenica, and the relationship of Oreixerica to other temperate zone southeast Australian Satyrinae.
2. Characterise the adult morphology of five genera, and twelve species of temperate zone southeast Australian Satyrinae;and two genera, and two species of Nymphalidae.
3. Comprehensively describe the eggs of the temperate zone southeast Australian Satyrinae.
4. Describe and document the larva and pupa of O. ptunarra.
5. Contribute to understanding the species O. ptunarra, and the relationship of O. ptunarra to its relatives.
6. Investigate the genetic diversity of O. ptunarra populations which will contribute towards conservation management strategies for O. ptunarra.

To achieve these ends, this research has been conducted as a series of studies each focusing on specific research questions, linked by the common theme of furthering understanding of the genus Oreixenica, in particular the species O. ptunarra.

The thesis is presented in five main chapters bound by introductory and concluding chapters. Chapter 2, Adult Morphology and Chapter 3 Immature stages of Oreixenica with notes on associated temperate zone southeast Australian Satyrinae comprehensively describes all the life stages of Oreixenica and other related taxa. This is the first time that the morphology of the temperate zone southeast Australian Satyrinae has been described in detail.

Chapter 4, molecular relationship of temperate zone southeast Australian Satyrinae presents a phylogeny for the group based on molecular data. Chapter 5, propositions for understanding the phylogeny and evolutionary history of temperate zone southeast Australian Satyrinae, draws together information from the first three chapters.

Chapter 6, population management of Oreixenica ptunarra presents a population genetic analysis, and a brief discussion of land management practices in, and surrounding O. ptunarra populations which will help to inform proposed conservation strategies.

Plate 3 O. latialis, Lake Catania, Mt Buffalo Victoria

Chapter 2
 Adult Morphology

1 Introduction

The large butterfly family Nymphalidae was first proposed by Rafinesque in 1815. Since then, the systematic relationships among its many taxa have been the subject of much dispute (Harvey 1991; Wahlberg et al. 2003b; Freitas \& Brown 2004; Wahlberg et al. 2005b; Peña et al. 2006; Wahlberg 2008a), and are still fairly poorly understood; most subfamilies are only vaguely defined or supported by few characters (Freitas \& Brown 2004). In the Australian region, the Nymphalidae comprises one fifth of the butterfly fauna, with the endemic species and genera all belonging to the sub-family Satyrinae (Braby 2000). In southeast Australia, Satyrinae are represented exclusively by the tribe Hypocystini (Miller 1968). Of particular interest is the extensive geographical variation that has developed in the phenotype of southern members of this subfamily, especially in Tasmania, where a number of species have western and eastern subspecies described (Waterhouse \& Lyell 1914; Couchman 1953, 1956; Couchman \& Couchman 1978).

In this chapter, focusing on adult morphology, I characterise and re-describe all five of the temperate zone southeast Australian satyrine genera and a cross-section of twelve species: Oreixenica ptunarra, O. latialis, O. lathoniella, O. orichora, O. correae, O. kershawi, Nesoxenica leprea, Argynnina hobartia, Heteronympha cordace, H. penelope, H. merope, and Geitoneura klugii. Three of these species and one genus are endemic to Tasmania. I also describe two species from the subfamily Nymphalinae, (Junonia villida and Vanessa kershawi) as they are under-described and are used as out groups in the phylogeny based on molecular data presented in chapter 4.

A particular aim of this chapter is to characterise in detail the morphology of the genus Oreixenica including its genitalia. From the information presented in this and subsequent chapters, the placement of the genus Oreixenica in the broader satyrine fauna can be determined.

The phylogeny of Oreixenica in particular and Satyrinae in general, remains poorly understood. This is mainly due to a lack of research; only a small number of published
descriptions of Nymphalidae genitalia are available and even fewer descriptions of Satyrinae genitalia have been published. No descriptions of both the male and female genitalia of temperate zone Satyrinae species from the Australian faunal region are available.

It is generally accepted that combining morphological and molecular data is one of the most robust methods to develop phylogenies (Nice \& Shapiro 1999; Baker \& Gatesy 2002; Wahlberg \& Nylin 2003; Freitas \& Brown 2004; Nazari et al. 2007). Within an evolutionary context morphological information helps relate form and function to evolution. It also provides collaborative evidence for the molecular phylogeny.

I present physical descriptions of the taxa, with emphasis on the genitalia of the species, which have not been comprehensively studied in any previous research. The superficial adult morphology of these species, such as wing pattern, venation and colour has been covered in previous publications e.g. Common \& Waterhouse (1981) and Braby (2000), therefore are only briefly summarised herein.

The comparative study of genitalia, the origin of which dates back to the 1850 's, has been established as a standard method for morphology-based taxonomy in the Lepidoptera (Scoble 1995; Knolke et al. 2005). Recently Mutanen (2006) highlighted the importance of not using genitalia in isolation as genital structures show intraspecific variation, and in closely related species may show structural overlap. However, several studies have shown that the genitalia of Nymphalidae are generally of such sufficient complexity that a character set, developed through close examination of both male and female genitalia, should provide support to relationships obtained by other means (including molecular data) to provide a resolved phylogeny (Warren 1944; Dos Passos \& Grey 1945; Warren et al. 1946; Warren 1955; Goulson 1993; Grund \& Hunt 2000; Wakeham-Dawson et al. 2003; Simonsen 2005; 2006a; 2006b; 2006c; 2006).

2 Materials and Methods

2.1 Terminology

Terminology used to describe the wings follows Common \& Waterhouse (1981) (Figure 2.1). Terminology used to describe features of the genitalia is drawn from Sibatani et al. (1954), Klots (1970), Scoble (1995) and Simonsen (2006a). Male genitalic structures are illustrated in Figure 2.5 and Figure 2.6. Female genitalic structures are illustrated in Figure 2.2, Figure 2.3 and Figure 2.4.

Figure 2.1 Structure of wings of adult butterflies: A venation and B areas (after Common \& Waterhouse 1981; Braby 2000)

0.75 mm

Figure 2.2 Labelled photograph of the female genitalia of O correae, ventral view
Figure 2.3 Labelled photograph of the corpus bursae of H merope detailing signum

Figure 2.4 Structure of the female genitalia of V kershawi, ventral view (after Common \& Waterhouse 1981; after Braby 2000)

Figure 2.5 Labelled photograph of the male genitalia of O correae

0.75 mm

Figure 2.6 Structure of the male genitalia of A cyrila, lateral view with right valva removed (after Common \& Waterhouse 1981; after Braby 2000)

2.2 Taxa

The genitalia of fifteen species (O. ptunarra, O. latialis, O. lathoniella, O. orichora, O. correae, O. kershawi, N. leprea, A. hobartia, H. cordace, H. penelope, H. merope, G. klugii, G. acanthi, V. kershawi and J. villida) from seven genera (Argynnina, Geitoneura, Heteronympha, Nesoxenica, and Oreixenica, Junonia and Vanessa) representing a cross-section of the temperate zone southeast Australian Nymphalidae was studied (Appendix 1). Species were chosen based on the availability of specimens, and to mirror those studied for immature characters and molecular taxonomy, to facilitate comparison between the morphological and molecular analyses.

2.3 Preparation of Genitalia for Examination and Description

Adult specimens were dissected for genitalia examination using standard techniques (Knolke et al. 2005). Appendix 1 details the provenance of specimens dissected for examination and description. Body parts were digested by boiling in a saturated solution of sodium hydroxide for approximately five minutes or until the body parts were softened. Digested parts were stained with 1% Chlorazol Black in 70% ethanol, then stored in 80% ethanol. Body scales were removed with a brush and fine forceps before being mounted onto microscope slides in Euparal. The genitalia were photographed using a Leica MZ16 microscope with a motorised stage and Nikon MQA21010 digital camera control unit DS-L2 with a Nikon MQA141010 digital camera head DS-Fil. The software used to montage the images is an adapted version of CombineZ (Hadley 2008) by Dr Steve Shattuck CSIRO Entomology to enable automated "Z-stacking". Most images were then enhanced to maximise contrast and clarity using Adobe Photoshop CS.

3 Results

3.1 Oreixenica Waterhouse \& Lyell

The genus Oreixenica (Waterhouse \& Lyell 1914) is endemic to Australia and comprises six distinctive 'alpine brown' species: O. ptunarra (Couchman 1953), O. latialis, (Waterhouse \& Lyell 1914), O. lathoniella (Westwood 1851 [1850-1852]), O. orichora (Lucas 1892), O. correae (Olliff 1890); and O. kershawi (Miskin 1876) (Figure 2.7). The recognition of subspecies within the various Oreixenica in Tasmania is the subject of ongoing debate and research. Following the work of McQuillan and Ek (1997) and Berry (1997) the Tasmanian subspecies of O. ptunarra and O. lathoniella are not recognised in this work. Where appropriate, individuals will be referred to in the context of locality.

McQuillan and Ek (1997), Berry (1997) and Anderson \& McQuillan (2000) have demonstrated that most variation in phenotypic characters of wing pattern and size observed in O. ptunarra and O. lathoniella is due to longitudinal clines. McQuillan and Ek (1997) observed a modest amount of variation in the male genitalia between various O. ptunarra populations, but did not study female genitalic variation.

3.1.1 Habitat

Oreixenica is prevalent in the montane grasslands and grassy woodlands of New South Wales, Victoria and Tasmania. In mainland Australia, species occur mainly at high altitudes in alpine and subalpine grassland habitat. In Tasmania the genus extends from sea level to high alpine grassland. Oreixenica can be locally abundant, with several of the species occurring sympatrically. Various species in the genus show pronounced differences in the seasonal timing of adult emergence, preferred habitat, altitudinal extent and larval food plants. Larvae feed on a few genera of native tussock grasses especially Poa species (Common \& Waterhouse 1981; Braby 2000).

3.1.2 Habitus

Oreixenica are small weak flying butterflies, with silver-white patterning on ventral wing surface (Common \& Waterhouse 1981). Forewings are narrow, usually with hindwings rounded and a hairy basal area (Braby 2000). Antenna is about half the length of the costa of the forewing with a broad club (Common \& Waterhouse 1981); eye smooth. In the forewing, main veins are strongly swollen at base and the discocellular vein is sharply bent; in the hindwing, the cell is more than half the length of the wing, and the male usually lacks sex scales (Braby 2000).

3.1.3 Male genitalia

Uncus long, simple, parallel sided; truncated, rounded apically. Gnathos simple, lateral arms not joined medially, narrow, sinuous, acute apically. Tegumen tall, rounded hoodlike. Valvae simple, markedly to gradually tapering, or relatively uniformly board. Vinculum relatively short; transtilla well sclerotised; juxta small, rounded, well sclerotised; saccus curved dorsally, apex rounded; aedeagus long to relatively short, straight to sinuous, stout to slender, apex rounded; cornuti absent from vesica.

3.1.4 Female genitalia

Ovipositor short, broad; papillae anales well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, extremely short to long, apophyses anteriores, absent; lamella postvaginalis (sternite 8) membranous, deeply rugose, adorned with minute spicules; lamella antevaginalis a median, moderately large to large, well sclerotised, subrectangular to rhomboidal, transverse plate; sternite 7 sclerotised; antrum not distinct, membranous, funnel shaped; colliculum not well defined; ductus bursae, membranous, moderately long to long, moderately slender to relatively broad; corpus bursae, moderate size, elongated, ovoid or 'boot' shaped, membranous; signum absent.

3.1.5 Remarks

Oreixenica genitalia are fairly homogenous so that the different species are not easily differentiated on this basis.

Male genitalia display some variation in the aedeagus but more significantly in the shape of valva. In particular differences occur in the width, degree of tapering, the presence or absence of a dorsal subapical lobe and if present, the shape and size of the lobe and the presence or absence of spines towards the apex of the valva.

Female genitalia display variation in the length of the posterior apophyses, the size and shape of the lamella antevaginalis, and the shape of the ductus bursae and corpus bursae.

3.1.6 Diagnosis

Two characteristics are unique to Oreixenica: signa is absent from the corpus bursae and in the forewing vein 10 from subcostal are close to end of cell with discocellular vein sharply bent. The following character state combination can be used to define Oreixenica from other southeast Australian Satyrinae: antenna with a broad club; eyes smooth (Heteronympha, Geitoneura, have a narrow club; Argynnina and Nesoxenica have hairy eyes).

Figure 2.7 Habitus of Oreixenica species.

3.2 O. ptunarra Couchman

3.2.1 Habitat

O. ptunarra is restricted to grassy open-woodland and tussock grassland in open plains and poorly drained areas in Tasmania. The establishment of improved pasture and expansion of cropping into the original Poa grassland over the last 200 years, has caused O. ptunarra to contract to a very restricted and patchy habitat range (Common \& Waterhouse 1981; Neyland 1992; 1993; Bell 1998; Braby 2000).

3.2.2 Habitus

Wingspan: ơ ¢ $\ell 28 \mathrm{~mm}$.
Males - dorsal side brownish-black with pale orange-yellow markings and spots; forewing with a white centred black eyespot ringed with orange, and a narrow orangeyellow band of spots; hindwing with a basal spot, and prominent white-centred black eyespot ringed with orange. Ventral side base colour dull reddish-brown suffused with grey; forewing similar to dorsal side but markings paler, (Figure 2.7, Figure 2.8) (Couchman \& Couchman 1978; Common \& Waterhouse 1981; McQuillan 1994; Braby 2000).

Females - forewing brownish-black, with extensive orange markings, short cream band of four spots, beyond which is a prominent white centred black eyespot ringed with darker orange, and a narrow cream band of spots, sometimes followed by a dark orange band. Ventral side base colour dull reddish-brown suffused with grey markings on forewing with extensive pale orange (Figure 2.7, Figure 2.9).
O. ptunarra displays extensive sexual dimorphism in phenotype (Figure 2.8, Figure 2.9). Females display extensive orange colouration, whereas the males are predominantly dark brown (Couchman \& Couchman 1978; Common \& Waterhouse 1981; McQuillan 1994; Braby 2000).

McQuillan and Ek (1997) recognised two main subspecies on the basis of male phenotype: one with its populations restricted to the Southern Midlands region and the adjacent parts of the Central Plateau and Eastern Tiers; the second subspecies is restricted to the Northwest Plains around Surrey Hills. These subspecies have not been formally described or recognised.

3.2.3 Male genitalia

Uncus long, simple, parallel sided, truncated, rounded apically; gnathos simple, lateral arms not joined medially, narrow, sinuous, acute apically; tegumen tall, rounded, hoodlike; valvae simple, long, narrow, tapering apically, rounded distally; apex of valva expanded, rounded, curved dorsally, small dorsal sub apical lobe present, long setae on ventral margin; vinculum relatively short; transtilla well sclerotised; juxta small, rounded, well sclerotised; saccus curved dorsally, apex rounded (Figure 2.18); aedeagus (Figure 2.24) long, sinuous, stout, apex rounded; cornuti absent from vesica.

3.2.4 Female genitalia

Ovipositor short, broad; papillae anales well-sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, moderately long, slender, anteriores, absent; lamella postvaginalis (sternite 8) membranous, deeply invaginated, rugose, adorned with minute spicules; lamella antevaginalis median, large, well sclerotised, rhomboidal, transverse plate; sternite 7 sclerotised; antrum non distinct, membranous, funnel shaped; colliculum not well defined; ductus bursae, membranous, moderately long, moderately slender; corpus bursae, moderate size, ovoid, membranous; signum absent (Figure 2.30).

3.2.5 Remarks

O. ptunarra, was one of the last members of the Australian satyrine fauna to be discovered (Edwards et al. 2001). Tasmania's Threatened Species Protection Act lists O. ptunarra as vulnerable. Its national conservation status is also ranked as vulnerable (Sands \& New 2002).

Midlands populations of O. ptunarra can be distinguished from northwest populations on the basis of male phenotypic characteristics. Northwest males are consistently darker and smaller than Midlands O. ptunarra (Anderson 2001b). No obvious genitalic difference exists between subspecies (McQuillan \& Ek 1997).

3.2.6 Diagnosis

Male O. ptunarra can be distinguished from O. latialis by the pale orange-yellow, rather than orange markings and spots on the dorsal side of the wings (Braby 2000).

In male O. ptunarra, O. latialis and O. lathoniella the valva tapers markedly, whereas in O. orichora, O. correae and O. kershawi the valva is relatively uniformly broad, gradually tapering. In male O. ptunarra there is a small dorsal sub apical lobe on the valva which is flattened and not spinose, in O. latialis the valva is spinose, and in O. lathoniella the dorsal sub-apical lobe is not well defined. The aedeagus in O. ptunarra is long, sinuous, stout with a rounded apex.

In the female the posterior apophyses are relatively long, similar to O. lathoniella. In other Oreixenica species the posterior apophyses are very short. In O. ptunarra the lamella antevaginalis is a median, large, well sclerotised, rhomboidal transverse plate, in O. lathoniella the lamella antevaginalis is a large, well sclerotised, subrectangular plate, with a medially indented posterior margin.

3.3 O. latialis Waterhouse \& Lyell

3.3.1 Habitat

O. latialis is restricted to the tablelands and mountains of southeast mainland Australia. It flies in alpine grassland and sedgeland, such as frost hollows below the tree line and occasionally on the edges of woodland dominated by Eucalyptus pauciflora.

The subspecies O. l. theddora (Figure 2.10 Figure 2.11) is found only on the Mount Buffalo Plateau above 1230 m , in an isolated habitat separated from all other alpine areas in Victoria (Common \& Waterhouse 1981; Braby 2000).

3.3.2 Habitus

Wingspan: $\begin{gathered}\text { o } \\ \neq 29 \mathrm{~mm} \text {. } \\ \text {. }\end{gathered}$
Male - dorsal side: brown-black, with orange markings; forewing with a prominent white-centred black eyespot ringed with orange; hindwing with basal spot, band of spots, and prominent white-centred black eyespot ringed with orange. Ventral side: forewing similar to dorsal side, base colour paler, orange markings larger and paler, with series of white spots; hindwing reddish-brown suffused with yellow, three large pale yellow basal spots, a series of silvery-white spots, and prominent white-centred black eyespot, each bordered proximally by distinct silvery-white crescent shaped band (Figure 2.7, Figure 2.10, Figure 2.11) (Waterhouse \& Lyell 1914; Couchman 1953; Common \& Waterhouse 1981; Braby 2000).

Female similar to male; wings more rounded, orange markings on dorsal side of forewing slightly paler near costa and suffused with cream; ventral side paler (Figure 2.7) (Common \& Waterhouse 1981; Braby 2000).

3.3.3 Male genitalia

Uncus long, simple, parallel sided, truncated, rounded apically; gnathos simple, lateral arms not joined medially, lateral arms narrow, sinuous, acute apically; tegumen tall, rounded, hoodlike; valvae simple, long, narrow, tapering apically, rounded distally, expanded into dorsal, spinose, sub-apical lobe, long setae on ventral margin; vinculum relatively short; transtilla well sclerotised; juxta small, rounded, well sclerotised; saccus, curved dorsally, tapering, apex rounded (Figure 2.19); aedeagus (Figure 2.25) long, slender, slightly sinuate, apex rounded; cornuti absent from vesica.

3.3.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, extremely short, anteriores, absent; lamella postvaginalis (sternite 8) membranous, deeply invaginated, rugose, adorned with minute spicules; lamella antevaginalis median, large, well sclerotised, rhomboidal, transverse plate; sternite 7 sclerotised; antrum non distinct, membranous, funnel shaped; colliculum not well defined; ductus bursae membranous, moderately long, moderately slender; corpus bursae, moderate size, rounded, membranous, not well differentiated from ductus; signum absent (Figure 2.31).

3.3.5 Remarks

Many populations are reproductively isolated from one another because of the discontinuous nature of the mountainous terrain (Braby 2000). Adults often fly with O. lathoniella, but tend to favour more open areas (Common \& Waterhouse 1981).
O. l. theddora is listed as having a lower risk (near threatened) national conservation status (Sands \& New 2002).

3.3.6 Diagnosis

O. latialis males are distinguished from O. lathoniella by their smaller size and narrower forewing with the tornus distinctly rounded (Braby 2000).

In male O. latialis the valva tapers markedly, expanding into a rounded dorsal subapical lobe, with long setae on the ventral margin. The aedeagus is long, slender and slightly sinuate.

The genitalia of female O. latialis are not easily distinguished from other Oreixenica. In O. latialis the apophyses posteriores are extremely short compared to O. ptunarra moderately long. Ductus bursae moderately long, moderately slender, in O. orichora it's relatively broad. The corpus bursae rounded where as in O. correae elongated and O. kershawi which is 'boot' shaped.

Figure 2.8 O ptunarra male, Lake Augusta,
Tasmania

Figure 2.10 O latialis theddora, Lake Catania, Mt Buffalo Victoria.

Figure 2.9 O ptunarra female, Tunbridge Tiers, Tasmania

Figure 2.11 O latialis theddora, Lake Catania, Mt Buffalo Victoria.

Figure 2.12 O lathoniella male, Tunbridge Tiers, Tasmania.

3.4 O. lathoniella Westwood

3.4.1 Habitat

O. lathoniella is the most widespread and abundant Oreixenica, flying in the tablelands and mountains of New South Wales and the Australian Capital Territory, and in the mountains and coastal area of Victoria and Tasmania. O. lathoniella flies in tall open eucalypt forest, subalpine woodland and alpine woodland with a predominantly grassy understory, mainly in cooler higher rainfall areas in the mountains and tablelands (Common \& Waterhouse 1981; Braby 2000).

3.4.2 Habitus

Wingspan: đ ¢ $\uparrow 29 \mathrm{~mm}$.
Male - dorsal side: black, with extensive orange-yellow markings and spots; forewing with a black spot extending and usually joining to a broad black band, white-centred black eyespot, and other spots; hindwing with angular basal spots, a postmedian band, a white centred black eyespot, and a series of spots. Ventral side: forewing similar to dorsal side but base colour duller and paler, a series of spots becoming silvery-white towards apex, and an orange-yellow band; hindwing base colour dull reddish-brown suffused with orange-yellow, three or four silvery-white basal spots, a prominent whitecentred black eyespot, white-centred spots, and an orange yellow terminal band (Figure 2.7, Figure 2.12) (Common \& Waterhouse 1981; Braby 2000).

Female - wings slightly broader than male, with termen more rounded, hindwing is larger relative to forewing, and abdomen is shorter and broader (Figure 2.7) (Common \& Waterhouse 1981; Braby 2000).

3.4.3 Male genitalia

Uncus long, simple, parallel sided, truncated, rounded apically; gnathos simple, lateral arms not joined medially, narrow, sinuous, acute apically; tegumen tall, rounded, hoodlike; valvae simple, long, narrow, tapering apically, rounded distally, apex not expanded but rather elongated, curved dorsally, spinose apically; vinculum relatively short; transtilla moderately well sclerotised; juxta small, rounded, well sclerotised; saccus curved dorsally, apex rounded (Figure 2.20); aedeagus (Figure 2.26) long, slender, slightly sinuate, apex rounded; cornuti absent from vesica.

3.4.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, relatively long, slender, anteriores, absent; lamella postvaginalis (sternite 8), membranous, deeply invaginated, rugose, adorned with minute spicules; lamella antevaginalis large, well sclerotised, subrectangular plate, with medially indented posterior margin; sternite 7 sclerotised; antrum membranous, funnel shaped; colliculum not well defined; ductus bursae, membranous, moderately long, moderately slender; corpus bursae, moderate size, rounded, membranous; signum absent (Figure 2.32).

3.4.5 Diagnosis

O. lathoniella can be distinguished from most other Oreixenica species by the extensive bright silvery-white markings on the ventral side.

Male O. lathoniella is notable because of the spinose elongated apex of the valva, and the absence of a dorsal sub apical lobe, which is present in O. ptunarra, O. latialis, O. orichora, and O. correae. The aedeagus is long slender and slightly sinuate, different to O. ptunarra which is long, sinuous and stout, O. orichora which is relatively short, straight and stout, and O. kershawi which is stout.

Female O. lathoniella is distinguished from other Oreixenica, in particular O. ptunarra, by the relatively long apophyses posteriores. Additionally the lamella antevaginalis is characterised by the medially indented posterior margin, absent in all other Oreixenica.

3.5 O. orichora Lucas

3.5.1 Habitat

O. orichora is restricted to the higher mountains of the Australian Capital Territory, southeast New South Wales, eastern Victoria and central Tasmania, at altitudes above 1200 m , reaching up to 1800 m at Mt Gingera (ACT), and Mt Buller (VIC), and 2100 m on Mt Kosciuszko (NSW). In Tasmania, O. orichora inhabits the high rainfall areas of the central plateau at altitudes between 760 and 1500 m . O. orichora occurs abundantly in subalpine and alpine open grasslands, extending into woodlands (Common \& Waterhouse 1981; Braby 2000).

3.5.2 Habitus

Wingspan: đ 30 mm ; ㅇ 31 mm .
Male - dorsal side: brown-black, with orange markings and spots; forewing with a white centred black eyespot; ventral side forewing similar to dorsal side but base colour paler, orange areas duller and more extensive, eyespot without obvious ring and a narrow white band of spots; hindwing base colour grey-brown weakly suffused with pale yellow (Figure 2.7, Figure 2.13) (Common \& Waterhouse 1981; Braby 2000).

Female is similar but slightly larger; brownish-orange markings on dorsal side often paler, and less extensive (Figure 2.7) (Common \& Waterhouse 1981; Braby 2000).

3.5.3 Male genitalia

Uncus long, simple, parallel sided, relatively broad basally, truncated, tapering slightly, rounded apically; gnathos simple, lateral arms not joined medially, narrow, sinuous, acute apically; tegumen tall, rounded; valvae simple, long, narrow, gradually tapering apically, rounded distally, very small dorsal sub apical lobe present, not spinose; vinculum relatively short; transtilla well sclerotised; juxta small, rounded, well sclerotised; saccus curved dorsally, tapering, apex rounded (Figure 2.21); aedeagus (Figure 2.27) relatively short, straight, stout, apex rounded; cornuti absent from vesica.

3.5.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, short, anteriores, absent; lamella postvaginalis (sternite 8) membranous, deeply invaginated, rugose, adorned with minute spicules; lamella antevaginalis median, moderately large, relatively narrow, well sclerotised, rhomboidal, transverse plate; sternite 7 sclerotised; antrum not distinct, membranous, funnel shaped; colliculum not well defined; ductus seminalis inserted medially dorsally; ductus bursae, membranous, relatively broad; corpus bursae, membranous, moderate size, rounded; signum absent (Figure 2.33).

3.5.5 Diagnosis

O. orichora can be distinguished by the dull white basal, postmedian and subterminal spots on the ventral side of the hindwing. The subapical eyespot on the ventral side of the forewing is never ringed with dark orange as in other Oreixenica (Braby 2000).

The genitalia of male O. orichora are defined by the valva being relatively uniformly broad, with a very small dorsal spineless sub-apical lobe present. The aedeagus is relatively short, straight, and stout.

The genitalia of female O. orichora are characterised by the relatively broad ductus bursae and the relatively narrow lamella antevaginalis.

3.6 O. correae Olliff

3.6.1 Habitat

O. correae is restricted to the southeast highlands of mainland Australia at altitudes above 1200 m , usually most abundant above 1500 m extending to 1800 m at Mt Gingera in the Australian Capital Territory. O. correae occurs predominantly in alpine and subalpine eucalypt woodlands, from the Brindabella Range (ACT) through southeast New South Wales and into Victoria, favouring the denser shady vegetation, rather than open grasslands. O. correae is absent from Tasmania. The adults venture into the open areas to take advantage of flowers (Kitching et al. 1978; Braby 2000).

3.6.2 Habitus

Wingspan: đ ㅇ 33 mm .
Male - dorsal side: black, with rich brownish-orange spots and markings; forewing with a single or double white-centre black eyespot, a series of small spots towards apex; hindwing with a white-centred black eyespot, and a series of small spots. Ventral side: base colour dull brownish-orange; forewing similar to dorsal side with black markings more restricted and heavily suffused with brownish-orange; hindwing with an obscure pale orange band, followed by white-centred black eyespots (Figure 2.7, Figure 2.14, Figure 2.15) (Common \& Waterhouse 1981; Braby 2000).
O. correae display marked sexual dimorphism.

Female - dorsal side: forewing termen more rounded than male; spots pale with prominent subterminal black and pale brownish-orange spots and markings. Ventral side: subterminal spots and markings near costa pale yellow; hindwing grey-brown, suffused with orange markings and spots; basal spots pale yellow, conspicuous silverwhite postmedian band and subterminal spots (Figure 2.7) (Common \& Waterhouse 1981; Braby 2000).

3.6.3 Male genitalia

Uncus long, simple, parallel sided, truncated, rounded apically; gnathos simple, lateral arms not joined medially, narrow, sinuous, acute apically; tegumen tall; valvae simple, gradually tapering apically, rounded distally, apex slightly expanded into small rounded, dorsal subapical lobes, spinose, spines very small; vinculum relatively short; transtilla
well sclerotised; juxta small, rounded, well sclerotised; saccus curved dorsally, tapering, apex rounded (Figure 2.22); aedeagus (Figure 2.28) long, slender, slightly sinuate, apex rounded; cornuti absent from vesica.

3.6.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, extremely short, anteriores, absent; lamella postvaginalis (sternite 8) membranous, deeply rugose, adorned with minute spicules; lamella antevaginalis median, moderately large, well sclerotised, rhomboidal, transverse plate; sternite 7 sclerotised; antrum not distinct, membranous, funnel shaped, colliculum not well defined; ductus bursae membranous, long, moderately slender; corpus bursae, membranous, moderate size, elongated, apex rounded, well differentiated from ductus; signum absent (Figure 2.34).

3.6.5 Diagnosis

O. correae is distinguished from other Oreixenica species by wing colour and pattern. O. correae along with O. ptunarra is sexually dimorphic. Female O. correae have conspicuous silvery-white bands and spots which are far less extensive than in O. orichora and O. lathoniella. In male O. correae the silvery-white bands and spots are replaced with orange.

Male O. correae genitalia are distinguished by the uniformly tapering valva with a relatively small rounded dorsal subapical, spinose lobe. The aedeagus is long, slender and slightly sinuate.

The female genitalia are distinguished by the extremely short apophyses posteriories; the shortest in all Oreixenica. The corpus bursae is of moderate size and elongated, and is well differentiated from the ductus bursae.

3.7 O. kershawi Miskin

3.7.1 Habitat

O. kershawi occurs in open eucalypt woodland and tall open forest in montane areas of New South Wales, the Australian Capital Territory and Victoria, preferring cool, wet areas with a lush understorey of ferns and grasses; range also extends into subalpine woodland up to 1300 m and down to near sea level.

3.7.2 Habitus

Wingspan: đ 33 mm ; 우 34 mm .
Dorsal side: black with brownish-orange spots; forewing with a small obscure black eyespot; hindwing with a white-centred black eyespot. Ventral side: forewing similar to dorsal side but with narrow silvery-white bands; hindwings base colour red-brown, spots and markings similar to dorsal side but larger and silvery-white, a larger whitecentred black eyespot and smaller white-centred black eyespots, each ringed with orange (Figure 2.7, Figure 2.16 Figure 2.17) (Common \& Waterhouse 1981; Braby 2000).

The male is similar to the female but is distinguished by the presence of a broad dull black oblique patch of sex scales on the dorsal side of the forewing (Braby 2000).

3.7.3 Male genitalia

Uncus long, simple, parallel sided, truncated, rounded apically; gnathos simple, lateral arms not joined medially, narrow, sinuous, acute apically; tegumen tall; valvae simple, gradually tapering apically, rounded distally, dorsal sub apical lobe with spinose apex; vinculum relatively short; transtilla well sclerotised; juxta small, rounded, well sclerotised; saccus curved dorsally, tapering, apex rounded (Figure 2.23); aedeagus
(Figure 2.29) stout, short, apex rounded; cornuti absent from vesica.

3.7.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, short,
anteriores, absent; lamella postvaginalis (sternite 8) membranous, deeply invaginated, rugose, adorned with minute spicules; lamella antevaginalis median, moderately large, well sclerotised, rhomboidal, transverse plate; sternite 7 sclerotised; antrum membranous, funnel shaped; colliculum not well defined; ductus seminalis inserted medially dorsally; ductus bursae long, moderately slender; corpus bursae, moderate size, 'boot' shaped, apex rounded, membranous, well differentiated from ductus; signum absent (Figure 2.35).

3.7.5 Remarks

Three subspecies of O. kershawi are currently recognised O. k. kanunda, O. k. ella, and O. k. kershawi. O. k. kanunda is listed in South Australia as vulnerable and has a national conservation status of lower risk (Tindale 1949; Fisher 1978; Common \& Waterhouse 1981; Braby 2000; New \& Sands 2002a; Sands \& New 2002).
O. k. ella has more pronounced brownish orange dorsal side markings than
O. k. kershawi. O. k. kanunda is the smallest subspecies and is considerably brighter than the other subspecies (Sands \& New 2002).

The likelihood of clinal variation within this species has been noted (Fisher 1978; Common \& Waterhouse 1981; Dunn \& Dunn 1991; Braby 2000; Sands \& New 2002).

3.7.6 Diagnosis

O. kershawi is a distinctive species in which the hindwing is much more elongated than any other species in the genus. O. kershawi has a striped pattern on the ventral side of the hindwing with particularly obvious silvery-white bands. Males have a patch of sexscales that is absent in other species (Braby 2000).

The male O. kershawi genitalia are distinguished by the valva which are uniformly broad tapering gradually, the dorsal subapical lobe is spinose, but not well developed. The aedeagus is short and stout.

Figure 2.13 O. orichora Canal Drive, Liawenee, Tasmania.

Figure 2.14 O correae male, Lake Mountain, Victoria

Figure 2.15 O correae male, Lake Mountain, Victoria

Figure 2.17 O kershawi, ventral side, Mt Donna Buang, Victoria

Figure 2.18 O. ptunarra male genitalia

Figure 2.20 O. lathoniella male genitalia

Figure 2.22 O. correae male genitalia

Figure 2.19 O. latialis male genitalia

Figure 2.21 O. orichora male genitalia

Figure 2.23 O. kershawi male genitalia

Figure 2.24 O. ptunarra aedeagus

Figure 2.26 O. lathoniella aedeagus

Figure 2.28 O. correae aedeagus

Figure 2.29 O. kershawi aedeagus

Figure 2.30 O. ptunarra female genitalia

Figure 2.33 O. orichora female genitalia

Figure 2.31 O . latialis female genitalia

Figure $2.34 O$. correae female genitalia

Figure 2.32 O. lathoniella female genitalia

Figure 2.35 O. kershawi female genitalia

3.8 Nesoxenica Waterhouse \& Lyell

The genus Nesoxenica (Waterhouse \& Lyell 1914) is endemic to Tasmania and comprises a single species N. leprea. N. leprea (Hewitson 1864 [1863-1878]), the Tasmanian xenica (
Figure 2.36), has two recognised subspecies N. l. leprea and N. l. elia.

3.8.1 Habitat

Nesoxenica is restricted to the margins of cool temperate Nothofagus rainforest, habitat of the larval food plant Uncinia (Cyperaceae) sedge (Common \& Waterhouse 1981; Braby 2000). Adults feed at the flowers of Leptospermum lanigerum (Myrtacae), Prostanthera lasianthos (Lamiaceae) and Pentachondra pumila (Epacidacae) (Prince 1988).

3.8.2 Habitus

Wingspan: δ ㅇ 31 mm .
Male/female - dorsal side is black, with cream-pale yellow (N. l. leprea) or deep yellowlight orange (N. l. elia) markings, terminal scale fringe is chequered white. Ventral side hindwing black, with silvery-white markings, and a series of six black spots ringed with white. Main veins of forewings are strongly swollen at base. Hindwing cell is about half the length of the wing (Figure 2.36) (Couchman \& Couchman 1978; Common \& Waterhouse 1981; Braby 2000).

The adult has hairy eyes, relatively narrow wings, with termen rounded and basal area very hairy (Common \& Waterhouse 1981). Antenna is about half the length of the costa of the forewing, with a broad club (Braby 2000).

The sexes are difficult to distinguish and can only be reliably separated by examination of the external genitalia (Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 2000).

Figure 2.36 Habitus of Nesoxenica

3.8.3 Male genitalia

Uncus long, simple, parallel sided, apically acute; gnathos simple, lateral arms not joined medially, narrow, curved ventrally, short, acute apically; tegumen tall; valvae simple, broad basally, angled, tapering from mid point, apex truncated, squared, prominent, subapical dorsal spine present, distal ventral margin of valva serrated; transtilla well sclerotised; juxta small, rounded, well sclerotised; saccus long, curved dorsally, apex rounded (Figure 2.37); aedeagus (Figure 2.38) moderately long, slender, straight, apex simple, truncated, blunt; cornuti absent from vesica, numerous spicules on anterior surface of shaft.

3.8.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, short, anteriores, absent; lamella postvaginalis (sternite 8), deeply invaginated, membranous, rugose, adorned with spicules; lamella antevaginalis, broad, rhomboidal, transverse plate, posterior margin notched medially; antrum membranous, funnel shaped; colliculum membranous, not well defined; ductus seminalis inserted medially dorsally; ductus bursae membranous, long, slender; corpus bursae, moderate size, ovoid, membranous, well differentiated from ductus; signa, two, weak, long narrow, longitudinal, dorso-lateral, sclerotised bands adorned with numerous inward pointing spicules (Figure 2.39).

Figure 2.37 N . leprea male genitalia

Figure 2.38 N. leprea aedeagus

Figure 2.39 N . leprea female genitalia

3.9 Argynnina Butler

The genus Argynnina (Butler 1867) comprises two species, A. hobartia (Westwood 1851 [1850-1852]) which is endemic to Tasmania (Figure 2.40), and the other A. cyrila (Waterhouse \& Lyell 1914), is restricted to the temperate zone of the southeast Australian mainland (Common \& Waterhouse 1981; Dunn \& Dunn 1991; Braby 2000).

3.9.1 Habitat

The different Argynnina species favour distinct habitats: A. cyrila favouring wetter tall open eucalypt forests and edges of cool and warm temperate rainforest, occasionally intruding into the drier eucalypt open forests via moist gullies and slopes; where as A. hobartia favours habitats with a relative dense, tall ground cover of native grasses, a sparse understorey of small shrubs and young trees, with an open canopy (Common \& Waterhouse 1981; Braby 2000).

3.9.2 Habitus

Argynnina are moderate sized butterflies with densely hairy eyes; antenna is about half the length of the costa of the forewing with a broad club (Common \& Waterhouse 1981). Forewing, only veins Sc and CuA are strongly swollen at base (Braby 2000). Hindwing, the cell is more than half the length of the wing. The basal area of the wings is vary hairy (Braby 2000).

3.9.3 Diagnosis

Argynnina can be defined from other southeast Australian Satyrinae by the veins of the forewing; only veins Sc and CuA re strongly swollen at the base.

3.10 A. hobartia Butler

3.10.1 Habitat

A. hobartia is prevalent in a wide range of habitats, from sea level to around 900 m , including open eucalypt forest, woodland and the margins of grasslands and heathsedgelands. Adults generally prefer habitats with a relatively dense, tall ground cover of native grasses, especially Poa labillardieri and Austrodanthonia, a sparse understorey of small shrubs and young trees, and an open canopy (Prince 1988; Braby 2000). In western Tasmania A. hobartia is found in high rainfall areas characterised by button-grass plains on acid bogs associated with patches of rainforest (Couchman \& Couchman 1978; Prince 1988; Braby 2000).

3.10.2 Habitus

Male - dorsal side black, with orange-yellow or brownish-orange spots and markings, and grey-brown basal hairs suffused with greenish-orange; forewing with three indistinct bluish-white centred black eyespots, followed by a narrow brownish-orange band of confluent spots; hindwing with three bluish-white centred black eyespots (Figure 2.40). Ventral side forewing similar to dorsal side but duller, a central black spot in cell, apex suffused with reddish-brown; hindwing base colour dull reddishbrown with obscure darker markings and striations, eyespots very small. Broad clubbed antenna about half the length of the costa of the forewing (Braby 2000) (Figure 2.40). The eyes are densely hairy (Common \& Waterhouse 1981). In the forewing veins Sc and CuA are strongly swollen at the base (Couchman \& Couchman 1978; Common \& Waterhouse 1981; Braby 2000).

Female - has broader wings than the male and the ventral side base colour is generally paler (Couchman \& Couchman 1978; Common \& Waterhouse 1981; Braby 2000).

Figure 2.40 Habitus of A hobartia

3.10.3 Male genitalia

Uncus simple, parallel sided, tapered, rounded apically; gnathos simple, lateral arms not joined medially, narrow, short, acute apically, curving dorsally; tegumen tall; valva very broad basally, almost meeting medially, ventral margin strongly curved inwards, tapering markedly from midpoint, apex expanded, flattened, dorsal margin finely serrated, apex curved inwards, serrated; transtilla membranous; juxta a round lobe, weakly sclerotised; saccus moderately long, curved dorsally, apex rounded (Figure 2.41); aedeagus (Figure 2.42) long, slender, curved, sinuate, apex acute; cornuti absent from vesica, numerous spicules on anterior surface of shaft.

3.10.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised distally, with slightly rounded, membranous lobes, setae moderately long, well developed; apophyses posteriores moderately long, anteriores absent; lamella postvaginalis (sternite 8), membranous, lightly rugose, deeply invaginated, adorned with spicules; lamella antevaginalis, sclerotised band, much wider medially; antrum membranous, funnel shaped; colliculum not well defined; ductus bursae short, moderately broad; corpus bursae, moderate size, ovoid, membranous, well differentiated from ductus; signa, two, weak longitudinal, long, narrow, dorso-lateral, ventro-lateral sclerotised bands adorned with numerous inward pointing spicules, running to midpoint of corpus bursae. Sternite A7 well sclerotised (Figure 2.43).

Figure 2.41 A. hobartia male genitalia

Figure 2.42 A. hobartia aedeagus

Figure 2.43 A. hobartia female genitalia

3.10.5 Remarks

Couchman and Couchman (1978) recognised three subspecies of A. hobartia:
A. h. hobartia, A. h. tasmanica and A. h. montana. A transition zone occurs between the distributional boundaries of A. h. hobartia and A. h. tasmanica where extremely variable intermediate forms have been collected (Braby 2000).

3.10.6 Diagnosis

A. hobartia males are distinguished from A. cyrila males by the absence of sex-scales on the forewing. A. hobartia is smaller than A. cyrila and has broader and shorter forewings (Braby 2000).

The genitalia of male A. hobartia are distinguished by the short tapering uncus, very basally broad valva with a finely serrated dorsal margin and the vesica is adorned with numerous spicules.

The genitalia of female A. hobartia are characterised by the sclerotised band of the lamella antevaginalis and the short wide ductus bursae. The signa are two weak longitudinal sclerotised bands adorned with numerous inward pointing spicules running to the midpoint of corpus bursae. In A. cyrila the signa are prominent and run the full length of the corpus bursae (Common \& Waterhouse 1981; Braby 2000).

3.11 Heteronympha Wallengren

The genus Heteronympha (Wallengren 1858) currently comprises seven species, all restricted to the temperate zone of southern Australia. All seven species are found in New South Wales and Victoria, with five extending into southeast Queensland. Three species occur in Tasmania; H. merope (Fabricius 1807), H. penelope (Waterhouse 1937) and H. cordace (Geyer 1832 [1827-1837]) (Figure 2.44). Only H. merope extends into South Australia and south-western Western Australia (Braby 2000).

3.11.1 Habitat

Heteronympha occurs mainly in mountainous tall eucalypt open forest and in woodland. Many species occur together and show pronounced differences in seasonal timing of adult appearance, preferred habitat and larval food plants, and to a lesser extent altitude range (Braby 2000).

3.11.2 Habitus

Heteronympha are moderate to large butterflies, the eye is hairy, forewing main veins are strongly swollen to the base; hindwing cell is about half (male) or less than half (female) the length of the wing; narrow club antenna less than half the length of the costa of the forewing (Figure 2.44). Male usually has sex-scales consisting of a black patch in or below the cell on the dorsal side of the forewing (Common \& Waterhouse 1981; Braby 2000).

3.11.3 Male genitalia

Uncus short to moderately long, simple, apically acute; gnathos simple, lateral arms not joined medially, narrow, relatively short, straight, apically acute, slightly curved dorsally; tegumen relatively tall; valvae simple, short, tapering to apex, rounded distally, prominent apical spine present; transtilla membranous, juxta small, sclerotised, rounded; saccus long, apex rounded, well sclerotised; aedeagus medium to long, slender to stout, straight to sinuous, apex truncated, rounded; vesica adorned with numerous spicules.

3.11.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae moderately long to long, well developed; apophyses posteriores short to moderately long, anteriores absent; lamella postvaginalis (sternite 8) markedly varied; lamella antevaginalis sclerotised, medial band; antrum membranous, funnel shaped; colliculum membranous, not well defined; ductus seminalis inserted medially, dorsally; ductus bursae membranous, long, moderately slender; corpus bursae, moderate size, ovoid to globular, membranous, well differentiated from ductus; signa, two, weak to strong, sclerotised bands, adorned with numerous inwardly pointing spicules. Sternite A7 lightly sclerotised.

3.11.5 Summary of Morphological Characters

Heteronympha differs from other southeast Australian Satyrinae genera by possession of a narrow clubbed antenna with is less than half the length of the costa of the forewing and hairy eyes. In males the saccus is long, apex rounded, well sclerotised; a prominent dorsal sub apical spine is present.

H. merope female dorsal side

H. merope male dorsal side

H. penelope dorsal side

H. cordace dorsal side

H. merope female ventral side

H. merope male ventral side

H. penelope ventral side

H. cordace ventral side

20 mm

Figure 2.44 Habitus of Heteronympha species

3.12 H. cordace Geyer

3.12.1 Habitat

H. cordace occurs in open swampy areas, usually with a sparse cover of Melaleuca and Leptospermum shrubs, where dense stands of the larval food plant grow. Due to the patchy distribution of habitat, H. cordace tends to occur in fairly discrete areas in which it may be locally abundant. This is in contrast to other species of Heteronympha which are generally more widespread over larger areas of habitat (Braby 2000).

3.12.2 Habitus

Wingspan: § 38 mm ¢ 42 mm .
Males - dorsal side black, with orange markings; forewing with a blue-centred black eyespot; hindwing with a blue-centred black eyespot and a blue-centred black eyespot, each ringed with orange then faintly with black. Ventral side: forewing similar to dorsal side but orange areas more extensive and with a dull orange band; hindwing base colour yellow, with irregular brownish-grey markings, eyespots similar to dorsal side, more obvious with two bluish-white spots between them (Figure 2.44).

Female - similar to male, larger, with abdomen stouter, termen of wings more rounded, hindwing often with an extra small spot below apical eyespot (Figure 2.44).

3.12.3 Male genitalia

Uncus moderately long, simple, parallel sided, apically acute; gnathos simple, lateral arms not joined medially, moderately narrow, tapered, relatively short, straight, acute apically, slightly curved dorsally; tegumen moderately tall; valvae simple, short, basally broad, tapering abruptly from approximate midpoint on ventral margin, rounded distally, apex not expanded, prominent dorsal sub-apical spine present; saccus long, apex rounded, well sclerotised (Figure 2.48); aedeagus (Figure 2.49) medium length, stout, straight, apex truncated, rounded; vesica adorned with numerous spicules.

3.12.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores short, anteriores absent; lamella postvaginalis (sternite 8) posteriorly, membranous, with deep longitudinal sharply defined channels, anterior channels coalesce forming circles, loosely gathered on anterior margin, lightly sclerotised, adorned with numerous moderately long spicules; lamella antevaginalis wide, well sclerotised, medially narrowing band; antrum membranous, funnel shaped; colliculum membranous, not well defined; ductus seminalis inserted medially dorsally; ductus bursae membranous, long, slender, plicate; corpus bursae, moderate size, elongate, ovoid, thickly membranous, plicate, well differentiated from ductus; signa, two, strong, sclerotised bands on venter, long, wide, almost extending length of corpus, with numerous transverse rows of inwardly directed spines. Sternite A7 lightly sclerotised (Figure 2.54).

3.12.5 Remarks

Five subspecies have been recognised which reflect considerable variation in the extent of orange markings on the dorsal side, the size of the eyespots, the extent of the blue centre within the eyespots, and ventral side base colour and markings. H. c. cordace occurs widely throughout New South Wales and Victoria. H. c. wilsoni is restricted to south-western Victoria where its national conservation status is listed as critically endangered (Sands \& New 2002). The remaining three subspecies are restricted to Tasmania, isolated by geography, climate and topography: H. c. comptena is restricted to the wet coastal areas of western and southern Tasmania at altitudes up to 395 m ; H. c. kurena occurs in the high rainfall areas of the Central Plateau, at altitudes between 610 m and 1030 m ; and H. c. legana occurs in north-eastern Tasmania at altitudes up to 760m (Burns 1948; Couchman 1954; Burns 1956; Couchman 1962; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Dunn \& Dunn 1991; Braby 2000; Grund \& Hunt 2000).

3.12.6 Diagnosis

In H. cordace the antenna is proportionally longer and the termen of the wings more rounded than in other Heteronympha species, there is also a prominent blue-centred eyespot on the hindwing of H. cordace. The ventral side markings are a different pattern with much larger eyespots. Sex-scales are absent in the male (Burns 1956; Braby 2000). Flight behaviour: in H. cordace adults have a slow, meandering flight close to the ground amongst clumps of the larval food plants occasionally feeding from the flowers of Melaleuca and Leptospermum; other species tend to display an erratic, rapid flight. Larval food plant specialisation: H. cordace feeds on Carex appressa and possibly C. gaudichaudiana; other Heteronympha feed predominantly on Poa species (Burns 1956; Common \& Waterhouse 1981; Braby 2000).

In male H. cordace the valva is basally broad, tapering abruptly from midpoint on ventral margin; H. penelope and H. merope valvae are narrow, tapering gradually. The uncus in H. cordace is moderately long; H. penelope and H. merope short.

Female H. cordace genitalia are most clearly differentiated from H. penelope and H. merope by the lamella postvaginalis (sternite 8). In H. cordace the lamella postvaginalis is posteriorly membranous, with deep longitudinal sharply defined channels, the anterior channels coalesce forming circles, loosely gathered on anterior margin, lightly sclerotised, adorned with numerous moderately long spicules; anteriorly a small medial lightly sclerotised sub rectangular plate. In H. penelope and H. merope the lamella postvaginalis is posteriorly membranous, and extremely deeply invaginated forming a large convoluted sac. In female H. cordace the lamella antevaginalis is a wide, well sclerotised, medially narrowing band in H. merope the lamella antevaginalis is a lightly sclerotised narrow band. The ductus seminalis is inserted medially dorsally in H. cordace compared to medially ventrally in H. penelope and H. merope. Signa, two strong, sclerotised bands in H. cordace contrasting the weak bands in H. penelope and H. merope.

3.13 H. penelope Waterhouse

3.13.1 Habitat

Four subspecies of H. penelope are currently recognised: H. p. penelope occurs in the mountains and lowlands of southern Queensland / northern New South Wales, extending into the Australian Capital Territory and western Victoria in a wide range of habitats, particularly in lowland grassy woodland, drier eucalypt open-forest with a grassy understorey and subalpine woodland; H. p. alope is restricted to south-western Victoria and the south-eastern corner of South Australia; H. p. diemeni occurs on King Island and widely throughout the lowland of north-western, northern and eastern Tasmania; H. p. panope is restricted to the central plateau and near sea level on the west coast of Tasmania (Couchman \& Couchman 1978; Common \& Waterhouse 1981; Dunn \& Dunn 1991; Braby 2000).

3.13.2 Habitus

Wingspan: $\begin{gathered}\lambda \\ 54 \mathrm{~mm}\end{gathered}+56 \mathrm{~mm}$.
Males - dorsal side black, with brownish-orange markings; forewing with a prominent bluish-white-centred black eyespot, and a large patch of grey-black sex-scales in basal half of cell; hindwing with a prominent bluish-black subtornal eyespot, and black subapical eyespot. Ventral side forewing dull brownish-orange, with dull black markings, a round black spot in cell, and apex orange-brown enclosing an obvious bluish-white-centred black eyespot; hindwing base colour dull orange-brown, with irregular series of dark brown wavy markings and eyespots (Common \& Waterhouse 1981; Braby 2000) (Figure 2.44).

Females - dorsal side black, with orange markings; forewing with an obvious bluish-white-centred black subapical eyespot; hindwing with a white-centred black subapical eyespot; tornus slightly produced. Ventral side forewing similar to dorsal side but duller, a conspicuous round black spot in cell, and apex slightly suffused with dull purple or pink enclosing a prominent bluish-white-centred black eyespot; hindwing base colour variable dull yellowish-brown, pale brown or orange-grey, sometimes suffused with lilac or rich purplish-pink, with a series of irregular dark brown wavy markings and eyespots (Common \& Waterhouse 1981; Braby 2000) (Figure 2.44).

3.13.3 Male genitalia

Uncus moderately short, simple, apically acute; gnathos simple, lateral arms not joined medially, narrow, relatively short, straight, apically acute, slightly curved dorsally; tegumen relatively tall; valvae simple, short, narrow, tapering gradually to apex, rounded distally, apex not expanded, prominent sub-apical spine present; transtilla membranous, juxta small, sclerotised, rounded; saccus long, apex rounded, well sclerotised (Figure 2.50); aedeagus (Figure 2.51) long, slender, moderately straight, apex truncated, rounded; vesica adorned with numerous spicules.

3.13.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae moderately long, well developed; apophyses posteriores, moderately short, moderately slender, anteriores, absent; lamella postvaginalis (sternite 8) posteriorly, membranous, rugose, with longitudinal channels, extremely deeply invaginated forming large convoluted sac, adorned with minute spicules at entrance to sac, anteriorly sclerotised; lamella antevaginalis, wide sclerotised band, narrow medially; antrum membranous, funnel shaped, rugose; colliculum not well defined; ductus seminalis inserted medially dorsally; ductus bursae membranous, long, moderately slender, weakly plicate; corpus bursae, moderate size, ovoid, membranous, well differentiated from ductus; signa weak, two longitudinal, long narrow, ventral, sclerotised bands adorned with numerous inward pointing spicules. Sternite A7 well sclerotised (Figure 2.55).

3.13.5 Remarks

Male H. penelope deposit a mating plug (sphragis) (Figure 2.45) around the genital opening of the female (Common \& Waterhouse 1981; Braby 2000).

Figure 2.45 Sphragis attached beneath female H. penelope abdomen

3.13.6 Diagnosis

Male H. penelope can be distinguished from male H. merope by the single large patch of sex-scales in the cell on the dorsal side of the forewing, and the white centred black subtornal eyespot on the dorsal side of the hindwing (Figure 2.46) (Braby 2000).

In male H. penelope the uncus is moderately short, compared to H. cordace moderately long. The valva is short, tapering gradually to apex with a prominent apical spine present in H. cordace tapering abruptly. The aedeagus is slender and moderately straight, where as in H. cordace stout; H. morope slightly sinuous.

In the female the posterior apophyses are moderately short. The lamella postvaginalis (sternite 8) is posteriorly membranous, rugose, extremely deeply invaginated forming large convoluted sac, adorned with minute spicules at entrance to sac; anteriorly sclerotised, compared to H. cordace deep longitudinal sharply defined channels; . Lamella antevaginalis, wide well sclerotised band, extremely narrow medially where as in H. cordace wide well sclerotised, medially narrowing band; H. merope lightly sclerotised narrow band, widening medially. In H. penelope the signa are two, weak, longitudinal, long narrow, ventral, sclerotised bands adorned with numerous inward pointing spicules, in H. cordace two strong, sclerotised bands on venter, and H. merope two, weak, long narrow bands, one dorsal, one ventral.

Figure 2.46 H penelope male, Lake Crescent, Interlaken, Tasmania.

3.14 H. merope Fabricius

3.14.1 Habitat

Three subspecies of H. merope are recognised: H. m. merope occurs widely in the east and southeast of mainland Australia; H. m. salazar is restricted to Flinders Island, King Island and mainland Tasmania; H. m. duboulayi is restricted to southwest Western Australia (Fisher 1978; Common \& Waterhouse 1981; Braby 2000).
H. merope occurs in a wide range of habitats, frequenting grassy woodlands and dry eucalypt open-forest with a grassy understory in both coastal and mountainous terrain up to 1250 m on the mainland and from sea level to 760 m in Tasmania. At the northern end of its range in central Queensland H. merope flies only in the central highlands, where it is scarce (Fisher 1978; Common \& Waterhouse 1981; Braby 2000).

3.14.2 Habitus

Wingspan: $\widehat{\gamma} 56 \mathrm{~mm}$ ㅇ 64 mm .
Males - dorsal side brownish-orange, with brown-black markings; forewing blue-centred black subapical eyespot, and large patch of grey-brown sex scales in four discrete linear areas. Hindwing prominent blue-centred black subtornal eyespot, two irregular black subterminal lines, followed by a broader black terminal band. Ventral side forewing dull orange, with a few black markings, apex yellow-brown enclosing a small subapical eyespot; hindwing yellowish-brown with a series of wavy dark brown lines (Fisher 1978; Common \& Waterhouse 1981; Braby 2000) (Figure 2.44, Figure 2.47) .

Female - dorsal side forewing orange, outer half black enclosing three irregular yellow patches, one near costa, one near tornus and a smaller one near apex, and a prominent blue-centred subapical eyespot. Hindwing orange, with prominent blue-centred black subtornal eyespot, two irregular black subterminal lines, followed by a broader black terminal band. Ventral side forewing apex greyish-brown; hindwing ground colour varies from purplish-brown, through greyish-brown to yellow-brown, variably marked or striated with darker brown or grey lines, eyespots small and obscure (Fisher 1978; Common \& Waterhouse 1981; Pearse \& Murray 1981; 1982; Braby 2000) (Figure 2.44).

3.14.3 Male genitalia

Uncus short, simple, parallel sided, apically acute; gnathos simple, lateral arms not joined medially, narrow, parallel sided, relatively short, straight, apically acute, slightly curved dorsally; tegumen tall; valvae simple, relatively short, narrow, tapering gradually to apex, rounded distally; prominent sub-apical spine present; saccus long, apex rounded, well sclerotised (Figure 2.52); aedeagus (Figure 2.53) long, slightly sinuous, apex truncated, rounded; vesica adorned with numerous spicules .

3.14.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae moderately long, well developed; apophyses posteriores, moderately long, moderately slender, anteriores, absent; lamella postvaginalis (sternite 8), membranous, extremely deeply invaginated forming large convoluted sac, adorned with minute spicules at entrance to sac; lamella antevaginalis, lightly sclerotised, narrow band much wider medially; antrum membranous, funnel shaped; colliculum not well defined; ductus seminalis inserted medially dorsally; ductus bursae, membranous, long, moderately slender; corpus bursae, large, globular, membranous, well differentiated from ductus; signa two, weak, long narrow, one dorsal, one ventral, sclerotised bands adorned with numerous inward pointing spicules; sternite A7 weakly sclerotised (Figure 2.56).

3.14.5 Remarks

H. merope is the most common and widely distributed Heteronympha. Aided by the ability of the larvae to feed on some introduced grasses, it has been able to adapt successfully to suburban environments. H. merope often flies with G. klugii (Fisher 1978; Pearse 1978; Common \& Waterhouse 1981; Braby 2000).

3.14.6 Diagnosis

Male H. merope can be distinguished from male H. penelope by the broken patch of sex-scales on the dorsal side of the forewing, and the blue centred black subtornal eyespot on the dorsal side of the hindwing (Braby 2000).

In male H. merope the uncus is short, parallel sided and apically acute $\mathrm{cf} H$. cordace moderately long. The valva is relatively short, tapering gradually to apex with a prominent sub-apical spine present cf H. cordace tapering abruptly. The aedeagus is long and slightly sinuous cf H. cordace stout and H. penelope slender and moderately straight.

In the female the posterior apophyses are moderately long cf H. cordace short and H. penelope moderately short. The lamella postvaginalis (sternite 8) is membranous, extremely deeply invaginated forming large convoluted sac, adorned with minute spicules at entrance to sac cf H. cordace deep longitudinal sharply defined channels. Lamella antevaginalis, lightly sclerotised, narrow band much wider medially cf H. cordace wide well sclerotised, medially narrowing band; H. penelope wide well sclerotised band, extremely narrow medially. Signa two, weak, long narrow, one dorsal, one ventral, sclerotised bands adorned with numerous inward pointing spicules cf. H. cordace two strong, sclerotised bands on venter, and H. penelope two, weak, longitudinal, long narrow, ventral, sclerotised bands.

Figure 2.47 Herope male, Glenlusk, Tasmania.

Figure 2.48 H. cordace male genitalia

Figure 2.50 H . penelope male genitalia

Figure $2.52 H$. merope male genitalia

Figure 2.49 H. cordace aedeagus

Figure 2.51 H . penelope aedeagus

Figure 2.53 H . merope aedeagus

Figure 2.54 H . cordace female genitalia

Figure 2.55
H. penelope female genitalia

Figure 2.56 H . merope
female genitalia

3.15 Geitoneura Butler

The genus Geitoneura (Butler 1867) comprises three species. G. klugii (GuérinMéneville 1830 [1830-32]), is widely distributed across the temperate zone of mainland Australia extending from the east through southern Australia to the west and down into Tasmania. G. acantha (Donovan 1805) is restricted to southern and eastern temperate zone mainland Australia. G. minyas (Waterhouse \& Lyell 1914), is endemic to southwestern Western Australia (Common \& Waterhouse 1981; Braby 2000).

3.15.1 Habitat

Geitoneura are found both on the lowlands and tablelands of southern Australia flying in a mixture of habitats, dominated by a variety of eucalypt open forest and woodlands with a grassy understory, and montane grasslands occasionally extending into subalpine and alpine woodlands. Two Geitoneura species can occur together, showing some differences in seasonal timing of adult appearance and preferred habitat (Common \& Waterhouse 1981; Braby 2000).

3.15.2 Habitus

Geitoneura is characterised by smooth eyes and narrow clubbed antenna half the length of the costa of the forewing. The main veins in forewing are strongly swollen at base, and in hindwing, the cell is about half the length of the wing. The male has sex-scales consisting of a linear oblique dull black patch, which extends from near the base of vein M_{3} to the dorsum on the upperside of forewing (Fisher 1978; Common \& Waterhouse 1981; Braby \& New 1988a; 1988b; 1999; Braby 2000).

3.15.3 Summary of Morphological Characters

Geitoneura differs from other southeast Australian Satyrinae genera by possession of a narrow clubbed antenna and smooth eyes.

3.16 G. klugii Guérin-Méneville

3.16.1 Habitat

G. klugii occurs in a wide range of habitats including eucalypt open forest and woodlands with a grassy understory, montane areas, occasionally extending into subalpine and alpine woodlands or grassy areas amongst sand-dunes shrublands and malee open scrub. G. klugii is extends from the coast up to 1400 m on mainland Australia and to 900 m in Tasmania (Fisher 1978; Common \& Waterhouse 1981; Braby 2000).
G. klugii often flies with H. merope and with G. minyas and G. acantha where their habitat ranges overlap (Braby 2000).

3.16.2 Habitus

Wingspan: § $39 \mathrm{~mm} q 42 \mathrm{~mm}$.
Dorsal side black, with brownish-orange markings; forewing, white-centred black subapical eyespot; hindwing, short black median band towards end of cell, a distinct white centred black subtornal eyespot and a broad black terminal band enclosing a row of brownish-orange subterminal spots. Ventral side forewing similar to dorsal side, apex dark grey; hindwing base colour ashy-grey to grey-brown or brown, with dark striations, and an irregular median band (Figure 2.57) (Fisher 1978; Common \& Waterhouse 1981; Braby \& New 1988a; 1988b; 1999; Braby 2000).

25 mm

Figure 2.57 Habitus of G. klugii

3.16.3 Male genitalia

Uncus moderately long, simple, parallel sided, truncated, apically acute; gnathos simple, lateral arms not joined medially, narrow, relatively long, acute apically; tegumen moderately tall; valvae simple, long, parallel sided, not markedly tapering, rounded apically, dorsal sub apical lobe present, lobe with spicules on apex; saccus moderately long, apex rounded (Figure 2.58); aedeagus (Figure 2.60) long, straight, slender, tapering, apex rounded, truncated; cornuti absent from vesica.

3.16.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores short, slender, anteriores absent; lamella postvaginalis (sternite 8) posteriorly, membranous, adorned with minute spicules, shallowly invaginated; lamella antevaginalis, weakly sclerotised narrow band, with a well-developed subrectangular medial plate; antrum membranous, funnel shaped, colliculum not well defined. Ductus bursae long, slender, plicate, membranous; corpus bursae, moderate size, elongate, ovoid, thickly membranous, well differentiated from ductus; signa weak, two long relatively narrow, dorsal ventral, sclerotised bands adorned with numerous inward pointing spicules. Sternite A7 weakly sclerotised (Figure 2.62).

3.16.5 Summary of morphological characteristics

In male G. klugii the gnathos is relatively long, valvae long, parallel sided and not tapering; saccus moderately long. Aedeagus tapers distally.

In female G. klugii the lamella postvaginalis is posteriorly membranous, adorned with minute spicules, shallowly invaginated; anteriorly a well-developed subrectangular medial plate. Lamella antevaginalis, a weakly sclerotised narrow band with medial plate. Signa, two, weak, long relatively narrow, dorsal ventral, sclerotised bands adorned with numerous inward pointing spicules.

3.17 G. acantha Donovan

3.17.1 Habitat

G. acantha (Donovan 1805) is restricted to mainland Australia where it occurs on the coast and tablelands of the east and south-east. G. acantha flies together with G. klugii in some places, however it favours damp shady gullies, sheltered slopes and riparian habitats where the larval food plants grow and avoiding the more open sunny areas (Fisher 1978; Common \& Waterhouse 1981; Braby \& New 1988a; 1988b; 1999; Braby 2000).

3.17.2 Habitus

Wingspan: đ 39 mm ¢ 44 mm .
Dorsal side: brown black, with extensive orange markings; forewings with a whitecentred black subapical eyespot; hindwing with a white-centred black subtornal eyespot, and an obscure black apical spot. Ventral side: forewings similar to dorsal side; hindwing base colour brown, sometimes suffused with cream, with extensive pale yellow or creamish-white markings, a prominent white-centred black subtornal eyespot and a white-centred black apical eyespot, each ringed with pale yellow (Fisher 1978; Common \& Waterhouse 1981; Braby \& New 1988a; 1988b; 1999; Braby 2000)

3.17.3 Male genitalia

Uncus long, simple, parallel sided, tapered, apically acute; gnathos simple, lateral arms not joined medially, narrow, curved dorsally, short, acute apically; tegumen moderately tall; valvae simple, elongated, tapering abruptly from midpoint on ventral margin, rounded distally; well defined dorsal sub apical lobe present, with spicules on apex, lobe angle from valva; vinculum moderately short; saccus moderately short, apex broad, rounded (Figure 2.59); aedeagus (Figure 2.61) long, slender, slightly sinuous, apex rounded, cornuti absent from vesica.

3.17.4 Summary of morphological characteristics

In male G. acantha the gnathos is short, valvae elongated, tapering abruptly from midpoint on ventral margin. Saccus moderately short and the aedeagus long, slender, slightly sinuous.

Figure 2.58 G. klugii male genitalia

Figure 2.60 G. klugii aedeagus

Figure 2.59 G. acantha male genitalia

Figure 2.61 G. acantha aedeagus

Figure 2.62 G. klugii female genitalia

3.18 Vanessa Fabricius

The genus Vanessa (Fabricius 1807) has a worldwide distribution and several wideranging species. Three migratory species are found in Australia; V. kershawi (McCoy 1868); V. itea (Fabricius 1775); and V. cardui (Linnaeus 1758). V. cardui seems to be dispersing from Africa as it does not appear to be permanently established in Australia (Braby 2000).

3.19 V. kershawi McCoy

3.19.1 Habitat

V. kershawi, a migratory species occurs from northern Queensland to Tasmania and into Western Australia in a wide variety of habitats, both natural and modified including suburban gardens, and is generally common throughout its range, except in northern Queensland where adults appear only occasionally, usually in spring (Braby 2000).

3.19.2 Habitus

Wingspan: đ 43 mm ¢ 47 mm .
Dorsal side, black with pinkish-orange markings; forewing base brown, anterior to cell reaching costa white band of spots, series of four small, white subapical spots (Figure 2.63 Figure 2.64). Hindwing base brown, series of four black subterminal spots three have blue centres, black broken subterminal line, blue tornal streak. Ventral side forewing similar to dorsal side, base colour brown, paler markings, pinkish-orange markings richer reddish-orange, white bar in cell. Hindwing brown intricately patterned, cream and yellow markings, series of four or five obscure subterminal eye spots (Figure 2.64) (Common \& Waterhouse 1981; Braby 2000).

Figure 2.63 Habitus of V. kershawi

3.19.3 Male genitalia

Uncus very short, simple, broad based, tapering, rounded apically; gnathos simple, lateral arms not joined medially, very broad, relatively short, terminally rounded, tapering apically, ventrally-medially curved, hook like; tegumen moderately long; valvae complex, short, truncated, very broad, long setae scattered on inner surface, joined basally; ampulla enlarged, occupying most of valva, moderately concave, fused with harpe along ventral margin, well sclerotised, dorsal margin triangular with well developed proximal, mesal spines, proximal half sub-serrated; harpe process-like, extending perpendicularly from ampulla base, robust spine extending medially at apex, medial margin wavy; sacculus narrow, extended into free arm, terminating in dorsally directed rounded spine; valva ventral margin distally serrate, subapical small triangular process, margin serrate; vinculum relatively short; juxta small rounded lobe, well sclerotised; saccus moderately long, broad basally, curved dorsally, tapering, apex rounded (Figure 2.65); aedeagus (Figure 2.66) long, slender, sinuous, constricted medially, distal half very well sclerotised, apex rounded; cornuti absent from vesica.

3.19.4 Female genitalia

Ovipositor short, broad; papillae anales, sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, long, slender, anteriores, absent; lamella postvaginalis (sternite 8), well sclerotised plate, lamella antevaginalis, well sclerotised plate, anterior margin " M " shaped; antrum not well defined; colliculum not well defined, ostium bursae, very well sclerotised, very small. Ductus seminalis inserted medially dorsally; ductus bursae long, very slender, membranous; corpus bursae, moderate size, rounded, apex rounded, thickly membranous, well differentiated from ductus; signa weak, two longitudinal, long narrow, ventral sclerotised bands adorned with numerous inward pointing spicules. Sternite A7 very well sclerotised (Figure 2.67).

Figure 2.64 V kershawi, Lake Catania, Mt Buffalo Victoria

Figure 2.65 V. kershawi male genitalia

Figure 2.66 V. kershawi aedeagus

Figure 2.67 V. kershawi female genitalia

3.20 Junonia Hübner

The genus Junonia (Hübner 1819) has a very wide distribution in the tropical and subtropical regions of Australia. Species include: J. orithya (Linnaeus, 1758), J. hedonia (Linneaus, 1764) and J. erigone (Cramer, [1775]), however only J. villida (Fabricius 1787), extends into the temperate zone (Braby 2000).

3.21 J. villida Godart

3.21.1 Habitat

J. villida a migratory species is common in a wide variety of habitats, particularly woodlands, open-woodlands and grasslands, in both coastal and inland areas. J. villida occurs in both natural and modified habitats including suburban gardens (Braby 2000).

3.21.2 Habitus

Wingspan: ठ 40 mm ¢ 43 mm .
Dorsal side is brown; forewing with two orange bars in cell edged with dark brown and separated by a dull blue area. A narrow cream band of spots stretches from costa to termen, followed by a smaller cream subapical band, and two blue subterminal eyespots broadly ringed with black then orange, near tornus. Hindwing has two large subterminal eyespots broadly ringed with orange, largest near costa, followed by two broken cream subterminal lines. Ventral side, base colour pale brown or buff; forewing with markings similar to dorsal side but subapical eyespot reduced to minute spot. Hindwing with narrow brown irregular postmedian band or wavy line followed by two small eyespots and sometimes two or three very small obscure dark brown spots (Figure 2.68) (Braby 2000).

Figure 2.68 Habitus of J. villida

3.21.3 Male genitalia

Uncus moderately short, simple, broad based, tapering, pointed apically; gnathos complex, lateral arms joined medially, very broad, with very large medial process, consisting dorsally of large, oval, membranous process, concave dorsally, covered with stout, long spines, process ventrally fused with lateral arms of vinculum; valvae complex, very short, truncated; ampulla, harpe fused; ampulla dorso-subapical process curving inwards, apex recurved, medial margin with stout robust pointed spines, apical spines, long setae on dorsal surface; harpe with dorso-apical process, curving inwards, apex ventrally directed, 3 spines apically, 2 very large proximally, small spines distally; posterior margin of valva, wavy, numerous long setae on inner margin; sacculi of 2 valvae fused; vinculum long; saccus very narrow, very long, curved dorsally, apex rounded (Figure 2.69); aedeagus (Figure 2.70) long, slender, well sclerotised, apex acute; cornuti absent from vesica.

3.21.4 Female genitalia

Ovipositor short, broad; papillae anales, very well sclerotised, distally with slightly rounded, membranous lobes, setae long, well developed; apophyses posteriores, very long, slender, anteriores, moderately long, slender; lamella postvaginalis (sternite 8) posteriorly membranous, adorned with minute spicules, evaginated to form large sac; anteriorly a small well sclerotised, concave plate, continuous with sclerotised section of sternite A8; lamella antevaginalis, not distinct; antrum sclerotised, funnel shaped, colliculum not well defined, vaginal opening small. Ductus seminalis inserted medially dorsally at base of antrum; ductus bursae moderately long, membranous, very slender; corpus bursae, thickly membranous, moderate size, very elongate, narrow, apex rounded, moderately well differentiated from ductus; signum absent. Sternite A7 well sclerotised (Figure 2.71).

Figure 2.69 J. villida male genitalia

Figure 2.70 J . villida aedeagus

Figure 2.71 J . villida female genitalia
4 KEY TO SPECIES BASED UPON GENITALIC CHARACTERS
4.1 Male

1. Valva complex 2
Valva simple 3
2. Gnathos complex, lateral arms joined medially

\qquad
.J. villida
Gnathos simple, lateral arms not joined medially V. kershawi
3. Valva long, parallel sided, not markedly tapering G. klugii
Valva tapering 4
4. Valva broad basally, tapering from mid point on ventral margin 5
Valva narrow tapering 6
5. Dorsal sub-apical spine present, distal ventral margin of valva serrated N. lepreaVentral margin of valva strongly curved inwards, apex expanded, flattened,dorsal margin finely serrated, apex curved inwards, serrated.A. hobartia
Prominent dorsal sub-apical spine present, valvae rounded distally, apex not expanded,

\qquad
H. cordace
6. Valva short, narrow, tapering 7
Valva long, narrow, tapering 8
7. Aedeagus long, slender, moderately straight H. penelope
Aedeagus long, slightly sinuate H. merope
8. Valva tapers markedly 9
Valva relatively uniformly broad, gradually tapering 12
9. Uncus, long, simple, parallel sided, truncated, rounded apically 10
Uncus, long, simple, parallel sided, tapered, acute apically G. acantha
10. Saccus curved dorsally, apex rounded 11
Saccus curved dorsally, tapering, apex rounded O. latialis
11. Aedeagus long, slender, slightly sinuate O. lathoniella
Aedeagus long, stout, markedly sinuate O. ptunarra
12. Aedeagus long, slender, slightly sinuate O. correae
Aedeagus short, stout 13
13. Valva very small, dorsal sub-apical lobe present, apex not spinose O. orichora
Valva normal, dorsal sub apical lobe present, apex spinose O. kershawi

4.2 Female

1. Apophyses anteriores present 2
Apophyses anteriores absent 3
2. Signa present 3
Signa absent J. villida
3. Lamella antevaginalis distinct 5
Lamella antevaginalis not distinct. 4
4. Vaginal opening very well sclerotised V. kershawi
Vaginal opening not well sclerotised 5
5. Signa present 6
Signa absent 10
6. Apophyses posteriores extremely short to short 7
Apophyses posteriores moderately long to long 9
7. Ductus bursae membranous, moderately long, moderately slender 8
Ductus bursae relatively broad O. orichora
8. Corpus bursae elongated O. correae
Corpus bursae rounded O. latialis
Corpus bursae boot shaped O. kershawi
9. Signa present 11
Signa absent 10
10. Lamella antevaginalis, rhomboidal transverse plate O. ptunarra
Lamella antevaginalis, subrectangular plate, with medially indented posterior margin O. lathoniella
11. Apophyses posteriores short to moderately short 13
Apophyses posteriores moderately long to long 12
12. Signa, two, weak, long, narrow, longitudinal, dorso-lateral, ventro- lateral sclerotised bands, running to midpoint of corpus bursae A. hobartia
Signa, two, weak, long, narrow, one dorsal, one ventral, sclerotised bandsadorned with numerous inward pointing spiculesH. merope
13. Signa weak 14
Signa strong H. cordace
14. Lamella antevaginalis broad, rhomboidal, transverse plate, posterior margin notched medially N. leprea
Lamella antevaginalis weakly sclerotised narrow band G. klugii
Lamella antevaginalis wide sclerotised band extremely narrow medially H. penelope

5 DISCUSSION

5.1 Morphology

Marked inherited phenotypic sexual dimorphism is unusual in Australian Lepidoptera and is most commonly seen in Lycaenidae (Braby 2000). Within the Australian satyrine fauna, only species in the genus Oreixenica and Heteronympha display marked sexual dimorphism. Two of the six species in the genus Oreixenica: O. ptunarra and O. correae; and two of the seven species in the genus Heteronympha: H. merope and H. mirifica (a north-eastern temperate zone species from the northeast corner of Victoria, New South Wales and southern Queensland) exhibit marked sexual dimorphism. Phenotypic plasticity in tropical satyrine species between wet / dry season forms is well documented (Brakefield 1987; Brakefield \& Reitsma 1991; Braby 1994b; Kooi et al. 1994; Ruiter \& Brakefield 1994; Windig et al. 1994; Braby 1995c; Kooi \& Brakefield 1999; Roskam \& Brakefield 1999; Kemp 2000; Braby 2002; Lyytinen et al. 2004; Pijpe et al. 2007). In the temperate zone nymphaline species, James (1987) observed phenotypic plasticity in V. kershawi and J. villida in relation to body size and weight. Neither of these species show marked sexual dimorphism in their seasonal morphological phenotypic plasticity.

Melanitis leda is a tropical satyrine which exhibits seasonal polyphenism. There is a wet season form, characterised by uniform colouration and large, conspicuous submarginal eyespots; and a dry season form which lacks eyespots but displays remarkable variety in colour and pattern (Ruiter \& Brakefield 1994). Ruiter \& Brakefield (1994) found that part of the variation within the dry season form was genetically based. This species therefore provides an interesting example of an interaction between the phenotypic plasticity expressed in the wet season form and genetic polymorphism within the dry season form. McQuillan \& Ek (1997) and Anderson \& McQuillan (2000) in their studies of O. ptunarra and Berry (1997) in her study of O. lathoniella observed clinal variation in phenotype plasticity along climatic gradients. Sexual dimorphism as exhibited in O. ptunarra and O. correae is related to genetic polymorphism.

Phenotypic differences between the seasonal forms of tropical satyrine such as Bicyclus and Mycalesis imply that selection for cryptic colouration is very strong in the dry season when butterflies tend to rest inactively on a ground layer of dead brown leaves. In the wet season when an environment of lush growth promotes an active lifestyle, pattern elements, especially marginal eyespots, which are active anti-predator devices are favoured (Brakefield \& Larsen 1984; Brakefield 1987; Brakefield \& Reitsma 1991; Holloway et al. 1993 ; Braby 1994b; Kooi \& Brakefield 1999). It is interesting to note that the phenotypic variation expressed between the wet and dry season forms of tropical Satyrinae species are not as extreme as the sexual dimorphism expressed between the male and female phenotype in Oreixenica and Heteronympha.

Sexual dimorphism in Oreixenica and Heteronympha species is associated with differences in flight behaviour between male and female butterflies. H. mirifica and H. merope female butterflies aestivate during summer, resting in cool shady places amongst dry leaf litter (Braby 2004). Male H. mirifica fly high and perch 6-7 metres above the ground on foliage of trees overhanging gullies in more open sunlit areas to establish territories. Male H. merope fly slowly close to the ground over grasses early in the flight season; later flying higher, patrolling the mid to upper canopy with a faster erratic flight and commonly hilltop (Braby 2004).

There is compelling evidence from field observations to suggest that male O. ptunarra are territorial and that females are not (Anderson 2001a; Anderson \& McQuillan 2003). Male territories are based around patches of Poa tussocks. The size of territory appears to be largely determined by Poa patch size. Territories are centred around Poa patches rather than nectar sources, many territories seem to be preferentially adopted in areas with few to no nectar sources (Anderson 2001b). Male O. ptunarra are more active, spending most of their time flying in low search patterns around and between tussocks seeking females and defending territory. The dark cryptic colouration of male O. ptunarra aids in camouflaging the butterfly against the Poa tussocks, whilst assisting with heat absorption to aid flight. At higher altitudes darker colouration may be advantageous in males which need to be able to rapidly absorb heat to facilitate a high level of activity (Anderson \& McQuillan 2000).

Female O. ptunarra are relatively sedentary, spending most of their time basking on Poa tussocks, and occasionally flying short distances to adjacent tussocks (Anderson 2001a; Anderson \& McQuillan 2003). Anderson \& McQuillan (2003) found a negative cline indicating that females are lighter at higher altitudes, this maybe a response to exposure. At higher altitudes the females are more exposed whilst basking therefore lighter colouration prevents rapid heating. Furthermore pale colouration may be advantageous in assisting with camouflage against the light coloured grass tussocks with the marginal eyespots serving as active anti-predator devices.
O. correae males fly in the understorey close to small shrubs, herbs and grasses with a slow weak flight; feeding on the nectar of Asteraceae. O. correae males display flight behaviour akin to individuals flying in the tropical wet season, when ready food sources are available and individuals display uniform colouration and large and conspicuous submarginal eyespots. Female O. correae tend to be more sedentary confined to shady perches seldom venturing out into the open to feed. Flight behaviour akin to that displayed in the tropical dry season; when there is limited food resources available, individuals tend to rest inactively and cryptic colourations dominate. In some tropical Satyrinae species adults resulting from larvae reared on stressed plants had more dry season wing patterning than those reared on fresh material (Kooi et al. 1998).

The placement of H. cordace within the genus Heteronympha has been questioned by some authors (Burns 1948; 1956; Braby 2000). H. cordace differs considerably in adult morphology, flight behaviour, larval and pupal morphology and food plant specialisation to the other species of Heteronympha (Burns 1956). In many respects H. cordace phenotypicially and in flight behaviour is more similar to Oreixenica species than Heteronympha species. When both the male and female genitalia of H. cordace are compared with other Heteronympha species there is no doubt that H. cordace is a conventional Heteronympha based on genitalia because they share the male Heteronympha synapomorphies of the saccus being long, apex rounded, well sclerotised; and a prominent dorsal sub apical spine is present and female H. cordace signa is present.

5.2 Genitalia

The genitalia of temperate zone southeast Australian Satyrinae are fairly homogenous with only subtle interspecies differences within most genera. Within some genera, e.g. Argynnina, species are almost unrecognizable by examination of genitalia alone. In addition, some species resemble the genitalic features of species from other genera. This pattern of some species within a genus showing marked differences, and others very little has been documented previously in other studies of Satyrinae. The temperate northern hemisphere satyrine genus Maniola exhibits this pattern in both sexes (Grill et al. 2004). This pattern was also reported by Peña \& Lamas (2005) in their review of the Neotropical satyrine genus Forsterinaria. Braby (1993) in his study of the Australian tropical Satyrine genus Tisiphone noted the genitalia of T. helena shows a close resemblance to that of T. abeona but significant morphological differences in the uncus, gnathos, saccus and valvae to T. abeona. Mutanen (2006) in his work on moths noted external genital traits express varying amounts of variability and that the genital structures that do show variation in closely related species may show structural overlap. He also observed that the amount of variation in internal genitalia was equal to that in non-genital traits (2006).

5.2.1 Male Genitalia

Kuznetzov\& Stekol'nikov (2001) identified the main autapomorphies for male Satyrinae genitalia as: (1) the tegumen having distinct articulatory processes providing dorsal connection of valvae with segment; (2) the valvae are narrowed, heavily sclerotised, and their distal ends bear groups, or a row, of strong teeth; (3) modification of sub-uncus; and (4) the intra-valval muscles m7 are hypertrophied, and additionally contribute, their own autapomorphic characters.

5.2.1.1 Male Genitalic Autapomorphy 1:

In the southeast Australian satyrine, extended processes of the tegumen are not present nor are they present in the Neotropical Forsterinaria (Peña \& Lamas 2005). In the species studied by Kuznetzov\& Stekol'nikov (2001) the articulatory processes only appear to be extended in Ypthima motschulskyi.

5.2.1.2 Male Genitalic Autapomorphy 2.

The valva of all Satyrinae in my study were simple, narrow and sclerotised consistent with the findings of Kuznetzov\& Stekol'nikov (2001). In several species, autapomorphies were related to characteristics of the valva, particularly the degree of tapering and characteristics of the distal apex. The valvae of V. kershawi and J. villida are complex in contrast to the simple valvae of satyrines. In a global study Willmott et al. (2001) found that within the subfamily Nymphalinae the valvae vary from simple to complex among genera.

Goulson (1993) noted that individuals of M. jurtina exhibited significant variation in the male genitalia particularly in the distal and dorsal margins of the valva, leading him to question the reliability of characteristics of the valva. However, characteristics of the valva have been identified in a number of studies discussing the morphology of Satyrinae genitalia as key to identifying individual species (Braby 1993; Johnson \& Hedges 1998; Jutzeler et al. 1998; Sourakov 1999; Wakeham-Dawson \& Dennis 2001; Belik \& Zamolodchikov 2002; Peña \& Lamas 2005; Penz 2007). In particular, autapomorphies are identified in the width of the valvae, degree of tapering, the presence or absence of a dorsal sub-apical lobe, and if present the shape and size of the lobe, and the presence or absence of spines towards the apex of the valva. Genera in my study that show the most significant variation in valva complexity are Nesoxenica, Argynnina, Heteronympha, and Geitoneura.

5.2.1.3 Male Genitalic Autapomorphy 3.

The subunci referred to by Kuznetzov \& Stekol'nikov (2001) can be interpreted as the arms of the gnathos (Beljaev 2009). Kuznetzov \& Stekol'nikov (2001) consider the presence of paired subunci a characteristic feature of Satyrinae as they state these appendages are absent in the closely related family Nymphalidae, while being present in other diurnal Lepidoptera. Gnathos or subunci are present in other closely related Nymphalidae, for example the subfamily Charaxinae (Miller \& Miller 1976; Willmott \& Hall 2004). Furthermore, subunci or gnathos are also present in more distantly related Nymphalidae for example species of the genus Boloria (subfamily Heliconiinae) (Warren 1944).

In all the Satyrinae studied and in V. kershawi, the gnathos was simple whereas in J. villida the lateral arms of the gnathos are joined medially. Willmott et al (2001) in their review of the Neotropical Nymphalinae butterflies noted variation in the gnathos ranges from: a simple ' U ' shape, with projections connected by soft tissue; to lateral arms joined and continuously sclerotised; to heavily sclerotised, forming 2 long, posteriorly pointing projections.

5.2.1.4 Other Male Genitalic Apomorphies

The uncus is generally long, simple, parallel sided and truncated, the main exception being Heteronympha. In H. penelope and H. merope the uncus is short, as also seen in J. villida and V. kershawi. Characteristics of the uncus, particularly distal variations in the uncus, predominantly apical variations such as rounded or acute are often used as autapomorphies to define species for example the neotropical genus Calisto (Gail 1985). In Henotesia the uncus is strongly curved and broad (Usher 1985) whereas in Yphthimoides cipoensis the uncus forms a dorso-ventrally flattened process, in the form of a wide spatula, an unusual shape for the Satyrinae (Freitas 2004). In Pseudohaetera, a Neotropical genus which appears to share a similar ecological niche as Oreixenica, the uncus is curved and elongate (Constantino 1992) as in Oreixenica.

Where possible limited emphasis has been placed on characteristics of the aedeagus as the aedeagus changes shape according to the orientation in which it is studied, and as it is a rather soft structure, it can vary in shape.

5.2.2 Female Genitalia

The autapomorphies identified by Kuznetzov \& Stekol'nikov (2001) for the female Satyrinae genitalia are: (1) frequently with shortened, vestigial posterior apophyses; and (2) a single pair of long strip-shaped dentate or spinulous signa.

Overall the female southeastern Australian Satyrinae documented in this study, conformed to the Kuznetzov \& Stekol'nikov (2001) autapomorphies, with a notable exception regarding the signa. An additional autapomorphy that could be described for the temperate zone southeast Australian Satyrinae is (3) apophyses anteriores absent.

5.2.2.1 Female Genitalic Autapomorphy 1:

The length of the posterior apophyses ranged from extremely short to very long and showed interspecies variation within most genera especially within Oreixenica. In O. ptunarra the posterior apophyses are moderately long. Sharma (2003) described the apophyses posteriores in Elymnias hypermnestra undularis as moderately long measuring these to be approximately 0.5 mm long, a similar length to O. ptunarra.

5.2.2.2 Female Genitalic Autapomorphy 2:

Significantly signa are absent in Oreixenica; but all other Satyrinae studied had some form of signum. Most species had either one or two longitudinal strips of signa as described by Kuznetzov \& Stekol'nikov (2001) and documented in other Satyrinae (Johnson et al. 1986(87); Grill et al. 2004).

5.2.2.3 Female Genitalic Autapomorphy 3.

Comments referring to the condition of Satyrinae apophyses anteriores in the literature are scarce. None of the southeast Australian Satyrinae studied had apophyses anteriores present. In E. h. undularis the apophyses anteriores are also wanting (Sharma 2003). Apophyses anteriores were present in J. villida and absent in V kershawi. In the Nymphalidae tribe Argynnini (subfamily Heliconiinae) the apophyses anteriores are usually small and membranous, but some variation occurs (Simonsen 2006a).

5.2.2.4 Other Female Genitalic Apomorphies

The lamella postvaginalis and lamella antevaginalis was recognised by Sourakov (1999) as being of taxonomic value in the genus Calisto. Sourakov (1999) noted several different shapes in the lamella postvaginalis and lamella antevaginalis, including some similar to those observed in the southeast Australian Satyrinae.

6 CONCLUSION

The southeast Australian Satyrinae appear to be a monophyletic group based upon morphological evidence.

Chapter 3
 The Immature Stages of Oreixenica with notes on associated
 Temperate Zone Southeast Australian Satyrinae

1 Introduction

1.1 Brief history of Satyrinae taxonomy

The use of egg morphology in lepidopteran systematics dates back to the late nineteenth century. Chapman (1896) was one of the first authors to discuss the phylogenetic significance of the eggs in Lepidoptera (Common 1975). Comparative studies published in the mid twentieth century suggested that little could be gained from external chorion morphology, except at low taxonomic levels. However, the introduction of Scanning Electron Microscopy (SEM) increased the potential of comparative egg morphology as utilised by Downey \& Allyn (1981; 1984) and Kitching (1985).

The few comprehensive studies of Satyrinae eggs have mostly been limited to the northern hemisphere fauna (Garcia-Barros \& Martin 1991; Garcia-Barros 1994; GarciaBarros \& Martin 1995; Garcia-Barros \& Munguira 1997; Garcia-Barros 2000; 2006) or tropical species (Braby 1993; 1994a). The pioneering study by Garcia-Barros and Martin (1995) on the eggs of European Satyrinae butterflies, provided a preliminary comparative study of the satyrine external chorionic morphology.

The majority of other studies have focused on a single species or genus in isolation (Salkeld 1975; 1976; Downey \& Allyn 1981; 1984; Brower 1997; Freitas et al. 2002) or addressed particular research questions (Ruohomaki et al. 1993; Resetarits 1996; Oberhauser 1997; Clark \& Faeth 1998; Bergman 1999; Carter \& Feeny 1999; O'Brien et al. 2004; Steigenga \& Fischer 2007).

Early descriptions of lepidopteran larvae were generally confined to superficial characteristics such as colour, shape and size (Hinton 1946; 1948; 1955). These characteristics are useful in distinguishing between species (Stehr et al. 1987) but are subject to convergence, and are therefore limited in their utility in the separation of higher taxonomic divisions. However, larvae have been invaluable in demonstrating
weaknesses in adult classification and providing some resolution (Scoble 1995). Dyar (1894), Fracker (1915), and Hinton (1946) all carried out significant pioneering studies of lepidopteran larvae. Dayar and Fracker found that with certain significant exceptions their work supported and complemented existing classifications based on adult morphology (Scoble 1995). A study by DeVries et al. (1985) emphasising larval characters in the Nymphalidae led to hypotheses suggesting that many accepted taxa within the Nymphalidae were untenable in a phylogenetic system (Scoble 1995).

The limited number of studies that examine Satyrinae larvae are restricted to discussing and describing individual species or genus, and generally lack an evolutionary component (Braby 1993; 1994a; James 1999; Freitas et al. 2002; Murray 2003).

The most significant work on Satyrinae pupae compared the pupal structures of 10 species and their associated mode of pupation (Starnecker 1999). Pupal taxonomy has chiefly been limited to describing species and genera (Aiello 1991; Braby 1993; 1994a; Murray 2003; Freitas 2006). A limited number of authors have considered controls of pupal colour (Van Dyck et al. 1998; Jones et al. 2007).

1.2 Aims

The main aims of this study are threefold. Firstly, to comprehensively describe the eggs of Nesoxenica, the Tasmanian Heteronympha, Geitoneura, and Argynnina and all the species from the genus Oreixenica. Secondly, to describe and document the larva and pupa of Oreixenica ptunarra. Finally to revise the immature biology of selected Tasmanian Satyrinae. This will add greatly to the available information about immature Oreixenica, in particular O ptunarra.

2 Materials and Methods

2.1 Fresh Egg Collection

Eggs were obtained from adult butterflies collected in the field using a hand net between 2000 and 2005. After capture, female butterflies were transferred as soon as possible to oviposition containers. These containers consisted of a plastic drinking cup (66 mm wide and 95 mm deep) or takeaway food container (115 mm wide and 60 mm deep) covered by a piece of stocking held in place by a rubber band. Within the container was placed a folded piece of tissue paper and cuttings of Poa. A glass vial 10 mm in diameter and 50 mm in height was attached to the base of the container with a piece of adhesive putty. Packed inside the vial was a tissue paper wick that fanned out over the edge of the vial $2-3 \mathrm{~cm}$. The wicks were sodden with a $2-5 \%$ sugar solution. The oviposition containers were stored in the laboratory at room temperature.

Eggs were removed from the oviposition containers shortly after oviposition and stored in plastic, well ventilated containers, in a cool, dry location. Eggs that were laid on the sides of the containers were removed with a moistened camel hair brush or egg (swan beak) forceps.

The following information was recorded for each species: adult collection details, batch size and number of batches, the date of oviposition of each batch, the overall egg colour and colour changes during maturity, egg arrangement and orientation to the substrate and incubation period. The number of eggs laid per female was counted. Where possible, a minimum of 10 eggs per female, were measured for three dimensions: length, width and height following Young (2006a). When available, eggs from more than one female were measured to account for differences in egg size between individuals, as significant differences in egg size have been found between females of the same species of Lepidoptera (Syme 1961; Young 2006a).

Eggs and larvae were measured using a binocular microscope and an eyepiece micrometer. The measurements were expressed as mean \pm S.E. in mm. In each description, batch size is expressed as the mean \pm S.E., unless the batch number was small in which case the range of batch size is given.

2.2 Egg Collection from Pinned / Dried Specimens

As fresh eggs were not available for every species, eggs were collected from dried pinned specimens housed at the Australian National Insect Collection (ANIC) and the Tasmanian Department of Primary Industries and Water (DPIW). Eggs were collected using an adaptation of the Protease Digestion Method first described by Junker et al. (2006)

2.2.1 Protease digestion

The abdomen was detached from the metathorax of each specimen and placed in $140 \mu \mathrm{~L}$ LIFTON-buffer (refer section 2.2.2) in 1.5 mL Eppendorf microcentrifugation tubes (Eppendorf tubes). After incubation for 30 mins in a $55^{\circ} \mathrm{C}$ waterbath, $0.5 \mu \mathrm{~L}$ protease $K(P K)(20 \mathrm{mg} / \mathrm{mL})$ was added and the samples incubated for a further 18 hours. After 18 hours of incubation the abdomens were transferred into small glass vials containing a drop of buffer solution and the skin of the abdomen was split open at the anterior end to determine the degree of digestion. Free eggs were transferred with a camel hair brush into a 1.5 mL Eppendorf tube containing $500 \mu \mathrm{~L}$ milliQ. If the abdomens required further digestion they were returned to the original Eppendorf tubes which had been rinsed with milliQ. $140 \mu \mathrm{~L}$ clean LIFTON-buffer solution was then added to the Eppendorf tubes along with $2.0 \mu \mathrm{~L} \mathrm{PK}$. The samples were again incubated at $55^{\circ} \mathrm{C}$. This supplementary digestion was monitored regularly and terminated when eggs could be easily removed from the surrounding tissue.

The extracted eggs were washed in $500 \mu \mathrm{~L}$ milliQ and then dehydrated in a gradual acetone series consisting of 10 mins each in $30 \%, 50 \%, 70 \%, 80 \%, 90 \%$ and for two 30 \min. periods in 100% acetone. After the acetone dehydration the samples were immersed in $1000 \mu \mathrm{~L}$ of hexamethyldisilazane (HMDS) for final drying (Laforsch \& Tollrian 2000). After a 30 minute soak in HMDS, 90% of the HMDS was removed and the vials were immediately transferred to a vacuum desiccator. The bottom of the desiccator was covered by silica gel beads and the desiccator evacuated. The remaining HMDS was allowed to evaporate overnight under anhydrous conditions. All steps with HMDS were conducted under a fume hood due to the strong irritant nature of this reagent.

Several dried eggs were mounted on aluminium SEM stubs in different positions using clear nail polish (Young 2006a). If necessary the eggs were cleaned using a fine camel
hair brush dipped in water and then all were splatter coated with gold using a Bal-Tec SCD 050 Sputter Coater for 220 seconds at 40 milliamps.

2.2.2 LIFTON Buffer

LIFTON buffer consists of 6.8 g sucrose, 50 mL 200 mM Tris, 10 mL 0.5 M EDTA and $2.5 \mathrm{~mL} 20 \% \mathrm{w} / \mathrm{v}$ SDS made up to 100 mL with MilliQ.

2.3 Egg and Larva Photography

Unless otherwise stated in the text all fresh and mature eggs and larva were photographed by the author using a Wild MPS52 photoautomat camera attached to a Wild M8 zoom stereo-microscope.

Eggs of each species were also photographed at high magnification using an Environmental Scanning Electron Microscope (ESEM), Electroscan Corporation, Wilmington, Massachusetts, U.S.A., or FEI Quanta 600 ESEM, located in the Central Science Laboratory of the University of Tasmania.

2.4 Larva Data Collection

Upon hatching neonates were offered fresh Poa cuttings. These were monitored and the food plant was refreshed daily. The tissue paper lining in the bottom of the containers was changed twice a week and the frass and other debris removed. Every couple of days they were lightly sprayed with fresh water to maintain humidity within the containers.

Other caterpillars were carefully placed onto live food plants with a dampened brush. Both the caterpillars in containers and those on live food plants were stored at ambient room temperature within the laboratory under prevailing diurnal cycles.

First instar larvae were described and photographed from laboratory hatched specimens. Mature descriptions are based on field collected caterpillars and previously published works.

2.5 Glossary of terms used to describe eggs

Term	Definition
Aeropyle	Opening connecting outer surface of chorion with inner respiratory plastron
Anterior pole	End of egg on which the micropylar areas is located
Batch	Group of eggs laid in one session of oviposition activity. This generally occurs in short bursts of activity as the female moves from one location to the next. For the purposes of this study, a batch is defined as the number of eggs laid in a 24 hour period.
Cell	Termed areolae by Downey and Allyn (1981). This characteristic hexagonal patination on the surface of eggs most likely results from the dense crowding of inner epithelian cells in the ovarian follicles (García-Barros \& Martin 1995) Cells are usually but not always defined by cell walls and Aeropyles at the wall junctions.
Cell Wall	Linear boundaries that define the outline of the cells.
Chorion	Outer shell or covering of egg, produced by follicle cells
Loose	Eggs that are not attached to the substrate
Loosely	Easily detached from substrate
Attached	Securely glued to substrate
Micropylar Area	Area including the external openings of the Micropylar Areas, the rosette of cells immediatelý surrounding the Micropylar Areas and several rows of cells extending concentrically outwards. The cells in these rows are usually well defined, have no Aeropyles at their junctions and frequently have reticulated walls
Micropylar Areas	Funnel-shaped canal through which spermatozoa enter the egg
Plastron	Respiratory layers of air below the outer surface of the chorion which consist of gas-filled spaces in the inner chorion and also numerous, very thin, gasfilled layers between the endochorion and the exochorion.
Posterior pole	End of egg opposite anterior pole.
Realised Fecundity	Total number of eggs laid by one female.
Reticulation	The elevation of cell walls. A reticulated wall is one with well-defined and elevated cell walls.
Ribs	Elevated, linear extensions along the margins between columns of cells.
Rosette	Inner ring of cells surrounding the micropylar areas that forms a characteristic flower-shaped arrangement of tear-shaped cells.

Table 3.1 Glossary of terms used to describe eggs

3 Results

3.1 Egg Descriptions

Terminology used to describe features of the egg is detailed in Table 3.1; definitions are drawn from Downey \& Allyn (1981; 1984), Garcia-Barros \& Martin (1995), Hinton (1981), Salkeld (1983), Scoble (1995), Stehr et al. (1987), Torre-Bueno (1989), and Young (2006a).

3.1.1 Oreixenica

Oreixenica eggs are globular, spherical to sub-barrel, marked on anterior pole by hexagonal, slightly convex cells with narrow, elevated walls. Lateral sides marked by convex hexagonal cells arranged in longitudinal rows outlined by slightly elevated aeropyles with moderately small openings, situated at cell junctions. Chorion is smooth, inset with leaf shaped forms.

3.1.1.1 O. ptunarra

Micropylar area: distinct, number of openings: obscured. Cells in rosette $=13$, rows of cells in micropylar area $=10$.

Shape: Globular upright eggs, with longitudinal axis perpendicular to substrate (Figure 3.2a), posterior pole flattened, anterior pole circular, apex slightly pointed (Figure 3.2b) centred by a circular micropylar area (Figure 3.2b,c).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells, with narrow elevated walls (Figure 3.2c). Anterior pole circular, centred by circular micropylar area (Figure 3.2b,c). Lateral sides marked by convex hexagonal cells, arranged in longitudinal rows outlined by areopyles only at cell junction (Figure 3.2e,f). Lateral cell walls not discernible (Figure 3.2f). Broad, rounded, elevated, longitudinal ribs run from anterior pole to two-thirds way down side of egg to widest point (Figure 3.2a-f). Aeropyles located in valleys between ribs on lateral sides, slightly elevated, opening moderately small (Figure 3.2d,f). Chorion, smooth, gently undulating with numerous regularly spaced, inset, leaf shaped forms, sparse short narrow slight elevated ridges in rib area only (Figure 3.2f). Chorion on anterior pole rough (Figure 3.2c,d).

Eggs are laid singly, firmly attached to substrate by posterior pole. Newly laid eggs grass green in colour (Figure 3.8) translucent on maturity (Figure 3.9) (Couchman 1953, 1954, 1956; Common \& Waterhouse 1981; McQuillan \& Ek 1997; Braby 2000; Anderson 2001b; Anderson \& McQuillan 2003; New \& Sands 2003).

Oviposition: mean total eggs laid by one female $=26 \pm 5.0(\mathrm{SE})(\mathrm{n}=25)$;
Mean batch size $=4.16 \pm 0.5(\mathrm{SE})(\mathrm{n}=25)$; batch range $=0-9$.
Mean egg size $(\mu \mathrm{m})$ length $=739.8 \pm 8.3(\mathrm{SE})(\mathrm{n}=85)$; width $=733.8 \pm 8.1(\mathrm{SE})(\mathrm{n}=85)$;
height $=737.7 \pm 8.23$ (SE) ($\mathrm{n}=85$);
Incubation period $=23 \pm 3$ days $(\mathrm{n}=25)$.

Figure 3.1 Oriexenica ptunarra, mating pair.

Figure 3.2 O. ptunarra, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $350 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) junction of lateral side with anterior pole, scale bar $100 \mu \mathrm{~m}$; (e) posterior end of lateral side, scale bar $200 \mu \mathrm{~m}$; (f) chorion of middle of lateral side, scale bar $100 \mu \mathrm{~m}$.

3.1.1.2 O. latialis

Micropylar area: Distinct, number of openings: obscured. Cells in rosette $=9$, rows of cells in micropylar area $=16$.

Shape: Spherical, upright, with longitudinal axis perpendicular to substrate (Figure 3.3a), anterior pole circular, convex (Figure 3.3b), centred by circular micropylar area (Figure 3.3c).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells, with narrow elevated walls (Figure 3.3a-c). Anterior pole circular, centred by circular micropylar area (Figure 3.3b,c). Lateral sides marked by convex hexagonal cells, arranged in longitudinal rows (Figure 3.3e,f) cells outlined by areopyles (Figure 3.3d-f). Broad, rounded, elevated, longitudinal ribs run from anterior pole to the posterior pole (Figure 3.3a,f). Aeropyles slightly elevated, opening moderately small, located in valleys of ribs on lateral side. Chorion, smooth, sparse short narrow slight elevated ridges in rib area only (Figure 3.3e,f). Chorion on anterior pole rough (Figure 3.3c).

Eggs are laid singly whilst female is settled, dropped amongst tussock grass, and attached to substrate by posterior pole. Newly laid eggs are grass green in colour (Figure 3.10) and become translucent on maturity (Figure 3.11) (Waterhouse 1923; 1928; 1932; McCubbin 1971; Kitching et al. 1978; Common \& Waterhouse 1981; Crosby 1998; Braby 2000).

Oviposition: mean total eggs laid by one female $=18 \pm 0.5(\mathrm{SE})(\mathrm{n}=3)$;
Mean batch size $=2 \pm 0.5(\mathrm{SE})(\mathrm{n}=3)$; batch range $=0-4$.
Mean egg size $(\mu \mathrm{m})$ length $=720 \pm 10.0(\mathrm{SE})(\mathrm{n}=10)$; width $=716.5 \pm 10.5$ (SE)
$(\mathrm{n}=10)$; height $=499.3 \pm 10.5(\mathrm{SE})(\mathrm{n}=10)$;
Incubation period $=21 \pm 3$ days ($\mathrm{n}=3$).

Figure 3.3 O. latialis, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $350 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) posterior pole, scale bar $150 \mu \mathrm{~m}$; (e) chorion at junction of anterior pole and lateral side, scale bar $100 \mu \mathrm{~m}$; (f) chorion of lateral side towards posterior pole, scale bar $200 \mu \mathrm{~m}$.

3.1.1.3 O. lathoniella

Micropylar area: distinct, number of openings $=4$, cells in rosette $=9$ rows of cells in micropylar area $=18$.

Shape: Sub-barrel (hemi-elliptical), upright, with longitudinal axis perpendicular to substrate (Figure 3.4a), anterior pole circular, shallowly convex (Figure 3.4a,b), centred by circular micropylar area (Figure 3.4b,c).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells, with narrow elevated walls (Figure 3.4c). Anterior pole circular, centred by circular micropylar area (Figure 3.4b,c). Lateral sides marked by concave hexagonal cells, arranged in longitudinal rows (Figure 3.4a-f) cells outlined by areopyles (Figure 3.4d). Broad, rounded, elevated, longitudinal ribs run from anterior pole to widest point (Figure 3.4d-f). Aeropyles slightly elevated, opening moderately small, located in valleys of ribs on lateral side (Figure 3.4d), not visible on anterior or posterior poles. Chorion divided into two regions; upper ribbed area smooth, gently undulating with numerous regularly spaced, inset, leaf shaped forms (Figure 3.4f), and lower smooth, non-ribbed area.

Eggs are generally laid singly, firmly attached to substrate by posterior pole. Newly laid eggs yellowish green in colour (Figure 3.12) translucent on maturity (Figure 3.12 \& Figure 3.13). Emerging larva cut circular area around anterior pole (Figure 3.14) (Waterhouse 1923; 1932; Crosby 1965; McCubbin 1971; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Braby 2000).

Oviposition: mean total eggs laid by one female $=23 \pm 4.3$ (SE) ($\mathrm{n}=15$);
Mean batch size $=3.87 \pm 0.7(\mathrm{SE})(\mathrm{n}=15) ;$ batch range $=1-10$.
Mean egg size $(\mu \mathrm{m})$ length $=730.0 \pm 8.0(\mathrm{SE})(\mathrm{n}=13)$; width $=757.7 \pm 8.2(\mathrm{SE})(\mathrm{n}=13)$;
height $=761.5 \pm 7.8(\mathrm{SE})(\mathrm{n}=13)$;
Incubation period $=17 \pm 2$ days $(\mathrm{n}=15)$.

3.1.1.4 O. orichora paludosa

Micropylar area: distinct, number of openings $=5$, cells in rosette $=9$, rows of cells in micropylar area $=11$.

Shape: Sub-barrel (hemi-elliptical), upright, with longitudinal axis perpendicular to substrate (Figure 3.5a). Anterior pole circular, shallowly convex (Figure 3.5b), centred by circular micropylar area (Figure 3.5 c);

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells, with narrow elevated walls (Figure 3.5b). Anterior pole circular, centred by circular micropylar area (Figure 3.5b,c). Lateral sides marked by concave hexagonal cells, arranged in longitudinal rows, cells outlined by areopyles and multiple pores (Figure $3.5 \mathrm{~d}, \mathrm{e}$), cell form not as obvious near posterior pole (Figure 3.5 f). Broad, rounded, slightly elevated, longitudinal ribs run from anterior pole to half way down lateral side of egg to widest point (Figure 3.5a,d). Aeropyles slightly elevated with multiple pores (Figure 3.5e). Chorion shallowly undulating, with numerous regularly spaced, inset leaf shaped forms.

Eggs are generally dropped amongst grass tussocks by females whilst in flight but do not adhere to substrate. They are straw yellow in colour (Figure 3.15) and become translucent on maturity (Waterhouse 1923; 1932; Kitching et al. 1978; Common \& Waterhouse 1981; Braby 2000).

Oviposition: mean total eggs laid by one female $=18.5 \pm 4.14(\mathrm{SE})(\mathrm{n}=11)$;
Mean batch size $=4.38 \pm 0.5(\mathrm{SE})(\mathrm{n}=11)$; batch range $=0-9$.
Mean egg size $(\mu \mathrm{m})$ length $=737.5 \pm 3.5(\mathrm{SE})(\mathrm{n}=14)$; width $=739.3 \pm 3.4(\mathrm{SE})(\mathrm{n}=14)$; height $=742.9 \pm 3.1(\mathrm{SE})(\mathrm{n}=14)$;

Incubation period $=16 \pm 3$ days $(\mathrm{n}=11)$.

Figure 3.5 O. orichora, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $500 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) chorion towards anterior pole, scale bar $200 \mu \mathrm{~m}$; (e) chorion detailing aeropyles note multiple pores, scale bar $40 \mu \mathrm{~m}$; (f) chorion near posterior pole, scale bar $40 \mu \mathrm{~m}$.

3.1.1.5 O. correae

Micropylar area: distinct, number of openings: obscured, cells in rosette 8, rows of cells in micropylar area: 14.

Shape: Sub-barrel (hemi-elliptical), upright, with longitudinal axis perpendicular to the substrate (Figure 3.6a), posterior pole flattened, anterior pole circular, apex slightly pointed (Figure 3.6a,b), centred by a circular micropylar area (Figure 3.6b,c).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells, with narrow elevated walls (Figure 3.6b). Anterior pole circular, centred by circular micropylar area (Figure 3.6b,c). Lateral sides marked by concave hexagonal cells, arranged in longitudinal rows (Figure 3.6 b a,d-f) cells outlined by areopyles. Broad, rounded, elevated, longitudinal ribs run from anterior pole to posterior pole (Figure $3.6 \mathrm{~d}, \mathrm{e}$). Aeropyles slightly raised, opening moderately small, located in valleys of ribs on lateral side (Figure 3.6e,f), not visible on anterior or posterior poles. Chorion smooth with regularly spaced, inset, leaf shaped forms (Figure 3.6e).

Newly laid eggs are pale green (Figure 3.16) (Waterhouse 1923; 1932; McCubbin 1971; Quick 1971; Kitching et al. 1978; Common \& Waterhouse 1981; Braby 2000) becoming translucent on maturity.

Incubation period $=10-14$ days (Quick 1971)
Incubation period $=12-22$ days $($ McCubbin 1971 $)$

Figure 3.6 O. correae, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $500 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) chorion towards anterior pole, scale bar $200 \mu \mathrm{~m}$; (e) chorion on lateral side scale bar $40 \mu \mathrm{~m}$; (f) chorion on lateral side detailing aeropyles, scale bar $40 \mu \mathrm{~m}$

3.1.1.6 O. kershawi

Micropylar area: distinct, number of openings: obscured, cells in rosette $=9$, rows of cells in micropylar area $=13$.

Shape: Sub-barrel (hemi-elliptical), upright, with longitudinal axis perpendicular to the substrate (Figure 3.7a), posterior and anterior poles convex (Figure 3.7b).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells with narrow elevated walls (Figure 3.7d). Anterior pole circular, centred by circular micropylar area (Figure 3.7d). Lateral sides marked by concave hexagonal cells, arranged in longitudinal rows (Figure 3.7c) cells outlined by areopyles. Broad, rounded, elevated, longitudinal ribs run from anterior pole to posterior pole (Figure $3.7 \mathrm{c}, \mathrm{e}$). Aeropyles slightly raised, opening moderately small, located in valleys of ribs on lateral side, not visible on anterior or posterior poles. Chorion smooth with regularly spaced, inset, leaf shaped forms (Figure 3.7c).

Eggs are laid singly, firmly attached to substrate. Newly laid eggs are pale green in colour, and become translucent on maturity (Figure 3.17) (Waterhouse 1923; 1932; Kitching et al. 1978; Common \& Waterhouse 1981; Braby 2000).

Oviposition: mean total eggs laid by one female $=31 \pm 7.0(\mathrm{SE})(\mathrm{n}=4)$;
Mean batch size $=5.0 \pm 0.68(\mathrm{SE})(\mathrm{n}=4) ;$ batch range $=3-7$.
Mean egg size $(\mu \mathrm{m})$ length $=764 \pm 3.1(\mathrm{SE})(\mathrm{n}=17)$; width $=747 \pm 3.6(\mathrm{SE})(\mathrm{n}=17)$
height $=750 \pm 4.3$ (SE) ($\mathrm{n}=17$);
Incubation period $=15 \pm 3$ days ($n=4$).

ธิธว WAS '! м

Figure 3.8 O. ptunarra, newly laid egg on a blade of Poa tussock grass. Scale bar 0.5 mm .

Figure 3.10 O. latialis, newly laid egg on a blade of Poa tussock grass. Scale bar 0.5 mm .

Figure 3.12 O. lathoniella, eggs mature eggs left, fresh eggs centre, right. Scale bar 0.5 mm

Figure 3.9 O. ptunarra, mature eggs on a blade of Poa tussock grass. Scale bar 0.5 mm .

Figure 3.11 O . latialis, maturing eggs on a blade of Poa tussock grass. Scale bar 0.5 mm .

Figure 3.13 O. lathoniella, mature eggs on a blade of Poa tussock grass. Scale bar 0.5 mm

Figure $3.14 O$. lathoniella, eggs hatching Scale bar 0.5 mm

Figure $3.16 O$. correae, semi-mature egg on a blade of Poa tussock grass. Scale bar 0.5 mm (Field 2002).

Figure 3.15 O. orichora, newly laid egg on a blade of Poa tussock grass. Scale bar 0.5 mm .

Figure 3.17 O. kershawi, semi-mature eggs on a blade of Poa tussock grass. Scale bar 0.5 mm (Viridans 2006).

3.1.2 Nesoxenica leprea

Micropylar area: distinct, number of openings: 6 , cells in rosette 8 , rows of cells in micropylar area: 12.

Shape: Sub-quadrate, upright, with longitudinal axis perpendicular to substrate (Figure 3.18a), posterior and anterior poles convex (Figure 3.18b).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells with narrow, elevated, clearly defined walls (Figure 3.18b), anterior pole circular (Figure $3.18 b, c$), centred by circular micropylar area, rosette cells slightly raised (Figure 3.18c). Lateral sides by hexagonal flat cells with narrow, slightly elevated walls, cells outlined by areopyles (Figure 3.18c-f). Broad, rounded, elevated, longitudinal ribs run from anterior pole to posterior pole (Figure 3.18d). Aeropyles slightly elevated, with small openings, clearly present on top of ribs (Figure 3.18e) aeropyles are not present on anterior pole (Figure 3.18f). Chorion smooth with regularly spaced, inset, leaf shaped forms (Figure 3.18d)

Eggs are generally laid singly, firmly attached to substrate by posterior pole. Newly laid eggs are pale grass green in colour (Figure 3.20). Eggs are elongated along longitudinal axis (Waterhouse 1932; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 2000).

Oviposition: mean total eggs laid by one female $=22 \pm 4.0(\mathrm{SE})(\mathrm{n}=4)$;
Mean batch size $=20 \pm 0.2(\mathrm{SE})(\mathrm{n}=4)$; batch range $=0-32$.
Mean egg size $(\mu \mathrm{m})$ length $=1025 \pm 15(\mathrm{SE})(\mathrm{n}=10)$; width $=796.5 \pm 10.5(\mathrm{SE})(\mathrm{n}=10) ;$ height $=840.2 \pm 20.5(\mathrm{SE})(\mathrm{n}=10)$;

Incubation period $=14 \pm 3$ days ($n=4$).

Figure 3.18 N. leprea, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $500 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d)chorion middle of lateral side, scale bar $100 \mu \mathrm{~m}$; (e) aeropyles along ribs, scale bar $40 \mu \mathrm{~m}$; (f) chorion at the rim of anterior pole, note aeropyles not present on anterior pole scale bar $50 \mu \mathrm{~m}$.

3.1.3 Argynnina hobartia

Micropylar area: distinct, number of openings $=5$, cells in rosette $=12$, rows of cells in micropylar area $=18$.

Shape: Sub-hemi-spherical eggs, upright, with the longitudinal axis perpendicular to the substrate (Figure 3.19a,b), posterior and anterior poles convex (Figure 3.19a-c).

Characteristics: Egg marked on anterior pole by hexagonal, slightly convex cells with slightly elevated walls (Figure 3.19b,c). Anterior pole is circular, convex (Figure $3.19 b, c$), centred by circular micropylar area (Figure $3.19 \mathrm{c}-\mathrm{e}$). Lateral sides marked by concave, sub-quadrat cells, arranged in longitudinal rows cells outlined by areopyles (Figure $3.7 \mathrm{f}-\mathrm{i}$). Broad, rounded, shallow ribs run from anterior pole to posterior pole. Secondary ribs run perpendicular to main ribs, especially around centre of eggs (Figure 3.19f,g). Aeropyles slightly elevated, more conspicuous on ribs (Figure 3.19j), situated on elevated ridges of cell walls (Figure 3.19f,h,i). Chorion smooth.

Eggs are laid singly, firmly attached to substrate. Newly laid eggs are greenish yellow in colour (Figure 3.21). and become translucent on maturity (Figure 3.22 \& Figure 3.23). (Waterhouse 1932; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 2000).

Oviposition: mean total eggs laid by one female $=22 \pm 4.0(\mathrm{SE})(\mathrm{n}=4)$;
Mean batch size $=67 \pm 23.0(\mathrm{SE})(\mathrm{n}=4)$; batch range $=13-32$.
Mean egg size $(\mu \mathrm{m})$ length $=945 \pm 5.0(\mathrm{SE})(\mathrm{n}=10)$; width $=906 \pm 5.5(\mathrm{SE})(\mathrm{n}=10)$;
height $=903 \pm 4.5(\mathrm{SE})(\mathrm{n}=10)$;
Incubation period $=16 \pm 3$ days ($\mathrm{n}=4$).

Figure 3.19 Argynnina hobartia, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) lateral view of whole egg, scale bar $450 \mu \mathrm{~m}$; (c) anterior pole, scale bar $500 \mu \mathrm{~m}$; (d) micropylar area, scale bar $100 \mu \mathrm{~m}$; (e) micropylar area, scale bar $250 \mu \mathrm{~m}$;

Figure 3.19 continued Argynnina hobartia, SEM egg
(f) chorion detailing sub-quadrat cell form, scale bar $100 \mu \mathrm{~m}$; (g) chorion detailing ribs run from anterior pole to posterior pole note secondary ribs run perpendicular to the main ribs, scale bar $250 \mu \mathrm{~m}$; (h) chorion near anterior pole, scale bar $35 \mu \mathrm{~m}$; (i) chorion near anterior pole, scale bar $100 \mu \mathrm{~m}$; (j) aeropyle lateral view, scale bar $30 \mu \mathrm{~m}$,

Figure 3.20 N . leprea, fresh eggs. Scale bar 0.5 mm .

Figure 3.22 A. hobartia, maturing eggs. Scale bar 0.5 mm .

Figure 3.21 A . hobartia, fresh eggs. Scale bar 0.5 mm .

Figure 3.23 A. hobartia, mature eggs. Scale bar 0.5 mm .

3.1.4 Heteronympha

Sub-hemispherical / dome to turbinate / sub-conical, upright, eggs. Markings on anterior pole vary between species. Heteronympha characterised by secondary sets of ribs running perpendicular to main ribs.

3.1.4.1 H. cordace

Micropylar area: distinct, number of openings: obscured, cells in rosette 7, rows of cells in micropylar area: 15.

Shape: Sub-hemispherical to dome shape, upright, longitudinal access perpendicular to substrate, flattened basally on posterior pole (Figure 3.24a) anterior pole convex forming a peak (Figure 3.24a,b).

Characteristics: Egg marked on anterior pole by flat cells with slightly elevated walls (Figure 3.24b). Anterior pole, circular, convex forming a peak (Figure 3.24b), centred by relatively small circular micropylar area (Figure 3.24c). Lateral sides marked by hexagonal cells, floors concave with aeropyles on elevated ribs (Figure 3.24d). Posterior pole cells hexagonal concave, cell wall not visible. Broad, rounded, shallow ribs run from anterior to half way to posterior pole (Figure $3.24 \mathrm{e}, \mathrm{f}$). Minor secondary ribs run perpendicular to main ribs especially around centre of egg. Aeropyles slightly elevated (Figure 3.24d,f), situated on elevated ridges of the cell walls between junction of the two sets of ribs (Figure 3.24f).

Eggs are usually laid singly, however they are occasionally in small batches of up to five eggs. Eggs are very loosely adhered to substrate. Newly laid eggs are straw green in colour (Figure 3.28) and become translucent on maturity (Figure 3.29) (Waterhouse 1932; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 2000).

Oviposition: mean total eggs laid by one female $=28 \pm 14.3$ (SE) ($\mathrm{n}=4$);
Mean batch size $=10 \pm 1.3(\mathrm{SE})(\mathrm{n}=4) ;$ batch range $=7-13$.
Mean egg size $(\mu \mathrm{m})$ length $=935 \pm 15(\mathrm{SE})(\mathrm{n}=10)$; width $=704.5 \pm 12.5(\mathrm{SE})(\mathrm{n}=10)$;
height $=840.5 \pm 8.5(\mathrm{SE})(\mathrm{n}=10)$;
Incubation period $=12 \pm 3$ days $(\mathrm{n}=4)$.

Figure 3.24 H. cordace, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $500 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) chorion towards anterior pole, scale bar $200 \mu \mathrm{~m}$; (e) chorion lateral sde, scale bar $40 \mu \mathrm{~m}$; (f) chorion near posterior pole, scale bar $40 \mu \mathrm{~m}$

3.1.4.2 H. penelope

Micropylar area: distinct, number of openings: obscured, cells in rosette $=7$, rows of cells in micropylar area $=6$.

Shape: Turbinate to sub-conical (Figure 3.25a), upright, expanding basally, posterior pole flattened concave, anterior pole convex.

Characteristics: Egg marked on anterior pole by very fine indistinct dimpling, chorion nearly smooth (Figure $3.25 b, d$). Anterior pole is circular, convex, and centred by a circular micropylar area (Figure 3.25b). Lateral sides plain, smooth hexagonal cells, arranged in longitudinal rows (Figure 3.25e) cells outlined by areopyles (Figure 3.25f). Broad, rounded, shallow, ribs run from anterior pole to posterior pole. There is a secondary set of ribs that run perpendicular to main ribs especially around posterior end of eggs (Figure 3.25c). Aeropyles slightly raised, opening moderately small, situated on boundaries of cell walls on lateral side, not visible on anterior or posterior poles (Figure 3.25f). Chorion plain (Figure 3.25e).

Eggs are laid singly, dropped randomly amongst tussocks grass whilst female is perched on a stem of grass or low shrub. Newly laid eggs are pale yellowish white in colour, very loosely adhered to the substrate and become translucent on maturity (Waterhouse 1932; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 2000) .

Oviposition: mean total eggs laid by one female $=88 \pm 48.8(\mathrm{SE})(\mathrm{n}=3)$;
Mean batch size $=20 \pm 9(\mathrm{SE})(\mathrm{n}=3)$; batch range $=2-30$.
Mean egg size $(\mu \mathrm{m})$ length $=1025 \pm 6.4(\mathrm{SE})(\mathrm{n}=10)$; width $=984.5 \pm 10.5(\mathrm{SE})$
$(\mathrm{n}=10)$; height $=980.2 \pm 20.5(\mathrm{SE})(\mathrm{n}=10)$;
Incubation period $=20 \pm 7$ days $(n=3)$.

Figure 3.25 H . penelope, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $500 \mu \mathrm{~m}$; (c) posterior pole, scale bar $250 \mu \mathrm{~m}$; (d) chorion towards anterior pole, scale bar $200 \mu \mathrm{~m}$; (e) chorion lateral side, scale bar $100 \mu \mathrm{~m}$; (f) chorion detailing aeropyles lateral side, scale bar $50 \mu \mathrm{~m}$

3.1.4.3 H. merope salazar

Micropylar area: distinct, number of openings $=2$, cells in rosette $=5$, rows of cells in micropylar area $=6$.

Shape: Turbinate to sub-conical, upright, expanding basally, base and apex are flattened (Figure 3.26a), posterior and anterior poles flattened.

Characteristics: Egg marked on anterior pole by hexagonal convex cells with narrow, elevated walls (Figure 3.26b), centred by a circular micropylar area (Figure 3.26c,d). Lateral sides marked by concave hexagonal cells, arranged in longitudinal rows creating indistinct vertical ridges running around the egg, cells outlined by areopyles. (Figure $3.26 e)$. Broad, rounded, shallow ribs run from anterior pole to posterior pole. A secondary set of ribs run perpendicular to main ribs especially around centre of egg (Figure 3.26e). Aeropyles are raised, situated on elevated ridges of cell walls (Figure . 3.26f). Chorion smooth with regularly spaced, shallowly inset, leaf shaped forms (Figure 3.26c).

Eggs are laid singly or in groups of up to 10 eggs, very loosely adhered to substrate. Newly laid eggs are cream in colour (Figure 3.30) and become translucent on maturity (Waterhouse 1932; Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 2000).

Oviposition: mean total eggs laid by one female $=131 \pm 40(\mathrm{SE})(\mathrm{n}=2)$;
Mean batch size $=29 \pm 1(\mathrm{SE})(\mathrm{n}=2)$; batch range $=28-30$.
Mean egg size $(\mu \mathrm{m})$ length $=925 \pm 12.5(\mathrm{SE})(\mathrm{n}=10)$; width $=796.5 \pm 10.5(\mathrm{SE})$
($\mathrm{n}=10$); height $=905 \pm 12.5(\mathrm{SE})(\mathrm{n}=10)$;
Incubation period $=23 \pm 3$ days ($\mathrm{n}=2$).

Figure 3.26 H . merope, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $300 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) micropylar area, scale bar $50 \mu \mathrm{~m}$; (e) ribs lateral side, posterior end, scale bar $100 \mu \mathrm{~m}$;(f) chorion detailing aeropyles, scale bar $50 \mu \mathrm{~m}$.

3.1.5 Geitoneura klugii

Micropylar area: distinct, number of openings $=3$, cells in rosette $=5$, rows of cells in micropylar area $=8$.

Shape: Approximately turbinate, upright, truncate, expanding basally (Figure 3.27a), posterior and anterior pole flat (Figure 3.27a-c), moderately thick shelled, with well developed broad longitudinal ribs (Figure 3.27a,e).

Characteristics: Egg marked on anterior pole by semi-hexagonal, slightly convex cells with elevated walls (Figure 3.27c,d). Anterior pole circular, convex, flattened, rimmed with beaded ridge due to extensions of vertical ridges (Figure 3.27c), centred by a circular micropylar area (Figure 3.27d). Lateral sides marked by concave elongate rectangular cells, arranged in broad longitudinal rows (Figure 3.27a,e). Posterior pole smooth marked with regularly spaced, inset, leaf shaped forms (Figure 3.27b). Broad, rounded, shallow, ribs run from anterior pole to posterior pole. A secondary set of ribs run perpendicular to main ribs especially around centre of egg (Figure 3.27a,e). Aeropyles are raised (Figure 3.27e,f), situated on elevated ridges of cell walls (Figure $3.27 e, f)$.

Eggs are usually laid singly, occasionally in pairs, and are very pale green to cream in colour (Figure 3.31) becoming translucent on maturity.

Mean egg size $(\mu \mathrm{m})$ length $=750 \pm 15(\mathrm{SE})(\mathrm{n}=10)$; width $=800 \pm 10.5(\mathrm{SE})(\mathrm{n}=10)$; height $=800 \pm 10.5(\mathrm{SE})(\mathrm{n}=10)$;

The incubation period in Geitoneura klugii varies greatly (Common \& Waterhouse 1981; Braby \& New 1988a; 1999; Braby 2000)

Figure 3.27 G. klugii, SEM egg
(a) lateral view of whole egg, scale bar $200 \mu \mathrm{~m}$; (b) posterior pole, scale bar $100 \mu \mathrm{~m}$; (c) anterior pole, scale bar $500 \mu \mathrm{~m}$; (d) micropylar area, scale bar $100 \mu \mathrm{~m}$; (e) chorion near anterior pole, scale bar $50 \mu \mathrm{~m}$; (f) chorion near posterior pole, scale bar $50 \mu \mathrm{~m}$.

Figure 3.28 H . cordace, fresh eggs Scale bar 0.5 mm .

Figure 3.29 H . cordace, mature eggs Scale bar 0.5 mm .

Figure 3.30 H. merope, fresh eggs Scale bar 0.5 mm .

Figure 3.31 G. klugii, maturing eggs Scale bar 0.5 mm (Field 2002).

3.1.6 Vanessa kershawi

Shape: Barrel shaped, upright, height slightly greater than the width (Figure 3.34a), posterior pole flattened, anterior pole circular, apex concave (Figure 3.34b-d).

Characteristics: Anterior pole is circular, convex (Figure 3.34b), and centred by a circular micropylar area (Figure 3.34c). Lateral sides marked by well developed wing like transparent longitudinal ribs that enlarge apically and continue onto top edge of egg, numerous indistinct lateral ridges. Broad, rounded, shallow ribs run from anterior pole to posterior pole. A secondary set of ribs run perpendicular to main ribs especially around centre of egg (Figure 3.34d). Aeropyles are raised, opening moderately small, (Figure 3.34e), situated on elevated ridges of cell walls (Figure 3.34f).

Eggs are usually laid singly, and are pale green in colour (Figure 3.32, Figure 3.33) becoming greyish yellow as they mature.

Incubation period approximately 12 days (Common \& Waterhouse 1981)

Figure 3.32 V. kershawi, fresh egg lateral view (Field 2002).

Figure 3.33 V. kershawi, fresh egg dorsal view (Field 2002)

Figure 3.34 V. kershawi, SEM egg
(a) lateral view of whole egg, scale bar $500 \mu \mathrm{~m}$; (b) anterior pole, scale bar $500 \mu \mathrm{~m}$; (c) micropylar area, scale bar $100 \mu \mathrm{~m}$; (d) chorion towards anterior pole, scale bar $200 \mu \mathrm{~m}$; (e) chorion detailing aeropyles, scale bar $40 \mu \mathrm{~m}$; (f) chorion near posterior pole, scale bar $40 \mu \mathrm{~m}$.

3.1.7 Junonia villida

Shape: Dome shaped, upright, height about same as width (Figure 3.35, Figure 3.36), posterior pole flattened, anterior pole circular, apex concave.

Characteristics: Anterior pole is circular, convex, and centred by a circular micropylar area. Lateral sides marked by broad, rounded, shallow, well developed, transparent, longitudinal ribs that enlarge apically running from anterior pole to posterior pole. A secondary set of ribs run perpendicular to main ribs especially around centre of egg. Aeropyles are raised, situated on elevated ridges of cell walls.

Eggs usually laid singly, attached to substrate. Newly laid eggs are pale green in colour (Figure 3.35, Figure 3.36) becoming greyish yellow as they develop, then translucent on maturity (Figure 3.37). (Common \& Waterhouse 1981; Braby 2000).

Egg size $(\mu \mathrm{m})$ length $=800$; width $=700($ Braby 2000 $)$.
Incubation period is approximately 12 days (Braby 2000).

Figure 3.35 J. villida, fresh egg lateral view (Grund 2003).

Figure 3.36 J . villida, fresh egg dorsal view (Grund 2003).

Figure 3.37 J. villida, mature egg with emerging larva (Grund 2003).

3.2 O. ptunarra larval characteristics

Below are descriptions of O. ptunarra larva based on field and laboratory observations.

3.2.1 O. ptunarra 1st Instar Larva-

Head - Light khaki in colour.
Mean head capsule $=0.56 \mathrm{~mm} \pm 0.001$ (SE) ($\mathrm{n}=79$) (Figure 3.40).
Stemmata - 5, arranged in a semi circle, darker brown in colour than head.
Body - straw yellow-green in colour, marked with a row of spots ($\sim 0.02 \mathrm{~mm}$ in diameter) along lateral side.

Shape - Short and stout.
Setae - medium brown to tan in colour, bristle-like, slightly clubbed distally, $\sim 0.27 \mathrm{~mm}$ long.
Pinacula - positioned on slightly raised olive green tubercules.
Spiracles - pale yellow, periderm dark brown and raised, especially on abdominal segment 7 (A7) and thoracic segment 1 (T1).

Legs - 4 pairs of prolegs, 1 pair of anal claspers. Legs and prolegs same colour as body. Tan claws on the true legs (Figure 3.39).
Mean caterpillar length $=2.04 \mathrm{~mm} \pm 0.02(\mathrm{SE})(\mathrm{n}=33)$ (Figure 3.38).

Hatching - observed to take around 25 minutes from when micropyle split, until caterpillar was completely free.

Feeding - did not appear to commence directly after hatching; delay of a few hours.
Newly hatched caterpillars grazed on surface of Poa with a sideways movement of their head.
With increasing age and size deeper layers were grazed.
A preference for P. hiemata was noticed, younger larvae preferred younger shoots or broken ends of Poa.

Feeding was observed all hours of the day and night

Faeces - round, green globules, containing what appeared to be platelets of Poa epidermis.

Figure 3.38 O. ptunarra $1^{\text {st }}$ instar larva.

Scale bar 0.5 mm

Figure 3.39
O. ptunarra
$1^{\text {st }}$ instar larva, legs and claws.

Scale bar 0.5 mm

Figure 3.40
O. ptunarra $1^{\text {st }}$ instar larva, head and abdominal section.

Scale bar 0.5 mm

3.2.2 O. ptunarra $5^{\text {th }}$ Instar Larva

There are two distinct colour morphs in mature Oreixenica ptunarra larva; green
(Figure 3.41, Figure 3.42, Figure 3.43, Figure 3.44, Figure 3.45, Figure 3.46) and brown (Figure 3.47, Figure 3.48, Figure 3.49).

3.2.2.1 Green Colour Morph

Head Capsule - shape rounded, olive green in colour with two pale green spots on middle of each side of vertex. Head is distinctively separated from thorax (Figure 3.41, Figure 3.42)

Blotches - absent
Mouth parts - dark reddish brown (Figure 3.43).
Prothoracic Shield - absent
Mean head capsule $=\sim 5.0 \mathrm{~mm}(\mathrm{n}=2)$
Body - ground colour grass green (Figure 3.44, Figure 3.45, Figure 3.46)
Shape - Short and stout (Figure 3.44).
Dorsum - semi transparent dark green mid dorsal band boarded by narrow yellow stripes (Figure 3.44, Figure 3.45)

Dorsolateral bands - dark green stripe boarded by yellow bands (Figure 3.44)
Lateral - Narrow yellow lateral stripes
Venter - Overall grass green in colour, same as dorsum; A1 and A2 venter pale green (Figure 3.43).

Tubercles - absent.
Epidermis - smooth, covered with numerous secondary setae (Figure 3.46).
Legs - Olive green, same shade as head.
Prolegs - well developed prolegs present on A3, A4, A5, A6, and A10, same ground colour as body.

Anal Claspers - same ground colour as body present on A10.
Anal Plate - same ground colour and patterning as body.
Paraprocts - very well developed become paler distally.
Hypoprocts - poorly developed.
Setae - Short yellowish green, bristle-like, slightly clubbed distally.
Mean caterpillar length $=\sim 30 \mathrm{~mm}(\mathrm{n}=2)$
Resting position is prostrate tightly clasped to substrate.

Figure 3.41 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm

Figure 3.43 O. ptunarra, mature larva green colour morph, ventral surface. Scale bar 20 mm

Figure 3.45 O. ptunarra, mature larva green colour morph, ventral surface. Scale bar 20 mm

Figure 3.42 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm

Figure 3.44 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm

Figure 3.46 O. ptunarra, mature larva green colour morph, dorsal surface. Scale bar 20 mm

3.2.2.2 Brown Colour Morph

Head Capsule - shape rounded, terracotta brownish red in colour with two dark reddish brown spots on middle of each side of vertex. Head is distinctively separated from thorax (Figure 3.48).

Blotches - absent
Mouth parts - dark reddish brown.
Prothoracic Shield - absent
Mean head capsule $=\sim 5.0 \mathrm{~mm}(\mathrm{n}=1)$

Body - ground colour pinkish brown (Figure 3.47).
Shape - Short and stout.
Dorsum - semi transparent mid dorsal band, dark reddish brown, boarded by pale pink stripes.

Dorsolateral - pink strip boarded by pale pink bands, which are in turn boarded by dark pink stripes, ventral strip is very dark reddish brown.

Lateral - Narrow pale pink lateral stripes.
Venter - Overall same pinkish brown ground colour as dorsum; A1 and A2 venter pale pink.

Tubercles - absent.
Epidermis - smooth, covered with numerous secondary setae.

Legs - brownish red, same shade as head.
Prolegs - well developed prolegs present on A3, A4, A5, A6, and A10, same ground colour as body.

Anal Claspers - same ground colour as body present on A10 (Figure 3.49).
Anal Plate - same ground colour and patterning as body (Figure 3.49).

Paraprocts - very well developed become paler distally.
Hypoprocts - poorly developed.
Setae - Short pinkish brown, bristle-like, slightly clubbed distally.

Mean caterpillar length $=\sim 25 \mathrm{~mm}(\mathrm{n}=1)$
Resting position is prostrate tightly clasped to substrate.

Figure 3.47 O. ptunarra, mature larva brown colour morph, dorsal surface
Scale bar 20 mm

Figure 3.48 O ptunarra, mature larva head capsule brown colour morph Scale bar 3mm

Figure 3.49 O. ptunarra, mature larva anal claspers brown colour morph
Scale bar 3 mm

3.2.3 Field observations of mature O. ptunarra larva

Mature Oreixenica ptunarra larvae were found at Lake Crescent Interlaken [500125E 5330348N] (TASMAP 1992) (refer to Appendix 3 for further site details) on Wednesday $8^{\text {th }}$ February 2006, approximately six weeks prior to the flight season commencing at this locality. Lake Crescent is an open Poa grassland boarded by open alpine woodland to the east (Figure 3.50) fresh water lake and road to the north, marshland and fresh water lake to the south and open grassland interspersed with marshland to the west. The weather conditions during collection were mild, very still with high cloud cover (Figure 3.51), ahead of a cold front which crossed the state around midnight. Daytime conditions were fine, still and mild to warm.

Figure 3.50 Field collection site looking towards the southeast, Lake Crescent, Interlaken, Tasmania.

Figure 3.51 Dusk Field collection site, Lake Crescent, Interlaken, Tasmania.

Figure 3.52 Field collecting mature O. ptunarra larva, Lake Crescent, Interlaken, Tasmania.

The larvae start to stir at sunset crawling to the tops of the tussocks to begin feeding (Figure 3.53, Figure 3.54). Larvae were most active within the first two hours after sun set. Larval activity dramatically declined within three hours of sunset and no larvae were seen after this time.

The most effective method to observe larvae is crawling through the tussocks with a head torch looking for a caterpillar feeding near the top of Poa (Figure 3.52).

When initially disturbed by light, the larvae freeze and remain motionless on the Poa (Figure 3.53). When physically disturbed, the larva would drop from the Poa shoot upon which they were feeding, down into the base of tussock and burrow down into the root mass.

Figure 3.53 O. ptunarra, mature larva

Figure $3.54 O$. ptunarra, mature larva

3.3 Satyrinae larval characteristics

A comparison to temperate zone southeast Australian Satyrinae larvae is presented in
Table 3.2. These notes are based on field observations augmented with descriptions from previously published works (Couchman 1953; Couchman \& Couchman 1978;
Common \& Waterhouse 1981; Braby 2000)

Table 3.2 Comparison of Satyrinae larva

Species / Maturity	Head	Body
O. ptunarra 1st Instar Larva	Rounded, yellowish khaki green in colour. Short black hairs.	Pale green with long black setae
O. ptunarra Mature Larva	Olive green or terracotta brownish red colour, dorsal surface rounded with a few scattered short black setae.	Green or pinkish brown in colour, short and stout with a middorsal line edged by a narrow subdorsal line, a lateral line and a ventrolateral band. Hairy with short bristle like secondary setae. Anal segment with a forked posterior projection.
O. latialis 1st Instar Larva	Pale green in colour, dorsal surface rounded	Green in colour with long black hairs
O. latialis Mature Larva (Figure 3.57)	Pale brown in colour, dorsal surface rounded	Pale pinkish-brown or stone-brown / fawn, with darker longitudinal middorsal lines edged by a paler subdorsal line, and two dark lateral lines. Anal segment with a forked posterior projection.
O. lathoniella 1st Instar Larva (Figure 3.55)	Greenish brown in colour	Green, with yellowish green longitudinal lines
O. lathoniella Mature Larva	Green or light brown in colour, with faint darker markings; dorsal surface rounded.	Green with yellowish green longitudinal lines, or light pinkish brown with dark middorsal line edged by a narrow pale subdorsal line, prominent pale dorsolateral and ventrolateral lines, and two faint lateral lines. Sometimes, with a series of small black dorsolateral dots. Anal segment with a forked posterior projection.
O. orichora 1st Instar Larva (Figure 3.56)	Brown in colour with long whitish hairs, dorsal surface rounded	Green with very long brown hairs
O. orichora Mature Larva	Light green in colour, dorsal surface rounded.	Green with darker green longitudinal lines and minute white spots. Anal segment with a forked posterior projection.
O. correae 1st Instar Larva	Black in colour, dorsal surface rounded	Greenish with brown hairs
O. correae Mature Larva	Green in colour, dorsal surface rounded	Khaki green with darker green longitudinal lines or pale brown in colour with darker green longitudinal lines. Anal segment with a forked posterior projection.
O. kershawi 1st Instar Larva	Brown in colour, with a few black hairs.	Cream in colour with sparse short black hairs

O. kershawi Mature Larva (Figure 3.58)	Pale green in colour, slightly hairy, surface roughened, slightly concave.	Green with darker green longitudinal lines and minute white dots. Anal segment with forked posterior bifid processes tipped with pink.
N. leprea 1st Instar Larva Figure 3.60)	Broad, light brown with numerous setae longer than setae on the body.	Light green with a darker green dorsal line, and a pair of less distinct subdorsal lines, and an even less distinct lateral line joining a series of small black tubercles, one on each segment. Setae, medium brown to \tan in colour, bristle-like, clubbed distally
N. leprea Mature Larva	Green darker than body.	Green with a dark green lateral line and a lower yellowish white lateral line joining tubercles.
A.. hobartia 1st Instar Larva (Figure 3.61 \& Figure 3.62)	Dark brown, rounded, with numerous long dark brown setae, longer then the setae on the body.	Body light creamish green / grey brown to with an obscure black dorsal line, and a pale ventrolateral line. Two distinct spots in the dorsal lateral position on the pro-thoracic shield. Dense short brown setae clubbed distally. Anal segment with a forked posterior projection.
A.. hobartia Mature Larva	Rounded, dark brown	Grey-brown to chocolate brown, with an obscure black dorsal stripe, and a pale ventrolateral line. Anal segment with a forked posterior projection.
H. cordace 1st Instar Larva (Figure 3.63)	Rounded, blackish brown, absent of long setae.	Pale green with darker longitudinal lines and a blackish lateral line. Marked with rows of spots along the dorsal, dorsolateral and lateral sides. A prominent spot is present on the lateral side of the pro-thoracic shield and on the lateral side of segment A10.
H. cordace Mature Larva	Dark reddish -brown, with paler markings. Slightly concave dorsally without horns.	Green, greenish-brown, or dark brown, with a brown darker middorsal line, edged by a paler subdorsal line, and a pale lateral line; rough skin. Abdominal segments with a black lateral line, anal segment with a prominent forked posterior projection.
H. penelope Mature Larva	Dull brown or blackish brown, and hairy. Rounded, convex dorsally, almost circular when viewed anterioly.	Variably brown with darker brown markings and a middorsal line dark brown middorsal line edged with grey, and a greyish -brown dorsolateral line. Anal segment with a forked posterior projection.
H. merope 1st Instar Larva (Figure 3.64 \&Figure 3.65)	Black to blackish brown with long setae.	Green to greenish cream, with very long black setae. Darker dorsal stripe, and distinct pro-thoracic shield
H. merope Mature Larva	Brown to reddish brown, rugose, head is flatter dorsally rather then concave. Numerous dense short setae.	Variable in colour, generally green, grey or light brown, mottled with darker brown and dense short setae and a darker broad brown broken middorsal line and narrower brown broken dorsolateral line. Anal segment with a forked posterior projection.
G. klugii Mature Larva (Figure 3.66)	Green, rounded with longer setae than body.	Green with a broad darker green mid-dorsal line, a thin pale dorsolateral line edged above with dark green, and a cream or pale yellow ventro-lateral line. Short erect setae, white. Anal segment with a forked posterior projection tipped with reddish-brown.
V. kershawi Mature Larva (Figure 3.67)	Black or brown, with numerous setae.	Variable in colour, usually a shade of brown but sometimes yellowish grey or green, with paler, yellowish or whitish middorsal, lateral and lines ventral stripes. Each segment has several branched spines.
J. villida Mature Larva (Figure 3.68)	Black with short setae and two short black branched spines.	Black with numerous short thick black branched spines, sometimes arising from paler areas. Prothorax dull orange.

Figure 3.55
O. lathoniella, first Instar larva

Figure 3.56
O. orichora, first

Instar larva

Figure 3.57
O latialis, mature larva
(Viridans 2006)

Figure 3.58
O kershawi, mature
larva
(Field 2002)

Figure 3.59 N. leprea, 1st Instar larva, dorso-lateral
view.

Figure 3.60 N. leprea, 1st Instar larva, ventral view.

Figure 3.61
A. hobartia,

1st Instar larva, dorso-lateral view.

Figure 3.62
A. hobartia,

1st Instar larva, ventral view.

Figure 3.63
H. cordace,

1st Instar larva, dorso-lateral view.

Figure 3.64
H. merope,

1st Instar larva, dorso-lateral view

Figure 3.65
H. merope

1st Instar larva,
ventral view

Figure 3.66
G. klugii, mature larva, dorso-lateral view
(Field 2002).

Figure 3.67
V. kershawi, mature larva dorso-lateral view (Field 2002).

Figure 3.68 J. villida, mature larva, dorso-lateral view (Field 2002).

3.3.1 Larval food plants

The list of larval food plants presented in Table 3.3 is based on field observations augmented with information from previously published works (Waterhouse 1923;

Couchman 1948, 1953, 1954; Burns 1956; Couchman 1956; McCubbin 1971;
Couchman \& Couchman 1978; Common \& Waterhouse 1981; Prince 1988; Braby 1995a; James 1999; Braby 2000).

Table 3.3 Larval Food Plants

Species	Main hosts	Minor hosts
N. leprea	Uncinia tenella (Cyperaceae)	
A. hobartia	Lolium perenne (Poaceae) Introduced	Natural food plants have not been recorded; probably Poa labillardieri \& Austrodonthonia sp.
H. cordace	Carex appressa	
H. merope	Austrostipa sp. Imperata sp. Micolaena stipoides Poa sp. Themeda triandra Cynodon dactylon Introduced species include Brachypodium distachyon, Bromus cathartiens, Ehrharta erecta.	Agrostis sp. Brachypodium sp. Bromus sp. Cynodon sp. Ehrharta sp. Pennisetum sp. rarely on Gahnia sp.
H. penelope	Austrodanthonia penicillata, Austrodanthoniapilosa Themeda triandra Poa sp.	Brachypodium sp. Ehrharta sp.
Geitoneura	G. klugii larva, in all instars, feed openly during the daytime, unlike G. acanthi. Although G. klugii larva remain fully exposed on the foliage it is difficult to detect.	
G. klugii	Austrodanthonia sp. Austrostipa flavescens, Joycea pallida, Themeda triandra (Poaceae); Poa sp. Introduced species include Brachypodium distachyon, Ehrharta calycina, Vulpia sp. (Poaceae).	Brachypodium sp. Ehrharta sp. Vulpia sp.
O. ptunarra	Poasp.	
O. latialis	Poasp.	
O. lathoniella	Poasp.	Microlaena sp.
O. orichora	Poasp.	
O. correae	Poasp.	
O. kershawi	Tetrarrhena juncea (Poaceae)	Poa sp.

3.4. Pu pal Characteristics

3.4.1 Oreixenica ptunarra

Fresh pupae greenish grey flecked with black, on maturity exuvium (pupal shell) light transparent brown. Venter pale brown streaked with dark brown. Pair of dark brown spots on dorsolateral line and in middle of each abdominal segment on raised short ridges. Setae very short, black and blunt (Figure 3.69, Figure 3.70 \& Figure 3.71). No cocoon is produced.

Anal area has longitudinal split bordered laterally by mounds with longitudinal furrows. Base of anus has deep concavity centralised in cremaster. Apex of cremaster orientated ventrally. Approximately 20 short, robust, hooked, falcate setae are crowded on apex of cremaster.

Male genital area has a short longitudinal slit at base of a small furrow. Labrum is triangular with truncated apex transverse furrows; labium pentagonal; "mandibles" raised, rugose and large; antennae moderately broad; prothoracic legs visible; hind tibia not visible; proboscis does not reach antenna.

Prothoracic spiracles not visible, meso and meta thoracic spiracles slightly raised; thoracic spiracles inconspicuous. Abdominal spiracles A1, A2, A3, A4, A5, A6 all well developed; A7 present but under developed.

Punctures only present on abdominal segments on both dorsal and ventral sides, small randomly distributed at base of secondary setae; dorsal cremaster furrow between A7 and A8 absent.

Hind wings consolidate at A 3 ; junction of the wings pronotum conspicuously angular.

Male pupae are 10.25 mm long $\pm 0.25 \mathrm{~mm}$ and 4.25 mm wide $\pm 0.25 \mathrm{~mm}(\mathrm{n}=3)$.

Pupa lies loose at base of tussocks amongst shoots of grass resting in a fork between adjacent stems (Figure 3.72 \& Figure 3.73).

Figure 3.69
O. ptunarra exuviae,
dorsal view

Figure 3.70
O. ptunarra exuviae, ventral view

Figure 3.71
O. ptunarra exuviae, lateral view

Figure 3.72 O. ptunarra pupa resting in Poa tussock.

Figure 3.73 O. ptunarra pupa resting in Poa tussock.

3.4.2 Satyrinae Pupae

Satyrinae pupal descriptions presented in Table 3.4 are based on field observations augmented with descriptions from previously published works (Couchman 1953;

Couchman \& Couchman 1978; Common \& Waterhouse 1981; Braby 2000)

Table 3.4 Comparison of Satyrinae Pupae

Species	Pupal Description	Attached / Unattached
O. ptunarra	Smooth, greenish grey flecked with black, with a pair of black spots on each segment of abdomen. Lay loose in the tufts of grass. Pupa lies loose amongst shoots of grass at base of tussock, resting in a fork between adjacent stems.	Unattached
O. latialis	Smooth, pale brown with darker markings. Anterior end truncate, forewing with a white dorsal ridge. Cremaster small and downwardly curved. Abdominal segments lack prominent protuberances or lateral projections. Lay loose on the ground or amongst tussocks of grass.	Unattached
O. lathoniella	Various shades of brown. Pair of pointed lateral projections at anterior end. Abdominal segments 1 to 3 with paired dorsal projections, segments 4 to 7 each with a transverse dorsal ridge produced into a pair of lateral projections. Prominent protuberances on the abdominal segments. Suspended head downwards by cremaster, often attached to dead leaves near base of food plant.	Attached
O. orichora	Pale grey-brown, mottled with darker brown. Two short lateral spikes at anterior end. Lay loose but upright in debris at base of tussock food plant.	Unattached
O. correae	Various shades of brown, mottled with darker brown. A rounded dorsolateral process is present on abdominal segments 1 to 7. Anterior end truncate. Suspended head downwards by cremaster. Attachment of silk to substrate is very weak and frequently pupa becomes detached.	Attached
O. kershawi	Greenish brown markings. Anterior end truncate with two lateral projections. Abdominal segments 1 to 3 each with a dorsolateral process, segments 4 to 7 each with a transverse ridge produced into a dorsolateral projection. Suspended head downwards by cremaster.	Attached
N. leprea	Suspended head downwards by cremaster, on food plant.	Attached
A.. hobartia	Suspended head downwards by cremaster from stem of food plant.	Attached
H. cordace	Smooth, truncate and anterior end slightly concave, $12-14 \mathrm{~mm}$ long. Bright green, suffused with pale yellowish -green on wings, with conspicuous black spots. Head with a lateral black spot near eye, and one to three black spots along antenna. Thorax with a slight white dorsal ridge, forewing with seven or eight black spots, three or four of them along dorsal margin; abdominal segments 1 to 7 each with a black dorsolateral sport edged posteriorly with white. Suspended head downwards by cremaster, attached to a small pad of silk spun on leaves of food plant or on adjacent objects.	Attached

	17mm long, stout, smooth, pale brown with darker brown markings. Forewings with a series of dark brown spots along posterior margins. Cremaster short and downwardly curved. Lies loose on ground at the base of food plant, amongst leaves and debris that are usually held together by a few strands of loose silk.	Unattached
H. merope (Figure 3.74)	Smooth, grey or brown, with darker spots and markings. Forewing with a series of black spots along posterior margin. Cremaster is short and sharply pointed. Lies loose on ground beneath overhanging vegetation or debris, often in a shallow cavity lined with a few strands of silk.	Unattached
	Pale green 13mm long, anterior end truncate. Thorax with a slightly yellow dorsal ridge. Dorsal margin of the forewing has a yellow longitudinal ridge. Abdomen with a yellow transverse ridge on segment 4. Three pairs of pale yellow dorsal spots appear on abdominal segments 1 to 3. Suspended head downwards by cremaster, attached to a pad of silk spun on food plant or sometimes on a nearby plant, stick or rock.	Attached
	17-18 mm long, variable in colour, grey-brown, or reddish brown with darker markings. Sometimes suffused with metallic silver or gold, and a series of four pairs of silver or golden dorsal spots. Anterior end rounded. Thorax with a prominent dorsal ridge, metathorax and abdominal segments 1 to 8 each with a small dorsolateral process and a smaller dorsal process. Hangs head downwards, attached by cremaster to either the food plant or a nearby object.	Attached
V. kershawi		
14 - 17mm long, stout and short, variable in colour, often dull back, blothed with white or reddish yellow. Anterior end rounded, abdomen with series of small rounded dorsal processes. Suspended head downwards by cremaster from a pad of silk attached either to food plant or a nearby stone, wall or fence.	Attached	
J. villida		

Figure 3.74 H. merope pupa
(Field 2002).

3.5 General characteristics of immature stages of \mathbf{O}. ptunarra

3.5.1 Spermatophores

Spermatophore counts for dissected O. ptunarra females ($\mathrm{n}=30$) revealed that only one female was found with two spermatophores in her bursar. Three were found to have no spermatophore.

3.5.2 Hatching success

The hatching success of O. ptunarra under laboratory condition is around 60%; the rate of egg fertilization is around 85%, with the caterpillars being visible through the transparent eggs. Hatching was observed to take around 25 minutes from when the micropyle split, until the caterpillar was completely free.

Possible reasons for the remainder not hatching include inadequate resource allocation for the larvae to fully develop (due to the variation in the batch oviposited).

On examination, it was revealed that some eggs had partially split, which may suggest inadequate strength of the larvae to fully emerge, again possibly due to inadequate resource allocation or variation in the laboratory microclimate compared to field conditions.

4 DISCUSSION

My results have contributed a considerable amount of new information about the immature stages of temperate zone southeast Australian Satyrinae especially Oreixenica. This study has comprehensively described the eggs of Nesoxenica, the Tasmanian Heteronympha, Geitoneura, and Argynnina and all the species from the genus Oreixenica. Secondly the larva and pupa of O. ptunarra were described.

4.1 Eggs

4.1.1 Egg morphology

All eggs upright, with slight variation in shape; Oreixenica eggs are globular, spherical to sub-barrel, Heteronympha sub-hemispherical to dome, and turbinate to sub-conical, Geitoneura turbinate, Vanessa barrel and Junonia dome shaped. Eggs are marked on anterior pole by hexagonal cells, some variation within cell depth, and height and thickness of cell walls. Lateral sides marked by convex hexagonal cells arranged in longitudinal rows outlined by slightly elevated aeropyles with moderately small openings, situated at cell junctions. Evidence from satyrine butterflies suggests that the external chorionic features are highly homoplasious and probably more useful at low than at high taxonomic levels within Satyrinae (Garcia-Barros \& Martin 1995; GarciaBarros \& Munguira 1997). To some extent this is borne out within this study; however there are fine variation in the chorionic features between genera. The micropylar area does offer some definition between genus and species. In all species there are variations in the number of cells in the rosette, the number of rows of cells in the micropylar area and where it is not obscured, the number of openings. Arrangement and distribution of ribs also varies significantly between species. The shape, size and location of aeropyles varies to some degree between species. Eggs of O. orichora are further distinguished by the multiple aeropyles or multiple pores arranged along the cell walls. Multiple aeropyles appear to be reasonably uncommon within the eggs of Nymphalidae. Nevertheless the identity of multiple pores / multiple aeropyles is in doubt. Salkeld (1983) refers to them as aeropyles, however Garcia-Barros \& Martin (1995) were uncertain of the homology of openings that occur along cell walls and not at cell junctions, with aeropyles.

4.1.2 Fecundity and egg size

Fecundity and adult size have been positively correlated in a number of studies (GarciaBarros 1994; Garcia-Barros \& Martin 1995; Garcia-Barros \& Munguira 1997; GarciaBarros 2000). Garcia-Barros (2000) reported significant results in more that one thousand Papilionoidea and Hesperiidae species.

In the Satyrine the correlation between egg size and adult size is also significant (GarciaBarros 2000). Based on Garcia-Barros (2000) positive correlation between egg size and adult size of $\mathrm{r}=0.40 \mathrm{P}<0.0001$ O. ptunarra fits within the 95% confidence interval line.

Considering that large body size enhances fecundity, does it also affect egg size and survival? In the case of O. ptunarra the egg size is relatively large proportionate to body size when compared with other satyrine species. Males transfer nutritional resources to females during mating; a multiply-mated female Pieris napi (Pieridae) had higher lifetime fecundity, laid proportionally larger eggs and had longer lifespan compared to once-mated females (Kaitala \& Wiklund 1994). It is possible that O. ptunarra females direct male-derived nutrients to their eggs.

The high variability in batch size observed across all species may have been linked to resource availability, in the form of nutrients acquired from the male ejaculate or from food availability during egg production (Oberhauser 1997). However, the main nutrient resource is the female herself and her body size is a measure of this resource.
O. ptunarra eggs are randomly dropped during flight and not clustered together. Garcia-Barros (2000) states that eggs clustered together once hatched risk increased sibling competition and host plant depletion. There may also be increased risk associated with predation in egg/larvae clustered together. The spacing of eggs by O. ptunarra could be a behavioural mechanism in response to poor quality host plants and also a method to help decrease the effects of stochastic events. A study on egg clustering by Courtney (1984) has suggested that egg clustering has evolved in response to increased fecundity and necessitates the need for large plants to support large numbers of larvae. Most Poa could not tolerate large numbers of larvae feeding on them for long periods.
O. ptunarra egg incubation periods have varied two-fold between studies (Couchman 1953; Anderson 2001b), these results suggest a high variability in the incubation period, which has shown to be related to temperature in some butterflies belonging to the Satyrinae genera (Kitching et al. 1999).

It is generally accepted that O. ptunarra is predominately a monandrous species (Anderson 2001b), however the discovery of two spermatophores in one female infers that multiple matings may sometimes occur. This finding is most likely to have been the result of two close consecutive matings contributing to a single reproductive event, rather than two separate reproductive events. Considering weather limitations on O. ptunarra's flight activity (Anderson 2001b), only one successful ovarian cycle would generally be possible, resulting in a single reproductive event.

The two spermatophores found in a female may have resulted in all the offspring arising from a single spermatophore, or a combination from both, depending on the timing of the depositions. Benefits from both of these situations can be identified. Firstly, if all offspring had arisen from the first spermatophore, then the second may have still served a nutritive purpose. There is a growing body of evidence to suggest that polyandrous insects use nutrients in the male ejaculates to increase fecundity (Rutowski 1982, 1984, 1985; Rutowski \& Gilchrist 1987; Rutowski et al. 1987; Dickinson \& Rutowski 1989; Rutowski et al. 1989; Rutowski 1991, 1998; Wickman \& Rutowski 1999; Wedell et al. 2002). It is however difficult to directly apply this to the case of the female in this study as the total number of eggs she laid (4) was less then most other females which had received single spermatophores. A possible explanation for this may be related to the polygynous nature of O. ptunarra; the two males that mated with the female, may have had reduced sperm counts and/or reduced nutritive content due to their multiple previous matings (Rutowski et al. 1987). Alternatively, in species such as O. ptunarra, which can only oviposit in suitable weather, multiple matings may jeopardize the limited time available to oviposit, result in fewer eggs laid (Anderson 2001b). In addition, Wickman \& Rutowski (1999) suggest low population densities of a butterfly species may reduce the chance of multiple matings.

Secondly, if both the spermatophores were deposited closely enough together to allow for the contribution of genes from both males to the offspring, competitive and genetic benefits may arise. The greater volume of sperm may have created an environment of enhanced
competition, thus ensuring only the fittest sperm fertilize the ovum. Furthermore, genetic variability is increased with sperm being deposited from two individual males. Both situations may serve to increase the overall fitness of the female's offspring (Yasui 1998).

An even more evident and visible effect of polyandry versus monandary is sexual dimorphism. Since mating is much more costly for males than females, the males of polyandrous species are proportionally larger then females, relative to males in monandrous species (Kaitala \& Wiklund 1994). Monandary emerges as a potential limiting factor for O. ptunarra fecundity, together with a single ovarian cycle.
O. ptunarra appears to be a protandrous species. Protandry probably evolved as a sexual selection strategy to maximise number of mating in males (Kleckner et al. 1995; Zonneveld 1996; Carvalho et al. 1998). This appears to be the case in O. ptunarra. Protandry has been associated with seasonal environments where overlap between generations is absent or reduced and can be facultative. Nylin et al. (1993) comparative studies of five different populations of Parage aegeria from central and south Sweden, England, Spain, and the island of Madeira found that only the three northernmost populations, where cool temperate conditions occurred exhibited protandry.

4.1.3 Egg size and latitude

Garcia-Barros (1994) demonstrated that within Satyrinae egg size increases with latitude. When the effects of latitude are removed the relationship between egg and female size becomes more evident. For example small egg size is related to long preoviposition (Garcia-Barros 1994). Garcia-Barros (2000) also determined that butterfly size increases in relation to the mean annual temperature of its range. The O. ptunarra habitat range can be seen as a stressful environment for the butterflies (Anderson 2001b). Compared with other Oreixenica species, O. ptunarra has the smallest wing span and is amongst largest egg size, and flies in the coldest environment.

In Oreixenica in general and O. ptunarra in particular, the smaller body size is also consistent with latitude effects. Small body size can be explained by the latitude effects seen in southern hemisphere butterflies (Barlow 1994; Hawkins \& Lawton 1995). Larger taxa have an advantage over smaller taxa in use of resources when stable climates, but larger size is more of a liability in fluctuating climates.

4.2 Larvae

4.2.1 Larval phenology

The life cycles of the temperate zone southeast Australian Satyrinae are influenced by seasonal climates and are typically univoltine. In Oreixenica, especially O. ptunarra it is still not clear how the species spends winter, nor is it clear if the larvae feed during winter and early spring when the food plants are often covered with snow. Typical H. merope larvae in southern Australia develop very slowly during autumn and winter, taking 6-7 months to reach pupation (James 1999). It is suspected that O. ptunarra diapauses as early instar larvae, then emerge to feed during the late spring and through into the summer. This strategy is likely to be linked to the phenology of the food plants. For example, the larvae of Oreixenica feed on the nutritious new spring growth of Poa species.

The observed feeding delay in O. ptunarra of a few hours after hatching is consistent with other Satyrinae. James (1999) observed feeding delays of up to two hours in larvae of H. merope merope. No parallel was found in the literature to the observed surface grazing of O. ptunarra, or its progressively deeper feeding with time. This may be a result of the strengthening of its mouthparts with increased age, or due to an increased appetite resulting from growth. Feeding preference for Poa hiemata may be due to co-evolution of these particular O. ptunarra individuals with this Poa at their source resulting in the larvae responding best to familiar Poa.

In contrast to Neyland (1992) O. ptunarra larvae were found to be feeding in the lab during the day as well as the night. This may be a function of altered photoperiod times and temperatures. The periodic use of artificial lights may have disturbed their natural feeding patterns and the indoor environment in which the larvae were kept did not fluctuate to the extreme temperatures to which they are adapted. However, there was no obvious difference in the feeding behaviour between the larvae reared in environment cabinets programmed to mirror field conditions and those reared in the standard laboratory environment. Furthermore, consistent handling of the larvae may have further disturbed their feeding patterns. Consistent with other observations (Couchman 1953; Neyland 1992, 1993; Bell 1998; Braby 2000; Anderson 2001b; Bell 2002) mature O. ptunarra larvae were not observed feeding until after dusk.

4.2.2 Comparison with larval fauna

There have been a few detailed descriptions of Satyrini larvae published and almost all are limited to the tropical and neotropical fauna (Braby 1994a; Murray 2001; Freitas 2002; Murray 2003). Satyrinae larvae are characterised as being green or brown; smooth but covered with dense, usually very short, setae which may give a rough appearance; body is long and cylindrical often broader near middle; anal segment has a prominent forked posterior projection; head often has a pair of prominent dorsolateral projections or horns (Braby 2000). O. ptunarra larvae on the whole are consistent with other known Satyrinae larvae; i.e. anal segment has a prominent forked posterior projections, epidermis is smooth, covered with numerous secondary setae, however O. ptunarra larvae do not have dorsolateral projections or horns which in many Satyrinae is a reliable guide to identification of the species (Braby 2000).

4.2.3 Food plants

Food plant records are fairly comprehensive for most southeast Australian Satyrinae, and lists of known host are supplied in Braby (2000). It appears from the records, that most of these species are oligophagous with a few interesting quirks. Oreixenica with the exception of O. kershawi feed exclusively on Poa species. O. kershawi has adapted to also feed on Tetrarrhena juncea Wire Grass (McCubbin 1971). A. hobartia's major food source is Lolium perenne Perennial Ryegrass, an introduced species (Couchman \& Couchman 1978). Natural food plants have not been recorded for A. hobartia (Braby 2000), however native grasses such as Poa labillardieri and Austrodonthonia species are considered to be the native food source (Prince 1988; Braby 2000). N. leprea is monophagous feeding solely on Uncinia tenella (Cyperaceae) (Couchman 1948; Couchman \& Couchman 1978). G. klugii is polyphagous, feeding openly during the daytime, unlike G. acanthi on both native: Austrostipa flavescens, Joycea pallida, Poa labillardieri, Poa morrisii, Poa tenera, Themeda triandra; and introduced species: Brachypodium distachyon, Ehrharta calycina, Vulpia species (Braby 2000). The morphology of G. klugii larva makes it difficult to detect even though it is fully exposed on the foliage of the grass tussock. H. cordace and H. penelope are both oligophagous species to varying extents. H. cordace feeds mainly on Carex appressa although it will feed in captivity on common grasses (Common \& Waterhouse 1981). H. penelope feeds on Austrodanthonia penicillata, A. pilosa Poa sp. Themeda triandra (Braby 2000). H. merope is another polyphagous species feeding on a wide variety of native speceies: Cynodon dactylon, Micolaena stipoides, Poa sp., Themeda triandra; and introduced species: Brachypodium distachyon, Bromus cathartiens, Ehrharta erecta (Braby 2000).

4.3 Pupae

Nymphalidae pupae are normally suspended by the cremaster, although some times lie unattached on ground. In contrast to the Papilionidae, Pieridae, and Lycaenidae, it is never provided with a central silken girdle (Braby 2000). Girdled pupae, that are attached to their sites by a silken girdle around the thorax and an abdominal cremaster which is fixed to a silken pad by hooked seate are found in all Pieridae, and most Papilionidae and many Lycaenidae. In contrast, suspended pupae are attached to the substrate by the cremaster alone and occur in all Nymphalidae with the exception of Satyrinae, in which some species pupate in slight cocoons or cells. Girdled and suspended pupae face the difficulty of having to transfer their hold to the substrate from the anal prolegs of the larvae. Pupae lying free in cocoons face no problems slipping off completely the larval exuvia during moulting (Starnecker 1999).

Satyrinae pupae are either green or brown in colour and may be fairly stout, rounded and smooth or more slender and somewhat angular. They are usually suspended head downwards by the cremaster, on the food plant or sometimes on nearby vegetation or beneath logs. In three Oreixenica species (O. ptunarra, O. latialis and O. orichora) and three Heteronympha species (H. merope, H. penelope and H paradelpha) the pupa lies unattached on the ground, usually beneath debris at the base of the larval food plant (Braby 2000).

Nymphalinae pupae usually are suspended head downwards by the cremaster, often some distance away from the food plant. These pupae generally have angular projections at the anterior end, and the abdomen often has a series of dorsolateral spines or short pointed processes (Braby 2000).

Starnecker (1999) suggests that in Satyrinae pupa lying free on the ground or unattached is likely to be a secondary character; it is interesting to note that all the species which Starnecker (1999) highlighted as having unattached pupae fly in cool temperate extending into alpine environments. The Oreixenica; O. ptunarra, O. latialis and O. orichora are the dominant alpine species within the genus, all with unattached pupa. The association with cold environments is not universally supported within the Heteronympha as the ubiquitous H. merope also has unattached pupae.

Chapter 4
 Molecular relationships of the Temperate Zone Southeast Australian Satyrinae

1 Introduction

In a study into the phylogeny of the Nymphalidae based on cladistic analysis of characters from all life stages, Freitas \& Brown (2004) found that all major groups within Nymphalidae appeared as monophyletic except Biblidinae and Satyrinae which appeared as paraphyletic. Peña et al. (2006) in a study into the higher level phylogeny of the Satyrinae found them to be a polyphyletic grouping. Peña et al. (2006) emphasised the need for more extensive sampling of the genera within the tribes and subtribes of Satyrinae to better test the monophyly of the subfamily. One putative clade that was not satisfactorily resolved by Peña et al. (2006) consisted of genera from the subtribe Hypocystina (Miller 1968). This study explores the molecular relationships of the temperate zone southeast Australian Satyrinae generally considered to be the members of the tribe Hypocystina (Miller 1968; Brower 2000; Wahlberg et al. 2005b; Peña et al. 2006), and considers implications for the phylogeny of this group.

2 Materials and Methods

2.1 Taxa Examined

The species analysed and their provenances are listed in Appendix 1. Species were chosen based on geographical range to maximise phenotypic diversity and on the availability of immature and adult morphological characters. All individuals were stored frozen at $-18^{\circ} \mathrm{C}$.

2.2 Gene Fragments

Due to its hypothesized rapid evolutionary rate Cytochrome Oxidase Subunit 1 gene (CO1), from the mitochondrial genome, has been very useful for uncovering relationships among Lepidoptera at the generic and species level; however, it has been widely used in phylogenetic studies to resolve divergences at the family, as well as the genus and species level (Brown et al. 1994; Sperling \& Hickey 1994; Sperling et al. 1995; Sperling et al. 1999; Wahlberg \& Zimmermann 2000; Nice \& Shapiro 2001; Eastwood \& Hughes 2003; Zakharov et al. 2004b; Bucheli \& Wenzel 2005; Whinnett et
al. 2005; Chew \& Watt 2006; Zhang et al. 2007; Wheat \& Watt 2008). The CO1 gene fragment has been used to estimate divergence times up to 65 million years ago (Zakharov et al. 2004a).

Elongate Factor $1 \alpha(\mathrm{EF}-1 \alpha)$ is a highly conserved protein-coding nuclear gene, which has traditionally been considered to be more informative for resolving deeper divergences (Mitchell et al. 1997), however it also appears to be useful in resolving relatively recent divergences. EF-1 α has been used extensively in inter-generic studies in the Lepidoptera (Cho et al. 1995; Mitchell et al. 1997; Reed \& Sperling 1999; Vane Wright et al. 1999; Caterino et al. 2001; Monteiro \& Pierce 2001; Rubinoff \& Sperling 2002; Wahlberg et al. 2005a; Braby \& Pierce 2007). The EF-1 α enzyme participates in GTP-dependent binding of tRNA's to the ribosome during translation (Danforth \& Ji 1998). Cho et al. (1995), Mitchell et al. (1997) and more recently Nazari et al (2007) demonstrated the informative nature of EF-1 α in phylogenetic inferences up to divergences of 65 million years ago.

The Wingless gene, from the nuclear genome has been used to investigate phylogenetic relationships at both higher and lower divergence levels within the Lepidoptera (Brower \& Egan 1997; Brower \& DeSalle 1998; Brower 2000; Campbell et al. 2000; Wahlberg et al. 2003b; Wahlberg et al. 2005a; Braby et al. 2006; Brower et al. 2006; Simonsen et al. 2006; Weingartner et al. 2006; Nazari et al. 2007). Primarily due to its uniform based composition, the Wingless gene appears to become saturated more slowly than mitochondrial DNA (mtDNA) (Brower \& DeSalle 1998). The in-formativeness of the Wingless genes fragment has been demonstrated for divergence times up to 60 million years (Brower \& DeSalle 1998).

The use of these three genes enables the comparison of phylogenies derived from different mechanisms as the evolution of RNA genes should be considered differently from that of protein-coding genes; rRNA genes are constrained by structural motifs whereas protein-coding genes are limited by frame shifts, the effects of amino acid substitution or codon translation requirements (Kjer 1995; Brower \& DeSalle 1998).

2.3 DNA Extraction

DNA was extracted from specimens collected fresh from the field and frozen immediately at $-20^{\circ} \mathrm{C}$ and specimens preserved in 96% ethanol. Abdomens and other remains were stored at $-20^{\circ} \mathrm{C}$ as tissue vouchers and the wings were laid out in a display book, to facilitate species identification.

The DNA was extracted using a CTAB Extraction Protocol modified from Grewe et al. (1994) and Ausubel et al. (2005) as detailed in Appendix 4. Extracted DNA samples were stored at $-20^{\circ} \mathrm{C}$ until further use.

2.4 Polymerase Chain Reaction (PCR)

PCR reactions were carried out in 0.2 mL microcentrifuge tubes with a total reaction volume of $50 \mu \mathrm{~L}$ using a protocol adapted from Palumbi et al. (1996). PCR reaction reagents and their final concentrations are detailed in Table 4.2. PCR conditions are outlined in Table 4.1.

Table 4.1 PCR conditions

$\mathbf{C O 1}$	EF-1 α and Wingless
1. $94^{\circ} \mathrm{C}$ denaturation for 3 minutes	1. $95^{\circ} \mathrm{C}$ denaturation for 2 minutes
2. $94^{\circ} \mathrm{C}$ denaturation for 30 seconds	2. $94^{\circ} \mathrm{C}$ denaturation for 1 minute
3. $40^{\circ} \mathrm{C}$ annealing for 30 seconds	3. $50^{\circ} \mathrm{C}$ annealing for 1 minute
4. $72^{\circ} \mathrm{C}$ extension for 45 seconds	4. $72^{\circ} \mathrm{C}$ extension for 90 seconds
5. go to 2,35 times	5. go to 2,35 times
6. $72^{\circ} \mathrm{C}$ final extension step for 5 minutes	6. $72^{\circ} \mathrm{C}$ final extension step for 5 minutes
7. Hold at $11^{\circ} \mathrm{C}$ forever.	7. Hold at $11^{\circ} \mathrm{C}$ forever.

Standard submarine gel electrophoresis and ethidium bromide staining confirmed PCR amplification of each template. DNA was purified prior to sequencing using MO BIO Laboratories Inc. Ultra Clean ${ }^{T M}$ PCR Clean-Up ${ }^{T M}$ Kit.

Table 4.2 PCR reagents and final concentrations

PCR Reagents	Final Concentrations
Promega 10x Buffer	
NaCl	50 mM
Tris. $\mathrm{HCl}(\mathrm{pH} 9)$	10 mM
Triton X	0.01%
Promega MgCl	
Amresco dNTP's	2 mM
GeneWorks HCO and LCO primers	0.25 mM
New England Biolab BSA	$0.2 \mathrm{pM} / \mathrm{mL}$
Promega Taq Polymerase	$0.1 \mathrm{mg} / \mathrm{mL}$

2.5 CO1, EF-1a and Wingless Primers

Sequencing was undertaken for at least two replicates of two sample localities of each species, which were located where possible from the extremes of species distribution. 900 bp of CO1, 850 bp of EF-1 α and 400 bp of Wingless were sequenced for each species. The primers for CO1: HCO $2198(\mathrm{~F})$ and LCO $1490(\mathrm{R})$ are from Folmer et al. (1994); EF-1 α F from Reed and Sperling (1999); EF-1 α R from Caterino et al (2001) and Wingless from Brower and Desalle (1998).

HCO 2198 (F) 5'- TAA ACT TCA GGG TGA CCA AAA AAT CA -3'
LCO 1490 (R) 5'- GGT CAA CAA ATC ATA AAG ATA TTG G -3'

EF-1 $\boldsymbol{\alpha}$ F 5^{\prime} - CGG ACA CGT CGA CTC CGG -3'
$\mathbf{E F - 1 \alpha} \mathbf{R} \quad \mathbf{5}^{\prime}$ - AAC CGT TTG AGA TTT GAC CAG GG -3'

LEP Wing 1 (F) 5'- GAR TGY AAR TGY CAY GGY ATG TCT GG -3'
LEP Wing 2 (R) 5^{\prime} - ACT SCG CRC ACC ART GGA ATG TRC A -3'

Sequencing reactions were prepared using a modification of the CEQ DTCS Quick-Start Kit, Beckman Coulter, USA and the protocol detailed in Appendix 5. Both sense and anti-sense strands were sequenced using a Beckman Coulter, USA, CEQ 8000 Genetic Analysis System, Automated Sequencer.

2.6 Sequence analysis and alignment

The editing of CO1, EF-1 α, and Wingless nucleotide sequences, contig assembly, consensus sequence calculations and manual alignment of consensus sequences were performed using Sequencher 4.5 (Gene Codes Corp., Ann Arbor, MI). Sequences were then imported into Clustal X (Higgins \& Sharp 1988; Higgins et al. 1996; Jeanmougin et al. 1998; Chenna et al. 2003) for multiple sequence alignment. Comparisons of multiple sequence alignment programmes found that Clustal X performed well compared to other alignment programmes such as PileUp and Malign (Thompson et al. 1994; Thompson et al. 1997; Jeanmougin et al. 1998; Thompson et al. 1999; Hickson et al. 2000; Larkin et al. 2007).

2.7 Phylogenetic analysis

All phylogenetic analyses were performed using PAUP*4.0 beta Win (Swofford 1993; 2002). Unweighted parsimony analyses were preformed on each DNA dataset (heuristic search, 10000 random addition sequences, TBR swapping) and consensus trees were then constructed if necessary.

DNA sequences that code for proteins or other functional molecules usually have variable rates of nucleotide substitutions among sites due to heterogeneous selection pressures. These differences in rate variations can influence evolutionary parameters such as the transition/transversion rate ratio (Yang et al. 1994). DNA substitution mutations are of two types. Transitions are the interchanges of purines ($A \leftrightarrow G$) or of pyrimdines ($\mathrm{C} \leftrightarrow \mathrm{T}$), which comprise bases of similar shapes. Transversions are interchanges between purines and pyrmidine bases, which require exchange of one-ring and two-ring structures. Although there are twice as many possible transversions, because of the molecular mechanisms by which they are generated, transition mutations occur at higher frequencies than transversions. The transition/transversion rate ratio is simply the instantaneous rate of transitions divided by the instantaneous rate of transversions. The transition/transversion ratio is the probability of any transition (over a single unit of time) divided by the probability of any transversion (over a single unit of time). The transition/transversion ratio involves the equilibrium base frequencies, whereas the transition/transversion rate ratio does not (PAUP Help 2003-09). The transition/transversion ratio was calculated using the HKY substitution model (Takahashi \& Nei 2000; Piontkivska 2004).

Likelihood values can vary considerably according to whether the rate variation is corrected in the model and also the variability of rates among sites (Yang 1995). Each data set was analysed and phylogenies created using three different optimality criteria. The first analysis uses the criterion of maximum parsimony (MP). The second analysis uses the minimum evolution (ME) criterion in conjunction with LogDet/paralinear pairwise distances. The third analysis uses the maximum likelihood (ML) criterion in conjunction with the HKY-gamma substitution model. Estimates of the ratio (the transition/transversion ratio) parameter and the gamma shape parameter are obtained using the LogDet tree. Then, these two parameters are fixed at these estimated values for the duration of the heuristic search. It was shown by Yang (1995) that as long as trees are not "too wrong" parameter estimates are stable across tree topologies.

Each phylogeny method has individual weakness and strengths according to any inconsistencies in the data that may invalidate the assumptions of the particular model used.

Maximum parsimony can be misleading if there is too much heterogeneity in substitution rates among lineages. If at least two of the terminal branches are much longer then the internal branches, homoplasious changes on these longer branches can override the signal in the internal branch; the long edges attract in the underlying true phylogeny (Felsenstein 1978; Bergsten 2005; Philippe et al. 2005). Long branches are thought to affect MP methods more severely, but models based on methods such as Bayesian Inference (BI) and ML are not immune to the problem (Felsenstein 1978; Siddall 1998; Bergsten 2005; Philippe et al. 2005).

Minimum evolution using LogDet distances can be misleading if there is too much site-to-site rate heterogeneity, or if some of the pairwise distances are undefined (PAUP Help 2003-09).

Maximum likelihood under the HKY-gamma model can be misleading if parameters that are assumed to be constant across the phylogeny (such as the transition/transversion ratio or base frequencies) actually vary among lineages in the true phylogeny (PAUP Help 2003-09).

Finally a Kishino-Hasegawa test was conducted to see whether one tree was supported significantly less by the data than another tree. Obtaining trees with similar topologies using different analytical methods is considered to provide good evidence for the robustness of common clades and to ensure that the data do not suffer significantly from parameter heterogeneity (Chen et al. 2003).

It has been suggested that unless there is solid evidence that the third position codon really is misleading, they should not be treated so by default (Mats 1999). In insects the saturation of variable sites in mtDNA is aggravated by rather extreme $A+T$ richness, typically around 70% overall, and approaching 90% at the third positions of codons (Liu \& Beckenbach 1992; Brower \& DeSalle 1998) The third position codons were down weighted, then the data was reanalysed with three arbitrary weighting schemes (3:5:1, 2:3:1, and $2: 2: 1$) in order to determine the effect of down weighting the third nucleotide position characters (Meyer 1994). This had no significant effect on the number of most parsimonious trees found by the analysis or on the consistency index. Bootstrap values were very similar and the trees produced by the different weighting regimes were almost identical to the unweighted tree.

Bootstrap support for individual clades in the maximum parsimony and the minimum evolution analyses were estimated by performing bootstrap analyses (10000 replicates, fast heuristic search, stepwise addition, TBR swapping, maxtrees not limited). In all trees, only bootstrap values over 50% are shown as this confidence level is sufficient as a means of testing that the hypothesized clades are, on average, least likely to be incorrect (Rodrigo 1993). The trees were rooted using the outgroup method. In this method the ingroup and outgroup are included in a simultaneous and unconstrained analysis (Nixon \& Carpenter 1993; 1996).

2.8 Age of Divergences

In order to estimate the approximate age of divergences between taxa it was necessary to test for evolutionary rate heterogeneity among the sequences before applying a molecular clock to the data. This test was conducted for all single genes and the combined data. The optimum substitution models were first determined using the ModelTest, version 3.7 (Posada \& Crandall 1998; Posada 2006). Once the appropriate likelihood model had been selected by ModelTest, a test was conducted for a molecular clock. MP consensus tree topologies for each data set were constructed and the likelihood values with and without the assumption of rate constancy were computed. The likelihood-ratio test statistic is calculated as twice the difference between the loglikelihood scores of the two models (Felsenstein 1988). The significance of the test is calculated by comparing a chi-square distribution with $\mathrm{n}-2$ degrees of freedom ($\mathrm{n}=$ number of taxa).

Plate 4 O. ptunarra male, Pikes Hill March 2006

3 Results

3.1 CO 1

Alignment of the CO1 data resulted in 650 characters, of which 162 were parsimony informative. The data matrix is presented in Appendix 6 CO , bootstrap consensus tree in Figure 4.1 and the Log/Det sequence divergence values in Appendix 7 COI.

The rates of nucleotide substitution between genera ranged from $9.89 \% O$. latialis and H. penelope, to 12.84% between H. cordace and G. klugii. This is similar divergence rate reported in other Nymphalidae studies e.g. Zhang et al (2007).

The intra-generic rate of nucleotide substitution between species ranged from 10.59% for H. cordace and H. merope to 1.13% between O. ptunarra and O. latialis. The rate of nucleotide substitution between the Heteronympha species is a little higher than that observed in other Lepidoptera but the divergence range between the Oreixenica species is similar to the divergence rate observed in other Lepidoptera (Lushai et al. 2003).

The largest and smallest distance was between the outgroup species and ingroup species; 8.32% between V. kershawi and G. klugii to 13.01% between V. kershawi and O. lathoniella. These rates are comparable to those reported in other studies of Lepidoptera (Lushai et al. 2003). The approximate matching of the distance between the outgroup and ingroup with that of the greatest inter-generic distance is consistent with saturation at high taxonomic levels or with rapid radiation at the generic level.

The average base frequencies for CO were $\mathrm{A}=37.94 \%, \mathrm{C}=15.28 \%, \mathrm{G}=16.61 \%$, and $\mathrm{T}=30.17 \%$. These are similar to those reported for the nymphalid subfamily Nymphalinae (Wahlberg et al. 2005b). There was no significant differences in base frequencies between taxa $\left(\chi^{2}=11.43, \mathrm{df}=69 \mathrm{p}=1.0000\right)$.

Maximum parsimony (MP) analysis using equal weights produced seven shortest trees of length $455(\mathrm{CI}=0.5 \dot{4} 5, \mathrm{RI}=0.715)$. The strict consensus tree is presented in Figure A8.1. Minimum evolution (ME) analysis resulted three short trees of length 458 $(\mathrm{CI}=0.541, \mathrm{RI}=0.711)$. The strict consensus tree is detailed in Figure A8.2. Maximum likelihood (ML) analysis resulted in one tree of length $458(\mathrm{CI}=0.541$,
$R I=0.711$) tree detailed in Figure A8.3. The tree parameters obtained empirically by the ML analysis were as follows:

Ti/tv:

Expected ratio:	1.55
Kappa	3.52
Shape parameter (alpha)	0.167
Minus log Likelihood (-In L)	2974.2

Downweighting of third position nucleotides resulted in one shortest tree of length 523 ($\mathrm{CI}=0.581, \mathrm{RI}=0.746$) (Figure A8.4) .

Analysis of the transition/transversion ratio resulted in one shortest tree of length 2310 $(\mathrm{CI}=0.501, \mathrm{RI}=0.738)($ Figure A8.5).

The trees produced by the analysis of the CO sequence data are poorly resolved at deep divergences but show good resolution at some of the more recent divergences. This at first seems contradictory given the relatively conserved nature of this gene. The reasons for this topology are most likely due to multiple substitutions obscuring synapomorphies at deep divergences or the homoplasies have been diluted by the data. A similar pattern was observed by Rubinoff \& Sperling (2002) in the Saturniidae genus Hemileuca.

All COI sequence analysis could be rooted with J. villida as a monophyletic outgroup.
However many trees could not be rooted with V. kershawi as a monophyletic outgroup. V. kershawi was frequently placed as a sister to G. klugii.

3.2 EF-1a

Alignment of the EF-1 α data resulted in 850 characters, of which 185 were parsimony informative, the data matrix is presented in Appendix 6 EF-1 α, bootstrap consensus tree in Figúre 4.2 and the Log/Det sequence divergence values in Appendix $7 \mathrm{EF}-1 \alpha$.

The rates of nucleotide substitution between genera ranged from 7.73% between A. hobartia and G. klugii to 13.00% between H. cordace and O. lathoniella. This rate is comparable to divergence rates in other Papilionoidae (Morinaka et al. 2002).

The intra-generic rate of nucleotide substitution between species ranged from 6.34% for H. cordace and H. penelope to 0.001% between O. ptunarra and O. latialis. This range is broader than rates observed in Heliothinae moths (Cho et al. 1995).

The largest and smallest distance between the outgroup species and ingroup species was $10.46 \% \mathrm{~J}$. villida and A. hobartia to 13.52% between V. kershawi and N. leprea. This is similar to rates observed in Geometridae (Young 2006b). The approximate matching of the distance between the outgroup and ingroup with that of the greatest inter-generic distance is consistent with saturation at high taxonomic levels or with rapid radiation at the generic level.

The average base frequencies for $\mathrm{EF}-1 \alpha$ were $\mathrm{A}=37.94 \%, \mathrm{C}=15.28 \%, \mathrm{G}=16.60 \%$, and $\mathrm{T}=30.18 \%$. These are higher for A and T and lower for C and G to those reported for the other Papilionoidae (Zakharov et al. 2004a; Mallarino et al. 2005; Wahlberg et al. 2005b). There was no significant differences in base frequencies between taxa $\left(\chi^{2}=\right.$ $11.43, \mathrm{df}=69 \mathrm{p}=1.0000$).

Maximum parsimony (MP) analysis using equal weights produced two shortest trees of length $442(\mathrm{CI}=0.658, \mathrm{RI}=0.826)$. The strict consensus of these trees is presented in Figure A8.6. Minimum evolution (ME) analysis resulted in nine short trees of length $443(\mathrm{CI}=0.657, \mathrm{RI}=0.825)$. The strict consensus tree is detailed in Figure A8.7. Maximum likelihood (ML) analysis resulted in one tree of length $444(\mathrm{CI}=0.655$, $\mathrm{RI}=0.824$) tree detailed in Figure A8.8. The tree parameters obtained empirically by the ML analysis were as follows:

Ti/tv:

Expected ratio:	2.27
Kappa	4.57
Shape parameter (alpha)	0.169
Minus \log Likelihood (-In L)	3391.25

Downweighting of third position nucleotides resulted in two short trees of length 566 ($\mathrm{CI}=0.663, \mathrm{RI}=0.820$); strict consensus tree presented in Figure A8.9.

Analysis of the transition/transversion ratio resulted in one shortest tree of length 1849 $(\mathrm{CI}=0.688, \mathrm{RI}=0.834)($ Figure A8.10).

The trees produced by the analysis of the EF-1 α sequence data are well resolved at all levels detailing the Satyrinae as a monophyletic group rooted with V. kershawi and J. villida as outgroup.

3.3 Wingless

Alignment of the Wingless data resulted in 500 characters, of which 105 were parsimony informative, the data matrix is presented in Appendix 6 Wingless, bootstrap consensus tree in Figure 4.3 and the Log/Det sequence divergence values in Appendix 7 Wingless.

The rates of nucleotide substitution between genera ranged from 5.45% A. hobartia and N. leprea to 10.21% between H. merope and O. lathoniella. These rates are similar to those reported for other Lepidoptera studies using the Wingless gene fragment (Brower \& DeSalle 1998).

The intra-generic rate of nucleotide substitution between species ranged from 4.98\% H. cordace and H. merope to 2.40% between O. ptunarra and O. lathoniella. This rate is similar to divergence rates in nymphalid butterflies (Brower \& DeSalle 1998).

The largest and smallest distance between the outgroup species and ingroup species was 13.33% J. villida and N. leprea to 16.86% between V. kershawi and G. klugii. These divergence rates are higher than Brower \& DeSalle (1998) reported between nymphalide and Pieris.

The average base frequencies for Wingless were $\mathrm{A}=21.74 \%, \mathrm{C}=28.19 \%$, $\mathrm{G}=31.03 \%$, and $\mathrm{T}=19.04 \%$. These are similar to those reported for Nymphalinae (Wahlberg et al. 2005b). There was no significant differences in base frequencies between taxa $\left(\chi^{2}=30.17, \mathrm{df}=63 \mathrm{p}=0.9999\right)$.

Maximum parsimony (MP) analysis using equal weights produced seven shortest trees of length $196(\mathrm{CI}=0.776, \mathrm{RI}=0.883)$ strict consensus of these trees is presented in Figure A8.11. Minimum evolution (ME) analysis resulted nine short trees of length 196 $(\mathrm{CI}=0.776, \mathrm{RI}=0.883)$. The strict consensus tree of these trees is detailed in Figure A8.12. Maximum likelihood (ML) analysis resulted in one tree of length 196 $(\mathrm{CI}=0.776, \mathrm{RI}=0.883)$ tree detailed in Figure A8.13. The tree parameters obtained empirically by the ML analysis were as follows:
$\mathrm{Ti} / \mathrm{tv}$:

Expected ratio:	2.45
Kappa	5.03
Shape parameter (alpha)	0.20
Minus log Likelihood (-In L)	1598.58

Downweighting of third position nucleotides resulted in two short trees of length 377 ($\mathrm{CI}=0.764, \mathrm{RI}=0.885$). Strict consensus tree is presented in Figure A8.14.

Analysis of the transition/transversion ratio resulted in two short trees of length 755 ($\mathrm{CI}=0.785, \mathrm{RI}=0.896$); strict consensus tree presented in Figure A8.15.

It was not possible to extract a viable Wingless sequence for H. penelope, O. latialis, O. correae, or O. kershawi. The trees produced by the analysis of the Wingless sequence data are moderately well resolved detailing the Satyrinae as a monophyletic group rooted with V. kershawi and J. villida as outgroup.

3.4 Combined Gene Fragment

Combining data sets can give misleading results if there is heterogeneity among data sets (de Queiroz et al. 1995; Caterino et al. 2000). The Incongruence Length Difference Test (ILD) (Farris et al. 1994) can distinguish when the case to combine the molecular data will improve phylogenetic accuracy (Farris et al. 1995; Cunningham 1997; Hipp et al. 2004). The three datasets when combined were found to be heterogeneous by the ILD $(\mathrm{P}=0.01)$. This may be due to the proportionally low number of informative sites in the data sets (CO1 162/650; EF-1 α 185/850; Wing 105/500). There are also discrepancies between the datasets, two scenarios in which the ILD is considered to be unreliable (Cunningham 1997; Dolphin et al. 2000; Darlu \& Lecointre 2002; Dowton \& Austin 2002). Due to doubts as to the reliability of the ILD (Cunningham 1997; Dolphin et al. 2000; Darlu \& Lecointre 2002; Dowton \& Austin 2002), the data were combined for further analysis to test the effect on phylogeny reconstruction.

Alignment of the combined data resulted in 2000 characters, of which 452 were parsimony informative. The Log/Det sequence divergence values in Appendix 7 Combined and the bootstrap consensus tree in Figure 4.4.

The rates of nucleotide substitution between genera ranged from $8.25 \% \mathrm{~A}$. hobartia and H. cordace to 11.91% between H. cordace and O. latialis.

The intra-generic rate of nucleotide substitution between species ranged from 0.50% O. ptunarra and O. latialis to 7.38% between H. cordace and H. merope.

The largest and smallest distance between the outgroup species and ingroup species was 11.38% V. kershawi and H. penelope to 13.45% between V. kershawi and H. cordace.

The average base frequencies for combined were $\mathrm{A}=27.26 \%, \mathrm{C}=22.85 \%$, $\mathrm{G}=24.54 \%$, and $\mathrm{T}=25.35 \%$. There was no significant differences in base frequencies between taxa $\left(\chi^{2}=45.55, \mathrm{df}=69 \mathrm{p}=0.9869\right)$.

Maximum parsimony (MP) analysis using equal weights produced two shortest trees of length $1113(\mathrm{CI}=0.621, \mathrm{RI}=0.782)$. The strict consensus of these trees is presented in Figure A8.16. Minimum evolution (ME) analysis resulted two short trees of length
$1122(\mathrm{CI}=0.616, \mathrm{RI}=0.778)$. The strict consensus tree of these trees is detailed in Figure A8.17. Maximum likelihood (ML) analysis resulted in one tree of length 1113 $(\mathrm{CI}=0.621, \mathrm{RI}=0.782)$ tree detailed in Figure A8.18. The tree parameters obtained empirically by the ML analysis were as follows:

Ti/tv:

Expected ratio:	1.72
Kappa	3.44
Shape parameter (alpha)	0.18
Minus log Likelihood (-In L)	8264.86

Downweighting of third position nucleotides resulted in six short trees of length 1477 $(\mathrm{CI}=0.638, \mathrm{RI}=0.796)$. Strict consensus tree is presented in Figure A8.19.

Analysis of the transition/transversion ratio resulted one shortest tree of length 5002 ($\mathrm{CI}=0.604, \mathrm{RI}=0.787$); strict consensus tree presented in Figure A8.20.

The trees produced by the analysis of the combined sequence data are well resolved at all levels detailing the Satyrinae as a monophyletic group rooted with V. kershawi and $J . v i l l i d a$ as outgroup.

3.5 Age of Divergences

Recommended ModelTest (Posada \& Crandall 1998) likelihood models are detailed in Table 4.3. When the two criteria choose different models the likelihood ratio test results were used. Testing for a molecular clock resulted in significant p-values which indicated that the clock was rejected. Thus, age of divergence should be estimated using a relaxed molecular clock model (Posada \& Crandall 1998; Posada 2006).

Table 4.3 ModelTest (Posada \& Crandall 1998) likelihood models

	CO1	EF-1 $\boldsymbol{\alpha}^{*}$		Wingless*		Combined
Recommended Model	$\mathrm{GTR}+\mathrm{I}+\mathrm{G}$	$\mathrm{GTR}+\mathrm{I}$	$\mathrm{TrNef+G}$	$\mathrm{TrN+}+\mathrm{G}$	TrNef+G	$\mathrm{GTR}+\mathrm{I}+\mathrm{G}$
-ln likelihood values with molecular clock	3037.57	3409.75	$\mathbf{3 4 1 5 . 6 0}$	1624.64	$\mathbf{1 6 3 3 . 6 5}$	8235.44
-ln likelihood values without molecular clock	2914.56	3364.18	$\mathbf{3 3 7 0 . 1 7}$	1592.95	$\mathbf{1 6 0 3 . 7 1}$	8179.99
LRT	246.04	91.15	$\mathbf{9 0 . 8 5}$	63.43	59.88	110.90
df(n taxa-2)	22	22	22	22		
$\boldsymbol{p - v a l u e * *}$	<0.001	<0.001	<0.001	<0.001		

*Likelihood ratio test results in bold.
**Significant p-values indicate that the molecular clock is rejected.

Fossil evidence shows that both homoneurous and heteroneurous ancestors of modernday lepidopteran groups were present and widely distributed in Gondwana (Common \& Waterhouse 1981; Braby 2000). It is suggested from the few satyrine fossils that are known, that by the Oligocene, satyrines had become well established (Murray \& Prowell 2005). The earliest known satyrine, an undescribed species near the tribe Elyminiini, dates from the lower middle Eocene, 48-51 mya (Durden \& Rose 1978). A fossil ancestor of Vanessa has been found in the Florissant Lake Bed Shales of Colorado dated to approximately 35 mya (Miller \& Brown 1989; Emmel et al. 1992). This age has been used to estimate minimum divergence times (Appendix 7). Table 4.4 details approximate age of divergence for each species calculated for each gene fragment, the combined sequence and an average divergence age.

These estimates are likely to be shorter than actual ages for three reasons. First, fossil date estimation is not perfect and usually provides only an indication of the probability that species arose in some interval of time. Second, the fossil age may be younger than the actual first appearance of Vanessa. Finally, sequence divergence values may be underestimated due to saturation at nucleotide substitution sites.

Table 4.4 Approximate age of divergence for each species (mya).

	$\mathrm{CO1}$	EF-1a	Wing	Combined	Average
A. hobartia	31.30	31.14	29.95	30.90	30.82
G. klugii	32.09	31.03	29.10	30.95	30.79
H. cordace c	30.94	31.09	29.24	30.60	30.47
H. cordace k	30.83	30.47	29.24	30.29	30.21
H. cordace l	30.78	31.00	29.10	30.47	30.34
H. merope	31.29	31.35	28.89	30.74	30.57
H. penelope	30.67	31.22		31.02	30.97
J. villida	30.78	32.16	32.31	31.75	31.75
N. leprea e	30.74	30.35	30.33	30.47	30.47
N. leprea 1	30.67	30.27	30.33	30.41	30.42
O. correae	31.12	30.74		30.93	30.93
O. kershawi	30.52	30.83		30.72	30.69
O. lathoniella	30.44	30.75	29.70	30.37	30.32
O. latialis	31.07	30.57		30.81	30.82
O. orichora	31.08	30.79	29.41	30.55	30.46
O. ptunarra	30.90	30.57	29.54	30.43	30.36
O. ptunarra (NW)	30.85	30.57	29.56	30.41	30.35
V kershawi	35.00	35.00	35.00	35.00	35.00

Figure 4.1 Bootstrap Consensus Tree CO1
(heuristic search, 10,000 replicates, values >50, optimality criterion $=$ parsimony) Percentage bootstrap values are indicated

- 10 changes

Figure 4.3 Bootstrap Consensus Tree Wingless
(heuristic search, 10,000 replicates, values >50, optimality criterion $=$ parsimony) Percentage bootstrap values are indicated

- 10 changes

Figure 4.4 Bootstrap Consensus Combined Gene Fragments
(heuristic search, 10,000 replicates, values >50, optimality criterion $=$ parsimony) Percentage bootstrap values are indicated

4 DISCUSSION

This is the first comprehensive phylogenetic analysis of the relationships within the Southeast Australian Satyrinae to use molecular data. The study by Peña et al. (2006) only included four southern hemisphere temperate zone species: G. klugii, H. merope, N. leprea and O. lathoniella. In this study I have been able to identify clades that are well supported by three gene regions and are stable when subjected to varied character state analysis.

4.1 CO1

Similar phylogenetic trees were obtained from minimum evolution and maximum likelihood investigations used to analyse the CO 1 sequence data, implying that the data set is robust to the various assumptions underlying these algorithms. The minimum evolution tree was the best tree obtained from the COl sequence data. This tree was well resolved with strong bootstrap values. The phylogenetic tree obtained from the most parsimonious analysis was not as well resolved at a basal level when compared to the ME and ML trees. The difference in the MP tree is most likely the result of homoplasious changes in the terminal branch overriding the signal in the internal (basal) braches (Long Branch attraction).

Down weighting of the third codon position resulted in a tree mirroring the ME tree with slightly different bootstrap values. Analysis transversion/transition ratio produced a phylogenetic tree which was considerably different in the basal rooting and in the Oreixenica clade.

All phylogenetic trees obtained from the analysis of the CO 1 sequence data resulted in V. kershawi being included as an ingroup, generally, and unexpectedly, as a sister taxon to G. klugii. In previous studies into the relationships within the tribes and genera in the subfamily Nymphalinae, the tribe Nymphalini (to which Vanessa belongs) was found to be basal to the tribe Junoniini (Wahlberg \& Nylin 2003; Wahlberg et al. 2005b). However, within the tribe Nymphalini the clade which contains the genus Vanessa has only moderate support and is not stable.

The CO1 gene has been very useful for uncovering relationships at the generic and specific level due to its hypothesized rapid evolutionary rate (Caterino \& Sperling 1999; Wahlberg et al. 2003a). As the species chosen as outgroups for this study are relatively closely related to the ingroup species (Freitas \& Brown 2004), it is possible that at deeper divergences the COl sequence data has been swamped by homoplasious changes, subsequently Vanessa has not been clearly identified as an outgroup.

In the CO 1 trees the following clades and sister species relationships were supported:

* O. latialis is the sister to O. ptunarra

类 The Heteronympha clade is sister to the Oreixenica clade
*. Argynnina + Nesoxenica are sister to the Heteronympha + Oreixenica clade.

The strict COl consensus tree produced by Peña et al. (2006) resolved Nesoxenica to be a distantly related sister to Oreixenica; and Geitoneura to be a more closely related sister to Heteronympha. These relationships were not supported by reliable bootstrap values; all were less than 50%. The relationships resolved by my CO1 analysis all had stronger bootstrap values.

4.2 EF-1a

Similar trees were obtained using parsimony, distance and likelihood analysis implying that the data set is robust to the various assumptions underlying these algorithms. The maximum likelihood tree was slightly less well resolved for ancient divergences. The EF-1 α gene is considered to be more informative for resolving deeper divergences than the CO1 fragment (Mitchell et al. 1997) subsequently all EF-1 α trees resolved the satyrine to be a monophyletic in-group with V. kershawi and J. villida as basal species.

In all three analyses the placement of species in the Oreixenica clade is identical with slightly different bootstrap values. The recovery of identical relationships from different sources is good evidence for the reliability of this clade (Chen et al. 2003). Downweighting of the third position nucleotide resulted in the same basal clades as the ML tree with differences in the Oreixenica clade. The tree resulting from the analysis of the transition/transversion ratio had the same species placement in the Oreixenica clade as the tree from the third position nucleotide with considerable differences in species placement in the basal clades to every other tree.

The sister clade to Oreixenica in the EF-1 α phylogenies is not as clear as in the CO1 and Wingless analyses as the EF-1 α trees are not as well resolved; however Nesoxenica is consistently grouping at the sister taxon level to Oreixenica. This placement is consistent with the phylogeny of Peña et al. (2006) whose EF-1 α strict consensus tree grouped Nesoxenica as a basal sister taxon to Oreixenica as they had included the dominantly tropical and subtropical genus Hypocysta which was placed as the sister taxon to Oreixenica.

In the EF-1 α trees the following sister species relationships within the Oreixenica clade were supported:

* O. latialis is the sister to O. ptunarra

类 O. lathoniella is the sister to the O. ptunarra $+O$. latialis clade

* O. kershawi directly derived from the ancestor to the O. ptunarra + O. latialis + O. lathoniella clade
* O. correae is sister to O. orichora

需 O. correae $+O$. orichora clade is sister to all other Oreixenica species.

4.3 Wingless

Very similar trees were obtained for the three types of analysis using the wingless dataset despite the limitations of a reduced dataset. All Wingless trees resolved the satyrine to be a monophyletic in-group with V. kershawi and J. villida as basal outgroup species.

The Heteronympha species grouped to form a clade which is sister to the Oreixenica clade as consistent with my CO1 phylogenetic trees and the wingless phylogeny of Peña et al. (2006). As it was not possible to sequence viable wingless sequences for O. latialis, O. correae, O. kershawi and H. penelope discussing detailed sister species relationships within the wingless Oreixenica clade is not practicable.

Geitoneura, Nesoxenica and Argynnina formed species clades as sister genus to each other. This phylogeny is mirrored in the wingless phylogeny of Peña et al. (2006).

4.4 Combined Gene Fragment

Similar trees were obtained using parsimony, distance and likelihood analysis implying that the data set was robust to the various assumptions underlying these algorithms. The analysis of the combined data supported the relationships obtained by the single gene analyses and also helped to recover clades which were not fully resolved initially.

The phylogenetic trees produced by the analysis of the combined data supported the following clades and sister species relationships:

* Southeast Australian Satyrinae are a monophyletic group
* The Heteronympha clade is sister to the Oreixenica clade
* O. latialis is the sister to O. ptunarra
* O.. lathoniella is the sister to the O. ptunarra + O. latialis clade
* O. kershawi directly derived from the ancestor to the O. ptunarra + O. latialis $+O$. lathoniella clade
* O. correae is the sister to O. orichora
* O. correae $+O$. orichora clade is sister to all other Oreixenica species.
* H. cordace is directly derived from the ancestor to H. penelope and H. merope
* Argynnina and Nesoxenica are sister species to the Heteronympha + Oreixenica clade
* G. klugii is basal within the southeast Australian Satyrinae.

4.5 The utility of the different Gene Regions

The gene CO1 fragments provided very useful phylogenetic information on evolutionary relationships within the southeast Australian Satyrinae and returned reasonable resolution at intermediate and recently diverged nodes, however there is some evidence of long branch corruption by homoplasy particularly in basal nodes.

The protein-coding nuclear gene fragment was valuable in corroborating the relationships obtained by the mitochondrial CO1 gene fragment. EF-1 α returned good resolution at both basal and recently diverged nodes.

The phylogenetic trees produced by the Wingless gene fragment, due to the reduced data set appear not to be well resolved at recently diverged nodes; however Wingless afforded the best resolution for all divergence levels and provided the architecture for the phylogenetic trees from the combined analyses. The utility of the Wingless fragment suggests it can stand alone as a source of characters for building molecular phylogenies; however its utility is enhanced by the combination with data from other sources (Brower \& DeSalle 1998).

Further molecular studies of the Satyrinae should target the Wingless gene fragment in combination with data from other sources. It appears Wingless become saturated more slowly than the CO1 and EF-1 α gene fragments. In addition, the amount of useful phylogenetic information that may be obtained from a short $<400 \mathrm{bp}$ section of Wingless is comparable to or exceeds that of an $>800 \mathrm{bp}$ fragment of CO 1 or EF-1 α. This concurs with the findings of Brower \& DeSalle (1998).

4.6 Age of Divergence

Investigations of the origin and times of diversification of the Satyrinae, is hindered by the scarce fossil record and uncertain higher level phylogenies (Braby et al. 2006; Peña \& Wahlberg 2008). The associations of Lepidoptera and their foodplants may involve coevolution and therefore offer insights into the history of both (Ehrlich \& Raven 1964). The evolutionary history of Satyrinae is closely tied to the evolution of Poaceae (Peña \& Wahlberg 2008), which underwent a massive expansion and radiation during the Oligocene (33-26 mya) (Willis \& McElwain 2002). Peña \& Wahlberg (2008) dated the divergence of Heteronympha to be around 27 mya. I calculated the divergence date of Heteronympha to be around 30 mya, which ties with the radiation and expansion of the Poaceae.

Due to the constraints associated with using fossils for calibration points, divergence ages estimated from fossil are constrained to a minimum divergence age (Smith et al. 1992; Sanderson 1997). As a collaboration point Peña \& Wahlberg (2008) used a fossil from the Late Oligocene (25 mya) placed in the extant satyrine genus Lethe by Nel et al. (1993). As a collaboration point I used the Early Oligocene (approximately 35 mya) Vanessa fossils described from the Florissant Lake Bed Shales of Colorado.

A detailed discussion of the evolutionary history of the southeast Australian Satyrinae is presented in Chapter 5.

5 Conclusion

The southeast Australian Satyrinae appear to be a monophyletic group based upon molecular evidence.

Chapter 5
 Propositions for understanding the phylogeny and evolutionary history of temperate zone southeast Australian Satyrinae

1 Historical biogeography of Australia's Butterfly Fauna

1.1 The Age of Butterflies

The oldest known butterfly fossils are dated at 48 mya (Late Eocene), and belong to the family Papilionidae (Durden \& Rose 1978). Nymphalidae fossils are dated from 38 mya (Late Eocene) (de Jong 2003; Braby et al. 2005); when Australia and South America were still connected through Antarctica. Subsequently it is possible that the diversification of the Nymphalidae and subsequently the Satyrinae did come about as a result of the breakup of Gondwana. Viloria (2003) proposed that the Hypocystina, a diverse subtribe of the Satyrinae is Gondwanan in origin. Conversely, it is possible that if a Gondwanan ancestry exists, it has been obscured by later dispersals and extinctions (de Jong 2003).

Several lines of evidence may argue for relatively recent arrival of the hypocystines from the north. For example, no Australian satyrids feed on the restiid clade (Braby 1995b; Braby 2000), despite its diversity and prevalence in the Bassian zone. Alternatively, the peculiar growth form of the restiids, featuring wiry photosynthetic stems and strongly reduced leaves may have prevented their adoption by folivorous larvae. Some other groups of Lepidoptera may have entered Australia via a similar route, e.g. xanthorhoine geometrids (Young 2003).

Zhang et al. (2008) in their study estimating divergence times among subfamilies in Nymphalidae estimated the divergence between the Satyrinae and its sister subfamily Charaxinae at ~ 53.9 mya. Peña \& Wahlberg (2008) estimated the divergence of the Satyrinae subfamily at $51.7(\pm 5.7)$ mya.

1.2 The origins of Australia's Butterfly Fauna

The historical biogeography of butterflies remains a topic of much debate in current lepidopteran literature, and is on the whole currently unknown (Wahlberg 2006). Advocates of both vicariance and dispersal models of butterfly divergence disagree on the order of historical events (de Jong 2003; Viloria 2003; Hall et al. 2004; Braby et al. 2005; Braby \& Pierce 2007; Braby et al. 2007; Eastwood et al. 2008; Kodandaramaiah 2009).

There are two main theories advanced to explain the origin, age and evolutionary history of butterflies in the Australian region. One, all the butterflies in the Australian Region are the progeny of ancestors that dispersed relatively recently from Asia, Eurasia or Laurasia (northern dispersal hypothesis) (Ackery 1991; New 1999; de Jong 2003). Two, a component of the Australian fauna is more ancient, having descended from stocks in the southern lands of either remnant Gondwana (Madagascar, India, Australia, Antarctica, South America) or southern Gondwana (Australia, Antarctica, South America) (southern vicariance hypothesis) (Miller \& Miller 1997; Kitching et al. 1999; Pierce et al. 2002; Viloria 2003; Peña et al. 2006). Recently, a third hypothesis has been suggested that the butterfly fauna has an origin in Gondwana, or remnant Gondwana, with dispersal from Asia via Greater India (Braby et al. 2005; Braby \& Pierce 2007; Braby et al. 2007).

1.3 Butterflies and Grasslands

Current research suggest that butterflies are thought to be no older than approximately the mid Cretaceous ~ 100 mya (Braby et al. 2005). The oldest known fossils of angiosperms (on which the most Lepidoptera are dependent), date back to the early Cretaceous (127-138 mya) (McLoughlin 2001). Although the angiosperms must have originated before this time, the best estimates of angiosperm age range around 180 to 140 mya (Wikstrom et al. 2001; Sanderson et al. 2004; Bell et al. 2005). The absence of contemporary fossils thus far, may indicate that they were quite rare (de Jong 2003). Because the majority of butterflies and indeed most Lepidoptera, are highly specialized feeders of angiosperm plants as larvae, the age of butterflies cannot predate the origin of angiosperms (Wahlberg 2006).

The associations of Lepidoptera and their foodplants may involve coevolution and therefore offer insights into the history of both (Ehrlich \& Raven 1964). Patterns of butterfly-plant interactions are phylogenetically conserved, with related species of butterflies feeding on related species of plants (Janz \& Nylin 1998). The establishment and spread of grasslands has been dynamic in the last few million years (Stebbins 1981) including in Australia. Grasses are an important food plant for many Lepidoptera, although some large successful families have almost completely avoided them as a host e.g. the Geometridae (Young 2008). However, the evolutionary history of Satyrinae is closely tied to the evolution of Poaceae (Murray \& Prowell 2005; Peña \& Wahlberg 2008).

Satyrines are well known as one of the key herbivore groups which have diversified on monocots globally. The most phylogenetically basal satyrine clades are associated with tropical palms and have only a modest level of species richness, whereas the more advanced satyrines have radiated very extensively on Poaceae (Pena et al. 2006). Hypocystini, the major satyrine clade in Australia and New Zealand, exploit Poaceae and Cyperaceae.

In Australia, there are parallels to the satyrines in the foodplant relationships of the trapezitine hesperiid butterflies which are associated with Poaceae, Cyperaceae and Lomandra. There is broad overlap in the distribution of the two groups in Australia however, the hesperiid butterflies extend to more arid habitats on mainland Australia,
possibly because their larvae construct tubular silk-lined shelters from foliage which must help them resist desiccation and also perhaps because these constructions inhibit some predators (Jerman \& Gauld 1988). As a clade, the trapezetines occupy the widest range of climatic conditions in Australia (Braby 2000). The most cold-adapted of Tasmania's hesperiids is the Poa-feeding Anisynta dominula (McQuillan 1994; Braby 2000). Grass-feeding Lepidoptera larvae are almost exclusively nocturnal which helps avoid exposure to diurnal grazing mammals.

Diversification among grass-feeding Lepidoptera genera in Australia is uneven. In some genera it is limited to one or a few species e.g. Anthela and Pterolocera (Anthelidae), Persectania (Noctuidae), Oncopera and Fraus (Hepialidae).
Alternatively, in some groups the species diversification is very high (the noctuid genus Proteuxoa, crambids such as Hednota).

Oreixenica has a very strong ecological association with montane grasslands, many of which are associated with cold air drainage in valley floors. These grasslands can sustain high levels of mammalian grazing (macropods and wombats) (Kirkpatrick \& Bridle 1999) but have a relatively low incidence of fire relative to similar grasslands at lower elevations. This reduced predisposition to fire results from lower standing fuel levels combined with lower temperatures and with fewer opportunities for ignition (Bridle et al. 2001).

2 Propositions for understanding the evolution of temperate zone southeast Australian Satyrinae

2.1 Larval food plant specialisation

Larval food plant specialisation appears to be a significant driver of speciation within the temperate zone southeast Australian Satyrinae. Larval host plant adaption is a widely recognised driver of speciation within the Lepidoptera (Powell 1980; Ronquist \& Nylin 1990; Janz \& Nylin 1998; Powell et al. 1999; Janz et al. 2001). Although most members of the subfamily feed on Poaceae, many species have specialised on various Poa species. Evident within these butterflies are several examples of probable host capture among and within two Poales clades. O. kershawi may represent a case of capture of a novel graminid foodplant which serves to largely constrain the range of the species. Although wiregrass Tetrarrhena occurs in northern Tasmania the O. kershawi is absent. The Tasmanian endemic Nesoxenica is a specialist on the cyperid genus Uncinia.

Tussock grass is the main type of riparian vegetation on moist soils along rivers and their adjacent floodplains in Tasmania. The cool-temperate zone tussock-forming Poa belong to informal group "Australopoa" (Australia and New Zealand) (Gillespie \& Soreng 2005) itself embedded in a near cosmopolitan clade of Poa exhibiting a great range of habitat associations and growth form. This group is thought to have reached Australia/New Zealand from the Americas (Soreng 1990; Doyle et al. 1992; Barker et al. 2001).

Microlaena stipoides is a widespread perennial cool-season species which is an important foodplant of several hypocystine genera. It tolerates a wide range of environments, including shade beneath eucalypts, but avoids swampy ground (MagcaleMacandog \& Whalley 1991). It is common in native pastures and can coexist with introduced European grasses such as Lolium and Dactylis. Themeda triandra is a warm season species, widespread through the Old World (Hill 2004).

In an otherwise Poaceae feeding genus, H cordace has captured the cyperid Carex and thus extends into wetter, lower nutrient habitats particularly in western Tasmania. The genus Tisiphone, monophagous on the tall cyperid Gahnia, includes the geographic outlier T. helena on the Atherton Tableland, but is absent from Tasmania despite the
hostplant being common. Dodonidia in North Island of New Zealand is also a Gahnia feeder (Laidlaw 1970).

Many of the wider spread Satyrinae, which also appear to have robust populations, have adapted to feeding on introduced grassland species. For example the native food plants of A. hobartia have not been officially recorded as the species main host now appears to be the introduced species Lolium perenne (Poaceae) (Prince 1988; Braby 2000).

Plate 5 O. ptunarra male, sunning on Poa labillardieri, Pikes Hill March 2006

2.2 Pleistocene Climate Change

Geographical gaps in the current distribution of some butterflies raise interesting questions, where environmental modelling suggests a more continuous range. For example Nesoxenica is not fully coextensive with its widespread hostplant Uncinia in Tasmania, being absent from the northeast highlands (Couchman 1948, 1956; Common \& Waterhouse 1981; Braby 2000). Similarly, O. ptunarra is absent from the extensive montane grasslands north of the Fingal Valley (Neyland 1992; Anderson 2001b; Bell 2002). These patterns may represent retreats from a formerly wider range or failure to recolonise after previous range contractions. Climate change in the last few million years is a likely driver of these changes.

The mid Pleistocene arid shift recorded in southern Australia was associated with colder global temperatures, and lower sea levels during glacial periods and occurred around 500,000 years ago (Pillans \& Bourman 2001). In southern Australia, the Last Glacial Maximum is known to have been both drier and colder than present (Bowler et al. 1976). At this time sea level was up to 130 m lower than now, and much of the continental shelf was exposed (mainland Australia was joined to Tasmania, for example). Increased continentality may thus have contributed to decreased rainfall, particularly in present-day coastal areas.
O. ptunarra is largely confined to very open habitats due to its microclimatic preferences. It is intolerant of shady habitats due to its need to bask regularly. O. ptunarra occurs in some of the driest and coldest Poa grasslands in the Midlands which are home also to a number of other grass feeding endemic insects such as Aphodius pseudotasmaniae and Oncopera intricata.

The most ecologically widespread Hypocystina in the Bassian region is Geitoneura, a genus basal to other southern Australian genera. One species, G. klugii, extends from tall forest to open grassy woodland over a wide range of longitude and climatic zones. The two other species in the genus are more restricted but contained within the range of G. klugii (Braby 2000).

3 IMPLICATIONS FOR THE EVOLUTIONARY RELATIONSHIPS FOR AND WITHIN THE TEMPERATE ZONE SOUTHEAST AUSTRALIAN SATYRINAE

3.1 Ge itoneura klugii as basal species

Geitoneura klugii as the basal species within the temperate zone southeast Australian Satyrinae is very strongly supported by the molecular data (Chapter 4: Figure 4.4). Morphologically G. klugii is typical of the subfamily. The larvae have adapted to feeding on a wide range of both introduced and native species (Chapter 3: Table 3.2). The eggs of \dot{G}. klugii are very unusual in the subfamily; they are most similar in morphological features to the eggs of Pyronia bathseba and P. tithonus subtribe Maniolina (Garcia-Barros \& Martin 1995). Maniolina is a closely related basal subtribe to Hypocystina (Peña et al. 2006). The pupa of G. klugii is attached; the dominant state throughout the subfamily.

3.2 Ar gynnina and Nesoxenica as sister species

Nesoxenica and Argynnina as sister species is supported by the majority of the molecular data (Chapter 4: Figure 4.2-4). Morphologically Nesoxeinca is atypical of the subfamily where as Argynnina is fairly typical. One major point of divergence between the species is larval food plant preference. The larvae of A. hobartia have adapted to feeding on Lolium perenne, an introduced species as well as native grasses such as Poa labillardieri and Austrodonthonia species, whereas N. leprea has developed to feed solely on one species Uncinia tenella (Chapter 3: Table 3.2).

The sub-hemi-spherical eggs of A. hobartia are fairly typical of the temperate zone southeast Australian Satyrinae; whereas the sub-quadrate, upright eggs of N. leprea are quite a different, however this shape is found in other European satyrinae (GarciaBarros \& Martin 1995). The pupa of both Nesoxenica and Argynnina are attached.

3.3 Hete ronympha as sister species to Oreixenica

Characteristics which are not seen in other clades within the temperate zone southeast Australian Satyrinae such as distinct sexual dimorphism and unattached pupa are displayed in both the Heteronympha and Oreixenica genus. The sister species relationship of Heteronympha and Oreixenica is supported by the molecular data (Chapter 4:Figure 4.1-4).

Distinct sexual dimorphism is more common in tropical families such as Zygaenoidea (Yen et al. 2005) than temperate zone Satyrinae butterflies. H. merope (Chapter 2: Figure 2.45), O. ptunarra and O. correae (Chapter 2: Figure 2.8) all display distinct sexual polymorphism. Generally species that display sexual dimorphism, particularly in temperate zones have distinct differences between flight behaviour in males and females (Gilchrist \& Rutowski 1986; Sibly et al. 1997; Emerson \& Hastings 1998; Van Dyck et al. 1998; Berwaerts et al. 2006; Martinez-Lendech et al. 2007). This hypothesis is generally supported within the temperate zone Satyrinae. O. ptunarra display distinctive differences in male and female flight behaviour (Anderson \& McQuillan 2003) as does H. merope (Braby 2000).

Unattached pupa is a characteristic that appears to have evolved recently and independently within the Heteronympha and Oreixenica clades Figure 5.1.

Figure 5.1 Cladogram of Heteronympha and Oreixenica clades detailing pupal state Blue text $=$ Attached : Red text $=$ Unattached

The presence or absence of signa is a defining character between Heteronympha and Oreixenica; signum is absent Oreixenica (Chapter 2: Figure 2.31-36), and present in Heteronympha (Chapter 2: Figure 2.55-57).

4 Hypothesis of Oreixenica speciation

We can propose that Oreixenica populations were once much more widespread in south eastern Australia, given that climate models for a mean annual temperature depression of $5^{\circ} \mathrm{C}$ predict that Poa grassland occupied more than twice its current extent Figure 5.2. Since the Last Glacial Maximum, there has been a steady decline in Oreixenica habitat Figure 5.3.

Figure 5.2 Alpine Grassland Extent at the maximum of the last glacial period

Figure 5.3 Current Extent of Tasmanian Grassland Habitat
(after Kirkpatrick et al. 1995)

The genus Oreixenica appears as the geographically restricted sister (SE Australia) to the more widespread Heteronympha (southern Australia). The ancestral Oreixenica was Poa-feeding, adapted to cold grasslands, and subsequent speciation was promoted by the environmental vagaries of the Pleistocene, which both diversified grassland habitats, and variously expanded and contracted their extent. The first dichotomy yielded the ancestor of O. orichora-O. correae and another species which subsequently gave rise to the foodplant specialist O. kershawi and a diversified clade of Poa-feeders. This latter clade includes the altitudinally widespread O. lathoniella and the ancestor of the alpine species pair O. latialis-O. ptunarra. This ancestor occurred on both sides of Bass Strait prior to its inundation. Subsequently, these separated populations diverged to yield the mainland O. latialis and the Tasmanian endemic O. ptunarra.

The archipelagic nature of cold grasslands has lead to the isolation of populations in several species; this is reflected in divergences in phenotype, such that they in some many cases they have been assigned subspecific names.

The lower altitudinal limits around 1000 m of species such as O. correae, O. orichora and O. latialis has restricted the capacity of these species to extend their range. In addition, global warming is expected to further contract their range.

Cold (elevated) grasslands have existed in southern Australia since the end of the Tertiary. The ancestor to the clade O. ptunarra / O. latialis was most likely a wide spread open grassland species which flew during the last interglacial period. Couchman (1956) in his original description of O. ptunarra hypothesised that O. ptunarra is the most primitive form of Oreixenica, and most likely the basally derived species to the genus. The evidence presented here refutes this hypothesis; it is suggest that O. ptunarra, which is endemic to Tasmania, speciated after the inundation of Bass Strait.

Waterhouse (1923) found early instar larvae of O. latialis on Mt Kosciusko in December suggesting that either eggs or larvae overwinter, but not pupae. The speciespair O. latialis-O. ptunarra fly late summer-early autumn, the latest of all members of the genus. It is proposed that this phenology evolved to enable larvae to exploit fresh spring growth in Poa tussocks.

O lathoniella is most likely a close descendant of the species which specialised to give rise to the O. ptunarra / O. latialis clade. O. lathoniella is wide spread sea level to sub alpine with a long flight period January to May. Whereas O. latialis and O. ptunarra have a limited flight period late February to early April and limited altitudinal range alpine. The high degree of frost-tolerance in Poa enables tussock grassland to occupy extensive areas on high plateaux above the treeline, and colonise cold elevated valley bottoms.
O. kershawi appears to be a foodplant specialist on Tetrarrhena juncea (wiregrass) in wet forests at low to moderate elevations. Its absence from Tasmania is probably due to lack of suitable habitat. Wet forests with an understorey dominated by grasses and sedges, especially the grass Tetrarrhena juncea which occur in Victoria, are uncommon in Tasmania.

The ancestor to O. correae / O. orichora most likely flew in closed country. Speciation in the branch occurred due to flight period and habitat range preference.

Unfortunately, the precipitous decline in the extent of native grasslands since European settlement represents a major challenge to the future prospects of many of the species.

Plate 6 O. ptunarra male, resting on Poa, Pikes Hill March 2006

Chapter 6
 Population management of Oreixenica ptunarra

1 Introduction

1.1 Background

O. ptunarra is an endemic Tasmanian butterfly with a fragmented and restricted distribution (Braby 2000). All known colonies are found in open habitat at altitudes above 450 m that support a healthy Poa tussock grassland, usually in excess of 25% ground cover (Anderson 2001b). Habitats occupied by the butterfly range in structure from grassy Eucalyptus woodland, through grassy shrubland, to open grassland. Since European settlement a considerable reduction and modification of this habitat has occurred, particularly throughout the Midlands, a major agricultural region (Fensham \& Kirkpatrick 1989; Kirkpatrick et al. 1995; Leonard \& Kirkpatrick 2004). Unfortunately the reduction, destruction and modification O. ptunarra habitat of continues in some areas, particularly due to flooding of native grasslands in upper catchments for on-farm water storages.

As over 90% of the habitat of O. ptunarra is in private ownership, the continued survival of the species depends very heavily on sympathetic land management. A key issue in managing the species is the impact of existing and proposed land management especially in relation to Poa tussock grasslands which are now fragmented. Land management practices in and surrounding, O. ptunarra colonies the Southern Midlands will have a major bearing on the fate of the species.

Conservation genetics is the application of genetics to manage species as dynamic entities capable of dealing with environmental change. It may inform genetic management of small populations, resolution of taxonomic uncertainties, help in defining management units within species and extend understanding of a species biology (Frankham et al. 2002).

The deleterious effects of small population size are of major concern in conservation biology, since endangered species typically have small or declining populations. Small populations suffer usually from inbreeding and loss of genetic diversity resulting in
elevated extinction risks. Consequently, a major objective of genetic management is to minimize inbreeding and loss of genetic diversity (Frankham et al. 2002).

The investigation of butterfly populations has been at the forefront of conservation genetics. Leading this was the Porter \& Geiger (1988) investigation into the genetic and phenotypic population structure of the Coenonympha tullia complex (Lepidoptera: Nymphalidae: Satyrinae) in North America. Population genetics continued to be a strong area of research throughout the nineteen-nineties leading this was Hanski's Metapopulation research group (e.g. Hanski 1999). Recent population genetic studies included the work of Agrawal (2003) integrating population genetics into community ecology; Benedick et al. (2007) using population genetics to study the effects of habitat fragmentation; and Schmitt and Haubrich using genetic differentiation of Erebia euryale to unravel the late Pleistocene history of the mountain coniferous forest biome in Europe (Schmitt \& Haubrich 2008).

I would argue that O. ptunarra is an excellent candidate for a comprehensive genetic study of populations in a young, low contrast, fragmented landscape. Fragments are remnants of previously more continuous features, isolated by the imposition of a contrasting matrix (Watson 2002). Considerable ecological knowledge has been gathered over the last decade relating to the dynamics of individual O. ptunarra populations, habitat patch size, and biological characteristics (Neyland 1992; 1993; McQuillan \& Ek 1997; Bell 1998; Anderson \& McQuillan 2000; Anderson 2001b; Bell 2002; Anderson \& McQuillan 2003). However little is known about migration patterns, population interactions or the breeding structure of O. ptunarra.

The range of O. ptunarra extends over three major Tasmanian biogeographical regions: the Centre (Northwest Plains and Central Plateau), Southern Midlands and East Coast (Orchard 1998). O. ptunarra range is determined by a variety of environmental factors. It is dominantly a upland species, being restricted to sites above 400 m and does not extend into the lowland plains of the Midlands, where it is too dry for Poa to flourish (Kirkpatrick \& Gilfedder 2000; Leonard \& Kirkpatrick 2004). In the Northwest Plains area O. ptunarra is limited by the availability of suitable habitat (Neyland 1992).

Although O. ptunarra depends on a significant cover of Poa tussock grassland, some apparently excellent quality Poa grasslands do not carry populations of the butterfly
(Neyland 1992; Bell 1998; Anderson 2001b; Bell 2002). Reasons for this are not well understood but some absences may be temporary, awaiting dispersal of colonising individuals from nearby populations.

1.2 Aims

The aims of this chapter are to investigate the genetic diversity of O. ptunarra populations, and to explore the implications for understanding the scale of movement within and between O. ptunarra populations. This information will give important insights to the relatedness among a cross section of populations.

Plate 7 O ptunarra male, Tunbridge Tiers, 2004

2 The Genetic Diversity of O. ptunarra Populations

2.1 Materials and Methods

2.1.1 Individuals and Populations Examined

Populations were sampled along road based transects designed to adequately sample the geographical range of O. ptunarra habitat (detailed in field site descriptions Appendix 3). The provenance of individuals is listed in Appendix 2. All individuals were stored frozen at $-18^{\circ} \mathrm{C}$ until required.

2.1.2 Primers and $P C R$

Sequencing was undertaken from at least two individuals from each sample locality. A 750bp sequence was obtained for the Lepidopteran Control Region (CR) following the methods set out in Chapter 4. Vila \& Bjorklund (2004) found that CR to be a more useful sequence than CO 1 as it shows more variability in population genetic studies. The primers Lep 12S (F) and Met20 (R) from Taylor et al. (1993) were utilised and PCR conditions based on Vila \& Bjorklund (2004) (Table 6.1) were implemented.

Lep 12S (F) 5’- TA GGG TAT CTA ATC CTA GGT -3'
Met20 (R) 5'- TG GGG TAT GAA CCC AGT AGC -3'

Table 6.1 PCR conditions used in population study

1. $95^{\circ} \mathrm{C}$ denaturation for 120 seconds
2. $94^{\circ} \mathrm{C}$ denaturation for 60 seconds
3. $51^{\circ} \mathrm{C}$ annealing for 90 seconds
4. $65^{\circ} \mathrm{C}$ extension for 60 seconds
5. go to 2,35 times
6. $65^{\circ} \mathrm{C}$ final extension step for 7 minutes
7. Hold at $11^{\circ} \mathrm{C}$ forever.

2.1.3 Sequence analysis \& alignment and phylogenetic analysis

Sequence analysis and alignment and appropriate phylogenetic analyses were conducted following the methods set out in Chapter 4.

2.1.4 Mantel tests

Mantel tests (Mantel 1967) were conducted to test if genetic variation and geographical distance between population localities were correlated. The method chosen was Mantel's asymptotic approximation; algorithm based on Douglas \& Endler (1982).

2.2 Results

Alignment of the population data resulted in 750 characters, of which 129 were parsimony informative. The data matrix is presented in bootstrap consensus tree in Figure 6.1, sequences in Appendix 9 and the Log/Det sequence divergence values in Appendix 10. The average base frequencies for the population data were $\mathrm{A}=42.20 \%$, $\mathrm{C}=6.99 \%, \mathrm{G}=3.77 \%$, and $\mathrm{T}=47.04 \%$.

Maximum parsimony (MP) analysis using equal weights produced 38 shortest trees of length $467(\mathrm{CI}=0.499, \mathrm{RI}=0.813)$. The strict consensus tree is presented in Figure 6.4 Minimum evolution (ME) analysis resulted in 27 short trees of length 498(CI $=0.468$, $\mathrm{RI}=0.788$). The strict consensus tree is detailed in Figure 6.5. Maximum likelihood (ML) analysis resulted in one tree of length $458(\mathrm{CI}=0.545, \mathrm{RI}=0.715)$ detailed in Figure 6.6. The tree parameters obtained empirically by the ML analysis were as follows:

Ti/Tv:	
Expected ratio:	0.8999
Kappa	4.5884
Shape parameter (alpha)	0.1981
Minus log Likelihood (-In L)	4196.4937

Analysis of the transition/transversion ratio resulted in two shortest trees of length 2736 ($\mathrm{CI}=0.444, \mathrm{RI}=0.796$) Figure 6.7.

Four major population groupings emerged from the phylogenetic analysis. To some degree these reflect the phenotype subspecies described by Couchman (1953;

Couchman \& Couchman 1978) (Figure 6.2).

Figure 6.1 Bootstrap consensus tree resulting from analysis of the Lep 12S /

Met 20 population sequences.
(length $467, \mathrm{CI}=0.499, \mathrm{RI}=0.813$). All bootstrap values $>95 \%$ (not shown).
Broad geographical relationships are shown for some clades.

Figure 6.2 O. ptunarra subspecies localities (after Couchman \& Couchman 1978)

0O. p. angeli stronghold in the region around and between Lake Leake to Lake Tooms on the Eastern Tiers
-
O. p. roonina is found in the Midlands around the Oatlands area

Figure 6.3 Locality of Highlands Clade Populations

Figure 6.4 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from analysis of the Lep 12S / Met 20 population sequences (length $467, \mathrm{CI}=0.499, \mathrm{RI}=0.813$)
all bootstrap values were $>95 \%$ (not shown).

Figure 6.5 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from analysis of the Lep $12 \mathrm{~S} /$ Met 20 population sequences (length $498, \mathrm{CI}=0.468, \mathrm{RI}=0.788$) all bootstrap values were $>95 \%$ (not shown).

Figure 6.6 Bootstrap consensus of the minimum likelihood tree (ML analysis) retrieved from analysis of the Lep 12S / Met 20 population sequences (length $458, \mathrm{CI}=0.545, \mathrm{RI}=0.715$) all bootstrap values were $>95 \%$ (not shown).

Figure 6.7 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved, from the Lep $12 \mathrm{~S} /$ Met 20 population sequences (length $2736, \mathrm{CI}=0.444, \mathrm{RI}=0.796$)
all bootstrap values were $>95 \%$ (not shown)

2.2.1 Statistical Analysis of population genetics

The results of the overall Mantel test comparing genetic and geographical distances between populations suggest that the null hypothesis of no relationship between genetic distance and geographical distance apart is supported.

Standardised Mantel Statistic:	$-0.049429=r$
Observed Z	0.2314×10^{8}
Expected Z	0.2314×10^{8}
Variance of Z	0.7899×10^{12}
Standard error of Z	0.8887×10^{6}
$t=-0.7861$	
$p=0.43206638$	

The results of the regional Mantel test comparing genetic distances to geographic distance between populations grouped by region suggest that the null hypothesis of no relationship between genetic distance and geographical distance apart is to be rejected. A plot of the regional mantel test comparing genetic distances to geographic distance between populations grouped by region is presented in Figure 6.8. These results indicate that there is less heterogeneity within groups - population regions that expected by chance indication that there is relatedness between members of the groups.

Standardised Mantel Statistic:
Observed Z
Expected Z
Variance of Z
Standard error of Z

$$
t=5.0413
$$

$$
\mathrm{p}=0.00000055
$$

$\mathrm{p}=0.00000055$

$$
0.293212=r
$$

$$
0.1052 \times 10^{9}
$$

$$
0.9417 \times 10^{8}
$$

$$
0.4771 \times 10^{13}
$$

$$
0.2184 \times 10^{7}
$$

Regional Mantel Test

AXIS 2
Figure 6.8 scatter plot of pair wise comparisons of Regional Mantel Test comparing genetic distances between populations grouped by region

Midlands
$\nabla_{\text {East Coast }}$
Highlands
Northwest

3 DISCUSSION

This is the first analysis of the genetic relationships between various populations and subspecies within O. ptunarra. All previous commentaries (e.g. Couchman \& Couchman 1978; Common \& Waterhouse 1981; Braby 2000)on the relationships within O. ptunarra have been based on phenotypical evidence.

Four major population groupings have emerged from the phylogenetic analysis. To some degree these reflect the phenotype subspecies described by Couchman (1953; Couchman \& Couchman 1978) (Figure 6.2 O. ptunarra subspecies localities (after Couchman \& Couchman 1978)). Although he was not aware of the disjunct Northwest O. ptunarra populations when he described the subspecies of O. ptunarra. More recent analysis of phenotype (e.g. McQuillan \& Ek 1997; e.g. Anderson \& McQuillan 2000) has hypothesised that the Couchman subspecies are better understood as of clinal phenotypic variation with altitude, and have subsumed Couchman's subspecies to some degree, and recent commentators have also agreed (e.g. Braby 2000).

The habitat range of subspecies O. p. roonina is reflected in the Midlands clade. The Midlands populations were the first to be historically isolated and fragmented due to habitat loss and the introduction of improved pasture. Many populations recorded in the Midlands by Couchman (1953; 1954) and Couchman \& Couchman (1978) are now extinct, including that at the type locality of O. p. roonina (Neyland 1992; Bell 1998; Threatened Species Unit 1998; Anderson 2001b; Sands \& New 2002). The longer branch length in the Midlands clade arguably reflects an extended period of genetic isolation.
O. p. angeli is very clearly distinguished in the Eastcoast clade. These populations have the longest average branch length and the largest sequence divergence/less similarity to other population clades. The appearance of a BTTC (Barren Tier) individual and the very tight clade of MH (Marlborough Highway) + NB (North Bronte) at the tip of the Eastcoast clade raise interesting questions as to the origin of the Eastcoast and Midlands O. ptunarra populations. Individual members of populations which otherwise belong to the Highlands/NW Plains clade appear basal to the complete phylogenetic tree. This suggests that all O. ptunarra populations could be derived from highland populations.

This evidence is consistent with the wider hypothesis of Oreixenica speciation as presented in Chapter 5.

Individuals from populations that group in the Central Highlands clade fly typify O. p. ptunarra. Members of this clade fly in a very geographically limited area around Great Lake (Figure 6.3). The short to moderate branch lengths in this clade indicate that these populations are closely related but are becoming increasingly genetically isolated from the O. ptunarra populations elsewhere.

The Highlands / Northwest Plains clade is a noteworthy grouping. The short branch lengths and mixed population arrangements indicate this is a rapidly changing and evolving group. It has been assumed that O. ptunarra does not extend into the high altitude grasslands of the western Central Plateau (Sands \& New 2002) leading to the hypothesis that the Northwest Plains O. ptunarra populations were a geographic isolate; however much of this area has not been thoroughly surveyed (Neyland 1992; Bell 1998). The population groupings in the Highlands/Northwest Plains clade provide evidence that O. ptunarra may extend throughout the grasslands of the western Central Plateau connecting the Northwest Plains populations to the Highlands populations.

Distance analysis of O. ptunarra population genetics also supports the existence of O. ptunarra subspecies. The plot of the regional Mantel test comparing genetic distances to geographic distance between populations highlights the genetic basis of the geographic regions (Figure 6.8). The three main groups: the Midlands (O. p. roonina), East Coast (O. p. angeli) and highlands (O. p. ptunarra) with the Northwest populations mixed in are highlighted.

In summary, O. ptunarra populations maintain a degree of genetic diversity and show some influence of genetically structured populations related to geography. However there is evidence from change in landuse that populations are becoming increasingly genetically isolated particularly, those in the Midlands and eastern regions of Tasmania. The fact that the described subspecies appear to be genetically supported does require some consideration in regards to future management plans of the species.

4 Structure \& Spatial Distribution of O. ptunarra Populations

4.1 Is genetic diversity reflected in the spatial distribution of populations?

Genetic diversity is reflected in the spatial distribution of populations. Populations that are fragmented and geographically isolated are becoming increasingly genetically isolated as seen in the Eastcoast clade (Figure 6.1)

4.2 What is the scale of movement within and between populations

There is evidence of large scale spatial movement (tens of kilometres) between populations as the genetic signature of individuals appear where they are not expected such as individuals with sequences typical of Highland populations appearing in the Midlands and Eastcoast clades.

In Tasmania during the O. ptunarra flight period (March-April) the prevailing wind direction is from the southwest (Australian Bureau of Meteorology 2009). When disturbed, O. ptunarra can utilise wind currents to take evasive flight action (Anderson \& McQuillan 2003). It is most likely that the Midlands and Eastcoast populations are derived from the Highlands and individuals have been recruited from the Highlands particularly to the Midlands region numerous times. This is reflected in the placement of the genotype of individuals from the Highland and intermediate populations (e.g. Lake Crescent [LC]) as sister to Midlands populations and the BTTC $+\mathrm{MH}+\mathrm{NB}$ clade as sister to individuals from SGR (Stoney Gully Road) (Figure 6.1).

The very tight branching of some clades such as the Morey Road population (MR) within the Highlands / Northwest Plains clade (Figure 6.1) suggest that habitat patches which are geographically isolated have not been recruiting individuals to the population, subsequently becoming genetically isolated.

5 SUITABILITY OF HABITAT PATCHES FOR THE LONG TERM SURVIVAL of O. PTUNARRA

5.1 The sustainability of habitat patches for \mathbf{O}. ptunarra survival in the Southern Midlands region of Tasmania

Land management practices have the potential to make O. ptunarra not just vulnerable to extinction, but actually extinct. These practices include land clearing, overgrazing, plantation development, agricultural chemical usage and inappropriate burning regimes (Neyland 1992; Bell 1998; Threatened Species Unit 1998; Bryant \& Jackson 1999; Anderson 2001b; Sands \& New 2002).

The aim of this review is to investigate changing trends in land management and agricultural practices around O. ptunarra colonies in the Southern Midlands region of Tasmania and to discuss the potential effects on these colonies.

A series of follow up interviews were conducted with land managers in, and around, O. ptunarra colonies in the Southern Midlands. The results of initial interviews are presented in Anderson (2001b). These locations were chosen as they were representative of all the colonies and habitat sites in the Southern Midlands Region. Butterfly sites ranged in area from less that one hectare to over 300 hectares and included areas that had known healthy populations to areas that were known to be in decline. The managers of the sites had a range of farming experience. Initial interviews were conduced during the year 2000 and follow up interviews were conducted in 2006 (University of Tasmania Human Ethics Approval H8629).

Land managers were asked a series of open-ended questions in a one-on-one interview situation. The questions were subdivided into eight main sections: background information, property history, fire history, environment, grazing management, chemical usage, activities in paddocks adjacent to O. ptunarra colonies and property management practices.

The land use management regimes of several properties have experienced major changes (i.e. irrigation and grazing) in the last five years. Stock grazing of sheep is ubiquitous for all properties, however recently several properties have also facilitated cattle grazing. The increase in cattle grazing in Poa tussock grassland which supports O. ptunarra colonies is disturbing. The damage cattle cause to tussocks has been recorded during O. ptunarra population monitoring and there is a strong correlation
between cattle grazing and declining butterfly numbers, and in at least one case, leading to extinction of a population.

Cell grazing is becoming the dominant grazing practiced in the Southern Midlands, with several properties employing cell grazing in paddocks with O. ptunarra colonies. Cell grazing regimes are based upon running 5-6000 sheep in 20-hectare (50 acre) blocks for 2-3 week periods. The cells are then rested and allowed to regenerate before being grazed again (Paterson 1994). Cell grazing is designed to promote the growth of exotic pasture species over native tussock grasses (Leonard \& Kirkpatrick 2004; Verrier \& Kirkpatrick 2005). The long-term impact of cell grazing on O. ptunarra colonies needs further investigation, but is likely to be deleterious.

The aerial application of pesticides and herbicides is utilized at several properties. This practice can negatively affect O. ptunarra populations either by direct or secondary toxicity. Blanket sprays and aerial applications of pesticides and herbicides can be especially dangerous because they utilize large volumes of chemicals, cover considerable land areas, and are relatively indiscriminate toxins. Many non-target organisms can be affected by such chemical use (Pimentel \& Edwards 1982; Edwards 1993). Even when applied with caution, pesticides and herbicides have the potential to drift and could ultimately poison adjacent butterfly populations.

The formal listing of O. ptunarra as a threatened species and the private tenure of most sites upon which colonies exist does complicate conservation management. Many of the land managers interviewed are distrustful of government agencies, and were generally reluctant to participate in legally binding management programs, such as covenants and management agreements. A strong belief is held that even when incentives are offered with such programs, they are generally insufficient and not worth the effort and perceived to be too costly to the managers.

In Australia there exist several different types of public-private partnership providing incentives to landowners who manage their land in an environmentally sensitive way. There are also economic incentives and information sharing incentives, whereby the government provides free technical assistance to landowners. The first type of incentive is a covenant where the landowner voluntarily enters into a legally binding agreement to protect some of the land, and this covenant is then registered on the land title and follows it even to subsequent owners. This protects the land for the long-term.

Landowners participating in this scheme receive substantial tax breaks, such as exemptions from land tax on the protected land, and may receive priority for other benefits and grants (DPIPWE 2009).

The second type of incentive is a management agreement. This is legally binding, like the covenant, but is not registered on the title and does not provide long-term protection. Again, the landowners can receive priority for funding and assistance by committing to conservation in this way. Private Reserves are another type of partnership. These are legally binding and follow the title to provide ongoing protection, and give the land a 'Reserve' status. Again, priority for funding and assistance is a key incentive here (DPIPWE 2009).

There are many purchase programs whereby the government, or NGO receiving government grants, will purchase environmentally valuable land for protection and several groups offer free labour and assistance with land care for landowners that require assistance managing for environmental issues. Lastly, there are a range of grants available for landowners who undertake environmental improvements (e.g. NETLT 2009).

Overall, these incentives are useful, but can be very confusing and time consuming to understand and implement. Landowners would already require a strong commitment to conservation to take the time and trouble. It is useful, however, to reward responsible landowners, but it is unclear whether or not these fragmented incentives will actually lead to significantly more landowners conserving their land for O. ptunarra.

Because so many O. ptunarra colonies occur on private land, land management practices that sustain the needs of the butterfly are crucial for the protection, survival, and recovery of the species. It is essential that private land managers realise the importance of species protection and successful practices of beneficial management regarding endangered species. Such goals can be obtained through education, incentives, and partnerships. It is not enough to inform landowners of the presence of an endangered species on their land, in some cases this can actually be detrimental, leading to pre-emptive land clearing. Government and organisations must take an active role to assist managers in species protection through the provision of adequate incentives to ensure the desired action, and offer possibilities to manage land through mutually beneficial practices.

5.2 Major factors affecting the sustainability of habitat patches

Two species of the exotic social wasp genus Vespula now occur in Tasmania. European or German Wasp Vespula germanica were first found in a Hobart suburb in 1959 and have since spread to all parts of the State. The English or Common Wasp Vespula vulgaris is a relative newcomer to the state, where it is believed to have arrived around 1995 and is restricted to southeast Tasmania (New 1996).

European wasps were first noted in abundance at several O. ptunarra monitoring sites during the 1998 flight season (Bell 2002). European wasp has been repeatedly observed taking O. ptunarra at several different localities (pers. obs. 1999-2006 Bell 2002).. Wasps were a significant contributing factor for the extinction of at least two O. ptunarra colonies, Thompsons Park and Ladies Mile Marsh (Ladies Mile Plain) (Bell 2002). Beggs \& Rees (1999) recognised the potential threat social wasps pose to species such as butterflies. Their models focusing on Lepidoptera larvae show species with spring caterpillars may be able to persist, but species with larvae occurring in the peak wasp season would be eliminated.

Provided there is an adequate density of Poa tussock as habitat, the presence or absence of improved pasture surrounding the O. ptunarra colonies does not appear to directly affect the populations. However continued fragmentation of the landscape is having an impact on the long-term survival of the species. There is evidence to suggest that there may be a threshold density of around 25% Poa tussock cover required to support viable O. ptunarra populations. The availability of nectar sources increases the longevity of individuals and lengthens the flight period within individual populations (pers. obs. 19992006) Similarly, the availability of nectar sources was found to increase the longevity of Lycaena hippothoe (Lycaenidae) by three to five times; this extended survival time also distinctly increased the duration of an individuals oviposition period (Fischer \& Fiedler 2001).

Recolonization by O. ptunarra to abandoned sites is made difficult by the fragmented nature of remaining habitat, its low fecundity, short flight season, and weak flight. The fragmentation of habitats is the key factor responsible for the decline of genetic exchange between populations (Brookes et al. 1997; Lewis et al. 1997; Van Dongen et al. 1998; Clarke \& O'Dwyer 2000; Schmitt \& Seitz 2002; Krauss et al. 2004). Proposed rehabilitation of sites also poses difficulty because of the necessity to use locally sourced butterflies for such attempts. Removing individuals from successful populations an risk the viability of the source population (Schmitt et al. 2005; De Groot et al. 2009). Failure to recolonise the new site is highly likely (Cassel-Lundhagen et al. 2009).

5.3 Attributes for suitability

The maintenance of native grasslands and grassy woodlands in good condition is essential for O. ptunarra survival. Heavy stocking for extended periods quickly reduces the quality and extent of grassland and leads to patches of bear ground facilitating weed invasion. Any activity which further fragments O. ptunarra habitat should be avoided. This included alteration to drainage or ground disturbance in or near colonies as this affects tussock growth.

The key requirements for O. ptunarra sustainability are:

- Poa tussock grassland of at least 1 hectare
- Threshold density of around 25% Poa tussock cover
- Effective wasp control
- Availability of nectar sources
- Increased connectivity of habitat patches
- Limited sheep and no cattle grazing
- The development of land management agreements with private landowners

Plate 8 O. ptunarra male, Liawenee Moor, 2004

Chapter 7 Concluding Comments

All the aims of this study were broadly met. The first aim was to

* Increase the pool of knowledge and understanding of the genus Oreixenica, and the relationship of Oreixenica to other temperate zone southeast Australian Satyrinae.

This study has increased the pool of knowledge and understanding of the genus Oreixenica, and the relationships of Oreixenica to other temperate zone southeast Australian Satyrinae. This study has revealed that the temperate zone southeast Australian Satyrinae are a monophyletic group based on molecular evidence.
Significantly, this study revealed that the Heteronympha clade is sister to the Oreixenica clade and that G. klugii is basal within the southeast Australian Satyrinae. We also have a better understanding and appreciation of the evolutionary history of Oreixenica.

The second aim of this study was to

* Characterise the adult morphology of the five temperate zone southeast Australian
- Satyrinae genera and fourteen species.

The genitalia of both male and female temperate zone southeast Australian Satyrinae have been documented for the first time. The main finding of this study was that the Oreixenica are a supported monophyletic group within the temperate zone southeast Australian Satyrinae based on morphological evidence. The synapomorphies that support this are (1) signa is absent from the corpus bursae and (2) forewing vein 10 from subcostal arises close to end of cell with (3) the discocellular vein sharply bent. This research has lead to the availability of additional synapomorphies for many of the genera and species within this group.

The third aim of this study was to

* Describe the eggs of the temperate zone southeast Australian Satyrinae.

The eggs of all species in the study have been described in detail and photographed both as fresh specimens and with the Scanning Electron Microscope.

The fourth aim of this study was to

* Describe and document the larva and pupa of O. ptunarra.

The early and late instar larva and pupa of O. ptunarra has been documented. This study is the first time late stage O. ptunarra lava have be found in the field, tracked to the pupa and finally emerge as beautiful O. ptunarra butterflies. ${ }^{-}$Understanding the whole life cycle of O. ptunarra is vital for developing effective conservation management strategies.

The fifth aim of this study was to

* Contribute to understanding O. ptunarra, and its relationship to its close relatives.

This study has contributed greatly to understanding O. ptunarra and the relationship of O. ptunarra to other Oreixenica. We understand the relationships within the genus Oreixenica and that O. latialis is the sister species to O. ptunarra.

The final aim of this study was to

* Investigate the genetic diversity of O. ptunarra populations which will contribute towards conservation management strategies for O. ptunarra.

This study has revealed some surprising results regarding genetic diversity of O. ptunarra populations, particularly the relationships of subspecies and various population interactions. O. ptunarra populations are genetically diverse and currently show limited evidence of inbreeding. However, there is evidence that populations are becoming increasingly genetically isolated, particularly in the Midlands and Eastern Regions of Tasmania. The fact that populations appear to interact within the traditional subspecies ranges is presently overlooked in current management plans. This will need to be carefully considered when future O. ptunarra conservation management strategies are considered.

Future research

Information from both the molecular sequences and morphological data in this study provide powerful insights into relationships within the temperate zone southeast Australian Satyrinae. The building of this information into further work resolving the relationship of Satyrinae at a global level would greatly enhance the phylogenies of Peña (2006), Wahlberg (2003b) and others.

This was the first phylogenetic analyses of O. ptunarra populations. The Lep12 / Met20 fragment provided very useful initial phylogenetic information. Future O. ptunarra phylogenetic studies should further address the question of population interaction, targeting part of the genome most proficient at resolving recent divergences.

Synapomorphies obtained in this study through the characterisation of both male and female genitalia have contributed to a better classification of some genera and species. Future research describing the genitalia of species to define synapomorphies for genera in closely related Nymphalide subfamilies would be constructive as many of the traditional characters used to define the genera and subfamilies within Nymphalidae do not hold true to all members of the group into which they are classified.

Plate 9 O. ptunarra male, Tunbridge Tiers, March 2004

References

Ackery, P.R. (1984), 'Systematics and faunistic studies on butterflies', in R.I. Vane Wright \& P.R. Ackery (eds), The biology of butterflies, Published for the Royal Entomological Society by Academic Press, London, pp. 11-21.

Ackery, P.R. (1988), 'Hostplants and classification: a review of nymphalid butterflies', Biological Journal of the Linnean Society, vol. 33, pp. 95-203.

Ackery, P.R. (1991), 'Hostplant Utilization by African and Australian Butterflies', Biological Journal of the Linnean Society, vol. 44, no. 4, pp. 335-351.

Ackery, P.R. De Jong, R. \& Vane-Wright, R.I. (1998), 'The butterflies: Hedyloidea, Hesperioidea and Papilionoidea', in N.P. Kristensen (ed.), Lepidoptera, moths and butterflies 1 Evolution, systematics and biogeography, Handbook of Zoology 4(35) edn, Lepidopter De Gruyter, Berlin, pp. 263-300.

Ackery, P.R. \& Vane-Wright, R.I. (1984), Milkweed butterflies: Their cladistics and biology, British Museum (Natural History), London.

Agrawal, A.A. (2003), 'Community genetics: New insights into community ecology by integrating population genetics', Ecology, vol. 84, no. 3, pp. 543-544.

Aiello, A. (1991), 'Adelpha ixia leucas: Immature stages and position within Adelpha (Nymphalidae)', Journal of the Lepidopterist's Society, vol. 45, no. 3, pp. 181187.

Anderson, R.A.L. (2001a), 'Flight Activity and Territoriality in Oreixenica ptunarra', paper presented to 5th Invertebrate Biodiversity and Conservation Conference, Adelaide University, 1-4th December 2001.

Anderson, R.A.L. (2001b), 'The population dynamics, ecology and conservation management of the Ptunarra Brown Butterfly Oreixenica ptunarra (Lepidoptera; Nymphalidae; Satyrinae)', Honours thesis, University of Tasmania.

Anderson, R.A.L. \& McQuillan, P.B. (2000), 'Phenotypic variation in Oreixenica ptunarra butterflies is influenced by altitude.' paper presented to Ecology in a Rapidly Changing World, La Trobe University, Melbourne, 29th November - 1st December 2000.

Anderson, R.A.L. \& McQuillan, P.B. (2003), 'Flight activity and territoriality in a threatened butterfly Oreixenica ptunarra Couchman (Lepidoptera:
Nymphalidae: Satyrinae)', Records of the South Australian Museum Monograph Series, vol. 7, pp. 297-301.

Australian Bureau of Meteorology (2009), Wind Maps for Australia, Commonwealth of Australia, 24th June 2009, http://www.bom.gov.au/climate/averages/wind/wrselect.shtml.

Ausubel, F.M. Brent, R. Kingston, R.E. Moore, D.D. Seidman, J.G. Smith, J.A. \& Struhl, K. [eds] (2005), Current Protocols in Molecular Biology, John Wiley and Sons.

Baker, R.H. \& Gatesy, J. (2002), 'Is morphology still relevant', in R. DeSalle G. Giribet \& W. Wheeler (eds), Molecular systematics and evolution: theory and practice, Birkhauser Verlag, Boston.

Barker, N.P. Clark, L.G. Davis, J.I. Duvall, M.R. Guala, G.F. Hsiao, C. Kellogg, E.A. Linder, H.P. Mason-Gamer, R.J. Mathews, S.Y. Simmons, M.P. Soreng, R.J. \& Spangler, R.E. (2001), 'Phylogeny and subfamilial classification of the grasses (Poaceae)', Annals of the Missouri Botanical Garden, vol. 88, no. 3, pp. 373457.

Barlow, N.D. (1994), 'Size Distributions of Butterfly Species and the Effect of Latitude on Species Sizes', Oikos, vol. 71, no. 2, pp. 326-332.

Beggs, J.R. \& Rees, J.S. (1999), 'Restructuring of Lepidoptera communities by introduced Vespula wasps in a New Zealand beech forest', Oecologia, vol. 119, no. 4, pp. 565-571.

Belik, A.G. \& Zamolodchikov, D.G. (2002), 'Notes on systematics of the Erebia dabanensis species complex, with special consideration of the dabanensisyoungi and anyuica-occulta pairs of sibling species (Nymphalidae: Satyrinae)', Nota Lepidopterologica, vol. 25, no. 1, pp. 61-78.

Beljaev, E. (2009), Email discussion re: Paper by Kuznetzov \& Stekol'nikov 2001 to C. Young \& R. Anderson, Sent: Monday, 27 April 2009 3:44 PM.

Bell, C.D. Soltis, D.E. \& Soltis, P.S. (2005), 'The age of the angiosperms: A molecular timescale without a clock', Evolution, vol. 59, no. 6, pp. 1245-1258.

Bell, P. (1998), The ptunarra brown butterfly Oreixenica ptunarra Recovery Plan 19982003., Nature Conservation Branch, Parks and Wildlife Service, Tasmania.

Bell, P. (2002), Ptunarra Brown Butterfly Oreixenica ptunarra Recovery Program: Summary of Population and Habitat Monitoring 2002, Department of Primary Industries Water and the Environment (DPIWE), Hobart.

Benedick, S. White, T.A. Searle, J.B. Hamer, K.C. Mustaffa, N. Vun Khen, C. Mohamed, M. Schilthuizen, M. \& Hill, J.K. (2007), 'Impacts of habitat fragmentation on genetic diversity in a tropical forest butterfly on Borneo', Journal of Tropical Ecology, vol. 23, pp. 623-634.

Bergman, K.O. (1999), 'Habitat utilization by Lopinga achine (Nymphalidae : Satyrinae) larvae and ovipositing females: implications for conservation', Biological Conservation, vol. 88, no. 1, pp. 69-74.

Bergsten, J. (2005), 'A review of long branch attraction', Cladistics, vol. 21, pp. 163193.

Berry, K.L. (1997), 'Variation in wing phenotype of the Silver Xenica Butterfly Oreixenica lathoniella (Westwood, 1851) over environmental gradients in Tasmania', M.Env.St thesis, University of Tasmania.

Berwaerts, K. Aerts, P. \& Van Dyck, H. (2006), 'On the sex-specific mechanisms of butterfly flight: flight performance relative to flight morphology, wing
kinematics, and sex in Pararge aegeria', Biological Journal of the Linnean Society, vol. 89, no. 4, pp. 675-687.

Boisduval, J.G.A.D. (1833), Icones historique des Lépidoptères d'Europe Rhopalocères., Privately Published, Paris.

Bowler, J.M. Hope, G.S. Jennings, J.N. Singh, G. \& Walker, D. (1976), 'Late Quaternary climates of Australia and New Guinea', Quaternary Research, vol. 6, no. 3, pp. 359-394.

Braby, M.F. (1993), 'Early stages, biology and taxonomic status of Tisiphone helena (Olliff) (Lepidoptera, Nymphalidae, Satyrinae)', Journal of the Australian Entomological Society, vol. 32, pp. 273-282.

Braby, M.F. (1994a), 'Morphology of the Early Stages of Mycalesis Hubner (Lepidoptera, Nymphalidae, Satyrinae) from North-Eastern Australia', Journal of the Australian Entomological Society, vol. 33, pp. 289-294.

Braby, M.F. (1994b), 'Phenotypic variation in adult Mycalesis Hubner (Lepidoptera: Nymphalidae: Saryrinae) from the Australian Wet-dry Tropics', Journal of the Australian Entomological Society, vol. 33, pp. 327-336.

Braby, M.F. (1995a), 'The Distribution, Status and Habitat Associations of the Satyrine (Lepidoptera, Nymphalidae) Fauna of Northeastern Australia', Journal of the Australian Entomological Society, vol. 34, pp. 51-61.

Braby, M.F. (1995b), 'Larval and adult food plants for some tropical Satyrine butterflies in Northern Queensland', Australian Entomologist, vol. 22, no. 1, pp. 5-13.

Braby, M.F. (1995c), 'Reproductive Seasonality in Tropical Satyrine Butterflies Strategies for the Dry Season', Ecological Entomology, vol. 20, no. 1, pp. 5-17.

Braby, M.F. (1995d), 'Seasonal-Changes in Relative Abundance and SpatialDistribution of Australian Lowland Tropical Satyrine Butterflies', Australian Journal of Zoology, vol. 43, no. 3, pp. 209-229.

Braby, M.F. (1996), 'Mating frequency in bush-brown butterflies (Nymphalidae:
Satyrinae)', Journal of the Lepidopterist's Society, vol. 50, no. 1, pp. 50-86.
Braby, M.F. (2000), The butterflies of Australia: their identification, biology and distribution, CSIRO Publishing, Melbourne, VIC.

Braby, M.F. (2002), 'Life history strategies and habitat templets of tropical butterflies in north-eastern Australia', Evolutionary Ecology, vol. 16, pp. 399-413.

Braby, M.F. (2004), The complete field guide to Butterflies of Australia, CSIRO Publishing, Collingwood VIC.

Braby, M.F. \& Jones, R.E. (1994), 'Effect of Temperature and Hostplants on Survival, Development and Body-Size in 3 Tropical Satyrine Butterflies from NorthEastern Australia', Australian Journal of Zoology, vol. 42, no. 2, pp. 195-213.

Braby, M.F. \& Jones, R.E. (1995), 'Reproductive Patterns and Resource-Allocation in Tropical Butterflies - Influence of Adult Diet and Seasonal Phenotype on Fecundity, Longevity and Egg Size', Oikos, vol. 72, no. 2, pp. 189-204.

Braby, M.F. \& New, T.R. (1988a), 'Adult Reproductive Biology of Geitoneura klugii and Geitoneura acantha (Lepidoptera, Satyrinae) near Melbourne, Australia', Australian Journal of Zoology, vol. 36, no. 4, pp. 397-409.

Braby, M.F. \& New, T.R. (1988b), 'Population Biology of Adult Geitoneura klugii and Geitoneura acantha (Lepidoptera, Satyrinae) near Melbourne, Australia', Australian Journal of Zoology, vol. 36, no. 2, pp. 141-158.

Braby, M.F. \& New, T.R. (1999), 'The Xenicas, Geitoneura klugii and G. acantha (Nymphalidae: Satyrinae)', in R.L. Kitching E. Scheermeyer R.E. Jones \& N.E. Pierce (eds), Biology of Australian Butterflies, CSIRO, vol. 6, pp. 227-238.

Braby, M.F. \& Pierce, N.E. (2007), 'Systematics, biogeography and diversification of the Indo-Australian genus Delias Hubner (Lepidoptera : Pieridae): phylogenetic evidence supports an 'out-of-Australia' origin', Systematic Entomology, vol. 32, no. 1, pp. 2-25.

Braby, M.F. Pierce, N.E. \& Vila, R. (2007), 'Phylogeny and historical biogeography of the subtribe Aporiina (Lepidoptera : Pieridae): implications for the origin of Australian butterflies', Biological Journal of the Linnean Society, vol. 90, no. 3, pp. 413-440.

Braby, M.F. Trueman, J.W.H. \& Eastwood, R. (2005), 'When and where did troidine butterflies (Lepidoptera : Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous', Invertebrate Systematics, vol. 19, no. 2, pp. 113-143.

Braby, M.F. Vila, R. \& Pierce, N.E. (2006), 'Molecular phylogeny and systematics of the Pieridae (Lepidoptera : Papilionoidea): higher classification and biogeography', Zoological Journal of the Linnean Society, vol. 147, no. 2, pp. 239-275.

Brakefield, P.M. (1987), 'Tropical Dry and Wet Season Polyphenism in the Butterfly Melanitis leda (Satyrinae): Phenotypic Plasticity and Climatic Correlates', Biological Journal of the Linnean Society, vol. 31, no. 2, pp. 175-191.

Brakefield, P.M. \& Larsen, T.B. (1984), 'The evolutionary significance of dry and wet season forms in some tropical butterflies', Biol J Linn Soc, vol. 22, no. 1, pp. 112.

Brakefield, P.M. \& Reitsma, N. (1991), 'Phenotypic Plasticity, Seasonal Climate and the Population Biology of Bicyclus Butterflies (Satyridae) in Malawi', Ecological Entomology, vol. 16, no. 3, pp. 291-303.

Bridle, K.L. Kirkpatrick, J.B. Cullen, P. \& Shepherd, R.R. (2001), 'Recovery in Alpine Heath and Grassland Following Burning and Grazing, Eastern Central Plateau, Tasmania, Australia', Arctic, Antarctic, and Alpine Research, vol. 33, no. 3, pp. 348-356.

Brookes, M.I. Graneau, Y.A. King, P. Rose, O.C. Thomas, C.D. \& Mallet, J.L.B. (1997), 'Genetic Analysis of Founder Bottlenecks in the Rare British Butterfly Plebejus argus', Conservation Biology, vol. 11, no. 3, pp. 648-661.

Brower, A.V.Z. (1997), 'The evolution of ecologically important characters in Heliconius butterflies (Lepidoptera: Nymphalidae): A cladistic review', Zoological Journal of the Linnean Society, vol. 119, no. 4, pp. 457-472.

Brower, A.V.Z. (2000), 'Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene', Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 267, no. 1449, pp. 1201-1211.

Brower, A.V.Z. \& DeSalle, R. (1998), 'Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: The utility of wingless as a source of characters for phylogenetic inference', Insect Molecular Biology, vol. 7, no. 1, pp. 73-82.

Brower, A.V.Z. \& Egan, M.G. (1997), 'Cladistic analysis of Heliconius butterflies and relatives (Nymphalidae: Heliconiiti): a revised phylogenetic position for Eueides based on sequences from mtDNA and a nuclear gene', Proceedings of the Royal Society of London, Series B: Biological Sciences, vol. 264, no. 1384, pp. 969977.

Brower, A.V.Z. Freitas, A.V.L. Lee, M.-M. Silva-Brandão, K.L. Whinnett, A. \& Willmott, K.R. (2006), 'Phylogenetic relationships among the Ithomiini (Lepidoptera: Nymphalidae) inferred from one mitochondrial and two nuclear gene regions', Systematic Entomology, vol. 31, no. 2, pp. 288-301.

Brown, J.M. Pellmyr, O. Thompson, J.N. \& Harrison, R.G. (1994), 'Phylogeny of Greya (Lepidoptera, Prodoxidae), Based on Nucleotide-Sequence Variation in Mitochondrial Cytochrome- Oxidase-I and Cytochrome-Oxidase-II Congruence with Morphological Data', Molecular Biology and Evolution, vol. 11, no. 1, pp. 128-141.

Bryant, S. \& Jackson, J. (1999), Tasmania's Threatened Fauna Handbook: what, where and how to protect Tasmania's threatened animals., Threatened Species Unit, Parks and Wildlife Service, Hobart.

Bucheli, S.R. \& Wenzel, J. (2005), 'Gelechioidea (Insecta : Lepidoptera) systematics: A reexamination using combined morphology and mitochondrial DNA data', Molecular Phylogenetics and Evolution, vol. 35, no. 2, pp. 380-394.

Burns, A.N. (1948), 'New geographical races of Australian butterflies, with a description of the female, larva and pupa of Pseudalmenus chlorinda barringtonensis', Memoirs of the National Museum of Victoria, vol. 15, no. 86102, pp. 1-8.

Burns, A.N. (1956), 'Life history of Heteronympha cordace cordace Hubner', Memoirs of the National Museum of Victoria, vol. 22, no. 6, pp. 1-3.

Butler, A.G. (1867), 'Descriptions of five new genera and some new species of Satyride Lepidoptera', Annals and Magazine of Natural History, vol. 3, no. 19, pp. 161167.

Campbell, D.L. Brower, A.V.Z. \& Pierce, N.E. (2000), 'Molecular evolution of the Wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea)', Molecular Biology and Evolution, vol. 17, no. 5, pp. 684-696.

Carter, M. \& Feeny, P. (1999), 'Host-plant chemistry influences oviposition choice of the spicebush swallowtail butterfly', Journal of Chemical Ecology, vol. 25, no. 9, pp. 1999-2009.

Carvalho, M.C. Queiroz, P.C.D. \& Ruszczyk, A. (1998), 'Protandry and female sizefecundity variation in the tropical butterfly Brassolis sophorae', Oecologia, vol. 116, no. 1-2, pp. 98-102.

Cassel-Lundhagen, A. Tammaru, T. Windig, J.J. Ryrholm, N. \& Nylin, S. (2009), 'Are peripheral populations special? Congruent patterns in two butterfly species', Ecography, vol. 32, no. 4, pp. 591-600.

Caterino, M.S. Cho, S. \& Sperling, F.A.H. (2000), 'The current state of insect molecular systematics: A thriving Tower of Babel', Annual Review of Entomology, vol. 45, pp. 1-54.

Caterino, M.S. Reed, R.D. Kuo, M.M. \& Sperling, F.A.H. (2001), 'A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera : Papilionidae)', Systematic Biology, vol. 50, no. 1, pp. 106-127.

Caterino, M.S. \& Sperling, F.A.H. (1999), 'Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes', Molecular Phylogenetics and Evolution, vol. 11, no. 1, pp. 122-137.

Chapman, T.A. (1896), 'On the phylogeny and evolution of the Lepidoptera from a pupal and oval standpoint', Transcripts of the Lepidopterian Society of London, vol. 1896, pp. 567-587.

Chen, W.J. Bonillo, C. \& Lecointre, G. (2003), 'Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa', Molecular Phylogenetics and Evolution, vol. 26, pp. 262-288.

Chenna, R. Sugawara, H. Koike, T. Lopez, R. Gibson, T.J. Higgins, D.G. \& Thompson, J.D. (2003), 'Multiple sequence alignment with the Clustal series of programs', Nucleic Acids Research, vol. 31, no. 13, pp. 3497-3500.

Chew, F.S. \& Watt, W.B. (2006), 'The green-veined white (Pieris napi L.), its Pierine relatives, and the systematics dilemmas of divergent character sets (Lepidoptera, Pieridae)', Biological Journal of the Linnean Society, vol. 88, no. 3, pp. 413-435.

Cho, S. Mitchell, A. Regier, J. Mitter, C. Poole, R. Friedlander, T. \& Zhao, S. (1995), 'A highly conserved nuclear gene for low-level phylogenetics: Elongation factor-1
alpha recovers morphology-based tree for heliothine moths', Molecular Biology and Evolution, vol. 12, no. 4, pp. 650-656.

Clark, A.H. (1947), 'The Interrelationships of the several groups within the butterfly superfamily Nymphalodea', Proceedings of the Entomological Society of Washington, vol. 49, no. 6, pp. 148-149.

Clark, A.H. (1949), 'Classification of butterflies with the allocation of the genera occurring in North America north of Mexico', Proceedings of the Biological Society of Washington, vol. 61, pp. 77-81.

Clark, B.R. \& Faeth, S.H. (1998), 'The evolution of egg clustering in butterflies - a test of the egg desiccation hypothesis', Evolutionary Ecology, vol. 12, no. 5, pp. 543552.

Clarke, G.M. \& O'Dwyer, C. (2000), 'Genetic variability and population structure of the endangered golden sun moth, Synemon plana', Biological Conservation, vol. 92, no. 3, pp. 371-381.

Common, I.F.B. (1975), 'Evolution and Classification of the Lepidoptera', Annual Review of Entomology, vol. 20, pp. 183-203.

Common, I.F.B. \& Waterhouse, D.F. (1981), Butterflies of Australia, Rev. edn, Angus \& Robertson, East Melbourne, Victoria.

Constantino, L.M. (1992), 'Paradulcedo , a new genus of Satyrinae (Nymphalidae) from western Colombia', Journal of the Lepidopterists Society, vol. 46, no. 1, pp. 4453.

Couchman, L.E. (1948), 'Notes of the Lepidoptera Rhopalocera of Tasmania', Records of the Queen Victoria Museum Tasmania, vol. 2, no. 2, pp. 93-96.

Couchman, L.E. (1953), 'Notes on some forms of Oreixenica Waterhouse and Lyell (Lepidoptera, Satyridae), with description of new forms.' Proceedings of the Royal Entomological Society London Series B, vol. 22, pp. 73-84.

Couchman, L.E. (1954), 'Notes on some Tasmanian and Australian LepidopteraRhopalocera, with descriptions of new forms and subspecies', Papers and Proceedings of the Royal Society of Tasmania, vol. 88, pp. 67-80.

Couchman, L.E. (1956), 'A catalogue of the Tasmanian Lepidoptera-Rhopalocera', Papers and Proceedings of the Royal Society of Tasmania, vol. 90, pp. 1-33.

Couchman, L.E. (1962), 'Notes on some Tasmanian and Australian LepidopteraRhopalocera', Papers and Proceedings of the Royal Society of Tasmania, vol. 96, pp. 73-82.

Couchman, L.E. \& Couchman, R. (1978), 'The Butterflies of Tasmania.' in Tasmanian Year Book 1977, Hobart, vol. 11, pp. 66-96.

Courtney, S.P. (1984), 'The evolution of egg clustering by butterflies and other insects ', American Naturalist, vol. 123, no. 2, pp. 276-281.

Crosby, D.F. (1965), 'Notes on some eastern Victorian Butterflies with a new Victorian record', Wings and Strings, vol. August 1965, pp. 4-8.

Crosby, D.F. (1998), 'The Butterflies of Mount Buffalo National Park', The Victorian Naturalist, vol. 115, pp. 222-225.

Cunningham, C.W. (1997), 'Can three incongruence tests predict when data should be combined?' Molecular Biology and Evolution, vol. 14, no. 7, pp. 733-740.

Danforth, B.N. \& Ji, S. (1998), 'Elongation factor-1 α occurs as two copies in bees: implacations for phylogenetic analyses of EF-1 α sequences in insects', Molecular Biology and Evolution, vol. 15, no. 3, pp. 33-43.

Darlu, P. \& Lecointre, G. (2002), 'When does the incongruence length difference test fail?' Molecular Biology and Evolution, vol. 19, no. 4, pp. 432-437.

De Groot, M. Rebeusek, F. Grobelnik, V. Govedic, M. Salamun, A. \& Verovnik, R. (2009), 'Distribution modelling as an approach to the conservation of a threatened alpine endemic butterfly (Lepidoptera: Satyridae)', European Journal of Entomology, vol. 106, no. 1, pp. 77-84.
de Jong, R. (2003), 'Are there butterflies with Gondwanan ancestry in the Australian region?' Invertebrate Systematics, vol. 17, no. 1, pp. 143-156.
de Jong, R. Vane Wright, R.I. \& Ackery, P.R. (1996), 'The higher classification of butterflies (Lepidoptera): Problems and prospects', Entomologica Scandinavica, vol. 27, no. 1, pp. 65-101.
de Queiroz, A. Donoghue, M.J. \& Kim, J. (1995), 'Separate versus combined analysis of phylogenetic evidence', Annual Review of Ecology and Systematics, vol. 26, pp. 657-681.
deQueiroz, K. \& Good, D.A. (1997), 'Phenetic clustering in biology: A critique', Quarterly Review of Biology, vol. 72, no. 1, pp. 3-30.

DeVries, P.J. Kitching, I.J. \& Vane Wright, R.I. (1985), 'The systematic position of Antirrhea and Caerois, with comments on the classification of the Nymphalidae (Lepidoptera)', Systematic Entomology, vol. 10, pp. 11-32.

Dickinson, J.L. \& Rutowski, R.L. (1989), 'The function of the mating plug in the chalcedon checkerspot butterfly', Animal Behaviour, vol. 38, no. 1, pp. 154-162.

Dolphin, K. Belshaw, R. Orme, C.D.L. \& Quicke, D.L.J. (2000), 'Noise and incongruence: Interpreting results of the incongruence length difference test', Molecular Phylogenetics and Evolution, vol. 17, no. 3, pp. 401-406.

Donovan, E. (1805), An epitome of the natural history of the insects of New Holland, New Zealand, New Guinea, Otaheite, and other islands in the Indian, Southern, and Pacific Oceans: including figures and descriptions of one hundred and fiftythree species of the more splendid, beautiful, and interesting insects, hitherto discovered in those countries, and which for the most parts have not appeared in the works of any preceding author, Privately published, London.

Dos Passos, C.F. \& Grey, L.P. (1945), 'A genitalic survey of Argynninae (Lepidoptera, Nymphalidae)', American Museum Novitates, vol. 1296 pp. 1-29.

Douglas, M.E. \& Endler, J.A. (1982), 'Quantitative matrix comparisons in ecological and evolutionary investigations', Journal of Theoretical Ecology, vol. 99, pp. 777-795.

Downey, J.C. \& Allyn, A.C. (1981), 'Chorionic Sculpturing in Eggs of Lycaenidae. Part 1', Bulletin of the Allyn Museum, vol. 61, pp. 1-29.

Downey, J.C. \& Allyn, A.C. (1984), 'Chorionic Sculpturing in Eggs of Lycaenidae. Part 2', Bulletin of the Allyn Museum, vol. 84, pp. 1-44.

Dowton, M. \& Austin, A.D. (2002), 'Increased congruence does not necessarily indicate increased phylogenetic accuracy - The behaviour of the incongruence length difference test in mixed-model analyses', Systematic Biology, vol. 51, no. 1, pp. 19-31.

Doyle, J.J. Davis, J.I. Soreng, R.J. Garvin, D. \& Anderson, M.J. (1992), 'Chloroplast DNA Inversions and the Origin of the Grass Family (Poaceae)', Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7722-7726.

DPIPWE (2009), The Private Land Conservation Program, Department of Primary Industries Parks Water and Environment, Tasmania, http://www.dpiw.tas.gov.au/inter.nsf/WebPages/DRAR-7TR9ZR?open.

Dunn, K.L. \& Dunn, L.E. (1991), Review of Australian butterflies. Part 4, Family nymphalidae : distribution, life history and taxonomy, Privately published by the authors.

Durden, C.J. \& Rose, H. (1978), 'Butterflies from the Middle Eocene: the earliest occurrence of fossil Papilionoidea', Pierce-Sellards Series of the Texas Memorial Museum, vol. 29, pp. 1-25.

Dyar, H.G. (1894), 'A Classification of Lepidopterous Larvae', Annals of the New York Academy of Sciences, vol. 8, pp. 194-232.

Eastwood, R. Braby, M.F. Schmidt, D.J. \& Hughes, J.M. (2008), 'Taxonomy, ecology, genetics and conservation status of the pale imperial hairstreak (Jalmenus eubulus) (Lepidoptera:Lycaenidae): a threatened butterfly from the Brigalow Belt, Australia', Invertebrate Systematics, vol. 22, no. 4, pp. 407-423.

Eastwood, R. \& Hughes, J.M. (2003), 'Molecular phylogeny and evolutionary biology of Acrodipsas (Lepidoptera : Lycaenidae)', Molecular Phylogenetics and Evolution, vol. 27, no. 1, pp. 93-102.

Edwards, C.A. (1993), 'The impact of pesticides on the environment', in The pesticide question: environment, economics and ethics, Chapman \& Hall, New York USA, pp. 13-46.

Edwards, E.D. (1973), 'Delayed ovarian development and aestivation in adult females of Heteronympha merope merope (Lepidoptera: Satyrinae)', Journal of the Australian Entomological Society, vol. 12, pp. 92-98.

Edwards, E.D. Houston, W.W.K. Wells, A. Regan, L. \& Newland, J. (2001), Lepidoptera : Hesperioidea, Papilionoidea, Australian Biological Resources Study, Zoological catalogue of Australia ; v 316, Australian Government Publishing Service, Canberra.

Ehrlich, P.R. (1958), 'The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidae).' The University of Kansas Science Bulletin, vol. 39, pp. 305-370.

Ehrlich, P.R. \& Ehrlich, A.H. (1967), 'Phenetic Relationships of Butterflies .I. Adult Taxonomy And Nonspecificity Hypothesis', Systematic Zoology, vol. 16, no. 4, pp. 301-317.

Ehrlich, P.R. \& Raven, P.H. (1964), 'Butterflies and Plants - a Study in Coevolution', Evolution, vol. 18, no. 4, pp. 586-608.

Emerson, S.B. \& Hastings, P.A. (1998), 'Morphological correlations in evolution: Consequences for phylogenetic analysis', Quarterly Review of Biology, vol. 73, no. 2, pp. 141-162.

Emmel, T.C. Minno, M.C. \& Drummond, B.A. (1992), Florissant Butterflies: A Guide to the Fossil and Present day Species of Central Colorado, Stanford University Press: Stanford.

Fabricius, J.C. (1775), Systema Entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus., Krote, Flensburg \& Lepizig.

Fabricius, J.C. (1787), 'Mantissa Insectorum sistens eorum Species Nuper Detetas adiectis Characteribus, Genericis, Differentiis Specificis Emendationibus, Observationibus.' Hafniae, vol. i-ii.

Fabricius, J.C. (1807), 'Title not available', Magazine für Insecktenkunde (Illiger), vol. 6, pp. 282-284.

Farris, J.S. (1979), 'On the Naturalness of Phylogenetic Classification', Systematic Zoology, vol. 28, no. 2, pp. 200-214.

Farris, J.S. Kallersjo, M. Kluge, A.G. \& Bult, C. (1994), 'Testing significance of incongruence', Cladistics-the International Journal of the Willi Hennig Society, vol. 10, no. 3, pp. 315-319.

Farris, J.S. Kallersjo, M. Kluge, A.G. \& Bult, C. (1995), 'Constructing a significance test for incongruence', Systematic Biology, vol. 44, no. 4, pp. 570-572.

Felsenstein, J. (1978), 'Cases in which parsimony and compatibility methods will be positively misleading', Systematic Zoology, vol. 27, pp. 401-410.

Felsenstein, J. (1988), 'Phylogenies from Molecular Sequences - Inference and Reliability', Annual Review of Genetics, vol. 22, pp. 521-565.

Fensham, R.J. \& Kirkpatrick, J.B. (1989), 'The conservation of original vegetation remnants in the Midlands, Tasmania.' Papers and Proceedings of the Royal Society of Tasmania, vol. 123, pp. 229-246.

Field, R.P. (2002), Australian Butterflies - The Victorian Fauna, Museum of Victoria, http://www.museum.vic.gov.au/bioinformatics/butter/.

Fischer, K. \& Fiedler, K. (2001), 'Effects of Adult feeding and temperature regime on fecundity and longevity in the butterfly Lycaena hippothoe (Lycaenidae)', Journal of the Lepidopterist's Society, vol. 54, no. 3, pp. 91-95.

Fisher, R.H. (1978), Butterflies of South Australia, Handbook of the flora and fauna of South Australia, Govt. Pr., Adelaide.

Folmer, O. Black, M. Hoeh, W. Lutz, R. \& Vrijenhoek, R. (1994), 'DNA Primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazonan invertebrates', Molecular Marine Biology and Biotechnology, vol. 3, no. 5, pp. 294-299.

Fracker, S.G. (1915), 'The classification of lepidopterous larvae.' Illinous Biological Monographs, vol. 2, no. 4, pp. 1-169.

Frankham, R. Briscoe, D.A. \& Ballou, J.D. (2002), Introduction to conservation genetics, Cambridge University Press, Cambridge, UK ; New York.

Freitas, A.V.L. (2002), 'Immature stages of Eteona Tisiphone (Nymphalidae: Satyrinae)', Journal of the Lepidopterists' Society, vol. 56, no. 4 pp. 286-288.

Freitas, A.V.L. (2004), 'A new species of Yphthimoides (Nymphalidae, Satyrinae) from southeastern Brazil', Journal of the Lepidopterists Society, vol. 58, no. 1, pp. 712.

Freitas, A.V.L. (2006), 'Immature stages of Adelpha malea goyama Schaus (Lepidoptera : Nymphalidae, Limenitidinae)', Neotropical Entomology, vol. 35, no. 5, pp. 625-628.

Freitas, A.V.L. \& Brown, K.S. (2004), 'Phylogeny of the Nymphalidae (Lepidoptera)', Systematic Biology, vol. 53, no. 3, pp. 363-383.

Freitas, A.V.L. Murray, D. \& Brown, K.S. (2002), 'Immatures, natural history and the systematic position of Bia actorion (Nymphalide)', Journal of the Lepidopterists' Society, vol. 56, no. 3, pp. 117-122.

Gail, F. (1985), 'Five new species of Calisto (Lepidoptera: Satyridae) from Hispaniola ', Contributions in biology and geology, vol. 63, pp. 1-16

Garcia-Barros, E. (1994), 'Egg Size Variation in European Satyrine Butterflies (Nymphalidae, Satyrinae)', Biological Journal of the Linnean Society, vol. 51, no. 3, pp. 309-324.

Garcia-Barros, E. (2000), 'Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera : Papilionoidea, Hesperioidea) [Review]', Biological Journal of the Linnean Society, vol. 70, no. 2, pp. 251-284.

Garcia-Barros, E. (2006), 'Number of larval instars and sex-specific plasticity in the development of the small heath butterfly, Coenonympha pamphilus (Lepidoptera : Nymphalidae)', European Journal of Entomology, vol. 103, no. 1, pp. 47-53.

Garcia-Barros, E. \& Martin, J. (1991), 'Immature stages of Hipparchia fabricius and the systematics of the Satyrus series (Lepidoptera, Nymphalidae, Satyrinae)', Systematic Entomology, vol. 16, no. 4, pp. 407-426.

Garcia-Barros, E. \& Martin, J. (1995), 'The eggs of European satyrine butterflies (Nymphalidae) - External morphology and its use in systematics', Zoological Journal of the Linnean Society, vol. 115, no. 1, pp. 73-115.

Garcia-Barros, E. \& Munguira, M.L. (1997), 'Uncertain branch lengths, taxonomic sampling error, and the egg to body size allometry in temperate butterflies (Lepidoptera)', Biological Journal of the Linnean Society, vol. 61, no. 2, pp. 201-221.

Geyer, C. (1832 [1827-1837]), in J. Hübner (ed.), Zuträge zur Sammlung exotizcher Schmetterlinge, bestehend in Bekundigung einzelner Fliegmuster neuer oder rarer nicht europäischer Gattungen, Privately Published, Augsberg.

Gilchrist, G.W. \& Rutowski, R.L. (1986), 'Adaptive and incidental consequences of the alba polymorphism in an agricultural population of Colias butterflies: Female size, fecundity, and differential dispersion', Oecologia, vol. 68, no. 2, pp. 235240.

Gillespie, L.J. \& Soreng, R.J. (2005), 'A phylogenetic analysis of the bluegrass genus Poa based on cpDNA restriction site data', Systematic Botany, vol. 30, no. 1, pp. 84-105.

Godart, J.B. (1819), Encyclopédie Méthodique. Histoire naturelle. Entomologie, ou histoire naturelle des crustacés, des arachnides et des insectes

Goulson, D. (1993), 'Variation in the genitalia of the butterfly Maniola jurtina (Lepidoptera: Satyrinae)', Zoological Journal of the Linnean Society, vol. 107, no. 1, pp. 65-71.

Grewe, P.M. Smolenski, A.M. \& D, W.R. (1994), 'Mitochondrial DNA diversity in Jackass Morwong (Nemadactylus macropterus: Teleostei) from Australian and New Zealand Waters.' Canadian Journal of Fisheries and Aquatic Sciences, vol. 51, no. 5, pp. 1101-1109.

Grill, A. de Vos, R. \& van Arkel, J. (2004), 'The shape of endemics: Notes on male and female genitalia in the genus Maniola (Schrank, 1801), (Lepidoptera, Nymphalidae, Satyrinae)', Contributions to Zoology, vol. 73, no. 4, pp. 293-303.

Grund, R. (2003), 'South Australian Butterflies', http://userssachariotnetau/~erg, vol. Accessed July 2003.

Grund, R. \& Hunt, L. (2000), Butterfly conservation in the lower South-East region, Wildlife Conservation Fund Research Grant Project report.

Guérin-Méneville, F.E. (1830 [1830-32]), 'Atlas Insectes', in L.I. Duperrey (ed.), Voyage Autour du Monde Exécuté par Ordre du Roi, sur la Corvette de Sa Majisté, La Coquille, Pendant les Années 1822, 1823, 1824 et 1825, Histoire Naturelle - Bertrand, Paris.

Hadley, A. (2008), Introducing CombineZ3, viewed 14 February 2008 http://www.microscopy-uk.org.uk/mag/artdec02/ahcombinez.html.

Hall, J.P.W. Robbins, R.K. \& Harvey, D.J. (2004), 'Extinction and biogeography in the Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber', Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 271, no. 1541, pp. 797-801.

Hanski, I. (1999), Metapopulation ecology, Oxford series in ecology and evolution ;, Oxford University Press, Oxford ; New York.

Harvey, D.J. (1991), 'Higher classification of the Nymphalidae, Appendix B.' in H.F. Nijhout (ed.), The Development and Evolution of Butterfly Wing Patterns, Smithsonian Institution Press, Washington, DC.

Hawkins, B.A. \& Lawton, J.H. (1995), 'Latitudinal Gradients in Butterfly Body Sizes Is There a General Pattern', Oecologia, vol. 102, no. 1, pp. 31-36.

Herrich-Schäffer, G.A.W. (1844), Systematische Bearbeitung der Schmetterlinge von Europa, zeugleich als Text, Revision und Supplement zu J. Hübners Sammlung Europäischer Schmetterlinge, Regnsburg.

Hewitson (1864 [1863-1878]), Illustrations of diurnal Lepidoptera, John van Voorst, London.

Hickson, R.E. Simon, C. \& Perrey, S.W. (2000), 'The performance of several multiple sequence alignment programs in relation to secondary-structure features for rRNA sequence', Molecular Biology and Evolution, vol. 17, pp. 530-539.

Higgins, D.G. \& Sharp, P.M. (1988), 'Clustal - a Package for Performing Multiple Sequence Alignment on a Microcomputer', Gene, vol. 73, no. 1, pp. 237-244.

Higgins, D.G. Thompson, J.D. \& Gibson, T.J. (1996), 'Using CLUSTAL for multiple sequence alignments', in Computer Methods for Macromolecular Sequence Analysis, ACADEMIC PRESS INC, SAN DIEGO, pp. 383-402.

Hill, R.S. (2004), 'Origins of the southeastern Australian vegetation', Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, vol. 359, no. 1450, pp. 1537-1549.

Hinton, H.E. (1946), 'On the homology and nomenclature of the setae of lepidopterous larvae, with some notes on the phylogeny of the Lepidoptera', Transcripts of the Royal Entomological Society London, vol. 97, pp. 1-37.

Hinton, H.E. (1948), 'The dorsal cranial areas of caterpillars', Annals and Magazine of Natural History, vol. 11, no. Series 14, pp. 843- 852.

Hinton, H.E. (1955), 'On the structure function and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms Theory', Transcripts of the Royal Entomological Society London, vol. 106, pp. 455-545.

Hinton, H.E. (1981), Biology of insect eggs, Edition: 1st ed. edn, Oxford Eng. : Pergamon Press, .

Hipp, A.L. Hall, J.C. \& Sytsma, K.J. (2004), 'Congruence versus phylogenetic accuracy: Revisiting the incongruence length difference test', Systematic Biology, vol. 53, no. 1, pp. 81-89.

Holloway, G.J. Brakefield, P.M. \& Kofman, S. (1993), 'The Genetics of Wing Pattern Elements in the Polyphenic Butterfly, Bicyclus anynana', Heredity, vol. 70, pp. 179-186.

Hübner, J. (1819), Verzeichniss bekannter Schmetterlinge: Zutrage Exotischer Schmetterlinge, Privately Published, Augsburg.

James, D.G. (1987), 'Effects of temperature and photoperiod on the development of Vanessa kershawi McCoy and Junonia villida Godart (Lepidoptera, Nymphalidae)', Journal of the Australian Entomological Society, vol. 26, pp. 289-292.

James, D.G. (1999), 'Larval development in Heteronympha merope merope (Fabricius) (Lepidoptera: Nymphalidae)', Australian Entomologist, vol. 26, no. 4, pp. 97102.

Janz, N. Nyblom, K. \& Nylin, S. (2001), 'Evolutionary dynamics of host-plant specialization: A case study of the tribe Nymphalini', Evolution, vol. 55, no. 4, pp. 783-796.

Janz, N. \& Nylin, S. (1998), 'Butterflies and plants: A phylogenetic study', Evolution, vol. 52, no. 2, pp. 486-502.

Jeanmougin, F. Thompson, J.D. Gouy, M. Higgins, D.G. \& Gibson, T.J. (1998), 'Multiple sequence alignment with Clustal X', Trends in Biochemical Sciences, vol. 23, no. 10, pp. 403-405.

Jerman, E.J. \& Gauld, I. (1988), 'Casinaria, a paraphyletic ichneumonid genus (Hymenoptera), and a revision of the Australian species', Journal of Natural History, vol. 22, no. 3, pp. 589-609.

Johnson, K. \& Hedges, S.B. (1998), 'Three new species of Calisto from southwestern Haiti (Lepidoptera: Nymphalidae: Satyrinae)', Tropical Lepidoptera, vol. 9, no. 2, pp. 45-53.

Johnson, K. Quinter, E.L. \& Matusik, D. (1986(87)), 'A New Species of Calisto from Hispaniola with a Review of the Female Genitalia of Hispaniolan Congeners (Satyridae)', Journal of Research on the Lepidoptera, vol. 25, no. 2, pp. 73-82.

Johnson, S.J. Johnson, I.R. \& Valentine, P.S. (1995), 'Notes on the early stages of Orsotriaena medus moira Waterhouse and Lyell and Melantis constantia Cramer (Lepidoptera: Nymphalidae: Satyrinae) from Torres Strait, Australia', Australian Entomologist, vol. 22, no. 3, pp. 65-68.

Jones, M. Rakes, L. Yochum, M. Dunn, G. Wurster, S. Kinney, K. \& Hazel, W. (2007), 'The proximate control of pupal color in swallowtail butterflies: Implications for the evolution of environmentally cued pupal color in butterflies (Lepidoptera : Papilionidae)', Journal of Insect Physiology, vol. 53, no. 1, pp. 40-46.

Junker, M. Kuczkowski, S. Schönitzer, K. Young, C.J. \& Hausmann, A. (2006), 'Enzymatic digestion - a new method for egg extraction from dry female collection specimens (Lepidoptera: Geometridae)', Insect Systematics and Evolution, vol. 37 no. 3, pp. 351-359

Jutzeler, D. Cameron-Curry, V. Hesselbarth, G. \& Meyer-Westfeld, N. (1998), 'A comparison between Hipparchia pellucida (Stauder, 1923) from Georgia and Hipparchia semele (Linnaeus, 1758) from NW Germany (Lepidoptera: Nymphalidae, Satyrinae)', Linneana Belgica, vol. 16, no. 7, pp. 277-284.

Kaitala, A. \& Wiklund, C. (1994), 'Polyandrous Female Butterflies Forage for Matings', Behavioral Ecology \& Sociobiology, vol. 35, no. 6, pp. 385-388.

Kemp, D.J. (2000), 'The basis of life-history plasticity in the tropical butterfly Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae)', Australian Journal of Zoology, vol. 48, pp. 67-78.

King, R.C. \& Stansfield, W.D. (1997), A dictionary of genetics, 5th edn, Oxford University press, New York.

Kirkpatrick, J.B. (1991), Tasmanian Native Bush: A Management Handbook, Tasmanian Environment Centre, Hobart, Tasmania.

Kirkpatrick, J.B. \& Bridle, K.L. (1999), 'Environment and Floristics of Ten Australian Alpine Vegetation Formations', Australian Journal of Botany, vol. 47, no. 1, pp. 1-21.

Kirkpatrick, J.B. \& Gilfedder, L. (2000), 'Distribution, ecology and conservation status of lowland and subalpine woodlands in Tasmania', Temperate Eucalypt Woodlands in Australia, pp. 45-56.

Kirkpatrick, J.B. McDougall, K. \& Hyde, M. (1995), Australia's most threatened ecosystem - the southeastern lowland native grasslands, Surrey Beatty
World Wide Fund for Nature Australia, Sydney.
Kitching, I.J. (1985), 'Early Stages and the Classification of the Milkweed Butterflies (Lepidoptera, Danainae)', Zoological Journal of the Linnean Society, vol. 85, no. 1, pp. 1-97.

Kitching, R.L. Edwards, E.D. Ferguson, D. Fletcher, M.B. \& Walker, J.M. (1978), 'The Butterflies of the Australian Capital Territory', Journal of the Australian Entomological Society, vol. 17, pp. 125-133.

Kitching, R.L. Scheermeyer, E. Jones, R.E. \& Pierce, N.E. (1999), Biology of Australian butterflies, Monographs on Australian Lepidoptera; v 6, CSIRO Publishing, Melbourne.

Kjer, K.M. (1995), 'Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs', Molecular Biology and Evolution, vol. 4, pp. 314-330.

Kleckner, C.A. Hawley, W.A. Bradshaw, W.E. Holzapfel, C.M. \& Fisher, I.J. (1995), 'Protandry in Aedes sierrensis - the significance of temporal variation in female fecundity', Ecology, vol. 76, no. 4, pp. 1242-1250.

Klots, A.B. (1970), 'Lepidoptera', in S.L. Tuxen (ed.), Taxonomist's Glossary of Genitalia in Insects, Munksgaard, pp. 115-130.

Knolke, S. Erlacher, S. Hausmann, A. Miller, M.A. \& Segerer, A.H. (2005), 'A procedure for combined genitalia dissection and DNA extraction in Lepidoptera', Insect Systematics \& Evolution, vol. 35, no. 4, pp. 401-409.

Kodandaramaiah, U. (2009), 'Vagility: The Neglected Component in Historical Biogeography', Evolutionary Biology, vol. 36, no. 3, pp. 327-335.

Kooi, R.E. \& Brakefield, P.M. (1999), 'The critical period for wing pattern induction in the polyphenic tropical butterfly Bicyclus anynana (Satyrinae)', Journal of Insect Physiology, vol. 45, no. 3, pp. 201-212.

Kooi, R.E. Brakefield, P.M. \& Schlatmann, E.G.M. (1994), 'Description of the larval sensitive period for polyphenic wing pattern induction in the tropical butterfly Bicyclus anynana (Satyrinae)', Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society, vol. 5, pp. 4752.

Kooi, R.E. De Vries, M. \& Brakefield, P.M. (1998), 'The effect of drought stress in food plants on the wing pattern induction of the polyphenic tropical butterfly Bicyclus anynana (Lepidoptera: Satyridae)', Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (NEV), pp. 217222.

Krauss, J. Schmitt, T. Seitz, A. Steffan-Dewenter, I. \& Tscharntke, T. (2004), 'Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin', Molecular Ecology, vol. 13, no. 2, pp. 311-320.

Kuznetzov, V. \& Stekol'nikov, A. (2001), 'Comparative morphology of the male genitalia in the subfamilies Morphinae and Brassolinae and the resurrection of the family Satyridae, status ressurr. (Lepidoptera), in a new sense', Entomological Review, vol. 81, no. 4, pp. 381-392.

Laforsch, C. \& Tollrian, R. (2000), 'A new preparation technique of daphnids for Scanning Electron Microscopy using hexamethyldisilazane', Archiv Fur Hydrobiologie, vol. 149, no. 4, pp. 587-596.

Laidlaw, W.B.R. (1970), Butterflies of New Zealand, Collins, Auckland,.

Larkin, M.A. Blackshields, G. Brown, N.P. Chenna, R. McGettigan, P.A. McWilliam, H. Valentin, F. Wallace, I.M. Wilm, A. Lopez, R. Thompson, J.D. Gibson, T.J. \& Higgins, D.G. (2007), 'Clustal W and Clustal X version 2.0', Bioinformatics, vol. 23, no. 21, pp. 2947-2948.

Leonard, S.W.J. \& Kirkpatrick, J.B. (2004), 'Effects of grazing management and environmental factors on native grassland and grassy woodland, Northern Midlands, Tasmania', Australian Journal of Botany, vol. 52, no. 4, pp. 529-542.

Lewis, O.T. Thomas, C.D. Hill, J.K. Brookes, M.I. Crane, T.P.R. Graneau, Y.A. Mallet, J.L.B. \& Rose, O.C. (1997), 'Three Ways of Assessing Metapopulation Structure in the Butterfly Plebejus argus', Ecological Entomology, vol. 22, no. 3, pp. 283293.

Lincoln, R.J. Boxshall, G.A. \& Clark, P.F. (1998), A dictionary of ecology, evolution, and systematics, 2nd edn, Cambridge University Press, Cambridge ; New York.

Linnaeus, C. (1758), Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata, Holmiae (Laurentii Salvii).

Liu, H. \& Beckenbach, A.T. (1992), 'Evolution of the Mitochondrial Cytochrome oxidase II Gene among 10 orders of insects', Molecular Phylogenetics and Evolution, vol. 1, no. 1, pp. 41-52.

Lucas, A.M. (1969), 'Clinal variation in pattern and colour in coastal populations of the butterfly Tisiphone abeona (Donovan) (Lepidoptera: Satyrinae)', Australian Journal of Zoology, vol. 17, pp. 37-48.

Lucas, T.P. (1892), 'On 34 new species of Australian Lepidoptera, with additional localities', Proceedings of the Royal Society of Queensland, vol. 8, pp. 68-94.

Lushai, G. Smith, D. Goulson, D. Allen, J. \& MacLean, N. (2003), 'Mitochondrial DNA clocks and the phylogeny of Danaus butterflies', Insect Science and Its Application, vol. 23, no. 4, pp. 309-315.

Lyytinen, A. Brakefield, P.M. Lindstrom, L. \& Mappes, J. (2004), 'Does prediction maintain eyespot plasticity in Bicyclus anynana?' Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 271, no. 1536, pp. 279-283.

Magcale-Macandog, D.B. \& Whalley, R.D.B. (1991), 'Distribution of MicrolaenaStipoides and Its Association with Introduced Perennial Grasses in a Permanent Pasture on the Northern Tablelands of New-South-Wales', Australian Journal of Botany, vol. 39, no. 3, pp. 295-303.

Mallarino, R. Bermingham, E. Willmott, K.R. Whinnett, A. \& Jiggins, C.D. (2005), 'Molecular systematics of the butterfly genus Ithomia (Lepidoptera : Ithomiinae): a composite phylogenetic hypothesis based on seven genes', Molecular Phylogenetics and Evolution, vol. 34, no. 3, pp. 625-644.

Mantel, N. (1967), 'The detection of disease clustering and a generalized regression approach', Cancer Research, vol. 27, pp. 209-220.

Martinez-Lendech, N. Cordoba-Aguilar, A. \& Serrano-Meneses, M.A. (2007), 'Body size and fat reserves as possible predictors of male territorial status and contest outcome in the butterfly Eumaeus toxea Godart (Lepidoptera : Lycaenidae)', Journal of Ethology, vol. 25, no. 2, pp. 195-199.

Mats, B. (1999), 'Are third positions really that bad? A test using vertebrate Cytochrome b', Cladistics, vol. 15, no. 2, pp. 191-197.

McCoy, F. (1868), 'Letter Naming the Australian representatives of Cynthia cardui, Cynthia kershawi, and stating the differences.' Annals and Magazine of Natural History, vol. 4, no. 1, p. 76.

McCubbin (1971), Australian Butterflies, Nelson, Melbourne.
McLoughlin, S. (2001), 'The breakup history of Gondwana and its impact on preCenozoic floristic provincialism', Australian Journal of Botany, vol. 49, no. 3, pp. 271-300.

McQuillan, P.B. (1994), Butterflies of Tasmania, Tasmanian Field Naturalists Club, Hobart, Tasmania.

McQuillan, P.B. \& Ek, C.J. (1997), 'A Biogeographical Analysis of the Tasmanian Endemic Ptunarra Brown Butterfly, Oreixenica ptunarra Couchman (Lepidoptera, Nymphalidae, Satyrinae)', Australian Journal of Zoology, vol. 45, no. 1, pp. 21-37.

Meyer, A. (1994), 'Shortcomings of the cytochrome b gene as a molecular marker', Trends in Ecology \& Evolution, vol. 9, no. 8, pp. 278-280.

Michael, J.S. (1990), 'Estimating rates of speciation and evolution: a bias due to homoplasy', Cladistics, vol. 6, no. 4, pp. 387-391.

Miller, J.Y. \& Brown, F.M. (1989), 'A new Oligocene fossil butterfly Vanessa amerindica (Lepidoptera: Nymphalidae) from the Florissant formation, Colorado', Bulletin of the Allyn Museum, vol. 126, pp. 1-9.

Miller, L.D. (1968), 'The Higher Classification, Phylogeny and Zoogeography of the Satyridae (Lepidoptera)', Memoirs of the American Entomological Society, vol. 24, pp. 1-174.

Miller, L.D. \& Miller, J.Y. (1976), 'Notes and Descriptions on Mexican Charaxinae (Nymphalidae)', Bulletin of the Allyn Museum, vol. 41, pp. 1-13.

Miller, L.D. \& Miller, J.Y. (1997), 'Gondwanan butterflies: the African South American connection', Metamorphosis, vol. 3 (supplementary), pp. 42-51.

Miskin, W.H. (1876), 'Descriptions of new species of Australian diurnal Lepidoptera.' Transcripts of the Entomological Society London, vol. 1876, pp. 451-457.

Mitchell, A. Cho, S. Regier, J.C. Mitter, C. Poole, R.W. \& Matthews, M. (1997), 'Phylogenetic utility of elongation factor-1 alpha in Noctuoidea (Insecta: Lepidoptera): The limits of synonymous substitution', Molecular Biology and Evolution, vol. 14, no. 4, pp. 381-390.

Monteiro, A. \& Pierce, N.E. (2001), 'Phylogeny of Bicyclus (Lepidoptera:
Nymphalidae) Inferred from COI, COII, and EF-1 1 Gene Sequences', Molecular Phylogenetics and Evolution, vol. 18, no. 2, pp. 264-281.

Morinaka, S. Miyata, T. \& Tanaka, K. (2002), 'Molecular phylogeny of the Eichhorni group of Delias Hubner, 1819 (Lepidoptera: Pieridae)', Molecular Phylogenetics and Evolution, vol. 23, no. 2, pp. 276-287.

Müller, W. (1886), 'Sudamerikanische Nymphalidenraupen: Versuch eines naturlichen Systems der Nymphaliden.' ZOOLOGISCHE JAHRBUCHER-ABTEILUNG FUR ALLGEMEINE ZOOLOGIE UND PHYSIOLOGIE DER TIERE, vol. (Jena) 1, pp. 417-678.

Murray, D. (2001), 'Immature stages and biology of Taygetis Hubner (Lepidoptera : Nymphalidae)', Proceedings of the Entomological Society of Washington, vol. 103, no. 4, pp. 932-945.

Murray, D. \& Prowell, D.P. (2005), 'Molecular phylogenetics and evolutionary history of the neotropical satyrine subtribe Euptychiina (Nymphalidae: Satyrinae)', Molecular Phylogenetics and Evolution, vol. 34, no. 1, pp. 67-80.

Murray, D.L. (2003), 'Immature stages and biology of Posttaygetis penelea Cramer (Lepidoptera: Nymphalidae: Satyrinae)', Proceedings of the Entomological Society of Washington, vol. 105, no. 3, pp. 548-554.

Mutanen, M. (2006), 'Genital variation in moths - Evolutionary and systematic perspectives', Acta Universitatis Ouluensis, vol. A, no. 459, pp. 1-43.

Nazari, V. Zakharov, E.V. \& Sperling, F.A.H. (2007), 'Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes', Molecular Phylogenetics and Evolution, vol. 42, no. 1, pp. 131-156.

Nel, A. Nel, J. \& Balme, C. (1993), 'Un nouveau Lepidoptere Satyrinae fossile de l'Oligocene du Sud-Est de la France (Insecta, Lepidoptera, Nymphalidae)', Linneana Belgica, vol. 14 pp. 20-36.

NETLT (2009), North East Tasmania Land Trust, http://www.netlandtrust.org.au/index.html.

New, T.R. (1990(92)), 'Conservation of butterflies in Australia', Journal of Research on the Lepidoptera, vol. 29, no. 4, pp. 237-253.

New, T.R. (1996), Name that insect: a guide to the insects of Southeastern Australia, Oxford University Press, Melbourne.

New, T.R. (1997a), 'Are Lepidoptera an effective 'umbrella group' for biodiversity conservation?' Journal of Insect Conservation, vol. 1, no. 1, pp. 5-12.

New, T.R. (1997b), Butterfly conservation, 2nd edn, Oxford University Press, Oxford; New York.

New, T.R. (1999), 'The evolution and characteristics of the Australian butterfly fauna', in R.L. Kitching E. Scheermeyer R.E. Jones \& N.E. Pierce (eds), Biology of Australian butterflies: Monographs on Australian Lepidoptera, CSIRO Publishing, Melbourne, vol. 6, pp. 33-52.

New, T.R. (2007), 'Understanding the requirements of the insects we seek to conserve', Journal of Insect Conservation, vol. 11, no. 2, pp. 95-97.

New, T.R. Pyle, R.M. Thomas, J.A. Thomas, C.D. \& Hammond, P.C. (1995), 'Butterfly conservation management', Annual Review of Entomology, vol. 40, pp. 57-83.

New, T.R. \& Sands, D.P.A. (2002a), 'Conservation concerns for butterflies in urban areas of Australia', Journal of Insect Conservation, vol. 6, no. 4, pp. 207-215.

New, T.R. \& Sands, D.P.A. (2002b), 'Narrow-range endemicity and conservation status: Interpretations for Australian butterflies', Invertebrate Systematics, vol. 16, no. 4, pp. 665-670.

New, T.R. \& Sands, D.P.A. (2003), 'The listing and de-listing of invertebrate species for conservation in Australia', Journal of Insect Conservation, vol. 7, no. 4, pp. 199205.

New, T.R. \& Sands, D.P.A. (2004), 'Management of threatened insect species in Australia, with particular reference to butterflies', Australian Journal of Entomology, vol. 43, no. 3, pp. 258-270.

Neyland, M.G. (1992), The ptunarra brown butterfly Oreixenica ptunarra. Conservation Research Statement, Department of Parks, Wildlife and Heritage, Tasmania.

Neyland, M.G. (1993), 'The ecology and conservation management of the ptunarra brown butterfly Oreixenica ptunarra (Lepidoptera; Nymphalidae; Satyrinae) in Tasmania, Australia.' Papers and Proceedings of the Royal Society of Tasmania, vol. 127, pp. 43-48.

Nice, C.C. \& Shapiro, A.M. (1999), 'Molecular and morphological divergence in the butterfly genus Lycaeides (Lepidoptera: Lycaenidae) in North America: evidence of recent speciation', Journal of Evolutionary Biology, vol. 12, no. 5, pp. 936-950.

Nice, C.C. \& Shapiro, A.M. (2001), 'Population genetic evidence of restricted gene flow between host races in the butterfly genus Mitoura (Lepidoptera: Lycaenidae)', Annals of the Entomological Society of America, vol. 94, no. 2, pp. 257-267.

Nielsen, E.S. \& Common, I.F.B. (1991), 'Lepidoptera', in CSIRO Division of Entomology (ed.), The insects of Australia : a textbook for students and research workers, 2nd edn, Melbourne University Press, Carlton South, Vic., pp. 817-915.

Nixon, K.C. \& Carpenter, J.M. (1993), 'On outgroups', Cladistics, vol. 9, pp. 413-426.
Nixon, K.C. \& Carpenter, J.M. (1996), 'On simultaneous analysis', Cladistics, vol. 12, pp. 221-241.

Nogrady, T. (1998), 'Numerical phenetic taxonomy and its heuristic aspects', HYDROBIOLOGIA, vol. 388, pp. 97-100.

Nylin, S. Wiklund, C. Wickman, P.O. \& Garciabarros, E. (1993), 'Absence of TradeOffs between Sexual Size Dimorphism and Early Male Emergence in a Butterfly', Ecology, vol. 74, no. 5, pp. 1414-1427.

O'Brien, D.M. Boggs, C.L. \& Fogel, M.L. (2004), 'Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation', Oikos, vol. 105, no. 2, pp. 279-291.

Oberhauser, K.S. (1997), 'Fecundity, Lifespan and Egg Mass in Butterflies - Effects of Male-Derived Nutrients and Female Size', Functional Ecology, vol. 11, no. 2, pp. 166-175.

Olliff, A.S. (1890), 'On Rhopalocera from Mt Kosciusko New South Wales ', Proceedings of the Linnean Society of New South Wales, vol. 4, no. 3, pp. 619624.

Orchard, A.E. (1998), 'A natural regions map for Tasmania', Papers and Proceedings of the Royal Society of Tasmania, vol. 122, pp. 47-51.

Palumbi, S.R. Martin, A. Romano, S. McMillan, W.O. Stice, L. \& Grabowski, G. (1996), The simple fools guide to PCR, Kewalo Marine Laboratory and University of Hawaii.

Parliament of Tasmania (1995), Threatened Species Protection Act, Act 83 of 1995, Royal Assent 14 November 1995.

Paterson, I. (1994), 'Cell Grazing Revives 'Clinically Dead' Soil', Australian Farm Journal, vol. 4, no. 8, p. 37.

PAUP Help (2003-09), PAUP Help web site, http://paup.csit.fsu.edu/paupfaq/paupfaq.html\#top.

Pearse, F.K. (1978), 'Geographic variation and natural selection in the common brown butterfly Heteronympha merope', PhD thesis, La Trobe.

Pearse, F.K. \& Murray, N.D. (1981), 'Clinal Variation in the Common Brown Butterfly Heteronympha merope merope (Lepidoptera: Satyrinae)', Australian Journal of Zoology, vol. 29, no. 4, pp. 631-642.

Pearse, F.K. \& Murray, N.D. (1982), 'Sex and variability in the common brown butterfly Heteronympha merope merope (Lepidoptera: Satyrinae)', Evolution, vol. 36, no. 6, pp. 1251-1264.

Peña, C. \& Lamas, G. (2005), 'Revision of the butterfly genus Forsterinaria Gray, 1973 (Lepidoptera: Nymphalidae, Satyrinae)', Revista Peruana de Biología, vol. 12, no. 1, pp. 5-48.

Peña, C. \& Wahlberg, N. (2008), 'Prehistorical climate change increased diversification of a group of butterflies', Biology Letters, vol. 4, no. 3, pp. 274-278.

Peña, C. \& Wahlberg, N. (2008), 'Prehistorical climate change increased diversification of a group of butterflies', Biology Letters, vol. 4, no. 3, pp. 274-278.

Peña, C. Wahlberg, N. Weingartner, E. Kodandaramaiah, U. Nylin, S. Freitas, A.V.L. \& Brower, A.V.Z. (2006), 'Higher level phylogeny of Satyrinae butterflies (Lepidoptera : Nymphalidae) based on DNA sequence data', Molecular Phylogenetics and Evolution, vol. 40, no. 1, pp. 29-49.

Peña, C. Wahlberg, N. Weingartner, E. Kodandaramaiah, U. Nylin, S. Freitas, A.V.L. \& Brower, A.V.Z. (2006), 'Higher level phylogeny of Satyrinae butterflies (Lepidoptera : Nymphalidae) based on DNA sequence data', Molecular Phylogenetics and Evolution, vol. 40, no. 1, pp. 29-49.

Penz, C.M. (2007), 'Evaluating the monophyly and phylogenetic relationships of Brassolini genera (Lepidoptera, Nymphalidae)', Systematic Entomology, vol. 32, no. 4, pp. 668-689.

Philippe, H. Brinkmann, H. Rodrigue, N. \& Delsuc, F. (2005), 'Heterotachy and longbranch attraction in phylogenetics', BMC Evolutionary Biology, vol. 5.

Pierce, N.E. Braby, M.F. Heath, A. Lohman, D.J. Mathew, J. Rand, D.B. \& Travassos, M.A. (2002), 'The ecology and evolution of ant association in the Lycaenidae (Lepidoptera)', Annual Review of Entomology, vol. 47, pp. 733-771.

Pijpe, J. Brakefield, P.M. \& Zwaan, B.J. (2007), 'Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana', Evolutionary Ecology, vol. 21, no. 5, pp. 589-600.

Pillans, B. \& Bourman, R. (2001), 'Mid Pleistocene arid shift in southern Australia, dated by magnetostratigraphy', Australian Journal of Soil Research, vol. 39, no. 1, pp. 89-98

Pimentel, D. \& Edwards, C.A. (1982), 'Pesticides and ecosystems', BioScience, vol. 32 no. 7, pp. 595-600.

Piontkivska, H. (2004), 'Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used', Molecular Phylogenetics and Evolution, vol. 31, no. 3, pp. 865-873.

Porter, A.H. \& Geiger, H. (1988), 'Genetic and phenotypic population structure of the Coenonympha tullia complex (Lepidoptera: Nymphalidae: Satyrinae) in California: No evidence for species boundaries', Canadian Journal of Zoology, vol. 66, no. 12, pp. 2751-2765.

Posada, D. (2006), 'ModelTest Server: a web-based tool for the statistical selectionof models of nucleotide substitution online', Nucleic Acids Research, vol. 34, no. Web Server issue, pp. w700-w703.

Posada, D. \& Crandall, K.A. (1998), 'ModelTest: testing the model of DNA substitution', Bioinformatics, vol. 14, no. 9, pp. 817-818.

Powell, J.A. (1980), 'Evolution of Larval Food Preferences in Microlepidoptera', Annual Review of Entomology, vol. 25, pp. 133-159.

Powell, J.A. Mitter, C. \& Farrell, B.D. (1999), 'Evolution of larval food preferences in Lepidoptera', in N.P. Kristensen (ed.), Lepidoptera, Moths and Butterflies, de Gruyter, Berlin, vol. 1, pp. 403-422.

Prince, B. (1988), The Habitat Requirements and Conservation Status of Tasmanian Endemic Butterflies, A report to the Tasmanian Department of Lands Parks and Wildlife, Hobart.

Pullin, A.S. (1994), Ecology and conservation of butterflies, Chapman \& Hall, New York.

Pyle, R.M. (1967), 'Conservation and the lepidopterist', Bulletin of the Association of Minnesota Entomologists, vol. 2, pp. 1-5.

Quick, W.N.B. (1971), 'Some effects of abnormal climatic conditions on the butterfly Oreixenica correae Olliff.' Victorian Entomologist, vol. 1, no. 2, pp. 6-7.

Rafinesque, C.S. (1815), Analyse se la nature ou tableau de l'univers et des corps organiés, Privately Published, Palmero.

Reed, R.D. \& Sperling, F.A.H. (1999), 'Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio', Molecular Biology and Evolution, vol. 16, no. 2, pp. 286-297.

Reid, J.B. Hill, R.S. Brown, M.J. \& Hovenden, M.J. (1999), Vegetation of Tasmania Flora of AustraliaSupplementary Series, Number 8, Australian Biological Resources Study- CSIRO Publishing.

Resetarits, W.J. (1996), 'Oviposition Site Choice and Life History Evolution', American Zoologist, vol. 36, no. 2, pp. 205-215.

Reuter, E. (1896), 'Uber die Palpen der Rhopaloceren', Acta Soc Scient Fennicae, vol. 22, no. i-xvi, p. 577.

Rodrigo, A.G. (1993), 'Calibrating the bootstrap test of monophyly', International Journal of Parasitology, vol. 23, no. 4, pp. 507-514.

Ronquist, F. \& Nylin, S. (1990), 'Process and Pattern in the Evolution of Species Associations', Systematic Zoology, vol. 39, no. 4, pp. 323-344.

Roskam, J.C. \& Brakefield, P.M. (1999), 'Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues', Biological Journal of the Linnean Society, vol. 66, no. 3, pp. 345-356.

Rubinoff, D. \& Sperling, F.A.H. (2002), 'Evolution of ecological traits and wing morphology in Hemileuca (Saturniidae) based on a two-gene phylogeny', Molecular Phylogenetics and Evolution, vol. 25, no. 1, pp. 70-86.

Ruiter, B.J. \& Brakefield, P.M. (1994), 'Interactions between phenotypic plasticity and genetic polymorphism in the tropical butterfly Melanitis leda', Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society, vol. 5, pp. 41-46.

Ruohomaki, K. Hanhimaki, S. \& Haukioja, E. (1993), 'Effects of Egg Size, Laying Order and Larval Density on Performance of Epirrita-Autumnata (Lep, Geometridae)', Oikos, vol. 68, no. 1, pp. 61-66.

Rutowski, R.L. (1982), 'Mate Choice and Lepidopteran Mating Behavior', Florida Entomologist, vol. 65, no. 1, pp. 72-82.

Rutowski, R.L. (1984), 'Sexual selection and the evolution of butterfly mating behaviour', Journal of Research on the Lepidoptera, vol. 23, pp. 125-142.

Rutowski, R.L. (1985), 'Evidence for Mate Choice in a Sulphur Butterfly (Colias eurytheme)', vol. 70, pp. 103-114.

Rutowski, R.L. (1991), 'The evolution of male mate-location behavior in butterflies.' American Naturalist, vol. 138, no. 5, pp. 1121-1139.

Rutowski, R.L. (1998), 'Mating strategies in butterflies', Scientific American, vol. 279, no. 1, pp. 64-69.

Rutowski, R.L. Dickinson, J.L. \& Terkanian, B. (1989), 'The structure of the mating plug in the checkerspot butterfly, Euphydryas chalcedona', Psyche Camb Mass, vol. 96, no. 3-4, pp. 279-286.

Rutowski, R.L. \& Gilchrist, G.W. (1987), 'Male mate-locating behavior in the desert hackberry butterfly, Asterocampa leilia (Nymphalidae)', Journal of Research on the Lepidoptera, vol. 26, pp. 1-12.

Rutowski, R.L. Gilchrist, G.W. \& Terkanian, B. (1987), 'Female butterflies mated with recently mated males show reduced reproductive output', Behav Ecol Sociobiol, vol. 20, no. 5, pp. 319-322.

Salkeld, E.H. (1975), 'Biosystematics of the Genus Euxoa (Lepidoptera, Noctuidae) Eggs of the subgenus Euxoa.' Canadian Entomologist, vol. 107, no. 11, pp. 1137-1152.

Salkeld, E.H. (1976), 'Biosystematics of the Genus Euxoa (Lepidoptera, Noctuidae) Eggs of the subgenera Chorizagrotis, Crassivesica, Longivesica, Orosagrotis, and Pleonectopoda', Canadian Entomologist, vol. 108, pp. 1371-1385.

Salkeld, E.H. (1983), 'A catalogue of the eggs of some Canadian Geometridae (Lepidoptera), with comments.' Memoirs of the Entomological Society of Canada, vol. 126, no. 67.

Sanderson, M.J. (1997), 'A nonparametric approach to estimating divergence times in the absence of rate constancy', Molecular Biology and Evolution, vol. 14, no. 12, pp. 1218-1231.

Sanderson, M.J. Thorne, J.L. Wikstrom, N. \& Bremer, K. (2004), 'Molecular evidence on plant divergence times', American Journal of Botany, vol. 91, no. 10, pp. 1656-1665.

Sands, D.P.A. (1999), 'Conservation status of Lepidoptera: assessment, threatening processes and recovery actions', in W. Ponder \& D. Lunney (eds), The Other
99% The conservation and Biodiversity of Invertebrates, Transactions of the Royal Zoological Society of New South Wales, Mosman.

Sands, D.P.A. \& New, T.R. (2002), The Action Plan for Australian Butterflies, Environment Australia, Canberra.

Schmitt, T. Cizek, D. \& Konvicka, M. (2005), 'Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana', Biological Conservation, vol. 123, no. 1, pp. 11-18.

Schmitt, T. \& Haubrich, K. (2008), 'The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe', Molecular Ecology, vol. 17, no. 9, pp. 2194-2207.

Schmitt, T. \& Seitz, A. (2002), 'Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation.' Biological Conservation, vol. 107, no. 3, pp. 291-297.

Scoble, M.J. (1995), The Lepidoptera: form, function and diversity, Repr. with corrections. edn, Natural History Museum publications, Oxford University Press, Oxford.

Sharma, N. (2003), 'Notes on the common palm butterfly, Elymnias hypermnestra undularis (Drury) (Satyrinae) in India', Journal of the Lepidopterists Society, vol. 57, no. 2, pp. 147-149.

Sibatani, A. Ogata, M. Okada, Y. \& Okagaki, H. (1954), 'Male genitalia of Lepidoptera: morphology and nomenclature. 1. Divisions of the valvad in Rhopolocera, Phalaenidae (= Noctuidae) and Geometridae', Annals Entomologica Society of America, vol. 47, pp. 93-106.

Sibly, R.M. Winokur, L. \& Smith, R.H. (1997), 'Interpopulation variation in phenotypic plasticity in the speckled wood butterfly, Pararge aegeria', Oikos, vol. 78, no. 2, pp. 323-330.

Siddall, M.E. (1998), 'Success of parsimony in the four tazon case: long-branch requlsion by likelihood in the Farris zone', Cladistics, vol. 14, pp. 209-220.

Simonsen, T.J. (2005), 'Boloria phylogeny (Lepidoptera : Nymphalidae): tentatively reconstructed on the basis of male and female genitalic morphology', Systematic Entomology, vol. 30, no. 4, pp. 653-665.

Simonsen, T.J. (2006a), 'Fritillary phylogeny, classification, and larval host plants: reconstructed mainly on the basis of male and female genitalic morphology (Lepidoptera : Nymphalidae : Argynnini)', Biological Journal of the Linnean Society, vol. 89, no. 4, pp. 627-673.

Simonsen, T.J. (2006b), 'Glands, muscles and genitalia. Morphological and phylogenetic implications of histological characters in the male genitalia of Fritillary butterflies (Lepidoptera : Nymphalidae : Argynnini)', Zoologica Scripta, vol. 35, no. 3, pp. 231-241.

Simonsen, T.J. (2006c), 'The male genitalia segments in fritillary butterflies: Comparative morphology with special reference to the "rectal plate" in Issoria (Lepidoptera : Nymphalidae) ', European Journal of Entomology, vol. 103, no. 2, pp. 425-432.

Simonsen, T.J. Wahlberg, N. Brower, A.V.Z. \& de Jong, R. (2006), 'Morphology, molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera : Nymphalidae)', Insect Systematics \& Evolution, vol. 37, no. 4, pp. 405-418.

Smith, A.B. Lafay, B. \& Christen, R. (1992), 'Comparative Variation of Morphological and Molecular Evolution through Geologic Time - 28s Ribosomal-RNA Versus Morphology in Echinoids', Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, vol. 338, no. 1286, pp. 365-382.

Sokal, R.R. (1985), 'The Continuing Search for Order', The American Naturalist, vol. 126, no. 6, pp. 729-749.

Soreng, R.J. (1990), 'Chloroplast-DNA Phylogenetics and Biogeography in a Reticulating Group - Study in Poa (Poaceae)', American Journal of Botany, vol. 77, no. 11, pp. 1383-1400.

Sourakov, A. (1999), 'Notes on the genus Calisto, with descriptions of the immature stages (part 2) (Lepidoptera: Nymphalidae: Satyrinae)', Tropical Lepidoptera, vol. 10, no. 2, pp. 73-79.

Sperling, F.A.H. \& Hickey, D.A. (1994), 'Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura, Lepidoptera)', Molecular Biology and Evolution, vol. 11, no. 4, pp. 656-665.

Sperling, F.A.H. Landry, J.F. \& Hickey, D.A. (1995), 'DNA-based identification of introduced ermine moth species in North-America (Lepidoptera, Yponomeutidae)', Annals of the Entomological Society of America, vol. 88, no. 2, pp. 155-162.

Sperling, F.A.H. Raske, A.G. \& Otvos, I.S. (1999), 'Mitochondrial DNA sequence variation among populations and host races of Lambdina fiscellaria (Gn.) (Lepidoptera: Geometridae)', Insect Molecular Biology, vol. 8, no. 1, pp. 97-106.

Starnecker, G. (1999), 'Pupal structures associated with the mode of pupation in Satyrinae (Lepidoptera, Nymphalidae)', Zoologischer Anzeiger, vol. 237, no. 4, pp. 331-337.

Stebbins, G.L. (1981), 'Coevolution of Grasses and Herbivores', Annals of the Missouri Botanical Garden, vol. 68, no. 1, pp. 75-86.

Stehr, F.W. Martinat, P.J. Davis, D.R. Wagner, D.L. Heppner, J.B. Brown, M.E. Toliver, M.E. Miller, J.Y. Downey, J.C. Harvey, D.J. Mcfarland, N. Neunzig, H.H. Godfrey, G.L. Habeck, D.H. Appleby, J.E. Jeffords, M. Donahue, J.P. Brown, J.W. \& Frack, D.C. (1987), 'Order Lepidoptera', in F.W. Stehr (ed.), Immature insects, Kendall Hunt, Dubuque, pp. 288-596.

Steigenga, M.J. \& Fischer, K. (2007), 'Ovarian dynamics, egg size, and egg number in relation to temperature and mating status in a butterfly', Entomologia Experimentalis et Applicata, vol. 125, no. 2, pp. 195-203.

Swofford, D.L. (1993), 'PAUP - a Computer-Program for Phylogenetic Inference Using Maximum Parsimony', Journal of General Physiology, vol. 102, no. 6, pp. A9A9.

Swofford, D.L. (2002), PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4, Sinauer Associates, Sunderland, Massachusetts.

Syme, P.D. (1961), 'The morphology of Lepidopteran eggs, with descriptions of two hundred and forty eight species.' PhD thesis, University of Toronto.

Takahashi, K. \& Nei, M. (2000), 'Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used', Molecular Biology and Evolution, vol. 17, no. 8, pp. 1251-1258.

TASMAP (1992), Interlaken 5033 Tasmania 1:25000 Series, 1st edn, Mapping Division, Department of Environment and Planning, Tasmanian Government, Hobart.

Taylor, M.F.J. McKechnie, S.W. Pierce, N. \& Kreitman, M. (1993), 'The Lepidopteran Mitochondrial Control Region - Structure and Evolution', Molecular Biology and Evolution, vol. 10, no. 6, pp. 1259-1272.

Thomas, J.A. (1980), 'Why Did the Large Blue Become Extinct in Britain?' Oryx, vol. 15, pp. 243-247.

Thompson, J.D. Gibson, T.J. Plewniak, F. Jeanmougin, F. \& Higgins, D.G. (1997), 'The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools', Nucleic Acids Research, vol. 25, no. 24, pp. 4876-4882.

Thompson, J.D. Higgins, D.G. \& Gibson, T.J. (1994), 'Clustal-W - Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice', Nucleic Acids Research, vol. 22, no. 22, pp. 4673-4680.

Thompson, J.D. Plewniak, F. \& Poch, O. (1999), 'BAliABSE: a benchmark alignment database for the evaluation of multiple alignment programs', Bioinformatics, vol. 15, pp. 87-88.

Threatened Species Unit (1998), Listing Statement Ptunarra Brwon Butterly Oriexenica ptunarra, Department of Primary Industries Water and the Environment (DPIWE), Hobart.

Tindale, N.B. (1949), 'New Satyridae of the Genus Oreixenica from South Australia and New South Wales, together with notes on the recent climate of Southern Australia', Records of the South Australian Museum, vol. 9, pp. 143-157.

Torre-Bueno, J.R. (1989), The Torre-Bueno Glossary of Entomology., The New York Entomological Society, New York.

Torre Bueno, J.R. (1989), The Torre-Bueno Glossary of Entomology., The New York Entomological Society, New York.

Usher, M.B. (1985), 'The species of Henotesia Butler (Lepidoptera: Nymphalidae, Satyrinae) in western West Africa', Entomologica Scandinavica, vol. 16, no. 3, pp. 259-264.

Van Dongen, S. Backeljau, T. Matthysen, E. \& Dhondt, A.A. (1998), 'Genetic population structure of the winter moth (Operophtera brumata L.) (Lepidoptera, Geometridae) in a fragmented landscape', Heredity, vol. 80, no. 1, pp. 92-100.

Van Dyck, H. Matthysen, E. \& Wiklund, C. (1998), 'Phenotypic variation in adult morphology and pupal colour within and among families of the speckled wood butterfly Pararge aegeria', Ecological Entomology, vol. 23, no. 4, pp. 465-472.

Vane Wright, R.I. Raheem, D.C. Cieslak, A. \& Vogler, A.P. (1999), 'Evolution of the mimetic African swallowtail butterfly Papilio dardanus : molecular data confirm relationships with P. phorcas and P. constantinus', Biological Journal of the Linnean Society, vol. 66, no. 2, pp. 215-229.

Verrier, F.J. \& Kirkpatrick, J.B. (2005), 'Frequent mowing is better than grazing for the conservation value of lowland tussock grasssland at Pontville, Tasmania', Austral Ecology, vol. 30, no. 1, pp. 74-78.

Vila, M. \& Bjorklund, M. (2004), 'The utility of the neglected mitochondrial control region for evolutionary studies in Lepidoptera (Insecta)', Journal of Molecular Evolution, vol. 58, no. 3, pp. 280-290.

Viloria, A.L. (1998), 'Studies on the systematics and biogeography of some montane satyrid butterflies (Lepidoptera)', Ph.D. thesis, King's College London and The Natural History Museum London.

Viloria, A.L. (2003), 'Historical biogeography and the origins of the satyrine butterflies of the tropical Andes (Lepidoptera:Rhopalocera)', in J.J. Morrone \& J. LlorenteBousquets (eds), Una perspectiva latinoamericana de la biogeografia, D.F. Las Prensas de Ciencias, Faculted de Ciencias,, UNAM: México City, México., pp. 247-261.

Viridans (2006), 'Butterfly Images', wwwviridanscom/leppics/olephtm, vol. Accessed July 2006.

Wahlberg, N. (2006), 'That awkward age for butterflies: Insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera : Nymphalidae)', Systematic Biology, vol. 55, no. 5, pp. 703-714.

Wahlberg, N. (2008a), The Nymphalidae Systematics Group, viewed 1st January 2008 http://nymphalidae.utu.fi/.

Wahlberg, N. (2008b), Nymphalidae.net, viewed 1st January 2008 http://www.nymphalidae.net/.

Wahlberg, N. Braby, M.F. Brower, A.V.Z. de Jong, R. Lee, M.M. Nylin, S. Pierce, N.E. Sperling, F.A.H. Vila, R. Warren, A.D. \& Zakharov, E. (2005a), 'Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers', Proceedings of the Royal Society BBiological Sciences, vol. 272, no. 1572, pp. 1577-1586.

Wahlberg, N. Brower, A.V.Z. \& Nylin, S. (2005b), 'Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera : Nymphalidae)', Biological Journal of the Linnean Society, vol. 86, no. 2, pp. 227-251.

Wahlberg, N. \& Nylin, S. (2003), 'Morphology versus molecules: resolution of the positions of Nymphalis, Polygonia, and related genera (Lepidoptera: Nymphalidae)', Cladistics, vol. 19, no. 3, pp. 213-223.

Wahlberg, N. Oliveira, R. \& Scott, J.A. (2003a), 'Phylogenetic relationships of Phyciodes butterfly species (Lepidoptera: Nymphalidae): complex mtDNA variation and species delimitations', Systematic Entomology, vol. 28, no. 2, pp. 257-273.

Wahlberg, N. Weingartner, E. \& Nylin, S. (2003b), 'Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea)', Molecular Phylogenetics and Evolution, vol. 28, no. 3, pp. 473-484.

Wahlberg, N. \& Zimmermann, M. (2000), 'Pattern of Phylogenetic Relationships among Members of the Tribe Melitaeini (Lepidoptera: Nymphalidae) Inferred from Mitochondrial DNA Sequences', Cladistics, vol. 16, no. 4, pp. 347-363.

Wakeham-Dawson, A. Coutsis, J.G. Dennis, R.L.H. \& Holloway, J.D. (2003), 'Observations on the integrity of Balkan butterfly taxa in the subgenus Parahipparchia Kudrna, 1977 (Lepidoptera: Nymphalidae, Satyrinae) based on male genitalia', Entomologist's Gazette, vol. 54, no. 2, pp. 71-103.

Wakeham-Dawson, A. \& Dennis, R.L.H. (2001), 'A quantitative description of the male genitalia of 23 taxa of Pseudochazara de Lesse, 1951 (Lepidoptera: Nymphalidae, Satyrinae)', Entomologist's Gazette, vol. 52, no. 4, pp. 227-250.

Wallengren, H.D.J. (1858), 'Nya Fjäril-slagten', Öfvers Förh K svenska VetenskAkad, vol. 15, pp. 75-84.

Warren, B.C.S. (1944), 'Review of the classification of the Argynnidi: with a systematic revision of the genus Boloria (Lepidoptera: Nymphalidae)', Transactions of the Royal Entomological Society of London, vol. 94, pp. 1-101.

Warren, B.C.S. (1955), 'A revision of the classification of the subfamily Argynninae (Lepidoptera: Nymphalidae). Part 2. Definition of the Asiatic genera', Transactions of the Royal Entomological Society of London, vol. 107, pp. 381391.

Warren, B.C.S. Dos Passos, C.F. \& Grey, L.P. (1946), 'Supplementary notes on the classification of Argynninae (Lepidoptera: Nymphalidae)', Proceedings of the Royal Entomological Society of London, vol. 15, pp. 71-73.

Waterhouse, D.F. \& Lyell, G. (1914), The Butterflies of Australia, Angus and Robertson, Sydney.

Waterhouse, G.A. (1923), 'Notes on the life-histories of Australian butterflies', Proceedings of the Linnean Society of New South Wales, vol. 48, no. 17-24.

Waterhouse, G.A. (1928), 'A second monograph of the genus Tisiphone Hubner.' Australian Journal of Zoology, vol. 5, no. 217-240.

Waterhouse, G.A. (1932), What Butterfly is That?, Angus and Robertson, Sydney.
Waterhouse, G.A. (1937), 'On the identity of the butterfly known in Australia as Heteronympha philerope', Proceedings of the Linnean Society of New South Wales, vol. 62, pp. 253-258.

Watson, D.M. (2002), 'A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems', Journal of Biogeography, vol. 29, no. 5-6, pp. 823-834.

Wedell, N. Wiklund, C. \& Cook, P.A. (2002), 'Monandry and polyandry as alternative lifestyles in a butterfly', Behavioral Ecology, vol. 13, no. 4, pp. 450-455.

Weingartner, E. Wahlberg, N. \& Nylin, S. (2006), 'Speciation in Pararge (Satyrinae : Nymphalidae) butterflies - North Africa is the source of ancestral populations of all Pararge species', Systematic Entomology, vol. 31, no. 4, pp. 621-632.

Westwood, J.O. (1851 [1850-1852]), The Genera of Diurnal Lepidoptera: comprising their Generic Characters, a Notice of their Habits and Transformations, and a Catalogue of the Species of each Genus, vol. ii, pp. 251-534.

Wheat, C.W. \& Watt, W.B. (2008), 'A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae)', Molecular Phylogenetics and Evolution, vol. 47, no. 3, pp. 893-902.

Whinnett, A. Zimmermann, M. Willmott, K.R. Herrera, N. Mallarino, R. Simpson, F. Joron, M. Lamas, G. \& Mallet, J. (2005), 'Strikingly variable divergence times inferred across an Amazonian butterfly 'suture zone", Proceedings of the Royal Society B-Biological Sciences, vol. 272, no. 1580, pp. 2525-2533.

Wickman, P.O. \& Rutowski, R.L. (1999), 'The evolution of mating dispersion in insects', Oikos, vol. 84, no. 3, pp. 463-472.

Wikstrom, N. Savolainen, V. \& Chase, M.W. (2001), 'Evolution of the angiosperms: calibrating the family tree', Proceedings of the Royal Society B-Biological Sciences, vol. 268, no. 1482, pp. 2211-2220.

Willis, K. \& McElwain, J. (2002), The evolution of plants, Oxford University Press, Oxford.

Willmott, K.R. \& Hall, J.P.W. (2004), 'Taxonomic notes on the genus Zaretis, with the description of a new species (Lepidoptera: Nymphalidae: Charaxinae)', Tropical Lepidoptera, vol. 12, no. 1-2, pp. 29-34.

Willmott, K.R. Hall, J.P.W. \& Lamas, G. (2001), 'Systematics of Hypanartia (Lepidoptera: Nymphalidae: Nymphalinae), with a test for geographical speciation mechanisms in the Andes', Systematic Entomology, vol. 26, no. 4, pp. 369-399.

Windig, J.J. Brakefield, P.M. Reitsma, N. \& Wilson, J.G.M. (1994), 'Seasonal Polyphenism in the Wild - Survey of Wing Patterns in 5 Species of Bicyclus Butterflies in Malawi', Ecological Entomology, vol. 19, no. 3, pp. 285-298.

Wood, G.A. (1988), 'The life history of Hypocysta angustata angustata Waterhouse and Lyell and Hypocysta irius (Fabricius) (Lepidoptera: Nymphalidae: Satyrinae)', Australian Entomological Magazine, vol. 14, no. 6, pp. 83-86.

Yang, Z. (1995), 'Evaluation of several methods for estimating phylogenetic trees when substitution rates differ over nucleotide sites', Molecular Evolution, vol. 40, no. 689-697.

Yang, Z. Goldman, N. \& Friday, A.E. (1994), 'Comparison of models for nucleotide substitution used in maximum likelihood phylogenetic estimation', Molecular Biology and Evolution, vol. 11, pp. 316-324.

Yasui, Y. (1998), 'The Genetic Benefits of Female Multiple Mating Reconsidered', Trends in Ecology \& Evolution, vol. 13, no. 6, pp. 246-250.

Yen, S.H. Robinson, G.S. \& Quicke, D.L.J. (2005), 'The phylogenetic relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae)', Zoological Journal of the Linnean Society, vol. 143, no. 2, pp. 161-341.

Young, C.J. (2003), 'Characterisation and Phylogeny of the Australian Geometridae', PhD thesis, University of Tasmania.

Young, C.J. (2006a), 'Descriptions of the eggs of some southern Australian Geometridae (Lepidoptera)', Zootaxa, vol. 1287, pp. 3-294.

Young, C.J. (2006b), 'Molecular relationships of the Australian Ennominae (Lepidoptera : Geometridae) and implications for the phylogeny of the Geometridae from molecular and morphological data', Zootaxa, no. 1264, pp. 3147.

Young, C.J. (2008), 'Characterisation of the Larvae of Australian Nacophorini', Zootaxa, vol. 1862, pp. 1-74.

Zakharov, E.V. Caterino, M.S. \& Sperling, F.A.H. (2004a), 'Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera : Papilionidae)', Systematic Biology, vol. 53, no. 2, pp. 193-215.

Zakharov, E.V. Smith, C.R. Lees, D.C. Cameron, A. Vane-Wright, R.I. \& Sperling, F.A.H. (2004b), 'Independent gene phylogenies and morphology demonstrate a Malagasy origin for a wide-ranging group of swallowtail butterflies', Evolution, vol. 58, no. 12, pp. 2763-2782.

Zhang, M. Cao, T. Jin, K. Ren, Z. Guo, Y. Shi, J. Zhong, Y. \& Ma, E. (2008), 'Estimating divergence times among subfamilies in Nymphalidae', Chinese Science Bulletin, vol. 53, no. 17, pp. 2652-2658.

Zhang, M. Cao, T. Zhang, R. Guo, Y. Duan, Y. \& Ma, E. (2007), 'Phylogeny of Apaturinae Butterflies (Lepidoptera: Nymphalidae) Based on Mitochondrial Cytochrome Oxidasel Gene', Journal of Genetics and Genomics, vol. 34, no. 9, pp. 812-823.

Zonneveld, C. (1996), 'Being Big or Emerging Early - Polyandry and the Trade-Off between Size and Emergence in Male Butterflies', American Naturalist, vol. 147, no. 6, pp. 946-965.

Appendices

Appendix 1-Collection details for species dissected for genitalia analysis

Species	Sex	Collection Info	Dissection Code	Collector*
A. hobartia	\bigcirc	Mt Barrow Mid Slopes 15/Nov/2000	GDR2 - P	McQ
A. hobartia	0	Mt King William Plain 02/Jan/2004	GDR2-Q	RALA
A. hobartia	q	Mt King William Plain 02/Jan/2004	GDR2 - R	RALA
A. hobartia	¢	Mt King William Plain 02/Jan/2004	GDR2 - S	RALA
G. klugii	δ^{*}	Darling Range, Flinders Is. 16/Mar/1982	CYD $2-2$	McQ /Newtown
G. klugii	9	Glenlusk 12/Feb/2005 $42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime}$ E ALT~375	GDR2 - F	RALA
G. klugii	9	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT }-375 \end{aligned}$	GDR2 - N	RALA
G. klugii	${ }^{\star}$	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT } \sim 375 \end{aligned}$	GDR2 - V	RALA
G. klugii	δ^{*}	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT } \sim 375 \end{aligned}$	GDR2 - W	RALA
H. penelope	¢	Lake Leake 29/Mar/1949		S. Angel /Newtown
H. cordace	δ	Paradise Plains 05/Jan/2001	GDR2 - X	RALA
H. cordace	\%	Paradise Plains 05/Jan/2001	GDR2 - Y	RALA
H. merope	\%	Lindisfarne, TAS 1984	GDR2 - E	CJY /Newtown
H. merope	δ^{*}	Glenlusk 13/Jan/2002 $42^{\circ} 29^{\prime}$ S $147^{\circ} 12^{\prime}$ E ALT~375	GDR2 - T	RALA
H. merope	δ^{*}	Waterworks 12/Jan/2005	CYD 2-1	RALA
H. penelope	\%	$\begin{aligned} & \text { Glenlusk } 13 / \mathrm{Jan} / 2002 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT~375 } \end{aligned}$	GDR2 - K	RALA
H. penelope	δ^{λ}	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT } \sim 375 \end{aligned}$	GDR2 - D	RALA
H. penelope	\%	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT } \sim 375 \end{aligned}$	GDR2 - G	RALA
J. villida	\%	Devonport, TAS. Stoney Rise Carpark 20/Mar/1992		L. Hill /Newtown
J. villida	δ^{*}	Trevallyn 1/Mar/1965		R.J. Hardy /Newtown
J. villida	안	Glenlusk 12/Feb/2005 $42^{\circ} 29^{\prime}$ S $147^{\circ} 12^{\prime}$ E ALT~375	GDR2 - I	RALA
J. villida	¢	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT } \sim 375 \end{aligned}$	GDR2 - J	RALA
J. villida	$\widehat{\delta}$	$\begin{aligned} & \text { Glenlusk } 12 / \mathrm{Feb} / 2005 \\ & 42^{\circ} 29^{\prime} \mathrm{S} 147^{\circ} 12^{\prime} \mathrm{E} \text { ALT~375 } \end{aligned}$	GDR2 - U	RALA
N. leprea	9	Lake St. Clair Feb/1941		J.W. Evans /Newtown
N. leprea	δ	Pelion Hut 7-8/Jan/1989 41 ${ }^{\circ} 50^{\prime} \mathrm{S}$ 146 ${ }^{\circ} 04^{\prime}$ E ALT~900m		McQ /Newtown
N. leprea	아	Mt Wellington Jan/1987 ALT~700m	CYD 2-4	McQ /Newtown

N. leprea	ठ	Mt King William Plain 31/Jan/2002 $42^{\circ} 21 ’ \mathrm{~s} 146^{\circ} 08^{\prime}$ E ALT $\sim 800 \mathrm{~m}$	GDR2 - L	RALA
N. leprea	ठ	Mt King William Plain 31/Jan/2002 $42^{\circ} 21$'s $146^{\circ} 08^{\prime}$ E ALT $\sim 800 \mathrm{~m}$	GDR2 - M	RALA
N. leprea	9	Mt King William Plain 31/Jan/2002 $42^{\circ} 21^{\prime}$'s $146^{\circ} 08^{\prime}$ E ALT $\sim 800 \mathrm{~m}$	GDR2 - O	RALA
O. lathoniella	δ^{*}	Lake Augusta Road 29/Feb/2000 42.610S 146.725 E ALT $\sim 1125 \mathrm{~m}$	OL LAR 1	RALA
O. lathoniella	χ^{*}	Lake Augusta Road 29/Feb/2000 42.610S 146.725E ALT $\sim 1125 \mathrm{~m}$	OL LAR 2	RALA
O. lathoniella	δ^{*}	Steppes Sculptures $16 / \mathrm{Mar} / 2000$ 42.106S 146.892E ~875m	OL SS 1-3	RALA
O. orichora	아	$\begin{aligned} & \text { 5km SW Breana 23/Jan/1992 } \\ & \sim 1070 \mathrm{~m} \end{aligned}$		McQ
O. ptunarra	O	Tunbridge Tiers Power pole 76 23/Mar/2002	' A '	RALA
O. ptunarra	\%	Tunbridge Tiers Power pole 76 23/Mar/2002	'C'	RALA
O. ptunarra	아	Pike's Hill TAS 23/Mar/2002	'C'	RALA
O. ptunarra	아	Pike's Hill TAS 23/Mar/2002	'D'	RALA
O. ptunarra	아	Pike's Hill TAS 23/Mar/2002	'P'	RALA
O. ptunarra	δ	Peak Plain, TAS 3/Mar/1995 41.22S 145.45E ALT 640m	Pop H2	McQ \& Ek
O. ptunarra	δ	Glovers TAS, 17/Mar/1995 42.12S 146.56E ALT 610 m	Pop R2	McQ \& Ek
O. ptunarra	δ	Snowy Plain, TAS 19/Mar/1995 $41.54 \mathrm{~S} 147.48 \mathrm{E}$	Pop D4	McQ \& Ek
O. ptunarra	\bigcirc	Flagstaff Marsh TAS. 19/Mar/1995 41.12S 147.51 E Alt 540 m	Pop F2	McQ \& Ek
O. ptunarra	δ	Stony Gully Road, TAS 19/Mar/1995 41.58 S 147.38E ALT 550 m	Pop Ll	McQ \& Ek
O. ptunarra	0^{*}	Stony Gully Road, TAS 19/Mar/1995 41.58S 147.38E ALT 550m	Pop L13	McQ \& Ek
O. ptunarra	δ	Stony Gully Road, TAS 19/Mar/1995 41.58 S 147.38 E ALT 550 m	Pop L5	McQ \& Ek
O. ptunarra	δ	Mike Howe's Marsh, TAS 23/Mar/1995 42.14S 147.15E ALT 600 m	Pop X2	McQ \& Ek
O. ptunarra	δ	Muddy Plain Road TAS. 28/Mar/1995 42.26S 147.12E ALT 400m	Pop E1	McQ \& Ek
O. ptunarra	δ	Bellvue West, TAS.29/Mar/1995 42.11S 147.24E ALT 300m	Pop B5	McQ \& Ek
O. ptunarra	δ	Black Johnny's Marsh, TAS 29/Mar/1995 42.13S 147.42E ALT 320m	Pop K1	McQ \& Ek
O. ptunarra	δ	Fitch's Hill TAS, 29/Mar/1995 42.18S 147.31E ALT 460 m	Pop P2	McQ \& Ek
O. ptunarra	δ	Vale of Belvoir, TAS 3/Apr/1995 41.31 S 145.53E ALT 860 m	Pop A1	McQ \& Ek
O. ptunarra	δ	Vale of Belvoir, TAS 3/Apr/1995 41.31S 145.53E ALT 860 m	Pop A5	McQ \& Ek
O. ptunarra	δ	Vale of Belvoir, TAS 3/Apr/1995 41.31S 145.53E ALT 860 m	Pop A8	McQ \& Ek
O. ptunarra	δ	Hatfield Plain, TAS. 3/Apr/1995 41.30S 145.39E ALT 670 m	Pop G	McQ \& Ek
O. ptunarra	δ	42.09S 146.26E Nive Plain, TAS 650m 4/Apr/1995	Pop M2	McQ \& Ek

O. ptunarra	q	Dennistown Road, TAS.11/Mar/2000 42.100 S 147.808 E ALT $\sim 80 \mathrm{~m}$		RALA
O. correae	0	Mt Donna Buang, VIC 27/Feb/2005 $37^{\circ} 42^{\prime} \mathrm{S} 145^{\circ} 40^{\prime} \mathrm{E} \sim 1250 \mathrm{~m}$	PD 5 AA151	MFB
O. correae	¢	Mt Donna Buang, VIC 27/Feb/2005 $37^{\circ} 42^{\prime} \mathrm{S} 145^{\circ} 40^{\prime} \mathrm{E} \sim 1250 \mathrm{~m}$	PD 6 AA152	MFB
O. correae	¢	Mt Donna Buang, VIC 10/March/2005 $37^{\circ} 42^{\prime} \mathrm{S} 145^{\circ} 40^{\prime} \mathrm{E} \sim 1250 \mathrm{~m}$	PD 13	RALA
O. correae	δ^{*}	Mt Donna Buang, VIC 10/March/2005 $37^{\circ} 42^{\prime} \mathrm{S} 145^{\circ} 40^{\prime} \mathrm{E}$	PD 13	RALA
O. kershawi	¢	Odd Specimen ANIC	PD 11	
O. kershawi	人	Mt Donna Buang, VIC 27/Feb/2005 37${ }^{\circ} 72^{\prime} \mathrm{S} 145^{\circ} 71^{\prime} \mathrm{E} \sim 390 \mathrm{~m}$	PD 7 AA156	MFB
O. kershawi	δ^{*}	Mt Donna Buang, VIC 27/Feb/2005 $37^{\circ} 72^{\prime} \mathrm{S} 145^{\circ} 71^{\prime} \mathrm{E} \sim 390 \mathrm{~m}$	PD 8 AA154	MFB
O. kershawi	q	Mt Donna Buang, VIC 10/Mar/2005 $37^{\circ} 72^{\prime} \mathrm{S} 145^{\circ} 71^{\prime} \mathrm{E} \sim 390 \mathrm{~m}$	PD 12	RALA
O. kershawi	δ	Mt Donna Buang, VIC 10/Mar/2005 $37^{\circ} 72^{\prime} \mathrm{S} 145^{\circ} 71^{\prime} \mathrm{E} \sim 390 \mathrm{~m}$	PD 12	RALA
O. l. latialis	δ^{*}	Prussian Ck, 1 km NE of Smiggin Holes NSW ALT ~1620m 10/Mar/1973	CYD 3-2	ANIC
O. lathoniella	ठ	Liawenee Turning Circle $17 / \mathrm{Feb} / 2002$ $42.625 \mathrm{~S} 146.735 \mathrm{E} 0 \mathrm{ALT} \sim 1100 \mathrm{~m}$	$\begin{aligned} & \hline \text { GDR2 - B } \\ & \text { OL LTC } 2 \end{aligned}$	RALA
O. lathoniella	δ^{\star}	Liawenee Turning Circle 17/Feb/2002 $42.625 \mathrm{~S} 146.735 \mathrm{E} 0 \mathrm{ALT} \sim 1100 \mathrm{~m}$	$\begin{aligned} & \hline \text { GDR2 - C } \\ & \text { OL LTC } 3 \end{aligned}$	RALA
O. lathoniella	O	Tunbridge Tiers $18 / \mathrm{Feb} / 2000$ 42.123 S 147.250 E ALT $\sim 875 \mathrm{~m}$	CYD 3-7 OL TT1	RALA
O. lathoniella	δ^{*}	Liawenee Turning Circle $29 / \mathrm{Feb} / 2000$ 42.625 S 146.735E ALT $\sim 1100 \mathrm{~m}$	$\begin{aligned} & \hline \text { CYD 3-5 } \\ & \text { OL LTC } 1 \end{aligned}$	RALA
O. l. herceus	9	Tinderry Nature Reserve NSW 1/Apr/2005 $35^{\circ} 44^{\prime} \mathrm{S} 149^{\circ} 16^{\prime} \mathrm{E}$ ALT $\sim 1260 \mathrm{~m}$	$\begin{aligned} & \text { PD } 3 \\ & \text { MF8-OO-P598 } \end{aligned}$	MFB
O. l. herceus	\%	Tinderry Nature Reserve NSW 1/Apr/2005 $35^{\circ} 44^{\prime} \mathrm{S} 149^{\circ} 16^{\prime} \mathrm{E}$ ALT $\sim 1260 \mathrm{~m}$	$\begin{aligned} & \hline \text { PD } 4 \\ & \text { MF8-OO-P597 } \end{aligned}$	MFB
O. latialis	안	$\begin{aligned} & \text { Mt Hotham, VIC. 12/Mar/2005 } \\ & 37^{\circ} 00^{\prime} \mathrm{S} 147^{\circ} 10^{\prime} \mathrm{E} \\ & \hline \end{aligned}$	GDR2 - A	RALA
O. latialis	\%	$\begin{aligned} & \text { Mt Hotham, VIC. } 12 / \mathrm{Mar} / 2005 \\ & 37^{\circ} 00^{\prime} \mathrm{S} 147^{\circ} 10^{\prime} \mathrm{E} \end{aligned}$	PD 1	RALA
O. latialis	δ	Lake Catani Mt Buffalo, VIC. 11/Mar/2005 $36^{\circ} 15^{\prime} \mathrm{S}_{146^{\circ}}{ }^{\circ} 9^{\prime} \mathrm{E}$	PD 11	RALA
O. latialis	\%	Lake Catani, Mt Buffalo, VIC. 7/Mar/1971 $36^{\circ} 15^{\prime} \mathrm{S} 146^{\circ} 39^{\prime} \mathrm{E}$	CYD 2-5	ANIC
O. latialis	¢	Tinderry Nature Reserve NSW 1/Apr/2005 $35^{\circ} 44^{\prime} \mathrm{S} 149^{\circ} 16^{\prime}$ E ALT $\sim 1260 \mathrm{~m}$	$\begin{aligned} & \text { PD 1 } \\ & \text { MF8-OOP600 } \end{aligned}$	MFB
O. latialis	δ	Tinderry Nature Reserve NSW 1/Apr/2005 $35^{\circ} 44^{\prime}$ S $149^{\circ} 16^{\prime}$ E ALT $\sim 1260 \mathrm{~m}$	$\begin{aligned} & \text { PD } 2 \\ & \text { MF8-OO-P599 } \end{aligned}$	MFB
O. orichora	안	Tallaganda N.P. NSW 6km E. Captain's Flat 19/Dec/2005 $35^{\circ} 36^{\prime}$ S $149^{\circ} 9^{\prime}$ E ALT $\sim 1200 \mathrm{~m}$	PD AA 134	MFB
O. orichora	δ	Liawenee Turning Circle 03/Jan/2002 $41.625 \mathrm{~S} 146.735 \mathrm{E} 1 \mathrm{ALT} \sim 1060 \mathrm{~m}$	$\begin{aligned} & \hline \text { CYD } 2- \\ & \text { OO LTC } 3 \end{aligned}$	RALA
O. orichora	δ	Lake Augusta Road, Liawenee 03/Jan/2002 41.899S 146.629 E ALT $\sim 1080 \mathrm{~m}$	CYD 3-1 LAR 1	RALA
O. orichora	δ	Canal Drive Liawenee 03/Jan/2002 41.908S 146.623E ALT $\sim 1040 \mathrm{~m}$	$\begin{aligned} & \text { CYD 3-4 } \\ & \text { OO CDl } \end{aligned}$	RALA
O. orichora	δ	Liawenee Turning Circle 03/Jan/2002 41.625 S 146.735 E ALT $\sim 1060 \mathrm{~m}$	$\begin{aligned} & \text { CYD 3-6 } \\ & \text { OO LTC1 } \end{aligned}$	RALA
O. orichora	δ	Canal Drive Liawenee 03/Jan/2002 41.908 S 146.623 E ALT $\sim 1040 \mathrm{~m}$	OOCD 3	RALA

O. orichora	δ^{*}	Canal Drive Liawence 03/Jan/02002 41.908S 146.623E ALT $\sim 1040 \mathrm{~m}$	OO LAR 2	RALA
O. orichora	\%	Liawenee Turning Circle 03/Jan/2002 41.625S 146.735E ALT ~1060m	OO LTC 2	RALA
O. orichora	q	Canal Drive Liawenee 03/Jan/2002 41.908S 146.623 E ALT $\sim 1040 \mathrm{~m}$	$\begin{aligned} & \hline \text { PD } 10 \\ & \text { OO CD A } \end{aligned}$	RALA
O. orichora	안	Canal Drive Liawenee 03/Jan/2002 41.908S 146.623E ALT $\sim 1040 \mathrm{~m}$	$\begin{aligned} & \hline \text { PD } 9 \\ & \text { OO CD } 1 \\ & \hline \end{aligned}$	RALA
O. orichora	σ^{*}	Pine Lake 04/Jan/2002 41.758S 146.698E ALT $\sim 1200 \mathrm{~m}$	$\begin{aligned} & \text { CYD 3-3 } \\ & \text { OO PL1 } \end{aligned}$	RALA
O. orichora	δ	Pine Lake 04/Jan/2002 41.758 S 146.698 E ALT $\sim 1200 \mathrm{~m}$	OO PL 2+3	RALA
O. orichora	σ^{*}	Lake Augusta Road, Liawenee 03/Jan/2001 41.899S 146.629E ALT~1080m	CYD 2OO LAR 3	RALA
O. ptunarra	안	Pike's Hill TAS 23/Mar/2002 42.373S 147.354E	PD 4	RALA
O. ptunarra	δ	Pike's Hill TAS 23/Mar/2002 42.373S 147.354E	PD 4	RALA
V. kershawi	ㅇ	Forcett, TAS. 29 Nov 1973		R.J. Hardy /Newtown
V. kershawi	σ	Devonport, TAS. Stoney Rise car park 6 Aug 1992		L. Hill Newtown
V. kershawi	우	Glenlusk 29/Feb/2004 $42^{\circ}{ }^{\circ} 9^{\prime} \mathrm{S} 147^{\circ} 12^{\prime}$ E ALT~375	GDR2 - H	RALA
V. kershawi	δ	Newtown, TAS. 11 NOV 1952	CYD 2-3	W. Newport /Newtown

Collector*	
RALA	R.A.L Anderson
CJY	C.J. Young
Newtown	Held by DPIW Collection Newtown
McQ	P.B. McQuillan
ANIC	Australian National Insect Collection
MFB	M.F. Braby
McQ \& Ek	P.B. McQuillan \& C.J. Ek (1997)

Appendix 2 - List of specimens used in phylogenetic analysis and their province.

Specimen name	Code	Collection Details	Collection date
Argynnina hobartia	AH MtKW 1	Lyell Highway Plain opposite base of Mt King William	8/Nov/03
Argynnina hobartia	AH MtKW 2	Lyell Highway Plain opposite base of Mt King William	8/Nov/03
Argynnina hobartia	AH MtKW 3	Lyell Highway Plain opposite base of Mt King William	8/Nov/03
Argynnina hobartia	AH MtKW 4	Lyell Highway Plain opposite base of Mt King William	8/Nov/03
Geitoneura klugii	KG GLEN 1	Glenlusk	5/Jan/05
Geitoneura klugii	KG GLEN 2	Glenlusk	5/Jan/05
Heteronympha cordace	BEB Liffey 1	Plain off Lake Highway Liffey	6/Jan/03
Heteronympha cordace	BEB Liffey 2	Plain off Lake Highway Liffey	6/Jan/03
Heteronympha cordace	BEB MtKW 1	Lyell Highway Mt King William base	31/Jan/02
Heteronympha cordace	BEB MtKW 1	Lyell Highway Mt King William base	31/Jan/02
Heteronympha cordace	BEB PP 1	Paradise Plain	5/Jan/01
Heteronympha cordace	BEB PP 2	Paradise Plain	5/Jan/01
Heteronympha cordace	BEB PP 3	Paradise Plain	5/Jan/01
Heteronympha merope	CBGLEN1(CB7)	Glenlusk	5/Jan/05
Heteronympha merope	CBWeyl(CB1)	Weymouth	9/Jan/05
Heteronympha merope	CBWey2(CB2)	Weymouth	9/Jan/05
Heteronympha merope	CBWey3(CB6)	Weymouth	9/Jan/05
Heteronympha merope	CBWW 1 (CB3)	Water Works	12/Jan/05
Heteronympha merope	CBWW2(CB4)	Water Works	12/Jan/05
Heteronympha merope	CBWW3(CB5)	Water Works	12/Jan/05
Heteronympha penelope	SB GLEN 1	Glenlusk	5/Jan/05
Heteronympha penelope	SB GLEN 2	Glenlusk	5/Jan/05
Nesoxenica leprea	NX BBPJ 1	Big Bend Projection Bluff	3/Jan/04
Nesoxenica leprea	NX BBPJ 2	Big Bend Projection Bluff	3/Jan/04
Nesoxenica leprea	NX HTZ 1	Hartz Mt road below walkers registration	12/Feb/01
Nesoxenica leprea	NX HTZ 2	Hartz Mt road below walkers registration	12/Feb/01
Nesoxenica leprea	NX MtKW 1	Lyell Highway Mt King William base	31/Jan/02
Nesoxenica leprea	NX MtKW 2	Lyell Highway Mt King William base	31/Jan/02
Nesoxenica leprea	NX MtKW 3	Lyell Highway Mt King William base	31/Jan/02
Nesoxenica leprea	NX MtKW 3	Lyell Highway Mt King William base	31/Jan/02
Nesoxenica leprea	NX RCCP 1	Ronny Creek Car park - Dove Lake Cradle Mt	7/Jan/03
Nesoxenica leprea	NX RCCP 2	Ronny Creek Car park - Dove Lake Cradle Mt	7/Jan/03
Oreixenica corrieae	OC LmtV 1	Lake Mt Victoria	11/March/05
Oreixenica corrieae	OC LmtV 7	Lake Mt Victoria	11/March/05
Oreixenica corrieae	OC MtDBV 1	Mt Donna Buang Victoria	10/March/05
Oreixenica corrieae	OC MtDBV 2	Mt Donna Buang Victoria	10/March/05
Oreixenica corrieae	OCMtDBV 2A	Mt Donna Buang Victoria	10/March/05
Oreixenica corrieae	OC MtDBV 3	Mt Donna Buang Victoria	10/March/05
Oreixenica kershawi	OK MtDBV 1	Mt Donna Buang Victoria	10/March/05
Oreixenica kershawi	OK MtDBV 2	Mt Donna Buang Victoria	10/March/05
Oreixenica kershawi	OK MtDBV 3	Mt Donna Buang Victoria	10/March/05
Oreixenica kershawi	OK MtDBV 4	Mt Donna Buang Victoria	10/March/05
Oreixenica kershawi	OK MtDBV 5	Mt Donna Buang Victoria	10/March/05
Oreixenica kershawi	OK MtDBV 6	Mt Donna Buang Victoria	10/March/05
Oreixenica lathoniella	OLCD 1	Canal Drive Liawenee Moore	28/Feb/06
Oreixenica lathoniella	OLCD 2	Canal Drive Liawenee Moore	28/Feb/06
Oreixenica lathoniella	OL DIR 1	Dennistoun Road Interlaken	23/March/02
Oreixenica lathoniella	OL DIR 2	Dennistoun Road Interlaken	23/March/02
Oreixenica lathoniella	OL DIR 3	Dennistoun Road Interlaken	23/March/02

Appendices

Specimen name	Code	Collection Details	Collection date
Oreixenica lathoniella	OL DIR 4	Dennistoun Road Interlaken	23/March/02
Oreixenica lathoniella	OL DIR 5	Dennistoun Road Interlaken	23/March/02
Oreixenica lathoniella	OL LAR 5	Lake Augusta Road Liawenee	28/Feb/06
Oreixenica lathoniella	OL LAR 6	Lake Augusta Road Liawenee	28/Feb/06
Oreixenica lathoniella	OL LAR 7	Lake Augusta Road Liawenee	28/Feb/06
Oreixenica lathoniella	OL LAR 8	Lake Augusta Road Liawenee	28/Feb/06
Oreixenica lathoniella	OL MtWel 1	Springs Mt Wellington	6/March/01
Oreixenica lathoniella	OL MtWel 1	Springs Mt Wellington	6/March/01
Oreixenica lathoniella	OL TT 1	Tunbridge Tiers	15/March/03
Oreixenica lathoniella	OL TT 2	Tunbridge Tiers	15/March/03
Oreixenica lathoniella	OL TT76	Tunbridge Tiers Power Pole 76	14/March/03
Oreixenica lathoniella	OL TT76 1	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica lathoniella	OL TT762	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica lathoniella	OL TT76 3	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica latialis	OLA MtBuf 1	Mt Buffalo Victoria	12/March/05
Oreixenica latialis	OLA MtBuf 2	Mt Buffalo Victoria	12/March/05
Oreixenica latialis	OLA MtBuf 3	Mt Buffalo Victoria	12/March/05
Oreixenica latialis	OLA MtHoth	Mt Hotham Victoria	13/March/05
Oreixenica orichora	OO CDFF 1	Canal Drive Flying Fox Liawenee	5/Jan/03
Oreixenica orichora	OO CDFF 2	Canal Drive Flying Fox Liawenee	5/Jan/03
Oreixenica orichora	OOCDFF3(002)	Canal Drive Flying Fox Liawenee	5/Jan/03
Oreixenica orichora	OO FHM 1	Farm House Marsh Miena	5/Jan/03
Oreixenica orichora	OO FHM 2	Farm House Marsh Miena	5/Jan/03
Oreixenica orichora	OO LAR 1	Lake Augusta Road Liawenee	5/Jan/03
Oreixenica orichora	OO LAR 2	Lake Augusta Road Liawenee	5/Jan/03
Oreixenica orichora	OOLAR3(001)	Lake Augusta Road Liawenee	5/Jan/03
Oreixenica orichora	OO ORB 1	Ouse River Bridge Miena	5/Jan/03
Oreixenica orichora	OO ORB 2	Ouse River Bridge Miena	5/Jan/03
Oreixenica orichora	OOORB3(OO4)	Ouse River Bridge Miena	5/Jan/03
Oreixenica orichora	OO PLB 1	Pine Lake Base Northern End	6/Jan/03
Oreixenica orichora	OO PLB 2	Pine Lake Base Northern End	6/Jan/03
Oreixenica orichora	OOPLB3(003)	Pine Lake Base Northern End	6/Jan/03
Oreixenica orichora	OO RCCP 1	Ronny Creek Car park Dove Lake Road Cradle Mt	7/Jan/03
Oreixenica orichora	OO RCCP 2	Ronny Creek Car park Dove Lake Road Cradle Mt	7/Jan/03
Oreixenica orichora	OORCCP3(005)	Ronny Creek Car park Dove Lake Road Cradle Mt	7/Jan/03
Oreixenica ptunarra	OP BTS 1	Barron Tier South	18/March/06
Oreixenica ptunarra	OP BTS 2	Barron Tier South	18/March/06
Oreixenica ptunarra	OP BTS 3	Barron Tier South	18/March/06
Oreixenica ptunarra	OP BTS 4	Barron Tier South	18/March/06
Oreixenica ptunarra	OP BTTC 1	Barron Tier Tods Comer	18/March/06
Oreixenica ptunarra	OP BTTC 2	Barron Tier Tods Corner	18/March/06
Oreixenica ptunarra	OP BTTC 3	Barron Tier Tods Corner	18/March/06
Oreixenica ptunarra	OP BTTC 4	Barron Tier Tods Comer	18/March/06
Oreixenica ptunarra	OP Bel 1	Bellevue Hill Anthill Ponds	25/March/05
Oreixenica ptunarra	OP Bel 2	Bellevue Hill Anthill Ponds	25/March/05
Oreixenica ptunarra	OP Bel 3	Bellevue Hill Anthill Ponds	25/March/05
Oreixenica ptunarra	OP Bel 4	Bellevue Hill Anthill Ponds	25/March/05
Oreixenica ptunarra	OP BPJ 1	Bronte Park Junction	21/March/06
Oreixenica ptunarra	OP BPJ 2	Bronte Park Junction	21/March/06
Oreixenica ptunarra	OP BPJ 3	Bronte Park Junction	21/March/06
Oreixenica ptunarra	OP BPJ 4	Bronte Park Junction	21/March/06
Oreixenica ptunarra	OP DM 1	Dairy Maids Plain NW	21/March/04
Oreixenica ptunarra	OP DM 2	Dairy Maids Plain NW	21/March/04
Oreixenica ptunarra	OP DM 3	Dairy Maids Plain NW	21/March/04
Oreixenica ptunarra	OP DM 4	Dairy Maids Plain NW	21/March/04
Oreixenica ptunarra	OP Flag 5	Flagstaff Marsh (unburnt side)	22/March/06
Oreixenica ptunarra	OP Flag 6	Flagstaff Marsh (unburnt side)	22/March/06

Specimen name	Code	Collection Details	Collection date
Oreixenica ptunarra	OP Flag 7	Flagstaff Marsh (unburnt side)	22/March/06
Oreixenica ptunarra	OP Flag 8	Flagstaff Marsh (unburnt side)	22/March/06
Oreixenica ptunarra	OP HAT 1	Hatfield Plain NW	21/March/04
Oreixenica ptunarra	OP HAT 2	Hatfield Plain NW	21/March/04
Oreixenica ptunarra	OP HAT 3	Hatfield Plain NW	21/March/04
Oreixenica ptunarra	OP HAT 4	Hatfield Plain NW	21/March/04
Oreixenica ptunarra	OP LC 1	Lake Crescent Interlaken	10/March/05
Oreixenica ptunarra	OP LC 10	Lake Crescent Interlaken	10/March/05
Oreixenica ptunarra	OP LC 2	Lake Crescent Interlaken	10/March/05
Oreixenica ptunarra	OP LC 7	Lake Crescent Interlaken	10/March/05
Oreixenica ptunarra	OP LC 8	Lake Crescent Interlaken	10/March/05
Oreixenica ptunarra	OP LC 9	Lake Crescent Interlaken	10/March/05
Oreixenica ptunarra	OP LMLE 1	Liawenee Moor Liawenee End	21/March/06
Oreixenica ptunarra	OP LMLE 2	Liawence Moor Liawenee End	21/March/06
Oreixenica ptunarra	OP LMLE 3	Liawenee Moor Liawenee End	21/March/06
Oreixenica ptunarra	OP LMLE 4	Liawenee Moor Liawenee End	21/March/06
Oreixenica ptunarra	OP LMMS 1	Liawenee Moor Middle South	21/March/06
Oreixenica ptunarra	OP LMMS 2	Liawenee Moor Middle South	21/March/06
Oreixenica ptunarra	OP LMMS 3	Liawenee Moor Middle South	21/March/06
Oreixenica ptunarra	OP LMMS 4	Liawenee Moor Middle South	21/March/06
Oreixenica ptunarra	OP LMME 1	Liawenee Moor Miena End	21/March/06
Oreixenica ptunarra	OP LMME 2	Liawenee Moor Miena End	21/March/06
Oreixenica ptunarra	OP LMME 3	Liawenee Moor Miena End	21/March/06
Oreixenica ptunarra	OP LMME 4	Liawenee Moor Miena End	21/March/06
Oreixenica ptunarra	OP LiaweneeTC 1	Liawenee Turning Circle	29/Feb/00
Oreixenica ptunarra	OPLiaweneeTC2	Liawenee Turning Circle	29/Feb/00
Oreixenica ptunarra	OPLiaweneeTC3	Liawenee Turning Circle	29/Feb/00
Oreixenica ptunarra	OP LiaweneeTC4	Liawenee Turning Circle	29/Feb/00
Oreixenica ptunarra	OP LCT 1	Little China Tier Andover	25/March/05
Oreixenica ptunarra	OP LCT 2	Little China Tier Andover	25/March/05
Oreixenica ptunarra	OP LCT 3	Little China Tier Andover	25/March/05
Oreixenica ptunarra	OP LCT 4	Little China Tier Andover	23/March/02
Oreixenica ptunarra	OP LCT 5	Little China Tier Andover	23/March/02
Oreixenica ptunarra	OP LCT 6	Little China Tier Andover	23/March/02
Oreixenica ptunarra	OP LPLB 1	Little Pine Lagoon Boat ramp	21/March/06
Oreixenica ptunarra	OP LPLB 2	Little Pine Lagoon Boat ramp	21/March/06
Oreixenica ptunarra	OP LPLB 3	Little Pine Lagoon Boat ramp	21/March/06
Oreixenica ptunarra	OP LPLB 4	Little Pine Lagoon Boat ramp	21/March/06
Oreixenica ptunarra	OP Long 5	Long Marsh	22/March/06
Oreixenica ptunarra	OP Long 6	Long Marsh	22/March/06
Oreixenica ptunarra	OP Long 7	Long Marsh	22/March/06
Oreixenica ptunarra	OP Long 8	Long Marsh	22/March/06
Oreixenica ptunarra	OP MH 1	Marlborough Highway (11 km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP MH2	Marlborough Highway (11 km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP MH 3	Marlborough Highway (11km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP MH 4	Marlborough Highway (11km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP MR 1	Morey Road NW Plains	22/March/04
Oreixenica ptunarra	OP MR 2	Morey Road NW Plains	22/March/04
Oreixenica ptunarra	OP MR 3	Morey Road NW Plains	22/March/04
Oreixenica ptunarra	OP MR 4	Morey Road NW Plains	22/March/04
Oreixenica ptunarra	OP NB 1	North Bronte (5 km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP NB 2	North Bronte (5km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP NB 3	North Bronte (5km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP NB 4	North Bronte (5km North Bronte Park)	21/March/06
Oreixenica ptunarra	OP ORB 1	Ouse River Bridge Miena	21/Jan/03
Oreixenica ptunarra	OP ORB 2	Ouse River Bridge Miena	21/Jan/03
Oreixenica ptunarra	OP ORB 3	Ouse River Bridge Miena	21/Jan/03

Appendices

Specimen name	Code	Collection Details	Collection date
Oreixenica ptunarra	OP ORB 4	Ouse River Bridge Miena	21/Jan/03
Oreixenica ptunarra	OP PPFE 1	Peak Plain Far End NW	21/March/04
Oreixenica ptunarra	OP PPFE 2	Peak Plain Far End NW	21/March/04
Oreixenica ptunarra	OP PPFE 3	Peak Plain Far End NW	21/March/04
Oreixenica ptunarra	OP PPFE 4	Peak Plain Far End NW	21/March/04
Oreixenica ptunarra	OP PPS1 1	Peak Plain Side 1 NW	21/March/04
Oreixenica ptunarra	OP PPS12	Peak Plain Side 1 NW	21/March/04
Oreixenica ptunarra	OP PPSI 3	Peak Plain Side 1 NW	21/March/04
Oreixenica ptunarra	OP PPS 14	Peak Plain Side 1 NW	21/March/04
Oreixenica ptunarra	OP PPS2 1	Peak Plain Side 2 NW	21/March/04
Oreixenica ptunarra	OP PPS2 2	Peak Plain Side 2 NW	21/March/04
Oreixenica ptunarra	OP PPS2 3	Peak Plain Side 2 NW	21/March/04
Oreixenica ptunarra	OP PPS2 4	Peak Plain Side 2 NW	21/March/04
Oreixenica ptunarra	OP PH 1	Pikes Hill	25/March/05
Oreixenica ptunarra	OP PH 2	Pikes Hill	25/March/05
Oreixenica ptunarra	OP PH 3	Pikes Hill	23/March/02
Oreixenica ptunarra	OP PH 4	Pikes Hill	23/March/02
Oreixenica ptunarra	OP PH 5	Pikes Hill	23/March/02
Oreixenica ptunarra	OP PTD 1	Pine Tier Dam Road	21/March/06
Oreixenica ptunarra	OP PTD 2	Pine Tier Dam Road	21/March/06
Oreixenica ptunarra	OP PTD 3	Pine Tier Dam Road	21/March/06
Oreixenica ptunarra	OP PTD 4	Pine Tier Dam Road	21/March/06
Oreixenica ptunarra	OP RC 1	Race Course Plain NW	20/March/04
Oreixenica ptunarra	OP RC 2	Race Course Plain NW	20/March/04
Oreixenica ptunarra	OP Rerk 1	Ripple Creek Lake Highway	18/March/06
Oreixenica ptunarra	OP Rcrk 2	Ripple Creek Lake Highway	18/March/06
Oreixenica ptunarra	OP Rerk 3	Ripple Creek Lake Highway	18/March/06
Oreixenica ptunarra	OP Rcrk 4	Ripple Creek Lake Highway	18/March/06
Oreixenica ptunarra	OP SH 1	Shannon River	18/March/06
Oreixenica ptunarra	OP SH 2	Shannon River	18/March/06
Oreixenica ptunarra	OP SH 3	Shannon River	18/March/06
Oreixenica ptunarra	OP SH 4	Shannon River	18/March/06
Oreixenica ptunarra	OP StPat 1	St Patrick's Plain (Church / Hall End)	10/March/05
Oreixenica ptunarra	OP StPat 2	St Patrick's Plain (Church / Hall End)	10/March/05
Oreixenica ptunarra	OP StPat 3	St Patrick's Plain (Church / Hall End)	10/March/05
Oreixenica ptunarra	OP StPat 4	St Patrick's Plain (Church / Hall End)	10/March/05
Oreixenica ptunarra	OP StPatME 1	St Patrick's Plain (Miena End)	18/March/06
Oreixenica ptunarra	OP StPatME 2	St Patrick's Plain (Miena End)	18/March/06
Oreixenica ptunarra	OP StPatME 3	St Patrick's Plain (Miena End)	18/March/06
Oreixenica ptunarra	OP StPatME 4	St Patrick's Plain (Miena End)	18/March/06
Oreixenica ptunarra	OP SHH 1	Steppes Highway Hill	10/March/05
Oreixenica ptunarra	OP SHH 2	Steppes Highway Hill	10/March/05
Oreixenica ptunarra	OP SHH 3	Steppes Highway Hill	10/March/05
Oreixenica ptunarra	OP SHH 4	Steppes Highway Hill	10/March/05
Oreixenica ptunarra	OP SGR 5	Stony Gully Road	22March/06
Oreixenica ptunarra	OP SGR 6	Stony Gully Road	22March/06
Oreixenica ptunarra	OP SGR 7	Stony Gully Road	22March/06
Oreixenica ptunarra	OP SGR 8	Stony Gully Road	22March/06
Oreixenica ptunarra	OP TT59 1	Tunbridge Tiers Power Pole 59	10/March/05
Oreixenica ptunarra	OP TT592	Tunbridge Tiers Power Pole 59	10/March/05
Oreixenica ptunarra	OP TT592	Tunbridge Tiers Power Pole 59	10/March/05
Oreixenica ptunarra	OP TT594	Tunbridge Tiers Power Pole 59	10/March/05
Oreixenica ptunarra	OP TT76 1	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica ptunarra	OP TT76 la	Tunbridge Tiers Power Pole 76	14/March/03
Oreixenica ptunarra	OP TT762	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica ptunarra	OP TT762a	Tunbridge Tiers Power Pole 76	14/March/03
Oreixenica ptunarra	OP TT76 3	Tunbridge Tiers Power Pole 76	23/March/02

Specimen name	Code	Collection Details	Collection date
Oreixenica ptunarra	OP TT764	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica ptunarra	OP TT76 5	Tunbridge Tiers Power Pole 76	23/March/02
Oreixenica ptunarra	OP TT76 6	Tunbridge Tiers Power Pole 76	10/March/05
Oreixenica ptunarra	OP TT76 7	Tunbridge Tiers Power Pole 76	10/March/05
Oreixenica ptunarra	OP WSC 1	Weather Station Corner, Surry Hills NW	21/March/04
Oreixenica ptunarra	OP WSC 2	Weather Station Corner, Surry Hills NW	21/March/04
Oreixenica ptunarra	OP WSC 3	Weather Station Corner, Surry Hills NW	21/March/04
Oreixenica ptunarra	OP WSC 4	Weather Station Corner, Surry Hills NW	21/March/04
Junonia villida	MA GLEN 1	Glenlusk	5/Jan/05
Junonia villida	MA GLEN 2	Glenlusk	5/Jan/05
Junonia villida	MA GLEN 3	Glenlusk	5/Jan/05
Junonia villida	MAPH 1	Pikes Hill	23/March/05
Vanessa kershawi	APL MtBuff	Mt Buffalo Victoria	12/March/05
Vanessa kershawi	APL MtHoth	Mt Hotham Victoria	13/March/05

Appendix 3 -Field Site Descriptions

A3.1. Location of Tasmanian Field Sites

A3.1.1. Overview of Tasmanian Field Sites
(

A3.1.2. Overview of Tasmanian Field Sites

A3.1.3. Detail of Tunbridge Tiers and Interlaken Field Sites

A3.1.4. Detail of Lake Highway Field Sites

$\begin{aligned} & \text { o } \\ & \stackrel{\text { O}}{0} \\ & \end{aligned}$	460000	470000	480000	490000	500000
			t	$+$	$+$
$\begin{aligned} & \text { o } \\ & \text { ơ0 } \end{aligned}$		4			+
$\begin{aligned} & 8 \\ & \mathbf{C}_{0} \\ & \text { - } \end{aligned}$					
$\left.\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 0 \\ & \hline \end{aligned} \right\rvert\,$					
	$\begin{array}{lllll}106000 & 470000 & 480000 & 490000 & 500000\end{array}$				
		0	10	Kilome	
	Liffey (Bernes Paddocks) Barren Tier South Pine Lake Barren Tier Ripple Creek Big Bend Projection Bluff Shannon River Liawenee Moor, Liawenee end St Patrick's Plain, Church end Liawenee Moor, Miena end St Patrick's Plain, Miena end Liawenee Moor, middle Steppes Highway Hill Liawenee Turning Circle Steppes Sculptures				
	\triangle Liawenee				
	\triangle Miena				
	N Lake Highway				
	Marlborough Highway				
	N Rivers and Water Bodies				
	N100				

A3.1.5. Detail of Marlborough Highway Field Sites

A3.1.6. Detail of Eastcoast Field Sites

A3.1.7. Detail of Hobart Region Field Sites

A3.1.8. Detail of North West Field Sites

A3.1.9. Detail of Odd Tasmanian Field Sites

A3.2. Midlands Field Sites

A3.2.1. Bellevue Hill

Collection ID	Bel		ins of the Halfway Hotel tudy site is 1 km from
$\begin{aligned} & \text { UTM Zone } 55 \\ & \text { GDA } 94 \end{aligned}$	easting	northing	
	533200	5328200	
Elevation (metres)	370		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Vincents	5232	
Directions	Walk across the paddock from the ruins of the Halfway Hotel and Antill Ponds Railway Station. Study site is 1 km from Midland Highway.		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei P. sieberiana		
Dominant Nectar Source	Cirsium sp (thistles), Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions), Ulex europaeus (gorse)		
Overall Habitat Quality	Satisfactory to Good		
Description	Q Extensive area of tussock grassland with good numbers of O. ptunarra. Greatest numbers in areas with steep southeast aspect and high tussock cover. Δ Westerly-facing, dry, exposed, open treeless hillside. Δ Dominant use grazing sheep and cattle \& Poa medium sized, shows signs of being cropped. Δ Moderate ground cover of soft herb species between the tussocks. © Surround area, open grazing county with very light tree cover and improved pasture.		

Plate 10 Bellevue Hill, view to north from edge of site

Plate 11 Bellevue Hill, view to northeast from edge of site

Plate 12 Bellevue Hill, view to northwest from edge of site

A3.2.2. Bowsden Gullies - Mudwalls Road

Collection ID	BG		
$\begin{aligned} & \text { UTM Zone } 55 \\ & \text { GDA } 94 \end{aligned}$	easting	northing	
	526500	5306500	
Elevation (metres)	450		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Stonor	5230	
Directions	500 metres along Mudwalls Rd from Midland Highway. Walk across paddock from first gate and up through gully to plateau		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	No obvious nectar sources present		
Overall Habitat Quality	Satisfactory		
Description	Δ Tussock through this area is scattered yet O. ptunarra are observable under good conditions. \star Dry, open area with very light tree cover, hillside and plateau; north-westerly aspect. \diamond Dominant use grazing sheep. © Poa medium sized, shows signs of being cropped. \& Poa density ranges from low to high. Δ Moderate ground cover of soft herb species between tussocks. Δ Surrounding area wooded patches and open grazing county.		

Plate 13 Bowsden Gullies, view to east from edge of plateau

Plate 14 Bowsden Gullies, view to north from edge of plateau

A3.2.3. Little China Tier

Collection ID	LTC	
UTM Zone 55		
GDA 94		

Plate 17360° views from Little China Tier Study Site

A3.2.4. Muddy Plains Road

Collection ID	MPR		
UTM Zone 55 GDA 94	easting	northing	
	515500	5302500	
Elevation (metres)			
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Bothwell	5030	
Directions	5 km along the Muddy Plains Road from the Midland Highway		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Cirsium sp (thistles)		
Overall Habitat Quality	Outstanding		
Description	Extensive tussock grassland on hillside with north-easterly aspect; dry, open and treeless, with a very high Poa density. * Poa large and healthy with a good ground cover of soft herb species between the tussocks. Δ Dominant use grazing sheep. © Surrounding area open treeless grazing county. © O. ptunarra widespread in the area, extending upslope, not quite to the ridgeline. In higher numbers to north of fence line where grazing pressure is lower. Δ Muddy Plains Road southern boundary of O. ptunarra habitat range.		
Plate 18 Muddy Pl	ins Road, view to	ards the west fro	Muddy Plains Road

A3.2.5. Pikes Hill

A3.2.5.1. Unburnt Area

Collection ID	PH		
UTM Zone 55GDA 94	easting	northing	
	529300	5308300	
Elevation (metres)	470		M
1:25000 TAS Map	Sheet Name	Map Sheet \#	min
	Stonor	5230	
Directions	2.5 km along Stonor Road from Midland Highway		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei P. sieberiana		
Dominant Nectar Source	Cirsium sp (thistles), Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions), Acacia mearnsii (black wattle), Ulex europaeus (gorse)		
Overall Habitat Quality	Satisfactory to poor		
Description	* O. ptunarra readily observed here. 4 Extensive area of moderately hard grazed tussock. Δ Comparatively flat paddock with rising hillside; northeast to northerly aspect. Δ Open, treeless area, with a low density of medium to large Poa showing signs of being cropped by grazing. Δ Moderate ground cover of soft herb species including clover between the tussocks. Dominant use sheep grazing. © Surrounding country open, treeless grazing paddocks, mainly improved pasture and Lomandra.		
Plate 19 Pikes Hill Study Site, fro	top of Pikes Hill	Plate 20 Pik	Il Study Site, Poa detail

A3.2.5.2. Burnt Area

Plate 21 Pikes Hill, view towards south-west into burnt area from edge of unburnt area

Plate 22 Pikes Hill, view to the south from Stonor Road

A3.2.6. Spring Hill

Collection ID	SpH	
UTM Zone 55		
GDA 94		

A3.2.7. St Peters Pass

Collection ID	StPP		
UTM Zone 55GDA 94	easting	northing	
	53300	532110	
Elevation (metres)	425		
	Sheet Name	Map Sheet \#	
	Vincents	5232	
Directions	Opposite the St. Peters Pass Rest / Picnic Area		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei, P. sieberiana		
Dominant Nectar Source	Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Poor		
Description	© Dry, open, treeless hillside; easterly aspect. Δ Dominant use grazing sheep \& Poa is scrappy, small to medium in size; sparse ground cover of soft herb species between tussocks. Q Lightly wooded areas and open grazing county surround the site. © O. ptunarra was not seen flying at this site.		
Plate 25 St Peters Pass, view towest from Midland Highway			

A3.3. Tunbridge Tiers and Interlaken Field Sites

A3.3.1. Tunbridge Tiers

Collection ID	TT		3 5
UTM Zone 55GDA 94	easting	northing	
	518500	5336000	
Elevation (metres)	890		
	Sheet Name	Map Sheet \#	
	Interlaken	5033	
Directions	6 km northeast of Interlaken on road to Tunbridge		
Dominant butterfly species	O. lathoniella, O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Acacia dealbata (silver wattle), Cirsium $s p$ (thistles) Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions), Cyathodes sp. (mountain berries), Helichrysum sp. (native daisies) and Wahlenbergia stricta (native blue bells)		
Overall Habitat Quality	Satisfactory to Good		
Description	\# Small manually cleared area, on northeast facing slope. Poa medium in size and scrappy. © No evidence of domestic animal grazing.		
Plate 26 Tunbridge Tiers, view to east from Tunbridge Road			

A3.3.2. Tunbridge Tiers - Power Pole 59

Collection ID	TT59		
$\begin{aligned} & \text { UTM Zone } 55 \\ & \text { GDA } 94 \end{aligned}$	easting	northing	
	518300	5334700	
Elevation (metres)	860		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Interlaken	5033	
Directions	Northeast of Interlaken on road to Tunbridge area between power poles 59 and 60		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Cirsium sp (thistles) Taraxacum sp., Leontodon sp. \& Hypochoeris $s p$ (dandelions)		
Overall Habitat Quality	Satisfactory		
Description	© Eucalyptus rodwayi grassy woodland. Δ Roadside verge - open forest with good grass cover. Δ O. ptunarra widespread in the area. © Poa small to medium in size, well cropped by marsupial grazing. © No evidence of domestic animal grazing.		

Plate 27 Tunbridge Tiers Power Pole 59, view to west from Tunbridge Tier Road

A3.3.3. Tunbridge Tiers - Power Pole 76

Collection ID	TT76		
UTM Zone 55 GDA 94	easting	northing	
	519700	5336000	
Elevation (metres)	885		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Interlaken	5033	
Directions	Northeast of Interlaken on road to Tunbridge area near power poles 76.		
Dominant butterfly species	O. lathoniella, O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Cirsium sp (thistles) Taraxacum sp., Leontodon sp. \& Hypochoeris $s p$ (dandelions)		
Overall Habitat Quality	Satisfactory		
Description	Δ Eucalyptus rodwayi grassy woodland. Δ Roadside verge - open forest with good grass cover. © O. ptunarra widespread in the area. - Poa medium to large in size, well cropped by marsupial grazing. N No evidence of domestic animal grazing.		

Plate 28 Tunbridge Tiers Power Pole 76, view to east from Tunbridge Tier Road

A3.3.4. Dennistoun Road, Interlaken

Collection ID	DIR		$\}$
UTM Zone 55 GDA 94	easting	northing	
	511300	5333500	
Elevation (metres)	815		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Interlaken	5033	
Directions	1 km south of Interlaken on the Dennistoun Road. Style across fence.		
Dominant butterfly species	O. lathoniella, O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Leontodon sp. \& Hypochoeris sp. (dandelions) and Helichrysum sp., (native daisies).		
Overall Habitat Quality	Good		
Description	Q Large, open, flat area surrounded by open woodland. Δ Dominant use sheep and cattle grazing. \& Poa moderate density, medium in size, individual tussocks short, stocky and cropped. * Sparse ground cover of grass and herb species between tussocks.		
Plate 29 Dennistoun Road, edge of site	ew to west from	Plate 30 Denni	Road, view to west from edge te following fire

A3.3.5. Lake Crescent, Interlaken

Collection ID	LC		1)
UTM Zone 55GDA 94	easting	northing	
	514000	5334400	
Elevation (metres)	810		
	Sheet Name	Map Sheet \#	
	Interlaken	5033	
Directions	Lake Crescent conservation area west of Interlaken on link road to Lake Highway		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Leontodon sp. \& Hypochoeris sp. (dandelions) and Helichrysum sp., (native daisies)		
Overall Habitat Quality	Good		
Description	L Large, open, flat area surrounded by open woodland. \& Poa moderate density, medium to large in size, some individual tussocks cropped by marsupial grazing. Δ Sparse ground cover of grass and herb species between tussocks.		

Plate 31 Lake Crescent, 180° view towards the south from east to west

Plate 32 Lake Crescent, view to southwest from road

Plate 33 Lake Crescent, view to south from road

A3.4. Lake Highway Field Sites

A3.4.1. Barren Tier (Tod's Corner Junction)

| Collection ID | BTTC |
| :---: | :--- | :--- |
| UTM Zone 55 | |
| GDA 94 | |\quad easting \quad northing

A3.4.2. Barren Tier South

Collection ID	BTS		3
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	482500	5349600	
Elevation (metres)	1040		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Wihareja	4834	
Directions	Lake Highway $\sim 5 \mathrm{~km}$ north of junction to Poatina (Barren Tier Holding Paddock)		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. hiemata and P. labillardierei		
Dominant Nectar Source	Leontodon sp. \& Hypochoeris sp. (dandelions) and Helichrysum sp., (native daisies)		
Overall Habitat Quality	Good		
Description	Large, open, flat area surrounded by open woodland. Poa moderate density, medium to large in size, some individual tussocks cropped by marsupial grazing. 3 Sparse ground cover of grass and herb species between tussocks.		

Plate 35 Barren Tier South, view to the north

A3.4.3. Big Bend Projection Bluff

Collection ID	BBPJ		3
UTM Zone 55 GDA 94	easting	northing	
	476500	5383100	
Elevation (metres)	940		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Quamby Bluff	4638	
Directions	$\sim 20 \mathrm{~km}$ north of Pine Lake (Lake Highway) $\sim 1 / 2$ way down mountain below lookouts Entrance to site straight ahead when driving down mountain road bends to right		
Dominant butterfly species	N. leprea		
Description	Δ Wet mixed sclerophyll forest © Uncinia tenella (larval food plant) grows along track edges		

Plate 36 Big Bend Projection Bluff, view to northwest

A3.4.4. Liawenee Moor, Liawenee end

Collection ID	LMLE
UTM Zone 55	
GDA 94	easting

Plate 37 Liawenee Moor Liawenee End, view to west from Lake Highway

Plate 38 Liawenee Moor Liawenee End, view to north from Lake Highway

Plate 39 Liawenee Moor Liawenee End, view to east from Lake Highway

A3.4.5. Liawenee Moor, middle

Collection ID	LM / LMMS	
UTM Zone 55		
GDA 94		

Plate 40 Liawenee Moor middle, view towards the east from Lake Highway

A3.4.6. Liawenee Moor, Miena end

Collection ID	LMME		
UTM Zone 55 GDA 94	easting	northing	
	473500	5354500	
Elevation (metres)	1030		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Miena	4635	
Directions	Access track to left Lake Highway $\sim 1.5 \mathrm{~km}$ north of Marlborough Highway junction		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. hiemata		
Dominant Nectar Source	Hypochoeris sp. Taraxacum sp. \& Leontodon sp.		
Overall Habitat Quality	Good		
Description	* Highland Richea acerosa \& Hakea macrocarpa grassy shrubland gently sloping to the west, with few plants exceeding 0.5 m in height. \star Dominant use grazing sheep. © Poa small tussocks, moderate density. Δ In protected areas there is a ground cover of small herbaceous species.		

Plate 41 Liawenee Moor, Miena end, view to north across moor from access track

A3.4.7. Liawenee Turning Circle

Collection ID	LTC		$\}$
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	473800	5362500	
Elevation (metres)	1060		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Split Rock	4636	
Directions	3 km north of Liawenee, turn to the left after cattle grid		
Dominant butterfly species	O. orichora, O. lathoniella, O. ptunarra		
Dominant Poa species	P. labillardierei P. hiemata		
Dominant Nectar Source	Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions) Helichrysum sp. (daisies)		
Overall Habitat Quality	Excellent to Outstanding		
Description	© Tract of flat, open alpine woodland. Poa, large, healthy, with good ground cover of soft herb species between tussocks. \& Surrounding area is alpine woodland and moor. Δ No evidence of domestic animal grazing; extensive evidence of marsupial grazing.		
Plate 42 Liawenee Turning Circle, view to north from Lake Highway			

A3.4.8. Liffey (Bernes Paddocks), plain off Lake Highway

Collection ID	LIF		\{
UTM Zone 55GDA 94	easting	northing	
	477500	5386700	
Elevation (metres)			
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Quamby Bluff	4638	
Directions	Paddock adjacent to Lake Highway at warning sign for turn off to Liffey Falls and Liffey		
Dominant butterfly species	H. cordace		
Description	Δ Cleared site of an old farm house Δ Well cropped marsupial grazed lawn		

A3.4.9. Pine Lake

| Collection ID |
| :---: | :---: | :---: |
| UTM Zone 55 |
| GDA 94 |\quad easting / PLB

Plate 44 Pine Lake, view towards east from top of ridge

A3.4.11. Ripple Creek

Plate 45 Ripple Creek, view towards the southwest from Lake Highway

A3.4.12. Shannon River

Collection ID	ShR		\} and Lake Highway, near
UTM Zone 55 GDA 94	easting	northing	
	477900	5352900	
Elevation (metres)	1000		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Miena	8635	
Directions	Verge between Shannon Lagoon and Lake Highway, near Shannon River		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei \& P. hiemata		
Dominant Nectar Source	Dracophyllum sp. (cushion plant), Helichrysum sp. (native daisies) and Richea - Pichea sprengelioidesa		
Overall Habitat Quality	Good		
Description	Q Sheltered grassy herbaceous plain beside lagoon		

Plate 47 Shannon River, view towards south

Plate 48 Shannon River, view towards north

A3.4.13. St Patrick's Plain, Church End

Collection ID	StPat	
UTM Zone 55		
GDA 94		

A3.4.14. St Patrick's Plain, Miena End

Plate 51 St Patrick's Plain Miena End, view towards the north

A3.4.15. Steppes Highway Hill

Collection ID	SHH		$\text { i\} }$
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	490500	5339500	
Elevation (metres)	880		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Steppes	4833	
Directions	Road side verge $\sim 1 \mathrm{~km}$ north of Steppes Homestead		
Dominant Poa species	P. hiemata		
Dominant butterfly species	O. ptunarra		
Dominant Nectar Source	Silybum marianum (variegated thistle) \& Onopordum acanthium (cotton thistle)		
Overall Habitat Quality	Average		
Description	\# Thick Hakea macrocarpa grassy shrubland - roadside verge. A Poa small in size. * Sporadic domestic animal grazing. © Dominant vegetation thick hakea.		
Plate 52 Steppes Highway Hill, view to the north			

A3.4.16. Steppes Sculptures

Collection ID	Step		$\}$
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	491100	5338900	
Elevation (metres)	850		
	Sheet Name	Map Sheet \#	
	Steppes	4833	
Directions	Steppes Sculpture Park, Lake Highway		
Dominant butterfly species	O. lathoniella, O. ptunarra		
Dominant Poa species	P. hiemata		
Dominant Nectar Source	Carthamus lanatus (saffron thistle), Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions), Cyathodes $s p$. (mountain berries), Helichrysum sp. (native daisies), and Wahlenbergia stricta (native Bluebell)		
Overall Habitat Quality	Excellent		
Description	Small, flat, enclosed area surrounded by eucalyptus forest. \star Dense patches of Cyathodes $s p$. within site. \& Poa healthy, small in size, froms ground cover and shows signs of marsupial grazing. \star Remaining ground cover between the Poa is herbaceous species.		

A3.5. Marlborough Highway Field Sites

A3.5.1. Bronte Park Junction

Collection ID	BPJ		
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	457500	5331500	
Elevation	680 metres		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Bronte	4433	
Directions	Junction of the Marlborough and Lyell Highways at turn-off to Bronte Park		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Astroloma humifusum (native cranberry)		
Overall Habitat Quality	Very Good		
Description	A Area of Hakea macrocarpa shrublands, Δ Tract of comparatively flat grassland, mixed with alpine shrubs. 3) Dominant use cattle grazing. \& Poa small, healthy with a moderate density froming ground cover in clear areas. Δ Good ground cover of other grassy and herbaceous species between tussocks. \# Surrounding area is alpine woodland and moor.		
Plate 54 Bronte Park Junction, view towards south-west from the corner of Lyell and Marlborough Highways			

A3.5.2. Canal Drive, Liawenee Moore

Collection ID	CD		$\}$
UTM Zone 55 GDA 94	easting	northing	
	469400	5360000	
Elevation (metres)	1040		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Split Rock	4636	
Directions	From Lake Augusta Road take left-hand fork at Y junction before boundary of Central Plateau Protected Area. Follow road down to Canal. Turn off down road to Ouse River.		
Dominant butterfly species	O. lathoniella, O. orichora, O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Helichrysum sp. (daisies), Cirsium sp. (thistles) Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Excellent		
Description	Δ Extensive, undulating, tract of open P. labillardierei montane tussock grassland mixed with Hakea macrocarpa grassy shrubland and Eucalyptus pauciflora grassy woodlands. * Poa large, luxuriant and healthy, very high density, with a good ground cover between tussocks. Δ Gentle slope westerly aspect. Δ Dominant use cattle grazing		
Plate 55 Can	Drive, view tow	ds northwest fro	Canal Drive

A3.5.3. Canal Drive Flying Fox, Liawenee

Plate 57 Canal Drive Flying Fox, lower marsh area

Plate 58 Canal Drive, top section view towards the southeast

A3.5.4. Farm House Marsh, Miena

Plate 59 Farm House Marsh, Miena, view towards the north

A3.5.5. Lake Augusta Road

Collection ID	LAR		
UTM Zone 55 GDA 94	easting	northing	
	469100	5361200	
Elevation (metres)	1080		
	Sheet Name	Map Sheet \#	
	Split Rock	4636	
Directions	200 m past Parks House and Botany Hut on Lake Augusta Road		
Dominant butterfly species	O. orichora, O. lathoniella, O. ptunarra		
Dominant Poa species	P. labillardierei P. hiemata		
Dominant Nectar Source	Cyathodes sp. (mountain berries), Epacris impressa (heath), Helichrysum sp. (daisies), Leptospermum sp. (tea tree), Tetratheca procumbens (lilac bells) and Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Excellent		
Description	\star Patch of open alpine grassland surrounded by Richea acerosa and Hakea macrocarpa grassy shrubland gentle slope northerly aspect. © Poa, medium sized and healthy forming ground cover in clear areas, Δ No evidence of domestic animal grazing; however there is extensive evidence of marsupial grazing. Part of site regenerated following removal of buildings.		

Plate 61 Lake Augusta Road, site detail from Lake Augusta Road

Plate 62 Lake Augusta Road, March 2006

A3.5.6. Little Pine Lagoon Boat Ramp

Collection ID	LPLB	
UTM Zone 55		
GDA 94		

Plate 63 Little Pine Lagoon Boat Ramp, view towards the south

A3.5.7. Marlborough Highway

Collection ID	MH		
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	463500	5346500	
Elevation (metres)	920		
	Sheet Name	Map Sheet \#	
	Monpeelyata	4634	
Directions	Grassy hollow $\sim 15 \mathrm{~km}$ north of Bronte Park on the Marlborough Highway		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Helichrysum sp. (daisies), Leptospermum sp. (tea tree), Tetratheca procumbens (lilac bells) and Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Good		
Description	Eucalyptus rodwayi grassy woodland and tussock grassland		
Plate 64 Marlborough Highway, view towards the east			

A3.5.8. North Bronte

Collection ID	NB		$\}$
$\begin{aligned} & \text { UTM Zone } 55 \\ & \text { GDA } 94 \end{aligned}$	easting	northing	
	460100	5339500	
Elevation (metres)	800		
	Sheet Name	Map Sheet \#	
	Bronte	4433	
Directions	Grassy hollow ~ 5 km north of Bronte Park on the Marlborough Highway		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Epacris impressa (heath), Helichrysum sp. (daisies), Leptospermum sp. (tea tree), Tetratheca procumbens (lilac bells) and Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Good		
Description	$\begin{aligned} & \text { Eucalyptus rodwayi woodland and tussock grassland. } \\ & \text { Grassy hollow dominated by P. Labillardierei } \end{aligned}$		
Plate 65 North Bronte, view towards the east			

A3.5.9. Ouse River Bridge

Plate 66 Ouse River Bridge, view towards the southeast from Marlborough Highway

Plate 67 Ouse River Bridge, view towards the northeast from Marlborough Highway

Plate 68 Ouse River Bridge, view towards the southeast from Marlborough Highway

A3.5.10. Pine Tier Dam

A3.6. Eastcoast Field Sites

A3.6.1. Flagstaff Marsh
A3.6.1.1. Unburnt Area

Collection ID	Flag	
UTM Zone 55 GDA 94	easting	

A3.6.1.1.2 Burnt Area

A3.6.2. Ladies Mile Marsh

Collection ID	LMM	
GDA 94		

Plate 72 Ladies Mile Marsh, view towards south

Plate 73 Cattle grazing at Ladies Mile Marsh

A3.6.3. Lake Leake

Collection ID	LL		round and boat ramp
UTM Zone 55GDA 94	easting	northing	
	568500	5346800	
Elevation (metres)	600		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Leake	5634	
Directions	Access from Lake Leake picnic ground and boat ramp		
Dominant butterfly species	H. penelope, O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Average		
Description	Eucalyptus rodwayi grassy woodland Butterflies found flying in grassy area surrounding lake		
Plate 74 Lake Leake, view towards the east			

A3.6.3. Long Marsh

Collection ID	Long		
$\begin{aligned} & \text { UTM Zone } 55 \\ & \text { GDA } 94 \end{aligned}$	easting	northing	
	564100	5345800	
Elevation (metres)	565		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Leake	5634	
Directions	$\sim 1 \mathrm{~km}$ along Long Marsh Road from the junction with Lake Leake Highway.		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Good		
Description	© Flat, marshy area, cleared from surrounding Eucalyptus rodwayi grassy woodland. - Many primary regrowth, marshland species including Gahnia sp., Juncus sp., Hakea sp. and Eucalypt sp.. - Poa medium to large in size however it is rank and scrappy. * Light ground cover of herbaceous species between the tussocks. © No evidence of domestic animal grazing.		

Plate 75 view south into Long Marsh Study Site from northern end of Long Marsh

A3.6.4. Stony Gully Road

Collection ID	SGR		3 m Campbell Town, 100 m oad, site downhill and
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	533500	5353400	
Elevation (metres)	550		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Campbell Town	5435	
Directions	$\sim 15 \mathrm{~km}$ along Lake Leake Highway from Campbell Town, 100m past Power Pole 130. Wires cross the road, site downhill and around bend.		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. labillardierei		
Dominant Nectar Source	Diplarrena moraea (white flag iris) Eucalyptus viminalis (white gum) Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions)		
Overall Habitat Quality	Very Good		
Description	© Poa labillardierei lowland tussock grassland Δ Flat, narrow, marshy area running east west, with forest on the southern side and open woodland on northern border. Δ Dominant use cattle grazing © Poa moderate density, large in size, healthy and luxuriant. Δ Moderate ground cover of soft herb species including clover between the tussocks. * Strong O. ptunarra colony on a lightly grazed area of tussock grassland. Δ This site is the northern end of a more extensive colony which is cut by the Lake Leake Highway.		

Plate 76 Stony Gully Road, view towards the east

Plate 77 Stony Gully Road, view towards the south

A3.6.7. Hobart Region Field Sites

A3.7.1. Glenlusk

A3.7.2. Mt Wellington, Old Springs Hotel

Plate 79 Springs Hotel site, Mt Wellington, view towards the southeast

A3.7.3. Water Works

A3.8. Northwest Field Sites

A3.8.1. Dairy Maids Plain, NW

Plate 81 Dairy Maids Plain, view towards the east

A3.8.2. Hatfield Plain, NW

Collection ID	HAT	
UTM Zone 55		
GDA 94		

Plate 83 Hatfield Plain, view towards the east

Plate 84 Hatfield Plain, view towards the north

A3.8.3. Morey Road (Westwing Plain), NW

A3.8.4. Peak Plain

A3.8.4.1. Detail of Peak Plain Location details

- Peak Plain, Far End
© Peak Plain, Side 1 (Burnt 2003)
O Peak Plain, Side 2 (Burnt 1996)
Guildford
- Dairy Maids Plain
\triangle St. Valentines Peak
A/ Railway
\checkmark Murchinson Highway
Waratah Road
Hellyer River
\square Buttongrass moor
\square Cleared
\boxminus Eucalyptus delegatensis forest
\square Eucalyptus obliqua tall forest
\square High Woodland
\square Rainforest
\square Wet scrub
- Inland waters

A3.8.4.2. Peak Plain, Side 1

Plate 86 Peak Plain, Side 1, view towards the west

A3.8.4.3. Peak Plain, Side 2

Collection ID	PPS2		
UTM Zone 55 GDA 94	easting	northing	
	396300	5418800	
Elevation (metres)	640		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Gulford	3841	
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. gunnii		
Dominant Nectar Source	Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions), Helichrysum sp. (daisies) \& Wahlenbergia stricta (native blue bells)		
Overall Habitat Quality	Good		
Description	\& Peak Plain (Side 2 Burnt 1996) * P. gunnii montane tussock grassland with Hakea microcarpa grassy shrubland		

Plate 87 Peak Plain, Side 2, view towards the north

A3.8.4.4. Peak Plain, Far End

Collection ID	PPFE		f
UTM Zone 55GDA 94	easting	northing	
	396700	5418700	
Elevation (metres)	650		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Gulford	3841	
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. gunnii		
Dominant Nectar Source	Taraxacum sp., Leontodon sp. \& Hypochoeris sp (dandelions), Helichrysum sp. (daisies) \& Wahlenbergia stricta (native blue bells)		
Overall Habitat Quality	Good		
Description	© Remnant grassland separated from main Peak Plain area © P. gunnii montane tussock grassland with Hakea microcarpa grassy shrubland		
Plate 88 Peak Plain, Far End, view towards the west			

A3.8.5. Race Course Plain

A3.8.6. Weather Station Corner

Collection ID	WSC		$\}$
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	377200	5411300	
Elevation (metres)	610		
	Sheet Name	Map Sheet \#	
	Waratah	3641	
Directions	Waratah (097014) Weather Station at corner of Mount Road		
Dominant butterfly species	O. ptunarra		
Dominant Poa species	P. gunnii		
Dominant Nectar Source	Taraxacum sp., Leontodon sp.\& Hypochoeris $s p$ (dandelions), Helichrysum sp. (daisies)		
Overall Habitat Quality	Good		
Description	\& P. gunnii montane tussock grassland \leftrightarrow Extensive plain, mosaic of grassland, shrubland and woodland		

Plate 90 Weather Station Corner, view towards the east

A3.9.1. Odd Tasmanian Field Sites

A3.9.1.1. Hartz Mountain

Collection ID	Htz		
UTM Zone 55	easting	northing	
94	481200	5215100	
Elevation (metres)	860		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Waterloo	4821	
Directions	Road edges below Waratah Lookout $\sim 7.5 \mathrm{~km}$ along Hartz Road from junction with Arve Road.		
Dominant butterfly species	N. leprea		
Description	Δ Wet mixed sclerophyll forest - Uncinia tenella grows along track edges		

Plate 91 Hartz, view towards the northeast

A3.9.1.2. Mt King William

Collection ID	MtKW		$\}$
UTM Zone 55 GDA 94	easting	northing	
	428800	5326800	
Elevation (metres)	800		
1:100 000 TAS Map	Sheet Name	Map Sheet \#	
	Nive	8113	
Directions	Lyell Highway~12 km south of Derwent Bridge, base of Mt King William, start of walking track.		
Dominant butterfly species	H. cordace, N. leprea, A. hobartia		
Description	\star Grassy plain surrounded by wet sclerophyll forest		
Plate 92 Mt King William, view towards the west			

A3.9.1.3. Paradise Plain

Plate 93 Paradise Plain, views towards the north

A3.9.1.4. Ronny Creek Car Park - Lake Dove Cradle Mountain

Collection ID	RCCP		
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	412600	5388800	
Elevation (metres)	870		
	Sheet Name	Map Sheet \#	
	Cradle	4038	
Directions	Ronny Creek Car Park - Lake Dove Road, Cradle Mountain		
Dominant butterfly species	O. orichora, O. ptunarra		
Dominant Poa species	P. gunnii		
Dominant Nectar Source	Cyathodes sp. (mountain berries), Helichrysum sp. (native daisies), and Wahlenbergia stricta (native Bluebell), Richea scoria		
Overall Habitat Quality	Good		
Description	© Poa gunnii montane tussock grassland © Only butterfly site within a National park		

A3.9.1.5. Weymouth

Collection ID	Wey		3
$\begin{gathered} \text { UTM Zone } 55 \\ \text { GDA } 94 \end{gathered}$	easting	northing	
	512100	5459700	
Elevation (metres)	10		
1:25000 TAS Map	Sheet Name	Map Sheet \#	
	Weymouth	5045	
Directions	Weymouth northeast Tasmania		
Dominant butterfly species	H. merope		
Description	\star Sheltered sunny grassy patches surrounded by Leptospermum sp.		

A3.10.1. Victorian Field Sites

A3.10.1. Detail of Victorian Field Sites

A3.10.2. Lake Mountain

Plate 96 Lake Mountain, view of flight area

A3.10.3. Mt Buffalo, Lake Catani, Victoria

A3.10.4. Mt Donna Buang, Victoria

A3.10.4.1. Oreixenica kershawi site

Plate 98 Mt Donna Buang, view over flight area

A3.10.4.2. Oreixenica correae site

A3.10.5. Mt Hotham, Victoria

Appendix 4 - CTAB Extraction Protocol modified from Grewe et al. (1994)

1. Add $200 \mu \mathrm{~L}$ of CTAB buffer to 100 mg of tissue, then grind.
2. Add $300 \mu \mathrm{~L}$ of CTAB buffer continue grinding until al tissue has been homogenised
3. Add $5 \mu \mathrm{~L}$ of $20 \mathrm{mg} / \mathrm{mL}$ proteinaseK and vortex briefly.
4. Incubate at $65^{\circ} \mathrm{C}$ for at least 1 hour. Vortex occasionally and re-grind the tissue if necessary.
5. Extract the homogenate with $500 \mu \mathrm{~L}$ of chloroform-isoamyl alcohol (24:1), shake for 1 minute and centrifuge at 1300 rpm for 20 minutes.
6. Remove the upper aqueous layer taking care not to disturb the interface separating the organic (chloroform) layer. Add the aqueous layer to a new tube containing $600 \mu \mathrm{~L}$ of phenol/chloroform-isoamyl alcohol (25:24:1). Mix well for at least 1 minute and centrifuge at 1300 rpm for 10 minutes. Repeat this step until the upper aqueous layer is totally clear (generally two extractions)
7. Remove the upper aqueous layer; add it to a new tube containing $600 \mu \mathrm{~L}$ of chloroform-isoamyl alcohol and mix well. Centrifuge at 1300 rpm for 30 seconds.
8. Transfer the upper aqueous layer to a new tube labelled for storage containing $900 \mu \mathrm{~L}$ (approximately 1.5 volumes) of cold $\left(-20^{\circ} \mathrm{C}\right)$ isopropanol. Invert the tube gently 10 times; a white stringy pellet should form.
9. Allow the DNA to precipitate at $-20^{\circ} \mathrm{C}$ overnight. Centrifuge at 1300 rpm for 20 minutes.
10. Remove the supernatant and add $180 \mu \mathrm{~L}$ of cold 70% ethanol. Invert the tube gently and centrifuge at 1300 rpm for 10 minutes.
11. Dry the DNA pellet under vacuum for 30 minutes.
12. Re-suspend the DNA pellet in 100 of distilled $\mathrm{H}_{2} \mathrm{O}$. Allow the DNA pellet to re hydrate for several hours at $4^{\circ} \mathrm{C}$.

2x CTAB Buffer:

50 mL 1.0M Tris- HCl pH 8.0 [0.10M final]
20 mL 0.5 M EDTA [0.02M final] (ethylenediaminetetraacetic acid)
40 g NaCl [1.40M final] (sodium chloride)
10 g CTAB (hexadecyltrimethylammonium bromide)
distilled $\mathrm{H}_{2} \mathrm{O}$ to 500 mL

Appendix 5-CEQ Dye Terminator Cycle Sequencing with Quick Start Kit

1. Preparation of the DNA Sequencing reaction:

Sequencing reactions were prepared in 0.2 ml thin-wall tube or microplate well. All reagents were kept on ice while preparing the sequencing reactions and were added in the order listed below.

$\mathrm{dH}_{2} \mathrm{O}$ (to adjust to total volume to $20 \mu \mathrm{~L}$)	$0-9.5 \mu \mathrm{~L}$
DNA Template* (see template Preparation)	$0.5-10.0 \mu \mathrm{~L}$
Customer supplied or -47 Sequencing Primer	$0.65 \mu \mathrm{~L}$
$(1.6 \rho \mathrm{~mol} / \mu \mathrm{L}$ or $1.6 \mu \mathrm{M})$	$2.0 \mu \mathrm{~L}$
DTCS Quick Start Master Mix	

Total $10 \mu \mathrm{~L}$
*Use $0.5 \mu L$ for $p U C 18$ control template
NOTE: Mix reaction components thoroughly. Consolidate the liquid in the bottom of the tube or well by briefly centrifuging before thermal cycling.

2. Thermal Cycling program:

$96^{\circ} \mathrm{C} \quad 20$ seconds
$50^{\circ} \mathrm{C} \quad 20$ seconds
$60^{\circ} \mathrm{C} \quad 4$ minutes
for 30 cycles followed by holding at $4^{\circ} \mathrm{C}$.

3. Ethanol Precipitation:

a. Prepare a labelled, sterile 0.5 mL microfuge tube for each sample.
b. Prepare fresh Stop Solution/Glycogen mixture (per sequencing reaction):
$2.00 \mu \mathrm{~L}$ of $3.0 \mathrm{M} \mathrm{Ch}{ }_{3} \mathrm{COONa}(\mathrm{pH} 5.2)$ [sodium acetate]
$2.00 \mu \mathrm{~L}$ of $100 \mathrm{mM} \mathrm{Na}_{2}$ EDTA (pH 8.0) [EDTA disodium salt]
$0.25 \mu \mathrm{~L}$ of $20 \mathrm{mg} / \mathrm{mL}$ glycogen [supplied with the kit]
To each of the labelled tubes add $4.25 \mu \mathrm{~L}$ of the Stop Solution/Glycogen mixture.
c. Transfer the sequencing reaction to the appropriately labelled 0.5 mL microfuge tube and mix thoroughly.
d. Add $60 \mu \mathrm{~L}$ cold $95 \%(\mathrm{v} / \mathrm{v})$ ethanol $/ \mathrm{dH}_{2} \mathrm{O}$ from $-20^{\circ} \mathrm{C}$ freezer and mix thoroughly. Immediately centrifuge at 14000 rpm at $4^{\circ} \mathrm{C}$ for 15 minutes. Carefully remove the supernatant with a micropipette (the pellet should be visible).
Note: For multiple samples, always add the cold ethanol/ $\mathrm{dH}_{2} \mathrm{O}$ immediately before centrifugation.
e. Rinse the pellet 2 times with $200 \mu \mathrm{~L} 70 \%(\mathrm{v} / \mathrm{v})$ ethanol $/ \mathrm{dH}_{2} \mathrm{O}$ from $-20^{\circ} \mathrm{C}$ freezer. For each rinse, centrifuge immediately at 14000 rpm at $4^{\circ} \mathrm{C}$ for a minimum of 2 minutes. After centrifugation carefully remove all of the supernatant with a micropipette.
f. Vacuum dry for 15 minutes (or until dry)
g. Resuspend the sample in $28 \mu \mathrm{~L}$ of the Sample Loading Solution (provided with the kit)

4. Sample preparation for loading into the CEQ:

a. Transfer the resuspended samples to the appropriate wells of the CEQ sample plate.
b. Overlay each of the resuspended samples with one drop of light mineral oil (provided in the kit or Sigma Cat \#M 5904).
c. Load the sample plate into the CEQ and start the desired method.

L甘V む४
 Ч甘VY L

 L甘ษ甘ษ

 む甘V甘甘
 LVZVY UVZT〇LL． L甘Y

 エ甘ษサษ

 9山山L甘む〇〇

 פL工L甘むЭЭЭЭ

тмечsдәу \wedge unexaeunzd－o fraexaeunza－o กdgexaeunzd－0乙елочวт̦ォo＿0 โелочวтォ0 0
stretzeto マетtəтuouनet－0 ettoțuouフet－0 тмечsдау－0 จеәлコロー 0 －eaxdəT－N －－eəxdət－N とертtттィ eptitis－ก ədoโəuəd＿H MMədoxəus＿H ス甘Mədoxəш ${ }^{-}$H
ρ^{-}әoерлол ${ }^{-}$H
4^{-}әวepzos ${ }^{-}$н
－әoepios $^{\text {H }}$
 zetixeqou V

тмечедәу ${ }^{-} \Lambda$ Mnexaeunza－o「वgexaeunza－0

телочoтлo－o
stretzet－o マセTTวтuouาet－0
 тмечsxay－0 әеәлло○ 0 $\tau^{- \text {eəaxdə } \tau^{-}} \mathrm{N}$ －eəədə ${ }^{-N}$ とертtт！ ерттțィ ədotəuəd H MMədoxəu＂H र甘Mәdoxəu ${ }^{-}{ }^{\text {H }}$ －әоерхол $^{-} \mathrm{H}$ y $^{-}$әоерлол ${ }^{-}$н H әoepxos＿h
 とセţaeqou＿甘 ettaxeqou ${ }^{-} \mathrm{V}$

甘פษ甘

LSE
тмечSォәy－\wedge Mexxeunzd－o Irdgexaeunzd－o fagexieunta－o こелочวтォо 0 โexoyoțio sțTetfeto そetтəTuouzet－ тettatuouาet－ тMeपsiar ${ }^{-0}$ әеәォォ00 ${ }^{-}$ τ^{-}eəadə ${ }^{-} \mathrm{N}$ ә－อәエdəT－N とертा！ィ－ EptTTTへ ədotəuəd－ MMәdoxəu ${ }^{-}{ }^{\text {H }}$ ス甘Mәdoxəu ○－әоерлол－ ห ${ }^{-}$әоерлол ${ }^{-1}$ T－әoepaos $^{-}{ }^{-}$

тT5nTY ${ }^{-}$ zetixeqoy
еттлеqоч ${ }^{-}$
тмечsォәя ${ }^{-} \Lambda$ mnexieun7d－ ifdgexxeunzd－ ᄃagexieunza＿0 टехочэтォォ－0 Texoyotio＿o
stitutet－0
 TeTtətuoune－ TMロчรェコン－0

 －еәлdəт＿N てерт̣TTヘ＿」 eptituA ədotəuəd ${ }^{-}$H MMədoxəu H K甘Mədoxəu ${ }^{-}$H ρ^{-}әoepios－${ }^{-}$ ，${ }^{-}$әоертоо ${ }^{-1}$ ［－әoepaos $^{-}$н TTちnTy 9 टетәтеqоч etfieqoy \forall

A_hobartia
A hobartia2
G_klugii
H_cordace_l
H^{-}cordace ${ }^{-}$
H-cordace_c
H_{-}^{-}meropeWĀ
H_meropewW
H_penelope
J_villida
J_villida2
N leprea e
N-1eprea_e
N_leprea_1
O_correae
O_kershawi
O-lathoniellal O_lathoniella2 O_latialis O_orichoral O_orichora2 O-ptunarraBPJ O-ptunarraBPJ O_ptunarranW V_kershawi

A hobartia
A hobartial
G_klugii
H_cordace_l
H_cordace_k
H_cordace_c
H^{-}meropeWĀY
H-meropeWW
H-penelope
H_penelope
J_villida
J_villida2
N_leprea_e
N_leprea_1
O_correae
O_kershawi
O-lathoniellal
O_lathoniella
O_latialis
O_orichoral

- orichora2
o-ptunarraBPJ
- ptunarraBPJ
-_ptunarraBPJ
O_ptunarra
V kershawi

TAATAGCTCCTAAAATAGATGAGATTCCAGCTAGGTGAAGGGAAAAAATT TAATAGCTCCTAAAATAGATGAGATTCCAGCTAGGTGAAGGGAAAAAATT TAATTGCTCCTAAAATTGATGAAATACCAGCTAAATGAAGAGAAAAAATT AATAGCTCCTAAAATTGAAGAAATTCCAGCTAGATGAAGGGAGAAAATT TAATAGCTCCTAAAATTGAAGAAATTCCTGCTAGATGAAGGGAGAAAATT TAATAGCTCCTAAAATTGAAGAAATTCCTGCTAGATGAAGGGAGAAAATT TAATAGCTCCTAAAATAGAAGAGATTCCTGCTAAATGTAAGGAAAAAATT TAATAGCTCCTAAAATTGAAGAGATTCCTGCTAAATGTAAAGAAAAAATT TAATAGCTCCTAAAATTGAGGAAATTCCAGCTAAATGGAGGGAAAAAATT rAATAGCTCCTAAAATAGAAGAAATTCCTGCTAAATGAAGAGAGAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCTGCTAAATGAAGAGAGAAAATT TAATTGCTCCTAAAATTGATGAAATTCCAGCTAAATGAAGGGAAAAAATT AATAGCTCCTAAAATTGATGAAATTCCAGCTAAATGAAGGGAAAAAATT AATGGCTCCTAAAATTGATGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGAGAAAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATRGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGGGAAAAAATT PAATAGCTCCTAAGATTGAGGAAATTCCAGCTAAATGAAGGGAAAAAATI TAATAGCTCCTAAGATTGAGGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATAGCTCCTAAAATAGAAGAAATTCCAGCTAAATGAAGGGAAAAAATT TAATGGCTCCCAGGATTGATGAAATACCAGCTAAATGAAAAGAAAAAATT

GCTAAATCAACTGATGTTCCTCTATGAGCGATATTTGATGAAAGTGGTGG GCTAAATCAACTGATGTTCCTCTATGAGCGATATITGATGAAAGTGGTGG GCTAAATCTACAGATGATCCTCTATGTGCAATATTAGATGAAAGTGGGGG GCTAAATCAACTGAAGAGCCTCCGTGAGCGATATTTGATGAAAGTGGGGG GCTAAATCAACTGAAGAGCCTCCGTGAGCGATATTTGATGAAAGTGGGGG GCTAAATCAACTGAAGAGCCTCCGTGAGCGATATTTGATGAAAGTGGGGG gCTAAATCTACAGATGATCCTCCATGAGCAATATTAGATGAAAGTGGGGG GCTAAATCAACGGAAGAGCCTCCATGAGCAATATTAGATGAAAGTGGGGG gTtangTcTACAGAAGAGCCTCCATGGGCAATATTGGATGAAAGTGGGGG GCTAAATCAACTGAAGATCCTCCGTGAGCAATATTAGATGAAAGTGGGGG GCTAAATCAACTGAAGATCCTCCGTGAGCAATATTAGATGAAAGTGGGGG GCTATATCAACTGAAGAACCTCTATGAGCAATATTAGATGAAAGTGGTGG GCTATATCAACTGAAGAACCTCTATGAGCAATATTAGATGAAAGTGGTGG GCTAAATCTACAGAAGATCCACCATGAGCAATATTAGAAGAAAGGGGGGG GCTAAATCTACAGATGAACCACCATGGGCAATATTAGAAGAGAGGGGGGG GCTAAATCTACAGATGAACCACCATGAGCAATATTAGATGAAAGAGGAGG GCTAAATCTACAGATGAACCACCATGAGCAATATTAGATGAAAGAGGAGG GCTAAATCTACAGATGAGCCACCATGAGCAATATTAGAAGAAAGAGGGGG GCTAAATCTACGGAAGATCCACCATGGGCAATATTAGAGGAAAGGGGGGG GCTAAATCTACGGAAGATCCACCATGGGCAATATTAGAGGAAAGGGGGGG GCTAAATCTACAGATGATCCACCATGAGCAATATTAGAAGAAAGGGGGGG GCTAAATCTACAGATGATCCACCATGAGCAATATTAGAAGAAAGGGGGGG GCTAAATCTACAGATGATCCACCATGAGCAATATTAGAAGAAAGGGGGGG GCTAAATCTACTGAGGAGCCTCCATGAGCAATATTAGATGAAAGTGGGGG

A_hobartia A_hobartia2
G_klugii
H_cordace l H_cordace_- k H-cordace_c H_meropeWĀY H_meropeWW H_penelope J_villida J_villida2 N_leprea_e N^{-}leprea ${ }^{-}$ N-lepreaO_correae o-lathoniella O_lathoniella2 o_latialis O_orichoral O_orichora2 O_ptunarraBPJ o_ptunarraBPJ V kershawi

A_hobartia
A hobartia2
G-klugii
H_{-}cordace 1
H_cordace_k
H_cordace_c
H_meropeWAY
H meropeWW H_penelope J_villida J villida2 J_villida2 N_leprea_e N-leprea_ O_correae O-kershawi O-lathoniellal o_lathoniella O_latialis O_orichoral O_orichora2 O_ptunarraBPJ O-ptunarraBPJ o-ptunarranw V kershawi

GTAAACTGTTCATCCTGTTCCGGCTCCATTTTCAACAAGACTTCTAGAAA GTAAACTGTTCATCCTGTTCCGGCTCCATTTTCAACAAGACTTCTAGAAA GTAAACTGTTCATCCTGTTCCTGCTCCGTTTTCGACAATTCTACTAGAAA TAAACTGTTCATCCTGTTCCGGCTCCATTTTCAACAATACTTCTTGAAA ATAAACTGTTCATCCTGTTCCGGCTCCATTTTCAACAATACTTCTTGAAA ATAAACTGTTCATCCTGTTCCGGCTCCATTTTCAACAATACTTCTTGAAA GTAAACTGTTCATCCTGTACCAGCTCCGTTTTCAACAATACTACTTGAAA GTAAACTGTTCATCCTGTACCAGCTCCGTTTTCAACAATACTACTTGAAA ATAAACTGTTCATCCTGTTCCAGCTCCATTTTCGACAACACTACTTGAAA GTACACTGTTCATCCTGTTCCTGCTCCATTTTCTACAATTCTACTAGAAA GTACACTGTTCATCCTGTTCCTGCTCCATTTTCTACAATTCTACTAGAAA GTAAACTGTTCATCCTGTTCCAGCTCCATTTTCTACGATACTACTTGAAA GTAAACTGTTCATCCTGTTCCAGCTCCATTTTCTACGATACTACTTGAAA ATATACTGTTCATCCTGTTCCAGCTCCATTTTCAACAATACTTCTTCTAA TAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACAATACTTCTTCTAA GTAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACGATACTTCTTGAGA GTAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACGATACTTCTTGAGA ATAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACAATGCTTCTTGAAA GTAAACTGTTCATCCTGTTCCAGCTCCGTTTTCAACAATACTTCTTCTAA GTAAACTGTTCATCCTGTTCCAGCTCCGTTMTCAACAATACTTCTTCTAA ATAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACAATGCTTCTTGAAA ATAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACAATGCTTCTTGAAA ATAAACTGTTCATCCTGTTCCAGCTCCATTTTCAACAATGCTTCTTGAAA ATAAACTGTTCATCCAGTTCCAGCTCCGTTITCTACAATTCTACTAGAAA

TAATAATAYTAAAGAAGGGGGAAGAAGTCAAAATCTTATATTATTTATT TTAATAATAYTAAAGAAGGGGGAAGAAGTCAAAATCTTATATTATTTATT TTAATAATATTAATGATGGGGGTAAAAGTCAAAATCTTATATTATTTATA TTAATAGTATTAAAGAGGGGGGTAGAAGTCAAAAACTTATATTATTTATT TAAAAGTATTAAAGAAGGGGGTAGAAGTCAAAATCTTATATTATTTATT TTAAAAGTATTAAAGAAGGGGGTAGAAGTCAAAATCTTATATTATTTATT ITAATAGTACTAATGAAGGAGGTAAAAGTCAAAATCTTATATTATTTATT TTAAAAGTACTAAGGAAGGAGGTAAAAGTCAAAATCTTATATTATTTATT TTAAAAGTACTAAAGATGGGGGTAAAAGTCAAAATCTTATATTATTTATT TTAACAATACTAATGATGGGGGTAGTAGTCAAAATCTTATATTATTTATT ITAACAATACTAATGATGGGGGTAGTAGTCAAAATCTTATATTATTTATT TTAGTAATATTAATGAGGGGGGTAGAAGTCAAAATCTTATATTATTTATT TTAGTAATATTAAAGAGGGGGGTAGAAGTCAAAATCTTATATTATTTATT TTAATAAAATTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT TTAGTAAAATTAATGAGGGGGGTAAGAGTCAGAAACTTATATTATTTATT TTAGTAAAACTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT TTAGTAAAACTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT TTAATAAAATTAAAGAGGGGGGTAAGAGTCAAAAACTTATAT'TATTTATT TTAATAAAATTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT ITAATAAAATTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT TTAATAAAATTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT TTAATAAAATTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT ITAATAAAATTAAAGAGGGGGGTAAAAGTCAAAAACTTATATTATTTATT TTAATARTATTAAAGATGGAGGTAAAAGTCAAAATCTTATATTATTTATA

A_hobartia
A_hobartia2
G_klugii
H_cordace_l
H_cordace_k
H^{-}cordace-c
H_meropeWAY
H-meropeWh
H_penelope
J_villida
J_villida2
N leprea e
N^{-1} leprea-1
O-correae
-correae

- kershawi
-lathoniellal
O_lathoniella
O-latialis
O-orichoral
O-orichora2
- ptunarraBPJ

O_ptunarranW
v_kershawi
A_hobartia
A-hobartia2
G_klugii
H_cordace_1
H_cordace_-k
H_cordace_c
H_meropeWĀY
H-meropeWW
H_penelope
J villida
J_villida
J_villida2
N_leprea_e
N_leprea_l
O_correae
O_kershawi
O-lathoniellal
O_lathoniella2
O_latialis
O-orichoral
O_orichora2
o_ptunarrabPJ

- ptunarraBPJI
- ptunarraNW

V kershawi

CGGGGGAAGGCTATATCTGGGGCTCCTAATATAAGAGGTACTAATCAATT GGGGGGAAGGCTATATCTGGGGCTCCTAATATAAGAGGTACTAATCAATT CGTGGAAAAGCTATATCAGGAGCTCCTAATATTAAAGGAACTAATCAATT CGGGGGAAAGCTATATCAGGAGCTCCTAATATAAGAGGGATTAATCAATT CGGGGGAAAGCTATATCTGGGGCTCCTAATATAAGAGGGATTAATCAATT CGGGGGAAAGCTATATCTGGGGCTCCTAATATAAGAGGGATTAATCAATT CGTGGGAAAGCTATATCTGGAGCTCCTAGTATAAGAGGGACTAATCAATT CGTGGGAAAGCTATATCTGGAGCTCCTAGTATAAGAGGGACTAATCAATT CGGGGGAAAGCTATATCTGGGGCTCCTAGTATGAGGGGTACTAGTCAATT CGCGGAAAAGCTATATCTGGGGCTCCTAATATAAGAGGTACTAATCAATT CGCGGAAAAGCTATATCTGGGGCTCCTAATATAAGAGGTACTAATCAATT CGAGGGAAAGCTATATCTGGGGCTCCTAATATGAGAGGGATTAATCAATT CGAGGGAAAGCTATATCTGGGGCTCCTAATATGAGAGGGATTAATCAATT CGGGGGAAAGCTATGTCAGGGGCTCCTAATATAATAGGGACTAGTCAATT CGGGGGAAAGCTATGTCAGGGGCTCCTAATATAATAGGGACTAGTCAGTT GGAGGGAAAGCTATATCAGGAGCTCCTAATATAATAGGAACTAGTCAATT CGAGGGAAAGCTATATCAGGAGCTCCTAATATAATAGGAACTAGTCAATT CGAGGGAAAGCCATATCAGGAGCTCCTAATATAATAGGGACTAATCAATT CGGGGGAAAGCTATATCAGGAGCTCCTAATATAATAGGAACTAATCAATT CGGGGGAAAGCTATATCAGGAGCTCCTAATATAATAGGAACTAATCAATT CGGGGGAAAGCCATATCAGGAGCTCCTAATATAATAGGGACCAATCAATT CGGGGGAAAGCCATATCAGGAGCTCCTAATATAATAGGGACCAATCAATT CGGGGGAAAGCCATATCAGGAGCTCCTAATATAATAGGGACCAATCAATT CGTGGGAAAGCTATATCTGGAGCACCTAATATAAGGGGGACTAATCAATT

TCCAAATCCTCCGATTATAATTGGTATTACTATAAAAAAAATTATAATAA TCCAAATCCTCCGATTATAATTGGTATTACTATAAAAAAAATTATAATAA ACCAAATCCTCCAATTATAATTGGTATAACTATAAAAAAAATTATAATAA CCAAATCCTCCAATTATGATGGGTATAACCATAAAAAAAATTATGATAA TCCAAATCCTCCAATTATGATGGGTATAACTATAAAAAAAATTATGATAA TCCAAATCCTCCAATTATGATGGGTATAACTATAAAAAAAATTATGATAA ACCAAATCCTCCAATTATAATAGGTATAACTATAAAAAAAATTATAATGA ACCAAATCCTCCAATTATAATAGGTATAACTATAAAAAAAATTATAATAA CCCAAATCCTCCAATTATGATTGGTATAACTATAAAAAAAATTATAATAA ACCAAATCCTCCTATTATAATTGGTATTACTATAAAAAAAATTATAATAA ACCAAATCCTCCTATTATAATTGGTATTACTATAAAAAAAATTATAATAA ACCGAATCCTCCAATTATAATAGGTATAACTATAAAAAAAATTATAATAA ACCGAATCCTCCAATTATAATAGGTATAACTATAAAAAAAATTATAATAA TCCAAATCCTCCAATTATAATGGGCATTACTATAAAAAAAATTATAATAA TCCGAATCCTCCAATTATGATAGGTATAACTATAAAAAAAAATTATAATAA TCCAAATCCTCCAATTATAATAGGTATTACTATAAAAAAAATTIATAATAA TCCAAATCCTCCAATTATAATAGGTATTACTATAAAAAAAATTATAATAA TCCAAATCCTCCAATTATAATAGGTATAACCATAAAAAAAATTATAATGA TCCAAATCCTCCAATTATAATGGGTATTACCATAAAAAAAATTATAATAA TCCAAATCCTCCAATTATAATGGGTATTACCATAAAAAAAATTATAATAA TCCAAATCCTCCAATTATAATAGGTATAACCATAAAAAAAATTATAATGA TCCAAATCCTCCAATTATAATAGGTATAACCATAAAAAAAATTATAATGA TCCAAATCCTCCAATTATAATAGGTATAACCATAAAAAAAATTATAATGA TCCAAATCCTCCGATTATAATCGGCATAACTATAAAAAAAATTATAATAA

A_hobartia A-hobartia G_klugii $\mathrm{H}_{\text {_cordace }}$ H^{-}cordace k H^{-}cordace C H^{-}meropeWĀ H_meropeWh H_penelope J_villida J_villida2 N^{-}leprea e N lepreaN_leprea O_correae O_kershawi O_lathoniellal O_lathoniella2 O_latialis O_orichoral O_orichora2 O_ptunarraBPJ o_ptunarraBPJI o-ptunarraNW V kershawi

A hobartia
A hobartia2
G_klugii
H_cordace_1 H_cordace_k H_cordace_c H_meropeWĀY H_meropeWW H-penelope H_penelop J_villida J villida2 N_leprea N_leprea_ O-correae O-kershawi O-lathoniella1 O_lathoniella O_latialis O_orichoral O orichora2 O_ptunarraBPJ O ptunarraBPJ o ptunarraNW V_kershawi

AAGCATGAGCTGTAACGATAGTATTATAGATTTGATCATCACCAATTAAA AAGCATGAGCTGTAACGATAGTATTATAGATTTGATCATCACCAATTAAA AAGCATGAGCTGTAACAATTGTATTATAAATTTGATCATCTCCAATTAAA AAGCATGTGCTGTTACAATAGTATTATAAATTTGATCATCTCCAATTAAA AAGCATGTGCTGTTACAATTGTATTATAAATTTGATCATCTCCAATTAAA AAGCATGTGCTGTTACAATTGTATTATAAATTTGATCATCTCCAATTAAA ATGCGTGGGCTGTAACAATAGTATTATAAATTTGGTCATCTCCAATTAAA AAGCGTGGGCTGTAACAATTGTATTATAAATTTGGTCATCTCCAATTAAA AAGCATGAGCTGTTACAATTGTGTTATAAATTTGATCGTCACCAATTAAA AAGCATGAGCTGTAACAATAGTATTATAAATTTGATCATCTCCAATTAAT AAGCATGAGCTGTAACAATAGTATTATAAATTTGATCATCTCCAATTAAT AAGCATGAGCTGTGACAATAGTATTATAAATTTGATCATCTCCAATTAAA AAGCATGAGCTGTGACAATAGTATTATAAATTTGATCATCTCCAATTAAC ATGCATGTGCTGTTACAATAGTATTATAAATTTGATCATCACCAATTAAA ATGCATGAGCTGTTACAATAGTATTATAAATTTGATCGTCACCGATTAAA ATGCATGGGCTGTTACAATAGTATTATAAATTTGATCATCTCCAATTAAA ATGCATGGGCTGTTACAATAGTATTATAAATTTGATCATCTCCAATTAAA atGCatgagctgttacantagtattgranattTg Tcatctccanttana ATGCATGTGCTGTTACAATAGTATTATAAATTTGATCATCTCCAATTAAA ATGCATGTGCTGTTACAATAGTATTATAAATTTGATCATCTCCAATTAAA ATGCATGAGCTGTTACAATAGTATTGTAAATTTGGTCATCTCCAATTAAA atGcatGagctg tacantagtattgtanatttggtcatctccanttana ATGCATGAGCTGTTACAATAGTATTGTAAATTTGGTCATCTCCAATTAAA AgGCATGAGCAGTAACAATTGTATTATAAATTTGATCATCTCCAATTAAA
 AATCCAGGGTTACCTAATTCTGTTCGAATGATAAGACTTAGAGATGTTCC GATCCTGGGTTACCTAATTCAGTTCGAATAATAAAACTAAGTGATGTTCC AATCCAGGGTTTCCTAATTCTGTTCGAATAATTAAGCTAAGAGAAGTTCC AATCCAGGGTTACCTAATTCTGTTCGAATAATTAAACTAAGAGATGTTCG AATCCAGGGTTACCTAATTCTGTTCGAATAATTAAACTAAGAGATGTTCC AATCCAGGGTTACCTAATTCTGTTCGAATAATTAAACTAAGAGAGGTTCC AATCCAGGGTTACCTAATTCTGTTCGAATAATTAAACTAAGAGAAGTTCC AATCCAGGGTTTCCTAATTCTGTTCGAATAATTAAACTGAGAGAAGTTCC GATCCTGGGTTYCCTAACTCAGTTCGAATAATAAMCCTMATGGRTGTTCC GATCCTGGGTTYCCTAACTCAGTTCGAATAATAAMCCTMATGGRTGTTCC AATCCGGGGGTTCCTAATTCTGTTCGGATAATAAGACTAAGGGCTGTTCC AATCCGGGGGCTCCTAATTCTGTTCGGATAATAAGACTAAGGGCTGTTCC AATCCAGGGTTTCCTAATTCTGTTCGGATAATTAGGCTAGGAGAGGTTCC AATCCGGGGTTTCCTAATTCTGTTCGAATAATTAAACTAAGAGAAGTTCC GATCCGGGGTTTCCTAATTCTGTTCGAATAATTAAGCTAAGAGAGGTTCC GATCCGGGGTTTCCTAATTCTGTTCGAATAATTAAGCTAAGAGAGGTTCC AATCCTGGGTTTCCTAATTCTGTTCGAATAATTAAACTAAGGGAGGTTCC AATCCAGGGTTTCCTAATTCTGTTCGAATAATTAAGCTAAGAGAAGTTCA AATCCAGGGTTTCCTAATTCTGTTCGAATAATTAAGCTAAGAGAAGTTCA AATCCTGGGTTTCCTAATTCTGTTCGGATAATTAAACTAAGGGAGGTTCC AATCCTGGGTTTCCTAATTCTGTTCGGATAATTAAACTAAGGGAGGTTCC AATCCTGGGTTTCCTAATTCTGTTCGGATAATTAAACTAAGGGAGGTTCC AATCCAGGGTTACCTAATTCTATTCGAATAATAAGACTTAAAGATGTTCC

H-cordace 1 TACTATHCCTGCTCAAATM
H^{H} cordace_-
H_cordace_k
H_cordace_c
H_meropeWAY
H_meropeWW
H_penelope
J_villida
J_villida2
N^{-}leprea e
N-leprea-l
--eprea_-
O_correae
TACTATTCCTGCTCAAATT

TACTATACCTGCTCAMATT-------------------------------------
TACTATACCTGCTCAGATT-------------------------------------
tactatacctactcacamt

ACTACCTCCAAAT--ー
_kershawi TACTATTCCTGCCCAAATT

O-lathoniella2 TACTATTCCTGCTCATATT
O_latialis \qquad

-ptunarraBPJ TACAACCCTCAAA

- ptunarranw

Vkershawi \qquad
V kershawi
TACTATTCCTGCTCAAATT

$E F-1 \alpha$

A＿hobartia
A＿hobartia2
G＿klugii
H＿cordace＿l
H＿cordace＿k H＿cordace＿c H－meropeWĀ
H＿meropeWW
H＿penelope
J＿villida
J＿villida2
N＿leprea＿e
N^{-}leprea－1
o correae
－kershawi
O＿lathoniellal
O＿lathoniella2
O－latialis
O－orichoral
O＿orichora2
O＿ptunarraBPJ O－ptunarraBPJI O＿ptunarraNW
V kershawi
A＿hobartia
A＿hobartia2
G－klugii
H＿cordace＿1
H＿cordace＿－k
H＿cordace＿c
H＿meropeWĀY
H＿meropeWW
H＿penelope
J＿villida
J＿villida2
N leprea e
N＿leprea＿e
－correae
O＿kershawi
O－lathoniellal
－lathoniella2
O＿latialis
O＿orichoral
O＿orichoral
O＿ptunarraBPJ
O＿ptunarraBPJI
O－ptunarraNW
－kershawi

ACGTTGAAACCCACATTGTCTCCGGGCACAGCCTCAGGGAGAGCTTCG＇TG ACGTTGAAACCCACNTTGTCTCCGGGCACAGCCTCAGGGAGAGCTTCGTG ACGTTGAATCCTACNTTGTCTCCGGGCACAGCCTCGGGGAGGGCTTCGTG ACGTTGAAACCCACACTGTCTCCAGGCACTGCCTCGGGCAGAGCTTCGTG ACGTTGAAACCCACTTTCTCTCCAGGCACTGCCTCGGGCAGAGCTTCGGG ACGTTGAAACCCACACTGTCTCCAGGCACTGCCTCGGGCAGAGCTTCGTG ACGTTGAAACCCACACTGTCTCCAGGCACAGCCTCGGGAAGAGCTTCGTG ACGTTGAAACCCACACTGTCTCCAGGCACAGCCTCGGGAAGAGCTTCGTG ACGTTGAAACCCACATTGTCTCCAGGCACAGCCTCGGAAAGAGCTTCGTG CGTTGAAACCTACNTTGTCTCCGGGCACAGCCTCCTGGAGAGCTTCGTG ACGTTGAAACCTACGTTGTCTCCGGGCACAGCCTCCTGGAGAGCTTCGTG ACGTTGAAACCAACATTGTCCCCAGGCATAGCCTCAGAGAGGGCTTCGTG ACGTTGAAACCAACATTGTCCCCAGGCATAGCCTCAGAGAGGGCTTCATG ACGTTGAAACCCACTTTGTCACCAGGCAAAGCCTCGGGGAGAGCTTCGTG ACGTTGAAACCCACTTTGTCTCCGGGCACAGCCTCAGGGAGAGCTTCATG
－－
CGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAACCCACATTGTCTCCAGGCAAAGCCTCAGGGAGAGCTTCATG ACGTTGAAAACCACATTGACTCCAGGCAAAGCCTCAGGGAGAGCTTCGTG ACGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAACCCACATTSTCTCCGGGCACAGCCTCGTGGAGAGCTTCGTG

ACGTTGAAACCCACATTGTCTCCGGGCACAGCCTCAGGGAGAGCTTCGTG ACGTTGAAACCCACNTTGTCTCCGGGCACAGCCTCAGGGAGAGCTTCGTG ACGTTGAATCCTACNTTGTCTCCGGGCACAGCCTCGGGGAGGGCTTCGTG ACGTTGAAACCCACACTGTCTCCAGGCACTGCCTCGGGCAGAGCTTCGTG ACGTTGAAACCCACTTTCTCTCCAGGCACTGCCTCGGGCAGAGCTTCGGG ACGTTGAAACCCACACTGTCTCCAGGCACTGCCTCGGGCAGAGCTTCGTG ACGTTGAAACCCACACTGTCTCCAGGCACAGCCTCGGGAAGAGCTTCGTG ACGTTGAAACCCACACTGTCTCCAGGCACAGCCTCGGGAAGAGCTTCGTG ACGTTGAAACCCACATTGTCTCCAGGCACAGCCTCGGAAAGAGCTTCGTG ACGTTGAAACCTACNTTGTCTCCGGGCACAGCCTCCTGGAGAGCTTCGTG ACGTTGAAACCTACGTTGTCTCCGGGCACAGCCTCCTGGAGAGCTTCGTG ACGTTGAAACCAACATTGTCCCCAGGCATAGCCTCAGAGAGGGCTTCGTG ACGTTGAAACCAACATTGTCCCCAGGCATAGCCTCAGAGAGGGCTTCATG ACGTTGAAACCCACTTTGTCACCAGGCAAAGCCTCGGGGAGAGCTTCGTG ACGTTGAAACCCACTTTGTCTCCGGGCACAGCCTCAGGGAGAGCTTCATG
 ACGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAAACCACATTGACTCCAGGCAAAGCCTCAGGGAGAGCTTCGTG ACGTTGAAACCCACATTGTCTCCAGGCAAAGCCTCAGGGAGAGCTTCATG AGGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAGCCCACGTTGTCTCCAGGCATAGCCTCTGAGAGAGCTTCGTG ACGTTGAAACCCACATTSTCTCCGGGCACAGCCTCGTGGAGAGCTTCGTG

A＿hobartia
A－hobartia2
G＿klugii
H＿cordace＿ H＿cordace＿l H＿cordace＿k H_{-}cordace＿c H＿meropeWĀ H＿meropeWW H＿penelope J＿villida J＿villida2 N＿leprea＿e N^{-}leprea o－correae o－correae O－kershawi 0^{-}lathoniellaz O－latialis O orichoral o－orichora2 O＿ptunarraBPJ O＿ptunarraBPJ O＿ptunarraNW V kershawi

A hobartia A hobartia2 G＿klugii
H＿cordace＿1 H_{-}cordace＿k H＿cordace＿c H＿meropeWĀY H＿meropewW H＿penelope J villida J villida N－villida N＿leprea＿e N＿leprea＿l O＿correae O＿kershawi O＿lathoniellal O＿lathoniella2 O＿latialis O＿orichoral O＿orichora2 O＿ptunarraBPJ O＿ptunarraBPJ1 O ptunarraNw V^{-}kershawi

GTGCATCTCAACAGACTTTACTTCAGTAGTGATGTTGGCGGGAGCGAAAA GTGCATCTCAACAGACTTTACTTCAGTAGTGATGTTGGCGGGAGCGAAAA GTGCATCTCAACTGACTTAACTTCAGTGGTGATGTTGGCGGGAGCAAAAA GTGCATCTCAACAGACTTAACTTCAGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCAACAGACTTAACTTCAGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCAACAGACTTAACTTCAGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCAACAGACTTAACTTCAGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCAACAGACTTAACTTCAGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCAACAGACTTAACTTCAGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCCACAGATTTTACTTCAGTGGTGATGTTGGCGGGGGCGAAAA GTGCATCTCCACAGATTTTACTICAGTGGTGATGTTGGCGGGGGCGAAAA GTGCATCTCAACGGACTTAACTTCAGTGGTGATGTTGGCAGGAGCGAAAA GTGCATCTCAACGGACTTAACTTCAGTGGTGATGTTGGCAGGAGCGAAAA GTGCATCTCAACAGACTTAACTTCTGTGGTGATGTTGGCAGGAGCAAAAA GTGCATCTCAACTGACTTAACTTCCGTGGTGATGTTAGCGGGAGCAAAAA

GIGCATCCAACGGACITAACTCCGTGGTGATGTGGCGGGAGCAAAA GCAAAAA信保信 IGCAICICAACGGACI IAACTHCCGTGGTGATGTTGGCGGGAGCAAAAA GTGCATCTCAACGGACTTAACTTCCGTGGTGATGTTGGCGGGAGCAAAAA GTGCATCTCCACAGACTTTACTTCAGTGGTGATGTTGGCGGGAGCGAAAA

CAACAATGGTACCGGGCTTAAGTACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCGGGCTTAAGTACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCGGGTTTGAGGACACCAGTTTCTACTCTGCCTACAGGC CAACAATGGTACCAGGTTTGAGAACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCAGGTTTGAGAACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCAGGTTTGAGAACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCAGGTTTGAGAACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCAGGTTTGAGAACACCAGTTTCTACTCTGCCTACGGGC CAACAATGGTACCCGGTTTGAGAACACCAGTTTCTACTCTGCCTACGGGC CGACAATGGTACCGGGTTTGAGGACACCAGTTTCCACTCTGCCTACGGGC CGACAATGGTACCGGGTTTGAGGACACCAGTTTCCACTCTGCCTACGGGC CAACAATGGTACCAGGTTTAAGGATACCGGTTTCAACTCTGCCTACTGGC CAACAATGGTACCAGGTTTAAGGATACCGGTTTCAACTCTGCCTACTGGC CAACAATGGTACCAGGTTTCAGAACACCTGTTTCTACTCTGCCTACTGGC CAACAATGGTACCAGGTTTCAGAACACCTGTTTCTACTCTGCCTACTGGC －－－－－－－－－－－－－－－－－－－－－－－－－－CACCAGTTTCGACTCTGCCTACTGGC CGACA CAACAGGCCAGGTITCAGAACACCTGTTTCTACTCTGCCTACTGGC AACAATACCAGGTTTCAGAACACCTGTTTCTACTCTGCCTACTGGC CGACAATAGIACCAGGITTCAGAACACCTGTTTCTACTCTGCCTACTGGC GGACAATGGTACCAGGTTTCAGAACACCTGTTTCTACTCTGCCTACTGGC GACAATGGTACCAGGTTTCAGAACACCTGTTTCTACTCTGCCTACTGGC GGACAATGGTACCAGGTTTCAGAACACCTGTTTCTACTCTGCCTACTGGC CAACAATGGTACCGGGCTTGAGGACACCAGTTTCAACTCTGCCTACTGGC

EF-1 α

A_hobartia
A-hobartia2
G-klugii
H-cordace 1
H-cordace_k
H_{-}^{-}cordace_c
H_meropeWAY
H_meropeWW
H-penelope
J villida
J villida2
N -leprea e

- eprea e

N_leprea_l
O_correae
o_kershawi
O-lathoniella1 O_lathoniella
O_latialis
O_orichoral
o-orichora2
O-ptunarraBP

- ptunarraBPJ

O-ptunarraNW
\checkmark kershawi
A_hobartia
A-hobartia2
G-klugii
H_cordace_l
H_cordace_k
H_cordace_c
H-meropeWAY
H-meropeWW
H_meropeww
H_penelope
J_villida
J_villida2
N_leprea e
N_leprea_1
O_correae
O_kershawi
O-lathoniellal
O-lathoniella
O_latialis
O-orichoral
O-orichora2
O ptunarraBP

- ptunarraBPJ
o ptunarraNW
V_kershawi

ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTTCCAATACCACCAATTTTGTAGACGTCCTGAAGGGGAAGCCGCAG aCTGmaccantrccacccatmTrTGTAGACGTCCTGAAGGGGAAGTCGCAG ACTGTACCAATTCCGCCGATTTTGTAGACGTCCTGAAGGGGAAGTCGCAG ACTGTACCAATTCCACCGATTTTGTAGACGTCCTGAAGGGGAAGTCGCAG ACTGTACCAATTCCACCGATTTTGTAGACGTCCTGAAGGGGAAGTCGCAG ACTGTACCAATTCCACCGATTTTGTAGACGTCCTGAAGGGGAAGTCGCAG ACTGTACCAATTCCACCAATTTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCGCCGATTTTGTATACGTCTTGCAGGGGAAGACGCAG ACTGTACCAATACCGCCGATTTTGTATACGTCCTGCAGGGGAAGACGCAG ACTGTTCCAATACCACCGATTTTTGTAGACATCCTGAAGGGGAAGTCGAAG ACTGTTCCAATACCACCGATTTTGTAGACATCCTGAAGGGGAAGTCGAAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAG ACTGTACCAATACCACCAATTTTGTAGACATCCTGAAGGGGAAGTCGCAA ACTGTACCAATACCACCGATTTTGTAAACGTCCTGCAGGGGAAGACGCAG

GGCCTPGTCTGTGGGACGCGCTGGGGGCAGGATGGCGTCCAAAGCNTCAA gGCCTTGTCTGTGGGACGCGCTGGGGGCAGGATGGCATCCAAAGCTTCAA GGCCTTG'CTGTGGGACGCGCAGGGGGCAGGATGGCGTCCAAGGCTTCAA GGCTTGTCTGTGGGACGCGCTGGGGGCAGGATAGCGTCCAAGGCTTCAA rgGCTTGTCTGTGGGACGCGCTGGGGGCAGGATAGCGTCCAAGGCTTCAA TGGCTTGTCTGTGGGACGCGCTGGGGGCAGGATAGCGTCCAAGGCTTCAA GGGCTTGTCTGTGGGACGCGCTGGGGGCAGGATAGCATCCAAGGCTTCAA GGGCTTGTCTGTGGGACGCGCTGGGGGCAGGATAGCGTCCAAGGCTTCAA GGGCTTGTCTGTGGGACGTGCAGGAGGCAGGATGGCGTCCAAGGCCTCAA GGCCTTGTCTGTGGGACGAGCTGGGGGAAGGATGGCGTCGAGGGCCTCAA GGCCTTGTCTGTGGGACGAGCTGGGGGAAGGATGGCGTCGAGGGCCTCAA GGCCTTGTCTGTGGGACGCGCGGGGGGCAGGATGGCGTCCAAAGCTTCGA GGCCTTGTCTGTGGGACGCGCGGGGGGCAGGATGGCGTCCAAAGCTTCGA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCAA GGCCTTGTCGGTAGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCGA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCTA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCTA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCTA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCAA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCAA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCTA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCGTCCAGGGCTTCTA AGCCTTGTCTGTGGGACGCGCCGGGGGCAGGATGGCATCCAGGGCTTCTA GGCTTTGTCTGTGGGACGCGCTGGAGGAAGGATGGCATCCAAAGCCTCAA

A_hobartia
A_hobartia2
G_klugii
H_cordace_l H_cordace_k H_cordace_c H_meropeWĀY H_meropeWW H_penelope J_villida J_villida2 N^{-}leprea e N^{N} leprea_e N_leprea_O_correae O-kershawi O lathoniella2 O_latialis O_orichoral O_orichora2 O_ptunarraBPJ O_ptunarraBPJ1 V kershawi

A hobartia
A hobartia2
G klugii
H_cordace 1
H_cordace_k
H_cordace_c
H_{-}meropeWĀ
H_meropeWW
H_penelope
J villida
J_villida
J-villida2
N_leprea_e N_leprea
O_correae
O_kershaw
O_lathoniellal O_lathoniella O_latialis O_orichoral O orichora2 O_ptunarraBPJ o_ptunarraBPJ1 o ptunarraNW V kershawi

TGAGGCACTTGCCGTCAGCCTTGCCCTCCTTGCGCTCAACTTGCCATCCC rGAGGCACTTGCCGTCAGCCTTGCCCTCCTTGCGCTCAACTTGCCATCCC rGAGGCACTTGCCTTCAGCCTTGCCCTCCTTGCGCTCAACTTGCCATCCC TGAGGCACTTGCCTTCATTCTTACCTTCCTTGCGCTCAACTTGCCATCCC TGAGGCACTTGCCTTCATTCTTACCTTCCTTGCGCTCAACTTGCCATCCC TGAGGCACTTGCCTTCATTCTTACCTTCCTTGCGCTCAACTTGCCATCCC TGAGGCACTTGCCTTCATTCTTACCTTCCTTGCGCTCAACTTGCCATCCC TGAGGCACTTGCCTTCATTCTTACCTTCCTTGCGCTCAACTTGCCATCCC TGAGGCACTTGCCTTCATTCTTACCTTCCTTACGCTCAACTTGCCATCCC TGAGGCATTTACCTTCAGCCTTGCCTTCTTTGCGCTCCACTTGCCATCCC TGAGGCATTTACCTTCAGCCTTGCCTTCTTTGCGCTCCACTTGCCATCCC rGAGGCACTTGCCATCAGCCTTACCCTCCTTGCGCTCCACTGCCCATCCC tGAGGCACTTGCCATCAGCCTTACCCTCCTTGCGCTCCACTGCCCATCCC TGAGGCACATGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTTTCCATCCC TGAGGCACTTGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTTGCCATCCC Ga TGAGGCACTTGCCTTCAGCTTTGCCCTCCTTACGCTCAACTGCCCACCCT TGAGGCACTTGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTGCCCACCCC TGAGGCACATGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTTTCCATCCC TGAGGCACATGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTTTCCATCCC TGAGGCACTTGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTGCCCACCCC TGAGGCACTTGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTGCCCACCCC TGAGGCACTTGCCTTCAGCTTTGCCCTCCTTGCGCTCAACTGCCCACCCC TAAGGCATTTACCTTCAGCTTTACCTTCTTTACGCTCCACTTGCCATCCC

TTGAACCAGGGCATTTTGGTGGACGGCTCCAACATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGACGGCTCCAACATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGATGGCTCCAACATGTTGTCTCCGTGCCA TTGAACCAAGGCATCTTGGTGGATGGCTCCAGCATGTTGTCTCCGTGCCA ITGAACCAAGGCATCTTGGTGGATGGCTCCAGCATGTTGTCTCCGTGCCA ITGAACCAAGGCATCTTGGTGGATGGCTCCAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATCTTGGTGGATGGCTCCAGCATGTTGTCTCCGTGCCA ITGAACCAGGGCATCTTGGTGGATGGCTCCAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATCTTGGTGGATGGCTCCAGCATGTTGTCTCCGTGCCA ITGAACCAGGGCATTTTGGTAGATGCCTCCAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTAGATGCCTCCAGCATGTTGTCTCCGTGCCA TTGAACCATGGCATTTTGGTAGACGGCTCCAGCATGTTGTCTCCGTGCCA TTGAACCATGGCATTTTGGTAGACGGCTCCAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGATGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGATGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTITGGTGGATGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA TTGAACCAGGGCATTTTGGTGGAAGGCTCAAGCATGTTGTCTCCGTGCCA tTgAACCAGGGCATCTTGGTGGATGCCTCCAGCATGTTGTCTCCGTGCCA

EF-1a

A_hobartia
A_hobartia2
G_klugii
H_cordace_l
$\mathrm{H}_{\text {_ cordace_k }}$
H^{-}cordace_c
H_meropeWAY
H_meropeWh
H_penelope
J_villida
J_villida2
N-leprea_e
N_leprea_1
O-correae
o-kershawi
O_kershawi
-lathoniellal
Olathonie
O-latialis
O-orichoral
O_orichora2
o-ptunarraBPJ O_ptunarraBPJ O ptunarraNW V kershawi

A hobartia
A hobartia2
G-klugii
H_cordace_l
H^{-}cordace_k
H_cordace_c
H_meropeWAY
H_meropeWW
H_penelope
J villida
J_villida
J_villida2
N-leprea e
N_leprea_l
Ocorreae
O_kershawi
O-lathoniellal
O_lathoniella2
O_latialis
O_orichoral
O_orichora2
O_ptunarraBPJ
O_ptunarraBPJI o ptunarraNW
V kershawi

GCCAGAAATGGGTACGAAAGCAACGGCCAATGGGTTATAACCAATTTTCT GCCAGAAATGGGTACGAAAGCAACGGCCAATGGGTTATAACCAATTTTCT GCCAGAAATGGGTACGAAAGCGACTGCAGCNGGGTTGTAACCGATTTTCT ACCAGAAATGGGTACAAAGGGCACGGCGGCTGGGTTGTAACCGATTTTTTT ACCAGAAATGGGTACAAAAGGCACGGCGGCTGGGTTGTAACCGATTTTTT ACCAGAAATGGGTACAAAAGGCACGGCGGCTGGGTTGTAACCGATTTTTT GCCAGAAATGGGTACGAAAGCAACGGCGGCCGGGTTGTAACCGATTTTTT GCCAGAAATGGGAACGAAAGCAACGGCGGCCGGGTTGTAACCGATTTTTT GCCAGAAATGGGTACGAAAGCGACGGCGGCTGGGTTATAACCGATCTTTT GCCAGAAATGGGTACGAAAGCGACGGCAGCTGGGTTGTAACCAATCTTCT GCCAGAAATGGGTACGAAAGCGACGGCAGCTGGGTTGTAACCGATCTTCT GCCAGAAATGGGTACGAAAGGGACGGCAAGTGGGTTGTAACCGATTTTCT GCCAGAAATGGGTACGAAAGGGACGGCAAGTGGGTTGTAACCGATTTTCT GCCAGAAATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT CCCAGAAATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAGATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAGATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAGATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTTCT GCCAGAAATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAAATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAGATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAGATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAGATGGGTACGAAAGGAACTGCAGCAGGGTTGTAACCAATTTTCT GCCAGAAATGGGTACGAAAGGCACGGCAGCTGGGTTGTAACCGATCTTTT

TGATGTAGGAGGAGACTTCCTTCTTGATTTCCTCGAAACGAGGTTCGCTG TGATGTAGGAGGAGACTTCCTTCTTGATTTCCTCGAAACGAGGTTCGCTG TGATGTAGGATGAAACCTCCTTCTTGGATTTCCTCGAACCGAGGTTCACTG TGATATAGGAGGAGACTTCCTTCTTGATTTCCTCGAAACGCGGTTCACTG GATATAGGAGGAGACTTCCTTCTTGATTTCCTCGAAACGCGGTTCACTG TGATATAGGAGGAGACTTCCTTCTTGATTTCCTCGAAACGCGGTTCACTG TGATATAGGAGGAAACTTCCTTCTTGATTTCCTCGAAACGCGGTTCACTG GGATATAGGAGGAAACTTCCTTCTTGATTTCCTCGAAACGCGGTTCACTG TGATATAGGAGGAGACTTCCTTCTTGATTTCCTCGAAACGCGGTTCACTG TGATGTAAGAGGACACTTCCTTCTTGATTTCCTCGAAACGGGACTCGCTG TGATGTAAGAGGACACTTCCTTCTTGATTTCCTCGAAACGGGACTCGCTG TAATGTAGGAGGATACTTCCTTCTTGATTTCCTCGAAACGAGGTTCACTG TAATGTAGGAGGATACTTCCTTCTTGATTTCCTCGAAACGAGGTTCACTG TGATGTAGGAGGATACTTCTTTCTTGATTTCCTCAAAACGAGGTTCGCTG TAATGTAGGAGGATACTTCTTTCTTGATTTCCTCGAAACGAGGTTCACTG TAA保 IAATGTATGATGATACTTCTTTCTTGATTTCCTCGAAACGAGGTTCGCTG rgatgtaggaggatactTCTTTCTTGATTTCCTCAAAACGAGGTTCGCTG gGatgtaggaggatactTCTTTCTTGATTTCCTCAAAACGAGGTTCGCTG TAATGTATGATGATACTTCTTTCTTGATTTCCTCGAAACGAGGTTCGCTG TAATGTATGATGATACTTCTTTCTTGATTTCCTCGAAACGAGGTTCGCTG TAATGTATGATGATACTTCTTTCTTGATTTCCTCGAAACGAGGTTCGCTG TGATGTAAGAAGATACTTCCTTCTTGATTTCTTCGAAACGGCCTTCATTG

A_hobartia
A hobartia2
G_klugii
H^{-}cordace H cordace-k H^{-}cordace C H_meropeWAY H_meropewW H_penelope J_villida J_villida2 N-leprea_e N^{-}leprea ${ }^{-}$ N-1eprea_ O-correae O-kershawi - lathoniellal O-latialis O_orichoral O_orichora2 O_ptunarrabPJ O_ptunarraBPJ O_ptunarraNW V kershawi

A hobartia
A hobartia2
G_klugii
H_cordace_1 H_cordace_k H_cordace_c H meropeWAY H^{-}meropewW H-penelope J villida J_villida J villida2 N-leprea_e N_leprea O-correae O_kershawi O-lathoniellal O_lathoniella2 O_latialis O orichoral O_orichora2 O_ptunarraBPJ O_ptunarraBPJ1 O-ptunarraNW v_kershawi

TATGGGGGTTCAGTGGAGTCCATCTTGTTGACTCCTACGATCAGCTGCTT TATGGGGGTTCAGTGGAGTCCATCTTGTTGACTCCTACGATCAGCTGCTT TACGGGGGCTCAGTGGAGTCCATCTTGTTGACTCCTACAATCAGCTGCTI AAYTGGGGGTCAGTGGAGTCCATCTTATTGACTCCTACGATCAGCTGCTT AAYTGGGGGTCAGTGGAGTCCATCTTATTGACTCATACGATCAGCTGCTT AAYTGGGGGTCAGTGGAGTCCATCTTATTGACTCCTACGATCAGCTGCTI AATGGGGGTTCAGTGGAGTCCATCTTATTGACTCCTACGATCAGCTGCTT AATGGGGGTTCAGTGGAGTCCATCTTATTGACTCCTACGATCAGCTGCTT AACGGGGGCTCAGTGGAGTCCATCTTATTGACTCCTACGATCAGCTGCTI TAYTGGGGGTCGGTGGAGTCCATTTTGTTGACGCCTACGATCAGCTGCTT TAYTGGGGGTCGGTGGAGTCCATTTTGTTGACGCCTACGATCAGCTGCTI AATGGAGGCTCAGTAGAGTCCATCTTGTTAACTCCTACGATCAGTTGCTI AATGGAGGCTCAGTAGAGTCCATCTTGTTAACTCCTACGATCAGTTGCTI TACTGGGGTTCAGTGGAGTCCATCTTGTTTACTCCTACGATGAGCTGCTT TACTGGGGTICAGTGGAGTCCATCTTGT1TACTCCTACGATGAGCTGCT mactaggicag gagiccatcig TACTGAGGTTCAGTGGAGTCCATCTTGTTGACTCCTACAATGAGCTGCTT TACTGAGGTTCAGTGGAGTCCATCTTGTTGACTCCTACAATGAGCTGCTT TACTGGGGTTCAGTGGAGTCCATCTTGTTTACTCCTACGATGAGCTGCTI TACTGGGGTTCAGTGGAGTCCATCTTGTTTACTCCTACGATGAGCTGCTI TACTGAGGTTCAGTGGAGTCCATCTTGTTGACTCCTACAATGAGCTGCTI TACTGAGGTTCAGTGGAGTCCATCTTGTTGACTCCTACAATGAGCTGCTI TACTGAGGTTCAGTGGAGTCCATCTTGTTGACTCCTACAATGAGCTGCTI TAYTGGGGGTCAGTGGAGTCCATTTTGTTAACACCCACAATCAGCTGCTT

TACGCCGAGGGTGAAGGCGAGAAGGGCATGCTCACGGGTCTGGCCGTTCT GACGCCGAGGGTGAAGGCGAGAAGGGCATGCTCACGGGTCTGGCCGTTCT GACGCCGAGCGTGAAAGCGAGCAGGGCGTGCTCACGGGTCTGGCCGTTCT GACACCGAGCGTGAAGGCGAGCAGTGCGTGCTCGCGGGTTTGACCGTTCT GACACCGAGCGTGAAGGCGAGCAGTGCGTGCTCGCGGGTTTGACCGTTCT GACACCGAGCGTGAAGGCGAGCAGTGCGTGCTCGCGGGTTTGACCGTTCT GACACCGAGCGTGAAGGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCGAGCGTGAAGGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCCAGCGTGAAGGCCAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCGAGTGTGAAAGCGAGCAGAGCGTGCTCACGAGTCTGACCGTTCT GACACCGAGTGTGAAAGCGAGCAGAGCGTGCTCACGAGTCTGACCGTTCT GACGCCGAGAGTGAAGGCCAGCAGGGCGTGCTCGCGGGTCTGGCCGTTCT GACGCCGAGAGTGAAGGCCAGCAGGGCGTGCTCGCGGGTCTGGCCGTTCT GACACCAAGCGTGAAAGCGAGCAGGGCATGCTCGCGGGTCTGGCCATTCT GACACCAAGTGTGAAGCCAGCAGGGCGTGCTCNCGGGTCTGGCCGTTCT GACACCAAGTGTGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCAAGTGTGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCAAGTGTGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCAAGCGTGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGGCCATTCT GACACCAAGCGTGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGGCCATTCI
 GACACCAAG'GGGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCAAGTGTGAAAGCGAGCAGGGCGTGCTCGCGGGTCTGACCGTTCT GACACCAAGTGTGAAGGCGAGCAGAGCGTGCTCACGGGTTTGTCCGTTCT

$E F-1 \alpha$

A_hobartia
A-hobartia2
G-klugii
H_cordace_l
H^{-}cordace ${ }^{-}$
H_cordace_c
H_meropeWĀ
H_meropeWW
H_penelope
J_villida
J_villida2
N_leprea_e
N_leprea_-
O-correae

- kershawi

O_lathoniella
O_lathoniella
O_latialis
O_orichoral
O_orichora2
O_ptunarraBPJ
o_ptunarraBPJ1
O_ptunarraNW
V_kershawi
A_hobartia
A_hobartia2
G_klugii
H_cordace_l
H_cordace_k
H_cordace_c
H^{-}meropeWĀ
H-meropeWW
H-meropeww
H_penelope
J_villida
J_villida2
N_leprea_e
N_leprea_l
O-correae
O_kershawi
O-lathoniellal
O_lathoniella
O_latialis
O-orichoral o-orichora2 -orichora2 O_ptunarrabPJ
O_ptunarraBPJI
O_ptunarraN
V_kershawi

TGGAAATACCGGCCTCGAACTCACCGGTACCGGCGGCCACGATGAGCACG TGGAAATACCGGCCTCGAACTCACCGGTACCGGCGGCCACGATGAGCACG TAGAGATACCAGCCTCGAACTCACCAGTACCGGCAGCGACAATGAGCACA TGGAAATACCGGCCTCGAACTCACCGGTACCGGCAGCCACGATGAGCACG TGGAGATACCGGCCTCGAACTCACCGGTACCGGCAGCCACGATGAGCACG GGGAAATACCGGCCTCGAACTCACCGGTACCGGCAGCCACGATGAGCACG TGGAGATACCGGCCTCGAACTCACCGGTACCGGCGGCCACGATGAGCACG TGGAGATACCGGCCTCGAACTCACCGGTACCGGCGGCCACGATGAGCACG TGGAGATACCGGCCTCGAACTCACCGGTACCGGCGGCCACGATGAGCACG TGGAGATACCGGCTTCGAACTCACCGGTACCGGCGGCGACGATGAGCACG rGGAGATACCGGCTTCGAACTCACCGGTACCGGCGGCGACGATGAGCACG TGGAGATACCAGCTTCGAACTCACCTGTACCGGCGGCGACGATTAGCACG IGGAGATACCAGCTTCGAACTCACCTGTACCGGCGGCGACGATTAGCACG TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACTATCAGCACA TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAACACG TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACG TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACG rGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACG rGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACA rGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACA TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACG TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACG TGGAGATACCAGCTTCGAACTCACCAGTACCGGCGGCGACGATCAGCACG TAGAGATACCAGCTTCAAACTCACCAGTACCAGCGGCGACGATGAGCACA

GCGCAGTCAGCCTGCGAAGTTCCCGTGATCATGTTCTTGATGAAATCCCT GCGCAGTCAGCCTGCGAAGTTCCCGTGATCATGTTCTTGATGAAATCCCT GCACAATCAGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCCCT GCGCAGTCGGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGAGAGGTTCCCG'TGATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGTGAGGTTCCGGTAATCATGTTCTTGATGAAATCTCT GCGCAGTCGGCCTGTGAGGTTCCGGTAATCATGTTCTTGATGAAATCTCT GCGCAGTCAGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAGTCAGCCTGCGAGGTTCCCGTGATCATGTTCTTGATGAAATCTCT GCGCAATCAGCCTGCGAGGTTCCCGTGATCATGTTCTTAATGAAATCCCT GCGCAATCGGCCTGTGAAGTTCCGGTGATCATGTTCTTGATGAAATCTCT

A_hobartia
A_hobartia2
G_klugii
H_cordace_1 H_{-}cordace_-k H^{-}cordace ${ }^{-} \mathrm{C}$ H^{-}meropeWĀ H-meropeWW H_penelope J_villida J_villida2 N^{-}leprea e N leprea 1 N_1epreaO_correae
O-kershawi
O-lathoniella2
O_latialis O_orichoral O_orichora2 O_ptunarraBPJ O_ptunarraBPJ1 V_kershawi

A_hobartia
A-hobartia2
G klugii
H_cordace_l
H_cordace_- k
H_{-}cordace_c
H_meropeWĀ
H_meropeWW
H_penelope
J villida
J villida
J villida2 N_leprea_e N_leprea_
O_correae
O_kershawi
O-lathoniellal O_lathoniella2 O_latialis O orichoral O_orichora2 O_ptunarraBPJ O ptunarraBPJ1 o-ptunarraNW V kershawi

GTGCCCGGGAGCATCAATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGCCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCGTCAATGATAGTGACGTAGTACCTGGCGGTTTCAAACT GTGTCCGGGAGCGTCGATGATGGTGACGTAGAACTTGGCAGTCTCGAACT TGTCCGGGAGCGTCGATGATGGTGACGTAGAACTTGGCAGTCTCGAATT GTGTCCGGGAGCGTCGATGATGGTGACGTAGAACTTGGCAGTCTCGAACT GTGCCCGGGAGCGTCGATGATGGTGACGTAGAACTTGGCAGTCTCGAACT GTGCCCGGGAGCGTCGATGATGGTGACGTAGAACTTGGCAGTCTCGAACT TTGTCCGGGAGCGTCGATGATGGTGACGTAGAACTTGGCAGTCTCGAACT GTGGCCGGGAGCGTCGATGATGGTGACGTAGTATTTGGCGGTTTCGAACT GTGGCCGGGAGCGTCGATGATGGTGACGTAGTATTTGGCGGTTTCGAACT GTGACCGGGAGCGTCGATGATGGTGACGTAGTACCTAGCGGTCTCGAATT GTGACCGGGAGCGTCGATGATGGTGACGTAGTACCTAGCGGTCTCGAATT GTGTCCGGGAGCGTCGATGATAGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCATCGATGATGGTGACGTAGTACTTGGCGGTCTCGAACT GTGTCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCGTCGATGATAGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCGTCGATGATAGTTACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACI GTGTCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGTCCGGGAGCATCGATGATGGTGACGTAGTACCTGGCGGTCTCGAACT GTGACCGGGAGCGTCGATGATGGTGACGTAGTATTTGGCGGTCTCGAACT

TCCACAGAGCGATGTCGATGGTGATACCGCGCTCACGCTCAGCCTTCAGT TCCACAGAGCGATGTCGATGGTGATACCGCGCTCACGCTCATCCTTCAGT TCCACAGCGCGATGTCGATGGTGATACCGCGCTCGCGCTCAGCCTTTAGT TCCACAGAGCGATATCGATGGTGATACCGCGCTCACGMTCAKCCTTAAGT TGCACAGAGCGATATCGATGGTGATACCGCGCTCNCGGTCATACTTNCAC TCCACAGAGCGATATCGATGGTGATACCGCGCTCACGCTCAGCCTTCAGT TCCACAGAGCGATGTCGATGGTGATACCACGTTCACGCTCAGCATTCAGC TCCACAGAGCGATGTCGATGGTGATACCACGTTCACGCTCAGCCTTCAGN rCCACAGAGCGATGTCGATGGTGATACCGCGCTCACGCTCAGCCTTCAGT TCCATAGGGCGATATCGATGGTGATACCACGTTCACGCTCGGCCTTAAGT TCCATAGGGCGATATCGATGGTGATACCACGTTCACGTTCACACTTAAGT TCCATAGGGCGATATCGATGGTGATACCGCGCTCGCGCTCAGCTTTCAGT TCCATAGGGCGATATCGATGGTGATACCGCGCTCGCGCTCAGCTTTCAGT TCCACAGAGCAATGTCGATGGTGATACCGCGCTCGCGGTCAGCCTTCAGI
 TCCACAGAGCAATGTCGATGGTGATACCACGCTCGCGCTCAGCCTTCAGT TCCACAGAGCAATGTCGATGGTGATACCACGCTCGCGCTCAGCCTTCAGT TCCACAGAGCAATGTCGATGGTGATACCACGCTCGCGCTCAGCCTTCAG' TCCACAGAGCAATGTCGATGGTGATACCGCGCTCGCGCTCAGCCTTCAGI TCCACAGAGCAATGTCGATGGTGATACCGCGCTCGCGCTCAGCCTTCAGT TCCACAGAGCAATGTCGATGGTGATACCACGCTCGCGCTCAGCCTTCAGT TCCACAGAGCAATGTCGATGGTGATACCACGCTCGCGCTCAGCCTTCAGT TCCACAGAGCAATGTCGATGGTGATACCACGCTCGCGCTCAGCCTTCAGT TCCACAGAGCAATGTCGATGGTGATACCACGTTCACGCTCAGCCTTCAGT

A hobartia2
G ${ }^{-}$klugii
H cordace 1
H_cordace_1
$\mathrm{H}^{-c o r d a c e-} \mathrm{c}$
${ }_{H}{ }_{H}$ meropewAy
H_meropeWAY
H_meropeWW
H_penelope
J_villida2
N^{-}leprea e
N^{-}leprea 1
O-correaé
O_correae
TGTCCA--

rTGTCCA

GT

TTGTCCA--

.
TTGTCCA--

TTGTCCA---

TTGTCCA

O-kershawi

O_lathoniella2 TTGTCCA-
O_latialis TTGTCCA- \qquad
O_orichoral TTGTCCA
o_orichora2 TTGTCCA
o_ptunarraBPJ TTGTCCA

OptunarraNW TTGTCCA
V_kershawi TTGTCCA

Wingless

A_hobartia
G-hobarii
G_klugii
H_cordace_l
H_cordace_k
H_{-}^{-}cordace_C
H_meropeWĀ
H_meropeWW
H_penelope
J_villida
J villida2

- villida2

N_leprea_e
N_leprea_l
O_correae
O_kershawi
O-lathoniellal
O_latialis
O_orichoral
O-orichora2
O-ptunarraBPJ
o_ptunarraBPJI

- ptunarraNW

V_kershawi
A_hobartia
A_hobartia2
G_klugii
H_{-}cordace_l
H-cordace-k
H_cordace_c
H meropeWĀ
H-meropeWh
H-meropew
H_penelope
J_villida
J_villida2
N_leprea_e
N_leprea_
O-correae
O_kershawi
O-lathoniellal
O-lathoniell
Olatialis
O-orichoral
O-orichora2
o-ptunarrabPJ
O-ptunarraBPJI
O-ptunarraNW
v_kershawi

TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTKAAGACGTGC TGAATGTAAANTGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAANTGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAANTGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAANTGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC

TGAATGTAAAGTGTCATGGCATGTCTGGGTCCTGCACGGTTAAGACTTGC TGAATGTAAAGTGTCATGGCATGTCTGGGTCCTGCACGGTTAAGACTTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTCAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTCAAGACGTGC

TGAATGTAAANTGTCATGGCATGTCTGGGTCCTGCACGGTTAAGACGTGC TGAATGTAAANTGTCATGGCATGTCTGGGTCCTGCACGGTTAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACAGTAAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACAGTAAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACGGTGAAGACGTGC TGAATGTAAAATGTCATGGCATGTCTGGGTCCTGCACTGTCAAGACTTGT

TGGATGAGGCTTCCGAGTTTTCGCTCAGTGGGCGATGCGTTAAAGGATGG GGGATGAGGCTTCCGAGTTTTCGCTCAGTGGGCGATGCGTTAAAGGATGG GGATGAGGCTGCCGAGTTTTTCGCTCAGTAGGCGATACCTTAAAGGACGG TGGATGAGGCTGCCGAGTTTCCGGTCTGTAGGCGATGCTTTAAAGGACGG TGGATGAGGCTGCCGAGTTTCCGGTCTGTAGGCGATGCTTTAAAGGACGG rGGATGAGGCTGCCGAGTTTCCGGTCTGTAGGCGATGCTTTAAAGGACGG TGGATGAGGCTGCCGAGTTTCCGGTCCGTAGGCGACGCCTTAAAAGACGG TGGATGAGGCTGCCGAGTTTCCGGTCCGTAGGCGACGCCTTAAAAGACGG

TGGATGAGGCTGCCCAGTTTTCGCTCTGTGGGCGATGCATTGAAAGATCG TGGATGAGGCTGCCCAGTTTTCGCTCTGTGGGCGATGCATTGAAAGATCG TGGATGAGGCTGCCAAGTITTCGTTCAGTAGGCGATGCCTTAAAAGATGG TGGATGAGGCTGCCAAGTTTTCGTTCAGTAGGCGATGCCTTAAAAGATGG
------gGaigaggctgccgagcticcgatctgTaggcgatgcctranaiagatag IGCCGAGCITCCGAICIGIAGGCGAIGCCIHAAAAGATAG GGATGAGGCTGCCGAGCTTCCGATCTG'TAGGCGATTCCTTAAAAGATGG GGGATGAGGCTGCCGAGCITCCGATCTGTAGGCGATTCCTTAAAAGATGG TGGATGAGGCTGCCGAGCTTCCGATCTGTAGGCGATGCCTTAAAAGATGG TGGATGAGGCTGCCGAGCTTCCGATCTGTAGGCGATGCCTTAAAAGATGG TGGATGAGGCTGCCGAGCTTCCGATCTGTAGGCGATGCCTTAAAAGATGG TGGATGAGGCTGCCCAGTTTTCGCTCCGTGGGTGACGCGTTAAAAGATCG

A_hobartia
A-hobartia2
G_klugii
H^{-}cordace 1 H cordace k H^{-}cordace_C H_meropeWĀY
H_meropeWW
H-penelope
J_villida
J_villida2
N_leprea_e
N^{-}leprea-1
N_leprea-
O_correae

- kershawi

O-lathoniellaz
o_latialis
O_orichoral
O_orichora2
O_ptunarraBPJ
O_ptunarraBPJ1
O_ptunarraNW
V_kershawi
A_hobartia
A_hobartia2
G_klugii
H_cordace_l
H_cordace_k
H_cordace_c
H_meropeWAY
H-meropewW H_penelope J villida J_villida J_villida2 N-leprea_e N-lepreaO_correae
O-lathoniellal O_lathoniell O_latialis O_orichoral O_orichora2 O_ptunarraBPJ o_ptunarraBPJ1 o-ptunarraNW V^{-}kershawi

CTTCGACGGGGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAGGCAC CTTCGACGGGGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAGGCAC CTTCGACGGAGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAAGCGC ITCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAAGCAC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAAGCAC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAAGCAC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAAGCAC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAAGCAC

CTTCGATGGTGCGTCACGTGTCATGATGCCCAATACAGAAATCGAAGCGC CTTCGATGGTGCGTCACGTGTCATGATGCCCAATACAGAAATCGAAGCGC CTTCGATGGGGCGTCGCGGGTCATGATGCCTAACACGGAGGTGGAAGCAC CTTCGATGGGGCGTCGCGGGTCATGATGCCTAACACGGAGGTGGAAGCAC CTTTGATGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAATTGC信 CTTTGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAATTGC CTTTGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAATTGC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAATTGC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAATTGC CTTCGACGGTGCGTCGCGGGTCATGATGCCCAACACGGAGGTGGAATTGC TTTCGATGGAGCGTCGCGGGTCATGATGCCTAACACAGAAATCGAAGCGC

CTCTCCAGCGGAACGACGCCGTGCCGCACAGGGTCCCGCGACGAGACCGA CTCTCCAGCGGAACGACGCCGTGCCGCACAGGGTCCCGCGACGAGACCGA CACTCCAGCGGAACGACGCCGCTCCGCACAGAGTCCCGCGACGGGATCGA CTCTCCAGCGGAACGACGCCGCCCCGCACAGGGTGCCGCGACGAGACCGA CTCTCCAGCGGAACGACGCCGCCCCGCACAGGGTGCCGCGACGAGACCGA CTCTCCAGCGGAACGACGCCGCCCCGCACAGGGTGCCGCGACGAGACCGA CCCTCCAGCGGAACGACGCCGCTCCGCACAGGGTGCCGCGCCGGGACCGA CCCTCCAGCGGAACGACGCCGCTCCGCACAGGGTGCCGCGCCGGGACCGA

CCGTACAGCGAAACGACGTAGCGCCTCACAGAGTTCCACGAAGAGATCGG CCGTACAGCGAAACGACGTAGCGCCTCACAGAGTTCCACGAAGAGATCGG CACTTCAGCGAAACGACGCCGCCCCGCACAGAGTACCGCGACGAGATCGA CACTTCAGCGAAACGACGCCGCCCCGCACAGAGTACCGCGACGAGATCGA
CTCTGCAGCGGAATGACGCCGCTCCGCACAGAGTCCCGCGGCGAGACCGC CTCTGCAGCGGAATGACGCCGCTCCGCACAGAGTCCCGCGGCGAGACCGC CTCTGCAGCGGAACGACGCCGCTCCGCACAGAGTCCCGCGGCGAGACCGC CTCTGCAGCGGAACGACGCCGCTCCGCACAGAGTCCCGCGGCGAGACCGC CTCTGCAGCGGAACGACGCCGCTCCGCACAGAGTCCCGCGGCGAGACCGC CTCTGCAGCGGAACGACGCCGCTCCGCACAGAGTCCCGCGGCGAGACCGC CTCIGCAGCGGAC CCGTACAGCGAAATGACGCAGCGCCTCACAGAGTTCCAAGAAGAGATCGG

Wingless

A_hobartia
G-klugii
H_cordace_l
H^{-}cordace ${ }^{-}$
H_cordace_c
H_meropeWAY
H_meropeWh
H_penelope
J_villida
J_villida2
N_leprea_e
N_leprea_l
o correae
O kershawi
O-lathoniellal
O-lathoniella2 O_latialis O_orichoral O_orichora2 O_ptunarraBPJ O_ptunarraBPJI O_ptunarraNW V_kershawi

A_hobartia
A hobartia2
G_klugii
H-cordace_1
H_{-}cordace_k
H_{B} cordace_c
H_meropeWĀY
H_meropeWW
H_penelope
J villida
J villida2
N - leprea e
N-leprea_e
N_leprea_l
O_correae
o-kershaw O_latialis O_orichoral O_orichora2 O_ptunarraBPJ O_ptunarraBPJ1 O ptunarraNW
v kershawi
 O_lathoniellal CAAGGACCTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC

TACAGGTTTCAACTTCGGCCGCACAATCCTGACCACAAAACGCCCGGGGT tACAGGITTCAACTTCGGCCGCACAATCCTGACCACAAAACGCCCGGGGT TACAGGTTTCAACTCCGGCCGCACAATCCTGACCACAAAACACCCGGGGT ACAGGTTTCAGCTCCGGCCGCACAATCCTGACCACAAAACACCCGGGGT ACAGGTTTCAGCTCCGGCCGCACAATCCTGACCACAAAACACCCGGGGT TACAGGTTTCAGCTCCGGCCGCACAATCCTGACCACAAAACACCCGGGGT TACAGGTTTCAGCTCCGGCCGCACAATCC'TGACCACAAAACACCGGGGGT TACAGGTTTCAGCTCCGGCCGCACAATCCTGACCACAAAACACCGGGGGT

TACAGGTTCCAACTCAGGCCGCACAATCCCGATCATAAGACACCGGGATC AACAGGTTCCAACTCAGGCCGCACAATCCCGATCATAAGACACCGGGATC rACAGGTTTCAACTTCGGCCGCACAATCCTGACCACAAAACACCCGGGGT TACAGGTTTCAACTTCGGCCGCACAATCCTGACCACAAAACACCCGGGGT -----------------------TACAGGTTTCAACTTCGGCCGCACAACCCTGACCACAAAACACCCGGGGT TACAGGTTTCAACTTCGGCCGCACAACCCTGACCACAAAACACCCGGGGT TACAGGTTTCAACTTCGGCCGCACAACCCTGACCATAAAACACCCGGAGT TACAGGTTTCAACTTCGGCCGCACAACCCTGACCACAAAACACCCGGAGT TACAGGTTTCAACTTCGGCCGCACAACCCTGACCACAAAACACCCGGGGT TACAGGTTTCAACTTCGGCCGCACAACCCTGACCACAAAACACCCGGGGT TACAGGTTTCAACTTCGGCCGCACAACCCTGACCACAAAACACCCGGGGT TACAGATTCCAGCTTCGGCCGCACAATCCCGATCATAAAACACCGGGGGC

CAAGGACCTAGTATACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTATACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCGTCGCCGGGTTTCTGCGAAAAGAACC CAAGGACTTAGTGTACCTGGAATCTTCGCCGGGTTTCTGCGAAAAGAACC AAAGGACTTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACTTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCGTCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCGTCGCCGGGTTTCTGCGAAAAGAACC

CAAAGACCTAGTGTACCTCGAATCATCGCCGGGTTTCTGTGAAAAGAACC CAAAGACCTAGTGTACCTCGAATCATCGCCGGGTTTCTGTGAAAAGAACC CAAGGACCTAGTATACCTGGAATCGTCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTATACCTGGAATCGTCGCCGGGTTTCTGCGAAAAGAACC
 ---CAAGGACCTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC CAAGGACCTAGTGTACCTGGAATCATCGCCGGGTTTCTGCGAAAAGAACC AAAAGACCTAGTCTACCTTGAATCATCACCGGGTTTTTGTGAAAAGAACC

A_hobartia
A hobartia2
G_klugii
H_cordace_l H_cordace_l H_cordace_ H_cordace_c H_meropeWAY H_meropeWW H_penelope J_villida J_villida2 N_leprea_e N_leprea_l O_correae O-kershaw O-kershawi - lathoniellal O-latialis O-orichoral O-orichora2 O-ptunarraBPJ O_ptunarraBPJ1 O_ptunarraNW V kershawi

A_hobartia
A-hobartia2
G klugii
H^{-}cordace_l H cordace_k H_cordace_c H_meropeWĀ H_meropeWW H_penelope J villida J_villida2 N^{-}leprea e N-leprea_e O_correae - kershawi O_latialis O-orichoral O_orichora2 O_ptunarraBPJ O_ptunarraBPJ1 O ptunarranW V kershawi
o_lathoniella1 ATCGGCGTCGACGGCTGCGACCTCATGTGCTGTGGCCGCGGGTACCGGAC _

CGCGGCTGGGCATTCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGC CGCGGCTGGGCATTCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGC CGCGGCTGGGCATTCCCGGTACGCACGGGCGCGCCTGCAACGACACGAGC CGCGGCTGGGCATCCCCGGCACGCACGGGCGAGCCTGCAACGACACGAGT CGCGGCTGGGCATCCCCGGCACGCACGGGCGAGCCTGCAACGACACGAGT CGCGGCTGGGCATCCCCGGCACGCACGGGCGAGCCTGCAACGACACGAGT CGCGGCTCGGCATCCCCGGCACGCACGGGCGAGCCTGCAACGACACGAGC CGCGGCTCGGCATCCCCGGCACGCACGGGCGAGCCTGCAACGACACGAGC
 CGAGGCTGGGCATTCCCGGCACGCACGGGCGTGCCTGCAACGATACGAGC CGAGGCTGGGCATTCCCGGCACGCACGGGCGTGCCTGCAACGATACGAGC CACGGCTGGGCATTCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGT CACGGCTGGGCATTCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGT

CGCGGCTGGGCATCCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGT CGCGGCTGGGCATCCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGT CGCGACTGGGCATCCCCGGTACGCACGGGCGTGCCOGCACGATACGG CGCGACTGGGCATCCCCGGTACGCACGGGCGTGCCTGCAACGATACGAGT CGCGGCTGGGCATCCCCGGTACGCACGGGCGTACCTGCAACGATACGAGT CGCGGCTGGGCATCCCCGGTACGCACGGGCGTACCTGCAACGATACGAGT CGCGGCTGGGCATCCCCGGTACGCACGGGCGTACCTGCAACGATACGAGT CGAGGCTGGGCATTCCCGGCACGCACGGGCGTGCCTGCAACGATACCAGC

ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGGTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGGTACCGGAC ATCGGCGTGGACGGCTGCGACCTGATGTGCTGCGGCCGCGGTTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGCTACCGCAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGCTACCGCAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGCTACCGCAC ATCGGCGTGGACGGCTGCGACCTCATGTGCTGCGGCCGCGGCTACCGCAC ATCGGCGTGGACGGCTGCGACCTCATGTGCTGCGGCCGCGGCTACCGCAC ATCGGCGTCGACGGCTGCGATCTCATGTGTTGCGGCCGTGGCTACCGGAC ATCGGCGTCGACGGCTGCGATCTCATGTGTTGCGGCCGTGGCTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGGTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGCGGCCGCGGGTACCGGAC

ATCGGCGTTGACGGCTGCGACCTCATGTGCTGCGGCCGCGGGTACCGGAC ATCGGCGTTGACGGCTGCGACCTCATGTGCTGCGGCCGCGGGTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGTGGCCGCGGGTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGTGGCCGCGGGTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGCTGTGGCCGCGGGTACCGGAC ATCGGCGTCGACGGCTGCGACCTCATGTGTTGCGGTCGTGGTTACCGGAC

Wingless

A_hobartia CGAGACGATGGTCGTCGTGGAGCGATGCAACTGTACATTCCATTGGTGCG

A_hobartia2 CGAGACGATGGTCGTCGTTGAGCGATGCAACTGTACATTCCATTGGTGCG

G_klugii

H_cordace_l
H^{-}cordace ${ }^{-}$
H-cordace_c
H_meropeWAY
H_meropeWh
H_penelope
J villida
J_villida2
N^{-}leprea
N_leprea_e
N_leprea_l
O_correae
-kershawi
O_lathoniellal TGAAACADGTTTGTCGTGGAGCGATGCAACTGTACATTCCANTGG---
O-lathoniella2 TGAAACAATGTTTGTCGTGGAGCGATGCAACTGTACATTCCANTGGTGCC
O_latialis
O_orichoral
GGAGACAATGIC GAGACATGTTTGTCGTGGAGCGATGCAACTGTACATTCCATTGGTGCG O_orichora2 CGAGACAATGTTTGTCGTGGAGCGATGCAACTGTACATTCCATTGGTGCG O_ptunarraBPJ CGAGACTATG'TTTGTCGTGGAACGATGCAACTGNACATTCCATTGGTGCG o-ptunarraBPJ1 CGAGACTATGTTTGTCGTGGAACGATGCAACTGNACATTCCATTGGTGCG o-ptunarraNW CGAGACTATGTTTGTCGTGGAACGATGCAACTGTACATTCCATTGGTGCG v-pershawi CGAAACAATGCTTGTTGTGGAACGATGCAATTGTACATTCCANTGGTGCN

G_klugii
H_cordace_l
H_cordace_k
H_cordace_c
H_{-}meropeWĀY
H_meropeWW
H-meropeWW
H_penelope
J_villida
J_villida2
N_leprea_e
N_leprea_l
O_correae
O_kershawi
O_lathoniella2
O_latialis
O-orichoral
O-orichora2
O_ptunarraBPJ
o ptunarraBPJI

- ptunarranW

V_kershawi

ccccacta
GCGCAGTAA--GCGCAGTAA--

 GCGCAGAA

 GCGCAGTAA C--1 GCGCAGTAA-

 GCGCAGTAA---GCGCAGTAA

COI

			$\begin{aligned} & \text { es } \\ & \frac{3}{7} \\ & 0 \end{aligned}$			0 0 0 0 0 0 1 1	H merope WAY	$\begin{aligned} & \text { § } \\ & \vdots \\ & 0 \\ & 0.0 \\ & \text { E } \\ & \text { I } \end{aligned}$		9 3 3	$\begin{aligned} & \text { N } \\ & \text { \% } \\ & \text { 3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbb{0} \\ & \mathscr{0} \\ & \stackrel{0}{0} \\ & \underset{\sim}{\mathbf{O}} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathscr{0} \\ & \stackrel{y}{0} \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 00 \\ & 00 \\ & 00 \\ & 0.0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 荷 } \\ & \frac{0}{0} \\ & \frac{0}{5} \\ & \frac{1}{0} \end{aligned}$		$\frac{\stackrel{0}{\mathbf{W}}}{\frac{0}{\mathbf{T}}}$	$$		$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$			3 00 00 00 0
A hobartia1	-																							
A hobartia2	0.00																							
G klugii	0.11	0.11																						
H cordace 1	0.10	0.10	0.12																					
H cordace k	0.10	0.10	0.13	0.02																				
H cordace c	0.09	0.09	0.13	0.02	0.00																			
H merope Way	0.11	0.11	0.11	0.11	0.10	0.10																		
H merope WW	0.11	0.11	0.11	0.09	0.09	0.08	0.03																	
H penelope	0.12	0.12	0.12	0.09	0.09	0.08	0.10	0.09																
J villida1	0.11	0.11	0.09	0.12	0.11	0.11	0.12	0.12	0.13															
J villida2	0.11	0.11	0.09	0.12	0.11	0.11	0.12	0.12	0.13	0.00														
N leprea e	0.10	0.10	0.11	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11													
N lepreal	0.10	0.10	0.12	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.01												
O correae	0.10	0.10	0.12	0.09	0.10	0.10	0.10	0.11	0.10	0.12	0.12	0.10	0.10											
O kershawi	0.12	0.12	0.12	0.11	0.12	0.12	0.12	0.12	0.11	0.13	0.13	0.11	0.11	0.06										
O lathoniella 1	0.11	0.11	0.11	0.10	0.11	0.11	0.09	0.10	0.11	0.13	0.13	0.11	0.11	0.06	0.08									
O lathoniella2	0.11	0.11	0.11	0.10	0.11	0.11	0.09	0.10	0.11	0.13	0.13	0.11	0.11	0.06	0.08	0.00								
O latialis	0.12	0.12	0.11	0.09	0.11	0.10	0.08	0.10	0.10	0.13	0.13	0.11	0.11	0.07	0.08	0.06	0.06							
O orichora1	0.11	0.11	0.10	0.07	0.10	0.10	0.10	0.09	0.10	0.12	0.12	0.11	0.11	0.05	0.06	0.06	0.06	0.06						
O orichora2	0.11	0.11	0.10	0.07	0.10	0.10	0.10	0.09	0.10	0.12	0.12	0.11	0.11	0.05	0.06	0.06	0.06	0.06	0.00					
0 ptunarra BPJ	0.12	0.12	0.11	0.09	0.11	0.10	0.08	0.10	0.10	0.13	0.13	0.11	0.11	0.06	0.08	0.07	0.07	0.01	0.06	0.06				
O ptunarra BPJ1	0.12	0.12	0.11	0.09	0.11	0.10	0.08	0.10	0.10	0.13	0.13	0.11	0.11	0.06	0.08	0.07	0.07	0.01	0.06	0.06	0.00			
O ptunarra NW	0.12	0.12	0.11	0.09	0.11	0.10	0.08	0.10	0.10	0.13	0.13	0.11	0.11	0.06	0.08	0.07	0.07	0.01	0.06	0.06	0.00	0.00		
\checkmark kershawi	0.11	0.11	0.08	0.12	0.12	0.12	0.11	0.11	0.12	0.12	0.12	0.12	0.12	0.11	0.13	0.13	0.13	0.11	0.11	0.11	0.12	0.12	0.12	
Age (mya)																								
*38	33.98	33.98	34.84	33.42	33.47	33.59	33.77	33.97	33.30	33.42	33.42	33.38	33.30	33.79	33.14	33.05	33.11	33.74	33.75	33.75	33.55	33.55	33.49	38.00
*35	34.30	31.30	32.09	30.78	30.83	30.94	31.10	31.29	30.67	30.78	30.78	30.74	30.67	31.12	30.52	30.44	30.50	31.07	31.08	31.08	30.90	30.90	30.85	35.00

369

EF-1a

			言 $\substack{x \\ 0}$		$\begin{gathered} \underline{r} \\ 00 \\ 00 \\ 00 \\ 0 \\ \mathbf{O} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & I \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{0}{0} \\ & \frac{1}{\otimes} \\ & \stackrel{Q}{\otimes} \\ & \text { I } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { On } \\ & \vdots \\ & \hline \end{aligned}$		$\begin{aligned} & \overline{\mathscr{}} \\ & \text { O} \\ & \frac{0}{2} \end{aligned}$			T 0 0.0 0 0 0 0.0 0		$\frac{\infty}{\frac{0}{01}}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & \frac{1}{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { ㄴ } \\ & \text { 응 } \\ & 0 \end{aligned}$			\sum_{2}^{2} 0 N S 0 0	
A hobartial	-																							
A hobartia2	0.00																							
G klugii	0.08	0.08																						
H cordace 1	0.09	0.09	0.10																					
H cordace k	0.11	0.11	0.11	0.03																				
H cordace c	0.09	0.09	0.10	0.00	0.03																			
H merope WAY	0.08	0.08	0.09	0.03	0.05	0.03																		
H merope WW	0.08	0.08	0.09	0.03	0.05	0.03	0.01																	
H penelope	0.08	0.08	0.09	0.05	0.06	0.04	0.04	0.03																
J villida1	0.10	0.11	0.11	0.12	0.13	0.12	0.11	0.10	0.11															
J villida2	0.11	0.11	0.11	0.12	0.13	0.12	0.11	0.11	0.11	0.01														
N leprea e	0.09	0.09	0.10	0.11	0.13	0.11	0.11	0.11	0.10	0.13	0.13													
N lepreal	0.10	0.10	0.10	0.12	0.13	0.11	0.11	0.11	0.11	0.13	0.14	0.00												
O correae	0.09	0.09	0.08	0.10	0.11	0.10	0.10	0.09	0.10	0.13	0.13	0.10	0.11											
O kershawi	0.08	0.08	0.08	0.11	0.11	0.11	0.10	0.09	0.10	0.12	0.12	0.10	0.10	0.05										
O lathoniella 1	0.09	0.09	0.09	0.12	0.13	0.11	0.11	0.10	0.11	0.13	0.13	0.10	0.10	0.04	0.04									
O lathoniella2	0.09	0.09	0.09	0.12	0.13	0.11	0.11	0.10	0.11	0.13	0.13	0.10	0.10	0.04	0.04	0.00								
O latialis	0.10	0.09	0.09	0.12	0.13	0.11	0.11	0.10	0.11	0.13	0.13	0.10	0.10	0.05	0.05	0.01	0.01							
0 orichora1	0.09	0.09	0.08	0.10	0.12	0.10	0.10	0.09	0.10	0.13	0.13	0.10	0.10	0.02	0.04	0.04	0.04	0.05						
O orichora2	0.09	0.09	0.08	0.11	0.12	0.10	0.10	0.10	0.10	0.13	0.13	0.10	0.10	0.02	0.04	0.04	0.04	0.05	0.01					
Optunarra BPJ	0.10	0.09	0.09	0.12	0.13	0.11	0.11	0.10	0.11	0.13	0.13	0.10	0.10	0.05	0.05	0.01	0.01	0.00	0.05	0.05				
Optunara BPJ1	0.10	0.09	0.09	0.12	0.13	0.11	0.11	0.10	0.11	0.13	0.13	0.10	0.10	0.05	0.05	0.01	0.01	0.00	0.05	0.05	0.00			
O ptunarra NW	0.10	0.09	0.09	0.12	0.13	0.12	0.11	0.11	0.11	0.13	0.13	0.10	0.10	0.05	0.05	0.01	0.01	0.00	0.05	0.05	0.00	0.00		
\checkmark kershawi	0.11	0.11	0.11	0.11	0.13	0.11	0.11	0.10	0.11	0.08	0.08	0.13	0.14	0.12	0.12	0.12	0.12	0.13	0.12	0.12	0.13	0.13	0.13	
Age (mya)																								
*38	33.80	33.84	33.69	33.66	33.08	33.76	33.95	34.03	33.90	34.92	34.84	32.96	32.86	33.38	33.47	33.38	33.38	33.19	33.43	33.38	33.19	33.19	33.19	38.00
*35	31.14	31.17	31.03	31.00	30.47	31.09	31.27	31.35	31.22	32.16	32.09	30.35	30.27	30.74	30.83	30.75	30.75	30.57	30.79	30.74	30.57	30.57	30.57	35.00

Wingless

	.0 $\frac{0}{8}$ 0 0 8 5		$\begin{aligned} & : \overline{3} \\ & \frac{3}{x} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{U} \\ & \text { प्ष } \\ & 0 \\ & 1 \\ & \hline \end{aligned}$					7 0 3 3	$$	$\begin{aligned} & \mathscr{0} \\ & \mathscr{Q} \\ & \stackrel{y}{0} \\ & \underset{O}{2} \\ & \mathbb{Z} \end{aligned}$	$\overline{10}$ $\frac{2}{2}$ $\frac{10}{2}$			\square 0 0 0 0 0 0	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & \hline \mathbf{S} \\ & \hline 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & \mathbb{N} \\ & \stackrel{0}{0} \\ & \stackrel{y}{D} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$$	
A hobartial	-																					
A hobartia2	0.00																					
G klugii	0.07	0.07																				
H cordace 1	0.06	0.06	0.08																			
H cordace k	0.06	0.06	0.08	0.00																		
H cordace c	0.06	0.06	0.08	0.00	0.00																	
H merope WAY	0.09	0.09	0.08	0.05	0.05	0.05																
H merope WW	0.09	0.09	0.08	0.05	0.05	0.05	0.00															
J villida1	0.14	0.14	0.16	0.15	0.15	0.15	0.16	0.16														
J villida2	0.14	0.14	0.16	0.15	0.15	0.15	0.16	0.16	0.00													
N leprea e	0.05	0.06	0.07	0.07	0.07	0.07	0.09	0.09	0.13	0.13												
N lepreal	0.05	0.06	0.07	0.07	0.07	0.07	0.09	0.09	0.13	0.13	0.00											
O lathoniella 1	0.08	0.08	0.10	0.08	0.08	0.08	0.10	0.10	0.14	0.14	0.07	0.07										
O lathoniella2	0.08	0.08	0.10	0.08	0.08	0.08	0.10	0.10	0.14	0.14	0.07	0.07	0.00									
O orichora1	0.08	0.08	0.09	0.08	0.08	0.08	0.10	0.10	0.14	0.14	0.07	0.07	0.03	0.03								
O orichora2	0.07	0.08	0.09	0.08	0.08	0.08	0.10	0.10	0.14	0.14	0.07	0.07	0.03	0.03	0.00							
0 ptunarra BPJ	0.07	0.07	0.09	0.07	0.07	0.07	0.09	0.09	0.14	0.14	0.07	0.07	0.02	0.02	0.03	0.02						
Optunarra BPJ1	0.07	0.07	0.09	0.07	0.07	0.07	0.09	0.09	0.14	0.14	0.07	0.07	0.02	0.02	0.03	0.02	0.00					
O ptunarra LMLE1	0.07	0.07	0.09	0.07	0.07	0.07	0.09	0.09	0.14	0.14	0.07	0.07	0.02	0.02	0.03	0.02	0.00	0.00				
Optunarra LMLE2	0.07	0.07	0.09	0.07	0.07	0.07	0.09	0.09	0.14	0.14	0.07	0.07	0.02	0.02	0.03	0.02	0.00	0.00	0.00			
Optunarra NW	0.07	0.07	0.09	0.07	0.07	0.07	0.09	0.09	0.14	0.14	0.07	0.07	0.02	0.02	0.03	0.02	0.00	0.00	0.00	0.00		
V kershawi	0.14	0.15	0.17	0.17	0.16	0.16	0.17	0.17	0.08	0.08	0.13	0.13	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.16	
Age (mya)																						
*38	32.51	32.41	31.59	31.60	31.75	31.75	31.37	31.37	35.08	35.08	32.93	32.93	32.24	32.24	31.93	31.85	32.07	32.07	32.10	32.10	32.10	38.00
*35	29.95	29.85	29.10	29.10	29.24	29.24	28.89	28.89	32.31	32.31	30.33	30.33	29.70	29.70	29.41	29.33	29.54	29.54	29.56	29.56	29.56	35.00

Combined

	7 $\frac{01}{5}$ $\frac{0}{0}$ $\frac{8}{4}$		$\begin{aligned} & \text { 方 } \\ & \text { 表 } \\ & 0 \end{aligned}$	$\overline{0}$ 0 0 0 0 1		$\begin{aligned} & 0 \\ & \mathbf{U} \\ & \text { O} \\ & \text { M } \\ & \mathbf{O} \\ & \text { I } \\ & \hline \end{aligned}$				7 8 3 3	$\begin{aligned} & \text { y } \\ & \text { \% } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbb{O} \\ & \mathbb{O} \\ & \stackrel{0}{2} \\ & \mathbb{Q} \\ & 2 \end{aligned}$		$\begin{aligned} & \mathbb{\otimes} \\ & \stackrel{0}{0} \\ & \hline \mathbf{8} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & \frac{3}{90} \\ & 50 \\ & 0 \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$			$\frac{.0}{\frac{0}{00}}$	$\begin{aligned} & \overline{0} \\ & \mathbf{0} \\ & \mathbf{U} \\ & \mathbf{S} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { N } \\ & \text { Si } \\ & 0 \\ & \hline \end{aligned}$			3 \sum_{0}^{0} E 䔍 0 0	
A hobartia1	－																							
A hobartia2	0.00																							
G klugii	0.09	0.09																						
H cordace 1	0.09	0.09	0.10																					
H cordace k	0.09	0.09	0.11	0.02																				
H cordace c	0.08	0.08	0.10	0.01	0.01																			
H merope WAY	0.09	0.09	0.10	0.06	0.07	0.06																		
H merope WW	0.09	0.09	0.09	0.05	0.06	0.05	0.01																	
H penelope	0.10	0.10	0.10	0.07	0.07	0.06	0.06	0.06																
J villida1	0.12	0.12	0.12	0.13	0.13	0.12	0.13	0.12	0.12															
J villida2	0.12	0.12	0.12	0.13	0.13	0.12	0.13	0.12	0.12	0.00														
Nleprea e	0.09	0.09	0.10	0.10	0.10	0.10	0.11	0.10	0.11	0.12	0.12													
N lepreal	0.09	0.09	0.10	0.10	0.11	0.10	0.11	0.11	0.11	0.12	0.13	0.01												
O correae	0.10	0.10	0.09	0.10	0.11	0.10	0.10	0.10	0.10	0.13	0.13	0.10	0.10											
O kershawi	0.10	0.10	0.10	0.11	0.11	0.11	0.10	0.11	0.10	0.13	0.13	0.11	0.10	0.05										
O lathoniella1	0.09	0.09	0.10	0.10	0.11	0.10	0.10	0.10	0.11	0.13	0.13	0.09	0.09	0.05	0.06									
O lathoniella2	0.09	0.09	0.10	0.10	0.11	0.10	0.10	0.10	0.11	0.13	0.13	0.09	0.09	0.05	0.06	0.00								
O latialis	0.11	0.10	0.10	0.10	0.12	0.11	0.10	0.10	0.10	0.13	0.13	0.10	0.10	0.06	0.06	0.04	0.04							
Oorichora1	0.09	0.09	0.09	0.09	0.10	0.09	0.10	0.10	0.10	0.13	0.13	0.10	0.10	0.03	0.05	0.04	0.04	0.05						
O orichora2	0.09	0.09	0.09	0.09	0.10	0.09	0.10	0.10	0.10	0.13	0.13	0.10	0.10	0.03	0.05	0.04	0.04	0.05	0.00					
O ptunarra BPJ	0.10	0.09	0.10	0.10	0.11	0.10	0.09	0.10	0.10	0.13	0.13	0.09	0.09	0.06	0.06	0.03	0.03	0.01	0.05	0.05				
O ptunara BPJ1	0.10	0.09	0.10	0.10	0.11	0.10	0.09	0.10	0.10	0.13	0.13	0.09	0.09	0.06	0.06	0.03	0.03	0.01	0.05	0.05	0.00			
O ptunarra NW	0.10	0.09	0.10	0.10	0.11	0.10	0.09	0.10	0.10	0.13	0.13	0.10	0.10	0.06	0.06	0.04	0.04	0.01	0.05	0.05	0.00	0.00		
\checkmark kershawi	0.12	0.12	0.12	0.13	0.13	0.13	0.12	0.12	0.11	0.09	0.09	0.13	0.13	0.12	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	
Age（mya）																								
＊38	33.55	33.54	33.60	33.08	32.89	33.22	33.28	33.38	33.68	34.47	34.43	33.08	33.02	33.58	33.35	32.98	33.00	33.45	33.17	33.13	33.04	33.04	33.02	38.00
＊35	30.90	30.89	30.95	30.47	30.29	30.60	30.65	30.74	31.02	31.75	31.72	30.47	30.41	30.93	30.72	30.37	30.39	30.81	30.55	30.51	30.43	30.43	30.41	35.00

Appendix 8 - Phylogenetic Trees

Figure A8.1 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from COl sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (Length $455, \mathrm{CI}=0.545, \mathrm{RI}=0.715$).

Figure A8.2 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from COl sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (Length 458, $\mathrm{CI}=0.541, \mathrm{RI}=0.711$)

Figure A8.3 Maximum likelihood tree (ML analysis) retrieved from CO 1 sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$
(Length 458, $\mathrm{CI}=0.541, \mathrm{RI}=0.711$).

Figure A8.4 Bootstrap consensus tree resulting from the down weighting of third position nucleotide retrieved from CO 1 sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (length $523, \mathrm{CI}=0.581, \mathrm{RI}=0.746$).

Figure A8.5 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from CO 1 sequence, unweighted analysis. Values above branches are bootstrap vales $>50 \%$ (length $2310, \mathrm{CI}=0.501, \mathrm{RI}=0.738$).

EF-1a

Figure A8.6 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from EF-1 α sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (Length 442, CI $=0.658, \mathrm{RI}=0.826$)

Figure A8.7 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from EF - 1α sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$
(Length $443, \mathrm{CI}=0.657, \mathrm{RI}=0.825$).

Figure A8.8 Maximum likelihood tree (ML analysis) retrieved from $\mathrm{EF}-1 \alpha$ sequence, unweighted analysis. Values above branches are bootstrap vales >50\%
(Length $458, \mathrm{CI}=0.541, \mathrm{RI}=0.711$).

Figure A8.9 Bootstrap consensus tree resulting from the down weighting off third position nucleotide retrieved from $E F-1 \alpha$ sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (length $594, \mathrm{CI}=0.631, \mathrm{RI}=0.794$).

Figure A8.10 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from EF-1 α sequence, unweighted analysis. Values above branches are bootstrap vales $>50 \%$ (length $1849, \mathrm{CI}=0.688, \mathrm{RI}=0.834$).

Wingless
 tree (MP analysis) retrieved from wingless sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (Length $196, \mathrm{CI}=0.766, \mathrm{RI}=0.883$)

100

100

Figure A8.12 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from wingless sequence, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (Length 196, $\mathrm{CI}=0.766, \mathrm{RI}=0.883$)

Figure A8.13 Maximum likelihood tree (ML analysis) retrieved from wingless sequence, unweighted analysis.

Values above branches are bootstrap vales $>50 \%$ (Length 196, $\mathrm{CI}=0.766, \mathrm{RI}=0.883$)

Figure A8.14 Bootstrap consensus tree resulting from the down weighting off third position nucleotide retrieved from wingless sequence, unweighted analysis. Values above branches are bootstrap vales $>50 \%$ (length $389, \mathrm{CI}=0.740, \mathrm{RI}=0.870$).

Figure A8.15 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from wingless sequence, unweighted analysis. Values above branches are bootstrap vales $>50 \%$ (length $777, \mathrm{CI}=0.763, \mathrm{RI}=0.882$).

Combined

Figure A8.16 Bootstrap consensus of the most parsimonious tree (MP analysis) retrieved from combined sequences, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$ (Length 1113, $\mathrm{CI}=0.621, \mathrm{RI}=0.782$)

Figure A8.17 Bootstrap consensus of the minimum evolution tree (ME analysis) retrieved from combined sequences, unweighted analysis.
Values above branches are bootstrap vales $>50 \%$
(Length 1122, $\mathrm{CI}=0.616, \mathrm{RI}=0.778$)

Figure A8.18 Maximum likelihood tree (ML analysis) retrieved from combined sequences, unweighted analysis.

Values above branches are bootstrap vales $>50 \%$
(Length 1113, $\mathrm{CI}=0.621, \mathrm{RI}=0.782$)

Figure A8.19 Bootstrap consensus tree resulting from the down weighting off third position nucleotide retrieved from combined sequences, unweighted analysis. Values above branches are bootstrap vales $>50 \%$ (length $1521, \mathrm{CI}=0.620, \mathrm{RI}=0.779$).

Figure A8.20 Bootstrap consensus tree resulting from analysis of the transition/transversion ratio retrieved from combined sequences, unweighted analysis. Values above branches are bootstrap vales $>50 \%$ (length $5061, \mathrm{CI}=0.597, \mathrm{RI}=0.780$).

Appendix 9 - O. ptunarra population sequences

Bel1	TTAAATTTTAATTAAAATTAAAATITCACCTAATAATTT-AATATTTA-T	Long5	ttanattttanttanat-tanaitttcacctantantte-antattta-t	ShR1	
Bel2	TTAAATTTTAATTAAAATTAAAATITCACCTAATAATTT-AATATTTA-T	Long6	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
Bel3	TTAAATTTTAATTAAAATTAAAATITCACCTAATAATTT-AATATTTA-T	Long 7	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	ShR2	tTTAATTTTAATTAAAT-TAAAATtTCACCTAATAATTT-AATATTTA-T
BPJ1	TTAAATTTTAATTAAATTTAAAATtTCACCTAATAATTT-AATATTTA-T	Long8	ttanattttanttanat-taAaAtttcacctantanttt-antattta-t		
BPJ2	TTAGATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	LPLB1	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	ShR3	TTTAATTTTAATTAAAT-TAAAATtTCACCTAATAATTG-AATATTTA-T
BPJ3	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	LPLB2	ttanattttanttanat-taAaATtTCACCTAATAATTT-AATATtTA-T		
BPJ4	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	LPL83	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPat1	tTTAATTTTAATtAAAT-TAAAATtTCACCTAATAATTG-AATATTTA-t
BTS1	tTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	LC1	TTAAATTTTAATTAAAT-TAAAATITCACCTAATAATTT-AATATTTA-T		
BTS2	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	LTC2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPat2	TtaAttitanttanat-tanaitttcacctantagtag-aitattta-t
BTS3	TTAAATTTTAATTAAATTTAAAATITCACCTAATAATTT-AATATTTA-T	LTC3	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
BTS4	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	MH1	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPat 3	tTTAATtTTAATTAAAT-TAAAATTTCACCTAATAATTG-AATATTTA-T
BTTC1	tTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	MH2	ttaAatttianttanat-taAaAtttcacctantantte-antattta-t		
BTTC2	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	MH3	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPat4	ittanttttanttaant-taanatttcacctantanttg-antattta-t
BTTC3	tTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	MR1	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
BTTC4	tTTAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	MR2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPatME1	tTAAATTTTAATtaAAT-taAAATITCACCTAATAATTG-AATATtTA-t
DM1	tTTAATTTTA-TTAAATTTAAAATITCACCTAATAATTT-AATATTTA-T	MR3	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
DM2	TTTTAATTTTATTAAATTTAAAATITCACCTAATAATTT-AATATTTA-T	MR4	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPatME2	tanattrtanttanat-tanaitttcacctantanttg-antattta-t
DM4	TTGTAATTTTATTAAGTTTAAAATTTCACCTGATAAGTT-AATATTTA-T	NB1	ttanattttanttanat-taAaAtttcacctantantte-antattta-t		
Flag5	TTAAATTTTAATTAAATTTAAAATITCACCTAATAATTT-AATATTTA-T	NB2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPatME3	tTAAATTTTAATTAAAT-TAAAATtTCACCTAATAATTG-AATATTTA- ${ }^{\text {t }}$
Flag6	TTAAATTTTTATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	N83	ITAAATTITAATTAAAT-TAAAATTTCACCTAATAATTT-AATATITA-T		
Flag7	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	NB4	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	StPatME4	tTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTG-AATATTTA-T
Flag8	tTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	ORB1	TGTAATTTTAATTAAAATTAAAATTTCACCTAATAATTG-AGTATTTG-T		
Hat1	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	ORB2	TGTAATTTTAATTAAAATTAAAATTTCACCTAATAATTG-AGTATTTG-T	TT59_1	tTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T
Hat2	ITAAATTITAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	ORB3	tttanttitanttanaattanaitticacctantanttt-AGTATtTG-T		
Hat3	TTAAATTTTAATTAAATTTAAAATTTCACCTAATAATTT-AATATTTA-T	ORB4	TTTAATTTTAATTAAAATTAAAATTTCACCTAATAATTT-AGTATTTG-T	TT59_2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T
LC07	tGaAATtTTAATTAGAATtAAAATTTCACCTAATGATTGTAATATTTA-G	PH1	TTAAATTTTAATTAAAGTTAAAATTTCACCTAATAATTT-AATATTTA-T		
LCe8	TGAAATTTTAATTAGAATTATAATTTCACCTAATGATTGGGATATTTA-G	PH2	TTAAATTTTAATTAAAGTTAAAATTTCACCTAATAATTT-AATATTTA-T	TT59_3	ttanattttanttanat-tanastttcacctantantte-antattta-t
LC09	ITTAATTTTAATTAGAATTAAAATTTCACCTAATGATTGTGATATTTA-G	PH3	TTAAATTTTAATTAAAGTTAAAATTTCACCTAATAATTT-AATATTTA-T		
LC18	ittaatttianttaganttaanatttcacctaataattgtaatatta-g	PPS 1	TTAATTTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	TT76_1	tTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T
LCT1	tTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-GATATTTA-T	PPS1	TTAATTTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
LCT2	tTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-GATATTTA-T	PPS2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	TT76_2	ttanattttanttanat-tanaitttcacctantanttt-antattta-t
LCT3	tTAAATtTTAATTAAAT-TAAAATTTCACCTAATAATTT-GATATTTA-T	PPS 2	TAAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
LCT4	tTTAATtTTAATTAAAT-TAAAATTGCACCTAATAATTG-GATATtTG-T	PPFE	TTTAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	TT76_3	tTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-t
LCT5	ttanattitanttanat-tanaatticacctantanttg-gatattta-t	PPFE	ttanattttant tanat-TaAaATtTCacctantanttt-antattta-t		
LMLE1	ttanattitanttanat-tanaitticacctantantti-antattia-t	PTD1	ITAAATTTTAATTAAAT-TAAAATTTCACCTAATAATIT-AATATTTA-T	TT76_4	ttanattttanttanat-tanaitticacctantanttt-antattta-t
LMLE2	ITAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	PTD2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
LMLE3	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	PTD3	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	WSC1	TTAAAATTTTATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T
LMLE4	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	PTD4	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
LMME1	ttanattttant tanat-taAaAtticacctantant	Rerk1	TTAAATTTTAATTAAGT-TAAAATTTCACCTAATAATTT-AATATTTA-T	wSC2	ttanaattrtattanat-tanaitttcacctantantte-antattta-t
LMME2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	Rerk2	tTAAATtTTAATtaAAT-taAacttccacctantantte-antattea-t		
LMME3	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	Rcrk3	TTAAATTTTTATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	Ola MtB1	ttanattttanttananttanaatttcacctantanttttantatttant
LMME4	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	Rerk4	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
LMMS1	TTAAATTTTAATTAAAT-TAAAATTTCACC TAATAATTT-AATATTTA-T	SGR5	tTAA- ttttanttanat-TaAAATtTCACCTAATAATTT-AATATTTA-T	Ola MtB2	ttanattttanttananttanantttcacctantanttttantatt tant
LMMS2	TTAAATTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T	SGR6	tTAA-tttTAATtaAAT-TAAAATtTCACCTAATAATTT-AATATTTA-T		
LMMS 3	TTAAATTTTAATTAAAT-TAAAATITCACGTAATAATTT-AATATTTA-T	SGR7	TTAA-TTTTAATTAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		
LMMS4	TTAAATTTTAATTAAAT-TAAAATTTCACC TAATAATTT-AATATTTA-T	SGR8	tTAA-ITTTAATtAAAT-TAAAATTTCACCTAATAATTT-AATATTTA-T		

Abstract

Bell Bel2 Bel3 8PJ1 BPJ2 BPJ3 BPJ4 BTS1 BTS2 BTS3 BTS4 bttci BTTC2 BTTC3 BTTC DM1 DM2 DM2 Flag5 lag6 lag7 lag8 Hat1 Hat2 Hat3 LCO7 LC07 LC08 LC09 LC10 LCT1 LCT2 LCT3 LCT4 LCT4 CTS LMLE1 LMLE 2 LMLE3 LMLEA LMME1 LMME 2 LMME 3 LMME3 LMME4 LMMS 1 LMMS2 LMMS 3 LMMS4 Long 5 Long7 Long7 Long8 LPLB1 LPLB2 LPLB3 LTC1 LTC1 LTC2 LTC2 LTC3 MH1 ttaatttanatgttttatttattatatactgaanaantttantttaatt tTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT ittaatttaanatgtittatttattatacactgaaataatttaatttaat ttaatttaantgtittatttattatacactgaaataatitaatttaat ttaatttanatgitttatttattatacactgaantaatttaatttaat tTAATtTAAATgTtTtatttattatacactgaanttatttaatttaat Traattraangittatttattatacactgaaataatitaaittaat trtaatttaang tittatttattatacactgaaataatttaatitaat ittaatttaang tittatttattatacactgaaataatitaatitaat thantrang ittaatttaantgittatttattatacactgaaataatttaatttant ittaatttaantgttrtatttattatacactgaaataatttaatttaat ittaattraaatgititattiattatacactganataatttantttaat TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAAT TTTAATTTAAATGTGTTATTTATTATACAC TGAAATAATTTAATTTAATT ittaattaantgritatitaitatatactgaaataattaattiant taat traat taatgirtaitrattatatactgaattaatrtaattraat thattraatotitatttattatacactgaantaattiaattian trantraangtiturtantatacactgaataattiaatttaat traattianatgttratttattatacactgantaattiattaa thattcacatgtittatttattatatactgaantaatttantttant hatartcactgititatitatatacactgaataatthattiat tataatrcactoritatrattatacactgaaataattaat taat traatcaan gTtrat trattianatitattatatat titaittcangititaittatatatactgaantaatitaatttautt TTAATTTAAATGTITTATTTATTATATACTGAAATAATTTAATTTAAT TTAATTTAAATGTTTTATTTATTATATACTGAAATAATTTAATTTAATT ttTAattTAaATGITTTATTTATTATACACTGAAATAATTTAATTTAAT ttaaittaang itttatttattatacactgaantaatitaattiait TTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAAT tTAATTTAAATGTTTTATTTATTATACACTGAaATAATTTAATTTAAT TTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAAT TTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TTAATTTAAATGTTITATTTATTATACACTGAAATAATTTAATTTAAT tttaatttaaatgititatttattatacactgaaataatitaatitait ttaatttaantatttatttaitatacactgaantaatttaattiant tTtaATTTAAATGTTITATTTATTATACACTGAAATAATTTAATTTAATT TTTAATTTAAATGTTTTATTTATTATATACTGAAATAATTTAATTTAATT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT tTtaAtttaantgitttaittaitatatactgaantantitaatitaat tttaatttaang ittitaittattatatactgaaataatttaatitaat ittantttanatgitttatttattatatactganataatittaatttant ItTAATTTAAATGITTTATTTATTATATACTGAAATAATTTAATTTAATT ITtAATTTAAATGTITTATTTATTATACACTGAAATAATTTAATTTAATT ittaatttaantgitttaittaitaiacactganatantttantttaait ittaatttaantattttatttattatacactgaantantttantttantt ittantttaantgttttaittattatacactgaaataatttaatttantt ittaatttaan gittitatttattatacactgaaataatttantttant ittaatttaangutttratttattatacactgaantaatttaatitaat ittaaititaatgititatttattatatactgaaatantitaatitanti

IITAATTTTAATGITITAITIATTATATACTGAAATAATTTAATTTAATT TTTAATTTTAATGTTTTATTTATTATATACTGAAATAATTTAATTTAATT TITAATTTAAATGITTTATTTATTATACACTGAAATAATTTAATTTAATT TITAATTTAAATGTTITATTTATTATACACTGAAATAATTTAATTTAATT TITAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TITAATITAAAIGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TITAATITTAATGTTTTATTIATTATATACTGAAATAATTTAATTTAATT TITAATTTTAATGTTTTATTTATTATATACIGAAATAATTTAATTTAATT ittaattttaatgitttaittattatatactganataatttantttaatt titaattttaatgitttatttattatatactgaantaattiaatttaatt tITAATtTACATGTTTTATTTATTATACACTGAAATAAITTAATTTAATT TTTAATTTACATGITTTATTTATTATACACTGAAATAAITTAATTTAATT TITAATTTAAATGITTTATTTATTATACACTGAAATAAITTAATTTAATT TTTAATTTAAATGTTTTATTTATTATACAC TGAAATAATTTAATTTAATT TTTAATTTAAATGTTTTATTTATTATATACTGAAATAATTTAATTTAATT tTtaATtTAAATGTtTTATtTATTATATACTGAAATAATTTAATTTAATT tITAATTTAAATGTTTTATTTATTATATACTGAAATAATTTAATTTAATT tTTAATTTAAATGTTTTATtTATTATACACTGAAATAATTTAATTTAATT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAAITTAATTTAATT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TITAATTTAAATGTTTTATtTATTATACACtGAAATAATtTAATTTAATT Titanttaangitiattiattatacactgaaataatttaatttaatt TITAATTTAAATGITTIATTTATTATACAC TGAAATAATTTAATTTAATT TTAATTTAAATGITTAATTTA:TATACACTGAAATAATTTAA!TTAAIT TITAATTTAAATGTTTTATTTATTATACACTGAAAIAATTTAATTTAATT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TITAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TTTAATtTAAATGTTTTATTTATTATACACtGAAATAATTTAATTTAATT TTAAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TTTAATTTTAATGTTTTATTTATTATATACTGAAATAATITAATTTAAATT tTTAATTTAAATGTTTTATTTATTATATAGTGAAATAATTTAATTIAATT titaatttaang titaittattatatactganataattiantitanit titaattttaatgttitatttathatatactganahattianttant titanttianatgtttuatttattatacactganataatttaattiant titantrtanaigittratitattatacactganataatitaattiant
 titantttaang tittatttattatacactganataattaattiant titantrtanatitraitt TITAATTTAAATGTTTTAITTATTATACACTGAAATAATTTAATTTAATT titantttanatgittiatttattatacactganataatttaatttant
 TITAATITAAATGITTTATITATIATACAC TGAAATAATTTAATTTAAIT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATITAATTTAATT tTtaATtTAAATGTTTTATtTATTATACACTGAAATAATITAATTTAATT TTTAATTCAAATGTTTTATTTATTATATACTGAAATAATTTAATTTAATT TITAATTTAAATGTTTTATITATTATACAC TGAAATAATTTAATTTAATT titaattianaig tittatttattatacactgaantaatttanittaait tTTAATtTAAATGTTTTATtTATTATACACTGAAATAATTTAATTIAAIT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT TITAATTTAAATGTTTTATTTATTATACACTGAAATAATTTAATTTAATT tTtaAtttanatgitttatttattatacac tganatantttanittanat TTTAATTTAAATGTTTTATTTATTATACAC TGAAATAATITAATTTAATT TTTAATTTAAATGTTTTATTTATTATACACTGAAATAATITAATITAATT tTTAATtTAAATGTtTtATtTATTATACAC GGAAATAATtTAATtTAATT tтtaatttanatgitttatitattatacactganataatttantitaatt
ttgtatanccgcaactgctggcacaanattagttattaattiaantatt ttgtatanccgcaactgctggcacaaanttagttattantttaantatt ittgtatanccgcanctgctggcacaaaattagttattaatttaaatatt tigtataaccgcaactgctggcacaaaattagttattantttaantatt ttgtatanccgcaactgctggcacaaaattagttattantttaantatt ittgtataaccgcaactgctggcacaaanttagttattaatttaaatatt tttgtatanccgcaactgctggcacaaanttagttattaatttaaatatt ittgtatanccgcaactgctggcacaaanttagttattaatttaantatt ittgtataaccgcaactgctggcacaaaattagttattaatttaantatt tttgtatanccgcaactgctggcacaaanttagttattaatttanatatt tttgtatanccgcaactgctggcacaanattagttattantttaantatt tttgtatanccgcaactgctggcacaaaattagttattaatt taantat titgtatanccgcanctgctggcacaaanttagitattaatttaaatatt TITGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTGGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATAT tGGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tTGTATAACCGCaACTGCTGGCACAAAATTAGTTATTAATTTAAATATT ttgtataaccgcaactgctggcacaanattagttattaatttaantat ttgtataaccgcanctgctggcacaanaitagttattantttaaatat ttgtataccegcanctgctggcacaanattagttattaatttanatai ttgtataccgcaactgctggcacaaaattagttattaatt anatai TtTGTATAACCGCAACIGCTGGCACAAAATTAGTTATIAATTTAAATATT itglataaccgcaactgctggcacaaaattagttattantttaantat titgtataaccgcaactgctggcacaaaattagttattantttaantat TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT ittgtataaccgcaactgctggcacaaaattag tattaat tranatat ittgiataaccgcaactgctggcacaaaattagttattaatttaatat ittgtataaccgcaac tgctggcacaaaattagttattaatttanatat tttgtataaccgcaactgctggcacaaaattagttattaatttanatat tTGTataaccgcaactgctggcacaaaattag tiattaatttaantat TTGTATAACCGCaACTGCTGGCacaaAattag TTATtaATTTAAATAT TIGTATAACCGCAAC FGCTGGCACAAAATTAGTTATtAATTTAAATAT ttgtatanccgcaactgctggcacaaaaittag ttattaatttaantat ttgtataaccgcaactgctggcacaaaattagttattaatttaantat ittgtatanccgcaactgctggcacaanattagttattaatttaantat ttgtatacccgcaactgctggcacaaaattagttattaatttaaatat trgtataaccgcactgctggcacaaa ttagt tattaat traatat Tigtataaccgcaactgctggcacaanattagttattaatttaaatat itGTataaccgcaactgctggcacaaaattagttattaatttaaatat tigtataaccgcaactgctggcacaaaattagttattaat taatat TrgTataaccgcaactgctggcacaaaattagttattaatttaaatat ttGtataaccgcaactgctggcacaanattagttattaatt tanatat TITGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTGGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATAT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT trtGtataaccgcanctgctggcacanaattagttattaatttanatat ttTGtataaccgcaaclgctggcacaaaattagtatraatttanatat TtTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATAT ITTGTATAACGGCAACIGCTGGGACAAAATTAGTTATTAATTTAAATAT tttGtataaccgcaactgctggcacanaattagttattantttaaatat rtrgtataaccgcaactgctggcacaaaattagttattaatttanatat ittGTatanccgcaactgctggcacaaaattagitattaatttanatat TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATAT itgtataaccgcaactgctggcacaaaattagtattaatrtanatai ittgtatanccgcanctgctggcacanaaitagttattaatttaantat

IUTGTATAACCGCAAC tgCtggcacaanattagttattantttanatatt ITTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tttgtataaccgcaactgctggcacaaanttagttattaatttanatatt tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATI ittgtatanccgcaactgctggcacaaanttagttattaatttaantatt ittgtatanclgcaactgctggcacaanattagttattaatttanatatt tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tTtGTATAACCGCAACTGC TGGCACAAAATTAGTTATTAATTTAAATATT tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATAIT ittgtatanccgcaactgctgccacaaaattagttattaatttaantatt titgiataaccgcaactgctgcacaaaattagttattaatttanatatt tttgtatanccgcaactgctgccacaaaattagttattaatttaatatat TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT ITtGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT titgtataaccgcaactgctggcacaanattagitattantttaantatt tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAAT TAGTTATTAATTTAAATATT TITGTATAACCGCAACTGCTGGCACAAAAT TAGTTATTAATTTAAATATT titgiataaccgcaactgctggcacaaanttagttattaatttanatat TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGITAITAATTTAAATATT TTTGIATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTGTATAACCGCCACTGCTGGCACAAAATTAGTTATTAATTTAAATATT ITTIATAACCGCAACTGCTGGCACAAAAITAGTTATTAATTTAAATATT ITGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT IITGTATAACGGCAAC TGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGC TGGCACAAAATTAGTTATTAATTTAAATATT TTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAAC TGCTGGCACAAAATTAGTTATTAATTTAAATATT tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACGGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tTtGTATAACGGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT ITTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT tTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGITATTAATTTAAATATT tITGTATAACCGCAACTGCTGGCACAAAATTAGITATTAATTTAAATATT TTTGTATAACGGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TITGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT TITGTATAACCGCaACtGCtGgCacaaAattagttattaattraantait TITGTATAACCGCAACTGCTGGCaCAAAATTAGTtATTAATTTAAATATT TITGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTTAAATATT trgatanccgcaacgetgecacaanat ag tat taatraantait TITGTATAACGGCAACTGCTGGCACAAAATtagTtattaatt anatait TTTGTATAACGGCAACIGGTGGCACAAAATTAGTTATTAATTAAATATT TTTGTATAACCGCAACTGCTGGCACAAAATTAGTTATTAATTIAAATATT tTtGTataaccgcaactgctggcacaanattagttattantttanatatt
actaantcttaatttctianatatitaatictaaitactattanitttaa ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATITAATTCTAAITACTATTAATTITAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTITAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATIACTATTAATTITAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTITAA actaantcttantttcttanataittantcttanttactattantticaa actanatctiantttcttanataittant ctaattactattanttican ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA actaantettantttcttaantatttaattctaattactattanttttaa ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA actaantcttanttrcttanatatttaattctanttactactanatttgi actanatcttantttcttaantatttanttctanttactattanttttan actanatcttantttcttaantatttanttttanttactattanttttaa actanatcttantttcttanatatttanttctanttactattanttttan actanatcttanttictianatatttanttctanttactaitanttttan actanatcttantttcttanatatttanttctanttactattaattttaa actanatcttantttcttanataittaatittanttactaitaattttaa actanatcitantttcttanatatttanttctanttactattanttttan actaantcttaatttcttaantatttanttctaattactactaantttgt actaantcttantttcttanatatttanttctanttactattanttttan actanatcttantttcttanatatttanttctanttactaitanttttan actanatcttantttcttanatatttanttctanttactaitantrttan actanatcttantttcttanataittanttctanttactattanttttaa actaantcttantttcttanatatttaattctanttactattanttttaa actanatcttantttcttaantatttanttctanttactattanttttan actanatcttantttcttanatatttanttctanttactaitanttttan actanatcttantttcttanatatttanttctanttactaitanttttan actanatcttantttcttanatatttanttctaattactaithanttttan ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATITTAA actanatcttanttrcttanatatttanttctaattactattanttttan actanatcttantttcttanataittaatictanttactattaattttan actanatcttantttcttaantatttanttctanttactattaattttan ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATITTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATYTCTTAAATATITAATTCTAATTACTATTAATITTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATITTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTIAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA actanatcttantrtcttanatattianttitaattactattanaitta ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTITAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA actanaictiantticttanatatttantttraattactattanttitan actaantcttanttrcttanatatttantictanttactaitaattitan actaantcttanttictianatatitantrianttactatianttita actaanicttaattrcttaaatatttaatictaattactattaattita actanaicttaattictianatattiantictaattactattaattita actaan CTIA

 actaanctiatitictaahtathatitictaattactattaattita
 actaantctiaatticttahatattianttctaattactactaattig actaantcttantttcttaantatttanttctaattactactaantttg
actanatctiantitctianataittaattctanttactactaantitg ACTAAATCTIAATTICTTAAATATITAATTCTAATTACTACTAAATTTGT ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTIAATTICTIAAATATTIAATICTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATITAATICTAATIACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTIAATICTAATIACTACTAAATTTGT actaantcttantticttanaiatttanttctanttactactanatttat actanatcttantticttanataittaattctaattactactanatttgi actanatcttantttcttanatatttaattctaattactactaantttgt actanatcttantttcttanatatttant ctanttactaitanitttan actaantcttaatttcttanatatttanttctanttactattaattttaa actaantcttaatttcttaantatttanttctanttactattaattttaa actaantcttaatticttanatatttaattctanttactattanttttaa actaantcttantttctranatatttanttctanttactattanttttan actaantcttaatticttanatatitanttctanttactattanttttaa actaantcttantticttanatatttanttctanttactattanttttan actanatcttantttcttanatatttanttctanttactattanttttan actaantctraaticttaan hatttaattctaattactattaattitaa actaantcttantttcttanataittaattctaattactattanttttan actaantcttanttct taantaittanttctanttactattanttttan actaantcttanttctttanataittaaitctanttactattanttttan actaantcttaattcttaantatttaaitctanttactartanttttan actaaatctraaticttaantatrtaattctaattactantaattttaa achantctaattittaaatatttaattctaattactaitaattttaa actaantctraatitcttaantatttaattctaattactattanttitaa actaantcttaatticttaantatttaattctaattactattanttitaa actaantcttanttcttaantatttaattctaattactattanttttan actaantcttaatticttanatatttaattctaattactattaatittaa actanatct tantitctianatatttaattctanttactattanttttan ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTACTAAATTTGT actanct actantctantictaantatraatictaattactartaatittaa actanctiantictanatattaatictaatiactactaantirg actanatctiantitcttanataittanttctanttactattanttttan actaantitantitctianataithattctanttactattaattita
 actaanctraatticttaatatattaatictantractaitaatttaa actanatcttantictianatattiantctantractattaattitaa

 actanatcitaatitcitanatartiantctattactattaattraa actanatcttanttictianatartiantctattactaitaatitaa actanatcttaatticttanataittantctantictatantita actaantctiantictianattraitctattactaitaatitan actaantctiantictiahatattiantctaatictatiantttan actanatctiantictuanalthaitctantactattantitha actaantctiantitctahaataittantctattactattantttan actaantctiantictuanaitiantctantactattaattitaa ACTAAATCTTAATTTCTTAAATATTTAATTCTAATTACTATTAATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATICTAATTACTATTAATTTTAA actaaatctianttictiaaitattiantictaattactattaattita actaaatcttaatticttaantattiaitctattactattaaititaa ACTAAATCTTAATTTCTTAAATATTTAATTTTAATTACTATHATTTTAA ACTAAATCTTAATTTCTTAAATATTTAATTTTAAATTACTATTAATTTTAA

Bell	ttanttattattanaataattanaatttantactanaatte---atatg
Bel2	ttanttattattanaataattanaatttantactanaatte---atatg
вel3	ttaattattattanaataattanaitttantactanaatte---atatg
8PJ1	ttaattattattanatanttanaitttantactanaitte---atatg
BPJ2	ttanttattattanataattanaatttantactanaatte--atatgt
BPJ3	ttanttattattanataattanaatttantactanaatte---atatgt
BPJ4	ttanttaitattanataattanaatttantactanaatte---atatg
BTS1	ttanttattattanataattanaatttantactanaitte---ATATGT
S 2	ttanttattattanataattanaatttantactanaatte---atatg
BTS3	ttanttattattanataattanaatttantactanaatte---atatg
BTS4	ttanttattattanaatanttanaatttantactanaitte---atatg
bttci	ttanttattattanataattanaatttantactanaatte---atatg
BTtC2	ttanttattattanaitaattanaattcgatactanaatte---atatg
bttcs	ttanttattattanaataattanaatttantactanaatte---atatgt
BTtC4	ttaattattattanattanttanaatttantactanaattt---atatgt
DM1	ttanttattat tanaitanttanaitttantactanaitte---Atatg
DM2	ttanttaitattanaitanttanaatttantactanaatit---atatg
DM4	TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT
Flag5	ttanttattattanaatanttanaatttantactanaatte---atatg
Flag6	tTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT
Flag7	ttanttattattanaitanttanaittcgatactanaittt---atatg
Flag8	ttanttattattanaatanttanaatttantactanaattt---atatg
Hat1	TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATYT---ATATGT
Hat2	ttanttattattanaatanttanaatttantactanaitte---atatg
Hat3	ttanttattattanaatanttanaatttantactanaattt---atatg
LCO7	ttanttattattanaitanttanaatttantactanaittt---Atatg
LC88	TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT
LCO9	ttanttattattanaitaattaanatttantactanaattt---atatgt
LC19	TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT
LCT1	ttanttattattanaitanttanaitttantactanaittt - - Atatg t
LCT2	ttanttattattanaitanttanaitttantactanaittt---atatg
LCT3	ttaattattattanaatanttanaitttantactanaittt---atatg
LCT4	ttaattattattanaitanttanaitttantactanaittt---atatg
LCT5	TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT
LMLEI	ttanttattattanaatanttanaitttantactanaittt---atatg
LmLe2	ttanttattattanaatanttanaitttantactanaattt---atatg
LMLE	ttantattattanaatanttanaitttantactaanattt---atatgt
LMLE4	ttanttattattanaatanttanaitttantactanaattt---atatg
LMME1	ttaattattattanaitanttanaitttantactanaittt---atatg
LMME2	ttaattattattanaatanttanaitttantactanaittt---atatg
LMME 3	ttanttattattanaatanttaanatttantactanaittt---atatg
LMME4	ttanttattattanaatanttanaatttantactaanattt---atatgt
LMMS1	ttanttattattanaatanttanaittcgatactanaittt---atatg
LMMS 2	ttanttattattanaatanttanaitttantactanaattt---atatg
LMMS 3	ttanttattattanaatanttanaitttantactanaatte---atatg
LMMS4	ttanttattattanaatanttanaatttantactanaittt---atatg
Long5	ttanttattattanaatanttanaitttantactanaittt---atatg
Long6	ttanttattattanaatanttanaitttantactanaitit---atatg
Long 7	itanttaitattanaataattanaatttantactanaatte---atatgt
Long8	ttanttattattanaatanttanaatttaatactaanattt---atatg
LPLB1	ttanttaitattanaatanttanaatttantactaanattt---atatg
LPLB2	ttanttattattanaatanttanaitttantactanaitte---atatg
LPLB3	ttanttattattanaataattanaattcgatactanaatte---atatg
LTC1	ttaattattattanaitanttanaatttantactanaatte---atatgt
LTC2	ttanttattat tanaatanttanaatttantactanaitte---atatg
LTC3	ttanttaitattanaatanttanaatttantactanaatte---atatg
MH1	ttaittatt

ttaattattattaanataattanaattcgatactanaattt---atatg TTAATTATTATTAAAAATAATTAAAAATTCGATACTAAAAATTTT---ATATATGT TTAATTATTATTAAAATAATATTAAAATTGGATACTAAAATTTTT---ATATGGT TTAATTATTATTAAAATAATTAAAAATTTTAATACTACTAAAATTTT----ATATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT----ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTCGATACTAAAATTT -.-ATATGT TTAATTATTATTAAAATAATTAAAATTCGATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTCGATACTAAAATTT---ATATGT ttaattattattaanataattanaattcgatactanaattt---atatg TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT ttaattattattaaaataattaanatitantactaaaattr---atatg trâtattattaanatantaaaattaatactaaaatte---atatg trattattattaaátaattaanattantactanaatt---atatg trantattattanaataattaaaattantactaanatt----atatg trantattattaaataattana titantactanaatt---ataig
 trattattattanatantanaattantactaanat
 tantatat ttanttattattaanataattaanatitaatactanaatit---atatg itaattattattaaantanttaaaattraatactaanatt---atatg ttaitattattanatant tiattartattahataattahatttatactahattt atat tiattatat anatantanat thattattattahaatantianatttantactanaatt ---atat
 tTaattattattahaatanttanaitttantactanaatt --atati

 maattattattaaaataattaahattcgatactahaattt -atatg

 trattatat thattittattanataithanattraatactahaattt hatat
 tTaAttattattanaataattaahatttaatactahaatt --atatg
 tiantatitahanantiantiat

 TTAATTATTATTAAAATAATTAAATTTAATACTAAAATTT -ATATGT TTAATATTATTAAAATAATTAAATTTAATAGTAAAATTT - ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT..-ATATG T TTAATATIATIAAAATAATTAAAATTTAATACTAAAATTT---ATATGI TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT tTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT ttaattattattaaaataattaaantttaatactaaanttt---atatg TTAATTTTTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT...-ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTT---ATATGT TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTTTATATATGG TTAATTATTATTAAAATAATTAAAATTTAATACTAAAATTTTATATATGG

Bel1 AAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC AAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC anaataantttataataaattattanaancacangittttatttatttg aAátaanttacaatanattattaanaacacaagtttTtatttattig a anataat anaataanttacaataaattattaanaacacaagttittatttattig anaatanattacaataaattattaanaacacaagttitatttattrg anaataanttacaataaattattaaaacacaagitttattattig anaataanttacantaaattattaanaacacaagittttatttattig anatanattacatanatat anaacacag ititattat
 anaatanatttacaataaattattaanaacacaagitittatttatttg anaataanttiataataanttcatanaancatanattrttatctattag àaAtaAatTtacaataaattattaaaaacacaagittttattrattrg AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTG AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTG AAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC a a a tanattataatanatrattaanaacacaagittttatttatttg àaataaattatantanatrcataanaacataaat titatctattagc aanataantttataataaattattaaaaacacaagittttatttatttgc

 aanatanatttacaataanttattaaaancacaagittttatttatttg anatanat anaataaattiacaataaattattaanaacacaagTTTTTATTTATTTGT anaatanatttacaataanttaitaanaacacaagttTTTATTTATTTGT
 anaatahat anâtaanttiataatanattattaanaacacaagTtTTTATTTATTTGC

 a aataanttacaataaattattanaacacag trttatttatttg a aastanatttacaataaattattanaacacag titattiat aaaataaatttacaataaattattaaahacacaagttttrattratto anataaatttacaataaattattahaacacagotttttaittatte AaATAAATTTACAATAAATTATTAAAACACAGGTTTTTATTTATTG AaAataaatttacaataaattattaahacacaagtttttattiatt aaataaatttacaataaattaitaahacacagttttiatttattig aaataaatttacaataaattattanaacacaagttithattiattigi AAAATAAATTTATAATAAATTTTTAAAAACATAAATTTTTATTTATTAGC AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAataAatttacaataan itaithananacacangtttttatttatteg aAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAATAAATTTATAATAAATTATTAAAAACACAAGTITTTATTTATTTGC AAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC anaataantttataataanttattaaaaacacangtttttatttatttgc aAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC AaAATAAATTTACAATAAATTAITAAAAACACAAGTTTTTATTTATTTGT aAATAAATTTACAATAAATtATtaAaAACACaAGTITITATTTATITGT aAa tanatttataatanatttttanaancatanatttttatttattagc aAaATAaATtTACaAtaAattattaaaacacacagttTtTATtTATtTGT aAAATAAATTTACaATAAATtATtaAaAacacaAgtttttatttatttg aanataantttacaatanaittaitaanacacacagtttttaittatttg aaantaantittataataanttcataanaacataantitttatctattagc
aAaATAAATTTATAATAAATTCATAAAAACATAAATTTTTATCTATTAGC AAAATAAATTTATAATAAATICATAAAAACATAAATTTTTATCTATTAGC aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTATAATAAATTCATAAAAACATAAATTTTTATCTATTAGC AAAATAAATTTATAATAAATTCATAAAAACATAAATTTTTATCTATTAGC AAAATAAATTTATAATAAATTCATAAAAACATAAATTTTTATCTATTAGC AAAAIAAATTTATAATAAATTCATAAAAACATAAATTTTTATCTATTAGC AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT a anataantttacantaanttattaanaacacaagtttttatttatttgt a aaatanatttatantaanttattaanaacacaagtttttatttatttgc aAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC aAaATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC
 AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAaATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGITTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC aAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAAATAAATTTACAATAAATTATTAAAAACACAAGTTITTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTITTATTTATTTGT aAaAtaantttacantanattattanaancacaagittttatttattigt aAAATAAATTTATAATAAATTCATAAAAACATAAATTTTTATCTATTAGC aAAATAAATTTATAATAAATTATTAAAAACACAAGTTTTTATTTATTTGC

 agaatahatttacaataattatraaacacaccagtttrtatttatto

 aAaATAaATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT aAaATAAATTTACAATAAATTATTAGAAACACAAGTTTTTATTTATTTGT AaAATAAATTTACAATAAATTATTAAAACACAGTTTTTATTTATTTGT a aaataanttacaatahattattahah cachagtttterttattet AAAATAAATTTATAATAGATTATTABAACCACAGGTTITTATTTATTTGS AAAATAAATTTACAATAAATTATTAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGITTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAGGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGITTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTTTTATTTATTTGT AAAATAAATTTACAATAAATTATTAAAAACACAAGTTITTATTTATTTGT gaantaantttataatanattattanaancacaaggttttatitattgg gaantaant ttataataanttattaaaaacacaaggttttatt

Bell aAattttttcacatagatttittitititititittatattanatg-tat AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TR

AAATTTTTTCACATAGATTTזTזTדTזTTTTTTTTATATGAAAGG-GAT AAATITTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TA AAATITזTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TA AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG - TA AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TAT AAATITTTTCACATAGATTTTTTTTTTTTTTTTTTTATAATAAATG-GGI aAaititttcacatagattittttrtitttittittataataantg-g aaATtTTTTCACATAGATTTTTTTTTTTTTTTTTTTTATATTAAATG-TG AaATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATAAAATG-TA

 AAATITITCACATAGATTTTTTTTTTTTTTTTTTTATATIAAATG-A AATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG - TA
 aAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TAT aáttttticacatagatttrtttttttttttttt-atattaantgiga AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTT-ATATTAAATGTGGT AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTT-ATATTAAATGTGAT AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTT-ATATTAAATGTGAT AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TAT aAATtTtTTCACATAGATITTITITTTTTTTTTTTTTATATtAAATG-TA aAattrtttcacatagat tittitrtitttitttttatattaantg-ta AAATTTTTTCACATAGATYTTTTTITITTTTITTTTATGTTAAAGG-TA AAATTTTTTCACATAGATTTTTTTYTTTTTTTTTTTATATTAAAGG-TA áattttrtcacatagatitttitutrtittittttatattanagg -tat aAattitticacatagattittitititittittttatgttanagg -tal aaATtTTITCACATAGATTITTITITITTTITTITTTATATTAAATG-GA AAATTITTTCACATAGATTITTTTITITTTTITTTTATATTAAATG-TA aAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTTATGTTAAATG-TA AAATTTTTTCACATAGATTTTTTYTTTTTTTTTTTTATATTAAATG-TA AAATTTTTTCACATAGATTTTTTTITTTTTTTTTTTTATATTAAATG-TAT AaATtTTITCACATAGATTITTTTTTTTTTTTTTTTTATATTAAAGG-TA aAattutttcacatagattititituttttrtttttatattanagg-ta AAATTITITCACATAGATTITTTTYTTTTITTTTTTATATTAAAGG-TA
 aAATTTTTTCACATAGATTITTTTITITTTTITTTTTATATTAAATG-TA aAATTITTTCACATAGATTITTITITTTTTTTTTITTATATTAAATG-TAT AAATTTTITCACATAGATTTTTTTYTTTTTTTTTTTATATTAAATG-TA аAATTTTITCACATAGATTITTTTITTTTITTTTTTATATTAAATG-TA aátitttccacatagattittitititittttttatattanatg -ta aAatTITTTCACATAGATTITTTTTTTTTTTTTTTTATATTAAATG - TA
 aanttitttcacatagattitititititititttaanttanatg-tg aAaAttittchacatagaitititititititittatggganatg-ga AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-GA
 AaATUTTTCACATAGATYTTTTHTTTTTTTTATATAAAGG-GG
 AAATTTTTCACATAGAITTTTTTTITTTTTTTTTTTATATTAAATG-TAT AAATTITTTCACATAGATTTTTITTTTTTTTTTTTTATATTAAATG-TA AATTTTTTCACATAGATTTTTTTTTTTTTTTTTTATATTAAATG-GA AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-GA AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTATATTAAATG - TA
aat titttcacatagatititititititittatattaaatg-tat aAattriticacatagatitititititititititataitaaatg-tat AaATTITTICACATAGATTTTTTTTTTTTTTTTTTTATATtAAATG-tat aAattItttcacatagatttittitittitttrtttatattanatg-tat AAATTTTTTCACATAGATTTTTTTTTTTTTTTITTTATATTAAATG-TAT aAattTtTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-tat aAATTTTTTCACATAGATTTTTTTTזTTTTTTTTTTATATtAAATG-tat aAATTITTTCACATAGATTTITTTTTTTTYTTTTTTATATTAAATG-TAT AAATTTTTTCACATAGATTTITTTTTTTTTTTTTTTATATTAAATG-TAT aAATTTITTCACATAGATTTITTTTTTTTTTTTTTTATATTAAATG-TA
 aAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TAT aAATTITTTCACATAGATTTTTTTTTTTTTITTITTATATTAAATG-TAT aAAITIITICACATAGATTTTTTTTTTTTTTTtTtTATATtaAATG-TAT aAAITITTICACATAGATTTYTTTTTTTITTTTTTTATATTAAATG-tAT aAattTtTTCACATAGATTTTTTTTTTTTTTTTTTATATTAAATG-TAT aátiticacatagatitititittititittatattaaatg-tat ăa,tititcacatagattittititititttrtttatattaantg-tat aAAITTTTTCACATAGATTTITTTTTITITTTTITIATATTAAATG-TAT aAATTTTTTCACATAGATITTITTTITTTTTTTTTTATATtAAATG-tat aAattititcacatagatititttittitttittttatattanatg-tat anatititicacatagatititttitttittittttatattaantg-tat ăatititicacatagatititttittittitttttatattanatg-tat aAatititicacatagattutitittittittitttatattaantg-tat aAATtTTTTCACATAGATTTTTTHTTTTTTTHTATATAAATG-TA
 aAATTTTTTCACATAGATTTTTTTYTTTTTTTTTTTATATIAAATG-TAT aAattittcacatagat titititittititittatattanatg-gat AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAAGG-GGT aAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTTATATTAAAGG-TAT aAat Titticacatagatitititititititittatathaaatg-tg ăalticacatagattrititititithataatg-gat aátititcacatagat titititititititttatatraantg-gat AAATTTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-GAT aAailititcacatagaitititititittittittatattaantg-gat aAATITITTCACATAGATTTITTTITITITTITITTIATATTAAATG-tat aAat tiricacatagattitittitititttttttatattaantg.tat ăâtiticacatagat aAATTTTTTCACATAGATTTTTTTזTTTTTTTTtTTATATtAAATG-tat aAATTTITTCACATAGATtTTITTTTTTTTTTTTTTATATtaAATG-tAT aAATTTTTTCACATAGATTTTTTTTTITTTTTTTTTATATTAAATG-TAT aAATTTTTTCACATAGATYTTYTTTIITITTTTITTATATIAAATG-taI aAattttrtcacatagattrtittititttitttttatattanatg-tat aAattitttcacatagattrttuttuttrtitttttatattanatg-tat
 aAattitichacatagattrtititititititittatattanatg-tat
 ăatriticacatagatrititititititatataantg-tat

 AAA a anturtchacatagatrtitititititititatattaang-tat

 AAATTTTTCACATAGATTTTTTTTTTTTTTTTTTTATATTAAATG-TAT abat aAATITTTTCACATAGATTTTTTTTTTTTTTTTTTTATATtAAGGG-gat
aatagaaattaataanttittaitattutctctcattittittcataata Aatagaanttantanattrtiattattitctctcaittttittcatanta GatagaanttaatanattTtTATtatttTCTCTCATTTTTTTTCATAATA atagaaattaatanatttttattattttctctcattitttrtcataata Aatagaanttaataanttittaitatttictctcatttittttcatanta
 aatagaaattaataaatttitartatrictcicattitititcatanta aaAagaaattaatanattittattaititcictcatirtititcataata AAAAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATITTTTTTCATAATA AATAGAAATTAATAAATYTITATTATTITCTCTCATHTTITITCATAATA aATAGAAATTAATAAATTTTTATTATTITCTCTCATYTTITTICATAATA antaganattaataanttritaitattitctctcattititttcatanta Aatagaant tantaanttrtiaitattitctctcaittittticatanta aataganat tantaantititaitaititctctcaitittitcatanta aATAGAAATTAATAAATTTTTATTATTTTCTCTCATTITTTITICATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AAAAGAAATTAATAAATTTTTATTATTTTCTCTCACTTTITTTCAAAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCACTTTITTTCAAAATA Aataganattaataantrtitaitattitctctcactttitttcananta Aataganattantaantttitaitattitctctcactititticanaata Aataganattantanatttttaitatttictctcaittittttcatanta Aataganattantanatttitaitatttictctcaittittttcatanta AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA Aataganat TaATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA Aataganattaataantttitaitatittctctcaitttitttcatanta AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA Aatagaant tantanatttttattattttctctcaitttttttcnanata AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCAAAATA
 aATAGAAATTAATAAATTITTATTATTTTCTCTCATTITTTTTCATAATA
 AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AGGAGAAATTAATAAATTTTTATTATTTTCTCTCATTCTCTTTCATAATA antagaantaataan titaitat tictcait tritcataata a a gaa taataat tiatrartictccat
 atagaaattaataanttitattatttcicicaititititcataata atagaaattaataa itittattatiticictcattititticataata a atgaaattaataantittatitatitectitaitititicataata aATAGAaATTAATAAATYTTTATTATTTTCTCTCATTTTTTTTCATAATA ătagaantiaataattittaitattictictcaititititcataata ATAGAAATTAATAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA antagaaattaataaitittaitattetctctccititititcanata atagaantiataattithattatticicticctitititicaiaata ătagaaattaataaattittaitattitctctccititititcataata

 atagaantaataatttitattatttccictcaitttitticaianta aatagaaattaataanttttiatratttictttcattittticataata ătagaaattaatanattittattatttictctcaittittticataita atagahattaatahattittattatttictctcattitttttcanaata ataganattaataantttttattattttctctcattttitttcanaata aATAGAAATTAATAAATTITTATTACTITCTCTCATTITTITTICATAATA
aatagaaattaatahaittitattatittctctcatititittcataata
 antagaanttantanattuttattaittictctcatttittitcatanta antaganattantanatttitattatittctctcaittittitcatanta
 antagaantaataan itrattatrictctcatitritrcataata Aatagaanttantanattrttattattitctctcatttittticatanta AATAGAAATTAATAAATTTTTATTATITTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA aATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA aATAGAAATTAATAAATTTTTATTATTTTCTCTCATTITITTTCATAATA aATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA aatagaanttantanatttitattatttictctcatttttrttcatanta aAtagaanttantanatttrtattatttcctctcattttttttcatanta aAtagaantiantanatt riattattictctcattttitttcatanta
 AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA aatagaanttantanattrttattattitctctcattttttttcatanta aATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTITTTTCATAATA aataganattantanatttttat tattttctctcattitttttcatanta aAtagaanttantanattrttat tatttcctctcattttttttcatanta aAtagaanttantanatttttattattttctctcatttittttcatanta AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA AATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA aATAGAAATTAATAAATTTTTATTATTTTCTCTCATTTTTTTTCATAATA aATAGAAATTAATAAATITTTATTATTTTCTCTCATITITTTTCATAATA AATAGAAATTAATAAATTTITATTATTTTCTCTCAITITITTTCATAATA aATAGAAATTAATAAATTTTTATTATTTTCTCTCCNTTTTTTTCATAATA aAtagaanttaatanatttttattattticticcnittttttcatanta aAtagaanttaataantitttattaitictciccntttitticataata aatagaaattantaantititattattictctccnittitticatanta aatagaanttaataantitrtattattictetcattitittcataata AATAGAAATTAATAAATTTTTATTATTTTCTCICATTTTTTTTCATAATA

 aatagaaattaataan rittataytrictcatitititcataata aatagaantuataantrttattattictctcattrtutcataata aatagaaattaatanatttttattattttctctcaittitttcataita aatagaaattaataanttrttattattitctctcaittitttcatata
 aATAGAAATTAATAAATTTTAATATTTTCTCTCATTTTTTTTCATAATA aatagaaattaataantititaitattitcictcaititittrcatanta aatagaaattaataaitttttaitattetcrctcattitittcataata aatagaaattaataaatttttattatttictctcattitittcataia aatagaaattantaaittttaitatttictctcattittttcataia aatagaaatiaatanatitttaitatttictctcattititticatanta aAtagaantiantaanttttrattaittictctcaitittittcatanta aatagaaattaatanatttttattaitttctctcaitttiticatanta Aatagaaattaatanatttitattatttictctcattittiticaianta aATAGAAATTAATAAATITITAMTATTTICTCTCAITITTITICATAATA
ccatattaanaattaatttaatgatantecgaatacag ttcattttana ccatattanaanttantttantgatantccgantacagttcattttaaa CCATATtaAaAattaatttantgatantccgangacagttcattttaaa ccatattanaanttaatttantgataatccgaatacagttcattitaan ccatattanaaattantttaatgataatccgaatacagttcattttaa CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCGTTTTAAA CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATITAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATTTAA GATAATCCGAATACAGTTCATTTTAA CCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATtAAAAATTAATCTAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATtaAaAattaatttantgatantccgantacagttcattttana CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA cCATATtAAAAATTAATtTAAGGATAAICCGAATACAGTTCATTTTAAA CCCAATTAAAAATTAATTTAGTGANAATCCGAAAACAGTCCATTTTAAA CCNNATTAAAAATTAATTTARKGANAATCCGAGTACAGTCCATTTTAAA位NATTAAAAATTAATCTARTGANAATCCGAAAACAGTCCATTTTAAA C．nnattaAaAattaatttartganaitccgagtacagtccattttana保位ATtaAaAattaatttaatgataatccgaatacag ticattitaaa保解attanaaa traatttaatgataatccgaatacagttcattttaa位ATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA cheattanaattaattraaggataatccgaatacagt tcattttaa ccatataanaattaatttaaggataatccgaatacagticattttaa

 iccata taanaattaatrtaatgataatccgaatacagticattitaaa tcatattaaaaattaatrtaatgataatccgaatacagitcattttaaa TCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA
 CCATATTAAAAATTAATTTAATGATAATCCGAATCCAGTTCATTTTAAA
 CCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATTTAATGANAATCCGAATACAGTCCATTTTAAA保atattaaaaattaattragrgataatccgannacag tcat tiaa
 TCCATATtaAaAattaattraatganaatccgaatacagitcattitaaa tcatattaaaaataa traatgataatccgatacagitcat traa thatana taat tan ganatcegatacagccat traa ICNnattaanaattaatttaatganaatccgaatacagtccattttaa TCCatattanaanttaatraatganaatccgahacaicceattiana cectattanaa ttanttiangatanccgantacagttcattitaaa
 ccccattahaattanttaatanaatccganacagtccatttiaa TCATATTAAAAGTTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCATATTAAAAATTAATTTAATGATAATCCGATACAGTTCATTTTAAA TCATATTAAAAATTAATTTAATGATAATCCGATACAGTTCATTTTAAA TCCATATTAAAAATTAATTTAATGANAATCCGAATACAGTCCATTTTAAA ccatattaanaattatttah hanatccgattcagiccattitaaa tccatattanaan ttantitantganaatccgaatacagtccattitaa CCATATTAAAAATTAATCTAATGATAATCCGAATACAGTTCATTITTAA
titatattaaaaattaat tratgataatccgatacagticatritaaa tccatattaanaattaatctaatgataatccgatacag ticatttraaa tccata traáantiat tecatattaanaa trant antataatcgantacagttatittaa tCCatattanaanattaatttaatgataatccgaatacagttcattttaan tCCatattaanaattaat traatgataatccgaatacagricattitaaa tCCATATIAAAAATTAATCTAATGATAATCCGAATACAGTTCATITTAAA tccatattaanaattaatttantgataatccgatacagttcattttaan tCCatattaanaattantctaatgataatccgaatacagttcattttaan tCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATtTTAAA tCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATtTTAAA iccatattaanaattantttaatgataatccgaatacagttcattttaan tccatattaanaattaatttaatgataatccgaatacagitcattttaaa tCCatattaanaattanttrangataatcggatacagttcattttana tccatattanaanttantttaatgataatccgantacagttcattttana tCCatattaanaattantttantgatantccgantacagttcattttana tCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA tCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA tCCATATTAAAAATtAATtTAATGATAATCCGAATACAGTTCATTTTAAA tCCatattaanaattaatttantgatantccgantacagttcattttaan TCATATtAAAAATtAATTTAATGATAATCCGAATACAGTTCATTTTAAA tCCatattanaaattaatttaatgataatccgantacagttcattttana tCCataitaanaattaatttantgataatccgantacagttcattttana TCATATtaAAAATtaATtTAatgataatccgaatacagitcattttaan tCCatattaanaattaatttantgatantccgantacagitcaitttaan tCCATATTAAAAATTAATTAATGTAATCCGAATACAGTTCATtTTAAA TCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCGTTTTAAA CCCNATTAAAAATTAATTTAATGANAATCCGAGTACAGTCCATTTTAAA
 TCC NATTAAAAA TIAATTTAATGANAATCCGAATACAGTCCGTTTTAAA tCCCNATTAAAAA TTAATITAATGANAATCCGAATACAGTCCATTTTAAA ccanattaanaattaatttaatgataatccgantacagttcattttana保nattaaaaattaatttantganaatccgaatacagtccattttana tecnattaanaittaatttaatganaatccgaatacagtccattttaaa CCNNATTAAAAATTAATTTAATGANAATCCGAATACAGTCCATTTTAAA ICchattaaaattaat taatg naatccgaatacagtccatittaaa TCCATATTAAAAATTAATTTAATGANAATCCGAATACAGTCCATTTTAAA tCCanattanaan ttaatttaatganaatccgaatacagtccattttana tCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA TCCATAITAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA TCCATATTAAAAATTAATTTAATGATAATCGGAATACAGTTCATTTTAAA
 tccatattaanaattaat traatoataatccgantacagttcattitaan tCCaTATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA TCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA CCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA TCCATATTAAAAATTAATTTAATGATAATCCGAATACAGTTCATTTTAAA TCCatattaanaattaatttaatgataatccgaatacagticattitaaa tccataituana traitrangataatccgaacagtca titaa tccatattahaattanttaatataatcgaatcagtcat traa tecatattahaattaattraatgataatccgantacagttcattttaa tccatattanaatianttantginatcgaatcagttcattttana iccatattaanattaatttaatgathatccgaatacagttcatttiana rcatattahaathattiangataurccgaatacagticatttiaa iccatattaaaatmatttagggetaatccgaatacagt tcattitaaa tccatattahaa traatttaggg iantccgantacagttcattttaa

Abstract

Bel1 | Bel |
| :--- |
| BPJ 1 | BPJ2 8PJ2 BPJ3

Bel2 tangagatattatatctatantattanttc-acccanaanttanttantt e 13 tagagatattatatctataatattaatt--acccaaaaattaattant aaganatattatatctataatattanttc -acccananattaattant tangaantattatatctataatattaattc -acccaanaattaattantt TAAGAAATATTATATCTATAATATTAATTC -ACCCAAAAATTAATTAAT aagaaatartatatctataatattaattc -acccaaaaattaattant tagahatattatatctataatattaatc acccanaa⿱ttaatta tangantat tangaantattatatccataatattaattc - cccccaanattaattant tangaantattatatctataatattantic-cccccaanattaattaat tagagatattatatctataatattaattc -cccccaamattaattaat anganatattataictataatattaattc -cccccanaattaattant tanganatattatatctg gata tiaattc -ccccaaaaattaattaat taaganatattataictataatattaatic -ccccngaaatttattaat taagaaatattatatctatgatattaattc-ccccaanaattaattaat taagaaatattatatctataatattaatic-ccccaaaaattaattant taggaatattatatctataatattaattc -accccaaaattaattant tagagatattatatctatantattaatic -accccaaanttaattant taaganatattatarctataatattaattc -accccaaaattaattaat taagagatatratajctataatattaatic-cccccaanattaattaat magamatat taganattatartata tangantattatatctataatattaatc-acccnaaaattaattant tagaaarat atactatantatraatc-accenaaaat ta tant aagaaataitatactataata taat tagaantatiatactatantattaatre-accecaamattaattaat taganatatratactatanattaatc-accecaanattanttant agantatrataitatanattaatc-accecchaaatah tat a agaaatattatatctataata ttantic-accccaaaattaattaat tagaaatattatatctatantattaatic-cccccaaaattaattant tanganatattatatctataatattaatic-ccccnaanattaattaat a agaaatattatatctataatattaattc -ccccchaaaattaattaatt aagaaatattatatctataatattaattc cecccaabattaattant aggaatattatatctataatattaatc eccccmamaattaattant agaaatattatatctataitattaattc acccmamaithattant aagaaatattatatctataatattaatt - accinaaatthattat Tangaaatattatatctataatattaattc accinahaattaattait aagaaatattatatctatantattaattc-accenaaattantiant TaAGaAatattatatctataatattaattc -cccccaaaat taattant Tangaaatattatatctataitattaattc cccccaahattaattant TaAgaaatattatatctatantattaattc cccccaahattaattant taaganatattatatctatantattantic -acccnaanaititattant taagaratattatatctataataitaattc -acccnaaaat taattaat taagaantattatatctatantaitant C-acccnaanattanttant tangaratattatatctatantattaattc -accenaanattanttant taagaantattatatctatantattant C-cccccanaattanttant TAAGAAATATTATATCTATAATATTAATTC-CCCCCAAAATTAATTAATI tanganatattatatctataatattaatic-cccccaanattaatiant tanganatattatatctatantattante -cccccaanattanttant tagganatattatatctatantattanttc-cccccaanattaattant tanganatattatatctatantattanttc-cccccaanattaattant tanganatattatatctataatattanttc-cccccanaatt tattant taagaantattatatctatantattanttc-accccaanaittaattant tangaantattatatctatantattanttc-accccaanattaattant aAGaAATATTATATCTATAATATTAATTC - ACCCCAAAATTAATTAATT taagaantattatatctatantat tantic-cccccganattiattaat

taagaantattatatctataataithantic -cccccganatttattantt TAAGAAATATTATATCTATAATATTAATTC-CCCCCGAAATTTATTAATT
TAAGAAATATTATATCTATAATATTAATTC-CCCCCGAAATTTATTAATT TAAGAAATATTATATCTATAATATTAATTC-CCCCCGAAATTTATTAATT
TAAGAAATATTATATCTATAATATTAATTC-ACCCCAAAATTAATTAATT tanganatattatatctatantattanttc-accccanaattaattant tanganatattatatctataatattanttc-accccaaanttaattaatt tangaantattatatctataatattanttc-accccaanattaattantt tangaaatattatatctataatattantte-accccgaantttattantt tagaaatattatarctataatattantr-accccgaanttattaatt taganatatatatctataatattaattc accecganatttattatt tangaatattatatctataatattaatre-accecganatrtattant tagaaatattatactataatattaattc acccmahattantant tangaa tattatatctataatattaatic -accenaaaattaattant tagaahtat atactatahtattaatre-accenaaaattaattant tangagatat tatalctataataitaatrc-accecnaaattaattantt TAagaaatattatatctataatattaatic-accccaanattaattaatt taggaatattatatctatantaitaattc -accccaanaittaattaatt tanganatattatatctataataitaattc -accccanaattaattaatt tangaantattatatctataatattaattc -accenaaaattaattantt tangaaatattatatctataataitaatic -acccnaaanttaattaatt tagahatattataictataatattaattc acccaahaattaattantt TAAGAAATATTATATCTATAATATTAATTC-ACCCAAAAATTAATTAATT tahgaantattatatctataatattaatc hccccaanattaattatt taganatat tanganatattatatctataatattaattc -acccaanaattaattaatt taagaaatattatatctataatattaattc-accccanaattaattantt tagaanta tatatctataataitaattc-accccaaaattaattaatt, tanganatattatatctataatattaattc-cccccanaattaattaat tagabatattataictataatattaatc cccccamaattaattait thanatattatatctatanattaatre-cccccaaaattaattaatt tangagatattatarctataatattaattc-cccccanaattaattanti tagaantattatarctataataitaattc-cccccanaattaattant tangaantattatatctataatattaattc-ccccsganattaattant taagaaatattatarctatahtattanttc-ccccsgaanttaattant tahgaaatattatatctataatattantc ccccsganattiattant tangantatataitatanaitaatc-cccesgaat tra mat taagaaatattatatctatantattaattc-ccccnabaattaattantt tahgaatattataictataatattaattc ccccmahaattaattant taagaatattataictataatattaattc ccccmahaattaattatt tagaantattatatict taagaantattatatctataatattaatc cccccmahaattaattant taagaantattatatctataatattaatt ccccmahaattaattait tanganatattatatctataatattaatce-cccenahaattaattant
 taagaantattatatctataatattaattc ccccinaaanttanttatt taAganatattatatctatantattant - -Ccccnanaitiantiant taAgaAatattatatctatantattantte-cccccaanattanttantt TAAGAAATATTATATCTATAATATTAATTC-CCCCCAAAATTAATTAATT TAAGAAATATTATATCTATAATATTAATTC-CCCCCAAAATTAATTAATT taagaaatattatatctatantattanttc-accccanaat Tanttantt taAganatattatatctatantattant C - accccanait tanttant tanganatattatatctatantattanttc-accecanaat Tanttantt taagaantartatatctatantattaattc-accccananttanttantt taAGAAATATTATATCTATAATATTAATTC-ACCCCAAAATTAATTAATT taAganatattatatctatantat taat TC-accccanaat tantiant taaganatattatatctatantattaattccacccaaanattaattant tanganatattatatctatantattanttccacccanaanttanttantt attaatatattaatatattaanttatttatatataantataattaantan attantatattantatat tanat Tat Ttatatatanatataittanatan attaatatattantatattaanttatttatatataantataattaanta attaatatattantatattaanttatttatatatanatataattaanta attantatattantatattaanttatttatatataantataattaanta attantatattantatattanattatttatatataantataattaanta attantatattantatattaanttatttatatatanatataattaaataa attantatattantataitaanttatttatatatanatataattaaatal attantatattantatattaaattatttatatataaatataattaaata attantatattantatattanattatttatatatanatataattanata attantatattantatattanattatttatatataantataattanata attantatattantatattanattatttatatataantataattanata attantatattaatatattaantratttatatatabatataattaaata attantatattantatattanattatttatatatanatatanttanatan attantataitantatattanattatttatatataantataattanata attantatattantatattaaattatttatatatanatatanttanata attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatahatatanttanata attantatat TaAtatattaanttatttatatatanatatanttanata attantatattaatatattaanttatttatatatanatatanttanatan attantatattantataitaanttatttatatatanatatanttanatan attantatattantatattaanttatttatatatahatatanttanatan attantatattantatattanattatttatatatanatataattanataa attantatattantatattanattatttatatatanatatanttanataa attantatattantatattanattatttatatatanatataattanataa attantatattaatataitanattatttatatatanatataattanata attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatataattanatan attantatattantatattanattatttatatatanatataattanatan attantatattaatatattanattatttatatatanatatanttanatan attantatat taatatattanattatttatatataantatanttanataa attantatattaatataitaantitatttatatatanatataattanataa ATTAATATATTAATATTTTAAATTATTTATATATAAATATAATTAAATAA attantatat Tantatattanattatt tatatatanatataittaiatai ittantataitantatattanattatttatatatanatatanttanatan aTtAatatattantatattanaitatt tatatatanatatanttanatan attantatattaatatattaaattatttatatataantatanttanata attaatatattaatata traaattattatatataantataattaaataa attantatattantatattanattatttatatatanatatanttanatan attantatattanta tattaáttattatatataantataattaantaa attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantata traanttatttatatatanatataattanata atTAATATATTAATATATTAAATTATTTATATATAAATATAATTAAATAT
attantatat tantataitanat tatttatatatanatatanttanatat attantatat tantatat tanattatitatatatanatatanttanatai attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantataitantatat taanttatttatatatanatatanttanatan attantatat tantatattaant tatttatatatanatatanttaantan attantatat tantatattanattatttatatatanatatanttanatat attantatat tantatat taanttatttatatatanatatanttanatat attantatattantatattanattatttatatatanatatanttanatat attantatattantatattanattatttatatatanatatanttanatat attantatattantatat tanattatttatatatanatatanttanatan attantataitantatat taant tatttatatataantatanttaantan attantatattantataitaanttatttatatatanatatanttaantan attantatattantataitaanttatitatatatanatatanttaantan attantatattantatat tanattatttatatatanatatanttaantan attantataitantatattanattatitatatataantatanttanatan attantatattantataitanattatttatatatanatatanttanatan attantatattantatattaantatttatatataantatanttaantan attantatattantatattanat tatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatahatatanttaantan a attantatattantatattanattatttatatatanatatanttanataa attantatattantatattanattatttatatataantatanttaantan attantatattantatat tanattatttatatatanatatanttanatan attantatattantatat tanat Tatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttaantan attantatattantatattanattatttatatatanatatanttaataa attantataitaatatattaanttatttatatatanatatanttaantan attantatattantatat tanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantatat tanattatttatatatanatatanttanatat attantatattantatattanattatttatatatanatatanttanatan attantataithatatattanattatttatatatanatatanttanatan attantatattantatattanat Tatt tatatatanatatanttanatat attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattattiatatatanatatanttanatan attantatattantatattanattatttatatatanatatanttanatan attantataitantatattanattatttatatatanatatanttanatan attantataitaatatattanattatttatatatanatatanttanatan
 attantatattantacattanattaittatatatanatatanttanatan attantatattantatattanattatttatatatanatataattanatan attantatattantatattanattaittatatatanatataattanatan attantatattantataitanattarttatatatanatatanttanatan attantatattantatattanattatttatatatanatataattanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantatattanattatttatatatanatataattaantan attantatattantatattaanttatttatatatanatataattanatan attantatattantatattanattatttatatatanatatanttanatan attantatattantatattaanttatttatatatanatataattaantan attantatattantatattanattatttatatatanatataattanatan attantatattantataitanattatttatatatanatataattanatan attantatattantatattanattaittatatatanatatanttanatan attantatattantatattaanttatttatatatanatataattaantan attaatatattaatatattaanttatttatatatanatataattaantan

Bell
Bel2
Bel3
BPJ1
BPJ2
BP33
BPJ4
BTS1
BTS2
BTS3
BTS4
BTTC1
BTTC2
BTTC3
BTTC4
DM1
OM2
DM4
Flag 5
Flag6
Flag7
Flag8
Hat1
Hat2
Hat3
LC97
LCe8
LC09
LC10
LCT1
LCT2
L¢T3
LCT4
LCT5
LMLE1
LMLE 2
LMLE 3
LMLE4
LMME1
LMME2
LMME3
LMME4
LMMS 1
LMMS 2
L.MMS 3
LMMS 4
Long 5
Long6
Long7
Leng8
LPLB1
LPLB2
LPLB3
LTC1
LTC2
LTC3
M ${ }^{\text {H }}$

taAattanatatt tantatatantgintan -antantaatanattana-TAAATTAAATATTTAATATATAATGTGTAA-AATAATAATAAATTAAA--

MH2 MH3
MR1 taanttaantatttantatatantgtgtaa-aataataatanattaca-

 taaattabatatttaatatacaatgitta hatatahtahattaa TAAATTAAATATTTAATATACAATGTTTA A A TAATAATAAATTAA tanattanatat tantatacaatgigtaa-aataataataanttaaa-tana trantat tanattanatattrtatatacaatgittan-aataataataaattaan--

 TaAattaantattratatacaatg tita-antátahtaaattana--

 taAattaantatttantatacagtgittan-antaataataanttana-. taanttaaatatttaatatacaatgitiaa-aattaataatagattana--taanttanatatitaatatataatgintan-aataataatahattaan--TAAATTAAATATTTAATATATAATGTGTAA-AATAATAATAAATTAAA--
 taanttanatatttantatatantgitah-antantaatanattaaa-.
 taanttaantattraatatacaatg trtan-antaataataaattaan--taantranahatttanatacaatgittan-antatatatahattana--taAattanatatttaatatatantgttaa-antaataataaattaan--taAattanatatttantatacaatgttaa-antaataataaattana-

 taantraatatitaatatataatortaa-aataataataaattaan-taantranatatttaatatatantortian-aataataataanttaan--
 ahattaatatttantatataatgittaa ahtatatahattaanha matta解 anattanatatttantatacaakgittaa aitahaitacattana-
 hanattahatatttantataragigttta hatathathattaa
 aanttaantattiattatacagtgtitaa aatathataattah aantanatattiatatacagtgttta ahthataathaattaa tatattahatatttaatattraatetttaa ahtathataattaananattaatatttaatatacautgtttan abthataatahattaa aantaatatttantatataatgittaa aha maa traata tiatatacatgittaa ahtahtaatahattaa mantantathata hanttanatatttantatataatgtttaa aataataatahattaan ahattahatatitantatataat ittia - athataatahattaan hattaatatttantatatantotttaa anthataataatttaaa a attaantatttantatacaatgitta hatataatahttah
 atattaantatttaatatttaatgtttal hatatmathattana
 AAATTAAATATTTAATATATAATGTTTAA-AATAATAATAAATTAA taattanatatttatatatantgtitaa-aathataatahattana tatattanatatttaatatttantgtmtantattaataataaattaan -
tatattaantattiantattiantgintaatatiantantaantiana--TATATTAAATATTTAATATTTAATGINTAATATTAATAATAAATTAAA--TAAATTAAATATTTAATATACAGTGTTTAA-AATAATAATAAATTAAA--TAAATTAAATATTTAATATACAGTGTTTAA-AATAATAATAAATTAAA--taAATTAAATATTTAATATACAGTGITTAA-AATAATAATAAATTAAA--TAAATTAAATATTTAATATACAGTGTTTAA-AATAATAATAAATTAAA--tatattaantatttantatttantgittaatattantaatanattana-tatattaaatatttantatttantattiatattantaitahattana tatattaantatttantattrangttiatathata thantiah
 taattanatatttaatatataatotttan hatahtaatahattaa
 taattanatatttantatatangitia-ahahta tahattana-taattantattantatatangittaa-ataatatanattaá-taattantattantatatah taattantattiatatatangttaa-atatatatacaattana--taAattaatatatttantatataatgtttan-aataataatanattana--TAAATTAAATATTTAATATATAATGTTTAA-AATAATAATAAATTAAA--TAAATTAAATATTTAATATATAATGTTTAA-AATAATAATAAATTAAA-tan taanttanatatttaatatataatgittan-aataataataaattaan-taattaata tantatacaatgittaa-aataataataaattaá--taantraatattaatatacaatgittaa-aataataataaattana--taanttanataittaatatacaaigittan-antaataatanattana--taantaatatttaatatacaatgittaa-aataataatanattana-tantraata traatatacaatgtttaa-atatatataaattaAa--taanttaantatttaatatacaatgtttaa-aataataatanattana--taanttaátatttaatatacaatgtttaa-ataatantanattaaa--taAattaatattrantatacagtgtttaa-aataataatanattana--taattaatattaatatacacggtttaa-aataataatanattana--taantanatatraatatacagigittan-aataataataanttana- TAAA TAAATATTTAATATACAGGGTTTAA-AATAATAATAAATTAAA--tatattanatattratatrtaatgittan-attaataatanattaan-taat taantatttatatatautgtttaa hathataathattah tatattaantarttantaittaigttia atthataatahttan taAat taantattiantatacagtgttta hithatantahtian taanttaantatttaatatacagigttta hathataatahattaha taanttaantatttaatatacagtgittaa hatathathattana taanttanatatttantatatantgtnta hathataatahattana TAAATTAAATATTTAATATACAGTGTTTAA-AATAATAATAAATTAA taat taantatttaatatacantgintaa- aatataatahattan TAAATTAAATATTTAATATACAATGTGTAA-AATAATAATAAATTAA taat taant taantatt taatatacaatgittaa- antaitantanattan
 TAAATTAAATATTTAATATACAATGTTTAA - AATATAATAATTAA taAat taantarttataiataigtttan- aathataathattan taAat TaAatatt taatatacaatgittaa-aatantantanaitah -taanttaantatttaatatacaatgittaa-aatataithatiah taAat TAaATATTTAATATACAATGTTTAA-AataATAatAAATTAA taAat taantatttantatacautgtttaa- aatataatahattan taant taantattiantatacaatgtttaa-aithatantanattan taAat TaAATATTTAATATACAATGTTTAA-AATAATAATAAATTAAA. . taAattaantatttaatatacautgittaa-aataataataaattana TAAATTAAATATTTAATATACAATGTTTAA-AATAATAATAAATTAA TAAATTAAATATTTAATATATAATGTTTAATAATAATAATAAATTAAATT taAattanatatttantatatantgittiantantantaatanattanat
tatitaa-tataata titatacana-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtgta-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgTgta-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtgta-tatatat-atatat atttaa-tatantatttatacata-ta-tgtata-tatatat-atatal tatttaa-tataatatttatacaca-ta-tgtata-tatatat-atatat tatttaa-tatagtatt--tatata-ta-tatata-tatgtat-atttat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat atttan-tatantatttatacata-ta-tgtata-tatatat-atata tatttan-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgTata-tatatat-atatat atttan-tataatatttatacata-ta-tgtata-tatatat-atatal tatttan-tataatatttatacaca-ta-tgtgta-tatatat-atatat tatttaa-tataatatttatacaca-ta-tgtgta-tatatat-ataia atttaa-tatagtaittatatata-ta-tatata-tatgtat-atita atttaa-tataatatttatacana-ta-tgtrta-tatatat-atata tatt taa-tataatatttatacata-ta-tgTrta-tatatat-atata tatttaa-tataatatttatacata-ta-tgtrta-tatatat-atata atttaa-tataatatttatacata-ta-tgtrta-tatatal-atatat atttaa-tataatatttatacana-ta-tgtata-tatatat-atata tatttat-tataataittatacaca-ta-tgtata-tatatat-atata tatttaa-tataatatttatacata-ta-tgtata-tatatat-atata atttan-tataatatttatacana-ta-tgtata-tatatat-atata atttaa-tatantatttatacaca-ta-ggtata-tatatat-atata tatttaa-tataataittatacaga-ta-ggtata-tatatat-atata atttaa-tataatatttatacana-ta-tgtata-tatatat-atata atttaa-tataataittatacata-ta-tgtata-tatatat-atatat atttan-tataacatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-ataia atttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat atttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataataittatacana-ta-tgtgta-tatatat-atatat atttaa-tataatatttatacana-ta-tgtata-tatatat-atata atttaa-tataatatttatacana-ta-tgtata-tatatat-atatat artian-tatantatttatacana-ta-tgtata-tatatat-atatal mathata tatatatt-ta-tgtata-tatgtat-atgta attraa-tataatatttatacata-ta-tgtata-tatatat-atatat a tran-tataatatrtatacata-ta-tgtata-tatatat-atata antraa-tataatatttatacata-ta-tgtata-tatatat-atatat

 atttan-tataatatttatacaca-ta-tgigta-tatatat-atatat attan-tataatatttatacana-ta-tgtnta-tatatat-atatal tat TTAA-TATAATATTTATACATA-TA- tGTATA-TATATAT-ATATAT tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat attan-tataatattratatatt - ta-tatata-tatgtat-atgta tatttan-tataatatttatacana-ta-tgTgTa-TATATAT-ATATAT tatttaa-tataatatttatacaca-ta-tgTgTA-tatatat-atatat
 tattita-tatagtatttatatata-ta-tatata-tatgtat-attta
tatttan-tatagtatitatatata-ta-tatata-tatgtat-atttal tatttan-tatagtattratatata-ta-tatata-tatgtat-atttat tatttan-tatantatttatacaia-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tatagtat -- tatata-ta-tatata-tatgtat-atttat taittaa-tatagtatt--tatata-ta-tatata-tatgtat-atttat tatttan-tatagtatt--tatata-ta-tatata-tatgiat-atttat tatttan-tataatatt--tatata-ta-tatata-tatgiat-atttat tatttan-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatt taa-tataatatt tatacana-ta-tgtata-tatatat-atatat tatttan-tataataittatacana-ta-tgtata-tatatat-atatat tatttan-tataataittatacata-ta-tgtata-tatatat-atatat tatttan-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tataatatttatacaca-ta-tgtata-tatatat-atatat tatttan-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tataataittatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tataitat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtnta-tatatat-atatat tatttaa-tataatatttatacata-ta-tginta-tatataw-atatat tatttaa-tatantatttatacaca-ta-tgtgta-tatatat-atatat tatttan-tatantatttatacaca-ta-tgtgta-tatatat-atatat tatttaa-tatantatttatacana-ta-tgtata-tatatat-atatat tatttan-tataatatttatacana-ta-tgtata-tatatat-atatat tatttaa-tatagtatttatatata-ta-tatata-tatgtat-atttat tattraa-tatantatttatatata-ta-tatata-tatatat-atatat tatttan-tatantatttatatata-ta-tatata-tatatat-atatat tatttan-tatagtatttatatata-ta-tatata-tatatat-atttat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tatantatttatacata-ta-tgtata-tatatat-atatat tatt taa-tataatattratacana-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacaca-ta- tgtata-tatatat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttaa-tataatatttatacata-ta-tgtata-tatatat-atatat tatttan-tatantattatacata-ta-tgtata-tatatat-atatat tatt Tan-tatantatttatacaya-ta-tgTrta-tatatat-atatat tatt taa-tatantatttatacaya-ta-tgtrta-tatatat-atatat tatttaa-tataatatttatacaya-ta-tgtrta-tatatat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat tatttan-tatantatttatacata-ta-tgtrta-tatatat-atatat tatttan-tataatatttatacata-ta-tgtgta-tatatat-atatat tatttan-tatantatttatacata-ta-tgtata-tatatat-atatat TATtTAA-TATAATATTTATACATA-TA-TGTATR-TATATAT-atatat TATTTAA-TATAATATTTATACATA-TA-TGTATR-TATATAT-ATATAT tatttan-tatantatttatacatagtactgtatagtgtatatcatatat tattitan-tataatatttatacatagtactgtatagtgtatatcatatat

Bell	tta--caggGgcgtaaatanttittantanaggt--AAATAATtattatt
12	tta--cacgegcataaataatttitantanaggt--aAatanttattat
Bel3	
BPJ1	tta--Cacgigcatanatancttttantanatgt--AaAtanttcttatt
BPJ2	tta--cacgiccatanataacttttantanatgi--aAatanttcttatt
BPJ3	tta--Cacgtgcatanatanctittantanaggt--aAatanttcttatt
BPJ4	TA--C
bTS 1	tta--cacgtgcatanatancttttantanatgt--AaAtanttcttatt
BTS 2	tTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT
bTS3	tta--Cacgtgcatanatancttttantanatgt--AAATAATtCttat
bTS4	tta--Cacgtgcatanatancttttantanatgt--anatanttcttatt
BTTC1	tta--Cacg tgcatanatancttttantanatgt--AAAGAATtCttatt
BTTC2	TTA--CACGTAGATACAAATGAATTTCAAAATCT--AAATAATTTTTATT
BTtC3	tta--CaCgGgcatanatancttttantanatgi--AAATAATtCttatt
BTtC4	tta--cacgggcatanatancttttaatanaggt--aAatahttcttatt
DM1	tta--CACgtccatanatanctittaatanatgt--aAataittcttat
DM2	TTA--CACGTGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT
DM4	tta--caggggcatanatancttttantanatgt--anataattcttatt
Flag5	TTA--CACGGGCATAAATAATTTTTAATAAATGT--AAATAATTATTATT
Flag6	
Flag7	tta--C
Flag8	tta--cacgigcatanataatttttantanatgt--anataattattatt
Hat1	tTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT
Hat2	
Hat3	tta--cacgtgcatanatancttttantanatgt--aAataat
LC07	TTA--C
LC08	tta--Cacgigcatanatanctittantanacgi--aAatanttcttatt
LCe9	tTA--CACGTGCATAAATAACTTTTAATAAAGGT--AAATAATTCT
LC10	tta--Cacgtgcatanatantttttantanaggt--anatanttattatt
11	tta--cacgggcatanata
LCT2	TA
LCT3	tta--cacgigcatanatantttttaatanaggt--anatanttattatt
LCT4	TA--C
LCTS	tta--cacgtacatanatantttttantanaggg--anataattattatt
LMLE1	tTA--CACGTACATAAATAACTTTTAATAAATGT--AAATAATTCTTAT
LMLE2	tta--cacgigcatanatancttrtantanatgt--anatanttcttatt
LmLe3	tta--Cacgtgcatanatancttttantanatgi --AAAtaAttcttat
LMLE4	tta--CacgigcatanatancttttantanatgT--AAATAAT
LMME1	TTA--CACGGGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT
LMME2	tta--cacgegcatanatancttttancanatgi--anataattcttatt
LMME3	TTA--CACGTACATAAATAACTTTTAATAAAGGT--AAATAATTCTTAT
LMME4	tta--CaCggGcatanatancttttantanaggg--anataittcttatt
LMMS1	tta--Caggtgcatanatancttttantanatgt--aAatanttcttatt
LMMS 2	tta--CACGTGCATAAATAACTTTtAATAAATGT--AAATAATTCTTAT
LMMS3	tta--Cacgigcatanatancttttantanatg --anatanitcttatt
LMMS4	tta--CACGTGCATAAATAACttttantanatgi--anataattcttatt
Long5	tta--Cacgggcatanatantttttantanaggt--aAatanatcttatt
Long6	TtA--CACGGGCATAAATAATTTTTAATAAATGT--AAATAAATCTTATT
Long7	tTA--CACGGGCATAAATAATTTTTAATAAAGGT--AAATAAATCTTAT
Long8	tta--CaCGgGcatanatantttttantanatgi--anatanatcttat
LPLB1	ttag-cacgtacatanatancttttantanaggt--anatanttcttatt
LPLB2	Ttag-Cacgtacatanatancttttantanagg --AAATAATTCTtATT
LPLB3	ttag-caggtgcatanatancttttantanaggt--anatanttcttatt
LTC1	TTA--CACGGGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT
LTC2	TTA--CACGGGCATAAATAACTTTTAATAAATGT--AAATAATTCTTA
LTC3	tta--cacgicatataatanctittantanatg --aAatanttcttatt

ita--cacgggcgtaaataatitttaatanaggt --aaAtaattattatt tTa--cccgcgcctanataatctittantanaggt --aAatanttattat tta--CaCgiccataantaacttttaatanatgt --AaAtaattcttatt tTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT tTA--CaCGTGCatahaicttrantang --tTA--Cacgtgcataantancttttaatanatgt--AaAtanttcttatt tTa--Cacgtgcatanatactith tTA--CACgTGCATAAATAACtTTTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAAC TTTTAATAAATGT--AAAGAATTCTTATT tTA--CACGGGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--CACGGGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT tia--cacgicgatahiactitrantant tTA--cacggGcatanataacttttantanatg t--aAataAttcttatt TTA--CACGGGCATAAATAATTTTTAATAAATGT --AAATAATTATTATT tTA--CACGGGCATAAATAATTTTTAATAAATGT--AAATAAATCTTATT TTA--CACGTGCATAAATAATTTTTAATAAATGT--AAATAATTATTATT TTA--cacgiccatantactitantanat anatantctait tTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAATTTTTAATAAAGGT--AAATAATTATTATT tTA--CACGTGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT TTA--CACGTGCATAAATAATTTTTAATAAAGGT--AAATAATTATTATT tTA--CACGGGCATAAATAATTTTTAATAAAGGT--AAATAATTATTATT TTA--cacgtgcatanataatttttaatangggt--aaataittattatt TTA--CACGTGCATAAATAATTTTTAATAAAGGG--AAATAATTATTATT TTA--cacgicicataantaactittaataantgi-- AaATAATTCTTATT tTA--CACGTGCATAAATAACTTTTAATAAATGT - - AAATAATTCTTATT TTA--CACGGGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT tha--cacggcatanataacttttaacaaatgt--aAataattcttatt TTA--CACGTACATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT tTA--CaCgGGCataantancttttaataanggg--aAataattcttatt TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT
 TTA-- CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT tTA--cacgggcataantantttttantanaggt--aAatanatcttatt TTA--CACGGGCATAAATAATTTTTAATAAATGT--AAATAAATCTTATT TTA--CACGGGCATAAATAATTTTTAATAAAGTGT--AAATAAATCTTATT ttag-cacgtgcataaataacttttaataaaggt-- aantanttcttatt ttag-CacgTacatanatancttttantaang --AAATAATTCTTATT TTA--CACGGGCATAAATAACITTTAATAAATGT - -AAATAATTCTTATT TTA--CACGGGCATAAATAAGTTTTAATAAATGT--AAATAATTCTTATT -..-----AGATACAAAT-AATtTCA--AAATCT --AAATAATTTTTATT
--------AGATACAAAT-AATTTCA--AAATCT--AAATAATITTTATT -------AAATACAAAT-AATTTCA--AAATCT--AAATAATTTTTATT TTA--CACGTGCATAAATAACTTTTAAATAAATGT--AAATAATTCTTATT TA--Cacg gcataaataactittaataantgt --AAATAATTCTTAT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTAT

 -------AAATACAAAT-AATTTCA--AAATCT--AAATAATTTTTATT agatacaaat-aattica--aAatct--aAataat titat TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--Cacgigcataantancttttaatanatgi--AAATAATTCTTATT tta--Cacgigcatanatanctittaatanatg --AAATAATTCTTATT TTA--CAGGTGCATAAATAACTITTAATAAATGT--AAATAATTCTTATT ITA--CACGTGCataAataattittantanatg --AAATAATtattait TTA--CACGTGCATAAATAATTTTTAATAAATGT--AAATAATTATTATT TTA--CACGTGCATAAATAATTTTTAATAAATGT--AAATAATTATTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT tta--Cacgigcataaataact traataaatg ---AAataattcttat tTA--CacGigcataantaacttttantanaigt - AaAtaattctant tTA--CACGGGCATAAATAACTTTTAATAAATGT-AAATAATTCTIT tTA--CACGGGCATAAATAACTTTAATAAGGT AMATATTCTATT tTA--CacGTGCataantaacttttantangi--anatant tTA--Cacgigcatanatancttttantanto - anatanititait tTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTATT tTA--CACGTGCATAAATAACTTTTAATAAATGT - - Aantaitctat tta-- Cacgg catantanctittaataaatg --aAataattcttatt
 TTA-- Cacgigcatanatancttttantanagg --Aantant
 TTA--CAGGTGCATAAATAATTTTTAATAAAGTGT--AAAAAATCTTATT TTA--CACGTGCATAAATAATTITTAATAAATGT--AAATAAATCTTATT tta--cacgtgcatanataatttttaataantgt--aAataantcttatt TIA--CACGGGCataAataactittaatanaggt--aAatanictitit TTA--CACGGGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTITTAATAAATGT--AAATAATTCTTATT TCA--CACGGGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT
 TTA--CAGGTGCATAAATAACTTTTAATAAAGGT--AAATAATTCTTATT TTA CAcGgCATAAATAACTtTTAATAAAGGT ABATAATTCTTATT tra- cacgiccataataacttttaataantgt ahataiticttatt TTA--CAGGTGCATAAATAACTITTAATAAATGT.--AAATAATTCTTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAAITCITATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT tTA--CACGTGCATAAATAATTTTTAATAAATGT--AAATAATTATTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTTITAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCITATI TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCITATT tTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTITTAATAAATGT--AAATAATTCTTATT TTA--CACGTGCATAAATAACTTTTAATAAATGT--AAATAATTCTTATT ttattcacgiacataantantttttantaancgtagatacagitcicatt tTATtCACGTACATAAATAATTTTTTAATAAACGTAGATACAGTTCTCATt

Bel3	acttattt-atacc-attttta-atct
BPJ1	attat
BPJ2	TATTT--AATTATTT-ATACC-ATtTtTA-ATCTTTTTA-CGTt-AATAA
3	Aattatte-atacl-attitta-atctittt
4	anttatte-atacc-atttita-atctittta-cgi
BTS1	ACC-ATTTTTA-ATCTTTTTT-ACG
BTS2	TT--AATTATTT-ATACC-ATTTTTA-ATCTTTT
BTS3	-AT
BTS4	- AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-
Bttci	attctaatttagct-gtaccattatttataictttttt-acgicantt
2	ATTCTAATTTAGCT-gTaccattatttatatctttttt-acatcan
3	AITCTAATTTAGCT-GTACCATTATTTATATCTITTTT
BTTC4	aitctaatitagct-gtaccattatttataicttttte-gcgicaa
DM1	-T--AATTATTT-ATACC-ATtTTTA-ATCTTTTT
DM2	ATt--AATTATTT-ATACC-ATtTTTA-ATCTTTTTT-ACGT-AATAA
DM4	ATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AAGGA
Flags	ATTT--ACTTATTT-ATACC-ATTTTTA-ATCTITTTTACCGTAATAAA
Flag	tt--acttattt-atacc-attitta-atctittttaccgiaataaa
Fl	TTT--ATTTAGCT-gTACC-ATtTITA-ATCTtTtttaccgtaataan
lag8	TATTT--ACTTATTT-ATACC-ATtTTTA-ATCTTTYTTACCGTAATAAA
Hat1	ATtT--AATTATTT-ATACC-ATTTTTA-ATCTtTtTt-ACGt-antan
Hat2	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA
Hat 3	ATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA
LC07	ATtT--ACTTATTT-ATACC-ATTTTTA-ATCT-TtTttacgtantana
LC08	attt--AATTATtT-ATACC-acttt-a-atct-ttttancgtaatcaa
09	TATTT--AATTATTT-ATACC-ATtTtTA-ATCT-TtTtaACgTaAtgan
LC10	TTT--ACTTATTT-ATACC - attttea-atct-tttttacgtantana
T1	ATTT--ACTTATTT-ATACC-ATTTTTA-ATC-TTTTTTACGTAATAAA
LCT2	atte--acttattt-atacc-attttta-atc-ttttttgcgtantana
LCT3	tattt--acttatte-atacc-attitta-atc-tctttgacgtaatana
LCT4	tattt--acgiatte-atacc-attttta-atc-tttttcacgiantian
cts	ATtT--ACttatte-atacc-attttta-atc-ttttttacgtantana
LmLE1	TATTT--AATTATTT-ATACC-GTTTTTA-ATCTTTTA--GCGT-AATAA
2	ATTT--AGTTATTT-ATGCC-ATTTTTA-ATCTTTTA--GCGT-AATAA
3	TATTT--AGTJATTT-ATGCC-ATTTTTA-ATCTTTTA--GCGT-AATAA
LMLE4	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTA--GCGT-AATAA
LMME1	TATTT--AATTATTT-ATACC-Attttta-atcttttrtagcgianttan
LMME2	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTAGCGTAATTAA
MME 3	ATtT--AATTATTT-ATACC-GTTTTTA-ATCTtTtTtagcgtanttan
MME4	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTACCGTAATTAA
LMMS 1	TATtT--ATTTATTT-ATACC-ATtTTTA-ATCTTTTTT-ACATAAATAT
MMS 2	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGTTAATTA
MMS 3	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGTTAATTA
LMMS4	TATtT--AATTATtT-ATACC-Attttta-atctttttt-acgttantta
Long 5	tatte--acttatte-atacc-attttia-atctittttacgitaattaa
Long6	tattt--acttatte-atacc-attttta-atcttttttacggtanttaa
Long7	TATTT--ACTTATIT-ATACC-ATtTtTA-ATCTTTTTTACSGTAATTAA
Leng8	TATTT--ACTTATTT-ATACC-ATTTTTA-ATCTTTTTTACGGtanttan
LPLB1	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTAGCGTAAATAA
PLB2	TATTT--AATTATTT-ATACC-GTTTTTA-ATCTTTTTTAGCGtanatan
PLB3	TATTT-AATTTATTC-ATACC-GTTTTTA-ATCTTTTTTAACATAAATAT
LTC1	attt--Aattattt-atacc-attitta-atctittitaccgtaattaa
LTC2	TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTASCGTAATTAA
LTC3	
MH1	atttagct-gtaccatt-

el3 BPJ2 BPJ3 TS1 BTS2

TATTT--ATTTAGCT-GTACCATT-TTTA-ATCTTTTTT-ACATCAAATA TATTT--ATTTAGCT-GTACCATT-TTTA-ATCTTTTTT-ACATCAAATA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATT--AATATT-AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATT--AATATTT-AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT-AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT-ATTTAGCT-GTACCATT-TTTA-ATCTTTTTT-ACAT-AAAAA TATTT--ATTTAGCT-GTACCATT-TTTA-ATCTTTTTT-ACAT-AAAAA TATTT--ATTTAGCT-GTACCATT-TTTA-ATCTTTTTT-ACAT-AAAAA TATTT-ATTTAGCT-GTACCATT-TTTA-ATCTTTTTT-ACAT-AAAAA TATTT--AATTATTT-ATACC-ATtTTTA-ATCT-TtTttacgtaataan TATTT--AATTATTT-ATACC-ATTTTTA-ATCT-TTTTTACGTAATTAA TATTT--AATTATTT-ATACC-ATtTTTA-ATCT-TTTTTACGTAATTAA TATTT--AATTATTT-ATACC-ATtTTTA-ATCT-TTTTTACGTAATTAA TATTT--ACTTAITT-ATACC-ATtTITA-ATCT--tTTTACGCTAATTA tattt--acttattt-atacc-atttita-atct--ttttacggtaatta TATTT--ACTTATTT-ATACC-ATTTTTA-ATCT--TTTTACGTTAATTA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATITITA-ATCTTTTTT-GCGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-GCGT-AATAA TATTT--AATTATTT-ATACC-ATtTITA-ATCTTTTTT--CGT-AATAA TATtT--AATtATTT-ATACC-ATTTTTA-ATCTTTTTT--CGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGTTAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTT-ACGTTAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGTTAATAA TATTT--AATTATTT-ATACC-ATtTTTA-ATCTTTTTT-ACGITAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTT-A-CGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTT-A-CGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTT-A-CGT-AATGA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTT-A-CGT-AATTA TAITT--ATTTAGCT-ATACCATTITTTA-ATCTTTTTTAC-ATAAAATA TATTT--ACTTATTT-ATACCATTTTTTA-ATCTITTTTAC-GTAATTAA TATTT--ACTTATTT-ATACCATTTTTTA-ATCTTTTTTAC-GTAATTAA TATTT--ATTTAGCT-ATACCATTTTTTA-ATCTITTTTAC-ATAAAATA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTAGCGTTAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTAGCGTtAATAA tatt---anttattt-atacc-attttia-atctittttagcgitaatan tattt--aATtATtT-atacc-attttta-atctttttta-cgttaatta TATTT--AATTATTT-ATACC-ACTTTTA-ATCTTTTTTA-CGTTAATTA TATTT--AATTATTT-ACCCCCATtTTTA-ATCTCCCTTA-CGTAAATTA TATTT--AATTATTT-ATACCCATTTTTA-ATCTTTTTTA-GGTTAATTA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTITTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTITTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT--ACTTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGTTAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGTTAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTITTTT-ACGTTAATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-ACGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTT-AGGT-AATAA TATTT--AATTATTT-ATACC-ATTITTA-ATCTTTTTT-AGGT-AATAA TATTT--AATTATTT-ATACC-ATTTTTA-ATCTTTTTTA-CGTTAATAA TATIT--AATTATIT-ATACC-ATTTITA-ATCTITTTTA-GGTTAATAA tattr--acttactitacacc-attctig-atctattitagcgicactac tattt--acttactttacacc-attctig-atctattitagcgicactac

Appendix 10- O. ptunarra Population Log/Det sequence divergence values

	$\overline{\bar{\omega}}$	$\begin{aligned} & \underset{Y}{\tilde{\infty}} \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{\omega} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\square} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{m}{2}$	$\frac{\square}{2}$	$\stackrel{\bar{\omega}}{\stackrel{\omega}{\omega}}$	$\underset{\sim}{N}$	$\frac{n}{n}$	$\begin{aligned} & \text { せ } \\ & \hline \end{aligned}$	省	O
Bell													
Bel2	0.0098												
Bel3	0.0195	0.0165											
BPJI	0.0263	0.0248	0.0358										
BPJ2	0.0263	0.0248	0.0359	0.0028									
BPJ3	0.0277	0.0262	0.0372	0.0069	0.0069								
BPJ4	0.0263	0.0248	0.0358	0.0000	0.0028	0.0069							
BTS1	0.0332	0.0304	0.0400	0.0166	0.0193	0.0207	0.0166						
BTS2	0.0333	0.0262	0.0386	0.0180	0.0207	0.0221	0.0180	0.0041					
BTS3	0.0290	0.0207	0.0386	0.0124	0.0152	0.0166	0.0124	0.0097	0.0083				
BTS4	0.0263	0.0248	0.0345	0.0097	0.0124	0.0138	0.0097	0.0097	0.0110	0.0055			
BTTC1	0.0402	0.0399	0.0509	0.0249	0.0276	0.0318	0.0249	0.0276	0.0290	0.0235	0.0207		
BTTC2	0.0789	0.0802	0.0898	0.0750	0.0749	0.0778	0.0750	0.0778	0.0792	0.0736	0.0709	0.0661	
BTTC3	0.0345	0.0344	0.0454	0.0207	0.0235	0.0276	0.0207	0.0235	0.0248	0.0193	0.0166	0.0069	0.0633
BTTC4	0.0317	0.0316	0.0427	0.0221	0.0249	0.0263	0.0221	0.0262	0.0276	0.0221	0.0193	0.0151	0.0661
DM1	0.0263	0.0249	0.0359	0.0097	0.0124	0.0138	0.0097	0.0124	0.0138	0.0083	0.0055	0.0207	0.0737
DM2	0.0304	0.0262	0.0400	0.0166	0.0180	0.0180	0.0166	0.0193	0.0207	0.0124	0.0124	0.0304	0.0806
DM4	0.0373	0.0373	0.0483	0.0249	0.0262	0.0290	0.0249	0.0276	0.0290	0.0235	0.0207	0.0373	0.0889
Flag5	0.0292	0.0263	0.0389	0.0387	0.0387	0.0401	0.0387	0.0360	0.0332	0.0319	0.0346	0.0497	0.0889
Flag6	0.0267	0.0236	0.0373	0.0347	0.0347	0.0361	0.0347	0.0319	0.0277	0.0263	0.0305	0.0456	0.0862
Flag7	0.0611	0.0611	0.0693	0.0652	0.0652	0.0666	0.0652	0.0652	0.0652	0.0626	0.0610	0.0678	0.0404
Flag8	0.0208	0.0194	0.0304	0.0263	0.0263	0.0277	0.0263	0.0263	0.0264	0.0223	0.0222	0.0389	0.0766
Hatl	0.0221	0.0194	0.0317	0.0055	0.0083	0.0111	0.0055	0.0097	0.0098	0.0043	0.0028	0.0193	0.0708
Hat2	0.0221	0.0194	0.0317	0.0055	0.0083	0.0111	0.0055	0.0097	0.0098	0.0043	0.0028	0.0193	0.0708
Hat3	0.0221	0.0194	0.0317	0.0055	0.0083	0.0111	0.0055	0.0097	0.0098	0.0043	0.0028	0.0193	0.0708
LC07	0.0221	0.0235	0.0317	0.0359	0.0359	0.0345	0.0359	0.0387	0.0401	0.0345	0.0318	0.0484	0.0858
LC08	0.0434	0.0431	0.0513	0.0349	0.0377	0.0377	0.0349	0.0376	0.0390	0.0335	0.0307	0.0472	0.1004
LC09	0.0331	0.0317	0.0400	0.0248	0.0276	0.0262	0.0248	0.0276	0.0290	0.0235	0.0207	0.0399	0.0900
LC10	0.0193	0.0207	0.0290	0.0332	0.0332	0.0318	0.0332	0.0359	0.0373	0.0318	0.0290	0.0457	0.0831
LCTI	0.0153	0.0194	0.0276	0.0305	0.0305	0.0291	0.0305	0.0277	0.0291	0.0263	0.0236	0.0386	0.0777
LCT2	0.0112	0.0152	0.0262	0.0277	0.0277	0.0278	0.0277	0.0306	0.0320	0.0264	0.0237	0.0386	0.0776
LCT3	0.0180	0.0193	0.0303	0.0278	0.0278	0.0264	0.0278	0.0278	0.0291	0.0236	0.0209	0.0361	0.0738
LCT4	0.0222	0.0235	0.0345	0.0291	0.0291	0.0292	0.0291	0.0306	. 0.0320	0.0264	0.0237	0.0400	0.0776
LCT5	0.0166	0.0180	0.0290	0.0277	0.0277	0.0263	0.0277	0.0277	0.0291	0.0235	0.0208	0.0386	0.0750
LMLE 1	0.0277	0.0263	0.0345	0.0111	0.0138	0.0167	0.0111	0.0181	0.0194	0.0139	0.0111	0.0263	0.0737
LMLE2	0.0319	0.0305	0.0387	0.0166	0.0194	0.0222	0.0166	0.0222	0.0236	0.0194	0.0167	0.0319	0.0834
LMLE3	0.0264	0.0249	0.0332	0.0111	0.0139	0.0167	0.0111	0.0181	0.0194	0.0139	0.0111	0.0263	0.0779
LMLE4	0.0222	0.0208	0.0290	0.0083	0.0111	0.0139	0.0083	0.0153	0.0167	0.0111	0.0084	0.0249	0.0737
LMME1	0.0222	0.0194	0.0331	0.0138	0.0166	0.0167	0.0138	0.0194	0.0180	0.0125	0.0125	0.0291	0.0818
LMME2	0.0263	0.0262	0.0361	0.0152	0.0180	0.0194	0.0152	0.0166	0.0179	0.0124	0.0097	0.0276	0.0777
LMME3	0.0277	0.0262	0.0373	0.0166	0.0193	0.0180	0.0166	0.0179	0.0193	0.0138	0.0111	0.0276	0.0764
LMME4	0.0249	0.0249	0.0359	0.0138	0.0166	0.0152	0.0138	0.0166	0.0180	0.0125	0.0097	0.0277	0.0792
LMMS 1	0.0471	0.0456	0.0566	0.0387	0.0387	0.0417	0.0387	0.0445	0.0458	0.0403	0.0375	0.0523	0.0567
LMMS2	0.0264	0.0237	0.0359	0.0083	0.0111	0.0139	0.0083	0.0125	0.0139	0.0071	0.0056	0.0207	0.0749
LMMS3	0.0236	0.0249	0.0359	0.0111	0.0139	0.0167	0.0111	0.0154	0.0167	0.0111	0.0084	0.0234	0.0721
LMMS4	0.0319	0.0278	0.0414	0.0139	0.0166	0.0195	0.0139	0.0153	0.0167	0.0098	0.0111	0.0262	0.0803
Long5	0.0292	0.0304	0.0387	0.0305	0.0305	0.0291	0.0305	0.0346	0.0332	0.0319	0.0305	0.0470	0.0862
Long6	0.0235	0.0262	0.0344	0.0234	0.0235	0.0248	0.0234	0.0262	0.0276	0.0248	0.0221	0.0399	0.0776
Long7	0.0223	0.0235	0.0345	0.0276	0.0276	0.0263	0.0276	0.0290	0.0276	0.0249	0.0249	0.0400	0.0805
Long8	0.0292	0.0293	0.0390	0.0292	0.0292	0.0306	0.0292	0.0263	0.0264	0.0264	0.0278	0.0445	0.0837
LPLB1	0.0277	0.0263	0.0317	0.0141	0.0168	0.0154	0.0141	0.0126	0.0140	0.0113	0.0085	0.0277	0.0779
LPLB2	0.0263	0.0248	0.0358	0.0126	0.0154	0.0139	0.0126	0.0139	0.0153	0.0098	0.0070	0.0249	0.0723
LPLB3	0.0540	0.0525	0.0635	0.0471	0.0471	0.0457	0.0471	0.0485	0.0499	0.0444	0.0416	0.0566	0.0569

Appendices

	$\overline{\text { F }}$	刻	\％	$\overline{\bar{m}}$	$\stackrel{\text { N }}{\stackrel{\sim}{m}}$	$\begin{gathered} \stackrel{m}{2} \\ \\ \hline \end{gathered}$	$\begin{gathered} \frac{\mathrm{y}}{\mathbf{n}} \\ \hline \end{gathered}$	高	盗	會	苟	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\varphi}}$	Eֻ
LTCl	0.0235	0.0207	0.0345	0.0124	0.0152	0.0166	0.0124	0.0179	0.0166	0.0111	0.0111	0.0291	0.0778
LTC2	0.0250	0.0235	0.0345	0.0166	0.0194	0.0207	0.0166	0.0193	0.0180	0.0152	0.0152	0.0317	0.0818
LTC3	0.0264	0.0235	0.0345	0.0166	0.0193	0.0207	0.0166	0.0180	0.0166	0.0138	0.0138	0.0303	0.0805
MH1	0.0714	0.0732	0.0833	0.0733	0.0733	0.0746	0.0733	0.0746	0.0750	0.0703	0.0676	0.0657	0.0225
MH2	0.0715	0.0733	0.0834	0.0734	0.0733	0.0747	0.0734	0.0746	0.0750	0.0704	0.0676	0.0658	0.0255
MH3	0.0714	0.0718	0.0819	0.0719	0.0719	0.0732	0.0719	0.0732	0.0736	0.0689	0.0662	0.0643	0.0211
MR1	0.0249	0.0235	0.0345	0.0083	0.0111	0.0124	0.0083	0.0110	0.0124	0.0069	0.0041	0.0221	0.0724
MR2	0.0249	0.0235	0.0345	0.0083	0.0111	0.0124	0.0083	0.0110	0.0124	0.0069	0.0041	0.0221	0.0724
MR3	0.0249	0.0235	0.0345	0.0083	0.0111	0.0124	0.0083	0.0110	0.0124	0.0069	0.0041	0.0221	0.0724
MR4	0.0249	0.0235	0.0345	0.0083	0.0111	0.0124	0.0083	0.0110	0.0124	0.0069	0.0041	0.0221	0.0724
NB1	0.0674	0.0687	0.0787	0.0689	0.0689	0.0703	0.0689	0.0732	0.0745	0.0689	0.0661	0.0675	0.0212
NB2	0.066	0.0673	0.0773	0.0675	0.0675	0.0689	0.0675	0.0717	0.0731	0.0675	0.0647	0.0661	0.0255
NB3	0.0674	0.0687	0.0787	0.0689	0.0689	0.0703	0.0689 ．	0.0732	0.0745	0.0689	0.0661	0.0675	0.0212
NB4	0.0632	0.0659	0.0759	0.0661	0.0661	0.0675	0.0661	0.0703	0.0717	0.0661	0.0633	0.0647	0.0241
ORB1	0.0249	0.0235	0.0345	0.0194	0.0221	0.0249	0.0194	0.0236	0.0249	0.0194	0.0166	0.0344	0.0830
ORB2	0.0263	0.0249	0.0359	0.0180	0.0207	0.0236	0.0180	0.0222	0.0236	0.0180	0.0152	0.0331	0.0816
ORB3	0.0221	0.0207	0.0317	0.0138	0.0166	0.0194	0.0138	0.0181	0.0194	0.0139	0.0111	0.0277	0.0775
ORB4	0.0249	0.0207	0.0345	0.0166	0.0194	0.0208	0.0166	0.0194	0.0208	0.0125	0.0125	0.0304	0.0780
PHI	0.0180	0.0193	0.0303	0.020	0.0207	0.0221	0.0207	0.0235	0.02	0.0193	0.0166	0.0317	0.0706
PH	0.0180	0.0193	0.0303	0.0207	0.0207	0.0221	0.0207	0.0235	0.0249	0.0193	0.0166	0.0317	0.0706
PH3	0.0166	0.0193	0.0303	0.0207	0.0207	0.0221	0.0207	0.0235	0.0249	0.0193	0.0166	0.0289	0.0706
PPSI 1	0.0222	0.0207	0.0317	0.0083	0.0111	0.0139	0.0083	0.0125	0.0139	0.0083	0.0056	0.0221	0.0709
PPSI 2	0.0222	0.0207	0.0317	0.0083	0.01	0.0139	0.0083	0.0125	0.0139	0.0083	0.0056	0.0221	0.0709
PPS2 1	0.0194	0.0180	0.0290	0.0069	0.0097	0.0138	0.0069	0.0138	0.0152	0.0097	0.0069	0.0221	0.0709
PPS2 2	0.0222	0.0207	0.0317	0.0069	0.0097	0.0138	0.0069	0.0138	0.0152	0.0097	0.0069	0.0221	0.0736
PPFE 1	0.0209	0.0209	0.0320	0.0069	0.0097	0.0139	0.0069	0.0138	0.0152	0.0097	0.0069	0.0221	0.0737
PPFE 2	0.0194	0.0195	0.0306	0.0083	0.0111	0.0097	0.0083	0.0124	0.0138	0.0083	0.0055	0.0235	0.0738
PTD1	0.0235	0.0221	0.0331	0.0055	0.0083	0.0124	0.0055	0.0111	0.0124	0.0069	0.0041	0.0206	0.0719
PTD2	0.0249	0.0235	0.0345	0.0069	0.0097	0.0111	0.0069	0.0097	0.0111	0.0055	0.0028	0.0220	0.0720
PTD3	0.0235	0.0209	0.0331	0.0083	0.0083	0.0097	0.0083	0.0111	0.0112	0.0056	0.0042	0.0234	0.0707
PTD4	0.0263	0.0237	0.0359	0.0111	0.0111	0.0097	0.0111	0.0111	0.0112	0.0056	0.0042	0.0234	0.0708
Rerk 1	0.0322	0.0306	0.0417	0.0194	0.0222	0.0208	0.0194	0.0194	0.0180	0.0153	0.0153	0.0305	0.0838
Rcrk2	0.0406	0.0362	0.0472	0.0278	0.0306	0.0292	0.0278	0.0250	0.0236	0.0195	0.0237	0.0389	0.0923
Rcrk3	0.0348	0.0306	0.0417	0.0180	0.0208	0.0167	0.0180	0.0208	0.0222	0.0139	0.0139	0.0291	0.0825
Rcrk4	0.0306	0.0293	0.0418	0.0167	0.0195	0.0181	0.0167	0.0167	0.0180	0.0125	0.0125	0.0264	0.0811
SGR5	0.0624	0.0637	0.0721	0.0596	0.0597	0.0611	0.0596	0.0625	0.0639	0.0611	0.0583	0.0623	0.0321
SGR6	0.0278	0.0291	0.0375	0.0264	0.0264	0.0279	0.0264	0.0279	0.0292	0.0265	0.0237	0.0388	0.0685
SGR7	0.0278	0.0291	0.0375	0.0264	0.0264	0.0279	0.0264	0.0279	0.0292	0.0265	0.0237	0.0388	0.0685
SGR8	0.0626	0.0639	0.0722	0.0598	0.0598	0.0613	0.0598	0.0626	0.0640	0.0612	0.0584	0.0624	0.0349
ShR1	0.0291	0.0290	0.0401	0.0166	0.0194	0.0180	0.0166	0.0180	0.0194	0.0139	0.0111	0.0304	0.0806
ShR2	0.0277	0.0276	0.0387	0.0152	0.0180	0.0180	0.0152	0.0180	0.0194	0.0138	0.0111	0.0290	0.0803
ShR3	0.0305	0.0291	0.0401	0.0125	0.0152	0.0180	0.0125	0.0153	0.0166	0.0111	0.0083	0.0262	0.0776
StPatl	0.0264	0.0251	0.0363	0.0153	0.0180	0.0181	0.0153	0.0181	0.0182	0.0139	0.0111	0.0262	0.0776
StPat2	0.0319	0.0319	0.0431	0.0180	0.0208	0.0208	0.0180	0.0208	0.0222	0.0166	0.0139	0.0277	0.0832
StPat 3	0.0336	0.0308	0.0421	0.0182	0.0209	0.0210	0.0182	0.0209	0.0210	0.0167	0.0140	0.0304	0.0846
StPat4	0.0266	0.0265	0.0376	0.0153	0.0181	0.0181	0.0153	0.0180	0.0166	0.0138	0.0111	0.0248	0.0816
StPatME1	0.0263	0.0249	0.0359	0.0097	0.0125	0.0153	0.0097	0.0111	0.0125	0.0069	0.0042	0.0207	0.0722
StPatME2	0.0249	0.0235	0.0345	0.0083	0.0111	0.0139	0.0083	0.0097	0.0111	0.0055	0.0028	0.0193	0.0708
StPatME3	0.0249	0.0235	0.0345	0.0083	0.0111	0.0139	0.0083	0.0097	0.0111	0.0055	0.0028	0.0193	0.0708
StPatME4	0.0249	0.0235	0.0345	0.0083	0.0111	0.0139	0.0083	0.0097	0.0111	0.0055	0.0028	0.0193	0.0708
TT59＿1	0.0180	0.0180	0.0303	0.0194	0.0193	0.0207	0.0194	0.0194	0.0194	0.0139	0.0125	0.0291	0.0665
TT59＿2	0.0263	0.0236	0.0359	0.0083	0.0110	0.0124	0.0083	0.0083	0.0084	0.0029	0.0014	0.0193	0.0707
TT59＿3	0.0263	0.0236	0.0359	0.0083	0.0110	0.0124	0.0083	0.0083	0.0084	0.0029	0.0014	0.0193	0.0707
TT76＿1	0.0249	0.0235	0.0345	0.0083	0.0111	0.0124	0.0083	0.0110	0.0124	0.0069	0.0041	0.0221	0.0724
TT76＿2	0.0235	0.0208	0.0331	0.0069	0.0097	0.0111	0.0069	0.0097	0.0097	0.0042	0.0028	0.0207	0.0710
TT76＿3	0.0249	0.0207	0.0345	0.0083	0.0111	0.0124	0.0083	0.0110	0.0097	0.0041	0.0041	0.0221	0.0724
TT76＿4	0.0235	0.0221	0.0331	0.0069	0.0097	0.0111	0.0069	0.0097	0.0110	0.0055	0.0028	0.0207	0.0710
WSC1	0.0278	0.0264	0.0375	0.0083	0.0111	0.0125	0.0083	0.0125	0.0138	0.0083	0.0055	0.0248	0.0749
WSC2	0.0278	0.0264	0.0375	0.0083	0.0111	0.0125	0.0083	0.0125	0.0138	0.0083	0.0055	0.0248	0.0749

	${ }_{5}^{3}$	先	$\underset{\Delta}{\Sigma}$	\sum_{Δ}^{N}	\sum_{λ}^{J}	$\begin{aligned} & n_{0} \\ & \frac{\square}{I I} \\ & \hline \end{aligned}$		$\begin{array}{r} 60 \\ \text { 茳 } \\ \hline \end{array}$		$\begin{aligned} & \overline{\vec{\sigma}} \\ & \hline \end{aligned}$			$\underline{3}$	\bigcirc	8	\bigcirc
BTTC4	0.0082															
DM1	0.0166	0.0194														
DM2	0.0262	0.0235	0.0097													
DM4	0.0304	0.0331	0.0180	0.0180												
Flag5	0.0456	0.0442	0.0374	0.0416	0.0484											
Flag6	0.0415	0.0429	0.0333	0.0361	0.0403	0.0112										
Flag7	0.0623	0.0637	0.0639	0.0695	0.0749	0.0475	0.0471									
Flag8	0.0359	0.0373	0.0250	0.0306	0.0388	0.0069	0.0084	0.0458								
Hatl	0.0152	0.0180	0.0028	0.0097	0.0180	0.0335	0.0294	0.0613	0.0224							
Hat2	0.0152	0.0180	0.0028	0.0097	0.0180	0.0335	0.0294	0.0613	0.0224	0.0000						
Hat3	0.0152	0.0180	0.0028	0.0097	0.0180	0.0335	0.0294	0.0613	0.0224	0.0000	0.0000					
LC07	0.0455	$0.0455{ }^{\circ}$	0.0318	0.0359	0.0428	0.0388	0.0363	0.0707	0.0277	0.0291	0.0291	0.0291				
LC08	0.0459	0.0472	0.0308	0.0363	0.0417	0.0556	0.0503	0.0849	0.0449	0.0281	0.0281	0.0281	0.0250			
LC09	0.0358	0.0331	0.0179	0.0221	0.0290	0.0484	0.0431	0.0748	0.0360	0.0180	0.0180	0.0180	0.0193	0.0166		
LC10	0.0427	0.0400	0.0263	0.0304	0.0387	0.0361	0.0336	0.0680	0.0249	0.0264	0.0264	0.0264	0.0055	0.0306	0.0165	
LCT1	0.0345	0.0345	0.0264	0.0305	0.0374	0.0195	0.0194	0.0542	0.0125	0.0237	0.0237	0.0237	0.0235	0.0418	0.0332	0.0208
LCT2	0.0331	0.0304	0.0265	0.0306	0.0375	0.0224	0.0223	0.0558	0.0142	0.0236	0.0236	0.0236	0.0237	0.0434	0.0333	0.0209
LCT3	0.0346	0.0345	0.0237	0.0278	0.0374	0.0278	0.0264	0.0583	0.0166	0.0210	0.0210	0.0210	0.0207	0.0406	0.0304	0.0180
LCT4	0.0359	0.0331	0.0237	0.0278	0.0403	0.0347	0.0334	0.0654	0.0223	0.0236	0.0236	0.0236	0.0263	0.0433	0.0291	0.0207
LCT5	0.0345	0.0345	0.0236	0.0277	0.0374	0.0277	0.0264	0.0584	0.0153	0.0209	0.0209	0.0209	0.0194	0.0390	0.0276	0.0166
LMLE1	0.0221	0.0222	0.0111	0.0180	0.0263	0.0418	0.0377	0.0670	0.0293	0.0083	0.0083	0.0083	0.0347	0.0337	0.0235	0.0319
LMLE2	0.0277	0.0277	0.0167	0.0236	0.0318	0.0446	0.0418	0.0725	0.0335	0.0139	0.0139	0.0139	0.0389	0.0392	0.0291	0.0361
LMLE3	0.0222	0.0222	0.0111	0.0180	0.0263	0.0404	0.0363	0.0670	0.0279	0.0083	0.0083	0.0083	0.0333	0.0337	0.0235	0.0306
LMLE4	0.0208	0.0208	0.0084	0.0153	0.0235	0.0363	0.0321	0.0628	0.0238	0.0055	0.0055	0.0055	0.0292	0.0309	0.0208	0.0264
LMME1	0.0235	0.0207	0.0125	0.0139	0.0249	0.0307	0.0266	0.0613	0.0238	0.0084	0.0084	0.0084	0.0347	0.0324	0.0221	0.0319
LMME2	0.0221	0.0221	0.0125	0.0166	0.0249	0.0292	0.0279	0.0585	0.0236	0.0097	0.0097	0.0097	0.0373	0.0336	0.0248	0.0346
LMME3	0.0248	0.0221	0.0139	0.0152	0.0290	0.0347	0.0306	0.0625	0.0236	0.0111	0.0111	0.0111	0.0359	0.0336	0.0234	0.0332
LMME4	0.0221	0.0207	0.0125	0.0139	0.0249	0.0319	0.0278	0.0597	0.0236	0.0097	0.0097	0.0097	0.0346	0.0322	0.0221	0.0318
LMMS 1	0.0482	0.0482	0.0375	0.0444	0.0527	0.0571	0.0558	0.0489	0.0475	0.0346	0.0346	0.0346	0.0541	0.0630	0.0527	0.0513
LMMS2	0.0165	0.0221	0.0028	0.0112	0.0194	0.0323	0.0321	0.0627	0.0238	0.0028	0.0028	0.0028	0.0334	0.0323	0.0222	0.0306
LMMS3	0.0193	0.0248	0.0056	0.0153	0.0222	0.0308	0.0293	0.0600	0.0210	0.0056	0.0056	0.0056	0.0306	0.0352	0.0250	0.0278
LMMS4	0.0221	0.0248	0.0083	0.0167	0.0249	0.0377	0.0349	0.0683	0.0293	0.0083	0.0083	0.0083	0.0389	0.0379	0.0277	0.0361
Long5	0.0428	0.0414	0.0347	0.0388	0.0471	0.0222	0.0180	0.0555	0.0181	0.0307	0.0307	0.0307	0.0361	0.0530	0.0443	0.0334
Long6	0.0330	0.0344	0.0249	0.0318	0.0373	0.0235	0.0180	0.0499	0.0153	0.0222	0.0222	0.0222	0.0331	0.0473	0.0372	0.0304
Long7	0.0359	0.0345	0.027	0.0318	0.0401	0.0166	0.0125	0.0500	0.0126	0.0237	0.0237	0.0237	0.0319	0.0459	0.0373	0.0291
Long8	0.0388	0.0402	0.0306	0.0375	0.0430	0.0168	0.0127	0.0489	0.0154	0.0280	0.0280	0.0280	0.0388	0.0519	0.0430	0.0361
LPLB 1	0.0236	0.0208	0.0113	0.0154	0.0264	0.0361	0.0320	0.0626	0.0237	0.0085	0.0085	0.0085	0.0332	0.0322	0.0208	0.0305
LPLB2	0.0208	0.0179	0.0098	0.0139	0.0250	0.0374	0.0334	0.0640	0.0251	0.0071	0.0071	0.0071	0.0346	0.0336	0.0221	0.0318
LPLB3	0.0525	0.0497	0.0444	0.0485	0.0595	0.0610	0.0598	0.0500	0.0515	0.0417	0.0417	0.0417	0.0595	0.0683	0.0567	0.0567
LTCl	0.0234	0.0248	0.0111	0.0180	0.0235	0.0250	0.0209	0.0555	0.0180	0.0070	0.0070	0.0070	0.0332	0.0323	0.0235	0.0304
LTC2	0.0276	0.0276	0.0152	0.0222	0.0277	0.0221	0.0180	0.0541	0.0153	0.0111	0.0111	0.0111	0.0360	0.0349	0.0276	0.0333
LTC3	0.0290	0.0290	0.0139	0.0208	0.0290	0.0249	0.0208	0.0568	0.0153	0.0098	0.0098	0.0098	0.0347	0.0335	0.0262	0.0319
MH1	0.0602	0.0658	0.0677	0.0774	0.0801	0.0800	0.0764	0.0310	0.0705	0.0680	0.0680	0.0680	0.0798	0.0960	0.0854	0.0770
MH2	0.0603	0.0658	0.067	0.0774	0.0801	0.0801	0.0765	0.0339	0.0706	0.0680	0.0680	0.0680	0.0798	0.0961	0.0855	0.0771
MH3	0.0602	0.0658	0.0663	0.0760	0.0800	0.0800	0.0765	0.0310	0.0691	0.0666	0.0666	0.0666	0.0784	0.0946	0.0840	0.0756
MRI	0.0180	0.0207	0.0042	0.0083	0.0193	0.0360	0.0319	0.0625	0.0236	0.0014	0.0014	0.0014	0.0304	0.0294	0.0193	0.0277
MR2	0.0180	0.0207	0.0042	0.0083	0.0193	0.0360	0.0319	0.0625	0.0236	0.0014	0.0014	0.0014	0.0304	0.0294	0.0193	0.0277
MR3	0.0180	0.0207	0.0042	0.0083	0.0193	0.0360	0.0319	0.0625	0.0236	0.0014	0.0014	0.0014	0.0304	0.0294	0.0193	0.0277
MR4	0.0180	0.0207	0.0042	0.0083	0.0193	0.0360	0.0319	0.0625	0.0236	0.0014	0.0014	0.0014	0.0304	0.0294	0.0193	0.0277
NB1	0.0634	0.0661	0.0662	0.0731	0.0785	0.0789	0.0762	0.0297	0.0679	0.0636	0.0636	0.0636	0.0744	0.0906	0.0800	0.0716
NB2	0.0619	0.0647	0.0648	0.0746	0.0771	0.0775	0.0748	0.0339	0.0665	0.0622	0.0622	0.0622	0.0729	0.0892	0.0785	0.0701
NB3	0.0634	0.0661	0.0662	0.0731	0.0785	0.0789	0.0762	0.0297	0.0679	0.0636	0.0636	0.0636	0.0744	0.0906	0.0800	0.0716
NB4	0.0592	0.0620	0.0634	0.0703	0.0743	0.0747	0.0720	0.0319	0.0651	0.0608	0.0608	0.0608	0.0715	0.0878	0.0772	0.0688
ORB1	0.0303	0.0303	0.0139	0.0208	0.0290	0.0417	0.0376	0.0682	0.0293	0.0138	0.0138	0.0138	0.0235	0.0280	0.0207	0.0235
ORB2	0.0290	0.0289	0.0125	0.0194	0.0290°	0.0431	0.0390	0.0696	0.0306	0.0124	0.0124	0.0124	0.0249	0.0280	0.0207	0.0249
ORB3	0.0248	0.0248	0.0083	0.0152	0.0249	0.0377	0.0336	0.0655	0.0265	0.0083	0.0083	0.0083	0.0291	0.0310	0.0193	0.0235
ORB4	0.0276	0.0276	0.0097	0.0139	0.0263	0.0362	0.0335	0.0655	0.0265	0.0097	0.0097	0.0097	0.0304	0.0323	0.0207	0.0249

	3 0 0	$\underset{E}{U}$	$\overline{\mathrm{D}}$	\sum_{0}^{N}	\sum_{0}^{∞}		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \tilde{m} \\ & \hline \end{aligned}$	$\begin{aligned} & E_{0}^{50} \\ & \frac{\tilde{m}}{I} \\ & \hline \end{aligned}$		$\begin{aligned} & \overline{\text { In }} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 9 } \\ \hline \mathbf{x} \\ \hline \end{gathered}$	$\stackrel{\text { ? }}{\underline{T}}$	$\hat{8}$	$\underbrace{\infty}_{-1}$	$\begin{aligned} & 8 \\ & \hline \\ & \hline \end{aligned}$	\bigcirc
PHI	0.0275	0.0331	0.0138	0.0235	0.0304	0.0318	0.0305	0.0625	0.0195	0.0139	0.0139	0.0139	0.0235	0.0431	0.0331	0.0207
PH2	0.0275	0.0331	0.0138	0.0235	0.0304	0.0318	0.0305	0.0625	0.0195	0.0139	0.0139	0.0139	0.0235	0.0431	0.0331	0.0207
PH3	0.0275	0.0331	0.0138	0.0235	0.0304	0.0291	0.0278	0.0625	0.0180	0.0139	0.0139	0.0139	0.0220	0.0404	0.0331	0.0193
PPSI 1	0.0180	0.0208	0.0056	0.0125	0.0208	0.0349	0.0307	0.0614	0.0224	0.0028	0.0028	0.0028	0.0292	0.0309	0.0208	0.0264
PPSI 2	0.0180	0.0208	0.0056	0.0125	0.0208	0.0349	0.0307	0.0614	0.0224	0.0028	0.0028	0.0028	0.0292	0.0309	0.0208	0.0264
PPS2 1	0.0180	0.0180	0.0069	0.0138	0.0221	0.0346	0.0305	0.0611	0.0222	0.0028	0.0028	0.0028	0.0304	0.0321	0.0221	0.0277
PPS2 2	0.0180	0.0180	0.0069	0.0138	0.0221	0.0374	0.0333	0.0639	0.0250	0.0028	0.0028	0.0028	0.0318	0.0307	0.0221	0.0304
PPFE 1	0.0152	0.0140	0.0042	0.0111	0.0180	0.0349	0.0307	0.0614	0.0252	0.0028	0.0028	0.0028	0.0332	0.0321	0.0193	0.0277
PPFE 2	0.0166	0.0153	0.0055	0.0097	0.0180	0.0334	0.0293	0.0600	0.0237	0.0028	0.0028	0.0028	0.0291	0.0294	0.0179	0.0263
PTD1	0.0165	0.0193	0.0042	0.0111	0.0193	0.0374	0.0333	0.0638	0.0250	0.0000	0.0000	0.0000	0.0318	0.0307	0.0207	0.0290
PTD2	0.0179	0.0206	0.0028	0.0097	0.0180	0.0360	0.0319	0.0624	0.0236	0.0000	0.0000	0.0000	0.0304	0.0294	0.0193	0.0277
PTD3	0.0193	0.0220	0.0042	0.0111	0.0194	0.0334	0.0294	0.0611	0.0222	0.0014	0.0014	0.0014	0.0290	0.0308	0.0207	0.0263
PTD4	0.0193	0.0221	0.0069	0.0138	0.0221	0.0334	0.0294	0.0612	0.0222	0.0042	0.0042	0.0042	0.0318	0.0335	0.0235	0.0291
Rcrk1	0.0264	0.0251	0.0181	0.0195	0.0277	0.0278	0.0238	0.0629	0.0213	0.0142	0.0142	0.0142	0.0418	0.0391	0.0305	0.0390
Rcrk2	0.0347	0.0334	0.0265	0.0278	0.0389	0.0348	0.0294	0.0713	0.0297	0.0226	0.0226	0.0226	0.0475	0.0447	0.0361	0.0447
Rerk 3	0.0264	0.0265	0.0153	0.0125	0.0263	0.0335	0.0309	0.0659	0.0268	0.0140	0.0140	0.0140	0.0388	0.0364	0.0263	0.0361
Rcrk4	0.0208	0.0223	0.0125	0.0167	0.0264	0.0321	0.0280	0.0629	0.0266	0.0126	0.0126	0.0126	0.0402	0.0379	0.0277	0.0375
SGR5	0.0595	0.0637	0.0584	0.0680	0.0735	0.0627	0.0614	0.0210	0.0516	0.0586	0.0586	0.0586	0.0694	0.0852	0.0749	0.0666
SGR6	0.0347	0.0361	0.0265	0.0334	0.0417	0.0237	0.0195	0.0461	0.0140	0.0238	0.0238	0.0238	0.0347	0.0491	0.0389	0.0319
SGR7	0.0347	0.0361	0.0265	0.0334	0.0417	0.0237	0.0195	0.0461	0.0140	0.0238	0.0238	0.0238	0.0347	0.0491	0.0389	0.0319
SGR8	0.0597	0.0638	0.0585	0.0682	0.0737	0.0586	0.0586	0.0209	0.0488	0.0588	0.0588	0.0588	0.0695	0.0854	0.0750	0.0667
ShR1	0.0235	0.0180	0.0111	0.0125	0.0249	0.0348	0.0333	0.0638	0.0278	0.0111	0.0111	0.0111	0.0402	0.0391	0.0249	0.0346
ShR2	0.0221	0.0166	0.0111	0.0124	0.0249	0.0375	0.0334	0.0640	0.0278	0.0111	0.0111	0.0111	0.0402	0.0392	0.0249	0.0346
ShR3	0.0221	0.0193	0.0083	0.0125	0.0249	0.0362	0.0334	0.0640	0.0251	0.0083	0.0083	0.0083	0.0375	0.0350	0.0221	0.0319
StPat 1	0.0193	0.0180	0.0083	0.0153	0.0235	0.0377	0.0324	0.0643	0.0280	0.0111	0.0111	0.0111	0.0347	0.0364	0.0222	0.0292
StPat2	0.0221	0.0208	0.0111	0.0152	0.0263	0.0419	0.0378	0.0699	0.0335	0.0139	0.0139	0.0139	0.0402	0.0350	0.0249	0.0347
StPat3	0.0263	0.0250	0.0112	0.0168	0.0292	0.0449	0.0395	0.0715	0.0324	0.0140	0.0140	0.0140	0.0379	0.0366	0.0223	0.0324
StPat4	0.0207	0.0194	0.0083	0.0152	0.0235	0.0364	0.0308	0.0658	0.0296	0.0111	0.0111	0.0111	0.0363	0.0336	0.0221	0.0308
StPatMEI	0.0166	0.0193	0.0069	0.0138	0.0221	0.0362	0.0321	0.0627	0.0237	0.0042	0.0042	0.0042	0.0305	0.0295	0.0194	0.0278
StPatME2	0.0152	0.0180	0.0055	0.0124	0.0207	0.0348	0.0307	0.0614	0.0224	0.0028	0.0028	0.0028	0.0292	0.0281	0.0180	0.0264
StPatME3	0.0152	0.0180	0.0055	0.0124	0.0207	0.0348	0.0307	0.0614	0.0224	0.0028	0.0028	0.0028	0.0292	0.0281	0.0180	0.0264
StPatME4	0.0152	0.0180	0.0055	0.0124	0.0207	0.0348	0.0307	0.0614	0.0224	0.0028	0.0028	0.0028	0.0292	0.0281	0.0180	0.0264
TT59_1	0.0262	0.0289	0.0152	0.0221	0.0304	0.0237	0.0224	0.0569	0.0139	0.0126	0.0126	0.0126	0.0207	0.0378	0.0290	0.0180
TT59_2	0.0165	0.0193	0.0042	0.0111	0.0193	0.0320	0.0279	0.0611	0.0222	0.0014	0.0014	0.0014	0.0318	0.0295	0.0207	0.0291
TT59_3	0.0165	0.0193	0.0042	0.0111	0.0193	0.0320	0.0279	0.0611	0.0222	0.0014	0.0014	0.0014	0.0318	0.0295	0.0207	0.0291
TT76_1	0.0180	0.0207	0.0042	0.0111	0.0193	0.0360	0.0319	0.0625	0.0236	0.0014	0.0014	0.0014	0.0304	0.0294	0.0193	0.0277
TT76_2	0.0166	0.0194	0.0028	0.0097	0.0180	0.0334	0.0293	0.0611	0.0222	0.0000	0.0000	0.0000	0.0290	0.0280	0.0179	0.0263
TT76_3	0.0180	0.0207	0.0042	0.0111	0.0193	0.0333	0.0291	0.0625	0.0222	0.0000	0.0000	0.0000	0.0304	0.0294	0.0193	0.0277
TT76_4	0.0166	0.0194	0.0028	0.0097	0.0180	0.0346	0.0305	0.0611	0.0222	0.0000	0.0000	0.0000	0.0290	0.0280	0.0179	0.0263
- WSCI	0.0207	0.0222	0.0056	0.0069	0.0152	0.0375	0.0307	0.0641	0.0251	0.0028	0.0028	0.0028	0.0346	0.0321	0.0221	0.0318
WSC2	0.0207	0.0222	0.0056	0.0069	0.0152	0.0375	0.0307	0.0641	0.0251	0.0028	0.0028	0.0028	0.0346	0.0321	0.0221	0.0318

| | | | | | | |
| :---: |

Appendices

	E	N	O		¢		$\underset{\sim}{N}$	$\underset{\underset{i}{\mathrm{M}}}{\underset{\sim}{2}}$		\sum_{i}^{M}	\sum_{i}^{N}	$\sum_{i=1}^{M}$	$\sum_{j}^{ \pm}$	$\sum_{i=1}^{\bar{n}}$	\sum_{\sum}^{N}	\sum_{i}^{n}	$\sum_{\sum}^{\mathbf{W}}$
SGR5	0.0584.	0.0599	0.0570	0.0641	0.0584	0.0629	0.0698	0.0643	0.0601	0.0670	0.0640	0.0640	0.0626	0.0433	0.0602	0.0573	0.0657
SGR6	0.0236	0.0251	0.0237	0.0265	0.0237	0.0294	0.0350	0.0294	0.0252	0.0266	0.0265	0.0237	0.0251	0.0462	0.0253	0.0224	0.0308
SGR7	0.0236	0.0251	0.0237	0.0265	0.0237	0.0294	0.0350	0.0294	0.0252	0.0266	0.0265	0.0237	0.0251	0.0462	0.0253	0.0224	0.0308
SGR8	0.0584	0.0600	0.0571	0.0642	0.0585	0.0630	0.0700	0.0644	0.0602	0.0643	0.0641	0.0613	0.0627	0.0462	0.0574	0.0546	0.0630
ShR1	0.0291	0.0265	0.0291	0.0292	0.0291	0.0167	0.0222	0.0167	0.0140	0.0083	0.0111	0.0097	0.0097	0.0474	0.0111	0.0139	0.0167
ShR2	0.0291	0.0263	0.0291	0.0291	0.0292	0.0166	0.0222	0.0166	0.0139	0.0083	0.0111	0.0097	0.0097	0.0471	0.0111	0.0138	0.0166
ShR3	0.0320	0.0291	0.0292	0.0263	0.0264	0.0139	0.0194	0.0139	0.0111	0.0111	0.0111	0.0097	0.0125	0.0444	0.0083	0.0111	0.0139
StPatl	0.0264	0.0251	0.0264	0.0235	0.0237	0.0182	0.0238	0.0182	0.0125	0.0153	0.0154	0.0168	0.0125	0.0444	0.0111	0.0111	0.0166
StPat2	0.0306	0.0293	0.0319	0.0291	0.0292	0.0209	0.0266	0.0210	0.0181	0.0153	0.0153	0.0167	0.0124	0.0499	0.0139	0.0166	0.0194
StPat3	0.0336	0.0323	0.0280	0.0279	0.0280	0.0211	0.0253	0.0197	0.0182	0.0183	0.0183	0.0168	0.0154	0.0488	0.0154	0.0182	0.0210
StPat4	0.0265	0.0266	0.0280	0.0264	0.0265	0.0182	0.0238	0.0182	0.0153	0.0140	0.0139	0.0153	0.0110	0.0472	0.0111	0.0139	0.0167
StPatME1	0.0250	0.0250	0.0224	0.0222	0.0195	0.0125	0.0180	0.0125	0.0097	0.0138	0.0111	0.0125	0.0111	0.0388	0.0069	0.0097	0.0125
StPatME2	0.0236	0.0236	0.0210	0.0208	0.0181	0.0111	0.0166	0.0111	0.0083	0.0125	0.0097	0.0111	0.0097	0.0374	0.0056	0.0083	0.0111
StPatME3	0.0236	0.0236	0.0210	0.0208	0.0181	0.0111	0.0166	0.0111	0.0083	0.0125	0.0097	0.0111	0.0097	0.0374	0.0056	0.0083	0.0111
StPatME4	0.0236	0.0236	0.0210	0.0208	0.0181	0.0111	0.0166	0.0111	0.0083	0.0125	0.0097	0.0111	0.0097	0.0374	0.0056	0.0083	0.0111
TT59_1	0.0138	0.0152	0.0126	0.0152	0.0125	0.0209	0.0251	0.0195	0.0154	0.0224	0.0208	0.0222	0.0208	0.0389	0.0154	0.0126	0.0209
TT59_2	0.0222	0.0237	0.0209	0.0237	0.0208	0.0097	0.0153	0.0097	0.0070	0.0112	0.0097	0.0111	0.0097	0.0376	0.0042	0.0070	0.0097
TT59_3	0.0222	0.0237	0.0209	0.0237	0.0208	0.0097	0.0153	0.0097	0.0070	0.0112	0.0097	0.0111	0.0097	0.0376	0.0042	0.0070	0.0097
TT76_1	0.0249	0.0251	0.0223	0.0251	0.0222	0.0097	0.0152	0.0097	0.0070	0.0111	0.0111	0.0125	0.0111	0.0361	0.0042	0.0070	0.0097
TT76_2	0.0236	0.0237	0.0209	0.0237	0.0208	0.0083	0.0139	0.0083	0.0056	0.0084	0.0097	0.0111	0.0097	0.0348	0.0028	0.0056	0.0083
TT76_3	0.0249	0.0251	0.0223	0.0251	0.0222	0.0097	0.0152	0.0097	0.0070	0.0083	0.0111	0.0124	0.0111	0.0361	0.0042	0.0070	0.0097
TT76_4	0.0236	0.0237	0.0209	0.0237	0.0208	0.0083	0.0139	0.0083	0.0056	0.0097	0.0097	0.0111	0.0097	0.0348	0.0028	0.0056	0.0083
WSC1	0.0291	0.0280	0.0263	0.0291	0.0263	0.0099	0.0155	0.0099	0.0070	0.0127	0.0126	0.0140	0.0125	0.0389	0.0056	0.0084	0.0111
WSC2	0.0291	0.0280	0.0263	0.0291	0.0263	0.0099	0.0155	0.0099	0.0070	0.0127	0.0126	0.0140	0.0125	0.0389	0.0056	0.0084	0.0111

	$\stackrel{\sim}{\infty}$	已	¢	$\xrightarrow[\sim]{\bullet}$	$\bar{\Sigma}$	$\frac{N}{\mathbf{I}}$	$\stackrel{M}{\underline{1}}$	$\frac{\bar{a}}{\Sigma}$	$\stackrel{N}{\Sigma}$	$\stackrel{N}{\Sigma}$	$\underset{\underline{\Sigma}}{\underset{\sim}{2}}$	$\bar{\sim}$	$\underset{\sim}{N}$	$\frac{\infty}{n}$	\pm ¢
LTCl	0.0472														
LTC2	0.0513	0.0028													
LTC3	0.0499	0.0055	0.0014												
MHI	0.0535	0.0717	0.0758	0.0772											
M ${ }^{\text {2 }}$	0.0507	0.0718	0.0759	0.0773	0.0056										
M 33	0.0521	0.0717	0.0758	0.0758	0.0028	0.0056									
MRI	0.0430	0.0097	0.0138	0.0124	0.0690	0.0691	0.0676								
MR2	0.0430	0.0097	0.0138	0.0124	0.0690	0.0691	0.0676	0.0000							
MR3	0.0430	0.0097	0.0138	0.0124	0.0690	0.0691	0.0676	0.0000	0.0000						
MR4	0.0430	0.0097	0.0138	0.0124	0.0690	0.0691	0.0676	0.0000	0.0000	0.0000					
NB1	0.0508	0.0676	0.0717	0.0718	0.0056	0.0084	0.0028	0.0647	0.0647	0.0647	0.0647				
NB2	0.0494	0.0662	0.0703	0.0703	0.0099	0.0098	0.0070	0.0633	0.0633	0.0633	0.0633	0.0042			
NB3	0.0508	0.0676	0.0717	0.0718	0.0056	0.0084	0.0028	0.0647	0.0647	0.0647	0.0647	0.0000	0.0042		
NB4	0.0480	0.0635	0.0676	0.0690	0.0071	0.0070	0.0071	0.0619	0.0619	0.0619	0.0619	0.0042	0.0056	0.0042	
ORB1	0.0541	0.0180	0.0222	0.0208	0.0774	0.0775	0.0760	0.0152	0.0152	0.0152	0.0152	0.0720	0.0705	0.0720	0.0691
ORB2	0.0527	0.0166	0.0208	0.0194	0.0788	0.0789	0.0774	0.0138	0.0138	0.0138	0.0138	0.0734	0.0719	0.0734	0.0705
ORB3	0.0487	0.0125	0.0153	0.0139	0.0747	0.0748	0.0733	0.0097	0.0097	0.0097	0.0097	0.0692	0.0678	0.0692	0.0664
ORB4	0.0500	0.0139	0.0166	0.0153	0.0747	0.0748	0.0733	0.0111	0.0111	0.0111	0.0111	0.0693	0.0678	0.0693	0.0665
PH1	0.0486	0.0222	0.0263	0.0249	0.0645	0.0646	0.0631	0.0152	0.0152	0.0152	0.0152	0.0619	0.0604	0.0619	0.0591
PH2	0.0486	0.0222	0.0263	0.0249	0.0645	0.0645	0.0631	0.0152	0.0152	0.0152	0.0152	0.0618	0.0604	0.0618	0.0590
PH3	0.0486	0.0208	0.0235	0.0221	0.0645	0.0646	0.0631	0.0152	0.0152	0.0152	0.0152	0.0619	0.0604	0.0619	0.0591
PPSI 1	0.0418	0.0084	0.0125	0.0111	0.0680	0.0680	0.0665	0.0042	0.0042	0.0042	0.0042	0.0636	0.0621	0.0636	0.0608
PPSI 2	0.0418	0.0084	0.0125	0.0111	0.0680	0.0680	0.0665	0.0042	0.0042	0.0042	0.0042	0.0636	0.0621	0.0636	0.0608
PPS2 1	0.0430	0.0083	0.0111	0.0097	0.0690	0.0691	0.0676	0.0055	0.0055	0.0055	0.0055	0.0647	0.0633	0.0647	0.0619
PPS2 2	0.0458	0.0111	0.0138	0.0124	0.0719	0.0719	0.0705	0.0055	0.0055	0.0055	0.0055	0.0675	0.0661	0.0675	0.0647
PPFE 1	0.0458	0.0084	0.0125	0.0139	0.0692	0.0692	0.0691	0.0055	0.0055	0.0055	0.0055	0.0662	0.0648	0.0662	0.0620
PPFE 2	0.0416	0.0069	0.0111	0.0125	0.0677	0.0677	0.0677	0.0041	0.0041	0.0041	0.0041	0.0647	0.0633	0.0647	0.0605

	$\frac{\cdots}{\frac{9}{2}}$	Ј	V	3	$\bar{\Sigma}$	$\sum_{i}^{\mathbf{N}}$	$\underset{\underline{I}}{\underline{1}}$	$\underset{\underline{\Sigma}}{\underline{\Sigma}}$	$\underset{\Sigma}{\Sigma}$	$\stackrel{m}{\underline{a}}$		$\frac{\bar{n}}{\bar{z}}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\stackrel{\infty}{\infty}$	$\frac{ \pm}{\mathbf{m}}$
PTD1	0.0444	0.0111	0.0152	0.0138	0.0701	0.0702	0.0688	0.0028	0.0028	0.0028	0.0028	0.0647	0.0633	0.0647	0.0619
PTD2	0.0430	0.0097	0.0138	0.0124	0.0687	0.0688	0.0673	0.0014	0.0014	0.0014	0.0014	0.0633	0.0619	0.0633	0.0605
PTD3	0.0416	0.0097	0.0139	0.0125	0.0674	0.0675	0.0660	0.0028	0.0028	0.0028	0.0028	0.0619	0.0605	0.0619	0.0591
PTD4	0.0417	0.0125	0.0167	0.0153	0.0674	0.0675	0.0660	0.0055	0.0055	0.0055	0.0055	0.0648	0.0634	0.0648	0.0620
Rcrkl	0.0515	0.0126	0.0125	0.0139	0.0777	0.0778	0.0777	0.0139	0.0139	0.0139	0.0139	0.0776	0.0762	0.0776	0.0735
Rcrk2	0.0599	0.0210	0.0208	0.0222	0.0863	0.0863	0.0863	0.0236	0.0236	0.0236	0.0236	0.0862	0.0848	0.0862	0.0820
Rcrk3	0.0502	0.0180	0.0208	0.0195	0.0778	0.0779	0.0764	0.0125	0.0125	0.0125	0.0125	0.0777	0.0763	0.0777	0.0749
Rcrk4	0.0488	0.0139	0.0167	0.0181	0.0722	0.0723	0.0722	0.0111	0.0111	0.0111	0.0111	0.0749	0.0735	0.0749	0.0707
SGR5	0.0431	0.0612	0.0625	0.0625	0.0227	0.0227	0.0212	0.0597	0.0597	0.0597	0.0597	0.0227	0.0240	0.0227	0.0226
SGR6	0.0461	0.0209	0.0223	0.0223	0.0651	0.0652	0.0637	0.0251	0.0251	0.0251	0.0251	0.0625	0.0610	0.0625	0.0596
SGR7	0.0461	0.0209	0.0223	0.0223	0.0651	0.0652	0.0637	0.0251	0.0251	0.0251	0.0251	0.0625	0.0610	0.0625	0.0596
SGR8	0.0460	0.0585	0.0598	0.0598	0.0255	0.0256	0.0241	0.0599	0.0599	0.0599	0.0599	0.0256	0.0269	0.0256	0.0255
ShR1	0.0486	0.0139	0.0166	0.0180	0.0745	0.0746	0.0745	0.0097	0.0097	0.0097	0.0097	0.0733	0.0719	0.0733	0.0691
ShR2	0.0486	0.0138	0.0166	0.0180	0.0747	0.0748	0.0747	0.0097	0.0097	0.0097	0.0097	0.0735	0.0720	0.0735	0.0693
ShR3	0.0487	0.0139	0.0166	0.0152	0.0748	0.0749	0.0734	0.0069	0.0069	0.0069	0.0069	0.0721	0.0707	0.0721	0.0693
StPat 1	0.0459	0.0139	0.0181	0.0195	0.0678	0.0679	0.0678	0.0125	0.0125	0.0125	0.0125	0.0694	0.0680	0.0694	0.0652
StPat2	0.0514	0.0194	0.0222	0.0236	0.0748	0.0748	0.0747	0.0125	0.0125	0.0125	0.0125	0.0763	0.0749	0.0763	0.0721
StPat3	0.0503	0.0210	0.0252	0.0238	0.0791	0.0791	0.0777	0.0140	0.0140	0.0140	0.0140	0.0793	0.0778	0.0793	0.0765
StPat4	0.0487	0.0153	0.0181	0.0195	0.0722	0.0723	0.0722	0.0125	0.0125	0.0125	0.0125	0.0748	0.0733	0.0748	0.0706
StPatME1	0.0431	0.0125	0.0166	0.0153	0.0694	0.0694	0.0679	0.0055	0.0055	0.0055	0.0055	0.0679	0.0664	0.0679	0.0650
StPatME2	0.0417	0.0111	0.0153	0.0139	0.0679	0.0679	0.0665	0.0041	0.0041	0.0041	0.0041	0.0664	0.0650	0.0664	0.0636
StPatME3	0.0417	0.0111	0.0153	0.0139	0.0679	0.0679	0.0665	0.0041	0.0041	0.0041	0.0041	0.0664	0.0650	0.0664	0.0636
StPatME4	0.0417	0.0111	0.0153	0.0139	0.0679	0.0679	0.0665	0.0041	0.0041	0.0041	0.0041	0.0664	0.0650	0.0664	0.0636
TT59_1	0.0430	0.0180	0.0209	0.0195	0.0631	0.0632	0.0617	0.0138	0.0138	0.0138	0.0138	0.0605	0.0591	0.0605	0.0577
TT59_2	0.0417	0.0097	0.0125	0.0111	0.0674	0.0675	0.0660	0.0028	0.0028	0.0028	0.0028	0.0648	0.0634	0.0648	0.0620
TT59_3	0.0417	0.0097	0.0125	0.0111	0.0674	0.0675	0.0660	0.0028	0.0028	0.0028	0.0028	0.0648	0.0634	0.0648	0.0620
TT76_1	0.0430	0.0097	0.0138	0.0125	0.0691	0.0691	0.0677	0.0028	0.0028	0.0028	0.0028	0.0647	0.0633	0.0647	0.0619
TT76_2	0.0416	0.0069	0.0111	0.0097	0.0677	0.0677	0.0663	0.0014	0.0014	0.0014	0.0014	0.0633	0.0619	0.0633	0.0605
TT76_3	0.0430	0.0069	0.0111	0.0097	0.0690	0.0691	0.0676	0.0028	0.0028	0.0028	0.0028	0.0647	0.0633	0.0647	0.0619
TT76_4	0.0416	0.0083	0.0124	0.0111	0.0677	0.0677	0.0662	0.0014	0.0014	0.0014	0.0014	0.0633	0.0619	0.0633	0.0605
WSC 1	0.0458	0.0111	0.0153	0.0139	0.0716	0.0717	0.0702	0.0042	0.0042	0.0042	0.0042	0.0662	0.0648	0.0662	0.0634
WSC2	0.0458	0.0111	0.0153	0.0139	0.0716	0.0717	0.0702	0.0042	0.0042	0.0042	0.0042	0.0662	0.0648	0.0662	0.0634

\because	$\begin{aligned} & \bar{m} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { on } \\ & \text { 2 } \end{aligned}$	$\begin{aligned} & \text { on } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \frac{1}{o} \end{aligned}$	폴	$\underset{\underline{I}}{\underline{I}}$	$\underset{a}{\mathfrak{m}}$	$\begin{aligned} & \bar{N} \\ & \underline{E} \end{aligned}$	$\frac{N}{N}$	$\begin{aligned} & \bar{N} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & N \\ & N \\ & 2 \end{aligned}$	$\frac{-1}{\frac{1}{2}}$	$\begin{aligned} & N \\ & \frac{N}{4} \\ & \frac{1}{2} \\ & \hline \end{aligned}$	$\overline{2}$	$\stackrel{\mathrm{N}}{\mathrm{O}}$	$\stackrel{N}{E}$	$\frac{7}{2}$
ORB2	0.0014																
ORB3	0.0055	0.0041															
ORB4	0.0069	0.0055	0.0014														
PHI	0.0249	0.0236	0.0194	0.0208													
PH2	0.0249	0.0235	0.0194	0.0208	0.0014												
PH3	0.0249	0.0236	0.0181	0.0194	0.0028	0.0028											
PPS1 1	0.0138	0.0125	0.0083	0.0097	0.0139	0.0139	0.0139										
PPSI 2	0.0138	0.0125	0.0083	0.0097	0.0139	0.0139	0.0139	0.0000									
PPS2 1	0.0138	0.0125	0.0083	0.0111	0.0152	0.0152	0.0152	0.0028	0.0028								
PPS2 2	0.0152	0.0138	0.0111	0.0139	0.0180	0.0180	0.0180	0.0055	0.0055	0.0028							
PPFE 1	0.0139	0.0325	0.0083	0.0111	0.0180	0.0180	0.0180	0.0055	0.0055	0.0041	0.0041						
PPFE 2	0.0166	0.0152	0.0111	0.0125	0.0166	0.0166	0.0166	0.0056	0.0056	0.0055	0.0055	0.0042					
PTD1	0.0152	0.0138	0.0097	0.0125	0.0152	0.0152	0.0152	0.0028	0.0028	0.0028	0.0028	0.0028	0.0042				
PTD2	0.0152	0.0138	0.0097	0.0111	0.0138	0.0138	0.0138	0.0028	0.0028	0.0041	0.0041	0.0042	0.0028	0.0014			
PTD3	0.0167	0.0153	0.0111	0.0125	0.0125	0.0125	0.0125	0.0042	0.0042	0.0055	0.0055	0.0055	0.0042	0.0028	0.0014		
PTD4	0.0194	0.0181	0.0139	0.0152	0.0152	0.0152	0.0152	0.0070	0.0070	0.0083	0.0083	0.0083	0.0069	0.0055	0.0042	0.0028	
Rcrk1	0.0307	0.0293	0.0238	0.0251	0.0306	0.0306	0.0278	0.0182	0.0182	0.0180	0.0180	0.0167	0.0125	0.0167	0.0153	0.0156	0.0156
Rcrk2	0.0391	0.0377	0.0324	0.0323	0.0390	0.0390	0.0362	0.0267	0.0267	0.0264	0.0264	0.0250	0.0209	0.0250	0.0236	0.0240	0.0240
Rcrk3	0.0293	0.0279	0.0237	0.0223	0.0278	0.0278	0.0265	0.0168	0.0168	0.0166	0.0166	0.0181	0.0139	0.0153	0.0139	0.0153	0.0125
Rcrk4	0.0279	0.0265	0.0224	0.0237	0.0251	0.0251	0.0237	0.0154	0.0154	0.0153	0.0153	0.0139	0.0097	0.0139	0.0125	0.0139	0.0139
SGR5	0.0683	0.0697	0.0656	0.0656	0.0555	0.0555	0.0555	0.0572	0.0572	0.0583	0.0611	0.0614	0.0600	0.0611	0.0597	0.0583	0.0584
SGR6	0.0335	0.0322	0.0280	0.0279	0.0237	0.0236	0.0237	0.0224	0.0224	0.0237	0.0265	0.0266	0.0252	0.0265	0.0251	0.0237	0.0237
SGR7	0.0335	0.0322	0.0280	0.0279	0.0237	0.0236	0.0237	0.0224	0.0224	0.0237	0.0265	0.0266	0.0252	0.0265	0.0251	0.0237	0.0237
SGR8	0.0685	0.0699	0.0658	0.0657	0.0557	0.0557	0.0557	0.0573	0.0573	0.0584	0.0612	0.0615	0.0601	0.0612	0.0598	0.0585	0.0585
ShRI	0.0250	0.0236	0.0195	0.0208	0.0263	0.0263	0.0263	0.0139	0.0139	0.0125	0.0125	0.0084	0.0070	0.0125	0.0111	0.0125	0.0125
ShR2	0.0249	0.0235	0.0194	0.0207	0.0264	0.0263	0.0264	0.0138	0.0138	0.0111	0.0111	0.0070	0.0070	0.0111	0.0110	0.0125	0.0125
ShR3	0.0194	0.0180	0.0166	0.0180	0.0236	0.0236	0.0236	0.0111	0.0111	0.0083	0.0083	0.0070	0.0098	0.0083	0.0083	0.0097	0.0097
StPat 1	0.0194	0.0180	0.0166	0.0180	0.0209	0.0208	0.0209	0.0111	0.0111	0.0097	0.0125	0.0083	0.0083	0.0111	0.0111	0.0125	0.0125
StPat2	0.0249	0.0235	0.0222	0.0235	0.0264	0.0264	0.0250	0.0166	0.0166	0.0152	0.0152	0.0111	0.0111	0.0139	0.0138	0.0153	0.0153
StPat3	0.0224	0.0211	0.0197	0.0211	0.0257	0.0256	0.0257	0.0168	0.0168	0.0154	0.0154	0.0140	0.0140	0.0154	0.0154	0.0168	0.0168
StPat4	0.0222	0.0208	0.0181	0.0194	0.0237	0.0237	0.0209	0.0139	0.0139	0.0125	0.0125	0.0083	0.0083	0.0111	0.0111	0.0125	0.0125
StPatME1	0.0152	0.0138	0.0125	0.0139	0.0181	0.0181	0.0181	0.0069	0.0069	0.0069	0.0069	0.0069	0.0069	0.0042	0.0042	0.0056	0.0056
StPatME2	0.0138	0.0125	0.0111	0.0125	0.0167	0.0167	0.0167	0.0055	0.0055	0.0055	0.0055	0.0055	0.0055	0.0028	0.0028	0.0042	0.0042
StPatME3	0.0138	0.0125	0.0111	0.0125	0.0167	0.0167	0.0167	0.0055	0.0055	0.0055	0.0055	0.0055	0.0055	0.0028	0.0028	0.0042	0.0042
StPatME4	0.0138	0.0125	0.0111	0.0125	0.0167	0.0167	0.0167	0.0055	0.0055	0.0055	0.0055	0.0055	0.0055	0.0028	0.0028	0.0042	0.0042
TT59_1	0.0250	0.0236	0.0195	0.0208	0.0069	0.0069	0.0055	0.0126	0.0126	0.0138	0.0166	0.0166	0.0152	0.0138	0.0124	0.0111	0.0111
TT59_2	0.0166	0.0153	0.0111	0.0125	0.0152	0.0152	0.0139	0.0042	0.0042	0.0055	0.0055	0.0055	0.0042	0.0028	0.0014	0.0028	0.0028
TT59_3	0.0166	0.0153	0.0111	0.0125	0.0152	0.0152	0.0139	0.0042	0.0042	0.0055	0.0055	0.0055	0.0042	0.0028	0.0014	0.0028	0.0028
TT76_1	0.0152	0.0139	0.0097	0.0111	0.0152	0.0152	0.0152	0.0042	0.0042	0.0055	0.0055	0.0055	0.0041	0.0028	0.0014	0.0028	0.0055
TT76_2	0.0139	0.0125	0.0083	0.0097	0.0139	0.0139	0.0139	0.0028	0.0028	0.0041	0.0041	0.0042	0.0028	0.0014	0.0000	0.0014	0.0042
TT76_3	0.0152	0.0138	0.0097	0.0111	0.0152	0.0152	0.0152	0.0042	0.0042	0.0055	0.0055	0.0055	0.0041	0.0028	0.0014	0.0014	0.0041
TT76_4	0.0139	0.0125	0.0083	0.0097	0.0139	0.0139	0.0139	0.0028	0.0028	0.0041	0.0041	0.0042	0.0028	0.0014	0.0000	0.0014	0.0042
WSCI	0.0194	0.0180	0.0139	0.0152	0.0180	0.0180	0.0180	0.0056	0.0056	0.0055	0.0055	0.0069	0.0055	0.0042	0.0028	0.0042	0.0069
WSC2	0.0194	0.0180	0.0139	0.0152	0.0180	0.0180	0.0180	0.0056	0.0056	0.0055	0.0055	0.0069	0.0055	0.0042	0.0028	0.0042	0.0069

	点	$\begin{aligned} & \text { y } \\ & \text { 훌 } \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { 己 } \\ & \\ & \hline \end{aligned}$	妾	$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\bigcup}{\bigcup} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$	$\frac{\widetilde{a}}{\frac{a}{3}}$	$\begin{aligned} & \underset{\sim}{\Omega} \\ & \stackrel{1}{n} \end{aligned}$	$\frac{\underset{\sim}{c}}{\frac{1}{2}}$	$\begin{aligned} & \overline{\boxed{0}} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$			
Rcrk2	0.0125														
Rerk3	0.0139	0.0196													
Rark4	0.0097	0.0140	0.0111												
SGR5	0.0671	0.0756	0.0672	0.0644											
SGR6	0.0282	0.0367	0.0295	0.0282	0.0444										
SGR7	0.0282	0.0367	0.0295	0.0282	0.0444	0.0000									
SGR8	0.0631	0.0716	0.0632	0.0604	0.0028	0.0417	0.0417								
ShRI	0.0097	0.0196	0.0112	0.0070	0.0668	0.0293	0.0293	0.0640							
ShR2	0.0111	0.0210	0.0125	0.0083	0.0670	0.0294	0.0294	0.0642	0.0028						
ShR3	0.0140	0.0239	0.0126	0.0112	0.0642	0.0266	0.0266	0.0615	0.0055	0.0055					
StPatl	0.0182	0.0266	0.0182	0.0126	0.0616	0.0295	0.0295	0.0618	0.0098	0.0097	0.0098				
StPat2	0.0167	0.0267	0.0181	0.0126	0.0672	0.0351	0.0351	0.0673	0.0097	0.0097	0.0097	0.0083			
StPat3	0.0226	0.0310	0.0198	0.0170	0.0672	0.0351	0.0351	0.0674	0.0155	0.0154	0.0126	0.0126	0.0141		
StPat4	0.0153	0.0237	0.0167	0.0111	0.0657	0.0336	0.0336	0.0658	0.0098	0.0097	0.0098	0.0042	0.0069	0.0111	
StPatMEI	0.0167	0.0252	0.0153	0.0139	0.0600	0.0252	0.0252	0.0601	0.0125	0.0125	0.0069	0.0097	0.0125	0.0126	0.0097
StPatME2	0.0154	0.0238	0.0139	0.0126	0.0586	0.0238	0.0238	0.0587	0.0111	0.0111	0.0055	0.0083	0.0111	0.0112	0.0083
StPatME3	0.0154	0.0238	0.0139	0.0126	0.0586	0.0238	0.0238	0.0587	0.0111	0.0111	0.0055	0.0083	0.0111	0.0112	0.0083
StPatME4	0.0154	0.0238	0.0139	0.0126	0.0586	0.0238	0.0238	0.0587	0.0111	0.0111	0.0055	0.0083	0.0111	0.0112	0.0083
TT59＿1	0.0225	0.0309	0.0236	0.0223	0.0527	0.0181	0.0181	0.0529	0.0208	0.0208	0.0181	0.0181	0.0236	0.0252	0.0196
TT59＿2	0.0113	0.0196	0.0125	0.0111	0.0584	0.0237	0.0237	0.0585	0.0097	0.0097	0.0069	0.0097	0.0125	0.0140	0.0083
TT59＿3	0.0113	0.0196	0.0125	0.0111	0.0584	0.0237	0.0237	0.0585	0.0097	0.0097	0.0069	0.0097	0.0125	0.0140	0.0083
TT76＿1	0.0167	0.0250	0.0153	0.0139	0.0597	0.0251	0.0251	0.0599	0.0125	0.0124	0.0097	0.0125	0.0152	0.0154	0.0125
TT76＿2	0.0140	0.0224	0.0139	0.0125	0.0584	0.0237	0.0237	0.0585	0.0111	0.0111	0.0083	0.0111	0.0138	0.0140	0.0111
TT76＿3	0.0139	0.0223	0.0153	0.0139	0.0597	0.0251	0.0251	0.0599	0.0125	0.0124	0.0097	0.0125	0.0152	0.0154	0.0125
TT76 4	0.0153	0.0236	0.0139	0.0125	0.0583	0.0237	0.0237	0.0585	0.0111	0.0111	0.0083	0.0111	0.0138	0.0140	0.0111
WSCl	0.0181	0.0264	0.0139	0.0153	0.0613	0.0266	0.0266	0.0615	0.0126	0.0126	0.0098	0.0139	0.0166	0.0181	0.0138
WSC2	0.0181	0.0264	0.0139	0.0153	0.0613	0.0266	0.0266	0.0615	0.0126	0.0126	0.0098	0.0139	0.0166	0.0181	0.0138

		\sum_{i}^{N}	$\begin{aligned} & n \\ & \sum_{n}^{n} \\ & \frac{\pi}{n} \\ & \sqrt[5]{n} \end{aligned}$	$\sum_{i}^{ \pm}$	$\begin{aligned} & \mathbf{o}^{\prime} \\ & \stackrel{n}{6} \end{aligned}$	$\begin{aligned} & N_{1} \\ & a^{\prime} \\ & \vdots \\ & b \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{1}{n} \\ & \underline{b} \end{aligned}$	$\begin{aligned} & -\quad \\ & \underset{F}{e} \end{aligned}$	$\begin{aligned} & N_{1} \\ & \underset{\sim}{E} \\ & \underset{E}{2} \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & \underline{E} \end{aligned}$	$\begin{aligned} & \forall \\ & \stackrel{\rightharpoonup}{\prime} \\ & \stackrel{F}{F} \end{aligned}$	3 3 3
StPatME2	0.0014											
StPatME3	0.0014	0.0000										
StPatME4	0.0014	0.0000	0.0000									
TT59 1	． 0.0139	0.0125	0.0125	0.0125								
TT59 2	0.0028	0.0014	0.0014	0.0014	0.0111							
\therefore TT59＿3	0.0028	0.0014	0.0014	0.0014	0.0111	0.0000						
．TT76 1	0.0055	0.0041	0.0041	0.0041	0.0138	0.0028	0.0028					
TT76＿2	0.0041	0.0028	0.0028	0.0028	0.0125	0.0014	0.0014	0.0014				
TT76 3	0.0055	0.0041	0.0041	0.0041	0.0125	0.0014	0.0014	0.0028	0.0000			
TT76 4	0.0041	0.0028	0.0028	0.0028	0.0125	0.0014	0.0014	0.0014	0.0000	0.0014		
WSC1	0.0069	0.0055	0.0055	0.0055	0.0152	0.0042	0.0042	0.0042	0.0028	0.0042	0.0028	
WSC2	0.0069	0.0055	0.0055	0.0055	0.0152	0.0042	0.0042	0.0042	0.0028	0.0042	0.0028	0.0000

