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ABSTRACT

An investigation has been made of the roots of a certain cubic equation
f(yob) = 0, which arises in the theory of the type-111 triplet photographic
objective. It has been shown that with the residuals and the parameter
values such as might be used in the type 111 triplet, this equation gives

three positive roots of which only one leads to a practical solution.

It was shown that if certain parameters which enter into the coefficients
of yob in this.cubic equation are given values much greater than is usual
in a type 111 objective, a second root of the equafion leads to a practical
solution. In this way, a new region of triplet solution has been epened up
characterised by low powers for the components in the initial thin lens
arrangement. It was expected that this region would provide a basis for the

development of high aperture objectives.

The general .physical principles underlying the achievement of these high
values of initial parameters has involved a careful study of the properties

of thick meniscus shaped cemented triplet components of negative power.

A procedure for the design of a type 131 objective, which is the simplest
form of objective incorporating these principles, has been developed and is
described with numerical examples. A study of more complexbobjectives is
needed to exploit the principles which have been opened up in this work. The
time available for the investigation has not permitted the study of type 133

and other objectives from this point.of view.
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ABSTRACT

#n investigation has been made of the roots of a certain cubic equation
f(yob) = 0, which arises in the theory of the type-111 triplet photographic
objective. It has been shown that with the res;’ldmls and the parameter values
such as might be used in the type-111 triplet, this equatioq gi.yes three

positive roots of which only one leads to a practical solution.

It was shown that if certain parameters which enter into the
coefficients of y,, in this c‘ubic.eq_uation are given values much greater than
is usual in a type-111 objective, a second rcot of the equation leads to a
practical solution. In this way, a nev} region of triplet sclution has Been
opened up characterised by low powers for the components in the initial thin
lens arrangement. It was expected that this region would provide a basis for

the development of high aperture objectives.

The general physical principles underlying the achievement of these high
values of initial parameters has involved a careful study of the properties of

thick meniscus shaped cemented triplet components of negative power.

4 procedure for the design of a type 131 objective, which is the simplest
form of objective incorporating these principles, has been developed and is
described with numerical examples. & study of more complex objectives is
needed to exploit the principles which have been opened up in this work. The
time available for the investigation has not permitted the study of type 133

and other objectives from this point of view.



CHAPTER I,

INTRODUCTION

1.1 REVIEW of the LITIRATURE,

Taylor and Lee (1935) discussed the development of the photographic
objectives during the previous century and showed how the discovery of the
‘effect of the position of the diaphragm on the third order aberrations
directed this development. They expressed the opinion that all high aperture
photographic objectives were derived from the original simple Cooke triplet
or quadruplet, either by replacing the single component by 6emented
components, or by splitting a particular component. Lee (1940) explained the
necessity far high aperture objectives for studio work and cinematography. He
gave a brief history of high aperture anastigmtic objectives indluding a list
of their designers. Kingslake (1940), emongst others, discussed the reduwtion
of the residgnl zonal aberrations in a lens system, this being a necessary
requirement to attain high apertures. He considered the conditions of (i)
zero refraction, i.e. i,5 = i}; = 0, (ii) normal incidence, i.e. i, = O,
and (iii) aplanatic refraction, i.e. ilj = v,y = O, which provided the means
for reduced values of the third order spherical aberration, coma and
astigmatism, and indicated that those principles must enter in some way into
the development of high aperture systems. If Kingslakes' discussion is
generalised it would lead to the statement that to achievé a high relative
aperture, the surface -contributions to the third order aberration coefficients
must be considerably lower than is usua.l in lens systems of moderate. aperture.
fle also pointed oﬁt that the most difficult problem involved was to control the
aberrations below the accepted level due to the fact that the tolerances required

became more difficult to -satisfy as the aperture was increased.
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In a very dstailed article Merte (1943) reviewed the development of high
aperture objectives up to 1943. According to this reviewer the earliest
successful lenses belonged to the "Ermostar” series (Fig. 1.1), designed by
Bertele, but these were soon superseded by the "Somnar" lenses developed by
the same designer (Fig. 1.2). Excellent objectives of this type were produced
having relative apertures of £/1.5 - £/2 in focal lengths of 50 = 100 mm, and
covering semifields up to 25 degrees. In addition to these.; lenses of the
"Double Gauss" type (Fig. 1.3) had been extensively developed, resulting in

objectives of similar quality.

Kingslake (1944), (Fig. 1.4), explained the importance of glass selection
in high aperture anastigmats making special referemce to the Ektar f/1.5 lens
designed by Schade., He stressed the importance of using high refractive indices
for the positive elements, to form the collective surfaces in the cemented
components. This tended to smooth out the zonal residuals of axial and
oblique spherical aberration. The same author (1949), commeifted on the
difficulty of designing a high aperture system, especially when it had to cover

a large angular field with a short focal length.

Kaprelian (1949) explained (Fig. 1.5) the necessity of avoiding strongly
curved surfaces (other than those which are aplanatic or zero ref‘racting). At
such surfaces the angle of refraction, igjy, increases reapidly with the height
of the ray resulting in the development of very high values of higher order
aﬁerrations. - He also described in a condensed form how to control aberrations
with the help of glass constants and the stop position. He pointed out that
commercially produced lenses were more or less limited to the aperture range
£/1.5 - £/2 because of the practical difficulties of design and production.

Apertures greater than £/1.5 were only designed for special applications.
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Schade (1950) described the modification of the petzval portrait lens
(Fig, 1.6) in order to increase the aperture to get better resolving power,

contrast, and back focal distance.

- This review shows that there are very f'eﬁ papers vmich explain the
physical principles underlying the development of high aperture photographic
objectives and none which describes logical methods for their design.. The
patent literature, of course, contains examples of the construction of such
systems, but here again, the physical principles leading to any particular

construction are not disclosed..

1.2 THE DESIGN of TRIFLET OBJECTIVES.

The purpose of this thesis is to investigate logical methods of developing
the design of high aperture systems from the Cooke triplet. In this connection

a brief resume of papers on the desigx of triplets is given. |

Taylor (1893) arrived at the triplet construction by considering what
happened vhen the components of an achromatic doublet were separated. He
noticed that this separation increased the power of the system without increasing
the petzval sum. To control the other aberrations he split the positive element
into two parts and placed one on either side of the negative element. He
obtained an ititial thin lens arrangement for the three powers and two
separations by solving five equations based on assumed residual vglues of
sphericai aberration, petzval sum, longitudinal and transverse colour and the
total power of the system. He then eonstmcte_d the system and measured the
aberrations, Using these measured aberrations he changed the original residuals
to obtain the final solution. Thus in view of this assessment the description

“optical designing -~ an art" was justified in the nineteenth century.
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After Taylor, Schwarschild (1905), Kerber (1916), Berek (4930) and
Conrady (1960) described methods for the design of triplet objectives, but
in all these methods it was necessary to make repeated trials for the

determination of some parameter of the system,

Stephens (1948) developed the thin lens analysis of the triplet
taking into account both near and infinitely distant object planes. He
obtained a solution for prescribed values of the petzval sum, total power,
longitudinal colour, transverse colour and the height h3, the intersection
height of the axial ray at the third lens. He maintained the prescribed
values of the Seidel aberrations after thickening the system, and analysed
the final design by trigonometrical ray traces. His method, however failed
to deal with the control of spherical aberration and provided no guide to the
important matter of the selection of glass for the lenses of the system. He
believed that the other triplet types, Heliar, Pentac etc. could be generated

from the same procedures which he had used for the triplets.

Cruickshank (1956, 58, €0, 68) explaiped that all triplei;s‘ with cemented
components could be generated from the simple Cooke triplet, or as he called it
type 111 triplet or basic triplet (Fig. 1.7). Thus in view of the fundamental
importance of the simple triplet, he developed the complete design theory, and
examined its properties in a detailed and systematic manner, including glass
selection. His method enables any newcomer in this field to design photographic
objectives based on the t;-iplet family, methodically. A4Accarding to him "The
triplet objective may be regarded logically as derived from the Vollaston lens
by the addition of a compound correcting system comprised of a positive and a .
negative lens placed in front of the diaphragm". The main function of this
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corrector was to introduce aberrations. Thus he replaced the h; parameter
of Stephens by the new parameter y, the power of the corrector. He also
showed (1968) that, for a given set of glasses and prescribed residuals, the
spherical aberration, spherical to seventh order could be approximated by a

quadratic function of y, thus:

spherical aberration = Byy? + Bx + B, + 0(9)

ot

where B;, B, and o, are cgz;sté;xits.. The values of for which the lens system
has a residual spha‘ical'é.bexration up to seventh order of amount R, are the

roots of the equatioﬁ
Bx2 + BX +B =R =0 (1.1)

Cruickshank's initial solution for the three powers and two airspaces was
based on prescribed values of ¥, petzval sum, total power, longitudinal and
transverse colom'; He gave the complete design procedure for an i:rt‘initely
distant object plane and then introduces modifications for finite conjugates.

In 1960 he discussed in detail the general physical pz'-inéiples of the
generation of tripleté with cemented components. He illustrated this with an
example of a Pentac (type 212) objective developed from a typical set of
aberration residuals and fictitious glasses. He included graphs showin-g the
variation of the fifth order coefficients of the Pentac system with y; which
indicated very clearly the optimum value of y. This example illustrated the
use of the fictitious glasses in obtaining the initial solution of a triplet
system with cemented components and also the use of the Buchdahl (1954)
aberration coefficients as a measure of the correction state of the design.
It showed clearly the édvantage of being able to see the trend of the design

using fifth order coefficients.



Cruickshank and Hills (1960) have shown how the aberration coefficients
developed by Buchdahl (11954) may be used in the development of the design of
an optical system. In this connection the essential feature of these
coefficients is that irrespective of order they are obtained by a summation

over all the surfaces of the system,

In his 1958 paper Cruickshank developed a cubic equation for the
determination of the initial arrangement. He noted that "In genérai onix
one root of this equation gives a physically useful solution. There is an

important exception, however, in one case in which a_second root leads to the
possibility of the construction of another group of objectives of high
fagrtmon '

In this thesis an account is given of an attempt to investigate this other
group of objectives in detail. It was hoped that this would provide a logical

starting point for the development of high aperture systems.



CHAPTER II.

2.1 RY of the C

It has been stated in the previous chapter that any system of the triplet
type has an equivalent triplet, or, as we shall call it, a Basic Iriplet. In
this section we will summarise the important practical case of the initial
design of a triplet photographic objective corrected for an object plane at
infinity, as given by Cruickshank (1958). This sumary will introduce mos;b of
the required notation. The three lens components a, b and c have the glass
constants (N,, V,), (Ny, V) and (N., V;) respectively. Disregarding the axial
thicknesses of the lenses, five variahles are required to specify the system
. initially, namely the powers @z, Qp, @ and the separations t, and t, of the
three coaxial lenses. The following five eonditions may then be fulfilled:

(i) The power of the system shall be wnity; (ii) The power of the corrector

shall be x; (4ii) The system shall bhave a petzval curvature coefficient, o = R,,
for the petzval sum; And for the.object plane at infinity the System shall have
(iv) A residual longitudinal paraxial chromatic aberration, R,, ard (v) 4
residual transverse chromatic aberration R,, for an incident pencil of obliquity,
v,, the diaphragm being coincident with the central thin lens b. Using well
known relations for systems of separated thin lenses in air these five conditions

may be formmulated analytically as follows:

(A

1/Yoaf Z Pj¥oj = 1 (2-1)
j=a
b

1/303 Z PjYoj =X . (2.2)
j=a

1/2 oy/F; =R, (2.3)

C
=2



c

1/v5¢ Z 93745/%5 = Re | ' (2.4)
j=a
c .

Ve ) en = R, | (2.5
j=a

Where yj and y,j are the incident heights at the Sth component of a pr:i.ncipal'
paraxial ray (b-ray) of obliquity v,, and an axial (a-ray) paraxial ray |
respectively, and v, j is the inclination angle of the axial ray after refraction
at the jth component, Since the diaphragm is initially in coincidence with the
second thin lens of the system, the incident heights of the principal paraxial
ray are such that

Y%/ = =4/t Yob = 0; (2.6)
while for the axial ray

Job = Joa = t,v;, = Foal1 - ﬁ@(a) (2.7)

Joc = Yob = t,X | (2.8)

A substantial reduction in the symbols specifying the glasses of the system is

achieved by writing

W/% =o; V/v =E;
(2.9)
N/ =B; N/Ne =y
In addition we can also write
2R,N, = P | ” (2.10)
RV, =1L (2.11)

R,Va = T (2'12)
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with this notation equations (2.1) - (2.5) now become

Pg + YobPb + JocPc = 1 (2.13)
Pa *+ Fob®b = X (2.14)
9a * Bop +yoc =P - (2.15)
Qa + AobPb + EVbcpec = L (2.16)

(1 + D)t 0a - HEFocpe = T (2.17)

The solution of equations (2.13) = (2.17) is quite easy. Equations (2.13) and

(2.14) give at once

JocPe =1 - % (2.18)

and combining this with equations (2.17),.(2.6), (2.7) it follows that

t, = (1 -y0)0a (2.19)

t, = {1 - (1 + DyopdE(t - x) (2.20)
Combining equations (2.8) and (2.11) gives

K¥ob = E(1 = %x)¥0e = X | (2.21)
vhere k=E+x(1+7T-¢g) , (2.22)
Subtracting (2.14) from (2.16) yields

opTobla¥op = 1) + E(1 = X)¥gc =L - x (2.23)
which on combination with (2.21) gives

op = (k¥op = L)1 = aFop)¥ob (2.24)
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Equations (2.18), (2.8) and (2.20) together give

oc = E(1 = x 2 /lcyop = x) (2.25)
while equations (2:14) and (2.24) give |

Q2 =X = JobPb

= L +x = (K + ox)yep}/(1 = ayep) (2.26)

IP Qas. Pbs @c &re now eliminated from equation (2.15) by means of equations

(2.24) - (2.26), we obtain the cubic equation _

Gs¥hp + G Fob * G Yop + G = O (.27)
where Gy = k2 +axly - P) (2.28)
G =K(P-L—2x-6fc)+§!r€(1 %)z =x(x = P) (2.29)
G =prlx + L) = fyg(1 =x)2 =xl - P} + Ly - (2.30)
Go = = Lpx - - (2.31)

This cubic equation will have three roots, so that three initial arrangements
may be possible. The coefficients can be computed for the given residuals and

the roots can be obtained by successive approximation.

From the initial solution, three shapes S,, S,, S, corresponding to
powers cpa; @b» @ are available to control three characteristics of the system.
The analystical theory (Cruickshank, 1968) shows that one can calculate three
thin lens shapes S, Sp, S of the basic triplet to achieve the specified
thind order aberration residuals R,, R;, Ry for coma, astigmatism or flat

tangential field condition, and distortion.
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It will be seen in general that the third order aberration coeffici ents
in the thickened system g,, 05 OF 05 = 303 + 04 Will differ from the
corresponding specified residuals R, R;, Ry of the thin system. A4 stage of
- differential correction is therefore required. In the light of‘this fact, it
is just as effective to introduce arbitrary, but reasonable, shapes in the
thin lens system, carry out the standard thickening procedure and use the
differential correction method to ad;jugt shapes in order to é.chieve the
prescribed residuals R,, R;, R; in the thickened system. |

This method is quite convenient with the above assumed stop position
because the shape change at any lens affects only the contributions of that

lens to the third order aberration ecoefficients.

_ -It is essential to prescribe same residwals R, and R, to m:i.nixﬁ:i.se the
longitudinal chromatic aberration near the 0.7 = 0.8 zone of the full aperture
and to correct the transverse chromatic aberration at some field angle using
the wavelengths for which the system is to be achromatised. It will be seen
in general that the paraxial chromatic aberration residuals Rg, R, of the thin
system differ from the corresponding traced values l.,, t., of the thick
systems To achieve the prescribed residuals in the thick system the same as
in the thin system, the two parameters L and T are adjusted with differential correction
method by forming the derivatives 3l.p,/dL and dt¢p/aT.

Finally, we adjust the spherical aberration to seventh order for the zone
of radius p to such a value that the total spherical aberration of the system

is suitably corrected. The parameter y is used for this purpose.

The main advantage of this basic triplet theory is that the above procedure
can be applied to design any triplet of the basic triplet family shown in Figure

17 of Chapter I.
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2.2 A STUDY of the ROOTS of the CUBIC EQUATION,

The e@ation (2.27) is of the form £(b) = O, where f£(yb) is a .
cubic polynomial. The coefficients of the polynomial are complicated
functions (see equations 2.6 to 2.31) of the glass constants and the
residuals of the system. The analysis of the dependence of the roots of
this equation on these quantities is therefore a complex problem, It is
féirly obvious that certain of these quantities have a greater range of
variation than others. Among these area, P and & The ratio %/Vb =
can be iraried quite widely. 4 doublet as the first component .may have an
effective V-value (see section 3.1) anywhere from 40 to 300 or more quite
easily, while a negative doublet or triplet fbr the central component my
have an effective V-nmﬁez‘ as low as 10s It is clear, then, thatQ can be
varied continuously in practical systems. The ratio Va/Vc = E cén also be
varied continuously in the same way by replacing the last component by a
cemented doublet or triplet, but the range of variation is more limi ted.

The ranges of variation.for B and ¥, ratios of refractive indices, are

much more limited still. Ve shall find that the parameter P can be increased
congiderably beyond the ordinary value (about 0.6), which it has in normmal type
114 triplets. It should be remembered that P = 2R4N;, where R4 .if.s the third
order petzm curvature coefficient in the thin lens system:. The replacement

of thin lenses by thick ones may often result in a reduction of the petzval

"sum, especially if meniscus and thick cemented components are used: It is
therefore not unpractical to cﬁnsider values of P up to about V‘Z:m’,'ce the value
which is usual in the type 111 triplets, provided the thick leas replacemeuts are
designed with a reduction of petzval sum in mind. This point is considered

further in Chapter III.
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In Fig., (2.1), curve (1) is the graph of the polynomial f(y,p), and its
intersections with the y,, axis give the three roots of the équation £(yop) = O.
The curve has been drawn for values of the residuals such as might be used in
the design of a type 111 triplet. In particular, P has the value 0.60, Of the
three positive roots, it is clear that only the second root y,, = 0.84 provides
the basis for a practical system. The first root y,p = 0.045 would lead to
undesirably high powers for the components; while according to equations (2.19),
(2.20), the third root, Yob greater.than @ity, would give negative values for

both air spaces.

Curves (2), (3) and (4) in Figure (2.1) are sinilar graphs of £(p)
correspondizig to the values P = 0.8, 1.0, 1.2 respectively. <n interesting
feafﬁ'e is that an increa:se in P results in the reduction of the value of the
third root of the equation and raises the question as to whether this third
root can be less than unity. Curve (4) shows that increasing P to the value
1.20 does not produce the desired result, 'for in this case the curve falls
below the y,p axis. The cubic equation then has only one real positive root
Yob = 0.02, which is not of practical use. A third root of the equation less
than unity cannot be obtained éimply by increasing P for this set of residwals.
Figures (2.2) amd (2.3), wh:.ch are drawn for the cases in which thé power
of the corrector system has values of -0.2 and +0.2 respectively, show that the
variation of this parameter with these residuals and glass constants does not

alter the situation significantly.

We consider next the effect of the variation of the glass parameter o
- in the range 1.4 to 5.0, say: This could mean, for example, that we are allowing

the eff'ective V-number of the glass of the central component to be reduced
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progressively. Such a variation could be achieved practically if the single

negative component were replaced by a suitable negative doublet or triplet.

In Fig. (2.4(a), curve (1) shows the result of increasing o from its
earlier value of 1.44435 to 5.00006, P having the value 1.-10. The equation
f(y;,b) = O now has three real roofs between O and 1, and the poésiﬁility of
a new basis for a practical lens sy#tem arises, Curves (2) and (3) show the
graphs of £(y,,) for the cases in which q has the values 3.5 and 4.0
respectively. investigétion of the initial thin lens solution corresponding
to the new third root is not very encouraging, for, as Figure 2.4(b) shows,
the power of the first component and the first air space are both -ﬁegati(re.

These will not provide a practical lens system.

Fig. 2.5(a),(b), show similar curves resulting from changing the value of
X from -0.6 to -0.2. From Figure 2.5(b), it can be seen that the first
componént now has a small positive power and the first air space“.is now also
positive, but large. This suggests that further imvestigation of the effect of

the increase ) should be made.

With this in mind,X was increased to +0.20 and the corresponding curves
are represented in Fig. 2.6(a),(b). It can be easily observed from Fig. 2.6(b)
that the initial solutions have become much more practical and offer promise of

a reasonable basis for a lens system.

Because of the importaint part played by the parameter © , it is more
informative to present the results obtained so far in graphs in which % is the

independent wvariable,
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Fig. 2.7(a) shows the roots of the cubic equation (2.27) as a function of :
a, for different values of P, Curves (1) and (1)' are drawn for the case in
which P . 0.6. These curves show the variation with o of two of the roots. The
remaining root which has a value close to zero and has no practical significance
is not shown. If a triplet is designed with P = 0.6 then the root of the cubic
equation on which it is based must lie on the curve (1) because this is the only
useful root below unity. Curves (2) and (2)' show the comsi:_onding roots far
the .case in which P = 1.0. It can be observed from curve (2)' '.that the values
of the roots repmsentgd in this branch are much reduced cox-npared: with the values
summarised in curve (1)?. Ox; curve (2)' however, all the values étill lie above
unity. If P is increased to.1.05 it becomes clear that a change has oceurred in
the solution of the cubic equation, resulting in the roots lying in the continuous
curve (3), provided a>»2.15. In curve (3) for a>2.15 we obtain two positive
roots for each value of o and these both have values below wnity. The smaller of
these two roots belongs to the geheral conditions represented in curves (1) and
(2,, on which ‘the design of the traditional triplet is baseqd, whilg the larger
must correspond to a set of new conditions which may lead to another class of
triplet solutions. The effect of increasing P béyond 1.05 can be seen in curves,
(4), (5) and (6), which are drawn for the P values 1.1, 1.15 and 1.2 respectively.
The new conditions represented in the upper portions of these continuous curves

will be the main subject of further investigation.

From the values of y,, on the continuous curves (3), (4) and (5) are
.conq:uted the powers @, Qps Q¢ and the éeparations t|; t, of the basic thin
triplet, using the appropriate equations from (2.19) to (2.26). The results
of these computations are plotted in figures 2.7(b) to 2.7(e). The interesting

feature of Fig. '2__.7(b) and 2.7(c) is the great reduction in the powers of the
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components corresponding to these y,p-values. The curves of ¢, and t, which
have lower slopes are associated with ygy-values in the upper portion of curves
(3), (&) and (5) in Fig. 2.7(a). All these results look promising for the
existence of a new class of solutions, having much lower powers than in

-traditional triplets.

The coefficients of the cubic equation (2..27) are not only functions of
Xs P anaa considered so far, but also of £, B8, v, L, T. &lthough the ranges
of variation of these are more limited, the effects of their variations must
be investigated. In doing so we shall limit our considerations to the roots

represented by the upper portions of the continuous curves.

Pigures 2.8(a) to 2.8(e) show the variations of the powers gzs Op » Pe
and the separations t,, t,, respectively, regarded as functions of ¢ for
different values of g far the case in which P = 1.1.0. Curves (.‘I_), (2), and
(3) are drawn for the g values 1.0, 1.2 and 1.} respectively. These figures
show that the powers of the components change considerably . with increase of g,
especially ¢, and ¢p , whereas the values of the separations t, and t, do not
vary significantly. The minimum value of o for which solutions are polssible

increases with £,

Ve consider next the effect of the variations of the glass parameters
N /Nbb =8 and N,/N, = y. This could mean, the generation of fictitious glasses
(see Chapter III, Section 3.1) in the replacement of single components by

cemented components.

In Figures 2.9(a) to 2.9(e) curves (1), (2) and (3) are dramn for different
values of B, namely 0,7772, 0.8772, 0.9772. These are similar to Figures 2.8(a)
to 2.8(e), and show that increasing B will increase the thin lens separations and

the power @, much more than the powers ¢, and ¢ -
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Similar curves (1), (2), (3) in Pigures 2.10(a) to 2.10(e), drawm for
the values y = 0.8, 0.9 1.0 respectively, show that the increase of y will
decrease the values of all the parameters of the initial solution. The
reductiorsin the airspaces and in the povers |b) and @, are more noticegble

than the reduction in g,.

The parameters L and T cannot be chosen as degrees of freedom in the
same way as the glass constants because Ry and R, are to be prescribed to
control the chromatic aberrations of the system. However, variations of these
are considered at this stage because the values of L and T in the new class of
triplets may éiffer considerably from the corresponding values in the type 111

triplet objectives on account of the presence of compound components.

In Figures 2.19(a) to 2.11(e) the curves (1), (2), (3) for which L has
the values 0,%, 0.3, 0.5 respectively show the resulting change in the powers
and the separations. These do not call for any particular comment. Figures
2.12(a) to 2.12(e) show the effects of the increase of T. The curves (1), (2)
and (3) are drawn for T values of 0.0, 0.2 and O.4. It can be seen that the
main result of increasing T is an increase of the first airspace, t,, together
with a substantial decrease of the second airspace, t,, which has even become
negative in two of the cases considered. It will appear subsequently that

advantage can be taken of this effect of T in a very interesting manner.



CH4PTER ITI,

GENERAL PROPERTIES OF THE NEW CL4SS OF OBJECTIVES

3.4 SOME PROPERTIES of CEMENTED TRIPLETS of NEGATIVE POVER.

In his discussion of the triplet family of objectives, Cruickshank
(1958, pp27-29) has shown that any thin lens (@,N,V) of power ¢ and with
glass constants N and V in the basic triplet can be replaced by a set of thin
lenses (k o,N, ,V, ),(k ¢, ,V, )eeeso(iy,VyNp) in contact, the replacing group
having the same power, the same petzval sum and same paraxial chromatic

abemiions as the singlet it replaées, provided that

K +k ¢4 .0 =1 | - (3.1)
E/N + /N + . .0 k/N =N (3.2)
ic,/v; +5,/V, + ook /V = /7, . (3.3)

| This means that it is possible to design a cemented component, which is
equivalent as regards power, petzval sum, and the paraxial chromatic aberrations
%o a thin lens having within a certain range any value of N, and, independently
thereof, any value of V. The artificial glass refractive index generated in
this way is known as a fictitious refractive index and the V-nunber produced is

called the effective V-mumber.

In order to maintain the same power, the same petzval sum, and the same
chromatic aberrations as the singlet it replaces and to obtain variation over
a considerable range, for the important parameter a in the new clvass of thin
lens initial solutions discussed in the previous chaptexr, we replace the
central thin lens (9b,N,Vh) in the basic triplet by a set of three thin lenses
(x op,N, ,% ), (k,ob,0,,% ), (ks®b,Ns,Vs) in axial contact. Then the eguations.

(341) = (3.3) become
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L +k +k =1 h (3.4) .
K/, +k/N, +5/% =1/f, ' 3 (3.5)
K/V, + /T, + /7, = 1/V, . (3.6)

The three umkmowns k, ,k, ,k; for a given set of glasses can be calculated
for any value of V‘;b and ﬁb, i.e. for any value of a and § from equations
(3.4) = (3.6). The values are given by

K = Ai/A; K =A2/A3 K, = /0

where

s =} 1 1 1
/B, S N,
1/V, | /Y, 1/,

8, =| 1 1 1
/5, 1/, 1V |,
/v, 1/V, 1/v,

'

A5 =| 1 1 1
1/x, 1N, 1/ | »
1/, i/v2 1/iiP

A =| 1 1 1
1/, /N, Vo, | .
fu/v, 1V, 1/,



Multiplying the power ¢p by k, ;k, ,k; in turn, we obtain the powers of the

individual components of the replacing triplet.,

To avoid an excessive number of air-glass surfaces, we may decide
that the components of this triplet should be cemented togethéa_:'; Vhen the
.shape factor of one component is arbitrarily selected, the shapes of the
remaining components are then fixed by the cementing condition. There is
thus only one shape factor for the compound component. Ve shall use the
shapé of the front component of this cemented txriplet to specify the shape -

factor of the whole component.

It will be remembered that we increased the walue of P in the thin
basic triplet system, assuming that the replacement of a thin component by a
thickened meniscus cemented camponent may often lead to a reduction of the
petzval sum of the vhole objective. We study, therefore, the variation in
the value of the petzval curvature coefficient g4 of a cemented negative

triplet with change of shape.

In Figure 3.9, curve (1) is drwan for the case in which

(1) o=-1, N =1.8381, W =19.4233

In this figure, we have not plotted o, itself, but the related quantity 2o,ﬁb,
which is the value of the parameter P, for this component. The curve shows
that as S increases the value of P becomes more negative.. Similar curves (2)

and (3) are drawn for the cases

16.6486

(2) ¢ =-1, §,=1.8%1, ¥,

14,5676

and (3) o =1.8381, V
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respectively, and these curves show P to be changing more rapidly with S than
curve (1), It becomes clear, then, that the negative contributin;i vhich the
thickened cemented triplet mekes to the value of the parameter P can be
substantially increased by change of its shape and by reduction of its
effective V-number ff_b; Our next congideration is to know the particular
surface or surfaces of this compound triplet;, responsible for the reduction
of P, It is observed that the last curvature of this compound.tr’._lplet tumns
out to be deep with increase of shape and produces very high negative values
of P, ¥he P values of the last surface corresponding to the case (2) in
Figure 3.1 are computed, and these results are represented by curve (3) in
Figure 3.2. The curve (2) in Figure 3.2 is the same as the c\mve;-(2) in

Figwe 3.1 which is drawn for comparison.

The use of a cemented triplet having a positive shape factar and low
value of ‘-’b as thé central component in a triplet objective results in
reduction of the P~value of the whole objective, because the P-value is
uaffected by the object position. This fully justifies our earlier assumption
that larger values of P used in the basic triplet initial solution could lead

to useful practical solutions.

We will now study the variation of the locations of the prinéipal points
of the cemented negative triplet. To do tixis, the principal point &ista.f‘ces
are computed for the caﬁponents given in cases (1) and (2) of Fiére 3.1, and
the results of these computat:_lons are plotted in Figure 3.3 as functions of S.
For case (1), curves (1), (1)' represent the variation of first and second’ |
principal point distances with increase in S. The effect of decreasing ih can
be seen in similar curves (2),(2)! drawn for case (2). All these curves show
that the first principal point distance is always greater than vthe second

principal point distance for a given value of Vp and S.
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3.2 SUZIRY of the NEV CL:SS of TRIPLETS.

The new region discussed in Chapter 1I was armved at in the initial
solutions of the basic triplet by increasing the normal values _'of:the
parareters a, P, and X. Increasing a means decreasing the V-number of
the central component of the basic triplet for a given V-number of the first
component. The only way to fulfil this condition for a given V-number of
the first component of the basio triplet is to replace the central thin lens

of the basic triplet by a compound component.

In order to maintain the same power, the same petzval sum and the same
chromatic aberrations as the singlet it replaces, one has to replace the

central thin lens of the basic triplet by three thin lenses in axial contact.

The large values of P used in the initiel solution will be reduced to an
acceptable level in the actual syétem -of the whole objective if a positive
meniscus shape and low Vb of the central compound component are maintained.
This central compound triplet with positive meniscus shape will have its
principal points at a cpnsideiable distance frou its vertices. it is clear,
ther; that theése triplet ~hjoviives with a thick cemented centrathriplet must
have, in the initial arrangement, a high positive value of t, to accommodate
this central component, and a low or even negative value of t, to maintain a
compact objective. The trend of the distribution of principal points in fhe

class of triplet objectives are illustrated in Figures 3.4(a) and 3.4(b).

Vhile we investigated the initial solutions in the last Chapter, we
noticed that a high positive value of t, and a low or even negative value of
t, could be obtained by increasing the parameter T. It follows, therefore,

that the required positive value of t, and low value of ¢, can be provided in
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this class of objectives by giving an appropriate positive value of T in the
initial solution. But the next question is whether this value of T is

consistent vith contxrol of the transverse colour.

We begin to see now how the important parameterso, P and T are
interrelated to control the over all optieal characteristics of this class of
objectives. With a thorough understanding of the effects of these parameters,
together with the effects (studied in the secand chapter) on the initial
solutions of the other parameters, we are in a position to progress towards

practical solutions for this class of objectives.

The design of this qlass-of:objectives should start then with the
selection of reasonably high values of «a, P, %, T, along with moderate
values of the other parameters. This should give a suitable initial
arrangement with large front air space and small rear air space. Next, the
central component in the basic triplet is replaced by 2 compound negative
triplet and this should give possible triplet objective belonging to this
new group, i.e. this group starts with the type 131 triplet. The remaining
triplets of this family could be 132, 133, 231, 232, ... etc. The
replacement of components other than the central camponent by cdmpound
components provides more degrees of freedom and one can expect better
performance with increased aperture and wide field, campared to the optimum

131 triplet.

In the next Chapter, we try to develop the practical application of these

ideas by considering the design of 131 triplet objectives.



CHAPTER IV

AN INVESTIGATION OF THE DESIGN OF 4 131 TRIPLET

4.1  DESIGN PROCEDURE.

We begin with the five selected glasses (N,,V,), (N,,V,), (N,,V,),
(N;,V;), &,V.), the residwals R,,R,, R, corresponding to P, L, T and the
parameters a, é, x vwhich will lead to a solution lying in the new region
suggested in Figurg 2,7 of Chapter II. Along with these, the residuals
R,, R; and R, are selected (normally zero values at the initial stage) and
the basic triplet initial solution parameters ¢, Qps P¢» %, , t, axe
computed by using the _apprcpriaté equations (2.19) - (2.26) of Chapter II.
Hav:'.ng done this, the glass constants ﬁb, ‘-Ib can be evaluated from equations
Ny = /Mg, Vy = o/V,. Using these constants, the three constants k, , k, ,. k;
will be calculated by solvmg three simultaneous equations (3.4) - (3.6) of
Chapter I1l, Then the three thin lens powers g, ’v%z s Qps are calculated
from the equations gy, =.k1 ®bs Pb2 = K9bs Pbs = Kspp. These power
calculations coxﬁplete the replacement of the central thin lens of the basic
triplet by three thin lenses in axial contact, i.e. the basic thin triplet is
converted into a thin 131 triplet having the same initial residuals a.nd values

for x, P, L, T as the basic triplet.

The next step is to compute the thin lens curvatures of the 131 triplet
for a set of three arbitrary shapes S,, Sy, S;. The thin system is then
thickened, introducing the prescribed axial thicknesses d,, d,, d¢, dy OF
the five components, using Cruickshank's (1968) standard thickening procedure,
which keeps the total and the individual powers of the three th:l.ck components

a, b, c equal to the totall :nd the individual powers of the corresponding thin



25.

components. The two standard paraxial rays, i.e. the axial paraxial ray

(Yo, = 1y Vo, = O) and the principal paraxial ray (y, ép, v, = i) for the
allotted stop position (fixed initially at the m-st principal point of the
central compound), for an object plane at infinity are traced through the
systems From the results of these two traces, we compute the third order
aberration coefficients g, , C;» O3> Oy, Os and, for eonvenien.c,e,'i Gs = 303 + Oge
The next step is to adjust the three available shapes S3s Sp, S¢ =0 as to

mke g, =R,, 03 oroe =R;, ©s = R;, using the standard CrxﬁckM (1968)

differential correction method based on the following equations:

‘Ac Cn -
'gg: AS; + asf, ASy + 'ggi 85 =R -og (4e1)
an3 AS +.a.ﬂ3 AS A,.,,ﬁﬂs AS =R5"C 7
s, T8 Ta, bTa, 8% 3 >
T (4.2)
or ml 503 . Gs ' - :a)‘
25, 4S8, + 35, ASp+ o5, 4S¢ = Rs - O |
v \S. o 40 aas = -
g-g: AS; + 255 ASp + FYS AS; = B; = 05 (4.3)

05

This is essentially an iteration procéss and each iteration brings the
aberration coefficients closer to the desired residual values. 'Tlrﬁ.s method
is very convenient because the same procedure can be applied to any triplet

of the basic triplet family.
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After adjusting the shapes, the paraxial traces for the wavelengths
for which the system is to be .achromatised are computed through the system
and the paraxial chromatic aﬁemti.ons_, len, and tgy, of the thick system
are adjusted to have the prescribed values Ry and R,. This is done by the

differential correction method explaxned in Chapter II.

The next stage of the design will be to make the spherical aberration
to seventh order for the zone of radius p equal to the prescribed residual

R, thus satisfying the equation

* o0’ mp® +7T,0’= R, (4eds)

It is clear from Cruickshank's equation (1.1), mentioned in the review of the

literature, that the sperical aberration of the basic triplet is, very closely

a quadratic function of y. At this point, this relationship is assumed to be

valid for any triplet derived from the basic tripiet because ¥ determines the
power distribution between the two positive components of the triplet, whether
the components are single or compound. All these steps are now organized into
a single computing programme, which is deecﬁ.bed in the following section.

4.2 DESCRIPTION of the PROGRAE,

The main programme can be best understood from the block diagram (4.0).
It starts by reading the refractive indices of the selected glasses, the axial
thicknesses of the lenses, the initial values of «, 8, P, X, p and the

residuals R, R,, Ry, R;, Rg, R,. Vith these input values it computes the

* Throughout this problem Buchdahls optical aberration coefficients are used.
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initial solution coarresponding to the new region, Then it replaces the
central thin lens b of the basic triplet by three thin lenses in axial

contact and thickens the system in accordance with the prescribed axial
thicknesses, using a given set of arbitrary shapes, The two standard

paraxial rays are traced with the conlpuf.ed position of the paraxial entrance
pupil corresponding to a given position of the stop, The third order
aberration coefficients are eveluatéd next, and this is followed by a
discrimination which tests whether g, = R,, 05 = B;, and g5 = Rs.- If any

one of these conditions is not achieved, smll changes are made in the shapes
Sas Sps Sc and the approximate derivatives 301/aS; (i = 2,5,6 § = a,b,c) are
calc;ulated. The shapes are then adjusted iteratively until the required
conditions are achieved. In practice, this takes approximately 5 or 6
iterations. Should the conditions not be achieved within 10 itemtiom, the

' programme alters the value of o¢ and begins agein. If the required conditions
cannot be satisfied within the prescribed a range, then the value of 8 changes,
and, with the initial value of «a, restarts fhe programme., By this means,
sample solutions are explored within the complete a and $ ranges prescribed

in the programme,

The next discrimination tests the condition Lth = R, after tracing the
paraxial rays in the prescribed colours. If lch # Rs, then the :approximate-
derivative dl¢h/OL is calculated and L is adjusted wuntil the condition is
. achieved. Similarly, T is adjusted until tch = R7. After emerging from these
iterations, the fifth and seventh order spherical aberration coefficients are
computed. Then if the flag integer G £ 1 the remaining fifth order aberration

coefficients are computed and printed out.
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If G = 1, the programme proceeds to compare the spherical aberration
to seventh order with the prescribed i-esiqual R,. If sph £ R, then the
approximate derivative aspbyax is calculated and y is ad.justed until
sph = R, The fifth order coefficients for this system are then. computed
and printed out and the constructional dajta of the system are punched out on
a separate output to serve as the inpuf data of the standard programne for

seventh order coefficients available in the design section.,

4.3 A NUMERICAL EXAMPLE,

To give some idea of the operation of the programme, a brief account is
given of a typical numerical example. In the input data, ve give the"
refractive indices and V-numbers qf the seiected glasses, and values for the
parameters «, B, P, X, and cach of the residuals R, to Ry (excluding Es)
as are necessary to ehsure that the solution obtained willybelong to the "new
region" which is of interest. The axial thicknesses for the variovs components

are aslo assigned. The chosen values are:

N, = 1.65426 V, = 58.27 o = 3.2 R, = 0.000184 ds = 0,08

N = 1.65426 V, = 58.27 B = 0.8 R =0 d = 0.08

N =1.50349 V, = 5615 P=1.20 Rz =0 ds s 0,08

N; = 1.67158 Vz = 32.76 x = 0.3 Rg = 0 . de = 0,02

Ne =.1.673;,1 ¥, = 46.82 Ry = 0.00173%: dy = 0.08
R, = 0.008580

The value of p for which the sph aberration will be computed is p = 0.2222 and

the stop is assumed to coincide with the first principal point of the central

component.
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 The programme begins by solving for the initial thin lens arrangement
of the objective, i.e, the "basic triplet", giving the powers and separations

as

Qa = 1.227706 op = ~1.38852 @c = 1.151832
t, = 0.343648 t, = 0.185640
In the next stage, the central negative component is replaced by three
thin lens in axial contact according to equations (3.4) - (3.6). The k-values

obtained are

k = =0.591023 k, = =1.,2971148 ks = 2.888138
and the powers of the three components become
Qb, = 0.820647 @b, = 1.801070 Pbs = ~4.010237

Assuming arbitrary shapes S,;, Sy, S; for the components of the thin 131 triplet
Sa - 1.5 Sb - 2.5 Sc = 1.0 B
The programme computes thin lens curvatures and this thin ‘(sfystem is then

- thickened and adjusts shapes by differential correction method until ¢, = R,

O¢ = Ry, and g5 = Ry« This takes five iterations, '

After adjusting the shapes, the programme computes the paraxial longitudinal
chromatic aberration 1;y, compares it with R; and by variation of L adjusts the
system until l.p = Rs. This takes two iterations. In a similar manner, a further
two iterations serve to adjust T to such a value t;; = R,. #t this point, the
coefficients u,, v, are calculated and the spherical aberration to seventh order
~is calculated for the zone of p = 0.2222, this is compared with R, apd X is

adjusted until sph = R,, The shapes of the three lense¢s and y value at this

stage are

S, = 1.6514 Sy =1.7379  S¢ = 0.5373  x = 0.425.



The specifications of the system corresponding to these shapes is

punched out and is given below:

c
2.4,87622
0.663353
1.2253%
0.371941

~2,896,28
2.737914
1.301541

~0.4267887.

a

0
0.08
0.090555
0.08
0.08
0.02
0.232867
0.08

1.65426
1.65426
1.50349

1.67158

1.67341
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The aberration coefficients up to fifth order are calculated next, and
later the seventh order aberration coefficients using another progra.mnie. The

coefficients for this system are shown below:

-5.6657

o, = 0.5130 TR T, = =87.922
o =0 g, = ~12.33% T, = =177.250
0; = =0.097% ps = -8.1418 T3 = 132,760
G4 = 042927 He = ~12.2230 Ty = =178.410
05 = 0 us = -3.8008 Ts = -'57{'458
o5 = 0 e = -8.9351 Te = -236.87
hy = =h.0952 T, = =1k.180
pe = =2.8231 Te = -126,460
o = =1.2525 Ty = ~59.846
o = ~2.3146 T, =,,-":7",.j§fj;:63

1y, = =0.79982 Tyy =

o, = =1.6290 T =

1:,; =

Ths =

T, 5 =

Tie =

5 =

Tie =

The =




32.

The total time required for the Elliott 503 machine for this run,
excluding the seventh order aberration coefficients, is just under three

minutes.

4.4,  SURVEY of TYPE 131 PROPERTIES.

In high aperture systems; the aberration which mainly limits aperture
of the system is the spherical aberration. We have assumed in section 4.1
that the spherical aberration is a quadratic funcfion ofX in this class of
objectives. To test this assumption, the computing programme was used to
calculate the spherical aberration coefficients O, ,Hy , T , for a number of
values of y+« The results are plotted in Pigures 4.1 and 4.2. In the former,
the variations of the separa;te coefficients withX are shown, and in the
latter the total spherical aberration to seventh order is plotted for three
different zones of the apertures, namely P = 0.25 (£/2), 0.227 (£/2.2),
0.208 (£/2.4). 1In figure 4.3, the spherical aberration czﬁ-ve for the £/2.2
zone, has been redrawn (curve (1)), and is compared with curve (2), which is
d;:awn for the same zone on the assumption that spherical aberration is a
quadratic function of ¥ . The coefficients are B3, B, By of the -quadratic
are determined in the usual way by computing for three different values of
X o 'The. good agreement between the curves (1) and (2) over the main region of
interest shows that this assumption is reasonably valid in these systems also.
"This is how Cruickshank's introduction of X is so useful in photographic

objectives,

Returning to Figure 4.2, it is evident that for a certain’ range of
maximum apertures it is possible to select values of x for which the total

spherical aberration is corrected. In this class of objectives, therefore,
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we have the familiar situation of the left-hand and right-hand solutions
determined by particular values of ¥ . The question arises as to which of
the two available solutions is the better. Inspection of Figure 4.1 shows
that the zonal aberrations will be less for the left-hand solution because
of the comparative values of the coefficienté. The decision to give
preference to the left~hand solution should rest, however, on a wider basis
of information than the spherical aberration only. In other wards, the
general performance of the systems corresponding to the two solutions should
be compared. To do this, we have drawn in Figure 4.4 the variations of all

the fifth oxder coefficients as a function of x as given by the computation

using the programme.

It can be seen that the coefficients of lineaLr coma, |, 5 U3 s a2nd the
coefficients of cubic astigmatism, u,, pe, have fairly large vaiues, and
it is obvious that these aberrations will limit the useful field of the
objectives. From the fact that these coefficients are sligmtl& less in
magnitude for the value of ¥ corresponding to the left-hand solution, it
_bécomes quite clear that the left-hand solution is to be preferred rather

than the right-hand solution.

For the time being, we can restrict our considerations in the further
investigation of the left~hand solution only. For the aperture .f/2.2, Figure
4.2 shows'thavt the left-hand solution corresponds to X 2= 0.425, is a reasonable
value to correct spherical aberration, and this is based on the original value
of a = 3.2, At this point, ccnsideration is given to the effect on the
spherical aberration curve of small variations in %, Using the programme again,
we obtain results which are plotted in Figure 4.5. It is clear from this

Figure that the spherical aberration curve as a whole rises with increase of
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and effects very profoundly the value of X for which spherically corrected
left~hand solutions are obtained: It also means that there is a limit
beyond which we cannot increase o if we are to obtain spherically corrected

solution at a maximum prescribed apérture.

In earlier chapters, it was stressed that higher values of a are
desirable as they give low powers for the components and greater reduction of
the petzval sum in this class of objectives. We have reached a point,
however, at which it is evident that there is complicated interrelation
between the parameters a , ¥ , and p in their effects on the correction of

the spherical aberration of the system.

The more general effects of the variation of o are shown ‘in Figures
4.6 and 4.7 where the variations of ©0,, 04, and the fifth order and seventh

order aberration coefficients are shown.

It is evident from these figures that once again the coef‘fi;ient_s of

" linear coma i, , ps, T,s Ty and the coeffiocients of astigmatism pe, pes Tes Te
have considerable magnitudes. In addition, ¢, rises rapidly with increase of
«, and this will lead to rapidly increasing zonal aberration. The real
problem in covering a moderate ap.er'ture.is to balance spherical aberration
with reasonable zonal residuals and at the same time reduce the comatic and

astigmatic coefficients so that a reasonable angular field may be covered.

Another important point to be considered at this stage in Figﬁre 4.6
is the variation in the value of g, with «. In the previous chapter, we
came to the conclusion that the petzval sum will reduce (i) with decrease of
Vb, i.e. with increase of o for a given Vsnumber of the first component, and

(1) with increasing positive value of the shape of the central component,-
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It appears from Pigure 4.6 that ‘the g, value is practically unaffected by
variation of . If anything, it is increasing slightly with increase of (.
The reason for the near constancy of o;- is that the reduction in g, due to

the increase in a is compensated by a reduction in the shape of S) with
increasing «. This becomes apparent from Figure 4:6B where the shape changes.
in : the components as calculated in the programme are plotted as functions of
. .Vhat is observed in the actual problem is that with increase of «, the
shape of the central campound decreases, and its negative contribution to the
petzval sum decreases in amount. At the same time, the shape S, of the first
component increases with increasé of o resulting in a reduction of its positive
contx;i.b‘ition to o4, and thus these two shape changes compensate each other,

leaving the total g, practically unaffected.

3

Returning to Figures 4.6 and 4.7, it is clear that the fifth and seventh
ordér aberrations, being of the same sign, will augment each other. This
suggests that positive third order residuals are inevitable. To balance the
effects of these negative coefficients,. it is necccsary in the first place to
observe the effects of the introduction of positive third order residuals.
Beginning with R, = 0.1, the same programme was used again to compute the new
values of the fifth order aberration coefficispts and the results are plotted
in Pigwe 4.8. It can be seen from this Figure that there is a considerable
improvement in fifth order, spherical, comatic and astigmatic coefficients,
but this is at the expense of an increase in g, . |

~ Next, in addition to R, = 0.1, a residual R; = 0.15 was given in the
programme data and the results are presented in Figure 4.9. This Pigure
presents the useful information that there is an overall improvement in fifth

order coefficients of coma and astigmatism, and there is a reduction in the
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value of ¢,. It is observed that the introduction of the R,, Ry residuals
has had iittle effect on the seventh order aberration coefficients and it is

not possible to do much with these coefficients.

The remaining third order residuai to be considered is that for o;. Up
to this point, we have made 30; ¢+ 04, ='0. In Figure 4.10, we show the
result of making the mean field flat in the third order rather than the

tangential field, i.es

It is evident that the fifth order comatic, and astigmatic coefficients, are
increased, but there is a significant decrease in the value of o, . ‘Since this
is accompanied by more negative value of y,, the spherical abemﬁ.on balance

' can only be obtained for apertures lower than those used previously. The of f-
axis performance is worsened. In the next run with the programme, the adjustment
Los + G4 = Ry = O was made, giving g; about =0.07. The general results of this
change are shown in Figure 4.11 and indicate a general improvement in the values
of the fifth order coefficients. A further run with the adjustment 305 + 04 = 0.15,
thus mking ¢g; about -0,03, gives the results shown in Figure 4.12. It follows
fmm this study of the effects of the variation of the value on o3 on the
solutions that in the type 131 objective it is difficult to obtain good spheriéal
and comatic correction at a high apérture, together with flat anastigmatic field.
if we are prepared for the mean focal field to be curved, the opi;ort\mity for
developing a system with an aperture of £/2 would be considerably enhanced. One
way remains of improving the situation on the axis a little, and that is a

further increase in the third order distortion residual, R;. This means that the
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distortion is quite deliberately allowed to increase, but, in any case,

since the angular field to be expected is not very great the effects of the
increased distortion will not be serious. As a compromise, then, R; is
allowed to attain the value of 0.2, This device has probably been used by
Bertele and others because Lee (1940) mentions that the triplet objectives

with central compound components suffer from distortion. at this stage,
further investigations were made on the effects of small changes in P and B,
but nothing really significant resulted from this. It would seem that the
general results summarised in the last few figures indicate the general
possibilities inherent in type 131 objectives. Pigure 4.13 shows a check of
the spherical aberration of the system, curve (1) showing the spherical
aberration based on the calculated values of ¢, |i,, T,, While curve (2) shows
the results obtained by a full ray trace. The agreement is of the order which
one can expect, and curve (2) indicates that a system might be reasonably
expected to have a good performance on axis, at an aperture p = 0.22, i.e.
£/2.25, or thereabouts. Figure 4.14 shows the spot diagrams of this system at
the relative aperture £/2.25 on axis and at l..o off axis. It is obvious that the
field covered for this objective will be quite small. This prompted an
investigation of what might happen if the aperture of the system is decreased a
little. In Figure 4.15, spherical aberration curves for the e-line, both
 predicted (curve (1)) and traced (curve (2)) are shown for a system having a
relative sperture about £/2.5. In Pigure 4.16, the spot diagrams up to 12° off
axis are shown for this system and they indicate clearly that the type 131
construction is not capable of being pushed to much higher apertures than this.
Comparison'of Figures 4.14 and 4.16 shows the effect of trading away a little

aperture in order to gain field coverage.
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. So far, the question of chromatic correction of the objective has not
been considered, in particular a high value of T has been used without any
real investigation of the resulting transverse chromatic abérriation. In
Figure 4.174, spherical aberration curves are plotted for the C, E, F 1lines
and in 4.17B the distortion curves are plotted for the same lines.- It is
seen from these Figures that neither of these aberrations are in any sense
out of cohtml. Small adjustments of L and T would suffice to br:mg the C
and P lines closer together an?d +l::5 decrease the chromatic aben';tions still

further.

4.5 CONCLUSIONS.,

We have faced three difficulties in controlling the aberrations in the
investigation of the design of 131 triplet objectives to achieve high aperture
with a reasonable field. The first difficulty was in balancing the spherical
aberration with low zonal aberrations. The second one was in reducing the
magnitudes of the comatic coefficients, and the third hurdle was in cantrolling
the astigmatism. The first two difficul ties can be eliminated to a reascnable
extent, subject to the limitations of the type of the comstruction with low
powers. The control of astigmatism to cover a rea;sonable field can be obtained
-only with low petzval sum in the triplet. If one goes to the second Chapter, it
is clear that we developed a new region which gives low powers with high values
of a, P, X in the initial solution, and we proved later tat the high value of
« is practicable by replacing the central component by a compound camponent. In
the next Chapter, we showed that the high value of P used in the thin system can

be reduced to a very low and practical value, with positive meniscus shape and

—
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with low V of the compound negative triplet, i.e. we developed the ph;}sical
principles to meet the requirements of high aperture systems, which .alsov
cover a reasonable field; kccordingly, we achieved an aperture of £/2 - £/2:2,
in an objective vhich covers a narrow field: The field limitation is due to'
high petzval sum value present in the system; This means we could not obtain
a final solution with reasonable positive meniscus shape, i.e. the last
curvature of the compound triplet is not deep enough to cause substantial
reduction in the total petzval sum. This shows that the_a power distribution
in this compound triplet is not in the proper proportion to obtain the proper
shapes. This means that the glass selection was not good enough to get the
proper power distribution vwhich decides the proper shape. AIn this compound
triplet, it is not only the fourth curvature that mtters, but also the'
cemented third surface curvature because this third surface with deep negative
curvature contributes high amounts of hegative third order spherical, comtic,
and astigmatic coefficients, and these aberrations will enhance with the high
negative magnitudes of fifth and seventh order coefficients, resulting in the
‘system suffering from the over-corrected aberrations. This is what happened in
the investigation ol the @-siga of 131 objectives with the selected glasses
mentioned in section 4.3. This reveals the fact that no h:.gn aperture system
with moderate field coverage can be designed with large third order surface
aberration coefficients. Under these circumstances, one has to increase the
refractive index of the central component of the compound compténent to have
smaller curvature. Thé amount of increase must be judged b,y the magnitudes of
the power. One has to change the refrav;tive index of the last component in a
similar fashion to obtain the final solution with deep fourth curve. Thus the

glass selection is also very important, especially in the compound component.



The real problem in getting a good solution at the final stage lies in
understanding the properties of the surfaces involved in the objective to

be designed. Besides the glass selection, in 131 triplet the field will

be limited by coma, and disto.rtion because this objective cannot have

symmetry with respect to aperture stop. The distortion can be eliminated

to a reasonable extent at the cost of little increase in q values,

. provided one is prepared for longer objectives, i.e. the distortion is very
sensitive to the length of the back air spa.ce.‘ This is what K.{ng'slake

(191..0, p.65) mentions about the triplets with central compound components,

that "His (Bertele) plan was to weaken the rear face by iuking power from the
rear to the front, where it was added in the form of an _apfmximtely
aplanatic meniscus-shaped lens immediately following the normal front léns.

The resulting distortion was then balanced out by increasing the rear surface”.
Probably in the 131 one can reach aperture of f/2 with an angular fieid cuvarye

3 15° with the proper glass selection.

If one satisfies in his design the conditions developed in the second
and third chapters (low powers, low petzval sum value ... etc.), in the final
solutions these objectives give excellent central definition with moderate

. fiald coverage.

A study of more complex objJectives is needed to exploit the principles
which have been opened up in this work. The writer commenced the detailed study
of the 133 o“o;jective.h It had been hoped originally that his stay in Hobart
would afford an opportunity to make a thorough study of this objective, but the

necessity of returming to Ipdia has not permitted him to do this.
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