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ABSTRACT 

An investigation has been made of the roots of a certain cubic equation 

f(Yob) = 0, which arises in the theory of the type-111 triplet photographic 

objective.  It has been shown that with the residuals and the parameter 

values such as might be used in the type 111 triplet, this equation gives 

three positive roots of which only one leads to a practical solution. 

It was shown that if certain parameters which enter into the coefficients 

of Yob in this cubic equation are given values much greater than is usual 

in a type 111 objective, a second root of the equation leads to a practical 

solution.  In this way, a new region of triplet solution has been opened - up 

characterised by low powers for the components in the initial thin lens 

arrangement.  It was expected that this region would provide a basis for the 

development of high aperture objectives. 

The general physical principles underlyin -g the achievement of these high 

values of initial parameters has involved a careful study of the properties 

of thick meniscus shaped cemented triplet components of negative power. 

A procedure for the design of a type 131 objective, which is the simplest 

form of objective incorporating these principles, has been developed and is 

described with numerical examples.  A study of more complex objectives is 

needed to exploit the principles which have been opened up in this work.  The 

time available for the investigation has not permitted the study of type 133 

and other objectives from this point of view. 
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ABSTRACT 

An investigation has been made of the roots of a certain cubic equation 

f(Yob) = O s  which arises in the theory of the type-111 triplet photographic 

objective. It has been shown that with the residuals and the parameter values 

such as might be used in the type-111 triplet, this equation gives three 

positive roots of which only one leads to a practical solution. 

It was shown that if certain parameters which enter into the 

coefficients of yob in this cubic equation are given values much greater than 

is usual in a type-111 objective, a second root of the equation leads to a 

practical solution. In this way, a new region of triplet solution has been 

opened up characterised by low powers for the components in the initial thin 

lens arrangement. It was expected that this region would provide a basis for 

the development of high aperture objectives. 

The general physical principles underlying the achievement of these high 

values of initial parameters has involved a careful study of the properties of 

thick meniscus shaped cemented triplet components of negative power. 

procedure for the design of a type 131 objective, which is the simplest 

form of objective incorporating these principles, has been developed and is 

described with numerical examples. A. study of WCTV complex objectives is 

needed to exploit the principles which have been opened up in this work. The 

time available for the investigation has not permitted the study of type 133 

and other objectives from this point of view. 



INTRODUCTION 

1.1 REVIEW of the LITHIATTITM.  

Taylor and Lee (1935) discussed the development of the photographic 

objectives during the previous century and showed how the discovery of the 

effect of the position of the diaphragm on the third order aberrations 

directed this development. They expressed the opinion that all high aperture 

photographic objectives were derived from the original ample Cooke triplet 

or quadruplet, either by replacing the single component by cemented 

components, or by splitting a particular component. Lee (1940) explained the 

necessity for high aperture objectives for studio work and cinematography. He 

gave a brief history of high aperture anastigmatic objectives including a list 

of their designers. Eingslake (1940) amongst others, discussed the reduction 

of the residual zonal aberrations in a lens system, this being a necessary 

requirement to attain high apertures. He considered the conditions of (i) 

zero refraction, i.e. Jo ig j  = o, (ii) normal incidence, i.e. Jo = 0, 

and (iii) aplanatic refraction, i.e. ilj - vo = 0, which provided the means 

for reduced values of the third order spherical aberration, coma and 

astigmatism, and indicated that those principles must eater in someway into 

the development of high aperture systems. If Kingslakest discussion is 

generalised it would lead to the statement that to achieve a high relative 

aperture, the surface contributions to the third order aberration coefficients 

must be considerably lower than is usual in leas systems of moderateaperture. 

fie also pointed out that the most difficult problem involved was to control the 

aberrations below the accepted level due to the fact that the tolerances required 

became more difficult to satisfy as the aperture was increased. 
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In a very detailed article Nerte (1943) reviewed the development of high 

aperture objectives up to 1943. According to this reviewer the earliest 

successful lenses belonged to the "Ernostar" series (Fig. 1.1), designed by 

Bertele,  but these were soon superseded by the "Sonnar" lenses developed by 

the same designer (Fig. 1.2). Excellent objectives of this type were produced 

having relative apertures of C(1.5 C/2 in focal lengths of 50 •- 100 mnu and 

covering semifields up to 25 degrees. In addition to these, lenses of the 

"Double Gauss" type (Fig. 1.3) had been extensively developed, resulting in 

objectives of similar qpnlity. 

Kimgelake (1944), (Fig. 1.4),explained the importance of glass selection 

in high aperture anastigmats making special reference to the Ektar C/1.5 lens 

designed by Schade. He stressed the importance of• using high refractive indices 

for the positive elements, to form the collective surfaces in the cemented 

components. This tended to smooth out the zonal residuals of axial and 

oblique spherical aberration. The same author (1949), commedted on the 

difficulty of designing a high aperture system, especially when it had to cover 

a large angular field with a short focal length. 

Kaprelian (1949) explained (Fig. 1.5) the necessity of avoiding strongly 

curved surfaces (other than those which are splenetic or zero refracting). At 

such surfaces the angle of refraction, 41, increases reapidly with the height 

of the ray resulting in the development of very high values of higher order 

aberrations. He also described in a condensed form how to control aberrations 

with the help of glass constants and the stop position. He pointed out that 

commercially produced lenses were more or less limited to the aperture range 

g(t.5 - f/2 because of the practical difficulties of design and production. 

Apertures greater than f/1.5 were only designed for special applications. 
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Schade (1950) described the modification of the petzval portrait lens 

(Fig. 1.6) in order to increase the aperture to get better resolving power, 

contrast and back focal distance. 

This review shows that there are very few papers which explain the 

physical principles underlying the development of high aperture photographic 

objectives and none which describes logical methods for their design. The 

patent literature, of course, contains examples of the construction of such 

systems, but here again, the physical principles leading to any particular 

construction are not disclosed. 

1.2 THE DESIGN of TRIPLET OBJECTIVIZ.  

The purpose of this thesis is to investigate logical methods of developing 

the design of high aperture systems from the Cooke triplet. In this connection 

a twief resume of papers on the design of triplets is given. 

Taylor (1895) arrived at the triplet construction by considering what 

happened when the components of an achromatic doublet were separated. He 

noticed that this separation increased the power of the system without increasing 

the petzvel sum. To control the other aberrations he split the positive element 

into two parts and placed one on either side of the negative element. He 

obtained an ititial thin lens arrangement for the three powers and two 

separations by solving five equations based on assumed residual values of 

spherical aberration, petzval sum, longitudinal and transverse colour and the 

total power of the system. He then constructed the system and measured the 

aberrations. Using these measured aberrations he changed the original residuals 

to obtain the final solution. Thus in view of this assessment the description 

"optical designing - an art" was justified in the nineteenth century. 



After Taylor, Schwarschild (1905), Kerber (1916), Berek (1930) and 

Conracly (1960) described methods for the design of triplet objectives, but 

in all these methods it was necessary to make repeated trials for the 

determination of some parameter of the system. 

Stephens (1948) developed the thin lens analysis of the triplet 

taking into account both near and infinitely distant object planes. He 

obtained a solution for prescribed values of the petzval sum, total power, 

longitilAinAl colour, transverse colour and the height h3, the intersection 

height of the axial ray at the third lens. He maintained the prescribed 

values of the Seidel aberrations after thickening the system, and analysed 

the final design by trigonometrical ray traces. His methodl  however failed 

to deal with the control of spherical aberration and provided no guide to the 

important matter of the selection of glass for the lenses of the system. He 

believed that the other triplet types, Helier, Pentac etc. could be generated 

from the same procedures which he had used for the triplets. 

Cruickshank (1956, 58, 60, 68) explaiped that all triplets with cemented 

components could be generated from the simple Cooke triplet, or as he called it 

type 111 triplet or basic triplet (Pig. 1.7). Thus in view of the fundamental 

importance of the simple triplet, he developed the complete design theory, and 

examined its properties in a detailed and systematic manner, including glass 

selection. His method enables any newcomer in this field to design photographic 

objectives based on the triplet family, methodically. According to him "The 

triplet objective may be regarded logically as derived from the Wollaston lens 

by the addition of a compound correcting system comprised of a positive and a 

negative lens placed in front of the diaphragm". The main function of this 
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corrector was to introduce aberrations. Thus he replaced the h 3  parameter 

of Stephens by the new parameter x, the power of the corrector. He also 

showed (1968) that, for a given set of glasses and prescribed residuals, the 

spherical aberration, spherical to seventh order could be approximated by a 

quadratic function of x, thus: 

spherical aberration = B3  x2  + B2  X + Bt  4. 0 ( ) 

where B3 B2  an 21  are cnastants. The values of x for which the lens system 

has a resiAual  spherical aberration up to seventh order of amount Hi  are the 

roots of the equation 

Bar + X + 	— i, =o 	 (1.1) 

Cruickshank's initial solution for the three powers and two airspaces was 

based on prescribed values of x, petzval sum, total power, longttudinal and 

transverse colour. He gave the complete design procedure for an infinitely 

distant object plane and then introduces modifications for finite conjugates: 

In 1960 he discussed in detail the general physical principles of the 

generation of triplets with cemented components. He illustrated this with an 

example of a Pentac (type 212) objective developed from a typical set of 

aberration residuals and fictitious glasses. He included graphs showing the 

variation of the fifth order coefficients of the Pentac system with x, Which 

indicated very clearly the optimum value of x. This example illustrated the 

use of the fictitious glasses in obtaining the initial solution of a triplet 

system with cemented components and also the use of the Buchdahl (1954) 

aberration coefficients as a measure of the correction state of the design: 

It showed clearly the advantage of being able to see the trend of the design 

using fifth order coefficients. 
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Cruickshank and Hills (1960) have show' how the aberration coefficients 

developed by Euehdahl (1950 may be used in the development of the design of 

an optical system. In this connection the essential feature of these 

coefficients is that irrespective of order they are obtained by a summation 

over all the surfaces of the• system. 

In his 1958 paper Cruickshank developed a cubic equation for the 
r/ 

determination of the initial arrangement. He noted that "In general only 

one root of this equation gives a physically useful solution. There is an 

rtant exce tion however in one case in which a second root leads to the 

possibility of the construction of another group of objectives of high  

aperture." 

In this thesis an account is given of an attempt to investigate this other 

group of objectives in detail. It was hoped that this would provide a logical 

starting point for the development of high aperture systems. 



ihroa 	413'0 = 41  
a 

1hroa Li (PjYaj = X 
a 

1/2 

(2.1) 

(2.2) 

=R4 (2,3) 

CHAPTER II.  

2.1 RY of the BASIC  

It has been stated in the previous chapter that any system of the triplet 

type has an equivalent triplet, or, as we shall call it, a Basic Triplet. In 

this section me will summarise the important practical case of the initial 

design of a triplet photographic objective corrected for an object plane at 

infinity, as given by 	(1958). This summary will introduce most of 

the required notation. The three lens components a, b and o have the glass 

constants (Na , Va ), (Nb, Vb) and (ti c , Irc ) respectively. Disregarding the axial 

thicknesses of the leases, five variables are required to specify the system 

initially, namely the powers 98, (Pb, 9c  and the separations ti  and t2  of the 

three coaxial lenses. The following five conditions may then be fulfilled: 

(i) The power of the system shall be unity; (ii) The power of the corrector 

shall be x;  (iii) The system shall have a petzval curvature coefficient, c14- = R4 2  

for the petzval sum; And for the object plane at infinity the system shall have 

(iv) A residual longitudinal paraxial chromatic aberration, R62  and (v) A 

residual transverse chromatic aberration Et" for an incident pencil of obliquity, 

va , the diaphragm being coincident with the central thin lens b. Using well 

known relations for systems of separated thin lenses in air these five conditions 

may be formulated analytically as follows: 



jeo 	= R6 	 (26) 

	

p i yo i yj  = R 7 	 (2.5) 
3-a 

Where yj and yo j are the incident heights at the jth  component of a principal 

paraxial ray (b-ray) of obliquity va , and an axial (a-,ray) paraxial ray 

respectively, and vld is the inclination angle of the axial ray after refraction 

at the jth component. Since the diaphragm is initially in coincidence with the 

second thin lens of the system, the incident heights of the principal paraxial 

ray are such that 

4/4 = -t1n2 ; 	Yob = 0 ; 
	

(2.6) 

while for the axial ray 

Yob = Yea - tivla = Yoa( 1  4a ) 	(2.7) 

Yoc = •Yob 	tdC 	 (2.8) 

A substantial reduction in the symbols specifying the glasses of the system is 

achieved by writing 

liAlb =0; Na/Nc = Y • 

In addition we can also write 

2Relia = P (2.10 

F1/4 71To 	= L (2.11) 

14.7Vo 	=T (2.12) 



(2 .13) 

(2. 14) 

- (2.15) 

(2.16) 

(2.17) 

9a + Yob91) + Yoc9c = 1  

9a + Yob96 

9a + PT!) + Ytk 

9a+ iraYtt9b + Eroc9c = 

(1 + T)tt 9a - t2E3r0c9c = 

with this notation equations (2.1) - (2.5) now become 

9 . 

The solution of equations (2.13) - (2.17) is quite easy. Equations (2.13) and 

(2.14) give at once 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2 .24) 

Yoc9c = 1  - X 

and combining this with equations (2.17), (2.6), (2.7) it follows that 

tt =(i Yob)/9a 

t2  = 11 - (1 + T)yobiA(1 - 

Combining equations (2.8) and (2.11) gives 

Kyob C( 1  — thoc = x 

where 	K = +X(1  + T E) 

Subtracting (2.14) from (2.16) yields 

9Wob(aYob - 1 ) + 	- X)3roc = L X 

which on combination with (2.21) gives 

91) = (K3ra1 - 1,)/( 1 	Wrob )Yob 
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Equations (2.18), (2.8) and (2.20) together give 

(pc = 	— 02  Acyob — x) 
	

(2 .25) 

while equations (2.14) and (2.24-) give 

(Pa X Yob9b 

+ X - (K ctX)Yobl/( 1  aYob) 
	

(2.26) 

If q . 	(pc  are now eliminated from equation (2.15) by means of equations 

(2.24) - (2.26), we obtain the cubic equation 

Gollb + Cieob + Coro t)  +G0  = 0 	 (2.27) 

where 	GI  = 	+coc(x - P) 	 (2.28) 

= ic(P - L 2x - pc) + alyE (1 - )2 x 	(2.29) 

= pic(x +L) - lyg(1 x)2 - x (x -)1 + Lx 	(2.30) 

Go  = 	 (2.31) 

This cubic equation will have three roots, so that three initial arrangements 

may be possible. The coefficients can be computed for the given residuals and 

the roots can be obtained by successive approximation. 

From the initial solution, three shapes So , Sb, Sc  corresponding to 

powers cat (Pb' T c  are available to control three characteristics of the system. 

The analystical theory (Cruickshank, 1968) shows that one can calculate three 

thin lens shapes So , Sb, Sc  of the basic triplet to achieve the specified 

third order aberration residuals 172 , R , E4 for coma, astigmatism or flat 

tangential field condition, and distortion. 



it. 

It will be seen in general that the third order aberration coefficients 

in the thickened system0.2 , e4 or Os = 303 + 04 , will differ from the 

corresponding specified residuals R2 , R4, Rs  of the thin system. A stage of 

differential correction is therefore required. In the light of this fact, it 

is just as effective to introduce arbitrary, but reasonable, shapes in the 

thin lens system, carry out the standard thickening procedure and use the 

differential correction method to adjust shapes in order to achieve the 

prescribed residuals 1 26  R." E4 in the thickened system. 

This method is quite convenient with the above assumed stop position 

because the shape change at any lens affects only the contributions of that 

lens to the third order aberration coefficients. 

It is essential to prescribe some residuals R6 and R7  to minimise the 

longitudirAl chromatic aberration near the 0.7 -• 0.8 zone of the full aperture 

and to correct the transverse chromatic aberration at some field angle using 

the wavelengths for which the system is to be achromatised. It mill be seen 

in general that the paraxial chromatic aberration residuals B.67 B7 of the thin 

system differ from the corresponding traced values l c h, tc h of the thick 

system. To achieve the prescribed residuals in the thick system the same as 

in the thin system, the tso parameters L and T are adjusted with differential correction 

method by forming the derivatives al c h/aL and at c hAT. 

Finally, we adjust the spherical aberration to seventh order for the zone 

of radius p to such a value that the total spherical aberration of the system 

is suitably corrected. The parameter x is used for this purpose. 

The main advantage of this basic triplet theory is that the above procedure 

can be applied to design any triplet of the basic triplet family shown in Figure 

17 of Chapter I. 
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2.2 A STUDY of the ROOTS of the CUBIC EQUATION.  

The equation (2.27) is of the form f(yob) = 0, where f(Yob) is a . 

cubic polynomial. The coefficients of the polynomial are cagplicated 

functions (see equations 2.6 to 2.31) of the glass constants and. the 

residuals of the system. The analysis of the dependence of the roots of 

this equation on these quantities is therefore a complex problem. It is 

fairly obvious that certain of these quantities have a greater range of 

variation than others. Among these area, P and 	The ratio 190/ = a 

can be varied quite widely. A doublet as the first component may have an 

effective 11-value (see section 3.1) anywhere from 40 to 300 or more quite 

easily, while a negative doublet or triplet for the central component may 

have an effective Ih-number as low as 10: It is clear, then, theta can be 

Varied continuously in practical systems: The ratio "cloth = E can also be 

varied continuously in the same way by replacing the last component by a 

cemented doublet or triplet, but the range of variation is more limited. 

The ranges of variation for and y, ratios of refractive indices, are 

much more limited still. We shall find, that the parameter P can be increased 

considerably beyond the ordinary value (about 0.6), Which it has in normal type 

111: triplets. It should be remembered that P = 2N4Na, where N4 is the third 

order petzval curvature coefficient in the thin lens system. The replacement 

of. thin lenses by thick ones may often result in a reduction of the petzval 

sum, especially if meniscus and thick cemented components are used. It is 

therefore not unpractical to consider values of P up to about Wice the value 

which is usual in the type 111 triplets, provided the thick lens replacemeuts are 

designed with a reduction of petzval sum in mind. This point is considered 

further in Chapter III. 
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In Fig. (2.1), curve (1) is the graph of the polynomial f( %Yob)' and its 

intersections with the yo b axis give the three roots of the equation f(yo b) = O. 

The curve has been drawn for values of the residuals such as might be used in 

the design of a type 111 triplet. In particular, P has the value 0.60. Of the 

three positive roots, it is clear that only the second root yo b = 0.84 provides 

the basis for a practical system. The first root Yob 

undesirably high powers far the components; while according to equations (2.19), 

(2.20), the third root, y o b greater than unity, would give negative values for 

both air spaces. 

Curves (2), (3) and (4.) in Figure (2.1) are similar graphs of f(yob) 

corresponding to the values P = 0.8, 1.0, 1.2 respectively. An interesting 

feature is that an increase in P results in the reduction of the value of the 

third root of the equation and raises the question as to whether this third 

root can be less than unity. Curve (4) shows that increasing P to the value 

1.20 does not produce the desired result, for in this ease the curve falls 

below the yo b axis. The cubic equation then has only one real positive root 

Yob = 0.02, which is not of practical use. A third root of the equation less 

than unity cannot be obtained simply by increasing P for this set of residuals. 

Figures (2.2) and (2.3) which are drawn for the cases in which the power x 

of the corrector system has values of -0.2 and +0.2 respectively, show that the 

variation of this parameter with these residuals and glass constants does not 

alter the situation significantly. 

We consider next the effect of the variation of the glass parameter a 

in the range 1.4 to 5.0, say. This could mean, for example, that we are allowing 

the effective V-number of the glass of the central component to be reduced 

= 0.045 would lead to 
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progressively. Such a variation could be achieved practically if the single 

negative component were replaced by a suitable negative doublet or triplet. 

In Fig. (2.4(a), curve (1) shows the result of increasing a from its 

earlier value of 1.44435 to 3.00000, P having the value 1.10. The equation 

f(ye b) = 0 now has three real roots between 0 and 1, and the possibility of 

a new basis fora practical lens system arises. Curves (2) and (3) show the 

graphs of f(yo b) for the cases in which a has the values 3.5 and 4.0 

respectively. Investigation of the initial thin lens solution corresponding 

to the new third root is not very encouraging, far, as Figure 2.4(b) shows, 

the power of the first component and the first air space are both negative. 

These will not provide a practical lens system. 

Fig. 2.5(a),(b), show similar curves resulting fram changing the value of 

x from-0.6 to -0.2. From Figure 2.5(b), it can be seen that the first 

component now has a small positive power and the first air space is now also 

positive, but large. This suggests that further investigation of the effect of 

the increase x should be made. 

With this in mind,X was increased to +0.20 and the corresponding curves 

are represented in Fig. 2.6(a),(b). It can be easily observed from Fig. 2.6(b) 

that the initial solutions have become much more practical and offer promise of 

a reasonable basis for a lens system. 

Because of the important part played by the parameter cc , it is more 

informative to present the results obtained so far in graphs in which a  is the 

independent variable. 
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Fig. 2,7(a) shows the roots of the cubic equation (2.27) as a function of 

a, for different values of P. Curves (1) and OP are drawn for the case in 

which P = 0.6. These curves show the variation witha of two of the roots. The 

remaining root which has a value close to zero and has no practical significance 

is not shown. If a triplet is designed with P = 0.6 then the root of the cubic 

equation on which it is based must lie on the curve (1) because this is the only 

useful root below unity. Curves (2) and (2)' show the corresponding roots for 

the case in which P = 1.0. It can be observed from curve (2)' that the values 

of the roots represented in this branch are much reduced compared with the values 

summarised in curve (1)'. On curve (2)t however, all the values still lie above 

unity. If P is increased to 1.05 it becomes clear that a change has occurred in 

the solution of the cubic equation, resulting in the roots lying in the continuous 

curve (3), provided ct7.2.15. In curve (3) for a2.15 we obtain two positive 

roots for each value of cc and these both have values below unity. The smaller of 

these two roots belongs to the general conditions represented in curves (1) and 

(2,, on which the design of the traditional triplet is based, while the larger 

most correspond to a set of new conditions which may lead to another class of 

triplet solutions. The effect of increasing P beyond 1.05 can be seen in curves. 

(4), (5) and (6), which are drawn for the P values 1.1, 1.15 and 1.2 respectively. 

The new conditions represented in the upper portions of these continuous curves 

will be the main subject of further investigation. 

From the values of yo b on the continuous curves (3) (4.) and (5) are 

computed the powers itp o , 9b, cc  and the separations t i , t2  of the basic thin 

triplet, using the appropriate equations from (2.19) to (2.26). The results 

of these computations are plotted in figures 2.7(b) to 2.7(e). The interesting 

feature of Fig, 2,7(b) and 2.7(c) is the great reduction in the powers of the 
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components corresponding to these yo b-values. The curves of t, and t2  which 

have lower slopes are associated with yob-values in the upper portion of curves 

(3), (4) and (5) in Fig. 2.7(a). All these results look promising for the 

existence of a new class of solutions, having much lower powers than in 

traditional triplets. 

The coefficients of the cubic equation (2.27) are not only functions of 

x, P and a considered so far, but also of E, 0, y, L, T. although the ranges 

of variation of these are more limited, the effects of their variations must 

be investigated. In doing so we shall limit our considerations to the roots 

represented by the upper portions of the continuous curves. 

Figures 2.8(a) to 2.8(e) show the variations of the powers pa, Pb  , pc  

and the separations t , t2 , respectively, regarded. as functions of a for 

different values of E far the case in which P = 1.10. Curves (1) (2), and 

(3) are drawn for the C values 1.0, 1.2 and 1.4 respectively. These figures 

show that the powers of the components change considerably with increase of E, 

especially (pa  and (Pb  , whereas the values of the separations t, and t 2  do not 

vary significantly. The minimum value of a for which solutions are possible 

increases with C. 

We consider next the effect of the variations of the &ass parameters 

• Vhb = and lia/Nc  = y. This could mean, the generation of fictitious glasses 

(see Chapter III, Section 3.1) in the replacement of single components by 

cemented components. 

In Figures 2.9(a) to 2.9(e) curves (1), (2) and (3) are drawn for different 

values of 0, namely 0.7772, 0.8772, 0.9772. These are similar to Figures 2.8(a) 

to 2.8(e), and show that increasing 0 will increase the thin lens separations and 

the power pc  much more than the powers pa  and Pb  . 
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Similar curves (1), (2), (3) in Figures 2.10(a) to 2.10(e), drawn for 

the values y = 0.8, 0.9 1.0 respectively, show that the increase of y will 

decrease the values of all the parameters of the initial solution. The 

reductionsin the airspaces and in the powers Icbl and cc  are more noticeable 

than the reduction in c a . 

The parameters L and T cannot be chosen as degrees of freedom in the 

same way as the glass constants because R and 134 are to be prescribed to 

control the chromatic aberrations of the system. However, variations of these 

are considered at this stage because the values of L and T in the new class of 

triplets may differ considerably from the corresponding values in the type 111 

triplet objectives on account of the presence of compound components. 

In Figures 2.11(a) to 2.11(e) the curves (1), (2), (3) for which L has 

the values 0.1, 0.3, 0.5 respectively show the resulting change in the powers 

and the separations. These do not call for any particular comment. Figures 

2.12(a) to 2.12(e) show the effects of the increase of T. The curves (1), (2) 

and (3) are drawn for T values of 0.0, 0.2 and 0.4.- It can be seen that the 

main result of increasing T is an increase of the first airspace, t it  together 

with a substantial decrease of the second airspace, t2 , which has even become 

negative in two of the cases considered. It will wear subsequently that 

advantage can be taken of this effect of T in a very interestinstLganner.- 



CHAPTER III 

GENERAL PROPERTIES OF .THE NEW CLASS OF OBJECTIVES 

3.1 SOME PROPERTIES of CEMENTED TRIPLETS of NEGATIVE POWER.  

In his discussion of the triplet family of objectives, Cruickshank 

(1958, pp27-29) has shown that any thin lens (T,R,i) of power ç and with 

glass constants awl in the basic triplet can be replaced by a set of thin 

lenses Oct qoaNi sIrt ( Ic2 (PA 01.2 ) 	(kn , 11nNe) in contact, the replacing group 

having the same power, the same petzval sum and same paraxial chmratic 

aberrations as the singlet it replaces, provided that 

4 + 4 	. • • k = 	 ( 3 . 1 ) 

10; 	%/N2 4- • • • knAln = 
	

(3.2 ) 

+ k2/v2  + . . . kriv, = ifv 	 (3.3) 

This means that it is possible to design a cemented component, which is 

equivalent as regards power, petzval sum, and the paraxial chromatic aberrations 

to a thin lens having within a certain range any value of N, and, independently 

thereof, any value of V. The artificial glass refractive index generated in 

this may is known as a fictitious refractive index &Di the i-numberproduced is 

called the effective V.-number. 

In order to maintain the same power, the same petzval sum, and the same 

chromatic aberrations as the singlet it replaces and to obtain variation over 

a considerable range, for the important parameter a in the new class of thin 

lens initial solutions discussed in the previous chapter, we replace the 

central thin lens ((pb,k,ib) in the basic triplet by a set of three thin lenses 

(kopb,N,A ), (k 2 cpb,N2  „Iir2 	(k391),N3,V3) in axial contact. Them the equations 

(3.1) - (3.3) become 
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ks 	+k 3 =1 
	

(3.4) 

1C2/1\12 	Ifs 	= 14b 
	

(3.5) 

Ic /v, + k2/v2  + k, /113  = 
	 (3.6) 

The three unknowns ILI  ,k2  ,k 3  for a given set of glasses can be calculated 

for any value of "rfb and ilb, i.e. for any value of a and from equations 

(3.4) - (3.6). The values are given by 

= 46.1 /63 K2  = 	; K3 A3A 

= 	1 	1 	1 

	

lAb 	1/112 	1/143 

vv2 	i/v3 

	

1 	.1 	i 

	

i/N, 	1/171b 	i/B3  

	

i/v, 	1filb 	1/113  

	

1 	.1 	i 

	

f/N, 	i/N2 	inft, 

	

1/v1 	1/112 	Viih  r 

= 

1/112 	i/N3   

1/v2 	1" 
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Multiplying the power cb by k1 1k2 ,1c3  in turn, we obtain the powers of the 

individual components of the replacing triplet. 

To avoid an excessive number of air-glass surfaces, we may decide 

that the components of this triplet should be cemented together. When the 

shape factor of one component is arbitrarily selected; the shapes of the 

remaining components are then fixed by the cementing condition. There is 

thus only one shape factor for the compound component. We shall use the 

shape of the front component of this cemented triplet to specify the shape 

factor of the whole component. 

It mill be remembered that we increased the value of P in the thin 

basic triplet system, assuming that the replacement of a thin component by a 

thickened meniscus cemented component may often lead to a reduction of the 

petzval sum of the Whole objective. We study, therefore, the variation in 

the value of the petzval curvature coefficient e4 of a cemented negative 

triplet with change of shape. 

In Figure3.1, curve (1) is drwan for the case in which 

(1) =•—1, 
	

Elb = 1.8381, 	Vb = 19.4233 

In this figure, we have not plotted 04 itself, but the related quantity 2m4Nb *  

which is the value of the parameter P, for this component. The curve shows 

that as S increases the value of P becomes more negative.. Similar curves (2) 

and (3) are drawn for the cases 

(2) 9 = .1, gb  = 1.8381, 	. 16.6486 

	

and (3) 	= -1, gb = 1.8381, 	= 14.5676 
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respectively, and these curves show P to be changing more rapidly with S than 

curve (1). It becomes clear, then, that the negative contribution, which the 

thickened cemented triplet makes to the value of the parameter P can be 

substantially increased by change of its shape and by reduction of its 

effective V-number il) ; Our next consideration is to know the particular 

surface or surfaces of this wripmand triplet; responsible for the reduction 

of P. It is observed that the last curvature of this compound triplet turns 

out to be deep with increase of shape and produces very high negative values 

of P. The P values of the last surface corresponding to the case (2) in 

Figure 3.1 are computed; and these results are represented by curve (3) in 

Figure 3.2. The curve (2) in Figure 3.2 is the sane as the curve : (2) in 

Figure 31 which is draun for comparison. 

The use of a cemented triplet having a positive shape factor and low 

value of Vb  as the central component in a triplet objective results in 

reduction of the P-value of the whole objective, because the P-value is 

unaffected by the object position. This fully justifies our earlier assumption 

that larger values of P used in the basic triplet initial solution could lead 

to useful practical solutions. 

We will now study the variation of the locations of the printipal points 

of the cemented negative triplet. To do this, the principal point distarces 

are computed for the components given in cases (1) and (2) of Figure 3.1, and 

the results of these computations are plotted in Figure 3.3 as functions of S. 

For case (1), curves (1), (1)t represent the variation of first and second' 

principal point distances with increase in S. The effect of decreasing VI)  can 

be seen in similar curves (2),(2)° drawn for case (2). All these curves show 

that the first principal point distance is always greater than the second 

principal point distance for a given value of 'lb and S. 
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3.2 SI31EllaRY of the NED7 CLASS of TRIPLETS.  

The new region discussed in Chapter II was arrived at in the initial 

solutions of the basic triplet by increasing the normal values of the 

parameters a, P, and x. Increasing ot means decreasing the V-number of 

the central component of the basic triplet for a given V-number of the first 

component. The only way to fulfil this condition for a given V-number of 

the first component of the basic triplet is to replace the central thin lens 

of the basic triplet by a compound component. 

In order to maintain the same power, the same petzval sum and the sane 

chromatic aberrations as the singlet it replaces, one has to replace the 

central thin lens of the basic triplet by three thin lenses in axial contact. 

The large values of P used in the initial solution will be reduced to an 

acceptable level in the actual system of the whole objective if a positive 

meniscus shape and low VI, of the central compound component are maintained. 

This central compound triplet with positive meniscus shape will have its 

principal points at a considerable distance from its vertices. It is clear, 

then;  that these triplet j.ives with a thick cemented central triplet must 

have, in the initial arrangement, a high positive value of t i  to accommodate 

this central component, and a low or even negative value of t2  to maintain a 

compact objective. The tmall of the distribution of principal points in the 

class of triplet objectives are illustrated in Figures 3.4(a) and 3.4.(b). 

While we investigated the initial solutions in the last Chapter, we 

noticed that a high positive value of t s  and a low or even negative value of 

t2  could be obtained by increasing the parameter T. It follows, therefore, 

that the required positive value of ti  and low value of t2  can be provided in 
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this class of objectives by giving an appropriate positive value of T in the 

initial solution. But the next question is -whether this value of T is 

consistent with control of the transverse colour. 

- 
We begin to see now how the important parameters 0, P and T are 

interrelated to control the over all optical characteristics of this class of 

objectives. With a thorough understanding of the effects of these parameters, 

together with the effects (studied in the second chapter) on the initial 

solutions of the other parameters, we are in a position to progress towards 

practical solutions for this class of objectives. 

The design of this class of objectives should start then with the 

selection of reasonably high values of a, Po  x, T, along with moderate 

values of the other parameters. This should give a suitable initial 

arrangement with large front air space and small rear air space. Next, the 

central component in the basic triplet is replaced by a compound negative 

triplet and this should give possible triplet objective belonging to this 

new group, i.e. this group starts with the type 131 triplet. The remaining 

triplets of this family could be 132, 133, 231, 232, ... etc. The 

replacenent of components other than the central component by compound 

components provides more degrees of freedom and one can expect better 

performance with increased aperture and wide field, compared to the optimum 

131 triplet. 

In the next Chapter, we try to develop the practical application of these 

ideas by considering the design of 131 triplet objectives. 



CHAPTER IV 

AN INVESTIGATION OF THE DESIGN OF A 131 TRIPLET  

4.1 DESIGN PROCEDURE.  

We begin with the five selected glasses (N8  ,V8 ), (NI ,Y1 ), * (N2 ,112 ), 

(N3  ,V3 ), ti.c:„Vc ), the residuals R4 ,R6 , R7  corresponding to P, L, T and the 

parameters a, O s  X which will lead to a solution lying in the new region 

suggested in Figure 2.7 of Chapter II. Along with these, the resiauAls 

R2 , ES and Rs  are selected (normally zero values at the initial stage) and 

the basic triplet initial solution parameters 9a , 9b, 9c , tl , t2  are 

computed by using the appropriate equations (2.19) - (2.26) of Chapter II. 

Having done this, the glass constants 4, Vb  can be evaluated from equations 

it)  = 13/N8 , Vb = a/Va . Using these constants, the three constants k ip  k2 ,, k3  

will be calculated by solving three simultaneous equations (3.4) - (3.6) of 

Chapter III. Then the three thin lens powers Pb1, b2s 	are calculated 9 

from the equations cb t  = kopb, 9132  = 1 2 9b, 9ba  = k3 9b. These power 

calculations complete the replacement of the central thin lens of the basic 

triplet by three thin lenses in axial contact, i.e. the basic thin triplet is 

converted into a thin 131 triplet having the same initial residuals and values 

for x,P, L, T as the basic triplet. 

The next step is to compute the thin lens curvatures of the 131 triplet 

for a set of three arbitrary shapes S ao  Sb, Sc . The thin system is then 

thickened, introducing the prescribed axial thicknesses d 2 , d4 , da , ds  of 

the five components, using Cruickshank's (1968) standard thickening procedure, 

which keeps the total and the individual powers of the three thick components 

a, b, c equal to the totand the individual powers of the 	 corresponding thin 
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components. The two standard paraxial rays, i.e. the axial paraxial ray 

(3701  = 1, vo, = 0) and the principal paraxial ray (yl  = p, V1  = 1) for the 

allotted stop position (fixed initially at the first principal point of the 

central compound)', for an object plane at infinity are traced through the 

system. From the results of these two traces, we compute the third order 

aberration coefficients 04, 0a 6 03, 04. 05 and, for convenience, .06  = 303 + 04. 

The next step is to adjust the three available shapes Sa , Sb, Sc  80 as to 

make 02  = R2 , 03  or 06 = R3 , cla  611 Rs , using the standard Cruickshank (1968) 

differential correction method based on the following equations: 

or 

Ash 
a; 

Las 
asa  

a:4  asa 

.das 
a; 

	

As 	.1302 

	

a 	asb 

As + IX,  
sat, 

+ -a°6  

	

a 	a°b 

	

As 	+ ria3 

	

a 	a Sb 

Asb 	+La2 
A 

As 	+.123  
b ac c  

Asb+ 
a Se 

A  a se  

ac 	••• 02  

as 	= R3 - 03 

tiSc = R3 - 06 

C 

(4..1) 

(4-.2 ) 

(4.3) 

This is essentially an iteration process and each iteration brings the 

aberration coefficients closer to the desired residual values. This method 

is very convenient because the same procedure can be applied to any triplet 

of the basic triplet family. 



26. 

After adjusting the shapes, the paraxial traces for the wavelengths 

for which the system is to be .achromatised are computed through the system 

and the paraxial chromatic aberrations, l c h, and tc h, of the thick system 

are adjusted to have the prescribed values Et 6  and R7 . This is done by the 

differential correction method explained in Chapter II. 

The next stage of the design will be to make the spherical aberration 

to seventh order for the zone of radius p equal to the prescribed resiami 

Eti  thus satisfying the equation 

Q1  pa+ .t1  p5  + Ti  p = R 
	

(4.0 

It is clear from Cruickshank's equation (1.1), mentioned in the review of the 

literature, that the sperical aberration of the basic triplet is very closely 

a quadratic function of x. At this point, this relationship is assumed to be 

valid for any triplet derived from the basic triplet because X  determines the 

power distribution, between the two positive components of the triplet, whether 

the components are single or compound. All these steps are now organized into 

a single computing programme, which is described in the following section. 

4.2 ,DESCRIPT;ON of the PROGRAME.  

The main programme can be best understood from the block diagram (4.0). 

It starts by reading the refractive indices of the selected glasses, the axial 

thicknesses of the lenses, the initial values of o6 0, I", x, p and the 

residuals RI , R2 , R3 , Rs, RG, R7. With these input values it computes the 

* Throughout this problem Buchdahls optical aberration coefficients are used. 
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initial solution corresponding to the new region. Then it replaces the 

central thin lens b of the basic triplet by three thin lenses in axial 

contact and thickens the system in accordance with the prescribed axial 

thicknesses, using a given set of arbitrary shapes. The two standard 

paraxial rays are traced with the computed position of the paraxial entrance 

pupil corresponding to a given position of the stop. The third order 

aberration coefficients are evaluated next, and this is followed by a 

discrindnation which tests uttether02  R2 , 06 =R3 , anrlos  = Rs ., If any 

one of these conditions is not achieved, , small changes are-bade in the shapes 

Ss, 5b  Sc  and the approximate derivatives aot/aSi (i = 2,5,6 j = a pb,c) are 

calculated. The shapes are then adjusted iteratively until the required 

conditions are achieved. In practice, this takes approximately 5 or 6 

iterations. Should the conditions not be achieved within 10 iterations, the 

programme alters the value of a and begins again. If the required conditions 

cannot be satisfied within the prescribeda range, then the value of 0 changes, 

and, with the initial value of a, restarts the programme. By this means, 

sample solutions are explored within the complete a and 0 ranges prescribed 

in the programme. 

The next discrimination tests the condition lch = Rs, after tracing the 

paraxial rays in the prescribed colours. If lch /R6, then the approximate 

derivative alch/aL is calculated and L is adjusted until the condition is 

achieved. Similarly, T is adjusted until tch = R7. After emerging from these 

iterations, the fifth and seventh order spherical aberration coefficients are 

computed. Then if the flag integer G/ 1 the remaining fifth order aberration 

coefficients are computed and printed out. 
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If G = 1, the programme proceeds to compare the spherical aberration 

to seventh order with the prescribed residual NI ! If 8.0,1‘it., then the 

approximate derivative asphkx is calculated and x is adjusted until 

sph =RI . The fifth order coefficients for this system are then computed 

and printed out and the constructional data of the system are punched out on 

a separate output to serve as the input data of the standard programme for 

seventh order coefficients available in the design section. 

4.3 A NIMMICAL EXAMPLE,.  

TO give some idea of the operation of the programme, a brief account is 

given of a typical numerical example. In the input data, we give the 

refractive indices and V-numbers of the selected glasses, and values for the 

parameters cx, 0, Ps 70 and each of the residuals RI  to R2 (exclvaing 

as are necessary to ensure that the solution obtained will belong to the "now 

region" which is of interest. The axial thicknesses for the various components 

are aslo assigned. 

N8  = 1.65426 

The chosen values are: 

Va  = 58.27 	a = 3.2 14 = 0.000184 da = 0.08 

= 1.65426 = 58.27 0 = 0.84 Pg  =0 & =0.08 

N2  = 1.50349 =56'' P = 1.20 = 0 ds s 0:08 

D6 = 1.67158 Vg  = 32.76 X = 0 *3 = 0 . 4 = 0.02 

Nc  = 1.67341 = 46.82 = 0.001734 de  = 0.08 

=0.008580 

The value of p for which the sph aberration will be computed is p = 0.2222 and 

the stop is assumed to coincide with the first principal point of the central 

component. 
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The programme begins by solving for the initial thin lens arrangement 

of the objective, i.e. the "basic triplet", giving the powers and separations 

as 

cpa  = 1.227706 	Pbc = -1.38852 	(pc  = 1.151832 

ti  = 0.345648 	t2  = 0.185640 

In the next stage, the central negative component is replaced by three 

thin lens in axial contact according to equations (3.4) - (3.6). The k-values 

obtained are 

= -0.591023 	ka = -1.2971148 	k3  = 2.888138 

and the powers of the three Components become 

cb t  = 0.820647 	9b2  = 1.801070 	91)3 = —4.010237 

Assuming arbitrary shapes 4, 4, Sc  for the components of the thin 131 triplet 

= 1.5 
	

Sb = 2.5 	Sc  = 1.0 . 

The programme computes thin lens curvatures and this thin system is then 

thickened and. adjusts shapes by differential correction method until 02  = R2, 

06 = RI, and = Rs . This takes five iterations. ' 

After adjusting the shapes, the programme computes the paraxial longitudinAl  

chromatic aberration lc b s  compares it with R#  and by variation of L adjusts the 

system until lc b = Rs . This takes two iterations. In a similar manner, a further 

two iterations serve to adjust T to such a value t c h = 11.4. ttt this point the 

coefficients pl , 171  are calculated and the spherical aberration to seventh order 

is calculated for the zone of p = 0.2222, this is compared with R I  and X is 

adjusted until sph = R t . The shapes of the three lenses and x value at this 

stage are 

Sa  = 1 .6514 	Sb = 1.7379 	Sc  = 0.5373 
	x = 0.425. 
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The specifications of the system corresponding to these shapes is 

punched out and is given below: 

C d N 

2.487622 0 1 

0.663353 0.08 1.65426 

1.225344 0.090555 1 

0.371941 0.08 1.65426 

-2.896428 0.08 1.5030 

2.737914 0.02 1.67158 

1.301541 0.232867 1 

.00.42678874 0.08 1.67341 



The aberration coefficients up to fifth order are calculated next, and 

later the seventh order aberration coefficients using another programme. The 

coefficients for this system are shown below: 

= -87.922 

= -177.250 

• = -132.76° 

• = -178.410 

• = -57.458 

= -236.87

•T4 = -144.180 

TEI = '4264460 

• = ''0• 814-6  

• 0 = -7.5763 
, 

.41.8:978 

-50413 

Ti  a  = 

• -26433 .  

• = 

1'1 6 = 41...211 
Ti 7 = -i 139 

• = 24673 

fri 9 	.329 

T20 = 4.2.543 

e4 = 0.51.30 

02 =0 

era  = •.0.0971 

.04 = 0.2927 

*era  = 0 

= -5.6687 

= -12.334 

= -8.1418 

= -12.2230 

= -3.8008 

= -8.9351 

= .4.0952 

= 

= .4,2525 

= oe2.3146 

= -0.79982 

= -1.6290 

 

P.9 

As 

• = 

t12 = 



32. 

The total time required for the Elliott 503 machine for this run, 

excluding the seventh order aberration coefficients,as just under three 

minutes. 

UL_RYS1_of TYPE 131 PROPERTIES. 

- 
In high aperture systems; the aberration which mainly limits aperture 

of the system is the spherical aberration. We have assumed in section 4.1 

that the spherical aberration is a quadratic function on in this class of 

objectives. To test this assumption, the computing programme was used to 

calculate the spherical aberration coefficients Ot ,P4 	for a number of 

values of v. The results are plotted in Figures 41 and 4.2. In the former, 

the variations of the separate coefficients withX are shown, and in the 

latter the total spherical Aberration to seventh order is plotted for three 

different zones of the apertures, namely p = 0.25 (4/2), 0.227 (C/2.2), 

0.208 (C/24)1 In figure 4.3, the spherical Aberration curve for the g/2.2 

zone, has been redrawn (curve (1)), and is compared with Curve (2), which is 

drawn for the same zone on the assumption that spherical aberration is a 

quadratic function of x • The coefficients are RB, Ei, Bs of the quadratic 

are determined in the usual way by computing for three different values of 

x. The good agreement between the curves (1) and (2) over the main region of 

interest dhows that this assumption is reasonably valid in these systems also. 

This is how Cruickshank's introduction ofX is so useful in photographie 

objectives. 

Returning to Figure 4.2, it is evident that for a certaim - range of 

maximum apertures it is possible to select values of x for which the total 

spherical aberration is corrected. In this class of objectives, therefore, 
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we have the familiar situation of the left-hand and right-hand solutions 

determined by particular values of x • The question arises as to which of 

the two available solutions is the better. Inspection of Figure 4.1 shows 

that the zonal aberrations will be less for the left-hand solution because 

of the comparative values of the coefficients. The decision to give 

preference to the left-hand solution should rest, however, on a wider basis 

of information than the spherical aberration only. In other words, the 

general performance of the systems corresponding to the two solutions should 

be compared. To do this, we have drawn in Figure 4.4. the variations of all 

the fifth order coefficients as a function of x as given by the computation 

using the programme. 

It can be seen that the coefficients of linear coma, 1,12  p,3  , and the 

coefficients of cubic astigmatism, p,4 , 116 , have fairly large values, and 

it is obvious that these aberrations will limit the useful field of the 

objectives. From the fact that these coefficients are slightly less in 

magnitude for the value of x corresponding to the left-hand solution, it 

becomes quite clear that the left-hand solution is to be preferred rather 

than the right-hand solution. 

For the time being, we can restrict our considerations in the further 

investigation of the left-hand solution only. For the aperture f/2.2, Figure 

4.2 shows that the left-hand solution corresponds to X 0.425, is a reasonable 

value to correct spherical aberration, and this is based on the original value 

of a = 3.2. At this point, consideration is given to the effect on the 

spherical aberration curve of small variations in a . Using the prograrmie again, 

we obtain results which are plotted in Figure 4.5. It is clear from this 

Figure that the spherical aberration curve as a whole rises with increase of a 
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and effects very profoundly the value of X  for which spherically corrected 

left-hand solutions are obtained. It also means that there is a limit 

beyond which we cannot increase a if we are to obtain spherically corrected 

solution at a maximum prescribed aperture. 

In earlier chapters, it was stressed that higher values ofa are 

desirable as they give low powers for the components and greater reduction of 

the petzval sum in this class of objectives. We have reached a point, 

however, at which it is evident that there is complicated interrelation 

between the parameters a ,x , and p in their effects on the correction of 

the spherical aberration of the system. 

The more general effects of the variation of a are shown in Figures 

4.6 and 4.7 where the variations of 01 , 44, and the fifth order and seventh 

order aberration coefficients are shown. 

It is evident from these figures that once again the coefficients of 

linear coma 	T2 , 173  and the coefficients of astigmatism p4 116, 1'44 T6  

have considerable magnitudes. In addition, ch rises rapidly with increase of 

04 and this will lead to rapidly indieasing zonal aberration. The real 

problem in covering a moderate aperture is to balance spherical aberration 

with reasonable zonal residuals and at the same time reduce the comatic and 

astigmatic coefficients so that a reasonable angular field may be covered. 

Another important point to be considered at this stage in Figure 4.6 

is the variation in the value of 04  with a. In the previous chapter, we 

came to the conclusion that the petzval sum will reduce (i) with decrease of 

Trb, i.e. with increase of a for a given II-number of the first component, and 

(ii) with increasing positive value of the shape of the central component.- 
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It appears from Figure 4.6 that the e4 value is practically unaffected by 

variation of a. If anything, it is increasing slightly with increase of a. 

The reason for the near constancy of e4 is that the reduction in 0 4  due to 

the increase in a is campensatel by a reduction in the shape of Sb with 

increasing a. This becomes apparent from Figure 4:6B where the shape changes 

in the  components as calculated in the programme are plotted as functions of 

a. Dhat is observed in the aotual problem is that with increase of a, the 

shape of the central compound decreases, and its negative contribution to the 

petzval sum decreases in amount. At the same time, the shape S a  of the first 

component increases with increase of a resulting in a reduction of its positive 

contribution to ca , and thus these two shape changes compensate each other, 

leaving the total e4 practically unaffected. 

Returning to Figures 4.6 and 4.7, it is clear that the fifth and seventh 

order aberrations, being of the same sign, will augpent each other. This 

seggests that positive third oilier residuals are inevitable. To balance the 

effects of these negative coefficients, it ts necc:sary in the first place to 

observe the effects of the introduction of positive third order residuals. 

Beginning with R2  = 0.1, the same programme was used again to compute the new 

values of the fifth order aberration coefficiznts and the results are plotted 

in Figure 4.8. It can be seen from this Figure that there is a considerable 

improvement in fifth order, spherical, comatic and astigmatic coefficients, 

but this is at the expense of an increase Luc,. 

Next, in addition to R2  = 0.1, a residual Rs  = 0.15 was given in the 

programme data and the results are presented in Figure 4.9. This Figure 

presents the useful information that there is an overall improvement in fifth 

order coefficients of coma and astigmatism, and there is a reduction in the 
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value of 	It is observed that the introduction of the R2 , R4 residuals 

has had little effect on the seventh order aberration coefficients and it is 

not possible to do much with these coefficients. 

The remaining third order residual to be considered is that for 03. UP 

to this point, we have made 303 4 e4 ='0. In Figure 4,10, we show the 

result of making the mean field flat in the third order rather than the 

tangential field, 

203  + 04  = R.3  = 0 
	

(4.5) 

It is evident that the fifth order comatic, and astigmatic coefficients, are 

increased, but there is a significant decrease in the value of a, .  Since this 

is accompanied by more negative value of pi , the spherical aberration balance 

can only be obtained for apertures lower than those used previous4. The off- 

axis performance is worsened. In the next run with the programme the adjustment 

403 + e4 = 	= 0 was made, giving 03  about -0.07. The general results of this 

change are shown in Figure 4,11 and indicate a general improvement in the values 

of the fifth order coefficients. A further run with the adjustment 303  + e4 = 0.15, 

thus making 03  about -0.03, gives the results shown in Figure 4,12.. It follows 

from this study of the effects of the variation of the value of 03  on the 

solutions that in the type 131 objective it is difficult to obtain good spherical 

and comatic correction at a high aperture, together with flat anastigmatic field. 

If we are prepared for the mean focal field to be curved, the opportunity for 

developing a system with an aperture of C12 would be considerably enhanced. One 

way remains of improving the situation on the axis a little, and that is a 

further increase in the third order distortion residual, Rt . This means that the 
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distortion is quite deliberately allowed to increase, but, in any case, 

since the angular field to be expected is not very great the effects of the 

increased distortion will not be serious. As a conpromise, then, R s  is 

allowed to attain the value of 0.2. This device has probably been used by 

Bertele and others because Lee (1940) mentions that the triplet objectives 

with central compound components suffer from distortion. at this stage, 

further investigations were made on the effects of small changes in P and 0, 

but nothing really significant resulted from this. It mould seem that the 

general results summarised in the last few figures indicate the general 

possibilities inherent in type 131 objectives. Figure 4.13 shows a check of 

the spherical aberration of the system, curve (1) showing the spherical 

aberration based on the calculated values of 019  pi , /7" while curve (2) shows 

the results obtained by a full ray trace. The agreement is of the order whiCh 

one can expect, and curve (2) indicates that a system might be reasonably 

expected to have a good performance on axis, at an aperture p = 0.22, i.e. 

g/2.25, or thereabouts. Figure 4.14 shows the spot diagrams of this system at 

the relative aperture 0.25 on axis and at 4°  off axis. It is obvious that the 

field covered for this objective will be quite small. This prompted an 

investigation of what might happen if the aperture of the system is decreased a 

little. In Figure 4.15, spherical aberration curves for the e-line, both 

predicted (curve (1)) and traced (curve (2)) are shown for a system having a 

relative aperture about 4/2.5. In Figure 4.16, the spot diagrams up to 12°  off 

axis are Shown for this system and they indicate clearly that the type 131 

construction is not capable of being pushed to much higher apertures than this. 

Comparison of Figures 4.14 and 4.16 shows the effect of trading away a little 

aperture in order to gain field coverage. 
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So far, the question of chromatic correction of the objective has not 

been considered, in particular a high value of T has been used without any 

real investigation of the resulting transverse chromatic aberration. In 

Figure 4.17a, spherical aberration curves are plotted for the C, E, F lines 

and in 4.17B the distortion curves are plotted for the sane lines, It is 

seen from these Figures that neither of these aberrations are in any sense 

out of control. Small adjustments of 'L and T would suffice to bring the C 

and F lines closer together an 4 .1 decrease the chromatic aberrations still 

further. 

4.5 CONCLUSIONS.  

We have faced three difficulties in controlling the aberrations in the 

investigation of the design of 131 triplet objectives to achieve high aperture 

with a reasonable field. The first difficulty was in balancing the spherical - 

aberration with low zonal aberrations. The second one was in reducing the 

magnitudes of the emetic coefficients, and the third hurdle was in controlling 

the astigmatism. The first two difficulties can be eliminated to a reasonable 

extent, subject to the limitations of the type of the construction with low 

powers. The control of astigmatism to cover a reasonable field can be obtained 

• only with low petzval sum in the triplet. If one goes to the second Chapter, it 

is clear that we developed a new region which gives low powers with high values 

of a, P, X  in the initial solution, and we proved later that the high value of 

a is practicable by replacing the central component by a compound component. In 

the next Chapter, we showed that the high value of P used in the thin system can 

be reduced to a very low and practical value, with positive meniscus shape and 
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with low V of the compound negative triplet, i.e. we developed the physical 

principles to meet the requirements of high aperture systems, which also 

cover a reasonable field: Lccordingly, we achieved an aperture of f/2 - f/2:2, 

in an objective which covers a narrow field: The field limitation is due to 

high petzval sum value present in the system: This means we could not obtain 

a final solution with reasonable positive meniscus shape, i.e. the last 

curvature of the compound triplet is not deep enough to cause substantial 

reduction in the total petzval sum. This shows that the power distribution 

in this compound triplet is not in the proper proportion to obtain the proper 

shapes. This means that the glass selection was not good enough to get the 

proper power distribution which decides the proper shape. In this compound 

triplet, it is not only the fourth curvature that matters, but also the 

cemented third surface curvature because this third surface with deep negative 

curvature contributes high amounts of negative third order spherical, comatic, 

and astigmatic coefficients, and these aberrations will enhance with the high 

negative magnitudes of fifth and seventh order coefficients, resulting in the 

system suffering from the over-corrected aberrations. This is what happened in 

the investigation .o. the d-sig4 of 131 objectives with the selected glasses 

mentioned in section 4.3. This reveals the fact that no high aperture system 

with moderate field coverage can be designed with large third order surface 

aberration coefficients. Under these circumstances, one has to increase the 

refractive index of the central component of the compound component to have 

smaller curvature. The amount of increase must be judged by the magnitudes of 

the power. One has to change the refractive index of the last component in a 

similar fashion to obtain the final solution with deep fourth curve. Thus the 

glass selection is also very important, especially in the compound component. 
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The real problem in getting a good solution at the final stage lies in 

understanding the properties of the surfaces involved in the objective to 

be designed. Besides the glass selection, in 131 triplet the field will 

be limited by coma, and distortion because this objective cannot have 

symmetry with respect to aperture stop. The distortion can be eliminated 

to a reasonable extent at the cost of little increase in q values, 

. provided one is prepared for longer objectives, i.e. the distortion is very 

sensitive to the length of the back air space. This is what Kingslake 

(1940, p.65) mentions about the triplets with central compound components, 

that "His (Bertele) plan was to weaken the rear face by tftking power from the 

rear to the front, where it was added in the form of an approximately 

aplanatic meniscus-shaped lens immediately following the normal front lens. 

The resulting distortion was then balanced out by increasing the rear surface". 

Probably in the 131 one can reach aperture of f/2 with an angular,fie4d 

+ 15°  with the proper glass selection. 

If one satisfies in his design the conditions developed in the second 

and third chapters (low powers, low petzval sum value ... etc.), in the final 

solutions these objectives give excellent central definition with moderate 

field coverage. 

A study of more complex objectives is needed to exploit the principles 

which have been opened up in this work. The writer commenced the detailed study 

of the 133 objective. It had been hoped originally that his stay in Hobart 

would afford an opportunity to make a thorough study of this objective, but the 

necessity of returning to India has not permitted him to do this. 
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