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ABSTRACT 

Knowledge engineering is the process of acquiring expert knowledge from human 

domain experts. In this thesis the emphasis is on the acquisition of geographic or 

spatial knowledge from experts involved in interpreting multi-spectral satellite 

images. 

This thesis argues that spatial knowledge is primarily visual, hence tools to acquire it 

also need to be visual. Currently there is no methodology, other than ad hoc interview 

and protocol analysis, for acquiring expert knowledge of interpretation of satellite 

images. As a result, there cannot be an integrated knowledge acquisition toolkit, since 

this must be based on a formal methodology. This thesis offers a methodology to 

overcome this shortcoming and presents a series of tools to implement the 

methodology. 

In the first part of the thesis the nature of geographic knowledge is investigated. A 

geographic knowledge classification scheme is presented as the basis of the work in 

the rest of the thesis. It is shown that geographic knowledge can be divided into a six 

level hierarchy: 

• Primitive knowledge about point, line and areal objects, 

• Relationship knowledge about the relationships between primitive objects, 

• Assembly knowledge about related collections of primitive objects, 

• Non-Visual knowledge of expert heuristics (knowledge of short cuts acquired by 

experience), 

• Consolidation knowledge of how to resolve and evaluate conflicting information 

and 

• Interpretation knowledge of how to combine the other knowledge types to produce 

a classified image. 

This six level hierarchical classification of geographic knowledge forms the basis of 

the KAGES (Knowledge Acquisition for Geographic Expert Systems) methodology. 

Traditional knowledge acquisition procedures are studied and their relevance to a 

geographic domain discussed. This includes both human interaction techniques such 



as interviewing and automated knowledge acquisition methods such as neural 

networks and machine learning. It will be shown that although automated pattern 

recognition techniques are important, there is still a need to include knowledge 

acquired by human image interpreters in an automated image interpretation system. 

There is a theoretical discussion of new techniques to acquire visual knowledge of the 

types identified in the KAGES methodology. It is shown that these methods can be 

combined into an integrated knowledge engineering toolkit to acquire geographic 

knowledge from satellite image interpreters. Not all geographic knowledge is visual 

however. Three types of non-visual knowledge, algorithmic, heuristic and temporal, 

are identified and investigated. The first two are implemented in the knowledge 

engineering toolkit described in this thesis. 

It is shown that if there are multiple domain experts and multiple knowledge 

acquisition sessions multiple knowledge-bases will be produced. Techniques for the 

consolidation of these knowledge-bases is presented. 

The final section of the thesis involves evaluation of KAGES. This is done in two 

ways: user evaluation and application of the methodology in two domains. The user 

evaluation of the KAGES methodology and toolkit involved a number of image 

interpretation experts from a variety of domains and currently using a variety of tools. 

They were questioned about the usefulness and useability of the KAGES toolkit. 

The results of using the tools in the toolkit are evaluated by generating rules for two 

scenarios, one for sea ice identification and the other for crop recognition. The rules 

produced using the toolkit are compared with rules produced using other techniques. 

The effect of applying rules generated by the toolkit to classify images is compared 

with the results from other image classification methods. 
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Chapter 1. 	INTRODUCTION 

In this chapter the origins and confluence of remote sensing, expert systems and 

geography are discussed. The importance of knowledge acquisition for geographic 

expert systems is argued. A statement of thesis and a chapter plan is presented. 

1.1 KNOWLEDGE ENGINEERING IN SPATIAL EXPERT SYSTEMS 

"Geography is concerned with the description and explanation of the areal 

differentiation of the earth's surface." (Harvey, 1993, p3) This can be in terms of 

natural features (physical geography) or features which relate to people (human 

geography). The field of geography is wide as there are numerous subfields, for 

example environmental geography, biogeography, historical geography, climatology 

and geomorphology (many of which can themselves be subdivided). The one thing all 

of these specialist fields have in common is their use of spatial analysis (that is they 

study the way phenomena are distributed in space). The spatial distribution of 

phenomena is normally shown in the form of maps, which are two dimensional 

representations of parts of the earth's surface. 

Maps have been used for centuries and although some map categories such as 

topographic maps are multi-purpose, they have always tended to relate to a particular 

theme. Initially each map was used for a specific purpose, but maps with different 

themes can be combined in a process known as overlay. Unwin (1996) cites early uses 

of map overlays in the mid-nineteenth century to link cholera outbreaks to water 

pumps (Snow, 1936). One map depicted the water reticulation system, the second map 

a plot of cholera outbreaks. Map overlays are now an essential analytical tool in 

Geographic Information Systems (GIS). 

Data used in maps originally came from ground based cartographers who would 

survey a particular area. A major advance came in the form of airborne observations, 

especially from aircraft during the First World War when aerial photography was 

introduced. The data gathered using this method was based on reflected visible light. 



To gain more information infra red spectral data was subsequently used and the 

visible spectrum was split into several distinct components. 

The term remote sensing was introduced to distinguish multi-spectral imaging from 

aerial photography. Remote sensing is defined as: 

"...the measurement of objects' properties on the earth's surface using data acquired 

from aircraft and satellites." 

(Schowengerdt, R. A., 1997, p2) 

where the term "properties" relates to electromagnetic properties. Use of sensors 

other than those sensitive to visual light began in the 1960's and space borne sensors 

appeared in the 1970's. With the launch of the first Landsat system in 1972, data from 

space borne multispectral sensors providing large scale ground cover became readily 

available. 

Geographic Information Systems (GIS) are inherently linked to remote sensing 

systems (Star et al, 1997). GIS's are systems which allow a user to manipulate and 

analyse geographic data. They feature graphical user interfaces and integrated 

databases. Their development since the 1980's has been rapid. The number and range 

of applications that use GIS has increased markedly over the last few years (Star et al, 

1997) and form the basis of the Tasmanian Governments' LIST (Land Information 

System Tasmania) component of the Future Directions Statement. 

One problem with remote sensing systems is the resolution of the data they capture. 

Each image is made up of picture elements or pixels. In digital processing these are 

numbers, within a specified range, for example 0 to 256. Shades of gray or colours are 

assigned depending on the number. For example a value of 0 will be black and 256 

will be white on a gray scale image. Currently, the best resolution is for each pixel on 

an image to represent an area of about 20 meters by 20 meters on the earths surface. 

Sensors with resolution of about one meter will soon be available. By contrast, in GIS 

the resolution is user controlled. Therefore transferring data from a remote system to a 

GIS causes problems of accurately positioning objects. Despite this, one of the great 
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advantages of remotely sensed data is that it can be gathered in a systematic, timely 

fashion (Muller, 1988). 

A second problem with remote sensing systems is that although large amounts of 

geographic data can be acquired, the expertise to interpret it is scarce. Therefore some 

means of automating tasks such as image interpretation and classification is required 

to make the best use of the data acquired (Openshaw and Scholten, 1994). Processing 

techniques using artificial intelligence are a possible solution. There are three areas of 

artificial intelligence which are used for image interpretation; expert systems, machine 

learning and neural networks. 

The field of expert systems developed rapidly in the 1970's. Expert systems are 

programs which emulate an expert's problem solving methods (Pigford and Baur, 

1990). An expert is often called the domain expert to indicate that a persons field of 

expertise is limited to a specific subject or domain. The expert's expertise is acquired 

in a variety of ways, including formal training. However the distinguishing factor of 

the way an expert gains expertise is through on-the-job experience. With experience a 

practitioner in a particular field develops rules of thumb and short cuts which enables 

them to solve problems more effectively than others in the field. An expert is only an 

expert because other practitioners in the field recognise them as such. An expert's 

knowledge may be supplemented with other information gained from records and the 

literature. 

One of the early expert systems was the medical diagnostic system MYClN. This was 

typical of the first generation expert systems which were predominantly text based 

diagnostic programs (Bonnet et al 1988). Another early system was Prospector which 

was used to predict the location of mineral deposits. Prospector was not a spatial 

expert system, but did analysis and prediction based on the results of analysis of 

geological samples and presented its results in map form. Later expert systems were 

developed for more complex tasks including planning and classification. Coupled 

with a graphical user interface, they are now being used for image analysis. 
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One of the major problems in developing expert systems is acquiring knowledge to 

code into them. This can be extremely time consuming, requiring numerous 

interviews with domain experts. The term knowledge bottleneck was coined to 

describe the problem (Weibel et al, 1995). A variety of techniques have been 

developed to overcome the knowledge bottleneck including fully automated 

techniques using machine learning and neural networks. 

Knowledge used by expert interpreters of remotely sensed data is predominantly 

visual. Traditionally the knowledge in expert systems has had a semantic association. 

With visual media an expert is more likely to use the 'I know it when I see it' 

approach (Gupta et al, 1997). Experts see objects in images and can point to them and 

name them. To do this they may use specific bands of a set of satellite images or a 

combination of those bands. They may also work on histogram representations of an 

image. Hence an image interpretation expert knows what range the spectral signature 

(or reflectance value) of an object will fall into. They can recognise spatial 

relationships such as streams flowing in valleys and down slopes, and collections of 

objects, such as roads and buildings, which make up a settlement. 

Because of its visual nature the acquisition of this knowledge from the expert is 

difficult using most traditional techniques. To overcome this difficulty a visual 

method of knowledge acquisition is needed. That is a method which directly captures 

the steps used by an expert to classify an image rather than requiring the expert to 

describe those steps. 

Currently most automated systems classify images on a per pixel basis (Wilkinson, 

1996). Each pixel or individual picture element that makes up an image is classified as 

being part of a particular object type and assigned a label. This technology is quite 

well developed and available in GIS and image processing packages. It is also the 

basis for pattern recognition systems using neural network and machine learning 

techniques. 

A more difficult processing task is one which deals with spatial relationships between 

objects (Openshaw and Clarke, 1996). This has three components: the nearness of two 
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objects, the orientation of two objects with respect to each other and the degree of 

overlap of two objects (Egenhofer and Sharma, 1993). A further complication occurs 

when the interaction of two objects defines a third object. For example where an 

object 'sea' meets an object 'land' a third object, a line, is defined which is 

'shoreline'. 

A second complex relationship occurs when a group of objects are combined into a 

single object. This process is called generalisation (McMaster and Mark, 1991) and is 

a technique that is used extensively in cartography. If it is impractical to show all the 

details of an object, or group of objects, so they are simplified. Hence a two track 

railway is often represented as a single track. A town is not shown as individual 

houses but as an object representing urban development. 

In both these cases techniques which can handle knowledge beyond the per pixel level 

are needed. These require a system which can identify and manipulate spatial objects 

and groups of objects. To be able to do this an expert knowledge acquisition system 

needs to allow a domain expert to point and draw on an image. By doing this a user 

can identify the objects to be manipulated and define areas of the image to be 

generalised. 

Figure 1.1 GIS, Remote Sensing and Expert Systems 
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The three subdisciplines which relate to this study are shown in Figure 1.1. Remote 

sensing is often closely tied to GIS. Images can be loaded into and analysed by GIS 

which have a raster (or pixel) processing ability (Star et al, 1997). There are expert 

systems, generally associated with image processing, which are used to directly 

classify remotely sensed data (Williams et al, 1994). Likewise there are expert systems 

coupled to GIS (Hartnett et al, 1994). This study is related to the *overlap of the three 

areas. It is a study of the types of geographic knowledge which can be acquired from 

remotely sensed images and can be used in conjunction with a GIS. 

1.2 STATEMENT OF THESIS 

The aim of this thesis is to investigate knowledge acquisition techniques for expert 

systems used in conjunction with remotely sensed images and geographic expert 

systems. This includes an investigation of the nature of expert knowledge -in a 

geographic context. A new classification of visual geographic knowledge consisting of 

Primitive, Relational, Assembly, Non-visual, Consolidation and Interpretation 

knowledge, is presented. 

To validate this classification, tools and techniques for geographic knowledge 

acquisition from satellite images were developed for each of the knowledge 

acquisition categories. Traditional techniques of knowledge acquisition are 

investigated to determine their suitability in a geographic domain and to see how well 

they compare with techniques using primarily visual knowledge acquisition tools. A 

tool-kit testbench was developed to implement the tools within specific knowledge 

categories. The component tools are evaluated on a series of systems and the results 

analyzed both in terms of the accuracy of the rules produced and user acceptance. 

It will be postulated that geographic knowledge has different characteristics from 

non-visual knowledge and therefore unique tools, reflecting the way the user analyses 

images, are required for knowledge acquisition. It will also be postulated that visual 

knowledge elicited from different sources and gathered by different elicitation 

techniques should be stored as separate knowledge-bases; then combined into a single 

consolidated knowledge-base prior to use. Despite the visual nature of geographic 
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knowledge, it will also be shown that there is a need for non-visual knowledge to be 

integrated into a geographic knowledge-base. 

1.3 CHAPTER PLAN 

The second chapter investigates the nature of knowledge and expertise, in particular 

the unique properties of spatial and geographic knowledge and expertise. The role of 

the domain expert in terms of expert knowledge in relation to spatial systems and 

interpretation of remotely sensed data is studied and a new classification of 

geographic knowledge is presented. 

The third chapter is a review of the theory and requirements of Geographic 

Information Systems and discusses the choice of data structures for use with expert 

systems which interact with them. There is an investigation of how the data structures 

can be utilized in a knowledge-base. 

The fourth chapter explores the various traditional knowledge acquisition methods, 

the tools available and their applicability to geographic expert systems. 

The fifth chapter introduces the scenarios to be used in testing the spatial knowledge 

acquisition methodology. There is a conceptual description of the tools and the 

features that are needed to acquire knowledge based on the classification system 

presented in Chapter 2. It will also describe the methods of verifying and combining 

spatial knowledge-bases. 

The sixth chapter describes the implementation of a graphical geographic knowledge 

acquisition tool-kit, KAGES (Knowledge Acquisition for Geographic Expert 

Systems), based on the theoretical considerations presented in Chapter 5. 

The seventh chapter presents the results of using the tool-kit in the domains described 

in Chapter 5. Knowledge acquisition using the methodology is compared, in terms of 

knowledge acquired, with other acquisition strategies. There is an evaluation of expert 
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user acceptance of the various techniques and conclusions are drawn about knowledge 

acquisition for spatial systems. 

The final chapter presents conclusions about geographic knowledge acquisition and 

suggests directions for future work. 

1.4 PUBLICATIONS 

Portions of this work have been published previously (Crowther and Hartnett (1996a), 

Crowther and Hartnett (1996b), Crowther and Hartnett (1997a), Crowther et al (1997), 

Crowther and Hartnett (1997b), Crowther (1998)). Note that the terminology used 

here supersedes the terminology defined previously. 
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Chapter 2. THE NATURE OF SPATIAL KNOWLEDGE 

This chapter discusses knowledge and expertise in relation to visual systems and 

geography. There is an investigation of the role of expert systems in geography and 

the unique properties of spatial knowledge. A six level classification of visual 

geographic knowledge is presented which is used as the theoretical basis for 

developing knowledge acquisition tools. 

2.1 KNOWLEDGE 

Knowledge is a prerequisite for expertise in that first one must have knowledge, then 

after experience applying that knowledge one becomes recognised as an expert. 

Knowledge therefore is an awareness, familiarity and understanding acquired through 

education or experience. As such it is information which has been learned, perceived, 

discovered, inferred or understood (Nagao, 1988). 

Visual and geographic knowledge introduces a spatial aspect to the definition. This 

knowledge, or spatial cognition, involves recognition of objects, patterns and the 

relationships between objects in space(Lloyd, 1997). 

2.2 EXPERTISE AND THE DOMAIN EXPERT 

An expert is a person who is regarded as a pre-eminent practitioner in their field of 

expertise (Agnew et al, 1994). Often called the domain expert (the term used in this 

thesis), they have in-depth knowledge acquired through training and experience. 

Meyer and Booker (1991) define an expert as 

"... a person who has a background in the subject area and is recognised by his or her 

peers ... as qualified to answer questions" (p3) 

Many of the methods experts use to solve problems are heuristics — rules of thumb, 

empirical knowledge or shortcuts developed by an expert through experience which 
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may aid in a problems solution, but are not guaranteed to work (Gianatano and Riley, 

1994). An important point of Agnew's paper and Meyer and Booker's Introduction is 

that expertise is socially selected. You are not an expert unless others regard you as an 

expert. Expertise in a specific domain is therefore rare. 

Experts are generally only acknowledged experts in a particular field or domain. It is 

also possible that there is no one domain expert covering a particular domain. Instead 

there may be several experts in the same domain who as a group cover the domain of 

expertise. Another possibility is a group who are experts in overlapping subdomains 

(Barrett and Edwards, 1995). This is common when working in geographic domains 

where expertise in a variety of fields is combined into a geographic information 

system. 

There are advantages and disadvantages to working with a group of experts. This is 

particularly so when their knowledge has to be combined. With one expert one is 

reliant on their expertise and their acknowledged status as an expert. With two experts 

one has the problem of conflict. With three or more experts one has the problem of 

minority interpretations, one of which could be the correct interpretation (Medsker et 

al, 1995) 

Finally, the nature of expertise is temporal (Fuller, 1994). In technology based 

activities an expert must continually build their expertise, and the nature of that 

expertise will change. The proliferation of expert systems has had the effect of making 

expertise more widely available to users without skilling the users. The expert's 

standing may be eroded because of this. This is particularly true of emerging 

technologies where the early practitioners are regarded as experts, but their status as 

an expert is eroded as their skills become more commonplace. 

2.3 EXPERT SYSTEMS 

Expert systems contain representations of human expert knowledge which can be 

applied to a problem within a given problem domain. They are systems which emulate 

the result of human problem solving. The components of a typical expert system are 
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shown in Figure 2.1. Knowledge is stored in a knowledge-base which is a collection 

of facts and heuristics. In expert systems this knowledge can be expressed as facts and 

rules, frames or semantic networks (see 3.3.2). 
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Figure 2.1 Essential components of a knowledge-based system (after Mockler, 

1989) 

The second major component of an expert system is the inference engine. The 

inference engine is a computer program which guides the manipulation of knowledge 

contained in a knowledge-base (Mockler, 1989). It is often supplied as part of a 

development package (Mockler and Dologite, 1992). 

Hence the primary task of developing an expert system is the capture and coding of 

expert knowledge of a particular problem domain into a knowledge-base. This 

knowledge can come from a variety of sources; domain expert, journals, technical 

manuals, historic data, electronic databases and in the case of spatial systems, maps 

and GIS. In this thesis, the emphasis is on knowledge elicitation from the domain 

expert. 
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2.4 VISUAL KNOWLEDGE 

Visual (including spatial) knowledge presents special problems for knowledge 

acquisition. Recognising visual features is easy for a human although the cognitive 

processing is complex (Lloyd, 1997). Describing those features without the use of 

diagrams is difficult. It is easy for a human expert to show what something looks like, 

but far more difficult to describe it in words, and more difficult again to describe it in 

terms of rules. (Kweon and Kanade, 1994). There has been work done in multimedia 

where sound and animation have been added to GIS, (Galetto and Spalla, 1996) but 

this still does not overcome the problem of different interpretations of the same 

feature. 

Many experts draw diagrams to explain their reasoning (Cheng, 1996), or use 

diagrams to describe a process (Crowther, 1992). An ideal expert knowledge 

acquisition tool would be one which could capture this type of knowledge directly. 

2.4.1 Geographic or Spatial Knowledge 

It should be noted that in this thesis the term Geographic Knowledge is used 

extensively, while in scene analysis Spatial Knowledge is the term typically used and 

much work has been done on spatial knowledge acquisition. In this thesis Geographic 

Knowledge and Spatial Knowledge will be regarded as synonymous. 

One of the primary ways of representing knowledge in geography is through the use of 

maps. Maps present knowledge naturally occurring in three dimensions, in a two 

dimensional graphic form. However maps are produced using information from 

images produced by sensors on aircraft or satellites, from photographic images and 

from ground (and sometimes underground) information. Each of these could be 

regarded as another dimension. The problem then becomes one of representing 

n-dimensional knowledge in a two-dimensional form (Crowther and Hartnett, 1996b). 

The information is then used to produce a map showing some specific characteristics 

of an area (land use, soil type, geology, vegetation cover for example). To produce 

maps experts use some or all of the information sources (dimensions) listed above. 
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Experts operating in different domains will use different sources and may produce 

different maps of the same area showing different features. By using expert system 

approaches it may be possible to make more use of all the dimensions of knowledge 

available and its interpretation by multiple satellite image domain experts (Tranowski, 

1990). 

Egenhofer and Mark (1995) use the term "Naive Geography" to describe the field of 

study that is concerned with formal models of the common sense geographic-world. 

They identify a number of elements of Naive Geography which have implications for 

developing geographic expert systems. These include: 

• Naive Geographic space is two dimensional, 

o The earth is flat as most representations (maps and images) are flat, 

• Geographic space and time are tightly coupled, 

• Geographic information is frequently incomplete, 

• People use rnultiple conceptualizations of geographic space. That is, geographic 

space is regarded differently depending on the application, 

• Geographic space has multiple levels of detail. For example, depending on scale, 

certain features may be grouped or generalised, 

• Boundaries are sometimes entities and have a specific tag, but sometimes not, 

• People have biases towards north-south and east-west directions and 

• Distances do not add up easily because of order of magnitude reasoning 

There is also a related problem - that of assigning definitions to features (Kweon and 

Kanade 1994). In geography most terms are described in natural language, but the 

definitions are often incomplete or open to interpretation. A method of knowledge 

acquisition that captures how users think about geographic space is needed. 

2.4.2 Classification of Geographic Knowledge 

Geographic knowledge differs from knowledge used in non-spatial expert systems in 

that geographic domain experts primarily use knowledge that is visually oriented. 
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Often multiple experts with different expertise are required to interpret images to 

make up a final composite image (Tranowski, 1990). There have been several papers 

which suggest how to identify and classify knowledge in geographic and spatial 

systems. McKeown et al (1989) identifies five types of spatial knowledge. 

The five types are: 

• Type 1 Knowledge: identifies scene primitives where a primitive is a readily 

identifiable object such as a road, a building or an iceberg. 

• Type 2 Knowledge: is the knowledge of the spatial relationships between the 

scene primitives. For example, buildings are next to roads or icebergs are 

surrounded by water. 

• Type 3 Knowledge: defines collections of objects which form spatial 

decompositions within the task domain. 

• Type 4 Knowledge: consists of how to combine information from type 3 

knowledge. 

• Type 5 Knowledge: is used to resolve and evaluate conflicting information. 

Tranowski also suggests a three level classification which is basically McKeowns 

Type 1, 2 and 3 knowledge. The classification is based on: 

• The appearance of objects. 

• Simple relationships between objects. 

• More complex relationships between objects that describe a spatial pattern. 

Since this classification is not an advancement on McKeown's, it will not be 

considered further. 

One field of spatial systems receiving considerable attention using knowledge-based 

approaches is that of generalisation (Buttenfield and McMaster, 1991). 

Generalisation is the replacement of a group of features with a single generalised 

object. 
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Armstrong (1991) defines three types of knowledge which includes a non-visual class 

necessary for generalisation. They are: 

• Geometrical knowledge which describes features in terms of location and density 

in a given area. For example, a feature may exist at a specific location and there 

may be a number of such features in the vicinity giving an indication of 

congestion. 

• Structural knowledge which involves the intrinsic expertise of the domain expert 

to distinguish between features. This is also influenced by the purpose of the 

required map. 

• Procedural knowledge which allows the control of the individual generalization: 

operators and algorithms. 

The classifications of McKeown and Armstrong are not mutually exclusive. They are 

in fact complimentary. The McKeown classification appears to expand on 

Armstrong's geometrical and structural knowledge classifications. Procedural 

knowledge is an essential component when image processing systems are considered 

and is not covered in the McKeown et al scheme. 

2.4.3 Problems of Spatial Knowledge Classification Schemes 

McKeown's classification is the most useful of the three so far discussed when 

considering the development of a geographic knowledge acquisition tool. However it 

does have one drawback in assuming all knowledge of a scene is visual. Non-visual 

knowledge also needs to be incorporated. One example is that of temporal knowledge 

where past classifications may affect those of the future. For example in agricultural 

systems, crop rotation and crop seasonality may be useful in producing a 

classification. Another example is the combination of satellite bands to highlight 

features; in other words Armstrong's geometric knowledge. Neither of these can be 
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gained directly from the images, but are rather a non-visual aspect which needs to be 

added to the knowledge acquisition process. 

The classification also lacks detail at certain levels. For example, what Type 1 

Knowledge is essential and what is desirable when describing scene primitives? A 

new classification scheme is presented at the end of this chapter. 

2.4.4 Unique Characteristics of Spatial Knowledge 

Spatial knowledge has all the characteristics of knowledge in other domains but there 

are other additional characteristics which need to be considered including: 

• Position, 

• Shape, 

• Size, 

• Orientation, 

• Connectivity, 

• Containment and 

• Proximity. 

The relationship of one object to one or more other objects may determine the identity 

of a particular feature. It is also possible that features may form a classification 

hierarchy. A house may be part of a block of houses which may be a residential 

division of a town for example. This forms the basis of map generalisation. 

When working with images the domain expert must rely primarily on visual 

interpretation of a particular image. Before satellite remote sensing images were 

available, aircraft images were used as the primary source of data. A major factor in 

the successful interpretation of these images was the experts' experience. The 

interpretation was then confirmed by looking at other images containing similar 

features in a different setting and by ground truthing. Remote sensing information 

allowed domain experts to investigate other characteristics by investigating individual 
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pixel values and the combination of pixel values at the same point on different 

wavelength bands. It also allowed them to view distributions of pixel values over an 

image as a histogram. It is common for domain experts to stretch these histograms to 

highlight the areas of pixel values of most interest (Richards, 1993). 

Many automated image classifiers use a parametric classification of pixels 

(Wilkinson, 1996). These classifiers rely on a pixel value alone rather than on 

identifying geometric patterns. This is partly due to the dichotomy between raster and 

vector representation of features. Raster representations are often classified pixel by 

pixel, while vector representations are more useful when defining spatial 

relationships. To put it another way some scene primitives may be identified by per-

pixel classification, but beyond that spatial analysis of vectors is required. 

In inteipreting data, humans can rarely operate with more than two images 

simultaneously and as a result much information held in other dimensions is 

overlooked. GIS classification systems overcome that to a certain extent, but there are 

often large amounts of information which goes unchecked (Openshaw, 1993). 

2.5 VERIFICATION OF EXPERT INTERPRETATIONS 

Verification has been defined as building a product correctly (without errors) while 

validation is building the right product; one which meets the user's requirements 

(McGraw and Harbison-Briggs, 1989). 

Verification and validation of knowledge-bases encompass four main activities 

(Meseguer and Preece, 1995): 

• Inspection 

• Static verification 

• Empirical testing 

• Empirical evaluation 
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Inspection aims to detect semantically incorrect knowledge in a knowledge-base and 

is a manual operation. This is normally done by either the original expert or, ideally, 

another expert in the knowledge domain. To aid this process the knowledge should be 

in a form easily understood by the domain expert. 

Static verification is a check for anomalies in the knowledge-base. An anomaly is a 

static pattern in the knowledge-base structure which suggests an error in the encoded 

knowledge. 

Empirical testing involves applying the knowledge-base to sample data sets. This 

would include applying the knowledge-base to a range of images after training on one 

or more image sets. 

Empirical evaluation is the validation stage and determines the effectiveness of the 

operational expert system as far as the final user is concerned. It includes technical 

performance and applicability. 

Verification of classified images presents unique problems. Ground truthing, which is 

the traditional way to verify geographic classification, is subject to error (Congalton, 

1991). Firstly if the feature being studied varies rapidly over time, records of the 

feature may not exist unless it was being closely monitored. This is particularly true 

for atmospheric phenomena such as clouds and in agricultural systems around harvest 

time. Secondly it may be impossible or impractical to ground truth, in the case of mid 

ocean and polar features for example. Lastly it may be difficult to precisely locate a 

feature on the ground. In all cases there is some level of sampling and extrapolation. 

Sea ice ship-borne verification is inevitably a linear transect. Forestry sampling is 

done with random quadrants. 

Verification must be systematic. Vicat et al (1995) suggest a verification model based 

on knowledge modelling and integrated into the knowledge-base construction life 

cycle. Rouge et al (1995) support this approach where a formalism based on the 

structure of knowledge is central to verification. 
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2.6 THE NEEDS OF A VISUAL GEOGRAPHIC KNOWLEDGE 

ACQUISITION SYSTEM 

Given that geographic knowledge is visual and that domain experts work with images, 

a graphical system is required. Secondly, the level of computer familiarity may be 

low. Any system would therefore have to be easy to use and ideally operate in a way 

the domain expert understands (Kuhn, 1993). Since a domain expert can rarely work 

with more than two images at a time the system should also collect information from 

other bands and allow the user to rapidly change between bands. The knowledge 

generated by the system should be easily verifiable (although the problems of ground 

truthing are not going to be overcome). 

2.7 A PROPOSED CLASSIFICATION OF GEOGRAPHIC KNOWLEDGE 

The following classification is derived from and expands on those of McKeown, et al 

(1989) and Armstrong (1991). It is more rigorous and incorporates non-visual 

knowledge. It consists of six levels of knowledge which are: 

Primitive Knowledge about the identification of scene primitives. A primitive is a 

readily identifiable point, line or areal object which cannot be subdivided into smaller 

named entities. This includes knowledge about an object's size and shape if relevant. 

Relationship Knowledge of the spatial relationships between scene primitives in 

terms of their proximity, orientation and degree of overlap. 

Assembly Knowledge, used to define collections of objects which form identifiable 

spatial decompositions. This includes knowledge of the spatial density of primitives. 

This knowledge can be regarded as knowledge needed for generalisation. 
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Non-Visual Knowledge which helps refine classifications developed using visual 

knowledge including labelling of scene primitives and spatial relationships. It consists 

of: 

• temporal knowledge of how a scene changes over time. 

• algorithmic knowledge, including how to combine bands. 

• heuristic knowledge of a non-visual nature. 

Consolidation Knowledge used to resolve and evaluate conflicting information. 

Interpretation Knowledge of how to combine the other five types of knowledge to 

produce a classified image. 

2.7.1 Primitive Knowledge 

A primary function of any automated image interpretation system is to identify the 

objects that make up a scene. An unclassified image consists of pixels each of which 

has a value assigned to this. From this image objects or scene primitives need to be 

extracted. Scene primitives fall into three categories; points, lines and areas. They can 

each be given a name and they cannot be subdivided. They are the basic building 

blocks of any GIS. The attributes of objects depend on their category and are 

summarised in Table 2.1 

OBJECT CATEGORY ATTRIBUTES 

Point location 

Line location Length shape 

Area location (of 
centroid) 

size shape spectral 
signature 

Table 2.1 Primitive objects and their attributes 

One of the primary aims of many systems is to identify and classify these scene 

primitives. Generally the first method used is a per-pixel classifier. This is followed 
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by a segmentation program which assigns unique identities to each primitive of a class 

(Gerbrands, 1993). 

2.7.2 Relationship Knowledge 

Knowledge about the spatial relationship between scene primitives falls into three 

categories: 

• Proximity of the objects, 

• Direction of one object in relation to the other, and 

• Degree of overlap of objects. 

Proximity can be measured in a number of ways. For example, the proximity of the 

two areal objects' centroids or, the proximity of the closest edge pixels (assuming the 

two objects do not overlap). Generally the measurement is a fuzzy concept with terms 

like near and very near being used. 

Direction is generally best measured in relation to two points; for example two 

centroids. It is normally not worth classifying to less than 45 0  as users tend only to 

think in terms of north, south, east and west with north-west south-west south-east arid 

north-east only rarely being used. (Egenhofer, 1995) 

Degree of overlap is generally defined using the terms disjoint, touches, overlap, 

covers, and encloses. Eight basic forms have been identified (Egenhofer, 1991), but 

many more variations, especially with lines have been described. 

2.7.3 Assembly Knowledge 

Assembly Knowledge is knowledge about combinations of Primitive and Relationship 

Knowledge. At its most basic, it describes how related groups of scene primitives are 

grouped and classified as a larger entity. This may also include other 'Assembled' 

objects resulting in a hierarchy. These assembled objects or components can then be 

referred to as a single named entity. 
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Assembly Knowledge also includes: 

• The density of components both by number and by area, 

• The ratio of components (number of one object type in relation to others) and 

• The required existence of certain key components and the possibility of optional 

components or atypical components. 

Assembly Knowledge is also knowledge required for generalisation. That is 

simplification by replacing groups of features with a single feature. For example a 

group of objects representing paddocks could be replaced by a single object 

representing a farm. 

2.7.4 Non-Visual Knowledge 

Despite geographic and spatial knowledge being primarily visual, there are a number 

of non-visual aspects which need to be considered. These may be important in further 

refining the classification of an image. Armstrong's (1991) Procedural Knowledge 

has already been identified as a necessary inclusion in a classification. Other 

non-visual knowledge includes knowledge of change over time (temporal) and 

heuristic knowledge. 

2.7.5 Temporal Knowledge 

Temporal knowledge may have a visual aspect to it. For example a feature that is in 

the image in time 1 may not be present or may have moved in time 2. This is 

particularly true for meteorological applications. Other information however may only 

become apparent as a pattern when historical data is examined. Such information may 

include crop rotations, herbicide withholding periods, changes in demand for a 

particular crop. This knowledge may be held mentally by a domain expert or may 

come from analysis of data in a database system associated with a GIS. The term for 

acquiring knowledge from databases is data mining (Djoko et al, 1997) 
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2.7.6 Algorithmic Knowledge 

Remote sensing in particular uses algorithms to analyse images. They include image 

pre-processing algorithms to carry out geographic registration and radiometric 

calibration, algorithms to combine satellite image bands into composite images and 

various statistical classifiers such as maximum likelihood and minimum distance 

classifiers (Lillesand and Kiefer, 1994). 

2.7.7 Heuristic Knowledge 

Heuristics are shortcuts which domain experts use to complete their tasks. The ability 

to use such heuristics is often what distinguishes an expert from other practitioners in 

a field. They may not be based on visible clues, but rather something the expert has 

•found from experience. For example, potato crops are less likely to be planted to the 

east (with a prevailing westerly wind) of poppy crops because spray drift from poppies 

is harmful to potatoes. Heuristics are informal methods based primarily on human 

intuition (Bonnet et al, 1988). They may not work in all cases, but a greater problem is 

that they are often difficult for a domain expert to verbalise. 

2.7.8 Consolidation Knowledge 

Consolidation knowledge is the knowledge required to integrate the knowledge-bases 

which have been generated by the rest of the system. This includes the knowledge 

gained from a number of training images and from a number of domain experts. If 

more than one expert is available they may use different rules or visual clues to 

identify features. The same expert may also use different techniques at times. The 

knowledge acquired therefore needs to be checked for consistency. Possible outcomes 

include the most general or the most restrictive rule set. Knowledge at this level will 

identify and try to resolve conflicts within the component knowledge-bases and 

produce a single aggregated knowledge-base. 
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2.7.9 Interpretation Knowledge 

Interpretation knowledge is knowledge of how to apply specific knowledge-bases to 

an unclassified image to produce a classified image for a specific domain. For 

knowledge-bases that span several domains this will include the type of classification 

that is being undertaken. For example a knowledge-base containing rules about soil 

type may be used along with other knowledge-bases in both vegetation and 

geomorphological classification systems. There needs to be meta knowledge on how 

this is to be done. 

2.8 VISUAL KNOWLEDGE AND KADS 

KADS (Knowledge Acquisition and Development System) has been presented as a 

development methodology for expert systems and classifies knowledge into a number 

of types (Breuker and Wielinga, 1987, Schreiber et al, 1993). Since this classification 

scheme is accepted as a standard in many areas it is useful to compare it with the 

classification of geographic knowledge presented above. The KADS model proposes 

a four layer model of expertise which is shown in Figure 2.2. 

Knowledge category knowledge types organisation 

strategies 

tasks 

inference structure 

strategic 

N1' 	
controls 

task 

applies 

inference 
knowledge 

uses 

domain domain theory 

plans and meta rules 

goals, control terms, 
task structure 

inference actions, 
roles and domain view 

concept, property and relation 

Figure 2.2 The four-layer model of expertise (Wielinga et al, 1992) 
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The KADS Domain Layer is static knowledge describing a declarative theory of the 

domain. Knowledge at this level should be represented in a way that is independent of 

the way in which it is to be used. It should define the conceptualisation and declarative 

theory of the problem domain and provide the knowledge to carry out given tasks. The 

other layers contain knowledge to control the use of knowledge from the domain layer 

(Fensel and Van Harmelen, 1994). 

The Inference Layer specifies how to use the knowledge from the domain layer. It 

restricts the use of the domain layer and abstracts from it. The Task Layer represents a 

fixed strategy for achieving problem solving goals. The final level of control 

knowledge is the Strategy Layer which involves knowledge of how to choose between 

various tasks that when completed successfully achieve the same goal. A formal 

specification language has been developed to record knowledge in each of the layers 

(Schreiber et al, 1994). 

In terms of the suggested geographic knowledge classification, Primitive, Relationship 

and Assembly Knowledge are forms of knowledge at the Domain Level under the 

KADS methodology as is Heuristic knowledge in the Non-Visual category. This 

knowledge could be used in a variety of different ways to produce products showing 

different aspects of an area covered by an image 

Consolidation Knowledge on the other hand requires knowledge of how the rules are 

to be applied and is knowledge at the Inference level. Algorithmic Knowledge which 

contains knowledge of image band combinations and when they should be applied is 

also at the Inference level. Knowledge at this level will be applied according to the use 

to be made of the final classified image. 

The Task Level in the KADS system is represented by Interpretation Knowledge and 

shows how to apply the problem solving strategy to the whole image set. Depending 

on the objective of the system different strategies can be used, including the masking 

out of areas not relevant in a particular domain. 
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In the suggested geographic knowledge classification, there is no equivalent of the 

Strategy Layer as no attempt has been made to create a knowledge category which 

contains alternate ways of classifying images. This could change in the future when 

choices need to be made between using rules developed from machine learning, neural 

nets or rules elicited from domain experts to classify images. 

2.9 CONCLUSION 

Geographic knowledge used in interpreting remotely sensed images is essentially 

visual. 

When developing a theory of geographic knowledge acquisition, it is desirable to 

develop a general model of the knowledge types which are to be acquired. Once this 

has been established, tools and techniques for eliciting this knowledge can be 

developed. The proposed six level geographic knowledge classification, which has 

equivalences in the KADS methodology, is such a model and will be used through the 

rest of the thesis. 
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Chapter 3. KNOWLEDGE-BASED SPATIAL 

INFORMATION SYSTEMS 

This chapter investigates Geographic Information Systems (GIS) and their relationship 

with remote sensing and knowledge-based systems. The data structures and processing 

requirements necessary in a spatial system are considered. 

To implement rules on spatial reasoning there must be an understanding of the way 

GIS information is stored and processed. This is the basis of selecting appropriate 

knowledge-base structures for use in a geographic environment. 

The final section of this chapter is a survey of expert systems which have been 

developed and used in geographic and remote sensing environments. 

3.1 GEOGRAPHIC INFORMATION SYSTEMS 

It is not an aim of this thesis to develop a geographic information system (GIS). 

However, because a study of knowledge acquisition for expert systems used with GIS 

is the primary aim of the research, there must be a discussion of GIS systems. In such 

a discussion it is useful to begin with a definition: 

"A geographic information system (GIS) is a computer-based information system that 

enables the capture, modeling, manipulation, retrieval, analysis and presentation of 

geographically referenced data" (Vsforboys, 1995, pl) 

The fundamental part of a GIS is a database, and fundamental to that is the 

development of a data model. Another major component of the system is a user 

interface with which a user can input, manipulate and display information from the 

database in the form of a map or image. In current technology this takes the form of a 

graphical user interface. Therefore one needs to be able to input information into a 

system, store it and then manipulate it. One of the functions of an expert system linked 

to a GIS is to pre-process image information and make it available to the GIS. 
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Burroughs (1990) defines the following five components of a GIS: 

• Data input and verification, 

• Data storage and database management, 

• Data output and presentation, 

• Data transformation and 

• Interaction with the user. 

Figure 3.1 Components of a GIS 

These are shown in Figure 3.1 where output and presentation is subdivided into 

queries and maps and reports. In this model data storage (or database) is grouped 

with transformation and analysis under data management. 

3.1.1 Data Input and Verification 

There are many sources of data that can be used as input to a geographic information 

system. These include traditional text files, field observation data, drawings, maps, 

tables and airborne and satellite sensors. Because of this, the input devices used 

include scanners and digitisers as well as traditional keyboards and storage systems. 

Input may also come from remote computer sites over communication lines. 

28 



One problem, which is not confined to GIS, is the quality of input data (Star and 

Estes, 1990) which in turn affects the quality of the output. Since GIS allow a user to 

combine data from a number of sources, many have built in verification routines 

which alert users to potential errors. Despite this, it is up to the user to record which 

are the more unreliable data sources. By using an expert system to preprocess some of 

this data, the quality of the data can be improved. 

3.1.2 Data Output and Presentation 

The data output component of a GIS incorporates many of the features typical of 

computer aided design packages (CAD). The output is displayed on a VDU screen or 

can be plotted for hardcopy. This output may be in the form of statistical reports, 

maps including three-dimensional topographic representations and various types of 

graphs. 

3.1.3 Data Transformation and Analysis 

This component of the GIS allows data to be transformed into information. Individual 

packages have different features. Burroughs (1990) classified data transformation 

functions into: 

• Rotation, 

• Stretching to a new scale, 

• Transformation of scale and projections, 

• Zooming, 

• Joining, 

• Polygon overlay, 

• Smoothing and 

• Data reduction or generalisation. 

Since these functions are built into GIS it makes sense to use them before passing 

image data onto a coupled expert system (or knowledge acquisition system for the 

29 



expert system). Among the techniques which can be used are smoothing to remove 

uncharacteristic values in the data, and scaling, which can be used when images from 

different sensors with different resolution are being used. 

3.1.4 Data Storage and Database Management 

There are two very different implementations of GIS on computers. The first uses a 

two dimensional grid with every location in the grid being georeferenced to the earth's 

surface. The grid location stores a number which represents some attribute of the 

earth's surface. This is referred to as a raster based system. Raster data structures are 

the simplest with data organised in a cellular data structure (Star and Estes, 1990). 

This cellular organisation is represented as an array over space with each cell 

containing a value for the parameter of interest. Several of these structures can be used 

to superimpose data. For example one array may contain elevation information while a 

second may contain vegetation types. From this it may be possible to relate vegetation 

changes to slope and aspect. 

Simple raster arrays often have the rows of the array oriented east-west and the 

vertical dimension north-south. There are however two main limitations to these 

simple arrays. Firstly there is a finite ability to specify location and secondly the cells 

represented in the array may not be evenly spaced. This and the size of an area 

representing one cell affect accuracy. A further conceptual problem is that being pixel 

based, a raster system cannot represent objects beyond the pixel level. Rather pixels 

with particular values can be given a label assigning them to a classification. However 

raster systems have the advantage that they can build up map layers for each attribute 

under consideration. These layers can then be combined. Their second advantage is 

they can deal directly with satellite images which are pixel based. The reasons they are 

primarily used in this study are the ease of using them with data from image 

processing systems and the ease of using them to carry out spatial analysis on satellite 

images. 

An alternative implementation is to have a grid which stores locational data according 

to its data type as objects. Hence point data is stored as an X Y coordinate. Lines are 
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stored as a pair of X Y locations and area objects or polygons as a series of X Y 

coordinates. This is known as a vector based system. Vector data structures are based 

on elemental points or nodes whose locations are known to arbitrary precision. Hence 

a circle could be stored by specifying its centre and radius while a raster definition of 

the same object would require coding of all cells that correspond to the circumference. 

As well as this the nodes are used to carry metric information about the object. There 

are several forms of vector data structures available including : 

• A whole polygon structure, 

• A Dual Independent Map Encoding structure, 

• A arc-node structure, 

• An relational structure and 

• A digital line graph. 

(Star and Estes 1990) 

These are shown in Figure 3.2. In a whole polygon structure, an image or layer is 

divided into a set of polygons (Figure 3.2 (a)) which are encoded as a series of 

locations defining a boundary. The Dual Independent Map Encoding (DINE) structure 

(Figure 3.2 (b)) is a structure where each polygon is uniquely identified. Nodes 

marking the point of joining of three or more polygons are encoded along with the 

location of the centre of the object (Bartelme, 1996). By coding two nodes and two 

adjacent polygon centroids the face or join between the polygons is defined. This was 

originally used for digitizing streets in urbanised areas with the nodes being street 

intersections and blocks being represented by polygon centroids (Star and Estes, 

1990). 

Arc—Node structures places objects in a hierarchy. Nodes are defined first, followed 

by lines which in turn build up polygons. Figure 3.2 (c) shows a polygon made up of a 

series of nodes connected by arcs. Another variation on the arc-node structure is the 

relational structure shown in Figure 3.2 (d) where each element in the structure is 

assigned a unique identification. In the example only nodes are shown. The location of 

the nodes are shown in one structure and their characteristics in another linked 

(related) by their identification number. Arcs are also given unique identification 
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numbers but are defined in terms of their start and end node's identification numbers. 

Likewise polygons are defined in terms of their component arcs. 

The final structure is the Digital Line Graph Structure. Like other structures, the 

location nodes are encoded. In addition there is an extensive coding scheme for 

attribute information of the elements (Figure 3.2 (e)). An example of this scheme is: 

the code 050 0004 indicates a hydrography feature (050) which is the point (node) of a 

stream entering a water body (0004). 

Face 

• ‘‘‘• 	.. 

• 

a) Whole Polygon Structure b) Dual Independent Map Encoding 

NODES 
Number Eastine Northine 

Node 1 	126.5 	578.2 
1 	218.6 	581.2 

I 	
Arc 3 	224.2 	470.4 

TRAFFIC 
Number Control Crosswalk 

1 	Light 	Yes 
2 	Sign 	Yes 
3 	None 	No 

c) Arc — Node Structure d) Relational Structure 

Major Code 	: 	050 	Category: 	Hydrography 
Minor Code 	: 	0001 —0099 	Description: 	nodes 

. 	050 0001 	Upper end of stream Nodes 	• 
050 0004 	Stream entering water body 
050 0005 	Stream leaving water body 

e) Digital Line Graph 

Figure 3.2 Types of vector representations 



Satellite images are in raster form, therefore it is necessary to process them pixel by 

pixel which makes a raster based GIS attractive. Raster based GISs have the problem 

of only being able to represent features to an accuracy dependent on the area 

represented by a single pixel. Objects can only be indirectly defined as groups of 

pixels after an image has been segmented. These pixel groups can then have 

information about them stored, but not directly as part of the group. 

This problem is solved by vector based systems which allow users to specify 

locational data as accurately as they wish (Breunig, 1996) and attach information 

about the object being defined directly to the objects nodes. Hence vector based GIS 

can produced finely detailed maps to high cartographic standards with information 

about the objects represented linked directly to the GIS database. Queries to a vector 

GIS database can be made across all the data sets within the databases using 

information attached to the vectors. Since satellite images are raster based, they must 

be first processed at the pixel level to segment them before the resulting pixel clusters 

are converted into vector objects. 

Despite this vector — raster dichotomy, many of today's GIS have incorporated both 

representations. Transfer between the two representations is still fraught with 

difficulty however, especially when two vectors are closer to each other than the pixel 

resolution of the raster system (Ibbs and Stevens, 1988). 

There are many commercially available GIS packages available. The one chosen to 

interface with the KAGES tool-kit, to be described in chapter 6, is IDRISI. This 

package has the advantage of being raster based but with vector capabilities. It is also 

low cost, it incorporates spatial analysis capabilities and it has the capability of 

interfacing with the Microsoft Access database system which is to be used in 

conjunction with a specific application of the tool-kit. 

3.1.5 Interaction With the User 

The user interface is probably the weakest area of most GIS in use today (Hazelhoff 

and Gunnik, 1994). One problem is that the interface may provide both the overall 
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user interface and the means of creating queries and models. More traditional database 

systems such as Microsoft Access have a user interface, then separate interfaces for 

developing queries and models. 

The display used in a typical GIS presents a visual display of geographic data in the 

form of charts, tables, maps, text or pseudo three dimensional images. The process of 

receiving data in these forms requires a human user to perform the tasks of detecting 

features, discriminating content and identification. Therefore it is up to system 

designers to present data in a form which will not be misinterpreted (Hearnshaw, 

1994). 

It should be noted that a visual interface is not the only means of interacting with a 

GIS. For example sound and movement are two other sensory modes which can be 

used to both input and represent data. In this thesis the discussion will be restricted to 

vision. 

GIS provide a user with the means to visualize large volumes of spatial data. This has 

the advantage of allowing a user to rapidly comprehend the complex spatial 

relationships and hence improve performance on tasks involving that form of data. 

This leads to the importance of a user being able to interactively modify spatial data 

and observe feedback in real time (Medyckj-Scott, 1994). 

An aim of designing a human computer interface is to make interaction between a user 

and the computer easy. That is the user should be concerned with the working on the 

data and not how the tasks are performed. To meet this aim three factors of, user, the 

task and the tool need to be considered. 

The first factor, the 'user' is the most variable, because of variation in individual users 

skills, perceptions and needs. Because of this interface design is moving to 

accommodate users throughout their interaction with the system (Medyckj-Scott, 

1990). 
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Tasks are activities which a user needs to fulfill to achieve an objective, Therefore 

there is a need for task analysis when building a system. This includes identifying: 

• the types of tasks a user performs. 

• the extent to which tasks vary from one occasion to another. 

• how often tasks are performed. 

• how tasks vary between different user groups. 

The result should capture the similarities and differences among tasks and their 

interaction requirements. 

A GIS is a tool designed to display and operate on spatial information. To be useable 

it must be able to transform data from an internal representation to one a user is 

familiar with and can interact with (Medyckj-Scott, 1994). This has two aspects, 

control representations and display representations. Control representations affect a 

users perception on how easy the tool is to use. They include functionality and utility. 

A tool should allow a user to focus on what their objective is rather than how the tool 

works. Display representations determine how the data is presented to the user. This 

should be in a form familiar to the user. 

These considerations related to user interface design in typical GIS also have to be 

considered when developing a knowledge acquisition system where the domain 

experts may be GIS users. These users look for a utility which is familiar to them and 

provided by a GIS. For example, for many users the actual image from a satellite band 

is often of less interest than the histogram of the data of that image. Many users work 

directly with the histograms when classifying. 
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3.2 REMOTE SENSING 

A simple definition of remote sensing is the: 

"...collection of information about the properties of an object without physical contact 

being made with the object" (Mather, 1991, p 140). 

In the present study a more useful definition is one which restricts it to: 

"...measurement of electromagnetic properties of a surface or object without being in 

contact with it" (Davis and Simonett, 1991) 

In recent years large volumes of data have become available from satellite based 

sensors. Information can be displayed as images, but those images can record 

reflectance and emittance over a number of spectral bands. In this study image sets 

from three different satellites have been used. These are: 

• NOAAH AVHRR (National Oceanographic and Atmospheric Administration 

Advanced Very High Resolution Radiometer) , 

• SPOT HRV (Systeme Probatoire d'Observation de la Terre, Haute Resolution 

Visible) and 

• Landsat . 

3.2.1 Active and Passive Remotely Sensed Data 

The data collected by passive Remote Sensing Systems (RSS) is from radiation 

recorded by sensors at various wavelengths in the visible through to the thermal 

infrared and microwave part of the electromagnetic spectrum (Tables 3.1 and 3.2). 

Visible light sensors collect information on solar radiation which is reflected back into 

space from earth. Infrared and microwave sensors collect data on energy emissions 

from the earth's surface. These sensors that record radiation emitted from the sun or 

the earth and are called passive sensors. 
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3.2.2 The Electromagnetic Spectrum 
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Table 3.1 The electromagnetic spectrum showing spectral bands covered by 
Landsat (from httpills7pm3.gsfc.nasa.gov/mainpage.html)  

SPOT 20 meter resolution 

Band 1 	 0.50 - 0.59 pm 	Visible 

Band 2 	 0.61 - 0.68 gm 	Visible 

Band 3 	 0.79 - 0.89 gm 	Infrared 

NOAA AVHRR 4Km resolution 
Band 1 	 0.58 - 0.68 gm 	Visible 
Band 2 	 0.72 - 1.10 gm 	Near Infrared 
Band 3 	 3.55 - 3.93 p.m 	Thermal Infrared 
Band 4 	 10.50 - 11.30 pm 	Thermal Infrared 
Band 5 	 11.50 - 12.50 pm 	Thermal Infrared 

Table 3.2 SPOT and NOAA AVHRR spectral characteristics. 
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Active systems on the other hand generate their own energy, bounce it off the earth's 

surface and read the amount of energy which returns. Some microwave systems, most 

notably radar, are the most common active systems. These have the advantage that 

they are not affected by atmospheric conditions but they are not as readily available as 

passive systems. 

Electromagnetic radiation can be thought of as consisting of waves of energy or as 

packets of energy called photons. This energy can only be detected as it interacts with 

matter (Sabins, 1997). Therefore the particle model is useful for understanding the 

way detectors measure and count photons of a particular frequency and assign a digital 

value to the count. For example, a light meter measures the intensity of light by the 

interaction of photons with the light sensitive photodetector in the meter. This 

produces an electrical signal proportional to the number of photons. 

Table 3.1 shows the electromagnetic spectral ranges covered by Landsat with radiated 

energy separated into bands of specified frequencies. SPOT and NOAA AVHRR 

spectral ranges are shown in Table 3.2. 

3,2.3 Problems With Remotely Sensed Data 

One of the major problems with remotely sensed images is the amount of variability 

from one image to the next and the difficulty of correcting distortions inherent in the 

images. Some of the problems encountered include: 

• The variability of atmospheric conditions, 

• Varying illumination conditions depending on the season and time of day, 

• Image registration difficulties and 

• The effects of variation in land elevation. 

In this thesis we are concerned with passive remote sensing and the energy reflected 

and or emitted from the earth's surface is far from uniform. Atmospheric conditions, 

38 



time of day and season compound the problem. Hence there is need for calibration to 

eliminate or compensate for these effects. (Lillesand and Kiefer, 1994). 

Georeferencing of satellite data is involves the assignment of coordinates to individual 

pixels relating each to a specific ground location. Although remotely sensed data from 

satellites is georeferenced, that referencing is subject to error. There are various 

algorithms available to correct for this. The simplest method is to extrapolate from 

points on the ground with known locations (by using a global positioning system for 

example). 

3.3 THE NEED FOR DATA STRUCTURES 

Data in any system needs to be organised so systematic processing of that data can 

take place. As the discussion above has indicated, Geographic Information Systems 

are no exception. There are several different ways to organise data and these will be 

discussed below. Basically there is need for a structure for the database and there is 

need for a structure for the knowledge-base. 

3.3.1 Evaluation of Vector versus Raster Data Structures for this Study 

The choice of a data structure is based on the processing requirements of a 

knowledge-based system. Given the different type of knowledge that can be stored 

(see section 2.6), there is a need for both pixel reasoning and reasoning about spatial 

objects. Although it is possible to have both vector and raster structures it is easier to 

standardise on one. In this case raster representation will be used as the primary 

method since most of the processing will be done via image processing software. 

However experts naturally work with objects (Couclelis, 1992). To accommodate this, 

areal objects will have a minimum bounding rectangle associated with them which 

will be stored along with the object's centroid. In the case of line and point objects, a 

vector type representation will be used. More complex objects will be stored in 

frame-like structures held in a separate database. For example a particular Assembly 

Knowledge object may be defined by having certain key Primitive objects as 

mandatory constituents (To be a settlement at least one church, hotel, store or service 
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station is required). Reasoning would then be based on rules stored in a knowledge-

base. 

This combination of raster and simple vector structures has advantages for developing 

a generic spatial expert system as rules about specific features as well as information 

about objects could all be stored and applied to different images. Since the primary 

input data from the satellite image sets is raster based, raster processing rather than 

vector processing has been chosen. 

3.3.2 Knowledge-base Structure for a Geographic System 

Once a geographic data structure has been decided upon, the next step is to determine 

the structures necessary for data or knowledge to be stored in a knowledge-base. The 

knowledge can be represented using one of several knowledge representation schemes 

(Leung, 1997) including: 

• Predicate logic, 

• Rules, 

• Semantic networks, 

• Frames and 

• Object oriented representations. 

Predicate logic is the basis of logic programming languages such as PROLOG. 

Knowledge is represented in the form: 

(V x) (triangle(x) —> polygon(x)) 

which means all triangles are polygons. This notation has the advantage of being 

concise and directly translatable into a programming language, but has the 

disadvantage of being difficult for users to understand and verify. 
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A common way of representing knowledge in an expert system is in the form of IF 

THEN rules which have the form: 

IF condition THEN conclusion, 

The predicate logic statement above now becomes: 

IF X = triangle 

THEN 

X = polygon 

One of the problems with spatial knowledge is finding a way to represent it so that it 

can be reasoned with and can be visually verified by a user who is unfamiliar with 

knowledge representation schemes (Shea, 1991). Rule based systems, where the rule 

can be verified by the user who can also see the rules effect, solve this problem and 

have been extensively used in spatial expert systems. 

Semantic Networks are sometimes called propositional nets since the statements they 

represent are either true or false. Figure 3.3 is a simple semantic network 

Figure 3.3 Semantic Network 

It consists of nodes and arcs, with the nodes often referred to as objects and the arcs as 

links. Link statements fall into types such as IS-A and A-KIND-OF. Schematically 

this is a useful representation but is difficult to generate automatically. 
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Frames are a means of representing knowledge using a table-like structure (see 

Figure 3.4). They consist of slots which contain information about the concept 

described by the frame. Frames are useful for describing a subject which has much 

default knowledge. Rules and pointers to procedures can be placed in slots if needed 

(Giarratano and Riley, 1993). Frames can be linked together in a hierarchy which 

allows lower level frames to inherit characteristics defined in higher level ones. 

Frame data history 
Slots 

Data title 	=road map 
Scale capt 	=50000 
Scale maxuse 	=20000 
Data type 	=vector 
Data source 	=digitized 
Data dimension = [500, 601] 
Data reliab type = perkal 
Date acquired 	= [01 01 1993] 
Data currency 	= [5] 
Locn od 	= [240.0 740.0] 
Locn acc 	= [relative / absolute] 
Routine hisatory = [[compiled [digitized aerial photography]] 10EC gazeteer] 

Endframe; 

Figure 3.4 Part of a frame for storing meta-data (from Miller, 1994, p. 148) 

The choice of a knowledge-base structure is dependent on the type of system being 

developed. Representation in a knowledge-base has traditionally been done with 

frames and rules. This creates problems when dealing with visual knowledge where an 

object is best described in terms of a diagram. 

Despite the problems raised above, the proposed representation to be used in this 

thesis is the IF — THEN rule. Such rules can be applied at both the object and pixel 

level and is verifiable by the domain expert. The advantage of rules over frames is that 

they are a more primitive structure, hence if knowledge is acquired and stored as rules, 

they can be incorporated in a frame-based system by placing them in an appropriate 

slot. To operate in the reverse way would require analysis of each slot in a 

frame-based system. 

It is the role of a knowledge acquisition system to assist in acquiring knowledge to be 

used by an expert system. To be generic the representation needs to be as simple as 
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possible. In a geographic context it is not the function of a knowledge acquisition 

system to identify individual objects and relationships. Instead the objective is to 

provide a representation of the knowledge required to identify individual features and 

relationships. 

3.4 SURVEY OF KNOWLEDGE-BASED GIS AND RSS 

There are three components to this discussion, remote sensing, expert (or knowledge-

based) systems and GIS. In this study, expert system technology will be used to aid 

interpretation of remotely sensed data which will then be used in a GIS. Specifically, 

this study looks at building the knowledge-base. 

Figure 3.5 An integrated RSS, expert system and GIS (after Wilkinson and 
Burrill, 1991) 
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One problem with most GIS is that they contain insufficient image processing 

capabilities to handle remotely sensed data (Hinton, 1996). As a result there is 

normally some sort of coupling with an image processing system. This can range from 

loosely coupled systems where the GIS and image processing system are totally 

separate through to systems with a common interface and finally fully integrated 

systems (Figure 3.5). Most GIS and image processing systems are still at the first 

stage. 

For systems at the first, loosely coupled stage of integration, an image must first be 

preprocessed using the GIS and the resultant raw bands exported to an expert system 

(which must have image processing capabilities). The bands are then processed by the 

expert system and the result, usually in the form of an image, is returned as a new 

layer to the GIS. A knowledge acquisition system operates in a similar way. However 

the results in the form of rules are stored in a knowledge-base rather than being passed 

back to the GIS. 

A customised solution to classifying remotely sensed images is to avoid using a GIS 

altogether. Processing remotely sensed images can be done using an expert system 

acting as an image processing systems with no interaction with a GIS. The expert 

system accepts image input and produces a classified output. Icemapper (Williams et 

al 1994, Williams et al 1997) is typical of such a system. It accepts NOAA AVHRR 

data and performs a rule based classification building up evidence for the 

classifications. This is regarded as a first best guess with a high degree of accuracy. 

The system then allows a user to adjust any thresholds to tune the final image. This 

system does not currently have an independent rule base and is not linked to a GIS. 

Rather it is a stand alone expert image interpretation system. 

Another approach to classifying remotely sensed images is not to use an expert system 

component and to rely on statistical classifiers. A typical approach to classifying 

remotely sensed images has been to use a raster based GIS and some of the standard 

band combination algorithms to do a supervised classification of images on a per pixel 

basis. 
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For example Schotten et al (1995) used ERS-1 (synthetic aperture radar) data and 

SPOT XS to discriminate between agricultural crops in the Netherlands. 

The general approach was to: 

• Derive the geometry of agricultural fields from topographic maps and a SPOT XS 

image and store it in a GIS, 

• Process the ERS —1 data, 

• Classify the images using a supervised maximum likelihood classifier and 

• Store the resulting validated crop type in the GIS 

An overall accuracy and reliability of 80% was obtained. This particular system had 

the added advantage of working with radar data which solved the problem of passive 

sensors being affected by cloud. 

The most flexible systems are those which combine the features of expert systems, 

remote sensing systems and GIS. Hence a system would initially store image data and 

other map data as layers in a GIS. This information would then be processed using 

image processing techniques and the integrated expert system would work on the 

various layers in the GIS. The final results would then be stored in the GIS database. 

An example of such a system is described by Kontoes et al (1993) where SPOT 

images and digitised soil and road network maps were placed into an ARC/INFO GIS. 

All the information was registered and held as data layers. The knowledge-base 

consisted of image context rules and geographic context rules. The result of the 

system was a thematic image depicting crop acreages. 

The processing was done on a per pixel basis using class likelihood from a statistical 

image classifier to produce a first guess, the rules were then applied from the rule base 

to refine the classification. The result using the statistical image classifier alone was 

64.5% overall, increasing to 77.3% over all classes when the rule base was applied. A 

similar system is described by Hartnett et al (1994). 
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Many of the current expert systems in this group have operated on a per pixel basis 

like the two mentioned above. The next generation of expert systems will incorporate 

spatial analysis functions (Openshaw and Clarke, 1996). 

3.5 CONCLUSION 

Most current GIS are not particularly effective in handling remotely sensed data. This 

is partly because most GIS are vector based, while the satellite images are raster 

based. More GIS are now being developed to handle both data forms and convert 

between them. Despite this, GIS tend to lack spatial analysis capability (Openshaw 

and Clarke, 1996). One solution to this is to couple an expert system with the GIS. 

The GIS could perform pre-classification, identifying scene primitives using statistical 

classifiers. The results could then be passed to an expert system to refine the 

classification and perform spatial analysis. The final classified data could then be 

passed back to the GIS. 

To develop an expert system, knowledge acquisition is necessary. Currently this has 

been done either by fully automated (machine learning) techniques or completely 

manual techniques with rules being hand crafted into a customisal system. Future GIS 

will have integrated knowledge-bases and improved spatial analysis capabilities. 
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Chapter 4. TRADITIONAL KNOWLEDGE 

ACQUISITION TECHNIQUES 

The aim of this chapter is to examine established knowledge acquisition techniques 

which have been applied to other domains and investigate their applicability to spatial 

systems. Knowledge acquisition techniques fall into two main categories, manual and 

automated. The manual techniques themselves are divided into direct techniques 

(where the expert is asked directly) and indirect techniques (where the expert is asked 

to carry out a task which can be used to infer the knowledge indirectly). The 

automated techniques are divided into inductive, deductive and neural network 

methodologies. 

4.1 INTRODUCTION 

Traditional knowledge acquisition can broadly be classified into two groups of 

techniques (Figure 4.1). The first group requires interaction with a domain expert to 

extract expertise manually. 

Figure 4.1 Relationship of traditional knowledge acquisition techniques 
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The second group of techniques is associated with machine learning. This chapter will 

describe, compare and contrast the various methods and evaluate their applicability in 

the development of a computer assisted spatial knowledge engineering system. 

Traditional manual techniques are used extensively when working with a domain 

expert in a spatial context. This has not been due to their appropriateness, but rather 

the lack of a visual knowledge acquisition tool. These methods will be discussed and 

it will noted that even with computerised tools, many of the manual techniques are 

still required at various stages during the knowledge acquisition process. 

It should be noted that these traditional techniques are used effectively in non-spatial 

domains and their rejection in a spatial domain in no way suggests they would not be 

useful outside the spatial context. The following discussion will .assume a spatial 

framework and hence a domain expert working with primarily visual stimuli. 

4.2 MANUAL TECHNIQUES 

The term manual techniques is a bit of a misnomer as many of the techniques about to 

be described can have some degree of automation (Price 1990). They all have 

significant domain expert involvement, with the domain expert providing the 

expertise rather than learning from data. They can be classified as direct or indirect 

methods (Olsen and Rueter, 1987). The direct methods normally result in the 

generation of rules from information directly stated by a domain expert. Indirect 

methods result in a clustering of objects in the domain as well as the production of 

rules without directly asking a domain expert to describe or demonstrate problem 

solving methods. 

4.2.1 Interviews 

The classic means of acquiring expert knowledge has been through interviews with 

the domain expert. Much has been written about interviewing techniques and 

interview types (Welbank, 1990). Early checklists for the feasibility of the 
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development of expert systems included statements such as 'An expert must exist and 

be available' and 'The expert should be a true expert' (Waterman, 1986). 

Generally management of the organisation involved or the user representative would 

suggest who the expert in the field was and the knowledge engineer would make an 

appointment to interview them. In practice there is often more than one expert, and it 

is also common that no single expert can cover the entire domain (Medsker et al, 

1995, Barrett & Edwards, 1995). 

Whatever type of expert system is being developed and even if the final technique to 

be used is a machine learning technique, there is a need to inteniew the domain 

expert(s) at many of stages through the development of the system. Interviews with 

the domain experts are therefore an essential part of any expert system development. 

The initial interviews with a domain expert would generally be of the unstructured 

type (VVelbank, 1990) where the knowledge engineer would try to get an idea of the 

scale and scope of the problem. The primary aim of interviewing at this stage is to 

develop a feasibility report. The project would then either continue or be terminated. If 

the project continued the next series of interviews would become more and more 

focused with the knowledge engineer eliciting a series of heuristics which the domain 

expert used in the course of their problem solving. These would be added to a 

knowledge-base. Many early expert systems were developed using, knowledge elicited 

primarily by interview and then hand crafted into a customised expert system. 

The interviewing process has several problems associated with it which led to the term 

'knowledge bottleneck' being coined for problems in the development of expert 

systems (Wooten and Rowley, 1995). They include: 

• Experts who have trouble verbalising what they do, 

• Experts who in practice do something different from what they say, 

• Misinterpretation by the knowledge engineer and 

• Reliance on shallow knowledge. 
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As a result of these problems there has been a move to search for other methods of 

knowledge acquisition. Having stated that, it should be noted that a large percentage 

of knowledge acquisition is still done by the traditional interview technique (Cullen 

and Bryman 1988). This is despite the availability of systems which try to use domain 

experts for only occasional guidance (Sleeman and Fraser, 1996) 

Interviews are an important knowledge acquisition tool for spatial expert systems. 

Initial interviews give an indication of the nature of the problem, the time taken by a 

domain expert to produce a solution and an overview of how that solution is arrived 

at. Problems mentioned above with the technique are compounded in the spatial 

domain since domain experts who manually interpret images normally use the images 

to describe how they work. The problem of verbalising a visual problem and its 

solution is difficult, even for a domain expert who can communicate effectively since 

the method used for gaining and transferring knowledge is not primarily verbal 

Interviews cannot be totally eliminated from knowledge acquisition, even with a 

computerised tool-kit. A four phase approach to interviews has been suggested by 

Wooten and Rowley (1995) The phases are: 

• Descriptive Elicitation where the knowledge engineer is learning the domain, 

language and important cues and labels used by the domain expert, 

• Structured Expansion where relationships between domain concepts are expanded, 

• Scripting where the procedural knowledge of solving the problem is studied and 

• Validation where the knowledge acquired is assessed for accuracy. 

This kind of interview strategy is necessary in the development of spatial expert 

systems. However, a combination of this strategy with some of the other methods 

discussed below is needed to be fully effective in a visual domain. 

4.2.2 Observation And Protocol Based Analysis 

Observation is the technique of watching the expert in action as he or she solves a 

problem (Neale, 1989). On its own this may not be particularly useful as the 

knowledge engineer may not be able to interpret what the domain expert is doing. 
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Protocol analysis involves one extra step where the domain expert is encouraged to 

verbalise decisions taken on the way to a solution (Burton et al, 1987). 

Observation and protocol analysis overcome one of the problems mentioned in 

interviewing, that of the expert actually using different heuristics when solving a 

problem as compared with those used when asked to state how a problem was solved. 

Senjen and Mee (1993) used the technique of participant observation where a 

knowledge engineer became part of the domain experts team for an extended period of 

time. The advantage was that they became familiar with the way the expert operated 

and the cultural setting they operate in. 

There are still disadvantages however. The knowledge engineer being on site when an 

'interesting' case occurs (which may be quite rare) is not always possible unless the 

knowledge engineer is also on call when the expert is on call. One way around this is 

to get the knowledge engineer to redo some atypical or interesting cases with the 

domain expert. in some case this may still have the problem of removing some of the 

stimuli which may have been present during a 'live' problem solving session. The 

expert may have revised their method because of hindsight, specific atypical cases 

being the ones that are most likely to be remembered. 

For spatial systems, observation of the experts problem solving technique is a useful 

method because historic images are usually available and their interpretation would 

not normally be different from that of a 'fresh' image. The domain experts can also 

describe what they consider to be both typical and interesting cases. Building a 

computer assisted observation/protocol function is difficult since observation usually 

means looking at and recording. However it may be possible to present a digitized 

image and by a combination of other techniques be able to `record' the actions 

undertaken by the expert, in effect 'observing' the techniques being used. The 

philosophy behind this knowledge acquisition technique could be applied to a 

graphical spatial acquisition tool and will be expanded on in chapter 5. 

Interrupt analysis is a variation on observation where a domain expert continues with 

a task until they get to a point that the knowledge engineer does not understand, at 
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which point they are interrupted. The methodology then moves towards the interview 

techniques. The obvious disadvantages of this method is that it can only be done on 

past or hypothetical cases. Once an interruption has occurred it may be impossible for 

the expert to resume the consultation. In the case of spatial systems where there is the 

ability to use images in a less pressured environment this technique can be very useful. 

Once again building a computer assisted tool to perform interrupt analysis is difficult 

as the expert is expected to operate in a verbal way interpreting what they see on an 

image or group of images. Hence a mechanism which allows the recording of the 

experts manipulation of an image would be most appropriate if this type of tool was to 

be included in a tool-kit. 

A variation on protocol analysis is the technique of asking the domain expert to draw 

closed curves. This techniques has a lot of promise for any spatial system as it requires 

the domain expert to delineate objects or areas in two dimensional space. By drawing 

a curve around related objects experts can indicate examples of spatial relationships. 

Considering this kind of operation is the basis of any spatial system, it makes sense to 

use it or some derivation of it to develop a geographic knowledge acquisition system. 

In a computer-aided system an expert could do this in two ways. Firstly the expert 

could use a mouse-driven program to outline a specific spatial object. A problem 

could occur if the object boundaries are not clear cut. This method only defines the 

boundaries of objects and says little about the characteristic of the object itself. A 

better method may be to get an expert to 'point' to a typical example of a spatial 

feature and used the information from that point (subject to appropriate thresholds) to 

find similar areas. That is the expert determines what to look for and the system then 

finds similar areas, effectively drawing closed curves. These can then be reviewed by 

the expert and thresholds adjusted where necessary. Rules and objects could then be 

generated based on the threshold information. Finally the most important thresholds 

could be identified by the domain expert. 
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4.2.3 Repertory Grid Analysis 

One of the most popular indirect knowledge acquisition techniques is repertory grid 

analysis, which is a technique derived from Kelly's (1955) personal construct theory. 

It is the basis of a number of computer assisted knowledge acquisition tools such as 

AQUINAS (Boose & Bradshaw 1987). 

The theory of personal constructs was proposed in the context of psychotherapy. In 

terms of clinical psychology a patients personal-social behavior is influenced by their 

internal representation of their feelings towards other individuals who play an 

important role in their life. These feelings are developed based on past interactions, 

experiences and perceptions. These internal representations were elicited by Kelly 

using repertory grid techniques, with treatment being based on the results. (Garg-

Janardan and Savendy, 1990). 

Perceptions are represented by what Kelly called constructs. Constructs are bi-polar 

concepts which can be used to discriminate between events. That is, similarity or lack 

of similarity can be represented. These events are called elements and can be objects, 

situations or even individuals. With a group of elements, inter-element similarities and 

differences are perceived. Based on past experiences new or current elements are rated 

according to the constructs. Constructs themselves are interrelated and may be 

represented by hierarchies or networks. 

This theory has been validated by several researchers, including Mair (1966), and it 

has been concluded that: 

• Individuals do represent their environment using constructs, 

o Constructs are organized in interrelated structures which change from time to 

time, 

• The repertory grid technique elicits these constructs accurately and reflects the 

changes in an individuals construct system over time and 

• The grid technique elicits the true structure and organization of the individual's 

construct system. 
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For use in expert system construction, experts are required to identify discrete region 

classifications (elements) which become the column headings of the grid. Groups of 

three of these are then taken and the expert is asked to identify what differentiates one 

from the other two elements. These differentiates are known as constructs. All 

elements are then rated against the construct as either totally belonging or not 

belonging to groups on a scale of 1 to 5. This construct then becomes the label for a 

row of the grid. Cluster analysis (such as Johnson hierarchical clustering, Olson and 

Rueter, 1987) is used on the two dimensional grid which results. Patterns and 

associations of the elements and constructs are identified and rules are generated. 

Rules can be generated by concentrating on extremes of rating in grids. For example 

with a grid based on a bi-polar rating of 1 to 5, rules would concentrate on concepts 

which were at the extremes. These can be refined by finding the concepts which are 

best at differentiating between elements. To this end the between-concepts and 

between-elements matrices are of use. Elements which are very dissimilar are easy to 

distinguish between. Elements which are very similar on the other hand are more 

difficult. Hence although a computerized system can automatically generate initial 

rules, there is still the need for a human expert to refine these rules. 

The analyzed grids can be inspected and new concepts generated for grouped concepts 

which are similar. For example with two (or more) concepts at a very high level of 

similarity as distinguished by cluster analysis, the expert could be asked to name a 

new concept which incorporates those being grouped. Once this has been done more 

rules can be generated to better reflect the experts reasoning. 

It should be realized that the grids generated are dynamic and it should be possible for 

a domain expert to add both new concepts and elements. It should also be possible to 

combine the knowledge of several domain experts held in several grids into a single 

grid (Boose and Bradshaw, 1987). This can be done by identifying similarities and 

differences between experts grids. One would expect some of the elements identified 

by multiple experts to be in common as would some of the concepts (however labels 
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could be different). On the other hand, the more experts involved, the more chance 

there will be dissenting opinions (Gaines and Shaw, 1993). 

Within a GIS this technique has significant promise as an alternative or complement 

to classifying with graphical tools and as a means of identifying deeper knowledge. 

Different spatial areas can become the basis of the elements and serve as the prompts 

to get the domain expert to distinguish between them and generate constructs. Spatial 

relationships may also be elicited with size, orientation and proximity being concepts. 

Knowledge and rules about the expert's methods can therefore be generated, even 

though the expert may have trouble verbalizing knowledge in a traditional interview 

session. 

One problem with using a single grid to represent a problem is that it can becometoth 

unwieldy and tedious for an expert to use when eliciting constructs and also when 

rating those constructs against elements. Therefore a hierarchy of grids can be 

developed. This is particularly useful in classification of complex images where one 

region may be subdivided into subregions. 

The advantage of a repertory grid is that it can be regarded as a computerised 

structured interview manager. When coupled with a graphical user interface where 

images can be directly used for prompting and manipulation, it can be a useful 

addition to a tool-kit and should be incorporated. A full discussion of the 

implementation of this tool will appear in a later chapter. 

4.3 AUTOMATED TECHNIQUES 

Machine learning has been seen as the solution to the problem of the knowledge 

acquisition bottleneck (Cullen and Bryman 1988). Two general approaches are used in 

machine learning. The first is the inductive approach where rules are extracted from 

representative example data and secondly there is the deductive approach where 

knowledge is deduced from theories or rules. Some systems combine the two 

approaches. Artificial neural networks are automated knowledge acquisition 
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techniques which are based on processes thought to underlie the operation of neurons 

in a biological brain. 

4.3.1 Machine Learning 

Rule induction is a machine learning technique where a program is supplied with a 

table of examples which it then uses to create a decision tree. That is a process of 

general inference from particular instances (Jeng et al, 1996). The data used to create 

the table is known as training data. The decision tree is then applied to other data and 

the results analysed for accuracy. 

Kodratoff et al (1994) identifies three goals for machine learning applications which 

are intended to: 

• Detect similarities in a data set including clustering and pattern recognition, 

• Acquire knowledge to revise and complete knowledge-based system or create a 

model and 

• Classify data into appropriate categories. 

All of these have applications to the visual geographic knowledge domain, especially 

in identifying scene primitives. The first goal includes pattern detection where pixels 

are clustered. The last goal, classification, on the other hand starts with a given set of 

classes and assigns pixels to the most appropriate class. 

Quinlan's ID3 (Quinlan 1986) algorithm is the most often quoted example of these 

techniques where a set of example cases are taken and converted into a decision tree 

to differentiate between cases. The objective is to determine a decision procedure 

which will allow entities to be assigned to categories or classes on the basis of 

attribute classes. This technique has been very successful where there is a large 

training set and significant criteria have been hard to find. The main problem occurs 

when some of the important examples are not included in the training set. Another 

major problem of particular significance to a remote sensing domain is noise (errors) 

in the training set (Vrtacnik and Dolnicar, 1995). 
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Rule induction has been used in situations where there has been a spatial context. 

Kumar et al (1994) used Quinlans C4.5, the descendant of IlD3, to induce rules about 

weather forecasting. The results were competitive and matched human forecasters in 

performance. The results were a forecast of occurrence and depth of rainfall rather 

than a map, so the applicability to the current study is limited. Another limiting factor 

is the amount of ground truthed training data available. In Kumar's study a 10 year 

data set of 2,663 items were available, as was a 30 year data set. In many case data 

sets over this sort of time period are difficult (and expensive) to acquire. 

A second use of rule induction has been to take a training set of data to improve an 

expert system which had already been built by domain experts to classify salinity 

(Eklund and Salim, 1993). As well as reorganising and improving the performance 

and efficiency of the expert system the technique was able to discover new domain 

knowledge in the form of classifiers. This system also used C4.5 and achieved an 

order of magnitude improvement over the user developed system. 

Another approach to machine learning has been rule deduction which is based on 

applying general rules to specific situations. For example the general premise: 

Anyone who can program is intelligent 

And the specific premise: 

Paul can program 

Can be combined using deduction to conclude that: 

Paul is intelligent 	(from Giarratano and Riley (1994), p120) 

This can be very useful in a when a large body of knowledge is available and also 

forms the basis of explanation based learning (Arciszewski and Ziarko 1992). Systems 

of this type developed in the spatial domain include Palermo, (Matwin et al, 1995) a 
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system which uses transformational analogy, derivational analogy and goal regression 

to develop forestry management plans. Transformational analogy, also known as case 

based reasoning adapts solutions from similar problems. Derivational analogy uses 

cases to choose among competing directions along search paths. Goal regression is a 

search based problem solving approach. 

4.3.2 Neural Networks 

Neural networks are based on the supposed neuron structure of the brain (Openshaw, 

1993). The brain consists of an extremely large network of highly interconnected 

neurons with each neuron being a simple summative device. The main feature of 

artificial neural networks are their ability to learn from training examples enabling 

them to be used as a form of automated knowledge acquisition technique. 

Figure 4.2 Multilayer feedforward artificial neural network for land type 
classification (Leung, 1997, p205) 

There are several different implementations of neural networks which fall into two 

main categories, feedforward nets and recurrent nets (Leung, 1997). A simple 

feedforward net is shown if Figure 4.2. The input layer consists of values presented to 

the network. In Figure 4.2 this is a pixel by pixel input from the available image bands 
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and other layers from a GIS. The output layer contains the classification types for the 

image. Hidden layers encode intermediate objects or variables. 

Recurrent schemes have feedback as well as a feedforward connections. In other 

words there are connections back from intermediate nodes. Two variations are 

bidirectional associative memories (Leung, 1997) and Hopfield nets (Raghu and 

Yegnanarayana, 1997). 

In theory a neural network can be trained to represent and model almost any complex 

system, no matter how difficult the task may appear to more conventional approaches. 

They can be taught to recognise patterns and analyse data by letting the data define the 

structure within it (Openshaw et al, 1991). 

Neural network techniques have been used for classification of remotely sensed 

images with varying levels of success. However Skidmore (1995) states the often 

quoted advantages of neural networks "such as parrallelism, speed and trainability, 

were more than negated by the variable and unpredictable results we generated". 

Better results were obtained by Carpenter et al (1997) who used a neural network 

based on adaptive resonance theory. A hybrid system incorporating maximum 

likelihood classification gave results of 60% accuracy. This does not however 

compare well with expert system approaches, for example Skidmores (1989) Eucalypt 

Forest classifier which achieved a 75% accuracy. 

Despite this apparent poor performance, neural network technology does hold promise 

(Civco, 1993). A possible use of this kind of processing is to use the results as a first 

guess from which an expert system can be developed (Khosla and Dillon, 1993). It 

would then be up to the domain expert to make adjustments where they saw fit. 

4.3.3 Supervised versus Unsupervised Methods 

The first step in supervised training is to generate examples from a manually outlined 

group of pixels on a multispectral image. These groups are representative of the 
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various land cover types present in the image. This is the training stage. Next, in the 

classification stage, these serve as input to the machine learning algorithms or are used 

in other classification methods (Sabins, 1997). There are many classification 

techniques which can be used and they include: 

• The Minimum Distance to Means Classifier, 

• The Parallelepiped Classifier and 

• The Gaussian Maximum Likelihood Classifier. 

(Lillesand and Kiefer, 1994) 

Unsupervised classifiers do not use training data as the basis for classification. 

Unknown pixels in an image are aggregated into classes based on natural clustering. 

They are classified on purely spectral information. The image analyst is then required 

to compare the results with some reference data to assign labels to the classes. There 

are numerous clustering algorithms which can be used for unsupervised classification 

(Lillesand and Kiefer, 1994). 

4.3.4 The Importance of Training Data 

One of the strengths of a remotely sensed data set is that it represents a complete 

spatial population. However the data set used for training a machine learning system is 

usually a spatial sample. That sample must be chosen with care (Curran and 

Williamson, 1986). Machine learning techniques are dependent for their accuracy on 

the quality of the training data rather than on the algorithm used for classification. The 

training data set needs to be representative of the whole area to be classified. The 

populations of pixels used for training must be statistically significant and follow a 

Gaussian distribution. (Buttner et al, 1989). This means that there is a need to know 

the minimum number of observations required to characterise a particular site to an 

acceptable level of error. 

—• 
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4.4 COMBINATION OF KNOWLEDGE GAINED FROM MULTIPLE 

TECHNIQUES AND MULTIPLE EXPERTS 

One problem with using a variety of techniques for knowledge acquisition (or using 

multiple domain experts) is that a series of knowledge-bases will be developed. At 

some stage inconsistencies between these knowledge-bases needs to be resolved. In 

the SPARTEX system multiple knowledge-base structures are used to refine 

classifications (Crowther et al, 1994), but the knowledge in those knowledge-bases is 

consistent. It is very probable that the knowledge generated by a tool-kit using 

different tools at different times with different experts interpreting different images 

will be in conflict. 

Although many early practitioners recommend a single domain expert for knowledge 

acquisition (Boy, 1996), using multiple experts has many advantages (Crowther 1992) 

including: 

• No one expert knows the total domain, 

• Experts have complimentary knowledge, 

• Experts can prompt each other and 

• Experts can validate each others knowledge. 

Chao and Salvendy (1994) did a statistical study and concluded that an optimum 

number of experts from whom up to 90% of knowledge could be extracted was 3 to 4 

depending on which techniques were being used. Where experts have complimentary 

rather than overlapping knowledge, combination of knowledge-bases is relatively 

straight forward. Overlapping knowledge however requires aggregation and 

consolidation (Mak et al 1996) 

Problems can arise where knowledge from multiple experts is to be combined and 

there are dissenting opinions. It should be noted that the dissenting opinions are not 

necessarily wrong but may be an alternate way of regarding the domain under 

investigation. Techniques including repertory grid analysis can take this into account. 
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It should also be noted that the more experts there are involved, the more chance there 

is of dissenting opinions. 

Repertory grids have some well defined methods to combine grids developed from 

several experts. The result is a single knowledge-base that is a combination of 

knowledge. 

Other traditional approaches to knowledge consolidation include Dempster-Shafer 

theory, certainty factors and fuzzy logic. In Dempster-Shafer theory evidence is 

reinforced for a particular solution. Certainty factors require a domain expert to assign 

a level of certainty to outcomes, or this can be done computationally. Fuzzy logic 

allows the development of fuzzy sets to represent boundaries where there are no crisp 

delineations. 

The Group Elicitation Method or GEM (Boy, 1996) is a six phase process for use with 

multiple experts consisting of the following steps: 

• Develop a statement of the problem and choose the group of problem solving 

experts, 

• Generate of viewpoints from the participants, 

• Reformulation the viewpoints into more elaborate concepts, 

• Generate relationships between concepts, 

• Derive a consensus and 

• Critically anal* the results 

The Delphi Technique mentioned by DeMers(1986) is used for eliciting and 

processing the opinions of a group of experts. Attributes identified by experts are 

compared pairwise and ranked. These rankings are then weighted and a group ranking 

calculated. The results are then presented to the experts for reevaluation. The process 

is continued until all domain experts agree on the final attributes. 



Both of these techniques require the multiple domain experts to be present at the same 

time. They require verbal interaction between participants. This is one of the problems 

discussed by Medsker et al (1995) who found that knowledge acquisition and 

consolidation was more complex with multiple experts who were dispersed (and could 

not meet face to face). 

Mak et al (1996) suggests using more machine centred methods, ranging from 

machine learning techniques and neural networks discussed above through to 

discriminant analysis. Discriminant analysis is used in two group situations. A linear 

combination of the set of group characteristics is developed which will provide the 

maximum differentiation among the groups. 

4.5 KNOWLEDGE ACQUISITION AND GIS 

GIS have several unique problems when compared with other systems. Many of these 

were discussed by Srinivasan and Richards (1990a). The main problems identified by 

them relate to multi-source data. First there is the data picked up from sensors with 

differing characteristics. For example Landsat and SPOT satellite data have different 

resolutions and use different wavelength bands. The number and variety of sensors is 

likely to increase further in the future, adding to the complexity. The two satellite 

systems rarely produce images on the same day so even when they are geo referenced 

there may be anomalies due to changes on the ground (for example harvesting). 

Secondly there is the desire to add what the authors describe as 'ancillary' sources 

which include topographic information and existing maps, but could also include 

domain expert generated heuristics. 

Another consideration with knowledge acquisition is that no one approach will work 

all the time. Instead, a tool-kit needs to be assembled which will allow a knowledge 

engineer to acquire knowledge-based on the situation, the expert, available time and 

possibly the domain (Trimble and Cooper 1987). Further it may be necessary to plan 

the knowledge acquisition based on the above factors. In traditional knowledge 

acquisition this would start with interviews (which almost always will be necessary, 

even in a spatial domain) and then move on to literature searches, repertory grids or 
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more interviews. The initial set of interviews, which would normally be carried out 

during a feasibility study, would then point the way to other more appropriate 

knowledge acquisition strategies. 

In most geographic applications an expert will start analysis by viewing some form of 

two dimensional image representing a ground area. This image may be an actual 

image created from one or more sensor bands on a satellite, or a histogram 

representation of the actual image. Various areas will then be defined as belonging to 

various classifications. Expertise can be captured directly from closed curves drawn 

on the image or picking spectral threshold values from the histogram. However this 

technique may only capture a proportion of the experts knowledge. 

Other knowledge acquired by the expert through experience may be non-visual. Such 

unstructured heuristics are important and need to be captured. There may also be 

calibration algorithms and other theoretical knowledge that needs to be added to the 

knowledge-base. 

It may be possible to develop some form of focused session based on what was 

produced by the closed curve exercise. This would involve asking the expert why a 

particular region was classified as such, perhaps presenting readings from other 

sensors and asking for range limits. It may also produce the basis for some form of 

grid (Boose and Bradshaw 1987). It should however be up to the expert (or knowledge 

engineer) to decide which method of acquisition should be used and what order the 

other tools should be used in. As part of the process there should also be some 

consistency check so conflicting knowledge can be detected and resolved as early as 

possible. 

The approach taken in the SPARTEX system (Williams et al 1994) has been to 

develop a series of rule groups which refine initial image data to a final solution. 

Based on this approach it may be possible to use different tools to develop different 

knowledge-bases which are then linked. It should also be possible to capture 

knowledge in a form which the system can use almost directly (for example CLIPS 

rules). It will however require a specialised visual knowledge acquisition tool. 
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4.6 	Conclusion 

Traditional knowledge acquisition tools have been used successfully to develop expert 

systems for use with GIS and RSS data. Of these, the fully automated techniques of 

rule induction and neural networks have been used most consistently. The manual 

techniques, particularly interviewing, protocol analysis and closed curves, have been 

used to develop hand crafted expert systems which have been quite successful. 

Repertory grids seem to be a particularly useful tool to be included in a geographic 

knowledge acquisition tool-kit (Waters, 1989). This technique provides a non-visual 

means of requiring a domain expert to distinguish between geographic features. Such 
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	a system can be used in a structured interview by asking a domain expert to identify 

features, then to identify the means of distinguishing between them. 

User interaction is also necessary for automated techniques. Although machine 

learning techniques have been integrated with non-automated techniques (Nedellec, 

1995) it is not the aim of this thesis to investigate this aspect. The emphasis here is on 

interaction with the domain expert. In spite of this there needs to be a mechanism to 

couple with machine learning systems. To achieve this, a mechanism to allow an 

expert user to develop and acquire training data should be included, particularly for 

supervised systems where training pixels need to be isolated and labeled. Hence a tool 

which can either randomly or systematically select and label training data should be 

included. 
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Chapter 5. THE SPATIAL KNOWLEDGE 

ACQUISITION PROCESS 

This chapter investigates the process necessary to acquire spatial knowledge and the 

techniques needed. It is shown that different tools and techniques are required to elicit 

knowledge in the six classifications described in section 2.7. These tools are 

integrated into a knowledge acquisition tool-kit, KAGES (Knowledge Acquisition for 

Geographic Expert Systems), which will be described in Chapter 6. The scenarios 

used to evaluate the knowledge classification scheme and the KAGES tools based on 

it are introduced. 

5.1 INTRODUCTION 

Much of spatial or geographic knowledge is visual. Hence it is natural for a user to 

• show or draw things on a map or image. A spatial knowledge acquisition tool 

therefore needs to be able to directly capture the expert image interpreter's actions 

from their manipulation of the image. 

Not all spatial knowledge is visual however. An image interpretation expert may use 

heuristics to identify a feature or confirm its existence. Likewise knowledge of 

algorithms is not visual. These types of knowledge have traditionally been acquired 

by interviews. Interviews however have severe limitations (Section 4.7.1) and a more 

systematic method of knowledge acquisition is required. 

5.2 SCENARIOS FOR ASSESSING SPATIAL KNOWLEDGE 
ACQUISITION 

Two scenarios were chosen for detailed testing of the knowledge acquisition 

methodology, the type of knowledge it generated and user reaction to an interactive 

knowledge acquisition tool. 
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The two scenarios involved the development of :- 

• An Antarctic sea ice classification system and 

• A system for differentiating agricultural crops and land use in Tasmania. 

Results obtained in these two scenarios were used to demonstrate the capabilities of 

the methodology and the potential for using the knowledge acquisition tool-kit in 

other remote sensing domains. 

5.2.1 Antarctic Sea Ice Classification 

The knowledge acquired using the knowledge acquisition methodology in this domain 

was compared with that acquired for a system called Icemapper which was developed 

using traditional knowledge acquisition techniques (Williams et al, 1997). 

Figure 5.1 Context of Antarctic study area (from 'The Frozen Continent', The 

Sunday Age, 6th  April 1998) 
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Icemapper is an operational expert system used for identifying sea ice features in 

Antarctica. The system has a number of objectives. Of immediate concern is the 

location of open water leads and thin ice which can be used by the Australian National 

Antarctic Re earch Expedition (ANARE) supply vessel. Other uses for Icemapper 

include global warming studies based on the seasonal expansion and contraction of 

sea Ice. 
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Figure 5.2 Antarctic study area: An area in Vincennes Bay near Casey Station. 
Note South is up the page. Taken from a NOAA A VHRR band 1 image viewed 
using KAGES 

It is a stand alone system developed in IDL (Interactive Data Language) and is not 

tied to a GIS. However it serves as a useful standard because the rules encoded in the 

system were acquired by interview and protocol analysis and by searching the 

literature for appropriate algorithms. In terms of the proposed knowledge 

classification scheme, the knowledge in Icemapper is of the Primitive and Non-Visual 

Algorithmic type. 

68 



The data used in this field scenario is from an area around Australia's Casey Antarctic 

Station in Vincennes Bay (Figure 5.1). The area is depicted using NOAA AVHRR 

images (Figure 5.2). An image interpretation expert (the same one used for the 

original Icemapper rules) was available to both use and comment on the KAGES 

approach, as well as to advise on the rules which were produced. 

5.2.2 Crop Recognition 

Knowledge for crop recognition is to be used in a local crop mapping project called 

the Multi-Temporal Imaging for Remote Sensing of Crops Project, (MIRC). The 

MIRC project is primarily GIS based. The study is based in an area of Northwest 

Tasmania around Table Cape (Figure 5.3). In 1996 a series of Landsat TM and SPOT 

satellite images (Figure 5.4) were obtained of the region which consists of sea, forest, 

agricultural land and urban development (the township of Wynyard). 

Figure 5.3 Context of study area for MIRC 
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The objective of the MIRC project was to create a system which could differentiate 

between the various crops being grown in the region. This would be used to give an 

indication of the relative areas under different crop types. Crops grown in the region 

include poppies, peas, potatoes, carrots, onions, brassicas, pumpkins, cereals, beans, 

pyrethrum, tricalate and corn, much it for the processing and export industry. A future 

development of MIRC will be to extend it to include the recording of crop health. 

This project was significantly different in method from the Antarctic project because 

there were no expert satellite image interpreters available. As a result KAGES was 

initially used as an image analysis program. The rules for crop discrimination which 

were generated were then checked against ground truth and against an independent 

classification study using a statistical classifier (details in chapter 7). 

Figure 5.4 The MIRC study area as seen on band 1 of a SPOT image taken on rd 
November 1994 using the KAGES tool 
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5.3 PRIMITIVE KNOWLEDGE ACQUISITION 

The basic components of any spatial system are its scene primitives; basic units which 

cannot be further subdivided into smaller units and which together constitute a scene. 

These are the basic building blocks that are used for reasoning about relationships in 

scenes. Scene primitives are point, line or areal objects which cannot be further 

subdivided into other objects. They are initially identified by their spectral signature. 

While this identification method using spectral signatures is quite well developed it is 

not totally reliable (Wilkinson,1996). 

5.3.1 Knowledge of Areal Features 

Areal feature primitives are two dimensional objects identified within a band or band 

combination of a remotely sensed image. They have characteristics which make them 

homogenous in terms of their pixel value. The usual way for a classifying expert to 

identify them is to point at them then study their spectral characteristics. This is 

generally done with reference to a histogram of pixel values for the image as a whole 

and of the object in particular. 

Figure 5.5 Minimum Bounding Rectangles. The example on the right has a true 
MBR superimposed. 

Because of the often irregular nature of the boundaries of areal objects, there is a need 

to provide some generalised description of their extent. At the simplest level this is 

done with a minimum bounded rectangle (MBR) (Chang and Jungert, 1996). An MBR 
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YB 

(Figure 5.5) has its boundaries parallel to the vertical and horizontal axes of the 

image, thus ignoring the orientation of the object. Hence a long thin object at 45 

degrees to the axes has a very large MBR compared to its actual area. Despite this 

they can be used to produce topological relationships for example the 2D Projection 

Interval Relationship (2D-PIR) described by Nabil et al (1995). 

2D-PIR would represent each relationship between spatial objects A and B as an 

ordered pair (z ty), where x is the relationship between the objects along the X axis 

and ty is the relationship along the Y axis. To write a string each of the various 

constructs of Allen Intervals (discussed fully in section 5.3) is given a symbol to 

describe the j and tif relationships. Hence in Figure 5.6 a relationship between A 

and B would be represented as (<, 0) with < meaning A is before B on the X axis, 

and 0 meaning A overlaps B on the Y axis. 

A 

	

4-* • 	 
XA 	 XB 

Figure 5.6 A 2D-projection picture (after Nabil et al, 1995) 

A further refinement is to use true MBRs whose boundaries are governed by an 

orientation angle (Nabil et al, 1995). To provide an even more accurate description a 

vector polygonal structure can be used (Jungert, 1993). 
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In this study simple MBRs will be used for the following reasons 

• Simplification of calculation, 

• Simplification of display and 

• Orientation is not definitive of all objects and can be calculated when required. 

5.3.2 Knowledge of Point Features 

Point features are generally subpixel and are defined in terms of an absolute location. 

They may also be defined in terms of interaction between two other features (Palmer, 

1984). For example a level crossing (point) can be defined where a road (line) crosses 

a railway (line) or an entrance gate (point) where a road (line) enters a national park 

(area). Much work has been done in producing semantic descriptions of this type of 

point feature (Gould et al, 1996). A visual rather than semantic representation may be 

more universally applicable. That is the appearance of a spatial relationship may. _ 

identify an object rather than its name. 

From the above discussion it can be seen that point features can be defined in two 

ways. Firstly an expert classifier can point to where the point is, or in a geo-referenced 

system where a pixel's actual location is known, give its actual location. One problem 

with this second method is it is subject to error of up to 100 meters (Harris, 1997), 

even if a state-of-the-art Global Positioning System (GPS) is used. This error can be 

reduced to a meter if the differences from a known ground station are used. 

5.3.3 Knowledge of Line Features 

Lines are one dimensional objects when considered in terms of image processing. 

Generally they are an object which is very narrow, often only a pixel wide (Laurini 

and Thompson, 1992). Occasionally, as in the case of a boundary they may be zero 

pixels wide with definitions being in terms of the two objects which meet. A second 

more important attribute is that they are many orders of magnitude longer then they 

are wide. It should be noted that there are occasions were the difference between line 

and areal objects is difficult to state. For example where a river widens near its mouth, 
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or where a road becomes significantly wide when a zoom function is used. For the 

purposes of this thesis the original definition of a feature a few pixels wide or less will 

be used. 

Line objects can be of several types. They can be a simple line which is at least a pixel 

wide with pixel characteristics such as reflection. For this type of line there are a 

number of line following classifiers available (e.g. Gruen and Li, 1995). This type of 

classifier uses actual pixel values to follow a line from some user defined staring 

point. The result is a set of pixel locations (which can be quite large). 

A second type of line object is one which is a boundary and hence is subpixel. Again 

there are a number of algorithms which identify these type of lines by edge 

enhancement (Drewniok, 1994). These edges can be stored as a series of raster points 

in a data set. 

The third type of line is human defined and generally is related to some socio-political 

boundary. Examples include international and state political boundaries and cadastral 

data including such things as the location of local government services and private 

land boundaries. 

For non-straight lines which are identified using a line following algorithm a pixel by 

pixel trace is generated producing a raster data set of points identifying the object. 

Storage can be saved in the case of fixed lines which are wide enough to have a 

spectral signature by storing thresholds, an end point and a location so the line can be 

regenerated. Temporally varying lines such as cloud edge shadow also need 

information identifying which image they came from. For these objects, data needs to 

be stored so the whole line can be regenerated. 

Straight lines are easier to deal with and are better suited to vector representation with 

end and intersection points being stored. A very sinuous line or one which requires the 

actual feature to be represented are better defined as a raster representation. This of 

course can cause problems when a vector based line and a raster based line are 

compared. A solution is to convert the vector representation of the feature to a raster 
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representation. The system which will be described in chapter 6 uses both raster and 

vector representations and does conversions where necessary. 

5.4 RELATIONSHIP KNOWLEDGE ACQUISITION 

Relationship knowledge acquisition is a process which allows users to select pairs of 

scene primitives and generate their spatial relationships. These relationships include 

the degree to which one object overlaps another and its proximity and orientation with 

respect to the other object. By-products from the process may be more scene 

primitives (for example point objects where lines intersect other objects, or line 

objects where two areal objects have a boundary). (Palmer, 1984). The spatial 

relationship between two objects may also add evidence to the classification that one 

or both of the objects has been assigned. 

A common method of comparing the spatial relationship of two objects uses Allen 

intervals. Allen intervals have both a spatial and a temporal dimension to them. 

The temporal relationships are: 

Before 	 Meets 

Overlaps 	 Finished By 

Contains 	 Equals 

Started By 	 Starts 

During 	 Finishes 

Overlapped By 	 Met By 

After 

For example, in agriculture, a field that has been cropped can have the temporal 

relationships MEETS to show its transition to fallow. Fallow is also AFTER cropping. 

Hence a rule developed from successive images during the cropping period would 

determine that fallow would be a valid classification if the previous classification for 

the same paddock was a specific kind of harvestable crop. 

Although temporal relationships will not be used directly in the spatial tool, but these 

types of intervals will be used in an associated database which will later be used to 
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extract historical data (Appendix B). This data will then be used to develop a 

temporal knowledge-base. 

- 

- = 

	

Disjoint 	 Contains 	 Inside 	 Equal 

11  

	

Meet 	 Covers 	 CoveredBy 	Overlap 

Figure 5.7 The eight relations between two regions (Egenhofer and Sharma, 
1993) 

The spatial relationships of Allen intervals are shown in Figure 5.7. For example in an 

agricultural system most paddocks MEET another paddock, but rarely OVERLAP. 

However a paddock may be subdivided so the super-paddock may CONTAIN two or 

more sub-paddocks. Lastly a paddock may be COVERED BY cloud. 

There are numerous spatial logic methods based on these relations, for example Cui et 

al (1993), Clementini et al (1993), Chang and Jungert (1996), Smith and Park (1992) 

and Grigni et al (1995). All of these present a script for describing spatial 

relationships. The one problem with all of these is they provide a script which is ideal 

for computerised reasoning but has drawbacks for knowledge acquisition where a 

domain expert needs to verify, preferably a plain English statement, what the system 

is interpreting as their actions. 

Orientation of one object in relation to another can be considered in several ways. One 

way is from a view at a point on an image. For example one object can be behind 

another object or left of an object (Hernandez, 1993). Another method is to use 

compass directions when describing the orientation of one object in respect to another 

as suggested by Antony and Emmerman (1986), Freksa (1992) and Sharma and 
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Flewelling (1995). Various parts of objects have been used to calculate orientation. 

These include using object centroids, the corners of their MBRs and intersecting 

sectors (Sharma and Flewelling, 1995). In all the papers reviewed, orientation was 

specified to within 45 °. The directions defined were north, south, east, west, north-

east, south-east, south-west and north-west. 

Most reasoning in images is in terms of areal two-dimensional objects. Inclusion of 

line and point objects complicates reasoning considerably. In the simplest case a line 

or point can be completely disjoint from an areal object or it can be contained within 

an areal object but not touching a boundary. In the first case reasoning about the 

proximity of the nearest point of a line and the orientation of the line relative to the 

areal object is fairly straight forward, as is reasoning about a point. Special cases 

include a line that is disjoint from an area but encloses it (for example an airport 

perimeter road). 

Lines are particularly complex. Consider, for example, a road following a field 

boundary. In this case there are no pixels in common between the two objects (hence 

they are disjoint); however there are pixels adjacent to each other. Since they are not 

all adjacent, a system would conclude that the road partially follows the field 

boundary. 

In the case of a line or point enclosed in an areal object (Figure 5.8 (b), (h)) it is 

possible to reason about the location of the line or point within the object relative to 

its centroid. Hence the line or point object may be in the south east quadrant (Figure 

5.8 (h)). 

The most complex relationships occur where a line interacts with the boundary of an 

areal object. A line may bisect an area (Figure 5.8 (e)), start/terminate in an area 

(Figure 5.8 (d)), start/terminate on a boundary (Figure 5.8 (a)) or a combination of the 

previous two (Figure 5.8 (f)). With these there is a simple interaction at the boundary 

with one or two contact points. More complex interactions occur when a line touches 

but does not terminate at or enter an area (Figure 5.8 (c)), a line follows a boundary 

for all or some of its length and a line continuously passing in and out of an area. In 

this regard, if the pixels on the boundary of the area are considered to be a line 

feature, a reasoning method for two lines could be used. 
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Figure 5.8: Some spatial relationships between line, point and areal objects 
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Fence 	 Gate 

5.4.1 The Problem Of Three Objects 

In many cases point objects are defined in terms of the interaction of  two  of the other 

classes of object (Lee and Chin, 1995). For example if two lines intersect and the two 

lines are roads the intersection is a cross roads, or if one line is a road and the other is 

a river, the intersection is a bridge. 

Figure 5.9 Three Object Definition Fence (line object) defined by interaction of 
two fields (area objects) and a Gate (point object) defined by the interaction of a 
field (area object) and access track (line object) 

The same is also true for certain line objects. For example if areaA is a field and 

areaB is a field and areaA touches areaB, then the region of touch  is  a line object 

fence (Figure 5.9). 

These type of rules are visual (in that a domain expert can see them and point them 

out). However they are also of a common sense heuristic nature and are common to 

most classification tasks. It is therefore suggested that they be built into common 

knowledge-bases available to all systems. 

5.5 ASSEMBLY KNOWLEDGE ACQUISITION 

Assembly knowledge is knowledge which allows an image classifier  to  group scene 

primitives into a larger object. This process is known as generalisation (Beard, 1991). 

Most generalisation models are based on scaling and feature removal  in  an automated 
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way (McMaster, 1991). Generalisation includes the processes of simplification, 

classification, symbolization and induction. Simplification involves determining the 

important characteristics of the data (and possible exaggeration of these important 

characteristics). Classification is the ordering and grouping of data. Symbolization is 

the process of graphically encoding the grouped characteristics into a single grouped 

object. Induction is replacement of the original features by the new generalised object 

in the image. 

5.6 NON-VISUAL KNOWLEDGE ACQUISITION 

5.6.1 Heuristic Knowledge Acquisition 

Heuristics are recognized as the basis for an expert's expertise. They comprise expert 

opinion, subjective judgments, expert forecasts, best estimates and educated guesses 

(Meyer and Booker, 1991). Heuristics are gathered through experience and can be 

very difficult to capture using traditional knowledge acquisition techniques. In 

allowing the expert to classify the image manually and by recording the steps in that 

classification process the heuristics used can be automatically captured. The tools 

discussed in sections 5.2 to 5.4 do this by allowing an image classifier to directly 

manipulate an image. However there may be other techniques a human classifier uses 

which are not visual. Therefore a non-visual heuristic acquisition method is needed. 

Repertory grids based on Kellys personal construct theory (described in section 4.2.3) 

are the basis of several interview managers (Boose and Bradshaw, 1987). The 

technique assists in identifying both objects in a domain and distinguishing between 

those objects. They can be either drawn by hand or elicited using a computer program. 

During expert system construction, experts are required to identify discrete 

classifications (elements) which become the column headings of the grid. In 

geographic systems these elements are usually scene primitives (but could be groups 

of primitives as defined by the Assembly Knowledge). Groups of three of these are 

then taken and the expert is asked to identify what characteristics differentiate one 

element from the other two. This is called the triad method of comparison. These 

characteristics are known as concepts and become row labels. All elements are then 
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rated against the construct as either totally belonging or not belonging to groups on a 

scale of 1 to 5. Cluster analysis, such as Johnson Hierarchical Clustering (Olsen and 

Rueter, 1987), is used on the two-dimensional grid which results. Patterns and 

associations of the elements and constructs are identified and rules are generated. 

Knowledge elicited by repertory grid analysis may be of the primitive, relationship 

and assembly types as well as the non-visual algorithmic and heuristic types. It is 

possible to develop grids which are used specifically for one of those levels. 

Repertory Grids can also be used to elicit hierarchical information (Boose, 1990). 

Items identified as Primitive Knowledge are usually part of a larger group of items 

and some domain experts prefer to begin by identifying broader groups of items 

which make up a scene (Assembly Knowledge). The component elements then need 

to be identified. In other cases discrete items are identified (Primitive Knowledge) and 

then grouped. 

It is unnecessary to force a domain expert into exclusively identifying scene 

primitives or Assembly Knowledge groupings. Typically an initial consultation will 

result in a mixture of spatial knowledge types being identified. Further consultation 

will result in knowledge being refined. 

Repertory grids are a useful tool for eliciting spatial knowledge from domain experts 

who interpret satellite imagery. They help in the construction of rules which both 

classify and discriminate between geographic features. They can also be used to 

combine the knowledge of several domain experts from different disciplines 

constructing rules which can be used to produce composite maps. 

5.6.2 Algorithmic Knowledge Acquisition 

To interpret multi-band satellite images, interpreters often combine bands in various 

ways to highlight particular features. Sometimes bands from several image sets are 

also combined. Common algorithms used are those for calculating Normalized 

Differential Vegetation Index (NDVI) and Sea Surface Temperature (SST), but the 

particular algorithm(s) used depend on the subject of the classification. 
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For example Chuinsiri et al (1997) in a study of delimiting crops uses 

((TM4 — TM 3)/(TM4 + TM3) + (4 (TM3 2  + TM42) +TM2 

which is NDVI plus a Brightness Index plus the Landsat TM green channel (band 2). 

TM2, TM3, and TM4 are Landsat bands 2,3 and 4 which are green, red and 

near-infrared respectively. 

The number of available algorithms is such that hard coding each of them into an 

automated system restricts the range available and increases complexity. Each result 

has to be stored as an extra dimension in an image processing package or layer in a 

GIS. If several of these band combination algorithms are required the data structure 

involved in storing all the layers becomes quite large and unwieldy. 

A solution to this problem is to develop a tool which allows an image interpreter to 

combine raw bands as they work and interactively define the algorithm which they 

want to apply. When a suitable band combination is found, the characteristics of the 

feature identified along with the algorithm used to combine bands can be recorded. 

Only the raw bands of the image need to be permanently stored at any time, along 

with a result layer representing classified features. 

5.6.3 Temporal Knowledge Acquisition 

Temporal knowledge acquisition requires a system to store information over time and 

then use that information in a temporal analysis. Many spatial data sets have a 

temporal component (Unwin, 1996). For example in agricultural systems there are 

variations in how much of a particular crop is planted, how well it grows and when it 

is harvested. In a sea ice identification system the extent of sea ice varies seasonally 

and there may also be longer term trends in the extent of the ice sheet. 

Design of a spatio-temporal database requires the ability to include discrete simple 

events at a specific time and more complex cases where a series of events occur 

within an interval (Story and Worboys, 1995). 
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The applications of temporal data have been to detect change (for example Carlotto, 

1997) where differences are detected in subsequent images, and to use overlays to 

determine correlations in spatio-temporal patterns (Unwin, 1996). 

Once a significant amount of spatio-temporal data has been collected the database can 

be analysed for patterns. This process is known as data mining. It is: 

"...the extraction of implicit knowledge, spatial relations, or other patterns not stored 

explicitly in spatial databases" (Koperski and Han, 1995) 

For this type of knowledge acquisition to be successful, a long period of data 

acquisition is necessary. In most remote sensing applications, this data is not yet 

continuously available in a systematic form. 

5.7 CONSOLIDATION KNOWLEDGE ACQUISITION 

During knowledge acquisition for Geographic Expert Systems, several knowledge-

bases can be created. These can contain different rules which define the same object 

due to knowledge acquisition from more than one expert, knowledge acquisition at 

more than one session, knowledge acquisition using different images or a combination 

of all three. Knowledge of how to consolidate these knowledge-bases, resolving 

conflicting and incomplete rules, is required. 

5.7.1 Primitive Knowledge 

Primitive knowledge typically consists of rules relating to the image band or band 

combination used to identify the scene primitive, the spectral signature of the 

primitive, the type of object (area, line or point) and other information such as object 

size or orientation 
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Primitive rules are of the from : 

IF 	Band = 1 

AND max_pix_val <= 22 

AND min_pix_val >= 18 

AND month = 12 

AND type = areal 

THEN feature = open_water 

There are two broad ways knowledge-bases consisting of such rules can be combined. 

Firstly the most restrictive set of rules can be generated or alternatively the most 

general set of rules can be produced. For example combining the two rules: 

IF 	Band = 1 	 IF 	Band = 1 

AND max_pix_val = 20 	AND max_pix_val = 18 

AND min_pix_val = 10 	AND min_pix_val = 8 

AND month = 12 	 AND month = 12 
AND type = areal 	 AND type = areal 

THEN feature = sea 	 THEN feature = sea 

would result in 

IF 	Band = 1 

AND max_pix_val = 18 

AND min_pix_val = 10 

AND month =12 

AND type = areal 

THEN feature = sea 

in the first case, and 
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IF 	Band = 1 

AND max_pix_val =20 

AND min_pix_val = 8 

AND month =12 

AND type = areal 

THEN feature = sea 

in the second case. A third approach is to apply some form of certainty factor to the 

rules obtained. The two rules then become: 

IF 	Band = 1 	 IF 	Band = 1 

AND max_pix_val = 18 	AND max_pix_val = 20 

AND min_pix_val = 10 	AND min_pix_val = 8 

AND month = 12 	 AND month = 12 

AND type = areal 	 AND type = areal 

THEN feature = sea CNF 100 	THEN feature = sea CNF 75 

and both are held in the knowledge-base. One advantage of this method is that it 

avoids having an expert assign certainty values to each solution, as the system 

calculates them during knowledge consolidation. The most restrictive rule is given a 

certainty of 100 and more general rules a value between 50 and 100 depending on the 

number of unconsolidated rule cases. For example in the above case with only 2 rules 

to consolidate a certainty of 75 has been assigned. This will avoid the problems noted 

by Mak et al (1996) related to an expert thinking qualitatively rather than 

quantitatively, or having to resort to a knowledge 'czar' or preeminent expert as 

suggested by Barrett and Edwards (1995). 

A more complex problem occurs when there is a mix of bands involved in identifying 

an object. For example a crop of peas may be identified on band 7, of a Landsat TM 

image, but to distinguish them from beans which have a similar response on that band, 

a temporary NDVI layer is needed to complete the discrimination. In this case a 

restrictive combination of ANDing the two rules is taken. 
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If the rules are 

IF Band =7 	 IF Band = abs(b3-b4)/(b3+b4) 

AND max_pix_val = 45 	AND max_pix_val = 12 

AND min_pix_val =38 	AND min_pix_val =0 

AND month = 11 	 AND month = 11 
AND type = areal 	 AND type = areal 

THEN feature = peas 	THEN feature = peas 

They are combined into the single rule: 

IF (Band =7 

AND max_pix_val =45 

AND min_pix_val = 38) 

OR (Band = abs(b3-b4)/(b3+b4) 

AND max_pix_val = 12 

AND min_pix_val = 0)) 

AND month =11 

AND type = areal 

THEN feature = peas 

Hence only pixels which meet both criteria are selected as being of object type peas. 

Rules are combined by searching for the result. Hence in the above case the 

knowledge-base is searched for peas. Rules are only combined if they are of the same 

type and are in the same time period for example rules referring to areal features 

cannot be combined with those referring to line or point features even if the result has 

the same name. 
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5.7.2 Relationship Knowledge 

The Relationship Knowledge rules in the knowledge-base fall into two categories, 

firstly those that are of the canonical method for heterogeneous reasoning type 

(Sharma and Flewelling, 1995). Secondly Relationship Knowledge rules which are 

user generated, that is a user chooses two features and the system generates 

relationships. 

Examples of the canonical method for heterogeneous reasoning type are: 

IF feature_X OVERLAPS feature_Y 

THEN feature_Y OVERLAPPED BY feature_X 

and 

IF feature_X SOUTH OF feature_Y 

AND feature_Z SOUTH OF feature_Y 

AND feature_Z NORTH OF feature_X 

THEN feature_Z BETWEEN feature_X and feature_Y 

Since these rules are not user generated they can be assumed to be logically consistent 

and in the least redundant form. 

Consolidation of user generated Relationship Knowledge usually require checking for 

logical consistency. For example consider the rule: 

IF feature_X = open_water 

AND feature_Y SOUTH OF feature_X 

AND feature_Y OVERLAPS feature_X 

THEN feature_Y = cloud 

and a second rule 
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IF feature_X = open_water 

AND feature_Y NORTH OF feature_X 
AND feature_Y OVERLAPS feature_X 

THEN feature_Y = cloud 

These are inconsistent in the directional clause since a single rule cannot contain 

feature_Y being both NORTH OF and SOUTH OF feature_X. If there is more than 

one example of one of these rules then there is an increased possibility that it is the 

correct interpretation. In spite of this, user involvement to mediate is probably 

necessary. A system may help by generating messages providing an indication of 

which of the rules found is most likely to be correct. 

5.7.3 Assembly Knowledge 

Assembly knowledge can be used for map generalisation. Map generalisation requires 

the grouping of scene primitives so they can be represented as a single named object 

(McMaster, 1991). Since Assembly Knowledge is primarily a combination of scene 

primitives, two options are available. Either the most restrictive rule can be produced 

or the most general rule can be produced to describe the assembly object. The most 

restrictive rule requires an exclusive definition of the components of the object. 

General rules are generated by using clauses common to all rules being consolidated. 

For example consider the two rules: 

IF AREA > 1000 

AND AREA <5000 

AND Feature_l = pasture 

AND Area_Feature_l > 250 

AND Feature_2 = peas 

AND Area_Feature_2 <250 

AND Feature_3 = potatoes 

AND Area_Feature_3 <500 

THEN Assembly_Feature = Cropping_Farm 
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and a second rule 

IF AREA > 1000 

AND AREA <5000 

AND Feature_l = peas 

AND Area_Feature_l <250 

AND Feature_2 = cereal 

AND Area_Feature_2 > 500 

AND Feature_3 = potatoes 

AND Area_Feature_3 <500 

AND Feature_4 = poppies 

AND Area_Feature_4 <100 

THEN Assembly_Feature = Cropping_Farm 

which would result in 

IF AREA > 1000 

AND AREA <5000 

AND Feature_l = peas 

AND Area_Feature_l <250 

AND Feature_2 = cereal 

AND Area_Feature_2 > 500 

AND Feature_3 = potatoes 

AND Area_Feature_3 < 500 

AND Feature_4 = poppies 

AND Area_Feature_4 <100 

AND Feature_5 = pasture 

AND Area_Feature_5 > 250 

THEN Assembly_Feature = Cropping_Farm 

In the most restrictive case and: 
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IF AREA > 1000 

AND AREA <5000 

AND Feature_l = peas 

AND Area_Feature_l <250 

AND Feature_2 = potatoes 

AND Area_Feature_2 < 500 

THEN Assembly_Feature = Cropping_Farm 

in the most general case when consolidated. 

The general rule case provides the domain expert with the most flexible solution. The 

domain expert can then be provided with the capability of modifying the consolidated 

rule by adding, deleting or modifying clauses as required. This process allows for 

generalisation of the form used by Rigaux and Scholl (1994). 

5.7.4 Heuristic Knowledge 

Unlike knowledge captured from other tools, heuristic knowledge derived from the 

repertory grid tool uses the domain expert's terminology to differentiate between 

features on an image. Any reference to pixel values will tend to be in terms of fuzzy 

concepts such as high or low value. Hence rules are more likely to be of the form: 

IF albedo = low 

AND area = small 

AND feature-origin = man-made 

THEN feature = reservoir 

The features which domain experts are most likely to identify with repertory grids are 

equivalent to those identified using Primitive and Assembly Knowledge and could be 

directly consolidated with them. However this would require classifying the rules 

generated by the repertory grid. It is therefore better to deal with them separately and 

use a consolidation technique similar to that used for Primitive Knowledge. 
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To deal with fuzzy concepts procedure to define the limits of the fuzzy sets is 

required. This will have to be set up on a case by case basis because small in the 

above example would have a different definition in a different context. 

5.8 INTERPRETATION KNOWLEDGE ACQUISITION 

Interpretation knowledge is meta-knowledge in that it is knowledge about where to 

apply knowledge. In the KADS methodology, the equivalent knowledge is defined as 

being a Task Layer, and is concerned with how to apply the available knowledge-

bases to a specific problem (Fensel and Van Harmelen, 1995). In the case of spatial 

systems where there may be several digitised data sets and images as well as several 

knowledge-bases, it means determining which knowledge-bases are relevant to the 

particular activities being carried out. In the case of agricultural systems, it may be 

necessary to determine region similarity before applying a knowledge-base developed 

in one area to another because of differences in soil, climate and horticultural practice. 

Acquiring Interpretation Knowledge has not been a significant problem to date 

because most spatial systems have been developed with a specific application in mind. 

For example crop recognition systems are developed within a specific region and are 

only intended for application within that region. Similar development techniques may 

be applied elsewhere but the actual knowledge acquired will generally be significantly 

different for different regions and needs to be acquired on a region-by region basis. 

5.9 CONCLUSIONS 

Spatial knowledge as defined in Chapter 2 can be acquired using both visual and 

non-visual tools. Acquisition of Primitive, Relationship and Assembly Knowledge is 

primarily visual and knowledge acquisition tools for these types of knowledge should 

reflect that. Consolidation Knowledge is more task oriented (Fensel and Van 

Harmelen, 1994) in that it represents a fixed strategy for combining knowledge from 

multiple knowledge-bases and multiple domain experts. Interpretation Knowledge is 

strategic knowledge, and although the systems reviewed are very specific, its 

importance in choosing which knowledge-bases to apply in particular cases will grow 

as more general spatial knowledge-based systems are developed. 
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The Non-Visual Knowledge tools are necessary because of the fact that some 

geographic knowledge cannot be drawn or seen on an image. Such tools are capable 

of capturing algorithms and heuristics. 

Temporal knowledge requires the implementation of a database to trace spatial change 

over time. Once the database has been established and sufficient data has been 

collected, data mining techniques can be used. One problem with this technique is, 

that depending on the spatial features being studied, it may take several years of data 

acquisition before useful results can be produced. 
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Chapter 6. 	THE KAGES SPATIAL KNOWLEDGE 

ACQUISITION TOOL-KIT 

This chapter will investigate the tools required to acquire five of  the  six types of 

geographic knowledge introduced in Chapter 2. The development  of  a tool-kit for 

testing the tools is described. The final form of the tool-kit, KAGES (Knowledge 

Acquisition for Geographic Expert Systems), and the implementation of its 

components is presented. A detailed discussion of how to use the various tools in the 

tool-kit is given in Appendix A. 

6.1 	Overview 

The first five of the six levels of geographic knowledge are acquired  by  various tools 

which have been combined into an integrated tool-kit. The practical implementation 

has been designed in such a way that new tools can be added as they are developed. 

The reverse is also possible. A tool can be extracted and customised  for  a specific task 

on a particular system. 

Figure 6.1 Overview of the KAGES system showing the primary knowledge 
acquisition tools 
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Figure 6.2 The band viewing tool showing the image histogram and band 3 of a 
SPOT image of Table Cape area in Tasmania, taken on 24' December 1996 

6.2.2 Identifying Areal Features 

Areal features are two dimensional features which can be defined on  an  image band or 

band combination. On that band or band combination they have pixel values which 

fall between two thresholds. Although a domain expert may define a feature directly 

in terms of its spectral signature, the usual way for a user to describe a feature is to 

point to it. 

Figure 6.3 shows the general layout of the per pixel tool which is used by the domain 

expert to identify domain primitives. The system automatically determines a spectral 

range of pixel values of an object, once the expert has pointed to it. If  the  expert wants 

to increase or decrease the thresholds, they can adjust them using slider bars. All 

pixels with a value within the threshold range and which are contiguous with the 

initial pixel are then grouped and highlighted. 
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Figure 6.3 Per Pixel Tool. The window on the left shows the histogram of pixel 
values for the entire image. The centre window is of the image itself while the 
right window contains a zoomed section of the image to allow for accurate 
selection. From band 1 of SPOT image of Table Cape, Tasmania taken on 2"d  
November 1996 

A Minimum Bounding Rectangle (MBR) is drawn around the feature  and  a histogram 

of pixel values of the feature is also displayed in a format similar  to  that shown in 

Figure 6.3. If the threshold values are too high or too low the expert can reset 

thresholds; otherwise the feature is named and the information  about  extent and 

thresholds is recorded when the accept and return button is pressed.  A  more detailed 

description of the operation of the tool is provided in Appendix A. 

6.2.3 Identifying Point Features 

Point features are the simplest features in images since they are subpixel and less than 

a pixel in size. Because of this they are also the most difficult to  locate.  One method 

of acquiring knowledge about a point feature is to have the domain expert use a 

pointing device such as a mouse to indicate its location. The point is displayed on the 

image and the user can then give the point a name and type. 
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The second method of identifying point features results from the use of the spatial 

analysis tool where intersections between other features can be named and stored. 

This will be discussed further (Section 6.4.4). 

6.2.4 Identifying Line Features 

Lines are probably the most complex objects to work with. KAGES attempts to gain 

as much information as possible about lines and then allows the expert user to edit out 

irrelevant or spurious information (Crowther and Hartnett, 1996). It achieves this 

objective in two steps. Individual lines are identified with information about their 

length and orientation. Secondly a rule defining the line is displayed to the user who 

can then interactively edit out irrelevant clauses. 

Individual line objects are identified using two different methods. A line following 

algorithm is available which automatically follows lines from a given point and 

requests information about names. This produces a raster data set of pixels along the 

line together with an average trend of the line (which may or may not be relevant). 

The line following algorithm relies on a user picking two points on a line they can 

identify in an image. The average of the two pixel values is used to do a pixel by pixel 

trace by finding adjacent pixels with similar characteristics. An end point is reached 

when there are no further pixels of similar characteristics. To speed up the tracing, 

pixels lying in the same direction as that section of the line previously identified are 

tried first. The algorithm also prevents backtracking down the line. The resultant 

pixel set is stored as an array, each element of which contains the coordinates of each 

pixel in the set. This array can be recalled at any time, along with information about 

average trend, start point and length of the line being represented. 

In the case where the resultant line is not what the user expected, the definition can be 

abandoned. This is usually a result of setting threshold values for the line pixels too 

high or too low. Once the user is satisfied with the result they are asked to give a 

name for the line and specify the line type. 

A second method is to manually trace a line using a pointing device. This is a useful 

alternative where the line involved either cannot easily be picked up by the line 

follower or the line is not pixel based (for example cadastral data such as a municipal 
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boundary). In this case the resultant line is a vector although the number of points 

involved is directly related to speed and operation of the mouse. Gaps in the line are 

then filled in for display purposes. 

6.2.5 Primitive Knowledge Data Structures 

Laurini and Thompson (1992) define five categories of information for spatial 

entities. These are: 

• An identifier, 

• A locator, 

• The character of the entries, 

• The role behaviour or function of the entry and 

• Spatial properties of the entry. 

Of these, only the fourth need not be stored as part of the feature identification. It 

would be a necessary part of a GIS database however (Appendix B). 

Points: 	point name, point type, location, band used, image 

Lines: 	line name, line type, spectral value (0 if irrelevant), band used, 

actual line, points, image 

Areas: 	area name, area type, spectral signature, band used, MBR coordinates, 

centroid coordinate, area, image. 

Table 6.1 Data structures for scene primitives 

Despite requiring these common categories of information, data structures in the 

system differ in detail with the type of feature. Hence there are different data 

structures for points, lines and areas (Table 6.1). All objects have a specific name 

(identifier) and a type name (character). For example a road may have a specific name 

of Midlands Highway and a type name of A-route. Other fields common to all types 

of objects are the image id and the band or band combination (from the Band 
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Calculator, section 6.7) used in identification of the object as well as a method of 

locating the object (position). 

Depending on the object, spatial properties such as the surface area and orientation of 

an areal object or the length and orientation of a line object may also be stored. The 

form of the data structure is transparent to the user who can retrieve and manipulate 

these objects using the name they assigned to them. 

6.2.6 Primitive Knowledge Rules 

The rules generated from the primitive tool depend on the type of object being 

investigated. The form of the rule is based on the data structure used to store 

information about scene primitives. Unlike the data structure, the rule is available to 

the user to view and modify. 

Rules have the form: 

IF 	band = 1 

AND pixel >= 18 

AND pixel <= 22 

AND type = area 

AND area > 1000 

AND month = 1 

AND image = NOAA 

THEN 

feature = open_water 

This method of knowledge representation has been chosen because it: 

• Is a natural way of expressing rules of thumb, 

• enables modular organisation of knowledge and 

• has a restricted syntax. 

Leung (1997) 
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6.3  RELATIONSHIP KNOWLEDGE ACQUISITION: THE SPATIAL 

RELATIONSHIP TOOL 

One of the features missing from many geographic information systems is a method 

of defining spatial relationships (Openshaw, 1991). The lack of this tool has limited 

the use of many of these systems. It is something which will be included in new 

generation GIS. 

F 	 AREA  RELATIONSHIPS 

APO Y MEET 
)( corilaspiro 
Y DISJOINT 

Y.  (AT or 

, 
-,_ 

'I' 

FROM I 

.1( 

gy Y  

7.111/4._  

/1. 	. .. 

„ ,...... 

S ; 
- "I 	. 

... 

- 

.. 

_.. 

Figure 6.4 Relationship Tool. The first object (X) is open water defined in band 
1. The second (Y) is sea ice identified from band 3 of the NOAA image. The 
results are shown superimposed on band 1. 

The method of acquiring Relationship Knowledge depends on the type of object 

involved. In the case of area objects (Figure 6.4) this is done initially by comparing 

the Minimum Bounding Rectangles (MBR's) (Chang and Jungert, 1996) of the 

objects involved. If they are close so that the MBR's overlap, the objects themselves 

are compared to see if they overlap or touch. In the case of point and line objects the 

actual features are compared. 
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Implementation of the tool to compare two objects uses Egenhofees (1991) eight 

point classification of overlap consisting of the following overlap clauses: disjoint, 

touches, overlaps, contains, covers, equals, is contained by and is covered by. 

Orientation is based on the direction of the second object's centroid in relation to the 

first to within 45 0. The distance between the centroids of the objects is used for 

nearness. This is a fuzzy concept and is classified in terms of being the same point, 

very near or near. 

A rule editor is provided to allow a user to check the spatial relationships KAGES has 

found. These relationships are in an IF THEN rule format which is easy for the user to 

verify. The expert can then either accept the relationships or remove those which are 

considered irrelevant or are due to chance. 

6.3.1 Relationships Involving Lines 

Reasoning about two discrete lines is difficult. Lines unlike other objects can have a 

beginning and an end, they can have a direction or trend, and they can, due to their 

interaction with other objects define point and even areal features (Fleck, 1996). Lines 

do not always have a beginning or an end (a circuit being an obvious example) or a 

direction. 

The approach taken in the KAGES system to incorporate spatial reasoning with lines 

was to deal with simple cases first. The most simple case involves two lines which do 

not intersect or enclose and where proximity and orientation of one relative to the 

other is determined. A slightly more complex case involves determining the level of 

parallelism between two lines (for example where power lines follow a road). 

The next level of complexity involves a simple intersection of two lines or one line 

terminating the other line (for example a road T-junction). More complex interactions 

occur where lines follow each other for all or part of their length, (for example when a 

road partially follows a river for part of its length. In this case there is more than one 

pixel of the first line adjacent to pixels of the second line. In the most complex cases 

the lines are intertwined. 
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6.3.2 Relationships Involving Points 

Two points have the simplest number of relationships. The points are either at the 

same location or they are not. Proximity can likewise be easily determined as the 

distance between the two points. Lastly the direction of one point relative to the other 

is a simple calculation. 

Points in relation to an area can be described in terms of their location relative to the 

boundary. A point can be outside an area and not touching it, outside an area and 

touching the boundary, on the boundary, inside the area and touching the boundary, or 

inside the area and disjoint from the boundary. Distance can be calculated in terms of 

distance from the areas boundary, or distance from the areas centroid. Orientation is in 

relation to the area object's centroid. 

There are similar relationships between points and lines. A point can be on a line, next 

to it or located at an end. 

6.3.3 Relationships Involving Areas 

The majority of work in spatial relationships has been in terms of area-area 

relationships. Most of this in turn has been based on Allen intervals as discussed 

above. When dealing with relationships between primitives in a single image frame, 

the temporal aspects of the Allen classification are not needed. However when 

combined with a database the resultant relationships can be used. The temporal 

aspects of knowledge of areal features are being considered as part of a process of 

developing a non-visual tool which uses databases. 

The current system however uses only the spatial Allen interval relationships in this 

particular tool. As well as the degree of overlap, the system also determines the 

proximity and direction of one centroid from another. 

Relationships with line and point objects have already been discussed. In both cases 

these types of objects are dealt with in terms of their relationship to the areal objects 

boundary. 
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6.3.4 Relationship Knowledge Rules 

Relationship knowledge is stored directly as rules in the following form: 

IF feature_X = primitivel 

[AND feature_Y DIRECTIONAL_CLAUSE feature_X] 

[AND feature _Y PROXIMITY_CLAUSE feature_X] 

[AND feature_Y OVERLAP_CLAUSEJ feature_X] 

[AND feature_Y OVERLAP_CLAUSEJ feature_X] 
THEN 

Feature_Y = primitive_2 

For example: 

IF feature_X = open_water 

AND feature_Y NORTH OF feature_X 

AND feature_Y OVERLAPS feature_X 

THEN 

feature_Y = cloud 

This knowledge is in a form which is directly verifiable by the domain expert. 

Modules also exist to parse these rules for automated verification across an image. 

6.4 ASSEMBLY KNOWLEDGE ACQUISITION: THE REGION OF 

INTEREST TOOL 

A third tool available to the expert allows the interactive definition of a region of 

interest on an image (Figure 6.5). This tool is required because users group primitives 

into identifiable units which can then be referred to as a whole; a process known as 

generalisation (Beard, 1991). The component primitives may or may not be related in 

terms of spectral pixel values or other characteristics. 
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Figure 6.5 The Region Of Interest Tool. The defined area in the top left has 
an MBR drawn around it. The pop up window shows the object types 
found within the area. (Landsat band 1, 27 th  November 1996) 

The system allows a user to draw a closed curve (Olson and Rueter, 1987) to define a 

region of interest; then determines all object classes which fall within the region and 

displays them. It also provides the user with information on the composition of the 

region of interest by providing the percentage area each of the component classes 

cover. The user can give the region a name and interactively edit membership. This 

allows the expert to generate assembly relationships between point, line and area 

features identified on different bands or band combinations in an image. 

This tool is visual and allows a user to isolate groups of scene primitives into 

assemblies of related objects with a specific identification. The tool is manual and 

allows a user to visually generalise. It allows a user to nominate  what  are essential 

components, what are optional (but support the grouping) and  what  are irrelevant 

(does not matter if they are there or not). As a result a rule would define the maximum 

105 



and minimum size of an assembly object, the essential components, the optional 

components and the density thresholds of each of the components. 

The actual processing of this kind of knowledge is similar to processing a image in 

that after identifying the assembly object by tracing it, the system identifies scene 

primitives within its boundary then segments the area. Once this has been done the 

population and area density of various object can be calculated. 

The Region Of Interest tool can be used to group features with widely differing (or in 

the case of point objects zero) pixel values into an areal classification. It can also be 

used to determine what objects are within or near a particular feature. 

6.4.1 Assembly Knowledge Rules 

Rules of this type are made up of a list of the components of the assembly object, their 

characteristics and the characteristics of the object as a whole 

IF [Area_Componentl = Area_Object 1] 

[AND Area_Component_l_Area conditional_clause Area_object_1]... 

[AND Point_Component_l = Point_Object 1]... 

[AND Line_Component_l = Line_Object 1]... 

[AND Object _Area conditional_clause real number] 

THEN 

Assembly_Object = Assembly_Object_Name 

One or more of these clauses need to be key clauses identifying an object or objects. 

These key clauses must be both essential and sufficiently characteristic to make 

searching an image for them, and hence the assembly object, as simple as possible. 
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An example of an Assembly Knowledge rule is: 

IF AREA > 1000 

AND AREA <5000 

AND Featurel = pasture 

AND Area_Feature_l > 250 

AND Feature_2 = cereal 

AND Area_Feature_2 > 500 

THEN Assembly_Feature = Cropping_Grazing_Farm CNF 75 

Which contains two areal object types pasture and cereal 

6.5 NON-VISUAL HEURISTIC KNOWLEGE ACQUISITION: THE 

REPERTORY GRID TOOL 

Repertory grids and Personal Construct Theory were discussed in detail in Section 

4.2.3. The system allows for a domain expert to develop a new grid (and hence 

knowledge-base) or to review an existing one. The grids are stored as data sets 

consisting of three arrays containing elements which are the objects identified on an 

image, concepts which are used to differentiate between the elements, and ratings 

which measure how closely an element displays a concept. For ease of reading, the 

term concept will be replaced with discriminator as this gives a better indication of its 

use. Al! can be modified or expanded. 

The expert is presented with a graphical user interface which displays the image to be 

analyzed. An initial menu gives the user a choice of developing a new grid or loading 

one from file. 

If the user opts to develop a new grid they are presented with a data entry window 

(Figure 6.6). The domain expert is prompted to name the regions or objects on the 

image. These become the elements used in repertory grids. 
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Figure 6.6 Repertory Grid Tool with menu options and the window to enter 
elements displayed (NOAA VHRR image of Casey taken on 26 th  February 1998) 

A triad method is used to determine discriminators (Figure 6.7). A domain expert is 

presented with three of the objects they have identified. They are then asked to define 

a discriminator which will differentiate one of the objects from the other two. This 

forces the expert to state why there is a difference and not just name features. This 

process is repeated with various combinations of the elements the user  has  defined. 

Spatial relationships as well as threshold information can be used by  the  expert in this 

delimitation. Since domain experts use visual analysis, they are more likely to give a 

spatial explanation than a threshold value. Threshold values will be expressed in fuzzy 

terms such as high or low rather than absolute terms. 
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Figure 6.7 Triad window for determining discriminators 

Following the identification of the discriminators the expert then  ranks  each of the 

regions or objects against each of the discriminators on a scale of 1  (does  not exhibit 

any of the discriminator) to 5 (exhibits discriminator completely) using slider bars 

(Figure 6.8). 

Figure 6.8 Ranking an element (pack_ice) against discriminators 

The repertory grid produced at the end of this process (Figure 6.9) can  be  immediately 

analyzed using clustering techniques, saved to disk or converted to rules. Any 

combination of the three processes may be chosen. 
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1 1 low_cloud ELEMENTS 

1 1 1 	high_cloud 
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5 5 4 	5 	1 	3 	high_albedo 

1 1 5 	5 	1 	4 	edge_shadow 

5 5 3 	3 	5 	1 	not_on_land 

Figure 6.9: repertory grid of Antarctic elements (features) with 5 indicating 
complete agreement with discriminator (concepts) and 1 indicating complete 
disagreement with the discriminator. 

The maximum number of regions which can be included in one grid is 12. If there are 

more than 12 regions, some grouping of elements needs to be considered and a 

hierarchy of grids developed. This in itself is a spatial relationship as it is likely to 

identify sub regions. That is a relationship between Primitive and Relationships or 

Relationships and Assembly Knowledge. 

6.5.1 Analysis 

To aid with the knowledge acquisition, the data in the grids is analyzed using Johnson 

Hierarchical Clustering Techniques (Olsen and Rueter, 1987). The result of this is 

displayed as a clustering graph which domain experts may use as the basis for 

describing a classification scheme (Tranowski, 1990). If such a classification can be 

identified it may become the basis of further discussions with domain experts over the 

rating of certain regions or objects and their relationship to other objects, as well as 

the usefulness of certain discriminators. 
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The system can generate rules at any time once the grid has been developed. Currently 

these concentrate at the extremity of the ratings. Hence a rating of 1 means the 

concept is in favour of the item while a rating of 5 gives a negated antecedent. 

For example the Figure 6.6 grid would generate a rule for pack_ice as follows: 

IF low_temperature 

AND NOT adjacent_to_land 

AND NOT dark 

AND high_albedo 

AND NOT edge_shadow 

AND NOT_on_land 

THEN feature = pack_ice 

Once rules have been generated these can be discussed with the domain expert. In 

some cases further concepts may be needed to delineate some of the image elements. 

For example, in Figure 6.6, pack_ice and fast_ice are very similar when threshold 

values are considered. The only way to tell them apart is by use of spatial 

relationships. Pack ice is ice that floats on water as rafts of ice. Fast ice is attached to 

the land (fastened). Per pixel classification cannot delineate ice with these 

classifications and groups them together 

6.6 NON-VISUAL ALGORITHMIC KNOWLEGE ACQUISITION, THE 

BAND CALCULATOR TOOL 

The KAGES Band Calculator (Figure 6.10) allows a user to combine image bands 

from either SPOT, Landsat or NOAA AVHRR images and immediately see the result 

of applying a band combination algorithm which has been interactively entered as an 

equation. The algorithm can then be named and stored for reuse or can be discarded 

without having to hard code it into the system. Once the algorithm has been stored, it 

can be retrieved and used in other classification systems and the results of applying it 

can be viewed at any time. 
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Figure 6.10: Band Calculator to generate a Normalised Difference Vegetation 
Index for a three band SPOT image set. 

As the name suggest, the tool looks like a calculator to the user. It has extra buttons to 

represent the raw bands of the satellite image being analysed as well  as  extra buttons 

representing a selection of useful mathematical functions. The calculator is written in 

Research System Inc's DL language and its results are also executable by DL. 

Therefore the algorithms can be placed as executable variables within code which 

classifies images or code which is used for knowledge elicitation in the rest of 

KAGES. 

The band combinations are used for identifying scene primitives using other tools in 

the KAGES tool-kit. If an areal object is identified using the Normalised Difference 

Vegetation Index (NDVI) which has been entered via the Band Calculator, that 

object's name, pixel thresholds (using the NDVI calculated pixel values), size and the 

band combination algorithm are stored as a rule. That rule can then be applied either 

individually to similar objects for verification, or as part of the rule  set  used for the 

classification of an entire image. The results can also be used to generate rules 
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representing spatial relationships between two objects, where one object is identified 

using one combination of bands and the other object is identified using a different 

band combination. 

6.7 A TOOL TO ASSIST MACHINE LEARNING AND VERIFICATION: 

THE POINT DATA TOOL 

This tool was developed in direct response to a user request for a tool to add data to a 

decision tree package, S (Chambers and Hastie, 1992). It was then found that the same 

tool could be used to create training data for use with machine learning systems. This 

means that ICAGES can be loosely coupled to a third party machine learning package. 

The tool's operation gives the user the choice of automatically sampling an image or 

allowing a user to sample the image in a directed way. In the former case the user can 

specify the coarseness of the sampling grid and then is asked to supply names at each 

sampling point. The user can switch between bands to decide on their naming. It is 

also possible to switch between automatic sampling and user-directed sampling. This 

feature was added because if a coarse grid was chosen for automatic sampling, some 

important features could be missed. 

In the user directed version the user still has the ability to switch between bands, but 

the sample points are located using the mouse. It is possible to combine the resultant 

files to produce a composite sample. 

At each point sampled the tool writes data to an output file in the form of: 

• A pixel location (X,Y coordinates), 

• Pixel values (on all bands in the image) and 

• A user classification of the pixel. 
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Band 1 2 3 4 5 classification pixel location 

58, 58, 139, 152, 157, cloud, 178, 716 
46, 41, 141, 152, 155, cloud, 356, 716 
58, 55, 124, 171, 177, cloud, 534, 716 
66, 62, 112, 166, 171, cloud, 712, 716 
48, 44, 133, 155, 158, cloud, 178, 895 
56, 54, 121, 170, 173, cloud, 356, 895 
69, 65, 163, 169, 172, continental_ice, 534, 895 
78, 73, 162, 175, 177, continental_ice, 712, 895 
19, 15, 120, 118, 121, water, 499, 461 

Table 6.2 Partial transcript of a file generated using the Point Data Tool on a 
NOAA AVHRR image. The first 8 were generated using a regular grid while the 
last is the result of user directed sampling 

This tool allows the production of a quality spatial sample of data (Table 6.2) to be 

used for training. The sample size used will vary depending on the characteristics of 

the feature being studied and the resolution of the sensor (Curran and Williamson, 

1986). The quality of the spatial sample can have a major effect on the result achieved 

using machine learning techniques. The two methods available in this tool, sampling 

by grid and user directed sampling, allow a training data set with a sample over the 

whole image to be produced. This can be followed up with more intensive sampling 

of features of interest if necessary. 

6.8 CONSOLIDATION KNOWLEDGE ACQUISITION: THE 

CONSOLIDATION TOOL 

The purpose of the Consolidation Tool is to combine knowledge-bases which have 

been generated at different sessions. Multiple knowledge-bases for a single domain 

generated by an individual tool may be the result of there being more than one domain 

expert or more than one set of training images (Barrett and Edwards, 1995). The 

results from these various sessions are held in different knowledge-bases which need 

to be combined into a single knowledge-base. The process of consolidation of each of 

the knowledge-base types is described in Section 5.7. 
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Figure 6.11 Consolidation of Knowledge-bases 

Once each of the individual geographic knowledge-bases containing knowledge 

acquired by using the individual tools have been resolved, the resultant knowledge-

bases are combined into a single segmented production knowledge-base of Primitive, 

Relationship, Assembly and Heuristic Knowledge (Figure 6.11). 

6.9 KNOWLEDGE VERIFICATION TOOL 

Once rules have been generated by the system they need to be verified. Verification of 

geographic knowledge requires a combination of knowledge-based system 

verification and spatial verification. The formal methods of knowledge-base system 

verification (Meseguer and Preece, 1995) need to be combined with methods for 

assessing the accuracy of classifications of remotely sensed data (Congalton, 1991). 
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The method adopted here involved the following verification steps: 

• Visual inspection of rules by the domain expert. 

• Applying a single rule to the entire training image and comparing with ground 

truth. 

• Applying all rules from an unresolved knowledge-base to the training image and 

comparing with ground truth. 

• Applying all rules from a consolidated knowledge-base to the training image and 

comparing with ground truth. 

• Applying rules from the consolidated knowledge-base to other images and 

comparing with ground truth. 

During the knowledge engineering sessions, the first three steps are used. Once 

sessions are complete and the knowledge-bases have been consolidated the fourth step 

is applied. During most knowledge engineering sessions, only the first two steps are 

used because all subsequent steps involve complete image classifications which are 

time consuming and therefore are best done between sessions with the resultant 

classifications being checked by the domain expert at the following session. 

It should be noted that the tool is not designed to be a full image classifier. However 

elements of a classifier must be built in for verification. As a result, Primitive 

Knowledge is always applied first followed by Relationship Knowledge. For' ease of 

verification each of the Relationship rules are applied separately and information on 

the number of correct classifications produced compared with of the number of times 

the rule fired, the number of true clauses in the rule and the number of positive 

outcomes from the rule, is presented. 

6.10 THE USER INTERFACE 

The user interface is of primary importance with any tool (Openshaw and Clarke, 

1996). To produce a general purpose Spatial Knowledge Acquisition system some 

level of interactive graphical interface needs to be incorporated because at least one 

image (that under consideration) will need to be displayed. Several approaches could 
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have been taken to interface design. One approach uses a single primary window with 

operators along the top and tools to use with those operators down  the  left hand side 

(McMaster and Mark, 1991). Tranowski (1990) uses a simple approach with operators 

which expand into tools for specific tasks when selected. This method was also used 

by Avouris and Finotti (1993). 

The approach taken with the KAGES toolkit was similar. The IDL Graphical User 

Interface (GUI) was used to develop an interface with the same general layout as that 

of the previously developed Icemapper system (Williams et al, 1997). This has a 

primary set of operators down the left of the screen. These call sub windows and 

menus as required (Figure 6.12). The development environment is extremely modular 

with the overall system broken into many modules, some of which are common to 

Icemapper. The interface relies on the use of features such as drawing tools, slider 

bars, dialog boxes and buttons to interact with the knowledge engineer or domain 

expert. Typing is kept to a minimum and is generally restricted to naming. This met 

the criteria listed by Medjckj-Scott (1994) in terms of functionality and utility and the 

ability to display data in a form familiar to GIS and remote sensing users. 

Figure 6.12: KAGES main user interface with a SPOT image loaded. The image 
is of Table Cape, North West Tasmania and was taken on 2" November 1996. 
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The initial action of the system is to load an image to be used as a prompt or work 

surface by the domain expert with band 1 of the image being displayed in the display 

window. Other bands can be displayed when required as the image set is held as a 

three dimension array with the first dimension representing the image band. The other 

two dimensions in the array are representations of the images. This structure can be 

viewed in the traditional GIS manner as a series of layers representing each band of 

the image. Extra temporary layers are added to store results and band combinations. 

These temporary layers are only held in memory while they are required for an 

operation, then discarded. It improves the overall efficiency of the system if the image 

structure is kept to a minimum size. 

The repertory grid tool is the only tool from the traditional suite to be implemented in 

KAGES and is the only tool not requiring the user to directly manipulate an image. In 

this case the image merely serves as a prompt. The KAGES user interface therefore 

reflects the function of the tools in the tool-kit and varies according to the tool being 

used, adopting Inria's (1991) approach of not using an identical interface tool for all 

applications. The KAGES tool interfaces have many common features, but with other 

features unique to particular tools within the tool-kit. 

6.11 CONCLUSIONS 

The knowledge needed to analyse geographic images is primarily visual, which means 

a view of both an image and a histogram of the pixel distribution of the image as a 

whole is required. This view is needed for each of the raw bands in a satellite image 

set, and for combinations of those bands. 

The tools required to capture geographic knowledge need to allow an expert image 

interpreter to manipulate images via a graphical user interface, and to capture those 

manipulations at the Primitive, Relationship and Assembly Knowledge levels. 

The tool-kit containing these tools needs to be structured, allowing a user to identify 

scene primitives, then identify higher level relationships between scene primitives of 

spatial relationships and generalisation. 
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Not all geographic knowledge is visual however. Algorithms for combining image 

bands and processing images are not visual. Some heuristics for discriminating 

objects are not visual. Temporal relationships identified for data in an associated 

database are not visual. However in the case of eliciting heuristics about geographic 

phenomena, a visual prompt to users can be useful, if not essential. 

The knowledge acquired by using the tool-kit may come from many different sessions 

with multiple domain experts. This knowledge is stored in knowledge-bases which 

needs to be resolved. The method chosen for combining knowledge-bases has been to 

use certainty factors for Primitive and Assembly Knowledge. User intervention is 

available when there is a conflict the system cannot resolve or the domain expert 

disagrees with a consolidated rule. In the case of Relationship Knowledge, the system 

detects conflicts, but then requests user intervention to resolve them. 

Verification of the knowledge acquired requires the techniques of both knowledge-

based system verification and classification accuracy of remotely sensed data. Hence 

a combination of inspection, testing and ground truthing was adopted. 

The user interface of a geographic system is of primary importance to its usability. An 

interface for acquiring visual knowledge is however different from one used for 

acquiring non-visual knowledge. The approach taken was for each tool in the tool-kit 

to have its own user interface with a similar look and feel linked back to the primary 

menu screen. 
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Chapter 7. EVALUATION OF THE KAGES SYSTEM 

This chapter describes the process of validating the knowledge acquisition 

methodology itself and presents the results obtained using that methodology. KAGES 

is used as the testbench for this exercise. In developing field test strategies three main 

considerations are taken into account; users, image availability and the availability of 

ground truthed field data. The results of field testing in the sea ice and crop 

classification domains is presented. 

7.1 INTRODUCTION 

KAGES is a system designed to elicit knowledge in accordance with the six level 

classification system of geographic knowledge proposed in Chapter 2. To achieve this 

the toolkit has been evaluated in two different domains and demonstrated to a variety 

of users many of whom work in other domains using either remote sensing 

technology, GIS or a combination of both. 

7.2 METHODOLOGY FOR COMPARING THE KNOWLEDGE 
ACQUIRED BY THE SYSTEM 

7.2.1 General Approach 

The KAGES methodology was evaluated using the following five criteria: 

1. How well did the expert like the technique? 

2. How much knowledge was elicited? 

3. How 'good' was the knowledge? 

4. Which tool was used? 

5. How well did the system work in the different domains? 

The first criterion is user centred. Users were interviewed and asked a set of questions 

about their views of the toolkit and its applicability to their domain. The second and 

third criteria are system oriented. The results of using the KAGES methodology were 
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compared with the results of using other methodologies. Criterion four is a measure of 

the effectiveness of the knowledge classification scheme. The fifth criterion was 

evaluated by applying the methodology to two distinct domains. 

7.2.2 The Sea Ice Mapping Domain 

Rules generated by the KAGES methodology were compared with rules in the 

Icemapper system described in Chapter 5. Those rules were obtained by interviewing 

experts and by searching the literature for appropriate rules and algorithms. There is 

therefore a direct comparison at the Primitive Knowledge level as both systems have 

rules designed to do per-pixel level classification. Acquisition of Algorithmic 

Knowledge can also be directly compared. Beyond that, comparison with Icemapper 

is difficult since it does not use higher levels of knowledge. 

Rules at the Primitive Knowledge level were also compared with the rules obtained 

using the S statistical package (Chambers and Hastie, 1992). Data was sampled 

across an image and an expert asked to manually classify the sample points. The 

results were then used to create a decision tree. The [(AGES toolkit contains a tool to 

sample images, hence, although the S tool generates rules, KAGES can assist it by 

preparing data sets for it to analyse. 

The algorithm used by S attempts to partition the space of predictor variables (in this 

case pixel values from NOAA AVHRR bands and band combinations) into 

homogeneous regions to which a classification label can be attached. It begins with 

the full set of pixel values and partitions them into two sets, such that the members of 

those two sets are most different. These two sets become new nodes for further 

partitioning. This continues until the number of members of a set reaches some 

predetermined minimum size or the members of the set have a low variance. 
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7.2.3 The Crop Recognition Domain 

In this domain, rules generated by ICAGES were compared with results obtained using 

a GIS based statistical classifier. This classifier incorporated a clustering algorithm 

based on nearest neighbour techniques. It combined the information from five satellite 

images, three SPOT and two Landsat. It also had available to it an image from 

February which was not available to the KAGES system. 

Before the statistical classifier was applied, the user screened out areas of the image 

which were not of interest for the crop classification study. These included areas 

affected by cloud, urban areas, sea and forest. The remaining pixels in the image were 

then clustered and, using the training data, had labels of peas, poppies, potatoes, 

pyrethrum, cereal, pasture, onions and beans applied. 

The results of this classification system were compared with the results of applying 

rules generated by KAGES. 

7.3 METHODOLOGY FOR EVALUATING THE USEABILITY OF THE 

SYSTEM 

7.3.1 User Selection 

One of the primary requirements for a knowledge acquisition tool which accepts 

direct user input is for the user interface to be effective and comfortable for the user. 

The users of the ICAGES system are expert image interpreters. They fall into a 

number of distinct groups: 

• GIS users who manipulate satellite images, 

• Image interpreters who use data visualisation or other tools and 

• Image interpreters who use predominantly manual techniques. 
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Users of these different types came from a number of different organizations and 

required different features in a system such as KAGES. The organisations included: 

• The Bureau of Meteorology, 

• The Tasmanian Institute for Agricultural Research, 

• The Tasmanian Fire Service, 

• The Tasmanian Department of Primary Industry and Fisheries, 

• The University of Tasmania School of Geography and Environmental Studies, 

• The University of Tasmania Central Science Laboratory and 

• The University of Tasmania School of Computing. 

Development was therefore incremental with numerous visits to the various experts to 

get their feedback on the system. Initially only a subset of the users was used to 

develop the system. The system was then demonstrated to a wider group of users and 

their feedback obtained. Finally, the system was taken to a series of overseas venues 

for comment by a wider group of users. 

7.3.2 User Testing procedure 

A group of expert users from the areas identified above were asked to comment on the 

KAGES system, the knowledge classification scheme and the useability of KAGES in 

relation to systems they were already using. This questioning took the form of a 

structured interview rather than a questionnaire because of the number of subjects 

involved and their diverse backgrounds. 

The initial questions asked were: 

• Is this a useful tool ? 

• Which aspects of the tool are most useful ? 

• What does it provide which your current system does not provide ? 

• What would you like to see.it  provide ? 

• Which aspects of the system duplicate what you already have ? 

• What aspects of the system don't you like ? 
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These were asked as open ended questions. All the users were asked these primary 

questions, although their answers often led to other discussions. The questions were 

asked in conjunction with a demonstration of KAGES as it was at that time. As a 

result, as field testing proceeded, more refined versions were demonstrated. 

Each demonstration took about two hours with a follow up interview after the 

inclusion of new features requested by the user. In some cases this cycle continued for 

up to five refinement stages. 

7.4 RESULTS OF THE EVALUATION 

7.4.1 Verification Strategies in Remote Sensing 

All systems involving classification of remotely sensed images have difficulties when 

verification is required. A satellite passes over a region at a particular time and 

produces a set of images. To verify the results of using automated classifiers on those 

images, information about the actual feature on the ground needs to be recorded. In 

many domains this information may also vary over time. As a result there is a need to 

have a strategy of ground truthing in place. 

Both scenarios used for testing the KAGES methodology relied on ground truthing for 

verification of the results, however in the Antarctic domain there are problems with its 

collection as discussed below. The scenarios were both dynamically changing systems 

with the possibility of rapid change over a short time interval. Both were also very 

different in the way ground . truthing had to be conducted. 

Ground truthing in Antarctica has many difficulties compared with other domains. 

The continent is extremely sparsely populated and there are few permanent ground 

stations. In the case of sea ice studies there are even fewer. As a result most ground 

truth comes from either airborne surveys, or from shipboard observations. 

Shipborne observations are necessarily biased. The ship can only provide a line 

transect through the ice at a specific time which may or may not coincide with a cloud 
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free satellite image. Secondly the ship sails through thin ice or open water, .so 

observations are mainly going to be of that type. Thicker or older ice can only be 

ground truthed by surface expeditions or aerial survey. 

Observations have been made from the Aurora Australis. However these have yet to 

be correlated with the satellite images obtained during the period of the voyage. This 

is currently the basis of a separate study at IASOS (Institute of Antarctic and Southern 

Ocean Studies). For the study described in the thesis, all verification relied on the 

manual interpretation of the test images by the domain expert. 

The crop recognition domain does not present the same verification problems as the 

Antarctic domain does. However there are still many difficulties. These include: 

• the identification of individual paddocks, 

• the temporal nature of crops, 

• the planting periods of crops and 

• the small size of paddocks. 

To solve some of these problems a sample of 187 paddocks was taken during the 

1996/1997 growing period. 75 of these were used as training data on the Landsat and 

SPOT images. 

Individual paddocks on the ground were identified, digitised using a GIS and assigned 

identification numbers. The type of crop growing in the paddock was also identified 

on the ground and the planting date of the crop where available. Although the contents 

of the paddocks were identified, this was done in a fairly ad hoc way over a period of 

two months. There was also some concern that there may have been some incorrectly 

identified paddocks. No notes were taken on weed infestations or crop health. 

7.4.2 Antarctic Sea Ice Knowledge 

Within the Antarctic sea ice identification domain two images from different time 

periods (26th  February and 4th  March 1998) were used as samples for comparison. 
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Both images were acquired during the Antarctic summer when visible NOAA VHRR 

images are useful. Although cloud was present in most of the images, an ability to 

distinguish between cloud and ice was important. 

Figure 7.1 is the result of using a sample grid over an image which was manually 

classified by an image interpretation expert. 769 points were sampled. This image was 

then used by KAGES to generate rules based on the users interpretation methods. This 

included a variety of image bands and band combinations. These rules were then 

applied to the whole of the image. The classified image was then sampled using the 

same grid as in Figure 7.1 and the results are shown in Figure 7.2. 

High Cloud 
Low Cloud 
Continental Ice 
Pack Ice 
Thin Low Cloud over Ice 
Water 
Thin High Cloud over Ice 

Figure 7.1 Domain expert classification of sample points on the training image 
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Figure 7.2 KAGES classification of sample points on the training image. Cells 
containing letters indicate misclassification, L = low cloud, I = continental ice, 
W = water, T = Thin High Cloud over Ice. 

Table 7.1 is a summary of the image classifications produced using KAGES on the 

NOAA image of 26 th  February 1998. The rules generated by S, and those in the 

original Icemapper system were then applied to the training image. The resulting 

classified images were then sampled using the sampling grid. A comparison of the 

results of the three classification techniques is summarised in Table 7.2. 
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MISCLASSIFICATIONS 
CLASS ACTUAL FOUND MISSED CORRECT HC LC CI PI ruc w rHic 1 uc 

HC 310 267 43 86.1% 26 3 114 
LC 150 128 22 85.3% 2 I 20 
CI 113 111 2 98.2% I 	2 
PI 51 40 11 78.4% 5 4 I 	2 

TLIC 88 87 1 98.9% 1 
W 47 47 0 100.0% 

THIC 10 0 10 0.0% 110 

_ 	769 680 89 88.4% _ 

Table 7.1 Antarctic classification results using the KAGES knowledge-base on 
the training image. HC = high cloud, LC = low cloud, CI = continental ice, PI = 
pack ice, TLIC = thin low cloud over ice, THIC = thin high cloud over ice. 

ACTUAL KAGES S ICEMAPPER 
HIGH CLOUD 310 86:1% 52.3% 0.0% 
LOW CLOUD 150 85.3% 80.7% 98.7% 

CONTINENTAL ICE 113 98.2% 93.8% 53.1% 
PACK ICE 51 78.4% 51.0% 51.0% 

THIN CLOUD OVER ICE 88 98.9% 38.6% 97.7% 
WATER 47 . 100.0% 100.0% 100.0% 

THIN HIGH CLOUD OVER ICE 10 0.0% 80.0% 0.0% 

OVERALL _ • 	.769 88.4% 65.5% 47.7% 

Table 7.2 Comparison of Icemapper, KAGES and S performance on the training 
image 

Since KAGES was trained on this image one would expect its classification accuracy 

to be high and this was indeed the case. The S rules misclassified high cloud as thin 

high cloud over ice in 78% of the high cloud error cases and pack ice as water in 88% 

of the pack ice error cases, accounting for 52% of all error cases. KAGES better 

performance was due to it being used to specifically generate rules on these features. 

The original Icemapper rules had similar problems to S, compounded by completely 

failing to classify high cloud, the majority of which came out as low cloud and thin 

low cloud over ice. 
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Figure 7.3 Thermal band 3 of the test image, derived from a NOAA AVHRR 
image of Mawson/Davis taken on 4 th  March 1998 viewed using the KAGES band 
display tool 

The second Antarctic image (Figure 7.3) was used to test the KAGES generated rules 

and compare their performance with the other two rule sets. The resulting classified 

image is shown in Figure 7.4. The domain expert's classification of the image 

sampled using a regular grid of 634 points at the same spacing as the training image is 

shown in Figure 7.5. The KAGES classification results in terms of  the  sampling grid 

are shown in Figure 7.6. The major misclassification is high cloud and thin high cloud 

over ice being classified as low cloud. 
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Figure 7.4 The classified test image produced using the KAGES generated rules 
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Figure 7.5 Domain expert classification of sample points on the test image 

MISCLASSIFICATIONS 
CLASS ACTUAL FOUND MISSED CORRECT HC LC Cl PI ruc W THIC UC 

HC 105 74 31 70% 23 4 4 
LC 31 30 1 97% 1 
CI 167 167 0 100% 
PI 8 6 2 75% 2 

TLIC 72 72 100% 
W 84 83 1 99% 1 

THIC 167 79 88 47% 88 

TOTAL 634 512 122 81% 

Table 7.3 Antarctic classification results using the KAGES knowledge-base on 
the test image. HC = high cloud, LC = low cloud, CI = continental ice, PI = pack 
ice, TLIC = thin low cloud over ice, THIC = thin high cloud over ice. 
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Figure 7.6 KAGES classification of sample points on the test image. Cells 
containing letters indicate misclassification, L = low cloud, I = continental ice, 
W = water, P = pack ice. 

A summary of the performance of KAGES rules and an analysis of misclassifications 

is shown in Table 7.3. Classified images were also generated using the S and 

Icemapper rules. These classified images were sampled using the grid and the results 

are shown in Table 7.4 
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SAMPLE KAGES S ICEMAPPER 
HIGH CLOUD 105 70% 47% 0% 
LOW CLOUD 31 97% 90% 90% 

CONTINENTAL ICE 167 100% 98% 94% 
PACK ICE 8 75% 100% 88% 

THIN CLOUD OVER ICE 72 100% 71% 39% 
WATER 84 100% 95% 99% 

THIN HIGH CLOUD OVER ICE 167 47% 65% 5% 

OVERALL 634 81% 77% 49% 

Table 7.4 Comparison of Icemapper, KAGES and S performance on the test 
image 

The results of classifying the second image with the S rules and with KAGES 

generated rules are very similar. High cloud still presents problems with the S rules 

with 96% of high cloud misclassification being as low cloud. ICAGES rules performed 

better in high cloud identification. The KAGES rules misclassify thin high cloud over 

ice as low cloud in all error cases of that type. S rules performed better in thin high 

cloud over ice identification. 

The Icemapper rules also have problems with high level cloud. All of the high level 

cloud was missed with 95% of it being classified as low cloud. Thin high cloud over 

ice was misclassified as low cloud in 75% of this classes error cases. This may be due 

to Icemapper originally having rules which placed cloud of all types in a single class. 

Although later rules were added to correct this, low cloud was kept as the default 

cloud class. 

The testing reported above was performed using per-pixel reasoning because both 

Icemapper and S rules are of the Primitive Knowledge type. Relationship Knowledge 

is not used in Icemapper or S. KAGES on the other hand was used to generate this 

type of knowledge about the relationships of shadow to cloud banks and the 

relationship of land to water to delineate continental ice and sea ice. 

'CAGES appears to have improved on the original pixel level knowledge acquired by 

interview and coded into Icemapper. It has the added capability of generating extra 

rules about spatial relationships which can be used to refine classification. The 
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relationship with the S package is more complex since KAGES can be used to 

generate the training set needed by S including any Algorithmic Knowledge necessary 

for band combinations. The performance of S and KAGES generated rules appears to 

be very similar on the images used. 

The main advantages of the KAGES methodology over the traditional knowledge 

acquisition techniques evaluated in this study were: 

• Knowledge was acquired more quickly. Traditional methods require acquisition, 

encoding, testing and user verification of rules, usually over several interviews 

with the domain expert. KAGES combines these steps for rapid development and 

feedback. 

• Knowledge requiring algorithmic manipulation of band combinations was easier 

to acquire, enter and verify. Icernapper uses band combinations, but these require 

hard coding and an image representation is not produced for the user. 

• Knowledger could be validated by previewing individual rules. Individual rule 

clauses can be inspected and modified interactively. The results of modifications 

can also be seen immediately. Validation and modification of Icemapper rules, on 

the other hand require significant programmer involvement. 

• The rules generated by ICAGES when applied to an Antarctic image, give 

classifications which are comparable with those generated by S and better than 

those acquired by interview. 
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7.4.3  Crop Recognition Knowledge 

Figure 7.7 Growth and cropping times for crops under study showing times of 
useable satellite passes. TM is Landsat, XS is SPOT. 

Significant problems were experienced with image acquisition in the crop recognition 

domain. The 1996/97 growing season was particularly cloudy and there were many 

very cloudy days on satellite passes. As a result, only four images, two Landsat (6 th  

July 1996 and 27 th  November 1996) and two SPOT (2' d  November 1996 and 24th  

December), were useable. The timing of these are shown superimposed on the growth 

/ harvest chart of various crops in Figure 7.7. All of the four images had potential 

problems in correlation with ground truth. 

The 6th  July 1996 Landsat image provided a winter view that included fallow areas 

and winter crops such as brassicas. Since ground truthing did not commence until 

November 1996, this image was of limited use. It was used to delimit forest areas 
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which remained more or less constant during the 10 months of the study. 

The 2" November 1996 SPOT image was at the early stage of the growth cycle for 

most crops. Depending on the planting time, many crops had not developed a large 

ground cover. As a result some paddocks appear as bare soil or are influenced by 

weeds growth. 

The 27th  November 1996 Landsat image was more useful, as many crops were 

established by this stage although late potatoes were still being planted. Hence some 

of the problems associated with the November SPOT image were overcome. 

The 24th  December SPOT image was acquired during the middle of the growth cycle 

for most crop types, although some crops such as poppies still had low ground cover. 

Peas were being harvested at this stage and could have been removed before the 

image was produced, again causing discrepancy with ground truth. 

Six crop types; poppies, pyrethrum, peas, potatoes, onions and beans were used for 

classification testing. Several other agricultural land cover features were also sampled 

(including cereals, brassicas and pastures) but the numbers involved were small. Also 

land cover such as forest was detected and included for screening purposes. 

Only Primitive and Algorithmic Knowledge was used in this particular study because: 

• There were no agricultural image interpretation experts available so KAGES was 

used as an image analysis system using the training sample to discover rules 

• Spatial relationships were not obvious and without an expert were unobtainable 

• Although Assembly Knowledge about urban areas could have been obtained, it 

was not required for the objectives of the crop identification project 

Table 7.5 gives a summary of the classification performance of KAGES in 

comparison to ground truth. The numbers in the table refer to the number of paddocks 

classified or misclassified. The label at the beginning of each row represents the crop 

label assigned by the KAGES knowledge-base. 
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MISCLASSIFICATIONS 
CLASS ACTUAL FOUND MISSED CORRECT B ON P POT POP PY 

B 13 6 7 46% 3 1 
ON 19 12 7 68% 1 4 2 
P 20 16 4 80% 1 2 1 

POT 26 17 9 65% 1 1 1 5 1 
POP 38 18 20 47% 2 1 9 8 
PY 13 6 7 46% 1 3 1 2 

TOTAL 129 75 54 58% 

Table 7.5 Crop Classification results using the KAGES knowledge-base. 
B= beans, ON = onions, P = peas, POT = potatoes, POP = poppies, 
PY = pyrethrum 

The best performance was for peas (80%) which were classified using a Landsat band 

combination algorithm: 

abs(Band_5 — Band_7) 

From Figure 7.1 it can be seen that peas are the first crop to be harvested in the area 

and the Landsat image (27 th  November 1996) used for identification was taken at the 

beginning of the harvest season when peas would have been at their maximum ground 

cover. This problem with satellite passes and identification may also account for the 

performance with beans, which had only just begun their growth cycle and may have 

been affected by weeds. 

The worst performance was with poppies where there were problems distinguishing 

them from potatoes and peas. Errors in the classification of potatoes and poppies 

seemed systematic, with both showing similar levels of misclassification. One reason 

for this may be that both of these crops were both at early stages of their growth cycle 

with large areas of bare soil still visible in the paddock. 
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The reason for the high number of misclassifications of poppies as peas was the 

following heuristic: 

IF classification of pixel = peas 

AND classification of pixel = poppies 

THEN classification = peas 

Which was provided by KAGES based on the training data provided for it. This rule 

was subsequently proved incorrect. It may have been produced as a result of bare 

earth appearing in paddocks where pea crops, identified within the paddocks by the 

ground truthing process, had been harvested just prior to the satellite pass. 

By comparison a statistical classifier using Principle Components Analysis achieved 

an overall accuracy of 59.4%. The statistical classifier had, in its training set, an extra 

image from late February which had not been made available to KAGES. 

7.4.4 Expert User Acceptance 

The KAGES toolkit was developed using prototypes which were gradually modified 

to meet user requirements. It should be noted that where users required a specific 

feature to be added, or where there was a feature they did not like, action was taken to 

rectify the problem. Table 7.6 is a summary of the answers provided by the various 

users to the open-ended questions described in section 7.32. Appendix C contains 

transcripts of some of the interview sessions. 

The four users who were expert in the use of GIS all commented that the Per Pixel 

tool for acquisition of Primitive Knowledge was no real advance over existing GIS 

packages which had spectral signature manipulation implemented. However all 

agreed that unless objects on an image had already been assigned labels using a GIS, 

and the labeled segmented image passed to KAGES, such a tool was essential. In spite 

of this negative comment, when the Per-Pixel tool was viewed as independent of a 

GIS, its implementation with both a histogram and image display was well received. 

One user would have liked contrast stretching included. 
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Type 
Of 

User 

Tool Assisted 
Image 

Interpretation 

GIS 
User 

GIS 
User 

GIS & Data 
Visualisation 

Image 
Interpretation 

Is this a useful tool? Yes Yes Yes Yes 

Which aspects of the 
tool are most useful ? 

Pointing, 
Point data 
gathering. 

Spatial 
relationships 

Spatial 
relationships, 

Heuristics. 

Heuristics, 
Spatial 

relationships. 

What does the tool 
provide that your current 

systems does not? 

Outlining 
Spatial 

relationships 

Spatial 
relationships, 

Grouping, 
Heuristics. 

Spatial 
relationship, 
Heuristics 
Grouping 

Heuristics, 
Spatial 

relationships. 

What would you like to 
see the tool provide that 

it does not? 

Easier band 
changes. 

Histogram, 
Contrast 

stretching. 

Histogram. Histogram 
contrast 

stretching. 

What aspects of the 
system duplicate what 

you already have? 

X Pixel level 
classification. 

Pixel level 
classification, 

Pixel level 
classification. 

What aspects of the tool 
don't you like? 

X X X Inability to 
define primitives 
from histogram. 

Type 
Of 

User 
' 

Image 
Interpreter 
(manual) 

GIS 
User 

Data 
Visualisation 

Image 
Interpretation 

Is this a useful tool? Yes Yes Yes 

Which aspects of the 
tool are most useful ? 

Pointing, 
Outlining 

Composites. 

Spatial 
relationship, 
Heuristics, 
Grouping. 

Pointing, 
Heuristics, 
Outlining. 

What does the tool 
provide that your current 

systems does not? 

N/A Grouping, 
Heuristics. 

Outlining, 
Spatial 

relationships, 
Heuristics. 

What would you like to 
see the tool provide that 

it does not? 

X Spatial 
concentration 
(Assembly). 

X 

What aspects of the 
system duplicate what 

you already have? 

N/A Pixel level 
classification. 

X 

What aspects of the tool 
don't you like? 

X Rule editor a bit 
simple. 

X 

Table 7.6 Summary of user responses to KAGES 
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Users who were not familiar with GIS packages (including the manual interpreter) 

liked the operation of the Per Pixel tool. The ability to quickly select bands, point to 

an object and adjust thresholds until a feature was defined, then apply that to the 

whole image was mentioned as being a useful feature. 

The most positive comments came about the Relationship, Assembly and Heuristic 

tools which, according to the GIS users interviewed, had no equivalent in current GIS 

packages. Different users suggested a range of enhancements to these tools, many of 

which were implemented. 

The heuristic tool based on repertory grid analysis was seen as innovative, since much 

knowledge held by domain experts is not in fact visual and some means other than 

interview was needed to elicit that, knowledge. Some users found the elicitation of 

classes and attributes a bit time consuming and said they would prefer a quick entry 

mechanism for adding extra classes and attributes to save going through the triad 

comparison each time. They liked the ranking system using slider bars and indicated 

that they found it quick and easy to use. 

All saw significant potential in the Relationship Tool to determine spatial 

relationships, especially if coupled to a temporal database with which changes in these 

relationships could be investigated. This tool was seen as an advance over existing 

GIS technology and something lacking in existing geographic expert systems which 

still concentrate on pixel-by-pixel processing. A suggested enhancement was a facility 

for calculating the degree of overlap where two areal objects shared pixels. 

The Region of Interest tool for acquisition of Assembly Knowledge was seen as a 

good way of extracting generalisation knowledge. One GIS user suggested that more 

knowledge could be collected by this tool if it could calculate areas and 

concentrations of objects in an area selected by this tool. This suggestion was 

implemented. 

In terms of the overall operation of the tool, all users liked the layout of the user 

interface and the linking of the various user windows. An initial comment from GIS 

users was that a histogram of the image should be shown as well as the image, and a 
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histogram of pixels in an object be shown when an object was delineated. Both of 

these were subsequently added to the user interface. 

In summary, the positive aspects of the final user interface were that it was seen to be 

intuitive and easy to use, consistent in the rules it produced and minimised the amount 

of typing required in the knowledge acquisition process. 

The main negative aspects were that it duplicated some of the features already 

available in GIS and that the rule editor attached to several of the tools lacked 

sophistication. 

7.5 CONCLUSIONS 

The geographic knowledge classification scheme which formed the basis of the 

philosophy behind each of the tools in the KAGES toolkit was validated by user 

testing. The result of using they toolkit on the two test scenarios was to produce rules 

comparable with alternative methods but in a more efficient manner. In the case of 

crop recognition, where rules were applied to produce a classified image, the results 

were comparable with those of a statistical classifier. In the Antarctic domain the 

results of applying KAGES generated rules were as good as results of applying two 

alternative knowledge bases. 

According to GIS users, Primitive Knowledge acquisition using the KAGES 

methodology provided no major advance over the statistical spectral classifiers 

available in GIS. Users not familiar with GIS were pleased with the tool and found it 

easy to use. The inclusion of a Primitive Knowledge Acquisition Tool is necessary to 

provide the basic spatial objects needed for acquiring subsequent higher level spatial 

knowledge in situations where a GIS classification and segmentation process has not 

been performed, or where the knowledge is to be used without reference to a GIS. It is 

also a useful tool to allow a user to point out important primitive features. 

The Spatial Relationship Tool for Relationship Knowledge acquisition and the Region 
of Interest Tool for Assembly Knowledge acquisition were particularly well received 

by users. According to those surveyed, there was no equivalent tool in the systems 
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they were familiar with. Although enhancements were suggested, these tools were 

regarded as a real advance in knowledge acquisition from satellite images. 

The non-visual tools (the Band Calculator and Repertory Grid) were also well 

received. The Band Calculator was seen as a quick and easy way to enter algorithms 

and get an instant result. The Repertory Grid Tool was regarded as good way to 

acquire knowledge which was non-visual. Even though users agreed that most 

geographic knowledge is visual, there is still a significant amount of non-visual 

knowledge needed to analyse satellite images. 
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Chapter 8. 	CONCLUSIONS 

This chapter presents the conclusions about the KAGES (Knowledge Acquisition for 

Geographic Expert Systems) knowledge acquisition methodology and toolkit. It presents 

the argument that the knowledge classification for geographic systems presented in 

Chapter 2 is valid. It draws conclusions about the knowledge acquisition tools described 

in Chapter 6 for acquiring the six types of knowledge identified in this thesis and 

discusses the advantages of using an interactive system. The chapter concludes with a 

statement of projected future research. 

8.1 INTRODUCTION 

Conclusions about the KAGES methodology fall into a number of categories. These 

include the nature of geographic knowledge, the need for a geographic knowledge 

acquisition methodology analogous to the more general KADS methodology and the 

usefulness of a series of tools developed to implement the methodology. 

8.2 AN INTEGRATED GEOGRAPHIC KNOWLEDGE ACQUISITION 

STRATEGY 

Without an integrated knowledge acquisition strategy, the development of expert systems 

for use with GIS (Geographic Information Systems) and RSS (Remote Sensing Systems) 

is constrained. The knowledge acquisition bottleneck becomes tighter because there is no 

systematic way of collecting knowledge about particular aspects of an image. To acquire 

knowledge directly from an image interpretation expert requires tools which capture 

knowledge as the expert works. Without tools of this type a knowledge engineer is 

reduced to using interview and other off-line techniques which require interpretation of 

the users actions. Working with these techniques one tends to identify individual image 

objects, and seldom move beyond that. 
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One of the aims of Schreiber et al's (1993) ICADS (Knowledge Acquisition and Design 

System) methodology was to present a generalised knowledge acquisition model that 

details various types and uses of knowledge. The 'CAGES methodology presents a 

complementary model for use with geographic or spatial systems. Without an integrated 

structuring of geographic knowledge, the production of spatial knowledge acquisition 

tools will be an ad hoc process. 

The ICAGES methodology assumes that geographic and spatial knowledge is primarily 

visual, a view supported by McKeown et al (1989). The implementation of tools for such 

a methodology must also be visual and capture users' knowledge as they analyse an 

image. Image interpreters initially identify areal, point and line objects either by their 

appearance or by their spectral signature, and then indicate them by pointing at them. This • 

process includes knowledge of scene primitives or Primitive Knowledge. 

Information on proximity, orientation and overlap is Relationship Knowledge. Users can 

name the relationship between two objects by pointing at the two objects. The 

relationship is calculated and although two users may provide a different label for the 

relationship, its definition rather than its name is definitive. 

Grouping objects to replace them with a composite or generalised object is also a visual 

process with a user drawing around primitives which should be grouped. Assembly 
Knowledge therefore involves knowledge of groups of objects and how they make up a 

generalised object. 

These three tasks of an image interpreter involve the first three knowledge types, 

Primitive, Relationship and Assembly. They are visual and should be acquired in a visual 

way. Although these types of knowledge can be used to classify an image, further 

refinement requires Non-Visual Knowledge. 
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Many experts rely on composite images to make features more visible. The Band 

Calculator Tool provides an easy method to obtain, name and store Algorithmic 

Knowledge for this purpose. 

Scenes can change over time in a systematic way. Some of these changes may be 

described verbally by the image interpretation expert. Other ways of acquiring Temporal 

Knowledge include analysing the contents of a database to discover patterns. 

Experts may also rely on non-visual heuristics. This Heuristic Knowledge can be acquired 

by interview, but a more systematic method is to use tools such as repertory grids where a 

user is asked to differentiate between objects. 

The remaining two knowledge types are at a higher level. Consolidation Knowledge 

(knowledge of how knowledge-bases are to be combined) is at the Inference Level in the 

KADS methodology. Interpretation Knowledge (knowledge of how to apply a 

knowledge-base to a specific domain) is at the KADS Task Level. 

8.3 AN INTEGRATED TOOLKIT TO IMPLEMENT THE KNOWLEDGE 

ACQUISITION STRATEGY 

The 'CAGES methodology provides a framework for the classification of geographic 

knowledge which has been proven sound by the implementation of tools to capture 

knowledge of each class. This linking of a knowledge classification methodology and a 

toolkit containing tools which capture users actions, provides an integrated geographic 

knowledge acquisition system. 

The toolkit is integrated to allow a user to choose the tool most suitable for solving a 

particular knowledge acquisition problem. In the case of a toolkit like 'CAGES some tools 

are required before other tools can be used. For example the visual tools for Relationship 

and Assembly Knowledge acquisition are dependent on the Per-Pixel Primitive 
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Knowledge acquisition tool to define scene primitives. The Per-Pixel tool, in turn, may 

require algorithms entered via the Band Calculator to produce composite images. 

Only the Heuristic Tool can operate more or less independently of the others since this 

only uses an image as a prompt to the user. A normal sequence of operations would still 

see this tool being used after the visual tools to confirm or refine classification rules. 

The final level of integration is with the Consolidation Tool, which combines any 

multiple knowledge-bases created by the other tools in the toolkit. The result of using this 

tool is the production of an integrated unambiguous knowledge-base. 

8.4 USER-CENTRED GEOGRAPHIC KNOWLEDGE ACQUISITION 

This thesis has postulated that geographic knowledge is primarily visual and therefore 

tools designed to acquire geographic knowledge must also be visual. As a result the user 

interface is of primary importance for the acceptance of such a tool. The tools available 

within KAGES have been shown to be intuitive providing very rapid feedback on user 

actions. 

This thesis is concerned with the acquisition of geographic knowledge rather than the 

development of a full inference engine to apply that knowledge. However it is necessary 

for a user to see the effect of the rules that the system has generated. 

The users' reaction to knowledge acquisition using 'CAGES has been positive. Most of 

the features in KAGES were not available in packages they were currently using. 

Although the Per-Pixel Tool did not provide any significant advances over features 

available within current GIS, users seemed impressed with the other tools. However, 

unless segmented images classified at the pixel level are imported, users agreed there is a 

need for the Per-Pixel Tool. 
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The overall user interface was seen as being easy to use. The operation was similar to 

many GIS and image processing packages. The manipulation of images was facilitated in 

an intuitive way with user suggestions being incorporated into the final design. 

8.5 FUTURE WORK 

The research work reported in this thesis could be extended in at least four significant 

directions. Three of them are related to non- visual knowledge and have the potential for a 

long-term study. 

8.5.1 Temporal Knowledge 

The basis of an investigation into temporal aspects of knowledge acquisition has already 

been established in the form of a database for use with the MIRC (Multi-temporal 

Imaging for Remote sensing of Crops) study. The initial study for crop recognition has 

now been expanded. A new study area to the east of the one reported in this thesis has 

been chosen along with a second area around the Cole River in Southern Tasmania. 

This aspect would require an extension to the knowledge acquisition methodology which 

would allow the temporal aspects of Allen intervals to be incorporated and would include 

a study of state change of objects between images (Story and Worboys, 1995). For 

example some crops are usually replanted with a particular following crop. Some crops 

are perennials such as pyrethrum. 

8.5.2 Interpretation Knowledge 

Interpretation Knowledge is knowledge of how to apply a knowledge-base to produce a 

classified image in a particular situation. It is analogous to KADS task knowledge and as 

such it is meta-knowledge. Current geographic knowledge-bases have been built with a 
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specific classification task in mind. Using the same knowledge-base for different tasks 

requires meta-knowledge about which databases are suitable for what application. 

An extension to this work is the development of an equivalent to the KADS strategic 

knowledge. In this case it is knowledge of choosing alternative ways of attaining the same 

goal. Currently there are too few geographic knowledge-bases for this to be of great 

concern. However given the growth of use of GIS and RSS and the need for expert 

systems technology to aid in the interpretation of data this is likely to change. Knowledge 

of the existence and purpose of knowledge-bases and the means of combining 

knowledge-bases created for different scenarios to produce a new classifier will become 

necessary. 

8.5.3 Machine Learning Integration 

Machine learning and neural network classifiers suffer from the same limitations as 

statistical classifiers in that they produce classified images based on Primitive 

Knowledge. Fischer (1998) comments that neural networks have the potential to improve 

spatial data analysis tasks. However it is also noted that to date, the potential has not been 

realised. 

Integration of machine-based methods with knowledge gained directly from the expert 

user may be a solution to the problem. This approach has been investigated in non-spatial 

domains (Faure et al, 1993) but not in the spatial domain. There is a need to investigate 

the use of objects labeled by machine learning and neural network methods and apply 

spatial knowledge of the Relationship and Assembly levels to refine the analysis of 

images. }(AGES is already capable of supplying training data through its Point Data Tool. 

The next stage would be a more direct coupling with machine learning or neural network 

systems. 
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8.5.4 Data Mining 

One aspect of spatial knowledge acquisition not fully explored in this thesis has been that 

of data mining. This area is distinct from temporal analysis in that non-temporal 

relationships can also be found. Data mining is essentially a database analysis technique. 

Spatial data mining is the extraction of implicit knowledge, spatial relations or other 

patterns not explicitly stored in a spatial database (Koperski and Han, 1995). Techniques 

which can be used to accomplish data mining include artificial neural nets, decision tree 

induction and nearest neighbour methods (Mejia-Lavelleand and Rodriguez-Ortiz, 1998). 

During this study a database was established to record crop location and growing 

characteristics for the MIRC project Insufficient data had been entered as yet to allow 

data mining to be investigated, but future expansion of this database will open up the 

possibility of data mining in the future. 
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GLOSSARY 

2D-PIR 

AVHRR 

GIS 

GPS 
IASOS 
KAGES 
KADS 

MBR 

MIRC 

NDVI 

NOAA 

RSS 
SPOT HRV 

TIAR 

2-Dimensional Projection Interval Relationship 

Advanced Very High Resolution Radiometer 

Geographic Information System 

Global Positioning System 

Institute of Antarctic and Southern Ocean Studies 

Knowledge Acquisition for Geographic Expert Systems 

Knowledge Acquisition and Design System 

Minimum Bounded Rectangle 

Multi-temporal Imaging for the Remote sensing of Crops 

Normalised Difference Vegetation Index 

National Oceanographic and Atmospheric Administration 

Remote Sensing System 

Systeme Probatoire d'Observation de la Terre, Haute Resolution 

Visible 

Tasmanian Institute of Agricultural Research 
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APPENDIX A. KAGES OPERATION 

KAGES (Knowledge Acquisition for Geographic Expert System ) is an interactive 

knowledge engineering tool which captures expert interpretation knowledge from 

cla ifiers of remotely ensed atellite image . Currently NOAA A VHRR, SPOT and 

Landsat images can be processed. 

The following i an operational de cription of the use of the tool using SPOT and 

Land at TM image of the North We t Coast of Tasmania ba ed near Table Cape. 

A.l MAIN MENU 

Qui 

Figure A.l KAGES main menu with SPOT HRV image 
already loaded 

In the above screen shot, an image has already been loaded by selecting the Load 

SPOT Image button. The initial image band displayed i Band 1. Other image band 

can then be previewed by electing the Display Image Bands option. Contrast 

Adjustment is provided at this level. Once adjusted here, the contrast value is passed 

to the rest of the ystem. In the current system contrast cannot be adjusted in lower 

level modules. 
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A.2 LOAD SPOT IMAGE 

Load SPOT Image is typical of the Load menu options. The common dialog box is a 

standard IDL load file procedure. It allows a user to select a file containing one band 

of a multi spectral image. Files need to be in the form X#, where X  is  any file name 

and # is the particular band number. In the case of SPOT this is in  the  range  1  to 3. 

The number represented by # is then stripped off and replaced by 1 and that file 

loaded. This is repeated with the # being replaced consecutively by the other band 

numbers for that image set. Band 1 is then displayed in the main menu window. 

A.3 DISPLAY IMAGE BANDS 

Figure A.2 SPOT image (2" November 1996) with near infra red (band 3) 
displayed using the Display Image Bands option 

This option allows the display of individual satellite image bands and produces both 

an image and a histogram of pixels over the whole of the image band.  If  the contrast is 

too dark or too light it can be adjusted at the main menu screen. This option can be 
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used in conjunction with the Band Calculator (see below) to produce images and 

histograms based on band composites. Using this facility a user can preview images 

before using one of the other tools to construct rules. 

A.4 BAND CALCULATOR 

Figure A.3 Band calculator shown in conjunction with a SPOT image (2" d  
November 1996) 

When the Band Calculator button is selected, the band calculator appears 

superimposed over the initial band I image. It is then a case  of  selecting the 

appropriate bands to include in an algorithm, then naming the algorithm. 

In this example the band calculator has been selected from the main menu and used to 

enter the NDVI algorithm to aid with crop identification. Once an algorithm has been 

entered it is stored in a file which is available to all applications. This can be accessed 

when bands are selected for display in conjunction with other tools  such  as the Per-

pixel Tool. When used with other tools in the tool kit, the algorithm  is  converted to 

executable IDL code. 
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Figure A.4 Per-pixel tool being used to define an area. The zoomed window 
shows a segment from the bottom right hand corner of the main image window. 

There are three components in the Per-pixel tool. The first allows for manipulating 

areal objects, the other two manipulate point and line objects. 

The screen shot above shows the areal knowledge acquisition tool. The initial Per-

pixel tool screen allows a user to move the zoom window and zoom in on a feature to 

aid location. Once that has been done the user "scribbles" over the object of interest. 

The system then returns the maximum and minimum pixel values of the scribble and 

uses those to initialise the threshold slider bars 

ill  THRESHOLD ADJUSTER 

SE T_T HRESHOLDS 	 j MINIMUM THRESHOLD MAXIMUM THRESHOLD 

67 

Figure A.5 Threshold adjuster window showing the selected area has pixel 
thresholds between 67 and 81 
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ii REGION DEFINITION 
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Name of Region Minimum Pixel Value onions 71 

Band Used 3 	 Size of Region 130 

Maximum Pixel Value 83 

The THRESHOLD ADJUSTER window is then displayed and if a user knows the 

thresholds are set too high or too low they can be adjusted at this point. Once the user 

is satisfied the SET_THRESHOLDS button is pressed. 

Figure A.6 Region definition (naming) dialog window displaying  an  area object's 
characteristics and allowing a user to enter a name 

Once the threshold has been set the system locates all pixels  within  that range 

contiguous with pixels initially defined by the expert. The system  draws  a minimum 

bounded rectangle around the object in the main (central) window and displays a 

histogram of the pixels in the object in the histogram window. 

The REGION DEFINITION dialog box is then displayed providing information on 

the pixel threshold values, the area of the region (in pixels) and the  band  used. The 

user can then either enter a name or label for the object, or abandon the operation. 

The following rules are copied from the contents of the file containing the generated 

rules: 

RULE_1 
IF Band =1 
AND pixel_value<= 27 
AND pixel_value >= 24 
AND type =3 
AND area > 1000 
AND month = 12 
AND image = sp 
THEN FEATURE_NAME = trees 
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RULE_2 
IF Band =abs((B3-B2)*100)/(B2+B3) 
AND pixel_value <= 16 
AND pixel_value >. 6 
AND type = 3 
AND area > 100 
AND month = 12 
AND image = sp 
THEN FEATURE_NAME = potatoes 

RULE_3 
IF Band =abs(B4-B3)/(B3+B4) 
AND pixel_value<= 10 
AND pixel_value >= 0 
AND type = 3 
AND area > 100 
AND month = 12 
AND image = tm 
THEN FEATURE_NAME = poppies 

The first rule uses a raw SPOT band (Band 1). Rules 2 and 3 use composite images 

defined by the Band Calculator. Rule 3 in this case is defined from a Landsat Image, 

Rule 2 from SPOT. 

Line and Point feature rules are generated in a similar way and have a similar form. 

A.5.1 Verification of Per-pixel Rules 

While developing Per-pixel rules, the system only displays the instance of the object 

being selected as a typical example of the object class. Therefore to see the effect of 

applying the rule to the entire image the Apply Rules option in the Main Menu can 

be chosen. This option allows a user to apply both Per-pixel rules and Relationship 

rules (which will be described below) for verification. 

The effect of applying Per-pixel rules can be seen by choosing the Apply Rules 
option from the Main Menu. The user then has the choice of applying either a single 
rule, or all rules. Choosing single rule will present the user with a menu of the 

primitive objects which have been defined. When an object type is selected, the 

system selects all pixels which satisfy the clauses and displays them. 
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Applying all rules produces a per-pixel classification of the image  by  applying the 

rule for each of the primitive objects identified in the image. 

Figure A.7 An Image produced by applying all rules 

Therefore, although KAGES is designed to be a knowledge acquisition system, it can 

do limited classification via its verification options. At present the system applies only 

Per-pixel rules and can produce images such as the one above. Applying spatial rules 

would allow areas which have been classified twice (coloured pale mauve in the 

example) to be further refined. 
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A.6 RELATIONSHIP TOOL 

Once more than one object has been defined, the Relationship Tool can be used to 

determine spatial relationships. This is selected from the main menu by pressing the 

SPATIAL ANALYSIS button. The Spatial Tool window is displayed and the user 

selects two objects, then presses OK 

Figure A.8 Initial window from the spatial tool which is superimposed over the 
main screen. A user is required to pick 2 objects 

The system first displays the two selected objects on the image by applying their 

associated per-pixel rule. Since only two instances of the primitive object are used, 

ones which are in a typical visual relationship with each other should be selected. The 

system then draws a minimum bounded rectangle around them before investigating 

directional, overlap and nearness characteristics. 

Direction is calculated in terms of the orientation of the objects centroids. This is to 

within 45°  hence typical values are SOUTH and NORTH_EAST. Overlap 

characteristics are calculated using the minimum bounded rectangles in the first case, 

then if they overlap, the objects' boundaries within the overlap of the MBR are 

checked. Most objects in the agricultural example do not overlap, but many are 

adjacent to other objects. 
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Figure A.9 Spatial tool with the selected objects displayed 

In the above example the two objects being used for relationship calculations are trees 

and sea. One problem with trees is that when the primitive level rule  is  applied some 

pixels are classified as trees even though they appear offshore. This effect is probably 

due to the influence of submerged sea grass. To overcome this, a spatial rule is 

required. 

The above image shows relationships between two areal objects, in this case trees 

(forest) and an area of sea. Both have a minimum bounded rectangle associated with 

them and are labelled. 
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_ SPATIAL RULEEDITOR 

Figure A.10 Spatial Rule editor window showing a rule which expresses a 
possible relationship between sea and trees 

Once the system has completed the task of working out the relationships, the 

SPATIAL RULE EDITOR window automatically appears. This displays all the 

relationships calculated by the system in the form of a rule. The user has the option of 

modifying this by deleting clauses that have arisen due to chance. If the rule is 

acceptable the user can select the continue to name option allowing the rule to be 

saved. 

A.6.1 Verification of Spatial Relationship Rules 

As well as visually checking the clauses of the rules produced, the effect of applying 

the rule to the entire image can also be seen. The apply rules option can be chosen 

from the main menu. From there apply spatial rules can be chosen and the rule to be 

applied is then selected from a dialogue window. 

The system applies the pixel level rules to define the two objects in the spatial rule. 

The image is then segmented and labels attached to each of the object types. The rule 

is then applied to all pair combinations of the objects. 
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Figure A.11 Effect of selecting Apply Rules / Apply Spatial Rule with the 
previous rule selected 

The effects of applying a spatial rule are shown above. In this case the relationship is 

between areas of forest and the sea. Only areas greater than 1000 pixels are 

considered in this case. These are shown with a minimum bounded rectangle drawn 

around them. Those areas that fulfil the conditions of the rule are shown with their 

centroids linked. The program also outputs a summary of what happened. In this case: 

Total Directional Clause True 6 

No Distance Clause 

Total Disjoint Clause True 20 

Total Overlap Clause True 0 

Total Rules Fired 20 

Total rules True 6 

The verification process suggests that the rule is too restrictive as  there  are areas of 

trees identified on the image which do not match the rule. Ground  truth  revealed that 
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these areas really were trees. This problem could be corrected by defining a second 

spatial rule to allow for areas of trees which are also to the south west  of  the sea area. 

During consolidation these two rules would be combined with a directional clause: 

• • • 

AND (AREA_Y SOUTH OF AREA_X 

OR AREA_Y SOUTH_WEST OF AREA_X) 

••• 

A.7 THE REGION OF INTEREST TOOL 

The Region Of Interest Tool allows a user to investigate the grouping  of  objects in an 

image by tracing an area which may contain one or more scene primitives. This is an 

option chosen from Spatial Analysis in the main menu. The Object Grouping Tool 

window is displayed and the user uses the mouse to trace an object. Once the trace is 

compete the area delimited is highlighted and a minimum bounded rectangle drawn 

around it 

OBJECT GROUPING TOOL 

Figure A.12 Region of Interest tool defining a rural area (SPOT band 1 taken on 
2" November 1996) 
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Once the above operation is complete the system displays the ROI CHECK window 

containing a list of object labels representing object types located in the user defined 

region. The user then has the option of deleting labels which are not typical of the 

region. In the case of the MIRC project this tool was not used. 

.../.111 -LEctc &ASV 

Figure A.13 Region of Interest editor showing object types found 

Although the example shown here is only an illustration of how the tool works and 

does not define a ground truthed object, it illustrates how a particular farm type could 

be represented. In this case the farm would be an example of mixed cropping. Others 

with a large percentage of pasture would be more likely to be sheep or cattle 

production. Once the user is satisfied with the list they can proceed to name the 

region. 

Figure A.14 Naming window for Region of Interest tool 

177 



A.8 REPERTORY GRID TOOL 

Figure A.15 Repertory Grid Tool after the New Grid option has been chosen. 

The Repertory Grid Tool can be selected from the main menu  after  an image is 

loaded. This image serves as a background and prompt for the repertory grid dialog. 

There is no manipulation of the image. The screen shots below are normally 

superimposed on the image as in the example below 
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Figure A.16 Repertory Grid Load window allowing entry of image features 

Repertory Grid options are: 

• Load a Grid, 

• New Grid, 

• Modify Grid, 

• Save Grid, 

• Analyse Grid, 

• Generate Rules and 

• Return to Main KAGES menu. 

When a the New Grid option is selected from the Repertory Grid  main  menu the 

above screen is displayed. This requires an image interpretation expert to name 

features on the image. To help the expert, band I of the currently  loaded  image is 

displayed as a backdrop. This is purely as a prompt and cannot  be  manipulated by the 

user. 

The grid can be updated if the user later remembers a feature they forgot to include in 

the list, or includes a feature they decide they want to delete by  using  the Modify 

Grid option. The order and type of feature is unimportant in the repertory grid 

process. 
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REP GRID LOAD 

Once all feature names have been entered by the domain expert, the next step is 

activated by pressing the GET FEATURE NAMES button. This establishes the 

names entered as column headings of the grid. To abort at this point a user presses the 

Return to Main Program button 

Figure A.17 Triad (Get Discriminators) window asking a user  to  differentiate 
between features 

When GET FEATURE NAMES is selected, groups of three objects are displayed to 

the user who is then asked to name an attribute two of the features have but the third 

lacks. This process, known as a triad comparison, continues with similar screens until 

a series of attributes or discriminators have been entered. These become the row 
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labels of the grid. If the user wishes to add extra discriminators, the MODIFY GRID 

/ ADD DISCRIMINATOR option at the main Repertory Grid Menu can be used. 

In the above example the crop onions has a relatively small area compared with the 

areas of forest and sea in the image. 

Figure A.18 Ranking window with slider bars to input ranking 

Once all the discriminators have been added, each object or feature named by the user 

on the first screen is compared with each of the discriminators. This is done with the 

above screen. The order of adjusting the slider bars is unimportant. 

In the above example the feature sea is analysed. Since the discriminator 

early_cropping is irrelevant in this particular case, the slider bar is left at 3. Any 

slider bar left at 3 is not regarded as significant when the generate rules option is 

selected. 
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Figure A.19 Repertory Grid results 

The result of the above steps is to produce the grid shown in figure A.18. The setting 

of each of the slider bars becomes a value in the appropriate cell of the grid. This grid 

can then be stored as a text file for future manipulations, analysed for clustering of 

both features and discriminators or used to generate rules. 

Rules are displayed on at a time on screen for user verification. These can then be 

either accepted, modified or rejected. The final rule base is then saved as a text file. 

The following three example rules are transcribed from the contents of the file which 

contains the output of the above grid. In this case all the rules were accepted without 

modification. 
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RULE_ 1 

IF large area 

AND NOT high_albedo 

AND NOT small_area 

AND NOT regular_area 

AND NOT even_texture 

THEN OBJECT = forest 

RULE_2 

IF large area 

AND NOT high_albedo 

AND NOT small_area 

AND NOT regular_area 

AND even_texture 

THEN OBJECT = sea 

RULE_3 

IF NOT large area 

AND small_area 

AND regular_area 

AND even_texture 

THEN OBJECT = onions 

A.9 POINT DATA TOOL 

The Point Data Tool allows an image interpreter to create training data at various 

locations across an image. This can be done in either automated sampling mode or 

manual mode. In automated mode the system asks the user to select the sampling 

density using slider bars. The system then samples the image set using the sampling 

grid and requesting the user to name the sample points. 

In manual mode the system operates in a similar way but allows the user to select the 

points to be named. In practice the user started with the regular grid then filled in 

unsampled features in manual mode. 
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Figure A.20 Point data tool showing sampling points designated by X on the 
image and the naming window (NOAA VHRR image of Casey taken on 26 th  
February 1998) 

As each point is selected either by the system or the user, the user  is  requested to 

name it. To do this a user can select a previously entered label by highlighting it and 

selecting OK (as in Figure A.19) or select the NEW button to enter  a  new label for 

the sample point. 

Choosing the Cancel button will allow the user to: 

• change image bands, 

• change to user selected sampling or 

• end and save the results of sampling 
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A copy of the output from sampling Figure A.20 is: 

BAND Location 

1 2 3 4 5 class X Y 
141, 127, 4, 85, 85, high cloud, 127, 128 
153, 137, 48 79, 80, continental ice, 254, 128 
166, 146, 27, 75, 75, continental ice, 381, 128 
159, 137, 13, 77, 77, low cloud over ice, 508, 128 
178, 155, 17, 80, 80, low cloud over ice, 635, 128 
143, 122, 12, 76, 79, low cloud over ice, 762, 128 
139, 115, 41, 67, 68, continental ice, 889, 128 
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APPENDIX B. 	MIRC DATA BASE 

ak, Microsoft Access 

Figure B.1 MIRC database 

The above screen shot is of the entity — relationship table of the relational database for 

the M1RC 2 project. MIRC 2 is a larger scale investigation funded by a HRDC 

(Horticultural Research and Development Corporation) grant with the same aims of 

the MIRC project described in the thesis. It contains data for paddocks in two areas; 

the first being on Tasmania's North West Coast centred on the Devonport area, the 

second being in the South East of the state centred on the Coal River Valley. 

Data has been entered for the 1997 / 98 growing period, but it is unlikely that any 

analysis of the data will be carried out before three growing seasons of data have been 

entered. 
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Details of each of the tables and their attributes shown in the above table are as 

follows: 

Paddock — Crop Table 

This table provides the details of a crop planted in a particular paddock at a particular 

time along with an indication of crop health including weed infestation. The first three . 

fields are key fields and unique temporal identification. Details are: 

Paddock-ID — A field identifying individual paddocks and linking back to individual 

paddock details 

Crop-ID — Identifies the type of crop in the paddock and links to individual crop 

details 

Date-Planted —An estimation of the date when the crop was planted: 

Planting-Method — Optional field detailing the way planting was done, for example 

type of seed drill and depth. 

Rate — Optional field detailing rate of sowing. 

Major Weed — Optional field containing major weed(s) including regrowth of 

previous crop. 

Vigour/Attributes - Optional comment field detailing crop health. 

Date-Cropped — Date the crop was harvested. This may only be an approximate date. 

Cropping-Method — Optional field containing information on the type of harvester 

and any details on the methods used. 

Image Table 

This table contains a unique identification number for each image used in the study 

and the date it was obtained 
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Crops Table 

This table relates a Crop-ID to an actual crop name. This table once created requires 

little maintenance, except to add new crops. Details are: 

Crop—ID — Unique identifier of a crop. 

Crop Name - Crop name — generic name rather variety (for example potatoes, not 

Russet Burbank). 

Growth Period — Approximate period since planting in weeks. 

Signature-mid — Spectral signature (including band) of a typical example of the crop 

midway through its growth cycle. 

Signature-mature - Spectral signature (including band) of a typical example of the 

crop when mature (generally ,  flowering). 

Signature-cropping - Spectral signature (including band) of a typical example of the 

crop at harvest, but before being cleared. 

Paddocks Table 

This table contains features of individual paddocks. This table may require 

maintenance as new paddocks may be created by either land clearing or subdividing 

an existing paddock. Details are: 

Paddock-ID — Unique identifier for each paddock in the study. 

Area — Estimated area of paddocks in square meters. 

Date Entered — Date the paddock was entered into the system. This is particularly 

important for subdivided paddocks which may only exist for a single growing 

season and are therefore temporal in nature. 

Location — Geographic location of paddocks centre (if available). 

Super-Paddock — If this is a subdivided paddock, this field contains the Paddock-BD 

of the undivided parent paddock. 
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Image — Paddocks Table 

This table links paddocks to images. Images which are affected by cloud will not 

show all paddocks. The table is designed to be used to aid filtering when temporal 

data is required. Hence images which contain a paddock required as part of the study 

can be identified. 

Paddock—PestHerb Table 

This table is used to keep track of applications of pesticides and herbicides to 

individual paddocks. 

Paddock-ID — Paddock to which pesticide or herbicide has been applied. 

Date-Applied — Approximate date of the application. 

Pesticide/Herbicide — Name of the pesticide or herbicide used. 

Application Rate — Rate in grams per square meter at which the pesticide or 

herbicide was applied. 

Application Method — Method by which the herbicide or pesticide was applied 

(Includes aerial and boom sprays). 

Paddock — Fertilizer Table 

Thiis table is used to keep track of applications of fertilizers to individual paddocks. 

Paddock-ID - Paddock to which pesticide or herbicide has been applied. 

Date-Applied - Approximate date of the application. 

Fertilizer - Name of the fertilizer used. 

Rate - In terms of grams per square meter at which the fertilizer was applied.. 

Method - Method by which the fertilizer was applied (Includes aerial and boom 

sprays). 
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APPENDIX C. 	SAMPLE INTERVIEW 

TRANSCRIPT 

The following is an edited extract from an interview with an image interpretation 
expert. This particular expert had skills in both satellite image interpretation and GIS. 
The interview was conducted while the KAGES toolkit was still being developed, so 
some of the suggestions were incorporated in the system 

You have now seen a demonstration of the tool and used some of its features, 

do you think it is a useful tool? 

The answer is yes. It contains a lot of features which are not part current GIS 

packages and require quite a bit of work if you are going to do it with current 

image processing tools. 

Which aspects of the tool are most useful? 

A 	The method you use for sorting out the spatial relationships between two 

objects is a good idea. Particularly the way it allows you to see all 

relationships. 

The repertory grid is an interesting idea. I can see that it can give an 

alternative method of gaining knowledge now the way it comes up with rules 

has been explained. 

The region of interest tool is also a quick way of grouping objects, although I 

think it may need more work to be completely useful. It doesn't actually 

replace everything in the group with a single object. 
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• What does the tool provide your current system does not? 

A 	My current tool basically works at what you call the scene primitive level. 

Most of the things you have shown me apart from that are not available in my 

current system. 

• What would you like to see the tool provide that it does not? 

A 	The histogram display is good but it would be nice to be able to adjust 

thresholds using the histogram as well as slider bars, both in the initial 

definition and during modification. 

Make sure the full range of image processing tools are available. This is one of 

the main shortcomings of the current range of GIS packages. 

It would also be useful if the system could generate more statistics. For 

example the degree of overlap of the boundaries of two objects. That is if a 

polygon is of a particular type and it overlaps another polygon, how big is the 

polygon formed by the overlap, and what percentage of the original polygons 

does it represent. 

• I had a similar comment about the Region of Interest Tool. Do you think it is 

useful to record information on the make up of objects within a subregion? 

A 	Definitely, also it would be good if the Region of Interest Tool could be 

expanded to allow automatic replacement of a group of objects by a single 

object. 
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Which aspects of the system duplicates what you already have? 

A 	The main one is the Per Pixel tool. The spectral stuff has been pretty much 

fully developed in GIS systems, as a result your system does not really offer 

any advance. But if you don't have a starting point which defines scene 

primitives, I supposed you do need something of that type before you can do 

very much more. I would look at importing information from a GIS which 

already has labelled polygons identified from spectral signatures 

Which aspects of the tool don't you like? 

A 	Apart from the stuff I mentioned I would like to see the tool provide, a couple 

of features could be improved. The part where it shows rules then allows you 

to delete lines. That is very restrictive. A better editor is needed there. I would 

like to be able to do modifications more easily 
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