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SUMMARY 

The use of multi-sensing portable analysers is of increasing importance for many 

applications. This thesis reports on the development of new portable battery-powered gas 

analysers suitable for remote site monitoring that can utilise a range of Taguchi tin-oxide 

sensors as detectors. Two main designs were developed and evaluated for a variety of 

applications employing head-space analysis. 

A portable analyser employing the TGS812 and TGS824 Taguchi gas sensors was built 

in flow-through arrangements. The performance of the gas analyser was evaluated in terms of 

reproducibility, stability and sensitivity and was used to determine the ethanol content in 

various commercial beer and wine samples. The adsorption response mechanism of the tin-

oxide gas sensors was also investigated using the Langmuir adsorption isotherm model and 

this model was validated by determining the ethanol content of beer and wine samples. 

A portable, battery-powered, multi-sensor gas analyser, containing six different 

Taguchi tin-oxide semiconductors was developed and evaluated. The performance of the 

portable, battery-powered, multi-sensor gas analyser was evaluated in terms of stability, 

sensitivity, selectivity and reproducibility. The portable multi-sensor gas analyser was used to 

determine the ethanol content in various beer samples employing the Langmuir isotherm 

mentioned above. 

The portable battery-powered multi-sensor gas analyser mentioned above was used 

together with back-propagation artificial neural networks and applied to discriminate between 

beer brands, grades of olive oils, as well as the estimation of the age of olive oil samples. 
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Chapter One 	 1 

Chapter One: General Introduction 

1.1 Sensors 

The aim of the work presented in this thesis was to develop and evaluate a portable, 

battery-powered gas analyser suitable for remote site monitoring. The portable analyser 

developed in this study employs multiple Taguchi tin-oxide semiconductor gas sensors in an 

array type arrangement, in order to determine the feasibility of the system. 

A sensor converts a physical parameter that is to be measured into an electrical signal 

that is processed or transmitted electronically. Classification of physical parameters that are 

measured by sensors are presented in Figure 1.1. 

Figure 1.1. Physical parameters that are converted into an electrical signal by sensors. 

Examples of physical parameters that sensors have been employed to monitor include: 

(1) Magnetic signals used in measuring the earth's gravitational field [1], 
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(2) Chemical signals used to measure the concentration of chemical species such as pH, Na+, 

and CO2  [1], 

(3) Electromagnetic radiation emitted from telecommunication devices [1], 

(4) Mechanical signals used to determine pressure, viscosity and velocity of flow for gases and 

liquids [1] and, 

(5) Thermal signals used to measure temperature and heat flow [1]. 

An ideal sensor should be highly sensitive, reproducible, reversible, selective, reliable, 

durable, small in size, low in background noise, simple to calibrate, of low cost, rapid in 

response and capable of producing a digital output. However, in practice, it is not possible to 

satisfy all these characteristics, so a compromise between cost and performance must always be 

reached. The characteristics of a sensor must be chosen in relation to particular requirements 

needed [1]. 

The aim of the work presented in this thesis was to develop and evaluate a portable 

battery-powered gas analyser employing various types of tin-oxide semiconductor gas sensors. 

1.2 Gas Sensors 

There are many gas sensors available commercially and many more are currently being 

researched, due to the recent interest in occupational health and the need for environmental 

pollution monitoring. Various types of gas sensors have been applied to detect gases of interest 

including; catalytic gas sensors, mass sensors such as piezoelectric sensors and surface acoustic 

wave sensors, optical gas sensors and electrochemical sensors such as potentiometric, 

amperometric and conductimetric gas sensors and each of these sensors will be discussed in 

turn. 

1.2.1 Catalytic Gas Sensors 

Catalytic gas sensors are widely used throughout industry for estimating the 

concentration of flammable gases in air [2]. Generally, the concentration of the gas of interest 

is measured as the heat is liberated in a controlled chemical reaction [2]. 

A typical catalytic gas sensor consists of a catalyst surface, a temperature sensor and a 
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heater to maintain the catalyst at the operating temperature. An example of a catalytic gas sensor 

is the pellistor-type sensor [2] as shown in Figure 1.2. This sensor uses palladium supported 

on thoria as the catalyst. This is deposited on the surface of a refractory bead of approximately 

0.5 - 1.0 mm in diameter encapsulating the platinum coil which acts as a heater and temperature 

sensor. Encapsulation of the coil within a spherical bead in this way produces a device which is 

insensitive to orientation and also resistant to shock. It is possible to use any type of 

temperature sensor without changing the basic concept of this sensor [2]. 

Support 

Figure 1.2. A typical catalytic gas sensing element: the pellistor. 

When the combustible gas reacts at the catalytic surface, heat evolved from this reaction 

increases the temperature. The pellistor is usually connected to one arm of the Wheatstone 

bridge circuit, which provides the output signal. For small temperature changes, the out-of-

balance signal (V) across the bridge is proportional to the rate of reaction and the heat of 

combustion [2]: 

V = K r AH 	 (1.1) 
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where K is the constant defined by the components of the system, r is the reaction rate and AH 

is the heat of combustion. As a result, the out-of-balance voltage of the bridge is proportional 

to the concentration of the flammable gas [2]. 

Catalytic gas sensors have been used to distinguish between different flammable gases 

by monitoring the sensor over a range of temperatures [3-4]. These gas sensors are known to 

be very reliable for the quantitative analysis of flammable gases in air, giving a measure of 

explosiveness irrespective of the composition of the gas mixture. However, the major 

limitation of catalytic gas sensors is that various gases such as organosulfur compounds will 

poison the catalyst [2-4]. 

1.2.2 Mass Sensors 

1.2.2.1 Piezoelectric Sensors (Quartz Resonance Sensors)  

Piezoelectric sensors are based on thin crystals which oscillate in an applied electric field 

at a fixed frequency usually in the range of 5-15 MHz [1]. A schematic diagram of a 

piezoelectric sensor is illustrated in Figure 1.3. 
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Substance to be detected 

Active layer 

Change in frequency (A F ) 

Figure 1.3. Piezoelectric sensor. 

There are several types of materials that can exhibit the piezoelectric effect. a-Quartz is 

the most common material used because it is inexpensive, has a relatively high piezoelectric 

coefficient and possesses a hexagonal crystallographic structure with no centre of symmetry. 

The magnitude of the piezoelectric coefficient and its temperature dependence depends on the 

orientation of the cut of the crystal with respect to the main axes. The optimum orientation is 

chosen so that the crystal exhibits minimum temperature dependence within the operating range 

of temperatures. Therefore, for sensor applications under ambient conditions, the AT cut (35 ° 

15' inclination in the y-z plane) is commonly used [1]. 

Quartz crystals have been used as microbalances in the determination of thin layer 

thickness and in gas-sorption studies [5]. The principle was based on the mass change (AM, g) 

on the surface of the crystal which was directly proportional to the frequency change (AF, Hz) 
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according to the Sauerbrey equation [1,5]: 

AF = 2.3 x 106  F2  AM / A 	 (1.2) 

where F is the frequency of the quartz crystal (MHz), AM is the mass change on the surface of 

the quartz crystal (g) and A is the surface area of the crystal (cm 2). 

Piezoelectric gas sensors have been used for the determination of ammonia [6], carbon 

monoxide [7], hydrogen chloride [8], nitrogen dioxide [6], sulfur dioxide [9], 

organophosphorus compounds [10] and mononitrotoluene [11]. The advantages of 

piezoelectric sensors include their small size, light weight, high sensitivity and reliability, 

simple construction and operation and low power requirement [12]. The main disadvantage of 

piezoelectric sensors is that the quartz crystal requires frequent cleaning and the accuracy and 

precision may be affected by temperature and humidity changes [12]. 

1.2.2.2 Surface Acoustic Wave Sensors  

Surface acoustic wave (SAW) sensors employ a piezoelectric crystal to electronically 

induce a periodic wave on the surface of the crystal [1]. The most common SAWs are the 

Rayleigh waves [1]. These waves are generated by affixing two pairs of comb-shaped, 

interlocking metal electrodes at the two ends of a piezoelectric substrate using lithographic 

methods as shown in Figure 1.4 [1]. It is usual to have the electrode configuration repeated at 

the two ends of the substrate. In this way, one side can be the reference and the other can be 

the sensing element [1]. 
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Figure 1.4. SAW element. 

The frequency of the SAW varies between 10 MHz and 1 GHz [1]. Quartz, lithium 

niobate, piezoceramics or thin piezoelectric layers such as ZnO can be used as the piezoelectric 

substrate material [13]. These thin layers are located on a non-piezoelectric base such as glass, 

silicon or a ceramic. 

The transmission of the SAW is dependent on the mass of material adsorbed onto the 

crystal and therefore the gas or vapour adsorbed between the sets of electrodes causes a change 

in frequency, which is proportional to the weight of adsorbed species according to the equation 

[1]: 

AF = k fo2  h p 	 (1.3) 

where k is the material constant of the SAW substrate, f o  is the resonant frequency, h is the 

coating thickness and p is the coating density. SAW sensors have been used for the detection 

of various gases including styrene [14], carbon dioxide [15] and nitrogen dioxide [16]. 

SAW sensors are attractive for chemical microsensor applications because of their small 

size, low cost, high sensitivity and reliability [15,16]. The main disadvantage with SAW 

sensors is their lack of selectivity and reproducibility of surface coating layer thickness [12]. 
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1.2.3 Optical Gas Sensors 

Optical gas sensors are based on optical fibres that employ a single indicator dye, which 

is located at the tip of the fibre and immobilised in an inert polymer [17]. Absorbance and 

fluorescence are the two main parameters that are used to monitor the optical signal [17,18]. An 

example of an indicator dye used for an oxygen sensing optode is the tris(4,7-dipheny1-1,10- 

phenanthroline)ruthenium (II) perchlorate, which is a luminescent transition metal complex that 

was immobilised in a plasticised poly (vinyl chloride) membrane [17]. A cross-section of a 

typical optode that employs a polymer membrane is illustrated in Figure 1.5. 

Sheathing 

Indicator dye 
and polymer 

Optical fibre 

Figure 1.5. Schematic diagram of a typical optical gas sensor. 

Optodes have been developed to respond to ammonia [18], carbon dioxide [19] and 

oxygen [20]. The main advantage of optodes is that no reference is required compared to 

electrochemical methods, they are easily miniaturised, the signal can be transferred to optical 

fibres over large distances without amplification compared to electrical signals, they are 

relatively inexpensive, simple in design and can easily be replaced [21]. 

The disadvantages of optodes include the interferences of ambient and stray light if the 

sensor is not optically isolated, the membrane exhibits limited stability due to leaching of the 

immobilised indicator dye and most optodes do not exhibit a linear relationship between the 

analyte concentration and the optical signal [21]. 
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1.2 .4 Electrochemical Sensors 

1.2.4.1 Potentiometric Gas Sensors  

The Severinghaus-type electrode is an example of a potentiometric gas sensor and it was 

originally developed to measure the partial pressure of carbon dioxide in blood [22]. A diagram 

is illustrated in Figure 1.6. The Severinghaus-type potentiometric gas sensors commonly 

employ a pH glass electrode surrounded by an intermediate electrolyte solution (eg., sodium 

bicarbonate-sodium chloride) and enclosed by a gas-permeable membrane, usually silicone. An 

internal reference electrode is used so that the sensor is a complete electrochemical cell. The 

Severinghaus-type electrode can be used for measurements in either gaseous or liquid samples. 

When carbon dioxide from the outer sample diffuses through the semipermeable membrane, it 

lowers the pH of the inner solution [23]: 

C 02 + H20 <=> HCO -  + H+  3 

Such changes in the pH are measured by the inner glass electrode and the overall cell potential is 

therefore determined by the carbon dioxide concentration in the sample. 

The permeable membrane is responsible for the electrode's gas selectivity. Two types 

of polymeric material, microporous and homogeneous, are used to form gas-permeable 

membranes. These membranes are usually 0.01- 0.1 mm in thickness and are impermeable to 

water and ions [23]. By employing different membranes and internal electrolyte solutions, it is 

possible to obtain potentiometric gas sensors for gases such as ammonia [24] and hydrogen 

cyanide [25]. These sensors employ similar acid-base or other equilibrium processes. 

Potentiometric gas sensors exhibit excellent selectivity compared with many ion 

selective electrodes, however the response characteristics are often affected by the composition 

of the internal solution and the variables of geometry [26]. 
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Figure 1.6. Schematic diagram of the Severinghaus-type potentiometric gas sensor. 

1.2.4.2 Amperometric Gas Sensors  

The Clark electrode is an example of an amperometric gas sensor which was originally 

developed to analyse blood oxygen [27] and a schematic diagram is illustrated in Figure 1.7. 

The Clark amperometric gas sensors is based on a pair of electrodes immersed in an electrolyte 

solution and separated from the test solution by a gas-permeable hydrophobic membrane [23]. 

The membrane is usually made of teflon, silicon rubber, or polyethylene and the electrolyte is a 

solution of potassium chloride and buffer [23]. Oxygen diffuses through the membrane and is 

reduced at the surface of the sensing electrode as follows [23]: 
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02 + 2H20  +  2e- 	[H2 02 ] + 20H - 

[H202 ] + 2e - 	20H - 

The resulting electrolytic current is proportional to the rate of diffusion of oxygen to the 

cathode, and therefore to the partial pressure of the gas in the sample [23]. The actual potential 

applied at the cathode (with respect to the anode / reference electrode) depends on the particular 

design. The cathode is commonly made of platinum, gold or silver. The applied potential 

usually maintains the cathode on the diffusion-limited plateau region for the oxygen reduction 

process [23]. 

41- Filling port 

Ag wire 
Electrode 
body 

Electrolyte 

Platinum cathode 

Polyethylene membrane 

Figure 1.7. A schematic diagram of a Clark oxygen electrode. 

The operation and the sensor design of the amperometric gas sensor can be applied to 
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any gas which can be reduced or oxidised such as nitrogen monoxide [28], nitrogen dioxide 

[28] and carbon dioxide [29]. 

1.2.4.3 Fuel Cell Gas Sensors  

An alternative amperometric gas sensor is the fuel cell sensor. The fuel cell sensor is 

constructed and contains a solvent / supporting electrolyte combination, and a voltage can be 

applied to the working electrode so that the gas species can be oxidised or reduced with some 

degree of selectivity [30]. The relationship between the cell current is proportional to the 

concentration of gas species of interest. An example of a fuel cell type amperometric sensor is 

shown in Figure 1.8. The sample enters the cell through porous electrodes. Porous platinum / 

teflon electrodes separate the electrolytic cell from the gaseous reference chamber on one side, 

and the sample chamber on the working electrode side [30]. The applied voltage between the 

working and the platinum / air electrodes are maintained constant and the potential of the 

platinum / air reference electrode is measured against the potential of a regular Ag / AgC1 

electrode. This is an unusual arrangement from the electrochemical point of view, because the 

potential of the working electrode is affected both the cathodic processes taking place at the 

platinum / air reference electrode and by the IR drop across the cell [30]. The sample enters into 

the electrolytic cell through the porous electrodes, the pore size of which needs to be also 

closely controlled in order to prevent their flooding with the solvent. 
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Voltage 

current 

Sample_ap. 
(Fuel in) 

Pt working 
electrode 
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/ Air 
Reference 

Figure 1.8. A schematic diagram of the fuel cell gas sensor. 

Fuel cell sensors are primarily used in the areas of evidential breath testing and 

environmental monitoring [31]. The ability to detect component gases in a mixture is 

significantly improved when an array of fuel cell sensors are employed [31]. The advantages of 

the fuel cell sensors are their simple construction [30]. However, because the processes which 

affect the response are not fully known, it is difficult to correct problems when they arise or to 

make suitable design changes [30]. 

1.2.5 Conductimetric Gas Sensors 

The most common conductimetric gas sensors are the semiconducting metal oxide 

sensors, because of their chemical and thermal stability. The primary mechanism responsible 

for gas reactions with metal oxide semiconductors in air at high temperatures (200 - 600 °C) 
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relates to the change in the concentration of the adsorbed oxygen at the semiconductor surface 

[32]. Oxygen ions are formed at the metal oxide surface by removing electrons from the 

semiconductor solid. As the charge carrier density is reduced, a potential barrier develops that 

slows the oxygen adsorption rate and corresponding electron movement through the grain 

junctions [32]. Conductivity of the semiconductor material is therefore limited by the oxygen 

adsorption rate and the potential barrier effects at grain junctions. At the surface of an n-type 

semiconductor, reducing gases combines with the adsorbed oxygen reducing the height of 

potential barrier and the semiconductor resistance, and vice versa for oxidising gases and this 

phenomenon is illustrated in Figure 1.9. For p-type metal oxide semiconductor gas sensors, 

reducing gases will increase the semiconductor resistance, while oxidising gases will decrease it 

[32]. Semiconductor sensor materials are therefore classified as n or p type based on the 

resistance changes to decreasing partial pressures of oxygen or to reducing gases in fixed partial 

pressures of oxygen. Solid state doping can set a metal oxide to n or p type, as desired, 

although many materials switch behaviour from n type to p type with increasing partial 

pressures of oxygen [32]. 

Other mechanisms affecting resistance changes in the semicondutor are adsorption of 

ions other than oxygen at the surface, changes in ambient humidity, or water formed by 

combining with adsorbed oxygen. The reactions for an n-type semiconductor as shown in 

Figure 1.9 are below [32]: 

Adsorption of oxygen : (SnO2  + e - ) + 1/ 2 02 	Sn02  (Mad  

Reducing gas : Sn0 2  (0- )ad  + CO —> (Sn02  + e- ) + CO2 
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Reducing Gas eg. CO 02  in Air 

SnO2  SnO2  

Potential barrier in air 

Potential barrier in the 
presence of reducing 
gases eg. CO 

Grain Boundary 
Figure 1.9. Model of the potential barrier at the grain boundary for metal oxide semiconductor 
gas sensors. 

Examples of n-type semiconductor gas sensors include Sn02, ZnO and Fe203, and p-

type semiconductor gas sensors include CuO, NiO and Co0. Figure 1.10 illustrates a 

schematic diagram of two possible configurations of metal oxide semiconductor gas sensors. 
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A) 
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Measuring 
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Figure 1.10. Schematic diagram of A) polycrystalline sensor with sintered platinum heating 
filament and B) polycrystalline sensor with a separate heating element. 

Metal oxide semiconductor gas sensors are frequently modified and optimised through 

doping of other metal atoms, commonly Pd, Pt, Cu, Au and Ag [33,34] and this gives a certain 

degree of selectivity. The most conunonly used metal oxide gas sensors are based on Sn02, 

ZnO and Fe203. Table 1.1, summarises gases detected by various metal oxide gas sensors. 
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Table 1.1. Selectivity of some metal oxide semiconductor gas sensors [1]. 

Metal oxide Semiconductor Gas Sensors 	 Detected Gases 

Ti02, Fe203, CoO, ZnO, Zr02, Sn02, La203 	 02 

Cr203, NiO, ZnO, Zr02, 5n02, 1n203 	 CO 

Fe203, Fe304, Co304, ZnO 	 CH4 

Sn02, VO 	 NO 

ZnO, Al203, Sn02 	 Halogens 

1.2.5.1 Tin-oxide Gas Sensors  

The tin-oxide (Sn02) semiconductor gas sensor was originally developed in 1968 for 

the detection of domestic gas leaks [35]. However, it was soon discovered that this sensor 

could be applied for breath alcohol analysers, automatic cooking controls in microwave ovens, 

air quality monitors and fire alarm systems [32,35]. Sn02 is the most common type of metal 

oxide material used in gas sensors because this material exhibits higher sensitivity than other 

metal oxides at relatively low temperatures and it remains stable without a thermal phase change 

in the crystal structure. A schematic diagram of a commercial Sn02 sensor element and 

configuration developed by Figaro Engineering Inc. is shown in Figure 1.11. This sensor 

consists of a small ceramic tube coated with tin (IV) oxide and a suitable catalyst. A heater coil 

maintains the tin-oxide temperature between 200 and 500 °C. The signal is measured by the 

resistance between the two printed gold electrodes at opposite ends of the ceramic tube. These 

sensor elements are protected by a plastic housing, with an open area to allow gases to enter, 

which is covered by two flame arresters of stainless steel double-gauze. A photograph of the 

commercial Figaro Taguchi gas sensors (TGS) are shown in Figure 1.12; 
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Figure 1.11. Schematic diagram (A) sensor element (B) configuration of Taguchi gas sensor. 

Figure 1.12. Photograph of the commercial TGS813, TGS822 and TGS824 Taguchi gas 
sensors. 
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The advantages of the TGSs include, a long lifetime (3 to 5 years) and good reliability, 

high sensitivity and a rapid response, good reproducibility, highly resistant to poisoning, small 

size (19.5 mm internal diameter), excellent durability and shock proof, low power consumption 

(0.6 to 1.2 W) and are inexpensive [36]. 

1.2.5.2 Preparation of Tin Dioxide Sensors  

There are various alternative laboratory methods for the preparation of tin dioxide 

sensors and the sequence for a typical preparation method is described below. 

High-purity tin is dissolved in acid and an alkali is added to precipitate out the tin 

hydroxide. The tin hydroxide is then calcined, usually at about 450 0C, in order to obtain very 

pure Sn02 powder and the temperature and time of calcination defines the sensor properties 

[37]. An equal weight of high-purity alumina is added to the Sn02 powder to enhance the 

strength of the ceramic and to modify the conductivity. Distilled water is then added to form a 

paste which is allowed to air-dry. This is usually carried out after portions of the paste have 

been mounted on to whatever structure is used to support the final sensor material [37]. 

The final process involves sintering of the paste typically over 700 °C. In principle, 

sintering fuses individual particles together and therefore increases strength radically, but 

unfortunately this process is not efficient in some materials, including tin dioxide, and therefore 

a binder must be added. Tetraethyl orthosilicate is one example of a binder [38] and it 

decomposes to leave silica in the resultant tin dioxide ceramic. Above 3% silica content, the 

strength of the final ceramic is considerably increased, due to the formation of a network of 

bridges around the grains of Sn02 and alumina. The presence of silica in the ceramic has the 

added advantage of lowering the absolute resistance of the material by a factor of 10, 

consequently simplifying the circuitry for the developed sensor. 

1.2.5.3 Tin-Oxide Sensor Arrays  

The use of sensor arrays are extremely attractive for multi-analyte determinations, since 

analysis time and expense can be significantly reduced. A recent publication has reviewed the 

progress in sensor array research, reporting on a range of multi-gas monitors, many of which 
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are portable and applicable for field operation [39]. These mainly utilise electrochemical 

sensors developed to detect gases such as carbon monoxide, hydrogen sulfide, nitric oxide, 

sulfur dioxide and nitrogen dioxide. In addition there has been considerable research devoted to 

the development of multi-gas analysers based on tin-oxide sensors, including two chemically 

modified tin-oxide sensors used for the identification of carbon monoxide and methane [40], 

three tin-oxide sensors for the discrimination between alcohols and tobaccos [41], a sensor 

array of four tin-oxide semiconductor thin-film devices used to characterise smoke [42], an 

array of six tin-oxide gas sensors used for the detection of single and mixtures of gases [43] 

and twelve tin-oxide semiconductor sensing elements employed for the discrimination of 

coffees [44]. 

1.3 Portable Gas Analysers for Remote-site Monitoring 

Two recent publications have highlighted the need for portable instrumentation based on 

flow injection analysis [45] and gas analysers [46] for the purpose of remote site monitoring. 

The use of portable gas analysers for chemical analysis is of increasing interest and has been 

reviewed recently [46]. Portability ideally allows operators to perform chemical analysis 

outside the conventional laboratory limits. 

In gas analysis, advances have occurred in many instrumental areas including the 

development of a miniaturised gas chromatograph employing a micromachined thermal 

conductivity detector used to separate mixtures of hydrocarbons [47], laser radar spectroscopy 

using a CO2  wavelength for air pollution monitoring [48], the combination of gas 

chromatography with mass spectrometry for the detection of organic contaminants at chemical 

accident locations [49], and ion mobility spectrometry for the detection of chemical warfare 

agents [50]. In addition X-ray fluorescence spectrometry has been developed in a portable 

analyser which has the capability of simultaneous multi-elemental non-destructive analysis of 

transition elements [51]. This portable X-ray fluorescence spectrometer was employed by 

NASA in one of the lunar missions to analyse in-situ the composition of the lunar crust [51]. 

However, there is still little research devoted to the development of portable gas analysers based 

on metal oxide semiconductor gas sensors that are battery-powered and for use in field 
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monitoring at remote locations. 

1.4 Pattern Recognition in Gas Sensing 

Pattern recognition is the term used to describe the methodology of solving classification 

type problems encountered in the physical and engineering sciences [52]. Establishing a 

classification is desirable for various applications such as the analysis of chemical composition, 

detection of food contamination, food quality testing and exploratory data analysis. Recent 

developments in gas sensors have led towards the application for the identification or 

classification of gases, gas mixtures or odours employing gas sensor arrays and this has been 

made possible through the use of pattern recognition [52].  Most gas sensor materials exhibit 

poor selectivity, therefore the application of gas sensor arrays provides researchers with a 

response pattern as a means for identification. 

Pattern recognition may be regarded as a branch of artificial intelligence that involves the 

mimicking or modelling of human intelligence [52]. There are two main types of pattern 

recognition: parametric and non-parametric, as illustrated in Figure 1.13. 
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Figure 1.13. Classification of pattern recognition techniques applied in gas sensing. 

Parametric techniques rely upon obtaining or estimating the probability density function 

of the parameters used to characterise the response of a system [52]. In univariate analysis, 

examples include tests on the sample mean or variance, such as a Student's t test or Snecodor F 

test and in bivariate analysis, examples are least-squares fit and linear regression methods [52]. 

In multivariate systems, examples include multiple linear regression (MLR) and partial least-

squares (PLS). In general these methods require considerable effort in establishing a large 
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database, although some techniques are used to model smaller data sets, with a reduced 

confidence level. Conversely, non-parametric techniques require no assumption about the 

statistical distributions of the data. Examples of pre-processing techniques are: autoscaling, 

correlating and feature weighting [52]. These techniques all involve the transformation of the 

data to promote and display underlying patterns within the data. There are also two types of 

non-parametric learning techniques: unsupervised and supervised [52]. Unsupervised 

techniques make no prior assumptions about the sample classes but try to separate them in 

groups or clusters such as in cluster analysis (CA). In contrast, supervised techniques involve 

learning based on previous knowledge of the classification and examples include principal 

component analysis (PCA) and artificial neural network (ANN) techniques [52]. These 

techniques use optimal rules, algorithms or paradigms in order to classify and identify unknown 

samples. 

1.4.1 Multiple Linear Regression (MLR) 

The linear model employed for multiple linear regression (MLR) assumes that the 

dependent variable, Y, is a function of the kth independent variable, X, in a given population 

and is represented by the following equation [53]: 

Yj = + iXi + P2X2 + 	PkXk E 	(1.4) 

where Yj is the dependent variable for the jth observation, a, 131, 132 and 13k are coefficients that 

represent the population parameters, X 1 , X2  and Xk are the independent variables, and E is the 

error term which represents deviations for Yj from the mean distribution of the jth observation. 

It is assumed that the relationship between the expected Yj variable is linear for Xk and the 

effect of the k independent variables in equation 1.4 is an additive one [53]. 

MLR has been applied for the identification of gas mixtures consisting of carbon 

tetrachloride and ethyl methyl ketone from the response of a gas sensor array based on ZnO, 

Sn02, Mo0 and CdS semiconductor sensors [54]. In this study, the independent variables 

were the composition of the gas mixtures and the dependent variables were the response of each 



Chapter One 	 24 

gas sensor in the array. 

1.4.2 Partial Least Squares (PLS) 

The partial least squares (PLS) method is a development of the PCA. PLS is a 

multivariate regression technique that models multiple independent variables (sensor responses) 

to one or more dependent variables (concentration), and this method calibrates one dependent 

variable at a time [55]. 

Calibration with the use of PLS is performed by decomposition of both the 

concentration, C, consisting of n mixtures (columns) and m components (rows) and sensor 

response, R, containing n columns and p sensors (rows) matrices into latent variables [55]: 

C = 	Lc  + Ec 	 (1.5) 

R = FR 	+ 	 (1.6) 

where Fc  is the latent concentration matrix with n rows (mixtures) and d columns (number of 

dimensions), Lc  represents the concentration loading matrix with d rows and m columns 

(number of components), FR  is the n X d latent response matrix, LR  is the d X p response 

loading matrix (with p the number of sensors) and E c  and ER  are error matrices that have the 

same dimensions as the original concentration matrix (n X m) and response matrix (n x p), 

respectively. Relating the latent variable matrix from equation 1.5 to that in equation 1.6, a 

diagonal regression matrix V is given as [55]: 

Fc  = FR  V + Ed 	 (1.7) 

where Ed is an error matrix. The matrix V is used in the prediction step for the estimation of the 

unknown concentrations (co) from the response of the sensors (rs o) of a given sample as 

follows [55]: 

co  = r so  (Fc  R) V Lc 	(1.8) 
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where the matrices Fc , k and R are determined from the calibration series. 

In gas sensing, PLS has been used for the identification of ethyl acetate, acetone, 

ethanol and pentane solvents using an array of three tin-oxide gas sensors [56]. In a separate 

study PLS was used to analyse two and three component mixture sets of toluene, benzene, 

acetone and trichlorethylene using an array of eight Taguchi gas sensors [57]. 

1.4.3 Cluster Analysis (CA) 

Many unsupervised pattern recognition techniques rely upon the principle of identifying 

groups or clusters of points within the data [52]. In cluster analysis (CA), points are grouped 

together according to their proximity in n-dimensional space. The general distance metric is 

given by [52]: 

d.. =
‘ 

EN  (gik 
K= 1 

)
gik 

1 / N 
N 

(1.9) 

where dii  is the n-space Euclidean distance when N = 2. The proximity of the two points is 

defined in terms of a similarity value S ki  [52]: 

S.. = 1 — d.. / max (d..) 
	

(1.10) 

where d ij  is the distance metric of data points i, j in n-dimensional vector space and max (d ii ) is 

its maximum value. The similarity value, or index, calculated in this manner is 0 for the two 

most distant points and 1.0 for two identical points [52]. There are many clustering techniques 

developed including hierarchical techniques, the K-means algorithm and fuzzy clustering. In 

hierarchical cluster analysis, every point is initially assumed to be a lone cluster. Therefore, for 

n points there are initially n clusters. Clusters which are 'close' together are then merged to 

reduce the total number of clusters. This can be achieved in a number of ways depending upon 

the method chosen to determine the 'closeness' of two clusters. Some commonly applied 

methods include single linkage (nearest neighbour), complete linkage (furthest neighbour), 
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centroid, median and group average [52]. In single linkage the closeness of two clusters is 

determined by the distance between the nearest pair of points, one from each cluster. In 

complete linkage the distance between the furthest pair of points is used. These two methods 

are the simplest since they only use one point from each cluster [52]. The more sophisticated 

centroid, median or group average methods use all the points within each cluster. In each of 

these cases the appropriate parameter is first calculated for each cluster and the distance between 

pairs of resulting values is then used to calculate the similarity or nearest index [52]. 

CA can be applied to the response matrix of a gas sensor array in order to compute the 

similarity indices for either the sensors or the measurands. In gas sensing CA has been applied 

to the response of a coated piezoelectric quartz sensor array [58] and SAW devices [59,60]. 

1.4.4 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a powerful linear supervised learning pattern 

recognition technique that is usually applied in conjunction with cluster analysis [52]. The 

objective of PCA is to take the n variables gr  which define the rows of the response matrix, G, 

(these might be the responses of a given sensor to different gas component or the response of 

different sensors to a given gas component) and to find combinations of these which produce n 

indices Xr  (the principal components) which are uncorrelated. Therefore, the response vectors 

are expressed in terms of linear combinations of orthogonal vectors. The indices X r  are ordered 

so that X 1  displays the greatest amount of variation, X2  the next greatest and so on. If the 

original data set were uncorrelated to begin with, then this type of analysis is meaningless [52]. 

The first principal component X 1  is calculated as a linear combination of the response 

vectors gi for n variables and p individuals [52]: 

a 	+ a 21 g2 + • • • • + a 	gn 

such that the variance of X 1  is as large as possible under the constraint that [52]: 
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E a. = 1 ir 
i=1 

(1.12) 

The second principal component X2  is then calculated in a similar manner but subject to 

the additional constraint that it is uncorrelated with X 1 . The analysis proceeds in this way for 

each additional component, subject to the constraint that each new component is uncorrelated 

with any of the previous components. The coefficients a ir  are the elements of the orthogonal 

vectors, or eigenvectors, determined so that the maximum information in the form of variance 

or eigenvalue is preserved with the minimum number of eigenvectors. PCA essentially 

removes any redundancy or correlation that exists within the response data [52]. 

In gas sensing, PCA has been employed to analyse the response of seven coated 

piezoelectric element arrays using seven components [61]. The work was later extended to 

analyse the response of 27 piezoelectric sensing elements using 14 components [58]. Similar 

work has been carried out to characterise the response of gas sensitive SAW device arrays 

[59,60]. 

1.4.5 Artificial Neural Networks (ANN 's) 

Artificial Neural Networks (ANN's) is a pattern recognition technique employed for 

complex non-linear data and are formed from numerous simulated neurons that are connected in 

much the same way as the human brain's neurons and are thus capable of learning in a similar 

manner as humans [62]. ANN's use a highly interconnected group of neurons that process 

information in parallel. The human brain is a complex biological network of billions of highly 

interconnected cells called neurons. These cells receive information from as many as 10,000 

other cells and send signals to other cells based upon the incoming signal pattern. The exact 

mechanism by which thought arises from these neuron signals is still unknown [62]. 

However, enough is known about the human brain to be able to mimic some of its abilities, 

such as learning, pattern recognition and generalisation [62]. Figure 1.14 illustrates the 

similarities of a biological and an artificial neuron. 
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Figure 1.14. Illustrates the similarities between a biological and an artificial neuron. 

A neuron in the brain has four basic parts: the body, the incoming channels, the 

outgoing channel and the connecting points between the neurons, which are called synapses. A 

neuron receives many signals from other neurons at the synapses. In the synapses, some 

processing occurs before the signals are sent down the incoming channels to the neuron body. 

The synapses attach "weights" to incoming signals so that each of the signals will have a 

different effect on the neuron. A synapse can "turn up" or "turn down" the volume of a signal 

so that it has a stronger or weaker effect on the receiving neuron than other signals do [62]. 

The synapses change over time as signals are received and this constitutes learning and 

knowledge is "captured" in bits and pieces by the weights synapses attached to incoming 

signals. 

1.4.5.1 Neurons  

Both biological and artificial neural networks contain neurons, real or simulated. These 

neurons have many connections to each other which transfer information. The knowledge of a 

network is distributed across the interconnections between the neurons, not as bits of 
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intelligence stored within the neurons [62]. 

Artificial neurons are also called processing elements, nodes, units or cells. Each 

neuron receives the output signals from many other neurons. A neuron calculates its own 

output by finding the weighted sum of its inputs, generating an activation level and passing that 

through an output or transfer function. The point where two neurons communicate is called a 

connection (analogous to a synapse). The strength of the connection between two neurons is 

called a weight. The collection of weights arranged in rows and columns is called the weight 

matrix [62]. 

1.4.5.2 Layers  

An ANN consists of three layers of neurons which are connected to each other: the input 

layer, the output layer and the hidden layer. The input neurons receive data from the outside 

world, such as from a digitising pad, a data file or another program. The input layer neurons 

send information to the hidden layer neurons. The hidden neurons are all the neurons in 

between the input and output layers. Their inputs and outputs can not be seen as they connect 

only to other neurons. The output neurons provide us with the neural network's response to 

the input data [62]. A typical structure of a simple neural network is shown in Figure 1.15. 

Input layer 	Hidden layer 	Output layer 

Figure 1.15. Typical structure of a simple neural network. 

1.4.5.3 Connections 

A connection is a unique line of communication that goes from one sending neuron to 
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one receiving neuron. There are two types of connections going to a neuron: excitatory and 

inhibitory. Inhibitory connections tend to prevent the activity, whereas excitatory connections 

tend to cause the activity of the neuron [62]. 

The network structure may involve inhibitory connections from one neuron to the rest of 

the neurons in the same layer. This is called lateral inhibition. Sometimes a network has such 

strong lateral inhibition that only one neuron in a layer, usually the output layer, can be activated 

at a time. This effect of minimising the number of active neurons is one type of competition. 

The way in which the neurons are connected to each other has an enormous effect on the 

operation of the network. Specifying the connections determines the type of processing that 

will occur. Connections may go from the output of one layer to the input of a previous layer, or 

to the same layer. This is known as feedback [62]. The most common type of feedback model 

connects every neuron to every other neuron. 

An ANN built with today's technology has very few connections compared to the 

number of connections in the brain. The human brain has about one hundred billion neurons 

and ten million billion connections. Most problems can be solved by an ANN with less than 

500 neurons and 30,000 connections. It is likely that the brain also has many smaller neural 

networks in this size range that solve pieces of problems, with higher level networks that bring 

the pieces together [62]. 

1.4.5.4 Learning Methods  

An ANN learns by changing its response as the inputs change. ANN's developed to 

date are associators. That is, they learn that pairs of things go together. For example, 'green' 

goes with 'go' and 'red' goes with 'stop'. The learning rule is the very heart of a neural 

network; it determines how the weights are adjusted as the neural network gains experience 

(trains) [62]. 

There are many different learning rules namely Hebb's Rule, the Delta Rule and the 

Back Propagation Rule. Back propagation is a supervised learning scheme by which a layered 

feed forward network is trained to become a pattern matching engine [62]. 
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1.4.5.5 Transfer Functions  

Neurons process input and produce output. Each neuron in the hidden layer will sum 

up all the inputs and then transform the sum by a sigmoidal non linear transfer function, similar 

to that illustrated in Figure 1.16. 

f E u.3 (t) 

(t) 

Figure 1.16. A sigmoidal transfer function. 

The output of the ith hidden neuron in the 1 th layer, x i (t) can be expressed as follows [62]: 
x 	(t) = f ( 	(t) ), 	1= 1,2,...., m, 	i= 1,2,....n 1 	(1.13) 

where n1 is the size of layer 1 and f (13 (t)) is the non-linear sigmoidal function, 

	

f 	(t) ) = 1 ( 1+ e -1) (0) 	 (1.14) 
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where b is the network threshold, w lij is the weight connection between the jth neuron of the (1 

_ oth layer and the ith neuron of the / th layer and n 1  — 1 is the number of neurons in the (1 - 

1)th layer. When combining equations 1.13 and 1.15, the output of each neuron can be 

expressed as: 

n  — 1  .. 	— x 1j (t) =f(E w /u  x /1 j 	b 
j = 1 

(1.16) 

In ANN, the neuron in the output layer is normally considered to be the same as for the 

neurons in the hidden layer, however this will limit the dynamic range of the output neurons to 

be s 1.0. 

The aim of training a ANN is to determine the predicted output to as close to the desired 

output as possible. 

1.5 Objectives of this Research 

The objectives of the research undertaken were as follows: 

1) to develop and evaluate the viability of a portable battery-powered gas analyser employing 

two different Taguchi tin-oxide sensors, in terms of stability, sensitivity, selectivity and 

reproducibility, 

2) to determine the ethanol content in various commercial liquor samples employing the above 

mentioned gas analyser, 

3) to evaluate the viability of a portable battery-powered six-sensor gas analyser in terms of 

stability, sensitivity, selectivity and reproducibility and, 

4) to apply the ethanol response pattern to discriminate between various beer brands and to 

determine the ethanol content of commercial beer samples. 

5) to establish whether the above mentioned multi-sensor gas analyser together with a three-

layer artificial neural network technique using the back propagation model could be trained 

successfully to recognise various beer and olive oil samples. 

In Chapter two, the application is described of two commercial Taguchi sensors 
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employed in a portable battery-powered gas analyser. The performance of the sensors was 

evaluated in terms of stability, sensitivity, selectivity and reproducibility. The ethanol content 

of commercial liquor samples was determined. 

In Chapter three, six Taguchi semiconductor sensors arranged in an array and employed 

in a portable battery-powered gas analyser is described. The performance of the six sensor 

array was studied and validation of this analyser was performed with various ethanol standard 

solutions. The response pattern of ethanol is used to discriminate between various beer 

samples. 

In Chapter four, a method employing the above mentioned multi-sensor gas analyser 

together with an artificial neural network to discriminate between six different beer brands is 

described. The artificial neural network employed was based a back propagation model, 

employing a three layer network. 

Chapter five describes the strategies to discriminate between different varieties of olive 

oils and determine the age of the individual olive oils. Similar to Chapter four, an artificial 

neural network based on the back propagation model will be employed. 
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Chapter Two: Development and Evaluation of a Portable Battery-

Powered Flow-Through Analyser Employing Two Tin-Oxide Gas 

Sensors for Alcohols 

2.1 Introduction 

This chapter is concerned with the development and evaluation of a portable battery-

powered gas analyser suitable for remote site monitoring. This portable gas analyser was 

evaluated with two Taguchi tin-oxide gas sensors in an array. 

The use of portable instrumentation for chemical analysis is of increasing interest, and 

has been reviewed recently for monitoring of both liquid [1] and gas analysers [2]. Portable 

analysers allows chemical analysis to be performed outside conventional laboratory limits. In 

gas analysis, advances have occurred in many instrumental areas including gas chromatography 

[3], gas chromatography with mass spectroscopy [4], infrared spectroscopy [5], laser induced 

radar spectroscopy [6], ion mobility spectroscopy [7] and X-ray fluorescence spectroscopy [8]. 

However, there is still a need for portable analysers which are battery-powered and of light 

weight for use in field monitoring at remote locations. 

There are many gas sensors available commercially including catalytic gas sensors, 

piezoelectric and surface acoustic wave sensors, optical gas sensors, electrochemical sensors 

and conductimetric gas sensors such as semiconductor metal oxide sensors. Taguchi gas 

sensors (TGS) produced by the Japanese company, Figaro Engineering Inc [9,10] have been 

available for many years. They are based on sintered powdered tin dioxide and are known to 

respond to various gases and vapours including hydrogen, carbon monoxide, methane, ethane, 

propane, alcohols and hydrocarbons [9,10]. A model electronic nose was first described by 

Persaud and Dodd [11], who showed that a system incorporating three broadly-tuned tin-oxide 

gas sensors could provide discrimination between chemically similar odours. 

The design of a 12-element conducting polymer chemoresistor based electronic nose 

was employed for monitoring the flavour of lager beers [12]. This instrument relies upon the 

manual injection of an odorant into the chamber containing the sensor array. In a separate 
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study, the development of a multi-sensor array of 18 conducting polymers in an automated flow 

injection system with self-diagnostics was used for monitoring beer flavours [13]. The 

conducting polymers used in the above studies were based on polypyrrole membranes. 

An array of three Taguchi tin-oxide gas sensors were used for the discrimination 

between methanol, ethanol and propan-2-ol as well as different blends of cigarette smoke [14]. 

A sensor array of four metal oxide based gas sensors was employed for the recognition of 

various wines, having the same denomination but coming from different vineyards [15]. In 

another study, tin-oxide gas sensors were used to determine the ethanol content of various 

wines [16]. 

This chapter describes the design and operation of a portable battery-powered gas 

analyser employing two different types of Taguchi tin-oxide sensors. The response of ethanol 

was used to evaluate the gas analyser in terms of reproducibility, stability and sensitivity. The 

portable gas analyser was used also to determine the ethanol content in various commercial 

liquor samples. The adsorption response mechanism of the tin-oxide gas sensors was 

investigated using the Langmuir adsorption isotherm model and will be discussed. 

2.1.1 Langmuir Adsorption Isotherm Model for the Tin-Oxide Semiconductor 

Gas Sensors 

There has been considerable interest shown concerning the mechanism of the non-linear 

response of these gas sensors to changes in gas or vapour concentrations [17-19]. The 

response to gases has been attributed to adsorption mechanisms in a number of publications 

mostly based on various adsorption isotherms [20-22]. 

The simplest description of the adsorption mechanism may be represented by a 

Langmuir isotherm [23,24], which will be considered in this study. The Langmuir isotherm is 

based on the assumption that every adsorption site is equivalent and that the ability of a 

molecule to bind on the surface of the sensor is independent of whether or not nearby sites are 

occupied [23,24]. When the gas is at a certain partial pressure above an aqueous solution 

containing the dissolved gas at a certain concentration (C), the fraction of the surface of the 

sensor that is covered by the gaseous molecules is defined as the extent of surface coverage (0) 
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[23,24]. 

The response of these semiconductor sensors is dependent on the adsorbed oxygen on 

the tin-oxide surface reacting with ethanol, which is oxidised to acetaldehyde, as given below: 

1 / 2 02  + (Sn02  + e- ) 	Sn02  (Mad  

CH3CH2OH + Sn02  (0-  )ad 	CH3CHO + H20 + (Sn02 	e - ) 

with rate constants ka  for adsorption and kd for desorption. Therefore, the adsorption rate (Ra) 

is proportional to the concentration of the ethanol vapour and the number of unoccupied sites on 

the tin-oxide sensor surface, N(1-0), as described by equation 2.1 [23,24]: 

	

Ra  = ka CN(1-0) 	 (2.1) 

and the desorption rate (Rd) of 02 depends not only on the number of adsorbed a species, NO, 

but also on the concentration of the ethanol, which can be written as [23]: 

Rd = lcd N 0 	 (2.2) 

At equilibrium Ra  = Rd, and the Langmuir equation is expressed as shown below [23,24]: 

	

0 = C / (a + C) 	 (2.3) 

where a = ka  / kd and 0 can be expressed in terms of the amount of gas adsorbed (y) at a 

particular concentration and the amount of gas needed to form a monolayer coverage (y m) on 

the surface of the sensor as [23,24]: 

Y Ym = 0 
	

(2.4) 

The Langmuir equation can then be rearranged to give: 
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Y = ym  C / (a + C) 	 (2.5) 

and this equation will be manipulated and discussed further in this chapter. 

2.2 Experimental 

2.2.1 Solutions and Samples 

The standard ethanol solutions were made up in Ultrapure water (Bamstead Ultrapure 

water systems) by dilution of stock absolute ethanol (Ajax Chemicals, Analytical UNIVAR 

Reagent). Solutions in the concentration range 0.1 - 20% (v/v) were prepared in 100 mL 

volumetric flasks and used for head-space analysis at room temperature (22 ± 2 0C). The beer 

and wine samples used in this study were obtained commercially from local suppliers, and are 

listed below, with the labelled ethanol content in brackets: Light beer (2.7%), Normal beer 

(4.9%), White wine (10.0%) and Red wine (10.9%). 

2.2.2 Design of the Portable Flow-Through Gas Analyser 

The portable analyser was fitted with two Taguchi gas sensors (TGS), the TGS812 and 

the TGS824, obtained from Figaro Inc. (Osaka, Japan) [25] and built into a flow-through 

compartment. A schematic diagram of the portable gas analyser is given in Figure 2.1. The 

ethanol vapour of the standards and samples was pumped into the flow-through compartment 

using a diaphragm pump at a constant flow rate of 1 L / minute. Using a 5 seconds sampling 

time, a vapour volume of 83 mL was pumped from the head-space of the 100 mL flasks, which 

were open to the air. Therefore the dilution factor due to air intake was similar for all the 

standards and samples analysed. The sensors and pump were controlled by an electrical circuit 

that was powered with a rechargeable Ni-Cd battery pack of 7.2 V and 1.4 A hours output. 

The power required to operate the two Taguchi sensors and the pump was 3.6 W and the 

voltage output was displayed on an LCD unit of the monitor. 

The data from each sensor were acquired using an 8-channel, 12-bit analog-to-digital 

converter (ADC) with a RS232C output to a serial port of a Macintosh PowerBook 150 

computer. The ADC was built in the chemistry workshop at the University of Tasmania and a 

block diagram and circuit design are both presented in Appendix 1. 
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	Carry case 

Inlet 
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Figure 2.1. Schematic diagram of the portable battery-powered gas analyser employing the 
TGS812 and TGS824 gas sensors used in this study. 

2.2.3 Gas Chromatography Instrumentation 

A Perkin-Elmer Sigma 3 Gas Chromatograph with a Flame Ionisation Detector (FID) 

was used for the analysis of ethanol where nitrogen was employed as the carrier gas. A 

Chromosorb W column (length of 6 ft, 1/8 in. internal diameter) was used  at  a temperature of 

70°C. 0.5 RL sample injection volumes were used, using a SGE 1.0 RI, syringe. The data 

collected were saved as text files and a software application called 'IGOR' (AD Instruments, 

Sydney, Australia) was used for data analysis. 

2.2.4 Head-Space Analysis and Gas Chromatography Procedure 

The tin-oxide semiconductor gas sensors were allowed  to  warm  up  by pumping air 

(carrier gas) through the analyser for 30 minutes prior to measurements  to  ensure a stable 

baseline was obtained. The standard ethanol solutions and samples were left standing at room 

temperature (22 ± 2 °C) for 2-3 hours to produce adequate head-space vapour. The ethanol 

solutions and samples were shaken prior to measurement in the 100 inL volumetric flasks and 

the sample inlet tube of the gas analyser was simply introduced into  the  head-space of the 

flasks. A vapour sample volume of 83 mL was pumped from the head-space of the 100 mL 

flasks into the flow-through compartment for a fixed period of 5 seconds at a constant 
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temperature and relative humidity. The response of each standard solution and sample for each 

sensor was recorded in duplicate, sampled from low to high ethanol concentration, displayed in 

real time millivolt readings and plotted as a function of time on the Macintosh PowerBook 150 

computer screen using a data acquisition program called 'Satod i  C Version 1.46. Satod was 

written by Dr J. Morgan (University of New South Wales, Sydney, Australia) in Think C for a 

Macintosh PowerBook computer and 'IGOR' was used for data analysis and graphical 

representation of the data. 

MacCurve Fit C Version 0.7 was used to calculate the Langmuir isotherm constants and 

the standard deviations (95% confidence) of each gas sensor. This program was written and 

supplied by Dr Kevin Raner (CSIRO, Division of Chemicals and Polymers, Victoria, 

Australia). 

For the gas chromatography analysis, the same ethanol standard solutions and samples 

were left standing at room temperature for 2-3 hours, in order to produce adequate head-space 

vapour. Sample injection volumes of 0.5 1k1_, were used and the data collected were stored as 

text files. 

2.3 Results and Discussion 

2.3.1 Design of the Portable Gas Analyser 

The TGS812 and the TGS824 Taguchi tin-oxide semiconductor gas sensors were 

arranged in a flow-through compartment as described previously in this chapter, Section 2.2.2, 

whereby the gas or vapour sample was pumped over the surface of the sensors. The major 

advantage of this arrangement is that it allows for a minimal exposure of the sensors to the gas 

sample and thus minimises the chance of poisoning the sensor's surface. 

The TGS series are sintered n-type semiconductor bulk devices mainly composed of tin 

dioxide. These Taguchi sensors have a heater in an alumina ceramic tube and the 

semiconductor material is mounted on the tube with two printed gold electrodes. The TGS812 

sensor type has a polyamide resin base whereas the TGS824 type has a heat resistant ceramic 

base and are reported to be more sensitive to combustible gases and ammonia, respectively 

[25]. These TGS gas sensors were used because they are reported to be the most suitable 
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commercial sensors available at present [26]. The sensor elements were protected by a plastic 

housing with two flame arresters of stainless steel double-gauze on the top and bottom. The 

advantages of these Taguchi sensors include, a long life-time and good reliability, high 

sensitivity, highly resistant to poisoning, compact in size (up to 19.5 mm internal diameter), 

easy to install, excellent durability and shock proof and inexpensive [25]. 

The portable gas analyser is small in size (20 x 11 x 6 cm), light weight (1.1 kg), 

requires low power consumption (3.6 W) and is connected to a Macintosh PowerBook 

computer for real-time display of data and data acquisition. The gas analyser was in continuous 

operation for 4 hours before recharging was necessary. Photographs of the entire portable gas 

analyser and the internal electronic circuitry are presented in Figure 2.2 and Figure 2.3. 
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(A) 

(B) 

   

Figure 2.2. Photographs of (A) the portable gas analyser and the analog-to-digital converter 
and (B) the portable gas analyser and analog-to-digital converter connected to a Macintosh 
PowerBook computer. 
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(A) 

(B) 

Figure 2.3. Photographs of the circuitry of (A) the portable flow-through gas analyser and (B) 
the analog-to-digital converter. 
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2.3.2 Response to Ethanol 

The voltage response of each sensor in the presence of ethanol is dependent on the 

change in electrical resistance when ethanol is adsorbed on the sensor surface. An example of 

typical ethanol peak responses in duplicate observed by the TGS812 and TGS824 gas sensors 

are given in Figure 2.4. Figure 2.4, shows that the peak height response range was between 0 

and 3.8 V and 0 and 3.2 V for the TGS812 and the TGS824 sensors, respectively. Therefore, 

the TGS812 sensor was observed to be more sensitive towards changes in ethanol 

concentrations than the TGS824 type sensor. However, both sensors showed a rapid response 

with peak widths of approximately 30 seconds for a 5 seconds sampling time at 1 L / minute 

flow rate. 

Calibration plots for the TGS812 and TGS824 sensors for ethanol are presented in 

Figure 2.5. These sensors exhibited a non-linear response to ethanol, however both sensors 

showed no loss of activity and no baseline drift during the course of the study. 

The precision of replicate peak heights recorded simultaneously for the TGS812 and the 

TGS824 sensors after sampling the same ethanol solution is presented in Figure 2.6. A relative 

standard deviation (RSD) of < 3% was observed for a 1% ethanol standard solution for both 

gas sensors. For replicate measurements of the 10% ethanol solution, the RSD values for the 

TGS812 and TGS824 sensors were 0.5% and 1.6%, respectively. These tin-oxide sensors are 

known to be limited by the lack of stability, sensitivity and reproducibility [27]. However, the 

results presented in this chapter demonstrate that TGS812 and TGS824 tin-oxide gas sensors in 

a flow-through arrangement, exhibit high stability, sensitivity and reproducibility. 
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Figure 2.4. Sample peaks for increasing concentrations of ethanol. 
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Figure 2.5. Calibration plots for the TGS812 and TGS824 gas sensor responses to ethanol. 



Chapter Two 	 50 

4 

—TGS812 sensor 
TGS824 sensor 

10.0% Ethanol 

Po
te

nt
ia

l 1
 V

o l
ts

  

3 

2 — 

1 1.0% Ethanol 

0 200 400 	600 	800 
Time / seconds 

Figure 2.6. Reproducibility of the TGS812 and TGS824 gas sensors. 
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2.3.3 Mechanism of Response to Alcohol 

The mechanism of response of these Taguchi semiconductor gas sensors has been 

discussed in a number of papers [17-19]. The response of the tin-oxide semiconductors was 

dependent on the chemisorbed oxygen on the surface reacting with reducing gases or vapours 

on the oxide layer of the semiconductor. For example, ethanol is oxidised to ethanal: 

02 + 2e ----> 20 -  

20 -  + 2 CH3CH 2OH ---> 2C H3CHO + 2H20 + 2C 

There is a resulting change in resistance of the TGS sensor which is dependent on the 

concentration of the ethanol introduced [20,27]. An electronic circuit can be constructed to 

produce a voltage output to a voltmeter which can then be plotted as a function of time after 

introduction of the ethanol vapour sample to the sensor. The voltage output is given by [25]: 

Vc  / Vs  = 	+ Rs) / RL 	 (2.6) 

where Vc  is the constant circuit voltage, Vs  is the voltage difference between the carrier gas and 

the sample, RL is the constant circuit load resistance and R s  is the electrical resistance due to 

adsorption of the sample on the surface of the sensor. Rearranging equation 2.6 gives: 

1 / Vs  = I / Vc  + R s Vc RL 

= k + k2 Rs 	 (2.7) 

where k1 and k2 are constants depending on the circuit design. The relationship between V s  

and concentration of the gas, C s , is proportional as shown in Figure 2.7. Therefore, R s  is 

inversely related to the concentration of the sample due to the decrease in electrical resistance as 

the concentration adsorbed on the surface of the sensor increases and equation 2.7 can be 

rearranged to give: 

1 / Vs  = k1 + k2 / C s 	 (2.8) 



25 - 

20 - 

15- 

> 
•-.. 
,...o 

10- 

5 _ 

• TGS812 sensor 

• TGS824 sensor 

Chapter Two 	 52 

Refer to Figure 2.8 

1 
	 I 	I 	 I 	I 

5 	7.5 	10 	12.5 

1 / Cs  
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Figure 2.8. Calibration plot of 1 / V s  versus 1 / C s  for the TGS812 and TGS824 gas sensor 
responses to ethanol between 1.0 and 20% (v/v). 
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Figure 2.7, shows the inverse of the voltage response (1 / V s ) for the TGS812 and the 

TGS824 sensors against the inverse of the ethanol concentration (1 / C s). These plots were 

used to calibrate both the Taguchi gas sensors. As shown in Figure 2.7, the last point exhibits 

deviation from linearity due to the detection limit of ethanol. Figure 2.8 shows the same 

calibration plot as in Figure 2.7, but excludes the 0.1% (v/v) ethanol and clearly a linear 

relationship is observed as shown by the correlation coefficients (r 2); for the TGS812 sensor r2  

= 0.9989 and for the TGS824 sensor r2  = 0.9934. 

Other linearisation techniques such as using an operational amplifier linearising circuit 

[14] and adsorption isotherm models [20,22] have been reported. Later in this chapter an 

investigation of the Langmuir adsorption model will be applied to the ethanol response of the 

Taguchi TGS812 and TGS824 tin-oxide gas sensors. 

2.3.4 Analysis of Alcoholic Samples 

Various alcoholic samples were analysed for their ethanol content using the portable 

analyser, and the results are presented in Table 2.1. 

Table 2.1. Comparison of the label data for commercial liquors and the data determined with 
the TGS812 and TGS824 gas sensors and gas chromatography. 

Alcohol GC 
%Ethanol (v/v) 

TGS812 sensor 
%Ethanol (v/v) 

(%RSD) 

TGS824 sensor 
%Ethanol (v/v) (%RSD) 

Labelled 
%Ethanol (v/v) 

Light beer 2.0 2.0 (1.9) 2.0 (2.1) 2.7 

Normal beer 4.6 4.6 (1.1) 4.2 (1.0) 4.9 

White wine 11.2 11.4 (2.2) 10.5 (1.4) 10.0 

Red wine 9.7 10.3 (0.4) 8.8 (3.1) 10.9 

The ethanol concentrations were calculated from the calibration plots shown in Figure 

2.8. It was observed that the results obtained with the TGS812 sensor were slightly higher 

than the TGS824 sensor for all the alcoholic samples analysed. The likely reason was that the 

TGS824 sensor was responding to other volatiles present in the alcoholic samples and 
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consequently resulting in a lower ethanol content. The RSD exhibited for the TGS812 and 

TGS824 sensors for the alcoholic samples analysed were typically 3.1%. These results were 

compared to gas chromatography analysis and showed agreement with a correlation coefficient 

of 0.9980 and 0.9985 for the TGS812 and TGS824 sensors, respectively. The gas 

chromatography analysis was also performed using an isopropanol internal standard and the 

results showed no improvement in the accuracy and precision, therefore the same ethanol 

solutions used to calibrate the TGS sensors were also used in the gas chromatography 

procedure. The labelled ethanol content was also compared to the results obtained with the 

TGS812 and the TGS824 sensors and showed agreement with a correlation coefficient of 

0.9633 and 0.9290, respectively. 

2.4 Application of the Langmuir Isotherm Model to the Ethanol Response of 

the Tin-Oxide Gas Sensors 

The Langmuir adsorption isotherm is based on the assumption that every adsorption site 

is equivalent and that the ability of a molecule to bind on the surface of the sensor is 

independent of whether or not nearby sites are occupied as described in Section 2.1.1. 

The measured voltage (E) of the ethanol vapour from the semiconductor gas sensor 

depends on the circuit design recommended by Figaro [25] and is expressed as: 

E = Vs  - Vo 	 (2.9) 

where Vs  is the voltage output due to the sample and Vo  is the output voltage due to the carrier 

gas (air) in the flow-through analyser. Rearranging equation (2.6), the voltage output of the 

sample can be written as [25]: 

Vs  = Vc RL / (Rs + RL) 
	

(2.10) 

where Vc  is the constant circuit voltage, RL is the constant load resistance and R s  is the sample 

resistance. The load resistance and the response behaviour of the gas sensors are dependent on 
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the amount of gas adsorbed onto the semiconductor surface (ie. on the surface coverage). 

The relationship of the voltage output of the sample is described in equation 2.10. 

When the sample voltage output V s  increases, the sample resistance R s  decreases due to the 

above mentioned reaction of adsorbed oxygen. However, the relationship between the 

measured voltage (E) and the ethanol concentration is not linear because of the complex nature 

of the adsorption mechanism as shown by the calibration plots for the TGS812 and the TGS824 

type gas sensors presented in Figure 2.5. The sample output and the surface coverage of the 

semiconductor sensor by the adsorbed alcohol molecules can be described in terms of ag 

Langmuir adsorption mechanism as given in equation 2.5. 

Experimental results exhibited for both the TGS812 and the TGS824 sensors can be 

compared with the Langmuir adsorption isotherm theory most easily if equation 2.5 is 

rearranged to: 

C / y = a / ym  + C / ym 	 (2.11) 

where C is the % ethanol (v/v), a and ym  are constants and y is the measured output voltage for 

a particular concentration of ethanol. This is based on the assumption that the surface coverage 

of the sensor will determine the change in resistivity of the surface, and hence gives a change in 

voltage output of the electrical circuit. The concentration of the ethanol vapour is therefore 

proportional to the concentration of ethanol in the aqueous solution. 

Hence a plot of C / y [% Ethanol (v/v) / Measured output voltage (V)] versus C [% 

Ethanol (v/v)] should result in a linear calibration. As shown in Figure 2.9, the above plot 

resulted in a linear fit to the experimental data with correlation coefficients (r2) of 0.9992 and 

0.9978 for the TGS812 and TGS824 semiconductor gas sensors, respectively. Clearly, this 

response mechanism for the TGS812 and the TGS824 gas sensors indicates that the surface is 

uniform and each adsorption site is independent of nearby sites. 
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Figure 2.9. Calibration plot for the TGS812 and TGS824 gas sensor response to ethanol using 
the Langmuir isotherm model. 
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2.4.1 Validation of the Langmuir Model using Alcoholic Samples 

The beer and wine samples were analysed for their ethanol content using the portable 

flow-through analyser, and the results are presented in Table 2.2. The ethanol content was 

calculated from the linear Langmuir model calibration plots as shown in Figure 2.9 for both the 

TGS812 and the TGS824 sensors. Similar to Section 2.3.4, the ethanol content determined 

with the TGS812 sensor were slightly higher than the TGS824 sensor for all the alcoholic 

samples analysed except for the light beer. These results were compared to the gas 

chromatography analysis and showed agreement with a correlation coefficient (r 2) of 0.9989 

and 0.9996 for the TGS812 and the TGS824 sensors, respectively. The RSD exhibited for the 

TGS812 and TGS824 sensors for the alcoholic samples analysed were typically 2.4%. The 

labelled ethanol content was also compared to the results obtained with the TG5812 and the 

TGS824 sensors and showed agreement with a correlation coefficient of 0.9587 and 0.9363, 

respectively. 

Table 2.2. Comparison of the label data for commercial liquors, the data determined using the 
linearised Langmuir model and gas chromatography. 

Alcohol GC 
%Ethanol (v/v) 

TGS812 sensor 
%Ethanol (v/v) 

(%RSD) 

TGS824 sensor 
%Ethanol (v/v) (%RSD) 

Labelled 
%Ethanol (v/v) 

Light beer 2.0 2.1 (1.2) 2.3 (1.4) 2.7 

Normal beer 4.6 4.6 (1.9) 4.4 (1.1) 4.9 

White wine 11.2 10.7 (1.7) 9.5 (2.4) 10.0 

Red wine 9.7 9.6 (1.5) 8.2 (1.9) 10.9 

2.5 Conclusions 

The portable flow-through gas analyser developed and evaluated in this study is of a 

simple design, small in size, light weight, battery-powered and requires low power 

consumption. The gas analyser was used continuously for up to 4 hours, before recharging 

was necessary. The use of gas sensors in flow-through analysis allows the operator to conduct 

rapid measurements without significant interference from other volatile organics in the liquor 
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samples analysed. 

The TGS812 and TGS824 gas sensors exhibited excellent peak height reproducibility of 

<3% RSD, good baseline stability and sensitivity and a rapid response with peak widths of 30 

seconds for ethanol in the range between 0.1 to 20% (v/v). A calibration plot of 1 / Vs versus 1 

/ Cs  exhibited a linear plot for the TGS812 and TGS824 sensor response to ethanol and this 

plot was employed to determined ethanol content in beer and wine samples, and the results were 

in agreement compared to gas chromatography analysis and the labelled ethanol content. 

The ethanol response exhibited by the TGS812 and TGS824 gas sensors were fitted to 

the Langmuir isotherm model and a linear calibration plot was achieved. The Langmuir 

isotherm model calibration plots were validated by determining the ethanol content in various 

beer and wine samples and these results were in agreement compared to gas chromatography 

analysis and the labelled ethanol content. 
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Chapter Three: The Evaluation of a Portable, Battery-Powered 

Gas Analyser with an Array of Six Tin-Oxide Semiconductor 

Sensors 

3.1 Introduction 

In this chapter, a portable, battery-powered, multi-sensor array gas analyser, containing 

six different Taguchi tin-oxide semiconductors was developed and evaluated. This multi-sensor 

array gas analyser was based on the electronic circuitry of the portable gas analyser described in 

Chapter two. The advantage of a multi-sensor array response over a single sensor response is 

that it produces a response pattern rather than a single signal that can be used to improve the 

identification of a particular sample [1]. However, there is little point in having an array of 

sensors, all of which respond in the same manner to a sample [1]. 

A wide range of portable analysers have been used for many applications, such as 

monitoring airborne gas [2] and vapour contaminants in the field [2], air pollution monitoring 

[3], analyses of soil contamination [4], detection of chemical warfare agents [5] and hazardous 

waste screening [6]. The use of sensor arrays has advantages for multi-analyte determinations, 

and the progress of sensor array research, reporting on a range of multi-gas monitors, many of 

which are portable and applicable for field operation have been reviewed [7]. These mainly 

utilise electrochemical sensors developed to detect gases such as carbon monoxide, hydrogen 

sulfide, nitric oxide, sulfur dioxide and nitrogen dioxide. 

In addition there has been considerable research devoted to the development of multi-

sensor array systems based on tin-oxide sensors. Examples include: two chemically modified 

tin-oxide sensors used for the identification of carbon monoxide and methane in mixtures [8]; 

an array of three thin film metal oxide sensors were employed for the identification of ethyl 

acetate, acetone, ethanol and pentane and the determination of ethanol in various mixtures [1] 

and the discrimination between alcohols and tobaccos [9]; a sensor array of four tin-oxide 

semiconductor thin-film devices were used to characterise smoke from different origins [10]; an 

array of six modified tin-oxide gas sensors were used for the detection of single and mixtures of 
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gases [11]; and an array of twelve tin-oxide sensors were employed for the discrimination of 

coffees [12] and the discrimination between various alcoholic beverages [13,14]. Other gas 

sensors include catalytic [15], piezoelectric [16,17], surface acoustic wave [18,19] conducting 

polymers [20-22] and electrochemical gas sensors [23,24]. However, some of these gas 

monitors have complex designs, are fixed-site instruments which require voltage main power 

supply, have limited sensor life and are expensive. 

In this chapter, a portable, battery-powered, multi-sensor gas analyser, containing six 

different Taguchi tin-oxide semiconductors is described and evaluated. This portable gas 

analyser employed in a flow-through mode, is of a simple design, relatively inexpensive and 

has low power consumption. The performance of the portable, battery-powered, multi-sensor 

gas analyser was evaluated in terms of stability, sensitivity, selectivity and reproducibility using 

the response to ethanol. The portable multi-sensor gas analyser was used to determine the 

ethanol content in various beer samples employing the Langmuir isotherm described in Chapter 

two. The response pattern of the multi-sensor array to discriminate between various beer 

samples was also investigated. 

3.2 Experimental 

3.2.1 Solutions 

The following general reagents were used: acetaldehyde (Merck-Schuchardt), acetone 

(BDH Chemicals, AnalaR), butan-l-ol (BDH Chemicals, AnalaR), ethanol (Ajax Chemical, 

Analytical UNI VAR Reagent) and propan-l-ol (BDH Chemicals, AnalaR). All solutions were 

prepared in Ultrapure water (Barnstead Ultrapure water systems) in 100 mL volumetric flasks 

and used for head-space analysis at room temperature (22 ± 2 0C). A standard cigarette lighter 

was used as a source for pure butane. The beer samples used in this study were obtained 

commercially from local suppliers, and are listed below, with the labelled ethanol content in 

brackets: Beer A (2.7%), Beer B (2.8%) and Beer C (2.8%). 
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Figure 3.1. Schematic diagram of the portable multi-sensor gas analyser used in this study. 
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(A) 

(B) 

Figure 3.2. Photographs of (A) the multi-sensor array gas analyser connected to a Macintosh 
PowerBook computer and (B) the circuitry of the multi-sensor gas analyser. 
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3.2.2 Design of the Portable Gas Analyser 

The portable gas analyser consists of six Taguchi type tin-oxide semiconductor sensors 

in a flow-through compartment, as shown in Figure 3.1. The six sensors used were the 

TGS880, TGS825, TGS824, TGS822, TGS813 and TGS800 types and were obtained from 

Figaro [25]. The TGS813 was used to replace the TGS812 as it was no longer available 

commercially and was reported to be similar in configuration [25]. The ethanol vapours of the 

standards and samples were pumped into the flow-through compartment using a diaphragm 

pump at a constant flow rate of 1 L / minute, using a 10 seconds sampling time. The sensors 

and pump were controlled by an electrical circuit operated from a battery-pack of five Ni-Cd 

rechargeable 1.2 V batteries. The analog voltage output was displayed on the LCD unit of the 

analyser, and was simultaneously converted via a 12-bit analog-to-digital converter (ADC) that 

transmitted through a RS232C serial output to a Macintosh PowerBook computer. 

Photographs of the entire portable gas analyser and the internal electronic circuitry are presented 

in Figure 3.2. 

3.2.3 Gas Chromatography Instrumentation 

A Perkin-Elmer Sigma 3 Gas Chromatograph with a Flame Ionisation Detector (FID) 

was used for the analysis of ethanol. A 3% Neopentyl Glycol column (6 ft in length, 1/8 in. 

internal diameter) was used at a temperature of 160 °C. 1.0 RL sample injection volumes were 

used, using a SGE 10 [At syringe. The data collected were saved as text files 'IGOR' (AD 

Instruments, Sydney, Australia) was used for data analysis. 

3.2.4 Head-Space Analysis and Gas Chromatography Procedure 

The tin-oxide semiconductor gas sensors were allowed to warm up by pumping air 

(carrier gas) through the analyser for 1 hour prior to measurements to ensure a stable baseline. 

Standard solutions as well as liquor samples were left standing at room temperature (22 ± 2 0C) 

for 2-3 hours and were shaken in the 100 mL volumetric flasks to produce adequate head-space 

vapour prior to measurement. The sample inlet tube of the gas analyser was introduced into the 

head-space of the flasks immediately after removing the lid, and a vapour sample was pumped 
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into the flow-through sensor compartment for 10 seconds at a constant temperature and relative 

humidity. The responses of each standard solution and beer samples for each sensor were 

recorded in triplicate and displayed in real-time millivolt readings on the Macintosh PowerBook 

computer screen using Satod ©, Version 1.46. 'IGOR' was used for data analysis and 

graphical representation of the data. 

For the gas chromatography analysis, the same ethanol standard solutions and samples 

were left standing at room temperature for 2-3 hours, in order to produce adequate head-space 

vapour. 1.0 RL, sample injection volumes were used and the data collected were stored as text 

files. 

3.3 Results and Discussion 

3.3.1 Design of the Multi-sensor Array Gas Analyser 

The six Taguchi tin-oxide semiconductor gas sensors were arranged in a single flow-

through compartment as shown in Figure 3.1, whereby the gas or vapour sample was pumped 

over the surface of the sensors. The major advantage of this arrangement is that it allows for a 

minimal exposure of the sensors to the gas sample and thus minimises the chance of poisoning 

the sensor's surface. Another advantage of this arrangement is that each sensor can be 

interchanged throughout the compartment. 

The configuration of the Figaro gas sensors used were as follows: the TGS880 sensor 

has a polyamide resin base with mesh cover and is reported to be more sensitive to volatile 

gases for cooking processes; the TGS825 and TGS824 sensors have a heat resistant ceramic 

base with mesh cover and are reported to be more sensitive to sulfides and ammonia, 

respectively; the TGS822, TGS813 and TGS800 sensors have a polyamide resin base and 

housing and are reported to be more sensitive to alcohols, combustible gases and air 

contaminants, respectively [25]. All the gas sensors have a built-in heater in an alumina ceramic 

tube and the semiconductor material is mounted on the tube with two printed gold electrodes. 

The sensor elements were protected by a plastic housing with two flame arresters of stainless 

steel double-gauze on the top and bottom [25]. These low cost Taguchi sensors are compact in 

size (17-19.5 mm internal diameter) and easy to install [25]. 
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The portable, multi-sensor, gas analyser is small in size (20 x 11 x 6 cm), light weight 

(985 g), battery-powered (6.0 V battery pack), requires low power (6.6 W), and was connected 

to a Macintosh PowerBook computer making it efficient for remote site monitoring. This 

analyser was in continuous operation for 3 hours before recharging was necessary. 

3.3.2 Response to Ethanol Vapour 

The response of each sensor to ethanol vapour was recorded simultaneously when the 

sample inlet tube was moved from ambient air into the head-space of each sample. After 

sampling for 10 seconds, the inlet tube was moved back into ambient air. The short sampling 

time resulted in a small sample zone of alcohol vapour being pumped through the sensor 

compartment, thereby giving a peak-shaped response. The trace on the computer screen was 

allowed to return to the baseline before repeat measurements were made. Triplicate peaks were 

obtained for ethanol at different concentrations for each sensor, as shown in Figure 3.3. All 

sensors exhibited a rapid response with peak widths in the range of 30-60 seconds for a 10 

seconds sampling time and a constant flow rate of 1 L / minute. A peak height reproducibility 

of <3% relative standard deviation (RSD) was observed for all sensors. The TGS825 sensor 

exhibited the highest sensitivity whereas the TGS813 sensor exhibited the least sensitive 

response to ethanol. However, all the six Taguchi sensors showed no loss of activity and no 

baseline drift during the course of the study, moreover they were resistant to poisoning and 

exhibited excellent durability and shock proof. These tin-oxide sensors are reported to be 

limited by the lack of selectivity, sensitivity and reproducibility [26]. However, these results 

have demonstrated that these Taguchi sensors exhibit high stability, sensitivity and 

reproducibility in a flow-through arrangement. 
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Figure 3.3. Sample peaks for increasing concentrations of ethanol for each Taguchi gas sensor. 
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3.3.3 Discrimination Between  Varying Ethanol Concentrations 

Pattern recognition techniques have been previously applied for qualitative [21,22,27] 

and quantitative applications [27]. In this study, the response patterns for various ethanol 

concentrations in the range of 0.1 to 5.0% were investigated and compared and are given in 

Figure 3.4. Figure 3.4, shows that the response increases as the ethanol concentration 

increases and that different response patterns were observed for the 3.0% and 5.0% ethanol 

samples compared to the 1.0% ethanol samples. In principle, this makes it possible to 

discriminate between high (> 3.0%) and low ethanol concentrations (<1.0%). 

3.3.4 Discrimination Between  Various Compounds and Functional Groups 

As described earlier, the advantage of employing multi-sensor array compared to a 

single sensor response is that it produces a response pattern rather than a single signal, which 

can improve the discrimination between various compounds [1]. Figure 3.5 shows the 

response pattern observed for 1.0% ethanol and pure butane as examples of a polar and non-

polar compounds, respectively. Clearly, a significantly different response pattern was observed 

for the ethanol and butane vapours, and this demonstrates the ability of the multi-sensor array 

employed in the portable gas analyser to selectively discriminate between two different 

compounds, in this case, an alkane and an alcohol. Consequently, selective response patterns 

can be employed for the identification of individual gas components using the multi-sensor 

array portable gas analyser. 

Figure 3.6 presents the response patterns observed for 1.0% ethanol, propanol and 

butanol solutions. The response patterns observed for the ethanol, propanol and butanol were 

similar, since they are alcohols. However, there are observed differences between each 

response pattern for each alcohol, as a result of the different hydrocarbon chain, in particular the 

response observed for the TGS880, TGS825, TGS824 and TGS800 sensors. Consequently, 

selective discrimination between the different alcohol vapours was demonstrated using the 

portable gas analyser. 
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Figure 3.4. Response pattern observed for varying ethanol concentrations ranging from 0.1- 
5.0% (v/v) using the multi-sensor array gas analyser. 



1.0% Ethanol 

880 	825 	824 	822 	813 	800 
TGS sensors 

Pure Butane 

    

  

1 

 

0 

    

    

  

. 

 

    

880 	825 	824 	822 	813 	800 
TGS sensors 

P. 
C 
I)- 
.- 

2.5 

2 

1.5 

0 1 

Chapter Three 	 72 

Figure 3.5. Response pattern observed for 1.0% ethanol standard solution and pure butane 
using the multi-sensor array gas analyser. 
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Figure 3.6. Response pattern observed for 1.0% ethanol, propanol and butanol using the 
multi-sensor array portable gas analyser. 



880 	825 	824 	822 	813 	800 
TGS sensors 

1.0% Acetaldehyde 

      

     

    

1  

 

1  

   

Al 0 

   

     

880 	825 	824 	822 	813 	800 
TGS sensors 

Chapter Three 	 74 

Figure 3.7. Response pattern observed for 1.0% ethanol, acetone and acetaldehyde using the 
multi-sensor array portable gas analyser. 
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Figure 3.7 presents the response pattern observed for an alcohol, a ketone and an 

aldehyde, namely 1.0% ethanol, acetone and acetaldehyde solutions. These three different 

functional groups clearly have vastly different chemical characteristics and odours between them 

and consequently significantly different response patterns were observed using the portable 

multi-sensor array gas analyser. Therefore, selective discrimination between functional groups 

was demonstrated with the portable gas analyser. The response pattern of the multi-sensor 

array is therefore useful for the identification of individual gas or vapour components due to the 

improved discrimination compared to a single sensor response. 

3.3.5 Discrimination Between Beer Samples of Similar Ethanol Content 

The response patterns of each beer sample of similar ethanol content were investigated 

to determine if discrimination was possible. Figure 3.8 shows response patterns of these 

samples compared to the 3.0% ethanol standard solution. The response of each TGS sensor for 

the beer samples and 3.0% ethanol solution analysed exhibited reproducibility of < 3.5% RSD. 

It is clear that the response pattern for the three beer samples is different from the observed 

response pattern of the ethanol solution. The likely reason is thought to be due to the different 

flavour of volatiles present in each beer sample. The flavour of beer is dependent upon many 

fermentation variables such as yeast strain, temperature, wort composition and aeration [28]. 

Therefore, it was possible to discriminate between different beer samples of similar ethanol 

content using the multi-sensor gas analyser. 

3.3.6 Analysis of Ethanol in Beer Samples 

The light beer samples were analysed for their ethanol content using the multi-sensor 

gas analyser. The ethanol content was determined using the Langmuir calibration plots as 

shown in Figure 3.9. The Langmuir isotherm is the simplest description of the adsorption 

mechanism and is based on the assumption that every adsorption site is equivalent and that the 

ability of a molecule to bind on the surface of the sensor is independent of whether or not 

nearby site are occupied as described in Chapter two, Section 2.4. 
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Figure 3.8. Response pattern observed for Beer A, Beer B and Beer C compared to 3.0% 
ethanol for the six Taguchi gas sensors. 
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Figure 3.9. Langmuir isotherm plots for the six Taguchi gas sensors. 
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The results obtained for each of the six Taguchi gas sensors were compared to the gas 

chromatography analysis results and the labelled data and these results are presented in Table 

3.1. RSD values of 2.8% were observed for all the TGS sensors for the beer samples 

analysed. The average ethanol content for Beer A, B and C were 2.4% 3.0% and 2.8% with 

corresponding RSDs of 6.5%, 4.0% and 2.9%, respectively. Therefore, analysis results for 

ethanol in beer samples using the multi-sensor gas analyser exhibited agreement with gas 

chromatography results as well as the labelled data. 

Table 3.1. Ethanol content determined in light beer samples using the Langmuir isotherm plots 
for each of the six Taguchi gas sensors compared to gas chromatography and the labelled data. 

% Ethanol (v/v) (%RSD) 

Samples TGS880 TGS825 TG5824 TG5822 TGS813 TGS800 Average GC Labelled 

Beer A 2.2 (1.1) 2.5 (1.9) 2.3 (1.7)2.6 (1.3) 2.3 (2.4) 2.5 (2.3) 2.4 (6.5) 2.5 2.7 

Beer B 2.9 (1.3) 3.1 (1.4)3.1 (0.8)3.0 (1.8) 3.2 (2.8) 2.9 (2.1) 3.0 (4.0) 2.8 2.8 

Beer C 2.9 (2.1) 2.8 (2.5) 2.9 (0.9)2.7 (1.7) 2.9 (0.9) 2.8 (1.1) 2.8 (2.9) 2.9 2.8 

3.4 Conclusions 

The multi-sensor array gas analyser developed and presented in this chapter is of a 

simple design, portable, light weight, battery-powered, requires low power consumption and is 

inexpensive. The response characteristics of the gas analyser showed a stable baseline, a peak 

height reproducibility of < 3% RSD and a rapid response for ethanol, with peak widths in the 

range of 30-60 seconds for all -six Taguchi type sensors. The multi-sensor gas analyser 

response patterns were able to selectively discriminate between samples of polar and non-polar 

nature such as ethanol and butane. The gas analyser was used to discriminate between 

functional groups such as ethanol, acetone and acetaldehyde and alcohols such as ethanol, 

propanol and butanol. 

Due to the different flavour of volatiles commonly present in beer, the discrimination of 

beer samples with similar ethanol content was able to be demonstrated with this gas analyser. 
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Analysis results for the ethanol content in light beer samples for each of the six Taguchi gas 

sensors were in agreement with gas chromatography results and the labelled data. As 

demonstrated in this chapter, the multi-sensor gas analyser can be employed in both qualitative 

and quantitative applications, making this analyser a versatile portable analytical instrument. 
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Chapter Four: The Discrimination of Beer Brands using the 

Portable Battery-Powered Multi-Sensor Gas Analyser and 

Artificial Neural Network 

4.1 Introduction 

In this chapter, the portable, battery-powered multi-sensor gas analyser described and 

evaluated in Chapter three was used with an artificial neural network to discriminate between 

different beer brands. 

There is considerable interest in the use of multi-sensors associated with pattern 

recognition techniques to classify or identify various vapours and odours [1]. The pattern 

recognition techniques employed with solid state arrays include, principal component analysis 

[2-7], cluster analysis [2,3,6,7], linear discriminant analysis [7], partial least squares [2], 

multiple linear regression [8] and non-linear techniques [9,10] such as non-linear regression 

[11] and non-linear partial least squares [12]. 

Most solid-state sensors exhibit non-linear responses [12], and therefore cannot be 

adequately modelled using some of the above mentioned techniques. Artificial neural networks 

(ANNs) are pattern recognition techniques formed from numerous simulated neurons that are 

connected in much the same way as the brain's neurons and are therefore able to learn in a 

similar manner to people [13]. ANNs consist of parallel interconnected, and usually adaptive, 

processing elements used for complex, non-linear data and they are suitable for any application 

requiring pattern recognition [13]. ANNs learn by creating their own internal representations 

based on information given, have the ability to model non-linear responses and are usually able 

to recognise patterns even when the data are noisy, distorted or have a great amount of variation 

[13]. 

Various algorithms could be used to train a three-layer network [17]. In a three-layer 

network the processing are organised into three distinct layers, namely input, hidden and output 

layers. The back propagation [14-16] training algorithm as described in Chapter one, Section 

1.4.5, was employed in this work as it was the most suitable method to identify unknown 

odours, after a learning process involving a set of known odours [17]. The final output from 
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the network for the input pattern is compared with the known correct result and a measure of 

the error is computed. In order to reduce this error, the weight vectors between neurons are 

adjusted by using the generalised delta rule and back-propagating the error from one layer to the 

previous layer [13]. The total error, E, is given by the difference between the correct or target 

output from neuron j, t , and the actual measured output from neuron j, 0 , [13]: 

(4.1) 

and the critical parameter that is passed back through the layers of the network is defined as 

[13]: 

—6 • = 	dE•/ dI• 	 (4.2) 

where I is the summed input to neuron j from other neurons. For output units, the observed 

results can be compared directly with the target results, and 

(5 .1 = 	 °J) 
	

(4.3) 

where f is the first derivative of the sigmoid threshold function. If unit j is not an output, 

then, 

 J = 	 Ok wk • 	 (4.4) 

where w k is the weight of the connection in neurons in preceding layers. Therefore, the error 

is calculated first in the output layer and is then passed back through the network to preceding 

layers for their weight vector to be adapted in order to reduce the error. 

ANNs have been used for various applications in food authentication including the 

assessment of the adulteration of virgin olive oils [18,19] and milk [20], the detection in the 
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adulteration of instant coffees [21], quantitative analysis of the adulteration of orange juice [22], 

the discrimination between alcoholic beverages [17] and the quality estimation of ground meat 

[23]. 

The techniques of pattern recognition described above are applied in the design and 

development of an 'electronic nose'. In an attempt to develop an electronic nose, researchers 

have attempted to mimic some of the abilities of the mammalian olfactory system by combining 

a multi-element array of sensors with data acquisition and processing software. 

The sensation of smell arises from the stimulation of olfactory neurons, the receptor 

cells located high up in the nose in the olfactory epithelium. The mammalian olfactory system 

uses a large number of non-specific receptors that show broad patterns of response [24,25]. 

Typically, there are 50 million receptors in the olfactory epithelium that are exposed to the 

external environment [24,25]. The olfactory receptor neurons are reactive to various odourants 

that bind to the membrane receptors causing changes in ionic conductances; this effect produces 

signals that are transmitted to the olfactory bulb for processing [24,25]. Output patterns are 

sent to the cerebral hemispheres in the brain where they are interpreted to produce odour 

recognition [24]. The brain is trained to recognise which pattern corresponds to which odour 

description. Odourants are typically small hydrophobic organic molecules containing one or 

two functional groups with a mass range from 17 to 300 Da [24]. The relationship between the 

physiochemical properties of the odourant molecules and their odours are thought to be related 

to size and shape of an odourant molecule, together with the distribution of polar groups 

[24,25]. 

Beer flavour is a complex problem because there are hundreds of compounds present. 

Studies have shown that there are over 100 separately identifiable flavours in beer of which 

about 39 are present in most beers where ethanol is the main component [25]. Of these 39 key 

flavours in beer, 15 can be explained (eg: ethanol, estery and diacetyl), 20 partly explained (eg: 

hoppy, malty and worty) and 10 can not be explained at all (eg: spicy, woody and grainy) [25]. 

Furthermore, beer flavour is unstable and its odour will change with time as the chemical 

composition of beer changes [25]. Beer is prepared commercially by batch processes and it is 

important to ensure consistency from batch to batch and overall product quality [25]. The 

quality of beer is currently determined by various methods including gas chromatography or 
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combined gas chromatography mass spectrometry [25]. However, in the brewery, the 

evaluation of the olfactory aroma of a product is carried out by trained sensory experts who use 

a recognised vocabulary of terms to describe the character of a particular sample [24]. This 

organoleptic analysis is objective to a degree but is dependent on a number of factors including 

degree of training, personal sensitivities, diet, health and age [24]. These methods are slow and 

expensive and rely on large laboratory instruments or subjective sensations. Therefore, there is 

a need for portable battery powered instruments that can be used in the monitoring of beer 

flavours. 

This chapter will determine whether the portable, multi-sensor gas analyser together 

with the back-propagation type three-layer neural network technique can be trained successfully 

to recognise different beer brands. 

4.2 Experimental 

4.2.1 Samples 

The beer samples used in this study were obtained commercially from local suppliers 

and are listed below, with the labelled alcohol content in brackets: Beer A (2.7%), Beer B 

(4.9%), Beer C (4.8%), Beer D (2.8%), Beer E (4.9%) and Beer F (4.8%). Each beer sample 

was stored in its original bottle or aluminium can and was used for head-space analysis at room 

temperature, as described below. 

4.2.2 Head-Space Analysis Procedure 

The portable multi-sensor gas analyser described in Chapter three was employed for the work in 

this chapter. The head-space analysis procedure is as described in Chapter three, Section 3.2.4. 

The beer samples were left standing unopened at room temperature (22 ± 2 0C) for 3-4 hours to 

produce adequate head-space vapour prior to measurement. The sample inlet tube of the gas 

analyser was introduced into the head-space of the beer bottles immediately after removing the 

cap, and the vapour samples were pumped into the flow-through sensor compartment for 10 

seconds. 

The data acquired for each of the gas sensors were displayed simultaneously in real-time 

millivolt readings on the Macintosh PowerBook computer screen using 'Satod' and 'IGOR' 
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(AD Instruments, Sydney, Australia) was used for graphical representation of the data. 

4.2.3 Experimental Design of Artificial Neural Networks 

The application program BrainMaker Mac Release Version 1.01 (California Scientific 

Software, Nevada City, CA, USA) was the artificial neural network used in this study. 

A three-layer network was used to model the responses of the six Taguchi gas sensors, 

as it can map any arbitrary continuous function given that enough neurons are present in the 

hidden layer [26-28]. 

The parameters and statistics used to train the network are presented in Figure 4.1 where 

the input, output and pattern windows provide a visual display of the network as it trains. The 

parameters window shows what BrainMaker is doing and what files are being used [13]. The 

'Learning Rate' is a factor used to scale all corrections while learning which is intended to 

improve the speed of convergence of the network and the 'Tolerance' specifies how accurate the 

ANN must be to be considered correct [13]. BrainMaker has a training tolerance and a testing 

tolerance [13]. A different tolerance during testing is employed compared to the one used 

during training. 

Below the parameters window is the statistics window which shows BrainMaker's 

progress as it trains or tests, where: 'Fact' is the sequence number of the example BrainMaker 

is currently evaluating, 'Total' is the cumulative number of examples that BrainMaker has 

evaluated, 'Bad' is the total number of examples BrainMaker got wrong so far in the run, 'Last' 

is the total number of examples BrainMaker got wrong in the previous run, 'Good' is the total 

number of examples BrainMaker got right so far in the run, 'Last' is the total number of times 

BrainMaker got right in the previous run and 'Run' is the total number of times BrainMaker has 

looked at all the examples in the training set, including the current iteration [13]. The 

thermometer in the input window shows the data received from a data file, the thermometer in 

the output window indicates BrainMaker's calculation and the thermometer in the pattern 

window indicates what is asserted the correct answer [13]. The thermometers in the output and 

pattern windows can be visually compared to determine how close BrainMaker's calculation is 

to the training pattern for each example BrainMaker evaluates. The 'Elapsed Time' clock starts 

when training begins and stops when training ends, so that training times are recorded [13]. 
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Parameters 

Figure 4.1. Visual display of ANN 
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A Macintosh PowerBook 1400cs with Power PCTM  603e at 133 MHz clock frequency 

and 128 kilobyte level two write-through cache memory on processor system bus was used to 

train the ANN. 

4.3 Results and Discussion 

4.3.1 Multi-sensor Response to Beer 

The real-time responses of each of the six sensors to ethanol were recorded 

simultaneously when the sample inlet tube was moved from air into the head-space of each of 

the beer samples using the multi-sensor gas analyser. After sampling for 10 seconds, the inlet 

tube was moved back into ambient air, giving a peak-shaped response. An example of the peak 

response for duplicate sampling of Beer D, after the baselines were offset, is given in Figure 

4.2. The TGS825 sensor was observed to be the most sensitive and the TGS813 sensor the 

least sensitive, with a response range between 0.0-2.0 V and 0.0-0.27 V, respectively. 

Response times observed for the sensors varied with peak widths over the range of 20 to 250 

seconds for a 10 second sampling time and 1 L / minute flow rate. Good precision was 

obtained for the recorded beer samples. The relative standard deviation (RSD) of duplicate peak 

heights determined for each of the six different sensors were s 5.0%. 
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4.3.2 Identification of Beer Brands by Artificial Neural Network 

In the three-layer artificial neural network used in this chapter there were six elements in 

the input layer, which received voltage data, corresponding to the peak height from each of the 

six gas sensors, ten elements in the hidden layer, which was calculated by BrainMaker and six 

elements in the output layer which provided a score for each beer indicating the certainty that the 

inputs were associated with the given beer brands. 

In order to determine whether the back-propagation algorithm could be used to train 

successfully and recognise different beer samples, six beer brands were used. Two sets of beer 

samples were purchased, one sample set was used for training the ANN and the second set of 

samples were analysed as unknowns and were therefore used to evaluate the ANN. 

The ideal values of the processing element in the output layer when identifying samples 

should be 0 unless there is correlation with the beer sample analysed, in which case it should be 

1.0. In this study, an element value of 0.8 was used to indicate good identification, as has been 

previously reported to be acceptable [16]. 

A three-layer network using duplicate raw peak heights obtained for each of the six beer 

brands was trained in 7:11 minutes using 553 iterations at a learning rate of 1.0 and a training 

tolerance of 0.1. After the ANN was trained, the same raw peak heights were used to test the 

ANN, using a testing tolerance of 0.4. The recognition time was no more than two seconds 

and the results are given in Table 4.1. These results show that the outputs generated during 

testing were of the order of 0.900 or above compared with an ideal value of 1.0, and of the 

order of 0.101 or below compared with an ideal value of 0. Therefore, these results show that 

the ANN has trained successfully and therefore discriminates well between the beer brands. 
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Table 4.1. Predicted outputs for the beer brands when testing the trained ANN. 

Brands 

Predicted outputs 

Beer A Beer B Beer C Beer D Beer E Beer F 

Beer A 0.938 0.000 0.063 0.008 0.101 0.000 

Beer A 0.954 0.000 0.086 0.029 0.021 0.000 

Beer B 0.000 0.992 0.023 0.000 0.014 0.076 

Beer B 0.000 0.989 0.048 0.000 0.006 0.030 

Beer C 0.001 0.047 0.936 0.001 0.000 0.091 

Beer C 0.001 0.035 0.950 0.001 0.000 0.100 

Beer D 0.005 0.000 0.002 0.985 0.033 0.003 

Beer D 0.010 0.000 0.001 0.914 0.099 0.006 

Beer E 0.042 0.000 0.001 0.012 0.900 0.047 

Beer E 0.014 0.000 0.000 0.067 0.900 0.099 

Beer F 0.000 0.062 0.097 0.004 0.060 0.915 

Beer F 0.000 0.022 0.038 0.005 0.100 0.905 

In order to validate the trained ANN, raw peak heights obtained for the unknown beer 

brands were used to test the trained ANN and the predicted outputs are presented in Table 4.2 

and Figure 4.3. 
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Table 4.2. Outputs predicted from the trained ANN using unknown beer brands. 

Brands 

Predicted outputs 

Beer A Beer B Beer C Beer D Beer E Beer F 

Beer F 0.000 0.128 0.164 0.002 0.042 0.952 

Beer C 0.001 0.060 0.924 0.001 0.001 0.148 

Beer E 0.005 0.000 0.001 0.033 0.817 0.084 

Beer A 0.919 0.000 0.039 0.016 0.070 0.000 

Beer D 0.018 0.000 0.002 0.939 0.036 0.002 

Beer B 0.000 0.990 0.037 0.000 0.008 0.046 
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These results show that in most cases the 0 output was less than 0.148, unless there 

was correlation with the sample analysed where an output of 0.919 or above was obtained. 

However, there were two exceptions to this: the lowest output value was 0.817 for an expected 

output of 1.0, correctly identifying Beer E, where this was significantly higher than the 

corresponding 0 output of 0.084 for Beer F. The largest 0 output was 0.164 which showed the 

characteristics of Beer C, but this was significantly smaller than the corresponding 1.0 output of 

0.952, correctly predicting the identity of Beer F. Therefore, the results in this chapter show 

that the ANN discriminates well between the six beer brands. 

4.4 Conclusions 

A three-layer back propagation algorithm was used to discriminate between beer brands 

from the response patterns observed from the portable, multi-sensor gas analyser. The ANN 

used in this study was trained in 7:11 minutes using 553 iterations at a learning rate of 1.0 and a 

training tolerance of 0.1, which correctly identified six beer brands with an output of greater 

than 0.8. The work presented in this chapter shows that the portable multi-sensor gas analyser 

is able to discriminate among beer brands and therefore may be used to monitor beer quality in 

industrial processes and product quality. 
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Chapter Five: Discrimination Between Types of Olive Oils using 

the Portable Multi-Sensor Gas Analyser and Artificial Neural 

Networks 

5.1 Introduction 

In this chapter, the portable multi-sensor gas analyser described in Chapter three was 

used with an artificial neural network software described in Chapter four to discriminate between 

different grades of olive oils. Adulteration of olive oils has become a great temptation in today's 

market, because of the high price extra virgin olive oil commands due to the nutritional health 

benefits associated with its consumption [1]. 

Extra virgin olive oil is absolutely perfect in flavour and odour, and has a maximum free 

fatty acid content in terms of oleic acid of less than 1 gram / 100 gram [1-4]. Virgin olive oil is 

extracted by purely mechanical means from sound, ripe fruits of the olive tree (Olea europaea 

sativa Hoffm. et Link), whereby the oil has not undergone any treatment other than washing, 

decantation, centrifugation and filtration and has a free fatty oleic acid content of less than 2 

gram / 100 grams [3]. Olive oil in general contains 70% monounsaturated fatty acids, 15% 

polyunsaturated fatty acids and 16% saturated fatty acids [4] and becomes rancid on exposure to • 

air [5]. Olive oil is pale yellow or light greenish-yellow in colour and has a fine aroma and a 

pleasant taste [5], which is generally agreed to be at its best in extra virgin olive oils, and is 

considered to have many nutritional and health benefits [4]. 

There are many varied claims and suggested reasons as to the health benefits. There is 

very strong evidence that olive oil consumption reduces the risk of death due to circulatory 

system related diseases [4,6]. It is suggested that this is due at least partially to the natural 

antioxidants (including the bitter-tasting glycosidic compound Oleuropein) and micronutrients 

preventing low density lipoprotein from oxidation and so retarding the formation of 

atherosclerotic lesion [4]. Martin-Moreno et al. [7] have also noted that olive oils contain a 
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'generous amount of antioxidants' and speculate that diets high in monounsaturated fats assist in 

forming tissue structures that are less susceptible to antioxidative damage than would be the case 

in high polyunsaturated diets. They have also noted an inverse correlation between breast cancer 

and olive oil intake [7]. 

As a consequence of these health benefits, olive oil commands a much higher price 

compared to other edible oils. Therefore, there is a great temptation to adulterate olive oil with a 

cheaper oil, such as olive pomace oil, corn oil, sunflower oil or castor oil [1-4]. The necessity 

to detect adulterations in olive oils in general was highlighted in May 1981, when 20,000 people 

became ill with a severe acute respiratory illness and 350 died in Spain after consuming refined 

aniline denatured rape seed oil [8]. 

It has been reported that extra virgin oils (known as cold pressed or non-refined when 

referring to non-olive oils) can be distinguished by the presence of a substantial quantity of 

volatile components using liquid chromatography - gas chromatography - flame ionisation 

detection (LC-GC-FID) [9]. Therefore, it was concluded that olive oil samples which did not 

contain these volatile components have been treated. However, pure olive oils, being a blend of 

extra virgin has been difficult to distinguish since they also contain a substantial amount of these 

volatiles [9]. 

In a different study, detecting between extra virgin olive oil and adulterated olive oils 

with various seed oils was successful using pyrolysis mass spectrometry and artificial neural 

networks [2]. The same group have also used 13C NMR spectra and have applied principal 

components analysis (PCA), principal components regression (PCR) and partial least squares 

(PLS) to discriminate between extra virgin olive oils from different regions of Italy [4]. 

The aim of this chapter is to discriminate between different grades of olive oil and 

estimate the age of the oil by head-space analysis using the portable multi-sensor gas analyser 

and artificial neural networks described in Chapters three and four, respectively. 
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5.2 Experimental 

5.2.1 Samples 

The extra virgin, pure and light grade olive oil samples used in this study were obtained 

commercially from local suppliers. Each olive oil sample was placed in a 100 mL glass 

erlenmeyer conical flask and was used for head-space analysis at room temperature using the 

portable multi-sensor gas analyser. 

5.2.2 Head-Space Analysis and Data Analysis 

The portable multi-sensor gas analyser described in Chapters three and four was used for 

the work presented in this chapter. The oil samples were left standing at room temperature for 1 

hour and were shaken in the 100 mL erlenmeyer conical flasks to produce adequate head-space 

vapour prior to measurement. The sample inlet tube of the gas analyser was introduced into the 

head-space of the flasks immediately after removing the lid, and a vapour sample was pumped 

into the flow-through sensor compartment for 10 seconds at a constant temperature and relative 

humidity. The responses of the oil samples for each sensor were recorded in triplicate, and 

displayed in real-time millivolt readings on the Macintosh PowerBook computer screen using 

Satod C, Version 1.46 and were saved as text files. 'IGOR' (AD Instruments, Sydney) was 

used for graphical representation of the data. 

The ANN software package described in Chapter four (refer to Section 4.2.3) was used 

to discriminate between different grades of olive oils and also to determine the age of the oil 

samples. There were two sets of olive oil samples purchased, one sample set was used for 

training the ANN and the second set of samples were analysed as unknowns and used to 

evaluate the trained ANN. 

5.3 Results and Discussion 

5.3.1 Grade of Olive Oils 

On the supermarket shelf, there are three main grades of olive oil available to the 
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consumer, extra virgin, pure and light olive oils. Extra virgin grade is the most pure and natural 

state of olive oil and the only process it undergoes is filtration. It has a distinctive strong fruity 

flavour and odour, sharply of olives, with hints of vegetables that can vary in intensity and 

contains a maximum of 1% free acidity as oleic acid [1-4]. Considering the significant health 

benefits associated with its consumption, the extra virgin grade commands a high price [1-4] and 

consequently, adulterating olive oils with other edible seed oils has become a great temptation in 

order to lower the market price. 

Pure olive oil is a blend of refined olive oil and extra virgin or virgin olive oil, and has a 

typical composition of 75% refined and 25% extra virgin olive oils [10], but this ratio can vary 

between manufacturers. Pressed olive oil that does not meet the standards set by the 

International Olive Oil Council for virgin olive oil is refined in order to neutralise the acidity 

[11]. Consequently, the refined product has a bland taste and therefore must be blended with 

extra virgin or virgin olive oil in order to enhance the flavour, and this grade of olive oil tends to 

have a softer taste compared to the extra virgin grade and can also be used raw [12]. 

Light olive oil is similar in composition to the pure olive oil, but the proportion of extra 

virgin olive oil is considerably lower compared to the pure grade. Light grade olive oil has a 

typical composition of 90% refined and 10% extra virgin olive oils [10], but this can vary 

between manufacturers. This grade of olive oil has very little taste and consistency 

characteristics and can only be used for frying and preserving foods [10]. 

5.3.2 Response of Various Grades of Olive Oils 

The portable battery-powered multi-sensor array gas analyser described in Chapters three 

and four was used for the head-space analysis of extra virgin, pure and light olive oils. The 

response exhibited by these different grades of olive oil samples are presented in Figure 5.1. 

Clearly, the extra virgin olive oil sample exhibited the largest response for all the TGS gas 

sensors, while the light olive oil sample exhibited the smallest. This observation correlates with 

the typical expectations of each grade of oil in terms of taste and odour, whereby the extra virgin 
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Figure 5.1. Typical response observed for the pure, light and extra virgin olive oils using the 
multi-sensor array portable gas analyser. 
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olive oil has a strong taste and odour compared to the softer taste and odour of the pure grade, 

while the light grade olive oil has very little taste and odour [10,12]. Therefore, it is assumed 

that ANN can be applied to discriminate between the grades of olive oil. 

Figure 5.2, 5.3 and 5.4 shows the change of response observed for the TGS sensors 

over a four day period of using each grade of olive oil. As the age of each grade of olive oil 

increased, that is from the time they were opened and stored in the erlenmeyer conical flasks, the 

response exhibited by each TGS sensor in the portable gas analyser decreased significantly in 

intensity. However, it is important to note that the TGS sensors showed no loss of activity and 

no baseline drift during the course of this study. Therefore, the likely reason for the observed 

decrease in the gas sensor responses as the age of the oil samples increased, could be related to 

the increase in the oxidative rancidity process [13]. Primarily the presence of linolenic and 

linoleic acid in olive oil decomposes with time to form aldehydes which result in a disagreeable 

flavour and odour [13]. 

The response patterns observed for the extra virgin and the pure olive oil over a period of 

four days showed a decrease in the peak height by an average of 18.4%, while the peak height 

of the response patterns observed for the light olive oil decreased by 49.1%. As discussed in 

Section 5.3.1, the typical composition of the light grade olive oil is 90% refined blended in with 

10% extra virgin olive oils, and this oil is reported to have very little taste and consistency 

characteristics [10]. Therefore, the decrease in the observed response peak height of each TGS 

sensor demonstrates the instability of the light grade olive oil as a result of the processes of 

oxidative rancidity and this is consistent with the manufacturers expectations [10]. 

The extra virgin grade exhibited a voltage response average decrease of 18.4% 

compared to 49.1% for the light grade olive oil. The likely reason for this significant difference 

was due to the volatile components present in the extra virgin oil [9], which give rise to the 

stability observed for this oil grade. The pure grade olive oil has a typical composition of 75% 

refined blended with 25% extra virgin and is reported to be more consistent and stable in taste 

compared to the light grade olive oil [10]. This was observed with the average change in voltage 
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Figure 5.2. The response pattern of the extra virgin olive oil over a four day period. 
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Figure 5.3. The response pattern of the pure olive oil over a four day period. 
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Figure 5.4. The response pattern of the light olive oil over a four day period. 
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of 18.4% for the TGS sensor responses compared to 49.1% for the light grade olive oil. This 

was surprisingly similar to that observed for the extra virgin grade, however, it has been 

previously reported that the pure grade of olive oil is very difficult to distinguish between the 

extra virgin grade, due to the presence of the volatile components present in both grades [9]. 

5.3.3 Discrimination Between Grades of Olive Oils using ANN 

Similar to Chapter four, Section 4.3.2, the architecture of the artificial neural network 

used in this chapter was the three-layer network where there were six elements in the input layer, 

which received voltage data, corresponding to the peak height from each of the six gas sensors, 

ten elements in the hidden layer, which was calculated by BrainMaker and three elements in the 

output layer which provided a score for each olive oil indicating the certainty that the inputs were 

associated with the given oil grades. It is important to note that BrainMaker calculates the 

minimum number of neurons required in the hidden layer, and this was used throughout this 

work. 

In order to determine whether the back-propagation algorithm could be used to train 

successfully and recognise different grades of olive oil, the extra virgin, pure and light grade 

olive oil samples were used. Two sets of olive oil samples were purchased, one sample set was 

used for training the ANN and the second set of samples were analysed as unknowns and were 

therefore used to evaluate the ANN. A decrease in the response pattern was observed with 

increasing age of each of the olive oil grades as discussed in Section 5.3.2. The age of the olive 

oil samples, that is from the time each oil sample was opened and stored in the erlenmeyer 

conical flasks, and were used to train and test the ANN were all 1 day old. The age of the two 

sets of olive oil samples had to be consistent, since the response pattern of each olive oil sample 

can change with time as discussed in Section 5.3.2. It was assumed that in a quality control 

environment, the analysis of olive oil samples would likely be performed in less than 24 hours 

from the time sample was opened. 

Similar to Chapter four, the ideal values of the processing element in the output layer of 



Chapter Five 	 107 

an ANN when identifying samples should be 0 unless there is correlation with the olive oil 

sample analysed, in which case it should be 1.0. In this study, an element value of 0.8 was 

used to indicate good identification, as it has been previously reported to be acceptable [14]. 

A three-layer network using duplicate raw peak heights obtained for each of the olive oil 

grades was trained in 2:00 minutes using 274 iterations at a learning rate of 1.0 and a training 

tolerance of 0.1. After the ANN was trained, the same raw peak heights were used to test the 

ANN, using a testing tolerance of 0.4. The recognition time was no more than two seconds and 

the results are given in Table 5.1. These results show that the outputs generated during testing 

were of the order of 0.900 or above compared with an ideal value of 1.0, and of the order of 

0.110 or below compared with an ideal value of 0. Therefore, these results show that the ANN 

has trained successfully and therefore discriminates well between the different grades of olive 

oils. 

Table 5.1. Predicted outputs for olive oil grades when testing the trained ANN. 

Predicted outputs 

Olive oil grades Extra virgin Pure Light 

Extra virgin 0.910 0.074 0.000 

Extra virgin 0.924 0.098 0.000 

Pure 0.094 0.900 0.098 

Pure 0.110 0.923 0.058 

Light 0.011 0.100 0.960 

Light 0.011 0.090 0.965 

In order to validate the trained ANN, raw peak heights obtained for the unknown olive 

oil samples (second set of samples) were used to test the trained ANN and the predicted outputs 

from the trained ANN are presented in Table 5.2 and Figure 5.5. 
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Table 5.2. Outputs predicted from the trained ANN using unknown olive oil grades. 

Predicted outputs 

Olive oil grades Extra virgin Pure Light 

Extra virgin 0.920 0.096 0.000 

Pure 0.143 0.917 0.039 

Light 0.026 0.303 0.833 
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Figure 5.5. ANN predictions made from the sensor response patterns for the olive oil grades. 
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These results show that the 0 output was less than 0.143, unless there was correlation with the 

sample analysed where an output of 0.833 or above was obtained. The largest 0 output was 

0.303 which showed the characteristics for pure olive oil, but this score was significantly 

smaller than the corresponding 1.0 output of 0.833, correctly identifying light olive oil. 

5.3.4 Determination of Age of Olive Oil Samples using ANN 

As discussed in Section 5.3.2, the response of the TGS sensors were observed to 

decrease as the age of the olive oil sample increased. Therefore, the estimation of the age of the 

olive oil samples was investigated using the ANN to predict the age group of a given olive oil 

sample. The estimation of the age groups was found to be more reliable than the specific age of 

the olive oil samples and was therefore used. Each olive oil sample was trained using separate 

ANNs. The next three sections describes the results for predicting the age group for each of the 

olive oil grades. 

5.3.4.1 Extra Virgin Olive Oil 

The architecture of the ANN employed was the three-layer network and there were six 

elements in the input layer, which received voltage data, corresponding to the peak height from 

each of the six gas sensors, ten elements in the hidden layer calculated by BrainMaker and four 

elements in the output layer which provided a score for each of the age groups for the extra 

virgin olive oil sample. Two sets of extra virgin olive oil samples were employed, one sample 

set was used for training the ANN and the second set of samples were analysed as unknowns 

and were used to evaluate the ANN. 

The three-layer network using triplicate raw peak heights obtained for each age group of 

the extra virgin olive oil was trained in 4:59 minutes using 411 iterations at a learning rate of 1.0 

and a training tolerance of 0.1. After the ANN was trained, the same raw peak heights were 

used to test the ANN, using a testing tolerance of 0.4. The recognition time was no more than 

two seconds and the results are given in Table 5.3. These results show that the outputs 



Chapter Five 	 111 

generated during testing were of the order of 0.900 or above compared with an ideal value of 

1.0, and of the order of 0.100 or below compared with an ideal value of 0. However, there 

were two exceptions to this: the lowest output value was 0.852 for an expected output of 1.0, 

correctly identifying day four-eight, where this was significantly higher than the corresponding 

0 output of 0.308 for day thirteen-sixteen. The largest 0 output was 0.308 which showed the 

characteristics of day thirteen-sixteen, but this was significantly smaller than the corresponding 

1.0 output of 0.852, correctly predicting the identity of day four-eight. Therefore, these results 

show that the ANN has trained successfully and discriminates well between the age groups for 

extra virgin olive oil. The estimation of the age groups instead of specific ages was found to be 

more reliable using the ANN and was therefore used throughout this study. 

Table 5.3. Predicted outputs for the age groups of the extra virgin olive oil when testing the 
trained ANN. 

Predicted outputs 

Days 	One-Three 	Four-Eight 	Nine-Twelve Thirteen-Sixteen 

	

0.925 	0.100 	0.000 	0.004 

	

0.945 	0.058 	0.000 	0.005 

	

0.935 	0.063 	0.000 	0.005 

	

0.045 	0.900 	0.023 	0.049 

	

0.046 	0.953 	0.033 	0.024 

	

0.012 	0.852 	0.029 	0.308 

	

0.001 	0.013 	0.953 	0.038 

	

0.002 	0.100 	0.951 	0.009 

	

0.002 	0.038 	0.939 	0.025 

	

0.045 	0.007 	0.000 	0.985 

	

0.038 	0.024 	0.000 	0.967 

	

0.018 	0.099 	0.002 	0.937 

One-Three 

Four-Eight 

Nine-Twelve 

Thirteen-Sixteen 
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Several attempts were made to determine the specific age, in days, for the extra virgin 

olive oil samples. However, the ANN had difficulties in discriminating between the different 

ages and the reasons for these observations were not clearly understood. 

In order to validate the trained ANN, raw peak heights obtained for the unknown age 

groups of the extra virgin olive oil sample were used and the predicted outputs from the trained 

ANN are presented in Table 5.4. These results show that the 0 output was less than 0.071 

unless there was correlation with the sample analysed where an output of 0.938 or above was 

obtained. 

Table 5.4. Outputs predicted from the trained ANN using unknown age groups. 

Predicted outputs 

Days One-Three Four-Eight Nine-Twelve Thirteen-Sixteen 

One-Three 

Four-Eight 

Nine-Twelve 

Thirteen-Sixteen 

0.949 

0.071 

0.001 

0.047 

0.057 

0.938 

0.010 

0.011 

0.000 

0.022 

0.954 

0.000 

0.004 

0.017 

0.046 

0.976 

5.3.4.2 Pure Olive Oil 

The architecture of the ANN employed was similar to that described in Section 5.3.4.1. 

Two sets of pure olive oil samples were employed, one sample set was used for training the 

ANN and the second set of pure samples were analysed as unknowns and were therefore used 

to evaluate the ANN. 

The three-layer network using triplicate raw peak heights obtained for each age groups of 

the pure olive oil grade was trained in 6:05 minutes using 452 iterations at a learning rate of 1.0 

and a training tolerance of 0.1. After the ANN was trained, the same raw peak heights were 

used to test the ANN, using a testing tolerance of 0.4 and the results are presented in Table 5.5. 
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These results show that the outputs generated during testing were of the order of 0.901 or above 

compared with an ideal value of 1.0, and of the order of 0.100 or below compared with an ideal 

value of 0. However, there was one exception to this: the lowest output value was 0.863 for an 

expected output of 1.0, correctly identifying day four-eight, where this was significantly higher 

than the corresponding 0 output of 0.137 for day thirteen-sixteen. Therefore, these results show 

that the ANN has trained successfully and discriminates well between the age groups for the 

pure olive oil sample. 

Table 5.5. Predicted outputs for the age groups of the pure olive oil when testing the trained 
ANN. 

Predicted outputs 

Days 	One-Three 	Four-Eight 	Nine-Twelve Thirteen-Sixteen 

	

0.952 	0.044 	0.086 	0.018 

	

0.957 	0.028 	0.047 	0.030 

	

0.901 	0.094 	0.068 	0.030 

	

0.100 	0.909 	0.093 	0.040 

	

0.008 	0.902 	0.036 	0.079 

	

0.008 	0.863 	0.028 	0.137 

	

0.000 	0.012 	0.992 	0.002 

	

0.000 	0.027 	0.982 	0.007 

	

0.000 	0.094 	0.963 	0.010 

	

0.000 	0.081 	0.004 	0.964 

	

0.009 	0.077 	0.000 	0.989 

	

0.016 	0.093 	0.000 	0.985 

One-Three 

Four-Eight 

Nine-Twelve 

Thirteen-Sixteen 

In order to validate the trained ANN, raw peak heights obtained for the unknown age 

groups of the pure olive oil sample were used and the predicted outputs from the trained ANN 
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are presented in Table 5.6. These results show that the 0 output was less than 0.104 unless 

there was correlation with the sample analysed where an output of 0.883 or above was obtained. 

Table 5.6. Outputs predicted from the trained ANN using unknown age groups. 

Predicted outputs 

Days One-Three Four-Eight Nine-Twelve Thirteen-Sixteen 

One-Three 

Four-Eight 

Nine-Twelve 

Thirteen-Sixteen 

0.883 

0.057 

0.000 

0.000 

0.096 

0.960 

0.025 

0.001 

0.058 

0.104 

0.986 

0.008 

0.032 

0.052 

0.005 

0.968 

5.3.4.3 Light Olive Oil 

The architecture of the ANN employed was similar to that described in Sections 5.3.4.1 

and 5.3.4.2. Two sets of light olive oil samples were employed, one sample set was used for 

training the ANN and the second set of samples were analysed as unknowns and were therefore 

used to evaluate the ANN. 

The three-layer network using triplicate raw peak heights obtained for each age groups of 

the light olive oil was trained in 21:36 minutes using 1653 iterations at a learning rate of 1.0 and 

a training tolerance of 0.1. After the ANN was trained, the same raw peak heights were used to 

test the ANN, using a testing tolerance of 0.4 and the results are presented in Table 5.7. These 

results show that the outputs generated during testing were of the order of 0.900 or above 

compared with an ideal value of 1.0, and of the order of 0.102 or below compared with an ideal 

value of 0. However, the lowest output value was 0.811 for an expected output of 1.0, 

correctly identifying day four-eight, where this was significantly higher than the corresponding 

0 output of 0.102 for day one-three. Therefore, these results show that the ANN has trained 

successfully and discriminates well between the age groups for the light olive oil samples. 
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Table 5.7. Predicted outputs for the age groups of light olive oil when testing the trained ANN. 

Predicted outputs 

Days 	One-Three 	Four-Eight 	Nine-Twelve Thirteen-Sixteen 

	

0.930 	0.021 	0.093 	0.000 

	

0.973 	0.007 	0.094 	0.000 

	

0.993 	0.096 	0.003 	0.000 

	

0.001 	0.900 	0.098 	0.000 

	

0.001 	0.901 	0.094 	0.002 

	

0.102 	0.811 	0.031 	0.000 

	

0.000 	0.000 	0.998 	0.070 

	

0.005 	0.099 	0.903 	0.000 

	

0.000 	0.098 	0.980 	0.000 

	

0.000 	0.036 	0.020 	0.999 

	

0.000 	0.022 	0.033 	0.999 

	

0.000 	0.098 	0.006 	0.999 

One-Three 

Four-Eight 

Nine-Twelve 

Thirteen-Sixteen 

In order to validate the trained ANN, raw peak heights obtained for the unknown age 

groups of the light olive oil sample were used and the predicted outputs from the trained ANN 

are presented in Table 5.8. These results show that the 0 output was less than 0.093 unless 

there was correlation with the sample analysed where an output of 0.930 or above was obtained. 
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Table 5.8. Outputs predicted from the trained ANN using unknown age groups. 

Days 

Predicted outputs 

One-Three Four-Eight Nine-Twelve Thirteen-Sixteen 

One-Three 0.930 0.021 0.093 0.000 

Four-Eight 0.020 0.987 0.022 0.000 

Nine-Twelve 0.000 0.000 0.999 0.000 

Thirteen-Sixteen 0.000 0.042 0.012 0.999 

Therefore, the results in this chapter show that the ANN discriminates well between the 

grades of olive oil and the age groups of each grade of oil sample. 

5.4 Conclusions 

The portable multi-sensor gas analyser with the three-layer ANN was used to 

successfully discriminate between different olive oil grades and the age groups of each oil. The 

extra virgin olive oil was observed to give a significantly higher response pattern compared to 

the pure and the light olive oil, most likely due to its distinctive taste, odour and strong fruity 

flavour. The observed response pattern for the pure olive oil was less in magnitude compared to 

the extra virgin, but higher than the light olive oil. This was most likely due to pure olive oil 

which typically contains a blend of 25% extra virgin and 75% refined olive oil, while light olive 

oil contains a blend of 10% extra virgin and 90% refined olive oil. Therefore, the ANN was 

able to discriminate between the three olive oil grades with an output of greater than 0.833. 

The multi-sensor gas analyser with the three-layer ANN was also employed to determine 

the age group of a given olive oil grade with an output of greater than 0.883. The estimation of 

the age groups was found to be more reliable than the specific age of the olive oil samples. 
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Chapter Six: Conclusions 

The results presented in this thesis demonstrate the novelty of the portable multi-sensor 

gas analysers described. The analysers can be operated in a totally portable manner with low 

power consumption, using a six 1.2 V Ni-Cd rechargeable battery-pack to run the analog-to-

digital converter and the gas sensors. The analysers described in this study weighed no more 

than 1.1 kg. The use of a PowerBook computer allows for real time plotting of data at remote 

locations away from conventional laboratories. 

Initially, the performance of the twin gas sensor based portable flow-through analyser 

was developed and evaluated in this study. The twin gas analyser was of a simple design, light 

weight, battery-powered and required low power consumption. The gas analyser was used 

continuously for up to 4 hours, before recharging was necessary. The use of gas sensors in 

flow-through analysis allows the operator to conduct rapid measurements without interference 

from other volatile organics in the liquor samples analysed. 

The TGS812 and TGS824 gas sensors exhibited excellent peak height reproducibility 

(up to 3% RSD), good baseline stability and sensitivity and a rapid response with peak widths 

of 30 seconds for ethanol in the range between 0.1 to 207o (v/v). A calibration plot of 1 / V s  

versus 1 / C s  exhibited a linear plot for the TGS812 and TGS824 sensor response to ethanol 

and this plot was employed to determined the ethanol content in beer and wine samples, and the 

results were in good agreement compared to gas chromatography analysis. 

The ethanol response exhibited by the TGS812 and TGS824 gas sensors were fitted to 

the Langmuir isotherm model and a linear calibration plot was achieved. The Langmuir 

isotherm model plots were validated by determining the ethanol content in various beer and 

wine samples and these results were in good agreement compared to gas chromatography 

analysis. 

Extending the number of Taguchi gas sensors from two to six in order to improve the 

discrimination characteristics of the portable gas analyser was also investigated and evaluated in 

this work. The six-sensor array gas analyser developed was of a simple design, portable, light 
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weight, battery-powered, requires low power consumption and was inexpensive. The response 

characteristics of the gas analyser showed a stable baseline, a peak height reproducibility of < 

3% RSD and a rapid response for ethanol, with peak widths in the range of 30-60 seconds for 

all six Taguchi type sensors. The multi-sensor gas analyser response patterns were able to 

discriminate between samples of polar and non-polar nature such as ethanol and butane, 

between different functional groups such as ethanol, acetone and acetaldehyde, alcohols such as 

ethanol, propanol and butanol and also between beer samples with similar ethanol content. 

Analysis results for the ethanol content in light beer samples for each of the six Taguchi gas 

sensors were in good agreement with gas chromatography results and the labelled data. 

A three-layer back propagation algorithm was used to discriminate between different 

beer brands from the response patterns of the portable six-sensor gas analyser. The ANN 

employed in this study was trained in 7:11 minutes using 553 iterations at a learning rate of 1.0 

and a training tolerance of 0.1, which correctly identified six beer brands with an output of 

greater than 0.8. The work presented in Chapter four shows that the portable multi-sensor gas 

analyser was able to discriminate among beer brands and therefore may be used to monitor beer 

quality in industrial processes and product quality. 

The portable multi-sensor gas analyser with the three-layer ANN was used to 

successfully discriminate between different olive oil grades and the age groups of each oil. The 

extra virgin olive oil was observed to give a significantly higher response pattern compared to 

the pure and the light olive oil, most likely due to the distinctive taste, odour and strong fruity 

flavour of the extra virgin olive oil. The observed response pattern for the pure olive oil was 

less in magnitude compared to the extra virgin, but higher than the light olive oil. This was 

most likely due to pure olive oil typically containing a blend of 25% extra virgin and 75% 

refined olive oil, while light olive oil contains a blend of 10% extra virgin and 90% refined olive 

oil. Therefore, the ANN was able to discriminate between the three olive oil grades with an 

output of greater than 0.833. 

The multi-sensor gas analyser with the three-layer ANN was also employed to 

determine the age group of a given olive oil grade with an output of greater than 0.883. The 

estimation of the age groups was found to be more reliable than the specific age of the olive oil 
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samples. 

Therefore, the portable multi-sensor gas analyser described in this work can be applied 

to field measurements at remote site locations. An operator would need to calibrate the portable 

multi-sensor gas analyser and then take measurements on site and store the acquired data on the 

PowerBook computer, and then move onto the next site and repeat the procedure. The 

advantage of the data acquisition program used in this study was that it can display each sensor 

response simultaneously on the PowerBook computer screen and therefore an operator can 

monitor the performance of each Taguchi gas sensor employed in the field and use it as a 

diagnostic tool. 
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