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ABSTRACT 
The Currawong massive sulphide deposit is one of two known deposits at Benambra, 
eastern Victoria. The deposit occurs near the base of the Gibsons Folly Formation 
which is a deep water, basin centre facies association of the Late Silurian Cowombat 
Rift (Allen, 1992). 

Coherent volcanic units of the Gibsons Folly Formation comprise andesite and 
plagioclase-phyric rhyodacite. These are predominantly shallow sills with 
margins of sediment-matrix hyaloclastite. The rhyodacite also forms cryptodome-like 
intrusions which have penecontemporaneously deformed the sequence. These and the 
sills were emplaced into a relatively unlithified sequence of mudstone (interbedded 
with thin, fine sandstone turbidites) and andesitic volcaniclastic units prior to the 
mineralising event. Units of strongly flow-banded and/or brecciated rhyodacite in the 
footwall sequence may be lavas but textures are equivocal. 
Quartz-plagioclase-phyric rhyolite (the Currawong Porphyry) is a sill which 
intruded relatively lithified rocks at the base of the Gibsons Folly Formation. 
Geochemical evidence indicates that it represents on-going silicic volcanism of the 
Middle-Upper Silurian Thorkidaan Volcanics. 
A sequence of andesitic scoriaceous breccia and plagioclase-quartz-bearing 
altered rocks comprises several depositional units separated by thin mudstone units. 
These are ambiguous rocks but several features suggest that they are lava-derived 
mass-flow deposits. They are lithologically and geochemically distinctive and host the 
mineralisation at Currawong. 

Ti, Zr, Nb and Y have behaved essentially in an immobile manner during hydrothermal 
alteration and subsequent metamorphism of the volcanic rocks at Currawong. Volcanic 
lithologies are best distinguished using the plots Zr/TiO2 vs Nb/Y (after Winchester 
and Floyd, 1977) and Nb vs Zr. The coherent volcanic units of this sequence form a 
fairly continuous geochemical magmatic evolution trend but coherent andesite and 
andesitic volcaniclastic rocks show a broad range of compositions. Some of the 
andesitic units contain xenocrystic-quartz and volcaniclastic rocks of andesitic 
composition also contain silicic volcanic clasts. Together these suggest that the 
andesitic rocks are the result of magmatic differentiation combined with mixing of 
andesitic and quartz-phyric silicic magmas. 

The Currawong deposit is interpreted as a subsea-floor replacement style volcanic 
hosted massive sulphide deposit. Massive pyritic mineralisation is intercalated with, 
and laterally equivalent to, strongly altered volcanic units which carry variable 
disseminated or vein mineralisation. Alteration and mineralisation show a strong 
stratigraphic control related to primary permeability of the host sequence. Quartz-
xenocrystic, andesitic scoriaceous volcaniclastic rocks were the locus of the strongest 
mineralisation at Currawong, and possibly at the nearby Wilga deposit. These should 
be a primary target for future exploration at Benambra. 



1. INTRODUCTION 

The Benambra massive sulphide deposits are located in rugged mountainous country 

of the Limestone Creek area, near Benambra, eastern Victoria (Figure 1). The massive 

sulphide deposits do not outcrop and were discovered by Western Mining Corporation 

in May 1978 through geophysical testing (1E,M) of geochemical anomalies in 

favourable geological terrain. Exploration history of the Benambra Project is 

summarised by Robbins and Chenoweth (1984). 

The Currawong deposit is the subject of this study. It has an indicated resource of 9.5 

Mt grading 1.65% Cu, 4.33% Zn, 0.86% Pb, 38 g/t Ag and 1.3 g/t Au (Macquarie Oil 

NL, 1987). The nearby Wilga deposit is a single lens of massive sulphide which 

includes pyritic Zn-Cu and Cu-rich ore types. The Wilga Cu-rich orebody is currently 

being mined by Denehurst Ltd, as operators of the Benambra Joint Venture Project, at 

the rate of 300,000 tonnes per annum. 

The Benambra massive sulphide deposits occur within a structural relic of the Middle-

Upper Silurian Cowombat rift within the Palaeozoic Lachlan fold belt (Allen, 1992; 

Figure 1). The stratigraphy and structure of the Limestone Creek area, which includes 

the Cowombat Rift sequence (Figure 2), were elucidated by the combined efforts of 

several workers particularly R.L.Allen in his PhD mapping and research, Western 

Mining Corporation geologists and the Victorian Geological Survey. The Ordovician-

Silurian sequence between the Indi and Reedy Creek Faults has undergone three 

deformations with the strongest (D2) expressed as regionally northeast-trending F2 

folds and associated axial planar cleavage (Allen, 1992; Figure 2). 
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2. RESEARCH AIMS AND METHODOLOGY 

The aim of this research project was to clarify the lithofacies and geochemistry of the 

Currawong host sequence and its relationship to the massive sulphide mineralisation. 

The combination of strong hydrothermal alteration (associated with the mineralising 

event) plus subsequent deformation and lower greenschist facies metamorphism, 

makes recognition and correlation of stratigraphic units extremely difficult. Primary 

lithofacies variations expected in such volcano-sedimentary sequences (cf McPhie and 

Allen, 1992) are further complicated by textural modification which results from post-

depositional processes (Allen, 1988). 

The study focusses on a block of the complete host stratigraphy comprising 500 m of 

strike length by approximately 300 m down-dip from surface. The block incorporates 

part of the largest massive sulphide lens at Currawong (C lens) in its transition (up-

dip) from thick massive sulphide to altered host rocks with minor thin massive 

sulphide bands, in the area south of the Currawong Fault Zone where structural 

complications were considered to be minimal (Figure 3). 

Drill core of 14 holes from six cross-sections was re-logged in detail (Appendices I & 

II). During logging, macro- and mesoscopic textures of individual units were noted 

and particular attention given to the nature of contacts between all units. Where 

alteration and/or deformation did not mask the contacts, volcanic and sub-volcanic 

intrusive units were classified according to the criteria of Allen (1992; Table 1). In the 

cases where criteria critical to assessing the nature of emplacement were unavailable, 

inferences were made where possible, from adjoining cross-sections. This was done 

with a strong awareness of the lateral facies changes and highly irregular unit 

relationships typical of volcanic terrains (cf Cas and Wright, 1988; McPhie and Allen, 

1992; McPhie eta!, 1993). 

Petrographic and geochernical studies were undertaken to identify the various 

lithologies, especially those with strong hydrothermal alteration. Variably altered 

coherent volcanic units were sampled for geochemical analysis of Ti, Zr, Sr, Rb, Y 

and Nb using XRF. Scattergram plots of these minor and trace elements and their 

ratios are most useful for demonstrating geochemical immobility during alteration and 

metamorphism and thus enabling classification of the coherent volcanic units (eg 

Zr/Ti02 vs Nb/Y, Winchester and Floyd, 1977; Y vs Zr, MacLean and Barrett, 1993). 

Vokaniclastic units and some more altered units (suspected of having either volcanic or 
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Contacts with sediments or other volcaniclastics 

Type of unit 	Upper contact 	 Lower contact 	 Internal facies 

E:trusive dome 	 Central fades: thick coherent (massive and 
trhyolite) 	 flow-banded) core, thin in situ (massive, 

jigsaw-textured) hyaloclastite base, thick or 
Mainly passive 	Passive + disruptive 	 thin in situ hyaloclastite top capped by thin 
Lava top 	 Lava base coherent or 	or absent resedimented (stratified) 

hyaloclastic 	 hyaloclastic 	 hyaloclastite 
Sediment not baked 	 Lateral margin facies: mainly in situ + 

or bleached 	 resedimented hyaloclastite 
Extrusive tabular flow 	 Central facies: mainly coherent (massive and 

(rhyolite-basalt) 	 flow-banded) core, thin in situ (massive, 
. 	 jigsaw-textured) ± resedimented (stratified) 

hyaloclastite top, ± pillow or minipillow 
fragments within hyaloclastite in basalt units; 
hyaloclastite very thin or absent at base 

Lateral margin facies: mainly in situ + 
resedimented hyaloclastite 

Partially emergent 	Disruptive -...-. locally 	 Beds of resedimented (stratified) hyaloclastite, 
cryptodome or sill 	passive 	 or resedimented-slumped mixed 
(rhyolite-basalt) 	Top hyaloclastic 	 hyaloclastite-sediment. or mass-flow 

Sediments locally 	 sediments with included rip-up clasts of 
baked and 	 hyaloclastite occur within overlying sediment 
bleached 	 sequence and locally directly on top of 

Resedimented 	. 	 volcanic unit 
hyaloclastite 	Disruptive ± locally passive 	Central and lateral margin facies same as for 
within overlying 	Base hyaloclastic or 	 shallow sill 
sediment 	 coherent 
sequence 	 . 

Shallow sill 	 Disruptive ± locally 	 Central fades: coherent (massive or flow- 
(rhyolite-basalt) 	passive 	 banded) core ± thin hyaloelastite top and 

Top hyaloclastic or 	 base, including sediment-matrix intrusive 
coherent 	 hyaloclastite 

Sediment baked 	 Lateral margin fades: mainly sediment-matrix 
and bleached 	 intrusive hyaloclastite -1: in situ (massive, 

jigsaw-textured) hyaloclastite; subordinate 
coherent intervals; multiple layers of the sill 
separated by thin sediment screens common 

No pillow or minipillow fragments in basalt units 

Deeper sill - 	. Mainly passive, but 	Mainly passive ± locally 	Coherent massive or faintly flow banded, ± 
. 	. 

•(rhyolite-basalt) 	locally 	 slightly disruptive 	 coherent fine-grained chilled margin or very 
transgressive, 	Base coherent 	 thin hvaloclastite margin: no pillow or - 
interfingering or 	 minipillow fragments in basalt units 
slightly disruptive 

Top mainly 
coherent 

Sediment baked 
and bleached 

Pyroclastic debris 	 Sharp sedimentary contacts 	 Entirely elastic, no gradations into in situ 
(rhyolite) 	 (jigsaw-textured) breccia. pyroclastic clast 

morphologies, shards, bed forms of 
subaqueous granular mass-flow deposits ± 
subaqueous suspension fallout 

Table L Criteria for distinguishing submarine volcanic units in drill core and sparse 
outcrop at Benambra (after Allen, 1992). 
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3 REGIONAL GEOLOGY 

3.1 Tectonic setting 

The Middle-Upper Silurian Cowombat Rift is the southern-most of five Silurian to 

Lower Devonian marine basins within the Lachlan Fold Belt of southeastern Australia, 

some of which contain Zn-Cu-Pb volcanic hosted massive sulphide deposits (Cas, 
1983; Powell, 1983; Allen, 1987, 1992). 

The basins are built on the Benambra tectono-stratigraphic terrane (Figure 1) which 

was interpreted by Powell (1983) as the variably deformed and metamorphosed, 

Ordovician to Early Silurian plate margin terrane of the Gondwanan continent. During 

the Ordovician, an inferred subduction zone to the east produced north-south trending 

intermediate to mafic island arc volcanism. Marine back-arc and fore-arc basins 

received both continental and arc-derived sediment producing the characteristic Late 

Ordovician quartz sandstone and shale turbidite sequences of the Lachlan Fold Belt. 
(Cas eta!, 1980; Powell, 1983). Wyborn (1992) demonstrated that the Ordovician 

volcanic rocks are shoshonites which in most modern examples are not associated with 

active subduction. He argued that the Ordovician magmatism was not accompanied by 

coeval subduction but was sourced from lithospheric mantle modified during an earlier 
(Cambrian) subduction event. 

The Early Silurian was a period of uplift, compressional deformation and 

metamorphism (the Benambran Orogeny, eg Omeo Metamorphic complex, Figure 2). 

Arc volcanism appears to have ceased and sedimentation was more restricted, 

comprising shelf carbonate sedimentation and deposition of proximal quartz-rich 

turbidites from uplifted blocks into adjacent grabens (Crook et al, 1973; eg Towanga 
Sandstone, Section 3.3). 

In the Middle to Late Silurian continued uplift was associated with the initiation of 

widespread silicic volcanism. Subsequently, a series of extensional basins with 

associated (dominantly silicic) volcanism developed (Cas, 1983; Powell, 1983). The 

extensional regime was interpreted by Powell (1983) as due to a change in the Middle 

Silurian from convergent to predominantly transcurrent movement between crustal 

plates. Localised basin development continued sporadically until the Early 

Carboniferous, punctuated by localised compressional events; ie the end-of-Silurian 

Bowning and Bindian deformations; Middle Devonian Tabberabberan deformation; 
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and early Carboniferous Kanimblan deformation (Cas, 1983; Powell, 1983; Allen, 

1992). Glen (1992) suggested that the Bowning and Bindian deformations may not be 

compressional deformations but rather minor rotations on listric normal faults which 

accompanied renewed cycles of syn-rift basin extension. 

In the area of the Cowombat Rift, the onset of extensional tectonics and silicic 

volcanism is represented by the Thorkidaan Volcanics which were deposited on the 

?Lower to Middle Silurian Towanga Sandstone (Allen, 1987; Section 3.3). 

Allen (1987, 1992) interpreted the Silurian-Carboniferous rift basins as back-arc or 

intra-arc basins which superseded the long-lived volcanic arc at an active margin of the 

Gondwana continent. By the time of rift basin initiation in the Middle Silurian, the 

underlying crust was substantially continental, as evidenced by the vast volume of 

Siluro-Devonian granites and silicic volcanic rocks in that part of the Lachlan Fold Belt 

(Allen, 1992). Thus the mineralised Silurian basins of southeastern Australia were 

probably ensialic basins of limited extensional origin, and had a similar tectonic and 

palaeogeographic setting to the Miocene Green Tuff basins of Japan, which contain the 

Kuroko VHMS deposits (Allen, 1986, 1987, 1992). 

3.2 Regional structure 

The Ordovician-Silurian sequence between the Indi and Reedy Creek Faults, which 

includes rocks of the Middle-Upper Silurian Cowombat Rift, has undergone three 

deformations (Allen and Barr, 1990; Valenta, 1990; Allen, 1987, 1992). 

The earliest deformation (D1) is expressed by a bedding-parallel foliation (S1) and rare 

Fl folds. 

D2 was the strongest deformation and is represented by regionally northeast-trending 

F2 folds and associated axial planar cleavage. The cleavage has a strong stretching 

lineation component and at some locations grades into shear zones and mylonites. 

The third deformation (D3) is expressed by northwest- to northeast-trending upright 

open F3 folds, steep brittle-ductile faults and associated coarse, spaced S3 crenulations 

(Allen, 1992). 

On a regional scale, the form surface of the Gibsons Folly Formation is a NW-

dipping, overturned F2 syncline cut by late sub-vertical (D3) NE-trending faults (Allen 

1987, 1992; Valenta, 1990). The latter are steep, strike-parallel faults and may be 

common between the Currawong deposit and the Indi Fault (Valenta, 1990; Figure 2). 
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At the Wilga deposit, Cox et a/ (1988) recognized sets of dip-parallel, steeply dipping 

faults which have displacements of generally less than a metre, but up to several metres 

at some locations. These are late faults probably related to D3 and are also probably 

present at Currawong (Section 6). 

First and second generation structures are absent from overlying Lower Devonian 

rocks suggesting that D1 and D2 developed during the Bindian deformation, at the end 

of the Silurian (Allen, 1992). This deformation has been interpreted as a southeast-

directed, oblique-compressional event involving thrusting, strike-slip fault movement 

and strong folding. The main focus of the deformation was along the Indi Fault 

mylonite zone (Allen, 1987; Vandenberg and Allen, 1988; Figure 2). 

3.3 Regional stratigraphy 

The regional stratigraphy of the Limestone Creek area was described in detail by 

Vandenberg era! (1984), Allen (1987) and Allen and Vandenberg (1988) and is 

summarised in Figure 2 (Allen, 1992). The succession comprises Ordovician to 

Silurian rocks which form several northeast to east-northeast striking fault-bounded 

blocks. Many contacts between stratigraphic units within the blocks are also faulted 
(Figure 2). 

West of the Inch fault (Figure 2), the oldest units are metasedimentary rocks of the 

Upper Ordovician Omeo Metamorphic Complex. East of the Indi fault, Upper 

Ordovician rocks comprise the Blueys Creek Formation and unnamed 

sedimentary rocks south of the Reedy Creek fault. The ?Lower to Middle Silurian 

Towanga Sandstone overlies the Blueys Creek Formation and is (at least in part) 

disconformably overlain by the Middle-Upper Silurian Enano Group. The Enano 

Group was interpreted by Allen (1992) as structural relics of the Cowombat rift and 

comprises (in ascending stratigraphic order) the Thorkidaan Volcanics, 
Cowombat Siltstone and Gibsons Folly Formation. 
To the east and southwest a gently folded cover sequence of Lower Devonian silicic 

volcanics (Snowy River Volcanics) and limestone and mudstone (Buchan 
Group) unconforrnably overlies the Ordovician-Silurian sequence. Granite bodies of 

?Middle Silurian age have intruded the sequence throughout the area (Allen, 1992). 

Brief descriptions (after Allen and Barr, 1990; and Allen, 1992) of the Ordovician to 

Silurian stratigraphic units between the Indi and Reedy Creek faults are given below. 
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Upper Ordovician 

The Blueys Creek Formation consists of deep-marine sedimentary rocks 

(including Late Ordovician conodont-bearing cherts and andesitic-basaltic volcanogenic 

turbidites) and dacitic to andesitic sills and lavas. The formation has been interpreted as 

the southern continuation of the Benambra Terrane Ordovician volcanic arc system 

(Section 3.1). 

?Lower-Middle Silurian  

The Towanga Sandstone comprises mainly thick quartz sandstone turbidites and 

siltstone and has been interpreted as the proximal part of a submarine fan. Minor chert-
pebble conglomerates and rhyolitic volcanics occur near the top of the formation. Late 

Ordovician conodonts in the chert pebbles suggest that they were derived frbm the 

Blueys Creek Formation and that the Towanga Sandstone is younger. 

Middle-Upper Silurian  

The Enano Group 

The basal formation of the Enano Group is the Thorkidaan Volcanics. They form a 

2-3 km-thick pile of porphyritic rhyolite lavas and shallow intrusions, with minor 

intercalated stratified volcaniclastic rocks, conglomerate and reworked pumiceous 

pyroclastic rocks. The Thorkidaan Volcanics are conformably to disconformably 

overlain by the Cowombat Siltstone. 

The Cowombat Siltstone is up to 500 metres thick and comprises an upward-fining 

sequence. Limestone and thick-bedded coarse elastics occur in the lower parts of the 

formation and pass into siltstone and mudstone with thin sandstone turbidite units 

toward the top. 

The Gibsons Folly Formation is 500 metres or more thick and conformably 

overlies the Cowombat Siltstone in the Currawong area. It comprises a sequence of 

interbedded mudstone and thin fine sandy turbidite units which encloses tabular to 

lenticular basaltic-dacitic volcanic units and tabular to cryptodome-like rhyolitic bodies. 

The Gibsons Folly Formation hosts the Wilga and Currawong massive sulphide 

deposits and the volcanics of the host sequence at Currawong are the subject of this 

study. 
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4. PETROLOGY: LITHOFACIES DESCRIPTIONS AND 

INTERPRETATIONS 

4.1 Introduction 

The primary purpose of the petrological study was to describe and classify the volcanic 

lithologies of the host sequence to the Currawong deposit. This assisted the stratigraphic 

interpretation, particularly when the precursors of altered units could be recognized. Also, 

the recognition of coherent volcanic units and visual assessment of their degree of alteration 

was necessary in selecting samples for the geochemical study. 

For this study, a total of 52 representative drill core samples were taken during core logging 

and thin sections prepared for microscopic examination. Samples included both less altered, 

more easily interpreted lithologies plus more problematic strongly altered and deformed 

units. 

It should be noted that throughout this study 'volcanic' is used in the broader sense of 

volcanic deposits as defined by McPhie et al (1993). In particular, 'volcanic units' 

include sub-volcanic intrusions and associated volcaniclastic facies. 

4.2 Lithological descriptions 

The following descriptions are based on the relatively small but representative group of 

samples from the study area. Additional features noted by previous researchers are 

appended. 

Descriptive names for the rock-types are based on the results of the geochemical study (see 

Section 5) and in some cases these differ from those used by Allen (1987, 1989, 1992). For 

reference, Allen's descriptive names are given in parentheses. 

4.2.1 Coherent volcanic rocks 

Quartz-feldspar-phyric rhyolite 
Description  

Pink-green, fine to coarse grained porphyritic rocks consisting of 20-35%, 1-3 mm 

phenocrysts of quartz, K-feldspar, plagioclase and biotite in a siliceous, flne grained, poorly 

microlitic groundmass. Finer grained, sparsely porphyritic variants are also present. These 

units often have patchy or vein-like haematite alteration. 
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Discussion  

In the study area this lithology forms a sill-like body known as the Currawong Porphyry 

with the finer grained variants noted above occurring as chilled margins. Contacts with other 

units are typically sharp and not disruptive, suggesting intrusion into a relatively lithified 

sequence. Allen (1992) observed that sedimentary units in contact with the sill exhibit 

narrow zones of bleaching or silicification. 

Plagioclase-phyric rhyodacite (plagioclase-dacite and andesite) 

Description  

Brown to green-grey rocks with 10-20%, 0.5-3.0 mm plagioclase phenocrysts and/or 

glomerocrysts in a moderately to intensely plagioclase-microlitic groundmass. Mafic 

minerals and their alteration products are typically deficient and some units have rare quartz 

phenocrysts (Allen, 1989). Fine grained spherulitic or micropoikilitic textures are common 

indicating originally glassy units. Allen (1989) observed that the margins of the glassy units 

in places have perlitic cracks. Units are typically poorly to moderately amygdaloidal and are 

generally massive, although zones of flow-banding up to a few metres thick occur. 

A variant of this lithology is shown in Plate 1. This forms a thick sequence of distinctive, 

strongly flow-banded and brecciated (Page, 1984) units tens of metres thick, in the footwall 

sequence of the Currawong deposit (Appendix II). It contains up to 10%, sparse, 0.5-1.0 

mm euhedral to subhedral plagioclase phenocrysts which are saussuritized on their margins 

and cleavage planes. Flow-banding is defined by alternating, very fine (0.01-0.05 mm) 

phyllosilicate-rich versus thicker (up to 0.2 mm) siliceous laminae which wrap around the 

plagioclase phenocrysts. The siliceous laminae exhibit granophyric texture suggesting 

recrystallisation of devitrified glass (McPhie et al, 1993). Phyllosilicate-rich layers are 

mainly sericite and chlorite. Minor fine opaque minerals are concentrated in thin laminae 

which parallel the flow foliation. Bands of predominantly siliceous, granophyric texture up 

to several centimetres thick give the rock a brecciated appearance. Patchy carbonate 

alteration, sericite veining, disseminated- and vein-pyrite and microcrystalline quartz veining 

are common. 

_ 
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Plate 1. Flow-banded variant of plagioclase-phyric rhyodacite with saussuritized (a) 
plagioclase phenocysts. S 0 (& parallel S 1 ?)=flow banding; S 2=dominant cleavage, here 
weakly developed. Field of view 5.0 mm, crossed nicols. 

Discussion  

This is the most common lithology at Currawong, forming thick units in both the structural 

hangingwall and footwall sequences. Single units may be tens of metres to less than a metre 

thick, by hundreds to thousands of square metres in aerial extent. They form massive 

coherent to extensively brecciated bodies considered by Allen (1987, 1992) to include lavas 

and sills. Large cryptodome-like bodies tens of metres thick which thin very rapidly down-

dip and along strike were also recognized in this study. 

Unit margins may be either passive or disruptive with well-developed massive volcanic 

breccia and/or massive volcanic breccia with sediment-matrix (Section 4.2.2). 

Geochemically this lithology is predominantly rhyodacitic in composition but parts of 

individual dome-like bodies are more chloritic, less siliceous, finer grained and more 

strongly amygdaloidal. Some examples of the latter lithology are more dacitic in composition 

(Section 5) though contacts between the geochemical variants appear to be gradational. 
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The flow-banded lithological variant was interpreted by Allen (1992) as an extrusive phase 

of the Currawong Porphyry and by Fander (1988) as a welded ignimbrite. Strong alteration 

commonly masks contacts between units and with other lithologies, making interpretation 

difficult. However no convincing evidence of welded shards was found in this study and the 

presence of flow-banding is not definitive of lavas. Geochemically it is distinct from the 

quartz-feldspar-phyric rhyolite (Currawong porphyry; Section 5) and lithologically it 

is most like the plagioclase-phyric rhyodacite. The Currawong porphyry has intruded 

units of the flow-banded lithology. 

Plagioclase-bearing altered rocks (Section 4.2.2) are possibly altered volcaniclastic 

equivalents of the plagioclase-phyric rhyodacite. 

Andesite (fine grained basalt and andesite ) 
Description  

These are green-grey, fine to medium grained, poorly to moderately amygdaloidal, poorly 

to moderately porphyritic rocks with generally less than 10%, but up to 20%, 0.5-1 mm 

plagioclase phenocrysts or 1-3 mm glomerocrysts; in a strongly plagioclase-microlitic, fine 

to medium grained groundmass. Pyroxene microphenocrysts form a minor component of 

fresher specimens (Allen, 1989). The groundmass has minor fine grained (0.05-0.1 mm) 

interstitial quartz and sericite and is rich in chlorite, disseminated Fe-oxides, epidote and 

carbonate. Pander (1988) noted ultrafine leucoxene throughout the groundmass and possible 

fine flow textures. In some cases the groundmass is hyalopilitic with spherulitic and 

nicropoildlitic devitrification textures weakly developed. Several units of this lithology have 

rare to minor (in some cases up to 10%) 0.1-2 mm quartz phenocrysts. These have very 

strongly embayed and/or recrystallised rims and are interpreted as xenocrysts. 

Discussion  

Coherent units of this lithology are mainly sills which typically have either completely 

passive margins or contacts of massive volcanic breccia with sediment matrix 

grading into massive volcanic breccia (Plates 2 and 3; Section 4.2.2). Allen (1988) 

interpreted some lavas to be present but no coherent extrusive phases were recognized in the 

study area. Units show variations in grainsize and crystallinity which probably reflect 

differences in unit thickness and depth of intrusion. Geochemically the andesite shows a 

fairly continuous range of compositions from basaltic andesite almost to dacite. Units with 

abundant quartz xenocrysts are more dacitic although a medium grained, plagioclase-phyric 

15 



example without quartz xenocrysts has a similar composition (Section 5). 

Allen (1987, 1989) described 'plagioclase-quartz dacite' units in the Wilga sequence. They 

are grey-green, strongly porphyritic rocks with 20-25%, 1 mm phenocrysts  of  plagioclase 
and lesser quartz in a siliceous, plagioclase-microlitic groundmass. At Wilga this lithology 

forms possible domes, dykes and sills (sometimes with associated massive volcanic 
breccia with sediment matrix, see below) stratigraphically at the same horizon as the 

mineralisation. Although the Wilga 'plagioclase-quartz dacite' has a slightly greater quartz 

phenocryst component and more siliceous groundmass, it is otherwise very similar to the 

quartz xenocryst-rich units of the andesite at Currawong. 

Plate 2. Sediment-matrix hyaloclastite of andesite and siltstone; DDH 98, 47.8 m. Blocky 
clasts of andesite (dark) with sharp, curviplanar contacts to sericitic and weakly silicified 
siltstone (light). Field of view 5.0 mm, crossed nicols. 
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4.2.2 Volcaniclastic Rocks 

Allen (1992) described volcaniclastic facies associated with the coherent volcanic units of the 

Wilga and Currawong host sequences. These comprise in situ facies of (i) massive 
volcanic breccia and (ii) massive volcanic breccia with sediment matrix and 

resedimented facies of (iii) stratified volcanic breccia and sandstone. These are non-

genetic terms (cf McPhie et al, 1993) but Allen convincingly demonstrated that the facies 

were in situ (i & ii) and resedimented (iii) hyaloclastites. 
Vokaniclastic units recognized during this study were in most cases in situ facies which is 

consistent with the descriptions of Allen (1992). However several distinctive lithologies of 

ambiguous origin are described below. Of these, the andesitic scoriaceous breccia 

may represent a new volcaniclastic facies at Currawong. Otherwise Allen's terminology is 

adopted here for consistency. 

Plate 3. Sediment-matrix hyaloclastite of quartz-xenocrystic andesite and silicified 
mudstone. DDH 133, 150 metres; Scale centimetres. 
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Andesitic scoriaceous breccia 

Description  

Grey-green, lenticular-mottled, matrix-supported breccia with 1-20%, rounded, often 
irregular, lobate- to amoeboid-shaped, 1-25 cm, poorly sorted, pink-grey-cream coloured 

clasts in a variably altered, clast supported, fine breccia matrix (Plate 4). The framework 
clasts are sometimes aphyric or have 1-5%, 0.5-0.75 mm, euhedral plagioclase 

phenocrysts and/or glomerocrysts; and in some examples, minor to rare 0.25-1.0 mm quartz 

phenocrysts with embayul or recrystallised margins. The clasts are moderately-strongly 

amygdaloidal (20-60%) with a size range of 0.1 to 5mm (Plate 6). Typically, smaller 
amygdules are nearly circular whereas larger (>1 mm) ones are slightly elongate. In most 

cases the amygdules coarsen towards the centre of the clast or band and strongly elongated 
amygdules or amygdales form central trails parallel to the long axis of larger clasts. The 

amygdules are most commonly filled with quartz aggregates (some exhibiting weak radial 

extinction), though many larger examples are zoned with a carbonate or chlorite core and 

quartz rim. The small (< 1min) very circular structures are not easily distinguished from 
spherulites (cf Allen, 1988) however both types of structure are consistent with a coherent 

texture as suggested by the evenly distributed phenocrysts. If sphenilites are present, the 

upper range of amygdule percentage would be lower. However spherulites are not common 
in andesites, or in pumice or scoria of any composition (J. McPhie, personal 
communication). 

Clasts generally have sharp contacts with the matrix and have complete 1-3 mm rims of 
sericite-carbonate rich alteration (Plates 4 and 5) which also occupies thin (<1 mm) joints 

normal to the rim. The joints are typically best developed along the longer axis of elongate 
clasts. Most clasts are moderately silicified by fine grained polyhedral quartz associated with 

very fine grained disseminated pyrite, and have variable pervasive to patchy and/or vein-like 
carbonate alteration. Several units of this lithology have strongly haematite altered clasts 

which are overprinted by the quartz-carbonate alteration (Plate 7). In some units, bands up to 

several metres thick contain 10-30% sub-rounded, 5-50 mm clasts of fine silty mudstone 

which in some cases are silicified or haematite altered. 
The matrix exhibits textural variations which mainly reflect differences in the degree of 

alteration and deformation. In less altered units it is a clast-rich fine breccia of predominantly 
0.5-3 cm, wealdy to strongly amygdaloidal, variably porphyritic clasts of andesite; plus 
minor, 2-10 mm lenticular chlorite wisps. The matrix breccia exhibits an apparent jigsaw-fit 
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texture of blocky, ragged to rounded clasts and wispy patches of dark chlorite in some clast 

interstices (Plate 8). In more deformed units strong S2 deformation has stretched the clasts 

and obscured finer textures. Fander (1988) described shards in the matrix breccia of this 

Ethology. Shard-like structures were recognized in this study but alteration and deformation 

make interpretation difficult. Apparent shards could also be false textures (Allen, 1988). 

In more altered and deformed units, the matrix is phyllosilicate-rich and comprises fine 

grained, lenticular, 1-5 cm domains of strongly foliated chloride material and quartz-sericite-

carbonate material (Plate 9). The chloride domains contain minor, fine grained, disseminated 

opaques strung along the strong S2 cleavage. The sericite-quartz-carbonate domains appear 

to overprint the chloritic domains and are associated with minor fine disseminated pyrite. 

Carbonate is dominant over associated quartz-sericite alteration in some units. Both domains 

typically have minor 0.1-1.5 mm plagioclase phenocrysts or glomerocrysts and minor to 

rare, 0.25-1.0 mm euhedral to subhedral quartz phenocrysts. Mosaic quartz/feldspar-filled 

and/or zoned chlorite-quartz+albite-filled amygdules, typically 0.5-5 mm, occur in some 

units. The quartz phenocrysts typically have either strongly embayed or recrystallised 

margins. Lithologically both domains are very similar to the quartz-xenocrystic units of the 

andesite. 
Units of the andesitic scoriaceous breccia are weakly stratified with intercalated bands 

of variable framework clast content, up to tens of metres thick. More altered units typically 

have a strong (S2) foliation. The uppermost parts of units in some examples appear to be 

normally graded from coarser to finer grained, altered scoriaceous breccia. The upper 

contacts are in some cases obscured by alteration but are typically very sharp to fine grained 

sedimentary rocks. Lower contacts are generally sharp but in some cases are sheared. 

The immediately overlying sedimentary rocks in places (eg DDH 135, 88 m; Appendix I) 

have intercalated 0.5-1 metre thick, fine breccia units which consist of 0.5-2 cm, sub-

angular, poorly sorted and variably silicified fine grained sedimentary clasts; plus minor, 2- 

15 mm, ragged, silica and carbonate altered scoria clasts; in a phyllosilicate-rich matrix. 

Intercalated with the units of andesitic scoriaceous breccia are units of coherent 

andesite which are up to several metres thick and have sharp irregular contacts. Thinner 

(tens of centimetres) examples could be large clasts. The units are mostly coherent but some 

thinner examples are finely brecciated by a jigsaw-fit network of sericite-filled fractures. 

Both the coherent and brecciated examples are often more coarsely brecciated with 2-5 cm 
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bands and patches of strongly amygdaloidal material, texturally identical to the strongly 

amygdaloidal clasts. 

Discussion  

This lithology is a distinctive stratigraphic marker and is one of only two rock types possibly 

associated with effusive volcanism in the study area. Both clasts and matrix in this lithology 

consist of variably altered, non-vesicular to scoriaceous andesite clasts. More altered 

and/or mineralised scoriaceous breccia is typically quartz-xenocrystic. 

Texturally these breccias are comparable to pillow breccias (Carlisle, 1963) and more 

particularly scoriaceous pillow breccias (Dimroth et al, 1978, 1985; Staudigel and 

Schmincke, 1984; Schrnincke and Sunkel, 1987; Dimroth and Yamagishi, 1987; Yamagishi, 

1987, 1991; Dolozi and Ayres, 1991) both of which are typically associated with pillowed 

lava flows. The latter breccias contain shards and ragged clasts with relatively high 

vesicularities which are commonly considered to reflect 'relatively shallow' water depths 

(upward shoaling sequences) with a more explosive eruption style. However, the 

• moderately to strongly vesiculated nature of clasts in the Currawong breccias may simply 

reflect a greater original magmatic volatile content which produced scoriaceous 

(hyaloclastite?) breccias in a deep marine setting (cf Cas, 1992). 

Allen (1987, 1992) interpreted the Currawong breccias to be massive, in situ hyaloclastite 

containing small pillows or pillow fragments. Evidence supporting this interpretation 

included the sharp contacts of framework clasts to the supporting matrix; altered clast rims 

with 'tiny normal joints' (cf Yamagishi, 1987); plus the apparent jigsaw-fit textures and 

essentially monomict nature of the breccia matrix. Pillow lavas expected to be associated 

with such breccias have not been recognized at Currawong, though this may reflect the 

difficulty of their recognition in drill core and sparse outcrop. 

Many textural features of the andesitic scoriaceous breccia are ambiguous and units of 

this lithology could also be resedimented, syn-eruptive volcaniclastic deposits. The strongest 

evidence for the latter interpretation is the weak stratification, defined by the variation in clast 

content of beds. Other features which support this interpretation include the presence of 

sedimentary intraclasts in some units and normally graded but strongly altered, finer grained 

tops of units. However, the latter textures may not be primary but rather the result of 

subsequent hydrothermal alteration and strong deformation. For example, the `intraclasts' 

may be tectonically dismembered sedimentary interbeds or sediment-matrix hyaloclastite 

units, between in situ breccia units. 
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Thin, medium to fine grained breccias of scoria and mudstone clasts are intercalated with 

mudstone units immediately overlying andesitic scoriaceous breccia at some locations. 
These may be more distal equivalents of coarse grained resedimented scoriaceous breccia, or 

alternatively, reworked debris locally sourced from in situ scoriaceous breccia units (cf 

Allen, 1992). 

The irregular, amoeboid shapes of larger framework clasts in the andesitic scoriaceous 
breccia suggest plastic deformation whilst still hot. This could have occurred during mixing 

and mass-flow deposition with (?hyaloclastic) debris (cf 'tuff-breccia with plastically 

deformed particles' of Dolozi and Ayres, 1991). Alternatively the clasts may be the products 

of mild subaqueous lava fountaining incorporated into in situ hyaloclastite (cf Schmincke 

and Sunkel, 1987; McPhie eta!, 1993). 

Coherent to quench brecciated volcanic units intercalated with units of the andesitic 

scoriaceous breccia may be slightly later intrusions eg sills or feeder dykes, or these may 

be analogous to the lava lobe units of Dolozi and Ayres (1991) ie thin lava flows 

extruded and incorporated into a debris flow near its depositional site, the lobate basalt 
hyaloclastite breccia of Bergh and Sigvaldason (1991), or the scoria pillow breccias 

with lava stringers of Schrnincke and Sunkel (1987). 

The vesicular but crystalline to slightly devitrified groundmass of clasts in the andesitic 
scoriaceous breccia would have been relatively impervious to the regionally extensive 

phyllosilicate alteration (Allen, 1992). In contrast, the thin glassy rims and radial cracks of 

the clasts; and the more porous, glassy, fine grained breccia matrix were altered to 

phyllosilicates. Very strongly altered parts of the scoriaceous breccia may reflect very fine 

brecciation with a greater glassy component. The clasts were, however, selectively altered 

by quartz-carbonate-pyrite alteration. During subsequent regional deformation the clasts and 

intercalated coherent units were relatively competent compared with the phyllosilicate-rich, 

hydrothermally altered breccia matrix, and thus have a less developed tectonic fabric. 
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Plate 4. Andesitic scoriaceous breccia. Quartz-carbonate altered, lobate, strongly 
amygdaloidal clasts; in scoriaceous, chloritised, fine-breccia matrix. DDH 144, 104 metres; 
Scale centimetres. 

1E11 
C M 

- 

Plate 5. Andesitic scoriaceous breccia. Detail of strongly amygdaloidal clast in chloritised 
fine-breccia matrix. Clast margin has phyllosilicate-altered rim and 'tiny normal joints' 
(arrow). DDH 135, 88.25 metres. 
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Plate 6. Detail of strongly amygdaloidal clast in andesitic scoriaceous breccia. DDH 142, 
28.6 metres. Field of view 2.5 mm. Plane polarised light. 

Plate 7. Andesitic scoriaceous breccia. Strongly amygdaloidal, haematite altered clasts in a 
chloritisecl matrix. Clasts and matrix are overprinted by quartz-carbonate alteration at top of 
photograph. DDH B240 (recent drilling), 217 metres. Scale centimetres. 
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Plate  8.  Detai 



Plagioclase-quartz-bearing altered rocks 

Description 

Several strongly hydrothennally altered and deformed units of variable thickness (up to 10 
metres) superficially have the appearance of sandstones to fine breccias. Most units contain 
5-10%, 0.25-1 mm quartz and lesser plagioclase ?crystals. A variety of clast-like patches 

include: fine-gained, very chloritic, microlitic-plagioclase textured Ethology with remnants 

of amygdules; minor, variably amygdaloidal, often ragged, scoriaceous material; and minor 
silicic patches of fine grained, interlocking sericite-quartz-feldspar. The matrix consists of 

very fine-grained sericite-chlorite plus patchy to vein-like carbonate, quartz and pyrite. 

Minor ragged pumice clasts and possible shards were also noted by Pander (1988). The 

quartz crystals commonly have recrystallised or deeply embayed rims and are interpreted as 
xenocrysts (Plates 10 and 11), similar to those in the andesite (Section 4.2.1). Blocky, 

apparent clasts of very fine-grained, interlocking quartz and ?albite crystals are a minor 

component and are identical to the recrystallised rims of the quartz xenocrysts. These 'clasts' 
often contain minor, very small, deeply embayed quartz phenocryst remnants and are 
interpreted as completely recrystallised quartz xenocrysts. Plagioclase crystals are sometimes 

partly replaced by sericite giving them a rounded appearance. The plagioclase crystal 
component of this Ethology is probably greater than it appears, with many now represented 

by blocky sericite patches. Quartz and plagioclase ?crystal fragments found in some units are 

grouped and exhibit similar optical orientation, suggesting in situ tectonic brecciation (cf 

Allen, 1988). Units of this lithology are massive to weakly stratified (0.1-1 m) and the latter 
appear to exhibit normal grading. In a few examples the Ethology is intercalated with silty 

mudstone and contains possible intraclasts of the latter. Other samples have only minor silty 
mudstone clasts. 

Discussion  

These rocks are lithologically similar to the quartz-xenocrystic phase of andesitic 

scoriaceous breccia (see above) and are intercalated with it, and with mudstone and 
mudstone breccia. Some units occur in the immediate hangingwall of mineralisation and/or 
between thin ore lenses. The apparent grading, weak stratification and presence of possible 

silty mudstone intraclasts suggests that these may be subaqueous resedimented volcaniclastic 

units, possibly finer grained (distal facies?) equivalents of the andesitic scoriaceous 
breccia (cf Allen, 1987, 1992). However textures are ambiguous due to strong alteration 

and deformation and for reasons previously discussed (see andesitic scoriaceous 
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breccia above) these could be in situ vokaniclastic rocks. 

This lithology forms a distinctive geochemical group at the dacitic end of the compositional 

range of the andesite (Section 5). The geochemistry and clast lithologies reflect a mixed 

provenance. Mixing of the contrasting volcaniclastic components (andesitic and silicic) may 

have been a mechanical process (ie during deposition) but another possibility  is  that magma 

mixing occurred prior to fragmentation and emplacement The latter interpretation is 

discussed further in Section 5. 

Plate 10 
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Plate 11 

Plates 10 and 11. Plagioclase-quartz-bearing altered rock. Quartz xenocrysts (q) with 
embayed and recrystallised margins; and silicic Ethic clasts (s) in a strongly chloritised 
matrix. DDH 180, 45.0 metres. Field of view 5 mm. Plate 10 plane polarised light; Plate 11 
crossed nicols. 

Plagioclase-bearing altered rocks 

Description  

This lithology consists of 5-10%, 0.25-0.5 mm euhedral to subhedral plagioclase and rare 

quartz phenocrysts or crystals, rare quartz-filled amygdules or their altered remnants, and 

minor patches or clasts of microlitic plagioclase-textured material, all in a strongly 

phyllosilicate-altered groundmass. 

Discussion  

This lithology forms units which are only a minor component of the Currawong sequence. 

Superficially it is similar to the plagioclase-quartz-bearing altered rocks. However it 

differs in the paucity of quartz phenocrysts or crystals and their lack of embayed or 

recrystallised rims (or completely recrystallised equivalents), the less chloritic nature of 

microlitic plagioclase patches or clasts and its more massive appearance. This lithology is 
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rhyodacitic and is most probably the altered, possibly volcaniclastic, equivalent of 
plagioclase-phyric rhyodacite. The greater alteration suggests that these rocks had a 
large glassy component, now altered to phyllosilicates. Units of this Ethology are 

intercalated with other variably altered and mineralised but andesitic volcaniclastic rocks. 
Other very similar lithologies (eg DDH 135 at 217 metres, Appendix I) appear to be the 
lateral equivalents of coherent rhyodacite sills. 

4.3 Summary 

Coherent volcanic rocks in the study area comprise basaltic to rhyolitic sills and domes 

(metres to tens of metres thick). These have intruded a dominantly fine grained sedimentary 

sequence intercalated with andesitic scoriaceous breccia and sandstone; and ?extrusive 
strongly flow-banded rhyodacitic units. Commonly associated with the margins of the 

coherent volcanic rocks are units of sediment-matrix hyaloclastite up to several metres thick. 

The andesitic volcaniclastic units include thick (typically tens of metres) andesitic 

scoriaceous breccia and thinner (metres or less thick) units of altered, finer grained 
scoriaceous rocks. These rocks have some ambiguous characteristics but several features 

suggest that they may be resedimented, lava-derived mass-flow deposits. 
Strong alteration and deformation has made recognition of some volcanic units very difficult. 

However the results of the geochemical study, described in the next section, resolved some 

of these problems. 
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5. GEOCHEMISTRY 

5.1 Sampling and analytical method 

Samples of approximately 150 mm of HQ drill core (or its equivalent) were taken during 
logging of drill core for geochemical analysis. 

Sample preparation comprised the following steps: 

(i) Crush to pea size in a jaw crusher 

(ii) Riffle split to approximately 100 grams of sample. 

(iii) Pulverise 100 gram sample in a chrome-steel ring mill for approximately two minutes. 
(iv) Prepare pressed pellet for XRF analysis. 

Seventy three samples were analysed for Ti02, Nb, Zr, Y, Sr, Rb and Pb using the 

automated Philips XRF spectrometer at the Department of Geology, University of Tasmania. 

Supplementary major and trace element analytical data for 17 samples from representative 

coherent, relatively unaltered volcanic units in the Currawong sequence were kindly 

provided by Dr J. Stolz for comparison and reference classification. 

5.2 Data manipulation and presentation 

MacLean and Kranidiotis (1987) postulated that apart from the primary compositional 

variation of volcanic units, Ti, Zr, Nb and Y were immobile in alteration zones around many 

Canadian greenstone belt hosted volcanic-hosted massive sulphide (VHMS) deposits. Other 

authors (eg Finlow-Bates and Stumpfl, 1981; Wynne and Strong, 1984; Gemmell and 

Large, 1992) argued that under the most intense alteration some of these elements eg Y and 

Nb show evidence of mobility. 

Volcanic units of a single composition, which are associated with VHMS deposits, may be 

tested for element immobility using plots of pairs of these elements (MacLean and 

Kranidiotis, 1987; Whitford et al, 1989; MacLean and Barrett, 1993; Whitford and Ashley, 

1992). Strong positive correlations, ideally passing through the origin, are considered to 

indicate a constant elemental ratio during the mass-loss or mass-gain effects of hydrothermal 

alteration or subsequent metamorphism. 

Two data sets were used in this study. Data set I comprised units recognised as coherent 

volcanic rocks which displayed very little to moderate hydrothermal alteration. Data set II 
consisted of data set I plus all remaining samples ie units logged as volcaniclastic rocks 

and strongly altered units whose parent lithology could not be recognised with confidence. 
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The latter were further divided into units suspected of having either sedimentary or volcanic 

precursors. 

Initially plots were made of all element pairs to test for immobility. To assess the effects of 

stronger alteration, separate plots were made for data set I and data set H. The ratios of 

Zr/Ti02 vs Nb/Y were then plotted for data set I to classify the volcanic rock types using 

the scheme outlined by Winchester and Floyd (1977). A second plot was made using data 
set 11 to try and relate the volcaniclastic and strongly altered samples to the coherent units. 

The plot of Y vs Zr was also used to try and characterise the magmatic affinity of the 

coherent units using the approach of MacLean and Barrett (1993). 

A check on the rock type groupings was carried out by comparing a plot of Ti/Zr vs Si02 

(made for the data provided by Dr J Stolz) with the Winchester and Floyd plot for data set 
I. 
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5.3 Results 

Nb vs Zr 

Plots of Nb vs Zr for both data sets are shown in Figure 4 . The plot for data set I shows a 

strong positive correlation for the sample points with the line of best fit passing close to the 

origin. This suggests that these elements have not been fractionated with respect to each 

other and have been immobile during alteration. Samples from all units except the quartz-

feldspar-phyric rhyolite (Currawong Porphyry) form groups with some overlap, spread 

along the linear trend.The spread of values within groups reflects both compositional 

variations within rock types and mass- loss or gain during alteration. Two of the three 

quartz-xenocrystic samples of andesite are grouped with its other samples but the third 

sample overlaps the rhyodacite group. Samples from the flow-banded lithological variant of 

the plagioclase-phyric rhyodacite overlap the main group at its upper end. The 

Currawong Porphyry samples form a distinct group on a different trend line. This suggests 

that the Currawong Porphyry is not genetically related to the other volcanic units. 

The plot of data set II shows that with a few exceptions, most strongly altered volcanic 

and the volcaniclastic samples lie on the andesite-rhyolite trend line of data set I. The 

samples from strongly altered ?sedimentary rocks form two distinct groups, separate from 

the other data. 

Nb vs Y 

Figure 5 shows the plots for Nb vs Y. A positive correlation for both data sets is again 

evident but in this case the Currawong Porphyry samples appear to lie on the same trend as 

the other coherent silicic samples. For data set II, strongly altered ?sedimentary rocks are 

again grouped off the trend line whereas all but a few samples of the altered volcanic and 

volcaniclastic rocks lie within the main linear array of points. Overall, sample points on both 

plots show a slightly greater scatter compared to the Nb vs Zr plots. This may reflect some 

minor mobility of Nb and/or Y (cf*Whitford et al, 1989). 
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Figure 4. Nb vs Zr plots for analysed samples from Currawong. 
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TiO2 vs Zr, TiO2 vs Nb & TiO2 vs Y 

Plots for these three pairs of elements are shown in Figures 6-8. In each case, the data set 
I plot shows reasonable correlations for fairly well defined groups of sample points which 

correspond with the andesite, rhyodacite and rhyolite. Each group lies on a linear 

alteration trend which passes towards the origin but overall the groups reflect the magmatic 

fractionation trend from andesite to rhyolite (MacLean and Barrett, 1993; Figure 6). On the 

data set I plot of TiO2 vs Zr (Figure 6), the quartz-feldspar-phyric rhyolite 

(Currawong Porphyry) sample points lie on the same alteration trend as the plagioclase-

phyric rhyodacite whereas samples from the flow-banded variant of the plagioclase-

phyric rhyodacite lie just below the trend line. By contrast, on the plots for TiO2 vs Nb 

and TiO2 vs Y, both the Currawong Porphyry and flow-banded rhyodacite are grouped just 

below the rhyodacite trend line. On all three plots one quartz-xenocrystic andesite sample 

plots with the majority of other andesite samples whereas the other two (and one andesite 

sample which does not have quartz xenocrysts) have more dacitic compositions. The latter 

samples are difficult to distinguish from two more andesitic samples from the plagioclase-

phyric rhyodacite. Similar trends are seen on the data base II plots with several of the 

altered samples loosely grouped between the andesite and rhyodacite groups. The strongly 

altered ?sedimentary rocks are also loosely grouped on each of the three plots but are best 

delineated on the TiO2 vs Nb plot. 

Y vs Zr 

Figure 9 shows plots of Y vs Zr for data set I and II, with annotation after MacLean and 

Barrett (1993). For data set I, sample points are somewhat scattered although a positive 

correlation is evident for the plagioclase-phyric rhyodacite and its flow-banded variant 

with their sample points lying mainly in the transitional field of MacLean and Barrett 

(1993). The Currawong Porphyry samples lie on a steeper trend within the tholeiitic field of 

MacLean and Barrett. The andesite is more ambiguous and could lie in either the tholeiitic 

or transitional fields. The plot for data set II strengthens the correlation of data points in 

the transitional field and suggests that as on the other two-element plots, the andesite 

samples are part of that trend. In this case, the trend line passes through the Y axis just 

above the origin. It is also interesting to note that the strongly altered ?sedimentary rocks are 

not well delineated on this plot. 
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Zr/Ti02 vs Nb/Y 

Plots of Zrai02 vs NbfY with annotation after Winchester and Floyd (1977) for both data 

sets are shown in Figure 10. On the data set I plot the data points appear to form a fairly 

continuous series from basaltic andesite to rhyolite compositions. The majority of sample 

points form distinct groups ie andesites, rhyodacites and rhyolites but a few from the 

andesite (including two of the three quartz-xenocrystic samples) and two from the 

plagioclase-phyric rhyodacite have more dacitic, intermediate compositions. The flow-

banded rhyodacite forms a group distinct from the overlapping plagioclase-phyric 

rhyodacite and quartz-feldspar-phyric rhyolite (Currawong Porphyry). 

For data set II, the plot shows that most of the strongly altered ?volcanic rocks plot with 

the coherent end-member groups though a few have dacitic compositions. Samples from the 

andesitic scoriaceous breccia, including samples which are quartz-xenocrystic, are 

closely grouped with the more basaltic samples of the andesite. The plagioclase-

bearing altered rocks are compositionally very similar to the plagioclase-phyric 

rhyodacite whereas the plagioclase-quartz-bearing altered rocks form a tight group 

with the more dacitic samples of the andesite. Samples from the strongly altered 

?sedimentary rocks lie off the fractionation trend but are well constrained on this plot. 

Ti/Zr vs Si02 

The plot of Ti/Zr vs Si02 for the limited available data is shown in Figure 11. Samples from 

the plagioclase-phyric rhyodacite are well constrained except for a single sample 

which is anomalous in both Si02 and Ti. The Currawong Porphyry samples are also 

reasonably well grouped with similar Ti/Zr ratios to the plagioclase-phyric rhyodacite 

but generally higher silica contents. By contrast the samples from the andesite exhibit a 

wide range in silica content and TifZr values. 
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Figure 11. Ti/Zr vs Si02 plot for analysed samples of coherent, relatively unaltered volcanic 

rocks from Currawong (unpublished data of Dr J Stolz). 

5.4 Discussion 

The two-element plots described above indicate that Ti, Zr, Nb and Y have behaved 

essentially in an immobile manner during hydrothermal alteration and subsequent 

metamorphism of the volcanic units in the Currawong host sequence. A few altered samples 

are more scattered on plots involving Nb and Y suggesting some mobility of these elements 

during intense hydrothermal alteration. 
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The Zr/TiO2 vs Nb/Y plot of data set I shows that coherent volcanic units in the 

Currawong sequence fall into two main groups ie andesitic and rhyodacitic-rhyolitic. The 
plot for data set I is useful for discriminating between most coherent volcanic rocks 

although a notable exception is the group containing the two lithologically distinctive but 
geochemically similar lithologies ie plagioclase-phyric rhyodacite and quartz-
feldspar-phyric rhyolite (Currawong Porphyry). Apart from this case, the Zr/TiO2 vs 

Nb/Y plot for both data sets enables recognition of precursors to the more strongly altered, 

lithologically unrecognisable volcanic units. Other plots of element-pairs, such as the Nb vs 

Zr and Y vs Zr, enable better discrimination of the rhyodacite from the Currawong Porphyry 

and suggest that the latter is not genetically related to the other volcanic units. 

Volumetrically minor units, with compositions intermediate between the two end members, 

appear to represent variants emplaced during magmatic differentiation. However, these units 

include quartz-xenocrystic coherent andesite and may reflect mixing of andesitic magma, or 

its more dacitic differentiates, with a quartz-phyric silicic magma. 

The Tiaz vs Si02 plot reflects the trends for coherent units identified in other plots. For the 

andesite in particular, the correlation of higher silica content with lower Tar is mirrored 

by its wide spread of Zr/TiO2 values on the Zr/TiO2 vs Nb/Y plot. 

Comparison of the-Zr/TiO2 vs Nb/Y plots for the two data sets, together with lithological 

evidence presented in Section 4, indicate that the andesitic scoriaceous breccia 

(including units containing quartz xenocrysts) is a volcaniclastic facies of the andesite. 
Similarly, the plagioclase-bearing altered rocks are altered, possibly volcaniclastic, 
equivalents of the plagioclase-phyric rhyodacite. The plagioclase-quartz-bearing 
altered rocks are geochemically similar to the more evolved examples of the andesite. 
However, lithologically they appear to be polymict with xenocrystic-quartz and plagioclase 
crystal fragments plus clasts of andesite, a silicic Ethology and minor scoria. They contain 

more quartz than the quartz-xenocrystic units of the andesitic scoriaceous breccia but 
are otherwise lithologically similar to them. The plagioclase-quartz-bearing altered 
rocks are interpreted as (?resedimented) volcaniclastic rocks of mixed provenance. Mixing 

of components was possibly mechanical during resedimentation. Alternatively, the polymict 

clastic components may reflect intermingling and mixing of andesitic and rhyodacitic 
magmas (cf Thompson and Dungan, 1985) prior to autoclastic fragmentation. 
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5.5 Summary 

The volcanic lithologies at Currawong can be distinguished using minor and trace element 

geochemistry. This approach has proven useful for identifying altered volcanic units and 

relating volcaniclastic units to their coherent equivalents. 

Basaltic to rhyolitic rocks of the Gibsons Folly Formation form a fairly continuous magmatic 

evolution trend. However the andesitic coherent and volcaniclastic rocks exhibit a wide 

range of Zr/TiO2 values and Si02 content which appears to reflect the combined effects of 

magmatic differentiation and mixing with a quartz-phyric silicic magma. The latter 

mechanism is supported by the presence of xenocrystic quartz in some coherent andesitic 

units and silicic volcanic clasts in volcaniclastic rocks of andesitic composition. 

A rhyolite intrusion at the base of the Gibsons Folly Formation (the Currawong Porphyry) is 

geochemically distinctive and unrelated to the other volcanic units. Nd isotope studies 

support this conclusion and indicate that the Currawong Porphyry is part of the Thorkidaan 

Volcanics (Dr J Stolz, unpublished data; cf Allen, 1992) 
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6. STRATIGRAPHY 

6.1 Previous research 

Several previous authors have presented interpretations of the Currawong deposit host 

stratigraphy. These include Western Mining Corporation (various authors in 

unpublished reports, 1979-1986 including a major relogging project by Page, 1984); 

Allen (1987, 1992); Cox et al (1988); Kennedy and Simopolous (1989); Allen and 

Barr (1990); and Bodon (1993). 

Most interpretations have led to the conclusion that the Currawong deposit consists of 

at least five separate massive sulphide lenses within a sequence of intercalated fine 

sedimentary rocks and predominantly silicic volcanic units of the Gibsons Folly 

Formation (Section 3). The sulphide lenses appear to be arranged en echelon both in 

plan and section and are bounded by several sub-vertical faults. 

Allen (1992) described the lithostratigraphy associated with the Currawong deposit as 

comprising a basal rhyolite breccia overlain by (in ascending stratigraphic order) 

mudstones and thin sandy turbidites; massive sulphide; basalt flows and sills; and 

again mudstones and turbidites. This sequence is intruded by several dacite sills in 

both the hangingwall and footwall. The basalts in part exhibit extrusive textures, whilst 

both the basalts and dacites include volcaniclastic facies comprising in situ massive 

and sediment matrix hyaloclastites and resedimented hyaloclastites. At Currawong, 

Allen (1992), assigned the footwall rhyolite to the Gibsons Folly Formation whereas at 

Wilga he considered the rhyolite to be part of the Thorkidaan Volcanics. However he 

concluded that the Wilga and Currawong mineralisation are at the same stratigraphic 

level ie within 100m of the last major extrusive rhyolites and within 50m below the first 

major basalt lava. Thus the Thorkidaan volcanism continued, albeit intermittently, until 

earliest Gibsons Folly Formation time (Section 3). 

Bodon (1993) presented a strati graphic interpretation though he did not carry out a 

detailed lithological study of the host sequence. His interpretation largely concurs with 

that of Allen (1992) except in the area north of the zone of multiple sub-vertical faulting 

(Figure 3). Bodon considered Lens 2 (=Allen's Lens B) to be within or above the 

highest andesitic to dacitic volcanic units of the sequence and about 50 metres 

stratigraphically higher than Lens 1 (=Lens C of Allen, 1992; and this study). He 

concluded that two horizons of mineralisation are present at Currawong, with Lens 2 at 
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the stratigraphic position of the nearby Wilga deposit. 

6.2 Results of this study 

Data from the core logging is presented as graphic logs in Figure 12 and Appendix I. A 

stratigraphic interpretation is presented on cross-sections and level-plans in Appendix 

II. The stratigraphic relationships between the various rock types are summarised as a 

stratigraphic column in Figure 13. 

6.2.1 Sedimentary rocks  

Allen (1987, 1992) described the sedimentary rocks from the Currawong succession. 

Two facies are present, of which massive to finely laminated, grey and lesser black 

mudstone and siltstone are the most abundant. Repetitively interbedded with the 

finer grained units are thin, normally graded, fine grained sandstone units which 

have sharp basal contacts. Allen interpreted the sedimentary rocks as hemipelagic 

sediments which include thin turbidites and together represent a basin centre facies 

association. The sedimentary units are intercalated with and in part enclose both the 

volcanic units and massive sulphide mineralisation 

6.2.2 Volcanic rocks 

Intermediate composition 

Volcanic rocks of intermediate composition at Currawong comprise two distinct but 

genetically related, andesitic lithologies ie andesite and quartz-xenocrystic andesite. 

Both form coherent intrusions which typically have margins of sediment-matrix 

hyaloclastite and are associated with thick, volcaniclastic units of andesitic 

scoriaceous breccia and plagioclase-quartz bearing altered rocks. 

In the study area, the largest lens of massive sulphide mineralisation (C lens) is hosted 

by a sequence of variably altered andesitic rocks and intercalated sedimentary units. 

The andesitic rocks are predominantly andesitic scoriaceous breccia which have a 

variable quartz xenocryst component, and plagioclase-quartz-bearing altered 

rocks. The quartz-xenocrystic breccia units are generally more altered than those 

without quartz and in places are weakly mineralised, typically as selective pyrite 

replacement of clasts. They commonly occupy the up-dip and/or lateral stratigraphic 
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position of C lens (Section 7). The scoriaceous breccias have minor intercalated 

mudstone and siltstone and fine sandstone which may represent hiatuses in 
eruptive activity and suggest that the breccias comprise several depositional units. The 
plagioclase-quartz-bearing altered rocks form (volumetrically) a minor 

component of the sequence and occur as thin (generally less than one metre, but up to 

10 metres thick) units associated with the finer grained sedimentary facies, in the 

immediate structural hangingwall of C lens and/or between its component ore lenses. 

Stratigraphically these altered units are closely related to the quartz-xenocrystic phases 
of the andesitic scoriaceous breccia and may be their finer-grained equivalents. 

Coherent andesite forms sills which have intruded the sedimentary units of both the 

footwall and hangingwall sequences and possibly the andesitic scoriaceous 
breccia units (Section 4). Strongly quartz-xenocrystic, more evolved coherent units 
of the andesite (Section 5) are found in the hangingwall sequence and in strongly 

altered rocks which occupy a stratigraphic position equivalent to C lens. 

The sills intruded relatively unconsolidated sediments as their upper contacts are 

typically sediment-matrix hyaloclastites and lower contacts similar or relatively sharp 

and passive. The sediment matrix is always bleached or baked. Thus the criteria of 

Allen (1992, Table 1) suggest that these are shallow sills with right-way-up facing. 

The coherent andesitic units are interpreted as the shallow intrusive expression of the 

extrusive andesitic volcanism which generated the scoriaceous breccias. 

Silicic composition 

Silicic volcanic rocks in the Currawong sequence are rhyolitic to dacitic in composition 

(Section 5). The sequence of sedimentary and intermediate volcanic rocks is intruded 

throughout by sills and cryptodome-like bodies of plagioclase-phyric rhyodacite. 

Contacts are typically passive to disruptive and commonly include an interval of 

sediment-matrix hyaloclastite. In a few cases the matrix of the intrusive hyaloclastite is 

andesitic scoriaceous breccia indicating that that the scoriaceous breccia was 
unlithified at the time of intrusion. In places (eg DDH 98, 45m; Figure 12) rhyodacite 

intrusions have margins of sediment-matrix hyaloclastite within the same sedimentary 

unit that forms the matrix of underlying intrusive andesite hyaloclastite. This indicates 

that the rhyodacite was emplaced when the sediments were still relatively unlithified. 
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The silicic intrusions appear to have penecontemporaneously deformed the sequence. 

An example is the large rhyodacitic cryptodome-like body in the immediate footwall of 

mineralisation. The intrusion shows a marked variation in thickness (Appendix II) 

which appears to have produced local perturbations in the strike of underlying and 

overlying units. The units above the intrusion are most deformed suggesting 

predominantly upward doming. The present geometry of the C lens massive sulphide 

appears to be the result of penecontemponaneous deformation and subsequent tectonic 

deformation. 

A distinctive lithology of the structural footwall is the flow-banded variant of the 

plagioclase-phyric rhyodacite. This forms a thick sequence of units tens of 

metres thick (eg Figures 12 and 14) which typically exhibit strong phyllosilicate 

alteration. Allen (1992) considered this Ethology to be a compositionally identical, 

mainly autoclastic, earlier extrusive phase of the Currawong Porphyry (see below). 

Petrological and geochemical data from this study area (Sections 4 and 5) indicate that 

the lithology is marginally more silicic but otherwise similar to the plagioclase-

phyric rhyodacite. Fander's (1988) interpretation of these more silicic rocks as 

ignimbrites was not supported by this study. 

Lowest in the sequence of the study area is a large (tens of metres thick by square 

kilometres in areal extent) sill of variably brecciated, strongly porphyritic quartz-

feldspar-phyric rhyolite (ie the Currawong Porphyry). The rhyolite has well 

developed chilled margins and in places (eg DDH 178, 253 m; Appendix II) has 

formed a coarse breccia with a matrix of altered, older flow-banded rhyodacite. 

Contacts with enclosing sedimentary rocks are generally passive, indicating intrusion 

into partly lithified sediments. 
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6.3 Summary 

Although in general the results of this study support the stratigraphic interpretation of 
Allen (1992), in detail some differences have emerged which have exploration 

implications. In particular, the stratigraphic position of the C lens massive sulphide 

mineralisation is interpreted differently. The important features of this interpretation are 
summarised below. 

(i) Andesitic units are present both in the structural footwall and hangingwall. 
Andesitic units of the footwall are predominantly shallow sills which have intruded 

unlithified sediments. 
(iii) The massive sulphide mineralisation and stronger alteration show a close 

stratigraphic relationship with quartz-xenocrystic coherent and scoriaceous breccia 
facies of the andesite and more particularly, their intercalated units of fine grained 
sedimentary rocks and plagioclase-quartz-bearing altered rocks. 
(iv) Comparison of this stratigraphic interpretation with those for the Wilga host 

sequence (eg Allen and Barr, 1990; Allen, 1992) suggest that the main lens of massive 
sulphide mineralisation in both deposits occurs at the same stratigraphic position. The 

strongest evidence for this conclusion is the stratigraphic equivalence of the Wilga 
mineralisation and variably altered 'quartz-plagioclase dacite' (Figure 4 of Allen, 

1992). This rock type is lithologically most similar to qua= xenocryst-rich variants of 
the andesite which show a close stratigraphic association with the C lens massive 

sulphide mineralisation at Currawong. Other evidence for this interpretation is the 
presence of coherent andesite units in the footwall of the Wilga deposit (Allen, 
1992).These were considered by Allen to be fault slices within his interpreted major F2 

shear zone underlying the Wilga massive sulphide. The andesite units may be in situ 

sills, equivalent to those seen in the footwall at Currawong. Fine grained sedimentary 
units and rhyodacite units also occur between the Wilga massive sulphide and the 

footwall shear at some locations (Cox et al, 1988; Allen, 1992). 
(v) In plan (Appendix II) a major dip-parallel fault is invoked for this interpretation, to 

explain the displacement of the stratigraphy apparent between 17500E and 17550E. 
Such faults are common in underground exposures at the nearby Wilga deposit. There, 

a major example dissects the orebody and displaces it several metres. At Currawong 
such faults may also be common but are difficult to define by the current driffing 
database. Such faulting may in some places offers an alternative explanation for 
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apparent deformation of the sequence by rhyodacite cryptodome-like intrusions. 

In conclusion, the differences in interpretation for Currawong are well illustrated on 

cross-section 17550E (Figure 14). No convincing evidence was found of the possible 

major fault in DDH 142 as shown on Allen's interpretation (Figure 3). This fault 

invokes a stratigraphic equivalence of the coherent andesite of DDH 98 (approximately 

45-65 m) and the andesitic breccias of DDH 142 (approximately 25-70 m). Rather the 

coherent andesite unit of DDH 98 is interpreted by Allen's own criteria as a sill, rather 

than an extrusive unit. The scoriaceous breccia in DDH 98 (approximately 9-20 m), 

above the rhyodacite intrusion, is the strongly altered, variably mineralised up-dip 

equivalent of the C lens massive sulphide. The andesite sill occurs in the footwall of C 

lens at many other locations throughout the study area (Appendix II). 

Figure 14. Cross-section 17550E. Scale 1:2500. See Figure 13 for legend. 
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7. ALTERATION AND MINERALISATION 

7.1 Introduction 

Ore-grade mineralisation within the study area of this research is part of the largest ore lens 
at Currawong (ie C lens of Cox et a!, 1988 and Allen, 1992; Lens 1 of Bodon, 1993; Figure 

3). The study area incorporated the up-dip and lateral margins of C lens. This enabled the 

relationship between mineralisation and the host-stratigraphy to be studied, albeit from the 

limited exposure of drill core. 

7.2 Alteration 

Hydrothermal alteration is a common feature of the volcanic and, to a lesser extent, 

sedimentary rocks at Benambra. Its presence is evidenced by mineral assemblages that 
cannot be explained by isochemical metamorphism of the volcanic rocks, such as chlorite in 

rhyolite and quartz-sericite alteration in andesitic to basaltic rocks (Allen, 1988, 1992). The 
unaltered basaltic to andesitic rocks of the Gibsons Folly Formation (Section 3) have mineral 

assemblages typical of lower greenschist facies metamorphism, that is chlorite-carbonate-

epidote-quartz-Fe oxides. Thus in weakly altered rocks characterised by little addition of 

potassium, the distinction between hydrothermal alteration and metamorphic mineral 
assemblages may be unclear (Allen, 1988). The results of this study indicate that volcanic 

and sedimentary units, at several stratigraphic horizons throughout the sequence, have been 
altered by hydrothermal fluids including those associated with the base metal mineralisation. 

Only two types of alteration were recognised as hydrothermal in origin during this study: 

quartz-sericite-carbonate alteration and chlorite alteration. This is consistent with 

the results of a more detailed study of hydrothermal alteration assemblages and their 
distribution in the Currawong ore lenses and adjacent units, by Bodon (1993). The latter 

study recognised five types of hydrothermal alteration: 

(i) Quartz-sericite-carbonate-(+/-chlorite, epidote). 

(ii) Quartz-chlorite. 
(iii) Chlorite. 

(iv) Siliceous. 
(v) Stilpnomelane-carbonate (chlorite) +/- talc, epidote. 
Type (i) forms areally extensive (kilometre scale), semi-conformable alteration zones. 
The zones have a characteristic bleached appearance and associated disseminated pyrite 
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and/or quartz-pyrite veins. Type (i) is dominant in the hangingwall sequence at 
Currawong and types (iii) and (iv) may also be locally developed; type (iii) often 

occurs in association with base metal sulphides. All alteration types occur in the 
Currawong footwall but typically types (iii) and (v) occur in the immediate footwall, 
grading down into types (ii) and (i) respectively (Bodon, 1993). 
The results of this study show that quartz-sericite-carbonate alteration has a 
strong association with coarser grained (fine sand or coarser) units of both the 
structural hangingwall and footwall sequences of the study area. Units of fine 
grained sandstone, andesitic scoriaceous breccia, plagioclase-quartz-
bearing altered rocks, plagioclase-bearing altered rocks and autoclastically 
brecciated margins of coherent volcanic rocks typically exhibit varying degrees of this 
alteration, often with associated pyrite as veins or disseminations. Contacts of altered, 

coarser grained sedimentary or volcaniclastic units with unaltered finer grained 

sedimentary units are always very sharp. In contrast, where margins of volcanic units 

exhibit autoclastic brecciation, a gradational decrease in quartz-sericite-carbonate 
alteration towards the coherent core of the unit is commonly observed. 
The intensity of quartz-sericite-carbonate alteration generally increases as 
massive sulphide or higher grade vein and/or disseminated mineralisation is 
approached but strong chlorite alteration is commonly dominant adjacent to the 

strongest mineralisation. Similarly, units intercalated with massive sulphides are 

typically intensely chloritised. In lower grade disseminated and vein mineralised units, 

chlorite +/- quartz is associated with pyrite-chalcopyrite (+/- sphalerite-galena) 

mineralisation and clearly overprints quartz-sericite-carbonate alteration. 
Observations made during this study also suggest that quartz-chlorite (type ii, see 
above) alteration is in some cases chlorite alteration overprinting sediment-matrix 

hyaloclastite breccia. The strongly silicified component is sediment altered and baked 

during peperitic mixing with hyaloclastite breccia of the intruding magma. The chloritic 
component was originally volcanic glass, subsequently altered to chlorite during the 

mineralising event. The combination of these two processes have produced a quartz-
chlorite breccia. 

In summary, hydrothermal alteration at Currawong is semi-conformable to stratabound 
and largely confined to coarser grained volcaniclastic and sedimentary units. This 
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probably reflects a permeability control on the hydrothermal fluids throughout the 
volcano-sedimentary sequence. Quartz-sericite-carbonate alteration is 
extensively developed at several stratigraphic horizons and is pervasive within these 
units. It is overprinted by patchy- to vein-style chlorite alteration, commonly 
associated with base-metal mineralisation. 

7.3 Mineralisation 

A detailed study of the Curmwong mineralisation and its paragenesis was outside the 
scope of this project but has previously been carried out by Bodon (1993). 

In the following section the styles of mineralisation are first briefly described, followed 

by a summary of the key features of their distribution and relationship to the host 

stratigraphy. These are then integrated into a genetic interpretation for the Currawong 
C lens mineralisation followed by some thoughts on future exploration at Benambra. 

7.3.1 Styles of mineralisation 

Three distinctive styles of mineralisation were recognized in this study ie massive 
pyritic, compositionally banded, vein and disseminated mineralisation. These 

essentially concur with the 'ore-types' described by Bodon (1992; 1). 

Massive pyritic mineralisation is predominantly (up to 95%) pyrite with lesser 
sphalerite, chalcopyrite and rare galena. It typically has less than 30% siliceous and/or 

carbonate gangue and forms thick (tens of metres) massive bedded to very weakly 
foliated units with thin sphalerite wisps in places defining a diffuse (S2) cleavage-

parallel foliation. These sometimes exhibit isoclinal folding and transposition onto S2. 
A variant of massive pyritic mineralisation, compositionally banded sulphide 
mineralisation, consists of centimetre scale alternating pyrite-, sphalerite-, chalcopyrite-
or (galena+arsenopyrite)-rich layers, often with chlorite gangue. 
Vein sulphide mineralisation clearly cross-cuts and replaces volcanic or sedimentary 

units. Veins (typically centimetres thick) consist of pyrite and base metal sulphides in 
variable proportions associated with quartz-sericite-carbonate or chlorite alteration. 
Thicker veins (10's of centimetres) are difficult to distinguish from massive pyritic 

mineralisation. Chalcopyrite-pyrite veins are typically associated with strong chlorite 

1  'Mineralisation' rather than 'ore-type' is the preferred term in this study as much of the mineralisation, 
including massive sulphide, is not of ore grade. 
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alteration 

Disseminated mineralisation is associated with quartz-sericite-carbonate- or chlorite-

altered volcanic or sedimentary units. Pyrite as millimetre to centimetre scale 

disseminations, isolated veinlets or replacements of clasts is most common; but base 

metal sulphides may also be present, especially in association with chlorite alteration. 

Where units exhibit a strong tectonic fabric, sulphide-replaced 'clasts' may be difficult 
to distinguish from boudinaged veins. 

7.3.2 Relationship of mineralisation to the host sequence 

The petrological and geochemical studies (Sections 4 and 5) enabled a consistent 

stratigraphy to be defined (Section 6). This showed that the thickest package of 

alteration and mineralisation in the study area (ie the C lens 'mineralised horizon' of 
Cox et al, 1988) is hosted by andesitic volcanic and volcaniclastic rocks at a consistent 

stratigraphic position. In plan and cross-section (Appendix II) the distribution of 

alteration and mineralisation clearly shows a stratigraphic control. Its geometry mirrors 
that of the host sequence, particularly the andesitic volcanic rocks. 

C lens exhibits up-dip and lateral variations in its style of mineralisation such that 

disseminated and vein mineralisation are the stratigraphic equivalents of massive 

pyritic and compositionally banded sulphide mineralisation. 

Within C lens massive pyritic and compositionally banded sulphide 

mineralisation is intercalated with units of variably altered and mineralised volcanic and 
sedimentary rocks. Some of the volcanic rocks are recognisable in hand-specimen or 

thin-section but most original textures are obliterated by strong hydrothermal alteration. 

The geochemical study (Section 5) enabled these volcanic units to be related to 

relatively unaltered equivalents in the host sequence. This showed that units of both the 

andesite and plagioclase-phyric rhyodacite occur within the massive pyritic 

mineralisation. 

Similarly, disseminated and vein mineralisation stratigraphically equivalent to C 

lens occurs in strongly altered volcanic and sedimentary units. Thus in essence, the 

massive pyritic mineralisation of C lens is surrounded by a halo of disseminated and 

vein mineralised volcanic and sedimentary rocks. 

Disseminated mineralisation is typical of fine-sand to fine-breccia clastic rocks eg 

sandstone and the matrix of scoriaceous breccia (Plate 9). In contrast, vein 
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mineralisation commonly replaces autoclastic volcanic breccias, on the margins of 
unaltered and unmineralised coherent volcanic units (Plate 12). 

Vertical gradational increases in sulphide content, with an associated increase in the 
degree of alteration, are a common feature of disseminated mineralisation within  

altered units.  This is expressed by an increase in the size and abundance of sulphide 
disseminations (eg in volcaniclastic units by an increase in the degree of selective clast 

replacement by sulphides) which in some cases grade into massive pyritic sulphides 

(Plate 9). 
Contacts of relatively unaltered units to alteration/mineralisation of all styles are 

typically knife-edge sharp. The unaltered units appear to have been relatively 

impermeable to hydrothermal alteration eg coherent volcanic or massive mudstone 

units. Allen (1989) noted selective replacement of quartz grains by pyrite in altered 

psammitic units (turbidites) within unaltered mudstone and further suggested that 

lateral replacement fronts could be recognized. 
In addition to the C lens mineralised horizon, several other horizons (up to several 

metres thick) of moderate to strong hydrothermal alteration with associated 

mineralisation are present in the study area. These occur throughout the sequence, 
from within the footwall flow-banded rhyodacite up to the base of the large 

cryptodome-like rhyodacite intrusion of the hangingwall sequence, and generally show 

only limited lateral continuity (eg Figure 14, Appendix II). Quartz-sericite-

carbonate alteration is the most common style of alteration with associated 

disseminated and minor massive pyritic or vein mineralisation. At a few 

locations chlorite alteration is dominant and in some cases is associated with vein 

base-metal mineralisation (Plate 12). These minor mineralised horizons are thus very 

similar to the up-dip and lateral equivalent stratigraphic horizon of C lens. 

The petrological study (Section 4) indicated that the plagioclase-phyric 

rhyodacite intrusions were emplaced into the partly lithified sedimentary sequence. 

As the intrusions commonly include altered and mineralised in situ volcaniclastic 

margins, it appears that the host sequence was in place at the time of the mineralising 

event. 
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Plate 12. Vein and disseminated mineralisation on the margin of a plagioclase-phyric 
rhyodacite sill. Strong chlorite alteration is associated with py-cp-sp mineralisation. The 
massive pyritic sulphide with sp wisps is interpreted as thick veins replacing the 
volcaniclastic (sediment-matrix hyaloclastite?) margin of the coherent rhyodacite. 
DDH 181, 156 metres. Scale centimetres. 
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7.4 Genetic interpretation 

Based upon the evidence presented above, the C lens at Currawong is interpreted as a 

subsea-floor replacement style volcanic hosted massive sulphide deposit (cf 
Large,1992). 
In summary, the key features supporting this interpretation are: 

(i) the strong association of alteration and lower grade mineralisation with clastic facies 

at various stratigraphic horizons; 
(ii) the gradational increases in the degree of alteration and mineralisation within clastic 

units; 

(iii) the sharp contacts of mineralisation to relatively impermeable, utunineralised units; 

and 
(iv) the observed intercalation with, and stratigraphic equivalence of, massive pyritic 

mineralisation and altered/mineralised but geochemically recognisable volcanic units. 
Together these observations suggest channelling of hydrothermal fluids through more 

porous horizons, with relatively impermeable units (eg mudstone or coherent 

volcanics) controlling fluid flow. 

In this model, relatively porous units were mineralised as disseminated to massive 
pyritic or banded mineralisation whereas less porous units (eg autobrecciated volcanic 
units) were predominantly vein mineralised. Thus only the volcaniclastic margins of 

coherent volcanic units exposed to the mineralising fluids were mineralised. This effect 

is well illustrated on several cross-sections and level plans in Appendix II where the 
large cryptodome-like rhyodacite intrusion in the footwall of C lens is only vein 

mineralised on its brecciated margins nearer to C lens. 
The C lens horizon was the locus of greatest fluid flow in very porous andesitic 

scoriaceous volcaniclastic rocks. Up-dip and along strike of the C lens massive 
sulphide mineralisation these comprise altered andesitic scoriaceous breccia with minor 

intercalated coherent andesite and mudstone. 
The host of the strongest mineralisation was probably a finer-grained facies, equivalent 

to the breccia ie plagioclase-quartz-bearing altered rocks. The latter lithology 

shows a close spatial association with massive sulphide mineralisation. 

Strongly altered but relatively unmineralised volcanic units within the C lens are 
coherent rhyodacite and andesite units. These were relatively impervious to 
hydrothermal fluids and produced the common vertical and lateral discontinuities of 
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massive sulphide mineralisation seen in C lens. 

Hydrothermal fluids were presumably vented simultaneously at the seafloor, at an 

indeterminate but higher stratigraphic position. Thus an anastomosing system of 

hydrothermal fluid channels is envisaged with the geometry of resultant massive 

sulphide mineralisation controlled by the original distribution of clastic units. 

The above interpretation is consistent with that of Bodon (1993) who suggested a 

model of subsea-floor replacement of epiclastic units, based on paragenetic and metal 

zonation evidence. Similarly, Allen (1987, 1992) and Allen and Barr (1990) suggested 

that at least some massive sulphide mineralisation may have formed in this way. Their 

conclusion was based on observations that altered and mineralised rocks surrounding 

the massive sulphides, and some massive sulphide itself, had relict textures of, and 

graded into, sedimentary and volcaniclastic rocks. 

7.5 Future exploration 

The Currawong and Wilga massive sulphide deposits are essentially 'blind' in that 

massive sulphides do not outcrop. At surface the stratigraphic horizon equivalent to the 

massive sulphide consists of strongly altered volcanic units which contain limonitic 

veins and have anomalous base metal geochemistry (Robbins and Chenoweth, 1984; 

Cox et al, 1988). 

These volcanic units have commonly been described by company geologists as 

'quartz-eye tuffs'. At the Wilga deposit, Allen (1987, 1992) and Allen and Barr (1990) 

mapped this unit as 'plagioclase-quartz dacite'. The Wilga 'dacite' is lithologically very 

similar to the quartz-xenocrystic andesite at Currawong (Sections 4 and 6). 

The results of this study suggest that altered, scoriaceous, quartz-xenocrystic 

volcaniclastic facies with andesitic compositions should be a primary target for further 

exploration at Benambra. 

The target units have a distinctive range of Zr/Ti02 ratios on the Zr/Ti02 vs Nb/Y plot 

(after Winchester and Floyd, 1977; Figure 10, Section 5). Zrai02 ratio may thus be a 

cheap and useful tool during further exploration. This and the presence of xenocrystic-

quartz should enable rapid definition of prospective horizons. 
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8. CONCLUSIONS 

The main conclusions from the results of study are: 

* Coherent volcanic rocks at Currawong are predominantly intrusions into a sequence 

of mudstone interbedded with thin, fine sandstone turbidite units. Coherent andesite 
and plagioclase-phyric rhyodacite units are mainly shallow sills but the 

rhyodacite also forms cryptodome-like bodies which appear to have 

penecontemporaneously deformed the sequence. Commonly associated with the 

margins of intrusions are units of sediment-matrix hyaloclastite which indicate 

intrusion into unlithified sediments. 

* Units of strongly flow-banded and/or brecciated plagioclase-phyric rhyodacite 

in the footwall sequence may be lavas but textures are equivocal. 

* Andesitic scoriaceous breccia and plagioclase-quartz-bearing altered 
rocks form a useful stratigraphic marker sequence (typically tens of metres thick) 

within the volcano-sedimentary succession. The breccia and finer grained altered rocks 

comprise several depositional units, separated by thin mudstone units. They are 

ambiguous lithologies, but several features suggest that they may be resedimented, 

lava-derived mass-flow deposits. These units are lithologically and geochemically 

distinctive and host the Currawong mineralisation. 

* Ti, Zr, Nb and Y have behaved essentially in an immobile manner during 

hydrothermal alteration of the volcanic rocks of the Currawong host sequence. The 

various volcanic lithologies can best be distinguished using the plots Zrfri02 vs Nb/Y 

(after Winchester and Floyd, 1977) and Nb vs Zr. The former plot is also useful for 

identifying petrographically unrecognisable altered volcanic units; and for relating 

volcaniclastic units to their coherent equivalents. 

* The coherent volcanic units of this sequence form a fairly continuous geochemical 

magmatic evolution trend but coherent and volcaniclastic andesitic rocks exhibit a wide 

compositional range. The presence of xenocrystic-quartz in some andesitic units and 

silicic volcanic clasts in volcaniclastic rocks of andesitic composition suggest that these 

60 



were generated by the combination of magmatic differentiation and mixing of andesitic 
and quartz-phyric silicic magmas. 

* Textural relationships indicate that the plagioclase-phyric rhyodacite intrusions 
were emplaced when the sediments and andesitic scoriaceous units were in situ but 
still relatively unlithified. 

* The Currawong Porphyry (quartz-plagioclase-phyric rhyolite) is a sill-like 
body which has intruded relatively lithified rocks including flow-banded and brecciated 
units of the plagioclase-phyric rhyodacite. Geochemical and stratigraphic 

evidence indicates that the Currawong Porphyry represents a late phase of silicic 
volcanism of the Thorlddaan Volcanics, in the basal part of the Gibsons Folly 
Formation. 

* Relationships of hydrothermal alteration and mineralisation to the host sequence suggest 
that the Currawong deposit is a subsea-floor replacement style volcanic hosted massive 

sulphide deposit. Massive pyritic mineralisation is intercalated with, and laterally equivalent 

to, strongly altered volcanic units which carry variable disseminated or vein mineralisation. 

* Alteration and mineralisation show a strong stratigraphic control related to primary 

permeability of the host sequence. Quartz-xenocrystic, andesitic scoriaceous volcaniclastic 
rocks were the locus of the strongest mineralisation at Currawong, and possibly at the 
nearby Wilga deposit. Plagioclase-phyric rhyodacite intrusions were also weakly 
mineralised, suggesting that the whole host sequence was in place at the time of the 

mineralising event. 

* Altered, scoriaceous, quartz-xenocrystic volcaniclastic facies with andesitic compositions 
should be a primary target for future exploration at Benambra. Trace element geochemistry, 

specifically Zr/Ti02 ratio, may be a cheap and useful tool during exploration, as the andesitic 

host units have a distinctive range of values for this ratio. This, and the presence of 

xenocrystic-quartz, should enable rapid definition of prospective horizons. 
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APPENDIX I 
* Legend for all drill logs, cross-sections and level plans. 

* Graphic drill logs, grouped on cross-sections (west to east). 
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110 — T■•■■•II4/4/41,4174/. 
• 

waxvirdr4K■4/4/4r4/■ 
510511!.4r.C.F.F.4 /41K ••■■ 

e eeeeeee 
e eeeeee, 
e eeeIeee 
e eeeeeee 
e Ieee e 

PY, 91 

py stringers & dissems. 

	

in chlorite alt. 	2212P= 

	

22/2G cf 	? 
— MS band, py, cp, sp 

140— 

IF
22/3G 
increasingly 
chloritised, with py 
veinlets 

coarse qtz in ragged chlorite 
clasts (= pumice?) in fine silty 
mud matrix. 2214P 

• • - 

minor py with 
quartz-chlorite 
veins 

171.75 m End of Hole 

120_ 

130— 

150 —  

160— 

170— 

pyritic to near MS in part - 

17500E DDH 22 

BRECCIA 
COARSE SAND 
MUD 

%
e 

 
e eeeeeee 
eleeeeIe 
e

%eI%
e

%
e

%
e

%
e

% 
e eeeeeee 
e eeeeeee 
e eeeeeee 
e eeeeeee 
e eeeeeee 
pria;ZWINE l 
e eeeeeee 
e eeeeeee 
e eeeeIee 
'I/1/11,' 	 

30 — 

40 — 

50 

haematitic 
60 

strongly silicified 

Metres 
0 

10 — 

20 — 

e

• 

eee//ee 
e

▪ 

eeeeeee 
Ieeeeeee ,  
•••••••• 
✓ rrrrrrr 

e zer•••• 
✓ rrrrrrr 

e z•eee/e 
e eeeeeee 
Ieeeeeee 
Ieeeeeee 
e /eeeee, 
e eee .6  I 	e 
eeeeeeee 

% 

e eeeeee 
%%%%%%% 

e eeIeee 
e e/eeee 
e eeeeee 
e leeele 
e eeeeee 
111%1%% 

e eeee// 
e eeeeee 
e eeeeee 
e eeeee• 
••••••••• 
✓ rrsrrr 

e eeeeee 
e eefeee 

%%%%%%% 
e eIeeee 

%%%%%%% 
e I s e III, 

70 

minor sp,g1 
thin mudstone unit 

k-x- 
11911,211/412021/4/21/211151151/51141,21 - - - _ - - - - 

lin.51n,r15,1,11n,W5115151!:!WWW:.F.V.1 

100 

110 

K4e4e;fie**;iWie;Mv4 
- v;■■•■r4Krgr.■.r.■4 

Or4r4W1/4/4/4/4VAII/4 
rIAKI4OWAngr*I4r4r4 
1/4/4•41•4I4/4141W4/41W4I4 
IIKOWAKI/4/4P7-11"4v4/4/4 
OFAKIAV4I4IIIIII4T4W.dr 
PIF4W4,4974"41FAXIFIF4 
owrdrirr.r,rirAr45■4 

TI F4 KO /4 KI4/4 
IF4/4/4I.I.IMMWIAIr4/44 
/IA IA IPA/44n P;r4 
r. 4 "4 r4 IA I /41 11•4 KI P' V.4 I F4 P4 

haematitic ? 
mudstone clasts 

  

80 

90 

22/1G. sas 
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17550E 
BRECCIA  
COARSE SAND 
MUD 

IlIllillIll 	 50 - 

BRECCIA 
COARSE SAND 
MUD I 

DDH 126 

110 - 

120_ 

130_ 

220 

230 

240 

210 - laminae 
py alt's. sandy 

126/1P 

.126/2P 
126/1G 

126/4P 

J .1////e/ 
•••••••• 

/ //e/Ie/ 

Ieeeeee/ 

0  ....../‘/%/%/%/%/%/%/% 

/ /////// 

/ /////// 

/ / eel/ / 

11////// 

/ ////1/1 

1//e//e/ 

/ /////01 

20 -- ` ` ` `,%.` % 0.` 
/ //eeeee 
%\\%%%%% 

/ ////lee 

/ /////// 

/ /e///le 

//////1/ 

• 0 

%

▪ 	

% %%'•% 

e /e/1/// 

/ ////e// 

40 -,`,`,`,`,%,`,`,‘ 
% % % S. S. % % 

'toe, /

▪ 

/e/eeee 

1/////e/ 

• "• • •  `-`-carbonaceous 
+ py, aspy? 160 

/ / / / / / e 

e / / / / / / e 

	

% • % % % 	% 
/ / 

/ / / e / e / / 

\ \ 	\ 	\ 
• / I e 

ee." eee, 
/ ///e/// 

/ 1/1//e/ 

/ 1//1/e/ 

/ /////e/ 

/ e/e//e/ 

	

III/e/e/ 
	 180 - 

/ /////// 

/ //////e 
%%  

/ / e / e / e 

/ / / / /0 ee 

/ I/ / 

▪ //e / /// 

/ //e/III 
	 190- 

/ /1///e/ 

/ ///e/// 

1/0/1/// 

1/////e/ 

/ /e///// 

/ ///1/01 

	

1///1/0 
	

200 - 
ee/e/ee 

/ //1//e/ 

/ ///1 /// 
1%11111.1  

BRECCIA 
COARSE SAND I 
MUD 

cp- chlorite 
veins 

126/6P.N ? 
sp, gl rich 
later cp 

MS bands dec. 
as QSC inc. 

cp- chlorite 
veined 

py-chlor veins 
126/3G 

carbonaceous 
with OSC 
bands 

126/4G 

270-1  

volcaniclastic? 

sericite-qtz-
carbonate-
epidote veins 

310 

haematitic & 
qtz veined 

140- 

150 -  

290 
126/3P  

300 
andesite 

126/2G.L2 

OSC bands 250 
th'out 

260 

Iv  increasing 
OSC 
alteration 

y YYYYTY 

170 - 	 280 

cp-chlorite veins 

C LENS 

66 

70 

80 

90 

100 
316.90 End of Hole 

increasing 
OSC att. 

220 - 110 
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77 

30 -• 

40 

210 - 
XXXX X X X X 
X X X X X X X X 
XXXXXXXX 
X X X X X X X X 
X X X X X X X X 
XX XXXX X X 
X X X X X X XX 

Metres 

DDH 98 
17550E 
BRECCIA BRECCIA BRECCIA 
COARSE SAND COARSE SAND COARSE SAND 
MUD MUD MUD 

0 

10 

20 - 

110 -  
PRECOLLRR 

Ieeeee 

qtz veins & OSC att. 
F4 5 VI r4r4 	/// • 
F■r•■•■•■ •`44I4:9",  

- .."04rffirr,•IA40" 
/4/41W.I.7*-Kror4P4/4" 
/47, r 	;II. I* ■I 
r•fr, 	4II..I4P41•4r 
r4r4"..r.frisaviminrifddior. 
Kignor4r4nrdr,4r,rar,cww 

+..■■■•■•■■.■■■■• 
■■•■•■■■■■■■■■■' 
NAN ■ NA. 44.•■•■•■•■■••• 64.44A,..A.AA 

220 

120_ 
py alt. 
clasts 

asc 
' inc. 
patcny cnI & py 
perv. OSC att. 

devitrified? 	230- 
E 98/5G. 

240 XXXX X X XX X X X 
XXXX X X X XXX% 
XX X X X X X X XX X 
XXX XX XX XXX% 
XXX X X XX X X X X 
XXXXXXXXXXX 
XXXXX X XX X XX 

sandy 
laminae 
replaced by 
py 

asc 
,11, alteration 

increases 220 - 

x x 
250- 	 

325.00 m Limit of Logging 

50 - .04 c/e,45, 

TYTTY TT TTYYTYTT 	98/4G r T TT YTTTY 

r*YY'r5i"'Y T 	haem. TrYTYTTY r TTT T TT T, 98/5P clasts 60jryWryTTYYTY TTYTTTI" rTTTYTTT YTTYTT rYTTYYTTY TYTTYYT 

eee/e/0 

• eeeee/0 

eee///00 

eleee 	e 

/ 	0' I e 0, 	0 
eeelee I' 0 

% 

• 	

% % % % 

'.1>" 

strong 
patchy silic. 

98/2 P 

patchy 
silicification 
increases 
98/3G 

9813P, 
98/4P 

110 

70 

80 

140 - 

150 - 

160 - 

170 - 

180 - 

190 - 

200 - 

Cowombat 
Siltstone 

98/1 P 130 
98/6G 

98/2G 

260 

270 

280- 

290 -  

300- 

310 

320- 



BRECCIA 
COARSE SAND 
MUD 

142/8G 

patchy 
haematite 
alteration 

110 — 
••••• • •• 
//////1 

• • ••••• • 
/ ////// 

• • • • • • • • 
/ /////1 •••••••• 
• 1 / / /7 •••••••• 

/ 7/ /  A. • \ • • 
120_........ 

, 	, , , 
,,,,, 

• , , , , 
130 _'",",%,`,`:,%,` 

N. • • • 	% • • 
/ 	I 

• • • N. N. N. • • 
• 7 /7 7,, 

• • • N. 	\ 

;;tAlAt.;*:;:t.N...!",•;;■;* :+NtKt:t.K.N.•:*: 
rYTTYYT —vryysr rTYsiTTYYY TYYYTYY r`r 	sr 142/9G 

140 —  

150 

qtz-py veins & 
patches 

42/2P bx of scoria & coh. 14214P, 
(qtz-xeno.) andesite142/3P 

142/1P 
silicified 
patches 

•••••■:06.06.06"..A .A .:. 
0101%6 

• •  •Omeme  • 
06.%. 

/ ////// •••••••• 
II///// 

% • 
•••••••• 
•••••••••• 

/ //////// ••••••••••• 
1/1/000/// ••••••••••• 
/ 00//////// ••••••••••• 
O /0//e/e/e ••••••••••• 
ee 	//I/ 

• • 

• lre 
• • 

WINKIF411•41 FA VA 	 1 
WV4•441r4/44P474•41 
vArr4rAr:/■PAPre- -Arati 

10 

20 

30 ............ 142/1G, 5P= 

 

ittr v4;4 
W.1 ro rkiliKr4e4 
"APWAr4F4F4P4W4114/4 
•41•4 '40 :4 V4 r4 I4 4 r4 

'411/411WAIPAIPAI.V#411/4/41/411,411151 
W"....41r4r49.40Wr45.4,4 
rd. r r4 rtV4r4 r4 0 WA 
15.4,4 ;r411740r~41KCON 
rlir4r4r:Cr•r•r4r450r4r4r4r4 

50 

60 

OSC altered 
laminae & bands 
throughout 

142/2G, 16P= UG 

folded! 
mesofaulted-

' mudstone interbeds 

chlorite-py-cp veins. 
volcaniclastic 
r'dacite? 

increasing 
OSC 
alteration 

142/10G, 
142/14P 

80 

1WWWWWWWW30_„  

/ 

WdNN7NNWO 
142h4G= bx with mudstone in 

part 
C LENS HORIZON 

dacite-mudstone breccia? 

patchy alteration 
142/3G et gi ? 70 

142/5G F142/11P= •-• ? 
193.5 m End of Hole 

clasts of fine qtz sandstone 
142/6G, 13P & 15P= 

silicified matrix; 
after mudstone? 

patchy silicification & 
quartz veins, minor py 
disseminations 

78 

90 

DDH 142 

  

17550E  

BRECCIA  
COARSE SAND 
MUD 

  

    

Metres 
0 

  

    

    

PRECOLLRR 

WW:W41/4/0"4•49:37+4■411•41. 
r41 KINSA I W. IP 

'41/4•Ir /4/4/411W41/40W/4/ 
WAIP'410051/474114,41VIKIPA 
'411W71/4/4,941!.. .77 414•41rAP 
'4 r4IP r4r7k "WOW 

40 41•47474•411•47401W0r4  
W.9741•4•41/41/..Cririntwdr 
WAFGANG*165r41/4=1•4050 

"Ar4F4y4.4"4"4.4.4."._14218P, coh. and esite 
W414,4•411rmOW4r7r4. 

142/6P 
mudstone clasts142/7P 



BRECCIA 
COARSE SAND 
MUD 

DDH 135 

coh. andesite 
SOLOS.. 

ofe  I increasing .6.1, • V qtz-py veins 

110 

finer grained, 
aphyric 
more chloritic 

10 

20 

30 

40 

50 

60 

Metres 

0 	 

17550E 
BRECCIA 

COARSE SAND 

MUD 

eeeeeeee 
eeeee.see 
eeeeeeee 
e eeeeeee 
% % %\ % % % % 

e

• 

eeeeee, 
e eeeeeee 
eeeeeeee 
eeeeeeee 
eeeeeeee 
eeeeeee I 
eeeeeeee 
eeeeeeee 
eeeeeeee 
eeeeeeee 
e eeeeeee 
e /JO, eee 
leeeeee e 
e eeeeeee 
eeeeeeee 
e eee eeee 
eeeeeeee 
eeeeeeee 
eeeeeeee 
eeeeeeee 
eeeeeeee 
e eeeeeeee 
eeeeeeeee 
eeeeeeeee 

eeeeeeee 
eeeeeeee 
' ,erre,' 
eeeseeee 
e eeeeee 
e 
eeeeeee 
O eeeeee 
//Ile,/ 
e eeeeee 
eeeeeee 
e eeeeee 
eeeeeee 
eeeeee e 
eeeeeee 

135/1G 
e eeeeee 
e ee e e e, 
seeeeee 
e eeeeee 

120 – 

130_ 

140 – 

4114§45,101,4441414151141414" 
GUICIUMMIGMM 
;ItTs647  - 	_ 
e eeeeeee, 
e eeeeeeee 
leee e eee 
O 0 0e ele e 
eeeeeeee 

!!7!7 

e■rea, tric, 
40, s-r■ 

, 

cot ..--'4wt,k—tz.•*A2L 
;01ZW,ZR5.0:Z.Zot 
flgaggigiitigggagigiggA 
Mg 4WRgggg friiNX 135/3G 

6P= 
S2 shear 

py dissem's 
& veins th'out 

bx of r'dacite 
. & mudstone 

gl, cp 

100 AO 

150 –  

160 – 

170 – 

chlorite-gl-cp veins 

C LENS 

Flow-banded 

180 –  70 

90 

rhyodacite ciasts 

80 	 strong OSC alteration 	 190– 
after sediments 

135/2G=n several bands 
,135/3P, 4P= bx of sod. 
clasts+ minor scoria 
clasts 
	

00 – 
135/5P 

Otz-chlorite vein 

breccias of andesite? 
and mudstone? 

chlorite bands 
(cp-sp) 

bx with mudstone? 
13514G= -7.7? 

100 210 – 
after 
sediments 

QSC 
alteration 
increases 

chlorite-OSC 135/5G= 

217.60 m. End of Hole alteration. 	135/7P cf 
110 
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BRECCIA 
COARSE SAND 
MUD 

quartz-carbonate 
veins & patchy 
silicification 

less silicified, chloritic 

patchy 
haematitie 
alteration 

TYYYY TYYTYY YYTYYTT YTTYYY 14418G 
YTTYYTY TYYTTY  bx of andesite and 

silicified mudstone? 

144/9G 
bx of rhyodacite & 
silicified mudstone? 

144/10G 
silicified 

py veinlets 
throughout 

BRECCIA 
COARSE SAND 
MUD 1 

PRECOLLAR 

180 - 

variably QSC 
altered 

144/11G= RR 

200 - 

plagioclase-phyric 
208.50 m End of Hole 

190 - 

1•%I 

90 

100 

110 

fr.".."" 	 .1757.1`• 	 oral""""4":11! war...4.4.4.4.4................., 
rirmwArdw.fr.r.r.v.r4 
rowor.rdwrptrox 
fri/rarAr■44r4fr-  4. *-44/4/4 
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4P5r.rimr. Ara, 4r4 ,,,r,r4  
i pro v.* . xrrowrowirdwo An 

17600E 
	

DDH 144 

110 

120-  

130 

50 - 

160 - 

very thin coh. bands 
& clasts of andesite 	170 

10 

clasts 
haematitically 
altered 

20 

30 

clasts selectively 
altered . by py ..... 

simaging 	

Metres 

0 

40 % 
ttisttAi+setegat: 
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1•41074 RI 5 K4P IF4/494) 
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50 
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70 
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in-situ bx, patchy 
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144/1G, 144/3P 
30-40% py 

minor py 
stringers 

5-10% py stringers 

	 144/1P; Fander 
(1988) reported 
shards 

py, gl; 14412P 
	 chlor.+cp+gl clasts; 
144/2G 

pyritised, silic. clasts 
& coh. andesite clasts 

decreasing OSC alt. 

144/33 
&144/4P 

thin in-situ breccia 

80 



BRECCIA 
COARSE SAND 1 

MUD 

110 — 

170 —  

180 —  

rwrapawrivir■r- 
r4I4V-4M71/41/41/4/4 4/4. 
Pr44/41P5r4KI4W4/4 - 
1•4•4/41/4/4/4WIIIII 
VIII. II I KINPV/V4 
IF4F4r45/94W4m/e 
PI4P4F4IW44/4r4I0 

280— 

. 45/2P 
py clasts; 290 — • 

":t. 45/3P - ;4-•-• 	m'stone clasts? 

260— _115RA RIZZ 

• • • • • • • • • • (mudstone?) e e ere eeee N.N.%%% 	•.■ clasts 
80 —, eeee e eee 

' e'er'', 	 190 
N.•■■•■•■•■■•■ e eeeeeee •■•■•■%%%%% leeeeeee ■ ■■•■■■■■ e eeeeeee %■•■•■•■•■•■•■ e eeeeeee •■•■■■•■•■•■■ e eeeeeee •■•■■■■■■■ e eeeeeee 

90 	 200— . 
I

▪ 

/////// 
%%%%%%%% 

%%%%1%%% e eeeeeee •■■■•■•■■■■ e eeeeeee ■ ■■•■%%•■■ e eeeeeee ■•■•■%•■■■■ 
100 %/ %e  % e  %/ %e  % e  ° % e reeeeee •■■■■■■•■•■ 

.////./.1/.1 
%%%%%%%% 

/ //////1 
%%%%%1%% 

/ /////// 
%%%%%%%.% 
11/11/.1/ 

%%%%%%%% 
/ ////././.1 

%%%%%%%% 
/ 1/1///./ ,•••••••  110 

210 —  

220 - 
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\ breccia of MS & 
chlorite-cp-sp veins & 
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.•.•.•••.....•.•.• . • .. • ... 

End of Hole 

Ir  inc. qtz veins 
& chlorite alt. 

andesite? 

bands of OSC 
throughout 

more 
chloritic 

45/6G= EJ 
45/7G, 

5/10P 

late MS veins 
• in rhyodacite? 

45/9G= 

flow-banded 

150— 

flow-banded 

45/1G 	160— 
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"grA.VAIrAir4r151r.V.,1!,  

0 

10 
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210 — 
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220 
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Metres 

BRECCIA BRECCIA BRECCIA 

COARSE SAND COARSE SAND COARSE SAND 

MUD MUD MUD 

220 
X XX X X X X X X X 
X XX X X X X X X X 
X XX X X X XX X X 
X XX X X X X X X X 
X X X X X X X X X X 
X XX X X X X X X X 
XXX ' XXXXXXX 230— 

r4r4P4W941W4 

xxxxxxxxxx 
xxxxxxxxxx 
xxxxxxxxxx 
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APPENDIX II 
* A: Geological map of Currawong and general location of drill holes (after Allen, 1987). 

B: Location of drill holes logged in this project. 

* Cross-sections and level plans. 
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APPENDIX III 

XRF analyses used in the Geochemical study 

* Coherent units 

* Volcaniclastic and altered units 
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Coherent units 

Rock type 	Sample 	Ti 02  
number 	PPm 

Nb 

PPm 

Zr  

PPm PPm 

Zr/TiO2 Nb/Y 	Si 02 Ti 

PPm 

Ti/Zr 

Currawong 	 178/12G 	1800 7.8 143  37.7  0.079 0.21 	N/A WU 
porphyry  #66/394 1500 7 128 	 34.2 0.085 0.2 	76.15  899 7.03 
	  #67/392 1500 6.4 115  34.5 0.077 0.19 73.91 7.82 
	  #134/489 1700 7.1 118.1  39.3 	0.069 0.18 75.95 1019 8.63 

#177/291 1500 8.6 116.3 33.5 	0.078 0.26 76.71 899 7.73 
Plagioclase- 133/1G 2500 5.4 165  32.7 0.066 0.165 N/A N/U WU 
phyric  135/1G 2500 5.4 159  28.9 0.064 0.187 N/A N/U  N/U 
rhyodacite  I42/8G 2100 7.1 196  35.4  0.093 0.201 N/A N/U N/U 
	  14415G 2400 5.7 168  25.7  0.07 0.222 N/A  N/U N/U 
	  144/90 2500 7.7 232  42.1 0.093 0.183 N/A N/U N/U 
	  178/1G 2300 5.4 161  27.2 0.07 0.199 N/A N/U N/U 
	  178/5G 3600 5.4 146  33 0.041 0.164 N/A N/U N/U 
	  178/7G 2000 5.9 156  24.5 0.078 0.241 N/A N/U 
	  181/2G 2100 6.9 191  43.7 0.091 0.158 N/A N/U N/U 
	  22/3G 2400  5.4 159  26.8 0.066 0.201 N/A  N/U N/U 
	  45/1G 2500 5.7 167  24.6  0.067 0.232 	N/A N/U N/U 
	  55/1G 2300 6.1 167  31.4 0.073 0.194 N/A N/U N/U 
	 98/3G 1700 5.4 141  23.6 0.083 0.229 N/A WU N/U 
	 #45/63 2500 5.3 166.4  25.6  0.067 0.207 72.97 1499 9.007 
	  #145/32 2300 	 6 163  28.9 0.071 0.208 72.74 1379 8.459 
	  #181/104 2200 5.9 148.3  27.1 0.067 0.218  72.96 1319 8.893 

	  #135/15 2500 5.5 159  19.7  0.069 0.279 73.33 1499 9.426 

	  #67/148 3500 5 109.6  18.6 0.031 0.269 75.33 2098 19.145 

#134/223 2300 5.7 163.2 27.5 0.071 0.207 	73.86 1379 8.449 

FB/BX variant  131/7G 1500 7.3 210  38.5 0.14 0.19 	N/A N/U N/U 

of  plag-phyric  131/8G 1400 6.9 195  34.6  0.139 0.199 N/A N/U N/U 

rhyodacite  142/10G 1800 8.6 245  40.8 0.136 0.211  N/A N/U N/U 

178/11G 2400 9.5 283 40.4 0.118 0.235 N/A N/U N/U 

Andesite  126/3G 8100 3.5 91  22.9 0.011 0.153 N/A N/U N/U 
	  133/9G 7500 3 81  17.9 0.011 0.168 N/A  WU 
	 142/90 7100 3.5 99  18.6 0.014 0.188 N/A N/U  N/U 

	  I44/8G 7700 3.4 95  23.2  0.012 0.147 N/A N/U N/U 

	  145/4G 7500 1.5 43  17.7  0.006 0.085 	N/A  N/U N/U 

	  180/20 6700 3.3  87  17.3 0.013 0.191 N/A N/U N/U 
	 45/7G 7700 3.6 95  21.7 0.012  0.166 N/A N/U N/U 

	 98/4G 8700 3.4 103  22 0.012 0.155 N/A N/U N/U 

	 98/6G 7200 2 49  14.8 0.007 0.135 N/A N/U N/U 

	 #135/111 4800 4.3 112.6  22.2 0.023 0.194  66.39 2878  25.56 

	 #144/41 6600 3.3 55.4  18.4 0.008 0.179 52.83 3957 71.42 

	 #145/45 5700 3.9 92.9  22.1 0.016 0.176 59.74 3417 36.78 

	 #93/143 5700 2.7 65.2  19.6 0.011 0.138 50.49 3417 52.41 

	 #98/64 6200 3.3 78.8  17.4 0.013 0.197 55.93 3717 47.17 

#148/191 7700 3.6 76.4 17 	0.01 0.212 62.53 4616 60.42 

Quartz- 131/4G 3500 3.7 112  22 	0.032 0.168 N/A N/U 	N/U 
xenocrystic  133/4G 5300 5.3  165  32.9 0.031 0.161  N/A N/U 	N/U 

andesite 142/1G 7200 3.9 85 18.7 0.012 0.209 N/A N/U 	WU 

N/A=not analysed. N/Ii=not used. Sample number prefii #=unpublished data of Dr J Stolz. 
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Volcaniclastic and altered units 

Sample Ti 02 Zr Nb Zr/TiO2 Nb/Y Rock type 
number PPm PPm PPm PPm 
142/6G 7900 4.8 11 22.2 Andesitic 0.015 0.216 
144/30 scoriaceous bx 9000 4.4 95 19.3 0.011 0.228 
142/20 8000 Qtz-x'crystic  3.7 82 17.6 0.01 0.21 
144/1G andesitic 8500 83 20.3 0.01 4 0.197 
145/10 26.6 scoriaceous bx 9000 4.2 91 0.01 0.158 
135/2G 28.8 Qtz-plag-

bearing 	 
altered rocks 

6700 133 0.02 5.4 0.188 
145/30 6300 144 28.5 0.023 5.4 0.189 
180/10 8200 5.6 139 29.3 0.017 0.191 
45/2G 5500 130 21.9 0.024 0.224 4.9 
126/40 1900 186 36.6 0.098 6.3 0.172 Plagioclase- 
135/30 36.8 0.055 3600 7.4 199 0.201 bearing 	 

altered rocks 135/5G 35.8 0.079 0.173 2300 6.2 182 
178/6G 1800 19.2 0.074 0.323 6.2 133 
126/20 2000 18.5 0.06 0.243 Strongly  4.5 121 

23.8 0.081 altered rocks 131/6G 1800 5.2 145 0.218 
133/5G 5100 114 23.7 0.022 0.181 -volcanic 
133/6G 2000 6.5 182 33.7 0.091 0.193 precursor?  
133/70 2800 9 270 48.2 0.096 0.187 

24.3 0.012 0.144 133/8G 7700 3.5 93 
38.3 0.083 0.191 I35/4G 2400 7.3 199 
34.8 0.037 0.236 142/3G 4100 8.2 152 
31.6 0.08 0.212 142/40 2200 6.7 177 

109 22.3 0.021 0.202 142/50 5100 4.5 
182 61.2 0.083 0.114 144/10G 2200 7 

0.229 144/20 5800 2.5 53 10.9 0.009 
8900 82 19.7 0.009 0.203 178/3G 4 

0.198 2100 6.5 188 32.9 0.09 180/30 
37.1 0.087 0.199 181/1G 2400 7.4 
33.3 0.186 181/3G 2100 6.2 171 0.081 

0.184 7900 5.4 144 29.4 0.018 22/10 
9.7 180 30.9 0.036 0.314 22/2G 5000 

137 24 0.015 0.225 45/8G 8900 5.4 
1800 163 29.5 0.091 0.207 45/9G 

162 0.081 0.193 55/2G 2000 5.8 30.1 
2400 7.6 220 38.2 0.092 0.199 98/2G 

148 0.039 0.216 98/5G 3800 5.1 23.6 
0.444 Strongly 	 

altered rocks 
6000 10.7 152 24.1 0.025 126/1G 

0.024 0.439 131/10 69 12.5 164 28.5 
0.504 0.027 -sedimentary 131/2G 6200 11.3 165 22.4 

precursor? 0.03 131/3G 1700 4 51 4 
0.485 2100 59 0.028 13 I/5G 5 10.3 
0.429 144/11G 4800 9.9 149 23.1 0.031 
0.382 45/6G 6500 11.7 157 30.6 0.024 
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