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Frontispiece 

Royal Tharsis area dominated by Tharsis Ridge in the centre and Mount Lye11  in  the background 



Abstract 

ABSTRACT 

Royal Tharsis was mined as an underground operation and as part of the West Lye11 

Open Cut. The original orebody consisted of steep south-westerly dipping echelon 

lenses striking 315° and extending to a depth of some 600 metres. The topographical 

expression would have been steep slopes of CVC alteration assemblages dominated 

by the Tharsis Ridge, a buttress of Owen Group rock types that separates West Lye11 

from North Lye11. 

Sulphide mineralisation is dominantly pyrite and for which at least one generation has 

been identified, with subordinate chalcopyrite. Bomite, chalcocite-digenite, covellite, _ 
molybdenite, sphalerite and galena have also been identified. Volcanic precursors 

include rhyolitic and dacitic volcanics, volcaniclastics (locally autobrecciated), 

brecciated lavas and minor porphyries. Intense and selective alteration has resulted in 

obliteration of primary textures. Feldspar destruction is almost ubiquitous. Rare 

albitised plagioclase occurs towards the periphery of the alteration system. 

Broad correlation exists between sulphide mineralisation and alteration patterns. Ten 

main alteration assemblages have been identified: mixed mica, quartz-mixed mica, 

quartz-sericite, quartz-pyrite, quartz-chlorite±sericite, chlorite, meta-conglomerate, 

quartz-haematite, quartz-magnetite and magnetite-apatite. The most common 

alteration assemblages include: quartz-sericite; quartz-chlorite-sericite and/or quartz-

sericite-chlorite; and chlorite or quartz-chlorite assemblages. 

The Ishikawa alteration index increases up stratigraphy and shows a subtle change 

through the ore zone. The chlorite-pyrite-carbonate alteration index shows a change 

in gradient through the ore zone relative to hangingwall lithologies. The manganese-

carbonate alteration index shows a relative drop at the stratigraphic footwall of copper 

mineralisation, but otherwise portrays a poorly defined response. The Ti/Zr value 

falls in the dacite - rhyolite range, with occasional andesite values. 

i 



Abstract 

Sulphide (pyrite) and carbonate show an almost inverse relationship, with a weak 

zonation evident between Fe-S-C-±0. Carbonate alteration through the 

mineralisation is muted and variable, and where distal is probably due to 

remobilisation rather than primary. K 20 shows a subtle response to mineralisation 

and thus may be a subtle vector to ore. Na20 depletion occurs through the ore halo 

and into the hangingwall. Barium and Ba/Sr ratio show enrichment through the 

mineralised halo, identified by a Ba/Sr value that rises above 30. REE show uniform 

elevated responses through the mineralised halo. 

Gold, silver, molybdenum, cobalt and ± nickel all correlate reasonably well with 

copper. Fe203  and P205  both correlate with copper, indicative of pyrite and apatite 

relationships respectively, the latter pointing to the influence of magmatic 

hydrothermal fluids. The abundance of illite is suggestive of the presence of weakly 

acidic (CO2-rich) fluids. 
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Chapter I 	 Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 PREVIOUS WORK 

It has long been recognised that mineralisation within the Mount Lye11 mineral field is 

associated with alteration (Thureau, 1886; Johnston, 1890; Gregory, 1905; Nye et. 
al., 1934; Alexander, 1953; Wade and Solomon, 1958; Solomon, 1964 and 1967; 

McDonald, 1968; Reid, 1975; Walshe, 1977; Walshe and Solomon, 1981; Corbett, 

1981; Sheppard, 1987; Hills, 1990; Berry, 1990; Raymond, 1996; Wills, 1996b). The 

importance of tectonics and later remobilisation has also been acknowledged (Loftus-

Hills, 1927; Cox, 1979; Sillitoe, 1984; Solomon et. al., 1987; Berry, 1990). Precise 

relationships between alteration and mineralisation have not been established, although 

hydrothermal alteration has been recognised by many of the workers in the field. 

Alteration associated with economic ore lenses exposed during mining operations has 

been identified (Walshe, 1977; Hendry, 1981; Raymond, 1992). Within a broader 

context distinction between the effects of different alteration modes on the primary 

volcanic facies has not been elucidated. 

The Mount Lyell field has witnessed a plethora of learned papers and erudite 

publications. These have encompassed geochemistry, structure, tectonics and 

stratigraphy. Most of the geochemical work has been carried out on subsurface 

exposures (Edwards, 1939; Solomon, 1964; Solomon and Elms, 1965; Markham, 

1968; Reid, 1975; Walshe, 1971 and 1977; Hendry, 1981; Walshe & Solomon 1981; 

Jones, 1985; Braithwaite, 1985; Eastoe et. al., 1987; Solomon et. al., 1987; Flitcroft & 

McKeown, 1992; Raymond, 1992) although work by Sheppard (1987) also involved 

extensive surface geochemistry. 

1.2 BACKGROUND 

The Royal Tharsis deposit lying some 300 metres north of the Prince Lyell orebody 

was exposed during underground tunnel excavation in the late 1890s (Batchelor, 1901; 
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Chapter 1 	 Introduction 

Cundy, 1901). The deposit has been mined as a separate orebody from underground 

and as part of a bigger operation in mining of the West Lyell Open Cut. Previous 

geological work on the Royal Tharsis as a separate deposit has been limited, primarily 

confined to diamond drilling and grade control measures employed during mining 

operations. Much of the early diamond drill core was not logged from an alteration 

perspective, but rather took the form of identifying volcanic precursors, sometimes 

with an emphasis on volcanic textures. Earlier work during mining operations has 

indicated that mineralisation in the Royal Tharsis is predominantly disseminated 

sulphides hosted by felsic volcanics. The deposit is conspicuous in that mafic to 

intermediate volcanics have a very restricted distribution. This is in direct contrast 

with other orebodies in the West Lye11 group (notably the Prince Lye11 deposit). 

1.3 ALMS AND OBJECTIVES 

The purpose of this study was to establish any relationships between copper 

mineralisation and alteration in the Royal Tharsis deposit with the aim of establishing 

vectors to economic mineralisation. The emphasis has been on the geochemistry of the 

deposit. 

1.4 METHODOLOGY AND PRESENTATION 

The study involved the following phases of investigation: review of old data, re-

logging of historic core, delineation of alteration zoning, surface geochemistry, 

summary of thin section consultancy work commissioned by CMT and carried out by 

Barron (Barron, 1997), multi element analyses, whole rock geochemistry and 

interpretation. 

The thesis is presented in several parts. The regional and local geological settings are 

described and a brief review of the history of the deposit is included. Surface 

geochemistry is investigated followed by alteration geology and alteration 

geochemistry. Data is presented as appendices and conclusions are drawn in the final 

chapter. 
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Chapter 2 	 Regional Geology 

CHAPTER 2 

REGIONAL GEOLOGY 

2.1 REGIONAL SETTING 

The Mount Lye11 mineral field lies towards the southern end of the Mount Read 

Volcanic belt (MRV), (Figure 2.1) a Cambrian volcanic association of silicic lavas and 

volcaniclastics, abundant open-framework mass-flow breccias, minor intermediate 

volcaniclastics and intrusives, with scattered basic-intermediate dykes, and minor 

sedimentary lenses. The belt is some 10 - 20 km wide, extends over a strike length of 

about 230 km and is a major feature of the geology of Western Tasmania. 

The belt occupies the eastern margin of the Lower Paleozoic Dundas trough, an 

elongate basin bounded unconformably by two blocks of Proterozoic metasediments - 

the Tyennan Region to the east and Rocky Cape Region to the north and west. The 

MRV are overlain by Late Cambrian to Early Ordovician siliciclastic Owen 

Conglomerate (Campana and King, 1963). The contact with the Tyennan is typically 

a depositional unconformity. The Dundas trough sequence can be considered in two 

parts, one related depositionally to the Rocky Cape and lacking felsic volcanics, and 

the other comprising the MRV and attached to the Tyennan region (Corbett and Lees, 

1987). 

The MRV comprises four major units or zones (Figure 2.2). The younger Tyndall 

Group overlies the three older units which are: a central volcanic complex (CVC), a 

western sequence (the Yolande River sequence (YRS) and equivalents) and an eastern 

sequence (Eastern Quartz Phyric sequence (EQS) and equivalents) (Corbett, 1992). 

The EQS has a basal unit of Precambrian-derived siliciclastics resting unconformably 

on Precambrian basement (Sticht Range Beds) and comprises quartz-feldspar-phyric 

lavas and volcaniclastic rocks, with intrusive porphyries and granitoids. The CVC 

comprises mainly felsic to andesitic lavas and interbedded pumice breccias. The YRS 

and equivalents contain Middle Cambrian fossils (Laurie et al., 1995) and comprise 
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1 
146' 147° 148°  

FORTH 
REGION 

BADGER 

	

. DIAL RA. 	HEAD 

	

'TROUGH' 	REGION -41 

gr 

Stiehl 
e Ro. beds 

O'Connors 
Zrok 

POST - DEVONIAN 

COVER ROCKS 
-42° DUNDAS 

'TROUGH' 

Sorel I 
Peninsula 

Devonian 
Granitoicts 

El Mathinna Beds 
(Ord.- Devonian) 
kraddle to Late Cambrian 

A.  secknentary sequences 

Ilftlp  Mt Read Voicanics 

Cambrian granite 

Eli Ultramafic-matic complexes 

EoCambrian ' sedimentary sequences with 
thoieitic basalts - Crimson Creek Frrin. Success Creek Gp. 

Elliott 
Boy 

New 
River 

Bathurst 
• Harbour 

Ironboun 
Ra. 

Seotraolo 

LAUNCESTON 

Precambrian 
1 

Figure 2.1 Simplified geological map of Tasmania showing the distribution of early 
Palaeozoic tectonic elements, emphasizing the MRV (after Corbett and Turner, 1989). 



Chapter 2 	 Regional Geology 

apron-like sequences of sandstone, shale and mass flow breccia, with bodies of intusive 

quartz-feldspar porphyry. The westerly limit of the YRS is in contact with the 

Crimson Creek Formation, a sequence of mafic greywacke, mudstone and basalt. 

The MRV are predominantly Middle Cambrian with U-Pb zircon ages of around 502.6 

± 3.5 Ma; (Perkins and Walshe, 1993). The rocks have undergone locally intense 

hydrothermal alteration in the Cambrian and regional metamorphism to lower 

greenschist facies in the Devonian, giving quartz-sericite-chlorite-pumpellyite-epidote-

actinolite bearing assemblages (Corbett and Lees, 1987). Most of the rocks appear to 

have been erupted in submarine environments, and include lavas, breccias, 

volcaniclastic rocks and subvolcanic intrusions. Non-welded submarine mass flow 

deposits are common within the host sequences of some of the VHMS polymetallic 

orebodies that characterise the MRV (McPhie and Allen, 1992; McPhie et al., 1993). 

Geochemically, the MRV comprise medium to high K calc-alkaline a.ndesites and more 

evolved lavas, with minor strongly LREE-enriched shoshonitic basalts (Crawford and 

Berry, 1991). 

The MRV have undergone a complex tectonic history and show both textural and 

mineralogical modification. They are strongly cleaved and recrystalised, having been 

subjected to intense hydrothermal alteration during the Cambrian and to later local 

overprinting by the Devonian deformation. Berry and Kitto (1996) summarise ten 

major orogenic and depositional events of which the last five at least have impacted on 

MRV architecture. 

Generally within the MRV the major fault trend is north - south. Of several dominant 

faults the Henty Fault (reverse extensional) divides the MRV into two distinct 

stratigraphic packages - an eastern and a western zone (Corbett and Solomon, 1989; 

Berry and Keele, 1993; Berry, 1994). North and west of the Henty Fault Zone the belt 

is divided into a Central Volcanic Complex and overlying correlates of the Dundas 

Group, large parts of which are of mainly andesitic composition. The massive sulphide 

deposits at Rosebery, Hercules, Que River and Hellyer are contained within this 

segment of the Mount Read Volcanic belt. South and east of the Henty Fault Zone, 
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the Mount Read Volcanics comprise a slightly younger Central Volcanic Complex of 

mainly feldspar-phyric rhyolitic volcanics, flanked by the volcano-sedimentary "western 

sequence". The Mount Lye11 mineral field and the Henty gold deposit are located in 

this area. Both these packages are overlain by post-andesite Tyndall Group sequence 

of quartz - feldspar - phyric crystal - rich sandstones, mass-flow breccias and 

conglomerates with minor lavas and welded tuffs (White and McPhie, 1996). The 

Tyndall Group is in turn overlain by Owen Conglomerate. 

The Owen Conglomerate comprises predominantly siliciclastic conglomerate and 

quartz sandstone being almost entirely derived from the Tyennan region to the east. 

Five formations have been recognised, attaining up to 2,000 metres total thickness, 

with each unit having a variable thickness and distribution (Solomon, 1964; Corbett, 

1990). Exposure is broadly concentrated to the east of the CVC and west of the 

Tyennan block. Provenance is Precambrian, probably from rapidly uplifted Tyennan 

block metamorphics (Solomon, op.cit.; Corbett, op.cit), with deposition taking place 

over a relatively short time span (Wills, 1996b). Clast size fines to the west while the 

dominant quartzite clasts are similar to basement lithologies. The depositional 

environment indicates a rapid transition from high energy subaqueous to alluvial to 

marine to intertidal (Laurie et al., 1995) with a notable lack of haematite and chert 

clasts in the Lower Owen compared to the Middle and Upper Owen (Corbett, op.cit). 

Minor volcanic detritus is common where the conglomerate is adjacent to or 

overlapping the MRV (Wade and Solomon, 1958; Solomon, 1969). 

The Gordon Group comprises mainly limestones with some dolomites and minor 

sandstones overlying the Owen Group (Campana and King, 1963). The Gordon Group 

is in turn conformably overlain by the Siluro-Devonian Eldon Group sandstones and 

mudstones of shallow marine origin. Marine sedimentation continued through to the 

early Middle Devonian when onset of the Tabberabberan orogeny resulted in folding 

and faulting through most of Tasmania generally interrupting sedimentary processes 

(Banks and Bthllie in Burrett and Martin, 1989, pp 182 - 237). 
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Chapter 2 	 Regional Geology 

Numerous postkinematic granitoids were emplaced in Western Tasmania in the later 

stages of the Tabbberabberan (Solomon et al., 1988), and significant mineral deposits 

are associated with some of these intrusions (e.g. Renison Bell, Mount Bischoff). 

Deposition of marine sediments occurred through the Permo-Triassic period (Clarke 

and Forsyth in Burrett and Martin, 1989, pp 293 - 338), and these were subsequently 

intruded by Jurassic dolerite sills (Baillie in op. cit., 1989, pp 339 - 409). Further 

faulting and folding occurred during the Mesozoic and Tertiary. 

2.2 MOUNT LYELL MINERAL FIELD 

2.2.1 Introduction 

The Mount Lyell deposits are hosted in an extensive zone of intense hydrothermal 

alteration that extends six to eight kilometres of strike length (Figure 2.3). The mineral 

field covers approximately six km 2, comprises mainly CVC rocks bounded to the east 

by Denison, Gordon and Eldon Groups, and is characterised by prominent north-south 

and east-west trending faults. Tyndall Group rocks are present in the Comstock area 

(Corbett, 1989). Hydrothermal alteration (Wade and Solomon, 1958) has resulted in 

the almost complete destruction of feldspar with corresponding masking of the 

volcanic precursor. Direct evidence for the source of hydrothermal fluids is sparse. 

Granitic bodies have been postulated at depth (Large et al., 1996), similar to the 

Darwin and Murchison granites and these represent potential heat sources. Over thirty 

mineralised deposits, containing copper, base metals and gold, have been recorded 

although not all of these have been mined. Several styles of mineralisation have been 

recognised (Wade and Solomon, 1958; Markham, 1968; McDonald, 1968; Bryant, 

1975; Walshe and Solomon, 1981; Raymond, 1992; Wills, 1996b). 

2.2.2 Stratigraphy 

The stratigraphy of the Mount Lyell area is summarised in Table 2.1 (after Solomon 

and Carswell, 1989; Corbett and McPhie, 1993). 
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Regional Geology 

Table 2.1 	 Mount LyeII Mineral Field 
Generalised Stratigraphic Succession 

Quaternary 	Glacial till, alluvium, up to 100 metres thick. 

Devonian 	Lamprophyre dykes which post-date Devonian cleavage. 

Ordovician • 	Grey limestone and dark grey shales of the Gordon Group, about 300 metres 
thick. Basal Pioneer Beds 10-30 metres thick overlying the Upper Owen with 
local discordance (Haulage Unconformity). 

Upper Cambrian 	Owen Group: siliciclastic conglomerates and sandstones, up to 1,000+ metres 
thick. Subdivided into: 
Upper Owen sandstone - mainly pink sandstone with minor conglomerates 
Middle Owen conglomerate - mainly pebble to cobble grade conglomerates 
and minor sandstones, locally with pebbles of haematite. 
Middle Owen sandstone - mainly red haematitic sandstone with interbedded 
chert-haematite clasts conglomerate. 
Lower Owen conglomerate - coase grained grey conglomerate, pebbles and 
boulders mainly of quartzite, quartz schist, and vein quartz 

Jukesian Unconformity 
Middle to Upper 	Mt Read Volcanics, at least 1,500 m thick, subdivided into: 
Cambrian 

Tyndall Group - mainly volcaniclastic conglomerates in upper part, 
volcaniclastic sandstones in lower part with minor lavas, fossiliferous 
limestone and breccias. Subdivided into: 
Upper Tyndall (Zig Zag Hill Formation) 
Middle Tyndall (Mount Julia Member) 
Lower Tyndall (Lynchford Member) 

Unconformity 
"Central Volcanic Complex" (CVC) - consists of mixed felsic and andesitic 
volcanics and intrusives (lavas and pyroclastics of the "mine sequence" - Cox 
1981) with andesites predominant in the upper part. 
"Western Sequence" - consisting mainly of volcano-sedimentary rocks lying 
west of, and possibly of similar age to, the Central Volcanic Complex.  

Central Volcanic Complex 

The bulk of the Mount Lyell mineralisation is hosted by the CVC. Most of these rocks 

now consist of metamorphic assemblages of quartz, sericite, chlorite and sulphide in 

various proportions (Wade and Solomon, 1958). The felsic volcanics have podded and 

banded textures on weathered surfaces and tend to be siliceous and sericitic, whereas 

the more mafic volcanics tend to be more chloritic. Mineral assemblages are not 

diagnostic, as some of the intermediate- mafic volcanics have been converted to 

quartz-sericite schist in places, and some chloritic rocks have been derived from felsic 

protoliths. The highly variable assemblages demonstrate that alteration is not 

- page 7 - 



Chapter 2 	 Regional Geology 

necessarily confined to lithofacies boundaries. The volcanics are mostly submarine 

erupted and deposited lavas, pyroclastics and epiclastics with minor interbedded 

sediments (Corbett, 1992). Facies within the Mount Lye11 field include polygonal 

jointed massive lavas, fine grained intrusives, occasional pillow lavas, hyaloclastite 

breccias, as well as monomictic and polymictic debris flows (Perkins, 1996; Wills, 

1996b). 

Tyndall Group 

Tyndall Group outcrops are present in the Comstock area at the northern end of the 

Mount Lye11 mineral field, and also in the Queen river area to the west and south west 

(Corbett et. al., 1989). The Group comprises variable lithologies (similar to the CVC) 

that tend to contain abundant, and hence diagnostic, quartz-phyric volcanics (Solomon, 

1967; Arnold, 1985; Komyshan, 1985; Corbett, 1986). Tyndall Group rocks do not 

exhibit the same intense feldspar destruction as shown by the CVC altered volcanics, 

with regional metamorphism having converted remnant calcium to epidote resulting in 

a not uncommon pink and green appearance. Limestone, with late Middle Cambrian 

trilobites (Jago et al., 1972) has been identified in the Tyndall rocks in the Comstock 

area and is indicative of shallow marine depositional conditions. The area is also 

characterised by mass-flow breccias and conglomerates containing polymict clasts of 

altered volcanics and andesites, and sulphide-bearing clasts (pyrite, galena, sphalerite 

and possibly chalcopyrite) (Green, 1971; Hall, 1975, Wills, 1996b). The welded tuff at 

Zig Zag hill has recently been reinterpreted by McPhie and White (1996) to represent a 

shallow marine depositional environment. 

Owen Group (Owen Conglomerate) 

In the Mount Lye11 area hydrothermally altered MRV and siliciclastic Owen 

Conglomerate are juxtaposed along the Great Lye11 Fault. The Owen Conglomerate 

consists of fine to very coarse siliciclastics of mixed fluvial and shallow marine facies, 

and in parts is coloured distinctively by fine haematite (Solomon, 1964). Near the 

Great Lye11 Fault the Haulage unconformity separates the Owen Conglomerate from 
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the overlying Pioneer Beds and Gordon Limestone (Corbett, 1990, 1996). The high 

energy sedimentary facies that are characteristic of the Owen Group would tend to 

indicate rapid deposition over a relatively short time span. Faunal evidence indicates 

this to be a time span of two to three million years (Laurie etal., 1995; Wills, 1996b). 

The Lower Owen Conglomerate is confined to limited outcrops at Cape Horn, 

Tharsis ridge and on Mount Lyell itself. The unit consists of a matrix-supported 

boulder conglomerate. Work by Solomon (1964) and Corbett (1990) suggests that the 

unit represents an emergent period for the underlying volcanics with a barrier to the 

west. 

The Middle Owen Sandstone is a marine sequence of strongly haematitic quartz 

sandstone with thin bands of coarser sandstone and finer siltstone (Corbett, 1990). 

The Middle Owen Conglomerate is limited in outcrop occuring as a thin continuous 

band on Mount Owen that thickens rapidly towards Mount Tyndall (approximately 12 

kilometres north of Mount Lyell). It is composed of bedded, pebble to boulder 

conglomerate and in which altered volcanic clasts tend to be less well rounded than 

Precambrian derived clasts (Corbett, 1990; Hart, 1993; Wills, 1996b). 

The Upper Owen Sandstone is extensively exposed within the Mount Lyell field: on 

Mount Lyell itself, as a sedimentary contact over the CVC and as a fault bounded 

block juxtaposed against the Iron Blow; and to the south on Mount Owen. (Gregory, 

1905; Solomon, 1964, Brophy, 1977; Corbett, 1990). It is a variable coarse to 

medium grained, haematitic sandstone with local shale and haematite-rich bands. Cross 

bedding, ripple marks and paleocurrent directions are all indicators of an intertidal 

environment (Solomon and Carswell, 1989; Corbett, 1992). Laurie etal., (1995) have 

inferred an age of 493 Ma (Middle Late Cambrian or Payntonian). 

Gordon Group 

The middle Ordovician Pioneer Beds are considered to represent a semi continuous 

fine clastic to chemical sedimentary package (Seymour and Calver, 1995) and have 
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been dated on marine gastropod and rhynchonellid brachipods as Middle Ordovician 

(possibly 458 - 400 Ma - Laurie et al., 1995). In the Mount Lye11 mineral field the 

Pioneer Beds are unconformable on the Upper Owen Sandstone, with an angular 

difference in places of 130° (Haulage Unconformity) (Wade, 1957; Solomon, 1964; 

Cox, 1981; Arnold, 1985; Berry, 1991; Williams, 1993). The unit is probably 

diachronous, generally being no more than 10 metres thick and comprises chromite-

bearing sandstone, pebbly sandstone, and pelitic interbeds with a poorly preserved 

marine fauna. In the Comstock area and in several places around the Queen river the 

Pioneer Beds rest directly on Tyndall Group with no intervening Owen rocks. 

Chromite grains, with up to 3,000 ppm Cr, are diagnostic (Hart, 1993) and point to 

derivation by erosion of ultramafic rock(s).. 

The Gordon Limestone comprises a sequence of basal interbedded limestone and 

sandstone followed by micritic impure limestone (Seymour and Calvet ., 1995) and is 

confined to the eastern edge of the Mount Lyell mineral field. 

Lamprophyre Dykes 

Intrusive lamprophyre dykes post date mineralisation within the Mount Lyell field and 

cut across cleavage and foliation. They have a variable composition ranging from 

coarsely porphyritic to fined grained, and are generally texturally well preserved with 

abundant magnetite and possibly titanomagnetite (Crawford, 1995a). The presence, in 

trace amounts, of sulphides are considered to be related to alteration and/or 

remobilisation rather than to primary, whilst small euhdral chromite inclusions have 

also been observed (Crawford, op. cit). The dykes are considered to be Devonian in 

age or possibly younger (Reid, 1975) and have been dated from 363 to 373 Ma (Baillie 

and Sutherland, 1992; McClenaghan et al., 1994). 

Glaciation and Paleogeomorphology 

Glaciation in the Linda Valley occurred during the Pleistocene (Fitzsimons et al., 

1993) with a tongue of ice flowing up the valley away from the main glacier in the 
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King Valley. The Lye11 Blocks area has glacited moraine overlying, and intermixed 

with, Pioneer/Gordon clays. Moraines at Gormanston and elsewhere in the Linda 

Valley are ascribed to the Pleistocene (Fitzsimons et al., op. cit.) 

2.2.3 Structure 

The complex tectonic history interpreted generally for the MRV is clearly 

demonstrated in the Mount Lyell mineral field. Two major orogenies have been 

recognised; an earlier Cambrian (Delamerian or Tyennan) and a later Devonian 

(Tabberbberan) event. Both of these events probably occurred in several stages (Cox, 

1979; Berry, 1991). 

The overall structure of Mount Lyell (Figure 2.4) is that of a steeply dipping 

overturned limb of a large D1 anticline (Cox, 1981; Berry 1990). Different styles of 

deformation are seen in the volcanics and in the younger, sedimentary sequences. The 

geometry of the CVC is controlled largely by upright NNW trending D1 folds with 

wavelengths of 1.51cm. Movement accommodated by tight upright folds in the 

Ordovician and Siluro-Devonian sediments is taken up by steep reverse faulting and 

cleavage-parallel shearing in the altered volcanics. Cleavage related to D1 is 

sporadically developed within the volcanics, probably due to low grade regional 

metamorphism associated with shallow depth of burial. A pervasive D2 

cleavage/foliation tends to be the dominant structural feature, having a steep south - 

west dip (Berry, 1991). Rotation of the cleavage in the volcanics occurs adjacent to 

the more competent Owen Conglomerate. The D2 cleavage planes tend to 

preferentially accommodate stress arising from shears and faults and a strong down-dip 

elongation lineation (L2) is associated with D2 cleavage formation in the volcanics. 

Shortening of up to 60% perpendicular to the cleavage and elongation of up to 150% 

in the lineation direction are typical, and are responsible for the elongation of many of 

the sulphide mineral deposits down dip (Cox, 1979, 1981). 

The Linda Disturbance is a west north west trending shear zone certainly activated 

during the Tabberabberan and probably formed during or before the earlier Cambrian 
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orogeny (Berry in Cooke and Kitto, 1994, p 9). Commensurate with the Linda 

Disturbance activation of the North Lye!! Fault resulted in a significant westerly offset 

to the Great Lyell Fault as well as the development throughout the area of a regionally 

penetrative upright WNW - trending cleavage (Berry, 1990). Both the Great Lyell 

Fault and the North Lye!! Fault exerted some control on the ultimate form of the 

Mount Lyell field, although exact relationships have not been established. Wills 

(1996b) has defined the Great Lye!! Fault as an intermittent decollement structure that 

juxtaposes an upper rigid siliciclastic Owen Conglomerate and a lower ductile altered 

CVC sequence. Recognition by Corbett (1996) that the Great Lye!! Fault is not 

present in the southern corridor area points to a pre-Devonian origin for this fault. 

During the Cambrian orogeny Mount Lyell was tectonically very active. The Owen 

Group unconformities are the main evidence for Cambrian tectonism which appeared 

to occur over a very short time span of 510 to 495 Ma (Berry and Kitto, 1996). This 

correlates with the Delamerian orogeny of south eastern Australia (Williams, 1978). 

The Haulage Unconformity is explained as a product of more intense Cambrian 

deformation within a low strength hydrothermally altered area. The cause of the 

folding in the conglomerate beneath the Haulage Unconformity in a 400m wide zone 

adjacent to the Great Lye!! Fault is contentious (Berry, 1990). 

The Devonian orogeny has been dated at 390 to 380 Ma (Williams et al., 1989; 

Seymour and Calver, 1995). Two major phases of deformation have been recognised, 

an earlier north - south event and a later WNW - ESE event, and during which 

temperature ranged from 275°C to 350°C under a confining pressure of about 2kb 

(Cox, 1981). Cleavage within the CVC is related to the hydrothermal alteration 

mineralogy. Cox (op. cit.) and Williams et al. (op. cit) recognise one Devonian 

cleavage while Arnold (1985) and Berry (1990) recognise two. Complex faulting has 

been recognised although evolution of knowledge has resulted in variations in the 

modus operandi of fault emplacement: Loftus-Hills (1927) proposed multiple complex 

phases; Cox (1979 ) suggested at least four stages of North Lyell faulting; while Berry 

(op. cit) recognised the Devonian tectonics as being a complex reactivation and 

extension of the early Cambrian structures. Berry (1991) further recognised the CVC 
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sequence to be continually east facing with the Iron Blow deposit being overturned 

(Wills, 1996b). 

Devonian veins tend to mimic local mineral assemblage (Green, 1971; Cox, 1981) and 

reflect proximity to the hydrothermal alteration system. Cox (op.cit.) has further 

inferred that vein assemblages are the product of fluid - wall rock interaction. 

2.2.4 Ore Deposits 

Several styles of mineralisation encompassing over twenty separate deposits have been 

recognised in the Mount Lyell field (Figure 2.5) as described by Wade and Solomon 

(1958), Markham (1968), Bryant (1975), Walshe and Solomon (1981). Wills (1996b) 

has extended this recognition by categorising the five groups and has further refined 

this classification by distinguishing massive and disseminated sulphides (Wills, op.cit.). 

The massive sulphide deposits occur near the top of the mine sequence. Although 

largely recrystallised, these ores preserve some laminated textures, suggesting a sea-

floor exhalative origin (Arnold and Carswell, 1990). The larger but lower grade 

pyrite-chalcopyrite deposits are found stratigraphically beneath the massive sulphide 

mineralisation and the bornite-chalcopyrite ores, whilst base metals (galena and 

sphalerite) occur at Comstock. The alteration zones are broadly coincident with the 

sulphide mineralisation which is confined to the altered CVC. The "copper clay" 

deposits occur within clay horizons of the Ordovician Gordon Limestone. 

Table 2.2 	 Mount LyeII Ore Production, 1893 - 1997 

Deposit Tonnes Cu % Au g/t Ag g/t 

West Lye!! Group 92,921,000 0.95 0.3 2.1 

North Lye!! Group 10,400,000 3.38 0.3 19.6 

Horn Group 5,395,000 1.67 0.4 3.8 

Copper clays 243,000 1.57 0 0 

Blow Group 5,463,000 1.30 1.9 64.7 

TOTAL 114,422,000 1.22 0.4 6.7 

(West Lye!! group = West Lyell open cut, Royal Tharsis, Prince Lyell (including A lens), Razorback; 
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North Lyell group = Crown LyeII 1, 2 and 3, Twelve West, North Lye11 and Lye!! Tharsis; 
Horn group = Lye!! Comstock, Cape Horn; 
Copper clays = Lye!! Blocks, Lye!! Consuls, King Lye11; 
Blow group = Iron Blow, South Lye11) 

Production from the five main ore types is summarised in Table 2.2. Total contained 

metal yielded by the Mount Lyell mineral field amounts to some 1.41 million tonnes of 

copper, 773,000 kgs of silver and 1.46 million ounces of gold. 

Styles 

More recently Wills (1996b) has extended recognition of the main styles of 

mineralisation by categorising five main groups. His interpretation invokes an active 

hydrothermal field analogous to the TAG field along the Atlantic Ridge (Rorma et al., 

1993). The massive sulphides equate to the TAG mound while the disseminated 

sulphides represent stacked lenses in a very large hydrothermal field (also accounting 

for the relationship between alteration and sulphide mineralisation). A redox model 

has also been proposed by other workers (Solomon, 1969; Arnold, 1985; Sillitoe, 

1985; Berry, 1990; Raymond, 1993; Large et al., 1996). At the redox interface 

reducing hydrothermal fluids charged with base metals, sulphur and barite reacted with 

cooler connate water emanating from an eroding Owen Conglomerate. Bornite 

mineralisation is probably related to a separate thermal pulse(es) resulting in 

establishment of a redox interface at the altered CVC - Owen Conglomerate contact, 

and may be of a younger age than the more widespread disseminated and massive 

styles of mineralisation. 

Disseminated pyrite -chalcopyrite 

Disseminated pyrite-chalcopyrite mineralisation accounts for around 86% of the 

orebodies, and from which some 92 million tonnes with an average grade of 0.95% Cu, 

and 0.3 1 g/t Au, and 2.10g/t Ag have been mined. Grades of deposits in this group 

range from 0.72% to 2.38% Cu and includes the following ore bodies; Prince Lyell, A 

lens, Blazey, Royal Tharsis, Western Tharsis, Crown Lyell 1 and 3, and Cape Horn. 
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Pyrite and chalcopyrite mineralisation is most abundant in the felsic volcanics, but is 

locally present in more mafic units. Chalcopyrite content is independent of pyrite 

abundance in detail, although on a broad scale copper mineralisation is invariably 

hosted by more pyritic zones within the volcanics. Minor amounts of galena and 

sphalerite are not uncommon. Magnetite bodies and apatite lenses have been exposed 

in the Prince Lye11 orebody (Raymond, 1992). Gold occurs in the form of silver-rich 

electrum. Molybdenite is an accessory mineral in most deposits, occuring in trace 

amounts. (Crawford, 1995a, 1995b). Trace amounts of cobalt are associated with 

phase 3 of the pyrite mineralisation (Raymond, 1996). 

In general the deposits are elongate, lensoid bodies with the longer axis parallel to local 

cleavage. Dip is steep and to the west (65° - 800) and strike is to the north. The most 

obvious feature of this deposit style is extensive down dip continuity, unless truncated 

by the Great Lyell Fault, frequently being open both along strike and down dip. Both 

Prince Lyell and Western Tharsis orebodies extend 600 metres below sea level. 

Generally the disseminated copper deposits comprise two distinct grade populations, 

namely high grade cores and low grade envelopes, resulting in high grade - low 

tonnage and low grade - high tonnage distributions. Production from these deposits, 

particularly from Prince Lyell has encompassed both distributions. Interpolation of 

these grade zones generally enables the deposits to be resolved into lenses of higher 

grade mineralisation that are concordant with the well developed foliation and broad 

stratification within the volcanics. 

Massive pyrite-chakopyrite 

The largest bodies of this mineralisation style are the Iron Blow (the original Mount 

Lyell) and the adjacent sub-surface South Lyell deposit, and from which some 5.5 

million tonnes at 1.30%Cu, 1.98g/t Au and 64.70g/t Ag were mined. Production 

grades were distorted by high grade gold and silver (stromeyerite) shoots of up to 15 

git Au and 2,000 g/t Ag against the Great Lyell Fault (Blainey, 1954). 
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These deposits are the most convincingly volcanogenic mineralisation in the Mount 

Lye11 field. Beds, boudins and large lenses of finely-laminated massive pyrite are 

accompanied by variable Cu, Pb and Zn sulphides (Sticht, 1905, 1906). Framboidal 

textures have been recognised (Markham, 1968). Mineralisation is hosted entirely by 

the silicic, rather than the more mafic volcanics, whilst the frequently fault bounded 

contact with the Owen Conglomerate is notable for haematite barite alteration. 

Significant tetrahedrite is also present at the Iron Blow (Gregory, 1905). 

Bomite-chalcopyrite 

Many of these orebodies are blind pods of mineralisation that do not outcrop. By 

comparison with the disseminated pyrite-chalcopyrite style orebodies they are small, 

ranging in size from 50m to 300m down dip, 30m to 150m along strike and 30m to 

60m in width. They account for less than 10% of the gross resource, and from which 

some 10.4 million tonnes with average grades of 3.38% Cu, 0.38g1t Au and 19.57g/t 

Ag have been mined. Grades of deposits in this group range from 1.62% to 5.28% Cu 

with gades of up to 40% Cu reported locally. Ore bodies within this group include; 

North Lye11, Crown Lye11 2, Twelve West, Lye11 Comstock and Lye11 Tharsis. 

These deposits are associated with intense haematite-barite or silica-hematite-barite 

alteration that occurs at the Owen Conglomerate contact. Primary textures are 

obliterated particularly in the most haematite-silica-barite altered zones. Sillitoe (1985) 

postulated bornite formation through the mixing of reduced hydrothermal fluid with 

cooler connate water. Anomalously steep to easterly dipping parts of the more 

prominent faults seem to be preferred sites for the remobilised alteration. 

Base metals; pyrite-galena-sphalerite-chakopyrite 

Sub-economic amounts of galena and sphalerite occur in the Comstock area. 

Mineralisation is associated with both massive (e.g. Comstock quarry (Markham, 

1968)) and disseminated (e.g. Cape Horn (Green,1971)) pyrne-chalcopyrite styles. 

Framboidal textures have been recognised (Green, op. cit.). Grades of 28% Pb, 20% 
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Zn and 0.5% Cu, associated with galena lodes, were recorded in Tasman Crown 

workings, but only in minor tonnages mined. 

Some 5.4 million tonnes of ore at a grade of 1.67%Cu, 0.48g/t Au and 3.78g/t Ag 

have been mined from these deposits. The bulk of the tonnage has come from Cape 

Horn. Mineralisation occurs as brecciated chert bodies (Markham, 1968; Green, 1971) 

and is commonly associated with strong sericite-pyrite-quartz alteration. The lead - 

zinc rich sulphides are possibly representative of exhalative horizon(s) at the top of a 

large hydrothermal alteration zone that would be characteristic of a VHMS sytem. 

Copper clays; native copper -cuprite 

The Copper Clay style of deposit includes a small group of deposits along the eastern 

boundary of the mineral field. Deposits of this type include Lyell Blocks, Lyell 

Consuls and King Lyell. Production from these deposits was limited by ground 

conditions and water (Solomon, 1969). 

Mineralisation occurs as native copper and copper oxides, including cuprite which 

gives way to chalcocite at depth, in weathered carbonaceous and ferruginous Gordon 

Limestone (Edwards, 1958; Markham, 1966; Reid, 1975). These deposits are in part 

associated with limonitic gossan (Solomon, op. cit.) and are thought to have been 

formed through fluvioglacial processes involving precipitation of copper in a clay 

residue after (Gordon) limestone (Wills, 1965). Mineralisation is considered to be 

geological young (Cainozoic) due to the incoherent nature of the host lithology within 

Gordon Group units that are above the Haulage unconformity (Wills, op. cit.). 

Age of Mineralisation 

The following evidence points to a Cambrian age for some of Mount Lyell 

mineralisation: 

• radiometric zircon (U-Pb) dating of 502 ± 3.5 Ma (Perkins and Walshe, 1993; 

Perkins, 1996) on the host volcanics 
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• a biostratigraphic age of about 501 Ma through fossil identification (Jago et al., 

1972; Laurie etal., 1995) 

• framboidal and colloform textures suggestive of pre-metamorphic sulphides 

(Markham, 1968; Hall, 1975; Cox, 1981) 

• lead isotope work pointing to a Cambrian age (Gulson and Porritt, 1987) 

• sulphur and oxygen isotope work suggestive of derivation from Cambrian seawater 

(Raymond, 1992) 

• similarity of the Iron Blow and Tasman Crown to the Rosebery (Braithwaite, 1974; 

Green et at, 1981; Corbett, 1997) and Hellyer (Gemmell and Large, 1992; Allen in 

Cooke and Kitto, 1994, pp 107 - 108) systems which have been dated as Cambrian 

VHMS deposits 

• mineralised clasts in the Tyndall Group suggestive that hydrothermal alteration and 

sulphide mineralisation are syn- or post-CVC and pre-Tyndall in age (Corbett, 

1981) 

• overlying Tyndall volcanics are significanity less altered than CVC volcanics (i.e. 

main CVC alteration is pre-Tyndall) (Corbett, 1977) 

• the abundance of haematite clasts after sulphides in the Owen suggests at least a 

pre-Owen age for some of the mineralisation 

• sedimentological evidence (McPhie et cd., 1993) whereby sulphide clasts in volcanic 

units must be of at least the same age as the host rock 

• similarity in haematitic clast chemistry with the chemistry of massive haematiic 

sulphide bodies (e.g. the Iron Blow and North Lyell) (Hart, 1993) 

This evidence does not account for mineralised quartz veins that are common 

throughout the field. These are generally considered (Bird, 1984; Sillitoe, 1984, 1985; 

Arnold, 1985; Berry, 1990) to be Devonian remobilisation associated with the 

Tabberabberan Orogeny. These veins are thought to be post S2 development and pre-

lamprophyre dyke emplacement (Cox, 1979), and have been assigned an age of 380 - 

390 Ma. It should be noted that these veins alone do not carry significant economic 

mineralisation. 
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ROYAL THARSIS - DISCOVERY, HISTORY AND GEOLOGY 

 

3.1 HISTORICAL BACKGROUND 

The actual discovery of the Royal Tharsis deposit is not fully recorded although the 

deposit was known at the turn of the century when South Tharsis and Royal Tharsis 

were separate mines purchased by MLMRC. At that time there was obviously some 

sub surface development as assessment reports (Batchelor, 1901; Cundy, 1901) refer 

to drive and tunnel excavations, rises and winze development, with some not 

insignificant copper grades. Prior to their purchase by MLMRC production from both 

mines was concentrated in a plant located on Glovers Creek (Nye et al., 1934). Nye 

(op. cit.) describes Royal Tharsis surface outcrop located some 50 feet (approximately 

15 metres) from the south west extremity of the Tharsis conglomerate with 

mineralisation occurring 6 inches (approximately 15 centimetres) below surface. 

Lithologies were described as impregnated schists striking N65°W, dipping 72°W 

(Batchelor, 1901); and as schist and quartzites dipping 70°W with impregnated Fe and 

Cu pyrites (Cundy, 1901). Cundy distinguished two types of ore; one being quartzite 

with chalcopyrite and bornite mineralisation, and the other being schist with 

disseminated chalcopyrite. These are akin to North Lye11 and West Lye11 type 

mineralisation (Markham, 1968) and have implications for both geological settings and 

consequential exploration. 

3.2 LOCATION 

The Royal Tharsis deposit is located at the northern end of the former WLOC some 

300 metres north of the Prince Lye11 orebody. Any surface expression has long since 

been removed by mining. The mined deposit had a dip of between 60° and 80 0  to the 

west, a regional strike of 315°, approximate dimensions of 500 metres long by 30 

metres wide and extended to a depth of 600 metres below surface. Depth extension is 

constrained by the Great Lyell Fault and westerly plunging Owen Conglomerate, 
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although the precise basal position has not been established and there is potential for 

the orebody being open at depth. 

On plan (Figure 3.1) the deposit extends from an approximately southerly limit along 

7700N to 8500N in the north, and from 3600E at its westerly limit to 4400E in the 

east (co-ordinates in 315GRL grid). The deposit can be split into two areas, one to the 

north (historically equivalent to the Royal Tharsis mine) and one to the south 

(historically equivalent to the South Tharsis mine). Mineralisation can be extrapolated 

along strike, to the north as the Western deposit, and to the south as A lens and the 

Prince Lye11 deposits. The boundaries between the various orebodies are not precise, 

being more a function of gradually decreasing sulphide mineralisation and usually 

defined on a copper contour. To the north east the Tharsis Ridge (Figure 3.2) forms a 

potential topographic buttress between the West Lye11 and North Lye11 styles of 

mineralisation. To the west a subtle change to a gently sloping topography marks a 

rough correlation with the limit of the alteration system. 

Figure 3.2 
Photograph (looking north) of the Tharsis Ridge which marks the eastern limit of  and  dominates the 
northern boundary of the Royal Tharsis deposit. The ridge is composed of both middle and upper 
Owen Group and it is faulted across both north-south and east-west axes. The view is predominantly of 
middle Owen lithologies (to the west of the picture) that consist of sandstone and conglomerate. To the 
east of the picture the lithologies pass into upper Owen sandstone and conglomerate  and  in which chert 
clasts are common. 
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3.3 GEOLOGY 

The geology and mineralisation of Royal Tharsis is similar to that of Prince Lyell. 

Little has been written about the Royal Tharsis deposit (Gregory, 1905; Nye et. al., 

1934), in contrast to a significant number of publications that describe the Prince 

orebody (Alexander (1953); Wade and Solomon, (1958); McDonald (1968); Reid 

(1978); Hendry (1981); Bird (1982); Arnold and Carswell (1990); Hills (1990); 

Flitcroft and McKeown (1992); Raymond (1992)). 

3.3.1 Stratigraphy 

The Royal Tharsis deposit occurs within steeply dipping overturned, altered rhyolitic 

volcanics. The local term of felsic has been used commonly in describing the main type 

of alteration lithology (Wade and Solomon, 1958). Relict igneous textures and trace 

element geochemistry indicate that a wide range of rhyolitic and dacitic lava breccias 

and volcaniclastic rock types may be the precursors to the alteration lithology 

described as felsic volcanics. 

Copper mineralisation is almost entirely hosted within a sequence of intensely altered 

felsic volcanics. The structural footwall (stratigraphic hangingwall) rocks comprise 

altered felsic volcanics similar to the mineralised horizon, with enclaves of less altered 

volcanics, volcanic breccias and very occasional fine grained shale or ash units. The 

felsic volcanic sequence is up to 500 metres thick. A large proportion of the 

stratigraphic hangingwall sequence towards the south end of the ore zone is truncated 

by the Great Lyell Fault. Gregory (1905) refers to the faulted nature of the 

schist/conglomerate contact. As alteration and deformation become more intense an 

increasingly recrystallised siliceous groundmass is generated (see Appendix IV). 

Within the ore horizon, the felsic volcanics are variably pink to grey, quartz chlorite- 

sericite rocks in hand specimen, often within medium to coarse phyllosilicate alteration 

domains. Pink colouration is caused by extremely fine grained disseminated haematite 
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in the quartz rich domains. The haematite dusting is usually visible in the structural 

footwall rocks where the felsic volcanics may develop a very deep red colour. Highly 

altered dacitic volcanics are probably a minor component of the Royal Tharsis 

stratigraphy based on identification of similar lithologies in the Prince Lye11 deposit as 

described by Raymond (1992) and where they probably represent altered lavas or 

shallow intrusives rather than bedded rocks. 

In thin section the felsic volcanics consist predominantly of very fine grained mosaic-

textured quartz (with minor disseminated sericite ± chlorite ± siderite) crossed by a 

network of anastomising wisps of sericite ± chlorite (Hendry, 1981; Braithwaite, 

1985 )(and Appendix IV). Accessory minerals such as pyrite, chalcopyrite, magnetite, 

monazite and apatite are concentrated in the phyllosilicate zones. The distribution of 

quartz-rich and phyllosilicate domains does not appear to be controlled by pre-existing 

compositional or textural heterogeneities in the original rock (Hendry, op. cit.). A 

nodular pseudofragmental texture results from the segregation of quartz and chlorite 

alteration. The pseudofragmental texture gives rise to the characteristic appearance on 

weathered surfaces that is common within the West Lye11 area (Wade and Solomon, 

1958; Walshe, 1971). 

Small scale interfingering suggests that the majority of the felsic lavas and intrusives 

may be bedded with volcaniclastic rocks. This interfingering is sometimes seen on a 

much larger scale (see Figure 4.16 in chapter 4). Passively extruded lavas or shallow 

intrusives are indicated by the presence of rare euhedral and embayed quartz 

phenocrysts (Appendix V, Plate 1, Figure 4), which are the only definite primary 

igneous features identified in the felsic volcanics. 

Intermediate - mafic volcanics that comprise the mining hangingwall of the Prince 

Lye11 deposit (Walshe and Solomon, 1981; Hills, 1990) have not been identified at 

Royal Tharsis. These rocks are typically intercalated volcanics and are interpreted to be 

intensely altered andesitic to basaltic volcanics, mainly from their trace element 

geochemistry. The intense alteration and layer - parallel shearing almost completely 

masks original internal structures. They comprise a foliated groundmass of fine grained 
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intergrown chlorite and sericite with disseminated quartz and accessory pyrite, 

magnetite, haematite, monazite and apatite (Raymond, 1992). 

Very minor units of polymict volcaniclastic breccias and conglomerates are the only 

rocks in the Royal Tharsis area to preserve undoubted volcaniclastic textures (Walshe 

and Solomon, 1981; Raymond, 1992). These rocks occur throughout the Royal 

Tharsis sequence in horizons a few centimetres to a few metres thick, and can be clast 

or matrix supported. Clasts range in size from 1 to at least 50mm and are 

predominantly angular to sub-angular. The volcaniclastics are laterally impersistent 

and either wedge out or may be destroyed by alteration over less than 10 metres along 

strike. When intercalated with the felsic volcanics, the breccias occur as mildly altered 

enclaves which grade into more strongly foliated altered felsic volcanics. 

Alteration of the breccias and conglomerates ranges from mild recrystallisation with 

clast textures largely intact, to more strongly altered rocks with only ghosts of the 

original clasts preserved. The progressive alteration of the breccias is completely 

destructive of the primary clastic texture. The matrix of the breccias is the most 

altered part, indicating high permeability, and giving rise to significant pyrite, 

chalcopyrite, magnetite and haematite mineralisation. Most common breccia clasts are 

fragments of felsic lavas and intrusives. Volcanic quartz phenocrysts and altered 

fragments of fine grained shale or siltstone also occur in the breccias. The origin of the 

breccias is unclear. 

Rare, very thin altered shale horizons occur as intercalations in the volcanics. The 

lenses are up to ten centimetres thick and preserve no internal layering or sedimentary 

structures. They may extend laterally for at least several metres, but knowledge of 

their extent is limited. Contacts between the shales and surrounding altered volcanics 

varies from sharp to gradational. They commonly contain minor or accessory amounts 

of fine grained disseminated magnetite mineralisation. Finely disseminated or veinlet 

pyrite of similar grain size is developed to a lesser extent. Shale horizons towards the 

stratigraphic hangingwall contain disseminated haematite, commonly pseudomorphing 

euhedral embayed magnetite, imparting a purple-grey colour to the rocks. Strong 
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pyrite and/or magnetite mineralisation at the margins of the shale units may suggest 

that fluids associated with deformation moved along lithological boundaries which 

dilated due to the ductility contrast between the shales and volcanics. 

Lamprophyre dykes are similar to those in the Prince Lyell deposit where they 

behave as marker units in the structural hangingwall and where they sometimes branch 

dichotomously. The dykes are of Devonian age (McClenaghan et. al., 1994), are 

locally strongly fractionated and cut across cleavage and foliation. They are fine 

grained biotitic microsyenitic rock types, with cognate inclusions of olivine and 

feldspar nepheline, frequently magnetic and sometimes containing sulphides (pyrite and 

± chalcopyrite) probably associated with Devonian remobilisation (Berry, 1990). In 

thin section the rock shows serpentine-altered olivine and clusters of diopsidic 

clinopyroxene (Appendix IV, Plate 13, Figures 3 and 4). 

Great Lye!! Fault 

The fault at Royal Tharsis varies in character from a sharply defined, narrow shear 

zone displaying a laminated, mylonitic texture, to a zone several metres wide of 

gradually increased shearing and frequently with prominent phyllosilicate gouge 

material. Conglomerate fragments and larger coherent fault slices of Owen 

Conglomerate may be included in the fault zone. Altered volcanics within the fault 

zone are commonly highly foliated, fine grained sericite-quartz schists with variable 

amounts of siderite and haematite alteration. Generally the fault zone is poorly 

demarcated, particularly at surface where expression is obscured by cross-cutting east-

west trending faults. 

Owen Conglomerate 

In drill core conglomerate intersections consist of well-rounded metamorphic quartz 

clasts, up to several centimetres across in a sandy, siliceous, haematitic matrix, with 

lesser units of pink haematitic quartz sandstone. Silicification and minor sericite 

alteration is developed in places adjacent to the volcanics contact. 
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Figure 3.3 
Drill core illustrating the contact between Owen Group lithologies and sheared CVC volcanics. The 
volcanics are heavily broken through the Great Lyell Fault resulting in incompetent ground conditions. 
Not clearly visible, but present in the core are both the haematitic dusting that is characteristic of the 
Owen and also distinctive sub-rounded fragments that readily identify the conglomerate. 

3.3.2 Structure 

The dominant structural feature of the Royal Tharsis volcanic sequence is the strong 

pervasive D2 foliation. Although D1 cleavage is developed in the Owen 

Conglomerate adjacent to the volcanics, it is rarely observed in the volcanic host 

rocks. The D2 foliation in Royal Tharsis area dips steeply to the south-west, parallel 

to the regional volcanic layering and to the orientation of the Royal Tharsis copper 

mineralisation (Cox, 1981). 

Major discrete faults or shears with strong continuity through the Royal Tharsis 

sequence are rare as most of the strain has been accommodated by movement along 

D2 cleavage planes and along several less continuous cleavage-parallel shears. 

Discontinuous, post-cleavage, shallow-dipping reverse faults, locally referred to as 

"flat faults" (Cox, 1981; Berry, 1990; Raymond, 1992; Flitcroft and McKeown, 1992) 

are common in the Mount Lye11 region. The faults occur as conjugate sets, dipping 

south-east and north-west and are generally no more than minor flexures and strongly 

developed joints as very little, if any, movement occurs along them. Quartz + siderite 

± chlorite ± chalcopyrite ± fluorite ± haematite veins, which occur throughout the 
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altered volcanics, are commonly associated with the "flat faults" an indication that the 

faults have acted as fluid conduits during late stages of Devonian deformation. The 

principal stress direction is subparallel to the strike of the orebody (Cox, op. cit.). 

The position of the younger Owen lithologies relative to the CVC volcanics indicates 

that the sequence is overturned and thus the structural (or mining) footwall is the 

stratigraphic hangingwall. Sedimentary evidence for direction of younging is not 

recorded. 

3.3.3 Orebody Description 

The Royal Tharsis deposit is composed of a series of echelon lenses. The ore zone is 

the down dip extension of one of the major ore zones mined in WLOC. The wide ore 

zone represented by the 0.5% Cu envelope can be resolved into at least two higher 

grade ore lenses with high grade cores when a 1.5% Cu cutoff is applied (McDonald, 

1968; Reid, 1978; Bird, 1982). Mineralisation occurs mainly in the form of 

disseminated pyrite - chalcopyrite with occasional trace bomite. Other minerals 

include sphalerite, galena, molybdenite, stromeyerite, mawsonite, tetrahedrite, 

tennanite, gold, magnetite and apatite (Markham, 1968; Reid, 1975). 

Geological mapping has indicated stratiform control of the lenses (Arnold, 1985). In 

the main they are concordant with the dominant cleavage in the volcanics. The 

approximate dimensions of the lenses are up to 250 metres in strike length, 20 to 50 

metres wide, and extend to a depth of 600 metres below surface. The ore zone strikes 

at 315° and has an average dip of 60° - 80° the southwest. 

Wiggins and House (1991) determined the orebody as being petrologically distinct, 

characterised by a weak mining hangingwall that was prone to rapid deterioration on 

exposure. They recognised two principal rock types; 
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• a light grey structural hangingwall lithology: barren orange - sericite - pyrite - 

quartz and strongly foliated grey orange quartzite with light green sericite bands, 

typically angular in appearance. 

• a fawn orebody lithology: muddy light silvery grey foliated schist with 

disseminations and veinlets of chalcopyrite, rounded and partly oxidised. 

Harper (1992) described the host sequence as steeply dipping volcanics located in the 

immediate hangingwall of the Great Lyell fault. He recognised the orebody as being 

crudely stratabound in units of pink to grey locally fragmental felsic volcanics with the 

footwall demarcated by grey green foliated chlorite - sericite altered volcanics 

becoming mylonitic along the contact with the Great Lyell fault. The absence of 

intermediate to mafic volcanics was noted. 

3.4 MINING HISTORY 

Mining at the turn of the century was confined to flux for pyritic smelting (Sticht, 

1905). The bulk of the operation was open pit although there was presumably some 

underground activity. Discrimination between ore source, whether from underground 

or from surface, is difficult to determine from existing records. Tonnages were not too 

large and dropped off as the century advanced, possibly commensurate with the 

transition away from surface operations. By 1909 mining of Royal Tharsis for flux had 

stopped. 

It was not until the late 1920s that attention was again focussed on Royal Tharsis when 

the efficiency of the Mount Lyell mill and high grade ores from North Lyell enabled the 

lower grades of the Tharsis orebodies to be mined (Blainey, 1993). In 1931 - 1933 

rising of the Royal Tharsis shaft (Jakins, 1931 and 1933) from underground (off the 

North Lyell tunnel) established an innovative precedent in Australian mining. At the 

same time use of waste from rising of the shaft as fill in underground stoping created 

another first in Australian mining. Shaft development was in lithologies described as 

"volcanic tuffs lying alongside Silurian conglomerate", striking to the NW and dipping 

60° to the west (Jakins, 1933). 
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Underground mining initiated in the early 1930s continued virtually uninterrupted 

through to the middle of the 1950s when emphasis of the MLMRC operation shifted to 

surface with the developemnt of WLOC. Royal Tharsis was the last underground 

operation on the Mount Lyell field prior to commencement of underground mining of 

the Prince Lyell orebody (late 1960s to early 1970s) that has continued to date. 

In the intervening decades occasional tonnages were mined sporadically from Royal 

Tharsis. The mid 1960s (McDonald, 1968) and early 1970s (Burgdorf, 1970) saw 

some mining but overall tonnages and copper grades were generally low. McDonald 

(op. cit.) reported a strike of 315 0  and a dip of 65° SW with the deposit having a 

vertical to northerly plunge. He determined the orebody to be pipelike, surrounded by 

a fringe of lower grade material and converging with the Owen Conglomerate at depth. 

In the mid 1980s a more sustained period of operations ensued (Hills, 1985) during 

which vertical crater retreat mining was used. Bird (1982) recognised interconnected 

en echelon structures within the deposit and potential for extension at depth. 

Operations continued intermittently through to late 1991 when significant dilution 

caused by incompetent lithologies in the hangingwall reduced ore recoveries to 

unprofitable levels (Wiggins and House, 1991; Harper, 1992). Dilution was 

exacerbated by strike slip shears, which combined to preclude further underground 

mining. These adverse conditions were a repetition of the main period of underground 

mining (1930s to 1950s) when ground conditions were generally bad (Greenway, 

1975). 

3.4.1 Production Summary 

Historical production from Royal Tharsis is summarised in Table 3.1 and depicted 

graphically in Figures 3.4, 3.5 and 3.6. It should be noted that some of the Royal 

Tharsis was mined as part of WLOC and tonnages involved were not discriminated 

from within the broader WLOC statistics. 
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Figure 3.5 
Total flux mined from Royal Tharsis, 1900 - 1908 
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Figure 3.6 
Total underground mine production from Royal Tharsis, 1930 - 1992 

Most of the underground mining took place before commencement of mining from 

WLOC. After closure of WLOC additional underground mining of Royal Tharsis was 

used primarily to supplement mining of the Prince Lyell deposit. Figure 3.6 details 

total underground production from Royal Tharsis. 
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CHAPTER 4 

SURFACE GEOCHEMISTRY 

4.1 INTRODUCTION 

An orientation rock chip survey was carried out to identify useful geochemical 

pathfinder elements, to determine possible inter-element relationships and as a tool in 

discriminating vectors to ore. Rock chip sampling of outcrops was carried out 

concurrent with the orientation survey. Orientation rock chip results are included as 

Appendix I. Assay profiles for rock chip traverses are included as Appendix II. 

4.2 ORIENTATION ROCK CHIP GEOCHEMISTRY 

4.2.1 Methodology 

A grid based geochemical rock chip orientation survey was conducted across selected 

lines. The purpose was to identify useful geochemical pathfinder elements and 

potential inter-element relationships for use in areas of limited geological information. 

Selected lines were identified on aerial photographs and sample positions approximated 

by pacing out over 10 metre intervals. Sample sites were marked and later located 

with GPS or ETS. Geology, alteration and structural measurements were recorded at 

each sample site. Lines selected (i.e. 8130N from 3900E to 4115E, and 8010N from 

3640E to 4275E) are shown in Figure 4.1. Previous mining activities precluded the 

taking of samples that would fall within the defined orebody, a constraint that has 

enforced investigation of primarily low grade copper material. 

Results from the orientation geochemistry are included as Appendix I which contains; 

• sample location coordinates (Appendix I, Table 1) 

• sample assay results (Appendix I, Table 2) 

• geology/alteration data (Appendix I, Table 3) 

• descriptive statistics, correlation and covariance (Appendix I, Table 4) 

• frequency distribution plots (Appendix I, Chart 1) 
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• multi element charts for each element (Appendix. I, Chart 2) 

• scatter plots for each element (Appendix I, Chart 3) 

Additionally the profiles have been plotted for each element analysed for each 

individual line (lines 8130N and 8010N) (Appendix I, Charts 4 and 5 respectively). 

4.2.2 Distribution Characteristics and Multi Element Plots 

Results for each element are discussed. It should be noted that for plotting and 

statistical purposes assay results reported as below detection limits (BDL) have been 

assigned a value of half the lower detection limit (LDL). Both silver and nickel 

returned a significant proportion of results that were BDL. Analytical methods are 

outlined in Appendix I, Table 5. 

Table 4.1 provides a statistical summary, full details of which are included as Table 4, 

Appendix I (tabulating descriptive statistics, correlation and covariance). Frequency 

distribution plots are included as Chart 1 in Appendix I. Correlation between elements 

is summarised in Table 4.2 and discussed below. 

Table 4.1 	Orientation Geochemistry 
Statistical Summary 

Element Count Maximum Minimum Average Std. Dev. 

o O
 0  S

  ,.0  
0
 0 	

.1 
¢
 z
 

 

51 5790 10 235.5 830.7 
51 0.36 <0.001 0.03 0.06 
51 8.3 <0.1 0.47 1.22 
51 449 <1 21.4 68.7 
51 653.3 2.6 115.6 157.8 
51 426.4 1.5 46.2 70.1 
51 699.7 1.9 99.6 154.6 
51 30 <3 9.4 6.9 
51 36 <3 8.3 10.0 
51 63.0 2.3 13.8 10.0 
51 8030 30 1689 1639 

Notes; all values in ppm 
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Table 4.2 	 Orientation Geochemistry 
Correlation Factors 

Cu Au Ag Mo Mn Pb Zn Ba As Ni Co 

Cu  
Au  

Mn  
Pb  

Ni  
Co 

Ag 	 
Mo  	 

Zn 	 
Ba  	 
As  	 

1  
0.37 
0.93 
0.14 
-0.07 
0.01 
-0.08 
-0.03 
-0.15 
0.02  
0.35 

1 
0.39 
0.09 
-0.02 
0.03 
-0.09 
0.12 
-0.04 
0.18 . 
0.14 

	4 	 
1 
0.19 
-0.10 

. 0.12 
-0.10 
0.14 
-0.13 
-0.03 
0.36 

1 
-0.14 
0.06 . 
-0.13 
0.50 
-0.08 
-0.13 . 
0.06 

	4 	 

i 
1 
0.04 
0.79 
-0.14 
0.12 
0.52  
0.37 

1 	. 
0.38 
0.00 
0.32 
-0.11 . 
-0.08 

	4 	 

1 
-0.14 
0.14 
0.40 
0.34 

1 
-0.08 
-0.17 1  
0.19 

4 	 

, 	  

	4 	 

1 
-0.06 
-0.11 

 4  

4 	 

. 1 
0.35 1 

Copper 

Copper grade ranges from a maximum of 5790 ppm to 10 ppm with an average of 

235.5 ppm. Distribution shows some grouping of data. However separation of 

populations is difficult to justify on the small number of data points. The high value 

outliers may reflect higher grade ore lenses that constitute the orebodies which have 

sustained mining in the WLOC area for the last 70 years. The individual plots for both 

lines 8130N and 8010N (Appendix I, Chart 1) show similar distributions. 

Figure 4.2 
Royal Tharsis 
surface orientation 
geochemistry. 
Copper 
distribution plot 

Copper correlates (Appendix I, Chart 2) well with silver, more erratically with gold 

and moderately well with molybdenum, the latter tending to straddle copper. The 

correlation with silver is encouraging given the number of silver values that were BDL. 

Cobalt exhibits an erratic relationship with copper, whilst lead, zinc, manganese and 
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barium all show a poor correlation. There would appear to be virtually no correlation 

with nickel although this could be function of nickel values being significantly BDL. 

Gold 

Definition of potential gold populations is a lot less distinct than those for copper. 

Gold grade ranges from a maximum of 0.36 ppm to a minimum of <0.001 ppm (i.e. 

below detection limit) with an average of 0.03 ppm. The distribution plot (Figure 4.3) 

shows a poorly defined population. The individual distribution plots for lines 8130N 

and 8010N (Appendix I, Chart 1) show a poor similarity. 

Figure 4.3 
Royal Tharsis 
surface orientation 
geochemistry. Gold 
frequency 
distribution plot. 

Commensurate with its distribution gold shows no strong correlation (Appendix I, 

Chart 2) with any of the elements analysed. Reasonable correlation is shown with both 

copper and silver, whilst that with molybdenum, manganese, nickel, cobalt and barium 

tends to be poor. No relationship is apparent with zinc and arsenic. In the case of zinc 

this is surprising, given the distribution of zinc (see below). 

Silver 

Silver grade averages 0.47 ppm, ranging from a maximum of 8.3 ppm to a minimum of 

< 0.1 ppm (i.e. below detection limit). 45% of assay results were BDL. Data 

distribution resolves into a single population with an outlier at 10 ppm being typical of 

anomalous silver evidenced through rock chip sampling. 
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Silver tends to show a broadly moderate to poor correlation (Appendix I, Chart 2) 

across the spectrum of elements analysed. Interpretation must be tentative given the 

significant proportion of results that were BDL. Specifically there would appear to be 

no relationship with zinc and arsenic, whilst correlation with copper is high. 

Figure 4.4 
Royal Tharsis surface 
orientation 
geochemistry. Silver 
frequency distribution 
plot. 

Molybdenum 

Molybdenum resolves into a poorly defined single population (Figure 4.5) with an 

average of 21.4 ppm and ranging from a maximum of 449 ppm to a minimum of < 1 

ppm (i.e. below detection limit). This distribution is reflected in the individual plots for 

lines 8130N and 8010N (Appendix I, Chart 1), with both showing an outlier above the 

200 ppm boundary. 

Figure 4.5 
Royal Tharsis surface 
orientation 
geochemistry. 
Molybdenum 
frequency distribution 
plot. 

Good correlation (Appendix I, Chart 2) is shown with barium where elevated values in 

both elements tend to coincide. This, together with a moderate correlation with 
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copper, gold and silver, makes molybdenum a potential pathfinder element. 

Correlation with lead and cobalt tends to be weak with occasional coincidence between 

elevated values. Correlation with manganese, zinc, nickel and arsenic is markedly 

negative. 

Manganese 

Two reasonably distinct populations can be identified (Figure 4.6) with the upper being 

less well defined and falling in an approximate range of 200 ppm to 1000 ppm. 

Manganese averages 115.6 ppm with a maximum of 653.3 ppm and a minimum of 2.6 

ppm. Distribution plots for individual lines similarly indicate two populations 

(Appendix I, Chart 1). 

Figure 4.6 
Royal Tharsis surface 
orientation 
geochemistry. 
Manganese frequency 
distribution plot. 

Manganese shows good correlation (Appendix I, Chart 2) with zinc, nickel and to a 

lesser extent cobalt. A low negative correlation is shown generally with all the other 

elements analysed. Overall the element tends to exhibit erratic and variable elevated 

values and this correlates with a similar zinc distribution. 

Lead 

A single population between 5 ppm and 120 ppm with an apparent normal distribution 

(Figure 4.7). A basal outlier may represent background. An upper outlier at 500 ppm 

falls well beyond the normal distribution curve. Lead averages 46 ppm with a 

maximum of 426.4 ppm and a minimum of 2.6 ppm. The single population is shown in 
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the distribution plots for each orientation line, that for 8010N being less well resolved. 

Both show an outlier above the 200 ppm boundary (Appendix I, Chart 1). 

 

Figure 4.7 
Royal Tharsis 
surface orientation 
geochemistry. Lead 
frequency 
distribution plot. 

 

A moderate correlation (Appendix I, Chart 2) is shown with zinc and arsenic. Elevated 

lead values are coincident with zinc peaks whilst with arsenic there is slight offset 

between peak values. In the case of arsenic the two profiles tend to mimic each other. 

(Both lead and arsenic can be resolved into a single population with normal 

distributions). This is not as obvious with zinc which shows a significantly broader 

distribution. Correlation of lead with the other elements is extremely poor. 

Zinc 

Zinc averages 99.6 ppm with a maximum of 699.7 ppm, a minimum of 1.9 ppm and 

shows a wide single population (Figure 4.8) that contrasts with lead above. It also 

accounts for the reasonable correlation (Appendix I, Chart 2) that zinc is able to 

demonstrate with all other elements analysed. A zinc ratio (Huston and Large, 1987) 

of 48 does not however place the body within the range typical of MRV volcanogenic 

massive sulphide deposits. Similar distributions are shown in the individual plots for 

each line (Appendix I, Chart 1). 

In addition to manganese and lead, zinc correlates reasonably well with nickel, cobalt 

and, to a lesser degree, with arsenic. This broad correlation is probably a function of 
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the distribution characteristics of zinc. This is potentially similar to silver and in 

marked contrast to lead. 

Figure 4.8 
Royal Tharsis 
surface orientation 
geochemistry. Zinc 
frequency 
distribution plot.  

 

Arsenic 

Data resolves into a single population with an apparent normal distribution ranging up 

to 30 ppm. A solitary outlier occurs at 65 ppm (Figure 4.9). An average of 13.8 ppm 

ranges from a maximum of 63 ppm to a minimum of 2.3 ppm. This single population 

is shown by the distribution plots for each line (Appendix I, Chart 1). Arsenic shows a 

moderate to poor correlation (Appendix I, Chart 2) with lead (single population), zinc 

(multi population) and manganese (multi population). Correlation with all the other 

elements is negative (and low). 
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Nickel 

A significant proportion (45%) of nickel assays returned a value BDL. Of the 

remaining values an average 8.3 ppm has a maximum of 36 ppm i.e. nickel values tend 

to be very low (Figure 4.10). Plots for individual show a more erratic distribution 

(Appendix I, Chart 1). 

Figure 4.10 
Royal Tharsis 
surface orientation 
geochemistry. 
Nickel frequency 
distribution plot. 

 

Nickel correlates (Appendix I, Chart 2) well with manganese and zinc, and less so with 

gold. Correlation with other elements is generally poor to negative, although the 

significant proportion of BDL nickel results mitigates against an interpretation that can 

be made with any high degree of confidence. 

Cobalt 

Cobalt results all returned low values, with an average of 9.4 ppm, a maximum of 30 

ppm and a minimum of < 3 ppm (i.e. below detection limit). The poor resolution of 

data (Figure 4.11) is also shown by the distribution plots for each line (Appendix I, 

Chart 1). Cobalt values are all generally low (?background) and these show a 

moderate correlation (Appendix I, Chart 2) with copper, silver, manganese, zinc and 

nickel, partially a reflection on the distribution pattern shown by cobalt. Correlation 

with gold, molybdenum and barium is broad but low. A low negative correlation is 

shown with arsenic and lead. 
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Figure 4.11 
Royal Tharsis surface 
orientation 
geochemistry. Cobalt 
frequency distribution 
plot. 

Barium 

Barium averages 1,689 ppm with a maximum of 8,030 ppm and a minimum of 30 ppm. 

Minimal barite has been identified in the Royal Tharsis area (although Nye et. al. 

(1934) recorded barite being present in small quantities on dumps from adits) (Figure 

4.12). The good correlation (Appendix I, Chart 2) shown with molybdenum has 

already been commented on. Poor correlation with barium tends to occur with all 

other elements, that with copper, manganese, zinc, arsenic and nickel being negative 

(and generally low). 

Figure 4.12 
Royal Tharsis 
surface orientation 
geochemistry. 
Barium frequency 
distribution plot. 

4.2.3 Discussion and Conclusions 

The most prominent copper anomaly occurs around 4100E over an area of intercalated 

quartz chlorite and quartz sericite pyrite schists that equate to the north Royal Tharsis 
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prospect as described by Flitcroft & McKeown (1992). At 4250E a 500 ppm copper 

anomaly occurs in sheared chlorite schists adjacent to the Tharsis ridge inlier. 

Overall silver distribution follows copper very strongly, in spite of a significant 

proportion of assays being BDL, especially on line 8130N. Gold also correlates 

reasonably well but tends to be more erratic, probably a reflection of nuggety 

distribution. Molybdenum shows subtle but significant enhancement over elevated 

copper with occasional anomalous values. Barium shows a strong relation to 

molybdenum and is elevated over a broad range of copper values but does not resolve 

into individual zones. Manganese shows a broad correlation that is particularly good 

with zinc, but which does not correlate with copper. Lead, zinc and nickel 

distributions do not seem to be related to copper, whilst cobalt which tends to occur in 

low ranges shows a poor and erratic relationship with copper. These elemental 

associations can be summarised: 

• Cu, Au, Ag, (Mo), (Co) 

• Mo, Ba 

• Mn, Zn 

From the multi element plots and based on individual element distributions the 

elements that appear to show the best correlation are copper, gold, silver and 

molybdenum. Anomalous pathfinder values for these elements are tentatively assigned 

as follows: 

• copper >450 ppm 

• gold >0.08 ppm 

• silver > 2.5 ppm 

• molybdenum > 70 ppm 

Composite plots reflecting similar profiles are shown in Figures 4.13 and 4.14 

(Greenwood, 1996). Gold and molybdenum values have been multiplied by factors of 

10 to emphasise relational trends. 
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Figure 4.13 
Correlation fit between copper, gold, L  
silver and moly1xlemun. Gold and 
molybdenum multiplied by a factor of 
10 to emphasis anomalous trends. 
Direction of profile 045° looking 
north west. 
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Line 8130N is located to the north of the Royal Tharsis open  pit  (Figure 4.1). 

Elevated copper is reflected in the profiles of each of gold, silver  and  molybdenum 

although the peaks tend to be offset. Troughs are all common except of that for 

molybdenum. The two peaks shown by copper, gold and silver can be considered 

indicators of potential extension to known mineralisation northwards from Royal 

Tharsis. Any such trend towards the east would be approaching the Tharsis ridge and 

would possibly be cut off by the GLF (which has not been identified at surface) and or 

possibly displaced by east-west trending faults that cut the Tharsis ridge (see Figure 

3.1 in chapter 3). 

 

Figure 4.14 
Correlation fit between copper, gold, 
silver and molybdenum. Gold and 
molybdenum multiplied by a factor of 
10 to emphasis anomalous trends. 
Direction of profile 045° looking 
north west. 
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Line 8010N passes across the Royal Tharsis open pit (Figure 4.1). To the north east 

(ile. up the stratigraphy) elevated peaks are coincident. To the south west (structural 

hangingwall) peaks are noticeably more obtuse, with silver showing an anomalous 

shape that contrasts with the overall trend. 

4.3 ROCK CHIP SAMPLING AND GEOCHEMISTRY 

4.3.1 Methodology 

Outcrops were chip sampled at approximately 10 metre spaced intervals. Samples were 

taken in situ by chipping away the weathered superficial veneer and sampling fresh 

rock. Samples were routinely analysed for copper, gold, silver, molybdenum, cobalt, 

lead and zinc. The nature of surface exposure dictated traverse direction/location and 

hence the ideal of sampling perpendicular to strike was frequently not possible. 

Similarly contamination was avoided by locating traverses away from historic dumps. 

A total of 20 traverses were sampled (Figure 4.15). Coordinates for each sample site 

were located with GPS or theodolite. Results are detailed in Appendix H which 

contains for each traverse: 

• assay profiles for each element 

• multi element profiles for each element against copper 

Details on sample locations and assay results are available. It should be noted that 

plotted assay profiles (Appendix II, Charts 1 - 20) are not topographical but simply a 

straight line representation of sample positions - thus interpretation has needed to take 

into consideration the topographic profile and underlying geology. The findings in 

each traverse are discussed below. 

4.3.2 Rock Chip Traverse Results 

Traverses 7 and 27 (Appendix II, Charts 1 and 19) 

Located towards the northern limit of and close to the demarcation between Royal 

Tharsis and Western Tharsis areas. Traverse 7 is along strike where lithology is 
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broadly a quartz mica schist that exhibits predominant sericite alteration. Assay 

results were all low except for an anomalous zone of silver mineralisation 

(approximately 25 metres @ 15 ppm Ag) that shows no obvious correlation with any 

other feature. Correlation of silver with other elements is poor. 

:Figure 4.16 

; 
: Photograph (facing east) of alternating chlorite (grey colouration) and sericite alteration (yellow-red- : 

; 
: brown colouration) that is south and east of, but contrasts with, lithologies sampled  by  traverses 7 and : 

: 27. Geological hammer for scale. 	
: 

Traverse 27 was sampled across strike (in contrast to traverse 7). Subtle differences 

are shown by individual assay profiles and this is considered to reflect some form of 

boundary - possibly lithological, alteration or mineralogical. Copper shows a marked 

change in profile shape, evidenced by both cobalt and, to a lesser degree, by silver. 

Conversely gold shows a gradual more diffuse change in profile  up  the traverse. 

Anomalous silver values confirm those highlighted in traverse 7. 

Traverses 8 and 9 (Appendix II, Charts 2 and 3) 

Traverse 8 was located close to the pit wall of the Royal Tharsis open pit. Multi 

element values were all generally low with the exception of an anomalous peak that is 

reflected in copper, gold, silver and molybdenum values. The gold anomaly is 
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encouragingly high. This anomaly is not shown by lead zinc, nickel and cobalt which 

all exhibit much more uneven profiles. 

Traverse 9 marks the northern edge of the Royal Tharsis open pit and represents the 

orebody boundary of previous mining operations. As expected anomalous copper 

assays above 5000 ppm Cu were returned. Gold values tend to be of global 

background value with a notable anomalous peak that is almost coincident with a 

molybdenum high but not with any copper or silver values. Silver highs broadly 

straddle the 1000 ppm Cu zone. Cobalt values are erratic. An elevated lead and zinc 

anomaly are coincident and are located in the stratigraphic hangingwall (i.e. towards 

the GLF) of the main copper - gold - silver mineralisation. 

Traverses 10, 11, 12, 13 and 14 (Appendix II, Charts 4 - 8) 

These traverses are located around the former WLOC workshops area - i.e. towards. 

the structural hangingwall of Royal Tharsis. 

Traverse 10 shows intense pyrite alteration, is predominantly sericitic with multi 

element assay values that all tend to be low. Traverse 11 is a mixture of sericite and 

chlorite altered schists and returned an elevated value (reflected in the profiles of 

virtually all elements with the exception of lead) that can not be related directly to any 

obvious geological feature. Traverse 12 returned variable low value results, isolated 

highs for both gold and silver and almost no molybdenum. Both traverses 13 and 14 

show predominant sericite alteration. Elevated copper was returned from traverse 14, 

the copper showing moderate correlation with gold and molybdenum, variable cobalt 

and elevated lead coincident with elevated copper. An anomalous silver value is 

similarly coincident with elevated gold and copper values. Traverse 13 returned lower 

overall values with similar trends in element relationships. 

Traverses 15 and 16 (Appendix II, Charts 9 and 10) 

These traverses are located in the structural footwall towards the south end of the 

Royal Tharsis area, in the vicinity of the GLF. Lithologies are mixed chlorite sericite 

schists, locally sheared with striation movements along joint or shear planes. The 
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surface outcrops overlie relatively shallow Owen Conglomerate that  is  a function of 

the southerly plunging Tharsis Ridge which encloses the corridor to the east. 

: Figure 4.17 

: Photograph (looking north east) of traverse 16 outcrop, showing mixed sericite (brown-red colouration): 

: and chlorite (grey colouration) alteration with shearing/striations (not visible in photograph) along joint : 

: surfaces. Scale is two metres long. 	 . , 

Traverse 15 was assayed for copper, gold and sulphur only. Pyrite values are all 

below 5%, copper shows some elevations while gold shows an extremely even 

distribution. Results from traverse 16 (Figure 4.16) show similar copper values with a 

greater number of elevated highs. Elevated values are shown by molybdenum, lead 

and zinc, whilst profiles for copper, silver and cobalt are broadly similar. 

Traverses 19 and 20 (Appendix II, Charts 11 and 12) 

The lithology in both these traverses is typically Lyell schists with minor inter 

fingering chlorite bands. All assay values tend to be low with individual profiles 

showing local elevations. Molybdenum shows a distinctly erratic distribution along 

both traverses, whilst cobalt distribution in traverse 20 is similarly erratic. Similarities 

in local highs can be identified between profiles but establishment of any direct 

relationship is difficult. 
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Traverse 21, 22, 23 and 24 (Appendix II, Charts 13 - 16) 

Three traverses were located in the structural footwall area towards the Tharsis ridge. 

Traverse 21 returned very low assay values with a broad elevation being common to 

individual profiles. Values from traverse 22 (close to the conglomerate contact) were 

similarly very low. A common elevated value is shown on all profiles (albeit somewhat 

obscured in the molybdenum profile) and it is possible that this demarcates a geological 

contact/boundary. Profiles for traverse 23 are a lot less uniform, values tend to be 

higher and correlation not as obvious. Results would tend to confirm the relative 

position of each line and proximity to the Tharsis ridge. Proximity to unexposed GLF 

may be a factor in the low assay returns. The profiles in traverse 24 do not really 

reflect direction to/from known mineralisation. All values are low with those for silver 

being BDL. Localised elevated peaks may reflect a splay off the GLF which is not 

exposed at surface. Comparison with results from traverse 28 is instructive (vis-a-vis 

relative proximity and overall assay results). 

Traverses 25 and 26 (Appendix II, Charts 17 and 18) 

Both of these traverses were located close to the Tharsis ridge. Results from traverse 

25 are all generally low. Reasonable correlation is evidenced between copper, gold 

and silver, whilst that of copper with molybdenum and cobalt is not quite as good. A 

single elevated high is common to all profiles becoming multi peaked in molybdenum, 

zinc and cobalt, and much less identifiable in the lead profile. It is possible that this 

peak represents the northerly extension of mineralisation trends that have been 

identified in the Prince Lyell orebody. Profiles from traverse 26 are significantly more 

variable than those for traverse 25. However peaks in the copper profile are generally 

coincident with those for gold, silver, molybdenum and cobalt, and to a lesser extent in 

those for lead and zinc. Traverse 26 is also of interest for the anomalous silver band 

that would appear to tail off towards the Tharsis ridge. 

Traverse 28 (Appendix II, Chart 20) 

Traverse 28 is an old trench cut across strike close to the limit of Royal Tharsis open 

pit (Figure 4.18). Historic data has not been identified. Results returned elevated 

copper (as expected as the trench is well inside the mineralised copper envelope) and 
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anomalous silver values. The gold profile is remarkably uniform. Away from the 

orebody (i.e. in the direction of the Tharsis Ridge) both molybdenum and cobalt 

assays show an increasing value, whilst those for lead and zinc mimic each other 

along a descending gradient. 

Figure 4.18 

Photograph (looking east) of trench that was sampled (yellow lines) as traverse 28. Lithology is typical 

Lyell schist assemblage showing distinctive pyrite-sericite alteration (yellow-red-brown colouration). ; 

Scale is two metres long. 

4.3.3 Discussion and Conclusions 

results from rock chip sampling all returned low values as expected by visual 

inspection of traverse locations. Local anomalies were identified from several of the 

sample sites. These anomalies can sometimes be related to lithological alteration, but 

not on a regular basis. Pathfinder elements show a generally viable correlation across 

traverse areas, necessitating treatment of each area as a separate target for alteration 

related mineralisation. Conclusions are as follows: 

• anomalous silver mineralisation appears to correlate with the northern boundary of 

the Royal Tharsis deposit and this is associated with sericitic alteration. 
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• extension of the copper envelope is indicated to the north and east of the former 

Royal Tharsis pit with potential for anomalous gold, associated with major sericite 

and minor chlorite alteration (Flitcroft & McKeown, 1992). 

• to the south of the Royal Tharsis area potential exists for possible limited extension 

of the copper envelope into or towards the corridor area (Corbett, 1997), 

associated with intercalated sericite and chlorite alteration and with some possible 

fault control. 

• to the south in the structural hangingwall of Royal Tharsis elevated copper 

correlates with elevated gold and local anomalous silver is associated with chlorite 

and sericite alteration; alternatives include possible cross-cutting fault controls as 

well as possible strike extension to the Prince Lyell mineralisation. 

4.4 GENERAL CONCLUSIONS FROM SURFACE GEOCHEMISTRY 

• Copper correlates with gold, silver and molybdenum. Anomalous threshold values 

for pathfinder elements are: Cu 450ppm, Au 0.08ppm, Ag 2.5 ppm, Mo 70 ppm. 

• The copper envelope is associated with intercalated sericite and chlorite alteration. 

• Anomalous silver responses are frequently not related directly to other element(s) 

and this may be due to silver occurring in the form of tetrahedrite. 

• Elevated responses in copper, gold and silver in the stratigraphic hangingwall are 

associated with chlorite and sericite alteration. 

• Manganese correlates with zinc, nickel and ± cobalt; arsenic correlates with zinc and 

lead; barium correlates with molybdenum. 

• The zinc ratio (Huston and Large, 1987) of 48 returned from the orientation work 

is well outside the range typical of MRV VHMS deposits. As zinc is typically 

scavenged by Mn/Fe oxides the high zinc to manganese ratio suggests that much of 

the zinc is remobilised in surface environments. The zinc ratio in this context as an 

indicator of depositional environment is probably not valid, particularly as minimal 

visible sphalerite and galena have been recorded. 
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CHAPTER 5 

ALTERATION GEOLOGY 

5.1 SUMMARY 

Broad based alteration patterns have been established through the Royal Tharsis 

deposit. This has been done by identifying the dominant alteration mineral, usually in 

the form of sericite or chlorite. These patterns show a broad correlation to copper 

mineralisation and sulphide/pyrite distribution. The method of pattern delineation was 

kept deliberately simple for interpretation purposes although complex alteration 

assemblages are evidenced within the overall alteration halo. In addition to sericite and 

chlorite, alteration assemblages include quartz, haematite, magnetite, carbonate, 

siderite and pyrite. The method of work entailed core logging and sectional 

interpretation accompanied by petrological and mineragraphic work (this chapter) and 

followed up by whole rock geochemistry with multi element scans (Chapter 6). 

5.2 DRILL HOLE SELECTIONS 

, 

5.2.1 Methodology and Drill Core Availability 

As a study criteria it was necessary to review and re-log all drill holes with the 

emphasis being on alteration mineralogy. A standard logging system was employed, 

whereby descriptors have all been coded in a standard format. This coding system is as 

used by CMT, details of which are included in Appendix III. The system is broken 

down into three tiers of lithological descriptors that are further expanded on by 

alteration coding and alteration description, sulphide mineralisation and structural 

information. 

The optimum of selecting drill holes uniformly across the study area was not possible 

due to the practical constraints of drill hole locations and extant core. Ideally 

information from outside the orebody environs would be necessary in order to establish 

alteration assemblages away from the zone of economic mineralisation, both into the 
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Table 5.1 	 Drill Hole Statistics 

Drill Holes Logged 
Drill Holes Summarised 
Totals 

Metres 
1,670.21 
9,048.40 

10,0718.61 

Number of drill holes 
9 

45 
54 
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hangingwall and footwall. Drill hole density is greatest within the orebody (as 

expected) and falls off towards the orebody periphery. Limitations on data availability 

(i.e. low drill hole density) in the hangingwall and footwall lithologies have resulted in 

low confidence levels on interpretation in these areas. 

Drill hole selection was based on availability of core, and distribution of data both 

along strike and down dip. Core availability resulted in drill holes selected for re-

logging being constrained to the central and southern part of the deposit with holes 

being restricted from section 7770N through to 8070N. North of section 8370N drill 

hole density drops off rapidly. Drill hole statistics are detailed in Table 5.1. 

5.2.2 Drill holes logged 

Table 5.2 lists holes logged and for which logs are included as Appendix III. For each 

drill hole there is a summary cover sheet, assay data in the form of down hole profiles 

and a more detailed log sheet that contains coded descriptors, major and minor 

lithologies, alteration codes and description, details on mineralisation and structural 

data. Collar coordinates are in 315GRL grid, which is the current grid as used by 

CMT. The relationship between the 315GRL grid and AMG is depicted schematically 

in Figure 1, Appendix I. The relative positions of the drill holes are depicted in Figure 

5.1. 

From the available core nine drill holes were selected to allow an even coverage across 

strike and down dip. Some of the drill holes selected are offset from section and have 

been projected onto section for diagrammatic representation. Two holes WL0530A 

and WL0531 provide an extended intersection down dip of the orebody through the 

structural hangingwall and into footwall lithologies, although ore mineralisation is not 
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intersected. Holes WL0479 and WL0480 provide a similar intersection but are located 

further south and intersect low grade halo mineralisation. Drill hole WL0106 passes 

through a significant mineralised halo towards the southerly limit of Royal Tharsis. 

Hole WL0421 is a good typical orebody intersection. Similarly drill holes WL0348 

and WL0609 both returned reasonable to good ore intersections. The northerly limit 

to the mineralised ore zone is partly exposed by drill hole WL0290 which intersects 

sub-economic pyritic volcanics in the structural footwall. No core was available from 

the northern end of the deposit where in any case drill hole density drops off 

significantly. 

Table 5.2 	Logged Drill Holes 

Drill Hole Number Section Depth (metres) 

WL0479 7770N 226.15 
WL0480 7770N 249.10 
WL0106 7770N - 7830N 308.46* 
WL0421 7950N 65.20 
WL0530A 7950N 303.90 
WL0531 7950N 119.90 
WL0348 8010N 159.72 * 
WL0609 8010N 207.00 
WL0290 8070N 30.78 * 

Totals 	 9 holes 1,670.21 
* = original log in imperial units 

5.2.3 Drill holes summarised 

Drill holes that have been summarised from the original log are listed in Table 5.3. The 

listing encompasses the majority of holes that have been drilled in the Royal Tharsis 

area. The summary logs are available for inspection. Each summary contains a coded 

descriptor that may or may not be further described, information on chalcopyrite and 

pyrite mineralisation, and basic structural data. The coded descriptor incorporates 

alteration assemblage and texture, whilst not all (historical) logs contain mineralisation 

and structural data. Where assay data are available significant grade intersections have 

also been determined (mainly copper, usually pyrite and occasionally gold and silver). 
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5.3 ALTERATION ASSEMBLAGES 

5.3.1 Interpretation 

Interpretation was made on sections spaced at 60 metre intervals along strike and 

down to a depth of some 400 metres below surface. This interval is the same as that 

used routinely in adjacent orebodies (i.e. Western Tharsis and Prince Lyell). The 

elevation is the approximate known depth of the Royal Tharsis deposit. 

5.3.2 Lyell schists 

Logging has enabled recognition of some ten principle alteration assemblages. These 

are listed below. Some of these assemblages are fairly common whilst others are 

restricted to occasional occurrences. Gradations within assemblages is the norm rather 

than the exception. These principle assemblages are here restricted to the volcanic 

Lyell schists, although haematitic alteration at the contact with the Owen Group is 

almost ubiquitous. The term Lyell schist is of historic significance and a result of 

schistosity being readily recognisable in surface outcrop. However in drill core and 

subsurface exposures schistosity is frequently difficult to identify and the consequential 

classification as schist sometimes dubious. The Lyell schists are here defined as 

feldspar replaced, hydrothermally altered and regionally metamorphosed volcanics, 

shallow intrusives and epiclastics, and in which relict primary textures are not common. 

• Lmx - mixed mica alteration assemblage 

Lyell schist with mixed micas occurring in the form of sericite and/or chlorite and/or 

hydromicas as the dominant alteration mineral(s). The micas generally occur in 

equal proportions but with significant local variations between members. Primary 

texture(s) is usually not identifiable in hand specimen. The rock has a variable 

pyrite content, that is usually less than 5 % by weight. 

• Lqzmx - quartz mixed mica alteration assemblage 

Similar to Lmx but with a significant amount of quartz, often in the form of 

silicification, and frequently with significant (> 5 %) pyrite content. Usually has a 
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well developed uniform foliation (that is not as well developed as in Lmx 

assemblages). 

• Lqzse - quartz sericite alteration assemblage 

Comprises the major proportion of the sericite alteration zone, sometimes carrying 

relict K-feldspar and albite, particularly towards the distal regions, and which are 

not readily identifiable in hand specimen. The assemblage can often be further 

classified on sulphide and pyrite content, and also often carries economic 

mineralisation. Classification based on pyrite entails a visual estimate of content 

within arbitrarily defined boundaries (0 - 5%; 5 - 10%; and > 10% by weight of 

pyrite) and which correspond to peripheral, halo and core mineralisation 

respectively. The unit is frequently siliceous and/or silicified and characteristically 

grades into distinctive chert-like units. Commonly "hosts" the carbonate alteration 

that occurs distal to the economic halo (and which is sometimes associated with 

veining that characterises Devonian remobilisation). 

• Lqzpy - quartz pyrite alteration assemblage 

Typical schist lithology that characterises the alteration halo and which may or may 

not be siliceous/silicified. Pyrite content is equal to or greater than 10% by weight. 

The assemblage can be identified by a nodular pseudofragmental/segregation texture 

that gives rise to a characteristic appearance on weathered surfaces. 

• Lqzch - quartz chlorite alteration assemblage 

Volcanics dominantly altered to quartz and chlorite, sometimes with variable 

subordinate sericite. Relict primary textures are sometimes evident, notably as 

segregated clots of dark green chlorite (also sometimes described as 

pseudofragmental) and in which sericite is usually absent. Pyrite content is variable, 

generally less than 5 % (estimated), and the assemblage is sometimes copper 

(chalcopyrite) mineralised. 

• Lch - chlorite alteration assemblage 

Diagnostic green and textureless chloritic unit that may or may not have discernible 

foliation, and which generally represents an incompetent and poorly mineralised 

Ethology. The assemblage is distinctive but not common, having a variable and 

unpredictable distribution. Volcanic texture is usually completely destroyed often 
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giving rise to a weathered regolith profile at surface. Alteration may possibly be 

after mafic-intermediate and/or mafic intrusives. 

• Lct - meta conglomerate alteration assemblage 

Volcaniclastic unit with a variable poorly to well developed foliation, sometimes 

heavily silicified/siliceous and frequently brecciated (possible locally 

autobrecciated). The unit is not strictly an alteration assemblage in its own right, 

but more of a segregation texture, and frequently is associated with haematitic 

and/or chloritic assemblages. 

• Lqzhm - quartz haematite alteration assemblage 

Variable red haematitic dusting that often imparts a diagnostic red colouration to 

the lithology, which can also sometimes be grey in colour similar to Lqzch. The 

unit is frequently brecciated and becomes more common towards the contact with 

the Owen Conglomerate where occasional trace barite may be observed. The 

assemblage often contains notable sulphide content that may be of economic value, 

particularly distal to the Owen rock types. 

• Lqzmt - quartz magnetite alteration assemblage 

Similar to Lqzhm but with blebs of magnetite and subordinate rare haematite. 

Generally not well mineralised, but may be adjacent to or enclosed by economic 

mineralisation. The assemblage is not common and is not diagnostic to any 

particular lithology. 

• Lmtth - magnetite apatite alteration assemblage 

Apatite bearing horizon that is diagnostic of but not confined to the higher grades of 

the mineralised halo (chalcopyrite, ± sphalerite, ± galena, ± bomite, and ± 

molybdenite (microscopic)). The magnetite content tends to be variable and may 

occur as an irregular enclosing rim, coarse disseminated blebs or fine grained 

disseminations. Distal to the mineralised halo the magnetite content of the 

assemblage becomes negligible to non-existent. 

Distribution af alteration assemblages 

No obvious distribution pattern of these assemblages has been identified, although 

simplification to an assemblage dominated by either sericite or chlorite has enabled 
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broad or common alteration zones to be identified. These are described below. 

Sectional interpretations are included as Figures 5.2 to 5.12. The zones are generally 

concordant to dip, are often laterally impersistent and are characterised by rapid and 

gradational boundaries. Through the central portion of the deposit sericite tends to be 

dominant, while into the stratigraphic footwall chlorite banding (or lenses) becomes 

more dominant, frequently with diagnostic carbonate alteration. This latter interpretive 

chlorite feature is partly a function of sparse drill hole data. Sericite alteration is 

broadly contiguous with pyrite mineralisation that has been contoured at 5% intervals. 

Frequent silicification tends to mask primary textures, particularly in the sericitic and 

pyritic assemblages. The stratigraphic hangingwall is in part demarcated by the contact 

with the Owen Conglomerate and GLF and along which alteration characteristics tend 

to be obscured by later pervasive dusty haematite. 

5.3.3 Common assemblages 

Within the ten principle assemblages described above three can be recognised as being 

common throughout the Royal Tharsis deposit: 

• Quartz-sericite bearing assemblages that are fairly ubiquitous in the felsic rock 

types, are sulphide (pyrite) bearing, and which generally contain copper 

mineralisation that may or may not be of economic value. Foliation tends to be well 

developed, particularly where exposed near surface, but is frequently hidden (or 

overprinted) where silicification is high. This implies that silicification is post-

foliation and further complicates interpretation of alteration which is pre-foliation. 

The lithology encompasses volcaniclastics, lavas and probable rhyolitic-dacitic 

precursors. 

• Quartz-chlorite-sericite and/or quartz-sericite-chlorite assemblages that tend to be 

associated with the ore mineralisation and which are frequently haematitic, 

occasionally magnetic, and in which chlorite development tends to be extremely 

variable. Foliation is moderately well developed and interfingering of chlorite and 

sericite is common. The magnetite apatite assemblage described above can often be 

- page 57- 



Chapter 5 	 Alteration Geology 

identified within this broader alteration assemblage. The presence of ubiquitous 

green hydromicas frequently make distinction between chlorite and sericite difficult. 

• Chlorite or quartz-chlorite bearing assemblages that are often associated with barren 

or sub economic mineralisation and which are synonymous with the Lch and Lqzch 

alteration assemblages described above. Broadly textureless (i.e. primary textures 

completely masked or obliterated) with a variable foliation that is generally poorly 

developed. Chlorite clots impart a segregated texture that is frequently diagnostic 

and which may be associated with mineralisation that is anomalous for the 

assemblage. 

Distribution of these silicate assemblages is difficult to relate to orebody boundaries 

that are defined primarily by economic parameters. However there would certainly 

appear to be some relationship between these alteration silicates and the distribution of 

sulphide and copper mineralisation. Distribution of Fe-S-C-0 would also appear to 

take on some form of symmetry although the paucity of analytical data particularly in 

the distal regions of the deposit tends to preclude quantification. 

5.3.4 Feldspar and carbonate alteration 

Intense feldspar destruction characterises the alteration assemblages described above. 

The intensity of feldspar alteration appears to have a broad, and possibly indirect, 

relationship to copper mineralisation; remnant feldspars tend to be identifiable towards 

the boundary of the alteration system whilst within the main portion of the alteration 

system identification of feldspars has been restricted to relict crystal form that is 

usually completely altered to a xenolithic quartz mosaic. Towards the stratigraphic 

footwall at the periphery of the alteration system relict albite and albitised plagioclase 

have been recorded at depth (drill hole WL0530A). In the deposit K feldspar has not 

been recorded. 

Carbonate alteration (recognisable as siderite, but also present as ankerite) is probably 

late (either veins and/or shears) and is usually identified towards the edge of the 

footwall alteration zone. Carbonate is usually subordinate in the presence of pyrite and 
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is generally absent when the latter approaches 2%. Veins are commonly up to 50 cm 

thick, frequently occurring as irregular cross-cutting veinlets and stringers and, more 

rarely, may attain a distribution over 3 metres. Carbonate alteration is frequently 

accompanied by chlorite alteration and, where veined (i.e quartz carbonate veins) the 

chlorite is often diagnostically lath-shaped, with lathes up to 5mm long, and very dark 

green to almost black in colour. 

5.3.5 Sectional interpretation 

Common alteration assemblages have been identified and interpretation showing the 

dominant assemblage depicted in Figures 5.2 through 5.12 which are included at the 

end of the chapter. A broad description from south to north through the deposit is 

outlined below. 

Section 7770N (Figure 5.2) is characterised by discrete bands of chlorite alteration that 

extend across the deposit. The alteration has a uniform appearance that may allow 

prediction of ore vectors by relating copper mineralisation to the alteration pattern. 

The bands are generally concordant and sub-parallel to dip, while in the structural 

hangingwall isolated bands occur towards the limit of the sulphide halo. On section 

7830N (Figure 5.3) the ratio of chlorite alteration decreases with interfingering 

contacts between sericite and chlorite alteration becoming clearly evident. Pods of 

sericite alteration enclosed by chlorite alteration are not uncommon. Interfingering 

continues through to section 7950N (Figure 5.5) at the same time grading locally 

(section 7890N - Figure 5.4) into a crudely laminated sericite - chlorite alteration 

pattern. The chlorite content swells locally. North through to section 8070N (Figure 

5.7) chlorite alteration bands become less voluminous with one significant swollen 

patch (from approximately 3650E to 3780E) interfingering with and enclosing pods of 

sericite alteration. By 8370N (Figure 5.12) the alteration patterns have become more 

uniform partly as a result of decreasing drill data, with chlorite showing a notable 

increase near surface northwards from section 8250N (Figure 5.10). This tends to 

wee with findings from surface rock chip work (see Figure 4.16 showing alternating 

or coarsely banded sericite-chlorite assemblages). The increasing dominance of the 
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chlorite assemblage is particularly noticeably in the structural hangingwall where 

decreasing drill hole data is commensurate with minimal mineralisation. Lack of 

information beyond section 8370N makes confidence in further interpretation low. 

Broadly, chlorite alteration appears to increase with an apparent decrease in near 

surface mineralisation 

5.4 PETROLOGY AND MINERAGRAPHY 

5.4.1 Acknowledgment 

Thin section and petrological work was commissioned by CMT and carried out by 

Consultant Petrologist Dr. J. Barron. This section summarises Barron's report in the 

context of known geology and alteration. 

5.4.2 Overview 

A total of 30 samples were thin sectioned and examined petrologically (Barron, 1997). 

Sample details and photographs are included as Plates 1 to 16 in Appendix IV. The 

EXPA numbers referred to in the text below are samples that are listed in Table 1, 

Appendix IV. Findings broadly confirm observations from logging. i.e. the protolith is 

poorly preserved, having undergone both selective and intense alteration, and having 

been subjected to strong and variable tectonic deformation with development of 

characteristic foliation. The presence of local shallow intrusive(s) complicate a 

cupriferous hydrothermal alteration system, of possible porphyry provenance, that is 

strongly pyrite mineralised and which contains subordinate molybdenum (Barron, 

1997). Minor gold and silver returned by assay results were not identified in the 

petrological work. 

5.4.3 Alteration and deformation 

Alteration is both intense and selective resulting in assemblages that are predominantly 

illite/sericite with lesser chlorite and minor carbonate (Plate 13, Figure 2). Other 
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assemblages include sericite-quartz-rutile, quartz - sericite ± chlorite ± carbonate (Plate 

12, Figure 4) and predominant chlorite assemblages. Primary textures have been 

almost completely destroyed although occasional relict forms can be discriminated. 

Phenocrysts are usually relict being poorly recognised and frequently either destroyed, 

replaced or altered. Occasional traces of tourmaline (EXPA3208 - WL0106) indicate 

the presence of boron and halogens in the hydrothermal fluid. Carbonate is mostly 

sidetite and ankerite with lesser (?late) amounts of calcite (plate 4, Figure 2). Glass 

shards (Plate 6, Figure 2) attest to volcanic source(s). (EXPA3215 - WL0106, 

EXPA3217 & EXPA3220 - WL0530A) Minor but not insignificant amounts of albite 

(Plate 10, Figure 2) (EXPA3219, EXPA3223 & EXPA3224 - WL0530A) have been 

recorded towards edges of the alteration system. 

Intense deformation is almost ubiquitous frequently being typified by an Si foliation 

(i.e. slaty cleavage) of illite-sericite wavy tails that wrap around more competent lensed 

domains of granular quartz. This wrap around feature is common on a mesoscopic 

scale (Berry, 1990 and 1991). Microfractures are approximately normal to Si. Later 

kink or strain-slip folding has produced a second penetrative foliation - S2. (i.e. 

deforms the slaty cleavage) (Cox, 1979; Wills, 1996b). Ptygmatic forms are common. 

Early quartz veins are commonly fractured and deformed. Carbonate veins terminate 

against late microfractures that are associated with S2. (EXPA3216 & EXPA3222 - 

WL0530A) 

Down dip of the orebody volcaniclastics with compositions suggestive of 

trachyandesite (EXPA3224 - WL0530) to trachybasalt (EXPA3225 - WL0531) 

characterise the footwall (Plate 11). Lithologies are intensely and selectively altered 

with significant carbonate veining identified towards the limit of the alteration system 

(drill holes WL0530A and WL0531). Vitric tuffs and lithic fragmentals (Plate 2, 

Figures 1 and 2) are common with lesser amounts of volcaniclastics. Relict textures 

incorporate glass shards (Plate 9, Figure 4) and possible evidence for feldspathic 

precursors. Rare relict albitised plagioclase (E3CPA3221 - WL0530A) is evidence of 

the distal parts of an alteration system that is sparsely sulphide mineralised. Distally 

the system is characterised by an altered amphibole-plagioclase intermediate volcanic 
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rock of possible trachyandesite composition with abundant dusty haematite (Plate 2, 

Figure 4) and anomalously abundant apatite (Plate 4, Figure 1) (EXPA3224 - 

WL053 OA). 

Lithologies grade into selectively altered fragmentals (± lithics) and/or volcaniclastics 

(EXPA3223 & EXPA3222 - WL0530A) in which carbonate veining is prominent. The 

intersection of Si and S2 foliation with quartz-rich domains resembles autobrecciation. 

Locally strong feldspathic alteration can be identified (Plate 10, Figure 3) (EXPA3221 

- WL0530A) (possibly shallow intrusive source(s)). The alteration assemblages are 

frequently different either side of the veining suggestive of post-vein emplacement 

alteration (EXPA3220 - WL0530A). Two possible phases of carbonate 

alteration/generation can be distinguished, one vein-hosted and the other alteration-

assemblage hosted. Haematitic dusting (EXPA3219 - WL0530A) is suggestive of a 

strongly feldspathic precursor. Carbonate veined lithic fragmentals (EXPA3217 - 

WL0530A) (? acidic volcanic source) are characteristically microporphyritic with 

traces of pyrite, zircon, leucoxene and haematitic dust. Carbonaceous dust and 

appressed rootless fold hinges associated with lensed layering are evident in some of 

the volcaniclastics (EXPA3216 - WL0530A). 

5.4.4 Southern limit 

Towards the southern end of the deposit an intensely and selectively altered shallow 

feldspar porphyry (EXPA3230 & EXPA3229 - WL0480) (Plate 12, Figure 4) that is 

sulphide mineralised is a potential heat source (or associated heat source) that could 

have been influential in the alteration phase(s) (Plate 11, Figure 4). Subordinate 

carbonate is contained within the alteration assemblage as is patchy chlorite. 

Alteration is both intense and patchy with development of quartz-illite/sericite-chlorite-

(carbonate) and quartz-illite/sericite-(carbonate-chlorite) assemblages with minor/trace 

zircon, sphene, apatite and leucoxene (EXPA3229 & EXPA3230 - WL0480). Relict 

feldspars are locally abundant frequently giving rise to a "crowded" porphyritic texture 

(EXPA3229 - WL0480) that is difficult to classify (Plate 1, Figure 1). Sulphides are 

significant (chalcopyrite and pyrite) with one generation of pyrite recognised. 
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Along strike autobrecciated volcanics (EXPA3209 - WL0106; EXPA3219 & 

EXPA3224 - WL0530A; EXPA3225 - WL0531) (Plate 6, Figure 4) and 

volcaniclastics (EXPA3209 - WL0106) (Plate 7, Figure 2) contain disseminated 

sulphide mineralisation associated with the economic copper halo. The rocks are 

typically haematitic and are characterised by pyrite and chalcopyrite with minor 

amounts of molybdenite (EXPA3207 - WL0421) (Plate 15, Figure 1) and trace 

bornite-chalcocite-digenite (EXPA3210 - WL0106)(Plate 15, Figures 3 and 4). 

At the base of the sequence carbonate-rich fragmentals (EXPA3220 - WL0530A) from 

a clastic parent are deformed and possibly boudinaged (EXPA3212 - WL0106) (Plate 

8, Figure 2) with interstitial chlorite-illite/sericite assemblages. Cuspate volcanic glass 

shards (Plate 9, Figure 4) are evidence for spherulitic devitrification. Overlying 

fragmental/volcaniclastics have a weakly preserved porphyritic texture that contains 

evidence for sub-parallel alignment of feldspathic prisms during magmatic flow 

(EXPA3213 - WL0106). Tuffaceous rocks (EXPA3215 - WL0106) that have been 

intensely altered to quartz-sericite assemblages contain magmatically embayed quartz 

(Plate 1, Figure 4), possible glass shards, altered feldspars, rutile/titanium oxides and 

accessory zircon and apatite. Possible cordierite (Plate 9, Figure 1) is suggestive of 

post-alteration metamorphism of hydrothermslly altered rocks that have undergone 

strong Mg-Fe enrichment and Na-Ca-K depletion (Thompson and Thompson, 1996). 

Altered lithic breccias and autobrecciated flows (EXPA3208 - WL0106) show 

evidence of selective alteration and intense silicification. Towards the hangingwall a 

microporphyritic texture is preserved in a mineralised pumiceous fragmental host 

(EXPA3210 - WL0106). Hydrothermally brecciated tuffs that are intensely altered and 

silicified occur towards the footwall. Quartz-chlorite stringers are common and vein 

quartz contains trails of fluid inclusions. 

5.4.5 Mineralisation and mineralised lithologies 

Relict textures through the mineralised halo are poorly preserved (if at all), the 

orebody itself being selectively and intensely altered, recrystallised and foliated (drill 
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hole WL0421). The structural hangingwall (i.e. stratigraphic footwall) is characterised 

by glomeroporphyritic mafic phenocrysts (Plate 11, Figure 2) with some poor 

subhedral shapes suggestive of amphibole and/or pyroxene. The absence of epidote 

tends to corroborate a lack of mafic and mafic - intermediate rock types. Possible rare 

plagioclase laths have been completely clay altered to a granular groundmass that is 

composed of quartz-rich domains which impart an almost lens-like appearance. 

Hydrothermal and metamorphic alteration is evident with the development of schist 

assemblages that contain rutile, carbonate and apatite (plate 3, Figure 3). Trace 

minerals include sphene and zircon. Sphene is commonly replaced by leucoxene. 

Microscopic molybdenite cannot be identified in hand specimen whilst two possible 

phases of monomineralic pyrite mineralisation can be distinguished (E3CPA3207 - 

WL0421). Anhedral chalcopyrite occurs as blebs and disseminations, is frequently 

interstitial and often encloses spongy clusters of pyrite. 

Sulphides are dominated by pyrite, frequently containing chalcopyrite inclusions (Plate 

14, Figure 3). Rare inclusion of bornite-(chalcocite-digenite) have also been identified 

(EXPA3210 - WL0106)(Plate 15, Figures 3 and 4). Trace anhydrite and barite 

(EXPA3201 - WL0290) (towards the stratigraphic footwall) and secondary covellite 

(EXPA3201 - WL0290) have been identified towards the stratigraphic footwall. 

Traces of molybdenite are fairly common particularly through the orebody environs 

(EXPA3207 - WL0421; EXPA3213 - WL0106)(Plate 16, Figure 1). Traces of 

sphalerite (EXPA3211 - WL0106; EXPA3226 and EXPA3228 - WL0531) and galena 

(rare EXPA3226 and EXPA3228 - WL0531) have also been identified (Plate 16, 

Figures 3 and 4), the former being characterised by a pale colour (i.e. iron poor) that 

tends to suggest oxidisng fluids or lower temperatures. Trace pyrrhotite is 

occasionally observed in the mineralised halo (EXPA3209 - WL0106; EXPA3229 - 

WL0480). Selectively altered ?plagioclase pyroxene porphyritic vesicular volcanics of 

possible trachybasaltic composition contain abundant dusty haematite and abundant 

accessory apatite (EXPA3225 - WL0530A). Angular fragments with a jig saw texture 

suggest some autobrecciation. Lithic fragmentals (EXP3226 - WL0530A) and 

volcaniclastics that are intensely altered and recrystallised, foliated and carbonate 

veined contain disseminated monomineralic pyrite and vein-located galena and 
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sphalerite, the latter being near colourless and suggestive of a fairly distant heat source. 

Minute trails of dusty rutile, clusters of intergrown apatite and rare traces of 

chalcopyrite demarcate the mineralised halo (EXPA3228 - WL0531). 

5.4.6 Northern end 

In the hangingwall (drill hole WL0290) intense alteration continues to be a diagnostic 

feature, possibly becoming more pervasive and less selective. Brecciated fragmentals 

(EXPA3201 - WL0290) (Plate 1, Figure 1) are characterised by quartz-illite/sericite 

assemblages with ± chlorite and ± carbonate. The carbonate is possibly not typical of 

the hangingwall whilst significant sulphide mineralisation is primarily pyrite 

(monotnineralic) (Plate 14, Figure 1) of which two possible generations can be 

identified (EXPA3202 - WL0290). Traces of covellite, anhydrite, barite, magnetite 

and haematite may reflect proximity to the Owen sediments with commensurate 

changes in redox conditions and pH during alteration. 

5.5 CONCLUSIONS 

• Broad correlation exists between sulphide mineralisation (principally pyrite) and 

alteration patterns. 

• Some ten main alteration assemblages have been identified: mixed mica, quartz-

mixed mica, quartz-sericite, quartz-pyrite, quartz-chlorite±sericite, chlorite, meta-

conglomerate, quartz-haematite, quartz-magnetite and magnetite-apatite. 

• The most common alteration assemblages include: quartz-sericite; quartz-chlorite- 

sericite and/or quartz-sericite-chlorite; and chlorite or quartz-chlorite assemblages. 

• Weak zonation is evident between Fe-S-C-±0, although quantification has not been 

established. 

• Carbonate alteration that is distal tends to be associated with Devonian vein 

emplacement and may be due more to remobilisation rather than primary alteration. 

• Intense and selective alteration has resulted in obliteration of primary textures. 

• Feldspar destruction is almost ubiquitous. Rare albitised plagioclase occurs towards 

the periphery of the alteration system. 
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• Volcanic precursors included rhyolitic and dacitic (i.e. felsic) volcanics, 

volcaniclastics (locally autobrecciated), brecciated lavas and minor porphyries. 

• Sulphide mineralisation is dominantly pyrite and for which at least one generation 

has been identified, and which contains subordinate chalcopyrite. Other sulphides 

that occur in trace amounts include bomite, chalcocite-digenite, covellite, 

molybdenite, sphalerite and galena. 

• The abundance of illite (Barron, 1997) is suggestive of the presence of weakly 

acidic (CO2-rich) fluids (Thompson and Thompson, 1996). 

• Si foliation wraps around lensoidal domains of granular and mosaic quartz. S2 

penetrative foliation is a result of later strain slip folding. Carbonate veins 

terminate against late S2 microfractures. 
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Notes to accompany Figures 5.2 to 5.12 

• Alteration patterns have been identified through logging of drill core and 

interpretation of drill hole logs. Patterns represent assemblages simplified to show 

dominant sericite or chlorite alteration. 

• Sections are spaced at 60 metre intervals from 7770N (Figure 5.2) to 8370N 

(Figure 5.12). North of 8370N there is insufficient data for meaningful 

interpretation. 

• Sericite and/or chlorite alteration does not generally extend into the Owen 

Conglomerate. 

• Quartz-sericite assemblages are usually associated with felsic rocks, generally 

have a well developed foliation and are often highly siliceous. 

• Quartz-chlorite-sericite assemblages contain a highly variable chlorite content and 

are frequently characterised by interfmgering of chlorite and sericite. 

• Quartz-chlorite or chlorite assemblages may have a diagnostic clotted texture 

(pseudofragmental) or may be textureless with no obvious foliation (not 

discernible at 1:5000 scale). 

• Drill hole traces show copper assays (where assays are available). Darker hatches 

represent low copper values. Orange hatches represent >1% Cu contour. 

• Most drill holes have been drilled up stratigraphy i.e. collared in the footwall (west 

or left side of diagram) and drilled through to the hangingwall/Owen 

Conglomerate. Obvious exceptions are WL0479 (Figure 5.2 - section 7770N) and 

WL0530A (Figure 5.4 - section 7950N) which have been drilled into the structural 

hangingwall. 

• Great Lyell Fault - within the interpreted alteration zone the GLF is along or close 

to the Owen Conglomerate contact. 
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CHAPTER 6 

ALTERATION GEOCHEMISTRY 

6.1 METHODOLOGY 

6.1.1 General 

Samples were taken from selected drill holes to investigate alteration geochemistry. 

The relative position of the drill holes is shown in Figure 5.1. Results are included as 

Appendix V which contains: 

• plots for majors and trace elements (Chart 1 and Chart 2) 

• sample analyses results (Table 1) 

• sample locations (Table 2) 

• analytical methods (Table 3) 

• dataset statistics (Table 4) 

6.1.2 Analytical Techniques 

Samples were analysed by total fusion followed by ICP analyses - both MS and OES - 

on majors and trace elements. Copper, silver and base metals were assayed by aqua 

regia digest followed by ICP-OES finish. Gold was determined by fire assay. 

Determination of total sulphur was carried out volumetrically and total carbon 

gravimetrically, both using Leco analysis (IR spectrophotometry). Analtyical methods 

are detailed in Table 3, Appendix V. 

6.1.3 Representation 

Geochemical plots of major and trace elements are shown in Appendix V as Charts 1 

and 2. Also included in Appendix V as Table 2 are whole rock and multi element data 

for each sample. The plots have been arranged in approximate stratigraphic order from 

footwall in the west (left hand side of plots) through to the hangingwall in the east 
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(right hand side of the plots). It should be noted that the sequence is overturned and 

hence the stratigraphic hangingwall acts locally as the structural (or mining) footwall. 

Plots have been drawn along two "composite" lines that represent a transect across 

stratigraphy. One line encompasses sections 7950N to 8070N and results are shown in 

Chart 1, Appendix V. The other line encompasses sections 7770N to 7830N, with 

results shown as Chart 2, Appendix V. Projection has been both along strike and dip. 

The orebody has been intercepted in drill hole WL0421 (see also Appendix HI) and 

this can be seen on the plots representing sections 7950N to 8070N. The plots 

representing sections 7770N to 7830N do not intersect an economic orebody although 

copper mineralisation was intersected in drill hole WL0106 (see also Appendix III). 

This line represents the mineralised halo surrounding the orebody (that has 

subsequently been mined) and does not transect the stratigraphy as comprehensively as 

line 7950N-8070N. 

6.2 DISCUSSION AND INTERPRETATION OF RESULTS 

6.2.1 Metals 

Generally gold and silver correlate well with copper, the gold responses peaking 

almost exactly with copper. Silver responses tend to be a bit more erratic particularly 

in the stratigraphic footwall. Molybdenum, cobalt and, to a lesser extent nickel, show 

a similarly good correlation with copper. The nickel correlation contrasts with the 

surface rock chip results. Molybdenum tends to mimic copper very closely while 

cobalt has a more erratic relationship through the stratigraphic hangingwall. Base 

metals show a relatively weakened response through the orebody halo and generally 

across the complete stratigraphic sequence a variable response that does not enable 

obvious identification of any potential ore vectors/discriminants. 

Table 6.1 lists copper correlation factors. In addition to the metals decribed above the 

high correlation with P205 is anomalous and is probably a reflection of apatite 
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mineralisation that has been recorded in the deposit and which is known to occur in the 

Prince Lyell deposit (Hendry, 1982; Raymond, 1992). 

Table 6.1 Copper Correlation Factors 

Metals  Au Ag  	Mo 	Co 	Ni 	Ba 	Bi  
Cu:  0.92 0.77 0.74 	0.83 	0.38 	0.49 	0.70 

Metals  S Nb La Ce Nd Pb Zn 
Cu:  0.22 0.71 0.57 0.55 0.49 -0.10 0.10 

Majors  Al203 Fe203 Si02 K20 Na20 CaO TiO2  
Cu:  -0.17 0.45 -0.31  0.07  -0.21  -0.22  0.02  

Majors  MgO  MnO P205 
Cu:  ,  	0.00 0.18  0.67  

Elements  Cs Rb Sr Ga Sb As Hf 
 	-0.32 -0.04 -0.15 0.27 -0.11 0.04 -0.11 

Elements  Y Zr V  W 	Cr  Th 	U  
Cu:  -0.30 -0.12 0.27 0.22 	-0.06 0.21 	0.16 

Apart from Fe203 and P205 copper correlation with the other majors is low to 

negative. The poor correlation with the immobile elements is possibly a reflection on 

alteration processes and contrasts with the high correlation shown with niobium. 

Similarly the high correlation with bismuth is anomalous. The good correlation of 

copper with niobium and the REE is probably due to these elements being present in 

apatite and is discussed further under section 6.2.9. 

Zinc and lead show a reasonable correlation. The zinc ratio (Huston and Large, 1987) 

(Figure 6.1) returns an average that is a characteristic of MRV VIIMS deposits and is 

in fact not dissimilar to the average for the Prince Lyell deposit (67.1 - Raymond, 

1992). Interestingly there is a notable proportion of values that fall within the lower 

end of the scale (i.e. 30-40) and these may represent higher temperatures with 

corresponding increases in lead and zinc solubilities (Huston and Large, op. cit.) 
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Figure 6.1 
Zinc ratio distribution plot. 

Count = 60 
Average = 72.3 

SD = 21.0 

 

6.2.2 Sulphur and Carbon 

Sulphide and carbonate show an almost inverse relationship. Sulphide has been 

determined from total sulphur and assumes all sulphur occurs as either chalcopyrite or 

pyrite. Trace amounts of other sulphides (e.g. bomite, galena, sphalerite etc.) occur 

but have been ignored for determination of pyrite content. Similarly all carbon is 

assumed to be carbonate in origin (usually siderite, sometimes ankerite (i.e. Fe-rich 

carbonate) and/or dolomite (which may or may not be Mn-rich) and more commonly 

as calcite) and thus CO2  and hence carbonate content has been determined from total 

carbon analyses. A plot of CO 2  against CaO (Figure 6.2) indicates that most of the 

carbonate occurs as calcite with a broad trend towards siderite. This would need to be 

confirmed by XRD and/or probe analysis. 

 

Figure 6.2 
Carbonate form through the 
Royal Tharsis deposit based 
on ICP analyses. Dashed 
line represents approximate 
calcite position. 
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Further examination of siderite distribution shows that as much FeO occurs in chlorite 

and/or magnetite as in carbonate (Figure 6.3). 

Figure 6.3 
Fe0-0O2  distribution in the 
Royal Tharsis deposit. The 
dashed line represents 
approximate position of 
siderite. Calcite as the main 
form of carbonate would 
result in minimal CO2  
ibeing available for siderite 
formation. 

The inverse sulphide - carbonate relationship is clearly demonstrated along 7950N-

8070N (Figure 6.4) where low pyrite (< 2% by weight) in the stratigraphic footwall 

increases dramatically through the copper halo (> 15% by weight) and then drops off 

erratically into the footwall (between 5% and 10% by weight). A similar pattern can 

be identified along line 7770N-7830N (Figure 6.5) although the profile displays 

isolated anomalies well into the stratigraphic footwall (up to 30% by weight as massive 

pyrite) and through which ubiquitous pyrite mineralisation has been recorded (drill hole 

log WL0106). 

Figure 6.4 Sulphur-0O2 profile along line 7950N-8070N (drill holes WL0530A, 
WL0531, WL0421 and WL0290) as a representation of carbonate-pyrite distribution, and 
which shows reversal through the ore zone. 
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Figure 6.5 Sulphur-0O2  profile along line 7770N-7830N (drill holes WL0106 and 
WL0480) as representation of carbonate and pyrite distribution. 
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The carbonate profile tends to show a sharp relative drop in the immediate 

stratigraphic hangingwall of the orebody and this gradient change could be a potential 

(but coarse) ore vector. Elevated carbonate values (up to 15% by weight FeCO 3) 

through the orebody agrees with observations made during logging (drill hole 

WL0421). In the stratigraphic footwall the carbonate profile is generally smooth with 

localised variations that can be correlated with carbonate recorded in drill hole logs 

(drill hole WL0530A). 

6.2.3 Trace Elements 

Element mobilities and alteration trends are demonstrated by zirconium plots. The 

plot against Al 203  (Figure 6.6) shows a relatively steady slope whilst the plot against 

titanium indicates precursors to be mainly rhyolitic and dacitic (Figure 6.7) (Barret 

and MacLean, 1994b). 

Alteration Trends Figure 6.6 
Zr  -  Al203  scatter plot showing 
relative consistency of immobile 
elements. Straight line represents 
linear trend. 
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Figure 6.7 
Zr - TiO2  scatter plot showing 
alteration trends and volcanic 
precursors. 

The Ti/Zr value (Figures 6.8 and 6.9) generally falls within the rhyolite - dacite zone 

(i.e. a Ti/Zr ratio of between 4 and 20) (Large et. al., 1989) with occasional andesitic 

values occurring well into the stratigraphic hangingwall. Along line 7770N-7830N 

the Ti/Zr ratio from drill hole WL0106 is confined to the rhyolitic range. Along line 

7950N-8070N the ratio extends over a significantly broader range as would be 

expected. 

1  1 

11/Zr Ratio - Line 7950N-8070N (approx strat order) 

CD 0 0 0 V DJ 0 OD 0 
,01 	0 0 0 47 ......... r/71 

0 0 ,D 
st 	4. 	4 

Figure 6.8 Tar ratio along line 7950N-8070N (drill holes WL0530A, WL0531, WL042 
and WL0290). (Classification of rock types after Large et. al., 1989) 

Andesites returned by T/Zr values are not readily identifiable in hand specimen or 

thin section. This is mainly due to intense alteration that overprints and obscures 

primary textures, and strong deformation with accompanying foliation. 

- page 73- 3- 



Alteration Geochemistry Chapter 6 

Figure 6.9 Ti/Zr ratio along line 7770N-7830N (drill holes WL0106 and WL0480 
(Classification of rock types after Large et. al., 1989) 

TI/Zr Ratio - Line 7770N-7830N (approx strat order) 
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Of other immobile element ratios the Y/Zr ratio is not diagnostic showing variable 

trends along both lines. However along line 7950N-8070N a weak distinction 

between a uniform footwall and a variable hangingwall ratio is indicated by a drop in 

the Y/Zr ratio through the ore zone. This is similarly shown in line 7770N-8030N, 

albeit weakly, and may in fact be a weak and subtle vector of mineralisation. 

 

Figure 6.10 
Scatter plot of Zr against Y through 
the Royal Tharsis deposit. Straight 
line represents linear trend. 

 

Niobium shows a notable increase through the ore zone, particularly along line 

7950N-8070N. Along line 7770N-7830N the response is not so sharp and is further 

obfuscated by elevated values in both hangingwall and footwall. A scatter plot of 

niobium and zirconium does not show any relationship between the two elements 

while the Nb/Zr ratio profile mimics that of niobium showing anomalous responses 

through the mineralised zones. 
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Figure 6.11 
Hydrothermal alteration trend 
(bold arrow) at the Royal Tharsis 
showing enrichment in Fe203  at 
constant Ti/Zr and contrasting 
with magmatic differentiation 
trend (dashed lines) of rhyolite-
dacite-andesite-basalt in the 
MRV (after Large et. al, 1989). 

 

General conclusions concerning the immobile elements need to be treated with caution. 

In a system of such intense alteration that is evidenced at Royal Tharsis the potential 

for these element showing some mobility should not be ruled out. However Large et. 

al., (1989) have demonstrated the resistance of the Ti/Zr ratio to hydrothermal 

alteration within the broader MRV, notably determining magmatic differentiation 

trends for rhyolite-dacite from the Rosebery deposit. Figure 6.11 contrasts broad 

MRV magmatic differentiation trends against potential hydrothermal alteration trend of 

Royal Tharsis showing Fe203 enrichment at constant Ti/Zr ratio. 

Of the transition elements analysed (i.e. vanadium, chromium and tungsten) chromium 

shows a relative depletion in the stratigraphic hangingwall. The opposite is the case 

with tungsten which exhibits enrichment in the stratigraphic hangingwall. The apparent 

change in tungsten would serve as a more reliable ore vector than chromium which 

tends to exhibit a more erratic profile, particularly through the footwall. 

6.2.4 Major Elements 

1(20 does not show any obvious trend that has immediate implications vis-a-vis sericite 

alteration with respect to the orebody position. This is broadly confirmed by the 

geology. However subtle indicators point to an indirect relationship. On both sample 

lines there is a weak positive gradient into the stratigraphic hangingwall. In the 

stratigraphic footwall the profile shows an overall drop away from the ore halo. This 
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could be used as a diagnostic feature to distinguish the relative position of 

mineralisation i.e. a potential but subtle ore vector. 

 

Figure 6.12 
Plot of wt % K20 vs wt % 
Al203 showing alteration 
trends though the Royal 
Thaisis deposit 

 

The dominant sericite alteration is confirmed by a significant increase in K20 content 

through the distal parts of the mineralisation halo (drill hole WL0106). A plot of 1(20 

against Al203  (Figure 6.12) shows a dominant alteration trend to be sericitic, with 

minor chlorite alteration and minimal K-feldspar alteration. 

  

Figure 6.13 
Plot of wt % Na20 vs wt % 
Al203 showing alteration 
trends and relative Na 
depletion through the Royal 
Thaisis deposit. 

 

   

Sodium depletion through the ore horizon and into the stratigraphic hangingwall is 

reflected in a Na20 content that is well under 1 wt % (Figure 6.13). In the 

stratigraphic footwall an increase in Na20 content has no obvious relationship to either 

alteration patterns or to the position of ore mineralisation, although the increase in 

Na20 correlates with an increased carbonate content and by occasional occurrences of 
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albite. The increase in Na20 reaches a maximum of just under 3% by weight, which 

alone is not high. Albite identified toward the periphery of the deposit in the 

stratigraphic hangingwall (drill hole WL0290) is not confirmed by the low Na 20 

content. 

CaO content tends to be uniform through the ore halo showing a relatively weak 

decrease into the stratigraphic hangingwall. Into the footwall the profile fluctuates 

locally along line 7950N-8070N, whilst along line 7770N-7830N the profile remains 

flat (generally less than 0.6 wt % CaO) possibly representing the immediate edge of the 

ore zone. 

MgO and MnO content show contrasting trends and hence interpretation is not 

conclusive. Along line 7770N-7830N MgO shows a gradual increase from footwall 

through to hangingwall. In contrast, along line 7950N-8070N the profile is 

significantly more erratic with no diagnostic features identifiable through the ore zone. 

The variable MgO content possibly reflects variations in Fe-Mg rich chlorites (Hendry, 

1981; Braithwaite, 1985), although MgO depletion is indicated by a value that is less 

than 1 wt %. MnO shows a similar pattern to MgO, i.e. an erratic profile, but differing 

in that an anomalous MnO peak in the vicinity of the stratigraphic footwall of the 

orebody may be diagnostic. The MnO value does not exceed 1% by weight, averaging 

less than 0.2% by weight. 

P205 content is less than 1 wt %. The relative amount increases through the ore zone 

halo and in which apatite has been identified (drill holes WL0421 and WL0106). This 

elevated P205-Cu association is in agreement with findings on the Prince Lyell orebody 

subsurface (Hendry, 1981; Raymond, 1992) and would tend to corroborate the 

influence of magmatic hydrothermal fluids (Large et. al., 1996a). An alternative 

source of the elevated P205 is the Suite II andesites (Crawford et. al., 1992) that are 

known to occur elsewhere in the Mount Lyell field. The P 205 content is not as high as 

that recorded in the Prince Lyell deposit (0.8 Wt % - Raymond, op. cit) whilst the 

apatite-magnetite relationship would appear to have a more restricted distribution as 

can be seen in the plot of P205 against FeO (Figure 6.14). 
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Figure 6.14 
Apatite-magnetite 
representation through the 
Royal Tharsis deposit. 

P205  content in either hangingwall or footwall is not sufficiently contrasting to be 

immediately diagnostic. Away from the influence of the mineralisation halo P 20 5  

shows a variable distribution in the stratigraphic footwall (drill holes WL0530A and 

WL053 1) varying from a low of 0.05 wt % up to a high of approximately 0.3 wt %. 

6.2.5 Barium 

Barium shows enrichment in both the mineralised/sulphide halo and through the 

orebody. This is clearly demonstrated along line 7950N-8070N. Values in the 

stratigraphic hangingwall tend to be higher than those in the footwall, the relative 

hangingwall enrichment being associated with proximity to the Owen Group 

lithologies. Elsewhere haematite-barite along the contact with the Owen 

conglomerate is distinctive (Hart, 1993), although such alteration has not been 

observed in Royal Tharsis. 

The Ba/Sr ratio shows a similar pattern to the barium profile. However the contrast 

between footwall and hangingwall is significantly more distinctive with ratios being 

higher in the stratigraphic hangingwall, as shown on line 7950N-8070N. The Ba/Rb 

ratio is not as diagnostic, tending to mimic the barium profile and showing greater 

irregularity in the stratigraphic footwall. A Ba/Sr value of 30 tends to identify the 

mineralised halo and ore zone along both sample lines and this may be a good vector 

to mineralisation (Figure 6.15). Both barium and rubidium substitute for potassium in 

- page 78 - 



Chapter 6 
	

Alteration Geochemistry 

sericite (Barrett and MacLean, 1994b) during hydrothermal alteration and this may 

account for the distinctive Ba/Sr ratio. 

Figure 6.15 
Scatter plot through Royal Tharsis 
of strontium against barium. A 
Ba/Sr ratio of 30 is a potential 
vector to ore mineralisation The 
dashed line represents a Ba/Sr 
ratio of 30. Samples below this 
line (i.e.Ba/Sr > 30) are generally 
from within the orebody or 
mineralised halo. 

 

6.2.6 Bismuth, Antimony and Arsenic 

Bismuth portrays a distinctive increase through the mineralised zone contrasting with a 

"background" value that falls within a range of 0 to 10 ppm in both hangingwall and 

footwall (line 7950N-8070M. This elevated bismuth is a potential ore vector, and also 

explains the good correlation (correlation factor 0.70 - see Table 6.1) with copper. 

Antimony and arsenic do not show any obvious or diagnostic patterns. 

6.2.7 Radiogenic Elements 

Ceasium does not show any diagnostic features. Rubidium shows some relative 

differences between hangingwall and footwall values, although profiles tend to be 

variable and conflicting. Strontium values tend to be similarly variable, giving rise to a 

Rb/Sr ratio that is not immediately diagnostic with respect to potential ore vectors. 

6.2.8 Actinides 

Thorium values are variable within a range but show no distinctive differences between 

hangingwall - mineralised halo - footwall. However uranium shows an elevated 
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response of up to 20 ppm that coincides with ore mineralisation. Within the 

stratigraphic footwall uranium values range from 0 to 6 ppm whilst in the hangingwall 

there would appear to be an increase in value from between 5 to 145 ppm. This gives 

rise to a Th/U ratio that shows a relative drop in the stratigraphic hangingwall. 

6.2.9 Rare Earth Elements 

Lanthanum, cerium and neodymium all show elevated responses through the 

mineralised halo. Along both lines a marked increase in values (by a factor of between 

three and four) occurs coincident with increasing copper content. In the stratigraphic 

footwall values tend to be fairly constant and low (50 to 100 ppm for lanthanum and 

cerium, and 20 to 50 ppm for neodymium). In the hangingwall results are more 

conflicting, showing an upward trend along line 7950N-8070N and a very slightly 

decreasing trend along line 7770N-7830N. 

Figure 6.16 
Scatter plot representing REE 
content in apatite. Plots for Ce and 
Nd show a similar distribution. 
Straight line is a linear trend. 

 

The elevated responses of the these REE is probably due to the presence of apatite in 

the mineralised halo. The elements all show reasonable correlation with P205 (Table 

6.2 and Figure 6.16). 

Table 6.2 	P205 - REE 
Correlation Factors 

P205 

La Ce Nd 

0.40 0.39 0.41 
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6.2.10 Alteration Indices 

Traditionally the Ishikawa (Ishikawa et. al., 1976) alteration index (Al) has proven to 

be a useful indicator of VHMS mineralisation. The AT quantifies the intensity of 

sericite/chlorite alteration that occurs immediately adjacent to VHMS deposits. In this 

work two other alteration indices have been determined, each being an additional 

instrument that could be applied in identifiying vectors to ore. (Large etal., 1996b): 

• the Ishikawa alteration index 

• chlorite pyrite alteration index 

• manganese - carbonate alteration index 

Ishikawa alteration index 

The Ishikawa alteration index is based on the geochemical destruction of feldspars. and 

their replacement by sericite and chlorite. In such hydrothermal systems alteration 

results in a loss of Na20 and CaO and an enrichment in K20, MgO and FeO. The 

essential chemical changes can be represented through the following reactions: 

NaA1Si308 (albite) —> —> KAI 3 Si30 10(OH)4  (sericite) 

CaAl2Si208 (anorthite) --> --> KA13Si3010(OH)4 (sericite) 

NaA1Si3 08 (plagioclase) --> —> (Fe,Mg)5Si3Al2010(OH)8 (chlorite) 

CaAl2Si208 (anorthite) —> --> (Fe,Mg)5Si3Al2010(OH)8 (chlorite) 

The Na20 content is a key factor in determining the alteration status of a particular 

sample or litho type. Highly altered volcanic rocks are diagnostically defficient in 

Na20, with generally less than 0.5 wt % Na20, whilst unaltered rocks will have an 

Na20 content that is equal to or greater than 4 wt %. In situations where complete 

feldspar replacement/destruction has occurred the resultant Al is in the region of 100. 

As a general guide, altered rocks will have an Al in the range of 50 to 100, and 

unaltered rocks an M value that falls in the range of 20 to 50. In spite of being a good 

indicator of alteration the Al does not distinguish between chlorite and sericite 

alteration while the presence of carbonate alteration will result in an overall lowering of 
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the Al value (Large et al, op.cit.). Generally a high K20 value with a high Al is an 

indicator of sericite alteration, while chloritic alteration is generally associated with low 

K20. 

The alteration index (Ishikawa et.al., 1976) has been determined from the following 

formula: 

Al = 	100 x (K?.0 + Mg0)  

(1(20+ MgO + Na20 + CaO) 

At Royal Tharsis the Al shows a notable rise in value up stratigraphy (i.e. from the 

stratigraphic footwall through to the hangingwall) the footwall value falling in the 

range 40 to 90 and the hangingwall being more constrained between 65 to 100. The 

Al values through the mineralised halo/zone do not appear to be uniquely diagnostic 

although there is a weak reversal in the overall trend. The higher values are consistent 

with intense hydrothermal alteration while the intermediate Al values are possibly 

associated with feldspar alteration that occurs towards the periphery of the system. 

Figure 6.17 Ishikawa alteration index along line 7950N-8070N (drill holes WL0530A, 
WL0531, WL0421 and WL0290). Dashed line is a linear trend line. 

Along line 7950N-8070N (Figure 6.17) a strong hangingwall alteration halo compares 

with a significantly weaker alteration index in the footwall. Along line 7770N-7830N 

(Figure 6.18) the contrast in the alteration index between footwall and hangingwall is 
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less marked and this is probably due to the line being within the influence of the 
mineralisation halo. 

Figure 6.18 Ishikawa alteration index along line 7770N-7830N (drill holes WL0106 and 
WL0480). Dashed line is a linear trend line. 

Chlorite alteration index 

Chlorite alteration is common close to VHMS deposits and identification of zones with 

an elevated chlorite content is important. The chlorite index is an attempt to delineate 
such zones (Large et. al., 1996b). Samples containing pyrite, haematite and/or 

magnetite will return relatively higher CI values due to their FeO content and would 

need to be identified and possibly filtered. The chlorite index (CI) measures the 

amount of chlorite - carbonate and/or pyrite alteration and has been determined from 

the following formula: 

CI = 	100 x (Mg0 + Fe0)  

(MgO + FeO + Na20 + K20) 

In the case of the Royal Tharsis deposit the CI is probably the least informative of the 

three indices. The overall trend through the stratigraphic sequence is a weak increase 

as shown along line 7950N-8070N (Figure 6.19). This contrasts with line 7770N-

7830N (Figure 6.20) which shows a moderate decreasing trend. This latter can be 

attributed to the influence of the mineralisation halo and in fact within the actual ore 

zone/halo along both lines there is a sharp drop in gradient from footwall to 
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minerals (such as dolomite, siderite, ankerite, calcite) (Large et. al., 1996b). The 

manganese - carbonate index has been determined from the following formula: 

MI = 	100 x (CaO + 10Mn0)  

(CaO + 10Mn0 + Na20 + K20) 

Figure 6.21 Mn-carbonate alteration index along line 7950N-8070N (drill holes WL0530A, 
WL0531, WL0421 and WL0106). Note trend reversal of MI through the ore zone. Dashed 
line is a linear trend line. 

Figure 6.22 Ma-carbonate alteration index along line 7770N-7830N (drill holes WL0106 and 
WL0480). Note trend reversal of MI through the ore/mineralised halo. Dashed line is a 
linear trend line. 

As with the chlorite index the MI shows contrasting tends along lines 7950N-8070N 

(Figure 6.21) and 7770N-7830N (Figure 6.22). Again this can be attributed the 

influence and nature of the mineralisation halo. The detailed trend through the 

orebody (WL0421, line 7950N-8070N) tends to mimic the trend through the 
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mineralised halo (WL0106, line 7770N-7830N) and this trend reversal may be a vector 

to mineralisation/ore. 

Another notable feature is a sharp and possibly diagnostic drop in value along the 

stratigraphic footwall of the copper mineralisation. This feature can be seen in the 

profiles of both lines. The drop is relatively high (from approximately 50 to 80 down 

to approximately 5 to 40) and may herald the introduction of sulphides as shown by a 

corresponding increase in pyrite content. 

6.2.11 Results below detection limit 

Several elements in the whole rock analyses returned results that were below detection 

limits. These are listed in Table 6.3. 

Table 6.3 	Results Below Detection 
Element Lower Detection Limit % of results BDL 

Cd 
In 
Ta 
Te 
TI 

3  PPm 
0.5 ppm 
2 ppm 
5  PPm 
3  PPm 

100 
87 

100 
100 
100 

Cadmium, which is a recognised pathfinder for base metals, shows responses that tend 

to be similar to those for the Prince Lyell deposit (Davis etal., 1995). Tantalum is 

sometimes used in mobility ratios, sometimes with niobium which has shown some 

response through the mineralised zone, and thus the potential usefulness of tantalum 

should not be discounted. 

Both indium and thallium fall in group 5 of the periodic table and similar responses 

could be expected as with other elements in the same group. Thus gallium in the same 

group showed conflicting differences (along both lines) between hangingwall and 

footwall lithologies and thus the potential usefulness of either indium or thallium at 

lower limits of detection would be questionable. Tellurium would not be expected to 

show any responses. 
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6.3 CONCLUSIONS 

• Comparison across stratigraphy has been shown by plotting profiles along two lines 

composited both along strike and up/down dip. The first line, 7770N - 7830N, is 

representative of the mineralised halo. The second line, 7950N - 8070N, transects 

stratigraphy. 

• Copper correlates reasonably well with gold, silver, molybdenum, cobalt and ± 

nickel. Fe203 and P205 both correlate with copper, indicative of pyrite and apatite 

relationships respectively, the latter pointing to the influence of magmatic 

hydrothermal fluids. 

• The AT shows an increasing trend up stratigraphy and a subtle change through the 

ore zone. The CI (chlorite-pyrite-carbonate alteration index) shows a change in 

gradient through the ore zone relative to hangingwall lithologies. The MI 

(manganese carbonate alteration index) shows a relative drop at the stratigraphic 

footwall of copper mineralisation, but otherwise portrays a poorly defined response. 

• The Zn ratio of 72 (Huston and Large, 1989) can be considered typical for MRV 

VHMS deposits. This contrasts with results from surface geochemistry. 

• Sulphide (pyrite) and carbonate show an almost inverse relationship, with carbonate 

alteration through the mineralisation being subtle and variable. Carbonate alteration 

is further masked by overprinting associated with later Devonian remobilisation. 

• K20 (and hence sericite) shows a subtle response to mineralisation and thus may be 

a subtle vector to ore. Na20 depletion occurs through the ore halo and into the 

hangingwall. A variable MgO content possibly reflects Fe-Mg rich chlorites. 

• The Ti/Zr value falls within the dacite - rhyolite range, with occasional andesite 

values. 

• Barium and Ba/Sr ratio show enrichment through the mineralised halo. The halo 

tends to be identified by a Ba/Sr value that rises above 30. 

• Uranium shows an elevated response that coincides with the footwall of the ore 

mineralisation. 

• Rare earths (lanthanum, cerium and neodymium) show uniform elevated responses 

through the mineralised halo. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 SURFACE GEOCHEMISTRY 

• Surface orientation work has indicated that mineralisation is associated with 

intercalated sericite and chlorite alteration in lithologies broadly classified as Lyell 

schists. Sulphide mineralisation is dominantly pyritic with subordinate chalcopyrite 

in the ore halo. The Lye11 schists have volcanic precursors in the form of dacites - 

rhyolites - andesites and volcaniclastics. 

• Copper correlates with gold, silver and molybdenum. Copper distribution shows 

three populations that can be resolved into lens occurrence that is typical of the 

West Lyell group of deposits and which includes Royal Tharsis. The nuggety effect 

of gold is demonstrated by several poorly defined populations. Anomalous outcrop 

values (Greenwood, 1996) for pathfinder elements are; Cu 450 pprn, Au 0.08 ppm, 

Ag 2.5 ppm and Mo 70 ppm. 

• Anomalous silver responses are frequently not related directly to other element(s) 

and this may be due to silver occurring in the form of tetrahedrite. The fact that 

within the orebody silver usually shows some correlation with copper would 

indicate that silver alone can be considered as a vector to mineralisation. 

Historically the Iron Blow returned high silver values and thus anomalous silver 

should be considered as both a vector on its own as well as for copper. 

• Of other potential pathfinder elements manganese correlates with zinc, nickel and ± 

cobalt; arsenic correlates with zinc and lead; and barium correlates with 

molybdenum. Some of these elements (e.g. zinc and manganese) show a 

distribution that can be resolved into several populations. These patterns are 

possibly associated with mobility during metamorphic and tectonic events and hence 

metal introduction during different mineralising pulses or phases. 

• The zinc ratio (Huston and Large, 1989) of 48 returned from the orientation work 

places the orebody well outside the range typical of MRV VHMS deposits. 

Minimal sphalerite and galena were recorded in surface exposures. As zinc is 
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typically scavenged by Mn/Fe oxides the high zinc to managanese ratio suggests 

that much of the zinc is remobilised in surface environments. The zinc ratio is thus 

probably not a true indicator of the depositional environment in this context. 

7.2 ALTERATION GEOLOGY AND GEOCHEMISTRY 

• As with surface geochemistry, sulphide mineralisation is dominantly pyrite. 

Copper mineralisation occurs chiefly as chalcopyrite and is subordinate to pyrite. 

At least one generation of pyrite has been identified. Other sulphides of economic 

interest and which occur in trace amounts include bornite, chalcocite-digenite, 

covellite, molybdenite, sphalerite and galena. 

• Broad correlation exists between sulphide mineralisation and alteration patterns. 

Sulphide distribution is typified by a central copper - gold bearing core that falls 

away in grade towards the periphery of the deposit commensurate with decreasing 

intensity of alteration. Alteration has been both intense and selective. Intensity is 

evidenced by almost ubiquitous feldspar destruction and accompanying 

obliteration of primary volcanic textures. Rare albitised plagioclase occurs towards 

the periphery of the alteration system. 

• Some ten main alteration assemblages have been identified although their 

distribution has not been established. As vectors to ore mineralisation the most 

common alteration assemblages include: quartz-sericite; quartz-chlorite-sericite 

and/or quartz-chlorite-sericite; and chlorite or quartz-chlorite assemblages. Those 

assemblages in which chlorite is dominant are frequently barren or carry low grade 

sulphide mineralisation. 

• Weak zonation is evident between Fe-S-C-±0, although quantification has not 

been proven. Carbonate alteration tends to be distal and there would appear to be 

an almost inverse carbonate - sulphide relationship as demonstrated through 

alteration geochemistry. 

• Volcanic precursors included rhyolitic and dacitic (i.e. felsic) volcanics, 

volcaniclastics (locally autobrecciated), lavas and volcaniclastics and minor 

porphyries. The Ti/Zr value falls within the dacite - rhyolite range, with 

occasional andesite values. 
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• Si foliation wraps around lensoidal domains of granular and mosaic quartz. S2 

penetrative foliation is a result of later strain slip folding. Carbonate veins terminate 

against late S2 microfractures. 

• Across stratigraphy copper correlates reasonably well with gold, silver, 

molybdenum, cobalt and ± nickel. Fe203  and P205 both correlate with copper, 

indicative of pyrite and apatite relationships respectively, the latter pointing to the 

influence of magmatic hydrothermal fluids. Alteration fluids of slightly acidic pH 5- 

6 and temperatures in the region of 200°C to 250°C are indicated, with fluid being 

weakly enriched in boron and halogens, and a fairly distant heat source. 

Temperature ranges are fiwther confirmed by the abundance of illite as evidenced in 

thin sections (Barron, 1997) and the fine grained form of sericite (Thompson and 

Thompson, 1996). 

• The Al (Ishikawa alteration index) shows an increasing trend up stratigraphy and a 

subtle change through the ore zone. The relative difference in values between 

footwall and hangingwall is thus a potential vector to ore. The CI (chlorite pyrite 

alteration index) shows a change in gradient through the ore zone relative to 

hangingvvall lithologies. As an ore vector this is a subtle change that would need to 

be considered in with other evidence for ore mineralisation. The MI (manganese 

carbonate alteration index) shows a relative drop at the stratigraphic footwall of 

copper mineralisation, but otherwise the response is not diagnostic as a vector to 

ore.. 

• The zinc ratio (Huston and Large, 1989) of 72 can be considered typical for MRV 

VHMS deposits. This contrasts markedly with results from surface geochemistry. 

The latter covered a less constrained sampling spectrum whilst the former was more 

closely confined to the orebody environs. 

• K20 shows a subtle response with mineralisation and thus may be a subtle vector to 

ore. However as a stand alone factor the content is not an obvious ore vector. The 

response is seen as a gradual increase through the footwall as the orebody is 

approached followed by a sharp (and positive) change in gradient that smooths out 

into the hangingwall. Na20 depletion occurs through the ore halo and into the 

hangingwall where the content remains well below 1 wt %. Distally into the 

footwall Na20 this rises to a maximum of just under 4 wt %. A variable MgO 
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content possibly reflects Fe-Mg rich chlorites. A high Al and high K20 content are 

indicative of strong sericite alteration, with low K20 content being indicative of 

chlorite alteration. 

• Barium and Ba/Sr ratio show enrichment through the mineralised halo with the 

hangingwall showing higher values than the footwall. 

• Of the trace elements uranium shows an elevated response that coincides with the 

footwall of the ore mineralisation and the rare earths (lanthanum, cerium and 

neodymium) show uniform elevated responses through the mineralised halo. 
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Figure 1 

Copper Mines of Tasmania Pty Ltd 
Grid Transformation Relationships 

Current working grid is 315GRL 
AMG bearings converted to 315GRL by +036°30'11" 
Previous mine grid bearings converted to 315GRL by +045°. 
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	 Table 1 

SAMPLE LOCATIONS 

Sample 
No Line 	AMG North AMG East AMG RL GRL 

North 
GRL 
East GRL RL Survey 

Method 

Line 8130N 

G5342 8130N 5342601.688 382421.640 367.677 8145.014 3643.495 2367.677 GPS 
G5343 8130N 5342610.747 382430.982 373.874 8146.739 3656.397 2373.874 GPS 
G5344 8130N 5342620.955 382438.492 378.276 8150.478 3668.509 2378.276 GPS 
G5345 8130N 5342628.014 382447.455 378.787 8150.821 3679.916 2378.787 GPS 

G5346 8130N 5342696.088 382567.981 421.907 8133.839 3817.332 2421.907 GPS 
G5347 8130N 5342703.907 382578.861 427.719 8133.651 3830.733 2427.719 GPS 
G5348 8130N 5342713.182 382593.365 434.410 8132.479 3847.914 2434.410 GPS 
G5349 8130N 5342719.744 382601.734 438.127 8132.775 3858.547 2438.127 GPS 
G5350 8130N 5342725.741 382619.302 443.605 8127.143 3876.241 2443.605 GPS 
G5351 8130N 5342741.348 382638.036 448.330 8128.545 3900.591 2448.330 GPS 
G5352 8130N 5342745.748 382644.415 450.200 8128.287 3908.338 2450.200 GPS 

G5353 8130N 5342826.841 382749.556 483.362 8130.928 4041.131 2483.362 GPS 
G5354 8130N 5342832.637 382755.490 485.702 8132.057 4049.351 2485.702 GPS 
G5356 8130N 5342842.945 382758.220 487.877 8138.721 4057.679 2487.877 GPS 
G5357 8130N 5342838.243 382783.355 494.018 8119.984 4075.091 2494.018 GPS 
G5358 8130N 5342853.535 382782.425 497.026 8132.833 4083.443 2497.026 GPS 
G5359 8130N 5342863.152 382786.673 499.888 8138.038 4092.581 2499.888 GPS 
G5360 8130N 5342863.796 382795.439 502.993 8133.339 4100.012 2502.993 GPS 
G5361 8130N 5342869.053 382805.844 507.120 8131.375 4111.507 2507.120 GPS 
G5362 8130N 5342873.446 382815.570 511.586 8129.120 4121.941 2511.586 GPS 
G5363 8130N 5342884.889 382826.072 516.360 8132.072 4137.194 2516.360 GPS 
G5364 8130N 5342893.555 382839.957 521.004 8130.777 4153.515 2521.004 GPS 
G5365 8130N 5342919.395 382867.457 524.607 8135.191 4191.002 2524.607 GPS 
G5366 8130N 5342929.334 382877.531 528.037 8137.188 4205.016 2528.037 GPS 
G5367 8130N 5342939.138 382889.258 530.096 8138.093 4220.279 2530.096 GPS 
G5368 8130N 5342949.169 382901.345 536.340 8138.966 4235.966 2536.340 GPS 
G5369 8130N 5342950.875 382912.447 540.837 8133.732 4245.908 2540.837 GPS 
G5370 8130N 5342952.447 382923.492 545.564 8128.424 4255.724 2545.564 GPS 
G5371 8130N 5342951.870 382948.439 556.008 8113.115 4275.440 2556.008 GPS 

See Figure 1, Appendix I, for relationship between AMG and GRL 
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Table 1 

SAMPLE LOCATIONS 

Sample 
No Line 	AMG North AMG East AMG RL GRL 

North 
GRL 
East GRL RL Survey 

Method 

Line 8010N 

G5376 8010N 5342778.189 382877.804 498.786 8015.497 4115.299 2498.786 GPS 
G5377 8010N 5342785.990 382886.073 501.383 8016.849 4126.590 2501.383 GPS 
G5378 8010N 5342792.202 382893.334 504.144 8017.523 4136.124 2504.144 GPS 
G5379 8010N 5342801.018 382899.334 507.358 8021.041 4146.195 2507.358 GPS 
G5380 8010N 5342808.666 382909.817 504.489 8020.953 4159.174 2504.489 GPS 
G5381 8010N 5342817.566 382921.912 498.118 8020.912 4174.195 2498.118 GPS 
G5382 8010N 5342824.391 382930.894 499.195 8021.055 4185.478 2499.195 GPS 
G5383 8010N 5342836.610 382935.104 504.387 8028.375 4196.134 2504.387 GPS 
G5384 8010N 5342852.407 382960.492 519.113 8025.970 4225.947 2519.113 GPS 

G5385 8010N 5342549.489 382582.595 420.601 8007.269 3741.851 2420.601 GPS 
G5386 8010N 5342564.391 382593.939 423.859 8012.501 3759.839 2423.859 GPS 
G5387 8010N 5342578.239 382599.433 428.016 8020.367 3772.497 2428.016 GPS 
G5388 8010N 5342584.168 382613.007 433.505 8017.057 3786.939 2433.505 GPS 
G5389 8010N 5342596.079 382621.194 437.727 8021.762 3800.609 2437.727 GPS 
G5390 8010N 5342600.798 382633.617 443.222 8018.165 3813.406 2443.222 GPS 
G5391 8010N 5342608.664 382640.230 445.430 8020.554 3823.404 2445.430 GPS 
G5392 8010N 5342619.265 382649.313 449.604 8023.673 3837.015 2449.604 GPS 
G5393 8010N 5342621.895 382663.659 455.810 8017.252 3850.115 2455.810 GPS 
G5395 8010N 5342630.142 382670.578 457.607 8019.766 3860.585 2457.607 GPS 
G5396 8010N 5342637.325 382681.454 459.512 8019.070 3873.604 2459.512 GPS 
G5397 8010N 5342643.696 382691.769 460.824 8018.054 3885.689 2460.824 GPS 
G5398 8010N 5342653.671 382702.950 455.479 8019.422 3900.615 2455.479 GPS 

See Figure 1, Appendix I, for relationship between AMG and GRL 
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Table 2 

ASSAY RESULTS 

Line 8130N 

G5342 35.1 0.007 <0.1 1 2.6 1.5 2.4 1030 9.8 <3 <3 
G5343 10.5 0.011 0.010 <0.1 <1 22.4 49.3 44.4 1305 3.4 21 <3 
G5344 19.9 0.001 <0.1 3 12.8 12.8 6.7 2330 8.7 <3 5 
G5345 21.7 0.003 0.002 <0.1 <1 24.9 9.4 47.8 952 6.4 10 7 
G5346 79.3 0.004 <0.1 4 39.6 28.2 61.9 792 26.4 <3 7 
G5347 33.4 0.005 <0.1 2 29.1 39.1 55.6 703 26.3 <3 5 
G5348 42.3 0.031 <0.1 5 13.1 21.3 4.7 533 16.1 <3 3 
G5349 17.2 0.004 <0.1 1 5.4 13.4 2.1 545 6.1 <3 5 
G5350 20.3 0.021 0.3 9 13.7 50.1 3.5 811 14.6 <3 <3 
G5351 57.8 0.102 0.3 1 5.0 18.6 1.9 1735 9.8 9 13 
G5352 137.4 0.359 0.3 7 262.5 20.8 127.1 928 15.9 22 7 
G5353 125.5 0.086 0.2 2 67.9 13.6 61.9 1575 7.5 25 7 
G5354 39.8 0.011 0.2 4 138.2 8.3 84.8 1345 7.6 32 16 
G5355 7.7 0.002 <0.1 3 23.4 2.5 1.9 <10 2.0 7 <3 
G5356 43.6 0.041 0.3 6 48.5 40.2 51.0 1405 9.8 20 8 
G5357 12.5 0.043 <0.1 9 105.0 9.8 164.8 1595 13.8 14 21 
G5358 22.0 0.022 0.2 13 14.7 20.2 8.1 2070 7.9 3 14 
G5359 476.1 0.037 0.5 28 71.3 67.6 66.6 513 26.4 <3 16 
G5360 625.7 0.060 2.9 62 18.4 43.0 3.3 8030 8.8 4 29 
G5361 126.9 0.016 0.3 4 189.3 31.9 88.0 5250 15 <3 5 
G5362 99.5 0.100 0.5 11 15.8 77.9 5.2 6500 25.2 <3 8 
G5363 209.4 0.054 0.6 449 9.0 35.1 2.4 7630 9.1 <3 7 
G5364 22.6 0.005 0.2 6 14.8 89.4 3.5 966 23.6 <3 4 
G5365 38.0 0.023 0.7 7 37.9 15.0 28.2 1410 9.0 <3 10 
G5366 49.8 0.001 <0.1 3 254.2 29.8 123.0 1270 6.5 <3 7 
G5367 45.1 0.002 0.5 2 271.1 21.5 113.5 1515 11.5 <3 8 
G5368 131.5 0.042 0.5 6 176.4 37.0 127.5 1475 10.8 <3 14 
G5369 57.1 0.055 1.1 3 7.9 64.2 6.2 2240 3.0 <3 3 
G5370 5790.0 0.160 8.3 76 59.6 41.4 30.1 695 3.9 10 21 
G5371 403.1 0.086 1.8 22 59.5 306.3 65.6 1670 21.7 8 6 
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Table 2 

ASSAY RESULTS 

cl) 

	

g. t--(7 g.F4' g.:27 	E °T. a 
: 	= 3 	"4-1 	 '2- ;lc 	: 	 .rz.  

c)C15 	 (r...gcs,SIUCC10.<U41t:40(.)0 

Line 8010N 

G5376 451.0 0.024 0.4 59 232.6 32.3 130.9 1705 8.1 14 30 
G5377 1520.0 0.076 0.6 10 12.5 22.4 4.3 979 7.9 <3 14 
G5378 106.1 0.020 0.3 6 335.4 33.3 192.9 1005 17.6 30 16 
G5379 26.3 0.003 <0.1 3 7.1 29.0 4.6 1150 14.5 <3 6 
G5380 39.1 0.003 <0.1 5 10.6 27.1 5.6 1145 23.0 <3 3 
G5381 16.9 0.001 0.1 3 338.7 18.3 208.0 1215 12.8 4 17 
G5382 25.4 0.007 0.2 3 61.9 46.2 33.2 862 14.9 5 12 
G5383 20.9 0.004 <0.1 1 7.8 10.8 4.7 1070 4.2 3 9 
G5384 15.6 0.001 <0.1 3 10.2 44.3 10.3 2760 2.3 3 <3 
G5385 28.3 0.005 0.4 208 29.3 108.5 25.5 1155 13.0 3 6 
G5386 80.8 0.014 0.4 7 272.3 426.4 699.7 881 26.0 5 9 
G5387 21.5 0.005 0.1 1 614.3 23.2 617.4 1400 5.4 6 15 
G5388 64.5 0.009 0.3 7 108.0 87.3 108.0 1440 63 >50.0 <3 6 
G5389 33.9 0.036 <0.1 4 9.8 20.8 4.5 1530 12.6 <3 3 
G5390 22.2 0.004 <0.1 4 165.3 28.5 211.5 2620 12.8 7 8 
G5391 575.0 0.012 0.1 2 203.2 15.6 249.0 1665 12.6 27 16 
G5392 51.7 0.012 0.2 2 539.7 27.9 470.3 886 18.1 26 20 
G5393 43.7 0.006 <0.1 3 13.3 54.3 4.8 1085 2.5 <3 <3 
G5394 6.2 0.001 <0.1 11 36.2 3.6 6.2 20 16.2 3 8 
G5395 10.0 0.002 <0.1 4 23.7 10.9 2.9 30 10.6 8 <3 
G5396 15.4 0.002 <0.1 5 14.2 10.5 3.1 677 21.6 3 <3 
G5397 29.4 0.003 <0.1 1 653.3 32.4 255.3 761 26.5 36 8 
G5398 20.6 0.021 0.023 <0.1 2 243.3 28.2 442.7 1315 10.2 30 15 

Assay Data for 10 metre Spaced Sample Sites 
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Sample 
No Geology/Alteration 
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Comments 

Line 8130N 
fe qz-se-(py) schist 
fe qz-ch-(py) schist 
fe qz-se-(py) schist 
fe qz-ch-(py) schist 
si qz-ch-py schist 
si qz-ch-py schist 
qz-se-py schist 
qz-se-(py) schist 
qz-se-py schist 
Si qz-se-py schist 
qz-ch-py schist 

qz-se-py & qz-ch schist 

fe qz-se-py & qz-ch schis 
qz 
qz-se-py & qz-ch schist 
qz-ch-(py) schist 
qz-ch-(py) schist 
fe qz-se-py schist 
fe qz-ch-py schist 
qz-ch-py schist 
qz-se-py schist 
fe qz-ch-(py) schist 
qz-se-py schist 
Si qz-se-py schist 
Si qz-se-py schist 
qz-ch schist 
qz-ch schist 
fe qz-ch schist 

G5342 
G5343 
G5344 
G5345 
G5346 
G5347 
G5348 
G5349 
G5350 
G5351 
G5352 

G5353 

G5354 
G5355 
G5356 
G5357 
G5357 
G5358 
G5359 
G5359 
G5360 
G5361 
G5362 
G5363 
G5364 
G5365 
G5365 
G5366 

G5367 si ch-(py) schist 

G5368 si ch-(py) schist 

G5369 wd ch schist 
G5370 wd ch schist 
G5371 qz-se-ch schist 
G5371 	qz-se-ch schist 
G5371 glf 
G5371 glf 

leached & locally fe 
leached 

leached & locally fe 
leached & locally fe 

intrusive andesite(?) 
contact 

blank sample 
leached 
leached 
leached 

silicified zone/head 

leached 

leached 

mod-weakly fe 
leached with cubic 
voids post py 
leached with cubic 
voids post py 
pallid & leached 
pallid & leached 

local fracturing 
W 79 179 
W 63 185 

150 
nm 
120 
nm 
333 
350 
334 
nm 
118 
330 
nm 

130 

118 
nm 
132 
130 
134 
119 
124 
135 
130 
123 
132 
128 
128 
120 
133 
140 

138 

146 

145 
210 
165 
315 

70 

81 

68 
65 
66 

76 
78 

70 

76 

82 
74 
72 
82 
76 
65 
83 
83 
76 
63 
75 
88 
78 
81 

73 

58 

80 
50 
90 
88 

SW 

SW 

NE 
NE 
NE 

SW 
NE 

SW 

SW 

SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 
SW 

SW 

SW 

SW 
W 

E 

150 73 SW 
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Sample 
No Geology/Alteration 

Co
nt

ac
t  s

tr
ik

e  

Co
nt

ac
t  d

ip
  d

ir
'n

  

Fo
lia

tio
n  

st
r i

ke
  

Fo
lia

tio
n  

di
p  

di
r'

n  

L
in

ea
tio

n  
di

r'
n  

Comments 

Line 8010N 

G5376 qz-ch schist 
G5377 qz-se-py schist 
G5378 qz-ch-(py) schist 
G5379 qz-se-py schist 
G5380 qz-se-py schist 
G5381 ch-qz-py schist 
G5382 ch schist 
G5383 ch schist 
G5384 ch schist 

G5385 qz-se-py schist 
G5386 qz-se-py schist 
G5387 qz-ch-py+se schist 
G5388 hm qz-py-se schist 
G5389 qz-se-py schist 
G5390 ch schist 
G5391 	si qz-ch-py schist 
G5392 fe qz-ch-py schist 
G5393 hm qz-py-se schist 
G5394 qz 
G5395 qz vein 
G5396 qz-se-py schist 
G5397 qz-ch schist 
G5398 ch-qz schist 

130 
138 
120 
125 
128 
130 
138 
nm 
nm 

69 
72 
70 
77 
80 
76 
66 

SW 
SW 
SW 
SW 
SW 
SW 
SW 

68 

78 

170 

185 
pitted, local hm alt'n 

pallid 
pallid 
pallid 

142 81 SW 
134 83 
112 76 
128 76 
nm 
103 76 SW 
155 70 SW 
121 74 SW 
121 81 SW 
nm blank sample 
130 86 SW massive vein 
nm 
144 68 SW pitted 
nm pallid 
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Table 3 

GEOLOGICAL DESCRIPTION 

am = no measurement 

Geological Data for 10 metre Spaced Sample Sites 

- page 7 - 



ROYAL THARSIS - SURFACE GEOCHEMISTRY 
	

Appendix I 
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Table 4 

STATISTICS Lines 8130N & 8010N 

Descriptive Statistics Cu ppm 
((14115) 

Au ppm 
(GA334) 

Au (R) 
(4134) 

Ag ppm 
(a4115) 

Mo ppm 
(GA115) 

Mn ppm 
((14115) 

Pb ppm 
((14115) 

Zn ppm 
(GA115) 

Ba ppm 
(G,C401) 

As ppm 
(11/1140) 

'VI ppm 
(GA140) 

Co ppm 
(G4140) 

Mean 235.518 0.033 0.012 0.468 21.373 115.629 46.175 99.627 1689.294 13.820 8.284 9.402 
Standard Error 116.327 0.008 0.006 0.171 9.643 22.093 9.816 21.655 229.487 1.395 1.406 0.963 
Median 39.800 0.012 0.010 0.200 4.000 37.900 28.500 44.400 1270.000 11.500 3.000 7.000 
Mode 0.003 0.050 3.000 28.200 2.400 9.800 1.500 1.500 
Standard Deviation 830.738 0.057 0.011 1.219 68.863 157.776 70.102 154.644 1638.865 9.965 10.040 6.880 
Sample Variance 690125.2 0.003 0.000 1.485 4742.068 24893.30 4914.259 23914.8 2685878 99.300 100.793 47.330 
Kurtosis 42.015 21.313 #DIV/0! 35.706 31.580 3.654 20.648 6.180 8.009 10.798 0.777 1.119 
Skewness 6.292 4.131 0.690 5.703 5.402 1.947 4.367 2.460 2.856 2.567 1.447 1.126 
Range 5780.000 0.359 0.021 8.250 448.500 650.700 424.900 697.800 8000.000 60.700 34.500 28.500 
Minimum 10.000 0.001 0.002 0.050 0.500 2.600 1.500 1.900 30.000 2.300 1.500 1.500 
Maximum 5790.000 0.359 0.023 8.300 449.000 653.300 426.400 699.700 8030.000 63.000 36.000 30.000 
Sum 12011.4 1.662 0.035 23.850 1090.000 5897.100 2354.900 5081.000 86154.0 704.800 422.500 479.500 
Count 51 51 3 51 51 51 51 51 51 51 51 51 
Confidence Level (95.000%) 227.996 0.016 0.012 0.334 18.899 43.302 19.239 42.442 449.786 2.735 2.755 1.888 

Correlation Cu ppm Au ppm Au (R) Ag ppm Mo ppm Mn ppm Pb ppm Zn ppm Ba ppm As ppm Ni ppm Co ppm 
((14115) (GA334) ((11334) ((11115) ((11115) (GA115) (G4115) (GA115) (GX401) (HA140) (GA140) (GA140) 

Cu ppm (GA115) 1 
Au ppm (GA334) 0.366 1 
Au (R) (GA334) 0.047 0.997 1 
Ag ppm (GA115) 0.929 0.388 0.000 1 
Mo ppm (GA115) 0.139 0.088 0.926 0.186 1 
Mn ppm (GA115) -0.069 -0.021 0.922 -0.096 -0.138 1 
Pb ppm (GA115) 0.011 0.034 0.346 0.122 0.056 0.043 1 
Zn ppm (GA115) -0.081 -0.089 0.923 -0.104 -0.134 0.791 0.383 1 
Ba ppm (GX401) -0.030 0.117 0.804 0.139 0.503 -0.136 -0.002 -0.143 1 
As ppm (HA140) -0.147 -0.045 0.665 -0.134 -0.081 0.118 0.324 0.137 -0.077 1 
Ni ppm (GA140) 0.019 0.180 0.981 -0.028 -0.126 0.522 -0.108 0.396 -0.169 -0.064 1 
Co ppm (GA140) 0.345 0.140 0.694 0.361 0.065 0.369 -0.079 0.337 0.185 -0.110 0.332 1 

Covariance Cu ppm Au ppm Au (R) Ag ppm Mo ppm Mn ppm Pb ppm Zn ppm Ba ppm As ppm Ni ppm Co ppm 
(G1115) (GA334) (GA334) (GA115) (GA115) (GA115) (GA115) (GA115) (GX401) (I1A140) (GA140) ((14140) 

Cu ppm (GA115) 676593.4 
Au ppm (GA334) 17.069 0.003 
Au (R) (GA334) 0.002 0.000 0.000 
Ag ppm (GA115) 922.017 0.027 0.000 1.456 
Mo ppm (GA115) 7768.131 0.339 0.006 15.274 4649.087 
Mn ppm (GA115) -8854.045 -0.188 0.826 -18.007 -1467.367 24405.2 
Pb ppm (GA115) 614.303 0.135 0.049 10.195 262.791 469.354 4817.901 
Zal ppm (GA115) -10210.8 -0.771 1.494 -19.304 -1395.897 18928.5 4070.349 23445.9 
Ba ppm (GX401) -39881.2 10.801 1.175 272.295 55656.8 -34504.4 -252.636 -35587.4 2633214 
As ppm (HA140) -1193.026 -0.025 0.016 -1.591 -54.435 182.600 222.141 206.525 -1234.331 97.353 
Ni ppm (GA140) 151.347 0.101 0.069 -0.331 -85.361 810.218 -74.529 602.147 -2718.133 -6.247 98.816 
Co ppm (GA140) 1935.612 0.054 0.033 2.966 30.032 393.062 -37.120 351.232 2046.225 -7.392 22.498 46.402 
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Table 4 

STATISTICS 	Line 8130N 

Descriptive Statistics Cu ppm 
(GA115) 

Au ppm 
(GA334) 

Au (R) 
(GA334) 

Ag ppm 
(GA115) 

Mo ppm 
(G4115) 

Mn ppm 
(GA115) 

Pb ppm 
(GA115) 

Zn ppm 
(GA115) 

Ba ppm 
(GV401) 

As ppm 
(114140) 

Ni ppm 
palm 

Co ppm 
((24140) 

Mean 303.210 0.048 0.006 0.697 25.759 68.641 41.955 47.993 2028.207 12.572 7.017 8.983 

Standard Error 197.863 0.013 0.004 0.294 15.458 15.430 10.267 8.880 383.136 1.355 1.627 1.225 

Median 45.100 0.623 0.006 0.300 5.000 29.100 29.800 44.400 1405.000 9.800 1.500 7.000 

Mode 0.011 0.050 1.000 - 2.400 - 9.800 1.500 7.000 

Standard Deviation 1065.526 0.071 0.006 1.583 83.243 83.092 55.287 47.818 2063.253 7.299 8.763 6.597 

Sample Variance 1135345.8 0.005 0.000 2.506 6929.315 6904.285 3056.668 2286.576 4257013.3 53.278 76.794 . 43.526 

Kurtosis 27.774 13.090 20.400 26.242 1.106 19.863 -0.260 3.543 -0.474 1.376 1.846 

Skewness 5.226 3.277 4.334 5.037 1.519 4.162 0.841 2.138 0.832 1.547 1.384 

Range 5779.500 0.359 0.008 8.250 448.500 268.500 304.800 162.900 7517.000 23.400 30.500 27.500 

Minimum 10.500 0.001 0.002 0.050 0.500 2.600 1.500 1.900 513.000 3.000 1.500 1.500 

Maximum 5790.000 0.359 0.010 8.300 449.000 271.100 306.300 164.800 8030.000 26.400 32.000 29.000 

Sum 8793.100 1.392 0.012 20.200 747.000 1990.600 1216.700 1391.800 58818.000 364.600 203.500 260.500 

Count 29 29 2 29 29 29 29 29 29 29 29 29 

Confidence Level (95.000%) 387.804 0.026 0.008 0.576 30.297 30.242 20.122 17.404 750.933 2.657 3.189 2.401 

Correlation 
Cu ppm 
(GA115) 

Au ppm 
((24334) 

Au (12) 
((24334) 

Ag ppm 
(G4115) 

Mo ppm 
((24115) 

Mn ppm 
(a4115) 

Pb ppm 
((24115) 

Zn ppm 
((24115) 

Ba ppm 
(GX401) 

As ppm 
(114140) 

Ni ppnt 
((2.140) 

Co ppm 
(GA140) 

Cu ppm (GA115) 

Au ppm (GA334) 

Au (R) (GA334) 

Ag ppm (GA115) 

Mo ppm (GA115) 

Mn ppm (GA115) 

Pb ppm (GA115) 

741 ppm (GA115) 

Bs ppm (GR401) 

As ppm (RA140) 

NI ppm (GA140) 

Co ppm (GA140) 

1 

0.329 

-1.000 

0.958 

0.151 

-0.021 

0.061 

-0.073 

-0.058 

-0.193 

0.052 

0.418 

1 

1.000 

0.342 

0.079 

0.288 

0.105 

0.187 

0.050 

0.036 

0.368 

0.182 

1 

- 

-1.000 

1.000 

-1.000 

1.000 

-1.000 

1.000 

-1.000 

1 

0.175 

-0.053 

0.188 

-0.127 

0.097 

-0.216 

0.013 

0.503 

1 

-0.156 

0.021 

-0.208 

0.568 

-0.101 

-0.127 

0.090 

1 

-0.090 

0.837 

-0.104 

-0.018 

0.199 

0.104 

1 

-0.029 

0.057 

0.386 

-0.087 

-0.101 

1 

-0.233 

0.092 

0.338 

0.217 

1 

-0.025 

-0.188 

0.281 

1 

-0.291 

-0.109 

1 

0.165 1 

Covariance 
Cu ppm 
((24115) 

Au ppm 
((24334) 

Au (R) 
(GA334) 

Ag ppm 
((24I15) 

Mo ppm 
((24115) 

Mn ppm 
((24115) 

Pb ppm 
(G4115) 

Zn ppm 
(GAI15) 

Ba ppm 
(GX401) 

As ppm 
(HA140) 

Ni ppm 
((24I40) 

Co ppm 
((24140) 

Cu ppm (GA115) 1096195.9 

Au ppm (GA334) 24.116 0.005 

Au (R) (GA334) -0.022 0.000 0.000 

Ag ppm (GA115) 1559.906 0.037 0.000 2.419 

Mo ppm (GA115) 12922.575 0.453 0.000 22.260 6690.373 

Mn ppm (GA115) -1757.537 1.646 -0.005 -6.732 -1039.747 6666.206 

Pb ppm (GA115) 3485.620 0.400 0.080 15.926 92.543 -400.008 2951.265 

Zn ppm (GA115) -3580.654 0.617 -0.007 -9.269 -801.112 3209.986 -74.201 2207.729 

Ba ppm (GX401) -123157.7 7.128 0.706 307.065 94270.584 -17187.143 6287.561 -22212.137 4110219.8 

As ppm (HA140) -1448.517 0.018 -0.006 -2.413 -59.303 -10.357 150.447 31.052 -364.305 51.441 

NI ppm (GA140) 471.867 0.222 0.022 0.177 -89.668 140.223 -40.899 136.559 -3276.883 -17.984 74.146 

Co ppm (GA140) 2838.161 0.083 -0.011 5.067 47.935 54.851 -35.716 66.136 3692.279 -5.045 9.190 42.026 
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	 Table 4 

STATISTICS 	Line 8010N 

Descriptive Statistics 
Cu ppm 
(GA115) 

Au ppm 
(G4334) 

Au 
((24334) 

Ag ppm 
(GA115) 

Mo ppm 
(GA115) 

Mn ppm 
(G4115) 

Pb ppm 
((24115) 

Zn ppm 
(GA115) 

Ba ppm 
(GX401) 

As ppm 
(H4140) 

Ni ppm 
(G4140) 

Co ppm 
((24140) 

Mean 146.286 0.012 0.023 0.166 15.591 177.568 51.736 167.691 1242.545 15.464 9.955 9.955 

Standard Error 72.203 0.004 0.000 0.035 9.511 44.208 18.547 45.405 126.351 2.700 2.454 1.568 

Median 28.850 0.006 0.023 0.075 3.500 84.950 28.350 70.600 1147.500 12.800 4.500 8.500 

Mode 0.003 0.050 3.000 ... 12.800 1.500 1.500 

Standard Deviation 338.661 0.017 0.162 44.609 207.355 86.995 212.970 592.640 12.665 11.509 7.355 

Sample Variance 114691.609 0.000 0.026 1989.968 42995.988 7568.068 45356.213 351222.355 160.413 132.450 54.093 

Kurtosis 13.906 9.918 0.852 18.529 0.417 18.364 0.904 2.363 9.407 0.049 0.944 

Skewness 3.601 2.916 - 1.318 4.230 1.186 4.166 1.340 1.020 2.643 1.285 0.908 

Range 1510.000 0.075 0.000 0.550 207.000 646.200 415.900 696.800 2730.000 60.700 34.500 28.500 

Minimum 10.000 0.001 0.023 0.050 1.000 7.100 10.500 2.900 30.000 2.300 1.500 1.500 

Maximum 1520.000 0.076 0.023 0.600 208.000 653.300 426.400 699.700 2760.000 63.000 36.000 30.000 

Sum 3218.300 0.270 0.023 3.650 343.000 3906.500 1138.200 3689.200 27336.000 340.200 219.000 219.000 

Count 22 22 1 22 22 22 22 22 22 22 22 22 

Confidence Level (95.000 0/o) 141.515 0.007 - 0.068 18.641 86.646 36.352 88.993 247.644 5.292 4.809 3.073 

Correlation Cu ppm Au ppm Au (R) Ag ppm Mo ppm Mn ppm Pb ppm Zn ppm Ba ppm As ppnt Ni ppm Co ppm 
(G4115) ((24334) ((24334) ((24115) (G4115) ((24115) ((24115) ((24115) (GX401) (HA140) ((24140) ((24140) 

Cu ppm (GA115) I 

Au ppm (GA334) 0.845 1 

Au (R) (GA334) - I 

Ag ppm (GA115) 0.645 0.638 1 

Mo ppm (GA115) 0.005 -0.023 0.434 1 

Mn ppm (GA115) -0.127 -0.118 0.000 -0.159 1 

Pb ppm (GA115) -0.082 -0.012 0.415 0.147 0.059 1 

Za ppm (GA115) -0.120 -0.050 0.109 -0.164 0.765 0.501 1 

Ba ppm (GX401) -0.001 -0.033 -0.116 0.008 -0.074 -0.092 0.002 1 

As ppm (11A140) -0.146 -0.114 0.186 -0.058 0.103 0.286 0.094 -0.152 1 

NI ppm (GA140) -0.002 0.010 -0.063 -0.128 0.664 -0.141 0.434 -0.103 0.032 1 

Co ppm (GA140) 0.350 0.305 0.430 0.038 0.535 -0.073 0.442 0.075 -0.136 0.475 1 

Cu ppm Au ppm Au (R) As ppm Mo ppm Mn ppm Pb ppm Zn ppm Ba ppm As ppm Ni ppm Co ppm 
Covariance 

(G4115) ((24334) ((24334) (GA115) (G4115) (G4115) (GA115) (GA115) (GX401) (HA140) ((24140) (GA140) 
Cu ppm (GAL15) 

Au ppm (GA334) 

Au (R) (GA334) 

Ag ppm (GA115) 

Mo ppm (GA115) 

Mn ppm (GAM) 

Pb ppm (GA115) 

Za ppm (GA115) 

Ba ppm (GX401) 

As ppm (11A140) 

NI ppm (GA140) 

Co ppm (GA140) 

109478.354 

• 4.595 

0.000 

33.813 

66.358 

-8488.854 

-2297.827 

-8269.860 

-213.206 

-598.254 

-9.057 

832.602 

0.000 

0.000 

0.002 

-0.017 

-0.395 

-0.017 

-0.169 

-0.310 

-0.023 

0.002 

0.036 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.025 

2.997 

-0.002 

5.592 

3.584 

-10.602 

0.365 

-0.113 

0.489 

1899.514 

-1401.272 

543.760 

-1487.881 

214.450 

-31.301 

-62.700 

12.050 

41041.625 

1009.496 

32234.439 

-8668.742 

257.874 

1511.460 

778.694 

7224.065 

8867.878 

-4504.070 

300.567 

-135.196 

-44.376 

43294.567 

256.314 

241.043 

1015.954 

660.897 

335257.702 

-1089.535 

-669.362 

310.570 

153.121 

4.396 

-12.083 

126.430 

38.418 51.634 
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	 Table 5 

ANALYTICAL METHODS 

Element Method Laboratory LDL 
(PP[11) 

UDL 
WO 

Pocedure 

Cu GA115/GA329 Analabs 0.05 1000 

Digest with aqua regia followed by AAS 
determination, with MIBK (methyl iso-
butyl ketone) extraction for gold (this 
latter for GA329) 

Cu GA104 Analabs 20 50,000 
Total acid digestion (perchloric, aqua 
regia and hydrofluoric) followed by AAS 
determination 

Au GG334 Analabs 0.001 100 Aqua regia digest followed by carbon rod 
determination 

Au GG329 Analabs 0.02 20 Aqua regia digest followed by AAS 
determination 

Ag GA115/GA329 Analabs 0.1 20 Digest with aqua regia followed by AAS 
determination 

Mo GA115/GA329 Analabs 1 100 Digest with aqua regia followed by AAS 
determination 

Mn GA115/GA329 Analabs 0.5 1,000 Digest with aqua regia followed by AAS 
determination 

Pb GA115/GA329 Analabs 0.5 500 Digest with aqua regia followed by AAS 
determination 

Zn GA115/GA329 Analabs 0.5 1,000 Digest with aqua regia followed by AAS 
determination 

Ba GX401 Analabs 10 - Pressed powder XRF 

As GA140 * Analabs 50 5,000 Digest with aqua regia/perchloric acid 
followed by AAS determination 

As HA140/GA329 Analabs 0.5 50 Hydride generation followed by AAS 
determination 

Ni HA140/GA329 Analabs 3 '000 
 

10,000  generation followed by AAS 
determination 

Co 11A140/GA329 Analabs 3 '000 
 

10,000  generation followed by AAS 
determination 

* only one sample analysed by this method - all other samples below detection limit (for this method) 
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Chart 5 

All profiles are facing north, with west to the left margin and east to the right margin. 
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Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration I 

Royal Tharsis 

1M/95 

J.Rowe 

1979 

W.J.D.Godsall 

Re-log 

8/02/97 

Hole Number 	 WL0479 

Section/s 	 7770N 

COLLAR INFORMATION 315GRL GRID 

North 7788 
East 3542 
RL 2035 
Azimuth 224 
Inclination -14 

Hole Length (m) 226.15 
Hole Length (ft) 

(if applicable) 

Abbreviations: na - not available, ne- no entry, nd - not determined, no - not observed, fo - foliation, co - contact, SO - bedding, Tr - trace 

Significant Intersections 
Au ppm Ag PP PeA 

No significant copper intersection. 

Hole Purpose and Result 

tunmary Log 
Code Description 1•Picio I ep'Ye Depth ! C Anee 

0.00 70.00 Lqzse Vein as minor unit 8 tr 2 fo 60 
70.00 74.45 Lqzch(se)-tf Tuffaceous quartz chlorite, minor sericite 5 12 fo 60 
74.45 84.30 Lqzsech-itlf Intercalated and tuffaceus 12 42 fo 60 
84.30 85.50 fly Disseminated haematite at base. 2 60 fo 65 
85.50 89.45 Lqzch-tf Tuffaceous quartz chlorite 8 tr 73 fo 65 
89.45 111.85 1-Alzse(ch) Locally fragmental 6 tr 95 fo 70 
111.85 125.50 1-clzeh(se) Sharp contact with distinct speckled texture. Local vnq 4 tr 105 fo 65 
125.50 140.65 lAlzse-tf Coarse tuffs and fragmentaLs 8 tr 137 fo 50 
140.65 175.40 IAlzchisegr Wealdy tuffaceous. Local vqzsd 5 tr 145 fo 60 
175.40 182.30 IAlzch(se)-tf Tuffaceous 3 205 fo 65 
182.30 193.15 Lqzsesi Local vqzsd. Chloritic basally. 5 
193.15 200.00 Ffz No 2 fault 
200.00 207.00 lazse-fr Very broken core. 7 
207.00 226.15 Lqzchse-fx Tuffs and fragmentals. Local vqzsd. 3 tr 

Drilled to test rock types and ground conditions for proposed decline extension to 40 Series. 
Drilled away from known economic mineralisation. 

Copper Mines of Tasmania 	 Appendix HI 
Diamond Drill Hole Summary 	 Drill Hole WL0479 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: lumgingwsdl of Royal Tharsis 	 Hole Number: 	WL0479 
Major ' . Minor. . .:Litlialinci . Alteration ....:Minerulisatien : :. Stiucture. & Veining 

iFoin urn .7e( .)  Code Fl ...41i (Itli ....To OW.  
1 

Code Colavar Gr.: Slia Tatare Peser.linlei .• • ... Dencaipttan ... . D.'704  OP) Code Angle • ' 'DF.IkriPtitm ........... 	.. 	. .. 	. 	. 

0.00 70.00 LcIme VaIi mg ft qzscsi Weakly siliceous 8 ds n 2 to 60 

000 . 3120 Lqzsi whpi cg yid Pixieish white itregular fragmental texture. Weak hliation. Scottered end disseminated 
sulphides. Locally weathered. Siliceous and sericitic. wise 

Siliceous nature decreases 
down unit. 

8 do 12 h 60  

31.20 32.00 Vqz(sd) Minor sericite and sulphides along fracture planes. 42 to 60 

3200 7000 Lqzse flYwh cg lt 
Becoming less pink and with a poorly developed segregation associated with the weak 
fragmalal texture. Locally massive sulphides as veins and iraerstitial masses. qzsesi 12 U 60 h 65  

70.00 74.45 Lqzch fIngF fg it 
Intercalated and tuffaceous with predominant dilorite contest and subordinate sericite 
alteration. qzch(se) Pervasive 5 or 73 to 65 

74.45 84.30 Lqzse gYPi mg It 
Intercalated and tuffaceous unit. Locally fragmental with milky (?detrital) quartz. Variable 
and alternating mac and chlorite. Stringas and blebs of sulphides. qzsedi 12 ds 

78.50 79.00 Vqz wit lk Dirk (near black) dilorite along fractures. 

84.30 85.50 fry bk mg 
Gradational basally becoming much more clearly defined down the hole. Locally fragmental 
and hematitic at the base. Scatttered sulphide specksiblebs. Inn 2  

85.50 89.45 Ulzcil rgy fs If 
Minor sericite intercalations basally. Distinctive sulphide veinlets with globular pyrite, 
veinlets being sub parallel to foliation and with generally slarp lower contacts. Locally 
cross cutting sulphide stringers. 

qzch Pervasive 8 in n 

89.45 111.85 Lqzse qcsehlil 
Pervasive with minor 
dilorite 

6 do tr 95 to 70 

89.45 102.90 Lqzse wIlgn c13 
Wealdy foliated faintly fragmental with disseminated almost banded sulphides sub parallel 
to foliation. 

se Pervasive 3 do tr 105 to 65 

102.90 107.50 Lqzse Inn fg 
Green and foliated with locally pink fragmeraal texture. Disseminated sulphides, notsbly 
different to the preceeding minor unit. 

qzse(ch) Pervasive 5 do tr 

10730 108.00 Vqz yili my Tending to be massive. 

108.00 111.85 Lqzch M.  fg to 
Foliated with dominant chlorite and satiable sericite. Sub parallel bands of sulphides as 
medium euhedral grains. chse Pervasive 6 do tr 

111.85 125.50 Lqzch Chlorite content tends to decrease down the unit. shut 4 do tr 

111.85 114.50 Lqzch grIgF fit to  
Sham upper contact. Clots of chlorite, Disseminated sulphides frequently as bands sub 
parallel to foliation. qzch(se) Pervasive 6 bn tr 

114 30 121.60 Lqzch IPA n to Gradational increase in sericite with sulphides more diffuse. qzchse Pervasive 5 do at 

121.60 125.50 Lqznix snit fg in 
hregular quartz siderite veining &equally containing dark green chlorite along fractures. 
Occasional Cp. Veins at: 121.6m122.8m, 123.3rn-123.7m, 124.0m-124.6m, 125.0m. 

125.5m. 
nth 4 do tr 

125.50 140.65 Lqzse-tf gYPi mg fi- 
Mixture of medium to coarse tuffs and fragmentals, with fine pained sulphide 
disseminations and acetic!. qzse 

Pervasive with minor 
chlorite 8 do at 137 to 50 

140.65 175.40 Lqzth EllgF fg ft 
Predominantly fragmental unit with minor intethedded tuffs.Fragmeritals elongated along 
weak foliation. Disseminations and weak bands of sulphides.From 163m increasing coded 
of quartz siderite veinlets generally sub parallel to foliation. qzch(se)  

Pervasive with minor 
sericite 

5 do tr 145 to 60 

169.30 170.00 Lvqzsd wit Comb structured sideritic vein. Blebs of cp. 

175.40 182.30 Lqzch FilgY mg tf 
Tufhcous unit with elongate clots of chlorite. Disseminated subhedral pyrite, priestly sub 
parallel to foliation. cpclase) Minor saicite 3 do 

175.00 
_ 

176.40 Leine pi fg Pink foliated rode. se Pervasive 5 _ do tr 

Geologist: 	 W.J.D.Godsall 	 Date: 	8/02/97 	 Page 	1 	of 	2 
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Significant Intersections 
Description % Au ppm I  Ag pp PY% 

138.0 162.0 24.0 Sericitic and chlorine. Fragmental. Siderite veined 0.42 0.12 0.8 16.75 

144.0 160.0 16.0 Sericitic and chlorine. Fragmental. Siderite veined 0.53 0.15 0.8 12.58 

Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration 

Royal Tharsis 

1M/95 

J.Rowe 

1979 

W.J.D.Godsall 

Re-log 

9/02/97 

Hole Number 	 WL0480 

Section/s 	 7770N 

COLLAR INFORMATION 315GRL GRID 

North 7797 
East 3572 
RL 2035 
Azimuth 75 
Inclination -09 

Hole Length (m) 249.10 
Hole Length (ft) 

(if applicable) 

Summary Log 
From To : 	Code Description f Prio Cp% 1 Depth Code I Angle 

0.00 63.00 1-47--sePY Minor LILIzch 8 50.0 fo 75 

63.00 69.80 Lqzchse ? fine tuff. Carbonate veining. 5 65.0 fo 80 

69.80 124.00 Lqzsepy Fragmental. Locally faulted. 8 80.0 fo 65 

124.00 135.50 LTA,- Tuff Minor chlorite. 5 

135.50 142.40 141zse Weakly brecciated. 10 tr 

142.40 202.00 Lqzseeh Chlorine fragments more homogeneous down hole 5 2 

202.00 227.40 Lqzse(py) Massive 5 tr 

227.40 232.95 Lqzch Minor haematite veinlets. 7 1 

232.95 246.65 Lqzse Carbonate veinlets. 1 

246.65 249.10 Oct Faulted contact. 

Abbreviations: na - not available, ne- no entry, lid - not determined, no - not observed, fo - foliation, on - contact, SO - bedding, Tr - trace 

Hole Purpose and Result 

Drilled to test rock types and ground conditions for proposed main decline extension and Royal Tharsis 
at 2000 RL. 

Copper Mines of Tasmania 	 Appendix Ill 
Diamond Drill Hole Summary 	 Drill Hole WL0480 
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Copper Mines of Tasnumia - Diamond Drill Hole Log 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: hangingwall of Royal Tharsis 	 Hole Number: 	WL0480 
:Major , . . . 	 .• Minor Litliology ::...% 'Alteration . Mineralisation Structure & Velain 

Ram Pa) 
I 

. .17f) (m) Code Froth (In) To .(Im) Code Colour 
.... 

Gr. Sine . 	...... 
. 	. 
: Texture .... 	.. .Deserlpflon : ' DeactitIon  	Style  Depth .im.) Milk " , : , .DeiFIPt.1011 	• 

0.00 63.00 Lqzse SY* mg 
Quartz sericite rock with minor interbedded units of gyge qzchse rock Siliceous 
appearance. Silicification masks original texture. Locally fragnatal. Py occurs as semi- 
massive irregular veins and as medium gained subhedral disseminations. 

quash) Pervasive throughout. 8 ds 30 fo 70 

3.45 6.65 Lqzch Minor .  dilorite zone/band with subordinate sericite altention. qzdise Pervasive 60 to 80 

11.00 13.30 Lama Minor chlorite zone/bald with subordinate sericite alteration. qzchse Pervasive 

21.75 21.80 Ffl Shear 

14.30 34.70 Lqzch Minor chlorite zone/band with subordinate sericite alteration. qzchse Pervasive 

35.20 36.00 Laaell Minor chlorite zonaband with subordinate sericite 'dietetical. qzchse Pervasive 

43.80 46.10 Inzch Minor dilorite zonaband with subordinate sericite alteration. qzcbse Pervasive 

48.55 48.60 Fa Shear 

63.00 69.80 Leych VW mS 
Even textured - possibly s fine tuff. Occasional cross-cutting Py veins. Competent 
imit.Gradational btween Lqzdise and Lqzsech. azellse 5 or 65 to 80 

63.00 63.50 Vqzsd ? fault contact? 

64.20 64.70 Vqzsd Broken veining 

68.60 68.80 Vqzsd 

69.80 124.00 Lope OW ft 
Quartz sericite fragmental rock that pails readily along sericite or hydromica joint and shear 
planes which ere frequently sub parallel to foliation - locally conthoidal. Pyrite as antic 
veinlets and disseminations. Prominent quartz siderite veinlets. 

qzse Pervasive 8 ds 70 to 60 

70.60 74.05 Lame Minor chlorite zone/bond. qzthse 120 to 70 

78.00 81.10 Ffl Heavily broken core. 

86.95 89.40 Lane Minor dilorite zone/band. (Om 

92.25 95.40 Lqzse Minor chlorite zone/band. opine 

97.40 100.00 Ffl Heavily brokat core. 

124.00 135.50 Lqzse p f8 
Fine to medium gained quartz sericite "tuff' with minor chlorite, Broken core associted 
with quartz and surrounding rock. Local quartz sidaite veining. sada 5 ds 

135.50 142.40 Lqzse Pkg al8 Slight brecciated appearance. Textureless. Semi massive sulphides. se Pervasive 10 ds 1 

142.40 202.00 Lqzse Chlorine fragments becoming more homogeneous down the hole. qzsech 

142.40 152.50 Lope  fS B. 
Fine to medium grained, tuffitceous with flecks of great &torte. Local quartz siderite 
veining. Fragmental. 

qzsech 9 do 2 de 

152.50 202.00 Dizse gyge rB ft 
Evently textured monotonous uniL Visual variations in chlorite content_ Finer and more 
homogeous than overlying unit. (laterally competat with title evidence of any significant 
structures. Fragmental. 

qzsech 5 ds <1 

202.00 227.40 Lqzse Pk f8 mv 'Massive tuataras mit. Subordinate sericite. se 6 ds <1 

227.40 232.95 Lqzch SI fg Quartz chlorite tuff with subordinate/trace sericite. Minor haematite veinlets. ch(se) Minor haematite 7 ds 2 bb 

232.95 246.65 Lope Pk fR mv 
Sericite prominently subordinate to quartz. Faulted basal contact. Sulphides increase 
towards this contact which is tharactaised by quartz siderite veinlas. 

qzse 3 do 

246.65 249.10 Oct PP 
Purple Owen Conglomerate. Haanatite dusting. Occasional ?sulphide7 smears along 
fracture planes. 

hm 

EGH 

Geologist: 	 W.J.D.Godsall 	 Date: 	9/02/97 	 Page 	1 	of 	1 
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Hole Number 

Section's 

WL0106 

7770N (-7830N) 

Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration I 

Royal Tharsis 

1M/95 

M.L.Wade 

1957 

W.J.D.Godsall 

Re-log 

21/12/96 

COLLAR INFORMATION 315GRL GRID 

North 7779 
East 3659 
RL 2423 
Azimuth 102 
Inclination -60 

Hole Length (m) 308.46 
Hole Length (ft) 1012 

(if applicable) 

Abbreviations: na - not available, ne- no entry, nd - not determined, no - not observed, fo - foliation, co - contact, SO - bedding Tr - trace 

Significant Intersections 
PY% 

213.4 227.1 13.7 147sepy 1.23 0.49 1.5 
230.1 249.9 19.8 Lqzch 0.40 0.05 0.6 
213.4 249.9 36.6 Lqzsech 0.70 0.24 1.0 

Hole Purpose and Result 

Hole abandoned at 308.46 m (1012 ft). 

ummary 
From Code Py%lCp%l Depth  I 	Code  I Angle 

0.0 91.67 1-xlzsePY Patchy chlorite to 6.1m (20ft) 17 0.2 fo 55 
91.67 105.00 Lqzch Siliceous. Limonitic 3 63.1 fo 60 
105.00 110.26 1-hlzsePY Siliceous. Weakly chloritic 10 99.7 fo 75 
110.26 112.01 Lchqz Quartz porphyroblasts. Very sharp contacts. 7 106.7 fo 70 
112.01 129.39 lAlzsePY Green hydromicas 20 110.2 fo 80 
129.39 156.97 Lqzch Carbonate-haematite alteration 3 122.2 fo 55 
156.97 180.44 1-clzsePY Clots of chlorite 15 135.6 fo 65 
180.44 193.62 Lqzch Siliceous 7 178.6 fo 68 
193.62 213.97 1-41zsePY Haematite zones(s) 20 < 1 191.7 fo 85 
213.97 228.68 Lqzch Minor sericite 3 2 199.3 fo 60 
228.68 249.63 Lqzsech Knobbly quartz texture. 3 1 217.9 fo 70 
249.63 272.19 Lqzse Carbonate alteration 2 < 1 243.8 fo 65 
272.19 308.46 Lqzsech Intercalated sericitic and chlorite-sericite units. 4 260.6 fo 75 

273.4 fo 75 

Copper Mines of Tasmania 	 Appendix HI 
Diamond Drill Hole Summary 	 Drill Hole WL0106 
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Drill Hole WL0106 - Down Hole Silver Assays 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: periphery of Royal Tharsis orebody 	 Hole Number: 	WL0106 
•.'• Major •Miner ..::::::Lithelogy . Alteration!' 1VIlaeritlisaUOit! . ! &multi & Veiniag.i: , .;11 	.1 

Prom To Code Prow Ta Code Colour 43i: Mae •Tennie 
•• 	, 	........ ::.P"KflPtiP11....... :.peptli 

::! on) 	,,• •Artflie DesalptIon . 
0.00 0.40 lAzkl, gYge mg Interiodcing mosaic of qz-di with cb/se altered ex feldspar? &Ian Haanatite sparse 1 0.17 to 55 
0.40 56.36 Lqzse SY* mg Strongly segregated quartz-sericite domains/breccia leisure? hind) Pervasive 15 17,40 to 35 

0.40 6.10 Lmsetch) gypIc mg Very irregular &inconsistent, patchy ch alteration noted occasionally. Minor fl along joint 
planes. lamb Pervasive 15 25.06 to 25 

56.36 74.68 Lqzse Pk 4 Highly SiliCe011S rock with locally developed sericite. hmcb Pervasive 7 <1 33.93 to 25 
74.68 91.67 ape gYPIk mg Silieous with variable pyrite content. land) Pervasive 15 37.58 fo 30 

76.75 78.94 Lcrzpy IV m8 Zone of very pavasive pyritic attaMion - possible vein. 60 40.37 tb 50 

91.67 100.13 Lqzdi gYge mg 
Highly siliceous Lqz with ragged di blebs & minor se. Limonitic cb/sd blebs throughout 
with scattered Ian. Unit more chlorine down hole. hmsd Patchy 5 49.07 fo 55 

100.13 105.00 Lqzch gYge m8 Increasingly diloritic quartz-chlorite sdrist. dad Patchy 2 61.60 to 65 
105.00 110.26 Legse PkgY mg Siliceous and wealdy/locally diloritic. hind, Pervasive 10 72.04 fo 60 

110.26 112.14 Lchqz go 4 PP 
Quartz porphyroblasts up to 0.5mm & finer sericilic flecks in ddoritic groundmass. 
Contacts very sharp. chsd Patchy 7 74.82 fo 50 

112.14 129.39 Lqzse PlegY mg Prominart greenish hydromicas. slim Pervasive 20 82.13 to 60 

129.39 156.97 Lqzdr gegY kg 
Highly siliceous with minor se. Sd-Inn alteration locally strong. di locally abundinn enough 
to form segregated masses as well as irregular clots. 

hnisd  Very strong locally 
pervasive 3 88.74 to 45 

153.92 156.97 Lrizth PkgY kg 
Down hole boundary zone gradational, clots of dilorite in Marianne qz-se schist, gear & 
white micas in equal abundance. sehmsd 5 90.83 to 40 

156.97 180.44 Lqzse PkgY kg 
Up hole boundary • little indefinite but e 1 metre. Irregular clots of ddorite. Pale gam 
sericite. Poor schistosity. hm 15 10440 to 55 

180.44 193.62 Lqzch go 4,118 
Unit starts as highly siliceous & becomes progressively more ddoritic & finer gained 
toward down hole boundary, 190.50- 193.55 m (625-635ft.). dad Moderate 7 113.80 fo 75 

193.62 213.97 1.4zse gy mg Locally diloritic. clzse 20 114.14 Vqzsd 120 Isolated veining 
193.62 199.57 Lqzse PkgY m8 Haanatitic zone. Inn Pervasive 7 117.97 to 65 

199.57 208.18 Lqzse CI mg Pyritic quartz sericite schist. qzse 25 121.80 to 70 

208.18 213.97 Lpyqz yegY mg Massive pyrite zone. 80 <1 125.80 to 80 Pyritic vein at contact 
213.97 228.68 Lqzch go fgmg Uneven cleavage. Minor sericite. chsd Patchy 3 to 2 do 128.41 Vqrsd 80 0.3 In (1 ft) thIck 

228.68 249.63 Legse Pkge kg 
Variable di alteration througsaut. Unit develops knobbly texture in qz toward down hole 
botnidary possibly alter pharocrysts? • Tyndall Group? Down hole boundary gradational, ± 
2m (511). 

recital Pervasive 3 or 1 do 139,55 to 55 

249.63 272.19 Lapse plc kg Minor =berme (ad) alteration schm Pervasive 2 ds <I 148.94 to 75 

272.19 308.46 Lqzse Pk cg Sequence of intercalated patc quartz-sericite schists & qututz-chlorite Wrists up to 30cm 
(12") with =petite stringers & dissaninations mostly through ddoritic horizons Man= Variable 4 do 154.86 to 65 

286.51 294.74 Lqzse ItPle mg Quartz schist minor sericite & pyrite qzselon Pervasive 2 do 163.56 to 70 

294.74 308.46 Lqzch gePk m8 
Intercalated Lqzse & Letzelise schists. Chlorite appears more pervasive but in general 
resembles up hole portion of unit. Sheared. 

I  Variable 3 do 175.39 to 47 

186.18 fo 60 

191.72 to 85 

199.34 to 60 

Geologist: 	 W.J.D.Godsall 	 Date: 	21/12/96 	 Page 	1 	of 	2 
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Project: Thirsts orebody WL0106 
Major Lilholog7 Alteration mineralisation ' 	Structure laNeining alilidH1110S1 

••••• cr. an Testate an) 
272.19 308.46 Ltlzse dtmant Variable 203.93 to 68 

(continued) 207.26 to 70 

EDH 217.93 to 70 

227.69 Vqzsd 200a thick 

228.60 65 

228.90 Vqzsd 30cmthick 

243,84 to 65 

260.60 to 75 

273.41 lb 75 

288.65 fo 75 

300.23 to 70 

303.28 to 65 

Royal Tharsis Alteration Location: Royal periphery of 

Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Geologist: 	 W.J.D.Godsall 
	

Date: 	21/12/96 
	

Page 	1 	of 
	

2 
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Summary Log 
Code . Description .PY% cl)% Depth I Code I Angle 

0.00 18.30 uvrych(nd) Fragmental. Variable carbonate content 11 4 5.5 fo 80 
18.30 44.30 Lqzse(ryXinn) Pervasive haematite 9 7 19.7 fo 70 
44.30 65.20 Lqzchsehm(py) Fault zones may be Great Lyell fault. 4 4 30.4 fo 80 

37.8 fo 70 
41.3 fo 60 
57.9 fo 80 

Significant Intersections 
An ppm I Ag ppm PyVo Description 

6.0 7.8 52.0 46.0 2.12 0.65 1.87 

Hole ends in mineralisation. 
Average SG = 2.96 (10 * 6 metre composite samples) 

Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration I 

Royal Tharsis 

1M/95 

C.J.Webb 

September 1976 

W.J.D.Godsall 

Re-log 

4/11/96 

Hole Number 	 WL0421 

Section/s 	 7950N 

COLLAR INFORMATION 315GRL GRID 

North 7947 
East 3849 
RL 2196 
Azimuth 083 
Inclination -10 

Hole Length (m) 65.20 
Hole Length (ft) 

(if applicable) 

Abbreviations: na - not available, ne- no entry, ad - not determined, no - not observed, fo - foliation, co - contact, SO- bedding, Tr - trace 

Hole Purpose and Result 
Drilled from 11 level footwall drill drive. 
Testing below Royal Tharsis mine stopes on section 51, 190 m RL 
Extremely poor ground conditions predicted. 
Core severly broken. Fault zones with clay and gravel, and low angle joints intersected. 
Original assay data suspect (too high) due to low recovery. 

Copper Mines of Tasmania 	 Appendix HI 
Diamond Drill Hole Summary 	 Drill Hole WL0421 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: southern part of Royal Tluirsis orebody 	 Hole Number: 	WL0421 
:Major :.: Minor:-  • :::Litlitilitity .  :'Mtetatiiio ' Miltiaallattlitii:': il ''.' Structiaild4`keitilit 

FOams To Code Fran To Code Cdour Cr Sta :.... 	... 'Tattoo: 
•, 	.,, 

i 	),'. :P!".i.. e, ! 
Iiilliiiielloolotittittittrol!, 
4041 1. 1 1P1,1!',..PI!!1 . 10!°!' 

0.00 18.30 Lqzych 8clitY mg P 
Predominantly diloritic sequence. locally suicide. Intermixed Lqzpyth(mt) and 
Lqzpych(se)(ng). Fragmadal. Variable carbonic (siderite) ceasent. Siliceous. sich(m0 Pervasive chlorite. 

0.00 2.30 Lqzch lrf:/ m8 
Sulphide veinlets and crack infill - locally along foliation. Mainly disseminated. 
Scaneredblebs mt end hopopated/dissoninated py. sidnmt) Locally sericitic. 3 d 10 d 1.8 fl 70 

2.30 9.80 1-cicce Pi8Y m8 g" 

Fragmental • irregular to elongate flagmans with variable cream siderite veinlets. 
Disseminated sulphides, occasional veinlets, increasing down the hole. Lesser diorite 
canton increases with depth. Locally brolon core. sisecb 5 d 10 d 5.5 fl 80 

9.80 18.30 Lqzch Stiff m8 Er 

Fragmental, becoming sericitic through the middle of the unit. Almost "massive" dilorite 
from 16.30m to 18.30m. Variable sulphide content in the form of dissoninations and blebs. 
occasiand stringers. Wally massive. thcblan 

Pervasive chlorite. Minor 
siderite. 3 d 9 d 13.8 fl 80 

18.30 4430 Wise Pi8Y 'AS p 
Predomitaintly suicide sequence with minor chlorite and pervasive micaceous haematite. 
In places core is heavily broken, Gradational contacts. siseibm) Moderate to strong. 

18.30 22.30 1-cicce Pia7 c8 fk 
Lithic tuff. Weakly brecciated. Heavily broken core - locally 'tuned. Minor chlorite. 
Sulphides as disseminations and veinlets. 

1 Moderate. 5 d 8 d 19.7 fl 70 

22.30 24.90 Lqzch WHY m8 ff 
Broken core. Minor pink haematite. Disseminated sulphides. localised granular blebs and 
veinlets. Occasional siderite stringers. sich(lan) Pervasive chlorite. 6 d 12 d 24.1 62 80 

24.90 35.20 lAlcce PBY QS gn 
Granular with minor thlorite. Pink micaceous haematite. knastitial sulphides. Massive 
vein at 25.1m. Occasional siderite. sehm Moderate to strong. 3 d 8 d 304 f3 80 

35.20 40.60 Ff.k Pi8Y cg Or 

Fragmental and locally faulted from 35.4m. Quanz sericite schist with carbonate and 
haematite. Siderite as veins, blebs and stringers, frequently as quartz-siderite veins that are 
brecciatecklistorted. Quartz - magnetite vein at 36.6m. Iamb 

Moderate hanatite. Weak 
carbonate. 

3 d 8 d 37.8 83 70 

40.60 44.30 Lqzse Pi8Y Re Or 
Gra.nular and fragmental. Broken core, locally faulted as per original log. Molybdante 
recorded in original log not identified - possibly haematite. siselan Moderate to strong. 2 d 3 d 41.3 f2 60 

44.30 65.20 Lqzch Pild c8 6  

Core is heavily broken proudly throughout the unit. (Faulting as per original log.) 
Micaceous - hydraulics. Coarse breccia - lithic tuff. Fragmental and gnmular with minor 
siderite and ?trace? chlorite. Sulphides as disseminations. Some pug. disdan Strongly pervasive. 2 d 6 d 57.9 fl 80 

(Shadowing of SCA as in 
original log not observed.) 

54.05 57.48 Ffz 7 Great Lyell fault? 

62.40 65.20 HI ? Great Lyell fault? 

trots 

Geologist: 	 W.J.D.Godsall 	 Date: 	4/11/96 	 Page 	1 	of 	1 



Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration I 

Royal 'Tharsis 

1M/95 

M.Bird 

1982 

W.J.D.Godsall 

Re-log 

18/01/97 

Hole Number 	 WL0530A 

Section's 	 7950N 

COLLAR INFORMATION 315GRL GRID 

North 7954 
East 3558 
RL 1990 
Azimuth 212 
Inclination -39 

Hole Length (m) 303.90 
Hole Length (ft) 

(if applicable) 

Summary Log 
From To Code Description Py% I Cp% I  Depth I Angle 
0.00 22.00 Lqzse(cbXch) Variable carbonate content 1 0.0 fo 45 

22.00 66.20 Lqzsech ?carbonate zone as fringe to the pyritic zone - 25.0 fo 50 
66.20 72.50 Ffz - 60.0 fo 55 
72.50 91.40 Lqzse(cb)-fxvn Locally faulted - 85 fo 50 
91.40 100.10 Lqzse(cb) Veinlets sub parallel to S2 - 107 fo 65 
100.10 100.90 lly Weakly magnetic lamprophyre - 133 fo 70 
100.90 124.50 Lqzsecb(ch) Prominent carbonate - 159 fo 75 
124.50 138.20 Lqzsech(cb) Clots of chlorite - ? fragmental - 213 fo 80 
138.20 147.60 Vqz Transgressive to 82. Potential mica "barrier". - 241 fo 75 
147.60 173.10 Lqz.se Gradual drop off in cb veins to EoH - 256 fo 80 
173.10 176.70 Vqz Cuts S2 - i.e. late - 275 fo 75 
176.70 212.85 Lqzch(se) Gradational contacts - 300 fo 85 
212.85 233.25 Lqzse(ch) Veined - 
233.25 249.20 Lcgse Veined - 
249.20 261.3 Lqzchse Intercalated chlorite clots - 
261.3 278.2 Lqzse(ch) Veinlets sub parallel to S2 - 
278.2 288.0 Lqzch Prominent mixed micas. - 
288.0 303.9 Lcgse EoH in zone of lowest grade alteration. - 

Abbreviations: na - not available, ne- no entry, nd - not determined, no - not observed, fo - foliation, co - contact, SO - bedding, Tr-trace 

Significant Intersections 
An ppm Ag ppm Pyl'A 

No significant copper intersections 

Hole Purpose and Result 

Drilled to test 40 series decline structures. 
Drilled distal to the economic zone and towards the edge of the alteration zone 

Copper Mines of Tasmania 	 Appendix HI 
Diamond Drill Hole Summary 	Drill Hole WL0530A 
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Copper Mines of Tasmania 	 Appendix IH 
Diamond Drill Hole Assay Profiles 	Drill Hole WL0530A 

Drill Hole WL0530A - Down Hole Silver Assays 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: hangingwall of Royal Tliarsis 	 Hole Number: 	WL0530A 
Major • ..• Minor' . .. Lithology. • • :: :Alteration •:MiaeralliatiOn • ' Structure & Veining':: .:::.: ,  

•PVICVIFOmi ' Froth (M) 
.. 

To (in) Code Or1:4.! (in) :: 70 (a,) Code Calom Go: itie 
- - • . 	i 

::Texhria: 
... 	.. 
::: Code 	 DT°. giO Code  Angle 

22.00 1-4Fse V mg 
Variable amounts of carbonate hi form of siderite, frequently intermixed with white qu art0.00 
Dissentinated sulphides as scattered specks. secbch Minor thumb. I di 0 fo 45 

22.00 66.20 lAlzsa 8ffi m8 

Prominent carbonate (225%) content in the form of yellow to red siderite, occurring as 
veinlets, blebs and stringers.Generally concordant SZoccasionally cross-cutting. 
Slickensided. Localised slithers of light green rchlordeshydromica. 

qzsecb 
White micas and 
carbonate. 25 fo 50 

66.20 72.50 HZ 
Heavily broken core with sent pug infill. Dominantly termite carbonate schist with minor 
chlorde. No visible sulphide mincralistion. 60 fo 55 

72.50 91.40 lAlzse v4,0 018 flc 
Locally broken/faulted sericite sdast. No visible mineralisation. Stringers/veinlets and 
blebs of quartz-siderite. Thin mud seems in the cleavage qzsecb 

White micas and 
carbonate. 85 fo 50 

76.45 76.70 Fl) 

79.65 79.85 Fl) 

89.31 89.90 Ffl 

91.40 100.10 Lqzse UP m8 
Becoming finer grained. Blebs and veinlets of siderite generally sub parallel to 92. No 
visible sulphide mineralisation. Locally contorted at base secb 

White micas and 
carbonate. 

100.10 100.90 fly bl cif 
Black homogeneous lamprophyre dyke. Weakly/fondly mimetic. Red rhaanatite through 
middle of unit. lim Harinatitic and magnetific. 

100.90 124.50 Lqzse M8Y 1118 vn 
Quartz scriCite sdast with prominent carbonate (71544) in the form of quartz-siderite veins 
and blebs, both sub parallel to S2 and discordant/cross-cutting. Minor chlorite. No visible 
sulphide mineralisation. 

secbdi 
White micas and 
carbonate. 

107 fo 65 

103.25 103.50 Fl) 

124.50 138.20 Lqzsc UV f8 vn 
Similar to 100.9m • I24.5m but with an increasing chlorite content and lesser carbonate. 
Localised clots of dilorite impart a faint fragmanal appearance. No visible sulphide 
mineralisation. 

...., 
qzse(`"' 

Pervasive sericite end 
minor hydromicas. 

133 fo 70 

138.20 147.60 Vqz Wit ON 
Brittle white quartz, tending tube massive, with a minor/local carbonate/siderite contat and 
intermixed with sericite schist and dark green dilorite. 

147.20 173.10 Lqzse Pi8Y 18 fa 
Variable and gradational unit. Generally broken core. Locally ddoritic, particularly through 
the middle of the unit. Minor quartz +/- carbonate veinlets and stringers. No visible 
mineralisation. 

%Ise 159 fo 75 

164.20 167.80 Fl) vn Fractured core. Locally veined. 

168.40 172.80 Fl) vn Fractured core. Locally veined. 

173.10 176.70 Vqz ash Heavily broken white quartz vein with dark green chlorite. ?not metamorphosed. 

176.70 212.85 Lqzth FRY f8 gn 
Chloritic writ with a variable sericite content that locally becomes major, priticulmly 
through the lower part of the unit. Gradational contacts. Minor quartz +/- carbonate content 
in the form of blebs and stringers. ?copper carbonate slain at 190m. 

qzchse Pervasive 

203.50 207.10 Ffl 

207.50 210.50 Lqzse Fragments of sericite dilorite schist. qzsech Pervasive 

212.85 232.75 Lqzse Pifer' f8 
Dominantly sericitic becoming diloritic though the middle of the unit. Gradational 
contacts. Minor quartz +/- carbonate veinlets. No visible mineralisation. 

qzsech Pervasive 213 fo 80 

222.50 227.35 Lqzch IFFY fg 
Gradational and relative increase in chlorite and decrease in sericite. No visible 
rnineralisaticm. 

qzdse Pervasive 

232.75 233.25 Vqz ash Competent massive quartz vein with siderite staining and dark green chlorite. 

• 
Geologist: 	 W.J.D.Godsall 	 Date: 	18/01/97 	 Page 	1 	of 	2 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix Ill 

Project: 	Royal Tharsis Alteration 	 Location: hangIngsvidl of Royal Tharsis 	 Hole Number: 	WL0530A 
Major 	. .::::.:.:,:.: Lithology : -::::: Alteration • . ::': MineralliatiOn ' ' ' . 	Structure & Veining • 

FI11111 (m) To (m) Code F111ftl Oil) To (an) Code Colour 6r. She , .Texture Descilpllon Code -. - . : Desaiplion ' 	• : MIA (ftft Code Angle 	Descilpttosi 

233.25 248.70 Lqzse IftSY ill 
Minor chloritic contest occurring as variable intercalations. Veinlets of quartz +/- carbonic 
generally sub parallel to 32. Possible relict albite. Fabaly fragmental. No visible 
rnineralisatim. 

qzse Pervasive 241 Co 75 

248.7 0 249.20 Vqz wh mv 
Massive white quartz vein with ovine brown siderite staining and dark green dilorite. Unit 
is actually two veins separated by fragmental Lqzse. 

249.20 261.30 Lqzch PIA 41 
Variable chlorite. sericite unit. intacsined and with snail almost elongate clots of chlorite. 
Grad:Illegal contacts. 140 visible mineralisation. gal= Pervasive 256 Co 80 

261.30 278.20 Lgzse ftYPi f8 fr 
Localsed bands/veinlets of quartz *A carbonate, generally sub parallel to 32. No visible 
mineralisation. qzsedi Pervasive 275 Co 75 

267.30 270.40 Ffl 

278.20 288.00 Lqzch FEY fft vn 
Apparent and slight increase in vein context which drops off rapidly down the mit. 
Gradational contacts. No visible minendisation. qzd) Pervasive 

288.00 303.90 Lqzse Pifte lftli it 
Minor/irregular hydromica/chlorite, sometimes as clots. Ubiquitous fragmental texture that 
is generally small scale ?debris flow? Blebs/specks of siderite possibly after sulphides. 
Variable vein contest as veinlets and specks. 	No visible inineralist. 

rine Pervasive 300 fo 85 

EoH 

Geologist: 	 W.J.D.Godsall 	 Date: 	18101/97 	 Page 	2 	of 	2 
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Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration 

Royal Tharsis 

1M/95 

M.Bird 

1982 

W.J.D.Godsall 

Re-log 

1/12/97 

Hole Number 	 WL0531 

Section/s 	 7950N 

COLLAR INFORMATION 315GRL GRID 

North 7957 
East 3548 
RL 1896 
Azimuth 067 
Inclination -39 

Hole Length (m) 119.90 
Hole Length (ft) 

(if applicable) 

ummary 
•.;i Code Py%ICp%j Depth I Code Angie 

0.00 16.25 Lqzse Haematitic 3 tr 5.0 fo 60 
16.25 17.25 Ily Lamprophyre 13.0 fo 50 
17.25 44.30 Lqzse Silica rich. Fragmental 15 tr 35.0 fo 45 
44.30 62.60 Lqzse Minor local chlorite 12 tr 54 fo 70 
62.60 91.10 J  ipce  Locally faulted 12 tr 75 fo 65 
91.10 119.90 Lqzse Locally veined. Fault zone towards EoH. 10 tr 100 fo 75 

111 fo 45 

115 fo 75 

Ca% An ppm Ag ppm PyVo Description 

Abbreviations: na - not available, ne- no entry, nd - not determined, no - not observed, fo - foliation, co - contact, SO - bedding, Tr - trace 

Significant Intersections 

No significant copper mineralisation intersected 

Hole Purpose and Result 

To test possible 15 level and 50 Series access and ground conditions. 
Drill hole collar located in hangingwall. Owen Conglomerate not intersected. Ore zone not intersected. 

Copper Mines of Tasmania 	 Appendix in 
Diamond Drill Hole Summary 	 Drill Hole WL0531 
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Copper Mines of Tasmania - Diamond Drill Hole Summary 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: lumgingwall of Royal Tharsis 	 Hole Number: 	WL0531 
. 	Major . 	Minor Lithelokr.:i:::i: •:. 'Alteration .- : Mineralisation . Structure & Veining' 

Description From (m) To ftn) Code From en) To (m) Code Colour 
. 

C r. 84e 
... 

:.Te1817t Depth fm) Code 88111e 

0.00 16.25 1-417se 0.00 1.65 Lthisiln gegy fg sc 
Well developed schistosity in a dark greenish grey silica rode with irregular imn rids chats. 
Minor iron staining after sulphides. Pyrite occurs as occasional/trace speck. sechan 

Pervasive driorite and 
laernaite 

tr di 1.1 f3 60 

1.65 14.90 Lipse wit mg 
White greyish silica rids rock with irregular quartz vein stringers, frequently showing iron 
staining after sulphides. Pyrite comets increases down the hole. Siliceous. Upper part of 
the unit has • distinctive lime green colour. 

sise 
Pervasive silica, minor 
sericite. 

3 is 5 12 60 

14.90 15.20 Vm vit as Broken quartz vein. Brittle. Minor schist along breaks. 10.5 12 55 

15.20 16.25 Lqzst wit mg Similar to 1.65m .14.90m above. sise Pervasive silica. 3 is 22 12 50 

16.25 17.25 Hy bk % Bladc biotitic larnprophyre dyke. 28 12 55 

17.25 44.30 Limn whir mg & 
White to cream any silica rich rock. Variably and locally lingmental. linguine quartz 
stringers/veinlea, limonitic at wcaldy sideritic. Locally broken/faulted core. Gradarioml 
comets. 

sise Pervasive. 3 di tr di 32 12 60 

3230 36.70 Lqzse ISM f8 
Poorly developed diorite clots in a greenish grey schistose unit. Occasional irregular iron 
stained quartz vcinletestringer. 

muds 
Pervasive silica and lesser 
chlorite. 

3 di tr di 33 13 55 

36.70 39.30 Vqzcb MI in Quartz carbonate veining, locally brolcat and interbedded with stricitic sdast. 36 13 60 

39.30 44.30 Lqzsach) gyge fg SillItil? to 32.5m - 36.7m above. sods Pervasive. 3 di tr di 42 12 55 

44.30 62.60 Lqzse wIVY r8 & 
Light whitish becoming slightly greenish grey rock with a moderately well developed 
sthistosity. Locally slidcassided along schistosity planes. Broken core in places. 
Gradational contacts. 

qzse Pervasive. 4 di re di 45 13 58 

56.80 62.60 Lqzse(dri gyp fg Similar to major unit but with slightly more driorite. Competent ground • unbroken core. qzsech Pervasive. 4 di tr di 51.5 02 62 

62.60 91.10 Itizse gy fll le 
Light grey and nagmatal, with a poorly developed sdristosity. A slight increase in 
sulphide mineralisation with occasional cp. Gradational contacts Lineally segregated. Core 
broken in places. 

qzse Pervasive. 6 di 2 di 61 12 55 

75.60 75.70 Ffl Broken core. 67 fl 64 

84.30 84.70 Fp Broken core. 74 fl 72 

89.80 90.50 F8 Broken core. 80 fl 55 

91.10 119.90 Lqzse gy 1118 ft 
Light grey quartz sericite schist. Dissaninated sulphides decreasing down the unit. 
Localised minor chlorite contest. From 110.95m to 119.3m core becomes broken and case Pervasive. 5 di tr di 87.9 fl 60 
flushed. Local quartz ?siderite stristgers. 

114.75 116.05 Vm at vn Broken whitt quartz vein. 92 fl 62 

116.40 119.30 Ffz Vay broken ground. Localised pug. 97 fl 56 

Dal 102 fl 58 

107 fl 62 

III  fl 45 

111.2 Jo 15 

115 fl 75 

Geolotda: 	 W.J.D.Godsall 	 Date: 	1-Feb-97 	 Page 	1 	of 	1 
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ummary 
: Code Description Pri• Cp%lfleplhl 	C Angle 

0.00 9.14 Lqzse(ch) Fine grained 7 1.8 fo 70 
9.14 13.72 Lqzse(ch) Coarse grained 3 10.4 fo 70 
13.72 18.29 Lqzsecb Zone of intense carbonate alteration. 12 21.3 fo 65 
18.29 26.82 Lqzse Highly siliceous. 5 32.3 fo 70 
26.82 29.87 1-41z(teXch) Phyllic minerals in clots and segregations. 5 47.5 fo 70 
29.87 40.92 Ulzse(PY) Fractured acid lava 8 57 fo 85 
40.92 82.91 Lqzsech intercalated Lqzsehm 4 68.6 fo 80 
82.91 114.00 LazsepY-hin Bre,cciated lavas. Intercalated lithic tuffs 7 <1 96 fo 85 
114.00 134.42 Lqzchse-cd Clots of chlorite more prevalent down hole. 4 2 109.1 fo 85 
134.42 151.49 1_1174Peb  Becoming more siliceous down hole. 1 141.1 , fo 75 
151.49 158.12 Ost Sandstone 
158.12 159.72 Oct Conglomerate. 

   

Significant Intersections 

     

    

• I An PPnil Ag PP Pr4  

         

         

         

         

114.3 125.0 Lqzchse-cd and I  izsPcb  10.7 1.03 0.46 1.6 4.4 
128.0 141.7 Lqzchse-cd and Lqzsecb 13.7 0.48 0.09 1.2 2.6 
114.3 141.7 Lqzchse-cd and Lqzsecb 27.4 0.66 0.23 1.3 3.7 

Average SG = 2.96 (10 * 6 metre composite samples) 

Copper Mines of Tasmania 	 Appendix HI 
Diamond Drill Hole Summary 	 Drill Hole WL0348 

Project Hole Number I Royal Tharsis Alteration I WL0348 

Prospect Section's Royal Tharsis 8010N 

Tenement COLLAR INFORMATION 315GRL GRID 1M/95 

Original Log By North N.W.Sheppard 7986 
East 3752 

Date 1972 RL 2196 
Azimuth 089 

Summary Log By W.J.D.Godsall Inclination -24 

Method Hole Length (m) Re-log 159.72 
Hole Length (ft) 524 

Date 4/01/97 (if applicable) 

Abbreviations: na - not available, ne- no entry, nd - not determined, no - not observed, fo - foliation, on - contact, SO - bPitfling,  Tr - trace 

Hole Purpose and Result 

Drilled from Royal Tharsis exploration drive. 
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Drill Hole W L0348 - Down Hole Copper Assays 
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Copper Mines of Tasmania - Diamond Drill Hole Summary 	 Appendix HI 

Project: 	Royal Titan's Alteration 	 Location: Royal Tharsis orebody 	 Hole Number: 	WL0348 
Mejr !" Minor: LithOlogr• . • 	Alteration' . Mittoralliation ' • ' 	Structure & Veining , 

FT01111 On) To an) Code From To Code mur Gi'•ii.z.  Texture Deuatpilon Code t)matpflan P % Style Cp % $4yle Depth 
(nd 

Code Angle ' ' Ocxcrtplloii 

0.00 9.14 IlIzse MY fg Strongly developed segregation texture gradationd 040 m (300). qzsedi 7 di 1.8 fo 70 

9.14 13.72 lerPtse gY cg 
Moderately siliceous. Pseudo. fragmental. Minor hydromica. Occasional chalcedoric 
lisgmeras. qzsedi 3 ds 10A fo 70 

13.72 18.29 Lqzse Ey cg Zone of iraense carbonate dtastion. qzsecb 12 di 

18.29 26.82 Lqnse) itigY fg 
Strongly recrystallised and highly siliceous. Swirling layers of micas. Gradational basal 
contact. clzse 5 di 21.3 fo 65 

26.82 29.87 Liz(se) IMP cg 
Phyllic minerals in clots and segregations. Gradual merging to sericite - chlorite schist. 
Grtinular. Possible fine disseminated haematite. qzseth 5 di 

29.87 40.92 Lqzse OW mg Shop upper contact. Coarse Pragmentals (fractured acid lava) - variable texture. qzsdon Weak-modente 8 rts 32.3 lb 70 

40.92 82.91 I-Wse CM 
Impersistent chlorite, with sharp intercalations of pkgy Lqate-lon (choreic tufft). 
Tuffaceous from 46.3m (1520) - ?lithe lapilli. Rock fragments stretched pantilel to 
schistosity. Grades basally into lithic tuffs with intercalated acidic lavas. 

qzscch 4 di 47.5 fo 70 

40.92 4481 Vqzsd Zone of veins up to 1m (2 - 3 ft) thick. 2 di 57,0 fo 85 

82.91 114.00 Lqzse gq* %mg 
Variably brecciated Odense to moderate) lavas with idacalated lithic tuffs over the lower 
portion of the unit. Local siderite veinlets with stringers and patches of cp. qzsehm Moderate 7 di <1 68.6 fo 80 

114.00 134.42 Lqzch IFFY m8 cd Clots of &Write developing unongst silica and becoming more pervasive down hole. 
Breccined acidic lavas. =hod Strong as concordara 

stringers and blebs 4 di 2 96.0 fo 85 

134.42 151.49 lAlise gy mg 
Acid lava iMerfongaing with crystal lithic tort(s). Chlorite decreases markedly and 
variable/emetically, generally down the met, texture similar. Becomes more siliceous down 
hole. 

sccbsd Abundant concordant 
stringas end blebs 3 di 1 109.1 fo 85 

142.65 142.70 Vqz & Massive light pimple quartz. vein or lava? ?huh? 141.1 fo 75 

147.85 147.90 Vqz & Massive ligit purple word, vein or lava? ?huh? I 

151.49 158.12 Oat Coarse red sandstone (7NevAon Creek Sandstone). Transitional upper contact, possibly 
from a lithic crystal tuff. Basally transitional into brecciated rhyolite with trace cp 1 di <1 

158.12 159.72 Oct Purple pebble conglomente (?Sedgveick Conglomerate?) 

Eon 

Geologist: 	 W.J.D.Godsall 	 Date: 	4/01/97 	 Page 	1 	of 	1 



Abbreviations: na - not available, ne- no entry, nd - not determined, no - not observed, fo - fohation, co - contact, SO - bedding, Tr - trace 

Significant Intersections 
Description An PPM l i:Ag Pi)  111.Py°6 

168.0 196.0 28.0 LtIzse(hnXsd) - fl and Fgl 2.05 0.75 1.9 5.02 
168.0 204.0 36.0 1-41zse(hinXsd) - fl and Fgl 1.70 0.63 1.897 4.62 

Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration I 

Royal Tharsis 

1M/95 

P.B.Hills 

1985 

W.J.D.Godsall 

Re-log 

12/01/97 

Hole Number 	 WL0609 

Section/s 	 8010N 

COLLAR INFORMATION 315GRL GRID 

North 7996 
East 3663 
RL 2069 
Azimuth 113 
Inclination 11 

Hole Length (m) 207.00 
Hole Length (ft) 

(if applicable) 

Summary Log 
Code Description Pp% I Cp% Depth Code Angle 

0.00 62.70 Lqzse(py) Irrregular quartz siderite veinlets 2 3.0 fo 70 
62.70 71.30 Lqzsech Gradational 4 27.0 fo 70 
71.30 95.70 Lqzse(ch) Veined 4 tr 40.0 fo 75 
95.70 111.60 Lqzsese(hm)(si)-sh Siliceous and haematitic 4 tr 43.5 fo 80 
111.60 117.70 Lqzch(se) Low sulphide content 1 59.0 fo 65 
117.70 123.20 1-xlzsesi Fragmental and brecciated 12 66.0 fo 55 
123.20 129.60 Lqzch(se) Haematitic alteration 2 74.0 fo 60 
129.60 162.00 Lqzselun Massive 10 2 88.5 fo 70 
162.00 170.00 Lqz.se(hm)-fl Locally fragmental 6 3 101.8 fo 70 
170.00 187.80 Lqzsechsd Granular texture 4 6 117.5 fo 65 
187.80 204.20 Lqzchse-Fgl Possibly Great Lyell fault zone 4 4 123.0 fo 60 
204.20 207.00 Oct Sharp contact 127.0 fo 65 

155.0 fo 80 

164.0 fo 80 

168.0 fo 65 

204.0 SO 80 

_ 

Hole Purpose and Result 

Drilled to test Royal Tharsis mineralisation at 2100RL. 

Copper Mines of Tasmania 	 Appendix III 
Diamond Drill Hole Summary 	 Drill Hole WL0609 
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Drill Hole WL0609 - Pyrite 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Project: 	Royal Tharsis Alteration 	 Location: Royal Tharsis orebody 	 Hole Number: 	WL0609 
::•••• 

 
Moor :... Minor Lithol 'Alteration Mineralisation:: :. Structiirett:Velni . ..::: .. 

From (o) To (n) Code From ion) .:: To (m) Code Colosar Cr. : Sise Texture 	 Dasalpilon 	 Code DesaiptIon Slyle 06 06 Di 'lith (m) f.*C Angle •:::. f-MaelPtlen 

0.00 62.70 Lqzse gy mg Generally uniform becoming sliglaly coarser down the unit. Locally chlorine. Most fracture 
faces somewhat puggy. Irregular 	inlets of qUanZ Ind quartz siderite. qzse Pervasive 2 do 

0.00 1.20 Dizee AY mg sh Broken core - possibly due to collar position. Wae 2 do 

1.20 4.90 Latch ex tna bn  Grey becoming locally brownish and weakly banded/foliated. Local vein stringers. 
Dissaninated sulphides. Occasionally banded. sese 

Weakly chlorine and 
sideritic. Faint dusting 
hanuite. 

3 do <1 bb 3 to 70 

.. 490 1000 V qz(sd) Massive white quirtz with blebs/stringers of brown siderite and with intermixed irregulu 
chlorite. Ground generally incompetent. 3  mv 

10.00 28.50 Lqzse grill trig bus Locally diloritic. Irregular quartz and quartz siderite veinids. clzse 3 bb 27 to 70 

28.50 31.50 Lqzse gy fit fl Heavily broken core with prominent clay and pug. qzse 2 do 

31.50 42.70 Lqzse EY trig her As per major unit but more variable with a slightly more significant chlorite coital 
occurring as clots and localised bands. Occasional vein, locally sideritic. 

se(ch) Locally chlorite. 1 do 40 fo 75 

42.70 4410 Lqzdi MY f8 
Dirk greyish graft ahnost "argillaceous" in appearance, with possible faint/weak signoidal 
foliation. Inegulat larger quartz clasts. ch(se) Pervasive 1 do 43.5 fo 80 

44.20 62.70 Dime whEY 018 m? 
Massive greyish white with distinctive yellowish sericite. Pyrite as blebs, disseminations 
J5 coatings along uhistosity planes. Minor local chlorite content. qzse Pervasive. 5 do 59 fo 65 

62.70 71.30 Dgzse gy f8 

Mixed Lqzse and Lqzch. Tending to be massive with lighter brown gradational units and 
occasional quartz vein, locally vuggy. Irregular siderite stringers. Frsgmental and elastic at 
68.7m. 

arch Pervasive 4 do 66 to 55 

68.20 68.40 Ffg Pug/clay 

71.30 95.70 Lqzse BY f8 my 
Minor Lqzch. Generally fine grained throughout with ubiquitous quartz siderite veinlets. 
Variable chlorite context whidi frequently impans a darker colouration. Sulphide 
mineralisation tends to be banded rather than disseminated. 

se(ch) Pervasive 4 tin <1 do 74 to 60 

76.60 76.70 Ft Pug/clay 88.5 to 70 

95.70 111.60 Wee fOTA fit sh 
Pinkish gay fine grained siliceous with minor amounts of chlorite which impart a greenish 
colouration. From 106 metres ground becomes sheared and core heavily broken. Siliceous 
and sheared. 

se(tn) 
Pink colouration due to 
pervasive lan. 

4 do <1 do 101.8 to 70 

111.60 117.70 Lqzch &V fg 
Minor Lqzse. Dominantly chlorine unit grading into sericitic units and with irregular veining. 
Sulphides generally low/absent a 	diloritic units. ch(se) 1 do 

111.60 113.00 Lqzch Se m8 Uniform rock type with mina paid= of siderite troughout. clzdt hIlPregneted. 1 do 

113.00 113.40 Lqae firM Mg fi Rapid tnnsition/relatively sharp cornet, minor Lqzse(ch). se(ch) 5 ha 

113.40 116.20 Vert Brittle and incompeten with intermixed &lain. 3 mv 

116.20 117.70 Lqzch 
Similar to 111.6m - 113.0m but with a mhos sericite content. Sulphides associated with 
sciatic pluses. ch(se) 8 ba 117.5 to 65 

117.70 123.20 Leizse 133' nal sh Core moderately to heavily broken - pug in places. Locally Ihsmaital and brecciated. 
Disseminations and bands of sulphide, locally massiventiduzated and leached_ sise Persuiye. 12 do 123 to 60 

123.20 129.60 Lqzdi $e$35 mil 
Pinkish tlrough the middle of the unit. Stringers of siderite throughour Heavily fractured 
towards the base of the unit. Locally pitted Minor Lqzse(dil d(se) Local iIII1 eltenzion. 2 do 127 to 65 

129.60 162.00 I-Mee pi cg pr 
Generally massive unit that is prominently pink due to ? haematite alteration. Localised 
sericite bands/veiniets and minor chlorite, usually as coatings along fractures. Locally 
fractured with minor fatilVshear planes. - 

sehm Weakly chlorine. 10 do 2 do 155 to 80 

Geologist: 	 W.J.D.Godsall 	 Date: 	12/01/97 	 Page 	1 	of 	2 



Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix Ill 

Project: 	Royal Tharsis Alteration 	 Location: Royal Tharsis orebody 	 Hole Number: 	WL0609 

or .:•:Minor :.... Lithology.. Alteration :..Minerailsation 	 Structure 

I°  
& Veining : 

''' . D6x0Pilan From (m) To MO . . 	. 
.. 	.. 	.. 
From fin) 

	

... 	.. 
. 	... 	. 

• To (to) . .... Gr. filse :T 1.140.0°)  

162.00 170.00 Logoe pi og pr 
As for 129.6m - 162.0m but becoming more heavily sheared and hulted and with a less 
significtut pink ? haematite content. Locally fragmental. Minor siderite content. seam) 6 do 3 do 164 fo 80 

170.00 187,80 I-Woe mg pr Grey to green to yellow to grey with a unifonn granular texture. 	Occasional vein stringers. 
Prominent carbonate alteration. seduri 4 do 6 do 168 fo 65 

183.50 184.80 Fll Gouge/Pug. 

187.80 204.20 Lqich Fg1 
Lithologically transitional with unit from 170.0m - I87.8m but with chlorite becoming 
data= over sericite which becomes insignificant basally. Gataally heavily broken core. 
fractured, sheared and faulted. Possibly GLF zone. 

cl(n) 4 do 4 do 204 fo 80 

204.20 207.00 Oct 
Typical Owen Conglomerate with subangula clasts and quartz fragments in a fine grained 
chloride and hematitic matrix. Localised chlorine alteration rims/fronts. Generally 
competent slurp contact. 

501.1 

Geologist: 	 W.Godsall 	 Date: 	12/01/97 	 Page 	2 	of 	2 

- page 28- 



7.6 9.1 16.8 lilzchse 10.2 0.58 
9.1 15.2 6.1 lAlichse 0.69 11.3 

Project 

Prospect 

Tenement 

Original Log By 

Date 

Summary Log By 

Method 

Date 

I Royal Tharsis Alteration I 

Royal Tharsis 

1M/95 

M.J.McDonald 

1968 

W.J.D.Godsall 

Re-log 

15/02/97 

Hole Number 	 WL0290 

Section/s 	 8070N 

COLLAR INFORMATION 315GRL GRID 

North 8046 
East 4096 
RL 2482 
Azimuth 090 
Inclination -04 

Hole Length (m) 30.78 
Hole Length (ft) 101 

(if applicable) 

ummary 
Description 

0.00 6.10 lAlzse(PY) Coarse grained 

6.10 15.24 Lqzchsepy Fragmental. Haematitic 

15.24 30.78 lAlzse(PY) Felsic 

PY% CP% epth: Angle 

6 5.2 fo 70 

10 2 27.4 fo 70 

7 

Abbreviations: na - not available, ne- no entry, nd - not deteimined, no - not observed, fo - foliation, co - contact, SO - bedding, Tr - trace 

Significant Intersections 
Dew :CAM An ppm I Ag ppm Pr/. 

Hole ends in mineralisation. 

Average SG = 2.96 (10 * 6 metre composite samples) 

Hole Purpose and Result 

Drilled to test for remnant ore in Royal Tharsis batter. 
Hole stopped/completed in sulphide mineralisation. 

Copper Mines of Tasmania 	 Appendix HI 
Diamond Drill Hole Summary 	 Drill Hole WL0290 
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Drill Hole WL0290  -  Down Hole Copper Assays 
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Diamond Drill Hole Assay Profiles 	Drill Hole WL0290 
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Copper Mines of Tasmania - Diamond Drill Hole Log 	 Appendix III 

Alteration 

Project: 	Royal Tharsis Alteration 

Minor .  

Gr. Mix 

Location: footwall of Royal Tharsis orebody 

Lintel 

, :fetH818. 

Hole Number: 	WL0290 

5 Strotctia 
• 11 11 1 1 1, 11 1 invoill. ; !1;i 1N ; ' : ' 1,11, [1.10511p1104 	ij 

0.00 6.10 DIzse sir 881 
Meditun to coarse grained quartz sericite schist Py as coarse blebs and disseminations. 
Negligible cp. QUA Pervasive 6 ds <1 5.2  70 fo 

           

           

           

           

           

6.10 15.24 Lqzch 

 

6.10 15.24 lalne 

 

c8 

 

Coarsely mottled. Chlorite occurs as clots/lathes as well as being pervasive. Al 10.67m 
(35ft) sharp contact between schist and fragmental material. From 13.4 metres (44ft) 
significant fine Manlike in the chlorite. Cp in comb-textured veining. 

           

           

           

chsehm Pervasive 10 ds 2 

15.24 30.78 Lqzse pluy mg 

EoH 

Coarse grained quartz sericite sdrist with minor traces chlorite. Very umven texture, 
becoming medium grained from 21.34 metres (7011). Dominantly felsic. Pervasive 7 ds 1 bb 27.4 fo 70 

Geologist: W.J.D.Godsall Date: 15/02/97 Page 	1 of 1 
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arkose 
bif 
breccia 
carbonaceous shale 
chert 
claystone 
conglomerate 

Sdl 	dolomite 
Sgw 	greywacke 
Sij 	jaspilite 
Sls 	limestone 
Sms 	mudstone 
Sqt 	quartzite 
Sst 	sandstone 

Metamorphic 

Copper Mines of Tasmania - Lithological Codes 	Appendix III 

2.2 Lithological Descriptors 

2.2.5 	Sedimentary 

Sok 
Sif 
Sbx 
Scs 
Sch 
Sc! 
Sct 

2.2.6 

Mad 
Mis 
Mub 

Msa 
Mls 
Mam 
Mfd 
Mgn 

meta acid rock undifferentiated 
meta intermediate rock undifferentiated 
meta ultrabasic rock undifferentiated 

Ssh 	shale 
Ssl 	siltstone 
Spg 	spongofite 
Stl 
	

unite 

slate 
marble 
amphibolite 
freddite 
gneiss 

Mgl 	granulite 
Mhb 	homblendite 
Mhf 	homfels 
Mme 	migmatite 
Mpi 	phyllite 
Mqt 	quartzite 

When protolith is known M, may replace primary descriptor 	eg Mvt meta tholeite 

2.2.6.1 	Tectonites 	 2.2.6.2 	Metamorphic Facies 

Fbr .  
Fct 
Ffl 
Ffz 
Ffg 
Fmy 
Fpm 
Fsn 
Ffx 

Fgl 

breccia 
cataclasite 
fault 
fault zone 
fault gouge 
mylonite 
protomylonite 
shear zone 
Zone of strong fracturing (core) 

Great Lyell Fault Zone 

zeolite 
albite-epidote hornfels 
hornblende hornfels 
pyroxene hornfels 
sanidinite 

prehnite-pumpellyite 
glaucophane 
eclogite 

greenschist 
amphibolite 
granulite 

ch-ab-ep-mu-ca-ac 

2.2.6.3 

PP 
ch 
se 
pc 
Si 
ar 
aa 
kp 

Alteration Facies 

propylitic 
chloritic 
sericitic 
phyllic 
silicified 
argillic 
advanced argillic 
potassic 

cb-ch+/-se 
ch dominant +/- se, sd <5% 
se dominant +/- se, sd <5% 
qz-se-py +/-sd 
si dominant +/- se, ch, sd 
ka / sk +/- se, eh, hm, ba 
pz / ka / at +/- se, ch, hm , ba 
al/ bt +/-se, ch, co 
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Copper Mines of Tasmania - Lithological Codes 	Appendix III 

2.2 

2.2.7 

Lithological Descriptors (cont'd) 

Secondary Lithological Descriptors - Minerals & Alteration 

ac actinolite fi fluorite Pi plagioclase 
ad achilaria fu fuchsite Pe prehnite 
ab albite py pyrite 
af alkali feldspar gh gahnite pz pyrophyllite 
at altered ga galena px pyroxene 
al aluminous gt garnet po pyrrhotite 
an alunite go geothite 
am amphibole au gold qz quartz 
aa andalusite gf graphite qc quartz-carbonate 
nh anhydrite gu grunerite qf quartzo-feldspathic 
ak 
ay 

ankerite 
anthophyllite 

gp gypsum qn quartz-tourmaline 

ai apatite hm haematite rh rhodocrosite 
as arsenopyrite hs haematite, spec. rb riebeckite 
ao 
az 

asbestos 
azurite 

hb hornblende 

il illite sa saussurite 
ba barite sx scheelite 
be beryl ja jarosite se sericite 
bt biotite sP serpentine 
bi bismuth ka kaolin sd siderite 
bm black mineral kY kyanite si silica 
bo bornite sm sillimanite 

pb lead ag silver 
ca calcite le lepidolite sk smecictite 
cb carbonate lx leucoxene zs sphalerite 
cs cassiterite li limonite sn stannite 
ce cerussite St staurolite 
cd chalcedony mf mafic minerals sb stibnite 
cc chalcocite ms magnesite sf sulphide 
cP chalcopyrite mt magnetite 
ch chlorite ma malachite tl talc, talcose 
ct chloritoid me metasomatic tt tetrahedrite-tennantite 
Cr chromite mi mica tz topaz 
co chrysoprase mw mica - white tn tourmaline 
cY chrysotile mg mica - green tm tremolite 
cl clay mx mica - mixed 
cx clinopyroxene mn minerals (gen) ur uraninite 
cu copper mo molybdenite uo uranium 
ci cordierite mm montmorillonite up uranophane 
cv covellite mu muscovite 
cm cummingtonite 

ol olivine 
vl violarite 

di diopside ox orthopyroxene zn zinc 
do dolomite 

pn pentlandite 
zvv zinnwaldite 

eP epidote pu 
ph 

phlogopite 
phosphate 

fd feldspar Pc phyllic 
fe ferruginous Pi pitchbiende 
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Copper Mines of Tasmania - Lithological Codes 

Tertiary Descriptors - Texture, Structure & General Descriptors 

ac acicular et eutaxitic in 
ag agglomerate lc 
am amorphous fg fine grained 11 
yg amygdaliodal fi fissile lc 
ah anhedral fy flaggy lp 
ha aphanitic if flame structure lw 
ap apiltic lb flow banded 
ar arenose fl fluidal my 
ae augen structure fo foliated mx 
ax autoclastic fl foliation - very weak, massive mp 

f2 foliation - weak mg 
bn banded 13 foliation - moderate ml 
bd bedded f4 foliation - strong ms 
sO bedding, primary banding f5 foliation - very strong mc 
bl bladed fs fossiliferous ml 
bh bleached fx fractured me 
bb blebby fr fragmental mz 
by blocky fh fresh mt 
ho botryoidal my 
bu boudinaged gc gneissic 
bx breccia, brecciated go gossanous nb 

gb graded bedding nd 
ch chalcedonic gr granitic np 
cs clast supported gb granoblastic 
cl elastic gp granophyric oc 
sl cleavage gs greasy oo 
cf closed framework oe 
cd clotted ht heterogeneous of 
cg coarse grained ho homogeneous op 
cf cobbles hc honeycomb ob 
xd compact hy hyaloclastite/ic ov 
cn conchoidal ha hybridized 
cv concretionary pa 
ct conglomeratic ig ignimbrite pv 
cw contact - chilled ic inclusions 
co contact - general id indurated pg 
cx contact - imbricated ib interbedded pw 
cy contact - sheared it intercalated ps 
cz contact - transitional in interstitial pt 
cb core to bedding angle pz 
ca core to schistosity angle jp jasperoidal pm 
xa crenulated/folded jo jointed pr 
xb cross bedded pp 
xc cumulate ka karsted/ic 

kb knobbly qe 
de deformed ha knotted qg 
ds disseminated km komatiitic 
dr drusy qv 
dp damp lm laminated 

le leached ra 
el elongated 10 lineation re 
eg equigranular 11 lineations (mineral) rx 
eu euhedral 12 lineations (intersections) m 
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lenticular 
leucocratic 
lit par lit 
lithic 
lithophysae 
lower 

massive 
matrix 
matrix supported 
medium grained 
melanocratic 
mesocratic 
micro 
middle 
migmatitic 
monomictic 
mottled 
mylonitic 

nebulitic 
nodular 
not preserved 

ocelli 
oolitic 
opaline 
open framework 
ophific 
orbicular 
ovoid 

pallid 
partially 

preserved 
pegmatitic 
pillowed 
pisolitic 
pitted 
plasmic 
polymictic 
porphyritic 
porphyroblastic 

quartz eye 
quartz grains 
(in TOB etc) 
quartz veined 

radiating/stellate 
recrystallized 
rock 
rounded 



Copper Mines of Tasmania - Lithological Codes 	Appendix DI 

3 	Tertiary Descriptors 	 4 	Colour 
(Texture, Structure & General Descriptors - cont'd) 

r 1 roundess - well rounded 	 bg 	beige 
r2 roundness - rounded 	 bk 	black 
r3 roundess - subrounded 	 bl 	blue 
T4 roundess - subangular 	 br 	brown 
r5 roundness - angular 	 bf 	buff 
r6 roundness - very angular 	 cx 	cream 

fn 	fawn 
sc 	schist, schistose 	 ge 	green 
sz schlieren 	 gy 	grey 
gn segregated mineral texture 	 kh 	khaki 
sh shear/sheared 	 my 	mauve 
si 	siliceous/silica flooded 	 oe 	ochre 
sl 	slatey 	 or 	orange 
ss 	slickensides 	 pk 	pink 
sf 	soft 	 PP 	purple 
s 1 	sorting - very well 	 rd 	red 
s2 sorting - well 	 wh 	white 
s3 sorting - moderate 	 ye 	yellow 
s4 sorting - poor 
s5 sorting - very poor 
sg specific gravity 	 Value suffix (optional) 
sx spinifex texture 
sv 	spotted 	 It 	light 
sw stockwork veined 	 md medium 
sr 	stringer 	 dk dark 
sf 	strongly foliated 
sl 	stylolitic 
es subhedral 
sa sugary/sucrose 

tb 	tabular 
th 	tholeitic 
ty 	trachytic 
tr 	translucent 
if 	tuffaceous 

uf uniform textured 

va variolitic 
vv varved 
vn veined 
vm vermiform 
vi 	vitric 
vg vuggy 

wx waxy 
wd weathered 
w I weathered - slight 
w2 weathered - moderate 
w3 weathered - strong 
we welded 
wt wet 
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Appendix IV 

Royal Tharsis 

Petrological Samples 

Summary of work commissioned by CMT and carried 
out by Consultant Petrologist, Dr J. Barron 

(Barron, 1997) 



Appendix IV 
Table 1 

Petrology Samples 

Sample 
Number 

Drill hole From 
(ft) 

To 
(ft) 

From 
(m) 

To 
(m) 

Coded Rock Description 
(for unit from which sample taken) 

EXPA 3201 WL0290 14' 10" i 	15' Lqzse(py) 
EXPA 3202 WL0290 35' 	i 	35' 2" : .•• Lqzchse(py) 
EXPA 3203 WL0290 70' 6" 70' 8" Lqzse(py) 

EXPA 3204 WL0421 : • 1.3 	i 	1.4 Lqzpych(mt) - specks lun 
EXPA 3205 WL0421 i 27.2 27.3 Lqzse(py)(hm) - siliceous with carbonates 
EXPA 3206 WL0421 36.4 36.5 Lqzse(py)(hm) - siliceous with carbonates 
EXPA 3207 WL0421 59.7 59.8 Lqzchselun(py)sicb - breccia'd lithic tuff 

: 
E3CPA 3208 WL0106 i 69' 10" i 	70' : i Lqzse siliceous 
EXPA 3209 WL0106 312' 312' 2" Lqzch - siliceous 
EXPA 3210 WL0106 557' 9" 557' 11" Lqzsepy - irregular clots ch 
EXPA 3211 WL0106 640' 640' 2" : • Lqzse - possible trace lim 	• 
EXPA 3212 WL0106 739' 6" i 739' 9" i Lqzch - minor lun 
EXPA 3213 WL0106 770' 770' 2" Lqzsech 
EXPA 3214 WL0106 919' 919' 3" Lqzsech - se is minor, v.little (if any) ch 
E3CPA 3215 WL0106 951' 	

1 
951' 2" i Lqzse - se is minor 

.• i 
EXPA 3216 WL0530A 49.9 50.0 Lqzsecb 
EXPA 3217 WL0530A 

. 
75.0 75.1 Lqzse(cb) -fxvn 

EXPA 3218 WL0530A : 100.5 	i 	100.7 fly - lun & py specks 
EXPA 3219 WL0530A i 134.4 	1 	134.5 Lqzsech(cb) 
E3CPA 3220 WL0530A 144.7 144.8 Vqz (chlorite-vein relationship) 
EXPA 3221 WL0530A 

. 
179.7 179.8 Lqzch(se) - cb stringers 

E3CPA 3222 WL0530A : 239.6 	i 	239.7 Lqzse - minor ch ?? albite ?? 
E3CPA 3223 WL0530A i 285.4 	1 	285.5 Lqzch 
E3CPA 3224 WL0530A 301.5 301.6 Lqzse (possible debris flow) 

EXPA 3225 WL531 : • 1.05 1.15 Lchsilun(cb) 
EXPA 3226 WL531 i 9.9 	i 	10.0 Lqzsise 
EXPA 3227 WL531 60.0 60.1 Lqzse(ch)(cb) 	 - 
EXPA 3228 WL531 95.0 95.1 Lqzse(py) 

: • 
EXPA 3229 WL480 i 145.0 	1 	145.1 Lqzsech (tuffaceous) 
EXPA 3230 WL480 245.0 	245.1 Lqzse 
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PLATE 1 Appendix IV 

Figure 1 
WL0290 EXPA3201 ppl, x 2.5 
Altered fragmental (?brecciated) 
microporphyritic volcanic or 
shallow intrusive rock with some 
feldspathic fragments. Intensely 
altered to quartz-sericite assemblage 
and cut by quartz-(chlorite-barite) 
veins. Prismatic feldspar sites that 
defme a "crowded" porphyritic 
texture. 

Figure 2 
WL0290 EXPA3201  cpl,  x 2.5 
As for Figure  1  under crossed 
polarised light. 

Figure 3 
WL0290 EXPA3201  ppl,  x 4 
Possible prismatic feldspar crystal sites 
converted to pale brown smectite with 
colourless sericite in an altered 
(?brecciated) quartz microporphyritic 
volcanic or shallow intrusive rock that 
has been altered to a quartz-sericite 
assemblage. 

Figure 4 
WL0290 EXPA3201  cpl,  x 10 
Strongly embayed subhedral quartz 
microphenocryst in an intensely 
altered quartz-sericite assemblage. 
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PLATE 2 Appendix IV 

Figure 1 
WL0290 EXPA3202 ppl, x 2.5 
Poorly sorted lithic fragmental rock 
containing material from a quartz 
microporphyritic volcanic that is 
veined, deformed and altered to a 
quartz-sericite-chlorite-sulphide 
assemblage. Lithic fragment with 
poorly defmed prismatic feldspar sites 
altered and converted largely to pyrite. 

Figure 2 
WL0290 EXPA3202 cpl, x 2.5 
As for Figure 1 under crossed polarised 
light. 

Figure 3 
WL0290 EXPA3202 cpl, x 10 
Embayed quartz microphenocryst partly 
resorbed in a granular quartz rich 
mosaic in an altered quartz-sericite- 
chlorite-sulphide assemblage, 
originating from a poorly sorted lithic 
fragmental rock. 

Figure 4 
WL0290 EXPA3203 ppl, x 4 
Finely recrystallised and foliated 
fragmental. Obliteration of primary 
textures to quartz-sericite-(carbonate) 
assemblage and containing abundant 
disseminated pyrite. Possible relict 
glass shard texture outlined by dusty 
haematite in granular quartz. 
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PLATE 3 Appendix IV 
Figure 1 
WL0290 EXPA3203 cpl, x 4 
Finely recrystallised and foliated 
fragmental. Obliteration of primary 
textures, alteration  to  quartz-sericite- 
(carbonate) assemblage and 
containing abundant disseminated 
pyrite. Possible relict glass shard 
texture outlined by dusty haematite in 
granular quartz. 

Figure 2 
WL0290 EXF'A3203 cpl, x 4 
Possible glassy fragment with 
spherulitic quartz filled sites altered to 
quartz-sericite in a fmely recrystallised 
and foliated fragmental. Abundant 
disseminated pyrite and alteration to 
quartz-sericite-(carbonate) assemblage 
has resulted in obliteration of primary 
textures. 

Figure 3 
WL0421 EXPA3204 ppl, x 4 
Partly fragmental porphyritic volcanic 
that has undergone intense and selective 
alteration to quartz-sericite-chlorite-
carbonate-rutile assemblage with 
significant sulphide mineralisation. 
White feldspar and green mafic sites in 
a granular groundmass. 

Figure 4 
WL0421 EXPA3204 cpl, x 4 
As for Figure 3  under  crossed polarised 
light and showing some poor retention 
of textures. 
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PLATE 4 Appendix IV 

Figure 1 
WL0421 EXPA3205 ppl, x 4 
Intensely altered, well mineralised and 
strongly deformed volcaniclastic 
composed of a quartz-sericite-
carbonate-apatite assemblage. Dark 
grey fractured apatite crystals set in a 
foliated sericite with pyrite and 
quartz. 

Figure 2 
WL0421 EXPA3205 ppl, x 2.5 
Granular quartz rich domains 
containing sparse carbonate rhombs in a 
strongly deformed volcaniclastic that is 
intensely altered. 

Figure 3 
WL0421 EXPA3205 cpl, x 4 
As for Figure 2 under crossed polarised 
light. 

Figure 4 
WL0421 EXPA3205 cpl, x 4 
Crystals of once phenocrystic quartz in 
an intensely altered, well mineralised 
and strongly deformed volcaniclastic 
composed of a quartz-sericite-
carbonate-apatite assemblage. 
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Figure 2 
WL0421 EXPA3206 cpl, x 2.5 
As for Figure 1 under crossed polarised 
light. 

Figure 3 
WL0421 EXPA3206 ppl, x 2.5 
Tensional microfractures almost normal 
to the wavy foliation, in quartz rich 
domains in a finely recrystallised and 
foliated quartz-sericite-carbonate-
chlorite schist that is well mineralised. 

PLATE 5 Appendix IV 

Figure 1 
WL0421 EXPA3206 ppl, x 2.5 
Finely recrystallised and foliated 
quartz-sericite-carbonate-chlorite 
schist that is well mineralised. 
Fragment containing deformed 
feldspar (sericite) and mafic (chlorite) 
sites with carbonate, chalcopyrite and 
pyrite. 

Figure 4 
WL0421 EXPA3206 ppl, x 2.5 
As for Figure 3 under crossed polarised 
light. 
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PLATE 6 Appendix IV 

Figure 1 
WL0421 EXPA3207 ppl, x 2.5 
Finely recrystallised and well 
mineralised quartz-sericite-carbonate 
schist with no recognisable relict 
textures. Branching foliated domains 
and tensional microfractures in quartz 
rich domains. 

Figure 2 
WL0421 EXPA3208 ppl, x 4 
Lithic breccia that has been intensely 
and selectively altered to an assemblage 
of quartz-sericite and strongly pyrite 
mineralised. Possible glass shards in a 
granular quartz mosaic. 

Figure 3 
WL0421 EXPA3208 cpl, x 4 
As for Figure 2 (different alignment) 
under crossed polarised light. 

Figure 4 
WL0106 EXPA3209 ppl, x 4 
Autobrecciated volcanic flow strongly 
altered to quartz-sericite-(carbonate-
chlorite) assemblage with sparsely 
disseminated pyrite. Acidic volcanic 
lithic fragments containing quartz 
microphenocrysts. 
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Figure 2 
WL0106 EXPA3209 ppl, x 4 
?tuffaceous fragment containing 
deformed felsic crystals altered to a 
sericitic assemblage in an 
autobrecciated volcanic flow that has 
been strongly altered to quartz-sericite-
(carbonate-chlorite) assemblage. 

Figure 3 
WL0106 EXPA3209 cpl, x 4 
As for Figure 2 under crossed polarised 
light. 

PLATE 7 Appendix IV 

Figure 1 
WL0106 EXPA3209 cpl, x 4 
Autobrecciated volcanic flow strongly 
altered to quartz-sericite-(carbonate-
chlorite) assemblage with sparsely 
disseminated pyrite. Acidic volcanic 
lithic fragments containing quartz 
microphenocrysts. 

Figure 4 
WL0106 EXPA3210 ppl, x 2.5 
Unsorted fragmental, veined, foliated 
and altered to quartz-sericite-pyrite 
assemblage with traces of bornite-
chalcocite-digenite and chalcopyrite. 
Fractured quartz phenocryst in silicified 
fragment. 
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Figure 2 
WL0106 EXPA3212 ppl, x 2.5 
Deformed fme grained, granular quartz-
carbonate fragmental with interstitial 
foliated chlorite-sericite. Possible 
altered boudins seperated by foliated 
mafic domains. 

Figure 3 
WL0106 EXPA3212 cpl, x 2.5 
As for Figure 2 under crossed polarised 
light. 

PLATE 8 
	

Appendix IV 

Figure 1 
WL0106 EXPA3211 cpl, x2.5 
Tuffaceous rock that  is  intensely 
silicified, quartz-chlorite veined, 
hydrothermally brecciated, altered to 
quartz-sericite and strongly pyrite 
mineralised. 

Figure 4 
WL0106 EXPA3213 cpl, x 2.5 
Fragmental or volcaniclastic that is 
weakly grain-layered and altered to an 
assemblage of sericite-chlorite-quartz 
with significant patchy vein-located 
sulphides. Once porphyritic texture in a 
lithic fragment with altered prismatic 
feldspars in a groundmass that is partly 
clouded granular quartz. 
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PLATE 9 Appendix IV 

Figure 1 
WL0106 EXPA3215 ppl, x 2.5 
Very fme grained quartz-sericite rock 
that contains vague relict textures and 
with accessory rutile/titanian oxides, 
zircon and apatite. Large crystal site 
that could once have been ?cordierite 
and altered to pale brown smectite. 

Figure 2 
WL0106 EXPA3215 cpl, x 2.5 
Quartz phenocryst and sites of altered ? 
feldspar. 

Figure 3 
WL0530A E3CPA3219 ppl, x 2.5 
Porphyritic volcanic that is intensely 
altered to a quartz-sericite-carbonate 
assemblage and cut  by  deformed 
carbonate veins. Deformed and 
flattened sites of mafic (?amphibole) 
and felsic (?plagioclase) phenocrysts 
and set in a once microlitic feldspathic 
groundmass, with evenly distributed 
oxide granules. 

Figure 4 
WL0530A EXPA3220 ppl, x 4 
Vitric acidic volcanic that is intensely 
altered to a quartz-sericite assemblage 
and cut by irregular quartz-carbonate-
(chlorite) veining. Quartz 
microphenocryst and sites of cuspate 
volcanic glass shards. 
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PLATE 10 Appendix IV 

Figure 1 
WL0530A EXPA3220 ppl, x 4 
Vitric acidic volcanic, intensely 
altered to a quartz-sericite assemblage 
and cut by irregular quartz-carbonate-
(chlorite) veining. Irregular vesicle 
sites and glass shards converted/filled 
to/with granular quartz, once 
containing colloform banded 
chalcedony. 

Figure 2 
WL0530A EXPA3221 cpl, x 4 
Mixed porphyritic and fragmental rock 
strongly deformed and altered to patchy 
sericite-carbonate-chlorite-quartz-
(leucoxene) assemblage. Prisms of 
twinned albite and dark grey apatite. 

Figure 3 
WL0530A EXPA3221 ppl, x 4 
Feldpspar prisms and well preserved 
oxide crystal sites in a mixed 
porphyritic and fragmental rock that is 
strongly deformed and altered to a 
patchy sericite-carbonate-chlorite-
quartz-(leucoxene) assemblage. 

Figure 4 
WL0530A EXPA3222 cpl, x 4 
Strongly deformed and foliated 
volcaniclastic selectively altered to a 
fine grained quartz-sericite-carbonate-
(chlorite) assemblage. Well preserved 
quartz microphenocryst in a fine 
grained recrystallised and foliated 
matrix. 
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PLATE 11 Appendix IV 

Figure 1 
WL0530A EXPA3224 ppl, x 4 
Foliated, intensely and selectively 
altered intermediate volcanic rock 
composed of a carbonate-chlorite-
(sericite) assemblage with minor relict 
albite. Well preserved coarse grained 
amphibole phenocryst altered to 
(green) chlorite with dusty oxide 
markings and cleavage traces. 

Figure 2 
WL0530A EXPA3225 ppl, x 2.5 
?pyroxene porphyritic and vesicular 
volcanic (?intermediate-mafic possibly 
trachyandesite type) altered to 
carbonate-chlorite-sericite in a 
groundmass that contains abundant 
dusty haematite. Glomeroporphyritic 
cluster in a groundmass containing 
abundant small rounded vesicle sites. 

Figure 3 
WL0530A EXPA3227 ppl, x 4 
Unsorted lithic fragmental 
(?volcaniclastic) from an acid 
intermediate source. Strongly altered to 
a quartz-sericite-chlorite-carbonate 
assemblage that is selectively pyrite 
mineralised and cut by sparse deformed 
quartz carbonate veins. Chlorite altered 
mafic phenocryst sites. 

Figure 4 
WL0480 EXPA3229 ppl, x 2.5 
"Crowded" porphyritic possibly shallow 
intrusive igneous rock. Intensely altered 
to a quartz-sericite-chlorite-(carbonate) 
assemblage that hosts significant pyrite-
chalcopyrite mineralisation. Poorly 
defined mafic (chlorite-altered) and 
felsic (quartz-sericite-altered) crystal 
sites. Sulphides are black. 
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Appendix IV 

Figure 1 
WL0480 EXPA3229 cpl, x 2.5 
Poorly defined mafic (chlorite-altered) 
and felsic (quartz-sericite-altered) 
crystal sites under crossed polarised 
light. 

Figure 2 
WL0480 EXPA3229 ppl, x 2.5 
Granular quartz-carbonate altered 
prismatic sites that could represent 
previous feldspar prisms in a 
porphyritic possibly shallow intrusive 
igneous rock, intensely altered to a 
quartz-sericite-chlorite-(carbonate) 
assemblage and which hosts significant 
pyrite-chalcopyrite mineralisation. 

Figure 3 
WL0480 EXPA3229 cpl, x 2.5 
As for Figure 3 under crossed polarised 
light. 

Figure 4 
WL0480 EXPA3230 ppl, x 4 
Feldspathic shallow ?intrusive porphyry 
that has been selectively altered to a 
quartz-sericite-(carbonate-chlorite) 
assemblage, cut by fine branching 
foliated sericitic zones. Poorly 
preserved unoriented prismatic shaped 
phenocryst sites (sericite altered) and 
elongate narrow green chlorite altered 
mafic crystal sites  set  in a quartz-
sericite matrix. 
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PLATE 13 Appendix IV 

Figure 1 
WL0480 EXPA3230 cpl, x 4 
Poorly preserved unoriented prismatic 
shaped phenocryst sites (sericite 
altered) and elongate narrow green 
chlorite altered mafic sites set in a 
quartz-sericite matrix under crossed 
polarised light. 

Figure 2 
WL0106 EXPA3216 cpl, x 4 
Volcaniclastic quartz sericite schist of 
variable primary composition. 
Carbonate veined and intensely 
deformed. Euhedral quartz phenocryst 
in a foliated sericite-quartz-carbonate 
host. 

Figure 3 
WL0530A EXPA3218 ppl, x 2.5 
Fractionated lamprophyre dyke. 
Serpentine altered olivine phenocryst 
sites in colourless diopsidic pyroxene 
set in a groundmass with biotite flakes 
(brown), dusty K-feldspar and 
feldspathoids. 

Figure 4 
WL0530A EXPA3218 ppl, x 4 
Fractionated lamprophyre dyke. 
Syenitic host rock. Alkali feldspars 
clouded with dusty haematite, biotite 
(brown) and oxide granules (black). 
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Figure 1 
WL0290 EXPA3202 
Reflected light x 10 
Pyrite and interstitial anhedral 
chalcopyrite patches. 

Figure 2 
WL0290 EXPA3202 
Reflected light x 10 
Anhedral yellow chalcopyrite and grey 
haematite. 

Figure 3 
WL0290 EXPA3202 
Reflected light x 10 
Large pyrite crystals set in a finer 
grained granular pyrite with even later 
interstitial chalcopyrite. 

Figure 4 
WL0290 EXPA3207 
Reflected light x 10 
Early subhedral and fractured pyrite set 
in later anhedral chalcopyrite. 
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PLATE 15 Appendix IV 

Figure 1 
WL0421 EXPA3207 
Reflected light  x  20 
Deformed molybdenite flakes (grey) 
and large anhedral pyrite clusters. 

Figure 2 
WL0106 EXPA3210 
Reflected light x  10 
Central zone of  dusty  inclusions in 
pyrite, including  some  chalcopyrite. 

Figure 3 
WL0106 EXPA3210 
Reflected light x  40 
Narrow veinlet of bornite partly 
intergrown with  (or  altered to) blue 
chalcocite-digenite. Enclosed in pyrite 
host. 

Figure 4 
WL0106 EXPA3210 
Reflected light x  20 
As for Figure 4. 
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Appendix IV 

Figure 1 
WL0106 EXPA3213 
Reflected light x 20 
Molybdenite flakes enclosed within 
pyrite. 

Figure 2 
WL0531 EXPA3226 
Reflected light x 10 
Anhedral patches of monomineralic 
sphalerite in quartz veinlet. 

Figure 3 
WL0531 EXPA3226 
Reflected light x 20 
Minor anhedral interstial galena in vein 
of coarse grained carbonate. 

Figure 4 
WL0480 EXPA3229 
Reflected light x 20 
Chalcopyrite occupying narrow 
microfractures and grain boundaries in 
early formed  pyrite. 
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ROYAL THARSIS 
WHOLE ROCK ANALYSES RESULTS 

Appendix V 
Table 1 

Majors 	Scheme 	DL Units EXPA3231 EXPA3232 EXPA3233 EXPA3234 EXPA3235 EXPA3236 

Al203 	IC4E 	0.01 % 9.15 7.54 12.7 12.2 12.6 13.1 
CaO 	IC4E 	0.01 % 0.05 0.1 0.06 0.08 0.16 0.07 
Fe203 	IC4E 	0.01 % 14.5 19.6 6.93 4.48 2.77 9.21 
K20 	IC4E 	0.01 % 0.25 0.15 0.15 2.8 0.32 1.85 
MgO 	IC4E 	0.01 % 0.05 0.04 0.03 0.27 0.04 0.11 
MnO 	IC4E 	0.01 % <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
Na20 	IC4E 	0.01 % 0.06 0.04 0.05 0.27 0.06 0.11 
P205 	IC4E 	0.01 % 0.05 0.07 0.07 0.06 0.05 0.08 
Si02 	IC4E 	0.01 % 65.2 57.8 71.1 75.2 78.1 68.3 
TiO2 	IC4E 	0.01 % 0.19 0.21 0.29 0.25 0.25 0.32 
LOI 	GRAV7 	0.01 % 8.59 11.2 7.89 5.09 4.13 8.05 

Total 98.09 96.75 99.27 100.7 98.48 101.2 

S 	VOL2 	0.05 % 12.4 14.7 7.65 4.15 2.55 5.2 
C 	GRAV4E 	0.01 % 0.02 0.04 0.03 0.04 0.04 0.05 
CO2  0.07 0.15 0.11 0.15 0.15 0.18 
Ishikawa Alteration Index 73.17 57.58 62.07 89.77 62.07 91.59 
Chlorite Alteration Index 97.69 98.94 96.91 58.35 86.95 81.08 
Manganese Alteration Index 24.39 44.12 35.48 4.06 35.59 5.77 

Trace Elements 
V 	IC4E 	20 ppm 30 20 50 40 <20 60 
Cr 	IC4E 	20 ppm 150 150 100 160 120 190 
As 	IC4M 	15 ppm 30 80 20 20 <15 20 
Ba 	IC4M 	10 ppm 330 145 180 2100 230 650 
Bi 	IC4M 	3 ppm 4 6 <3 <3 <3 4 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm 30 20 <15 <15 <15 <15 
Cs 	IC4M 	3 ppm <3 <3 <3 4 <3 <3 
Ga 	IC4M 	I ppm 2 1 3 8 1 9 
Hf 	IC4M 	1 ppm 5 4 6 5 6 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 9 10 8 8 6 8 
Nb 	IC4M 	10 ppm <10 <10 10 10 10 <10 
Rb 	IC4M 	0.5 ppm 7.5 4 3.5 70 8.5 47 
Sb 	IC4M 	1 ppm 3 4 3 3 10 3 
Sr 	IC4M 	5 ppm 70 60 75 170 70 75 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
T1 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 16 15 15 13.5 16 14.5 
U 	IC4M 	0.5 ppm 3.5 5 3 3.5 4 4.5 
W 	IC4M 	3 ppm 8 14 8 6 6 6 
Y 	IC4M 	1 ppm 12 II 12 30 15 22 
Zr 	IC4M 	15 ppm 170 170 220 190 240 180 
La 	IC4R 	1 ppm 48 47 29 39 46 45 
Ce 	IC4R 	1 ppm 100 105 56 88 110 100 
Nd 	IC4R 	0.5 ppm 34.5 39 19 32 40 36.5 
Cu 	IC2E 	1 ppm 180 190 79 95 70 150 
Pb 	IC2E 	3 ppm 18 8 12 30 6 10 
Zn 	IC2E 	1 ppm 7 3 7 14 9 5 
Ni 	IC2E 	1 PPm 10 6 13 7 7 18 
Ag 	IC2E 	0.5 ppm 1 <0.5 <0.5 <0.5 <0.5 <0.5 
Au 	FA1 	0.01 ppm 0.04 0.02 0.18 0.01 0.02 0.03 
Au Dpi 	FA1 	0.01 ppm <0.01 
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ROYAL THARSIS 
WHOLE ROCK ANALYSES RESULTS 

Appendix V 
Table 1 

Majors 	Scheme 	DL Units EXPA3237 EXPA3238 EXPA3239 EXPA3240 EXPA3241 EXPA3242 

Al203 	IC4E 	0.01 % 13 11.6 11.4 11.1 10.9 9.87 
CaO 	IC4E 	0.01 % 0.15 0.09 0.07 0.09 0.05 0.05 
Fe203 	IC4E 	0.01 % 9.06 13.6 7.94 9.47 10.2 16.5 
K20 	IC4E 	0.01 % 2.77 2.55 2.82 2.37 2.56 2.37 
MgO 	IC4E 	0.01 % 1.98 1.13 1.46 1.85 0.37 0.43 
MnO 	IC4E 	0.01 % 0.21 0.04 0.2 0.21 0.03 0.04 
Na20 	IC4E 	0.01 % 0.11 0.09 0.08 0.07 0.12 0.15 
P205 	IC4E 	0.01 % 0.08 0.07 0.05 0.06 0.05 0.06 
Si02 	IC4E 	0.01 % 67.1 61.3 70 69.8 66.6 60.3 
TiO2 	IC4E 	0.01 % 0.31 0.28 0.23 0.24 0.22 0.22 
LOI 	GRAV7 	0.01 % 5.06 8.58 5.52 4.26 7.47 12.3 

Total 99.83 99.33 99.77 99.52 98.57 102.29 

S 	VOL2 	0.05 % 3.2 6.05 5.6 1.95 8.5 8.5 
C 	GRAV4E 	0.01 % 0.38 0.06 0.19 0.68 0.1 0.07 
CO2  1.39 0.22 0.70 2.49 0.37 0.26 
bhikawa Alteration Index 94.81 95.34 96.61 96.35 94.52 93.33 	• 
Chlorite Alteration Index 77.87 83.51 74.79 80.95 78.08 85.84 
Manganese Alteration Index 43.86 15.65 41.65 47.30 11.55 15.15 

Trace Elements 
V 	IC4E 	20 ppm 70 80 <20 40 20 40 
Cr 	IC4E 	20 ppm 150 190 180 100 160 130 
As 	IC4M 	15 ppm 20 30 20 <15 20 20 
Ba 	IC4M 	10 ppm 1050 850 700 650 900 900 
Bi 	IC4M 	3 ppm <3 8 <3 4 <3 8 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm <15 20 <15 <15 <15 30 
Cs 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Ga 	IC4M 	1 ppm 12 13 12 10 10 10 
Hf 	IC4M 	1 ppm 4 4 5 5 6 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 7 8 8 7 9 12 
Nb 	IC4M 	10 ppm <10 <10 <10 <10 <10 <10 
Rb 	IC4M 	0.5 ppm 68 72 89 66 68 64 
Sb 	IC4M 	1 ppm 3 3 3 4 2 3 
Sr 	IC4M 	5 ppm 40 40 25 20 45 65 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
Ti 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 22 12 15.5 15.5 27.5 14.5 
U 	IC4M 	0.5 ppm 4.5 4 5 4.5 5 5 
W 	IC4M 	3 ppm 4 8 4 6 6 10 
Y 	IC4M 	1 ppm 29 26 30 29 29 26 
Zr 	IC4M 	15 ppm 170 160 210 170 190 170 
La 	IC4R 	1 ppm 41 41 48 42 49 45 
Ce 	IC4R 	1 ppm 140 100 105 93 210 99 
Nd 	IC4R 	0.5 ppm 35.5 30.5 41.5 40 44.5 36.5 
Cu 	IC2E 	1 ppm 190 450 1100 88 145 750 
Pb 	IC2E 	3 ppm 46 34 20 40 12 46 
Zn 	IC2E 	1 ppm 110 60 120 125 22 20 
Ni 	IC2E 	1 ppm 10 24 8 6 7 10 
Ag 	IC2E 	0.5 ppm 0.5 1 1 <0.5 <0.5 1 
Au 	FA1 	0.01 
Au Dpi 	FA1 	0.01 

ppm 
ppm 

0.01 0.07 0.04 <0.01 <0.01 0.08 
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Appendix V 
Table 1 

Majors 	Scheme 	DL Units EXPA3243 EXPA3244 EXPA3245 EXPA3246 EXPA3247 EXPA3248 

Al203 	IC4E 	0.01 % 11.3 5.8 10.9 12.2 11.7 13 
CaO 	IC4E 	0.01 % 0.11 0.11 0.54 0.24 0.09 0.18 
Fe203 	IC4E 	0.01 % 13.1 24.5 14.6 9.63 7.36 10.3 
K20 	IC4E 	0.01 % 2.12 1.23 2.58 3.48 3.58 3.43 
MgO 	IC4E 	0.01 % 1.35 0.09 2.13 1.88 0.59 1.46 
MnO 	IC4E 	0.01 % 0.04 <0.01 0.18 0.12 0.14 0.15 
Na20 	IC4E 	0.01 % 0.19 0.08 0.04 0.05 0.07 0.07 
P205 	IC4E 	0.01 % 0.1 0.1 0.38 0.18 0.09 0.12 
Si02 	IC4E 	0.01 % 64.1 52.7 59.1 64.5 68.9 64.1 
TiO2 	IC4E 	0.01 % 0.28 0.26 0.32 0.35 0.27 0.35 
LOI 	GRAV7 	0.01 % 7.28 13.5 6.76 6.01 4.94 6.15 

Total 99.97 98.37 97.53 98.64 97.73 99.31 

S 	VOL2 	0.05 % 7.35 18.4 5 4.1 3.75 2.95 
C 	GRAV4E 	0.01 % 0.07 0.04 0.59 0.15 0.24 0.44 
CO2  0.26 0.15 2.16 0.55 0.88 1.61 
Ishikawa Alteration Index 92.04 87.42 89.04 94.87 96.30 95.14 
Chlorite Alteration Index 85.05 94.41 85.35 74.92 66.40 75.40 
Manganese Alteration Index 18.09 10.88 47.18 28.97 28.99 32.43 

Trace Elements 
V 	IC4E 	20 ppm 80 70 140 100 40 90 
Cr 	IC4E 	20 ppm 180 350 140 150 110 100 
As 	IC4M 	15 ppm 20 30 20 20 20 <15 
Ba 	IC4M 	10 ppm 700 370 2650 4500 3150 3250 
Bi 	IC4M 	3 ppm 4 4 6 12 4 <3 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm 20 30 60 150 60 30 
Cs 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Ga 	IC4M 	1 ppm 11 3 9 5 9 12 
Hf 	IC4M 	1 ppm 4 4 4 5 5 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 1 0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 8 13 18 77 59 10 
Nb 	IC4M 	10 ppm <10 <10 15 15 10 <10 
Rb 	IC4M 	0.5 ppm 57 28.5 60 87 82 90 
Sb 	IC4M 	1 ppm 33 3 2 3 2 2 
Sr 	IC4M 	5 ppm 100 45 35 65 55 50 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
Ti 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 16 9.5 21 16.5 13 19 
I:1 	IC4M 	0.5 ppm 5 3.5 5.5 19.5 11 8 
W 	IC4M 	3 ppm 10 22 14 40 40 40 
Y 	IC4M 	1  PPm 24 8 13 50 35 28 
Zr 	IC4M 	15 ppm 160 140 160 180 210 180 
La 	IC4R 	1 ppm 47 34 105 350 140 105 
Ce 	IC4R 	1 ppm 105 67 240 600 240 200 
Nd 	IC4R 	0.5 PPm 42 25 56 150 63 63 
Cu 	IC2E 	1 PPm 480 300 11400 3600 1800 1750 
Pb 	IC2E 	3 PPm 8 30 12 10 8 6 
Zn 	IC2E 	1 PPm 65 4 110 70 26 59 
Ni 	IC2E 	1 PPm 14 20 30 17 6 13 
Ag 	IC2E 	0.5 PPm <0.5 <0.5 1 <0.5 <0.5 1 
Au 	FAI 	0.01 PPm 0.05 0.25 0.45 0.1 <0.01 0.03 
Au Dpi 	FA1 	0.01 PPm 0.27 
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Table I 

Majors Scheme DL Units EXPA3249 EXPA3250 EXPA4601 EXPA4602 EXPA4603 EXPA4604 

M203 	IC4E 	0.01 % 11.8 13.1 11.6 9.27 12.5 12.1 
CaO 	IC4E 	0.01 % 0.07 0.1 0.93 0.69 0.97 0.81 
Fe203 	IC4E 	0.01 % 7.58 4.8 18.1 20.4 12.8 10.2 
K20 	IC4E 	0.01 % 3.48 3.8 2.71 2.48 3.55 3.55 
MgO 	IC4E 	0.01 % 0.62 0.67 2.26 1.48 2.14 1.68 
MnO 	IC4E 	0.01 % 0.07 0.04 0.2 0.27 0.28 0.38 
Na20 	IC4E 	0.01 % 0.08 0.08 0.06 0.08 0.13 0.13 
P205 	IC4E 	0.01 % 0.08 0.08 0.55 0.43 0.22 0.31 
Si02 	IC4E 	0.01 % 69.6 70.9 50.2 50.1 54.7 59.4 
TiO2 	IC4E 	0.01 % 0.27 0.32 0.36 0.26 0.53 0.32 
LOI 	GRAV7 	0.01 % 4.89 3.74 9.82 10.4 8.83 6.54 

Total 98.54 97.63 96.79 95.86 96.65 95.42 

S 	VOL2 	0.05 % 3.35 2.9 8.25 10.2 3.2 2.8 
C 	GRAV4E 	0.01 % 0.25 0.09 0.65 0.69 1.5 1.17 
CO2  0.92 0.33 2.38 2.53 5.50 4.29 
Ishikawa Alteration Index 96.47 96.13 83.39 83.72 83.80 84.76 
Chlorite Alteration Index 67.64 56.25 87.01 88.57 78.77 74.69 
Manganese Alteration Index 17.78 11.42 51.40 56.97 50.60 55.61 

Trace Elements 
V 	IC4E 	20 ppm 40 40 160 110 170 90 
Cr 	IC4E 	20 PPm 90 140 60 80 190 30 
As 	IC4M 	15 ppm <15 <15 20 60 20 <15 
Ba 	IC4M 	10 ppm 1850 1000 2550 1300 4150 5300 
Bi 	IC4M 	3 ppm <3 16 6 18 22 16 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm 20 20 140 300 170 60 
Cs 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Ga 	IC4M 	1 ppm 7 9 10 5 7 4 
Hf 	IC4M 	1 ppm 5 5 5 4 4 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 1 1 1 1 
Mo 	IC4M 	2 ppm 8 9 17 85 200 125 
Nb 	IC4M 	10 ppm <10 <10 20 15 50 20 
Ftb 	IC4M 	0.5 ppm 89 105 66 58 88 91 
Sb 	IC4M 	1 ppm 2 3 3 3 2 3 
Sr 	IC4M 	5 ppm 35 25 55 30 80 105 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
Ti 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 26.5 17 21.5 19 23 18 
U 	IC4M 	0.5 ppm 4.5 4.5 4.5 4.5 6.5 21 
W 	IC4M 	3 ppm 18 14 44 34 44 38 
Y 	IC4M 	1 ppm 22 29 16 15 10 20 
Zr 	IC4M 	15 ppm 200 210 200 150 170 210 
La 	IC4R 	1 PPm 60 56 92 175 240 320 
Ce 	IC4R 	1 ppm 180 125 180 290 430 550 
Nd 	IC4R 	0.5 ppm 42.5 47 61 82 105 130 
Cu 	IC2E 	1 ppm 270 380 13900 28100 21400 10100 
Pb 	IC2E 	3 PPm 6 10 16 30 32 20 
Zn 	IC2E 	1 PPm 41 35 130 145 185 185 
Ni 	IC2E 	1 ppm 9 8 45 38 16 13 
Ag 	IC2E 	0.5 ppm <0.5 <0.5 1.5 2 1.5 1 
Au 	FA1 	0.01 PPm 0.01 <0.01 0.37 0.61 0.57 0.18 
Au Dpi 	FA1 	0.01 PPm 0.45 0.71 0.47 

- page 14- 



ROYAL THARSIS 
WHOLE ROCK ANALYSES RESULTS 

Appendix V 
Table I 

Majors 	Scheme 	DL Units EXPA4605 EXPA4606 EXPA4607 EXPA4608 EXPA4609 EXPA4610 

Al203 	IC4E 	0.01 % 13.1 12.1 12.5 12.1 11.2 11.2 
CaO 	IC4E 	0.01 % 3.45 6.49 4.53 5.33 3.09 2.83 
Fe203 	IC4E 	0.01 % 4.5 6.18 4.53 5.38 3.13 2.78 
K20 	IC4E 	0.01 % 3.56 3.24 3.47 3.11 3.13 3.28 
MgO 	IC4E 	0.01 % 2.03 3.28 2.37 2.76 1.77 1.62 
MnO 	IC4E 	0.01 % 0.21 0.33 0.27 0.27 0.2 0.16 
Na20 	IC4E 	0.01 % 0.27 0.22 0.25 0.51 0.19 0.18 
P205 	IC4E 	0.01 % 0.16 0.15 0.11 0.12 0.05 0.05 
Si02 	IC4E 	0.01 % 63.7 55.1 62.2 60.2 69.9 70.2 
TiO2 	IC4E 	0.01 % 0.39 0.41 0.34 0.33 0.22 0.23 
LOI 	GRAV7 	0.01 % 7.13 12.1 9.02 8.28 6.24 6.09 

Total 98.5 99.6 99.59 98.39 99.12 98.62 

S 	VOL2 	0.05 % 0.35 0.4 0.2 0.1 0.15 <0.05 
C 	GRAV4E 	0.01 % 1.44 2.47 2.19 1.62 1.41 1.22 
CO2  5.28 9.05 8.02 5.94 5.17 4.47 
Ishikawa Alteration Index 60.04 49.28 54.99 50.13 59.90 61.95 
Chlorite Alteration Index 61.35 71.87 63.41 67.74 58.01 54.36 
Manganese Alteration Index 59.17 73.89 66.03 68.93 60.52 56.15 

Trace Elements 
V 	IC4E 	20 ppm 60 110 70 70 <20 <20 
Cr 	IC4E 	20 ppm 70 50 60 100 60 60 
As 	IC4M 	15 ppm <15 <15 <15 <15 <15 <15 
Ba 	IC4M 	10 ppm 600 460 700 500 550 1000  
Bi 	IC4M 	3 ppm <3 <3 <3 10 <3 4 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm <15 <15 <15 <15 <15 <15 
Cs 	IC4M 	3 ppm 4 4 4 4 4 4 
Ga 	IC4M 	1 ppm 11 10 12 12 12 12 
Hf 	IC4M 	1 ppm 12 4 5 5 5 6 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 3 
Mo 	IC4M 	2 ppm 8 4 4 4 6 4 
Nb 	IC4M 	10 ppm 10 <10 10 <10 <10 10 
Rb 	IC4M 	0.5 ppm 100 93 99 86 88 87 
Sb 	IC4M 	1 ppm 3 4 3 3 3 3 
Sr 	IC4M 	5 ppm 60 85 75 95 45 45 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
n 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 26 18.5 18.5 17 15 15.5 
U 	IC4M 	0.5 ppm 5 5 5 5 5 4.5 
W 	IC4M 	3 ppm 40 30 51 67 4 4 
Y 	IC4M 	1 ppm 21 18 26 29 32 31 
Zr 	IC4M 	15 ppm 550 170 210 200 220 240 
La 	IC4R 	1 ppm 47 52 55 50 42 44 
Ce 	IC4R 	1 ppm 150 110 115 115 105 105 
Nd 	IC4R 	0.5 ppm 39 42.5 46.5 48.5 43.5 44 
Cu 	IC2E 	1 ppm 140 55 135 54 52 15 
Pb 	IC2E 	3 ppm 36 18 34 40 66 14 
Zn 	IC2E 	1 ppm 62 62 89 79 55 43 
Ni 	IC2E 	1 ppm 9 9 15 9 9 6 
Ag 	IC2E 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Au 	FA1 	0.01 
Au Dpi 	FA1 	0.01 

ppm 
ppm 

<0.01 0.01 0.05 0.01 <0.01 <0.01 
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Table 1 

Majors Scheme DL Units EXPA4611 EXPA4612 EXPA4613 EXPA4614 EXPA4615 EXPA4616 

M203 	IC4E 	0.01 % 12.1 11.8 12.4 10.8 12.4 11.2 
CaO 	IC4E 	0.01 % 8.28 7.74 6.46 3.91 6.83 7.23 
Fe203 	IC4E 	0.01 % 7.72 7.73 6.91 3.34 7.12 7.42 
K20 	IC4E 	0.01 % 2.75 2.34 2.37 2.96 2.65 2.22 
MgO 	IC4E 	0.01 % 4.36 4.56 3.53 1.93 3.05 3.26 
MnO 	IC4E 	0.01 % 0.34 0.33 0.21 0.16 0.2 0.25 
Na20 	IC4E 	0.01 % 0.94 1.39 1.76 0.59 1.18 1 
P205 	IC4E 	0.01 % 0.24 0.24 0.2 0.05 0.22 0.09 
SiO2 	IC4E 	0.01 % 48.6 50.3 55.3 70.1 55.4 56.2 
TiO2 	IC4E 	0.01 % 0.48 0.46 0.44 0.2 0.46 0.37 
LOI 	GRAV7 	0.01 % 12.5 13 9.09 5.27 10.6 10.3 

Total 98.31 99.89 98.67 99.31 100.11 99.54 

S 	VOL2 	0.05 % 0.1 0.05 0.1 0.05 <0.05 0.05 
C 	GRAV4E 	0.01 % 3.03 3.16 2.12 1.11 2.78 2.16 
CO2  11.10 11.58 7.77 4.07 10.19 7.91 
Ishikawa Alteration Index 43.54 43.04 41.78 52.08 41.58 39.97 
Chlorite Alteration Index 75.39 75.53 70.24 58.16 71.17 75.53 
Manganese Alteration Index 75.99 74.75 67.45 60.82 69.75 75.14 

Trace Elements 
V 	IC4E 	20 ppm 160 160 140 <20 150 130 
Cr 	IC4E 	20 ppm 180 170 190 100 160 200 
As 	IC4M 	15 ppm <15 <15 340 <15 <15 <15 
Ba 	IC4M 	10 ppm 1300 460 750 900 550 310 
Bi 	IC4M 	3 ppm <3 <3 <3 <3 4 <3 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm 20 20 20 <15 20 20 
Cs 	IC4M 	3 ppm 4 <3 4 4 4 4 
Ga 	IC4M 	1 ppm 10 10 12 11 12 11 
Hf 	IC4M 	1 ppm 3 3 4 5 3 3 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 2.5 <0.5 
Mo 	IC4M 	2 ppm 3 3 3 4 4 3 
Nb 	IC4M 	10 ppm <10 <10 <10 <10 <10 <10 
Rb 	IC4M 	0.5 ppm 78 61 67 77 78 62 
Sb 	IC4M 	1 ppm 4 3 10 10 3 6 
Sr 	IC4M 	5 ppm 100 95 110 60 105 85 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
Ti 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 16 15.5 17.5 15.5 18.5 24 
U 	IC4M 	0.5 ppm 4 4.5 4.5 4 5 3.5 
W 	IC4M 	3 ppm 4 4 <3 <3 4 <3 
Y 	IC4M 	1 ppm 20 18 24 29 18 20 
Zr 	IC4M 	15 ppm 140 130 160 190 140 130 
La 	IC4R 	1 ppm 57 54 60 42 58 35 
Ce 	IC4R 	1 ppm 120 115 125 92 115 145 
Nd 	IC4R 	0.5 ppm 47 51 53 41.5 48.5 34.5 
Cu 	IC2E 	1 ppm 26 41 25 18 55 65 
Pb 	IC2E 	3 ppm 8 10 10 50 105 10 
Zn 	IC2E 	1 ppm 95 83 88 55 140 100 
Ni 	IC2E 	1 ppm 32 28 20 4 24 32 
Ag 	IC2E 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Au 	FA1 	0.01 
Au DO 	FA1 	0.01 

ppm 
ppm 

0.03 0.02 <0.01 <0.01 0.01 <0.01 
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Table 1 

Majors Scheme DL Units EXPA4617 EXPA4618 EXPA4619 EXPA4620 EXPA4621 EXPA4622 

Al203 	IC4E 	0.01 % 12.4 11.9 12.6 16.3 11.8 16.9 
CaO 	IC4E 	0.01 % 5.77 5.98 5.02 4.39 4.63 4.03 
Fe203 	IC4E 	0.01 % 7.87 5.98 5.29 6.47 5.59 9.65 
K20 	IC4E 	0.01 % 2.12 2.96 3.31 3.65 2.54 2.49 
MgO 	IC4E 	0.01 % 4.21 3.09 2.44 2.32 2.44 2.5 
MnO 	IC4E 	0.01 % 0.26 0.25 0.19 0.13 0.2 0.19 
Na20 	IC4E 	0.01 % 1.79 0.58 0.72 1.66 1.19 2.53 
P205 	IC4E 	0.01 % 0.21 0.08 0.24 0.09 0.08 0.17 
Si02 	IC4E 	0.01 % 54.4 59.4 61.2 56.5 62.3 53.9 
TiO2 	IC4E 	0.01 % 0.46 0.35 0.37 0.5 0.35 0.63 
LO! 	GRAV7 	0.01 % 9.32 7.77 7.92 6.76 7.09 6.03 

Total 98.81 98.34 99.3 98.77 98.21 99.02 

VOL2 	0.05 <0.05 0.05 <0.05 0.2 <0.05 0.65 
GRAV4E 	0.01 1.92 1.6 1.47 1.26 1.53 1.78 

CO2  7.03 5.86 5.39 4.62 5.61 6.52 
Ishikawa Alteration Index 45.57 47.98 50.04 49.67 46.11 43.20 
Chlorite Alteration Index 74.28 70.53 64.11 60.53 66.70 69.02 
Manganese Alteration Index 68.16 70.55 63.20 51.73 64.00 54.16 

Trace Elements 
V 	IC4E 	20 ppm 160 100 100 120 70 240 
Cr 	IC4E 	20 ppm 160 110 160 60 40 150 
As 	IC4M 	15 ppm <15 <15 <15 <15 <15 <15 
Ba 	IC4M 	10 ppm 600 380 650 430 420 280 
Bi 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm 20 <15 <15 30 <15 30 
Cs 	IC4M 	3 ppm 4 4 4 4 4 <3 
Ga 	IC4M 	1 ppm 11 12 12 16 12 16 
HI 	IC4M 	1 ppm 3 4 5 6 5 3 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 3 3 4 5 3 3 
Nb 	IC4M 	10 ppm <10 <10 <10 10 <10 <10 
Rb 	IC4M 	0.5 ppm 64 83 100 110 78 74 
Sb 	IC4M 	1 ppm 3 3 2 2 3 3 
Sr 	IC4M 	5 ppm 100 75 75 75 65 95 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
Ti 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 25.5 12 23 16.5 12 11 
U 	IC4M 	0.5 ppm 5 3 6 5 3.5 3 
W 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Y 	IC4M 	1 ppm 19 25 25 31 28 20 
Zr 	IC4M 	15 ppm 150 160 220 270 200 140 
La 	IC4R 	1 ppm 58 32 69 43 32 34 
Ce 	IC4R 	1 ppm 180 74 145 99 74 75 
Nd 	IC4R 	0.5 ppm 50 33.5 63 46.5 37 34 
Cu 	IC2E 	1 ppm 36 29 39 36 58 105 
Pb 	IC2E 	3 ppm 6 170 12 12 26 16 
Zn 	IC2E 	1 ppm 98 310 83 70 135 190 
Ni 	IC2E 	1 ppm 24 11 24 18 13 42 
Ag 	IC2E 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Au 	FA1 	0.01 
Au Dpi 	FA1 	0.01 

ppm 
ppm 

0.02 <0.01 0.02 <0.01 0.01 <0.01 

- page 17 - 



ROYAL THARSIS 
	

Appendix V 
WHOLE ROCK ANALYSES RESULTS 

	
Table I 

Majors Scheme DL Units EXPA4623 EXPA4624 EXPA4625 EXPA4626 EXPA4627 EXPA4628 

Al203 	IC4E 	0.01 % 12.8 12.5 13.2 14.7 17.9 14.5 
CaO 	IC4E 	0.01 % 3.2 4.5 2.48 4.47 0.93 0.13 
Fe203 	IC4E 	0.01 % 5.67 5.87 6.13 7.54 9.37 12.3 
K20 	IC4E 	0.01 % 2.48 3.46 3.66 3.57 4.07 3.34 
MgO 	IC4E 	0.01 % 2.4 2.47 1.8 2.8 2.33 0.26 
MnO 	IC4E 	0.01 % 0.12 0.18 0.14 0.27 0.42 0.02 
Na20 	IC4E 	0.01 % 1.89 0.22 0.29 0.27 0.27 0.32 
P203 	IC4E 	0.01 % 0.2 0.07 0.09 0.22 0.17 0.11 
Si02 	IC4E 	0.01 % 64.3 59.9 64.8 55.4 55.9 58.6 
TiO2 	IC4E 	0.01 % 0.36 0.33 0.33 0.5 0.61 0.39 
LOI 	GRAV7 	0.01 % 5.69 8.13 5.92 7.68 6.66 9.68 

Total 99.11 97.63 98.84 97.42 98.63 99.65 

S 	VOL2 	0.05 % 0.3 1.65 2.6 1.65 3.95 9 
C 	GRAV4E 	0.01 % 0.86 2 1.1 1.83 0.43 0.13 
CO2  3.15 7.33 4.03 6.71 1.58 0.48 
Ishikawa Alteration Index 48.95 55.68 66.34 57.34 84.21 88.89 
Chlorite Alteration Index 63.19 67.81 64.94 71.40 71.26 75.58 
Manganese Alteration Index 50.17 63.13 49.55 65.12 54.17 8.27 

Trace Elements 
V 	IC4E 	20 ppm 80 70 50 160 170 80 
Cr 	IC4E 	20 ppm 150 70 90 140 <20 20 
As 	IC4M 	15 ppm <15 <15 20 20 40 60 
Ba 	IC4M 	10 ppm 750 800 1000 950 1200 750 
Bi 	IC4M 	3 ppm <3 <3 <3 <3 <3 8 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm <15 <15 <15 30 20 20 
Cs 	IC4M 	3 ppm 4 4 4 4 4 4 
Ga 	IC4M 	1 ppm 13 13 14 14 18 18 
Hf 	IC4M 	1 ppm 5 6 6 5 4 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 3 5 3 3 3 4 
Nb 	IC4M 	10 ppm 10 10 10 <10 <10 10 
Rb 	IC4M 	0.5 ppm 84 105 110 105 115 91 
Sb 	IC4M 	1 ppm 3 3 3 7 4 6 
Sr 	IC4M 	5 ppm 80 95 75 80 50 70 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
11 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 20.5 15 19 18.5 13.5 16 
U 	IC4M 	0.5 ppm 6 4.5 5.5 5.5 3.5 5 
W 	IC4M 	3 ppm <3 16 24 14 12 16 
Y 	IC4M 	1 ppm 29 29 33 25 28 34 
Zr 	IC4M 	15 ppm 230 240 250 190 180 220 
La 	IC4R 	1 ppm 67 40 52 66 41 45 
Ce 	IC4R 	1 ppm 140 90 115 135 92 98 
Nd 	IC4R 	0.5 ppm 59 40.5 51 55 43.5 46 
Cu 	IC2E 	1 ppm 36 96 110 130 125 280 
Pb 	IC2E 	3 ppm 10 240 160 53 40 64 
Zn 	IC2E 	1 ppm 125 350 240 220 .  260 180 
Ni 	IC2E 	1 ppm 25 20 25 30 10 9 
Ag 	IC2E 	0.5 ppm <0.5 <0.5 <0.5 <0.5 0.5 0.5 
Au 	FA1 	0.01 
Au Dpi 	FA I 	0.01 

ppm 
ppm 

<0.01 0.01 0.01 <0.01 <0.01 <0.01 
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Appendix V 
WHOLE ROCK ANALYSES RESULTS 

	
Table 1 

Majors Scheme DL Units EXPA4629 EXPA4630 EXPA4631 EXPA4632 EXPA4634 EXPA4635 

Al203 	IC4E 	0.01 % 15.2 10.7 9.95 7.09 13.2 13.8 
CaO 	IC4E 	0.01 % 0.65 0.52 0.29 0.17 1.03 1.82 
Fe2O3 	IC4E 	0.01 % 7.78 13.9 19.5 6.79 10.1 8.32 
K20 	IC4E 	0.01 % 3.84 2.17 2.53 2 3.11 3.59 
MgO 	IC4E 	0.01 % 0.66 1.94 1.18 0.91 2.69 3.03 
MnO 	IC4E 	0.01 % 0.13 0.12 0.09 0.58 0.16 0.25 
Na20 	IC4E 	0.01 % 0.34 0.07 0.06 0.04 0.04 0.06 
P205 	IC4E 	0.01 % 0.07 0.09 0.16 0.06 0.2 0.18 
Si02 	IC4E 	0.01 % 63.5 62.6 54.9 76.7 62.8 61.4 
TiO2 	IC4E 	0.01 % 0.33 0.28 0.27 0.44 0.38 0.44 
LOI 	GRAV7 	0.01 % 6.69 6.3 9.32 4.42 5.45 7.25 

Total 99.19 98.69 98.25 99.2 99.16 100.14 

S 	VOL2 	0.05 % 5.75 6.6 7.3 2.4 1.95 0.65 
C 	GRAV4E 	0.01 % 0.67 0.44 0.26 0.34 0.5 1.27 
CO2  2.45 1.61 0.95 1.25 1.83 4.65 
Ishikawa Alteration Index 81.97 87.45 91.38 93.27 84.43 77.88 
Chlorite Alteration Index 64.70 86.58 87.85 77.48 78.90 74.23 
Manganese Alteration Index 31.81 43.43 31.48 74.53 45.50 54.20 

Trace Elements 
V 	IC4E 	20 PPm 30 60 80 40 110 100 
Cr 	IC4E 	20 PPm 30 240 220 180 60 40 
As 	IC4M 	15 ppm 30 20 40 20 20 20 
Ba 	IC4M 	10 PPm 1300 800 1100 1650 2450 2000 
Bi 	IC4M 	3 PPm 4 <3 6 <3 <3 <3 
Cd 	IC4M 	3 PPm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm <15 20 100 160 110 40 
Cs 	IC4M 	3 ppm 4 <3 <3 <3 <3 <3 
Ga 	IC4M 	1 ppm 16 11 11 9 12 14 
Hf 	IC4M 	1 ppm 7 4 3 4 5 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 5 6 9 20 13 9 
Nb 	IC4M 	10 ppm 15 <10 <10 <10 15 10 
Rb 	IC4M 	0.5 PPm 105 60 65 56 85 100 
Sb 	IC4M 	1 ppm 5 5 2 2 2 2 
Sr 	IC4M 	5 PPm 75 40 25 20 35 40 
Ta 	IC4M 	2 PPm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 PPm <5 <5 <5 <5 <5 <5 
T1 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 PPm 20.5 15.5 12.5 8 23.5 23.5 

IC4M 	0.5 PPm 6.5 4.5 4.5 13 8.5 6.5 
IC4M 	3 ppm 20 12 16 14 65 59 

V 	IC4M 	1 PPm 44 27 15 30 21 17 
Zr 	IC4M 	15 ppm 280 180 150 150 210 210 
La 	IC4R 	1 ppm 58 52 49 71 130 63 
Ce 	IC4R 	1 ppm 130 105 97 130 230 125 
Nd 	IC4R 	0.5 PPm 60 46.5 37.5 41 81 48.5 
Cu 	IC2E 	1 ppm 300 550 2850 1600 4950 1350 
Pb 	IC2E 	3 PPm 79 12 24 200 8 6 
Zn 	IC2E 	1 PPm 210 69 34 105 135 145 
Ni 	IC2E 	1 PPm 7 15 20 9 17 11 
Ag 	IC2E 	0.5 PPm <0.5 <0.5 <0.5 <0.5 1 0.5 
Au 	FA1 	0.01 PPm 0.03 0.01 0.06 0.05 0.08 0.02 
Au DO 	FA1 	0.01 PPm 0.01 
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ROYAL THARSIS 
WHOLE ROCK ANALYSES RESULTS 

Appendix V 
Table 1 

Majors 	Scheme 	DL Units EXPA4636 EXPA4637 EXPA4638 EXPA4639 EXPA4640 EXPA4641 

Al203 	IC4E 	0.01 % 13.8 12.1 12.7 16.2 12.1 12.1 
CaO 	IC4E 	0.01 % 0.56 0.42 0.49 1.58 0.15 0.04 
Fe203 	IC4E 	0.01 % 12.5 7.91 7.09 10.5 14.2 7.29 
K20 	IC4E 	0.01 % 3.71 3.61 3.87 3.94 3.39 3.86 
MgO 	IC4E 	0.01 % 2.7 1.03 1.08 1.9 1.24 0.59 
MnO 	IC4E 	0.01 % 0.28 0.07 0.06 0.45 0.08 0.03 
Na20 	IC4E 	0.01 % 0.09 0.08 0.07 0.26 0.05 0.06 

P205 	IC4E 	0.01 % 0.22 0.09 0.08 0.14 0.15 0.07 
Si02 	IC4E 	0.01 % 57.4 69.5 69.5 55.5 61.7 71.2 
TiO2 	IC4E 	0.01 % 0.45 0.31 0.28 0.52 0.3 0.26 
LOI 	GRAV7 	0.01 % 8.73 5.21 5.44 8.73 6.01 4.99 

Total 100.44 100.33 100.66 99.72 99.37 100.49 

S 	VOL2 	0.05 % 1.95 3.25 3.6 5.35 5.25 4.7 
C 	GRAV4E 	0.01 % 1.56 0.38 0.27 0.63 0.14 0.05 
CO2  5.72 1.39 0.99 2.31 0.51 0.18 
Ishikawa Alteration Index 90.79 90.27 89.84 76.04 95.86 97.80 
Chlorite Alteration Index 78.59 68.83 65.44 72.99 80.29 64.59 
Manganese Alteration Index 46.93 23.28 21.67 59.14 21.64 7.98 

Trace Elements 
V 	IC4E 	20 ppm 130 50 40 140 80 <20 
Cr 	IC4E 	20 ppm 40 <20 50 <20 <20 <20 
As 	IC4M 	15 ppm 20 20 <15 50 <15 <15 
Ba 	IC4M 	10 ppm 3250 2300 2800 1500 2000 1700 
Bi 	IC4M 	3 ppm <3 4 <3 <3 <3 <3 
Cd 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Co 	IC4M 	15 ppm 40 60 90 30 100 70 
Cs 	IC4M 	3 ppm <3 <3 <3 4 <3 <3 
Ga 	IC4M 	1 ppm 13 14 12 17 13 9 
Hf 	IC4M 	1 ppm 4 4 6 4 5 5 
In 	IC4M 	0.5 ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 
Mo 	IC4M 	2 ppm 5 8 14 3 6 16 
Nb 	IC4M 	10 ppm <10 10 15 <10 <10 10 
Rb 	IC4M 	0.5 ppm 105 89 96 110 90 100 
Sb 	IC4M 	1 ppm 3 5 2 3 4 3 
Sr 	IC4M 	5 ppm 55 35 50 55 35 25 
Ta 	IC4M 	2 ppm <2 <2 <2 <2 <2 <2 
Te 	IC4M 	5 ppm <5 <5 <5 <5 <5 <5 
TI 	IC4M 	3 ppm <3 <3 <3 <3 <3 <3 
Th 	IC4M 	0.5 ppm 22.5 17.5 13 12.5 20.5 18.5 
U 	IC4M 	0.5 ppm 6.5 12.5 15 3.5 3.5 18 
W 	IC4M 	3 ppm 71 100 130 48 110 105 
Y 	IC4M 	1 ppm 19 25 27 32 20 61 
Zr 	IC4M 	15 ppm 180 200 250 180 210 230 
La 	IC4R 	1 ppm 74 90 67 34 90 200 
Ce 	IC4R 	1 ppm 145 165 120 75 160 360 
Nd 	IC4R 	0.5 ppm 59 59 43.5 38 58 115 
Cu 	IC2E 	1 ppm 700 2750 1900 130 3750 370 
Pb 	IC2E 	3 ppm 6 8 10 190 8 6 
Zn 	IC2E 	1 ppm 160 41 30 600 90 18 
Ni 	IC2E 	1 ppm 15 8 9 8 8 <1 
Ag 	IC2E 	0.5 ppm 0.5 0.5 0.5 1 1.5 <0.5 
Au 	FA1 	0.01 ppm 0.02 0.02 <0.01 0.01 0.09 0.03 
Au Dpi 	FA1 	0.01 ppm <0.01 
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Appendix V 
WHOLE ROCK ANALYSES: SAMPLE LOCATIONS 

	
Table 2 

Sample No Drill Hole From To ft 
or 
m 

315 GRL Grid (mid-pt) AMG (mid-pt) 

Northing Easting RL Northing Easting RI 

EXPA3231 WL0106 0 50 ft 7778.11 3662.44 2416.24 5,337,962.03 391,906.29 416.24 
EXPA3232 WL0106 50 100 ft 7777.08 3670.46 2403.01 5,337,956.44 391,912.12 403.01 
EXPA3233 WL0106 100 150 ft 7776.68 3678.60 2390.43 5,337,951.27 391,918.43 390.43 
EXPA3234 WL0106 150 200 ft 7776.99 3687.07 2378.05 5,337,946.48 391,925.42 378.05 
EXPA3235 WL0106 200 250 ft 7778.09 3696.09 2365.50 5,337,942.00 391,933.33 365.50 
EXPA3236 WL0106 250 300 ft 7780.00 3705.32 2353.19 5,337,938.05 391,941.87 353.19 
EXPA3237 WL0106 300 350 ft 7782.62 3714.38 2341.53 5,337,934.77 391,950.71 341.53 
EXPA3238 WL0106 350 400 ft 7786.12 3723.44 2330.10 5,337,932.19 391,960.07 330.10 
EXPA3239 WL0106 400 450 ft 7790.64 3732.74 2318.56 5,337,930.29 391,970.24 318.56 
EXPA3240 WL0106 450 500 ft 7797.15 3743.55 2305.04 5,337,929.10 391,982.80 305.04 
EXPA3241 WL0106 500 550 ft 7801.51 3750.52 2296.30 5,337,928.45 391,990.99 296.30 
EXPA3242 WL0106 550 600 ft 7806.70 3759.31 2285.32 5,337,927.40 392,001.14 285.32 
EXPA3243 WL0106 600 650 ft 7812.07 3768.39 2273.98 5,337,926.31 392,011.63 273.98 
EXPA3244 WL0106 650 700 ft 7817.26 3777.17 2263.00 5,337,925.26 392,021.78 263.00 
EXPA3245 WL0106 700 750 ft 7822.63 3786.26 2251.65 5,337,924.17 392,032.26 251.65 
EXPA3246 WL0106 750 800/805 ft 7827.82 3795.04 2240.67 5,337,923.12 392,042.41 240.67 
EXPA3247 WL0106 800 850 ft 7833.19 3804.12 2229.32 5,337,922.03 392,052.90 229.32 
EXPA3248 WL0106 850 900 ft 7838.38 3812.91 2218.34 5,337,920.99 392,063.05 218.34 
E3CPA3249 WL0106 900 950 ft 7843.75 3821.99 2207.00 5,337,919.89 392,073.54 207.00 
EXPA3250 WL0106 950 1012 ft 7849.63 3831.95 2194.55 5,337,918.70 392,085.05 194.55 
EXPA4601 WL0421 0 16 m 7947.45 3856.41 2195.09 5,337,982.75 392,162.87 195.09 
EXPA4602 WL0421 16 32 m 7949.12 3872.08 2192.31 5,337,974.78 392,176.46 192.31 
EXPA4603 WL0421 32 48 m 7950.80 3887.75 2189.53 5,337,966.81 392,190.05 189.53 
EXPA4604 WL0421 48 65.2 m 7952.52 3903.91 2186.67 5,337,958.59 392,204.06 186.67 
EXPA4605 WL530A 0 16 m 7952.21 3551.90 1984.49 5,337,167.67 392,921.00 -15.51 
EXPA4606 WL530A 16 32 m 7949.37 3539.61 1974.65 5,337,172.70 392,909.43 -25.35 
EXPA4607 WL530A 32 48 m 7946.48 3527.09 1965.12 5,337,177.82 392,897.65 -34.88 
EXPA4608 'QVL530A 48 64 m 7943.65 3514.17 1956.13 5,337,182.83 392,885.59 -43.87 
EXPA4609 WL530A 64 80 m 7941.00 3500.57 1948.13 5,337,189.20 392,873.08 -51.87 
EXPA4610 WL530A 80 96 m 7938.40 3486.39 1941.20 5,337,195.54 392,860.14 -58.80 
EXPA4611 WL530A 96 112 m 7936.08 3471.59 1935.58 5,337,202.25 392,847.16 -64.42 
EXPA4612 WL530A 112 128 m 7934.37 3456.42 1930.81 5,337,210.12 392,833.67 -69.19 
EXPA4613 WL530A 128 144 m 7933.16 3441.00 1926.74 5,337,218.32 392,820.55 -73.26 
EXPA4614 WL530A 144 160 m 7932.07 3425.47 1923.05 5,337,226.68 392,807.42 -76.95 
EXPA4615 WL530A 160 176 m 7931.09 3409.82 1919.85 5,337,235.20 392,794.24 -80.15 
EXPA4616 WL530A 176 192 m 7930.26 3394.07 1917.18 5,337,243.89 392,781.11 -82.82 
EXF'A4617 WL530A 192 208 m 7929.43 3378.29 1914.64 5,337,252.61 392,767.94 -85.36 
EXPA4618 WL530A 208 224 m 7928.64 3362.50 1912.21 5,337,261.37 392,754.78 -87.79 
EXPA4619 WL530A 224 240 m 7927.92 3346.68 1909.92 5,337,270.20 392,741.64 -90.08 
EXPA4620 WL530A 240 256 m 7927.26 3330.84 1907.77 5,337,279.09 392,728.52 -92.23 
EXPA4621 WL530A 256 272 m 7926.66 3314.98 1905.72 5,337,288.04 392,715.42 -94.28 
EXPA4622 WL530A 272 288 m 7926.11 3299.11 1903.78 5,337,297.04 392,702.34 -96.22 
EXPA4623 WL530A 288 303.9 m 7925.65 3283.72 1901.96 5,337,305.81 392,689.70 -98.04 
EXPA4624 WL0531 0 16 m 7959.58 3553.45 1984.47 5,337,172.67 392,926.63 -15.53 
EXPA4625 WL0531 16 32 m 7964.84 3565.12 1974.87 5,337,169.96 392,939.13 -25.13 
E3CPA4626 WL0531 32 48 m 7970.00 3577.37 1965.97 5,337,166.82 392,952.05 -34.03 
EXPA4627 WL0531 48 64 m 7974.99 3590.03 1957.54 5,337,163.30 392,965.18 -42.46 
EXPA4639 WL0531 64 80 m 7979.93 3602.85 1949.35 5,337,159.65 392,978.42 -50.66 
EXPA4628 WL0531 80 96 m 7984.85 3615.68 1941.16 5,337,155.97 392,991.67 -58.84 
EXPA4629 WL0531 96 119.9 m 7991.01 3631.73 1930.94 5,337,151.38 393,008.23 -69.06 
EXPA4630 WL0480 120 136 m 7828.90 3694.36 2014.71 5,337,983.86 392,962.15 14.71 
EXPA4631 WL0480 136 152 m 7832.94 3709.64 2012.20 5,337,978.02 392,976.83 12.20 
EXPA4634 WL0480 152 168 m 7836.98 3724.92 2009.70 5,337,972.18 392,991.51 9.70 
EXPA4635 WL0480 168 184 m 7841.01 3740.20 2007.20 5,337,966.34 393,006.19 7.20 
EXPA4636 WL0480 184 200 m 7845.05 3755.48 2004.70 5,337,960.50 393,020.87 4.69 
EXPA4637 WL0480 200 216 m 7849.09 3770.75 2002.19 5,337,954.66 393,035.55 2.19 
EXPA4638 WL0480 216 232 m 7853.13 3786.03 1999.69 5,337,948.82 393,050.23 -0.31 
EXPA4632 WL0531 232 249.1 m 7857.30 3801.79 1997.11 5,337,942.80 393,065.37 -2.89 
EXPA4640 WL0290 0 50 ft 8046.41 4103.34 2481.78 5,337,915.44 392,420.15 481.78 
EXPA4641 WL0290 50 101 ft 8046.56 4118.81 2480.89 5,337,906.35 392,432.68 480.89 
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WHOLE ROCK ANALYSES 

	
Table 3 

ANALYTICAL METHODS 

Scheme Detection 
Limit Units Elements Method 

IC4E 0.01 % Majors: 
Al203, CaO, Fe203 , IC20, Na2O, 
MgO,MnO, P 205 , SO2, h02, 

Total fusion followed by XRF 
analysis 

IC4E ppm Trace elements: 
V (20), Cr (20) 

Whole rock fusion followed by ICP-
OES 

IC4M ppm Trace elements: 
As(15),Ba(10),Bi(3),Cd(3),Co(15), 
Cs(3),Ga(1),Hg1),In(0.5),Mo(2), 
Nb(10),Rb(0.5),Sb(1),Sr(5),Ta(2), 
Te(5),T1(3),Th(0.5),U(0.5),W(3), 
Y(1),Zr(15) 

Whole rock fusion followed by ICP-
MS measurements 

IC4R ppm Rare earth elements: 
La (1), Ce (1), Nd (0.5) 

Whole rock fusion followed by ICP-
MS measurements 

IC2E ppm Copper and base metals: 
Cu (1), Ag (0.5), Pb (3), Zn (1), 
Ni (1) 

Aqua Regia digest followed by ICP-
OES measurement 

FA1 0.01 ppm Gold Fire assay: fusion with litharge and 
flux, cupellation, aqua regia digest, 
and AAS determination. 

GRAV7 0.01 % LOI Gravimetric determination of loss on 
ignition 

VOL2 0.05 % Sulphur Combustion with evolution and 
measurement of SO 2  by IR 
spectrophotemetry 

GRAV4E 0.01 % Carbon Gravimetric. Absolute measurement 
of total carbon and calculation of 
CO2  

Note: 
All samples analysed at Amdel Laboratories Limited, Adelaide, SA 
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Appendix V 
Table 4 

Descriptive Statistics Al203 CaO Fe203 K20 MgO MnO 
Mean 12.163 2.088 9.300 2.822 1.777 0.171 
Standard Error 0.267 0.321 0.601 0.120 0.147 0.016 
Median 12.1 0.67 7.825 2.96 1.865 0.17 
Mode 12.1 0.05 10.2 2.37 0.04 0.005 
Standard Deviation 2.068 2.484 4.656 0.933 1.138 0.125 
Sample Variance 4.276 6.168 21.680 0.871 1.295 0.016 
Kurtosis 2.283 -0.371 1.341 1.965 -0.340 0.824 
Skewness -0.143 0.993 1.200 -1.374 0.296 0.746 
Range 12.1 8.24 21.73 3.92 4.53 0.575 
Minimum 5.8 0.04 2.77 0.15 0.03 0.005 
Maximum 17.9 8.28 24.5 4.07 4.56 0.58 
Sum 729.77 125.28 557.98 169.3 106.64 10.235 
Count 60 60 60 60 60 60 
% results BDL 0 0 0 0 0 12 
Confidence Level (95.000%) 0.523 0.628 1.178 0.236 0.288 0.032 

Descriptive Statistics Na20 P205 Si02 TiO2 V Cr 
Mean 0.395 0.139 62.160 0.345 82.500 114.333 
Standard Error 0.073 0.013 0.902 0.013 6.705 8.907 
Median 0.13 0.095 61.95 0.33 75 110 
Mode 0.06 0.05 64.1 0.32 40 150 
Standard Deviation 0.566 0.099 6.990 0.101 51.933 68.997 
Sample Variance 0.320 0.010 48.855 0.010 2697.034 4760.565 
Kurtosis 3.786 5.094 -0.620 0.282 -0.005 0.750 
Skewness 2.095 1.998 0.157 0.804 0.623 0.535 
Range 2.49 0.5 29.5 0.44 230 340 
Minimum 0.04 0.05 48.6 0.19 10 10 
Maximum 2.53 0.55 78.1 0.63 240 350 
Sum 23.7 8.31 3729.6 20.67 4950 6860 
Count 60 60 60 60 60 60 
% results BDL 0 0 0 0 10 8 
Confidence Level (95.000%) 0.143 0.025 1.769 0.026 13.141 17.458 

Descriptive Statistics As Ba Bi Cd Co Cs 
Mean 23.667 1309.917 3.958 1.500 39.917 2.542 
Standard Error 5.696 145.189 0.583 0.000 6.884 0.160 
Median 20 900 1.5 1.5 20 1.5 
Mode 7.5 650 1.5 1.5 7.5 1.5 
Standard Deviation 44.124 1124.629 4.516 0.000 53.320 1.243 
Sample Variance 1946.921 1264790 20.392 0.000 2843.001 1.545 
Kurtosis 46.490 2.599 5.623 9.381 -1.946 
Skewness 6.498 1.661 2.391 2.771 0.347 
Range 332.5 5155 20.5 0 292.5 2.5 
Minimum 7.5 145 1.5 1.5 7.5 1.5 
Maximum 340 5300 22 1.5 300 4 
Sum 1420 78595 237.5 90 2395 152.5 
Count 60 60 60 60 60 60 
% results BDL 47 0 62 100 37 58 
Confidence Level (95.000%) 11.165 284.565 1.143 13.492 0.314 
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Appendix V 
WHOLE ROCK ANALYSES - DATASET STATISTICS 	Table 4 

Descriptive Statistics Ga Hf In Mo 1Vb Rb 
Mean 10.617 4.767 0.400 15.583 8.500 77.083 
Standard Error 0.496 0.170 0.063 4.165 0.876 3.384 
Median 11 5 0.25 7 5 83.5 
Mode 12 5 0.25 3 5 105 
Standard Deviation 3.845 1.320 0.490 32.261 6.784 26.215 
Sample Variance 14.783 1.741 0.240 1040.756 46.017 687.213 
Kurtosis 0.666 14.510 18.313 20.082 23.578 1.654 
Skewness -0.707 2.737 4.142 4.270 4.194 -1.249 
Range 17 9 2.75 197 45 111.5 
Minimum 1 3 0.25 3 5 3.5 
Maximum 18 12 3 200 50 115 
Sum 637 286 24 935 510 4625 
Count 60 60 60 60 60 60 
% results BDL 0 0 87 0 60 0 
Confidence Level (95.000%) 0.973 0.334 0.124 8.163 1.716 6.633 

Descriptive Statistics Sb Sr Ta Te n Th 
Mean 4.000 63.667 1.000 2.500 1.500 17.417 
Standard Error 0.545 3.651 0.000 0.000 0.000 0.556 
Median 3 62.5 1 2.5 1.5 16.5 
Mode 3 75 1 2.5 1.5 15.5 
Standard Deviation 4.223 28.282 0.000 0.000 0.000 4.307 
Sample Variance 17.831 799.887 0.000 0.000 0.000 18.552 
Kurtosis 38.835 1.853 -0.209 
Skewness 5.810 0.862 0.373 
Range 31 150 0 0 0 19.5 
Minimum 2 20 1 2.5 1.5 8 
Maximum 33 170 1 2.5 1.5 27.5 
Sum 240 3820 60 150 90 1045 
Count 60 60 60 60 60 60 
% results BDL 0 0 100 100 100 0 
Confidence Level (95.000%) 1.068 7.156 1.090 

Descriptive Statistics U W Y Zr La Ce 
Mean 6.042 24.983 24.850 196.167 73.283 151.400 
Standard Error 0.503 3.870 1.185 7.490 8.165 13.412 
Median 5 14 25 190 52 115 
Mode 5 1.5 29 210 47 105 
Standard Deviation 3.898 29.976 9.178 58.021 63.242 103.892 
Sample Variance 15.197 898.551 84.231 3366.412 3999.562 10793.57 
Kurtosis 6.205 2.996 3.633 23.158 9.480 8.864 
Skewness 2.560 1.809 1.181 3.944 3.009 2.857 
Range 18 128.5 53 420 321 544 
Minimum 3 1.5 8 130 29 56 
Maximum 21 130 61 550 350 600 
Sum 362.5 1499 1491 11770 4397 9084 
Count 60 60 60 60 60 60 
% results BDL 0 17 0 0 0 0 
Confidence Level (95.000%) 0.986 7.585 2.322 14.681 16.002 26.288 

- page 24 - 



ROYAL THARSIS 
	

Appendix V 
WHOLE ROCK ANALYSES - DATASET STATISTICS 

	
Table 4 

Descriptive Statistics Nd LOI Cu Pb Zn Ni 
Mean 51.358 7.564 1998.800 37.283 106.767 15.508 
Standard Error 3.015 0.304 654.942 6.680 12.949 1.256 
Median 45.25 7.19 165 16 85.5 13 
Mode 63 6.76 36 10 7 9 
Standard Deviation 23.354 2.357 5073.156 51.743 100.304 9.728 
Sample Variance 545.408 5.555 25736917 2677.291 10061.0 94.640 
Kurtosis 7.063 -0.082 14.931 6.045 9.224 0.949 
Skewness 2.474 0.694 3.746 2.545 2.452 1.164 
Range 131 9.76 28085 234 597 44.5 
Minimum 19 3.74 15 6 3 0.5 
Maximum 150 13.5 28100 240 600 45 
Sum 3081.5 453.81 119928 2237 6406 930.5 
Count 60 60 60 60 60 60 
% results BDL 0 0 0 0 0 2 
Confidence Level (95.000%) 5.909 0.596 1283.660 13.092 25.380 2.462 

Descriptive Statistics Ag S Au Au Bpi C 
Mean 0.483 3.720 0.064 0.274 0.912 
Standard Error 0.053 0.504 0.017 0.106 0.110 
Median 0.25 2.925 0.02 0.27 0.64 
Mode 0.25 0.025 0.005 0.005 0.04 
Standard Deviation 0.411 3.901 0.129 0.281 0.855 
Sample Variance 0.169 15.216 0.017 0.079 0.731 
Kurtosis 2.907 2.893 9.635 -1.371 -0.154 
Skewness 1.858 1.522 3.138 0.401 0.858 
Range 1.75 18.375 0.605 0.705 3.14 
Minimum 0.25 0.025 0.005 0.005 0.02 
Maximum 2 18.4 0.61 0.71 3.16 
Sum 29 223.175 3.83 1.92 54.71 
Count 60 60 60 7 60 
% results BDL 67 8 30 29 0 
Confidence Level (95.000%) 0.104 0.987 0.033 0.208 0.216 
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