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Abstract 

The distribution network has experienced an increasing level of photovoltaics (PVs) and 

plug-in hybrid vehicles (PHEVs) integration in recent years. Investigating the potential 

influence of integrating these sources into distribution networks is difficult and requires 

the development of a suitable system simulation model for a grid-tied PV system with 

energy storage. The major objective of this thesis is modelling, control and power 

management of a grid-connected PV system with PHEVs as energy storage. The 

parameters of the PV array and Tremblay’s battery models integrated within the whole 

system simulation model are estimated using the parameter estimation techniques. The 

simulation models developed throughout the thesis are implemented in 

MATLAB/SimPowerSystems environment. Experimental testing of BP 380 PV modules 

is conducted to validate the effectiveness of the PV module model. A suitable control and 

charging strategy is also developed to control the charging and discharging processes of 

the PHEV battery. 

The major novelty of the work described in the thesis lies in three aspects: (1) parameter 

identification of PV modules using a genetic algorithm (GA) approach to improve the 

accuracy of the model parameters; (2) parameter identification of Tremblay’s battery 

model using a novel quantum-behaved particle swarm optimization (QPSO) parameter 

estimation technique; (3) development of a charging strategy for PHEVs to optimally 

coordinate the power flow among the system based on the State of Charge (SOC) scenario 

of a day. 

This thesis begins with a study of modelling approaches for a PV cell and selects the 

single diode model (SDM) to model the PV array. A critical review of three parameter 

estimation techniques for the SDM is presented. A novel GA approach to parameter 

estimation for the SDM is also proposed. Simulation results are presented to show the 

advantages of the GA approach over Villalva's iterative method [1]. Experimental testing 

of a BP 380 PV module is conducted to validate the effectiveness of the SDM in 
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modelling the experimental current-voltage (I-V) and P-V characteristics. A PV array 

simulation model is developed using the SDM calibrated through parameter estimation. 

Secondly, the thesis presents overviews of MPPT techniques, DC-DC converter 

topologies, and grid-tied PV inverter topologies for MPPT applications. A review of the 

input voltage control of DC-DC converters is presented, especially on the voltage mode 

control (VMC) and current mode control (CMC). This leads to the development of a 

proportional-integral-derivative (PID) controller. This controller is used to transform the 

PV array voltage tracking error into the duty cycle to control the operation of the boost 

converter interfacing the PV array. Four cases are developed based on whether the effect 

of the DC link capacitor is considered, and different linear models are selected for 

modelling a PV array. According to the assumptions given in the four cases, the small 

signal model of the boost converter is developed by adoption of the PWM model in each 

case. Consistently with the derived small signal model, four different control-to-input 

voltage transfer functions are developed and the corresponding parameter sets of the PID 

controller are determined. To investigate the performance of different parameter sets of 

the PID controller, a single-phase grid-tied PV system model is employed. Four case 

studies have been conducted to analyse the effects of different tuning settings of the PID 

controller on the PV array voltage response. The most appropriate PID controller 

parameter settings are selected leading to the fastest rise time and zero steady state error 

of the PV array voltage response among the four different cases. 

Thirdly, the thesis provides a review of existing parameter estimation techniques used to 

parameterize Tremblay’s battery model for PHEV batteries. These existing techniques 

include: particle swarm optimisation (PSO), GA, and simulated annealing (SA). A QPSO 

is proposed in the thesis to estimate the model parameters of Tremblay’s model and the 

resultant discharge curve is compared to those generated by GA and PSO approaches. 

The simulated battery discharge curves obtained from GA, PSO, and QPSO parameter 

estimation techniques are compared to the experimental data together with the simulated 

discharge curve obtained from Tremblay’s parameter estimation method. Results of the 

comparison indicate that the QPSO parameter estimation technique converges to 

acceptable solutions with fewer iterations than the GA and the PSO techniques. The 
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QPSO parameter estimation technique also needs less tuning effort than the GA and the 

PSO techniques since there is only one tuning parameter involved in the QPSO approach. 

Finally, this thesis also develops control and charging management strategies for 

controlling the charging operation of a PHEV battery. The PHEV battery can be charged 

from the PV array during the daytime when solar power is sufficient, and from the grid 

at night. The charging power is determined in such a way that the actual SOC of the 

PHEV battery follows a pre-set SOC reference when the PHEV battery is charging from 

the grid. The charging power reference is set to the power difference between the PV 

array and the local load when the PHEV battery is charging from the PV array. Results 

show that the charging management strategies can achieve the objectives of charging 

using the PV array power when solar energy is available, and using the grid power at 

night time. 
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Chapter 1  
Introduction 

1.1 Background 

Due to environmental concerns and rising fuel prices, there has been a striving impetus 

towards transportation electrification. Electric vehicles (EVs) such as battery electric 

vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles 

(PHEVs) and fuel cell electric vehicles (FCEVs) are more fuel efficient and 

environmental friendly compared to conventional vehicles propelled by an internal 

combustion engine (ICT) [1]. PHEVs stand out from the electric vehicle market due to 

several advantages. These advantages are that they are mainly powered by an on-board 

energy storage system and can be recharged from a power utility grid as well as renewable 

energy sources [2]. PHEV batteries act as energy storage to counter the intermittency of 

renewable energy sources as well as to supply power back to the grid via the vehicle-to-

grid (V2G) technology [2]. PHEVs provide a way of using clean energy in transportation 

sectors and could provide further energy savings if equipped with regenerative braking. 

Among all the renewable energy sources, solar is clean, inexhaustible and widely 

accessible. The problems for solar energy are that solar power varies rapidly with respect 

to ever-changing environmental conditions. The maximum power generated by 

photovoltaic (PV) system does not happen at the time when there is a peak load demand. 

Thus, the value to the system may be enhanced if the energy harvested by PV panels can 

be stored in energy storage systems and released to cover the peak load at different times. 

Fig. 1.1 demonstrates the total PV installations in Australia from April 2001 to June 2017. 

Up to July 2017, the number of PV installations in Australia exceeds 1.7 million, with an 

aggregated capacity of over 6.2 gigawatts [3]. 
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Fig. 1.1: Australian PV installations from April 2001 to June 2016 [3]. 

Two major configurations of PV generation systems are stand-alone systems or off-grid 

systems and grid-connected systems. Stand-alone PV systems are designed to operate 

without a connection to the utility grid and are often installed in remote areas where 

extreme weather often happens [4]. Energy storage integration is necessary when an 

uninterruptible electricity supply is required [5]. Grid-connected PV systems provide a 

connection between the PV system and the grid via inverters. Grid-connected PV systems 

are often equipped with maximum power point tracking (MPPT) techniques to extract as 

much power as possible from the sun and deliver electricity to the grid for a reasonable 

tariff. The purpose of implementing MPPT techniques is to ensure that the PV array 

always operates at its maximum power point (MPP). This is accomplished by controlling 

the duty cycle to determine the on/off state of the IGBT switch within the converters 

interfaced with the PV array. 

PV material recycling is another problem associated with PV generation [6]. The normal 

lifetime of a PV module is 25 years. A PV module needs to be decommissioned and 

recycled at the end of its lifetime [7] for environmental and economic purposes. It is 

estimated that about 80 metric tons of waste will be generated from 1 MW of end-of-life 

PV modules [6]. 

PHEVs can be a good choice to implement energy storage as they provide an eco-friendly 

medium of transportation. The V2G technology enables the onboard energy storage 

system of the vehicle to supply power to the grid when the load demand is high. V2G 

technology can be defined as a system that provides a controllable, bi-directional power 
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flow between a vehicle and the grid. A PHEV can be recharged from the grid when its 

battery’s state of charge (SOC) is low, whereas a PHEV can supply power to the grid 

when there is an imbalance of generation and load. The power management unit (PMU) 

is used to implement V2G technology. Although there is no such vehicle designed to 

incorporate PMU in its energy storage system, the potential for V2G technology is 

significant. Research shows that vehicles are not in use for transportation up to 95% of 

the time, when the energy storage system can be utilized to stabilize the electricity 

network without compromising its primary transportation function [8]. 

The distribution networks were initially constructed for a centralized generation paradigm 

[9]. Power generated from the central power plant is transmitted to the end users through 

the transmission line [10]. With an increasing number of distributed generation resources 

(DGRs) such as solar, wind, biomass and fuel cell integrated into the network, some 

instability issues and operational challenges may arise in the distribution network [11], 

[12]. These challenges include but are not limited to: bidirectional power flow [13], poor 

power quality [12], dysfunction of protection equipment, reactive power shortage, and 

steady-state voltage rise [12]. These challenges can be mitigated by the integration of 

energy storage systems. Energy storage systems are able to store excessive energy for 

further use and supply power to local loads and the grid at night time. They can also 

improve the distribution network reliability by mitigation of the aforementioned 

challenges. PHEV energy storage systems are one of the cost-effective energy storage 

technologies, and provide an effective approach to solar energy utilization for PHEV 

batteries charging. With an increasing penetration of PHEVs in the transportation sector, 

the operational challenges attributed to DGRs can be significantly reduced and power 

system reliability and security can be maintained or improved. 

There is increasing attention being paid to the electric vehicle market, as PHEVs and 

HEVs have significantly lower carbon emissions, less operational costs and consume less 

fuels compared to the vehicles propelled by internal combustion engines [14]. DERs can 

be used to charge PHEVs with low fuel costs. During the time when DERs are abundant, 

such as strong wind and high solar irradiance, the energy generated from these DERs can 

be stored into the energy storage system of PHEVs. The utilization of PHEVs could 

improve the coordination of the DERs connected to the distribution grid and increase the 

penetration level of DERs [15]. However, the massive usage of PHEVs may lead to 



Chapter 1 

4 | P a g e  

several potential issues for power systems. One problem could be that charging large 

numbers of PHEVs simultaneously cause some technical problems in maintaining the 

reliability and security of power systems. These technical problems include huge power 

losses [16], voltage deviations at some local buses and peak loads of distribution 

transformers at a particular time of a day [17]. 

PHEVs and PV systems both have a positive influence on the environment with 

decreasing carbon emissions and low fuel consumption. Increasing PV penetrations 

without integration with PHEVs (or similar energy storage facilities) may lead to voltage 

and frequency instability of the power system, whereas connecting PHEVs into the 

network without any PV system integration could cause considerable increased power 

losses and voltage deviations. Grid-connected PV systems integrated with PHEVs 

utilizing appropriate energy management strategies can neutralize their negative effects 

on the power system. 

1.2 Problem Statement and Motivation 

Environmental effects of fossil fuels on various aspects of human life require developing 

some low-carbon-emission strategies. It is reported that greenhouse gases emissions in 

the U.S. is largely attributed to human activities such as electricity generation from coal 

and other fossil fuels, heat and transportation [18]. PV power generation converts sunlight 

into electricity with zero carbon emissions. This advantage has led to a great development 

in the PV industry in recent years. The solar PV market had reached a total global 

operating capacity over the 300	ܹܩ milestone in 2016, with a total of 75	ܹܩ newly 

installed capacity [19] and China, being the global leader of the PV market, has installed 

another 34.2	ܹܩ during the year 2016. A PV panel is easily installed on the roof of a 

residential house and can be embedded within the fabric of individual buildings [20]. It 

reduces the power generation from conventional power plants and increases the total 

power generation within the entire electricity network. 

Grid-connected PV systems integrated with PHEVs as energy storage have been 

receiving much academic attention over recent years due to large-scale installations of 

rooftop PV panels and the increasing interest in the green commuting concept. The energy 
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sources within the system are controlled by associated power electronics converters that 

perform like a power regulation interface system. Grid-connected PV systems inject 

power to the grid when excessive solar energy is generated during the daytime and 

receives power from the grid when off-peak demand occurs. This means that the overall 

power system losses could be reduced, and frequency and voltage variations could be 

minimized. 

With an increasing penetration of PHEVs and PVs, distribution network operators (DNOs) 

should understand whether a premature update of the transformer and auxiliary facilities 

are required to tackle the load peaks resulted from charging the PHEVs [21] and the high 

reverse power flow caused by PV generation during the daytime. There are several 

distinct issues observed in the network operation. First,  the power flow on the distribution 

network becomes bidirectional as end users could supply electrical power to the network 

via the V2G technology and on-roof PV generation [13], [22].  Second, distribution 

transformers will sustain an increasing dynamic load that may cause problems such as 

accelerated aging, insulation failures between transformer windings, increased power 

losses and harmonic issues [21]. 

As the predominant concerns for the electricity utility companies are still to ensure a 

reliable and safe operation of the network [14], the consequences arising from the 

integration of PHEVs and PVs and their impacts on the distribution networks needed to 

be addressed. It is necessary to adopt proper power management strategies to control the 

power flow within the network for a safe and efficient operation, since it is obvious to 

find that PV arrays supply excessive energy to the network in the daytime and the 

charging period of a PHEV often starts at around 17:00 in the evening [23]. 

1.3 Aims and Contributions of This Research 

The overall objective of this project is modelling, control and power management of a 

grid-connected PV system with a PHEV battery as energy storage under various 

temperature and irradiance conditions. This grid-connected PV system can extract the 

maximum power from the PV array via MPPT techniques, charge the PHEV battery from 

the PV array during the daytime and from the grid during the night when solar energy is 
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not available. The parameters of the PV modules in the PV array and the PHEV battery 

model are estimated using parameter estimation algorithms. Finally, the estimation results 

for the parameters of PV modules and the PHEV battery are incorporated in the 

simulation model for the grid-connected PV system with a PHEV battery as energy 

storage. 

The main aims of this research include: 

 Development and experimental validation of a simulation model for the BP 380 

PV modules under uniform environmental conditions. 

 Development of an improved parameter estimation technique for parameter 

estimation of PV modules. 

 Development of an enhanced parameter estimation technique for parameterization 

of Tremblay’s battery model. 

 Development of a control and charging algorithm for a grid-tied PV system with 

PHEVs as energy storage. 

 

The main contributions presented in the these are: 

 Development of a novel genetic algorithm (GA) approach to parameter estimation 

of PV modules to improve the model parameters’ accuracy. 

 Development of a quantum-behaved particle swarm optimization (QPSO) 

parameter estimation technique to estimate the parameters of Tremblay’s battery 

model. 

 Development of a control and charging algorithm for a grid-tied PV system with 

a PHEV battery as energy storage to control the charging power of the PHEV 

battery based on the SOC scenario of a day. 
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1.4 Thesis Outline 

The thesis is organized as follows: 

 Chapter 1 includes background theories, problem statement and motivation, aims 

and scopes of the project, describes the components of the grid-connected PV 

systems with PHEVs as an energy storage. 

 Chapter 2 provides the theoretical backgrounds on the PV effect, conventional PV 

cell modelling techniques, such as single diode model (SDM) and double diode 

model (DDM), and PV cell technologies. This chapter applies a GA approach to 

parameter estimation of a developed SDM to improve the accuracy of the model 

parameters. Experimental testing of a BP 380 PV module is also conducted to 

compare between the experimental and simulated PV characteristics and validate 

the performance of the developed SDM. The developed SDM will be used 

throughout the thesis. 

 Chapter 3 investigates various MPPT techniques, including conventional 

techniques for uniform environmental conditions, such as perturb and observe 

(P&O) and incremental conductance (IC), and stochastic search algorithms for 

non-uniform environmental conditions, such as SA and PSO. The second part of 

this chapter provides a brief review of various DC-DC converters, DC-AC 

inverters and filters topologies for PV applications. 

 Chapter 4 derives the small signal models of a boost converter fed by a PV array 

using the PWM switch model approach. Then, the four control-to-input voltage 

transfer functions of a boost converter are derived based on four different 

assumptions. Four case studies are conducted based on four different assumptions 

on the boost converter and the associated frequency responses are plotted. The 

parameter settings of a digital PID controller are determined based on the four 

control-to-input voltage transfer functions and simulations have been conducted 

using a detailed non-linear simulation model for the single-phase grid-connected 

PV system to investigate PV array voltage responses. 
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 Chapter 5 provides a brief literature review on the charging level of PHEVs and 

Tremblay’s battery model. This chapter also proposes a QPSO parameter 

estimation technique to estimate the model parameters of Tremblay’s battery 

model. Simulations results presented in this chapter show that the QPSO 

parameter estimation technique generates similar discharge characteristics when 

compared to the GA and PSO parameter estimation techniques with only one 

tuning parameter. 

 Chapter 6 develops the simulation model of the grid-connected PV system with 

the PHEV energy storage integration in Matlab/SimpowerSystems. The PV 

module model developed in Chapter 2 and the parameter estimation results of 

Tremblay’s battery model developed in Chapter 5 are utilized in this simulation 

model. A control and charging strategy is developed to charge the vehicle from 

the PV array during the daytime and from the grid at night. 

 Chapter 7 provides a summary of the whole project and highlights some potential 

future directions. 
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Chapter 2  
Modelling of Photovoltaic Cells 

2.1 Introduction 

This chapter provides a brief discussion on the photovoltaic (PV) effect, types of PV 

technologies, and various modeling methods for a PV cell. The Single Diode Model 

(SDM) is fully illustrated to describe the characteristics of a PV cell. A review of three 

parameter estimation techniques of a SDM model will be presented. One of the three 

parameter estimation techniques is known as Villalva’s iterative approach that was 

proposed in [24]. This technique is analyzed and its parameter estimation results are 

compared to the results obtained from a novel genetic algorithm (GA) approach 

mentioned in [25] in modeling four different types of PV modules. The novel GA 

approach to parameter estimation of a PV cell is fully explained and its simulation results 

are obtained to compare with the other three parameter estimation techniques. 

2.2 PV Effect 

In 1839, Becquerel first discovered that solar energy can be converted into electricity by 

means of the PV effect [26]. This PV effect can be realized in a sufficiently pure 

semiconductor material that achieves a certain cell efficiency. The principle of operation 

of a PV cell is based on the PV effect illustrated in Fig. 2.1. A semiconductor material 

consists of a large number of ݌-݊ junctions built by doping intrinsic silicone with an 

element such as Phosphorus to create a free electron, and Boron to produce a hole. Holes 

and electrons are the charge carriers of the semiconductor material. The material is called 

݊-type when the extrinsic silicone contains mostly free electrons, whereas it is called ݌-

type when the material contains mostly free holes. A ݌-݊ junction is created by joining 

the ݌-type and ݊-type materials together and their boundary is called the depletion region 

where all the charge carriers are annihilated. An electric potential is established by each 
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side of the depletion region with abundant free charge carriers. This potential provides 

the open circuit voltage of a PV cell. 

When there is no solar irradiance, the electrical characteristic of a PV cell is similar to a 

normal diode characteristic [27], as shown in Fig. 2.2. When the PV cell is illuminated, 

the electrical potential of the depletion region is strengthened and more charge carriers 

are induced by the semiconductor material, which shifts the dark characteristics 

downward by a short circuit current ܫ௦௖ to create the illuminated characteristics. 

 

Fig. 2.1: An illustration of the PV effect [28]. 
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Fig. 2.2: Current-voltage characteristics of a dark PV cell and an illuminated PV cell 

with short circuit current ܫ௦௖ and open circuit voltage ௢ܸ௖ identified. 

2.3 Review of PV Cell Technologies 

A wide range of PV cell technologies are available commercially with the major 

difference being in the module efficiency. C-Si-based technology is the first generation 

of PV technology [5] that currently dominates the PV market. Two major types of c-Si-

based PV technologies are monocrystalline silicon (mono-c-Si) and multi-crystalline 

silicon (multi-c-Si) [29]. Table 2.1 shows a performance review of commercial solar PV 

cell technologies. It can be seen that PV modules have the advantage of a long lifetime. 

Most PV manufacturers claim that their PV technologies have long lifetimes that are 

approximately 25 years [30]. Module efficiency is the major concern for the PV 

manufacturing industry to determine the type of PV technology adopted for 

manufacturing [29]. A mono-c-Si type PV cell has the highest efficiency among the 

common PV cell technologies. A six-monthly review of the current highest confirmed 

efficiencies for a range of PV cell technologies was reported in the journal Progress in 
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Photovoltaics: Research and Applications. The most recent version, Solar cell efficiency 

tables (version 48), published online in November 2016, had indicated the maximum 

efficiency of all considered cells measured from a monocrystalline silicon cell is 26.3 ±

0.5% [31]. The efficiency of a crystalline silicon cell recorded in the latest version was 

slightly improved by 0.7% comparing to the value reported in the last version in 17 June 

2016 [32]. This version indicated that a large-area crystalline module had a new highest 

efficiency record of 24.4% measured by Advanced Industrial Science and Technology 

(AIST) with a marginal increase by 0.6% compared to the value reported in the last 

version [32]. An increase to 19.9% in module efficiency for a large-area multi-crystalline 

silicon module manufactured by Trina Solare is also presented in the latest version [31], 

with an increase by 0.4% compared to the last version [32]. From the above evidence, it 

can be concluded that researchers have paid added attention to improve the efficiency of 

PV cells and modules in recent years. 

The disadvantages of crystalline silicon technologies are significant as they consume 

enormous amounts of energy during the manufacturing process and cannot adapt to low 

light conditions such as partial shading. These disadvantages had been addressed as thin 

film (TF) technologies arose in the second generation of PV technology. TF technologies 

have a much simpler yet energy-efficient manufacturing process, so they are much 

cheaper to produce. TF technologies commanded 18% of the total solar panel sales with 

the trend of increasing in 2011 [33]. The flexibility and ultra-thinness of an individual 

cell make TF technologies suitable for a variety of applications, such as consumer 

electronics for items such as a solar calculator or solar watch and building-integrated PVs 

(BIPVs). TF PV modules also have the benefit that they have high temperature resistance 

and are less susceptible to partial shading effects. Amorphous silicon (a-Si) and 

microcrystalline silicon (µc-Si) are two TF technologies based on silicon, which 

dominates the TF PV market. Other common materials adopted for TF technologies 

include Copper Indium Diselenide (CIS), Titania (titanium dioxide), Cadmium Telluride 

(CdTe) and Copper Indium Gallium Selenide (CIGS). These materials are not commonly 

used as the PV cells constructed from these technologies need more installation area and 

hardware.  
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A PV cell is basically a large area PN diode illuminated with sunlight [34]. The electricity 

generated by a PV cell is highly dependent on a quantifying factor known as the bandgap 

energy of the semiconductor material ܧ௚ . A typical value of ܧ௚  for multi-crystalline 

silicon is 1.12	ܸ݁ at 25	℃. The bandgap energy is defined as the required energy level 

for the normal operation of a PV cell, i.e., the PV cell starts to generate a flow of electrons 

across the PN diode [34]. Semiconductors with lower bandgaps take advantage of a larger 

radiation spectrum, but generate lower voltages [35]. In order to make full utilisation of 

the available solar spectrum, multi-junction solar cells have been developed to extract 

solar energy from a wider spectrum. Multi-junction solar cells have comparatively higher 

module efficiencies and higher output voltages compared to single junction cells. An 

example of a multi-junction cell, InGaP/GaAs/InGaAs, shown in [31], has a module 

efficiency of 37.9	 ± 1.2	% that is much higher than that of a mono-crystalline silicon PV 

cell, and an open circuit voltage of 3.605	ܸ.  

Table 2.1: Performance of commercial solar PV technologies [29]. 

PV technology Module 
Efficiency 

(%) 

Record lab 
efficiency 

(%) 

Record commercial 
efficiency (%) 

Area/kW 
(݉ଶ ܹ݇⁄ ) 

Lifetime 
(Years) 

c-Si Mono-c-Si 13-19 24.7 22 7 25 
Multi-c-Si 11-15 - 20.3 8 25 

TF a-Si 4-8 10.4 7.1 15 25 
a-Si/µc-Si 7-9 13.2 10 12 25 

CI[G]S 7-12 20.3 12.1 10 25 
CdTe 10-11 16.5 11.2 10 25 

2.4 PV Characteristics 

An individual cell only generates about 0.5	ܸ [36], which is too low for most applications. 

The fundamental building block of a large-scale PV system is a PV module that consists 

of a number of PV cells connected in series. Typical values of the number of series-

connected cells within a commercial PV module are 36, 54, and 72. Several modules 

connected in series form a PV string, several PV strings connected in parallel create a PV 

array. A PV array output voltage is affected by the number of series-connected PV 

modules in one string whereas the output power is dependent on the number of parallel-

connected PV strings within the PV array. A PV array is constructed by connecting a 

bunch of PV modules in a series-parallel combination. It is commonly known that a series 
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connection of PV modules will increase the output voltage of a PV array whereas a 

parallel configuration of PV modules will increase the current capacity, respectively. 

A BP 380 PV module can be taken as an example to show the output characteristics of a 

PV array under various temperature and irradiance conditions. The output characteristics 

of a PV array consisting of 66 strings of 5 series-connected BP 380 PV modules at 

different environmental conditions are plotted in Figs. 2.3 to 2.6 for demonstration 

purposes. 

From Figs. 2.3 to 2.4, the output characteristics of a BP 380 PV array are plotted with 

increasing irradiance levels, the blue circles in the plots represent the MPPs of the PV 

module/array under different irradiance conditions. The characteristic of one module is 

presented in Fig. 2.3 whereas the PV array characteristic is plotted in Fig. 2.4. From Figs. 

2.3 to 2.4, it can be seen that the MPP moves up as the solar irradiance increases. This is 

partly because an increase in solar irradiation results in a corresponding increase in the 

photo-generated current, which consequently leads to a corresponding increase in the 

short circuit current [24], [37]. Note that the number of free charge carriers within a PV 

cell is highly affected by solar irradiance [5], [38]. 

Fig. 2.5 shows the I-V and P-V curves of the PV array with respect to module temperature 

variation. The module temperature can be calculated from the ambient temperature using 

the Nominal Operating Cell Temperature (NOCT) as follows [39]: 

 ௠ܶ = ௔ܶ௠௕ +
ேை஼்ିଶ଴

଼଴଴
ܵ (2.1) 

where ௠ܶ  is the module temperature, ௔ܶ௠௕  is the ambient temperature, ܵ is the solar 

irradiance in ܹ ݉ଶ⁄  and NOCT is the nominal operating cell temperature. The NOCT is 

defined as the temperature within the PV module in an open circuit condition under the 

environmental conditions of solar irradiance of	800	ܹ ݉ଶ⁄ ; wind speed of 1	݉ ⁄ݏ  and 

ambient temperature of	20℃. It can be seen that at lower module temperature, the array 

produces a high power whereas the output power is reduced when the array experiences 

high temperatures. Thus, it is undesirable to operate the PV array under high ambient 

temperature conditions. It is worth noting that the array output current increases as the 

temperature increases, which is unnoticeable when compared to the change in the array 

output voltage as the effect of module temperature variation. 
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Fig. 2.3: I-V and P-V characteristics of a BP380 PV module with different irradiance 

levels. 

 

Fig. 2.4: I-V and P-V characteristics of a BP 380 PV array with different irradiance 

levels. 
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Fig. 2.5: I-V and P-V characteristics of a BP 380 PV array with different module 

temperature levels. 

One concept that can be derived from the I-V curves is the dynamic resistance. The 

dynamic resistance of a PV cell is defined as the ratio of the voltage deviation to the 

current deviation [40], representing the reciprocal of the slope of an I-V curve. This is 

shown in (2.2). The value of ݎ௣௩  is negative and time-variant since PV cells provide 

electricity to the network under ever-changing environmental conditions.  

௣௩ݎ  =
ௗ௩೛ೡ
ௗ௜೛ೡ

 (2.2) 

Note that ݒ௣௩  symbolizes the PV cell output voltage and ݅௣௩ represents the PV cell output 

current, respectively. 

The output characteristics from Figs. 2.3 to 2.5 are obtained when the PV array 

experiences uniform environmental conditions, that is constant irradiance and 

temperature levels for each cell. Partial shading conditions arise due to passing clouds, or 

the shadow of obstacles such as trees, houses and tall buildings [22], [41]. When the PV 

array is partially shaded, it is observed that the I–V curves look like a staircase while the 

P–V curves are characterized by multiple peaks [42]–[46]. In the case of non-uniform 
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conditions for three series-connected BP 380 modules, the corresponding I-V and P-V 

characteristics are shown in Fig. 2.6. Three local maxima are observed in the PV 

characteristics whereas only one local maximum is the global maximum power point 

(GMPP) of the PV array. It is desirable to ensure that the PV array always works at its 

GMPP with appropriate global maximum power point tracking (GMPPT) techniques. 

Power losses are introduced when the PV array operates at other local MPPs except for 

the GMPP. 

 

Fig. 2.6: I-V and P-V characteristics under a certain partial shading condition, where 

the irradiances for the modules are 1000 ܹ ݉ଶ⁄ , 300 ܹ ݉ଶ⁄  and 600 ܹ ݉ଶ⁄ , with the 

three local MPPs identified. 

One approach to improving the overall efficiency of a PV array experiencing partial 

shading is known as distributed MPPT (DMPPT) [47]–[51], which utilizes power 

electronic converters that are connected at the output of each module within a PV array. 

The maximum power of each module is tracked separately by its interface power 

electronic converter using conventional MPPTs. PV arrays equipped with DMPPT have 

a high-power yield with the disadvantage of an increase in the cost of system components. 
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2.5 Modeling of PV Cells 

A variety of modeling methods has been proposed in the literature to model a PV cell. 

Some of the advanced modeling approaches adopt artificial neural networks [52]–[54], 

however as these models need training datasets, their applications are limited to 

proprietary PV systems. Two important current flows within a PV cell resulting from the 

movement of charge carriers need to be considered. One of the current flows is called 

recombination current. This current takes place at the external circuit of a PV cell when 

an electron and hole pair recombines anywhere within the ݌-݊ junction [55]. The other 

current flow is known as diffusion current, which happens across the ݌-݊ junction as a 

result of the charge carrier concentration difference. The diffusion current is formed 

where electrons from the ݊-type material diffuse into the ݌-type and holes from the ݌-

type material diffuse into the ݊-type [56]. 

A lumped parameter equivalent circuit model is well known to emulate a PV cell 

characteristic under different operating conditions [57]. The basic principle of a lumped 

parameter equivalent circuit model is to represent the effects of the diffusion and 

recombination currents using conventional diodes, which is more convenient when 

compared to other modelling techniques as their models’ parameters cannot be easily 

estimated based on the data provided in manufacturers’ datasheets. Fig. 2.7 displays four 

typical diode-based models, which are known as Ideal Single Diode Model (ISDM), 

Simplified Single Diode Model (SSDM), Single Diode Model (SDM) and Dual Diode 

Model (DDM).  A 3-diode equivalent circuit model mentioned in [58] models a PV cell 

with large leakage current and mainly focuses on the multi-crystalline silicon (Mc-Si) 

type of solar cells. SDM and DDM are the two modeling approaches commonly used in 

grid-connected PV system simulations. A detailed explanation of SDM and DDM is 

presented in Sections 2.5.1 and 2.5.2, respectively. 
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Fig. 2.7: The conventional diode-based PV cell models: (ܽ) ISDM, (ܾ) SSDM, (ܿ) 

SDM, (݀) DDM. 

2.5.1 SDM 

The circuit diagram of the SDM is shown in Fig. 2.7 (c). It is known to provide a good 

compromise between model accuracy and simplicity [24], [37], [59]–[62]. The 

performance of an SDM depends on the values of five key parameters, namely photo-

generated current ௣௛ܫ	 , diode saturation current ௢ܫ	 , diode’s ideality factor ܣ	 , series 

resistance ܴ௦  and parallel resistance	ܴ௣ . The values of these parameters are provided 

indirectly by PV manufacturers in terms of three remarkable points [24], which are the 

open circuit voltage	( ௢ܸ௖ , 0), the short circuit current (0, )	௦௖) and the MPPܫ ௠ܸ௣௣,  .(௠௣௣ܫ

The values of the five key parameters could be accurately estimated using the parameter 

estimation algorithms mentioned in Section 2.6. 

Due to the fact that the diffusion and recombination currents of a PV cell are linearly 

independent, it is reasonable to use a single diode with a constant diode’s ideality factor 

to represent a PV cell [56]. 

An SDM of a PV cell has the characteristic equation between the output voltage and 

current that is given as follows: 

(a) (b)

(c) (d)
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ܫ  = ௣௛ܫ − ௢ܫ ൤݁
೜(ೇశ಺ೃೞ)

ಲೖ೅ − 1൨ − ௏ାூோೞ
ோ೛

 (2.3) 

where ܫ and ܸ are the PV cell output current and voltage, respectively. ݍ is the charge of 

an electron (1.6 × 10ିଵଽ	ܥ), ݇ is the Boltzmann constant (1.38 × 10ଶଷ ܬ ⁄ܭ ), ܶ is the 

cell temperature on the absolute scale (ܭ) and ܣ is the diode’s ideality factor. The current 

of a PV cell can be solved using iterative algorithms, e.g., Newton-Raphson, Bisection, 

Gauss-Seidel, etc. [37], [63], [64]. 

The thermal voltage of a PV cell is defined as follows [24], [37]: 

 ௧ܸ =
௞்஺
௤

 (2.4) 

In an SDM, the photo-generated current depends on both solar irradiance and ambient 

temperature, whereas the diode saturation current and thermal voltage are only influenced 

by ambient temperature [59]. 

In [65], [66], the series and parallel resistances in the SDM are left out for simplicity. A 

method to calculate the diode saturation current at Standard Test Condition (STC), that is 

	25	℃, 1000ܹ ݉ଶ⁄ , and the diode’s ideality factor (ܣ) are given as follows: 

 ቈ
ln(ܫ௢,௡)

௤
஺௞்

቉ = ൤
1 ௠ܸ௣௣,௡
1 ௢ܸ௖,௡

൨
ିଵ

∙ ൤
ln(ܫ௦௖,௡ − (௠௣௣,௡ܫ

ln(ܫ௦௖,௡)
൨ (2.5) 

where ܫ௦௖,௡, ܫ௠௣௣,௡ and ܫ௢,௡ symbolise the short circuit current, the current at the MPP and 

the diode saturation current of the PV cell at STC, respectively. ௢ܸ௖,௡ and ௠ܸ௣௣,௡ stand for 

the open circuit voltage and voltage at the MPP of the PV cell at STC, respectively. 

Equation (2.3) demonstrates an implicit relation between the PV cell output current and 

voltage. Some numerical iterative methods, such as Newton-Raphson method, are 

adopted to produce the PV characteristics by solving for the output current at a given 

value of the output voltage. In terms of modeling a larger PV structure, such as a PV array 

or a PV system, a large number of system equations are needed to describe the operation 

of each individual PV module, especially when the system experiences partial shading. 

Convergence issues and substantial computational errors may arise as the system 

equations become more complicated. An alternative approach developed in [67] could be 
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used to convert (2.3) to an explicit form in (2.6), where the output voltage could be 

expressed using the Lambert-W function. 

 ܸ = ܴ௣ ∙ ൫ܫ௣௛ + ௢൯ܫ − ൫ܴ௦ + ܴ௣൯ ∙ ܫ − ܣ ∙ ܹ ൜ோ೛ூ೚
஺
݁
ೃ೛(಺೛೓శ಺೚ష಺)

ಲ ൠ (2.6) 

where, ܹ ൜ோ೛ூ೚
஺
݁
ೃ೛(಺೛೓శ಺೚ష಺)

ಲ ൠ is the Lambert-W function and its input is the PV cell output 

current. The basic introduction to the Lambert-W function can be referred to [68]. 

A simplification method presented in [69], [70] reduces the number of parameters that 

need to be estimated and simplifies the SDM from an engineering perspective. The basic 

simplification steps are listed below: 

 As ܴ௣ is much larger compared to the other terms, the term	(ܸ + (௦ܴܫ ܴ௣⁄  can be 

neglected in (2.3). 

 Assume the load resistance is relatively small, so	ܫ௣௛ ≈  .௦௖ܫ

Thus, the PV cell output characteristic equation is described as: 

ܫ  = ௦௖ܫ ൜1 − ଵܥ ൤݁
ೇ

಴మೇ೚೎ − 1൨ൠ (2.7) 

where ܥଵ and ܥଶ affect the amplitudes of the voltage and current of the PV cell [69], and 

are shown to be given by: 

ଵܥ  = ቀ1 − ூ೘೛೛

ூೞ೎
ቁ ݁ቀି

	ೇ೘೛೛
಴మೇ೚೎

ቁ (2.8) 

ଶܥ  = ቀ௏೘೛೛

௏೚೎
− 1ቁ ln ቀ1 − ூ೘೛೛

ூೞ೎
ቁൗ  (2.9) 

 The PV cell power output can be expressed in terms of the PV cell voltage by: 

 ܲ(ܸ) = ௦௖ܫܸ ൜1 − ଵܥ ൤݁
ೇ

಴మೇ೚೎ − 1൨ൠ (2.10) 

The values of the model parameters of an SDM at STC, deviate from those of the model 

parameters at actual environmental conditions [37], [71], [72]. In order to quantify the 
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effects of temperature and irradiance variations on the model parameters, the following 

equations from (2.11) to (2.14) are used to express the relationships between the values 

of the model parameters at STC and at different environment conditions. 

௦௖ܫ  = ௦௖,௡ܫ ∙
ௌ
ௌ೙
(1 + ܽ ∙ ∆ܶ) (2.11) 

 ௢ܸ௖ = ௢ܸ௖,௡ ∙ ln(݁ + ܾ ∙ ∆ܵ) ∙ (1 − ܿ ∙ ∆ܶ) (2.12) 

௠௣௣ܫ  = ௠௣௣,௡ܫ ∙
ௌ
ௌ೙
(1 + ܽ ∙ ∆ܶ) (2.13) 

 ௠ܸ௣௣ = ௠ܸ௣௣,௡ ∙ ln(݁ + ܾ ∙ ∆ܵ) ∙ (1 − ܿ ∙ ∆ܶ) (2.14) 

 ∆ܵ = (ܵ ܵ௡ − 1⁄ ) (2.15) 

 ∆ܶ = (ܶ − ௡ܶ) (2.16) 

where ݁ is the natural logarithm base. ܫ௦௖,௡ ,	 ௢ܸ௖,௡ ௠௣௣,௡ܫ	, ,	 ௠ܸ௣௣,௡  represent the PV cell 

parameters at STC. ܵ symbolizes the solar intensity at a given environmental condition 

whereas ܵ௡ stands for the solar irradiance at STC, which is 1000ܹ ݉ଶ⁄ . ܶ symbolises 

an arbitrary cell temperature whereas ௡ܶ stands for the cell temperature at STC, which is 

25	℃ . Typical values of the parameters ܽ , ܾ  and ܿ  can be selected as 0.025 ℃⁄ , 

0.5 (ܹ ݉ଶ⁄ )⁄ , and 0.0028 ℃⁄ , respectively [69]. 

2.5.1.1 Constructing PV modules and arrays 

The characteristic equation for a PV module composed of ௦ܰ series-connected cells is 

expressed as follows: 

௠௢ௗܫ  = ௣௛ܫ − ௢ܫ ൥݁
೜ቀೇ೘೚೏శ಺೘೚೏ೃೞ,೘೚೏ቁ

ಿೞಲೖ೅ − 1൩ − ௏೘೚೏ାூ೘೚೏ோೞ,೘೚೏
ோ೛

 (2.17) 

where ܫ௠௢ௗ and ௠ܸ௢ௗ represent the current and voltage of the PV module, respectively, 

௦ܰ stands for the number of series-connected PV cells in the module. ܴ௦,௠௢ௗ denotes the 

series resistance of the PV module. Comparing (2.3) and (2.17), it can be noted that series 

resistance of the PV module and its constituent PV cells have the relation	ܴ௦,௠௢ௗ = ௦ܴܰ௦. 

Analogous to (2.4), the thermal voltage of a PV module is given as follows: 
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 ௧ܸ,௠௢ௗ௨௟௘ = ௦ܰ ∙ ௧ܸ (2.18) 

The parameters of a PV array can be estimated using multipliers that are determined by 

௦ܰ௘௥ and ௣ܰ௔௥ with the assumptions that identical characteristics of individual modules 

are employed and the operating conditions for all the modules are exactly the same. The 

parameters of a PV array can be calculated on the basis of the parameters of its constituent 

PV modules, which are provided in the following equations [38]: 

௣௛,௔௥௥௔௬ܫ  = ௣ܰ௔௥ ∙  ௣௛ (2.19)ܫ

௢,௔௥௥௔௬ܫ  = ௣ܰ௔௥ ∙  ௢ (2.20)ܫ

 ܴ௦,௔௥௥௔௬ = ( ௦ܰ௘௥ ௣ܰ௔௥⁄ ) ∙ ܴ௦,௠௢ௗ (2.21) 

 ܴ௣,௔௥௥௔௬ = ( ௦ܰ௘௥ ௣ܰ௔௥⁄ ) ∙ ܴ௣ (2.22) 

 ௧ܸ,௔௥௥௔௬ = ௦ܰ௘௥ ∙ ௧ܸ,௠௢ௗ௨௟௘  (2.23) 

where the parameters ܫ௣௛,௔௥௥௔௬ , ܴ௦,௔௥௥௔௬ , ܴ௣,௔௥௥௔௬ , ௧ܸ,௔௥௥௔௬  and ܫ௢,௔௥௥௔௬  have the same 

physical meanings as those given in (2.3) and (2.4) for a PV cell but are now applied to a 

PV array. 

The I-V characteristics for a PV array composed of ௦ܰ௘௥ × ௣ܰ௔௥ modules with uniform 

environmental conditions are given by: 

௔௥௥௔௬ܫ = ௣௛,௔௥௥௔௬ܫ − ௢,௔௥௥௔௬ܫ ൥݁
൫ೇೌೝೝೌ೤శ಺ೌೝೝೌ೤ೃೞ,ೌೝೝೌ೤൯

ೇ೟,ೌೝೝೌ೤ − 1൩ − ௏ೌ ೝೝೌ೤ାூೌೝೝೌ೤ோೞ,ೌೝೝೌ೤
ோ೛,ೌೝೝೌ೤

 (2.24) 

where ܫ௔௥௥௔௬ and ௔ܸ௥௥௔௬  stand for the current and voltage of the PV array. 

 

2.5.2 DDM 

The DDM represents diffusion and recombination currents separately with the 

introduction of two diodes with different ideality factor values. The adoption of two 

diodes in the DDM is due to the fact that the equivalent diode’s ideality factor varies as a 

function of the voltage across the device [73]. There are seven parameters involved in a 

DDM [57], which are the photo-generated current	ܫ௣௛, diode diffusion current	ܫ௢ଵ, diode 
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recombination current	ܫ௢ଶ, diffusion diode’s ideality factor	ܣଵ, recombination diode’s 

ideality factor	ܣଶ, series resistance ܴ௦  and parallel resistance	ܴ௣ . The values of these 

parameters could also be estimated using the parameter estimation algorithms mentioned 

in [57]. 

From Fig. 2.7 (d), the output voltage and current relationship of a DDM is given by: 

ܫ = ௣௛ܫ − ௢ଵܫ ൤݁
೜(ೇశ಺ೃೞ)
ಲభೖ೅ − 1൨ − ௢ଶܫ ൤݁

೜(ೇశ಺ೃೞ)
ಲమೖ೅ − 1൨ − ௏ାூோೞ

ோ೛
 (2.25) 

Here, all the parameters have the same physical meanings as those of an SDM. 

2.6 Parameter Estimation of a Single Diode Model 

2.6.1 Introduction 

The simulation model developed in the succeeding chapters utilizes the SDM to develop 

the model of the PV array. The five key parameters in a SDM cannot be found directly in 

manufacturers’ datasheets [74]. The basic information provided by a PV manufacturer’s 

datasheet is ௠ܲ௔௫ , ௢ܸ௖ ௦௖ܫ , , ௠ܸ௣௣ ௠௣௣ܫ , ௏ܭ , , and ܭூ  [24], [37], [75]. This information is 

provided when the PV module is under STC. Since the actual values 

of	 ௠ܲ௔௫ ,	 ௢ܸ௖ ௦௖ܫ	, ,	 ௠ܸ௣௣  and ܫ௠௣௣  vary with respect to actual environmental conditions, 

such as ambient temperature and solar irradiance variations, the information provided by 

a PV manufacturer’s datasheets can be used to estimate the five parameters within an 

SDM at STC using parameter estimation techniques. 

A number of parameter estimation techniques are mentioned in the literature to transform 

the information of the remarkable points provided by a manufacturer’s datasheet into the 

values of model parameters [24], [37], [76], [77]. General techniques include least-

squares optimization, iterative techniques, analytical equations and artificial intelligence 

[24], [77]–[79]. The neuro-fuzzy-based modeling approach proposed in [54] requires an 

abundance of measured data or historical data that may not be available at existing PV 

plants. In the following sections, three parameter estimation techniques proposed in the 

literature are thoroughly explained, these techniques are Chatterjee’s iterative approach 

in [37], Villalva's iterative method in [24], and the ideal single diode model (ISDM) 
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approach in [76]. A novel GA approach to parameter estimation is developed in [25] to 

enhance the performance of Villalva's iterative method in [24]. This approach formulates 

the PV module parameter estimation problem as a search and optimization problem and 

refines the parameters ܴ௦  and	ܣ obtained in Villalva's iterative method, which in turn 

improves the accuracy of the resultant PV characteristics. This approach is fully analysed 

and the results for this approach and Villalva's iterative method are compared and 

tabulated in modelling four different types of PV modules. 

2.6.2 Chatterjee’s iterative approach 

Chatterjee’s iterative approach in [37] uses five system conditions to generate five system 

equations and uses the Gauss-Seidel method to solve for the five unknowns parameters. 

The first three equations, (2.26) to (2.28), are generated by substitution of the three 

remarkable points into (2.3). 

௦௖ܫ  = ௣௛ܫ − ௢ܫ ∙ ݁
೜಺ೃೞ
ಲೖ೅ − ூೞ೎ோೞ

ோ೛
 (2.26)	

	 ௠௣௣ܫ = ௣௛ܫ − ௢ܫ ∙ ݁
೜൫ೇ೘೛೛శ಺೘೛೛ೃೞ൯

ಲೖ೅ − ௏೘೛೛ାூ೘೛೛ோೞ
ோ೛

 (2.27)	

	 0 = ௣௛ܫ − ௢ܫ ∙ ݁
೜ೇ೚೎
ಲೖ೅ − ௏೚೎

ோ೛
 (2.28)	

The term “-1” in (2.3) is neglected for simplicity, the last two equations are derived from 

the slopes of the V-I and V-P curves, respectively. Evaluating the derivative of the V-P 

curve at the MPP, we get 

 0
mpp

mpp

V V
I I

dP
dV 



  (2.29) 

Evaluating the derivative of the V-I curve at the short circuit current, we have 

 0
1

sc

V
I I p

dI
dV R


   (2.30)	

The drawback of this analytical method is the introduction of computational errors 

generated by the assumptions and omissions made in the algebraic manipulations and 

related simplifications. 
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2.6.3 Villalva's iterative approach 

The numerical method discussed in [24] is an iterative technique based on the relationship 

between the series resistance and the parallel resistance derived from matching the 

experimental MPP with the MPP estimated from the PV model. This method is referred 

to as “Villalva's iterative method” in [80]. This method assumes that there is only one 

(ܴ௦,ܴ௣) pair leading to the following key relationship: 

 ௠ܲ௔௫,௠ = ௠ܲ௔௫,௘ = ௠ܸ௣௣ܫ௠௣௣ (2.31) 

where ௠ܲ௔௫,௘  represents the maximum power obtained from the datasheet at the MPP and 

௠ܲ௔௫,௠ denotes the maximum power estimated from the SDM. Substituting (2.27) into 

(2.31) and rearranging the resultant equation, the relationship between the series and 

parallel resistance of a SDM can be expressed as [24]: 

 ܴ௣ =
௏೘೛೛(௏೘೛೛ାூ೘೛೛ோೞ)

ூ೛೓௏೘೛೛ିூ೚௏೘೛೛቎௘
೜൫ೇ೘೛೛శ಺೘೛೛ೃೞ൯

ಲೖ೅ಿೞ ିଵ቏ି௉೘ೌೣ,೐

 (2.32) 

where ௦ܰ is the number of series-connected cells of a PV module. The value of ܣ can be 

arbitrarily chosen between 1 and 1.5, and is nominally selected as 1 [41]. ܣ may be given 

other values when a negative value of ܴ௣  is obtained. The value of ܣ  can be later 

modified to improve the curve fitting since the value of ܣ is found in [81] based on 

empirical analysis and slightly affects the shape of the PV module characteristic [24]. 

The iterative process is conducted by starting with the initial value of	ܴ௦ equal to zero, 

calculating the value of ܴ௦ using (2.17), and then generating the PV characteristic curve 

and locating the maximum power. The value of the located maximum power is compared 

with the value obtained from the manufacturer datasheet. If the difference between the 

two values is within the chosen tolerance, the iterative process stops and returns the 

resultant (ܴ௦,ܴ௣) pair. If the difference is larger than the tolerance, Villalva's iterative 

method increments ܴ௦ until a suitable (ܴ௦,ܴ௣) pair is obtained. 
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The value of ܫ௣௛  is assumed to be equal to ܫ௦௖  during the iterative process. After the 

(ܴ௦,ܴ௣) pair is obtained using the iterative approach, the values of parameters ܫ௣௛ and ܫ௢ 

can be calculated using the following two equations: 

௣௛ܫ  =
ோೞାோ೛
ோ೛

∙  ௦௖ (2.33)ܫ

௢ܫ  =
ூೞ೎

௘
೜ೇ೚೎
ಲೖ೅ ିଵ

 (2.34) 

From the sensitivity analysis of the I-V and P-V characteristics to variations in the five 

key parameters of a SDM presented in [22], the diode’s ideality factor (ܣ) and the series 

resistance (ܴ௦) are the two most promising parameters that can be tuned to improve the 

model fit to the experimental data. To further refine the values of these parameters, an 

extension method is developed in [25], which utilises a GA approach to perform 

parameter estimation for a SDM. This method will be fully explained in Section 2.6.5. 

2.6.4 Ideal single diode model approach 

This method uses the ISDM shown in Fig. 2.7 (a) to avoid the complexity given in (2.3) 

[76]. The current and voltage relationship of an ISDM is expressed as follows: 

ܫ  = ௣௛ܫ − ௢ܫ ൤݁
೜(ೇశ಺ೃೞ)

ಲೖ೅ − 1൨ (2.35) 

An ISDM has three model parameters (ܫ௣௛ ௢ܫ , , and ܫ .[76] (ܣ௣௛  can be represented as 

follows:  

௣௛ܫ  = ௦௖ܫ)ܩ +  ூ∆ܶ) (2.36)ܭ

where ܩ  is the solar intensity (ܹ݇ ݉ଶ⁄ ), ∆ܶ  is the difference between the actual 

temperature and the temperature at STC (ܶ − ௢ܶ). This method assumes ܫ௣௛ = ௦௖ܫ  when 

the PV cell is under STC.  

An expression for ܫ௢ is derived by first setting 

 ௢ܸ௖(ܩ, ܶ) − ௢ܸ௖(ܩ, ௢ܶ) =  ௏|∆ܶ (2.37)ܭ|−
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where ௢ܸ௖(ܩ, ܶ) and ௢ܸ௖(ܩ, ௢ܶ) are the open circuit voltage at an arbitrary temperature (ܶ) 

and at the temperature at STC ( ௢ܶ), respectively. The values of ௢ܸ௖(ܩ, ܶ) and ௢ܸ௖(ܩ, ௢ܶ) 

can be calculated separately by substituting ܫ = 0 in (2.35), which gives 

 ௢ܸ௖(ܩ, ܶ) =
௄்஺
௤
ln ቀீ(ூೞ೎ା௄಺∆்)

ூ೚
+ 1ቁ (2.38) 

 ௢ܸ௖(ܩ, ௢ܶ) =
௄ ೚்஺
௤

lnቆ ீூೞ೎
ூ೚ೝ೐೑

+ 1ቇ (2.39) 

where ܫ௢ೝ೐೑ represents the saturation current at STC and can be calculated as follows: 

௢ೝ೐೑ܫ  =
ூೞ೎

௘
೜ೇ೚೎
ಲ಼೅೚ିଵ

 (2.40) 

Substituting (2.38) and (2.39) into (2.37), and rearranging it to solve for the parameter ܫ௢, 

we have 

௢ܫ  =
௘
ห಼ೇห∆೅೜
ಲ಼೅ ீ(ூೞ೎ା௄಺∆்)

ቆ ಸ಺ೞ೎
಺೚ೝ೐೑

ାଵቇ

೅೚
೅
ି௘

ห಼ೇห∆೅೜
ಲ಼೅

 (2.41) 

The value of ܣ can be calculated by first substituting the MPP into (2.35), the resultant 

equation becomes: 

௠௣௣ܫ  = ௦௖ܫ − ௢ೝ೐೑ܫ ቈ݁
೜ೇ೘೛೛
ಲ಼೅೚ − 1቉ (2.42) 

Then, the value of the diode’s ideality factor ܣ can be derived by substituting (2.40) into 

(2.42) and solving for ܣ using the Newton-Raphson iterative approach as the resultant 

equation is transcendental in nature. 

The advantage of this method is to avoid the use of a numerical solver to determine the 

value of ܫ  at the given value of ܸ  [76], which reduces the overall simulation time 

compared to the curve-fitting method. 

2.6.5 GA approach 

A novel GA approach to parameter estimation [25] is developed to improve the accuracy 

of the model parameters compared to that of Villalva's iterative method described in 
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Section 2.6.3. The aim of the GA approach is to optimize the values of the series 

resistance and diode’s ideality factor to minimize the root mean square error (RMSE) 

between the three estimated remarkable points, (0,ܫ௦௖,௘ ), ( ௢ܸ௖,௘ , 0) and (ܫ௠௣௣,௘ , ௠ܸ௣௣,௘) 

obtained from the SDM, and the three remarkable points, (0,ܫ௦௖), ( ௢ܸ௖,0) and (ܫ௠௣௣, ௠ܸ௣௣) 

obtained from the manufacturer’s datasheets [25]. It formulates the PV module parameter 

estimation as a search and optimization problem. The problem variables ܴ௦  and ܣ are 

represented using a 20-bit string (10 bits for each variable). Fig. 2.8 shows an example of 

a problem solution represented by a 20-bit chromosome. 

 

Fig. 2.8: An example of a 20-bit chromosome representing a solution for ܴ௦ and ܣ. 

The RMSE between the estimated and extracted remarkable points is used as the cost 

function of the GA and can be expressed as follows: 

ܧܵܯܴ  = ට(ூೞ೎ିூೞ೎,೐)మା(௏೚೎ି௏೚೎,೐)మା(ூ೘೛೛ିூ೘೛೛,೐)మା(௏೘೛೛ି௏೘೛೛,೐)మ

ସ
 (2.43) 

where, ܴܧܵܯ is defined as the index for measuring the average magnitude of the error 

between the actual data sets and the estimated data sets based on the square root of the 

sum of the relevant quadratic terms [82]. 

This method is an extension of Villalva's iterative method. It employs (2.32) to calculate 

ܴ௣ at a given value of ܴ௦, which reduces the number of parameters requiring estimation. 

The values of ܫ௣௩ and ܫ௢ are determined in the same manner than for Villalva's iterative 

method using (2.33) and (2.34), respectively. 

The flowcharts for the GA approach to parameter estimation technique are shown in Fig. 

2.9. It consists of two parts: GA and cost function evaluation. Fig. 2.9 shows the cost 

function evaluation and Fig. 2.10 shows the calculating procedures for the GA. The entire 

process starts with initialization of the parameters of the GA, including crossover, 

mutation and elite rates, the number of generations and the size of the chromosome 
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population, it generates the initial solutions for ܴ௦ and ܣ represented as strings of ones 

and zeroes. Then, chromosomes fitness evaluation is conducted based on the cost function 

specified in (2.43). Thirdly, the GA randomly selects two parental chromosomes based 

on the selection strategy to form two offspring chromosomes by crossover and mutation 

techniques. In this case, roulette wheel selection is used for chromosome selection. The 

entire algorithm will run iteratively until the number of iterations specified by the user is 

satisfied. 

 

Fig. 2.9: Flowchart of the cost function evaluation. 
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Fig. 2.10: Flowchart of the GA. 
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2.6.6 Simulation results 

Four different commercial PV modules are investigated to compare the performance of 

the four parameter estimation techniques. The results are compared in terms of the relative 

errors in maximum power ( ௠ܲ௔௫), short circuit current (ܫ௦௖), open circuit voltage ( ௢ܸ௖), 

current (ܫ௠௣௣) and voltage ( ௠ܸ௣௣) at the MPP, respectively. These five indexes illustrate 

the performance of each parameter estimation technique. One parameter estimation 

technique estimates the parameters of a SDM more precisely that the others when a lower 

index value is observed. The parameters of the four PV modules at STC are shown in 

Table 2.2. 

Table 2.2: Parameters of the four PV modules at STC. 

Parameters BP3175 BP380 Solarex MSX-
60 

Kyocera 
KC200GT 

Rated maximum 
power ( ௠ܲ௔௫) 175 W 80 W 60 W 200 W 

Voltage at the MPP 
( ௠ܸ௣௣) 36 V 17.6 V 17.1 V 26.3 V 

Current at the MPP 
 4.9 A 4.55 A 3.5 A 7.61 A (௠௣௣ܫ)

Short circuit current 
 (௦௖ܫ)

5.3 A 4.8 A 3.8 A 8.21 A 

Open circuit voltage 
( ௢ܸ௖)  44.2 V 22.1 V 21.1 V 32.9 V 

Temperature 
coefficient of ܫ௦௖ 

(0.065±0.015) 
%/℃ 

(0.065±0.015) 
%/℃ 

(0.065±0.015) 
%/℃ 3.18×10-3 A/℃ 

Temperature 
coefficient of ௢ܸ௖   

-(160±20) 
mV/℃ 

−(80±10) 
mV/℃ 

−(80±10) 
mV/℃ 

-1.23×10-1 
V/℃ 

Number of cell ( ௦ܰ) 72 36 36 54 

In Tables 2.3 to 2.6, the results for the four parameter estimation techniques are displayed. 

The first six rows show the values of the parameters involved in an SDM and the last five 

rows demonstrate the relative errors in terms of the remarkable points. 

In Figs. 2.11 to 2.15, the values of the relative errors are displayed graphically using bar 

charts and compared among the four types of PV modules. Fig. 2.11 shows the results of 

the relative errors in ௠ܲ௔௫. Fig. 2.12 displays the results of the relative errors in ܫ௦௖. Fig. 

2.13 shows the results of the relative errors in ௢ܸ௖ . Fig. 2.14 shows the results of the 

relative errors in ܫ௠௣௣. Fig. 2.15 shows the results of the relative errors in ௠ܸ௣௣ . Among 

the parameter estimation techniques evaluated, Chatterjee’s iterative approach is seen to 
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have the best overall performance regarding the relative errors in maximum power, short 

circuit current, open circuit voltage and the current and voltage at the MPP. 

From Figs. 2.11 to 2.15, it can be seen that the relative errors for the GA approach are 

much smaller than those for Villalva's iterative approach using the four PV modules in 

all five indexes, which validates that the GA approach can significantly improve the 

model accuracy when compared to Villalva's iterative approach. It is also interesting to 

note that the relative errors in ௠ܲ௔௫  obtained from the GA approach have the lowest 

values among the four parameter estimation techniques using the four PV modules. This 

information reveals that the SDM estimated by the GA approach has the highest accuracy 

in estimating the PV module output power among the four parameter estimation 

techniques. 

It is worth mentioning that the results generated by the analytical method have the 

smallest relative errors when compared against the other methods using the four types of 

PV modules except for the relative errors in	 ௠ܲ௔௫. This suggests the possibility of using 

the analytical method as the benchmarking method for the other three methods, as the 

analytical method takes the least amount of simulation time and obtains fairly accurate 

results. The accuracy of the results obtained using Villalva’s iterative approach varies 

with different values of ܣ. Changing the value of ܣ can significantly affect ܴ௦, which will 

assist in improving the model fit to the PV characteristic. The general relationship 

between ܣ and ܴ௦  suggests that the value of ܴ௦  will increase with a decrease in ܣ. A 

method of determining the value of ܣ in Villalva’s iterative approach is incrementing ܣ 

by, say, 0.1 at each simulation iteration in such a way that the calculated value of ܴ௦ is 

approximately equal to the value obtained in Chatterjee’s iterative approach. 

The advantages of the ISDM approach are that it can estimate the open circuit voltage 

and short circuit current of a PV module with zero error and finish each iteration in a very 

short duration. The drawback of this approach is that it has the highest estimation error in 

the power at the MPP except for the modelling of the Solarex MSX-60 PV module. 
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Table 2.3: Results comparison of parameter estimation techniques in modelling a BP 3175 PV module. 

 
Chatterjee’s 

iterative 
approach 

Villalva’s 
iterative 
approach 

ISDM 
Approach GA Approach 

௧ܸ  0.0379 V 1.8506 V - 1.8506 V 
ܴ௦ 0.2085  0.3390  - 0.2567  
ܴ௣ 1917.5  235.43  - 480.96  
 ௢ 0.49631 μA 12.029 nA 4.7356 μA 0.19907 μAܫ
 ௣௛ 5.3006 A 5.3076 A 5.3 A 5.3028 Aܫ
 1.3970 1.7148 1.2 1.4762 ܣ

௠ܲ௔௫,௘௥௥௢௥  0.0080 0.0021 0.0082 8.4513e-04 
௦௖,௘௥௥௢௥ܫ  4.6674e-08 2.8234e-09 0 2.5997e-08 
௢ܸ௖,௘௥௥௢௥  0 0.0018 0 0.0011 

௠௣௣,௘௥௥௢௥ܫ  9.7868e-08 0.0111 0.0056 0.0065 
௠ܸ௣௣,௘௥௥௢௥  0 0.0053 0.0058 5.5556e-04 

Table 2.4: Results comparison of parameter estimation techniques in modelling a BP 380 PV module. 

 
Chatterjee’s 

iterative 
approach 

Villalva’s 
iterative 
approach 

ISDM 
Approach GA Approach 

௧ܸ  0.0238 V 0.9253 V - 0.9253 V 
ܴ௦ 0.4317  0.3940  - 0.4667  
ܴ௣ 39397  282.64  - 719.16  
 ௢ 30.926 pA 14.316 pA 2.3928 μA 1.9007 pAܫ
 ௣௛ 4.8001 A 4.8067 A 4.8 4.8031 Aܫ
 0.8364 1.6459 0.9 0.9269 ܣ

௠ܲ௔௫,௘௥௥௢௥  0.001 0.0026 0.0077 6.0805e-04 
௦௖,௘௥௥௢௥ܫ  6.5732e-11 2.5880e-11 0 6.7566e-12 
௢ܸ௖,௘௥௥௢௥  0 9.0498e-04 0 4.5249e-04 

௠௣௣,௘௥௥௢௥ܫ  1.1308e-09 0.0097 0.0265 3.9849e-05 
௠ܸ௣௣,௘௥௥௢௥  0 0.0114 0.0341 5.6818e-04 

Table 2.5: Results comparison of parameter estimation techniques in modelling a Solarex MSX-60 PV 

module. 

 
Chatterjee’s 

iterative 
approach 

Villalva’s 
iterative 
approach 

ISDM 
Approach GA Approach 

௧ܸ  0.0378 V 0.9253 V - 0.9253 V 
ܴ௦ 0.1387  0.1690  - 0.1970  
ܴ௣ 1157.8  154.13  - 352.97  
 ௢ 0.68938 μA 21.226 nA 5.7992 μA    87.883 nAܫ
 ௣௛ 3.8005 A 3.8042 A 3.8 A 3.8021 Aܫ
 1.2970 1.7027 1.2 1.4695 ܣ

௠ܲ௔௫,௘௥௥௢௥  0.0025 0.0028 0.0023 5.5521e-04 
௦௖,௘௥௥௢௥ܫ  8.5913e-08 4.3696e-09 0 2.0013e-08 
௢ܸ௖,௘௥௥௢௥  0 0.0019 0 9.4787e-04 

௠௣௣,௘௥௥௢௥ܫ  1.9039e-07 0.0097 0.0056 1.3848e-04 
௠ܸ௣௣,௘௥௥௢௥  0 0.0152 0.0058 0.0029 
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Table 2.6: Results comparison of parameter estimation techniques in modelling a Kyocera KC200GT PV 

module. 

 
Chatterjee’s 

iterative 
approach 

Villalva’s 
iterative 
approach 

ISDM 
Approach GA Approach 

௧ܸ  0.0353 V 1.3879 V - 1.3879 V 
ܴ௦ 0.2068  0.2290  - 0.2076  
ܴ௣ 1743.5  174.14  - 1390.7  
 ௢ 0.25706 μA 21.651 nA 17.812 μA 0.25023 nAܫ
 ௣௛ 8.2110 A 8.2208 A 8.2100 8.2112 Aܫ
 1.3697 1.8177 1.2 1.3720 ܣ

௠ܲ௔௫,௘௥௥௢௥  7.1503e-04 0.0018 0.0022 1.9448e-04 
௦௖,௘௥௥௢௥ܫ  4.5064e-08 5.5098e-09 0 4.4215e-08 
௢ܸ௖,௘௥௥௢௥  0 0.0012 0 3.0395e-04 

௠௣௣,௘௥௥௢௥ܫ  3.1456e-08 0.0064 0.0143 5.2015e-04 
௠ܸ௣௣,௘௥௥௢௥  0 0.0076 0.016 0 

 

 

Fig. 2.11: Comparison of the relative errors in ௠ܲ௔௫. 
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Fig. 2.12: Comparison of the relative errors in ܫ௦௖. 

 

Fig. 2.13: Comparison of the relative errors in ௢ܸ௖. 

 

Fig. 2.14: Comparison of the relative errors in ܫ௠௣௣. 
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Fig. 2.15: Comparison of the relative errors in ௠ܸ௣௣ . 

2.7 Experimental Testing of a BP 380 PV Module 

In order to validate the effectiveness of the SDM and measure the experimental I-V and 

P-V characteristics, experimental measurement of a BP380 PV module characteristics 

was conducted. The BP380 PV module was set up on the roof of the School of 

Engineering and ICT building and a ramp signal was applied to the duty cycle of the boost 

converter to enable the PV module voltage to be swept from approximately 22	ܸ to	3	ܸ. 

The irradiance was measured using the Kimo SL200 solarimeter [83] whereas the 

temperature was sampled via a thermocouple mounted on the back of the BP380 PV panel. 

The data for the PV module voltage, current and power at different tilt angles were 

collected through a NI data acquisition unit and logged in a LabVIEW interface. The 

experimental setup is shown in Fig. 2.16. 



Chapter 1 

38 | P a g e  

 

Fig. 2.16: Experimental Setup. 

2.7.1 Development of the PV module model 

A PV module model is developed in the MATLAB/SimPowerSystems environment using 

the SDM modelling approach. Fig. 2.17 shows the simulation model for a BP 380 PV 

module characteristics tracing. The Matlab function inside the PV module sub-model (as 

shown in Fig. 2.18) implements the SDM mathematical equations mentioned in Section 

2.5.1. The detailed script of the Matlab function in Fig. 2.18 implementing the SDM can 

be found in Appendix A. In the succeeding chapter, this model will be extended to the 

PV array model that used in the entire simulation model for the single-phase grid-tied PV 

system. The parameters of the PV module model are estimated using Chatterjee’s iterative 

approach described in [37]. The parameters of the BP380 PV module are shown in the 

second column of Table 2.2. The parameters of the PV module model are also provided 

in the column ‘Chatterjee’s iterative approach’ of Table 2.4. 
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Fig. 2.17: The simulation model for the BP 380 PV module characteristics tracing. 

 

Fig. 2.18: Subsystem model of the PV module. 

2.7.2 Validation of the PV module model 

To validate the utility of the developed PV module model in modeling the BP 380 PV 

module, a PV module characteristics tracker composed of a boost converter and a resistive 

load is used to sample the characteristics of the BP380 PV module. The circuit diagram 

of the boost converter and sensor circuitry is shown in Fig. 2.19. 
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Fig. 2.19: Circuit diagram of the boost converter with voltage and current sensor 

circuitry [22]. 
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For the experimental measurement of the BP380 PV module characteristics, a total 

number of ten P-V and I-V curve traces were measured. With experimental uncertainties 

at each test, the measurements of irradiance and temperature may have slight errors. One 

source of errors for the irradiance measurement is that the solar cell of the Kimo SL200 

solarimeter may not be in line with the test BP380 PV module and the solarimeter may 

produce inconsistent data. The accuracy of irradiance recordings is low since the Kimo 

Solarimeter samples irradiance for one-minute increments [83], [84]. Proper calibration 

must be done prior to tracing each characteristic curve. 

Another factor affecting measurement accuracy is that the temperature and irradiance 

levels slightly vary during the test period. Inaccurate irradiance measurement may also 

result from a time delay in running the test LabVIEW program to extract the PV module 

characteristics after temperature and irradiance measurements. These critical influences 

contribute to some of the differences between the experimental and measured 

characteristics of the PV module. The acceptable tolerances for the irradiance and 

temperature records are considered to be no more than 5	ܹ ݉ଶ⁄  and 2	℃, respectively. 

To improve the fitting of the PV module model, additional 5	ܹ ݉ଶ⁄  and 2	℃ are added 

to the actual values of temperature and irradiance in the simulations, respectively. 

Two samples of I-V and P-V characteristics for the BP380 PV module with additional 

correction values added to the actual temperature and irradiance levels under similar 

environmental conditions are shown in Fig. 2.21 and Fig. 2.20, respectively. These two 

sample measurements are labelled as Case A and Case B. The relative errors (in 

percentage) of the three remarkable points in the experimental I-V and P-V characteristics 

are presented in Table 2.7. One can easily see that a reasonable match between the 

experimental and simulated P-V and I-V characteristics is shown in Figs. 2.20 and 2.21. 

Generally, the simulated characteristics preserve the overall shape of the experimental 

characteristics. In Table 2.7, it can be seen that the simulated curves match closely the 

experimental curves in terms of the voltage at the MPP (about 1.1% of relative error) and 

open circuit voltage (about 1% of relative error). For MPP power matching, the PV 

module model produces a poor prediction (about 6% of relative error), indicating that the 

PV module model tends to overestimate the power at the MPP together with the 

characteristics in Figs. 2.20 to 2.21. There is a slight deviation between the short circuit 
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current predicted by the PV module model and that measured in the experiment. The PV 

module model has a better prediction of the BP 380 PV module voltage than that of the 

current (about 7% of relative error in current compared with 1% in voltage).  

Table 2.7: Percentage errors of the three remarkable points in the experimental measurements. 

 Case A Case B 

௠ܲ௔௫,௘௥௥௢௥ 6.05% 5.01% 

 ௦௖,௘௥௥௢௥ 7.23% 6.14%ܫ

௢ܸ௖,௘௥௥௢௥ 0.93% 0.83% 

 ௠௣௣,௘௥௥௢௥ 7.23% 6.14%ܫ

௠ܸ௣௣,௘௥௥௢௥ 1.09% 1.05% 
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Fig. 2.20: Case A - the simulated and experimental I-V and P-V characteristics at 

irradiance of 715	ܹ ݉ଶ⁄  and temperature	32.86	℃. 
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Fig. 2.21: Case B - the simulated and experimental I-V and P-V characteristics at 

irradiance of 708	ܹ ݉ଶ⁄  and temperature	33	℃. 
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2.8 Conclusion 

In this chapter, a review of the available PV technologies is presented. PV characteristics 

under uniform and non-uniform environmental conditions and their dependences on the 

ambient temperature and irradiance have been investigated. Several conventional diode-

based PV cell models in modelling a PV cell have been elaborated. Among these PV cell 

models, the SDM has been explored in detail due to its simplicity and low computational 

requirement. Three parameter estimation techniques of a SDM in literature have been 

thoroughly explored. A novel GA approach to parameter estimation of a SDM is proposed 

to improve the model accuracy when compared to Villalva's iterative method. 

Comparison between the experimental and simulated characteristics of the BP 380 PV 

module under uniform environmental conditions has been provided. The experimental 

results show that the developed PV module can actually replicate the PV module 

characteristics measured in the experiment with slight errors in predicting the power at 

the MPP and short circuit current. 
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Chapter 3  
Review of Maximum Power Point Tracking 

Techniques and Power Electronic Interfaces 
for Photovoltaic Systems 

3.1 Introduction 

Photovoltaic (PV) systems exhibit non-linear characteristics and the maximum power 

point (MPP) is ever-changing with respect to temperature and irradiance variations. It is 

important to track the MPP in real time to ensure PV systems operate in an efficient 

manner [22], [85]. Maximum power point tracking (MPPT) is the process of matching 

the output voltage or current of a PV device with its maximum operating point based on 

the environmental conditions [86]. The general classification of various MPPT methods 

is based on whether the technique could distinguish between the global MPP (GMPP) and 

the local MPPs of the PV characteristics. Conventional MPPT methods are only capable 

of tracking the MPP of a PV system under uniform environmental conditions, where only 

one MPP is observed in the P-V characteristic. Conventional MPPT techniques require 

less computational power and are easily implemented in cheap programmable 

microcontrollers such as field-programmable gate array (FPGA) [87]. One key factor that 

affects the PV system performance is partial shading, when PV array is exposed to non-

uniform environmental conditions, the output characteristics of PV array may exhibit 

multiple peaks [41], [88]–[90]. There is only one GMPP on the P-V curve of the PV array 

that experiences partial shading. A PV array with non-uniform irradiance conditions can 

provide the maximum power output if its operating point is located at its GMPP. Global 

(GMPPT) techniques are able to distinguish the GMPP among all the local MPPs 

especially when PV arrays experience partial shading. Partial shading can be attributed to 

several factors, such as cloud passing, the shadow from surrounding objects, dust or dirt 

on the PV panel surface and mismatch of PV cells [22], [41]. GMPPT techniques usually 

suffer from significant power losses and the techniques itself needs to be tailored for 

different PV systems [91]. 
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In general terms, a variety of MPPT techniques can also be classified on the basis of the 

control variable adopted [85]: 

1) PV array output voltage. 

2) PV array output current. 

3) Duty cycle signal in DC/DC converters. 

The first two options require a digital controller to convert a voltage or current signal to 

a duty cycle signal that controls the operation of the switch in the DC/DC converter. The 

digital controller can be a proportional-integral (PI) or proportional-integral-derivative 

(PID) controller depending on the changing pattern of the control variable, or a hysteresis 

controller [92]. 

The criteria for assessing various MPPT techniques for uniform and non-uniform 

environmental conditions are shown as follows [22], [90], [93]: 

 Distinguish between the GMPP and the local MPPs, or capable of tracking the 

GMPP. 

 Time taken to the vicinity of the GMPP. 

 Response time to abrupt changes in environmental variables, such as temperature 

and solar irradiance. 

 Hardware requirements, for example, the number of sensors required. 

 Dependence on the PV array parameters. 

The instrumentation involved for different MPPT techniques are vastly different [94]. 

Only one current sensor used for shaping the buck–boost inductor current as well as for 

MPPT, and one voltage sensor for the PV array voltage measurement are required in the 

MPPT method mentioned in [94]. This MPPT method does not require an inductor current 

measurement, and is applicable to any single-phase single-stage grid-connected PV 

inverter operating in continuous conduction mode (CCM). The PV array output power is 

estimated from the PV array voltage and the inductor current amplitude. The inductor 

current is determined using the principle of correlation between the reference inductor 

current and the PV array output current. A MPPT technique proposed in [95] only requires 

voltage measurements of the PV array. A suitable capacitive load connected at the output 
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of the PV array is used to estimate the PV array output power. The position of the MPP 

is identified by considering the second-order derivative of the squared capacitive load 

voltage. A complex noise filtering technique is also implemented in this MPPT method 

to reduce the noise component in the second-order derivative of the squared capacitive 

load voltage. These methods highlight the reduction of the sensor requirements for the 

MPPT operation. 

Measurement noise could have a significant impact on the performance of MPPT 

techniques [96]. In practical PV systems, the voltage and current of a PV array contain 

measurement noise. Although measurement noise is insignificant when compared to its 

corresponding signal, it can contribute significantly to the difference between two or more 

consecutive measurements [97]. Some conventional MPPT techniques such as P&O and 

IC methods, utilize the differences between several voltage or current measurements to 

determine the direction of tracking, which are particularly susceptible to measurement 

noise. Neglecting measurement noise could lead to poor tracking performance or even 

divergence from the MPP in some circumstances [98]. 

In real environmental conditions, the ambient temperature and solar irradiance under 

which PV arrays operate changes instantaneously with time [5]. The sampling rate of the 

MPPT controller is required to be fast enough to track intermittent variations of irradiance 

and temperature. 

3.2 Conventional MPPT Techniques 

Conventional MPPT techniques can be further classified into two categories, which are 

indirect (quasi seeking) and direct (true seeking) methods [99]. Some examples of indirect 

methods are curve fitting [100]–[102], look-up table [103], fractional open circuit voltage 

[104]–[107] and fractional short circuit current [108]–[110]. Some examples of direct 

methods are P&O [111]–[124], IC [125]–[129]. 

In this section, some of the conventional MPPT methods will be concentrated on as listed 

below: 

 Fractional open-circuit voltage method; 
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 Fractional short-circuit current method; 

 P&O method; 

 IC method. 

These conventional MPPT methods are most commonly used in various PV systems. This 

is largely due to their simplicity and ease of implementation [85]. 

3.2.1.1 Maximum power point estimation techniques 

Various maximum power point estimation (MPPE) techniques [107], [130]–[132] are 

proposed in the literature to estimate the operating point of a PV array. These techniques 

depend on measured parameters of the PV array [133] and predefined relationships to 

estimate the MPP location. Empirical relationships adopted by MPPE techniques are 

developed under uniform environmental conditions, so these relationships are no longer 

valid when the PV array is partially shaded [22]. The estimation accuracy may decrease 

with time as the characteristic of the PV array varies due to cell degradation [41]. 

Two common MPPE techniques that will be introduced in the following sections are 

fractional open-circuit voltage method and fractional short-circuit current method 

respectively. These methods only rely on one measured variable and regulate the current 

or voltage of a PV array to implement the MPPT. 

3.2.1.1.1 Fractional open-circuit voltage method 

Fractional open-circuit voltage method estimates the MPP via measuring the open circuit 

voltage of a PV array. The operating voltage of the PV array can be determined by the 

following linear relationship: 

 ௠ܸ௣௣ = ݇ଵ ௢ܸ௖ (3.1) 

where ݇ଵ  represents the constant of proportionality. The values of ݇ଵ  is computed 

through determining the empirical relation between ௢ܸ௖  and ௠ܸ௣௣  for the specific PV 

array. A useful rule of thumb is that ݇ଵ takes a value between 0.71 and 0.78 [133]. 
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The measurement of ௢ܸ௖ can be achieved by periodically opening the switch with the DC-

DC converter connected at the output of the PV array. During the switch opening period, 

the power supply from the PV array is temporarily interrupted. The periodical 

measurement of the open circuit voltage is used to calculate the operating voltage of the 

PV array.  

A sample&hold used in [134], [135] consisting of external passive elements is to 

periodically sample the open circuit voltage of a PV array with a fixed sampling rate. The 

method in [135] dynamically changes the sampling period (ܶ) and sampling time (ߦ) of 

the fractional open circuit voltage MPPT controller to control the operation of the DC-

DC converter using pulse frequency modulation (PFM). 

The pilot cell tracking method in [136] assumes a constant proportionality between the 

open circuit voltage of a pilot cell and that of the PV array. It also assumes a constant 

ratio within the PV array between the voltage at MPP and the open circuit voltage. A pilot 

cell is a small-scale PV device that is the same type and is in the same placement with the 

PV array. Measuring the open circuit voltage of a pilot cell is easily implemented when 

compared to that of the PV array as the pilot cell is electrically separated from the PV 

array. The operating voltage of the PV array is regulated to a fixed multiple of the open 

circuit voltage of the pilot cell. 

3.2.1.1.2 Fractional short-circuit current method 

This method is similar to fractional open circuit voltage method as mentioned before. It 

locates the MPP of a PV array via measuring its short circuit current. Fractional short-

circuit current method regulates the operating current of the PV array to a fixed multiple 

of its short circuit current [133]. 

As with the fractional open circuit voltage method, the proportional constant between the 

current at the MPPT of the PV array and its short circuit current can be expressed as 

follows: 

௠௣௣ܫ  = ݇ଶܫ௦௖ (3.2) 
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where ݇ଶ is a proportionality constant, the value of ݇ଶ is normally selected from 0.78 and 

0.92 [133]. Similar to fractional open circuit voltage method, the value of ݇ଶ is influenced 

by several factors such as PV technology, fill factor and meteorological conditions [137]. 

The measurement of ܫ௦௖ can be achieved in a similar manner to that of ௢ܸ௖ in fractional 

open-circuit voltage method. The PV array is momentarily shorted by means of closing 

the switch within the DC-DC converter. Power supply of the PV array becomes 

unavailable during the switch closing period. Hall-effect sensors and resistive shunts are 

commonly used to obtain the measurement of short circuit current [138]. For high short 

circuit current conditions, such as the measurement of the short circuit current of a PV 

array, pilot cell tracking can be used to determine the short circuit current on the basis of 

the measurement of the output of a pilot cell. 

3.2.1.2 P&O method 

The P&O method is the most commonly implemented MPPT technique due to its ease of 

implementation [5], [139]. It perturbs the control variable based on the slope of the P-V 

curves of interest. The control variable could be either voltage [133], [140], current [94], 

[141], [142] or duty cycle [143]–[145]. P&O method utilises the fact that the slope of the 

P-V curve is negative on the right-hand side of the MPP, zero at the MPP, and positive 

on the left-hand side of the MPP [139], [146]–[148]. This is summarized using the 

following mathematical equations: 

 డ௉
డ௏
> 0 Left-hand side of the MPP (3.3) 

 డ௉
డ௏
= 0 At the MPP (3.4) 

 డ௉
డ௏
< 0 Right-hand side of the MPP (3.5) 

The P&O method is implemented discretely in practical applications, the slope of P-V 

characteristics can be expressed in the discrete form as follows [149]: 

 ∇௉&ை=
௉ೖି௉ೖషభ
௏ೖି௏ೖషభ

= ∆௉
∆௏

 (3.6) 
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where ∇௉&ை represents the slope of the two consecutive samples points in discrete form. 

The sign of ∇௉&ை determines the perturbation direction of the control variable. ௞ܸ  and ௞ܲ 

symbolise the voltage and power values at the ݇th (current) sampling instant, respectively, 

whereas ௞ܸିଵ  and ௞ܲିଵ  are the voltage and power values at the (݇ -1)th (previous) 

sampling instant, respectively. 

P&O method operates by perturbing the control variable periodically and comparing the 

power difference between the current and previous perturbation cycles [150]. If the power 

difference is positive, the method maintains the same perturbation direction, otherwise 

changes to the opposite perturbation direction [22]. The flowchart of the P&O method 

using voltage as the control variable is shown in Fig. 3.1. 

 

Fig. 3.1: Flowchart of P&O method adapted from [22]. 

A drawback of the P&O method is the introduction of the steady-state oscillation around 

the MPP leading to unnecessary power consumption [22]. This can be mitigated by 
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algorithm [139]. A small duty cycle perturbation may however reduce the tracking speed. 
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Thus, there is a trade-off between the steady-state oscillation around the MPP and the 

tracking speed of the algorithm. Another disadvantage of the P&O method is that it cannot 

manage rapid solar irradiance variations [151]–[153]. When the solar irradiance changes 

abruptly, the P&O method may track to a suboptimal MPP location or totally lose track 

of the MPP. 

For the traditional P&O method, the step size of the control variable is fixed and affected 

by the requirements of tracking accuracy and efficiency. Lower step size will cause lower 

convergence towards the MPP whereas higher step size will generate oscillations in 

power around the MPP. A variety of variable step size P&O methods are employed to 

improve the convergence speed to the MPP and reduce the steady-state power losses. Two 

examples of variable step-size P&O methods are shown in [144] and [70], respectively. 

These two examples use duty cycle and PV array voltage as the control variables 

respectively. The control variable update equation in [144] uses the following expression 

to change the duty cycle: 

݇)ܦ  + 1) = (݇)ܦ − ܰ ∆௉
∆ூ

 (3.7) 

where ܦ(݇ + 1)  denotes the duty cycle at the next perturbation cycle while ܦ(݇) 

symbolises the value at the current perturbation cycle. 	∆௉
∆ூ

 represents the changes in the 

PV array output power with respect to its current. ܰ is known as the scaling factor that is 

highly dependent on the specifications of each individual PV array and must be tuned at 

the design process [144], [152]. 

The PV array output voltage is regulated in [70] and the reference PV voltage is given by: 

 ௥ܸ௘௙(݇) = ௥ܸ௘௙(݇ − 1) + ܰ ∙ ௗ௉
ௗ௏

 (3.8) 

where ௥ܸ௘௙(݇) represents the reference voltage of the PV array in the current perturbation 

cycle and ௥ܸ௘௙(݇ − 1) symbolises the reference voltage in the preceding perturbation 

cycle.	ܰ is the scaling factor and ௗ௉
ௗ௏

 is the derivative of the PV array power to voltage. 
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3.2.1.3 IC method 

The IC technique [85], [154] uses the same basic principle as the P&O method as 

provided in (3.3) to (3.5). It uses the instantaneous conductance (ௗூ
ௗ௏

) and incremental 

conductance (ூ
௏
) to determine the perturbation direction of the MPPT controller. 

 ௗூ
ௗ௏
> − ூ

௏
 Left-hand side of the MPP (3.9) 

 ௗூ
ௗ௏
= − ூ

௏
 At the MPP (3.10) 

 ௗூ
ௗ௏
< − ூ

௏
 Right-hand side of the MPP (3.11) 

A comparative analysis between P&O and IC methods is included in [85], [150]. In [149], 

the IC and P&O methods are considered as equivalent methods in terms of their basic 

theories and mathematical background, but different in discrete implementation. The 

discrete implementation of the IC method is given in (3.12). In practice, both methods are 

discretised with different sampling frequencies, usually ranging from 1	Hz to.20	Hz [65], 

[155]. The IC method has advantages of better noise rejection and less off-track of the 

MPP of the PV array owing to system dynamics [156]. 

 ∇ூ஼=
ூೖିூೖషభ
௏ೖି௏ೖషభ

+ ூೖ
௏ೖ
= ∆ூ

∆௏
+ ூೖ

௏ೖ
 (3.12) 

where ∇ூ஼  represents the sum of the instantaneous conductance and incremental 

conductance for two consecutive samples in discrete form. The perturbation direction of 

the IC method is dependent on the sign of ∇ூ஼ ௞ܫ	 .  and ܫ௞ିଵ symbolise the current values 

at the current and previous sampling instants, respectively. 

The relationship between ∇ூ஼  for the IC method and ∇௉&ை for the P&O method shown in 

(3.13) is investigated in [149]. The analytical expression between ∇ூ஼  and ∇௉&ை is given 

as follows: 

 ∇ூ஼=
∇ು&ೀ
௏ೖ

+ ∆ூ
௏ೖ
= ∇ು&ೀ

௏ೖ
+  (3.13) ߝ
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where ߝ  represents the error between the P&O and IC methods in discrete 

implementations. The signs of ∇ூ஼  and ∇௉&ை  can be potentially different with the 

introduction of ߝ in a certain situation, which means that the P&O and IC methods could 

perturb in different directions with the same environmental condition [149]. This situation 

can be further explained where the operating point moves across the MPP with the step 

perturbation. Equation (3.13) also illustrates the tracking direction differences between 

the P&O and IC methods in discrete implementations. The drawbacks of the IC method 

are relatively similar to those of the P&O method. The disadvantages of the IC method 

include the trade-off between steady-state oscillations and tracking speed, and the 

inability to distinguish between the local MPPs and the GMPP [22]. 

Using the PV array voltage as the control variable, the flowchart for the IC method is 

shown in Fig. 3.2. The algorithm checks whether the voltage difference between two 

consecutive samples is zero. This must be done before evaluating the incremental 

conductance and instantaneous conductance since a division by zero occurs if the voltage 

difference is zero. A check for the current difference is required when the voltage 

difference is zero. The PV array must operate at its MPP if both the voltage and current 

differences are equal to zero. 

 
Fig. 3.2: Flowchart of the IC method adapted from [22], [157]. 
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3.3 GMPPT Algorithms 

This section will address techniques which have been specifically designed to handle 

tracking the GMPP under non-uniform environmental conditions. These techniques are 

capable of distinguishing the GMPP from multiple local MPPs under partial shading 

conditions (PSCs). These techniques include line search with Dividing Rectangle 

(DIRECT) [158], Fibonacci sequence [159], [160], PSO and SA. One drawback of some 

of the GMPPT techniques such as PSO and SA, is that reinitialization conditions are 

needed to re-initialize the algorithms when a sudden change in solar irradiance occurs. 

This change may be attributed to a change in the shading pattern of PV systems, which is 

mostly likely a consequence of passing clouds over PV systems. If the reinitialization 

conditions fail to detect a sudden change in solar irradiance, the algorithms are not able 

to track the new GMPP. Thus, some of the GMPPT algorithms are unable to perform a 

continuous tracking, which can be resolved by combining the algorithms with a 

conventional MPPT technique such as P&O and IC, to form a two-stage method to ensure 

the continuous operation of a PV system at GMPP. PSO and SA GMPPT algorithms are 

our main focuses in this section since they are belonged to the category of artificial 

intelligent algorithms and are able to provide good performances in tracking to the GMPP 

under both uniform and non-uniform conditions [90]. These GMPPT algorithms will be 

fully explained in the following subsections. 

3.3.1.1 Particle swarm optimisation 

PSO MPPT algorithms are suitable for tracking the GMPP with the presence of multiple 

local peaks [92], [161]–[163]. PSO is an intelligent, stochastic and metaheuristic 

evolutionary computation algorithm [164], established by Eberhart and Kennedy in 1995 

[165]. This optimization technique is inspired by the social behaviour of birds flocking 

and fish schooling. Compared to other evolutionary computation algorithms, such as GA 

and Artificial Bee Colony (ABC) [166], [167], it has advantages that only some primitive 

mathematical operators are required to converge to the final solution and the algorithm 

itself has memory [165]. The classical PSO algorithm is initialized with a population of 

random solutions. Instead of representing the solutions in chromosomes as for a GA, the 

potential solutions are called particles. A numerical example illustrating a vector for 
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particles’ positions with ௣ܰ particles using voltage as the control variable can be written 

as follows: 

௞ݔ  = ቂ ଵܸ
௞, ଶܸ

௞, ⋯ , ௜ܸ
௞, ⋯ , ேܸ೛

௞ ቃ (3.14) 

Correspondingly, the vector for particles’ velocities is given as follows: 

௞ݒ  = ቂ ଵܸ
௞ − ଵܸ

௞ିଵ, ଶܸ
௞ − ଶܸ

௞ିଵ,⋯ , ௜ܸ
௞ − ௜ܸ

௞ିଵ, ⋯ , ேܸ೛
௞ − ேܸ೛

௞ିଵቃ (3.15) 

The position of a particle is influenced by two factors, one is the local best particle in a 

neighbourhood ௕ܲ௘௦௧ and the other is the global best particle found by all the particles in 

the entire population ௕௘௦௧ܩ	  [92]. The classical PSO algorithm updates an individual 

particle’s position ݔ௜  and velocity ∅௜  in each iteration using (3.16) and (3.17), 

respectively, where ߱ is the inertia weight, ܿଵ and ܿଶ are the acceleration coefficients, ݎଵ 

and ݎଶ are random numbers between 0 and 1. ௕ܲ௘௦௧,௜ is the best position of particle ݅, and 

 ௕௘௦௧ is the best position of all particles in the population [90]. ݇ is the current iterationܩ

index. 

௜௞ାଵݔ  = ௜௞ݔ + ∅௜௞ାଵ  (3.16) 

 ∅௜௞ାଵ = ߱∅௜௞ + ܿଵݎଵ൫ ௕ܲ௘௦௧,௜ − ௜௞൯ݔ + ܿଶݎଶ(ܩ௕௘௦௧ −  ௜௞) (3.17)ݔ

A reinitialization condition described in [164] can be added to the classical PSO algorithm 

to enable it to track a time-varying GMPP. The time varying nature of GMPP may be 

attributed to change in solar irradiations or load variations with respect to time. The 

particles are reinitialized when the reinitialization condition, as shown in (3.18), is 

satisfied. 

 ห௉ುೇ,೙೐ೢି௉ುೇ,೗ೌೞ೟ห
௉ುೇ,೗ೌೞ೟

≥ ∆ܲ(%) (3.18) 

where ௉ܲ௏,௡௘௪ is the current PV array power at steady state and ௉ܲ௏,௟௔௦௧ is its final power 

when the last PSO MPPT algorithm terminates. ∆ܲ(%)  is the power threshold in 

percentage. The flowchart of the PSO GMPPT technique is shown in Fig. 3.3. 
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Fig. 3.3: Flowchart of the PSO MPPT technique adapted from [168]. 
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in (3.17) and constraining the particles’ velocities between 0 and ௠ܸ௔௫ , which leads to a 

deterministic velocity update equation given as follows: 

 ∅௜௞ାଵ = ߱∅௜௞ + ൫ ௕ܲ௘௦௧,௜ + ௕௘௦௧ܩ −  ௜௞൯ (3.19)ݔ2

for 0 < ∅ < ௠ܸ௔௫  

Several advantages are associated with the DPSO approach: first, the particles follow a 

deterministic behavior with the absence of the random factors in (3.17). Second, only one 

parameter, i.e., inertia weight, needs to be tuned. Finally, the algorithm can adapt to rapid 

variations in ambient temperature and solar irradiance by limiting the velocity vector to 

a certain range. 

The overall MPPT algorithm described in [169] comprises of two search stages: the first 

stage utilizes the DPSO approach to perform a coarse search for the GMPP and moves 

the operating point to the vicinity of the GMPP. This stage is activated when the PV array 

experiences partial shading. After the region of the GMPP is located, the MPPT algorithm 

switches to the second stage when a Hill Climbing (HC) method with variable step-size 

perturbation is employed to take the operating point to the exact GMPP. 

A hybrid PSO and Artificial Neural Network (PSO-ANN) algorithm is proposed in [170] 

to improve the tracking efficiency to the range of 92.7% – 99.7% and effectively track 

the GMPP under PSCs. The ANN algorithm is used to initialize the optimal PV array 

current values at different solar irradiance levels. These initial PV array current values 

are fed into the PSO algorithm to constrain the search range of the GMPP in a sufficiently 

small region, which drastically shortens the overall computational time. 

A two-stage PSO algorithm combined with the shuffled frog leaping algorithm (SFLA) 

is proposed in [171] to partition the entire search space into multiple sectors. Each sector 

is initialized with an independent micro particle swarm. The local best particle is obtained 

by the PSO algorithm in the first stage whereas the global best particle in the entire swarm 

is selected from all the local best particles by the PSO algorithm in the second stage, 

respectively. This method offers faster and more accurate local searching capability 

compared to the classical PSO algorithm. 
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The particles' initial locations are critical in terms of tracking speed of the PSO technique 

to the GMPP. An inadequate initialization of particles’ positions can result in an 

unnecessary exploration of the P-V curve, which consequently leads to energy dissipation 

and a reduced MPPT efficiency. A two-phase initialization process is proposed in [92] to 

initialize the new particles’ positions based on the previous particles’ positions. In this 

PSO MPPT technique, direct duty cycle control is employed and the three duty cycles 

(݀௜, ݅ = 1, 2, 3) are represented by three particles. In the first phase, the new particles’ 

positions are updated using an approximate linear correlation, shown in (3.20), based on 

the previous positions and the change in the PV array output power; The second phase is 

to perturb the new particles ݀ଵ  and ݀ଷ  obtained from the first phase in positive and 

negative directions by a factor of ܭଶ, respectively. The value of ݀ଶ remains unchanged in 

the second phase. 

 ݀௜,௡௘௪ଵ = ݀௜,௢௟ௗ −
ଵ
௄భ
( ௢ܲ௟ௗ − ܲ) (3.20) 

 ݀ଵ,௡௘௪ଶ = ݀ଵ,௡௘௪ −   (3.21)	ଶܭ

 ݀ଷ,௡௘௪ଶ = ݀ଷ,௡௘௪ +   (3.22)	ଶܭ

where ݀௜,௡௘௪ଵ  is the new duty cycle obtained in the first phase and ݀௜,௢௟ௗ is the previous 

duty cycle representing the previous GMPP, respectively. ܲ is the PV array power at the 

current iteration whereas ௢ܲ௟ௗ is the PV array power at the previous iteration, respectively. 

 ଵ is the slope of the linear segment approximating the quadratic relationship betweenܭ

the PV array global maximum power and the corresponding duty cycle. ݀ଵ,௡௘௪ଶ  and ݀ଷ,௡௘௪ଶ  

are the first and the third duty cycles calculated from the second phase, respectively. ܭଶ 

is the perturbation factor. 

3.3.1.2 Simulated annealing 

SA is a metaheuristic optimization algorithm [172] that emulates the physical processes 

involved in the annealing process that is used in metallurgy [88]–[90]. This algorithm was 

proposed by Kirkpatrick et al. [173] and Černý [174] to solve the travelling salesman 

problem in 1983 and 1985, respectively. SA mathematically mimics the cooling of a set 

of atoms to a state of minimum energy to solve an optimization problem. The SA 
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algorithm has been applied to MPPT applications under uniform environmental 

conditions in [175] and partial shading condition in [89]. A SA MPPT technique is shown 

to have a good global searching behavior to locate the GMPP rather than a local MPP 

under PSCs [88]. An artificial temperature parameter is incorporated in the optimization 

process with an initial temperature ௠ܶ௔௫ and a final temperature ܶ௠௜௡. The temperature 

parameter starts with ௠ܶ௔௫ and is progressively reduced to ܶ௠௜௡ during the optimization 

process. A cooling function is employed to control the temperature decrease during the 

optimization process. Several cooling functions could be used and an optimised cooling 

function is preferred to improve the performance of the SA algorithm. A common cooling 

function for SA algorithms is the geometric cooling function [176]–[178] given in (3.23) 

where ௞ܶ is the new temperature and ௞ܶିଵ is the previous temperature, respectively. At 

high temperature values, the SA algorithm performs a coarse search to explore a wide 

search space to find the region where the GMPP lies. At low temperature values, the 

exploration is restricted to a local region to exactly track the GMPP. 

 ௞ܶ = α ௞ܶିଵ (3.23) 

where α is the geometric cooling constant that is a positive number less than 1. 

The SA MPPT technique perturbs the PV array operating point (voltage) for several 

iterations to measure the corresponding energy (power) [88]. If the power obtained in the 

new operating point is larger than the previous power, the new operating point will be 

accepted. If the new operating point generates less power than that of the previous 

operating point, the new operating point may still get accepted depending on the 

acceptance probability specified in the following formula [88]–[90], [179]: 

ݎܲ  = exp ቀ௉(௞)ି௉(௞ିଵ)
்(௞)

ቁ (3.24) 

where, ܲ(݇)  is the measured power at the new operating point and ܲ(݇ − 1)  is the 

measured power at the previous operating point, respectively. ܶ(݇)  is the current 

temperature used in the SA algorithm. ܲݎ  symbolizes the probability that the SA 

algorithm accepts the new operating point with a worse output power. 
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A two-stage method combining a P&O method and an SA technique was proposed in 

[179] to utilize the merit of a P&O method for a continuous tracking operation and the 

advantage of an SA technique to locate the GMPP under PSC. This technique employs a 

decision criterion to determine whether a global search is required. Power variations are 

usually small when the P&O method operates to perform a global exploration [179]; Thus, 

a large power difference between the current measurement and the last measurement will 

trigger a global search implemented by the SA MPPT technique. 

The parameters of a SA algorithm can have a significant impact on its performance. Key 

parameters involved in the SA algorithm described in [180] are listed as follows: 

 Initial temperature; 

 Cooling rate; 

 Cooling frequency; 

 Acceptance probability threshold; 

 Neighborhood size; 

 Stopping temperature; 

 Cooling function; 

 Stopping criterion. 

A proper design for these parameters will significantly improve the performance of a SA 

algorithm, such as the time taken to converge to the GMPP and the accuracy of the results 

obtained. A methodology for assessing their impact on a SA algorithm’s performance was 

also proposed in [180] and the results highlight the selection of suitable parameters in the 

SA algorithm for MPPT applications. 

3.4 Power Electronic Interfaces for PV Systems 

3.4.1 Introduction 

Power converters are commonly used in grid-connected PV systems to control the 

operating point of the PV array to its MPP and to ensure an efficient conversion of energy 
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from the PV array side to the grid side. There are two common configurations employed 

in grid-tied PV systems design, which are single-stage and double-stage configurations 

[181]. The single-stage configuration, as illustrated in Fig. 3.4 (a), provides a reliable and 

cost-effective approach to supply electricity to the grid by connecting PV arrays directly 

to a grid-tied PV inverter. The inverter is controlled by two control schemes: MPPT 

control and Voltage Oriented Control (VOC). The MPPT control varies the DC link 

voltage reference to regulate the DC link voltage and ensures that the PV array operates 

at its MPP. The VOC is used to control the active and reactive power injected into the 

grid. One disadvantage of a single-stage configuration is that the minimum DC link 

voltage must be larger than the peak AC grid voltage to avoid the over-modulation 

operation of the grid-tied inverter [182]. Operating the inverter in the over-modulation 

region leads to a clipped capacitor voltage waveform, which consequently will result in a 

distorted inverter output voltage waveform [183]. Another shortcoming of a single-stage 

configuration is that galvanic isolation is not provided between the PV array and the grid. 

Thus, double-line frequency voltage ripple is significant at the DC link, which results 

from the double-line frequency of the AC grid power ripple [182]. The efficiency of 

MPPT techniques implemented in a PV inverter is low since the PV array output voltage 

fluctuates significantly. This issue can be mitigated by connecting a DC-DC converter at 

the output of the PV array to form a double-stage configuration. 

A double-stage configuration can effectively address the disadvantages of a single-stage 

configuration by adding an additional power link. This power link can be either a high 

frequency (HF) AC link or a DC link. Depending on the type of link used, a double-stage 

configuration can be further classified into two categories: DC-link and HF-link 

topologies [66], as shown in Fig. 3.4 (b) and (c), respectively. A DC-link topology 

converts the variable and intermittent output voltage of a PV array to a regulated and 

stabilized DC link voltage via a DC-DC converter [5]. MPPT control is usually 

implemented in the DC-DC converter to optimize the performance of the PV array under 

a wide operational range [184]. The regulated DC link voltage is then converted to the 

AC grid voltage for AC load utilization via a grid-tied PV inverter. The advantages of a 

DC-link topology are that a stable DC input voltage for the grid-tied PV inverter is 

maintained and multiple control objectives such as MPPT and anti-islanding protection 

can be implemented [185]. Decoupling is provided through the inserted DC-DC converter; 
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as a result, the AC grid power ripple cannot directly affect the PV array voltage. Energy 

storage systems can be connected to the DC link to store the excess energy generated by 

the PV array when the solar irradiance is abundant during the daytime and to supply 

energy to the grid when the power output of the PV array is deficient. A HF-link topology 

uses a HF DC-AC inverter to boost the PV array voltage to the HF AC link voltage and 

convert the HF AC link voltage to a low frequency (LF) grid voltage via an AC-AC 

frequency converter. Although the efficiency of the grid-tied PV inverter is reduced in a 

two-stage configuration, the efficiency of the entire grid-tied PV system may improve 

due to an increase in MPPT efficiency [186]. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.4: Fundamental configurations of grid-tied PV systems: (a) single-stage 

configuration, (b) double-stage configuration with a DC link, (c) double-stage 

configuration with a HF link. 

The capacitors used in grid-tied PV systems are of significant importance as they can 

minimize voltage ripple and balance the power difference between the instantaneous 

power and the average power [187]. The capacitor connected at the output of a PV array 

is known as the input filter capacitor (ܥ௉௏) whereas the capacitor connected at the input 

of the grid-tied PV inverter is known as the DC-link capacitor (ܥ஽஼), respectively. The 

selection and operation of these capacitors are presented in detail in Chapter 4. 
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3.4.2 DC-DC converters 

DC-DC converters are commonly used in the DC-DC power stage of a two-stage grid-

tied PV system as illustrated in Section 3.4.1. Based on whether there is a galvanic 

isolation between the input and output, DC-DC converters can be generally classified as 

non-isolated and isolated converters. Non-isolated DC-DC converters are frequently used 

in PV applications due to high conversion efficiency [188]. DC-DC converters are 

capable of controlling the PV array current output in real-time to ensure MPPT operation, 

therefore DC-DC converters need to draw a smooth input current from the PV array [157] 

and avoid the suboptimal operation around the MPP [182]. Since the PV array often 

experiences varying environmental conditions, its output voltage is intermittent and ever-

changing. A DC-DC converter can maintain a constant output voltage irrespective of 

environmental changes [5], which provides a stable operating point for the grid-tied 

inverter. The input voltage of DC-DC converters may step up or step down depending on 

the input voltage requirement of the grid-tied PV inverter. In general terms, a DC-DC 

converter turns the MPPT for a PV array into an impedance matching problem. This 

problem states that the MPPT operation is achieved when the output impedance of the 

PV array equals to a DC-DC converter input impedance that can be adjusted by changing 

the duty cycle [189]. Converter topology is one of the main considerations in designing a 

DC-DC converter for PV applications. Low input current ripple is the main selection 

criterion to determine the topology of a DC-DC converter for MPPT operation [190]. 

Some of the common DC-DC converter topologies are buck, boost, buck-boost, SEPIC, 

Ćuk and Zeta. A properly selected DC-DC converter topology can optimize the 

performance of a PV system [191]. A comparative study of three different DC-DC 

converter topologies (buck converter, boost converter and buck-boost converter) for grid-

tied PV system applications is presented in [192] through modelling and simulation 

studies. A comparison analysis between buck converter and boost converter topologies 

for interfacing PV arrays is illustrated in [193] and results show that a boost converter 

topology has several benefits over a buck one. These advantages include small 

capacitance for input capacitors, well-damped response characteristics and blocking 

diodes to avoid reverse current flowing back to the PV array. A brief review of various 

converter topologies is presented in the following subsections. 
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3.4.2.1 Boost converter 

A boost converter can provide an output voltage greater than the input voltage. The 

schematic of a boost converter is shown in Fig. 3.5. The simplicity and cost-effectiveness 

of this topology make boost converters a preferable solution for MPPT applications since 

there is only one inductor in this topology. A boost converter has an additional advantage 

that it does not need an additional diode in series with the PV module to prevent reverse 

current flow [194]. However, when compared with a Ćuk or Zeta converter, a boost 

converter presents high ripple in the output current. 

 

Fig. 3.5: Schematic of a boost converter. 

The relationship between the input and output voltages is given as follows: 

 ௏೚ೠ೟
௏೔೙

= ଵ
ଵି஽

 (3.25) 

where ܦ is the duty cycle to control the operation of the converter. 

3.4.2.2 SEPIC converter 

The input and output voltages of a SEPIC converter are decoupled by a coupling capacitor. 

With this capacitive isolation, the output grid-tied inverter is protected when failure of 

the power switch occurs [5]. A SEPIC converter is able to prevent reverse current flow 

without an additional diode, which is the same for a boost converter. The schematic of a 

SEPIC converter is shown in Fig. 3.6. It is similar to the topology of a buck-boost 

converter but with the advantage of a non-inverted output. The input current ripple of a 

SEPIC converter can be reduced if a coupled dual-winding inductor is used instead of two 
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uncoupled separate inductors. Better efficiency, more robust control-loop characteristics 

and a reduction on the footprint can be realized when a coupled dual-winding inductor is 

used instead of two separate inductors [195]. 

 

Fig. 3.6: Schematic of a SEPIC converter. 

3.4.3 DC-AC inverters 

The primary function of DC-AC inverters is to convert DC power from PV arrays to AC 

power injected to the power utility grid [5]. The magnitude and frequency of inverter 

output voltage is synchronized with the grid voltage. DC-AC inverters can be either 

single-phase or three-phase depending on the power rating, a single-phase inverter can 

supply up to approximately 5 − 6	ܹ݇ [196]. Apart from DC-AC conversion, inverters 

for PV applications also have several other functionalities, including MPPT, anti-

islanding for grid-tied PV systems, grid synchronization and data logging [5]. 

Anti-islanding is an important feature that grid-connected PV inverters need to 

incorporate. Grid-connected PV inverters must disconnect from the grid when the grid 

voltage and frequency are beyond the steady-state voltage and frequency limits stipulated 

by the grid codes. Islanding occurs when the utility grid is tripped due to fault conditions 

and the grid-connected PV system still supplies power to the utility. Unintentional 

islanding is hazardous to personal and equipment and may violate the assumption that the 

grid is fully de-energized. Anti-islanding protection system must detect islanding and 

immediately disconnect the PV inverter from the grid [184], [196], [197].  
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DC-AC inverters can be categorized into three types based on their topologies, which are 

voltage-source inverter (VSI), current-source inverter (CSI) and Z-source inverter [183], 

[198]. VSI is able to control its output voltage waveform that is independent from load 

changes with small or negligible input impedance. The input DC voltage of a VSI must 

be higher than the output AC voltage to avoid the over-modulation operation [182]. 

Therefore, a proper voltage boosting stage is necessary for VSIs used for grid-connected 

PV applications. An appropriate filter is required to be connected at the output of a VSI 

to ensure a sinusoidal AC voltage with harmonic content suppressed. A CSI controls its 

output square-wave current waveform that is able to boost the PV array voltage to the AC 

voltage without an intermediate boost DC-DC conversion stage. CSIs can also provide a 

unidirectional current flow via series diodes and bidirectional voltage blocking 

capabilities [198]. One limitation of a CSI is that it must be supplied by a stiff DC voltage 

source with high impedance, thus a DC link voltage control scheme is required for VSIs 

to regulate the DC link voltage [184]. Another drawback is that the AC output voltage 

must be higher that the DC link voltage. In other words, a VSI can only boost up the DC 

link voltage to the AC output voltage. Z-source inverter is a new promising architecture 

for PV applications that overcomes some of the drawbacks of the VSI and CSI. Compared 

to the VSI and CSI, it provides buck-boost voltage capability with only single-stage 

conversion [199]. 

DC-AC inverters can also be categorised based on whether a HF transformer is used in 

the inverter topology. Inverters with a HF transformer offer good galvanic isolation at the 

expense of complexity in control and low conversion efficiency. Transformerless 

inverters are more common and relatively simpler in structure and control than their 

transformer-based counterparts [30]. Transformerless inverters can be further classified 

into two-level and multilevel inverters. A typical example of two-level inverters is full-

bridge inverter. Fig. 3.7 demonstrates a three-phase full-bridge inverter with its input 

connected to a DC link capacitor. 
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Fig. 3.7: A three-phase full-bridge inverter adapted from [196]. 

Each phase of the three-phase full-bridge inverter is controlled by two switches in a leg. 

These two switches never conduct simultaneously to avoid shoot-through fault. There are 

six active switching states and two zero switching states. The six active switching states 

represent one switching cycle that has a 60° interval for each state. There are two types 

of control signals that can be applied to the switches. One is 180-degree conduction, in 

which each switch conducts for 180° to generate a three-level  0 ,- , dcdc VV  phase-to-

phase inverter output voltage. The other is 120-degree conduction, in which each switch 

turns on for 120° to produce a three-level 





 0 ,

2
- ,

2
dcdc VV

 phase-to-neutral inverter output 

voltage. Three switches are in ON state for 180-degree conduction, while only two 

switches are in ON state for 120-degree conduction at any instant of time. The switching 

sequence for a three-phase full-bridge inverter in 180-degree conduction is shown in 

Table 3.1. 
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Table 3.1: Switching sequence for a three-phase full-bridge inverter in 180-degree conduction. 

Multilevel inverters are capable of handling high voltage and power due to their cascaded 

structure. This feature makes them suitable for interfacing renewable energy sources such 

as PV array, fuel cell and geothermal power plant to the utility. They can overcome some 

of the drawbacks of two-level inverters such as high harmonic content, high switching 

losses and lack of reactive power compensation [200]. The voltage stress on each 

semiconductor switch of a multilevel inverter is significantly reduced compared to that 

of a two-level inverter. The output voltage of a multilevel inverter comprises several 

levels that syntheses a sinusoidal waveform. Several examples of multilevel inverters are 

multilevel inverter with cascaded DC sources, diode-clamped multilevel inverter and 

flying capacitor multilevel inverter [200]. 

The relevant Australia standard for grid-connected PV inverters is AS4777 for Grid 

connection of energy systems via inverters. Part I of this standard addresses the 

installation requirements of PV inverters, whereas Part II and Part III clarify PV inverter 

power quality requirements and grid protection requirements, respectively. Some key 

requirements for grid-connected inverters such as power factor, harmonic currents, 

voltage fluctuations and flicker, impulse protection, transient voltage limits and direct 

Switching Sequence State No. Switch States ݒ௔௕ ݒ௕௖ ݒ௖௔ 

ଵܵ, ܵଶ and ܵ଺ are on  

and ܵସ, ܵହ and ܵଷ are off 
1 100 ௗܸ௖  0 − ௗܸ௖  

ܵଶ, ܵଷ and ଵܵ are on  

and ܵହ, ܵ଺ and ܵସ are off 
2 110 0 ௗܸ௖  − ௗܸ௖  

ܵଶ, ܵଷ and ܵସ are on  

and ଵܵ, ܵସ and ܵହ are off 
3 010 − ௗܸ௖  ௗܸ௖  0 

ܵଷ, ܵସ and ܵହ are on  

and ଵܵ, ܵଶ and ܵ଺ are off 
4 011 − ௗܸ௖  0 ௗܸ௖  

ଵܵ, ܵଶ and ܵଷ are on  

and ܵସ, ܵହ and ܵ଺ are off 
5 001 0 − ௗܸ௖  ௗܸ௖  

ଵܵ, ܵହ and ܵ଺ are on  

and ܵଶ, ܵଷ and ܵସ are off 
6 101 ௗܸ௖  − ௗܸ௖  0 

ଵܵ, ܵଷ and ܵହ are on  

and ܵଶ, ܵସ and ܵ଺ are off 
7 111 0 0 0 

ܵଶ, ܵସ and ܵ଺ are on  

and ଵܵ, ܵଷ and ܵହ are off 
8 000 0 0 0 
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current injection are covered in Part II of this standard [201]. These requirements are used 

to ensure the reliability and sustainability of grid-tied PV inverters [202]. 

3.4.4 Filters 

In order to ensure a sinusoidal output current injected into the grid, a suitable filter is 

connected at the output of the grid-tied PV inverter to satisfy the power quality 

requirements of the utility. Filters can be generally classified as passive and active filters. 

Passive filters are commonly used due to their simplicity and low cost. Although active 

filters provide a better performance than passive filters in terms of reactive power 

compensation capability, they comprise active power sources that are expensive and 

require regular maintenance [203]. There are three basic topologies of passive filters, 

namely L filter, LC filter and LCL filter as shown in Fig. 3.8. 

 

Fig. 3.8: Three basic passive filter topologies: (a) L filter, (b) LC filter and (c) LCL 

filter. 

L filter is a first order filter that consists of only one inductor in series with the grid. It is 

the most efficient option among passive filters due to its simplicity. The drawback of L 

filters is that bulky inductors are required to attenuate the harmonics in the inverter output 

voltage to satisfy the power quality requirements. LC filters can suppress the disturbance 

generated by specific harmonics, but the resonance frequency of a LC filter highly 

depends on the grid impedance. This problem can be alleviated by the adoption of a LCL 

filter since the resonance frequency is determined by the filter parameters itself [196]. 

LCL filter is a third order filter, which has a good current attenuation performance and is 

widely used to interface renewable energy sources with the utility grid [204], [205]. It has 
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more degree of freedom in design compared to L and LC filters. The inclusion of the 

damping resistor (ܴௗ) in a LCL filter is necessary since ܴௗ can mitigate the effect of filter 

resonances and ensure a stable current control loop, especially when the grid impedance 

is unknown [206]. The instability of the undamped current control loop and the effect of 

ܴௗ in reducing the resonant peak have been investigated in [207]. The LCL filter topology 

will be selected in designing the single-phase grid-connected PV system described and 

simulated in Chapter 4. 

3.5 Conclusion 

This chapter has reviewed a selection of conventional MPPT techniques and GMPPT 

algorithms in locating the MPP of a PV array. The criteria for performance evaluation of 

various conventional and global MPPT techniques have also been highlighted. Power 

electronic interfaces including DC-DC converters and DC-AC inverters, and filters for 

grid-connected PV applications have been presented. These components in a single-phase 

grid-connected PV system are design, analysed and simulated in Chapter 4 to investigate 

the performance of PV array voltage response under different parameter settings of a 

digital PID controller. 
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Chapter 4  
Control, Design and Analysis of a Single-phase 

Grid-tied Photovoltaic System 

4.1 Introduction 

Many research articles have investigated the output voltage control of DC-DC converters 

[208]–[214]. Little attention has been paid to the input voltage control [215]. The control 

of the input voltage of a DC-DC converter is necessary for grid-connected photovoltaic 

(PV) applications. For most grid-tied PV applications, the output voltage of a DC-DC 

converter is maintained constant due to the DC link capacitor and the PV inverter DC link 

voltage control, while its input voltage is regulated by the MPPT operation. To track the 

MPP of a PV array with fast dynamic response and zero steady-state error, a digital PID 

controller is employed to dynamically adjust the duty cycle at a given PV array voltage 

error to increase or decrease the PV array voltage to meet the MPPT requirement. To 

optimize the performance of the digital PID controller, a well-tuned PID controller 

parameters setting is necessary. The PID controller parameters setting is determined 

based on the control-to-input voltage transfer function of the boost converter to achieve 

a desired PV array voltage response. 

In this chapter, a boost converter is used to control the voltage of a PV array for MPPT 

operation. Firstly, a brief review of closed-loop control techniques for DC-DC converters 

is presented, concentrating on voltage-mode control and peak current-mode control 

schemes. This is followed by a brief review of small signal models for a PV array, PWM 

generator and a boost converter. Secondly, four cases are developed based on whether the 

effect of the DC link capacitor is considered and different linear models selected for 

modelling a PV array. The control-to-input voltage transfer function of the boost 

converter is derived under each case. Thirdly, the boost converter design is presented and 

the corresponding frequency response is analysed. Finally, based on the derived four 

different control-to-input voltage transfer functions, four different parameter settings of a 

digital PID controller are determined. Simulation studies are carried out using the four 
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different parameter settings of the PID controller to assess their influences on the 

performance of a grid-tied PV system through its non-linear simulation model. 

4.2 Closed-loop Control Schemes for DC-DC 
Converters 

The input voltage control of a DC-DC converter is necessary for PV systems to ensure 

that they often operate at the MPP. A feedback control loop is always used in modern 

pulse-width modulation (PWM) converters for voltage regulation [200]. There are two 

common closed-loop control schemes, namely voltage mode control (VMC) and current 

mode control (CMC) [5], [216]–[218]. The working principles of these two closed-loop 

control schemes will be briefly outlined in the following subsections. 

4.2.1 Voltage mode control 

Fig. 4.1 demonstrates the VMC of a boost converter fed by a PV array. The PV array 

current (ܫ௣௩) and voltage ( ௣ܸ௩) are measured and sent to the MPPT controller to generate 

the PV array voltage reference ( ௣ܸ௩
∗ ) for the boost converter. Then, ௣ܸ௩  is compared with 

௣ܸ௩
∗  using an error amplifier [5], where an optimal dynamic response of the feedback loop 

can be achieved by the compensating network around the error amplifier [219]. The error 

between ௣ܸ௩
∗  and ௣ܸ௩  is amplified by a PID controller and converted into a duty cycle 

signal (݀). This signal is then fed to the PWM generator to generate a PWM waveform to 

drive the semiconductor switch of the boost converter. The input voltage of the DC-DC 

converter can be regulated by adjusting the duty cycle to compensate for any variations 

in the DC-DC converter input or output currents. The advantage of VMC is that only one 

single feedback loop is employed with voltage as the control variable, which makes the 

design and implementation easy [5], [220]. The shortcoming of VMC lies in its slow 

response [220]. In other words, any changes in input and output currents must first be 

translated into the changes in input and output voltages and then compensated by the 

feedback loop. For PV MPPT applications, ௣ܸ௩
∗  is characterized by fast dynamic changes 

due to the intermittent nature of environmental conditions. 
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Fig. 4.1: Functional circuit diagram of the VMC of a boost converter fed by a PV array 

adapted from [221]. 

4.2.2 Current mode control 

In order to overcome the deficiency of VMC, CMC is developed by adding an inner 

current loop to control the inductor current. The adoption of the inductor current as the 

second control variable significantly improves the load transient response [5], [222] and 

over-current protection capability [223]. This consequently improves the performance of 

the closed-loop control of PWM switching DC-DC converters. There are two control 

loops in the CMC scheme: outer voltage and inner current loops. The inner current loop 

implements a cycle-by-cycle control, which responds much faster than the outer voltage 

loop, resulting a speed difference between the two control loops [224]. CMC schemes 

can be broadly classified into two main categories, namely fixed-frequency methods and 

variable-frequency methods [225]. Fixed-frequency methods are preferred with a fixed-

frequency PWM waveform since electromagnetic interference (EMI) generated by DC-

DC converters can be limited [226]. Fixed-frequency methods have evolved into three 

variants that are peak current-mode control (PCMC) [222], [227]–[230], average current-

mode control (ACMC) [231]–[233] and charge control [234], [235] approaches. A brief 

description of PCMC scheme is presented in the subsection below. 
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4.2.2.1 Peak current mode control 

Fig. 4.2 shows the peak current-mode control (PCMC) of a boost converter controlled PV 

array. The objective of the inner current loop is to control the instantaneous peak inductor 

current (ܫ௅) to a pre-defined set-point (ܫ௅∗) [236]. This setpoint is determined by comparing 

௣ܸ௩  with ௣ܸ௩
∗  as shown in Fig. 4.2. The inner current loop implements a cycle-by-cycle 

control technique that controls the inductor current in each switching cycle, which 

provides a much faster transient response than that of the outer voltage control loop. One 

drawback of the PCMC scheme is that it suffers from instability when the duty cycle rises 

above 0.5 [237]. Fig. 4.3 demonstrates the effect of a perturbation in the inductor current 

waveform at the beginning of a switching cycle when ܦ is less than 0.5. In Fig. 4.3, the 

solid line represents the inductor current waveform at the steady state whereas the dash 

line denotes the waveform with a small perturbation at the beginning of a switching cycle. 

The steady-state inductor current increases with a rising slope of ܯଵ during the turn-on 

period of the semiconductor switch, and decreases with a failing slope of ܯଶ during the 

turn-off period. The inductor current perturbations at the start of and at the end of the 

switching cycle are represented as ∆݅௅(0) and ∆݅௅(ܶ), respectively. The relationship 

between the slopes of the inductor current and the duty cycle is given in a linear fashion 

in (4.1). The perturbation at the end of the switching cycle can be determined using (4.2) 

based on the perturbation at the beginning of the switching cycle. 

 ቚ௠మ

௠భ
ቚ = ቀ ஽

ଵି஽
ቁ (4.1) 

 ∆݅௅(ܶ) = ቀ ஽
ଵି஽

ቁ ∙ ∆݅௅(0) (4.2) 

As can be seen in (4.2), the initial perturbation will be attenuated at the end of the 

switching cycle and eventually eliminated when ܦ is less than 0.5 (shown in Fig. 4.3), 

while the initial perturbation could be amplified when ܦ is larger than 0.5 (shown in Fig. 

4.4). The instability occurs when ܦ > 0.5 is known as subharmonic oscillation [238], 

[239]. To resolve this instability issue, slope compensation is developed by adding a 

compensating sawtooth waveform into the inner current loop, as seen in Fig. 4.2. With 

slope compensation, the steady-state inductor current waveform and its perturbed 

waveform are shown in Fig. 4.5. The slope of the compensating sawtooth signal must be 
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greater than one-half of the down slope of the current waveform to guarantee current loop 

stability [223], [225]. 

 

Fig. 4.2: Functional circuit diagram of the PCMC of a boost converter controlled PV 

array adapted from [221]. 

 

Fig. 4.3: Propagation of a current perturbation in PCMC when ܦ < 0.5. 

 

Fig. 4.4: Propagation of a current perturbation in PCMC when ܦ > 0.5. 
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Fig. 4.5: Propagation of a current perturbation in PCMC with slope compensation. 

Another disadvantage of the PCMC is its poor noise immunity [236]. A current spike is 

initialized when the semiconductor switch turns on, which may momentarily trigger the 

comparator [240]. As a result, the output PWM pulses could have a very low duty cycle. 

This problem can be mitigated by a “leaking edge blanking” technique applied to the 

comparator [241]. This technique adds a small “blanking period” at the beginning of each 

switching cycle where the amount of blanking period overlaps the period when a current 

spike occurs. 

4.3 Input Voltage Control of the Boost Converter 
Fed by a PV Array 

In this section, a linear model for the PV array and boost converter is developed for 

control system analysis. This linear model is used to study the PV array voltage response 

with different parameter setting of the digital PID controller. This linear model neglects 

all the parasitic resistances of the inductors and capacitors in the boost converter. Voltage-

mode control is employed to control the PV array voltage for MPPT operation. Fig. 4.6 

shows the block diagram of the feedback control of the input voltage of a boost converter 

fed by a PV array. This voltage feedback control loop consists of a PID controller ܥ௉ூ஽, 

a PWM generator and a boost converter fed by a PV array. The output signal of the digital 

PID controller ௉ܸூ஽  is fed into a PWM generator to produce switching pulses to drive the 

semiconductor switch in the boost converter. The control-to-input voltage transfer 

function of the boost converter is represented as ܩ௩ௗ. For the PV array voltage control, 

௉ܸ௏
∗  denotes the reference of the PV array voltage whereas ௉ܸ௏  symbolises the measured 

௅௠௔௫ܫ

ᇱܶܦ

ଵܯ

݅௅(0)

݅௅(ܶ)

ܶܦ ܶܦ ᇱܶܦ
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PV array voltage. ܥ௉ூ஽ represents the transfer function of a digital PID controller that has 

the following parallel form: 

(ݖ)௉ூ஽ܥ  = ௣ܭ ௜ܭ+ ௦ܶ
ଵ

௭ିଵ
ௗܭ+ ∙

ଵ

ೞ்

௭ିଵ
௭

 (4.3) 

where ܭ௣,	ܭ௜, and	ܭௗ represent the proportional, integral and derivative gains, and ௦ܶ is 

the sampling time of the digital controller. ௦ܶ has a much larger value than the sampling 

time of the simulation model of a single-phase grid-tied PV system. To derive the control-

to-input voltage transfer function, four case studies will be conducted in Section 4.3.4 

under four different assumptions regarding whether the DC link capacitor or the 

equivalent Thévenin's resistance is taken into consideration. The control-to-input voltage 

transfer function of the boost converter is also determined under each case in Section 

4.3.4. 

 

Fig. 4.6: Block diagram of the input voltage control loop of a boost converter. 

4.3.1 Small signal model for a PV array 

A simple approach to derive the small signal model for a PV array is to use an ideal 

constant DC current source to simulate PV arrays as shown in Fig. 4.7. For small signal 

analysis, ˆ pvv  and p̂vi  are defined as the small signal increments of the PV array voltage 

and current, respectively. These small increments are relative to the steady-state values 

of the corresponding variables that are represented by ௣ܸ௩  and ܫ௣௩, respectively. The small 

signal model shown in Fig. 4.7 assumes that the PV array always operates at its MPP in 

steady state conditions [181]. 
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Fig. 4.7: Small signal model for a PV array using an ideal constant DC current source. 

A common two-piecewise-linear model is presented in [217], [218], which divides the 

PV array I-V curve into two linear segments. The equivalent circuit of the two-piecewise-

linear model and its two piecewise-linear I-V curves are shown in Fig. 4.8 (a) and (b), 

respectively. 

 

 (a) (b) 

Fig. 4.8: (a) Equivalent circuit of the two-piecewise-linear model for a PV array 

and (b) its piecewise-linear I-V curves adapted from [218]. 

Note that ݅௉௏  and ݒ௉௏  symbolize the full output current and voltage of the PV array, 

respectively. ܫ௉௏ stands for the PV array current whereas ௢ܸ௖ symbolizes the open circuit 

voltage of the PV array. ܴ௦ and ܴ௣ stand for the series and parallel resistance of the PV 

array, respectively. The information provided in manufacturer’s datasheets can be used 

to compute the parameters of the two-piecewise-linear model shown in Fig. 4.8 (b). This 

information includes: the open circuit voltage ( ௢ܸ௖), the short circuit current (ܫ௦௖), the 
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voltage at the MPP ( ெܸ௉௉) and the current at the MPP (ܫெ௉௉). The parameters of the two-

piecewise-linear model can be determined as follows [217], [218]: 

 ܴ௦ =
௏೚೎ି௏ಾುು

ூಾುು
 , ܴ௣ =

௏ಾುು
ூೞ೎ିூಾುು

− ܴ௦ (4.4) 

௉௏ܫ  = ௦௖ܫ
ோೞାோ೛
ோ೛

 (4.5) 

There are two linear segments in the PV array I-V curve shown in Fig. 4.8 (b), each 

segment can be represented by its corresponding equivalent circuit model shown in Fig. 

4.9. 

 

Fig. 4.9: Two equivalent circuit models of a PV array:  

(a) Voltage source and (b) Current source [218]. 

If an equivalent Thévenin's circuit is used to represent the PV array, the equivalent voltage 

௘ܸ௤  and equivalent resistance ܴ௘௤  can be calculated based on the type of equivalent circuit 

model employed. 

If the current source model (Fig. 4.8 (b)) is adopted, we have: 

 ௘ܸ௤ = ௉௏ܴ௣ ܴ௘௤ܫ = ܴ௣ + ܴ௦ (4.6) 

If the voltage source model (Fig. 4.8 (a)) is adopted, we have: 

 ௘ܸ௤ = ௢ܸ௖  ܴ௘௤ = ܴ௦ (4.7) 

The authors of [40] proposed a piecewise linear model that approximates the PV array 

output characteristics in four separate regions, namely, the current source region, power 

(a) (b)
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zone I, power zone II and voltage source region. These four regions are illustrated in Fig. 

4.10 to approximate an I-V curve of a PV array. When a PV array works in the current 

source region, the control to PV array voltage transfer function of the plant consisting of 

a PV array and a boost converter exhibits a slightly damped frequency response. This 

damped response imposes some control issues on the plant and produces considerable 

power losses [40]. 

 

Fig. 4.10: A four-pieces linear approximation of an I-V curve. 

4.3.2 Transfer function of a PWM generator 

A PWM generator converts duty cycle into a constant-frequency PWM signal to control 

the on/off states of a semiconductor device [242]. This constant-frequency PWM signal 

is generated by comparing a sawtooth waveform with an amplitude ௣ܸ with the output 

signal of a PID controller ݒ௖ [243]. The output of a PWM generator is at high level when 

௖ܸ  is higher than the sawtooth and is at low level when ௖ܸ  is lower than the sawtooth [242]. 

The transfer function of a PWM generator derived from a linear relation is given as 

follows: 

 
ௗ(௦)

௏ು಺ವ(௦)
= ଵ

௏೛
 (4.8) 
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The transfer function is constant, meaning only a constant gain is added to the overall 

voltage control loop. In the subsequent derivation of the control-to-input voltage transfer 

function of a boost converter, ௣ܸ is assumed to be 1, indicating a unity gain for the overall 

voltage control loop. 

4.3.3 PWM switch model 

To design appropriate control strategies for the DC-DC converter, small signal analysis 

is needed to determine the control-to-input transfer function of the system consisting of a 

PV array with its associated DC-DC converter. An ideal constant voltage source with an 

magnitude of ௗܸ௖  is assumed to connect at the output of the DC-DC converter [218]. The 

system schematics is shown in Fig. 4.11. 

 

Fig. 4.11: Schematics of the boost converter fed by a PV array. 

There are two analytical approaches used to derive the small signal model of the PV 

system, which are [40], [181], [244]–[246]: 

 State-space averaging 

 PWM switch model 

The state-space averaging approach derives the state space model of the system from the 

differential equations describing the dynamics of the DC-DC converter based on the state 

variables [247]. The state variables for the model are the inductor current and capacitor 

voltage [181]. The drawback of this approach is that it describes the system in a more 

complex matrix structure with a high number of state variables, especially when the 

converter topology has more than two passive elements, such as for the Ćuk and SEPIC. 
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An alternative approach to derive the small signal model is by adoption of the PWM 

model developed by Vorpérian [244] in 1986. The advantage of this approach is that it 

converts the derivation problems of small signal models of DC-DC converters into simple 

circuit analysis problems and solves them using fundamental circuit laws such as KCL 

and KVL. This approach lumps all the active switches (IGBT, MOSFET, etc.) and passive 

switches (diodes) within the converter together in a three-terminal nonlinear device 

shown in Fig. 4.12. For representation reasons,	ܽ, ݌ and ܿ symbolise the active, passive 

and common terminals of the PWM switch model, respectively [244]. The instantaneous 

variables of input current, output current, input voltage and output voltage of the PWM 

switch network are designated as aî , cî , apv̂ , and cpv̂ , respectively. ݀ symbolises the 

instantaneous value of the duty cycle of the converter. 

 

Fig. 4.12: PWM switch model. 

The instantaneous values of the circuit variables of the PWM switch model can be 

obtained by superposition with the steady state portion and perturbation portion of the 

variables, which form the DC and small signal models of the PWM switch, respectively. 

The DC and small signal models of a PWM switch are shown in Fig. 4.13 (a) and (b), 

respectively. 

c

p
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 (a) (b) 

Fig. 4.13: DC and small signal models of a PWM switch: (a) DC model and (b) small 

signal model. 

For DC analysis, the relationships between the DC variables of the PWM switch are: 

௔ܫ  =  ௖ (4.9)ܫܦ

 ௖ܸ௣ = )ܦ ௔ܸ௣ − ′ܦ																																		,(ᇱܦ௘ݎ௖ܫ = 1 −  (4.10) 			ܦ

where ௖ܸ௣, ௔ܸ௣, ܫ௔ and ܫ௖ represent the corresponding DC quantities of the circuit at its 

equilibrium point. ܦ stands for the duty cycle at steady state and ݎ௘ is influenced by the 

equivalent series resistance (ESR) of capacitors and the equivalent load resistance, which 

depends on the converter topology [244]. For boost and buck-boost converters, the value 

of ݎ௘ can be calculated by: 

௘ݎ  =
௥಴೚ ∙ோ
௥಴೚ାோ

 (4.11) 

where ݎ஼೚ symbolises the ESR of the output capacitor and ܴ represents the load resistance.  

Let us define that the perturbation portions of the input current, output current, input 

voltage and output voltage of the PWM switch network are represented by aî , cî , apv̂ , 

and cpv̂ , respectively. For small signal analysis, the V-I relations in Fig. 4.13 (a) can be 

expressed using perturbation variables as follows: 

 dIiDi cca
ˆˆˆ   (4.12) 

ܽ

1 ܦ

p

௔ܸ௣

ܦ
መ݀

௖ܫ መ݀

ܿ
௘aîݎᇱܦܦ cî

1 ܦ

p

ܿܽ
௔ܫ ௘ݎᇱܦܦ௖ܫ
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D
dVD'ri

D
v

v Dec
cp

ap

ˆ
ˆˆ

ˆ   (4.13) 

where 

 ஽ܸ = ௔ܸ௣ + ܦ)௖ܫ −  ௘ (4.14)ݎ(′ܦ

In the following analysis of the closed-loop control of PV array voltage, an ideal DC/DC 

converter is considered, which does not include the ESRs of inductor and capacitors. The 

modelling of parasitic resistances of inductors and capacitors in a DC/DC converter 

circuit arises out of the research scope of the project and could be targeted as further 

research. Thus, the ESR of the capacitors are not considered in the subsequent analysis, 

in other words, ݎ௘ is neglected in the small signal model for the PV system. 

4.3.4 Development of the control-to-input voltage transfer 
functions of the PV system 

As the small signal model of a PWM switch is developed, we can derive the small signal 

model of the PV system by substituting the small signal model of the PWM switch into 

the PV system circuitry shown in Fig. 4.11. By changing the directions of the circuit 

variables and representing the variables in the PWM switch using the state variables 

(inductor current and capacitor voltage), the small signal model of the PV system is 

obtained. Four different cases are considered in the following subsections. These four 

cases are developed based on whether the equivalent Thévenin's resistance of the PV 

array (ܴ௘௤) or the DC link capacitor (ܥௗ௖) is taken into consideration in the small signal 

model of the PV system. Four different control-to-input voltage transfer functions are 

derived in the four case studies and will be used in subsequent analysis of frequency 

response of the PV system and tunning of the digital PID controller. 

4.3.4.1 Case 1 

This case ignores the effects of both ܥௗ௖  and	ܴ௘௤ , and uses an ideal constant DC current 

source to represent the PV array. The small signal model of the PV system is shown in 

Fig. 4.14. 
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Fig. 4.14: Small signal model of the PV system in Case 1. 

Applying KVL to the equivalent circuit, we have: 

ො௣௩ݒ  − ො௅ݒ + ො௣௖ݒ = 0 (4.15) 

 ௩ො೛೎
஽
= ௏೏೎

஽
መ݀ (4.16) 

The voltage-current relations of the inductor and input filter capacitor are given as follows: 

 
pv

L
pv sC

iv
ˆ

ˆ   (4.17) 

 LL isLv ˆˆ   (4.18) 

Substituting (4.16), (4.17) and (4.18) into (4.15), we have: 

 0ˆˆ1











 dVisL

sC dcL
pv

 (4.19) 

The control-to-inductor current transfer function can be derived as follows: 

 
pv

pvdc

pv

dcL

LCs
CsV

sL
sC

V
sd
si

211)(ˆ
)(ˆ





  (4.20) 

Thus, the control-to-input voltage transfer function in Case 1 is given as follows: 

1
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ܦ
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Lî

Lî
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pv

dcL

pv

pv
vd LCs

V
sd
si

sCsd
sv

sG 21, 1)(ˆ
)(ˆ1

)(ˆ
)(ˆ

)(


  (4.21) 

4.3.4.2 Case 2 

This case ignores the effect of ܥௗ௖  and uses the equivalent Thévenin's circuit model to 

represent the PV array. The small signal model of the PV system is shown in Fig. 4.15. 

 

Fig. 4.15: Small signal model of the PV system in Case 2. 

Using the same derivation procedures as those for case 1, the control-to-input voltage 

transfer function in case 2 can be derived as follows: 

(ݏ)௩ௗ,ଶܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ோ೐೜௏೏೎
௅஼೛ೡோ೐೜௦మା௅௦ାோ೐೜

 (4.22) 

Equation (4.22) can be re-written in the prototype second-order system form as follows 

[139]: 

(ݏ)௩ௗ,ଶܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ఓఠ೙మ

௦మାଶకఠ೙௦ାఠ೙మ
 (4.23) 

where ߤ = − ௗܸ௖ , ߱௡ = 1 ඥܥܮ௣௩⁄  and ߦ = ܮ√ (2 ∙ ܴ௘௤ ∙ ඥܥ௣௩)ൗ ߦ .  can be any positive 

value depending on the parameters of the boost converter. In this case, (4.22) indicates a 

second-order system with two complex poles in the LHP. 
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In [40], modelling of the PV system is achieved by using the state-space averaging 

approach described in Section 4.3.3. The control-to-input voltage transfer function is 

given as follows: 

(ݏ)௩ௗ,ଶܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ௄೚
௦మାଶక೔ఠ೔௦ାఠ೔

మ (4.24) 

where 

௢ܭ  =
௏೏೎ା௏ಷೈ
௅஼೛ೡ

 (4.25) 

 ߱௜ = ට
ோ೐೜ାோಽ
ோ೐೜௅஼೛ೡ

 (4.26) 

௜ߦ  =
ோ೐೜ோಽ஼೛ೡା௅
ଶோ೐೜௅஼೛ೡఠ೔

 (4.27) 

ிܸௐ and ܴ௅ symbolise the diode forward voltage drop and the equivalent series resistance 

of the inductor, respectively. If both ிܸௐ and ܴ௅ are neglected, (4.24) becomes exactly 

the same as (4.23). 

4.3.4.3 Case 3 

This case considers the effect of ܥௗ௖  and ignores the effect of ܴ௘௤  to represent the PV 

array. The small signal model of the PV system is shown in Fig. 4.16. 
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Fig. 4.16: Small signal model of the PV system in Case 3. 

Applying KVL to the circuit, we have: 

ො௣௩ݒ  − ො௅ݒ + ො௣௖ݒ −
௩ො೛೎
஽
+ ௏೏೎ௗ෠

஽
= 0 (4.28) 

 ௩ො೛೎
஽
= ௏೏೎ௗ෠

஽
+  ොௗ௖ (4.29)ݒ

Substituting (4.29) into (4.28) and rearranging it, we have: 

ො௣௩ݒ  − ො௅ݒ + ቀ1 − ଵ
஽
ቁ ൫ܦ ෠ܸௗ௖ + ௗܸ௖ መ݀൯ +

௏೏೎
஽

መ݀ = 0 (4.30) 

Applying KCL at node ݌, we have: 

 dcpvLL idIiDi ˆˆˆˆ   (4.31) 

The I-V relations of the passive elements within the equivalent circuit are given by: 
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pv
pv sC

i
v

ˆ
ˆ   (4.32) 

 pvL isLv ˆˆ   (4.33) 
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ˆ
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Using the I-V relations given by (4.32) to (4.34), (4.30) can be rewritten as follows: 

 0ˆˆˆ11ˆ
ˆ
















  d

D
VdV

sC
iD

D
isL

sC
i dc

dc
dc

dc
pv

pv

pv  (4.35) 

From Fig. 4.16, we have: 

 Lpv ii ˆˆ   (4.36) 

Equations (4.31) and (4.35) are two simultaneous equations. The control-to-input current 

transfer function of the boost converter can be calculated by substitution of variables: 

 
dcpvpvdc

pvpvdcpvdcpv

CDCLsCC
IDCsVCC

sd

si



 22 )'(

'

)(ˆ
)(ˆ

 (4.37) 

Therefore, the control-to-input voltage transfer function can be expressed as follows: 

 
sCDCLsCC

IDsVC
sdsC

si
sd
sv

sG
dcpvpvdc

pvdcdc

pv

pvpv
vd ))'((

'
)(ˆ

)(ˆ

)(ˆ
)(ˆ

)( 233, 


  (4.38) 

From the above control-to-input voltage transfer function, it can be seen that the plant is 

an open loop marginally stable system with one zero in the LHP, one integrator and two 

poles on the imaginary axis. 

4.3.4.4 Case 4 

This case considers the effect of both ܥௗ௖  and ܴ௘௤  in the small signal model. The small 

signal model of the PV system is redrawn in Fig. 4.17. 
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Fig. 4.17: Small signal model of the PV system in Case 4. 

Using the same derivation procedures as those for Case 3, the control-to-input current 

transfer function can be derived as follows: 

 
2223
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)'())'((

')'(

)(ˆ
)(ˆ

DsRCDRCLsCsLRCC

IDsRIDCVCsVRCC

sd

si

eqdceqpvdceqpvdc

pveqpvpvdcdcdceqpvdcpv




  (4.39) 

Therefore, the control-to-input voltage transfer function can be expressed as follows: 

(ݏ)௩ௗ,ସܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ஼೏೎ோ೐೜௏೏೎௦ା஽ᇲூ೛ೡோ೐೜
஼೏೎஼೛ೡ௅ோ೐೜௦యା஼೏೎௅௦మା൫஼೛ೡோ೐೜(஽ᇲ)మା஼೏೎ோ೐೜൯௦ା(஽ᇲ)మ

 (4.40) 

From the above transfer function, it can be seen that the plant has one zero in the left-half 

plane, which defines an open-loop unstable system. 

4.4 Design of the Single-phase Grid-Tied PV System 

The single-phase grid-tied PV system consists of a 3	ܹ݇ PV array, a boost converter, a 

H-bridge inverter, a LCL filter and a single-phase grid. The design of the PV array, the 

boost converter, the LCL filter and single-phase grid will be discussed in Sections 4.4.1, 

4.4.3, 4.4.4 and 4.4.5, respectively. The boost converter is used to maximize the energy 
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harvest from a PV array using a MPPT controller. Voltage oriented control (VOC) is 

implemented to control the operation of PV inverter to regulate the DC link voltage to 

400 V. The purpose of using the LCL filter is to reduce output voltage harmonics and 

minimize the current distortion injected into the utility grid. Fig. 4.18 shows the schematic 

diagram of the single-phase grid-tied PV system. The design of the PV array, the boost 

converter, the LCL filter and the single-phase grid will be discussed in the following 

subsections. 

 

Fig. 4.18: Schematic diagram of the single-phase grid-tied PV system. 

4.4.1 PV array design 

The PV array is designed based on the BP 380 solar panel. The specifications of a BP 380 

solar panel have been tabulated in Table 2.2. The maximum power output of the grid-tied 

PV system is specified as 3	ܹ݇. To achieve a total power rating that is slightly higher 

than 3	ܹ݇, two parallel-connected PV strings of 19 series-connected BP 380 PV modules 

are used to construct the PV array. The maximum total power output of the PV array 

( ௠ܲ௔௫	_௔௥௥௔௬) at STC is calculated as follows: 

௠ܲ௔௫	_௔௥௥௔௬ = ௠ܸ௣௣_௠௢ௗ௨௟௘ ∙ ௠௣௣_௠௢ௗ௨௟௘ܫ ∙ ܯܰܶ = 17.6 × 4.55 × 38 = 3043.04	ܹ (4.41) 

where ܶܰܯ stands for the total number of modules in a PV array, ௠ܸ௣௣_௠௢ௗ௨௟௘  and 

௠௣௣_௠௢ௗ௨௟௘ܫ  represent the voltage and current at the MPP in a module, respectively. These 

parameters will also be used in Section 4.4.2 to determine the voltage and current 

operating points of the boost converter that is fed by the PV array. 
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4.4.2 DC analysis of the PV system 

DC operating point analysis is necessary to determine the input and output parameters of 

the boost converter when the PV system operates at steady state. DC analysis is conducted 

with the assumption that the PV array always operates at its MPP in steady-state 

conditions. The specifications of the PV array have been provided in Section 4.4.1. 

According to the parameters of the PV module in Table 2.2, the input voltage, current and 

power of the boost converter can be calculated as follows: 

 ௜ܸ௡ = ௠ܸ௣௣_௠௢ௗ௨௟௘ × 19 = 17.6 × 19 = 334.4	ܸ (4.42) 

௜௡ܫ  = ௠௣௣_௠௢ௗ௨௟௘ܫ × 2 =  (4.43) ܣ	9.1

 ௜ܲ௡ = ௠ܲ௔௫,_௔௥௥௔௬ = 3043.04	ܹ (4.44) 

The two-piecewise-linear model shown in Fig. 4.8 (a) is used to model a BP 380 solar 

panel. According to (4.4) and (4.5), the parameters of the two-piecewise-linear model in 

modelling the BP 380 PV module are calculated as follows: 
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



  (4.47) 

Using the current source model shown in Fig. 4.9 (b), the equivalent Thévenin's resistance 

of the PV array is calculated as follows: 

 ܴ௘௤ = ൫ܴ௣ + ܴ௦൯ ∙
ேೞ೐ೝ
ே೛ೌೝ

= (69.41 + 0.989) × ଵଽ
ଶ
= 668.8	Ω (4.48) 

where ௦ܰ௘௥  symbolizes the number of PV modules per string and ௣ܰ௔௥  stands for the 

number of parallel-connected strings in the PV array. 

As the DC link voltage is regulated at	400	ܸ, the DC link current can be calculated by: 
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ௗ௖ܫ  =
௉೘೛೛

௏೏೎
= ଷ଴ସଷ.଴ସ		௞ௐ

ସ଴଴	௏
=  (4.49) ܣ	7.6

The steady-state duty cycle value can be calculated by using the relationship between 

input and output voltages for the boost converter: 

ܦ  = 1 − ௏೔೙
௏೏೎

= 1 − ଷଷସ.ସ	௏
ସ଴଴	௏

= 0.164 (4.50) 

The parameters of the PV system in steady-state analysis are tabulated in Table 4.1. 

Table 4.1: Parameters of the PV system in DC analysis. 

Parameter Value 

Boost converter input voltage ( ௜ܸ௡) 334.4	ܸ 

Boost converter input current (ܫ௜௡) 9.1	ܣ 

Boost converter input power ( ௜ܲ௡) 3043.04	ܹ 

Equivalent Thévenin's resistance (ܴ௘௤) 668.8	Ω 

DC link current (ܫௗ௖) 7.6	ܣ 

DC link voltage ( ௗܸ௖) 400	ܸ 

Steady-state duty cycle (ܦ) 0.164 

4.4.3 Boost converter design 

The primary use of a boost converter is to extract power from the PV array using MPPT 

techniques. In this design, the boost converter is assumed to always operate in continuous 

conduction mode (CCM). It is always desirable to have a DC-DC converter with high 

switching frequency since the size of both the inductors and capacitors can be reduced. 

Effect of PV array voltage ripple can be mitigated with high switching frequency. 

However, power loss in the switches is increased with high switching frequency, which 

reduces the overall efficiency of the converter and may require a large heat sink to 

dissipate the excessive heat generated by the switches [248]. Therefore, it is better to 

select the switching frequency that compromises between components size and the 

converter efficiency [200]. In this design, the boost converter is assumed to always 

operate in CCM and the switching frequency is selected as	10	݇ݖܪ. 
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4.4.3.1 Determination of the minimum inductance for CCM 

The selection of the inductance for a boost converter is based on the value of the duty 

cycle and the maximum allowed ripple current. If the allowable ripple current is too high, 

the electromagnetic interference (EMI) is significant whereas an unstable PWM operation 

may occur when the allowable ripple current is too low [249]. Initially, the output current 

of the boost converter is calculated by: 

௢ܫ  =
௣೛ೡ
௏೏೎

= ଷ଴ସଷ.଴ସ	
ସ଴଴

=  (4.51) ܣ	7.6

A rule of thumb is that the inductor ripple current ∆ܫ௅ is selected as 30% of the maximum 

input current, which is calculated by: 

௅ܫ∆  = 30%× ௜௡ܫ =  (4.52) ܣ	2.73

Thus, the minimum inductance of the boost converter is calculated as: 

ܮ  = ௏೘೛೛×஽
௙×∆ூಽ

= ଷଷସ.ସ×଴.ଵ଺ସ
ଵ଴଴଴଴×ଶ.଻ଷ

=  (4.53) ܪ݉	2

Therefore, the actual inductance value is selected as	2	݉ܪ. 

4.4.3.2 Power decoupling capacitors design for the grid-tied PV 
system 

The two power decoupling capacitors connected at the input and output terminals of the 

boost converter make a key contribution to the system’s power stability and voltage 

regulation. The capacitor connected at the input terminal is known as the input filter 

capacitor (ܥ௣௩) whereas the capacitor connected at the output is known as the DC link 

capacitor (ܥௗ௖). These two capacitors are shown in Fig. 4.18 in Page 95. 

4.4.3.2.1 Calculation of the DC link capacitance 

The DC link capacitor is used as a load-balancing energy storage device between the DC 

link and the AC grid side [182]. This component is connected in parallel with the inverter 

to maintain a stable and fixed DC voltage. This component is also known as the power 

decoupling capacitor as it decouples the PV array and the grid. Bulk electrolytic 
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capacitors are adopted for input filter capacitors due to their low cost per Farad and high 

capacitance per volume, which creates the system reliability issues since the electrolytic 

capacitors have a limited life span [184]. The life span of a commercial electrolytic 

capacitor used as a DC link capacitor for power balancing is only about 10 years, which 

is significantly short when compared to the typical life expectancy of a commercial PV 

panel (about 25 years) [250]. Therefore, the electrolytic capacitor is the main defect factor 

that restricts the life span of grid-tied PV systems. The total reliability of grid-tied PV 

systems may increase if electrolytic capacitors are replaced with film capacitors [251]. 

The grid power ripple with a double-line frequency inevitably produces a double-line-

frequency voltage oscillation at the DC link and lead to overvoltages on the 

semiconductor switches in the inverter [188]. This voltage oscillation at the DC link can 

propagate to the input voltage of the boost converter and lead to inaccurate MPPT 

operation. The adoption of a DC link capacitor can mitigate the effects of the double-line-

frequency voltage ripple of the grid on the DC link voltage and the PV array voltage and 

alleviate the stress on the IGBT switches. The amplitude of DC link voltage ripple is 

determined by the DC link voltage, the capacitance of the DC link capacitor and the power 

injected to the grid. Small DC link capacitors result in a disadvantage of the inverter 

output current distortion by low order harmonics when compared to large DC link 

capacitors [188]. The impact of large and small bulk DC link capacitors on the PV array 

voltage waveform is illustrated in [181]. 

The instantaneous charge/discharge power of the DC link capacitor (݌௖) can be calculated 

using (4.54) by adopting an energy-balancing equation between the DC and AC sides of 

the grid-tied inverter [182], [252]. The energy stored in the DC-link capacitor ( ௖ܹ) can 

be expressed in (4.55) by integrating (4.54) over a half cycle, since the stored energy is 

equal to the discharging electric charge of the capacitor in a half cycle of the power ripple 

[182]. 

௖݌  = ௣௩݌ − ௚݌ = ௣௩൫1݌ − cos൫2 ௙߱ݐ൯൯ (4.54) 

 ௖ܹ = ∫ ݐ௖݀݌
ഏ
మ
଴ = ௣೛ೡ

ఠ೑
 (4.55) 
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where ݌௣௩  represents the instantaneous output power of the PV array, ݌௚  is the 

instantaneous grid power, and ௙߱  is two times the utility grid angular frequency. 

Additionally, the stored energy can also be obtained from the relationship between the 

electric charge and voltage across the capacitor as [182]: 

 ௖ܹ =
ଵ
ଶ
)ௗ௖ܥ ௠ܸ௔௫

ଶ − ௠ܸ௜௡
ଶ ) (4.56) 

where ௠ܸ௔௫  and ௠ܸ௜௡  represent the upper and lower voltage limits of the DC link 

capacitor, respectively. ܥௗ௖  symbolises the DC link capacitance. Thus, (4.56) can be 

rearranged as: 

 ଵ
ଶ
)ௗ௖ܥ ௠ܸ௔௫

ଶ − ௠ܸ௜௡
ଶ ) = ܸ∆ௗ௖ܥ ∙ ௗܸ௖ =

௣೛ೡ
ఠ೑

 (4.57) 

ௗ௖ܥ  =
௣೛ೡ

ఠ೑∙∆௏∙௏೏೎
 (4.58) 

where, ∆ܸ = ௠ܸ௔௫ − ௠ܸ௜௡  stands for the amplitude of the DC link voltage ripple. In this 

analysis, the reference DC link voltage ௗܸ௖  is fixed at	400	ܸ. To mitigate the effects of 

the DC link voltage ripple on the PV array voltage, a small percentage of DC link voltage 

ripple is selected. In this design, the DC link voltage ripple is selected as 1% of the DC 

link voltage, which is 4 V. Therefore, the DC link capacitance can be calculated as follows: 

ௗ௖ܥ  =
ଷ଴ସଷ.଴ସ

ସ×ସ଴଴×ଶ×గ×ହ଴
=  (4.59) ܨ݉	6.054

To round up to the nearest standard capacitor value, the DC link capacitance value is 

chosen as 6.5	݉ܨ. 

4.4.3.2.2 Calculation of the input filter capacitance 

The input filter capacitor is used to reduce the PV array voltage ripple under normal 

operating conditions. It can also prevent any damages in the boost converter induced by 

the PV array voltage variations due to the intermittency of solar energy. The current ripple 

of the inductor will result in a noticeable voltage ripple in the PV array that could be 

attenuated by a DC input filter capacitor. Under the assumptions that the nonlinearity of 

the PV array output characteristics are neglected and the boost converter always operates 
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in continuous conduction mode (CCM), the voltage ripple of the input filter capacitance 

can be simply derived as follows [182]: 

 ∆ ௣ܸ௩ =
஽்మ௏೛ೡ
ସ஼೛ೡ௅

= ஽௏೛ೡ
ସ஼೛ೡ௅௙మ

 (4.60) 

Rearranging (4.60) and substituting the parameters of the boost converter, the input filter 

capacitance is calculated in (4.61). It is noted that the PV array voltage ripple is selected 

as 1% of the voltage at the MPP, which is	3.344	ܸ. 

௣௩ܥ  =
஽௏೛ೡ

ସ∆௏೛ೡ௙మ௅
= ଴.ଵ଺ସ×ଷଷସ.ସ

ସ×ଷ.ଷସସ	×ଶ×ଵ଴షయ×ଵ଴଴଴଴మ
= 2.05 × 10ିହ	(4.61) ܨ 

For simulation purposes, the input filter capacitance is determined as	47	ܨߤ. 

In summary, the parameters of the boost converter are tabulated in Table 4.2. 

Table 4.2: Parameters of the boost converter. 

Parameter Value 

 ܪ݉	2 ܮ

 ܨߤ	௣௩ 47ܥ

ௗ௖ܥ  ܨ݉	6.5 

௦݂  ݖܪ݇	10 

4.4.4 Single-phase LCL filter design 

A single-phase LCL filter is used to reduce the harmonics generated by the H-bridge 

inverter as shown in Fig. 4.18. It provides better decoupling between the H-bridge inverter 

and the grid. The schematics of a single-phase LCL filter is shown in Fig. 4.19. The 

switching frequency of the H-bridge inverter is chosen as 10	݇ݖܪ. Good attenuation 

results can be achieved with the adoption of small values of inductors and capacitors as 

well as a low switching frequency [253], [254]. The procedures for designing a LCL filter 

have been outlined in [254], [255]. The same procedures will be used in the following 

analysis. 
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Fig. 4.19: Schematics of a single-phase LCL filter. 

The base impedance and base capacitance are calculated initially since the filter 

capacitance is a percentage of the base values: 

 ܼ௕ =
ா೙మ

௉೛ೡ
= ଶଷ଴మ

ଷ଴଴଴
= 17.63	Ω (4.62) 

௕ܥ  =
ଵ

ఠ೒௓್
= ଵ

ଶగ×ହ଴×ଵ଻.଺ଷ
= 1.8 × 10ିସ	(4.63) ܨ 

For the design of the filter capacitor, the new version of AS 4777 standard for Grid 

connection of energy systems via inverters stipulated that the power factor is in the range 

of 0.95 leading to 0.95 lagging for PV inverters with rated nominal output currents less 

than 20 A [256], thus the maximum reactive power absorbed by the filter capacitor is 

given as follows: 

 ܳ஼௔௣ =
௉೘ೌೣ	_ೌೝೝೌ೤

଴.ଽହ
∙ √1 − 0.95ଶ =	 ଷ଴ସଷ.଴ସ	

଴.ଽହ
× √1 − 0.95ଶ =  (4.64) ݎܽݒ݇	1

Thus, the filter capacitance is calculated as follows: 

௙ܥ  =
ொ಴ೌ೛
ఠ೒∙ா೙మ

= ଵ଴଴଴
ଶగ×ହ଴×ଶଷ଴మ

=  (4.65) ܨߤ	60

The percentage of the reactive power absorbed by the filter capacitor ݔ is calculated as 

follows: 

ݔ  = ஼೑
஼್
= 0.33 (4.66) 

The design of the inverter side inductance proceeds from the fact that it limits the required 

current ripple at the inverter side by up to 10% of the rated current [254], [255]. 

௙ܥ

ܴௗ

ܮ ௜ ௚ܮ

௜ݒ ௚ݒ



Chapter 4 

103 | P a g e  

௜ܮ  =
௏೏೎

ଵ଺௙ೞ∆ூಽ೘ೌೣ
 (4.67) 

௅௠௔௫ܫ∆  = 0.1 × √ଶ௉ುೇ
ா೙

 (4.68) 

The inverter side inductance can be calculated as follow: 

௜ܮ  =
ସ଴଴

ଵ଺×ଵ଴଴଴଴×଴.ଵ×√మ×యబరయ.బర	మయబ

=  (4.69) ܪ݉	1.3

The relation between the inverter side inductance and grid side inductance is denoted as 

the index	ݎ, which is shown as follows: 

௚ܮ  =  ௜ (4.70)ܮݎ

The current ripple attenuation factor ݇௔ at the grid side can be calculated by considering 

the inverter as a current source at each harmonic frequency. In this design, ݇௔ is assumed 

to be	20%. Equations (4.71) and (4.72) calculate the grid side inductance by eliciting the 

relationship between the harmonic current generated by the inverter and the one injected 

to the grid [255]: 

 ݇௔ =
ଵ

|ଵା௥[ଵି௅೔೙ೡ஼್ఠೞೢమ ௫]|
 (4.71) 

௚ܮ  =
ට

భ
ೖೌ
మାଵ

஼೑௪ೞೢమ
 (4.72) 

According to (4.71) and (4.72), ܮ௚  and ݎ  are calculated as 25.33	ܪߤ  and 0.018, 

respectively. 

The last step is to determine the resonant frequency of the LCL filter by calculating the 

damping resistance	ܴௗ. The purpose of the damping resistance is to guarantee enough 

attenuation in the switching frequency of the inverter. The resonant frequency ௥݂௘௦  and 

the damping resistance ܴௗ for the LCL filter can be calculated as: 

 ௥݂௘௦ =
ଵ
ଶగ
× ට

௅೔ା௅೒
஼೑×௅೔×௅೒

 (4.73) 
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 ܴௗ =
ଵ

ଷఠೝ೐ೞ஼೑
 (4.74) 

Substituting all relevant values gives ௥݂௘௦ = and ܴௗ ݖܪ݇	4.12 = 0.2139	Ω. 

Finally, specifications of the LCL filter are tabulated Table 4.3: 

Table 4.3: LCL filter specifications. 

Parameter Value 

Inverter side inductance (ܮ௜) 1.3	݉ܪ 

Grid side inductance (ܮ௚) 25.3	ܪߤ 

Damping resistance (ܴௗ) 0.2139		Ω 

Filter capacitance (ܥ௙) 60	ܨߤ 

Resonant frequency ( ௥݂௘௦) 4.12	݇ݖܪ 

4.4.5 Grid modelling 

After filtering out unwanted harmonics using the LCL filter, the grid-tied PV system is 

connected to a single-phase grid. The grid is modelled with a 230 V rms , 50 Hz equivalent 

Thévenin's voltage-source. The reference impedance for low voltage public supply 

systems that is given in [257] for electrical apparatus testing purposes is used to model 

the single-phase grid. Therefore, the internal impedance of the grid is (0.4+j0.25) . 

4.4.6 Frequency analysis of the PV system 

In this section, the parameters of the boost converter presented in Section 4.4.3 and 

control-to-input voltage transfer functions derived in Section 4.3.4 for the four cases are 

used. The control-to-input voltage transfer function of the boost converter in each case 

are developed separately and the corresponding pole-zero and Bode plots are presented. 

The control-to-input voltage transfer function in Case 1 is given as follows: 

(ݏ)௩ௗ,ଵܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ସ.଻ଶଶ×ଵ଴మయ

ଵ.଼ଷଵ×ଵ଴భఱ௦మାଵ.ଵ଼ଵ×ଵ଴మభ
 (4.75) 

The corresponding pole-zero and Bode plots are shown in Fig. 4.20 and Fig. 4.21, 

respectively. 
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Fig. 4.20: Pole-zero diagram of the control-to-input voltage transfer function in Case 1. 

 

Fig. 4.21: Bode plots of the control-to-input voltage transfer function in Case 1. 

The transfer function indicates a second-order system with two poles on the imaginary 

axis. There is a negative sign in the control-to-input voltage transfer function, which 

indicates that the input voltage will decrease as the duty cycle increases. 

The control-to-input voltage transfer function in Case 2 is given as follows: 

௩ௗ,ଶܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ଼.ଶଽ଼×ଵ଴మఱ

ଷ.ଶଵ଼×ଵ଴భళ௦మାଵ.ଽ଴ଶ×ଵ଴భవ௦ାଶ.଴଻ହ×ଵ଴మయ
 (4.76) 

The corresponding pole-zero and bode plots are shown in Fig. 4.22 and Fig. 4.23, 

respectively. 
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Fig. 4.22: Pole-zero diagram of the control-to-input voltage transfer function in Case 2. 

 

Fig. 4.23: Bode plots of the control-to-input voltage transfer function in Case 2. 

The control-to-input voltage transfer function in Case 3 is given as follows: 

 
ss

s
sd
sv

sG pv
vd 25318

2828

3, 10568.3105.493
10009.9101.417

)(ˆ
)(ˆ

)(



  (4.77) 

The corresponding pole-zero and Bode plots are shown in Fig. 4.24 and Fig. 4.25, 

respectively. 
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Fig. 4.24: Pole-zero diagram of the control-to-input voltage transfer function in Case 3. 

 

Fig. 4.25: Bode plots of the control-to-input voltage transfer function in Case 3. 

The control-to-input voltage transfer function in Case 4 is given as follows: 

௩ௗ,ସܩ  =
௩ො೛ೡ(௦)
ௗ෠(௦)

= − ହ.଴ଽ଼×ଵ଴యమ௦ାଷ.ଶସଶ×ଵ଴యయ

ଵ.ଽ଻଻×ଵ଴మయ௦యାଵ.ଵ଺ଽ×ଵ଴మఱ௦మାଵ.ଶ଼ସ×ଵ଴యబ௦ାହ.ହଵଽ×ଵ଴మవ
 (4.78) 

The corresponding pole-zero and bode plots are shown in Fig. 4.26 and Fig. 4.27, 

respectively. 
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Fig. 4.26: Pole-zero diagram of the control-to-input voltage transfer function in Case 4. 

 

Fig. 4.27: Bode plots of the control-to-input voltage transfer function in Case 4. 

Table 4.4 provides a summary of poles and zeros locations, assumptions on the small 

signal model, and parameters settings of the digital PID controller for the four cases. The 

parameters of the digital PID controller are tuned and optimized in each case using 

Simulink PID Tuner and Simulink Response Optimization Tool. 
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It can be seen that the constants for the PID controllers are slightly different in Case 1 and 

Case 2, whereas the constants for the PID controllers are almost the same in the Case 3 

and Case 4. This indicates the DC link capacitor has a significant effect on the parameters 

selection of the PID controller. The later simulation results shown in Figs. 4.33 to 4.34 

will also validate this conclusion. 

From the Bode plots developed in the four cases, it can be seen that the inclusion of ܴ௘௤  

in the transfer function shifts the two complex poles at the imaginary axis to the left half-

plane. The inclusion of the DC link capacitor in the analysis adds a negative real zero and 

a negative real pole to the plant, which shifts the crossover frequency from 803	ݖܪ to 

 such high frequency peak in the Bode plot requires special attention in the PID ,ݖܪ	2550

controller design. 

4.5 Simulation Results 

To evaluate the performance of four different parameter settings of the digital PID 

controller, a Matlab/SimPowerSystems simulation model for the PV system is constructed. 

This simulation model does not consider the parasitic resistances of capacitors and 

inductors, which is consistent with the assumptions on the PWM switch model described 

in Section 4.3.3. The PV array voltage responses are recorded and compared with their 

references under four different parameters settings of the digital PID controller. The 

following simulations are all conducted at constant irradiance of 1000	ܹ ݉ଶ⁄  and 

temperature of 25	℃. Fig. 4.28 depicts the simulation model for the single-phase grid-

tied PV system. The sampling time used for the simulation model is 1	ݏߤ, while the 

sampling time for the digital PID controller is 	100	ݏߤ, which is much longer than that 

for the simulation model. 
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Fig. 4.28: Simulation model of the single-phase grid-tied PV system with LCL filter. 

The simulation model uses a non-linear model to emulate the behaviour of the boost 

converter and uses the SDM to model the PV array. Simulations are carried out with the 

PID controllers designed based on four different control-to-input voltage transfer 

functions developed under four different assumptions. The parameters of the digital PID 

controllers under four different cases are tabulated in Table 4.5. These parameters are 

optimised using the automatic PID tuning algorithm in MATLAB/Simulink. 

4.5.1 PV array voltage response without the controller 

In this case, a constant duty cycle of 0.25 is applied to the boost converter, from the DC 

analysis of the boost converter, the reference voltage of the PV array is calculated by: 

 ௣ܸ௩ = (1 − (ܦ ∙ ௗܸ௖ = (1 − 0.25) × 400 = 300	ܸ (4.79) 

The PV array voltage reference and response at steady state is displayed in Fig. 4.29. The 

red curve represents the voltage reference whereas the magenta curve shows the PV array 

voltage response. It can be seen that the PV voltage response has significant steady-state 

errors and deviates below the voltage reference. The PV array voltage ripple is a result of 

the switching of the boost converter. This voltage ripple component significantly reduces 

the available power extracted from the PV array [66]. The power and voltage deviations 

can be significantly mitigated by integrating a digital PID controller with the simulation 

results presented in the subsequent sections. 
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Fig. 4.29: PV array voltage performance without controller to illustrate the voltage 

ripple. 

4.5.2 PV array voltage response with the controller designed 
for Case 1 

In this case, the system is equipped with the digital PID controller designed in Case 1. 

The controller initially regulates the PV array voltage at 150	ܸ. A step increase in the 

voltage reference from 150	ܸ to 200	ܸ is observed at ݐ =  It can be seen in the first .ݏ	0.1

subplot in Fig. 4.30 that the PV array voltage fluctuates significantly around the voltage 

reference, indicating that there is a large steady-state error. The PV array can track the 

voltage reference but with significant voltage fluctuation. The duty cycle of the boost 

converter fluctuates drastically from 1 to 0 that represents the saturation of the controller. 

This undesired effect of controller saturation leads to a fluctuating response of the PV 

array voltage. The reason for an oscillatory duty cycle signal is attributed to the controller 

windup. From Fig. 4.31, it can be observed that the PID controller output almost follows 

the derivative element output. The PID controller output is clamped between 0 and 1 to 

produce the duty cycle signal as shown in the second subplot in Fig. 4.30. This input 

saturation causes a steady-state oscillatory PV array voltage signal as shown in the first 

subplot in Fig. 4.30. 
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Fig. 4.30: PV array voltage performance with the controller designed for Case 1. 

 

Fig. 4.31: The outputs of the proportional, the integral and the derivative modes, and 

the PID controller output without clamping. 
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4.5.3 PV array voltage response with the controller designed 
for Case 2 

In this case, the system is equipped with the digital PID controller designed for Case 2. 

Similarly, a step increase in the voltage reference from 150	ܸ to 200	ܸ takes place at ݐ =

 From Fig. 4.32, it can be seen that the response of the PV array voltage is similar .ݏ	0.1

to that in Case 1. 

 

Fig. 4.32: PV array voltage performance with the controller designed for Case 2. 

4.5.4 PV array voltage response with the controller designed 
for Case 3 

In this case, the system is equipped with the digital PID controller designed in Case 3. 

The step increase in the voltage reference from 150	ܸ to 200	ܸ takes place at ݐ =  .ݏ	0.1

With the controller designed to incorporate the effect of ܥௗ௖ , it can be seen in Fig. 4.33 

that the rising time of the voltage response becomes evidently faster than the responses 

in Case 1 and Case 2. The steady-state voltage oscillation is significantly smaller that the 

responses in Case 1 and Case 2. The duty cycle of the boost converter oscillates around a 

fixed value approximately equal to 0.5 at the steady state. 
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Fig. 4.33: PV array voltage performance with the controller designed for Case 3. 

4.5.5 PV array voltage response with the controller designed 
for Case 4 

In this case, the system is equipped with the digital PID controller designed for Case 4. 

The step increase in the voltage reference from 150	ܸ to 200	ܸ happens at ݐ =  It .ݏ	0.1

can be seen in Fig. 4.34 that the response of the PV array voltage and the duty cycle in 

Case 4 are similar to that in Case 3, respectively. 
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Fig. 4.34: PV array voltage performance with the controller designed for Case 4. 

Table 4.5 shows the steady-state voltage and power deviations of the PV array without 

the PID controller and with the PID controller under four different cases. It can be noted 

that the voltage and power deviations without the controller are much higher than that 

with the controller, which also can be seen from Figs. 4.29 to 4.30. As the transfer 

function developed becomes more complex, the steady-state voltage and power 

deviations are reduced in a progressive manner from Case 1 to Case 4, which indicates a 

gradual improvement in the PV array voltage performance. The parameter settings of the 

digital PID controller designed for this case is used later in Chapter 6 to investigate the 

performance of the MPPT technique. 
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Table 4.5: Steady-state voltage and power deviations at each case. 

 
Steady-state 

Voltage Deviation (ܸ) 

Steady-state 

Power Deviation (ܹ) 

No Controller 5.495 284.1 

Case 1 2.558 139.7 

Case 2 2.553 138.2 

Case 3 0.952 52.75 

Case 4 0.909 51.91 

4.6 Conclusion 

This chapter has presented a brief review of the closed-loop control schemes for DC-DC 

converters input voltage control. Design of a single-phase grid-connected PV system has 

been covered in this chapter. A linear model for the PV array and the boost converter is 

developed for control system analysis. Four cases are developed based on whether the 

equivalent Thévenin's resistance of the PV array or the DC link capacitor is considered in 

the small signal model. The corresponding control-to-input voltage transfer function in 

each case is developed by using the PWM switch model. The DC and frequency analysis 

in each case is also conducted. The parameters of the digital PID controller are tuned 

separately according to the control-to-input voltage transfer function developed in each 

case. Simulation studies are conducted to illustrate the effectiveness of the four different 

parameter settings of the digital PID controller. High steady-state errors, slow transient 

responses and duty cycle saturation are observed in Case 1 and Case 2 irrespective of the 

effects of the DC link capacitor. The PV array voltage responses in Case 3 and Case 4 

offer zero steady-state error and fast transient responses without duty cycle saturation. 

The optimized parameter settings of the digital PID controller in Case 4 are used to 

investigate the performance of the MPPT techniques that will be discussed in Chapter 6. 
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Chapter 5  
Battery Energy Storage Systems for Plug-in 

Hybrid Electric Vehicles 

5.1 Introduction 

Plug-in hybrid electric vehicles (PHEVs) have become popular in recent years since they 

have advantages of low fuel cost and low carbon emissions [258] compared to 

conventional vehicles that use internal combustion engines. The performance of a PHEV 

depends highly on the on-board battery energy storage system (BESS). The choice of the 

BESS technology for an PHEV will depend on vehicle power and energy ratings, 

response time, weight, volume and operating temperature [259]. Common BESS 

technologies for PHEV applications include lead-acid (Pb-Acid), lithium-ion (Li-ion), 

nickel-cadmium (Ni-Cd), nickel-metal hydride (Ni-MH) [259] and sodium-sulphur (NaS) 

[5]. Among these battery technologies, Li-ion batteries have superior performance over 

other battery technologies and are preferably used for PHEVs applications. This is mainly 

attributed to several factors, like high energy density, high output current levels, flat 

discharge characteristics in the middle region, high energy-to-weight ratios, no memory 

effect, and a low self-discharge rate [260], [261]. Fig. 5.1 shows the Li-ion battery packs 

for a 2013 Chevrolet Volt PHEV. 

One of the limitations of a Li-ion battery is that its high output current leads to a 

significant drop in voltage across the internal resistance. This leads to increased internal 

power losses and higher cell temperatures than those of a lead-acid battery. Therefore, a 

battery management system (BMS) is required to control the charging and discharging of 

the battery, and monitor the temperature of each individual cell to ensure reliable and safe 

operation [5]. Another functionality that an advanced BMS may have is cell balancing 

[261]. Cell balancing ensures that all the cells within a battery pack operate at the same 

voltage, and the temperature of the battery pack is well distributed among all the cells. 

The same operating voltage for all the cells results in an alignment in the cells’ SOC [261]. 
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Fig. 5.1: Li-ion battery packs for a 2013 Chevrolet Volt PHEV [262]. 

Accurate modelling of PHEV batteries is of fundamental importance to optimize the 

operation strategy, extend battery life and improve vehicle performance [263]. A suitable 

PHEV battery model can reflect the battery’s steady-state and dynamic performance. 

Modelling of PHEV batteries is a research area that has been studied extensively 

throughout the literature. Some earlier examples in this area have been demonstrated in 

[264]–[267]. A small subset of more recent research is described in [268]–[270]. These 

PHEV battery modelling approaches vary widely in terms of complexity and accuracy 

[269]. 

In [271], modelling strategies for batteries are summarized into three categories: 

experimental, electrochemical and electric circuit-based models [270], [271]. 

Experimental and electrochemical models cannot accurately represent the dynamics of 

vehicle batteries in terms of the SOC estimations of battery packs according to [271]. 

Electrochemical models emulate the static characteristics of a PHEV battery using 

mathematical equations that relate to the chemical reactions inside the battery [272]. 

These models cannot accurately simulate the battery’s dynamic response [273] and 

require high computational power to solve the associated nonlinear partial differential 

equations [274]. The circuit-based models provide reasonable accuracy and robustness in 

simulating the dynamics of the battery [275]–[277]. Their model parameters can be 

estimated based on experimental data. A dedicated automated test system is used to 

acquire the data in [278]; these data include the responses of a battery at different 

discharge current levels and SOC conditions [278]. Tremblay’s model is one widely used 
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battery model in research on battery energy storage systems [270], on-board electric 

vehicle batteries [269], [274] and wireless sensor networks [272]. The model incorporates 

both empirical and electrochemical relationships between SOC and battery terminal 

voltage. It is embedded into Matlab/Simulink as a standard library block with predefined 

battery model parameters [271], [279]. It has also been validated for electric vehicle 

applications using experimental data [269]. 

This chapter proposes the use of a quantum-behaved particle swarm optimisation (QPSO) 

parameter estimation technique to provide a more accurate estimation of Tremblay’s 

battery model parameters. To the author’s best knowledge, this approach has not yet been 

applied in the context of Tremblay’s model parameterization. The root weighted residual 

sum of squares (RWRSS) between the simulated curves and the experimental discharge 

curves is used as the performance index to contrast different sets of results. The results 

obtained using the QPSO approach are compared against those obtained using the GA 

[267] and PSO [269] approaches. Reviews of the principles of the GA and PSO 

approaches have been presented in Sections 2.6.5 and 3.3.1.1, respectively. The simulated 

curves obtained from the GA, PSO, and QPSO parameter estimation techniques are 

compared to the experimental data extracted from the static capacity tests conducted by 

Idaho National Laboratory [280] together with the simulated curve obtained from 

Tremblay’s parameter estimation method in [271], [279]. 

5.2 Tremblay’s Battery Model 

Tremblay’s model expresses a Li-Ion battery voltage during discharging and charging 

processes by [271], [279]: 

 ௗܸ௜௦௖௛௔௥௚௘ = ௢ܧ − ܭ ொ
ொି௜௧

∙ ݐ݅ − ܴ ⋅ ݅ + ܤ−)݌ݔ݁ܣ ⋅ (ݐ݅ − ܭ ொ
ொି௜௧

∙ ݅∗ (5.1) 

 ௖ܸ௛௔௥௚௘ = ௢ܧ ܭ− ொ
ொି௜௧

∙ ݐ݅ − ܴ ⋅ ݅ + ܤ−)݌ݔ݁ܣ ⋅ (ݐ݅ − ܭ ொ
଴.ଵொା௜௧

∙ ݅∗ (5.2) 

where ܧ௢  is the battery constant voltage; ܭ  is the polarization constant (ܸ ⁄ℎܣ )  or 

polarization resistance (Ω); ܳ is the maximum battery capacity (ܣℎ); ݅ݐ = ∫  is the ݐ݀݅

actual battery charge (ܣℎ); the parameter ܣ is the exponential zone amplitude (ܸ); ݅∗ is 
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the filtered current (ܣ); ܤ is the exponential zone time constant inverse (ܣℎ)ିଵ; ܴ is the 

internal resistance (Ω); ݅ and ௗܸ௜௦  are the battery current and voltage during discharge, 

respectively. The current is positive for a discharging process whereas the current is 

negative during a charging process. The discharge voltage of the battery is decomposed 

into five components, which are the battery constant voltage oE , the voltage drop across 

the internal resistance iR  , the polarization voltage affected by battery charge 
Q

K it
Q it
 


, 

the polarization voltage affected by filtered current *Q
K i

Q it
 


, and the exponential zone 

voltage itBeA  . The filtered current *i  can be expressed as the first order step response 

of the battery current i , i.e., )1(* 
t

eii  , where ߬ is the battery response time. Fig. 

5.2 shows a typical PHEV battery nominal discharge characteristic generated by 

Tremblay’s model, where the remarkable points are clearly shown. 

 

Fig. 5.2: A typical battery discharge characteristic with the three remarkable points 

labelled. 
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5.3 Parameter Estimation of Tremblay’s Model 

5.3.1 Introduction 

Tremblay et al. [271], [279] proposed a parameter estimation method to estimate the 

model parameters. This method utilizes the three remarkable points (shown in Fig. 5.2), 

namely the fully charged voltage ( ௙ܸ௨௟௟), end of exponential zone (ܳ௘௫௣, ௘ܸ௫௣) and end of 

nominal zone (ܳ௡௢௠ , ௡ܸ௢௠ ) that are manually sampled from the typical discharge 

characteristic on the manufacturer’s datasheets. The parameters ܭ ,ܤ ,ܣ, and ܧ௢ in (5.1) 

are determined from the three remarkable points using several approximation equations. 

Thus, this approach is quite subjective and error-prone in terms of locating the positions 

of the remarkable points [269]. The remarkable points on the extracted discharge curve 

may not be easily identifiable and are highly susceptible to human error. Specifically, the 

parameters ܳ௡௢௠ , ௘ܸ௫௣ , and ܳ௘௫௣  are difficult to determine from the manufacturer’s 

discharge curve by visual analysis as indicated in [281]. The discharge characteristic 

obtained from the manufacturer’s datasheets may not reflect the actual discharge curve 

of the battery since model parameters are dependent on battery life and operational 

environment [270]. Thus, parameter identification for PHEV batteries needs to be 

conducted over time and corresponding adjustments of model parameters must be made 

to account for changes attributed to battery aging [269]. 

A variety of parameter estimation techniques are proposed in the literature for the 

parameterization of battery models. A PSO technique is presented in [269] to estimate the 

model parameters of Tremblay’s model. A hybrid optimization technique is proposed in 

[270] that utilizes a stochastic and a deterministic algorithm to identify the parameters of 

Tremblay’s model. A GA approach is used in [267] to identify the parameters of an 

improved Thévenin battery model to account for the effects of electrochemical 

polarization and concentration polarization. A SA algorithm approach is proposed in 

[281] for Tremblay’s model parameterization. In this technique, the discharge curves 

obtained from a testbed were used to validate the effectiveness of the SA algorithm. 

Results obtained using the SA algorithm were compared to those obtained using 

Tremblay’s parameter estimation method. 
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5.3.2 Problem Formulation 

The three remarkable points identified in the battery discharge curve need to be estimated 

to improve curve fitting to the experimental discharge characteristic. Additionally, the 

internal resistance ܴ and the maximum battery capacity ܳ௠௔௫ also need to be accurately 

estimated since ܴ  affects the shape of the battery discharge curve and ܳ௠௔௫  is not 

provided in PHEV battery static capacity test results. In total, there are seven parameters 

that need to be estimated in the PHEV battery model. The objective function is defined 

as the root weighted residual sum of squares (RWRSS) between the model discharge 

curve and the discharge curve obtained from the static capacity test results in [262]. 

Therefore, an optimization problem is formulated as follows: 

݊݅ܯ 
௫

(ݔ)ܨ = ݊݅ܯ
௫

ඥ∑ ]௞ݓ ெܸ௔௡௨(݇) − ெܸ௢ௗ(݇)]ଶே
௞ୀଵ ݔ						 ∈ ܺ (5.3) 

ݔ  = ( ௠ܸ௔௫ , ௘ܸ௫௣, ܳ௘௫௣, ௡ܸ௢௠ , ܳ௡௢௠ , ܳ௠௔௫ , ܴ) (5.4) 

where (ݔ)ܨ is the objective function, ݇	is the index of the data sample,  ModV k  represents 

the model voltage at the ݇௧௛ data sample,  ManuV k  is the manufacturer’s voltage at the 

݇௧௛  data sample, ܰ  is the number of data samples, ݔ	 is the vector of all estimated 

variables, ܺ is the space of the solutions and ݓ௞  is the weighting factor for the ݇௧௛ data 

sample. The manufacturer’s voltage data are extracted from the static capacity test results 

at beginning of test (BOT) in [262], using a web-based tool called WebPlotDigitizer 

[282], which is used to extract data points from plots. 

PHEV battery manufacturers usually limit the usable capacity of the battery to meet the 

battery life cycle requirements, vehicle drive performance and safety issues [283]. The 

operational range for the state-of-charge (SOC) of PHEV batteries is between 20% and 

85%, i.e., the depth-of-discharge (DOD) is between 15% and 80%, as reported in [284]. 

To match the discharge curve in the operational range, an appropriate weighting function 

is needed. Many different mathematical expressions could be used to represent the 

weighting function. In this study, the weighting function used for parameter estimation is 

defined as follows [285]: 
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 (5.5) 

where ݓெ௔௫  and ݓெ௜௡  are the corresponding maximum and minimum values of the 

weighting function. Several other weighting functions could also be implemented to 

improve the accuracy of the estimated results. 

5.3.3 Quantum-behaved particle swarm optimisation 

A QPSO algorithm eliminates the velocity vector used by the classic PSO algorithm and 

its concept is inspired by quantum mechanics and physics. The global convergence of a 

QPSO algorithm is significantly improved when compared to the classic PSO algorithm. 

The equations for updating the positions of particles are presented as follows [286]: 

 ቐ
௜௞ାଵݔ = ௜ܲ

௞ + ߚ ∙ ห݉ݐݏ݁ܤ௞ − ௜௞หݔ ∙ ݈݊ ቀ
ଵ
௨
ቁ , ݇ < 0.5

௜௞ାଵݔ = ௜ܲ
௞ − ߚ ∙ ห݉ݐݏ݁ܤ௞ − ௜௞หݔ ∙ ݈݊ ቀ

ଵ
௨
ቁ , ݇ ≥ 0.5

 (5.6) 

where, 

 ௜ܲ
௞ = ଵݎ) ∙ ௕ܲ௘௦௧,௜ + ଶݎ ∙ (௕௘௦௧ܩ ଵݎ) + ⁄(ଶݎ  (5.7) 

௞ݐݏ݁ܤ݉  = ଵ
ே
∑ ௕ܲ௘௦௧,௜
ே
௜ୀଵ  (5.8) 

where kmBest  is the mean best position defined as the mean of all the personal best 

positions of the swarm. ,ݑ	,݇	ݎଵ	and ݎଶ are all random numbers distributed uniformly on 

(0,1), respectively. The one and only tuning parameter ߚ is the Contraction-Expansion 

coefficient. High values of ߚ are preferred in the initial stage of optimization for global 

exploration, whereas low values are favored in the later stage for more accurate results in 

the local search [286]. In the following simulations, the parameter ߚ  decreases 

dynamically from 0.9 to 0.5 during the course of iterations [287]. 
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5.3.4 Lower and upper bounds of estimated variables 

The admissible lower and upper bounds of each estimated variable need to be defined 

prior to the parameter estimation process. An inappropriate value for one estimated 

variable may produce irregular or abnormal discharge curves. Thus, it is crucial to reject 

the values generated by the parameter estimation algorithms that have spurious physical 

meanings. The PHEV battery investigated in this study is the battery pack of the 2013 

Chevrolet Volt – VIN 3929 [262]. The battery specifications are provided in Table 5.1. 

Table 5.1: Battery specifications of the 2013 Chevrolet Volt – VIN 3929 [262]. 

Battery Specifications Value 

Manufacturer LG Chem 

Rated Pack Energy/Capacity 16.5	ܹ݇ℎ/45.0	ܣℎ 

Battery Type Lithium-Ion 

Minimum Cell Voltage (ܧ௠௜௡) 3.00	ܸ 

Maximum Cell Voltage (ܧ௠௔௫) 4.15	ܸ 

Nominal Cell Voltage (ܧ௡௢௠) 3.7	ܸ 

Number of series-connected cells ( ௦ܰ) 96 

According to the PHEV battery specifications given in Table 5.1, the lower and upper 

bounds of each estimated parameter can be derived using the relationships given in Table 

5.2. Some of the symbols used in Table 5.2 can be found in Fig. 5.2 and Table 5.1. In 

Table 5.2, the upper and lower bounds of the internal resistance are given by the 

maximum and minimum values of the ten-second discharge pulse resistance dataset, 

denoted as ܴ஽ை஽ , as the internal resistance is dependent on DOD variation. The ten-

second discharge pulse resistance dataset shows the internal resistance with respect to the 

DOD and is extracted from [262] using WebPlotDigitizer. It is advised in [288] that the 

value of ܳ௠௔௫ be given by 105% of the rated battery capacity. Thus, the lower and upper 

bounds of ܳ௠௔௫ are specified as ܳ௥௔௧௘ௗ  and 1.1ܳ௥௔௧௘ௗ, respectively, to include additional 

solutions for a better estimation of ܳ௠௔௫ over a wide range. 
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Table 5.2: Upper and lower bounds of each model parameter. 

Parameters Upper Bound Lower Bound 

Fully Charged Voltage ௙ܸ௨௟௟ ௠௔௫ܧ1.05 (ܸ)	 ∙ ௦ܰ ܧ௠௜௡ ∙ ௦ܰ 

Voltage at the end of the exponential 

zone ௘ܸ௫௣	(ܸ) 
௠௔௫ܧ1.05 ∙ ௦ܰ ܧ௠௜௡ ∙ ௦ܰ 

Capacity at the end of the exponential 

zone ܳ௘௫௣	(ܣℎ) 
ܳ௥௔௧௘ௗ  0 

Voltage at the end of the nominal zone 

௡ܸ௢௠	(ܸ) 
௠௔௫ܧ1.05 ∙ ௦ܰ ܧ௠௜௡ ∙ ௦ܰ 

Capacity at the end of the nominal zone 

ܳ௡௢௠	(ܣℎ) 
ܳ௥௔௧௘ௗ  0 

Maximum Capacity ܳ௠௔௫ 1.1ܳ௥௔௧௘ௗ ܳ௥௔௧௘ௗ (ℎܣ)	  

Internal Resistance ܴ () MAX (ܴ஽ை஽) MIN (ܴ஽ை஽) 

As it can be seen from Table 5.2, the bounds of parameters ܳ௘௫௣ and ܳ௡௢௠ are the same, 

this also holds true for the parameters ௙ܸ௨௟௟ , ௘ܸ௫௣, and ௡ܸ௢௠. Special constraints should be 

imposed on these parameters to ensure the algorithm rejects unreasonable values being 

assigned into the battery model. The constraints imposed on these parameters are 

expressed in the following inequalities: 

 ௙ܸ௨௟௟ > ௘ܸ௫௣ > ௡ܸ௢௠ > ௠ܸ௜௡ 	ܽ݊݀	0 < ܳ௘௫௣ < ܳ௡௢௠ < ܳ௥௔௧௘ௗ  (5.9) 

where ܸ݉݅݊ is the minimum battery pack voltage that is given as ܧ௠௜௡ ∙ ௦ܰ. Some of these 

parameters are shown schematically in Fig. 5.2. 

5.4 Simulation Results 

Simulations have been conducted using 500 iterations and a population of 100 

particles/chromosomes for the GA, PSO, and QPSO parameter estimation techniques. A 

set of PSO algorithm parameters ߱ = 0.6, ܿଵ = 1.7 and ܿଶ = 1.7 mentioned in [289] are 

used in the simulations. This PSO parameters setting is shown to exhibit fast convergence 

and high robustness [289]. Table 5.3 compares the estimated Tremblay’s model 

parameters generated by Tremblay’s, GA, PSO, and QPSO parameter estimation 
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techniques. The performances of the GA, PSO, and QPSO parameter estimation 

techniques are assessed in terms of RWRSS value, which is also presented in Table 5.3. 

The performance graph of the GA, PSO, and QPSO parameter estimation techniques are 

presented in Fig. 5.3. The results shown in Fig. 5.4 compare the static capacity test curve 

and the simulated discharge curves estimated by Tremblay’s, GA, PSO, and QPSO 

parameter estimation techniques. 

Table 5.3: RWRSS and model parameters obtained using the GA, PSO and QPSO parameter estimation 

algorithms. 

Model Parameter Tremblay GA PSO QPSO 

RWRSS 172.1512 21.7588 19.1298 20.2075 

Fully Charged Voltage ௙ܸ௨௟௟ 	(ܸ) 398.40 418.32 404.43 414.88 

Voltage at the end of the 

exponential zone ௘ܸ௫௣	(ܸ) 

376.80 360.36 332.09 354.33 

Capacity at the end of the 

exponential zone ܳ௘௫௣	(ܣℎ) 

10.67 22.39 38.42 27.13 

Nominal Voltage ௡ܸ௢௠	(ܸ) 331.00 317.81 300.36 319.82 

Capacity at nominal 

voltage	ܳ௡௢௠	(ܣℎ) 

42.12 41.70 43.93 41.17 

Maximum Capacity ܳ௠௔௫  47.25 49.50 46.41 47.43 (ℎܣ)	

Internal Resistance ܴ () 0.1000 0.1270 0.1340 0.1344 
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Fig. 5.3: Performance graph of the GA, PSO, and QPSO parameter estimation 

algorithms. 

 
Fig. 5.4: A comparison between the static capacity test curve and the simulated curves 

generated by Tremblay’s, GA, PSO, and QPSO parameter estimation techniques. 

The results shown in Fig. 5.4 are of significance as it can be seen that the GA, PSO, and 
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almost indistinguishable in the operating SOC range for the PHEV battery. These 

discharge curves provide a better model fit than the discharge characteristic estimated by 

Tremblay’s parameter estimation approach. From Table 5.3, the RWRSS values for the 

GA, the PSO, and the QPSO are slightly different. It can be inferred that plausible global 

optimal solutions have been achieved by the three methods. The beginning and the end 

of the static capacity test curve is not well approximated by any of the four methods. This 

is not a major concern since these sections are beyond the scope of interest. These sections 

represent a difficult operating zone for vehicle propulsion since the voltage drops quite 

rapidly. 

From Fig. 5.3, it can be seen that the QPSO approach converges faster to its final RWRSS 

value with a similar accuracy level than the GA and the PSO approaches. The estimation 

process will accelerate using the QPSO algorithm and fewer iterations will be required to 

reach the final solution when compared to that obtained using the GA and the PSO 

methods. The QPSO approach also provides an advantage over the GA and the PSO 

algorithms that there is only one tuning parameter ߚ involved in the QPSO algorithm, as 

shown in (5.6), thus the tuning effort is significantly reduced when compared to the GA 

and the PSO approaches. 

5.5 Conclusion 

This chapter uses the QPSO parameter estimation technique to estimate Tremblay’s 

battery model parameters. The parameterization of Tremblay’s battery model has been 

formulated as a multivariable optimization problem that can be solved using the QPSO 

parameter estimation technique. The simulated discharge curve generated by the QPSO 

approach is compared with those obtained using the GA and PSO approaches. The QPSO 

parameter estimation technique generates solutions with similar accuracy levels when 

compared to those obtained using the GA and PSO parameter estimation techniques, and 

converges to the final solution with fewer iterations than the other methods. This 

highlights the potential enhancement of using the QPSO algorithm to parameterize 

Tremblay’s model as the QPSO algorithm only requires one parameter ߚ to be tuned. 
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Chapter 6  
Modelling of the Grid-Tied Photovoltaic 

System with Plug-in Hybrid Electric Vehicles 
as Energy Storage 

6.1 Introduction 

The variability and intermittency of photovoltaic (PV) generation impose some 

challenges on distribution networks. One challenge is that the time when peak loads 

happen is usually inconsistent with the period when solar energy is sufficient. This can 

be mitigated by integration of a battery energy storage system into the networks. The 

excess solar energy could be stored in a plug-in hybrid electric vehicle (PHEV) battery 

during the daytime, when solar power is abundant. PHEV batteries could also be charged 

from the grid when solar energy is not available at night. Considering these two charging 

scenarios, two modes of operation for the charging controller are developed, namely the 

SOC reference tracking and power reference tracking modes. These two modes of 

operation will be further illustrated in this chapter. 

This chapter develops a system simulation model for the grid-connected PV system with 

a PHEV as energy storage. This simulation model is developed to implement the PHEV 

charging strategies in operation of a grid-connected PV system under different solar 

irradiance profiles and a certain load profile. Initially, a review of three changing levels 

for PHEV batteries will be presented. This is followed by the design of the grid-connected 

PV system. The charging strategy for the PHEV battery will be developed and explained 

in full detail. Finally, the simulation results under both clear sky and cloudy sky irradiance 

profiles are presented to validate the effectiveness of the charging strategies. 

6.2 Charging Level 

Charging level is an indication of charging power from a charging station or an outlet. 

There are three charging levels for charging EVs in Australia. Table 6.1 shows the three 
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charging levels in Australia. Level 1 charging is dedicated for home charging with slow 

charging current, where EVs are parked at a garage and charged with a conventional outlet 

during the night. This charging level is suitable for an EV with small battery capacity and 

long charging duration. Level 2 charging requires a dedicated electric vehicle supply 

equipment (EVSE) to connect PHEV batteries directly to the electrical power grid. The 

vehicle must have an On Board Charger (OBC) that communicates with the EVSE 

regarding when the PHEV battery starts or stops charging [290]. It is the primary charging 

level for both private and public charging, and the level 2 charger is also recommended 

by Electric Vehicles and the Environment (EVE) Australia for home installations as this 

charger is worth the convenience and time for charging [291]. Level 2 AC charging can 

be further classified into slow charging (240 V 3.3 kW-7.4 kW) and fast charging (415V 

11 kW-22 kW) based on voltage level. Level 3 DC fast charging requires an off-board 

charger since the charging power is significantly higher than Level 1 and Level 2. Level 

3 is applicable for commercial use in parking lots, shopping centres, hotels, petrol stations, 

and other commercial applications [292]. The charging station for Level 3 fast charging 

can be powered by either a power distribution grid or a solar system [293]. 

Table 6.1: Charging levels in Australia [291], [292], [294]. 

Charger Level Energy Supply Interface Electric Car Distance 

Level 1 AC Slow 

240 V 1.4 kW 

Conventional outlet  

On-board 

7.5-15 km/h 

Level 2 AC Slow 

240V 3.3 kW-7.4 kW 

Dedicated EVSE 

On-board 

18-40 km/h 

Level 2 AC Fast 

415V 11 kW-22 kW 

Dedicated EVSE 

On-board 

60-15 km/h 

Level 3 DC Fast 

50 kW-120 kW 

Dedicated EVSE 

Off-board 

70 km/10 mins or 420 km/h 

6.3 System Design 

This whole simulation model is developed by substantially modifying and extending the 

Detailed Model of a 100-kW Grid-Connected PV Array (opened by typing 
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‘power_PVarray_grid_det’) [295] and the Supercapacitor Model (opened by typing 

‘parallel_battery_SC_boost_converter’) [296] in Matlab/SimPowerSystems. This 

simulation model is developed to demonstrate the performance of the PV array under 

varying irradiance and temperature profiles and validate the effectiveness of the charging 

strategies for the PHEV battery. The PHEV battery is the same as the battery investigated 

in Chapter 5. The battery specifications have been tabulated in Table 5.1. The parameters 

of battery model are modified according to the estimation results in Chapter 5 using the 

PSO approach. As the results obtained using the PSO approach are shown to have the 

smallest RWRSS value when compared to the GA and PSO parameter estimation 

techniques. 

The grid-connected PV system consists of a 10	ܹ݇ PV array with its associated SEPIC 

converter, a PHEV battery with its associated bidirectional buck-boost converter, a 3-

level 3-phase VSI with its LC filter, and a 3-phase residential load. The residential load 

is designed to have a maximum power of 7	ܹ݇ at 0.85 PF lagging with its power varying 

according to the load profile shown in Fig. 6.1. 

 

Fig. 6.1: A typical residential load profile. 

The PV array model is developed by extending the PV module model for a BP 380 PV 

module described in Chapter 2. The PV array is constructed using the BP 380 PV panel 

with its datasheet parameters tabulated in Table 2.2. The parameters of the PV module 

model are estimated by the GA parameter estimation technique described in Section 2.6.5 

and are presented in Table 2.4. A 10	ܹ݇ SEPIC converter is designed to interface with 
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the PV array. The SEPIC converter is assumed to always operate in CCM with a switching 

frequency of	20	݇ݖܪ. The MPPT controller implements the IC MPPT technique with a 

time window of 200	ݏߤ to track the MPP of the PV array in real-time. The default value 

of the duty cycle for the MPPT controller is 0.5. A 3 level 3-phase VSI is connected 

between the DC link and the AC networks to convert the 700	ܸ DC link voltage to the 

415	ܸ AC grid voltage. The PHEV battery is connected to the DC link via a 3.3	ܹ݇ 

bidirectional buck-boost converter. A bidirectional converter is used to boost the low 

PHEV battery voltage to the high DC link voltage with bidirectional power flow 

capabilities. A constant DC voltage source is connected at the high voltage side of the 

bidirectional buck-boost converter to serve as the dumb load for battery discharge. The 

power rating of the bidirectional buck-boost converter is limited to 3.3	ܹ݇. Fig. 6.2 

shows the system architecture of the grid-connected PV system with PHEV battery 

energy storage. 

 

Fig. 6.2: System architecture of the grid-connected PV system with PHEV battery 

energy storage. 

The charging controller is implemented to control the charging and discharging operation 

of the PHEV battery. The calculations in sizing the PV array, SEPIC converter, and 

bidirectional converter are attached in Appendix B. 
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Fig. 6.3 shows the whole simulation model for the grid-connected PV system with a 

PHEV as energy storage implemented in Matlab/SimPowerSystems environment. 

 

Fig. 6.3: Simulation model of the grid-connected PV system with a PHEV battery as 

energy storage. 
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6.4 Solar Irradiance and Temperature Profiles 

The effects of different solar irradiance and temperature conditions on the performance 

of the PV array are analysed based on two different solar irradiance profiles, namely clear 

sky and cloudy sky profiles. These two irradiance profiles illustrate irradiance variations 

over the course of a day and will be used to represent the intermittent environmental 

conditions for the PV array. Clear sky and cloudy sky profiles are sourced from the 

Bureau of Meteorology (BOM) [297] at the Cape Grim station on the 1st and 3rd, May, 

2015, respectively. The clear sky and cloudy sky irradiance profiles are shown in Fig. 6.4 

and Fig. 6.5, respectively. The clear sky profile shows less fluctuations when compared 

to the cloudy sky profile, in which the irradiance varies significantly with rapid ramp rates. 

The highly fluctuating pattern of the cloudy sky profile is largely attributed to frequent 

cloud passing, because it causes drastic variations in solar insolation. From these two 

irradiance profiles, the solar power available period is defined as the time interval from 

7:00 AM to 5:00 PM with an aggregate of 10 hours in a day in the following analyses. 

This solar power available period will determine the mode of operation for the charging 

controller, which in turns affects the charging power for the battery. 

 

Fig. 6.4: Clear sky solar irradiance profile on 1st May 2015. 
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Fig. 6.5: Cloudy sky irradiance profile on 3rd May 2015. 

Due to lack of real-time temperature records, real-time temperature profiles are designed 

to follow the same trend with the irradiance profiles using an approximate method that 

employs relative scaling factors. The following simulations assume that the maximum 

and minimum temperatures under the clear and cloudy sky profiles are 15.2	℃ and 8	℃, 

respectively. The corresponding temperature data can be calculated using the formulae as 

follows [13]: 

    min max min
min

max min

Ir Ir Temp Temp
Temp Temp

Ir Ir
  

 


 (6.1) 

where ܶ݁݉݌௠௔௫  and ܶ݁݉݌௠௜௡  are the maximum and minimum temperatures, 

respectively. ݎܫ௠௔௫ and ݎܫ௠௜௡ are the maximum and minimum values of solar irradiance 

in a solar irradiance profile, respectively. ܶ݁݉݌  and ݎܫ  represent the real-time 

temperature and irradiance data. The calculated temperature data under clear sky and 

cloudy sky profiles is shown in Fig. 6.9 and Fig. 6.14, respectively. 

6.5 Charging Strategies 

In charging PHEV there are a number of uncertainties which must be considered such as 

when the PHEV will arrive home and what SOC level the battery has. Due to 

unavailability of SOC data about PHEV charging patterns, random SOC values in the 
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SOC range are assumed when the PHEV arrives and leaves home. The SOC range of the 

PHEV battery is limited between 20% and 85% to satisfy the battery life cycle 

requirements and result in a good vehicle drive performance. 30 minutes of stabilizing 

time is employed between each charging and discharging cycle. This stabilizing time is 

used for the vehicle to plug into a convenience outlet after arriving home and battery 

cooling after charging. 

In Fig. 6.1, it can be seen that the residential load peaks from 5:30 pm to 10:00 pm in the 

evening each day. A study was carried out in England to investigate vehicle drivers 

charging behaviours [23]. This study found that private users usually charge their cars 

during the evening peak period, which can cause overloading and early degradation of 

distribution infrastructures. To avoid charging during the peak period, charging is delayed 

until 10:00 pm when the off-peak period starts. When the vehicle returns to the residence 

during the peak period, the vehicle is plugged into the network without charging. The 

charging power reference is set to zero and the SOC reference is the same as the actual 

SOC. This strategy coordinates vehicle charging to avoid coincidence with the peak 

period and prevent any unwanted load peaks on the distribution networks. 

The following assumptions and limitations are used to develop the charging strategies: 

 The PHEV battery only consumes active power when charging. 

 The SOC range of the PHEV battery is between 20% and 85%. 

 The solar power available time is between 7:00 AM to 5:00 PM in a day. 

 A 30-minute interval is applied between each charging and discharging cycle. 

 The vehicle does not charge during the evening load peak period. 

Fig. 6.6 shows the flowchart of the overall control and charging strategies for the charging 

controller. In general terms, PHEV battery starts to charge after 30 minutes when the 

vehicle arrives home. In the daytime when the vehicle plug-in time is within the solar 

power available time, the vehicle is charged from the PV array in the power reference 

tracking mode. At night when solar power is unavailable, the vehicle is charged from the 

grid in the SOC reference tracking mode. 
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Fig. 6.6: Flowchart of the control and charging strategies for the charging controller. 

6.5.1 SOC reference tracking 

In the SOC reference tracking mode, the actual SOC of the battery follows a pre-set SOC 

reference. This charging mode is usually used for charging PHEV batteries at night using 

the grid power. In general, the SOC reference is a piecewise linear function that made up 

of several step and ramp signals with respect to the time of a day. It is assumed in the 

following simulations that the SOC reference is linearly increasing with respect to time 

while the vehicle is charging, whereas the SOC reference is linearly decreasing while the 

vehicle is discharging. 

The actual SOC of the PHEV battery follows a linear, downward-sloping SOC reference 

line when discharging. The discharging SOC reference ( ∗஻,_ௗ௜௦௖௛௔௥௚௘ܥܱܵ ) can be 

determined using: 
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   * end, discharge start, discharge
B, discharge end, discharge

start, discharge end, discharge

end, discharget t SOC SOC
SOC SOC

t t
  

 


 (6.2) 

where ݐ stands for the time of a day, and ݐ௦௧௔௥௧,_ௗ௜௦௖௛௔௥௚௘  and ݐ௘௡ௗ,_ௗ௜௦௖௛௔௥௚௘  symbolise 

the times at the beginning and the end of a discharge cycle, respectively. 

௦௧௔௥௧,_ௗ௜௦௖௛௔௥௚௘ܥܱܵ	  and ܱܵܥ௘௡ௗ,_ௗ௜௦௖௛௔௥௚௘  represent the SOC of the PHEV battery at the 

start and the end of a discharge cycle, respectively. 

When the vehicle is charging from the grid, the actual SOC of the PHEV battery follows 

a linear, upward-sloping SOC reference line. When the vehicle is charging using the grid 

power, the charging SOC reference (ܱܵܥ஻,_௖௛௔௥௚௘∗ ) can be determined using: 

 
   * end, charge arrival end, charge

B, charge end, charge
arrival end, charge

SOC
t t SOC SOC

SOC
t t

  
 


 (6.3) 

where ܱܵܥ௘௡ௗ,_௖௛௔௥௚௘  and ܱܵܥ௔௥௥௜௩௔௟  symbolises the SOC required at the end of a charge 

cycle and the actual SOC of the battery shortly after the vehicle returns to garage, 

respectively. ݐ௔௥௥௜௩௔௟  and ݐ௘௡ௗ,_௖௛௔௥௚௘  represent the arrival time of the vehicle and the 

time when the vehicle finishes charging, respectively. 

6.5.2 Power reference tracking 

The power reference tracking strategy allows the charging power of the PHEV battery 

follows the power reference determined by the PV array power, load power and the SOC 

of the PHEV battery. The PHEV battery absorbs power under the operational range of 

the PHEV battery’s SOC when the PV array generates more power than the load demand. 

If the PV array power is smaller than or equal to the load power. The charging power 

reference is set to 0 and the PHEV battery does not charge from the networks. If the PV 

array power is higher than the load power, the power difference between the PV array 

and local load will be calculated. If the power difference is smaller than 3.3	ܹ݇, the 

charging power reference will be set to the power difference. The charging power 

reference is limited to 3.3	ܹ݇ when the power difference is higher than 3.3	ܹ݇. This is 

due to the factor that the rating of the on-board charger for the Chevy volt is limited to 

3.3	ܹ݇ to minimize the cost of the on-board charger [283]. 
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6.6 Case Studies 

Fig. 6.7 illustrates the SOC scenario for an example day used in the following simulations. 

This scenario could represent a retired household or a working household on the weekend. 

This SOC profile consists of two two-hour driving trips in the day, namely the morning 

and afternoon trips. The vehicle starts the morning trip at 8:00 AM with an initial SOC of 

85%. Then, the driver drives the vehicle on the road until 10:00 AM. The vehicle arrives 

back home with 20% of its capacity remaining at 10:00 AM to start the daytime charging. 

The vehicle battery is charged using the PV array power in the power reference tracking 

mode. After that, the vehicle starts the afternoon trip and returns home again with 20% of 

its capacity remaining at around 5:30 PM. The charging of the vehicle is delayed until 

10:00 PM to avoid the evening load peak. The night charging starts at 10:00 PM and 

finishes in the next day morning in the SOC reference tracking mode. The PHEV battery 

is required to charge up to 85% of its capacity at the end of the night charging. 

 

Fig. 6.7: The SOC scenario for the example day. 

Fig. 6.8 shows the corresponding charging/discharging state profile for the example day 

used in the following simulations. The value 1 represents the battery charging whereas 

the value -1 represents the battery discharging. When the charging/discharging state is 

equal to zero, the charging controller is inactive and the battery does not charge or 

discharge. In other words, the reference SOC trajectory follows the actual SOC trajectory 

and the charging power is set to zero. 
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Fig. 6.8: The charging/discharging state profile for the example day. 

The objectives of the charging strategy are that the PHEV battery can be charged in the 

power reference tracking mode when the vehicle is charging during the solar power 

available time. During the night time when solar power is not available, the PHEV battery 

is charged from the grid in the SOC reference tracking mode. The actual SOC of the 

PHEV battery follows a pre-set SOC reference during the night charging. The charging 

strategies are developed to fulfil the certain SOC level requirements required at specific 

times of a day under the following assumptions in the case studies: 

 Two two-hour driving trips are assumed in the day. 

 Fixed vehicle arrival times and SOC levels at arrival and departure are assumed. 

 An initial SOC of 85% is required at the start of the morning trip. 

 A minimum SOC of 50% is required before the vehicle leaves home. 

 The battery is required to have at least 50% of its capacity remaining when the 

vehicle leaves home. 

The simulations were carried out in the following two case studies. The two case studies 

will be described in the following two subsections and show the system performances 

under the clear sky and cloudy sky irradiance profiles, respectively. The simulations were 

conducted with a sampling time of 1	ݏߤ and a total simulation time of 24 seconds. The 

24 seconds simulation time represents the full 24 hours of a day. It starts at 12 midnight 
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(0 hour) at the beginning of the current day and finishes at 12 midnight (24 hour) at the 

beginning of the next day. 

6.6.1 Case A - System performance with the clear sky 
irradiance profile 

The solar irradiance and temperature data in the clear sky profile are shown in Fig. 6.9. It 

can be seen that the solar irradiance available period starts from approximately 7:00 AM 

to 5:00 PM as shown in Fig. 6.9. The temperature data in the clear day is calculated using 

(6.1) according to the irradiance data. The temperature is highly unlikely to be maintained 

at the lowest value throughout the night and early morning. From this perspective, the 

temperature conditions are not well approximated using (6.1). However, as the 

temperature during the night and early morning has almost no impact on the PV array 

performance, this is not a major concern. 

 
Fig. 6.9: Irradiance and temperature data in the clear sky profile. 

Fig. 6.10 shows the PV array voltage, current and power and the duty cycle varying in 

the example day under the clear sky profile. It can be seen that the output power of the 

PV array is a direct correlation to the irradiance profile, but is also affected by the changes 

in the duty cycle. The duty cycle starts from 0.5 and gradually increases to around 0.63 

in the afternoon. When the PV power reduces to approximately zero at 17:00 PM, the 
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duty cycle is still maintained at 0.63 in a short time, and suddenly reduces to zero at 

around 17:40 PM. This may be results from the delay in the response of the MPPT 

controller. The duty cycle is set back to 0.5 at 18:00 PM when there is no PV power 

generation. 

 
Fig. 6.10: PV array voltage, current and power and the duty cycle under the clear sky 

profile. 

Fig. 6.11 shows the charging/discharging power and the power difference between the 

PV array and the local load. According to the charging/discharging state profile shown in 

Fig. 6.8, the discharging power is negative when the battery discharges and positive when 

the battery charges. The charging strategy works as expected during the night charging 
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when the vehicle is charged from the grid. When the charging controller works in the 

SOC reference mode, the battery is charged in such a way that the charging power 

switches rapidly between 3.3	ܹ݇ and 0 to ensure that the actual SOC tracks the reference 

SOC with zero steady-state errors. At two specific times of the example day, which are 

10:00 AM and 5:30 PM, there are power spikes happened at these time instants due to the 

transitions from the battery discharge to the battery charge. From 10:30 AM to 2:30 PM, 

the charging controller works in the power reference mode and the charging power 

follows the power difference between the PV array and local load. 

 

Fig. 6.11: Charging and discharging state, charging/discharging power, and the power 

difference between the PV array and the load under the clear sky irradiance profile. 

Fig. 6.12 shows the battery current and voltage and actual SOC and reference SOC signals 

under the clear sky irradiance profile. It is noted that the actual SOC tracks the reference 

SOC well during the two battery discharging cycles. During the night charging, the actual 

SOC is increased to track the SOC reference with zero steady-state errors. From 10:30 

AM to 2:30 PM, the actual SOC deviates slightly from the SOC reference as the charging 

controller works in the power reference mode and the charging power reference is set to 

the power difference between the PV array and local load as shown in Fig. 6.11. The 

battery voltage is increasing during the battery charge cycles and decreasing during the 

battery discharge cycles. 
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Fig. 6.12: Battery current, battery voltage, battery’s actual SOC and battery’s reference 

SOC under the clear sky profile. 

Fig. 6.13 shows the DC link voltage, current and power under the clear sky irradiance 

profile. It can be seen that the DC link voltage is regulated at 700 V with some transients 

and spikes at some specific times of the example day. This is largely due to the transients 

between battery charging and discharging and switching on and off the MPPT controller 

based on the solar power available period. It is expected that the PV array current is 

proportional to the PV array voltage for most of the example day. The DC link current 

and power are larger than zero during most of the solar power available period. This is 

because that the PV array generates sufficient solar energy that used for charging the 

vehicle under the clear sky irradiance profile. 
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Fig. 6.13: DC link voltage, current and power under the clear sky irradiance profile. 

6.6.2 Case B - System performance with the cloudy sky 
irradiance profile 

The solar irradiance and temperature data in the cloudy sky profile are shown in Fig. 6.14. 

 
Fig. 6.14: Irradiance and temperature data in the cloudy sky profile. 
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The temperature data in the cloudy sky profile is calculated using (6.1) based on the 

cloudy sky irradiance data. It can be seen that the irradiance and temperature data in the 

cloudy sky profile is shown to have more fluctuations when compared to the data in the 

clear sky profile. 

Fig. 6.15 shows the PV array voltage, current and power and the duty cycle varying in 

the example day under the cloudy sky profile. The PV array produces a rapid fluctuating 

output power when compared to the power generated under the clear sky profile. The duty 

cycle is maintained at around 0.58 during most of the solar power available period. There 

is a slight dip in the duty cycle at the midday. This is due to the sudden surges and plunges 

in solar irradiance that will change the PV array output power over short periods of time. 

The duty cycle suddenly reduces to zero at around 18:00 PM immediately prior to the 

switching off the MPPT controller. 

 
Fig. 6.15: PV array voltage, current and power, and the duty cycle under the cloudy sky 

profile. 
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Fig. 6.16 shows the charging/discharging power and the power difference between the 

PV array and the local loads under the cloudy sky irradiance profile. During the solar 

energy available period, it can be seen that the charging power is low and spiky when 

compared to the charging power under the clear sky profile. 

 

Fig. 6.16: Charging and discharging state, charging/discharging power, and the power 

difference between the PV array and the load under the cloudy sky irradiance profile. 

Fig. 6.17 shows the battery current and voltage and actual SOC and reference SOC signals 

under the cloudy sky irradiance profile. At 2:30 PM when the daytime charging is about 

to finish, the actual SOC reaches to around 39%. This violates the SOC requirement when 

the vehicle leaves home. Some kinds of user overrides may be needed to charge the 

battery from the grid to satisfy the SOC requirements in the daytime. The charging 

controller may need to detect the adequacy of the solar energy during the daytime 

charging period. If the solar energy generated during the charging period is not enough to 

charge the battery to the required SOC level, charging from the grid could be initiated at 

some time before the daytime charging is finished. In Fig. 6.17, during the solar power 

available period, the actual SOC deviates significantly from the SOC reference during the 

time interval from 10:30 AM to 2:30 PM. This is largely due to insufficient irradiance 

levels during the daytime under the cloudy sky irradiance profile, which results into a low 

charging power in the power reference tracking mode. The battery voltage is almost kept 

at a constant level with some slight variations when the battery is charged from the PV 
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array. This may be due to the fluctuations in the charging power of the battery, which is 

also as result of the PV array power fluctuations. 

 

Fig. 6.17: Battery current, battery voltage, battery’s actual SOC and battery’s reference 

SOC under the cloudy sky profile. 

Fig. 6.18 shows the DC link voltage, current and power under the cloudy sky irradiance 

profile. It can be seen that the DC link voltage behaves almost the same as the DC link 

voltage under the clear sky irradiance profile. During the solar power available period, 

there is a certain number of intervals when the DC link current and power are smaller 

than or equal to zero. This is because that the PV array generates not enough solar power 

for charging the vehicle. Potential user overrides may be applied in this case to charge the 

vehicle from the grid. It is noted that the PV array current is proportional to the PV array 

voltage during the whole day as expected. 
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Fig. 6.18: DC link voltage, current and power under the cloudy sky irradiance profile. 

6.7 Conclusion 

The key objective of this chapter is to design and implement a control and charging 

strategy for a PHEV battery. The two modes of operation for the charging controller are 

well implemented based on the solar power available time. There are frequently situations 

where the irradiance condition is unfavourable for battery charging especially in a cloudy 

day, and the charging controller is required to work at the SOC reference tracking mode 

to follow a pre-set SOC profile. Thus, some kinds of user override may be required in 

some situations to ensure the battery is charged up to the required SOC levels at specific 

times of day when the vehicle leaves home, even if the vehicle is required to be charged 

from the grid during the daytime. 

V2G services have not been implemented at this stage and are treated as outside the scope 

of the project. V2G services allow the energy stored in the batteries to be delivered to the 
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grid when there is a demand of reactive power in the grid. Future research could include 

the V2G technology to discharge the PHEV battery when faults happen in the grid or 

local load peaks occur. 
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Chapter 7  
Conclusions and Recommendations for Future 

Research 

This thesis has presented a comprehensive review and analysis of grid-connected 

photovoltaic (PV) systems integrated with plug-in hybrid electric vehicle (PHEV) energy 

storage integration in a residential environment. In order to simulate real charging 

scenarios for the PHEV in the day, the modelling accuracy of PV array and PHEV 

batteries have been improved through the parameter estimation techniques. The input 

voltage control of the DC-DC converter is analysed and implemented via a digital PID 

controller with the tuned parameters setting. This tuned parameter setting ensures that the 

PV array voltage tracks its reference with zero steady-state errors and fast response time. 

A suitable control and charging strategy has been developed to charge the vehicle from 

the PV array during the daytime and the grid at night. The charging controller works at 

the SOC reference tracking mode during the night charging to guarantee that the actual 

SOC of the battery satisfies the required SOC level at the end of the night charging. 

The overall objectives of this thesis are modelling, control and power management of a 

grid-connected PV system with a PHEV battery as energy storage, parameter estimation 

of PV modules and PHEV batteries, experimental testing of BP 380 PV modules with 

validation of the PV module model and charging strategies for the PHEV batteries. 

7.1 Conclusions 

In summary, the major contributions have been made in the thesis are listed as follows: 

 Modelling, control and power management of a grid-connected PV system with a 

PHEV battery as energy storage. 

 A GA approach to parameter estimation for PV modules is proposed to estimate 

the parameters of a SDM. The relative errors at the three remarkable points are 

significantly reduced when compared to Villalva's iterative method. 
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 A novel QPSO parameter estimation technique is proposed to parameterize 

Tremblay’s model parameters. The simulation results from Chapter 5 show that 

the QPSO parameter estimation technique provides similar estimation 

performance when compared to the GA and PSO parameter estimation techniques. 

 Experimental testing of BP 380 PV modules has been conducted to validate the 

effectiveness of the PV module model. 

 A control and charging strategy is developed to charge the vehicle from the PV 

array during the daytime and from the grid at night. 

7.2 Suggestions for Future Research 

Many future works could be done to provide a better understanding of grid-connected PV 

systems with a PHEV battery as energy storage. To compare the performance of the 

proposed system mentioned in Chapter 6, another residential PV system for PHEV loads, 

in addition to regular residential requirements, can be designed and implemented. This 

system can be a combination of two subsystems which cascade through a AC network. 

First subsystem consists of a PV array, a current-controlled boost converter, a MPPT 

controller, and an DC/AC inverter. The second subsystem can be the energy storage 

system with battery packs and a current-controlled bidirectional DC/AC inverter. All the 

current controllers can be selected as sliding mode controllers with more flexibility 

against conventional PID controllers. A power management algorithm can be developed 

to manage the power flow between the grid and the energy storage system according to 

load profiles. The operation and reliability of the system can be also analysed. 

Future works can include: 

 Development of a DC microgrid with EVs or PHEVs as energy storage and 

investigating whether added benefits can be achieved for future power systems. 

 Utilization of intelligent controllers instead of conventional PI-controllers may 

give more flexibility to the control of grid-connected PV systems. 

 Deployment of multiphase converters for PHEV charging interface to reduce the 

switching loss of the converters with minimum size inductors. 
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 Investigating the performance of grid-connected PV systems with PHEVs as 

energy storage under fault conditions  

 Research on discharging strategies for PHEV batteries to supply power to the grid 

via the V2G technology. 

 Incorporation of a supercapacitor energy storage system in the developed grid-

connected PV systems to charge PHEV batteries during the daytime when the 

solar energy is inefficient. 

 Simulation of the behaviour of an inverter controlled electric motor that serves a 

load during battery discharge based on the Urban Dynamometer Driving Schedule 

(UDDS). 

 Development of a partially shaded PV array model to investigate the effects of 

partial shading on PV arrays. 

 Incorporation of the partially shaded PV array model in the system model and 

development of a simple yet effective GMPPT technique to identify the GMPPT 

of the PV array under PSCs. 
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Appendix A  
Script of Matlab Function Implementing the 

SDM for PV Modules 

function Iout = fcn(Vin,T,Tref,G,Isc,Voc,Ns,Rs,Rp,A,Npar,Nser,Iph_n,TempC_Voc, 
TempC_Isc) 
%% Physical Constants 
k=1.38e-23; 
q=1.6e-19; 
%% Change the temperature unit from Celsius to absolute scale (Kevin) 
T=T+273; 
Tref=Tref+273; 
%% Calculate the photo-generated current at the operating condition 
Iph=(Iph_n+TempC_Isc*(T-Tref))*(G/1000); 
Iph=Iph*Npar; 
 
%% Calculate the diode saturation current at STC 
Io_n=Isc/(exp((q*Voc)/(Ns*A*k*T))-1); 
 
%% Compute the diode saturation current at the operating temperature (Method 1 
using the temperature coefficients) 
Io_num=Isc+TempC_Isc*(T-Tref); 
Io_den=exp(q*(Voc+TempC_Voc*(T-Tref))/(Ns*A*k*T))-1; 
Io=Io_num./Io_den; 
% Consider the temperature effect on the open circuit voltage 
%% PV array diode saturation current 
Io=Io*Npar; 
%% Compute the thermal junction voltage 
Vt=(Ns*k*T*A*Nser)/q; 
 
Rs=Rs*Nser/Npar;   %Compute the series resistance of the PV array 
Rp=Rp*Nser/Npar;   %Compute the parallel resistance of the PV array 
 
 
%% Compute the PV array current using the Newton-Raphson iterative method 
Iin=0; 
while 1 
    FL=Iph-Io*(exp((Vin+Iin*Rs)/Vt)-1)-((Vin+Iin*Rs)/Rp)-Iin; 
    dFL=-Io*exp((Vin+Iin*Rs)/Vt)*(Rs./Vt)-(Rs/Rp)-1; 
    I=Iin-(FL/dFL); 
    if abs(I-Iin) < 10^-8 
        break 
    end 
    Iin=I; 
end 
if I<0 
    Iout=Iin; 
else 
    Iout=I; 
end 
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Appendix B  
System Design 

To achieve a total power rating of 10	ܹ݇ for the PV array, the TNM of the PV array is 

given as follows: 

 max_array

max_module

10 kW 125
80 W

P
TNM

P
    (B.1) 

The string voltage of the PV array is limited to 440 V, thus the number of series-connected 

modules (ܰܯ) per string is given by: 

 mpp_array

mpp_module

440 V 25
17 6 V

V  NM
V .  

    (B.2) 

The number of strings (ܰܵ) in the PV array is given as follows: 

 125 5
25

TNMNS
NM

    (B.3) 

Thus, the output current of the PV array is calculated by: 

 max_array
mpp_array

mpp_array

10 kW 22.75 A
440 V

P
I

V
    (B.4) 

Table B.1 shows the specifications of the PV array for 10	kW generation. 
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Table B.1: PV array specifications for 10	ܹ݇ generation. 

Parameter Value 

Rated power ( ௠ܲ௣௣,_௔௥௥௔௬) 10	ܹ݇ 

Number of series-connected modules (ܰܯ) 25 

Number of parallel-connected strings (ܰܵ) 5 

Voltage at the MPP ( ௠ܸ௣௣,_௔௥௥௔௬) 400	ܸ 

Current at the MPP (ܫ௠௣௣,_௔௥௥௔௬) 22.75	ܣ 

The SEPIC converter is assumed to always operate in CCM with a switching frequency 

of	20	݇ݖܪ. The DC link voltage is selected as 700 V to reduce the output current ripple 

of the SEPIC converter, the DC link current and steady-state duty cycle of the SEPIC 

converter is given by: 

 max
DC

DC

14.3 API
V

   (B.5) 

 DC

string DC

700 0.614
440 700

VD
V V

  
 

 (B.6) 

The ripple current flowing through the inductors ܮଵ and ܮଶ is assumed to be 30% of the 

input current of the DC-DC converter that is calculated in (B.4), therefore 

 0.3 6.825 AL ini I     (B.7) 

The inductance of the two inductors are calculated as follows: 

 string
1 2

440 0.614 1.98 mH
6.825 20000L s

V D
L L

i f
 

   
  

 (B.8) 

Select 2	݉ܪ for the standard value for the two inductors, thus 

 

Assume that the ripple voltage across the coupling capacitor is 5% of the input voltage 

1

2

2 mH
2 mH

L
L


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of the SEPIC converter, thus the coupling capacitor ܥ௣ in the SEPIC converter is given 

by: 

 
string

14.3 0.614 19.96 
0.05 20000

DC
p

p s

I DC F
V f V


 

  
   

 (B.9) 

Rounding up to a standard capacitor value, the capacitance of ܥ௣ is chosen as 20	μܨ. 

The power rating of the bidirectional buck-boost converter is selected as 3.3	ܹ݇. The 

steady-state duty cycle is calculated as follows: 

 B

DC

355.2 4311 1 0.493
700 875

VD
V

       (B.10) 

The nominal battery current of the PHEV battery is calculated as follows: 

 charging
B

,

3300 9.29 A
355.2B nom

P
I

V
    (B.11) 

A rule of thumb is that the inductor ripple current ∆ܫ௅ is selected as 30% of the nominal 

battery current, which is calculated by: 

 0.3 0.3 9.29 2.787 AL BI I       (B.12) 

Thus, the inductance of the bidirectional buck-boost converter is calculated as follows: 

 B (1 ) 355.2 (1 ) 3.234 
2.787 20000L s

V D DL mH
I f
   

  
  

 (B.13) 

The capacitance of the battery-side capacitor is calculated as follows [248]: 

 
2

3 22

1 1 0.493 0.98 208 3.234 10 200008
700

B
s

B

DC FVL f
V




 
  


     

 (B.14) 

Table B.2 shows the specifications of the bidirectional buck-boost converter and SEPIC 

converter. 
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Table B.2: Specifications of the bidirectional buck-boost converter and SEPIC converter. 

Parameter Value 

Switching frequency ( ௦݂) 20	݇ݖܪ 

Inductor current ripple (∆݅௅) 30 % 

Capacitor voltage ripple (∆ ௖ܸ) 2 % 

Bidirectional Converter 

Rated power 3.3	kW 

Battery voltage range 

( ஻ܸ௔௧௧,௘௫௣ – ஻ܸ௔௧௧,௡௢௠) 

332.09 – 300.36	ܸ 

 ܪ݉	஻௔௧௧ 22ܮ

 ܨߤ	஻௔௧௧ 22ܥ

SEPIC Converter 

Rated power 10	kW 

Input voltage ( ௜ܸ௡) 400	ܸ 

Input current (ܫ௜௡) 22.75	ܣ 

DC link voltage ( ஽ܸ஼) 700	ܸ 

DC link current (ܫ஽஼) 14.3	ܣ 
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