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IN  

The subject matter of this thesis has its origins in 

Dickson's generalization to certain abelian categories of the 

notion of torsion as applied to abelian groups [9] and the 

earlier work of Kurosh [27] and Amitsur [1] on a general theory 

of radicals for rings and algebras. 

In [9] a torsion theory was defined as a couple (a,;..;) 

of classes of objects such that 

(i):7 n 5- = {0} 

(ii):7 is closed under homomorphic images 

(iii) is closed under subobjects 

and (iv) for every object K there is a short exact 

sequence 

with T c :7 and F 

In this situation (resp.a) was called a torsion (resp. 

torsion-free) class. In the motivating example,a(resp. ) 

is the class of all torsion (resp. torsion-free) abelian groups. 

Kurosh [27] defined a radical class of rings as a 

class e such that 

(i) C is closed under conormal epimorphic images 

(ii) every ring A has an ideal CA belonging to e. 

and containing all other such ideals 

and 	(iii) C. (A/CA) = 0 for every ring A. 

Kurosh's theory is applicable to quite general categories 

(v) 



("normal subobject" replaces "ideal" in (ii)), in particular to 

the abelian categories considered in [9], for which the concepts 

"torsion class" and "radical class" coincide. The function 

which assigns CA to A becomes a functor if its action on 

morphisms is defined by restriction. Such a functor is called 

an idempotent radical. (Some authors omit "idempotent"). 

A class :T is a torsion class if and only if it is 
closed under homomorphic images, direct suns and extensions. In 

considering specific torsion theories for modules, it has been 

the practice of most authors to impose an extra condition: 

theta be closed under submodules, or hereditary, and indeed 

the analogy with abelian group torsion becomes a little tenuous 

in the absence of this condition. One expects, for example, 

that "torsion modules" be in some way characterized by the 

annihilators of their elements. Nevertheless the language of 

torsion classes and theories as described above, rather than 

that of radical classes, has become standard, at least among 

non-Russian authors writing about abelian categories. 

In this thesis we are mainly concerned with torsion 

classes of abelian groups. In parts of Chapter 4, however, we 

work in abelian categories satisfying various sets of conditions, 

as the added generality involves no significant complication 

of the arguments. 

Chapter 1 is essentially a catalogue of other people's 

results which are referred to in the text. The relation between 

Dickson's work and that of Kurosh and Amitsur is also briefly 

discussed. 



(vii) 

The closure properties which characterize torsion 

classes ensure that any group or class of groups is contained 

in a smallest torsion class; this torsion class is said to be 

determined by the group or class in question. 

Some examples of torsion classes determined by torsion-

free groups are considered in Chapter 2. The behaviour of 

rational groups as members of torsion classes is investigated 

and the torsion classes determined by rational and torsion groups 

are completely described. 

The principal results are to be found in Chapters 3 

and 4, where additional closure properties for torsion classes 

are considered. It is shown in §1 of Chapter 3 that a torsion 

class is closed under countable direct products, (i.e. direct 

products of countable sets of groups) if and only if it is 

determined by torsion-free groups. The remainder of the chapter 

if devoted to closure under pure subgroups. The torsion classes 

with this property are characterized - such a torsion class either 

contains only torsion groups or is determined by a subring of 

the rationals and a set of primary cyclic groups - and the result 

generalized to obtain a description of those closed under S-pure 

subgroups, where S is a set of primes. 

In Chapter 4 we consider torsion classes closed under 

certain generalized pure subgroups as defined by Carol Walker 

in [41]. The following question is investigated: if 1A., anda 

are torsion classes, when is a closed undera-pure subgroups? 
This question is actually a generalization of the one for ordinary 

pure subgroups answered in Chapter 3 - although purity is not 



U.-purity for any torsion class '1j, a torsion class is closed 

under pure subgroups if and only if it is closed under 1 0-pure 

subgroups, where :T o  is the class of all torsion groups. Some 

special cases of the general question are answered, for example 

the case where each of a and tL is determined by a single 
rational group. We also consider an approach to the general 

problem. A class of groups defined in terms of a rank function 

associated with a given 1A. is described, whose members, with 

those of tk, determine all ccy closed under it-pure subgroups. 

When 11.= ;1
0' 

the groups in question are the rational groups, 

so the results of Chapter 3 indicate that a smaller class will 

in general suffice for representations of the torsion classes 27 . 

Some other examples are also given. 

Chapter 5 has two brief sections. In the first we 

discuss the Amitsur radical construction [1] starting from a 

single rational group and in the second we characterize the 

torsion classes of abelian groups whose idempotent radicals r 

split, i.e. r(A) is always a direct summand of A. 

Some of the results presented here have been published 

elsewhere ([18], [19]). The main results of [18] are contained 

in §2 of Chapter 3 while the theorem in [19] is a sort of 

leit-motiv for the theory of types in the present work: it is 

stated explicitly as COROLLARY 5.4, and the proof of THEOREM 5.3 

is a generalization of the proof given in [19], the essential 

part of which is also contained in the proof of THEOREM 4.79; 

the result can also be obtained, in a rather different manner, 



as a joint corollary to THEOREMS 3.12 and 3.13. 

In notation and terminology we generally follow Fuchs 

[15] or Mitchell [33], and most deviations have the sanction of 

popular usage, but for the reader's convenience we give the 

following table of notation. 

agr  category of abelian groups 

group of integers 

group of rational numbers 

Q(P)  group (or ring) {im,n c Z} where p is a prime 

Q(S) 
 

group (or ring) { zn C Z ,n C Z with prime 

factors in S} where S is a set of primes 

I(p) 	group (or ring) of p-adic integers 

Z(n) 	cyclic group of order n 

co 
Z(p ) 	quasicyclic p-group (p prime) 

[LW 	group generated by set U. 

[xx IA c A] 	group generated by set {x x IA e Al 

group generated by elements  

[x] * 	smallest pure subgroup containing x, where x is 

an element of a torsion-free group 

h(x) 	height of an element x of a torsion-free group 

t(x) 	type of an element x of a torsion-free group 

T(X) 	type of a rational group X 

type of a height (h 1 ,h2 ,...) 

G(0) 	subgroup {x C GIT(x) > al of a torsion-free 

group G 

A e B, ® A 	direct sum (= coproduct = discrete direct sum) 



(x) 

T-TAA 

(aX) 

[A, B] 

// 

direct product (= product = complete direct sum) 

element of (DAA  orTrAx  

group of homomorphisms (morphisms) from A to B. 

end of a proof 

Unless the contrary is stated explicitly, "GROUP" 

always means "ABELIAN GROUP". 



CHAPTER 1 

PRELIMINARIES 

1. Torsion Theories  

In this section we shall work in a locally small 

abelian category a■ which is subcomplete in the following sense: 

DEFINITION 1.1: A category is called subcomplete if 

for every set' A1 IX EA 1 ofsubobjects of cm object A, the 

direct sum (copmduct) 4)Ai and the direct product (product) 

TT(AJA1) both exist. 

DEFINITION 1.2: A torsion theory for a< is COI ordered 

pair (a , a.), where a and 9are classes of objects of 
satisfying the following conditions: 

(1) 27 r) 	= {o}. • 
(ii) If T ---) A —4 0 2,s exact with T c , then 

A c a . 
(iii) If 0 	A 	I,  is exact with F c, then Ac . 

(iv) For each object K of g<there is a short exact 

sequence 

0---)T-4K-4F-40 

with T c a and F C 
In this situation g is called a torsion class, 2X a torsion-free 

class. 

We shall describe (ii) and (iii) by saying that the 



relevant class is closed under homomorphic images, subobjects 

respectively. Other closure properties for classes will be 

described similarly. Note that both a' and 	are closed under 

isomorphisms. 

THEOREM 1.3: A non-empty class ZI is a torsion class 

if and only if it is closed under homomorphic images, direct 

sums and extensions. a is a torsion-free class if and only if 

it is non-empty and closed under subobjects, direct products 

and extensions. 

(Here closure under extensions means that in an exact 

sequence 

0-4K-4L—)M-40 

L belongs to the class if K and M do). 

PROOF. [9] Theorem 2.3.// 

THEOREM 1.4: Leta, 2F be classes of objects of g< . 

Then (7,2F) is a torsion theory if and only if 

[T,K] = 0 for aZZ T c a ‹.> K C 2P 

and 	[K,F] = 0 for all F e 2X 4=> K ea. 

PROOF. [9] Theorem 2.1.// 

THEOREM 1.5: A torsion class a belongs to a unique 
torsion theory (3,2F), where 

2F = fsi[A,B] = 0 for al/ A c 2f 1. 

Similarly a torsion-free class ‘S belongs to a unique theory 

), where 

2. 



3. 

it = tAl[A,B] = o for all B c 4§ 

PROOF. [9] Proposition 3.3.// 

From THEOREM 1.3 it is clear that the intersection of 

any family of torsion (rasp. torsion-free) classes is a torsion 

(resp. torsion-free) class. 

DEFINITION 1.6: For any class C of objects of k, T((!) 

is the smallest torsion class with C as a sub-class, F(C) the 

smallest such torsion-free class. If C has a single member C, 

T(C) and F(C) will be used rather than T({C}) and F({C}). T(C) 

will also be referred to as the torsion class determined by C. 

THEOREM 1.7: For any class C of objects of X, 

= 0 for all C c C 1 is a torsion class, 

{131[C,B] = 0 for all C 	is a torsion-free class, 

T(C) = fAl[C,B] = 0 for all C c (1 => [A,B] = 01, 

F(C) = IBI[A,C] = 0 for all C E C =;.> [A,B] = 

Hence T(A) ci T(6) and F(A) C- F(6) whenever  

PROOF. [9] Propositions 3.1 - 3.3.// 

2. Torsion Classes and Radicals  

DEFINITION 1.8: A fUnctor r 	-- akis called a 

sub functor of the identity if 

(i) r(K) 5i K for each object K 

and (ii) for any morphism f:K-4L in a i  

r(f): r(K)-4r(L) is the restriction of f to r(K),i,e. the 

diagram 



4 . 

r(f) 

r(K) -----4r(L) 

K 	L 

commutes, where the vertical arrows represent inclusions. 

If in addition 

(iii) r(K/r(K)) = 0, 

✓ is called a radical, and an idempotent radical if also 

(iv) r2  = r, is. r(r(K)) = r(K) for every object K. 

Conditions (ii), (iii), (iv) are independent for functions 

which assign subobjects to objects of k, as is demonstrated by 

the following simple examples for a =at. . 

EXAMPLE 1.9: r(A) = p A for every A c a2r, where p is 

prime. Since for any homomorphism f: A-4B, we have f(pA) cip B, 

✓ can be made into a functor satisfying (ii). (iii) is also 

satisfied, but (iv) is not, as for example p Z(p 2) 	Z(p) and 

p Z(p) = 0. 

EXAMPLE 1.10: Define 

1A if A Z 
r(A) = 

0 if A f z . 
✓ satisfies (iii) and (iv), but if 0 A Z, there are non-zero 

homomorphisms f from Z to A, so f(r(Z))1; r(A). 

EXAMPLE 1.11: r(A) = A[p] = Ca e Alpa = 01, where p 

is prime. (ii) and (iv) are satisfied, but for example r(Z(p2)) 

Z(p) and r(Z(P
2
)/r(Z(P2 ))) 	r(Z(p)) = Z(p). 



5 . 

PROPOSITION 1.12: Let (cr,u-) be a torsion theory for 
2k. Every object K has a unique largest subobject orK belonging 

to a. g K satisfies the following equalities 

(i)zrK .u{K ,  5.; 00 cu 

(ii) K = 	KIK/K' e 	. 

Also, 	(K/aK) = 0 for every K. 

PROOF. [9] Proposition 2.4.// 

For any morphism f: 	in5C., we have f(K) IL ZTL, 

since f(h() 6 J. In addition 2rano = al( for every K, so as 

a consequence of PROPOSITION 1.12 we have 

COROLLARY 1.13: Let (a,a) be a torsion theory forX. 

For any object K let r7 (K) = grK and let rz  act on morphisms by 

restriction. Then r
7 
 is an idempotent radical. Further, 

r7 (K) = K if and only if K ea and r7  (K) = 0 if and only if 

Conversely, each idempotent radical determines a torsion 

class. Proof of this requires 

LEMMA 1.14: Let r: 	be a radical, C the class 

of objects L for which r(L) = 0. For any K e 	we have 

	

r(K) = rI {K' 	KIK/K' e C } 

PROOF. As for Proposition 2.4 of [9].// 

This result seems to be well-known. It appears without 



6. 

proof in [5]. It is clear that r(K) = K if and only if [K,L] = 0 

for each L e 	. Using THEOREM 1.7 we therefore obtain 

COROLLARY 1.15: For any radical r: 	the 

class 

{K EXI r(K) = 

is a torsion class.// 

Thus in particular, if r is an idempotent radical, 

ar  = {K e)61 r(K) = KI 

is a torsion class. 

LEMMA 1.16: If r : 5(6—* X is a radical and K S.. r(L), 

then r(L/K) = r(L)/K. 

PROOF. [32] p.110.// 

For any idempotent radical r and any K eae, 

rea r(K/r(K))) 53 r(K/r(K)) = 0 . 

But as r2 (K) = r(K), r(K) belongs to Zf r , so r(K) 	,Z7rK and by 

LEMMA 1.16, 

= :,:f r (K/r(K)) = 0 

i.e. r(K)  

Also, for any torsion, class a ; we have the identities 

cxleaK . 	{K c oz I r 7  (K) = K} . 

We have thus proved 

TBEOREM 1.17: There is a one-to-one correspondence 

between torsion classes 7 • of and idempotent radicals r:2-4 2 , 

defined by 



;  

In [9] a stronger assertion is made, namely that a 

subfunctor of the identity is an idempotent radical if and only 

if its class of fixed objects is a torsion class. The discussion 

above shows that this is false. A partial ordering of the 

radicals 51,--) c7k is defined by 

r 1 .:5r2  4=> r/ (K)g; r2 (K) for all K c 2k. 

If 7 is a torsion class, its associated idempotent radical r 

is (in the sense of this relation) the smallest radical whose 

class of fixed objects is 21 . This is proved in [32] (p.110). 

3. The Kurosh Construction  

We now discuss a construction, which while valid in 

more general categories, produces torsion classes in subcomplete, 

locally small abelian categories. 

Let O. be a category satisfying the following conditions: 

(i)a has a zero object. 

(ii) Every morphism of Ow has a kernel. 

(iii) Every morphism has a conormal epimorphic image. 

(iv) If f:A--) B is a conormal epimorphism and A' 

Is a normal subobject of A, then f(A') is a normal subobject of B. 

(v) Every infinite, well-ordered, strictly increasing 

chain of normal subobjects of an object has a normal union. 

Given a class (1). of objects of a, we define a class 

by transfinite induction as follows: 

7. 



Let 

C
1 
= Lk C O. IA is the image of a conormal 

epimorphism from some C c(3 1 . 

If C
a 

has been defined for all ordinals a <8, let 

C? 0 = {A e(11For every non-zero conormal 

epimorphism 	B has a non-zero normal 

subobject belonging to some ea , a < 8}. 

Finally, let e =yea  . 0,  is called the lower radical class 

determined by C. . 

This construction was first used by Kurosh [27] for 

rings and algebras. The possibility of generalizing it to 

categories satisfying conditions (i) - (v) was demonstrated by 

Shul t geifer [39]. It has since been used in the category of all 

(not necessarily abelian) groups (a brief discussion appears in 

[29]) and elsewhere. We have given here a slightly modified 

form due to Sulinski, Anderson and Divinsky [40]. 

For the categories in which we are interested, the 

construction takes a simpler form. 

PROPOSITION 1.18: If asatisfies (i) - (v) and if in 

addition normality of'subobjects is transitive ina, the lower 

radical class construction terminates at the second stage, i.e. 
— 

for every class e, e =C 2' 

PROOF. We need only show that e 3  = C 2 . To this end 

let A E C 3  have a conormal epimorphic image A", with B e e 2  

a non-zero normal subobject of A". B has a non-zero normal 

subobject B' C C3 , and by assumption, B' is normal in A". Thus 1 

8 . 



A c e 2 , so e 3  = e  2 

PROPOSITION 1.19: Let a, be a subcomplete, locally 

small abelian category. For any class C of objects of 3. T(e) 

is the lower radical class which C, determines. 

PROOF. If K belongs to T((?), so does any non-zero 

homomorphic image K", i.e. [C,K1 0 for some C C C . This 

means that K eC
2' 

so using PROPOSITION 1.18, we have 

T(C)Si C 2  = C. Conversely, if r is the idempotent radical 

associated with T(e) and if K E E! =C 2 , then [C,K/r(K)] = 0 

for all C 	, so K/r(K) = 0, i.e. K T(C), i.e. 

e =  

In some non-abelian categories upper bounds have been 

found for the number of steps required in the lower radical 

construction: w (the first infinite ordinal) in the categories 

of all groups (Shchukin [381) and associative rings [40], w 2  

in the category of alternative rings [40]. In the case of 

associative rings, it has been shown that w steps are sometimes 

needed [23]. 

4. The Amitsur Construction  

Amitsur [1] has discussed the following construction 

in rings and in objects of certain categories: 

Let n be a property of normal subobjects. Given an 

object A, define 

A
1 
= U{A' C AA' is normal and has property 11} 

9. 



and if A
a 
has been defined for all ordinals a <5, let 

A = LJ A if 5 is a limit ordinal and otherwise let A be al3 a 
defined by the exact sequence 

(*) 0 —4A81 --4 A
0 
 --4 (A/A0-1)1--4  0 . 

-  

If the category is suitably chosen, there exists an ordinal A 

for which AA  = AA1.1. For such A, Amitsur called the subobject 

AA  the upper n-radical U(A,R). Extra conditions must be imposed 

an n if the upper n -radical is to determine a radical in Kurosh's 

sense (what we have called an idempotent radical in the abelian 

case). However, if for a subcomplete locally small abelian 

category we take Tr to mean membership of some class closed under 

homomorphic images, then all requirements are met and we have 

PROPOSITION 1.20: Let C be a class of objects in a 

subcomplete, locally small abelian category, e l  the class of 

all homomorphic images of members of C,  it the property 

membership ofe 1  " and r the idempotent radical associated with 

T(.(:). Then u(k,n) = r(K) for any K EY,  . 

PROOF. We show firstly that K t3  e T(C) for every 0. 

If a = 1, this is clear from the closure properties of torsion 

classes. The same remark holds for K a  when 13 is a limit ordinal 

and Ka 
e T(e) for all a <8. In the remaining case it is clear 

from (*) that K c T((;) if K 	c T(e),, 
0-1 

Now let A be any ordinal with KA  = K +4 . Then 

KA  c T(e), but (K/KA), = KA+1/KA  = 0, so r(K/KA) = 0 whence it 

follows that r(K) = KAM 

10. 



Even in abelian categories there is no finite upper 

bound on the number of steps that may be needed in the Amitsur 

construction. We shall consider some examples in Chapter 5. 

5. Torsion Classes of Abelian Groups  

For the remainder of this chapter we shall only consider 

torsion theories and classes for Cljr 

DEFINITION 1.21: If p is a prime, a p-divisible group 

G is one for which pG = G. If G is p-divisible for all primes p 

in some set P, it is said to be P-divisible. A group is called 

p-reduced (reap. P-reduced) if it has no non-zero p-divisible 

(reap. P-divisible) subgroups. 

DEFINITION 1.22: A P -group, where P is a set of primes, 

is a direct sum of p-groups, where p varies over P.. 

The torsion theories described below make frequent 

appearances in the sequel; the notation given here will be 

preserved throughout. 

EXAMPLE 1.23: 610 , %). ao  (resp. a o) is the 

class of all torsion (resp. torsion-free) groups. The maximum 

torsion subgroup of a group A will be denoted by A t . 

EXAMPLE 1.24: (Z1 ,a). CI is the class of all 
P P 

p-groups, (p is a prime). The maximum p-subgroup of A will be 

11. 

denoted by A. 



12. 

EXAMPLE 1.25: 	, 	). V is the class of all 

	

P 	P 

P-groups, where P is a set of primes. The maximum P-subgroup of 

A will be denoted by Ap . 

EXAMPLE 1.26: (),610. 9D (resp.a) is the class of 
all divisible (resp. reduced) groups. 

EXAMPLE 1.27: (SD 	). 	 (resp.R. ) is the class 

	

P 	P 

of all p-divisible (resp. p-reduced) groups, where p is a prime. 

EXAMPLE 1.28:60p , cAr ). (resp.() is the class 

of all P-divisible (resp. P-reduced) groups, where P is a set of 

primes. 

We conclude this chapter with a list of results from 

[8]. 

PROPOSITION 1.29: For any prime p, T(Z(0) = 27 p  

PROOF. [8] Lemma 2.1.// 

From this it is easy to deduce 

COROLLARY 1.30: J = T(A) for any non-divisible 

p-group A.// 

PROPOSITION 1.31: For any prime p, T(Z(yr))=  

PROOF. [8] Lemma 2.2.// 

These results are used to obtain a complete description 

of all torsion classes 0 C V 	We find it convenient to 

introduce a generic name for classes of this kind. 



DEFINITION 1.32: A torsion class containing only 

torsion groups is called a t-torsion class. 

THEOREM 1.33: Let P1  and P2 be disjoint sets of primes 

and Let 21 be the class of all groups of the form Ai  e A2 , 

where Al  is a P1-group and A2  a divisible P2-group. Then 

g = TIZ(p)ip e Pi / v {z(;) I p e P 2 1) 

Any t-torsion class is uniquely represented in this way. 

PROOF. [8] Theorem 2.6.// 

This result was obtained earlier by Kurosh [28]. 

Kurosh actually proved that the classes described are the only 

radical classes for the full subcategory of abelian p-groups, 

but THEOREM 1.33 follows easily from this. If a category CI 

satisfies conditions (i) - (v) of Section 3, then so does any 

full subcategory whose class of objects is closed under 

conormal epimorphic images and normal subobjects, and so lower 

radical classes can also be constructed in the subcategory. 

Such classes need not be radical classes in CL, however. For 

example, if CL is our and a is the category of countable 

groups, then 6b, while a radical class in itself, is not a 

torsion class in 061,-,  . 

A torsion class is called hereditary if it is closed 

under subgroups; such a class is also called a strongly complete 

Serre class. 

THEOREM 1.34: The only non-trivial hereditary torsion 

classes are the classes 21 

13. 



14. 

Proofs' are given in [8], [37] and [42].// 

PROPOSITION 1.35: T(Q(P)) =gip  for any set P of primes. 

In particular, T(Q(p)) = Jblp  for any prime p and T(Q) = 00. 

PROOF. The case of Q(p) is treated in [8] (Proposition 

4.1). The argument is easily adapted to cover the general 

situation.// 

The results of this section provide examples of a 

method we shall find convenient for labelling torsion classes in 

the sequel. 

DEFINITION 1.36: A minimal representation ofa torsion 

class 21 is an equation T(e) = a, where T(C') 	21 whenever 

C' 	• 

There is nothing unique about a minimal representation. 

For example 

T(Z(pm)) = cap  = T(Z(pn) 

for any prime p and positive integers m, n. We shall see further 

illustrations in the next chapter. 

With the complete classification of the t-torsion classes, 

the following results show that the problem of classifying torsion 

classes in general reduces to that for torsion classes determined 

by torsion-free groups. 

PROPOSITION 1.37: Let a be a torsion class, p a prime. 
Then either Z(p) e 21 or j 	. 



PROOF. [8] Lemma 5.1.// 

THEOREM 1.38: Let V be a torsion class. A group G 
belongs to ZI if and only if Gt  and G/G t  do. 

PROOF. [8] Theorem 5.2.// 

COROLLARY 1.39: Any torsion class 	satisfies the 

equation 

a = Tc( u ad U (g  

15. 

PROOF. [8] Corollary 5.3.// 



CHAPTER 2 

SOME TORSION CLASSES DETERMINED BY TORSION-FREE GROUPS 

As noted in §5 of Chapter 1, the problem of classifying 

torsion classes of groups has been effectively reduced to the 

problem for those which are determined by torsion-free groups. 

In Section 1 of this chapter, we examine the behaviour of the 

simplest torsion-free groups, the rational groups, as members of 

torsion classes. The torsion classes they determine are 

completely described and the classification is extended to torsion 

classes determined by rational and torsion groups. 

Predictably, the situation with groups of rank greater 

than 1 is considerably more complicated. In Section 2 we consider 

some further examples of torsion classes determined by torsion-

free groups and show that these may have quite distinct 

representations, for instance a group of rank > 2 can determine 

the same torsion class as a rational group and non-isomorphic 

indecomposable groups of equal rank > 2 may determine the same 

torsion class. an contrast, rational groups determine the same 

torsion class if and only if they are isomorphic). 

Section 3 is principally devoted to some torsion 

theories (j,a) where 27 is "large". 

All torsion theories and classes in this chapter are 

16. 
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1. Rational Groups and Torsion Classes 

PROPOSITION 2.1: Let (2, -ch be a torsion theory with 

idempotent radical r. For every group A, r(A) is a pure subgroup. 

PROOF. Let p be a prime. If Z(p) 	, then r(A) is 

always p-divisible (PROPOSITION 1.37) and therefore p-pure. If 

Z(p) e 21 , then A/r(A) has zero p-component, so again r(A) is 

p-pure.// 

Since rational groups have no proper pure subgroups, 

we have 

COROLLARY 2.2: If X is a rational group and (J,a) 
a torsion theory, then either X e 	or x ead/ 

PROPOSITION 2.3: Let X and Y be rational groups. Then 

Y c T(X) if and only if T(X) < T(Y). Thus in particular 

T(X) = T(Y) if and only if X -=" Y. 

PROOF. If T(X) <T(Y), then [X,Y] 	0, so by 

COROLLARY 2.2, Y e T(X). Conversely, if Y c T(X), then [X,Y] 	0 

and every non-zero homomorphism from X to Y is a monomorphism.// 

COROLLARY 2.4: IfYand xi  ,ieIare rational groups, 

then Y c T({Xi li e I}) if and only if T(Xi ) < T(Y) for some j C I. 

PROOF. If T(Xj ) < T(Y), then Y c T(Xj ).f.72 

while if Y e T({Xi li e I}), then for some j, [Xj ,Y] 	0.// 

COROLLARY 2.5: „q) is the smallest torsion class 

containing torsion-free groups, 

17. 



PROOF. Let U be a torsion class containing a 

torsion-free group G. Let {xi li e I} be a maximal linearly 

independent set of elements of G and for some j c I let G' 

be the smallest pure subgroup containing all x i  with i j. 

Then GIG' is rational and belongs to a. Hence Q e T(G/G , ) cl 

and so A = T( Q) 5; a .// 

Thus Q is the only rational group which must belong 

to any torsion class containing torsion-free groups. On the 

other hand, it is clear that if a torsion class contains Z, it 

contains all groups. 

PROPOSITION 2.6: The following conditions on a group 

A are equivalent: 

(i) Z C T(A). 

(ii) T(A) = Wir . 

(iii) A has a homomorphic image (and therefore a 

direct summand) isomorphic to Z. 

PROOF. (i) 4=> (ii): If Z e T(A), then T(A) contains 

all free groups and their homomorphic images, i.e. all groups. 

(i) <=1› (iii): If Z c T(A), then [A,Z] 4  0 

and any non-zero homomorphism from A to Z has image isomorphic 

to Z.// 

COROLLARY 2.7: The class 21. of groups without five 

direct summands is the largest non-trivial torsion class. 

PROOF. A has a free direct summand if and only if 

it has a free direct summand of rank 1, i.e. [A,Z] 	O. Thus 

18. 



= {Al[A,Z] = 01 which is a torsion class by THEOREM 1.7. If 

A 0, it can belong to a non-trivial torsion class if and only 

if T(A) is non-trivial, i.e. [A,Z] = 0.// 

DEFINITION 2.8: A torsion class is called an rt. 

torsion class if it is determined by a collection of rational and 

torsion groups. 

DEFINITION 2.9: The type set of a torsion class 21 

is the set of types of rational members of 7. 

It follows from COROLLARY 2.4 that a set r of types 

is the type set of a torsion class if and only if it satisfies 

(*) 	y e r, x ? y —› x e r . 

DEFINITION 2.10: Let r be a set of types satisfying 

(*), P a set of primes such that X is P -divisible whenever X 

is rational with T(X) c r. T(r,p) is the torsion class 

T(IX rational 1 t(X) E rl u fz(p)lp e PI). 

THEOREM 2.11: A torsion class 21 is an r.t. torsion 

class if and only if it has the form T(r,P). Such a represent-

ation is unique. 

PROOF. Let 21  be an r.t. torsion class. By THEOREM 

1.33 we may assume that 

a = T({xi li c 1} u {Z(p)lp e P 1 } V {Z(pc°)Ip  

Where P I and P2 
are disjoint sets of primes and the X

i 
are 

rational. Let r be the type set of a and 
P = lp e P I IX rational, X c Z7> p X = Xl, 

19. 
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We show that 21 = T(F,P). 

Since T({Xi li e I}) contains all divisible groups and 

all p-groups for p c P I- P (COROLLARY 2.5, PROPOSITION 1.37), 

we have 

{z(p )lp c P I  -P} v {z(P')1p c P2 } 

c il) 

whence 

 

.11gT(T({xi li c  u,  tz(p)lp CPl) 

A straightforward application of THEOREM 1.7 yields 

 

T({xi li c I}  [Z(p)lp cP}) 	T(r,P). 

Thus 27 = T(r,P). 
Now consider T(r,P) and T(E,S), where r E, say 

y t E for some y e r. There is no a E E with y > a, so if X 

and Y are rational, with T(Y) = y and T(X) c E, we have [X,Y] = O. 

Since also [Z(p),Y] = 0 for every p, Y cannot belong to T(E,S), 

so T(r,P) 	T(E,S). Finally, suppose T(r,P) = vr,$), with 

q e P, q t S. Then [X,Z(q)] = 0 whenever T(X) e r while 

[Z(p), Z(q)] = 0 for every p e S, i.e. Z(q) t vr,$), and this 

contradiction completes the proof.// 

It is not difficult to find torsion classes which are 

not r.t. classes. 

EXAMPLE 2.12. Any torsion-free homomorphic image of 

I(p) is algebraically compact (e.g.[16]) so if countable must 

be divisible. Thus Q is the only rational group in T(I(p)). 

Since I(p) is reduced, it follows that T(I(p)) is not an r.t. 

class. 



This example also shows that distinct torsion classes 

may have the same type set. On the other hand, distinct sets 

of rational groups may determine the sane torsion class. It is 

an easy consequence of COROLLARY 2.4 that if r and E are sets 

of types, then 

T({X rationalk(X) e 0) = 'MX rational IT(X) c El) 
if and only if for each y e r there is a a' c E with y > a' 
and for each a E E there is a y' r with a > y'. For this to 

happen it is not necessary that one of F, E contain the other — 

they may be disjoint; (see EXAMPLE 2.14 below). 

PROPOSITION 2.13: If r, E are sets of types for which 

T ({X rational I (X) c 11) = TaX rationaltr(X) c El), 

and if I' has a subset r of types which are minimal i2 r ccnd 

which satisfy 

(**) 	y r 	y > for some 

then r c_ E, r is the set of all minimal types in E and for 

every a e E, > 7 for some c . 

PROOF. Let 7 be any type in -17. Then 7 > a for some 

a c E and a > y for some y e 1'. Minimality of y then requires 

that = a = y. Thus r 5_ E. Let be the set of minimal 

elements in E. If 7 e r and a E E satisfy > a. that as above. 

7= a. Hence ' 	T. For any a e I-, there are types y e r, 
c IT 	E such that a > y > V. But then tc7 = 	so = r. 

Finally, if a e E, then a > y for some y e r, so a > y > 

for some 7 c Tad/ 

21. 
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Type sets of torsion classes do not necessarily have 

minimal elements: 

(n) EXAMPLE 2.14: Let heights (h i
(n) 

 , h2  , ...) be 

'defined for n = 1,2,3,... by 

( ) 	
1 if i = 2%, k = 1,2,3, ... 

n _ 
h
i 

- 
0 otherwise. 

(n) Writing Tn  for the type of (h i
(n) 

 , h2  , ...), we have 

T
n 

> T
n+1 

for each n. Let X 	a rational group of type 

T
n 

and 27 = T({X
n
In = 1,2,3, ...}). The type set of 27 is 

AJla > T 
n

, some nl, which has no minimal element. Note also 

that 

27 . T((x2n In = 1,20,...1) = T({x2n-l In = 1,2,3,...)). 

and that 	has no minimal representation by rational groups. 

2. Further Examples  

We now consider some examples of torsion classes 

having more than one minimal representation by torsion-free 

groups, beginning with some remarks on groups A for which T(A) 

is an r.t. torsion class. We first note that T(A) is an r.t. 

class if and only if T(A) = T(CA) where C A  is the class of 

rational groups which are homomorphic images of A. 

PROPOSITION 2.15: Let A be torsion-free of rank 2. 

Then T(A) is an r. t. torsion class if and only if 

(i) T(a) > T(X), for some non-zero a e A, X e C
A' 

and (ii) if p is a prime for which pA A, then pX X 

for some X 
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PROOF: If T(A) is an r.t. class, i.e. if T(A) = T(c), 

then for some X e CA, [X,A] O. Let f:X--3A be non-zero; then 

any non-zero a in the image of f satisfies T(a) > T(X). If 

pA t A, then Z(p) belongs to T(A) = T( CA)  so pX 4 X for at 

least one X e 

Conversely, suppose A satisfies (i) and (ii) and let 

B be any one of its homomorphic images. If B A but B is 

torsion-free, then B E eA . If Bt  4 0, then Bt  belongs to 

T(A) (THEOREM 1.38), and so does B for each prime p. If B 

is divisible, it belongs to T( CA)  and if not, then pA 4 A, so 

pX 4 X for some X e CA, whence Bp  belongs to T(X) cT( CA). 

Since also [X,A] 4.  0, for some X e CA  (by (1)), it now follows 

from PROPOSITION 1.19 that A e T(CA), whence T(A) =  

COROLLARY 2.16: Let A be a torsion-free group of rank 

2. Then T(A) = T(X), where X is rational, if and only if 

(i) T(X) is the least element among the types of 

groups in CA  

(ii) T(a) > T(X) for some non-zero a e A 

and (iii) pX 4 X for every prime p for which pA A.// 

These results are non-trivial: in §1 of Chapter 5 

we shall construct indecomposable torsion-free groups A of 

arbitrary finite rank for which T(A) is determined by a single 

rational group. Furthermore such groups A can be constructed 

for any rational group X which is not isomorphic to Q(S) for 

any set S of primes. In the contrary case we have 



PROPOSITION 2.17: A torsion-free group A satisfies 

T(A) = T(Q(S)) if and only if A is S-divisible and has a direct 

summand isomorphic to Q(S). 

PROOF. If A satisfies the stated conditions, then 

Q(S) clearly belongs to T(A), so 

SEls = T(Q(s)) c: T(A) c: gDs . 

Conversely, if T(A) = T(Q(S)) .25 , A must be S-divisible, with 

[A,Q(S)] 	O. Any Z-homomorphism from A to Q(S) is a 

Q(S)-homomorphism (regarding Q(S) as a ring) and so must split.// 

EXAMPLE 2.12 represents a special case of the following 

result: 

PROPOSITION 2.18: If A is a homogeneous, indscomposable 

torsion-free group lf rank > 1, then T(A) is not on r.t. class. 

PROOF. Let A be homogeneous of type a. If X is a 

rational homomorphic image of A, then T(X) > a and by a result of 

Baer (see [15] p.163), if A is indecomposable, T(X) 	a. But 

then [X,A] = 0.// 

We have seen that two rational groups determine the 

same torsion class exactly when they are isomorphic. The 

corresponding statement for groups of rank 2 is false. If A 

has rank 2 and T(A) = T(X), where X is rational, then 

T(A) = T(X 0) X), and A may be indecomposable. 

That non-isomorphic indecomposable torsion-free groups 

of the same rank may determine the same torsion class is 

24. 
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illustrated by the following example, essentially due to 

Jcinsson [25]. 

EXAMPLE 2.19: Let P,S be infinite sets of primes such 

that Pr s = 0 and 5 ft Pu S, U(resp.V) the set of square-free 

integers with prime factors in P(resp. in S). Let {x,y,z} be a 

basis for a rational vector space and 

- 	- 	1 
A = [u lxiu e U], B = [u

1  y,v
1

, 5  z --(y+2)1u e u, v e v] 

- 	- 	1 
C = [u

1 
 y, v

1 
 z P  --(3y+z)lu e u, v e V].  5  

A homomorphism frcm B to A can be defined by y-45x, z-30, 

3-(y + z)--->x, so since A is rational, we have A E T(B). 

Similarly A T(C). Also A 60-  B A 19C, so T(B) = T({A,B}) = 

T(A g B) = T(A ED C) = T({A,C}) = T(C), but B and C are not 

isomorphic. 

PROPOSITION 2.20: Let A and B be torsion-free, C 

a torsion group, 

—) A --> B —3 C-40 

an exact sequence. Then B C T(A). 

PROOF: If B T(A), then C T(A). Therefore C
T 
 T(A) 

P  
for some prime p, and thus [A,Z(p)] = O. Let x e C have order p. 

There is induced a short exact sequence 

0 	-->B' 	[x] —40. 

If r denotes the idempotent radical associated with T(A), then 

since r([x]) = 0, we have r(B 1 ) = A. But this is impossible, 

since B' is torsion-free and r(B I ) is a pure subgroup (PROPOSITION 

2.1).// 
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COROLLARY 2.21: If A and B are quasi-isomorphic 

torsion-free groups, then T(A) = T(B).// 

(For quasi-isomorphism see, for example, [42]). 

We conclude with another example, based on a result 

of Corner [7]. 

EXAMPLE 2.22. Let {x
n

, 	In = 1,2,3,...) be a 

basis for a rational vector space, p n , qn , tn  distinct primes, 

n = 1,2,3,..., 

-m 	-1 
A = [pn 	xn , qn  (xn  + xn+1)1m,n, = 1,2,3,...] 

-1 
B = [p-m  y , t (y + y 	)1m,n = 1,2,3,...] 
nnnn 	n+1 

-1 	-1 

	

C
n 

= [p 	x,
-m 

x , p
n+1 	, 

y 	q (x +yn+1. 
 ),t (x +y 	)1m=1,2,3,...], 

n n 	n+1 n n 	n n n+1 

n = 1,2,3,... . Clearly A and B have rank y6 and each Cn  is 
of rank 2. A monomorphism f from A to B can be defined by 

(*) 
	11(x 1

)  = q • Y 1 

tf(xn+1 )  = qn qn+1 Yn+1 

In the resulting short exact sequence 

0 ----> A—>13_) B i!--> 0 

(*) implies that B" is a torsion group, whence by PROPOSITION 

2.20, B e T(A). Similarly A E T(B), so T(A) = T(A ED B) = T(B). 

	

But A ED B 	Cn2n=1,2,.. so T(A) = T({Cn In = 1,2,3,...)). It 

is straightforward to show that [C m, Cn ] = 0 if m n, so both 

representations are minimal. 



3. Some Large Torsion Classes  

An alternative method of describing a torsion class 

cj is to specify a class C (preferably as simple as possible) 

for which in the corresponding torsion theory (J,.) we have 
F(C). Thus for example consideration of classes C! of 

rational groups provides further examples of torsion classes, 

none of which is an r.t. class. 

PROPOSITION 2.23: There is no torsion theory ( r,7,3.) 

for which both r,7 and a. are determined by rational groups. 

	

PROOF. If both 3 and 	are to contain rational 

groups, both must be non-trivial and '0 must contain Q. Let X0 
 

denote a rational group of type e. Suppose 

a= vfx ly e r1), a= F({x la e El). 

For any a a E, there is a torsion-free group G of rank > 1, 

homogeneous of type a, such that every rational homomorphic 

image is divisible. (See [17] p.21). For such a group G, 

[G,X(19 ] = 0 for every a' e E, so G belongs to J. But for each 

y a r, [X ,G] = 0, so G is in r.4. But then G = 0.// 

Note that for PROPOSITION 2.23 it is sufficient to 

assume that 	is an r.t. class. 

Our next result characterizes some "large" torsion 

classes in terms of cardinal numbers. 

DEFINITION 2.24. A group G is called n-free, where 

n > 2 is a positive integer, if every subgroup of G with rank 

27. 
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< n is free. If every countable subgroup is free, G is called 

4. 1 -free.  

PROPOSITION 2.25: Let 

1= T({A torsion-freel[A,Z] = 0, A has rank < 11M }), 

where tK = 2,3,...; )4%1  , and Let ( 4t1 , eritt ) be the corresponding 

torsion theory. Then attt  is the class of all tft -five groups. 

PROOF. Each 0 contains p-reduced groups for every 

prime p and therefore all torsion groups, so only torsion-free 

groups need be considered. 

(i) -th finite: Let B c 41,1‘  have a subgroup B' of 

rank < 144  . Then [A,W] = 0 for each A E • If [B',Z] = 0, 

then B' E Z4vt  , so B' = O. If not, then B' = B1 e Z l , where 

Z 1  ; Z, and B1 has rank <ltk, so as above, Bi = 0 or Bi B2  E) Z2  

Z2 1" Z. Since B has finite rank, repetitions of this argument 

show that B' is free and thus that B is 1n-free. Conversely, 

if B is - -free, A has rank <thand there is a non-zero 

homomorphism f:A 	B, the image of f is free, so [A,Z] O. 

Hence B is in 3. 
(ii) itt . Xi : If B belongs to 	, then as in (i) 

1 

B is n-free for n = 2,3,..., so by Pontryagin's Theorem 

(see [15] p.51), B is W 1-free. The converse is proved in a 

similar way to that in (i).// 

The result cannot be extended to arbitrary cardinal 

numbers: let jr.ft, be defined as above, 

31,1=JB1[A,B] = 0 for all A e J 
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00 

Thenmustcontainr7
1
zeach , but this group is 

i= 

notti -free for ?II > )4 1 . Note also that "2-free" means 

"homogeneous of type T(Z)". 

All the torsion classes of PROPOSITION 2.25 are distinct. 

Before proving this we note more economical representation of 

them. 

PROPOSITION 2.26: For 2 < til < 
— 

27„. TM torsion-Pee 1[A,Z] = 0, A has rank 

<1K and is homogeneous of type T(Z)}). 

PROOF. Let r be the idempotent radical for the torsion 

theory (a 
2' 7.. ). Since ;1

2 c;  it follows from the exact 2 	41‘, 

sequence 

0-4 [A/r(A), 	[r(A), B] = 0 

that for any B e ‘%, [A,B] = 0 if and only if [A/r(A), B] = 0, 

and that therefore 

J= T({A/r(A)1[A,Z] = 0, A is torsion-free with 

rank <It }) 

Now if A has rank <tt, then so does A/r(A). Thus: 

ih/r(A)1[A,Z] = 0, A is torsion free with 

rank <111}.  {A torsion-freel[A,Z] = 0, A 

has rank <it and is homogeneous of type 

T(Z)1S; {A torsion-freel[A,Z] = 0, A has 

rank <it} 

This establishes the result.// 
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PROPOSITION 2.27: The classes aZT 
2'  

are all distinct. 

PROOF. It is clearly sufficient to show that 

gn+i  for finite n. 

J 2 is determined by all rational groups X with 

T(X) > T(Z), so by PROPOSITION 2.26, 0 2  

For each integer n > 2, there exists a torsion-free 

group Gn  of rank n such that 

(i) Gn is homogeneous of type T(Z) 

(ii) every proper pure subgroup of Gn  is completely 

decomposable (and therefore free) 

(iii) every rational homomorphic image X of Gn  has 

T(X) > T(Z). 

(This result is due to Corner, see [17]). Condition (ii) 

implies that Gn  is n-free, so Gn  ZIn
, but by (iii), G

n 
belongs 

to  

The functor v considered by Chase in [6] is the 

idempotent radical corresponding to the torsion theory (ay, , 	)• 
.1 	1 

We have seen that the class V. of all groups without 

free direct summands is the largest torsion class and that 

F(Z)) is the corresponding torsion theory. This theory 

does not have the form ( rc3 	3): clearly it cannot be 

(0 	) for finite n, and since there are indecomposable 
n n 

1
-free groups of uncountable rank (see [17] p.24), 



3 1 . 

Finally we note a connection between F(Z) and the 

class 1 of torsionless groups. (For torsionless modules in 

general see [24] pp. 65-69). 

PROPOSITION 2128: F(Z) = F(4) 

PROOF. F(Z) 	F(1), since Z C L. Also F(Z) contains 

all subgroups of direct products of copies of Z, i.e. all 

torsionless groups, so Y., CF(Z), whence F(1) 	F(Z).// 

The class of torsionless modules over any ring is 

closed under submodules and direct products so Jf) has these 

properties.does not coincide with F(Z), however, because of 

PROPOSITION 2.29: Lis not closed under extensions. 

PROOF. If Lis closed under extensions, then in 

every short exact sequence 

e: 	0-3 Z -7)A --)ftz.---) 0, 
i=1 

where each Z
i Z, A must be torsionless. Let f(1) = a. Then 

g(a) 	0 for some g 6 [A,Z]. Let g(a) = n and form the pushout 

corresponding to multiplication by n in Z: 

e: 	0 	Z -f-5,  A -371  Zi-4 0 

* 	H
tz. o--.-)z-5B--)Fliz -4 0 . • 

gf(1) = n so ne splits (see [31]p.72). Since Ext( i.,Zi , Z) is 

not a torsion group ([34] Theorem 8), the proposition is proved.// 

ne: 
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By setting r(A) = 	ker f, f e [A,Z] we define a 

radical r for which r(A) = 0 if and only if A is torsionless. 

The last result shows that r is not idempotent. Charles [5] 

w+1 w 
points out that Fuchs has shown that r 	T r , where w is the 

first infinite ordinal. 
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CHAPTER 3. 

ADDITIONAL CLOSURE PROPERTIES FOR TORSION CLASSES I: 

DIRECT PRODUCTS, PURE SUBGROUPS 

We begin the discussion of closure properties for torsion 

classes by considering closure under direct products and pure 

subgroups, one section of the present chapter being devoted to 

each of these two properties. There is some interrelation between 

the material of the two sections; in particular, the theory of 

algebraically compact groups has a central role in each. 

In the first section we obtain a complete description 

of the torsion classes closed under countable direct products 

(i.e. direct products of countable sets of groups) and in the 

second we characterize those which are closed under pure subgroups. 

The latter result is then generalized to cover closure under 

S-pure subgroups, where S is a set of primes. 

In this chapter all torsion classes are understood to 

be torsion classes of abelian groups. 

1. Direct Products  

The following result will be used several times in this 

chapter. 

LEARW 3.1: Leta- be a torsion class containing a 

torsion-free group A which is not p-divisible, for some prime p. 

Then I(p) e 27. 
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PROOF. [A, I(p)] 	0 ([11] p.52) so let f:A --4I(p) 

be non-zero and consider B = I(p)/Im(f). B/B t 
as a torsion-free 

proper homomorphic image of I(p) is divisible, (see [11]) and so 

belongs to 21 (COROLLARY 2.5). T(I(p)) contains B and therefore 

Bt 
(THEOREM 1.38), whence B is divisible for all primes q p. 

Since in addition B belongs to T(A) C: c.7 (PROPOSITION 1.37), 

a contains Bt 
and therefore B. Since also Im(f) belongs to 

g, so does I(p).// 

The principal result of this section is 

THEOREM 3.2: A torsion class J.  is closed under 

countable direct products if and only if it is determined by 

torsion-free groups. 

Most of the proof of THEOREM 3.2 is contained in the 

proofs of the next two results. 

PROPOSITION 3.3: Let An n = 1,2,3,... be torsion-free 

groups. Then 

-- 
T({Anin = 1,2,3,.../) = T( Ift An) = T(111.11  An). 

PROOF. The first equality obviously holds; since also 

A
m 

 T( - A ) for each m, we have T( 'ED An)  C—  a T(1-1- An). 

Let f:1-TAn --4Y be a non-zero epimorphism. 

If Y 	0 for some prime p, then if Y is reduced, we have 

pl-TAn  T-TAn  so pAm  Am, for some m, and thus Yp  e T(Am) c.= 

while if Y is not reduced, then [A n , Yp ] 	0 for each n. 

If Y is torsion-free, then either f(Am) 	0 for some 



DI Or 
	 = 0, in which case f factorizes as 
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flA  >Y 

T-TAni ®A 

where all maps are epimorphisms. 1-TAn/
n 

is algebraically 

compact (see [23]). Thus r-TAn/ (E)An is the direct sum of a 

divisible group and a (reduced) cotorsion group [16]; so, 

therefore, is Y, which being torsion-free is algebraically 

compact [16]. Thus Y = D 	T-TR(p), where D is divisible and 

R(p) is inter alia a reduced 1(p)-module. If D t 0, then 

[An, Y] t 0 for each n. If D = 0, let R(p) 1  O. Then 

pr-TAn fr-TAn and thus pA 	A for some value of in. By 
m 

LEMMA 3.1, I(p) e T(A). Since there is an epimorphism 

(actually an 1(p)-epimorphism) from a direct sum of copies of 

I(p) to R(p), we have R(p) e T(A). 

Thus in all cases [Am ,Y] 0 for at least one value 

of m, whence by PROPOSITION 1.19, TJAn  belongs to T( ED An). 
This completes the proof.// 

PROPOSITION 3. 4 : Let a = T ( {Ax I  A c A}), where each 

Ax  is torsion-free and let Bn , n = 1,2,3,... be torsion groups 

in 27. Then 0 containsTalT B 
n=1 n .  

PROOF. Let f:1-1Bn --3 G be a non-zero epimorphism. 

If for some prime p, G is non-zero and divisible, then 

[A
x, 

G
p
] 0 for each A c A, while if G is non-zero but not 



divisible, then priBn  0 T-TBn , so pBm  Bm  for some m which 

means that p(B ) 	(B ) . Since (B ) belongs to a , so do all 
m p 	m p 	m p 

p-groups; in particular G is in LJ. 

	

If G is torsion-free, then f( 	B
n
) = 0, so f 

factorizes as 

FTBn 

 

>  G 

  

T-TBn/ 	B
n 

where all maps are epimorphisms. As in PROPOSITION 3.3, 

G = D 	r-fR(p), p prime, and we need only consider the case 

where D = O. If this is so, and R(p) 0, then p FIBn  f Fi Bn , 

and as in the first part of the proof, Z7 contains all p-groups. 
Hence at least one AA  is not p-divisible, so as in PROPOSITION 

3.3, 1(p) belongs to awhence R(p) does also. This proves that 

TTBn c 

PROOF OF THEOREM 3.2. If T is determined by torsion-
free groups and if fAn In = 	c 	, then (An) t  and 

An/(An) t C 	for each n. By PROPOSITION 3.3, J—TAn/(An) t  

T( EDAn/(An )) cl aand by PROPOSITION 3.4, 11(An) t  ea , so 

from the short exact sequence 

0 ---)T1(An) t  —47 An--> Fir Al (An) 
clearly VIA e  J. 

Conversely, suppose a is closed under countable direct 
products. Clearly 0 is not a t -torsion class. If it is not 

determined by torsion-free groups, then for some prime p, 

36. 
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Z(p) c 0 but all groups in 0 n 	0  are p-divisible. Let 

[xn ] ==" Z(pn), n = 1,2,... . Then TT [x] C a , so ,  

[xn ]/(rT[xn ]) t eUn (3. 	Suppose p(ax) - (xn) E 
0 

(TT [xJ) t, an  e Z. Then for some positive k e Z, pk (p(anxn)- 
k i_ (xn)) = 0, so pk (pan - 1) xn  = 0 for all n, i.e. 

	

pni_ 
(Pan 	

IN. 
 

For n > k, this means that pn-k I (pan - 1), which is impossible. 

Thus (xn) + ( -17[xn ]) t  has zero p-height in T • Exn ]/(Tl[xn ]) t , 

contradicting the required p-divisibility of TT kn iicri-  kap „II 

If .  {AX IX eAlc...,9 for any set P of primes, then 

eA 1-1.  A C o P ' without any restriction on the size of A. Whether AX 
any other torsion classes have this property, or the corresponding 

one for ki <flj , where itt > 0 ' is not known. A related 

result is 

PROPOSITION 3.5 Let (!. be a class of slender groups 

and 

=. {GI [G,C] = 0 for all c e C } 

Then 2 n 	is closed under direct products for which the 

nunzber of components does not exceed the first cardinal number 

of non-zero measure. 

PROOF. Let .  {GA IX cA} C 	r■ 30 , where A has 

appropriate cardinality. Then for any C e e , [ (et Gx  ,c] 0 

and consequently for any homomorphism f:TTG A --) C c C , 

f( e GA) = 0. By a theorem of tog ([15]p.170), f = 0, so 

TTGA  c g.it 
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In particular, e may consist of a single reduced 

countable torsion-free group [36]. Additional information 

concerning the structure of direct products modulo direct sums 

of torsion groups, or direct products modulo their torsion 

subgroups, together with PROPOSITION 3.5 should provide at least 

partial answers to the questions raised above. 

PROPOSITION 3.6: Let P be a set of primes andOp 

the class of P -divisible algebraically compact groups. Then 

T(CL2) = TUT(p)lp 4 P1). 

PROOF. T(Q) 2? T({1(p)ip 4 P}), since each 1(p) 

is algebraically compact. Conversely, if G belongs to OLp , 

then G = D () 1-TR(p), p 4  P, where R(p) is an 1(p)-module. 

For each q 4 P, R(q) c T(I(q)), so since also D E T(I(q)), 

THEOREM 3.2 implies that G belongs to T({i(p)ip 4 P}), whence 

T(cLp) 5.3 T({i(p)lp 4 

In view of this result and Nunke's characterization 

[34] of slender groups as reduced torsion-free groups containing 

no copy of any 1(p) and no direct product of infinitely many 

infinite cyclic groups, there seem to be good grounds for the 

following 

CONJECTURE: (T(CL), F(c)) is a torsion theory, where 

ais the class of all algebraically compact groups, J  the class 

of all slender groups. 

If (1.(1),3) denotes the torsion theory for T(Q), 
then by PROPOSITION 3.6, a consists of those reduced torsion-free 



groups containing no copy of any I(p). Note also that 

F(g), since while Qe is closed under extensions and 

subgroups, it is not closed for products — Z is slender but 

direct products of copies of Z are not. 

2. Pure Subgroups  

As a first step in the discussion of closure under pure 

subgroups, we show that every torsion class with this property 

is either a t-torsion class or an r.t. torsion class. 

PROPOSITION 3.7: All t-torsion classes are closed 

under pure subgroups. 

PROOF. Let S 1 , S2  be disjoint sets of primes. If A /  

is an S 1-group and A2  a divisible S 2-group, then clearly any 

pure subgroup of A l  e A2  is the direct sum of an S 1-group and 

a divisible S
2-group.// 

THEOREM 3.8: A torsion class a is closed under pure 

subgroups if and only if 27 n ao  is. 

PROOF. Let A' be a pure subgroup of A c a, and 
consider the induced diagram 

0 	0 

0 ---4 A' —4 A' ---4 AVA'---> 0 

g 

0  A
t 	A --)A/At 	

0 

39. 
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with exact rows and columns, where g is defined by g(a ?+A;) = a'+At . 

A't  is pure in A' and hence in A. Therefore tq is pure in A t , so 

by PROPOSITION 3.7, iq E 27n 'J o . 

The kernel of g is A' (1 A t/A = O. If, for some 

non-zero n c Z, a °  c A' and a e A we have g(a'+A) =  

then m(a'-na) = 0 for some non-zero m e Z, i.e. ma' = mna. Since 

A' is pure in A, there exists a" E A' with ma' = mna". But then 

g(a'+A) = ng(a"+A;), so that g is a pure monomorphism. Thus if 

a ngb is closed under pure subgroups, A'/A; e  n :; 03 , so 

A' c 27 and 0 is therefore closed under pure subgroups. 

The converse is obvious.// 

THEOREM 3.9: If a torsion class a is closed ?eider 

pure subgroups, then 

.J= T(( 0 n '3 ( ) u a ) 

where 27 is the class of rational groups in T. 

The proof uses the following lemmas: 

LEMMA 3.10: For (c."1 and a as in THEOREM 3.93  

	

".40 = 	) n  

	

PROOF. Clearly T(:1) ,) 	c: o n  r:;1, 0. Let Abe any 

group in On r500 . Then A is a homomorphic image of (E) [a] *  

where the direct sum extends over all a E A. Thus A c T(g), 

since each [a] *  E ad/ 

LEPRA 3.11: For any two classes C I , e 2  of gryups, 
ve 1 4.0 e2 ) = Ter(e 1) T( 



We omit the proof of this result, which consists of a 

simple application of THEOREM 1.7. 

To complete the proof of THEOREM 3.9, we observe that 

a= T[( g 	0  ) 	 ( 	n a'o)] = 11( 	f■ rjo )k-,  

(T(Z1) n `.0)] 	T [ ( 3 n 'J o ) u T(J)] =  ao ) 

Let XI , 	Xn  be rational groups with types  

respectively. Then any (xl , 	E X1  (i) 	® Xn , with 

x 	x
n 

0 has type x
1 	

r0:11 . 1 , 	 Thus one requirement if 

an r.t. torsion class T(F,P) is to be closed under pure subgroups 

is that r satisfy 

(*)  

so if X and Y are rational groups with incomparable types, 

T({X,Y}) is not closed under pure subgroups. 

Now if T(r,P) is an r.t. torsion class for which r 

satisfies (*), then for every torsion-free group G, 

G(r) = fx E GIT(x) E 

is a pure subgroup, since if x, y c o(r) we have 

T(x-y) > T(x) 	T(y) c r co is regarded as having a type greater 

than all others) and T(nx) = T(x) for n c Z. o(r) is also 

functorial in an obvious way. The following theorem describes 

a connection between the functor ( )(r) and the idempotent 

radical associated with T(r,p). 

THEOREM 3.12: Let T(r,P) be an r.t. torsion class 

for which r satisfies (*), r its idempotent radical and 

C(r) = fo torsion -free1G(r) = 

41. 
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Then the following conditions are equivalent: 

( i) C (r) is closed under extensions 

(ii) G(F) = r(G) for all torsion-free groups G 

(iii) T(T,P) is closed under pure subgroups. 

PROOF. (i) => (ii): Let G be torsion-free and let 

G' be the subgroup of G defined by the short exact sequence 

o —3c(r) 	--) (G/G(r)) (r) —4  O. 

If Cl(r) is closed under extensions, then G' e C(r) and since 

for x e G' we have T G ,(x) <TG (x), it follows that G'c o(r), 

whence (G/G(r))(r) = 0, and [X,G/G(r)] = 0 whenever X is 

rational with T(X) c F. Also G/G(r) is torsion-free, so 

r(G/G(r)) = O. Since o(r) E T(r,p), therefore, o(r) must be 

r(G). 

(ii)=> (iii): If cm = r(G) whenever G is 

torsion-free, then T(r,P) 	0  = C (r), which is closed under 

pure subgroups. By THEOREM 3.8 T(r,P) is also. 

(iii)==> (i): Let T(r,P) be closed under pure subgroups 

with G e T(r,P) torsion-free. Then [x] *  e T(r,P) so t(x) = 

t([x] *) c r for all x e G, whence G e C (r) , i.e. T(r,P) n 73 0  

C (r). Since the reverse inclusion also holds, C(F) = 

T(r,P) 	ao  is closed under extensions.// 

THEOREM 3.13: A torsion class a is closed under pure 

subgroups if and only if either 

(1) a is a t-torsion class 

or (ii) g = TaZ(p)lp e P} u {Q(S)}) where P and S 

are sets of primes with P( S. 



For the proof we need 

LEMMA 3.14: Let {X
x
IX E A} be a set of rational groups 

and S = fp priffelpxx  = Xx  for each A e Al. If T({Xx IX e A}) is 

closed under pure subgroups, then it contains Q(S). 

PROOF OF LEMMA. Let p l , p2 , p 3 , ... be the natural 

enumeration of the primes, let J = fjlp i  Sl and denote Xx  

by A. For each j 6 J, choose a C A with h.(a ) = 0, where h. 
J J 

denotesheightatpr Forexample,lota..(xix) with xix  E Xx  

satisfying the following conditions: (i) 	0 for some p E A 
JP 

f 
J JP  JA 

for A p.. For a natural number i J, let ai  be an arbitrary 

element of A, and regard the resulting (a i ) as an element of 

= 1,2,3,..., where each A = A. h((a.)) = 	h(ai  ), i=1  

the former height being taken in T-FAi' the latter in A. In 

P 
J 

S-divisible, the height of (ad at a prime p is infinite if 

p C S and zero otherwise, i.e. T((ai)) = T(Q(S)) and 1-TA has 

a pure subgroup isomorphic to Q(S). By THEOREM 3.2, 

T-TA E T(IX
A
IA CAI), which if closed under pure subgroups 

must therefore contain Q(S).// 

Since each X
x is S-divisible and T(Q(S)) is the class 

of all S-divisible groups (PROPOSITION 1.35) we have 

COROLLARY 3. 15 : With the notation of LEMMA 3.14, if 

T({Xx IA e A}) is closed under pure subgroups, it is the class of 

all S-divisible groups.// 

43. 
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PROOF OF THEOREM 3.13. Let a be a torsion class 
closed under pure subgroups. If IJ is not a t-torsion class, 

let r be its type set and for each y e F let X be a rational 

group of type y. Then 

U. Tc(gn 21 0) v {Xy r),  c r}) 
 

(THEOREM 3.9) 

and 

gnao T({Xy c r}) rl  3-  0 
	(LEMMA 3.10) 

By THEOREM 3.8, T({Xy ly E r}) is closed under pure 

subgroups and therefore, by COROLLARY 3.15, is the class of all 

S-divisible groups, where S is the set of primes dividing (E)Xy . 

Thus 

27 = T(( Jr go)  {Q(0}). 

Let P = {p C SIZ(p) E g }. Since T(Q(S))c2 a, a 
00 

contains the groups Z(p ) for all primes p as well as Z(p) for 

primes p 4  S. Thus by THEOREM 1.33 and LEMMA 3.11, 

T({Z(p)lp 	S} 	{Z(p)lp c P} u {Z(pc°)I all p}u{Q(S)}) 

= T({Z(p)ip e Old {vs)}). 

Conversely, that any class 

0 = T({Z(p)Ip e 	u {Q(S)}) 

with PC: S is closed under pure subgroups follows from THEOREM 3.8, 

LEMMA 3.10 and the observation that T(Q(S)) is closed under pure 

subgroups. By PROPOSITION 3.7, the proof is now completed/ 

Note that by THEOREM 1.7, for a torsion class 	which 

is not a t-torsion class, the representation 

= T({Z(P)IP c P} V {Q(S)}) 

Is unique. Our next result characterizes the groups in such a class. 
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PROPOSITION 3.16: A group G belongs to 

27 . T({Z(p)ip E P} L  {Q(S)}) 

where P and S are sets of primes with PS-7... S, if and only if there 

is a short exact sequence 

G ° --4 	G"-40 

where G° is a P-group and G" is S-divisible. 

PROOF. Let G c 27 and G °  = 89G where the direct sum 

extends over all p e P, G" = GIG'. Then W; has no P-component 

and belongs to 2 (THEOREM 1.38) so therefore has divisible 

S-component. Thus G'; is S-divisible. G"/W; is torsion-free and 

belongs to T. If not S-divisible, it has a non-zero S-reduced 

torsion-free homomorphic image B. But then B E 27 anI [Q(S),B] = 

0 = [Z(p),B] for each p C P and this contradicts THEOREM 1.7, so 

G"/G' is S-divisible, whence G" is also. The converse is obvious.// 

DEFINITION 3.17: A subgroup G° of a group G is S-pure, 

where S is a set of primes, if G'n nG = nG °  for every n in S*, 

the multiplicative semigroup generated by S. If S has a single 

element p, s-purity is called p-purity. 

THEOREM 3.13 can be generalized fairly easily to describe 

the torsion classes which are closed under S-pure subgroups. We 

shall need 

LEMMA 3.18: Let P be a set of primes. Then T(Q(P)) = 

is closed under S-pure subgroups if and only if P CI S. 



PROOF. If P 4 s, then Q(P s) is an S-pure subgroup 

of Q(P), but Q(P c S) 4: A, • The converse follows from the fact 

that S-purity implies P-purity if P C S.// 

THEOREM 3.19: A torsion class la is closed under 

S-pure subgroups if and only if either 

(i) g is a t-torsion class such that j n a is 

hereditary for p S 

or (ii) 	= T({Q(P)} U {Z(p)ip E R}) , where RC._ P C. S. 

PROOF. Since pure subgroups are S-pure, only the 

classes described in THEOREM 3.13 need be considered. 

If 7 is a t-torsion class, then clearly 21 is closed 

under S-pure subgroups if and only if j n ap  has this property 

for every prime p. Now 0 a is either {0}, a or a (1L-T 
so interest is centred on g.) n 7.  If p c S, then in oco n 
S-purity is equivalent to purity whence oaci Up  is closed. If 

p S, any exact sequence 

0 --) Z (p)--) Z (pc) --) Z (pe°)----) 0 

is S-pure, so )11)n -T is not closed. p 

If 23 = TaQ(P)} u {Z(p)lp c R}) where RC, p, then as 

in the proof of THEOREM 3.13, 	n 3'0 = T(Q(P)) r):1- 0 , so by 

LEMMA 3.18 we may assume PC S. If A' is S-pure in A ;I , then 
A l  is S-pure in A which, as a direct summand of A

t' 
is in 

a na by THEOREM 1.38. Thus A E 	rs.7 S  Since Z(p) E 

T(Q(P)) for every p S, we have 'a 	s  = T(Q(P))r, 

Analogously with THEOREM 3.8, it can now be shown that A l /A; 

has a natural S-pure embedding in A/As  and so belongs to g n 
Thus A' E 

46. 



> 
47. 

CHAPTER 4 

ADDITIONAL CLOSURE PROPERTIES FOR TORSION CLASSES II: 

GENERALIZED PURE SUBGROUPS 

In this chapter we consider torsion classes closed under 

generalized pure subobjects in the sense of [41]. Specifically, 

we consider 'U-purity where 11. itself is a torsion class. The 
first section is a summary of the relevant results from [41]. In 

the second we obtain some results concerning the idempotence of 

products and intersections of idempotent radicals. The question 

of idempotence of products has some relevance to the material of 

Section 3 in which a generalization of THEOREM 3.8 is obtained 

for certain abelian categories with global dimension 1, purity 

being replaced byli -purity. 

The remainder of the chapter deals with torsion classes 

for CIS& only, though many results have obvious generalizations to 

module categories. 

A prerequisite for a generalization of THEOREM 3.9 is 

a class of groups to take on the role played by the rational 

groups in Chapter 3, i.e. given a torsion theory (ti,S), we 

need a class of groups in 'S whose members, together with those 

of 11, determine all torsion classes closed undertIL-pure 

subgroups. Such a class of groups is introduced in Section 4; 

the groups are described in terms of a rank function associated 

with (11,`S) which coincides with the standard (torsion-free) 

rank in the case of ( 	). The groups we consider are those 0' 0 



of generalized rank (It-rank) 1. 

In Section 5 we investigate the structure of groups 

oftl -rank 1. Because of the purpose for which these groups 

have been chosen, some emphasis is placed on the kinds of 

1L-pure subgroups they can possess. It is shown that they 

cannot be mixed and cannot be direct suns of infinitely many 

subgroups. They can however be infinite direct products. 

In Section 6 we consider some examples. The groups 

of c0 -rank 1 (p prime) are completely described and this leads 

to a representation of the groups of gs-rank  1, where S is a 

set of primes. The groups of 1L-rank 1 are also characterized 

when'll is determined by divisible torsion groups. Some 

additional similarities between rational groups and groups of 

..„SO -rank 1 are also noted. 

In the final section we solve the following special 

case of our general problem: to find conditions on rational 

groups X and Y, necessary and sufficient for the closure of 

T(X) under T(Y)-pure subgroups. 

1. Generalized Purity  

Of the several well-known characterizations of pure 

subgroups, the one given by the next proposition has the 

advantage of being element-free and of therefore suggesting 

generalizations of the notion of purity to categories. 

PROPOSITION 4.1: A subgroup A of a group B is pure 

if and only if for every groupGwithACGCBand C/A finite, 

48. 
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A is a direct summand of G. 

PROOF. [15] p.82.// 

PROPOSITION 4.1 may be paraphrased as follows: a 

short exact sequence 

(*) 
	

0 -->A--->B —4C —40 

of groups is pure if and only if for every finite subgroup C' 

of C the pullback induced by the inclusion C'--4 C gives a 

commutative diagram 

0 --->A--->A 

* * ) 
0 ---9A---> 	B 

in which the top row represents the natural splitting. The 

obvious generalization is to substitute some class e of groups 

(or of objects in a suitable category) for the class of finite 

groups and define a short exact sequence (*) to bee -pure if 

every subobject C' of C which belongs to e gives a diagram (**). 

In this section we shall discuss the theory of 

generalized purity due to Walker [41] in the setting of a 

subcomplete locally small abelian category A which has enough 

projectives and for which Ext n (A,B) is a set for all objects 

A,B E 

DEFINITION 4.2: Let (.), be a class of objects of 3( 

closed under homomorphic images. A subobject A of an object B 

in 'X is said to be C. -pure if A is a direct summand of every 
subobject V of B with Ac; B' and WhIl e C. A short exact 

sequence 
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0-4A-4B--4C —40 

in A, is C -pure if the image of f is C -pure in B. 

THEOREM 4.3: The class of e -pure short exact 

sequences is a proper class. 

PROOF. [41] Theorem 2.1.// 

For a discussion of proper classes see [31] pp. 367 ff. 

DEFINITION 4.4: For objects A,C of k, Pexte  (C ,A) is 

the group of equivalence classes of C -pure short exact sequences 

0--)A —>13--)C—)0 

DEFINITION 4.5: An object K of 3( is C -pure 

projective if for every C -pure short exact sequence 

0-4A---)13--)C -4 0 

the induced sequence 

0 -4 [K,A]--)[K,B]--> [K,C] —4 0 

is exact. 

THEOREM 4.6: Let 63  be the class of projective objects 

of 3L. Then K is C -pure projective if and only if it is a 

direct summand of a direct sum of members of Pu C. 

PROOF. [41] Theorem 2.5.// 

If 	has global dimension 1 (and thus in particular 

if 

	

	=a9.-), thee -pure projectives have an alternative description: 

THEOREM 4.7: If a has global dimension 1, on object 

K is e -pure projective if mid only if K = L e 14, where L is 



projective and M is a direct summand of a direct sum of objects 

in C. 

PROOF. [41] Theorem 2.6.// 

THEOREM 4.8: A short exact sequence 

0—> A-4 B C 

ise -pure if and only if the induced sequence 

O-4 [K,A] 	[K,C]---> 0 

is exact for every C. -pure projective K. 

PROOF. [41] Theorem 2.7.// 

As examples of generalized purity in CUL- , we have 

S-purity for a set S of primes, in which case C is the class 

of finite S-groups, and for an infinite cardinal numberfn, the 

In-purity introduced by Fuchs [14] where 	is the class of 

groups G with IGI <Th. 

The generalized notion of purity has a dual: 

DEFINITION 4.9: Let 6.1) be a class of objects of 'a 

which is closed under subobjects. A subobject A of B is said 

to be61-copure if A/A' is a direct summand of B/A °  whenever 

C A and AlAy Efi. A short exact sequence 

is called B-copure if the image of f is 65-cop:Axe in B. 

The results given above fore -purity can be dualized, 

with -copurity replacinge -purity. In particular, since the 

postulates for a proper class are self-dual, we have 

51. 



THEOREM 4.10: The class of B-copure short exact 

sequences is a proper class.// 

DEFINITION 4.11: For A,C in a, copext n, (C, A) is the 

group of equivalence classes of -copure short exact sequences 

0-3 A-4B---> C-4 0. 

In the sequel we shall be principally concerned with 

the case where e is a torsion class. The pure and copure short 

exact sequences associated with a torsion theory are described 

by 

THEOREM 4.12: Let (j 5.) be a torsion theory for 31, 

and let r be the associated idempotent radical. The short exact 

sequence 

0 —4A--->B-4C-90 

is 2T -pure (resp. a -copure) if and only if the induced sequence 

0 ---) r(A) 	r(B)-4 r(C)---4, 0 

(resp. 

0 --4A/r(A)---> B/r(B) 	C/r(C) --) 0) 

is splitting exact. As a consequence, we have 

(i) r(A) = A n r(B) 

and (ii) r(B/A) = (r(B)+A)/A 

whenever A is either J -pure or 4'.:A -copure in B. 

PROOF. [41] Theorems 3.4, 3.9 and Corollaries.// 

DEFINITION 4.13: For a torsion theory (3 ;3), a short 

exact sequence which is both j -pure and g--copure is said to be 

52. 
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(g,a) -biloure and for any A,C, Pext (C,A) Copext (C,A) is 
7 

denoted Bipext (g 	) (CA). 

Since the intersection of two proper classes is a 

proper class, it is clear that the (:7,I)-bipure short exact 

sequences make up a proper class. 

2. Idempotence of Composite Radicals  

As noted in §5 of Chapter 1, a group A belongs to a 

torsion class 0 if and only if both At  and A/At  do. This 

result suggests the problem of determining whether there are 

any other torsion classes besides 270  for which the corresponding 

statement is true for all 27 or for some given 7. For this 

section we shall work in a subcomplete locally small abelian 

category a . a l  and 272  will denote torsion classes ina , r 1  

and r
2 their associated idempotent radicals. 

DEFINITION 4.14: Let u and v be subftinctors of the 

identity. The subAnctor u n v is defined by 

(u 	v) (K) = u(K) ,- v(K) 

with action on morphisms being determined by restriction. 

PROPOSITION 4.15: If u and v are radicals, then so 

are uv and u n v. 

PROOF. [32] p.110.// 

Thus in particular r 1  r2  is a radical, but as we shall 

see, not necessarily idempotent. 
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PROPOSITION 4.16: The statement 

(*) 	K C 272  4=> r I (K), K/ri (K) e a2  

holds for every K E ;Rif and only if r 1  r2  is idempotent. 

PROOF. If (*) holds, then for every K e  , r2 (K) 

belongs to 27 2  so r1  r2 (K) does also, i.e. r 2  r 1  r2 (K) = r 1  r2 (K), 

or since K is arbitrary, r 2  r 1  r2  = r 1  r2 , so that 

r 1  (r2  r1  r2) = r 1  (r 1  r2 ) = r1  r2 , 

i.e. (r 1  r2 ) 2 = r 1  r2 . Conversely, let (r 1  r2 )
2 = r 1  r2 . Then 

for any K 

r 1  r2  (K) = r 1  r2  r 1  r2 (K) 	r2  r 1  r2 (K) 	r2 (K) 

i.e. r 1  r2  = r2  r 1  r2 . Thus if K E 27 2 , we have 

r 1  (K) = r 1  r2 (K) = r2  r1  r2  (K) 

which is also in a 2 . Since;r2  is closed under homomorphic 

images and extensions, the proof is complete.// 

COROLLARY 4.17: If r 1  r2  = r2  r 1  then 

K e  2  4=> r l (K), K/r 1 (K) C7 2  

and 
	

K C 	4=> r2 (K), K/r2 (K) e 

PROOF. If r l r2 = r2 r l' then 

(r 1r2 ) 2 = r 1 (r2 r 1)r2  = r 1 (r 1 r2)r2  = (r 1 r 1)(r2 r2) = r 1 r2  

and similarly (r2r 1 ) 2  = r2 r 1 .// 

The problem is therefore, in part, that of finding 

commuting pairs of idempotent radicals, and in particular of 

finding those idempotent radicals which commute with all others. 

The next two propositions give some examples forX 
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PROPOSITION 4.18: Let X =a- and let a l  be 

hereditary. Then for any 21 2 , r 1  r2  = r2  r 1  = r 1  n r2 . 

PROOF. For any group A, we have 

(i) r1 r2 (A) = r 1  (A) 
in r2 (A) 

and 	(ii) r2 r 1 (A) g r 1 (A) ctr2 (A) 

so r2 r 1 (A) = r; r 1 (A) 	r2r 1r2 (A). Also, r 1r2 (A)c; r I (A), whence 

r2 r 1 r2 (A) ci r2 r 1 (A). Thus r2r 1r2  = r2r 1 . 

Now r 1 
is either the identity functor, in which case 

there is nothing to prove, or r 1  assigns to each group A the 

subgroup el) 
S  A '  where S is a fixed set of primes. Since pc p 

(r2A) t a2 (THEOREM 1.38), its direct summand r 1r2
(A) is also. 

Thus r2 r 1 r2 (A) = r 1r2 (A), so 

r2 r 1  = r2 r 1 r2  = r 1 r2  = r 1  n r2 .1I 

aI need not be hereditary, however: 

PROPOSITION 4.19: Leta =Glir 	=.Z. Then for any 

a2 , r 1r2  = r2 1- 1 . 

PROOF. Case (1): 27 2  contains torsion-free groups. 

In this case a l  C:2. 2 , so for any group A, we have r2r 1 (A) = 

i.e. r2 r 1  = r l . Also r 1 (A) E r2 (A) and r 1r2 (A) ç  r I (A), whence 

r 1 (A) = r(A) C r1  r2  (A) C r 1  (A) 1 — 	—  

so that r 1r2  = r 1  = r2r 1 . 

Case (2): 27 2  is a t-torsion class. r 2 (A) has 

the form pes rp (A), where S is a fixed set of primes and for each 

p c S r
p
(A) is either A

p 
or its divisible part. Thus r 1r2 (A) = 

pcS
r rp(A). If r(A) = Ap

, then r 1 rp
(A) = rpr i (A) as in 



PROPOSITION 4.18, and if not then r irp (A) = rpr i (A) = r(A) as 

in Case (1). Thus 

r
1
r
2
(A) = peSr rp (A) = (I) peS 

 r r
1 
 (A) = r2r1 (A) p  

i.e. r 1r2  = r2 r 1 .// 

Let r be the idempotent radical associated with the 

torsion class 27  

PROPOSITION 4.20: r 1r2 
is idempotent if and only if 

r ir2 	r.  

PROOF. Let r 1r2 
be idempotent with torsion cl4asst. 

Then for every K C 	tl ra2 , we have r 1r2 (K) = r 1 (K) = K, i.e. 

K ell., so a n g2 Q11. Since 1 

r 1 r2 (L) = r 1r2 r 1 r2 (L) 	r2r 1r2 (L)c; r 1
r2 (L) 

for any L, we have r2 r 1r2  = r 1 r2 , so in particular r2 (L) = L 

if L cli,, i.e. 1.1. c 21 2. Since also for every L C /L, 

2 r 1 (L) = r 1 (r I r2 (L)) = r ir2 (L) = r 1 r2 (L) = L, 

we have 11,5ig 1' so 11,= a 1 (-1 a 2 and r 1 r2 = " 

The converse is obvious.// 

Using COROLLARY 4.17, we obtain 

COROLLARY 4.21: r 1r2  = r2r 1  if and only if r 1 r2  and 

r2 r 1  are both idempotent, in which case r 1r2  = r2 r 1  = r.// 

56. 

PROPOSITION 4.22: r l n r
2 

is idempotent if and only 

PROOF. If r
1 	

r
2 

is idempotent, then its torsion 



57. 

class is cj, n 72  since r 1 (K) A r2 (K) = K if and only if r (K) = 

K = r2 (K). The converse is obvious.// 

Although an object is left fixed by r 1  r2  exactly 

when it belongs to a l  rI rj2 , this does not mean that r i m r2  

must be idempotent (cf. §2 of Chapter 1). 

LEMMA 4.23: If r 1 r2  = r 1 ,1 r2 , then r2r 1  is idempotent. 

PROOF. r2  r 1  r2  r1  = r2 ((r 1 r2 )(1. 1 ))  = r2 ((r 1r 1 ) 	(r2r 1 ))  

= r2 (r 1 	(r2r 1 ))  = r2 (r2 r 1 )  = r2 r 1 . " 

PROPOSITION 4.24: If any two of r 1r2 , r2r 1 , r2  r1  

are idempotent, then r 1 r2  = r2 r 1 . 

PROOF. If r
1
r
2 

and r
2
r
1 
are idempotent, then 

r1 r2  = r = r2 r 1  (COROLLARY 4.21), while if r 1 r2  and r i n r2  are 

idempotent, then by PROPOSITIONS 4.20 and 4.22, r 1r2  = r 1  n r2 , 

so by LEMMA 4.23, r2 r 1  is idempotent.// 

We now give an example to show that r 1r2  and r2 r 1  need 

not be equal. Note that by COROLLARY 4.21 this is sufficient to 

show that idempotence is not preserved by products in general. 

EXAMPLE 4.25: We consider a group which has been 

discussed by ErdOS [12] and de Groot [20], [21]. Let ix,y1 be 

a basis for a 2-dimensional rational vector space, and let 

G = 	q-ny, t-n (x+ys )In = 1,2,3,... 

where p, q and t are distinct primes. Let r 1  and r2  be the 

idempotent radicals for 	and T(G) respectively, From ap 
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examination of the type set of G (see [20] p.295), it is clear 

that r 1 (C) = [p-nxin = 1,2,3,... ] 	Q(p). Let f be any 

homomorphism from G to r l (G). Since r 1 (G) has no non-zero 

elements of infinite q-height or t-height, we have f(y) = 0 = 

f(x+y) = f(x)+f(y). But then f(x) = 0 and thus f = O. Hence 

[G,r1 (G)] = 0, so r2r1 (G) = O. But r 1r2 (G) = r1 (G) 	Q(p). 

This example also shows that idempotence need not be 

preserved by intersections. Let r be the idempotent radical 

associated with gl
p
n T(G). Then r

1  (G) =7,  Q(p) iccO n T(G) 

so r r
1  (G) = O. Since r(G) C , a we have r(G) gr

1  (G), so P  

r(G) = r2 (G) C r r 1  (G) = O. Therefore r(G) = 0, while 

r1  (G)n r2
(G) = r

1 
 (G) 	Q(p). By PROPOSITION 4.22, idempotence 

of r 1  n r2  would require r1  n r2  = r. 

To conclude this part of the discussion we give a 

"local" construction, using transfinite induction, of the radical 

associated with the intersection of a set of torsion classes. 

This construction was used by Leavitt [30] for radical classes 

of associative rings. In an abelian category the fact that all 

subobjects are normal allows a minor simplification of the 

original argument. 

Let {J 1 i E 	be a set of torsion classes inX., 

{r the associated set of idempotent radicals and K ca. 

Define L 1  = K and for an ordinal number 0, assuming La 
 has been 

defined for all a <0, define 

a La  if 8 is a limit ordinal. Otherwise 

(**) 	Lo  = 

r
0-1

) for some i e I (if such exists) 

such that r1(L81) 4  113_1. 



Since the L
a
's form a set, there exists an ordinal number y such 

that r1 (L1) = L for each i c I. 

THEOREM 4.26: For any K C 3Z., let La  be defined by 

(**). Then there exists an ordinal number y such that r(K) = Ly , 

where r is the idempotent radical for  

PROOF. As noted above, there exists y such that for 

each i E I, r1 (L) = Ly , i.e. Ly  e ai . Thus r(L) = Ly , so 

L C r(K). We show, by transfinite induction, that r(K)C: L. 

Trivially r(K) C L l , so assume r(K) C La  for each a < a. If a 
is a limit ordinal it is clear from (**) that r(K) C L o. If a 

is a successor, then by assumption r(K) C L0_ 1 , while since 

r(K) e a i we have r(K) C r1 (L13-1) = La . Thus r(K) C L for a 
every a, so r(K)c Ly .// 

It is not clear whether the construction can always be 

achieved in a finite number of steps in ac even when the number 
of torsion classes involved is finite. With r

1 
and r

2 
as in 

EXAMPLE 4.25, at least three steps are needed: for G we have 

G 	r 1 (G) 	r2  r 1 (G) = 0 = r(G). 

3. A Simplification of the Problem 

In this section we shall work in a subcomplete abelian 

category Xsatisfying the same conditions as in Section 1 and 

in addition having global dimension 1. 

PROPOSITION 4127: Let (7,3.) and (1C,S) be torsion 

theories fora, with associated idempotent radicals r, s 

59. 
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respectively such that sr is idempotent. Then g is closed 
under (iL ,4!1)-bipure subobjects. 

PROOF. Let K' be (tL, k,5)-bipure in K e J. Then 

there are split exact sequences 

	

0 -4-8(K') ---) s(K) 	s(K/K') —4 0 

and 0 --)10/s(10)--) K/s(K) --)(K/K')/s(K/10)-4 0. 

By PROPOSITION 4.16, both s(K) and K/s(K) belong to a and so 
their direct summands s(K') and K'/s(10) do also. Hence K' e j .// 

Note that this proposition is true without any 

restriction on the global dimension of gL. 

For 'U. -pure subobjects there is a result analogous to 

THEOREM 3.8. Proof of this requires 

LEMMA 4.28: A short exact sequence 

(*) 	A —1 B 	C 	0 

isILL-pure, for a torsion class IL, if and only if'the induced 

sequence 

	

(**) 0 —4[K,A]--->[K,B] 	(K,C1-----> 0 

is exact for every K 

PROOF. By assumptions on:X, THEOREM 4.7 and the 

properties of torsion classes, an object L isi4 -pure projective 

exactly when it has the form M Q) K where M is projective and 

K EU-. The sequence (*) induces a morphism. 

[L,B] 	[11,13]QP [K,13] LT.-10[11,c] 4E0 [K,c]  [L,C]. 

Since M is projective, f is an epimorphism, so if (**) is 

assumed exact for every K c1.L , f 	g is an epimorphisn, so 
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by THEOREM 4.8, (29 is #11. -pure. 

The converse is obvious.// 

COROLLARY 4.29: Let (713) be a torsion theory for 

a., K' C K 	. Then K' isU-pure if ond only if KIK' 	. 

PROOF. For U Eli the induced sequence 
0 = [ U,K]-- [ u,K/Kt] 	0 

is exact if and only if [ U,K/K1 = O. By LEMMA 4.28, K' is 

11-pure in K if and only if [ U,K/10] = 0 for all U c ILL.// 

In a similar way we can prove 

COROLLARY 4.30: Let s be the idempotent radical for 

the torsion class U. Then s(K) is U  -pure in K for all K c .1/ 

PROPOSITION 4.31: Let (7,,3) and (11,5) be torsion 

theories fora, with associated idempotent radicals r co2d s. 

If 0.  is closed underil-pure subobjects, then sr is idempotent. 

PROOF. Since for any K e`74, s(K) is all -pure 

subobject, in particular sr(K) is alwaysli. -pure in r(K). By 

assumption onU , therefore, we hf.ve  rsr(K) = sr(K) for each K. 

But then 

(sr) 2 = s(rsr) = s(sr) = s 2 r = 

THEOREM 4.32: Let (J ,3) and ('ti,S) be torsion 

theories for R. with associated idempotent radicals r,s respectively. 

Then 2 is closed underli. -pure subobjects if and only if sr is 

iclempotent and 2 (-1 16 is closed under1,1-pure subobjects. 



PROOF. We first show that zr (1 11 is always closed 

underll-pure subobjects. If K' isli-pure in K cJ AU , then 

K/K' clLand the sequence 

0 K'-9 K 	0 

is split, by definition of iUL -purity. Hence 10 c a ()ll. 
Now suppose a n S is closed underlk -pure subobjects 

and sr is idempotent. If M' 	-pure in M C a we have a 

commutative diagram 

o 	s (m')--4 m' —4 mi /s (m 1 )--4 o 

___45 (m) 	m --4 m/s(m) —40 

with exact rows. 

f is a monomorphism, having kernel M I /s(M I ) A N, where 

N is the kernel of the natural map from M/s(14') to M/s(M), i.e. 

N = s (M) /s (1,1 1 ) and thus 

(M I /s(1,0)) n N = (M' 	s(M))/s(le) = 0, 

by THEOREM 4.12. 

THEOREM 4.12 also says that (s(M) + M')/10 =  

SO 

s (M)+M' (WM' ) / ( (s (M)-I-M' ) /M‘ )= (M/M') /s (M/M' ) 

Hence the sequence 

—) (s (14)+14') is (M) 	Mis (M) —) M/ (s (M)-114 1 )--4 

is.-pure exact, whence as M/s (M) e geI5 , it follows that 

(s (M)-1-1•1 1 ) /s (M) e a n\b • But as 

11/40/s(14')=MV(M' r s(M))Z(M'+s(M))/s(M), 

this means that M'/s(4') c  

Also, s (M) E iJ ,i U. (PROPOSITION 4.16) . Since s (M' ) 
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isik-pure in M' and the /It-pure short exact sequences form a 

proper class (THEOREM 4.3), s(M t ) is/A.-pure in M and hence in s(1), 

so s(M t ) e Un 'tj, . to is therefore in 7, as both s(M 1 ) and 

M T /s(M t ) are, i.e. 	is closed underl,L-pure subobjects. 

By PROPOSITION 4.31 the converse is obvious.// 

CCIMI17.;:1 4.29 shows that in 	purity and J o-purity 

coincide, so as a consequence of THEOREMS 3.8 and 4.32, we see 

that in Ws, a torsion class is closed under go-pure subgroups 

exactly when it is closed under pure subgroups, which raises the 

question: if C is homomorphically closed, when is closure of 

a torsion class under C -pure subobjects equivalent to that for 

g-pure subobjects for a torsion class a ? This question is 

related to the problem of determining projective closures, for 

e and 0 satisfy the condition in particular when C -purity 

coincides with 21  -purity, i.e. C and a have the same projective 

closure, e.g. if e is the class of homom-_•rphic images of Q and 

S) (see [351 or [41]). 

In Chapter 3 we used implicitly the fact that if a 
is a torsion class (in 	) and Cc To' then T( jve ) 

g n g-0' whence if a is closed under pure subgroups, the same 

is true of T( LC). THEOREM 4.32 raises the question whether, 

given a torsion class g, a torsion theory (a,$) and a subclass 

e of U, it is possible for T(3 C) to contain objects of 

which do not belong to J. By LEMMA 3.11, which obviously holds 

also 	it may be assumed that e is a torsion class. 
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PROPOSITION 4.33: Let (11„,) and (':1,a) be torsion 
theories for:k, the latter with idempotent radical r. If C", 
is a torsion subclass of ii.,  then U(05 = T(Uve )(-14  
if and only if r(G) is ae -pure subobject of G for every G C S. 

PROOF. An element K of T(ZTL)e)(1 belongs to a 

if and only if K/r(K) = O. Since K/r(K) e T( 3 we.), this is 

equivalent to s(K/r(K)) = 0, where s is the idempotent radical 

fore- But s(K) = 0 so by COROLLARY 4.29, s(K/r(K)) = 0 if 

and only if r(K) ise -pure in K. Thus if r(G) ise -pure in G 

for every G c 	, then :j t\& = T( OU(3 )(1S . Conversely, 

if this equality is satisfied, then 	any G C 	, r(G) is 

the largest subobject belonging to T( Or u C )(.1L& , so 

s(Glr(G)) = 

The conditions of PROPOSITION 4.33 are not always 

satisfied, as the following example shows. 

EXAMPLE 4.34: For distinct primes q, t, consider the 

torsion theory (T(Q({q,t})WS ) and the group G of EXAMPLE 4.25: 

G = [p-n  x, q-n  y, t-n( y' x+ )In = 1,2,3,...] 

where p is a prime other than q, t and x, y are linearly 

independent. G 	, but since p G G, G T(Q(p))In`S . 

However, there is a short exact sequence 

0-4Q(p) 	[x] -- G -4G/[x] *  Q({q,t}) -40 

which shows that G belongs to T(T(Q(p)) U  T(Q({q,0)))(1"1 . 

Another problem suggested by results in Chapter 3 

is that of determining when the class of extensions of objects 
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in a torsion class a by members of a torsion class (0 2 is 1  

itself a torsion class. (cf. PROPOSITION 3.16). The conditions 

of PROPOSITION 4.33 are sufficient. Before showing this we prove 

PROPOSITION 4.35: Let (3 g 1) and (a2' 9.2 ) be 

torsion theories for :X. The following conditions on K e -3L 

are equivalent. 

(i) There exists a short exact sequence 

--> 	K —4 K" 0 

with K' e 
1
and K" 2' 

(ii) There exists a short exact sequence 

0 K 	K—) K"--> 0 

with K' Ea and K" e rj 2 r1 (31 1 . 

PROOF. Let (a1,)  have idempotent radical rl. 

(i) => (ii): There is a short exact sequence 

0 —÷K'--> L —4 r 1  (K") 	0 

where LS. K and necessarily L e Z7 1 . The resulting exact sequence 

O--)L 	--->Ku/r i (K") —40 

satisfies (ii). Obviously (ii) => (1).// 

PROPOSITION 4.36: Let (1 l' a1),  (:72' c-j.
2

) be 

torsion theories for 	idempotent radicals r l , r2 . If 

	

r2 (K) is :1 1  -pure in K, for every K e 	then the following 

conditions are equivalent: 

(i) K e T(J I U :1 2 ) 

(ii)and (iii) as in PROPOSITION 4.35. 



PROOF. Clearly (ii) => (i) without restriction on 

27 1  and 27 2 . By PROPOSITION 4.35 it suffices to show (i) 

For every K C T( rcl i u a 2 ), there are short exact sequences 

0 	r (K) 	K 	K / r (K) = K" —?' O 

and 	0 	r2  (K") -4 K"--4 K"/r2 (K") 	> 0, 

the latter being J 1-pure. But then K"/r2 (K") c 	2  n 
T611  u eCl2 ), so K"/r2 (K") = 0, i.e. K" e 	2  rtZ,; 1 .11 

4. Generalized Rank  

For the remainder of this chapter we shall work in COG-
Many results however can be generalized to modules over 

hereditary rings (at least). 

The torsion classes closed under subgroups and pure 

subgroups have been classified by minimal representations. In 

attempting a similar classification of torsion classes closed 

under generalized pure subgroups, we therefore begin by 

searching for groups which give simple representations of such 

classes. 

The hereditary torsion classes are determined by groups 

of the form Z(p) and Z, which have no non-isomorphic proper 

subgroups and for any torsion theory (g,a) belong to either 

J or a. Groups of the form Q(P), Z(p) and Z(p) give 

representations of all torsion classes closed under pure 

subgroups, and a group of this kind has no proper pure subgroups 

and belongs to a or c3' for any torsion theory (7,2). Some 

information about torsion classes closed under e -pure subgroups 
might therefore come from the study of groups which belong to 

66. 



0 or a for any (Zf:3-) and which have no proper e -pure 

subgroups. 

When C is a torsion class, however, we can specify 

groups determining torsion classes closed under e -pure subgroups 

in terms of a generalized rank function which we now introduce. 

To justify the definition of generalized rank the 

following result is needed: 

PROPOSITION 4.37: Let (11,;S) be a torsion theory. 

IfG eS, then the intersection of any famag oft( -pure 

subgroups of G is U -pure . 

PROOF. By COROLLARY 4.29, it suffices to show that 

G,a GA  c '5 for any set {GA I X CA) of U -pure subgroups of G. 

Suppose a  GA  C 	_c G and Gya  GA  cit . Then for each ti c A , 

we have a diagram 

0 	(G' n G )/ 	G —4 G'i rm  G 	G'/(G' G XeA 	AEA 	 1.1 

IR 
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with exact rows 

Gy x,A  GA , G'/( 

means that Cc_ 

0 _4(G'+% )/G 
P 	11 

, but by assumption on 

Hence G'/(G I ( G) = 0. But this 

G for each u, so V/21  GA  = 0, i.e. GT, GA  Cid/ 
11 

• (G'+G )/G c 
11 

G' 	) e U . 

Every element or subset of a group G eS is therefore 

contained in a smallestlk,-pure subgroup. 

The generalized rank for a torsion theory (a,S) is 

introduced in the following definitions. 
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DEFINITION 4.38: If u1 is a subset of the elements 

of a group G 	[ LU ] t J.G  denotes the smallestU-pure subgroup 

of G containing W. If iu is a finite set {x1 ,... 9 xn} or a 

countable set {x1 ,x2 ,x3 ,...}; [W) 	denoted by  

or [x1 ,x2 ,...]u,  respectively. When there is no confusion about 

the containing group the superscript G will be omitted. 

DEFINITION 4.39: A non -zero group G e5 has tt -rank 

Ittif it has a subset 6 with [ 6 Ju.  = G and I 5 I = ill and if 

lytis the least cardinal number for which such a set exists. We 

denote this by writing -U. -rank (G) = lii . 6 is called att -basis 

for G. 

If (2),S) = ( 0'g')  this definition gives the 
 0 

standard (torsion-free) rank, since in 2T- purity coincides with 
0 

10-purity. Note theta. -rank is defined only on non-zero groups 

Obviously for every non-zero xe Get, [x] has 

lt.-rank 1, so since G is generated by such subgroups, we have 

PROPOSITION 4.40: If (tt,) is a torsion theory then 

every G e \S is a homomorphic image of a direct sum of groups in 

Using THEOREM 4.32 and PROPOSITION 4.40 and reasoning 

as in the proof of THEOREM 3.9, we obtain 

THEOREM 4.41: Let (7,a) and (1t , ) be torsion 

theories such that :T is closed wider 7J -pure subgroups. Then • 

= T(( n 	) LJ {G e  n ‘S I 1d4. -rank(G) = 
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The groups with 2 0-rank 1 are the rational groups, 

and we have seen that a torsion class is closed under 7 0-pure 

subgroups if and only if it is closed under pure subgroups. 

Also there is a rank function ({0}-rank) corresponding to the 

trivial torsion theory ({0},0ir), with {D}-rank (A) = 1 if and 

only if A is non-zero cyclic and cyclic groups determine the 

hereditary torsion classes (closed under {0}-pure subgroups). 

Thus THEOREM 4.41 is a generalization of THEOREM 1.34 and 

THEOREM 3.9. Although the theory of types, divisibility and 

algebraic compactness is too directly involved in the discussion 

leading up to THEOREM 3.13 for any more detailed generalizations 

to appear likely, the groups of generalized rank I nevertheless 

seem to provide a convenient point of departure in the search 

for representations for torsion classes with additional subgroup 

closure properties. 

An alternative description of generalized rank is 

given by 

PROPOSITION 4.42: G c"fl has a -rank m if and only 

if it has a subset 6 with 1 5 1 =11-1, satisfying the following 

equivalent conditions 

(i) Gn 6 ] 

(ii) If H e j and f:G --411 satisfies f(ti) = 0, 

then f = 0, 

and lii is the smallest such cardinal nuriber. 

PROOF. We first verify the equivalence of (i) and 

(ii). If (i) is satisfied and f:G 	H e.lb satisfies f(5) = 0, 
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then there is a commutative diagram 

where necessarily g = 0, so f = 0. If G/[6 ] 4LL ,  it has a 

non-zero homomorphic image H in -5 . There results a non-zero 

homomorphism G —3>G/ [ 5 ]-----3 H, whose kernel includes 5 . 

Now let tfj be any subset of G with G = [ 	1 11... . For 

any non-zero epimorphism f:G/[ 	 , f g( W ) = 0, where 

g is the natural map G 	G/[ uj . But f g has all, -pure kernel, 

which must contain [ Lti 	= G, i.e. fg = 0, so f = 0 and 

G/ W 	. Conversely, if G/[ 113 ] e /4, , then G/[ W ] 	is 

both a homoraorphic image of G/[ 	] and a member of ss , i.e. 

G/[ w = 0. Thus G = [Iii ] tx.  exactly when G/[ W] cli. In 

particular this is so when 11,1 is replaced by a set 6 of minimal 

cardinality.// 

COROLLARY 4.43: G e"sh has finite U. -rank n if and 

only if there exist linearly independent elements x1 ,...,xn  C G 

with G/(x1 ) ® 	[xi) e11, and n is the least such integer.// 

PROPOSITION 4.44: Let (111 ,31) and (11 2 ,) 2 ) be 

torsion theories with 'j 	Then for any group G e 1 , 

<U,2-rank(G). 

PROOF. Let6 be a1.1-2-basis for G. Then G/[5 ] e 

c:1.11. , so 1.i J.-rank (G) <I 6 1.1/ 
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COROLLARY 4.45: If 	,S) is a torsion theory with 

then the 1.1. -rank of a group in S cannot exceed its 

rank.// 

COROLLARY 4.46: Let X be rational and ii the torsion 

class {Al[A,X] = 0; then U -rank(X) = 1. 

PROOF. D 0 c11, so 

0 <11-rank(X) < rank(X) = 1.// 

COROLLARY 4.47: For any torsion theory (11,S) with 

U.; 0 :1A, -rank(G) <c0 -rank(G) for every group G C .// 

One can introduce a notion of (LL,S)-independence in 

groups III'S , which coincides with the standard linear independence 

in torsion-free groups for (11,h) = C1 0 ,50): call an element 

x of G (tt,9)-dependent on 	G if x E 

It would be interesting to know of conditions on torsion theories 

(forakror for module categories) under which this notion of 

dependence gives an abstract dependence structure of the kind 

studied by Kertesz [26], Dlab [10] and others. We shall not 

study this question explicitly, though several examples of 

pathology are to be found in the subsequent discussion. 

For any torsion theory (11,,S), the class of groups 

in‘ifj with finitelk, -rank is closed under homomorphic images in 

and under extensions, but not under subgroups in general. 

PROPOSITION 4.48: Let G e 'S have finite 1L -rank n. Then any 

non-zero homomorphic image of G which belongs to 'S has ii. -rank 

< n. 



PROOF. Let {xl ,...,xn} be alt-basis for G,G/G' c 

the set of distinct cosets of x l ,...,xn  mod. G' and 

G/G' = bri ,...,yr ],tk . Then GIG' islt -pure in GIG' and since 

GIG' c 	G' istt, -pure in G. Since -IC-purity determines a 
A 

proper class, G is thereforea-pure in G and since it contains 
A 

xl ,...,xn , G = G, i.e. G/G' = i'''ri 	 soll,t -rank (G/G') 

<r <n./ 

COROLLARY 4.49: If G 	has L( -rank 1, so does any 

of its non-zero homomorphic images in 

PROPOSITION 4.50: If G° is I( -pure in G E , cald 

if G I  and GIG' have finite -U.-rank, so does G, and 

-rank(G) < tt. -rank(G') +11..-rank(G/G') 

(For an instance of strict inequality, see EXAMPLE 4.58 below). 

PROOF. we chooselk-bases {x1 '''''  x } for G',  n 

fzi ,...,zml for GIG' and representatives y i  for zi  in G, 

i = 1,...,m, and define groups 

G = 	=  

For any homomorphism 	c'S with g(Z) = 0, we have a 

commutative diagram 

)  G ---g---4 K 

where all other maps are inclusions. Since g k f' = g f h = 0, 

we infer from PROPOSITION 4.42 that g k = 0 so there is a 

homomorphism v:G/G'--4K such that vu = g, where u is the 
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natural map from G to GIG' and a commutative diagram 

G' 

f 	 G ---IL--> K 

(G4:G--)/C  G/C 

where f" is inclusion and t the natural map. From this, 

v f"t=vuf=gf= 0, sovf" = 0, sincetis an epimorphism. 

Also, (G'4Z)/G °  = [zi ,...,znI] so by PROPOSITION 4.42, v = 0. 

Thus g = v u = 0, so as in the proof of PROPOSITION 4.42, we 

have 

solk-rank(G) <m + n =IL -rank(G') +1L-rank(G/G 1 ).// 

The next example shows that a group with a generalized 

rank I may have a subgroup for which the corresponding rank is 

infinite. 

EXAMPLE 4.51: Let p l , p2 , ... be the natural enumeration 

of the primes, 
Y  = Q(IPZni n 

 = 1,2,...1) and X = [ I  In = 1,2,...]. 
P2n 

Y hasSb -rank 1, since any element with zero height at all primes 

p
2n-1 

gives alb -basis. Any finite subset Ix "" 
x
m
1 of X 

a(n) 
generates a cyclic subgroup [x], and X/[x] 1  (E) Z(p 	),n  

n = 1,2,..., where a(n) E Z. Thus X/[x] ER„ so g -rank(X) = )ko . 

5. Groups ofIt -rank 1  

Among other things we wish to describe the groups G 

of1A.-rank 1 ((1,T1) is a torsion theory throughout this section) 



for which T(G) is closed under 71.-pure subgroups. This requires 

in particular that G' 6 T(G) for everyll-pure subgroup G' of G. 

The most obvious way in which this can be satisfied is for G to 

have no propera-pure subgroups at all, and the possible 

relevance of this property has already been noted (54). This 

section is largely devoted to the structure of groups of -Li-rank 

1. We begin by discussing groups G of 1J-rank  1 which have no 

proper-pure subgroups and then consider G satisfying a 

weaker condition: every propera-pure subgroup G' has finite 

index. An example shows that even the weaker condition is not 

universally satisfied and points to the difficulty in obtaining 

an analogue of the type set to describe the groups of IL-rank  1 

in a torsion class (cf.51 of Chapter 2). This difficulty is 

also apparent in THEOREM 4.63, which partly generalizes 

THEOREM 3.12. 

The other main result on groups of -Lt.-rank 1 asserts 

that they cannot be mixed. 

DEFINITION 4.52: A group G is said to beli-pure 

simple if it has no proper -Lk -pure subgroups. 

	

PROPOSITION 4.53: A group G c 	U -ronk I is 

IL-pure simple if and only if for every non-zero x E G, {x} is 

alk-basis. 

PROOF. If every non-zero element gives a 71-basis 

and 0 G' 	G then for any non-zero x e G', 

GIG' 	(G/ki)/(G'/[x]) 
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so G' is not ii-pure. Conversely, if G isli -pure simple 

[x] = G for every non-zero x C 

A torsion-free group is J 0-pure simple if and only 

if it has J0-rank 1. It is not necessary that 11-rank(G) = 1 

implies G istt-pure simple in general, although the last proof 

shows that the converse implication always holds. 

PROPOSITION 4.54: If for some prime p, Z(p) 

then every U.  -pure simple group in 4:j is either p-divisible or 

isomorphic to Z(p). 

PROOF. pG is 1J_,-pure in G for every G cj ., since 

G/pG 	. Thus aIL -pt.:re simple group G e j5 which Ls not 

p-divisible is p-elementary, and then necessarily cyclic.ft 

Every non-trivial i5 contains Z which has tt.-basis 

Ill. If for some prime p, Z(p) e"S , then by the previous 
result, Z is not11-pure simple. Thus we have 

PROPOSITION 4.55: If every G e  with a -raisk 1 is 

lk -pare simple, then tCi 

The converse of PROPOSITION 4.55 is false (cf. EXAMPLE 

4.58 below). 

In using groups withtt-rank 1 to classify torsion 

classes closed underll-pure subgroups, the fact that such a 

group G may have a properll-pure subgroup p G presents no 

great difficulty, since we are essentially concerned only with 

torsion-free G, and for such groups, p G G, so T(pG) = T(G) e  
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We shall see in EXAMPLE 4.58 that much greater complexity of 

11-pure subgroup structure of G is possible. First however, 

we note a connection between single-element1L-bases and a 

property which may be regarded as a generalization of 1k -pure -

simplicity. 

PROPOSITION 4.56: IfU-rank(G) = 1, then the 

following conditions are equivalent: 

(i) For every non-zero x G and for every -U.-basis 

fyl of G there exists a non-zero integer n such that n y e 

(ii) Every proper1L-pure subgroup of G has finite 

index. 

PROOF. (i) => (ii): Let G °  be a proper-pure 

subgroup of G, x e G ° , x 4  0, {5,} all-basis for G with 

n y 6 [x] ci G ° , and H = [G ° ,y]. Then RIG' is cyclic with 

order m = 	Zik > 0, k y e G'}. In the resulting short 

exact sequence 

0-42(m) 1.  H/G 9 --4 	G/H--* 
i1 we have HIV. -5 and GillEU. If m = p 1 	prr , where 

are primes, then RIG' = Z(p il)q) 	e Z(prr), and 

(G/H) 

	

	is divisible for j = 1,2,...r, since no Z(p ) belongs 
Pi  i 4  

toll. If for some j, Z(pi") is embedded (in GIG') in a 

co 	co 
subgroup isomorphic to Z(p ), then Z .) belongs to both 11, and (Pj  

db, which is impossible. It follows thatZ 	J) = (G/G') 

	

(R. 	for 

	

) 	
Pi 

j = 1,2,...,r, so that H/G °  is a finite pure subgroup and hence 

a direct summand of G/G °  (see for example [15] p.80). But 

since G/G °  cand G/H cL , we then have H/G °  = G/G ° , so G °  
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has finite index m. 

(ii) => (i): If every properli-pure subgroup has 

finite index and x 0, then either {x} is all-basis or [x] li.  

has finite index, in which case for everyli-basis {y}, we have 

n y e [x]
11, 

for some n e Z, n 0.// 

COROLLARY 4.57: If G has -It -rank 1,is torsion-free 

and satisfies the conditions of PROPOSITION 4.56 and if T(G) 

is closed underll -pure subgroups, then T(G) = T(G') for every 

proper -LI-pure subgroup G' of G. 

PROOF. Since GIG' is finite, PROPOSITION 2.20 says 

that G T(C). By assumption, G' e T(G).// 

If every group withli-rank 1 satisfies the conditions 

of PROPOSITION 4.56, and if in addition sic 3., then the groups 0' 

with 'U-rank  I are an IL-pure simple. 

The next example shows among other things that the 

conditions of PROPOSITION 4.56 need not be satisfied when 

EXAMPLE 4.58: Let 

TuQ(12,3))} 	{Z(p)all panes p}) 

and 
	

G = [2-nx, 3-nyln = 1,2,...] 

where x and y are linearly independent. Then Q(2) e Q(3) z 

G c t. Denoting the cosets of x,y modulo (x+y] by ;,77 

respectively, we have x and y with the same type, with infinite 

2-height, 3-height respectively. Thus G/[207] e IL and G haa 

li-rank 1, 
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Clearly everyli-basis of G must have the form {a+b} 

with a c [ ], b E [y] *  and a f 0, b 4  0, and a+b can have no 

non-zero multiple in either [x],w  = [x] *  or [y] [y] * . 

If a group of U-rank 1 is directly decomposable, then 

every direct summand hasti-rank 1, by COROLLARY 4.49. Such a 

group cannot be a direct sum of infinitely many non-zero 

subgroups, for factoring out a cyclic subgroup leaves almost all 

summands intact. It is however possible for direct products of 

infinitely many groups to have generalized rank 1. Wiegold 

[43] has shown, in effect, that 1-TI(p) has.-rank 1, where 

the product is taken over all primes p. By COROLLARY 4.49 the 

corresponding statement is true for any set of primes. For the 

group G of EXAMPLE 4.58, we have T(G) = T({Q(2),Q(3)}), while 

by PROPOSITION 3.3, T(Op  1(0) = Tai(p)lall p}). we are led 

to ask whether, in general, the discussion of groups of 11-rank 

1 in torsion classes can be reduced to consideration of 

indecomposable groups. We must leave this question unanswered. 

The conditions under which a rational group can have 

generalized rank 1 are given by 

PROPOSITION 4.59: Let X be a rational group belonging 

to"5. 1A- -rank(X) = 1 if and only if T(x) = T(n1 ,n2 ,...) where 
co 	 QD 

ni  = 0 if Z(pi) c 	, 0 or 00 if Z(pi ) E '5 but Z(p7) 

PROOF. If T(X) is as described, let x c X have height 
n4  

(n1 ,n2 ,...). Then X/[x] 	61) Z(p i-), i = 1,2,... . If Z(p i) 
ni  , then Z(pi  ) cU.. If Z(pi) e 15 but Z(p7)  , then I  

00 
(pi  ./) = 0 or Z(p

i), and so belongs toll, , and if Z(p) e -5 
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then Z(p1) = O. Thus X/[x] c'LL and Zt-rank(X) = 1. Conversely, 
if X has1),-basis {x}, then X/[x] is a direct sum of primary 

groups, each belonging to U, and it is a simple matter to show 

from the restriction this places on their orders, that the 

height of x is as required.// 

A non-zero direct summand of a group of IL-rank I 

also basil-rank 1 (COROLLARY 4.49). Thus together with the 

remarks following EXAMPLE 4.58, PROPOSITION 4.59 gives a 

necessary condition for a completely decomposable group G c5 
to have rUL-rank 1: G must have finite rank and the types of its 

direct summands must be as in PROPOSITION 4.59. This condition 

is not sufficient, however. For example let A and B be 

isomorphic rational groups of V_-rank 1. If {x} is alt-basis 

for ACE) B, then clearly A E) B/[x] * cll. But [x] *  is a direct 

summand (see for example [15113.166), so A e B/[x] * , which is 
rational, also belongs to 	. This clearly is impossible. 

Although in the investigation of torsion classes only 

torsion and torsion-free groups need be considered, there is 

some interest in the fact that mixed groups cannot have 

generalized rank 1. As a first step in showing this we prove 

PROPOSITION 4.60: A torsion group with 71 -rank 1 is 

cyclic. 

PROOF. Let G c a 1)‘5 havelk -basis {x}. Then 
0 

since G/[x] has no more non-zero primary components than G, and 

belongs tol)L, it follows that G/[x] is divisible and has zero 
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00 
p-component if Z(p ) j 	Taking primary decompositions of 

Gt  and [x], we have G/[x] = ( 	G )/((i) [x ]), where x = 0 
P 	P 	P 

for almost all values of p so that for such p, G = G ax ] is 
P 	P P 

in both 45 and U,  i.e. G = O. All the remaining G's are 
P 	 P 

reduced, (since factoring out a cyclic subgroup cannot eliminate 

a non-zero divisible subgroup) and have G /[x ] divisible. If 
P P 

x has finite height (in G) it is contained in a cyclic direct 

summand (see for example [15] p.80), whose complementary 

summand must vanish as it is divisible. There remains the case 

where x has infinite height. In this case, if y E G, then 

for any positive integer n, there exists y' e G such that 

y - pny , = m x, for some m E Z, since G /[x ] is divisible. 
P 	 P P 

But then x = pnx
, for some x' E C, whence it follows that y 

P 	P 

has infinite height and G is divisible. With this contradiction 
P 

the proof is complete.// 

PROPOSITION 4.61: A group withlt-rank 1 is either 

torsion or torsion-free. 

PROOF. Let G E "S be mixed and have all-basis' tzl. 

If x e Gt' then Gt /[x] is pure in (G/[x])t' so by THEOREM 1.38 

and PROPOSITION 3.7 G/[x] c a. But then11.-rank(G t ) = 1, so 

by PROPOSITION 4.60, Gt  is cyclic which means that G splits 

(see for example [15] p.80) and this is not possible since a 

summand complementary to G t  is not affected by the factoring 

out of [x]. Thus x must have infinite order. As in the proof 

of PROPOSITION 4.60 it can be seen that G
t 
is reduced whence it 

follows that G has a direct summand of the form Z(p 1 ) ([15] p.80). 



Let such a summand be generated by y. Then x = k y + z, where 

k e Z, k y f  0 and z has infinite order. Since u contains no 
reduced p-groups, [y]C [x], i.e. for somemeZ, y= mx =mky 

+ in z. But then linear independence of y and z requires that 

mz= 0, i.e.m=0andy=mky= O. Again we have a 

contradiction.// 

The next theorem is a partial analogue of THEOREM 3.12. 

Its proof makes use of the following lemma. 

LEMMA 4.62: If G °  is -U. -pure in G e t then 

G' 
= [x] for fbr any x e G'. 

PROOF. [x] G' ij is, -pure in G, so [x] G  C[x] G,  
• 

But x e [xi r\ G' which 	-pure in G', so [x] G' C [x] G r‘G / ,G 

1k 

THEOREM 4.63: Let C c:S be a class of groups with 

11 -rank 1, 652 the.  class ofhomomorphic images in %5 of direct 
sums of copies of groups in (2 , r, s the idempotent radicals for 

T((L),  Ife is closed under extensions and satisfies 

C1 ,...,Cn  c C  , C ij  -pure in C l e ... 	cn , 

(c) = 1 => C e CI 

then T((;) is closed under 11.. -puresubgroups if and only if s r 

is idempotent. 

PROOF. For a group A 	, we define a subgroup A 

to be generated by all elements of A which belong to the images 

of homomorphisms from groups C e C . Clearly A e TO for any 
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If (A/K) = A'/K, we have an exact sequence 

0 ->A -4 A° -4 (A/A) ---> 0 

whence A° e C,  so A = T, (ArA) = 0 and A = r(A). In other 

words, ve ) 	= e. Thus for any A e T(C ) 	, with a - 

pure subgroup A' we have an exact diagram 

0 —fl3 	ED C 	A —4 0 AEA 

A' K/B 

0 

where each C
A c (! and K is the inverse image of A' in EE) c. 

B isIL-pure in (I) CA,  since A e‘'.5 ; also K/B 1st" -pure in .  

(i)CA/B. Therefore K is It-pure in ecx . For any y C K, we 

have, after suitably re-labelling, y C C 1 	•.. E) Cn , which 

is 10,-pure in 	CA , so [y]
K 

= [y] 	is lk-pure in 

C1 e 	Ept C
n and therefore belongs to C . Thus K .c T(f), 

so A' c T(e ). T(e) 	is therefore closed under 1L-pure 

subgroups. The result now follows from THEOREM 4.32.// 

6. Groups of -U.-rank 1 (continued)  

We commence this section by characterizing the groups 

of cip -rank 1, where p is a prime. As a first step we prove 

PROPOSITION 4.64: Let G be p- reduced with 	-rank 1.' 

Then for any Sf)_basis {x} of G, [x] is a p-pure subgroup. 

PROOF. It clearly suffices to show that G/[x] has no 

direct summand of the form Z(p c°). By PROPOSITION 4.61 it may be 

assumed that G is torsion or torsion-free, and in the former 

case G = [x], by PROPOSITION 4.60. There remains only the 
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torsion-free case. If G/[x] has a summand Z(p ) then G has a 

subgroup G', containing x, for which the sequence 

0 —4. [x] -->G ° 	Z(p°Q) —4 0 

is-exact. But then G ° 	Q(p),([15], p.149) contrary to the 

assumption that G is p-reduced.// 

This result will enable us to give a complete 

description of the groups with o0 -rank 1. We first recall a 

definition introduced by Fuchs [161: 

DEFINITION 4.65: A subgroup B of a group A is called 

a p-basic subgroup, where p is a prime, if B is a direct sum of 

cyclic groups of infinite and/or p-power order, B is p-pure in 

A and A/B is p-divisible. 

We have shown in PROPOSITION 4.64 that if G e 64., has 

a 	-basis' {x}, then [x] is a p-basic subgroup. On the other 

hand, if a p-reduced group has a cyclic p-basic subgroup [y], 

then {y} is clearly a .9 -basis. 

PROPOSITION 4.66: If -rank(G) = 1 and x G, then 

{x} is a 	-basis if and only if DO is a p-basic subgroup.// 

A p-reduced torsion group must be a p-group and it is 

shown in [3] that a torsion-free p-reduced group has a cyclic 

p-basic subgroup if and only if it is isomorphic to a p-pure 

subgroup of I(p). These observations, with PROPOSITION 4.66, 

give a proof of 
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THEOREM 4.67: A group G 	p  has SO -rank 1 if and 
only if it is isomorphic to either a non-zero p-pure subgroup of 

l(p) or Z(pn) for some finite n.// 

If a torsion group G has 	-rank 1, only a generator 

can give a 9 -basis. In the case of torsion-free G; the 4) - 
P 

bases are described by 

PROPOSITION 4.68: Let G be a torsion-free, p-reduced 

group with)-rank 1, viewed as a p-pure subgroup of 1(p). 

The following conditions are equivalent for x e G: 

(i) x has p-height 0 (in G and hence in I(p)). 

(ii) x is a p-adic unit. 

(iii) {x} is as-basis for G. 

PROOF. The equivalence of (i) and (ii) is well-known. 

By a theorem in [2], G/[x] is p-divisible if and only if [x] 

contains a p-adic unit, and this is so precisely when x itself 

is a unit.// 

Thus when G is torsion-free of ciD -rank 1, every non-

zero element has the form pnx, where {x} is a 00 -basis. 

The results obtained thus far enable us to give a 

rough description of the groups of.4516-rank 1, where S is a set 

of primes. In the uninteresting torsion case they are the 

cyclic S-groups; in the torsion-free case they are described 

by 



0 —3 f] = ([x] + 0 1 (p))/(0'(p))--> G G t (p)--3G/([x]+G ° (P))--.40. 

0 

PROPOSITION 4.69: A non-zero S-reduced, torsion-free 

group G hasog s-rank 1 if and only if 

(i) for each p c S there is an exact sequence 

0 -4 G(p) -3 G -4 0"(p)  0 

where G t (p) is p-divisible and G"(p) is isomorphic to a p-pure 

subgroup of I(p), and 

(ii) there exists an element x of G such that for 

every p E S with pG G, the image of x in G"(p) has p-height O. 

PROOF. Let
s
-rank(G) = 1 and let {x} be a 5-basis 

for G. For p e S such that G is p-reduced, {x} is as -basis, 

since G/[x]  is S-divisible and hence p-divisible. Thus G is 

isomorphic to a p-pure subgroup of I(p) and we let G t (p) = 0, 

G"(p) = G. If G is p-divisible, we let G(p) = G and G"(p) = O. 

Finally we consider p c S such that G is neither p-divisible nor 

p-reduced. Let G e (p) be the maximal p-divisible subgroups of G 

and G"(p) = G/G t (p). Denoting the coset of x mod.G t (p) by -X:, 

we have a commutative, exact diagram 

0   [x] 
 >  G/ [x] 	>0 

85. 

G/[x] is S-divisible and hence p-divisible, so the same is true 

of Gi([x] + G t (P)). It therefore follows that G/G t (p) = G"(n) 

has 	-rank 1 and thus has a p-pure embedding in I(p). As 

defined, G"(p) 0 exactly when pG G and in such cases it is 

clear from the proof so far that the image of x in G"(p) has 

p-height O. 



86. 

Conversely, if G satisfies (i) and (ii), we shall show 

that for x as described in (ii), x is a 25-basis. If G"(p) = G, 

then x has p-height 0, so GI[x]  is p-divisible and if G"(p) = 0, 

G itself is p-divisible. In the remaining case, G"(p)/(R] is 

p-divisible, where again -; denotes the image of x in G"(p). But 

G"(p)/[5];-(G/G c (p))/(axJ+G'(P))/G'(P))G/Ux]+G'(p)) 

(G c (p) has been treated as a subgroup of G), and ((x]i-G c (p))/(xj 

is also p-divisible, so from the exact sequence 

0 —4 ([x]+G'(P))/[x]--)G/M-->G/([x]+G' (P)) ----> 0 

it then follows that G/[10 is p-divisible. Thus G/[x] is 

p-divisible for every p e S, so {x} is a 019) 5-basis and the proof 

is complete.// 

If the groups G c (p) are regarded as subgroups of G, 

they are all pure, so their intersection is also pure in G and 

hence in each G c (p). Being therefore S-divisible, 	G c (p) = O. 

Thus we have 

COROLLARY 4.70: A torsion free group with j,N-rank 1 

is a subdirect product of torsion-free groups with 2 p-rank 1, 

at most one for each p e S.// 

In our discussion of groups of generalized rank 1, we 

have not so far examined the question when such groups G 

satisfy 

(*) 	G e D*  or 3. for any torsion theory (L3). 

(This condition is satisfied by groups of a ct-rank 1). PROPOSITION 

4.69 provides a characterization of the groups of-rank 1 

which satisfy (*): 
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PROPOSITION 4.71: With the notation of PROPOSITION 

4.69, and s the set of all primes, if G is torsion-free and 

jp-rank(G) = 1, then G satisfies (*) if and only if for every 

p, G = G t (p) or 0(p). 

PROOF. By definition of the groups G'(p) and G"(p), 

the stated condition is necessary for (*). Conversely, if G 

satisfies this condition it is cohesive in the sense of [11], 

and so G/r(G) is divisible for any idempotent radical r with 

r(G) 4 0 (r(G) is a pure subgroup). Thus if r(G) 4  0, r is 

associated with a torsion class containing torsion-free groups, 

so that G/r(G) = r(G/r(G)) = 0, i.e. G = r(G).// 

There are groups of 4 -rank 1 which do not satisfy 

(*), e.g. TrI(p), p c S if S has at least two elements. 

To obtain a description of the class of groups of 

1-rank 1 in a torsion class :I, analogous to that of the type 
set given by THEOREM 2.11, it is first necessary to find 

conditions on groups A,B withlk-rank(A) = lk-rank(B) = 1 which 

ensure that B E T(A). For a really close analogy with §1 of 

Chapter 2, we should restrict our attention to those torsion 

theories (11,) for which all non-zero homomorphisms between 

groups withli-rank 1 are monomorphisms. Such is the case when 

the groups with/L.-rank 1 are all /1-pure simple, though as we 

shall see in the case of (29 a.) this condition is not 
P' P 

necessary. For such a (71,11) let A and B have 1L-rank 1, with 

[A,B] O. Then we may assume that Ac B, and it follows that 

B belongs to T(A) if and only if B/A does. If (10) = ejar:T0), 
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then in every case B C T(A) and B/A V o . If every group with 

1L-rank 1 is IL-pure simple, then B/A C 'ft always, but EXAMPLE 
4.34 raises doubts as to whether B c T(A), though certainly 

B e T({AJ L/C) for some subclass e 001, and in particular 

whene = 

A complete set of conditions under which B c T({A} ulj,) 

may be regarded as a partial generalization of THEOREM 2.11, 

since in §1 of Chapter 2 the class T(X), X rational, could as 

well have been replaced by T({X} U C) for any Cl C: rjo , as the 

inclusion of extra torsion groups in a torsion class zr does 

not enlarge jn g. o . Similarly, if j has type set r , so 
does T( u C.) if  

We shall investigate the question for (U
, ) = 

where p is a prime. We begin with a description of 

homomorphic images of groups with S -rank 1. 

PROPOSITION 4.72: Let B be torsion-free of 	-rcnk 

1. Then any proper homa;ro-Thic image of B is the direct sum 

of a p-divisible group and a bounded p-group. 

PROOF. If 0 +ACB andn= min {p-height inB of 

ala e A}, then A C pnB and if a C A has p-height n in B, it has 

n 	n+1 , zero p-height in p 	since otherwise a = p b for some b E B. 

Being isomorphic to B, pnB has 	-rank 1, so by PROPOSITION 

4.68, {a} is a p-basis for pnB. Since pnB/[a] belongs to 

, so does PnBili,  and thus Ext(B/pnB, pnB/A) = 0, so the 

natural exact sequence 

0---> pnB/A 	B/pnB 	0 

is split,// 
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COROLLARY 4.73: If B is torsion-free with.,) -rank1, 

then B/A is a bounded p-group for any properA-pure subgroup 

A./1. 

COROLLARY 4.74: If A, B are torsion-free with QZ -rank 

1, Men any non-zero homomorphism f:A-413 is a monomoyphism. 

PROOF. If f has non-zero kernel, its image is both a 

subgroup of B and the direct sum of a p-divisible group and a 

bounded p-group, so f = 0.// 

If AS; B and both groups are torsion-free with 

JD -rank 1, then since T(A) contains all p-groups, we have 
B c T({A} UcEl ). This fact with COROLLARY 4.74 gives 

PROPOSITION 4.75: The following conditions are 

equivalent for torsion-free groups A and B with) -rank 1: 

(i) B C T({A} ti)  

(ii) [A,B] 0 

(iii) A is isomorphic to a subgroup of B.// 

I(p) has oe -rank 1 and has subgroups isomorphic to 

all other torsion-free groups with SO -rank 1. In the case of 

70-rank, Q plays a similar role. A further similarity between 

the two groups is noted in the following proposition (cf. COROLLARY 2.5). 

PROPOSITION 4.76: The following conditions are 

equivalent for a torsion class 

(i) g contains a non-zero torsion-free p-reduced 

group. 



90. 

(ii) g contains a non-zero torsion-free group which 

is not p-divisible. 

(iii) 1(p) e 

PROOF. Obviously (i) => (ii) and (iii) => (i); 

(ii) => (iii) is just LEMMA 3.1.// 

To conclude the discussion of groups with generalized 

rank 1 we describe some torsion classes closed under -U.-pure 

subgroups when U is determined by groups Z(pc°) (for various 

primes p). 

PROPOSITION 4. 77 : A group has (ap ncO)-rank 1 if 

and only if it is either a non-zero cyclic torsion group or 

isomorphic to Q(S), where S C P. 

PROOF. Clearly the groups indicated have (Up n 	)- 

rank 1, and for the converse, by PROPOSITIONS 4.60 and 4.61, we 

need only consider torsion-free groups. If such a group G has 

(U AcZ ) -rank 1, there is an exact sequence 

0 Z G-4 G" —4 0 

with GI ' e 	nZ. Thus G has rank 1 and G" = 	G" p C P 

where G" 	0 or Z(pc°). It follows that G Q(S), where 

S =fp e PIG"p:=  Z(pc°)) .11 

THEOREM 4.78 : If ( gp A 	) -rank(G) = 1, then T(G) 

is closed under (U p ng)) -pure subgroups. 

PROOF. If G is a torsion group, then T(G) is hereditary; 

if not, then T(G) =0 5'  9 where S C P. The idempotent radical 
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of Zi n S commutes with all others (cf. the proof of PROPOSITION 

4.19) so in this case, by THEOREM 4.32, it suffices to consider 

S-divisible groups with no direct summands Z(p ), for p E P. If 

* * ) 	0 —)A'---->A -->A" —40 

is exact, with A,A" 
	

without direct summands Z(p ), p c P, 

then A" = 0• But then (**) is S-pure, so A' E S  

direct summand Z(p ), p c P.// 

and has no 

7. An Example  

To conclude this chapter, we find necessary and 

sufficient conditions on rational groups X and Y for the closure 

of T(X) under T(Y)-pure subgroups. 

Our notation for heights, types etc. largely conforms 

to that of [15], Chapter VII. In particular, p 19 p2 ,... is the 

natural enumeration of the primes, and in a height (h1 ,h2 ,..., 

h
n h

n 
denotes height at p

n
. 

THEOREM 4.79: Let X,Y be rational such that T(X) is 

the type of a height (h 1 ,h2 ,...,hn ,...) with 0 <h < co for 

infinitely many values of n. Then T(X) is closed underT(Y) -pure 

subgroups if and only if T(Y) < T(X). 

PROOF. Let (T(Y),3, ) be the torsion theory for T(Y) 

and let (g1 ,g2 ,...,gn ,...) be a height with the same type as Y. 

If T(Y) < T(X), then X E T(Y), so T(Y)-pure subgroups 

are T(X)-pure. For groups in T(X), such subgroups are direct 

summands, and so belong to T(X) themselves. 



For the converse we need to consider two cases: 

(i) T(Y) 	T(111+1,h2+1,...,hn+1,...). Let M = 

{flIhn  = 00}. Let (k1 ,k2 ,...,kn ,...) be the subsequence of 

positive finite terns of (h 1 ,h2 ,...,hn ,...) and re-label the 

associated primes as q 1 ,q2 ,... . Let {x,y} be a basis for a 

2-dimensional rational vector space and 
-k 	-k 

G 	nx,qn  n (cfr-111.0.0 1 p  e m,  n 	1,2,...3.  

A routine argument using the linear independence of x and y 

shows that x has height (h 1 ,h2 ,...,hn ,...) in G. Suppose y is 

divisible by qn n  for some n. Since the same is true of 

-1 
qn  x+y, x has qn-height kn+1 at least, which is impossible. 

Thus T(y) < T(x) = T(X) (in G). Denoting the coset of y mod. 

[x] *  by 3T, we have 
-k 

— 	 — 
G/[x] * = [p-n 	qn n  YIP e M, n = 

so G/[x]*  is rational with type T(X). From the exact sequence 

0 --) X Z: [4 * -- ) G  [x] *  

it is clear that G E T(X). 

Observing that [y] ic it T(X), we now show that [y] *  is 

T(Y)-pure in G. Let denote the coset of x mod. [y] *. Then 
-(k

n
41) 

G/[y] * = [p
-112 

qn 	
Yelp E M, n = 1,2,... 

which is rational of type < T(hi  + 1, h2  + 1, ...,hn  + 1, ...), 

so C/[y] * c 3,  and [y] *  is T(Y)-pure in G. 

(ii) T(Y) < T(h1+1,h2+1,...,hn+1,...). Let 

U = r ipn lpn  Y = Y1 and S = {pn Ihn  < gn 1. 

Note that our assumption concerning T(Y) requires that p X = X 

for all p e U, S is infinite and g n  is finite for each pn  C S. 

92. 



93. 

Let 

V = fpn Ihn > gn Ign  <col. 

and re-label the entries of (h1 ,h2 	h
n
,...) as follows: 

denote the primes pn  6 S by s1 ,s2 ,..., their heights by k 1 ,k2 ,... 

and denote the primes in V by v 1 ,v2 , with heights j l ,j 2 ,.•• . 

Finally let 

-k 	-j-jn 	-n 	
-k 	-j  -jn 	-k2n -1 H = [p

-n
x, sn  x, vn  x, p y, 5 2n_, y, vn  y, s2n (sZnx") 

1p e U, n = 1,2,...]. 

As in case (1), T(y) < T(x) = T(X), [x] *  ; X ; H/[x] *  and 

H c T(X). Also, 

-k 	-(k  -(k +I) 	-j -n_ 	x, s2n 	v  2n 	n_i 
= [p x' 52n-1 	xip 

	
U, n = 1,2,...]  

which is rational with type T(Y), since it has lower height 

at infinitely many privies, namely s 2n_1 , n = 1,2,... . Hence 

[y] *  is T(Y)-pure in H, but [y] *   

THEOREM 4.79 has some obvious minor generalizations: 

If T(Y) is replaced by an r.t. torsion class whose type set has 

a least element, the theorem remains true. If Zris an r.t. 

torsion class whose type set r has a subset r ,  of minimal 

elements such that for every y e r there is y' e r' with y > y' 

and if in addition 	T(h1+1,h2+1,...,hn+1,...) for every 

y' e rl, then the argument in case (i) of the proof of THEOREM 

4.79 can be easily modified to show that T(X) is not closed 

under a-pure subgroups. 

Only the case X ; Q(P) now remains. Here we prove 

a more general result. 
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THEOREM 4.80: 	= T(Q(P)) is closed undera -pure 

subgroups, for a torsion class U, if and only if Z(pc°) c a 

for every p e P. 

co 
PROOF. If Z(p ) C a for each p E P, then by 

PROPOSITION 4.77 and THEOREM 4.78,-Z p  is closed under 

( r4n6;1191)-pure subgroups and in particular,a -pure subgroups. 

Conversely, if Z(Pc°) 	g for some p C P, then ,27 is 
co 

a t-torsion class, and Z(p ) e 2p, where (a,g) is the torsion 

theory associated with a. The natural exact sequence 

0 --)Q(PL.{p}) 	Q(P)--> Z(p) —) 0 

is accordingly 0.  -pure, but Q(P-{p}) ftcl%,•// 

COROLLARY 4.81: If a is not a t- torsion claw, (in 

particular if g = T(y) for some rational Y), then) p  is 

closed undera -pure subgroups.// 
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CHAPTER 5 

MISCELLANEOUS TOPICS 

1. Rational Groups and the Amitsur Construction  

The Amitsur radical construction described in Chapter 

1 does not always terminate after a finite number of steps, even 

in abelian categories. If for example we begin with the class 

(Z(p)) where p is prime, then for any group G, we have G n  = G[pn ], 

so in this case there is no finite upper bound on the number of 

steps which may be required. In this section we shall discuss 

the Amitsur construction for the idempotent radical r corresponding 

to T(X), where X is rational, starting from 00. Thus for any 

group G, we define G1  to be the subgroup generated by the images 

of all homomorphisns from X to G, and G = 	G or (G/G
a-1

) 1 E3 a 13 a 
G /G

8-1 
 according as a is a limit ordinal or not. a  

PROPOSITION 511: If G is a torsion group, then 

r(G) = G
1 
 for every rational group X. 

PROOF. For any prime p with pX X, let y c G have 

order pn ; then X/pnX 	[y] so Gp C: Gl . If pX = X, let Gp  = 

D E) R, where D is divisible, R reduced. Then D G1  but 

[X,R] = 0. It follows that G1  = CE)G (P) , where G(P)  is G if 

pX X and otherwise its divisible part. This clearly is r(G).// 

PROPOSITION 5.2: If X = Q(P) for some set P of primes, 

then r(G) = G1  for every group G. 



PROOF. Since r(G) is the maximum P-divisible subgroup, 

its maximum P-subgroup is divisible. In a complementary direct 

summand H of r(G), divisibility by powers of primes in P is 

uniquely defined, so H, as a Q(P)-module, is a homomorphic image 

of a direct sum of copies of X. Hence r(G)51 G i , so the two 

subgroups coincide.// 

THEOREM 5.3: If X = Q(P) for some set P of primes, 

then r(G) = G1  for all torsion-free groups G. Otherwise there 

exists, for each positive integer k, a torsion-free group G (k) 

of rank k such that 

r(G
(k)

) = G
(k) 

 = G1 ' .  

PROOF. PROOF. Only the case X Q(P) needs to be considered. 

Let T(X) = a and let (h
l' 
h2" ' h ...) be a height of type a, n 

the subsequence of finite non-zero terms of 

(h19 h2 ,...,hn ,...), q1 ,q2 ,...,qn ,... the associated primes. The 

groups G
(k) 

are defined by 

-n 	-in 	-in -1 

	

G (k) = [pxl , 	p
-n

xk , qn  xl , qn  (qn  xl  + x2), ..., 

-in -1 
qn (cmn  xk_i+ xk)IpX = X, (p prime), n = 1,2,...] 

where {x1 ,x2 ,...,xn ,...} is a linearly independent set. 

We first show, by induction, that 

(k) _ 

	

G1 	- [xl ] * , k = 1,2,... . 

Note that A
1 
 = A(a) for any torsion-free group A. 

Now 

G
(1) 

= 
 

[p x1,  q  n 
= X, n = 1,2,...] ; X 

96. 
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so G (1)  (a) = G(1) = [xl ] * . Assume G 1 (o) = [x1 ] * . Denoting 

the coset of an element x by x, we have 

-j
n_n -1- r 	_ G

(k)
/[xl ] *  = L -n- 	 -n 

p x2  ..... p xk , qn  x2 , qn  (qn  x24.55), ..., 

-in -1— 
% (qn xk-1+&) IPX = X, n = 1,2,... 

is thus isomorphic, in an obvious way, to  

For any y e G(k) (a), TT' belongs to ri2 4, so y belongs to [x 1 ,x2 ] * . 

Let my = m1x1+m2x2  where m,m1 ,m2  e Z. From the definition of 

G (k) it is clear that x1  has height (h1 ,h2 ,...,hn ,...) and 

in therefore type a. Suppose x2  is divisible by qn  for some n. 
jn+1 Since the same is true of 

qn1x1+x2' 
x
1 is divisible by qn 

and this is impossible. Thus T(x 2 ) < a. But m2x2  = 

and T(y), t(x 1) > 0, so m2  = 0 and y e [x1 ] * . This proves the 

assertion. 

Now for any k, again denoting the coset of x by x, we 

have (G(k) /[x1 ] *)(a) = [lc2 ] *, so from the exact sequence 

(k) 	(k) 	(k) (k) 0-4 G
(k) 

(a) = 	-4 G2  -4 (G /G1  ) 1  = 	-30 

(k) we deduce that G
2 

= [xx
2

]
* 

G (2) and repetitions of this 

argument give an ascending series 

(k) c: G(k) c: 	c: (k) 
1 * 2 * 	Gk 

N 	11? 	II 

G
(1) 

G
(k) G

(2) 

so that r(G
(k)

) = G
(k)

.// 

By taking k = 2 in THEOREM 5.3, we obtain 

COROLLARY 5.4: (G/G(a))(a) = 0 for all torsion-free 
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groups G if and only if a = T(Q(P)) for some set P of primes.// 

The groups G
(k) 

of THEOREM 5.3 are indecomposable. 

For suppose G 	H OD K; then G e T(X) and 
(k) 

X = G (G) = H(a) @ K(a) 

so H(a) = 0 or K(a) = O. But since H and K both belong to T(X), 

this means that one of them must be zero. In addition, 

X (fork >1). Thus (cf. Chapter 2) we have proved 

COROLLARY 5.5: If a rational group X does not have the 

form Q(P) and if k is any positive integer, there exists an 

indecomposable torsion-free group A of rank k such that 

T(A) = T(X).// 

2. Splitting Idempotent Radicals  

In Chapter 2 we saw that r(A) is a pure subgroup of A 

for every group A and idempotent radical r. The cases in which 

r(A) is always a direct summand are described by the next 

proposition. 

PROPOSITION 5.6: Let (7,7) be a torsion theory for (113. 

with idempotent radical r such that r(A) is a direct summand 

for every A. If r is non-trivial, then OS £) (and thus r(A) 
is always the divisible subgroup or its S-component for some 

fixed set S of primes). 

PROOF. If Z(p) c a for every prime p, then all 
groups in a are divisible. If for some prime p, Z(p) belongs 
to g , then so do all p-groups. If 	contains non-zero groups, 
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it contains in particular TT Z
n
, n = 1,2,..., where Zn .; Z. 

A theorem of Baer [4], Erdn's [13] and Saisiada (see [15] p.190) 

asserts that Ext(T-TZn ,G) = 0 for a p-group G if and only if G 

is the direct sum of a bounded group and a divisible group. Let 

A' be a reduced, unbounded p-group and consider a non-split short 

exact sequence 

0-4 A ° 	TrZn  -4 O. 

Since A' E a and I-Tzn c 2F, we have r(A)  
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