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(v)
INTRODUCTION

The subject matter of this thesis has its origins in
Dickson's generalization to certain abelian categories of the
notion of torsion as applied to abelian groups [9] and the
earlier work of Kurosh [27] and Amitsur [1] on a general theory
of radicals for rings and algebras.
In [9] a torsion theory was defined as a couple (J )
of classes of objects such that
1) J nF={o0}
(ii) :7 is closed under homomorphic images
(1idi) E; is closed under subobjects
and (iv) for every object K there is a short exact
sequence
0~—=2T—3K—F—>0
with T ¢ :7 and F e;; .
In this situation J (resp.:;-) was called a torsion (resp.
torsion-free) class, In the motivating example, ./ (resp.F )
is the class of all torsion (resp. torsion-free) abelian groups.
Kurosh [27] defined a radical class of rings as a
class Ci such that
(1) C is closed under conormal epimorphic images
(1i) every ring A has an ideal C A belonging to C
and containing all other such ideals
and (111) € (a/CA) = 0 for every ring A.

Kurosh's theory is applicable to quite general categories



(vi)
("normal subobject" replaces "ideal" in (ii)), im particular to
the abelian categories considered in [9], for which the concepts
"torsion class" and ''radical class" coincide. The function
which assigns C A to A becomes a functor if its action on
morphisms is defined by restriction. Such a functor is called
an tdempotent radical. (Some authors omit "idempotent").

A class :7 is a torsion class if and only if it is
closed under homomorphic images, direct sums and extemsions. In
considering specific torsion theories for modules, it has been
the practice of most authors to impose an extra condition:
that o/ be closed under submoduies, or hereditary, and indeed
the analogy with abelian group torsion becomes a little tenuous
in the absence of this condition. One expects, for example,
that "torsion modules" be in some way characterized by the
annihilators of their elements. Nevertheless the language of
torsion classes and theories as described above, rather than
that of radical classes, has become standard, at least among

non~Russian authors writing about abelian categories.

In this thesis we are mainly concerned with torsion
classes of abelian groups. In parts of Chapter 4, however, we
work in abelian categories satisfying various sets of conditionms,
as the added generality involves no significant complication
of the arguments.

Chapter 1 is essentially a catalogue of other people'c
results which are referred to in the text. The relation between
Dickson's work and that of Kurosh and Amitsur is dlso briefly

discussed.
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The closure properties which characterize torsion
classes ensure that any group or class of groups is contained
in a smallest torsion class; this torsion class is said to be
determined by the group or class in question.

Some examples of torsion classes determined by torsion-
free groups are considered in Chapter 2. The'behaviour of
rational groups as members of torsion classes is investigated
and the torsion classes determined by rational and torsion groups
are completely described.

The principal results are to be found in Chapters 3
and 4, where additional closure properties for torsion classes
are considered. It is shown in §1 of Chapter 3 that a torsion
class is closed under countsable direct products, (i.e. direct
products of countable sets of groups) if and only if it is
determined by torsion-free groups.. The remainder of the chapter
if devoted to closure under pure subgroups. The torsion classes
with this property are characterized - such a torsion class either
contains only torsion groups or is determined by a subring of
the rationals and a set of primary cyclic groups - and the result
generalized to obtain a description of those closed under S-pure
subgroups, where S is a set of primes,

In Chapter 4 we consider torsion classes closed under
certain generalized pure subgroups as defined by Carol Walker
in [41]. The following question is investigated: if Ul andJ
are torsion classes, when is 27 closed under UL -pure subgroups?
This question is actually a generalization of the one for ordinary

pure subgroups answered in Chapter 3 - although purity is not



(viit)
WU -purity for any torsion class i, a torsion class is closed
under pure subgroups if and only if it is closed under :70-pure
subgroups, where :{0 is the class of all torsion groups. Some
special cases of the general question are answered, for example
the case where each of  and LL is determined by a single
rational group. We also consider an approach to the general
problem. A class of groups defined in terms of a rank function
associated with a given W 1is described, whose members, with
those of U, determine all :] closed under U_-pure subgroups.
When A = 3 0°

so the results of Chapter 3 indicate that a smaller class will

the groups in question are the rational groups,

in general suffice for representations of the torsion classes 27.
Some other examples are also given.

Chapter 5 has two brief sections, In the first we
discuss the Amitsur radical construction [1] starting from a
single rational group and in the second we characterize the
torsion classes of abelian groups whose idempotent radicals r

split, i.e. r(A) is always a direct summand of A.

Some of the results presented here have been published
elsewhere ([18], [19]). The main results of [18] are contained
in 82 of Chapter 3 while the theorem in [19] is a sort of
lett-motiv for the theory of types in the present work: it is
stated explicitly as COROLLARY 5.4, and the proof of THEOREM 5.3
is a generalization of the proof given in {[19], the essential
part of which is also contained in the proof of THEOREM 4.79;

the result can also be obtained, in a rather different manner,
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as a joint corollary to THEOREMS 3,12 and 3.13.

In notation and terminology we generally follow Fuchs
[15] or Mitchell [33], and most deviations have the sanction of
popular usage, but for the reader's convenience we give the

following table of notation.

QL category of abelian groups

Z group of integers

Q group of rational numbers

Q(p) group (or ring) { E%Im,n € 2} where p is a prime

P

Q(S) group (or ring) { E]m € Z,n € Z with prime
factors in S} where S is a set of primes

I(p) group (or ring) of p-adic integers

Z(n) cyclic group of order n

Z(ﬂw) quasicyclic p-group (p prime)

(W] group generated by set L.

[xAIA € A] group generated by set {xklk € A}

[xl,...,xn] group generated by elements XiseoerX

[x], smallest pure subgroup containing x, where x is
an element of a torsion-free group

h(x) height of an element x of a torsion~free group

T(x%) type of an element x of a torsion-free group

T(X) type of a rational group X

T(hl,hz,...) type of a height (hl’h2’°")

G(0) subgroup {x € G|T(x) > 0} of a torsion~free

group G

A® B, ®AA direct sum (= coproduct = discrete direct sum)



714,
(a)‘)
fA,B]

/!

(z)
direct product (= product = complete direct sum)
element of @Al or TTA)\
group of homomorphisms (morphisms) from A to B,
end of a proof

Unless the contrary is stated explicitly, "GROUP"
always means "ABELIAN GROUP".



CHAPTER 1

PRELIMINARIES

1., Torsion Theories

In this section we shall work in a Zocally small

abelian category K which is subcomplete in the following sense:

DEFINITION 1.1: A category is called subcomplete if
for every set’ {a) IA € A } of subobjects of an object A, the
direct sum (coproduct) @A, and the direct product (product)

W(A/Ai) both exist.

DEFINITION 1,2: A torsian theory for X is an ordered
pair (J,F), where J and F are classes of objects of K
satisfying the following conditions:
1) Jn F =l
(1) If T—3A—0 i8 exact with T ed , then
aAed.
(1i1) If 0—A—F is exact with F e F, then A e F.
(1v) For each objeat R of K there is a short ezact

sequence
00— T —K—3F —30

with Te J and F e F,

In this situation J is called a torsion class, F a torsion-free

class.

We shall describe (ii) and (iii) by saying that the



relevant class is closed under homomorphic images, subobjects
respectively, Other closure properties for classes will be
described similarly. Note that both 3 and 3’ are closed under

isomorphisms.

THEOREM 1.3: A non-empty class J 1is a torsion class
if and only if it is closed under homomorphic images, direct
sums and extensions. o is a torsion-free class if and only if
it 18 non-empty and closed under subobjects, direct products
and extensions.

(Here closure under extensions means that in an exact
sequence

0—K—-~—=L—M-—0

L belongs to the class if K and M do).
PROOF., ([9] Theorem 2.3.//

THEOREM 1.4: Let J , d be classes of objects of K .
Then (J ,F) is a torsion theory if and only if

(T,K] =0 forall Te J <> Ke F

0 forall Fe ¥ «© Ked.

and . [K,F]
PROOF. [9] Theorem 2,1.//

THEOREM 1.5: A torsion class d belongs to a unique
torsion theory (dJ ,&), where
F = {B|[A,B] =0 for all Aed }.
Similarly a torsion-free class % belongs to a unique theory
(UL,G), where



% = {a|[A,B) = O for all B e'% 1.
PROOF, [9] Proposition 3.3.//

From THEOREM 1.3 it is clear that the intersection of
any family of torsion (resp. torsion-free) classes is a torsion

(resp. torsion-free) class.

DEFINITION 1.6: For any class C of objects of K, T(C)
is the emallest torsion class with C as a sub-class, F(C) the
smallest such torsion-free class. If C has a single member C,
T(C) and F(C) will be used rather than T({C}) and F({C}H). T(C)
will also be referred to as the torsioh class determined by € .

THEOREM 1,7: For any class C of objects of X,

0 for all ¢ € C} is a torsion class,

{ala,c)

{8|[C,B] = 0 for all C e L } is a torsion-free class,
T(C) = {a|[c,B]
F(C) = {B][A,cC]

Henez T(#) € T(&) and F(&) € F(®) whenever S B .

0 for all ¢ ¢ C = [A,B] = 0},

0 for all c ¢ C = [A,B] = O}.

PROOF. [9] Propositions 3.1 - 3.3.//

2. Torsion Classes and Radicals

DEFINITION 1.8: A functor r : K—>Kis called a
sub functor of the identity if
(1) r(K) & K for each object K-
and (i1) for any morphism £ : K— L in X,
r(f): r(K)—> r(L) s the restriction of £ to r(K),,e. the

diagram



r(f)
r(K) ———r(L)

|,
K _f._) L
commutes, where the vertical arrows represent inclusionms.
If in addition
(iii) r(K/r(K)) =0,
r 18 called a radical, and an idempotent radical if also

(iv) 2 = r, Ze. r(r(K)) = r(K) for every object K.

Conditions (ii), (iii), (iv) are independent for functions
which assign subobjects to objects of&., as is demonstrated by

the following simple examples for X =0%,

EXAMPLE 1.,9: r(A) = p A for every A € (&, where p is
prime., Since for any homomorphism f: A—>B, we have f(pA) & p B,
r can be made into a functor satisfying (ii). (iii) is also
satisfied, but (iv) is not, as for example p Z(pz) S Z(p) and

P Z(P) = 0,

EXAMPLE 1,10: Define
Aif A= 2
r(a) =
loifafz.
r satisfies (1i1) and (iv), but if 0 ¥ A ¥ Z, there are non-zero

homomorphisms £ from Z to A, so £(r(2)) & r(a).

EXAMPLE 1,11: x(A) = A[p] = {a € A|lpa = 0}, where p
is prime, (ii) and (iv) are satisfied, but for example r(Z(pz))

2 2(p) and rZ(pH/rZ () = £@(®) = Z(p).



PROPOSITION 1.12: Let (J ,&) be a torsion theory for
K. Every object K has a wnique largest subobject d K belonging
tod . JK satisfies the following equalities
(i) JKk=UIK' € K|k €T }
(i) IK=NK' £ K[K/K' eF} .

Also, dJ (K/JK) = O for every K.

PROOF. [9] Proposition 2.4.//

For any morphism f: K—3L inX, we have £(Ix) € JL,
since £(JK) € J . In addition J (JK) = J K for every K, so as

a consequence of PROPOSITION 1.12 we have

COROLLARY 1.13: ILet (J,F) be a torsion theory for¥
For any object K let rj(K) = FK and let T act on morphisms by
restriction, Then r, i8 an idempotent radical. Further,
r, (K) = K if and only if K ed and r, (K) =0 if and only if

Ke 3.//

Conversely, each idempotent radical determines a torsion

class, Proof of this requires

LEMMA 1.14: Let r: K—»XK be a radical, C the class

of objects L for which r(L) = 0. For any K € & we have

(k) = A {K'S& KR/ € Q)
PROOF. As for Proposition 2.4 of [9].//

This result seems to be well-known. It appears without
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proof in [5]}. It is clear that r(K) = K if and only if [K,L] = O

for each L € € . Using THEOREM 1.7 we therefore obtain

COROLLARY 1.15: For any radical r: K—» K - the
class
R eX| r(x¥) = K}

18 a torsion class.//

Thus in particular, if r 1s an idempotent radical,
. - {K e | r(K) = K}

is a torsion class.

LEMMA 1.16: If r : *h—> X is q radical and K € r(L),

then r(L/K) = r(L)/K.

—
£

PROOF. [32] p.110.//

For any idempotent radical r and any K € X ,
r(J_(k/x(K))) & r(K/r(K) =0 .
But as rz(K) = r(K), r(K) belongs to J r,_éo r(K) < zrx and by
LEMMA 1.16,
(T R/ = T _(K/r(®) =0

ie. (k) = J K.

Also, for any torsion class J , we have the identities

J ='{Ke’.‘k!§7x=x} ={&ke¥]|r, =K.

We have thus proved

THEOREM 1,17: There is a one-to-one correspondence
between torsion classes J. of X and idempotent radicals r:i K-> X ,
defined by



27¥._.)1:g 3 r—-b?r. //

In [9] a stronger assertion is made, namely that a
subfunctor of the identity is an idempotent radical if and only
if its class of fixed objects is a torsion class. The discussion
above shows that th;s is false. A partial ordering < of the
radicals Jb—> H is defined by

r

<r, rl(K) fa rz(K) for all K € 36‘.

1 2
If < is a torsion class, its associated idempotent radical r
is (in the sense of this relation) the smallest radical whose

class of fixed objects is J . This is proved in [32] (p.110).

3. The Kurosh Construction

We now discuss a construction, which while valid in
more general categories, produces torsion classes in subcomplete,
locally small abelian categories.

Let L be a category satisfying the following conditions:

(1) & has a zero object.
(i1) Every morphism of (L has a kernel.
(11i) Every morphism has a conormal epimorphic image.
(iv) If f:A—) B is a conormal epimorphism and A'
is a normal subobject of A, then f(A') is a normal subobject of B.
(v) Every infinite, well-ordered, strictly increasing
chain of normal subobjects of an object has a normal union.

Given a class O of objects of CL, we define a class C

by transfinite induction as follows:

7.



Cl =aecQ |A is the image of a conormal
epimorphism from some C € C } .
If Ca has been defined for all ordinals a <fB, let
C g = {a €Q |For every non-zero conormal
epimorphism f:A—->B, B has a non-zero normal
subobject belonging to some Ca, a < B}.
Finally, let é = k({ea . é is called the lower radical class
determined by C.

This construction was first used by Kurosh [27] for
rings and algebras. The possibility of generalizing it to
categories satisfying conditions (i) - (v) was demonstrated by
Shul'geifer [39]. It has since been used in the category of all
(not necessarily abelian) groups (a brief discussion appears in
[29]) and elsewhere. We have given here a slightly modified
form due to Sulinski, Anderson and Divinsky [40].

For the categories in which we are interested, the

construction takes a simpler form.

PROPOSITION 1.18: If (L satisfies (i) - (v) aud if in
addition normality of subobjects is transitive in @G , the lower
radical class construction terminates at the second stage, 1.e.

for every class G, é =€'2'

PROOF, We need only show that C3 = CZ' To this end
let A € 03 have a conormal epimorphic image A", with B ¢ Cz
a non-zero normal subobject of A", B has a non-zero normal

subobject B' € Gl’ and by assumption, B' is normal in A". Thus

8.



Ac GZ, so (33 = Cz.//

PROPOSITION 1.19: Let X be a subcomplete, locally
small abelian category. For any class € of objects of X, T(C)

18 the lowver radical class which C determines.

PROOF. If K belongs to T((C), so does any non-zero
homomorphic image K", i.e. [C,K"] % O for some C ¢ C . This
neans that K € sz, so using PROPOSITION 1,18, we have
TMC) & 62 = é. Conversely, if r is the idempotent radical
associated with T(C) and if K € C = C ,, then [C,R/r(®)] = 0
for all C €C , so K/r(K) = 0, i.e. K € T(C), i.e.

€=C, ¢ TCr.//

In some non-abelian categories upper bounds have been
found for the number of steps required in the lower radical
construction: w (the first infinite ordinal) in the categories
of all groups (Shchukin [38]) and associative rings [40], wz
in the category of alternative rings [40]). In the case of

associative rings, it has been shown that w steps are sometimes

needed [23].

4, The Amitsur Construction

Amitsur [1] has discussed the following construction
in rings and in objects of certain categories:

Let m be a property of normal subobjects. Given an
object A, define

A = U {a' € A|A' is normal and has property m}



and if A, has been defined for all ordinals o <8, let

A = o% Aa if B is a limit ordinal and otherwise let AB be

B

defined by the exact sequence

(*) 0->4, ;= Ay —> (A/Ag 1), —>0 .

B-1
If the category is suitably chosen, there exists an ordinal A
for which AA = A)\+1'
A, the wpper m-radical U(A,m). Extra conditions must be imposed

For such A, Amitsur called the subobject

on T if the upper m-radical is to determine a radical in Kurosh's
sense (what we have called an idempotent radical in the abelian
case). However, if for a subcomplete locally small abelian
category we take T to mean membership of some class closed under

homomorphic images, then all requirements are met and we have

PROPOSITION 1,20: Let C be a class of objects in a
subcomplete, locally small abelian category, Gl the class of
all homomorphic images of members of C, w the property
"membership of Gl" and r the idempotent radical associated with

T ). Then U(K,m) = r(K) for any K e X,

PROOF., We show firstly that KB e T(C) for every B.
If 8 = 1, this is clear from the closure properties of torsion
classes. The same remark holds for KB when B is a limit ordinal
and Ka e T(C) for all a <B. In the remaining case it is clear
e T(R).

from (*) that K, € T(C) if K

B B-1
Now let A be any ordinal with K)\ = KA+1' Then
K, € T(C), but (K/Ky), = Ky, /K =0, so r(K/Ky) = O vhence it

follows that r(K) = K}\.//
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Even in abelian categories there is no finite upper
bound on the number of steps that may be needed in the Amitsur

construction. We shall consider some examples in Chapter 5.

5. Torsion Classes of Abelian Groups

For the remainder of this chapter we shall only consider

torsion theories and classes for Q% . .

DEFINITION 1.21: If p is a prime, a p-divisible group
G 28 one for which pG = G. If G is p-divisible for all primes p
in some set P, it is said to be P-divisible. A group is called
p-reduced (resp. P-reduced) if it has no non-zero p-divisible

(resp. P-divisible) subgroups.

DEFINITION 1.22: A P-group, where P is a set of primes,

18 a direct sum of p-groups, where p varies over P.,

The torsion theories described below make frequent
appearances in the sequel; the notation given here will be

preserved throughout.

EXAMPLIE 1,23: (dJ_, F). d_ (resp. 3 ) is the
0 0 0] 0
class of all torsion (resp. torsion-free) groups. The maximum

torsion subgroup of a group A will be denoted by At'

EXAMPLE 1.24: ('Jp, 3-p). EIP is the class of all
p-groups, (p is a prime). The maximum p-subgroup of A will be

denoted by Ap.



EXAMPLE 1.25: (I, '5~P). J, 1s the class of all
P-groups, where P is a set of primes. The maximum P-subgroup of

A will be denoted by AP

EXAMPLE 1.26: (9,6{«). &) (resp.@,) is the class of

all divisible (resp. reduced) groups.

EXAMPLE 1,27: (Qp, &p). 9p (resp.ﬂp) is the class

of all p-divisible (resp. p-reduced) groups, where p is a prime.

EXAMPLE 1.28: (éDP,@.P). 931, (resp.QLF) is the class

of all P-divisible (resp. P-reduced) groups, where P is a set of

primes,

We conclude this chapter with a list of results from
[8].

PROPOSITION 1,29: For any prime p, T(Z(p)) = UP

PROOF. [8] Lemma 2.1.//

From this it is easy to deduce

COROLLARY 1.30: J b = T(A) for any non-divisible
p-growp A.//

12,

PROPOSITION 1.31: For any prime p, T(Z(p) =3p ndH,

PROOF. ([8] Lemma 2.2.//

These results are used to obtain a complete description
of all torsion classes JJ € ‘30 We find it convenient to

introduce a generic name for classes of this kind.



DEFINITION 1,32: A torsion class containing only

torsion groups is called a t-torsion class.

THEOREM 1.33: Let P, and P, be disjoint sets of primes
and let d be the class of all groups of the form A D A,
where Ay 18 a P, -group and A, a divisible Pz-group; Then

T = 102 |p € P} v 2@ |pe 2D

Any t-torsion class is uniquely represented in this way.
PROOF. {8] Theorem 2.6.//

This result was obtained earlier by Kurosh [28].
Kurosh actually proved that the classes described are the only
radical classes for the full subcategory of abelian p-groups,
but THEOREM 1.33 follows easily from this. If a category QU
satisfies conditions (i) = (v) of Section 3, then so does any
full subcategory whose class of objects is closed under
conormal epimorphic images and normal subobjects, and so lower
radical classes can also be constructed in the subcategory.
Such classes need not be radical classes in Q. , however., For
example, if A is A% and @ is the category of countable
groups, then Gb, while a radical class in itself, is not a
torsion class in (¢ .

A torsion class is called hereditary if it is closed
under subgroups; such a class is also called a strongly complete

Serre class.

THEOREM 1.34: The only non-trivial hereditary torsion .

classes are the classes gP'

13.



14,

Proofsiare given in [8], [37] and [42].//

PROPOSITION 1.35: T(Q(P)) =‘,Q.JP for any set P of primes.

In particular, T(Q(p)) = c@p for any prime p and T(Q) =L.

PROOF. The case of Q(p) is treated in [8] (Proposition
4,1). The argument is easily adapted to cover the general

situation.//

The results of this section provide examples of a
method we shall find convenient for labelling torsion classes in

the sequel.

DEFINITION 1,36: A minimal representation of a torsion

class J is an equation T(C) = J , where T(C") % o whenever

cC'EC.

There is nothing unique about a minimal representation,

For example
T@@%>=Up=Taw%)

for any prime p and positive integers m, n. We shall see further
illustrations in the next chapter.

With the complete classification of the t-torsion classes,
the following results show that the problem of classifying torsion
classes in general reduces to that for torsion classes determined

by torsion-free groups.

PROPOSITION 1.37: Let d be a torsion class, p a prime.

Then either Z(p) e J or J & ﬁ)p.
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PROOF, {[8] Lemma 5.1.//

THEOREM 1.38: Let d be a torsion class. A group G

belongs to Jd if and only if 6, and G/G,_ do.
PROOF, ([8] Theorem 5.2.//

COROLLARY 1.39: Any torsion class ¢J satisfies the
equation

T =TT ATPu (T nFD.

PROOF. [8] Corollary 5.3.//
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CHAPTER 2

SOME TORSION CLASSES DETERMINED BY TORSION-FREE GROUPS

As noted in 85 of Chapter 1, the problem of classifying
torsion classes of groups has been effectively reduced to the
problem for those which are determined by torsion-free groups.

In Section 1 of this chapter, we examine the behaviour of the
simplest torsion-free groups, the rational groups, as members of
torsion classes, Ihe torsion classes they determine are
completely described and the classification is extended to torsion
classes determined by rational and torsion groups.

Predictably, the situation with groups of rank greater
than 1 is considerably more complicated. In Section 2 we consider
some further examples of torsion classes determined by torsion-
free groups and show that these may have quite distinct
representations, for instance a group of rank > 2 can determine
the same torsion class as a rational group and non-isomorphic
indecomposable groups of equal rank > 2 may determine the same
torsion class. (In contrast, rational groups determine the same
torsion class if and only if they are isomorphic).

Section 3 1s principally devoted to some torsion
theories (J,3) where J is "large".

All torsion theories and classes in this chapter are

for Q& .



1. Rational Groups and Torsion Classes

PROPOSITION 2.1: Let (d,J) be a torsion theory with

idempotent radical r. For every group A, r(A) is a pure subgroup.

PROOF. Let p be a prime. If Z(p) ¢ J, then r(A) is
always p-divisible (PROPGSITION 1.37) and therefore p-pure. If
Z(p) € ’J , then A/r(A) has zero p-component, so again r(A) is

p-pure.//

Since rational groups have no proper pure subgroups,

we have

COROLLARY 2.2: If X is a rational group and (J ,7)

a torsion theory, then either Xe o or X e F.//

PROPOSITION 2.3: Let X and Y be rational grouwps. Then
YeTQX) ¢f and only if 1(X) < 1(Y). Thus in particular

T(X) = T(Y) 2f and only if X = Y.

PROOF. If T(X) < 1(Y), then [X,Y] % O, so by
COROLLARY 2.2, Y € T(X). Conversely, if Y € T(X), then [X,Y] % O

and every non-zero homcmorphism from X to Y is a monomorphism.//

COROLLARY 2.4: IfY and X, ,i€eIare rational groups,

then Y € T({'Xili € 1}) <f and only if r(xj) < T(Y) for some j € 1.

PROOF. If rng) < T(Y), then Y € T(Xj) < T({Xili e I},

while if Y € T({Xili € 1}), then for some j, [Xj,Y] $ 0.//

COROLLARY 2.5: i) 18 the smallest torsion class

containing torsion-free groups,

17.
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PROOF. Let oJ be a torsion class containing a
torsion-free group G. Let {xili € 1} be a maximal linearly
independent set of elements of G and for some j € I let G'
be the smallest pure subgroup containing all x; with 1 + j.

Then G/G' is rational and belongs to . Hence Q € T(G/G') & iy
and so 8 =1(Q) = J .//

Thus Q is the only rational group which must belong
to any torsion class containing torsion-free groups. On the
other hand, it is clear that if a torsion class contains Z, it

contains all groups.

PROPOSITION 2.6: The following conditions on a group
" A are equivalent: .

(1) z e T(A).

(11) T() = 0%,
(iii) A has a homomorphic image (and therefore a

direct swmmand) isomorphic to Z.

PROOF, (1) <> (ii): If Z € T(A), then T(A) contains
all free groups and their homomorphic images, i.e. all groups.
(1) <> (4ii): If Z € T(A), then [A,2]) $ O
and any non~-zero homomorphism from A to Z has image isomorphic

to Z.//

COROLLARY 2,7: The class Ejm of groups without free

direct summands is the largest non-trivial torsion class.

PROOF. A has a free direct summand if and only if

it has a free direct summand of rank 1, i.e. [A,Z] $ O. Thus



d_ = {a][A,2] = O} which is a torsion class by THEOREM 1,7. If
A % 0, it can belong to a non-trivial torsion class if and only

if T(A) is non-trivial, i.e. [A,Z] = 0.//

DEFINITION 2.8: A torsion class is called an r.t.
torsion class if it is determined by a collection of rational and

torsion groups.

DEFINITION 2.9: The type set of a torsion class J

ig the set of types of rational members of J .

It follows from COROLLARY 2.4 that a set I' of types
is the type set of a torsion class if and only if it satisfies

(* yel,x2y=>xeTl.

DEFINITION 2.10: Let T be a set of types satisfying
(*), P a set of primes such that X is P-divisible whenever X
t8 rational with 1(X) ¢ I'. T(I',P) 18 the torsion class

T({X rational | ©(X) € T} v {Z(p)|p € P}).

THEOREM 2.11: A torsion class o is an r.t. torsion
class if and only i1f it has the form T(I',P). Such a represent-

ation is unique.

PROOF, Let U be an r.t. torsion class. By THEOREM
1.33 we may assume that
Jd = T({Xili e I} v {z(p)|p ¢ P} v zZe)|p e P,
where P1 and P2 are disjoint sets of primes and the X1 are '
rational, Let T be the type set of dJ and

P=1{pe PllX rational, X € J => p X = X},
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We show that S T(T,P).
Since T({Xili € I}) contains all divisible groups and
all p-groups for p € Pl— P (COROLLARY 2.5, PROPOSITION 1,37),
we have
{z(p)|p € P, P} v ze)|p € P}
c T({Xili e 1}
whence
Jerrxlie 1} v Z@lperPhc J
A straightforward application of THEOREM 1.7 yields
d = T({Xi|i e I} v {z(p)|p € P}) € T(T,P).
Thus J = T(T,P).
Now consider T(T',P) and T(Z,S), where T # I, say
Y ¢ L for some Yy € I'. There is no 0 € £ with vy 2 0, so if X
and Y are rational, with T(Y) = vy and 1(X) € I, we have [X,Y] = O.
Since also [Z(p),Y] = O for every p, Y cannot belong to T(Z,S),
so T([,P) $ T(£,S). Finally, suppose T(I',P) = T(I',S), with
qeEP, q ¢ S. Then [X,Z(q)] = O whenever T(X) € T while
[Z(p), Z(q)] = O for every p € S, i.e. 2(q) §¢ T(T,S), and this

contradiction completes the proof.//

It is not difficult to find torsion classes which are

not r.t. classes,

EXAMPLE 2,12, Any torsion-free homomorphic image of
I(p) is algebraically compact (e.g.[16]) so if countable must
be divisible. Thus Q is the only rational group in T(I(p)).
Since I(p) is reduced, it follows that T(I(p)) is not an r.t.

class.



This example also shows that distinct torsion classes
may have the same type set. On the other hand, distinct sets
of rational groups may determine the same torsion class. It is
an easy consequence of COROLLARY 2.4 that if T and I are sets
of types, then

T({X rational|T(X) € T}) = T({X rational [T1(X) € T}

if and only if for each y € I there is a ¢' € L with v > o'
and for each 0 € I there is a Y' € T with ¢ > y'. For this to
happen it is not necessary that one of I', I contain the other -

they may be disjoint; (see EXAMPLE 2,14 below).

PROPOSITION 2.13: If T', T are sets of types for which
T({X rational |1(X) € I'}) = T({X rational.|t(X) € L}),
a1d if T has a subset T of types which are minimal tn T and
which satisfy
(*%) yeTlT=>vy>Yforeom YeT,
then TS I, T is the set of all minimal types in I and for

every 0 € £, 0 > Y for some Y € T,

PROOF. Let —Y— be any type in T. Then Y > 0 for some
0€Xand 0>y for some Y € ', Minimality of y then requires
that y =0 =vy. Thus T & I. Let I be the set of minimal
elements in £, If Y e T and 0 € I satisfy -Y_Z O. then as above.
Y = 0. Hence TS I. For any 0 € £, there are types Y € T,
YeT £ L such that 0 >y >y, But theno =Y, soT =1,

Finally, if 0 € Z, then 0 > vy for some Y€ I, so 0 > Y Z-Y_

for some Y € T.//

21.
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Type sets of torsion classes do not necessarily have

minimal elements:

EXAMPLE 2,14: Let heights (hin), hén), ess) be
"defined for n = 1,2,3,... by

' 14f i = 2%, k = 1,2,3, ...
R _

1 0 otherwise.

(n) h;n), .es), we have

1 3

for each n., Let Xn denote a rational group of type

Writing T for the type of (h
T > T+l
T and Jd = T({ann =1,2,3, ...}). The type set of o is
“folo > T, some n}, which has no minimal element. Note also
that

J = T({X, |n = 1,2,3,...H) = T({x =1,2,3,000})0

2n—1In

and that & has no minimal representation by rational groups.

2. Further Examples

We now consider some examples of torsion classes
having more than one minimal representation by torsion-free
groups, beginning with some remarks on groups A for which T(A)
is an r.t. torsion class., We first note that T(A) 1is an r.t.
class if and only 1if T(A) = T((?A) where CZA is the class of

rational groups which are homomorphic images of A.

PROPOSITION 2,15: Let A be torsion-free of rank 2.
Then T(A) is an r.t. torsion class if and only if
(1) t(a) > 1(X), for some non-zero a € A, X € (ZA‘
and (ii) if p is a prime for which pA $ A, then pX $ X

for some X € CiA'
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PROOF: If T(A) is an r.t. class, i.e. if T(A) = T((3A),
then for some X € (ZA’ [X,A] + 0. Let f:X—>A be non-zero; then
any non-zero a in the image of f satisfies T(a) > T(X). If
pA f A, then Z(p) belongs to T(A) = T((:A), so pX ¥ X for at
least one X € (;A'

Conversely, suppose A satisfies (i) and (ii) and let
B be any one of its homomorphic images. If B § A but B is
torsion~-free, then B € CA' If Bt + 0, then Bt belongs to
T(A) (THEOREM 1.38), and so does Bp for each prime p. If Bp
is divisible, it belongs to T( C%) and if not, then pA % A, so
pX + X for some X € CA’ whence Bp belongs to T(X) & 1( CA).
Since also [X,A] + 0, for some X ¢ (3A (by (i)), it now follows

from PROPOSITION 1.19 that A € T(CA), whence T(A) = T(CA).//

COROLLARY 2.16: Let A be a torsion-free group of rank
2. Then T(A) = T(X), where X is rational, if and only if
' (1) T(X) is the least element among the types of
groups in CA

(11) t(a) > ©(X) for some non-zero a € A

and (i11) pX % X for every prime p for which pA + A.//

These results are non-trivial: in 81 of Chapter 5
we shall construct indecomposable torsion-free groups A of
arbitrary finite rank for which T(A) is determined by a single
rational group. Furthermore such groups A can be constructed
for any rational group X which is not isomorphic to Q(S) for

any set S of primes. In the contrary case we have
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PROPOSITION 2.,17: A torsion-free group A satisfies
T(A) = T(Q(S)) if and only if A is S-divisible and has a direct

swmmand isomorphic to Q(S).

PROOF. If A satisfies the stated conditions, then
Q(S) clearly belongs to T(A), so
D =) € T < D,
Conversely, if T(A) = T(Q(S)) =é3g,,A must Ee S-divisible, with
{A,Q(5)] # 0. Any 2-homomorphism from A to Q(S) is a

Q(S)-homomorphism (regarding Q(S) as a ring) and so must split,//

EXAMPLE 2,12 represents a special case of the following

result:

PROPOSITION 2,18: If A is a homogeneous, ind4composable

torsion~free group -f rank > 1, then T(A) 18 not an r.t. class.

PROOF, Let A be homogeneous of type g, If X1is a
rational homomorphic image of A, then T(X) > 0 and by a result of
Baer (see [15] p.163), if A is indecomposable, T(X) + 0. But

then [X,A] = 0.//

We have seen that two rational groups determine the
same torsion class exactly when they are isomorphic. The
corresponding statement for groups of rank 2 is false. If A
has rank 2 and T(A) = T(X), where X is rational, then
T(A) = T(X &© X), and A may be indecomposable.

That non-isomorphic indecomposable torsion-free groups

of the same rank may determine the same torsion class is



illustrated by the following example, essentially due to

Jonsson [25].

EXAMPLE 2.19: Let P,S be infinite sets of primes such
that PN S = ¢ and 5 ¢ PU S, U(resp.V) the set of square-free
integers with prime factors in P(resp. in S). Let {x,y,z} be a
basis for a rational vector space and

A= [u-lxlu € U], B = [u—ly,vrlz, %{y+z)|u €U, vevl

-1 -1 1
C=f[u'y, v z,~§

A homomorphism frcm B to A can be defined by y —5x, z—30,

3y+z)|u e U, v € V],

%(y + z)—> x, so since A is rational, we have A € T(B).

LR

Similarly A ¢ T(C). Also A@® B = A €©C, so T(B) = T({A,B}) =

T(A @ B) = T(A € ¢) = T({A,C}) = T(C), but B and C are not

isomorphic.

PROPOSITION 2.20: Let A and B be torsion-free, C
a torsion group,
0— A—>B—3C—>0

an exact sequence. Then B € T(4).

PROOF: 1If B ¢ T(A), then C ¢ T(A). Therefore C ¢ T(A)

for some prime p, and tﬂus [A,Z(p)] = 0. Let x ¢ C have order p.
There is induced a short exact sequence

0—>A—B'—> [x]—>0.
If r denotes the idempotent radical associated with T(4), then

since r([x]) = 0, we have r(B') = A. But this is impossible,

25.

since B' is torsion-free and r(B') is a pure subgroup (PROPOSITION

2.1).//
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COROLLARY 2.21: If A and B are quasi-isomorphic

torsion-free groups, then T(A) = T(B).//

(For quasi-isomorphism see, for example, [42]).
We conclude with another example, based on a result

of Corner [7].

EXAMPLE 2.22. Llet {xn, ann =1,2,3,...} be a

basis for a rational vector space, Py» Qo tn distinct primes,

n= 1’293"-';

- -1

A= [pnm X, q (xn + xn_l_l)lm,n, = 1,2,3,0..]
- -1

B = [pnm yn: tn (yn + Yn+1)lm,n = 19233’00°]

_ m -m -1 -1
Cn N [pn *2? Ppt+l Ynt+1? n (xn+yn+1)’tn (xn+yn+1)|m=1,2,3,...],
n=1,2,3,... « Clearly A and B have rank ?% and each Cn is

of rank 2. A monomorphism f from A to B can be defined by

£Ga1) = 9 Int1 Yoe

In the resulting short exact sequence

(*)

0—afsp—3B 0

(*) implies that B" is a torsion group, whence by PROPOSITION

2.20, B € T(A). Similarly A € T(B), so T(A) = T(A @ B) = T(B).

But A @ B ;@Cn9n=132,.. so T(A) = T(C_|n = 1,2,3,...1). 1t

is straightforward to show that [Cm, Cn] =0 if m $ n, so both

representations are minimal.



3. Some Large Torsion Classes

An alternative method of describing a torsion class
J is to specify a class (3 (preferably as simple as possible)
for which in the corresponding torsion theory (3,5’-) we have
F= F(C). Thus for example consideration of classes C of
rational groups provides further examples of torsion classes,

none of which is an r.t. class.

PROPOSITION 2.23: There is no torsion theory (J,F)

for which both J and F are determined by rational groups.

PROOF., If both J and F are to contain rational
groups, both must be non-trivial and < must contain Q. let X.e
denote a rational group of type ©, Suppose

J = T({XYIY e T}, F= F({Xclo e Ih.

For any 0 € X, there is a torsion-free group G of rank > 1,
homogeneous of type 0, such that every rational homomorphic
image is divisible. (See [17] p.21). For such a group G,
[G’XO'] = 0 for every ¢' € I, so G belongs to J . But for each

yeTl, [XY’G] =0, so G is in ‘F . But then G = 0.//

Note that for PROPOSITION 2.23 it is sufficient to

assume that J is an r.t. class.
Our next result characterizes some '"large" torsion '

classes in terms of cardinal numbers.

DEFINITION 2.24. A group G is called n-free, where

n > 2 28 a positive integer, if every subgroup of G with rank

27,
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<n is free. If every countable subgroup is free, G is called
X -free. .

PROPOSITION 2.25: Let
;an T({A torsion~free|[A,Z] = 0, A has rank <t }),
where 1% = 2,3,..05 B
torsion theory. Then 3’1“ 18 the class of all Wt -free groups.

, and let ( Um . Zm) be the corresponding

PROOF. Each g'm contains p-reduced groups for every
prime p and therefore all torsion groups, so only torsion-free
groups need be considered.

(1) M finite: Let B € 3“‘\ have a subgroup B' of
rank <", Then [A,B'] = O for each A € :Zm . If [B',2] =0,
then B' € o , so B' = 0. If not, then B' = Bi @ Z,, vhere
z, =2, andBi has rank <t so as above, Bi=OorBi;Bz ® z,

Z. Since B has finite rank, repetitions of this argument

N
e

show that B' is free and thus that B is i -free, Conversely,
if B is 4y -free, A has rank <™and there is a non-zero
homomorphism f:A —> B, the image of f is free, so [A,Z] {= 0.
Hence B isin r}‘m,

(1i)) M = X‘I: If B belongs to ?x , then as in (1)
1

B is n-free for n = 2,3,..., so by Pontryagin's Theoren
(see [15] p.51), B is K’l-free. The converse is proved in a

similar way to that in (i).//

The result cannot be extended to arbitrary cardinal
numbers: let jm be defined as above,

¥~ B][4,8] = 0 for all A e Ty }.
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o
Then :j«»\ must contain lei’ each Zi = Z, but this group is
not ™M -free for m > X‘l. Note also that '"2-free" means
"homogeneous of type T(Z)".
All the torsion classes of PROPOSITION 2,25 are distinct.

Before proving this we note more economical representation of

them.

PROPOSITION 2.26: For 2 <M < X,

.

= TCA torsion-free |(A,2] = 0, A has rank

<M and i8 homogeneous of type 1(2)1}).

PROOF. Let r be the idempotent radical for the torsion
theory (72, (}'2). Since ;72 c J«\, it follows from the exact
sequence

0—> [A/x(A), B]—>[A,B] —> [r(A), B] = 0O
that for any B € S‘-m, [A,B] = O if and only if [A/r(A), B] = O,
and that therefore

gﬂ'&: T({A/x(a)|[A,2] = 0, A is torsion-free with

rank <th}),
Now if A has rank <t , then so does A/r(A). Thus:

{a/x(a)| [A,2] = 0, A is torsion free with

rank <™} € {A torsion-free|[A,2]) = 0, A

has rank <M and is homogeneous of type

1(2)} < {A torsion-free|[A,2] = 0, A has

rank <}

This establishes the result.//
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PROPOSITION 2.27: The classes J 55 Jgs «ev 5 I

1
are all distinct.

PROOF. It is clearly sufficient to show that
J.§ d_,, for finite n.
:]2 is determined by all rational groups X with
T(X) > T(2), so by PROPOSITION 2.26, d, % 33.
For each integer n > 2, there exists a torsion-free
group Gn of rank n such that
(1) Gn is homogeneous of type T(Z)
(ii) every proper pure subgroup of Gn is completely
decomposable (and therefore free)
(1ii) every rational homomorphic image X of Gn has
(X) > 1(2).
(This result is due to Corner, see [17]). Condition (ii)
implies that Gn is n-free, so Gn ¢ zjn’ but by (iii), Gn belongs

tod /1

The functor v considered by Chase in [6] is the

idempotent radical corresponding to the torsion theory (:])¢ R EF}é).
‘1 1

We have seen that the class :7a>of all groups without
free direct summands is the largest torsion class and that
(CI”, F(Z)) is the corresponding torsion theory. This theory
does not have the form ( EL&’ Eﬁ&): clearly it cannot be
(:Jn’:;h) for finite n, and since there are indecomposable

5&1-free groups of uncountable rank (see [17] p.24),

Jeo N le ¢ (o},
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Finally we note a connection between F(Z) and the
class i of torsionless groups. (For torsionless modules in

general see [24] pp. 65-69).
PROPOSITION 2.28: F¥(z) = F(L)

PrOOF. F(2z) € F({)), since 2 ¢ L. Also F(2) contains
all subgroups of direct products of copies of Z, i.e, all

torsionless groups, so L c F(Z), whence (L) € rz).//

The class of torsionless modules over any ring is
closed under submodules and direct products so X, has these

properties. L does not coincide with F(Z), however, because of
PROPOSITION 2.,29: I/zls not closed under extensions.

PROOF. 1If i,is closed under extensions, then in
every short exact sequence

e: 0—>Z'—fﬁA ——)fjlzi-—% 0,
where each zZ, = Z, A must be torsionless. Let f(l1) = a, Then
g(a) + O for some g € [A,2]. Let g(a) = n and form the pushout

corresponding to multiplication by n in Z:

es O%Z%/A——}r-lzi—}O

L)

ne: o—az——en—-—)ﬂzi—ao .

- .
gf(1) = n so ne splits (see [31]p.72). Since EXt(Ijlzi’ Z) is

not a torsion group ([34] Theorem 8), the proposition is proved.//
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By setting r(4) = M ker f, f e [A,Z] we define a
radical r for which r(A) = O if and only if A is torsionless.
The last result shows that r is not idempotent. Charles [5]

w+l
i

points out that Fuchs has shown that r én, where w is the

first infinite ordinal.
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CHAPTER 3.

ADDITIONAL CLOSURE PROPERTIES FOR TORSION CLASSES I:
DIRECT PRODUCTS, PURE SUBGROUPS

We begin the discussion of closure properties for torsion
classes by considering closure under direct products and pure
subgroups, one section of the present chapter being devoted to
each of these two properties. There is some interrelation between
the material of the two sections; 1in particular, the theory of
algebraically compact groups has a central role in each,

In the first section we obtain a complete description
of the torsion classes closed under countable direct products
(i.e. direct products of countable sets of groups) and in the
second we characterize those which are closed under pure subgroups.
The latter result is then generalized to cover closure under
S-pure subgroups, where S is a set of primes.

In this chapter all torsion classes are understood to

be torsion classes of abelian groups.

l. Direct Products

The following result will be used several times in this

chapter.

LEMMA 3.1: Letd be a torsion class containing a
torsion-free group A which is not p-divisible, for some prime p.

Then I(p) € d .
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PROOF. [A, I(p)] % O ([11] p.52) so let f:A —>I(p)
be non-zero and consider B = I(p)/Im(f). B/Bt as a torsion-free
proper homomorphic image of I(p) is divisible, (see [11]) and so
belongs to oJ (COROLLARY 2.5). T(I(p)) contains B and therefore
Bt (THEOREM 1.38), whence Bq is divisible for all primes q =|= Pe
Since in addition B belongs to T(a) © «/ (PROPOSITION 1,37),
o contains B and therefore B. Since also Im(f) belongs to

J, so does I(p).//
The principal result of this section is

THEOREM 3.2: A torsion class <J is closed wnder
countable direct products if and only if it is determined by

torsion-free groups.

Most of the proof of THEOREM 3.2 is contained in the

proofs of the next two results,

PROPOSITION 3.3: Let A,n= 1,2,3,... be torsion-free
groups. Then

o

T({a |n = 1,2,3,..Hh = (B a) =1L} A).

PROOF. The first equality obviously holds; since also
A e T(T—TAn) for each m, we have T( @® A) & T(TTAn).

Let f: T.TAn —>Y be a non-zero epimorphism,
If Yp # 0 for some prime p, then if Yp is reduced, we have
pTTAn 3 l_TAn so pA_ + A, for some m, and thus Yp € T(Am) c J,
while if Yp is not reduced, then {4 , Yp] $ 0 for each n.

If Y is torsion-free, then either f(Am) 1“= 0 for some
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m or f( @ An) = 0, in which case f factorizes as

T'['An———-f———n

4

Miad ©,

where all maps are epimorphisms, TTAn/ @An is algebraically
compacﬁ (see [23]). Thus I—{An/ @'An is the direct sum of a
divisible group and a (reduced) cotorsion group [16]; so,
therefore, is Y, which being torsion-free is algebraically
compact [16]. Thus Y = D @ T TR(p), where D is divisible and
R(p) is inter alia a reduced I(p)-module. If D § O, then
[An, Y] $ 0 for each n. If D = 0, let R(p) # O. Then
p]_TAn :H_-[An and thus pAm + Am for some value of m. By
LEMMA 3.1, I(p) € T(Am). Since there is an epimorphism
(actually an I(p)-epimorphism) from a direct sum of copies of
I(p) to R(p), we have R(p) € T(Am).

Thus in all cases [Am,Y] $ 0 for at least one value
of m, whence by PROPOSITION 1.19, TTAn belongs to T( & A).

This completes the proof.//

PROPOSITION 3.4: Let d = T({a,|X €A}), where each
Ay 18 torsion-free and let B,n= 1,2,3,... be torsion groups

[oe]
ind . Then o) contaznsljl B .

PROOF. Let f:T—an —> G be a non-zero epimorphism.
If for some prime p, Gp is non-zero and divisible, then

[Al’ Gp] =|= 0 for each A e A, while if Gp is non-zero but not



divisible, then pT_IBn # I—TBn, so pB_ $ B for some m which
means that ;:o(Bm)p + (Bm)p. Since (Bm)p belongs to ¢J , so do all
p-groups; in particular Gp is in J.

1f G is torsion-free, then f( C:)Bn) =0, sof
factorizes as

I_TBn———f-ﬁ G

L/

TTBn/ &) B

where all maps are epimorphisms. As in PROPOSITION 3.3,

G=D ® | [R(p), p prime, and we need only consider the case
where D = 0. If this is so, and R(p) $ O, then p rTBn $ TW'Bn,
and as in the first part of the proof, Z] contains all p~groups.
Hence at least one AX is not p-divisible, so as in PROPOSITION

3.3, I(p) belongs to o whence R(p) does also., This proves that
T8 e J.//

PROOF OF THEOREM 3.2. If o is determined by torsion-
free groups and 1if {Ah|n =1,2,3,...} € ¢ , then (An)t and
A, € o for each n. By PROPOSITION 3.3, Ta /@), e
T( @An/(An)t) € J and by PROPOSITION 3.4, l—T(An)t ed , so
from the short exact sequence

0o —TT() —TTa—TTa /) —0
clearly T—rAh €.

Conversely, suppose 27 is closed under countable direct
products. Clearly </ is not a t-torsion class, If it is not

determined by torsion-free groups, then for some prime p,

36.
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Z(p) € o but all groups in J N F o are p-divisible. Let
(]
rf[xn]/(T'T[xnl)t ed n 30. Suppose p(a x ) - (x ) €

ne

Z(pn), n=1,2,... « Then T—T[xn] ed, S0

. k
(ﬂ[xn])t, a € Z. Then for some positive k € Z, p (p(anxn)
- k _ n; k _
(xn)) = 0, S0 p (pan - 1) x = 0 for all n, i.e. p Ip (pan D.
For n > k, this means that pn-kl (pan - 1), which is impossible,
Thus (xn) + (T—f[xn])t has zero p-height in ﬂ[xn]/(ﬂ[xn])t,

contradicting the required p-divisibility of T | [z 1/( T (x D, .//

If {AAI)\ eA}S ‘QP for any set P of primes, then
)\l eA' A}\ E$P, without any restriction on the size of A, Whether
any other torsion classes have this property, or the corresponding

one for JA| <7 , where M1 > X, is not known. A related

o*
result is
PROPOSITION 3.5 Let C be a class of slender groups
and
J = {6/ {6,c]1 =0 foralt c e C}
Then ‘d 30 18 closed under direct products for which the
number of components does not exceed the first cardinal number

of non-zero measure.

PROOF, Let {GAI)\ eA} & TnF,, whereA has
appropriate cardinality. Then for any C € G | @G}\,C] = 0
and consequently for any homomorphism f:'TTGA——) ce C ’
£( @ G}\) = 0. By a theorem of 0§ ([15]p.170), f = O, so

TTGA e .
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In particular, (2 may consist of a single reduced
countable torsion-free group [36]. Additional information
concerning the structure of direct products modulo direct sums
of torsion groups, or direct products modulo their torsion
subgroups, together with PROPOSITION 3.5 should provide at least

partial answers to the questions raised above.

PROPOSITION 3.6: Let P be a set of primes andop

the clase of P-divisible algebraically compact groups. Then

T(Qp) =TI |p ¢ PH.

PROOF ., T((LP) 2 T({I(p)|p ¢ P}), since each I(p)
is algebraically compact. Conversely, if G belongs to CLP’
then 6 =D @ TIR(p), p ¢ P, where R(p) is an I(p)-module.
For each q ¢ P, R(q) € T(I(q)), so since also D € T(I(q)),

THEOREM 3.2 implies that G belongs to T({I(p)|p ¢ P}), whence

T(.p) S T |p ¢ PH.//

In view of this result and Nunke's characterization
{34] of slender groups as reduced torsion-free groups containing
no copy of any I(p) and no direct product of infinitely many
infinite cyclic groups, there seem to be good grounds for the

following

CONJECTURE: (T(QL), F(Qg)) is a torsion theory, where
(_is the class of all algebraically compact groups, QX the class

of all slender groups.

1f (T(0 ),%) denotes the torsion theory for T(Q),

then by PROPOSITION 3.6, :; consists of those reduced torsion-free



groups containing no copy of any I(p). Note also that
Qfsf—_ F(é), since while J is closed under extensions and
subgroups, it is not closed for products — Z is slender but

direct products of copies of Z are not,

2. Pure Subgroups

As a first step in the discussion of closure under pure
subgroups, we show that every torsion class with this property

is either a t=torsion class or an r.t. torsion class.

PROPOSITION 3.7: All t-torsion classes are closed

wnder pure subgroups.

PROOF, Let Sl’ 82 be disjoint sets of primes, If A1
is an Sl-group and A2 a divisible Sz-group, then clearly any
pure subgroup of A1 D A2 is the direct sum of an Sl-group and

a divisible Sz—group.//

THEOREM 3.8: A torsion class & is closed under pure

subgroups if and only if & n 30 is.

PROOF., Let A' be a pure subgroup of A € of, and
consider the induced diagram

0 0

BN

0 — A;:—%A'—-——) A'/AE-———-}O

oLl

0~—)At—-—)A — A/At — 0
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with exact rows and columns, where g is defined by g(a'+A;:) = a'+At.
A:: is pure in A' and hence in A, Therefore Aé is pure in A, sO
by PROPOSITION 3.7, ale Jn .

The kernel of g is A' N At/At': = 0, If, for some
non-zero n € Z, a' € A' and a € A we have g(a'+A":) = n(a+At),
then m(a'—t;a) = 0 for some non-zero m € Z, i.e. ma' = mna. Since
A' is pure in A, there exists a" € A' with ma' = mna'", But then
g(a'+A::) = ng(a"+Aé), so that g is a pure monomorphism. Thus if

Jd n 3‘0 is closed under pure subgroups, A'/AE e Jdn ',_;Co, so
A' € oJ and JJ is therefore closed under pure subgroups.

The converse is obvious.//

THEOREM 3.9: If a torsion class J is closed wnder
pure subgroups, then
J=1(TInT PuvI)

where Q is the class of rational groups in o .
The proof uses the following lemmas:

LEMMA 3,10: For J and J as in THEOREM 3.9,

3n8'0='r(§_) ﬂ?o-

PROOF, Clearly T(J) A '}0 cdn 30. Let A be any
group in o N r};o. Then A is a homomorphic image of @& (al,
where the direct sum extends over all a € A. Thus A € T(Q),

since each [a], € J .//

LEMMA 3,11: For any two classes Cl’ 62 of groups,

MC, v Cp) = () uTC C )./
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We omit the proof of this result, which consists of a
simple application of THEOREM 1.7.
To complete the proof of THEOREM 3,9, we observe that
J=1(InT o(TnFPl =TT ~nTPu
() n FPIS T 0T D u T =TT n T
udl1S J.

Let Xl, ceey X.n be rational groups with types xl""’xn
respectively. Then any (xl, ...,xn) € X, D e @ Xn, with
XpseessX, + O has type xllq cee r\xn. Thus one requirement if
an r.t. torsion class T(I',P) is to be closed under pure subgroups
is that T satisfy

(*) Yl,...,ynel‘———>yln...nynsl‘
go if X and Y are rational groups with incomparable types,
T({X,Y}) is not closed under pure subgroups.

Now if T(I',P) is an r.t. torsion class for which T
satisfies (*), then for every torsion-free group G,

6(I') = {x e ¢|1t(x) € I'}
is a pure subgroup, since if x, y € G(I') we have
t(x~y) > 1(x) n ©(y) € T (0 is regarded as having a type greater
than all others) and T(nx) = 7(x) for n € 2. G(I') is also
functorial in an obvious way. The following theorem describes
a connection between the functor ( )(I') and the idempotent

radical associated with T(I,P).

THEOREM 3.12: Let T(T,P) be an r.t. torsion class
for which T satisfies (*), r its idempotent radical and
C(r) = {6 torsion-free|6(T) = G},



Then the following conditions are equivalent:
(1) C () is closed wnder extensions
(i1) G(T) = r(G) for all torsion-free groups G

(11i) T(T,P) is closed under pure subgroups.

PROOF., (i) => (4i): Let G be torsion-free and let

G' be the subgroup of G defined by the short exact sequence
0 —6(I') —>6¢' — (6/6(N)) (I — 0.

I1f C(I) is closed under extensions, then G' ¢ C () and since
for x € G' we have TG,(x) < TG(x), it follows that G'< G(T'),
whence (G/G(I'))(T) = 0, and [X,G/G(I')] = O whenever X is
ratioﬁal with T(X) € T. Also G/G(I') is torsion-free, so
r(G/G(T)) = 0. Since G(I') € T(I',P), therefore, G(I') must be
r(G).

(i1) = (iii): 1If G6(I') = r(G) whenever G is
torsion-free, then T(T,P) n ‘}0 = C (I), which is closed under

pure subgroups. By THEOREM 3.8 T(I',P) is also.

42,

(ii1) => (i): Let T(I',P) be closed under pure subgroups

with G ¢ T(T,P) torsion-free. Then [x], € T(I',P) so T(x) =
1([x],) € T for all x € G, whence G € C (), 1i.e. T(T,P) n %4
C C (T). Since the reverse inclusion also helds, C@ = .

T(T',P) A (}0 is closed under extensions.//

THEOREM 3.13: A torsion class o is closed wnder pure
subgroups i1f and only if either
(1) :7 18 a t-torsion class
or (11) J = T({z(p)|p € P} v {Q(8)}), where P and S

are sets of primes with P C S,



For the proof we need
LEMMA 3.14: Let {X,|X e A} be a set of rational groups
and S = {p pmlmelpx;\ = X, for each X eA}. If T({XAIA eA}) is

closed under pure subgroups, then it contains Q(S).

PROOF OF LEMMA, Let Pys Pys P3s -ee be the natural
enumeration of the primes, let J = {jlpj ¢ S} and denote EE’XA
by A. For each j € J, choose a

€ A with hj(a ) = 0, where hj

3 b/
denotes height at pj. For example, let aj = (le) with xjk € XA
satisfying the following conditions: (i) N + 0 for some u €A
f hich X .-reduced; ii) h, =0; (dii) x, =0

or which X is p;-reduced; (ii) J(xju) 3 (1ii) X0\

for A $ p. For a natural number i ¢ J, let 8, be an arbitrary
element of A, and regard the resulting (ai) as an element of

(<]

TTa,, i =1,2,3,..., where each A, = A. h((a,)) = Q1 h(a,),

i i
the former height being taken in T*TAi, the latter in A, 1In
particular, hj((ai)) =0 for j € J. Therefore, since T_IAi is
S-divisible, the height of (ai) at a prime p is infinite if
p € S and zero otherwise, i.e. T((ai)) = T(Q(S)) and 1-TA1 has
a pure subgroup isomorphic to Q(S). By THEOREM 3.2,

T—TAi € T({XAIA € A}), which if closed under pure subgroups

must therefore contain Q(S).//

Since each XA is S-divisible and T(Q(S)) is the class

of all S-divisible groups (PROPOSITION 1.35) we have

COROLLARY 3.15: With the notation of LEMMA 3.14, if
T({XAIA €A}) is closed wnder pure subgroups, it is the class of

all s-divisible groups.//

43,
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PROOF OF THEOREM 3.13. Let 27 be a torsion class
closed under pure subgroups. If dJ is not a t-torsiom class,
let T be its type set and for each vy € T let XY be a rational
group of type y. Then
T=1(InTpv & lyerh (THEOREM 3.9)
and

’Jni}o = T({XYIY eTHn F (LEMMA 3.10)

0
By THEOREM 3.8, T({XYIY € T}) is closed under pure

subgroups and therefore, by COROLLARY 3.15, is the class of all
S-divisible groups, where S is the set of primes dividing (:)Xy.
Thus

d=1UTn Jy ulash.

Let P = {p € s|z(p) € J }. Since TQNE J, o
contains the groups Z(pm) for all primes p as well as Z(p) for
primes p ¢ S. Thus by THEOREM 1.33 and LEMMA 3.11,

Jd=T{z®m)|p ¢ S} u {2 |p € P} U {2(p )] all pluiqs)h
= T({z(p)|p € P} U {Q(5)}).
Conversely, that any class
d =1z |p e P} U D
with P S S is closed under pure subgroups follows from THEOREM 3.8,
LEMMA 3.10 and the observation that T(Q(S)) is closed under pure

subgroups. By PROPOSITION 3.7, the proof is now complete.//

Note that by THEOREM 1.7, for a torsion class ZI which

is not a t-torsion class, the representation

J =T{z(p)|p € P} U QI

is unique. Our next result characterizes the groups in such a class,
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PROPOSITION 3.16: A group G belongs to
J = 1({z(p)|p € P} U {Q(S)]})
where P and S are sets of primes with P< S, if and only if there
18 a short exact sequence ‘
0—G6¢'—>6—G6"—00

where G' i8 a P-group and G" is S-divisible.

PROOF. Let G € 7/ and G' = & Gp where the direct sum. =~
extends over all p € P, G" = G/G', Then Gg has no P-component
and belongs to ¢/ (THEOREM 1.38) so therefore has divisible
S-component. Thus G't' is S-divisible. G"/G'é is torsion-free and
belongs to J . If not S-divisible, it has a non~zero S-reduced
torsion-free homomorphic image B. But then B € J ani [Q(s),B] =
0 = [Z(p),B] for each p € P and this contradicts THEOREM 1.7, so

G"/G'é is S=-divisible, whence G" is also. The converse is obvious.//

DEFINITION 3.17: A subgroup G' of a group G is S-pure,
where S is a set of primes, 1f G' N nG = nG' for every n in S%,
the multiplicative semigroup generated by S. If § has a single

element p, S~purity is called p-purity.

THEOREM 3.13 can be generalized fairly easily to describe
the torsion classes which are closed under S-pure subgroups. We

shall need

LEMMA 3.18: Let P be a set of primes. Then T(Q(P)) = §)P~

18 closed under S-pure subgroups if and only if P < S.



PROOF., If P € S, then Q(P A S) is an S-pure subgroup

of Q(P), but Q(P n S) d; ‘@P' The converse follows from the fact

that S-purity implies P-purity if P S.//

THEOREM 3.19: A torsion class 2] i8 closed wnder
S-pure subgroups i1f and only if either
(i) “J 1is a t-torsion class such that J N Up i8

hereditary for p ¢ S
or (11) o = T(Q(®)} U {z(p)|p € R}), where RS P S 5.

PROOF. Since pure subgroups are S-pure, only the
classes described in THEOREM 3.13 need be considered.

I1f J is a t-torsion class, then clearly 27 is closed
under S—-pure subgroups if and only if ‘J N UP has this property
for every prime p. Now dn Up is either {0}, UP or In gp
so interest is centred on n ’Jp' If pe S, then in D n :jp,
S<purity is equivalent to purity whence Dn UP is closed., If
P ¢ S, any exact sequence

0—2(p)—3 Z(p ) —>Z(p )—> 0
is S-pure, so Pn :fp is not closed.

If oJ = T({Q(P)} u {z(p)|p € R}) where RC P, then as
in the proof of THEOREM 3.13, J N S”"o = T(Q(®) N ‘Fy, so by
LEMMA 3.18 we may assume P& S, If A' is S~pure in A € J , then
Al is S-pure in A

S S

J f'\:fs by THEOREM 1.38. Thus Aé € Un (JS' Since Z(p) €

T(Q(P)) for every p § S, we have Tn ?S = T(Q(P)) n G’—S.

which, as a direct summand of At’ is in

Analogously with THEOREM 3,8, it can now be shown that A'/Aé

46.

has a natural S-pure embedding in A/AS and so belongs to U N f}s,

Thus A' € T.//
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CHAPTER 4

ADDITIONAL CLOSURE PROPERTIES FOR TORSION CLASSES II:
GENERALIZED PURE SUBGROUPS

In this chapter we consider torsion classes closed under
generalized pure subobjects in the sense of [41]. Specifically,
we consider'LL—purity where Ql itself is a torsion class. The
first section is a summary of the relevant results from [41]. In
the second we obtain some results concerning the idempotence of
products and intersections of idempotent radicals. The question
of idempotence of products has some relevance to the material of
Section 3 in which a generalization of THEOREM 3.8 is obtained
for certain abelian categories with global dimension 1, purity
being replaced byTL.—purity.

The remainder of the chapter deals with torsion classes
for (9 only, though many results have obvious generalizations to
module categories.

A prerequisite for a generalization of THEOREM 3.9 is
a class of groups to take on the role played by the rational
groups in Chapter 3, i.e. given a torsion theory (IL,?;), we
need a class of groups in'gj whose members, together with those
of L, determine all torsion classes closed underii_-pure
subgroups. Such a class of groups is introduced in Section 4;
the groups are described in terms of a rank function associated

with (IL,%?) which coincides with the standard (torsion-free)

rank in the case of (:]0,2¥b). The groups we consider are those
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of generalized rank (U -rank) 1.

In Section 5 we investigate the structure of groups
of Il -rank 1, Because of the purpose for which these groups
have been chosen, some emphasis is placed on the kinds of
1L-pure subgroups they can possess. It is shown that they
cannot be mixed and cannot be direct sums of infinitely many
subgroups. They can however be infinite direct products.

In Section 6 we consider some examples. The groups
of(§Dp-rank 1 (p prime) are completely described and this leads
to a representation of the groups of éDS-rank 1, where S is a
set of primes, The groups of U -rank 1 are also characterized
when |\ is determined by divisible torsion groups. Some
additional similarities between rational groups and groups of
éDp-rank 1 are also noted,

In the final section we solve the following special
case of our general problem: to find conditions on rational
groups X and Y, necessary and sufficient for the closure of

T(X) under T(Y)-pure subgroups.

l, Generalized Purity

0f the several well-known characterizations of pure
subgroups, the one given by the next proposition has the
advantage of being element-free and of therecfore suggesting

generalizations of the notion of purity to categories.

PROPOSITION 4.1: A subgroup A of a group B is pure

if and only if for every group G with AC G € B and G/A finite,



A is a direct swmand of G.
PROOF. [15] p.82.//

PROPOSITION 4.1 may be paraphrased as follows:  a
short exact sequence

(*). 0—3A—>B—»C—>0
of groups is pure if and only if for every finite subgroup C'
of C the pullback induced by the inclusion C'—> C gives a
commutative diagram

0—A-—>A ®C'—>C'—0

eo L

0—A—> B —C—0

in which the top row represents the natural splitting. The
obvious gerneralization is to substitute some class C of groups
(or of objects in a suitable category) for the class of finite
groups and define a short exact sequence (*) to be C -pure if
every subobject C' of C which belongs to (C gives a diagram (*%),

In this section we shall discuss the theory of
generalized purity due to Walker [41] in the setting of a
subcomplete locally small abelian category K. which has enough

projectives and for which Extn(A,B) is a set for all objects

A,B € K.

DEFINITION 4.2: Let C be a class of objects of X
closed under homomorphic images. A subobject A of an object B
in K is said to be C -pure if A is a direct summand of every
subobject B' of B with A< B' and B'/A € C. A short exact

sequence

49.
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O——)A'——QB —3C —>0

in K is G-pure if the image of f is C -pure in B.

THEOREM 4.3: The class of C -pure short exact

sequences 18 a proper class.
PROOF. [41] Theorem 2.1.//
For a discussion of proper classes see [31] pp. 367 f£f.

DEFINITION 4.4: For objects A,C of X, Pext c (C,8) s
the group of equivalence classes of C -pure short exact sequences

0—A—>B—)C—0

DEFINITION 4,5: An object K of K is C ~-pure
projective if for every c -pure short exact sequence
0—A—B—>C-—0
the induced sequence
0— [K,A]—> [K,B]—> [K,C]— ©

18 exact.

THEOREM 4.6: Let (P be the class of projective objects
of K. Then x is C ~-pure progjective if and only if it is a

direct summand of a direct sum of members of (Pu(C .

PROOF. [41] Theorem 2.5.//

If has global dimension 1 (and thus in particular
1f X = CUr), thec —-pure projectives have an alternative description:
THEOREM 4.7: If X has global dimension 1, an object

K 28 C ~pure projective if and only if K = L @© M, where L ig



projective and M is a direct summand of a direct sum of objects

in C.
PROOF, [41] Theorem 2.6.//

THEOREM 4.8: A short exact sequence
0—>A—B—>C—0
is C -pure if and only if the induced sequence
0—> [K,A] —> [K,B] —> [K,C]—> 0

ig exact for every C -pure projective K.
PROOF. [41] Theorem 2.7.//

As examples of generalized purity in aQe- , we have
S-purity for a set S of primes, in which case C 1s the class
of finite S-groups, and for an infinite cardinal number w#, the
-t -~purity introduced by Fuchs [14] where C is the class of
groups G with IGI <t

The generalized notion of purity has a dual:

DEFINITION 4.9: Let §> be a class of objects of K
which is closed wnder subobjects. A subobject A of B is said
to be 65 -copure if A/A' is a direct swmmand of B/A' whenever
A'C A and A/A" €8). A short exact sequence

0O—3> A —f-a B—C—30

is called B -copure if the image of f is & -copure in B.

The results given above for C -purity can be dualized,

with 6’3 -copurity replacinge -purity. In particular, since the

postulates for a proper class are self-dual, we have

51,



52,
THEOREM 4.10: The class of (B-copure short exact

sequences 1s a proper class.//

DEFINITION 4.,11: For A,C in ‘K, Copext 65(c,A) i8 the

group of equivalence classes of & -copure short exact sequences

0—A—>B—>C—0,

In the sequel we shall be principally concerned with
the case where G is a torsion class. The pure and copure short
exact sequences assoclated with a torsion theory are described

by

THEOREM 4.12: Let (J ,3) be a torsion theory for K
and let r be the assoctated idempotent radicél.' The short exact
sequence

0—2A—>B—>C—0

is oJ -pure (resp. F -copure) if and only if the induced sequence

0— r(A) — r(B)—>1(C)—> 0
(resp.

0—>A/r(A)—> B/xr(B)—> C/r(C) — 0)
18 splitting exact. As a consequence, we have

(1) r(a) = AN x(B)

and (ii) r(B/A) = (r(B)+A)/A

whenever A is either J -pure or g-copure in B,
PROOF. {41} Theorems 3.4, 3.9 and Corollaries.//

DEFINITION 4.13: For a toprsion theory (J ,3), a short

exact sequence which is both J -pure and F -copure is said to be
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(J ,F)-bipure and for any A,C, Pext:!:r (C,A) f\Copext? (C,A) is

denoted Bipext(J ,9) (C,A).

Since the intersection of two proper classes is a
proper class, it is clear that the (/,F)-bipure short exact

sequences make up a proper class.

2. Idempotence of Composite Radicals

As noted in 85 of Chapter 1, a group A belongs to a
torsion cléss J if and only if both A, and A/At do. This
result suggests the problem of determining whether there are
any other torsion classes besides 270 for which the corresponding
statement is true for all ./ or for some given [/ . For this
" section we shall work in a subcomplete locally small abelian
categbryi]i. :Tl and 272 will denote torsion classes in K , r,

and r, their associated idempotent radicals.

DEFINITION 4,14: Let u and v be subfunctors of the
identity. The subfunctor u n v is defined by

(un VK = u(K) A v(K)

with action on morphisms being determined by restriction.

PROPOSITION 4.15: If u and v are radicals, then so

are ww and u n v,
PROOF. [32) p.110.//

Thus in particular r, r, is a radical, but as we shall

see, not necessarily idempotent.
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PROPOSITION 4.16: The statement
*
(*) K¢ 272 < (K, K/r)(K) € 272

holds for every K € K if and only if r, r, is idempotent.

PROOF, If (*) holds, then for every K € XK R rz(K)

belongs to oJ. so r, rZ(K) does also, i.e. r, T, rz(K) =r rZ(K),

2

or since K is arbitrary, I, T, I, = I; T,, SO that
1) (rp 1y 1) =1y Ty 1) = 1) Ty
2 _ 2 _
i.e. (r1 rz) =1 I,. Conversely, let (r1 tz) r, I. Then
for any K etR.,
= C
r, 1, (K) r, r, r r2(K) Cr, T, rz(K) é;rl rz(K)

i,e, r, T

12°¢

g Ty Tpe Thus if K € 272, we have
r, (K) = r, rz(K) =rx, 1 T, {(K)

which is also in 27 Since :7é is closed under homomorphic

2.
images and extensions, the proof is complete.//

COROLLARY 4.17: If r r then

1 25T
KeJ , 1K), K/ri(K) € 72

and K e f}l = rz(K), K/rz(K) € ZII'

PROOF., If r =r, r,, then

1525520
2 ~ _ -
(r1,)% = 1) (ryrdry = 1, (ryr)r, = (K1) (1)) = 11,

. 2
and similarly (rzrl) = rzrl.//

The problem is therefore, in part, that of finding
commuting pairs of idempotent radicals, and in particular of
finding those idempotent radicals which commute with all others.

The next two propositions give some examples for K =Q4r.
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PROPOSITION 4.18: Let X =(% and let Ul be

hereditary. Then for any 32, r, T, =71, 1 =1 NI,

PROOF. For any group A, we have
(1) r, rZ(A) = rl(A) N rZ(A)
and (1i) rzrl(A) c rl(A) s rz(A)
2
so rzrl(A) =T, rl(A) c rzrlrz(A). Also, rlrz(A)(_:_ rl(A), whence
- =
A & rzrl(A). Thus I I T, = LT,

is either the identity functor, in which case

3 )
Now r1

there is nothing to prove, or r, assigns to each group A the

1
subgroup ;.éSAp’ where S is a fixed set of primes. Since

(rzA)t € UZ (THEOREM 1,38), its direct summand rlrz(A) is also.

Thus rzrlrz(A) = rlrz(A), 80

r,r, = L,rr, =, =, N r2.//

Ul need not be hereditary, however:

PROPOSITION 4,19: LetX =04 , f/'l =5, Then for any

32, T, = I,I;.

PROOF. Case (1): UZ contains torsion-free groups,
In this case Ul c :72, so for any group A, we have rzrl(A) = rl(A),

= [
i.e. ryr, r. Also rl(A) < r2(A) and rer(A) C rl(A), whence

rl(A) = ri(A)S rlrz(A) Srl(A)

so that r,r, = r

1%2 1~ Tt

Case (2): 32 is a t-torsion class. rz(A) has

the form %rp(A)’ where S is a fixed set of primes and for each

pES rp(A) is either Ap or its divisible part. Thus rlrz(A) =

p@r rp(A). If rp(A) = Ap, then rlrp(A) = rptl(A) as in
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PROPOSITION 4.18, and if not then rltp(A) = rprl(A) = rp(A) as

in Case (1). Thus

rer(A) = @r r (A) = @

565515 >Es Tprp(A) = 1o (8)

i.e. rr, = rzrl.//

Let r be the idempotent radical associated with the

torsion class 31 N UZ'

PROPOSITION 4.20: ig idempotent if and only if

1%
1¥2 =

PROOF. Let T, be idempotent with torsion class U .

Then for every K € ’Jl s UZ’ we have rlrz(K) = rl(K) =K, i.e.
K U , SO gln QZQ'LL. Since
rer(L) =r

we<r n< rlrz(L)

1%2"1%2 2F1%2
for any L, we have 1:2r1rl2 = 1;r,, 80 in particular r2(L) =L
if LelW, ie. U C 32. Since also for every L € 1L,
- - .2 - -
rl(L) = rl(rer(L)) = rer(L) = rlrz(L) L,
we have ’U,S'Jl, so WL = Ul A UZ and r;r, = r.

The converse is obvious.//

Using COROLLARY 4,17, we obtain

COROLLARY 4.21: 1;r, = r,r, if and only if 1|1, and
r,r, are both idempotent, in which case r T, = r,r; = r.//
PROPOSITION 4.22: r N r, 18 idempotent if and only

if r,Nr, =r.

PROOF, If 1.*l n r, is idempotent, then its torsiom
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— .
class is ‘jl f\:72 since rl(K) N rz(K) = K if and only 1if rl(K) =

K= rz(K). The converse is obvious.//

Although an object is left fixed by rlt\ r, exactly
when it belongs to Zjlrﬂ i] , this does not mean that nnr,

must be idempotent (cf. §2 of Chapter 1).

LEMMA 4.23: If r;r, =1, AT, then r is idempotent.

1 2%1

PROOF. r, r, ¥, I, = r2((r1r2)(rl)) = rz((rlrl) N (rzrl))

= rz(rl g! (rzrl)) = rz(rzrl) = rZrl'//

PROPOSITION 4.24: If any two of rr Nnr

2° TT10 2 1

are idempotent, then r,r

12 T Ty

PROOF. 1If r,r, and r,r, are idempotent, then

T, =¥ = 1,1, (COROLLARY 4.21), while if r,r, and r,nr, are

idempotent, then by PROPOSITIONS 4,20 and 4.22, r,r, =

b i AN

2’

so by LEMMA 4.23, r is idempotent.//

2"1
We now give an example to show that T, and T, need

not be equal. Note that by COROLLARY 4,21 this is sufficient to

show that idempotence is not preserved by products in general.

EXAMPLE 4.,25: We consider a group which has been
discussed by Erdds [12] and de Groot [20], [21]. Let {x,y} be

a basis for a 2-dimensional rational vector space, and let

G =[p"x, q "y, t "(xty)|n =1,2,3,... ]
where p, q and t are distinct primes. Let r, and r, be the

idempotent radicals for ;Dp and T(G) respectively, From an
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examination of the type set of G (see [20] p.295), it is clear
that rl(G) = [p-nx'n = 1.,-2,3,... ] = Q(p). Let f be any
homomorphism from G to rl(G). Since rl(G) has no non-zero
elements of infinite q~height or t-height, we have f(y) = 0 =
f(xty) = £f(x)+£(y). But then f(x) = O and thus £ = O, Hence

[G,rl(G)] = 0, so rzrl(G) = 0. But rlrz(G) = rl(G) = Q(p).

This example also shows that idempotence need not be
preserved by intersections. Let r be the idempotent radical
associated with & n T(6). Then r () = Q(p) ¢ D N 16
80 r rl(G) = 0, Since r(G) ¢ °®p’ we have r(G) er(G), 80
r(G) = rZ(G) Cr rl(G) = 0, Therefore r(G) = 0, while
rl(G) n rz(G) = rl(G) = Q(p). By PROPOSITION 4,22, idempotence
of nnr, would require r,Nnr, =r.

To conclude this part of the discussion we give a
"local" construction, using transfinite induction, of the radical
associated with the intersection of a set of torsion classes,
This construction was used by Leavitt {[30] for radical classes
of associative rings. In an abelian category the fact that all
subobjects are normal allows a minor simplification of the
original argument.

Let {Jili € 1} be a set of torsion classes inK ,
{r,|1 € 1} the associated set of idempotent radicals and K € K.
Define L1 = K and for an ordinal number B, assuming La has been
defined for all a < B, define

L)L, 1f B 1s a limit ordinal, Otherwise

(**) LB =

ri(LB_l) for some 1 € I (if such exists)

such that ri(Lﬁ-l) $ LB-l'



Since the La's form a set, there exists an ordinal number Y such

that L = I, for each i € 1.
a ri( Y) Y

THEOREM 4.26: For any K € X, let L, be defined by

B

(**). Then there exists an ordinal number Y such that r(K) = LY’

where r 18 the idempotent radical for QI ’Ji.

PROOF, As noted above, there exists Yy such that for

each 1 € I, ri(LY) =L, i,e. LY € Ui' Thus r(Ly) = L

Y’ Y
Lyg r(K). We show, by transfinite induction, that r(K) € Ly'
Trivially r(K) € Ll, so assume r(K) < La for each a <8, If B

, SO

is a limit ordinal it is clear from (**) that r(K) C LB. If B
is a éuccessor, then by assumption r(K) € LB-—l’ while since

r(K) € 271 we have r(K) C ri(LB_l) = LB' Thus r(K) € LB for

every B, so r(K) C L.Y-//

It is not clear whether the construction can always be
achieved in a finite number of steps in X even when the number
of torsion classes involved is finite. With r and ‘r2 as in

EXAMPLE 4.25, at least three steps are needed: for G we have

cP rl(G) g r, rl(G) =0 = r(G).

3. A Simplification of the Problem

In this section we shall work in a subcomplete abelian

category K satisfying the same conditions as in Section 1 and

in addition having global dimension 1.

PROPOSITION 4,27: Let (J,%) and (,\Y) be torsion

theories for J{., with associated idempotent radicals r, s

59.
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respectively such that sr is idempotent. Then J is closed

wder (L Y )-bipure subobgjects.

PROOF. Let K' be (u,\s)—bipure in K € g. Then
there are split exact sequences
0 —s8(K'Y) —> s(K) ~—> s(K/K') — 0
and 0 —K"/s(K")—2 K/s(K) —3 (K/K')/s(K/K')— 0.
By PROPOSITION 4.16, both s(K) and K/s(K) belong to < and so

their direct summands s(K') and K'/s(K') do also. Hence K' eg.//

Note that this proposition is true without any
restriction on the global dimension of K.
For I -pure subobjects there is a result analogous to

THEOREM 3.8. Proof of this requires

LEMMA 4,28: A short exact sequence

(*) 0—3A—B~—=>C~>0
18U -pure, for a torsion class Ue if and only if the induced
sequence

(*¥%) 0—> [K,A]—> [K,B] > [K,C]— O

is exact for every K € .

PROOF., By assumptions on K., THEOREM 4.7 and the
properties of torsion classes, an object L is U -pure projective
exactly when it has the form M @ K where M is projective and
KelW. The éequence (*) induces a morphism.

(L8] = 1,8 @ [x,8] S Bl @ [x,00 F [w,cl.
Since M is projective, f is an epimorphism, so if (**) is

assumed exact for every K e WL, f ® g is an epimorphism, so
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by THEOREM 4.8, (*) isu -pure.

The converse is obvious.//

COROLLARY 4.29: Let (1L,%) be a torsion theory for
K, K'c K s\ﬁ. Then K' 28 UL -pure if and only if K/K' E:’Sf .

PROOF. Tor U €’lL the induced sequence
0=1[UKl—>[UK/K']I—>0
is exact if and only if [ U,K/K'] = O. By LEMMA 4.28, K' is

1l-pure in K if and only if [ U,K/K'] = 0 for all U e .t/
In a similar way we can prove

COROLLARY 4.30: Let s be the idempotent radical for

the torsion class\L. Then s(K) sl -pure in K for all K eX.//

PROPOSITION 4.51: Let (J, &) and (U,'Yy) be torsion
theories for :R,, with associated idempotent radicals r and s.

If 27 is closed wunder 1l -pure subobjects, then st is idempotent.

PRCOF, Since for any K ¢ X s(K) is au-pure
subobject, in particular sr(X) is alwayslL -pure in r(K). By
assumption ono/ , therefore, we hzve rsr(K) = sr(K) for each K.
But then

(sr)2 = g(rsr) = s(sr) = szr = sr.//

THEOREM 4,32: Let (dJ ,F) and (U,'Y) be torsion
theories for 3 with associated idempotent radicals r,s respectively.
Then JJ is closed underl -pure subobjects if and only if sr is
idempotent and J n'\Y is closed under -pure subobjects.
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PROOF. We first show that J nWU is always closed
under U ~pure subobjects, If K' isu—pure inked nlk » then
K/K' € [Land the sequence

0 —K'— K —K/K'—30

is split, by definition of'u,-purity. Hence K' e J nW .

Now suppose J N ‘ﬂ is closed under{ -pure subobjects
and sr is idempotent., If M' isu -pure in M SJ , we have a

commutative diagram

0—>s(M")—3M'—IM'/s(M')—>0

RS

0—3s(M) —>M —IM/s(M) ~— 0

with exact rows.
f is a monomorphism, having kernel M'/s(M') A N, where
N is the kernel of the natural map from M/s(M') to M/s(M), i.e.
N = s(M)/s(M') and thus
M'/s(M")) NN = (' N s(M))/s(M') =0,
by THEOREM 4.12,
THEOREM 4.12 also says that (s(M) + M')/i' = s(M/M"),
so
M/(s(M)+M')-3.(M/M')/((s(M)+M')/M')=(M/M’)/s(M/M') e,
Hence the sequence
0—= (s(M+M") /s (M) —> M/s (M) —3 M/ (s (M) ")— 0
1s¥-pure exact, whence as M/s(M) € JA'Y, it follows that
(sD+M')/s() € Jn\Yy . But es
M'/s(M")=M"'/(M' N s(M))=(M"+s(M)) /s (D),
this means that M'/s(M') € Jn'y ,

Also, s(M) € oJ n" U (PROPOSITION 4.16). Since s(M')
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is u-pure in M' and the’u—pure short exact sequences form a
proper class (THEOREM 4.3), s(M') is)k-pure in M and hence in s(M),
so s(M') € Un'u.. M' is therefore in U, as both s(M') and
M'/s(M') are, i.e. j is closed under th -pure subobjects.

By PROPOSITION 4.31 the converse is obvious.//

C-C-RQLL!:._?;Y 4,29 shows that in 30, purity and J o-purity
coincide, so as a consequence of THEOREMS 3.8 and 4.32, wve see
that in aﬂ:, a torsion class is closed under go-—pure subgroups
exactly when it is closed under pure subgroups, which raises the
question: if e is homomorphically closed, when is closure of
a torsion class underc -pure subobjects equivalent to that for
U—pure subobjects for a torsion class 7 This question is
related to the problem of determining projective closures, for
e and ‘J satisfy the condition in particular when C -purity
coincides with'dJ -purity, i.e. C and 3 have the same projective
closure, e.g. if G is the class of homomorphic images of Q and
T=D (see [35] or [41]).

In Chapter 3 we used implicitly the fact that if 27
is a torsion class (inQ ) and C C 270, then T( UVG, n 30 =
gn '}0, whence if U is closed under pure subgroups, the same
is true of T( U uQ). THEOREM 4.32 raises the question whether,
given a torsion class g , a torsion theory (u,"%) and a subclass
Q ofu, it is possible for T(Uue) to contain objects of\g
which do not belong to :f By LEMMA 3,11, which obviously holds

also in:{(., it may be assumed that e is a torsion class,
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PROPOSITION 4.33: Let (IL,'%) and (J,3F) be torsion
theories for K, the latter with idempotent radical r. If (C
is a torsion subelass of U, then J n'% = T(J vC )n'g

1f and only if r(G) is a C -pure subobject of G for every G € ‘S .

PROOF. An element K of T( Uue)(\\% belongs to J
if and only if K/r(X) = 0. éince K/r(K) € T(J UG), this is
equivalent to s(K/r(K)) = 0, where s is the idempotent radical
for C. But s(K) = O so by COROLLARY 4.29, s(K/r(K)) = O if
and only if r(K) is C ~pure in K., Thus if r(G) is c —pure in G
for every G 8‘9 , then 'J r\% =T(JuC )n‘% . Conversely,
if this equality is satisfied, then feor any G e‘% , r(G) 1is
the largest subobject belonging to T( Ju CHn ‘& , S0

s(G/x(G)) = 0.//

The conditions of PROPOSITION 4,33 are not always

satisfied, as the following example shows.

EXAMPLE 4,34: For distinct primes q, t, consider the
torsion theory (T(Q({q,t})),‘?} ) and the group G of EXAMPLE 4,25:
G = [p'-n x, ¢ 'y, t_n(x-!-y)ln =1,2,3,...]
where p is a prime other than q, t and X, y are linearly
independent. G e“gj , but since p G + G, G ¢ T(Q(p))/’\‘?} .
However, there is a short exact sequence
0-—3Q(p) = [x],—2G6—>6G/[x], = Q({q,t}) —>0

which shows that G belongs to T(T(Q(p)) U T(Q({q,t})))n‘% .

Another problem suggested by results in Chapter 3

is that of determining when the class of extensions of objects
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in a torsion class Ul by members of a torsion class :72 is
itself a torsion class. (cf, PROPOSITION 3.16). The conditions

of PROPOSITION 4.33 are sufficient. Before showing this we prove

PROPOSITION 4.35: Let (Ul, 91) and (J,, F,) be
torsion theories for X.. The following conditions on K € XK
are equivalent.

(i) There exists a short exact sequence
0—3>K'—>K—K"— 0
with K' €' J | and K" € T .
(ii) There exists a short exact :;equence
0 —>K'— K—3K"—3 0

with K' € 31 and K" € T ,n 3.

PROOF. Let (31, 31) have idempotent radical .
(1) = (ii): There is a short exact sequence
0—>»K'—> L —91‘1(1(") —» 0
where L€ K and necessarily L € 271. The resulting exact sequence
0—3L —K —-—-)K"/rl(K") —3>0

satisfies (ii). Obviously (ii) = (i).//

PROPOSITION 4.36: Let (J 1, F), (J,, F,) be
torsion theories for K. with idempotent radicals r), 1,. If
rz(K) 18 U | ~pure in K, for every K € 31, then the following
conditions are equivalent:

W rkend,udy
(11) and (iii) as in PROPOSITION 4,35.
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PROOF, Clearly (ii) => (i) without restriction on
| and J,. By PROPOSITION 4.35 it suffices to show (1) => (iii).
For every K € T(:ylL}:IZ), there are short exact sequences
0o— rl(K)--—é K ——>K/r1(K) =K'—0
and 0 —>1,(K")— K" K"/, (K") —>0,
the latter being Ul-pure. But then K"/rZ(K") € ‘3‘1 a '}zn

T(J,u ), so K"/1,(K") = 0, i.e. K" € T, nF,.//

4. Generalized Rank

For the remainder of this chapter we shall work in Q.
Many results however can be generalized to modules over
hereditary rings (at least).

The torsion classes closed under subgroups and pure
subgroups have been classified by minimal representations. In
attempting a similar classification of torsion classes closed
under generalized pure subgroups, we therefore begin by
searching for groups which give simple representations of such
classes,

The hereditary torsion classes are determined by groups
of the form Z(p) and Z, which have no non-isomorphic proper
subgroups and for any torsion theory (:7,2?) belong to either
:] or F. Groups of the form Q(P), Z(p) and Z(ﬁm) give
representations of all torsion classes closed under pure
subgroups, and a group of this kind has no proper pure subgroups
and belongs to J or F for any torsion theory (27,2?). Some
information about torsion classes closed under C —-pure subgroups

might therefore come from the study of groups which belong to
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o or '3’ for any (U,?r') and which have no propere -pure
subgroups.

when C is a torsion class, however, we can specify
groups determining torsion classes closed undere -pure subgroups
in terms of a generalized rank function which we now introduce.

To justify the definition of generalized rank the

following result is needed:

PROPOSITION 4,37: Let (U,Y) be a torsion theory.
IfG E\g , then the intersection of any family of U ~pure

subgroups of G is U, -pure.

PROOF. By COROLLARY 4.29, it suffices to show that
¢/ ¢ ¢ for any set {G,|X € A} of W -pure subgroups of G.
Aeh A A
Suppose ¢ e AC ¢'< G and G' /}\EA A €L . Then for each p €A,

we have a diagram

m
0—9(G'Nn G )/m G, —> c'/m G.,\—% G'/(G'n Gu)—-—éo

(

Y
o0 —> (G Gu)/(;11 ——-}G/Gu

with exact rows., (G'+Gu) /Gu e‘g , but by assumption on
G' /f\ GA’ G'/(G' n GU) e W. Hence G'/(G'N GU) = 0. But this

means that G'C Gu for each U, so G'/ﬁ 6, =0, i.e. G/Q\ Gy Ef[./l

Every element or subset of a group G E'& is therefore
contained in a smallest Ul -pure subgroup.
The generalized rank for a torsion theory (u,%) is

introduced in the following definitions.
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DEFINITION 4,38: If ) 18 a subset of the elements
of a group G e‘g s LW ]l(i denotes the smallest U\ -pure subgroup
of G containing W . If W is a finite set {xl""’xn} or a
countable set {xy,%y,%zs00}; (WL Ji is denoted by [xl,...,xn]fi
or [xl,xz,...]& respectively. When there is no confusion about

the containing group the superscript G will be omitted.

DEFINITION 4.39: A nom-zero group G €'Y has U -rank
MM if it has a subset B with [ 6 lo = Gad | B | =™ and if
“‘tis the least cardinal number for which such a set exists., We
denote this by writing W -rank (G) =M. B is called al\ -basis

for G,

1f (Zl,@}) = (dJ ’:¥b) this definition gives the

standard (torsion-free) rank, since in 3’0 purity coincides with

J

0

infs .

-purity. Note that'u, ~rank is defined only on non-zero groupé

Obviously for every non-zero x € G € \31 , [x]ﬂ. has

U -rank 1, sc since G is generated by such subgroups, we have

PROPOSITION 4.40: If (I(,'§) is a torsion theory then
every G € Y s qa homomorphic image of a direct sum of groups in

Y with W -rank 1.//

Using THEOREM 4,32 and PROPOSITION 4,40 and reasoning
as in the proof of THEOREM 3.9, we obtain
THEOREM 4.41: Let (J,%F) and (U,'R) be torsion
theories such that _J is closed under ] -pure subgroups. Then
J =T Tn W) U6 e TaYy [U-rank(G) = 1}).//
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The groups with :70-rank 1 are the ratiomal groups,
and we have seen that a torsion class is closed under ZTO—pure
subgroups if and only if it is closed under pure subgroups.
Also there is a rank function ({0}-rank) corresponding to the
trivial torsion theory ({0},(i%), with {0}-rank (A) =1 if and
only if A is non-zero cyclic and cyclic groups determine the
hereditary torsion classes (closed under {0}-pure subgroups).
Thus THEOREM 4.41 is a generalization of THEOREM 1,34 and
THEOREM 3.9. Although the theory of types, divisibility and
algebraic compactness is too directly involved in the discussion
leading up to THEOREM 3.13 for any more detailed generalizations
to appear likely, the groups of generalized rank 1 nevertheless
seem to provide a convenient point of departure in the search
for representations for torsion classes with additional subgroup
closure properties,

An alternative description of generalized rank is

given by

PROPOSITION 4.42: G € % has W -rank W if and only
if it has a subset b with | § | =11, satisfying the following
equivalent conditions

(i) ¢/[B1ell,

(i1) If He 'Y and £:6 — H satisfies £(5) = 0,

then £ = 0,

and W is the smallest such cardinal number,

PROOF, We first verify the equivalence of (i) and

(ii). If (1) is satisfied and f:G—> H e‘% satisfies £(B) = 0,
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then there is a commutative diagram

G ——— G/[B]

H
where necessarily g = 0, so £ = 0. If G/[B] éiu,, it has a
non~-zero homomorphic image H in 20] . There results a non~-zero
homomorphism G —>G/[ 5 ]—> H, whose kernel includes f .
Now let {j be any subset of G with G = [ {§ ]’U..' For
any non-zero epimorphism £:G/[lW 1 —H €%, £ g(W) = 0, where
g is the natural map G — G/[ I} ]. But f g has a'll, ~pure kernel,

which must contain [||)],, = G, f.e. fg = 0, so £ = O and

("
¢/fW ] el . Conversely, if G/[W ] ell , then G/[ W], 1is

u
both a homomorphic image of G/[|l} ] and a member of 5 s 1.2,
G/[ W ]’LL =0, Thus G = [ Wl ]u. exactly when G/[ |1} ] el . In
particular this is so when LWl is replaced by a set 6 of minimal

cardinality.//

COROLLARY 4.43: G €'Y has finite W -rank n if and
only if there exist linearly independent elements XpseeesX € G

with G/ [xl] @D e D [xn] el and n is the least such integer.//

PROPOSITION 4,44: Let (LLy,'%)) and (uz,%z) be
torsion theories with % 1 = 82. Then for any group G € % 1°
/b\l-rank(G) _<u2-rank(G).

PROOF, Let 5 be a U,z-basis for G, Then G/[B] €

Uy, €Uy so WU -rank (6) < |B].//
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COROLLARY 4.45: If (UL 4) ic a torsion theory with
e 3’0, then the U.-rank of a growp in ‘Y canmot exceed its

rank.//

COROLLARY 4.46: Let X be rational and L the torsion

class {A|[A,X] = 0}; then U -rank(X) = 1.

PROOF. oJ oS, so

0 <W -rank(x) < rank(x) = 1.//

COROLLARY 4.47: For any torsion theory (1L,%) with
U,¢ Uo,u-rank(c) _<a@-rank(G) for every group G s‘g A/

One can introduce a notion of (u ,% )-independence in

“S , which coincides with the standard linear independence

groups in
in torsion-free groups for (|} ,‘93) = (30,3:0): call an element
x of G (u,%)-dependent on {xl.,...,xn} CGif x¢€ [xl,...,xn]u.
It would be interesting to know of conditions on torsion theories
(for O, or for module categories) under which this notion of
dependence gives an abstract dependence structure of the kind
studied by Kertész [26], Dlab [10] and others. We shall not
study this question explicitly, though several exauples of
pathology are to be found in the subsequent discussion.

For any torsion theory (u,\%), the class of groups

in\% with finite {{ -rank is closed under homomorphic images in

% , and under extensions, but not under subgroups in general.

PROPOSITION 4.48: Let G €Y have finite| -rank n. Then any
non-zero homomorphic image of G which belongs to 5 has || ~rank

<n,
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PROOF. Let {xl,...,xn} be a | -basis for G,G/G' €'Y,
'{yl,...,yr} the set of distinct cosets of x;,...,x mod. G' and
E/G' = [yl""’yr]u' Then E/G' is || -pure in G/G' and since
G/G' € '%« , G' isW -pure in G. Since | -purity determines a
proper class, 8 is therefore (L-pure in G and since it contains
X seessX s E =G, i.e. G/G' = [yl,...,yr]u, so | -rank (G/G')

<r <n.//

COROLLARY 4.49: If G € \5 has U -rank 1, so does any

of its non-zero homomorphic images in'%y .//

PROPOSITION 4,50: If G' is U -pure inG ey, and
if ' and G/G' have finite| -rank, so does G, and
W -rank(G) < u—rank(c’) +,lL—rank(G/G')

(For an instance of strict inequality, see EXAMPLE 4,58 below).

PROOF. We choose \_-bases {xl,...,xn} for G',
{zl,...,zm} for G/G' and representatives y, for z, in G,

i=1,...,m and define groups

A

G = [xl,...,xn]; G = [xl,...,xn,yl,..;,ym].
For any homomorphism g:G - K e% with g(G) = 0, we have a

commutative diagram

¢ — f' 3 g
h k
G I >6—8 4k
where all other maps are inclusions., Since gk f' =g f h = 0,

we infer from PROPOSITION 4.42 that g k = O so there is a

homomorphism v:G/G'—-=3K such that vu = g, where u is the
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natural map from G to G/G' and a commutative diagram

?

[P Y A—

Kk
c —*f E 5k
J/t ' u /
v
49 /6 —I 36t

where f" is inclusion and t the natural map. From this,
vi't=vuf=gf=0,s0vf"=0, since t is an epimorphism.
Also, (G'+G)/G' = [245+.+,2 ] so by PROPOSITION 4.42, v = O.

Thus g = v u = 0, so as in the proof of PROPOSITION 4.42, we
have

[xlg-..,xn,yl,...,ym]u =G
so\| -rank(G) < m + n =T -rank(G') + UL -rank(G/G").//

The next example shows that a group with a generalized
rank 1 may have a subgroup for which the corresponding rank is

infinite,

EXAMPLE 4,51: Let Pys Pys eee be the natural enumeration

of the primes, Y = Q({p2n[n =1,2,...}) and X = | % ln =1,2,...].
2n

Y has&) -rank 1, since any element with zero height at all primes

Py,-1 Bives ad -basis. Any finite subset {xl, ceey xm} of X

generates a cyclic subgroup [x], and X/([x] = @ Z(p:(n))’

n=12,..., where o(n) € Z. Thus X/(x] EGL, so &) -rank(X) = ‘KO’

5. Groups of WU-rank 1

Among other things we wish to describe the groups G

of L -rank 1 ((U,,‘g) is a torsion theory throughout this section)
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for which T(G) is closed under u-pure subgroups. This requires
in particular that G' € T(G) for every UL -pure subgroup G' of G.
The most obvious way in which this can be satisfied is for G to
have no properu,-pure subgroups at all, and the possible
relevance of this property has already been noted (§4). This
section is largely devoted to the structure of groups of W ~rank
l. We begin by discussing groups G of U_-rank 1 which have no
properu,-pure subgroups and then consider G satisfying a
weaker condition: every proper || -pure subgroup G' has finite
index. An example shows that even the weaker condition is not
universally satisfied and points to the difficulty in obtaining
an analogue of the type set to describe the groups of W -rank 1
in a torsion class (cf.51 of Chapter 2). This difficulty is
also apparent in THEOREM 4.63, which partly generalizes
THEOREM 3,12,

The other main result on groups of W-rank 1 asserts

that they cannot be mixed.

DEFINITION 4.52: A group G is said to be U -pure

simple if it has no proper W, ~pure subgroups.

PROPOSITION 4.53: A group ¢ €5 with U -rank 1 is
WU-pure simple if and only if for every nom-zero x € G, {x} is

a’\l-basis.

PROOF. If every non-zero element gives a W -basis
and 0 $ G' g-: G, then for any non-zero x € G',

G/G' = (G/[xD)/(6"/[x]) € .



75.
so G' is not WU. -pure. Conversely, if G is | -pure simple

[x]‘ﬂ.: G for every non-zero x € G.//

A torsion-free group is U -pure simple if and only

0

if it has go-rank 1. It is not necessary that UL -rank(G) = 1
implies G isu—pure simple in general, although the last proof

shows that the converse implication always holds,

PROPOSITION 4.54: If for some prime p, Z(p) €%,
then every L -pure simple group in 'y is either p-divisible or

isomorphic to Z(p).

PROOF. pG is || -pure in G for every G e\% , since
G/pG EQ_) . Thus au, -pure simple group G e'g‘) which {s not

p-divisible is p-elementary, and then necessarily cyclic.//

Every non-trivial % contains Z which has WU -basis
{1}. 1If for some prime p, Z(p) 6% , then by the previous

result, Z is notu,—pure simple, Thus we have

PROPOSITION 4.55: If every G ey with{{ -rank 1 is

U -pure simple, then % c 3'0.//

The converse of PROPOSITION 4.55 is false (cf. EXAMPLE
4,58 below).

In using groups with L ~rank 1 to classify torsion
classes closed under u-pure subgroups, the fact that such a
group G may have a proper u—pure subgroup p G presents no
great difficulty, since we are essentially concerned only with

torsion-free G, and for such groups, p G = G, so T(pG) = T(G),



We shall see in EXAMPLE 4,58 that much greater complexity of
U -pure subgroup structure of G is possible, First however,
we note a connection between single-element'u.-bases and a
property which may be regarded as a generaljization of u_-pure.

simplicity.

PROPOSITION 4.56: If 'LL-rat;k(G) = 1, then the
follawing conditions are equivalent:
(1) For every non-zero x € G and for every |l -basis
{y} of G there exists a non-zero integer n such that ny € [x]u.
(i1) Every proper || -pure subgroup of G has finite

index.

PROOF. (1) => (ii): Let G' be a properu,-pure
subgroup of G, x € G', x $ 0, {y} aU_—basis for G with
nye [x]ug G', and H = [G',y]. Then H/G' is cyclic with
order m = min{k € Z|k >0, kyeG'})., In the resulting short

exact sequence

0—>2Z(m) = H/G'— G/G'—> G/H—> 0

i1 i2 ir

we have H/G'e% and G/He k. 1fm= Py Py .. P, where
: i

i
Pysee+sP_ are primes, then H/G' = Z(pll) @ ... D Z(prr), and

(G/H) is divisible for J = 1,2,...r, since no Z(p ) belongs
P
toll. If for some j, Z(pjj) is embedded (in G/G') in a

subgroup isomorphic to Z(p ), then Z(p ) belongs to both [ and

R
‘%, which is impossible. It follows that. Z(p j) (G/G' )p for

h
j=12,...,r, so that H/G' is a finite pure subgroup and hence
a direct summand of G/G' (see for example [15] p.80). But

since G/G' s\%and G/H €\, we then have H/G' = G/G', so G'
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has finite index m.
(11) = (1): If every properu.-pure subgroup has
finite index and x $ O, then either {x} is a U.-basis or [x],u'
has finite index, in which case for every | -basis {y}, we have

nye€ [x] forsomene2,n# 0.//

W
COROLLARY 4.57: If G has|\l -rank 1,is torsion-free

and satisfies the conditions of PROPOSITION 4.56 and if T(G)

i8 closed under (| -pure subgroups, then T(G) = T(G') for every

proper WL -pure subgroup G' of G.

PROOF. Since G/G' is finite, PROPOSITION 2.20 says

that G € T(G'). By assumption, G' € T(G).//

If every group with U -rank 1 satisfies the conditions
of PROPOSITION 4,56, and if in addition %g '}0, then the groups

with u,-rank 1 are allu-pure simple,

The next example shows among other things that the

conditions of PROPOSITION 4.56 need not be satisfied when

Y%,

EXAMPLE 4.58: Let
WU = 102,31} v {z(p)|all primes p})
and " 6= [2%, 3 %|n = 1,2,...]
where x and y are linearly independent. Then Q(2) @ Q(3) =
GEe % . Denoting the cosets of x,y modulo [x+y] by X,y
respectively, we have x and y with the same type, with infinite
2-height, 3-height respectively. Thus G/[x+ty] € UL and G has

’u,-rank 1,
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Clearly every Ul -basis of G must have the form {a+b}
with a € [x],, b€ [y], and a $ 0, b $ 0, and atb can have no

non-zero multiple in either [x]u = [x], or [y]'LL = [yl,.

If a group ofu_-rank 1 is directly decomposable, then
every direct summand has || -rank 1, by COROLLARY 4.49, Such a
group cannot be a direct sum of infinitely many non-zero
subgroups, for factoring out a cyclic subgroup leaves almost all
sumnands intact. It is however possible for direct products of
infinitely many groﬁps to have generalized rank 1., Wiegold
[43] has shown, in effect, that TTI(p) hasc,@-rank 1, where
the product is taken over all primes p. By COROLLARY 4.49 the
corresponding statement is true for any set of primes, For the
group G of EXAMPLE 4.58, we have T(G) = T({Q(2),Q(3)}), while
by PROPOSITION 3.3, T(JI’IFP I(p) = T({I(p)|all p}). we are led
to ask whether, in general, the discussion of groups of W -rank
1 in torsion classes can be reduced to consideration of
indecomposable groups. We must leave this question unanswered,

The conditions under which a rational group can have
generalized rank 1 are given by

PROPOSITION 4.59: Let X be a rational group belonging
to% . WL —rank(x) =1 if and only ¢f T(X) = ‘l‘(nl,nz,...) where
n, =0 if z(p°i°) eg , Oor»if Z(.pi) € ﬁ but Z(p:) ¢ 8

PROOF. If t(X) is as described, let x € X have height
(nl,nz,...). Then X/[x] = @ z_(pr];i
¢% s then Z(ptili) elW. 1f Z(pi) Efj but Z(p:) 4:% , then |

n

Z(pii) = 0 or Z(p:), and so belongs tolW , and if Z(poio) € ﬁ

), 1=1,2,... . If 2(py)
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n,
then Z(pil) = 0. Thus X/[x] e'LLrand zL—rank(X) = 1. Conversely,
if X has{_-basis {x}, then X/[x] is a direct sum of primary
groups, each belonging to |l and it is a simple matter to show

from the restriction this places on their orders, that the

height of x is as required.//

A non-zero direct summand of a group of W-rank 1
also has W -rank 1 (COROLLARY 4.49). Thus together with the
remarks following EXAMPLE 4.58, PROPOSITION 4.59 gives a
necessary condition for a completely decomposable group G efﬁ
to have U -rank 1: G must have finite rank and the types of its
direct summands must be as in PROPOSITION 4.59. This condition
is not sufficient, however. For example let A and B be
isomor;hic rational groups of {J -rank 1. If {x} is all -basis
for Akéa B, then clearly A ® B/[x], e L. But [x], is a direct
summand (see for example [15]p.166), so A ® B/[x],, which is
rational, also belongs to{% . This clearly is impossible,

Although in the investigation of torsion classes only
torsion and torsion-free groups need be considered, there is
some interest in the fact that mixed groups cannot have

generalized rank 1. As a first step in showing this we prove

PROPOSITION 4.60: A torsion group with U -rank 1 is

eyelic,

PROOF. Let G € UOA‘S have )| -basis {x}. Then
since G/[x] has no more non-zero primary components than G, and

belongs toqi,, it follows that G/[x] is divisible and has zero
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Gt and [x], we have Gt/[x] = (E}) Gp)/(f}} [xp]), where xp =0
for almost all values of p so that for such p, Gé = Gp/[xp] is
in both'fB andflk, i.e. Gp = 0, All the remaining Gp's are
reduced, (since factoring out a cyclic subgroup cannot eliminate
a non-zero divisitle subgroup) and have Gp/[xp] divisible. If
x_ has finite height (in Gp) it is contained in a cyclic direct
sumand (see for example [15] p.80), whose complementary
summand must vanish as it is divisible. There remains the case
where xp has infinite height. In this case, if y € Gp, then
for any positive integer n, there exists y' € Gp such that

y - pny' =m xp, for some m € Z, since Gp/[xp] is divisible.

But then X, = pnx' for some x' € GP, whence it follows that y

80.

has infinite height and Gp is divisible. With this contradiction

the proof is complete.//

PROPOSITION 4.61: A group with || -rank 1 is either

torsion or torsion-free.

PROOF. Let G ¢ %5 be mixed and have a |\ -basis {x}.
If x¢ Gt’ then Gt/[x] is pure in (G/[x])t, so by THEOREM 1.38
and PRCPOSITION 3.7 G_/[x] € U. But thenL -rank(G,) = 1, so
by PROPOSITION 4.60, Gt is cyclic which means that G splits
(see for example [15] p.80) and this is not possible since a
summand complementary to Gt is not affecteq by the factoring
out of [x]. Thts x must have infinite oxrder. As in the proof

of PROPOSITION 4,60 it can be seen that Gt is reduced whence it

follows that G has a direct summand of the form Z(pn) ({15] p.80).
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Let such a summand be generated by y. Then x = k y + z, where
keZ, ky + O and z has infinite order. Sinceu contains no
reduced p-groups, [y]<€ [x], i.e. for some m€ Z, y=mx =mk y
+ m z, But then linear independence of y and z requires that
mz=0, i,e. m=0 and y =m k y = 0. Again we have a

contradiction.//

The next theorem is a partial analogue of THEOREM 3,12,

Its proof makes use of the following lemma,

LEMMA 4.62: If G' is\ -pure in G € 'Y then

[x]_‘i: = [x]fk for any x € G'.

G' G G'
A\ . r i - i 3
PROOF _x]u is WL pure in G, so [x]ug[x]u

1 ]
But x € [x]iLr\ G' which is |J_~-pure in G', so [x]G C [x]G nG'
wn )
G
C .
C [X]},L //

THEOREM 4.63: Let (C {:% be a class of groups with
W ~rank 1, é the class of homomorphic images in \5 of direct
sums of copies of groups in C , r, s the idempotent radicals for
™€), . If é is closed under extensions and satisfies
(*) Cl,...,Cn eC, Cu—pure in Clﬁ—) ere B Cn’
U~z (€) =1=>CceC
then T(C) is closed wnder U -pure subgroups 1f and only if s r

is idempotent..

PROOF. For a group A ES » we define a subgroup A
to be generated by all elements of A which belong to the images

of homomorphisms from groups C € cC. Clearly AeT@ for any



Ae‘g . If (A/B) = A'/A, we have an exact sequence

0—A-— A'—3 (A/A)— 0
b~ — — -—
whence A' €C, so A’ = 4, (A/A) = 0 and A = r(A). In other
words, T(e)f\‘g = é_) Thus for any A € T(G)n‘% , with [ -

pure subgroup A' we have an exact diagram

0—B —) C;%\c)‘——-m——m
A' = K/B
0

where each Cy € C and K is the inverse image of A' in @ Cy -

B is U -pure in P C,» since A €% ; also K/B is U -pure in
@C)\/B' Therefore K isu—pure in ®C>\' For any y € K, we

have, after suitably re~labelling, y € Cl D . ® Cn’ which

is W -pure in P Cy» 80 [y]i = [y]i is WU-pure in

C, D ... D C, and therefore belongs to C . Thus K.e T(C),

so A' € T(C). T(C) n‘% is therefore closed under 1L -pure

subgroups. The result now follows from THEOREM 4.32,//

6. Groups of Wk-rank 1 (continued)

We commence this section by characterizing the groups

of J:)p-rank 1, where p is a prime. As a first step we prove

PROPOSITION 4.64: Let G be p-reduced with o@p-mnk 1.

Then for any .,@p-basis {x} of G, [x] is a p-pure subgroup.

PROOF. It clearly suffices to show that G/[x] has no
direct summand of the form Z(p"). By PROPOSITION 4.61 it may be
assumed that G is torsion or torsion-free, and in the former

case G = [x], by PROPOSITION 4,60. There remains only the

82,
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torsion-free case. If G/[x] has a summand Z(ﬁm) then G has a
subgroup G', containing x, for which the sequence
' o
0— [x] —6G6'-—2Z(p )—0
is-exact. But then G' = Q(p), ([15], p.14S) contrary to the

assumption that G is p-reduced.//

This result will enable us to give a complete
description of the groups withcégp-rank 1. We first recall a

definition introduced by Fuchs [16]:

DEFINITION 4.65: A subgroup B of a group A is called
a p-basic subgroup, where p is a prime, if B is a direct sum of
eyelic groups of infinite and/or p-power order, B is p-pure in

A and A/B is p-divisible.

We have shown in PROPOSITION 4.64 that if G ¢ (R,p has
a‘égp—basis'{x}, then [x] is a p-basic subgroup. On the other
hand, if a p-reduced group has a cyclic p-basic subgroup [y],

then {y} is clearly a égp—basis.

PROPOSITION 4.66: Ifogp-rank(G) =1 and x € G, then

{x} is azﬁbp-basis if and only if [x] is a p-basic subgroup.//

A p-reduced torsion group must be a p-group and it is
shown in [3] that a torsion-free p-reduced group has a cyclic
p-basic subgroup if and only if it 1s isomorphic to a p-pure
subgroup of I(p). These observations, with PROPOSITION 4.66,

give a proof of



THEOREM 4.67: A group G € ®, , has D -rank 1 if and
only tf it is isomorphic to either a non-zero p-pure subgroup of

I(p) or Z(pn) for some finite n.//

If a torsion group G has égp-rank 1, only a generator
can give a éDp-basis, In the case of torsion-free G, the‘g)p—

bases are described by

PROPOSITION 4.68: ILet G be a torsion-free, p-reduced
group with<ﬂ5p-rank 1, viewed as a p-pure subgroup of I(p).
The following conditions are equivalent for x € G:
(1) x has p~height 0 (in G and hence in 1(p)J.
(ii) x 78 a p-adic unit,

(iii) {x} s atﬂDp-basis for G.

PROOF, The equivalence of (i) and (ii) is well-known.
By a theorem in [2], G/[x] is p-divisible if and only if [x]
contains a p—adic unit, and-this is so precisely when x itself

is a unit.//

Thus when G is torsion-free of aDp-rank 1, every non-
zero clement has the form p"x, where {x} is a 4@p-basis.

The results obtained thus far enable us to give a
rough description of the groups ofé@%-rank 1, where S 1s a set
of primes. In the uninteresting torsion case they are the

cyclic S-groups; in the torsion-free case they are described

by
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PROPOSITION 4.69: A non-zero S-reduced, torsion-free
group G has ) -rank 1 if and only if

(1) for each p € S there is an exact sequence

0—G6'"(p)— 6 —=G"(p)— 0

where G'(p) is p-divisible and G"(p) is isomorphic to a p-pure
subgroup of I(p), and

(ii1) there exists an element x of G such that for

every p € S with pG § G, the image of x in G"(p) has p-height 0.

PROOF, Let@s—rank(G) = 1 and let {x} be aogs-basis
for G. For p € S such that G is p-reduced, {x} is aogp-basis,
since G/[x] is S~divisible and hence p-divisible. Thus G is
isomorphic to a p-pure subgroup of I(p) and we let G'(p) = O,
G"(p) = G, If G is p-divisible, we let G'(p) = G and G"(p) = O.
Finally we consider p € S such that G is neither p-divisible nor
p-reduced. Let G'(p) be the maximal p-divisible subgroups of G
and G"(p) = G/G'(p). Denoting the coset of x mod.G'(p) by X,

-we have a commutétive, exact diagram

0 3 [x] ——> @ > 6/[x] —> 0

N

0 —>[x] = (Ix] + ¢"(p))/(G'(p))—> G/G" (p)—3 G/ ([x]4G"(p)) —3 O,
0 \\\ESO

G/[{x] is S~divisible and hence p~divisible, so the same is true

of G/([x] + G'(p)). It therefore follows that G/G'(p) = G"(p)
has c@p-rank 1 and thus has a p-pure embedding in I(p). As
defined, G"(p) % O exactly when pG % G and in such cases 1t is
clear from the proof so far that the image of x in G'"(p) has
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Conversely, if G satisfies (i) and (ii), we shall show
that for x as described in (ii), x 1is aiébs-basis. If G"(p) = G,
then x has p-height 0, so G/[x] is p-divisible and 1f G"(p) = O,
G itself is p-divisible. In the reméining case, G"(p)/[X] is
p-divisible, where again % denotes the image of x in G"(p). But
G"(p) / [RI=(G/G" (p)) /(([x]46" (p)) /6" (P))=G/ ([x]4G" (p))
(G'(p) has been treated as a subgroup of G), and ([x]+G'(p))/[x)
is also p-divisible, so from the exact sequence
0 —> ([x]46'(p)) /[x] —> 6/ [x] —> G/ ([x]4G' (p) ) —> O
it then follows that G/[x] is p-divisible. Thus G/[x] is
p-divisible for every p € S, so {x} is a éDS-basis and the proof

is complete.//

If the groups G'(p) are regarded as subgroups of G,
they are all pure, so their intersection is also pure in G and

hence in each G'(p). Being therefore S-divisible, £;L G'(p) = 0.

Thus we have

COROLLARY 4,70: A torsion free group with jDs-rank 1
16 a subdirect product of torsion-free groups with o@p-i’cmk 1,

at most one for each p € S.//

In our discussion of groups of generalized rank 1, we
have not so far examined the question when such groups G
satisfy

(*) G e J or F for any torsion theory (J ,%).
(This condition is satisfied by groups of Zro-rank 1). PROPOSITION
4,69 provides a characterization of the groups oféb-mank 1

which satisfy (*):
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PROPOSITION 4.71: With the notation of PROPOSITION
4,69, and s the set of all primes, if G is torsion-free and
D -rank(G) = 1, then G satisfies (*) if and only if for every

ps G =G'(p) or G"(p).

PROOF. By definition of the groups G'(p) and G"(p),
the stated condition is necessary for (*). Conversely, if G
satisfies this condition it is cohesive in the sense of [11],
and so G/r(G) is divisible for any idempotent radical r with
r(G) % 0 (r(G) is a pure subgroup). Thus if r(G) % O, r is
associated with a torsion class containing torsion-free groups,

so that G/r(G) = r(G/r(G)) = 0, i.e. G = r(G).//

There are groups of g)s—rank 1 which do not satisfy
(*), e.g. nl(p), p € S if S has at least two elements.

To obtain a description of the class of groups of
u_-rank 1 in a torsion class ¢ , analogous to that of the type
set given by THEOREM 2.11, it is first necessary to find
conditions on groups A,B with Wl-rank(a) = U -rank(B) = 1 which
ensure that B € T(A). For a really close analogy with §1 of
Chapter 2, we should restrict our attention to those torsion
theories (u,%) for which all non-zero homomorphisms between
groups with Wl -rank 1 are monomorphisms. Such is the case when
the groups with {[ -rank 1 are all { -pure simple, though as we
shall see in the case of (‘gp’&p)’ this condition is not
necessary. For such a (U,'Yy) let A and B have U -rank 1, with
[A,B] # O. Then we may assume that AC B, and it follows that

B belongs to T(A) if and only if B/A does. If (U,'Y) = (’JO,'}O),
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then in every case B € T(A) and B/A € :70. If every group with
U-rank 1 is W-pure simple, then B/A € UL always, but EXAMPLE
4.34 raises doubts as to whether B € T(A), though certainly
Be T({A} v(C) for some subclass C of Uk, and in particular
vhen C = u.

A complete set of conditions under which B € T({A} UL)
may be regarded as a partial generalization of THEOREM 2,11,
since in §1 of Chapter 2 the class T(X), X rational, could as
well have been replaced by T({X} u C) for any C g;270, as the
inclusion of extra torsion groups in a torsion class :} does
not enlarge o N 3’0' Similarly, if J has type set T , so
dees (v ) if C QUO.

We shall investigate the question for (U,%) =
(éBp,G{p), where p is a prime. We begin with a description of

homomorphic images of groups with b@p—rank 1.

PROPOSITION 4.72: Let B be torsion-free of o@p-—rmk
1. Then any proper horomorphic image of B is the direct sum

of a p~divisible group and a bounded p-group.

PKOOF. I£ 0 + ACB and n = min {p~height in B of
ala € A}, then A € p"B and if a € A has p-height n in B, it has
zero p-height in pnB, since otherwise a = pn+1b for some b € B,
Being isomorphic to B, pnB has,@p-—rank 1, so by PROPOSITION
4.68, {al} is a,@p-—basis for p"B. Since p B/[a] belongs to
°9p’ so does pnB/A, and thus Ext(B/pnB, p'B/A) = 0, so the
natural exact sequence

0—>p"B/A—3B/A—> B/p"B —> 0

is split,//
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COROLLARY 4.73: If B is torsion-free withJE)p-rank 1,
then B/A is a bounded p-group for any proper <1@p-pure subgroup
A/

COROLLARY 4,74: If A, B are torsion-free with:&)p-rank
1, then any non-zero homomorphism f:A—> B is a monomorphism.

PROOF. If f has non-zero kernel, its image is both a
subgroup of B and the direct sum of a p-~divisible group and a

bounded p-group, so f = 0.//

If AS B and both groups are torsion-free with
o(Bp—rank 1, then since T(A) contains all p-groups, we have

B € T({A} Uo@p) . This fact with COROLLARY 4.74 gives

PROPOSITION 4.75: The following conditions are
equivalent for torsion-free groups A and B witha@p-rcmk 1:
(1) Be 1A} UD)
(ii) [a,B] ¥ 0

(iii) A is isomorphic to a subgroup of B.//

I(p) has o@p—rank 1 and has subgroups isomorphic to
all other torsion~free groups with D@p-rank 1. 1In the case of
go—rank, Q plays a similar role. A further similarity between

the two groups is noted in the following proposition (cf. COROLLARY 2.5).

PROPOSITION 4.76: The following conditions are
equivalent for a torsion class D

(1) 7 contains a non-zero torsion-free p-reduced

group.
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(ii) 3 contains a non-zero torsion=-free group which
18 not p-divisible.

(iii) I e .

PROOF. Obviously (i) = (ii) and (iii) => (4i);

(ii) => (iii) is just LEMMA 3.1.//

To conclude the discussion of groups with generalized
rank 1 we describe some torsion classes closed under u-—pure
[+
subgroups when || is determined by groups Z(p ) (for various

primes p).

PROPOSITION 4.77: A group has (:rpf‘o@)-r’ank 1<if
and only if it is either a non-zero cyclic torsion growp or

isomorphic to Q(S), where SC P,

PROOF. Clearly the groups indicated have (jpn o@)—
rank 1, and for the converse, by PROPOSITIONS 4.60 and 4.61, we
need only consider torsion-free groups. If such a group G has
(ZPt\a% )-rank 1, there is an exact sequence

0—2Z2—>6—G"—30
with G" ¢ gpne%. Thus G has rank 1 and G" = @G"p, peEP
where G"p = 0 or Z(poo). It follows that G = Q(S), where

S={pc¢ PIG"p =z} .1/

THEOREM 4.78: If (ZPno@)-rank(c) = 1, then T(G)

i8 closed under (:fpr\ D ) -pure subgroups.

PROOF, If G is a torsion group, then T(G) is hereditary;

if not, then T(G) =o@ , where S € P, The idempotent radical

S
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of Upr\ P commutes with all others (cf. the proof of PROPOSITION
4,19) so in this case, by THEOREM 4.32, it suffices to consider
S-divisible groups with no direct summands Z(pm), for pe P. 1If

(%%) 0—>A'—5A —A"—0
is exact, with A,A" eog)s without direct summands Z(poo), pebl,
then Ay = 0. But then (**) is S-pure, so A’ E‘Q)S and has no

S
direct summand Z(pw), peP.//

7. An Example

To conclude this chapter, we find necessary and
sufficient conditions on rational groups X and Y for the closure
of T(X) under T(Y)-pure subgroups.

Our notation for heights, types etc.largely conforms
to that of [15], Chapter VII. In particular, PysPysses is the
natural enumeration of the primes, and in a height (hl,hz,...,

hn,...), hn denotes height at Pye

THEOREM 4.79: Let X,Y be rational such that 1(X) is
the type of a height (hl’hZ""’hn"“) with 0 < h <e for
infinitely many values of n. Then T(X) ie closed wunderT(Y)=-pure

subgroups if and only if Tt(¥Y) < 1(X).

PROOF. Let (T(Y),(.}) be the torsion theory for T(Y)
and let (gl,gz,...,gn,...) be a height with the same type as Y.

If T(Y) < ©(X), then X € T(Y), so T(Y)-pure subgroups
are T(X)-pure. For groups in T(X), such subgroups are direct

summands, and so belong to T(X) themselves.



For the converse we need to consider two cases:
1) Y % T(h +1,h,+1, .0 00h +1,...) . Let M =
{nlhn = o}, Let (k; ky,e00 sk ,000) be the subsequence of
positive finite terms of (hl’hz”"’hn"") and re-label the
associated primes as q;,q,,... . Let {x,y} be a basis for a
2~-dimensional rational vector space and
G = [p—nX,p-ny,q;knx,q;kn(q;lx+y)lp EM, n=1,2,...].
A routine argument using the linear independence of x and y
shows that x has height (hl’hZ""’hn"") in G. Suppose y is
divisible by %:n for some n, Since the same is true of
qglxﬁy, x has qn-height kn+1 at least, which is impossible.
Thus T(y) < T(x) = T(X) (in G). Denoting the coset of y mod.
[x], by ¥, we have
G/[x], = [p-n v, a, n ylp € M, n = 1,2,...]

so G/[x]* is rational with type T(X). From the exact sequence

n

03X 2= [x],—G6—G/[x], = X—0
it is clear that G € T(X).

Observing that [y], ¢ T(X), we now show that [y], is
T(Y)~pure in G. Let % denote the coset of x mod. [y]*. Then

-n —(kn+l)

G/lyl, = [p %, q, Zlpe M, n=1,2,,.. ]
which is rational of type f_T(hl +1, h2 + 1, ...,hn + 1, ..4),
so G/[yl, E:EL and [y], is T(Y)-pure in G.

(11) T(V) < T(hy+l,hy+1,..0,h +1,...). Let

2
U= {pnlpn Y =Y} and § = {pn|hn <gl
Note that our assumption concerning T(Y) requires that p X = X

for all pe€ U, S is infinite and 8, is finite for each P, €8S.

92.



Let
ve1p | 2glg <=l

and re-label the entries of (hl’hZ""’hn’°°') as follows:

denote the primes P, € S by 819895000y their heights by kl,kz,..;

and denote the primes in V by VysVysees with heights jl’jZ"" .
Finally let
= [p-nx’ snknx’ annx’ p-ny’ SZEEE-IY’ vthy, 82:2n(SEiX+y)
lp e U, n =1,2,...1.
As in case (1), T(y) < 1(x) = 1(X), (x], = X = H/[x], and
H e T(X). Also,

~k2n-l- -(k2n+1)- “3n_
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nn'
H/[yl, = [p %, 5, | %, 8, X, v %lpe U, n=1,2,...]

which is rational with type i T(Y), since it has lower height
at infinitely many primes, namely Sop-1? B = 1,2,... . Hence

[yl, is T(Y)-pure in H, but [yl, ¢ T(X).//

THEOREM 4,79 has some obvious minor generalizations:
If T(Y) is replaced by an r.t. torsion class whose type set has
a least element, the theorem remains true, If J is an r.t.
torsion class whose type set I' has a subset I'' of minimal
elements such that for every y € I' there is y' € T' with y > Y'
and if in addition y'i T(hy+l,ho+1,...,h +1,...) for every
¥' € T', then the argument in case (i) of the proof of THEOREM
4.79 can be easily modified to show that T(X) is not closed
under :7-pure subgroups.

Only the case X = Q(P) now remains. Here we prove

a more general result.
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THEOREM 4.80: $P = T(Q(P)) is closed wnder J -pure
subgroups, for a torsion class J , if and only if Z(pw) ed

for every p € P.

PROOF. If z(pm) € o for each p € P, then by
PROPOSITION 4.77 and THEOREM 4,78, c@P is closed under
("meg) )-pure subgroups and in particular,U -pure subgroups.

Conversgely, if Z(pm) 4: o for some p € P, then :;7 is
a t-torsion class, and Z(pm) e F, where (J,3) is the torsion
theory ass;)ciated with /. The natural exact sequence

0 — Q(P-{p}) — Q) —> Z(p )—> 0

is accordinglyg-pure, but Q(pP-{p}) 4:0@?.//

COROLLARY 4.81: If {J is not a t-torsion class, (in
particular if oJ = T(Y) for some rational Y), then @P 18

closed wnder J -pure subgroups.//
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CHAPTER 5

MISCELLANEOUS TOPICS

1. Rational Groups and the Amitsur Construction

The Amitsur radical construction described in Chapter
1 does not always terminate after a finite number of steps, even
in abelian categories. If for example we begin with the class
{Z(p)} where p is prime, then for any group G, we have Gn = G[pn],
so in this case there is no finite upper bound on the number of
steps which may be required. In this section we shall discuss
the Amitsur construction for the idempotent radical r corresponding
to T(X), where X is rational, starting from {X}. Thus for any
group G, we define G1 to be the subgroup generated by the images
of all homomorphisms from X to G, and GB = &1& Ga or (G/GB-l)l =

GB/G

according as 8 is a limit ordinal or not.

-1
PROPOSITION 5.1: If G is a torsion group, then

r(G) = G1 for every rational group X.

PROOF. For any prime p with pX # X, let y € G have

order p°; then X/p"X = [y] so Gpg; G I1f pX = X, let Gp =

l.
D © R, where D is divisible, R reduced. Then D C G, but
[X,R] = 0. It follows that G, = @G(p), where 6P is Gp if

pX # X and otherwise its divisible part. This clearly is r(G).//

PROPOSITION 5.2: If X = Q(P) for some set P of primes,

then r(G) = G, for every group G.



PROOF. Since r(G) is the maximum P-divisible subgroup,
its maximum P-subgroup is divisible., In a complementary direct
summand H of r(G), divisibility by powers of primes in P is
uniquely defined, so H, as a Q(P)-module, is a homomorphic image
of a direct sum of copies of X. Hence r(G) & Gl’ so the two

subgroups coincide.//

THEOREM 5.3: If X = Q(P) for some set P of primes,

then r(G) = G1 for all torsion-free groups G. Otherwise there

exists, for each positive integer k, a torsion-free group G(k)

of rank k such that
r(G(k)) - G(k) - Gék).

PROOF. Only the case X ¥ Q(P) needs to be considered.
Let 7(X) = 0 and let (hl’hZ""’hn"") be a height of type o,
(jl,jz,...,jn,...) the subsequence of finite non-zero terms of

(hl’hZ""’hn"°')’ 4ys9yse++59,s+++ the associated primes. The

(k)

groups G are defined by

k - - =]
G()= [p nxl’ o-o,pnxk, qn nxl,q_n (qnx +X LN Y

n(qr.xlxk-1+ x )|pX = X, (p prime), n = 1,2,...]

where {xl,xz,...,xn,...} is a linearly independent set.

We first show, by induction, that

o = gl k= L,2,0e0

Note that Al = A(0) for any torsion-free group A.

Now

~

(1) -n -jn .
G .= (p X3 4, xllpk =X, n=1,2,...] =X

96.
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Do) -

so G(l)(o) = G(l) = [x1]*. Assume G [xl]*. Denoting

the coset of an element x by X, we have

. I T N
¢M11x,1y = 157%eees PR @ "Fys 4, MR eees

—jn -1_ - _ _
q, (4, ®_HE)|pX = X, n=1,2,... 1.

G(k)/[xll* is thus isomorphic, in an obvious way, to G(k-l).

For any y € G(k)(o), y belongs to [;ﬁ]*, so y belongs to [xl,xZ]*.

Let my = mlx1+m2x2 where m,m, ,m, € Z, From the definition of
k)

G( , it is clear that x, has height (hl’hZ""’hn"") and

1
therefore type 0. Suppose X, is divisible by qnn for some u.

j +1
. -1 4
Since the same is true of q, x1+x2, x) is divisible by q, s
and this 1s impossible., Thus T(xz) < g. But m,%X, = my'—mlxl
and 1(y), T(xl) >0, som, = 0 and y ¢ [xll*. This proves the
assertion,

Now for any k, again denoting the coset of x by';, we

have (G(k)/[xll*)(o) = [§é]*, so from the exact sequence

0-¢® () = Gfk)—é Gék)-—-) (G(k)/G{k))1 - 6™ 16% @) >0

(k)

AR T P ¢?

we deduce that G and repetitions of this

argument give an ascending series

W (T W
]

1{ < 5 *...ilcr
DR E) 0

Il

so that r(G(k)) = G(k).//

By taking k = 2 in THEOREM 5.3, we obtain

COROLLARY 5.4: (G/G(0))(0) = 0 for all torsion-free



groups G if and only if 0 = T(Q(P)) for some set P of primes.//

(k) of THEOREM 5.3 are indecomposable.

The groups G
For suppose ¢® -5 K; then G € T(X) and
x2 ¢ = BO) & KO
so H(o) = O of K(o) = 0. But since H and K both belong to T(X),

this means that one of them must be zero. In addition,

G(k)/G(k_l) Z X (fork >1). Thus (cf. Chapter 2) we have proved

COROLLARY 5.5: If a rational group X does not have the

form Q(P) and if k is any positive integer, there exists an
indecomposable torsion-free group A of rank k such that
T(A) = T(X).//

2. Splitting Idempotent Radicals

In Chapter 2 we saw that r(A) is a pure subgroup of A
for every group A and idempotent radical r, The cases in which
r(A) is always a direct summand are described by the next

proposition.
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PROPOSITION 5.6: Let (J,F) be a torsion theory for Qfs

with idempotent radical r such that r(A) is a direct summand

for every A. If r is non-trivial, then J S O (and thus r(A)
18 always the divisible subgroup or its S-component for some

fixed set S of primes).

PROOF. 1f Z(p) € F for every prime p, then all
groups in :7 are divisible. If for some prime p, Z(p) belongs

nai] , then so do all p-groups., If :;'contains non-zero groups,
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it contains in particular TW'zn, n =1,2,..., vhere Z_Z Z,
A theorem of Baer [4], Erdos [13] and Sasiada (see [15] p.190)
asserts that Ext(T_TZn,G) = 0 for a p~group G if and only if G
is the direct sum of a bounded group and a divisible group. Let
A' be a reduced, unbounded p-group and consider a non-split short
exact sequence

0—3 A’ ——>A——>TTzn—-—)o.

Since A' € J and T—TZn e F, we have r(a) = A'.//
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