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SUMMARY 

The abuse of phenacetin-containing analgesic mixtures has been 

linked epidemiologically with nephrotoxicity and carcinogenicity 

in man. 

In addition, clinical and histopathological tests after chronic 

administration of phenacetin in man and animals have indicated 

that it is nephrotoxic and carcinogenic. Furthermore, it has a 

chemical similarity to other known carcinogenic arylamides. 

However, the induction of toxicity with phenacetin remains a 

controversial subject. 

A number of chronic dosing studies with phenacetin have been 

carried out to demonstrate the ability of the drug to induce 

carcinogenesis and nephropathy. However, none have sought to 

explain the reasons for the chronic nature of phenacetin 

toxicity on the basis of the increased formation of toxic 

metabolites after continued administration of the drug. In the 

present chronic daily-dosing study with phenacetin in the rat, 

the metabolism of the drug was monitored by analysing urine 

samples at regular weekly intervals. Particular attention was 

paid to the formation of N-hydroxyphenacetin, which has been 

implicated in phenacetin carcinogenicity. 

The metabolism of phenacetin was monitored in five groups of 

Hooded Wistar rats. Each group was subjected to a different 

treatment. The purpose was to elucidate the effects of the size 

of the dose, duration of treatment, influence of commonly co- 



administered drugs (aspirin, caffeine) and the influence of a 

sulfation inhibitor (pentachlorophenol) on the metabolism of 

phenace tin. 

The 	metabolic 	trends 	indicated 	auto-induction 	of 	N- 

hydroxylation, evidenced by the increased formation of N-

hydroxyphenacetin in all treatments. The induction was most 

pronounced with the large dose of phenacetin and, significantly, 

was prominent with the co-administration of aspirin at the lower 

dose of phenacetin. 

Paracetamol-sulfate was the major metabolite of phenacetin in 

the rat, while paracetamol-glucuronide and free paracetamol were 

the other products of the deethylation pathway of phenacetin. 

The mercapturate and cysteinyl conjugates were not detected. 

Pentachlorophenol, a known inhibitor of sulfation, did not block 

sulfation completely. The partial suppression of sulfation with 

pentachlorophenol resulted in the increased formation of 2- 

hydroxy-p-phenetidine and yielded a larger fraction of unchanged 

phenacetin in the urine. 

The metabolism of p-phenetidine, a deacetylated metabolite of 

phenacetin, was followed in freshly isolated rat hepatocytes. 

The biotransformation of p-phenetidine to phenacetin and 2- 

hydroxyphenetidine indicated that N-acetylation was significant 

in the Hooded Wistar rat. However, N-acetylation and aromatic 

hydroxylation did not fully account for the disappearance of p-

phenetidine from the in vitro  system. 
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CHAPTER 1. 	INTRODUCTION 

1.1. ANALGESIC ABUSE-ASSOCIATED TOXICITY AND PHENACETIN 

Phenacetin, a widely used antipyretic-analgesic, was first 

introduced for the treatment of pain in 1887. It continued to be 

extensively 	used, 	chiefly as a constituent in analgesic 

mixtures, until recently (Flower et al., 1980). 	Analgesic 

nephropathy. has 	been recognized as a frequent clinical, 

radiological and autopsy finding in Scandinavia (Lindeneg et 

al.,1959; Bengtsson,1962; Harvald,1963), Australia (McCutcheon, 

1962; Jacobs and Morris,1962; Dawborn et al.,1966; Kincaid-

Smith,1969), Britain (Jacobs,1964; Sanerkin and Weaver, 1964), 

United States of America (Reynolds and Edmondson,1963) and 

Canada (Lakey,1961). .However, controversy persists with regard 

to the involvement of phenacetin in the development of analgesic 

nephropathy (Freeland,1975; Nanra,1976). 

1.1.1. ANALGESIC-INDUCED NEPHROPATHY IN MAN  

Analgesic abuse, now defined as an intake in excess of 1 g of an 

analgesic per day, for one year, by Bengtsson et al. (1978), was 

first identified as a problem in Sweden, with particular 

reference to phenacetin, in 1918 (Grimlund,1963). However, it 

was not until 1953 that Spuhler and Zollinger (1953) pointed out 

that analgesic drugs could cause chronic renal disease. It has 

since been an area of concern demanding intensive research 

effort to explain the induction of toxicity by analgesics. 

Dubach and co-workers conducted an epidemiological study of the 
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abuse of analgesics in a Swedish population, over a period of 

ten years from 1968-1979, and concluded that heavy users of 

analgesic mixtures over the course of a decade exhibited a 

higher incidence of both abnormal kidney function and kidney-

related mortality, though the absolute incidences remained small 

even among heavy users (Dubach et al.,1968; 1971; 1975; 1983). 

Further evidence implicating analgesics in nephrotoxicity was 

provided by the studies of Duggin (1977), Bengtsson et al. 

(1978), Kincaid-Smith (1978), Bengtsson and Angervall (1979) and 

Prescott (1966; 1982), who examined the relationship between 

ingestion of analgesics and the development of renal disease. 

Analgesic abuse-associated nephropathy, as the condition is 

known and described today, is affected by addiction or abuse of 

alcohol, cigarettes, barbiturates, hypnotics, tranquilizers and 

laxatives (Prescott,1976; Kincaid-Smith,1978; Nanra et al., 

1978). 

1.1.2. ANALGESIC-INDUCED CARCINOMA IN MAN 

Phenacetin has also been implicated as a cause of carcinoma of 

the renal pelvis. Hultengren et al. (1965) were the first to 

suggest the association of analgesic abuse with carcinoma in 

Sweden. They were followed by researchers in other countries 

(Taylor,1972; Liu et al.,1972; Bengtsson et al.,1978; Lornoy et 

al.,1979), who provided further evidence on the relationship 

between analgesic abuse and tumors of the renal pelvis. 
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1.1.3. PHENACETIN-INDUCED TOXICITY IN MAN 

The decline in the use of phenacetin is also attributed to the 

methemoglobinemia, sulfhemoglobinemia and hemolytic anemia it 

produces on chronic administration (Flower et al.,1980), as well 

as nephropathy (Spuhler and Zollinger,1953) and 'neoplasia (Liu 

et al.,1972). Although the adverse effects produced by 

phenacetin are reversed in most instances on withdrawal of the 

drug, they still remain an alarming testimony of drug-induced 

pathophysiological disorders. The fact that phenacetin was the 

one common ingredient in all combination analgesics responsible 

for renal impairment (Koutsaimanis and de Wardener,1970), was 

used to incriminate it as the compound responsible for the 

increased incidence of tumors of the renal pelvis (Hultengren et 

al.,1965; Bengtsson et al.,1968; Angervall et al.,1969; 

Johansson et a1,1974; Johansson and Wahlqvist 1977) interstitial 

nephritis and renal papillary necrosis (Nordenfelt and Ringertz, 

1961). It was also seen that the withdrawal of phenacetin from 

analgesic preparations in Sweden in 1961 resulted in fewer 

deaths from renal failure among analgesic abusers in subsequent 

years (Nordenfelt,1972), an observation that added credence to 

the alleged toxicity of phenacetin. However, recent data 

suggests that phenacetin may not be the only toxic analgeaic 

(Sec. 1.1.5). 

1.1.4. PHENACETIN-INDUCED TOXICITY IN ANIMALS 

In earlier animal experiments, phenacetin failed to manifest any 

noteworthy toxicity. Neither phenacetin nor most of its 

metabolites were proven. to be significantly nephrotoxic in 
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animals (Calder et al.,1971). Only minimal renal papillary 

necrosis has been produced in animals by administration of 

phenacetin alone, even in large doses (Clausen,1964; Fordham et 

al.,1965). Although renal pelvic tumors in laboratory animals 

have not been encountered after long-term administration of 

phenacetin, it must be borne in mind that several bladder 

carcinogens exhibit species specificity, and failure to produce 

carcinoma in animals is not sufficient proof of their safety in 

man (Nery,1971a). For example, 2-naphthylamine, a known 

carcinogen in man, does not produce malignancies in rats, 

rabbits, cats and mice (Bonser et al.,1959). However, in recent 

years phenacetin has been shown to cause hepatic necrosis in 

hamsters (Mitchell et al.,1975; 1976; Nelson et al.,1978). 

Chronic administration of phenacetin to rats in the diet induced 

urothelial hyperplasia of the renal papillae, earduct tumors and 

mammary adenocarcinomas (Johansson and Angerval1,1976), nasal 

carcinomas and urinary tract tumors (Isaka et al.,1979) and had 

a carcinogenic effect on most tissues (Johansson,1981). These 

studies suggested a more general carcinogenic effect of 

phenacetin in the rat. The rat therefore has been chosen as a 

suitable animal model for the investigation of the metabolism of 

phenacetin to putative toxic metabolites. 

1.1.5. TOXICITY INDUCED BY OTHER ANALGESICS  

It should be noted, however, that renal papillary necrosis has 

been produced by aspirin, phenacetin and caffeine mixtures and 

by aspirin alone, more readily than by phenacetin itself 

(Abrahams et al.,1964; Saker and Kincaid-Smith,1969; Nanra and 
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Kincaid-Smith,1970; 	1972a; 	1973b; Nanra et al.,1970). Lesions 

were seen to develop more frequently at low dose levels with 

aspirin than with phenacetin (Axelsen,1976). The substantial 

increase in excretion of renal tubular cells (a gauge of renal 

damage) observed in healthy volunteers receiving aspirin, 

compared with those receiving phenacetin, was taken as further 

evidence of the greater nephrotoxic risk of aspirin (Prescott, 

1965) in comparison to phenacetin. Cognisance must also be 

taken of the renal papillary necrosis reportedly induced in 

animals with other analgesics and nonsteroidal anti-inflammatory 

drugs including phenazone (Nanra and Kincaid-Smith,1973a) 

indomethacin and phenylbutazone (Nanra et al.,1970; Arnold et 

al.,1974), amidopyrine (Brown and Hardy,1968), mefenamic acid 

(Nanra et al.,1970) and the sole responsibility of phenacetin 

for such toxicity diminished. 

Although in no cases reported have patients consumed phenacetin 

alone, the incrimination of phenacetin as the nephrotoxic and 

carcinogenic entity in analgesic mixtures has been made on the 

presumption that its metabolism is similar to that of known 

carcinogenic amines (Miller and Miller,1966a; 1966b; Bengtsson 

et al.,1978). The metabolism of phenacetin has been 

investigated in several species, including rats, hamsters, 

rabbits and human subjects (Smith and Griffiths,1976; Kuntzman 

et al.,1977; Prescott,1980; Vaught et al.,1981). However, there_ 

remains the need to elucidate, in greater depth, its metabolism 

after chronic administration. 
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1.2. METABOLITES OF PHENACETIN 

Several studies have 	been 	carried 	out to identify the 

metabolites of phenacetin ,since Brodie and Axelrod (1949) and 

Smith and Williams (1949) independently found N-acetyl-p-

aminophenol (paracetamol,APAP) as the major and p-phenetidine 

(PN) as the minor metabolite of phenacetin. Jagenburg and 

Toczko (1964) isolated S-(1-acetamido-4-hydroxyphenyl)cysteine 

as a urinary metabolite of phenacetin in man, while Klutch et 

al. (1966) identified 2-hydroxyphenacetin in the urine of 

humans, dogs and cats. Buch et al. (1966,1967) detected 2- 

hydroxyphenetidine (2HPN), in human and rat urine and 3- 

hydroxyphenacetin in the urine of rats given phenacetin. 

N-hydroxyphenacetin (NHP), whose conjugates are postulated to be 

potential carcinogens, was reportedly first detected in'the 

urine of cats and dogs treated with phenacetin (Klutch et al., 

1966). It was further found in the urine of humans and dogs by 

Klutch and Bordun (1960), but had not been indisputably 

demonstrated to be a metabolite of phenacetin in vivo  

(Weisburger and Weisburger, 1973; Hinson and Mitchell, 1976), 

until 1981 in the rat (McLean et al., 1981). Kiese and Lenk 

(1969) detected 4-ethoxyglycolanilide as a phenacetin metabolite 

in the urine of rabbits. 	Nery (1971b) found N-acetyl-S- 

ethylcysteine, 	acetamide and quinol to be metabolites of 

phenacetin in the rat. 	Focella et al. (1972) identified 4- 

hydroxy-3-methylthio-acetanilide, while Fischbach et al. (1977) 

found N-[4-(2-hydroxyethoxy)pheny1]-acetamide in the urine of 

rats and rabbits after administration of phenacetin. 
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4-Acetaminophenoxyacetic acid was detected as a new metabolite 

of phenacetin by Dittman and Renner (1977) and 3-methylthio-4- 

hydroxyacetanilide by Klutch et al. (1978). 

Recently there has been considerable interest in the disposition 

of phenacetin and its metabolites in animals and in man 

(Prescott et al.,1968; Kampffmeyer,1974; Raaflaub and Dubach, 

1975; Welch et al.,1976) with relevance to enzyme induction, 

which increased the metabolism of phenacetin (Pantuck et al., 

1974). Habitual smoking is reported to enhance the metabolism 

of phenacetin (Pantuck et al.,1972) and dietary habits such as 

the consumption of charcoal broiled beef have been known to 

increase the metabolism of phenacetin (Conney et al.,1976). The 

potential interaction of reactive metabolites of phenacetin with 

biological macromolecules has also been investigated in recent 

years (Mulder et al.,1977; Hinson et al.,1977). 
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1.3. BIOTRANSFORMATION OF PHENACETIN 

The metabolic biotransformations 	by 	which 	phenacetin is 

hydroxylated, oxidatively deethylated, N-deacetylated and 

conjugated by hepatic microsomal enzymes (Brodie and Axelrod, 

1949; Smith and Williams,1949; Klutch et a1,1966; Buch et al., 

1967; Prescott,1969; Nery,1971b; Focella et al.,1972; Mrochek 

et al.,1974) are depicted in Fig. 1. 

1.3.1.1. PARACETAMOL: METABOLITE-MEDIATED TOXICITY 

Paracetamol is the major, immediate metabolite of phenacetin 

(Brodie and Axelrod,1949) and is a widely used antipyretic-

analgesic in its own right. It is known to be hepatotoxic in 

massive overdosage (Boyd and Bereczky,1966; Prescott et al., 

1971; Mitchell et al.,1973a; Kleinman et al.,1980) and 

nephrotoxic following prolonged abuse (Duggin and Mudge,1976; 

Mitchell et al.,1977; Mudge et al.,1978) due to metabolic 

activation to a highly reactive toxic metabolite(Mitchell et 

al.,1973a; 1973b; Jollow et al.,1973; Potter et al. 1973; 

Hinson et al.,1980; Hinson and Gillette,1980). 

The implication of a reactive metabolite in paracetamol-induced 

toxicity was first disclosed by the studies of Mitchell et al. 

(1973a), who showed that paracetamol produced an increased 

incidence of hepatic necrosis in rats in which drug metabolizing 

enzymes were induced by prior treatment with phenobarbitone or 

3-methylcholanthrene, and that a decrease in the incidence and 

severity of toxicity followed the use of inhibitors of drug 

metabolism such as piperonyl butoxide or cobaltous chloride 
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(Potter et al., 1974) and recently, cimetidine (Mitchell et al., 

1981). This reactive metabolite is formed by a microsomal 

cytochrome P-450 mixed function oxidase and is detoxified by 

conjugation with glutathione (Mitchell et al.,1973b; Jollow et 

al., 1973). 

Paracetamol has also been recognized as a nephrotoxic metabolite 

of phenacetin by other workers such as Nanra et al. (1980) and 

Margetts (1976). Further observations that patients who 

persisted in abusing analgesic mixtures in which phenacetin was 

replaced with salicylamide or paracetamol still presented with 

typical analgesic nephropathy and renal failure (Krishnaswamy 

and Nanra,1976; Nanra et al.,1978) corroborates the nephrotoxic 

potential of paracetamol. 

In animal studies Nanra et al. (1970) and Nanra and Kincaid- 

Smith (1970; 1972b) established 	a similarity between the 

nephrotoxicity caused by phenacetin and 	that produced by 

paracetamol when administered alone or in combination with other 

analgesic constituents. It seems apparent, therefore, that if 

the toxicity caused by the chronic ingestion of phenacetin alone 

is accepted, then it is metabolite-mediated and could be at 

least partly due to one or more of the highly reactive 

metabolites of paracetamol (Sec. 1.3.1.2) 
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1.3.1.2. PARACETAMOL : POSTULATED REACTIVE METABOLITES 

Jollow et al. (1973) and Mudge et al. (1978) established that 

acute overdosage of paracetamol in rats and mice ultimately 

resulted in covalent binding of the reactive metabolite to 

tissue macromolecules in the liver and kidney, after the 

depletion of glutathione. Although a study of urinary 

metabolites has indicated that reactive intermediates had 

reacted with cellular glutathione (Hinson et a1,1980; Jollow et 

al.,1974a) none of the postulated toxic intermediates have been 

identified as being solely responsible for the toxicity, during 

the course of in vivo and in vitro (microsomal) experimentation. 

1.3.1.2.1. N-HYDROXYPARACETAMOL 

Among 	the proposed toxic metabolites (Fig. 	2) 	was 	N- 

hydroxyparacetamol (NHAPAP).This had been earlier shown to 

dehydrate to N-acetyl-p-benzoquinoneimine (NAQ), a compound 

known to react with cellular glutathione and protein and 

postulated to be toxic (Jollow et al.,1974a). Therefore NHAPAP 

was believed to be the toxic reactive intermediate of 

paracetamol (Mitchell et al., 1973a; 1973b; Jollow et al.,1973; 

Potter et al.,1973; 1974). This concept was questioned because 

NHAPAP was not detected as a metabolite of paracetamol although 

it is formed from phenacetin (Hinson et al.,1979a; Nelson et 

al.,1980). At a physiological pH NHAPAP did not rapidly 

dehydrate to NAQ (Healey et al.,1978; Gemborys et al.,1980) and 

was only slightly more toxic than APAP (Healey et al.,1978), 

hence could not be regarded as its toxic intermediate. 
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1.3.1.2.2. 3-4,EPDXIDE-PARACETAMOL  

The implication of 3,4-epoxy-paracetamol as the toxic metabolite 

(Andrews et al.,1976) was negated by the investigations of 

Hinson et al. (1980) and Hinson and Gillette (1980). They 

demonstrated through mass spectral studies that atmospheric 

oxygen was not incorporated into the paracetamol-glutathione 

adduct, which would otherwise be expected were paracetamol to 

form an arene oxide in the 3,4-position followed by 

rearrangement to NAQ prior to conjugation (Hinson et al.,1977). 

Also when p-18-0-paracetamol was used as a substrate, all of the 

18-0 was retained in the paracetamol-glutathione complex (Hinson 

et al.,1979c). The evidence does not indicate 3,4-epoxidation 

of paracetamol, but similar experiments with phenacetin did 

reveal 3,4-epoxidation as one mechanism of microsomal activation 

of phenacetin to a reactive metabolite (Hinson et al.,1979a). 

A theory of free radical mediated toxicity has been proposed but 

is yet to be proved (Andrews et al.,1976). 

1.3.1.2.3. N-ACETYL-p-BENZOQUINONEIMINE  

The other proposed toxic intermediate for paracetamol in the 

literature 	to 	date 	is 	the 	electrophile 	N-acetyl-p- 

benzoquinoneimine (NAQ). NAQ, which covalently binds with 

protein (Mulder et al.,1978) and glutathione (Hinson et al., 

1979c), has been generally accepted as the most likely ultimate 

toxic intermediate of paracetamol (Hinson et al., ,1979a; Nelson 

et al.,1980; Calder et al.,1981). Though it was supposedly 

formed from NHAPAP, a toxic reactive species in itself (Jollow 
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et al.,1974a), the evidence (Hinson et al.,1979a; Nelson et al., 

1980) indicates that it must be formed from still another 

reactive source because NHAPAP, with a relatively slow 

decomposition (Hinson et al.,1979a) which would enable it to be 

detected if it were formed, is not an intermediate involved in 

the metabolism of paracetamol in vitro (Hinson et al.,1979a; 

Nelson et al.,1980) or in vivo (Gemborys and Mudge,1981). 

Calder et al. (1981) further confirmed that no N-hydroxylated 

metabolites resulted from paracetamol administration and 

postulated the concept of hepatotoxicity and nephrotoxicity 

being directly mediated by an oxidation of paracetamol to the 

toxic reactive 	intermediate NAQ by the cytochrome P-450- 

dependent mixed function oxidase. 	However, NHAPAP could still 

be a reactive toxic metabolite of phenacetin, as it has been 

found to be present as a metabolite of phenacetin and though 

believed earlier to be formed by the N-hydroxylation of 

paracetamol, it has since been shown to be formed by the 

subsequent de-ethylation of N-hydroxylated phenacetin (Hinson et 

al.,1979a). An in vivo  measurement of NHP formation would 

therefore reflect 	the 	extent 	to which postulated toxic 

metabolites of paracetamol could be formed from phenacetin. 

1.3.1.3. p-AMINOPHENOL  

p-Aminophenol (PAP), identified as a urinary .  metabolite of 

paracetamol and NHAPAP in the hamster (Gemborys and Mudge,1981) 

and known to be highly nephrotoxic though relatively non-

hepatotoxic (Green et al.,1969; Calder et al.,1971; Crowe et 

al.,1979; Newton et al.,1982) could be of toxicological interest 
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as well. It has of late been considered to be an immediately 

reactive nephrotoxic compound (Calder et al.,1979). 

1.3.1.4. CONJUGATES OF PARACETAMOL 

The major urinary metabolites of paracetamol, paracetamol-

glucuronide, paracetamol-sulfate and 3-mercapturate-paracetamol, 

occur in all species (Gemborys and Mudge,1981), with other 

metabolites being identified uniquely to a particular species. 

These are 4-hydroxyglycoanilide in rats (Smith and Griffiths, 

1976), 3-cysteinyl-paracetamol in man and mice (Mrochek et al., 

1974; Whitehouse et al.,1977), 3-sulfoxymethyl-paracetamol in 

hamsters (Wong et al.,1976), 3-thiomethyl-paracetamol in man and 

dog (Klutch et al.,1978), 3-methoxyparacetamol in man (Andrews 

et al.,1976) and 3-hydroxyparacetamol in man (Andrews et al., 

1976; Mrochek et al.,1974). 

1.3.2. p-PHENETIDINE  

N-deacetylation is considered to be an essential step in the 

precipitation 	of 	haemotoxicity 	by acetanilide 	analogues 

(Mitchell et al.,1973c). The N-deacetylation of phenacetin 

gives p-phenetidine (PN) as shown in Fig. 1. This is the second 

major direct metabolite of phenacetin. The subsequent 

metabolism of PN has not been adequately reported, although it 

has been suggested that it undergoes oxidation to quinones and 

aromatic nitrosoamines and it is known to cause 

methemoglobinemia by the formation of haemotoxic metabolites 

NHPN, 2HPN and PAP (Kiese,1966; Uehleke,1973). Evidence of its 



Page 14 

existence as the second major metabolite of phenacetin and its 

disappearance in the metabolic process has been recorded using 

isolated hepatocyte systems (McLean,1978). The de-ethylated, N-

hydroxylated, nitrosated and 2-hydroxylated metabolites of PN 

have been reported (Brodie and Axelrod 1 1949), but their 

contribution to nephrotoxicity has not been determined. 

1.3.3. 2-HYDROXYPHENACETIN, 3-HYDROXYPHENACETIN  

and 2-HYDROXYPHENETIDINE 

The hydroxylated products of phenacetin, 2-hydroxyphenacetin 

(2HP), 3-hydroxyphenacetin (3HP) and 2-hydroxyphenetidine (2HPN) 

have been reported (Buch et al.,1966; 1967; Klutch et al.,1966) 

earlier. 2HP was devoid of antipyretic activity in rats and did 

not cause methemoglobinemia in dogs and in rats no abnormal 

gross or histological changes in kidney function or structure 

were produced on oral administration for prolonged period 

(Burns and Conney,1965). No toxicity has been reported with 2HP 

in the concentrations at which it is usually present. However, 

isolated cases of toxicity have been reported for 2HPN. Shahidi 

and Hemaidan (1969) presented a case where large amounts of 2HPN 

were present in the urine of a female patient who developed a 

severe hemolytic reaction. These abnormalities in respon-se were 

rare and familial. 
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1.3.4. N-HYDROXY METABOLITES  

Many toxic substances are generally detoxified within biological 

systems by conjugation with glucuronic acid by UDP-

glucuronyltransferase, or sulfation by sulfotransferase (Mulder 

and Scholtens,1977), or combination with glutaihione (GSH) 

(Mitchell et al.,1973b; 1974; Jollow et al.,1974b). Whether a 

compound would eventually prove to be toxic, would therefore 

depend on the extent to which the conjugating enzymes were 

active and the quantity of glutathione available for 

electrophilic "mopping up". 

In recent years attention has been focussed on the toxicity 

caused by arylamines. The arylamines have earned notoriety as 

compounds capable of undergoing hydroxylation by hepatic mixed 

function oxidases to yield the proximal carcinogenic N- 

arylhydroxylamines and N-arylhydroxamic acids (Baldwin and 

Smith,1965; Miller and Miller,1966a; Kiese,1966; Miller,1970; 

Weisburger and Weisburger,1973; Miller,1978). 

Several compounds possessing an N-hydroxyl group in their 

molecules, have been reported as carcinogenic compounds. N-

arylhydroxylamines such as N-hydroxy-2-naphthylamine, N-hydroxy-

4-aminobiphenyl (Radomski and Bri11,1970; 1971; Radomski et - 

al.,1977) and N-arylhydroxamic acids such as N-hydroxy-2- 

acetylaminofluorine (Miller et al.,1961; Razzouk et al.,1977), 

whose activated esters such as the sulfate, acetate and 

glucuronide, are strong electrophiles. These compounds have been 

shown to possess carcinogenic character reflected in their 

ability to bind to the nucleophilic groups in cellular 
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macromolecules (Scribner and Naimy,1973; 	Miller et al.,1974; 

Miller and Miller,1976). 

In specific cases of N-arylhydroxylamines and N-arylhydroxamic 

acids such as N-hydroxy-2-acetylaminofluorene (DeBaun et al., 

1970), N-hydroxy-N-methyl-4-aminobenzene (Kadlubar et al.,1976), 

N-hydroxy-4-acetylaminobiphenyl (Kriek,1971), N-hydroxy-N,N- 

diacetylbenzidine 	(Morton 	et 	al.,1980), 	N-hydroxy-2- 

acetylaminophenanthrene (Scribner and Naimy,1973) and N-

hydroxyphenacetin (Mulder et al.,1977), sulfation increased the 

toxicity of the parent compounds. 

The sulfate conjugates produced were highly reactive with tissue 

nucleophiles. Contrary to expectations of the detoxification 

role of sulfation in biological processes, sulfation of certain 

N-arylhydroxylamines and N-arylhydroxamic acids results in the 

formation of their reactive entities. 

The esterification of N-arylhydroxylamines and N-arylhydroxamic 

acids has been therefore regarded as an activation pathway 

leading to carcinogenesis for N-hydroxy compounds (Weisburger, 

1978). However, the carcinogenic character of a compound is not 

entirely explained by the occurrence of an N-hydroxyl group 

within its molecular structure (Weisburger,1978). 

Phenylhydroxylamine and N-hydroxysuccinimide are examples of 

such non-carcinogenic compounds. 
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1.3.4.1. N-HYDROXYPHENACETIN : A PROXIMAL CARCINOGEN  

NHP is an important metabolite of phenacetin, in terms of its 

carcinogenicity. It has been suggested to be the metabolite of 

phenacetin most likely to induce tumors due to its chemical 

similarity to the known carcinogenic N-arylhydroxamic acids 

(Calder and Williams,1975). It has also been suggested as the 

'metabolic product of phenacetin which could best account for the 

covalent binding of phenacetin to cell protein (Nery,1971a) and 

as an intermediate in the formation of other products of 

phenacetin metabolism (Nery,1971b; Calder et al.,1974). The 

mechanism of the renal and hepatic toxicity of phenacetin has 

been proposed to occur in two steps, N-hydroxylation followed by 

conjugation and subsequent decomposition to a reactive 

intermediate (Mulder et al.,1977; 1978). The same metabolic 

sequence activates the carcinogen, 2-acetylaminofluorene. 

Evidence of in vitro  N-hydroxylation by liver microsomes has 

been demonstrated in hamsters (Hinson and Mitche11,1976), 

rabbits (Fischbach et al.,1977), mice (Kapetanovic et al.,1979) 

and in vivo  experiments in rats (McLean et al.,1981). Evidence 

of conjugation with sulfate and glucuronide in vitro  by rat 

liver enzymes, and subsequent decomposition has been contributed 

by Mulder et al. (1977,1978). Calder et al. (1976) showed that, 

. in chronically treated rats NHP induced neoplasia and tumors of 

the liver were a direct manifestation of its carinogenicity. A 

quantitative estimation of NHP over a prolonged study period 

would therefore provide information on the increased formation 

or accumulation of this metabolite, which may ultimately relate 

to the toxicity of the parent analgesic compound, phenacetin. 
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1.4. CHRONIC DOSING STUDIES 

Since toxicity from phenacetin is only seen after prolonged 

administration of the drug, progressive monitoring of metabolic 

changes over extended periods, accompanied by pathophysiological 

surveillance and toxicokinetic evaluation would prove helpful in 

determining the cause of phenacetin-induced carcinogenicity and 

nephrotoxicity. 

The effect of the size of the chronic dose on metabolism and or 

on the development of carcinoma or nephropathy could also be 

included in such investigations. The development of tolerance 

or increased susceptibility to phenacetin-toxicity could further 

be closely examined as there have been reports of related 

analogues of phenacetin being able to protect animals from 

paracetamol-induced hepatotoxicity (Kapetanovic,1979). Chronic 

dosing with phenacetin itself has been shown to cause tolerance 

and protection from hepatotoxicity (Boyd and Hottenroth,1968; 

Boyd,1971; Carro-Ciampi,1971; 1972; Kapetanovic and Mieyal, 

1979). The metabolic interference likely to be caused by other 

drugs or compounds co-administered with phenacetin could also be 

investigated. 

1.4.1. ALTERED METABOLISM WITH CHRONIC DOSING  

Carro-Ciampi (1972), in chronic studies with phenacetin, further 

demonstrated tolerance to phenacetin-induced hypothermia in both 

albino rats and guinea pigs, after repeated daily 

administration. Irrespective of the daily dose used, tolerance 

developed in guinea pigs more slowly than in albino rats. In 
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acute phenacetin toxicity death is due to hypothermic coma as 

well as cyanosis, respiratory depression and cardiac arrest and 

therefore, when tolerance develops to phenacetin hypothermia, 

animals are able to survive normally lethal doses of the drug 

(Boyd,1959; 1960; Boyd et al., 1969; Carro-Ciompi, 1971). 

These chronic-dose studies (Carro-Ciampi, 1972) indicated a 

halving of plasma levels of phenacetin within 10 days of 

initiation of phenacetin administration. This effect developed 

more slowly in guinea pigs, and was accompanied by a marked 

increase in PN levels. This would account for the chronic 

hemolytic anemia (Schnitzer and Smith, 1966) and 

methemoglobinemia (Brodie and Axelrod,1949) seen more commonly 

in guinea pigs. 

One hundred day LD 50 studies provide further examples of how 

chronic dosing studies (Boyd and Hottenroth,1968; Boyd and 

Carro-Ciampi,1970; Boyd,1971) undertaken to stress the 

importance of toxicity caused by prolonged administration of 

phenacetin, could be beneficial. 

1.4.2. INFLUENCE OF DOSE SIZE, ADMINISTRATION ROUTE,  

SPECIES VARIATION AND DURATION OF TREATMENT  

Few investigations have been carried out to examine factors such 

as dose, administration route and species which could probably 

affect the metabolism of phenacetin and its alleged toxicity 

with chronic use. Smith and Timbrell (1974) carried out such 

investigations and found the drug to be largely metabolized in 

the rat, rabbit, guinea pig, ferret and man by oxidative 
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deethylation and deacetylation. 	Minor pathways of aromatic 

hydroxylation and cysteine conjugation were also present. 

In species-related metabolism of phenacetin (Smith and Timbrell, 

1974), deacetylation was highest in the rat (21% of dose), 

aromatic hydroxylation to 2-hydroxyphenacetin was highest in the 

ferret (6% of dose) and formation of the 3-cysteine conjugate 

was highest in the rabbit (8% of dose). The pattern of 

conjugation was such that glucuronidation was predominant in the 

rabbit, guinea pig and ferret while sulfate conjugation was the 

major route of metabolism in the rat. The metabolic profile 

differed between large and small oral doses but showed no 

appreciable differences whether the drug was given orally or 

intraperitoneally. 

Different species of animals are affected by methemoglobinemia 

caused by phenacetin to varying degrees (Lester, 1943; Welch et 

al., 1966). This is probably because several deicetylated 

derivatives of phenacetin, (NHPN, 2HPN and PAP), which are known 

to oxidize hemoglobin (Uehleke, 1973), are formed to varying 

degrees in the different species (Smith and Timbrell, 1974). 

In studies of Smith and Griffiths (1976) metabolism of 14-C-

phenacetin in rats fed the drug in their diet over a 3 month 

period, was examined and compared with that in a control group 

of rats receiving only a single dose of the drug. The major 

metabolite was APAP-SULF in both groups of animals. Variance 

was noted in glucuronidation between the groups. Other 

metabolites 	seen 	were 	APAP, 	p-hydroxyglycoanilide, 	p- 

ethoxyglycoanilide and 2HP. 	Excretion of total radioactivity 
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was proportionally reduced when larger doses of phenacetin were 

given. 

1.4.3. INFLUENCE OF CO-ADMINISTERED DRUGS  

More recently chronic dosing studies with phenacetin, caffeine 

and aspirin singly or in combination were undertaken by Macklin 

and Szot (1980) in mice. Histopathological changes indicating 

mild progressive renal papillary necrosis occurred in the 

urinary tract with earliest changes observed in those animals on 

the highest dose of phenacetin. Sulfhemoglobinemia was induced 

in all animals subjected to treatment with phenacetin alone or 

in combination with the other agents. Failure to demonstrate 

carcinogenicity even at these toxic doses of the drugs was in 

agreement with the negative results obtained in similar studies 

in mice described in the NCI Technical report (No.67,1978) cited 

by Macklin and Szot (1980), rats (Woodard et al., 1965; Schmahl 

and Reiter 1954, NCI Tech. report,No.67,1978) and dogs (Schmahl 

and Reiter,1954; Woodard et al., 1965). Yet, other chronic 

dosing studies with phenacetin in rats did present evidence of 

carcinogenicity (Johannson and Angervall, 1976; 1979; Isaka et 

al., 1979). 

The disagreement in these results of very similar experiments 

was suggested to be due to a formulation shortcoming (Macklin 

and Szot, 1980). Administration of the dose through the diet in 

the studies which produced tumours involved pelletization of the 

drug along with the other food ingredients. This process 

requires high temperatures of about 80 C, during which the 

formation of N-oxidation reactive products was claimed to occur. 
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Nitrosocompounds have been known to induce tumours, particularly 

of the nasal cavities (Magee et al., 1976) as well as the 

urinary tract, urinary bladder, renal and mammary glands (Magee 

and Barnes,1967; Magee et al.,1976; IARC, 1978; Ito et al., 

1971). 

Johannsson (1981) studied long term treatment with phenacetin, 

phenazone and caffeine, individually and in combination. Renal 

pelvic tumours occurred only in rats treated with phenacetin, or 

phenazone alone or in combination with caffeine. Half of the 

rats treated with phenacetin, phenazone and caffeine in 

combination developed hepatomas which were considered to be a 

result of the altered metabolism of phenacetin caused by 

phenazone and caffeine. It was postulated that this altered 

metabolism ultimately increased the production of N-

hydroxyphenacetin, a known liver carcinogen (Johansson,1981). 

1.4.4. INFLUENCE OF AGE AND SEX 

Factors of age- and sex-related differences within a species are 

also likely to affect the metabolism of phenacetin. 	The 

hepatotoxicity of paracetamol has been investigated with 

reference to age of the experimental mice by Hart and Timbrell 

(1979) who found paracetamol to be less toxic in neonatal mice 

than in adult animals. This suggests that the development of 

the ability to detoxify reactive metabolites precedes the 

development of the enzyme systems producing them, because 

glutathione levels have been shown to be higher than the levels 

of P-450 in neonates. Green and Fischer (1981) established from 

similarly oriented research that age-related changes in 
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paracetamol metabolism in rats, especially in the extent of 

glucuronidation or sulfation, are complex and depend on the dose 

of the drug and sex of the animal. The influence of age and sex 

on phenacetin metabolism have not been investigated in the 

present study. 

1.4.5. INFLUENCE OF SULFATION INHIBITION  

Interference with metabolism by the administration of compounds 

capable of inhibiting metabolic pathways in order to study the 

ensuing metabolic changes has been carried out previously 

(Meerman et al., 1980; Meermen and Mulder 1981; Mulder and 

Scholtens, 1977). The sulfation pathway, which is a predominant 

metabolic pathway for phenacetin in the rat, has been 

selectively 
	

inhibited 	by 	2,6-dichloro-4-nitrophenol, 

salicylamide and pentachlorophenol with a simultaneous increase 

in glucuronidation of the substrate, harmol 	(Mulder 	and 

Scholtens, 1977). It has been previously postulated that N-0- 

sulfation, following N-hydroxylation, has been responsible for 

the production of the reactive metabolites of phenacetin which 

combine with tissue macromolecules (Mulder et al.,1977; 1978). 

The analogous N-0-sulfation product of N-hydroxy-2- 

acetylaminofluorene has been similarly implicated in the 

precipitation of toxicity (DeBaun et al.,1970). Inhibition of 

sulfation would therefore be expected to obviate toxicity 

claimed to be caused by the N-0-sulfate conjugate of NHP. This, 

therefore, warrants investigation with a further study of any 

accompanying metabolic changes that occur when sulfation is 

inhibited. 
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1.5. POSTULATED MECHANISMS OF PHENACET1N-INDUCED TOXICITY  

Although phenacetin is referred to as a toxic drug, the precise 

mechanism of its toxicity is still to be determined. Studies in 

hamsters (Mitchell et al.,1975) have postulated conversion to 

chemically reactive metabolites via several routes of metabolism 

(Hinson et al.,1979b; 1979c; Nelson et al.,1981). At least 

three different methods of activation have been suggested by 

which phenacetin is expected to be converted to chemically 

reactive metabolites responsible for its toxicity (Fig.2). 

i) Phenacetin undergoes oxidative deethylation by hepatic 

enzymes to form paracetamol, which in turn is converted to a 

chemically reactive nephrotoxic and hepatotoxic metabolite, 

probably NAQ (Calder et al.,1981). 

ii) Hepatic enzymes convert phenacetin 	to 	an 	arylating 

metabolite : plienacetin-3,4-epoxide (Hinson et al.,1977). 

iii) Hepatic enzymes convert phenacetin to N-hydroxyphenacetin 

(Hinson and Mitche11,1976), which could be conjugated as the N-

0-sulfate and N-0-glucuronide, 	both 	reactive electophiles 

(Mulder et al.,1977,1978). Additionally or alternatively NHP 

could be converted to NAQ (Calder et al.,1974). 

In the light of recent research, NHP has been considered to be 

the metabolite of phenacetin most likely to induce nephropathy 

and carcinogenesis (Calder et al.,1973; 1976; Calder and 

Williams,1975; Nery,1971c). The urinary excretion of NHP could 

therefore be indicative of the probable carcinogenicity and 

nephrotoxicity of phenacetin. 
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1.6. SCOPE OF THE PRESENT IN VIVO CHRONIC DOSING STUDY 

The present chronic study was therefore undertaken to elucidate 

more clearly the metabolism of phenacetin and any changes in 

metabolism after prolonged administration of the drug. Such 

factors could be indicative of the mechanism of phenacetin-

induced toxicity. 

An in vivo chronic study in rats was undertaken to monitor the 

excretion levels of the various metabolites of phenacetin, 

during a period of prolonged administration of the drug, at 

regular (weekly) intervals. 

NHP has been implicated as a likely proximal carcinogen of 

phenacetin. Levels of this probably carcinogenic, reactive 

intermediate, which were not determined in other chronic studies 

(Smith and Griffiths, 1976; Smith and Timbrell, 1974), were the 

focus of the present study. 

The effect of the size of dose has already been investigated 

with reference to the extent of metabolism of the drug (Smith 

and Timbrell, 1974) and its toxicity (Boyd and Hottenroth, 1968; 

Boyd, 1971), but these studies had not measured the significant 

metabolite, NHP. The present study also sought to examine the 

influence of size of dose on the formation of NHP. 

The influence of aspirin and caffeine on the metabolism of 

phenacetin was examined. It was of particular interest to 

detect any alteration in metabolism of phenacetin when co-

administered with these drugs. 
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The effect of chemicals likely to interfere with certain major 

pathways of phenacetin metabolism (such as sulfation) was of 

interest in this study. The intention was to infer the extent 

of saturation of the existing alternative pathways by 

suppressing the sulfation pathway.The possibility of direct 

interference with the metabolism of phenacetin by these 

chemicals was also of interest. An inhibition of sulfation 

would also be expected to result in diminished formation of the 

N-0-sulfate conjugate of NHP, a known reactive metabolite. 

1.7. ELUCIDATION OF THE METABOLISM OF p-PHENETIDINE IN VITRO  

The toxicity caused by PN, which is known to be hemolytic, could 

be direct or through a subsequent metabolite. 

Although in vitro  systems using microsomes have been used to 

study the metabolism and toxicity of several compounds, 

including phenacetin and paracetamol (Hinson et al., 1979a; 

Nelson et al., 1980), metabolic studies using PN as a substrate 

(Buch et al., 1967) which indicated its conversion to 2-HPN, did 

not reveal details of its further metabolism. A study involving 

an in vitro  examination of PN metabolism was therefore also 

undertaken in the present work. 



Page 27 

1.8. SELECTION OF AN IN VITRO SYSTEM  

Berry and Friend (1969) successfully 	developed 	enzymatic 

techniques for the isolation of viable hepatocytes and thereby 

introduced a reliable 	in vitro 	system 	for studying the 

metabolism or toxicity of xenobiotics. 

Several substrates have been studied using isolated hepatocytes. 

Benzpyrene (Cantrell and Bresnick, 1972), alprenolol (Moldeus et 

al., 1974), biphenyl (Wiebkin et al., 1976), ethyl morphine 

(Erickson and Holtzman, 1976), amylopyrene, dansylamide, quinine 

(Hayes and Brendel, 1976), barbiturates (Yih and van Rossum, 

1977), amphetamine (Hirata et al., 1977) and methotrexate (Horne 

et al., 1976) are a few examples. 

Isolated hepatocytes were chosen as the in vitro technique for 

the present study because this system has already proven its 

suitability for studies of drug metabolism and toxicity (Thor et 

al.,1978a; 1978b; Moldeus,1978). This is because more cellular 

properties are retained by isolated hepatocytes in comparison 

with microsomal preparations. Both cytochrome P450-dependent 

oxidation reactions (Moldeus et al.,1974; Yih and van Rossum, 

1977) and subsequent conjugation reactions (Wiebkin et al.,1976; 

Billings et al., 1977) are possible. Most importantly, better 

correlation with in vivo results of drug metabolism has been 

established (Billings et al., 1977; Yih and van Rossum, 1977) 

by using isolated hepatocytes in comparison with 900xg 

supernatant. 
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1.9. AIMS OF THE PRESENT STUDY  

i) Study the metabolism of chronically administered phenacetin 

in the rat. 

ii) Examine the influence of dosage size on metabolism. 

iii) Investigate 	the 	effect 	of 	sulfation inhibition on 

phenacetin metabolism and comparatively assess the metabolic 

alterations, if any, seen on administration of phenacetin 

acutely and chronically. 

iv) Detect 	and 	determine 	any 	alteration in phenacetin 

metabolism when phenacetin and aspirin are chronically co-

administered. 

v) Detect 	and 	determine any alteration 
	

in 	.phenacetin 

metabolism when phenacetin and caffeine are chronically co-

administered. 

vi) Follow the further metabolism of deacetylated phenacetin 

(p-phenetidine) in an in vitro  system and to account for its 

disappearance. 
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CHAPTER 2. 	EXPERIMENTAL 

2.1. MATERIALS 

p-Phenetidine (Hopkin & Williams Ltd, England) was redistilled, 

b.p. 	251 C. p-Nitrosophenetole was synthesized (Sec. 	2.1.1.). 

N-Hydroxyphenacetin 	and deuterated N-hydroxyphenacetin were 

gifts from Dr. S. McLean (School of Pharmacy, University of 

Tasmania). 2-Hydroxyphenetidine, N-acetyl-4-aminobenzoic acid 

and N-butyry1-4-aminobenzoic acid were gifts of Mr. M. Veronese 

(School of Pharmacy, University of Tasmania). 

The glucuronide, sulfate, cysteinyl and mercapturate conjugates 

of paracetamol were gifts from Dr. K. Henderson (Sterling 

Winthrop, Newcastle-upon-Tyne, Great Britain). 

Extract of Helix pomatia (beta-glucuronidase plus arylsulfatase) 

was obtained from Boehringer, Mannheim, Germany. Fluorescent 

silica gel (Schleicher and Schull type G7, size 10-40 ) was 

coated (0.25 mm thick) on to glass thin layer chromatography 

plates (20 x 20cm). 

Collagenase Type IV and Bovine Serum Albumin (BSA) essentially 

fatty acid free (Sigma Chemical Company, U.S.A.) were employed 

in hepatocyte isolation. 

Diazomethane was prepared fresh when required for methylation 

from p-tosylsulfonylmethylnitrosamide by the method of Vogel 

(1956), and used as the ethereal solution. 

Drugs were of B.P. grade. All other chemicals and solvents were 
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of A.R. grade and purchased commercially. 

2.1.1. SYNTHESIS OF p-NITROSOPHENETOLE  

p-Nitrosophenetole was synthesized by a modification of the 

method of Vogel (1959). p-Nitrophenetole (500mg, 0.003 mole) 

was dissolved in ethanol (99.5% v/v, 16m1). Ammonium chloride 

(640 mg, 0.012 mole) dissolved in water (3m1) and zinc powder 

(780mg, 0.012 mole) was added. 

The reaction mixture was stirred vigorously at room temperature 

for 90 min and checked for completion by thin layer 

chromatography on a silica gel coated miniplate developed in 

ether and visualized with ferric chloride (2.5% w/v in M/2 HC1). 

The reaction mixture was filtered and the precipitate washed 

with ice cold ethanol. The filtrate was transferred to a 

separating funnel. A saturated solution of sodium chloride was 

added and the mixture shaken thoroughly. 

Chloroform (2x25 ml) was used to extract the salted-out p-

nitrosophenetole and the pooled chloroform extract washed with 

ice cold water (2x25 ml). The chloroform extract was dried over 

anhydrous magnesium sulfate for 1 hour with frequent agitation, 

and evaporated off under vacuum in a rotary evaporator. This 

left a residue of p-nitrosophenetole which was later 

recrystallized 	from 	benzene 	and 	characterized 	by mass 

spectrometry. The recrystallized p-nitrosophenetole was pure. 

It produced a single spot when thin layer chromatographed 

(silica gel-ether) and one peak when gas chromatographed under 

conditions described in Fig. 6. 
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2.2. ANIMALS 

A Hooded Wistar strain of rats fed on a standard laboratory diet 

with water ad libitum  were used in all present studies. The 

rats weighed approximately 200 g and were 4 weeks old when used. 

2.3. IN VITRO STUDY 

An in vitro  system using freshly isolated hepatocytes from the 

rat was employed. 

2.3.1. HEPATOCYTE ISOLATION 

A modified method incorporating the techniques of Berry & Friend 

(1965) and Seglen (1972; 1973a; 1973b) was adopted (Fig. 3). 

The rat was anaesthetised with pentobarbitone (65 mg/kg; 

prior to surgery. 	After regular respiration was established, a 

mid-ventral incision was made to expose the liver and heparin 

(0.1 ml of 25,000 units/ml) was injected into the inferior vena 

cava to prevent blood coagulation. 

The hepatic portal vein was cannulated with a tube delivering a 

flow 	of 5 ml/min of calcium-free Krebs-Henseleit 	buffer 

(glucose 10mM, carbogen equilibrated, pH7.4, 37 C). 

Immediately after cannulation the buffer flow was increased to 

30 ml/min, the liver was flushed of all blood and the superior 

vena cava was cut open to allow for the drainage of the buffer, 

in situ. 
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The liver was excised from its connective tissue and mounted in 

a perforated plastic receptacle. After 12 min the buffer was 

replaced with Krebs-Henseleit buffer (glucose 10mM, carbogen 

equilibrated, pH 7.4, 37 C). 

After 5 min, collagenase (25 mg in 5 ml buffer) was added to 

give a final concentration of 0.05 % in the perfusate (50 ml), 

which was circulated for a further 45 min. The liver showed 

visible signs of disruption after this period. 

The liver was subsequently transferred into Krebs-Henseleit 

buffer containing BSA (0.1%w/v). The capsule was removed and 

hepatocytes gently shaken free from the connective tissue. 

The suspension of cells and tissue was sieved through nylon 

gauze which retained the connective tissue. The cell suspension 

was allowed to stand for a few minutes and the sedimented cells 

were harvested by decanting off the supernatant liquid. 

After reconstituting with BSA-Krebs Henseleit buffer, the cells 

were allowed to recover under carbogen, in an orbital shaker 

(37 C, 30 min, 120 osc/min). 

Trypan blue (0.2%) was used to estimate the viability count 

which was done in a Neubauer chamber. Viability was between 68% 

and 75%. Cell yield was between 1.3 x 108 to 1.6 x 108. 
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2.3.2. INCUBATION AND SAMPLE COLLECTION 

The isolated hepatocytes from healthy untreated rats were 

reconstituted to give a viable cell concentration of 2.5 x 

10 6 /m1 in Krebs-Henseleit buffer (BSA 1% , pH 7.4). An aliquot 

(5m1) was collected to serve as the blank sample. The substrate 

of •p-phenetidine (3.4 mg in 100 ul ethanol/water:30/70) was 

added to the cell suspension (50 ml) in an incubation flask, 

giving a PN concentration of 0.5 mM, found suitable for 

metabolic studies by McLean (1978). 

A zero time sample aliquot (5 ml) was removed, carbogen flushed 

through the incubation flask and the flask replaced in the 

orbital 
	

shaker bath (180 osc/min, 37 C), until the next 

collection was due. 	Samples were collected as scheduled in 

Table 1, and the carbogen replenished in the flask after each 

sample removal. 

The aliquots were collected in 15 ml centrifuge tubes kept in 

ice. The aliquot suspensions were centifuged immediately (2500 

rpm for 10 min) and 2 ml duplicate samples of supernatant were 

transferred to centrifuge tubes, frozen immediately in liquid 

nitrogen and stored for assay at -20 C. 

The samples were analysed as outlined in the analytical scheme 

for metabolites of p-phenetidine (Sec. 2.4. and Fig. 4) and the 

results of the analyses are presented in Table 1. 
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2.4. 	ANALYSIS OF THE METABOLITES OF p-PHENETIDINE  

Analytical methods for the extraction and analysis of the 

metabolites of p-phenetidine present in the supernatant of the 

incubate were developed. 

2.4.1. 	DETECTION AND MEASUREMENT OF PHENACETIN, PARACETAMOL,  

p-AMINOPHENOL AND p-PHENETIDINE  

2.4.1.1. HYDROLYSED SAMPLES 

An aliquot (2 ml) of incubate supernatant was buffered to a pH 

of 5.2 with 200 ul acetate buffer (1.1M, pH 5.2), in a 15 ml 

centrifuge tube. Helix pomatia extract (100 ul) and the 

internal standard, p-toluidine (TDN, 50 ug in 50 ul methanol), 

were added. After vortexing briefly (10 sec) the sample was 

hydrolysed (37 C, 16 hr). 

Sodium bicarbonate (120 mg) was added to the sample after 

hydrolysis and vortexed until dissolved to obtain a neutral pH. 

Butyric anhydride (25 ul) was added and the sample vortexed 

frequently over a period of 1 hour after which butyrylation was 

complete. 

The sample was then partitioned with dichloromethane (3 ml), 

vortexed (30 sec) and centrifuged (2500 rpm for 15 min). The 

aqueous upper layer was discarded and the dichloromethane 

extract decanted off after freezing with liquid nitrogen. The 

dichloromethane extract was further concentrated to 50 ul under 

a gentle stream of nitrogen at room temperature. Finally, 1 ul 

of the concentrated extract was gas chromatographed using 
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conditions shown in Fig. 5. Detection of the metabolites was by 

comparison with authentic standards. The concentrations of the 

metabolites were determined by reference to the standard curves 

for phenacetin (linearity: 0.5 ug/ml - 10 ug/ml), paracetamol 

(linearity: 0.5 ug/ml - 10 ug/ml), p-aminophenol (linearity: 0.5 

ug/ml - 5 ug/ml) and p-phenetidine (linearity: 5 ug/ml - 

15Oug/m1), using peak height ratios to internal standard. 

2.4.1.2. UNHYDROLYSED SAMPLES 

The enzyme incubation step was omitted. p-Toluidine was added 

and samples were butyrylated and extracted for analysis as 

above. 

2.4.2. DETECTION AND MEASUREMENT OF p-NITROSOPHENETOLE  

AND N-HYDROXYPHENETIDINE. 

An aliquot of incubate supernatant (2 ml), was transferred into 

a 15 ml centrifuge tube. p-Bromoaniline (BA, 50 ug in 50 ul 

methanol), the internal standard, was added. The method of 

Kiese and Renner (1963) using potassium ferricyanide to oxidize 

the N-hydroxyphene-tidine to p-nitrosophenetole was employed. 

Potassium ferricyanide (25 ug in 25 ul water) was added and the 

sample vortexed for 10 sec. Carbon tetrachloride (1 ml) was 

vortexed for 60 sec with the sample, to extract the required 

metabolites. The sample mixture was then centrifuged (2500 rpm 

for 15 min) and the upper aqueous layer discarded. The sample 

was frozen and the organic phase decanted and concentrated under 

a stream of nitrogen. Finally 1 ul of the extract was gas 
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chromtographed using conditions shown in Fig. 6. Detection was 

by comparison with the authentic standard and concentrations 

could be determined by reference to the standard curve for p-

nitrosophenetole (linearity: 0.5 ug/ml - 10 ug/ml) using peak 

height ratios to internal standard. 

2.4.3. DETECTION AND MEASUREMENT OF 2-HYDROXYPHENETIDINE 

A method based on that of Shahidi and Hemaidan (1969) was used 

to measure 2-hydroxyphenetidine. An aliquot of incubate 

supernatant (4 ml) in a 30 ml stoppered centrifuge tube, was 

acid hydrolysed (1 ml 10 M HC1, 100 C, 1 hr). The hydrolysed 

sample was neutralized with 5M sodium hydroxide (2 ml) and the 

pH adjusted to 8-9 with sodium bicarbonate. After the sample 

was vortexed for 30 sec it was kept at room temperature for 3 hr 

to allow for the formation of the phenoxazone. The tubes were 

cooled 	in ice and extracted sequentially with chloroform 

(2x20 ml). 	The chloroform extracts were pooled and evaporated 

to dryness under vacuum in a rotary evaporator. Color 

development was effected through the addition of preheated 

(70 C) 1M hydrochloric acid (2 ml). The absorbance was read at 

580 nm on a Bausch and Lomb Spectronic 20 spectrophotometer. 

Concentrations were determined by reference to a standard curve 

for 2-hydroxyphenetidine (linearity: 0.5 ug/ml - 25 ug/ml). 
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Page 37 

2.5. 	IN VIVO STUDY  

2.5.1.1. CHOICE OF DOSE  

Chronic oral daily doses of phenacetin (50 mg/kg), aspirin (50 

mg/kg) and caffeine (10 mg/kg) were chosen on the basis of 

relevance to present day human consumption of the drugs. The 

dose of 100 umol/kg pentachlorophenol, a known inhibitor of 

sulfation, was the same as that used by Mulder and Scholtens 

(1977) to block the sulfation of harmol. An additional, higher 

dose of phenacetin, 500 mg/kg daily, less than half the chronic 

LD 50 dose of 1.12g/kg (Boyd and Hottenroth, 1968), was used to 

examine the effect of chronic dosing on the metabolism of 

phenacetin. 

2.5.1.2. TIME AND ROUTE 

All the drugs in the respective experiments were administered 

orally before midday. Pentachlorophenol was administered 45 min 

prior to the phenacetin dose. Aspirin and caffeine were 

administered with phenacetin. 

2.5.1.3. FREQUENCY AND DURATION  

With the exception of acute pentachlorophenol dosing, which was 

co-administered with phenacetin on the first and seventeenth day 

of treatment, all other drugs were administered daily for the 

duration of the experiments. 

2.5.1.4. FORMULATION 

Caffeine was administered in aqueous solution. 	Phenacetin, 
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aspirin and pentachlorophenol were formulated as suspensions in 

0.25% sodium carboxymethylcellulose. Aspirin and 

pentachlorophenol were prepared fresh before each dose. 

2.5.2.1. DRUG TREATMENTS 

Five different treatments were investigated. A fresh group of 

six rats was used for each investigation except in the instances 

where phenacetin was co-administered with either caffeine or 

aspirin. In these instances each group comprised three rats. 

1. P500 	: Phenacetin (500 mg/kg), administered daily for 29 

days. 

2. P50 	: Phenacetin (50 mg/kg) administered daily for 17 

days. Pentachlorophenol (100 umol/kg) administered on day 17. 

3. P50/PCP : Phenacetin 	(50 	mg/kg) 	co-administered 	with 

pentachlorophenol (100 umol/kg) for one day. 

4. P50/A 	: Phenacetin (50 mg/kg) co-administered with aspirin 

(50 mg/kg) daily for 15 days. 

5. P50/C 	: Phenacetin (50 mg/kg) co-administered with caffeine 

(50 mg/kg) daily for 15 days. 

2.5.2.2. URINE COLLECTION 

During the 24 hr period of urine collection food was withheld 

and the rats were only provided with water ad libitum. 	Urines 

were collected at intervals of 7 days beginning from day 1, 
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using urine collection cages. These cages were of galvanized 

iron with mesh bottoms and mounted over plastic funnels to 

facilitate urine collection. The urine was allowed to run into 

a measuring cylinder, immersed in a Dewar flask containing a 

freezing mixture of ice and salt. 

A minimal amount of distilled water was used to wash the cage 

mesh bottom and the washings were allowed collect in the 

receiver. 

Urines and washings were collected, the volumes noted and the 

urines filtered separately. Aliquots (2 ml) were removed when 

required from each sample for the respective assays, which were 

routinely done after each collection. 
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2.6. ANALYSIS OF THE METABOLITES OF PHENACETIN  

The analytical scheme for the metabolites of phenacetin is 

presented in Fig. 7. 

2.6.1. DETECTION AND QUANTITATION OF  

PHENACETIN, 2-HYDROXYPHENACETIN AND 3-HYDROXYPHENACETIN  

Detection and quantitation of phenacetin, 2-hydroxyphenacetin 

and 3-hydroxyphenacetin was by gas chromatography (Figs. 8 and 

9). Analytical procedures were essentially the same as those of 

McLean et al. (1981) as modified by Veronese (1982). 

2.6.2. DETECTION AND QUANTITATION OF  

PARACETAMOL AND ITS CONJUGATES 

Detection and quantitation of paracetamol,and its sulfate, 

glucuronyl, mercapturate and cysteinyl conjugates was by high 

pressure liquid chromatography (Fig. 10). Analytical procedures 

were essentially those of Rumble as cited by Veronese (1982). 

2.6.3. DETECTION AND QUANTITATION OF  

2-HYDROXYPHENETIDINE 

Detection and quantitation of 2-hydroxyphenetidine was carried 

out spectrophotometrically. The method was the same as that 

used in the hepatocyte experiments (Sec. 2.4.3.). 



BLANK SAMPLE 
D

E
T

E
C

T
O

R
 R

E
S

P
O

N
S

E 

x 258 	 t Ig 32 
	 • 128 

1 b 	' 15 	20 	 I  25 	 lb 	 I 	1  15 	20 

TIME min) 

FIG. 8: GC trace  of 2-methoxyphenacetin (upper band-TLC)  

Hewlett Packard gas chromatograph 5700A; 
Column : SCOT-0V17 (0.45mm ID x 23.65m); 
col. : 205°C; inj. : 200°C; det. : 250°C; 
Carrier gas : 112 (55 cm/sec); FID gases : Air (20 ml/min), 112 (30 ml/min). 

BAMB 

I2MP 

•32 



BLANK SAMPLE 

D
E

T
E

C
TO

R 
AAMB 

- "256 

20 

TIME (mini 

‘,. 

t.32 	.64 

6 	 15 1O 	1'5 

FIG. 9: GC trace of phenacetin (lower band-TLC)  

Hewlett Packard gas chromatograph 5700A; 
Column : SCOT-0V17 (0.45mm ID x 23.65m); 
col. : 2050C; inj. : 2000C; det. : 2500C; 
Carrier gas : H2 (55 cm/sec); FID gases : Air (20 ml/min), 112 (30 ml/min). 



BLANK 	 SAMPLE 

APAP  1 

APAP-SULF 

       

A
BS

O
RB

AN
C

E 

   

APAP-GLUC 

      

       

       

       

1 0 0.02 1.0 0.2 0.02 0.2 
TIME (min) 

1 
5 10 15 	0 5 10 

FIG. 10: HPLC ANALYSIS OF THE METABOLITES OF PHENACETIN : PARACETAMOL AND  
CONJUGATES OF PARACETAMOL 

15 

COL= : 

SOLVENT : 

FLOW RATE : 

DETECTOR : 

SENSITIVITY : 

INJECTION VOLUME : 

CHART SPEED : 

pBondapak C18 (Waters Associates, 3.9mm ID x 30cm). 

CH3CN/phosphate buffer (10mM, pH 5.0) : 3/97. 

2m1/min (Waters Associates model M45 solvent 
delivery system). 

UV:254nm (Waters Associates model 441 
absorbance detector). 

0.02 - 1.0 AUFS. 

10p1 (Waters Associates model U6K Universal 
Liquid Chromatograph Injector). 

15"/hr (Houston Instruments Omniscribe Recorder). 



Page 41 

2.6.4. ASSAY FOR N-HYDROXYPHENACETIN 

NHP was detected and quantitated by a modification of an earlier 

method (McLean et al.,1981). An aliquot of urine (2m1) was 

mixed with acetate buffer (200 ul, 1.1 M, pH 5.2), extract of 

Helix pomatia (100 ul) and the internal standard, deuterated N-

hydroxyphenacetin (DNHP,10 ug in 10 ul methanol). 

The urine mixture was incubated at 37 C overnight to hydrolyse 

conjugated metabolites. The incubate was extracted into 

dichloromethane, methylated with diazomethane and separated by 

thin layer chromatography on silica gel as described before 

(McLean et al.,1981). Methylated derivatives of NHP (N-

methoxyphenacetin, NMP), DNHP (deuterated N-methoxyphenacetin, 

DNMP) and 2-HP (2-methoxyphenacetin, 2MP) and 3-HP (3- 

methoxyphenacetin, 3-MP) migrated together (with Rf 0.26) after 

two developments in chloroform. The corresponding urine zone 

was eluted and NMP identified by combined gas chromatography and 

mass spectrometry (GC/MS). The mass spectrum 	of NMP was 

identical to that reported earlier (McLean et al.,1981). 	A 

method based on multiple metastable peak monitoring (Gaskell and 

Millington, 1978) after direct insertion of the sample into a 

double focussing mass spectrometer, set up and operated as 

described by Davies et al. (1982) in a similar assay for 

warfarin, was used for quantifying NHP in rat urine. 

DNMP and NMP produce significant first field free region 

metastable peaks for the successive loss of the elements of the 

acetyl and methoxyl groups (DNMP: m/z 213->139; NMP: m/z 209- 

>135, Fig.11). These metastable peaks are not found in any of 
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the ring-methoxylated metabolites and so could be used to 

directly measure DNMP and NMP in the presence of the other 

methoxylated metabolites of phenacetin. Quantitation was by area 

of the ion current versus time curve during the distillation at 

120 C from the probe (Fig. 12). Blank urine gave no peaks and 

the calibration curve (ratio NHP/DNHP) was linear over the range 

of 0-50 ug NHP added to urine. 

In 	urine 	samples 	collected after the administration of 

pentachlorophenol on day 17 of chronic phenacetin dosing, an 

interfering peak for the 209->135 reaction was encountered. This 

is evident from the disparity in the distillation profiles, 

shown in Fig. 12. A GC/MS analysis was carried out to determine 

the source of interference. Two additional components present 

in the sample were detected and tentatively identified as ethyl 

hippurate and ethyl phenyl-acetyl-glycine. The molecular weight 

of ethyl hippurate was 207 and it gave a large fragment in at 

134, with simultaneous isotope peaks at 208 and 135. 

It 	therefore 	appeared 	that the interference could have 

originated from a 208->135 reaction, as interference peaks are 

known to occur in first field free region metastable studies. 

due to reactions from adjacent precursors to the same daughter 

ion or reactions within fields (Lacey and Macdonald,1977). 

The effect this interfering reaction has on the quantitation of 

NMP could be excluded if the accelerating voltage was changed to 

monitor a hypothetical 210->135 reaction, thereby allowing the 

detection of a 209->135 reaction, but not a 208->135 reaction. 

This was carried out and the samples were then found to have the 
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expected distillation profile, indicating the exclusion of the 

interference (Fig. 13). 

2.7. STATISTICAL ANALYSIS OF DATA 

• A students paired t test was performed for each group of rats in 

order to determine the significance of the observed changes in 

the metabolism of phenacetin with the different treatments. The 

change was considered significant when the value of p was less 

than 0.05. 
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CHAPTER 3. 	RESULTS AND DISCUSSION 

3.1. METABOLITES OF p-PHENETIDINE IN VITRO  

Results of the metabolite analysis obtained from the incubation 

of 0.5 mM p-phenetidine (3.4 mg in 50 ml) with freshly isolated 

hepatocytes are presented in Table 1. 

The 	expected 	metabolites, 	paracetamol, 	p-aminophenol, 

nitrosophenetole and N-hydroxyphenetidine were not detected 

although the sensitivity of the assays used provided detection 

limits of 0.5 ug/ml for the compounds. 

As shown in Table 1 and Fig. 14 the PN was further metabolized, 

indicated by its decreasing concentration over the period of 

incubation. However, the decrease in concentration was 

inadequately accounted for by the formation of phenacetin and 2- 

hydroxyphenetidine, the acetylated and hydroxylated metabolites 

respectively. The N-acetylation of the deacetylated metabolite 

of phenacetin in the rat , namely the N-acetylation of PN, is 

not considered significant, because the N-acetylated metabolites 

of PN are not excreted in the urine of Chester Beatty rats 

gavage fed [ethyl-14-C]-p-phenetidine (Nery,1971b). However, 

from the in vitro experiments performed (using freshly isolated 

hepatocytes from Hooded Wistar rats) in the present work, N-

acetylatio.n of PN was significantly demonstrated. The 

unaccounted for PN was probably converted to certain other 

unknown metabolites or conjugates. 

The relative instability of PN metabolites makes their isolation 



Page 45 

and investigation difficult. 	Nevertheless, the tendency of 

isolated hepatocytes to hydroxylate and acetylate the xenobiotic 

suggested the elimination of PN via these pathways and explained 

in some measure the increased 2HPN formed in vivo  by inhibition 

of sulfation or stimulation of aromatic hydroxylation (Sec. 

3 .2.2.). 



Table 1: Metabolism of p-phenetidine in isolated rat hepatocytes  

CONCENTRATION FOUND IN SUPERNATANT (ug/m1) 

CONTROL 
(without hepatocytes) 

Sample 	Time 
No. 	(min) 	

p-phenetidine 

1 	0 	64.35 

2 	30 	- 

3 	60 	61.58 

4 	90 	- 

5 	120 	60.81  

HEPATOCYTE INCUBATE 

p-phenetidine 	phenacetin 	2-hydroxy-p-phenetidine 

	

52.78 	2.08 	 - 

	

51.62 	3.44 	 - 

	

49.36 	4.17 	 0.58 

	

40.87 	3.67 	 0.70 

	

34.79 	3.26 	 0.88 

1. Typical of 4 experiments. 

2. Paracetamol, p-aminophenol, p-nitrosophenetole and N-hydroxyphenetidine were not detected. 
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3.2. METABOLITES OF PHENACETIN IN VIVO  

Buch et al. (1967) demonstrated that the major fraction (58%) of 

metabolized phenacetin, in the rat, is accounted for as 

paracetamol and its sulfate and. glucuronide conjugates. From 

the results presented in Table 2 and the graphic 

representations, Figs. 15 to 21, it is seen that a major 

fraction of the phenacetin dose was deethylated to paracetamol 

which was excreted in urine either as free paracetamol or as 

conjugated paracetamol-sulfate and paracetamol-glucuronide. This 

finding was compatible with the findings of earlier in vivo  

studies (Brodie and Axelrod,1949; Nery 1971b). The cysteinyl 

and mercapturate conjugates reportedly found in albino rats of 

the Birmingham Wistar strain, when treated with phenacetin 

(Smith and Griffiths,1976) were not detected in the Hooded 

Wistar strain of rats used in these experiments. 

Paracetamol-sulfate (APAP-SULF) was the major metabolite found 

in the present experiments, while paracetamol-glucuronide (APAP-

GLUC) levels were higher than those reported by Buch et al. 

(1967). 

Hydroxylation of phenacetin was in evidence in the present work. 

N-hydroxyphenacetin (NHP) was found present up to 0.3% of the 

dose of phenacetin. 2-Hydroxyphenacetin (2HP), measured as 

0.07% of the dose of phenacetin in other earlier studies was 

present upto a maximum of 0.06% of the dose of phenacetin in the 

present study. 3-Hydroxyphenacetin (3HP) was not detected. 2- 

Hydroxyphenetidine (2HPN) was also formed to the maximum extent 

of 0.8% of the dose of phenacetin as compared to 6% of the 
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phenacetin dose reported as the sulfate conjugate of 2HPN (Buch 

et al.,1967). The N—deacetylated metabolite 2HPN comprised only 

a minor fraction of the administered dose of phenacetin, an 

observation which has been similarly demonstrated in earlier 

experiments (Brodie and Axelrod,1949; Smith and Williams,1949), 

further indicating the metabolically inert nature of the acetyl 

group of phenacetin as previously suggested by Nery (1971b). 

Unchanged phenacetin was found up to 0.8% of the dose 

administered. 



Table 2: Metabolites of phenacetin in the rat with different treatments  

Days 
TREATMENT 

PERCENTAGE DOSE OF METABOLITES OF PHENACETIN 

APAP APAP-SULF APAP-GLUC NHP 2HP 2HPN P TOTAL 

1 4.05 61.03 22.57 0.046 0.00027 0.779 0.002 88.48 
(0.31) (2.50) (0.91) (0.002) (0.00002) (0.060) (0.000) 

8 5.98 58.95 35.44 0.120 0.00040 0.516 0.011 101.02 
P500 (0.31) (7.48) (4.35) (0.014) (0.00003) (0.031) (0.001) 

15 6.64 52.99 49.76 0.243 0.00085 0.614 0.005 110.25 
(0.61) (0.88) (3.74) (0.020) (0.0001) (0.066) (0.000) 

29 6.98 48.51 55.19 0.314 0.00078 0.750 0.003 111.75 
(0.61) (3.42) (4.99) (0.021) (0.00007) (0.118) (0.000) 

, 
2.72 76.27 13.20 0.102 0.043 0.016 0.145 92.49 
(0.16) (1.70) (1.11) (0.014) (0.002) (0.001) (0.009) 

1 2.34 71.97 \ 15.95 0.111 0.043 0.018 0.374 90.81 
(0.28) (2.24) (0.96) (0.010) (0.011) (0.001) (0.027) 

8 P50 4.13 88.72 15.07 0.099 0.028 0.007 0.392 108.45 
(0.29) (1.61) 	, (1.05) (0.014) (0.002) (0.000) (0.118) 

15 5.14 102.29 15.31 0.144 0.038 0.012 0.306 123.28 
(0.27) (6.77) (1.84) (0.026) (0.005) (0.000) (0.053) 

17* 4.43 75.32 15.33 0.123 0.035 0.018 0.808 96.06 
(0.37) (8.89) (1.23) (0.013) (0.012) (0.001) (0.058) 



Table 2: (continued)  

Days 
TREATMENT 

PERCENTAGE DOSE OF METABOLITES OF PHENACETIN 

APAP APAP-SULF APAP-GLUC 	NHP 2HP 21IPN P TOTAL 

1 3.62 78.7 13.55 0.103 0.038 0.123 0.116 96.25 
(0.57) (1.33) (1.33) (0.007) (0.006) (0.009) (0.022) 

8 P50/A 4.78 74.5 17.74 0.214 0.054 0.170 0.115 97.57 
1 (0.04) (5.64) (1.11) (0.054) (0.004) (0.014) (0.026) 

15 4.77 77.3 16.21 0.221 0.048 0.174 0.090 98.72 
(0.50) (3.05) (0.80) (0.027) (0.002) (0.001) (0.010) 

1 3.92 80.22 13.03 0.115 0.059 0.160 0.158 97.66 
(0.68) (1.53) (0.17) (0.009) (0.017) (0.010) (0.010) 

8 P50/C 4.40 65.91 15.04 0.132 0.039 0.197 0.109 85.83 
(0.57) (4.91) (0.82) (0.023) (0.006) (0.022) (0.006) 

15 4.80 73.33 13.54 0.189 0.058 0.235 0.113 92.26 

(0.33) (12.06) (1.45) (0.029) (0.012) (0.003) (0.014) 

(*) pentachlorophenol (100 umol/kg) adM)inistered. 

Each value is the mean (± SE) of 6 rats, except for P50/A and P50/C where 3 rats were used. 
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FIG. 15: Paracetamol sulfate  

Profile of the percentage of phenacetin dose vs. time 

P500 	: Phenacetin (500mg/kg) daily. 

P50 	: Phenacetin (50mg/kg) daily, 
: (A) with pentachlorophenol (100pmol/kg) on day 17, 
: (0) with pentachlorophenol (100pmol/kg) for one day 

(another group of rats was used for this point only). 

P50/A 	: Phenacetin (50mg/kg) and aspirin (50mg/kg) daily. 

P50/C 	: Phenacetin (50mg/kg) and caffeine (10mg/kg) daily. 

(*) p < 0.05; (**) p < 0.01 versus day 1. 
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Profile of the percentage of phenacetin dose vs. time. 
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3.2.1. P500 TREATMENT  

In rats dosed with 500 mg/kg of phenacetin daily, between 48% 

and 61% of the dose was excreted as APAP-SULF (Fig. 15). The 

levels of APAP-SULF in the present work were higher than those 

reported by Smith and Timbrell (1974) and declined over the 29- 

day period of study. A progressive depletion, with time, of 

cytosolic sulfotransferase sulfation was therefore inferred. 

The progressive decrease in sulfation was compensated for with a 

simultaneous increase in glucuronidation. Markedly increased 

levels of APAP-GLUC were witnessed during the experimental 

period (Fig. 16). The fraction of dose excreted as APAP-GLUC 

increased from 23 % to 55 % during the dosing period, higher 

than the maximum of 18 % of the dose reported previously (Smith 

and . Timbrell, 1974) 

The glucuronidation of phenacetin with UDP-glucuronyltransferase 

and its sulfation with cytosolic sulfotransferase enzymes of 

phenace tin are competitive pathways of metabolism (Mulder and 

Meerman,1978). Their precedence in the conjugation process are 

inversely related, as demonstrated by Kadlubar et al. (1980), 

Meerman et al. (1980) and Mulder and Scholtens (1977) in studies 

on the regulatory role of sulfation in some biological 

processes. The results of the present work were consistent with 

this inverse relationship and it was seen that glucuronidated 

levels of the drug were notably increased when sulfation was 

suppressed or impaired. 

Smith and Timbrell (1974) found that free APAP is excreted to 

the extent of 5% of the dose of phenacetin. 	In the present 
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study the fraction of unconjugated APAP increased from 4% to 7% 

of the dose of phenacetin, over the experimental period (Fig. 

17). This indicated that not all of the decreased sulfation was 

compensated for by an increase in glucuronidation alone. 

Smith and Timbrell (1974) found 2HP present to the extent of 

3.0% of the dose of phenacetin, but did not measure the 

metabolites NHP and 2HPN in rat urine. NHP and 2HPN are 

significantly relevant to the toxicity of phenacetin. The 

significant increase observed in the formation of 2HP and NHP 

over the experimental period (Figs. 18,19) could be a result of 

induction of the hydroxylation pathway. Auto-induction of 2HP 

formation was obvious in the first fortnight but did not 

increase further in the next. This resulted in its continued 

high level of formation. The induction of formation of NHP 

continued for the entire 29-day period of study and was 

evidenced by the increasingly higher levels of NHP formed. 

NHP had first been reported as an in vivo metabolite in the rat 

by McLean et al. (1981). The arylhydroxamic acids (Miller and 

Miller,1966a ; Weisburger and Weisburger,1973) including NHP 

(Calder et al.,1976) are known to be carcinogenic. The toxicity 

of phenacetin seen on chronic administration could therefore be 

due to the increased formation of NHP. 

However, 	irrespective 	of 	the 	reason for the increased 

hydroxylated products formed, the increased levels of NHP seen 

on administration of the 500 mg/kg dose daily, could well be a 

reason for the chronically induced toxicity of phenacetin. 
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The amount of deacetylated metabolites excreted in the urine of 

rats treated with phenacetin is increased when larger doses of 

phenacetin are administered (Raaflaub and Dubach,1969). A 

higher percentage of the dose of phenacetin present as 2HPN was 

seen on this treatment (P500) in comparison with that seen at 

the lower dose of phenacetin treatments (P50; P50/Ai P50/C). 

Formation of 2HPN exhibited a decreasing trend from 0.8% to 0.5% 

of the phenacetin dose (Fig. 20). This decrease was most 

prominent in the first week and was ostensibly related to the 

precedence of the glucuronidation pathway and the increased 

direct hydroxylation of phenacetin to 2HP and NHP. An increase 

or return to normality after the first week was seen in which 

2HPN reached a maximum of 0.75% of the dose on day 29 (Table 2). 

The percentage of the dose of phenacetin found unchanged in 

urine increased in the first week from 0.002% to 0.011% and then 

decreased over the next three weeks (Fig. 21). It appeared 

logical to assume that the kinetics of metabolism permitted the 

accumulation of phenacetin until steady state had been attained. 

Subsequently induced metabolism converted more free phenacetin 

to its respective metabolites. 
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3.2.2. P50 TREATMENT  

For rats on this dosage regimen a larger percentage of the dose 

was excreted as APAP-SULF, in comparison to the P500 treated 

rats. 	A significant increase in APAP-SULF formation was 

evidenced over the 15 day experimental period (Fig. 15). 	The 

sulfation pathway coped with this dose of phenacetin and its 

induction resulted in increased sulfation. Pentachlorophenol 

(PCP, 100uM)) a known inhibitor of sulfation (Mulder and 

Meerman,1978 ; Meerman et al.,1980) given orally on day 1 of the 

experiment did not alter the level of APAP-SULF in rats 

significantly (Fig. 15), contrary to expectations held on the 

basis of the earlier experiments in acutely dosed rats (Mulder 

and Meerman,1978)- Administered on day 17 of the study, PCP 

inhibited sulfation significantly (p<0.05) though incompletely 

(Fig. 15). The inhibition of sulfation was 27%, compared to 

100% found by Mulder and Scholtens (1977) in their experiments 

using the same dose of PCP intraperitoneally. Therefore, PCP 

administered orally exerts only partial sulfatioti inhibition in 

rats treated chronically with phenacetin. 

The APAP-GLUC levels were much lower in comparison to the P500 

treated rats and remained unaltered at 15% of the phenacetin 

dose (Fig. 16) during the course of the experiment. This was 

not in accordance with the expectation that the glucuronidation 

activity would be reduced as a consequence of the induction of 

the competitive sulfation pathway (Mulder and Meerman, 1978). 

Contrary to expectations therefore, the progressive increase in 

sulfation proceeded with no apparent effect on glucuronidation 
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at this dose. Mulder and Scholtens (1977) have demonstrated the 

suppression of glucuronidation with PCP (100uM, IP) in the rat. 

In the present work PCP (100uM, po) did not affect the 

glucuronidation of APAP. The percentage of the dose of 

phenacetin excreted as APAP-GLUC remained unaffected, thereby 

further establishing the selective sulfation inhibitory effect 

of PCP. 

The percentage of dose excreted as APAP was lower than that seen 

in the P500 treated animals. The APAP fraction increased from 

2.3% to 5.1% of the dose of phenacetin over the study period 

(Fig. 17). PCP did not alter the percentage of the dose of 

phenacetin excreted as APAP 	when 	given 	on day 1, but 
_- 

significantly (p<0.05) lowered it when co-administered on day 17 

of the chronic treatment with phenacetin (Fig. 17). 

A marked decrease in 211P formation in the first week was 

followed by a recovery in the next (Fig. 18). PCP did not alter 

the percentage dose of phenacetin converted to 2HP when given on 

day 1 but lowered it (p<0.05) when co-administered with 

phenacetin on day 17 (Fig. 18). 

Formation of NHP was marginally decreased in the first week and 

then significantly increased in the next (Fig. 19). Induction 

of the N-hydroxylating pathway was noticed in the second week of 

the experiment. 

The levels of NHP were not affected on day 1, but were lowered 

(p<0.05) on day 17 by the co-administration 	of PCP and 

phenacetin. 	PCP 	therefore, 	apparently 	inhibited 	the 
ter 
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hydroxylation of phenacetin to NHP and 2HP in rats treated 

chronically with phenacetin. 

The percentage of dose excreted as 2HPN diminished sharply in 

the first week and partially recovered in the second week of the 

experiment (Fig. 20). PCP did not affect the formation of 2HPN 

significantly on day 1, but caused a steep rise in 2HPN levels 

on day 17 of the experiment when co-administered with phenacetin 

(Fig. 20). 

The partial block of sulfation by PCP resulted in an increased 

formation of 2HPN. This suggested a metabolic shift towards 

increased indirect hydroxylation of phenacetin via PN or 

increased deacetylatcon of 2HP or both. Phenacetin excretion 

was also increased. However, the total increase in excretion of 

2HPN and phenacetin was less than 1 % of the dose of phenacetin 

administered. This did not account for the large decrease (27 % 

of dose) in sulfation caused by PCP on day 17. 
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3.2.3. P50/A TREATMENT  

Aspirin has been shown to be nephrotoxic (Prescott,1970; Nanra 

and Kincaid-Smith,1972b; 1973b) but its possible potentiation of 

phenacetin-induced carcinogenicity and nephrotoxicity require 

further investigation. Altered metabolism of phenacetin 

resulting from an aspirin-phenacetin (Thomas et al.,1973 ; 1974) 

or paracetamol-phenacetin (Whitehouse et al.,1977) metabolic 

interaction have been reported earlier • In the present instance 

when aspirin and phenacetin were co-administered the percentage 

dose of phenacetin excreted as APAP-SULF showed no increase over 

the 15 day period (Fig. 15) as compared to the increased levels 

seen on the administration of the same dose of phenacetin alone. 

The induction of sulfation was interfered with and as a 

consequence APAP-SULF levels were marginally depressed in the 

first week and only partially recovered in the second week. 

These results were in accordance with those of Thomas et al. 

(1974) for phenacetin-aspirin co-administered to rats, 

Whitehouse et al. (1977) for paracetamol-aspirin co-administered 

to mice and Wong et al. (1976) for paracetamol-aspirin co-

administered to hamsters. In these studies the significant 

metabolic effect of aspirin is the reduction of APAP sulfation. 

The 	suppression of sulfation accounted for the increased 

compensatory glucuronidation which yielded higher levels of 

APAP-GLUC in the first week and subsequently slightly lower 

elevated levels (Fig. 16). An increase in glucuronidation was 

also indicative of the enhanced UDP-glucuronyltransferase 

activity that salicylates are reported to cause (Hanninen and 
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Aitio,1968; Diamond et al.,1982). 

Free APAP levels increased from 3.6% to 4.8% of the phenacetin 

dose during the experiment (Fig. 17), a trend similar to that 

observed in the P50 treated rats. 

The hydroxylation of phenacetin to 2HP was increased in the 

first week and lowered marginally in the next (Fig. 18). The N-

hydroxylated product NHP was increasingly formed in the first 

week of treatment and continued a gradual escalation in the next 

week (Fig. 19). The 2HPN fraction increased over the 15 day 

period, most of the increase occurred in the first week of the 

experiment. 

The co-administration of phenacetin and aspirin 	therefore 

resulted in increased aromatic- and N-hydroxylation. This could 

be a result of the direct induction of the hydroxylation pathway 

or a consequence of the partial sulfation inhibition. Analgesic 

mixtures containing aspirin in combination with phenacetin are 

known to be more nephrotoxic than analgesic mixtures in which 

aspirin is excluded or is replaced with phenazone (Nanra et al., 

1980). Johansson (1981) explains the occurrence of renal pelvic 

tumors (only seen in rats treated with phenacetin or phenazone 

alone or in combination with caffeine) as a consequence of the 

altered metabolism of phenacetin, increasing the production of 

NHP, a postulated liver carcinogen. The induced N-hydroxylation 

of phenacetin by aspirin was therefore a noteworthy observation 

of significant interest in the context of potentiated 

phenacetin-induced carcinogenicity and nephrotoxicity. 
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The unchanged phenacetin levels declined over the period of 

study (Fig. 21). The decline was mainly seen in the second week. 
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3.2.4. P50/C TREATMENT  

Caffeine continues to be included in analgesic mixtures today. 

The contribution of caffeine to phenacetin-induced toxicity 

needs to be investigated. Research into the mutagenic activity 

and carcinogenic character of caffeine has indicated its 

mutagenic activity in lower organisms and its association with 

bladder cancer (Kuhlmann et al.,1968; Cole,1971), while other 

investigations have found that caffeine seemed to decrease the 

risk of malignancy in rats treated with phenacetin (Granberg-

Ohman et al.,1980). 

In the present work, when phenacetin and caffeine were co-

administered a trend similar to to that observed in the P50/A 

treated rats was witnessed. The APAP-SULF levels showed no 

increase over the 15 day period of study (Fig. 15), quite unlike 

the increased levels of APAP-SULF seen when the same dose of 

phenacetin was administered alone. 

The induction of sulfation was inhibited to a degree by caffeine 

and consequently conversion of phenacetin to APAP-SULF in the 

first week was marginally depressed and only fractionally 

recovered in the second week. 

Increased 	glucuronidation, 	apparent 	in 	the first week, 

compensated for the partial inhibition of-sulfation (Fig. 16). 

Free APAP levels increased from 3.9% to 4.8% of the phenacetin 

dose over the duration of the experiment (Fig. 17). This 

observation was common to the P50 and P50/A treated rats. 
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The hydroxylation of phenacetin to 2HP decreased in the first 

week and then recovered in the next (Fig. 18) an observation 

similar to that seen in the P50 treated rats. Thus caffeine did 

not affect the formation of 2HP. 

A progressive increase in the percentage dose of NHP was 

observed over the 15 day experiment (Fig. 19). The increase was 

more evident in the second week. Contribution to induction of 

N-hydroxylation by caffeine was only marginal, as compared to 

that of aspirin when co-administered with phenacetin. However, 

it still was significantly relevant to the potentiation of 

phenacetin-induced toxicity. 

An increase in the percentage dose of 2HPN occurred over the 

entire 15 day period of study (Fig. 20). Caffeine therefore 

noticeably induced the hydroxylation of phenacetin to 2HPN. The 

unchanged phenacetin levels remained unaltered during the period 

of study (Fig. 21). 
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CONCLUSION 

Sulfation plays an important 	role 	in the metabolism of 

phenacetin in the rat. Most of the drug was accounted for as 

the major metabolite, paracetamol-sulfate. Partial suppression 

of the sulfation pathway with pentachlorophenol increased only 

the fraction of phenacetin metabolized to 2-hydroxyphenetidine. 

It did not increase the formation of 2-hydroxyphenacetin or N-

hydroxyphenacetin. 

As a result of sulfation inhibition, more phenacetin was 

excreted unchanged. The phenacetin metabolized via deethylation 

and the sulfation pathway was not alternatively accounted for 

through any other metabolic pathway. This may indicate a limited 

capacity of the alternative pathways of phenacetin metabolism in 

the rat. 

Autoinduction of hydroxylating enzymes was seen at both high and 

low doses of phenacetin used, though to a lesser degree with the 

lower dose. Induction of N-hydroxylation was enhanced by aspirin 

and caffeine. This significant observation could explain the 

potentiated toxicity encountered in the chronic abuse of 

aspirin-phenacetin-caffeine combinations. The increase in N-

hydroxylation was more likely a result of direct stimulation of 

the hydroxylating enzymes rather than an effect of the 

accompanying partial suppression of sulfation resulting when 

these drugs are co-administered with phenacetin. 
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