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Expression Of Nuclear-acting Early-Response Genes in the Rat Heart: 

Implications 

for Cardiac Hypertrophy 

Post-natal growth of the mammalian heart is characterized by an increase in size of pre-existing 

cardiomyocytes (hypertrophy) rather than an increase in their number (hyperplasia). The primary stimuli 

for this growth process are not clearly understood but seem to involve both hemodynamic and hormonal 

factors. A major challenge to researchers has been to clearly define the signals that activate and regulate 

cardiac hypertrophy and to elucidate the intracellular transducing mechanisms which couple the 

hypertrophic stimuli to the long term changes in cardiac phenotype and function. Of the most likely 

candidate molecular signals the nuclear-acting early-response genes are of particular interest since their 

protein products are thought to play key roles in linking extracellular signals with terminal patterns of 

gene expression during growth and differentiation. The work in this thesis has examined the ability of 

various hypertrophic stimuli to modulate the expression of nuclear acting early response genes in the rat 

heart both in vivo and in vitro. A single injection of norepinephrine (2.5 jig/kg to 2.5 mg/kg) transiently 

increased mRNA levels of the nuclear acting early-response genes c-myc, c-fos, c-fun, fra-1 and fra-2 in 

the rat heart. Similar responses were also observed following chronic infusion of norepinephrine (100 

gg/kg/h) but not in response to treatment with the hypertrophic hormone triiodo-L-thyroxine. 

Hybridization histochemistry and immunocytochemistry techniques were used to localize early response 

genes to particular cell types and regions of the heart. Following norepinephrine administration (2.5 

mg/kg) Fos protein transiently accumulated in the cardiac myocytes and to a much lesser extent other cell 

types. In direct contrast, little Myc immunostaining was observed in the cardiac myocytes with greatest 

expression being localized to the cardiac non-myocyte population, presumably fibroblasts and cells of 

the vasculature system. The observed responses for both genes was not uniform but appeared greatest in 

the left atrium and left ventricle with lesser expression elsewhere. In order to differentiate the complex 

systemic interactions of norepinephrine from its direct actions upon the heart an isolated perfused heart 

system was employed. Both elevated perfusion pressure (60-120 mmHg) and the inclusion of 

norepinephrine (1 nM to 1 1.tM) in the perfusion buffer (60 mmHg) led to elevated mRNA levels of 

c-myc , c-fos, fra-1 and fra-2. These findings demonstrate the utitlity of the isolated perfused heart system 

as a model to study separately the effects of pressure load and NE on gene expression during the early 

stages of cardiac hypertrophy. Taken together with the in vivo results they lend further support to the 

notion that the products of early-response genes structurally or functionally related to c-fos may mediate 

the hypertrophic actions of norepinephrine and pressure overload. In contrast, c-myc expression may be 

associated with the proliferation of cardiac non-myocyte cells which occurs concomitant with cardiac 

hypertrophy. 
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CHAPTER  1 

INTRODUCTION 

1.1 DEVELOPMENT OF THE HEART: A BRIEF OVERVIEW 

1.1.1 Myocyte Formation 
Cardiac myocytes develop by active proliferation of a population of 

undifferentiated myogenic cells (presumptive myoblasts) which are derived from the 

splanchnic mesoderm of the early embryo (Manasek, 1970; Zak 1974A, 1974B). 

Initially the myoblasts are indistinguishable from their parent presumptive myoblasts 

(Bugaisky and Zak, 1986), however synthesis of myofibrillar protein is slowly initiated 

and accumulates in the cells which become distinguishable as those of muscle (Zak 

1974A, 1974B). This contrasts significantly with skeletal muscle development in which 

proliferation of skeletal myoblasts is mutually exclusive with the activation of muscle 

specific genes (Endo and Nadal-Ginard, 1986; Nguyen et al., 1983; Schneider and 

Olson, 1988). 
In the initial stages of cardiac morphogenesis the primitive heart consists 

only of myocytes, there being no fibroblasts, blood vessels or neuronal tissue (Manasek, 

1970). These non-myocyte components of the myocardium have different origins, 

thought to be the epicardium region of the mesoderm (Manasek, 1968). They invade the 

myocardium later in its development but due to their rapid and continual proliferation 

they eventually outnumber the myocytes by 3 to 1 (Morkin and Ashford, 1968; Grove et 

al., 1969; Bugaisky and Zak, 1986). Even so, myocytes account for more than 75% of 

the adult heart by volume as a result of their hypertrophic postnatal growth. 

As growth of the heart continues and myofibrillar protein accumulates, 

myocytes change from the round or oval shape of the early fetal stage to become 

progressively more elongated and this event parallels development of intraluminal 

pressure (Bishop, 1990). However it is not until shortly after birth when cell division 
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ceases that cardiac myocytes rapidly assume all aspects (with the exception of size) of 

the adult cell. The external shape of the cell develops from the simple neonatal spindle 

cell to a complex structure containing fully developed laterally aligned sarcomeres, 

T-tubules, numerous intercalated disc regions and a cross sectional shape which is 

irregular in order to accommodate adjacent cells and blood vessels (Bishop, 1990). At 

this stage the previously immature vasculature cells, neuronal cells and connective 

tissue become fully developed and functional (Bishop, 1990). 

1.1.2 Postnatal Development 

Prenatal growth of heart occurs primarily as a result of an increase in cell 

number (hyperplasia) but shortly after birth myocyte cell division ceases and further 

myocardial enlargement stems largely from an increase in the size of pre-existing 

myocytes (hypertrophy) and to a lesser extent hyperplasia of nonmuscle cells (Clubb 

and Bishop, 1984; Zak 1974A, 1974B). The exact time of conversion from hyperplastic 

to hypertrophic growth varies from species to species. In the rat an early postnatal 

period of approximately 20 days (birth to time of weaning) (Mattfeldt and Mall, 1987) is 

characterized by both cell division and cell enlargement whilst in the late postnatal 

period (weaning onwards) further increase in cardiac myocyte mass occurs solely from 

hypertrophy of existing myocytes and hyperplasia of non-muscle cell types (Sasaki et 

al., 1968; Claycomb, 1975; Korecky and Rakusan, 1978; Bing et al., 1971; Spann et al., 

1971; Skosey et al., 1972). This growth transition period is characterized by the 

appearance of multinucleate myocytes due to nuclear division which is not accompanied 

by cellular division (Clubb and Bishop, 1984). For example, in rats approximately 90% 

of adult ventricular myocytes have 2 or more nuclei (Bishop and Drummond, 1979; 

Clubb and Bishop, 1984; Muir, 1957; Challice and Edwards, 1961; Bugaisky and Zak, 

1986 ) whilst in pigs adult myocytes contain as many as 4 to 16 nuclei (Grabner and 

Pfitzer, 1974). In contrast, during skeletal muscle development karyokinesis is not 

uncoupled from cytokinesis and formation of multinucleate myotubes occurs via cell 

fusion (Clubb and Bishop, 1984). Furthermore, postnatal growth of skeletal muscle 

differs in that it is mediated in part by recruitment of "satellite" precursor cells in 

addition to hypertrophy (Campion, 1984). 
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Postnatal growth of the heart is also associated with increasing circulatory 

demands of a rapidly growing animal and rather abrupt changes in the patterns of flow 

and circulatory resistance occur shortly after birth (Rudolph, 1979). There is a 

progressive increase in volume load on both sides of the heart whilst pressure load in the 

left ventricle is markedly altered, increasing from about 20-25 mmHg at birth to over 

120 mmHg by several weeks of age (Bishop, 1990). This latter change correlates with 

faster hypertrophic growth of the left ventricular myocardium which is probably 

responsible for the relatively larger mass of this chamber in the adult heart (Rudolph, 

1979; Bishop, 1990). Concomitant with cardiac myocyte development and the 

subsequent transition to hypertrophic growth is the coordinated shift in the expression of 

specific contractile genes and genes involved in cardiac metabolism and energetics 

(Katz, 1990; Nadal-Ginard and Mandavi, 1989; Schneider and Parker, 1990). Generally 

these transitions involve selective transcription within multigene families or alternative 

mRNA splicing within the one gene (Breithart and Nadal-Ginard, 1987). Such "gene 

plasticity" results in a new cardiac phenotype whose functional properties differ from 

those of the fetal heart (Nadal-Ginard and Mandavi, 1989). It is proposed that such 

changes allow the newly developed heart to better cope with the altered hemodynamic 

demand, circulating hormonal levels and higher oxygen dependence characteristic of the 

adult animal (Bishop, 1990). 

1.2 CARDIAC HYPERTROPHIC STIMULI 

The adult heart structure and composition are not, however, a fixed postnatal 

property, but can be modified even further in response to alterations in cardiovascular 

demand, altered circulating hormone levels and following ischemia. For instance, 

certain forms of exercise training or pulmonary artery stenosis are often associated with 

significant myocyte hypertrophy and heart growth beyond that normally expected. 

Altered levels of various circulatory hormones and neurotransmitters such as thyroxine, 

angiotensin II (ANG II) and norepinephrine (NE) are also associated with the 

hypertrophic growth process. However, since many of these agents affect 

cardiovascular hemodynamics in addition to interacting with their corresponding 

receptors within the myocardium, it has often been difficult to ascertain whether they 
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affect myocardial growth directly or whether their trophic actions are mediated by 

complex systemic interactions 

1.2.1 Pressure and Volume Overload 

Increased work placed upon the heart as a result of hemodynamic changes is 

one of the major factors associated with the initiation and maintenance of cardiac 

hypertrophy during both physiological growth and disease states. 

Hemodynamic stimuli which may modulate cardiac growth are traditionally 

differentiated into two broad groups: those that result in pressure overload of the heart 

in which the ventricle must pump against a greater afterload (Batra and Rakusan, 1991) 

and those which give rise to volume overload of the heart in which the output is 

increased, often against a reduced peripheral resistance (Batra and Rakuson, 1991). 

Pressure overload following aortic (Schwartz et al., 1978; Hess et al., 1981; Caspari et 

al., 1977; Oldershaw et al., 1980; ICrayenbuehl et al., 1983) or pulmonary artery 

stenosis (Marino et al., 1985; Cooper et al., 1981) and renovascular or genetic 

hypertension is a major determinant of left ventricular hypertrophy in humans. This 

form of cardiac growth is generally associated with increased ventricular wall thickness 

and myocyte cross sectional area (Grossman et al., 1975; Anversa et al., 1986; Smith 

and Bishop, 1985) without chamber dilation and is termed "concentric" hypertrophy. 

Volume overload in humans is associated with certain forms of strenuous exercise 

training or a number of disease states including aortic insufficiency, arteriovenous 

fistula, tarsal septal defect or with hyperthyroidism (Grossman et al., 1975; Ford, 1976; 

Hutchins et al., 1973; Linzbach, 1960; Carabello et al., 1989; Papadimitriou et al., 

1974; Thomas, et al., 1984; Newman, et al., 1982; Ross, 1974; Hultgren and Bove, 

1981). In contrast to pressure overload, volume overload generally results in an 

enlargement of the ventricular circumference due to an increase in myocyte cell length 

(Grossman et al., 1975; Anversa et al., 1986; Gerdes et al., 1988) with variable changes 

in relative wall thickness (Linzbach, 1960; Grossman et al., 1975) and is thus termed 

"eccentric" hypertrophy. Increased work load on the heart may also occur in response to 

a large variety of myocardial conditions such as ischemic cardiomyopathy or acute 

myocardial infarction in which muscle is lost in a diffuse or focal manner (Sonnenblick 
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et al., 1983). Events such as these may evoke significant hypertrophy of the remaining 

myocardium (reactive hypertrophy) which must assume the load of the tissue lost due to 

the cell death (Sonnenblick et al., 1983). Myocyte growth in response to ischemia can 

be the result of either increased cell diameter and/or length (i.e. eccentric or concentric 

hypertrophy) and this appears to be largely dependent on the region and extent of cell 

damage, the precipitating cause and the status of the heart prior to the event (Anversa et 

al., 1985; Rubin et al., 1983). 

1.2.1.1 Overload hypertrophy: an adaptive response 

At least in the initial stages of cardiac hypertrophy, myocyte growth is 

viewed in terms of an adaptive response of the heart at the cellular and subcellular levels 

of organization which effectively minimizes the increase in pressure and volume 

overload (Rakusan, 1984). It is thought that the adaptive response may be attributed, at 

least in part, to changes in the relative amounts of cardiac specific isocontractile genes 

and enzymes of myocardial metabolism. For instance, rodent models of pressure 

overload are associated with an increase in cardiac mass and re-expression of genes 

associated with the neonatal heart such as 0-myosin heavy chain (0-MHC) (Litten et al., 

1982; Lompre et al., 1979; Martin et al., 1983). The diminished actin-activated ATPase 

activity of 0-MHC decreases the maximum velocity of shortening in unloaded muscle 

fibers (Schwartz et al., 1981) and the lower energetic cost of developed work is 

proposed to be advantageous during high oxygen demand (Katz, 1990; Nadal-Ginard 

and Mandavi, 1989). Other neonatal specific isocontractile genes which are also 

re-expressed include a-skeletal actin (a-SkA), 0-tropomyosin (0-TrM) (Izumo et al., 

1988) and atrial myosin light chain-1 (MLC-1) (Katoh et al., 1989). Similarly the 

neonatal isogenes encoding enzymes associated with myocardial metabolism such as the 

non-muscle subunits of creatine kinase (Ingwall et al., 1985), lactate dehydrogenase 

(Hammond et al., 1976) and the a3-isoform of the sarcolemmal Na+/K+ ATPase (Zahler 

et al., 1989) are up-regulated or reinduced during pressure overload hypertrophy and 

thus contribute to the inerease in the glycolytic potential of the tissue (Bishop, 1990). 

Other genes whose expression is modulated positively or negatively during pressure 

overload hypertrophy include those encoding the sarcoplasmic reticulum (SR) 
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slow/cardiac Ca' ATPase (Komuro et al., 1989) and atrial natriuretic peptide (ANP) 

(Izumo et al., 1988) respectively. It is possible that down regulation of the SR Ca' 

ATPase may explain the alterations in function of the SR and the impairment of Ca" 

movements in the hypertrophic myocardium (Schwartz et al., 1986). 

However re-expression of fetal isogenes is not a characteristic of all forms 

of cardiac hypertrophy and does not appear to occur during cardiac growth associated 

with volume overload as elicited by hyperthyroidism or arteriovenous fistula 

(Swynghdauw, 1986). In fact in these forms of hypertrophy the relative amounts of 

isocontractile genes associated with the adult phenotype are increased (for review see 

Morkin et al., 1983). 

Isocontractile protein shifts also occur in the human heart, but they have 

been less well characterized and appear to differ in many cases from those in rodent 

hearts (Parker and Schneider, 1991). For instance 13-MHC constitutes a major 

proportion of MHC in the adult human ventricle in contrast with rodents in which 

fl-MHC is down-regulated. A comparison of some of the cardiac-specific genes in 

rodent and human ventricle and their alterations following hypertrophic stimulus are 

outlined in Table 1. Further application of molecular techniques such as polymerase 

chain reaction (PCR) will allow for better characterization of muscle-specific gene 

changes within the adult myocardium in the future. (Feldman et al., 1991; Ito et al., 

1991 B). 

Table 1.1 Expression of cardiac isocontractile genes in normal and pressure overloaded 
adult rat and human ventricles. 

Rat 	Human 
a 	 Normal 	 +-1-4- 	+ 

Pressure Overload 	 ++ 
MHC 

Normal 	 -H-+ 
Pressure Overload 
	 +-H- 	1111 

Cardiac 	Normal 	 -H-+ 	-H-+ 
Pressure Overload 	 -H-+ 

a-Actin 
Skeletal 	Normal 	 -/+ 

Pressure Overload 	 +-H- 
(-): not expressed; (+,++,+++): relative expression; (?): unknown or conflicting results. Adapted from 
Parker and Schneider (1991). 
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1.2.1.2 Experimental induction of overload hypertrophy 

A number of experimental models have been developed in order to better 

characterize the effect of altered hemodynamic load on cardiac hypertrophy in vivo. 

Generally these models of hypertrophy are designed to mimic the changes in pressure 

and/or volume load observed clinically in animals during normal development and 

adaptation or in response to disease states. 

Particular forms of physical activity involving dynamic exercise such as 

swimming or running endurance trials are common models used to study hypertrophic 

growth during volume overload. Typically, a moderate or strenuous exercise regimen 

imposed on rats results in 22% and 30% hypertrophy respectively of the right ventricle 

after 8 weeks (Anversa et al., 1982; Loud et al., 1984; Anversa et al., 1984). It is worth 

noting however, that significantly increased adrenergic activity has been associated with 

swimming-exercised rats which may contribute to hypertrophy in its own right (Rupp, 

1989) and may account for the observed increased proportion of oc-MHC levels (Rupp 

and Wahl, 1990; Rupp, 1989; Rupp et al., 1984; Schaible et al., 1987; Pagani and 

Solaro, 1983). Other models of volume overload hypertrophy include chronic 

aortocaval fistula which can result in 20% to 100% increases in heart weight at 1-5 

months compared to sham operated animals (Grossman et al., 1975; Flaim et al., 1987; 

Zimmer, 1983; Batra and Rakusan, 1991). 

Cardiac hypertrophy following pressure overload can be rapidly induced in 

experimental animals by a wide variety of techniques, including abdominal aortic 

banding with right renal ischemia (Doering et al., 1988; Jalil et al., 1988; Jalil et al., 

1989), coarcation of 1 renal artery (Averill et al., 1976; Marino et al., 1985; Sen et al., 

1981; Thiedemann et al., 1983; Sen and Bumpus, 1979), suprarenal abdominal aortic 

banding (Folkman and Klagsbrun, 1987; Slack et al., 1987) and pulmonary artery 

vasoconstriction (Yoshida et al., 1987). For instance, within 8 days following 

constriction of the abdominal aorta there is an approximate 50% increase in size of the 

left ventricle and cardiomyocyte transverse area (Anversa et al., 1986). Spontaneously 

hypertensive rats (SHR) also develop cardiac hypertrophy and there is a gradual increase 

in cardiac mass as a function of an age-related rise in pressure. At 20 weeks of age both 
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hypertension and hypertrophy are established (Okamoto and Aoki, 1963; Okamoto et 

al., 1966; Pfeffer et al., 1979 A; Sen et al., 1974). 

Reactive cardiac hypertrophy may be induced experimentally by occlusion 

of a coronary artery. For instance complete ligation of the left anterior descending 

coronary artery in rats leads to transmural ischemia and a subsequent increase in 

myocardial volume of the surviving cardiac tissue (Zimmer et al., 1990; Pfeffer et al., 

1979 B; Anversa et al., 1984). In addition many models that induce acute cardiac 

overloading such as banding of the pulmonary artery of adult animals may result in 

multifocal areas of necrosis (Bishop and Melsen, 1976) and consequently reactive 

hypertrophy ensues. 

1.2.1.3 Load: a primary and sufficent stimulus for cardiac hypertrophy 

Changes in cardiac gene plasticity, metabolism and work parameters are 

readily characterized during experimentally-induced overload hypertrophy. In contrast 

it has proven very difficult to establish with any degree of certainty whether increased 

load itself is a direct and sufficient cause of cardiac hypertrophy in whole animals. 

Alterations in load are often accompanied by reflex changes in the levels of growth 

factors and neurotransmitters both locally and in circulation which may subsequently 

modulate heart growth. 

i) models of load in vivo 

One in vivo model which has proven particularly useful in dissecting the 

various parameters involved in overload hypertrophy is the heterotopical isotransplanted 

heart (Korecky et al., 1987; Klein and Hong, 1986; Advani et al., 1990; Klein et al., 

1990). In this model a heart is transplanted into the abdomen of a recipient animal of 

the same strain by attaching the stumps of aorta and pulmonary artery to the abdominal 

aorta and inferior vena cava respectively (Korecky and Masika, 1991). The transplant in 

effect functions as a denervated "non-working" Langendorff heart and is exposed to the 

same hormonal stimuli as the endogenous heart but does not support a hemodynamic 

load (Korecky and Masika, 1991). Several days following surgery an onset of atrophy 

is observed and this can not be reversed by the addition of growth-promoting hormones 

or neurotransmitters such as thyroxine or NE although expected shifts in the isomyosin 

spectrum due to these agents can be observed (Korecky and Masika, 1991; Klein and 
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Hong, 1986; Korecky et al., 1987). In addition, moderate swimming exercise does not 

attenuate atrophy of isotransplanted hearts even though mild hypertrophy is observed in 

the endogenous heart (Advani et al., 1990). In contrast, increased load placed upon the 

transplanted heart as a result of aortic insufficiency and/or stenosis of the aortic valve 

significantly attenuates the atrophy observed in the left ventricle (Korecky and Masika, 

1991). 

The papillary muscle, because of its easily dissectable, elongated form and 

highly oriented histological structure is• another model often used for examining the 

direct effect of load on cardiac growth (Anversa et al., 1986). In one study the tethering 

chordae tendineae of a single papillary muscle was cut to remove the load on this region 

of an otherwise normally loaded ventricle. This treatment very rapidly led to atrophy of 

the unloaded muscle (Cooper and Tomanek, 1982) even when the surrounding 

ventricular chamber was subjected to increased load secondary to aortic constriction and 

despite the influence of hormones supplied by the muscle's blood and nerve supply 

(Cooper et al., 1985). The only means by which the mass could be returned to the 

atrophied papillary muscle was by surgical restoration of the original load (Thompson et 

al., 1984; Kent et al., 1985). 

In vivo experiments such as these provide indirect evidence that increased 

work load is a major and sufficient factor contributing to the initiation and maintenance 

of cardiac hypertrophy following hemodynamic overload. Alternatively, these studies 

might simply indicate that load prevents atrophy, which might be an altogether 

different process to hypertrophy. 

ii) models of load in vitro 

In an attempt to better determine whether load itself is a primary and 

sufficient determinant for myocyte hypertrophy and cardiac growth a number of in vitro 

models have been developed including isolated superfused papillary muscle, 

Langendorff perfused hearts and cardiomyocyte cultures. These models have an 

advantage over their in vivo counterparts in that the complex systemic interactions of a 

given hypertrophic stimulus can be removed. Increased ventricular pressure has been 

shown to increase protein synthesis in isolated heart preparations (Hjalmarson and 

Isaksson, 1972; Morgan et al., 1980; Schreiber et al., 1966) and similarly, exposure of 

Langendorff perfused and working hearts to elevated aortic pressure increased the rate 
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of cardiac protein synthesis due to faster rates of both peptide chain initiation and 

elongation (Kira et al., 1984). When ventricular pressure development was prevented 

by ventricular draining and hearts were arrested with tetrodotoxin, protein synthesis still 

increased as a function of perfusion pressure (Kira et al., 1984). Further experiments 

demonstrated that oxygen consumption, glucose-6-phosphate levels and energy 

availability could be dissociated from the stimulatory effect of higher aortic pressure 

(Kira et al., 1984). Taken together these results indicate that stretch of the ventricular 

wall in response to elevated aortic pressure is the parameter most closely related to 

increased protein synthesis in vitro (Kira et al., 1984). In support of this other groups 

have demonstrated increased rates of protein synthesis in the left atrium of the perfused 

heart when the filling pressure of the chamber was elevated with respect to controls 

(Smith and Sugden, 1983). Similarly in isolated denervated papillary muscle 

preparations, an enhanced protein synthesis rate was found to be proportional to the load 

or tension applied to the muscle (Kent et al., 1989). 

The importance of load or stretch in the maintenance of cardiac muscle 

structure and function has become even more apparent from experiments with 

cardiomyocyte cell cultures. Unattached and thus externally unloaded feline 

cardiomyocytes maintained in cell suspension rapidly lose internal structure and 

organizational characteristics of differentiated striated muscle and come to resemble 

undifferentiated neonatal myocytes (Cooper et al., 1989). In contrast, adult 

cardiomyocytes externally loaded by attachment to a laminin-coated substrate exhibited 

only a very gradual loss of their characteristic structural, biochemical and functional 

properties (Cooper et al., 1986). Furthermore, linear deformation resulting in 

approximately 10% increase in cardiomyocyte cell length increased incorporation of 

[31-1]-uridine into nuclear RNA and [ 311]-phenylalanine into cytoplasmic protein (Mann 

et al., 1989; Cooper et al., 1989). Other studies have demonstrated that contractile 

arrest produced by either membrane depolarization or L-channel blockade inhibits not 

only growth of neonatal myocytes in culture but also expression of 13-MHC (Samarel 

and Engelmann, 1991). 

Thus in vitro experiments indicate that increased load itself is sufficient 

stimulus to accelerate RNA and protein synthesis and are supportive of the notion that 
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increased cardiac loading is one form of stimulus that is capable of initiating the 

biochemical events that form the basis of cardiac hypertrophy in vivo. 

1.2.2 Hormones and Growth Factors 

Although increased load or stretch of myocytes has been strongly implicated 

in the initiation and maintenance of cardiac hypertrophy, this does not obviate the 

possible importance to cardiac growth of other potential trophic factors such as 

norepinephrine (NE), thyroid hormones, angiotensin II (ANG II), adrenocorticoids and 

insulin. For many of these, it has been difficult to establish precisely what their 

contribution is to the hypertrophic growth process since they may modulate cardiac 

growth directly or as a secondary response via the alterations in hemodynamic 

parameters which they cause. In addition, recent studies have presented strong evidence 

that specific growth factors formed in the heart (Parker and Schneider, 1991; Schunkert 

et al., 1990) or changes in the intracardiac activity of systems such as the 

renin-angiotensin system (Schunkert et al., 1990; Baker et al., 1990), may play an 

autocrine or paracrine role in the hypertrophic response of the myocardium. 

It is possible that although the final result may be the same (i.e. increased 

cardiac muscle mass), different growth-promoting stimuli may accomplish this via 

alternative signaling pathways resulting in distinct changes in myocyte composition and 

cardiac design. By this means it is hypothesized that the heart may be better able to 

adapt to altered functional demand placed upon it during normal growth and disease 

states. 

1.2.2.1 Catecholatnines 

The catecholamines, NE from the sympathetic nerves and epinephrine (EPI) 

from the adrenal medulla, have been identified as likely non-mechanical growth factors 

which may modulate the development of cardiac hypertrophy. Early evidence for this 

notion has stemmed from both clinical observations and from in vivo experiments but 

even stronger lines of evidence are now emerging from studies with isolated cardiac 

myocyte cultures. 

i) in vivo studies 

Numerous studies have been published documenting that chronic 

administration of NE in vivo rapidly leads to increases in myocardial mass and 
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hypertrophy of the cardiac myocytes (Laks et al., 1973; Harri, 1978; King et al., 1987). 

However the establishment of a direct causal relationship between adrenergic-receptor 

occupation and subsequent changes in myocardial metabolism in vivo have been 

difficult due to the complex cardiac and systemic effects that this hormone exerts. For 

instance, cardiac hypertrophy observed following chronic treatment with high doses of 

catecholamines is physiologically similar to that observed in pressure-overloaded hearts 

secondary to aortic stenosis since both models exhibit preferential hypertrophy of the 

left ventricle which is often accompanied by an increase in connective tissue (Marino et 

al., 1985; Benjamin et al., 1989). The similarity between these two forms of cardiac 

growth may be partly interpreted as the effect of high circulating levels of NE leading to 

increased vascular resistance ((l c-mediated vasoconstriction) and subsequent 

pressure-overload of the heart. Thus these findings argue for a secondary pressure 

component in the mediation of NE induced cardiac hypertrophy in vivo. Interpretation 

of results derived from animals treated with high doses of catecholamines in vivo may 

be further complicated due to their ability to cause myocardial damage (reviewed in 

Jiang and Downing, 1990). For instance it is well documented that acute high-dose 

administration of isoproterenol ( a 13-adrenergic agonist) can lead to significant cardiac 

cell necrosis (Stanton et al., 1969) and thus a significant proportion of the cardiac 

enlargement observed under these conditions may be due to reactive hypertrophy and/or 

growth of connective tissue (Jiang and Downing, 1990) rather than a direct trophic 

effect of these drugs (Morgan and Baker, 1991). 

However, direct evidence in vivo for a role of catecholamines in modulating 

cardiac hypertrophy independent of pressure comes from experiments in which cardiac 

hypertrophy is induced by levels of NE that do not alter hemodynamic parameters or in 

which changes in hemodynamics are reduced by peripherally-acting drugs. For instance 

chronic infusion or repeated injections of rats with subhypertensive doses of NE or 

isoproterenol results in significant cardiac hypertrophy (Laks et al., 1973; Tse et al., 

1979; Chiba et al., 1989; Marino etal., 1991). Furthermore it has been shown that these 

changes in cardiac mass occur without concomitant cellular necrosis or fibrosis (Lin, 

1973; Marino et al., 1991). Similarly either infusion or repeated injections of 

hypertensive doses of either a- or P-adrenergic agonists rapidly and independently 
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induce cardiac hypertrophy and increase total RNA concentration even when 

hemodynamic parameters are normalized by co-infusion with the calcium channel 

blocker verapamil (Zierhut and Zimmer, 1989). Thus these experiments demonstrate 

that low doses of catecholarnines can modulate cardiac hypertrophy independent of 

pressure load. In respect to this it is interesting to note that the morphological changes 

produced by low doses of NE appear to be different to those observed in response to 

hypertensive levels of this hormone. For instance subhypertensive doses of NE have 

been reported to lead to similar increases in both left and right ventricular mass which 

are directly paralleled by increases in left and right ventricular muscle cell 

cross-sectional area (Marino et al., 1991). Furthermore, increased muscle mass is 

accompanied by proportional increases in interstitial volume and that of the vascular 

compartment of the heart but not with increased density of connective tissue (Marino et 

al., 1991). In short it appears that low doses of NE produce morphological changes in 

the heart similar to those produced by volume-overload hypertrophy, while higher doses 

of NE can produce morphological growth and abnormalities similar to those produced 

by pressure-overload hypertrophy (Marino et al., 1991). 

In addition to the effect of NE on the heart described above, it appears that 

the adrenergic system may indirectly regulate other models of cardiac enlargement. For 

example a number of studies have reported that cardiac a,- and 13-adrenergic receptor 

numbers are increased during aortic stenosis and consequently it has been hypothesized 

that increased catecholamine sensitivity may play a mediator role in pressure-overload 

hypertrophy (Karliner et al., 1980; Limas, 1979; Tamai et al., 1989). For instance, 

pressure-overload of guinea pig hearts elicits an increase in myocardial a cadrenoceptor 

density and this occurs before the onset of cardiac hypertrophy. Furthermore a,- but not 

n-blockade could prevent the observed development in hypertrophy (Tamai et al., 

1989). However, since a 1 -blockade also decreased left ventricular pressure it was not 

possible to determine whether it affected cardiac metabolism directly or secondary to 

reducing after load. Other groups have demonstrated that long term treatment of 

spontaneously hypertensive rats with a l -adrenergic blockers reduces blood pressure, 

leads to regression of cardiac hypertrophy and shifts the myosin isoenzyme pattern 

towards a-MHC (Takeda et al., 1991). In contrast a number of other studies, a 
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reduction in sympathetic activity was only moderately successful or unsuccessful in 

reducing cardiac mass (Cooper et al, 1985; Prasad et al., 1984; Zimmer and Gerlach, 

1982; Cutilletta et al., 1977; Oparil and Cutilletta, 1979; Tomanek et al., 1982) 

In a number of physiological and pathological conditions leading to 

hypertrophy, sympathetic nervous activity is enhanced and the subsequent augmentation 

of catecholamine release has been implicated in the cardiac growth process. For 

instance patients with congestive heart failure invariably exhibit elevated plasma levels 

of catecholamines (Cohn et al., 1984), whilst certain forms of exercise-induced 

hypertrophy in rats can be ameliorated by chemical sympathectomy and P -adrenergic 

blockade (Rupp and Wahl, 1990). 

In summary, experiments with subhypertensive doses of NE are highly 

supportive of a direct metabolic role for catecholamines in the initiation and 

maintenance of cardiac hypertrophy in vivo. However interpretation of results derived 

from studies conducted with higher doses of catecholamines are less clear due to the 

accompanying hemodynamic and cardiotoxic effects that these hormones cause. 

Whether altered catecholamine and receptor levels modify the development of 

hypertrophy in response to mechanical overload is a controversial subject which is yet 

to be resolved. It is likely that the model of overload and the animal species under study 

are important factors in these instances (Booth and Thomason, 1991). 

ii) in vitro studies 

In an attempt to circumvent the complicating systemic effects of 

catecholamines, investigators have turned to the isolated perfused heart and other in 

vitro myocardial preparations. Early studies demonstrated that pretreatment with 

catecholamines in vivo enhanced protein synthesis in ventricular slices subsequently 

incubated in vitro, but there was no acute effect of EPI on protein synthesis in slices in 

vitro (Malloy, 1973). A number of groups have demonstrated that catecholamines can 

modulate protein synthesis in isolated perfused heart preparations. For instance NE, EPI 

and isoproterenol (selective n-agonist) added in vitro to perfused hearts caused a 

dose-dependent increase in the incorporation of ["C]-phenylalanine into heart protein 

during the first 60 min of perfusion but only EPI was effective in increasing protein 

synthesis after 90 min of perfusion (Kallfelt et al., 1976). In fact other groups have 
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detected inhibition of protein synthesis by 13-adrenergic agonists and other agents which 

raise intracellular cyclic AMP (cAMP) concentrations in the perfused heart during 

sustained perfusion (Fuller and Sugden, 1988). This apparent lack of effect or decrease 

in protein synthesis during extended perfusion periods with catecholamines has been 

postulated to be the result of decreased cardiac ATP levels. It has been demonstrated 

that catecholamines perfused in vitro decrease cardiac ATP levels and total adenosine 

nucleotide contents (Fuller and Sugden, 1988; Chua et al., 1978), probably due to 

insufficient 02  delivery by the simple physiological saline solutions used in perfusion 

buffers, in the face of positive chronotropy and inotropy. Furthermore, since protein 

synthesis is an endogonic process, decreased nucleoside triphosphate contents may 

explain the apparent decrease in protein synthesis elicited by P-adrenergic agents during 

the second hour of perfusion (Fuller and Sugden, 1988). Other groups have avoided 

problems of a-receptor-mediated reduction in cardiac ATP by using hearts arrested with 

tetrodotoxin and in these preparations drugs that increased cAMP content such as 

glucagon and forskolin did not reduce cardiac ATP levels but were able to increase 

protein synthesis after 90 min of perfusion (Xenophontos etal., 1989). 

In addition to 13-agonists, increased protein synthesis has also been 

demonstrated in isolated perfused hearts in response to selective oc cadrenergic agents 

and this has been shown to be due to faster rates of translation of pre-existing mRNA 

(Fuller et al., 1990). 

In contrast to perfused heart preparations, in vitro models using cardiac cell 

culture permit the direct analysis of a single variable at the myocyte level. The most 

inclusive studies examing the effects of catecholamines on cardiomyocyte hypertrophy 

in vitro have been undertaken by Paul Simpson's group (Simpson, 1983; Simpson, 

1985; Simpson, 1989; Henrich and Simpson, 1988; Bishopric et al., 1987; Waspe et al., 

1990) using isolated neonatal cardiocyte cultures and have subsequently been 

confirmed by a number of other groups (Meidell et al., 1986; Inuzuka, 1986). With 

these preparations it has been demonstrated that quiescent neonatal myocytes 

maintained in serum-free medium respond equipotentially to NE and EPI with an 

increase in protein content, cell surface area or cell volume, with no associated cell 

division. Furthermore, cardiac growth was not restricted to non-specific increases in 
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proteins since inRNAs encoding for the muscle-specific isocontractile genes a-skeletal 

actin (a-SkA), 13-MHC (Waspe et al., 1990; Bishopric et al., 1987) and MLC-2 (Lee et 

al., 1988) were also up-regulated. Thus the growth of these cells, both in terms of 

phenotypic changes and cellular enlargement, in response to NE appears to closely 

model cardiac hypertrophy observed in vivo in response to pressure overload. The 

growth-promoting effect of NE in these cell cultures was demonstrated to be mainly 

mediated via the acadrenergic receptors since both - and specific blockers failed to 

inhibit hypertrophic growth whilst 13-adrenergic agonists did not result in increased cell 

size (Simpson, 1983). In addition it was demonstrated that the growth response could 

be regulated independently of beating since growth inhibition with cyclohexamide did 

not prevent induction of beating by NE and conversely inhibition of beating with 

13-antagonists did not prevent stimulation of hypertrophy by NE or EPI (Simpson, 

1985). These experiments provided the first direct evidence that catecholamines could 

modulate cardiac growth independent of changes in cardiac mechanics. 

The notion that the NE growth response of neonatal cells is specific to 

acadrenergic agents may have to be revised since Simpson's group have subsequently 

demonstrated that the 13-adrenergic receptor is linked to myocyte hypertrophy although 

it has a 1000-fold lower EC50, is dependent on certain culture conditions, may require 

contractility and may not activate transcription (Simpson et al., 1991). 

The trophic actions of catecholamines have also been investigated in 

myocyte cultures isolated from adult animals and they appear to differ markedly from 

those observed in neonatal myocyte preparations. For example p- but not a-adrenergic 

stimulation increased a-MHC expression in contracting adult myocytes (Rupp et al., 

1991) and this response was shown not to be linked to the high mechanical activity 

induced by 13-adrenergic agents since no differences in expression were observed 

between contracting and arrested myocytes. The finding that a-MHC expression is 

increased in these experiments rather than 13-MHC, as was demonstrated in neonatal 

myocytes treated with NE, is intriguing but not unexpected since I3-adrenergic 

administration in adult rats has been shown to lead to an increased proportion of 

a-MHC (Sreter et al., 1982; Rupp et al., 1983; Buttrick et al., 1988; Rupp et al., 1991). 
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However, since 13-adrenergic stimulation increases NE release from presynaptic nerve 

terminals (Mueller and Axelrod, 1968) it is difficult to determine whether 0-agonists act 

primarily via 0- or a-adrenergic mechanisms in vivo. In direct contrast, others have 

shown that 13-adrenergic agonists do not stimulate contractile protein synthesis in 

quiescent adult myocytes but instead give rise to a general augmentation of 

non-contractile protein levels (Dubus et al., 1990). Interestingly in another study of 

adult rat myocyte preparations, elevated rates of protein synthesis (20-30%) were 

induced by acute administration of a cagonists and this was shown to be due to faster 

rates of translation of pre-existing inRNA (Fuller et al., 1990). However, Cooper et al 

(1986 and 1987) showed no trophic response was observed in adult feline 

cardiomyocytes treated with NE (Cooper et al., 1986) and thus the growth promoting 

effects of NE may be species-specific or the significant differences in the experimental 

culture conditions may be critical (Rupp et al., 1991). 

The above results clearly demonstrate that adrenergic agents can directly 

mediate hypertrophy and isocontractile gene expression in neonatal cardiac myocytes. 

However, despite recent advances in the preparation and culture of adult cardiac 

myocytes (Bugaisky and Zak, 1989), studies concerning the effect of catecholamines on 

myocyte hypertrophy with these cells are less conclusive and appear to differ from those 

observed in neonatal myocytes. It has been suggested that this discrepancy could result 

from differences in the animal developmental stage from which the myocytes were 

obtained. In the heart of adult mammals the sensitivity of acagents is decreased with 

respect to neonatal hearts (Graham and Lannier, 1986; Schaffer and Williams, 1986) 

whilst cardiac responsiveness to 13-adrenergic agents is increased (Longabaugh et al., 

1986). Alternatively it is possible that growth stimulation in adult myocytes is more 

dependent on the inotropic (Watanabe and Lindemann, 1984; Winegrad, 1984) and 

chronotropic effects (Watanabe and Lindemann, 1984) of adrenergic stimulation than in 

neonatal cells. Importantly, recent studies indicate that growth factor(s) released from 

cardiac non-myocytes that act in a paracrine fashion may be important for hypertrophy 

of adult hearts (Parker and Schneider, 1991; Long et al., 1991) and thus future in vitro 

experiments will need to investigate the effects of adrenergic agents on adult myocytes 

in the presence of other myocardial cell types. 
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In conclusion, in vivo studies indicate that adrenergic agents can stimulate 

cardiac hypertrophy independent of hemodynamic changes and these findings are 

supported by experiments with isolated neonatal myocytes. However when adult 

myocytes are removed from their complex three dimensional surrounds and cultured in 

vitro the effect of adrenergic agents on their growth is less conclusive. It is likely that 

cardiac non-myocytes may play an important role in mediating the effects of NE on 

hypertrophic growth of adult myocytes in situ and that this may be mediated by the 

release of specific paracrine growth factor(s). 

1.2.2.2 Angiotensin 

The vasoactive octapeptide hormone ANG H is the major circulatory 

component of the renin-angiotensin system, an important hormone system that regulates 

volume and fluid homeostasis in humans and other animals. In addition to these well 

established actions, recent studies indicate that ANG H may directly increase protein 

synthesis and cardiac hypertrophy by coupling to its cardiac membrane receptor. 

Furthermore, evidence has mounted recently suggesting that a locally active, 

intracardiac renin-angiotensin system may have an autocrine or paracrine influence on 

myocyte growth and cardiac hypertrophy during pressure overload. 

i) in vivo studies 

ANG II may indirectly affect cardiac growth by causing increased blood 

pressure and total vascular resistance due to coupling to its receptors in the vasculature 

system. However, direct in vivo evidence for a role of ANG H in modulating 

myocardial growth has come from studies in which animals administered 

subhypertensive doses (Morgan and Baker, 1991) or hypertensive doses of ANG H in 

which the pressor activity of the drug was inhibited, (Khairallah and Kanabus, 1983), 

still developed marked cardiac hypertrophy. From these studies it has been suggested 

that ANG H stimulates protein synthesis and cell growth in cardiac tissue by direct 

coupling to its cardiac reeceptors including those on the cardiomyocytes (Baker et al., 

1984; Baker and Khosla, 1986; Wright et al., 1983). However the mechanism by which 

occupation of its receptor is coupled to protein synthesis is not known. 

In addition to a role for circulating ANG II in cardiac growth, evidence 

supporting the presence of local renin-angiotensin systems in the heart (Jin et al., 1988; 
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Dzau, 1988) has recently accrued. Studies indicate that both angiotensinogen (the 

substrate for angiotensin converting enzyme) and renin mRNA are found in the 

myocardium and are developmentally regulated in this tissue (Chemin et al., 1990; Jin 

et al., 1988; Dzau et al., 1987; Kanapuli and Kumar, 1987; Ohlcubu, et al., 1986). For 

instance, both renin and angiotensinogen mRNA are present in all chambers of the 

neonatal heart but soon after birth, expression is localized to the left and right atria 

(Chernin et al., 1990). Furthermore, the angiotensin converting pathway appears to be 

amplified during pressure-overload hypertrophy since in hypertensive rats 

angiotensinogen levels are several-fold higher in the left ventricle than in normotensive, 

non-hypertrophic rats (Li et al., 1989). Similarly, aortic constriction results in 

up-regulation of angiotensinogen and angiotensin converting enzyme mRNA levels in 

the hypertrophying left ventricle (Baker et al., 1990; Schunkert et al., 1990). It has been 

suggested that this may represent a regression of the ventricular myocyte toward the 

neonatal cell type exemplified by cardiac specific isocontractile proteins shifts (Chernin 

et al., 1990). This developmental regulation and re-expression during pressure overload 

is similar to that observed for ANP mRNA (Chemin et al., 1990; Wei et al., 1987). 

The exact physiological roles of the local ANG II generating pathways have 

not been defined but within the heart it has been suggested that in addition to effects on 

cardiac contractility, coronary vasomotor tone and arrhythmogenesis, they may play a 

permissive role in modulating cardiac growth and development (Dzau, 1988; 

Lindpaintner et al., 1988). For instance, treatment with angiotensin converting enzyme 

inhibitors resulted in prevention or reversal, of left ventricular hypertrophy brought 

about by aortic stenosis in rats (Schunkert et al., 1990; Kromer and Riegger, 1988) and 

in response to chronic pressure overload in humans (Wakashima et al., 1984; Devereaux 

et al., 1987). Furthermore, this occurred even when the levels of angiotensin converting 

enzyme inhibitors did not decrease peripheral resistance (Schunkert et al., 1990). 

These data indicate ANG II may directly affect myocardial growth by 

coupling to its cardiac receptors and that this may occur independently of the well 

established endocrine functions such as increased peripheral vascular resistance and 

arterial pressure, that this hormone can produce. In addition it appears that locally 
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generated ANG II may have an important role in mediating cardiac cell growth and 

hypertrophy in vivo during pressure-overload hypertrophy. 

ii) in vitro studies 

A number of studies have demonstrated that ANG II can stimulate protein 

synthesis and hypertrophy in cultured vascular smooth muscle cells (Berk et al., 1989; 

Geisterfer et al., 1988). More recently a direct trophic role for angiotensin has been 

demonstrated in cardiac tissue. Cultured embryonic chick myocytes treated with ANG 

H for 3 h exhibited increased total RNA levels, total cellular protein (32%) and 

enhanced cellular hypertrophic growth within 5 to 6 days compared to untreated cells 

(Baker and Aceto, 1990). The growth-related effects of ANG H could be prevented by 

ANG H antagonists but not adrenergic antagonists and were accompanied by increased 

cytosolic Ca' influx. In addition the hypertrophic effects of ANG II were not dependent 

on the chronotropic state of the cells since increases in cellular protein were not 

inhibited by 1(4" depolarization (Baker and Aceto, 1990). In contrast studies with adult 

myocyte cultures found that ANG II did not increase protein synthesis except under 

• high Ca' conditions (Fuller et al., 1990). It is possible that the discrepancy in results 

between these culture systems stems from quantitative and/or qualitative differences in 

the ANG II receptors. Further studies are needed to fully characterize the role of 

components of the renin angiotensin system in both adult and neonatal cell cultures. 

In summary, both in vivo and in vitro data indicate that ANG H may 

modulate cardiac hypertrophy by direct activation of its cardiomyocyte receptors. In 

addition ANG H may indirectly affect cardiac growth during hypertension by either 

paracrine and/or autocrine functions related to a locally-acting intracardiac 

renin-angiotensin system. 

1.2.2.3 Endothelin-1 

Endothelin-1 (ET-1) is a 21-residue vasoconstrictive peptide derived from 

the endothelium that induces a potent and sustained vasoconstrictive effect on a number 

of blood vessel types (Yanagisawa et al., 1988; Moravec et al., 1989). It is considered 

to play an important role in the regulation of blood pressure and local blood flow (Ito et 

al., 1991 A) and possesses powerful inotropic and chronotropic actions on isolated atria 

in a number of species (Moravec et al, 1989; Ishikawa et al., 1988; Hu et al., 1988). 
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ET-1 receptors in cardiac membrane (Gu et al., 1989) and in cultured cardiomyocytes 

have been recently characterized and it now appears that ET-1, in addition to its 

vasopressor activity, may act as a myocyte growth factor in a similar fashion to 

acadrenergic agonists. 

Direct support linking ET-1 activity to cardiac growth has come from in 

vitro experiments with neonatal myocytes cultured in serum-free medium. In this 

system ET-1 has been shown to augment protein synthesis and hypertrophy in cardiac 

neonatal myocytes (Suzuki etal., 1990; Ito etal., 1991 A) with concomitant increases in 

mRNA transcripts (2-5 fold) of the muscle specific genes MLC-2, a-SlcA and 

troponin-1 within 6 h (Ito et al., 1991 A). Run-on transcription assays indicated that 

contractile isogene expression was regulated by increases at the level of transcription. 

Furthermore, similar responses were observed following treatment with TPA or 

ionomycin (Ito et al., 1991 A) and were blocked by protein lcinase C (PKC) inhibitors 

(Suzuki et al., 1990) indicating that activation of PKC and calcium ion influx may 

mediate ET-1 induced myocyte hypertrophy. Recent studies indicate that the addition of 

ET-1 to cultured adult myocytes more than doubles the rate of protein synthesis 

(Neyses et al., 1991). 

These results indicate that ET-1 is a potential modulator of hypertrophy in 

neonatal myocytes and protein synthesis in adult myocytes, however its relevance to 

pathophysiological hypertrophy in vivo has not been determined. It is possible that 

ET-1 may act in a paracrine fashion to mediate pressure overload hypertrophy in certain 

models of hypertension as is hypothesized for the renin angiotensin system. In support 

of this, plasma ET-1 levels have been reported to be increased in patients with 

hypertension (Shichiri et al., 1990) and acute myocardial infarction (Miyauchi et al., 

1989). 

1.2.2.4 Thyroid hormones 

The heart is a major target organ of thyroid hormone action and clinical 

symptoms associated with thyroid dysfunction indicate that this hormone exerts 

multiple effects on cardiac structure and function. In particular, the ability of thyroid 

hormone to modulate cardiac hypertrophic growth during disease states and in 
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experimental studies in vivo and in vitro has received considerable attention from both 

clinicians and researchers alike. 

i) in vivo studies 

It is well documented that the administration of thyroid hormones (T 4  and 

T3) to rodents produces rapid and reversible cardiac hypertrophy (Bonnin et al., 1983; 

Carter et al., 1982; Crie et al., 1983; Sandford et al., 1978; Siehl et al., 1985; Zahringer 

et al., 1984; Yazalci and Raben, 1975). For instance, repeated injections or chronic 

infusion of T3  results in a significant increase in RNA concentrations (approximately 

20% within 1 day) (Morgan et al., 1978; Kao et al., 1977), protein synthesis (46% 

within 3 days) and myocardial mass (45% within 7 days) (Clarke and Ward, 1983). 

This has been shown to be largely due to faster rates of protein synthesis rather than 

decreased rates of protein degradation (Sandford et al., 1978; Cohen et al., 1966; 

Wildenthal et al., 1978). 

In addition to non-specific changes in protein synthesis, increased thyroid 

hormone levels are associated with specific alterations in expression of genes coding for 

isocontractile proteins. Hypothyroid states in the rat results in a complete switch in the 

normal a/f3-MHC distribution (Hoh et al., 1978; Lompre et al., 1984) by inducing the 

progressive disappearance of a-MHC mRNA and the appearance of f3-MHC mRNA 

(Talafih et al., 1984). Conversely, thyroxine replacement has the opposite effect, 

suggesting that the a- and P-MHC genes are regulated by thyroid hormone in an 

antithetic fashion (Mandavi et al., 1984) and directly opposed to the isoform shifts 

observed during pressure-mediated cardiac hypertrophy. As with pressure-overload 

hypertrophy, it is thought that alterations in myosin composition during hypo- and 

hyper-thyroidism are physiologically significant, since the relative proportions of the 

isoforms seem to be directly related to the intrinsic speed of contraction (Barany, 1967; 

Schwartz et al., 1981). 

The mode by which thyroid hormone affects cardiac metabolism is a 

contentious issue. Convincing evidence exists that a significant proportion of the 

physiological action of thyroid hormone depends on its interaction with nuclear 

receptors with which it has high affinity (Oppenheimer et al., 1972; Lazar and Chin, 

1990). Following occupation of its receptor, it is internalized where the complex binds 
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to sites on sensitive DNA known as thyroid-response elements, and mediates or 

modulates both positively and negatively transcriptional processes. Thus thyroid 

hormone responsiveness of cardiac a-MHC has been implicated by the identification of 

a thyroid response elements within the 5' flanking region of this gene (for reviews see 

Mandavi et al., 1989; Nadal-Ginard and Mandavi, 1989). By analogy it is possible that 

other changes in gene expression characteristic of thyroid hormone-induced cardiac 

hypertrophy may mediated by direct binding of the thyroid receptor to the appropriate 

sites on DNA. 

Alternatively, the trophic actions of thyroid hormones may be the result of 

secondary alterations in hemodynamic and metabolic parameters since increased cardiac 

rate, left ventricular systemic pressure, CO, output and decreased peripheral resistance 

are all associated with hyperthyroidism (Buccino et al., 1967; Morlcin et al., 1983). The 

observation that many of these changes are mimicked by the stimulated sympathetic 

nervous system has led to the hypothesis that alterations in adrenergic neurotransmitter 

sensitivity may have an importance in thyroid hormone-induced hypertrophy. In 

support of this, changes in cardiac NE levels (Levin et al., 1982) and in NE turnover 

(Coulombe et al., 1977) have been found in hypo- and hyperthyroidism. In addition, 

direct receptor binding studies have demonstrated that thyroid hormone administration 

leads to up-regulation of 13-receptors (Williams et al., 1977) by directly controlling the 

rate of transcription of the 13,-adrenergic receptor gene (Bahouth, 1991). Conversely 

a-receptor numbers are down regulated in cardiac tissue under these conditions (Ishac et 

al., 1983; Williams and Leflcowitz, 1979). Clinically, 13-adrenoceptor blockade has been 

used in combination with anti thyroid drugs for the treatment of thyrotoxicosis, and 

I3-adrenoceptor antagonists have been shown to be partially effective in reducing 

Is-mediated hypertrophy in animal experiments (Eliades and Harvey, 1989). However 

not all studies support this mode of therapy. For instance, reserpine treatment does not 

reduce cardiac hypertrophy during thyrotoxicosis (Malcolm, 1972). Furthermore, 

co-infusion of either a- and/or p-adrenergic blockers during thyroid hormone 

administration was found not to reduce cardiac hypertrophy even when left ventricular 

mechanical parameters were reduced (Zeihut and Zimmer, 1989). These studies 
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indicate that thyroid hormones can modulate cardiac hypertrophy independently of a-

and 13-adrenergic stimuli or changes in mechanical parameters of the heart. 

In contrast, in vivo studies with heterotopically transplanted hearts (Korecky 

et al., 1987; Klein et al., 1990) or papillary muscle (Cooper and Tomanek, 1982; 

Cooper et al., 1985) indicate that changes in myocardial mechanics are the more likely 

mediators of thyroid hormone-induced cardiac hypertrophy rather than direct metabolic 

effects (for a more detailed discussion see section 1.2.1.3) 

ii) in vitro studies 

Studies with in vitro preparations are generally supportive of a direct effect 

of thyroid hormones on protein synthesis. In hearts from T s  injected rats that were 

perfused as working preparations with blood simulants, an increase in the number of 

ribosomes was associated with faster rates of protein synthesis (Siehl et al., 1985). 

Similar results were obtained from investigations using fetal mouse hearts in organ 

culture and in addition, increased protein synthesis was demonstrated in absence of the 

usual systemic metabolic and hemodynamic effects associated with thyroid hormone 

administration in vivo (Crie et al., 1983). In chicken cardiomyocyte cultures, both 

augmented protein synthesis and myocyte growth were observed following T, treatment 

(Carter et al., 1985). Similarly, the addition of T, to K*-depolarized noncontracting 

myocytes increased rates of protein synthesis by approximately 35% (unpublished from 

Morgan and Baker, 1991). In feline and rodent fetal cardiomyocyte cultures, thyroid 

hormone treatment increased a-MHC gene expression and down regulated p-MHC 

expression (Gustafson et al., 1987; Nag and Cheng, 1984). Thus in vitro studies support 

a direct action of thyroid hormones on cardiac growth and isocontractile gene 

expression which does not seem to be dependent on secondary changes in contractile 

properties of these cells. 

In summary it seems likely that both peripheral and direct effects of thyroid 

hormones contribute to the cardiac hypertrophy observed in vivo. However the relative 

contribution to these two trophic components of thyroid action has proven difficult to 

determine and further investigation is required. 

1.2.2.5 Other myocardial hypertrophic factors 
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In addition to the afore mentioned trophic factors, other circulatory 

substances such as adrenocorticoids, insulin and growth hormone have been implicated 

to some degree in the initiation or maintenance of cardiac hypertrophy. It is likely 

however that in the majority of cases these substances play a permissive role as opposed 

to an initiatory role in this trophic process (Morgan and Baker, 1991). Even so, 

evidence is accumulating that cardiac myocytes may be the targets for the action of a 

number of peptide growth factors which may act in an autocrine or paracrine manner to 

mediate hypertrophic growth during cardiac overload. For instance when pressure load 

was applied to the right ventricle of an in vitro perfused rabbit heart, increased 

incorporation of [ 31-1]-1ysine into cardiac contractile protein was observed not only in the 

right but also the left ventricle where pressure load was not applied (Kira et al., 1982). 

Furthermore, perfusate washout from a heart with a pressure-loaded right ventricle 

stimulated increased [ 31-1]-1ysine incorporation into both left and right ventricular 

chambers of a co-perfused unloaded heart (Kira et al., 1982). More recently it was 

demonstrated that extracts from hypertrophied left ventricle of dogs with experimentally 

induced renal hypertension increased [314]-uridine uptake in cultured rat cardiac 

myocytes. These experiments suggest that growth factor(s) are released from pressure 

loaded ventricle which can initiate hypertrophy in unloaded ventricles and isolated 

myocytes (Honda et al., 1988). Such trophic factor(s) may not be species-specific since 

water soluble extracts from pressure-loaded hypertrophying dog hearts can cause 

increased mRNA synthesis and initiate hypertrophy in unloaded rat hearts (Hammond et 

al., 1982). The nature of these putative growth factor(s) is unknown but recently a 

number of known growth factors have been localized to cardiac tissue including acidic 

fibroblast growth factor (aFGF), basic FGF (bFGF), platelet-derived growth factor 

(PDGF), tumor necrosis factor a (TNFa) and transforming growth factor 13, (TGF 13,) 

(for a review see Parker and Schneider, 1991). Furthermore, the administration of these 

growth factors to cardiac myocyte cultures stimulated reexpression of neonatal specific 

contractile genes similar to those observed in pressure overloaded hearts in vivo (see 

Table 1.2). In addition to these well characterized growth factors a novel growth factor 

has been isolated from cardiac non-myocyte cells which stimulates hypertrophy but not 

hyperplasia of neonatal cardiac myocytes maintained in serum free medium (Long et al., 

1991). 
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Thus considerable evidence is accumulating to suggest that cardiac 

non-myocytes may modulate myocyte growth during normal development and in 

response to hypertrophic stimuli by the production of an array of growth factors which 

act in a paracrine fashion. Such findings further emphasize the complexity of the 

hypertrophic growth response in vivo and underline the need to consider all cell types of 

the heart when investigating this growth phenomena. 

Table 1.2 Changes in the expression of cardiomyocyte genes in response to peptide 
growth factors. 
Gene/isoform 	 Growth Factor 
MHC 

a 	 aFGF, bFGF, TGFP1 

bFGF, TGFii i  

a-actin 
Cardiac 	 bFGF, TGF[3 1  
Skeletal 	 bFGF, TGFP, 
Smooth 	 aFGF, bFGF, TGF[3 1  

ANF 	 aFGF, bFGF, 
Slow/cardiac Ca' ATPase 	 aFGF, bFGF, TGF13 1  
aFGF: acidic fibroblastic growth factor; bFGF: basic fibroblastic growth factor; TGFb t.transforming 
growth factor 	. Adapted from Parker and Schneider (1991). 

1.3 HYPERTROPHIC SIGNAL TRANSDUCTION PATHWAYS AND GENE 

TRANSCRIPTION 

1.3.1 Gene Transcription 

The data presented clearly illustrates that cardiac hypertrophy is a 

heterogeneous process involving both quantitative changes in general protein synthesis 

and also qualitative alterations in the levels of specific isocontractile and metabolic 

proteins. In the majority of studies the observed changes in myocyte size and phenotype 

were attributed to increased protein synthesis rather than decreased protein degradation 

(Kira et al., 1984; Xenophontos et al., 1989; Fuller et al., 1990; Simpson, 1983). 

Theoretically a number of potential sites for the regulation of protein synthesis exist 
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including transcription and translation. However, during cardiac hypertrophy, changes 

in myocyte levels of contractile and non-contractile proteins were generally preceded by 

corresponding alterations in the level of their appropriate mRNA (Waspe et al., 1990; 

Bishopric et al., 1987; Lee et al., 1988). Thus gene plasticity during cardiac 

hypertrophy appears to be the result of changes above the level of translation. 

Furthermore, using nuclear run-on assays to quantify the initiation of transcription it 

was shown that an increased rate of DNA transcription rather than increased RNA 

stability was responsible for selective increases in isocontractile mRNA (Lee et al., 

1988; Ito et al., 1991 B; Simpson, 1990). 

Considered together these studies demonstrate that extracellular 

hypertrophic stimuli are able to effect changes in gene expression within the nuclei of 

cardiac myocytes and establish that gene transcription is a critical regulatory event 

during cardiac hypertrophy. 

1.3.2 Signal Transduction Pathways 

The intracellular transducing mechanisms which couple hypertrophic stimuli 

to long term changes in cardiac gene transcription have yet to be clearly elucidated. In 

other systems it has been shown that growth promoting stimuli regulate gene expression 

via intracellular pathways (second messenger systems) which culminate in the increased 

activity of a number of protein transcription factors (third messenger systems) which 

subsequently interact with the promoter elements of target genes (for review see 

Lenardo and Baltimore, 1989; Mitchell and Tjian, 1989; Yamamoto, 1985). It is likely 

then that a similar regulatory strategy occurs during hypertrophic growth following 

mechanical load or exposure to hormones such as NE. In accordance with this 

hypothesis there are a number of general but distinct second messenger systems which 

have been tentatively implicated in the transduction of these hypertrophic stimuli from 

the myocyte cell membrane to the nucleus including (1) cAMP formation, (2) PKC 

activation and (3) increases in ion fluxes. Thyroid hormone is able to affect gene 

transcription directly by binding to thyroid response element target sites in DNA and 

this has been discussed previously, however evidence also exists that this hormone may 

mediate hypertrophy indirectly through some of the above pathways. 
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1.3.2.1 cAMP 

Intracellular content of cAMP may play a significant role in mediating 

cardiac hypertrophy in response to a variety of trophic stimuli. A number of studies 

indicate that cellular stretch or deformation of cardiac muscle increases cAMP as well as 

protein synthesis and ribosome formation (Morgan et al., 1989; Watson, 1989). 

Elevated levels of adenyl cyclase have been reported in guinea pig hearts 10 min 

following hemodynamic overload (Schreiber et al., 1971). Furthermore, elevated aortic 

pressure increased protein synthesis, cAMP concentration and cAMP dependent protein 

kinase activity in isolated perfused rat hearts (Xenophontos et al., 1989, Haneda et al., 

1990; Watson et al., 1989). Occupation of 13-adrenergic receptors by catecholamines 

has been reported to increase adenyl cyclase activity, lead to cardiac hypertrophy in 

vivo, and increased protein synthesis and cell growth in adult myocyte cell cultures. The 

thyroid hormone T, has been shown to increase cAMP levels in the heart within 12 h of 

administration (Zimmer and Peffer, 1986) and accordingly it has been suggested that 

this may be an intracellular transducing signal for cardiac hypertrophy induced in 

response to this hormone (Zimmer and Peffer, 1986). 

1.3.2.2 PKC 

PKC activity has been strongly implicated in myocyte hypertrophy in 

response to catecholamine, ANG II or ET-1 administration or following stretch. For 

instance, PKC activity has been associated with increased general protein synthesis, 

isocontractile gene transcription and myocyte hypertrophy in isolated neonatal myocyte 

cultures following acadrenergic or ET-1 stimulation (Henrich and Simpson, 1988; 

Suzuki et al., 1990). Secondly, phorbol myristate (PMA) activates PKC and also gives 

rise to trophic responses similar to those seen in response to a cadrenergic and ET-1 

administration (Henrich and Simpson, 1988; Suzuki et al., 1990). Whether PKC 

activity is coupled to cardiac hypertrophy mediated by these hormones, in adult 

myocytes, is still uncertain since it has proven difficult to establish whether growth in 

isolated adult cardiomyocytes responds to a cadrenergic stimulation (Rupp et al., 1991; 

Dubus et al., 1990). 
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Although not formally demonstrated in cardiac myocyte cultures, ANG II 

has been shown to elevate PKC translocation and induce phosphorylation of nuclear 

laminae in cultured vascular smooth muscle (Tsuda and Alexander, 1990). It is possible 

therefore that increased translocation of PKC may be a means by which increased 

intracardiac renin-angiotensin system activity may directly modulate cardiac growth 

independent of hemodynamic changes. PKC has also been implicated in 

stretch-induced hypertrophy since atrial distention causes increased phosphatidylinositol 

(PI) turn-over and this has been shown not to be the result of NE or acetylcholine • 

release (Von Harsdorf et al., 1989). 

1.3.2.3 Ion fluxes 

Changes in ion fluxes, particularly altered calcium ion current (Keung, 

1989; Kleiman and Houser, 1988), NW-Ca' exchange and calcium release from SR 

(Lecarpentier et al., 1987; Lore11 et al., 1986) have been reported in hypertrophic 

myocardium. Increased aortic pressure has been shown to significantly increase [Cali 

in isolated perfused hearts (Schreiber et al., 1977) although elevation of Ca 2+ in the 

perfusate did not alter rates of protein synthesis (Haneda et al., 1989). The mechanism 

by which [Cali increases in response to perfusion pressure is not known but it is likely 

to be modulated through stretch-activated ion channels which have been identified in the 

lumen of adult and neonatal cardiac myocytes (Bustamante et al., 1991). Furthermore, 

stretch of myocytes in culture increases protein synthesis, alters isocontractile protein 

content and elevates Ca2+ influx (Komuro et al., 1989 A). It has also been demonstrated 

that activated 13-adrenergic receptors can increase Ca' flux through cardiac calcium 

channels via direct G-protein interaction or by phosphorylation of cAMP-dependent 

protein lcinases (Haung et al., 1990; Yatawi and Brown, 1989). Finally, occadrenergic 

agonists, ANG H, ET-1 and stretch stimulate calcium ion release from the endoplasmic 

reticulum via increased phosphoinositide-phospholipase C (PI PLC) turnover and 

inositol phosphate (IP) formation (Brown et al., 1985; Suzuki et al., 1990; Baker and 

Aceto, 1989). Thus increased [Ca21i due to mobilization from intracellular stores in 

addition to influx through membrane channels, may be a means by which hypertrophic 

stimuli may modulate cardiac growth. 
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Sodium ion flux has been associated with growth processes in cardiac tissue. 

Deformation of cardiocytes increases Na+ flux through a stretch-activated ion channel in 

the SR (Bustamante et al., 1991). The normal influx of Na` induced by spontaneous 

contraction in neonatal rat myocytes is associated with increased general protein and 

isocontractile protein synthesis, compared to non-contracting cells (McDermott and 

Morgan, 1989). Partial block of this mechanotransducer by the polycationic antibiotic 

streptomycin (Ohmori, 1985) reduces both Na+ uptake in stretched myocardium and 

isolated cardiocytes by 15% and reduces contractile protein synthesis (Kent et al., 

1991). In differentiated avian skeletal myotubles both increased sodium influx and 

protein synthesis have been observed in response to mechanical stretch (Guharay and 

Sachs, 1984). 

1.3.2.4 Other mechanisms of transduction 

In addition to the cellular messengers described above it is possible that 

rapidly activated, unknown molecular signals, secondary to trophic stimuli could bind 

directly to DNA and regulate cellular growth and phenotype (Komuro et al., 1990). It 

has also been postulated that stretch-dependent plasmalemma alterations could be 

translated directly into changes in nuclear structure via transmission of mechanical 

forces across cytoskeletal structures that physically link the plasma membrane to the 

nuclear envelope (Georgatos and Blobel, 1987). The importance of the cytoskeleton 

and the interaction of the cytoskeleton with intracellular matrix in regulation of cell 

growth has been the subject of a number of reviews (Lazarides, 1980; Lazarides, 1985 

A; Craig, 1985; Lazarides, 1985 B; Bissel et al., 1982). Furthermore, it was recently 

demonstrated that during cardiac hypertrophy a number of cytoskeletal networks are 

modified (Rappaport and Samuel, 1988; Samuel et al., 1990). 

1.3.2.5 Molecular mechanisms by which PKC, cAMP and ion flux may 

modulate gene transcription. 

Mechanisms by which increased PKC activity, cAMP levels, ion flux or 

mechanical transducers may regulate hypertrophic growth processes are not known but 

it is well established that protein phosphorylation by kinases is one key regulatory 

mechanism for signal transduction pathways that link cell surface events to alterations in 
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gene expression (see Schonthal et al., 1991). For instance increased cardiac cAMP 

levels or increased membrane phospholipid turnover following hypertrophic stimuli can 

activate cAMP dependent protein kinase A (PICA) or PKC respectively. In turn, 

activation of these lcinases may result in the modulation of nuclear transcription factors 

which could then bind to regulatory regions of the target genes (e.g. an isocontractile 

gene) or to another protein bound to a regulatory region, and thereby activate RNA 

polymerase II (Simpson et al., 1989). Activation of transcription factors by PKC in 

other systems has been previously demonstrated (Elsholtz et al., 1986; Sen and 

Baltimore, 1986; Angel et al., 1987; Bohmann et al., 1987) and often involves 

12-0-tetradecanoylphorbol-13-acetate (TPA) response elements (TREs) (Angel et al., 

1987). Genes that are regulated by cAMP have also been identified (Roesler et al., 

1988) and usually contain a cAMP response element (CRE) in their 5' control regions 

(Franza et al., 1987). For a more detailed discussion of the above see section 13.3. 

Increased [Cal may also regulate transcription during hypertrophy via kinase activity 

since increased ion flux or release from intracellular stores following trophic stimuli, 

may cause phosphorylation of a variety of cellular proteins including transcription 

factors (Morgan and Curran, 1986), by Ca 2+ activated, calmodulin-independent PKC 

(Colbran et al., 1989) or by PKC (Blinks et al., 1982; Rasmussen and Barrett, 1984). 

Alternatively Ca2+ may bind and activate a transcription factor directly in a similar 

manner to which it activates calmodulin. At present no second messenger system is 

known to be dependent on Na+ uptake but it is possible that increased [Nali may be 

acting by secondary alterations in [Cali via Ne-Ca 2+ exchange (Reeves, 1985). 

Mechanisms by which mechanotransducers may activate transcription in nucleus are not 

yet known although protein dephosphorylation may be important in these instances. 

1.3.3 Cardiac Gene Transcription Factors: A Possible Role for the Nuclear-Acting 

Early-Response Genes 

Transcriptional regulation of genes mediated through second messenger 

systems appears to be a pivotal control point for the development and regression of 

many forms of cardiac hypertrophy. Accordingly, significant effort has been channeled 

into elucidating the nature of the implied transcription factors and the possible 

mechanisms by which they interact with trophic signals to regulate cardiac gene 
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plasticity. It has been suggested that hypertrophic-specific changes in gene expression 

are exerted by the products of a limited number of critical regulatory genes (Simpson, 

1988 A). If this is true, then the products of such genes would likely to be located 

within the nucleus where they could bind to specific DNA sequence elements embedded 

in promoters, enhancers and silencers and where they could interact with other proteins 

to initiate or block RNA transcription. Furthermore they would be likely to exist in low 

levels compared to other gene products, but be rapidly inducible for instance following a 

phosphorylation cascade by specific lcinases so that they could couple short term signals 

elicited at the cell surface to long term alterations in cellular phenotype and function. At 

present the best candidates for such regulatory factors would appear to be the products 

of a number of nuclear acting early-response genes including c-tnyc, c-fos and c-jun 

(reviewed in Herich and Ponta, 1989). 

c-myc, c-fos and c-jun belong to families of nuclear acting, DNA binding 

genes whose expression, whilst normally low in quiescent cells, is induced rapidly and 

transiently in response to a great variety of extracellular signals including mitogenic and 

differentiation-inducing factors and agents that cause depolarization of neuronal cells. 

Classically these genes are characterized by their ability to respond rapidly with 

increased transcription rates following stimulation with phorbol esters in a sequential 

manner: c-fos mRNA is detected within the first few minutes followed by increased 

c-myc mRNA (Greenberg and Ziff 1984; Muller 1984). Although originally termed 

proto-oncogenes due to their involvement in neoplasia, many of these genes also appear 

to play vital roles during normal mitosis and cell growth and perhaps memory formation 

and the term immediate-early or nuclear-acting early-response genes has become more 

appropriate. 

1.3.3.1 c-fos and c-jun families 

The c-fos gene was originally found as the cellular homologue of oncogenes 

carried by two murine retroviruses, FBR and FBJ that were involved in the generation 

of radiation-induced osteosarcoma (for review see Curran, 1988). The c-jun gene was 

discovered independently from c-fos as the cellular homologue of v-jun, the 

transforming gene of avian sarcoma virus 17 (Maki et al., 1987). The protein products 

of c-fos (Fos) and c-jun (Jun) interact together via a region of periodically repeated 
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leucine zippers to form a heterodimeric complex named activator protein 1 (AP-1) (for 

review see Curran and Franza, 1988). Jun, unlike Fos, also forms homodimers which 

appear to be less stable than Fos/Jun heterodimers (Nakabeppu and Nathans, 1991; 

Rauscher et al., 1988). In response to a variety of extracellular signals AP-1 binds to, 

and activates transcription from nanonucleotide sequences within promoter regions of 

target genes. These sequences are often components of complex regulatory elements 

containing binding sites for multiple transcription factors that are responsive to 

extracellular stimuli (Lee et al., 1987 B; Distel et al., 1988; Sonnenberg et al., 1989). 

These include the TPA response element located in the promoter of a number of genes 

responsive to elevated levels of PKC such as collagenase and also both c-fos and c-jun 

themselves (Angel et al., 1987; Lee et al., 1987 A; Lee et al., 1987 B). Another such 

site is the cAMP response element (CRE) that binds transcription factor CRE binding 

protein (CREB) and confers the response to adenyl cyclase and PICA pathways (Franza 

et al., 1987; Sassone-Corsi et al., 1990). Furthermore, c-fos and c-jun products form 

heterodimeric complexes with certain members of the CRE/Activating factor 1 (ATF) 

families that interact preferentially with CRE sites (Benbrook and Jones, 1990). The 

CRE site is also a target for transcription factors activated by second messengers other 

than cAMP, for example calcium (Sheng et al., 1990). AP-1 proteins have also been 

shown to be involved in the regulation of the cis-acting motif, serum response element 

(SRE) of c-fos and other serum growth factor-inducible genes that binds a different class 

of transcription factor, the serum response factors (SRF) (for reviews see Treisman, 

1990; Rivera and Greenberg, 1990). 

Several genes related to c-fos and c-jun have also been isolated including 

fra-1, fra-2 and fos-b (Cohen and Curran, 1988; Nishina et al., 1990; Zerial et al., 1989) 

(related to c-fos), and junB and junD (Ryder et al., 1988; Ryder et al., 1989) (related to 

c-jun). The protein products in these families contribute to an array of mono- .  and 

heterodimeric complexes that bind AP-1 and CRE sites (Cohen etal., 1989; Nakabeppu 

et al., 1988; Hai and Curran, 1991; Curran, 1991) but have different binding affinities 

and trans-activation properties (Chiu, 1989; Hirai et al., 1989; Schutte et al., 1989; 

Lucibello et al., 1990; Ryseck and Bravo, 1991). In addition junB is involved in the 

negative regulation of c-jun expression (Chiu et al., 1989). It is possible then that 

33 



differential expression of these proteins may be one mechanism to ensure diversity and 

specificity of cellular responses to extracellular stimuli and allow for target gene 

selectivity (Angel and Karin, 1991). Recently, interactions of Fos and Jun with several 

members of the steroid receptor family have been described and these observations and 

those described above indicate that Fos and Jun can regulate transcription cooperatively 

with other transcription factor families (Schule et al., 1990; Yang-Yen et al., 1990). 

The products of these genes have been implicated as nuclear "third messenger" 

molecules in signal transduction processes and thus may contribute to the coupling of 

short term signals elicited by cell-surface stimulation to alterations in cellular phenotype 

by regulating expression of target genes (Curran, 1991). 

1.3.3.2 c-myc 

c-myc was first identified as the mammalian homologue of the transforming 

gene of an avian retrovirus, myelocytomatosis (Roussel et al., 1979) and its expression 

appears to be critical for determining the proliferative, differentiative and oncogenic 

potential of a wide variety of cell types (Reviewed by Cole, 1986; Luscher and 

Eisenman, 1990). Regulation of the c-myc gene is complex and occurs at the 

transcriptional and post-transcriptional level and appears to be tissue and stimulus 

specific (Dean 1986; Greenburg and Ziff, 1984; Kelly and Siebenlist, 1988; Siebenlist, 

1988). Like c-fos and c-fun, c-myc is rapidly induced in response to growth factors and 

it is possible that they may share common regulatory elements since all are induced in 

the absence of protein synthesis (Kelly et al., 1983; Lau and Nathans 1987; Muller, 

1984). 

c-myc is one of a family of nuclear phosphoproteins including N-myc (Kohl 

et al., 1986; De Pinto et al., 1986), L-myc (Nau et al., 1985), R-myc, P-myc and B-myc 

(Ingvarsson et al., 1988) which have similar exon structures and appear to be 

differentially regulated during development (for a review see Marcu et al., 1992). The 

protein products of the c-myc family have long been thought to be involved in the 

regulation of gene expression because of their nuclear localization and ability to bind 

DNA via either basic/helix-loop-helix (HLH) (Mure et al., 1989) or basic/leucine repeat 

(LR) structures common to several binding proteins (Landschulz et al., 1988). However 
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a convincing demonstration of this has remained elusive until the recent cloning of a 

heterodimeric partner of Myc, called Max, that facilitates sequence-specific 

DNA-binding activity (Blackwood and Eisenman, 1991). Max like Myc contains 

adjacent HLH and LR domains and forms heterodimers with c-, N- and L-myc but not , 

with other HLH proteins (Beckmann et al., 1990; Gregor etal., 1990; Hu et al., 1990). 

c-myc expression is generally higher in proliferating cells than quiescent 

cells and is activated in quiescent cells by mitogenic stimuli (Dean et al., 1986; Campisi 

et al., 1984; Kelly et al., 1983) including PDGF in Balb/c-3T3 fibroblasts and this 

increased expression is associated with entry into, and progression through the cell cycle 

(Armelin et al., 1984, Kaczmareck et al., 1985, Kelly et al., 1983). During terminal 

differentiation of cells, when proliferation ceases, there is concurrent reduction in 

expression of the c-myc gene (Endo and Nadal-Ginard, 1986; Schneider et al., 1987). 

Furthermore, constitutive c-myc expression has been shown to block differentiation of 

mouse cell lines (Coppola and Cole 1986). Current opinion is that the differential or 

combinatorial expression of the myc gene family has a role in regulating multiple 

differentiation pathways (Luscher and Eisenman, 1990). 

1.4 NUCLEAR-ACTING EARLY-RESPONSE GENE EXPRESSION IN HEART 

AND CARDIAC MYOCYTES 

Although the expression of nuclear-acting early-response genes has been 

traditionally linked with hyperplasia in a number of settings, they have more recently 

become the focus of considerable attention in the context of cardiac growth and 

hypertrophy. For instance, the loss of proliferative capacity and altered isogene 

expression of myocytes during myocardial development is paralleled by decreased 

expression in the cardiac levels of c-myc (Schneider et al., 1986). Similarly, other 

members of the myc family including N-myc and B-myc are also down regulated in the 

maturing heart (Schneider and Parker, 1990; Parker and Schneider, 1991; Claycomb and 

Lanson, 1987) and this is perhaps not surprising given the role these genes are 

hypothesized to play in cellular differentiation processes. Down regulation of c-myc is 

an early event during skeletal muscle differentiation (Endo and Nadal-Ginard, 1986; 
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Schneider et al., 1987) which fails to occur in muscle cell lines that cannot differentiate 

(Payne et al., 1987; Sejersen et al., 1985). Whilst decreased expression of c-myc is not 

obligatory for muscle development, autonomous expression of c-myc can delay or 

partially inhibit the myogenic phenotype (Caffrey et al., 1987; Schneider et al., 1987). 

Furthermore, v-myc can inhibit differentiation in skeletal muscle cells (Falcone et al., 

1985), impair cardiac differentiation and produce cardiac rhabdosarcomas in avian 

embryos (Saule et al., 1987). 

In contrast to c-myc, constitutive expression of c-fos appears not to be 

detectable (Barka et al., 1987) or is extremely low in neonatal or adult heart tissue in 

vivo (Claycomb and Lanson, 1987; Izumo et al., 1988; Schneider et al., 1986) although 

it has been localized to specific regions of the myocardium during embryogenesis (T. 

Curran, personal communication) and thus may play a role in the early development of 

the heart. However, c-fos expression seems to be sensitive to cell isolation procedures 

since it is abundantly expressed in freshly isolated neonatal and adult cardiocytes 

(Claycomb and Lanson, 1987). The potential for c-fos to play a role in cardiomyocyte 

differentiation is highlighted by the increased expression of this gene associated with the 

decreased expression of several muscle specific genes and the subsequent loss of several 

differentiated traits in skeletal muscle (Lassar et al., 1989 B). 

However, c-myc and c-fos expression, like the expression of 

neonatal-specific isocontractile genes, do not appear to be irreversibly repressed in 

terminally differentiated cardiac myocytes since their expression can be elicited by a 

number of interventions including some that provoke hypertrophic growth both in vivo 

and in vitro. For instance, in 28 day old rats, constriction of the abdominal aorta results 

in approximately 10% increase in cardiac mass and increased c-myc expression in both 

atria and the left ventricle 48 h following imposition of the overload (Mulvagh et al., 

1987). However aortic constriction in 80 day old rats results in increased c-myc inRNA 

in the atria alone indicating that up regulation of c-myc during pressure overload is both 

age- and tissue-dependent (Mulvagh et al., 1987). In another study acute aortic 

constriction resulted in increased cardiac c-fos and c-myc mRNA levels within 30 min 

and 2 h respectively (Komuro et al., 1988). Maximal levels were observed after 8 h and 

had returned to baseline by 48 h following surgery. Direct mechanical load also appears 
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to modulate early response gene expression in neonatal cardiocytes since stretching of 

these cells in vitro increases total cell RNA content, protein content and mRNA levels 

of c-fos (15 fold after 30 min) and the fetal specific isocontractile gene a-SkA (Komuro 

et al., 1991). Thus cardiocyte stretching in vitro may mimic hemodynamic load in vivo 

in terms of hypertrophy and gene expression. 

Similarly adrenergic treatment has been shown to modulate early-response 

gene expression in both the adult heart and isolated myocyte cultures. Thus 

administration of 0-adrenergic agonists in vivo led to a rapid and transient increase in 

the levels of c-fos in the hearts of mice, rats and hamsters (Barka et al., 1987). 

Increased c-fos levels were first observable within 30 min of administration of the drug 

and peaked after 60 min but had returned to near basal levels by 2 h. An increase in 

calcium through voltage-dependent channels appeared not to be required for this 

activation since calcium channel blockers, verapamil, nifedipine and diltiazem had no 

effect. A similar increase in c-fos expression was also obtained following 

administration an a-adrenergic agonist, histamine and prostaglandin (Barka et al., 

1987). In quiescent non-dividing neonatal cardiac myocytes cultures both increased cell 

size and selective up-regulation of several neonatal specific isocontractile genes was 

preceded by a transient increase in c-myc mRNA levels following treatment with 

acadrenergic agents (Starksen et al., 1986). Increased c-myc mRNA levels were 

detectable at 30 min, peaked at 2 h (10 fold above control), and returned to basal by 6 h 

after stimulation. Serum and the phorbol ester promoter PMA (phorbol 12 myristate 15 

acetate) which activates PKC, also enhanced c-myc expression and hypertrophy in these 

cell cultures (Starksen et al., 1986). 

Taken together these studies provide indirect evidence that mechanical load 

and adrenergic administration may be linked to modulation of cardiac mass and 

myocyte size via transduction pathways which act through transcription factors such as 

c-myc and c-fos. In addition, up-regulation of c-myc and c-fos in response to 

hypertrophic stimuli appears to precede a general regression of the heart to the 

developmental phenotype as indicated by the subsequent re-expression of 

neonatal-specific isocontractile genes. Thus the response of adult cardiomyocytes to 

hypertrophic stimulus has similarities to the mitogenic response of other differentiated 
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cell types, which often involves the suppression of the adult phenotype and 

re-expression of the fetal program (Ruoslahi et al., 1984). 

1.5 THESIS AIM 

The central aim of this thesis is to establish whether the expression profile of 

nuclear-acting early-response genes in cardiomyocytes is consistent with their mediating 

aspects of adrenergic initiated cardiac hypertrophy. More specifically, the work in this 

thesis will seek to; 

i) examine in detail the temporal changes in expression of c-myc and c-fos 

and related genes in the heart following both acute and chronic administration of 

catecholamines in vivo and to determine the relative contribution of each type of 

adrenergic receptor to these responses. 

ii) localize the expression of c-myc and c-fos mRNA and protein following 

adrenergic administration, to particular regions and cell types of the heart by gross 

dissection techniques and by in situ hybridization histochemistry and 

immunocytochemistry techniques. 

iii) establish whether the isolated perfused heart system is a suitable model 

in which to study both the early and terminal of stages of gene expression associated 

with cardiac hypertrophy in vivo. and if so to differentiate the possible direct and 

indirect affects of adrenergic hormones on c-myc and c-fos expression using this system. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 EXPERIMENTAL ANIMAL TECHNIQUES 

2.1.1 Drugs and Animals 

2.1.1.1 Drugs 

DL-Propranolol.HC1 	 Sigma 

Heparin 	 CSL 

Methoxamine.HCI 	 Sigma 

Nembutal 	 Bumac Labs. 

Nifedipine 	 Sigma 

(-)Norepinephrine.HC1 	 Sigma 

4a-Phorbol 12b 13a-didecanoate (PDC) 	Sigma 

Phenoxybenzamine.HC1 	 Sigma 

Phentolamine.HC1 	 Ciba-Geigy 

Phorbol 12-myristate 13-acetate (PMA) 	Sigma 

Pyruvate 	 Boehringer 

Fors kolin 	 Sigma 

All other drugs and chemicals were of analytical grade. 

2.1.1.2 Preparation of drugs 

For experiments in vivo, adrenergic agents were prepared freshly each day in 

0.9% saline and 0.1% ascorbic acid. For in vitro perfusion experiments adrenergic 

agents were prepared in perfusion buffer (see section 5.2.1) containing 0.1% ascorbic 

acid. Triiodo-L-thyroxine (T,) was prepared daily in phosphate buffered saline (pH 

11.0). Phorbol esters were prepared as stock 10 mg/ml solution in dimethyl sulfoxide 

(DMSO) and kept at -20°C when not in use. 

2.1.1.3 Animals 
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Male hooded Wistar rats (180-200 g) reared in the animal house, University 

of Tasmania were used for all experiments unless otherwise stated. Rats were 

maintained ad libitum on a standard laboratory chow diet. 

2.2 NORTHERN ANALYSIS 

Specific mRNA transcripts were detected amongst the total RNA extracted 

from the heart by standard northern blotting techniques (Maniatis et al., 1989). Briefly, 

purified RNA extracts were separated according to size by electrophoresis through 

denaturing agarose gels and then transferred by. capillary action to solid support nylon 

membranes. RNA attached to the membrane (which had retained its relative position 

during transfer) was then hybridized to radiolabeled cDNA or oligonucleotide probes 

and the position of any complimentary bands identified by autoradiography. For slot 

blotting, RNA samples were applied directly to the membrane support by suction 

through holding wells in a specially designed apparatus. Membranes were then 

hybridized directly to radiolabeled probes to determine the relative levels of target RNA 

transcripts (Maniatis et al., 1989). 

2.2.1 Materials 

2.2.1.1 Reagents 

[a-"P]dCTP 	 Bresatec 

[y-"P]dATP 	 Bresatec 

8-hydroxyquinoline 	 BDH 

Agarose gel (HGT, LGT) 	 FMC Bioproducts 

Dextran Sulphate 	 Pharmacia 

DNA (type III from Salmon testis) 	Sigma 

Ethidium bromide 	 BDH 

Guanidinium thiocyanate 	 Serva or Fluka 

Morpholinopropane sulfonic acid 	Sigma 

Oligo(dt)-cellulose 	 P-L Biochemicals 
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Phenol 	 BDH 

Proteinase K 	 Boehringer-Mannheim 

Sodium dodecyl sulphate (SDS) 	Serva 

Zeta Probe transfer membrane 	BioRad 

Reagents for bacterial propagation were obtained from Difco, restriction 

enzymes were sourced from Pharmacia, all other reagents were of molecular biology 

grade. 

2.2.1.2 Solutions 

Normal procedures were taken to ensure that solutions were free of 

ribonuclease contamination. All glassware was heated at 180°C overnight whilst heat 

sensitive equipment was soaked in 0.5 M NaOH and then rinsed in Milli Q water. All 

solutions unless otherwise stated were made up in distilled/deionized (Milli Q) water 

and autoclaved. The ribonuclease inhibitor diethyl pyrocarbonate was used to treat 

water in certain instances. 

2.2.2 Extraction of Total RNA and Poly(A) + RNA Selection 

2.2.2.1 Total RNA extraction 

Total RNA was extracted according to the method of Chomcyznslci and 

Sacchi (1987) with slight modification. 1 g of frozen tissue was finely ground under 

liquid nitrogen and transferred to a sterile plastic tube containing 10 ml of 

homogenizing solution (4 M guanidinium thiocyanate, 25 mM sodium citrate pH7.0, 

0.5% sarcosyl, 0.1 M 2-mercaptoethanol) and given two bursts at high speed with an 

ultra-Turrax homogenizer. To the homogenate was added sequentially 1 ml of 2 M 

sodium acetate pH 4.0, 10 ml phenol (saturated with 10 mM Tris-HC1 pH 7.6, 1 mM 

EDTA, 0.1% 8-hydroxyquinoline) and 2 ml of chloroform: isoamyl alcohol mixture 

(49:,1), with thorough mixing after each addition. The final mixture was shaken 

vigorously for 4 min then centrifuged in glass tubes at 10 000 g for 20 min at 4°C. The 

upper aqueous phase was mixed with 10 ml of isopropyl alcohol in a fresh tube and 

cooled at -20°C for 1 h. Total RNA was pelleted by centrifugation at 15 000 g for 10 

min at 4°C, drained and redissolved in 1.5 ml 1 mM EDTA pH 7.4. The RNA was 
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reprecipitated by addition of 2 ml 4.5 M potassium acetate pH 6.0 and incubated at 

-20°C for 1 h. Following centrifugation the RNA pellet was washed consecutively in 

70% and 95% ethanol, dried under vacuum for 1 h and dissolved at 65°C in 200 p.1 of 

0.5% SDS. For smaller amounts of tissue volumes of extraction buffers were adjusted 

accordingly. 

2.2.2.2 Selection of poly(A)* 

mRNA purification was facilitated by virtue of the polyadenylate tail carried 

at the 3' ends of most mRNA species allowing selective retention on oligo(dt) cellulose. 

The method described below is essentially the same as that of Edmonds et al., (1971) 

and Aviv and Leder, (1972). 

A small piece of sterile glass wool was placed in the outlet of a 1 ml syringe 

and 0.1 g of oligo(dt) cellulose saturated with binding buffer (0.01 M Tris-HC1 pH 7.5, 

0.5 M NaC1, 1 mM EDTA, 0.5% SDS) was added. The column was packed down by 

gentle tapping to give a final volume of 0.2-0.3 ml. RNA (1 mg) dissolved in 500 gl of 

binding buffer was heated to 65°C then applied to the column followed by a further 3 ml 

of binding buffer and 1.5 ml of wash buffer (0.01 M Tris-HC1 pH 7.5, 0.5 M NaC1, 1 

mM EDTA). Bound poly(A) + RNA was eluted with 1.5 ml of elution buffer (0.01 M 

Tris-HC1 pH 7.5, 1 mM EDTA) and adjusted to a final concentration of 0.5 M NaC1, 

and the binding, washing and elution repeated as before. Poly(A) + RNA in the final 

eluate was recovered by precipitation with 2 volumes of 95% ethanol at -20°C 

overnight. After centrifugation at 15 000 g for 10 min poly(A)+ RNA pellets were 

drained, dried under vacuum for 1 h and dissolved at 65°C in 0.5% SDS. 

2.2.2.3 Analysis of extracted RNA 

Integrity of total RNA and poly(A) + RNA was determined visually by 

ethidium bromide fluorescence after separation on 0.75% agarose slab gels. RNA was 

quantified by spectrophotometric analysis at 260 -  nm against reagent blanks. An optical 

density (0.D) reading of 1 corresponds to 40 gg of RNA (Maniatis et al., 1989). 

2.2.3 Northern and Slot Blotting 
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2.2.3.1 Northern blotting 

i) denaturing gels 

Denaturing formaldehyde gels (1.2%) were prepared by dissolving the 

appropriate amount of HGT agarose in distilled water, 5 x MOPS running buffer (0.1 M 

morpholinopropane sulfonic acid pH 7, 40 mM sodium acetate and 5 mM EDTA) and 

formaldehyde (12.3 M) to give 1 x and 2.2 M final concentrations, respectively. Gels 

were poured in a large gel apparatuses (20 x 20 cm) as described by Maniatis et al., 

• (1989) and once set were submerged in 1 x MOPS running buffer ready for 

electrophoresis. RNA samples (10-50 u.g in 10 1) were mixed with 5 j.tl of 10 x MOPS, 8 

gl of formaldehyde, and 22.5 p.1 of formamide and then incubated at 65°C for 15 min, 

cooled on ice and mixed with 1/5 volume of loading dye (50% glycerol, 1 mM EDTA, 

0.4% bromophenol blue and 0.5 mg/ml ethidium bromide). After samples were loaded 

into the appropriate wells the gel was electrophoresed at 15-30 V overnight before being 

photographed on a U.V light box and transferred to a solid support membrane as 

described below. In some instances standard RNA molecular weight ladders (BRL Cat. 

5620SA) were also included in the same gel as the experimental RNA in order to 

determine the relative size of hybridizing transcripts. 

ii) northern transfer 

RNA was quantitatively transferred from denaturing gels to nylon 

membranes .(Zeta Probe) by capillary action under mildly alkaline conditions by 

standard methods. Mild alkaline conditions were chosen since they facilitate elution of 

RNA from agarose by promoting partial hydrolysis of large RNA species and also 

induce binding of RNA to the nylon membrane (Vrati et al., 1987). After transfer, 

usually between 5-6 h, membranes were briefly rinsed twice in 2 x SSC (0.3 M NaC1, 

0.03 M trisodium citrate pH 7.0), blotted dry and then baked at 80°C for 2 h to ensure 

covalent binding of the RNA to the membrane. Membranes prepared in this manner 

were directly hybridized to radiolabeled probes (see section 2.5.6), or alternatively, 

stored between dry filter paper in sealed plastic bags at room temperature. 

2.2.3.2 Slot blotting 

Slot blotting of extracted RNA was performed using a Milliblot-S system 

(Millipore) and Zeta Probe nylon membranes (Maniatis et al., 1989). After assembling 
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the apparatus according to the manufacturers instructions, RNA samples (50 ng-50 us) 

were diluted to 500 p.1 with 30 inM NaOH and heated to 65°C for 15 min before being 

cooled on ice. Samples were then applied to the appropriate wells of the apparatus and 

transferred to the nylon membrane by means of suction from a vacuum pump. When 

completed the apparatus was disassembled and the nylon membrane rinsed briefly in 2 x 

SSC to neutralize the NaOH and then blotted dry and baked at 80°C for 2 h. Membranes 

prepared in this manner were directly hybridized to radiolabeled probes. 

2.2.4 cDNA Clones 

cDNA clones used as probes for northern analysis and slot blotting included a 

1.06 kb Pstl fragment from v-fos, a 1.5 kb (HindIII) fragment from 13-rat-tubulin, and a 

2 kb Hind III fragment from rat c-myc supplied by Dr. R. Crawford (Howard Florey 

Institute), a 1.5 kb EcoR1 fragment from mouse fra-1, a 1.2 kb EcoRI fragment from 

mouse fra-2, supplied by Dr. D Cohen (John Curtin School of Medical Research) and a 

1.4 kb HindIIVEcoRI fragment from human c-jun supplied by Professor M. Karin 

(U.C.S.D). 

2.2.4.1 Amplification of cDNA clones 

Plasmids containing cDNA clones were transformed into competent E.coli 

(strain MC1061) cells by standard techniques and propagated in normal L-broth 

medium containing appropriate antibiotics as described by Maniatis et al., (1989). 

Plasmid DNA was subsequently isolated by the alkaline lysis method (Birnboim and 

Doly, 1979) and following restriction .  digests with the appropriate enzymes, cDNAs 

were purified from plasmid DNA by electrophoresis through 1.5% LMP agarose gels 

(Maniatis et al., 1989) and purified by silica bead adhesion using a commercially 

available kit ("Gene Clean", Bio 101 Inc). cDNA inserts prepared in this manner were 

used directly in the preparation of radiolabeled probes (section 2.2.5). 

2.2.5 Synthetic Oligonucleotides 

Atrial natriuretic peptide- and calcitonin gene-specific oligonucleotide 

probes were a kind gift from Mrs Jenny Penschow and Dr. J. Haralambidis (Howard 
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Florey Institute). The metallothionein (Mt) probe was obtained from Dr. A. K. West 

(University of Tasmania). The 40 mer exon 1 specific c-fos probe (rat-c-fos PR-1) and 

the 40 mer exon 2 specific c-myc probe (rat-c-myc PR-1) were obtained from Oncogene 

Science, USA. The remaining oligonucleotide probes described below, were 

synthesized by the author on a Pharmacia Gene Assembler Plus synthesizer by the solid 

phase method using phosphoramidite chemistry. Probes were synthesized on 0.2 nmole 

scale and the base protecting groups removed by treatment with ammonia at 60°C for 16 

h. Following removal of solvent by vacuum the residue was redissolved in 1 ml of 0.2 

mM EDTA and purified by PAGE according to the method of (Current Protocols). 

Purified oligonucleotides were precipitated and adjusted to 50 ng/R1 in 0.2 mM EDTA 

before radiolabeling. 

FOS2130: 

30 mer exon 2 specific c-fos probe (rat) 

5' GGG CTG CAC CAG CCA CTG CAG GTC TGG GTC 3' 

FOS2230: 

30 mer exon 2 specific c-fos probe (rat) 

5' TCT GGT CTG CGA TGG GGC CAC GGA GGA GAC 3' 

FOS4130: 

30 mer exon 4 specific c-fos probe (rat sense strand) 

5' GGC AGG GTG AAb GCC TCC TCA CAC CTC GGG 3' 

MYC2130: 

30 mer exon 2 specific c-myc probe (rat) 

5' CCT GTT GGT GAA GCT AAC GTT GAG GGG CAT 3' 

MYC3130: 

30 mer exon 3 specific c-myc probe (rat, sense strand). 

5' CGC ACA AGA GTT CCG TAG CTG TTC AAG TTT 3' 
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a-SkA20: 

20 mer a-skeletal actin specific probe (rat) (Gustafsen et al., 1986). 

5' GCA ACC ATA GCA CGA TGG TC 3' 

a-MHC20: 

20 mer a-myosin heavy chain specific probe (rat) (Gustafsen et al., 1985). 

5' TTG TGG GAT AGC AAC AGC GA 3' 

2.2.6 Labeling cDNA and Oligonucleotide Probes 

2.2.6.1 cDNA restriction fragments were labeled to a high specific activity 

(-1 x 10-9  cpm/lig) by the random-primed method of Feinberg and Vogelstein (1989) 

using a commercially available kit (OLK, Bresatec) as described below. 

50-100 ng (5-100) of DNA was heated for 5 min at 95°C, cooled on ice and 

briefly centrifuged to bring down condensation. To this was added 12.5 ill of 

nucleotide/random primer buffer (20 p.M dATP, dGTP, dTTP, 50 mM Tris HC1 pH 7.6, 

50 mM NaC1, 20 mM MgCl„ 100 jig/m1 gelatin, 12.5 lig hexanucleotide primers) and 4 

jil of [a-"P]dCTP (4000 Ci/mM, Bresatec) and the solution mixed well. The reaction 

was initiated by the addition of 5-10 units of DNA polymerase I (Klenow fragment) and 

after incubation at 37°C for 20 min, unincorporated nucleotides were separated from the 

labeled strand by exclusion chromatography using a Sephadex G-50 column as 

described by Maniatis et al., (1989). 

2.2.6.2 Labeling oligonucleotide probes 

Oligonucleotide probes were 5' end labeled to a high specific activity (0.5-1 

10-9  cpm/ps) using a commercially available kit (TKK-1, Bresatec) as described 

below. 

Oligonucleotide DNA, generally (50-200 ng) was heated for 5 min at 70°C 

then cooled on ice. After briefly centrifuging 2 gl of buffer (60 mM Tris-HC1 pH 7.6, 

90 mM MgCl2), 2 gl dithiothreitol (100 mM), 2 molar equivalents of [y-"P]clATP, i.e., 

10 1.11 of a 10 mCi/m1 solution of [y- 3211dATP (4000 Ci/mmol) for 100 ng of a 30 mer 
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oligonucleotide (average MW=9207), 5 U of polynucleotide kinase and distilled water 

to 20 RI were added. After mixing well the tube was incubated at 37°C for 15 min after 

which the unincorporated nucleotides were separated from the labeled oligonucleotide 

probe using exclusion chromatography through a Sephadex G-25 "spun column" 

(Penschow et al., 1989). 

2.2.7 Hybridization with cDNA and Oligonucleotide Probes 

Nylon membranes containing immobilized RNA were sandwiched between 

two sheets of hardened filter paper (Whatman no. 54) and soaked in 25 ml of cDNA 

hybridization buffer (Vrati et al., 1987), (50% deionized formamide, 0.5% milk powder, 

1% SDS, 50% dextran sulphate, 50 tnM phosphate buffer pH 6.5, 4 x SSC, 0.5 mg/ml 

salmon sperm DNA sheared and denatured) or oligonucleotide hybridization buffer, 

(20% deionized formamide, 5 x SSC, 50 mM phosphate buffer pH 6.8, 1 mM 

pyrophosphate, 0.1% BSA, 0.1% polyvinylpyrollidone, 0.1% ficoll, 2% SDS and 100 

i.ig/m1 salmon sperm DNA sheared and denatured) and then placed in a pre-made 

polyethylene plastic bag. The remaining hybridization solution (25 ml) containing the 

radiolabeled probe (denatured immediately before adding to the hybridization mixture 

by heating to 95°C for 5 min) was poured into the bag which was then heat sealed being 

careful to exclude any air bubbles. The bag was then placed between two glass plates 

and incubated at 37°C to 42°C (depending on the homology of the probe and the 

stringency required) overnight. After hybridization membranes were removed from the 

bags and non-specific "background" hybridization removed by consecutive washings in 

the following buffers: 

(1) 2 x SSC at room temperature for 5 min 

(2) 2 x SSC, 0.1% SDS at room temperature for 15 min 

(3) 0.2 x SSC, 1% SDS at 65°C (cDNA), 42°C (oligo) for 15 min 

(4) 0.2 x SSC at room temperature for 5 min 

Membranes were subsequently blotted dry on filter paper, covered in plastic 

cling wrap and placed immediately next to a sheet of Kodak X-OMAT x-ray film 

between two CaW0 4  intensifying screens (Cronex Lightning Plus, Dupont) in an x-ray 

cassette. Following exposure at -80°C between 8 h and 1 week, films were developed 
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for 5 min in standard Kodak developer and fixed for 5 min in Kodak fixer and then 

rinsed and dried. 

Membranes could be rescreened several times with additional probes after 

removal of the previously hybridized probe. This was achieved by incubating 

membranes at 98°C in 0.1 x SSC and 0.5% SDS twice for 15 min and then briefly in 0.2 

x SSC after which membranes were re-baked at 80°C for 2 h (Vrati et al., 1987). 

2.2.8 Treatment of Results 

For graphical representation of results, autoradiograms were quantified 

using a scanning laser densitometer and corrected for loading by comparison to readings 

for the control probe I3-tubulin. Results in each case were expressed relative to control 

values and expressed +/- standard error mean (SEM) when number of experiments was 

greater than 3. For n=2 results were expressed as standard deviation (SD). 

2.3 In situ HYBRIDIZATION HISTOCHEMISTRY 

In this study in situ hybridization was used in an attempt to localize 

early-response gene mRNA to discrete cell populations and regions of the heart 

following hypertrophic stimulus. The principal nucleic acid probes used in this study 

were synthetic oligonucleotides since they were readily synthesized by the author using 

phosphoramidite chemistry (see chapter 3) and could be designed to exploit regions of 

maximum difference between closely homologous mRNAs whilst "sense" probes could 

be prepared and used as highly specific negative controls. Furthermore, due to their 

relatively short length, problems associated with tissue penetration and self 

hybridization, encountered with other probe systems, could be largely avoided 

(Penschow et al., 1989). 

In addition to oligonucleotide probes, the use of cDNA probes 

complimentary to early-response genes was also attempted since they were readily 

available and had been well characterized in terms of gene specificity by northern 

analysis (see section 2.2.6). The choice of labeling for oligonucleotide and cDNA 

probes was via "P since it has a high specific activity and permits rapid visualization on 

x-ray film and with liquid emulsion with resolution to single cells in some cases 
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(Penschow et al., 1989). Although [ 31-I] labeling can potentially give much higher 

resolution than "P the low energy of this radioisotope makes x-ray film exposure less 

practical and limits sensitivity of the signal. Similarly "S gives higher resolution than "P 

but requires longer exposure times and has greater potential for background even under 

reducing conditions (Penschow et al., 1989). Numerous nonradioisotopic labels such as 

photobiotin/avidin were available at the time of study however it was considered that 

their sensitivity and ease of use was not yet equal to that achievable with "P labeling 

and were consequently not used. 

Effective tissue fixation is one of the most important steps towards 

obtaining satisfactory in situ hybridization results (Moench, 1987; Hofler, 1987; 

Angerer et al., 1987; Cumming and Fallon, 1988). In these studies crosslinking 

fixatives such as formaldehyde and gluteraldehyde were used due to their superior 

ability to prevent loss of target mRNA and to preserve tissue morphology in comparison 

to precipitative fixers such as acetone or methanol (McAllister & Rock, 1985). 

Crosslinking fixatives are limited in that they tend to hinder tissue penetration of long 

probes (Penschow et al., 1989) such as labeled cDNA. In such circumstances it is 

necessary to employ secondary permeabilization steps such as mild enzymatic digestion 

with proteinases to ensure probe access to target mRNA sites. Fixation and 

permeabilization tend to work in opposition and thus achievement of optimal conditions 

can only be measured in terms of final hybridization signal (Penschow et al., 1989). 

Of the considerable variety of in situ hybridization protocols attempted 

during the course of these studies, only those used on a routine basis with some degree 

of success are outlined below. 

2.3.1 Reagents 

3-aminopropyltriethoxy-silane 	 Aldrich 

Amersham LM-1 Liquid Emulsion 	Amersham 

D.P.X mountant 	 BDH 

Eosin Y 	 Sigma 

Ethylene glycol 	 Sigma 

Formaldehyde 	 Merc 

Gelatin 	 BDH 
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Glutaric dialdehyde 	 Merc 

Hematoxylin 	 Sigma 

Hexane 	 Ajax 

Ilford K-5 Liquid Emulsion 	 Ilford 

0.C.T 	 Miles Inc. 

Pronase E 	 Sigma 

Xylene 	 BDH 

Other reagents were of molecular biological grade. 

2.3.2 In situ Hybridization Protocol 

2.3.2.1 In situ hybridization with oligonucleotide probes 

The oligonucleotide hybridization procedure described below is essentially 

the same as that described by Penschow etal., (1989) with minor modification. 

i) tissue preparation, fixation and prehybridization 

Tissue was removed from experimentally treated or control animals and 

immediately embedded with tissue-Tek in a dry ice/hexane bath and stored at -80°C 

until processed. Control tissue was similarly treated and in some cases was included on 

the same block as experimental tissue. When processed, embedded tissue was allowed 

to warm to -15°C in a cryostat and then sectioned to 5 gm. Sections were picked up onto 

slides (pre-coated with gelatin or poly-lysine (Penschow et al., 1989)) and immediately 

laid on dry ice for 30 min to freeze the section rapidly (this reduces the risk of mRNA 

degradation and improves cell morphology, (J. Penschow, personal communication). 

Slides were subsequently transferred to fixative (4% gluteraldehyde, 0.1 M phosphate 

buffer pH 7.4, 20% ethylene glycol) and fixed at 5°C for 4 min and then rinsed twice in 

2 X SSC and prehybridized by immersion in oligonucleotide in situ hybridization buffer 

(600 mM NaC1, 50 mM phosphate buffer pH 7.0, 5 mM EDTA, 0.02% Ficoll, 0.02% 

BSA, 0.02% polyvinylpyrollidone, 0.01% sheared/denatured DNA, 40% deionized 

formamide) at 40°C for 1 h. After pre-hybridization sections were dehydrated through 

50%, 70% ,95%, 100%, 100% ethanol containing 300 mM ammonium acetate, at which 

stage they were either stored at -20°C for several weeks in moisture proof containers or 

hybridized immediately. 
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ii) probe preparation and hybridization 

Prior to hybridization radiolabeled probes were precipitated by the addition 

of 0.01 volume of tRNA (10 mg/ml in TE buffer pH 7.4), 0.1 vol 3 M sodium acetate 

pH 7.4 and 2 volumes of 100% ethanol. After incubation overnight at -20°C, probe 

DNA was collected by centrifugation at 10 000 g, washed consecutively in 70% and 

95% ethanol and vacuum dried for 30 min before being dissolved at 65°C in the 

appropriate volume of hybridization buffer. Probe concentrations for hybridization 

were determined empirically but were usually in the range of 0.5 to 10 ng/u.l. 

Immediately prior to hybridization probes were denatured by boiling at 95°C for 5 min 

and then chilled on ice. Approximately 25 to 30 gl of probe was then spotted onto clean 

glass cover slips (25 x 24 mm) and picked up onto experimental slides which were 

subsequently placed on a plastic grid and overlaid with plastic wrap. After incubation 

overnight in a humidified chamber at 37°C cover slips were removed from slides by 

gentle agitation in 4 x SSC after which non-specific probe binding was removed by 

incubating the slides in 2 x SSC at 40°C for 1 h with occasional agitation and then in 1 

X SSC at 40-50°C for a further hour. Finally slides were dehydrated through 50%, 70% 

,95% and 100% ethanol and processed for autoradiography (see section 2.3.3.3). 

2.3.3.2 In situ hybridization with cDNA probes 

The cDNA hybridization described below is a modification of that described 

by Closs et al., (1990). 

i) tissue fixation and prehybridization 

Tissue was sectioned as described above and thawed onto slides pre-coated 

with 2% 3-aminopropyltriethoxy-silane (Penschow et al., 1989) and immediately placed 

on a heated plate at 50°C for 5 min (to remove endogenous ribonuclease activity) before 

being fixed at room temperature for 30 min in 0.1 M phosphate buffered saline (PBS) 

containing 4% formaldehyde. Slides were then thoroughly rinsed in PBS and incubated 

in 0.2 M HC1 for 20 min at room temperature and then rinsed again in 2 X SSC. Slides 

were then subjected to mild protease treatment by incubation in 1 X SSC containing 125 

pg/m1 pronase E (this buffer had been autodigested for 2 h to remove potential 

ribonucleases) after which they were rinsed in PBS and fixed again in formaldehyde as 

before. After rinsing again in PBS slides were prehybridized by immersion in cDNA in 

situ hybridization buffer (600 mM NaC1, 10 mM Tris.HC1 pH 7.4, 1 mM EDTA, 0.02% 
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Ficoll, 0.02% BSA, 0.02% polyvinylpyrrollidone, 0.01% sheared denatured DNA, 

0.01% tRNA, 0.1 mg/m1 polyadenylate, 50% deionized formamide) at 40°C for 1 h. 

After pre-hybridization sections were dehydrated through 50%, 70% ,95%, 100%, 100% 

ethanol containing 300 inM ammonium acetate, at which stage they were either stored 

at -20°C for several weeks in moisture proof containers or hybridized immediately. 

ii) probe preparation and hybridization 

The hybridization for cDNA probes was essentially the same as that 

described for oligonucleotide probes. Hybridization temperatures varied between 37°C 

and 42°C depending on percentage homology of the cDNA probes. Following 

hybridization non-specific probe binding was removed by incubating the slides in 

formamide buffer (50% formamide, 0.6 M NaC1, 10 mM Tris HCI pH7.4, 1 mM EDTA) 

at room temperature for 1 h followed by washing in 2 x SSC at 40°C for 1 h with 

occasional agitation and then in 0.1 X SSC at 60-65°C for a further 2 h. After 

dehydration through 50%, 70%, 95%, 100%, 100% ethanol, slides were processed for 

autoradiography as described below. 

2.3.2.3 Probe detection by autoradiography 

i) regional analysis using high resolution film 

Slides prepared in section 2.3.3.2 were taped to a piece of 3MM filter paper 

and exposed in an x-ray cassette to Amersham high. resolution 0-max film. After the 

appropriate exposure time films were processed as usual (section 2.2.6). 

ii) microscopic analysis using liquid emulsion. 

Under dark room conditions Ilford K-5 or Amersham LM-1 nuclear 

emulsion gel was diluted 1 in 2 with distilled water and warmed to 40°C for 2 h. Slides 

were briefly dipped into the prewarmed emulsion and excess liquid allowed to drain 

away by standing slides vertically. When the emulsion had dried slides were loaded 

into racks and placed in light proof boxes over silica gel and exposed for 1 to 4 weeks. 

Exposure time was approximately 10 times that required to give a medium gray image 

following exposure next to fast (low resolution) x-ray films such as Amersham MP or 

Kodak K5. Following exposure slides were developed and fixed in filtered Kodak fixer 

and developer, rinsed in 3% acetic acid, hardened in formalin for 1 min and 

counter-stained with Haematoxylin/eosin (Penschow et al., 1989) and then dehydrated 
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through graded ethanol, cleared into xylene and mounted with D.P.X mountant. Slides 

were photographed between 100 and 400 time magnification under blue light using a 

standard photomicroscope system. 

2.3.2.4 Probe specificity and controls. 

in situ hybridization results may be misleading due to unexpected 

homologies or to short regions within a probe hybridizing to unknown target sequences. 

Similarly interactions between proteins and probes may occur whilst a variety of 

autoradiographic artifacts can provide convincing hybridization signals or alternatively, 

reduce genuine hybridization signals. In an attempt to counter any potential spurious 

results an array of experimental controls were used in the present in situ hybridization 

experiments and these are outlined in table 2. 

Table 2. In situ hybridization controls 

Factor of interest 	 Procedure 

Non-specific probe binding 	Sense DNA probe 

Nonhomologous probe 

Digestion of target RNA 

Non-expressing tissue 

Probe specificity 	 Northern blot 

Autoradiography 	 No probe 

Tissue only 

Blank slide 

Target distribution 	 Irrununocytochemistry 
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2.4 IMMUNOCYTOCHEMISTRY 

c-myc and c-fos protein products were localized to specific cardiac regions 

and cell types by immunocytochemistry using both monoclonal and affinity purified 

polyclonal antibodies. A variety of immunodetection systems were experimented with 

including peroxidase-antiperoxidase (PAP) (Sternberger et al., 1970), alkaline 

phosphatase-antialkaline phosphatase (APAAP) (Cordell et al., 1984), avidin-biotin 

complex (ABC) (Hsu and Soban, 1982), and labeled avidin-biotin (LAB) technique 

(Guesdon et al., 1979) in an attempt to obtain the highest sensitivity and lowest 

background possible. In these studies the technique which consistently gave the best 

results was the LAB method. In this immunostaining procedure, target tissue sections, 

either frozen or formalin-fixed and paraffin-embedded, were first incubated with a 

monoclonal antibody or affinity-purified polyclonal antibody (primary antibody) to the 

antigen of interest. Specifically bound antibody was then visualized by incubation with 

a biotinylated second-step antibody (link antibody) against irrununoglobulins of the 

relevant species (i.e. biotmylated goat anti-mouse IgG for a primary antibody raised in 

mice), followed by incubation with a streptavidin-enzyme conjugate and 

chromagen-substrate. Two different enzyme/chromagen systems, the calf intestinal 

alkaline phosphatase fast red TR and the horseradish peroxidase/ diaminobenzidine 

(DAB) systems were used in the course of these studies. The former of these systems 

gives a brilliant red end product which is easily detectable to the human eye even in low 

concentrations (Rainbow, 1988) but is soluble in alcohol which means it must be 

mounted with aqueous mountants. The latter system gives a brown end product which 

can be mounted in both aqueous and organic mountants and its sensitivity can be 

enhanced with salts of heavy metals such as nickel, silver or osmium (Hsu and Soban, 

1982; Johannson and Beckman, 1983; Rodriguez et al., 1984). 

A number of fixation methods were experimented with in an endeavor to 

obtain the best antigen preservation whilst retaining morphological detail of the 

specimen. In this author's hands fixation of fresh frozen tissue with cross linking 

fixatives (i.e. formaldehyde) or paraffin embedded tissue gave no or very poor 

immunostaining for Myc and Fos protein, possibly because these conditions either 

altered or destroyed the Myc and Fos epitopes. In contrast, although the tissue 

morphology was of lower quality than that using cross linking fixatives, fresh frozen 
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sections fixed with precipitative fixers (i.e. acetone, methanol, ethanol) resulted in 

relatively strong immunostaining for both the anti-Myc and -Fos antibodies. Due to the 

lower resultant background, methanol fixation in conjunction with peroxidase /DAB 

was routinely used for the majority of studies with anti-Myc and -Fos early-response 

gene antibodies. For detection of tissue marker proteins such as a-smooth muscle actin 

formaldehyde fixation in conjunction with alkaline phosphatase/ fast red TR was 

routinely used with satisfactory results. 

2.4.1 Materials 

2.4.1.1 Reagents and chemicals 

Aqueous Mounting medium 	BioGenex 

Crystal/Mount 	 Biomed Corp. 

D.P.X Mountant 	 BDH 

Diaminobenzidine 	 Sigma 

Gelatin 	 Davis Gelatin 

Imidazole 	 Sigma 

Levamisole 	 Sigma 

N,N Dimethyl Formamide 	 Sigma 

Napthol AS MX Phosphate 	Sigma 

Osmium tetroxide 	 Sigma 

Potassium Dichromate 	 BDH 

Protease type XXIV 	 Sigma 

Thymol 	 BDH 

2.4.1.2 Immunological-link and -labels 

Immunological-link and -labels were obtained from BioGenex (USA) and 

are listed below. 

Alkaline phosphatase-conjugated streptavidin (HK350-5K) 

Biotinylated anti-mouse immunoglobulins 	(HK335-5M) 

Biotinylated anti-rabbit immunoglobulins 	(HK336-5R) 

Normal Goat Serum 	 (HK112-5K) 
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Peroxidase-conjugated streptavidin 	(HK330-5K) 

.2.4.1.3 Primary antibodies 

Primary antibodies were obtained from commercial sources and are outlined 

below. 

1)Fos 

For detection of Fos and related proteins a rabbit, affinity purified 

polyclonal antibody raised against the peptide (S GFN ADYE A S SSR C) 

corresponding to residues 4 to 17 of human fos (Oncogene Science, USA, Cat # HCS17) 

was used at a concentration of 2.5 jig/ml. This antibody potentially cross-reacts with all 

members of the fos gene fatnilly. In addition, polyclonal antibodies specific for Fos, 

Fra-1 and Fra-2 were obtained as a kind gift fom Dr. D. Cohen (A.N.U) and were used 

in some preliminary studies. These antibodies were raised to non-conserved regions 

within each protein and therefore are unlikely to cross-react with other members of the 

fos gene family (Dr. D. Cohen, pers. comm.) 

2) Myc 

Myc protein was detected using a mouse monoclonal antibody from ascites 

fluid raised against the peptide (A PS EDIW KKFEL C) corresponding to residues 

44-55 of rat c-myc (Cambridge Research Biochemicals, UK, Cat. # 0M-11-904) and 

was used at a concentration of 25 jig/mi. 

3) Smooth muscle Actin 

Vascular smooth muscle was detected using a mouse monoclonal antibody 

from ascites fluid corresponding to a conserved decapeptide region of human and rat 

a-smooth muscle actin (Skalli et al., 1986) (ICN ImmunoBiologicals, Israel, Cat. # 

63-793) and was used at a dilution of 1:400. 

2.4.2 Immunodetection Procedure 

2.4.2.1 Immunodetection of early-response gene proteins by the 

LAB-immunoperoxidase method 

This method is a modification of the original method of Guesdon et al., 

(1979). 
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Experimental hearts embedded in OCT compound as described in section 

2.1.4 were warmed slowly to -22°C, mounted on a chuck in a freezing microtome and 

sectioned to 5 gm. Sections were then immediately thawed onto gelatin-dichromate 

coated slides (Penschow et al., 1989) and fixed at once in 95% methanol for 2 min and 

then air dried for 2 h at room temperature. Sections prepared in this manner were stored 

in moisture proof containers at -20°C for several weeks or at -80°C for up to several 

months without any apparent decrease in immunosensitivity. For immunodetection 

sections were allowed to thaw to room temperature and then incubated in methanolic 

11202  (0.5%) for 30 min to remove endogenous peroxidase activity. After rinsing in 

PBS they were then incubated successively in 0.1% avidin in PBS pH 7.4 and then 

0.01% biotin in PBS for 20 min to remove endogenous avidin binding activity (Wood 

and Warnke, 1981). After rinsing in PBS sections were incubated in 0.1% Triton X-100 

in order to permeabilize the tissue and then non-specifically blocked by incubating in 

normal goat serum (1%) for 30 min. Sections were subsequently incubated with the 

primary antibody overnight at 4°C at the appropriate dilution in diluent (PBS pH 7.4, 

0.1% BSA). After rinsing in PBS, sections were incubated for 1 h at room temperature 

with biotinylated anti-rabbit immunoglobulin or biotinylated anti-mouse 

immunoglobulin for polyclonal and monoclonal primary antibodies respectively. After 

rinsing, sections were incubated for 1 h at room temperature with peroxidase-conjugated 

streptavidin. After rinsing again with PBS, peroxidase activity was visualized by 

incubating slides in DAB/ifnidazole (0.02% DAB, 0.135% imidazole in PBS) for 2 min 

and then in DAB/imidazole containing 0.005% H202  for 3 min. Sections were then 

rinsed with distilled water and incubated in freshly prepared Osmium tetroxide ( 0.002% 

in PBS) for 3 min and rinsed in distilled water, dehydrated through ethanol, cleared into 

xylene and mounted with D.P.X. mountant. Slides were photographed as described in 

section 2.3.3.3. 

2.4.2.2 Immunodetection of cell marker proteins by the LAB-alkaline 

phosphatase method 

This method is a modification of the original method of Guesdon et al., 

(1979). 

57 



Fresh frozen tissue was sectioned as described previously and immediately 

fixed by incubating in tri-fixative (2% formaldehyde, 49% methanol, 49% acetone) for 

90 s at 5°C and then rinsed in tris buffered saline (TBS) for 5 min. Sections were then 

incubated successively in 0.1% avidin in TBS ( 0.1 M Tris.HC1 pH7.6, 0.9 g/1 NaC1) 

and then 0.01% biotin in Tris-saline for 20 min to remove endogenous avidin binding 

activity. After rinsing in TBS sections were incubated in 0.1% Triton X-100 in order to 

permeabilize the tissue and then non-specifically blocked by incubating in normal goat 

serum (1%) for 30 min. Sections were subsequently incubated with the primary 

antibody overnight at 4°C at the appropriate dilution in diluent (TBS pH 7.6, 0.1% 

BSA). After rinsing in TBS, sections were incubated for 1 h at room temperature with 

biotinylated anti-rabbit immunoglobulin or biotinylated anti-mouse immunoglobulin for 

polyclonal and monoclonal primary antibodies respectively. After rinsing, sections 

were incubated for 1 h at room temperature with alkaline phosphatase-conjugated 

streptavidin. following rinsing with TBS once again, phosphatase activity was 

visualized by preincubating sections in 0.1 M Tris.HC1 pH 8.2 for 2 min then in 

developing solution (Napthol AS MX 0.2, mg/ml, Fast red TR 0.75 mg/ml, levamisole 

0.2 mg/ml (an inhibitor of endogenous phosphatases) in 0.1 M Tris HC1 pH 8.2) for a 

further 20 min. After rinsing with water sections were protected with crystal mount, 

dried at 45°C and then mounted with D.P.X. Slides were photographed as described in 

section 2.3.3.3. 
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CHAPTER  3 

EFFECTS  OF HYPERTROPHIC AGENTS  ON EARLY-RESPONSE 

GENE EXPRESSION  IN VIVO 

3.1 INTRODUCTION 

Studies by Simpson's group and others have demonstrated that NE acting 

via the occadrenergic receptors is capable of directly and independently inducing 

hypertrophy of neonatal cardiac myocytes in vitro and that this process is qualitatively 

similar to that observed in adult hearts following pressure overload (reviewed in 

Simpson, 1990). It has been speculated that the intracellular pathways linking 

occupancy of the adrenergic receptors to qualitative changes in protein synthesis 

observed during hypertrophy might be transduced by one or more members of a group 

of nuclear-acting early response genes (Simpson, 1988 A). This notion is consistent 

with the observations that elevated expression of some of these genes is an early event 

which occurs during NE-mediated neonatal myocyte hypertrophy (Starksen et al., 1986; 

Iwaki et al., 1990). However, cardiac myocytes isolated from neonatal hearts have 

demonstrable physiological, pharmacological and metabolic differences compared to 

adult cells (for an inclusive list see table 3.1) and results from studies with these 

immature, artificially cultured cells may not be directly applicable to the adult heart in 

vivo (Bugaisky and Zak, 1989). 

In addition it is possible that other cells may modify the response of 

adjacent cardiac myocytes by the release of growth factors. In support of this it has 

been shown that acidic and basic fibroblast growth factors can modify isocontractile 

gene expression and increase expression of c-fos and c-jun in isolated neonatal 

myocytes (unpublished data from Parker and Schneider, 1991) and it is possible that 

their release from fibroblasts may be enhanced by adrenergic agents. Accordingly it is 

of considerable interest to determine if NE might also modulate a similar program of 

early response gene expression in, myocytes of the adult heart in situ. As a first step in 

this direction the work in this chapter has examined the expression of common and 

distinct members of the early-response gene program including c-myc , c-fos, c-jun, fra-1 
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and fra-2 in whole adult rat hearts following acute and chronic administration of 

adrenergic agonists in vivo. For comparison the effects of the hypertrophic hormone T, 

on cardiac early-response gene expression was also analyzed since this hormone results 

in a qualitatively different form of hypertrophy to that observed in response to 

occadrenergic agents. 

Table 3.1 Comparison of cultured embryonic/neonatal and adult cardiac myocytes. 

Embryonic/neonatal 
	

Adult 

Initial striated structure 

Striated structure regained 

Morphology 

T-tubule system 

Beating rate 

Mass beating 

Isozymes 

PAS positive 

Cell division 

DNA synthesis 

Epinephrine responsive 

Resting potential 

Immediately lost 

Yes 

Unique 

Rudimentary 

70-100 

Synchronous 

V I : V3  1:1 

Yes 

Yes 

Yes 

Yes 

-38.2 mV 

Lost with time 

Yes 

Unique 

Well-developed 

175-220 

Asynchronous 

initially; becomes 

synchronous in time 

V, Only (during 1 week) 

Yes 

No 

Yes 

Yes 

-76.3 mV 

(Adapted from Bugaisky and Zak, 1989) 

3.2 EXPERIMENTAL PROTOCOLS 

3.2.1 Acute Administration of Hypertrophic Agents in vivo 

Rats were administered a single 0.5 ml intraperitoneal (i.p.) injection of the 

appropriate drug dissolved in vehicle (see section 2.1.2). Each animal received an 

equivalent dose per kilogram of body weight and control animals were injected with an 

equal volume of vehicle alone. Where used, adrenergic antagonists were injected twice, 
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1 h and again 10 min before NE administration. At the appropriate time after 

administration of drugs, rats were anaesthetized with an i.p. injection of 0.4 ml sodium 

pentobarbitone, 0.2 ml heparin and 0.4 ml of 0.9% saline and the hearts quickly excised 

and rinsed in ice-cold saline. Hearts for northern analysis were left whole or dissected 

into the various chambers and snap frozen in liquid nitrogen to await RNA extraction 

(section 2.2.2). 

3.2.2 Chronic Administration of Hypertrophic Agents in vivo 

3.2.2.1 Norepinephrine administration 

Alzet mini-osmotic pumps purchased from Alzet Corporation (U.S.A. 

Model 2002) were filled according to the accompanying instructions with NE in vehicle 

or vehicle alone (see section 2.1.2). Pumps were then equilibrated for 24 h in 0.9% 

saline before use and implanted in animals as follows. Rats were anaesthetized in an 

ether box and unconsciousness maintained by use of a nose cone. The intrascapular 

region was shaved, swabbed with antiseptic and a 1 cm incision made by blunt 

dissection to accommodate the pump. Following insertion of the pump, the wound was 

closed with surgery clips and the animals were allowed to recover from surgery and 

thereafter maintained as usual. At the appropriate time after surgery animals were 

anaesthetized, hearts removed and weighed and prepared for analysis as described in 

section 2.2. 

3.2.2.2 T3  administration 

Rats were injected subcutaneously every 24 h with T, and weighed on a 

daily basis. Control animals received an equivalent volume injection of vehicle alone 

(see section 2.1.2). After the appropriate number of days rats were anaesthetized and 

hearts removed, blotted dry and weighed. Hearts were then immediately prepared for 

analysis as described in section 2.2.2. 

3.3 RESULTS 
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3.3.1 Acute Effect of Adrenergic and Thyroid Hormones on Early-Response Gene 

Expression in vivo 

3.3.1.1 Adrenergic agents 

Total RNA was extracted from hearts and analyzed for early-response gene 

expression by northern blotting as described in the methods. Basal levels of c-myc but 

not c-fos mRNA could be detected in the hearts of both untreated and saline-injected 

animals, although this required over-exposure of the appropriate autoradiographs (Fig 

3.1-3.4). A single injection of NE (2.5 mg/kg) however, greatly elevated both c-fos and 

c-myc mRNA levels, with c-fos transcripts increasing 15 min after injection to peak at 

1-2 h and returning to basal by 6 h (Fig 3.1, Lanes 3-10). Elevated c-myc mRNA was 

observed at 30 min after injection of NE, peaked at 2-3 h and returned to basal levels 

after 6 h (Fig 3.1, Lanes 3-10). Thus, the increase in mRNA levels of these two genes 

in response to NE was both transient and sequential. Similar but lesser increases of 

c-fos and c-myc were observed following single doses of NE at levels as low as 2.5 

[is/kg, indicating that this response is not restricted to extremely high doses of the 

hormone (Fig 3.2). 

In order to determine which component of NE action was responsible for the 

change in c-myc and c-fos mRNA levels, rats were treated with the a-adrenergic agonist 

phenylephrine (2.5 mg/kg) or the p-adrenergic agonist, isoproterenol (2.5 mg/kg). Both 

agents caused an increase in c-fos and c-myc mRNA which was similar in magnitude to 

that due to NE (Fig 3.3 & 3.4). Minor crossover affinity of phenylephrine for 

P-adrenergic receptors was not responsible for the observed gene inductions in response 

to this agent since animals were co-treated with the selective P-adrenergic antagonist 

propranolol (50 mg/kg). Interestingly, the time required for c-myc mRNA to reach 

maximal levels appeared to be dependent on which agent was administered, peaking at 1 

h, 2 h, 3 h following treatment of rats with NE (a13), phenylephrine (a) and 

isoproterenol (P) respectively (Fig 3.5). 

Recent studies indicate that c-fos is one of a related family of rapidly 

inducible genes including fra-1 (Cohen and Curran, 1988) and fra-2 (Yoshida et al., 

1993) whose products form heterodimers with products of the c-jun gene family and 
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Lane 	1 2 3 4 5 6 7 8 9 10 

Time 	lh 3h 15' 30' 45' lh 2h 3h  6h  12h 

c-fos 

c-Inyc 

0-tubulin 	00004101111141141P111411411 

	

JJ 	  

	

Control 	Norepinephrine 

(saline) 	 (2.5 mg/kg) 

Fig 3.1. Cardiac expression of c-fos and c-myc in response to a single injection  of  norepinephrine. 
Total RNA was extracted from rat hearts removed at the various times indicated following an i.p. injection 
of 0.9% saline (Lanes 1 & 2) or norepinephrine (2.5 mg/kg, Lanes 3-10). After electrophoresis and 
northern blotting, the RNA (50 rig) was hybridized to c-fos (upper tracks), c-myc (middle tracks) and 
13-tubulin (lower tracts). 



111 
Li 1 	  

CTL NE 

(2.5 pg/kg) 

c-fos 

Lane 	1 2 3 	4 5 

Time 	1 hr 1 hr 2 hr 	1 hr 2 hr 

Fig 3.2. Cardiac expression of c-fos and c-myc in response to a single low dose injection of 
norepinephrine. 
Total RNA was extracted from rat hearts removed at the various times indicated following an i.p. injection 
of 0.9% saline (Lane 1) or norepinephrine (2.5 mg/kg, Lanes 2 & 3) and 50 lig  was  hybridized to c-fos or 
c-myc. In addition, 7 Rg of poly(A) * RNA was isolated from the 1 h and 2  h  total RNA samples for 
norepinephrine-treated rats and hybridized to c-fos (Lane 4) and c-myc (Lane 5)  probes  respectively. 



Lane 	1 2 3 4 5 6 7 8 9 

Time 	1 h 15" 30' 45• 1h 2h 3h 6h 12 h 

c-fo s 
I L 46410ww• 

IMF 

c-myc 4 =Mb it 
d-tubulin 

1--I 	  
Control 	Phenylephrine 
(Saline) 	(2.5mgikg) 

Fig 3.3. Cardiac expression of c-fos and c-myc in response to a single injection of phenylephrine. 
Total RNA was extracted from rat hearts removed at the various times indicated following an i.p. injection 
of 0.9% saline (Lane 1) or phenylephrine (2.5 mg/kg, Lanes 2-9). c-fos, c-myc and 13-tubulin transcripts 
were analyzed as described previously. 



NMI* 

Lane 	1 2 3 4 5 6 7 8 9 

Time 

c-fos 

c-mvc 

1h 	15 30' 45' lh 2h 3h  6h  12h 

IMPIMPOSPOS0 0-tubulin I 11. 

L_I I 	  
Control 	Isoproterenol 

(Saline) 	(2.5mg/kg) 

Fig 3.4. Cardiac expression of c-fos and c-myc in response to a single injection of isoproterenol. 
Total RNA was extracted from rat hearts removed at the various times indicated following an i.p. injection 
of 0.9% saline (Lane 1) or isoproterenol (2.5 mg/kg, Lanes 2-9), c-fos , c-myc  and 13-tubulin transcripts 
were analyzed as described previously. 



Fo
ld

—
In

cr
ea

se
 

(N
E/

co
nt

ro
l) 

0
 

—a
 

41
. 	

0)
 	

03
 	

0
 

0
 
0

 
0

 
0

 
0

 

Fo
ld

—
In

cr
ea

se
 

(N
E/

co
nt

ro
l) 

0
 

rn-
. 
0

 
o

< 
CD

 
 

ci
) 	

7
 

,-s
 	

.-
 •

 =
•

•
 .

..
..

 t
..

A
.)

 
0

 
0
 

Fo,
  0

 
0
 
‘-

G
 

n 
L„

 

	

-,
 =

 	
5a

r 
s'

 •
 

0
  ,

..
. 

CD
 

■-•
 • 	

C
) 

7
 
"
 

AD
 

7
 

< 
Er

 c
 5

.  
co 

wu, 
a 

P.
 	

0
 

	

F.;  
• c

..,
- a

 
c.,,

 	
Ito

 

	

co 
=

 	
0

 

	

 

• 

■

• 

-•
 C

n
 • 	

0
 

^I
I 

7
 =

 0
 

9 
a-

 
cr

 
....

. 
=

 
0

 

	

Ca
. 

c
r
 	

P.
. 	

,_._
 

	

Fi•
 

cep
 0

, 
0
 	

,-.-,.
 

AD
 

26
) • 

Pi
 

cn
 

Q
 • 

'''—
 • 

cr
 

	

a.
 	

c 

	

0 
...<

 	
a
 

'5'
 	

c 
c.) ,_
. ci
' 

•-,
 

_ . 
q• 	

C
r 	

•-
t 

O
p-r

, 
c
 c

r 	
co "o
 

co • 0
o
 

II, 
c 

 
CD

 

•0
 

B.
 	

c cA 
c 	

< 
cr

o 	
co 

7
 
0

 
.
 

	

En 
11) • S

.  r
:Th

 	
c 

4 
ci

- 
C

D
 C

 

'V
 

' 	
1

▪ 
1

)▪  
S
 
0
 	

...
.. 

'7
 

•• 

q
 !

''
')

•CD
 

	

Co
 

■-•
 	

^C
S 7
"
 

O
,r()

  '
,.
, 	

-, 

	

ouI 	
- .

 
c 

	

oa
 	

l'"
 	

co 
O

C
D

 P
o 	

0
 

■-
t
 =

 

	

7
 

0
 

cL
. 	

.-1
 

	

ri
l .

 	
cn

 

	

.:
-.

 	
.41) 
	

CD
 

(D-
 

	

7:
, 
	

•1=
` 	

0
 

,-.
. 

CD
 

cn
 	

7<"
 

	

=
 

0
 O

 	
CD

 
CD

 
C

D
 "

 

	

F
r 

CL
.  
n

 	
P
 

-0
 

 

	

=
 	

ao 
.9. 

 c 
5
' 
0
 

 

	

(1)
 	

,..
p.

, i
l) 

O
S.

 	
-Q

 

A)i 	
■-•

 •
 <

 	
C

I.
 

.1
 

	

CM
 	

''' 
• 

	

0
 O

D
 	

CD
 

7
 

O
-C

 
7

.1
 

2 	
9
 

	

a), 	
aQ

 
s-

,  
CD

 	
0

 



bind to AP-1 like regions of target genes to modulate their transcription (Reviewed in 

Angel and Karin, 1991). Accordingly it was of interest to determine whether these 

genes were also expressed in the heart following NE administration. c-jun and fra-2 but 

not fra-1 mRNA was endogenously expressed at low levels in the hearts of both adult 

untreated and saline-injected animals (Fig 3.6, Lanes 1-3). Injection of NE (2.5 mg/kg) 

however, greatly elevated the mRNA for all three genes: increased fra-1 mRNA 

appeared maximal after 1 h but remained elevated above control levels up to 6 h 

following administration of NE. Increased fra-2 and c-jun mRNA reached maximal 

levels after 2 h and had returned to near basal levels by 12 h and 6 h respectively 

following NE treatment. Interestingly, a second transcript of lower molecular weight (4 

kb) appeared for fra-2 following NE stimulation which is not detectable in basal tissue 

(Fig 3.6, Lanes 4-8). These results indicate that an array of early-response genes are 

induced in a sequential fashion in the rat heart following acute administration of NE. 

In order to determine the percentage contribution of the a- and 13-receptors 

to NE mediated early response gene expression, rats were exposed to selective a- or 

13-adrenergic blockade during NE administration (Fig 3.7 & 3.8). Co-treatment with 

propranolol (50 mg/kg), a synthetic I3„ 132-antagonist, did not attenuate the induction of 

any early-response genes investigated. In fact in most cases (c-fos, c-fun, fra-1 and 

fra-2) the observed induction was increased by 5-30% with respect to animals treated 

with NE alone. In contrast co-treatment with phentolamine (25 mg/kg) a synthetic a 1 , 

oyadrenergic antagonist, significantly attenuated, but did not abolish the induction of 

c-fos and c-jun whilst the mRNA levels of c-myc, fra-1 and fra-2 where not 

significantly reduced. It was noted again that the time of maximal c-myc expression and 

also fra-1 expression was altered in response to a specific component of NE action; thus 

I3-blockade resulted in greatest c-myc and fra-1 levels at 1 h compared to 3 h with 

a-blockade. Blockade with both a- and I3-adrenergic antagonists significantly reduced 

NE induction of all early-response genes to near basal levels indicating that the hormone 

indeed acts via the adrenergic receptors (Fig 3.7). 

3.3.1.2 T 3  administration 
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Lane 	1 2 3 4 5 6 7 8 

Time 	lh 3h 6h lh 2h 3h 6h 12h 
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q-tubulin •a, 41,0110.000111 
II  

CTL 	NE 

(saline) 	(2.5mg/kg) 

Fig 3.6. Cardiac expression of c-jun, fra-1 and fra-2 in response to a single injection of norepinephrine. 
Total RNA was extracted from rat hearts removed at the various times indicated following an i.p. injection 
of 0.9% saline (Lanes 1-3) or norepinephrine (2.5 mg/kg, Lanes 4-8). After electrophoresis and northern 
blotting, the RNA (5014) was hybridized to c-jun, fra-1, fra-2 and P-tubulin . 
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Fig 3.7. Cardiac expression of c-fos and c-myc, c-fun, fra-1 and fra-2 in response to a- or I3-adrenergic 
blockade prior to NE administration. 
Total RNA was extracted from rat hearts removed 1 h and 3 h following an i.p. injection of 0.9% saline 

(CTL, Lanes 1 and 2) or norepinephrine (2.5 mg/kg, Lanes 3 & 4). The 13-antagonist propranolol (PROP, 

50 mg/kg, Lanes 5 & 6) or a-antagonist phentolamine (PHT, 25 mg/kg, Lane 7  &  8) or a combination of 

both (lanes 9 & 10) were given twice, 1 h and 10 min prior to norepinephrine administration. c-myc, c-fos, 
c-jun, fra-1, fra-2 and I3-tubulin transcripts were analyzed as described previously. 
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Fig 3.8.Quantification of c-fos, c-myc, c-jun, fra-1 and fra-2 expression following a- or P-adrenergic blockade of NE-stimulated rats. 
The hybridization signals obtained by northern blotting in figure 3.7 were quantitated via laser densitometry and, after standardization to 13-tubulin levels 
in each track, were expressed as the fold increase over control (basal) signals observed in hearts from rats treated with vehicle. Basal signals for c-fos and 
c-jun were arbitrarily assigned the value of one. a=NE (2.5 mg/kg) + propranolol (50 mg/kg). f3=NE (2.5 mg/kg) + phentolamine (25 mg/kg). Vertical 
bars indicate standard error mean (S.E.M.), n=3. 



Rats were administered a single injection of the thyroid hormone T, (0.25 

mg/kg) and hearts were removed for analysis as described in the methods. No 

significant increase in c-myc, c-fos, or fra-1 expression compared to vehicle injected 

animals was observed up to 12 h following hormone administration (Fig 3.9). In 

contrast fra-2 mRNA levels (6.0 kb transcript) appeared to be slowly upregulated by T, 

administration. Elevated fra-2 friRNA was first observable 3 h following treatment and 

by 12 h mRNA levels were similar to that observed following NE treatment. Cardiac 

c-jun transcripts in response to T, administration were not assessed. 

3.3.2 Chronic Administration of Hypertrophic Agents in vivo 

3.3.2.1 Chronic norepinephrine administration 

Continued infusion of NE (100 lig/kg/h) by means of mini-osmotic pumps 

implanted in the intrascapular region of rats led to observable cardiac hypertrophy 

(assessed by wet weight of the whole heart) within 3 days (Fig 3.10). These results are 

comparable with those of others (Johnson et al., 1983). No evidence of fibrous scar 

formation was immediately obvious in any region of the heart following this treatment 

(Jiang and Downing, 1990). Increased heart to body weight ratios were also 

accompanied by increased expression of the neonatal-specific isocontractile gene 

a-SlcA, with increased transcript levels appearing after 2 h of infusion, rising to a 

maximum after 24 h and declining, but still above basal, after 72 h of NE infusion (Fig 

3.11 & 3.12). Similarly, mRNA levels for the early-response genes c-myc, c-fos, c-fun, 

fra-1 and fra-2 were also elevated in response to NE infusion (Fig 3.11, Lanes 1-12 & 

Fig 3.12), although their expression profiles differed with respect to each other and were 

of lesser intensity than the corresponding levels following a single injection of NE (2.5 

mg/kg) in vivo (Fig.3.11, Lanes 12-13). Elevated c-fos transcripts appeared within 1 h 

of NE infusion, peaking at 3 h and had returned to basal by 6 h of infusion. In contrast 

c-myc, c-jun, fra-1 and fra-2 exhibited more complex expression profiles. Elevated 

c-myc mRNA levels demonstrated an initial minor peak between 1 and 4 h of infusion 

after which transcript levels declined to basal values by 6 h before increasing again by 

12 h of infusion to reach a second, more sustained peak of greater intensity between 24 
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	T3 

	

(saline) 	(2.5mg/kg) 
	(250“g/kg) 

Fig 3.9. Cardiac expression of c-nzyc, c-fos, fra- I and fra-2 in response  to  a single injection of 
triiodo-L-thyronine. 
Total RNA was extracted from rat hearts removed at various times following  an  i.p. injection of vehicle 
(Lanes I & 2) or triiodo-L-thyronine (0.25 mg/kg, T„ Lanes 5-12). c-myc, c-fos, fra-1, fra-2 and 13-tubulin 
transcripts were analyzed as described previously. As a positive control, cardiac  RNA  obtained from rats 
treated i.p. I h or 3 h previously with norepinephrine (2.5 mg/kg, NE, Lanes 3 &  4)  have been included. 
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Fig 3.10. Induction of cardiac hypertrophy during chronic norepinephrine infusion. 
Rats were infused continuously with norepinephrine (100 gg/lcg/h) via implanted mini-osmotic pumps and after the times indicated the animals were 
sacrificed and heart and body weights measured. Vertical bars indicate standard error mean (S.E.M.). 
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Fig 3.11 Cardiac expression of c-myc, c-fos, c-jun, fra-1, fra-2 and a-skeletal actin during continuous 
infusion of norepinephrine. 
Rats were infused chronically with saline or norepinephrine (100 jig/kg/h, Lanes 1-10) for the times 
indicated, following which their hearts were removed and RNA isolated. c-myc, c-fos, c-jun, fra-1, fra-2 , 
a-skeletal actin and p -tubulin mRNA levels were analyzed as described previously. As a positive 
control, cardiac RNA obtained from rats treated i.p. 1 h or 3 h previously with norepinephrine (2.5 mg/kg, 
NE, Lanes l2& 13) have been included. 
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Fig 3.12 Quantification of cardiac c-myc, c-fos, c-jun, fra-1, fra-2 and a-skeletal actin induction during continuous infusion of norepinephrine. 
The hybridization signals obtained by northern blotting in figure 3.11 were quantitated via densitometry and, after standardization to 13-tubulin levels in 
each track, were expressed as percentage of the equivalent signal observed 1 h (c-fos, c-fun) or 3 h (fra-1, fra-2, c-myc) after acute norepinephrine 
administration (2.5 mg/kg). Vertical bars indicate standard error mean (S.E.M.), n=3. 



h and 48 h. By 72 h of NE infusion c-myc transcript levels had returned to near basal 

values. fra-1 and fra-2 and c-jun also exhibited initial transitory peaks between 1 and 6 

h of infusion of NE after which the level of these genes declined but remained above 

basal even after 72 h of infusion. Animals infused with saline did not exhibit increased 

heart to body weight ratios, nor were the transcript levels for a-SlcA or the 

early-response genes elevated significantly above levels observed in untreated animals. 

3.3.2.2 Chronic T, administration 

Rats administered a daily injection of T, (0.2 mg/kg) exhibited significant 

increases in heart weight and heart to body weight ratios within 2-3 days (Fig 3.13) and 

these results are similar to those obtained by others (Sanford et al., 1978; Clarke and 

Ward, 1983). Increased cardiac mass was accompanied by increased expression of the 

isocontractile gene a-MHC (Fig 3.14), an event which can be used as a marker for the 

hyperthyroid state and is characteristic of thyroid hormone-induced cardiac hypertrophy 

in the rat (Everett et al., 1984; Dillmann et al., 1989). Similar increases in a-MHC 

transcripts were also observed following daily administration of T3  at doses as low as 

2-20 jig/kg/day although changes in cardiac mass were not analyzed at these doses of 

T,. However, no change in the level of c-fos and c-myc mRNA was observed compared 

to control animals at any of the time points studied during T, administration (Fig 3.14). 

c-jun fra-1 and fra-2 mRNA levels were not assessed following chronic treatment with 

T,. 

3.4 DISCUSSION 

The nuclear-acting, early-response genes encode known or putative 

transcription factors, the induction of which are thought to modulate gene transcription 

during normal growth and differentiation (reviewed in Angel and Karin, 1991). 

Recently it has been proposed that these genes may also play an active role in the 

postnatal growth of the heart (Simpson, 1988 B), a process in which myocytes increase 

in size without concomitant cell division (Clubb and Bishop, 1984; Zak, 1974 A and B). 

This study has examined whether hormonal agents such as NE and T3  which promote 
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Fig 3.13. Induction of cardiac hypertrophy in response to daily injections of triiodo-L-thyronine. 
Rats were administered a daily injection of T3  (0.2 mg/kg) and at various times indicated body and heart 
weights were measured and expressed as a ratio of heart weight to body weight. Vertical bars indicate 
standard error mean (S.E.M.), n=3. 
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Fig 3.14. Cardiac expression of c-myc, c-fos, and myosin a-heavy chain in response to various doses of triiodo-L-thyronine. 
Total RNA was extracted from rat hearts removed at the various times indicated following daily injections of triiodo-L-thyronine of 0.2 mg/kg/day (Lanes 
1-7), 0.02 mg/kg/day (Lanes 8-13) and 2 gg/kg/day (Lanes 14-19). c-myc, c-fos, and myosin heavy chain transcripts were analyzed as previously 
described. As positive controls cardiac RNA extracted from rats treated with an i.p. injection of vehicle (CTL, Lanes 20 & 21) or norepinephrine ( NE, 
2.5 mg/kg, Lanes 22 & 23) was included. 



cardiac hypertrophy will influence the expression of early response genes in the adult 

heart in vivo. 

i) induction of the early-response gene program in response to NE 

administration. 

In this study c-myc, c-jun and fra-2 mRNAs were constitutively expressed 

at very low levels in the hearts of untreated adult rats. It is possible that this basal 

expression is localized to cells that are actively and continuously dividing such as 

fibroblasts or endothelial cells since c-myc, and the fos-related gene family have been 

associated with cellular proliferation (Angel and Karin, 1991). Interestingly expression 

of c-fos and fra-1 mRNAs were not observed in untreated adult hearts and taken with 

the above results is clear evidence that differential expression of the early-response gene 

program contributes to the function of adult hearts during normal growth. 

However the administration of a single injection of the hypertrophic agent 

NE (2.5 mg/kg) led to a rapid and transient increase in the cardiac mRNA levels for all 

of these genes with respect to control animals. The observed responses were not due to 

stress of the injection since little or no elevation in early-response gene expression was 

observed following an intraperitoneal (i.p.) injection of isotonic saline. Similarly 

increased gene expression cannot be explained simply as a result of the relatively large 

NE administration since the expression of some of these genes was characterized 

following doses of NE as low as 2.5 jig/kg. The majority of experiments however, were 

conducted with the higher dose of adrenergic agents since the responses were 

qualitatively similar to that of the lower dose, and also because others have shown that 

significant cardiac hypertrophy can result following repeated daily injections of 

adrenergic agents in the range 2.5-5 mg/kg (Clarke and Ward, 1983). These results are 

consistent with the hypothesis that early-response gene expression might play an 

important role in the adaptive response of the heart to NE stimulation. 

The sequential pattern of early-response gene expression following NE 

administration (e.g. c-fos preceding c-myc induction) was generally similar to that 

observed in other cell systems in response to mitogen stimulation (reviewed in Curran et 

al., 1989). However the duration of these responses appeared to be slightly longer than 

has been observed previously in response to acute stimulus (Angel and Karin, 1991). 
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For instance, the transient c-fos mRNA response peaked around 1-2 h rather than 30-60 

min as is commonly observed in other systems. Similarly, fra-1 and fra-2 mRNA levels 

were still significantly elevated above basal 6 h following NE treatment. The reason for 

this relatively sustained response is not clear since it can be expected that NE injected 

i.p. would be rapidly turned over and cleared from the animals system. These findings 

may indicate that multiple cell types are contributing to this response and demonstrates 

that even brief exposure of the heart to the trophic hormone NE, can have a lasting 

effect on this tissue in terms of gene expression. This finding is in accordance with the 

notion that these nuclear-acting genes couple short term signals elicited by cell surface 

stimuli to long term alterations in cellular phenotype (Curran, 1991) and is supportive of 

the proposed role for these genes in NE-mediated cardiac hypertrophy (Starksen et al., 

1986; Lee et al., 1988). 

There are no previous reports demonstrating expression of fra-1 and fra-2 

expression in the heart or cardiac myocyte preparations and the observations here are of 

particular significance since different members of the fos and jun families have distinct 

transcriptional properties (Angel and Karin, 1991), thus changes in the composition of 

their protein heterodimer complexes (AP-1) in the heart may be one means by which the 

sequential and diverse expression of target genes involved in the hypertrophic response 

are coordinated. In this regard it is of interest to note that at least two different fra-2 

tnRNA transcripts are observed during northern analysis and this has been observed in 

other tissues previously (Yoshida, et al., 1993). The higher molecular weight fra-2 

transcript but not the lower molecular weight transcript is detectable at low levels in 

basal heart tissue but both transcripts are readily induced following acute NE 

administration. The size difference between the two transcripts is attributable to the 

heterogeneity of the 3'-end, probably reflecting utilization of different polyadenylation 

sites (Yosida, et al., 1993). It will be interesting to to determine their physiological 

relevance in terms of cardiac function. 

In the present studies a single administration of NE caused transient 

increases in the cardiac levels of early-response genes. However a continuous exposure 

of NE is required for up to 24 to 48 h before overt hypertrophy can be observed in vivo. 

It is likely then that if early-response genes play a trans-activating role in this process, 

that they should also be expressed either during, or immediately prior, to this 
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hypertrophic growth period. Accordingly early-response gene expression was 

examined in rat hearts actively hypertrophying as a result of chronic infusion of NE. 

Rats were infused at a rate of 100 1.1g/kg/h since this treatment is a commonly used 

model producing cardiac hypertrophy within 24-48 h (Johnson et al., 1983), a finding 

which was confirmed in the present experiments. Cardiac hypertrophy was preceded by 

transient increases in all early-response genes examined and this response was 

qualitatively similar to that observed in response to a single administration of NE 

further supporting the conclusion that early-response gene expression was not limited to 

a bolus, high dose injection of NE. In addition, a second significant and sustained 

increase in c-myc mRNA levels was observed between 24 h and 72 h of NE infusion and 

this was of particular interest since it coincided with observable increases in cardiac 

mass and increased expression of the isocontractile gene a-SkA. In neonatal cardiac 

myocytes elevated c-myc expression has been associated with increased expression of 

the fetal gene program including reexpression of a-SkA and P-MHC (Simpson, 1990) 

and taken together with the present results, suggests that induction of the early-response 

gene and fetal isocontractile gene programs are a conserved response of both the 

neonatal myocytes and the adult heart to NE stimulation. 

However induction of the early-response gene program is not associated 

with all forms of cardiac hypertrophy (Izumo et al., 1987; Izumo et al., 1988). For 

example, treatment of rats with a single injection of T, did not increase cardiac mRNA 

levels for c-myc, c-fos, or fra-1 although continued daily injections of this dose of T, 

caused significant cardiac hypertrophy and up regulation of a-MHC. It is important to 

note in this respect that T, is removed from the body at a much slower rate than NE and 

thus repeated daily injections can be considered as a single chronic treatment rather 

than a series of acute treatments These results are in agreement with those of a later 

study which also found no increase in myocardial c-myc levels following T, 

administration (Green et al., 1991). In direct contrast, acute T, administration resulted 

in a gradual upregulation of the constitutively expressed fra-2 transcript. The 

physiological significance of this is not known but it is interesting to speculate that this 

gene may play a transducing role in thyroid hormone-induced hypertrophy. Further 

studies are needed to confirm this preliminary and intriguing result. 
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ii) early-response gene expression is primarily an a -adrenergic response 

In addition to temporal differences in expression, these genes also exhibited 

differential responses to the a- and 0-components of NE action. For instance, elevation 

of c-fos and c-jun following a-adrenergic stimulation was significantly greater than that 

induced by 0-adrenergic agents as shown by blockade of the a-and 0-components of NE 

respectively. c-fos has previously been reported to be expressed in cardiac tissue in vivo 

following a- and 0-adrenergic stimulation (Moalic et al., 1989; Barka et al., 1987), 

however these experiments did not establish the relative contribution of the a- and 

13-receptors to this response or characterize the temporal pattern of expression of this 

gene. 

In contrast to the above, c-myc, fra-1 and fra-2 also have a significant 

0-adrenergic component to their response. Elevation of c-myc in response to 

a-adrenergic stimulation in the adult, in vivo model is not unexpected since both 

hypertrophy and c-myc expression can be induced in cultured neonatal myocytes by an 

a,-adrenergic mechanism (Starksen et al., 1986). However, c-myc levels in cultured 

neonatal myocytes are not increased by 13-adrenergic agents (Starksen et al., 1986) 

therefore the increased c-myc expression observed in these experiments following 

13-stimulation may indicate that the gene induction is occurring via a secondary 

mechanism or in a non myocyte cell type. Alternatively the discrepancy may be due to 

the well documented differences in a- and 13-receptor numbers between adult and 

neonatal cardiac tissue (Graham and Lannier, 1986; Schaffer and Williams, 1986; 

Longbaugh et al., 1986). 

It is interesting to note that the time course of c-myc and fra-1 expression is 

dependent on the particular component of adrenergic action: maximal c-myc and fra-1 

mRNA levels were observed at 1 h, 2 h and 3 h in response to a-, a13- and 0-adrenergic 

treatment. This differential response might be due to the distinct intracellular signaling 

mechanisms activated by the a- and 13-adrenergic receptors (Brown and Jones, 1986; 

Homcy and Graham, 1985; Tomlinson et al., 1985) or alternatively might be a further 

indication that the 0-adrenergic response of c-myc and fra-1 involves a secondary 

pathway perhaps involving several cell types and growth factors. Another possibility is 
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that c-myc and fra-1 transcription is elevated by a-adrenergic stimulation, an event that 

would produce a rapid rise in c-myc and fra-1 mRNAs, whilst 0-adrenergic agents 

increase c-myc and fra-1 inRNA accumulation by reducing their degradation. 

Regulation of c-myc expression in other systems at least, is known to include both 

transcriptional and post-transcriptional mechanisms (Alitalo et al., 1987) and resolution 

of these possibilities will require a detailed examination of c-myc and fra-1 transcript 

synthesis and turnover. Finally, it is conceivable that a significant proportion of the 

early response gene expression following 0-agonist treatment is actually mediated by 

increased release of NE from sympathetic nerve endings induced by stimulation of the 

presynaptic 02-receptors (Simpson, 1985), and consequently would depend on 

postsynaptic a-adrenoceptor stimulation. However in these studies early-response gene 

expression was observed during p-adrenergic stimulation even when the oc-adrenergic 

receptors were blocked with the a-antagonist phentolamine. It is possible but unlikely 

that this treatment did not adequately block the a-adrenergic receptors during NE 

administration since all animals were pretreated twice, 1 h and 10 min prior to NE 

administration with a 10 fold excess of a-adrenergic blocker. 

iii) NE and pressure-overload hypertrophy: common and distinct effects on 

early-response gene expression 

Recent studies with cell cultures indicate that c-myc, c-fos and c-jun are 

inducible in neonatal myocytes following NE treatment (Starksen et al., 1986; Iwalci et 

al., 1990). Thus it is possible that at least part of the responses observed in the present 

in vivo experiments with adult rats are a result of direct NE activation of cardiac 

myocyte adrenergic receptors (Bruckner et al., 1985; Buxton and Brunton, 1986; 

Kauman and Lemoine, 1987; Brodde, 1987). However, in addition to cardiac myocytes, 

a,- and 0-receptors are located on a number of other cell types including smooth muscle 

of the coronary and peripheral vascular systems where they mediate vasoconstriction 

and vasodilation respectively (Hyman, 1986). It is well established that high doses of 

NE or moderate doses of acagonists lead to increased vascular resistance and pressure 

load on the heart (Zierhut and Zimmer, 1989) and pressure overload itself can cause 

increased cardiac expression of c-myc, c-fos, c-jun during aortic stenosis (Black et al., 
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1991; Rodman et al., 1991; Izumo et al., 1988). It is not possible in the present study 

to determine whether the a-adrenergic stimulated early-response gene expression is 

mediated in part or wholly by a secondary pressure response and further experiments in 

which changes in hemodynamic parameters are controlled need to be conducted. 

Nevertheless the fact that continuous subcutaneous infusion of NE at the dose used in 

these chronic infusion experiments, leads to a rapid and sustained elevation of systolic 

blood pressure (Johnson et al., 1983) is supportive of a pressure component in the 

early-response gene program. 

However, it is important to note that although the activation of the 

early-response gene program following NE administration appears to be similar to that 

documented in response to pressure-overload, significant temporal and qualitative 

differences in this induction process are observable. For instance, c-fos induction 

following chronic NE infusion is similar to that observed following a single 

administration of NE with mRNA levels returning to basal by 3-6 h. In contrast, c-fos 

levels in pressure overloaded hearts remain elevated for up to 24 h following aortic 

stenosis (Yazalci et al., 1989). The results presented here thus indicate that continued 

expression of c-fos is not necessary for NE mediated cardiac hypertrophy and 

re-expression of the neonatal gene program to occur. Furthermore, pressure overloaded 

rodent hearts do not express fra-1 (Rodman et al., 1991) yet this gene is upregulated in 

animals treated with both acutely and chronically with NE. Thus the adrenergic 

induction of this gene observed here is probably a direct response to cardiac a- and 

13-receptor stimulation independent of load. c-myc expression also differs between 

pressure overloaded hearts and NE-treated hearts since expression of this gene is 

bi-phasic during chronic NE infusion whereas only one sustained peak is observed 

following aortic stenosis (Yazaki et al., 1989). Again this stimulus-specific behavior 

may reflect different physiological outcomes of each treatment. Clearly, to resolve 

these differences, further in vivo studies are needed in which early-response gene 

expression and subsequent phenotypical changes (e.g. isocontractile genes) are 

examined in response to subhypertensive doses of adrenergic agents and compared to 

those changes which occur in response to high doses of these hormones or pressure 

overload. 
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In summary the results presented in this chapter demonstrate that an array of 

early-response genes are rapidly and sequentially induced in the adult rat heart 

following adrenergic stimulation and that this response occurs via both the a- and 

P-adrenergic receptors. Furthermore, the expression of some of these genes is not 

transient but is sustained at high levels during the period when overt cardiac 

hypertrophy occurs and at the same time that the neonatal gene program is reactivated. 

These results are supportive of the hypothesis that induction of the early-response gene 

program is associated with, and may be necessary for, the modulation of the program of 

late response gene expression (e.g. isocontractile genes) that is characteristic of 

adrenergic-, but not thyroid hormone-mediated cardiac hypertrophy. Since some of the 

early response genes such as c-myc and c-fos are modulated by both NE and 

pressure-overload but others such as Ira-1 are only sensitive to NE treatment, these 

studies also provide the first evidence that adrenergic agents and pressure-overload can 

activate both common and distinct subsets of these trans-activating genes. 

72 



CHAPTER  4 

REGIONAL AND CELLULAR LOCALIZATION  OF 

EARLY-RESPONSE GENE EXPRESSION  IN VIVO  

4.1 INTRODUCTION 

Results presented in the previous chapter clearly demonstrated that 

administration of NE in vivo leads, either directly or indirectly, to a rapid activation of 

the early-response gene program in the rat heart. It is likely that at least part of this 

response can be attributed to the cardiac myocytes since others have shown that 

early-response genes are expressed in neonatal myocyte cultures following adrenergic 

treatment (Lee et al., 1988; Starksen et al., 1986). However, at least 70% of the cells in 

the heart are not myocytes, but those associated with neuronal, vascular and fibroblastic 

tissue of which any or indeed all may contribute to the cardiac early-response gene 

expression observed in vivo. For instance, it has been shown that c-myc and c-fos are 

induced in vascular smooth muscle cells during culture and whole aorta by vasoactive 

agents including NE and ANG II indicating that an analogous response may occur in the 

intact heart (Naftilan et al, 1989; Moalic et al, 1989). One necessary step then, in the 

establishment of a direct association between early-response gene expression in the 

heart• and NE mediated hypertrophy of adult myocytes is to localize the rnRNAs for 

these genes to specific cell types following adrenergic treatment and to demonstrate that 

they are translated to their cognate protein products. Further evidence might stem from 

the ability to correlate regional localization of this expression with the differential 

growth of the cardiac chambers during NE mediated cardiac hypertrophy. Already 

preliminary evidence for such a correlation has been obtained from pressure-overload 

models of cardiac hypertrophy since experimental aortic stenosis leads to not only a 

greater cardiac muscle growth of the left ventricle but also increased early-response 

gene expression in this chamber (Mulvagh et al., 1987; Komuro et al., 1988). 

In an attempt to address some of these points, the work in this chapter has 

assessed regional and cellular expression of the early-response gene families in the heart 
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following NE stimulation, utilizing a combination of hybridization histochemistry (in 

situ hybridization) and immunocytochemical techniques. In addition, regional 

expression of early-response gene mRNA was also detected on a gross scale by 

dissecting hearts obtained from experimental animals into the various component 

chambers and analyzing their mRNA levels separately by northern analysis. 

4.2 EXPERIMENTAL PROTOCOLS 

4.2.1 Hybridization Histochemistry 

For detection of metallothionein gene (Mt) expression rats were 

administered a single injection of either cadmium chloride (Cd, 10 lig/kg) or 

dexamethasone (DEX, 1 jig/kg) dissolved in 0.9% saline. Control animals were 

similarly injected with saline alone. After 4 or 6 h animals were sacrificed and livers 

were removed and prepared for northern analysis or hybridization histochemistry as 

described in section 2.3. ANP and calcitonin mRNA was detected in hearts removed 

from untreated adult rats as described in section 2.3. For detection of c-myc and c-fos 

mRNA, animals first received a single injection of NE (2.5 mg/kg) or saline and were 

sacrificed 1 to 3 hours later. Hearts were subsequently removed and processed for 

northern analysis and hybridization histochemistry as before. 

4.2.2 Regional Localization of Early-Response Gene Expression by Northern 

Analysis. 

Rats were treated with a single injection of NE (2.5 mg/kg) or saline as 

described previously and sacrificed after the appropriate time. Hearts were immediately 

removed and quickly dissected into the various chambers, rinsed in saline and 

snap-frozen in liquid nitrogen to await RNA extraction and northern analysis (section 

2.2). Due to their small mass, left and right atria from up to five animals were 

combined for each experimental time point. Results presented are representative of at 

least 3 separate experiments. 

4.2.3 Cellular Localization of Myc and Fos Protein by Immunocytochemistry. 
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Rats were administered a single injection of NE (2.5 mg/kg) as described in 

section 3.2.2.2. After the appropriate time animals were sacrificed, hearts removed and 

processed for immunocytochemistry using anti-early-response gene antibodies as 

described in section 2.4. Results are representative of at least 3 separate experiments. 

4.3 RESULTS 

4.3.1 Hybridization Histochemistry 

Since hybridization histochemistry had not been performed previously in the 

present laboratory, a suitable protocol was devised using a number of trial 

oligonucleotide and cDNA probes which had been successfully used for in situ detection 

of mRNA by other laboratories Detection of Mt was chosen as a suitable experimental 

trial since; 1) it is easily induced to high levels in the kidney and liver of rats in response 

to heavy metal or glucocorticoid treatment; 2) its mRNA remains induced for a 

relatively long period of time giving plenty of opportunity for its detection and finally; 

3) specific Mt-specific oligonucleotide and cDNA probes were readily available. The 

second trial experiment was designed specifically to optimize conditions for the 

detection of mRNA in cardiac tissue in situ. Atrial naturetic peptide (ANP) was an 

obvious choice for this study since its expression in the atria of the heart has been well 

characterized and its relative absence from adult ventricles means that these chambers 

may act as internal negative control tissue. For a negative control probe, the calcitonin 

gene was chosen since its expression is not detectable in the rat heart (J. Penschow, 

personal communication.). 

4.3.1.1 Detection of Metallothionein mRNA in rat liver 

Mt oligonucleotide and cDNA probe specificity was confirmed by northern 

analysis. Mt mRNA was not detectable in basal liver tissue but was rapidly induced 4 to 

6 h following a single injection of Cd (10 lig/kg) or DEX (1 gg/kg) (Fig. 4.1). Both 

oligonucleotide and cDNA radiolabeled probes were specific for Mt mRNA since they 

hybridized to the expected 300 nucleotide transcript. However the cDNA probe 

exhibited the more intense hybridization signal even though both probes were 
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I,ane 	1 2 3 4 5 

oh 4h 6h 4h 6h 

Nit (oligo) 

(cDNA) • 
CTL Cd DEX 

(saline) (10,.g/kg) (14/kg) 

Fig 4.1 Hybridization of metallothionein-specific cDNA and oligonucleotide probes to rat liver following 
a single injection of cadmium chloride or dexamethasone. 
Total RNA was extracted from rat liver at the various times indicated following an i.p. injection of 0.9% 
saline (Lane I), cadmium chloride (10 pig/kg, Lanes 2 & 3) or dexamethasone (1 1.1.g/kg, Lanes 4 & 5). 
After electrophoresis and northern blotting, the RNA (50 lig) was hybridized with a metallothionein 
specific oligonucleotide probe (upper track) or a cDNA probe (lower track). 



radiolabeled to approximately the same specific activity (1 x 109  cpm/fig, Fig. 4.1). It is 

possible that these differences in intensity of signal could be explained by sub-optimal 

hybridization conditions for the oligonucleotide-probe. Nevertheless, these results 

established that both Mt cDNA and oligonucleotide probes were potentially suitable for 

in situ detection of Mt mRNA. Cd administration was used for subsequent in situ 

studies since this treatment increased Mt expression in the liver to a greater extent than 

did DEX. 

Mt-specific probes were subsequently hybridized in situ to tissue sections of 

liver removed from animals previously treated with Cd as described in the methods. 

Typical results from one such an experiment are presented in Fig. 4.2 which shows 

expression of Mt mRNA in liver sections detected by exposure to high resolution 

autoradiographic film. Hybridization is significantly greater in tissue from animals 

treated with Cd (lower section) compared to saline (upper section) for both 

oligonucleotide (Fig. 4.2, Lanes 1 & 2 ) and cDNA (Fig. 4.2, Lanes 3 & 4) probes. The 

hybridization signal is due to specific binding to mRNA rather than DNA or protein 

since signal accumulation is prevented •when tissue is pre-incubated with a broad 

spectrum RNase enzyme (Fig. 4.2, Lanes 5 & 6). These experiments establish that the 

present experimental protocols are suitable for the in situ detection of specific mRNA in 

rat tissue using both cDNA and oligonucleotide probes. 

4.3.1.2 Detection of ANP mRNA in rat heart 

Hybridization histochemistry protocols were further optimized for cardiac 

tissue using oligonucleotide probes specific for rodent ANP and by comparison to a 

negative control probe specific for the calcitonin gene. Two ANP oligonucleotide 

probes were used for this study and their specificity for ANP was tested by northern 

analysis (Fig. 4.3). Both rat-specific and rat/mouse-specific probes hybridized strongly 

to atrial RNA extracts and this regional distribution is in accordance with the results of 

others (J. Penschow pers. comm.). Subsequent hybridization of the negative control 

probe, calcitonin, to the same RNA gave no hybridization signal and this was expected 

since transcripts of this gene are not detectable in heart tissue (Fig. 4.3; J Penchow 

pers. comm.). These results establish that the ANP and calcitonin probes are suitable 

positive and negative probes respectively for in situ analysis of cardiac mRNA. 
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Lane 	 1 	2 	3 	4 	5 	6 

CTL (6 h) 

Cd (6 

	 & 
1/5 	1/10 	1/5 	1/10 	1/5 	1/5 

1  Ii 	 1 I 	II 

Mt (oligo) 	 Mt (cDNA) 

RNased 

Fig 4.2 Effect of cadmium on expression of metallothionein in rat liver. 
Liver was removed 6 h following treatment with either 0.9% saline (upper section) or cadmium chloride 
(10 pt.g/kg, lower section) and prepared for in situ hybridization (section 2.3). The sections were 
hybridized in situ with metallothionein specific oligonucleotide (Lanes 1 & 2) or cDNA (Lanes 3 & 4) 
probes at a 1/5 or 1/10 dilution. As a control the same probes were incubated with liver tissue 
pre-incubated with RNase A (Lanes 5 & 6). 

Mt (oligo) Mt (cDNA) 



Lane 	 1 2 3 4 

Rat ANP #507 

Rat/mouse ANP #257 

Rat Calcitonin #210 

Whole Heart Atria 

Fig 4.3 Analysis of ANP and calcitonin oligonucleotide probes in rat heart. 
Total RNA was extracted from rat ventricle (Lanes 1 & 2) or rat atria (Lanes  3  & 4) and 50 i.tg of RNA 
was hybridized to two oligonucleotide probes (Rat ANP #507 and Rat/Mouse  ANP  #257). As a negative 
control the same RNA samples were hybridized to Rat calcitonin #210, a gene  not  expressed in the heart. 



ANP-specific probes were subsequently hybridized in situ to sections of 

heart tissue. Both rat-specific and rat/mouse-specific ANP probes hybridized strongly 

to atrial tissue (Fig. 4.4 & Fig. 4.5) but not to ventricular, skeletal or liver tissue (Fig. 

4.4). The results cannot be explained as non-specific hybridization of probes to atrial 

tissue since no hybridization was observed for the negative control probe calcitonin, in 

this tissue (Fig. 4.4). These results established that the current in situ hybridization 

protocols were potentially suitable for the detection and localization of specific mRNA 

species within the , rat heart and accordingly were used for the detection of 

early-response gene expression in this tissue. 

4.3.1.3 Detection of c-myc and c-fos mRNA in rat heart 

Anti-sense and sense probes to the expressed regions of c-myc and c-fos 

were designed and synthesized by the author as described in the methods. In addition, 

oligonucleotide probes specific for c-myc and c-fos were purchased from commercial 

sources and were used for comparison. Specificity of the probes was determined by 

hybridization to cardiac RNA extracted from animals treated with NE. Both c-myc 

anti-sense probes designed by the author hybridized to a 2.3 kb mRNA transcript 

indicating that they were indeed specific for this gene (Fig. 4.6, upper 2 tracks). The 

intensity of the observed hybridization signal was relatively weaker than similar 

hybridization with c-myc cDNA probes (results not shown). This difference in 

hybridization may once again be due to sub-optimal hybridization conditions for the 

oligonucleotide probes. In contrast a commercially obtained c-myc oligonucleotide 

probe did not hybridize to c-myc mRNA transcripts (Fig. 4.6, bottom track). This may 

have been due to the difficulty experienced with labeling this oligonucleotide to a high 

specific activity and seemed to be a problem intrinsic with this particular probe since no 

similar difficulty was experienced when labeling other oligonucleotide probes. As 

expected no hybridization was observed for the sense c-myc probe. 

Specificity of c-fos oligonucleotide probes was similarly determined by 

northern analysis. All c-fos probes hybridized to a 2.2 kb mRNA transcript indicating 

that they were specific for this gene (Fig. 4.7, upper two tracks). In addition, the 

temporal pattern of the observed expression was similar to that observed following 
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Rat ANP #507 A= Left ventricle 

B= Left Atrium 

C= Liver 

D= Skeletal Muscle 

Rat/mouse ANP #257 

• 

Rat Calcitonin #210 

Fig 4.4 in situ hybridization of ANP in rat heart, liver and skeletal muscle. 
Tissue sections of the left ventricle (A), left atrium (B), liver (C) and skeletal muscle (D) were prepared as 
described previously and hybridized in situ to the following oligonucleotide probes rat ANP #507 (upper 
panel), rat/mouse ANP #257 (middle panel) or rat calcitonin #210. 



AlNP #507 

1/5 
	1/2 
	1/1 

A= Right Atrium 
B= Right Ventricle 
C= Left Ventricle 
D= Left Atrium 

Fig 4.5 Regional localization of ANP expression in the rat heart. 
Whole tissue sections of the rat heart were prepared as described previously and hybridized in situ to rat 
ANP #507 at various dilutions (1/5, 1/2, 1/1). 
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Time 	 lh 3h lh 3h 

myc  2130 

myc  2230 

myc  3130 
(sense) 

myc Pr-1 

CTL NE 
(saline) (2.5 mg/kg) 

Fig 4.6 Analysis of c-myc oligonucleotide probes. 
Total RNA was extracted from rat hearts at the various times indicated following an i.p. injection of 0.9% 
saline (Lane 1 & 2) or norepinephrine (2.5 mg/kg, Lanes 3 & 4). c-myc transcripts were analyzed using 
two anti-sense probes (myc 2130 and myc 2230), a sense probe (myc 3130) and  a  commercially available 
anti-sense probe (myc Pr-1). 
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fos  2130 
	• 

fos 2230 

fos 4130 
(sense) 

fos  Pr-i 

CTL NE 
(saline) 	(2.5 mg/kg) 

Fig 4.7 Analysis of c-fos oligonucleotide probes. 
Total RNA was extracted from rat hearts at the various times indicated following an i.p. injection of 0.9% 
saline (Lane I) or norepinephrine (2.5 mg/kg, Lanes 2-4). c-fos transcripts were analyzed using two 
anti-sense probes (fos 2130 and fos 2230), a sense probe (fos 4130) and  a  commercially available 
anti-sense probe (fos Pr-1). 
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hybridization with a c-fos cDNA probe. Hybridization signals varied considerably 

between probes (all probes in Fig. 4.7 were exposed for the equivalent period) with the 

commercially obtained fos Pr-1 probe consistently giving the highest sensitivity (Fig. 

4.7, bottom track). As expected no hybridization was observed with the sense c-fos 

probe. 

Specific c-myc and c-fos oligonucleotide probes were subsequently 

hybridized to sections of heart tissue obtained from animals treated previously for 1-3 h 

with NE. Results from a typical experiment are presented in Fig. 4.8 which shows 

tissue sections of experimental and control tissue which have been hybridized to myc 

and fos oligonucleotides and exposed to autoradiographic film. No increased 

hybridization was observed for NE-treated tissue (lower tissue section) compared to 

control tissue (upper tissue section) for any of the anti-sense c-myc or c-fos 

oligonucleotides synthesized by the author and this was despite considerable 

manipulation of the experiment protocol. As expected, no hybridization was observed 

for the sense probes. Since c-myc and c-fos mRNA have relatively short half-lives it 

was possible that the fixation technique used here allowed mRNA degradation during 

tissue processing. To test this possibility, previously fixed NE-treated tissue was 

scrapped off slides, processed for RNA extraction and northern analysis and 

subsequently hybridized to radiolabeled c-myc and c-fos cDNA probes. Results in Fig. 

4.9 indicate that intact and hybridizable transcripts for both c-myc and c-fos were 

obtained from the tissue sections, thus the inability of the synthesized oligonucleotides 

to hybridize to c-myc and c-fos in situ is not due to degradation of their respective 

mRNA during tissue processing. Alternatively it is possible that in fact hybridization of 

oligonucleotide probes to target mRNA in situ had occurred but the hybridization signal 

was so weak that it was masked by the background non-specific binding. This 

possibility is especially likely given the weak hybridization signals observed for these 

probes during northern analysis. Finally it is possible that the target sequences in the 

transcript RNA's may not have been available for hybridization in situ due to secondary 

structure of the mRNA or due to associated proteins. Such problems would not be 

observable during northern analysis since RNA is stripped of any associated protein and 

-efficiently linearized by the RNA extraction and northern blotting procedures. 
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Fig 4.8 Cardiac in situ hybridization of c-myc and c-fos following a single injection of norepinephrine. 

Two hours following a single i.p. injection of saline (CTL) or norepinephrine  (NE,  2.5 mg/kg) hearts were 

removed, sectioned and then hybridized in situ with the c-myc probes (upper panel) utilized in Fig 4.6 or 

with c-fos probes (lower panel) utilized in Fig 4.7. 
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CTL NE 
(saline) (2.5 mg/kg) 

Fig 4.9 Northern analysis of c-myc and c-fos expression in cardiac tissue processed for in situ 
hybridization. 
Tissue samples used in figure 4.8 were scrapped from the slide and total RNA extracted. After 
electrophoresis and northern blotting, the RNA was hybridized with c-myc (upper panel) or c-fos (lower 
panel) cl)NA probes. 



Due to the poor results obtained with these oligonucleotide probes, two 

commercially available oligonucleotide probes myc Pr-1 and fos Pr-1 specific for c-myc 

and c-fos respectively, were purchased and used for in situ analysis (see Figs. 4.6 & 4.7, 

bottom tracks) for northern analysis. NE-treated sections of heart tissue were 

hybridized as before to the commercially obtained myc and fos oligonucleotide probes 

(Fig. 4.10). Once again no difference between NE-treated and control hearts was 

observed for the myc Pr-1 probe (results not shown) but this was not unexpected in light 

of the difficulties experienced with this probe during northern analysis (see Fig. 4.6, 

bottom track). In contrast, after considerable manipulation of the experimental protocol, 

specific hybridization of the fos Pr-1 probe to fos mRNA in situ compared to control 

tissue was achieved (Fig. 4.10) The temporal pattern of this expression was similar to 

that observed for c-fos induction during northern analysis with maximal expression after 

2 h. Hybridization was specific for mRNA since signal accumulation was prevented by 

preincubation of tissue with RNase A. The regional expression of c-fos was not uniform 

throughout the heart but greatest in the left ventricle and septum. Hybridization in atrial 

sections was variable and this was probably due to the Problems encountered with this 

tissue partially coming off slides during extended post-hybridization washes. The 

inherent background problems encountered severely restricted the interpretation of these 

in situ results and for this reason further in situ hybridization was conducted using 

labeled cDNA probes. 

The results from one such in situ experiment using cDNA probes for c-myc 

and c-fos are shown in Fig. 4.11. Increased hybridization is observed for both c-fos and 

c-myc in NE-treated tissue compared to control tissue. The temporal pattern of this 

expression is similar to that observed during northern analysis and is specific for mRNA 

since signal hybridization is prevented by preincubation with RNase. Regional 

distribution of c-myc and c-fos mRNA was less clearly discernible following 

hybridization to cDNA probes and this may have been due to the high background. 

Indeed this high background made localization of the responses to specific cells using 

liquid emulsion film impossible despite a number of attempts. 

Because of these above described experimental problems encountered 

during in situ analysis and also due to time constraints, this work was not pursued 
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Fig 4.10 in situ hybridization of c-fos in the rat heart after a single injection of norepinephrine. 

At various times after an injection of saline (CTL) or norepinephrine (NE,  2.5  mg/kg) rat hearts were 

removed, sectioned and hybridized in situ with fos Pr- l . As a control some heart sections were also 

treated with RNase A before hybridization with the fos probe. 
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Fig 4.11 in situ hybridization of c-myc and c-fos in the rat heart after a single injection of norepinephrine. 
At various times after an injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) rat hearts were 
removed, sectioned and hybridized in situ with cDNA probes for c-myc and c-fos. As a control some 
heart sections were also treated with RNase A before hybridization with the probes. 



further and subsequent regional and cellular analysis of c-myc and c-fos and other 

early-response genes was determined using northern analysis of mRNA obtained from 

separate heart chambers and by immunocytochemistry on whole cardiac sections. 

4.3.2 Regional Northern Analysis 

Hearts were removed from animals treated with NE or saline and dissected 

into the various chambers and early-response gene expression assessed by northern 

analysis (Fig. 4.12). All chambers of the heart contributed to the basal expression of 

c-myc, c-jun and fra-2 although this required considerable over-exposure of the 

appropriate autoradiographs. Administration of NE significantly increased mRNA 

levels of c-myc, c-jun, fra-1 and fra-2 above that of control tissue. Increased 

early-response gene mRNA levels were transient with maximal expression occurring for 

all genes at around 2 h and had returned to basal by 3 h with the exception of fra-1 and 

fra-2 which remained above basal for up to 6 h (results not shown but see chapter 3). 

The regional expression of early-response genes also differed following NE 

administration. For instance little or no c-fos transcripts were observed in the combined 

atria sample for any of the time points whilst fra-1, a structurally related gene exhibited 

maximal expression in this chamber. In contrast fra-2 expression was relatively 

uniform throughout the various chambers whilst c-myc, c-fos and c-jun expression was 

greatest in the left ventricle with progressively lesser expression in the right ventricle 

and septum. This variation in early-response gene expression is not due to different 

loading levelsor RNA as demonstrated by hybridization to the control probe 13-tubulin. 

Thus early-response gene expression in the rat heart following NE treatment exhibits 

both regional and temporal differences. 

4.3.3 Immunocytochemistry 

Fos and Myc protein products were detected in control and experimental 

hearts by immunocytochemistry using a number of polyclonal anti-Fos antibodies and a 

monoclonal anti-Myc antibody respectively. 

c-fos 
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Fig 4.12 Regional localization of c-myc, c-fos, c-jun, fra-1 and fra-2 in the rat heart following norepinephrine administration. 
Total RNA was extracted from rat heart chambers (At: atria, RV: right ventricle, LV: left ventricle, Sp: septum) at various times indicated following an 
injection of saline (0) or norepinephrine (2.5 mg/kg, 1-3 h). After electrophoresis and northern blotting, the RNA (25 lig) was sequentially hybridized to 
c-myc, c-fos, c-jun, fra-1 and fra-2 (6.0 kb transcript only). Hybridization to 13-tubulin was used to confirm that equal amounts of RNA were loaded in 
each track. 



c-fos protein was localized using a polyclonal antibody raised to a 

synthetic peptide (Oncogene science). This antibody potentially cross-reacts with other 

members of the fos gene family (fra-1, fra-2 & fos-B) due to the relatively high 

conservation of the antigenic sequence. Accordingly immunostaining with this antisera 

was termed Fos-like immunostaining (FL!). 

Little if any FLI was observed in any chambers of the hearts from untreated 

animals, although occasionally weak immunostaining was localized to the non- myocyte 

fraction, possibly fibroblasts, in hearts from saline treated animals (Fig. 4.13, Panel A 

and C). However, following administration of a single injection of NE (2.5 mg/kg) ELI 

increased dramatically in most chambers of the heart with greatest expression localized 

to the nuclei of the cardiac myocytes (Fig. 4.13, Panel B). In addition weaker 

expression was also observed in nuclei of smaller non-myocyte cells, presumably 

fibroblast although these cells were not positively identified (Fig. 4.13, Panel D). FLI 

was also observed in the cardiac vasculature, mainly in the vicinity of the smooth 

muscle cells and to a much lesser extent in the adjacent endothelial cells (Fig. 4.14, 

Panels A and C) In most cases immunostaining was restricted to the nuclei and this is 

in accordance with the proposed nuclear function of fos and for-related proteins. On 

occasion weaker cytoplasmic staining was also evident in some myocyte and 

non-myocyte cells (Fig. 4.13, Panel D) but the frequency and intensity of this staining 

seemed to depend largely on the fixation method (see methods for a more detailed 

discussion). Maximal FLI was observed 1-3 h following NE administration although 

immunostaining was observable within 15 min following NE treatment and was still 

detectable in some hearts for up to 5-6 h post-treatment (Table 4.1). Although ELI was 

distributed relatively homogeneously throughout each chamber, the intensity of staining 

and number of nuclei stained per field of view was greatest in the left ventricle (Fig. 

4.15 & Table 4.1) and this is in good agreement with the regional northern analysis data 

presented above. Interestingly, FLI in the left atrium was very high despite the low 

c-fos mRNA levels observed in this chamber during regional northern analysis 

(compare Pig. 4.15, Panel E with Fig. 4.12). This finding strengthens the idea that the 

anti-Fos antibody might cross-react with other proteins structurally related to Fos. For 

example both fra-1 and fra-2 mRNA are expressed at high levels in the atria following 

NE administration and cross-reactivity of the Fos antibody with these proteins may 
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Fig 4.13 Cellular localization of Fos-like immunoreactivity in the left ventricle of rat hearts following 
norepinephrine administration. 
After a single injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) the left ventricle of rat hearts 
were removed and immunostained for Fos-like immunoreactivity as described in "materials and methods". 
Results are representative of 3 independent experiments. Panels A & C, CTL 2 h left ventricle; Panels B 

D, NE 2 h left ventricle. Arrows in Panels B & D show myocyte nuclear and non-myocyte nuclear 
staining respectively. 400 X magnification. 



Fig.4.14 	Cellular localization of Fos-like immunoreactivity in cardiac -,scular tissue following 
norepinephrine administration. 
After a single injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) the left ventricle of rat hearts 
were removed and immunostained for Fos-like immunoreactivity as described in "materials and methods". 
Results are representitive of 3 independent experiments. Panels B & D, CTL 2 h left ventricular vascular 
tissue; Panels A & C, NE 2 h left ventricular vascular tissue. Arrows in Panels A & C show staining of 
smooth muscle and endothelial nuclei. 400 X magnification 
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Fig 4.15 Regional localization of Fos-like immunoreactivity in rat heart following norepinephrine 
administration. 
After a single i.p. injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) rat hearts were removed 
and immunostained for Fos-like immunoreactivity as described in "materials and methods". Results are 
representative of 3 independent experiments. Panel A, CTL 2 h left ventricle; Panel B, NE 2 h septum; 
Panel C, NE 2 h left ventricle; Panel D, NE 2 h right ventricle; Panel E, NE 2 h left atrium; Panel F, NE 2 
h right atrium. 200 X magnification. 



Table 4.1 Cardiac Fos-like immunostaining following norepinephrine administration. 

CTL 	- 
1 h 	-H- 	 -H- 	+ 	+ 

NE 	2h 	mi 	+ 	Hit 	-H- 	+++ 

2.5 mg/kg 3 h 	+ 	 -H-+ 	+ 	-H- 

6 h 	 + 	 + 

LA 	RA 	LV 	RV 	Sp 

Following a single i.p. injection of norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and stained 
for Fos-like immunoreactivity as described in "materials and methods". Relative immunostaining in three 
representative fields was scored as non-detectable (-) up to maximal (++++) as described elsewhere 
(Snoecicx et al., 1991). LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, Sp: 
septum. Type of labelled cell (muscle/non-muscle) was not considered. 

Table 4.2 Cardiac Fos-specific immunostaining following norepinephrine administration. 
• 

CTL 

	

1 h 	 -H- 	+ 	+ 

NE 	2 h 	+/- 	- 	im 	++ 	+++ 

	

2.5 mg/kg 3h 	 -H- 	+ 	+ 

	

6h 	 +1- 
LA 	RA 	LV 	RV 	Sp 

Following a single i.p. injection of norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and stained 
for Fos-specifc immunoreactivity as described in "materials and methods". Relative immunostaining in 
three representative fields was scored as non-detectable (-) up to maximal (++++) as described elsewhere 
(Snoecicc et al., 1991). LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, Sp: 
septum. Type of labelled cell (muscle/non-muscle) was not considered. 



account for the high itrununoreactivity observed in these chambers. In order to further 

explore this possibility preliminary immunostudies were performed using antibodies 

raised to peptide regions specific to c-fos, fra-1 and fra-2 (gift from Dr. D. Cohen). 

Fig. 4.16 demonstrates immunostaining with an anti-Fos-specific antibody 

in sections of rat heart 2 h following treatment with saline or NE. Sections have been 

counter-stained with haematoxylin (blue nuclei) in order to demonstrate the relative 

proportion of cells expressing c-fos protein. Little inununostaining was observable in 

saline treated cells (Fig. 4.16, Panel D) however, Fos rapidly accumulated in the 

myocyte nuclei and cytoplasm following NE treatment (Panels B and C). Lesser 

expression was also observable in fibroblast-like nuclei and those of the vasculature 

(not shown). Greatest immunostaining was found in the left ventricle 2-3 h following 

treatment (Table 4.2) and in marked contrast to the expression pattern obtained with 

FLI, little expression is observed in the atria (Fig. 4.16, Panel A) at any time point. 

These results are in good agreement with those obtained by northern analysis (Fig. 

4.12). 

As with Fos, little Fra-1 immunoreactivity was observed in saline treated 

hearts when immunolabelled with the Fra-1 specific antibody (Fig. 4.17, Panel A). 

However following treatment with NE, fra-1 protein accumulated in myocyte nuclei 

and to a lesser extent non-muscle cells (Fig. 4.17, Panels B and C). Both nuclear and 

perinuclear expression was observed. Weaker Fra-1 immunostaining of cells of the 

vasculature system was also observed following NE administration (results not shown). 

In contrast to Fos-specific antibody, significant Fra-1 protein accumulation was 

observed in the left atria (Fig. 4.17, Panel C & Table 4.3), and this is in close agreement 

with distribution of fra-1 mRNA observed during regional northern analysis (Fig. 

4.12). Fra-1 protein remained elevated for up to 6-12 h (results not shown) and this is 

also in accordance with the northern analysis results. 

In contrast to Fos and Fra-1, immunostaining with an anti-Fra-2 specific 

antibody exhibited significant immunostaining in cardiac tissue from control and saline 

treated animals (Fig. 4.18, Panel A). Expression was restricted mainly to the smaller 

non-myocyte nuclei, perhaps fibroblasts and to a much lesser extent in the myocytes. 

These results were in accordance with the observation of fra-2 mRNA in hearts of 

control and saline treated animals (Fig. 3.6). Following treatment with NE, Fra-2 
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Fig 4.16 Regional and cellular localization of Fos-specific immunoreactivity in rat heart following 
norepinephrine administration. 
After a single injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and 
immunostained with an anti-Fos specific antibody and then counter stained with hematoxylin (blue nuclei) 
as described in "materials and methods". Results are representitve of 3 independent experiments. Panel A, 
NE 2 h left atrium; Panel B, NE 2 h right ventricle; Panel C, NE 2 h left ventricle; Panel D, CTL 2 h left 
ventricle. Arrows in Panel C indicate myocyte nuclear staining. 200 X magnification. 
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Fig 4.17 Regional localization of Fra-1 immunoreactivity in rat heart following norepinephrine 
administration. 
After a single i.p injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and 
immunostained for Fra-1 immunoreactivity and then counter stained with hematoxylin (blue nuclei) as 
described in "materials and methods". Results are representative of 3 independent experiments. Panel A, 
CTL 2 h left ventricle; Panel B, NE 2 h left ventricle; Panel C, NE 2 h left atrium. Arrows in Panels B & 
C indicate nuclear staining of myocytes. 400 X magnification. 
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Fig 4.18 Regional localization of Fra-2 immunoreactivity in rat heart following norepinephrine 
administration. 
After a single i.p injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and 
immunostained for Fra-2 immunoreactivity and counter stained with hematoxylin (blue nuclei) as 
described in "materials and methods". Results are representitve of 3 independent experiments. Panel A, 
CTL 2 h left ventricle; Panel B, NE 2 h left ventricle; Panel C, NE 2 h left atrium. Arrows in Panel A 
indicate basal non-myocyte nuclear staining. Arrows in Panel B indicate myocyte nuclear staining. 400 
X magnification. 



Table 4.3 Cardiac . Fra-1 immunostaining following norepinephrine administration. 

CTL 	 -/+ 	 - 

1 h 	-H- 	+ 	-H- 	+ 	+ 

NE 	2 h 	-H-+ 	+ 	 1 	1 1 1 	-H- 	-H- 

2.5 mg/kg 3 h 	-H- 	+ 	-1—H-1- 	-H—F 	-H- 

6 h 	+/- 	 + 	-H- 	+/- 
12 h 	+/- 	 + 	-H- 	+1- 

LA 	RA 	LV 	RV 	Sp 

Following a single i.p. injection of norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and stained 
for Fra-1 inununoreactivity as described in "materials and methods". Relative immunostaining in three 
representative fields was scored as non-detectable (-) up to maximal (++-1—F) as 'described elsewhere 
(Snoecloc et al., 1991). LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, Sp: 
septum. Type of labelled cell (muscle/non-muscle) was not considered. 

Table 4.4 Cardiac Fra-2 immunostaining following norepinephrine administration. 

CTL 	+ 	+ 	+• 	+ 	+ 
1 h 	+ 	+ 	+ 	+ 	+ 

NE 	2h 	-H- 	+ 	-H- 	+ 	+ 

2.5 mg/kg 3 h 	-H-1- 	+ 	-H-1-+ 	-H- 	-H-+ 

6h 	+/- 	+ 	, 	-H-+ 	+ 	-1—F 

12h 	+ 	+ 	++ 	+ 	+ 
LA 	RA 	LV 	RV 	Sp 

Following a single i.p. injection of norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and stained 
for Fra-2 immunoreactivity as described in "materials and methods". Relative immunostaining in three 
representative fields was scored as non-detectable (-) up to maximal (++++) as described elsewhere 
(Snoecloc et al., 1991). LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, Sp: 
septum. Type of labelled cell (muscle/non-muscle) was not considered. 



protein accumulated to a much greater extent in myocyte nuclei (Fig. 4.18, Panel B) and 

to a lesser extent in the smaller fibroblast-like nuclei and those of the vasculature (not 

shown). As with Fos and Fra-1 immunostaining, maximum expression occurred in the 

left ventricle 2-4 hr following NE treatment with lesser staining elsewhere including the 

atria (Fig. 4.18 C and Table 4.4). Stained nuclei were still observable 6-12 h following 

treatment (Table 4.4 and results not shown). 

c-myc 

c-myc protein was immunostained with a monoclonal antibody as described 

in the materials and methods. Weak Myc immunostaining was observed in hearts from 

untreated and saline injected animals in the non-myocyte cell population, probably 

fibroblasts (Fig. 4.19, Panel A) but little in the vascular cells or myocytes (Fig. 4.19, 

Panel C). This basal expression was homogeneous throughout all chambers of the heart 

although the intensity varied from animal to animal. The cells in Figure 4.19 have been 

counter-stained with haematoxylin (blue nuclei) in order to demonstrate the relative 

proportion and size of cells expressing c-myc protein. Administration of a single 

injection of NE resulted in rapid accumulation c-myc protein throughout all chambers of 

the heart. Importantly, and in significant contrast to FLI staining, Myc immunostaining 

was greatest in non-muscle cells, probably fibroblasts, with much lesser staining 

apparent in the larger myocyte nuclei (Fig. 4.19, Panel B and Fig. 4.20, Panels B-F). 

Significant increase in Myc expression was observed in the coronary vasculature cells, 

presumably the endothelium and to a lesser extent smooth muscle cells (Fig. 4.19, Panel 

D). Smooth muscle staining (red staining) was confirmed by staining of adjacent slides 

with an anti-smooth muscle actin antibody (compare Fig. 4.19, Panel D with Panel E). 

Myc protein was first observable within 30 min following treatment, rising to a peak 

after 1-3 h and had returned to basal levels by 6-12 h (see Fig. 4.20, Panels A-F, Table 

4.5 and results not presented). These result indicates that c-myc may be associated with 

the hyperplastic response of cardiac non-myocyte cells rather than the hypertrophic 

response of cardiomyocytes following NE stimulation. 
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Fig 4.19 Cellular localization of Myc immunoreactivity in the left ventricle of rat hearts following 
norepinephrine administration. 
After a single injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) the left ventricle of rat hearts 
were removed and immunostained for Myc or smooth muscle actin (red cytoplasmic staining) 
immunoreactivity and counterstained with hematoxylin (blue nuclei) as described in "materials and 
methods". Results are representative of 3 independent experiments. Panel A, CTL 2 h left ventricle; 
Panel B, NE 2 h left ventricle; Panel C, CTL 2 h left ventricle vascular tissue; Panel D, NE 2 h left 
ventricular vascular tissue; Panel E, serial section from Panel D stained with anti-smooth muscle actin. 
Arrows in Panel A show basal non-myocyte nuclear staining. Arrows in Panel  B  indicate the majority of 
myocyte nuclei are not stained with the anti-Myc antibody. Nuclei that stain positively for Myc are 
probably due to inter-cardic fibroblasts . Arrows in Panel D show staining of nuclei associated with 
vascular tissue. Arrows in Panel E confirm that Myc immunostained nuclei in Panel D probably belong 
to vascular endothelial and smooth muscle cells. 400 X magnification. 
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Fig 4.20 Regional localization of Myc immunoreactivity in rat heart following norepinephrine 
administration. 
After a single i.p injection of saline (CTL) or norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and 
immunostained for Myc immunoreactivity as described in "materials and methods". Results are 
representative of 3 independent experiments. Panel A, CTL 2 h left ventricle; Panel B, NE 2 h septum; 
Panel C, NE 2 h left ventricle; Panel D, NE 2 h right ventricle; Panel E, NE 2 h left atriim; Panel F, NE 2 
h right atrium. 200 X magnification. 



Table 4.5 Cardiac Myc immunostaining following norepinephrine administration. 

CTL 	+/- 	+/- 	+ 	+/- 	+ 
1 h 	+ 	+ 	+ 	+ 	+ 

NE 	2h 	-H- 	-H- 	-H—F 	-i—F 	d—l- 

2.5 mg/kg 3 h 	-H- 	+ 	-I—H—F 	-H- 	-i—H- 

6 h 	+ 	+/- 	+ 	+/- 	+ 
12 h 	+/- 	+/- 	+/- 	+/- 	+1- 

LA 	RA 	LV 	RV 	Sp 

Following a single i.p. injection of norepinephrine (NE, 2.5 mg/kg) rat hearts were removed and stained 
for Myc immunoreactivity as described in "materials and methods". Relative inununostaining in three 
representative fields was scored as non-detectable (-) up to maximal (++-H-) as described elsewhere 
(Snoeclot et al., 1991). LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, Sp: 
septum. Type of labelled cell (muscle/non-muscle) was not considered. 



4.4 DISCUSSION 

Studies from chapter 3 established that induction of the early-response genes 

occurred rapidly in the heart following NE administration in vivo. These experiments 

however, did not shed light on the specific cell types or areas within the heart that were 

responsible for this expression or reveal whether their corresponding protein products 

were produced. The work in this chapter has sought answers to these questions using a 

combination of in situ hybridization, northern and immunohistochemical approaches. 

i) detection of c-myc and c-fos mRNA by hybridization histochemistry 

Hybridization histochemistry (in situ hybridization) is a molecular technique 

which has been used widely for the detection and localization of gene expression in 

tissue samples. In this study the technique was employed in an attempt to characterize 

the regional, cellular and temporal expression of two early-response genes, c-myc and 

c-fos in the rat heart following acute NE administration. 

While it was possible to demonstrate competency in the detection and 

localization of mRNA for some control genes (ANP and Mt) in both cardiac and liver 

tissue sections respectively, results obtained for the c-myc and c-fos analysis in the 

heart were not satisfactory. Complete resolution of these problems was compounded by 

the inherently long period which elapsed between the initial animal treatment and final 

interpretation of data and this was largely due to the extended exposure times needed to 

obtain adequate autoradiographic results. However, after considerable manipulation of 

the established experimental protocol, results were attained using a commercially 

obtained fos oligonucleotide (fos Pr-1) and c-myc and c-fos specific cDNA probes. 

These results demonstrated that c-myc and c-fos mRNA accumulated mainly in the left 

ventricle with lesser expression elsewhere and that the temporal pattern of this 

expression correlates with that observed during northern analysis. Thus c-fos induction 

preceded c-myc with maximal expression at 1-2 and 2-3 h respectively. Hybridization 

within the atria was variable and this was probably due to experimental difficulties 

involved in fixing this chamber to the slide. Analysis of c-fos and c-myc expression at a 

cellular level was inconclusive due to persistent background problems which made 

localization of mRNA to specific cell types impossible. 
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It is likely that the reasons for the poor results achieved with this method 

were due to the particular c-myc and c-fos probes and further studies using in situ 

hybridization would require the preparation and testing of more c-myc and c-fos specific 

oligonucleotide probes. Alternatively, riboprobes might be employed due to their 

greater hybridization stability. Further regional and cellular localization of 

early-response genes was undertaken by northern analysis or RNA extracted from 

individual heart chambers or by inununocytochemistry. 

ii) regional localization of early-response gene expression by northern 

analysis. 

Early-response gene expression was further examined in the various 

chambers of the heart by northern analysis following a single injection of NE (2.5 

mg/kg). Constitutive expression of c-myc, c-jun and fra-2 mRNA observed previously 

in whole myocardial extracts, was localized to all chambers of the heart with only slight 

variation in regional intensity. Thus elements which control the constitutive expression 

of these genes do not appear to be chamber specific. 

Following acute administration of NE, rnRNA of all early-response genes 

investigated, was rapidly and transiently induced above basal levels, however each gene 

displayed a distinct regional and temporal pattern of distribution. For instance c-fos 

expression was barely detectable in the combined atrial sample, at any time point, in 

contrast to the structurally and functionally related gene fra-1 which exhibited near 

maximal expression in this chamber at 2 h. In a further example c-fos and c-jun mRNA 

levels were only transiently increased with mRNA levels back to basal levels by 3-4 h 

whilst fra-2 mRNA remained elevated for up to 6 h. These results, taken together with 

those of the previous chapter, indicate that the cardiac induction of early-response gene 

expression following NE administration is not only temporally and stimulus-specific, 

but also a tissue-specific phenomenom and further supports the idea that differential 

expression of these genes is a mechanism by which diversity and specificity of the 

hypertrophic response to trophic stimuli might be achieved. 

The differences in regional distribution of these genes following acute NE 

treatment is suggestive that these genes have a different threshold for the same signal 

and/or are triggered by different signals. For instance the effect of NE on the heart in 

vivo is complex involving both direct receptor-mediated and secondary hemodynamic 
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events both of which are likely to contribute to the differential expression of 

early-response genes observed here. Thus the maximal expression of c-myc and c-fos 

observed in the left ventricle might be a function of the increased pressure that this 

chamber is exposed to as a result of peripheral vasoconstriction during NE treatment 

(see chapter 1). Indeed preliminary data from this laboratory (Eldridge, Hannan and 

West unpublished data) demonstrate that c-myc accumulates primarily in the left 

ventricle following chronic infusion of rats with hypertensive levels of a cadrenergic 

agents. This pattern of expression is similar to that observed in pressure-overloaded rat 

hearts following aortic stenosis and may support the hypothesis that c-myc and c-fos 

products mediate qualitative changes in protein synthesis which occur in the left 

ventricle during this growth process. For example ANP, TGF-13 and a-SkA are all 

expressed at high levels in the left ventricle in pressure-overloaded rat hearts and 

contain potential AP-1 binding sites in their promoter regions (Parker et al., 1991). 

Thus these observations in combination, are suggestive that increased pressure in the 

left ventricle is a major stimulus directing c-myc and c-fos expression in the heart 

following a single high dose injection of NE. 

In contrast however, fra-2 rnRNA levels are similar in the left and right 

ventricle and only slightly less in the septum and combined atrial sample despite the 

different pressures to which these regions might be transiently exposed following high 

dose NE treatment. Thus at least part of this response is probably due to direct cardiac 

NE receptor-mediated events independent of changes in pressure loading. These 

findings are interesting, in light of a recent study reporting that cats chronically 

administered doses of NE similar to those used in these experiments, exhibited cardiac 

hypertrophic growth which was of similar magnitude in both the left and right 

ventricles and which was physiologically similar to that observed following volume 

overload (Mariano et al., 1991). It is intriguing to speculate that fra-2 may be involved 

in the modulation of quantitative or qualitative processes which occur in both the left 

and right sides of the heart during this form of hypertrophy. In support of this, it was 

observed earlier (chapter 3) that T, administration, a treatment which leads to volume 

overload hypertrophy, also produced an upregulation of fra-2 mRNA 
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fra-1 mRNA exhibits greatest expression in the left ventricle and combined 

atrial sample following NE treatment and like c-fos and c-myc described above, this may 

be due to the pressor effect of the treatment. However, fra-1 expression has been 

reported to be unresponsive to pressure in rodents (Rockman eta!, 1991) and if true, 

this would seem to indicate that although all chambers of the heart are presumably 

exposed to the same circulating amounts of NE, their sensitivity to this stimuli differs. 

Clearly further studies are needed to determine which of these two hypotheses is 

correct. 

Further explanation of the regional distribution of early-response gene 

mRNA in the heart is complicated by a number of factors. Firstly, both a- and 

11-components of NE appear to modulate early-response gene expression independently, 

thus the regional distribution of these genes following stimulation by these two 

components of NE action needs to be examined in detail. To this end, preliminary data 

from this laboratory (Hannan and West, unpublished data) indicates that infusion of 

a-adrenergic agents leads to expression of c-myc predominantly in the left side of the 

heart whilst infusion with P-adrenergic agents results in distribution of mRNA evenly in 

both the left and right ventricle. Secondly, it is possible that the observed 

early-response gene induction may occur in different cell types which themselves may 

also exhibit differential sensitivity to the direct or indirect effects of NE, or 

alternatively, they may release factors which may differentially modify the expression 

of early response genes in adjacent myocytes. For instance b-FGF is present in heart 

tissue and has been demonstrated to induce c-fos, c-jun and jun-B in cardiac muscle 

cells (Parker et al., 1991), but while cell-type contribution to early-response gene 

expression can be assessed by immunohistochemistry (see below), elucidation of the 

possible role of autocrine and paracrine growth factors in this process will probably 

require the use of adult cardiac cell co-cultures. 

iii) cellular localization of early-response genes by immunocytochemistry 

Cellular localization of NE-induced early response gene expression was 

achieved by immunocytochemistry using commercially available monoclonal anti-Myc 

antibody and a polyclonal anti-Fos antibody. The anti-Fos antibody had been raised to a 

peptide sequence in the amino terminus which is conserved within the fos gene family. 
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Thus this antibody potentially cross-reacts with other members of the fos gene family 

and consequently positive immunostaining was termed Fos-like immunoreactivity 

(FLI). 

Fos-like immunoreactivity (FLI) was not observed in any cell type in hearts 

removed from untreated animals but weak immunostaining was localized to the 

occasional myocyte of saline treated animals. Thus it is unlikely that the Fos antibody 

used in this study cross reacts to any significant degree with Fra-2 since mRNA for this 

gene was clearly observable in control cardiac tissue. These results are in agreement 

with the recent study of (Schunkert et al., 1991) who also did not observe Fos 

hnmunostaining in untreated rat hearts (Schunkert et al., 1991), but once again, differed 

to those of Rappaport's group who demonstrated significant basal Fos expression in the 

smooth muscle cells of the cardiac vasculature system. However Rappaport's study did 

not discuss the specificity, or lack there of, of their anti-Fos antibody with respect to 

other members of the Fos protein family. Thus it is possible that in fact their anti-Fos 

antibody strongly cross reacts with other Fos like proteins which are observed in basal 

cardiac tissue or alternatively, it may cross-react nonspecifically with some unrelated 

protein in smooth muscle. In addition the results of Rappaport's group differed further 

from the those presented here since they observed significant induction of Fos following 

anesthesia which they attributed to stress of the injection and/or alterations in cardiac 

pressure that this treatment might cause (Snoecicx et al., 1991). However this response 

appeared to be age dependent since less FLI was observed in 12 week old rats than in 3 

week old rats. The animals used in the present study were between 8 to 12 weeks old 

which may explain why little or no FLI was observed in anesthetized animals. More 

over, it appears that a decreased sensitivity to certain types of stress is a common 

feature of the maturing heart in terms of early-response gene expression since it has 

been demonstrated that aortic constriction leads to increased c-myc mRNA in both the 

left ventricle and in both atria of 28 day old rats but only the atria in similarly treated 80 

day old rats (Mulvagh et al., 1987). It will be interesting to see if NE-mediated 

early-response gene expression is similarly down regulated in the hearts of older 

animals and to determine whether this affects the ability of older animals to adapt to 

physiological effects of this hormone. 
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Low level endogenous expression of c-myc characterized previously in this 

study at the RNA level, was observed in all chambers of the heart, in non-muscle cells 

nuclei, possibly fibroblasts but to a much lesser extent in vascular smooth muscle or 

cardiac myocytes. In a recent study by Rappaport's group (Snoeckx et al., 1991), Myc 

immunostaining was similarly observed in the non-muscle cells of the left ventricle of 

control animals and in addition, in the endothelium of large coronary arteries (Snoecicx 

et al., 1991). The reason for the failure to observe similar Myc immunostaining in the 

endothelium by the present study is puzzling but may indicate that the 

immunofluorescence detection system employed by Rappaport's group is more sensitive 

than the immunodetection system used here. 

Acute administration of NE led to the rapid and transient accumulation of 

c-fos like proteins and c-myc protein in the nuclei of heart cells. FLI was primarily 

restricted to the nuclei to the striated muscle cells and this is in accordance with results 

obtained from cultured myocyte cells following treatment with NE. In further support 

of these results, Schunkert's group (Schunkert et al., 1991) demonstrated that c-fos 

proteins accumulate in the myocyte nuclei of pressure-overloaded hearts and taken 

together they give further support for the idea that c-fos and structurally related genes 

may play an active role in NE and pressure mediated hypertrophy of adult myocytes 

Interestingly c-fos expression following NE administration was not 

restricted to the cardiac myocytes alone since increased FLI staining was also observed 

in the vascular smooth muscle nuclei which is in good agreement with previous reports 

of expression of c-fos mRNA in these cells and in whole aorta in response to NE 

treatment (Naftilan et al., 1989; Moalic et al., 1989). In addition much weaker 

accumulation of FLI relative to control was observed throughout the heart in smaller, 

presumably non-myocyte nuclei, a response that was also observed in the pressure 

overload studies of Rappaport's group (Snoeckx et al., 1991). This weaker expression 

was possibly due to activity of these genes in a subset of cardiac fibroblasts or other 

cells, but a much more stringent identification of this cell type is required to confidently 

explore this possibility. It is worthy to note, however, that expression of early-response 

genes in other cell types which are probably actively dividing does not negate a specific 

role for these genes in the hypertrophic growth of differentiated myocytes. For instance, 

it is possible that in response to the same trophic stimuli (i.e. NE), increased 
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early-response gene expression in different cell types may coordinate alternative growth 

responses depending on their post-transcriptional modification, the availability of other 

transcription factors or nuclear chromatin structure. An alternative explanation is that 

increased cardiac myocyte early-response gene expression simply indicates that these 

cells are attempting to re-enter the cell cycle. In corroboration with this is the 

observation that NE administration results in increased rat cardiocyte proliferating cell 

nuclear antigen (PCNA), an auxiliary protein of DNA polymerase gamma which may 

indicate that the cells are capable of DNA synthesis (Marino etal., 1990). 

The temporal and spatial pattern of Fos immunostaining closely correlated 

with that observed during regional northern analysis. For example, increased Fos 

staining was observed in the left ventricle 30 min following NE treatment and preceded 

increases in Myc levels. Interestingly however, although c-fos mRNA was hardly 

detectable in the atria of NE treated animals at any time point, this chamber exhibited 

significant FL! 1-2 h following treatment. These results were interpreted as the result of 

cross reactivity of the anti-Fos antibody with other Fos-like proteins, for example Fra-1, 

since mRNA levels for this gene accumulate to high levels in the atria following acute 

NE stimulation. As a first preliminary step in determining which proteins structurally 

related to Fos that might contribute to the observed FLI, studies were undertaken using 

polyclonal antibodies raised to non-conserved regions between Fos, Fra-1 and Fra-2. 

These experiments demonstrated that c-fos,.fra-1 and fra-2 protein products do indeed 

accumulate in the myocytes and to a lesser extent other cell types of adult hearts 

following NE treatment. In addition, the chamber-specific distribution correlated well 

with that observed during northern regional analysis. For example, protein products for 

all three genes accumulated in the left ventricle following NE treatment but only Fra-1 

and Fra-2 immunostaining was observable in the atria. Thus it would appear that the 

observed FLI in the atria following NE stimulation is the result of cross reactivity of the 

anti-Fos antibody with other members of the Fos gene family (fra-1, fos-B) or 

other as yet undiscovered fos-related genes, although western analysis is required for 

their confident identification. Unfortunately due to time constraints and limitations in 

the availability of the various anti-early-response gene antibodies, Western analysis was 

not able to be performed. 
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In direct contrast to FLI, Myc immunoreactivity following NE 

administration was greatest in non-cardiomyocyte cell types. A definite identification of 

these expressing cells was not made but their localization strongly suggests they are 

cardiac fibroblasts, the cell type that constitutes 90-95 % of the non-cardiomyocyte 

fraction (Eghbali et al., 1991). In addition significant Myc immunostaining was 

observed in the cardiac vasculature. Staining of serial sections with an anti-snooth 

muscle actin antibody indicated that these nuclei were probably of endothelial or smooth 

muscle origin but once again further studies are required to definitively identify these 

cells. Importantly, these results would seem to indicate that prior expression of c-myc in 

cardiac myocytes is not required for NE mediated cardiac hypertrophy in adult rat 

hearts. In direct contrast to these findings Simpson and co-workers demonstrated 

accumulation of c-myc mRNA in neonatal myocyte cultures following NE 

administration and implicated this gene in mediating the growth response of these cells. 

One possible resolution of these differences is that c-myc expression observed in the 

developing heart of neonatal animals represents at least a partial contribution from 

proliferating and or hypertrophying cardiomyocytes. This is not unreasonable since 

evidence exists implicating a role for c-myc in the maturation of neonatal 

cardiomyocytes to terminally differentiated, non-dividing cells (see chapter 1 for a more 

detailed discussion). It is worthy to note however, that the present immunostudies were 

performed in cardiac tissue obtained 1-6 h following acute administration of NE. It will 

be interesting to see if the non-cardiac cell population is also the major site of c-myc 

expression during chronic infusion of NE since, in addition to this transient rise in Myc 

between 1-6 h, this gene also exhibits a second sustained rise in expression after 12 h 

of NE infusion (see chapter 3). It is possible for example that the initial rise in Myc 

observed here represents the proliferation of non-cardiomycytes which is concomitant 

with cardiomyocyte hypertrophy and this hypothesis is supported by the observation that 

c-myc mRNA levels are elevated in proliferating fibroblasts and endothelial cells. By 

analogy the second sustained rise in cardiac c-myc mRNA observed during NE infusion 

might be restricted to hypertrophying cardiomyocytes. Further studies are required in 

order to determine which of these possibilities is correct. 
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Interestingly, in the studies by Rappaport group ( Snoeckx et al., 1991) 

aortic stenosis did not lead to a further increase in Myc in the rat heart in any cell type, 

despite the well documented changes in c-myc mRNA levels during this treatment 

(Izumo et al., 1988; Mulvagh et al., 1987). Such findings are further evidence that 

pressure-load and NE administration lead to both similar and dissimilar responses at the 

cellular level during cardiac hypertrophy and this may correlate with the different 

pathologies which may ultimately arise from each treatment. 

In summary this study provides the first evidence that administration of the 

hypertrophic hormone NE leads to accumulation of an array of similar and distinct 

early-response gene products in the adult heart in vivo. Fos and related gene products 

accumulated primarily in the cardiomyocyte nuclei and this in accordance with 

proposals that this gene family may play a transducing role during the initial stages of 

NE-mediated cardiac hypertrophy. In contrast Myc expression is mainly restricted to 

non-cardiomyocyte cell types such as fibroblasts and endothelial cells and consequently 

may be associated with the proliferation of these cells which is concomitant with 

cardiomyocyte hypertrophy. The regional and temporal pattern of distribution was 

confirmed at both the mRNA and protein levels and was found to be specific for each 

gene. Maximal expression of c-myc, c-fos and c-jun was observed in the left ventricle 

which might correlate with the increased pressure that this chamber is likely to 

experience during high dose NE administration. However the regional expression of 

fra-1 and fra-2 did not seem to correlate with changes in hemodynamics and indicates 

that these genes may be more responsive to the direct effect of NE. Taken together, 

these results provide indirect evidence that certain subsets of the early-response genes 

may play a trans-activating role in the chamber-specific responses observed in the heart 

following high doses of NE or aortic stenosis whilst a distinctly different subset might 

be important in coordinating global responses to hypertrophic growth stimuli. 
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CHAPTER  5 

EXPRESSION  OF EARLY-RESPONSE GENES  IN THE ISOLATED 

PERFUSED HEART  

5.1 INTRODUCTION 

It is virtually impossible to dissociate the effects of stimuli that act directly 

on the cardiac myocyte from those that are secondary to systemic alterations. This is 

particularly so for the adrenergic hormones since they are not only capable of altering 

cardiac inotropy, chronotropy and metabolism, but they also increase work-load on this 

organ secondary to an increase in peripheral resistance (see chapter 1 for more in depth 

discussion). As a consequence of this some investigators have turned to cultured 

cardiac myocytes in order to examine the direct effect of NE and other trophic factors on 

myocyte growth independent of systemic influences. As discussed previously, the work 

of Simpson's group and subsequently others established that NE can directly mediate 

cardiac hypertrophy and modulate gene expression in isolated neonatal cardiomyocytes. 

However, it has been questioned whether it is appropriate to extrapolate results obtained 

from immature cells in an in vitro system to describe the responses of the fully mature 

myocyte in vivo (Bugaisky and Zak, 1989). For this reason other investigators have 

attempted to isolate and culture myocytes from the mature heart, but only recently has 

the preparation and culture of these cells been sufficiently advanced to allow for the 

long term study of adequate numbers of cells for biochemical and molecular analysis 

(Bugaisky and Zak, 1989). Even so, the effect of NE on heart cell growth in vitro 

appears to vary, with some groups reporting that adrenergic agents have a general 

anabolic effect on adult cardiac myocytes but do not modulate shifts in isocontractile 

protein synthesis (Dubbus et al., 1990) whilst others have demonstrated specific 

phenotypic alterations following adrenergic treatment (Rupp etal., 1991). Furthermore, 

there have been few reports of the effect of NE on early-response gene expression in 

isolated adult myocytes, possibly because stress of the cell isolation procedure itself has 

been shown to induce substantial early-response gene mRNA levels (Claycomb, 1987; 

Hannan and West unpublished data). 
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However an alternative model for investigating the direct effects of NE or 

other humoral factors on adult cardiac myocyte growth during controlled 

haemodynamic conditions, is the isolated (and therefore denervated) perfused heart 

system. In this model hearts are removed from the animal and perfused in vitro with a 

defined media either in a working or non-working capacity and in such a manner that 

the direct and indirect actions of NE can be studied separately whilst potentially critical 

interactions between different cardiac populations of cells are preserved. For instance, 

simulation of factors thought to be important in the development of cardiac 

hypertrophy, for example inclusion of NE in the perfusate, or elevation of perfusion 

pressure, have been shown to increase RNA, protein synthesis and ribosome formation 

(for review see Morgan et al., 1992 ). If early-response gene expression is involved in 

any of these processes, it should be possible to observe their expression, and to mediate 

this experimentally in isolated perfused hearts. Thus, while overt hypertrophy cannot be 

observed in this system due to the time required for this to occur, it is possible to model 

the biochemical initiation of this event. 

Accordingly the work in this chapter has sought to use the non-working 

perfused heart system in order to explore separately the direct and indirect effects of NE 

on cardiac early-response gene expression and to determine the specific chamber 

contribution to this response. 

5.2 METHODS 

5.2.1 in vitro Coronary Perfused Hearts 

Rats were anaesthetized as described previously (section 3.2.1) and hearts 

removed and placed in ice-cold isotonic saline until contraction had stopped. The aorta 

was stripped of connective tissue and tied directly onto the cannula of the perfusion 

apparatus and the hearts were then perfused at a constant pressure of 60, 90 or 120 

mmHg in the Langendorff (non-recirculating) manner as described by Williamson 

(Williamson, 1964). The perfusion cabinet was maintained at 37°C and a perspex 

surround was placed around the hearts to prevent evaporative cooling. With the 

apparatus available up to four hearts could be perfused simultaneously thus allowing a 

direct comparison to be made between untreated and experimental hearts. All hearts 
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were allowed a 15 min stabilization period and only hearts which had a stable 

contractile activity at the end of this period were accepted for further study. Following 

this period, designated "zero time" the drugs under investigation were introduced 

continuously into the perfusion medium of some hearts by means of a peristaltic pump 

or included directly in the perfusion medium reservoir (see section 5.3). Following 

perfusion, hearts were removed from the apparatus, rinsed in ice-cold isotonic saline and 

prepared for analysis as described in section 2.2. The perfusion medium was modified 

Krebs-Henseleit bicarbonate buffer (Williamson, 1964) containing in addition 1.27 mM 

CaCl„ 0.05 mM EDTA, 5 mM glucose, and 2 mM pyruvate which was filtered through 

a 45 gm Millipore filter and continuously equilibrated against a gas mixture of 95% 0 2 , 

5% CO, and maintained at 37°C by passage through a heated water jacket. See Fig. 5.1 

for a diagram of the perfusion setup. 

5.3 EXPERIMENTAL PROTOCOLS 

5.3.1 Expression of Early-Response Genes in Hearts Perfused at 60 mmHg. 

To assess the basal cardiac expression of early-response genes during 

perfusion, hearts were removed from anaesthetized animals and perfused at a constant 

pressure of 60 mmHg with Krebs-Henseleit buffer. At the end of the appropriate time 

(15 min-5 h), hearts were frozen in liquid nitrogen and processed for northern analysis 

as described in section 2.2. In order to confidently determine the baseline induction of 

early-response genes, 8 or more hearts were perfused at each time point and the results 

quantified by laser densitometry and analyzed statistically as described below (section 

5.3.5) 

5.3.2 Effect of Adrenergic Agents and Second Messengers. 

To study the effect of NE on early-response gene expression independent of 

pressure load, hearts were perfused at a constant pressure of 60 mmHg with buffer 

containing NE at final concentrations between 1 nM and 1 p.M. When used, adrenergic 

antagonists methoxamine (10 gM) and dl-propranolol (20 gM) were introduced into the 

perfusate 15 min prior to NE and thereafter maintained in the perfusate for the duration 
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Fig 5.1 Perfusion apparatus. 
A schematic representation of the non-working isolated perfused heart apparatus. For control 
perfusions (60 mmHg) the reservoir height was 80 cm above the aorta. For perfusions at elevated 
pressures (90 or 120 mmHg) the perfusion reservoir was raised to 120 and 160 cm respectively. 



of the perfusion. In order to establish whether early-response gene expression was 

mediated by increased PKC activity or elevated cAMP levels hearts were similarly 

perfused at 60 mmHg in the presence of phorbol myristate (PMA) or forskolin at final 

concentrations of 20 nM and 2 1.tM respectively. At the end of the perfusion period, 

hearts were processed for northern analysis and analyzed as before. 

5.3.3 Effect of Elevated Perfusion Pressure 

In order to establish whether increased perfusion pressure and thus stretch of 

the ventricular wall, could modulate early-response gene expression independent of NE, 

hearts were perfused at 60, 90 or 120 mmHg for 1 to 3 h in the presence of buffer alone 

and early-response gene mRNA levels were analyzed as before. 

5.3.4 Regional Localization of Early-Response Genes in the Perfused Heart 

In order to assess the regional expression of early-response genes, hearts 

were perfused at 60 mmHg with NE or at 120 mmHg with buffer alone and then 

dissected into the various chambers and analyzed separately for early-response gene 

expression by northern analysis. 

5.3.5 Treatment of Results 

Following northern analysis autoradiograms were quantified by laser 

densitometry. Each sample was corrected for loading by comparison to the 

hybridization with the control probe p-tubulin and results expressed as a multiple of 

basal expression (fold basal). When the experimental number was n=3 or better, error 

bars represent standard error mean (S.E.M) and for n=2 error bars represent standard 

deviation (S.D.) 

5.4 RESULTS 

All hearts were pre-perfused for 15 min following removal from 

anaesthetized animals to allow them to equilibrate with experimental conditions. Low 

levels of c-myc but not c-fos mRNA could be detected in hearts directly after removal, 

although this required over exposure of the appropriate autoradiogram (Fig. 5.2, Lane 
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Fig 5.2 Cardiac expression of c-myc and c-fos in rat hearts perfused at a constant coronary pressure 
(60 mmHg). 
Total RNA was extracted from rat hearts directly after removal from the animal (Basal, Lane 1) or at 
the various times indicated following perfusion at constant pressure of 60 mmHg (Lanes 2-10) with 
modified Krebs-Henseleit buffer. After electrophoresis and northern blotting, the RNA (50 lig) was 
hybridized to c-myc (upper tracks), c-Jos (middle tracks) and 13-tubulin (lower tracts). 



1). However mRNA levels for both genes rose significantly as a consequence of 

perfusion with Krebs-Henseleit buffer at a constant pressure .  of 60 mmHg (Fig. 5.2, 

Lanes 2-10). Increased levels of c-myc mRNA could be observed after 15 min of 

perfusion and reached a peak between 2-3 h of perfusion. c-fos mRNA levels 

demonstrated a more complex profile since they reached a peak at 15-45 min and a 

second peak at approximately 2 h. These characteristic patterns for c-myc and c-fos 

expression were determined at each time point in 8 independent experiments with slight 

variation in the time course and intensity of the profile (see Fig. 5.10). Similar 

perfusion with 10 % bovine serum included in the perfusate did not alter the c-myc and 

c-fos expression profiles observed with buffer alone (results not presented). Similarly, 

prior treatment of hearts with a- and 13—adrenergic antagonists before removal from the 

animals, also did not remove basal c-myc and c-fos expression (results not shown). All 

filters were rehybridized to the control probe 13—tubulin to confirm that equal levels of 

mRNA were loaded in each track. 

Inclusion of NE (0.1 [tM, 1 ii,M) in the perfusion buffer significantly 

elevated the levels of c-myc and c-fos mRNA above that observed during perfusion with 

buffer alone at 60 mmHg, although c-fos was more responsive of the two genes (Fig. 

5.3). The observed increase in mRNA levels was dose-dependent with greater 

expression observed with 1 jiM NE than 0.1 1.1,M NE although significant elevation of 

c-myc and c-fos above basal could be observed following perfusion with NE at levels as 

low as 1 nM (results not shown). Expression of some other genes structurally or 

functionally related to c-fos were also examined in hearts following perfusion with 

buffer alone or buffer containing NE (1 1.1.M, Fig. 5.4). As with c-myc and c-fos, 

perfusion with buffer alone elevated mRNA levels of c-jun, fra-1 and fra-2. Inclusion 

of NE in the perfus ate greatly elevated fra-1 and fra-2 mRNA levels however the 

increase in c-jun mRNA in response to NE was less intense with respect to hearts 

perfused with buffer alone (Fig. 5.4). 

In order to determine the relative contribution of the a— and 13-components 

of NE action on early-response gene expression, hearts were co-perfused with NE and 

the 13 -adrenergic blocker propranolol, or with NE and the a—adrenergic blocker 

phentolamine (Fig. 5.5 & Fig. 5.6). c-myc, c-fos and fra-1 were only responsive to 
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Fig 5.3 Induction of c-myc and c-fos in the perfused rat heart in response to norepinephrine. 
Total RNA was extracted from rat hearts directly after removal from the animal (Basal) or at the 
various times indicated following constant perfusion at 60 mmHg with Krebs-Henseleit buffer alone 
(CTL) or with Kreb-Henseleit buffer containing norepinephrine (NE, 10 4 , 10 -6  M). c-myc and c-fos 
transcripts were detected as previously described. 
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Fig 5.4 Cardiac expression of c-fos like genes and c-jun in the perfused rat heart in response to 
norepinephrine. 
Total RNA was extracted from rat hearts directly after removal from the animal (Basal, Lane I) or at 
the various times indicated following constant perfusion at 60 mmHg with Krebs-Henseleit buffer 
alone (Upper panel) or with buffer containing norepinephrine (1 iM, lower panel). c-jutz, fra-1, fra-2 
and I3-tubulin transcripts were detected as previously described. 
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Fig 5.5 Contribution of the a- and 13-components of norepinephrine action to early response gene expression in the perfused rat heart. 
Total RNA was extracted from rat hearts directly after removal from the animal or at the various times indicated following constant perfusion at 60 mmHg 
with Krebs-Henseleit buffer alone (CTL) or with buffer containing norepinephrine (NE,  1 	norepinephrine and propranolol (NE, 1 JI M + PROP. 20 
1.0,4) or norepinephrine and phentolamine (NE, 1 JIM + PHT, 10 1..1M). c- myc. c-fas. c-jun, fm-1, fra-2 and 13-tubulin transcripts were analyzed as 
described previously. 
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a—adrenergic stimulation whilst increased fra-2 mRNA levels were observed following 

both a- and n-stimulation. Interestingly, the pattern and timing of induction of the two 

fra-2 transcripts differed with respect to each other. The higher molecular weight 

transcript (6.0 kb) was responsive to both a- and P-adrenergic agents, rising to a peak at 

1 and 3 h respectively. In contrast the lower molecular weight transcript (4 kb) was 

only sensitive to 13-adrenergic stimulation and exhibited maximal expression at 3 h. 

Once again, relative to hearts perfused with buffer alone, a— and 13-adrenergic agonists 

had little if any additional effect on c-jun expression. Similar perfusion with either a-

or 13-agonists (phenylephrine and isoproterenol respectively) produced similar 

expression of the early-response genes as the analogous experiments with NE + a or 13 

blockers presented here (data not shown). 

The mechanism or mechanisms which might couple the a-adrenergic 

receptors to modification of early-response gene expression in the heart are unknown. 

However recent studies in isolated neonatal myocytes indicate that a cadrenergic agents 

stimulate PKC and that stimulation with PMA, a potent activator of PKC, reproduces 

certain effects of a s -stimulation on myocyte growth and gene expression, including 

induction of c-myc (Starksen et al., 1986). Accordingly then, hearts were perfused in 

the presence of PMA to determine whether activation of PKC-dependent pathways 

might be linked to induction of c-myc in the adult heart (Fig. 5.7, Lanes 1-3). Hearts 

perfused at a constant pressure of 60 mmHg in the presence of PMA (20 nM) exhibited 

increased cardiac levels of c-myc mRNA with respect to hearts perfused with the 

biologically inactive phorbol ester, 4a phorbol 12b 12a-didecanoate (PDC: Fig. 5.7, 

Lanes 4-6). Although translocation of PKC was not directly measured this has been 

shown to occur in rat cardiac tissue following adrenergic stimuli (Allo et al., 1992; 

Henrich and Simpson, 1988). Accordingly, these results provide indirect evidence that 

a s -induction of c-myc occurs via activation of PKC associated pathways. The 

expression of other a s -sensitive early-response genes was not examined in response to 

PMA. 

Similarly, pathways which might link P-adrenergic receptor cellular ' 

occupation to early-response gene transcription in the heart are not known. However 
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Fig 5.7 Cardiac expression of c-myc in response to PMA or PDC. 
Total RNA was extracted from rat hearts removed at the various times indicated following 60 mmHg 
perfusion with modified Krebs-Henseleit buffer containing phorbol myristic acid (PMA, 20 nM; 
Lanes 1-3) or the inactive phorbol ester 4a-phorbol 12b 12a-didecanoate (PDC, 20 nM; Lanes 4-6). 

c- myc and P-tubulin transcripts were analyzed as described previously. 



13-adrenergic agents increase cardiac levels of cAMP and augment protein synthesis and 

transcription of a-MHC. Furthermore, agents such as forskolin which also increase 

cAMP, lead to increased protein synthesis in the perfused heart (Xenophontus et al., 

1989). Accordingly, it was of interest to determine whether 13-mediated induction of 

fra-2 was regulated by pathways linked to cAMP. Hearts perfused at a constant 

pressure of 60 mmHg in the presence of forskolin (21.tM) exhibited increased both fra-2 

mRNA transcript levels (Fig. 5.8, Lanes 1-3) with respect to hearts perfused with buffer 

alone (Fig. 5.8, Lanes 4-6). The observed response was specific for the a-sensitive gene 

fra-2 since similar treatment did not increase expression of the a-sensitive gene c-fos 

(results not shown). Although cardiac cAMP levels were not directly measured, this 

study provides indirect evidence that fra-2 is activated by pathways which may involve 

c AMP. 

5.4.1 The Effect of Increased Perfusion Pressure on Cardiac Early-Response Gene 

Expression 

Pressure overload of the heart in vivo following aortic stenosis is 

accompanied by expression of a panel of early-response genes, quantitative and 

qualitative alterations in isocontractile protein synthesis and cardiac hypertrophy. 

Recent in vitro experiments have suggested that a parameter most related to increased 

protein synthesis in the perfused heart was increased stretch of the ventricular wall, as a 

consequence of increased aortic pressure (perfusion pressure) (Kira et al., 1984). In 

light of this it was of interest to determine whether increased perfusion pressure might 

also augment expression of the early-response gene program in the perfused heart in 

absence of changes in humoral factors, and if so, to compare this response with the 

qualitative and quantitative changes that are observed following perfusion in the 

presence of NE. 

When the hearts were perfused at constant pressure of 120 mmHg, cardiac 

c-myc and c-fos mRNA levels were significantly increased with respect to hearts 

perfused with buffer at 60 mmHg (Fig. 5.9). The level of c-myc expression was directly 

dependent on the perfusion pressure with 120 mmHg resulting in greater induction than 

90 mmHg. The time of maximal c-myc expression occured after 2-3 h of perfusion at at 
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Fig 5.8 Cardiac expression of fra-2 in response to forskolin. 
Total RNA was extracted from rat hearts removed at the various times indicated following 60 mmHg 
perfusion with Krebs-Henseleit bicarbonate buffer alone (Lanes 4-6) or buffer containing forskolin (2 
lafv1, Lanes 1-3). fra-2 and f3-tubulin transcripts were analyzed as described previously. 
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Fig 5.9 Effect of elevated coronary perfusion pressure on c-myc and c-fos expression in the rat heart. 
Total RNA was extracted from rat hearts directly after removal from the animal or at the various times 
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transcripts were analyzed as described previously. 



pressures of 90 and 120m although further studies demonstrated that mRNA levels of 

this gene remain elevated above basal perfusion levels for as long as the pressure load 

was maintained (see chapter 6, Fig. 6.1). In contrast the level of c-fos expression was 

approximately equivalent in response to perfusion at 90 or 120 mmHg, however the 

exact timing of maximal induction varied at each pressure: appearing maximal between 

15-45 min for 90 mmHg and 1-2 h for 120 mmHg. In both cases the response was 

transient although expression of this gene was still slightly above baseline levels during 

extended perfusion at 120 mmHg for up to 6 h (see chapter 6, Fig. 6.1). Comparison of 

the relative abilities of pressure load and NE to modulate c-myc and c-fos expression 

indicates that c-myc is more responsive to aortic pressures equivalent to 120 mmHg than 

to NE (1 p.M: Fig. 5.10), although removal of the 13-component of NE raises levels of 

this gene to near those observed in response to 120 mmHg (comparative results not 

shown). In contrast c-fos appears to be equally responsive to both pressure (120 mmHg) 

and adrenergic stimulus (1 gM: Fig. 5.10). 

Similarly, the expression of c-fun, fra-1 and fra-2 was investigated during 

elevated perfusion pressure (Fig. 5.11, autoradiograms not shown). c-fun expression 

was not altered significantly when perfusion pressure was adjusted to 120 mmHg with 

respect to hearts perfused at 60 mmHg, although this lack of relative induction may be 

due to the fact that c-fun was already induced to high levels during perfusion at 60 

mmHg with buffer alone. Similarly fra-1 expression was not altered by the higher 

perfusion pressure and this is in accordance with observations in vivo that this gene is 

not pressure responsive (Rocicman et al., 1991). In contrast the a/13-responsive 

transcript of fra-2 (6.0 kb) was elevated by perfusion at 120 mmHg to levels similar to 

those observed in response to NE. However the 13-responsive transcript of this gene (4.0 

kb) was not significantly altered by this treatment. 

5.4.2 Regional Localization of c-myc and c-fos Expression in the Perfused Heart 

Determination of the regional expression of early-response genes in the rat 

heart in vivo (see chapter 4) following NE administration is potentially complicated by 

the hemodynamic effects of this hormone which can independently modify cardiac 

early-response gene expression (Mulvagh et al., 1987; Komuro et al., 1987; Komuro et 
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Fig 5.10 Quantification of c-myc and c-fos expression in response to elevated perfusion pressure or 
norepinephrine in the rat heart. 
The hybridization signals generated by northern blotting in figures 5.1, 5.3 and 5.9 were quantitated 
via densitometry and, after standardization to 13-tubulin levels in each track, were expressed as the 
fold increase over control (basal) signals observed in hearts perfused at 60 mmHg. Vertical bars 
indicate standard error mean (S.E.M.). 
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al., 1991). Accordingly, it was of interest to analyse separately the effect of NE and 

pressure on regional localization of these genes. 

Perfusion at 60 mmHg resulted in greatest expression of c-myc tuRNA after 

3 h and this was located mainly to the combined atrial sample and the septum. 

Similarly, maximal c-fos expression was observed in the combined atrial sample and 

also the right ventricle after 1 h of perfusion and then subsequently, but at lower levels, 

in the septum after 3 h (Fig. 5.12). These autoradiograms were over-exposed relative to 

autoradiograms obtained from hearts perfused with NE (1 RM) or at 120 mmHg, in 

order that the regional expression could be better assessed. 

Perfusion at 60 mmHg with NE (1 i.tM) resulted in maximal expression of 

c-myc and c-fos mRNA after 2 h and 1-2 h respectively and this was mainly localized to 

the left and right ventricle with considerably less expression in the septum (Fig. 5.12) 

and combined atrial samples. By the third hour of perfusion in the presence of NE, 

c-myc and c-fos mRNA were only observable in the left and right ventricle (Fig. 5.12). 

Elevation of the perfusion pressure from 60 mmHg to 120 mmHg resulted in 

maximal c-myc expression after 3 h and this response was approximately of the same 

intensity in each chamber of the heart for each time point (Fig. 5.12). Similarly, c-fos 

mRNA levels were augmented by this treatment appearing maximal between 1 and 2 h 

however, whilst the response was approximately equal in the left and right ventricle and 

septum, little or no c-fos expression was observed in the combined atrial sample (Fig. 

5.12). 

These results are typical of three separate experiments and are not an artifact 

of loading as demonstrated by equal intensity of bands following hybridization to the 

control probe 0-tubulin. 

5.5 DISCUSSION 

Cardiac hypertrophy is a complex process which is initiated and promoted 

by both hemodynamic and hormonal factors, but resolution of these can be difficult in 

whole animal models. For instance, pressure-overload (Komuro et al., 1988; Mulvagh 

et al., 1987) and NE administration (this thesis) have been shown to cause cardiac 

hypertrophy in adult rat hearts and elevate mRNA coding for a number of 
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early-response genes. However, elevated pressure load and increased activation of the 

adrenergic system appear to be interrelated processes, for example, pressure overload 

following aortic stenosis has been associated with up regulation of cardiac-adrenergic 

receptors whilst administration of moderate to high doses of NE in vivo can lead to 

pressure overload of the heart. Accordingly the work in this chapter has attempted to 

dissociate the effect of some potential growth signals on cardiac early-response gene 

expression by use of the isolated, Langendorff perfused heart system. This model has 

the advantage over in vivo studies that it is possible to examine separately the effects of 

NE or pressure-load on some of the events in cardiac hypertrophy, such as increased 

protein synthesis and early-response gene expression, whilst still maintaining the 

potentially critical cell-cell interactions within this organ. 

The coronary perfusion pressure for control hearts was selected at 60 mmHg 

since previous studies have indicated that this pressure results in sufficient coronary 

flow rates to ensure adequate oxygenation of isolated rat hearts by the relatively simple 

perfusion medium (Krebs-Henseleit buffer) used in these experiments (Williamson, 

1964). Interestingly this treatment alone was sufficient to elevate cardiac mRNA of 

c-myc, c-fos, c-fun, fra-1 and fra-2 . Increased c-myc expression rose steadily during 

perfusion whilst c-fos, c-fun, fra-1 and fra-2 exhibited more complex profiles reaching a 

number of peaks during the perfusion period. These responses in the apparent absence 

of stimulatory factors are puzzling but may simply be due to "stress" associated with 

removal of the heart from its in situ surrounds and perfusion in vitro. For instance, 

surgery itself may lead to altered catecholamine and other neurotransmitter release 

(Manders and Vatner, 1976; Vatner and Braunwald, 1975; Vatner and Smith, 1974), 

whilst general anesthesia has been shown to depress most aspects of autonomic reflex 

control (Vatner et al., 1971) reduce myocardial contractility and increase baseline heart 

rate (Manders and Vatner, 1976) in mammals. It is possible that any of these factors 

either alone or in combination could initiate early-response gene expression which 

would be observed during subsequent perfusion. The possibility of surgery leading to 

increased catecholamine activity was tested in these experiments by means of prior 

treatment of the animal with both a-and 13-adrenergic blockers before heart removal, but 

this did not attenuate the expression of any of the genes examined. An alternative 

explanation for these results might be that the expression of these putative transcription 
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factors, a process which appears to be tightly regulated in vivo, may become deregulated 

during perfusion in vitro in the absence of possible serum-derived regulatory factors. 

For example, basal expression of c-fos appears to be at least partially regulated by 

binding of a serum response factor (SRF) to a serum response element (SRE) in the 5' 

control region of the c-fos gene (Curran, 1991; Angel and Karin, 1991) In order to test 

this hypothesis, hearts were perfused with Krebs buffer supplemented with freshly 

isolated bovine serum (10%), however no change in the expression profiles or intensity 

of any of the genes examined was observed with respect to hearts perfused with buffer 

alone. A further possibility is that particular regions of the heart are relatively poorly 

perfused at the basal aortic pressures used here (60 mmHg) and subsequent ischemia of 

these areas may lead to stress-related early-response gene expression. This is not 

unreasonable since c-fos, at least, is rapidly induced in tissue surrounding the infarct 

zone following experimental regional ischemia of the heart (author's personal 

observation). One possibility is that cardiac interstitial edema caused by perfusion with 

Krebs buffer may lead to microvascular compression and thus non uniform perfusion of 

the heart. Indeed during perfusion at 60 mmHg regional expression of c-myc and c-fos 

mRNA levels were not uniform but restricted mainly to the atria and right ventricle. 

However further studies are required to ascertain whether or not these regions are 

compromised during Langendorff perfusion at a pressure of 60 mmHg. This possibility 

could perhaps be tested by examining cardiac early-response gene expression in 

perfused hearts in which edema is minimized for instance, by increasing the density of 

the perfusate with substances such as dextran sulfate. Finally, it is entirely possible that 

the observed responses are simply due to stress associated with the higher than normal 

coronary flow rate associated with this in vitro model since the in vivo coronary flow rat 

in rat hearts is 2-4 ml/min/g compared to 6-8 ml/min/g in isolated hearts perfused under 

60 mmHg of pressure. 

i) induction of early-response genes in the petfused heart by NE 

Although hearts exhibited increased expression of a number of 

early-response genes during perfusion at 60 mmHg of pressure with buffer alone, 

significantly greater cardiac expression of many of these genes was observed during 

perfusions in the presence of stimuli associated with cardiac hypertrophy in vivo and 

increased protein synthesis in vitro (Morgan et al., 1991). For example, perfusion at a 
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constant pressure of 60 mmHg with Krebs buffer containing NE (1 nM to 1 RM) 

resulted in a significant increase the cardiac mRNAs of c-myc, c-fos, Ira-1 and fra-2 

with respect to hearts perfused at 60 mmHg with buffer alone. Quantitatively, these 

responses were of similar intensity to those observed following a single injection of NE 

in vivo. Interestingly, c-jun levels were not significantly altered during perfusion with 

NE with respect to hearts perfused with buffer alone. It is possible that this gene is 

already maximally stimulated by perfusion with buffer .alone or that c-jun does not 

respond specifically to NE but rather is simply a marker of cellular stress. Certainly the 

difference in response of this gene with respect to the functionally related gene c-fos is 

interesting and warrants further investigation. 

At least part of the observed early-response gene expression in vivo 

following NE treatment is likely to be attributable to secondary pressure loading 

following vasoconstriction of the peripheral vasculature. In contrast, in these in vitro 

experiments NE-mediated induction of early-response genes cannot simply be ascribed 

to pressure loading of the heart since pressure load was held constant at 60 mmHg. 

Furthermore the responses cannot be due to local vasoconstriction of the coronary 

vasculature since, as the result of local metabolic affects, NE does not mediate 

constriction of the cardiac vasculature (Vatner, 1992 and references there in). It is 

possible, however, that the pronounced effects that NE has on cardiac inotropy and 

chronotropy may indirectly modulate cardiac expression of these putative 

trans-activating factors. In argument against this, studies from this laboratory have 

shown that significant reduction of cardiac contractility by perfusion with buffers 

containing low Ca2* levels, does not significantly alter NE-mediated early-response gene 

expression in the perfused heart (unpublished data). Thus taken together with the 

previous results, these experiments provide the first evidence that NE can activate the 

early-response gene program in adult myocytes (c-fos, c-jun and related genes) and in 

cardiac non myocyte cells (c-myc) independent of the changes in cardiac hemodynamic 

parameters that this hormone causes. Since similar perfusion of hearts with adrenergic 

agents has been shown to augment protein synthesis and ribosomal formation (Morgan 

et al., 1992), the present studies provide further evidence implicating early-response 

genes in the initiation of cardiac hypertrophy in vivo. 

104 



The regional localization of c-myc and c-fos mRNA during perfusion with 

NE revealed that both early-response genes were expressed to approximately the same 

extent in the left and right ventricle. These results are not unexpected since both 

ventricular chambers should receive equal exposure to the drug, however this 

distribution contrasts significantly with in vivo studies (chapter 4) in which both genes 

were expressed predominantly in the left side of the heart following a single injection of 

NE. It is probable that the significant physiological differences in stimuli to which the 

myocardium is exposed in each of these two model systems is responsible for the 

differing spatial distributions. For instance, pressure overload of the left side of the 

heart following administration of NE in vivo most probably contributes to the increased 

early-response gene expression in this region and such an affect would be absent in 

vitro. 

Interestingly, expression of c-myc and c-fos in the atria and septum of hearts 

perfused in the presence of NE, is significantly less than in the left and right ventricles. 

Such differences suggest that the pathway(s) linking occupation of the adrenergic 

receptors to nuclear expression of c-myc and c-fos in these regions are less responsive 

than in the ventricles. It is possible that this simply reflects tissue distribution of 

adrenergic receptors, or alternatively, the atria and septum may be poorly perfused and 

therefore receive less exposure of NE than regions which might be better perfused such 

as the ventricles. Further studies are required to verify these possibilities. 

ii) a -adrenergic response 

in vivo studies presented in this thesis indicate that a significant proportion 

of NE-mediated cardiac early-response gene expression can be reproduced by 

stimulation of the a-adrenergic receptors. These findings are supported by the present 

in vitro studies since perfusion in the presence of NE and the I3-adrenergic blocker 

propranolol or perfusion with the a-adrenergic agonist phenylephrine led to significant 

elevation of c-myc, c-fos, fra-1 and fra-2 mRNA levels above those observed following 

perfusion with buffer alone. acadrenoreceptor stimulation is thought to stimulate 

phosphoinositide-hydrolysis of membrane phosphatidylinositols which stimulate the 

production of diacylglycerol and inositol phosphate (reviewed in Berridge, 1987). 

Diacylglycerol in turn stimulates protein kinase C to phosphorylate target proteins 
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whilst inositol triphosphate increases cytoplasmic Ca 2+ concentration by stimulating 

release of calcium from intracellular stores. Both of these signaling pathways are likely 

transducing mechanisms of a-adrenergic-mediated early-response gene expression since 

both calcium and PKC regulatory elements have been identified in the promoter regions 

of a number of early-response genes. In these studies acadrenergic induction of c-myc 

could be reproduced by perfusing hearts in the presence of PMA, a potent activator of 

PKC, however no similar response was observed following treatment of hearts with the 

inactive phorbol ester PDC. Although translocation of PKC was not directly studied in 

these experiments, this event has been demonstrated to occur in the heart and isolated 

myocytes following adrenergic stimulation (reviewed in Simpson, 1990). Moreover, 

these results are in close agreement with those of Simpson's group who have 

demonstrated in neonatal myocyte cultures that agents which activate PKC also increase 

myocyte expression of c-myc and cardiac hypertrophy (Starksen et al., 1986). Thus 

considered together these studies are indirectly suggestive that cardiac expression of 

c-myc by NE, in both the adult heart and in neonatal myocytes, is at least partially 

regulated via PKC dependent pathways. Similarly, although not tested in these studies, 

it is likely that other a-adrenergic inducible early-response genes such as c-fos are also 

regulated via PKC pathways in the adult heart, since induction of these genes has also 

been correlated with activation of this second messenger system in neonatal myocyte 

cultures. Further studies will need to determine whether PKC induction is a necessary 

prerequisite for early-response gene expression in the heart following a i -adrenergic 

stimulus and if so, to determine which specific isoforms of PKC are translocated under 

these conditions. It appears that at least some of these points are currently being 

investigated in neonatal myocyte cultures (Simpson, 1991). 

iii) 3 -adrenergic response 

In contrast to a-adrenergic stimulation, perfusion of hearts in the presence 

of P-adrenergic agents resulted in increased expression of fra-2 only, whilst cardiac 

mRNA levels of other genes examined following this treatment were either unchanged 

(c-jun) or even lower (c-myc, c-fos, and fra-1) than observed following perfusion with 

buffer alone. These results are not however, in entire agreement with those from in vivo 

studies (this thesis; Barka et al., 1987). For instance in this thesis, treatment of intact 
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animals with 13-adrenergic agents resulted in small increases in the levels of c-fos c-jun 

and fra-1 and much greater elevation in c-myc and fra-2 with respect to the levels of 

these genes observed in response to acstimulus alone or NE. Similarly Barka's group 

demonstrated cardiac expression of one early-response gene, c-fos following 

administration of both a— and 13—adrenergic agents (Barka et al., 1987). A number of 

interpretations of these results are possible. Firstly, given the ability of 13-adrenergic 

agents to elevate fra-2 expression in the heart both in vivo and in vitro it is likely that 

this putative transactivator is a bona fide I3-adrenergic responsive gene in the adult heart. 

In contrast c-fos, c-jun and fra-1 which exhibited no expression in vitro and only low 

expression in vivo following I3-agents, are probably not directly regulated by 13-receptor 

occupation in target cardiac cells. Rather, in vivo induction of these genes is more likely 

to be the result of cardiac a—adrenergic stimulation following 13-mediated release of NE 

from presynaptic nerve terminals (see chapter 1 for a more in-depth discussion). In 

contrast to the heart in vivo, isolated perfused hearts are denervated and thus are not 

subject to this presynaptic release. 

It is more difficult to explain the apparent inconsistencies with c-myc given 

the intensity of the 13-adrenergic response of this gene in vivo and the absence of 

induction in vitro. Interestingly this in vitro response is in agreement with neonatal 

myocyte culture studies of Simpson which also failed to link 13-adrenergic activation to 

c-myc, albeit in neonatal myocyte cultures (Starksen et al., 1986). It is possible then, 

that c-myc is indirectly stimulated by non-cardiac derived humoral factors following 

I3-stimulation in vivo and consequently cardiac cells would not be exposed to these 

factors during perfusion in vitro or during cell culture. This notion might be tested by 

comparing c-myc expression in cultured cardiac cells following incubation with serum 

derived from normal rats or rats previously treated with 13-adrenergic agents. Further 

studies are clearly warranted to resolve this matter. 

In the heart 13-adrenergic agonists alter a number of ionic and second 

messenger systems and among these responses probably the strongest mechanistic link 

is a rapid increase in cAMP levels and this preceeds such events as cardiac growth. For 

example, Morgan's group has demonstrated that agents such as forskolin that raise levels 
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of cAMP in the perfused heart (Xenophontos et al., 1989), also increase protein 

synthesis and ribosome formation in that tissue whilst other studies have isolated a 

number of cAMP-regulated genes that are responsive to growth factors/hormones 

(Roesler et al., 1988). Furthermore, many early-response genes including those of the 

c-fos family contain cAMP response elements in the 5' control regions. Thus taken 

together, cellular transduction pathways involving cAMP are likely mechanisms by 

which I3-adrenergic agents affect fra-2 expression in the heart. Indeed the present 

studies support this notion since perfusion of hearts with forskolin, a drug known to 

increases cellular cAMP levels, resulted in increased cardiac expression of fra-2, and 

this response was quantitatively and qualitatively similar to that observed in response to 

P-adrenergic agents. Furthermore the observed induction was specific for the 

n-responsive gene fra-2 since similar treatment did not augment cardiac levels of the 

a-responsive gene c-fos. Thus these results demonstrate that cAMP is a possible second 

messenger system linking P-adrenergic receptor stimulation to fra-2 expression in the 

rat heart. Once again further studies will need to determine whether elevation of cAMP 

levels is required for, or merely accompanies 13-adrenergic induction offra-2 in the heart 

and this could perhaps be achieved using specific inhibitors of cAMP formation or 

addition of the cAMP analogue 8-bromo-cAMP. 

iv) the effect of increased perfusion pressure on cardiac early-response gene 

expression 

Recent reports have demonstrated that experimental aortic stenosis in 

rodents leads to a rapid rise in the cardiac levels of a number of early-response genes 

and that this event is followed by increased protein synthesis and cardiac hypertrophy 

(Mulvagh et al, 1987; Izumo et al, 1988; Komuro et al, 1988). However because such 

studies have been conducted in vivo it has not been possible to determine whether 

increased load itself is directly coupled to increased gene transcription and protein 

synthesis or whether in fact these responses are mediated via secondary release of 

humoral factors either from within the heart (paracrine or autocrine) or from non 

cardiac tissue (endocrine). Accordingly, part of the work in this chapter has sought to 

discount the possible contribution of circulating humoral factors to the initial stages of 

pressure-load induced cardiac hypertrophy by examining early-response gene 
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expression in isolated hearts perfused with a serum-free medium (Krebs-Henseleit 

buffer) under increasing aortic pressure loads (60-120 mmHg). This model was 

specifically chosen since Morgan's group using this model have been able to 

demonstrate that increased stretch of the ventricular wall as a direct consequence of 

elevated aortic pressure leads to activation of early events in hypertrophy such as 

increased ribosome formation and protein synthesis (Kira et al., 1984; Morgan et al., 

1987; McDermott and Morgan, 1989). 

When the aortic perfusion pressure was increased from 60 mmHg to 90 or 

120 mmHg a significant increase in cardiac expression of c-myc, c-fos and fra-2 was 

observed with respect to hearts perfused at 60 mmHg. The induction of c-myc and c-fos 

was more rapid than observed in vivo following aortic stenosis (Izumo et al., 1988; 

Mulvagh et al., 1987; Komuro et al., 1988) and this may indicate that the stimulus in 

vitro is greater or more consistent than observed in the in vivo preparation. Interestingly 

the response of c-myc and c-fos to the increased load differed with respect to each other. 

For instance, c-myc expression is proportionally greater at 120 mmHg than 90 mmHg 

whist elevation of aortic pressure from 90 to 120 mmHg had no additional effect on 

c-fos expression. One interpretation of these results is that c-fos has a lower threshold 

of inducibility by pressure than c-myc and is thus already maximally stimulated during 

perfusion at 90 mmHg. During the course of these studies Swynghdauw's group 

published data complimentary to that presented here in which they demonstrated that 

c-myc and c-fos mRNA levels increase in the isolated perfused heart in direct proportion 

to the increase in coronary flow (Bauters et al., 1988). Since coronary flow and 

coronary perfusion pressure are directly related in non-working Langendorff 

preparations, these two studies provide preliminary evidence that increased coronary 

perfusion pressure and/or coronary flow is sufficient stimulus to increase cardiac 

early-response gene levels. 

The cardiac expression of these two genes during elevated perfusion 

pressure was further characterized at the level of each cardiac chamber. Elevation of 

perfusion pressure resulted in an equivalent induction of c-myc in all chambers of the 

heart and this probably indicates that these regions are subjected to similar loading via 

the coronary vasculature system. Regional distribution of c-fos was similar to c-myc 
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with the exception of the atria where mRNA levels of this gene were extremely low 

during elevated perfusion pressures. These results indicate that following pressure load, 

prior expression of c-fos is not a necessary prerequisite for the induction of c-myc, at 

least in the atria. Thus pathways linking pressure load and c-fos induction are either 

absent or down regulated in atrial tissue and given the inducibility of this gene in the 

atria via NE, indicates that pressure load and NE activate c-fos via alternate 

mechanisms. 

In addition to c-fos and c-myc these studies demonstrated for the first time 

that fra-2, a gene structurally related to c-fos, is inducible in the heart following 

increased mechanical load and considered with the results presented previously, they 

establish this gene as a further member of the early-response gene family responsive to 

contrasting types of hypertrophic stimulus (e.g. NE and aortic stretch). However not all 

genes structurally or functionally related to c-fos appear to be responsive to increased 

aortic pressure, since neither c-jun nor fra-1 mRNA levels were increased in the heart 

when aortic pressure was raised from 60 mmHg to 120 mmHg. The failure to observe 

increased expression of fra-1 correlates well with the observation of Chein's group who 

reported that aortic stenosis in mice does not increase cardiac expression of fra-1, 

although this treatment led to increases in cardiac c-fos, and c-jun levels (Rodman et 

al., 1991). Taken together these results provide further evidence of the differential 

responsiveness of c-fos and related families of early-response genes during hypertrophic 

stimulus and strengthens the notion that differential expression of these genes is a means 

to ensure diversity and specificity of cellular responses to extra-cellular stimuli, thus 

allowing for target gene selectivity. In contrast, the lack of responsiveness of c-jun to 

increased aortic pressure is puzzling especially considering that other groups have 

reported induction of this gene both in vivo and more recently in an in vitro study 

similar to this, in which it was shown that increasing left ventricular systolic force gave 

rise to increased ventricular mRNA levels of c-fos and c-jun (Schunkert et al., 1991). 

Such discrepancies might be explained by the differences in the nature of the load 

stimulus between different experiment systems. In the present studies increased 

early-response gene expression can most probably be correlated with the increase in 

passive systolic stretch to which these chambers are exposed. For example, elevation of 
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perfusion pressure has direct effects on the ventricular wall (and presumably the atrial 

wall) to elevate intracoronary blood volume by as much as 60% (Morgenstern et al., 

1973), to increase sarcomere length by 10% and to stretch and thicken the ventricular 

wall (Olsen el al., 1981). In contrast, in the studies of Schunkert et al., (1991) hearts 

were subjected to an acute increase in systolic wall stress by means of inflatable 

balloons in the ventricular space. It was concluded that active systolic tension, but not 

passive stretch was the major factor controlling increased cardiac early-response gene 

levels in this isolated heart model. Obviously the models used in the present studies and 

those of Schunkert and Swynghdauw do not fully mimic events which take place during 

pressure overload in vivo. Clearly further studies are needed to determine the relative 

contribution of active and passive stretch to increased cardiac early-response gene 

expression and left ventricular hypertrophy in vivo following aortic stenosis. In this 

respect however it is worthy to note that the experiments of Morgan's group established 

that intraventricular pressure development, cardiac contraction, oxygen consumption, 

glucose 6-phosphate production, energy availability and coronary flow could be 

dissociated from the stimulatory effect of higher aortic pressures on protein synthesis. 

Rather, they suggested that passive stretch of the ventricular wall as consequence of 

increased aortic pressure, could be the mechanical parameter most closely related to the 

observed increased protein synthesis (Kira et al., 1984). 

Despite the minor differences described above, the in vitro studies described 

here and those of others are supportive of the idea that increased wall stress in general is 

a potent signal for the induction of a subset of early-response genes. 

The results presented here have demonstrated that increases in circulatory 

levels of non-cardiac derived growth factors such as NE are not required for pressure 

mediated increases in cardiac early-response gene expression. Recent studies have 

demonstrated that direct stretching of neonatal myocytes in culture is sufficient to 

induce c-fos expression independent of humoral factors (Komuro et al., 1989; Komuro 

et al., 1991) and therefore it is likely that stretching of adult myocytes as a consequence 

of increased aortic pressure is the primary and direct stimulus for the observed 

early-response gene expression in the present experiments. However, as discussed 

previously, evidence is accumulating to implicate non-myocyte derived cardiac growth 

factors as major regulators of cardiac gene expression and growth. For example 
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endothelin derived from endothelial cells and a number of fibroblast-derived growth 

factors are capable of inducing early-response gene expression and hypertrophy in 

cultured myocytes (Neyses et al., 1991; unpublished data in Parker et al., 1991). 

Further studies will be needed to ascertain whether such paracrine factors are important 

mediators of early-response gene expression and cardiac hypertrophy in adult myocytes 

following pressure overload. 

The intracellular pathways by which mechanical stimulus might directly or 

indirectly stimulate early-response gene expression in the perfused heart were not 

studied in this work although results from others have implicated a number of candidate 

transducing mechanisms including PKC, cAMP, ion fluxes and direct mechanical 

connections between external and nuclear membranes. However the results from such 

studies have been less than definitive and further studies are required to fully understand 

the mechanisms of mechanical force on cardiac growth. 

v) summary 

The studies in this chapter have made use of an isolated perfused heart 

system in order to dissociate the direct and indirect affects of adrenergic hormones on 

cardiac early-response gene expression. With this model it was demonstrated for the 

first time that treatment with NE increases mRNA coding for a number of 

early-response genes in the adult heart, and that this response can be dissociated from 

the systemic hemodynamic effects often associated with this hormone in vivo. These 

results are in agreement with the in vivo studies presented earlier since they confirm 

that the majority of these responses are mediated by the a-adrenergic receptors. 

However one gene, fra-2 was also responsive to 0-adrenergic stimulation, although the 

significance of this is yet to be determined. 

In a complimentary series of experiments it was also shown that increased 

aortic pressure load in hearts perfused in the absence of NE and other growth factors, 

also elevated cardiac levels of a number of early-response genes. However, the exact 

subset of genes and the temporal, spatial distribution of the responses differed to that 

observed following treatment with NE. Taken together, and with those of previous 

chapters these studies clearly illustrate that adrenergic hormones and pressure load can 

independently regulate early-response gene expression in the adult heart. Accordingly 

then it is possible to speculate that particular subsets of these nuclear acting genes may 
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serve as common transcription factors in cellular pathways connecting adrenergic 

stimuli and mechanical activity with cellular enlargement and alterations in phenotype 

in adult cardiac myocytes and other cell types in vivo. 
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CHAPTER 6 

EXPRESSION OF PHENOTYPIC MARKERS OF CARDIAC HYPERTROPHY 

IN THE ISOLATED PERFUSED HEART.  

6.1 INTRODUCTION 

It was demonstrated in the previous chapter that adrenergic agents and pressure 

overload can independently increase early-response gene expression in the isolated 

perfused heart. Previous studies have shown that these trophic stimuli also increase 

rDNA transcription and cardiac ribosome content in the perfused heart and taken 

together they suggest that the isolated perfused heart is a suitable model system in 

which to study at least the initial stages of cardiac hypertrophy. However, cardiac 

hypertrophy is also marked by qualitative changes in the expression of specific 

contractile, and non-contractile genes whose products play important roles in cardiac 

structure and function. Such changes in gene expression appear to be characteristic for a 

particular hypertrophic stimulus. For example, a—SkA. and ANP mRNA levels are 

rapidly down regulated in ventricular tissue following birth but can be restored to levels 

similar to those observed in the neonate following imposition of pressure-overload in 

vivo (Izumo et al., 1988; Schwartz et al., 1986) or acadrenergic stimulus in the adult 

animal (this thesis; Schwartz et al., 1986) or rat ventricular myocardial cells (Bishopric 

et al., 1987). In contrast, during thyroid hormone-induced hypertrophy the expression 

of fetal-specific genes are not altered whilst the relative expression of contractile genes 

associated with the adult phenotype are even further upregulated (e.g. a-MHC: Morkin 

et al., 1983). Consequently it has been suggested (for a more detailed discussion see 

chapter 1) that such alterations in gene expression (cardiac plasticity) might be used as 

phenotypic markers of the presence and extent of particular cardiac pathologies 

observed in response to different hypertrophic stimuli. Studies in this chapter have 

sought to determine whether it is possible to detect such changes in the expression of 

hypertrophic "marker" genes including ANP, a—SkA and a-MHC in the isolated 

perfused rat heart in response to pressure-overload, adrenergic agents and thyroid 

hormone. If so, then this might establish the perfused heart as a suitable in vitro model 
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in which to study pathways that link the immediate responses to hypertrophic stimuli, 

for example, early-response gene expression, to secondary events in this process 

including qualitative changes in contractile and non-contractile genes. 

6.2 METHODS 

6.2.1 in vitro Coronary Perfused Hearts 

Hearts were isolated and perfused in the same manner as described in chapter 5. 

NE and T, were prepared as described in chapter 3 and when used, where included in 

the perfusion medium as described below. Hyperthyroidism was induced in rats by 

treating animals with T3  (0.2 mg/kg/day) for two weeks as described in chapter 3. 

6.3 EXPERIMENTAL PROTOCOLS 

6.3.1 Effect of NE and Perfusion Pressure on ANP and a-SkA Expression 

To determine whether NE alone or in combination with elevated perfusion 

pressure could modulate expression of ANP and a-SkA, hearts were perfused from 15 

min to 6 h at pressures of 60 mmHg and 120 mmHg with buffer alone or, alternatively, 

at 60 mmHg and 120 mmHg in the presence of NE (1 iiM). Following perfusion hearts 

were frozen in liquid nitrogen and processed for northern analysis as described in 

chapter 2. 

6.3.2 Effect of T3  and NE on a-MHC Expression 

To assess the effect of T3  and NE on a-MHC expression, hearts were perfused at 

60 mmHg of pressure from 30 min to 6 h with perfusion media containing T3  (1 nM) or 

a combination of T3  (1 nM) and NE (1 [tM). Following perfusion hearts were processed 

for northern analysis as described above. 

6.4 RESULTS 

6.4.1 a-SkA and ANP Expression 
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In the first series experiment hearts were perfused with Krebs-Henseleit buffer under a 

coronary perfusion pressure or 120 mm Hg for 15 min to 6 h and the subsequent 

changes in expression of c-myc, c-fos, ANP and a-SlcA measured by northern analysis 

(Fig. 6.1). As shown previously (see chapter 5) elevating the perfusion pressure from 

60 mmHg to 120 mmHg increased cardiac mRNA levels of the early-response genes 

c-myc and c-fos. Increased c-myc mRNA levels were maximal after 4-5 h of perfusion 

(Fig. 6.1) and this relatively sustained response is similar to that observed for c-myc in 

pressure overloaded hearts in vivo (Mulvagh et al., 1987). c-fos mRNA expression was 

more transient with maximal levels observable after 2 h and near basal by 6 h of 

perfusion (Fig. 6.1). However, in direct contrast, elevation of perfusion pressure from 

60 to 120 mmHg did not alter mRNA levels of the cardiac isocontractile gene a-SlcA or 

the atrial naturetic gene ANP (Fig. 6.1). These results differ from in vivo studies in 

which acute pressure overload has been shown to markedly increase ventricular mRNA 

levels for both of these genes (Izumo et al., 1988; Schwartz et al., 1986). 

In a second experiment, to establish whether NE might modulate a-SlcA mRNA 

levels, hearts were perfused for 15 min to 6 h at either 60 or 120 minHg in the presence 

of NE (111M). As shown in Fig. 6.2 hearts perfused at 120 mmHg with NE OR M) did 

not exhibit increased cardiac a-SkA mRNA levels relative to the zero time control 

although either treatment results in significant induction of the early-response gene 

program (see chapter 5). Similarly, perfusion at 60 mmHg in the presence of NE did 

not modulate a-SlcA tnRNA levels (results not shown). These results contrast with the 

in vitro studies of Simpson group who showed that cultured neonatal cardiomyocytes 

treated with NE (1 p,M) exhibit a 3-4 fold increase in mRNA levels of this gene within 

3-4 h (Long et al„ 1989). The effect of NE on ANP mRNA levels was not studied. 

6.4.2 a-MHC Expression 

It is well established that thyroid hormone can directly regulate transcription of 

a-MHC in vivo (Mandavi et al., 1989; Nadel-Ginad and Mandavi, 1989) and 

consequently it was of interest to determine whether this might also be observable in the 

isolated perfused heart. In the first experiment the basal expression of a-MHC mRNA 

was assessed in hearts perfused at 60 mmHg with Krebs-Henseleit buffer alone (Fig. 
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Fig 6.1 Expression of c-myc, c-fos, a-skeletal actin (a- Sk-actin) and atrial naturetic peptide (ANP) in rat 
hearts perfused at a constant coronary pressure of 120 mmHg. 
Total RNA was extracted from rat hearts at the various times indicated following perfusion at constant 
pressure of 120 mmHg (Lanes 1-13) with modified Krebs-Henseleit buffer. After electrophoresis and 
northern blotting, the RNA (5() pig) was hybridized to c-myc, c-fos, a-skeletal actin, ANP and 13-tubolin. 
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Fig 6.2 Expression of a-skeletal actin (a-Sk-actin) in perfused rat heart in response to norepinephrine. 

Total RNA was extracted from rat hearts at the various times indicated following perfusion at constant 
pressure of 120 mmHg with Krebs-Henseleit buffer containing 1 p.1 ■4 norepinephrine. 	After 

electrophoresis and northern blotting, the RNA (50 lig) was hybridized to a-skeletal actin and 13-tut5ulin. 



6.3, upper tracks). Hearts perfused in this manner for up to 6 h exhibited a progressive 

reduction in a-MHC expression during the course of the perfusion (5-10 fold less after 6 

h, Fig. 6.4). This was not part of a general down regulation of cardiac isocontractile 

gene expression since a-SlcA naRNA levels were not similarly reduced (results not 

shown). However, hearts perfused at the same pressure with the inclusion of T3  ( 10 nM) 

in the perfusate did not exhibit decreased a-MHC levels, rather this treatment caused a 

transient increase (2 fold) in a-MHC mRNA levels between 2-4 h of perfusion (Fig. 6.3, 

lower tracks and Fig. 6.4). Further experiments established that levels of T, as low as 

0.1 nM were sufficient to prevent a decrease in a-MHC mRNA levels during perfusion 

(results not shown). These experiments demonstrate regulation of a-MHC mRNA 

levels in the isolated perfused heart by thyroid hormones for the first time. 

In contrast to T„ the effect of adrenergic agents on a-MHC expression is less than 

clear. Studies with cultured adult myocytes have been inconclusive with some 

investigators demonstrating a positive effect of NE and 13-adrenergic agonists on 

a-MHC expression whilst others have reported no changes (Dubus et al., 1990; Rupp et 

al., 1991). However, when hearts were perfused in the presence of NE (1 gM) alone a 

progressive reduction in a-MHC mRNA was still observed (results not shown) 

indicating that NE alone is insufficient to prevent down regulation of cardiac a—MHC 

mRNA in the absence of T,. Since any potential NE-mediated regulation of a-MHC in 

the perfused heart may be obscured by the down regulation of this gene observed during 

the absence of T„ hearts were subsequently perfused with NE (1 i.tM) in the presence of 

T, (1 nM) and a-MHC mRNA expression compared to hearts perfused with T, alone 

(perfusion control). As before, hearts perfused with T, exhibited a moderate, transient 

increase in a-MHC mRNA levels (2 fold) after 1-2 hours of perfusion (Fig. 6.5, Lanes 

2-7 and Fig. 6.6). However when NE was also included in the perfusate a-MHC 

mRNA levels were rapidly and transiently increased to levels markedly above those 

observed in response to T, alone but returned to basal by 3 h of perfusion (Fig. 6.5, 

Lanes 8-13 and Fig. 6.6). The level of maximum expression (5-8 fold) was similar to 

that observed in hyperthyroid rats (Fig. 6.5, Lane 1). Perfusion with T, did not elevate 

mRNA levels of c-fos (Fig. 6.4, Lanes 2-7) or c-myc (results not shown) with respect to 
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Fig 6.3 Expression of a-myosin heavy chain (a-MHC) in perfused rat heart in response to 
triiodo-L-thyronine. 
Total RNA was extracted from rat hearts at the various times indicated following perfusion at constant 
pressure of 60 mmHg (upper track) with Krebs-Henseleit buffer or buffer containing 10 nM 
triiodo-L-thyronine (lower track). After electrophoresis and northern blotting, the RNA (50 i.tg) was 
hybridized to an a-myosin heavy chain probe . 
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Fig 6.4 Quantification of a-myosin heavy chain (a-MHC) mRNA levels in the perfused heart in response 
to triiodo-L-thyronine (TO. 
The hybridization signals observed by northern blotting in Fig. 6.3 were quantified via densitometry and, 
after standardization to 13-tubulin levels (not shown) in each track, were expressed as percentage change 
from basal levels of RNA observed in euthyroid animals. Vertical bars indicate standard deviation. 



Lane 	 1 2 3 4 5 6 7 8 9 10 11 12 13 
Tune 	 30' 1 h 1.5 h 2 11 2.5 h 3 h 30' 1 h 1.5 h 2h 2.5h 3h 

c-fn 
	 4N*411111111111111111 

-■ Olt OP inow 110 Aro op Opp 410, low 

p-tubulin 	I lag. "pep iv go alo 411P 	gip op qv gip 

L--J1 	 11 	 1 
I lyper 60 min I Ig + T3  nm) 60 mm Hg +  T3  (1nM) + NE (I Al) 

PERFUSED 

Fig 6.5 Expression of c-fos and a-myosin heavy chain mRNA in perfused rat heart in response to 
triiodo-L-thyronine alone and in combination with and norepinephrine. 
Total RNA was extracted from rat hearts at the various times indicated following perfusion at constant 
pressure of (60 mmHg) with Krebs-Henseleit buffer containing triiodo-L-thyronine (1 nM) alone (Lanes 
2-6) or with triiodo-l-thyronine (m M) and norepinephrine (1 mM, Lanes 8-13) . Lane 1 contains RNA 
extracted from a hyperthyroid rat as the result of treatment with 2 p_g/kg  of  T3  for 7 days. After 
electrophoresis and northern blotting, the RNA (50 jig) was hybridized to c-fos, a-myosin heavy chain 
and p-tubulin. 
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Fig 6.6 Quantification of a-myosin heavy chain expression in perfused hearts in response to 
triiodo-L-thyronine alone and in combination with norepinephrine. 
The hybridization signals generated by northern blotting in Fig. 6.5 were quantified via densitometry and, 
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hearts perfused with buffer alone and this is in accordance with in vivo observations 

presented earlier (see chapter 3). However, T, was not able to prevent increase in the 

early-response gene program elicited by NE since c-fos levels (Fig. 6.5, Lanes 8-13) 

were significantly elevated within 30 min of co-perfusion with T, and NE and were still 

above basal after 3 h. The expression of other early-response genes during this treatment 

was not studied. 

These results indicate that the continuous administration of NE (1 mM) in the 

presence of T, (1 nM) in the isolated perfused heart leads to a rapid and transient 

accumulation of a-MHC mRNA with respect to hearts treated with T, alone. 

Furthermore, the increased contractile gene expression is preceded by induction of the 

early-response gene program. Further studies are require to determine which 

component of NE action (i.e. a or 13 ) is responsible for induction of a-MHC and 

whether the prior induction of the early-response gene program is a necessary 

prerequisite. 

6.5 DISCUSSION 

Cardiac hypertrophy observed in response to administration of adrenergic agents, 

thyroid hormones or following pressure overload appears to be a coordinate process 

involving both quantitative and qualitative changes in protein expression. Protein 

products that might have pivotal roles in regulating these processes include those of the 

early-response gene families and the induction of some of these putative trans-activating 

factors following hypertrophic stimuli have been clearly demonstrated in the proceeding 

chapters both in vivo and in an isolated perfused heart system. The latter model has the 

distinct advantage in that the complex systemic interactions associated with many 

hypertrophic stimuli can be dissociated, however, it is yet to be formally demonstrated 

whether qualitative changes in expression of cardiac structural or functional genes can 

be observed in this system following treatment with hypertrophic agents. Accordingly 

the studies in this chapter have examined the acute expression of a number of 

structurally or functionally important cardiac genes including ANP, a-SkA and a-MHC, 
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in the isolated perfused heart system in response to NE or T, administration or elevated 

coronary perfusion pressure. 

i) expression of ANP and a -SkA in response to pressure load and/or NE 

ANP and a-SkA naRNA are normally expressed at low levels in the left ventricle 

of untreated adult rat hearts however their mRNAs rapidly accumulate in this chamber 

following imposition of aortic stenosis. a-SkA and ANP mRNA levels have also been 

shown to be rapidly upregulated in neonatal ventricular myocyte cultures (Knowlton et 

al., 1991; Chien, et al., 1991) and in whole hearts in vivo in response to chronic 

administration of NE (this thesis). However in these .experiments elevation of perfusion 

pressure from 60 mmHg to 120 mmHg did not increase mRNA levels of either ANP or 

a-SkA at any time point with respect to zero time control. Similarly inclusion of NE in 

the perfusion buffer for periods up to 6 h did not elevate ANP or a-SkA mRNA levels 

(ANP levels not shown) above those observed in control hearts. 

A reason for this lack response for these two genes in this experimental system is 

not clear although a number of plausible explanations exist. For instance it is possible 

that the length of perfusion time (6 h) was insufficient to allow for any appreciable 

increase in mRNA to be observed. However, other groups have demonstrated that 

a-SkA transcripts, at least, are observable within 1-3 h following the initiation of acute 

pressure overload or following NE treatment (Black et al, 1991). It is important to note 

though, that the acadrenergic mediated induction of a-SlcA observed by Simpsons 

group was studied in a neonatal myocytes culture system, the responses of which may 

differ greatly with myocytes in the adult heart in vivo (for further discussion see chapter 

1). Alternatively the apparent lack of induction may be due to possible quantitative and 

qualitative differences in hypertrophic stimuli experienced by the heart perfused in vitro 

with respect to hearts in vivo. For example it is possible that pressure- or NE-induced 

expression of ANP or a-SkA in adult hearts in vivo requires the presence of a 

permissive serum derived factor that would be absent during in vitro perfusions. 

Finally, since the northern blots presented here represent RNA extracted from whole 

hearts including the atria, the constitutively high level of expression of ANP in atria 

may mask any subsequent changes in expression of this gene in the ventricles. Further 

studies will need to examine the expression of these genes at a regional level either by 
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gross dissection and northern analysis or alternatively by in situ hybridization or 

immunohistochemistry. 

ii) expression of a -MHC in response to NE and/or T3  

A large body of evidence now exists implicating thyroid hormone in the direct 

regulation of a-MHC transcription (see chapter 1) however the role of adrenergic agents 

in modulation of this gene is not known. Part of this lack of understanding probably 

stems from the close interrelationships between these two hormones since recent studies 

have demonstrated that thyroid hormones can directly up regulate 13-adrenergic 

receptors at the level of transcription. Results from cell culture have been conflicting 

and do not always agree with in vivo studies (Buttrick et al., 1993). For instance, it has 

been reported that activation of adenyl cyclase accompanies a-MHC mRNA (Gupta et 

al. 1991) but these studies are contrary to the earlier work of Gustafson (Gustafson et 

al., 1987). Furthermore, contractility has been reported to regulate cardiomyocyte MHC 

content yet many studies are performed variously with beating or arrested cells. Thus it 

would appear that the outcome of such experiments in neonatal and adult myocyte cell 

cultures are dependent in large part on differences in culture conditions. In the present 

experiments the effect of T, and NE on a-MHC mRNA levels was examined in isolated 

perfused hearts. When hearts were perfused in the absence of T, and NE a rapid 

decrease in a-MHC mRNA was observed during the perfusion time course. However 

the reduction in a-MHC mRNA levels could be prevented by the inclusion of T, alone 

but not NE alone, in the perfusate. These findings underline the importance of T, in the 

regulation of basal a-MHC levels in the rat heart and demonstrate that NE by itself is 

insufficient to maintain a-MHC expression in the absence of thyroid hormone. 

Interestingly, when hearts were perfused with T, and NE together a transient rise in 

a-MHC was observed above that seen in response to T, alone. These results indicate 

that NE is able to potentate the effect of T, on a-MHC expression and agree with recent 

work of Leinwands group (Buttrick et al., 1993) suggesting that the thyroid hormone 

response element is not sufficient for complete regulation of a-MHC in vivo. Further 

studies will need to determine which component of NE action (a or 13) is responsible for 

the observed induction of a-MHC and to identify potential cis- and trans-acting 
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elements involved in this process. This might be achieved by transfecting myocytes in 

culture with appropriate vectors or direct gene transfer into adult rat hearts ( Kitis et al., 

1991; Buttrick et al., 1993 ). In addition it will also be important to assess the 

significance of the transient a-MHC mRNA induction since presumably a more 

sustained elevation of this transcript is required in order to significantly affect cardiac 

a-MHC protein levels and subsequent cardiac performance. 

iii) Summary 

a-SkA and ANP are rapidly inducible in the rat heart in vivo following aortic 

stenosis or NE treatment, however no change in expression in either of these genes was 

observed in these experiments in isolated hearts perfused under elevated pressure or in 

the presence of NE. The reason for this apparent conflict in results is not known but 

it may be due to experimental design or temporal restrictions pertaining to the perfused 

heart system. Further studies are required in which the expression of these two genes 

are studied at a regional level either by in situ hybridization or immunohistochemistry. 

In contrast a-MHC mRNA levels rapidly diminish during perfusion with 

Krebs-Henseleit buffer but can be restored to levels similar to control animals in vivo by 

including T, in the perfusate. NE alone had no effect on a-MHC expression but when 

used in conjunction with T, a rapid and transient increase in a-MHC mRNA was 

observed. The mechanism by which NE potentated the effect of T,, on a-MHC 

expression is not know but warrants further investigation. These preliminary studies 

provide the first evidence that the isolated perfused heart system can be used to assess 

not only the primary responses to hypertrophic stimuli (e.g. early-response gene 

expression) but also changes in expression of structural genes which are often used as 

end point markers of different hypertrophic phenotypes. 
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CHAPTER 7  

GENERAL DISCUSSION 

Despite the recent advances with investigative techniques the molecular 

mechanisms which regulate the development and growth of the mammalian heart 

remain poorly understood. This is due in part to the fact that cardiac biogenesis is a 

complicated process involving cell proliferation, cell commitment, cell differentiation 

and chamber diversification. Furthermore, at each of these stages the heart exhibits an 

array of different phenotypes due to alterations in expression of genes thought to be 

critical to cardiac structure and function. 

In contrast to embryonic development in which the myocytes undergo proliferative 

growth (hyperplasia), the major contributor to postnatal enlargement of the mammalian 

heart is an increase in size (hypertrophy) of a fixed number of myocytes. In addition, the 

adult heart can hypertrophy above that normally expected, in response to a diverse range 

of physiological and pathological stimuli including increased pressure and mechanical 

load or in response to changes in hormone levels and following ischemia. In the initial 

stages, the growth is generally seen as an adaptive response of the organism, however, 

during latter stages it may be insufficient to cope with the increased demand or is 

associated with pathological changes, such that the heart ultimately fails. The exact 

reasons why growth of the heart changes from one of compensatory hypertrophy to a 

stage of decompensation are not completely understood although it is known that this 

transition is accompanied by further changes in cardiac phenotype. For example, 

hypertrophy mediated by vasoactive hormones or pressure-overload is characterized by 

re-expression in the left ventricle of a group of genes including ANP, oc-SkA and Ca2+  

ATPase whose expression is normally restricted to the fetal or neonatal heart (de la 

Bastie et al., 1990; Izumo et a/., 1988; Schwartz et a/., 1986) It is thought that changes 

in the expression of these so called "phenotypic marker genes" are at least partly 

responsible for the different metabolic, contractile and electrochemical properties of this 

organ observed during various cardiac hypertrophic diseases (Reviewed in van Bilsen 

and Chien, 1993). It follows then that the elucidation of the molecular signals which 

regulate these phenotypic changes should allow for a better understanding of the general 
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mechanisms which regulate cardiac growth and development and have far reaching 

implications for clinical treatment of heart disease. Accordingly, the work embodied in 

this thesis has examined the expression of a group of nuclear-acting early-response 

genes including c-myc and c-fos whose actions have been suggested to be pivotal to the 

initiation and maintenance of cardiac hypertrophy and the accompanying phenotypic 

changes, often by analogy to their involvement in growth and differentiation in other 

tissues. The effect of two hypertrophic hormones, NE and T, on cardiac nuclear-acting 

early-response expression was studied since these agents have been shown to cause 

hypertrophy which differs both quantitatively and qualitatively from each other 

suggesting that alternative mechanisms of action may be involved in modulating each 

growth response. 

The results presented in this thesis have demonstrated that c-myc, c-fos and genes 

structurally or functionally related to c-fos including fra-1, fra-2 and c-jun are rapidly 

and transiently induced during NE mediated cardiac hypertrophy. By use of the isolated 

perfused heart system to model the initial stages of adult cardiac growth it was also 

shown that NE can elevate expression of these genes in the absence of elevated pressure 

load, thus supporting results derived from neonatal cell culture studies which have 

demonstrated that adrenergic hormones can effect cardiac growth and early-response 

gene expression independent of mechanical stimuli (for review see Simpson et al., 

1991). Increased pressure load and NE stimulation of adult hearts resulted in the 

induction of both distinct and similar sets of early-response genes indicating that these 

stimuli may share some pathways coordinating cardiac growth whilst others may be 

more specific for each stimuli. Interestingly the induction of these genes in response to 

NE and pressure load showed regional, temporal, cellular and receptor mediated 

specificity thus providing a possible mechanism by which these putative transcription 

factors might coordinate hypertrophic signals at the cell surface to the complex array of 

long term changes observed during cardiac hypertrophy. For example, the observation 

that c-fos expression following NE/pressure stimulation was localized mainly to the 

myocyte nuclei of the left ventricle is in good correlation with the observation that 

myocyte growth and re-expression of the fetal gene program is also greatest in this 

chamber (reviewed by Chien etal., 1991) and supports the hypothesis that this gene may 
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be important in regulating the genetic reprogramming of myocytes following NE 

mediated hypertrophy. 

In direct contrast, c-myc expression was restricted mainly to non-muscle cell types 

following NE administration and pressure overload thus reducing the likelihood that this 

gene plays a direct role in orchestrating the growth and phenotypic changes of adult 

myocytes. It is possible that this gene is involved in coordinating the mitogenic growth 

of non-muscle cell types such as fibroblasts which occurs concomitant with myocyte 

hypertrophy during cardiac growth. It is worthy to note however, that myocytes are not 

the only cardiac cell type which exhibits specific alterations in gene expression 

following trophic stimulation. For example, cardiac fibroblasts can acquire certain 

properties characteristic of the myocyte phenotype such as expression of sarcomeric 

actin and muscle-specific actin filaments following stimulation with peptide growth 

factors and it is possible that both c-myc and c-fos may be involved in regulating such 

gene reprogramming (Eghbali et al., 1991A). Indeed the importance of non-myocyte 

cell types to the regulation of cardiac structure and function is indicated by recent studies 

implicating transforming and fibroblastic growth factors including TGF13, aFGF and 

bFGF released from fibroblasts in the regulation of cardiac myocyte hyperplasia, 

differentiation and hypertrophy (for review see Cummins et al., 1993). More over, one 

of these growth factors, TGFP 1 , appears to be critical to the regulation of collagen 

biosynthesis, the inappropriate accumulation of which, has been implicated in 

hypertrophic myocardial fibrosis (Eghbali et al., 1991B). It remains to be seen as to the 

role of early-response gene expression in regulating this and other non cardiac myocyte 

cell functions although one recent report indicates that collagen biosynthesis in 

hypertrophying hearts may be independent of the fibroblast response to transcription 

factors such c-fos, and c-jun (Eghbali et al., 1991 B). 

Multiple factors have been shown to cause cardiac hypertrophy in vivo including 

administration of thyroid hormones (Sanford et al., 1978; Clarke and Ward, 1983) 

Similarly in this study chronic treatment of rats with thyroid hormone resulted in 

significant hypertrophy within 2-3 days. In contrast to adrenergic administration 

however, thyroxine treatment was not accompanied by increased c-myc, c-fos, c-jun or 

fra-1 levels. In agreement with this the recent study by Green also failed to detect 
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increased c-myc expression following T3  administration (Green et al., 1991) . Taken 

together these results indicate that induction of this particular set of early-response genes 

is not an absolute requirement for the initiation and maintenance of cardiac hypertrophy 

and that alternative pathways must link the thyroid receptor with nuclear events 

regulating myocyte growth and gene transcription. For example, thyroid hormones have 

been shown to directly affect the transcription of a number of genes (e.g. a—MHC, 

13-adrenergic receptor) by interaction of the thyroid receptor with cis-acting elements in 

their 5' regions (Bahouth, 1991; Nadal Ginard and Mandavi, 1989) and it is possible that 

this hormone may affect transcription of other genes important to the cardiac 

hypertrophic response by a similar mechanism. Unexpectedly, and in contrast to other 

early-response genes investigated, administration of thyroxine led to a gradual rise in 

fra-2 mRNA. Whether this early-response gene is a permissive factor for thyroid 

hormone induced hypertrophy is not known and the ability of thyroxine to positively 

modulate expression of members of the c-fos gene family has not been previously 

reported although recent studies suggest that the thyroid receptor can interact with AP-1 

to affect its transcription activity (Lopez et al., 1993). Further studies are required to 

determine if this is a direct transcriptional effect of the activated thyroid receptor on 

fra-2 expression or whether increased fra-2 levels are secondary to T3  mediated 

alterations in cardiac contractility or activity of hormonal factors. 

Thyroid hormone mediated cardiac hypertrophy is phenotypically different to 

pressure/NE mediated growth in that it is not accompanied by re-expression of the fetal 

genes and this is entirely constant with the hypothesis that re-expression of this fetal 

gene program requires prior expression of a certain panel of early-response genes such 

as Fos and Jun. Alternatively, increased early-response gene expression following NE 

treatment or pressure overload may be a coincidence unrelated to myocyte growth or 

qualitative alterations in gene expression. Indeed the evidence presented here and those 

of others implicating a role for Fos and Jun in cardiac myocyte growth and genetic 

reprogramming following NE administration or pressure-overload has come from 

correlative studies. Future studies will need to formally demonstrate both in vitro and in 

vivo that these transcription factors can directly alter cardiac myocyte gene expression. 

With respect to this, some recent evidence supporting such a function has been obtained 
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using neonatal myocyte cultures. In the studies of Bishopric et al., 1992 expression 

vectors encoding c-fos and c-jun were used to analyze the role of these early-response 

genes in mediating the transcriptional induction of a-SkA by adrenergic stimulation. 

They were able to demonstrate that over expression of Fos/Jun trans-activated the fetal 

isoform a-SkA promoter 5 fold but did not affect transcription of the a-MHC promoter, 

an isoform associated with the adult heart. These results suggest a direct role for these 

genes in regulating a-SkA expression and more generally in cardiac actin isoform 

switching. However not all transfection studies with neonatal myocytes cultures 

support a positive role for early-response genes in trans-activating the fetal gene 

program. For example McBride et al., (1993) demonstrated in transient co-transfection 

assays that Jun, Fos, Fra-1, Fos-B and v-Fos trans-repress the ANP promoter 5-10 fold 

in both quiescent and a l -adrenergic stimulated atrial and ventricular myocytes. Deletion 

analysis indicated that repression did not require typical AP-1 binding sites or serum 

response elements but was targeted at a cardiac specific element within the ANP 

promoter. Furthermore, repression by Jun occurred via the N-terminal activation domain 

and did not require the DNA binding domain suggesting that AP-1 repression involved 

interaction with one or more limiting cardiac-specific factors. Thus, although 

stimulation of neonatal cardiomyocytes with acadrenergic agents induces cellular 

hypertrophy and increased AP-1 activity and ANP expression, induction of ANP in this 

model must result from activation of a Fos/Jun independent pathway. The above studies 

have provided the first evidence indicating that Fos and structurally or functionally 

related genes can have both positive and negative effects on the transcription of the 

cardiac gene program. A similar ability of Fos/Jun to both trans-repress and activate has 

been observed in other systems (Shaw et al., 1989; Schule et al., 1990; Gius et al., 1990; 

Lucibello et al., 1990). It remains to be seen however, whether these transcription 

factors are functional in other models of neonatal myocyte hypertrophy (ie: stretch or 

growth factor induced) or indeed if similar mechanisms of action are conserved in the 

more relevant adult myocytes in vivo. As a first step in addressing these questions it is 

important that similar transient transfection assays to those performed in the neonatal 

myocyte system be performed in primary adult myocytes cultures, although the greater 

inherent problems in maintenance of the more mature cells dictates that these 
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experiments will be considerably more difficult. Even so, recent studies have 

demonstrated that recombinant adenovirus can efficiently transfer reporter gene 

constructs into adult ventricular myocytes although the appropriate experiments 

examining the effects of putative regulators have yet to be undertaken (Kirshenbaun et 

al., 1993). Even if such transfection experiments are fruitful it will still be necessary to 

determine their relevance to the physiological and pathological growth of the cardiac 

myocyte in vivo. 

One possible alternative model in which to close the gap between the observations 

of molecular and cellular biologists in vitro and the pathophysiological effects of growth 

pathways on cardiac hypertrophy in vivo is the use of transgenic animals (reviewed by 

Sigmund, 1993). To achieve this it will be necessary to fuse the gene of interest, in this 

case early-response genes such as c-fos, to transcriptional control elements which confer 

myocyte-specific expression. Following integration of this construct into the genome of 

the animal, it will be possible to examine the effect of hypertrophic growth stimulation 

on the expression and function of the target gene in the context of the whole heart. To 

date a diverse panel of cardiovascular genes whose regulatory sequences confer tissue 

and/or inducible expression to a heterologous protein have been identified (for reviews 

see Hunter et al., 1993; Sigmund, 1993). 

Gene "knockout" experiments may also prove to be a powerful approach to the 

study of cardiac hypertrophy. For example, recently mice lacking a functional c-fos 

gene have been created using embryonic stem cells targeted by homologous 

recombination at the c-fos locus (Johnson et al., 1992). Interestingly this mutation is not 

lethal, rather it causes a wide range of phenotypic deficiencies with some of the 

homozygous mutant animals surviving for over 7 months. Such animals would be ideal 

models in which to determine whether c-fos is important in the regulation of genes 

thought to be structurally or functionally important to the hypertrophying heart. 

Similarly mice lacking functional fra-1 or fra-2 genes may become available and 

together these mouse models should become increasingly important in the search for 

regulators of cardiac development, growth and disease in the future. 

One difficulty with the models outlined above is their high cost and excessive 

time required to generate the new animal lines. A possible novel alternative to these 
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systems is the direct injection of expression/reporter constructs into adult hearts in vivo 

(Buttrick et al., 1992; Kitsis et al., 1991; Acsadi et al., 1991; Lin et al., 1990). Indeed 

preliminary reports already exist demonstrating the utility of direct injection technique in 

mapping cis- and trans-acting factors involved in cardiac specific gene expression 

(Buttrick et al., 1993; Kitsis et al., 1991). Using this technique it may be feasible to 

determine the importance of early-response gene expression to the structure and 

function of cardiac myocytes in vivo. 

The studies in this thesis and the majority of those in the current literature have 

focused on the molecular signals linking trophic stimuli to the altered expression of 

specific subsets of phenotypic marker genes seen as being important to the myocyte 

structure and function during hypertrophy. However, for a number of reasons caution 

has to be used in extrapolating the significance of these results to the human situation. 

Firstly, it is now becoming evident that the phenotypic changes in the adult human heart 

following hypertrophic stimuli are not necessarily the same as those in small rodents. 

For example in rats a-SkA is present in extremely low levels in the normal adult left 

ventricle but following pressure overload the rnRNA and protein levels of this gene rise 

dramatically (Schwartz et al., 1986) . In contrast a-SkA remains expressed at quite high 

levels in the human left ventricle throughout life (Gunning et al., 1983; Vandekerckhove 

et al., 1986). Such observations underline the fact that cardiac hypertrophy is 

qualitatively different between species and raises the question as to the relevancy of 

delineating pathways leading to increased a-SlcA in the rat heart in terms of cardiac 

hypertrophy of the adult human heart. Secondly, the use of certain genes traditionally 

seen as being prototypical markers of pathological hypertrophy may have to be revised. 

For example, decompensated hypertrophy associated with chronic pressure overload in 

rats is characterized by re-expression of ANP, a-SlcA and Ca 2+ ATPase in the left 

ventricle (Feldman et al., 1993). However when hypertrophy of the left ventricle is 

reduced to a level similar to that of the normal heart by use of levels of angiotensin 

converting enzyme inhibitors which do not reduce the pressure load on the heart, only 

the level of Cal  ATPase is reduced (Lore11 et al., 1993). Such findings indicate that 

Ca' ATPase closely correlates with decompensated hypertrophy whilst ANP and 

a-SlcA may simply be markers of pressure load per se. These studies clearly 
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demonstrate the importance of defining exactly which sets of genes are important in 

contributing to the altered performance of the heart during physiological and 

pathological hypertrophy so that the ability of putative transcription factors such as c-fos 

and c-fun, to modulate their expression can be tested in the appropriate model systems. 

In addition to the qualitative changes in gene expression discussed above, postnatal 

cardiac growth is also characterized by a general increase in myocyte protein synthesis 

and it is this trophic process which accounts for the increase in myocyte size (reviewed 

by Morgan et al., 1987). Increases in general protein synthesis have been shown to 

occur as the result of raised myocyte cellular capacity to produce protein viz., an 

increase in cellular ribosome content (McDermott and Morgan, 1989; Siehl etal., 1985). 

In turn increased ribosome biogenesis is largely due to elevated ribosomal DNA 

(rDNA) transcription and accelerated rates of transcription can be observed within 12 h 

following hypertrophic stimuli (McDermott et al., 1991 and references there in). The 

mechanisms by which rDNA transcription is controlled are relatively poorly understood 

although recent studies indicate that at least two transcription factors, UBF and SL-1 in 

addition to polymerase 1 are required for efficient transcription from vertebrate rDNA 

promoters (reviewed by Xie and Rothblum, 1993). It is feasible then that early-response 

genes such as c-fos may be involved in coordinating this response by directly binding 

to the promoter region of the 45S gene and interacting with the initiation factors to 

modulate transcription. Indeed, putative AP-1 consensus sequences have been identified 

in the promoter regions of the 45S gene (Rothblum, L. I., pers. comm.). Alternatively 

early-response genes may be involved in trans-inducing the rDNA transcription factors 

themselves. In support of this UBF mRNA and protein is rapidly induced in response to 

hypertrophic stimuli such as norepinephrine in neonatal myocyte cultures and this 

induction is preceded by c-fos expression (Rothblum, L. I., pers. comm.). Further 

studies are require to identify the molecular mechanisms involved in regulating rDNA 

transcription and to determine possible roles of nuclear acting early-response genes in 

this process. It will be interesting to determine whether cardiac rDNA transcription and 

qualitative changes in gene expression are regulated through similar or distinct pathways 

during NE-mediated cardiac hypertrophy. In contrast, the results presented here indicate 
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that c-fos and c-jun are probably not involved in regulating general protein synthesis 

during T3  mediated cardiac hypertrophy. 

In conclusion this thesis has demonstrated that c-fos, c-jun and related proteins of 

the AP-1 complex fullfill the temporal, spatial and cellular-specific requirements 

necessary for transcription factors proposed to be active in the initiation and 

maintenance of NE mediated cardiac hypertrophy in vivo. These physiologically 

relevant studies are of increasing importance in light of recent in vitro neonatal myocyte 

experiments demonstrating that c-fos and c-jun can directly regulate the expression of 

genes thought to be structurally and functionally important to the hypertrophic response 

of the heart following NE administration and pressure overload. Future studies will need 

to examine the ability of the heart to initiate cardiac hypertrophy following inhibition of 

c-fos and/or c-jun expression using transfection studies in vitro or by transgenic and 

direct injection techniques in vivo. In contrast the prototypical early-response gene, 

c-myc is localized to non-myocyte cell types following NE administration making it 

unlikely that this gene has a direct role in regulating adult myocyte hypertrophy. Further 

studies are required to determine if this gene is involved in potentiating the growth and 

function of non-myocyte cell types which occurs concomitant with cardiac myocyte 

hypertrophy. 
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