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Abstract

The subject of this thesis is a combinatoric method developed by the author
to calculate the gravitational contributions to the anomalies in the chiral_
currents of spin 1/2 and spin 3/2 fields in arbitrary space-time dimensions.
Using general arguments it is possible to reduce the work involved in
finding either of these contributions to the evaluation of a single one-loop
Feynman diagram. It is a straightforward matter to calculate the loop
momentum integral in this diagram, but one is then faced with the daunting
task of summing the remaining function of the external momenta over all
permutations of the external graviton legs. Chapter 4 outlines a notation by
which the quantities relevant to this sum may be described. This notation is
then used to show that recurrence relations exist between certain of Fhe
quantities in different dimensions. By solving the recurrence relations one
finally arrives, with the aid of contour integral methods, at expreséions

for the spin 1/2 and spin 3/2 anomalies in terms of Bernoulli numbers.

The calculation of the spin 3/2 anomaly is complicated by the presence of
gauge degrees of freedom in the Rarita-Schwinger tensor-spinor field. In the
conventional Rarita-Schwinger formulation of spin 3/2 theory both the
calculation of the spin 3/2 anomaly and a proof of its gauge independence
are practically impossible due to the involved forms of the propagator and
vertices. However, the Rarita-Schwinger formulation is not}the only
formulation of spin 3/2 field theory. In fact there exists a one-parameter
family of possible formulations. As it happens, one of these formulations is
particularly suited to a calculation of the spin 3/2 anomaly, while in
another of them the gauge-independence of the anomaly is made manifest. I
therefore adopted these two formulations when calculating the spin 3/2
anomaly and demonstrating its gauge—independence, and the work of this
thesis is based on the assumption that the spin 3/2 anomaly remains the same
in different formulations. Since all formulations within the one-parameter
family may be reached from the Rarita-Schwinger formulation via linear
transformations of the field variable, this assumption is entirely

reasonable.
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CHAPTER 1. Anomalies or Quantum Mechanical Symmetry Breaking

When fermions are coupled to gauge fields in a quantum field theory
interesting and important affects may occur. These effects are tied to the
presence in the theory of so-called anomalies. In this chapter I will
attempt to summarize our present theoretical understanding of anomalies and
review the methods of anomaly calculation. In order to introduce the subject
let me briefly describe what anomalies are., As Jackiw has explained [1], a
quantum theory is not a free?standing, self-contained structure. To create a
quantum theory one begins Vith a classical theory and then quantizes it. The
quantization may be effected either by imposing canonical commutation
relations upon the field o.perators [2], or by following'the path integral
procedure [3]. Many of the properties of the classical theory are shared by
the corresponding quantum theory. For instance the fields in each case carry
the same numher of dynamical degrees of freedom, and the structures of the

interaction terms are identical.

Prior to the discovery of anomalies it was generally believed that the
quantum theory also shares the symmetry properties and conservation; laws of
‘the classical theory. It was thought that if the classical theory 1s
invariant under a set of symmetry transformations’, and possesses a corresp-
onding set ot conserved currents. the quantum theory will admit the same
invariances and will contain an identical set of conserved currents. We now
know that this is not always so. Sometimes the quantization procedure does
not respect the classical symmetries of a theory and the consequent symmetry
breakdown manifests - itself in the appearance of non-classical terms 4in the
.current "conservation equat_ions. These terms, which are thrown up in passage
from a classical to-a qua'ntum theory, are called anomalies. They are invar-
iably associated with divergences in the quantum theory, and consequently
they do not become mathematically well defined until the infinities in the
theory are. tamed by means of some regularization procedure. In fact the
‘position in which an anomaly occurs in a theory, and even the actual form of
. the anomaly, will be determined by the regularization procedure that is
employed. In spite of this, the anomaly is not a product of the regulariz-

ation process. Rather,' the presence of an anomaly is signalled at a



calculational level by the f_act that it is impossible to find a regulariz-

ation scheme which respects all the classical symmetries of the theory.

The na@e "anomalies":éuggeéngthe'surpriSe which attended the discovery.of‘
the sort of symmetry bteéki;gfdéscrfbed ébove. It was almost universally
accepted in tﬁe past that classical éymmetries would persist unchanged in
the corresponding>quantum theory. Nevertheless, anomalous symmetry breaking
is not without its histbrical-:antecedents. We shall see below that anomalies
occur in quantum field theories when the field operators do not form
faithful representations of classical symmetry groups, but instead form
repreéentations only up to phase factors. Such representations are termed
"projective" and quantum mechanics makes use of them as well. For instance,
anomalous symmetry breaking in Yang-Mills theories is paralleled by the
Block phenomenon in Schrodinger theory [4]. In the latter case a periodic
Hamiltonian H(xr) = H(r+a) gives rise to wave functions which are péfiodic
only up to a phase W(r)'=_exp(&ik°a)w(r+a), and the energy spectrum exhibits
a band structure. Exémples such as this have prompted Jackiw to suggest [1]
that a better name for énomalous symmetry breaking would be quantum
mechanical symmetry breaking;vThis alternative term would better call to
mind the close connection between anomalies and such effects as the Block
phenomenon [4] and spontaneous magnetizafion [5] in quantum mechanics,'and

8-vacua and solitons [6;7].in>quantum field theory.

Since their discovery by Adler [8] and Bell and Jackiw [9] in 1969 anomalies
have assumed an increasingly important place in quaﬁtum fieldvtheorieé, and
in gauge theories in partiduiar. Though they began simply as a curious
inconsistency of meson theory in the context of pion deéay, the;rvapplicat—
ions now extend to most areas of theoretical elementary partiéle physics.
There areas include low ené;gy theorems for QCD [10], renormélizability and
unitarity of gauge theories [11], the U(1) [12] and CP {13] problems,
composite models [14], solitons [15], baryoh theory [16], monopoles [17} and
superstrings [18]. This large catalogue of applications téstifies to the
enormous amount of research carried out into the nature of anomalous
symmetry breaking. However, despite the effort expended, it 1s still not
possible to satisf&ctorily'answer the questions: why 40 anomalies occur? whj

does the quantizatibn'procedure sometimes break classical invariances? In



this introductory chapter of my thesis I have not attempted to compile a
chmprehensive listing of anomalies” applications in quantum field theory.
guch listings may be found elsewhere [19]). Rather, I have tried to paint a
picture of our present incomplete understanding of anomalies. In doing so 1
have found it convenient to treat the methods which are currently at our
disposal for analysing anomalies under three headings, according to whether
they were by nature algebraic, topological or calculational. In such a large
subject these divisions tend to be artificial. However any others were even
_1ess attractive. I conclude the chapter by considering briefly the most

important applications of anomalies within elementary particle physics.

1.1 Algebraic Theory

Anomalous symmetry breaking was originally discovered in perturbative
calculations., In 1969 Alder [8] and Bell and Jackiw [9] separately
‘encountered thepanomalous-behaviour of the famous triangle diagram, and
l,calculated the value of the associated ABJ anomaly. They concluded that the
anomaly was due to the dipergent nature of the triangle diagram and that its
Qalue:could'be foond by correctly regularizing the theory. Soon after this,
Jackiw employed current algebra techniques to dembnstrate that anomalous
effects connected with the triangle diagram were. also attributable to the
presence of . non—canonical Schwinger terms in current commutators. {20]. It
was possible to derive the Schwinger terms using general arguments which
made no reference to regularization procedures. These two approaches to
. anomalies, the calculational ‘and the algebraic, were subsequently comple-
mented by a third approach which~expioited topological ideas and which
related anomalies to topological index theorems [21]. Since then, research
into anomalies has progressed simultaneously along these three separate
lines of eoquiry. The perspectives offered by the three approaches are
‘different, and eath'approach has yielded results which the others aretnot
ablefto'reprodoce t23]. A future complete understanding of anomaiies,will no
‘doubt be preceded by a merging of the three,streams,'and will allow one to -
: translatelfluently between global topological methods, }ocal algebraic

techniques and the mechanics of calculations.



This section is devoted to a review of the algebraic approach to anomalies.
'As‘mentioned above, this approach dates from Jackiw”s use of curreat algebra
techniques to find Schwinger terms in current commutators [20]. When current
algebra methods declined in .popularity in the seventies, the algebraic
approach to anomalies languished for want of a wider theoretical framework
into which Schwinger terms could be fitted, and because other approac.hes
proved more immediately rewarding. Recently Zumino [22] and Stora [23]
developed a new formalism for the description of Abelian and non-Abelian
anomalies in theories of massless chiral fermions in external Yang-—Mills
fields. This formalism, which is based on ideas taken from cohomology
theory, is essentially-algebraic in character. It provides a coherent
mathematical framework for anomalies and sugges’ts ways in which this
framework might be extended. Notably, in the theory of cocycles they have
found the generalization of Jackiw”s earlier work on Schwinger terms. I will
”now introduce the material of this section by posing the anomaly problem as

Stora [23] would have it done.

S'T.A'l’EMEN'I; OF THE PROBLEM ILet S(9) be a classical action constructed from a
rnatter field ¢ which transforms linearly under some internal, compact Lie
group G. Suppose that the theory based on S(¢) is renormalizable according
to the BPHZ criteria [24 25] Then one can rigorously ‘define a vertex
functional e ' S

nl.

I(¢) = S(¢) .+ 2 n" r“<¢)

The s’tateinent' that S(¢) is ‘invariant under C means. that S( $) is invariant
under the . action of some representation of G s Lie algebra, Lie G. This is
expressed by the following two equations ' ' ‘

fw;i@a)§(§)félof L ’;.(i)'

[w (a) L (b)] - w ([av,b]‘)’ .(2)

Here a and b are elements of Lie G, and W (a) is a classical functional
' differential operator which is linear in a. Equation (2) asserts that the

operators w (a) torm a representation of Lie G, while equation (l) is a



Ward identity. Note that this set up covers the situation where the internal
symmetry G is spontaneously broken [25]. It is possible to show [25] that
the renormalized perturbation series representing I(¢) can be defined, and
that the classical operators Wcl(a) may be extended naturally to quantum

operators W(a), in such a way that

- W(a)(¢) =0

(W(a),W(b)] = W([a,b])

In other words, it is possible to define the quantum theory in such a way
that it is invariant under a representation of the classical symmetry group
G. Now let G be the gauge group associated with G. In the simplest case
elements of G are maps from space-time into G. Using the customary minimum
coupling prescription, it is a straightforward matter to extend S(¢) into a
classical gauge invariant action S(¢,A), and to find a classical repres-—

entation wcl(é) of Lie G such that
W (2)5(4,8) = 0

Here the field A is a classical gauge field transforming under G in the
familiar manner and 8, of course, is an element of Lie €. The anomaly
problem may now be posed as follows. Can T(¢) be extended into T(¢,A), and

can quantum counterparts W(4) be found for the classical operators wcl(a),

so that
W(a) T($,A) = 0 . (3)
[(W(a),W(b)) = w([a,b]) e (4)

That is, will the quantum gauge theory admit a representation of the
classical gauge group G 7 If both equations (3) and (4) can be maintained in
the quantum theory, then gauge invariance will be respected and the theory
will be free of (gauge) anomalies. However this is generally not possible.
Apparently, in the presence of chiral fermions equations (3) and (4) are
modified as follows [1,23]



W(3)T(9,4) = w(h,4) - | - (5)
[W(a),W(b)] = W([4,b]) + S(a,3,D) .+ (6)

Evidently the Ward identity (5) has acquired an anomaly, and the commutator
of the gauge operators (6) has picked up a Schwinger term [24]. We shall see
below that the anomaly and the Schwinger term are closely related to

cocycles.

SCHWINGEKR TERMS 1In papers published in 1967, Sutherland [26] and Veltman
I27] applied the hitherto very successful methods of current algebra to the
calculation of thé amplitude for the decay of é neutral pion into two
photons. In the spirit of PCAC [2] they replaced the pion field with the
divergence of the axial current and arrived at a result which differed
markedly from experiment. This seemed to represent the first failure for
current algebra methods. In fact, the error in Sutherland and Veltman’s
treatment of ﬁo*ZY decay lay not in the current algebra manipulations, but
rather in the supposition that the axial current was divergenceless. In 1969
Adler [8] and Bell and Jackiw“[9] cleared up the mystery by demonstrating
that the triangle diagram alluded to at the start of this'section contrib-.
utes an extra term, the ABJ anomaly, to the divergence of the axial current.
This term, of which people were previously ignorant, reconciled Sutherland
and Veltman”s theory with the results of experiment. Shortly after this
Feynman diagrammatic resolution of the my+2Y problem Jackiw [20] offered an
alternative solution based on current algebra techniques themselves. He
showed that the anomalous contribution to mg*2Y decay can also be traced to
the occurrence of non-canonical Schwinger terms in current commutators. I

will now briefly review Jackiw”s analysis of these Schwinger terms.

Consider a theory described by a Lagrangian L(9¢) dépending on fields ¢ and
their derivatives ¢u5 3u¢. In Hamiltonian formalism the theory”’s canonical

¥

momenta are given by the formula 7 ='6L/6¢u, and the Euler-Lagrange

equations of motion are

e (D)



The field operator representation of the quantum version of this theory -

rests on the following equal time commutation relations (ETCR) [20)
A[1%e,x),0(t,¥)] = §(x-y) | )
1[70(t,%),70(t,¥)] = 1[8(¢,%),4(t,3)] = 0 | B¢ )

These ETCR hold regardless of the particular structure of the Lagrangian.
Now suppose that the Lagrangian is invariant under an r-parameter internal
symmetry group G which acts upon the fields through the generators T s
a=l,..,r. In other words, L($) is invariant under the infinitesimal trans-
formation ¢+¢+64, 6¢=§CaTa¢. Then Noether”s theorems [28] inform us that
there will be r functions Ja of the fields and their derivatives such that
a“Ja

that the currents J are given by

0. Using the equations of motion (7), it is not difficult to deduce

a ) ,

3= vura¢ . |  ..(10)
-Like relations (.8)' and, (.9_‘), ‘this expression for the currents is i’ndependent
of 't.he particular' form of ‘t'h"e' Lagrangian. Because of this, the above ETCR
can be used in conjunction with definition (10) to deduce model—independent
results for. the currents J°. Current algebra techniques_were evolved
precisely to find and exploit such model-independent results at a time when
quantum electrodynamlcs 'was the only generally accepted field ‘theoretic -
model ‘For example, consider the ETCR for the time component of a current J2
and the spatial components of a current Jb. Assuming that J% and Jb are
conserved and using only Lorentz covariance, equations (8) and (9), vand the
group property for the representation matrices [T T } = fathc’ it is
possible to deduce [20] ‘that _the most general form for this ETCR is

[Jf)'(o;‘x),J‘;_(o'.,y)] = - £ 03 (o ) 8(x- y) + si (o x) o 6(x-y) S an

3

The unusual feature of this commutation relation is that it contains a non-

canonical bchwinger term s? [29]. Such terms were discovered by Goto and .

ij

Imamura [30] in 1955, and consequently predate anomalies by quite a few

years. Because 1t was not: poss_ible to explicitly determine_the forms. of



Schwinger terms using current algebra methods, they represented a serious
obstacle to the progress of current algebraic analysis. However people
generally avoided this obstacle by adopting Feynman”s conjecture [31].
Effectively this meant that they simply ignored the presence of Schwinger
terms in relations such as (11). It was not until Jackiw [20] proved
Feynman®s conjecture wrong, and demonstrated the connection between
Schwinger terms and anomalies, that their significance was finally
understood. To finish off this treatment of Schwinger terms, I will now
reproduce an argument of Schwinger”s [20,29] which establishes that the term
Sig in (11) must be non-zero. For simplicity”s sake, consider the case where
the internal symmetry is electromagnetic U(1l) symmetry. Then there 1s no
internal index a on the currents, and the first term on the right hand side

of (l1) vanishes. Writing Ci(x,y) = [JO(O,x),Ji(O,y)] we have

Wi _ d -
<o|[J0(o,x),a Ji(O,y)]|0> = <O|3§I Ci(x,y)|0> | ..(12)

The right hand side of (12)vw111 be non-vanishing only to the extent that
the relevant Schwinger‘terms are non-vanishing. Since the current J is
assumed to be conserved, we can set 31Ji= —30J0= —i[H,JOI where H is the
Hamiltonian. Then, using the fact that the vacuum has zero energy, we find

<ol[Jo(o,g),aiJi(o,y)]jq> = -i<O|JO(O,x)HJO(O,y) + Jo(o,y)HJO(O,x)|o>

If we now multipiy (12)_byvf(x)f(y), where f(x) is an arbitrary real
jfpnction; 1n£égrate QVQf'X and vy, and use the last equation, we arrive at

the'fdllowfdg,result»
i [d3% d¥y <o|ci(x,y)|0> £(x) 33— f(y) = 2<0|FHF|O> «.(13)
: i

where F = f d 3x f(x)JO(O,x). The right hand side of (13) is non-zero
because, in general, the operator F possesses non-vanishing matrix elements

between the vacuum and other states which necessarily carry positive energy.

O[FHF[0> = ] <O[F[m><m|H|n><n[F[0> = [ E_ [<O[F|n>|2 >0
n,m n



Thus Ci(x,y) is non-zero, and the relevant Schwinger terms cannot vanish.
Note that it is possible to extend this argument to non-conserved currents
which transform under an arbitrary internal symmetry group [20]. Although
Schwinger”s reasoning tells us in this fashion that non-vanishing Schwinger
terms will, in general, occur in ETCR such as (11), it is not possible to
find the values of these terms using current algebraic methods. For this
infprmation one must turn instead to model-dependent calculations such as
those used by Adler, Bell and Jackiw to evaluate the ABJ anomaly. Jackiw
{20] did this in the case of quantum electrodynamics and, in the process,
established that the ABJ anomaly is a direct consequence of the presence of
Schwinger terms in electromagnetic current commutators. This work alerted
people for the first time to the connection between anomalies and anomalous

current commutators.

~COCYCLES Jackiw”s work on current commutators provided a different pers-
pective on anomalies to the original calculational approach of Adler, Bell
and Jackiw. Adler, Bell and Jackiw”s treatment of the triangle diagram
emphasized the breakdown of chiral symmetry ivhich followed from the non-
conservation of the axial current. That is, it was principally concerned
with the sort of symmetry breaking which is described by an equation like
(5). On the other hand, Jackiw”s independent work centred on anomalous
current commutators. He was more interested in equations such as (6). Of
course, people understood that these two approaches to anomalies were
connected, but the close relationship which exists between them was not
properly appreciated until recently. Now, thanks to the work of Zumino [22],
Stora [23] and others, we know that anomalous symmetry breaking and
anomalous current cummutators are both closely bound up with the theory of
cocycles. The cocycle approach to anomalies has by no means been fully
explored, but already a more comprehensive picture of anomalous symmetry
breaking has begun to emerge from it. In the remainder of this section I
will describeithe theory of cocycles, and in the next section we will see
that anomalics are related to certain cocycles which are formed from
topological terms in quantum field theories. In covering both these topics I

will rely heavily on Jackiw”s review [1].



Suppose that we have a group G composed of elements g which satisfy a
composition law glg2 = g12. Further suppose that G acts on some variable q
according to a definite rule g:q*qg. Then we can consider quantities
Qn(q;gl,..,gn) depending on q and on n group elements {gl,..,gn}. Such
quantities are called n-cochains. An operation, called the coboundary
operation and denoted by A, inserts one more group element and thereby

creates an (n+l)-cochain from an n-cochain:

-0 (o8
82 =2 (4°1585,83, 480 8n+1) ~ 2 (4:812:83,++:8058n+1)

n
+ 2 (381,823, +28nBn+1) = =« + (-1) 2 (a581,82,+«:8a=118n n+1)

n+l . .
"+ (1) Qn(c“gl)gz"~)gn—l:gn) «.(14)

One may verify from (14) that A2 = 0, Quantities whose 4 vanishes, modulo an
integer, are.called cocyles,'and those that are A of something are called
coboundaries. Thus all coboundaries are cocyles. One distinguishes cocycles
which are coboundaries from those which are not by calling the former
trivial cocycles and the latter non-trivial cocycles. Let us now see how
cocycles are relevant to representations of the group G. Consider functions

F(q) of the variable q which are invariant under the action of G

U(g)F(q) = F(q) ..(15)

If the operators U(g) satisfy the same composition law as the group elements

U(g)U(g2) = U(g12) ' ..(16)

they form a representation of G. Operator representations of space-time and
internal symmetry groups are used extensively in quantum mechanics and
quantum field theory [1,2}. The simple structure of group representations
summarized in equations (15) and (16) can be complicated by the introduction
ot phases. The first generalization is to allow a phase in (15). Suppose we

set

U(g)F(q) = e 2M01(di8)p . (17

10



Then it is an easy matter to check that the consistency of this equation

with (16) imposes a constraint upon ®W)(q;g). We must have
Aw) = wl(qgl;gz) - w1(q;812) + wy(q;g;) = 0 (mod integer) ..(18)

Thus w] is a l-cocycle. It should be noted that, if w; is a trivial cocycle,
the function F(q) and the operators U(g) can be redefined so that they
represent G according to equations (15) and (16). Thus a trivial cocycle can
be removed. On the other hand, if w; is non-trivial it cannot be removed and
the operators U(g) form a projective, rather than a faithful, representation
of G. In the next generalization of equations (15) and (16) a phase is
introduced into the composition law (16)

U(gU(g,y) = e 2TH02(d381:82)y, ..(19)

A consistency condition on this phase follows from the assumed associativity
of the composition law. If [U(g;)U(go)]1U(g3) = U(g)[U(gy)U(g3)] one easily
shows that Aws = 0 (mod integer). Thus wy 'is a 2-cocycle., Once again, a
trivial 2-cocycle can be removed. It is possible to continue in this way
progressively adding phases. The next step, for instance, is to abandon

associativity. Then one has
[U(gDU(E) 1U(g3) = e 2T 03(H381:82:83)y(q ) (U(g,)U(g 3) ] . .(20)

By considering four-fold products of the operators U(g), and.associating in
different ways, one can establish that w3 is a 3-cocycle, It is worth noting
that l-cocycles, 2-cocyles and 3-cocycles all occur in quantum mechanics,
- and are therefore of physical interest. In contrast, no physical role has so
far been found for higher cocycles. We are now in a position to see how
cocycles relate to anomalies. Suppose that G is a Lie group. Then the
elements of G may be written as exponentials g = exp(GaTa) where the
matrices T° generate G”s Lie algebra. Similarly, the operators U(g) may be
expressed in terms of generators c? : U(g) = exp(ieaGa). The properties of

the generators 1% are summarized by the following three relations

TaF(q) =0 (invariance) . (21)

11



[T7,T7} = ¢ T (structure relations) .. (22)

0 (Jacobi identity) .e(23)

(1°11°,1°1) + (0,115,721 + (15,17%,1°]]

a
Were there no phases in equations (17), (19) and (20) the generators G
would satisfy relations similar to (21), (22) and (23). Instead, the reader

may check that they behave as follows

i6%F(q) = 6w, | L.(26)
. b

i[¢?,6°] = fachc + buwy ..(25)
116, 16°,6511 + 1[6”,16°,6%1] + 1(6%,16%,6°1] = 6u; ++(26)

Here 6w;, 6w, and Swj are respectively a l-cocycle, a 2-cocycle and a
3-cocycle. They are related to the infinitesimal parts of the phases w;, wp
and w3. Comparing equations (24) and (25) with (5) and (6) it is tempting to
conclude that the anomaly in (5) is a l-cocycle, Vhile the Schwinger term in
(6) is a 2—coéycle. 0f course, any such conclusion must be tested by
explicit célculation. Such calculations have now been performed and the
relevant anomaly and Schwinger term have been shown to be cocycles which are
constructed from topological functions of the gauge field [32]. Details of
these topological functions will be provided in the next section. Thus,
while much confirmatory work remains to be carried out on the connections
between anomalies and cocycles, it seems safe to conclude that, at least in.
some cases, anomalous symmetry breaking can be traced to the fact that the
generators of the internal symmetry group obey the anomalous algebraic

relations (24), (25) and (26).

1.2 Topologicél Theory

As Jackiw |1] has explained, a field theoretic effect is called topological
when it is insensitive to localized perturbations of the dynamical fields or
of the parameters entering the dynamical description. This definition sugg-

ests that, when we are dealing with a problem defined on an open, infinite

12



space-time, topological effects will arise from behaviour "at infinity".
Frequently, in a quantum field theory, one is interested in integrals of
local quantities. The behaviour of the system at infinity typically
determines the surface terms which contribute to these integrals. Thus,
field theoretic topological effects emerge when attention is paid to surface
terms at infinity which ‘are mostly ignored in elementary discussions. For
example, modifying a Lagrangian by a total derivative does not affect the
equations of motion, but it can change the action. This has no significance
iq classical physics where all the dynamical information is contained in the
equations of motion. However, a quantum effect may emerge because quantum
theories are sensitive to total derivatives in the Lagrangian - the
Heisenberg operator formalism requires identifying canonical momenta from

the lagrangian, while the path integral approach makes use of the action.

Topological effects enter into non-Abelian gauge theories because the gauge
fields can assume topologically non-trivial configurations., The consequences
of this fact for classical gauge theories were first explored by Belavin
et.al. [33], who found a finite energy, pseudoparticle éolution to the gauge
field equations. Later ft'Hooft [34], Callen, Dashen and Gross [35] and
Jackiw and Rebbi [36] showed how to incorporate pseudoparticles into quantum
processes, Since then;>pseudoparticles aﬁd solitons have played a part in
our understanding of several interesting problems in quantum field theories.
These include CP non-conservation in the strong interactions [13,37,38,39],
the U(l) problem [12,40,41]), charge quantization [42,43), and anomalies. I
now wish to demonstrate that the non-trivial topology of non-abelian gauge
fields is closely connected with anomalous symmetry breaking in the

corresponding gauge theories.

6-VACUA Perhaps the easiest way to expose the topological structure of non-
Abelian gauge theories is to examine the structure of the vacuum [6,7]. To
do this let us place our quantum system within the space-time box |t|<T,
|x|<R. Then the vacuum condition

PPV o : ' «e(27)
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v
obtains outside the box. Here Fu "is the Lie algebra valued gauge field

tensor. As usual it is related to the gauge field Au as follows

v

F*V = a¥a¥ - a%aY + [a¥,A"]

Under a gauge transformation ¥ + Uy the field A goes into A" where
A =UuAUl+udy ' ..(28)
U M H . _

We are free to adopt the gauge fixing condition Ap=0 for our system, but in
order that this condition be consistent with (28) we must restrict ourselves
to time-independent gauge transformations U(x) = U(x). Then, since all
matter'fieldé must be zero outside the box, the%vacuum will be described by
a time-independent, pure gauge potential Ai(x) = U'd(x)BiU(x). At initial
time t=-T we can use the remaining gauge freedom to choose U(x)=1 in which
case Ai(x)=0. But the vacuum condition (27) implies that»awAi=0 for |t|>T or
|x|>R. Consequently Ai(x) is zero everywhere outside the box. This uniform
vanishing of Ai(x) means that we can identify all points on the surface of
the box. In particular for any given time t, |t|<T, we can identify the
points on the spatial edgé of the box |x|=R. Having brought about this
situation using the device of a space—time box, we can now allow T,R*>, Then
the gauge fields may be regarded as maps from three-dimensional space with
infinities identified (ie. from the three-dimensional sphere S3) into the
gauge group G. A theorem due to Bott [6,44] states that

THEOREM. Any continuous mapping of s3 into a simple Lie group G can
be continuously deformed into a mapping into an SU(2) subgroup of G.

We are therefore led to consider maps from 3 into SU(2). Such maps can be

divided into inequivalent homotopy classes on the basis of their (integer)

winding numbers. The winding number n of a gauge field is defined to be [7]
1

SHV .
n= s [ d"% tr(FWl'u ) k | o «.(29)

where Fuv=»(1/2)euv°pFoé is the dual field tensor. The usual interpretation

.of this situation is that there is a multiplicity of vacuum states_|n>
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corresponding to pure gauge potentials having winding numbers n. These vacua
are reiated to each other via "large" gauge transformations, and “t Hooft
has demonstrated that pseudoparticle solutions of the gauge field equations
tunnel between homologically distinct vacuum states, Because of this
tunnelling phenomenon we expect the true, or. physical, vacuum to be a
suitable superpoéition of-|n> states. Suppose T is a large gauge transform-
ation which maps .|n> into |n+1>. If the true vacuum is to be an eigenstate

of T then it must be constructed from a real parameter 0 as follows

6> = 1 7% |n> | ..(30)
n

In this way we end_hp,wiﬁh a spectrum Of_e-vacua which are reminiscent of
the'multiple vacuum stafgs}that are a featuré of the quantum mechanical
Block phenomenon [4]} There'is.no.pasSage'between quantum states which are
built on distinct e-vabua;.aﬁq each value 6f 8 therefore characterizes‘é
separate '"6-world". If our quantum system begins in one €-world then it will
stay there for all time, Consider the vacuﬁm to vacuum transition amplitudé
for our system in path'intégral formglism, In view of what has just been

said, it must be of the form

1
i

<o” e T1HE]

o, = 6(9-9*)13(6) . c ’ C+e(3D)

Writing the left hand side of (31) in terms of |n> states one finds

<6’|e_th|9>J = J eime.e-ine,<m|e-th|n>
n,m
= z e-iveeim(e.he) f [dA]v exp[1i/(L+JA)d *x) . «+(32)

v,m
In this last expression v=n-m,-énd the path integral is over all gaﬁge
fields Au whose topology is such that they tunnel between the s;ates |n> and
Iﬁfv).”Comparing (31) and-(32),_and uSing (29),'we'deduce,that
. IJ(e) = g [ 1dA] exp[ij(péff +:qA)d“x]

‘where
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L .. =1L+

0 g TV
of £ Tonz tr(F F ) S ..(33)

Thus ® has turned up in the effective Lagrangian multiplying the same
topological term (1/16ﬂ2)tr(Fquuv) that appears in equation (29). One might
summarize the situation as follows. A quantized non-Abelian gauge theory
contains a vacuum parameter O, According to (30), O determines the relat-
ionship between the vacua |n>, which correspond to pure gauge configurations
of definite winding number, and the 8-vacua which, to the extent that they
are eigenfunctions of gaﬁge transformations Tl9> = eie|9>, are the physical
vacua. If one works with quantum states which are built on the non-physical
vacua |n>, then © remains buried within the gauge transformation rules of
the theory”s state vectors and operators. On the other hand, one can make 6
explicit within the theory”s effective Lagrangian by working with quantum
states which are built on the physical B-vacua. Naturally, in the latter
cése-topological effects associated with 8 will be more readily accessible
to analysis. We can convince ourselvesvof this by considering the example of

a three-dimensional model gauge theory which was examined by Jackiw [i].

THREE-DIMENSIONAL MODEL The_four-dimensional term (1/16n2)tr(Fuv§“”) which
appears in equations (29) and (33) may justly be described as a topological
quantity since its value is unaffected by localized variations of the gauge
fielq Au. In fact, formula:(29) tells us that its (integer) value is altered
‘only when Au undergoes the sort of global transformation that brings about a
change in winding number. In three-dimensional space-time there is an
analogous topological term; By adding this term to the usual Yang-Mills
Lagrangian one arrives at the following action [1] |

2

(a,08, + 5 A44.)] ' " ee(34)

L= fdx e[ 58 7" - (a/amye™
,In'this expression the parameter m has the dimensions of mass, and an.
énalysis of the Abelian U(l) case of the theory described by the action (34)
shows that the "photon" 1s indeed massive. Consequently this model 1is
called a topologically massive gauge theory;_The action (34) leads-to the
following equation of motion v ' -

w o, vop PR : ' .
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Note that the parameter m appears explicitly in (35). By way of contrast,
the parameter 9 which occurs in the four-dimensional effective Lagrangian
(33) does not appear in the corresponding four-dimensional equation of
motion. This fact is an indication that the character of topological effects
varies with the space~time dimension. Generally speaking, there is a
‘mismatch between the dimension of the Lagrangian and the dimension of the
topological terms that one might add on to the Lagrangian. Therefbre, if one
wishes to include topological effects ih the theory, one must couple the
topological terms to dime}sional parameters such as m. It is only in four
dimensions that the relevant topologicai term is of exactly the same
dimensions as the Lagrangien,'and the coupling constant 0 is corresbondingly
dimensionless., Because of this, four-dimensional theories constitute a
special caSe. Even so, it is still instructive to look at simpler lower-

dimensional models such as the one presently under consideration.

When expressed in terms 6f the electric and magnetic fields, the Hamiltonian
corfesponding to the action (34) is conventional : H = (1/2)fd2x(E:+B:).
However,>the'relationship between these fields and the canonical momenta is

'aitered; One finds

--1 iJ A3 1l T = - g} + (w/8meldad
a 2 Fa _ . a a a a a

Thus, H is non-standard when expressed in terms of canonical variables
=%fd&[(—(whn HV+BH
The generators of gauge transformations on the fields are the operators G_
= [-(D-E)a + (m/4n)Ba]~

Let us assume that an element of the gauge group is given by the expression
g = exp(e @ ) where the matrices T- are the group generators. The corresp-
onding finite operator on the fields is U(g) = exp(ie G ). As Jackiw {1] has
shoﬁn; the following two equations hold ' ' '

e-2nimm(A;g)

U(g)¥A) = waly o .+ (36)
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A 1) 5 ge
[h (x),E (y)] 4“ 8 € 8(x-y) _ .. (37)
Thus, among other effects, the topological parameter m has introduced a
phase w(A;g) into the gauge transformation law (36), and has given rise to
the anomalous current commutator relation (37). As the reader may suspect,
the phase and anomalous commutator are related to cocycles. I will now

explain where the cocycles come from.

TOWERS OF COCYCLbb We have Just seen that the non-trivial topology of non-
Abelian gauge f1e1ds in four dimensions gives rise to the topological term

(l/lbﬂz)tr(P ' ) in the effective Lagrangian (33). In the mathematical
iiterature this term is called the Chern-Pontryargin density, and counter-—
parts for it exist in any even-dimensional Space—time. The density P, and

terms of a similar topological nature, have been closely bound up in the

recent past with progressfin our understanding of - several interesting
lphenomena in gauge field theories. Some of these have already been alluded
'to. bor 1nstance, up to a factor, the chiral anomaly in vector gauge
theories is simply the Chern-Pontryargin density. In QCD the presence of
this topologically non-trivial anomaly .is thought to resolve the u(l)
problem [39]. Likewise, whenithe,Chern-Pontryargin density is included in
the'QCD Lagrangian, it induces CP non-conserving processes., So far as we can
tell, the strong interactions are CP conserving. People have therefore been
led to consider mechanisms based on axions as a means of having QCD respectv
CP invariance [38]. Lastly, as explained above, terms like P give rise to
anomalous symmetry breaking effects. in gauge field theories. I will now
outline a little more of the relationship between these effects and Chern-

Pontryargin densities in various dimensions.

The first thing to'note'about the four-dimensional Chern-Pontryargin density
P is that it is invariant under small gauge transformations, but it changes
by an integer under large gauge transformations. In other words, P is a

O-cocycle

=0 S - .+(38)
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Secondly, it is well-known that P can be expressed as a total derivative.
By employing compact differential form notation [45] in which A = Audxu and
F

dA + A2, P may be written as follows

1

P=-ggtr F2 = d@g ..(39)
Qo(A) = - == tr(a dA + 2 A3)
0 8n2 3

P and @7 are four- and thfee-forms respectively, Strictly speaking, the
result (39) is only locally valid. It may be extended to a global relation,
however the extension involves certain subtleties which I do not wish to
consider here [45,46,47]. Suffice it to say that, although these subtleties
properly enter into the following discussion, they do not alter the conclu-
sions which are detailed below. For the sake of simplicity; I will therefore

ignore them.

The fact that P may be written és a total derivative is not unconnected with
its topological nature. For example, if S denotes four-dimensional space—

time and 3S is the boundary of S, then (39) ensures that
[s® =I5 d8% =[5 %

‘This means that, when P is included in the Lagrangian, its contribution to
the action is a surface term. Hence P“s effect on the theory is global
rather than local, and this is precisely what one would expect of a tefm
which has been characterized as topological._Now consider the quantity AQg.
If one acts on ARy with the differential operator d, and uses equation (38),

one finds

It

&(Ago) = a(dRg) = 4P = 0

By Poincare”s lemma - this result implies that Af( may in turn be written as a

total derivative

A90.= (;lﬂl : : l ‘ . 00(40)

19



The object f; is clearly a 2-form. The same argument may be repeated once
»égain. If we apply the operator d to 8R; and use the fact that 82 = 0 we
discover that d(aQ;) = A(dQ;) = 428y = 0. Thus

ARy = dRy, : ' , ' o (41)

where_ﬂg is:some l-forﬁ; Equations (39),v(40) and . (41) are the start of a
set of so-called "descentAequations" which begin with the four-dimensional
'Cherﬁ—Pontryargin density. fhe whole process by which these equations are
generated may be generalized to arbiﬁrary éven dimensions. If we now use P

;o'deﬁote the 2n-dimensional Chern-Pontryargin density, then we have

n

P S tr F°
T onl(2myn

Once agaiﬁ the 2n—-form P is both a O-cocycle and a total derivative: bp = 0,
P = dﬂén-l' Here I have used 'a subscript 2n-1 to indicate that Qén-l is a
(2n-1)-form. The superscript 1 on nén—l corresponds to the subscript 1 on 23
in (40). From the density P one obtains the following set of descent
equations ' ' |

P ann—l

A0 1

A n-1 = 98502

[}

1 = 2
Ayn-g = 9495,_4

2n-2 - 2n-1
A?lv ,dﬂo

aq2n-1 = o R - L u(42)

0. _ R » . : :
Né;e-that the sequencé.gnds with the O-form 98"‘1. The interesting thing
about the ‘set of,equétions'(42) is that one can use them to generate a
pafallel éequence,of cQéycléé.'Sﬂppose we set
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where the integral in (43) is over infinite p-dimensional space Sp. By

integrating the first of equations (42) over S2n we find that

- 0 = 0
fsz P = Is ann-l N Ias Q2n—1 - (44)
n 2n 2n

where aSZn is the boundary of §

the boundary of S

on® Under certain reasonable assumptions [48]

, may be taken to be S . Thus (44) becomes

2 2n-1

By similarly integrating each of equations (42) and replacing aSp with Sp___1

one arrives at the following set of relationms

0 o :

“2n-1 [ ®
2n

1 = A0
Won-z = A0on-1

2 = Al _
“In-3 = 242

2n-1 = 2n-2
wO Aml

From these relations, and the’results AP = A2 = 0, one can easily deduce

that Awg = 0. Therefore mg

is a gq-cocycle. In this way the descent equations
(42) allow us to generate a tower of cocycles from the 2n-dimensional Chern-—
Pontryargin density P. I acknowledge that the arguments by which I arrived
at these cocycles are grossly over-simplified. However the mathematics can
be made rigorous and the conclusions still hold [49]. The relevance of all
this workvto anomalies 1s not difficult to see. Knowing, as wé do, that
anomalies and anomalous current commutators are l-cocycles and 2-cocycles
' ?espéctively, it is tempting to identify them with the quantities “%n-z and.
w%n_3. Of course, in four dimgnsions the anomaly must be a 4-form and the
current commutator a 3-form. Hence we must have n=3, in which case wén;2= wé
and w%n_3= m§ are descended from the Chern-Pontryargin density in six
dimensions. We are therefore led to ask the following question. Can the
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four-dimensional gauge anomaly and associated anomalous current commutator
be identified with the cocycles wé and w§ which are descended from the six-
dimensional Chern-Pontryargin density? This question can only be answered by
carrying out the relevant perturbative calculations. These calculations have
now been performed, and it has been ascertained that the four-dimensional
anomaly and current commutator can indeed be identified with the cocycles wz
aﬁd m§ [32]. Clearly there is much which is yet to be understood about
anomalies, However our recognition that anomalous symmetry breaking has its

origins in cocycles which are descended from topological Chern-Pontryargin

densities is a marked step forward in our knowledge of this subject.

1.3 Calculational Methods

Having described, albeit briefly, the theoretical underpinnings of anomalous
symmetry breaking, it is worth devoting some time to a review of the various
methods by .which anomalies may be calculated. Anomalies were discovered in
1969 by Adler, Bell and Jackiw [8,9]), and it is only recently that they have
been able to be fitted into some kind of unified theoretical framework.
Because of the lack ofla solid theoretical approach to the subject in the
.intervening seventeen years, most of the progress in our understanding of
anomalies has been inspired by the methods that people devised to calculate
them. For example, the Adler-Bardeen theorem, the relationship between
anomalies and regularization, and anomaly cancellation mechanisms were all
initially explored and understood from an almost exclusively calculational
point of view. In this section I will briefly survey the various methods of
anomaly calculation, commenting where appropriate on the strengths and
failings of the different approaches. This task is simplified by dividing
calculational methods as follows into three groups: Feynman diagrammatic

methods, path integral methods, and differential geometric methods.

FEYNMAN DIAGRAMMATIC METHODS Under this heading come all those methods
which rely upon the'evéiuation of one or more Feynman diagrams. These
"include the original analyses of .the triangle diagram by Adler [8] and Bell
1'and Jacklw [9], and also the method of anomaly calculation described later

“_in ;h;s thesis, It 1s possible ‘at the outset to make a couple of broad

22



generalizations about Feynman diagrammatic methods of calculation. Firstly,.
the only sort of diagram which will contribute to an anomaly is one of the
form illustrated in figure 1. Such a diagram consists of a single fermion
loop, and its legs are either external currents, gauge bosons or anti-
symmetric tensor fields., Of course, any Feynman diagram which contains a
sub-diagram of the form shown in figure 1 will contribute anomalous terms to
the corresponding quantum amplitude. However, no exception has yet been
f0und to the rule that: anomal1es themselves receive contributions only from

dlagrams of the form deplcted below.

FIGURE 1

The second generalization about diagrammatic methods concerns the question
of regularization. In the last section we saw that, in a three-dimensional
model examined by Jackiw, anomalous symmetry breaking effects were tied to a
topological parameter m which appeared explicitly in the theory”s Lagrang-
ian. This may suggest to tbe'reader that anomalies and anomalous current
commutators are straightforward consequences of the system”s (non-standard)
equations of motion. However, to see that this is not the case one need only
look at four-dimensional non-Abelian gauge theories which are described by
the effective Lagrangian (33). These theorles contain anomalies even thougﬁ
the Eopological parametef © does not appear in the equations of motion. My
point here is that anomalies are not simple consequences of the field
eqﬁations. Instead, they are intimately bound up w1th the subtleties of
regularization. In general, the position in which an anomaly occurs in a
theory, and even the form of the anomaly, are determined by the way in which
the theory is regularized; Not surprisingly, then, questions of regulariz-
ation are an integral part of any Feynman diagrammatic method of anomaly

calculation.
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Let us now examine in a little more detail some of the considerations which
lie behind the foregoing two generalizations about diagrammatic methods. The
assertion that anomalies receive contributions only from Feynman diagrams of
the form shown in figure 1 is known as the Adler-Bardeen theorem [50,51].
Adler and Bardeen”’s conjecture that anomalies are one-loop quantun effects
was originally formulated in the context of QED. However their arguments
appear to be more generally valid, and it is certainly the case that no
anomaly has yet been found which receives contributions from Feynman
diagrams containing two or more loops. A "proof" of the Adler-Bardeen
theorem rests upon the observation that anomalies occur when a quantum
theory cannot be regularized in such a way as to preserve all of its
classical symmetries. Multi-loop Feynman diagrams necessariiy contain
internal boson lines. One'can regularize these boson lines in a manner which
respects all the usﬁal symmetries by applying higher derivative
regularization-[SZ]_to the boson propagators. (Fermion propagators cannot be
effectiveiy regularized using the higher derivative scheme. When one
includes higher powers of gauge covariant derivatives in a fermion
Lagrangian, one also introduces more gauge fields whose effect ig to cancel

the regularizing influence of the derivatives.) Since one can employ higher
derivative terms of any order, it is possible to régularize any given multi-
loop diagraﬁ in this fashion. It therefore follows that one-loopreynman
diagrams are the only'diagrams which cannot be regularized in such a way as
to preserve all of the theory’s classical symmetries, and these diagrams are
the only ones.which will contribute to anomalies. In conclusion, it must be
added that this proof';s,not alfogether convincing and, particularly in
supersymmetric theories, there are some aspects of the Adler-Bardeen theorem

which remain controversial [53].

It should by now be clear that‘anomalies are the quantum corrections to
classical currenf cohséfvatioﬁ equations. As such, they are potentially
mathematically ill—definéd until they are subjected to the dhal processes of
'regularization and renofmalization. This is, in fact, the case. Anomalies
are invariably associated with divergeht Feynman diagrams, and they do not-
assume a definite form uh;illthese diagrams are made well-defiqed through
the application of nomé'regularization procedure. One is free to_use any

number of rcgdlartzatibu.schemes, however people usually choose one of ;he

.-
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following four conventional methods: Pauli-Villars regularization [2],
dimensional regularization [54], higher derivative regularization [52] and
p01nt-splitt1ng [55]. These'fouf methods all feature some sort of regular-
ization parameter A which serves to measure the degree of divergence of
quantities in the unregularlzed ‘quantum theory. By allowing A to tend to
some limiting value (usually 0 or ®) one can establish. that a certain
quantity diverges or converges as lnA, AZ) 1/A etc.. The role that the
regularization parameter A plays in the emergence of an anomaly is, in its
general aspects, common to all anomalies and to all of the above four
regularization schemes. To give some idea of this role it therefore suffices
.to look at the way in which a chiral anomaly emerges under Pauli-Villars
regularization. Consider massless QED in four dimensions. To the usual
massless fermion field V¥ and electromagnetic field Au one adds a single
fermion regulator field wR of mass M. In this case the mass M is the
regularization parameter, and the appropriate regulator limit is M?*®, In the
unregularized theory the equations of motion can easily be used to show that
the chiral current Ju= $Y5+uw has zero divergence 9+J = 0. When the
regulator field is taken into account one finds that the chiral current

heeomes JRu= ¢757u¢ + wRYSYuwR and the equations of motion.now imply

'a‘,‘JRu = 20, | T .. (45)
vhere J iw st . Equation (45) is an operator identity, and should be
checked by looking at the amplitudes of the operators between appropriate
particle states. It turns out that, with one exception, the contributions of
all of these'amplitudee to the regulator parts of equation (45) contain
inverse powers of M, Therefore in the limit M»® they vanish. The one
'exception is the amplitude of J between the vacuum and the two photon
state, - Of course, the value of this amplitude is given by the ABJ triangle
v diagram. One finds that <0|J |2Y> = (1/16Mﬂ2)F F ¥ and (45) becomes

My oML, "UV,',."-I T ’
@ JRu M Bnﬁvfuvg . 8n2 ﬁpo” R ' _ .+ (46)

to

Thus in the limit M*“ the ABJ triangle diagram gives rise to a non-vanishing
vres1due in (45) and one ends‘up with the anomalous chiral current

. "conservation equation 3 J (1/8ﬂ2)F Fu « The point I wish to make here is
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that an anomaly occurs in (46) because a zero (a 1/M in the regularized
theory) comes up against an infinity (M) and leaves a finite residue. The
same is true of any anomaly when calculated with the help of a conventional
regularization scheme. One always finds that the anomaly emerges from the
theory when a positive power of the regularization parameter A is exactly
cancelled by factors of 1/A , leaving a finite residue. Clearly, even though
it may be inaccurate to say that anomalies are caused by the regularization

process, there is a close connection between the two.

This connection appears still closer when it 1s realized that the anomaly is
not a passive bystandef during the regularization of a theory. We have seen
that the anomaly”s presence signifies that there is no regularization scheme
which is entirely satisfactory in the sense that it preserves all of the
theory's classical symmetrics. When regularizing an anomalous theory, one
"must therefore decide which of the classical symmetries is least desirable,
or least painfully relinquished, and choose a regularization scheme
accordingly. The anomaly will appear in the conservation equation of the
current which corresponds to the symmetry that is broken by the regular-
ization scheme, and in this sense the anomaly plays a part in determining
which regularization scheme is used. For instance, suppose ‘that one wishes
to régularize an anomalous duantum theory whose classical counterpart is
chirally and vector gauge invariant. Because the theory is anomalous-one of
these symmetries must be relinquished, and it is most likely that one would
opt to give up chiral invariance and retain vector gauge invariance. In this
case one would employ a regularization scheme like Pauli-Villars which
respects gauge symmetry but breaks chiral sjmmet:y, and the anomaly would
appear in the chiral current conservation equation, On the other hand, one
might wish to keep chiral invariance and give up vector gauge invariance,
Then one would employ a scheme which respects chiral symmetry but not gauge
symmetry, and the anomaly would appear in the conservation equations for the
gauge currents, This aspeét of anomalies has not been fully understood in
the past. For 1nstance; it was realized that significantly different
regulérization séhemes could lead fo anomalies in the conservation equations
for entirely different currents. Hoﬁevef, it was not appreciated that
slightly different regulérization schemes might give rise to anomalies in

the same current conservation equation which are respectively gauge
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covariant and non-gauge covariant [56]. It is precisely in the freedom to
- vary the regularization scheme that the difference between so-called

consistent and covariant anomalies lies [56,57,58].

One final comment on anomalies must be made before 1 proceed with a
discussion of functional integral methods of anomaly calculation. It was
pointed out above that, like any field theoretic object, anomalies
potentially require both regularization and renormalization. We have seen
that they certainly must be regularized in some fashion. On the other hand
it turns out that, because anomalies are one-loop phenomena, they do not
have to be renormélized. To see that this is generally the case, one can use
an argument due to Alvarez-Gaume and Witten [59]. They point out that, by
using unitarity, one can uniquely reconstruct any one-loop amplitude from
tree diagrams, up to a polynomial in the extermnal momenta. Therefore, any of
the diagrams which can contribute to an anomaly are well-defined modulo the
ability to add such a polynomial. When one claims that a diagram is
anomalous, one means that it is impossible to add a polynomial in the
momenta so as to eliminate the anomaly and obtain an amplitude that respects
all symmetries. It automatically follows from this that anomalies are always
finite. After all, the infinite part of a diagram is always a polynomial in
the external momenta. Our freedom to redefine an amplitude by adding a
polynomial includes the freedom to throw away all infinite pieces. Hence

anomalies are always finite and they do not need to be renormalized.

. PATH INTEGRAL METHODS Once people had succeeded in calculating anomalies
using Feynman diagrams and traditional field operator formalism, it was
natural to ask whether the same could be done in the path integral formalism
developed by Feynman and Hibbs [2,3]. In 1979 Fujikawa [60,61,62] answered
this question positively by deriving the ABJ anomaly using path integral
methods. His derivat;i'on‘_g'o'es as follows., One begins with the fermion
effective action ‘ | | ' A

e~ T(A) = [ dydy expl=-Sdx yipy) v : - (47)
where A is the ele_ctromagnétic field and D is the gauge c.ovarviant deriv-

ative;, Note that A has not bé_en inte'grated‘ over in (47) since only external
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electromagnetic fields enter into the ABJ anomaly. Consider how the various

parts of the effective act§0n transform under the chiral transformation

v+ + ia(x)ygy 7;1v,> : : : .. (48)
For a Starﬁ,goné'easiiy*fjp4; ﬁhat the.ékponent_in the ihtegrand changes by
[ d% $ip¢ ; [ d%x yipy + [ d%x G(x)auJu : | .. (49)

where Ju= EYsYuw is the chiral current considered above. However, it is not
quite such a simple matter to discover how the fermion determinant dydd
behaves under chiral transformations. To do this-Fujikawa expressed the
field ¢ in terms of eigenfunctions wn of the Dirac operator ip : i¢¢n= Anwn'
In this way he found that, for infinitesimal a(x) in (48), the measure dydy

transforms as follows
dydd > exp[-21 [ d*x a(x)1(x)]d¥d¥ ..(50)

Here 1(x) = g w:kx)75¢n(x). The quantity 1(x) is mathematically ill-defined.

To calculate it, a gauge invariant cutoff M was introduced

1(x)

Lim ) ¢2¥X)Y5 exp[-(A /M)2]y_(x)

* n

lin  tr vg exp[-(B/M)2]8(x~y)
m-yn,a-éx. .

ik(x=-y)

lim f d%k tr Ys éxp[—(D2 + %-[Yu,vv]F v)/Mz]e
m-quo,\a—)x_ ' H

1m (1/16) tr vs([¥*;v ]F )2 (1/21M%) [ d%k exp(-k2/M2)
M-»co uv
1 . Tuv

16m2 Pu\’F

= - .« (51)
Finally Fujikawa demanded that the effective action be invariant under the
change of varlable (48) : [G/GG(x)]exp[—F(A)]|a=0 = Q. By substituting
equations’(49), (50) and (51) into this condition he arrived at the

tollowing anomalous chiral current conservation equation
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This, of course, is none other than the Euclidean space version of the
Minkowski space equation (@6). Several comments might be made about this
derivation of the ABJ anomaly. Firstly, Fujikawa“s work suggests that
anomalies arise in path integral formalism because the fermion measure is
not invariant under the relevant symmetry transformation. This is indeed the
case, not only for chiral anomalies but for all anomalies. Secondly, the
above method of regulating the fermion measure is only one of an infinite
number of possible methods. For example, Fujikawa has himself shown [62]
that one may replace the higher derivative regulator factor exp[—(D/M)2]
with f[=(P/M)?2] where £(z) is any smooth function that rapidly approaches
zero as z+~, Alternatively, one can regularize the fermion determinant
simply by adding a standard massive Pauli-Villars regulator field to the
Lagrangian [62]. In both these caees the end result is the same. My last
comment on the above derivation of the ABJ anomaly concermns two methods of
regularization which were not used by Fujikawa, but which are nevertheless
very popular. In place of a Fujikawa-style higher derivative regularization
of the effective action, one may employ either the heat kernel method [63]
or zeta function regularization [64]. In both these cases the details of the
anomaly calculation differ from those of Fujikawa. However, in its general
features, the manner in which the anomaly emerges from the fermion

determinant is the same.

Many anomalies have now been calculated using path integral methods. These

methods enjoy certain advantages and certain disadvantages with respect to
the Feynman diagrammatic technieues described earlier. In general, Feynman
diagrammatic methods are preferable when there is some doubt as to the
validity of an assumption or a procedure. For instance, Fujikawa“s assump-
tion that the effective action is invariant under chiral transformations is
reasonable, and was justified a posteriori since it led to the correct
anomaly. However, one might justly view this assumption with scepticism had
it not been verified in old—feshioned diagrammatic calculations. Similarly,
the Adler-Bardeen theorem and the non—renormalizability of anomalies are no
better understood in path integral formalism_then they are diagrammatically.
Consequently one 1is prdbably-still better off viewing these effects from a

29



diagrammatic point of view., On the other hand, when one is on firm ground
the compact nature of path integral formalism makes it far more attractive
and easily manipulated than complicated Feynman diagrammatic expressions.
For instance, the connection between anomalies and regularization is much
more transparent, and conséquently much more easily explored, in path

integral formalism than it is in terms of Feynman diagrams. Likewise, our
understanding of the relationship between anomalies and topological index
theorems [21] is a product‘of path integral methods. In fact, the subject of
topological index theorems is one area where the path integral formalism has
contributed insights into anomalies that diagrammatic methods could not
reproduce, I will therefore devote the finai part of this subsection to a
brief explanation of the connection between the ABJ anomaly and the relevant
index theorem. In Fujikawa“s derivation of the ABJ anomaly we encountered

the quantity 1(x)

1 = I vTeovsy (x)

n

The fields wn(x) are eigenfunctions of the Dirac operator : iDWn = Anwn'
Consider those eigenfunctions wn(x) whose eigenvalues An are non-zero.

Because Y5 anticommutes with P we have
Ysb (%) = b__(x)

and it is not difficult to see that, as a consequence of this, the only
eigenfunctions ¥ which contribute to 1(x) are those with zero eigenvaloes.
When An= 0 we can always choose things so that ¢n is of'positiVe:o;'negétive
chirality ' S B I e , S '{ .

I will denote positive chirality eigenfunctions by ¢ o and negative chiral—,e

ity eigenfunctions by ¢ ; If the numbers of these states are respectivelyj:j;7;

N+ and N_ then the integral of l(x) over space-time is equal tov :

J a2 = [ a [ Z w* o, (%) - ¥ w*‘(x)w (x)] -y,

“n=]
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That is, the integral of 1(x) is equal to the number of positive chirality
zero modes minus the number of negative chirality zero modes. However, an
index theorem for the Dirac operator [21] tells us that the difference
N,- N_ is equal to the integral (-{/l61r2)fd“x(Fuv;‘uv). We are therefore free
to identify 1(x) with (-1/16u2)FwF"", which leads us to the ABJ anomaly
(46). Fujikawa”s method thus provides a straightforward means of showing the
intimate connection between the ABJ anomaly and the index theorem, and

establishes a framework for understanding the anomaly in topological terms.

DIFFERENTIAL GEOMETRIC METHODS The methods which, for want of a better
term, I have decided to classify as differential geometric, date from a 1971
paper by Wess and Zumino [10]. Consequen'tly, they predate the path integral
methods which were: developed by Fujikawa and others. Despite this chrono-
logical primacy, I have decided to deal with differential geometric methods
last because their significance was not fully understood, and their pot-
ential not fully realized, until quite recently. In fact we shall soon see
that the methods considered below are .closely related to our newly acquired
theoretical understanding of anomalies in terms of cocycles. The material of
this section will therefore bring us full circle back to the algebraic
considerations of the beginning of the chapter, and will neatly wfap up the

subject matter of sections 1,2 and 3. All that then remains for me to dd in |

section 4 is to quickly review some of the applications of anomalies.

Differential geometric methods of anomaly calculation all depend upon some
sort of Wess—Zumino type consistency condition. In 1971 Wess and Zumino [10]
observed that, because gauge anomalies are equal‘ to the variation of the
vacuum functional under a gauge transformation (see equation (5)), they must
obey certain cqnsisténéy conditions., These conditions are direct consequen-
ces of the assumption that 'the} generators of gauge transformations obey a
regular composition rule as in equation (4). As we have seen, this assump-
tion may not be valid. In general, the gauge generators will follow an anom-
alous composition r'ule. of the sort shown in equation .(6)‘ Notwithstanding
this fact, the methods developed by Wess ‘and Zumino have been successfully
employed to deduce the structure of various anomalies, and one can only .
assume that the Schwinger terms which creep into relations such as (6) do

not affect the Wess-Zumino procedure. Let us now see how one would .''solve"
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the consistency conditions in the modern differential geometric notation
which has become a hallmark of Wess-Zumino type methods [48,65]. Suppose
‘that in some anomalous non-Abelian gauge theory the gauge transformations
are effected by operators U(g) where g is an element of the gauge group.

According to equation (5) the gauge anomaly is given by
w(g,A) = U(g)T(A)

1f, following Wess and Zumino {10,48,65], we assume that the operators U(g)
compose regularly, as in equation (16), then we are led to the conclusion
that the anomaly w(g,A) satisfies none other than the l-cocycle ‘condition
(18). That is, the anomaly must be a l-cocycle. The question then arises as
to whether one can solve the ll—cocycle condition to find the form of w(g,A),
In their original paper [10]}, Wess and Zumino found a particular solution of
the l1-cocycle condition for the gauge group SU(3) x SU(3). They were then
able to use this solution as an effective Lagrangian for the strong
interactions, Nowadays, the so-called "solution" of the l-cocycle condition
depends upon recognizing that one can fiﬁd a suitable l-cocycle by applying
the descent process described in section 2 to a ChernéfSimon term. In
general, the 2n-dimensional l-cocycle wzln(g,A), constructed from the (2n+2)-
dimensional Chern-Pontryargin density P according to the abstract algorithm
given in equations (42), is a solution of the 2n—di_mensional'Wess-ZuminQ
conditions, The problem of finding the anomaly therefore becomes one of
determining the form of mzlﬁ(g,A). Zumino, Wu and.}Zee [48] :hi.éivev sho_wﬁ hbw to
do this in arbitrary even space-time dimensions d=2n. For interest”s sake I

reproduce their answer.
wl (g,4) = -n(n+1) [ dt(1-t) tr(g dp(A,F‘t“l)] . R +.(52)

Here F_ is the 2-form F = tdA + t2A2, and P(Al,..,ln) is ﬁ_he~ symm_etrized
product of the Lie algebra matrices )\l,..',kn-. '

P(A yee52 ) = (1/n!) ) A, eeeh
R (11yee,ip) 11 10

Only two questions about this pfocedure remain to be answered. Firstly, it

is clear that the l-cocycle condition can only determine wzln(g,A) up to an
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overall constant. How, then, can one determine this constant and normalize
w%n(g,A)? Zumino, Wu and Zee t48] have suggested that this could be done by
calculating the simpler Abelian anomaly in 2n-dimensions using a path
~integral or diagrammatic method. The normalization of the Abelian anomaly
wduld then fix the normalization of the non-Abelian anomaly. The second
question regarding the above procedure concerns its generality. Is
wén(g,A), as given by (52), the most general solution of the l—qocycle
condition? To the author”s knowledge no resolution of this question has so
far emerged, though Alvarez—Gaume and Ginsparg [21] have suggested that one
might make some progress with this problem by looking at topological index .

theorems of the sort mentioned above.

1.4 Applications

As I explained at the beginning, this chapter was never destined to be a
catalogue of the apblications of anomalies within quantum field theories.
-Instead, I intended to devote it to a description of the theory of anomalies
without reference to any of their particular uses. Hdwever, no—one can look
at this subject without being impressed by the largé number of specific
problems in which anomalous symmetry breaking effects play some part. I
therefore decided to use this final section of the chapter to redress the
imbalance in outlook of the earlier sections by briefly listing the main
applications of anomalies in theoretical elementary particlé physics. In
this task I will reiy heavily on Bardeen”s recent review of'anomalies [19].
The obvious piace to start is with the corrections to the T®g*2Y decay
amplitude that followed from the original ABJ triangle anomaly. As we saw in
section 1, Sutherlénd and Veltman used current algebra methods to calculate
the my+2Y amplitude in 1967 [26,27]. Their result differed from the exper-
imental value, énd the discrepancy was not resolved until Adler [8] and Bell
and Jackiw [9] discovered thevanémaly in the conservation equation for the
axial current. The anomalous corrections to the Tp*2Y amplitude which were
generated by the ABJ anomaly brought theory into line with experiment and
restored fa;th in current algebra techniques. Moreover, Adler and others
[66,67,68] subsequently showed that, given the amplitude fbr mp*2Y decay,

one can also determine the amplitudes for Y+3m and 2Y+37 by appealing to
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gauge and chiral invariances. Thus the discovery of the ABJ anomaly also

gave us correct rates for the processes Y*3w and 2Y+3w.

Anomalies possess important implications for gauge field theories. These may
be summarized as follows. Firstly, the process by which a gauge theory is
perturbatively renormalized [2,25] involves the use of the theory”s Ward
identities, If the Ward identities contain anomalous terms, the renormaliz-
ability and the'unitarity of the theory are threatened [11,69,70,71]. So far
the only way of dealing with an anomalous gauge theory has been to adjust
the fermion content so that the anomalies vanish . This method has the
recommendation that it leads to attractive constraints upon'géuge, grand
unified and string theories . In particular, it forms the only theoretical
basis for the physically inspired requirement that the number of quarks and
leptons be the same. These successes have still not prevenfed Fadeev [23]
asking whether there are other subtler mechanisms availéble for dealing with
anomalous gauge theories, or whether anomalous gauge theories actually have
a consistent interpretation at a non-perturbative level. Other consequenceS'_
of anomalies for gaugé theories are best illustrated by the standard model
[6,7). In the standard model there are flavour currents which aré associated
with SU(6) flavour symmetry, and dynamical currents which are connected with
gauged SU(3) colour symmetry., At a naive level these currents;obey Certaiﬁ
commutation relations,.and in particular the flavbur currents’cammute with
the dynamical currents. However, the presence of anomalies affects these’
relations. The flavour current conservation equations contain anomalies
involVing the dynamical gauge fields. These anomalies imply prbton decay
[34,72], lead to the resolution of the U(1l) problem.in QCD [12], and deter-
minevthe structure of axion couplings in models which solve the strong CP
problem [13,73,74]. Similarly, flavour currents may havé'anomélies which
bring in other flavour fields. In composite models such andmalies impoée_,
constraints upon the structure of bound states which are summarized by tﬁe
“t Hooft conditions [14,75,76]. The “t Hooft conditions providé practically

the only firm information known about most bound state structures.
. In the previous section I described something of the Wess—Zumino (l-cocycle) .

consistency conditions that must be satisfied by gauge anomalies. I also

mentioned that in general one can solve these conditions using constructs
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based on cochains and cocycles. A functional of the gauge fields which
identically satisfies the Wess-Zumino consistency conditions may be used as
an effective Lagrangian governing gauge field interactions. In this capacity
it will generate the many particle vertices which describe the low energy
consequences of anomalous terms in the Ward identities. For example, by
solving the consistency conditions for the gauge group SU(3) x SU(3), Wess
and Zumino [10] were able to determine the effective action for soft pion
interactions, including the anomalous contributions which govern processes
such as my*2Y. The anomalous parts of effective actions which are deduced in
this way are called Wess-Zumino terms. The significance of these terms has
been emphasized by Witten [47]), and they have recently found applications in
many problems including skyrmions and superstrings.‘ Skyrmions date from the
original work of Skyrme [77] who found that pseudoparticle solutions of the
chiral meson field equations are stabilized by certain highér derivative
"Skyrme"‘ terms contained within the relevant effective action, I‘ntefeét in
these pseudoparticle solutions, or skyrmions, was renewed. [78,79] by the
discovery of their anomaly induced charge and spin '[15,47]; In the realni of
QCD skyrmion theory has led to the interpretation of the obs’:er'Ved baryopg as
solitons of the meson field, and preliminary attempts to dev’éidp' a reélistic
phenomenology for baryons along these lines have enJoyed considerable
success [16]. I shall deal with the relevance of anomalies.to superstrings_
shortly. Suffice it to say here that Wess-Zumino type terms.- play ‘an impor-

tant role in anomaly cancellation mechanisms in superstring theories [18]

“Jackiw and Rebbi [42] 'were the first to observe that the to’pologicalA
structure of gauge fields can lead to anomalous fractional‘cha.rge for
currents affected by the anomaly. Charge fractionalization was predicted to
occur [80,81] in certain excitations of real solibd state systems such as
polyactylene, and these anomalous effects have indeed been observéd. The
nature of topologically generated fraétional charge has now been analyzed
using the methods of index theory ‘and spectral flow [43]. Anomalies have
also had an impact on our understanding of the dynamics of the monopole. For
instance, Rubakov [82] and Callan [83] have demonstrated that,'in V-A
fermion theories, anomalies cause a breakdown in fermion number conservation
in the presence of magnetic monopoles. The consequence of this effect is

that monopoles can catalyse proton decay in grand unified theoriles [_84].
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These discoveries by Rubakov and Callan stimulated a wide variety of work on
the interactions of fermions with monopoles, including the comservation laws
which follow from the anomalies related to the topological structure of the

monopole field [17].

The finai application of anomalies that I wish to mention concerns
superstring theories. Such theories are currently thought to be the closest
thing we have to a unified model of all particie interactions. The relevance
of anomalies to superstrings has been concisely summarized by Bardeen [19],
and I can do no better here than to simply repeat his analysis. There are
. two sorts of superstring, which are referred to respectively as being of
types 1 and 1I. Through the study of gauge and gravitational anomalies in
higher dimensions, Alvarez—-Gaume and Witten [59] found that supergravity
models based on type 11 superstrings were free of anomalies while those
based on superstring I theories contained both gauge and gravitational
anomalies. Unfortunately, only the type I theories seemed to contain the
rich gauge structure needed to reproduce the known particle phenomenology,
even when Kaiuza-Klein effects were taken into account in the reduction from
the natural ten dimensions of these theories to the physical four dimens-—
ions. A careful exaﬁination»qf type I theories by Schwarz and Greén (18]
proved that the loop anomalies could be cancelled by the introduction of
additional anomalous terms involving the partners of the.grAViton field.
These terms are similar to the Wess-Zumino terms of the chiral models and
are actually already'contained in the correct treatment of the superstring
theory. This delicate cancellation mechanism works only for the gauge group
S0(32). Hence fhe anomaly structurée demands an essentially unique unified

. fundamental theory of gauge and gravitational interactioms.

Actually, the supergravity theory allows just one other gauge group, EgxEg.
Gross, Harvey, Martinec 'and Rohm [85] exploited this possibility and
invented an entirely new closed string theory, the heterotic string, which
could incocporate both the $0(32) and ngEé gauge groups. The analysis of
the effective_low energy theories produced by these superstring theories has
bcen the subject of intense sﬁudy. Although this analysis is quite complex,
the heterotic string seems to produce all the elements of a physically

-correct low energy particle phenomenology [86], as well as a finite theory
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of all interactions even beyond the Planck scale. As anomalies have played a

crucial role in developing these superstring theories, there is every reason

to believe that they will continue to provide an essential tool in their

analysis.,
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CHAPTER 2. The Spin 1/2 and Spin 3/2 Fields

In chapter 1 anomalies, and associated anomalous symmetry breaking effects,
were examined from a general point of view. In the remainder of the thesis,
however, we will be concerned exclusively with the calculation and analysis
of chiral anomalies. I will therefore introduce the material of this chapter
with a few comments on the nature of chiral symmetry and chiral anomalies.
Consider the Lorentz group 0(1l,d-1) in d-dimensional space-time. If d is
odd, then ihere is only one type of spinor represeﬁtation for 0(1l,d-1). By
way of contrast, if d is even, 0(l,d-1) possesses two types of spinor
representation which are variously referred to as being of opposite parity
or chirality, or as being left and right handed respectively. The parity
transformation maps left and right handed spinors into each other; so, if an
even-dimensional fermion theory is to conserve parity, it must contain equal
numbers of left and right handed spinors. In the following work I will be
dealing with spin 1/2 and spin 3/2 field theories that are constructed
around Dirac spinor, and Rarita-Schwinger vector-spinor, fields. These
fields contain spinors.or vector-spinors'of both chiralities. For example, a
Dirac spinor field in even dimensions belongs to the'representatioﬁ
(0,1/2)4(1/2,0) of the Lorentz group. The irreducible representations
(0,1/2) and (1/2,0) contain left and right handed spinors respectively.
Since the parity transformation maps left handed spinors into right handed
spinors, and vice versa, the representation (0,1/2)#(;/2,0) becomes

irreducible when parity is included in the theory.

in an even-dimensional space-time, one can project out the left and right
handed parts of a spinor or vector-spinor, ¥, using the projection operators
P1 = (1/2)[1 + T71] and P2 = (1/2)[1 - T7}], Thus ¥ = P1¥ + P2V¥. In these
expressions, Il is the element of the d-dimensional Dirac gamma matrix
algebra that corresponds to the fbur-dimensionél matrix Y5, The bréperty
(r1)2 = 1 ensures that P3 = 1, P2 = 1, and PiPp = 0. Many familiar fermion
theories are classically invariant under-thé following syﬁmetry transform-
ation : ¢ + exp(i8I~!)y. Note that, in its infinitesimal form, this
transformation changes the sign of the left handed part of ¢:'w = P1¥ + Py,
rly = P19y -~ Poy. The corresponding symmetry is called chiral syﬁmetry, and
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one aspect of its anomalous breakdown is the appearance of an_anomaly in the
conservation equation for the associated chiral current. It is with the
calculation of some of these chiral anomalies that I will be concerned in
chapters 3 and 4. Note that, since chiral symmetry exists only in even-
dimensional space-times, I lose no generality, in this chapter”s review of
spin 1/2 and spin 3/2 field theory, by working in a space-time whose '"base"
dimension is d=Zn. Later in the thesis I_Will be using dimensional regular-
ization, which will necessitate the analytic continuation of d away from its
base value 2n. When this is necessary, I will adopt the convention'that d=2n
is analytically continued to d=2%. In anticipation of the analytic contin-
uation procedure, many of the results of this chapter are expressed in forms

appropriafe to a 2%~dimensional, rather than a 2n-dimensional, space-time.

2.1 The Spin 1/2 Field

The Lagrangian for a free ﬁassive spin 1/2 field is

L(Y) = ¥(ip-m)¥ - - .o (1)
Variation of‘E leads to fhe Euler—Lagfange equation of motion for ¥

(iﬁ;m)d{ =0 | | . (2)

Canonical quantization of this theory is achieved by deménding that V¥

satisfy the anticommutator relation [1]
(v (t, 3,93 (e, )} = 6, 63(x-y)

From (2) we deduce that the momentum space propagator for the quantum field

¥ is given by
R i R ‘
S(p) = B , S -+(3)

As we are specifically interested in the.éontribution of the'gra&itational.

field to the spin 1/2 chirallanomaly we must investigate the coupling of.ﬁhe
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gravitational field to Y. It is well known that the form of this coupling is
dictated by the gauge principle. The Lagrangian (1) is invariant under the
following global Lorentz 0(l,2n-1) transformation

weo/2

v(x) > e P(x)

B

a a . .
Here we*o = w .0 and © B is, of course, the antisymmetric product of two

aB

Dirac gamma matrices

o®® = 2 [v* %] = 3 yioP)

The constants maB parametriie transformations within the Lorentz group. It
is worth noting in passing that according to Noether”s theorems [2] any
invariance of a Lagrangian field theory under a continuous symmetry group is
associated with conserved charges. In particular if the theory is invariant
under an r-parameter Lie group of transformations there will be precisely r
conserved charges. The Lorentz group 0(l,2n-1) is parametrized by n(n-1)/2
parameters and is therefore associated with n(n-~1)/2 conserved charges.,

These charges are the various components of angular momentum.

The gauge field of the Lorentz grodp is the gravitational (vielbein) field.
The gauge principle tells us that its coupling to V¥ is determined by
requiring that the Lagrangian (1) remain invariant under the above
tfansformation when the parameters maB are allowed an arbitréry dependence
on the space-time coordinates x . This coupling prescription leads to the

followipg gravitationally covariant Lagrangian for V.
L(b,e) = - F(ip-m)¥ | c(4)
In this equ#tion e is the invérse of the vielbein determinant :
e = (det e%¥)-1
The covariant derivative Dp is given by [3]
1

2 u' 2y Y$ , '
D¥ =e [au 500 v ' < (5)
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where

® = e O[e A _ ]
uy § L"yxA oup YO,u
and
A 1 Ak
T w2 8 [gKu,v + Exv,u ~ guv,x]

As usual the space-time metric 8, is related to the vielbein e5y according

p . If space-time is. flat then e and g

pu® v pu uv- Myve
In a quantum theory of gravity flat space-time represents t:he vacuum and one

to the relation guv=e

would therefore expect that in flat space-time quantum fields would have
zero expectation valqes. This is not the case with epu and in order to work
with a field whose flat space expectation value is zero one usually
decomposes the vielbein into its flat space expectation value npu and the
quantum field hpu [4]. The gravitational coupling constant K features in the

i ' :
equation relating epu and hDu

®ou ™ Mou ¥ Moy | (®
This decdmposition of the vielbein corresponds to a change in the way
space-time is treated mathematically. The indices carried by the field e‘:)u
are different in character. One of them, u, is a curved space index while
the other, p, is an internal Lorentz flat space index. Hence the vielbein
e,y Possesses a dual curved space/flat space nature. On the other hand the'
quantities nau and hau clearly do not transform as curved spar:e_ tenso_rs in
the index w ., The decomposition (6) signifies that, at least locally, one
has ceased to treat space-time as intrinsically curved. Instead, to
~ facilitate the usual sort of perturbation expansion in the field operators,
one has elected to regard space~-time as being flat and the field h as being
a small disturbance on this flat background. in this way tl"le theory Becomes
accessible to the familiar methods of perturbation analysié and the field
hp‘; may be treated in the same manner as any qthér quantun field. In a weak
field expansion in the coupling constant kK the curved space nature of the
in_dex p is naturally obscurgd and the indices p and U are effectively

‘treated on thevs'ame footing as flat space indices. I will adopt equatiorn. (6)
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as my definition of hpu and adhere to the convention that indices on hpu are
raised and lowered using n“s. Thus hpu=npohOu etc.. It should be noted in
this context that the field hpu is determined only up to its invariance
under local Lorentz transformations. This freedom can always be used to make
hpu-symmetric in p and ¥ and in the following work I will assume that this

symmetrization has been effected.

Let us now expand the covariant Lagrangian (4) in powers of the coupling
constant K. It will become apparent in the next chapter that to calculate
the gravitational contribution to the ‘spin 1/2 chiral anomaly we need
consider only Feynman diagrams containing external gravitational fields. It
can therefore be assumed that hpu satisfies the free field equations of
motion 3phpu= hpp= 0. What is more, the diagréms in questioh involve only
first order interaction vertices in ¥ and h. Consequently it suffices to

expand L up to first order K. One finds that

where Lo is the free Lagrangian of equation (1) and L) is the first order
: p p
part of the interaction Lagrangian. Using the results 9 h9u= h o= 0 one can

show that
< P U
L; = ih 9
1 ou Yy oy

From this expression one can deduce the first order momentum space gravitat=-

ional vertex. It is hpu(k)m(p)vpu(p,k)w(p+k) where
Vpu(p,k) = ik ppyu ’ _ .. (8)

Clearly, in view of h”s symmétry in its indices, only that part of Vpu which
is symmetric in p and p will have any significance. However, rather than
complicate the expression for Vpu by indicating this explicitly I have left
the veftex in the simple form of equation (8). I will now finish this brief
review of the theory of a spin 1/2 field with a derivation.of the spin 1/2
chi;al current conservation equation. As was explained above, Noether”s

-theorems [2] tell us that if a Lagrangian is invariant under an r-parameter
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Lie group of tield transformations Gr then there will exist r conserved
currents in the theory. To be specific there will be r linearly independent
combinations Ji (a=l,..,§) of the fields and their derivatives such that le
J% = 0. If the invariance under Gr is a global invariance the currents Jz
will be conserved only on extremals of the Lagrangian, that is only on

solutions of the equations of motion. On the other hand if the invariance
under Gr is a local invariance the currents Ji will be conserved regardless
of whether the fields satisfy their equations of motion or not. Suppose now
that we have a Lagrangian depending on a set of independent fields ¢ and on

their derivatives 3u¢2¢u. Then the canonical moﬁenta are defined as follows

aun“ = = | | : . (9)

If the Lagrangian L is invariant under a group of transformations, an

infinitesimal element of which can be written as
o(x) * ¢(x) + 6¢(x) - .. (10)

then we have

§L §L . _ 8L

8L = "6—5 5¢ + Wu6¢u = 5¢

56 + nua“6¢ =0 _ ..(11)

and the equations of motion (9) imply that
3 [nY8¢] = 0
v
"Hence Noether”s conserved currents are given by
= w8 . (12
J, =768 (12)

‘where the explicit form of 8¢ is assumed known. It may happen that the

invariance of the theory under the transformations,(lO) is imperfect. For
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instance some part of the Lagrangian might break the symmetry. In this case
Noether“s currents are no longer conserved under all circumstances. However,
‘it is possible to deduce the circumstances under which they are conserved
simply by inverting equations (11). In this way one arrives at the following

conservation equations for the currents (12),

Now let us apply these results in the case of the spin 1/2 field ¥. Chiral
invariance of the above spin 1/2 theory i1s a global U(1l) invariance. A

finite chiral transformation of ¥ takes the form

-1
P(x) + eier ¥(x)

where 0 is a space-time independent parameter, and_f"'1 is that element of
the Dirac gamma matrix algebra in 2n dimensions corresponding to the fnur
dimensional matrix YS

n+l

r 1YY eeYpn ) B o IR (1)

" Note that Il is hermitian. (My conventions are explained in appendix 1 )ff

The infinitesimal version of this chiral transformation isf?éj
P(x) > P(x) + 10T} Y(x)

Applying the above formulae in this instance we deduce the; the chiral

current is

Chiral invariance is not an exact invariance of the Lagrangian (4). It 1is

broken by the mass term in L . Using (13) we find

a¥[e V2] = D"J;/Z = 2iem YI~1y | .. (16)

47



This is the chiral current conservation equation in the classical theory of
- a spin 1/2 field. It would be quite understandable were one to assume that
the same equation holds as an operator identity in the corresponding quantum
theory. After all equation (16) was derived using only equation (13), and
equation (13) in turn follows directly from the equations of motion. Since
the equations of motion are valid operator identities in the quantum spin

1/2 theory why should one suspect the validity of (16)?

However in reasoning this way one is overlooking an important aspect of
quantum field theories. As was emphasized in chapter 1, a quantum field
theory is not completely determined by a Lagrangian alone. In general such
theories are beset by infinities and in order to deal with' the infinities
one has to apply some form of regularization. A theory will not be
completely determined until both t_:he Lagrangian and reguiarization scheme
are specified. These ideas may be related to the case at hand as follows.
When one passes from the classical to the quantum spin 1/2 theory the
equations of motion remain valid when reinterpreted as operator equations.
This is because they contain only finite quantities. On the other hand
equations (13) and (v16) involve fermion bilinears such as $(x)YuT—1¢(X)-
These bilinears are infinite and must be regularized. When a gauge
invariant, chirally non-invariant regularization is applied to the theory
the naive manipulations which led to equations (13) and (16) are no longer
valid and an extra term, the anomaly, appears on the right hand -side of
(16). For example if Pauli-Villars regularization is used the céntribu;ion
of the massive regulator fermion to equation (16) survives in the limit as
the regulator mass tends to infinity and becomes the anomaly. In this waly

the correct quantum version of equation (16) is
¥[e 312 ] = 2iem Y7l + a1/2 ' .o (17)

One might object that the anomaly would be absent werée one to use a
regularization scheme that was both gauge and chirally invariant. However
matters are not quite this simple. As was pointed out in chapter 1, the
presence of an anomaly signifies that no regularization scheme will respect
all the classical symmetries that are present in the theoi'y. Consequently no

regularization scheme is ever entirely satisfactory and the anomaly cannot
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be removed or avoided. On the other hand by appropriately selecting one’s
regularization scheme one has the freedom to choose which symmetry of the
" classical theory is broken in the quantum theory. Vector gauge invariance is
customarily regarded as being more important than chiral invariance.
Consequently the above spin 1/2 theory is conventionally regularized using a
gauge invariant, chirally non-invariant regularization scheme, and the
anomaly Al/2 therefore appears in the chiral current conservation equation,
not the gauge current conservation equation. ﬁhen I calculate the spin 1/2
and spin 3/2 chiral aﬁomalies in chapters 3 and 4 I will use dimensional
regularization, a regularization schemé which is conventional in the sense

that it preserves gauge 1nvarianée at the expense of chiral invariance..

One final comment is in order on the subject of the spin 1/2 chiral anomaly.
Suppose that we wish to regularize an anomalous quantum field'theory. If two
regularization schémes respect exactly the same subset of iﬁvafiances~pf the'
classical field theory then they will lead to identical anoméiies. This is
true for example of Pauli-Villars and dimensional regularization when
applied to the spin 1/2 theory which is presently under con81deration{
Consequently it is not difficult to see that the chiral- anomaly A“2 is
independent of the mass m of the spin 1/2 field ¢.‘This conclusion follows
directly from the fact that under the Pauli-Villars séﬁéme the.anomaly:
arises out of regulator contfibutions and there is no way at all that m can
enter into it. If Al/2 ig independent of m under Péuli-Viilars regulai—
ization then it must also be independent of m if the spih 1/2‘theory>is
regularized using dimensional regularization. We are thérefofé free to set

m=0 when calculating Al/2 using dimensional regularization.

2.2 The Spin 3/2 Field

The Lagrangian theory of a classical spin 3/2 field is considerably more
complicated than that of a spin 1/2 field. This is principally because the
Rarita-Schwinger tensor-spinor field ¥, which is ‘used to describe a spin 3/2
particle [5], carries not just a single spin 3/2 representation of the
Lorentz group, but two spin 1/2 representations as well. In contrast to. the

Dirac spinor the Rarita-Schwinger tensor-spinor does not the:efbre form an
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irreducible representation of the Lorentz group. The spin 1/2 and spin 3/2
parts of ¢a may be separated out using the projection operators eaB’Pa’Qu
’[6] which of course satisfy a completeness relation-euB+ PoPg+ QuQg = Mgg-
Thus

_ 8 B B
by = eaB* + Papﬁw + QaQBw

a

eaB, the projection operator for the spin 3/2 part of V¥,, is given in 2&-

dimensional momentum space by the expression

@™

n

_ o B
0ga (@ = (%= 25 v*) + (E )(3 WE- %)

aB _ p p ¢ a EF 8
- (o )+ ()@ - )& - )
This operator possesses the following properties

Q -
Y 0,= © af agP

aff af
$9,5= Oygb

The projection operators P, and Qq for the spin 1/2 parts of ¢;'are somewhat
arbitrary {6]. They may be chosen to be any two linear combinations of Py
and Y, which satisfy the conditions P*Q = 0, P*P = Q*Q : 1. Here I am using
an abbreviated notation in which for example P°*Q = P Q . Obviously, in view
of (18), any two such operators will also satisfy the relations P*© = ©¢p =
Q*© = 0+Q = 0. Convenient choices for P, and Q, will be nominated below. In
the following text I will suppress the indices on wa’Pa’Qa and eaB unless

this is likely to cause confusion.

There is no unique first order, hermitian Lagrangian for a spin 3/2 field.
In fact Fronsdal [6] and Moldauer and Case [7] have shown that in four
dimensions there is a one-parameter family of such Lagrangians. Appendix 2
contains a slight modification of Fronsdal”s proof of this fact wﬁich

reveals that the same is true in arbitrary dimension. In particular, in
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dimension d=2% the one-parameter family of Lagrangians for a massive spin
3/2 field V¥ is

L(y,A) = ‘P [n B(iﬁ-m) + iA(a Y B, %3 ) + (2_]..9:5)((21’1)A2+2A+1)YGPY8

+ ziigijf (22(22_—1)A2+4(29.-1)A+29.)'Y°'YB]d)B
Massive spin 3/2'fie1ds at present have no a.pplicatiofl in elementary
particle physics. There is ho experimental evidence to suggest that they'
exist in the elementary particle spectrum in nature, and no theoretical
reason for supposing'that they will one day be discovered there. In fact the
‘quantum description of massive spin 3/2 particles would pose serious
problems for Lagrangian field theory as massive spin 3/2 field theorieé are
nonrenormalizable |8]. (Of course, a spin 3/2 particle might have dynamic-
ally gene‘rated mass, but this is a different question altogether.) On the
other hand while massless spin 3/2 particles have likewise not been
observed, supersymmetric theories [9] strongly suggest thaﬁ they exist in
nature as supersymmetric partners to gravitons, and consistent theories of
interacting massless spin 3/2 fields are available in the guise of
supergravity theories [10]. For these reasons I will restrict my attention'_
from now on to massless spin 3/2 fields. The spin 3/2 anomaly like its spin
1/2 counterpart is. in any case a mass independent effect and no generaliﬁy
is lost in adopting this restriction. The Lagrangians for the massless
fields are the m*0 limits of the above massive Lagrangians., -

L(Y,A) = 1%, (n®p + a(a%s Yaas) + (o )((22—1)A2+2A+1)Y°h~8']¢B .. (19)

28-2

Classical massless, as opposed to massive, spin 3/2 field theories are
complicated by the existence of gauge invariance. The Lagrangian (19) gnjoys
invariance under the gauge transformation '

R [2(1+2A)3a- (1+A)Yap]l\ o | ..(20)

- where A(x) is an arbitrary spin 1/2 field. As I shall now show, this gauge

invariance is related to the presence in ¥ of the two spin 1/2 represent-
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ations Py and QY. Let us define the projection operators P and Q in

momentum space as follows

a a

p* = op[(22-2)§-+ ((2e-1)a+1 )¥*] = op[(22-2)§-+ (2¢1+24)-(1+4) )v°]
a

Q* = 00[2(1+2A)§-— (1+A)Y%)

where

0q = [28+4(22-1)A+22(20-1)A2]71/2

and cp=(22-1)'1/200. In momentum space the Lagrangian (19) can then be

written
- o B
L = wa[¢9“8+ W B Jug
where u=1/[(2£—2)q§]. The gauge transformation (20) likewise becomes
lba ‘) wa + QQA . ' . ) -0(21)

This formﬁlation of the A-dependent gauge transformation (20) emphasizes
that the gauge invariance of .the theory is just invariance under
redefinition of that particular spin 1/2 component of § which does not
figure in the Lagrangian, namely Q°*Yy . Consider now what happens when the
massless Lagrangian (19) is reexpressed in terms of a new field ¥- defined

in momentum space by

. |
=+ [a%-+ by*]v.v .. (22)

Heré the numbers a and b are arbitrary feal parameters and, of course, Y°Y =
Y“wa . As may be checked using the projection operators, the field v
differs from ¢ only in its spin 1/2 components. What effect would a change
of variables such as (22) have upon the spin 3/2 theory ? Any theory which
satisfactorilyAdescribes spin 3/2 particles in terms of the Rarita-~Schwinger
tensor-spinor ¥ will be such that the spin 1/2 components of ¥ disappear
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from the dynamics and have no effect upon physical quantities. Consequently,
provided that the spin 3/2 theory described above is satisfactory in this
-sense, it should make no difference to the calculation of physical
quantities such as the anomaly whether the field in terms of which the spin
3/2 theory is expressed is ¥ or ¥”. I will assume in what follows that the
spin 3/2 theory outlined above is indeed satisfactory from this point of
view, and exploit the consequént freedom that this gives me to reexpress. the
theory via field redefinitions of the form (22), Note that these field

redefinitions involve the nonlocal operator 1/p.

Since the field redefinitions (22) alter the spin 1/2 components, but not
the spin 3/2 component, of ¥ it is perhaps not surprising that their effect
on the Lagrangian (19) is to shift the parameter A. That is, changes of
variables of the form (22) are completely equivalent to changes in the
parameter A. In particular, even though if a#0 the transformation (22)
involves the non-local operator 1/p , the transformed Lagrangian is still

local. For arbitrary A,a and b one finds

- (A—a-Zb )

1+a+2%5 -+(23)

L(¥,A) = L(¥~",A7)
This relation tells us how to reexpress the A-dependent spin 3/2 theory
under the change of variable (22). I will be interested below in
formulations of the spin 3/2 theory corresponding to three particular
choices of the parameter A : A=-1, 0 and -1/% . Conventional spin 3/2 theory
is associated with the Rérita-Schwinger Lagrangian [5]. It corresponds to
the choice A=-1:

= ] B p B .
Lgg(¥) = iwa[n p - (3%P+ % ) + v%By ]¢8 Alw vlaPyPls oY .. (24)

With this choice of A the gauge invariance is the familiar oné
Yy > ¥y * _aa/\ : : -~ ee(25) .
Equation (23) assures us that the other two choices for A, A=0 and A=-1/2%,

can both be reached (as can any other value of A) from A=-1 using field

redefinitions of the form (22). Consequently, for the reasons outlined
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above, the anomaly will be the same whether calculated in the A=-1, A=0 or
A= -1/% formulation of the theory. However, although the value of the
anomaly will be the same, the way in which it emerges from the mathematics
will be different in each case, and the freedom I have to choose the value
of A can be exploited to advantage. As will become clear below, the
calculation of the spin 3/2 anomaly is particularly simple in the A=0
formulation of the theory, while in the A=-1/% formulation its gauge
independence is manifest. I will now consider the gauge fixing and
quantization of the spin 3/2 theory in the Rarita-Schwinger formulation.
Then, because the two choices A=0 and A=-1/% are so useful, I will devote
the final section of this chapter to a brief look at the Lagrangians,

propagators and .vertices in each of these two cases.

Just as the classical theory of a spin 3/2 field is more complicated than
its spin 1/2 counterpart, the quantization of '‘a spin 3/2 field comparéd' to
that of a spin 1/2 field is relatively involved [11,12,13]. In order to
quantize the spin 3/2 field theory described by the gauge invariant Rarita-
Schwinger Lagrangian it is first of all necessary to add to the Lagrangian a
gauge fixing term and a corresponding ghost term. Once this is done the
quantization procedure itself is complicated by the presence of constraints
within the spin 3/2 theory. Fronsdal and Hata have explained how to overcome
these difficulties usiné.the convenient B-field formalism developed by
Nakanishi [14,15]. I choose to fix. the gauge of the Rarita-Schwinger field
in the customary way by adding to the Lagrangian (24) the gauge fixing term

LGF = - E chpYoq) . . . .0(26)

where a is an arbitrary gauge parameter, Using Nakanishi”s B-field, which
plays the part of a Lagrange multiplier and in this case 1s a Dirac field

obeying Fermi statistics, the gauge-fixing term may be rewritten

Lop = BAY.V - $.YPB + 1aBPB ' .. (27)
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This expression for L can .be shown to be equivalent to (26) simply by

GF
using the equations of motion for B to eliminate it from (27). The Fadeev-
Popov ghost term corresponding to LGF has been shown by Hata and Kugo [12]

(see also Fronsdal and Hata [l11]) to be

Lpp = i[cd2c,- c,32]

where ¢ and ¢, are two Dirac ghost fields obeying Bose statistics. In this
formalism Hata and Kugo [12] went on to derive the appropriate four-
dimensional canonical equal time anti-commutation relations for the fields

¥, B, c and c,+ I reproduce their results here for the sake of completeness.

. - 1 ) =,

(4, (6,%), ¥ (7)) = 5 Y07, 83(x-y) {B(t,x),B(t,y)} = 0
{¥y(t,%),B(t, 7} = in, 83(x-y) {e(t,x),c,(t,7)} = 163(x-y)

The total Lagrangian for this set of fields L = LRS + LGF + LFP is %iven by

i

L = iﬁay[aYstlapwa + BAy.¥ - $.YAB + iaBpB + 1[cd2c,- E*a?c]

This Lagrangian may be simplified by means of a device suggested by Endo and

Kimura [16]. They rewrote the gauge fixing terms in L as follows

BAY.¥ - $.vPB + 10828 = ia[B + 5ev]a[B - Iyey) - vty

QL

then defined a new field F

F=+Va [B- %-Y.w]-

"in terms of which the total Lagrangian may be expressed as

(PPl vy - L vy + 1FRF + 1[30%,- G 02] o 28

Q|-

L=1yy
This form of the gauge fixed'Rarita-Schwinger Lagrangian is the one with

which I will be working in the remainder of this section. Bear in mind that
it corresponds to the choice A==]1. In the following section I will be
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dealing with Lagrangians corresponding to the choices A=0 and A=-1/%. These
Lagrangians may be derived from (28) by transforming the purely ¥ part of L
under field redefinitions of the form (22) and using formula (23). Note that
in all three of these Lagrangians the gauge fixing and ghost terms in F, c,

and c, are the same.

*
There are several virtues associated with the structure of the gauge fixing
and ghost parts of the Lagrangian (28). Firstly, as we shall see below, Hata
and Kugo”s ghosts ¢ and ¢, contribute equal but opposite terms to the spin
3/2 chiral anomaly. Therefore when calculating the anomaly using Hata and
Kugo”s formalism one can ignore ghost contributions. Secondly, Endo and
Kimura“s trick of rewriting the gauge fixing parts of L in terms of the
field F neatly eliminates from the Lagrangian interaction terms'in ¥ and B
and replaces them with a free field Lagrangian for F. Because ¥ and F are
non-interacting their contributions to the anomaly may be calculated
independently. The field F”°s contribution is merely that of a spin 1/2
field, while ¥”“s may be found by considering the spin 3/2 part of L alone:

leyp 8] V.YBY. Y

Q|r

L = i¢aY Bpr -

i$a[n“85 - (v*eP4a%yP) + (1- éJYa5Y8]¢B ..(29)

From (29) one can deduce the momentum space propagator for ¥. It is

aB a B a B
Sis(p) = i[D-'—S—- + (2_‘1.;5)(2% - Y(!)_%(z_% _ YB)] - ia ;Lz_g
Sétting
S o8 o B
0 =+ ) - g - )
naB 1 1 a, Bl
=15 ) gy .+ (30)

one then has
o 0B . PP
= § - i .
Sy (P) (p) @ 5
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Note that the quantity gaB(p) satisfies the equations

=aB _ caB _ ..(31)

The coupling of ¥ to the gravitational field is engineered as before by
replacing flat space derivatives with covariant derivatives. When this
replacement is made in the Rarita-Schwinger Lagrangian (24) it becomes

e i T ylogp Bl v
L = -ie ¢qY Yy Dpr .(32)

Likewise the total Lagrangian (28) is transformed into

= {a_p B] 1 = = = -
L= -1e[V Y Y'Y b vy - o BYBY.Y + FBF + cBlc, - c,BPc] ..(33)

The form of the covariant derivative Dp when acting on spin 1/2 objects has

_already been described in equation (5) in terms of the quantities quG and
Iys * When acting on the spin 3/2 object ¢a‘it is given by
u 1 ¥6, _Y§ : .
pws p [ o2 uYG( )]wﬂ
where

.ZY6¢B - nYB¢6 _ HGBwY

nae)/K-may be taken to be symmetric in a

Once again the field ha
B_ o, ha°= 0 . When the

p = (eag- o
and B and to satisfy the equations of motion Bah
gravitational field is introduced as above into the Rarita-Schwinger
Lagrangian (32) gauge invariance of the combined gravitational spin 3/2
theory persists, but in a very complicated form (9,10}. This form can. be
radically simplified by adopting an assumption which in no way'affects the
spin 1/2 or spin 3/2 anomalies, Speéifically,'one can assume as Endo and

Takao did [17] that the Ricci tensor is zero

R =0 ..(35)
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Once one assumes (35) one finds that in the A-parametrized spin 3/2 field

theories described in this section covariant derivatives effectively commute
[b°,0°] = 0 | . ..(36)

This result, which is derived and explained in appendix 3, may in turn be
used to show that the covariant Rarita-Schwinger Lagrangian (32) is

invariént under the following gauge transformation
+
¢a * wa DaA

When gravity is added to the Rarita-Schwinger theory this transformation
replaces the free field gauge transformation (25). Besides simplifying the
form of gauge transformations within spin 3/2 field theory assumption (35)
and its consequence (36) also reduce the complexity of the field transform-—.
ations which mediate between various formulations of a gravitationally
interacting spin 3/2 theory. More will be said of this in the next section.
It only remains to be added that the reader will have to wait until section
3.2 to find out why condition (35) has no effect upon the spin 1/2 and spin

3/2 chiral anomalies.

The Lagrangian (32) may be expanded to first order in K in which case one
arrives at an eipression,bf the same form as equation (7). From this
éxpression one can deduce that in the above covariant, gauge fixed Rarita-
‘Schwinger theory the first order moﬁentum space grévitational vertex is_
given by hpu(k)ma(p)vaspu(p,k)ws(p#k) where

vaspu(p,k) - 1K[(na6pp+ LS anka)Yu - (ppnauYB+ pPrbHyd .

1l a 1 a 1 o
+2n DYuuYB_ E'ﬂBpY.KYu) + (1- E)ppY YuYB]
As in the spin 1/2 case I have used the fact that aphpu and hpp are both
zero to simplify the vertex. I will close this section by deriving the spin
3/2 chiral current conservation equation, the analogue of the spin 1/2
equation (17). The covariant, gauge-fixed Rarita-Schwinger Lagrangian (33)

is classically invariant under the following chiral transformations
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- -1 _ -1
wa R eler wa F +e ier F

R 5] ¢, * e-ier-lc*
It has already been observed that the fields ¥ and F decouple from each
other and from c and c, . As was pointed out above, the virtue of the ghost
formalism of Hata and Kugo, so far as the calculation of the anomaly is
concerned, is that due to the opposite chiral charges of ¢ and c, the
contributions by these two fields to the anomaly are equal in magnitude but
of opposite sign and consequently cancel. The field F contributes to the
anomaly as a spin 1/2 field but with opposite sign since its transformation

character is opposite to that of ¥, Thus the spin 3/2 anomaly is given by

where Al/2 is the spin 1/2 anomaly and A3/2 is the contribution of the field
V. To find A3/2 we need consider only the ¥ part of the chiral current
conservation equation. The chiral transformation rule for V¥ leads us, via

the procedure described in the last section, to the chiral current

V=9

" %y - %+ B 4 (1- éJY“Y”YB]F'lws .+(38)

and, since the divergence of this current is classically zero, to the

equation
2,[e 53] = 432 ..(39)

This equation is the analogue in the Rarita-Schwinger formulation of the

spin 1/2 equation (17).

‘2.3 The A=0 and A=—-1/4% Formulations

in section 2,2 the Lagrangian and propagator for the spin 3/2 field, its
first order gravitational vertex and its chiral current were all given in

the Rarita-Schwinger (A=-1) formulation of spin 3/2 theory. However when I

59



come to calculate the spin 3/2 anomaly and demonétrate its gauge
independence I will be working not in the conventional Rarita-Schwinger
formulation but in either the A=0 or A=-1/% formulations. Consequently in
this section I take the opportuni;y to translate the results of the previous

section into forms appropriate to these two alternative choices of A.
I. The A=0 Formulation.

To recast the Rarita-Schwinger theory described by the Lagrangian (24) in

the form of an A=0 theory one reexpresses V¥ in terms of a field ¢ defined by
1
% = v -5 Y %yov

Evidently ¢ is related to ¥ by an invertible transformation of type (22).
Under this change of variable the covariant Rarita-Schwinger Lagrangian (32)

goes into

= 1 B
L = 1¢a[n985 + (szz)YaﬂY log

and the gauge fixed Lagrangian (33) becomes

L -ie[B % + (g - qaagy B TPY0 + FRE - S pl v Ope,] - (40)

where the field F is given in terms of ¢ by the expression

2i

F=+a [B- Eer=m Y.4)

As mentioned above I will be using the A=-1/% formulation of ‘spin 3/2 theory
to establish the anomaly’s gauge independence, and the A=0 formulation to
actually calculate the anomaly. Given that the énomaly can be shown not to
depend on a, the calculation of A3/2 §n the A=0 formulation is dramatically

simplified by the gauge choice
4
- (21—2)

Then the total Lagrangian (40) reduces to
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L= —e[$ub¢“ + FPF - c, B2 + cpZc,] ' .. (41)

From (41) it is easy to deduce the propagator for ¢ under this choice of

gauge
aB
Sgs(p) =i ﬂ;— : .. (42)

Likewise it is a simple matter to find the first order gravitational vertex

a
Vggpu(p,k) = ix(naspp+ nupkB- anka)Y" «.(43)
As before the contributions to the anomaly by the two ghost fields cancel

and the anomaly may be divided into independent contributions from F and ¢
A3/2=A3/Z_A1/2 oo (44)

In this equation Al/2 i5 the spin 1/2 anomaly which appears in (17), while
Ag/z is ¢°s contribution to A3/2, 0Of course, Ag/z is equal to the anomalous

divergence of the chiral current that is associated with the ¢ part of the

Lagrangian (41). This current is given by

Y -1, &
J - r e 45
o = ba¥ I | (45)
so we have
A3/2 = 3 J¥ : _ .. (46
: e 3] (46)

The only other comment I wish to make before finishing this brief treatment
of the A=0 formulation concerns the parameter choices A=0 and o=[4/(2%2-2)].
Suffice it to say here that no other combination of values for A and o
results in expressions for the spin 3/2 propagator and vertex which are as
simple as (42) and (43). Clearly, it is for this reason that I édopt the
values A=0 and a=[4/(22-2)] when calculating A3/2 4q chapters 3 and 4.
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1I. The A=-1/% Formulation.
The Rarita-Schwinger theory of a non-interacting spin 3/2 field may be

transformed into the A=-1/% formulation by acting on the free field

Lagrangian (24) with the momentum space field redefinition

a a
=9t - G vy | | . (47)

in which case the free field Lagrangian becomes

L = 1%, [n%8 - 3%+ o) + (G a ]y -+ (48)
Setting

"1 1+
uoPB _ 8.0 _ -l-(n“"YB+ BPy%) + (ﬂ%‘)v"vpvs .. (49)

we then have

= \oPB
=iy M3
L X X8

This Lagrangian is invariant under the gauge transformation

Note that the above field rédefinitipn involves the flat space operator p.
Because of thié it is by no means a simple matter to find a covariant
version of the change of variable (47) which will take one from the
covariant Rarita-Schwinger Lagrangian (32) to the corresponding A=-1/1%
Lagrangian. The difficulty in finding such a transformation lies in the fact
that, whereas flét space derivatives commute, covariant derivatives do not.
This problem can be remedied by adopting condition (35). As is explained in
appendix 3, if the Ricci tensor is zero covarianﬁ derivatives effectively
commute. I shall demonstrate in section 3.2 that the imposition of (35) in
no way affects the anomalies Al/2 and A3/2, WYe are therefore free to
simplify matters by assuming that Ru is equal to zero, in which case the

desired covariant field redefinition is just
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% Ya
Xg = Vg ~ Cg 3 v
Under this transformation the complete Lagrangian (33) becomes

_ i [z OPB R R =ao T 42 =9
L 1e[xaM Dpr (azi)x.YDY.x + FPF - c,P%c + cP c*]

..(51)

where MapB is as in (49). Of course gauge invariance no longer exists in the

gauge fixed Lagrangian (51), however the existence of the free field gauge

invariance persists in the fact that

OPB _ _
Y M =M Yg = U

The propagator in this formulation is

@B, . _ceB, . _a_ al B
SX (p) =87 (p) -1 7Y 5 Y

=|a

where EGB is the quantity appearing in equation (30)

aB
SGB(P) = i[ﬂz— + (5%:5) %WaﬁYB%J | o \

The first order gravitational vertex is in turn given by

1
VuBDu(p’k) _ iK[(naBpp+ napkB_ anka)y” -~I(ppnauYB+ ppnBuYa
1 ap B_ 1 Bp " 142 1 yp o uB
ton v iy =370 YGKY ) + (515 = aif)P Y YY)
Setting
- : o
VoBPH (L Ky = iK[(naBpp+ nePB anka)Yu _‘%(ppnauYB+ pPnBHy

1 1 1+
+ 2 0Py yPe 1Py ) 4 (330 YY)

we then have

AT

= i
VP (p k) = TIBPH L (1) Py Oty

gr
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«+(53)

.+ (54)
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Observe that the quantity Vuspu(p,k) satifies relations similar to (52)
YGVGBDH _ VGBQUYB =0 - .. (56)

Equations (56) and equations (31) and (52) together constitute a set of
identities which are central to chapter 3°s proof of the gauge independence
of the spin 3/2 anomaly. It should not eséape the reader that these
identities are closely connected with the form (50) taken by the free field
gauge invariance in this formulation of spin 3/2 theory. The only thing that
now remains to be done is to give the A=-1/% versions of equations (38),
(39), (45) and (46). They are

u
X

J apB _ (

- 1 Byn-
= X, [M Ny

A3/2 = 3 [e Ju]
X H X

The quantity A;/Z is related to the full spin 3/2 anomaly A3/2 according to
the following equation

A3/2 = A;/z - al/2 ' . (57)

Note that, by assumption, the value of A3/2 {5 the same in all formulations

of spin 3/2 theory. In view of equations (37), (44) and (57) this means

A3/2 = A3/2 o p3/2 ..(58)
b ¢ X (

A final comment on ;he A=-1/% formulation of spin 3/2 theory is in order. It
was explained in appendix 2 that -1/%2 is the only value which the real
parameter A cannot validly assume. In fact the A=-1/% Lagrangian (48)
describes a theory which is not necessarily of purely spin 3/2 content, and
in this sense it is unacceptable. These considerations would prove an
obstacle to my proof of the gauge independence of the spin 3/2 anomaly were
it not for the fact that I will not actually be working in the A=-1/2
formulation., Instead I will be setting A=(-1/2)+€ , 0<|€|<<1 and working in
formulations of spin 3/2 theory which are arbitrarily close to the A=-1/%
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formulation. According to the criteria set down in appendix 2 these

e-formulations are entirely acceptable representations of spin 3/2 theory.

When A is shifted from -1/%2 to (-1/%)+€ the propagator and vertex (53) and
(55) receive o(€) corrections. In section 3.5 I demonstrate that these
corrections are irrelevant, and that the anomaly is determined by an
expression that one would get by naively working in the A=-1/% formulation.
Since the gauge parameter & drops out of this expression it is possible to
show that the spin 3/2 anomaly is gauge independent. The point I wish to
make here is that by arguing in this way I avoid the prqblems associated
with the A=-1/% formulation of spin 3/2 theory, and my proof of the gauge
independence of the spin 3/2 anomaly rests on quite as firm a basis as its
actual A=0 calculation. The reader should always interpret my statements
about the A=-1/% formulation in terms of these €-type considerations. That
concludes this chapter”s review of spin 1/2 and épin 3/2 field theory. In
the next chapter I will set up the formalism necessary for the anomaly

calculations and single out the relevant Feynman diagrams.
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CHAPTER 3. The Diagramatic Method

This chapter begins the diagrammatic anomaly calculations which are the
subject of the thesis, It therefore seems appropriate to start proceedings
with a brief history of the diagrammatic method. A simple version of the
method of anomaly calculation described below was first used by Delbourgo
and Jarvis [1] to calculate the gravitational contribution to the spin 1/2
chiral anomaly in eight dimensions. However due to the amount of work
- involved the procedure of reference [l1] proved inadequate for similar
calculations in higher dimensions. The question then arose as to whether it
could be extended in some way so as to permit one to calculate the higher
dimensional anomalies, and perhaps even to calculate the spin 1/2 chiral

anomaly in arbitrary dimensional space-times.

Such an extension was developed by R.Delbourgo and the author in references
[2] and [3]. It exploited recurrence relations between anomalies in
different dimensions and its outcome was the first explicit expression for
‘the gravitational contribution to the spin 1/2 chiral anomaly in arbitrary
dimensions. Previously the spin 1/2 anomaly had appeared only in A-genus
form [5]. The work in references [2] and [3] was iater adapted in reference
[4] to the case of the gravitational contribution to the spin 3/2 chiral
anomaly. Besides the more difficult spin 3/2 calculation, reference [4] also
contains a proof of the gauge independence of the spin 3/2 chiral anomaly.
In the remainder of this chépter, and in chapter 4, I will describe in

detail the work which was carried out in references [2],[3]} and [4].

3.1 Dimensional Regularization

Let us commence this treatment of the diagrammatic method by considering how
the chiral-anomaly emerges when dimensional regularization is applied to the
interacting spin 1/2 and spin 3/2 theories of chapter 2. The object of any
"regularization scheme is to render finite in a well-defined way the infinite
quantities that occur in quantum field theories. It is well known that the

infinities present in these theories have their origin in divergent loop
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momentum integrals. Dimensional regularization is based upon the observation
that any loop momentum integral will become finite if the dimension of the

space-time in which it is calculated is made small enough,

_When using dimensional regularization one adopts the following procedure.
Firstly the theory is established and quantities are formulated in terms of
perturbation series in the usual fashion except that the dimension of space-
time is left arbitrary. Expressions for quantities in the'theory will then
be analytic in this dimension. When all the manipulation and combination of
these analytic quantities is done and a final result is desired one
analytically continues back to the dimension in which the answer is sought.
If there are quantities in the theory which diverge as the dimension is
returned to its "true" value the theory will require renormalization.
However this is never a problem with anomalies. In accordance with the
arguments of Alvarez-Gaume and Witten [5] which were related in chapter 1,

anomalies are always finite and so do not require renormalization.

At this point I wouldAremind the reader that, for reasons discussed at the
beginning of chapter 2, chiral anomalies occur only in even-dimensional
space-times. As a consequence of this fact I restricted my attention in
chapter 2 to space-times of dimensions d=2n, n=1,2,.. . Moreover I adopted
the convention that if the space-time dimension were to be analytically
continued away from d=2n then its continued value would be d=2%. In the
remainder of the thesis I will continue to work in space-time whose true
dimension is d=2n and whose analytically continued dimension is d=2%, The
effect of dimensional continuation upon the interacting spin 1/2 and spin
3/2 field theories of chapter 2 is felt in the algebra of ﬁhe Dirac gamma
matrices. If the dimension is continued away from d=2n it becomes impossible

{6] to maintain the familiar relations

() = on® - D)
- [+ .

{r I’Y } = 0 00(2)

Something must change and the choice conventionally falls upon F_l, with the

consequence that equation (2) is modified and equation (1) is left
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unchanged. Note that in choosing to change (2) rather than (1) one is opting
to preserve vector gauge invariance in the spin 1/2 and spin 3/2 theories at
the expense of chiral invariance. In contrast to 2n dimensions where r1is
defined by equation (2.14), in 2% dimensions r1is given by the following

expression [6]

: in+1 v v

-1 - 1°*Y2n '

r (2[1)! 3 leooszr.‘ 00(3)
E\)I..\)zn - E[\’l"‘)Zn] N e\’l..\)zn . . (4)

The tensor & may be taken to be any totally antisymmetric tensor which
reduces to the 2n-dimensional Levi-Civita tensor € as % [6]. Of course,
the expression (3) for r-! degenerates into the familiar equation (2.14) in
that limit. Using (3) it may be checked that after continuation from d=2n to
d=2% the anﬁicommutator relaﬁion (2) may be replaced by the following

commutator relation

o yq - 2 AVieeVon_]
[yr'] = =7 Yo Yy, e (5)

The consequences of the definition (3) of I'"! for the spin 1/2 and spin 3/2
chiral currents are straightforward. Working in 2&-dimensions and using
Noether”s prescription as described in detail in section 2.1 one arrives at

the following expressions for the dimensionally continued chiral currents.

1 - :
711/2 Sl -1
312 = 2 yy ety .. (6)

3302 = 25 Iy, et L (D)

Note that the‘spin 3/2 current has been expressed in a form appropriate to
the A=0 formulation of spin 3/2 theory, and that for reasons described in
section 2.3 the gauge choice a=[4/(22-2)] has been made. Since I will be
employing the A=0 formulation in combination with the choice of gauge
a=[4/(22-2)] to calculate the spin 3/2 anomaly, all spin 3/2 formulae in
this section and the following three will be expressed in a like manner. The

reader who so desires can translate these formulae into forms appropriate to
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the A=—-1 and A=-1/% formulations using the results of sections 2.2 and 2.3.
In contrast, the work of section 5 will be carried out %n the A=-1/%
formulation since that formulation is the one in which the gauge

independence of the spin 3/2 anomaly is best seen.

The dimensionally continued conservation eqdations for the currents (6) and
(7) may be derived by making use of the fact that under a chiral transform-

ation 9+J = S8L. In this way one finds

a¥[e 31/2] = 2iem yr7ly + e P{p, Iy .. (8)

e 33/2] = e § {p,r71}e" | .. (9)
The terms on the right hand sides of eduations (8) and (9) contain the
anticommutator {P,T”!} which is anomalous in the sense that it is zero for
d=2n and becomes non-zero ohly when the dimension is continued away from
d=2n, It.is a product of the dimensional regularization procedure in the
same way, for example, that massive regulator field contributions to the
right hand sides of (8) and (9) would be products of the Pauli-Villars
scheme, If Pauli-Villars regularization were employed, the spin 1/2 and spin
3/2 anomalies would emerge from the regulator field contributions to (8) and
(9) in the limit as the regulator mass tends to infinity. In the present
instance the anomalies will emérge from the anomalous anticommutator terms
on the right hand sides of (8) and (9) in the limit £™m. So one can write

the operator equations

Al/2 = 1im e y{p, T}y | | ..(10)
t>n

A3/2 = lim e §_{p,r71}6" - .. (11)
Lrm .

3.2 The Form of the Anomaly

A crucial step in the diagrammatic approach to anomaly calculatioh is the
use of general considerations to deduce the form of the anomaly in a space-

time of dimension d=2n. I will now show that its form may be derived using
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arguments based on nothing more than dimensional analysis and the anomaly”s
transformation properties under general coordiﬁate transformations. Consider
the spin 1/2 and spin 3/2 anomalies Al/2 apg A3/2 appearing in equations
(10) and (11). In the remainder of this section it will sometimes be
convenient not to distinguish between these two anomalies in which case I
will simply refer to the anomaly A with the understanding that A might be
either A1/2 or A3/2, The SCafting point for a determination of the form of A
is a consideration of the types of anomalous Feynman diagram that can

possibly contribute to it.

We saw in chapter 1 that anomalous Feynman diagrams possess a unifying
characteristic. They are all either single fermion loop diagrams of the form
shown in figure 1.1, or they contain these fermion loops as sub-diagrams.
Besides an axial current, the fields which emanate from the fermion loops
are gauge fields, which in the present case is to say that they are
graQitational fields. These facts taken together imply that any Feynman
diagram which contributes to an anomalous amplitude of the axial current .]u

will be of the form

FIGURE 1

where the hatched region represents.a sub-diagram whose structure is
unimportant. The point here is that, in its anomalous interactions with
other fields in the theory, the axial current is always "filtered through" a
number of gravitational fields. It therefore follows that the anomaly
itself, which is equal to the divergence of the axial current and which is a
field operator, may be replaced by some polypomial in the gravitational

fields. This provides us with our first hold on the form of the anomaly.
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Once it has been settled that the anomaly is a polynomial in the gravitat-
ional field the chief determinant of its form is its transformation
character under general coordinate transformations. Specifically, the
anomaly is covariant under this type of transformation. This statement is
not self-evident and requires some explanation. Bardeen and Zumino [7] have
pointed out that the breakdown of symmetry associated with the appearance of
an anomaly in a theory may extend to the anomaly itself, In particular this
means that anomalies in gauge theories may not themselves be gauge
covariant. This aspect of anomalous symmetry breaking was discussed in
chapter 1 in connection with the distinction between consistent and
§ovariant anomalies {7,8,9]. Fortunately the effect does not enter into the
present calculation. General coordinate invariance 1is respected not only by
the spin 1/2 and spin 3/2 theories with which we are dealing, but also by
the dimensional regularization scheme which is being applied to these
theories. Consequently the regularized theories, and in particular the spin
1/2 and spin 3/2 chiral anomalies, will be gravitationally covériant. On the
other hand, while the unregularized spin 1/2 and spin 3/2 theories respect
chiral invariance, the dimensional regularization scheme does not. Therefore
we should allow for the possibility that Al72 and A3/2 are chirally non-
invariant. As it turns out, A2 and A3/2 are composed exclusively of
graviton fields, and they are chirally invariant as well as gravitationally
covariant,

Since A is covariant it will possess the tensor transformation properties
which follow naively from equations (10) and (11), which is to say that it
will be a pseudoscalar density. We are therefore faced with the problem of
. finding the most general polynomial in the gravitational field which
transforms as aApseudoscalar density, Because A is gravitationally covariant
it must of course be constructed from curved space tensors and demsities. In
fact it is not difficult to see that A may be regarded as being constructed
from only three tensors together with tﬁeif covariant derivatives. The three
tensors are : the density e, the 2n-dimensional Levi-Civita tensor density

LN ] vc
e"1°*¥2n and the Riemann tensor RM°°P

v ov .
tensor R" = k" need not be included .in this group as they may be derived

. Other tensors.such as the Riccl

o
by combining the above four quantities in various ways. Thus we know the

composition of A in general terms.
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Several more bits of information may be deduced from the transformation
characteristics of A by taking into éccount the properties of the €-tensor.
The Levi-Civita €-tensor is a totally antisymmetric tensor density. Of the
four objects e,€,R and the covariant derivative D, the E—tensor is the only
one which is parity-odd. Since the anomaly too is parity-odd A must contain,
in addition to an unknown number of Riemann tensors, covariant derivatives
and possible factors of e, an odd number of €-temsors. Clearly, because A is
a scalar the indices on the €-tensors and those on the Riemann tensors and
covariant derivatives must all be contracted together in some fashion.
Because € is totally antisymmetric the indices on any one €-tensor cannot be
contracted against one another. Instead they must be contracted against the
indices on other €-tensors or on the Riemann tensors and covariant
derivatives. But the contraction of two €-tensors can always be expressed in
terms of metric tensors guv. Consequently without loss of generality to this
argument we may ignore the possibility that €-tensors are contracted
together and assume that the indices on the €-tensors in A are all
contracted against indices on Riemann tensors and covariant derivatives.
This exhausts the information deducible from A“s transformation properties
alone. Further information may be obtained with the aid of dimensional
analysis. The length dimensions of the quantities relevant to this

discussion are as follows.
[e] = [€u1.-U2n] = 1,0 [Ruvop] - 12
[Dp] =17! [DeJ1/2] = [D.J3/2] = L=2n

We know from equations (8),(9),(10) and (11) that the dimension of the
anomaly A is the same as those of the divérgences D*J1/2 and D+J3/2, On the
other hand A is constructed from the objects e, €, R and D. Of these objects
the only ones possessing length dimensions are R and D. (The gravitational
coupling constant K, which is a dimensional quantity, may be ignored as it
remains buried within the Riemann tensor.) We see immediately that the
number of Riemann tensors and covariant derivatives in A necessarily
satisfies a certain relation. Specifically, in addition to €-tensors and
factors of e, the anomaly A must consist of nj; Riemann tensors and 2n2

covariant derivatives where nj+nz=n. Note that there must be an even number
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of covariant derivatives. Let us now analyse the way in which the indices on
Riemann tensors may be contracted against those on €-tensors. Of the four
indices on any one Riemann tensor no more than two can be contracted against

e-tensor indices due to the cyclic identity

WVOp, LUPVO. LUOPV_

R R R 0 ..(12)
This means that overall there are no more than 2n] Riemann tensor indices
which are available for contraction against €-tensor indices. Together with
the 2nj indices carried by covariant derivatives there are therefore no more
than 2(nj+n3)=2n indices which can be contracted with €-tensor indices. But
we have seen that all of the 2n €-tensor indices must be contracted against
those on Riemann tensors and covariant derivatives. The conclusion is that A
contains a single €-tensor and, further, that all of the indices on the
covariant derivatives and two indices from each Riemann tensor are
contracted against the indices on this €-tensor. But contractions qf pairs
of covariant derivatives against antisymmetric €-tensor indices will either
vanish or be expressible in terms of more Riemann tensors. Thus without loss
of generality we may ignore the possibility of covariant derivatives
occurring in the anomaly and set n2=0. It follows that A consists of a
single e-tensor and a total of exactly n Riemann tensors. Two tensor indices
from each Riemann tensor are contracted with indices of the €-tensor and no
factors of e are needed since the resultant tensor is a density of the
correct type. This arrangement neatly accounts for all indices on the
e-tensor and leaves two free indices on each Riemann tensor which must be

contracted amongst themselves. Note that by virtue of the cyclic identity
(12) and the identities

WVOP_ OPUV_ _ VuOp

R R R
we lose no gencrality in assuming that it is the first two indices on each
Riemann tensor which are contracted against €-tensor indices. The final step
in this argument consists of showing how the remaining free Riemann tensor
indices, the third and fourth on each tensor, may be contracted together.
Since R9“°°= ~R"VPY the third and fourth indices on any one Riemann tensor

cannot be contracted against each other. We deduce that the Riemann tensors
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must link up in chain-like fashion forming "loops'" of different lengths. A

loop of length L contains L Riemann tensors and is given by the expression

CRL> = <RLpMIVIoMLVL - gH1V191 gW2v2%2 L WVLG ..(13)
02 o3 9

We need only consider loops of even length, that is loops containing even
numbers of Riemann tensors, for the following reason. As R is antisymmetric
in its third and fourth indices, the O-indices on each of the tensors in
(13) may be reversed with a change of sign. Reordering of the tensors then

leads immediately to the result
<RL> = (~1)L<RL>

Consequently if L is odd <R-> is zero. Therefore the Riemann tensors in A
occur in loops of even length and the total number of such tensors is
obviously also even. Since the total nunber of Riemann tensors in A is n it

follows that pure gravitational contributions to the spin 1/2 and spin 3/2

chiral anomalies occur only in dimensions d=4N, N=1,2,... . We are now in a

position to write down the general form of the anomalies Al/2 and A3/2 in
dimensions d=4N. Let me define an object T(nj,..,nyN) according to the

following equation.

T(ny,..,ny) = e<RDOTIRM2,, (R2NHON ' | ..(14)
In ghis equation the n, are any non-negative integers such that

n) + 2ny + 3nz3 + .. + Noy = N ««(15)

The abbreviated notation used in (14) is reasonably obvious. The "«"
signitfies contraction between the indices on the €-tensor and those on the

Riemann tensors. For example in 16 dimensions

T(2,1,0,0) = € <R2>U1\)1LI2\’2 <R2>U3\’3Uq\’u <RL+>USV5..L|8\)8
> H1V]..HgVg

To shorten formulae I will sometimes use the following vector notation for

the index (nj,..,ny)
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n = (nl,..,nN) «.(16)

and write T(ni,..,nyN) as T(m). Confusion between the boldfaced letter n,
which figures in equation (16), and the regular letter n, which is half the
space-time dimension, is to be avoided. In view of condition (15) the
integers nj,..,ny may be regarded as specifying a partition of N into n)
ones, Ny twos,...,ny N's. Consequently I will sometimes refer to the
admissable values of the index n as partitions of N. Likewise, it will be
convenient in the following to refer to the sum nj}+2ny+..+Nny as the modulus

of n and represent it by the symbol |n

. In terms of this notation equation

(15) may be re-expressed in the form
Inl = N

and the anomalies A2 and A3/2 can finally be writted as

n .
Al/2 = cl/2(n)T(n) ee(17)
|n =N .
n .
A3/2 = c3/2(n)T(m) ..(18)
In =N

where C!/2(n) and €3/2(n) are numerical coefficients, and the sums in (17)

and (18) are over all partitions n whose moduli |n| are equal to N.

Before closing this section it is appropriate to comment on the condition
(2.35). The gravitational field figures in expressions (17) and (18) for the
anomalies Al/2 and A3/2 only in the form of the Riémann tensor. The Ricci
tensor does not appear at all. Consequently the imposition of condition
(2.35) brings about no formal degeneracies in the terms T(m) and does not
predjudice the calculation of the anomalies. Since, as explained in sections
2.2 and 2.3, the imposition of this condition is in other respects desirable
I will henceforth regard it as applying.
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3.3 Perturbation Analysis

Combining the final results in each of sections 1 and 2 one arrives at the

exact, that is nonperturbative, equations

o .
¢/ 2(n)T(n) = lim e ¥{P,T 1}y .. (19)
|n =N 2'7"1 -
o - a
€3/2(n)T(n) = lim e ¢_{p,T"}¢ «.(20)
[n[=N tyn

As explained in the previous section these two equationé involve the unknown
numerical coefficients Cl/z(n) and C3/2(n). It will often be convenient in
this section not to distinguish between ¢c!/2(n) and €3/2(n). In this event I
will adopt the same convention that I employed in section 3. That is, just
as 1 used A to stand for either of the anomalies A}/2 or A3/2 I will use
C(n) to represent one or both of the coefficients C1!/Z(n) and c3/2(n).

From equations (17) and (18) we know that finding the anomalies AY2 ang
A3/2 s equivalent to finding the values of the coefficients c!l/2(n) and
C3/2(m) for all admissible partitions n. In the diagrammatic method the
starting point for the calculation of the C(m) is the observation that it
should be possible to deduce their values by comparing coefficients on both
sides of equations (19) and (20). Of course (19) and (20) are of no use to
us as they stand because they are operator equations. The spin 1/2 and spin
3/2 field theories with which we are dealing are only perturbatively
solvable. They are not solvable in closed form and consquently we cannot
directly compare the operators occurring on both sides of (19) and (20).
What we can do however is to compare the amplitudes of these operators
between the vacuum and appropriate multiparticle states., Such amplitudes are
expressible in the usual fashion as perturbation series, and one would hope-
in this way to derive expressions for the C(n) in terms of Feynman diagrams.
In actual fact it is not necessary to consider all the terms in the
operators on both sides of (19) and (20). In order to calculate the C(m) it
suffices to consider only a small set of operator terms t(m) within the
quantities T(m). The t(m) are of a distinctive structure and it is easy to

pick out their contributions to the amplitudes of the operators in (19) and
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(20). By comparing these contributions one ends up with expressions for the
C(n) in terms of a few single loop Feynman diagrams. These diagrams can then
be evaluated to give the anomaly., I will now describe the structure and

origins of the terms t(m).

Consider the perturbation expansion of the terms T(m) in the gravitational
coupling constant K, The dependence of T(m) on K is quite complicated. Using
equation (2.6) one finds that T(m) contains terms of all orders in K
beginning with 2N and extending to infinity. Among the numerous operator
terms in the lowest order, that is k2N, part of T(m) there is one term t(n)

which possesses a distinctive type of structure. In momentum space t(m) is

given by
t(a) = (202N e(k)K(n)H(2N)
= 2N H1eetay Pre<P2N
(2007 [e(k)] [k(n)] LIC20) P .. (21)
wherev

e(k) = [e(k)]ulo-uzrf = M1ViesHaNV2N klvl"kZN\’ZN «e(22)
and
H(2N) = [H(2N)] = h (k1)..h (kon) «.(23)

PlH1ePINU2N P1U P2oNH2N

As indicated by my notation the forms of the t(m) and their sub-components
are functions of the index m=(nj,..,nyN) or the number N. In particular, the
quantity K(m), which is a product of the momenta ki’ is a function of the
entire index n. In order to compactly describe its structure let me intro-

duce the following notation.,

8 P p p p Ps -
k = kVFs+1 kPs+2 (M43 8+r s .
( s+r) s ks+1 ks+2 ks+r—1 ks+r (24)

1 will say that two momenta k;i and k:“ are "linked" if i=n or j=m. The r

momenta in the sequence (24) are all linked together in a single continuous
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s
chain. I will therefore call (ks+r) a momentum chain of length r , or an

r-chain for short. In terms of these momentum chains, K(m) is given by

.. 1 2n)=1y, 20+l 2045
(K(n)) 71PN - (kz)(kz)"(kzzi )(kzgiia)(kzgiis)'°

2ny+4n -3y, 2n)+4n g+l ‘
2n+4n, )(k2n1+4n2+6)" -+(25)

o (x
Observe that K(m) consists of n; 2-chains, n2 4-chains,.., ny 2N-chains, Of
course it is no accident that I am using the same terminology for the above
momentum chains as for the chains of Riemann tensors encountered in section
" 2. The sources of the momenta in K(m) are the derivative graviton couplings
within the Riemann tensors in T(m), and the reader may verify that the

momenta in K(m) are linked together in chains in exactly the same pattern as

the Riemann tensors in T(n). Because of this fact it is obvious upon
inspection just which t(m) comes from which T(m), and it is clear that the
t(n) are in one-to-one correspondence with both the T(n) and.C(n). As an

example of the t(m) consider the.sixteen—diménsional (N=4) term t(2,1,0,0)

£(2,1,0,0) = (208 [e()]"1* 8 [k(2,1,0,001°1°%8 (w®)l, o

UileeUg _ H1V1e-UgVg |
[e(k)]™*"" € kl\,l-»ke\,s

[H(8)] =h o (kp)eehy

kg)
P1H1--Pglg P1M) (ke ‘

glg
[K(2,1,0,001°1°7P8 = (182 151) (18" kf3) (kB8 k7 k58 k§5)

The term t(m) is special among the operator terms in the perturbation
expansion of T(m) because it is the only one which contains no dot products
of the momenta ki,and no contractions of one géuge field with another. That
is, it does not contain any factors ki'kj or either of the combinations
hpuhou and hpuhpu. In these respects t(m) is easily distinguishable from the
other terms in T(mn). The t(m) as a group are also easily distinguishable
from each other since the factor K(m) within each t(m) has a unique momentum
chain structure. In this sense K(m) is a kind of signature for t(m). Of

course, the terms that I have labelled t(m) have been selected for
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consideration precisely because they are readily identifiable. Recall that
our general strategy involves taking the amplitudes of the operators in
equétions (19) and (20) between the vacuum and suitable multiparticle
states, and then picking out of these amplitudes the contributions of the
terms t(m). We shall see below thét the distinctive structure of the

momentum products K(m) allows us to do this fairly easily.

waever before proceeding any further it must be decided just which
amplitudes of the operators in (19) and (20) are relevant to the present
problem. Clearly we must require that the amplitudes of the terms t(n)
between the vacuum and whichever multiparticle states are chosen be non-
zero., Since t(m) contains 2N graviton fields hpu the obvious multiparticle
state to consider is the one containing precisely 2N gravitons. Denoting the
amplitude of an operator O between the vacuum and such a state by <O0>2N, one

finds from equations (19) and (20) that

[4

a :
I cM2n)<t(n)>oy © lim <e ${p,T"1}¥>oy -+ (26)
|m]=N o
o ' - a
C¥2(m)<t(n)>oy < lim <e ¢,{B,T7 6 >N - ..(27)
I.n =N {»m

The signs "(" indicate that the amplitudes of the t(m) are contained within
those of the operators on the right hand sides of (26) and (27) along with
the amplitudes of many other operator terms. Equations (26) and (27) may be

simplified by making use of the expression (21) for t(m) :
2N
<t(n)>on = (2x)7 €(k)K(n)<H(2N)> 2N

The expectation value <H(2N)>yy can be evaluated using the LSZ reduction
formulae. In the present case the formulae tell us that the evaluation of
<H(2N)>,y effectively reduces to a sum over the (2N)! permutations of the
momenta kj,..,kpN. Not all of these permutations will leave K(m) invariant.
In fact it is a simple matter to see that the nﬁmber of permutations which

do map K(n) into itself is
t(n) = nylnpy!..ny!(4)"1(8) 2. . (4N)"N | ..(28)
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Therefore
2N
<t(n)>oy = (2%)7 T(m)e(k)K(m)

so equations (26) and (27) become

n
e(k) (2¢) 2N % cl/2(a)t(n)K(n) C Lin e v{D, T y> oy <. (29)
: n|=N N
2N 2 - a '
e(k)(2x)° % c3/2(n)t(n)K(n) C lin < ¢,(B,T 107> op ..(30)
: nl=N >N

where e€(k), K(m) and t(m) are as in (22), (25) and (28). As was explained
above, fhe_momentum product K(n) is unique to the term t(m). It follows,
;hen, that the problem of finding the C(m) reduces to the problem of finding
the coefficients of the momentum factors K(m) within the amplitudes on the
right hand sides of (29) and (30). Let us therefore single out which Feynman
diagrams among those that contribute to these ampiiﬁudes could possibly
contain the quantities K(m). For a start we know that we need only consider
single fefmion,loop diagrams since, according to Adler-Bardeen type
arguments, these are the only diagrams which are potentially anomalous.
Moreover we see from equations (29) and (30) that relevant diagramé must be
of order x2N, The upshot of thése considerations is that the only suitable

Feynman diagrams are those of the form shown in figure 2 below.

FIGURE 2

In this diagram there is one axial vertex, which is marked with a cross, and
a number of regular vertices. Connected to the regular vertices and axial

vertex are a total of 2N gravitons. By requiring that there be exactly this

81



number of graviton fields one ensures that the diagram is of the correct
order k2N, I now assert that diagrams which contain vertices to which more
than one gauge field attaches may be ruled out of consideration. The reasons
for this are as follows. The gauge fields that attach to a vertex, whether
it be an axial or regular vertex, do so via the vector indices on quantities

Y6

§ : .
such as Yu, o and XY within the covariant derivative Dp [see equations

(2.5) and (2.34)]. A simple count of available indices will convince one
that if more than one gauge field attaches to a vertex then at least two of
the gauge fields must be contracted together. In other words the gauge

fields will form combin-ations such as hpuh0 and hpuhpu. Correspondingly,

i

the vertex will contain factors such as N and N . As we have seen,

pu’ "pp uH

there are no contractions of gauge fields in t{(m) and the factors npu’ npp
and nuu do not occur in the amplitude <t(mn)>. Therefore a diagram of the
type shown in figure 2 will not contribute to <t(m)> if more than one gauge

field emerges from any given vertex. The only remaining diagrams which could

possibly contribute to <t(m)> are shown in figures 3 and 4.

FIGURE 3 FIGURE 4

In the first of these diagraﬁs one gauge field emerges from each vertex,
whether it be axial or regular., Consequently in this diagram each vertex is
of first order in K., On the other hand in the second diagram there is one
gauge field attached to each of the regular vertices but no gauge field
attached to the axial vertex. In the diagram of figure &4, therefore, each of
the regular vertices is of first order in X while the axial vertex is of
zeroth order, Now recall that each of diagrams 3 and 4 must have 2N graviton
legs. We deduce that the diagram of figure 3 contains one axial vertexband
2N-1 regular vertices, while the diagram of figure 4 contains one axial

vertex and 2N regular vertices. On the basis of this vertex count 1 can now
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say that the Feynman diagram of figure 3 is zero. This conclusion follows
from properties of the matrix F-l,that are dealt with in appendix 4. There
are simply too few Y-matrices in the diagram”s fermion-loop to give a non-

zero trace.

We are therefore left with the diagram of figure 4. This diagram, which is
reproduced in more detail in figure 5, is the only Feynman diagram which can
possibly contain the momentum factor K(m). Consequently it is the only one
which is relevant to the present anomaly calculation. In the spin 1/2 and
spin 3/2 cases the loop particles in this diagram will be spin 1/2 and spin
3/2 fermions respectively. I will denote the values of the diagram in these
two cases by D!/2(N) and D3/2(N), thereby explicitly recognizing their
dependence on the number N. If I do not wish to consider the spin 1/2 and

spin 3/2 cases independently I will simply refer to the quantity D(N).

h(1/~A1(k1) h‘Z/.LZ(kz)

e )

(k,,) )

"ZN Fane h fan-1 M2N —1(k'ZN—1

FIGURE 5

In terms of D!/2(N) and D3/2(N) equations (29) and (30) can be rewritten in
the following form. The limits in (31) and (32) indicate that the values of
the diagrams D1/ 2(N) and D3/2(N) are to be calculated in dimension d=2% and
then contirnued back to'd=2n. That is, one should take the limit £+n only

after the relevant loop momentum integrals have been done.

i . n .
e(k)(2¢) 2N cl/2(n)t(n)K(n) C  1im DY/ 2(N) ..(31)
|n[=N b»>m
2N o 3/2 3/2
e(k) (2k) ) €3/ 2(n)t(n)K(n) C 1im D3/2(N) ..(32)

|n|=N Lrn
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3.4 Anomaly Diagrams

As we have seen, the values of the anomalies Al/2 apd A3/2 may be derived by
considering just the two Feynman diagrams D!/2(N) and D3/2(N). In the
remainder of the thesis I will be concerned not so much with calculating
D!/2(N) and D3/2(N) as with extracting the coefficients Cllz(n) and C3/2(n)
from these quantities. Nevertheless Cl/z(n) and Cs/z(n) cannot be extracted
directly from D!/ 2(N) and D3/2(N) as they stand, and some partial evaluation
of the Feynman diagrams is necessary. In this section I will describe in
some detail the steps in the partial evaluation of Dl/z(n). The parallel
manipulations of D3/2(N) are almost identical and I have not wasted space by
including them too. The reader should have no difficulty in adapting the
spin 1/2 calculations to the spin 3/2 case. The section culminates in
separate intermediate formulae for the two sets of coefficients Cl/z(n) and
C3/2(n). These formulae then become the starting point for the calculations

of chapter 4.

The propagator and regular vertices that occur in DI/Z(N) were described in
chapter 2. The propagator S(p) for a massive spin 1/2 field is given by
equation (2.3). For reasons discussed at the end of section 2.1, when
calculating Al/2 ye need consider only massless spin 1/2 fields. So m may be
set to zero in S(p). The first order spin 1/2 gravitational vertex Vpu(p) is
likewise given by equation (2.8). The zeroth order spin 1/2 axial vertex
must be extracted'from the operator product on the right hand side of (26).
It is P(p)A(p,q)¥(q) where

i -
A(p,Q) = E {ﬁ"'d:r 1}
I am now in a position to write down an expression for DI/Z(N). This
expression is vastly simplified if the following notational convention is
adopted.

p, =p-k, -k, - ..-=-k -.(33)

where i has the range 0,1,..,2N and p2y = p. In terms of the Py and the
above-mentioned propagator and vertices, the integral DL/ 2(N) 1s given by
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Dl(é(N) =3 dzzp(—l)tf[S(po)Vplul(P1)S(PI)szuz(Pz)-'
P
..S(pzN_l)VpZNHZN(P2N)S(P2N)A(P2N»P0)] ..(34)

1 2N 22 p p -
7 X g [ dp [qupzz--PzﬁN][ngf--Pgh] !

tr[éOYultlyuz"YuzNﬁzn{ﬁo+ﬁ2N,r_l}] ..(35)

In these equations the sum I is over the (2N)! Bose permutations of the
momenta kj,..,koqy. The first simplification that can be made in the above
expression for D!/2(N) is effected by introducing‘Feynman parameters
XgsX]sessXoy and rewriting the denominator-[pgpf..p:N]—l ﬁsing the formula

= (2N)! {:dx0'°dx2N G(I—XO-..-x2N)[x0A0+..+x2NA2N]-(2N+1)

2N 1
Mz

k—.—.o k
In this way we find that

=(2N+1)

1
[pcfpf..pzzN]"'1 = (2N)! L)dX0°-dx2N 5(1-x0—..-XZN)[pZ—Zp.X+q2] «+(36)

On the right hand side of (36) q2 is some polynomial in both the Feynman
parameters Xj,..,x2Ny and dot products of the k“s. As we shall see, the exact

form of q2 is unimportant. The quantity X is as follows.
X = xpky + (x1+ x2)kp + (x1+ xo+ x3)k3 + oo0 + (x1+.o+ xanJkon «+(37)

By changing variables

p*p =p-X

and integrating out the Feynman parameter x¢ which appears in neither X nor

q2, one finally arrives at the following results

[pZp2ep2 171 = [(re+x) 2(pi+x) 2. . (poN+X) 2]

-(2N+1)

1
(2N)! J;dxl..dsz 0(1-x 1=+ .=x on) [P” %-q~ 2]
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In these equations pi is given by the expression on-the right hand side of
(33) except that p is replaced by p”~. The polynomial q’2 is simply equal to
q2—X2, and © is the familiar Heaviside theta function. If I now drop the

primes on p” and q” then D!/2(N) may be written

D/ 2(N) = 1(2N)!2£(1K)2N.2 / a2ty [ dx ©(1-Ix)
P
T [Pl (a0 N [p2-g2) 72D (38)

where dx = dxj..dx2y , IX = x)+..+xoy and T is the trace
. 2N+ L+ -
T = (1228 e (o0 v 1B 107 20 YN (B o0 (Borb i 2k, T7H ]

T may be calculated using some results from appendix 4. Firstly note that
due to the form of the matrix T}, as given in equation (3), the Y-matrix
trace tr[#l..¢2M44{¢2M+2,F"l}] is zero unless M?N. As a consequence the
trace tr[#l..¢2N+1{¢2N+2,F—1}] is antisymmetric under interchange of any two
of the vectors aj,..,asnN+1. Applying this result to T one finds that

129 L L0 Y 1Y 2 e« K1Y  PNK on ] 2B+ 20K 1=« =K o, T2} ]

T = -
Having reduced T to this simplified form one then applies the following
fofmula which is derived in appendix 3.

tr[A1. cdunsr{hune2s T} =
2N+1 43*'

271y
: : k=0

(-1)7 ag.ayn+2 E°@)ecak—1aK4]le +BYN+1 .+(39)

The notation employed here is reasonably obvious. The tensor & is the

totally antisymmetric tensor of equation (4), and

v eV
Eebjoubyy = § 1" 4N B b
1 +byn Ly, **PuNy,,

1 will now extend this notation so that the vectors'bi may be replaced by

tensor indices, In this way, for instance, one has

_ HiVieold A"

..kZN\)ZN

86



Using formula (39) and taking the antisymmetry of & into account one can
decomp;ose T into two groups of terms, T=T+T°°. The terms in T~ contain one
p while those in T”” contain two. In arriving at the following expressions
for T” and T°” I have ignored any terms containing dot'products o-f the k”s.
As has been pointed out on previous occasions, such terms do not contain the

momentum product K(n) and are therefore irrelevant to the anomaly.

T7 = pe(2X-k~..=kgy) Ecujkiusky.cHonkoN
(2X-k1-e -k )"! Eepkiukouz. - uznkon
(ZX-kl-..—kZN)uz E'pulklkZUS"UZNRZN

, | _
(2X-k ==k pn) 2N Eepukiligky. kony—1koN

T°" = 2p2 Eeujkugka. cupNKon
" .
+ 2pek) Eepuikgkaug..uankon = 2P ' Erpkuokoug. . HoNKoN
H
+ 2pekp E*puiKjuau3.-HoNkon = 2P 2 Eepuikikalg. . HoNkoN

+

2pekoy E<Puikiugkaeckon—juon = 2P" 2N Eepuik ugky..kon—1kon

The numerator of the integrand in D1/2(N) may now be written in the form
(p )Pl #+X) P2 . (p o) PN [T74 177

0f course, our principal concern is to find those terms in DI/Z(N) which
contain the momentum factor K(m), or more precisely the combination
e(k)K(n). Note that e€(k)K(m) contains e‘xactly 4N k“s, while the terms in the
numerator of the integrand in DY/ 2(N) contain 4N+2 momenta, some of which
are p°s and some k“8, It follows that we must look for terms in the
numerator of the integrand which contain 4N k”s and two p“s. There are two
options here. In the first place both of the p“s in such a term could .come
from one of the terms in T°”, Alternatively one of the p’s could come from a

term in T and the other from one of the factors (pi+x)p' . Consider the
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p
second option. Let us suppose that one p comes from the factor (pi1+X) 1 and
the other from within T, The p-integration in (38) is even so within the

pll . aB . 2 ae
product p" 'T” we may replace the combination p p with (p</22)n . When this
replacement is effected in the first and second terms in pplT’ they cancel

P11 in its indices :

due to the symmetry of h
P L B2 P1

P lpe (2X+k 1+ otk on)Eo ik ik e cuonkon > 7 (2K+k e sHkgy) T o uk uok g HoNK gy
p1 b p? ' My K

P (2X+k1+..+k2N) g.pklusz"HZNkZN +-2—l(2x+k1+..+k2N) g.plk1u2k2"u2N 2N

The other terms in pplT’ are zero when the same replacement is made because

of the antisymmetry of £ in its indices. Consequently pplT’ effectively

vanishes. The same is true for pplT’,i=2,3,..,2N as similar cancellations

occur in each case. Thus the terms in T~ do not contribute to the anomalies

and T is effectively equal to T°°. Because each term in T°” contains two

p“s, the p“s in the factors (pi+X)pi may be ignored. This means that the

factor (pi+X)pi can be replaced with the quantity Xpi(i) where

X(1) = X - ki+ -k, = e -k : , .. (40)

1 i+2 2N

a
and X is as in equation (37). When the substitution pap8+ (p2/22)n B is made
throughout T=T"~ one finds that

T = (p2/2)(22-4N) Eepikimnoka..uoNKoN
Therefore D!/2(N) is equal to
DY/2(N) = i(ZN)!Zl(iK)ZN[(22-4N)/2]

Eeuikieouankon § 120 [ a2 p2(p2-q2) WD)
P

where

11/2(N) = L:dxl..deN 0(1-% 1=+ .=x2y) XP1(1)XP2(2)...x°2N(2N) .. (42)
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Note that Eepjk;..usykoy is invariant under permutations of the labels
1,..,2N so it has been taken outside the sum in (41). The momentum integral
in our expression for D!/2(N) can now be carried out with the help of the

following formula [10]

2% 2y=(2N+1) _ T(2+1)T(2N=2) =%, 2. %-2N
fd P p2(p2_q2) = I‘(R.)I‘(2N+1) (4“) (q )

Having calculated the loop momentum integral we are at last free to take the
regulator limit £+n, which in the present case becomes £*2N. Noting that in
thié limit (2N-2)T(2N-2) + 1, and that in accordance with equation (4) & *+
€, one arrives at the result

LK y2N

lim D!/2(N) = 2(21T

t>n

e(k) § 11/2(w) ..(43)
P

- Equations (42) and (43) are as far as I want to go with the analysis of the
diagram D1/2(N5 in this chapter. The derivation of the épin 3/2 counterparts
of these equations is almost identical to the above spin 1/2 derivation. One
begins with an expression for D3/2(N) similar to (34) except that the prop-
agators and vertices both carry additional vector indices, and the vertices

now depend upon the external momenta as well as the fermion loop momentum :

3/2 - 24 Y Bo(llpIUI
D3/2(N) ;Udp (-Dex[s, 4 (Po)V (P1,k1)Sg g (P)--

..VBZN—IGZNQZNUZN(pZN,kzN)S (pzu)AszNao(pzn,po)] .o (44)

a2nB 2N

Since I have elected to calculate the spin-3/2 anomaly in the A=0 formul-
ation, and with the gauge choice a=[4/(22-2)], the appropriate propagator
and regular vertex are given by equations (2.42) and (2.43). The zeroth
order spin 3/2 axial vertex must be extracted from the operator product on

the right hand side of (27). It is $a(p)AuB(p,q)¢B(q) where
i -
2% (p,q) = 3 n®® {ped,r-1)

As the reader will note, the expressions for the spin 3/2 propagator and

vertices are very close to their spin 1/2 equivalents. Consequently there
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are only two significant differences between the mathematics leading to
equations (42) and (43) and the corresponding spin 3/2 mathematics. Firstly,
the product p?l..pgﬁn is replaced by the quantity

P19 P2%2 PIN—-1%2N~1 pP 2N 2N
P17 7, P2™ 5 oo P2RNT ay TN a

where

paB _ 0B P L n%PkB _ BAO

Py NPy 1 1

and Py is as in equation (33). Secondly, the product Xpl(l)..XPZN(ZN) is
replaced by

YPI%1 (1) YP2%2 () ... YPIN-1®2N-1  (oN-1) YP2N2N (o)
a2 a3 a2N a)

where

B _ anka

P81y = n®BxPi) + napki iy

and X(i) is given by (40). When these substitutions are carried out one ends

up with the following expression for D3/2(N).

1im D3/2(N) = 2(15)2N e(K) } 13/2(N) . (45)
g>m 2m P
13/2(N) = f;dxl..dsz 6(1-X 1=+ o =X 2N) Yplalaz(l)...YpZNaZNul(ZN) CL.(46)

From equations (43) and (45) we conclude that the problem of calculating the
anomaly coefficients C(m) has been reduced to the problem of finding the

coefficients of K(m) within the quantities II/2(2N) and ZI3/2(2N). Let me

denote thesc latter coefficients by c1/2(n) and c3/2(n) respectively. By
combining equations (28),(31’ and (43) and equations (28),(32) and (45) one
finds that

cl/2(a) = 2¢1/4m) N[n1tngl..ong! (4)V1(8)M2. . (4N)™N] "1 ¢ 1/ 2(n) ..(47)
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¢32(n) = 2(1/4m) 1!yt ngt () 1(8)"2.. (4N)™W] 1 c3/2(a) ..(48)

Equations (42) and (46) will be my starting points for the calculations of
cl/z(n) and c3/2(n) in chépter 4,

3.5 Gauge Independence of the Spin 3/2 Anomaly

In chapter 2 I explained the relationship between the various formulations
of spin 3/2 field theory. Working in the conventional Rarita-Schwinger
formulation I showed that formulations of spin 3/2 theory characterized by
values of A other than fl could be reached using local and non-local field
redefinitions. Subsequenfly I made the not unreasonable assumption that
physical quantities are invariant under such field redefinitions, and that
correspondingly the spin 3/2 anomaly A%/2 ig the same regardless of the
formulation in which it is calculated. Once this assumption is made, and
once the Feynman diagram of figure 5 is singled out as being the only one of
relevance to the anomaly, a proof of the gauge independence of A3/2 jg

trivial,

Consider the Feynman diagram of figure 5 whose value in the spin 3/2 case I
have denoted by D3/2(N). In the previous section I showed how to partially
evaluate the quantity D3/2(N) in the A=0 formulation with‘the choice of
gauge o=[4/(22-2)]. Let us now look at the value of D3/2(N) in the A=-1/2.
formulation without fixing the gauge parameter &, In this case D3/2(N) is
still formally given by equation (44), however the propagator and regular
vertex are as in equations (2.53) and (2.55) rather than (2.42) and (2.43).
The'zeroth order spin 3/2 axial vertex appropriate to the A=-1/2
formulation is ;a(p)AaB(p,q)xB(q) where

AGB(p,q) = apB;F"l}

N

(p+a) [

apB
and M*% is the quantity which appears in equation (2.49). The properties of

apB have been

the propagator (2.53), the vertex (2.55) and the quantity M
summarized . in equations (2.31),(2.52) and (2.56). Using these properties it

is a simple matter to verify that the four contractions
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S VBYDu , yoBPug .S MBPY , M®PBg
o Y af

8 8 «+(49)

By

are all independent of a,., For instance

=aBp ik p.a Bir= o 1
[V = (G2 Y™ 1[5, () - 1 v 3 Y

aBpu
v (e, k)8 (P) v

= \’l“epu(p,kﬁm(p) - (%)ppvawr" %‘YY

Obviously if the four contractions (49) are independent of @ then so is the
integral D3/2(N) which is given by equation (44). But this implies that the
spin 3/2 anomaly A3/2 ig independent of @ in the A=-1/% formulation. There-

fore it is independent of @ in all formulations.

There is one major problem with this proof as it stands = it employs the
A=-1/% formulation.of spin 3/2 theory. As is explained in appendix 2, -1/%
is the only value that the parameter A cannot validly assume. This is
because the A=-1/% Lagrangian does not describe a purely spin 3/2 theory.
Instead it contains probagating spin 1/2 degrees of freedom in addition to
the desired spin 3/2 degrees of freedom. Fortunately these problems can be
avoided in the above proof by considering formulations of spin 3/2 field
theory corresponding to the parameter choices A=(-1/%)+¢€ where 0<| e <L1.
These formulations of spin 3/2 theory are entirely acceptable according to
the criteria which are set down in appendix 2. Moreover, they can all be
reached from the Rarita-Schwinger (A=~1) formulation via local changes of
the field variable. Consequently they are on exactly the same footing as the

A=0 formulation in which the anomaly calculation is being performed.

In chapter 2 I explained why it is reasonable to assume that the spin 3/2
'anomaly is independent of the value of the parameter A. (The value -1/% is
naturally excluded from consideration here.) In the present case this
assumption télls us that the anomaly is the same in the A=-1 and A=0
formulations of spin 3/2 theory, as well as in the above €-formulations. In
particular, when calculated in the €-formulations, the anomaly must be
independent of the parameter €. Now consider the forms of the spin 3/2
propagator and vertices in these €-formulations. When one shifts A from -1/%

to (~-1/2)+e one finds that the propagator and vertices of equations (2.53),
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(2.55) and (49) all receive corrections which are linear or quadratic in €,
Note that none of these corrections involves negative powers of €,
Consequently, when one substitutes the corrected propagator and vertices
into the right hand side of (44) and expands in powers of €, one finds that
the zeroth order part of D3/2(N) is just the expression that one would
obtain by naively working in the A=-1/%2 formulation. Of course, D3/2(N)
contains terms which are of higher orders in €. However, since the spin 3/2
anomaly has been assumed to be independent of €, these terms may be taken to
vanish identically. Thus, in the (admissable)'E—formulations of spin 3/2
field theory, the integral D3/2(N) is exactly as one would expect it to be
in the (inadmissible) A=-1/% formulation. In view of the above arguments, it
is therefore clear that the spin 3/2 anomaly is independent of the gauge
parameter & in the €-formulations. This means that it is independent of @ in
all formulations of spin 3/2 field theory, including the A=-1/% and A=0

formulations.
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CHAPTER 4. The Spin 1/2 and Spin 3/2 Anomalies

In this final chapter of the thesis I will complete the diagrammatic anomaly
calculation begun in chapter 3. As we have seen, this task involves
extracting the coefficients c”?'(n) and c3/2(n) from the combined sums and
integrals £1!/2 and £13/2 My method of doing this depends upon expressing
_cl/z(n) and c3/2(n) in terms of sub-coefficients Q(m), and then establishing
and solving recurrence relations between the Q(m) in different dimensions.
Once the general expression for the Q(m) is known, one can progress fairly
easily to expressions for cl/z(n) and ¢3/%(n) for arbitrary values of N, and
consequently to expressions for AY2 and A3/2 4ip arbitrary dimension d=4N.
I have found it convenient to commence the work of this chapter by
considering the spin 1/2 and spin 3/2 cases separately in sections 1 and 2.
Although the ‘ideas behind the mathematical apparatus used here to analyse
2171/2 and L13/2 aré simple, the notation involved is quite complicated. For
this reason sections 1 and 2 will largely be devoted to establishing
notational conventions and terminology. In an attempt to rationalize and
unify my cumbersome notation I have elected to use conventions which differ
slightly from those of references {1}, [2] and [3]. However the changes are

not great and should cause the reader no difficulty.

Sections 1 and 2 culminate in expressions for c/2(n) and ¢3/2(n) as
weighted surﬁs over the above-mentioned quantities Q(m). In any given
dimension both the Q(m) and théir weights may be calculated according to
well-defined procedures. These procedures are described in detail with the
aid of eXaﬁples in section 3. In section 4 I have tabulated the values of
the Q(m) and their weights for N=1,2 and, in order to illustrate how the’
formulae for c!/2(n) and c3/2(n) may be applied directly, I have used them
to calculate A!/2 and A3/2 in each case. However'deriving the anomalies by
calculating the Q(m) and their weights quickly becomes impractical as N
increases, and some alternative means must be found. In section 5 I firstly
prove that it is possible to establish recurrence relations between the Q(m)
in different dimensions, and secondly show that the tabulated low N values
for these coefficients suggest a general formula for the Q(m). In the event

the recurrence relations bear out the postulated formula, and the end
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product of this process is a general expression for the Q(m) in arbitrary
dimensions. This general expression is substituted into the formulae for

Al/2 A3/2 are

c!/2(n) and ¢3/2(n) in section 6, and the anomalies and
subsequently found in any dimension d=4N., All that remains to be done in
section 7 is to contrast the diagrammatic method with other methods and to

draw conclusions regarding its usefulness.

4,1 Spin 1/2 Analysis

The problem that I will address in this section is how to extract the

coefficient c!/2(n) from LI!/2, At this point it is convenient to reproduce

1/2

‘the expression for LI occurring at the end of section 3.4.

J 11/2(N) = § L;dx o(1-zx) x"1(1)x"2(2)..x"2N(2N) LD
P p

X(i) = X - ki+l - ki+2 = .. = kZN .. (2)
X = x1ky + (x1+ xo)ky + o0 + (Xg+e.+ xoy)koN <. (3)

As explained in chapter 3, the sum in (1) is over all (2N)! permutations of
the 2N momenta k;,..,koy and c1/2(n) is the coefficient of the momentum
product K(m) in ZI1/2, In the following I will designate by IIX the product
Xpl(l)sz(Z)..XpZN(ZN) occurring in the integrand of 12, 10 find cl/z(n)
our starting point is an analysis of the nature of the terms in IIX. Each of
these terms consists of two parts : (i) a sequence of 2N external momenta kg
which is multiplied by (ii) a product of some sub-group of the 2N Feynman
parameter (FP) factors x1,(x1+X2),.e,(x1+..+xX2y). Our interest is
exclusively in the k-sequences K(n). Consequently from this point onwards
when I refer to k-sequences I will mean only the k-sequences K(m) unless I
indicate otherwise. To better describe both the k-sequences and products of

FP factors occurring in IIX it is necessary to introduce some terminology.
Let us start by considering the k-sequences, each of which contains 2N k”s,

There are two ways of describing or classifying a k-sequence. The first is

according to its "form" and the second is according to its "type". I will
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now explain what I mean by each of these terms. We have already encountered
the notion of form. Specifying the form of a k—-sequence is really a
shorthand way of saying how the k“s in the sequence are "linked" together.
As explained in section 3.3 two k”s, ksj and kg" , are linked if either j=m
or i=n, Thus [k1p2 k2p3] is a linked pair whereas [klpz k3p“] is not. An
n—chain, or a chain of length n, is a sequence of n linked k“s. It is either
closed or open depending on whether or not the initial and final k“s of the
chain are linked. For instance [k1p2 k2p3'k3p“ kqps] is an open 4-chain
while the sequence [k1p2 k2p3 kgp“ kqpl] is a closed 4-chain. To say that a
k-sequence is of the form n=(nj,..,ny) will simply mean that it consists of
n) closed 2-chains, n2 closed 4-chains ,.., nN closed 2N-chains. Clearly the

k-sequence K(m) is of form n.

The second way of characterizing a k-sequence is according to its type. The
type of a sequence, thch to a large extent is independent of its form, has
to do with where the k“s in the sequence have come from in IX. If they have
come from one of the X“s within the factors X(i) in IIX, I will call them
"bound" k“s. If they have not, I will call them "free" k”s. Each of the
bound k“s is multiplied by one of the FP factors x1,(x1+X2),ess (X1t .+X2N).
On the other hand, the free k“s occur by themselves in X(i) without any FP
multipliers. Consequently, in a term in IIX, the number of factors in the FP
product which multiplies the k-sequence is equal to the number of bound k~’s
in the sequence. For the purpose of this argument it will not be necessary
to specify just which k“s in a given k-sequence are bound and which are
free. Rather, it will suffice to specify more generally how the k”s in the
sequence are partitioned into bound and free k“s, I will describe the type
of a k-sequence in 11/2 using the index m=(m),..,m2N), and I will define the
related number m according to the following equation : m=mi+m2+..+m2N. The
statemenﬁ that a k-sequence is of type (m},..,m2y) will mean that it
consists of m bound ks in addition to m2 open l—chains'of free k“s, m3 open
2-chains of free ks ,.., moy open (2N-1)-chains of free k“s. Since there is

a total of 2N k”s in any sequence we infer that the integers m, satisfy the

i
relation m+2my+..+2NmyNy=2N., In this connection it is convenient to define
the modulus of the index m to be the sum mj}+2my+..+2NmoN and to write it as

. Then m is a satisfactory spin 1/2 type specification only if |m|=2N.
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A few things need to be explained about the type specification of
k-sequences. Firstly, why are the free k“s specified as occurring only in
open chains and not in closed chains ? The answer to this question is
simple. All of the free k“s in IIX are of the form kzj such that j<i.
Consequently no closed chains of free ks can form and no account need be
taken of them in the type—specification. Secondly, the reader should verify
for himself that if a k-sequence contains r open chains of free k“s it must
also contain a minimum of r bound k“s., The reason for this is connected with
the fact that the chains of free k”s are open. The r bound ks, if you 1like,
are needed to separate the open chains of free k“s. In terms of m this
condition implies that m;?0. Thus an admissible type specification is

provided by the index m=(mj,..,mzy) if and only if the m, are non-negative

i
integers such that |m|=2N. In this way admissible type specifications m are

in one-to-one correspondence with partitions of 2N : the m,, i=1,2,..,2N may

i’
be considered as specifying a partition of 2N into m) ones, mj twos,..,
m,oNy2N"s. This neat interpretation may help the reader remember which are the

admissible values of m.

One last comment éhould be made on the subject of k-sequences before we
proceed on to a description of phe products of FP factors that occur in IIX.
It concerns the compatibility of the form and type specifications of a
k-sequence. In general, the k-sequences that occur in IX and its permut-
ations possess all possible combinations of form and type subject to one
restriction, which is that the type-associated partition of the sequence
into bound and free k“s must be a sub-partition of the form—-associated
partition of the sequence into closed chains of even length, That is, the
chains of tree ks must be sub-chains of the even length closed chains in
K(n). One implication of this condition, for instance, is that if mn is such
that ni=0, i>j tor some j, 1<j<N, then a k-sequence of form m may only be of
those types m such that mi=0, i>2j. In other words, if the largest closed
chain in K(m) is of length 2j then the lengths of the chains of free k”s in
K(n) may not exceed 2j-1.

In order to illustrate these ideas I will now provide three examples of

sixteen-dimensional (N=4) k-sequences. In each case I will commence by

nominating the sequence”s form and type. The reader can then verify whether
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the way in which the k“s are linked together conforms with the form spec-—-
ification, and likewise whether the partition of the sequence into bound and
free k“s conforms with its type specification., The first k-sequence is of

form (1,0,1,0) and of type (1,2,1,0,0,0,0,0):

(o] P p p p p p p
K(1,0,1,0) = (k12 k3!)(k3* ky5 ks® kg’ k7% kg?)
" bound: kZ)kQ)k7’k8 ; free: kl,k3,k5,k6

The second k-sequence is of form (0,0,0,1) and of type (0,0,0,2,0,0,0,0).
Note that the two bound k“s in this sequence are 'needed" to separate the

two open 3-chains of free k”s:
K(0,0,0,1) = (k92 k53 k5% k§5 k86 kB7 158 «§1) _ .o (4)
bound: ku;ka H free: kl,kz,k3,k5,k6,k7

The final example demonstrates that k-sequences of the same form and type
may arise in different ways according to just which of the k“s are free and
which bound. Like the last k-sequence it is of form (0,0,0,1) and of type
(0,0,0,2,0,0,0,0):

K(0,0,0,1) = (k52 k53 k8% k§5 k86 kf7 kf8 k§1) .. (5)
bound: kl,ks H free: kz,k3,k“,k6,k7,k8

Having introduced the above notation and terminology'for k-sgquendes, I will
now similarly introduce notation to aid in the description of integrals over
products of the FP factors x),(x)+x2),..,(x1+..+x2y). For a start, let me
associate with these factors the numbers 1,2,..,2N respectively. Thus x;
corresponds to 1, (x1+x2)'to 2, and so on., Next I will denote by (ij,..,1iL)
the product of the L factors associated with the numbers ij,..,i . Obviously
ike{l,Z,..,ZN} and O<KL<2N. Finally, I will employ S(ij,..,i, ) to represent

the following integral over the Feynman parameters Xj],X2,e«,X2Ne.

S(11ye0,ip) = L:dxl..dsz O(1= xq=ee= x2n) (115e0,iL) ..(6)
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This, of course, is just the sort of integral that occurs in Il/2 . In

analogy with the abbreviations n and m for the indices (ni1,..,nN) and
(my,..,mpN) I will sometimes, in the following work, abbreviate (il,..,itr)
to i. There is one important thing to note about the integrals S(i). The

value of S(i) depends not on exactly which of the x, are present in its

i
integrand. Rather, it depends solely on how many factors there are in the
integrand, and how many X, there are in each factor. This is borme out by

.the following formula [4].

1 _ _ GIGZ GN=
L)dxl-odXZN O(1- X]=..— X2N) X] X2 ..xzﬁ (ON+O [F0 gt . +ag)] . (7)

Formula (7) will be used to good effect in section 5 in establishing
recurrence relations. For the momeht, however, the reader may employ it to
verify the values of several eight-diﬁensional (N=2) integrals which are
listed below and which I have chosen to illustrate the 1 notation.

$(1,2,3,4) = f dxi..dxy O(1-%X 1=« =%y )X (XX 2) (X X 24X 3) (X 1#X 2 +X 3+Xy) = 3_é—4

' 1
$(1,3,4)) = [ dxj..dxy O(1-x1-..=x4)x1(x1#X2+x3) (X #xo+x 3+xy) = 210

S(2,4) = | dxj..dxy O(1=x1=..=xy) (X 1+x) (X Hxo+x gtx,) = %f

We are now in possession of almost all the terminology and notation that is
needed to adequately describe the components of £11/2 | The sole addition to
the notation which remains to be made is that of a means of describing the
effect on I1/2 of the permutations in the sum Z ., I will label these
permﬁtations according to their effect on the quantity X which'is.given by
equation (3). When a permutation of the momenta kj],..,k2N acts on X its
effect is to reorder the FP factors xj,(X1+X2),ee,(x1+..+x2N) which multiply
these momenta, Of course such a permutation will act not only on X, but on
the other parts of 11/2 too. However, for the purpose of labelling the
permutation it suffices to concentrate on its effect on X. It is convenient
to describe the permutation P which takes X to X” by specifying which of the
FP factors multiplies each of the ki in X“, This can be domne using the label

#sj for i#j. In this label s, is the

fsl,..,SZN] in which sis{l,..,ZN} and s i

i
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integer corresponding to whichever FP factor multiplies ki in X”. The
identity permutation is therefore represented by [1,2,...,2N]. Two examples

of eight-dimensional (N=2) permutations are given below.

X = x1k1 + (x1+x2)k2 + (x1+x2+x3)k3 + (X1+X2-+X3+X|+)kq

[1,3,2,4]) : X + X7, X* = x;k; + (x1+Ko+x3)ky + (x1+xp)kg + (XX o+x 3+%y DKy
[1,4,2,3] : X > X7, X°7 = x1k) + (x1+xo+x3+xy)ky + (x1+x2)k3 + (x)+x+x3)ky

Two features of this method of labelling permutations are of interest. For a
start it is not difficult to see that acting on 172 yith the permutation
[s),..,82y] is equivalent to fixing the positions of the momenta ki,..,k2N

11/2, and applying instead a certain permutation to the indices i which

in
are carried by both the ki and the Feynman parameﬁers‘ Xy . Specifically, the
action of [s),..,spy] on 11/2 is reproduced by making the substitution s; 7
in these indices for all values of 1 : 1=1,2,..,2N. In this connection note
that, for reasons outlined above in the discussion ﬁreceding equation (7),
permuting the Feynman parameters X4 will have no effect on the FP integrals
S(i). To illustrate this feature of the labels [s),..,spy] consider the
eight-dimensional (N=2) quantity 1'/2(4), The reader should check that
acting on I!/2(4) with the permutation [1,4,2,3] is equivalent to making the
replacements 1*1, 4*2, 2+3 and 3*4 in the indices carried by the ki and X
Similarly, the effect of the permutation [1,3,2,4] on 11/2(4) may be reprod-

uced by making the substitutions 1+1, 3+2, 2+3, 4*4 in 11/2(4),

The second interesting feature of the labels [s}1,..,S2N] has to do with
which of the momenta kj,..,koy occur as free k”s in a given permutation of
1172, I now assert that ka- occurs as a free k in the permutation
[s1,¢.s50y] of 1172 if and only if s <s . This result may be proved by
noting that kJ occurs as a free k in the unpermuted Il/2 of equation (1) if
and only if j<i. Since acting on 12 yith the permutation [si,..,S2n] is
equivalent to everywhere substituting i for S5 the assertion follows
immediately., To illustrate this second property of the label [s),..,s2n] I
have reproduced below the values of the eight-dimensional (N=2) quantity HIX

after the two permutations [1,3,2,4] and [1,4,2,3]. In the case of the first
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permutation {1,3,2,4] we have si=1, s»=3, s3=2, and sy=4 and so s)<s2,53,Sy;
s3$sy,sy; and sy<sy. Correspondingly we see that the free k”s in X" are
ko1, k91, ksl, ko3, kﬁ3 and kﬁz. Similarly, after the second permutation
{1,4,2,3]) the free k“s in X"~ are kgl, k%l, kﬁl, kg3, kﬁ3 and kg“ and we

note that in this casg 51$82,53,Sy ; 53$82,54 ; syu<s2.

MX = [X-kopmkg—ky ] ® 1 X-k gk ) 72Xk, ] P 3x°

[1,3,2,4] : IX » IX" , 0X" = [X" —kp=k g=ky ] P 1[ X"~k p=ky | P 3[x"-ky ] P 2x-P¥
[1,4,2,3] & IX » IX™" , IX°" = (X7 "=k ok 3—ky ] P 1[ X" "=k p=ky ] P3[ X7 7 -k ] P4x~ P2

At this point we are at last ready to consider the task of calculating the
coefficient c1/2(n). It should now be clear that finding c!/2(n) is entirely
equivalent to finding, for all possible 1, the number of terms in 1l/2 jn
which the k-sequence K(m) is multiplied by the integral S(i). If this number
is denoted by d1/2(m,1) then we have

i .
cl/2(n) = (=Dt dl/2(n,1)s(4) , .. (8)
|1]=2N

The sum here is over all appropriate values of the index i3(ij;,..,i.). That
is, it is over all those i such that ike{l,..,ZN} and ikiij if k#j. I will
"define the modulus of i, |i|, to be equal to the largest of the integers ik
in 4 : |i|=max i,, k=1,2,..,2N. The condition [i|=2N therefore indicates
that ikE{l,..,ZN}. The reason for the presence of the factor (-1)t in (8) is
as follows. Let us suppose that the sequence K(n) occurs somewhere in one of
the permutations of 11/2 multiplied by the integral S(i). As we have seen,
the FP factors x),(x1+x2),se,(x1+..+x2N) multiply the bound k“s but not the
free k”s in 11/2, Consequently the number of bound k“s in K(m) is eqhal to

the number of entries i, in the index i. That is, the number of bound k“s in

k , _ ,
K(m) is equal to L. It follows that the number of free k”s in K(mn) is 2N-L.
But each free k in I!/2 is multiplied by -1. Therefore whenever'K(n) occurs
in £11/2 pultiplied by the integral S(i) it will also be multiplied by a

factor of (-l)ZN'L=(-1)L. Hence the factor (-1)L in equation (8).
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The number dl/z(n,i) may be defined alternatively. It is not difficult to
see that the combination of a k-sequence of given form n with a particular
integral multiplier S(i) will occur .once or not at all in a specific
permutation [s}1,..,52N] of 12 | In this connection note that once S(1) and
[s1s+.,82N] are given it is possible to deduce which of the k“s are bound
and which free : ki is bound if sie{i1,..,iL}, otherwise it is free. Now in
the permutation [s;,..,spy] of I1/2 there is either a unique way to match up
bound and free k“s with the indices Py appropriate to the form K(m), or
there is no way at all. Consequently dl/z(n,i) is also equal to the number
of permutations of 1172 in which the k-sequence K(n) is multiplied by the
integral S(i). I will now state without proof that d1/2(n,1) may be written

as follows

m
dl/2(m,i) = ) P(n,m)R(m, i) .. (9)
|m|=2N

The sum here is over all indices m whose moduli are equal to 2N. A proof of
(9)-will be postponed until section 3. For the moment I merely wish to
explain the significance of the quantities P(m,m) and R(m,i), and to
emphasize the assumption implicit in (9). The integer P(m,m) is the number
of ways of partitioning a k-sequence of form n into bound and free k”s of
type m. Likewise, the integer R(m,1) is the number of~permutations of 11/2
in which a particular k-sequence of form n and type m occurs multiplied by
the integral S(i). The assumption implicit in (9) is that it does not matter
which k-sequence is used to compute R(m,i), so long as it is of type m. That
is, R(m,i) is independent not only of the form n of the k-sequence used in
its computation, but also of the particular k”s which are chosen to be bound

and free in this sequence, provided always that they are of type m.

Based on this assumption, which will be justified in section 4 where a
detailed prescription for the calculation of R(m,1i) is given, R(m,1i) is
endowed with tunctional dependence only on m and i. Once the assumption is
made equation (Y) is obviously true. It follows merely by grouping the
instances where the sequence K(m) is multiplied by S(i) according to the
type m of K(m), and then shmming over types. Note that there is no

superscript 1/2 on either P(m,m) or R(m,i) on the right hand side of (9),
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and consequently no explicit indication that they are spin 1/2 quantities.
This is because the spin 1/2 and spin 3/2 versions of the sum in (9) are
both over exactly the same coefficients P(m,m) and R(m,i), and these
coefficients are therefore common to the spin 1/2 and spin 3/2 cases. The
main difference between the respective sums is that the spin 3/2 one is over
a wider range of values of the index m. This will be explained in the next
section, I will finish this section by defining a new quantity Q(m) and

rearranging equations (8) and (9) so that they may be written as follows.

cM2m)y = § (- P(n,m)Q(m) .. (10)
|m|=2N

i

Q(m) =
|1]=2N

R(m,1)S(1) e (11)

~'In (10) the factor (-1)t has become (-1)™ where m is defined by the equation
m = m]+mo+..+moN. As explained above, L is equal to the number of bound k”s
in K(m). But if K(mn) is of type m then the number of bound k“s in the
sequence is exactly m. Consequently, in péssing from (8) and (9) to (10) and

(11), L may be replaced by m.

4.2 Spin 3/2 Analysis

The material of the preceding section may be adapted without trouble to the
spin 3/2 case. Indeed much of it, including terminology and notation,
remains unaltered. To extract c3/2(m) from LI3/2 ye must consider the

following expressions

v 13/2(N) = 1 - P10 P2%2 P2N® 2N
% I13/2(N) % f&dx 0(1-Ix) Y uz(l)Y cl3(2)..Y al(zw) «.(12)
P8 iy = (n®xP(1) - n®PkPe nBPY) .. (13)

These formulae occur at the end of section 3.4, and the quantities X and
X(i) are as in equations (2) and (3). I will designate by 1Y the contraction

of Y's occurring in the integrand of 13/2, 0f course, c3/2(n) is the
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coefficient of K(m) in £13/2, To find it we start by considering the nature
of the terms in Y., These terms, as before, consist of a k-sequence which is
multiplied by a product of the FP factoré X1, (X1+X2), 00 ooy (x1+..+x2N). The
products of FP factors are the same as in the spin 1/2 case and may again be
described by means of the label i=(ij,..,ip). The k-sequences, however, are
of slightly altered form. There are more k-containing terms in 13/2 than
apkB or anka

there are in 11/2 ., The new terms are those of the form N in

YpuB(i). I will call the k“s occurring in these terms "rogue" k“s. They
complement the bound and free k“s of section 1, Obviously, rogue k“s may be
present in the k-sequences of 13/2 in addition to bound and free k“s. Just
as free k”s in I'/2 or 13/2 can occur only in open chains, the rogue k“s in
a k-sequence in 13/2 can occur only in a single closed chain. To see this,

consider two adjacent factors in the product IHY.
N . : oy -
P8 yyPie1BY (441 - [nGBXDi(i) _ n“p'ki + np'Bki]

BY Pi+1 _ BPiy1Y YPi+1,B
[n"Tx"i (1f1) n Kt ki+1]

As has been observed already, the k-sequences K(n) contain no dot products

PiPi-g, Cdnsequently terms in IIY containing

‘of k“s. Nor do they contain any n
these quantities may bé~ignored. This places restrictions upon the ways in
which the terms in the above two factors may be contracted together. For

instance, napik? may be contracted with nBYXpi+1(i+1) or anp+1k¥+1 but not

. i a
with an'+1 k?+1 since kj *kj4q would result. Similarly an'ki may be

contracted with nBYX?+1 (1+1) or an'+1k?+1 but not with ani+1 k?+1 since

nPiPi+1 would result. With these restrictions in mind it is not difficult to
deduce from an exémination of MY that the only way rogue ks can link
together is in a single closed chain. What is more, the rogue k“s in this
’ single closed chain will link up so that their i-indices are in either
strictly decreasing or strictly increaéing order. Thus one will find the
rogue chains [kq3kg“kﬁ7kgl] and [k25k§2k§6] in IIY since the sequences
1,3,4,7 and 6,5,2 are strictly increasing and strictly decreasing
respectively. On the other hand, one will not encounter the rogue chain
[kqskgzkg“ksl] in MY since the sequence 1,5,2,4 is neither monotonic

increasing nor monotonic decreasing.
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In section 1 I described k-sequences according to their forms m and their
types m. In 13/2, too, there will be k-sequences héving the forms n in which
we are interested. If not, there would be no spin 3/2 anomaly. However,
although the form specification of k-sequences can be taken over unaltered
from the spin 1/2 to the spin 3/2 case, the presence of rogue k”s in 13/2
necessitates a modification of the spin 1/2 type specification m if it is to
be suitable for spin 3/2 k-sequences. I will specify the type of a
k-sequence in 13/2 using the index m=(mj,..,myq) such that m)+2mo+..+Mny=M.
With reference to this index I will define the number m to be the following
sum : m=mj)+my+..+my. The statement that a spin 3/2 k-sequence is of type m
will then mean that the sequence is composed of m bound k“s in addition to
m2 open l-chains of free k“s, m3 open 2-chains of free ks, ... ,my open
(M-l)-chains of free k”s. Clearly the combined number of bound and free k’s
s MAanld this scheme would be equivalent to the spin 1/2 one were I to
demand that M=2N, Howevef, in the spin 3/2 case I will let M€2N and in this
way allow for the fact that in addition to the above M bound and free k”s
the sequence may contain 2N-M rogue k“s. As in the spin 1/2 case, the
constraint imposed upon the number of bound k“s by the fact that the free
k”“s occur in open chains translates into the condition m;?0. An admissible
type specification of a k-sequence in 13/2 js therefore provided by the

index m if and only if the m, are non-negative integers which satisfy the

i
relation mj+2mo+..+Mmy=M<2N. In analogy with the spin 1/2 case, the m; may
correspondingly be interpreted as specifying a partition of M into m) ones,

m, twos,..,my M"s. This neat interpretation of the m, may help the reader to

i
remember which are the admissible values of m. As before, it is useful to
define a modulus of the index m. In the spin 3/2 case this modulus is given
by |m|=m1+2m2+..+MmM. The admissible values of m are then succinctly

specified by the equation |m|=M.

The compatibility of spin 1/2 form and type specifications was dealt with in
section 2, The points made there, when suitably adjusted, are just'as valid
in the spin 3/2 case. The type-associated partition of the k-sequence K(m)
into chains of bound, free and rogue k“s must be a sub-partition of its
form-associated partition into closed chains of even length. Note in
particular that ;ype—associated closed chains necéssarily correspond exactly

to form-~associated closed chains. In contrast, type-associated open chains
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necessarily correspond to parts of form—associated closed chains. Conseq-
uently in a k-sequence K(m) of type m the closed (2N-M)-chain of rogue k’s
must also be one of the form-associated even length closed chains. This
means that when calculating the spin 3/2 anomaly we should consider only
those types m which are admissible according to the above partition
criterion |m|=M, and which are such that M, and consequently 2N-M, are even.
The last condition, that M be even, can be profitably overlooked in setting
up and solving the recurrence relations of section 6. I will insist on it

only when I come to calculate c3/2(n) itself at the end of section 6.

To illustrate the use of the spin 3/2 type specificationm I will now give
three examples of sixteen-dimensional (N=4) k-sequences. The first is of

form (1,0,1,0) and type (0,1,0,1,0,0) :

K(1,0,1,0) = (k52 kgi)(kg“ k§5 K86 KE7 K78 kg3)

bound: ky,kg ; free: ks, kg,kg,k7 ; rogue: kp,kj

The second is of form K(2,1,0,0) and type (2,1,0,0)

R(2,1,0,0) = (k§2 k51) (5 kf3) (k8 kg7 158 k§S)

bound:.kl,k3,k“ ; free: kp ; rogue: kg,kg,k7,kg

In the final example the sequence is of form (0,0,0,1) and all of the k”s
within it are rogue k“s. I will indicate this by saying that the sequence is
of type (0) :

K(o,o,o,i) = (k92 k93 k5% kD5 k86 k87 kF8 k1)

bound: none ; free: hone ; rogue: kj,kp,kj3,ky,ks,kg,ky,kg

In the modified spin 3/2 label m I now have a satisfactory means of spec-—

13/2 . As was mentioned at the start of

itying the types of k-sequences in
this section, the products of FP factors occurring in TIY are the same as

those in NX. Consequently the FP integrals occurring in 13/2 are the same as
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those in 11/2 | and they may be described using the familiar notation S(i).
No modifications are needed here. Nor is it necessary to modify the method
of labelling the permutations of k),..,koN that are associated with the sums
in both equations (1) and (12). In the label [sj,..,s2n] the integer g here
has the same significance with respect to the quantity X as it had in the

previous section,

There is however one new feature of the labels [s],..,52N] which is of
interest. We have seen that k; occurs as a free k carrying the index pj in
the permutation [sj,..,s2N] of 12 if and only if s <s . The same is also
13/2, Moreover, a similar condltion exists regardlng the

13/2, Clearly the

true of free k“s in

occurrence of chains of rogue k”“s within permutations of

Pi

momentum chain kq’kp'..km will occur as a rogue chain in a permutation

[s1,+.,52y] of the integral 13/2 if and only if the chain kz% kgﬂ ..kpsi
j m
occurs as a rogue chain in 13/2 jtself. But in view of the above comments on

the strué;ure of rogue chains in 13/2, this implies that kgikg'..kgi occurs

as a rogue chain in the permutation [sj,..,s2nN] of 13/2 if and only if the
sequence si,sj,..,sm is a cyclic permutation of a strictly increasing or
decreasing sequence of integers. Thus in the permutation (3,2,5,4,1,6] of
13/2(6) the sequences kg“kﬂ3kgskgz and k?zkg“kgl will occur as rogue chains
since s3,s54,53,5¢ = 2,4,5, 6 and sy,s1,52 = 4,3,2 are respectively increasing
and decreasing sequences of integers. However, one will not find a rogue
chain k61k€3k32k2 since sg,S51,83,82 = 6,3,5,2 is neither strictly
increasing nor strictly decreasing. This feature of the label [s),..,52N]
will be useful when it comes to formulating a prescription for calculating
the coefficients R(m,i). I am now ready to introduce the spin 3/2 version of
equation (8). It is

i
c3/2(n) = % (-1t d3/%(n,1)8(1) .o (14)

i|=2N

The factor (~-1)L is included in (14) for the same reason that it was
included in equation (8). It accounts for the negative signs that occur in
front of the free k“s in the factors X(i) of equation (2). The reader may
object that the negative signs in front of half of the rogue k“s in the

quantities Y(i) of equation (13) should also appear in this formula. However
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they can safely be ignored once it is recalled that rogue ks always occur
together in K(n) in chains of even length. Since there is always an even

number of rogue k”s in K(m) the associated minus signs cancel.

Clearly, apart from the sign (-1)L, the quantity d3/2(n,i) is the combined

13/2

coefficient which multiplies the product K(m)S(i) in L . In section 1 we

saw that the spin 1/2 counterpart of d3/2(m,1i), namely dl/%(n,i), was simply

1172 in which the k-sequence K(m) was

equal to the number of permutations of
multiplied by the integral S(i). The coefficient d3/2(n,1) is similarly
related to the number of permufations of 13/2 in which the k-sequence K(n)
is multiplied by S(i). However, the relationship is not as straightforward
as it was in the spin 1/2 case. To elucidate this relationship we must now
determine two things. Firstly we must find how many of the terms in any
given permutation ofAI:"/2 contain the product K(m)S(i). Secondly we must

work out the factors which multiply K(m)S(i) in all such terms.

Both of these bits of information are easily found. For a start it is not
difficult to see that, except in the special case when the k-sequence
contains precisely two rogue k”s, the product K(m)S(i) occurs once or not at
all in any given permutation [sj,..,s2N] of 13/2, The proof of this fact is
similar to the one in the spin 1/2 case. Once S$(i) and [s1,..,S2N] are
given, the bound k“s may be separated from the free and rogue k“s according
to the following criterion : if sie{il,..,iL} then ki is bound, otherwise it
is either rogue or free. The rogue and free k“s are in turn easily separated
Afroﬁ one another since the rogue k“s occur in a single closed chain while
the free k”s occur in open chains. The reader may verify that there is then
either a unique way to match up bound, free and rogue k”s with the P-indices
appropriate to the form K(m), or there is no way at all. Similar arguments
reveal that, when the sequence K(m) contains pfecisely two rogue k“s, the
product K(n)S(i) will occur twice or not at all in a -given permutation of

the integral 13/2,

Next consider the factors that multiply the product K(m)S(i) in the terms in
the permutations of 13/2, Here we must differentiate between k-sequences
K(m) which contain rogue k“s and those which do not. The part of 13/2 ghich

11/2

contains no rogue k”s is exactly equal to except for an overall factor
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of naa= 4N, Conscquently if K(m) contains no rogue k“s then the product
K(n)S(1i) will be multiplied by a factor of 4N wherever it occurs in the
permutations of 13/2, On the other hand, if K(mn) contains rogue k“s then the
product K(m)S(i) will occur in terms in the permutations of 13/2 yithout any
additional factor. These considerations lead us to the conclusion that the

cofficient d3/2(n,i) may be written as follows.

. m N m
d3/2(n,i) = 4N P(n,m)R(m,i) + ) ) P(n,m)R(m,1) ..(15)
m|=2N L=1 |m|=2N-2L

The sum in the first term on the right hand side of (15) is over all spin
1/2 types m. Of course, these types correspond to k-sequences containing no
rogue k“s. On the other hand, the sums in the second term on the right hand
side of (15) are over spin 3/2 types m, and these characterize k-sequences
containing non-zero numbers of rogue k“s. The reasons for considering only
those types m for which |m| is even are explained above. The integer P(n,m)

is the number of ways of partitioning a sequenée of form n into bound, free
and rogue k“s of type m, Similarly, except when M=2N-2, R(m,1) is the numbef

13/2

of permutations of in which a particular k-sequence of form n and type

m occurs multiplied by the integral S(i). When M=2N-2, R(m,1) is equal to

1%3/2 in which a particular k-sequence of

twice the number of permutations of
form n and type m is multiplied by the integral S(i). The assumption
implicit in (15) is that R(m,i) depends only on the type m of the k-sequence
used to compute it, not ~on other features such as its form n. This

assumption will be justified in the next section.

There is one important observation to be made about spin 1/2 and spin 3/2
quantities which are functionally dependent on type m, for example P(m,m)
and R(m,i). Obviously the set of spin 3/2 types m contains as a subset the
smaller set of spin 1/2 types. Because of this the values of spin 3/2 type-
dependent quantities such as P(m,m) and R(m,1) encompass as a subset the
values of the equivalent spin 1/2 quantities. Thus the values of the coeff-
icients R(m,i) in the sums (9) and (15) are the same provided M=2N. For this
reason I have not distinguished between the spin 1/2 coefficients P(m,m),
R(m,i) and Q(m) and their spin 3/2 counterparts. Clearly, when calculating

the values of these coefficients, it suffices to consider those appropriate
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to the spin 3/2 case. The spin 1/2 values are then just the subset for which
M=2N. To finish this section I will present the spin 3/2 equivalents of

equations (10) and (11).

m N m
¢32m) =48 ¥ (D™ P(n,m)Q(m) + ) I D" P(a,m)Q(m)  ..(16)
|m|=2N L=1 |m|=2N-2L
i
Q(m) = % R(m,1i)s(1) .. (17)

|i[=2n

4,3 Calculating P(m,m) and R(m,i)

I now wish to dispel any mystery that might still surround the coefficients
P(n,m) and R(m,i) by describing in detail how they may be calculated in
specific ipstances, and giving some examples. The methods of this section
may be employed to calculate the values of P(n,m) and R(m,1i) once particular
values of n,m and 1 are chosen. The relevant calculations are fairly
painless for small N but, due to the amount of work involved, they rapidly
become unmanageable as N increases. The shortcoming of the methods described
below is that they cannot be generalized so as to give the general
functional dependence of P(n,m) and R(m,i) on n, m and 1 for arbitrary N,
This shortcoming is the motivation for looking to recurrence relations
between quantities in different dimensions, rather than direct calculation,

A”2 A:'”2 in arbitrary dimensions. Nevertheless,

as a means of finding and
although the recurrence relations of section 6 will'form the real basis for
calculating the anomalies, the material of this section should not be
bypassed. The prescription given here for calculating the R(m,i) assumes a
central role in the formulation of recurrence relations in section 6, and a
certain subset of the P(m,m) whose values ére éomputed below is essential to

Al/2 and A3/2.

the later calculation of
It is easier to illustrate. how to calculate P(m,m) than R(m,1i), so I will
consider P(n,m) first. By definition P(n,m) is the number of ways of
partitioning the k-sequence K(m) into bound, free and rogue k”s of type m.

Two distinct type m partitions of K(m) are distinguished by the particular
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k“s which are bound, free and rogue in each case. For instance, the two
distinct partitions of the sixteen-dimensional k-sequence K(0,0,0,1) in
equations (45 and (5) are both of type m=(0,0,0,2,0,0,0,0). The difference
between them is that different k”s are bound and free in each case. To aid
us in understanding how to calculate P(m,m) let us now look at some twelve-
dimensional (N=3) k-sequences. For a start consider the choices n=(1,1,0)
~and ®=(0,1,0,1,0,0). K(1,1,0) is shown below. The type specification
m=(0,1,0,1,0;0) indicates that there should be two bound k“s, a single open
l-chain of free k“s, a single open 3-chain of free k“s, and no rogue k”s.
The eight ways of partitioning K(1,1,0) according to these requirements are
listed below. (Note that the two chains of free k“s cannot both fit into the
closed chain of length four. This is because open chains of free k“s must be

separated from one another by at least one bound k.)

K(1,1,0) = (k92 k51) (k5" k55 k86 Kk3)

bound free bound free

ki,kg3 ko,ky,kg,kg ko,k3 ki,ky,ks,kg
ki,ky ko, k3,kg,kg " ko,ky ki,k3,ks,kg
k1,kg ko,k3,ky,keg ko,kg k1,k3,ky,keg
ki,kg ko, kg, ky,ks ko, kg ki,k3,ky,ks

P[(1,1,0),(0,1,0,1,0,0)] = 8
Next consider the choices n=(0,0,1) and m=(0,1,0,1,0,0). This time the
k-sequence is of the same type but a different form. As shown below there

are only six possible partitions and consequently P(m,m)=6 in this case.

K(0,0,1) = (k§2 k53 k% k5 k86 kf1)

bound free ( ~ bound free
ki,kj ko, ky,kg,kg ky,kg kj,ky,k3,kg
ké,k“ kl,k3,k5,k6 kl,ks k2,k3,kq,k6

k3,k5 kl,kz,k“,ke kz,ks kl’k3’k‘+’k5'

P[(U,O,l),(O,l,U,l,0,0)] =6
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If the type specification m and the form specification n of a k-sequence are
incompatible, then P(mn,m)=0 . For instance, it is impossible to partition
K(3,0,0) into a sequence of type (3,0,1,0,0,0). The type specification in
this case calls for a single open chain of free k“s of length two. Since an
open chain of length two will only fit into a closed chain whose length is
greater than two, there are no possible partitions and we deduce as a
consequence that P[(3,0,0),(3,0,1,0,0,0)]=0. Likewise the sequence K(1,1,0)
cannot be partitioned into bound and free k“s of type (0,0,0,0,0,1). The
open 5-chain of free k“s which is demanded by the type specification is
simply too large to be fitted into either the closed 2-chain or the closed
4-chain within K(1,1,0).

The first two examples involved no rogue k“s. However the introduction of
rogue k“s into this scheme presents no difficulties, as a last gxample will
show. One simply chooses which of the closed chains of length 2N-M in K(m)
is to be the chain of rogue k”s, and then partitions the remainder of K(mn)
into bound and free k“s as described above. If there are no chains of length
2N-M in K(n), then P(m,m)=0. In this connection note that, as remarked
earlier, we need consider only types m such that M is even. As an illustrat-
ion of these points consider the choices n=(3,0,0) and m=(0,2,0,0). In this
case M=4, so the sequence contains 2N-M=6-4=2 rogue k”s, K(3,0,0) and its
possible partitions are given below. Clearly P[(3,0,0),(0,2,0,0)]=12.

K(3,0,0) = (k2 k51)(k5* k§3)(k56 kE3)

bound free rogue bouﬁd free rogue bound free rogue
kl,k3 ka,ky ks,kg ki,ks ka,kg kgz,ky k3, ks ky,kg kip,ko
kik, kykg kgkg kikg kpkg kg,ky ki, kg ky,ks ki,k2
kp,ky kj,k, ks,kg ko ks  ki,kg ka,ky ky,ks kikg kp,kj
kpok, kjky ke,kg " kykg  ky,kg kg,ky ky,kg kg, ks kj,kp

P[(3,0,0),(0,2,0,0)] = 12
Before we pass on to a description of the coefficients R(m,i) there is one

point about the P(m,m) that I would like to make, and one special class of

the P(m,m) whose values I want to examine. The point to be made concerns
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those P(n,m) for which M=2N-2L where L is an integer between 1 and N :
1<L&N. In this case the number P(m,m) is clearly equal to the product of the
number of ways of situating a rogue chain of length 2L within K(m) and the
number of ways of partitioning the remainder of K(n) into bound and free k’s
of type m. But the number of ways of situating a rogue chain of - length 2L

within K(n) is simply n,. Consequently, if O<L<N-L,
Ponl(ny,.e,nn),(my,ee,mon-p )] =

oy P2N-2L[(nl’-':nL‘1»--,anL),(ml,..,mzN—zL)] 0<L<N-L ..(18)
while if O<N-L<L,
Ponl(ny,eesnn),(myyee,man=-20)] =

ng Pon—g[(ny,ee,ny—y),(m1,..,mon-20)] 0<N-L<L .. (19)

Note that thosg integers n, which do not appear on the right hand sides of
the above two equations are necessarily zero due to the condition |a|=N. In
(18) and (19) I have emphasized the dimension to which the coefficients
belong by supplying them with subscripts 2N and 2N-2L. Thus P2nN(a,m) is a
4N-dimensional quantity while Pony—20(m,m) belongs in 4N-4L dimensions. These
equations therefore express 4N-dimensional coefficients which involve rogue
ks in terms of (4N-4L)-dimensional coefficients which do not involve rogue
k“s. Alternatively, they express spin 3/2 coefficients in terms of lower
dimensional spin 1/2 coefficients. Because of this, (18) and (19) will be

useful later on in section 6,

The special class of P(n,m) whose values I want to examine consists of those

P(n,m) such that mn=(0,..,0,1) and M=2N, That is, all of the n, are zero

i
except for n which is one, and there are no rogue k“s. Within this class

the P(n,m) are functions only of the variable m so I will write them as P(m)

P(m) = P[(0,..,0,1),(m)] , M=2N v ..(20)

113



P(m) by definition is the number of ways of partitioning the k-sequence
K(0,..,0,1) into bound and free ks of type m. Its value is not too
difficult to work out. In a k-sequence of type m there are m2+m3+..+m2N
chains of free k“s and m=mj+m2+..+m2N bound k”“s. The integer P(m) may be
regarded as the number of ways of ordering the m2tm3t..+ mznlchains of free
k“s and m}+mo+..m3N single bound k“s within the sequence K(O,..,O,l). That
is, one is looking at the number of ways of ordering mi+2(m2+..+m2N)
separate units within K(0,..,0,1). Actually, this ordering problem is
complicated by the fact that the chains of free k“s must be separated from
each other by at least one bound k. It is easier to think in terms of
"extended" chains of free k”s, each of which consists of a chain of free ks
with a singlé bound k attached to one end. The extended chains of free k”s
may be shuffled around freely as their terminal bound ks act as buffers
between the real chains of free k“s. The ordering problem can therefore be
posed in terms of the ms+m3+..+m2N extended chains of free k'é and the
remaining m; bound k“s, a total of m)+mz+..+m2N units. Suppose we choose one
of these units. Any one of the 2N k“s in K(0,..,0,1) could be the initial k
of this unit. Consequently there are 2N ways of situating this first unit

within K(0,..,0,1). There are then (m)+mo+..+mon-1)! ways of ordering the
.other m+mot+..+moy-1 units around it. We deduce that the total number of
ways of ordering the m1+ﬁ2+..+m2N units within thé k-sequence K(0,..,0,1) is
2N(mi+m2+..+m2N-l)! However, in so far as partitions of K(0,..,0,1) are
concerned, the order of units of the same length is immaterial. So one

should divide by the product mj!m»!..mzy!. Thus P(m) has the value

2N(mqy+mo+..+moN—1)!
myimp!..moy!

Pon(m) = ..(21)

Once again I have emphasized that P(m) belongs in 4N dimensions by writing
it as Pony(m). This completes ﬁy treatment of the coefficients P(m,m). Now
consider R(m,i). Before describing how this quantity may be calculated there
are a couple of points to be made. The first concerns the manner in which
k-sequences occur in permutations of 13/2, Suppose that we have a k-sequence
which is partitioned into bound, free and rogue k“s and that these k”s carry
p-indices appropriate to some form n. Further suppose that we wish to find a

permutation of 13/2 yhich contains this k-sequence. Then it suffices to find

114



a permutation, 1°3/2, of 13/2 yhose integrand NIY” satisfies two criteria.
Firstly, all of those k“s which have been designated free k“s in the chosen
k-sequence must be present as free k“s with the correct P-indices in INlY~,
Secondly, IIY” must also contain the rogue chain which appears in the chosen
k-sequence., Provided that NIY" conforms with these two criteria regarding
rogue and free k“s, the desired k-sequence will appear in 13/2, This is due
to the fact that if a particular combination of rogue and free k“s occurs in
a permutation of 13/2 j¢ will occur together with every possible complement

of bound k”s. This follows easily from the structure of Iy,

The second point relevant to the coefficients R(m,1i) has to do with the
relationship between the k-sequence and its integral multiplier S(i) in a

13/2, Let me denote such a permutation by

term in one of the permutations of
1°3/2 and the corresponding permuted version of X by X~. The k”s in the
sequence are labelled bound, free or rogue according to their points of
origin in I°3/2, A bound k has originated in X and carries with it one of
the FP factors x),(x1+X2),+.,(xX1+..+x2Ny). The free and rogue k“s, in
contrast, have originated outside of X° and are not multiplied by FP
factors. As usual I will label the permutation which takes 13/2 jnto 173/2
by [s},e.,59y], where s, is the number associated with the FP factor that
multiplies ki in X°. The point I wish to make is that, if ki is one of the
bound k“s in the sequence, then sie{il,..,iL}; while if ki is free or rogue,

si);{il,..,iL}. This fact has already been discussed in sections 2 and 3;

however it is worth repeating here before commencing an analysis of R(m,1i).

R(m,i) is equal to the number of permutations [s1,..,52N] of 13/2 in which a
given k-sequence of type m is multiplied by the integral S(i1). [In the
special casé M=2N-2, R(m,i) is equal to twice the number of permutations of
13/2 in which a given k-sequence of type m is multiplied by the integral
S(1)]. To calculate it one first chooses a k-sequence of type m. As I shall
soon prove, the value of R(m,i) is the same no matter which type m
k-seq,uence is chosen for the calculation. Nevertheless it is convenient for
the moment to employ a k-sequence whose free k“s are all of the form k‘i)H'l.
It is always possible to find such a sequence. To make the description of
the k“s in the sequence a little easier, 1 will use kB to stand for any or
all of the bound k“s. That is, if ki’kj""km are the bound k“s, then the
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value of the index B ranges over the set {i,j,..,m}. Similarly I will use kF

and kR to stand for the free and rogue k”s.

Now let us forget about the integral S(i) for the moment, and consider how
we might single out the permutations of 13/2 in which the chosen k-sequence
occurs., Given the comments in the second last baragraph, it suffices to find
those permutations in which all the designated free k”s occur carrying the
correct p-indices, and which contain the desired chain of rogue k“s. At this
point recall that ng occurs as a free k in the permutation [s1,..,S2N] Of

13/2 if and only if s.<s,. This fact was demonstrated in section 2. Since
J Pi+l
i

therefore interested in those permutations [s],..,S2N] such that sF>sF+l for

all F. Furthermore, to ensure that the permutations [s},..,s2Ny] actually

the free k“s in our chosen sequence are all of the form k we are

contain the rogue chain which appears in our chosen k-sequence we must also
insist that the Sp satisfy a condition which was discussed in the previous
section. Specifically, when ordered so that Sp- follows Sp if B“>B, the
sequence of integers sp must be a cyclic permutation of a strictly

increasing or strictly decreasing sequence of integers.

From the permutations which satisfy these conditions on Sp and sp we should
.then keep only those in which our chosen sequence is multiplied by the
integral S(i). The above comments on the relationship between k-sequences

13/2 are

and their integral multipliers in terms in the permutations of
helpful in this respect., They tell us that we need keep only those
permutations which satisfy the additional conditions sBe{il,..,iL} and
sF,th{il,..,iL}. R(m,1) is equal to the number of permutations which
remain. Obviously R(m,i) will be zero unless the number of bound k”s is
exactly L [remember that i=(ii,..,ip)]. That is, R(m,i) will be zero unless
m=m ;+my+..+my=L. If we tacitly exclude from consideration any combinations
of the indices m and 1 for which this is not the case, and set L=m, then

only one of the conditions SF,SR¥{11,..,1L} and sB€{i1,..,iL} need be kept,

and the calculation of R(m,i) may be summarized in the formula
R(m,i) = #[s|,..,52n];

SBE{il,..,iL} , 8. .< s cyc.inc.dec. M#2N-2 ee(22)

F+1° 5F * SR
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As T have indicated, this formula holds provided M#2N-2. In the special case
M=2N-2 the coefficient R(m,i) is equal to twice the number of permutations
of 13/2 jp which a given k-sequence of type m is multiplied by the integral
S(i), and we have

R(m)i) = 2'#[51""52"];

sBe{il,..,iL} , SF+1< Sp s Sp cyc.inc.dec. M=2N-2 ..(23)

Do not forget that (22) and (23) are based on the presupposition that all of
the free k“s in the sequence used to compute R(m,i) are of the form k?i+1.
_To illustrate the above formulae I will now provide several examples of
calculations of R(m,i) in twelve dimensions (N=3). The first example
involves the choices m=(1,1,1,0,0,0) and i=(1,3,5). To calculate R(m,1i) in
this instance I will use the k-sequence K(0,0,1), partitioned as below into
bound and free k“s. [Note that all of the free k“s are of the correct form.]

13/2 in this case are those such

The suitable permutations [s],..,s¢] of
that s,,sg,sg€{1,3,5} and s)>s and s3>syd>ss. There are four of them and

they are listed below. We therefore deduce that R{(1,1,1,0,0,0),(1,3,5)]=4.
K(1,1,0) = (k52 k53 k% kD5 k6 k1)

bound: ks,ks,kg ; free: kj,k3,ky ; rogue: none
[216435],(436215],(634215],[654213]

R[(l,l,l,0,0,0),(1,3,5)] =4

Now consider the choices m=(0,0,0,1) and i=(2). In this case R(m,1) may be
calculated using formula (23) and the sequence K(1,1,0), partitioned as
below into bound, free and rogue k“s. There are eight permutations which
satisfy the relevant conditions sg€{2} and s3>syd>ssdsg, and which are such

that the sequence s),sy is a cyclic permutation of a strictly increasing or

strictly decrcasing sequence of integers. Consequently R[(0,0,0,1),(2)]=16.

117



K(1,1,0) = (K2 K51 (k5" K45 kS8 KE?)

‘bound: kg ; free: kj3,ky,ks ; rogue: kj,kp
[165432],[615432],[156432],[5}6432],[146532],[416532],[136542],[316542]
R[(0,0,0,}),(Z)] = 16

Lastly, let us suppose that the number of rogue k“s is four, and adopt the
choices m=(0,1) and i=(5). The sequence K(1,1,0) is compatible with the type
specification m=(0,1) and we can therefore use it again to calculate R(m,i),
partitioning it as follows into bound, free and rogue k“s. From equation
(22) we deduce that in this case suitable permutations [s1,..,86 ] of 13/2
‘are such that s2€{5} and s>sp. Moreover s3,s4,S5,5¢ must be a cyclic perm-—

utation of an increasing or decreasing sequence of integers. There are eight

permutations which satisfy these conditions.

K(1L,1,0) = (k82 K81) (k5% 85 K6 kB2)

bound: k3 ; free: k) ; rogue: ki3, ky,kg,kg
[654321]),(651432],[652143],[653214],(651234],[654123],[653412],[652341]
R[(O,l);(S)] =8

At this stage the reader should feel reasonably at home with the quantities
P(a,m) and R(m,1i) and the methods by which they are calculated in particular
instances., The only thing that remains for me to do in this section is to
prove that R(m,i) depends solely on the type of the k-sequence used in its
computation, not on its form or on the particular k“s within the sequence
that are chosen to be bound, free and rogue. The above prescription for the
calculation of R(m,1i) has already taken us a part of the way towards this
proof. In fact the absence within the calculational procedure itself of any
dependence on the form n which is chosen for the k-sequence used to
calculate R(m,i) leads one directly to the conclusion that this choice has

no bearing on the final result. Of course, the form that is chosen must, for
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the sake of the calculation, be compatible with a partition of type m.

Beyond this requirement, however, it does not matter which form n is chosen.

The second part of the proof is hardly less straightforward than the first,

13/2 3/2 in which a

R(m,1i) is the number of permutations of in the sum LI
particular k-sequence of type m is multiplied by the integral S(i). Suppose
that we calculate R(m,i) twice using two distinct type m k-sequences. As we
have just seen, the forms of these k-sequences are irrelevant, so we are
free to assume that they are of the same.form. Now observe that two type m
k-sequences of the same form can always be transformed into each other using
a single permutation of the momenta kj,..,k2N. Since £13/2 ytself must be
invariant under such a permutation, we deduce that the values of R(m,1)
obtained using the two type m k-sequences must be identical. Therefore it
does not matter which type m k-sequence is used to compute R(m,i). This

completes the proof.

4,4 Small N Calculations

This section is devoted to a tabulated presentation in tables 1 and 2 of
values fér all of the quantities in equations (10),(11),(16) and (17) in the
cases N=1,2. To convince the reader that equations (10),(11),(16) and (17)
are in fact valid I have then used these values, together with equations
(3.47) and (3.48), to find A1/2 and A%/2 in four and eight dimensions. The
aim of this material is to allow the reader to further familiarize himself
with the diagrammatic approach to anomaly calculation as described in the
previous three sections. The whole of this section may be bypassed if such

additional familiarization is felt to be unnecessary.

The figures in the accompanying tables are by and large self-explanatory.
However, several things should be noted at the outset, Firstly, a full set
of values has been given for those quantities which depend on the spin 3/2
index m. The spin 1/2 counterparts of these values form a subset of the spin
3/2 values. They are the subset corresponding to types m such that M=2N.
Thus, while the coefficient c3/2(mn) is calculated according to equation (16)

by summing over all types m, c1/2(n) 1s calculated by summing over only
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TABLE 1 N=1

n; =1 = ne{(1)}

ige{l,2} = 1€{(0),(1),(2),(12)}
m)+2mpy = 0,2 = me{(0),(01),(20)}

s(0)=1/2 s(1)=1/6
R(0,0)=4 R(01,1)=1
Q(0)=2 Q(o1)=1/6
P(1,0)=1 P(1,01)=2
2 il 1
/1) = 1
2 = 1 (1 yo,p2
Al/2 = 5% 4") <R

s(2)=1/3

R(01,2)=0
Q(20)=1/4
P(1,20)=1

3/2 ]
c (1) 3

A3/2 = _

120

21

24

(

s(12)=1/8
R(20,12)=2

1

41T)2<R2>



TABLE 2 N=2

ny + 2np = 2 =% ne{(01),(20)}
ie{1,2,3,4} = 1€{(0),(1),(2),(3),(4),(12),(13),
: (14),(23),(24),(34),(123),(124),(134),(234),(1234)}
m; + 2mp + 3m3 + 4my = 0,2,4
= me{(0),(01),(20),(0001),(1010),(0200),(2100),(4000)}

S(0)=1/24 s(1)=1/120 S(2)=1/60 S(3)=1/40

S(4)=1/30 S(12)=1/240 . S(13)=1/180 . S(14)=1/144
S(23)=1/90 S(24)=1/72 S(34)=1/48 S(123)=1/336
$(124)=1/280 S(134)=1/210 S(234)=1/105 S(1234)=1/384
R(0,0)=8 ~ R(01,1)=12 R(01,2)=8 R(01,3)=4
R(01,4)=0 - R(0001,1)=1 R(0001,2)=0 R(0001,3)=0
R(0001,4)=0 ~ R(20,12)=8 R(20,13)=8 R(20,14)=8
R(20,23)=8 R(20,24)=8 R(20,34)=8 R(1010,12)=2
R(1010,13)=1 R(1010,14)=1 R(1010,23)=0 R(1010,24)=0
R(1010,34)=0 R(0200,12)=4 R0200,13)=2 R(0200,14)=0
R(0200,23)=0 R(0200,24)=0 R(0200,34)=0 R(2100,123)=6
R(2100,124)=4 ~ R(2100,134)=2 R(2100,234)=0 R(4000,1234)=24
Q(0)=1/3 Q(01)=1/3 Q(20)=1/2 ' Q(0001)=1/120
Q(1010)=1/48 Q(0200)=1/36 Q(2100)=1/24 Q(4000)=1/16
P(01,0)=1 P(01,01)=0 P(01,20)=0 P(01,0001)=4
P(01,1010)=4 P(01,0200)=2 P(01,2100)=4 P(01,4000)=1
P(20,0)=0 P(20,01)=4 - P(20,20)=2 P(20,0001)=0
P(20,1010)=0 P(20,0200)=4 P(20,2100)=4 P(20,4000)=1

172 = 1 1/2 . 372 ) 3/2/n1y . 31
c (20) Tid c (01) = 730 c (20) = 18 c (01) = 90

1 1 1 1 -41 247

172 = (c—YU[mee—p 232 4 3/72 _ (2.4 N2 N

A2 = (77) [ 7355RD2 + 5350<R™ ] A (77" 5355<R>? + Z5ap<R™]
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those types m for which M=2N. Secondly, attention has been restricted to
those P(mn,m) and R(m,i) which are not a priori zero due to incompatibility
of nand m or m and i. In a similar fashion only even values fo.r M have been
considered since they are the only ones relevant to the anomalies. Thirdly,
for the sake of tidiness in the tables, I have omitted the commas between
individual entries in m, m and i. As all entries in these indices are single
digits this should cause no difficulties. Lastly, remember that i=(0) stands
for the product of none of the FP factors x1,(x1#Xx2),..,(x1+..+x2n). That

is, the integrand (1) is simply equal to one.

4.5 Recurrence Relations

The calculations of A1/2 and A3/2 in four and eight dimensions by means of
the figures in tables 1 and 2 illustrate the way in wﬁich equations (10),
(11), (16) and (17) may be used directly to find anomalies. However, as N
increases this method of calculating Al/2 gpq A3/2 quickly becomes
impractical due to the amount of work involved. For instance the same
calculations in twelve dimensions (N=3) entail finding 57 P(n,m) and 1216
R(m,1i), a considerable augmentation of the work involved in eight
dimensions. The problem is that the prescriptions given in section 3 for
calculating P(n,m) and R(m,1i) for particular values of n, m, and i, cannot
be generalized to functional expressions for these quantities. Consequently,
to calculate each new anomaly all the relevant- coefficients must be
laboriously computed. Cleafly, when it comes to the task of calculating
higher dimensional anomalies, or of finding Al/2 ang A3/2 in arbitrary

dimensional space-times, some other approach must be adopted.

The natural thing to do is to look for recurrence relations between
anomalies in different dimensions. Such recurrence relations could perhaps
be used to extrapolate from the known lower dimensional anomalies to .
expressions for Al/2 and A3/2 in any dimension., At first inspection,
however, what struck me was not so much the possibility of recurrence
relations between the anomalies theniselves, but rather the possibility of
such relations between the coefficients Q(m) in different dimensions,

Consequently, it was the latter possibility which I followed up and whose
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outcome I will describe in this section. As we shall see, the recurrence
relations which emerge from this investigation lead to a functional form for
the Q(m) which facilitates the direct calculation of both the coefficients
¢ 2(n) and ¢3/2(n) in arbitrary dimensions d=4N using equations (10) and
(16). Once one knows’ cllz(n) and calz(n) it is then a simple matter to find
the chiral anomalies Al/2 and A_3/2 in any dimension d=4N. Before proceeding,
though, it must be pointed out that equatioﬁs (10), (11), (16) and (17)
carry some information that has not been made explicit. To ensure that the
quantities with which I will be working in the remainder of the thesis are
perfectly well-defined I will now rewrite (10), (11), (16) and (17) in forms
which make explicit all their implicit information..

i

Qyy(m) = Ii%=2 R, q(m1)8, (1) -+ (24)
/2 R m
N _ _ , | :
c1/2(n) |m}=2N( 1P, (m,m)Q,, (m) .. (25)
9 m
c¢3/2(n) = 4N mLZN'(—l) P,y (@) Qy (m)
N m m :
) I D" (amy@  ..(26)

L=1 |{m|=2N-2L

These equations now explicitly recognize that the quantities Q(m), R(m,1)
and S(i), in addition to being functions of m and i, also depend upon the
number 2N, Let us see how this dependence is implicit in their definitions.
The integral S$(i) in defined by equation (6). Clearly, even though the
integrand (i) is independent of 2N, the integral S(i) itself is a function
of 2N because it is an integral over 2N Feynman parameters., Consequently it
is written Son(1) in (24). Likewise the coefficient R(m,1) is not just a
function of m and i. R(m,1) is defined by equations (22) and (23), and -
implicit in this definition is the fact that the permutations being counted
are pérmutations of the 2N momenta ki,..,k2N. Thus R(m,i) is also a function
of 2N. Since S(1) and R(m,i) both depend upon 2N it follows that Q(m) does
too, and this has been indicated by writing it as Q2N(m); Although the
coefficient P(n,m) has no implicit dependences, I have written it as

Poy(n,m) in (25) and (26) to emphasize that it belongs in 4N dimensions.
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Equations (24), (25), (26) and the quantities contained therein are now
perfectly well-defined, and we are at last ready to proceed with a treatment

of recurrence relations between the Q(m) in different dimensions.

The first step in such a treatment is to generalize our definition of the
coefficients Qoy(m) a little. The quantity QaN(m) is defined in terms of
Ron(m,i) and Syn(1) by equation (24). The definitions of all three of these
coefficients may be generalized from dimensions d=4N to arbitrary even
diﬁensions d=2n simply by replacing the number 2N with n. Thus the integral
S,n(1) over 2N Feynman parameters X],..,X2N generalizes to an integral Sn(i)
over n Feynman parameters Xj},..,Xp. In keeping with this change, the

integers i, in the index i1 will come from the set {l,..,n} rather than

{l,..,2N},kand will represent the FP factors x1,(x1+X2),..,(X1+..+xn) rather
than xl,(x1+x2),..,(x1+..+x2N); In a similar fashion RoN(m,1) generalizes to
a 2n-dimensional coefficient Rn(m,i) in which the index m is such that
|m| <n. Rn(m,i) is calculated by applying equations (22) and (23) without
reference to any accompanying k-sequence, In performing this calculation one
must allow for the fact that there are now n! permutations [s}1,..,Sn] in
place of the (2N)! permutations [sji,..,Sony]. In terms of Rn(m,i) and Sn(i),

the quantity Qn(m) is defined by the generalization of equation (24)

i , .
Q (m) = % R (m,1)s (1) .. (27)
il=n

It is worth pointing out that, aithough it is possible to gemneralize the
Q2N(m) to even dimensions d=2n, it is not possible to similarly generalize
the coefficients c¢1/2(n) and ¢3/2(n). This is true simply because the
anomalies A1/2 and A3/2 do not occur in dimensions d=4N+2. Since the (4N+2)-
dimensional coefficients Qan¢+}(m) have nothing to do with the anomalies al/2
and A3/2 there Qould seem to be little reason to consider them. However,
when formulating recurrence relations between the Q(m) it is quite advant-
ageous to consider the general class of coefficients Qn(m), because it is
far easier to construct a relation between Qn(m) and Qn+1(m) than it is to
construct one between QZN(m) and Q2N+2(m). Certainly we lose nothing by con-
sidering the enlarged class of coefficients Qn(m) since, once we have solved

the recurrence relations for these quantities, we are free to set n=2N.
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Actually, when formulating recurrence relations it is convenient to deal not
with the Qn(m) themselves, but rather with quantities an(m) which are
defined in terms of coefficients in(m,i) by a formula which is nearly

identical to (24).

i
Q (m) = iL R (m,i)s (1) ..(28)

n

The integers in(m,i) are given by

Rn(m,i) = #[sl,..,sn];-sBE{il,..,iL}, sF>s cyc.inc. ..(29)

F+1° °R

and are related to the Rn(m,i) as follows.

ﬁn(m,i) M=n,n-1
Rn(m’i) = 00(30)
2§n(m,i) M=n-2,n-3,..,0

Note that in calculating En(m,i) according to formula (29) one counts only

those permutations [s),..,Sp)] for which the s, are cyclic permutations of

increasing (not decreasing) sequences of fﬁtegers. The difference of a
factor of two between Rn(m,i) and En(m,i) when M=n-2,..,0 may be explained
as follows. Suppose that we are dealing with an index m such that M=n,n-1 or
n-2. Then there are 0, 1 or 2 rogue integers s; respectively., In these cases

the number of ways of arranging the s, into cyclic permutations of

R
increasing and decreasing sequences of integers is exactly the same as the

number of ways of arranging them into cyclic permutations of only increasing

sequences of integers. That is, if the number of rogue Sp is 0,1 or 2 there
is no distinction between increasing and decreasing sequences of integers.
Comparing (22) and (23) with (29) we therefore deduce that if M=n or n-1
then Rn(m,i)=ﬁn(m,1) while if M=n-2 we have Rn(m,i)=2§n(m,i).'

If there are three or more Sk then increasing and decreasing sequences of
integers are distinct and the number of ways of arranging the SR into cyclic
permutations of increasing and decreasing sequences of integers is twice the

number of ways of arranging them into cyclic permutations of only increasing
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sequences of integers. This accounts for the factor of two in (30) in the

cases M=n-3,..,0. Clearly (30) implies that

Qn(m) = «.(31)
26n(m) M=n-2,n-3,..,0

I will now set about establishing recurrence relations between the an(m) in
different dimensions. The first obstacle that one faces when trying to
exXpress an(m) in terms of an—l(m) is that different FP integrals occur in
each case. Let us divide the integrals Sn(i) = Sn(il,..,iL) that occur in
the sum in (27) into two groups according to whether or not 1k= n for some
k. If none of the i, is equal to n then the integrand (il,..,iL) can be
written as a sum of terms x?l..xgﬁfl where a@3+,.+0,_j=L. Thus

. a Op—
(11500580) = ] x1teex, 07! apte.ten_ =L
' ¢

Since Sn(il,..,iL) is defined by
; . 1 .
S (11,eesiy) = fydx1e.dxy O(1-x1=0o=xp) (11,..,1L)

and xn does not appear in the integrand, equation (7) tells us that

: _ (11!..(1"._1! _ 1 a]!..“n-]!
Sainseeni) = ) (n+L)! (n+L) ) (n-1+L)!

1
=) 8

n_l(il"':iL) : 0'(32)
It should not be too difficult to remember that equation (32) is valid only
if ik<n for all k, since we never deal with integrals Sn_l(il,..,iL) for
which ik>n-1. Now suppose that one of the ik in (ij,..,i) is equal to n. In

this event relevant integrands may be written in the form (i15eesip—1,0) =
1 1

. ; o Cn—
(11,00 i) e(x*+.o+x,) where (ij,..,ip—~1) is a sum of terms x] ..Xpa2T" such
that aj+..+a,_] = L-1

a '
(Ly)yeerip—1,n) = (X1+.4%xy) 2 xll..xnﬁll Q1+..+0,_) = L-1

a
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Consequently, using equation (7),

S (i1yeesipp,m) = ) ng—nf;;——,‘l'— [(a+D)+(a+l)+. . +(ap1+1)+1]

a

) aqle.apn_q! (n+L-1] = 1 ) g [(“1!-o“n-1!

n+L)! n+L n-1)+(L-1) ]!
1
= (-I-I-‘TI_.; Sn_l(il,..,il__l) ..(33)

This completes the first step towards recurrence relations for the an(m). In
(32) and (33) we have expressions for the integrals Sn(i) in terms of
integrals Sn-l(i)’ and it now remains to be seen whether it 1s possible to
formulate similar expressions for the coefficients Rn(m,i). Let us first of
all consider only those coefficients such that M=n. Then there are no rogue
k“s to worry about. Once again we can divide the ﬁn(m,i) into two groups
depending on whether or not ik is equal to n for some k, If one of the ik is

equal to n then from equation (29) we have that
in[(mly"smn)s(i1’°°’iL—1’n)] =

#0S1ye0,8nl; sB;'{il,..,iL_l,n}, 5578 .. (34)

F+1

It is worth recalling a few things about this formula. Firstly, the integers
si are divided into bound Sp and free Sp in conformity with the type spec-
ification m, and the index F takes values from the set {l,..,n-1} so that

F+1 is always contained in the set {l,..,n}. The s, fall into chains,

adjacent chains being separated from each other by Zt least one Spe This
means that if Sp is the last in a chain of free Sg then Sp+1"5B for some B.
That is, if F is the last free index in a chain then F+1 = B for some bound
index B. I will call those humbers Sg in formula (34), which are such that B
= F+1 for some F, "terminal" s

B

Consider how the numbers 1,..,n starting with n may be assigned to the sy in
accordance with the conditions in formula (34). Clearly the value n must be

assigned to one of the s but it cannot be assigned to a terminal Sp since

B’
then we could not satisfy the condition SF>SF+1' Since there are m2+..+mp=
m-m] chains of free k”s there are m-m; terminal Sy Consequently, out of a
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total of m bound s there are m] which can be assigned the value n.

B’
Furthermore, it is a simple matter to check that, regardless of which of

these m) Sg is set equal to n, the number of ways of assigning the remaining

numbers 1,..,n-1 to the remaining s, is exactly equal to the value of the

i
coefficient. Rn_ll(ml-l,mz,..,mn_l),(il,..,iL_l)]. We therefore deduce that

ﬁn[(ml,..,mn),(il,..,iL_l,n)]
m] Rn_ll(ml_l)st"smn—l))(i 1yeoriL=1)] «+(35)

There are two aspects of this equation which may seem questionable. Firstly
one might be perturbed by the fact that if m1=0 the undefined coefficient
ﬁn_ll(—l,mz,..,mn_l),(i1,..,i|_..1)] appears on the right hand side of (35).
However the value of this coefficient is not important because it is

multiplied by m,=0. If m1=0,» both sides of (35) vanish and the equation

remains consisltent. The second questionable feature of equation (35) is
that, having thrown away the entry m., the reduced index (mi1=1,m2,..,Mp~1)
may not be of standard form. That is, it may not satisfy the standard
condition (m)-1)+2mz+..+(n-1)mp-1=n-1. In this connection note that, due to
the condition m)+2m+..+nmp=n, the only time that m will be non-zero is
when mi=..=mp-1=0 and m,=1. If m, is zero we see that (mj1-1)+2ma+..
..+(n=1)my_3=n-1, so that the reduced index is of standard form. If m_ is
non-zero the reduced index is of non-standard form, but in this case m)=0,

both sides of (35) vanish and the equation remains consistent,

Let us now suppose that none of the ik in l-(n(m,i) is equal .to n and again
consider how the numbers l,..,n may be assigned to the Sy in accordance with
the dictates of equation (29). In this case it is clear that the value n

must be assigned to a free s_. Moreover, n must be assigned to one of the Sp

F
in such a way as to respect the condition sF‘>sF+l. This means that only the
first Sy in a chain can possibly be equal to n. Consider the chains of Sp of

length J-1. There are m, of these chains and consequently there are m; ways

J
of assigning the value n to an Sp in a (J-1)-chain. Regardless of which of
. the leading sF in these (J-1)-chains is set equal to n, the number of ways
of assigning the numbers 1,..,n-1 to the remaining sy is exactly

ﬁn_llml,--,mJ_1+1,mJ-1,..,mn_l),(i1,..,iL)]. This is true for J=2,..,n so
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R [(mp,eesma),(dg,0e,iL)] =

mJ _Rn-l[(ml,o.,mJ_l+1,[ﬂJ-l,oo,mn—l),(ilgoo,iL)] -0(36)
2

e~

J

As with equation (35), any undefined coefficients which appear on the right
hand side of (36) are multiplied by zero and so do not contribute to the
sum. It should be remembered that equation (36) is valid only if none of the
ik is equal to n. We have now completed the second stage of our progreés
towards recurrence relations for those an(m) such that M=n. Using equations
(35) and (36) we can express coefficients Rn(m,i) in terms of the Rn_l(m,i).
All that remains to be done is to combine equations (32) and (36) and

equations (33) and (35) to arrive at an expression for 6n(m) in terms of

Qn-l
m=m +m,+. .+m,, we deduce that

(m). Noting that in[(ml,..,mn),(il,..,iL)] is zero unless L=m where

E‘zn(ml,..,mn) = (n+my+.tmp) ! [

P m, aﬁ_l(m1,°°9mJ—1+l)mJ-1)--:mn—1)]

1

ne-3

.« (37)

The recurrence relation.(37) can now be employed either to prove or disprove
postulated functional expressions for those coefficients an(m) for which
M=n. Such an expression may be deduced from the easily calculated small n
values of an(m). In table 3 I have provided a complete set of values fof
Qn(m) in the cases n=1,2,3,4. Note that I have allowed M to take all values
from 0 to n, not just the even ones. Moreover, since all the numbers in the
index m are single digits for n=1,2,3,4 I have not bothered to separate them
with commas. By staring at the values in table 4 long enough, the reader may

conclude as I did that if M=n the coefficient an(m) is given by

- m m '

Q (myyeesmn) = [1/2007001/3017 2,11/ (ne1) 1] " ..(38)
This expression not only matches the figures in table 3, it is also consis-
. tent with the recurrence relation (37). These two facts in conjunction

constitute an inductive proof that (38) is the general solution for an(m)

when M=n. By setting n=2N and using (31) we see that
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TABLE 3
Q(0)=1
Q(0)=1

Q(0)=1/2
Q(001)=1/24

Q(0)=1/6
Q(001)=1/24
Q(1010)=1/48

an(m) n=1,2,3,4

Q(1)=1/2
Q(1)=1/2

Q(1)=1/2
Q(110)=1/12

Q(1)=1/4
Q(110)=1/12
Q(0200)=1/36
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Q(01)=1/6

Q(01)=1/6
Q(300)=1/8 -

Q(01)=1/6
Q(300)=1/8
Q(2100)=1/24

Q(20)=1/4

Q(20)=1/4

Q(20)=1/4
Q(0001)=1/120
Q(4000)=1/16



Quy(m1s e m2N) = (1720117312, 1/ (2ne1) 1) N ..(39)

What about the coefficients an(m) for which 0fM<n-1 ? The arguments which
"led to the recurrence relation (37) may be extended to this case. In fact
the arguments are virtually the same, except that when formulating an
analogue of equation (36) one must allow for the fact that in formula (29)
the value n may be assigned to one of the rogue Ssp. In general there are n-M
integers s

R.
cyclic permutation of an increasing sequence of integers is n-M. It is not

and the number of ways of arranging them so that they are a

difficult,fo see that the possibility of the value n being assigned to one

of the Sy may be allowed for by including an extra term in equation (36).

Thus, when 0<M<n-1, (36) becomes

n-M
n-M-1

Rn[(mly")mM):(i],:'"iL)] = ( ) En_ll(ml)")mM))(ily'°’iL)]

+

mJ in_ll(ml,oo,mJ_l"'l ,mJ'—l,'o ,mM),(il,..,iL)] ..(40)
J

I~ =

2

If M=n-1, the factor [(n-M)/(n-M-1)] should be replaced by 1. When 0<M<n-1,
formulae (32) and (33) are unchanged, and (35) is also unmodified except for
the fact that the index (mj,..,mp) is replaced by (m),..,mm) on the left
hand side of the equation, while on the riéht hand side (m1-1,m2,..,mp.1) is
réplaced by (m}-1,mp,..,my). Consequently; when 0<M<n-1, the recurrence
relation (37) becomes

an(ml:'-amM) = (n"'ml"'“‘"mM)-1 [(nzgfl) an_l(m1’°"mM)

+
J

m, Q

1 n

X

_l(ml’c.,mJ—l+l,mJ—l,oo’mM)] 00(41)

Once again, by surveying the figures in table 3, one might guess that if
0<M<n-1, Qn(m) is given by

Qu(m1seesm) = Tammpyr (1201717300720 11/ (1) 1] ™M .. (42)
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This expression for an(m) may be shown to be correct using equation (41).
Finally, if one concentrates on the special case n=2N and sets M=2N-2L where

1<L&N, one finds with the help of (31) that

2 _
Qu(m1seesmaN-2) = TGITyT [1/201™ 17312, 1/ (2n-2L+1) 1) " 2N-2L | (43)

4.6 Evaluating Al/2 ang A3/2

Now that we are in possessioh of a general functional expression for the
coefficients Qoy(m) it is natural to ask is whether ¢ 2(n) and ¢3/2(n) can
be evaluated using equations (25) and (26). At first sight the answer to
this question would appear to be no. The prescription for calculating the
coefficients P(mn,m) which was given in section 3 cannot be generalized into
a functional expression for these quantities, and without such an expression
equations (25) and (26) are uéeless. However, closer inspection reveals that
the situation is not quite so hopeless. As I shall now explain, the special
form of the coefficients Qon(m) leads to simplifications of the sums in (25)
and (26), and it is in fact possible to evaluate cl/z(n) and c3/2(n). Let us
consider c!/2(n) first. When expression (39) for the spin 1/2 coefficients

Qon(m) is substituted into (25) one has

m
cV2(n) = P, (a,m) [-1/2!1"}[-1/311"2, . [-1/(2N+1)!]"2N .o (44)
|m =2N 2N

Recall that m=mj+mo+..+m2Ny. In (44) the factor (-l),m which appears on the
right hand side of (25) has simply been split up and absorbed into the
factors in QyNy(m). The sum in (44) is over all possible partitions m of
spin 1/2 k-sequences into bound and free k”s, and Pyny(m,m) is equal to the
number of type m partitions of the k-sequence K(m). As was pointed out
above, any partition of K(m) into bound and free k“s must be a sub-partition
of the form-associated p;rtition of K(n) into even length closed chainé.
That is, if PZN(n,m)_is to be non-zero then n and m must be compatible.
Because of this, the sum in (44) may be regarded as a sum over type m sub-
partitions of the sequence K(m). Furthermore, this sum over sub-partitions
of K(n) may be expressed as a product of lesser sums, each of which is over

the sub-partitions of a single closed chain in K(n). Given the special
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product form of the coefficients Qon(m) this line of thought leads one to
the conclusion that c1/2(n) factorizes as follows

ny n n
01/2(01,..,HN) = a11a22..aNN -.(45)

The factors a; are given by sums similar to the one in (44) except that they
are over sub-partitions m of k-sequences consisting of single closed chains

of momenta, Specifically, one has
Pyp(m) [-1/21171[-1/31172, . [-1/(21+1) 1] 2! .. (46)

The coefficlients Py (m) are defined by equafion (20) and their values are
given by equation (21). When the expression on the right hamd side of (21)

is substituted into (46) we arrive at the following formula

a. = 91 (mqy+ma+., .4+mg =1)!
I Im%=21 ml!mz! ..m2|!

[=1/21]0(=1/31]™2, . [=1/(21+1) 1] 02!

e e (47)

The diffigulty in evaluating (47) is that the integers my are .constrained by
the requirement that |m|=2I. This problem can be avoided if we insert into
the summand the delta function

2m 16(m+2mo+. .+2Imp -21)
8(m +2mo+. +2Impj=21) = (1/27) [ dO e " !
0

Then the integers m, can be summed independently from zero to infinity

] 0 16
a. =L [ de ¢ 2110 ‘{ (mq+ma+. .+may =1)! [_ei ]ml[_eu P 21l e
I m.=0 mjimy!..myp ! 21 31 GEDT
i .
SR L . 2118 :
_1I ~2116 (-1) e e . |
1 j do e 2 o [ 7 + 31 + .. + —(2-I+1)! .. (48)

m=1

Here, as always, m is equal to m;+my+..+my . Note that no generality is lost
by starting the sum in (48) at m=1 since the condition |m|=2I ensures that,
in all of the terms which contribute to the right hand side of (47), at

133



least one of the m, is non-zero. The last expression for a_ can be simpl-

1
ified by making the change of variable

1% 5y . | .. (49)

When (49) is adopted, the integral on the right hand side of (48) is

transformed into the following contour integral around the unit circle in

¢~space

- . (=" 2 21
aI=(f11/") $ ap o2 ) (—-;)—[z—!*ig—!*'--"‘-(zt—ﬂ;—!]m

|¢]=1 m=1
.+(50)

The square brackets in (50) contain the first 21 terms in the power series
expansion of [([e¢-1]/¢)-1]. No further residues are introduced into the
integrand if the tail of the expansion 1s added on. Therefore

o m ¢_
a = (-i1/m) | f dé ¢-(21+1) zl ( ;) [(e - 1) -1
¢ =] m=
- ¢_ ’
= (iI/w) | f do ¢ (21+1) 1n(5-$—l) ..(51)
¢|=1

The factor'aI can now be evaluated by partially integrating the right hand

side of (51), and using the defining equation for the Bernoulli numbers Bn'

1]
~1
[}
3
o I

In this way one finds that

o
n

, 4 i, '
(1/2m) § a0 o720 (G5 1(E52)) = a/2m § 4o 07 [e(e?- 1) - 0]

(i/2m) ¢ do ¢ 2L e®(e?- 1)1 = (a/2m) § o ¢ 2TV [4(1 - 7))

- _ _Ba «.(52)
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Finally, substituting (52) into (45), and setting n = n) + ..+ nN, we arrive

at the following expression for c1/2(n)

c12m) = D GEIMED? .. (BR™ £ (53)

Now let us turn to the evaluation of c3/2(n). From equation (26) we have

c3/2(n) = 48 ) -»H" PZN(n’m)QZN(m)

N vm .
+ ) (-1)™ P, _(n,m)Q,, (m) .. (54)
L=1 |m|=2N-2L - 2N

-

The first term on the right hand side of (54) involves only spin 1/2 coeff-
icients P(n,m) and Q(m), and is simply equal to 4N cl/z(n). On the other
hand, the second term involves spin 3/2 coefficients P(n,m) and Q(m). The
relevant spin 3/2 values of Q(m) are given by equation (43). Substituting
these values into (54) we find

C3/2(n) = 4N c1/2(n)

N m
+ 1 : 1 ) PZN(n,m)[-l/Z!]ml..[-l/(zn_2L+1)!]mZN—ZL
|m|=2N—2L :

The sum over types m on the right hand side of this last equation is exactly
the sort of sum that would occur in the evaluation of the spin 1/2 coeffic-
ients cl/z(n) in 4N-4L dimensions, except for the fact that the coefficients
Pon(n,m) belong in 4N, not 4N-4L, dimensions. This problem can be remedied
by using equations (18) and (19). One then finds that ’

2ny

(2L-1)! Cl/z(nl)-o’nL-laOO)nN—L) «.(55)

N
c3/2(n) = 4N cV/2(n) + §
_ L=1

Note that, for values of L for which O<KN-LKL, the index (nj,s.,ng=l,..,nn=L)
on the right hand side of this last equationvsimply becomes (nj,es,ON=L)>
Also, if n >0 then the condition'|n|=N implies that ny—t41= «« = ny = 0 in
the full index m = (nj,..,nN). Because of this we can use (53) to write the

- second term on the right hand side of (55) as follows
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N
2
2 L Cl/z(nlf":nL_1:°°anN-L)

=1 (2L-1)!
2 -1(B B -1 B
2 z;f§%77 COYEE L (R - ™
- (2 B ) DTG L (™
¥ oL 1/2
oLl Ey )
where n=n; + ..+ nyN. Thus
N L
c3/2(n) = [4n - 4( ] %L— )] cl/2(m) ' ..(56)
L=1 "2t

The final step in this work is to substitute expressions (53) and (56) into
equations (3.47) and (3.48) to find the anomaly coefficients C(m). One
should not forget that the full spin 3/2 anomaly A3/2 receives contributions
both from the spin 3/2 field ¢ and from the spin 1/2 multiplier field F
which appears in the Lagrangian (2.40). According to equation (2.44)

0
A3/2 = A£/2 - Al/2 = | % [C3/2(n) - Cllz(n)]T(n)
m|=N

Bearing this in mind, we arrive at last at the following expressions for the

anomalies Al/2 and A3/2

: n
Al/2 = Ccl/2(n)T(n)
|n|=N ‘

c1/2¢n) = 2(474m)2M(=1)"(n11nyt . ngt )"}

G2 aar)™ - g™ e D)

and
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n
A3/2 = C3/2(n)T(n)
In =N

€3/2(m) = 2¢i/4m 2N (=1)"(n !0yt . ngt )

g nL ) B2 )1 ( Ban )N (58)
1~1 BaL 4,21 ** Y4N(2N)! e

[can-1) - 4
Note that in these equations n is not related to the space-time dimension;
instead it is equal to the sum n = n} + .. + ny. The reader can vérify that
expressions (57) and (58) for the gravitational contributions to the spin
1/2 and spin 3/2 chiral anomalies correctly reproduce the results of
specific calculations which have been carried out in the literature. In
particular, equation (57) agrees with the results of Kimura [5] and
Delbourgo [6] in the caée N=1, and with those of Delbourgo and Jarvis [7]
and Alvarez-Gaume and Ginsparg [8] in the case N=2. Similarly equation (58)
agrees with the results of Nielsen et. al. [9] and Christensen and Duff [10]
in the case N=1, and with the results of Alvarez-Gaume and Ginsparg [8] in

the case N=2.

When equation (57) was first published [2] it was the only explicit
expression for the gravitational contribution to the spin 1/2 chiral anomaly
in arbitrary space-time dimensions. Prior to its appearance the value of
this anomaly had been given only in implicit A-genus form [11]}. Since then
both equations (57) and (58) have been reproduced by Endo and Takao [12]
using path integral methods, and Delbourgo and Matsuki [13] have also shown
how to derive them from topological generating functions for the anomalies
[14,15,16]. Note that, while my results agree exactly with those of
Delbourgo and Matsuki [13], they differ slightly from the expressions
obtained bu Endo and Takao [12]. Specifically, Endo and Takao”s expressions
for the anomalies do not contain the factors (—1)n that appear in equations
(57) and (58).
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4.7 Conclusion

There are now many ways of calculating anomalies using either Feynman
diagrammatic methods [11,17] or elegant path integral and topological
techniques [8,12,18]. None of these approaches reduces the problem of

calculating anomalies to a triviality, however the path integral and
topological methods enjoy certain advantages. Firstly, these methods employ
very compact notation. This renders the derivation of anomalies both clearer
and simpler, and the connections between anomalies and symmetry breakdown or
regularization are generally more easily seen., Of course, one does not avoid
hard work altogether by usiﬁg path integral or topological methods. In
topological methods, for instance, one must still fix the constants that
~occur in front of differential geometric expressions, or calculate anomaly-
associated topological indices. Similarly, in the heat kernel method, a path
integral technique, one must calculate the heat kernel coefficients ay and
this is in general not a trivial problem. However, all things considered,
péth integral and topological techniques of anomaly calculation are much to
be preferred to Feynman diagrammatic methods provided one is sure how to

apply them, and provided one is confident of the answers that they give.

If, on the other hand, one is unsure how to apply these techniques, or in
doubt as to whether the assdmptions that they embody are valid, then one is
forced to turn to diagrammatic methods of anomaly calculation. In the final
analysis, diagrammatic methods are the only ones which are completely
trustworthy., For example, it was pointed out in chapter 1 that Fujikawa“’s
path integrai derivation of the ABJ anomaly relied upon the asshmption that
the effective action was invariant under chiral transformations. This
assumption was justified a posteriori when Fujikawa”s analysis reproduced
the results of earlier Feynman diagrammatic calculations. It was only after
the validitylbf Fujikawa“s proceduré had been established in this fashion,
by making contact with the results of diagrammatic calculations, that one
could feel confident of extending his methods to other situations.
Diagrammatic techniques played a similar role in establishing the truth of
the postulate that anomalies are nothing but cocycles descended from higher
‘dimensional Chern-Pontryargin densities [19]. The validity of this postulate
could be verified only through explicit diagrammatic calculations. Other
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methods of anomaly evaluation (especially, in this case, methods of the
differential geometric variety [20]}) were unacceptable as they all
incorporated some untested assumption about the fbrm of the anomaly. For
these reasons diagrammatic methods of anomaly calculation, such as the one
described in this thesis, cannot be neglected in favour of other more
elegant techniques. Although, in comparison with these other techniques,
they are often lengthy, cumbersome and ugly, they will in all probability
continue to be an important investigatory tool so long as anomalies require
investigating. In view of the importance of anomalies within many aspects of

theoretical elementary particle physics, this should be for some time yet.
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APPENDIX 1. Conventions

Throughout this thesis I work in Minkowski space of dimension d=2n. (When
dimensional regularization is used, the dimensién is continued from d=2n to

d=22.) The flat space metric of this space-time is as follows

nuv = diag(l,-1,..,~1)
Derivatives with respect to contravariant (xu) or covariant (xu) coordinates
are usually abbreviated

9 ¥ - 9

=

u axM 9x

and summation over repeated Lorentz (greek) or spatial (latin) indices is
understood

uv 0 .0 i i

VeW = vuwu = v“wu =g" VW =VW - VW

Bold faced letters are reserved either for spatial vectors
v =(v0,v)

or for the indices n = (nj,..,ny), m = (my,..,my) and 1 = (i,,..,iy) which
aredescribed in chapters 3 and 4. When moving between coordinate and

momentum Spaces my convention will be that

puo ia“
The totally antisymmetric Levi-Civita tensor in 2n dimensions is defined by

the following expression

+1 if (pj,..,H2,) is an even permutation of (0,1,..,2n-1)
ghle-¥2n - -1 if (y;,..,U2,) is an odd permutation of (0,1,..,2n-1)

0 otherwise
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In 2n-dimensional Minkowski space the algebra of Dirac gamma matrices is
’Y )")Y

generated by the identity and 2n independent an2n matrices Y

0’1 2n-1

As usual, these matrices satisfy the anticommutator relation

frpsvyl =m,

Note that YO is hermitian, while the Yi are anti-hermitian
+_ + _

YO YO Yi Yi

This means that the chiral matrix Ffl

-1 _ .n+1
T i YOYI"YZn—l

is hermitian. Also, we have

(r-1)2 =1

{Yu,F‘H.= 0

The antisymmetric o-matrices are defined as follows
o = 2 [v* ]

In general, I will signify that the antisymmetric product of a number of
Y-matrices has been normalized by putting the commutator brackets around the

space—time indices carried by the Y-matrices. Thus

vl o an v - By

YlaYoYBl - (1/31)[YaYpYB - OByP o P B P Bla BLOP YBYpYa]

B B B

]

a a [+ 3
YOy Py - n@PyB _ PBya . o8P
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APPENDIX 2. Spin 3/2 Lagrangians

Consider a Rarita-Schwinger vector-spinor field ¢a of mass m [1]. The most
general first order, hermitian Lagrangian which can be constructed for this
field in d-dimensional momentum space is [2]
L = Ea[nae(p-m) + A(paYB+ des) + BYatYB +'CmYaYB]¢B .o (1)
The constants A,B,C in (i) are real numbers. (One can actually replace the
term A(paYB+AYQpB) with ApaYB+ KYGPB where A is now a complex number and A
is its complex conjugate. However I will not consider this possibility.)
There are two things which we require of the above Lagrangian. Firstly, L
must lead to the usual equation of motion for ¥, : (p-m)¥ = 0. Secondly,
the theory which L describes must be of purely spin 3/2 content. Observe
that, in addition to a single spin 3/2 representation, the field Wa carries
two spin 1/2 representations of the Lorentz group. Our second condition on L
therefore translates into the requirement that these two spin 1/2 represent-
ations drop out of the theory”s dynamics. In effect, this means choosing the
constants A,B,C so that the equations of motion imply that p*¥ = Y*¥ = 0
(p*V = pawa etc.) [1]. Let us now see how this may be done. By varying $a in

(1) we arrive at the following Euler-Lagrange field equation
a o a a, o B :

(n®®(g-m) + A(e%P+ v*") + BY%sv® + v 19 .o (2)
Obviously, if we can arrange things so that p*y = Ye¥ = 0 then equation (2)
will lead directly to the desired equation of motion for ¢a. We need
therefore concentrate on satisfying only the second of the above two
conditions on L. Acting on equation (2) from the left with the two operators
p“/p and Yu one finds that

[(A+1)p = m] 5 p¥ + [(A¥B)P + cm] Yoy = 0 CL.0)

[(Ad+2)p] % pey + [(B&+A—1)p + (Cd-1)m] Y*¥ =0 .o (4)
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} ¥
In deriving equation (4) I have used the fact that in d dimensions Y Yu = d.

Clearly the relations p*¥ = Y*¢ = 0 will emerge from (3) and (4) provided
[(A+1)§ - m][(Bd+A-1)§ + (Cd-1)m] - [(Ad+2)p][(A+B)p + Cm] # O

~ That is, we require

[Cd-1]m2 + [C(d-2)-Bd-2A]pm + [A2(1-d)+B(d-2)-2A-1]p2 # 0 | ..(5)

At this stage one runs into a difficulty. Generally speaking, regardless of
the values of the constants A,B and C, there will be two values of m for
which the quadratic expression on the left hand side of (5) vanishes. The
usual responée to this problem is to insist that things be contrived so that
both of these values of m are equal to zero [2]. Then, provided (Cd-1) is
non-zero, the only Lagrangians which will be troublesome, in the sense that
they do not lead to the conditions p*¥ = Y*¥ = 0, will be the massless ones.
Obviously, if both roots of the quadratic polynomial on the left hand side
of (5) are to be zero, the coefficients of pm and p? must vanish identic-

ally. This leads to the following expressions for B and C in terms of A.

1
B = 355 [(d-1)A2 + 24 +1] .. (6)
. 1 - 2 _

T CE) [d(d-1)AZ + 4(d-1)A + d] e ()

Clearly the orginal freedom in the Lagrangian (1) has already been limited
to the ability to arbitrarily fix the value of the single parameter A. We
must still check to see whether condition (5) holds. When (6) and (7) are

used to express B and C in terms of A, (5) becomes
(1-d)(2-d)~2m2[Aad+2]2 # 0 ..(8)
Thus the Lagrangian (1) is acceptable as long as equations (6) and (7), and

the inequality (8), are all respected. This leaves us with the following one

parameter set of Lagrangians for the field ¢a [2]
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- ='¢a["a8(ﬁ'm) + 4™+ v%P) + fiéﬁi((d-l)Az + 24 + 1YOH®

m

* Ta-ayz(d(d-DAZ + 4(d-D)A + d)Y“YB]wB .. (9)

The parameter A can take on all real values except -2/d. For this one
special value of A the Lagrangian (9) does not lead to the conditions p*y =
Yoy = 0. This tends to suggest that if A = -2/d, the theory described by L
is not a purely spin 3/2 theory and may contain propagating spin 1/2 degrees
of freedom. One can find the 2%-dimensional coordinate space versions of the
H u
Lagrangians (9) by setting d=2% and making the replacement p - * id" . They
are
- i a
L = wa[nas(iﬁ-—m) + 1'A(a°yB+ y“as) + (—2'9727((21'1)“2 + 2A + 1)y e
]

(20(22-1)A2 + 4(2-1A + d)YY" ¥,

m
Y 222

Once again, the parameter A can assume any real value except A = -1/%, The

above 2%-dimensional Lagrangians are introduced and examined in chapter 2.
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APPENDIX 3. Ricci-Flat Space-Times

Space~times within which the Ricci tensor Ruv is uniformly zero are referred
to as being Ricci-flat. Such space-times are worth considering in relation

to the material of this thesis because the condition
R =0 ..(1)

simplifies the commutator of gravitationally covariant derivatives. In fact
I shall now show that, if condition (1) holds, the commutator of two
derivatives is zero provided that (i) the derivatives act upon a spin 1/2
field, and (ii) at 1eést one of the derivatives is contracted with a gamma
matrix. To see that this is so, consider a spin 1/2 field A, The form of a
covariant derivative acting on A is detailed in equation (2.5). In general

one can write [1]

af

pKch A ee(2)

[Dp,DK]A = R

a
where 0 B_is the antisymmetric product of two gamma matrices

aB

o = % [v*®]

and Rp is the Riemann tensor [l]. From (2) we have

Kaf

P : 1 pr.o B
Y [D D JA = Z R oy [,y A | &)

Now note the following gamma matrix result

YPIv%¥B] = 20%yE - 2n®0y® - oyloyPyB) .o (4)

( 8]

aYpY is the normalized totally antisymmetric product

of three gamma matrices

In (4) the quantity ¥y
[a_p 8] B ap_B B B_p

a a [o ]
LARE 2 SR A L I N I R R
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Recall that the Ricci tensor is defined in terms of the Riemann tensor by

the equation [1]

A

Ruv = Ru v ..(5)

and that the Riemann tensor possesses the following symmetries

Ragys = ™ Rgays =~ Ragsy = Rysas +(8)
= LN ] 7

RGBY5 * RaGBY * Roysg = 0 7

Substituting (4) into (3), and using (5) and (6), one finds that

p B a 1 [a p B]
Y (DD JA = [R oY+ 5 R QY Y YA .. (8)

In view of (7) the second term on the right hand side of (8) is zero, and if

we take condition (1) to hold, then the first term vanishes too. Thus
a
Y [Dp,DK]A =0 e (9)

This result is relevant to the work contained in the thesis for the
following reasons. In chapter 2 I argue that it is highly desireable to
calculate the spin 3/2 anomaly and demonstrate its gauge independence in two
non-standard formulations of spin 3/2 theory. Without going into details,
the spin 3/2 calculation attains its simplest form in the A=0 formulation,
while in the A=-1/% formulation the gauge independence of the spin 3/2
anomaly becomes evident. In flat space the A=0 and A=-1/% formulations of
spin 3/2 theory are reiated to the conventional Rarita-Schwinger (A=0)
formulation by field transformations of the form (2.22). Fairly obviously,
the work in this thesis is based on the assumption that the anomaly is the
same in all formulations of spin 3/2 theory. This assumption is entirely
reasonable provided the different formulations can be related to each other
via simple transformations of the field variable. It therefore becomes
important to show that the various formulations of spin 3/2 theory are so

related, not only in flat space, but in curved space as well.
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In general this task is a difficult one precisely because covariant
derivatives do not commute. Were we able to assume that covariant
derivatives do commute, the field transformations which connect the
different formulations of spin 3/2 theory in curved space would be
obtainable from their flat space counterparts simply by replacing flat space
derivatives with covariant derivatives. The importande of equation (9) is
that it tells us that, when the Ricci tensor vanishes, covariant derivatives
do effectively commute. The reader may check for himself that, if a
commutator of covariant derivatives arises when a spin 3/2 Lagrangian is
transformed under a field transformation of the form (2.22), then the
commutator always acts on a spin 1/2 quantity, and at least one of the
derivatives is always contracted with a gamma matrix. Hence (9) applies and

we can effectively set [Dp,DK] = 0,
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APPENDIX 4. Gamma Matrix Formulae

An algebra of Dirac gamma matrices exists in any d-dimensional space-time.
However, the algebra contains an analogue of the four-dimensional chiral
matrix Ys only in even dimensions, In this appendix I will therefore
restrict myself to space-times of dimension d=2n., In this case the gamma
matrix algebra is generated by the identity and 2n independent 2%x2"
matrices Yg,Y],¢¢,Y2n~-1+ As usual these matrices satisfy the anticommutator
relation

n

v
{¥*,¥"} = 2n -+ (1)
where n = diag (1,-1,..,~1). Equation (1) may be used to show that the trace
of the product of an odd number of gamma matrices is zero. On the other

hand, it can also be used to show that if 4 = auYu then

in

tr(fdi...d2n] = 1 -t ai*a; tr(dp..dj_14i410-420] ' «e(2)

i=2
The 2n-dimensional matrix P“H which corresponds to the four—-dimensional
matrix Ys, is given by the product of all 2n Yu :

- .n+1
r 1 = 1 YoYloooan_l 10(3)

When applying dimensional regularization to a 2n-dimensional theory, one
analytically continues the dimension d from its "base" value d=2n to its
continued value d=2%2. In this case the correct analytically continued
éxpression for T™! has been shown [1] to be

.n+l
i

-1 B ——
r (2n)!

HyeeH2p
E Y .. Y (&)
Wi H2n

where £ is any totally antisymmetric tensor which tends to the 2n-dimens-

ional Levi-Civita €-tensor ‘in the limit %-n

g CRLFT R C S TRTPTY B TR P
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Of course, the matrices Y in (4) are 2%-dimensional, rather than 2n-dimens-—
ional, gamma matrices. Consequently they satisfy the relation Y Y = 24, not
YuYu = 2n. Note that, as one would expect, the expression (4) becomes equal
to (3) in the regulator limit £+n. I now wish to derive some results for the
analytically continued matrix I'~™! in 22-dimensions. The first of these
results follows directly from equation (2) and the antisymmetry of the

tensor £
tr(d...doml™t] =0 m<én . (5)

By again employing equation (2) one obtains a simple corollary to (5)

r[ﬁl...ﬁznr_l] = -(-1 )n+122 E*aj...agg ..(6)

Here I have adopted a fairly obvious dot notation in which, for example,

[ Hon

E.aloo.azn = 5 al ...azn

HlessU2n

A third result concerns the commutator [Yu,r_l]. In 2n dimensions this
commutator would be equal to ZYHF_I. However, in 2% dimensions one can use

equations (1) and (4) to show that

n+l

@ p-1) o 21 GMpeeeM2na) 7
[Y )rv ] (Zn_l)! g Yul...YUZn—l "( )

Once again arguments similar to those by which we obtained equations (5) and

(6) lead us to the conclusion that

tr{Ages hznldy, I1]) = (- i)“” "1 ogear...as, ..(8)

Finally we can use results (6) and (8) to progressivelyAcommute 41 through
the matrices in the trace tr[él...é2n+1{£2n+2,r-1}]. In this way one arrives
at the following useful formula, (Note that the anticommutator {Yu,r—l} is
zero in 2n dimensions, but acquires an anomalous non-zero value when the

dimension 1s continued to d=2%.)
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tr[ﬁl...£2n+1{é2n+2’r_1}]

tr(Ase. honsrdi{Aons2, T}
= tr{fyeecdonpiAihons2l ]+ tr{dae . dont1A1T M one2]
= 4ajcagner tr{Aze. honpiT 7] = tr[dg. . edoneald), T

+ tr{dgeccdongrlA1, T Md2ng2] = trdze. dongr{donsz, I 0]
= bay asng trAgeeehone1T Y] - tr{{doee hons1rAzne2] [A1,0701]
- trldy.. dong1{d2ne2, T}

= 2a)*aj442 tr(dp. . dong 1T}
2n+1 K -
+ tr[(kzz (-1)" agazn42 Ageeohk—1Akt1eeAont1)[A1,T7H]]

n+l, 2+1
= ~(=-1) 2 aj*azng2 £°ase..azpngl

.o+l g+l 2oH! k
+ (-1)" "2 22 (-1)" ayx*azn42 €*@leceayk—183Kk4le s 22041
k=

n+l, 4+1 23*‘

. k .
= (_1) 2 N | (-l) ak'32n+2 5'81...ak_lak+1...§2n+1
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