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Abstract 

The subject of this thesis is a combinatoric method developed by the author 

to calculate the gravitational contributions to the anomalies in the chiral 

currents of spin 1/2 and spin 3/2 fields in arbitrary space-time dimensions. 

Using general arguments it is possible to reduce the work involved in 

finding either of these contributions to the evaluation of a single one-loop 

Feynman diagram. It is a straightforward matter to calculate the loop 

momentum integral in this diagram, but one is then faced with the daunting 

task of summing the remaining function of the external momenta over all 

permutations of the external graviton legs. Chapter 4 outlines a notation by 

which the quantities relevant to this sum may be described. This notation is 

then used to show that recurrence relations exist between certain of the 

quantities in different dimensions. By solving the recurrence relations one 

finally arrives, with the aid of contour integral methods, at expressions 

for the spin 1/2 and spin 3/2 anomalies in terms of Bernoulli numbers. 

The calculation of the spin 3/2 anomaly is complicated by the presence of 

gauge degrees of freedom in the Rarita-Schwinger tensor-spinor field. In the 

conventional Rarita-Schwinger formulation of spin 3/2 theory both the 

calculation of the spin 3/2 anomaly and a proof of its gauge independence 

~re practically impossible due to the involved forms of the propagator and 

vertices. However, the Rarita-Schwinger formulation is not the only 

formulation of spin 3/2 field theory. In fact there exists a one-parameter 

family of possible formulations. As it happens, one of these formulations is 

particularly suited to a calculation of the spin 3/2 anomaly, while in 

another of them the gauge-independence of the anomaly is made manifest. I 

therefore adopted these two formulations when calculating the spin 3/2 

anomaly and demonstrating its gauge-independence, and the work of this 

thesis is based on the assumption that the spin 3/2 anomaly remains the same 

in different formulations. Since all formulations within the one-parameter 

family may be reached from the Rarita-Schwinger formulation via linear 

transformations of the field variable, this assumption is entirely 

reasonable. 
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CHAPTER 1. Anomalies or Quantum Mechanical Symmetry Breaking 

When fermions are coupled to gauge fields in a quantum field theory 

interesting and i~portant affects may occur~ These effects are tied to the 

presence in the theory of so-called anomalies. In this chapter I will 

attempt to summarize our present theoretical understanding of anomalies and 

review the methods of anomaly calculation. In order to introduce the subject 

let me briefly describe what anomalies are. As Jackiw has explained [l], a 

quantum theory is not a free-standing, self-contained structure. To create a 

quantum theory one begins with a classical theory and then quantizes it. The 

quantization may be effected either by imposing canonical commutation 

relations upon the field operators [2], or by following the path integral 

procedure [ 3). Many of the properties of the classical theory are shared by 

the corresponding quantum theory. For instance the fields in each case carry 

the same number of dynamical degrees of freedom, and the structures of the 

interaction terms are identical. 

Prior to the discovery of anomalies ·it was generally believed that the 

quantum theory also shares the symmetry properties and conservation laws of 

the classical theory. It was thought that if the classical theory is 

invariant under a set of symmetry transformations~ and possesses a corresp­

onding set of conserved currents, the quantum theory will admit the same 

invariances and will contain an identical set of conserved currents. We now 

know that this is not always so. Sometimes the quantization procedure· does 

not respect the classical symmetries of a theory and the consequent symmetry 

breakdown manifests . itself in the appearance of non-classical terms .iri the 

. current conservation equations. These terms, which are thrown up in passage 

from a classical to a quantum theory, are called anomalies. They. are invar­

iably associated with divergences in the quantum theory, and consequently 
. . ' .. 

they do not become mathematically well defined until. the infinities in the 

theory are tamed by mea~s ·o.f s.ome regularization procedure~ In fact the. 

position i,n which an anomaly. occurs in a theory, and even the actual fo~ of 

the anomaly, will be de.ter-qiined by the r~gularization procedure that is 

employed. In spite of this·, the anomaly is not a product of the regulariz-· 

ation prricess. Rather, the ptesence of an anomaly is sigrtalled at a 
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calculational level by the fact that it is impossible to find a regulariz­

ation scheme which respects ?1.1 the classical symmetries of the theory. 

The name "anomalies" suggests. the surprise which attended the discovery of 

the sort of symmetry bre·aking·:described above. It was almost universally 

accepted in the past that classical symmetries would persist unchanged in 

the corresponding quantum theory. Nevertheless, anomalous symmetry breaking 

is not without its historical antecedents. We shall see below that anomalies 

occur in quantum field theories when the field operators do not form 

faithful represe~tations of classical symmetry groups, but instead form 

representations only up to phase factors. Such representations are termed 

"projective" and quantum mechanics makes use of them as well. For instance, 

anomalous symmetry breaking in Yang-Mills theories is paralleled by the 

Block phenomenon in Schrodinger theory (4]. In the latter case a periodic 

Hamiltonian H(r) = H(r+a) gives rise to wave functions which are periodic 

only up to a phase tjl(r) = exp(-ilt•a)tjl(r+a), and the energy spectrum exhibits 

a band structure. Examples suc_h as this have prompted Jackiw to suggest [ 11 
that a better name for anomalous symmetry breaking would be quantum 

mechanical symmetry breaking~ This alternative term would better call to 

mind the close connection between anomalies and such effects as the Block 

phenomenon [4] and spontaneous magnetization [5] in quantum mechanics, and 

~vacua and solitoris [6~7] .in quantum field theory. 

Since their discovery by Adler [8] and Bell and Jackiw [9] in 1969 anomalies 

have assumed an increasingly important place in quantum field theories, and 

in gauge theories in particular. Though they began simply as a curious 

inconsistency of meson theory in the context of pion decay, their applicat­

ions now extend to most areas of theoretical elementary particle physics. 

There areas include low energy theorems for QCD [ 10], renormalizability and 

unitarity of gauge theori~s [11], the U(l) (12] and CP (13] problems, 

composite models (14], solitons (15], baryon theory (16], monopoles (17] and 

superstrings (18]. This large catalogue of applications testifies to the 

enormous amou~t of research carried out into the nat~re of anomalous 

symmetry breaking. However, despite the effort expended, it is still not 

possible to satisfactorily answer the questions: why do anomalies occur? why 

does the quantization procedure sometimes break classical invariances? In 
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this introductory chapter of my thesis I have not attempted to compile a 

cpmprehensive listing of anomalies' applications in quantum field theory. 
;", 

Such listings may be found elsewhere [19]. Rather, I have tried to paint a 

picture of our present incomplete understanding of anomalies. In doing so I 

have found it convenient to treat the methods which are currently at our 

disposal for analysing anomalies under three headings, according to whether 

they were by nature algebraic, topological or calculational. In such a large 

subject these divisions tend to be artificial. However any others were even 

less attractive. I conclude the chapter by considering briefly the most 

important applications of anomalies within elementary particle physics. 

1.1 Algebraic Theory 

Anomalous symmetry breaking was originally discovered in ,perturbative 

calculations. In 1969 Alder [8] and Bell and Jackiw [9] separately 

encountered the anomalous behaviour of the famous triangle diagram, and 

.calculated the value of the associated ABJ anomaly. They concluded that the 

anomaly was due to the divergent nature of the triangle diagram and that its 

value could be found by correctly regularizing the theory. Soon after this, 

Jackiw employed current algebra techniques to de~onstrate that anomalous 

effects connected with the.triangle diagram were.also attri,butable to the 

presence of.non-canonical Schwinger terms in current commutators [20]. It 

was possible to derive the Schwinger terms using general arguments which 

made no refe['.ence to regularization procedures. These two approaches to 

anomalies, the calculational and the algebraic, were subsequently comple­

mented by a third approach which·exploited topological ideas and which 

related anomalies to topological index theorems [21]. Since then, research 

into anomalies has progressed simultaneously along these three separate 

lines of enquiry. The perspectives offered by the three appro~ches are 

different, and ea~h approach has yielded results which the others are not 

able to reproduce [ 23]. A future complete understanding of anomalies. will no 

doubt be preceded by a merging of the three streams t and will allow one to 

translate_ fluently between glqbal topological meihods, lcical algebraic 

techniques and the mechanics of calculations. 

3 



This section is devoted to a review of the algebraic approach to anomalies. 

As mentioned above, this approach dates from Jackiw's use of current algebra 

techniques to find Schwinger terms in current commutators [20). When current 

algebra methods declined in.popularity in the seventies, the algebraic 

approach to anomalies languished for want of a wider theoretical framework 

into which Schwinger terms could be fitted, and because other approaches 

proved more immediately rewarding. Recently Zumino [22) and Stora [23) 

developed a new formalism for the description of Abelian and non-Abelian 

anomalies in theories of massless chiral fermions in external Yang-Mills 

fields. This formalism, which is based on ideas taken from cohomology 

~heory, is essentially-algebraic in character. It provides a coherent 

mathematical framework for anomalies and suggests ways in which this 

framework might be extended. Notably, in the theory of cocycles they have 

found the generalization of Jackiw's earlier work on Schwinger terms. I will 

now introduce the material of this section by posing the anomaly problem as 

Stora [23) would have it done. 

STATEMENT OF THE PROBLEM Let S(t) be a classical action constructed from a 

matter field t which transforms linearly u_nder some internal, compact Lie 

group G. Suppose that. the theory based on S( t) is renormalizable according 
·. . . '' 

to the BPHZ criteria (24,25.). Then one can rig9rously define a vertex 

functional re t) 

.., 
r{t) = S(t) + l hn fl{t) · 

n=l 

The statement that S(~) is j_nvariant under G means that S(t) is invariant 

under the ,action of some repres_entation .of G's Lie algebra, Lie G. This is 

expressed by the followin~. two.equations 

w, (a)_S(~) = 0 . cl· .... , . 
·, '·.· .,· ... :: ;~ : : 
'.''• . .· •• (1) 

• • ( 2) . 

. ··.:' 

Here a and b are e"lemerits' of, Lie. G, and wcl (a) is a classical functional 

differential operator which is linear in a. Equ~tion (2) asserts that the 

ope'rators Wcl (a) form a representation of Lie G, while equation ( 1) is a 
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Ward identity. Note that this set up covers the situation where the internal 

symmetry G is spontaneously broken [25). It is possible to show [25) that 

the renormalized perturbation series representing f( 4>) can be defined, and 

that the classical operators wc
1

(a) may be extended naturally to quantum 

operators W(a), in such a way that 

W(a) r( $) = 0 

[W(a),W(b)] = W([a,b]) 

In other words, it is possible to define the quantum theory in such a way 

that it is invariant under a representation of the classical symmetry group 

G. Now let Q be the gauge group associated with G. In the simplest case 

elements of Gare maps from space-time into G. Using the customary minimum 

coupling prescription, it is a straightforward matter to extend S( 4>) into a 

classical gauge invariant action S(4>,A), and to find a classical repres­

entation Wc
1
(a) of Lie G such that 

wcl (a)s( 4>,A) = o 

Here the field A is a classical gauge field transforming under Gin the 

familiar manner and a, of course, is an element of Lie G. The anomaly 

problem may now be posed as follows. Can f( 4>) be extended into f( 4>,A), and 

can quantum counterparts W(a) be found for the classical operators Wc 1(~), 

so that 

W(~)f($,A) = 0 •• ( 3) 

[W(a),W(b)] = W([a,b]) •• (4) 

That is, will the quantum gauge theory admit a representation of the 

classical gauge group G? If both equations (3) and (4) can be maintained in 

the quantum theory, then gauge invariance will be respected and the theory 

will be free of (gauge) anomalies. However this is generally not possible. 

Apparently, in the presence of chiral fermions equations (3) and (4) are 

modified as follows [1,23] 
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W(a)r(~,A) = w(A,a) •• ( 5) 

[W(a),W(b)] = W([a,b]) + S(A,a,b) •• ( 6) 

Evidently the Ward identity (5) has acquired an anomaly, and the commutator 

of the gauge operators (6) has picked up a Schwinger term [24). We shall see 

below that the anomaly and the Schwinger term are closely related to 

cocycles. 

SCHWINGER TERMS In papers published in 1967, Sutherland [26) and Veltman 

(27) applied the hitherto very successful methods of current algebra to the 

calculation of the amplitude for the decay of a neutral pion into two 

photons. In the spirit of PCAC (2) they replaced the pion field with the 

divergence of the axial.current and arrived at a result which differed 

markedly from experiment. This seemed to represent the first failure for 

current algebra methods. In fact, the error in Sutherland and Veltman's 

treatment of no+2Y decay lay not in the current algebra manipulations, but 

rather in the supposition that the axial current was divergenceless. In 1969 

Adler (8) and Bell and Jackiw (9) cleared up the mystery by demonstrating 

that the triangle diagram alluded to at the start. of this section contrib­

utes an extra term, the ABJ anomaly, to the divergence of the axial current. 

This term, ·of which people were previously ignorant, reconciled Sutherland 

and Veltman's theory with the results of experiment. Shortly after this 

Feynman diagrammatic resolution qf the no+2y problem Jackiw (20) offered an 

alternative solution based on current algebra techniques th•mselves. He 

showed that the anomalous contribution to no+2y decay can also be traced to 

the occurrence of non-canonical Schwinger terms in current commutators. I 

will now briefly review Jackiw's analysis of these Schwinger terms. 

Consider a theory described by a Lagrangian· L(•) depending on fields • and 

their derivatives • = a •· In Hamiltonian formalisin the theory's canonical µ µ . . 
µ . . 

momenta are given by the formula n = 6L/6•µ' and the Euler-Lagrange 

equations of motion are 

6L = 6. •• (7) 
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The field operator representation of the quantum version of this theory · 

rests on the following equal time commutation relations (ETCR) [20] 

i[nO(t,x),$(t,y)] = c5(x-y) •• (8) 

i[nO(t,x),nO(t,y)] = i[$(t,x),$(t,y)] = 0 •• (9) 

These ETCR hold regardless of the particular structure of the Lagrangian. 

Now .. suppose that the Lagrangian is invariant under an r-parameter internal 
. a 

symmetry group G which acts upon the fields through the genera_t_ors T , 

a=l, •• ,r. In other words, L($) is invariant under the infinitesimal trans­

formation $+$+6$, c5$=ECaTa$. Then Noether's theorems [28] inform us that 
a a 

there will be r functions Jµ of the fields and their derivatives such that 

aµJa = O. Using the equations of motion (7), it is not difficult to deduce µ 

that the currents Ja are given by 
µ 

•• (10) 

Like relations (8) and (9), this expression for the currents is independent 

of the. particular form of the Lagrangian. Because of this, the above ETCR 

can be used. in conjunction with definition ( 10) to deduce model-independent 
a . . ... 

results for the currents J. Current algebra techniques were evolved 

precisely to find and exploit. such model-independent results .at a tfme when 

quantum electrodynamics was the only generally 8:ccepted field theoretic 
a 

model •. For example, consider the ETCR for the time component of a current J 
b a b 

and the spatial components of a current J • Assuming that J and J are 

conserved, and using only.Lore:ntz covariance, equations (8) and (9), and the 

group property for the representation matrices [Ta, Tb] = ifabcTc, it is 

possible to deduce [ 20] that the most general form for this E-TCR is 

[J~(O~~),J~(O,y)] = - fabc J~(~,x)c5(x-y) ~ s:~(O,x)aJcS(x-y) •• ( 11 ). 

The unusual feature of this commutation relation is that it contains a non-
ab 

canonical Schwinger t~rm Sij [29]. Such terms were discovered by Goto and 

Imamura [30) in 1955, and consequently predate ~nomalies by quite a few 

years. Because it was. no.t· poss_ible to explicitly determine. the -forms of 
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Schwinger terms using current algebra methods, they represented a serious 

obstacle to the progress of current algebraic analysis. However people 

generally avoided this obstacle by adopting Feynman's conjecture [31]. 

Effectively this meant that they simply ignored the presence of Schwinger 

terms in relations such as (11). It was not until Jackiw [20] proved 

Feynman's conjecture wrong, and demonstrated the connection between 

Schwinger terms and anomalies, that their significance was finally 

understood. To finish off this treatment of Schwinger term:s, I will now 

reproduce an argument of Schwinger's [20,29] which establishes that the term 

s~1 in (11) must be non-zero. For simplicity's sake, consider the case where 

the internal symmetry is electromagnetic U(l) symmetry. Then there is no 

internal index a on the currents, and the 1irst term on the right hand side 

of (11) vanishes. Writing Ci(x,y) = [J0(0,x),Ji(U,y)] we have 

a 
= <ol-0 - c.(x,y)lo> 

Yi 1 
•• (12) 

The right hand side of (12) will be non-vanishing only to the extent that 

th~ relevlnt Schwingei terms are non-vanishing. Siice the current J is 

assumed to be conserved, we can set a1 J
1
= -a0J 0= -i[H,J

0
] where His the 

Hamiltonian. Then, using the fact that the vacuum has zero energy, we find 

If we no~ multiply (12) by f(x)f(y), where f(x) is an arbitrary real 

function, integrate over x arid y, and use the last equation, we arrive at 
. . 

the following. result 

a 
i f d3x d 3y <olc

1
.(x,y)lo> f(x) - f(y) = 2<0IFHFl0> 

ayi 

where F = f d 3x f(x)J 0 (0,x). The right hand side of (13) is non-zero 

because, in general, the operator F possesses non-vanishing matrix elements 

between the vacuum and other states which necessarily carry positive energy. 

<olFHFjo> = <ojFlm><mlttln><njFjo> = l E n l<olFln>j 2 > 0 
n,m n 

8 



Thus C.(x,y) is non-zero, and the relevant Schwinger terms cannot vanish. 
1 

Note that it is possible to extend this argument to non-conserved currents 

which transform under an arbitrary internal symmetry group [20]. Although 

Schwinger's reasoning tells us in this fashion that non-vanishing Schwinger 

terms will, in general, occur in ETCR such as (11), it is not possible to 

find the values of these terms· using current algebraic methods. For this 

information one must turn instead to model-dependent calculations such as 

those used by Adler, Bell and Jackiw to evaluate the ABJ anomaly. Jackiw 

[ 20) did this in the case of quantum electrodynamics and, in the process, 

established that the ABJ anomaly is a direct consequence of the presence of 

Schwinger terms in electromagnetic current commutators. This work alerted 

people for the first time to the connection between anomalies and anomalous 

current commutators. 

COCYCLES Jackiw's work on current commutators provided a different pers­

pective on anomalies to the original calculational approach of Adler, Bell 

and Jackiw. Adler, Bell and Jackiw's treatment of the triangle diagram 

emphasized the breakdown of chiral symmetry which followed from the non­

conservation of the axial current. That is, it was principally concerned 

with the sort of symmetry breaking which is described by an equation like 

(5). On the other hand, Jackiw's independent work centred on anomalous 

current commutators. He was more interested in equations such as (6). Of 

course, people understood that these two approaches to anomalies were 

connected, but the close relationship which exists between them was not 

properly appreciated until recently. Now, thanks to the work of Zumino [22], 

Stora [23] and others, we know that anomalous symmetry breaking and 

anomalous current cummutators are both closely bound up with the theory of 

cocycles. The cocycle approach to anomalies has by no means been fully 

explored, but already a more comprehensive picture of anomalous symmetry 

breaking has betun to emerge from it. In the remainder of. this section I 

will describe the theory of cocycles, and in the next section we will see 

that anomalies are related to certain cocycles which are formed from 

topological terms in quantum field theories. In covering both these topics I 

will rely heavily on Jackiw's review [l]. 
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Suppose that we have a group G composed of elements g which satisfy a 

composition law g1g2 = g12. Further suppose that G acts on some variable q 

according to a definite rule g:q+qg. Then we can consider quantities 

Qn(q;g 1 , •• ,gn) depending on q and on n group elements {g 1 , •• ,gn}. Such 

quantities are called n-cochains. An operation, called the coboundary 

operation and denoted by~, inserts one more group element and thereby 

creates an (n+l)-cochain from an n-cochain: 

. + ( 1 ) n+ 1 n ( ) - .. q;g1,g2,••,gn-I,gn n 
•• (14) 

One may verify from (14) that ~2 = O. Quantities whose~ vanishes, modulo an 

integer, are called cocyles, and those that are~ of something are called 

coboundaries. Thus all coboundaries are cocyles. One distinguishes cocycles 

which are coboundaries from those which are not by calling the former 

trivial cocycles and the latter non-trivial cocycles. Let us now see how 

cocycles are relevant to representations of the group G. Consider functions 

F(q) of the variable q which are invariant under the action of G 

U(g)F(q) F(q) •• (15) 

If the operators U(g) satisfy the same composition law as the group elements 

•• (16) 

they form a representation of G. Operator representations of space-time and 

internal symmetry groups are used extensively in quantum mechanics and 

quantum field theory [ 1,2). The simple structure of group representations 

summarized in equations (15) and (16) can be complicated by the introduction 

ot phases. The first generalization is to allow a phase in (15). Suppose we 

set 

U(g)F(q) •• (17) 
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Then it is an easy matter to check that the consistency of this equation 

with (16) imposes a constraint upon w1(q;g). We must have 

•• (18) 

Thus w1 is a 1-cocycle. It should be noted that, if w1 is a trivial cocycle, 

the function F(q) and the operators U(g) can be redefined so that they 

represent G according to equations (15) and (16). Thus a trivial cocycle can 

be removed. On the other hand, if w1 is non-trivial it cannot be removed and 

the operators U(g) form a projective, rather than a faithful, representation 

of G. In the next generalization of equations (15) and (16) a phase is 

introduced into the composition law (16) 

•• (19) 

A consistency condition on this phase follows from the assumed associativity 

of the composition law. If [U(g 1)U(g2) ]U(g 3) = U(g 1HU(g2)U(g 3)] one easily 

shows that llw2 = 0 (mod integer). Thus w2 is a 2-cocycle. Once again, a 

trivial 2-cocycle can be removed. It is possible to continue in this way 

progressively adding phases. The next step, for instance, is to abandon 

associativity. Then one has 

•• (20) 

By considering four-fold products of the operators U(g), and associating in 

different ways, one can establish that w3 is a 3-cocycle. It is worth noting 

that 1-cocycles, 2-cocyles and 3-cocycles all occur in quantum mechanics, 

and are therefore of physical interest. In contrast, no physical role has so 

far been found for higher cocycles. We are now in a position to see how 

cocycles relate to anomalies. Suppose that G is a Lie group. Then the 
a a elements of G may be written as exponentials g = exp(6 T) where the 

matrices Ta generate G's Lie algebra. Similarly, the operators U(g) may be 

expressed in terms of generators Ga U(g) = exp(i6aGa), The properties of 
a 

the generators T are summarized by the following three relations 

0 (invariance) •• (21) 

ll 



(structure relations) •• (22) 

a b c b c a c a b 
[T [T ,T 11 + [T ,[T ,T 1] + [T ,[T ,T ]] = 0 (Jacobi identity) •• (23) 

a 
Were there no phases in equations (17), (19) and (20) the generators G 

would satisfy relations similar to (21), (22) and (23). Instead, the reader 

may check that they behave as follows 

•• (24) 

•• ( 25) 

•• (26) 

Here ow 1 , ow 2 and ow 3 are respectively a 1-cocycle, a 2-cocycle and a 

3-cocycle. They are related to the infinitesimal parts of the phases w1, w2 

and w3. Comparing equations (24) and (25) with (5) and (6) it is tempting to 

conclude that the anomaly in (5) is a 1-cocycle, while the Schwinger term in 

(6) is a 2-cocycle. Of course, any such conclusion must be tested by 

explicit calculation. Such calculations have now been performed and the 

relevant anomaly and Schwinger term have been shown to be cocycles which are 

constructed from topolqgical functions of the gauge field [32]. Details of 

these topological functions will be provided in the next section. Thus, 

while much confirmatory work remains to be carried out on the connections 

between anomalies and cocycles, it seems safe to conclude that, at least in 

some cases, anomalous symmetry breaking can be traced to the fact that the 

generators of the internal symmetry group obey the anomalous algebraic 

relations (24), (25) and (26). 

1.2 Tupologicc.11 Theory 

As Jackiw ll) has explained, a field theoretic effect is called topological 

when it is insensitive to localized perturbations of the dynamical fields or 

of the parameters entering the dynamical description. This definition sugg­

ests that, when we are dealing with a problem defined on an open, infinite 
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space-time, topological effects will arise from behaviour "at infinity". 

Frequently, in a quantum field theory, one is interested in integrals of 

local quantities. The behaviour of the system at infinity typically 

determines the surface terms which contribute to these integrals. Thus, 

field theoretic topological effects emerge when attention is paid to surface 

terms at infinity which ~re mostly ignored in elementary discussions. For 

example, modifying a Lagrangian by a total derivative does not affect the 

equations of motion, but it can change the action. This has no significance 

in classical physics where all the dynamical information is contained in the 

equations of motion. However, a quantum effect may emerge because quantum 

theories are sensitive to total derivatives in the Lagrangian - the 

Heisenberg operator formalism requires .identifying canonical momenta from 

the Lagrangi.;111, whil.l! the path i.ntegra.l approach makes use of the action. 

Topological effects enter into non-Abelian gauge theories because the gauge 

fields can assume topologic~lly non-trivial configurations. The consequences 

of this fact for classical gauge theories were first explored by Belavin 

et .al. [ 33], who found a finite energy, pseudoparticle solution to the gauge 

field equatioris. Later ~t Hooft [34], Callen, Dasheri and Gross [35] and 

Jackiw and Rebbi [36.J showed how to incorporate pseudoparticles into quantum 

processes. Since then~ pseudoparticles and solitons have played a part in 

our understanding of several interesting problems in quantum field theories. 

These include CP non-conservation in the strong interactions [13,37,38,39], 

the U( 1) problem [ 12,40,41], charge quantization [42,43], and anomalies. I 

now wish to demonstrate that the non-trivial topology of non-abelian gauge 

fields is closely connected with anomalous symmetry breaking in the 

corresponding gauge theories. 

G-VACUA Perhaps the easiest way to expose the topological structure of non­

Abelian gauge theories is to examine the structure of the vacuum [6,7]. To 

do this let us place o~r quantum system within the space-time box ltl<T, 

lxl<K. Then the vacuum condition 

0 •• ( 27) 
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obtains outside the box. Here Fµv is the Lie algebra valued gauge field 

tensor. As usual it is related to the gauge field Aµ as follows 

Under a gauge transformation$+ U$ the field A goes into A' where 

A' = u A u-1 + u-1a u 
µ µ µ 

•• (28) 

We are free to adopt the gauge fixing condition Ao=O for our system, but in 

order that this condition be consistent with (28) we must restrict ourselves 

to time-independent gauge transformations U(x) = U(x). Then, since all 
! 

matter fields must be zero outside the box, theivacuum will be described by 

a time-independent, pure gauge potential Ai(x) = u-l(x)oiU(x). At initial 

time t=-T we can use the remaining gauge freedom to choose U(x)=l in which 

case A,(x)=O. But the vacuum condition (27) implies that ooA,=O for ltl>T or 
1 1 

lxl )R. Consequently Ai (x) is zero everywhere outside the box. This uniform 

vanishing of Ai(x) means that we can identify all points on the surface of 

the box. In particular for any given time t, ltl<T, we can identify the 

points on the spatial edge of the box lxl=R. Having brought about this 

situation using the device of a space-time box, we can now allow T,R+m. Then 

the gauge fields may be regarded as maps from three-dimensional space with 

infinities identified (ie. from the three-dimensional sphere S 3) into the 

gauge group G. A theorem due to Bott [6,44) states that 

THEOIIBM. Any continuous mapping of s 3 into a simple Lie group G ~an 

be continuously deformed into a mapping into an SU(2) subgroup of G. 

We are therefore led to consider maps from s 3 into SU( 2). Such maps can be 

divided into inequivalent homotopy classes on the basis of their (integer) 

winding numbers. The winding number n of a gauge field is defined to be [ 7) 

where Fµv= (1/2)eµvopF is the dual field tensor. The usual interpretation ·. op 
of .this situation is that there is a multiplicity of vacuum states In> 
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corresponding to pure gauge potentials having winding numbers n. These vacua 

are related to each other via "large" gauge transformations, and 't Hooft 

has demonstrated that pseudoparticle solu.tions of the gauge field equations 

tunnel between homologically distinct vacuum states. Because of this 

tunnelling phenomenon we expect the true, or physical, vacuum to be a 

suitable superposition of In> states. Suppose Tis a large gauge transform­

ation w"htch maps - In> into ln+l). If the true vacuum is to be an eigenstate 

of T then it must be constructed from a real parameter a as follows 

le>= l e-in6 In> •• (30) 
n 

In this way we end. up wi~h a spectrum of . 6-vacua which are reminiscent of 

the multiple vacuum stat7_s that are a feature of the quantum mechanical 

Block phenomenon [ 4 J • There is no. passage between quantum states which are 

built on distinct 6-vacu<;i, and each value of a therefore characterizes a 

separate "6-world". If our quantum system begins in one 6-world then it will 

stay there for all time·. Consider the vacuum to vacuum transition amplitude 

for our system in path integral formalism. In view of what has just been 

said, it must be of the form 

•• ( 31) 

Writing the left hand side of (31) in terms of In> states one finds 

l eim6' e -in6 (m le -iHt In> · 

n,m 

= f -ive im(e'~a) f 4 l e e [dA]v exp[i/(L+JA)d x] •• (32) 
v,m 

In this last expression V=n-m, and the path integral is over all gauge 

fields Aµ whose topology is such that they tunnel between the states In> and 

1n:+v). Comparing (31) and (32),_ .and using (29), we deduce _that 

where 

= l f [dA]v exp[if(Leff + _JA)d4x] · 
v 
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•• (33) 

Thus e has turned up in the effective Lagrangian multiplying the same 

topological term (l/16n2)tr(F Fµv) that appears in equation (29). One might µv . 
summarize the situation as follows. A quantized non-Abelian gauge theory . .,. 
contains a vacuum parameter e. According to (30), 0 determines the relat-

ionship between the 

of definite winding 

are eigenfunctions 

vacua In>, which correspond to pure gauge configurations 

number, and the 6-vacua which, to the extent that they 
. e 

of gauge transformations Tl0> = e 1 
I 0), are the physical 

vacua. If one works with quantum states which are built on the non-physical 

vacua In>, then 0 remains buried within the gauge transformation rules of 

the theory's state vectors and operators. On the other hand, one can make 0 

explicit within the theory's effective Lagrangian by working with quantum 

states which are built on the physical 0-vacua. Naturally, in the latter 

case topological effects associated with 0 will be more readily accessible 

to analysis. We can convince ourselves of this by considering the example of 

a three-dimensional model gauge theory which was examined by Jackiw [l]. 

THREE-DIMENSIONAL MODEL The four-dimensional term ( 1/ 16n2)tr (F F µv) which 
. µV 

appears in equations (29) and (33) may justly be described as a topological 

quantity since its value is unaffected by localized variations of the gauge 

field A • In fact, formula (29) tells us that its (integer) value is altered 
µ 

only when Aµ undergoes the sort of global transformation that brings about a 

change in winding number. In three-dimensional space-time there is an 

analogous topological term. By adding _this term to the usual Yang-Mills 

Lagrangian one arrives at the following action [ 1] 

I= f d3x tr[.!. F Fµv - (m/4n)Eµva(A a A + -
3
2 A A A )] 

2 µv . µ v a µ v a 
.•• ( 34) 

.In this expression the parameter m has the dimensions of mass, and an 

analysis of the Abelian U(l) case of the theory described by t~e action (34) 

shows that the "photon" is indeed massive. Consequently this model-is 

called a topologically massive gauge theory •. The action (34) le.ads··· to the 

following equation of motion· 

•• (35) 

16 



Note that the parameter m appears explicitly in (35). By way of contrast, 

the parameter 0 which occurs in the four-dimensional effective Lagrangian 

(33) does not appear in the corresponding four-dimensional equation of 

motion. This fact is an indication that the character of topological effects 

varies with the space-time dimension. Generally spea~ing, there is a 

mismatch between the dimension of the Lagrangian and the dimension of the 

topological terms that one might add on to the Lagrangian. Therefore, if one 

wishes to include topological effects in the theory, one must couple the 

topological terms to dimensional parameters such as m. It is only in four 

dimensions that the relevant topological term is of exactly the same 

dimensions as the Lagrangian, and the coupling constant 0 is correspondingly 

dimensionless. Because of this, four-dimensional theories constitute a 

special case. Even so, it is still instructive to look at simpler lower­

dimensional models such as the one presently under consideration. 

When expressed in terms of the electric and magnetic fields, the Hamiltonian 

corresponding to the action (34) is conventional : H = ( 1/ 2) fd 2x (E 2+B 2 ). a a 
However, the relationship betwe'en these fields and the canonical momenta is 

altered. One finds 

n1 = 
a 

Thus, His non-standard when expressed in terms of canonical variables 

The generators of gauge transformations. on the fields are the operators Ga 

Let us assume that an element of the gauge group is given by the expression 
a a . a · 

g = exp( 0 T ) where _the matrices T are the group generators. The corresp-
a a 

anding finite operator on the fields is U(g) = exp(i0 G ). As Jackiw [1] has 

shown, the following two equations hold 

U(g)'l'(A) = e -2nimw(A;g) 'l'(Ag) •• (36) 

17 



•• (37) 

Thus, among other effects, the topological parameter m has introduced a 

phase w(A;g) into the gauge transformation law (36), and has given rise to 

the anomalous current commutator relation (37). As the reader may suspect, 

the phase and anomalous commutator are related to cocycles. I will now 

explain where the cocycles come from. 

TOWERS OF COCYCLES We have just seen that the non-trivial topology of non­

AbeUan gauge fields :i.n four dimensions gives rise to the topological term 
. . . . • - ).l\i.· .. :: ::. . . . . . 

P =, ( 1/ 16,r2)t r (F 1'' .. }. in the effective Lagrangian ( 33). In the mathematical 
. . . • . . . • . ).IV . .. . ... , . . . 

literature this term -is 'called the Chern-Pont ryargin density, and counter-. ·' ' .. . . 

parts' fot it ex'ist. 'in -~n-y>'even-dimensionai space-time. The density P, and 

te.rms ··of ~; sfmilar top9~og:f.:cal nature, hav~ b.een. clo.sely pound up in .the 
., .· .'·,.·, . 

rece'nt,·past'.with.pr~gte'~s ··1:n . .' our understanding of. several interesting 
. . ' '. . ... , 

.Ph~ne>me~a i~ _gaug~ field >ti'heoties. Some of these have al ready been alluded . . . . . . . 

to. 1''or in.stance; up to.a .factor, the chiral anomaly in vector gauge 
. . ' . 

theories is simply th~ Chern:...Pontryargin density. In QCD the presence of 

this topologically non-trivial anomaly is thought to resolve the U(l) 

problem [39). Likewise, when the Chern-Pontryargin density is included in 

the QCD Lagrangian, it induces CP non-conserving processes. So far as we can 

tell, the strong interactions are CP conserving. People have therefore been 

led to consider mechanisms based on axions as a means of having QCD respect 

CP invariance [38). Lastly, as explained above, terms like P give rise to 

anomalous symmetry breaking effects. in gauge field theories. I will now 

outline a little more of the relationship between these effects and Chern­

Pontryargin densities in various dimensions. 

The first thing to note about the four-dimensional Chern-Pontryargin density 

P is that it is invariant under small gauge transformations, but it changes 

by an integer under large gauge transformations. In other words, Pis a 

0-cocycle 

t.P = 0 . • • (38) 
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Secondly, it is well-known that P can be expressed as a total derivative. 

By employing compact differential form notation [45] in which A= A dxµ and µ 
F = dA + A2, P may be written as follows 

P - -
8

; 2 tr F 2 = M2o •• (39) 

Oo(A) = - s!2 tr(A dA +; A3) 

P and Oo are four- and three-forms respectively. Strictly speaking, the 

result ( 39) is only locally valid. It may be extended to a global relation, 

however the extension involves certain subtleties which I do not wish to 

consider here [45,46,47]. Suffice it to say that, although these subtleties 

properly enter into the following discussion, they do not alter the conclu­

sions which are detailed below. For the sake of simplicity, I will therefore 

ignore them. 

The fact that P may be written as a total derivative is not unconnected with 

its topological nature. For example, if S denotes four-dimensional space­

time and as is the boundary of S, then (39) ensures that 

This means that, when P is included in the Lagrangian, its contribution to 

the action is a surface term. Hence P's effect on the theory is global 

rather than local, and this is precisely what one would expect of a term 

which has been characterized as topological. Now consider the quantity bGo• 

If one acts on b00 with t.he differential operator d, and uses equation ( 38), 

one finds 

Hy Poincare's lemma this res.lilt implies that M1o may in turn be written as a 

total derivative 

•• (40) 
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The object n1 is clearly a 2-form. The same argument may be repeated once 

again. If we apply the operator d to An1 and use the fact that A2 = 0 we 

discover that d(A01) = A(d01) = A20o = o. Thus 

•• (41) 

where 02 is _some 1-form. Equations (39), (40) and. (41) are the start of a 

set of· so-called "descent equations'' which begin with the four-dimensional 

. Chern-Pont ryargin density. The whole process by which these equations are 

generated may be generalized to arbitrary even dimensions. If we now use P 

to denote the 2n-dimensional. Chern-Pontryargin density, then we have 

p 
in 

tr Fn -n"T'! .,..( =2-n.,...) n=-

Once again the 2n-form Pis both a 0-cocycle and a total derivative: Ap = 0, 
1 · 1 

P = d'22n-l" Here I have used ·a subscript 2n-l to indicate that 0 2n-l is a 

(2n-1)-form. The superscript 1 on oJn-l corresponds to the subscript 1 on 01 

in (40). From the density Pone obtains the following set of descent 

equations 

p = d'2~n-l 

Ao2n-2 = do2n-l 
1 · 0 

Ao2n-l = 0 0 . •• (42) 

Note that the sequence .ends with the 0-form nin-l. The interesting thing 

about the set of equations (4'2) is that one can use them to generate a 

parallel sequence.of cocycles. ·suppose we set 

•• (43) 
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where the integral in (43) is over infinite p-dimensional space Sp. By 

integrating the first of equations (42) over s 2n we find that 

ls P = ls d'1~n-l = las n~n-1 
2n 2n 2n 

•• (44) 

where as 2n is the boundary of s 2n. Under certain reasonable assumptions [48) 

the boundary of s 2n may be_ taken to be s 2n- l. Thus ( 44) becomes 

ls P = w~n-1 
2n 

By similarly integrating each of equations (42) and replacing asp with Sp-l 

one arrives at the following set of relations 

wO =· ls p 
2n-1 2n 

wl = Aw~n-1 2n-2 

2 
w2n-3 = Awin-2 

w2n-l = Aw2n-2 
0 1 

From these relations, and the results AP = A2 = 0, one can easily deduce 

that Awq = o. Therefore wq is a q-cocycle. In this way the descent equations 
p p 

(42) allow us to generate a tower of cocycles from the Zn-dimensional Chern-

Pontryargin density P. I acknowledge that the arguments by which I arrived 

at these cocycles are grossly over-simplified. However the mathematics can 

be made rigorous and the conclusions still hold [49). The relevance of all 

this work to anomalies is not difficult to see. Knowing, as we do, that 

anomalies and anomalous current commutators are 1-cocycles and 2~cocycles 

respectively, it is tempting to identify them with the quantities wJn-Z and. 

wfri-J" Of course, in four dimensions the anomaly must be a 4-form and the 

current commutator a 3-form. Hence we must have n=3; in which case wJn-z= wl 
and wJn-)= wJ are de~ce~de~ from the Chern-Pontryargin density in six 

dimensions. We are therefore· led to ask the following question. Can the 
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four-dimensional gauge anomaly and associated anomalous current commutator 

be identified with the cocycles wl and w~ which are descended from the six­

dimensional Chern-Pontryargin density? This question can only be answered by 

carrying out the relevant perturbative calculations. These calculations have 

now been performed, and it has been ascertained that the four-dimensional 

a~omaly and current commutator can indeed be identified with the cocycles wl 
and w1 [32]. Clearly there is much which is yet to be understood about 

anomalies. However our recognition that anomalous symmetry breaking has its 

origins in cocycles which are descended from topological Chern-Pontryargin 

densities is a marked step forward in our knowledge of this subject. 

1.3 Calculational Methods 

Having described, albeit briefly, the theoretical underpinnings of anomalous 

symmetry breaking, it is worth devoting some time to a review of .the various 

methods by which anomalies may be calculated. Anomalies were discovered in 

1969 by Adler, Bell and Jackiw [8,9], and it is only recently that they have 

been able to be fitted into some kind of unified theoretical framework. 

Because of the lack of a solid theoretical approach to the subject in the 

intervening seventeen years, most of the progress in our understanding of 

anomalies has been inspired by the methods that people devised to calculate 

them. For example, the Adler-Bardeen theorem, the relationship between 

anomalies and regularization, and anomaly cancellation mechanisms were all 

initially explored and understood from an almost exclusively calculational 

point of view. In this section I will briefly survey the various methods of 

anomaly calculation, commenting where appropriate on the strengths and 

failings of the different approaches. This task is simplified by dividing 

calculational methods as follows into three groups: Feynman diagrammatic 

methods,. path integral methods, and differential geometric methods. 

1''EYNMAN DIAGRAMMATIC METHODS Under this heading come all those methods 

which rely upon the evalu~tion of one or more Feynman diagrams. These 

. include the original analyses of the triangle diagram by Adler [8] and Beil 

a'rtd Jackiw (91, and also the :method: of anomaly calculation described later . ' . .' ' . 

iri·thi~ th~iis. It is.~p~j~ible at the outset to make a couple of broad 
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generalizations about Feynman diagrammatic methods of calculation. Firstly,. 

the only sort of diagram which will contribute to an anomaly is one of the 

form illustrated in figure 1. Such a diagram consists of a single fermion 

loop, and its legs are either external currents, gauge bosons or anti­

symmetric tensor fields. Of course, any Feynman diagram which contains a 

sub-diagram of the form shown in figure 1 will contribute anomalous terms to 

the corresponding quantum amplitude. However, no exception has yet been 

found to the rule that .anomalies themselves receive contributions only from 

di"agrams of the form ~epicted below. 

FIGURE 1 

The second generalization about diagrammatic methods concerns the question 

of regularization. In the last section we saw that, in a three-dimensional 

model examined by Jackiw, anomalous symmetry breaking effects were tied to a 

topological parameter m which appeared explicitly in the theory's Lagrang­

ian. This may suggest to t~e reader that anomalies and anomalous current 

commutators are straightforward consequences of the system's (non-standard) 

equations of motion. However, to see that this is not the case one need only 

look at four-dimensional non-Abelian gauge theories which are described by 

the effective Lagrangian (33). These theories contain anomalies even though 

the topological p!}rameter 9 does not appear in the equations of motion. My 

point here is that anomalies are not simple consequences of the field 

equations. Instead, they are intimately bound up with the subtleties of 

regularization. In general, the position in which an anomaly occurs in a 

th~ory, and even the form of the anomaly, are determined by the way in which 

the theory is regularized. Not surprisingly, then, questions of regulariz­

ation are an integral part of any Feynman diagrammatic method of anomaly 

calculation. 
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Let us now examine in a little more detail some of the considerations which 

lie behind the foregoing two generalizations about diagrammatic methods. The 

assertion that anomalies receive contributions only from Feynman diagrams of 

the form shown in figure 1 is known as the Adler-Bardeen theorem [50,51]. 

Adler and Bardeen's conjecture that anomalies are one-loop quantum effects 

was originally formulated in the context of QED. However their arguments 

appear to be more generally valid, and it is certainly the case that no 

anomaly has yet been found which receives contributions from Feynman 

diagrams. containing two or more loops. A "proof" of the Adler-Bardeen 

theorem rests upon the observation that anomalies occur when a quantum 

theory cannot be regularized in such a way as to preserve all of its 

classical symmetries. Multi-loop Feynman diagrams necessarily contain 

internal boson lines. One can regularize these boson lines in a manner which 

respects all the usual symmetries by applying higher derivative 

regularization [52] to the boson propagators. (Fermion propagators cannot be 

effectively regularized using the higher derivative scheme. When one 

includes higher powers of gauge covariant derivatives in a fermion 

Lagrangian, one also introduces more gauge fields whose effect is to cancel 

the regularizing influence of the derivatives.) Since one can employ higher 

derivative terms of any order, it is possible_to regularize any given multi­

loop diagram in this fashion. It. therefore follows that one-loop 'Feynman 

diagrams are the only diagrams which cannot be regularized in such a way as 

to preserve all of the theory's classical symmetries, and these diagrams are 

the only ones which will contribute to anomalies. In conclusion, it must be 

added that this proof is not altogether convincing and, particularly in 

supersymmetric theories,· there are some aspects of the Adler-Bardeen theorem 

which remain controversial [53]. 

It should by now be clear that anomalies are the quantum corrections to 

classical current conservation equations. As such, they are potentially 

mathematically ill-defined until_ they are subjected to the dual processes of 

regularization and renormalization. This is, in fact, the case. Anomalies 

are invariably associated with divergent Feynman diagrams, and they do not 

assume a definite form un_til these diagrams are made well-defined through 

the ap~lication of some regularization procedure. One is free to use any 

number of rcgularf.zatioit schemes, however people usually choose one of the 
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following four conventional methods: Pauli-Villars regularization [2], 

dimensional regularization [54), higher derivative regularization [52) and 

point-splitting [55). These· four methods all feature some sort of regular­

ization parameter .A whic.h serves to measure the degree ~f divergence of 

quantities in the unregtilarized quantum theory. By allowing A to tend to 

some limiting value (usually O or co) one can establish-.. that a certain 

quantity diverges or converges as lnA, A2 , 1/A etc •• The role that the 

regularization paramete.r A plays in the eme·rg~nce of an anomaly is, in its 

general aspects, common to all anomalies and to all of the above four 

regularization schemes. To give some idea of this role "it therefore suffices 

to look at the way in which a chiral anomaly emerges under Pauli-Villars 

regularization. Consider massless QED in four dimensions. To the usual 

massless fermion field~ and electromagnetic field Aµ one adds a single 

fermion regulator field ~R of mass M. In this case the mass Mis the 

regularization parameter, and the appropriate regulator limit is M+co. In the 

unregularized theory the equations of motion can easily be used to show that 

the chiral current J = ~YsY ~ has zero divergence a•J = O. When the 
µ µ 

regulator field is taken into account one finds that the chiral current 

becomes J = $'YsY ~ + iRYsY ~R·and the equations of motion now imply Rµ µ . µ 

aµ J = 2.MJ 
Rµ R 

•• (45) 

_where .JR= iiRYs~R. Equation (45) is an operator identity, and should be 

checked by looking at the amplitudes of the operators be.tween appropriate 

particle states. It turns out that, with one exception, the contributions of 

all of these_ ampl_itudes to the regulator parts of equation (45) contain 

inverse powers of M. Therefore in the limit M+co they vanish. The one 

exception is the ampli tu.de of JR be tween the vacuum and the two photon 

state. -Of course, the val_ue of this amplitude is given by the ABJ triangle 

- " diagram. One finds that <ol JRI 2Y) = (1/ l6M1r 2)F µVFµ and (45) becomes 

•• (46) 

Thus in the. lii:nit M+co the .ABJ triangle diagram gives rise to a non-vanishing 

·resi,due in' (45)" and.:one ends "up 'with the anomalous chiral current 

con~ervation. equati6~'··a·.t -~. (l/81r 2 )F ;µ\ The ·point I wish to make here is 
. . '.": . . . . . , .. ' . . . . . . . _µv 
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that an anomaly occurs in (46) because a zero (a 1/M in the regularized 

theory) comes up against an infinity (M) and leaves a finite residue. The 

same is true of any anomaly when calculated with the help of a conventional 

regularization scheme. One always finds that the anomaly emerges from the 

theory when a positive power of the regularization parameter A is exactly 

cancelled by factors of 1/A, leaving a finite residue. Clearly, even though 

it may be inaccurate to say that anomalies are caused by the regularization 

process, there is a close connection between the two. 

This connection appears still closer when it is realized that the anomaly is 

not a passive bystander during the regularization of a theory. We have seen 

that the anomaly's presence signifies that there is no regularization scheme 

which is entirely satisfactory in the sense that it preserves all of the 

theory's classical symmetries. When regularizing an _anomalous theory, one 

· must therefore decide which of the classical symmetries is least desirable, 

or least painfully relinquished, and choose a regularization scheme 

accordingly. The anomaly will appear in the conservation equation of the 

current which corresponds to the symmetry that is broken by the regular­

ization scheme, and in this sense the anomaly plays a part in determining 

which regularization scheme is used. For instance, suppose that one wishes 

to regularize an anomalous quantum theory whose classical counterpart is 

chirally and vector gauge invariant. Because the theory is anomalous one of 

these symmetries must be relinquished, and it is most likely that one would 

opt to give up chiral invariance and retain vector gauge invariance. In this 

case one would employ a regularization scheme like Pauli-Villars which 

respects gauge symmetry but breaks chiral symmetry, and the anomaly would 

appear in the chiral current conservation equation. On the other hand, one 

might wish to keep chiral invariance and give up vector gauge invariance~ 

Then one would employ a scheme which respects chiral symmetry but not gauge 

symmetry, and the anomaly would appear in the conservation equations for the 

gauge currents. This aspect of anomalies has not been fully understood in 

the past. For instance, it was realized that significantly different 

regularization schemes could lead to anomalies in the conservation equations 

for entirely different currents. Howevei, it was not appreciated that 

slightly different regularization schemes might give rise to anomalies in 

the same current conservatiort equation which are respectively gauge 
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covariant and non-gauge covariant [56]. It is precisely in the freedom to 

vary the regularization scheme that the difference between so-called 

consistent and covariant anomalies lies [56,57,58]. 

One final comment on anomalies must be made before I proceed with a 

discussion -0f functional integral methods of anomaly calculation. It was 

pointed out above that, like any field theoretic objec_t, anomalies 

potentially re qui re both regularization and renormalization. We have seen 

that they certainly must be regularized in some fashion. On the other hand 

it turns out that, becaus·e anomalies are one-loop phenomena, they do not 

have to be renormalized. To see that this is generally the case, one can use 

an argument due to Alvarez-Gaume and Witten [59]. They point out that, by 

using unitarity, one can uniquely reconstruct any one-loop amplitude from 

tree diagrams, up to a polynomial in the external momenta. Therefore, any o_f 

the diagrams which can contribute to an anomaly are well-defined modulo the 

ability to add such a polynomial. When one claims that a diagram is 

anomalous, one means that it is impossible to add a polynomial in the 

momenta so as to eliminate the anomaly and obtain an amplitude that respects 

all symmetries. It automatically follows from this that anomalies are always 

finite. After all, the infinite part of a diagram .is always a polynomial in 

the external momenta. Our freedom to redefine an amplitude by adding a 

polynomial includes the freedom to throw away all infinite pieces. Hence 

anomalies are always finite and they do not need to be renormalized. 

PATH INTEGRAL METHODS Once people had succeeded in calculating anomalies 

using Feynman diagrams and· traditional field operator formalism, it was 

natural to ask whether the same could be done in the path integral formalism 

developed by Feynman and Hibbs [2,3). In 1979 Fujikawa [60,61,62) answered 

this question positively by deriving the ABJ anomaly using path integral 

methods. His derivatiort.g~es as follo~s. One begins with the fermion 

effective action 

e -f(A) f ,. · 
. dljldljl expl-/d"'x ljli~ljl) •• ( 47) 

where A is the electromagrietic field and Dis the gauge covariant deriv­

ative •. Note that A has not been integrated over in (47) since only external 
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electromagnetic fields enter into the ABJ anomaly. Consider how the various 

parts of the effective action transform under the chiral transformation 

ij, + 1jl + ia(x)'y 5ij, •• (48) 

For a start,'. one easily finds that the exponent in the integrand changes by 

•• (49) 

where Jlt 1'>Y5Y llip is the chiral current considered above. However, it is not 

quite such a simple matter to discover how the fermion determinant dij,d~ 

behaves under chiral transformations. To do this Fujikawa expressed the 

field ij, in· terms of eigenfunctions ij, of the Dirac operator i~: iJljl = ~ 1jJ. n n n n_ 
In this way he found that; for infinitesimal a(x) in (48), the measure dij,dljJ 

transforms as follows 

dilld~ + exp[-:li J d 4x a(x) 1(x) ]dilld~ •• (50) 

Here i(x) = ~ i11t(x)Y5Wn(x). The quantity l(x) is mathematically ill-defined. 

To calculate it, a gauge invariant cutoff M was introduced 

Um tr Ys exp.[-(t>/M) 2) 6(x-y) 
m~ '°• ~-+.x. 

lim f d 4k tr Ys exp[-(o2 + t [Yu,Yv]F v)/M 2]eik(x-y) 
m-.oo,'3 ... :ac. lJ 

= lim (1/16) tr y 5 ([yll~Yv]F,,v)2 (l/21M4) J d4k exp(-k2/M2) 
rn~oo .. 

= 1 F F lJV 
- 16,r2 lJV 

•• (51) 

Finally Fujikawa demanded that the effective action be invariant under the 

change of variable (48) : [6/<Sa(x)]exp[-r(A)] la=O = O. By substituting 

equations. (49), (50) and (51) into this condition he arrived at the 

following anomalous chiral current conservation equation 
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This, of course, is none other than the Euclidean space version of the 

Minkowski space equation (46). Several comments might be made about this 

derivation of the ABJ anomaly. Firstly, Fujikawa's work suggests that 

anomalies arise in path integral formalism because the fermion measure is 

not invariant under the relevant symmetry transformation. This is indeed the 

case, not only for chiral anomalies but for all anomalies. Secondly, the 

above method of regulating the fermion measure is only one of an infinite 

number of possible methods. For example, Fujikawa has himself shown [62) 

that one may replace the higher derivative regulator factor exp[-(D/M) 2J 

with f[-(D/M)2] where f(z) is any smooth function that rapidly approaches 

zero as z+m. Alternatively, one can regularize the fermion determinant 

simply by adding a standard mass.ive Pauli-Villars regulator field to the 

Lagrangian [62). In both these cases the end result is the same. My last 

comment on the above derivation of the ABJ anomaly concerns two methods of 

regularization whi~h were not used by Fujikawa, but which are nevertheless 

very popular. In place of a Fujikawa-style higher derivative regularization 

of the effective action, one may employ either the heat kernel method [63) 

or zeta function regularization [64). In both these cases the details of the 

anomaly calculation differ from those of Fujikawa. However, in its general 

features, the manner in which the anomaly emerges from the fermion 

determinant is the same. 

Many anomalies have now been calculated using path integral methods. These 

methods enjoy certain advantages and certain disadvantages with respect to 

the Feynman diagrammatic techniques described earlier. In general, Feynman 

diagrammatic methods are preferable when there is some doubt as to the 

validity of an assumption or a procedure. For instance, Fujikawa's assump­

tion that the effective action is invariant under chiral transformations is 

reasonable, and was justified a posteriori since it led to the correct 

anomaly. However, one might justly view this assumption with scepticism had 

it not been verified in old-fashioned diagrammatic calculations. Similarly, 

the Adler-Bardeen theorem and the non-renormalizability of anomalies are no 

be.tter understood in path integral formalism. than they are diagrammatically. 

Consequently one is probably· still better off viewing these effects from a 
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diagrammatic point of view. On the other hand, when one is on firm ground 

the compact nature of path integral formalism makes it far more attractive 

and easily manipulated than complicated Feynman diagrammatic expressions. 

For instance, the connection between anomalies and regularization is much 

m~re transparent, and cons~quently much more easily explored, in path 

integral formalism than it is in terms of Feynman diagrams. Likewise, our 

understanding of the relationship between anomalies and topological index 

theorems (21) is a product of path integral methods. In fact, the subject of 

topological index theorems is one area where the path integral formalism has 

contributed insights into anomalies that diagrammatic methods could not 

reproduce. I will therefore· devote the final part of this subsection to a 

brief explanation of the connection between the ABJ anomaly and the relevant 

index theorem. In Fuj ikawa's derivation of the ABJ anomaly we encountered 

the quantity t(x) 

1(x) = l 1j, fcx)Y 51jl (x) n n 
n 

The fields 1j, (x) are eigen·functions of the Dirac operator : i°t)lj, = ). 1j, • 
n n n n 

Consider those eigenfunctions 1j, (x) whose eigenvalues). are non-zero. 
n n 

Because Ys anticommutes with~ we have 

Y51jl (x) = 1j, (x) 
n -n 

and it is not difficult to see that, as a consequence of ~his, the only 
. . . 

eigenfunctions ljln which contribute to 1 (x) are those with zero eigenvalues. 

When ~n= 0 we can always choose things so that ljln is of positive or nega~ive 

chirality 

Y51jl = ± ljl 
n n 

,· ,. 

I will denote positive chirality eigenfunctions .bY 1j, +' and: i:i~gative chir~~-
. .n · .. ·. :.· ···'. ·; . . ., ... 

ity eigenfunctions by lj,
0

_· •. If the numbers of .these states·:·a:ye. 't.esp~c~iv~ly. 

N+ and N then the integrai of t(x) over space-time is.·~qual_:·~~>:: .. · 

J di.x 1<x> 
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That is, the integral of 1(x) is equal to the number of positive chirality 

zero modes minus the number of negative chirality zero modes. However, an 

index theorem for the Dirac operator [21] tells us that the difference 

N - N is equal to the integral (-l/16n 2)Jd4x(F ;µv). We are therefore free 
+ - - µv 

to identify 1(x) with (-l/16n 2)F Fµv which leads us to the ABJ anomaly µv 
(46). Fujikawa's method thus provides a straightforward means of showing the 

intimate connection between the ABJ anomaly and the index theorem, and 

establishes a framework for understanding the anomaly in topological terms. 

DIFFERENTIAL GEOMETRIC METHODS The methods which, for want of a better 

term, I have decided to classify as differential geometric, date from a 1971 

paper by Wess and Zumino [10]. Consequently, they predate the path integral 

methods which were developed by Fujikawa and others. Despite this chrono­

logical primacy, I have decided to deal with differential geometric methods 

last because their significance was not fully understood, and their pot­

ential not fully realized, until quite recently. In fact we shall soon see 

that the methods considered below are .closely related to our newly acquired 

theoretical understanding of anomalies in terms of cocycles. The material of 

this section will therefore bring us full circle back to the algebraic 

considerations of the beginning of the chapter, and will neatly wrap up the 

subject matter of sections 1,2 and 3. All that then remains for me to do in 

section 4 is to quickly review some of the applications of anomalies. 

Differential geometric methods of anomaly calculation all d.epend upon some 

sort of Wess-Zumino type consistency condition. In 1971 Wess and Zumino [10] 

observed that, because gauge anomalies are equal to the variation of the 

vacuum functional under a gauge transformation (see equation (5)), they must 

obey certain consistency conditions. These conditions are direct consequen­

ces of the assumption that the. generators of gauge transformations obey a 

regular composition rule as in equation (4). As we have· seen, this assump­

tion may not be valid. In general, the gauge generators will follow an anom­

alous composition rule of the sort shown in equation (6). Notwithstanding 

this fact, the methods developed by Wess and Zumino have been successfully 

employed to deduce the structure of various anomalies, and one can only 

assume that the Schwinger terms which creep into relations such as (6) do 

not affect the Wess-Zumino procedure. Let us now see how one would ."solve" 
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the consistency conditions in the modern differential geometric notation 

which has become a hallmark of Wess-Zumino type methods [48,65]. Suppose 

that in some anomalous non-Abelian gauge theory the gauge· transformations 

are effected by operators U(g) where g is an element of the gauge group. 

According to equation (5) the gauge anomaly is given by 

w(g,A) = U(g)f(A) 

If, following Wess and Zumino [10,48,65], we assume that the operators U(g) 

compose regularly, as in equation (16), then we are led to the conclusion 

that the anomaly w(g,A) satisfies none other than the 1-cocytle condition 

(18). That is, the anomaly must be a 1-cocycle. The question then arises as 

to whether one can solve the 1-cocycle condition to find the form of w(g,A). 

In their original paper [10], Wess and Zumino found a particular solution of 

the 1-cocycle condition for the gauge group SU( 3) x SU( 3). They were then 

able to use this solution as an effective Lagrangian .for the strong 

interactions. Nowadays, the so-called "solution" of the 1-cocycle condition 

depends upon recognizing that one can find a suitable 1-cocycle by applying 

the descent process described in section 2 to a Cherns-Simon term. In 

general, the Zn-dimensional 1-cocycle win (g,A), constructed from the ( 2n+2)­

dimensional Chern-Pontryargin density P according to the abstract algorithm 

given in equations (42), is a solution of the Zn-dimensional Wess-Zumino 

conditions. The problem of finding the anomaly therefore be.comes one of 

determining the form of win(g,A). Zumino, Wu and.Zee [48] ·have shown how to 

do this in arbitrary even space-time dimensions d=2n. For iriteres t 's sake I 

reproduce their answer. 

win(g,A) = -n(n+l) J dt(l-t) tr[g dP(A,F~-
1

)) •• (52) 

Here Ft is the 2-form Ft= tdA + t 2A2 , and P(>. 1 , •• ,>.n) is the· symmetrized 

product of the Lie algebra matrices >.
1

, •• ~).n. 

Only two questions about this procedure remain to be answered. Firstly, it 

is clear that the 1-cocycle condition can only determine wJn(g,A) up to an 
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overall constant. How, then, can one determine this constant and normalize 

win(g,A)? Zumino, Wu and Zee [48] have suggested that this could be done by 

calculating the simpler Abelian anomaly in Zn-dimensions using a path 

integral or diagrammatic method. The normalization of the Abelian anomaly 

would then fix the normalization of the non-Abelian anomaly. The second 

question regarding the above procedure concerns its generality. Is 

win(g,A), as given by (52), the most general solution of the 1-cocycle 

condition? To the author's knowledge no resolution of this question has so 

far emerged, though Alvarez-Gaume and Ginsparg [21] have suggested that one 

might make some progress with this problem by looking at topological index 

theorems of the sort mentioned above. 

1.4 Applications 

As I explained at the beginning, this chapter was never destined to be a 

catalogue of the applications of anomalies within quantum field theories. 

Instead, I intended to devote it to a description of the theory of anomalies 

without reference to any of their particular uses. However, no-one can look 

at this subject without being impressed by the large number of specific 

problems in which anomalous symmetry breaking effects play some part. I 

therefore decided to use this final section of the chapter to redress the 

imbalance in outlook of the earlier sections by briefly listing the main 

applications of anomalies in theoretical elementary particle physics. In 

this task I will rely heavily on Bardeen's recent review of anomalies [19]. 

The obvious place to start is with the corrections to the no•2Y decay 

amplitude that followed from the original ABJ triangle anomaly. As we saw in 

section 1, Sutherland and Veltman used current algebra methods to calculate 

the no•2Y amplitude in 1967 [26,27]. Their result differed from the exper­

imental value, and the discrepancy was not resolved until Adler [8] and Bell 

and Jackiw [9] discovered the anomaly in the conservation equation for the 

axial current. The anomalous corrections to the no•2Y amplitude which were 

generated by the ABJ anomaly brought theory into line with experiment and 

restored faith in current algebra techniques. Moreover, Adler and others 

[ 66, 6 7, 68 J subsequently showed that, given the amplitude for no•2Y decay, 

one can also determine the amplitud~s for y+3n and 2y+3n by appealing to 
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gauge and chiral invariances. Thus the discovery of the ABJ anomaly also 

gave us correct rates for the processes y+3n and 2y+3n. 

Anomalies possess important implications for gauge field theories. These may 

be summarized as follows. Firstly, the process by which a gauge theory is 

perturbatively renormalized [2,25] involves the use of the theory's Ward 

identities. If the Ward identities contain anomalous terms, the renormaliz­

ability and the unitarity of the theory are threatened [11,69,70,71]. So far 

the only way of dealing with an anomalous gauge theory has been to adjust 

the fermion content so that the anomalies vanish. This method has the 

recommendation that it leads to attractive constraints upon gauge, grand 

unified and string theories • In particular, it forms the only theoretical 

basis for the physically inspired requirement that the number of quarks and 

leptons be the same. These successes have still not prevented Fadeev [23] 

asking whether there are other subtler mechanisms available for dealing with 

anomalous gauge theories, or whether anomalous gauge theories actually have 

a consistent interpretation at a non-perturbative level. Other consequences 

of anomalies for gauge theories are best illustrated by the standard model 

[6,7]. In the standard model there are flavour currents which ~re associated 

with SU(6) flavour symmetry, and dynamical currents which are connected with 

gauged SU(3) colour symmetry. At a naive level these currents obey certain 

commutation relations, and in particular the flavour currents commute with 

the dynamical currents. However, the presence of anomalies affects these 

relations. The flavour current conservation equations contain anomalies 

involving the dynamical gauge fields. These anomalies imply pr6ton decay 

[34,72], lead to the resolution of the U(l) problem in QCD [li], and deter~ 

mine. the structure of axion couplings in models which solve the strong CP 

problem [13,73,74]. Similarly, flavour currents may have anomalies which 

bring in other flavour fields. In composite models such anomalies impose 

constraints upon the structure of bound states which are s~arized by the 

't Hooft conditions [14,75,76]. The 't Hooft conditions provide practically 

the only firm information known about most bound state structures. 

In .the previous section I described something of the Wess-Zumino (1-cocycle) 

consistency conditions that must tie satisfied by gauge ·anomalies. I also 

mentioned that in general one can solve these conditions using constructs 
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based on cochains and cocycles. A functional of the gauge fields which 

identically satisfies the Wess-Zumino consistency conditions may be used as 

an effective Lagrangian governing gauge field interactions. In this capacity 

it will generate the many particle vertices which describe the low energy 

consequences of anomalous terms in the Ward identities. For example, by 

solving the consistency conditions for the gauge group SU(3) x SU(3), Wess 

and Zumino [10) were able to determine the effective action for soft pion 

interactions, including the anomalous contributions which govern processes 

such as no+2y. The anomalous parts of effective actions which are deduced in 

this way are called Wess-Zumino terms. The significance of these terms has 

been emphasized by Witten [47), and they have recently found applications in 

many problems including skyrmions and superstrings. Skyrmions date from the 

original work of Skyrme [77) who found that· pseudoparticle solutions of the 

chiral meson field equations are stabilized by certain higher derivative 

"Skyrme" terms contained within the relevant effective actio~. Interest in 

these pseudoparticle solutions, or skyrmions, was renewed [78,79) by the 

discovery of their anomaly induced charge and spin [15,47]. In the realm of 

QCD skyrmion theory has led to the interpretation of the observed baryons as 

solitons of the meson field, and preliminary attempts to develop a _realistic_ 

phenomenology for baryons along these lines have enj oye·d' co_nsiderab le 

success [ 16 J. I shall deal with the relevance of anomalies. to :"superstririgs 

shortly. Suffice it to say here that Wess-Zumino type terms play an impor­

tant role · in anomaly cancellation mechanisms .in superstring .theorie's [ iaJ. ·. 

Jackiw and Rebbi [42) were the first to observe that the topological 

structure of gauge fields can lead to anomalous fractional charge for 

currents affected by the anomaly. Charge fractionalizatiori was predicted to 

occur [80,81) in certain excitations of real solid state systems such as 

polyactylene, and_ these anomalous effects have indeed been observed. The 

nature of topologically generated fractional charge has now been analyzed 

using the methods of index theory ·and spectral flow [43), Anomalies have 

also had an impact on our understanding of the dynamics of the monopole. For 

instance, Rubakov [82) and Callan [83) have demonstrated that, in V-A 

fermion theories, anomalies cause a breakdown in fermion number conservation 

in the presence of magnetic monopoles. The consequence of this effect is 

that monopoles can catalyse proton decay in grand unified theories [84). 

35 



These discoveries by Rubakov and Callan stimulated a wide variety of work on 

the interactions of fermions with monopoles, including the conservation laws 

which follow from the anomalies related to the topological structure of the 

monopole field (17]. 

The final application of ano~alies that I wish to mention concerns 

superstring theories. Such theories are currently thought to be the closest 

thing we have to a unified model of all particle interactions. The relevance 

of anomalies to superstrings has been concisely summarized by Bardeen (19], 

and I can do no better here than to simply repeat his analysis. There are 

two sorts of superstring, which are referred to respectively as being of 

types I and II. Through the study of gauge and gravitational anomalies in 

higher dimensions, Alvarez-Gaume and Witten (59] found that supergravity 

models based on type II superstrings were free of anomalies while those 

based on su~etstring I theories contained both gauge and gravitational 

anomalies. Unfortunately, only the type I theories seemed to contain the 

rich gauge structure needed to reproduce the known particle phenomenology, 

even when Kaluza-Klein effects were taken into account in the reduction from 

the natural ten dimensions of these theories to the physical four dimens­

ions. A careful examination of type I theories by Schwarz and Green (18] 

proved that the loop anomalies could be cancelled by the introduction of 

additional anomalous terms involving the partners of the graviton field. 

These terms are similar to the Wess-Zumino terms of the chiral models and 

are actually already contained in the correct treatment of the superstring 

theory. This delicate cancellation mechanism works only for the gauge group 

S0(32). Hence the anomaly structure demands an essentially unique unified 

fundamental theory of gauge and gravitational interactions. 

Actually, the supergravity theory allows just one other gauge group, .E axE 8• 

Gross, Harvey, Martinec and Rohm (85] exploited this possibility and 

invented an entirely new closed string theory, the heterotic string, which 

could incorporate both the SO( 32) and EaxEa gauge groups. The analysis of 

the effoctive low energy theories produced by these superstring theories has 

hee n the subject of intense study. Although this analysis is quite complex, 

ti~ lIBterotic string seem~ to produce all the elements of a physically 

· correct low energy particle phenomenology (86], as well as a finite theory 

36 



of all interactions even beyond the Planck scale. As anomalies have played a 

crucial role in developing these superstring theories, there is every reason 

to believe that they will continue to provide an essential tool in their 

analysis. 
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CHAPTER 2. The Spin 1/2 and Spin 3/2 Fi~lds 

In chapter 1 anomalies, and associated anomalous symmetry breaking effects, 

were examined from a general point of view. In the remainder of the thesis, 

however, we will be concerned exclusively with the calculation and analysis 

of chiral anomalies. I will therefore introduce the material of this chapter 

with a few comments on the nature of chiral symmetry and chiral anomalies. 

Consider the Lorentz group 0(1,d-l) ind-dimensional space-time. If dis 

odd, then there is only one type of spinor representation for O(l,d-1). By 

way of contrast, if dis even, O(l,d-1) possesses two types of spinor 

representation which are variously referred to as being of opposite parity 

or chirality, or as being left and right handed respectively. The parity 

transformation maps left and right handed spinors into each other; so, if an 

even-dimensional fermion theory is to conserve parity, it must contain equal 

numbers of left and right handed spinors. In the following work I will be 

dealing with spin 1/2 and spin 3/2 field theories that are constructed 
0 

around Dirac spinor, and Rarita-Schwinger vector-spinor, fields. These 

fields contain spinorsor vector-spinors of both chiralities. For example, a 

Dirac spinor field in even dimensions belongs to the representation 

(O,l/2)+(1/2,0) of the Lorentz group. The irreducible representations 

(0,1/2) and (1/2,0) contain left and right handed spinors respectively. 

Since the parity transformation maps left handed spinors into right handed 

spinors, and vice versa, the representation (0,1/2)+(1/·2~0) becomes 

irreducible when parity is included in the theory. 

In an even-dimensional space-time, one can project out the left and right 

handed parts of a spinor or vector-spinor, ljl, using the projection operators 

P1 = (1/2)[1 + r-l] and P2 = (1/2)[1 - r-1]. Thus 1jl = P11j, + P21j,. In these 

expressions, r-l is the .element of the d-dimensional Dirac gamma matrix 

algebra that corresponds to the four-dimensional matrix Y5. The property 

(r-1)2 = 1 ensures that P~ = 1, P~ = 1, and P1P2 = O. Many familiar fermion 

theories are classically invariant under the following symme"try transform­

ation : 1j, + exp(ier-l)ij,. Note that, in its infinitesimal form, this 

transformation changes the sign of the left handed part of lj,: ·ljl_ = P lljl + P 21jl, 

r-lljl = P11jl - P21jl• The corresponding symmetry is called chiral symmetry, and 
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one aspect of its anomalous .breakdown is the appearance of an anomaly in the 

conservation equation for the associated chiral current. It is with the 

calculation of some of these chiral anomalies that I will be concerned in 

chapters 3 and 4. Note that, since chiral symmetry exists only in even­

dimensional space-times, I lose no generality, in this chapter's review of 

spin 1/2 and spin 3/2 field theory, by working in a space-time whose "base" 

dimension is d=2n. Later in the thesis I will be using dimensional regular­

ization, which will necessitate the analytic continuation of d away from its 

base value 2n. When this is necessary, I will adopt the convention that d=2n 

is analytically continued to d=21. In anticipation of the analytic contin­

uation procedure, many of the results of this chapter are expressed in forms 

appropriate to a 21-dimensional, rather than a Zn-dimensional, space-time. 

2.1 The Spin 1/2 Field 

The Lagrangian for a free massive spin 1/2 field is 

•• (1) 

Variation of tj, leads to the Euler-Lagrange equation of motion for tj, 

(i~-m)tj, = 0 •• ( 2) 

Canonical quantization of this theory is achieved by demanding that tj, 

satisfy the anticommutator relation [l] 

From (2) we deduce that the momentum space propagator for the quantum field 

tj, is given by 

i 
S(p) = ~-m •• (3) 

As we are specifically interested in the contribution of t}:le ·gravitational 

field to the spin 1/2 chiral anomaly we must investigate the coupling of .the 
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gravitational field tot. It is well known that the form of this coupling is 

dictated by the gauge principle. The Lagrangian (1) is invariant under the 

following global Lorentz O(l,2n-l) transformation 

aa aa 
Here w•a = w

0
aa and a is, of course, the antisymmetric product of two 

Dirac gamma matrices 

aa 1 [ a a] _ 1 [a a] 
a = 4 y ,Y = 2 y y 

The constants w
0
a parametrize transformations within the Lorentz group. It 

is worth noting in passing that according to Noe the r's theorems [ 2] any 

invariance of a Lagrangian field theory under a continuous symmetry group is 

associated with conserved charges. In particular if the theory is invariant 

under an r-parameter Lie group of transformations there will be precisely r 

conserved charges. The Lorentz group O(l,2n-l) is parametrized by n(n-1)/2 

parameters and is therefore associated with n(n-1)/2 conserved charges. 

These charges are the various components of angular momentum. 

The gauge field of the Lorentz group is the gravitational (vielbein) field~ 

The gauge principle .tells us that its coupling tot is determined by 

requiring that the Lagrangian (1) remain invariant under the above 

transformation when the parameters waa are allowed an arbitrary dependence 

on the space-time coordinates x. This coupling prescription leads to the 

following gravitationally covariant Lagrangian fort. 

L(1jl,e) = -e i(i~-m)t 

In this equation e is the inverse of the vielbein determinant 

The covariant derivative DP is given by [3] 

D 1jl p 
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where 

w µyo 

and 

= e 0 [e r). - e ] 
6 y). oµ yo,µ 

As usual the space-time metric gµv is related to the vielbein epµ according 
p 

to the relation gµv=epµe :..,• If space-time is flat then epµ=npµ and gµv=nlJV" 

In a quantum theory of gravity flat space-time represents the vacuum and one 

would therefore expect that in flat space-time quantum fields would have 

zero expectation values. This is not the case withe and in order to work pµ 
with a field whose flat space expectation value is zero one usually 

decomposes the vielbein into its flat space expectation value nPlJ and the 

quantum field h (4). The gravitational coupling constant K features in the 
PlJ 

equation relating e and h 
PlJ PlJ 

n + Kh e pµ PlJ PlJ 
•• (6) 

This decomposition of the vielbein corresponds to a change in the way 

space-time is treated mathematically. The indices carried by the field ePlJ 

are different in character. One of them, µ, is a curved space index while 

the other, P, is an internal Lorentz flat space index. Hence the vielbein 

e possesses a dual curved space/flat space nature. On the other hand the 
a lJ 

quantities n 
all 

the index µ • 

and h clearly do not transform as curved space tensors in alJ 
The decomposition (6) signifies that, at least l~cally, one 

has ceased to treat space-time as intrinsically curved~ Instead, to 

facilitate the usual sort of perturbation expansion in the field operators, 

one has elected to regard space-time as being flat and the field h as being 

a small disturbance on this flat background. In this way the theory becomes 

accessible to the familiar.methods of perturbation analysis and the field 

hPlJ may be treated in the same manner as any other quantum field. Iha ~eak 

field expansion in the coupling constant K the curved space nature of the 

indexµ is naturally obscured and the indices p andµ are effectively 

· treated on the. same footing as flat space indices. I will adopt equation _( 6) 
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as my definition of hp and adhere . µ 

raised and lowered using n's. Thus 

this context that the field h pµ 

to the convention that indices on hpµ are 

hp =npoh etc •• It should be noted in µ oµ 
is determined only up to its invariance 

under local Lorentz transformations. This freedom can always be used to make 

h symmetric in P andµ and in the following work I will assume that this pµ 
symmetrization has been effected. 

Let us now expand the covariant Lagrangian (4) in powers of the coupling 

constant K. It will become apparent in the next chapter that to calculate 

the gravitational contribution to the spin 1/2 chiral anomaly we need 

consider only Feynman diagrams containing external gravitational fields. It 

can therefore be assumed that hpµ satisfies the free field equations of 
p p . 

motion a h = h = (J. What is more, the diagrams in question involve only pµ p 
first order interaction vertices int •nd h. Consequently it suffices to 

expand L up to first-order K. One finds that 

•• (7) 

where Lo is the free Lagrangian of equation ( 1) and L 1 is the first order 

part of the interaction Lagrangian. Using the results aPh = hp·= 0 one can pµ p 

show that 

From this expression one can deduce the first order momentum space gravitat-
- pµ 

ional vertex. It is hpµ(k)t(p)V (p,k)t(p+k) where 

•• (8) 

Clearly, in view of h's symmetry in its indices, only that part of Vpµ which 

is symmetric in p andµ will have any significance. However, rather than 

complicate the expression for Vpµ by indicating this explicitly I have left 

the vertex in the simple form of equation (8). I will now finish this brief 

review of the theory of a spin 1/2 field with a derivation of the spin 1/2 

chiral current conservation equation. As was explain_ed above, Noe the r's 

.theorems l2] tell us that if a Lagrangian is invariant under an r-parameter 
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Lie group of tield transformations G then there will exist r conserved 
r 

currents in the theory. To be specific there will be r linearly independent 

combinations Ja (a=l, •• ,r) of the fields and their derivatives such that alJ 
lJ , a 

Ja = O. If the invariance under G is a global invariance the currents J
11 lJ r ~ 

will be conserved only on extremals of the Lagrangian, that is only on 

solutions of the equations of motion. On the other hand if the invariance 

under Gr is a local invariance the currents J~ will be conserved regardless 

of whether the fields satisfy their equations of motion or not. Suppose now 

that we have a Lagrangian depending on a set of independent fields , and on 

their derivatives a,=,. Then the canonical momenta are defined as follows 
lJ lJ 

6L 6, 
lJ 

and the Euler-Lagrange equations of motion for the theory are 

6L 6, •• (9) 

If the Lagrangian Lis invariant under a group of transformations, an 

infinitesimal element of which can be written as 

•• (10) 

then we have 

61 0 •• ( 11) 

and the equations of motion (9) imply that 

Hence Noether's conserved currents are given by 

J = 'If 6, 
lJ lJ 

•• (12) 

where the explicit form of 6, is assumed known. It may happen that the 

invariance of the theory under the transformations (10) is imperfect. For 
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instance some part of the Lagrangian might break the symmetry. In this case 

Noether's currents are no longer conserved under all circumstances. However, 

·it is possible to deduce the circumstances under which they are conserved 

simply by inverting equations (11). In this way one arrives at the following 

conservation equations for the currents (12). 

a Jµ 
).I 

•• (13) 

Now let us apply these results in the case of the spin 1/ 2 field ljl. Chiral 

invariance of the above sp~n 1/2 theory is a global U(l) invariance. A 

finite chiral transformation of 1jl takes the form 

ier-1 
ij,(x) + e ljl(x) 

where e is a space-time independent parameter, and r-l is that element of 

the Dirac gamma matrix algebra in 2n dimensions corresponding to the four 

dimensional matrix Y5 

~. ('14) 

. . 

Note that r-1 is hermitian. (My conventions a·re explained in ·~PP~lldix l.) 

The infinitesimal version of this chiral transformation is 

lj,(x) + ljl{x) + i0r-l lj,(x) 

Applying the above formulae in this instance we deduce th~t the chiral 

current is 

J 1/ 2 
).I 

•• (15) 

Chiral invariance is not an exact invariance of the Lagrangiari (4). It is 

broken by the mass term in L. Using (13) we find 

•• (16) 
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This is the chiral current conservation equation in the classical theory of 

a spin 1/2 field. It would be quite understandable were one to assume that 

the same equation holds as an operator identity in the corresponding quantum 

theory. After all equation (16) was derived using only equation (13), and 

equation (13) in turn follows directly from the equations of motion. Since 

the equations of motion are valid operator identities in the quantum spin 

1/2 theory why should one suspect the validity of (16)? 

However in reasoning this way one is overlooking an important aspect of 

quantum field theories. As was emphasized in chapter 1, a quantum field 

theory is not completely determined by a Lagrangian alone. In general such 

theories are beset by infinities and in order to deal with the infinities 

one has to apply some form of regularization. A theory will not be 

completely determined until both the Lagrangian and regularization scheme 

are specified. These ideas may be related to the case at hand as follows. 

When one passes from the classical to the quantum spin 1/2 theory the 

equations of motion remain valid when reinterpreted as operator equations. 

This is because they contain only finite quantities. On the other hand 

equations (13) and 06) involve fermion bilinears such as 'iji(x) Y ll r -lljl(x). 

These bilinears are infinite and must be regularized. When a gauge 

invariant, chirally non-invariant regularization is applied to the theory 

the naive manipulations which led to equations (13) and (16) are no longer 

valid and an extra term, the anomaly, appears on the right hand side of 

(16). For example if Pauli-Villars regularization is used the contribution 

of the massive regulator fermion to equation (16) survives in the limit as 

the regulator mass tends to infinity and becomes the anomaly. In this way 

the correct quantum version of equation (16) is 

•• ( 17) 

One might object that the anomaly would be absent were one to use a 

regularization scheme that was both gauge and chirally invariant. However 

matters are not quite this simple. As was pointed out in chapter 1, the 

presence of an anomaly signifies that no regularization scheme will respect 

all the classical symmetries that are present in the theory. Consequently no 

regularization scheme is ever entirely satisfactory and the anomaly cannot 
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be removed or avoided. On the other hand by appropriately selecting one's 

regularization scheme one has the freedom to choose which symmetry of the 

classical theory is broken in the quantum theory. Vector gauge invariance is 

customarily regarded as being more important than chiral invariance. 

Consequently the above spin 1/2 theory is conventionally regularized using a 

gauge invariant, chirally non-invariant regularization scheme, and the 

anomaly A112 therefore appears in the chiral current conservation equation, 

not the gauge current conservation equation. When I calculate the spin 1/2 

and spin 3/2 chiral anomalies in chapters 3 and 4 I will use dimensional 

regularization, a regularization scheme which is conventional in the sense 

that it preserves gauge invariance at the expense of chiral invariance. 

One final comment is in order on the subject of the spin 1/2 chiral anomaly. 

Suppose that we wish to regularize an anomalous quantum field theory. If two 

regularization schemes respect exactly the same subset of invariances of the · 

classical field theory then they will lead to identical anomalies. Thi.s is 

true for example of Pauli-Villars and dimensional regularization when 

applied to the spin 1/2 theory which is presently under c6nsideratiori. 

Consequently it is not difficult to see that the chiral ~nomaly A112 is 

independent of the mass m of the spin 1/2 field$. This conclusion follows 

directly from the fact that under the Pauli-Villars scheme the anomaly. 

arises out of regulator contributions and there is no way at all that m can 

enter into it. If A112 is independent of m under Pauli-Villars regular­

ization then .it must also be independent of m if the spin 1/2 theory is 

regularized using dimensional regularization. We are therefore free to set 

m=O when calculating A112 using dimensional regularization. 

2.2 The Spin 3/2 Field 

The Lagrangian theory of a classical spin 3/2 field is considerably more 

complicated than that of a spin 1/2 field. This is principally because the 

Rarita-Schwinger tensor-spinor field $a which is used to describe a spin 3/2 

particle [SJ, carries not just a ~ingle spin 3/2 representation of the 

Lorentz group, but two spin 1/2 representations as well. In contrast to the 

Dirac spinor the Rarita-Schwinger tensor-spinor does not therefore form an 
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irreducible representation of the Lorentz group. The spin 1/2 and spin 3/2 

parts of $a may be separated out using the projection operators 008 ,Pa,Qa 

[6) which of course satisfy a completeness relation eas+ PaPs+ QaQS = nas· 

Thus 

SaS, the projection operator for the spin 3/2 part of $a, is given in 2t­

dimensional momentum space by the expression 

This operator possesses the following properties 

e l= o as •• (18) 

The projection operators Pa and Qa for the spin 1/2 parts of $a are somewhat 

arbitrary [6]. They may be chosen to be any two linear combinations of Pa 

and Ya which satisfy the conditions P•Q = O, P•P = Q•Q = 1.·Here I am using 
a 

an abbreviated notation in which for example P•Q = PaQ. Obviously, in view 

of (18), any two such operators will also satisfy the relations p•S = S•p = 
Q•S = 0•Q = O. Convenient choices for Pa and Qa will be nominated below. In 

the following text I will suppress the indices on $a,Pa,Qa and eaS unless 

this is likely to cause confusion. 

There is no unique first order, hermitian Lagrangian for a spin 3/2 field. 

ln fact Fronsdal (6) and Moldauer and Case (7) have shown that in four 

dimensions there is a one-parameter family of such Lagrangians. Appendix 2 

contains a slight modification of Fronsdal's proof of this fact which 

reveals that the same is true in arbitrary dimension. In. particular, in 
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dimension d=21 the one-parameter family of Lagrangians for a massive spin 

3/ 2 field "1 is 

Massive spin 3/2 fields at present have no application in elementary 

particle physics. There is no experimental evidence to suggest that they 

exist in the elementary particle spectrum in nature, and no theoretical 

reason for supposing that they will one day be discovered there. In fact the 

quantum description of massive spin 3/2 particles would pose serioris 

problems for Lagrangian field theory as massive spin 3/2 field theories are 

nonrenormalizable l8]. (Of course, a spin 3/2 particle might .have dynamic­

ally generated mass, but this is a different question altogether.) On the 
I 

other hand while massless spin 3/2 particles have likewise not been 

observed, supersymmetric theories [9] strongly suggest that they exist in 

nature as supersymmetric partners to gravitons, and consistent theories of 

interacting massless spin 3/2 fields are available in t~e gui;e of 

supergravity theories [10]. For these reasons I will restrict my attention 

from now on to massless spin 3/2 fields. The spin 3/2 anomaly ·like its spin 

1/2 counterpart is in any case a mass independent effect and no generality 

is lost in adopting this restriction. The Lagrangians f?r the massless 

fields are the m-+o limits of the above massive Lagrangians. 

• • (19) 

Classical massless, as opposed to massive, spin 3/2 field theories are 

complicated by the existence of gauge invariance. The Lagrangian (19) enjoys 

invariance under the gauge transformation 

"1 + "1 + [2(1+1A)a - (l+A)Y ~]A a a a a 
~. ( 20) 

where A(x) is an arbitrary spin 1/2 field. As I shall now ·show, this gau~e 

invariance is related to the presence in·I!> of the two spin 1/2 represent-
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ations P•t and Q•t. Let us define the projection operators P and Qin 

momentum space as follows 

a 
pa= Op[(2t-2); + ((2t-l)A+l)y

0
] 

a 
= op[(2t-2): + (2(1+tA)-(l+A))y

0
] 

a 
Q

0 
o0 [2(1+tA)} - (l+Ah

0
] 

where 

Oa = [2t+4(2t-l)A+2t(2t-l)A2)-l/2 

and Op=(2t-1)-112a0 • In momentum space the Lagrangian (19) can then be 

written 

where µ=1/[(2t-2)oJJ. The gauge transformation (20) likewise becomes 

t + t + Q A a a a 
•• ( 21) 

This formulation of the A-dependent gauge transformation (20) emphasizes 

that the gauge invariance of the theory is just invariance under 

redefinition of that particular spin 1/2 component of• which does not 

figure in the Lagrangian, namely Q•t. Consider now what happens when the 

massless Lagrangian (19) is reexpressed in terms of a new field t' defined 

in momentum space by 

a 
t'a =ta+ [a~+ bya]y.t •• ( 22) 

Here the numbers a and bare arbitrary real parameters and, of course, Y•w = 
a 

Y t • As may be checked using the projection operators, the field t' a 
differs from t only in its spin 1/2 components. What effect would a change 

of variables such as (22) have upon the spin 3/2 theory? Any theory which 

satisfactorily describes spin 3/2 particles in terms of the Rarita-Schwinger 

tensor-spinor twill be such that the spin 1/2 components of t disappear 
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from the dynamics and have no effect upon physical quantities. Consequently, 

provided that the spin 3/2· theory described above is satisfactory in this 

sense, it should make no difference to the calculation of physical 

quantities such as the anomaly whether the field in terms of which the spin 

3/2 theory is expressed is ljl or ljl'. I will assume in what follows that the 

spin 3/2 theory outlined above is indeed satisfactory from this point of 

view, and exploit the consequent freedom that this gives me to reexpress the 

theory via field red'efinitions of the form (22). Note that these field 

redefinitions involve the nonlocal operator 1/p. 

Since the field redefinitions (22) alter the spin 1/2 components, but not 

the spin 3/2 component, of ljl it is perhaps not surprising that their effect 

on the Lagrangian (19) is to shift the parameter A. That is, changes of 

variables of the form (22) are completely equivalent to changes in the 

parameter A. In particular, even though if a*O the transformation (22) 

involves the non-local operator 1/~, the transformed Lagrangian is still 

local. For arbitrary A,a and bone finds 

L( ljl,A) L( ljl' ,A') A' (A-a-2b ) 
l+a+2R.b •• (23) 

This relation tells us how to reexpress the A-dependent spin 3/2 theory 

under the change of variable (22). I will b~ interested below in 

formulations .of the spin 3/2 theory corresponding to three parti~ular 

choices of the parameter A: A=-1, 0 and -1/R.. Conventional spin 3/2 theory 

is associated with the Rarita-Schwinger Lagrangian [SJ. It corresponds to 

the choice A=-1: 

With this choice of A the gauge invariance is the familiar one 

tJJ + ljl + a A a a a 

•• (24)" 

•• (25) 

Equation (23) assures us that the other two choices for A, A=O and A=-1/R., 

can both be reached (as can any other value of A) from A=-1 using field 

redefinitions of the form (22). Consequently, for the reasons outlined 
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above, the anomaly will be the same whether calculated in the A=-1, A=O or 

A= -1/i formulation of the theory. However, although the value of the 

anomaly will be the same, the way in which it emerges from the mathematics 

will be different in each case, and the freedom I have to choose the value 

of A can be exploited to advantage. As will be come clear be low, the 

calculation of the spin 3/2 anomaly is particularly simple in the A=O 

formulation of the theory, while in the A=-1/i formulation its gauge 

independence is manifest. I will now consider the gauge fixing and 

quantization of the spin 3/2 theory in the Rarita-Schwinger formulation. 

Then, because the two choices A=O and A=-1/i are so useful, I will devote 

the final section of this chapter to a brief look at the Lagrangians, 

propagators and vertices in each of these two cases. 

Just as the classical theory of a spin 3/2 field is more complicated than 

its spin 1/'2 counterpart, the quantization of a spin 3/2 field compared to 

that of a spin 1/2 field is relatively involved (11,12,13]. In order to 

quantize the spin 3/2 field theory described by the gauge invariant Rarita­

Schwinger Lagrangian it is first of all necessary to add to the Lagrangian a 

gauge fixing term and a corresponding ghost ierm. Once this is done the 

quantization procedure itself is complicated by the presence of constraints 

within the spin 3/2 theory. Fronsdal and Hata have explained how to overcome 

these difficulties using the convenient B-field formalism developed by 

Nakanishi (14,15). I choose to fix the gauge of the Rarita-Schwinger field 

in the customary way by adding to the Lagrangian (24) the gauge fixing term 

•• ( 26) 

where a is an arbitrary gauge parameter. Using Nakanishi's B-field, which 

plays the part of a Lagrange multiplier and in this case is a Dirac field 

obeying Fermi statistics, the gauge-fixing term may be rewritten 

•• (27) 
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This expression for LGF can .be shown to be equivalent to (26) simply by 

using the equations of motion for B to eliminate it from (27). The Fadeev­

Popov ghost term corresponding to LGF has been shown by Ha ta and Kugo [ 12] 

(see also Fronsdal and Hata [11)) to be 

where c and c* are two Dirac ghost fields obeying Bose statistics. In this 

formalism Hata and Kugo [12) went on to derive the appropriate four­

dimensional canonical equal time anti-commutation relations for the fields 

~, B, c and c*. I reproduce their results here for the sake of completeness. 

{B(t,x),B(t,y)} = 0 

-
{~

0
(t,x),B(t,y)} = in

00
o3(x-y) 

The total Lagrangian for this set of fields L = LRS + LGF + LFP is given by 

L 

This Lagrangian may be simplified by means of a device suggested by Endo and 

Kimura [16). They rewrote the gauge fixing terms in Las follows 

then defined a new field F 

F = /a [B - .!_ y.~] 
a 

in terms of which the total Lagrangian may be expressed as 

L •• (28) 

This form of the gauge fixed Karita-Schwinger Lagrangian is the one with 

which I wi 11 be working in the remainder of this section. Bear in mind that 

it corresponds to the choice A=-1. In the following section I will be 
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dealing with Lagrangians corresponding to the choices A=O and A=-1/i. These 

Lagrangians may be derived from (28) by transforming the purely~ part of L 

under field redefinitions of the form (22) and using formula (23). Note that 

in all three of these Lagrangians the gauge fixing and ghost terms in F, c, 

and c* are the same. 

There are several virtues associated with the structure of the gauge fixing 

and ghost parts of the Lagrangian (28). Firstly, as we shall see below, Hata 

and Kugo's ghosts c and c* contribute equal but opposite terms to the spin 

3/2 chiral anomaly. Therefore when calculating the anomaly using Hata and 

Kugo's formalism one can ignore ghost contributions. Secondly, Endo and 

Kimura's trick of rewriting the gauge fixing parts of L in terms of the 

field F neatly eliminates from the Lagrangian interaction terms. in ~ and B 

and replaces them with a free field Lagrangian for F. Because ~ and F are 

non-interacting their contributions to the anomaly may be calculated 

independently. The field F's contribution is merely that of a spin 1/2 

field, while ~'s may be found by considering the spin 3/2 part of Lalone: 

•• ( 29) 

From (29) one can deduce the momentum space propagator for~. It is 

Set ting 

5ae <P> 
a8 a 8 

l)] = i[!L + (-1-) (2p _ aH-(2p _ 
p 21-2 p y p p 

a8 
i[\ + ( 1 ) 1 a 81] 

21-2 "'{f PY 1 •• (30) 

one then has 
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N h h . -Saa ( ) . f . h ' ote tat t e quantity p satis ies t e equations 

0 •• (31) 

The .coupling of ljl to the gravitational field is engineered as before by 

replacing flat space derivatives with covariant derivatives. When this 

replacement is made in the Rarita-Schwinger Lagrangian (24) it becomes 

L = -ie 
- [a p a] ljl y y y D ljl 

a p a •• (32) 

Likewise the total Lagrangian (28) is transformed into 

L •• (33) 

The form of the covariant derivative DP when acting on spin 1/2 objects has 

already been described in equation (5) in terms of the quantities wµyo and 

oyo. When acting on the spin 3/2 object ljla it is given by 

•• (34) 

where 

ya.,. o oa ,,.Y n .,, - n .,, 

Once again the field ha= (ea- n a)/K.may be taken to be symmetric in a 
Qµ aµ aµ a 

and a and to satisfy the equations of motion a ha= 0, ha= 0. When the a a 
gravitational field is introduced as above into the Rarita-Schwinger 

Lagrangian (32) gauge invariance of the combined gravitational spin 3/2 

theory peisists, but in a very complicated form [9,10]. This form can be 

radically simplified by adopting an assumption which in no way affects the 

spin 1/2 or spin 3/2 anomalies. Specifically,· one can assume as Endo and 

Takao did [ 17] that the Ricci. tensor is zero 

R = 0 
µv 

•• ( 35) 
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Once one assumes (35) one finds that in the A-parametrized spin 3/2 field 

theories described in this section covariant ·derivatives effectively commute 

•• ( 36) 

This result, which is derived and explained in appendix 3, may in turn be 

used to show that the covariant Rarita-Schwinger Lagrangian (32) is 

invariant under the following gauge transformation 

ljl + ljl + D A 
a a a 

When gravity is added to the Rarita-Schwinger· theory this transformation 

replaces the free field gauge transformation (25). Besides simplifying the 

form of gauge transformations within spin 3/2 field theory assumption (35) 

and its consequence (36) also reduce the complexity of the field transform­

ations which mediate between various formulations of a gravitationally 

interacting spin 3/2 theory. More will be said of this in the next section. 

It only remains to be added that the reader will have to wait until section 

3.2 to find out why condition (35) has no effect upon the spin 1/2 and spin 

3/2 chiral anomalies. 

The Lagrangian ( 32) may be expanded to first order in K in which case one 

arrives at an expression ~f the same form as equation (7). From this 

expression one can deduce that in the above covariant, gauge fixed Rarita­

Schwinger theory the first order momentum space gravitational vertex is 
- · a6pµ · 

given by h (k)ljl (p)V (p,k)lj,0 (p+k) where pµ a P . 

p p 
As in the spin 1/2 case I have used the fact that a hpµ and h Pare both 

zero to simplify the vertex. I will close. this section by deriving the spin 

3/~ chiral current conservation equation, ~he analogue of the spin 1/2 

equation (17). The covariant, gauge-fixed Rarita-Schwinger Lagrangian (33) 

is classically invariant under the following chiral transformations 
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a iar-1 a 
1jl + e 1jl 

-iar-1 
F + e F 

iar-1 
c + e c 

It has already been observed that the fields 1jl and F decouple from each 

other and from c and c* • As was pointed out above, the virtue of the ghost 

formalism of Hata and Kugo, so far as the calculation of the anomaly is 

concerned, is that due to the opposite chiral charges of c and c* the 

contributions by these two fields to the anomaly are equal in magnitude but 

of opposite sign and consequently cancel. The field F contributes to the 

anomaly as a spin 1/2 field but with opposite sign since its transformation 

character is opposite to that of ljl. Thus the spin 3/2 anomaly is given by 

= A3/2 _ Al/2 
1jl ' ' •• (37) 

where A11 2 is the spin 1/2 anomaly and A:/2 is the contribution of the field 

ljl. To find A: 12 we need consider only the 1jl part of the chiral current 

conservation equation. The chiral transformation rule for 1jl leads us, via 

the procedure described in the last section, to the chiral current 

•• (38) 

and, since the divergence of this current is classically zero, to the 

equation 

•• (39) 

This equation is the analogue in the Rarita-Schwinger formulation of the 

spin 1/2 equation (17). 

·2.3 The A=O and A=-l/i Formulations 

Ln i;cction 2.2 the Lagrangian and propagator for the spin 3/2 field, its 

first order gravitational vertex and its chiral current were all given in 

the H.arita-Schwinger (A=-1) formulation of spin 3/2 theory. However when I 
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come to calculate the spin 3/2 anomaly and demonstrate its gauge 

independence I will be working not in the conventional Rarita-Schwinger 

formulation but in either the A=O or A=-1/ i formulations. Consequently in 

this section I take the opportunity to translate the results of the previous 

section into forms appropriate to these two alternative choices of A. 

I. The A=O Formulation. 

To recast the Rarita-Schwinger theory described by the Lagrangian ( 24) in 

the form of an A=O theory one reexpresses 1" in terms of a field~ defined by 

.+.a__ a 1 a 
'I' 1j, - 2 y y.lj, 

Evidently ~ is re lated to 1j, by an invertible transformation of type (22). 

Under this change of variable the covariant Rarita-Schwinger Lagrangian (32) 

goes into 

. - [ aS ( 1 ) a 6 ] 
L 1 ~a n · ~ + 21~2 Y ~Y ~6 

and the gauge fixed Lagrangian (33) becomes 

L = -1·e[~ ~.+.a + ( 1 4 )~ y~y .+. + -F~F - ~2 + -~2 ] 
"'aP"' 21-2 - a(2i-2)2 "'" P ""' P ~ C*p c c,, c* •• (40) 

where the field Fis given in terms of~ by the expression 

F 
2i 

la [B - a(2t-2) y.~] 

As mentioned above I will be using the A=-1/i formulation of spin 3/2 theory 

to establish the anomaly;s gauge independence, and the A=O formulation to 

actually calculate the anomaly. Given that the anomaly can be shown not to 

depend on a, the calculation of A312 in the A=O formulation is dramatically 

simplified by the gauge choice 

Then the total Lagrangian (40) reduces to 
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•• (41) 

From (41) it is easy to deduce the propagator for~ under this choice of 

gauge 

aS 
= i n T •• (42) 

Likewise it is a simple matter to find the first order gravitational vertex 

•• (43) 

As before the contributions to the anomaly by the two ghost fields cancel 

and the anomaly may be divided into independent contributions from F and t 

•• (44) 

In this equation A112 is the spin 1/2 anomaly which appears in (17), while 

A:12 is t's contribution to A312. Of course, A:1 2 is equal to the anomalous 

divergence of the chiral current that is associated with the~ part of the 

Lagrangian (41). This current is given by 

•• (45) 

so we have 

•• ( 46) 

The only other comment I wish to make before finishing this brief treatment 

of the A=U formulation concerns the parameter choices A=O and 0=(4/(2i-2)]. 

Suffice it to say here that no other combination of values for A and a 

results in expressions for the spin 3/2 propagator and vertex which are as 

simple as (42) and (43). Clearly, it is for this reason that I adopt the 

values A=O and a=[4/(2t-2)] when calculating A312 in chapters 3 and 4. 
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II. The A=-1/ i Formulation. 

The Rarita-Schwinger theory of a non-interacting spin 3/2 field may be 

transformed into the A=-1/i formulation by acting on the free field 

Lagrangian (24) with the momentum space field redefinition 

a 
x 

a a 
ljla - (E. + 1. )y•ij, 

f, 2 

in which case the free field Lagrangian becomes 

L = 1.-X [naB'/J _ ..!.(ya~B+ ~ayB) + (l+i)ya2YB]x 
a R, a a . 2 R,2 P B 

Setting 

we then have 

L ix MapB a XB 
a P 

This Lagrangian is invariant under the gauge transformation 

xa + X + Y A a a 

•• (47) 

•• (48) 

•• (49) 

•• ( 50) 

Note that the above field redefinition involves the flat space operator-{,. 

Because of this it is by no means a simple matter to find a covariant 

version of the change of variable (47) which will take one from the 

covariant Rarita-Schwinger Lagrangian (32) to the corresponding A=-1/i 

Lagrangian. The difficulty in finding such a transformation lies in the fact 

that, whereas flat space derivatives commute, covariant derivatives do not. 

This problem can be remedied by adopting condition (35). As is explained in 

appendix 3, if the Ricci tensor is zero covariant derivatives effectively 

commute. I shall demonstrate in section 3.2 that the imposition of (35) in 

no way affects the anomalies Al/2 and A 312 • We are therefore free to 
µV 

simplify matters by assuming that R is equal to zero, in which case the 

desired covariant field redefinition is just 
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0
a a 

x = ~ - (- + 1.. )y·~ a a '/) 2 

Under this transformation the complete Lagrangian (33) becomes 

•• ( 51) 

where MapS is as in (49). Of course gauge invariance no longer exists in the 

gauge fixed Lagrangian (51), however the existence of the free field gauge 

invariance persists in the fact that 

u 

The propagator in this formulation is 

Where -SaS is the quantity i . i ( 30) appear ng in equat on 

s [ n as ( 1 ) 1 a B 1 ] 
sa ( P) = i T + 2 .e.-2 -;v PY 1 

The first order gravitational vertex is in turn given by 

1 ap ~' B 1 BP~' µ) (l+t 1 ) paµ B] 
+ 2 n Y ~Y - 2 n Y ~Y + 2.e.2 - aR.2 PY Y Y 

Setting 

we then have 

vaSpµ(p,k) = vaBpµ (iK) paµ B 
gr - aR.2 PY Y Y 
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•• (52) 

•• (53) 

•• ( 54) 

•• ( 55) 



Observe that the quantity VaSpµ(p,k) satifies relations similar to (52) 

•• ( 56) 

Equations (56) and equations (31) and (52) together constitute a set of 

identities which are central to chapter 3's proof of the gauge independence 

of the spin 3/2 anomaly. It should not escape the reader that these 

identities are closely connected with the form (SO) taken by the free field 

gauge invariance in this formulation of spin 3/2 theory. The only thing that 

now remains to be done is to give the A=-1/ R. versions of equations (38), 

(39), (45) and (46). They are 

The quantity A312 is related to the full spin 3/2 anomaly A 312 according to . x 
the following equation 

A312 = A3/2 _ Al/2 
x •• ( 57) 

Note that, by assumption, the value of A 312 is the same in all formulations 

of spin 3/2 theory. In view of equations (37), (44) and (57) this means 

A 3/2 = A3/2 
IJI . $ 

A 3/ 2 
x 

•• ( 58) 

A final comment on the A=-1/1 formulation of spin 3/2 theory is in order. It 

was explained in appendix 2 that -1/1 is the only value which the real 

parameter A cannot validly assume. In fact the A=-1/1 Lagrangian (48) 

describes a theory which is not necessarily of purely spin 3/2 content, and 

in this sense it is unacceptable. These considerations would prove an 

obstacle to my proof of the gauge independence of the spin 3/2 anomaly were 

it not for the fact that I will not actually be working in the A=-1/1 

formulation. Instead I will be setting A=(-1/ R.)+£ , 0( I £1 «l and workfng in 

formulations of spin 3/2 theory which are arbitrarily close to the A=-1/1 
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formulation. According to the criteria set down in appendix 2 these 

e:-formulations are entirely acceptable representations of spin 3/2 theory. 

When A is shifted from.-1/i to (-1/i)+e: the propagator and vertex (53) and 

(55) receive o(e:) corrections. In section 3.5 I demonstrate that these 

corrections are irrelevant, and that the anomaly is determined by an 

expression that one would get by naively working in the A=-1/i formulation. 

Since the gauge parameter a drops out of this expression it is possible to 

show that the spin 3/2 anomaly is gauge independent. The point I wish to 

make here is that by arguing in this way I avoid the problems associated 

with the A=-1/i formulation of spin 3/2 theory, and my proof of the gauge 

independence of the spin 3/2 anomaly rests on quite as firm a basis as its 

actual A=O calculation. The reader should always interpret my statements 

about the A=-1/i formulation in terms of these e:-type considerations. That 

concludes this ~hapter's r~view of ipin 1/2 and spin 3/2 field theory. In 

the next chapter I will set up the formalism necessary for the anomaly 

calculations and single out the relevant Feynman diagrams. 
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CHAPTER 3. The Diagramatic Method 

This chapter begins the diagrammatic anomaly calculations which are the 

subject of the thesis. It therefore seems appropriate to start proceedings 

with a brief history of the diagrammatic method. A simple version of the 

method of anomaly calculation described below was first used by Delbourgo 

and Jarvis [l] to calculate the gravitational contribution to the spin 1/2 

chiral anomaly in eight dimensions. However due to the amount of work 

involved the procedure of reference [l] proved inadequate for similar 

calculations in higher dimensions. The question then arose as to whether it 

could be extended in some way so as to permit one to calculate the higher 

dimensional anomalies, and perhaps even to calculate the spin 1/2 chiral 

anomaly in arbitrary dimensional space-times. 

Such an extension was developed by R.Delbourgo and the author in references 

[ 2] and [ 3]. It exploited recurrence relations between anomalies in 

different dimensions and its outcome was the first explicit expression for 

the gravitational contribution to the spin 1/2 chiral anomaly in arbitrary 

dimensions. Previously the spin 1/2 anomaly had appeared only in A-genus 

form [5]. The work in references [2) and [3] was later adapted in reference 

[4] to the case of the gravitational contribution to the spin 3/2 chiral 

anomaly. Besides the more difficult spin 3/2 calculation, reference [4) also 

contains a proof of the gauge independence of the spin 3/2 chiral anomaly. 

In the remainder of this chapter, and in chapter 4, I will describe in 

detail the work which was carried out in references [2),[3] and [4]. 

3.1 Dimensional Regularization 

Let us commence this treatment of the diagrammatic method by considering how 

the chiral anomaly emerges when dimensional regularization is applied to the 

interacting spin 1/2 and spin 3/2 theories of chapter 2. The object of any 

regularization scheme is to render finite in a well-defined way the infinite 

quantities that occur in quantum field theories. It is well known that the 

infinities present in these theories have their origin in divergent loop 
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momentum integrals. Dimensional regularization is based upon the observation 

that any loop momentum integral will become finite if the dimension of the 

space-time in which it is calculated is made small enough. 

Whe~ using dimensional regularization one adopts the following procedure. 

Firstly the theory is established and quantities are formulated in terms of 

perturbation series in the usual fashion except that the dimension of space­

time is left arbitrary. Expressions for quantities in the theory will then 

be analytic in this dimension. When all the manipulation and combination of 

these analytic quantities is done and a final result is desired one 

analytically continues back to the dimension in which the answer is sought. 

If there are quantities in the theory which diverge as the dimension is 

returned to its "true" value the theory will require renormalization. 

However this is never a problem with anomalies. In accordance with the 

arguments of Alvarez-Gaume and Witten [S] which were related in chapter 1, 

anomalies are always finite and so do not require renormalization. 

At this point I would remind the reader that, for reasons discussed at the 

beginning of chapter 2, chiral anomalies occur only in even-dimensional 

space-times. As a consequence of this fact I restricted my attention in 

chapter 2 to space-times of dimensions d=2n, n=l,2, ••• Moreover I adopted 

the convention that if the space-time dimension were to be.analytically 

continued away from d=2n then its continued value would be d=21. In the 

remainder of the thesis I will continue to work in space-time whose true 

dimension is d=2n and whose analytically continued dimension is d=21. The 

effect of dimensional continuation upon the interacting spin 1/2 and spin 

3/2 field theories of chapter 2 is felt in the algebra of the Dirac gamma 

matrices. If the dimension is continued away from d=2n it becomes impossible 

[ 6) to maintain the familiar relations 

{ a e} 2 ae Y ,Y = n •• (1) 

•• (2) 

. r-1 Something must change and the choice conventionally falls upon , with the 

consequence that equation (2) is modified and equation (1) is left 
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unch.ingecJ. Note that in choosing to change (2) rather than ( 1) one is opting 

to pr_eserve vector gauge invariance in the spin 1/2 and spin 3/2 theories at 

the expense of chiral invariance. ln contrast to 2n dimensions. where r-l is 

defined by equation (2.14), in 2i dimensions r-l is given by the following 

expression [6] 

r-1 •• (3) 

•• (4) 

The tenHor (maybe taken to be any totally antisymmetric tensor which 

reducei:; to the 2n-dimensional Levi-Civita tensor £ as t+n [6]. Of course, 

the expression (3) for r-l degenerates into the familiar equation (2.14) in 

that limit. Using (3) it may be checked that after continuation from d=2n to 

d=2i the anticommutator relation (2) may be replaced by the following 

commutator relation 

•• ( 5) 

The consequences of the definition (3) of r-l for the spin 1/2 and spin 3/2 

chiral currents are straightforward~ Working in 2i-dimensions and using 

Noether's prescription as described in detail in section 2.1 one arrives at 

the following expressions for the dimensionally continued chiral currents • 

• • ( 6) 

•• (7) 

Note that the spin 3/2 current has been expressed in a form appropriate to 

the A=O formulation of spin 3/2 theory, and that for reasons described in 

section 2.3 the gauge choice a=[4/(2i-2)] has been made. Since I will be 

employing the A=O formulation in combination with the choice of gauge 

a=[4/(2i-2)] to calculate the spin 3/2 anomaly, all spin 3/2 formulae in 

this section and the following three will be expressed in a like manner. The 

reader who so desires can translate these formulae into forms appropriate to 
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the A=-1 and A=-1/i formulations using the results of sections 2.2 and 2.3. 

In contrast, the work of section 5 will be carried out in the A=-1/i 

formulation since that formulation is the one in which the gauge 

independence of the spin 3/2 anomaly is best seen. 

The dimensionally continued conservation equations for the currents (6) and 

(7) may be derived by making use of the fact that under a chiral transform­

ation a•J = oL. In this way one finds 

•• ( 8) 

•• (9) 

The terms on the right hand sides of equations (8) and (9) contain the 

anticommutator O'>, r-1} which is anomalous in the sense that it is zero for 

d=2n a.nd becomes non-zero only when the dimension is continued away from 

d=2n. It is a product of the dimensional regularization procedure in the 

same way, for example, that massive regulator field contributions to the 

right hand sides of (8) and (9) would be products of the Pauli-Villars 

scheme. If Pauli-Villars regularization were employed, the spin 1/2 and spin 

3/2 anomalies would emerge from the regulator field contributions to (8) and 

(9) in the limit as the regulator mass tends to infinity. In the present 

instance the anomalies will emerge from the anomalous anticommutator terms 

on the right hand sides of (8) and (9) in the limit t+n. So one can write 

the operator equations 

Al/2 =lime ~{~,r-l}ij, 
t~fl 

3.2 The Porm of the Anomaly 

•• ( 10) 

•• ( 11) 

A crucial step in the diagrammatic approach to anomaly calculation is the 

use of general considerations to deduce the form of the anomaly in a space­

time of dimension d=2n. I will now show that its form may be derived using 
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arguments based on nothing more than dimensional analysis and the anomaly's 

transformation properties under general coordinate transformations. Consider 

the spin 1/2 and spin 3/2 anomalies A112 and A3/ 2 appearing in equations 

(10) and (11). In the remainder of this section it will sometimes be 

convenient not to distinguish between these two anomalies in which case I 

will simply refer to the anomaly A with the understanding that A might be 

either Al/2 or A31 2• The starting point for a determination of the form of A 

is a consideration of the types of anomalous Feynman diagram that can 

possibly contribute to it. 

We saw in chapter 1 that anomalous Feynman diagrams possess a unifying 

characteristic. They are all either single fermion loop diagrams of the form 

shown in figure 1.1, or they contain these fermion loops as sub-diagrams. 

Besides an axial current, the fields which emanate from the fermion loops 

are gauge fields, which in the present case is to say that they are 

gravitational fields. These facts taken together imply that any Feynman 
ll 

diagram which contributes to an anomalous amplitude of the axial current J 

will be of the form 

J: -­JJ-

FIGURE 1 

where the hatched region represents a sub-diagram whose structure is 

unimportant. The point here is that, in its anomalous interactions with 

other fields in the theory, the axial current is always "filtered through" a 

number of gravitational fields. It therefore follows that the anomaly 

itself, which is equal to the divergence of the axial current and which is a 

field operator, may be replaced hy some polynomial in the gravitational 

fie Lds. This provides us with our first hold on the form of the anomaly. 
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Once it has been settled that the anomaly is a polynomial in the gravitat­

ional field the chief determinant of its form is its transformation 

character under general coordinate transformations. Specifically, the 

anomaly is covariant under this type of transformation. This statement is 

not self-evident and requires some explanation. Bardeen and Zumino [7) have 

pointed out that the breakdown of symmetry associated with the appearance of 

an anomaly in a theory may extend to the anomaly itself. In particular this 

means that anomalies in gauge theories may not themselves be gauge 

covariant. This aspect of anomalous symmetry breaking was discussed in 

chapter 1 in connection with the distinction between consistent and 

covariant anomalies [7,8,9). Fortunately the effect does not enter into the 

present calculation. General coordinate invariance is respected not only by 

the spin 1/2 and spin 3/2 theories with which we are dealing, but also by 

the dimensional regularization scheme which is being applied to these 

theories. Consequently the regularized theories, and in particular the spin 

1/2 and spin 3/2 chiral anomalies, will be gravitationally covariant. On the 

other hand, while the unregularized spin 1/2 and spin 3/2 theories respect 

chiral invariance, the dimensional regularization scheme does not. Therefore 

we should allow for the possibility that A 11 2 and A 31 2 are chi rally non­

inv~riant. As it turns out, Al/2 and A312 are composed exclusively of 

graviton fields, and they are chirally ·invariant as well as gravitationally 

covariant. 

Since A is covariant it will possess the tensor transformation properties 

which follow naively from equations (10) and (11), which is to say that it 

will be a pseudoscalar density. We are therefore faced with the problem of 

finding the most general polynomial in the gravitational field which 

transforms as a pseudoscalar density. Because A is gravitationally covariant 

it must of course be constructed from curved space tensors and densities. In 

fact it is not difficult to see that A may be regarded as being constructed 

from only three tensors together with their covariant derivatives. The three 

tensors are : the density e, the Zn-dimensional Levi-Civita tensor density 

£µl••µ2n and the Riemann tensor Rµvap. Other tensors such as the Ricci 
µv µav . 

tensor R = R 
O 

need not be included in this group as they may be derived 

by combining the above four quantities in various ways. Thus we know the 

composition of A in general terms. 
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Several more bits of information may be deduced from the transformation 

characteristics of A by taking into account the properties of the E-tensor. 

The Levi-Civita £-tensor is a totally antisymmetric tensor density. Of the 

four objects e,£,R and the covariant derivative D, the £-tensor is the only 

one which is parity-odd. Since the anomaly too is parity-odd A must contain, 

in addition to an unknown number of Riemann tensors, covariant derivatives 

and possible factors of e, an odd number of £-tensors. Clearly, because A is 

a scalar the indices on the £-tensors and those on the Riemann tensors and 

covariant derivatives must all be contracted together in some fashion. 

Because £ is totally antisymmetric the indices on any one £-tensor cannot be 

contracted against one another. Instead they must be contracted against the 

indices on other £-tensors or on the Riemann tensors and covariant 

derivatives. But the contraction of two £-tensors can always be expressed in 

terms of metric tensors gµv. Consequently without loss of generality to this 

argument we may ignore the possibility that £-tensors are contracted 

together and assume that the indices on the £-tensors in A are all 

contracted against indices on Riemann tensors and covariant derivatives. 

This exhausts the information deducible from A's transformation properties 

alone. Further information may be obtained with the aid of dimensional 

analysis. The length dimensions of the quantities relevant to this 

discussion are as follows. 

We know from equations (8),(9),(10) and (11) that the dimension of the 

anomaly A is the same as those of the divergences D•J 112 and D•J312. On the 

other hand A is constructed from the objects e, £,Rand D. Of these objects 

the only ones possessing length dimensions are R and D. (The gravitational 

coupling constant K, which is a dimensional quantity, may be ignored as it 

remainH buried within the Riemann tensor.) We see immediately that the 

number of Riemann tensors and covariant derivatives in A necessarily 

satisfies a certain relation. Specifically, in addition to £-tensors and 

factors of e, the anomaly A must consist of n1 Riemann tensors and 2n2 

covariant derivatives where n1+n2=n. Note that there must be an even number 
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of covariant derivatives. Let us now analyse the way in which the indices on 

Kiemann tensors may be contracted against those on £-tensors. Of the four 

indices on any one Riemann tensor no more than two can be contracted against 

£-tensor indices due to the cyclic identity 

•• (12) 

This means that overall there are no more than 201 Riemann tensor indices 

which are available for contraction against £-tensor indices. Together with 

the 202 indices carried by covariant derivatives there are therefore no more 

than 2(n1+n2)=2n indices which can be contracted with £-tensor indices. But 

we have seen that all of the 2n £-tensor indices must be contracted against 

those on Riemann tensors and covariant derivatives. The conclusion is that A 

contains a single £-tensor and, further, that all of the indices on the 

covariant derivatives and two indices from each Riemann tensor are 

contracted against the indices on this £-tensor. But contractions of pairs 

of covariant derivatives against antisymmetric £-tensor indices will either 

vanish or be expressible in terms of more Riemann tensors. Thus without loss 

of generality we may ignore the possibility of covariant derivatives 

occurring in the anomaly and set n2=0. It follows that A consists of a 

single £-tensor and a total of exactly n Riemann tensors. Two tensor indices 

from each Riemann tensor are contracted with indices of the £-tensor and no 

factors of e are needed since the resultant tensor is a density of the 

correct type. This arrangement neatly accounts f~r all indices on the 

£-tensor and leaves two free indices on each Riemann tensor which must be 

contracted amongst themselves. Note that by virtue of the cyclic identity 

(12) and the identities 

we lo8e no ge1wrality ln assuming that it is the first two indices on each 

Riemann tensor which are contracted against £-tensor indices. The final step 

in this argument consists of showing how the remaining free Riemann tensor 

indices, the third and fourth on each tensor, may be contracted together. 

Since Rµvop= -Rµvpo the third and fourth indices on any one Riemann tensor 

cannot be contracted against each other. We deduce that the Riemann tensors 
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must link up in chain-like fashion forming "loops" of different lengths. A 

loop of length L contains L Riemann tensors and is given by the expression 

•• (13) 

We need only consider loops of even length, that is loops containing even 

numbers of Riemann tensors, for the following reason. As R is antisymmetric 

in its third and fourth indices, the O-indices on each of the tensors in 

( 13) may be reve~sed with a change. of sign. Reordering of the tensors then 

leads immediately to the result 

(RL) (-l)L(RL) 

Consequently if Lis odd (RL) is zero. Therefore the Riemann tensors in A 

occur in loops of even length and the total number of such tensors is 

obviously also even. Since the total nunber of Riemann tensors in A is nit 

follows that pure gravitational contributions to the spin 1/2 and spin 3/2 

chiral anomalies occur only in dimensions d=4N, N=l ,2, •••• We are now in a 

position to write down the general form of the anomalies A112 and A3 / 2 in 

dimensions d=4N. Let me define an object T(n1,••,nN) accdrding to the 

following equation. 

• • (14) 

In this equation the ni are any non-negative integers such that 

The abbreviated notation used in ( 14) is reasonably obvious. The 11 
• 

11 

signifies contraction between the indices on the €-tensor and those on the 

Riemann tensors. For example in 16 dimensions 

T( 2, 1 , 0, 0) 

To shorten formulae I will sometimes use the following vector notation for 

the index (n1,••,nN) 

75 



and write T(n1, •• ,nN) as T(n). Confusion between the boldfaced letter n, 

which figures in equation (16), and the regular letter n, which is half the 

space-time dimension, is to be avoided. In view of condition (15) the 

integers n1, •• ,nN may be regarded as specifying a partition of N into n1 

ones, n 2 twos, ••• ,nN N's. Consequently I will sometimes refer to the 

admissable values of the index n as partitions of N. Likewise, it will be 

convenient in the following to refer to the sum n1+2n2+ •• +NnN as the modulus 

of n and represent it by the symbol lnl. In terms of this notation equation 

(15) may be re-expressed in the form 

lnl = N 

and the anomalies A112 and A312 can finally be written as 

n 
Al/2 = 

lnt=N 
cll 2(n)T(n) •• (17) 

n 
A3/2 

lnt=N 
c312(n)T(n) •• (18) 

where cll2(n) and c3' 2(n) are numerical coefficients, and the sums in (17) 

and (18) are over all partitions n whose moduli lnl are equal to N. 

Before closing this section it is appropriate to comment on the condition 

(2.35). The gravitational field figures in expressions (17) and (18) for the 

anomalies A11 2 and A3/2 only in the form of the Riemann tensor. The Ricci 

tensor does not appear at all. Consequently the imposition of condition 

(2.35) brings about no formal degeneracies in the terms T(n) and does not 

predjudice the calculation of the anomalies. Since, as explained in sections 

2.2 and 2.3, the imposition of this condition is in other respects desirable 

I will henceforth regard it as applying. 
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3.3 Perturbation Analysis 

Combining the final results in each of sections 1· and 2 one arrives at the 

exact, that is nonperturbative, equations 

n 

lnT=N 
c 112(n)T(n) lime ~o,, r-1}1j, 

t~.,,_ 
•• (19) 

n 

lnt=N 
c312(n)T(n) lime ~a{~,r-l}cj>a 

L~ ...... 
•• (20) 

As explained in the previous section these two equations involve the unknown 

numerical coefficients c 112(n) and c 312(n). It will often be convenient in 

this section not to distinguish between c 112(n) and c 312(n). In this event I 

will adopt the same convention that I employed in section 3. That is, just 

as I used A to stand for either of the anomalies A 112 or A312 I will use 

C(n) to represent one or both of the coeffici~nts cll2(n) and c 312(n). 

From equations (17) and (18) we know that finding the anomalies A112 and 

A3/2 is equivalent to finding the values of the coefficients C 112 (n) and 

c312(n) for all admissible partitions n. In the diagrammatic method the 

starting point for the calculation of the C(n) is the observation that it 

should be possible to deduce their values by comparing coefficients on both 

sides of equations (19) and (:lO). Of course (19) and (20) are of no use to 

us as they stand because they are operator equations. The spin 1/2 and spin 

3/2 field theories with which we are dealing are only perturbatively 

solvable. They are not solvable in closed form and consquently we cannot 

directly compare the operators occurring on both sides of (19) and (20). 

What we can do however is to compare the amplitudes of these operators 

between the vacuum and appropriate multiparticle states. Such amplitµdes are 

expressible in the usual fashion as perturbation series, and one would hope 

in this way to derive expressions for the C(n) in terms of Feynman diagrams. 

In actual fact it is not necessary to consider all the terms in the 

operators on both sides of (19) and (20). In order to calculate the C(n) it 

suffices to consider only a. small set of operator terms t(n) within the 

quantities T(n). The t(n) are of a distinctive structure and it is easy to 

pick out their contributions to the amplitudes of the operators in (19) and 
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(20). By comparing these contributions one ends up with expressions for the 

C(n) in terms of a few single loop Feynman diagrams. These diagrams can then 

be evaluated to give the anomaly. I will now describe the structure and 

origins of the terms t(n). 

Consider the perturbation expansion of the terms T(n) in the gravit-ational 

coupling constant K. The dependence of T(n) on K is quite complicated. Using 

equation (2.6) one finds that T(n) contains terms of all orders in K 

beginning with ZN and extending to infinity. Among the numerous operator 

terms in the lowest order, that is K2N, part of T(n) there is one term t(n) 

which possesses a distinctive type of structure. In momentum space t(n) is 

given by 

t(n) = (2K) 2N e(k)K(n)H(2N) 

•• (21) 

where 

e(k) •• (22) 

and 

H(2N) •• (23) 

As indicated by my notation the forms of the t(n) and their sub-components 

are functions of the index n=(n1,••,nN) or the number N. In particular, the 

quantity K(n), which is a product of the momenta ki, is a function of the 

entire index n. In order to compactly describe its structure let me intro­

duce the following notation. 

• • ( 24) 

I will say that two momenta k~j and k~" are "linked" if i=n or j=m. The r 

momenta in the sequence (24) are all linked together in a single continuous 
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chain. I will therefore call (ks ) a momentum chain of length r , or an s+r 
r-chain for short. In terms of these momentum chains, K(n) is given by 

•• (25) 

Observe that K(n) consists of n1 2-chains, n2 4-chains, •• , nN ZN-chains. Of 

course it is no accident that I am using the same terminology for the above 

momentum chains as for the chains of Riemann tensors encountered in section 

· 2. The sources of the momenta in K(n) are the derivative graviton couplings 

within the Riemann tensors in T(n), and the reader may verify that the 

momenta in K(n) are linked together in chains in exactly the same pattern as 

the Riemann tensors in T(n). Because of this fact it is obvious upon 

inspection just which t(n) comes from which T(n), and it is clear that the 

t(n) are in one-~o-one correspondence with both the T(n) and C(n). As an 

example of the t(n) consider the sixteen-dimensional (N=4) term t(2,l,O,O) : 

The term t(n) is special among the operator terms in the perturbation 

expansion of T(n) because it is the only one which contains no dot products 

of the momenta ki and no contractions of one gauge field with another. That 

is, it does not contain any factors ki.kj or either of the combinations 
pµ pµ 

h h
0

µ and h hpµ" In these respects t(n) is easily distinguishable from the 

other terms in T(n). The t(n) as a group are also easily distinguishable 

from each other since the factor K(n) within each t(n) has a unique momentum 

chain structure. In this sense K(n) is a kind of signature for t(n). Of 

course, the terms that I have labelled t(n) have been selected for 
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consideration precisely because they are readily identifiable. Recall that 

our general strategy involves taking the amplitudes of the operators in 

equations (19) and (20) between the vacuum and suitable multiparticle 

states, and then picking out of these amplitudes the contributions of the 

terms t(n). We shall see below that the distinctive structure of the 

momentum products K(n) allows us to do this fairly easily. 

However before proceeding any further it must be decided just which 

amplitudes of the operators in (19) and (20) are relevant to the present 

problem. Clearly we must require that the amplitudes of the terms t(n) 

between the vacuum and whichever multiparticle states are chosen be non-
pµ 

zero. Since t(n) contains 2N graviton fields h the obvious multiparticle 

state to consider is the one containing precisely 2N gravitons. Denoting the 

amplitude of an operator O between the vacuum and such a state by (0)2N, one 

finds from equations (19) and (20) that 

n 
l cll2(n)<t(n)>2N C: 

jnj=N 

n 

lnl=N 
C 312(n)<t(n)> 2N c 

lim <e ~{»,r- 1}~>2N •• (26) 
t-...i 

lim <e i
0
{»,r-1}$0 >2N 

t--n. 
•• ( 27) 

The signs "C" indicate that the amplitudes of the t(n) are contained within 

those of the operators on the right hand sides of (26) and (27) along with 

the amplitudes of many other operator terms. Equations (26) and (27) may be 

simplified by making use of the expression (21) for t(n) : 

2N 
<t(n)>2N = (2K) €(k)K(n)<H(2N)>2N 

The expectation value <H( 2N)> 2N can be evaluated using the LSZ reduction 

formulae. In the present case the formulae tell us that the evaluation of 

<H(:lN)>2N effectively reduces to a sum over the· (2N)! permutations of the 

momenta k 1, •• ,k2N• Not all of these permutations will leave K(n) invariant. 

In fact it is a simple matter to see that the number of permutations which 

do map K(n) into itself is 

•• ( 28) 
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Therefore 

2N 
<t(n)>2N = (2K) T(n)€(k)K(n) 

so equations (26) and (27) become 

cll2(n)T(n)K(n) C: 

c312(n)T(n)K(n) C 

lim (e ~{f>, r-l }ij,) 2N 
t...,."ll 

lim <e ia{~,r-1J•a> 2N 
t~11. 

•• (29) 

•• (30) 

where €(k), K(n) and T(n) are as in (22), (25) and (28). As was explained 

above, the momentum product K(n) is unique to the term t(n). It follows, 

then, that the problem of finding the C(n) reduces to the problem of finding 

the coefficients of the momentum factors K(n) within the amplitudes on the 

right hand sides of (29) and (30). Let us therefore single out which Feynman 

diagrams among those that contribute to these amplitudes could possibly 

contain the quantities K(n). For a start we know that we need only consider 

single fermion loop diagrams since, according to Adler-Bardeen type 

arguments, these are the. ortly diagrams which are potentially anomalous. 

Moreover we see from equations (29) and (30) that relevant diagrams must be 

of order K 2N. The upshot of these considerations is that the only suitable 

Feynman diagrams are those of the form shown in figure 2 below. 

FIGURE 2 

ln this diagram there is one axial vertex, which is marked with a cross, and 

a number of regular vertices. Connected to the regular vertices and axial 

vertex are a total of 2N gravitons. By requiring that there be exactly this 
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number of graviton fields one ensures that the diagram is of the correct 

order K 2N. I now assert that diagrams which contain vertices to which more 

than one gauge field attaches may be ruled out of consideration. The reasons 

for this are as follows. The gauge fields that attach to a vertex, whether 

it be an axial or regular vertex, do so via the vector i,ndices on quantities 

such as Yµ, oy
6 and ~y

6 within the covariant derivative DP [see equations 

(2.5) and (2.34)). A simple count of available indices will convince one 

that if more than one gauge field attaches to a vertex then at least two of 

the gauge fields must be contracted together. In other words the gauge 
pµ pµ 

fields will form combin-ations such ash h
0

µ and h hpµ" Correspondingly, 

the vertex will contain factors such as npµ' npp and nµµ" As we have seen, 

there are no contractions of gauge fields in t(n) and the factors npµ' npp 

and nµµ do not occur in the amplitude ·<t(n)). Therefore a diagram of the 

type shown in figure 2 will not contribute to <t(n)) _if more than one gauge 

field emerges from any given vertex. The only remaining diagrams which could 

possibly contribute to (t(n)) are shown in figures 3 and 4. 

FIGURE 3 FIGURE 4 

/ 
/ 

In the first of these diagrams one gauge field emerges from each vertex, 

whether it be axial or regular. Consequently in this diagram each vertex is 

of first order in K. On the other hand in the second diagram there is one 

gauge field attached to each of the regular vertices but no gauge field 

attached to the axial vertex. In the diagram of figure 4, therefore, each of 

the regular vertices is of first order in K while the axial vertex is of 

zeroth order. Now recall that each of diagrams 3 and 4 must have 2N graviton 

legs. We deduce that the diagram of figure 3 contains one axial vertex and 

2N-l regular vertices, while the diagram of figure 4 contains one axial 

vertex and 2N regular vertices. On the basis Qf this vertex count I can now 

82 



say that the Feynman diagram of figure 3 is zero. This conclusion follows 

from properties of the matrix r-l .that are dealt with in appendix 4. There 

are simply too few Y-matrices in the diagram's fermion loop to give a non-

zero trace. 

We are therefore left with the diagram of figure 4. This diagram, which is 

reproduced in more detail in figure 5, is the only Feynman diagram which can 

possibly contain the momentum factor K(n). Consequently it is the only one 

which is relevant to the present anomaly calculation. In the spin 1/2 and 

spin 3/2 cases the loop particles in this diagram will be spin 1/2 and spin 

3/2 fermions respectively. I will denote the values of the diagram in these 

two cases by o112 (N) and o312 (N), thereby explicitly recognizing their 

dependence on the number N. If I do not wish to consider the spin 1/2 and 

spin 3/2 cases independently I will simply refer to the quantity D(N). 

h,. M. (k ) 
'21 2 2. 

/ 

..,__ ___ __,,// h f3f"ik3) 

h (k ) 
f 2N f-2N 2N 

h (k ) 
T 2N - 1 /"' 2N -1 2N - 1 

FIGURE 5 

In terms of oll2(N) and o3' 2(N) equations (29) and (30) can be rewritten in 

the following form. The limits in (31) and (32) indicate that the values of 

the diagrams o11 2(N) and o3' 2(N) are to be calculated in dimension d=2t and 

then continued back to d=2n. That is, one should take the limit t+n only 

atter the relevant loop momentum integrals have been done. 

n 

l 
lnl=N 

cl'l2(n)T(n)K(n) C 

c312(n)T(n)K(n) c: 

lim D 112(N) 
.t.-,-n. 
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3.4 Anomaly Diagrams 

As we have seen, the values of the anomalies A112 and A312 may be derived by 

considering just the two Feynman diagrams o112 (N) and o 312(N). In the 

remainder of the· thesis I will be concerned not so much with calculating 

oll2(N) and o312(N) as with extracting the coefficients c 112(n) and c 312(n) 

from these quantities. Nevertheless c112(n) and c312(n) cannot be extracted 

directly from ol/2(N) and o 312(N) as they stand, and some partial evaluation 

of the Feynman diagrams is necessary. In this section I will describe in 

some detail the steps in the partial evaluation of o 112(n). The parallel 

manipulations of o312(N) are almost identical and I have not wasted space by 

including them too. The reader should have no difficulty in adapting the 

spin 1/2 calculations to the spin 3/2 case. The section culminates in 

separate intermediate formulae for the two sets of coefficients c 112(n) and 

c312(n). These formulae then become the starting point for the calculations 

of chapter 4. 

The propagator and regular vertices that occur in o 112(N) were described in 

chapter 2. The propagator S(p) for a massive· spin 1/2 field is given by 

equation (2.3). For reasons discussed at the end of section 2.1, when 

calculating A112 we need consider only massless spin 1/2 fields. Som may be 

set to zero in S(p). The first order spin 1/2 gravitational vertex Vpµ(p) is 

likewise given by equation (2.8). The zeroth order spin 1/2 axial vertex 

must be extracted from the operator product on the right hand side of (26). 

It is ~(p)A(p,q)~(q) where 

i 
A(p,q) = 2 {~+ri,r-1} 

I am now in a position to write down an expression for o 112 (N). This 

expression is vastly simplified if the following notational convention is 

adopted. 

..(33) 

where i has the range O,l, •• ,2N and P2N = p. In terms of the pi and the 

above-mentioned propagator and vertices, the integral o 112(N) is given by 
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= l-f d2tp(-l)t~[S(po)Vplµl(P1)S(p1)VP2µ2(p2) •• 
p 

•• (34) 

= .!. K2N ~ I 2t[ P1 P2 P2Nl[ 2 2 2 1-1 
2 l dp P 1 P 2 • • P 2N P0 P1 • • P2N 

p 

•• ( 35) 

In these ~quations the sum Eis over the (2N)! Bose permutations of the 

momenta k 1, •• ,k2N• The first simplification that can be made in the above 

expression for o 112 (N) is effected by introducing Feynman parameters 

x 0,x 1, •• ,x 2N and rewriting the denominator (p 2p2 •• p 2 1-1 using the formula 
0 1 2N 

In this way we find that 

[ 2 2 2 l 1 f 1 ( ) [ 2 21-( 2N+ 1) PoP1. ·P2N - = (2N)! 
0 

dxo •• dx2N 6 1-xo-· .-x2N p -2p.X+q •• (36) 

On the right hand side of (36) q 2 is some polynomial in both the Feynman 

parameters x1,••,x2N and dot products of the k's. As we shall see, the exact 

form of q 2 is unimportant. The quantity Xis as follows. 

... • • (37) 

By changing variables 

p + p' = p - x 

and integrating out the Feynman parameter xo which appears in neither X nor 

q 2, one finally arrives at the following results 
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In these equations p: is given by the expression on· the right hand side of 
1 

(33) except that pis replaced by p'. The polynomial q' 2 is simply equal to 

q2-x 2, and 0 is the familiar Heaviside theta function. If I now drop the 

primes on p' and q' then n112(N) may be written 

oll2(N) = i(2N)!21(iK) 2N If d
21

p f dx 9(1-Ex) 
p 

•• (38) 

where dx = dx1 •• dx2N, Ex= x1+ •• +x2N and Tis the trace 

T may be calculated using some results from appendix 4. Firstly note that 

due to the form of the matrix r-1, as given in equation (3), the Y-matrix 

trace tr[P1••;(2M+d;i2Mt2,r-1}] is zero unless M)N. As a consequence the 

trace tr(p1 •• ;(2N+1{;(2N+2,r-1}] is antisymmetric under interchange of any two 

of the vectors a 1, •• ,a 2N+l • Applying this result to T one finds that 

Having reduced T to this simplified form one then applies the following 

formula which is derived in appendix 3. 

The notation employed here is reasonably obvious. The tensor~ 

totally antisymmetric tensor of equation (4), and 

• • (39) 

is the 

1 will now extend this notation so that the vectors bi may be replaced by 

tensor indices. In this way, for instance, one has 
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Using formula (39) and taking the antisymmetry of ~ into acco·unt one can 

decompose T into two groups of terms, T=T' +T' ... The terms in T' contain one 

p while those in T'' contain two. In arriving at the following expressions 

for T' and T'' I have ignored any terms containing dot products of the k's. 

As has been pointed out on previous occasions, such terms do not contain the 

momentum product K(n) and are therefore irrelevant to the anomaly. 

T' p•(2X-k1-··-k2N) ~·µ1k1U2k2••P2Nk2N 

T'' 

- (2X-k1-··-k2N)µl ~·pk1u2k2P3••P2Nk2N 

- (2x-k1-··-k2N)µ 2 ~·Pu1k1k2µ3 •• U2Nk2N 

2p 2 ~·u1k1u2k2°•P2Nk2N 

+ 2p•k1 ~·pu1u2k2µ3 •• U2Nk2N -

+ 2p•k2 ~·pu1k1u2u3 •• u2Nk2N -

2pµ 1 ~·pk1u2k2u3 •• P2Nk2N 

2pµ 2 ~·pu1k1k2u3 •• U2Nk2N 

The numerator of the integrand in n112(N) may now be written in the form 

Of course, our principal concern is to find those terms in n112(N) which 

contain the momentum factor K(n), or more precisely the combination 

e:(k)K( n). Note that e:(k)K(n) contains exactly 4N k's, while the terms in the 

numerator of the integrand in o112(N) contain 4N+2 momenta, some of which 

are p'H and 1:wme k's. It follows that we must look for terms in the 

numerator of the integrand which contain 4N k's and two p's. There are two 

options here. In the first place both of the p's in such a term could .come 

from one of the terms in T''· Alternatively one of the p's could come from a 

term in T' and the other from one of the factors (pi+X)PI. Consider the 
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second option. Let us suppose that one p comes from the factor (p1+X)P 1 and 

the other from within T'. The p-integration in (38) is even so within the 
p 1 , . a B . 2 aS product p T we may replace the combination pp with (p /2i)n • When this 

replacement is effected in the first and second terms in pp 1T' they cancel 

due to the symmetry of hp 1µ 1 in its indices : 

The other terms in pp 1T' are zero when the same replacement is made because 

of the antisymmetry of ~ in its indices. Consequ~ntly pp 1T' effectively 

vanishes. The same is true for pPIT',i=2,3, •• ,2N as similar cancellations 

occur in each case. Thus the terms in T' do not contribute to the anomalies 

and-Tis effectively equal to T''· Because each term in T'' contains two 

p's, the p's in the factors (pi+X)Pi may be ignored. This means that the 

factor (pi+X/i ca~ be ~eplaced with the quantity Xpi (i) where 

•• (40) 

and Xis as in equation (37). When the substitution p
0

p8
+ (p 2/2i)n°

8 
is made 

throughout T=T'' one finds that 

Therefore oll 2(N) is equal to 

•• ( 41) 

where 

r112(N) •• ( 42) 
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Note that ,•µ1k1••µ2Nk2N is invariant under permutations of the labels 

1, •• ,2N so it has been taken outside the sum in (41). The momentum integral 

in our expression for o 112(N~ can now be carried out with the help of the 

following formula [10) 

i f(R.+l)f(2N-R.) ( 41r)-\q2)R.-2N 
f(R.)f(2N+l) 

Having calculated the loop momentum integral we are at last free to take the 

regulator limit R.+n, which in the present case becomes R.+2N. Noting that in 

this limit (2N-R.)f(2N-R.) + 1, and that in accordance with equation (4) ~ + 

£, one arrives at the result 

lim oll2(N) = 2(iK)2N £(k) l rll2(N) 
t~11. 21T p 

•• (43) 

Equations (42) and (43) are as far as I want to go with the analysis of the 

diagram o112(N) in this chapter. The derivation of the spin 3/2 counterparts 

of these equations is almost identical to the above spin 1/2 derivation. One 

begins with an expression for o 312(N) similar to (34) except that the prop­

agators and vertices both carry additional vector indices, and the vertices 

now depend upon the external momenta as well as the fermion loop momentum : 

o312(N) 

•• ( 44) 

Since I have elected to calculate the spin 3/2 anomaly in the A=O formul­

ation, and with the gauge choice a=[4/(2R.-2)], the appropriate propagator 

and regular vertex are given by equations (2.42) and (2.43). The zeroth 

order spin 3/2 axial vertex must be extracted from the operator product on 
- aa the right hand side of (27). It is ~a(p)A (p,q)~6{q) where 

As the reader ·w111 note, the expressions for the spin 3/2 propagator and 

vertices are very close to their spin 1/2 equivalents. Consequently there 
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are only two significant differences between the mathematics leading to 

equations (42) and (43) and the corresponding spin 3/2 mathematics. Firstly, 

the product p~l •• p~~N is replaced by the quantity 

where 

and pi is as in equation (33). Secondly, the product xp 1(1) •• xP 2N(2N) is 

replaced by 

where 

and X(i) is given by (40). When these substitutions are carried out one ends 

up with the following expression for o312(N) 

•• ( 45) 

13/2(N) •• (46) 

From equations (43) and (45) we conclude that the problem of calculating the 

anomaly coefficients C(n) has been reduced to the problem of finding the 

coefficients of K(n) within the quantities tr 112(2N) and tr 312(2N). Let me 

denote these latter coefficients by cl/2(n) and c 312(n) respectively. By 

combining equations (28),(31) and (43) and ~quations (28),(32) and (45) one 

finds that 

•• ( 47) 
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•• (48) 

Equations (42) and (46) will be my starting points for the calculations of 

c l/ 2 (n) and c 312(n) in ch.apter 4. 

3.5 Gauge Independence of the Spin 3/2 Anomaly 

In chapter 2 I explained the relationship between the various formulations 

of spin 3/2 field theory. Working in the conventional Rarita-Schwinger 

formulation I showed that formulations of spin 3/2 theory characterized by 

values of A other than -1 could be reached using local and non-local field 

redefinitions. Subsequently I made the not unreasonable assumption that 

physical quantities are invariant under such field redefinitions, and that 

correspondingly the spin 3/2 anomaly A312 is the same regardless of the 

formulation in which it is calculated. Once this assumption is made, and 

once the Feynman diagram of figure 5 is singled out as being the only one of 

relevance to the anomaly, a proof of the gauge independence of A312 is 

trivial. 

Consider the Feynman diagram of figure 5 whose value in the spin 3/2 case I 

have denoted by o3' 2(N). In the previous section I showed how to partially 

evaluate the quantity o3 ' 2 (N) in the A=O formulation with the choice of 

gauge a=[4/(2R.-2)]. Let us now look at the value of o312 (N) in the A=-1/R. 

formulation without fixing the gauge parameter a. In this case o312(N) is 

still formally given by equation (44), however the propagator and regular 

vertex are as in equations (2.53) and (2.55) rather than (2.42) and (2.43). 

The zeroth order spin 3/2 axial vertex. appropriate to the A=-1/R. 
- aB formulation is xa(p)A (p,q)x

8
(q) where 

and MapB is the quantity which appears in equation ( 2. 49). The properties of 
apB 

the propagator (2.53), the vertex (2.55) and the quantity M have been 

summarized .in equations (2.31),(2.52) and (2.56). Using these properties it 

is a simple matter to verify that the four contractions 
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•• (49) 

are all independent of a. For instance 

[-a8pµ (iK) paµ 8][- a 1 ] V (p,k) - a12 p y y y 5sy(p) - i 4 Yep yy 

= vaSpµ(p,k)S8Y(p) - (~1)lr
0

Yµ ~ Yy 

Obviously if the four contractions (49) are independent of a then so is the 

integral o31 2(N) which is given by equation (44). But this implies that the 

spin 3/2 anomaly A312 is independent of a in the A=-1/1 formulation. There­

fore it is independent of a.in all formulations. 

There is one major problem with this proof as it stands - it employs the 

A=-1/1 formulation.of spin 3/2 theory. As is explained in appendix 2, -1/1 

is the only value that the parameter A cannot validly assume. This is 

because the A=-1/1 Lagrangian does not describe a purely spin 3/2 theory. 

Instead it contains propagating spin 1/2 degrees of freedom in addition to 

the desired spin 3/2 degrees of freedom. Fortunately these problems can be 

avoided in the above proof by considering formulations of spin 3/2 field 

theory corresponding to the parameter c~oices A=(-1/1)+€ where O<I £1<<1. 

These formulations of spin 3/2 theory are entirely acceptable according to 

the criteria which are set down in appendix 2. Moreover, they can all be 

reached from the Rarita-Schwinger (A=-1) formulation via local changes of 

the field variable. Consequently they are on exactly the same footing as the 

A=O formulation in which the anomaly calculation is being performed. 

In chapter 2 I explained why it is reasonable to assume that the spin 3/ 2 

anomaly is independent of the value of the parameter A. (The value -1/ 1 is 

naturally excluded from consideration here.) In the present case this 

assumption tells us that the anomaly is the same in the A=-1 and A=O 

formulations of spin 3/2 theory, as well as in the above £-formulations. In 

particular, when calculated in the £-formulations, the anomaly must be 

independent of the parameter E. Now consider the forms of the spin 3/2 

propagator and vertices in these £-formulations. When one shifts A from -1/1 

to (-l/1)+E one finds that the propagator and vertices of equations (2.53), 
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(2.55) and (49) all receive corrections which are linear or quadratic in£. 

Note that none of these corrections involves negative powers of £. 

Consequently, when one substitutes the corrected propagator and vertices 

into the right hand side of (44) and expands in powers of£, one finds that 

the zeroth order part of o312 (N) is just the expression that one would 

obtain by naively working in the A=-1/R. formulation. Of course, D 312 (N) 

contains terms which are of higher orders in£. However, since the spin 3/2 

anomaly has been assumed to be· independent of £, these terms m{ly be taken to 

vanish identically. Thus, in the (admissable) £-formulations of spin 3/2 

field theory, the integral o312(N) is exactly as one would expect it to be 

in the (inadmissible) A=-1/ R. formulation. In view of the above arguments, it 

is therefore clear that the spin 3/2 anomaly is independent of the gauge 

parameter a in the £-formulations. This means that it is independent of a in 

all formulations of spin 3/2 field theory, including the A=-1/R. and A=O 

formulations. 
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CHAPTER 4. The Spin 1/2 and Spin 3/2 Anomalies 

In this final chapter of the thesis I will complete the diagrammatic anomaly 

calculation begun in chapter 3. As we have seen, this task involves 

extracting the coefficients c 112(n) and c 312(n) from the combined sums and 

integrals EI 1/ 2 and EI 3/ 2 • My method of doing this depends upon expressing 

. cll 2(n) and c 3' 2(n) in terms of sub-coefficients Q(m), and then establishing 

and solving recurrence relations between the Q(m) in different dimensions. 

Once the general expression for the Q(m) is known, one can progress fairly 

easily to expressions for c 112(n) and c 312(n) for arbitrary values of N, and 

consequently to expressions for A 112 and A 312 in arbitrary dimension d=4N. 

I have found it convenient to commence the work of this chapter by 

considering the spin 1/2 and spin 3/2 cases separately in sections 1 and 2. 

Although the ideas behind the mathematical apparatus used here to analyse 

Eil/2 and EI3/ 2 are simple, the notation involved is quite complicated. For 

this reason sections 1 and 2 will largely be devoted to establishing 

notational conventions and terminology. In an attempt to rationalize and 

unify my cumbersome notation I have elected to use conventions which differ 

slightly from those of references [l], [2] and [3]. However the changes are 

not great and should cause the reader no difficulty. 

Sections 1 and 2 culminate in expressions for c 112 (n) and c 312 (n) as 

weighted sums over the above-mentioned quantities Q(m). In any given 

dimension both the Q(m) and their weights may be calculated according to 

well-defined procedures. These procedures are described in detail with the 

aid of examples in section 3. In section 4 I have tabulated the values of 

the Q(m) and their weights for N=l,2 and, in order to illustrate how the 

form~lae for cl/2(n) and c 312(n) may be applied directly, I have used them 

to calculate A 1 I 2 and A 312 in each case. However deriving the anomalies by 

calculating the Q(m) and their ~eights quickly becomes impractical as N 

increases, and some alternative means must be found. In section 5 I firstly 

prove that it is possible to establish recurrence relations between the Q(m) 

in different dimensions, and secondly show that the tabulated low N values 

for these coefficients suggest a general formula for the Q(m). In the event 

the recurrence relations bear out the postulated formula, and the end 
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product of this process is a general expression for the Q(m) in arbitrary 

dimensions. This general expression is substituted into the formulae for 

c 1' 2(n) and c31 2(n) in section 6, and the anomalies A112 and A312 are 

subsequently found in any dimension d=4N. All that remains to be done in 

section 7 is to contrast the diagrammatic method with other methods and to 

draw conclusions regard~ng its usefulness. 

4.1 Spin 1/2 Analysis 

The problem that I will address in this section is how to extract the 

coefficient cll2(n) from Erl 12• At this_point it is convenient to reproduce 

the expression for Er 112 occurring at the end of section 3.4. 

l 1112(N) 
p 

X(i) = X - k - k - k i+l i+2 •• - 2N 

•• (1) 

•• (2) 

•• (3) 

As explained in chapter 3, the sum in (1) is over all (2N)! permutations of 

the 2N momenta k1,••,k2N and c 112 (n) is the coefficient of the momentum 

product K(n) in Er 112. In the following I will designate by nx the product 

xPl(1)xP2(2) •• xP 2N(2N) occurring in the integrand of 1 11 2. To find c 1' 2(n) 

our starting point is an analysis of the nature of the terms in nx. Each of 

these terms consists of two parts : (i) a sequence of 2N external momenta ki 

which is multiplied by (ii) a product of some sub-group of the 2N Feynman 

parameter (FP) factors x1,(x1+x2), •• ,(x1+ •• +x2N)• Our interest is 

exclusively in the k-sequences K(n). Consequently from this point onwards 

when I refer to k-sequences I will mean only the k-sequences K(n) unless I 

indicate otherwise. To better describe both the k-sequences and products of 

FP factors occurring in nx it is necessary to introduce some terminology. 

Let us start by considering the k-sequences, each of which contains 2N k's. 

There are two ways of describing or classifying a k-sequence. The first is 

according to its "form" and the second is according to its "type". I will 
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now explain what I mean by each of these terms. We have already encountered 

the notion of form. Specifying the form of a k-sequence is really a 

shorthand way of saying how the k's in the sequence are "linked" together. 

As explained in section 3.3 two k's, kij and k~" , are linked if either j=m 

or i=n. Thus [k/ 2 k/ 3] is a linked pair whereas [k1P 2 k/ 4] is not. An 

n-chain, or a chain of length n, is a sequence of n linked k's. It is either 

closed or open depending on whether or not the initial and final k's of the 

chain are linked. For instance [k/ 2 k2P 3 k3P 4 k4P 5] is an open 4-chain 

while the sequence [k1P 2 k2P 3 k3P 4 k4P 1] is a closed 4-chain. To say that a 

k-sequence is of the form n=(n1, •• ,nN) will simply mean that it consists of 

n1 closed 2-chains, n2 closed 4-chains , •• , nN closed 2N-chains. Clearly the 

k-sequence K(n) is of form n. 

The second way of characterizing a k-sequence is according to its type. The 

type of a sequence, which to a large extent is independent of its form, has 

to do with where the k's in the sequence have come from in nx. If they have 

come from one of the X's within the factors X(i) in nx, I will call them 

"bound" k's. If they have not, I will call them "free" k's. Each of the 

bound k's is multiplied by one of the FP factors x1,(x1+x2), •• ,(x1+ •• +x2N)• 

On the other hand, the free k's occur by themselves in X(i) without any FP 

multipliers. Consequently, in a term in nx, the number of factors in the FP 

product which multiplies the k-sequence is equal to the number of bound k's 

in the sequence. For the purpose of this argument it will not be necessary 

to specify just which k's in a given k-sequence are bound and which are 

free. Rather, it. will suffice to specify more generally how the k's in the 

sequence are partitioned into bound and free k's. I will describe the type 

of a k-sequence in I 112 using the index m=(m1, •• ,m2N), and I will define the 

related number m according to the following equation: m=m1+m2+ •• +m2N• The 

statement that a k-sequence is of type (m1, •• ,m2N) will mean that it 

consists of m bound k's in addition to m2 open 1-chains of free k's, m3 open 

2-chains of free k's , •• , m2N open (2N-l)-chains of free k's. Since there is 

a total of 2N k's in any sequence we infer that the integers mi satisfy the 

relation m1+2m2+ •• +2Nm2N=2N. In this connection it is convenient to define 

the modulus of the .index m to be the sum m1+2m2+ •• +2Nm2N and to write it as 

jmj. Then mis a satisfactory spin 1/2 type specification only if lml=2N. 
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A few things need to be explained about the type specification of 

k-sequences. Firstly, why are the free k's specified as occurring only in 

open chains and not in closed chains? The answer to this question is 

simple. All of the free k's in nx are of the form k~j such that j(i. 
1 

Consequently no closed chains of free k's can form and no account need be 

taken of them in the type-specification. Secondly, the reader should verify 

for himself that if a k-sequence contains r open chains of free k's it must 

also contain a minimum of r bound k's. The reason for this is connected with 

the fact that the chains of free k's are open. The r bound k's, if you like, 

are needed to separate the open chains of free k's. In terms of m this 

condition implies that m1)0. Thus an admissible type specification is 

provided by the index m=(m1, •• ,m2N) if and only if the mi are non-negative 

integers such that lml=2N. In this way admissible type specifications mare 

in one-to-one correspondence with partitions of 2N: the mi, i=l,2, •• ,2N may 

be considered as specifying a partition of 2N into m1 ones, m2 twos, •• , 

m2N2N's. This neat interpretation may help the reader remember which are the 

admissible values of•· 

One last comment should be made on the subject of k-sequences before we 

proceed on to a description of the products of FP factors that occur in nx. 
It concerns the compatibility of the form and type specifications of a 

k-sequence. In general, the k-sequences that occur in nx and its permut­

ations possess all possible combinations of form and type subject to one 

restriction, which is that the type-associated partition of the sequence 

into bound and free k's must be a sub-partition of the form-associated 

partition of the sequence into closed chains of even length. That is, the 

chains of free k's must be sub-chains of the even length closed chains in 

K(n). One implication of this condition, for instance, is that if n is such 

that •\ =O, i)j for some j, 1 (j (N, then a k-sequence of form n may only be of 

those types m such that m.=O, i)2j. In other words, if the largest closed 
1 

chain in K(n) is of length 2j then the lengths of the chains of free k's in 

K(n) may not exceed 2j-l. 

In order to illustrate these ideas I will now provide three examples of 

sixteen-dimensional (N=4) k-sequences. In each case I will commence by 

nominating the sequence's form and type. The reader can then verify whether 
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the way in which the k's are linked together conforms with the form spec­

ification, and likewise whether the partition of the sequence into bound and 

free k's conforms with its type specification. The first k-sequence is of 

form (l,0,1,0) and of type (1,2,1,0,0,0,0,0): 

The second k-sequence is of form (0,0,0,1) and of type (0,0,0,2,0,0,0,0). 

Note that the two bound k's in this sequence are "needed" to separate the 

two open 3-chains of free k's: 

K(O,O,U,l) •• (4) 

The final example demonstrates that k-sequences of the same form and type 

may arise in different ways according to just which of the k's are free and 

which bound. Like the last k-sequence it is of form (0,0,0,1) and of type 

(0,0,0,2,0,0,0,0): 

•• ( 5) 

bound: k 1,ks 

Having introduced the above notation and terminology fork-sequences, I will 

now similarly introduce notation to aid in the description of integrals over 

products of the FP factors x1,(x1+x2), •• ,(x1+ •• +x2N>• For a start, let me 

associate with these factors the numbers l,2, •• ,2N respectively. Thus x1 

corresponds to 1, (x 1+x 2) .to 2, and so on. Next I will denote by (i1,••,il) 

the product of the L factors associated with the numbers i1, •• ,iL• Obviously 

ike:{l,2, •• ,2N} and 0(L(2N. Finally, I will employ S(i1, •• ,iL) to represent 

the following integral over the Feynman parameters x 1,x2, •• ,x2N• 

•• ( 6) 
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This, of course, is just the sort of integral that occurs in 1 112 • In 

arialogy with the abbreviations n and m for the indices (n1, •• ,nN) and 

Cm1,••,m2N) I will sometimes, in the following work, abbreviate (i1, •• ,iL) 

to i. There is one import_ant thing to note about the integrals S(i). The 

value of S(i) depends not on exactly which of the xi are present in its 

integrand. Rather, it depends solely on how many factors there are in the 

integrand, and how many x. there are in each factor. This is borne out by 
1 

. the following formula [4]. 

• .( 7) 

Formula (7) will be used to good effect in section 5 in establishing 

recurrence relations. For the moment, however, the reader may employ it to 

verify the values of several eight-dimensional (N=2) integrals which are 

listed below and which I have chosen to illustrate the i notation. 

S(l,2,3,4) 

S(l,3,4)) 

S(2,4) 
1 
72 

1 
384 

We are now in possession of almost all the terminology and notation that is 

needed to adequately describe the components of EI 112 • The sole addition to 

the notation which remains to be made is that of a means of describing the 

effect on 1 112 of the permutations in the sum E. I will label these 

permutations according to their effect on the quantity X which is given by 

equation (3). When a permutation of the momenta k1, •• ,k2N acts on X its 

effect is to reorder the FP factors x1,(x1+x2), •• ,(x1+ •• +x2N) which multiply 

these momenta. Of course such. a permutation will act not only on X, but on 

the other parts of 11/2 too. However, for the purpose of labelling the 

permutation it suffices to concentrate on its effect on X. It is convenient 

to describe the permutation P which takes X to X' by specifying which of the 

FP factors multiplies each of the k. in X'. This can be done using the label 
1 

[s1,••,s2N1 in which siE{l, •• ,2N} and si*sj for i*j. In this label si is the 
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inte~er corresponding to whichever FP factor multiplies ki in X'. The 

identity permutation is therefore represented by [l,2, ••• ,2N]. Two examples 

of eight-dimensional (N=2) permutations are given below. 

[1,3,2,4] 

[1,4,2,3] 

Two features of this method of labelling permutations are of interest. For a 

start it is not difficult to see that acting on 1 112 with the permutation 

[s1,•• ,s2N1 is equivalent to fixing the positions of the momenta k1, •• ,k2N 

in 1 112 , and applying instead a certain permutation to the indices i which 

are carried by both the ki and the Feynman parameters xi. Specifically, the 

action of [s1,••,s2N] on 1 112 is reproduced by making the substitution s.+i 
1 

in these indices for all values of i : i=l,2, •• ,2N. In this connection note 

that, for reasons outlined above in the discussion preceding equation (7), 

permuting the Feynman parameters xi will have no effect on the FP integrals 

S(i). To illustrate this feature of the labels [s1,••,s2N1 consider the 

eight-dimensional (N=2) quantity 1 112(4). The reader should check that 

acting on 1112(4) with the permutation [1,4,2,3] is equivalent to making the 

replacements 1+1, 4+2, 2+3 and 3+4 in the indices carried by the ki and xi. 

Similarly, the effect of the permutation [1,3,2,4] on 1 112(4) may be reprod­

uced by making the substitutions l+l, 3+2, 2+3, 4+4 in 1 112(4). 

The second interesting feature of the labels [s1, •• ,s2Nl has to do with 

which of the momenta k1,••,k2N occur as free k's in a given permutation of 
I p· 

1 1 2 • I now assert that k} occurs as a free kin the permutation 
1 

[s1,••,s2N1 of 1 112 if and only if s.<si. This result may be proved by 
p· J 

noting tlllit kf occurs as a free kin the unpermuted 1112 of equation (1) if 

and only if j(i. Since acting on 1 112 with the permutation [s1, •• ,s2N] is 

equivalent to everywhere substituting i for si the assertion follows 

immediately. To illustrate this second property of the label [s1,••,s2N1 I 

have reproduced below the values of the eight-dimensional (N=2) quantity nx 
after the two permutations [1,3,2,4] and [1,4,2,3]. In the case of the first 
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permutation [1,3,2,4] we have s1=l, s2=3, s3=2, and s4=4 and so s1<s2,s3,s4; 

s 3<s 2,s 4 ; and s 2<s 4 • Correspondingly we see that the free k's in IlX' are 

k~l, k~l, ke1, k~3, ke3 and ke2. Similarly, after the second permutation 

[1,4,2,3] the free k's in ITX" are kil, k~l, ke 1, ki 3, ke 3 and ki4 and we 

[1,3,2,4] 

[1,4,2,3] 

At this point we are at last ready to consider the task of calculating the 

coefficient cl/2(n). It should now be clear that finding c 112(n) is entirely 

equivalent to finding, for all possible i, the number of terms in I:1 112 in 

which the k-sequence K(n) is multiplied by the integral S(i). If this number 

is denoted by d 1' 2(n,i) then we have 

cll2(n) = 
i 
I (-l)L ct 112(n,i)S(i) 

lij=2N 
•• (8) 

The sum here is over all appropriate values of the index i=(il,••,iL)• That 

is, it is over all those i such that ikE{l, •• ,2N} and ik*i. if k*j. I will 
. J 

· d~fine the modulus of i, Iii, to be equal to the largest of the integers ik 

in i: lil=max ik, k=l,2, •• ,2N. The condition lil=2N therefore indicates 

tha~ ikE{l, •• ,2N}. The reason for the presence of the factor (-l)L in (8) is 

as follows. Let us suppose that the sequence K(n) occurs somewhere in ·one of 

the permutations of 1 112 multiplied by the integral S(i). As we have seen, 

the FP factors x1,(x1+x2), •• ,(x1+ •• +x2N) multiply the bound k's but not the 

free k's in I 11 2• Consequently the number of bound k's in K(n) is equal to 

the numbeC" of entries ik in the index i. That is, the number of bound k's in 

K{n) is equal to L. It follows that the number of free k's in K(n) is 2N-L. 

But each free kin 1 112 is multiplied by -1. Therefore whenever K(n) occurs 

in 1:111 2 multiplied by the integral S(i) it will also be multiplied by a 

factor of (-1) 2N-L=(-l)L. Hence the factor (-l)L in equation (8). 

101 



The number d 1' 2(n,i) may be defined alternatively. It is not difficult to 

see that the combination of a k-sequence of given form n with a particular 

integral multiplier S(i) will occur.once or not at all in a specific 

permutation [s1, •• ,s2N] of I 112 • In this connection note that once S(i) and 

[s1,••,s2N1 are given it is possible to deduce which of the k's are bound 

and which free : k. is bound if s.E{i1, •• ,iL}, otherwise it is free. Now in 
1 1 

the permutation [s1,••,s2N1 of I 112 there is either a unique way to match up 

bound and free k's with the indices Pi appropriate to the form K(n), or 

there is no way at all. Consequently d 112 (n,i) is also equal to the number 

of permutations of I 112 in which the k-sequence K(n) is multiplied by the 

integral S(i). I will now state without proof that d 112(n,i) may be written 

as follows 

m 
dl/2(n,i) L P(n,m)R(m,i) •• ( 9) 

jmj=2N 

The sum here is over all indices m whose moduli are equal to 2N. A proof of 

(9) will be postponed until section 3. For the moment I merely wish to 

explain the significance of the quantities P(n,m) and R(m,i), and to 

emphasize the assumption implicit in (9). The integer P(n,m) is the number 

of ways of partitioning a k-sequence of form n into bound and free k's of 

type m. Likewise, the integer R(m,i) is the number of permutations of I 112 

in which a particular k-sequence of form n and type m occurs multiplied by 

the integral S(i)~ The assumption implicit in (9) is that it does not matter 

which k-sequence is used to compute R(m,i), so long as it is of type m. That 

is, R(m,i) is independent not only of the form n of the k-sequence used in 

its computation, but also of the particular k's which are chosen to be bound 

and free in this sequence, provided always that they are of type m. 

Based on this assumption, which will be justified in section 4 where a 

detailed prescription for the calculation of R(m,i) is given, R(m,i) is 

endowed with functional dependence only on m and i. Once the assumption is 

made t!<Juation (Y) ls obviously true. It follows merely by grouping the 

instances where the sequence K(n) is multiplied by S(i) according to the 

type m of K(n), and then summing over types. Note that there is no 

superscript 1/2 on either P(n,m) or R(m,i) on the right hand side of (9), 
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and consequently no explicit indication that they are spin 1/2 quantities. 

This is because the spin 1/2 and spin 3/2 versions of the sum in (9) are 

both over exactly the same coefficients P(n,m) and R(m,i), and these 

coefficients are therefore common to the spin 1/2 and spin 3/2 cases. The 

main difference between the respective sums is that the spin 3/2 one is over 

a wider range of values of the index m. This will be explained in the next 

section. I will finish this section by defining a new quantity Q(m) and 

rearranging equations (8) and (9) so that they may be written as follows. 

Q(m) 
i 

m 

I 
lml=2N 

m 
(-1) P(n,m)Q(m) 

11f=2N K(m,i)S(i) 

•• (10) 

•• (11) 

In (10) the factor (-l)L has become (-l)m where mis defined by the equation 

m = m1+m2+ •• +m2N• As explained above, Lis equal to the number of bound k's 

in K(n). But if K(n) is of type m then the number of bound k's in the 

sequence is exactly m. Consequently, in passing from (8) and (9) to (10) and 

(11), L may be replaced by m. 

4.2 Spin 3/2 Analysis 

The material of the preceding section may be adapted without trouble to the 

spin 3/2 case. Indeed much of it, including terminology and notation, 

remains unaltered. To extract c 312(n) from tr 3' 2 we must consider the 

following express~ons 

•• (12) 

•• (13) 

These formulae occur at·the end of section 3.4, and the quantities X and 

X(i) are as in equations (2) and (3). I w.111 designate by IlY the contraction 

of Y's occurring in the integrand of 1312. Of course, c31 2(n) is the 
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coefficient of K(n) in E1 312 • To find it we start by considering the nature 

of the terms in IlY. These terms, as before, consist of a k-sequence which is 

multiplied by a product of the FP factors x1,(x1+x2), •••• ,(x1+ •• +x2N). The 

products of FP factors are the same as in the spin -1/ 2 case and may again be 

described by means of the label i=(il,••,iL)• The k-sequences, however, are 

of slightly altered form. There are more k-containing terms in 1 312 than 
ap 13 6P a 

there are in 11/2 • The new terms are those of the form n k or n k in 

Ypal3(i). l will call the k's occurring in these terms "rogue" k's. They 

complement the bound and free k's of section 1. Obviously, rogue k's may be 

present in the k-sequences of 1312 in addition to bound and free k's. Just 

as free k's in 1 112 or 1 312 can occur only in open chains, the rogue k's in 

a k-sequence in 1 312 can occur only in a single closed chain. To see this, 

consider two adjacent factors in the product ITY. 

As has been observed already, the k-sequences K(n) contain no dot products 

of k's. Nor do they contain any nPi Pj,s. Consequently terms in ITy containing 

these quantities may be ignored. This places restrictions upon the ways in 

which the terms in the above two factors may be contracted together. For 
ap. 13 • Sy P· +1 6Pi+1 Y instance, n I ki may be contracted with n X 1 (i+l) or n ki+1 but not 

y p 13 13 P· a with n i+1 ki+1 since ki •k1+1 would result. Similarly n I ki may be 
ay p YP a . B p. y 

contracted with n Xi+ 1 (i+l) or n 1+1ki+1 but not with n •+ 1 ki+1 since 

npi Pi+1 would result. With these restrictions in mind it is not difficult to 

deduce from an examination of ITY that the only way rogue k's can link 

together is in a single closed chain. What is more, the rogue k's in this 

single closed chain will link up so that their i-indices are in either 

str.ictly decreasing or strictly increasing order. Thus one will find the 

rogue chains [k~3kj 4k~ 7k~ 1] and [k~Sk~ 2k~6] in ITY since the sequences 

l,3,4,7 and 6,5,2 are strictly increasing and strictly decreasing 

respectively. On the other hand, one will not encounter the rogue chain 

[ki 5k~ 2k~ 4 ke 1] in ITY since the sequence 1,5,2,4 is neither monotonic 

increasing nor monotonic decr~asing. 
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In section 1 I described k-sequences according to their forms n and their 

types m. In 131 2, too, there will be k-sequences having the forms n in which 

we are interested. If not, there would be no spin 3/2 anomaly. However, 

although the form specification of k-sequences can be taken over unaltered 

from the spin 1/2 to the spin 3/2 case, the presence of rogue k's in 1 312 

necessitates a modification of the spin 1/2 type specification m if it is to 

be suitable for spin 3/2 k-sequences. I will specify the type of a 

k-sequence in 1 312 using the index m=(m1,••,mM) such that m1+2m2+ •• +MmM=M. 

With reference to this index I will define the number m to be the following 

sum : m=m1+m2+ •• +mM• The statement that a spin 3/2 k-sequerice is of type m 

will then mean that the sequence is composed of m bound k's in addition to 

m2 open !-chains of free k's, m3 open 2-chains of free k"'s, ••• ,mM open 

(M-1)-chains of free k's. Clearly the combined number of bound and free k's . 
is Mand this scheme would be equivalent to the spin 1/2 one were I to 

demand that M=2N. However, in the spin 3/2 case I will let M<2N and in this 

way allow for the fact that in addition to the above M bound and free k's 

the sequence may contain 2N-M rogue k's. As in the spin 1/2 case, the 

constraint imposed upon the number of bound k's by the fact that the free 

k's occur in open chains translates into the condition m1)0. An admissible 

type specification of a k-sequence in 1 312 is therefore provided by the 

index m if and only if the mi are non-negative integers which satisfy the 

relation m1+2m2+ •• +MmM=M<2N. In analogy with the spin 1/2 case, the mi may 

correspondingly be interpreted as specifying a partition of Minto m1 ones, 

m2 twos, •• ,mM M's. This neat interpretation of the mi may help the reader to 

remember which are the admissible values of m. As before, it is useful to 

define a modulus of the index m. In the spin 3/2 case this modulus is given 

by lml=m1+2m2+ •• +MmM• The admissible values of mare then succinctly 

specified by the equation lml=M. 

The compatibility of spin 1/2 form and type specifications was dealt with in 

section 2. The points made there, when suitably adjusted, are just as val id 

in the spin 3/2 case. The type-associated partition of the k-sequence K(n) 

into chains of bound, free and rogue k's must be a sub-partition of its 

form-associated partition into closed chains of even length. Note in 

particular that type-associated closed chains necessarily correspond exactly 

to form-associated closed chains. In contrast, type-associated open chains 
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Qecessarily correspond to parts of form-associated closed chains. Conseq­

uently in a k-sequence K(n) of type m the closed (2N-M)-chain of rogue k's 

must also be one of the form-associated even length closed chains. This 

means that when calculating the spin 3/2 anomaly we should consider only 

those types m which are admissible according to the above partition 

criterion lml=M, and which are such that M, and consequently 2N-M, are even. 

The last condition, that M be even, can be profitably overlooked in setting 

up and solving the recurrence relations of section 6. I will insist on it 

only when I come to calculate c 312(n) itself at the end of section 6. 

To illustrate the use of the spin 3/2 type specification• I will now give 

three examples of sixteen-dimensional (N=4) k-sequences. The first is of 

form (1,0,1,0) and type (O,l,0,1,0,0) 

K(l,0,1,0) 

bound: k 4 ,ka 

The second is of form K(2,1,0,0) and type (2,1,0,0) 

K(2,1,0,0) 

free: k 2 

In the final example the sequence is of form (0,0,0,1) and all of the k's 

within it are rogue k's. I will indicate this by saying that the sequence is 

of type (0) : 

bound: none free: none 

In the modified spin 3/'l. label m I now have a satisfactory means of spec­

itying the types of k-sequences in 1 312 • As was mentioned at the start of 

this section, the products of FP factors occurring in IIY are the same as 

those in IIX. Consequently the FP integrals occurring in 1 312 are the same as 
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those in 1 112 , and they may be described using the familiar notation S(i). 

No modifications are needed here. Nor is it necessary to modify the method 

of labelling the permutations of k1, •• ,k2N that are associated with the sums 

in both equations (1) and (12). In the label [s1, •• ,s2N1 the integers. here 
l. 

has the same significance with respect to the quantity X as it had in the 

previous section. 

There is however one new feature of the labels [s1, •• ,s2N] which is of 

interest. We have seen that k. occurs as a free k carrying the index P. in 
l. . J 

the permutation [s1,••,s2N1 of 1 112 if and only if s.(si. The same is also 
J . 

true of free k's in 1 312 • Moreover, a similar condition exists regarding the 

occurrence of chains of rogue k's within permutations of 1 312 • Clearly the 
· P· P1 P1 momentum chain kiJ k .•• k will occur as a rogue . J m 

[s1, •• ,s2N1 of the integral 131 2 if and only if the 

chain in a permutation 

chain kp8j kPs1 •• kPs1 
si sj Sm 

occurs as a rogue chain in 1 312 itself. But in view of the above comments on 

the structure of rogue chains in 1 31 2, this implies that k
1
Pjk~ 1 •• kP 1 occurs 

J m 
as a rogue chain in the permutation [s1, •• ,s2N] of 1 312 if and only if the 

sequence s.,s., •• ,s is a cyclic permutation of a strictly increasing or 
l. J m 

decreasing sequence of integers. Thus in the permutation [3,2,5,4,1,6) of 

1 312(6) the sequences k~ 4ke 3k~6k~ 2 and ki 2k~ 4ke 1 will occur as rogue chains 

since s2,s4,s3,s6 = 2,4,5,6 and s4,s1,s2 = 4,3,2 are respectively increasing 

and decreasing sequences of integers. However, one will not find a rogue 

chain k~ 1k~ 3k~ 2k~ 6 since s6,s1,s3,s2 = 6,3,5,2 is neither strictly 

increasing nor strictly decreasing. This feature of the label [s i, •• ,s2N1 

will be useful when it comes to formulating a prescription for calculating 

the coefficients R(m,i). I am now ready to introduce the spin 3/2 version of 

equation (8). It is 

i 
c312(n) 2 (-l)L d 312(n,i)S(i) 

jtl=2N 
•• (14) 

The factor (-l)L is included in (14) for the same reason that it was 

included in equation (8). It accounts for the negative signs that occur in 

front of the free k's in the factors X(i) of equation (2). The reader may 

object that the negative signs in front of half of the rogue k's in the 

quantities Y(i) of equation ( 13) should also appear in this formula. However 
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they can safely be ignored once it is recalled that rogue k's always occur 

together in K(n) in chains of even length. Since there is always an even 

number of rogue k's in K(n) the associated minus signs cancel. 

Clearly, apart from the sign (-l)L, the quantity d 312(n,i) is the combined 

coefficient which multiplies the product K(n)S(i) in Er 312• In section 1 we 

saw that the spin 1/2 counterpart of d3/2(n,i), namely d 112(n,i), was simply 

equal to the number of permutations of 1 112 in which the k-sequence K(n) was 

multiplied by the integral S(i). The coefficient d 312(n,i) is similarly 

re lated to the number of permutations of I 312 in which the k-se que nee K( n) 

is multiplied by S(i). However, the relationship is not as straightforward 

as it was in the spin 1/2 case. To elucidate this relationship we must now 

determine two things. Firstly we must find how many of the terms in any 

given permutation of 131 2 contain the product K(n)S(i). Secondly we must 

work out the factors which multiply K(n)S(i) in all such terms. 

Both of these bits of information are easily found. For a start it is not 

difficult to see that, except in the special case when the k-sequence 

contains precisely two rogue k's, the product K(n)S(i) occurs once or not at 

all in any given permutation [s1,••,s2Nl of 1 312• The proof of this fact is 

similar to the one in the spin 1/2 case. Once S(i) and [s1, •• ,s2Nl are 

given, the bound k's may be separated from the free and rogue k's according 

to the following criterion: if s.£{i1,••,iL} then k. is bound, otherwise it 
1 1 

is either rogue or free. The rogue and free k's are in turn easily separated 

from one another since the rogue k's occur in a single closed chain while 

the free k's occur in open chains. The reader may verify that there is then 

either a unique way to match up bound, free and rogue k's with the P-indices 

appropriate to the form K(n), or there is no way at all. Similar arguments 

reveal that, when the sequence K(n) contains precisely two rogue k's, the 

product K(n)S(i) will occur twice or not at all in a-given permutation of 

the integral I 3' 2. 

Next consider the factors that multiply the product K(n)S(i) in the terms in 

the permutations .of 1 312• Here we must differentiate between k-sequences 

K(n) which contain rogue k's and those which do not. The part of 1 312 which 

contains no rogue k's is exactly equal to 1 112 except for an overall factor 
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Cl 
of n 4N. Consequently if K(n) contains no rogue k's then the product 

a 
K(n)S(i) will be multiplied by a factor of 4N wherever it occurs in the 

permutations of 1 312 • On the other hand, if K(n) contains rogue k's then the 

product K(n)S(i) will occur in terms in the permutations of 1 312 without any 

additional factor. These considerations lead us to the conclusion that the 

cofficient d 312(n,i) may be written as follows. 

m N m 
d 312(n, i) 4N L P(n,m)R(a,i) + l l 

lml=2N L=l lml=2N-2L 
P(n,m)R(m,i) •• (15) 

The sum in the first term on the right hand side of (15) is over all spin 

l/ 2 types m. Of course, these t.ypes correspond to k-sequences containing no 

rogue k's. On the other hand, the sums in the second term on the right hand 

side of ( 15) are over spin 3/2 types m, and these characterize k-sequences 

containing non-zero numbers of rogue k's. The reasons for considering only 

those types m for which lml is even are explained above. The integer P(n,m) 

is the number of ways of partitioning a sequence of form n into bound, free 

and rogue k's of type m. Similarly, except when M=2N-2, R(m,i) is the number 

of permutations of l 312 in which a particular k-sequence of form n and type 

m occurs multiplied by the integral S(i). When M=2N-2, R(m,i) is equal to 

twice the number of permutations of 1 312 in which a particular k-sequence of 

form n and type mis multi~lied by the integral S(i). The assumption 

implicit in (15) is that R(m,i) depends only on the type m of the k-sequence 

used to compute it, not ·on other features such as its form n. This 

assumption will be justified in the next section. 

There is one important observation to be made about spin 1/2 and spin 3/2 

quantities which are functionally dependent on type m, for example P(n,m) 

and R(m,i). Obviously the set of spin 3/2 types m contains as a subset the 

smaller set of spin 1/2 types. Because of th.is the values of spin 3/2 type­

dependent quantities such as P(n,m) and R(m,i) encompass as a subset the 

values of the equivalent spin 1/2 quantities. Thus the values of the coeff­

icients R(m,i) in the sums (9) and ( 15) are the same provided M=2N. For this 

reason l have not distinguished between the spin 1/ 2 coefficients P(n,m), 

R(m,i) and Q(m) and their spin 3/2 counterparts. Clearly, when calculating 

the values of these coefficients, it suffices to consider those appropriate 
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to the spin 3/2 case. The spin 1/2 values are then just the. subset for which 

M=2N. To finish this section I will present the spin 3/2 equivalents of 

equations (10) and (11). 

m N m 
c312(n) 4N l (-l)m P(n,m)Q(m) + l l (-l)m P(n,m)Q(m) 

lml=2N L=l lml=2N-2L 

i 
Q(m) = l R(m,i)S(i) 

lil=2N 

4.3 Calculating P(n,m) and R(a,i) 

•• (16) 

•• (17) 

I now wish to dispel any mystery that might still surround the coefficients 

P(n,m) and R(m,i) by describing in detail how they may be calculated in 

specific instances, and giving some examples. The methods of this section 

may be employed to calculate the values of P(n,"m) and R(m,i) once particular 

values of n,m and i are chosen. The relevant calculations are fairly 

painless for small N but, due to the amount of work involved, they rapidly 

become unmanageable as N increases. The shortcoming of the methods described 

be'low is that they cannot be generalized so as to give the general 

functional dependence of P(n,m) and R(m,i) on n, m and i for arbitrary N. 

This shortcoming is the motivation for looking to recurrence relations 

between quantities in different dimensions, rather than direct calculation, 

as a means of finding A 112 and A 312 in arbitrary dimensions. Nevertheless, 

although the recurrence relations of section 6 will form the real basis for 

calculating the anomalies, the material of this section should not be 

bypassed. The prescription given here for calculating the R(m,i) assumes a 

central role in the formulation of recurrence relations in section 6, and a 

certain subset of the P(n,m) whose values are computed below is essential to 

the later calculation of A112 and A312• 

It is easier to illustrate how to calculate P(n,m) than R(m,i), so I will 

consider P(n,m) first. By definition P(n,m) is the number of ways of 

partitioning the k-sequence K(n) into bound, free and rogue k's of type m. 

Two distinct type m partitions of K(n) are distinguished by the particular 
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k's which are bound, free and rogue in each case. For instance, the two 

distinct partitions of the sixteen-dimensional k-sequence K(0,0,0,1) in 

equations (4) and (5) are both of type m=(0,0,0,2,0,0,0,0). The difference 

between them is that different k's are bound and free in each case. To aid 

us in understanding how to calculate P(n,m) let us now look at some twelve­

dimensional (N=3) k-sequences. For a start consider the choices n=( 1, 1,0) 

and m=(O,l,O,l,O,O). K(l,1,0) is shown below. The type specification 

m=(O,l,O,l,O,O) indicates that there should be two bound k's, a single open 

I-chain of free k's, a single open 3-chain of free k's, and no rogue k's. 

The eight ways of partitioning K(l,1,0) according to these requirements are 

listed below. (Note that the two chains of free k's cannot both fit into the 

closed chain of length four. This is because open chains of free k's must be 

separated from one another by at least one bound k.) 

bound free bound free 

k 1,k 3 k2,k4,k5,k6 k2,k3 k1,k4,k5,k6 

k1,k4 k2,k3,ks,k6 k2,k4 k 1,k3,ks,k6 

k1,k5 k2,k3,k4,k6 k2,ks k1,k3,k4,k6 

k'1,k6 k2, k 3,k4 ,ks k2,k6 k1,k3,k4,k5 

P[(l,l,O),(O,l,O,l,O,O)] = 8 

Next consider the choices n=(0,0,1) and m=(O,l,O,l,O,O). This time the 

k-sequence is of the same type but a different form. As shown below there 

are only six possible partitions and consequently P(n,m)=6 in this case. 

bound free bound free 

k 1, k 3 k2,k4,k5,k6 k4,k6 k i,k2,k3,k5 

k '2' k4 k1,k3,k5,k6 k 1,k5 k2,k3,k4,k6 

k 3,k5 k i,k2,k4,k6 k2,k6 k1,k3,k4,k5 

P[(O,O,l),(O,l,O,l,O,O)] 6 
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If the type specification m and the form specification n of a k-sequence are 

incompatible, then P(n,m)=O • For instance, it is impossible to partition 

K(3,0,0) into a sequence of type (3,0,1,0,0,0). The type specification in 

this case calls for a single open chain of free k's of length two. Since an 

open chain of length two will only fit into a closed chain whose length is 

greater than two, there are no possible partitions and we deduce as a 

consequence that P[(3,0,0),(3,0,l,O,O,O)]=O. Likewise the sequence K(l,1,0) 

cannot be partitioned into bound and free k's of type (0,0,0,0,0,1)! The 

open 5-chain of free k's which is demanded by the type specification is 

simply too large to be fitted into either the closed 2-chain or the closed 

4-chain within K(l,1,0). 

The first two examples involved no rogue k's. However the introduction of 

rogue k's into this scheme presents no difficulties; as a last example will 

show. One simply chooses which of the closed chains of length 2N-M in K(n) 

is to be the chain of rogue k's, and then partitions the remainder of K{n) 

into bound and free k's as described above. If there are no chains of length 

2N-M in K(n), then P(n,m)=O. In this connection note that, as remarked 

earlier, we need consider only types m such that Mis even. As an illustrat­

ion of these points consider the choices n=(3,0,0) and m=(0,2,0,0). In this 

case M=4, so the sequence contains 2N-M=6-4=2 rogue k's, K(3,0,0) and its 

possible partitions are given below. Clearly P[(3,0,0),(0,2,0,0)]=l2. 

bound free rogue bound free rogue bound free rogue 

k 1,k 3 k2,k4 ks,kG k 1,k5 k2,k6 k3,k4 k3,k5 k1uk6 k i,k2 

k1,k4 k2,k 3 ks,k6 k 1,k6 k2,ks k3,k4 k3,k6 k4,k5 k1 ,k2 

k2,k3 k 1,k4 ks,kG k2,k5 k 1,k6 k3,k4 k4,k5 k3,k6 k 1,k2 

k2,k4 kpk3 ks,k6 k2,k6 k i, ks k3,k4 k4 ,k6 k3,k5 k1 ,k2 

P[(3,0,0),(0,2,0,0)] = 12 

llefore we pass on to a description of the coefficients R(m,i) there is one 

point about the P(n,m) that I would like to make, and one special class of 

the P(n,m) whose values I want· to examine. The point to be made concerns 
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those P(n,m) for which M=2N-2L where Lis an integer between 1 and N: 

l<L<N. In this case the number P(n,m) is clearly equal to the product of the 

number of ways of situating a rogue chain of length 2L within K(n) and the 

number of ways of partitioning the remainder of K{n) into bound and free k's 

of type m. But the number of ways of situating a rogue chain of· length 2L 

within K(n) is simply nL• Consequently, if O<L<N-L, 

O<L<N-L •• (18) 

while if O<N-L<L, 

O<N-L<L •• (19) 

Note that those integers n. which do not appear on the right hand sides of 
1 

the above two equations are necessarily zero due to the condition lnl=N. In 

(18) and (19) I have emphasized the dimension to which the coefficients 

belong by supplying them with subscripts 2N and 2N-2L. Thus P2N(n,m) is a 

4N-dimensional quantity while P2N-2L(n,a) belongs in 4N-4L dimensions. These 

equations therefore express 4N-dimensional coefficients which involve rogue 

k's in terms of (4N-4L)-dimensional coefficients which do not involve rogue 

k's. Alternatively, they express spin 3/2 coefficients in terms of lower 

dimensional spin 1/2 coefficients. Hecause of this, ( 18) and ( 19) will be 

useful later on in section 6. 

The special class of P(n,m) whose values I want to examine consists of those 

P(n,m) such that n=(0, •• ,0,1) and M=2N. That is, all of the ni are zero 

except for n which is one, and there are no rogue k's. Within this class 

the P(n,m) are functions only of the variable m so I will write them as P(m) 

P(m) - P[(0, •• ,0,1),(m)], M=2N •• (20) 
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P(m) by definition is the number of ways of partitioning the k-sequence 

K(0, •• ,0,1) into bound and free k's of type •· Its value is not too 

difficult to work out. In a k-sequence of type m there are m2+m3+ •• +m2N 

chains of free k's and m=nq+m~ •• +m2N bound k's. The integer P(m) may be 

regarded as the number of ways of ordering the m2+m3+ •• + m2N chains of free 

k's and m 1+m~ .. m2N single bound k's within the sequence K(O, •• , 0, l). That 

is, one is looking at the number of ways of ordering m1+2(m2+ •• +m2N) 

separate units within K(0, •• ,0,1). Actually, this ordering problem is 

complicated by the fact that the chains of free k's must be separated from 

each other by at least one bound k. It is easier to think in terms of 

"extended" chains of free k's, each of which consists of a chain of free k's 

with a single bound k attached to one end. The extended chains of free k's 

may be shuffled around freely as their terminal bound k's act as buffers 

between the real chains of free k's. The ordering problem can therefore be 

posed in terms of the m2+m3+ •• +m2N extended chains of free k's and the 

remaining m1 bound k's, a total of m1+m~ •• +m2N units. Suppose we choose one 

of these units. Any one of the 2N k's in K(0, •• ,0,1) could be the initial k 

of this unit. Consequently there are 2N ways of situating this first unit 

within K(0, •• ,0,1). There are then (m1+m2+ •• +m2N-l)! ways of ordering the 

other m 1+m 2+ •• +m2N-l units around it. We deduce tha~ the total number of 

ways of ordering the m1+m~ •• +m2N units within the k-sequence K(0, •• ,0,1) is 

2N(m1+m2+ •• +m2N-l)! However, in so far as partitions of K(0, •• ,0,1) are 

concerned, the order of units of the same length is immaterial. So one 

should divide by the product m1lm2! •• m2N!• Thus P(m) has the value 

l:' 2N(m) 
2N(m1+m2+ •• +m2N-l)! 

m 1!m2! •• m2N! 
•• ( 21) 

Once again I have emphasized that P(m) belongs in 4N dimensions by writing 

it as P 2N(m). This completes my treatment of the coefficients P(n,m). Now 

consider R(m,i). Before describing how this quantity may be calculated there 

are a couple of points to be made. The first concerns the manner in which 

k-sequences occur in permutations of 1 312• Suppose that we have a k-sequence 

which is partitioned into bound, free and rogue k's and that these k's carry 

p-indices appropriate to some form n. Further suppose that we wish to find a 

permutation of 1 312 which contains this k-sequence. Then it suffices to find 
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a permutation, I' 312, of I 312 whose integrand ITY' satisfies two criteria. 

Firstly, all of those k's which have been designated free k's in the chosen 

k-sequence must be present as free k's. with the correct P-indices in Ily'. 

Secondly, ITY' must also contain the rogue chain which appears in the chosen 

k-sequence. Provided that IlY' conforms with these two criteria regarding 

rogue and free k's, the desired k-sequence will appear in 1 312 • This ·is due 

to the fact that if a particular combination of rogue and free k's occurs in 

a permutation of 1 312 it will occur together with every possible complement 

of bound k's. This follows easily from the structure of Ily. 

The second point relevant to the coefficients R(m,i) has to do with the 

relationship between the k-sequence and its integral multiplier S(i) in a 

term in one of the permutations of I 312 • Let me denote such a permutation by 

1'3/ 2 and the corresponding permuted version of X by X'. The k's in the 

sequence are labelled bound, free or rogue according to their points of 

origin in I' 31 2• A bound k has or1.ginated in X' and carries with it one of 

the FP factors x1,(x1+x2), •• ,(x1+ •• +x2N)• The free and rogue k's, in 

contrast, have originated outside of X' and are not multiplied by FP 

factors. As usual l will label the permutation which takes 1 312 into 1' 312 

by [s 1, •• ,s 2N], where si is the number associated with the FP factor that 

multiplies ki in X'. The point l wish to make is that, if ki is one of the 

bound k's in the sequence, then si€{i1,••,iL}; while if ki is free or rogue, 

si\{i1,••,iL}. This fact has already been discussed in sections 2 and 3; 

however it is worth repeating here before commencing an analysis of R(m,i). 

R(m,i) is equal to the number of permutations [s1, •• ,s2Nl of r 312 in which a 

given k-sequence of type m is multiplied by the integral S(i). [ In the 

special case M=2N-2, R(m,i) is equal to twice the number of permutations of 

1 312 in which a given k-sequence of type m is multiplied by the integral 

S(i)]. To c~lculate it one firs~ chooses a k-sequence of type m. As I shall 

soon prove, the value of R(m,i) is the same no matter which type m 

k-sequence is chosen for the calculation. Nevertheless it is convenient for 

the moment to employ a k-sequence whose free k's are all of the form k~ i +l. 

It is always possible to find such a sequence. To make the description of 

the k's in the sequence a little easier, l will use kB to stand for any or 

all of the bound k's. That is, if ki,k., •• ,k are the bound k's, then the 
J m 

115 



value of the index B ranges over the set {i,j, •• ,m}. Similarly I will use kF 

and kR to stand for the free and rogue k's. 

Now let us forget about the integral S(i) for the moment, and consider how 

we might single out the permutations of 1 312 in which the chosen k-sequence 

occurs. Given the comments in the second last paragraph, it suffices to find 

those permutations in which all the designated free k's occur carrying the 

correct P-indices, and which c_ontain the desired chain of rogue k's. At this 

point recall that k~j occurs as a free k in the permutation [s 1, •• ,s2N1 of 
1 

13/2 if and only if sj<si. This fact was demonstrated in section 2. Since 

the free k's in our chosen sequence are all of the form k:i+l we are 

therefore interested in those permutations [s1, •• ,s2N1 such that sF)sF+l for 

all F. Furthermore, to ensure ·that the permutations [s1, •• ,s2N1 actually 

contain the rogue chain which appears in our chosen k-sequence we must also 

insist that the sB satisfy a condition which was discussed in the previous 

section. Specifically, when ordered so that sB, follows sB if B')B, the 

sequence of integers sB must be a cyclic permutation of a strictly 

increasing or strictly decreasing sequence of integers. 

From the permutations which satisfy these conditions on sF and sB we should 

.then keep only those in which our chosen sequence is multiplied by the 

integral S(i). The above comments on the relationship between k-sequences 

and their integral multipliers in terms in the permutations of 1 312 are 

helpful in this respect. They tell us that we need keep only those 

permutations which satisfy the additional conditions s8 £{i1,••,iL} and 

sF,sR\{i1,••,iL}. R(m,i) is equal to the number of permutations which 

remain. Obviously R(m,i) will be zero unless the number of bound k's is 

exactly L [remember that i=(i1, •• ,iL)]. That is, R(m,i) will be zero unless 

m=m1+m2+ •• +mM=L. If we tacitly exclude from consideration any combinations 

of the indices m and i for which this is not the case, and set L=m, then 

only one of the conditions sF,sR\li1,••,id and s 8£{i1, •• ,iL} need be kept, 

and the calculation of R(m,i) may be summarized in the formula 

R(m,i) = l/lsi, •• ,s2N]; 

M*2N-2 •• (22) 
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As I have indicated, this formula holds provided M*2N-2. In the special case 

M=2N-2 the coefficient R(m,i) is equal to twice the number of permutations 

of 13/2 in which a given k-sequence of type mis multiplied by the integral 

S(i), and we have 

R( m, i) = 2. II[ s 1, •• , s 2N] ; 

M=2N-2 •• (23) 

Uo not forget that (22) and (23) are based on the presupposition that all of 

the free k's in the sequence used to compute R(m,i) are of the form kii+l • 

. To illustrate the above formulae I will now provide several examples of 

calculations of R(m,i) in twelve dimensions (N=3). The first example 

involves the choices m=(l,1,1,0,0,0) and i=(l,3,5). To calculate R(m,i) in 

this instance I will use the k-sequence K(0,0,1), partitioned as below into 

bound and free k's. [Note that all of the free k's are of the correct form.] 

The suitable permutations [s1, •• ,s6] of 1 312 in this case are those such 

that s2,ss,s6e:{l,3,5} and s1>s2 and s3)s4)s5. There are four of them and 

they are listed below. We therefore deduce that R[(l,l,l,0,0,0),(1,3,5)]=4. 

K(l,1,0) 

bound: k2,ks,k6 rogue: none 

[216435],[436215],[634215),(654213] 

R[(l,l,l,0,0,0),(1,3,5)] 4 

Now consider the choices m=(0,0,0,1) and i=(2). In this case R(m,i) may be 

calculated using formula (23) and the sequence K(l,1,0), partitioned as 

below into bound~ free and rogue k's. There are eight permutations which 

satisfy the relevant conditions s6e:{2} and s3)s4)s5)s6, and which are such 

that the sequence s 1,s2 is a cyclic permutation of a strictly increasing or 

strictly decreasing sequence of integers. Consequently R[(O,O,O,l),(2)]=16. 
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K(l,1,0) 

bound: k6 

[16543Z],[615432],[156432],[516432],[146532],[416532],[136542],[316542] 

R[(0,0,0,1),(2)] 16 

Lastly, let us suppose that the number of rogue k's is four, and adopt the 

choices m=(O,l) and i=(5). The sequence K(l,1,0) is compatible with the type 

specification m=(O,l) and we can therefore use it again to calculate R(m,i), 

partitioning it as follows into bound, free and rogue i's. From equation 
3/2 (22) we deduce that in this case suitable permutations [s1, •• ,s5 ] of I 

are such that s2£{5} and s1>s2. Moreover s3,s4,s5,s6 must be a cyclic perm­

utation of an increasing or decreasing sequence of integers. There are eight 

permutations which satisfy these conditions. 

bound: k2 free: k1 

[654321),(651432] ,[652143],[653214],[651234],[654123],[653412],[652341] 

R[(0,1),(5)] = 8 

At this stage the reader should feel reasonably at home with the quantities 

P(n,m) and R(m,i) and the methods by which they are calculated in particular 

instances. The only thing that remains for me to do in this section is to 

prove that R(m,i) depends solely on the type of the k-sequence used in its 

computation, not on its form or on the particular k's within the sequence 

that are chosen to be bound, free and rogue. The above prescription for the 

calculation of R(m,i) has already taken us a part of the way towards this 

proof. In fact the absence within the calculational procedure itself of any 

dependence on the form n which is chosen for the k-sequence used to 

calculate R(m,i) leads one directly to the conclusion that this choice has 

no bearing on the final result. Of course, the form that is chosen must, for 
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the sake of the calculation, be compatible with a partition of type m. 

Beyond this requirement, however, it does not matter which form n is chosen. 

The second part of the proof is hardly less straightforward than the first. 

R(m,i) is the number of permutations of 1 312 in the sum Er 312 in which a 

particular k-sequence of type mis multiplied by the integral S(i). Suppose 

that we calculate R(m,1) twice using two distinct type m k-sequences. As we 

have just seen, the forms of these k-sequences are irrelevant, so we are 

free to assume that they are of the same form. Now observe that two type m 

k-sequences of the same form can always be transformed into each other using 

a single permutation of the momenta k1, •• ,k2N• Since Er 312 itself must be 

invariant under such a permutation, we deduce that the values of R(m,i) 

obtained using the two type m k-sequences must be identical. Therefore it 

does not matter which type m k-sequence is used to compute R(m,1). This 

completes the proof. 

4.4 Small N Calculations 

This section is devoted to a tabulated presentation in tables 1 and 2 of 

values for all of the quantities in equations (10),(11),(16) and (17) in the 

cases N=l,2. To convince the reader that equations (10),(11),(16) and (17) 

are in fact valid I have then used these values, together with equations 

(3.47) and (3.48), to find Al/2 and A3/ 2 in four and eight dimensions. The 

aim of this material is to allow the reader to further familiarize himself 

with the diagrammatic approach to anomaly calculation as described in the 

previous three sections. The whole of this section may be bypassed if such 

additional familiarization is felt to be unnecessary. 

The figures in the accompanying tables are by and large self-explanatory. 

However, s1c•veral things should he noted at the outset. Firstly, a full set 

of values has been given for those quantities which depend on the spin 3/ 2 

index m. The spin 1/2 counterparts of these values form a subset of the spin 

3/2 values. They are the subset corresponding to types m such that M=2N. 

Thus, while the coefficient c 312(n) is calculated according to equation (16) 

by summing over all types m, c 112 (n) is calculated by summing over only 
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TABLE 1 N=l 

n 1 = 1 ~ nE{(l)} 

ikE{l,2} ~ iE{(0),(1),(2),(12)} 

m1+2m2 = 0,2 ~ mE{(0),(01),(20)} 

S(O)=l/2 

R(0,0)=4 

Q(0)=2 

P(l,O)=l 

c 112(1) = -1 
12 

S(l)=l/6 

R( 01, 1 )=l 

Q(Ol)=l/6 

P(l ,01)=2 

. 1 . 1 
A 1/ 2 = -(-)2<R2) 

24 4,r 

S(2)=1/3 

R(Ol,2)=0 

Q(20)=1/4 

P(l ,20)=1 

c3/2(1) = 2 
3 

120 

S(l2)=1/8 

R( 20, 12)=2 



TABLE 2 N=2 

n1 + 2n2 = 2 ~ n€{(01) ,(20)} 

ikE{l,2,3,4} ~ iE{(0),(1),(2),(3),(4),(12),(13), 

(14),(23),(24),(34),(123),(124),(134),(234),(1234)} 

m1 + 2m2 + 3m3 + 4m4 = 0,2,4 

:=:;:. mE{(0),(01),(20),(0001),(1010),(0200),(2100),(4000)} 

5(0)=1/24 5(1)=1/ 120 5(2)=1/60 5(3)=1/40 

5(4)=1/30 S(l2)=1/ 240 S( 13)=1/ 180 5(14)=1/144 

5(23)=1/90 S(24)=1/72 5(34)=1/48 5(123)=1/336 

S(l24)=1/280 S(l34)=1/210 5(234)=1/105 5(1234)=1/384 

R(0,0)=8 R(Ol,1)=12 R(Ol,2)=8 R(Ol,3)=4 

R( 01,4)=0 R(OOOl,l)=l R(OOOl,2)=0 R( 0001 , 3) =O 

R(OOOl,4)=0 R(20,12)=8 R(20,13)=8 R(20,14)=8 

R(20,23)=8 R(20,24)=8 R(20,34)=8 R( 1010, 12)=2 

R(lOlO, 13)=1 R(l O 10 , 14) = 1 R(lOl0,23)=0 R(lOl0,24)=0 

R(lOl0,34)=0 R(0200,12)=4 R0200,13)=2 R( 0200, 14 )=O 

R(0200,23)=0 R(0200,24)=0 R(0200,34)=0 R(2100,123)=6 

R(2100,124)=4 R( 2100, 134)=2 R(2100,234)=0 R(4000,1234)=24 

Q(O)=l/3 Q(Ol)=l/3 Q(20)=1/2 Q(OOOl)=l/120 

Q( 1010)=1/48 Q(0200)=1/36 Q(2100)=1/24 Q(4000)=1/16 

P(Ol,O)=l P(Ol,01)=0 P(Ol ,20)=0 P(Ol,0001)=4 

P(Ol, 1010)=4 P(Ol,0200)=2 P(Ol,2100)=4 P(Ol,4000)=1 

P(20,0)=0 P(20,01)=4 P(20,20)=2 P(20,0001)=0 

P( 20, 1010)=0 P(20,0200)=4 P(20,2100)=4 P(.20,4000)=1 

c 112(20) = _l_ c 112(01) = _l_ c3/2(20) = -5 · 31 
c 312(0l) = -144 720 18 90 

1 1 1 A3/2 = (_!__ )4[~R2)2 + ~R4)] Al/2 = (-)4[--<R2)2 + ~R4)] 
. 4u 2304 2880 4n 2304 2880 
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those types m for which M=2N. Secondly, attention has been restricted to 

those P(n,m) and R(m,i) which are not a priori zero due to incompatibility 

of n and m or m and i. In a similar fashion only even values for M have been 

considered since they are the only ones relevant to the anomalies. Thirdly, 

for the sake of tidiness in the tables, I have omitted the commas between 

individual entries inn, m and i. As all entries in these indices are single 

digits this should cause no difficulties. Lastly, remember that i=(O) stands 

for the product of none of the FP factors x1,(x1+x2), •• ,(x1+ •• +x2N)• That 

is, the integrand (i) is simply equal to one. 

4. 5 Recurrence Re lat ions 

The calculations of Al/ 2 and A312 in four and eight dimensions by means of 

the figures in tables 1 and 2 illustrate the way in which equations ( 10), 

(11), (16) and (17) may be used directly to find anomalies. However, as N 

increases this method of calculating A112 and A312 quickly becomes 

impractical due to the amount of work involved. For instance the same 

calculations in twelve dimensions (N=3) entail finding 57 P(n,m) and 1216 

R(m,i), a considerable augmentation of the work involved in eight 

dimensions. The problem is that the prescriptions given in section 3 for 

calculating P(n,m) and R(m,i) for particular values of n, m, and i, cannot 

be generalized to functional expressions for these quantities. Consequently, 

to calculate each new anomaly all the relevant coefficients must be 

laboriously computed. Clearly, when it comes to the task of calculating 

higher dimensional anomalies, or of finding A112 and A312 in arbitrary 

dimensional space-times, some other approach must be adopted. 

The natural thing to do is to look for recurrence relations between 

anomalies in different dimensions. Such recurrence relations could perhaps 

be used to extrapolate from the known lower dimensional anomalies to 

expressions for A112 and A312 in any dimension. At first inspection, 

however, what struck me was not so much the possibility of recurrence 

relations between the anomalies themselves, but rather the possibility of 

such relations between the coefficients Q(m) in different dimensions. 

Consequently, it was the latter possibility which I followed up and whose 
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outcome I will describe in this section. As we shall see, the recurrence 

relations which emerge from this investigation lead to a functional form for 

the Q(m) which facilitates the direct calculation of both the coefficients 

cl/2(n) and c3/ 2(n) in arbitrary dimensions d=4N using equations (10) and 

( 16). Once one knows· c 112(n) and c 312(n) it is then a simple matter to find 

the chiral anomalies A1' 2 and A312 in any dimension d=4N. Before proceeding, 

though, it must be pointed out that equations (10), (11), (16) and (17) 

carry some information that has not been made explicit. To ensure that the 

quantities with which I will be working in the remainder of the thesis are 

perfectly well-defined I will now rewrite (10), (11), (16) and (17) in forms 

which make explicit all their implicit information •. 

cll2(n) = 

c3/2(n) = 4N 

N m 
+ l l (-l)mP2N(n,m)Q2N(m) 

L=l lml =2N-2L 

..(24) 

... ( 25) 

•• (26) 

.These equations now explicitly recognize that the quantities Q(m), R(m,i) 

and S(i), in addition to being functions of m and 1, also depend upon the 

number 2N. Let us see how this dependence is implicit in their definitions. 

The integral S(i) in defined by equation (6). Clearly, even though the 

integrand (i) is independent of 2N, the integral S(i) itself is a function 

of 2N because it is an integral over 2N Feynman parameters. Consequently it 

is written S2N(1) in (24). Likewise the coefficient R(m,i) is not just a 

function of m and 1. R(m,i) is defined by equations (22) and (23), and· 

implic_it in this definition is the fact that the permutations being counted 

are permutations of the 2N momenta k1, •• ,k2N• Thus R(m,i) is also a function 

of 2N. Since. S(1) and R(m,i) both depend upon 2N it follows that Q(m) does 

too, and this has been indicated by writing it as Q2N(m). Although the 

coefficient P(n,m) has no implicit dependences, I have written it as 

P2N(n,m) in (25) and (26) to emphasize that it belongs in 4N dimensions. 
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Equations (24), (25), (26) and the quantities contained therein are now 

perfectly well-defined, and we are at last ready to proceed with a treatment 

of recurrence relations between the Q(m) in different dimensions. 

The first step in such a treatment is to generalize our definition of the 

coefficients Q2N(m) a little. The quantity Q2N(m) is defined in terms of 

R2N(m,i) and S2N(i) by equation (24). The definitions of all three of these 

coefficien~s may be genera~ized from dimensions d~4N to arbitrary even 

dimensions d=2n simply by replacing the number ZN with n. Thus the integral 

S2N(i) over ZN Feynman parameters x1, •• ,x2N generalizes to an integral S (i) 
n 

over n Feynman parameters Xl,••,xn• In keeping with this change, the 

integers ik in the index i will come from the set {l, •• ,n} rather than 

{l, •• ,2N}, and will represent th~ FP factors x1,(x1+x2), •• ,(x1+ •• +xn) rather 

than x1,(x1+x2), •• ,(x1+ •• +x2N>• In a similar fashion R2N(m,i) generalizes to 

a Zn-dimensional coefficient R (m,i) in which the index mis such that 
n 

lml<n. R (m,i) is calculated by applying equations (22) and (23) without 
n . 

reference to any accompanying k-sequence. In performing this calculation one 

must allow for the fact that there are now n! permutations [s1, •• ,sn] in 

place of the (ZN)! permutations [s1,••,s2Nl· In terms of R (m,i) and S (i), n n 
the quantity Q (m) is defined by the generalization of equation (24) 

n 

Q (m) 
n 

R (m,i)S (i) 
n n 

•• (27) 

It is worth pointing out that, although it is possible to generalize the 

Q2N(m) to even dimensions d=2n, it is not possible to similarly generalize 

the coefficients c 112(n) and c 312(n). This is true simply because the 

anomalies A112 and A312 do not occur in dimensions d=4N+2. Since the (4N+2)­

dimensional coefficients Q2N+1Cm) have nothing to do with the anomalies A112 

and A312 there would seem to be little reason to consider them. However, 

when formulating recurrence relations between the Q(m) it is quite advant­

ageous to consider the general class of coefficients Q (m), because it is n 
far easier to construct a relation between ~(m) and Qn+l(m) than it is to 

construct one between Q2N(m) and Q2N+
2

(m). Certainly we lose nothing by con­

sidering the enlarged class of coefficients Q (m) since, once we have solved 
n 

the recurrence relations for these quantities, we are free to set n=2N. 

124 



Actually, when formulating recurrence relations it is convenient to deal not 

with the Q (m) themselves, but rather with quantities Q (m) which are 
n n 

defined in terms ot coefficients R (m,i) by a formula which is nearly 
n 

identical to (24). 

Q (m) 
n 

i 

l 
jij=n 

R (m,i)S (i) 
n n 

The integers R (m,i) are given by 
n 

and are related to the R (m,i) as follows. 
n 

l 
R (m,i) M=n,n-1 n 

R (m, i) = 
n 

2R (m,1) M=n-2,n-3, •• ,0 n 

•• (28) 

•• (29) 

•• (30) 

Note that in calculating R (m,i) according to formula (29) one counts only 
n 

those permutations [s 1, •• ,snJ for which the sR are cyclic permutations of 

increasing (not decreasing) sequences of integers. The difference of a 

factor of two between R (m,1) and R (m,i) when M=n-2, •• ,O may be explained 
n n 

as follows. Suppose that we are dealing with an index m such that M=n,n-1 or 

n-2. Then there are O, 1 or 2 rogue integers sR respectively. In these cases 

the number of ways of arranging the sR into cyclic permutations of 

increasing and decreasing sequences of integers is exactly the same as the 

number of ways of arranging them into cyclic permutations of only increasing 

sequences of integers. That is, if the number of rogue sR is O, 1 or 2 the re 

is no distinction between increasing and decreasing sequences of integers. 

Comparing (22) and (23) with (29) we therefore deduce that if M=n or n-1 

then R (m,i)=R (m,i) while if M=n-2 we have R (m,i)=2R (m,i). n n n n 

If there are three or more sR then increasing and decreasing sequences of 

integers are distinct and the number of ways of arranging the sR into cyclic 

permutations of increasing and decreasing sequences of integers is twice the 

number of ways of arranging them into cyclic permutations of only increasing 
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sequences of integers. This accounts for the factor of two in (30) in the 

cases M=n-3, •• ,0. Clearly (30) implies that 

l 
Q ( Ill) M=n,n-1 

n 
Q (m) = •• (31) 

n 
2~(m) M=n-2,n-3, •• ,0 

I will now set about establishing recurrence relations between the Qn(m) in 

different dimensions. The first obstacle that one faces when trying to 

express Q (m) in terms of Q 
1

(m) is that different FP integrals occur in 
n n-

each case. Let us divide the integrals S (i) = S (i 1, •• ,iL) that occur in 
n n 

the sum in ( 2 7) into two groups according to whether or not ik = n for some 

k. If none of the ik is equal ton then the integrand (i1, •• ,iL) can be 
a 1 an-1 written as a sum of terms x1 • ·Xn-1 where a1+ •• +an-1=L. Thus 

Since S (ii, •• ,iL) is defined by 
n 

and x does not appear in the integrand, equation (7) tells us that 
n 

'i' a1! • .an-1! = 
l (n+L)! 
a 

(n!L) l 
a 

a1! •• an-1! 
(n-l+L)! 

•• (32) 

It should not be too difficult to remember that equation (32) is valid only 

if ik(n for all k, since we never deal with integrals Sn_ 1(i1,••,iL) for 

which ik)n-1. Now suppose that one of the ik in (i1, •• ,il) is equal ton. In 

this event relevant integrands may be written in the form (il,••,iL-1,n) = 

( al an-1 i 1, •• ,iL-1) •(x 1+ •• +xn) where (ii, •• ,iL-1) is a sum of terms x1 •• xn-1 such 

that a1+ •• +an-l = L-1 : 

(i1,••,iL-l•n) 'i' xa11 xan-11 l • • n- L-1 
a 
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Consequently, using equation (7), 

S (ii, •• ,il-ltn) 
n 

[n+L-1] = ( 1) ~ a1! •• an-1! 
n+L l [(n-l)+(L-1)] ! a 

This completes the first step towards ·recurrence relations for the ~ (m). In 

(32) and (33) we have expressions for the integrals S (i) in terms of 
n 

integrals S 
1
(i), and it now remains to be seen whether it is possible to 

n-
formulate similar expressions for the coefficients R (m,i). Let us first of 

n 
all consider only those coefficients such that M=n. Then there are no rogue 

k's to worry about. Once again we can divide the R (m, i) into two groups 
n 

depending on whether or not ik is equal ton for some k. If one of the ik is 

equal ton then from equation (29) we have that 

•• (34) 

It is worth recalling a few things about this formula. Firstly, the integers 

si are divided into bound sB and free sF in conformity with the type spec­

ification m, and the index F takes values from the set {l, •• ,n-1} so that 

F+l is always contained in the set {1, •• ,n}. The sF fall into chains, 

adjacent chains being separated from each oth~r by at least one sB. This 

means that if sF is the last in a chain of free sF then sF+l=sB for some B. 

That is, if F is the last free index in a chain then F+l = B for some bound 

index B. I will call those numbers sB in formula ( 34), which are such that B 

= F+l for some F, "terminal" sB. 

Consider how the numbers 1, •• ,n starting with n may be assigned to the si in 

accordance with the conditions in formula ( 34). Clearly the value n must be 

asHigned to one of the s
8

, but it cannot be assigned to a terminal s 8 since 

then we could not sati.sfy the condition sF)sF+l. Since there are mz+ •• +mn= 

m-m1 chains of free k's there are m-m1 terminal sli. Consequently, out of a 
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total of m bound sB, there are m1 which can be assigned the value n. 

Furthermore, it is a simple matter to check that, regardless of which of 

these m1 sB is set equal ton, the number of ways of assigning the remaining 

numbers 1, •• ,n-1 to the remaining si is exactly equal to the value of the 

coefficientR 
1

[(m1-l,m2,••,mn-1),(i1,••,iL-1)]. We therefore deduce that 
n-

R [(m1,••,mn),(i1,••,iL-1,n)] n 

m1 R 
1

[(m1-l,m2, •• ,mn-1),(i1, •• ,iL-1)] 
n-

•• (35) 

There are two aspects of this equation which may seem questionable. Firstly 

one might be perturbed by the fact that if m 1=0 the undefined coefficient 

R 
1
[(-l,m2,••,mn-1),(i1,••,iL-1)J appears on the right hand side of (35). 

n-
However the value of this coefficient ii not important because it is 

multiplied by m
1
=o. If m

1
=0, both sides of (35) vanish and the equation 

remains consistent. The second questionable feature of equation (35) is 

that, having thrown away the entry mn, the reduced index (m1-l ,m2, •• ,mn-1) 

may not be of standard form. That is, it may not satisfy the standard 

condition (m 1-1)+2m2+ •• +(n:-l)mn-1=n-l. In this connection note that, due to 

the condition m 1+2m 2+ •• +nmn=n, the only time that m will be non-zero is 
n 

when m1= •• =mn-1=0 and mn=l. If mn is zero we see that (m1-1)+2m2+ •• 

• • +(n-l)mn-1=n-l, so that the reduced index is of standard form. If mn is 

non-zero the reduced index is of non-standard form, but in this case m 1=0, 

both sides of (35) vanish and the equation remains consistent. 

Let us now suppose that none of the ik in Rn(m,i) is equal,to n and again 

consider how the numbers l, •• ,n may be assigned to the si in accordance with 

the dictates of equation (29). In this case it is clear that the value n 

must be assigned to a free sF. Moreover, n must be assigned to one of the sF 

in such a way as to respect the condition sF)sF+l" This means that only the 

first sF in a chain can possibly be equal ton. Consider the chains of sF of 

length J-1. There are m J of these chains and consequently there are m J ways 

of assigning the value n to an sF in a (J-1)-chain. Regardless of which of 

the leading sF in these (J-1)-chains is set equal to n, the number of ways 

of assigning the numbers l, •• ,n-1 to the remaining si is exactly 

Rn_
1

lm1,••,mJ-1+l,mJ-l, •• ,mn-1),(i1,••,iL)]. This is true for J=2, •• ,n so 
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n 

l mJ Rn_1[(m1, •• ,mJ-l+l,111J-l, •• ,mn-l),(i1,••,iL)) 
J=2 

•• (36) 

As with equation (35), any undefined coefficients which appear on the right 

hand side of (36) are multiplied.by zero and so do not contribute to the 

sum. It should be remembered that equation (36) is valid only if none of the 

ik is equal ton. We have now completed the second stage of our progress 

towards recurrence relations for those Q (m) such that M=n. Using equations 
n 

(35) and (36) we can express coefficients R (m,1) in terms of the R 
1
(m,i). n n-

All that remains to be done is to combine equations (32) and (36) and 

equations (33) and (35) to arrive at an expression for Qn(m) in terms of 

Qn_ 1(m). Noting that Rn[(m1,••,mn),(i1, •• ,iL)) is zero unless L=m where 

m=m1+m2+ •• +mn, we deduce that 

n 
= (n+m1+ •• +mn)-l [ l mJ Q~_1(m1,••,mJ-1+l,mJ-l, •• ,mn-l)] 

J=l 
•• (37) 

The recurrence relation (37) can now be employed either to prove or disprove 

postulated functional expressions for those coefficients ijn(m) for which 

M=n •. such an expression may be deduced from the easily calculated small n 

values of ij (m). In table 3 I have provided a complete set of values for 
n 

Q (m) in the cases n=l,2,3,4. Note that I have allowed M to take all values 
n 

from Oto n, not just the even ones. Moreover, since all the numbers in the 

index mare single digits for n=l,2,3,4 I have not bothered to separate them 

with commas. By staring at the values in table 4 long enough, the reader may 

conclude as I did that if M=n the coefficient Q (m) is given by 
n 

•• (38) 

This expression not only matches the figures in table 3, it is also consis­

tent with the recurrence relation (37). These two facts in conjunction 

constitute an inductive proof that (38) is the general solution for Q (m) 
n 

when M=n. liy setting n=2N and using (31) we see that 
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TABLE 3 Q (m) n = 1,2,3,4 
n 

n=l Q(O)=l Q(l)=l/2 

n=2 Q(O)=l Q(l)=l/2 Q(Ol )=1/6 Q(20)=1/ 4 

n=3 Q(O)=l/2 Q(l)=l/2 Q(Ol)=l/6 Q(20)=1/ 4 

Q(OOl)=l/24 Q( 110)=1/12 Q(300)=1/8 · 

n=4 Q(O)=l/6 Q(l)=l/4 Q(Ol)=l/6 Q(20)=1/ 4 

Q(OOl)=l/24 Q(l 10)=1/ 12 Q(300)=1/8 Q(OOOl)=l/ 120 

Q(lOlO)=l/48 Q(0200)=1/36 Q(2100)=1/24 Q(4000)=1/16 
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•• (39) 

What about the coefficients Q (m) for which o<M<n-1 ? The arguments which 
n 

led to the recurrence relation (37) may be extended to this case. In fact 

the arguments are virtually the same, except that when formulating an 

analogue of equation (36) one must allow for the fact that in formula (29) 

the value n may be assigned to one of the rogue sR. In general there are n-M 

integers sR and the number of ways of arranging them so· that they are a 

cyclic permutation of an increasing sequence of integers is n-M. It is not 

difficult to see that the possibility of the value n being assigned to one 

of the sR may be allowed for by including an extra term in equation (36). 

Thus, when O<M<n-1, (36) becomes 

M 

+ l mJ Rn_1[(m1,••,mJ-1+l,mrl, •• ,mM),(i1, •• ,iL)] 
J=2 

•• (40) 

If M=n-1, the factor [(n-M)/(n-M-1)] should be replaced by 1. When o<M<n-1, 

formulae (32) and (33) are unchanged, and (35) is also unmodified except for 

the fact that the index (mi, •• ,mn) is replaced by (m1,••,mM) on the left 

hand side of the equation, while on the right hand side (m1-l,m2,••,mn-1) is 

replaced by (m 1-I ,m 2, •• ,mM). Consequently, when O<M<n-1, the recurrence 

relation (37) becomes 

M 

+ l mJ Qn-:-l(m1,••,mJ-1+l,mJ-l, •• ,filM)] 
J=l 

•• ( 41) 

Once again, by surveying the figures in table 3, one might guess that if 

O<M<n-1, ~ (m) is given by 
n 

•• (42) 
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This expression for Q (m) may be shown to be correct using equation (41). 
n 

Finally, if one concentrates on the special case n=2N and sets M=2N-2L where 

l<L<N, ohe finds with the·help of (31) that 

•• (43) 

4.6 Evaluating A11 2 and A3/2 

Now that we are in possession of a general functional expression for the 

coefficients Q2N(m) it is natural to ask is whether c 112(n) and c 312(n) can 

be evaluated using equations (25) and (26). At first sight the answer to 

this question would appear to be no. The prescription for calculating the 

coefficients P(n,m) which was given in section 3 cannot be generalized into 

a functional expression for these quantities, and without such an expression 

equations (25) and (2b) are useless. However, closer inspection reveals that 

the situation is not quite so hopeless. As I shall now explain, the special 

form of the coefficients Q2N(m) leads to simplifications of the sums in (25) 

and (26), and it is in fact possible to evaluate c 112(n) and c 312(n). Let us 

consider cll2(n) first. When expression (39) for the spin 1/2 coefficients 

Q2N(m) is substituted into (25) one has 

cl/2(n) 
m 
l P

2
N(n,m) [-l/2!]m 1[-l/3!]m 2 •• [-l/(2N+l)!)m2N 

lmj=2N 
•• ( 44) 

m 
Recall that m=m1+m2+ •• +m2N• In (44) the factor (-1). which appears on the 

right hand side of (25) has simply been split up and absorbed into the 

factors in q 2N(m). The sum in (44) is over all possible partitions m of 

spin 1/2 k-sequences into bound and free k's, and P2N(n,m) is equal to the 

number of type m partitions of the k-sequence K(n). As was pointed out 

above, any partition of K(n) into bound and free k's must be a sub-partition 

of the form-associated partition of K(n) into even length closed chains. 

That is, if P2N(n,m) _is to be non-zero then n and m must be compatible. 

Because of this, the sum in (44) may be regarded as a sum over type m sub­

partitions of the sequence K(n). Furthermore, this sum over sub-partitions 

of K(n) may be expressed as a product of lesser.sums, each of which is over 

the sub-partitions of a single closed chain in K(n). Given the special 
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product fonn of the coefficients Q2N(m) this line of thought leads one to 

the conclusion that c 112(n) factorizes as follows 

112( ) c n1 , •• ,nN •• ( 45) 

The factors ai are given by sums similar to the one in (44) except that they 

are over sub-partitions m of k-sequences consisting of single closed chains 

of momenta. Specifically, one has 

m 
a 1 = l P

21
(m) [-l/2l]m 1[-l/3!]m2 •• [-l/(2I+l)!Jm21 

lml=2I 
•• (46) 

The coefficients P21 (m) are defined by equation (20) and their values are 

given by equation (21). When the expression on the right hamd side of (21) 

is substituted into (46) we arrive at the following formula 

•• (4 7) 

The difficulty in evaluating (47) is that the integers m1 are .constrained by 

the requirement that lml=2I. This problem can be avoided if we insert into 

the summand the delta function 

(l/ 2n) yrde ei6(m1+2m 2+ •• +2Im 21 -21) 
0 

Then t.he integers m. can be summed independently from zero to infinity 
1 

c,o i6 216 
I J de -211e l (m1+m2+ •• +m21 -1)! [~]ml[-e ]m2 al = e 
1T 

m =O m1!m2! •• m21 ! 2! 3! 
i 

2116 
[-e ]m21 
(21+1)! 

c,o . m i6 2i6 2116 
I J de -2116 l i=.!.2- _e_ + _e __ + + e ]m = e 
1T m=l m . 2! 3! (21+1)! •• (48) 

Here, a:s always, m is equal to m 1+m2+ •• +m21 • Note that no generality is lost 

by starting the sum in (48) at m=l since the condition lml=2I ensures that, 

in all of the terms which contribute to the right hand side of (47), at 
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least one of the mi i.s non-zero. The last expression for a1 can be simpl­

ified by making the change of variable 

i6 e + «!> •• (49) 

When (49) is adopted, the integral on the right hand side of (48) is 

transformed into the following contour integral around the unit circle in 

<!>-space 

a 1 = (-il/n) •• + 4> 21 ] m 

(21+1) ! 

•• (SO) 

The square brackets in (SO) contain the first 21 terms in the power series 

expansion of [([e4>-1]/4>)-1]. No further residues are introduced into the 

integrand if the tail of the expansion is added on. Therefore 

... 
(-l)m «!> 

al = (-i I/ n) s& 
d«j> ,-(21+1) l [ (e - 1) _ 1 ]m 

14>1=1 m=l m «!> 

d«j> 4>-(21+1) 
«!> 

= (il/n) 
1,l=1 

ln(~) 
«!> 

•• (51) 

The factor a
1 

can now be evaluated by partially integrating the right hand 

side of (51), and using the defining equation for the Bernoulli numbers B 
n 

.., n 
x \ x 

--1 = l Bn n! 
e - n=O 

In this way one finds that 

21 d e«I>- 1 21 "' "' ] a
1 

= (i/2n) <) d4> 4>- [d«j> ln(-4>-)] (i/2n) ~ d4> ,- [e"'(e"'- 1)-l - 4>-l 

= B21 
( 21) ! 

•• (52) 
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Finally, substituting (52) into (45), and setting n 

at the following expression for c 1' 2(n) 

n1 + •• + nN, we arrive 

•• (53) 

Now let us turn to the evaluation of c 312(n). From equation (26) we have 

c 3/ 2( n) 
m 

4N l (-l)m p2N(n,m)Q2N(m) 
lml=2N 

•• (54) 

The first term on the right hand side of (54) involves only spin 1/2 coeff­

icients P(n,m) and Q(m), and is simply equal to 4N c 112(n). On the other 

hand, the second term involves spin 3/2 coefficients P(n,m) and Q(m). The 

relevant spin 3/2 values of Q(m) are given by equation (43). Substituting 

these values into (54) we find 

c312(n) 4N cll2(n) 

N 
2 

m 
+ l l P

2
N(n,m)[-l/2!]m 1 •• [~l/(2N-21+1)! ]m2N-2L 

L=l ( 2l-l)! lml;,,,2N-21 

The sum over types m on the right hand side of this last equation is exactly 

the sort of sum that would occur in the evaluation of the spin 1/2 coeffic­

ients c 112(n) in 4N-4L dimensions, except for the fact that the coefficients 

P2N(n,m) belong in 4N, not 4N-41, dimensions. This problem can be re me died 

by using equations (18) and (19). One then finds that 

N 
2nL c3/2(n) = 4N c 112(n) + l cll2(n1,••,nL-1, •• ,nN-L) •• (SS) 

1=1 (21-1)! 

Note that, for values of 1 for which O<N-1(1, the index (n1,••,nL-l, •• ,nN-LJ 

on the right hand side of this last equation simply becomes (n1,••,nN-L)• 

Also, if n )0 then the condition lnl=N implies that nN-L+1= •• = nN = 0 in 

the full index n = (n1, •• ,nN)• Because of this we can use (53) to write the 

second term on the right hand side of (55) as follows 
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N 
= , 2nL (-l)n-l(B2)nl (~)nL-1 ( B2N )nN L~l (21-1) ! 2! • • (21) ! • • (2N) ! 

N 
4 ( , nLL) (-l)n-l(B2)nl ( B2N )nN 

l B 2! •• (iN)! L=l 2L 

N 
= -4( l nLL ) cll2(n) 

L=l B2L 

where n n1 + •• + nN• Thus 

c312(n) 
N 

= [4N - 4( l nLL )] cll2(n) 
L=l B2L 

•• (56) 

The final step in this work is to substitute expressions (53) and (56) into 

equations (3.47) and (3.48) to find the anomaly coefficients C(n). One 

should not forget that the full spin 3/2 anomaly A312 receives contributions 

both from the spin 3/2 field~ and from the spin 1/2 multiplier field F 

which appears in the Lagrangian (2.40). According to equation (2.44) 

A3/2 _ Al/2 = 
~ 

m 
l [c312(n) - cll 2(n)]T(n) 

lm[=N 

Bearing this in mind, we arrive at last at the following expressions for the 

anomalies Al/2 and A3/2 

All 2 cll2(n)T(n) 

•• ( 57) 

and 
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n 
c312(n)T(n) 

c312(n) 

N 
[ ( , nLL )]( B2 )nl ( B2N )nN 
(4N-l) - 4 i;l B2L 4.2! •• 4N(2N)! •• (58) 

Note that in these equations n is not related to the space-time dimension; 

instead it is equal to the sum n = n1 + •• + nN• The reader can verify that 

expressions (57) and (58) for the gravitational contributions to the spin 

1/2 and spin 3/2 chiral anomalies correctly reproduce the results of 

specific calculations which have been carried out in the literature. In 

particular, equation (57) agrees with the results of Kimura [5] and 

Delbourgo [6] in the case N=l, and with those of Delbourgo and Jarvis [7] 

and Alvarez-Gaume and Ginsparg [8] in the case N=2. Similarly equation (58) 

agrees with the results of Nielsen et. al. [9] and Christensen and Duff [10] 

in the case N=l, and with the results of Alvarez-Gaume and Ginsparg [8] in 

the case N=2. 

When equation (57) was first published [2] it was the only explicit 

expression for the gravitational contribution to the spin 1/2 chiral anomaly 

in arbitrary space-time dimensions. Prior to its appearance the value of 

this anomaly had been given only in implicit A-genus form [11]. Since then 

both equations (57) and (58) have been reproduced by Endo and Takao [12] 

using path integral methods, and Delbourgo and Matsuki [13] have also shown 

how to derive them from topological generating functions for the anomalies 

[14,15,16]. Note that, while my results agree exactly with those of 

Delbourgo and Matsuki [13], they differ slightly from the expressions 

obtained bu Endo and Takao [12]. Specifically, Endo and Takao's expressions 

for the anomalies do not contain the factors (-l)n that appear in equations 

(57) and (58). 
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4.7 Conclusion 

There are now many ways of calculating anomalies using either Feynman 

diagrammatic methods [11,17) or elegant path integral and topological 

techniques [8,12,18). None of these approaches reduces the problem of 

calculating anomalies to a triviality, however the path integral and 

topological methods enjoy certain advantages. Firstly, these methods employ 

very compact notation. This renders the derivation of anomalies both clearer 

and simpler, and the connections between anomalies and symmetry breakdown or 

regularization are generally more easily seen. Of course, one does not avoid 

hard work altogether by using path integral or topological methods. In 

topological methods, for instance, one must still fix the constants that 

occur in front of differential geometric expressions, or calculate anomaly­

associated topological indices. Similarly, in the heat kernel method, a path 

integral technique, one must calculate the heat kernel coefficients ai and 

this is in general not a trivial problem. However, all things considered, 

path integral and topological techniques of anomaly calculation are much to 

be preferred to Feynman diagrammatic methods provided one is sure how to 

apply them, and provided one is confident of the answers that they give. 

If, on the other hand, one is unsure how to apply these techniques, or in 

doubt as to whether the assumptions that they embody are valid, then one is 

forced to turn to diagrammatic methods of anomaly calculation. In the final 

analysis, diagrammatic methods are the only ones which are completely 

trustworthy. For example, it was pointed out in chapter 1 that Fujikawa's 

path integral derivation of the ABJ anomaly relied upon the assumption that 

the effective action was invariant under chiral transformations. This 

assumption was justified a posteriori when Fujikawa's analysis reproduced 

the results of earlier Feynman diagrammatic calculations. It was only after 

the validity of Fujikawa's procedure had been established in this fashion, 

by making contact with the results of diagrammatic calculations,· that one 

could feel confident of extending his methods to other situations. 

Diagrammatic techniques played a similar role in establishing the truth of 

the postulate that anomalies are nothing but cocycles descended from higher 

dimensional Chern-Pontryargin densities [19). The validity of this postulate 

could be verified only through explicit diagrammatic calculations. Other 
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methods of anomaly evaluation (especially, in this case, methods of the 

differential geometric variety [20]) were upacceptable as they all 

incorporated some untested assumption about the form of the anomaly. For 

these reasons diagrammatic methods of anomaly calculation, such as the one 

described in this thesis, cannot be neglected in favour of other more 

elegant techniques. Although, in comparison with these other techniques, 

they are often lengthy, cumbersome and ugly, they will in all probability 

continue to be an important investigatory tool so long as anomalies require 

investigating. In view of the importance of anomalies within many aspects of 

theoretical elementary particle physics, this should be for some time yet. 
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APPENDIX 1. Conventions 

Throughout this thesis I work in Minkowski space of dimension d=2n. (When 

dimensional regularization is used, the dimension is continued from d=2n to 

d=2t.) The flat space metric of this space-time is as follows 

n = diag(l,-1, •• ,-1) 
!JV 

Derivatives with respect to cont,ravariant (xlJ) or covariant (xlJ) coordinates 

are usually abbreviated 

a 
ax 

IJ 

and summation over repeated Lorentz (greek) or spatial (latin) indices is 

understood 

V•W 

Bold faced letters are reserved either for spatial vectors 

V = (VO,V) 

or for the indices n = (ni, •• ,nN), m = (mi, •• ,mM) and i = (ii, •• ,iL) which 

aredescribed in chapters 3 and 4. When moving between coordinate and 

momentum spaces my convention will be that 

IJ . all 
p - 1. 

The totally antisymmetric Levi-Civita tensor in 2n dimensions is defined by 

the following expression 

l 
+l if (1J1,• 0 ,IJ2n) is an even permutation of (O,l, •• ,2n-1) 

eY l • • IJ 2n = -1 if (1Ji, 00 ,IJ2n) is an odd permutation of (0,1, •• ,2n-l) 

0 otherwise 
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In 2n-dimensional Minkowski space the algebra of Dirac gamma matrices is 
n n 

generated by the identity and 2n independent 2 x2 matrices Y0 ,Y 1, •• ,Y 2n-l" 

As usual, these matrices satisfy the anticommutator relation 

Note that Y
0 

is hermitian, while the Yi are anti-hermitian 

Y-i:° = -y. 
1 1 

This means that the chiral matrix r-l 

is hermitian. Also, we have 

(r-1)2 = 1 

The antisymmetric a-matrices are defined as follows 

In general, I will signify that the antisymmetric product of a number of 

Y-matrices has been normalized by putting the commutator brackets around the 

space-time indices carried by the Y-matrices. Thus 

la P 6) 
l l -y 
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APPENDIX 2. Spin 3/2 Lagrangians 

Consider a Rarita-Schwinger vector-spinor field $
0 

of mass m [l). The most 

general first order, hermitian Lagrangian which can be constructed for this 

field ind-dimensional momentum space is [2) 

•• (1) 

The constants A,B,C in (1) are real numbers. (One can actually replace the 

( a B a B) a B - a B -term A p y + y p with Ap Y + AY p where A is now a complex number and A 

is its complex conjugate. However I will not consider this possibility.) 

There are two things which we require of the above Lagrangian. Firstly, L 

must lead to the usual equation of motion for $
0

: (,S-m)ljl
0 

= O. Secondly, 

the theory which L describes must be of purely spin 3/2 content. Observe 

that, in addition to a single spin 3/2 representation, the field W
0 

carries 

two spin 1/2 representations of the Lorentz group. Ou~ second condition on L 

therefore translates into the requirement that these two spin 1/2 represent­

ations drop out of the theory's dynamics. In effect, this means choosing the 

constants A,B,C so that the equations of motion imply that p•ljl = Y•ljl = 0 

(p•ljl = p
0

$0 etc.) [1]. Let us now see how this may be done. By varying ~a in 

(1) we arrive at the following Euler-Lagrange field equation 

•• ( 2) 

Obviously, if we can arrange things so that p•ljl = Y•ljl = 0 then equation (2) 

will lead directly to the desired equation of motion for ljl
0

• We need 

therefore ~oncentrate on satisfying only the second of the above two 

conditions on L. Acting on equation (2) from the left with the two operators 

p0 /p and ya one finds that 

1 
[(A+l)p - mJ t, p•ljl + [(A+B)p + cm] Y•ljl = 0 •• ( 3) 

1 
[(Ad+2)p]] p•ljl + [(Bd+A-l)p + (Cd-l)m] y•ljl =O •• ( 4) 
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lJ 
In deriving equation (4) I have used the fact that ind dimensions Y Yl.l = d. 

Clearly the relations p•$ = Y•$ = O will emerge from (3) and (4) provided 

[(A+l)p - m][(Bd+A-l)p + (Cd-l)m] - [(Ad+2)p][(A+B)p +Cm]* 0 

That is, we require 

[Cd-l]m2 + [C(d-2)-Bd-2A)pm + [A 2(1-d)+B(d-2)-2A-l]p 2 t O •• ( 5) 

At this stage one runs into a difficulty. Generally speaking, regardless of 

the values of the cons tan ts A, B and C, there will be two values of m for 

which the quadratic expression on the left hand side of ( 5) vanishes. The 

usual response to this problem is to insist that things be contrived so that 

both of these values of m are equal to zero [ 2] • Then,· provided ( Cd-1) is 

non-zero, the only Lagrangians which will be troublesome, in the sense that 

they do not lead to the conditions p•$ = Y•$ = 0, will be the massless ones. 

Obvious:J._y, if both roots of the quadratic polynomial on the left hand side 

of (5) are to be zero, the coefficients of pm and p 2 must vanish identic­

ally. This leads to the following expressions for Band C in terms of A. 

(d~2) [(d-l)A2 + 2A +1] •• ( 6) 

C = d(!-2) [d(d-l)A 2 + 4(d-l)A + d] •• ( 7) 

Clearly the orginal freedom in the Lagrangian (1) has already been limited 

to the ability to arbitrarily fix the value of the single parameter A. We 

must still check to see whether condition (5) holds. When (6) and (7) are 

used to express Band C in terms of A, (5) becomes 

•• (8) 

Thus the Lagrangian (1) is acceptable as long as equations (6) and (7), and 

the inequality (8), are all respected. This leaves us with the .following one 

parameter set of Lagrangians for the field$ [2) a 
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- aS ( a S a S ) 1 ( 2 ) a S L = IJla[n (p-m) + A p y + y p + (d-2) (d-l)A + 2A + 1 Y PY 

•• (9) 

The parameter A can take on all real values except -2/d. For this one 

special value of A the Lagrangian (9) does not lead to the conditions p•IJ, = 

y•IJ, = O. This tends to suggest that if A= -2/d, the theory described by L 

is not a purely spin 3/2 theory and may contain propagating spin 1/2 degrees 

of freedom. One can find the 21-dimensional coordinate space versions of the 

Lagrangians (9) by setting d=21 and making the replacement pµ + iaµ. They 

are 

m ( 2 ) a SJ + (Zl-2)2 21(21-l)A + 4(21-l)A + d y Y IJ,S 

Once again, the parameter A can assume any real value except A = -1/ 1. The 

above 21-dimensional Lagrangians are introduced and examined in chapter 2. 
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APPENUIX 3. Ricci-Flat Space-Times 

Space-times within which the Ricci tensor Rµv is uniformly zero are referred 

to as being Ricci-flat. Such space-times are worth considering in relation 

to the material of this thesis because the condition 

0 •• (1) 

simplifies the commutator of gravitationally covariant derivatives. In fact 

I shall now show that, if condition (l)_ holds, the commu·tator of two 

derivatives is zero provided that (i) the derivatives act upon a spin 1/2 

field, and (ii) at least one of the derivatives is contracted with a gamma 

matrix. To see that this is so, consider a spin 1/2 field A. The form of a 

covariant derivative acting on A is detailed in equation (2.5). In general 

one can write (1) 

a6 where o is the antisymmetric product of two gamma matrices 

O a6 = 1 [ya y 6 ] 4 , 

and R 
6 

is the Riemann tensor [ l). From (2) we have 
pKa 

Now note the following gamma matrix result 

•• ( 2) 

•• (3) 

•• (.4) 

[a p 6) 
In (4) the quantity y y y is the normalized totally antisymmetric product 

of three gamma matrices 
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Recall that the Ricci tensor is defined in terms of the Riemann tensor by 

the equation [ 1) 

R 
µ\I 

R A 
µ v>. 

and that the Riemann tensor possesses the following symmetries 

R 
aBy6 - R 

Bay6 

Substituting (4) into (3), and using (5) and (6), one finds that 

•• ( 5) 

•• ( 6) 

•• ( 7) 

•• (8) 

In view of (7) the second term on the right hand side of (8) is zero, and if 

we take condition (1) to hold, then the first term vanishes too. Thus 

y
0 [D ,D ]A= 0 

p K 
•• (9) 

This result is relevant to the work contained in the thesis for the 

following reasons. In chapter 2 I argue that it is highly desireable to 

calculate the spin 3/2 anomaly and demonstrate its gauge independence in two 

non-standard formulations of spin 3/ 2 theory. Without going into de tails, 

the spin 3/2 calculation attains its simplest form in the A=O formulation, 

while in the A=-1/i formulation the gauge independence of the spin 3/2 

anomaly becomes evident. In flat space the A=O and A=-1/t formulations of 

spin 3/2 theory are related to the conventional Rari ta-Schwinger ( A=O) 

formulation by field transformations of the form (2.22). Fairly obviously, 

the work in this thesis is based on the assumption that the anomaly is the 

same in all formulations of spin 3/2 theory. This assumption is entirely 

reasonable provided the different formulations can be related to each other 

via simple transformations of the field variable. It therefore becomes 

important to show that the various formulations of spin 3/2 theory are so 

related, not only in flat space, but in curved space as well. 
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In general this task is a difficult one precisely because covariant 

derivatives do not commute. Were we able to assume that covariant 

derivatives do commute, the field transformations which connect the 

different formulations of spin 3/2 theory in curved space would be 

obtainable from their flat space counterparts simply by replacing flat space 

derivatives with covariant derivatives. The importance of equation (9) is 

that it tells us that, when the Ricci tensor vanishes, covariant derivatives 

do effectively commute. The. reader may check for himself that, if a 

commutator of covariant derivatives arises when a spin 3/2 Lagrangian is 

transformed under a field transformation of the form (2.22), then the 

commutator always acts on a spin 1/2 quantity, and at least one of the 

derivatives is always contracted with a gamma matrix. Hence (9) applies and 

we can effectively set [DP,DK) = O. 
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APPENDIX 4. Gamma Matrix Formulae 

An algebra of Dirac gamma matrices exists in any d-dimensional space-time. 

However, the algebra contains an analogue of the four-dimensional chiral 

matrix Ys only in even dimensions. In this appendix I will therefore 

restrict myself to space-times of dimension d=Zn. In this case the gamma 
n n 

matrix algebra is generated by the identity and Zn independent Z x2 

matrices Yo,Y1,••,Y2n-l• As usual these matrices satisfy the anticommutator 

relation 

•• (1) 

where n = diag (1,-1, •• ,-1). Equation (1) may be used to show that the trace 

of the product of an odd number of gamma matrices is zero. On the other 

hand, it can also be used to show that if,= a Yµ then µ 

2n 

tr[,1 .. •,2n] = I· (-l)i a1•ai tr[ll2° 0 ii-l,i+l••i2n] 
i=Z 

•• (2) 

The Zn-dimensional matrix r-1, which corresponds to the four-dimensional 

matrix Ys, is given by the product of all Zn Yµ 

.n+l 
1 YoY1° 00 Y2n-l •• (3) 

When applying dimensional regularization to a Zn-dimensional theory, one 

analytically continues tl;le dimension d from its "base" value d=Zn to its 

continued value d=Zi. In this case the correct analytically continued 

expression for r-1 has been shown [l] to be 

•• ( 4) 

where~ is any totally antisymmetric tensor which tends to the Zn-dimens­

ional Levi-Civita £-tensor ·in the limit i+n 

+ 
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Of course, the matrices Yµ in (4) are 21-dimensional, rather than Zn-dimens­

ional, gamma matrices. Consequently they satisfy the relation YµYµ = 2t, not 

yµy = 2n. Note that, as one would expect, the expression (4) becomes equal 
µ 

to (3) in the regulator limit t+n. I now wish to derive some results for the 

analytically continued matrix r-l in 21-dimensions. The first of these 

results follows directly from equation (2) and the antisymmetry of the 

tensor ~ 

m<n •• ( 5) 

By again employing equation (2) one obtains a simple corollary to (5) 

[ -lJ ( n+l t tr (J. 1 • •• ;. 2n r = - -i ) 2 ~ • a l • •• a 2n •• (6) 

Here I have adopted a fairly obvious dot notation in which, for example, 

A third result concerns the commutator [Yµ,r- 1]. In 2n dimensions this 

commutator would be equal to 2Yµr- 1• However, in 2t dimensions one can use 

equations (1) and (4) to show that 

2i
n+l 

caµl•••µ2n-l .. y ••• y 
(2n-l)! µl µ2n-l 

•• ( 7) 

Once again arguments similar to those by which we obtained equations (5) and 

( 6) lead us to the conclusion that 

•• ( 8) 

Finally we can use results (6) and (8) to progressively commute /! 1 through 

the matrices in the trace tr[/!1 ••• /!2n+dli2n+2,r-1}]. In this way one arrives 

at the ful lowing useful formula. ( Note that the anticommutator { Y µ, r-l} is 

zero in 2.n dimensions, but' acquires an anomalous non-zero value when the 

dimension is continued to d=Zt.) 
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