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ABSTRACT 

Cryptogam communities on coarse woody debris persist in forests regenerating after the 

first clearfell, burn and sow harvesting rotation due to harvest residue. The habitat 

disturbance dynamics in a regenerating forest is different from the natural wildfire 

disturbance, as is the dynamics of coarse woody debris, which, while different, also 

provides an opportunity for new bryophyte community development. How bryophyte 

communities develop in response to this new system dynamic is largely unexplored. 

Community development may depend on time since disturbance and/or the degree of 

decomposition of the coarse woody debris. For individual species and communities as a 

whole, it is not known which of these two effects dominates or what environmental 

attributes affect the resulting communities. This research attempts to tease apart these 

issues by examining the time dependent response of cryptogamic communities growing on 

coarse woody debris to first rotation clearfell, burn and sow harvesting and the relative 

significance of forest age and log decay progression on community succession. 

Subsequent to clearfelling, cryptogamic communities on coarse woody debris were 

compared from wet eucalypt forests of increasing age. There were significant differences 

in species richness and community composition between forest age and between log decay 

stage. Older forests were the most species rich. More individual species had significant 

associations with logs of intermediate decay classes than with logs of an earlier decay class. 

The ecology of individual species varied considerably for forest age and log decay class 

associations and there were distinct early, middle and late successional species identified. 

Forest climate measures of temperature and vapour pressure deficit were used as an 

indication of the variation in large scale habitat conditions over time between forests of 

each age and to examine the influence of habitat conditions associated with forest age on 

of coarse woody debris. There were significant changes over time for temperature and 

vapour pressure deficit where mesoclimatic conditions became less variable as forest age 

increased. Log moisture was a direct measure of the fine scale habitat conditions 

influencing cryptogam communities of coarse woody debris, especially in relation to log 

decay stage. Log moisture had a significant influence on bryophyte community 

composition over time and was important for determining the succession of cryptogamic 

communities when combined with mesoclimatic conditions. 



The effect of forest age and log decay stage on cryptogam communities of coarse woody 

debris suggests that both of these time dependent processes play an important role in 

community succession, and that the distinction between the two habitat variables may vary 

depending on time since clearfell, burn and sow disturbance. Fine scale community 

analysis revealed that at any forest age and at any decay stage there were significantly 

associated species. While this study has shed some light on how succession plays out in the 

first decades of the first clearfell, burn and sow rotation, it also suggests that communities 

follow a predominantly similar successional pathway as would occur in a forest 

regenerating after natural wildfire disturbance; however, it is likely that successive 

harvesting events based on 100 year rotations will result in the loss of some cryptogam 

species. Managing forests after clearfell, burn and sow for the development of mature 

stands and for actively facilitating the persistence of a range of decay stages and coarse 

woody debris habitat structures at the site and landscape levels may be appropriate, and the 

findings of this study are discussed in this context. 
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Chapter 1 — Introduction 

1. INTRODUCTION 

Although they are important components of plant diversity in forest and other systems, the 

ecology of cryptogamic land plants (mosses, liverworts, hornworts and ferns) is much less 

well known than that of their more conspicuous relatives, the angiosperms and conifers. 

This thesis covers one gap in this knowledge - the nature of ecological succession on 

coarse woody debris in managed wet eucalypt forests of Tasmania. This will be addressed 

by explaining the nature of cryptogamic land plants, the relationship between floristics and 

macro- and micro-habitat characteristics, and the state of knowledge on succession in wet 

eucalypt forests, and then presenting new results that define the nature of the succession 

after clearfell burn and sow harvesting of wet eucalypt forests in southern Tasmania. 

1.1 Cryptogam floristics 

Although placed under the umbrella term'of cryptogams, the mosses (Bryophyta), 

liverworts (Marchantiophyta), hornworts (Anthocerotophyta), lycopods (Lycophyta) and 

ferns (Pteridophyta; including psilophytes and sphenophytes) represent separate lineages 

within the plant kingdom (Goffinet et al. 2009). Their distinction from other land plants is 

that (with rare exceptions) the haploid gametophyte is the ecologically dominant phase of 

the alternation of generations (Crandall-Stotler et al. 2009; Goffinet et al. 2009; Renzaglia 

et al. 2009). Within the cryptogamic flora, mosses, liverworts and hornworts (collectively 

bryophytes) differ from ferns and lycophytes because of their lack of vascular tissues 

(Crandall-Stotler et al. 2009; Goffinet et al. 2009; Renzaglia et al. 2009). Although the 

groups of cryptogams are structurally and phylogenetically different, they have a similar 

ecological preference of habitat (Garrett 1996; Proctor 2000). 

The bryophytes comprise the great bulk of cryptogamic diversity in the systems studied, 

and receive particular attention in this thesis. There are no lycophytes present in the current 

study system, so they will not be considered further. 

Together, cryptogams are important components of forest ecosystems contributing to forest 

structure, moisture dynamics, forest humidity, nutrient cycling and providing habitat for 

other organisms (Turner and Pharo 2005). They make a significant contribution to plant 

diversity in boreal and temperate forests where they occur on a variety of substrates that 

may include trees, rocks, soils or decaying logs (Cole et al. 2008; Rudolphi 2007; Turner 

2005). There are approximately 11000 ferns worldwide and 87 of these are native to 

Tasmania (Buchanan 2009). Worldwide, bryophytes exceed the number of ferns with 
1 



Chapter 1 — Introduction 

approximately 5000 liverwort species (Crandall-Stotler etal. 2009), 13000 moss species 

(Goffinet et al. 2009) and 150 hornwort species (Renzaglia et al. 2009). In Tasmania, there 

are approximately 450 moss species (Buck etal. 2002; Moscal and Kirkpatrick 1997) and 

300 liverwort species (Ratkowsky 1987), although these numbers are still under revision 

(Dalton et al. 1999). 

1.2 Ctyptogam habitat relationships 

Bryophyte distribution and abundance is largely dependent on forest and substrate climatic 

conditions including humidity, temperature and exposure to wind and light (Ashton 1986; 

Pharo and Beattie 2002). Bryophytes have a close relationship with their environment at 

both the macrohabitat and microhabitat scales. There is a wide range of tolerances for 

environmental variation among species due to most species' dependence on external water. 

Much of the extraordinary diversity of bryophyte morphology appears to be the result of 

individual species' adaptations to their environment based on external water as a primary 

resource. 

Much of the ecological variation in bryophytes is related to their diversity of morphology. 

They range from various leafy to thallose arrangements mostly existing in a colonial 

growth form. All are small herbaceous plants which lack lignin and this difference in 

structure and scale to tracheophytes results in a major difference in physiology (Proctor 

2000). Bryophytes are largely dependent on water present externally on the plants 

themselves and most bryophytes conduct water and metabolites through diffusion (Proctor 

2000). Indeed these species can take up water and nutrients over the whole surface of the 

plant, often by means of specialised structures such as external capillary spaces around leaf 

bases, by thick mats of rhizoid tomentum or in channels on the leaves (Proctor 2000). The 

life history of the bryophyte is markedly influenced by environmental conditions as well. 

There is a reliance on an aquatic medium for fertilisation while spore dispersal is 

dependent on particularly favourable environmental conditions that vary depending on the 

species (Goffinet et al. 2009). Some species require lower humidity than is normally 

required to trigger the release of spores, with some species requiring wind for passive 

dispersal (Goffinet et al. 2009). Other species are more dependent on high moisture 

conditions and require high humidity or rain events (Goffinet et al. 2009). 

This dependence on potentially unpredictable and highly variable external water makes 

bryophytes susceptible to environmental variation. Most bryophytes photosynthesise and 
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Chapter 1 — Introduction 

grow when the environment is moist and water availability, is not limiting (Proctor 2000). 

Protection from wind and sunlight damage is important in maintaining moisture conditions 

suitable for plant growth and success. Temperature and heat associated with evaporation 

on the plants themselves caused by external sources and photosynthesis contributes to the 

complexity of bryophyte water relations (Proctor 2000). Growth habits of many species, 

such as dense mats or cushion-like forms can increase plant boundary layer protection and 

optimise growing conditions (Proctor 2000). Still, many bryophytes dry out in equilibrium 

with the surrounding environment where the water content of plant cells varies passively 

with external water conditions — a physiological condition called poikilohydry (Malcolm 

and Malcolm 2006). Poikilohydry makes desiccation tolerance essential in many 

bryophytes because this allows them to tolerate drought periods by shutting down 

metabolism when moisture conditions are unfavourable (Proctor 2000). Another benefit of 

desiccation is that species tolerance to extremes of temperature is increased when they are 

dry rather than wet (Proctor 2000). The close relationship between plant growth, 

reproduction and water availability means that bryophytes are highly dependent on the 

moisture conditions of their surrounding environment. This is why macrohabitat and 

microhabitat conditions are so important in determining bryophyte species distribution and 

abundance. 

Unlike the bryophytes, ferns are vascular plants in which the sporophyte possesses well 

developed shoot and root structures and, therefore, have internal water and nutrient 

transport systems that allow them to grow larger than bryophytes and be less dependent on 

the surrounding environment (Raven et al. 1992). The gametophyte generation consists of 

an undifferentiated prothallus, where sexual reproduction of the ferns occur, whose 

survival is dependent on suitable microenvironmental conditions (Raven et al. 1992). 

1.3 Cryptogam habitats 

Diversity in forest ecosystems is influenced by many habitat factors, at both the 

macrohabitat and microhabitat levels (Pharo and Beattie 2002; Vitt and Belland 1997). 

Macrohabitat and microhabitat variation increases habitat diversity and has been shown to 

• determine extensive cryptogamic diversity through a complex forest landscape with an 

abundance of different habitats (Pharo and Beattie 2002; Turner and Pharo 2005). The 

variation in microhabitats is particularly important for cryptogam species diversity because 

many species have specific habitat preferences within general habitat types (e.g. forest). 

3 



Chapter 1 — Introduction 

This is determined by their suitability to particular environmental conditions and their 

capacity to tolerate variations in these conditions (Catcheside 1980). 

Within general habitats there are microhabitats which include various substrate types. 

Cryptogam species are often classified into functional groups based on substrate 

preferences. These include epiphytic, terrestrial, epilithic, epiphyllous and epixylic 

cryptogams (Ashton 1986). A diversity of microhabitats will allow for a wide range of 

species preferences and encourage species diversity. 

Epiphytic bryophytes and ferns grow on stems, trunks and branches of living vascular 

species and are most abundant in moist areas (Bates 2000). Epiphytes often have a high 

degree of host specificity because of their susceptibility to environmental variation on 

these relatively exposed substrates. Jarman and Kantvilas (2001), in a study on the 

understorey habitats in Tasmanian wet eucalypt forests, found that diversity of bryophytes 

on trunks of Eucalyptus obliqua was dependent on bark thickness and texture. This is 

consistent with a study by Ashton (1986) on the ecology of various bryophyte communities 

in Eucalyptus regnans forests in Victoria. Ashton (1986) found that different bryophyte 

communities were present on trees with different bark types and on trees of different ages. 

This was because, as a tree ages, the bark thickens and is more water retentive, which in • 

turn buffers species from humidity fluctuations in the surrounding forest environment. 

Jarman and Kantvilas (2001) found that epixylic bryophyte communities were less 

abundant with distance from the ground, indicating a close relationship with the 

surrounding environment where conditions close to the ground are more favourable for 

growth on a substrate with little water holding capacity. 

Jarman and Kantvilas (2001) found that terrestrial bryophyte distribution on soils was 

dependent on the density of the surrounding vascular plant species, the amount of 

accumulated litter on the soil surface and the effect of the chemical composition of this 

litter on the soil substrate. These habitat conditions either reduce substrate availability or 

make substrate patches unsuitable for bryophyte growth. Ashton (1986) also found that 

bryophytes were affected negatively by litter accumulation, being most abundant on 

sloping areas where there was less litter. 

Epiliths inhabit rocks and boulders where the size and contour of the substrate is important 

for species abundance and distribution (Ashton 1986; Bates 2000). Ashton (1986) found 

4 



Chapter 1 — Introduction 

that the slope of the rock determined the amount of litter accumulation and therefore the 

degree of inhibition of bryophyte growth. 

Epiphyllous bryophytes are those that grow on the leaves of other plants, occurring in 

moist habitats with consistently humid environments (Bates 2000). Most are small short-

lived species including mainly specialist liverwort species though there are also many 

facultative epiphyllous mosses (Bates 2000). 

Of particular interest to the present study are epixylic species, which occur on logs and 

other woody debris (Bates 2000). The quality of a log is important in determining 

community composition and abundance. Crites and Dale (1998), in a study on epixylic 

communities in relation to characteristics of the substrate, found that species tend to 

colonise the log once decay has progressed from its early stages where bark is still present, 

and that communities were more abundant on logs in advanced stages of decay and of 

large diameter. These logs provided a greater array of suitable substrate patches than 

smaller and less decayed logs. On a macrohabitat scale, the diversity and structural 

complexity of habitats contributes to the abundance and quality of potentially suitable 

substrates. This in turn provides a diversity of habitats within and between substrate types 

that allow for the occurrence of a diversity of species from a variety of functional groups. 

1.4 Macrohabitats and microhabitats in forests 

Forest structural complexity is the combination of one or more forest structural attributes 

and their spatial arrangement (Lindenmayer et al. 2002). This structural complexity is an 

important foundation for species diversity because it provides a variety of microhabitats 

and substrates for a wider range of species to occur (Lindenmayer et al. 2002). Structural 

attributes include the range of substrates, ground cover, understorey and overstorey 

vascular plants (Lindenmayer et al. 2002). 

Vascular plants create the large scale structure of the forest and have a direct affect on the 

surrounding environment (Ashton 1986). As the forest structure changes over time, largely 

due to changes in the vascular community, so does the nature of the forest microclimate 

(Kantvilas and Jarman 2004). Forest age partly determines the composition of the vascular 

community and, consequently, important ecological factors including canopy cover, 

microclimate and forest structural diversity (Kantvilas and Jarman 2004). Because of this, 

different vascular plant communities may be expected to have different associated 

bryophyte flora. A diverse forest landscape has a wide variety of cryptogam communities 
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due to different environmental attributes and species interactions with this environment 

(Ashton 1986; Hylander etal. 2002). Crites and Dale (1998) found that bryophyte 

communities were different between forest ages in boreal forests suggesting that time and 

associated time-dependent forest variables such as structure and substrate heterogeneity 

were important influences on bryophyte community composition. Pharo and Beattie (2002) 

found that time since fire was important in determining bryophyte community composition, 

presumably because of the development of vascular communities in the surrounding forest 

and its increasing structural complexity. 

Habitat heterogeneity is the variation in habitat types and is largely a function of forest age 

and substrate diversity, both within a substrate type and between substrate types (Cooper-

Ellis 1998; Kantvilas and Jarman 2004; Lindenmayer et al. 1999; Newmaster et al. 2003; 

Rambo and Muir 1998; Turner etal. 2006; Turner and Pharo 2005). Many substrate types 

contribute to the structural complexity of a forest and allow for a range of microhabitats for 

forest organisms. Cryptogam diversity and abundance is directly related to the quality of 

the substrate and whether it provides a suitable habitat (Pharo and Beattie 2002; Turner and 

Pharo 2005). Pharo and Beattie (2002), in a study of species diversity in Tasmanian wet 

eucalypt forests, found that species composition of bryophytes was related more to 

substrate type (microclimate) rather than site type (macroclimate). If the abundance of 

substrates is high, it is more likely that a wider range of microhabitats will be available to 

accommodate a wide variety of species' specific substrate preferences. Turner et al. (2006), 

in a study on bryophyte relationships with environmental and structural variables in old 

growth temperate forests, found that a high abundance of substrates was important for 

species diversity and determining bryophyte community assemblages. 

1.5 Coarse woody debris 

Coarse woody debris is a generic term covering logs and other macroscopic fragments of 

wood (Woldendorp et al. 2005). The fragments can range in size from smaller stems and 

branches down to approximately 10 cm in diameter up to logs that are metres in diameter 

and tens of metres long (Ashton 1986; Woldendorp etal. 2005). Coarse woody debris also 

includes material at all states of decay, ranging along a continuum of decomposition from 

freshly fallen logs to material so decayed that it is virtually unrecognisable as wood. These 

are often categorised into 'decay stages' that indicate the relative amount of decay and vary 

from logs of decay stage one, with virtually no decay, up to decay stage five, which 

consists of logs that are almost completely decomposed (Grove et al. 2002). Logs can take 
6 
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many decades to reach advanced stages of decay depending on the climatic conditions of 

an area (Crites and Dale 1998; Soderstram 1988a), with higher temperatures and moist 

conditions known to increase the rate of decay (Crites and Dale 1998; Soderstrom 1988a). 

Coarse woody debris can provide a diverse range of microhabitats, and is among the most 

important substrates for the diversity of forest organisms, influencing species composition 

and functioning as a nutrient resource. This substrate provides essential habitat for wood-

inhabiting fungi and saproxylic beetles, as well as a substrate for a wide range of 

organisms that include bryophytes, lichens, ferns, birds and shelter for mammals (Harmon 

etal. 1986; Heilmann-Clausen et al. 2005; Lindenmayer etal. 1999; Pharo and Blanks 

2000). 

Coarse woody debris encompasses a variety of dead forest biomass including dead 

branches, fallen trees and stumps, which are important structural components of forest 

ecosystems (Sturtevant et a/. 1997; Woldendorp et al. 2005). Logs are important in many 

ecological and physical processes such as nutrient cycling, moisture retention and carbon 

storage (Banks and Bennett 2003; Harmon etal. 1986; Sturtevant et a/. 1997). As a 

temporary substrate that undergoes the process of decay, coarse woody debris alters over 

time (S6derstr6m 1988b). In a natural system, the continual recruitment of new logs from 

falling trees and log decay progression provides a constant supply of wood in a variety of 

conditions (Soderstrom 1988b). 

The amount and quality of coarse woody debris in a forest is dependent on disturbance 

history and the structural dynamics of a particular stand of forest (Woldendorp et al. 2005). 

Material can be added or removed by disturbances such as wildfire, windthrow and timber 

harvesting (Woldendorp et a/. 2005). Variation in coarse woody debris is important for 

maintaining rich cryptogam communities that require logs in various stages of decay, with 

large logs in more advanced stages of decay supporting the most diverse communities 

(McAlister 1995; Pharo and Beattie 2002; Rambo 2001; Soderstrom 1988b). Cryptogam 

vegetation on coarse woody debris varies with moisture content of the wood which is 

closely linked with decay stage (Andersson and Hytteborn 1991). Many stages of decay 

may be observed on a log which contributes to the ability of this substrate to accommodate 

variation in species preferences for particular microhabitats (Grove et al. 2002). This 

allows many different species to occur on any given log and, consequently, in one forest 

area, therefore increasing forest diversity (Sturtevant et a/. 1997). Coarse woody debris in 

temperate forests is one of the substrates with the greatest number of associated bryophytes 
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(Grove et al. 2002). Approximately 165 species are known to occur on logs in southern 

Tasmanian wet sclerophyll forests (Grove et al. 2002), although it is plausible that this 

number will increase with greater knowledge. Jarman and Kantvilas (2001), in a study on 

the diversity of bryophytes in wet eucalypt forest in relation to substrate type, recorded 59 

bryophyte species on Eucalyptus obliqua logs, which made up a significant proportion of 

the bryophyte flora in these forests. Turner et al. (2005), in a study of a similar forest type 

in Tasmania, found that many of the species that make up the abundant bryophyte flora in 

these forests are specifically associated with a particular substrate type, and that this can be 

influenced by the age of a forest. 

1.6 Forest succession 

Succession theory forms one of the foundations of modern ecology and conservation 

biology, and is crucial for the understanding of how an ecosystem responds to forest 

disturbance such as timber harvesting, as well as to the patterns and processes linked to 

forest regeneration (Rudolphi 2007). The classic view of succession is the predictable 

accumulation and replacement of species assemblages over time, beginning with 

colonising species and finishing with the development of a community of species that are 

characteristic of mature vegetation (Clements 1916). This theory was built upon by Egler 

(1954) in describing initial floristic composition, and how succession is driven by 

individual species attributes as well as community interactions. This initial floristic view of 

succession is based on the influence of propagules from the pre-disturbance vegetation and 

initial species immigration that determine the starting point of succession and, therefore, 

through differences in colonisation, growth and competition, determine the successional 

pathway that follows (Egler 1954). Species accumulation, however, may not be predictable 

if it is the passive cumulative immigration of species over time, which is based on random 

chance. This is part of the theory of species acting independently, making community 

composition the result of chance dispersal rather than succession (Gleason 1926). 

These theories of succession are based on a linear view of community development and, as 

such, lack the inherent complexity of real forest ecosystem processes (Taylor et al. 2009). 

What must to be taken into account is the added effects of environmental variation in time 

and space that are linked to ongoing disturbance regimes (Taylor et al. 2009). The multiple 

pathway approach to succession theory takes into account departures from expected 

pathways that were based on limited earlier linear successional theories (Taylor et al. 

2009). Succession is multi-dimensional and involves multiple pathways and mechanisms 
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(Taylor et al. 2009). In this multiple pathway approach to succession, the pathway is the 

replacement of species assemblages and accumulation of species over time. Mechanisms 

include other environmental attributes and species specific interactions (e.g. time, scale, 

disturbance, species' attributes and life history traits) that drive successional pathways 

(Taylor et al. 2009). The combination of these provides models of predictable successional 

pathways that describe the relationships between mechanisms and various successional 

stages and take into account what may have been considered departures from predicted 

community development based on the classical views of succession (Taylor et al. 2009). 

1.7 Cryptogamic land plant succession on coarse woody debris 

Multiple pathway models describe forest succession through species attributes, community 

dynamics, environmental conditions, the type of disturbance and time since disturbance 

(Taylor et al. 2009). The effect of forest succession on cryptogam communities has been 

described in numerous studies. Botting and Freeden (2006) found that the microclimate in 

young forests was not suitable for the growth of most liverwort species due to the low 

water availability, low humidity and greater temperatures than occurs in more suitable 

habitats in older forests. Hylander et al. (2002) found that bryophyte assemblages were 

directly related to evaporation, where habitats protected from exposure to high intensity 

sunlight and desiccating winds maintained a consistently humid environment likely to 

promote not only species diversity, but also the growth and vigour of the bryophyte 
community. 

Succession on logs can be described with the inclusion of ongoing disturbance and 

accounts for the variation in species assemblages brought about by microhabitat variation 

on the scale of a single substrate patch (Ashton 1986). Coarse woody debris is one of the 

limited numbers of substrates that show a distinct case of succession (S8derstr8m 1988a). 

Decay causes many changes in the coarse woody debris substrate and each decay stage 

may be more suited to a particular suite of species. This process of continual disturbance 

means there is a continual successional replacement of species (Soderstrom 1988a). 

SOderstrom (1988a) described coarse woody debris as being a transitory substrate that 

changes during its lifetime, with the main changes that affect the substrate being the loss of 

bark and changes in wood texture that are directly related to decay stage. The texture of a 

log affects community succession because of increased colonisation rates with increasingly 

rough surfaces and moisture holding capacity (Soderstrom 1988a). 
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Of particular relevance to this study is the concept of scales in succession — the forest 

(macrohabitat) scale and the substrate (microhabitat) scale. The combination of the effect 

of two successional scales cannot be overlooked. Crites and Dale (1998) found that species 

assemblages of cryptogams on particular decay classes were different and, also, that 

assemblages for each decay class varied with forest age. They 'speculated that as well as 

time being important, forest structural attributes had an overall effect on community 

assemblages. Ashton (1986) found that the rate of succession occurring on logs is based on 

the moisture conditions of the surrounding forest, with increased rates of succession on 

logs in more moist areas. This also could be related to the process of decay, the rate of 

which is largely influenced by moisture conditions (Soderstrom 1988a). 

Different scales of succession are also important in predicting the effects of disturbance on 

communities. Ryorna and Lakka-Lindberg (2005) found that allowing for an increase in 

coarse woody debris after restoration treatments following forest harvesting would 

promote the long term persistence of epixylic species in the landscape. They show that 

implementing management strategies for a desired outcome requires the ability to predict 

the forest successional pathway on many scales. Multiple pathway models of succession 

can provide predictions of future conditions when paired with extensive, accurate 

ecological information (Taylor et al. 2009) and will result in forest management policies 

with improved relevance, application and results (Ryorna and Laaka-Lindberg 2005): 

1.8 Tasmanian forests 

Tasmanian forest is classified as Austral Montane Forest, Temperate Rainforest, Wet 

Sclerophyll and Dry Sclerophyll Forest (Jackson 1999). Varying rainfall, temperature, 

geology and topography across the state as well as different fire intervals alter 

communities and result in a floristic mosaic of Wet Sclerophyll Forests in the Tasmanian 

landscape (Jackson 1999). Wet eucalypt forests are one of the major forest communities 

and are among the most important habitat types for plant and animal diversity. 

Wet eucalypt forests cover nearly half of Tasmania and include both wet sclerophyll and 

mixed forest types. Although both these forest types have emergent eucalypts, often of the 

same species, they differ in the canopy and understorey composition. Wet sclerophyll has a 

layer of tall broad-leaved shrubs, with ferns dominating the lower strata, whereas mixed 

forests have rainforest species as a major understorey component (Wells and Hickey 1999). 

Wet eucalypt forests develop in areas of high rainfall in excess of 1000 mm per annum and 
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where there is a low fire frequency; however, fire is key to the maintenance of these forests 

(Wells and Hickey 1999). Without fire every 20 - 100 years for wet sclerophyll forest, this 

community would succeed to mixed forest as rainforest understorey species replace the wet 

sclerophyll understorey. In turn, if mixed forest remaihs unburnt for more than 

approximately 350 years, this forest will be replaced by rainforest though the death of the 

dominant eucalypt component (Wells and Hickey 1999). 

Locally, it also has been recognised that bryophytes follow a successional sequence in wet 

eucalypt forests (Turner 2003); however, past studies have concentrated on one 

successional stage or a wide variety of substrates and only recently have studies begun to 

identify the complete successional pattern of cryptogams on logs (Ashton 1986; Duncan. 

and Dalton 1982; Jarman and Kantvilas 2001; Turner 2003). Where information is 

available, it appears that there are predominantly similar species assemblages, but it is the 

relative differences in species occurrences over time within these assemblages that define 

successional patterns between forest types and forest ages. 

1.9 Management practices and impacts on coarse woody debris 

In Tasmania, wet eucalypt forests have been exploited for their hardwood timber resource 

since the 1820s (Wells and Hickey 1999). Since then, timber harvesting has gown into a 

significant component of Tasmania's economy. It has progressed from selective harvesting 

to clearfell, burn and sow harvesting, which has been the main harvesting method since the 

1960s when the market for timber and pulpwood for paper manufacturing expanded and 

the exportation of woodchips began (Hickey et al. 2001; Turner 2003; Wells and Hickey 

1999). This harvesting technique involves removing all trees in an area and then creating a 

suitable seed bed for regeneration by using a high intensity burn to remove the dense 

understorey vegetation and other harvesting debris (Hickey et al. 2001). High intensity 

burns are used to mimic a natural wildfire event which stimulates regeneration in a natural 

forest disturbance regime in these forests (Turner 2003). The suitability of this technique 

and impact on wet eucalypt forest biodiversity and structure is still being questioned even 

with its substantial use over the last four decades (Turner 2003). 

Forest harvesting modifies a forest area dramatically and consequently brings about many 

changes that affect the original forest ecosystem, such as increased light at levels beyond 

the original canopy, reduced site moisture and lower humidity, simplified macrohabitat 

structure, microclimates with increased variation in conditions and reduced availability of 
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substrates (Botting and Fredeen 2006; Newmaster and Bell 2002; Newmaster et al. 2003). 

This alteration to the forest environment, particularly the effects on substrate availability 

are of increasing concern in Tasmanian wet eucalypt forests because of the subsequent 

effects on communities (Grove et al. 2002; Hickey et al. 2001; Pharo and Blanks 2000). 

The number of suitable habitats decreases after harvesting, consequently decreasing forest 

bryophyte species diversity by reducing available habitat to suit particular species habitat 

preferences (Newmaster and Bell 2002; Newmaster etal. 2003; Soderstrom 1988a; 

Soderstrom 1988b). This, coupled with other direct changes to microclimate, such as 

reduced humidity and increased exposure, results in conditions unsuitable for bryophytes 

(Botting and Fredeen 2006). 

Coarse woody debris is of particular interest because of its importance for biodiversity of 

Tasmanian wet eucalypt forest and its susceptibility to substantial negative impacts 

brought about by forest harvesting (Grove et al. 2002). Pharo and Beattie (2002) found that 

while time since fires was a significant variable in determining bryophyte community 

composition on all substrates, logging was not significantly correlated with most substrates. 

In their study, logging was found to have significant impacts on bryophyte communities on 

coarse woody debris only where time since logging had significant effects on the amount 

of logs in advanced stages of decay. Many studies have highlighted the impact of 

harvesting on coarse woody debris heterogeneity, abundance and subsequent recruitment 

worldwide (Andersson and Hytteborn 1991; Meggs 1996; Odor and Standovar 2001; 

Rambo and Muir 1998). The pattern of coarse woody debris in managed forests includes a 

large input of logs at the time of harvesting, especially after the first logging rotation, but a 

decrease in accumulation in the longer term (Meggs 1996). The regenerating forest will 

contribute little in the way of dead wood as there are no old or dying trees contributing to 

coarse woody debris accumulation as seen in natural stands (Grove et al. 2002; Sturtevant 

et al. 1997; Turner and Pharo 2005). Loss of this structural diversity in the form of 

substrate heterogeneity may have significant impacts on associated biodiversity 

(Lindenmayer et al. 2002). 

Knowledge of the responses of forest organisms to disturbance is essential for 

understanding ecosystem stability and dynamics and contributing to better informed 

management (Astrom et al. 2007). It is important to get an in depth understanding of the 

forest landscape focusing on coarse woody debris, as it is one of the most important 

substrates for forest biodiversity. Knowing the patterns of bryophyte diversity in relation to 
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the regenerating forest habitat will provide an opportunity to minimise the impact of forest 

operations on biodiversity by informing managers of the probable implications of forest 

management plans and practices (Newmaster et al. 2003; Pharo and Blanks 2000). 

1.10 This thesis 

The present study examines regeneration of cryptogamic communities on coarse woody 

debris in wet eucalypt forests of southern Tasmania at the macrohabitat and microhabitat 

scales. The study aims to determine whether log decay and forest age each influence 

community succession in forests regenerating after clearfell, burn and sow harvesting. 

Both forest age and log decay directly influence habitat conditions and contribute 

significantly to the nature of associated plant communities. This study concentrates on 

three main hypotheses which are important for general understanding of cryptogamic 

community succession on coarse woody debris and determining focus of effective forest 

management: (1) there is a succession pattern on coarse woody debris after clearfell burn 

and sow and (a) this involves an overall increase in diversity; and (b) there are early, mid 

and late successional specialists; (2) forest age and log decay have significant independent 

effects on cryptogam community succession; (3) mesoclimate becomes less variable and 

more hospitable for cryptogams with increasing forest age, and log moisture increases with 

the extent of log decay and; (4) these changes can be associated with cryptogam 

community succession. 

Finally, these results will be compared with previously collected data from 'natural' post-

fire regeneration in the same region to assess the similarity of post-logging and post-fire 

communities at the same age (43 years), as well as to compare these with naturally 

generated old growth communities. This will provide insight into the effects of clearfell, 

bum and sow harvesting on coarse woody debris communities to help assess the impacts 

that this harvesting method might have on regenerating biodiversity in the long term. This 

information will assist in the development of effective forest management of coarse woody 

debris that will result in the desired long term objectives of balancing biodiversity and 

resource management for forest sustainability. 
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2. METHODS 

2.1 Study sites 

Data on the bryophytes and ferns growing on coarse woody debris were collected from 16 

sites in the Warra Long Term Ecological Research site 

(http://www.warra.com/warra/about.html)  and nearby areas in the Arve Valley, Southern 

Tasmania (Figure 2.1). The Warra research site was established by Forestry Tasmania to 

facilitate the understanding of ecological processes of Tasmania's wet eucalypt forests, 

specifically Eucalyptus obliqua forests. This land area is partly within the Tasmanian 

Wilderness World Heritage Area, which is managed for conservation values, and partly 

within State forest, which is managed for multiple uses including wood production. 

Table 2.1. Details of study sites. 

Site Abbreviation Forest age 
(years) 

Latitude 
(S) 

Longitude 
(E) 

Altitude 
(m) 

Transect 
length (m) 

Basal area 
(m2/ha) 

HP002C HP 8 43°14'54" 146°5716" 250 111 8 

PC085B PC 8 42°0816" 146°42'13" 150 79 0 

WROO8B WB 8 43°0542" 146°4135" 150 56 0 

WROO8H WH 8 43°0547" 146°4106" 150 34 2 

EP0790 ED 20 43°1417" 146°51'19" 550 101 58 

EP082B EB 20 43°149" 146°5312" 600 63 12 

WROO9A WA 20 43°0523" 146°40'20" 200 51 20 

WR012E WE 20 43°02'47" 146°4157" 450 85 0 

AR048H AH 32 43°06'25" 146°4557" 350 83 34 
K0009J KD 32 43°10'48" 146°52'09" 200 170 22 

WROO4G WG 32 43°049" 146°43'00" 200 114 26 

WROO7C WC 32 43°0517" 146°4232" 200 61 46 

AR014E AE 43 43°09'34" 146°4814" 200 66 46 
AR051F AF 43 43°07'06" 146°47'15" 450 188 38 

AR0641 Al 43 43°06'56" 146°5042" 200 129 38 

AR0701 AR 43 43°05'19" 146°4830" 150 117 26 
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Figure 2.1. Map of Arve River area in Tasmania showing the location of all field sites. Sites are labelled 

according to the abbreviations in Table 2.1 
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2.2. 8 year old regenerating forest. 2.3. 20 year old regenerating forest. 

2.4. 32 year old regenerating forest. 2.5. 43 year old regenerating forest. 

Figures 2.2 - 2.5. Examples of each regeneration stage of wet eucalypt forest after clearfell, burn and 

sow for each regenerating forest age used in this study. Dataloggers are shown in their protective 

covers. 
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360° 

270° 90° 

180° 

Figure 2.6. Aspect grouped into 5 classes (1 = northwest, 2 = north or west, 3 = northeast or southwest, 

4 = east or south, 5 = southeast). This is as determined by (Kirkpatrick and Nunez 1980) in a study 

researching aspect driven vegetation conditions in Tasmanian eucalypt forest vegetation. Only those sites 

occurring within the shaded aspect were assessed. 

A chronosequence-type approach (Crites and Dale 1998) was followed in this study 

because of the impracticality of directly tracking changes over the successional time 

sequence. This involved selecting sites of different times since logging, and ensuring that 

these sites were as closely matched as possible in all other characteristics except time since 

disturbance. Four sites were sampled from each of four ages of forest regenerating 

following clearfell, burn and sow in the years 1966 (43 years ± 1 year), 1977 (32 years ± 1 

year), 1989 (20 years ± 1 year) and 2001 (8 years ± 1.year) (Figures 2.2 — 2.5). All sites 

were characterised by wet eucalypt forest dominated by Eucalyptus obliqua, had soils 

overlying Jurassic dolerite, and a southerly aspect as defined in Figure 2.6 (Table 2.1). 

Basal area of Eucalyptus obliqua was calculated for each site using a prism wedge with a 

factor of 2 (Table 2.1). The monthly temperature at Warra for the 12 month period from 

April 2008 until March 2009 ranged from a mean maximum of 18.9°C in February to 

mean minimum of 1.3°C in July, and the monthly rainfall ranged from 64 mm in May to 

286 mm in September (BoM 2009). 

2.2 Data collection 

At each site, a single transect was used for log sampling, and each log was sampled where 

it was intercepted by the transect. This transect started at the first log encountered at least 

30 m from an edge and initially ran perpendicular to the coupe edge. The transect then 
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turned at right angles, alternating left and right, every 50 m until 10 logs of decay class 3 

(see Table 2.2) were sampled. Logs sampled were generated in the clearfell, burn and sow 

harvesting event. Decay stage (Table 2.2) was assessed at the point of intersection with the 

transect. This method provided a representative sample of less common decay classes in 

each different regenerating forest age, and allowed determination of the relative frequency 

of logs in each decay stage. 

Table 2.2. Decay classes (Woldendorp et aL 2002). 

Decay class 	Characteristics 

1 	Most of the bark is present 

Branches retain twigs 

Wood solid 

Wood fresh 

Wood retains original colour 

2 	Some bark may be present 

Twigs absent 

Decay beginning to occur but wood still solid 

Invading roots are absent 

3 	Bark is generally absent 

Log still supports own weight 

More extensive decay but structurally sound 

Moss, herbs, fungal bodies may be present 

Some invading roots may be present 

4 	Log can't support own weight 

Kicked log will cleave into pieces or can be crushed 

May be partially solid or some large chunks still remain 

Bark absent 

Small soft blocky pieces 

Branch stubs rotted down, can be removed by hand 

Moss, herbs, fungal bodies may be present 

Invading roots (when present) are throughout 

5 

	

	Soft and powdery (when dry), often just a mound 

Log does not support own weight 

Does not hold its original shape, flattened and spread out on ground 

Moss, herbs, fungal bodies may be present 

Invading roots (when present) are throughout 

On each log, the cover of each bryophyte and fern species were scored using modified 

Braun-Blanquet classes of percentage cover (1 = rare, 2 = <1%, 3 = 1-5%, 4 = 6-25%, 5 = 

26-50%, 6 = 51-75%, 7 = 76-100%). This percentage cover was within the exposed area 

from the entire circumference of the log, 50 cm in either direction along the length of the 
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log from the point of intersection with the transect. Log diameter also was recorded at the 

point of intersection. 

2.2.1 Species identification 

Bryophytes and ferns were identified to species level in the field where possible. 

Confirmation of species was undertaken in the laboratory based on current literature using 

both stereo and compound light microscopes and verified with samples held at the 

Tasmanian Herbarium (HO) and in collections held in the School of Plant Science, 

University of Tasmania. Nomenclature follows McCarthy (2003) for liverworts, Streimann 

(2002) for mosses and McCarthy (1998) for ferns. Voucher specimens of all observed 

bryophyte species were lodged in the School of Plant Science, University of Tasmania. 

2.2.2 Climate data 

Climate data of the forest habitat was recorded using HOBOware Pro v2 Dataloggers that 

recorded temperature and humidity. Vapour pressure deficit was calculated from 

temperature and humidity data following (von Caemmerer and Farquhar 1981). Vapour 

pressure deficit reflects the strength of the driving force for evaporation, and is therefore 

directly related to the water relations of plants. As a result, we used vapour pressure deficit 

to reflect the likely impacts of atmospheric water status on species' potential distribution 

. and abundance. Each datalogger was mounted on a stake 50 cm above the ground in a 

place where there was a 30 cm radius of space around the datalogger within 5 m of the fifth 

log of each transect (Figures 2.2-2.5). Each datalogger was placed within a protective 

cover made from a 12 cm length of standard 10 cm diameter white PVC plumbing pipe 

with a fitted white PVC cap. The datalogger was placed so that the sensor was suspended 

in free air 1 cm above the bottom of the protective cover. Data was recorded every 30 

minutes from 19th  July 2008 until 20 th  March 2009. The data was divided into five 

"miniseasons" of equal length. Miniseason 1 was winter (19 th  July 2008 — 5 th  September 

2008), miniseason 2 was early spring (6th  September 2008 — 24 th  October 2008), 

miniseason 3 was late spring (25 th  October 2008 — 12 th  December 2008), miniseason 4 was 

summer (13 th  December 2008 — 30th  January 2009) and miniseason 5 was autumn (31 st  

January 2009 — 20th  March 2009). 

Fine scale microclimate data was collected for each log on two different periods. The first 

period was between the 2nd  and 4 th  of March 2009 and the second was between the 23 rd  and 

25 th  of March 2009. The week prior to the first collection dates had a mean minimum 
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temperature of 8.9 °C, a mean maximum temperature of 19.1 °C and total rainfall of 60mm. 

The week prior to the second collection dates had a mean minimum temperature of 8.1 °C, 

a mean maximum temperature of 17.8 °C and total rainfall of 12mm. Log moisture was 

measured using TESTO 606-2 Material Moisture probes set to material "2" (wood). Log 

moisture was recorded at the top, east and west side of each log at the point of intersection 

of the transect. Each wood moisture meter reading recorded moisture 2 - 5mm into the log 

material (depending on the hardness of the wood) by electrical resistance with a resolution 

of 0.01%. 

2.3 Data analysis 

2.3.1 Species accumulation curves 

Species accumulation curves were calculated as an indication of the effectiveness of the 

sampling intensity used in the present study (a minimum of 10 logs of decay class 3 at each 

site) in representing total site diversity. To calculate species accumulation curves a log was 

randomly selected within a site and the species counted, then the species count of another 

log was added to the first log count, until all logs at a site were included in the total. This 

gave numbers of species found on 1 to n logs. This was repeated statistically 100 times for 

each site and averages were calculated. 

Species accumulation was highest between logs one and three (Figure 2.7 — 2.10), but 

continued to increase to at least ten logs in all sites. Overall, the curves indicate a lessening 

of the accumulation of species with each log sampled. The rate of continuing increase at 10 

logs was generally greatest in sites with high apparent species richness (especially the 32 

and 43 year old sites, but also 20 year old site EP079D) (Figure 2.8 — 2.10). Thus, although 

extra sampling effort at any of the sites was likely to reveal more species, the resulting bias 

was a conservative one - real differences in diversity between age classes were only likely 

to be larger than those indicated from the data collected here. 
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Figure 2.8. Species accumulation curves for the replicates of the regenerating forest aged 20 years 
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Figure 2.7. Species accumulation curves for the replicates of the regenerating forest aged 8 years 
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Figure 2.9. Species accumulation curves for the replicates of the regenerating forest aged 32 years 
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Figure 2.10. Species accumulation curves for the replicates of the regenerating forest aged 43 years 

2.3.2 Segregating the effects of decay class and regenerating forest age 

Sampling of bryophyte communities on logs that included decay class distributions was 

designed to be representative of what was present in regenerating forests. Thus analyses of 

this primary data set were used to assess and test general community differences among all 

regenerating forest ages. The primary dataset represents what was actually present in 

forests of different ages. 

However, this primary data set was unbalanced in the number of logs sampled at each site 

per decay class, and in the total number of logs sampled per site and per regenerating forest 

age. It would have been unrealistic to expect a balanced design for this research because of 

the nature of the wet eucalypt forests and the changes the forest undergoes over time 

following clearfell, burn and sow regeneration. Some decay stages are more commonly 

found in some regenerating forest ages than others due to the time dependent nature of the 

progression of decay and regenerating forest age. Logs in lesser stages of decay are likely 

to be more common in younger regenerating forests and logs with more advanced stages of 

decay are likely to be more common in older regenerating forests (Meggs 1996). Data from 

the distribution of log decay classes in forests of ages up to 43 years showed that over 90% 

of the logs found in the 8 year age class were decay class 2, approximately equal numbers 

of decay class 2 and 3 were found in the 20 year age class, logs mostly of decay class 3 

with some of decay class 2, 4 and 5 were found in the 32 year age class and predominantly 

logs of decay class 3 were found in the 43 year age class (Table 2.3). Decay class 4 logs 
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were uncommon in sites of all age classes, decay class 5 logs were only found in the 32 

year old sites and decay class 2 logs were not found at any of the 43 year old sites. 

To overcome this imbalance, two subsets of the primary data were used to assess and test 

either regenerating forest age or decay class as independent variables. The secondary 

dataset used to assess and test for the effect of regenerating forest age independent of 

decay class included data from the 20, 32 and 43 year age classes and logs only of decay 

class 3. The secondary dataset used to assess and test for the effect of decay class 

independent of regenerating forest age included data from decay classes 2 and 3 in only the 

20 year old regenerating forest. 

Table. 2.3: Total number of logs in each decay classes surveyed across the four regenerating forest ages. 

Log decay class 

Regenerating forest age 2 3 4 5 

8 ' 	60 (27.2%) 2 (0.9%) 2 (0.9%) 0 (0%) 

20 25 (11.3 %) 31(14%) 2(0.9%) 0(0%) 

32 5(2.3%) 39(17.7%) 5(2.6%) 3(1.3%) 

43 0 (0%) 40 (18.2%) 6 (2.7%) 0 (0%) 

2.3.3 Analysis of climate data 

Although the sensors were surrounded in white protective covers, the open nature of the 

regenerating forest meant that in the two sites WROO8B and WROO4G the covers were 

exposed to periods of direct sunlight at or near solar midday. Preliminary analysis of data 

from these loggers indicated that they produced anomalously high maximum temperatures 

during summer. These maxima were typically many degrees warmer than more sheltered 

sites, and were characterised by rapid increases in temperature near solar midday, followed 

by relatively rapid decreases. This was interpreted as indicating that the PVC covers were 

acting as miniature greenhouses, and that the temperatures measurements were in error. 

To correct for this, temperature and vapour pressure deficit occurring at 4 pm (solar time) 

will be used as proxies for maximum temperature and vapour pressure deficit. Field 

measurement of the horizon created by the surrounding vegetation combined with sun 

angles (http://susdesign.com/sunangle/)  indicated that at 4pm the logger covers would have 

been in shade for at least 30 minutes on every day of the year. Temperature and vapour 
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pressure deficit at 4pm were strong predictors of maximum daily temperature and 4pm 

daily vapour pressure deficit in the 14 sites where exposure to direct sun was not a problem 

(Figure 2.8 and 2.9). To eliminate the effect of any remaining outlying values the 90 th  

percentiles of 4pm temperature and vapour pressure deficit and 10 th  percentile of minimum 

temperatures and vapour pressure deficit readings will be used throughout this thesis. 

Figure 2.8. Correlation between maximum daily temperatures and 4 pm daily temperatures in 14 sites 

unaffected by direct sunlight. The regression equation may be used to estimate maximum temperature from 

4 pm temperature. 
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Figure 2.9. Correlation between maximum daily vapour pressure deficit and 4 pm daily vapour 

pressure deficit in 14 sites unaffected by direct sunlight. The regression equation  may  be used to estimate 

maximum vapour pressure deficit from 4 pm vapour pressure deficit. 

2.3.4 Analysis of all data 

Restricted maximum likelihood (REML) analysis of variance was performed with JMP7 

(SAS 2007). The data for each analysis was checked for normality and homoscedacity 

assumptions, and transformed as necessary. Post Hoc tests used least squares means 

Tukey's test which is conservative for different sample sizes (Tukey 1991). All analyses 

were performed on individual log data except where such data was not available (e.g. for 

mesoclimatic measurements, for which only one logger was placed in each site). 

2.3.5 Analysis of species richness for each log 

Species richness data for all species and the taxonomic groups moss, liverwort and fern 

species were generated by converting the Braun-Blanquet cover abundance scores to 

simple presence or absence for each log. Per-log species richness of all species, mosses 

only, liverworts only and ferns only were calculated from this data. This was analysed for 

regenerating forest age effect with REML anova, with log diameter as a covariate to 

account for the differences that log diameter may have on relative species richness. The 

analyses were based on the following model: Number of species = age + site(age) + 

residual + log diameter where age and log diameter are fixed effects and site(age) is the 
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random effect of site within age. The latter effect was used as the error term for testing the 

effect of regenerating forest age. Decay-class effect was analysed with REML anova, with 

log diameter as a covariate of the model: Number of species = site(decay class) + decay-

class + log diameter, where site (decay-class) is a random effect of site within decay-class 

and decay-class is a fixed effect. 

2.3.6 Analysis of species percentage cover for each log 

For REML analyses of cover variables per-log percentage cover was calculated for each 

species as follows. Braun-Blanquet scores for each log were converted to the median value 

for the range of each score (1 = rare, contributes minimally to cover and was replaced with 

a zero value; 2 = < 1% and was replaced with a value of 0.5; 3 = 1 - 5%, replaced with 3; 4 

= 6 - 25%, replaced with 15; 5 = 26 - 50%, replaced with 37.5; 6 = 51 - 75%, replaced with 

62.5; 7 = 76 - 100%, replaced with 87.5). Total covers for all species, mosses only, 

liverworts only and ferns only were then calculated by summing the score for the relevant 

species. 

The per log percentage covers were analysed with REML analysis of the following model: 

cover = age + site(age) + residual where age was a fixed effect and site(age) was the 

random effect of site within regenerating forest age. The latter effect was used as the error 

term for testing the effect of regenerating forest age. Decay-class effects were analysed 

with REML analysis of the model: cover = site(decay-class) + decay-class where 

site(decay-class) was a random effect of site within decay-class and decay-class is a fixed 

effect. 

2.3.7 Analysis of temperature, vapour pressure deficit and log moisture 

The average daily 4pm maximum, minimum temperatures, maximum 4 pm vapour 

pressure deficit and minimum vapour pressure deficit were analysed with REML of the 

following model: Temperature = age + miniseason + age*miniseason where age and 

miniseason were fixed effects and age*miniseason was the random effect. Log moisture 

data were means of six readings for each log per site (three per log for each of the two days. 

The readings differed between days only for the 8 year old forest (P < 0.05). The average 

log moistures were analysed with REML of the following model: Log moisture = age + 

site(age) + residual where age is a fixed effect and site(age) was the random effect of site 

within regenerating forest age. Decay-class effect was analysed with REML of the model: 
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Log moisture = decay-class + site + site*decay where site*decay-class + residual is a 

random effect and decay-class and site are fixed effects. 

2.3.8 Tests of differences in community composition 

Ordination was used to create a visual representation of the variation in community 

structure using percent cover data for each of the three datasets: The primary dataset, and 

the two secondary datasets. MDS ordinations were performed with the software 

PRIMERv6 using Bray-Curtis similarity (Clarke and Gorley 2006). This is a standard 

measure of similarity used in analysis of ecological community data (Crawley 1997). Two 

and three dimensional analyses were generated. Because the stress results of each were 

acceptable, only the two dimensional ordination plots were presented in this thesis. 

The software PERMANOVA (Anderson 2005) was used to determine significant 

differences in per-log community composition based on a subset of data from the 

secondary dataset that includes only decay class 3 logs in two regenerating forest ages (32 

and 43). This subset allowed for a balanced design for determining the difference between 

regenerating forest ages 32 and 43 only on logs of decay class 3. This software performs 

multivariate analysis of variance based on a similarity matrix, and is based on statistically 

robust permutation tests. A Bray-Curtis similarity of Braun-Blanquet scores of species 

abundance was used, with scores for each species standardised so that they range from zero 

to one, to give all species equal weighting. The analyses followed the model: Community 

composition = forest age + site + forest age*  site + site(forest age) + residual 

Constrained ordinations were performed using CAP (Anderson 2004), to provide an 

indication of how strongly the constraint of age or decay class represents any realistic 

differentiation in the two factors on community data. Two dimensional analyses of the 

primary data set were used for regenerating forest age and decay effects separately and the 

strongest axes from each based on the percentage of variation explained were used to 

generate a constrained ordination plot with one axis representing the major variation in 

response to decay class and the other the major response to regenerating forest age. 

Species indicator analysis was used to determine if any individual species had significant 

age class associations based on percentage cover of species using PC-ORD (McCune and 

Mefford 1999). The primary dataset was used and species relationships with both 

regenerating forest age and decay class were examined using a Monte Carlo test of 

significance of observed maximum indicator value for each species. 
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Pearsons x2  tests were used to determine if there was any significant deviation from 

predicted frequency of individual species according to age using presence/absence data of 

the primary dataset including all regenerating forest ages and decay classes. This was done 

for all species that occurred on more than 9% of logs. Similar analyses was also performed 

for each secondary dataset to test for differences with decay class within the 20 year old 

sites and for differences with age on decay class 3 logs. 
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3. RESULTS 

3.1 The succession of cryptogam communities on coarse woody debris after clearfell, 

burn and sow harvesting 

3.1.1 The bryophyte and fern flora on logs 

A total of 63 bryophyte (29 mosses and 34 liverworts) and 11 fern species were recorded 

on 220 logs. The most common species were three mosses (Wijkia extenuata, Rhizogonium 

novae-hollandiae and Dicranoloma billarderi) and three liverworts (Telaranea tridactylis, 

Cephaloziella exiliflora and Riccardia crassa), each of which was recorded on at least 30% 

of logs sampled (Table 3.1). Other common species occurring on more than 15% of logs 

included the mosses Dicranoloma robustum, Campylopus introflexus, Rhizogonium 

distichum and Ptychomnion aciculare and the liverworts Riccardia crassa, Cephaloziella 

hirta, Riccardia cochleata, Bazzania adnexa, Lepidozia ulothrix, Chiloscyphus semiteres 

and Zoopsis argentea. A species list arranged into families is provided in Appendix 1. 

3.2 Community trends and regenerating forest age based on the primary dataset 

including all sites and decay classes 

Average species richness of all species for each log and average percentage cover of all 

species for each log increased with time since regeneration burn. The 43 year old 

regenerating forest had significantly higher average species richness per log than the 8 and 

20 year old forest but not the 32 year forest (Figure 3.1). Although the covariate log 

diameter had a strong, positive association with species richness, the removal of this co-

variance had no effect on the significance levels of the comparisons among forest ages. 

Average per log percentage cover was significantly higher in the 43 year old regenerating 

forests (P < 0.001) than the 8, 20 and 32 year old regenerating forests (Figure 3.2). 

Ordination of community data showed a distinct separation between the 43 and 8 year old 

regenerating forests along axis 2 (Figure 3.3). The 20 and 32 year old regenerating forests 

were very similar in their distribution within the ordination and this area had a large 

overlap with both the 8 and 43 year old regenerating forest ages with only 8 points out of a 

total of 220 outside the 20 and 32 year old regenerating forests' distribution. 
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Table 3.1. Bryophyte species identified and their frequency of occurrence on total logs sampled (220) 

expressed as a percentage. *species chosen for detailed analysis. 

MOSSES Ok LIVERWORTS FERNS % 

Wijkia extenuata* 45.0 Telaranea tridactylis* 39.1 Histiopteris incisa 7.3 

Rhizogonium novae-hollandiae* 44.1 Cephaloziella exiliflora* 33.2 Hymenophyllum flabellatum 5.0 

Dicranoloma billarderi* 36.8 Riccardia crassa* 30.9 Dicksonia antarctica 5.0 

Dicranoloma robustum* 25.9 Cephaloziefia hirta* 21.8 Hymenophyllum cupressiforme 4.1 

Campy/opus introflexus* 23.2 Riccardia cochleata* 21.4 Rumohra adiantiformis 3.6 

Rhizogonium distichum* 17.3 Bazzania adnexa* 20.5 Grammitis billardierei 3.2 

Ptychomnion aciculare* 16.8 Lepidozia ulothrix* 19.5 Blechnum wattsii 2.7 

Achrophylium dentatum* 9.1 Zoopsis argentea* 16.8 Polystichum proliferum 2.3 

Leptotheca gaudichaudii 8.6 Chiloscyphus semiteres* 16.8 Pteridium esculentum 1.4 

Dicranoloma dicarpum 7.3 Lepidozia laevifolia 6.4 Hymenophyllum rarum 1.4 

Rhaphidorrhynchium amoenum 6.9 Heteroscyphus coalitus 6.4 Hypolepis rugosula 0.5 

Hypnum chrysogaster 5.5 Gackstroemia weindorferi 4.5 

Leucobryum candidum 3.6 Heteroscyphus fissistipus 3.2 

Thuidiopsis sparsa 3.6 Schistochila lehmanniana 2.7 

Moss sp 1 3.2 Riccardia aequicellularis 2.3 

Distichophyllum pulchellum 2.3 Chiloscyphus multipennus 2.3 

Orthodontium lineare 1.8 Chiloscyphus latifolius 2.3 

Rosulabryum Warded 1.8 Podomitrium phyllan thus 1.8 

Goniobryum subbasilare 1.4 Hymenophyton flabefiatum 1.8 

Rhynchostegium tenuifolium 1.4 Liverwort sp a 1.4 

Cyathophorum bulbosum 0.5 Lepidozia glaucophylla 1.4 

Dicranoloma menziesii 0.5 Jamesoniella tasmanica 1.4 

Hypnodendron comosum 0.5 Acromastigum colensoanum 1.4 

Hypopterygium didictyon 0.5 Kurzia compacta 0.9 

Leptostomum inclinans 0.5 Cuspidatula monodon 0.9 

Pohlia nutans 0.5 Cyanolophocolea echinella 0.9 

Polytrichum juniperinum 0.5 Heteroscyphus biciliatus 0.9 

Racopilum cuspidigerum 0.5 Zoopsis setulosa 0.5 

Tayloria gunnii 0.5 Tylimanthus pseudosaccatus 0.5 

Tylimanthus diversifolius 0.5 

Telaranea herzogii 0.5 

Metzgeria furcata 0.5 

Chiloscyphus muricatus 0.5 

Acromastigurh mooreanum 0.5 
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Figure 3.1. Average epixylic species richness on logs (± standard error) of all species for each 

regenerating forest age. Values are from the primary dataset including all regenerating forest ages and 

decay classes. Analysis of variance showed highly significant differences among means between forest ages 

(P < 0.01). The covariate log diameter had a significant effect (P < 0.01). Letters above the columns indicate 

results of post-hoc tests - columns sharing a letter are not significantly different from each other (P> 0.05). 
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Figure 3.2. Average epixylic species cover on logs (*A ± standard error) of all species for each 

regenerating forest age. Values are from the primary dataset including all regenerating forest ages and 

decay classes. Analysis of variance showed very highly significant differences among means (P < 0.001). 

Letters above the columns indicate results of post-hoc tests - columns sharing a letter are not significantly 

different (P> 0.05). 
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Figure 3.3. Ordination plot of percentage cover of all epixylic species on each log showing regenerating 

forest age groupings, based on MDS in two dimensions (Stress = 0.19). Values are from the primary 

dataset including all regenerating forest ages and decay classes. 

The patterns of community change with regenerating forest age varied among taxonomic 

groups. Species richness of mosses, liverworts and ferns all tended to increase with forest 

age (Figure 3.4), with the moss and liverwort groups showing significant differences 

between the youngest regenerating forest and the oldest regenerating forest ages. Although 

the covariate log diameter had a positive association with the mosses, it had no effect on 

the significance levels of the comparisons among ages. The covariate log diameter had no 

significant effect on the species richness of liverworts or ferns. Ferns had higher species 

richness in the 43 year old forest than the 8 year old forest, though this was not statistically 

significant, and smaller changes in species richness in the other forest ages. 
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Figure 3.4. Average epixylic species richness on logs (± standard error) of taxonomic groups for each 

regenerating forest age. Values are from the primary dataset including all regenerating forest ages and 

decay classes. Analysis of variance showed highly significant differences among means  for  forest ages for 

mosses (P < 0.01), liverworts (P < 0.01) but not the ferns. The covariate log diameter  had  a significant effect 

for mosses (P < 0.01) but not the liverwort or ferns. Letters above the columns indicate results of post-hoc 

tests - columns sharing a letter are not significantly different (P> 0.05). 

Moss, liverwort and fern percentage cover per log showed broadly similar patterns to those 

shown in species richness. Mosses increased consistently in abundance over time, with 43 

year old forests having significantly more percentage cover than 8 and 20 year old forests, 

and 32 year old forests having significantly more percentage cover than 8 year old forests 

(P < 0.01; Figure 3.5). Liverworts were not significantly different between the 8, 20 and 32 

year old forests but had a much higher average percentage cover per log in the 43 year old 

forest. Ferns had higher (but not significantly higher) abundance in the 43 year old forest. 
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Figure 3.5. Average cover on logs (/0 ± standard error) of taxonomic groups for each regenerating 

forest age. Values are from the primary dataset including all regenerating forest ages  and  decay classes. 

Analysis of variance showed very highly significant differences among means for  mosses  (P < 0.01) and 

liverworts (P < 0.05) but not for ferns. Letters above the columns indicate results of post-hoc tests - columns 

sharing a letter are not significantly different (P> 0.05). 

3.3 Community trends with decay class 

In the primary data set (including all regenerating ages and decay classes) average species 

richness of all species for each log was greatest on decay classes 3 and 4 (means of 8.1 and 

7.3; respectively), and lowest on decay class 2 (2.5 species per log), with decay class 5 

intermediate (Figure 3.6). Although the covariate log diameter had a similar relationship 

with species richness, removing the effect of the covariate had no effect on the significance 

levels of the comparisons between decay classes. Average percentage cover showed 

similar patterns (Figure 3.7). 
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Figure 3.6. Average epixylic species richness on logs (± standard error) of all species for each decay 

class. Values are from the primary dataset including all regenerating forest ages and decay classes. Analysis 

of variance showed significant differences among means (P < 0.05). The covariate log diameter had a 

significant effect (P < 0.01). Letters above the columns indicate results of post-hoc tests - columns sharing a 

letter are not significantly different (P> 0.05). 
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Figure 3.7. Average cover on logs (% ± standard error) of all species for each decay class. Values are 

from the primary dataset including all regenerating forest ages and decay classes. Analysis of variance 

showed no significant differences among means (P> 0.05). Letters above the columns indicate results of 

post-hoc tests - columns sharing a letter are not significantly different (P < 0.01). 
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Ordination of percentage cover on each log of community data grouped by decay class 

indicated very little separation between decay classes (Figure 3.8). Decay class 3 and 4 

were relatively widely scattered in the plot when compared decay class 2. All decay classes 

showed a tendency to group closer towards the centre of the plot, along with decay class 5. 
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Figure 3.8. Ordination plot of percentage cover of all epixylic species on each log showing decay class 

groupings, based on MDS in two dimensions (Stress = 0.19). Values are from the primary dataset 

including all regenerating forest ages and decay classes. 

3.4 Individual species associations with regenerating forest age and decay 

The analyses here used three different measures of species specific association with forest 

age - REML analysis of variance of percentage cover on logs; indicator species analysis 

implemented in CAP and tests of the total frequency of occurrence for each regenerating 

forest age (Table 3.2). These measures all showed that the species vary greatly in their 

associations with different forest ages. All three measures showed that the liverwort 

Chiloscyphus semiteres was not significantly associated with any forest age and therefore 

can be interpreted as a generalist species. All three measures showed that the liverworts 

Cephaloziella hirta and Cephaloziella exiliflora and the moss Campylopus introflexus were 

strongly associated with younger regenerating forests, and therefore can be interpreted as 
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early successional species. All three measures showed that the liverwort Riccardia crassa 

was strongly associated with the 20 year old forest and that in two out of three measures 

the moss Dicranoloma robustum and the liverwort Riccardia cochleata were significantly 

associated with the 32 year old forest, and therefore these species can be interpreted as 

mid-successional. Two out of the three measures showed that the liverwort Lepidozia 

ulothrix and the mosses Achrophyllum dentatum, Ptychomnion aciculare and Dicranoloma 

billarderi were all significantly associated with the 43 year old forest. Similarly, 

significantly associated with the 43 year old forest were the liverworts Zoopsis argentea, 

Bazzania adnexa, Telaranea tridactylis, and the mosses Rhizogonium distichum, Wijkia 

extenuata and Rhizogonium novae-hollandiae in all three measures. Therefore these 

species significantly associated with the 43 year old forests can be interpreted as late 

successional species. 

Table 3.2. Associations of individual species with regenerating forest age based on analysis of the 

primary dataset, which includes all regenerating forest ages and decay classes. Species chosen occurred 

on more than 9% of the 220 logs sampled. Taxonomic group shows if a species is either a moss or liverwort, 

% shows the percentage of logs out of 220 that each species occurred on, REML (P) is the analysis of 

variance for percentage cover per log. Indicator species analysis describes the forest age that each species 

was significantly associated with, the indicator value (IV) for each species and the significance value (P). 

Pearson's e test significance values (P) are given for species presence (frequency). Values in bold are 

significant. 

Species 
Taxonomic 

group 

REML 
(P) 

Indicator species analysis X2  tests 
(P) 

% cover Forest age IV P Frequency 
Chiloscyphus semiteres Liverwort 16.8 0.6790 32 7.4 0.442 0.0667 
Cephaloziella hirta Liverwort 21.8 0.0277 8 55.1 0.001 <0.0001 
Cephaloziella exiliflora Liverwort 33.2 0.0263 8 30.8 0.001 <0.0001 
Campy/opus introflexus Moss 23.2 0.0030 8 36.4 0.001 <0.0001 
Riccardia crassa Liverwort 30.9 0.0162 20 26 0.001 <0.0001 
Dicranoloma robustum Moss 25.9 0.4044 32 17.8 0.004 0.0002 
Riccardia cochleata Liverwort 21.4 0.0662 32 29.5 0.001 <0.0001 
Lepidozia ulothrix Liverwort 19.5 0.3801 43 15.6 0.005 0.0004 
Zoopsis argentea Liverwort 16.8 0.0038 43 29.3 0.001 <0.0001 
Achrophyllum dentatum Moss 9.1 0.2956 43 22.1 0.001 <0.0001 
Ptychomnion aciculare Moss 16.8 0.0736 43 20.6 0.001 0.0016 
Rhizogonium distichum Moss 17.3 0.0479 43 36.7 0.001 <0.0001 
Bazzania adnexa Liverwort 20.5 0.0006 43 58.9 0.001 <0.0001 
Dicranoloma billarderi Moss 36.8 0.0877 43 27.9 0.001 <0.0001 
Wjkia extenuata Moss 45 0.0037 43 50.2 0.001 <0.0001 
Rhizogonium novae-hollandiae Moss 44.1 <0.0001 43 50.7 0.001 <0.0001 
Telaranea tridactylis Liverwort 39.1 <0.0001 43 59.6 0.001 <0.0001 
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Figure 3.9. Average cover (/o) on logs for each species occurring on at least 9% of logs using the 

primary dataset including all regenerating forest ages and all decay classes. Species are colour coded 

according to inferred successional characteristics. Abbreviations: M = moss, L = Liverwort. 

3.5 Segregating the effects of regenerating forest age and log decay 

3.5.1 The independent effects of regenerating forest age on coarse woody debris 

cryptogam community succession. 

Average epixylic species richness on logs for all species and percentage cover, based on 

the secondary dataset including the three regenerating forest ages 20, 32 and 43 on logs of 

decay class 3, tended to increase with forest age, although these differences were not 

significant (Figures 3.10 and 3.11). The covariate log diameter had a positive relationship 

with species richness. However, it had no effect on the significance levels of the 

comparisons among ages. Average percentage cover for each log was significantly greater 

in the 43 year old forest than both the 20 and 32 year old forests (P < 0.01). 
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Figure 3.10. Average epixylic species richness on logs (± standard error) of all species for each 

regenerating forest age. Values are from the secondary dataset including the regenerating forest ages 20, 32 

and 43 on logs only of decay class 3. Analysis of variance showed no significant differences among means (P 

> 0.05). The covariate log diameter had a significant effect (P < 0.01). Letters above the columns indicate 

results of post-hoc tests - columns sharing a letter are not significantly different (P> 0.05). 
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Figure 3.11. Average cover on logs (/0 ± standard error) of all species for each regenerating forest age. 

Values are from the secondary dataset including the three regenerating forest ages 20, 32 and 43 on logs of 

decay class 3. Analysis of variance showed significant differences among means (P < 0.01). Letters above 

the columns indicate results of post-hoc tests - columns sharing a letter are not significantly different (P> 

0.05). 
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The taxonomic groups mosses, liverworts and ferns showed similar trends in this restricted 

data set to those shown by all species, where there appeared to be a small increase in 

average species richness per-log with increasing forest age (Figure 3.12). However no 

taxonomic group showed significant differences between regenerating forest ages when 

tested using REML (P> 0.05). The covariate log diameter was positively associated with 

species richness. However, it had no effect on significance levels among forest ages. 

Average percentage cover per log was not significantly different for mosses or ferns (P> 

0.05) however there was a significantly (P < 0.05) higher cover of liverworts in the 43 year 

old forest than the 32 year old forest (Figure 3.13). 

Moss 	Liverwort 
	

Fern 
Taxonomic group 

Figure 3.12. Average epixylic species richness on logs (± standard error) of taxonomic groups for each 

regenerating forest age. Values are from the secondary dataset including the three forest ages 20, 32 and 43 

on logs of decay class 3. Analysis of variance showed no significant differences among means for any group 

(P> 0.05). The covariate log diameter had a significant effect for mosses (P < 0.05) and ferns (P < 0.05) but 

not for liverworts. Letters above the columns indicate results of post-hoc tests  -  columns sharing a letter are 

not significantly different (P> 0.05). 
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Figure 3.13. Average cover on logs (% ± standard error) of taxonomic groups for each regenerating 

forest age. Values are from the secondary dataset including the three regenerating forest ages 20, 32 and 43 

on logs of decay class 3. Analysis of variance showed significant differences among means for Liverworts (P 

<0.05) but not mosses or ferns. Letters above the columns indicate results of post-hoc tests - columns 

sharing a letter are not significantly different (P> 0.05). 

Ordination of percentage cover of  all  species for each log showed a very strong grouping 

for the 43 year regenerating forest (Figure 3.14). The 32 year old forest also had a strong 

grouping and the 20 year old forest was less tightly grouped, with each successive 

regenerating forest age showing a tendency for closer groupings as values increased across 

axis 2 of the ordination. PERMANOVA analysis of community data on decay class 3 logs 

found significant differences (P < 0.05) between the 32 and 43 year old forests. 
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Figure 3.14. Ordination plot of percentage cover for each log for all species showing regenerating 

forest age groupings, based on MDS in two dimensions (Stress = 0.23). Values are from the secondary 

dataset of regenerating forest age independent of decay class. 

Two of the measures of species specific association with forest age could be used with this 

restricted data  -  REML analysis of variance of percentage cover on logs and i tests of the 

total frequency of occurrence for each of the three regenerating forest ages (Table 3.3). 

These measures showed that the species varied greatly in their associations with different 

forest ages independent of decay class. In addition to the liverwort Chiloscyphus semiteres 

(which had been identified as a generalist from the primary dataset including all ages and 

decay classes), both measures implied that the liverwort Lepidozia ulothrix and the mosses 

Campylopus introflexus, Dicranoloma robustum and Dicranoloma billarderi were 

successional generalists. Early successional species were not revealed in this analysis as 

the 8 year old forest did not have any logs of decay class 3 and was excluded. Similar to 

the analysis of age effects from the primary dataset including all forest ages and decay 

classes, the liverworts Riccardia crassa and Riccardia cochleata both had significant 

associations with either the 20 or 32 year old forests and can be interpreted as mid-

successional; however, for Riccardia cochleata this was only significant for frequency of 

occurrence. The liverwort Cephaloziella exiliflora may be considered mid-successional 

based on significance in both measures for the 20 or 32 year old forests. The liverwort 

Cephaloziella hirta also may be interpreted as mid-successional, however this species had 
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significant associations with the 20 year old forest based on the measure of frequency of 

occurrence only. Two liverworts, Telaran.  ea tridactylis and Bazzania adnexa, and one 

moss, Rhizogonium novae-hollandiae, showed significant associations with the 43 year old 

forest for both percentage cover and frequency in both this analysis and analysis of age 

effects based on the primary dataset, including all forest ages and decay classes. The 

significant association with the 43 year old forest was the same for the mosses 

Achrophyllum dentatum and Ptychomnion aciculare in both analysis of frequency of 

occurrence based on both the primary dataset of all forest ages and decay classes and the 

secondary dataset of forest age independent of decay class. The mosses Rhizogonium 

distichum and Wijkia extenuata were significantly associated with the 43 year old forest for 

all three measures based on the primary dataset of all forest ages and decay classes; 

however, based on forest age (independent of decay class) these two species were 

significantly associated with only the 43 year old forest based on species frequency of 

occurrence. All species significantly associated with the 43 year old age class in at least 

one measure can be considered late successional species. 

Table 3.3. Individual species associations with regenerating forest age; based on analysis of the 

secondary dataset of regenerating forest age (independent of decay class) including the three forest 

ages 20, 32 and 43 on decay class 3 logs. Species chosen occurred on more than 9% of the 220 logs sampled. 

REML (P) is the analysis of variance for % cover for each log per forest age. Pearson's )e test significance 

values (P) are given for species presence (frequency). The forest age column indicates which age class each 

species was most common in. Values in bold are significant. 

Species Taxonomic group 

Test of regenerating forest age 

Forest age 
REML (P) 
% cover 

X2  tests (P) 

Frequency 

Chfloscyphus semiteres Liverwort 0.4477 0.2800 

Cephaloziella hirta Liverwort 20 0.3267 0.0183 
Cephaloziefla exiliflora Liverwort 20 0.0006 0.0009 
Campy/opus introflexus Moss 0.1240 0.2231 
Riccardia crassa Liverwort 20 0.0206 0.0024 
Dicranoloma robustum Moss 0.5822 0.3128 
Riccardia cochleata Liverwort 32 0.0639 0.0011 
Lepidozia ulothrix Liverwort 0.9942 0.6330 
Zoopsis argentea Liverwort 43 0.0157 0.0010 
Achrophyllum dentatum Moss 43 0.3619 0.0015 
Ptychomnion aciculare Moss 43 0.2895 0.0433 
Rhizogonium distichum Moss 43 0.1035 <0.0001 
Bazzania adnexa Liverwort 43 0.0049 <0.0001 
Dicranoloma billarderi Moss 0.7644 0.2561 
Wijkia extenuata Moss 43 0.1177 0.0060 
Rhizogonium novae-hollandiae Moss 43 0.0139 0.0042 
Telaranea tridactylis Liverwort 43 0.0016 0.0012 
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3.5.2 The independent effects of log decay on succession of communities on coarse woody 

debris. 

The analysis of per log data restricted to decay classes 2 and 3 in 20 year old forest showed 

that there were no significant differences in species richness and average percentage cover 

of all species between decay classes 2 and 3, both overall and for each taxonomic group 

(Figure 3.15 - 3.18). Although the covariate log diameter had a positive association with 

species richness, there was no effect on the significance levels of the comparisons between 

decay classes when the covariate was removed. Log diameter had no significant 

association with the species richness of groups between decay classes. 
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Figure 3.15. Average epixylic species richness on logs (± standard error) of all species for each decay 

class. Values are from the secondary dataset of decay class (independent of regenerating forest age) including 

decay classes 2 and 3 in the 20 year old regenerating forest. Analysis of variance showed no significant 

differences among means (P> 0.05). The covariate log diameter had a significant effect (P < 0.05). 
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2 3 

Decay class 

Figure 3.16. Average cover on logs (/0 ± standard error) of all species for each decay class. Values are 

from the secondary dataset of decay class (independent of regenerating forest age) including decay classes 2 

and 3 in the 20 year old regenerating forest. Analysis of variance showed no significant differences among 

means (P> 0.05). 

Liverwort 

Taxonomic group 

CI Decay class 2 

• Decay class 3 

Fern 

Figure 3.17. Average epixylic species richness on logs (± standard error) of taxonomic groups for each 

regenerating forest age. Values are from the secondary dataset of decay class independent of regenerating 

forest age including decay classes 2 and 3 in the 20 year old regenerating forest. Analysis of variance showed 

no significant differences among means (P> 0.05). The covariate log diameter had no significant effect (P> 

0.05). 
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Figure 3.18. Average cover on logs (% ± standard error) of taxonomic groups for each decay class. 

Values are from the secondary dataset of decay class independent of regenerating forest age including decay 

classes 2 and 3 in the 20 year old regenerating forest. Analysis of variance showed no significant differences 

among means (P> 0.05). 

Unconstrained ordination of per-log community data from the secondary dataset of decay 

class (independent of regenerating forest age) showed that while there was extensive 

overlap there was still some discrimination between decay classes (Figure 3.19). Decay 

class 2 grouped completely with decay class 3 except for 2 points and just over half of 

decay class 3 grouped outside of decay class 2. The majority of points from each decay 

class seemed to group independently of the other decay class. 

Constrained ordination directly compared the effect of regenerating forest age and decay 

class on the cryptogam community as a whole using the primary dataset including all 

regenerating forest ages and decay classes. Overall, it appeared that age was determining 

more of the grouping than decay class and this was particularly true for the 8, 32 and 43 

year regenerating forest ages (Figure 3.20). The spread of the 20 year regenerating forest 

age was determined mostly by the decay class axis, where the spread along the age axis 

was small but the spread determined by the decay class axis was broad. Decay class also 

influenced the 8 year age class, though to a lesser extent with a fairly large spread for both 

axes. 

46 



• Forest age 43 Dicey class 3 

x Forest ago 43 Dacay class 4 

o  Forint $0. 32 Dacay class 2 

• Feast ago 32 oftay class 3 

x  'mist ago 32 Dacay class 4 

• Forest age 32 Decay doss 5 

0  Forest ate 20 Daisy class 2 

• Forest ago 20 Dacay class 3 

x  Feast ago 20 ()may class 4 

Forest sip 0 Decay class 2 

• Ansi sist D4way doss 3 

• Feast ago II Dom class 4 

ON 0.011  0  0.1 0.12 

0 

• 
O 

0 

32 
.12 

Faros( sae 

0.1 

Chapter 3 — Results 

Figure 3.19. Ordination plot of percentage cover on logs of all species showing regenerating forest age 

groupings, based on MDS in two dimensions (Stress = 0.17). This plot was generated using the secondary 

dataset of decay class independent of regenerating forest age including decay classes 2 and 3 in only the 20 

year old regenerating forest. 

Figure 3.20. Constrained ordination plot of percentage cover on logs. This plot was generated using two 

analyses of the primary dataset including all floristic data, with one axis representing the forest age constraint 

and the other axis representing the decay-class constraint. 

47 



Chapter 3 - Results 

Individual species analysis of decay class independent of regenerating forest age showed 

that few species have strong decay class associations based on two measures - REML 

analysis of variance of percentage cover on logs and x2  tests of the total frequency of 

occurrence for each regenerating forest age (Table 3.4). The liverwort Riccardia cochleata 

and the moss Telaranea tridactylis were significantly associated with decay class 3 for 

both measures. The liverwort Cephaloziella exiliflora was significantly associated with 

decay class 2 based on percentage cover only. The liverworts Chiloscyphus semiteres, 

Riccardia crassa, and Lepidozia ulothrix, and the mosses Dicranoloma billarderi and 

Rhizogonium novae-hollandiae were significantly associated with decay class 3 based on 

species frequency of occurrence only. 

Table 3.4. Individual species associations with decay class based on analysis of the secondary dataset of 

decay class (independent of regenerating forest age) including decay classes 2 and 3 in the 20 year old 

forest. Species chosen occurred on more than 9% of the 220 logs sampled. Taxonomic group shows if a 

species is either a moss or liverwort. REML (P) is the analysis of variance for % cover. Pearson's x2  test 

significance values (P) are given for frequency of occurrence. Values in bold are significant. 

Species Taxonomic group 

Test of decay class 

Decay class 
REML (P) 

% cover 
X2  tests (P) 

Frequency 
Chiloscyphus semiteres Liverwort 3 0.4800 0.0196 
Cephaloziella hirta Liverwort 0.6153 0.7054 
Cephaloziella exiliflora Liverwort 2 0.0257 0.2353 
Campy/opus introflexus Moss 0.3598 0.3173 
Riccardia crassa Liverwort 3 0.1149 <0.0001 
Dicranoloma robustum Moss 0.7131 0.1266 
Riccardia cochleata Liverwort 3 <0.0001 0.0013 
Lepidozia ulothrix Liverwort 3 0.8804 0.0348 
Zoopsis argentea Liverwort 0.3917 0.1797 
Achrophyllum dentatum Moss 0.4758 0.3173 
Ptychomnion aciculare Moss 0.1059 0.1430 
Rhizogonium distichum Moss 0.3008 0.1572 
Bazzania adnexa Liverwort 0.4407 0.1572 
Dicranoloma billarderi Moss 3 0.0702 0.0010 
Wijkia extenuata Moss 0.2340 0.2530 
Rhizogonium novae-hollandiae Moss 3 0.7105 0.0007 

Telaranea tridactylis Liverwort 3 0.0078 <0.0001 
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3.6 Meso- and micro-environmental variables in relation to regenerating forest age and 

decay class 

3.6.1 Temperature and vapour pressure deficit changes with regenerating forest age and 

miniseason 

Average daily temperature at 4 pm for each miniseason had a similar trend over time for 

each regenerating forest age (Figure 3.21). The average daily 4 pm temperature was 

significantly different among all miniseasons (P < 0.0001) with summer having the highest 

daily 4 pm temperature and winter having the lowest. There was also a very strong 

difference among regenerating forest ages (P < 0.0001). The 8 year old forest was 

significantly different from all other forest ages and had the most variation in average daily 

4 pm temperature. The 20 and 32 year old forests were also significantly different from 

each other, but not significantly different from the 43 year old forest. Average daily 

minimum temperature also was significantly different among miniseasons (P < 0.0001) 

and among regenerating forest ages (P < 0.01; Figure 3.22). The 20 year old forest was 

significantly different from all other forest ages. The 8 year old forest was significantly 

different from the 43 year old forest, and neither was significantly different from the 32 

year old forest. 

Regenerating forest age  

—4— Winter 

—a— Early  spring 

Late spring 

—a—Summer 

—a—  Autumn 

Figure 3.21. Average daily 4 pm temperatures per miniseason (± standard deviation) for each 

regenerating forest age. Values are from the primary dataset including all regenerating forest ages and 

decay classes. Analysis of variance showed very highly significant differences among means for miniseason 

(P < 0.0001) and regenerating forest age  (P < 0.0001). Letters above data points indicate results of post-hoc 

tests - columns sharing a letter are not significantly different (P> 0.05). 
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Figure 3.22. Average daily minimum temperatures per miniseason (± standard deviation) for each 

regenerating forest age. Values are from the primary clataset including all regenerating forest ages and 

decay classes. Analysis of variance showed very highly significant differences among means for miniseason 

(P < 0.0001) and regenerating forest age (P < 0.001). Letters above data points indicate results of post-hoc 

tests - columns sharing a letter are not significantly different (P> 0.05). 

Average daily 4 pm vapour pressure deficit and average daily minimum vapour pressure 

deficit was variable among miniseasons and among regenerating forest ages (Figure 3.23 

and 3.24). Average 4pm vapour pressure deficit was significantly different among 

miniseasons (P < 0.0001) and between regenerating forest ages, though  the  difference was 

less significant (P < 0.01). The 8 year old forest was significantly different to all other 

forest ages. There was no significant difference among the 20, 32 and 43 year old forests. 

Average daily minimum vapour pressure deficit was significantly different among 

miniseasons (P < 0.0001) and significantly different among regenerating forest ages (P < 

0.001). The differences were the same between average 4pm daily vapour pressure deficit, 

where the 8 year old forest was significantly different from all other forest ages. 
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Figure 3.23. Average daily 4 pm vapour pressure deficit per miniseason (± standard deviation) for each 

regenerating forest age. Values are from the primary dataset including all regenerating forest ages and 

decay classes. Analysis of variance showed very highly significant differences among means for tniniseason 

(P < 0.0001) and regenerating forest age (P < 0.01). Letters above data points indicate results of post-hoc 

tests - columns sharing a letter are not significantly different (P> 0.05). 
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Figure 3.24. Average daily minimum vapour pressure deficit per Ininiseason (± standard deviation) for 

each regenerating forest age. Values are from the primary dataset including all regenerating forest ages and 

decay classes. Analysis of variance showed very highly significant differences among means for miniseason 

(P < 0.0001) and regenerating forest age (P < 0.001). Letters above data points indicate results of post-hoc 

tests - columns sharing a letter are not significantly different (P> 0.05). 
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3.6.2 Log moisture changes with regenerating forest age and decay stage 

Log moisture increased significantly with increasing regenerating forest age (P <  0.01), 

from an average of 32.4% in the 8 year old regenerating forest up to 41.4% in the 43 year 

old regenerating forest based on the primary dataset, including all regenerating forest ages 

and decay classes (Figure 3.25). 

Differences in average log moisture showed that the significant difference among decay 

classes was very strong (P < 0.0001) based on the primary dataset including all 

regenerating forest ages and decay classes (Figure 3.26). Decay class 2 had significantly 

lower log moisture than decay classes 3, 4 and 5, though the difference between decay 

class 2 and 5 was not significant; however, when the data was restricted  to  decay class 3 

logs, log moisture was almost identical among regenerating forest ages  20,  32 and 43 (-39 

-  40%) (Figure 3.27). 
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Figure 3.25. Average moisture on logs (/0 ± standard error) for each regenerating forest age. Averages 

are of two sampling events and three measures of per log per site. Values are from the primary dataset 

including all regenerating forest ages and decay classes. Analysis of variance showed significant differences 

among means (P < 0.01). Letters above the columns indicate results of post-hoc tests - columns sharing a 

letter are not significantly different (P>  0.05). 
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2 	 3 	 4 	 5 
Decay class 

Figure 3.26. Average moisture on logs ( °/0 ± standard error) for each decay class. Averages are of two 

sampling events and three measures of moisture per log per site. Values are from the primary dataset 

including all forest ages and decay classes. Analysis of variance showed significant differences among means 

(P < 0.0001). Letters above the columns indicate results of post-hoc tests - columns sharing a letter are not 

significantly different (P> 0.05). 
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Figure 3.27. Average moisture on logs (% ± standard error) for each regenerating forest age. Averages 

are of two sampling events and three measures of moisture per log per site. Values are from the secondary 

dataset including the regenerating forest ages 20, 32 and 43 on logs of decay class 3. Analysis of variance 

showed no significant differences among means (P> 0.05). Letters above the columns indicate results of 

post-hoc tests - columns sharing a letter are not significantly different (P> 0.05). 
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Decay classes 3 logs showed considerably higher mean moisture than decay class 2 logs 

within the 20 year regenerating forest age class (P < 0.05; Figure 3.28). 
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Figure 3.28. Average moisture on logs (/0 ± standard error) for each decay class. Averages are of two 

sampling events and three measures of moisture per log per site. Values are from the secondary dataset 

including decay classes 2 and 3 within the 20 year old regenerating forest. Analysis of variance showed 

significant differences among means (P < 0.05). 

3.6.3 Individual species associations with regenerating forest age and decay stage in 

relation to log moisture 

Individual species analysis of percentage cover comparing forest ages with log moisture as 

a covariate, using the primary dataset including all regenerating forest ages and decay 

classes, detected a significant log moisture association with time since disturbance for only 

one species (Table 3.8). The moss Rhizogonium novae-hollandiae was significantly 

associated with increasing log moisture but also with increasing forest age. 
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Table 3.8. Significance of the covariate log moisture and fixed effect forest age (probability associated 

with moisture as a covariate in REML analyses with forest age as a fixed effect and site within age as a 

random effect) for percentage cover of individual species in the primary dataset including all 

regenerating forest ages and decay classes. Species chosen occurred on more than 9% of the 220 logs 

sampled. Values in bold are significant. 

Species Taxonomic group Log moisture (P) Forest age (P) 
Chiloscyphus semiteres Liverwort 0.4716 0.6035 
Cephaloziella hirta Liverwort 0.6860 0.0034 
Cephaloziella exiliflora Liverwort 0.0643 0.0005 
Campy/opus introflexus Moss 0.4973 0.0246 
Riccardia crassa Liverwort 0.0796 0.0360 
Dicranoloma robustum Moss 0.4138 0.5833 

Riccardia cochleata Liverwort 0.1881 0.3974 
Lepidozia ulothrix Liverwort 0.9223 0.1445 
Zoopsis argentea Liverwort 0.1238 0.0081 
Achrophyllum dentatum Moss 0.7472 0.6303 
Ptychomnion aciculare Moss 0.0518 0.2723 
Rhizogonium distichum Moss 0.0753 0.0385 
Bazzania adnexa Liverwort 0.7373 0.0050 
Dicranoloma billarderi Moss 0.8680 0.0461 
Wijkia extenuata Moss 0.1406 0.0160 
Rhizogonium novae-hollandiae Moss 0.0052 <0.0001 
Telaranea tridactylis Liverwort 0.0747 0.0024 

Individual species analysis of log moisture as a covariate with either forest age or log 

decay as independent variables for the secondary datasets of: (1) forest age independent of 

decay class including the forest ages 20, 32 and 43 on logs of decay class 3 only; and (2) 

decay class independent of forest age including decay classes 2 and 3 on the 20 year old 

forest only showed that log moisture was a significant covariate with either forest age or 

decay class for only a few species (Table 3.9). The independent effect of forest age with 

log moisture as a covariate was significant for the moss Rhizogonium novae-hollandiae 

and the liverworts Cephaloziella exiliflora, Zoopsis argentea and Telaranea tridactylis. 

This result for Cephaloziella exiliflora, Rhizogonium novae-hollandiae and Telaranea 

tridactylis was similar to the result from the primary dataset of all forest ages and decay 

classes. However, Zoopsis argentea was not significantly associated with log moisture and 

forest age based on forest age independent of decay class. The independent effect of decay 

class with log moisture as a covariate was significant for the covariate log moisture for the 

liverwort Telaranea tridactylis. 
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Table 3.9. Probability of log moisture effect as a covariate in REML analyses with forest age or decay 

class as a fixed effect and site within age as a random effect. (1) Analysis of percentage cover of 

individual species from the secondary dataset of forest age independent of decay class including the forest 

ages 20, 32 and 43 on logs of decay class 3. (2) Analysis of percentage cover of individual species from the 

secondary dataset of decay class independent of forest age including decay classes 2 and 3 on the 20 year old 

forest. Species chosen occurred on more than 9% of the 220 logs sampled. Values in bold are significant. 

Species 
Taxonomic 

group 

(1) Forest age 
Log moisture 

(P) 
Forest age 

(P) 

(2) Decay class 
Log moisture 

(P) 
Decay class 

(P) 
Chiloscyphus semiteres Liverwort 0.7025 0.8853 0.4987 0.5211 
Cephaloziella hirta Liverwort 0.2124 0.0208 0.8216 0.6212 
Cephaloziella exiliflora Liverwort 0.0040 0.0158 0.6934 0.9793 
Campy/opus introflexus Moss 0.8337 0.0676 0.8556 0.5076 
Riccardia crassa Liverwort 0.3634 0.0308 0.1491 0.5898 
Dicranoloma robust urn Moss 0.1149 0.5068 0.3286 0.9010 
Riccardia cochleata Liverwort 0.5770 0.0142 0.7967 0.8480 
Lepidozia ulothrix Liverwort 0.4555 0.3486 0.5388 0.1121 
Zoopsis argentea Liverwort 0.0316 0.3017 0.7606 0.1301 
Achrophyllum dentatum Moss 0.1152 0.8430 0.8570 0.3915 
Ptychomnion aciculare Moss 0.7441 0.3243 0.2875 0.0130 
Rhizogonium distichum Moss 0.3570 0.0960 0.9141 0.8996 
Bazzania adnexa Liverwort 0.8832 0.1464 0.9596 0.4155 
Dicranoloma billarderi Moss 0.0554 0.0239 0.8732 0.9806 
Wijkia extenuata Moss 0.2471 0.0296 0.7032 0.5369 
Rhizogonium novae-hollandiae Moss 0.0089 0.0357 0.5931 0.7115 
Telaranea tridactylis Liverwort 0.0057 0.0009 0.0203 0.5629 
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4. DISCUSSION 

The present study considers how species richness and composition of cryptogams change 

in forests regenerating after clearfell, burn and sow silviculture. These changes could be 

the result of several processes, and the combination of these processes will be considered 

based on the association of these changes with changes in the nature of the substrate and 

mesoclimate. One scenario is that succession could be the accumulation of species based 

on their dispersal ability, in which case the expected result would be that there was no 

relationship between succession and substrate or mesoclimate variables, and early arriving 

species would not decline in abundance over time. On the other hand it could be the result 

of succession on the substrate, in which case there should be clear differences between log 

decay classes within the same forest age. It could also be related to changes in mesoclimate 

as the forest ages. Each of these alternatives will be considered below. 

4.1 Overall community changes with time 

As hypothesised, there were significant changes in community composition with forest age. 

The 8 and 43 year old forests were very distinct in their community composition, whereas 

the 20 and 32 year old forests were most similar in their species composition (Figure 3.3). 

Worldwide, studies have found that change in community composition is a key factor in 

defining cryptogam community succession on coarse woody debris (Ashton 1986; Crites 

and Dale 1998; Rambo and Muir 1998). 

Also as was proposed, species richness increased significantly over time. This increase was 

significant between the 8 and 43 year old forests and although it was not independent of 

log diameter, results still showed a strong relationship for species richness over time when 

log diameter was included as a covariate. Log diameter is known to be associated with 

cryptogam species richness on coarse woody debris and may have influenced results due to 

increased sample sizes on larger logs in older forests (Kruys et al. 190). The overall 

increase in species richness is consistent with other studies on coarse woody debris that 

indicate that time since disturbance is an important influence on cryptogam community 

succession. Rambo and Muir (1998), in a study on bryophyte species associations with 

coarse woody debris and forest age, found that the average species richness of bryophytes 

was greater in old forests than young forests. 

Mosses, liverworts and ferns have different patterns of increasing species richness over 

time. For the moss and liverwort groups, the 43 year old forest had significantly higher 
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species richness than younger regenerating forest. However, the rate of increase in moss 

species richness over time was approximately twice that of liverworts. Liverwort species 

richness is commonly known to increase over time and be high in old forests (Crites and 

Dale 1998; Muhle and LeBlank 1975; Soderstrom 1988b). The increase in liverwort 

species in the older forest compared to the younger forest is consistent with findings from 

these studies. 

The evidence of species specificity for successional age of the forest was clear, where all 

but one of the most common species (occurring on more than 9% of logs), had specific 

associations with a particular forest age. Most of these were associated with the later 

successional stages, but several early and mid successional species were identified. The 

only exception was the common liverwort Chiloscyphus semiteres, which did not have any 

significant associations with forest age. This species was commonly found in wet eucalypt 

forests of a similar age to this study by Turner (2003) when examining individual species 

substrate and age associations, and was found to have significant associations with coarse 

woody debris in forest aged 33 - 67 years. Different associations found in that study 

compared to the present study may be due to differences in analysis and sampling intensity, 

forest type and disturbance history, because each of these variables can change the 

interpretation of results. 

Early successional species were deemed to be those with significant associations with the 8 

year old regenerating forest. They included the liverworts Cephaloziella hirta, 

Cephaloziella exiliflora, and the moss Campylopus introflexus. One of these species, 

Cephaloziella exiliflora, was identified previously as an early successional species, being 

present on logs in clearfelled coupes in the same region as the present study three years 

after the regeneration burn (Duncan and Dalton 1982). The species identified in that study 

as the primary terrestrial colonisers, Marchantia berteroana, Funaria hygrometrica, 

Ceratodon purpureus, and Polytrichum juniperinum (all of which, although they were 

most common as ground mosses, were observed as present on logs one year following the 

burn) were not detected on logs after 8 years of regeneration in the present study. 

Mid successional species were those species significantly associated with either the 20 or 

32 year old regenerating forest. These included the liverworts Riccardia crassa and 

Riccardia cochleata, and the moss Dicranoloma robustum. Interestingly, Riccardia crassa 

increased in abundance at the same time as Cephaloziella hirta and Campy/opus 

introflexus appeared to drop out of the community. Cephaloziella exiliflora maintained its 
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abundance until it dropped out in the 32 year old forest, when Riccardia cochleata and 

Dicranoloma robustum were at their peak in abundance. 

More than half of the most common species found in this study were classified as late 

successional species as they were associated strongly with the 43 year old regenerating 

forest. These included the four most abundant and frequently occurring species, the mosses 

Wijkia extenuata, Rhizogonium novae-hollandiae, and Dicranoloma billarderi and the • 

liverwort Telaranea tridactylis. These species are known to be common on logs in 60 year 

old wet eucalypt forests from another study in the same area (Jarman and Kantvilas 2001). 

Thus, the relative frequency of individual species in the present study is consistent with the 

findings from other studies in wet eucalypt forests in the same area. All of the species that 

were significantly associated with the 43 year old forest were also present in the cryptogam 

community on coarse woody debris after 32 years. 

Overall, it is apparent that the distinction in community composition, or lack thereof, 

between forest ages can be best understood from the individual species scale. Where there 

was a clear distinction between forest ages 8 and 43 this was evident in there being no 

overlap in individual species associations between these forest ages, and where there was 

little distinction between the 20 and 32 year old forests there was a lot of similarity in the 

species that occurred in these forest ages. 

In addition, the current study combined with Duncan and Dalton's (1982) earlier work 

establishes a clear successional pattern on logs post clearfelling. It is possible that many of 

the other species found in the present study have specific associations with forest age, but 

sampling intensity was not sufficient to identify these associations. Further investigation 

into these relationships may not provide substantial additional insight into successional 

processes on coarse woody debris because it is likely that the overall processes identified 

in the present study for species are also indicative of the successional relationships of other 

species. 

The pattern of species replacement with succession in the present study is quite different 

from the patterns observed in general studies of succession following natural disturbance 

on coarse woody debris in the northern hemisphere, where the succession often is defined 

by four distinct successional stages characterised by functional groups, starting with 

epiphytic bryophytes and ending with terrestrial bryophytes (Crites and Dale 1998; Rambo 

and Muir 1998; Soderstrom 1988a). These distinct differences in succession between those 
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found in this study and those found in the northern hemisphere may be directly related to 

the nature of the disturbance that began succession on the log which determines the starting 

point of the cryptogam community, a factor which has been identified as important in 

determining the subsequent pattern of succession (Noble and Slatyer 1980). In northern 

hemisphere studies on succession following clear cut harvesting, it is recognised that 

cryptogam diversity increases over time (Newmaster and Bell 2002; Rudolphi 2007). Thus, 

in spite of the lack of distinct successional stages, the findings in the present study are 

consistent in these ways with successional patterns from similar clearfell, burn and sow 

disturbance types in forested systems worldwide. 

4.2 Habitat changes 

The process of succession can be best understood by considering the changes in habitat 

components with time. This is particularly important given that the aging of the 

regenerating forest includes a range of processes, including the aging of the substrate and 

changes in forest structure (Specht and Specht 1993) with consequent effects on meso- and 

microclimate. 

The large variation in distribution of log decay classes within forest age (Table 2.3) is 

likely to be the result of log decay progressing over time as the forest ages. This results in 

mixed distributions of decay classes in particular forest ages after clearfell harvesting. 

These unique combinations of decay class and forest age over time have distinct effects on 

the composition of cryptogam communities on coarse woody debris and are a major 

component of the complexity of habitat change over time that determines the nature of 

succession. 

There is clear evidence that mesoclimate varied with forest age, with average daily 4pm 

temperature and average daily 4pm vapour pressure deficit decreasing with forest age 

(Figures 3.21 and 3.23).This is consistent with the findings of other studies of variation in 

mesoclimate between forest ages. Crites and Dale (1998), in a study on bryophyte species 

distribution in relation to forest habitat changes over time, suggest that time since 

disturbance affects microclimate conditions. Other studies have also identified temperature 

and vapour pressure deficit and variation within these, as being directly related to forest 

age (Chen et al. 1999; Fenton and Frego 2005). 

This fact that log moisture increased among decay class 2 and decay classes 3 and 4 both 

overall and independent of age suggests that the increasing log moisture with forest age 
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were largely the result of the differences in log moisture among log decay class. Log 

moisture is well known to be associated with decay class (Rambo 2001; Rambo and Muir 

1998). However, it could not be determined if log decay class had an additional effect on 

mesoclimate differences between forest ages and whether this contributed to differences in 

site moisture. It is possible that higher evaporation rate in the younger forests than older 

forests as indicated by higher vapour pressure deficit (Figure 3.23) influenced log moisture 

in these forest ages. Also, advanced decay classes with high log moisture are better able to 

contribute to a more equable and humid mesoclimate (Rambo 2001), and consequently 

also contribute to differences in microclimate conditions. 

4.3 The effects of habitat changes on cryptogamic land plant communities 

CAP analysis (Figure 3.20) suggested that forest age was a more important determinant of 

the community composition than log decay class. This was supported to a degree by the 

analyses of the two independent data sets, although it must be recognised that these data 

sets covered smaller ranges of the age parameters than the overall data set (i.e. the data set 

testing the independent effect of age included only the 20, 32 and 43 age classes in decay 

class 3, and the data set testing the independent effect of decay class only included decay 

classes 2 and 3 in the 20 year age class). As a result, these analyses may have failed to 

detect changes that would be evident in broader samples. The significant preference of 

liverworts Cephaloziella hirta, Cephaloziella exiliflora and Riccardia crassa for 20 year 

old forest over older forest ages emphasises their status as early or mid successional 

species. The consistently significant preference of the mosses, Achrophyllum dentatum, 

Ptychomnion aciculare, Rhizogonium distichum, Dicranoloma billarderi, Wijkia extenuata 

and Rhizogonium novae-hollandiae; and the liverworts, Zoopsis argentea, Bazzania 

adnexa and Telaranea tridactylis, for the 43 year old forest over younger forest ages, 

emphasises their status as late successional species. The significantly higher species 

percentage cover in the 43 year old forest than the 20 and 32 year old forests can be 

attributed mainly to the number of liverwort species, a result that further supports the 

association between liverworts and older forests. 

However, changes in associations with forest age for some species suggests that these 

species may be more strongly associated with habitat variables other than forest age. Thus, 

the liverwort Lepidozia ulothrix and the mosses Campylopus introflexus, Dicranoloma 

robustum and Dicranoloma robustum did not have any significant associations with forest 
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age independent of decay class, even though the overall data showed significant 

associations with particular forest ages. 	• 

The independent effect of decay class on the community was characterised by an increase 

in species richness and changes community composition. Some individual species show 

significant associations with a decay class, for example Cephaloziella exiliflora was the 

only species to be significantly associated with logs of decay class 2, and the liverworts 

Chiloscyphus semiteres, Riccardia crassa, Riccardia cochleata, Lepidozia ulothrix and 

Telaranea tridactylis, and the mosses Dicranoloma billarderi and Rhizogonium novae-

hollandiae had significant associations with logs of decay class 3. This is consistent with 

other studies that also found a higher number of species associated with more advanced 

stages of decay than earlier stages of decay (Crites and Dale 1998; Kruys etal. 1999), and 

shows that there is a strong relationship between species composition and decay class. 

Overall, these comparisons indicate that both the age of the regenerating forests and the 

age of the logs contribute to succession on coarse woody debris. However, there are 

indications that the forest age alone is more significant. 

There is clear evidence for associations between cryptogam community succession and 

habitat conditions. These associations further demonstrate the complexity of the 

interactions between habitat and communities. For example, forest age had a significant 

effect on cryptogam community succession when analysed inclusive of decay class. 

Changes in mesoclimate and increasing log moisture may have been contributing factors in 

the increase in species richness over time and the greater number of individual species that 

had significant associations with the 43 year old forest than with younger forests. The 

findings of other studies suggest that moist, protected forest micro climates support the 

most diverse and abundant bryophyte communities (Andersson and Hytteborn 1991; 

Rambo and Muir 1998; Soderstrom 1988b). Thus, the observed relationships between 

mesoclimate and cryptogam communities in the present study are consistent with those 

from other forest systems and the interaction between mesoclimate and log moisture is 

very important in determining cryptogam species distribution and abundance over time. 

4.4 Comparing clearfell, burn and sow and natural wildfire regeneration 

The assessment of whether cryptogamic land plant succession after clearfell, burn and sow 

is similar to succession after wildfire, and also the comparison between clearfell, burn and 

sow and wildfire regeneration provides evidence that indicates how close 43 year old 
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clearfell, burn and sow regeneration is to the near climax state exhibited in old growth 

forest. Old growth forest refers to old stands (>110 years) of mixed forest with a 

predominantly rainforest understorey without any signs of natural or man made 

disturbance (Browning 2006; Turner 2003). This can be done by comparing the present 

data with data from an earlier study (Browning 2006). Browning (2006) and the present 

study were in the same region and sampling times differed by only two years (2006 versus 

2008) but they differed in how the logs were sampled. Browning (2006) sampled decay 

class 3 logs, and assessed cover/abundance on three 20 cm 2  quadrats on each log; however, 

an unbiased comparison was made between the two studies by converting individual 

Braun-Blanquet scores for each species to perbentage covers (as described in section 2.3.6), 

then calculating the means of these scores for each site. It should be noted that while 

percentage cover per log was comparable, these results did not provide an accurate 

representation of the relative species richness in each forest type as would be seen based on 

species richness if the studies had the same sampling intensities. 

Approximately 55% of species are shared between the clearfell, burn and sow and the 

wildfire regenerating forests after 43 years (Table 4.1). The main differences were that the 

mosses Wijkia extenuata, Dicranoloma menziesii and Distichophyllum pulchellum had 

significantly higher percentage cover per log in the 43 year old wildfire regenerating 

forests than the 43 year old clearfell, burn and sow regenerating forest. Nine out of 69 

species were present in the 43 year old wildfire regenerating forest but do not occur in the 

43 year old clearfell, burn and sow regenerating forest. These species were the liverworts 

Trichocolea mollissima, Telaranea mooreana; the mosses Hypnodendron comosum, 

Dicranoloma menziesii, Plagiothecium lamprostachys and Fissidens oblongifolius; and the 

ferns Hymenophyllum australe, Hymenophyllum rarum and Tmesi pteris obliqua. The same 

fern species were found to be greatly reduced in frequency in clearfell, burn and sow 

regenerating forests in another Tasmanian study comparing clearfell, bum and sow and 

wildfire regeneration (Hickey 1994). These fern species that occur on standing dead trees 

initially as epiphytes were lost due to the loss of habitat refugia in deaden, burn and sow 

regenerating forests compared to wildfire regenerating forests, which preserve many of 

these essential habitat elements. Eight out of 69 species are present in the 43 year old 

clearfell, burn and sow forest but did not occur in the wildfire regeneration forests: the 

liverworts Chiloscyphus multi pennus, Chiloscyphus latifolius and Kurzia compacta; the 

mosses Rhynchostegium tenuifolium and Rhaphidorrhynchium amoenum; and the ferns 

63 



Chapter 4— Discussion 

Hypolepis rugosula, Pteridium esculentum and Polystichum proliferum (Table 4.1). 

Although some of these differences may be the result of sampling limitations, the presence 

of significant differences in some species, plus the large number of other differences 

indicate that succession on coarse woody debris is different after wildfire than after 

clearfell, burn and sow. Similar differences in the composition of forests regenerating 

following wildfire and clearfell, burn and sow silviculture have been found previously 

(Turner 2003), and may reflect differences in how some bryophyte and fern species 

respond to wildfire and clearfell, burn and sow harvesting disturbance. 

There were also differences between old growth forest and both the wildfire and clearfell, 

burn and sow regeneration at 43 years. Nine out of 69 species were significantly more 

abundant in the old growth than in the younger regeneration types based on REML 

analysis of the differences between the percentage cover per log of each species among 

forest types based on the same design as the present study. These were the mosses 

Rhizogonium novae-hollandiae, Leucobryum candidum and Hypnum chrysogaster; the 

liverworts Zoopsis argentea, Tylimanthus diversifolius, Trichocolea mollissima and 

Heteroscyphus fissisti pus; and the ferns Grammitis billardierei and Hymenophyllum rarum 

(Figure 4.1). In addition the moss Hypnodendron vitiense and the liverworts Bazzania 

monilinervis, Psiloclada clandestina, Plagiochila strombifolia, Marsupidium surculosum, 

Radula buccinifera, Riccardia eriocaula and Saccogynidium decurvum only occurred in 

the old growth forest (Table 4.1). Many of these bryophytes also have been reported as 

common in other old growth forests in Tasmania (Turner 2003). 
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Table 4.1: Individual species presence in each forest type. Presence was based on percentage cover data 

only from the present study and Browning (2006). 

Forest type 
Wildfire 

Taxonomic Clear-fell, burn and sow regeneration Old growth 
Species 	 group 	regeneration (43 years) (43 years) 	(>110 years) 
Blechnum wattsfi 	 Fern 	 + 	 + 	 + 
Grammitis bfilardierei 	Fern 	 + 	 + 	 + 
Hymenophyllum cupressiforme 	Fern 	 + 	 + 	 + 
Hymenophyllum flabefiatum 	Fern 	 + 	 + 
Rumohra adiantiformis 	Fern 	 + 	 + 	 + 
Acromastigum colensoanum 	Liverwort 	 + 	 + 	 + 
Bazzania adnexa 	 Liverwort 	 + 	 + 	 + 
Heteroscyphus biciliatus 	Liverwort 	 + 	 + 	 + 
Chiloscyphus semiteres 	Liverwort 	 + 	 + 	 + 
Gackstroemia weindorferi 	Liverwort 	 + 	 + 	 + 
Heteroscyphus coalitus 	Liverwort 	 + 	 + 	 + 
Heteroscyphus fissistipus 	Liverwort 	 + 	 + 	 + 
Hymenophyton flabellatum 	Liverwort 	 + 	 + 	 + 
Jamesoniella tasmanica 	Liverwort 	 + 	 + 	 + 
Lepidozia glaucophylla 	Liverwort 	 + 	 + 	 + 
Lepidozia laevifofia 	 Liverwort 	 + 	 + 	 + 
Lepidozia ulothrix 	 Liverwort 	 + 	 + 	 + 
Metzgeria furcata 	 Liverwort 	 + 	 + 	 + 
Podomitrium phyllanthus 	Liverwort 	 + 	 + 	 4- 
Riccardia cochleata 	 Liverwort 	 + 	 + 	 + 
Riccardia crassa 	 Liverwort 	 + 	 + 	 + 
Telaranea sp. 	 Liverwort 	 + 	 + 	 + 
Tylimanthus pseudosaccatus 	Liverwort 	 + 	 + 	 + 
Tylimanthus diversifolius 	Liverwort 	 + 	 + 	 + 
Zoopsis argentea 	 Liverwort 	 + 	 + 	 + 
Achrophyllum dentatum 	Moss 	 + 	 + 	 + 
Dicranoloma dicarpum 	Moss 	 + 	 + 	 + 
Dicranoloma billarderi 	Moss 	 + 	 + 	 + 
Distichophyllum pulchellum 	Moss 	 + 	 + 	 + 
Goniobryum subbasilare 	Moss 	 + 	 + 	 + 
Hypnum chrysogaster 	Moss 	 + 	 + 	 + 
Leptotheca gaudichaudii 	Moss 	 + 	 + 	 + 
Leucobrytim candidum 	Moss 	 + 	 + 	 + 
Ptychomnion aciculare 	Moss 	 + 	 + 	 + 
Rhizogonium distichum 	Moss 	 + 	 + 	 + 
Rhizogonium novae-hofiandiae 	Moss 	 + 	 + 	 + 
Thuidiopsis sparsa 	 Moss 	 + 	 + 	 + 
Wijkia extenuata 	 Moss 	 + 	 + 	 + 
Bazzania monilinervis 	Liverwort 	 + 
Marsupidium surculosum 	Liverwort 	 + 
Plagiochila strombifofia 	Liverwort 	 + 
Psiloclada clandestina 	Liverwort 	 + 
Radula buccinifera 	 Liverwort 	 + 
Riccardia eriocaula 	 Liverwort 	 + 
Saccogynidium decurvum 	Liverwort 	 + 
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Zoopsis setulosa 	 Liverwort 	 + 

Hypnodendron vitiense 	Moss 	 + 

Hymenophyllum australe 	Fern 	 + 	+ 

Hymenophyllum rarum 	Fern 	 + 	+ 

Tmesipteris obliqua 	 Fern 	 + 	+ 

Trichocolea mollissima 	Liverwort 	 + 	+ 

Telaranea mooreana 	 Liverwort 	 + 	+ 

Dicranoloma menziesii 	Moss 	 + 	+ 

Hypnodendron comosum 	Moss 	 + 	+ 

Cyanolophocolea echinella 	Liverwort 	 + 	 + 

Schistochila lehmanniana 	Liverwort 	 + 	 + 

Cyathophorum bulbosum 	Moss 	 + 	 + 

Dicranoloma robustum 	Moss 	 + 	 + 

Histiopteris incisa 	 Fern 	 + 	 + 

Fissidens oblongifolius 	Moss 	 + 

Plagiothecium lamprostachys 	Moss 	 + 

Hypolepis rugosula 	 Fern 	 + 

Polystichum proliferum 	Fern 	 + 

Pteridium esculentum 	Fern 	 + 

Chiloscyphus latifolius 	Liverwort 	 + 

Chiloscyphus multipennus 	Liverwort 	 + 

Kurzia compacta 	 Liverwort 	 + 

Rhaphidorrhynchium amoenum Moss 	 + 

Rhynchostegium tenuifolium 	Moss 	 + 

The liverwort Zoopsis argentea was the only species that had a significant association with 

the 43 year old clearfell, burn and sow regenerating forest and had significantly higher 

cover in the old growth forest. This species was found to be significantly associated with 

logs in both mature (between 33-67 years) and old growth forests (>110 years) in a 

previous study comparing substrate and forest age associations in wet eucalypt forests of 

Tasmania by Turner (2003). The species that were considered late successional in the 43 

year old clearfell, burn and sow regenerating forest in the present study were not late 

successional species relative to old growth forest, except for the liverwort Zoopsis 

argentea. Consequently, it seems that species composition in the 43 year old clearfell, burn 

and sow regenerating forest has not reached the diversity or abundance of species found in 

old growth forest. 
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Heterascyphus fissistipus (L) AB 3 	 A 

Trichocolea molfissima (L) A 

Hymenophyllum rarum (F) AB A 

Grammitis biffardierei (F) AB A 

Tyliman thus diversifolius (L) Mga-4 	 A 

Hypnum chrysogaster (M) .:1.20KM 	 A 

Zoopsis argentea (L) A 

Leucobryum candidum (M) A 

Rhizogonium novae-hollandiae (M) AB A 
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Figure 4.1. Average cover per log standard error) in different types of regenerating forest for 

species with a significant difference between forest types (P < 0.05). Post hoc tests comparing forest types 

are given - for each species forest types sharing a letter are not significantly different (P> 0.05). 

Abbreviations: M = moss, L = Liverwort, F = Fern. 

The significant associations observed for forest age in the present study combined with 

observations from other studies reveal a distinct successional pattern for cryptogamic land 

plants on coarse woody debris. This succession is characterised by distinct early, middle, 

late and very late successional species (Table 4.2). However, while it is plausible that the 

43 year old clearfell, burn and sow regenerating forest communities on coarse woody 

debris eventually will succeed to similar communities as observed in the old growth forest, 

it is possible this may be a more extended process than after wildfire, given the differences 

between the 43 year old post-wildfire and post-clearfell, burn and sow regeneration. 

However, it is also possible that the community of the old growth community that would 

succeed from the 43 year old clearfell, burn and sow regenerating forest could potentially 

be quite different from natural regeneration. This may include the loss of some of the 

species that were observed in the wildfire regenerating forest and the old growth forest that 

were not observed from the clearfell, burn and sow regenerating forest, especially those 

species dependent on particular habitat refugia to persist after stand-replacing disturbance. 

In the present study it was found that the combined effects of forest age and coarse woody 

debris habitat conditions largely determined the resulting cryptogam community in 

clearfell, burn and sow regenerating forests. It can be assumed that similar processes are 
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determining the succession of species after wildfire regeneration. Based on the difference 

in cryptogam communities between regeneration types 43 years after disturbance, some of 

these habitat conditions have been lost in the clearfell, burn and sow regenerating forests. 

Table 4.2. Summary of the successional development of cryptogam communities on coarse woody 

debris in wet eucalypt forest after clearfell, burn and sow silviculture with the inclusion of old growth 

forest. Species included have significant associations with each forest age. 

Time 
(years) 

Successional 
stage Characteristic species 

8 Early Campy/opus introflexus (moss); Cephaloziella hirta, Cephaloziella exiliflora (liverworts) 

20-32 Middle Dicranoloma robustum (moss), Riccardia cochleata, Riccardia crassa (liverworts) 

43 Late Achrophyllum dentatum, Dicranoloma billarderi Ptychomnion aciculare, Rhizogonium 
distichum, Rhizogonium novae-hollandiae, Wijkia extenuata (mosses); Bazzania 
adnexa, Telaranea tridactylis, Lepidozia ulothrix, Zoopsis argentea (liverworts) 

>110 Very late Hypnum ctuysogaster, Leucobryum candidum, Rhizogonium novae-hollandiae 
(mosses), Heteroscyphus fissistipus, Tylimanthus diversifolius, Trichocolea 
mofiissima, Zoopsis argentea (liverworts), Grammitis billardierei, Hymenophyllum 
rarum (ferns) 

4.5 Ecological and management implications 

There needs to be a continuum of both decay classes and forest ages to ensure succession 

and the diversity of cryptogamic land plant assemblages over time on coarse woody debris. 

Variation in decay classes and associated habitat conditions is important for diversity and 

succession. In early successional forests, coarse woody debris, to a large extent, determines 

cryptogam community composition, which in turn determines the succeeding community 

that is observed in later successional forests. It is possible that there would be higher levels 

of species richness in early successional forests undergoing regeneration after clearfell, 

burn and sow harvesting if there was more variation in decay classes which have the 

potential to buffer cryptogam species microhabitat conditions and mediate some of the 

effect of the mesoclimate conditions in the early regenerating forests. 

In the 43 year old clearfell, burn and sow regenerating forest it was the forest habitat that 

was indicated as limiting, not the decay classes and associated habitat conditions. 

Consequently, there is a need for forests older than 43 years after clearfell, burn and sow 

disturbance and a diversity of forest ages across the landscape. It is unlikely that the 
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proposed 100 year harvesting interval is enough for the progression of these communities 

to a point where community composition resembles those found in naturally regenerating 

mature or old growth forests (Grove et al. 2002; Hickey 1994). There is a large temporal 

gap from 43 year old clearfell, burn and sow regenerating forests to old growth forests, but 

even so, when comparing the two based on the comparative composition of the 43 year old 

wildfire regenerating forest, it would be fair to assume that these results provide a good 

indication of the state of successional regeneration and how closely related the clearfell, 

burn and sow regenerating forest is to natural regeneration. The present study suggests that 

because the clearfell, burn and sow community does not yet resemble naturally 

regenerating communities after 43 years, it may take longer than the proposed 100 years 

for the habitat elements, particularly important coarse woody debris elements such as 

standing dead trees, that serve initially as epiphytic habitat that were lost inthe clearfell, 

burn and sow harvesting event to regenerate and time again to accommodate similar 

cryptogamic land plant communities. The establishment of very late successional species 

will take considerable time, and there is still time required after the establishment of those 

species for them to become similar in abundance, especially if the pattern of species 

succession in the younger clearfell, burn and sow regenerating forests is any indication, 

where species were present in the community for some time before becoming dominant. 

This means that there is the likely possibility that species will be excluded after repeat 

harvesting events of 100 year rotation. Therefore, conservation at a landscape level will 

depend on the distribution of essential habitat elements in the landscape in reserves as well 

as complementing management of these elements in multiple use forests such as through 

the wider use of variable retention harvesting. 

There is a huge gap in knowing what is happening after 43 years in either clearfell, burn 

and sow regeneration and at what time these communities reach a stage where they 

compare to naturally regenerating and old growth communities. This information is still a 

long way off due to the absence of comparable clearfell, burn and sow coupes older than 

43 years. This regeneration type is only available for forest approximately 43 years old 

because it was approximately 43 years ago that clearfell, burn and sow was implemented 

as a major harvesting technique (Wells and Hickey 1999). Therefore, longer rotation times 

(i.e. the times between subsequent harvests) are potentially required because the species 

that are significantly associated with the old growth forest are not even there yet, and it's 

likely that the habitat conditions for these species are only just developing, but will still 

take considerable time. 
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The present study suggests that there should be increased consideration for biodiversity on 

coarse woody debris, until there is further evidence for the successful regeneration of 

communities over the 100 year time frame. That means preserving old growth elements 

such as standing dead trees and large logs in various stages of decay in the managed 

landscape as much as possible, and ensuring that there is a mosaic of old growth and 

regenerating forests. The complexity of forest ages in the landscape will ensure that 

communities and species are not lost at a regional level even if they're lost at a site level 

(Fahrig 2001). The mosaic will increase the likelihood of reestablishment if it turns out that 

clearfell, burn and sow did not effectively resemble natural regeneration in accounting for 

coarse woody debris biodiversity. It is also important to encourage complexity in forest 

structure, including the maintenance of coarse woody debris in a continuum of decay 

classes and diameters to promote optimal diversity within any particular forest area and 

allow succession to occur without the restrictions that result from conventional clearfell, 

burn and sow harvesting (Grove et al. 2002). The potential implications of the present 

study support the conservation goals of many current and developing forest management 

prescriptions such as aggregated retention. 

4.6 Conclusion 

This study provides a significant contribution to understanding of how the dynamics of 

coarse woody debris and forest regeneration after clearfell, burn and sow relate to 

cryptogamic land plant succession on coarse woody debris. It provides clear evidence for 

the succession of cryptogamic land plant communities on coarse woody debris. This is 

characterised by changes in community composition and an increase in species richness 

over time, as well as the distinct replacement of species assemblages over time. The 

successional processes are driven by changes in forest habitat and coarse woody debris 

habitat, and these habitat changes co-vary with time since clearfell, burn and sow 

disturbance. The importance of each habitat scale in determining the succession of 

cryptogam communities is identified, as is the complexity of the interactions between these 

two habitat scales. It is recognised that there are potentially important community 

composition differences between clearfell, burn and sow and wildfire regeneration types. 

This information, coupled with the projected old growth community composition is cause 

for concern regarding the regeneration success of clearfell, burn and sow harvesting, and 

the important role of coarse woody debris in determining the success of cryptogam 

community development should not be underestimated. Management implications are that 
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both site and landscape level prescriptions may be needed to retain essential habitat 

elements and conservation goals in the wider forest landscape will require the retention of 

suitably diverse and abundant old growth elements. 
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APPENDIX 1 

MOSSES 
Brachytheciaceae 

Rhynchostegium tenuifolium (Hedw.) Reichardt 

Bryaceae 

Rosulabryum billarderi (Schwagr.) J.R.Spence 

Dicranaceae 

Dicranoloma billarderi (Brid. Ex Anon.) Paris 

Dicranoloma dicarpum (Nees) Paris 

Dicranoloma menziesii (Taylor) Renauld 

Dicranoloma robustum (Hook.f. & Wilson) Paris 

Fissidentaceae .  

Fissidens oblongifolius Hook.f. & Wilson 

Hookeriaceae 

Achrophyflum dentatum (Hook.f. & Wilson) Vitt & Crosby 

Distichophyllum pulcheflum (Hampe) Mitt. 

Hypnaceae 

Hypnum chrysogaster Mull. Hal. 

Hypnodedraceae 

Hypnodendron comosum (Labill.) Mitt. 

Hypnodendron vitiense Mitt. 

Hypopterygiaceae 

Cyathophorum bulbosum (Hedw.) Mull. Hal. 

Hypopterygium didictyon 

Leptostomataceae 

Leptostomum inclinans R.Br. 

Leucobryaceae 

Campy/opus introflexus (Hedw.) Brid. 

Leucobryum candidum (Brid. Ex P.Beauv.) Wilson 
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Mniaceae 

Pohlia nutans (Hedw.) Lindb 

Orthodontiaceae 

Orthodontium lineare Schwagr. 

Plagiotheciaceae 

Plagiothecium lamprostachys (Brid. Ex P.Beauv.) Wilson 

Polytrichaceae 

Polytrichum juniperinum Hedw. 

Ptychomniaceae 

Ptychomnion aciculare (Brid.) Mitt 

Racopilaceae 

Racopilum cuspidigerum (Schwagr.) Angstr. 

Rhizogoniaceae 

Goniobryum subbasilare (Hook.) Lind b. 

Leptotheca gaudichaudii Schwagr. 

Rhizogonium distichum (Sw.) Brid. 

Rhizogonium novae-hollandiae (Brid.) Brid. 

Splachnaceae 

Tayloria gunnii (Wilson) J.H.Willis 

Sematophyllaceae 

Raphidorrhynchium amoenum (Hedw.) M.Fleisch. 
Wijkia extenuata (Brid.) H.A.Crum 

Thuidiaceae 

Thuidiopsis sparsa (Hook.f. & Wilson) Broth. 

LIVERWORTS 

Acrobolbaceae 

Marsupidium surculosum (Nees) Schiffn. 

Tylimanthus diversifolius E.A.Hodgs. 

Tylimanthus pseudosaccatus Grolle 
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Aneuraceae 

Riccardia aequicellularis (Steph.) Hewson 

Riccardia cochleata (Hook.f. & Taylor) Kuntze 

Riccardia crassa (Schwaegr.) Carrington & Pearson 

Riccardia eriocaula (Hook.) Besch. & C.Massal. 

Cephaloziellaceae 

Cephaloziella exiliflora (Taylor) Douin 

Cephaloziella hirta (Steph.) R.M.Schust. 

Geocalycacea 

Chiloscyphus latifolius (Nees) J.J.Engel & R.M.Schust. 

Chiloscyphus multipennus (Hook.f. & Taylor) J.J.Engel & R.M.Schust. 

Chiloscyphus muricatus (Lehm.) J.J.Engel & R.M.Schust. 

Chiloscyphus semiteres (Lehm. & Lindenb.) Lehm. & Lindenb. 

Cyanolophocolea echinella (Lindenb. & Gottsche) R.M.Schust. 

Heteroscyphus biciliatus (Hook.f. & Taylor) J.J.Engel 

Heteroscyphus coalitus (Hook.) Schiffn. 

Heteroscyphus fissistipus (Hook.f. & Taylor) Schiffn. 

Saccogynidium decurvum (Mitt.)Grolle 

Hymenophytaceae 

Hymenophyton flabellatum (Labill.) Dumort. Ex Trevis. 

Jungermanniaceae 

Cuspidatula monodon (Taylor ex Lehm.) Steph. 

Jamesoniella tasmanica (Hook.f. & Taylor) Steph. 

Lepidolaenaceae 

Gackstroemia weindorferi (Herzog) Grolle 

Lepidoziaceae 

Acromastigum mooreanum (Steph.) E.A.Hodgs. 

Acromastigum colensoanum (Mitt.) A. Evans ex Reimers 

Bazzania adnexa (Lehm. & Lindenb.) Trevis. 

Bazzania monilinervis (Lehm. & Lindenb.) Trevis 

Kurzia compacta (Steph.) Grolle 

Lepidozia glaucophylla (Hook.f. & Taylor) Taylor ex Gottsche, Lindenb. & Nees 

Lepidozia laevifolia (Hook.f. & Taylor) Taylor ex Gottsche, Lindenb. & Nees 

Lepidozia ulothrix (Schwaegr.) Lindenb. 

Psiloclada clandestina Mitt. 
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Telaranea herzogii (E.A.Hodgs.) E.A.Hodgs. 

Telaranea mooreana (Steph.) R.M.Schust. 

Telaranea tridactylis (Lehm. & Lindenb.) J.J.Engel & G.L.Merrill 

Zoopsis argentea (Hook.f. & Taylor) Hook.f. ex Gottsche, Lindenb & Nees 

Zoopsis setulosa Leitg. 

Metzgeriaceae 

Metzgeria furcata (L.) Dumort. 

Pallaviciniaceae 

Podomitrium phyllanthus (Hook.) Mitt. 

Plagiochilaceae 

Plagiochfla strombifolia Taylor ex Lehm. 

Radulaceae 

Radula buccinifera (Hook.f. & Taylor) Taylor ex Gottsche, Lindenb. & Nees 

Schistochilaceae 

Schistochfla lehmanniana (Lindenb.) Steph. 

FERNS 

Blechnaceae 

Blechnum wattsii Tindale 

Dennstaedtiaceae 

Histiopteris incisa (Thunb.) J.Sm. 

Hypolepis rugosula (Labill.) J.Sm. 

Pteridium esculentum (G.Forst.) Cockayne 

Dicksoniaceae 

Dicksonia Antarctica Labill. 

Dryopteridaceae 

Polystichum proliferum (R. Br) C.Pres1 

Rumohra adiantiformis (G.Forst.) Ching 

Grammitidaceae 

Grammitis billardierei Willd. 
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Hymenophyllaceae 

Hymenophyllum australe Willd. 

Hymenophyllum cupressiforme La bill. 

Hymenophyllum flabellatum Labill. 

Hymenophyllum rarum R.Br. 

Psilotaceae 

Tmesipteris obliqua Chinnock 
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