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Abstract 

Interfacial waves in fluid flow have widespread applications in meteorology, 

oceanography and astrophysics. Several flows are considered in detail in this thesis. 

A key feature of these flows is that they each possess shear and they are each studied 

with a view to determining the behaviour of interfacial waves in the flow. 

The thesis begins with an investigation of a steady three-layer intrusion flow, 

in which all three layers are in motion with different speeds relative to the observer. 

Shear is present in the middle layer, and the lowest fluid may even move oppositely 

to the upper two (so giving an exchange flow). Two thin interfaces are present, 

above and below the moving middle layer. A linearized analysis is presented for 

small wave amplitudes. Non-linear periodic solutions are then obtained using a 

spectral method based on Fourier series, and these reveal a range of non-linear 

phenomena, including limiting waves, multiple solutions and resonances. 

The techniques used to study the intrusion flow are then extended to allow for 

time-dependent behaviour, and applied to the Kelvin-Helmholtz instability for an 

inviscid fluid. The viscous version of this problem is also considered. Here, two 

bounded fluid layers flow parallel to each other with the interface between them 

growing in an unstable fashion when subjected to a small perturbation. In this 

problem, and the related problem of the vortex sheet, there are several phenomena 

associated with the evolution of the interface, notably the formation of a finite 

time curvature singularity for inviscid fluids and the `roll-up' of the interface when 

viscosity is included. Two contrasting computational schemes will be presented. A 

spectral method is used to follow the evolution of the interface in the inviscid version 

of the problem. This allows the interface shape to be computed up to the time that 
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a curvature singularity forms, with several computational difficulties overcome to 

reach that point. A weakly compressible viscous version of the problem is studied 

using finite difference techniques and a vorticity-streamfunction formulation. The 

two versions have comparable, but not identical, initial conditions and so the results 

exhibit some differences in timing. By including a small amount of viscosity the 

interface may be followed to the point that it rolls up into a classic `cat's-eye' shape. 

Particular attention is given to computing a consistent initial condition and solving 

the continuity equation both accurately and efficiently. 

The final problem studied in this thesis is a two-layer shear flow for inviscid and 

viscous fluids. Here, the layers flow between two horizontal walls and are buoyantly 

stable. Each layer contains a finite amount of shear and the horizontal velocity is 

specified such that it is continuous when unperturbed. The interface between the 

two layers is given a small sinusoidal perturbation and the subsequent response of 

the system is studied. Different solution techniques are employed for the inviscid 

and viscous flow. These both rely on linearizing the governing equations for each 

of these flows. As a consequence, several restrictions are placed on how the viscous 

flow may evolve; namely that as it develops the flow will not differ too greatly 

from the unperturbed flow. These assumptions are justified since standing wave 

behaviour is expected in the inviscid case. Solutions are presented for a variety of 

different values of the shear parameters and the way these parameter choices affect 

the interaction between vorticity and density in the viscous case is investigated in 

detail. 
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CHAPTER 1 

Introduction 

The study of interfacial waves in fluid flow is a rich field of research with 

numerous applications in areas such as meteorology, oceanography and astrophysics. 

Historically much of the interest in this type of problem has focussed on the question 

of the stability of an interface under certain flow conditions. Numerous examples 

are presented in Lamb [35] and Taylor [56] where the stability of interfacial flows in 

inviscid fluid under the effects of shear and buoyancy, among others, are investigated 

in detail. Of particular interest in the context of this thesis are the discussions of 

Kelvin-Helmholtz instability, see Lamb [35, article 232], and the stability of a shear 

layer, which is discussed at some length by Taylor [56]. 

This discussion of stability has been extended to take into account more com-

plex effects. Numerous flows that include the effects of viscosity and compressibility 

are outlined, for instance, in Drazin and Reid [19]. In particular, compressible flow 

is important in modelling geophysical situations, such as the dynamics of oceans 

and atmospheres. Hydromagnetic effects are similarly important in modelling as-

trophysical situations and in the study of plasmas, and a number of flows of this 

types are detailed by Chandrasekhar [11]. The focus of this thesis, however, will 

be on the effect of shear on the behaviour of fluid interfaces. Various effects such 

as viscosity will also feature in some of the flows under consideration, but they are 

typically included so that interesting properties of shear flows may be highlighted. 

A common linearization approach to this type of problem in inviscid fluids is 

to study the behaviour of the flow when it is subject to a small interfacial per-

turbation. In such an approach the governing equations and interfacial boundary 

conditions are approximated with a linearized system under the assumption that 

12 
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the solution only differs from a steady base flow by a small (first-order) perturba-

tion. By further assuming that the solution components have wave-like forms it is 

possible to obtain a dispersion relation between the various parameters of the flow. 

For steady problems (where it has been assumed that the behaviour is not time 

dependent) this is effectively a criterion on the parameters that must be satisfied 

for a steady wave to exist. A simple case may indicate the wavelength of a wave 

permitted at a certain speed, for example. It is possible that the dispersion relation 

is relatively complicated for certain flows, an example being the three-layer shear 

flow of chapter 2 where quite a deal of information can be gleaned from the lin-

earized analysis. It is occasionally the case that a dispersion relation will predict 

a solitary wave, namely where a steady wave exists as the wavenumber tends to 

zero. An example of this can be found in the investigation of solitary waves on an 

intrusion flow by Forbes and Hocking [26]. 

For unsteady flow a dispersion relation may be used as a stability criterion to 

determine how an interfacial disturbance will evolve through time. For example 

a small perturbation may grow exponentially; a case in point being the Kelvin-

Helmholtz instability, detailed in chapter 3, as well as numerous other fluid insta-

bilities. A stability criterion may predict that a small wave is stable, namely that 

when given a perturbation the fluid system will maintain a behaviour such as a 

travelling or standing wave for certain parameter values. Where the configuration 

of the flow is complicated it may to be possible to obtain some hybrid of these 

behaviours, as in the study of the Holmboe instability of Umurhan and Heifitz [61] 

where a complex variety of solution modes are possible. The chief use of this kind 

of linearized analysis in the work presented in this thesis is as an aid in choosing 

parameter values judiciously for use in the corresponding non-linear problems. 

In this thesis non-linear interfacial flow problems are typically treated compu-

tationally. In particular, for the inviscid flows of chapters 2 and 3 spectral methods 

are employed to model the shape of the interface and the behaviour of the associ-

ated flow region. This approach involves choosing a Fourier series representation 
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for the solution components and then recasting the problem so that it is the coeffi-

cients of the series that are solved for rather than the solution directly. This type 

of technique has been successfully applied to a variety of problems. The inviscid 

Rayleigh-Taylor instability was modelled by Forbes, Chen and Trenham [25] where 

the interface of that buoyancy driven flow was tracked up until just after the point 

it tips over. A particular advantage to using the spectral technique here was that it 

allowed for the effects of surface tension and artificial viscosity to be included in a 

straightforward manner. More generally, an advantage in using a spectral method 

for problems such as this is that the shape (and even the curvature) of an interfa-

cial wave may computed to high degree of accuracy for a moderate computational 

cost. Similar techniques have been employed by Forbes, Hocking and Farrow [27] 

to study steady waves on an intrusion layer. 

It is also possible to apply these techniques to viscous flow, where the solu-

tion over an entire computational domain is given a series representation, rather 

than just the interface. The viscous version of the Rayleigh-Taylor instability was 

presented by Forbes [24], and here the evolution of the flow at the interface was 

followed much further than the inviscid version of the problem would allow. A 

similar approach is used in chapter 4 for a two-layer shear flow. Some disadvan-

tages to these types of methods are that they are occasionally unable to resolve 

sharp features, such as singularities in curvature, and are prone to the blow-up of 

higher order modes at later times. Both of these issues will be discussed in detail 

in chapter 3. 

An alternate approach that may be employed in modelling interfacial waves in 

fluid flow are the more computationally intensive finite difference methods. This 

approach is adopted in chapter 3 for the viscous version of the Kelvin-Helmholtz 

instability. In that analysis a rectangular flow domain is discretized with a grid of 

points and a set of governing equations (namely a Boussinesq version of the Navier-

Stokes equation and a mass conservation equation) are solved on this grid. Finite 

difference methods are a rich field of research and a great variety of techniques 
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have been developed around this area. Some well known examples are the SIMPLE 

method, as outlined in Anderson [3] for instance, and alternating difference implicit 

(ADI) methods, as presented by Tannehill et al. [55]. This former method was 

used by Farrow and Hocking [21] to model a viscous two-layer withdrawal flow for 

example. The method used in chapter 3 is an ADI approach and although it is able 

to compute features of the flow not available to the inviscid spectral method, and 

do so very accurately, it is nonetheless computationally expensive. 

Several flows are considered in detail in this thesis. A key feature of these 

flows is that they each possess shear and they will each be studied with a view to 

determining the behaviour of interfacial waves in each flow. Chapter 2 of this thesis 

presents an investigation of a steady three-layer intrusion flow, in which all three 

layers are in motion with different speeds relative to the observer. Shear is present 

in the middle layer, and the lowest fluid may even move oppositely to the upper two 

(so giving an exchange flow). Two thin interfaces are present, above and below the 

moving middle layer. A linearized analysis is presented for small wave amplitudes. 

Non-linear periodic solutions are then obtained using a spectral method based on 

Fourier series, and these reveal a range of non-linear phenomena, including limiting 

waves, multiple solutions and resonances. This chapter makes use of and extends 

some ideas established by Forbes et al. [27] in the study of steady waves on an 

intrusion layer. The material has perviously appeared in Chen and Forbes [14] and 

Chen and Forbes [13]. 

The techniques used to study the intrusion flow are then extended to allow for 

time-dependent behaviour, and applied to the Kelvin-Helmholtz instability for an 

inviscid fluid in chapter 3. The viscous version of this problem is also considered. 

Here, two bounded fluid layers flow parallel to each other with the interface between 

them growing in an unstable fashion when subjected to a small perturbation. In this 

problem, and the related problem of the vortex sheet, there are several phenomena 

associated with the evolution of the interface, notably the formation of a finite 

time curvature singularity for inviscid fluids and the `roll-up' of the interface when 
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viscosity is included. Two contrasting computational schemes will be presented. 

A spectral method is used to follow the evolution of the interface in the inviscid 

version of the problem. A similar method has previously been used by Forbes, Chen 

and Trenham [25] to model the inviscid Rayleigh-Taylor instability. This allows 

the interface shape to be computed up to the time that a curvature singularity 

forms, with several computational difficulties overcome to reach that point. A 

weakly compressible viscous version of the Kelvin-Helmholtz problem is studied 

using finite difference techniques and a vorticity-streamfunction formulation. The 

two versions have comparable, but not identical, initial conditions and so the results 

exhibit some differences in timing. By including a small amount of viscosity the 

interface may be followed to the point that it rolls up into a classic `cat's-eye' shape. 

Particular attention is given to computing a consistent initial condition and solving 

the continuity equation both accurately and efficiently. The material in this chapter 

has been submitted to the Journal of Computational Physics [15]. 

The final problem studied in this thesis is a two-layer shear flow for inviscid and 

viscous fluids. Here, the layers flow between two horizontal walls and are buoyantly 

stable. Each layer contains a finite amount of shear and the horizontal velocity is 

specified such that it is continuous when unperturbed. The interface between the 

two layers is given a small sinusoidal perturbation and the subsequent response of 

the system is studied. Different solution techniques are employed for the inviscid 

and viscous flow. These both rely on linearizing the governing equations for each 

of these flows. As a consequence, several restrictions are placed on how the viscous 

flow may evolve; namely that as it develops the flow will not differ too greatly 

from the unperturbed flow. These assumptions are justified since standing wave 

behaviour is expected in the inviscid case. Solutions are presented for a variety of 

different values of the shear parameters and the way these parameter choices affect 

the interaction between vorticity and density in the viscous case is investigated in 

detail. A paper based on the material in this chapter has been submitted to the 

European Journal of Mechanics - B/Fluids [16]. 



CHAPTER 2 

Steady periodic waves in a 3-layer fluid with shear 

in the middle layer 

2.1. Introduction 

The propagation of steady periodic waves in layered fluids is a well documented 

phenomenon. Such a situation may arise when the continuous density profile of an 

ocean or atmosphere has been approximated to one made up of multiple horizontal 

layers of constant density. Typically systems of two or three layers are considered, 

usually under the influence of gravity, with interest lying principally in the shape 

of the interfacial wave profile(s). 

Previous models have varied in complexity with the inclusion of a range of 

effects and approximations. A simple case is that of Saffman and Yuen [51] who 

considered steady finite amplitude periodic waves on a vortex sheet. Their work pro-

poses the existence of limiting cases (such as Stokes' corners and overhanging waves 

as later computed by Meiron and Saffman [40] and Turner and Vanden-Broeck [60]) 

as well as making a distinction between the existence of steady solutions and their 

stability. Another two-layer flow is that considered by Pullin and Grimshaw [48] 

which included constant vorticity and a rigid lid in the upper layer. This Boussi-

nesq flow displays an impressive range of geometrically limiting cases, which alter 

markedly as a physical parameter such as upper layer depth is varied. 

More recently some equally interesting results have been published for the case 

of three-layer fluids. Although this is a natural extension, it is complicated some-

what by the presence of two interfaces. Such situations have been characterised as 

possessing free-surface waves which may induce or interact with internal interfacial 

waves (Paran and Dias [43]). Michallet and Dias [41] have considered waves in 

17 



2.1. INTRODUCTION 	 18 

three-layer systems that contain rigid horizontal walls above the uppermost fluid 

and below the lowermost one. Their focus was on the interaction between long 

and short wavelength modes of solutions. Similar effects were studied in nearly 

identical situations by both Rusks and Grue [49] and Vanden-Broeck and Turner 

[62]. These latter authors included a middle layer of continuously varying density, 

and computed long waves with oscillatory tails. 

The experimental work done on these types flows is instructive. Sutherland et 

al. [54] looked at an intrusive gravity current propagating in a two-layer fluid. This 

was extended to account for more complex stratification by Flynn and Sutherland 

[23], who included a lower layer of variable density. Further work by Mehta et al. 

[39] on intrusions into two and three-layer fluids of constant density emphasises the 

generation of solitary wave type phenomena. These studies illustrate the variety of 

practical contexts to which these intrusion flows apply, and confirm the relevance 

of the theoretical calculations of the type presented here. 

The present work extends that of Forbes et al. [27] which dealt with periodic 

waves on an intrusion layer flowing into a stationary fluid. In that paper, the simpli-

fication of only allowing the central layer to be in motion permitted limiting waves 

(with sharp corners at the crests) to be computed, while resonant interactions were 

unavailable (or at least not found in their numerical results). Solitary wave-type 

solutions are also permitted for this configuration, and were obtained by Forbes 

and Hocking [26] using both weakly nonlinear theory and direct numerical calcu-

lation. The computation of generalized solitary waves on fluid interfaces is a rich 

field of research. Akylas and Grimshaw [2] obtained solitary waves with oscillatory 

tails, for instance, while Rusks and Grue [49] have computed extreme overhanging 

solitary waves in a three-layer fluid. The effect of linear density stratification in 

each layer on the propagation of solitary waves has been examined by Fructus and 

Grue [28]. 

The three-layer model presented here is a straightforward one. Each layer is of 

constant density, and is inviscid and incompressible. Shear (constant vorticity) is 
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present in the middle layer, with the two outer layers flowing (when unperturbed) at 

a constant speed, such that velocity is continuous at the two interfaces. Historically, 

interest in systems of this type has been with regard to their stability to small 

perturbations. Lamb [35, article 232] reported on the solution obtained by Rayleigh, 

for the stability of an intrusion jet'. This linearized analysis was summarized 

and extended by Forbes et al [27]. A stability analysis of the present problem 

was first given by Taylor [56]. Chandrasekhar [11] repeated this analysis with 

the slight simplification of only considering small density differences between the 

layers. The stability of the waves will not be considered here however, with the 

focus instead being on computing the shape of the interfaces in steady flow. As 

discussed by Saffman and Yuen [51] and Turner and Vanden-Broeck [60], it is 

legitimate to make a distinction between the existence of finite amplitude steady 

periodic solutions and their stability. Techniques developed by Forbes et al. [27] 

to compute periodic nonlinear interface shapes for the related problem of intrusion 

currents will be adapted to the present situation. Problems of this type (and shear 

flows in particular) have previously yielded wave profiles with overhanging portions 

(for instance, Turner and Vanden-Broeck [60] and Pullin and Grimshaw [48]) and 

the numerical scheme will be extended to account for this possibility. 

The flow we consider here is physically relevant to a number of geophysical 

situations. For instance in Williams et al. [65] the circulation generated beneath 

melting ice sheets and the subsequent interaction of fresh and salt water gives 

rise to a type of intrusive current. In a similar fashion the agricultural run-off or 

inflow into a stratified reservoir may produce an intrusion flow when it reaches its 

neutral bouyancy; see for example Forbes et al. [27]. The outflow of water from 

the Mediterranean sea into the North Atlantic, as outlined in Candela [9], and the 

associated phenomenon of `meddies' is a larger scale example of this kind of flow. 

Here patches of circulating warm salty water contribute significantly to variations 

in salinity as they drift around the region. 
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In this chapter, the steady model is formulated in such a way that it is possible 

to specify that the upper and lower layers flow in opposite directions, giving a so-

called exchange flow. Such flows occur in a wide range of situations, for instance 

in the strait of Gibraltar as discussed by Timmermans and Pratt [57]. They are 

also studied from a hydraulic perspective (e.g. Armi and Farmer [41) with view to 

finding some maximal flow rate solution. 

It has been seen in work on similar problems, such as that of Paran and Dias [43] 

and Rush's and Grue [49], that for a given choice of physical parameters there may 

be small amplitude solutions available at multiple wavelengths for the same wave 

speed. In such cases it may be possible, in a nonlinear regime, to obtain resonant 

interactions between these solution modes where their respective wavelengths are 

near integer multiples. Interactions of this type are not dissimilar to Wilton's 

ripples (Wilton [66]), which are encountered for periodic gravity waves with surface 

tension, or the gravity-capillary waves of Chen and Saffman [12] where various 

resonances (or 'combination waves') were excited as a surface tension parameter 

was varied. Such waves have been seen experimentally by Mehta [39] for the case 

of a bulbous intrusion into a stationary layered fluid. In this chapter it will be 

seen that superharmonic resonant interactions are readily available and coincide 

with complicated relationships between various physical parameters. These types 

of resonances are often characterised as an interaction between internal and external 

modes (Lewis et al. [36] and Parau and Dias [43]), although this is not necessarily 

an accurate interpretation here. 

The model will be derived in section 2.2. A linearized solution is presented 

in section 2.3, hinting at the possibility of resonant effects and multiple solutions. 

Section 2.4 introduces a numerical solution method based on Fourier series and 

a simple Galerkin technique. A multitude of nonlinear solutions for moderate to 

large amplitude waves is shown in section 2.5. These are compared to the linearized 

solution and reveal a wide array of nonlinear phenomena. 
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2.2. Model and governing equations 

We consider a system composed of three horizontal fluid layers, all of which 

are in motion, as illustrated in Figure 2.1. Throughout this chapter of the thesis, 

the top layer will be denoted as layer 1, the middle as layer 2 and the lowest as 

layer 3. Each fluid layer has constant density pa , i = 1, 2,3, with p l. < p2  < p3 , 

and there are constant horizontal background flow speeds c 1  and c3  in the top and 

bottom layers, respectively. There are two free interfaces, y = nu and y = ?IL , at 

the upper and lower boundaries of the middle layer. The upper and lower layers 

are unbounded, of infinite vertical extent. Constant vorticity (shear) is present in 

the middle layer, where the background speed is such that it matches the outer 

layer speeds in the case of flat interface profiles. All fluids are assumed to be 

incompressible and inviscid. The upper and lower layers are also assumed to flow 

irrotationally. The flow is steady and subject to the downward acceleration g of 

gravity. The shape of the two interfaces will be of particular interest. 

Non-dimensional variables will be introduced. The height of the middle layer, 

h, is used as a length scale. A typical speed, Vgh, is chosen as the velocity scale 

with velocity potentials scaled with hVg-E. The density scale is p2 , the density of 

the middle layer. Recasting the problem in these terms, the system is characterised 

by four dimensionless parameters: 

Ci C3 
F1 = 	F3 = 

■,/Th  

	

D1= - 	D3 = -P3 . 

	

P2 	P2 

(2.2.1) 

(2.2.2) 

Here F1 and F3 are Froude numbers for the upper and lower layers respectively. 

These are the fluid celerities made dimensionless with respect to the characteristic 

speed of a wave in the middle layer. The two remaining parameters D 1  and 

D3 are density ratios relative to the density )92 of the middle layer, with D 1  < 1 

and D3 > 1. The appropriate form of the background speed in the middle layer is, 

F2(Y) = F3 + (F1 F3)Y. 	 (2.2.3) 
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FIGURE 2.1. Diagram of the flow configuration showing the three 
fluid layers moving horizontally with waves propagating at the two 
interfaces y = nu and y = riL above and below the middle layer. 

Here the linear dependence on y represents the constant shear. The fluid speed in 

this layer matches those of the upper and lower layers on the planes y = 1 and 

y = 0, respectively. 

In each layer we define a velocity vector q i  = uj i + vj (i = 1, 2,3). For the two 

outer layers q, is the gradient of a velocity potential ck„ 

cbi  = Fix +1. i  

qi = (Fi + ax 	+ —8C  j (i = 1,3). 	 (2.2.4) 
 ay 

The velocity vector in the middle layer, q2 , may be expressed in a similar fashion, 

q2 = (F3 + (F1 - F3)Y W-'9411x2  + 	 (2.2.5) ay 
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Here we have effectively written the velocity as the sum of a rotational part (the 

linear shear term) and an irrotational part (gradient of the velocity potential 4)2). 

Having done this we may also determine the streamfunction in the middle layer, 

02(x , y) = F3y +(Fi - F3 ) y2  + 412(x , Y) 
	

(2.2.6) 

where the irrotationa1 part of the streamfunction, 41 2 , is related to irrotational 

velocity potential 1.2  by the Cauchy-Riemann equations. 

Conservation of mass requires that 0 1 , (1)2 and 03 satisfy Laplace's equation in 

each fluid layer, 

v201 0 in n.  <y < 00  (2.2.7) 

v2 4,2 0 in <y < 77u (2.2.8) 

and '7 2 03 0 in — oo < y < 	. (2.2.9) 

It is of note that the shape of these layers is determined by the shape of the two 

interfaces (not known a priori) making this a highly nonlinear problem. 

There are several boundary conditions which need to be defined on each in-

terface. Two kinematic conditions on the upper interface require that neither the 

upper nor middle fluid layers may cross the interface, 

v, = u, ria u (i  _ 1,2) on y = 	(x). 	(2.2.10) 
ax 

A single dynamic condition, 

-

1 D i F? - -
1

13'1 (u? + v?) — (nu —1) 
2 	2 
1 	1 

— ( ,E4 + v3) + (Fi — F3)02 — (nu — 1) on y = nu(x),(2.2.11) 

is obtained (via Bernoulli's equation) by equating pressure in each layer at the 

interface. 

Similarly, there are two kinematic conditions on the lower interface, 
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ariL vi  = ui 	(i = 2, 3) on y = 
ax 

(2.2.12) 

for each of the lower and middle layers. The dynamic condition on the lower 

interface is 

1 
— F2  — —(u2  + v 2 ) + (F1 —F3 ) 2  — ?IL 2  3 	2  2 	2 

,2 	1 n  t„,2 	„,2 	,„ 	„ ,„ 	f,„\ = —D3r 3  — 	u3/ 	 y = k .. ) . 
2 	2 

The infinite vertical extent of the upper and lower fluids requires that 

—> F1 x as 

0,3 --> F3 X as y —oo 

(2.2.13) 

(2.2.14) 

for a solution to be physically reasonable. Our interest lies in investigating the 

nature of periodic waves on the interfaces. As such we seek periodic solutions in 

x for cbi, 4121 037 riU and riLwhich satisfy equations (2.2.7) - (2.2.14). To this end 

we assume that the system is also dependent on some dimensionless wavenumber, 

k, which is thus an additional dimensionless parameter, along with the Froude 

numbers (2.2.1) and density ratios (2.2.2), needed to specify a solution completely. 

2.3. Linearized solution 

We now present a linearized solution to the governing equations (2.2.7)—(2.2.14). 

This corresponds to the case of the two free surface shapes being sinusoidal in x and 

of small amplitude. In effect we use a small perturbation about the trivial solution 

of fiat interfaces and background flow for the velocity in each fluid layer, similar 

to that presented by Taylor [56] but without the time dependence. The velocity 
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potentials in (2.2.7)—(2.2.9) are expressed by means of the perturbed expansions, 

01(x ,Y) = Fix + ekii(x,y) + O(e2 ) (2.3.1) 

4)2(x, Y) = f(D21(x, Y) + 0(c2 ) (2.3.2) 

03(x, Y) = F3x + c(1)31(x, y) + OW), (2.3.3) 

while the lower and upper interface profiles are perturbations about y = 0 and 

y = 1 respectively, 

in, (x) = dim (x) + O(f2 ) 
	

(2.3.4) 

nu (x) = 1 + cHui (x) + O(f2 ). 	 (2.3.5) 

Here c is a small parameter with magnitude in the order of the amplitude of the 

wave. Appropriate solutions to Laplace's equation are chosen for each velocity 

potential, up to a multiplicative constant, 

(bii(x,Y)= ali e—k(v -1)  sin kx 	 (2.3.6) 

= amekY sin kx 	 (2.3.7) 

21(x, y) = (c2  cosh(ky) + d2 sinh(ky)) sin kx. 	(2.3.8) (1)   

These have been chosen to have period 2r/k in x, to be odd with respect to x and 

to have the properties that (kii and (1)31 decay to zero as y --> oo and y —> —oo, 

respectively. The perturbed streamfunction (2.2.6) in the middle layer, th, takes 

the linearized form 

02(x , y) = F3Y + (Fi. — F3)Y2  + c4121 (x, y) + O(E2 ) 	(2.3.9) 

in which W21 is determined from the Cauchy-Riemann equations to be 

W21 (x, y) = (c2 sinh(ky) + d2 cosh(ky)) cos kx. 	(2.3.10) 
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The corresponding interface profiles will be periodic, even functions in x, and 

will have the forms 

H L i (x) = cos kx 

Hu i(x) = a cos kx 	 (2.3.11) 

where a is to be determined. Substituting this perturbed solution into the boundary 

conditions (2.2.10)—(2.2.13) and then discarding any terms of order f2  or higher 

we obtain a system of six algebraic equations. These may be solved to yield the 

dispersion relation 

kn D3kF + D1D3 tanh k + k2FF tanh k = 0, 	(2.3.12) 

where Di = 	F1(F1 — F3) — ( 1  — D1), 

and D3 = D3kFl ± F3 (Fi - F3) - (D3 - 1). 

This relation determines the co-dependency of the Froude numbers on wavenumber 

such that equations (2.2.7)—(2.2.14) are satisfied to first order in the parameter E. 

Equation (2.3.12) contains cubic powers of the Froude numbers, suggesting that 

up to three linear solutions may exist for some fixed wavenumber. Likewise the 

expression involves nonlinear functions of wavenumber k which indicates that, for 

fixed Froude numbers (2.2.1) and density ratios (2.2.2), there may be multiple 

linear solutions of different wavenumber. It is impractical to try to characterize 

completely the effect of varying each of the five non-dimensional parameters, so the 

density ratios, Di and D3, will be held constant at values close to 1 (representative 

of stratified oceans or reservoirs), and the upper layer Froude number will be chosen 

as Fi  = 0.1, throughout the results presented here. 
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2.3.1. The linearized dispersion relation. Although the dispersion rela-

tion (2.3.12) must ultimately be solved numerically to determine the relationship be-

tween wavenumber k and Froude number F3, it is instructive to consider first a lim-

iting case. For short wavelengths (that is large wavenumber, k) we put tanh k 1 

to reduce (2.3.12) to a simple cubic in F3. This may be solved exactly to give the 

three approximate values 

F3 
1 — 	+ F?(1 — k — k131)  

Fi 
(2.3.13) 

and, F3 P.../ 
—F1  ± VF? +4(1— k — D3 -F kB13)  

2(kD3 + k — 1) 
(2.3.14) 

for the speed F3 of the lowest fluid layer. The first of these (2.3.13) takes the 

opposite sign to F1  (for large enough k), suggesting that the lower layer may flow 

in the opposite direction to the upper layer; this is therefore an 'exchange flow'. 

The two solutions in equation (2.3.14) have slower speeds in the bottom layer, and 

typical parameter values give one positive and one negative value for F3. 

A numerical solution to (2.3.12) is required for small and moderate values of 

k. This is obtained by holding D1, D3 and F1  constant, choosing a value for k 

and then solving for F3 with Newton's method. This was repeated over a range 

of initial values of F3 that were chosen to allow for multiple solutions at the same 

wavenumber. Having done this we may compare the relative amplitude and phase 

of the two linearized interfaces in equation (2.3.11) by taking 

Hui = 
HLI 

1 
(1 — )kF3 

[kFi (D3 cosh k + k.F1 sinh k) 

+(D i kFi  —(F1  — F3))(kn cosh k + D3 sinh k)1, 

(2.3.15) 

which will be negative if the interfaces are out of phase and positive if they are in 

phase. The ratio a goes to infinity as F3 passes through zero, simply indicating a 

flat lower interface at this point. 

An example solution is shown in Figure 2.2. Physically reasonable parameter 

values have been chosen with DI = 0.99, D3 = 1/D1 and F1  = 0.1. These values 
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FIGURE 2.2. Plot of the linearized dispersion relation (3.12) to 
give the relationship between wavenumber k and lower layer Froude 
number F3. The parameter values chosen are upper layer Froude 
number F1 = 0.1 and density ratios D I  = 0.99 and D3 = 1/0.99. 

have been taken to be representative of typical situations encountered in oceanog-

raphy; see Phillips [45]. In the diagram, in-phase solutions are represented by solid 

lines with out-of-phase solutions represented by dashed lines. For this example we 

see three distinct solution branches: an in-phase solution for all k with positive 

F3; an out-of-phase solution available for k > /c2 with two negative F3 values at 

each wavenumber; and a solution valid for k < rs i  that emerges, out-of-phase, from 

k = 0 with positive Froude number, switches phase as it passes through F3 = 0 and 

then has long wavelength solutions for increasingly strongly negative F3. Here, the 

values ici and tc2 represent wavenumbers at which the linearized solution branches 

in Figure 2.2 have turning points, with vertical slopes. Two additional points of 
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interest on this final branch are the Froude number where k = 0, 

(1-  D1)(D3  -1) 
F30 - 	 -= 5.025 x 10 -2 , 

Fi (D3 — D 1 ) 
(2.3.16) 

possibly corresponding to a solitary wave-like solution, and the wavenumber, IS05 

for F3 = 0 which from equation (2.3.12) satisfies 

,s0Fr+[,s0Frpi—Fr —(1— Di)] tanh iso  = 0 	(2.3.17) 

and may easily be found numerically (in this case Ko  = 0.8022). Similarly we may 

calculate the turning points n i  and iS2 by taking the derivative of equation (2.3.12) 

with respect to F3 giving, in this case, ki = 1.044 and n2 = 1.735. 

It can be seen that two solutions exist (one in-phase and one out-of-phase) for 

lower layer Froude number less than the value F30 of equation (2.3.16). Where 

the wavenumbers of two such solutions are integer multiples of each other there is 

the possibility of resonant behaviour, with solutions from the two branches super-

posed. Previous studies (e.g. Pa."ralu and Dias [431) have found that in a nonlinear 

regime such resonances are readily excited for moderate to large amplitude non-

linear waves, since at a fixed wavenumber, the Froude number may vary (from its 

linearized value) as amplitude increases, allowing nearby resonances to be encoun-

tered. The likelihood of a particular resonance being available for a value of F3 

may be evaluated with the aid of Figure 2.3. Here the ratio of the short and long 

wavenumbers has been plotted against F3. It can be seen that this ratio becomes 

large for strongly negative F3, as well as where F3 F30 and F3 0. The dotted 

horizontal lines indicate where the ratio is integer valued. It may be seen that, for 

instance, linear theory predicts 1:2 type resonances near F3 ,',Z1 —0.08. 

2.4. Nonlinear solutions and numerical scheme 

We will now outline a numerical procedure to obtain periodic solutions to the 

(fully nonlinear) equations (2.2.7) - (2.2.14). This is essentially a Galerkin-type 
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FIGURE 2.3. Plot of the ratio of wavenumbers when two linearized 
solutions exist for the same lower layer Froude number. The lower-
layer Froude number F3 is shown on the horizontal axis. Linear 
resonance is possible where the ratio is integer valued. 

method used to determine the coefficients of some Fourier series. There is a possibil-

ity that the interfacial profiles may become multivalued (as in Pullin and Grimshaw 

[481 and Rush's and Grue [491) and a reparametrization of the system involving arc 

length will be introduced to deal with this possibility. 
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Appropriate solutions to Laplace's equations (2.2.7) - (2.2.9) (subject to (2.2.14)) 

will be Fourier series of the form 

(D 1 	E Bri e — nk(Y-1)  sin nkx 	 (2.4.1) 
n=1 

tp2 	E [C„ cosh nk(y — + 	sinh nk(y — 1)1 sin nkx 	(2.4.2) 
n=1 

433 = E Fn en kY sin nkx 	 (2.4.3) 
n=1 

with these approximate solutions becoming exact as N ---> oo. It is occasionally 

convenient numerically to replace the hyperbolic functions in 4)2 with simple expo-

nential functions. 

It is convenient to parametrize each interface using an arc length s, so that each 

interface is represented in the form (x(s), y(s)). A change of variables will now be 

made with a scaled arc-length, defined as 

6 = L • 

Here, L is the total arc length along one wave cycle; this is therefore a parameter 

which is essentially equivalent to a measure of amplitude and need not be computed 

explicitly. The use of an arc length leads to an extra condition which must be 

satisfied on each interface, namely 

(C/X 2 	1dy \ 2  

cTe)u,c, 	 = 
42 (2.4.4) 

where the subscripts U and L refer to the upper and lower profiles, respectively. 

This is derived from the usual Pythagorean relationship dx2  + dy2  = ds2 . The 

periodic functions representing the upper interface (x, y) = (XU, qu) and the lower 

27rs 
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interface (x, y) = (xL , nL ) are selected to be Fourier series of the form, 

TIU 	1+ Po E Pn  cos 	 (2.4.5) 
n=1 

?IL 	Ro + 	R, cos 	 (2.4.6) 

XU =

n=1 

N 
—

k 

E Tn  sin 	 (2.4.7) 
n=1 

N 

XL = 	Eun, sin ne, (2.4.8) 
n=1 

which, too, become exact as N —> Do. 

As we seek finite amplitude nonlinear wave solutions for the interface profiles, 

it is necessary to define some measure of wave amplitude. Half the peak-to-trough 

displacement of the lower interface, AL , is chosen here, and may be calculated from 

2AL = 900 ) — 71L( 7r )• 	 (2.4.9) 

This adds an extra parameter to this system, as well as an extra condition which 

must be satisfied by our solution. Where the upper interface is of much larger 

amplitude, its displacement may be used instead of equation (2.4.9) to define the 

amplitude parameter. 

A nonlinear solution is characterised by the 8N+3 coefficients from the velocity 

potentials (the Bn, Dn  and Fe ), the coefficients from the interface profile co-

ordinates (the Pn , Rn , Tn  and (Je ) and the lower layer Froude number, F3. The 

numerical scheme involves forming a vector of unknowns, V, from these coefficients, 

V = [B; C; D; F; P; R; T; U; Po; Ro; F3] T  

where B = [B 1 ,. 	Rn] C = [C1, 	,Cn] and so on, and then iteratively solving 

for the components of this vector with a Newton's method routine in 8N + 3 di- 

mensions, seeking to minimize an error vector E. The first 8N components of the 

error are calculated by successively multiplying (2.2.10)—(2.2.13) and (2.4.4) by a 
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Fourier basis function (N times for each equation) and integrating over one period. 

The remaining three sets of components come from the two dynamic conditions 

(2.2.11) and (2.2.13) integrated over a period and the wave amplitude condition. 

Explicitly, the components of the error vector E are derived from the two upper 

interface kinematic conditions (2.2.10) on (x, Y) '= (xu, nu), 

I( 
(v  axu ui az) sin Joe 	0  

oe  

fir (v2  axu 	2  aaneU ) sin Joe  = 0  
a6 

(2.4.10) 

(2.4.11) 

for j = 1, . . . , N, suitably decomposed and integrated. Similarly from the lower 

interface kinematic conditions (2.2.12), evaluated on (x, Y) = (xLML), we obtain 

7r 	axL 	ail sin (2.4.12) (v2 	— u2 	sin 3 6c16 = 0 a6 	a6 
f it 

 ( axL 	ani. (2.4.13) y3 	- 1./3 --ad sin j6de = 0 a6 f_7, 
for j = 1, 	, N. The upper dynamic condition (2.2.11) is first integrated to give 

one error component 

[ 21 1,1 21 Din .1 (14  vn  
+ vi) 

— F3)02 — (1 — 	)(nu — 1)] de = 0 	(2.4.14) 

and then multiplied by the even basis functions cos ./6 to give a further N error 

components 

1 	1 	1 
+ v?) 71- [-

1
Fq2 	 (u92  1192 ) + -2 131(14 L 2 	2 	2  .. 

	

+(F1  — F3)*2 — (1 — Di)( riu — 1)] cos j6d6 = 0 	(2.4.15) 
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for j = 1, . , N. Likewise another N + 1 components are obtained by applying the 

same procedure to the lower dynamic condition (2.2.13), 

[_21 0. _ D3 )F1 - (u 	-2' D3 (4 ± 

	

+(Fi – F3)11,2 – (1 – D3)11L]c16 = 0 	(2.4.16) 

f [-21  (1 – D3)F1 – 	+ q) -2',03(u3 + v3) 

	

+(F, _ F3)02 - (1 - DAL] cos ied6  = 0 	(2.4.17) 

for j = 1, 	, N. Finally, multiplying the two arc length conditions (2.4.4) by the 

even Fourier basis functions and integrating provides a further 2N components of 

the error vector, 

aXu 2 	ant/ 2  

I 
	+ (w— ) lcos j = 0 

aX 
 2 u 	 \ 2 I [( a) Ce )1cosiK = o 

(2.4.18) 

(2.4.19) 

for j = 1, , N. The last component of the error vector comes from the wave 

amplitude condition (2.4.9) on the lower interface, 

Rn [l – cos nr] – 2AL = 0 	 (2.4.20) 
n=1 

which has been derived using the Fourier series (2.4.6). 

All integrals in equations (2.4.10)–(2.4.19) are evaluated using a simple trape-

zoidal rule over a grid with equal point spacing, since this is exponentially accurate 

for periodic integrands; see Atkinson [5, page 253]. To this end the interface profiles 

(and then their associated derivatives) are computed at each of the grid points, and 

these profiles are used to compute the velocities and streamfunctions on the two 

free surfaces. All these are used, in turn, to calculate the components of the error 

vector. It is required that sufficiently many grid points are used for the integrals 

to be evaluated accurately; success was achieved using about 16N grid points. The 
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number of coefficients used in the series, N, was chosen to be at most 201. It was 

found that N = 51 performed well, with 801 grid points used in the integration. 

This numerical scheme is sensitive to the absolute size of the velocity potential 

coefficients Bri , C, D T, and F. In particular, the hyperbolic functions in the 

middle layer potential are susceptible to becoming very large, which in turn affects 

the convergence of the Newton's method routine. Such ill-conditioning may be 

avoided by rewriting each coefficient in a new scaled form, 

= Bexp(nk(i3 — 1)) 

[ Cn 	[C7,1 	1  
cosh nk(8 — 

Fn  = 	exP( —nk7) 

(2.4.21) 

(2.4.22) 

(2.4.23) 

with these replacing the original coefficients in the vector of unknowns. For small 

amplitude waves it is satisfactory for the scaling parameters 13, 7 and (5 to be set 

to zero. As the amplitude of the waves increases these values may be increased. 

To improve the rate of convergence in the Newton's method scheme the initial 

guess of a previously calculated solution of a smaller amplitude was used; that is, 

= Vi_ if„. This was further improved (on occasion) by using a scaled 

linear interpolation based on two previous solutions of smaller amplitude with the 

initial guess, 

= V_ 1 ± 	 — V i— 	
\

2f inal Ai_ i  — Ai_ 2  

although this is only of use where the relationship between Froude number and 

amplitude varies monotonically. 

The Newton's routine involves calculating a Jacobian matrix of first derivatives 

at each iteration, J = [aEi la1 3 ]. For longer wavelength cases and moderate am-

plitudes it was sufficient to calculate this matrix using a simple forward difference 

routine. However shorter wavelength solutions were found to be more sensitive to 

the choice of scaling parameters and it was difficult to calculate limiting solutions 
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when the approximate Jacobian was used. In such cases the exact Jacobian was 

used, and this also saw a slight increase in the efficiency of the routine. 

2.5. Results 

The numerical scheme outlined in section 2.4 was run extensively. For each set 

of nonlinear solutions the wavenumber was fixed and the lower layer Froude number 

allowed to vary with amplitude. Throughout, the density ratios were fixed at the 

same values D1 = 0.99 and D3 = 1/0.99 illustrated in Figure 2.2, for the linearized 

solution of section 2.3. From Figure 2.2 it may be seen that there are two regions of 

wavelength where three linearized solutions of different lower Froude number exist. 

This was of consideration in selecting the nonlinear solutions to compute, with a 

wavelength from each chosen for further investigation. Firstly, a long wavelength 

case (with two in-phase solutions and one out-of-phase solution) at k = 0.5 was 

selected and, secondly, a shorter wavelength case at k = 2.5 (with two out-of-phase 

solutions and one in-phase solution) was also chosen. In each of these six cases the 

linearized solution agrees very well with the computed small amplitude nonlinear 

solutions. Unless otherwise stated all solutions have been computed with N = 51, 

which was found to be a sufficient number of coefficients to evaluate the interfacial 

profiles reliably. 

It will be seen that many of the following results involve a delicate relationship 

between F3 and amplitude, in which two solutions occur for nearly indistinguishable 

values of those parameters. These fine features were obtained by first calculating 

solutions using fewer coefficients (typically N = 31), for which such features are 

much coarser, and less accurate. This lower coefficient solution is then used as an 

initial guess in Newton's method to obtain results for solutions of successively more 

coefficients (up to the desired N = 51) which would otherwise be extremely difficult 

to compute from other starting guesses. As a check, results in a number of cases 

have been run with as many as N = 101 Fourier coefficients; this is computationally 
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FIGURE 2.4. Dependence of Froude number F3 on lower wave am-
plitude AL for k = 0.5, the in-phase case with positive Froude 
number. 

demanding, but does not significantly affect the results, confirming that the results 

with N = 51 coefficients have already converged to a good degree of accuracy. 

2.5.1. Results for k = 0.5. The first solution we will consider is the in-phase 

wave with positive lower layer Froude number. The linearized solution predicts 

that at small amplitudes F3 = 0.1556 with the amplitudes of the two interfaces in 

the ratio a = Hui/HLI = 1.3177. The nonlinear solution is shown in figure 2.4 as 
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a solid curve, and the linearized result is drawn with a dashed line. The two are 

in very close agreement for small amplitude. However, as the nonlinear (A L , F3 ) 

curve is followed, a more complicated situation arises. 

At first, lower layer Froude number increases with amplitude up to a maximum 

of AL 0.6. This maximum corresponds to a solution for which there are two 

slightly square sinusoids of similar amplitude on the two interfaces. From this 

maximum both amplitude and lower layer Froude number decrease, backtracking 

along the (AL, F3) curve very closely, before diverging away from this at moderate 

amplitudes. The solutions along this portion of the curve appear, initially, to 

approach the configuration of a triangle wave on the upper interface and a moderate 

amplitude sinusoid on the lower interface. However, near the solution at (AL, F3) 

(0.1, 0.24) the upper interface develops a small lump at its trough, a feature that is 

maintained as these solutions are followed in (AL, F3 ) space. 

The interfacial profiles associated with the solutions from the first four of the 

peak-like artifacts on the amplitude-Froude number curve are shown in figure 2.5. 

The largest of these, drawn with solid lines, represents a solution for (AL, F3) = 

(0.601, 0.167). The dashed lines are the solution for (AL, F3) = (0.0844,0.232), 

the profiles for (AL, F3 ) = (0.133,0.243) are illustrated with dotted lines while 

the dash-dot lines represent the highest Froude number solution at (AL, F3) = 

(0.0547,0.371). In the last three of these solutions a dimple-like lump can be seen 

at the trough of the upper interface. In addition, for the highest Froude number 

case a steep bump at the crest of the upper interface has evolved. A bump of 

this type also appears in the last solutions obtained before the numerical method 

diverged, and may possibly indicate the incipient formation of a limiting structure 

such as an overhanging 'mushroom' near the crest. 

The linearized solution for the out-of-phase branch at this wavelength predicts 

that F3 = 0.02986, with a = —2.3013, shown in figure 2.6 as a horizontal dotted 

line. Again, the nonlinear solution (the solid and dashed lines in figure 2.6, with 

the amplitude Au of the upper interface being used for convenience) is in close 
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FIGURE 2.5. Four interfacial profiles for the in-phase case with positive Froude number at k = 0.5. The solutions 
shown are (AL,F3) = (0.601,0.167) (solid lines), (AL,F3) = (0.0844,0.232) (dashed lines), (AL,F3) = (0.133,0.243) 
(dotted lines) and (AL,F3) = (0.0547,0.371) (dash-dot lines). 
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agreement with this for small amplitudes, but starts to decrease as amplitude is 

increased. Here the (Au, F3 ) curve is made up of a series of disjointed sets of 

solutions shown alternatively in solid and dashed lines for clarity. Each of these 

curves contains a section that traces out part of a decrease in lower layer Froude 

number for increasing amplitude. This acts as a kind of lower bound in (Au, F3) 

space, with the convoluted (Au, F3 ) curves which bifurcate off from the branch 

never crossing below it. In this region both interfacial profiles are nearly sinusoidal. 

Above this lower bound the various (Au, F3 ) curves are quite convoluted with 

the two variables related in a highly nonlinear fashion. Here the lower interfacial 

profiles are distinguished by the presence of a superposed wave of shorter wavelength 

2r/nk, where n is an integer, on top of the primary wave of wavelength 27r/k. These 

are a kind of superharmonic (1:11) resonance with the secondary mode of solutions 

which are allowed at the same Froude number. This is confirmed by the fact that 

the tangled nonlinear branches in Figure 2.6 bifurcate from the lower branch at 

four resonance values. Two of these resonant branches have been traced right back 

to their intersection with the Au =-- 0 axis, showing that there are at least three 

solutions of infinitesimal upper interface amplitude, only one of which is a linearized 

solution. At both these points the lower interface is of moderate amplitude. 

Three of these superharmonic type solutions have been tracked exhaustively 

(the 1:9, 1:10 and 1:11 cases) and some example wave profiles are shown in figures 

2.7-2.9. Two 1: 9 resonance solutions of identical Froude number are plotted in 

figure 2.7; here the solid lines are interfacial profiles for (Au; F3) = (0.0644,0.310) 

while the dashed lines are solutions for (Au, F3 ) = (0.0629, 0.310). Figure 2.8 shows 

two 1 :10 resonance solutions, again of similar Froude number, with the solid lines 

being the solutions for (Au, F3 ) = (0.104, 0.303) and the dashed lines the profiles 

for (Au, F3 ) = (0.0946, 0.303). The final class of superharmonic solutions which 

were able to be computed accurately were 1 : 11 resonances. The solid lines in 

figure 2.9 are the waves profiles for (Au, F3 ) = (0.109, 0.300), while the dashed 

lines are profiles for (Au, F3 ) = (0.0980, 0.300). In each of these cases the shorter 
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FIGURE 2.7. Two interfacial profiles for the 1:9 resonance at equal lower layer Froude number. The short wavelength 
mode is out of phase with the primary wave for the solution at (Au, F3) =- (0.0644, 0.310) (solid lines) and in phase 
for the solution at (Au, F3) = (0.0629, 0.310) (dashed lines) 
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FIGURE 2.8. Two interfacial profiles for the 1:10 resonance at equal lower layer Froude number. The short wavelength 
mode is in phase with the primary wave for the solution at (Au, F3) = (0.104, 0.303) (solid lines) and out of phase for 
the solution at (Au  , F3 ) = (0.0946,0.303) (dashed lines); 
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FIGURE 2.9. Two interfacial profiles for the 1:11 resonance at equal Froude number. The short wavelength mode is 
out of phase with the primary wave for the solution at (Au, F3) = (0.109, 0.300) (solid lines) and in phase for the 
solution at (Au, F3 ) = (0.0980, 0.300) (dashed lines). 41. 
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wavelength component may be superposed either in or out of phase with the primary 

wave. This corresponds to the two curves which leave the main branch in Figure 

2.6 at each of the superharmonic resonance bifurcations. As a consequence each of 

the disjoint curves in the (Au, F3 )-space may contain two types of superharmonic 

solution. For instance, the first dotted line in figure 2.6 begins with an out-of-phase 

1:9 type solution, progresses until the short wavelength component disappears with 

an in-phase 1:10 resonance being excited at a slightly larger amplitude. 

The linearized solutions for 9k = 4.5 and 10k = 5 near the appropriate Froude 

number are shown in Figure 2.6 as horizontal dashed lines. It may be seen that in 

each case the superharmonic is excited at a larger Froude number than linear theory 

suggests is possible. Indeed it appears that the larger the amplitude of the primary 

wave, the further from the linearized solution a superharmonic is first available. 

The third linearized solution at this wavelength is an in-phase exchange flow 

with F3 = —0.1567 and a = 0.7555, shown with the horizontal dotted line in figure 

2.10. Again the nonlinear solution (the solid and dashed lines in figure 2.10) is 

found to be in strong agreement for small amplitudes. As amplitude is increased, 

Froude number F3 becomes more strongly negative, with the two interfaces taking 

a slightly pointed nonlinear wave shape, the lower profile having a larger amplitude 

than the upper. 

At a moderate amplitude, about AL = 0.3, a 1:4 resonant interaction is excited 

and Froude number begins to increase. Here the secondary wave is larger on the 

upper interface and out of phase with the primary wave. As the (AL, F3) curve 

(the solid line in Figure 2.10) is followed, the secondary wave becomes of moderate 

amplitude itself. Some solutions of this type are shown in figure 2.11, with the 

superposed wave itself clearly having a nonlinear shape with sharp troughs. The 

four wave profiles in Figure 2.11 are all of amplitude AL = 0.32 with the solid lines 

corresponding to the profiles at (AL, F3 ) = (0.32, —0.1614), the dashed lines are the 

profiles for (AL, F3 ) = (0.32, —0.1620), the solution at (AL, F3 ) = (0.32, —0.1612) 
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FIGURE 2.10. Dependence of Froude number F3 on lower wave 
amplitude AL for k = 0.5, the in-phase case with negative Froude 
number. 

is represented by the dash-dot lines and the dotted lines are the waves profiles for 

(AL, F3) = (0.32, —0.1662). 

The class of solution with an in-phase secondary wave is not as readily available 

here as in the previous case. For these to be computed an initial guess in Newton's 

method was created, somewhat artificially, by taking an out-of-phase solution and 

multiplying the coefficients B4, C4, D4, ... by —1. Having done this the solutions of 

the type shown in figure 2.12 were obtained, with the secondary wave of opposite 
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FIGURE 2.11. Four interfacial profiles for AL = 0.32 with a 1:4 resonance in phase with the primary solution 
mode. The profiles shown are for (AL, F3) = (0.32, —0.1614) (solid lines), (AL, Fa) = (0.32, —0.1620) (dashed lines), 
(AL,F3) = (0.32, —0.1612) (dash-dot lines) and (AL, F3) = (0.32, —0.1662) (dotted lines). 
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phase to the solutions of figure 2.11. These were tracked for some distance in the 

parameter space, as seen in the dotted line on the (AL, F3 ) diagram in Figure 2.10. 

Three interfacial profiles are shown in Figure 2.12 with solid lines corresponding 

to the solution at (A L , F3 ) = (0.32, —0.1643), the dashed lines are the solutions 

for (A L , F3) = (0.32, —0.1617) and the dash-dot lines represent the profiles for 

(AL, F3) = (0.32, —0.1613). 

It may be seen that up to 12 distinct solutions may be obtained for some 

values of AL, such as in the highly tangled region near AL = 0.375. A slightly 

simpler situation is represented by the seven simultaneous solutions available at 

the same value AL = 0.32 of the amplitude, as shown in figures 2.11 and 2.12. The 

complexity of the solution space is further emphasised by noting that the proximity 

of two solutions on the (A L , F3 ) diagram is not an indication that their interfacial 

profiles are qualitatively similar. Yet another feature of these cases is the many 

sections of the Froude number-amplitude diagram in Figure 2.10 which run nearly 

parallel to each other. In terms of the interfacial profiles these correspond to a 

situation where the primary wave's amplitude decreases as the secondary wave's 

increases, or vice versa. The situation for the in-phase solutions near AL = 0.4 is 

an example of this. Such an occurrence seems in line with conventional thinking 

about the role of energy transfer between solution modes in these sorts of resonant 

interactions (Phillips [46]). Both classes of solutions terminate by crossing back 

onto a previously calculated solution (in both cases at AL r-z-i 0.3), thus forming a 

complicated kind of loop structure. 

2.5.2. Results for k = 1. Wavenumber will now be fixed at k = 1, a value 

chosen with a view to obtaining further nonlinear resonance effects. The linearized 

solution (as shown in figure 2.2) indicates that such effects may be possible for 

two speeds at this wavenumber, namely the exchange flows at F3 —0.08 and 

F3 —0.04. 

The first set of results to be discussed in this section is for the slower exchange 

flow, emerging from the linearized solution at F3 	—0.04. For small amplitudes 
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FIGURE 2.13. Dependence of lower layer Froude number F3 on 
upper wave amplitude Au for the slower speed case at k = 1. 

this agrees very closely with the linearized solution and, as predicted, the interfaces 

are in phase. The relationship between the parameters F3 and Au is presented in 

figure 2.13. Here the linearized solution is represented by a horizontal dashed line, 

with the series of multi-coloured solid lines representing various disjoint nonlinear 

solutions. Each of these solutions has a portion which traces out an increase in 

Froude number with increasing amplitude. In addition to this, at several points 

a pair of solutions bifurcates away from this main branch and continues through 

(Au, F3)-space. These extra solutions display nonlinear resonant effects. The first 

set (bifurcating from (Au, F3 ) = (0.0462, —0.0394)) is a 1 : 5 resonance which 

continues very close to the main branch, right back to Au = 0 and beyond. These 

solutions have five ripples on the lower interface, that is, a superposed wave of 
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shorter wavelength. This shorter wavelength component may be either in or out of 

phase with the primary component; hence the two branches. 

The interfacial profiles for Au = 0.025 are shown in figure 2.14. Shown as a 

dotted line is the linearized solution for k = 5 in figure 2.13; this is the solution mode 

that interacts with the primary component of the wave to produce the resonance. 

Similarly the linearized solution for k = 6 and k = 7 are shown as dotted lines in 

figure 2.13, with the solutions which bifurcate away these values of F3 displaying 1: 

6 and 1 : 7 resonances, respectively. Many interfacial profiles have been computed 

along these solutions branches, but are not presented here in the interests of space; 

they typically posses many small waves on the lower interface (as in figure 2.14). 

Each of these resonant effects is excited at a slightly faster speed than the linearized 

value of Froude number might suggest. 

The second set of solutions at this wavenumber emerges from the linearized 

solution at F3 P.'',  —0.08. Again, at small amplitudes the nonlinear solutions agree 

closely with the linearized predictions. As amplitude is increased, the lower layer 

Froude number decreases until an amplitude of about Au 0.22. Figure 2.15 

shows the relationship between lower fluid speed F3 and wave amplitude Au for 

these two branches of solutions. The shapes of these solution branches were found 

to be independent of the numerical parameters, and indicate the complex effects of 

non-linearity. 

The solution profiles corresponding to the large crosses in figure 2.15 are shown 

in figure 2.16. A 1 : 2 resonance develops at around Au = 0.17 (just after the 

first of the profiles shown) and persists through the solution space. As the solu-

tions progress along this curve, the shorter wavelength component itself becomes of 

moderate amplitude and at least some of the fine structure in the (Au, F3) curve 

of figure 2.15 may be attributed to this. There is a second set of solutions (shown 

with a blue line) where the short wavelength component has been superposed with 

opposite phase to the solutions on the other branch. These may be traced right 

back to zero amplitude, giving a second small amplitude solution, while convergent 
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FIGURE 2.14. Three interfacial profiles for the slower speed case. The red lines are wave profiles for Au  ,:-.: 0.21. The 
solid and dashed black lines display a 1:5 resonance and are for Au,-:: 0.025. w 

t...> 



   

_ 

    

    

- 	 t 
linearized 

_ 

- 

- 

_ 

2.5. RESULTS 	 53 

- 0.08 

—0.085 

—0.09 

F3 —0.095 

—0.1 

—0.105 

—0.11 

—0.1150 	0.05 	0.1 	0.15 	0.2 	0.25 	0.3 
A u 

FIGURE 2.15. Dependence of lower layer Froude number F3 on 
upper wave amplitude Au for the faster speed case at k =1. 

solutions are unavailable for amplitudes greater than Au ::::: 0.31. The lower layer 

Froude number of the small amplitude solution is near to, but slightly smaller than, 

the linearized solution for k = 2. 

2.5.3. Results for k = 2.5. For the in-phase solution at this wavelength, 

linearized theory predicts F3 = 0.03925 with a = 0.04768; that is, a lower interface 

of much larger amplitude than the upper. The nonlinear solutions (shown as a solid 

line in figure 2.17) agree well with both predictions and we see a similar situation to 

that of Figure 2.4 (a longer wavelength example from the same mode of solutions). 

Again, Froude number F3 increases with amplitude, reaching a maximum at the 

moderate value AL = 0.19 of the wave amplitude. These solutions are characterised 
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AL  
FIGURE 2.17. Dependence of Froude number F3 on lower wave 
amplitude AL for k = 2.5, the in-phase case with positive Froude 
number. 

by a nearly flat upper interface and a slightly square lower interface of moderate 

amplitude. 

The (AL, F3 ) curve then turns back on itself and traces out a complicated 

relationship featuring numerous sharp turning points. As before, the solutions near 

these points correspond to dimpled waves, several of which are shown in figure 
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FIGURE 2.18. Four interfacial profiles for the in-phase case with positive Froude number at k = 2.5. The profiles shown 
are for (AL, F3 ) = (0.188, 0.0421) (solid lines), (AL, F3) = (0.0693, 0.0594) (dashed lines), (AL, F3) = (0.0986, 0.0447) 
(dash-dot lines) and (AL, F3) = (0.138, 0.0537) (dotted lines). 
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2.18. The solution of largest amplitude (AL, F3) = (0.188, 0.0421) is shown with 

a solid line, two moderate amplitude solutions at (AL, F3 ) = (0.0693, 0.0594) and 

(AL, F3) = (0.0986, 0.0447) are shown with dashed and dash-dot lines, respectively. 

The last computed solution, at (AL, F3) = (0.138, 0.0537) and shown in Figure 

2.18 with dotted lines, represents the point at which our numerical method failed 

to continue the branch shown in Figure 2.17. No geometric limitation is obvious 

from these results, but it is possible that some subtle structure may be formed in 

the interface profiles that prevents the numerical method from continuing further. 

Linear theory predicts two out-of-phase solutions at this wavelength, one at 

F3 = —0.064414 with a large lower interface (a -= —0.1126) and another at F3 = 

—0.29616 with a large upper interface (a = —25.8476). Both of these are shown with 

horizontal dashed lines in figure 2.19. The solid lines in Figure 2.19 are nonlinear 

solutions obtained with N = 51. The two solution branches are evidently not 

connected in (Au, F3) parameter space. Both sets of nonlinear solutions agree 

well with linear theory at small amplitudes, and this predicts that the relative 

amplitudes of the two interfaces in each case will be quite different. Again we 

see monotonic variation in Froude number as amplitude is increased, up to some 

maximum before the (Au, F3) curves turn back on themselves and then progress in 

a complicated fashion. 

Solutions on the curve originating from the higher speed exchange flow are 

shown in figure 2.20. These four curves correspond to the interfacial profiles for 

(Au, F3) = (0.1388, —0.2591), shown with solid lines, the dashed lines are the solu-

tion for (Au, F3) = (0.05704, —0.07093), the solution for (Au, F3) = (0.6327, —0.1267) 

is shown by dash-dot lines and the dotted lines represent the profiles for (Au, F3) = 

(0.1053, —0.2154). 

These solutions have upper interfaces of much larger amplitude than their lower 

interfaces at smaller amplitude Au. As the solutions are tracked, the interfaces 

become of comparable amplitude. In particular, the lower interface develops dimple 

like features at its trough and crest, as well as increasing in mean height. The upper 
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A u 
FIGURE 2.19. Dependence of Froude number F3 on upper wave 
amplitude Au for k = 2.5, both the out-of-phase cases with nega-
tive Froude number. 

interface, however, remains approximately sinusoidal. It is possible that the dotted 

profile for (Au, F3 ) = (0.1053, —0.2154) is close to a limiting solution with an 

overhanging structure at the crest of the lower interfacial wave, since near vertical 

portions are present in the computed profile. 
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FIGURE 2.20. Four interfacial profiles originating from out-of-phase case with large negative Froude number at k = 2.5. 
The profiles shown are for (Au , F3) = (0.1388, -0.2591) (solid lines), (Au, F3) = (0.05704, -0.07093) (dashed lines), 
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FIGURE 2.21. Four interfacial profiles originating from out-of-phase case with small negative Froude number at 
k = 2.5. The profiles shown are for (Au,F3) = (O.01951,—O.06958) (solid lines), (Au , Fa) = (O.03172,—O.1562) 
(dashed lines), (Au, F3) = (0.01534, —0.07866) (dash-dot lines) and (Au, F3) = (0.07627, —0.1875) (dotted lines). 
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The case originating from the slower exchange flow displays a similar pattern of 

behaviour. Some example solutions may be seen in figure 2.21. The profiles shown 

with solid lines are for the parameters values (Au , F3) = (0.01951,-0.06958), the 

dashed lines show the solution for (Au, F3) = (0.03172, —0.1562), the solution for 

(Au, F3) = (0.01534,-0.07866) is shown with dash-dot lines and the dotted lines 

are the profiles for (Au, F3) = (0.07627, —0.1875). 

Here the interfacial profiles possess a larger amplitude lower interface for small 

to moderate amplitudes. Past the first sharp feature on the (Au, F3 ) curve in Figure 

2.19 the two interfaces eventually become of similar amplitude. These solutions are 

qualitatively similar to those calculated for the fast exchange flow, with lumps at 

their peaks and troughs. Indeed, the last computed solutions from the two (Au, F3 ) 

curves closely resemble each other, both having a lower interface which displays 

lumps as well as a significant positive mean displacement. 

Notice that there is, in fact, a second small disjoint branch of solutions in 

(Au, F3) parameter space just beyond Au = 0.14. This is shown in Figure 2.19. 

It may represent a remnant of a subharmonic solution which is not able to be 

continued accurately numerically here beyond the small portion shown. 

2.6. Discussion and conclusion 

This chapter has presented a wide array of nonlinear solutions to the prob-

lem of steady periodic waves on an intrusion layer with constant vorticity. These 

were seen to agree well with the predictions of linear theory for small amplitudes, 

with nonlinear effects leading to some highly irregular behaviour for moderate and 

large amplitudes. Small amplitude solutions which did not coincide with the lin-

earized solution were also present. The numerical scheme used was a straightfor-

ward extension to that of Michallet and Dias [41] and Forbes et al. [27], with 

a reparametrization of the problem using arc-length to allow for the possibility 

of overhanging waves. Although no such waves were computed, the possibility of 

overhanging limiting profiles was suggested by some of the numerical results. In 



2.6. DISCUSSION AND CONCLUSION 	 62 

addition it is possible that overhanging waves might be encountered for different 

(and less relevant) values of the physical parameters; their absence does not reveal 

a limitation of the numerical technique, and in fact such solutions would be subject 

to Rayleigh-Taylor instability, so that interest in them is somewhat academic. In 

this chapter, we chose density ratios close to unity to represent a stratified ocean or 

reservoir, whereas the dramatically overhanging solitary waves computed by RusAs 

and Grue [49] were for fluid density ratios (in our notation) of Di = 0.57 and 

D3 = 1.43. When this choice of density ratio was used in the present problem no 

overhanging profiles were obtained, however, suggesting that the profiles of Russ 

and Grue [49] were due (at least in part) to the presence of a horizontal wall in the 

bottom fluid layer. 

It has been assumed here that the shear in the middle layer is exactly the 

amount required to make the velocity profile in the three fluids continuous, when 

both interfaces are horizontal. This was done to mimic the expected effects of 

viscosity. However, as the fluids here are inviscid tangential slip at each interface is 

possible, and so equation (2.2.3) could be replaced with the more general sheared 

flow F2 = F3 + ryy,  , in which the extra parameter 7 is left arbitrary. We have made 

some preliminary investigations of the effect of varying this parameter 7, but find 

no major qualitative differences with results presented here. A systematic study 

of the complete range of possibilities for this parameter upon solutions behaviour 

is beyond the scope of the present investigation and, in any event, the value of 

-y = (F1  — F3) used here is surely of the most physical relevance. 

A variety of superharmonic resonances between the different solution modes 

were computed in this study. In the out-of-phase case at k = 0.5, where successive 

1:n resonances were computed with the shorter wavelength component either in or 

out of phase, this type of solution was especially abundant. It was seen that, in a 

nonlinear regime, these resonances were able to be excited at an earlier wave speed 

than linear theory predicted, with this effect becoming more pronounced for larger 

amplitudes of the primary mode of solution. 
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The stability of the nonlinear solutions is an open question. The infinitesimal 

solutions of section 2.3 will be neutrally stable. Further investigation is required, 

however, to determine the precise nature of the finite amplitude solutions in a time 

dependent regime. It was seen that, where resonant effects were not present, the 

maximum amplitude solutions were only mildly nonlinear and without any obvious 

geometric limitation. This appears to be in line with the notion of a 'dynamical 

limit', as suggested by Saffman and Yuen [51], the point beyond which any larger 

amplitude solutions will be unstable. 

Future work will include formulating a time-dependent version of this problem, 

possibly in a similar manner to that by which the Rayleigh-Taylor instability was 

computed by Forbes et al. [25]. Such a technique would permit a finite steady 

amplitude solution computed in this chapter to be used as an initial condition in a 

time-dependent formulation of the flow. 

In the following chapter, this technique of Forbes et al. [25] will be applied 

to the Kelvin-Helmholtz instability. The effects of shear, as in the middle layer 

of the current chapter, will be accounted for more directly using an approximate 

(Boussinesq) representation of viscosity, and interfaces of finite thickness. 



CHAPTER 3 

Accurate methods for computing inviscid and 

viscous Kelvin-Helmholtz instability 

3.1. Introduction 

The interface between two inviscid fluids is unstable if there is a large enough 

difference in the relative velocities of the fluids on either side of the interface. The 

classical version of this problem outlined by Lord Kelvin [32] and Helmholtz [30], 

and the associated linear analysis recounted by authors such as Lamb [35] and 

Taylor [56], involves perturbing the interface between two horizontal fluid layers 

in relative motion with a small amplitude sinusoid. Under certain conditions this 

situation is highly unstable and perturbations to the interface will grow exponen-

tially. The non-linear version of the problem has been thoroughly studied and 

certain phenomena are associated with it. Aside from exponential growth at early 

times, perhaps the best known of these phenomena is the eventual roll-up of the 

interface into a 'cat's eye'-type spiral [50]. At some finite time before this roll-up 

occurs, a singularity in curvature appears on the interface, and a famous asymptotic 

approximation for curvature singularity formation time is given by Moore [42]. 

The Kelvin-Helmholtz instability occurs in a wide variety of physical situations, 

often arising as a natural consequence of modelling some other process. A classic 

example is the spectacular billowing cloud formations in the lower atmosphere, 

an occurrence which is often associated with atmospheric turbulence [53]. More 

exotically, there is some evidence to suggest that Kelvin-Helmholtz instability may 

be the mechanism behind the phenomenon of a glitching pulsar (where the period 

of a neutron star, as observed terrestrially, becomes temporarily erratic) [38]. 

64 
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Synonymous with the Kelvin-Helmholtz instability is the related problem of a 

vortex sheet, where the evolution of an infinitesimally thin layer of infinite vorticity 

is studied. In particular, a diffeo-integral equation formulation of the problem, the 

Birkhoff-Rott equation [8], has been analysed thoroughly with many theoretical 

and computational studies. Notably, these studies include the work of Moore [42] 

and Cowley et al. [17] where the formation of interfacial curvature singularities 

is investigated with asymptotic techniques. The viscous version of the Kelvin-

Helmholtz instability for a liquid-gas interfaces has been investigated in some detail 

by Funada and Joseph [29]. 

The work of several authors suggests that there are a few difficulties inherent 

in computing fluid instabilities of this type. In the vortex sheet formulation the 

evolution of the interface is often impeded by the appearance of small (typically at 

near grid scale) wavelength 'wiggles' after some finite time. This blow-up of higher 

order modes is essentially due to the fact that a perturbation at any wavelength 

smaller than the primary mode will also be unstable. Hence, the response of the 

system to the small inaccuracies that are (inevitably) introduced as the computation 

proceeds through time is to generate spurious secondary instabilities which may 

become so severe as to cloud the effects that were intended to be studied. There 

are several approaches that may be employed to mitigate against this occurrence: 

Krasny [33] employs a spectral filtering technique, whilst Tryggvason et al. [58] use 

viscosity, effectively to regularize the problem, for example. 

The appearance of the curvature singularity after finite time also presents cer-

tain computational challenges, particularly when using spectral methods. In the 

closely related problem of the inviscid Rayleigh-Taylor instability it has been found 

that it is not possible to continue following the evolution of the solution after the 

point of curvature singularity formation; see the investigations of Forbes, Chen & 

Trenham [25] and Forbes [24]. Despite this, this type of spectral method has the 

advantage of being able to compute the shape of the interface most efficiently and 

to a high degree of accuracy up to the point where it breaks down. The methods 
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of Forbes et al. [25] will be adapted in section 3.4 to analyse the inviscid Kelvin-

Helmholtz instability. A finite difference scheme is then introduced in section 3.5 

to compute solutions to the viscous version of the problem since such methods are 

typically more computationally efficient and stable than a spectral method for this 

type of flow. 

Two versions of the Kelvin-Helmholtz instability will be presented in this chap-

ter: an inviscid version that is essentially an extension of the classical formulation 

and a comparable situation in weakly compressible Boussinesq fluid, where viscos-

ity is included. Walls are added above and below the interface, providing a finite 

computational domain which should allow for comparisons to be drawn between 

the inviscid and viscous models. Section 3.3 presents a perturbation analysis of 

a linearized version of the inviscid problem and a stability criterion is obtained, 

similar to analysis of the unbounded flow given by authors such as Lamb [35, ar-

ticle 232] and Chandrasekhar [11, chapter 11]. A novel spectral method, of the 

type presented in Forbes et al. [25], is introduced in section 3.4 and this is used to 

compute a non-linear solution up to the point of curvature singularity formation. 

This method makes use of a novel smoothing technique to suppress the blow-up of 

higher order modes. In order to investigate the behaviour of the instability past 

the formation of a curvature singularity a related, and very similar, version of the 

instability is modelled in sections 3.5-3.6 for viscous fluid flow. Here the sharp 

interface of the inviscid problem is replaced by an interfacial region of finite width 

and the initial conditions (which are now continuous profiles) must be specified with 

care. The introduction of this finite width 'interface' means that the vorticity on 

the interface is no longer infinite and as a consequence it will be possible to follow 

the evolution of the viscous flow past the point where a curvature singularity forms 

in the inviscid problem. The focus of this chapter will be on accurately tracking 

the shape of the viscous interface with an efficient numerical scheme, with a view 

to examining effects such as the roll-up of the interface at later times. Additionally 

the evolution of inviscid and viscous flows with be compared up to the point that 
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the interface in the inviscid problem develops a singularity in curvature. A similar 

comparison between an inviscid and viscous versions of the problem has been made 

in detail by Tryggvason et al. [58]. 

3.2. Inviscid model: governing equations 

The Kelvin-Helmholtz instability involves two fluid layers flowing parallel to 

each other. Such a system will evolve unstably when subject to a small interfacial 

perturbation if there is a large enough difference in the horizontal velocities of the 

two layers. In the classical treatment of this problem by authors such as Lamb [35] 

and Taylor [56] it assumed that the two fluid layers are unbounded (infinitely deep). 

The version of the problem considered here assumes that both layers have a finite 

depth with an upper layer of depth h i  and the lower layer of depth h 2 . (Hereafter all 

quantities subscripted with a 1 are properties of the upper layer, whilst quantities 

subscripted with a 2 refer to the lower layer.) Similarly the densities of the two 

layers are p i  and p2, where it is always the case that p 2  > pi  so that buoyancy 

effects do not dominate. Each layer has a base horizontal speed, given by c i  and 

C2, respectively. 

It is convenient to introduce non-dimensional variables before proceeding fur-

ther. The depth of the lower layer h2 will be used as a length scale. This leads to 

a natural choice of time and speed scales, namely h2 1Vgh2  and Vgh2 . Density is 

scaled relative to the lower layer density p2. The crucial parameters of the problem 

are now reduced to two Froude numbers, F1 = c1 lVgh2 and F2 = c2 1Vgh2 , and 

a density ratio D = P1 /P2, where D < 1. The dimensionless upper layer depth is 

now h = h1/h2. 

The dimensionless configuration of the flow is shown in figure 3.1. When un-

perturbed, the two fluid layers are separated by an infinitely thin interface at y = 0 

and are bounded by horizontal walls lying at y = —1 and y = h. More generally the 

interface will be represented by a function y =ri(x,t) that will evolve through time, 

meaning that the exact shape of each layer is not known a priori. In addition to the 
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	 y., 

fluid 1 

p=D 

y=0 

F2 p= 1 	Y=11(X) 

fluid 2 

FIGURE 3.1. A schematic diagram showing the flow configuration 
for the inviscid model. 

fluid in each layer being inviscid, it is also assumed that each fluid is incompressible 

and flows irrotationally. As a consequence, velocity potentials, (D i  and (I)2, may be 

introduced in each layer where these relate to the horizontal and vertical compo-

nents of velocity by simple differentiation, u, = F + a(13 21ax and vi = a(I),Jay for 

= 1, 2. Both potentials satisfy Laplace's equation in their respective layers 

V2 (1) 1  = 0 for n(x, t) < y < h 

'72 4)2 = 0 for — 1 < y < 71(x,t) 

F 1  

where each region is bounded by a wall and the interface function. There are three 

boundary conditions on the interface. The tangential component of velocity on 
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either side of the interface is zero, leading to the kinematic boundary conditions 

an 
v2  —u1 — on y = n(x) 	 (3.2.1) 

at 	ax 

in each layer i = 1, 2. A dynamic boundary condition is obtained by writing 

Bernoulli's equation in each layer and then equating pressure at the interface, and 

the resulting expression is 

04.2 D a4.1 
at 	at 

DF,r  21 (14  + v3)  

-F 1 D (uT + v?) — (1— D)y on 
2 

(3.2.2) 

where it is understood that all quantities are evaluated on the interface y = n(x, t). 

Inviscid slip conditions are present at the top and bottom walls so that vi = 0 on 

y = h and ti2 = 0 on y = —1. It is assumed that the solutions are periodic in x 

with wavelength A = 27r/k, where k is a dimensionless wavenumber. In sections 

3.3 and 3.4 this will be used as the wavelength of the perturbation to the interface. 

Ultimately the stability of the interface and its subsequent evolution will be deter-

mined by the five parameters of the system, namely the wavenumber k, the upper 

layer depth h, the density ratio D and the two Froude numbers, F1 and F2. 

3.3. Linearized solution for inviscid problem 

It is instructive to study the behaviour of the system outlined in section 3.2 

when dealing with a perturbation of small amplitude. The linearization technique 

used here is similar to the classical treatment of the Kelvin-Helmholtz problem, 

presented in Lamb [35, article 232], with the presence of the walls the only slight 

modification. It will be seen that this is but a minor complication, leading to a 

slightly more elaborate stability criterion than in the case of unbounded flow. A 

similar result to that that is derived here is given by Turner [59, page 95]. 

It is assumed that the solution is a small perturbation about the base flow, in 

which the interface is purely horizontal. The appropriate perturbed forms of the 
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interface height function and the velocity potentials are 

70,0 = eH(x,t) + 0 (E2 ) (3.3.1) 

(1)1(x, y, t) = eibil (x, y, t) + 0 (e2 ) (3.3.2) 

(I)2  (x, y, t) = E th-- 21(X7 Y, t) + o (e2) (3.3.3) 

in which E is a small parameter proportional to the amplitude of the interfacial wave. 

By substituting (3.3.1)-(3.3.3) into the kinematic conditions (3.2.1) and discarding 

terms of order E2  and higher, a linearized version of the conditions is obtained in 

the form 

OH _ O 	OH 
on y = 0 

ay 	Ox 
(3.3.4) 

with i = 1, 2, as before. Similarly the linearized version of the dynamic condition 

(3.2.2) is 

	

a(Dii 	acD21 	194)21 D 194:1)11  — DF, 	 (1— D)H on y = 0 (3.3.5) 
at 	at 	ax 	ax 

where (3.3.1)-(3.3.3) have been substituted into the dynamic condition (3.2.2) and 

terms of order e2  have been discarded. It is assumed that the perturbed interface 

height function H in equation (3.3.1) will be a travelling wave of period 27r/k and 

frequency w, so that 

	

H(X, t) — 	ei(Wt—kX). 	 (3.3.6) 

Here gl  is an arbitrary initial amplitude, possibly complex. The corresponding 

solutions for the velocity potentials are 

(D11(x,y,t) = al cosh(k(y — h))e i(wt-kx ) 
	

(3.3.7) 

	

(1)21(x, y, t) = a2 cosh(k(y + 
	

(3.3.8) 

where the hyperbolic cosine is required to satisfy the condition that the vertical 

component of velocity is zero at either wall. The crucial parameter here is w, as 
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instability occurs when this develops a non-zero imaginary part. By substituting 

the travelling wave solution (3.3.6)—(3.3.8) into the linearized boundary conditions 

(3.3.4)—(3.3.5) it is possible to solve for w in terms of the other parameters of the 

system. The ultimate expression for w is 

coth k + D coth kh
{ F2 coth k + DF1 coth kh 

1 
±—k v /(1 — D) (coth k + D coth kh) — kD coth k coth kh (F1  — F2) 2  

which leads to the criterion that the flow will be unstable when 

(1 — D)(coth k + D coth kh) — kD coth k coth kh(Fi — F2) 2  < 0 

or, by simple rearrangement, a more useful version is obtained in the form 

\I  (1 — D) coth k + D coth  kh  
1F1 — F21 > 	D 	k cothkcothkh 

(3.3.9) 

Thus instability will occur when the difference in Froude numbers is large enough. 

The classical result for unbounded fluids is that instability occurs for perturbations 

of small enough wavelength (see Lamb 1351), and this still holds in (3.3.9) when 

the upper and lower walls are present. The criterion obtained by Lamb may be 

reproduced from (3.3.9) by taking the limit as k —> no, effectively setting the 

hyperbolic cotangents to 1. 

3.4. Non-linear solution for inviscid problem 

The inviscid problem will now be solved using a novel method based on Fourier 

series techniques. This is an extension of methods originally developed in Forbes et 

al. [25] to model the closely related problem of the inviscid Rayleigh-Taylor insta-

bility. In that treatment of the Rayleigh-Taylor problem an arc-length formulation 

was introduced to represent the interface height function. Whilst such a formula-

tion has the potential to represent multi-valued interfaces and capture phenomena 

such as roll-up, it was found in Forbes et al. [25] that this was generally not possible 

2k = 
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without somehow regularizing the problem (for instance with surface tension) and 

even then the competing interests of a small amount of roll-up against the forma-

tion of a curvature singularity meant that the method broke down a small time 

after the interface became multi-valued. It will be assumed here that the interface 

height is single valued, and it is anticipated that the method will break down after 

some finite time, namely at the formation of a curvature singularity in the interface 

height function. 

The appropriate forms of the Fourier series solutions for the interface height n  

and the two velocity potentials, 41)1 and (D2, are 

N 

ri(x, t) = Po + E P(t) cos(nkx) + Q(t) sin(nkr) 	(3.4.1) 
n=1 

N 

4) 1(x, y, t) = E cosh(nk(y — h))[An (t) cos(nkx) + Bn (t)sin(nkx)1 (3.4.2) 
n=1 

N 

4)2 (x, y, t) = Co (t) + E cosh(nk(y + 1)) [C7,(t) cos(nkx) 	(3.4.3) 
n=1 

+D(t) sin(nkx)] . 

These solutions become exact as N ---+ oo. As with the linearized solution of section 

3.3 a hyperbolic cosine dependence in the velocity potentials is necessary to satisfy 

the conditions that the vertical component of velocity is zero at both walls. Here 

the time dependent coefficients A n , Bn , Cn , Dn , P.,-, Q, for n = 1... N, and Co  

have been introduced; it is these 6N + 1 coefficients that will be solved for. The 

mean height of the interface Po  may be shown to be constant, as in Forbes et al. 

[25], and in practice will be set to zero. 

A large system of differential equations for the coefficients is obtained by sub-

stituting the series representations (3.4.1)—(3.4.3) into the boundary conditions 

(3.2.1)—(3.2.2), multiplying by Fourier basis functions and integrating over a pe-

riod. Taking the kinematic conditions (3.2.1), multiplying by the even Fourier 
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basis functions cos(jkx) and integrating over a horizontal period gives 

7r 	
—7rFi Qj  + j k 	sAn 

jk E 7-3(n1S) Bn 	(3.4.4) 
n=1 	 n=1 

7r 	
—7rF2Qj + jk 	‘.92ns)Cn 

jk E 7-3(n2S) Dn 	(3.4.5) 
n=1 	 n=1 

where j = 1... N and the integrals 

fo 27r/k 
sinh(nk(ri — h)) sin(nkx) sin(j kx)dx 

fo 2r/k 
sinh(nk(7) + 1)) sin(nkx) sin(j kx)dx 

8 (1S ) 

in 

8 (2S) 
3n 

,7-(1S) 
• jn 	• 

2r/k 
sinh(nk(71 — h)) cos(nkx) sin(j kx)dx 

,-/- (2S) 
in =L 

27r/k 
sinh(nk(7) + 1)) cos(nkx) sin(j kx)dx 

have been defined for convenience of notation. These integrals feature the odd 

Fourier basis sin(jkx) owing to an intermediate integration by parts step. The 

corresponding differential equations obtained by multiplying (3.2.1) by sin(jkx) 

and integrating over a period are 

irjFi P3 jk E  411C) An  ± jk E  ,Tir)Bn  (3.4.6) 
n=1 	 n=1 

iF2  pi  jk E 5. 71
26')

cn jk E TirDn  (3.4.7) 
n=1 	 n=1 

again with j = 1... N. Here the integrals 

z2r/k 
sinh(nk(ri — h)) sin(nkx) cos(j kx)dx 

fo27r k 
sinh(nk(71 + 1)) sin(nkx) cos(j kx)dx 

fo 2r/k 
sinh(nk(7/ — h)) cos(nkx) cos(j kx)dx 

27r/k 
sinh(nk(71 + 1)) cos(nkx) cos(j kx)dx 

8 ( 711C ) 

8 (2C) 
3n 

,-1-(1C) 
in 

,7-(2C) 
in 
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have been defined. To avoid redundancy only equations (3.4.4) and (3.4.7) appear 

in the system of differential equations. The other two equations (3.4.5) and (3.4.6) 

are replaced with the differences between equations (3.4.4) and (3.4.5) and equa-

tions (3.4.6) and (3.4.7), respectively. These two new equations are then further 

differentiated directly with respect to time to yield 

	

N 	N 

0 .--- 
 

	

n=1 	n=1 

	

N 	 N 	 N 	 N E  sa(nis)A fn  + E  Ti(nis) .13,,,  + E  s3(n2s) c,,  E I ,-,-(n2S) 3 	IA (3.4.8) 

	

n=1 	n=1 	n=1 	n=1 

for j = 1... N , and 

o = 	
mi(Cn)Qrn 

	

n=1 	n=1 

Ti(n1C) Ent 	c (20 /-0 	Tin2C) Drc (3.4.9 ) 
c'jn 

	

n=1 	n=1 	n=1 	n=1 

for j = 1, 	N. In addition to those previously defined, some integrals related to 

the velocity potentials have been written as 

2r/k 8„,, 	(94, 2  \ 
) cos(nkx) cos(j kx)dx fo 	8x ax 

27r/k ( a 
) cos(nkx) sin(j kx)dx fo 	ax ax  

/27r/k &p i 	a„,, 2  
sin(nkx) cos(j kx)dx 

L ax 	ax ) 
fo 27r/k  

sin(nkx) sin(j kx)dx ax 	ax 

The dynamic condition (3.2.2) is dealt with in a similar way. Two sets of differential 

equations are obtained, and the result of multiplying (3.2.2) by the odd and even 

Fourier basis functions sin(jkx) and cos(jkx) and integrating over a period are 

(C) 
in 

£ (.3) 
in 

AfInC) 

n 
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respectively 

D 	g3(n1S) ivn  D  E  ,H3 1ns) 	E g,(2ns, 	E (32ns, _ I (S) (3.4. 10) 
n=1 	 n=1 	n=1 	n=1 

—D E g2cnic) A'n  — D  E7_1(in1c) gn E g_7(n2c) c, E  7_1 (i2nc) _ 13(c) (3.4.11) 
n=1 	 n=1 	n=1 	n=1 

for j = 1 . . . N, where the integrals 

fo27r/k 
cosh(nk(n — h)) sin(nkx) cos(j kx)dx 

fo27r / k 
cosh(nk(ri + 1)) sin(nkx) cos(j kx)dx 

f2ir k 

Jo 
cosh(nk(q — h)) sin(nkx) sin(j kx)dx 

fo2ir / k 
cosh(nk(77 + 1)) sin(nkx) sin(j kx)dx 

27r/k 
cosh(nk(7/ — h)) cos(nkx) cos(j kx)dx 

27r/k 
cosh(nk(ri + 1)) cos(nkx) cos(j kx)dx 

27r/k 
cosh(nk(n — h)) cos(nkx) sin(j kx)dx 

2n/k 
cosh(nk(ri + 1)) cos(nkx) sin(j kx)dx 

have been introduced. Additionally, the integrals on the right hand sides of (??) 

and (??) are 

1(S) 
	fo

2.7 r J sin(j kx)dx 

1(C) 
	fo27r/k 

cos(j kx)dx 

and J is the right hand side of the dynamic condition (3.2.2) 

in 

li (2C) 
in 

1_3 (1S) 
in 

H (2s) 
in 

g.n1C ) 

r (2C) 
in 

in 

OS) 
in 

2 	2 J = —2 n — —2 D Fì  — —2 (14 + 	+ —2 D (u i  + v i ) — (1 — D)77 . (3.4.12) 
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Finally the dynamic condition is integrated over a period to give the single equation 

—D E gkii) Aln  — D E 7-412 /4 	 (3.4.13) 
n=1 	n=1 

E gen)C, E 7-1 (2) D + C°  ' 
= 

	

On n 	k  n=1 	n=1 

for the zeroth Fourier mode. Again, the intermediate integral quantities 

fo 2ir/k 

gOt) 	cosh(nk(n — h))cos(nkx)dx 

fir / k n (11 au' = 	cosh(nk(ri — h)) sin(nkx)dx 

/ 0 27r/k 
.-,(2) ya 	= 	cosh(nk(n + 1)) cos(nkx)dx 

fo 2n/k 

7-11(322 = 	cosh(nk(n + 1)) sin(nkx)dx 

fo 1-27 / k 
10 	Jdx. 

have been introduced for convenience of notation. 

The required system of 6N + 1 differential equations is thus given by (3.4.4), 

(3.4.7) and (3.4.8)—(3.4.13). This large system will be solved numerically and so it 

is convenient to write it in a vectorized form 

MS' = TZ, 

where $ = [An, 13,,C,, Dn, P,  Q, Go] is a vector of the unknown coefficients, M 

is a mass matrix for the left hand side of the differential equations and R, is a vector 

of the right hand sides of the systems of differential equations. 

Solutions to the system will be computed using the ODE113 routine of MAT-

LAB, which is a variable order (between 1 and 13) Adams method. This provides 

a good balance between computational efficiency (specifically, the choice of time 

step size) and accuracy of the solution, especially at small times. All the integrals 

are evaluated using the trapezoidal rule with the number of grid points adjusted to 
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provide sufficient accuracy for the choice of N, the number of coefficients in each 

of the series (3.4.1)—(3.4.3). 

A well known computational issue with the unregularized Kelvin-Helmholtz 

problem is the blow-up of higher-order modes in the interface function, as discussed 

by Krasny [33], for example. The common approaches involve either altering the 

problem under consideration, typically by introducing some kind of regularization 

such as surface tension (see Siegel [52] or Hou et al. [31]) or a finite width interfacial 

layer (for instance Baker & Shelley 161), or somehow to smooth out these anomalies 

during the computational process (see Krasny [33]). The latter approach is adopted 

here. A smoothing scheme similar to that used by Longuet-Higgins & Cokelet [37] in 

the computation of free-surface waves is introduced to filter the higher order modes. 

This may be applied either after each time-step of the differential equation solver 

or perhaps more appropriately, for early times, as is required to keep the blow-

up of higher order modes at an acceptably low level. The aim here is to prevent 

the erroneous blow-up in these high order solution components from leading to 

inaccuracies in lower order modes at later times. The scheme presented here will 

filter both even and odd modes. To smooth out the blow-up of the even M-th mode, 

for instance, the Fourier series representation of surface elevation n  in equation 

(3.4.1) is evaluated on a grid of 2M + 1 evenly spaced points spanning one period, 

that is from 0 to 271- /k. A 5-point smoothing function is then applied to each grid 

point to obtain a new smoothed function .7 -1 

where xj  = 7r(j — 1)IkM are the grid points. This averaged function is then re-

Fourier analyzed to obtain a set of smoothed Fourier coefficients. To smooth out 

an odd higher order mode of the Fourier series representation the same smoothing 

function is used but the grid is shifted by a quarter of the period of the mode 

being targeted, so that the grid points used are xj  = 71- (2j — 1)/(2kM). Typically 

this procedure is repeated several times to smooth out a number of modes at each 
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time step. For early time steps, where the solution is expected to be close to the 

linear solution, it may be necessary to smooth out up to half of the coefficients 

(both odd and even), then relaxing this for later time steps when the solution will 

genuinely have higher-order modes present, rather than the erroneous blow-up that 

this smoothing procedure is designed to mitigate against. 

3.4.1. Choice of initial conditions. The choice of the initial values of the 

coefficients is crucial; the problem is both highly unstable and strongly non-linear 

so that the evolution of the solution at later times is very sensitive to small changes 

in the initial condition. It is desirable that the initial condition of the non-linear 

system is identical to that of the linearized solution of section 3.3. A feature of that 

condition is that both the interface height function and the two velocity potentials 

are perturbed in a very specific way. In order to obtain usable expressions from 

the linearized solution the time-dependency parameter w from the travelling wave 

solution is split into its real and imaginary parts, w = w1 + iw2 with both wi and u. ,2 

purely real. The most intuitive way to initiate the non-linear system is to give the 

interface height function some small perturbation and work out the corresponding 

expressions for the velocity potentials. Taking only the real part of expressions 

(3.3.6)—(3.3.8) we have 

H (x , 0) = Pop cos kx + Q io  sin kx  

y, 0) = cosh(k(Y — h))(Aio cos kx + B10 sin kx) 

4)21(x, y, 0) = cosh(k(Y + 1  ))(Cth cos kx + D 10  sin kx) 

in which the coefficients A 10 , B10  etc. are purely real and will be used to approxi-

mate the first coefficients in each of the series. Thus, P1(0) = P10 and so on. It is 

necessary to choose values for the velocity potential coefficients so that they match 

exactly a given perturbation of the interface height function. By simple rearrange-

ment of the linearized kinematic conditions it is possible to obtain, after a little 
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algebra, 

A 10 = (Qio(wi — k) + w2Fio)/k sinh kh 

B 10  = (— Pio(ce — Fik) w2Q10)/k sinh kh 

Cio -= (—C 2 lo(wi — F2k) — c.02Fio)/k sinh k 

D 10 = (Pio(cd — F2k) — w2C 210) k sinh k 

A complete initial condition for the non-linear problem is formed by setting the first 

coefficient of each series equal to the respective expression above with the remaining 

coefficients set to zero. It will be usual either to perturb the interface with a pure 

sine or cosine of a certain amplitude, so in practice in the above expressions either 

P10  or Q i0  will be set to zero. 

3.5. Weakly compressible viscous model: Governing Equations 

The inviscid model described in sections 3.2-3.4 suffers from the the limitation 

that a curvature singularity will form at the interface after a finite time, after which 

it will cease to be valid [42]. As a result it is necessary to modify the classical inviscid 

problem to obtain solutions beyond this time, where features such as interfacial roll-

up may develop. When dealing with an infinitely thin interface the problem may be 

regularized by including effects like surface tension or viscosity. Another approach 

is to replace the interface with an interfacial region of finite depth. Sometimes 

known as a vortex layer (as opposed to a vortex sheet), this has the advantage of 

having a region of large but finite vorticity as opposed to the infinite vorticity that 

is present at a genuine interface; this finite vorticity is inherently easier to handle 

computationally. A combination of these approaches will be adopted here. The 

inviscid problem will be mimicked by considering a body of weakly compressible 

fluid with a small amount of viscosity. Initial conditions for both velocity and 

density will be specified carefully with a view to matching closely those of the 

inviscid system of sections 3.2-3.4. Essentially, the sharp changes in density and 
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velocity are replaced with continuously varying profiles in which the changes now 

occur rapidly, but smoothly, over a layer of small finite width. 

This new system will be governed by a weakly compressible version of the 

Navier-Stokes equations based on those used by Farrow and Hocking [21] to model 

tank withdrawal flows. The formulation will be slightly different as the problem is 

particularly well suited to adopting a vorticity-streamfunction formulation. Vortic-

ity is a quantity of obvious interest for this particular flow and it is convenient 

to use it directly to model this instability. Implicit in this Boussinesq formu-

lation is the assumption that density does not vary much and may be written 

as the sum of an average density po and an unsteady component p, in the form 

p(x,y,t) = po + gx,y,t). Density only appears as a derivative in this formulation 

and so p and p will be used interchangeably throughout. Beginning with the prim-

itive variables system of Farrow and Hocking [21], vorticity C is introduced, defined 

as C = av/ax — au/ay. Since the fluid is nearly incompressible a streamfunction 

/P exists such that u = atP/ay and v = —aiP/ax, and by taking the curl of the 

momentum equations the pressure may be eliminated. The resulting system is 

52 0  . 82 0  
ax2 -t-  ay2 

ac 	a( 	a( 
• + u+ v 

op 	Op Op Tt  +11 + 1,-53  

= —( 	 (3.5.1) 

-, 
v  (az( + 020 OP  

(3.5.2) ax2  ay2  ) ax 

( 82P2 + Wa2P2) 
, a 	 . 	

(3.5.3) 

Here the parameters v and a control the viscosity and diffusivity respectively. 

Specifically, v is the inverse of a dimensionless Reynolds number and a is a scaled 

inverse Prandtl number, controlling the rate at the which fluids diffuse. This formu- 

lation has the advantage of not needing to deal with pressure explicitly and has one 

fewer governing equations than would the equivalent system in primitive variables. 

Equations (3.5.1)—(3.5.3) will be solved using finite difference methods. To do 

this the governing equations will be discretized over a box with equivalent dimen- 

sions to that of the region used in the inviscid problem. The box will be of height 
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h+ 1 and have a width of one wavelength A = 271-/k of the perturbation. A discrete 

grid with M points in the x-direction and N points in the y-direction is defined 

with constant grid spacings Ax = 271-/k(M — 1) and Ay = (h + 1)I(N —1). Be-

fore giving details of the discretization it is useful to specify boundary conditions 

on the box. Periodicity is assumed for all variables in the x-direction, so that 

0(0, y, t) = 0(271-/k, y, t) and similarly for C, p, u and v. Slip conditions are im-

plemented on the top and bottom walls; hence, at y = —1 and y = h the vertical 

component of velocity v is equal to zero. This implies that both and w must also 

be constant at the walls. At the lower wall y = —1 we impose the conditions p =1, 

0=0 and ç = 0. On the upper boundary y = h the conditions are p = D, = 

and C = 0, in which the constant 1/)0 is determined from the initial condition. The 

use of the slip condition, c = 0, on both walls is a widely used approximation (see, 

for instance, Farrow & Hocking [21]) and simplifies the numerical scheme greatly. 

Another advantage to this choice is that viscous boundary layers will not form at 

the walls meaning that computational effort will not be put into resolving effects 

that are secondary to the development of the interface. A subscript notation will 

be adopted in the discretization procedure such that it will be understood that 

writing, for instance, iplic 3  refers to the streamfunction at the point x = (i — 1)Ax 

and y = —1 + (j — 1)y, evaluated at the k-th time step. 

The solution procedure is based on an alternating direction implicit (ADI) 

Peaceman-Rachford scheme. This type of solution method was proposed by Peace-

man and Rachford [44] both as a way of solving the heat equation through time and 

as a quasi-transient method to solve Laplace's equation. The application of such a 

scheme here is possible as the governing equations (3.5.2) and (3.5.3) are essentially 

heat equations with non-linear convection terms. An ADI method involves split-

ting each time step in two, updating a solution first from the k-th to the k + 1/2-th 

time step and then from the the k + 1/2th to the k + 1-th time step. For the first 

half step the equations are discretized in such a way that only the derivatives in x 

feature the updated (to the k + 1/2th level) values of the variable being solved for 
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with other terms left at the k-th level. Similarly the discretization for the second 

half step uses the updated values (now to the k + 1-th level) only for derivatives 

in y. At each half-step a large system of difference equations is solved implicitly. 

It may be shown that methods of this type are unconditionally stable (in the von 

Neumann sense) for purely linear problems. Nevertheless, the choice of time step 

is critical to guarantee the accuracy of the solution. 

To proceed from the k-th time step to the new k + 1-th level, the vorticity 

equation (3.5.2) is updated first to the intermediate k + 1/2-th level using the 

scheme 

z.k+ 	tic 	 k+ I 
S 2 ,3 — S 2 ,3 	k  	k C,j+1  

± U2,3 	 212,3  
A t 	 2 x 	 2 A y 

4.ik++11,  _ 	+ 	(p, 	_ 20i  + 
= a 	 3  ± 	3  

.6,X2  

(3.5.4) 

Pi+1,j 	Pi-1,j 
2 I x 

  

to obtain a system of M - 1 difference equations for each row, j = 2 ... N - 1 

(with the first and last rows being already dealt with by the boundary conditions). 

Here, forward differences have been used to estimate all time derivatives, with all 

derivatives in space estimated with central differences. At this half-step only the 

derivatives in x are updated to the new level. Each system is then solved implicitly 

using a Thomas algorithm which has been modified to account for the periodic 

boundary conditions (see Press et al 147, chapter 2.7]). Similarly successive implicit 

systems of N - 2 linear equations may be formed by now updating the derivatives 

in y to the full step 

,k+1 	tk-E1 	/4+1 	z.k +1 /-k+I 	j.k+1 
S 2 ,3 	S 2 ,3 	k  	vk 	  

A t 	
u2

'3 	2 A X 	2,3 	2z y 

k+ I 	k+ 1 	 k+1 	k+1 	k+1 
Ci+1 2,j 	2  + 	(,j+i 	 (,j-1 	Pi+1,./ 	Pi-1,j  a  

	

Ax2 	 Ay2 	 2 A x 

and considering each row i = 1, . , M - 1 in turn. A regular Thomas algorithm 

is then used to solve the resulting sets of difference equations to update vorticity 

to the k + lth level. The values of vorticity at the new time step are now used to 
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update streamfunction, so that (3.5.1) is satisfied to a high degree of accuracy. A 

quasi-time derivative is added to the Poisson equation (3.5.1) 

alp _ 	p  
ar 

(3.5.6) 

which will approach zero as T 	00; that is, the streamfunction will converge to a 

steady state (in T) solution of (3.5.6) which is equal to the desired solution of the 

regular Poisson equation (3.5.1). An ADI method is employed to solve (3.5.6). Each 

step in quasi-time T is split into two half steps and streamfunction is updated to 

the new step in T by sweeping over the rows and then columns of the grid as sets of 

linear equations are solved implicitly. This is done repeatedly with different values 

of AT until the solution has converged to an acceptable level. The discretization of 

(3.5.6) for first half step in T is 

.0, 
•ij 	•ui,j 

LXT 
!s+ 	2  k+1 014. 	e+1  IPK+1  - 21,br + -1  i+ 	 i-1,j  

AX2 	 py2 

where j = 2, ... , N — 1, and the index is has been introduced to represent the k-th 

step through T. Sweeping across the columns the discretization is 

„i,N+1 
Wij  

"tc+ 	 0„ms-1-1 _j_ 
,-/c+1 , V2+ 1 ,3  

= 	
'Wi,j 	Yi,j —1 

AX2 	 y2 

with i = 1, . . . , M — 1 giving the necessary implicit equations to update stream-

function fully to the ic + 1-th step. There are several factors that affect the rate of 

convergence of this scheme. As noted in Peaceman & Rachford [441 the choice of 

successive AT is crucial. There are a variety of schemes used to select these values, 

for instance Wachspress [64] as well as the scheme of Peaceman & Rachford [44], 

which amount to using quite small values for early steps in T and gradually increas-

ing these until quite large values of AT are used for the later iterates. The choice 

of AT used here is simple, but fairly robust, with the first 50 steps of the routine 

using AT = 10-3 , followed by 30 steps of AT = 10 -2  and then as many steps of 

AT = 10-1  as are needed for convergence. The acceptable level of error is simply 
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calculated from the Poisson equation and it is typical that 11v 2 0 + CI I < 10_ to  

after fewer than 100 iterations. Where convergence is slow an alternate procedure 

may be used. For the first 50 steps in T the step-size is still fixed AT = 10 -3 , but 

then for the next 30 steps AT is chosen from a range of values between 10 -3  and 

10-2  by running a test case and using the AT that gives the largest reduction in 

error at each individual step. This is repeated for a further 20 steps using values 

between 10-2  and 10-1  to select an optimum sequence of AT values. Applying such 

a procedure can reduce the number of iterates required to reach an acceptable level 

of convergence by up to half. 

The final step in solving the governing equations is to deal with the density 

equation (3.5.3). This will be handled in an identical way to the solution of the 

vorticity equation (3.5.2), by splitting the time step in two and sweeping first across 

the the grid rows and then along the columns, repeatedly solving systems of implicit 

equations to update the density p to the new time level. For the first half-step in 

time the discretization is 

k+ 
P2,j 	P2,3 

A t 

= v Pz+1,3 	2Pi,3  
A.x2  

I i 

k+-1 

2L 

k 	 „k 	nk 
 	, 

2 A y 

 

 

„k 	2 „k 
+ 	 -1  

Ay2 (3.5.7) 

where j = 2, ... , N - 1, so the values of density for each row are solved for implicitly. 

Here both components of velocity are evaluated at the new time step from the newly 

computed streamfunction using central difference formulas 
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Finally, sweeping across the grid columns density is solved to the full step using a 

discretization with updated derivatives in y 

k+1 	 ,k+1 	_k+1 

U• 
Pi,j 	k+1 P2+1,3 	 Pi,j-1 

 • 
1 

 
At 	z,3 	2 A x 	2,3 	2 A y 

2 

k+ 1 	k+1 	k+ 1  - 2pik-3 1  ilk+1  - 2p• • 2  ± 	P113+1  Vi+Li 	23 	+ = V Ax2 	 Ay2 (3.5.8) 

with i = 	M — 1 and the resulting systems of N — 2 linear equation are solved 

implicitly as with the vorticity equation. 

There are a number of factors that are critical when using this method in 

practice. The choice of initial condition is somewhat problematic, and this will be 

dealt with in section 3.6, in as much as care needs to be taken in ensuring that the 

choice of vorticity and streamfunction is both consistent (ie. they match each other) 

and corresponds to a problem of interest, in this case approximating the inviscid 

problem. It is also important, when dealing with problems of this type solved 

with a method such as this, to balance computational efficiency with the various 

discretization parameters. In particular in this case the grid in y must be fine enough 

that it can resolve a small initial perturbation (the parameter Ay effectively places 

a lower bound on the amplitude c of the initial perturbation). The time steps At 

also need to be chosen carefully with a view to being small enough to be accurate 

and capture all phenomena of interest, but large enough that the computational 

effort required is not unnecessarily onerous. An additional consideration is the 

choice of the viscosity and diffusivity parameters. Although both of these have a 

physical interpretation, it is nevertheless the case that choosing these parameters 

too small may result in the system of implicit equations (3.5.4)—(3.5.8) becoming 

ill-conditioned. 

3.6. Choice of initial conditions for viscous model 

Care must be taken in choosing the initial conditions for the viscous model. 

There are several features that are desirable. The initial conditions must mimic the 
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inviscid model closely enough that the two are comparable; it is intended that the 

same situation will be modelled here as was done using the techniques of sections 

3.2-3.4. Additionally, the initial profiles for streamfunction and vorticity must be 

self-consistent. To achieve this, care must be taken that the Poisson equation (3.5.1) 

is initially satisfied to a high degree of accuracy. 

As with the inviscid model it is helpful here to consider first an unperturbed 

case, a base flow, which will then have a perturbation added to it to obtain the 

case of interest. It is relatively simple to choose a stratified density profile that is a 

close approximation to the two incompressible layers of the inviscid problem. The 

profile chosen is 

P(x, y, 0) = D + 1  _L D - 1

tanh (Sy) 

2 	2 
(3.6.1) 

where a scaled hyperbolic tangent in the vertical direction is used to mimic the 

two incompressible layers. Here D is a density ratio, as before, and a steepness 

parameter S has been introduced to control the rapidity of the density change 

across the 'interface' at y = 0. A piecewise profile could be used here, and although 

this would be an exact match for the inviscid case, such a choice has disadvantages 

in this context. In particular it would make the choice of a corresponding initial 

vorticity unattainable, as the interfacial region has no width and hence an infinite 

vorticity. 

A hyperbolic tangent profile is also used as the basis to define the other com-

ponents of the initial condition. As in the inviscid case, the base flow has a zero 

vertical velocity component and here the horizontal component is 

u(x, y, 0) = + F2 F1 -F2 

2 	2 
tanh (Sy) (3.6.2) 

in which the Froude numbers F 1  and F2 are as defined previously, and the steep- 

ness parameter S is as in equation (3.6.1). Having specified a velocity profile the 

corresponding streamfunction may be calculated by integrating with respect to y, 
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thus obtaining 

0(x, y, 0) = 
Fi + F2  y + F1 - F2  

2 	
2S In (cosh (Sy)) + 1Po 

where 00  is a constant chosen so that tp = 0 at y = —1. A vorticity profile 

that exactly matches (3.6.2) is calculated from the definition of vorticity, namely 

( = av/ax — au/ay, leading to 

C(x, y, 0) = 	(F1 —2
F2)S

sech
2 
 (Sy) . 	 (3.6.3) 

It is this hyperbolic secant profile in vorticity that will be perturbed to give the de-

sired initial conditions. The initial conditions for streamfunction and both velocity 

components are then calculated to match the perturbed vorticity. 

The initial perturbed density profile is obtained by adjusting the argument of 

the hyperbolic tangent in (3.6.1) so that instead of its point of inflection being about 

y = 0 it is now about some initial interfacial profile y = f(x). For the simplest case 

of an initial small amplitude sinusoid, with 1(x) = € sin(kx), this leads to an initial 

density of 

D +  1 D — 1 p(x,y,0) = 
2 + 	 2 tanh (S (y — f sin(kx))) 

where the parameters e, the perturbation amplitude, and the wavenumber k may 

be adjusted as necessary. In a similar fashion the initial vorticity is chosen to be 

((x, y, 0) = 	
(Fi — F2) 

S sech 2  (S (y — e sin x)) 
2 

(3.6.4) 

with the base flow vorticity (3.6.3) being adjusted in a similar way to the density 

profile. This effectively gives a layer of vorticity that has both finite width and a 

maximum that varies sinusoidally. The strength and sharpness of this profile may 

be adjusted by varying the Froude numbers and the steepness parameter. 

Several approaches might be used to obtain a matching streamfunction. It is 

possible to use, for instance, the Peaceman-Rachford approach outlined in section 



M 
((x , y , 0) = 	

(F1  — F2)S v--. [ 
2 
	 Id  Aoq  + E Apq cos(pkx) 

N 

q=1 	p=1 

(3.6.5) 
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3.5 to solve the Poisson equation and thus get the desired profile. In practice, how-

ever, doing so is inefficient and surprisingly computationally intensive. A preferable 

approach, and the one that will be used here, is to obtain a Fourier series represen-

tation of the initial vorticity which is then integrated to obtain the corresponding 

streamfunction, giving a highly accurate solution to the Poisson equation. The 

appropriate double Fourier series representation is 

( irq  
+ Bpq sin(pkx)] sin h  + 1  (y + 1)) 

which becomes exact as both M and N —> oo. The two expressions for vorticity 

may be equated and Fourier analyzed in the usual fashion to get expressions for 

the series coefficients. These are 

AP9 = 	
2k 

7r(h + 1) Jo 

r 2Trik f h 
j_ 1  g(x, y) cos(pkx) sin ( h7r+q  1 (y + 1)) dydx 

2kr 271-11c f h 	 ( 	 7rg  
B P9 = _ i g(x,y) sin(pkx) sin 	(y + 1)) dydx 

7r(h + 1) jc, 	 h+ 1 

k 	r27r/k fh 
( rq  .140q _ 	 

7r(h + 1) Jo  
h + 1 

where the function g(x, y) = sech2  (S (y — E sin kx)) has been defined for conve-

nience of notation. The streamfunction 1,I) is determined by substituting the se-

ries representation of vorticity (3.6.5) into the Poisson equation. By assuming the 

boundary condition on the upper wall is the same as that of the base flow, the 

appropriate series representation for streamfunction is 

N Fl + F2
(y 1) 

WI —  F2)S  E  [ 1 A  
—ii 0(x, y,0) = 	 + 	 oq  

2 	 2 	)32  
q=1 	q 

(3.6.6) 

, 1 + E _2_ (Apq cos(pkx) + Bpq sin(pkx))] sin (i3q(y + 1)) 
p=1 

a
Pq 

with i3q  = 7rg I (h + 1) and c4q = 0732 m  
, p  ,,2.  This representation also satisfies the q 

boundary conditions at the wall, where at the bottom wall IP = 0 and at y = h, 



3.7. RESULTS 	 89 

the top wall, the streamfunction has the constant value ip = (F 1  + F2)(h + 1)/2. 

Sufficient accuracy is obtained by evaluating all integrals with a Gauss-Legendre 

quadrature scheme (as made available by von Winckel 163]) using 201 grid points in 

both the x and y directions, with all series truncated at M = N = 101 coefficients. 

To ensure complete consistency the vorticity and velocity components are then 

recalculated from (3.6.6) for use in the finite difference scheme of section 3.5. 

3.7. Results 

In sections 3.2-3.6 several approaches were used to model the Kelvin-Helmholtz 

problem. The inviscid model was solved using both a linear and non-linear scheme, 

whilst a viscous model that is comparable, but not identical, to the inviscid ap-

proach was solved using ADI methods. The focus of the results presented will be 

on comparing the behaviour of the three approaches. It is expected that the two in-

viscid solutions will match closely for early times before diverging as the non-linear 

effects begin to dominate. Although a similar comparison may be made between the 

viscous and inyiscid models, this is expected to be more qualitative in nature. This 

is because there are several critical points of difference in the initial conditions for 

the two schemes (the velocity fields, for instance) and as such they will develop in 

similar, but noticeably different ways. Although the respective growth rates of the 

inviscid and viscous models may be slightly different, their solutions should evolve 

in a similar enough way that a comparison between the two will be instructive. 

The behaviour of both models is dependent upon a large number of parameters. 

It is not the intention of this study to examine exhaustively the effect of each of 

these on the evolution of the solution; instead, representative cases will be chosen 

with a view to capturing the behaviour of interest. Only cases that are unstable, 

as determined by the inviscid stability criterion (3.3.9), will be considered. By first 

choosing wavenumber k, density ratio D and upper layer height h, it is straight-

forward to select corresponding Froude numbers so that the system is unstable to 

small perturbations. These choices will be used for the inviscid model, as well as 
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the initial condition of the viscous model. To allow easy comparison to the inviscid 

model the critical parameters of the viscous model, the diffusivity a and viscosity 

v, will be chosen to be small, meaning that the fluid is nearly inviscid and the two 

viscous layers will mix slowly. The size of the perturbation to be used is limited 

by the choice of grid size for the viscous model; specifically, the initial sinusoidal 

perturbation must have an amplitude that is no smaller than 56,y, since smaller 

perturbations would be lost in sub-grid-scale noise. Similarly, the size of the grid 

limits the choice of the steepness parameter in the viscous initial condition. Choos-

ing too large a steepness may result in the width of the interfacial region falling 

below the grid scale, meaning that the rapid changes (at the interfacial region) 

in the initial condition appear piecewise rather than smooth. The key here is to 

choose a value such that the initial vorticity is large, but the interfacial region is 

still narrow enough that it may be legitimately thought of as an interface. 

Two cases will be considered in detail. For both of these a number of param-

eters will be fixed, as mentioned above. For both inviscid and viscous models the 

wavenumber will set at k = 1, the density ratio as D = 0.99 and the upper layer 

height at h = 1. Additionally the parameters used in the viscous model are the 

viscosity v = 1 x 10-5  and the diffusivity a = 1 x 10 -5 . 

The first case to be considered involves equal but opposite currents with F 1  = 

0.2 and F2 = —0.2. This is unstable according to the linear stability criterion 

(3.3.9), but its growth rate is only modest, thus providing a good balance in terms 

of achieving large enough growth within a reasonable time. The second case will 

use the same basic parameters but with F1 = 0.1 and F2 = 0.5, so that both layers 

flow in the same direction. Linear theory predicts that for this case the interface 

will be an exponentially growing travelling wave and it is anticipated that the non-

linear version will look similar to the first case, but travel as it grows. This choice 

has been made to emphasize the built-in periodicity of the ADI solution technique. 

As both cases have an identical difference in their two Froude numbers, that is 

1F1 — F21 = 0.4, it is anticipated that they will grow at the same rate. Indeed the 
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only difference should be that the second case travels as it grows, whereas the first 

case will be stationary. 

3.7.1. The case F1 = 0.2, F2 = —0.2. A commonly studied version of this 

problem is where the two layers flow with equal but opposite speeds. In the Birkhoff-

Rott formulation [8], the choice is effectively F1 = 0.5 and F2 = —0.5 in the variables 

of this study. The blow-up of higher order modes in the non-linear inviscid scheme 

is too rapid with this choice of Froude numbers, and so the more moderate values 

of F1  = 0.2 and F2 = —0.2 are used here instead. These values still give a highly 

unstable system and should allow the interface to evolve to a point where the 

behaviour of interest may be seen. The initial perturbation size is chosen to be 

quite large at € = 0.05 so that the same perturbation may be used in both the 

inviscid and viscous schemes. 

The first comparison to be made is between the linearized and non-linear in-

viscid models. Obtaining a solution to the linearized version of the problem is 

straightforward, only requiring parameter values to be substituted into various ex-

pressions from section 3.3. For the purpose of comparison here it will be assumed 

that the initial perturbation is purely sinusoidal so that, in the notation of section 

3.3, Qio = 0.05 and P10 = 0. The resulting solutions for the interface height func-

tion and the two velocity potentials may then be computed at any time from their 

definitions (3.3.6)—(3.3.8). For an unstable choice of parameters such as this, the 

interface height function is simply an exponentially growing sine wave. The choice 

of equal but opposite Froude numbers means that the wave does not travel as it 

grows. 

Obtaining the corresponding non-linear solution is more computationally in-

tensive. The choice of initial condition is identical to that used in the linearized 

solution, as set out in section 3.4.1, and as such it is expected that both models will 

evolve in a similar fashion, at least for early times. It is known that the inviscid 

interface will, after some finite time, develop a curvature singularity [42] and as 
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such it is anticipated that the model will break down at this point, typically near 

where the interface develops a region that is near vertical. 

Figure 3.2 shows a comparison between the predictions of linear theory (dashed 

line) and the corresponding non-linear results (solid line) for the inviscid model, up 

to the time t = 7.35 at which the curvature singularity forms. The non-linear and 

linear solutions coincide for early times, as shown in figure 3.2(b) for t = 2. By 

t = 4 both solutions have grown to about the same height (approximately double 

that of the initial condition), but the non-linear solution has begun to skew slightly 

• to one side as the non-linearity starts to have some visible effect. This leaning 

of the interface towards the centre continues as the solution evolves, and at the 

later computed times, shown here for t = 6 and t = 7 in figures 3.2(d) and 3.2(e), 

respectively, the peak of the non-linear wave is now significantly to the right of the 

peak of the linear solution and the trough of the non-linear wave has moved to the 

left of the corresponding point on the linear wave. The net result is that the region 

in the centre of the non-linear interface has become steep, to the point that it is 

close to being vertical. A short time after this the method starts to break down. At 

the final computed time t = 7.35, shown in figure 3.2(f), the non-linear interface is 

almost vertical near its centre and has begun to develop high order 'wiggles', where 

the resolution of the Fourier series is at its limits and the interface now visibly 

displays some Gibbs' phenomenon behaviour [34]. 

All the non-linear solutions shown here were computed with N = 51 coefficients 

in each Fourier series, with all the intermediate integrals evaluated using 1601 

grid points. Several computational difficulties were encountered, mainly involving 

the spurious blow-up of higher order modes. A number of strategies were used 

to counter this, namely the smoothing scheme of section 3.4 and using a lower 

order solution at an intermediate time (usually evaluated less accurately with 21 

coefficients) to bootstrap up to the full solution. 

It is instructive to study the curvature of the interface at various points in its 

evolution. The aim here is to confirm that a singularity in curvature does, in fact, 
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FIGURE 3.2. Evolution of the inviscid interface for the case F1 = 0.2, F2 = —0.2, for both the linearized (dashed line) 
and fully nonlinear (solid line) solutions. Figures 3.2(a)-(f) show the times t  =  0, 2, 4, 6, 7 and 7.35, respectively. 
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form in finite time and that this coincides with the last times that the non-linear 

method was able to compute. Curvature may be calculated at any point on the 

interface using the formula 

azniax2 

	

n(x,t) = 	 
1+ (onlax) 3/2.  

Interest lies in the points of maximum and minimum curvature. Figures 3.3(a)—(e) 

show the interface height function for the five times t = 0, 4, 6, 7 and 7.35 and the 

corresponding curvatures these times is shown in figures 3.3(f)—(j). The last of 

pair of these plots (figures 3.3(e) and (h)) represent the solution for the point at 

which the inviscid model failed. On the plots of the interface height function the 

large crosses mark the maximum and minimum points of curvature respectively. 

Initially, the points of large curvature lie at the peak and trough of the wave, as 

shown in figure 3.3(a). As the solution evolves, these large curvature points move 

closer together towards the central portion of the wave, so that by t = 6 both the 

maximum and minimum points of curvature lie on a section of the wave that is 

near vertical and appears to be locally linear. At the last computed time t = 7.35, 

the points of high curvature lie very close. The proximity (in the x direction) of 

the maximum and minimum points is limited by the number of coefficients used 

in each series, in this case N = 51, and the curvature (shown in figure 3.3(j)) at 

the last computed time, for instance, is dominated by the contribution for the 51st 

coefficient, with the central peaks effectively being a result of the large contribution 

from the highest mode. Here it is clear that the points of large positive and large 

negative curvature are close to each other, in the way that a singularity might be 

represented with Fourier series methods. The values of curvature here are is 4 

which is large in this context, and certainly very much larger than the initial values. 

The same parameter values are used for the viscous model. Sufficient accuracy 

is obtained by using M = 200 and N = 400. This gives a grid spacing in y of 

Ay = 5 x 10-3 , which means that the size of the perturbation is large enough in 

comparison to the size of the grid that the model will be able to resolve it. With 



3.7. RESULTS 	 96 

similar considerations in mind, the steepness parameter is set at S = 40 in equation 

(3.6.4). An initial condition is created using the methods of section 3.6, here using 

101 coefficients in both directions with 201 Gauss-Legendre integration points. The 

resulting initial streamfunction and vorticity satisfy the Poisson equation (3.5.1) to 

a very high degree of accuracy. The ADI method is used to advance the solution. 

Time steps of At = 1 x 10 -3  are used from t = 0 to t = 1 with time steps of 

At = 1 x 10 -2  being used thereafter. 

Several solutions for vorticity at various times are shown in figure 3.4, with the 

corresponding density profiles shown in figure 3.5. Density and vorticity will be 

discussed primarily here as they show best the evolution of the diffuse interface, 

but for completeness the streamfunction and velocity components at the moderate 

time t = 15 are given as an example in figure 3.6 . As may be seen from figure 

3.4 and figure 3.5 the solutions of vorticity and density evolve in an extremely 

similar manner. For early times the diffuse interface behaves just like the inviscid 

case, appearing at first to be an exponentially growing sinusoid, before developing 

a degree of non-linearity and by t = 13 has approached a similar profile to the last 

computed profile of the inviscid model. The discrepancy in the time for the two 

models to reach this points is due to the slight differences in the initial conditions 

and is to be expected. 

The viscous model allows the evolution of the interface to be followed past the 

point where the inviscid model broke down. After this time, the viscous interface 

develops a small overhanging portion near its centre. A detail of this breaking is 

shown in figure 3.7, plotted with the single density contour p = 0.995 for clarity. 

This point of breaking is analogous to the formation of a curvature singularity in 

the inviscid model. It is of interest that there is a patch of large negative vorticity 

at this point, indicating that the region in question is highly rotational. Once the 

interface has turned over it continues to grow in amplitude. In this configuration 

there is light fluid from the upper layer lying underneath heavier fluid from the lower 

layer. This itself represents a further (Rayleigh-Taylor) instability as discussed by 
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FIGURE 3.4. Evolution of vorticity in the viscous model for the 
case F1  = 0.2, F2 = —0.2 displayed as contours for a selection of 
times between t = 0 and t = 30. 
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the case F1 = 0.2, F2 --= —0.2. The four time steps shown here, 
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Forbes [24]. A short time later, fingers of each of the two fluids protrude into the 

other fluid and they begin to curl back on themselves. As that happens again a 

combination of buoyancy effects and the fluids' relative motion lead to repeating 

and the effects cascade, meaning that the interface starts to spiral in the typical 

manner of interfacial roll-up. The spirals become more and more tightly wound and 
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the interface continues to evolve past the last time step shown here, although the 

spirals will eventually become finer than the grid size. This has already happened 

to some extent in the centre of the roll-up where, at later times, the fluids have 

effectively mixed. 

3.7.2. The case F1  = 0.1, F2 = 0.5. For completeness, a case where the 

two Froude numbers are not of equal magnitude will now be investigated. All 

other parameters remain the same as in the case discussed in section 3.7.1, but 

the Froude numbers are changed to F1 = 0.1 and F2 = 0.5. Only the viscous 

solution will be shown here to highlight the built-in periodicity of the ADI method. 

Several vorticity profiles at different times are shown in figure 3.8. The evolution 

of this solution is nearly identical to that of the previous case (notably this case 

overturns at a slightly later time), with a small amplitude sinusoid again growing 

exponentially at early times and rolling up into a tight spiral by t = 30. The clear 

difference between this and the previous case is that here the solution travels as 

it evolves. Although not unexpected, the close similarity between two cases with 

the same absolute difference in Froude numbers is shown very clearly here. These 

results also agree qualitatively with the linearized theory of section 3.3, since that 

analysis gave a linear travelling wave when the Froude numbers used were not equal 

and opposite. 

3.8. Conclusion 

The Kelvin-Helmholtz instability was modelled for both inviscid and viscous 

fluids. A linearized perturbation analysis was performed on the inviscid model, 

modifying the classic problem to include horizontal walls above and below the un-

stable interface. Non-linear solutions to the inviscid model were then computed 

using a Fourier series technique developed for the study of Rayleigh-Taylor waves 

by Forbes, Chen and Trenham [25] and, although a number of computational diffi-

culties were encountered, some well-known features of Kelvin-Helmholtz waves were 

reproduced. This included the appearance of a finite time curvature singularity on 
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FIGURE 3.8. Evolution  of  vorticity in the viscous  model  for  the 
case F1  =  0.1,  F2 = 0.5 displayed as contours  for  a selection  of 
times between t = 0 and t = 30.  Here  the solution evolves  in 
a similar fashion to the case shown in figure 3.3, with  the  added 
feature that this wave travels to the right as it grows. 
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the interface, as predicted by Moore [42] and others, and a short time after this 

occurs the solution technique breaks down. For earlier times strong agreement was 

seen between the linearized and non-linear solutions where the interface is essen-

tially an exponentially growing linear wave. 

Although the viscous model of sections 3.5-3.6 does not evolve at exactly the 

same rate as the inviscid model (owing to subtle differences in initial conditions), 

there are a several valuable points of comparison to be made between the two. For 

early times, both grow in a similar fashion. At the point where the viscous interface 

overturns (analogous to the formation of the curvature singularity) a patch of large 

vorticity appears at the point on the interface where the inviscid curvature singu-

larity was. The finite width 'interface' then rolls up around this highly rotational 

point, eventually forming a tightly wound spiral. It may be possible in a future 

study to refine the choice of initial condition further so that the behaviour of the 

viscous model more closely matches that of the inviscid scheme. 

Much care was taken in the inviscid scheme to damp growth of unstable high 

order modes. This was fairly successful, although even with use of the various 

smoothing techniques the computational stability of the solution is very sensitive 

to the choice of parameter values. In particular the Froude numbers F1  and F2 

(and to some extent the wavenumber k) must be chosen with care. 

Similarly for the viscous model most of the computational effort was put into 

solving the Poisson equation (3.5.1) to a high degree of accuracy. The convergence 

of that method was highly sensitive to the sequence of quasi-time steps Ar used 

and several robust choices were outlined; their use meant that the desired degree 

of accuracy could be achieved relatively efficiently. This computationally intensive 

procedure is a by-product of the choice to use a vorticity-streamfunction formu-

lation. Despite this, the advantages of such a formulation (over using primitive 

variables) for this problem, and in particular the direct of computation of vorticity, 

make incurring such a computational cost acceptable. 



CHAPTER 4 

Waves in two-layer shear flow for viscous and 

inviscid fluids 

4.1. Introduction 

As has already been seen in chapters 2 and 3, the presence of shear in fluid flow 

is associated with a variety of wavelike behaviours. The focus of this chapter will 

shift to examining the effect a finite amount of shear may have on stratified flows 

and on fluid interfaces. Mechanisms for the generation of shear are often found in 

viscous flow, for instance in boundary layers or in the flow between moving plates, 

and similar effects are possible in rotational inviscid flow. Since shear is essentially 

a measure of spatial velocity gradient, it is often convenient to describe or treat 

these types of flows in terms of vorticity. For example, the linear velocity profile 

established between two moving plates (plane Couette flow) may be described as 

having constant vorticity. Such a description is particularly useful in dealing with 

wavelike behaviour or periodic disturbances, an example of which is the treatment 

of co-rotating vortices by Saffman [50]. 

Pullin and Grimshaw [48] calculated numerous large amplitude steady waves, 

including some with limiting features such as corners, on a two layer inviscid flow 

with shear in the lower layer. Similarly, in chapter 2 of this thesis numerous steady 

waves were computed on a free shear layer and these featured a variety of resonant 

interactions between wave modes. Standing waves are often studied in the context of 

water waves; these are discussed in terms of their associated vorticity in Ehrnstrom 

and Wahlen [20]. 

A number of shear flows are unstable to small perturbations. Two examples of 

these are the Kelvin-Helmholtz and Holmboe instabilities. In the Kelvin-Helmholtz 
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instability two fluid layers flow past each other so that there is a thin region of 

infinite shear at their common boundary. This was studied for both viscous and 

inviscid fluids in chapter 3 where the predicted growth of the wave and the formation 

of a cat's-eye spiral were seen at the interface. In the Holmboe instability the shear 

is spread over a layer of finite width and, as presented by Umurhan and Heifetz [611, 

this flow configuration permits a variety of solution modes, including travelling and 

standing waves. The stability of a variety of different shear flows are investigated 

in Criminale and Drazin [18], although the focus there is on perturbing some base 

vorticity or velocity profiles in a few very specific ways. The flow presented in this 

chapter will typically be perturbed by giving the interface between the layers a 

sinusoidal disturbance. 

Two fluid layers of slightly different densities, bounded above and below by 

rigid walls, will be considered in this chapter. The lower layer is denser than the 

upper so that the flow is buoyantly stable. When unperturbed, each layer flows 

with constant vertical shear. The amount of shear in each layer may differ, but 

the associated horizontal velocity is chosen so that it is continulittleous across the 

interface between the fluids. There are two cases here that are of particular interest: 

the case where both layers flow with equal amounts of shear and the case where 

one layer has no shear. 

Two versions of this flow will be considered: one that assumes both fluid layers 

are inviscid and one that includes the effects of viscosity. The inviscid version 

will be based on a classical description of a two-layer incompressible fluid, with an 

infinitely thin interface separating the two layers. By contrast, the viscous version 

of the flow will feature a continuously stratified, weakly compressible fluid, albeit 

one that mimics the layered fluid of the inviscid case. The interface (or quasi-

interface) in each of these two flows will be given a small sinusoidal perturbation 

(thus perturbing both density and velocity) and the subsequent behaviour of the 

wave in the interfacial region will be the focus of the work in this chapter. 
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The two different formulations of the flow are introduced in section 4.2 and 

care has been taken to ensure that these match each other as closely as possible. 

This enables direct comparison so that the effects of viscosity may be assessed as in 

Forbes 1241. Both formulations are then studied using linearization techniques; the 

assumption here is that, once perturbed, the evolving flow does not change too far 

from the base flow. In section 4.3 this is achieved by approximating the fully non-

linear governing equations of the inviscid problem with their linearized equivalents. 

Similarly, the viscous formulation is carefully analyzed using perturbation series 

techniques and a spectral solution is specified in section 4.4. Here much attention is 

given to choosing appropriate initial conditions so that the system is perturbed in a 

similar way to the inviscid problem. The results of these two solution techniques are 

compared in section 4.5, where a variety of solutions for different parameter values 

are presented. Notably these display a range of oscillatory behaviours, including 

standing waves, both damped and undamped. The validity of these solutions in 

the context of the solution technique for the viscous flow will be discussed. 

4.2. Model formulation 

The flow to be considered consists of two horizontal fluid layers of different 

densities. The upper fluid is denoted as layer 1 and the lower fluid is layer 2; 

quantities associated with each layer are subscripted accordingly. These layers are 

in motion with a continuous horizontal velocity profile, such that the speed at the 

interface of the two layers is co  and each layer flows with constant vertical shear, 

namely w i  in the top layer and w2 in the lower layer; hence the base horizontal 

speeds of each layer are u 1  = co —wiy and u2 = Co — W2Y, respectively. There is thus 

a sharp change in both density and vorticity about y = 0, although the horizontal 

speed is continuous here. Walls are present above and below the interface, at y = hi 

and y = —h2, respectively. A schematic diagram of the flow configuration is shown 

in figure 4.1. 
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FIGURE 4.1. Schematic of the two-layer shear flow. The heavy 
dashed line shows the continuous horizontal velocity profile U01 (y) 
used in the viscous formulation, while the thin solid line is the 
horizontal profile for the inviscid case. 

Non-dimensional variables will be introduced for convenience. The length scale 

is chosen to be the depth of the lower layer h2. It follows that an appropriate choice 

for the speed scale is Vgh2 and similarly the time scale to be used is .,/h2 /g. The 

lower layer density p2 is used to scale density. This gives a number of key dimen-

sionless parameters, namely a Froude number F0  = co //gh2 , two dimensionless 

measures of shear yi  = col 1/h2/g and = w2 Vh2/g, a density ratio D = pi /p2 

and the dimensionless height of the upper layer h= h 1 /h2 . This set of five param-

eters will be used for both the inviscid and viscous formulations presented below. 

There will be a few key choices for these parameters. In particular, interest lies 

in investigating the effect of changing the strength of the shear parameters 7 1  and 

72 in each layer . The case of equal shear, that is where 7 1  = -y2 , will be studied 
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first. The stability of a similar flow with a continuously stratified density profile 

(and only the lower wall) was examined by Chandrasekhar [11, article 103a]. In 

viscous fluids, shear flows of this type are often referred to as plane Couette flow 

(see, for instance, Drazin & Reid [19, chapters 4 and 5] for various approaches to the 

viscous problem or Case [10] for an investigation of the stability of the equivalent 

inviscid flow), namely the flow induced between moving plates. The next step is 

to consider the related case of -yi = 0 and 72 0. A similar flow was studied by 

Pullin & Grimshaw [48] where numerous large amplitude steady waves (including 

over hanging waves) were computed and it is possible that steady waves of a smaller 

amplitude may be obtained here. In each of these cases the base flow will be given 

a small sinusoidal perturbation in both density and vorticity. It is the response to 

this disturbance and subsequent evolution of the flow, with particular emphasis on 

the interfacial region, that will be the focus of the study. 

4.2.1. Inviscid formulation. The inviscid version of this problem involves 

two immiscible fluid layers flowing as described above. Both layers are assumed 

to be inviscid and incompressible. There is an interface between the layers lying 

at y = 0 when the system is unperturbed, and more generally the interface is 

represented by the function y = n(x, t). This implies that the exact shape of the 

layers is not known a priori, and by the very nature of the problem the layers' 

shapes change as the interface evolves. The inclusion of shear means that the flow 

is inherently rotational; however, as only constant shear is considered it is possible 

to write the velocity as a sum of rotational and irrotational parts, thus allowing 

velocity potentials (Di and ID2 to be constructed for the irrotational parts of the 

fluid motions in each layer. In the upper layer, between y = (x, t) and y = h, the 

velocity components are 

Ul = Fo  — 71y + 8:1  

a(Di 
VI 

 

ay 
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and similarly in the lower layer, between y = —1 and y = n(x, t), the horizontal 

and vertical components of velocity are written as 

(Da 2 
U2 	Fo  — 72y + ax 

a4.2 
V2 	

ay  

The velocity potentials satisfy Laplace's equation in their respective regions, that 

is 

'72 (1)1 = 0 n(x,t) < y < h 

V2 4)2 = o —1< y < 77(x, t) 

as is usual for incompressible inviscid fluids. Additionally, there are a number of 

boundary conditions to be defined on the interface. On either side of the interface 

it is required that the normal component of velocity is zero, leading to the condition 

that 

at 	vi — —ax  on y = n(x, t) 	 (4.2.1) 

for i = 1, 2, so that the condition is applied in each fluid at the interface. A further 

condition is obtained by considering Bernoulli's equation and equating pressure on 

either side of the interface. The resulting dynamic condition is 

ad)2 at  — D 	=D)Fc? 	+ 	(uT + v?) 

-7202 + Dryobi — (1 — D)n on y = (x, t) (4.2.2) 

where the streamfunctions 0 1  and 02 have been introduced in each layer as a 

consequence of allowing a constant shear in the layers. These are defined as 

1 
= Foy — —2 Y2  + 

for i = 1, 2, and here W, is the irrotational component of the streamfunction 

and relates to the velocity potentials via the Cauchy-Riemann equations; that is, 
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at. i /ax = atIii/ay and a(13i/ay = —axli t /ax. Also note that the complete stream-

function ip reproduces the velocity components for u i  = at,b,/ay and vz  = 

by simple differentiation. Additionally it is required that the vertical component of 

velocity v is equal to zero at the top and bottom walls, y = —1 and y = h. The 

behaviour of this inviscid system when subjected to a small perturbation will be 

investigated in section 4.3. 

4.2.2. Viscous formulation. To model the shear flow in a viscous compress-

ible fluid, a modified version of the Navier-Stokes equations will be introduced. 

This is similar to the approach used by Farrow and Hocking [21] to model the flow 

of withdrawal from a tank, although the version presented here will use a vorticity-

streamfunction formulation. An approach of this type has already been used to 

model the viscous version of the Kelvin-Helmholtz instability in chapter 3. There 

are several advantages to using such a formulation; in particular, it avoids the need 

to solve explicitly for pressure and allows the direct computation of vorticity. For 

the problem at hand this is particularly convenient as the defining parameters of 

the flow are the amounts of shear in each layer, which are themselves a measure of 

vorticity. It is assumed that the flow is Boussinesq so that, as in Farrow and Hock-

ing [21], the density p may be written as the sum p = po + r)(x, y, t) of an average 

part po and a time dependent component #(x, y, t), in which density does not vary 

greatly from the average po. A consequence of using the vorticity-streamfunction 

approach is that density only ever appears as a derivative and as such it is possible 

to use p and interchangeably. These assumptions are built into the approach of 

Farrow and Hocking [21] and the primitive variable system used there will now be 

extended by the introduction of a vorticity-streamfunction formulation. 

Vorticity C is defined in terms of the horizontal and vertical velocity components 

as = 9v/3x — au/ay and by taking the curl of the momentum equation in the 

primitive variable formulation it is possible to eliminate pressure. At the same 

time the continuity equation may be now written in terms of streamfunction, which 

may be introduced as the fluid is nearly incompressible, and this streamfunction 



D+1  D — 1 
Roi(Y) 2 2 

	 tanh Sy 

+ 	 —  tanh Sy 
2 	2 ftm (Y) 

(4.2.6) 

(4.2.7) 
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relates to the velocity components by simple differentiation, that is u = 8018y 

and v = —.91,b/ax. The version of the Navier-Stokes equations that is derived as a 

consequence is 

a2ip a20 

ax2  ay2  
a( 	a( 	a( 
at 	ax 	ay 

-C 
2a 	a2c 	ap  

= 
aX2  ay2  ) aX 

(4.2.3) 

(4.2.4) 

and the continuity equation of mass conservation takes the form 

Op+11 OP + v Op at 	ax 	ay  
(a2p  a2p  

a  aX2  ay2  ) • (4.2.5) 

Here, the parameters v and a are an inverse Reynolds number and an inverse 

Prandtl number, respectively. These parameters control the amount of viscosity 

and the rate at which the fluids mix, that is the diffusivity, and in practice these 

values will be chosen so that the flow mimics the situation of the two inviscid 

immiscible fluid layers outlined in section 4.2.1. 

As in the inviscid formulation it is necessary to define a background flow. The 

difference here is that continuous functions are required, as opposed to the piecewise 

profiles used in section 4.2.1, to avoid unintentionally introducing large spikes in 

derivatives and so on. A steepness parameter S is introduced to control the rapidity 

of the change of the variables across the interfacial region. To match the profiles 

of the inviscid version hyperbolic tangent functions are used for both density and 

vorticity. The appropriate forms for these are 

where the functions R01 (y) and 52 01 (y) are introduced as background density and 

vorticity respectively. It is necessary to obtain matching expressions for the hor-

izontal component of velocity and the streamfunction (the vertical component of 

velocity is assumed to be zero for this background flow, as in the inviscid version). 
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These are obtained by integrating the background vorticity Cloi(y)  and the resulting 

expressions are 

71 — 72 	/f1  —  72  log (cosh Sy) + Fo (4.2.8) 
2 	2S 

Toi(Y) = --2 Y 
'Y12 (F0  +  —  72  log 2) y 2S

— -Y2  Li2  (_e-2s2 ) +(4.2.9) 
4S 

with 

W1 — W2 	_e2S) ,  
C = — 	 2 2 

+ kF0 + 	 log 2) + 
 4S 

 Li2( 

and here Li2 (y) is the dilogarithm function (see Abramowitz and Stegun [1, section 

27.71). The constants of integration in (4.2.8) and (4.2.9) have been chosen such 

that the horizontal velocity profile U01(y) is equal to F0 for y = 0 and the stream-

function W0i(y) is equal to zero at the bottom wall y = — 1. These profiles closely 

match those used in the inviscid version of the problem and as an example the hor-

izontal velocity component profiles for the piecewise profile from section 4.2.1 are 

compared with that in equation (4.2.8), as illustrated in figure 4.1. As the steepness 

parameter S is increased the two profiles become nearly indistinguishable, although 

typically moderate values for S will be selected so that the resolution required in 

later computational schemes is not too fine. 

4.3. Linearized solution to the inviscid problem 

The inviscid problem of section 4.2.1 is approximated with a linearized sys-

tem. This system is subjected to a small perturbation and the resulting behaviour 

studied. The goal here is to establish whether the system behaves differently for 

various choices of parameters values. There is a possibility that the interface may 

grow unstably when given a small perturbation, for instance. Such an analysis is 

common in dealing with inviscid flows of this type, a classic example being the 

derivation of the stability criterion for Kelvin-Helmholtz instability as presented, 

for example, by Lamb [35, article 2321. 

Ulm (Y) 
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The solution is assumed to be a small perturbation about the background flow, 

as was set out in section 4.2.1, in which the interface is assumed to be horizontal 

and the layers flow with constant but possibly different amounts of shear, and the 

horizontal velocity profile is specified so that it is continuous across the interface. 

Apart from perturbing the interface height function n(x,t) it is also necessary to 

perturb the velocity potentials 413 1  and (1. 2  as well as the two streamfunctions W i and 

‘112; to this end the small amplitude linearization parameter E is introduced. When 

perturbations of order e are applied to the background flow the resulting expressions 

are 

n(x, t) = 611(x, t) + 0 (62 ) (4.3.1) 

(I),(x,y,t) = e(11(x,y,t) + 0 (62 ) (4.3.2) 

111  i(x, y ,t) = i (x, y, t) + 0 (62 ) (4.3.3) 

for i = 1, 2, in which terms of order e2  and higher are neglected. Effectively E 

is a small parameter proportional to the height of the perturbed interfacial wave. 

The expressions (4.3.1)—(4.3.3) may be substituted into the kinematic boundary 

conditions (4.2.1) and after retaining only first-order terms these conditions become 

aH _ ac, —aH Fo 	on y = 0, = 1,2 
at 	ay 	ax 

(4.3.4) 

for each side of the interface. Here the perturbed forms of the velocity potentials 

have been used in evaluating the respective velocity components. By substitut-

ing the perturbed expressions (4.3.1)—(4.3.3) into the dynamic boundary condition 

(4.2.2) a linearized version of that condition may be obtained, namely 

(91,21  D a4, 11 	(a 1, 21 D 04, 11)  = at 	 F0 at 	 ax 	ax 

—72W2i + D71W11 — (1 — D)H on y = 0 

(4.3.5) 

and again terms of order e2  and higher have been discarded. The perturbations 

are now assumed to take some general forms and by substituting these into the 
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linearized boundary conditions it is possible to examine the behaviour of the in-

terface. The perturbed part of the interfacial height is assumed to be a travelling 

wave with period 27r/k and a frequency of w; that is 

H(X, t) = 	ei (w t—kx) 	 (4.3.6) 

where an arbitrary initial amplitude gl  has been introduced. In a similar fashion 

the perturbed parts of the linearized velocity potentials are 

	

y, t) = ai cosh(k(y - h))ei (' -kx ) 
	

(4.3.7) 

	

4)21(X, y, t) = a2 cosh(k(y + 1))e i(w t-1 x ) 
	

(4.3.8) 

where the hyperbolic cosines are used so that the vertical components of velocity, 

VI and /r2, are zero at the top and bottom walls, respectively. The correspond-

ing streamfunctions may be obtained via the Cauchy-Riemann equations and it is 

straightforward to show that the appropriate forms for these are 

Wii (x, y, t) = 	sinh(k(y - h))ei(' -kx ) 
	

(4.3.9) 

W21 (x, y, 	= 	sinh(k(y + 
	

(4.3.10) 

Here al and a2 are the same constants as were used in (4.3.7) and (4.3.8). In 

terms of how the system behaves through time, the important parameter here is 

the frequency cv. When this parameter has a non-zero imaginary part a small 

perturbation to the interface will grow exponentially. The travelling wave solu-

tions (4.3.6)-(4.3.10) may be substituted into the linearized boundary conditions 

and after a little algebra the arbitrary constants may be eliminated. This gives a 

quadratic for or and the resulting dispersion relation is 

2F0kS + 72 D71 	1 /, 
= 	  —25 V 0'2 - D71) 2  + (1 - D) 	(4.3.11) 

with (5 = coth k + D coth kh. The part of this expression under the square root can 

never be less than zero (since D < 1) and so the system will never become unstable 
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in the sense that a small perturbation will grow exponentially. This is not to say 

that (4.3.11) indicates that the linearized problem has no interesting time dependent 

behaviour. The result of the superposition of the two resulting frequencies above 

is a classic standing wave, which for certain choices of parameters will travel as it 

oscillates. Pure travelling waves are also available when one of the frequencies in 

(4.3.11) is zero. 

4.4. First-order perturbation series approach to the viscous problem 

The linearized inviscid analysis of section 4.3 shows that a small interfacial 

perturbation to the two-layer shear flow will not grow unstably. This implies that 

most of the interesting subsequent evolution of the system occurs in a small neigh-

bourhood of this interfacial region. There are a few options for modelling such a 

situation in viscous flow. One approach might be to use a finite difference or finite 

element scheme over the flow region, as was used to model the Kelvin-Helmholtz 

instability in chapter 3. For this to be done efficiently and with sufficient resolution 

to resolve a small perturbation either a fine grid size would need to be chosen or an 

uneven grid focused on the interfacial region would need to be implemented. The 

latter may not account for effects at the walls, such as boundary layers, whilst the 

former is potentially computationally expensive. A fully non-linear spectral solu-

tion, such as the type used by Forbes [24] to model the Rayleigh-Taylor instability, 

is similarly computationally expensive. 

In Forbes [24] the Rayleigh-Taylor instability was modelled to a very high de-

gree of accuracy with a yorticity-streamfunction approach. Double Fourier series 

were used to give a very general form of the solutions for density and vorticity. A 

particular advantage of this approach is that the series may be specified in such a 

way that the definition of vorticity (4.2.3) is satisfied identically. For an unstable 

flow such as the Rayleigh-Taylor instability, where an initial flow condition devel-

ops in highly complex non-linear ways to produce solutions at later times which are 

very different from the initial condition, the generality of this approach is justified; 



4.4. PERTURBATION SERIES APPROACH TO THE VISCOUS PROBLEM 	116 

indeed it is necessary to capture the growth of the initial perturbation. The com-

putational cost in such a method is that a large number of double integrals need 

to be calculated at each time step, with the number of integrals increasing as more 

Fourier coefficients are used in the double series for accuracy. 

The major simplification of the approach used to model the 2-layer shear flow 

here, compared with a full spectral method, is to assume that the Fourier series 

contains only the first and zeroth modes in x; that is, it is monochromatic. This 

places several restrictions on the type of solution that will be allowed, namely that 

the wave cannot grow too large and that any evolution in the x-direction will be 

restricted to that allowed by the reduced series. As the predictions of inviscid linear 

theory were that a small perturbation will not grow exponentially and will result 

in a standing wave that possibly travels in x these restrictions are acceptable for 

this flow. In addition to this, an analysis based on perturbation series techniques 

is performed on the governing equations (4.2.3)—(4.2.5) under the assumption that 

the evolving flow is a small perturbation to the flow profile specified in section 4.2.2. 

As a first step it is assumed that the solutions for density and vorticity are 

given in terms of a background flow, namely Ro (y, t) for density and Ito(y, t) for 

vorticity, plus a small perturbation. These are written as 

((x, Y, t) = no(Y, t) + eni (x, Y, t) + 0 (62 ) 	(4.4.1) 

P(x, Y, t) = Ro(Y, t) + ERi(x, Y, t) + 0 (e2 ) 	(4.4.2) 

where e has been introduced as a small parameter in the order of the initial pertur-

bation and in this analysis terms of order e2  and higher will eventually be discarded. 

The initial conditions for the background density Ro (y, t) and vorticity 5/0(y, t) are 

the hyperbolic tangent profiles specified in section 4.2.2, Rol  (y) and 1101 (y), and 

time dependence is included in Ro (y, t) and 120(y, t) to account for the gradual diffu-

sion of these initially sharp profiles. At a later stage a corresponding streamfunction 

will be obtained by simple integration so that it identically satisfies the definition 

of vorticity (4.2.3) and then this may be differentiated to obtain expressions for the 
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velocity components. For the purposes of this analysis of the governing equations, 

however, it is necessary to introduce the perturbed forms of these, namely 

1,b(x,y,t) = tlio(Y,t) + 	i (x,y,t) + 0 (el (4.4.3) 

u(x, y, t) = Uo(Y, t) + 	(x, y, t) + 0 (62 ) (4.4.4) 

v(x , y, t) = 0 + EVi(x,y,t) + 0 (E2 ) (4.4.5) 

where the velocity components are related to the streamfunction by u = atP/ay  and 

v = —4/0x. The above forms of the solutions (4.4.1)—(4.4.5) are effectively the 

first two terms of a perturbation series and the following procedure makes use of 

these to obtain a first-order perturbation approximation to the governing equations 

(4.2.3)—(4.2.5). Such techniques are outlined by Bender and Orszag 17, chapter 7], 

for instance. 

The perturbed expressions (4.4.1)—(4.4.5) are substituted into the governing 

equations (4.2.3)—(4.2.5). An unperturbed (zeroth-order) version of this system is 

then obtained by setting e = 0 and the resulting form of the governing equations is 

a2 

ay2 

ano 

= -C20 

n2g-t_ 
= V ay2u  

a2 pp_ 
= 	"j  • ay2 

(4.4.6) 

(4.4.7) 

(4.4.8) 

 

at 
aRo  

 

at 

Here the unperturbed definition of vorticity (4.4.6) relates the zeroth-order parts 

of vorticity and streamfunction, whilst these forms of the vorticity equation (4.4.7) 

and the density equation (4.4.8) account for the diffusion of the initial background 

profile. A first order approximation of the governing equations may now be obtained 

by substituting the perturbed forms (4.4.1)—(4.4.5) into the governing equations 

and, first neglecting terms of 0 (62 ) and higher, since the 0 (1) terms constitute the 

unperturbed system above, then by method of variation of parameters the terms 

of order e then constitute a system of differential equations that may be solved 
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separately. The resulting first-order approximations of equations (4.2.3)-(4.2.5) 

are 

a2 wi 	a2 4, 1  
= —11 	 (4.4.9) ax2 	ay2 

an1 asto 	aR, v+uo— + 	vv 2 01  _ 
at 	ax 	ay 	ax (4.4.10) 

aR, 	aR, 	aRo  +uo-- +v1 at 	ax 	ay  
0.172Ri.  (4.4.11) 

This version of the governing equations, combined with the unperturbed equations 

(4.4.6)-(4.4.8), represents an approximation to the original equations that should 

be sufficient to capture the expected standing wave behaviour of the two layer shear 

flow. In solving this system it is possible to solve the unperturbed equations first, 

since they do not depend on the first order terms, and then use those solutions 

in treating the first order equations (4.4.9)-(4.4.11). In effect, the original system 

of three non-linear differential equations has been replaced with two sets of three 

linear differential equations. 

The zeroth-order parts of vorticity It o  and density Ro  are chosen to be the base 

flow plus a time dependent Fourier series in y. Here the series are specified so that 

they satisfy the boundary conditions at the top and bottom wall that both the 

vorticity and the density p are constant at the top and bottom walls; namely that 

for vorticity = at y = h and ( = 72 at y = -1, while for density p = D at y = h 

and p = 1 at y = -1. Since these are the values for the base vorticity Qoi  (y) and 

density Rol (y) at the walls, the series part of the zeroth-order expressions is zero 

at y = h and y = - 1. It follows that the appropriate form of these zeroth-order 
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parts is 

no (y, 	= 	oi (y) + E Aon  (t) sin On (Y + 1 )) 
	

(4.4.12) 
n=1 

Ro (y,t) = 	 (4.4.13) 
n=1 

where On  = narl(h+ 1) and the Fourier series coefficients A0(t) and Con  (t), for n = 

1, , N, have been introduced with the series becoming more accurate as N tends 

to infinity. The corresponding series for streamfunction, obtained by integrating the 

expression for S/0 (4.4.12) twice in y so that the zeroth-order definition of vorticity 

(4.4.6) is satisfied, is 

N  
Wo(y,t) = Tot (y) + E Aon  (t) sin (i3n (y + 1 )) (4.4.14) 

and here To  (y) is the background streamfunction as defined in section 4.2.2. This 

may then be differentiated to obtain the zeroth-order part of horizontal velocity, 

the series form of which is 

Uo(y,t) = U01 (y) + 2 iTAon  (t) cos (On (y+ 1 )) 
	

(4.4.15) 

and this will be used in the first-order governing equations (4.4.10) and (4.4.11), 

once the coefficients Ao n (t), for n 1,...,N, have been evaluated. 

The series form of the zeroth-order part of vorticity (4.4.12) is now substituted 

into the zeroth-order approximation to the vorticity equation (4.4.7), and simi-

larly the zeroth-order part of density (4.4.13) is substituted into the zeroth-order 

density equation (4.4.8). These are then multiplied by the Fourier basis function 

sin ( i3i  (y +1)), for j = 1, ,N, and integrated in the y direction from y = —1 to 

y = h. The resulting sets of differential equations for the series coefficients Ao and 
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Coi, for j = 1, . . . , N, are 

2v 
= —1 a v Aoi h +  

2a 
— 	  h+1 	al3Coi 

where in these equations the integrals 

=  f_1 

h d2C101 
- dy2 sin (i3j (y + 1)) dy 

h  d2  R01  
= 	

dy2 sin  (fii (y + 1)) dy 

(4.4.16) 

(4.4.17) 

(4.4.18) 

(4.4.19) 

for j = 1, 	, N, have been introduced for convenience of notation. Since equations 

(4.4.16) and (4.4.17) are inhomogeneous exponential decay equations they have 

closed form solutions and these are 

A0j 

CO3 

233 	(1 — e-u'3.2i t ) 
/3. (h + 1) 

21Ci  
+1) 

 (1 — e t) 
 

(4.4.20) 

(4.4.21) 

for j = 1, 	, N. Here it has been assumed that the zeroth-order part of vorticity 

and density are initially the undiffused base profiles specified as fioi (y) and Rol (y), 

and as such the Fourier series coefficients in equations (4.4.20) and (4.4.21) have 

been chosen so that they are initially zero. 

The first-order parts of (4.4.1)-(4.4.5) are assumed to be Fourier series in x 

and y. They only contain, as previously discussed, the zeroth and first modes in 

x which greatly reduces the number of time dependent coefficients that need to be 

solved for, while remaining sufficiently general that the expected small amplitude 

behaviour of the flow will be captured. The series forms of the first-order parts of 
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vorticity 5/ 1  and density R 1  are 

(x, y, t) = E [Aion(t) + A1 71  (t) cos kx + Bln  (t) sin kx] sin (fin (y + 1 )) 
n=1 

(4.4.22) 

(x, y, t) = E [clon(t) + chi (t) cos kx + D ln  (t) sin kxj sin (fin (y + 1 )) 
n=1 

(4.4.23) 

where the 6N Fourier series coefficients Alen (t), A171 (t), B171 (t), C1071 (t), C171  (t) 

and Dln  (t), for n = 1, , N, have been introduced and the above series become 

more accurate as N tends to infinity. As with the series part of the zeroth-order 

expression for vorticity (4.4.12) and density (4.4.13), the first-order series have been 

chosen so that they are zero on the walls at y = h and y = —1. The series form 

of the first-order part of vorticity (4.4.22) is now used to obtain the corresponding 

expression for streamfunction so that the first-order approximation of the defini-

tion of vorticity (4.4.9) is satisfied. Having substituted the series (4.4.22) into the 

definition of vorticity (4.4.9) it follows, after some straightforward integration, that 

	

N 	 1 	1 

	

41 1 (x, y, t) = E 
{ 

—fq2 Aion (t) + 	[Aln (t) cos kx + 13 171  (t) sin kx1} sin (fin  (y + 1 )) an  n=1 1-'n 
(4.4.24) 

with an2  = k2  ± On2 and this may then be differentiated to obtain the first-order 

series of the velocity components; the expressions for the horizontal component of 

velocity U1 and the vertical component V1  are 

N  {1 (x, y,t) = 	--- A171 

	

n=1 n=1 	
(t) + 	[Ain ( t )  cos kx + Ihn  (t) sin kxI} cos (On (y + 1 )) an ij  

N 

(x ,y,t) = E r=2  [Aln (t) sin kx — B ln  (t) cos kx] sin (fin (y + 1 )) 
n=1 an 

(4.4.25) 

(4.4.26) 
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Note that here only the first-order series for the vertical velocity component V 1  will 

be used in evaluating the first-order versions of the vorticity equation (4.4.10) and 

the density equation (4.4.11); the expression for U1  is included for completeness. 

The first-order series (4.4.22)—(4.4.26) as well as the zeroth-order series (4.4.12)— 

(4.4.15) are now substituted into the first-order perturbation approximations of the 

vorticity equation (4.4.10) and the density equation (4.4.11) and will be analyzed 

to obtain differential equations for the Fourier series coefficients. The vorticity 

equation will be considered first. Once the appropriate series have been substituted 

into equation (4.4.10) the resulting expression is multiplied by the Fourier basis 

functions sin ( 133  (y + 1)), for j = 1, . ,N, and then integrated in the x direction 

from x = 0 to x = 27r/k, that is over one period, and in the y direction from 

y = —1 to y = h. This yields a system of differential equations for the coefficients 

associated with the zeroth mode in x, namely 

03 = -02 A10 1 	3 	3  (4.4.27) 

for j = 1,...,N. Equation (4.4.27) is an exponential decay equation, with solution 

(t) = A10 (0) 	 (4.4.28) 

Here the solution has been specified in terms of the initial value of the coefficient 

A1 03  (0) and the choice of initial conditions for this and the remaining Fourier series 

coefficients will be discussed in detail in section 4.4.1. A similar procedure is applied 

to derive differential equations featuring the coefficients associated with the first 

mode in x. The vorticity equation (4.4.10), having had the various series substituted 

into it, is multiplied by each Fourier basis function cos kx sin (03  (y + 1)), for j = 

1,...,N, and integrated from x = 0 to x = 27r in the x direction and from y = —1 



2k 
h + 1 n=1 

E (uni  _ =-23)B,n 
Z (4.4.29) 
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to y = h in the y direction. After some rearrangement this gives 

N N 	, 

E E 	— 	Ao,,B,„minn  — v(4,41 4  _ kpi, ,(3„, 

for j = 1, . , N. Similarly, the vorticity equation is now multiplied by sin kx sin (34  (y + 1)) 

and integrated to obtain 

B' • = 2k 	 7 , cArij  — h + 1 n=1

(  
Zan2j  Aln (4.4.30) 

N N 2k
( 

1 	iftr14. 
m=1 n=1 	

— 	
A 	VV omAn, 73  — vcth q 	+ kC13 . + h+lEE3,7,  

for j = 1,... , N. Several integrals have been introduced in equations (4.4.29) and 

(4.4.30), and these have been defined as 

/hi  
Linj 	Uoi sin (On (Y + 1)) sin (Oa (Y + 1)) dy 	 (4.4.31) 

2n3 	f

h  c/C201 
W-  sin (On (Y + 1 )) sin(fl(Y + 1)) dy 	(4.4.32) 

YV42n  
f 1 

cos (3, (y + 1)) sin (f3n  (y + 1)) sin ( i3j  (y + 1)) dy. (4.4.33) 

It has been found convenient here to use the fact that 

{(h+ 1)/4 if j = —m + n or j = m + n 

Winn = 	—(h+ 1)/4 if j = m — n 

0 	otherwise 

in order to avoid extraneous computational effort in evaluating the double sum 

terms. Note that equations (4.4.29) and (4.4.30) are both linear differential equa-

tions since the coefficient from the zeroth-order series (the Ao in the double series 

term) may be evaluated directly from equation (4.4.20). 

2k 
h+1 m=1 n=1 
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A similar set of differential equations may be derived from analyzing (4.4.11), 

the first-order approximation to the density equation. Substituting the requisite 

zeroth and first-order series into (4.4.11), then multiplying by the Fourier basis 

function sin (33  (y + 1)), for j = 1, , N, and integrating gives 

	

cif  0j = — c103 
	 (4.4.34) 

and, similar to the previous exponentially decay equation (4.4.27), the appropriate 

closed form solution is 

	

C103 (t) = C103 (0) e -0i3t 
	

(4.4.35) 

for j = 1, . . . , N. The first-order density equation is now multiplied by cos kx sin (03  (y + 1)) 

and integrated to give 

"2k 	 2k N N 

h + 1 	 h + 1 
	E Dinun,  	E _Aompinwn 	(4.4.36) 

n=1 	 m=1 n=1 m 

2k 	1 , 	2k N N
\-■ 

h 1 Jo§ mn, 	 Ora1 n V V C B 	3
h +1 a2 	 mn  — a-  a?C' • 3 	..3 a n=1 n 	 m=1 n=1 n 

for j = 1, 	, N, and finally the density equation is multiplied by sin kx sin ( 133  (y + 1)) 

and integrated to yield the differential equation 

—1   2k 	
AomCinWn 

n=1 

2k  E cinun 	 
xnr 

h + 1 	 h+  1 	

, 

• 	raL4=1 nLj=1 /3"1  
(4.4.37) 

2k 	1 A T, 	2k N N
Pm 

2  Om ln mn h + 1 E a2 "-nj  h + 1 E -C A W3  
n=1 n 	 m=l n=1 

an 
2 — era 

for j = 1, . . . , N. In addition to making use of the integrals previously defined in 

(4.4.31)-(4.4.33), in equations (4.4.36) and (4.4.37) the integral 

c j  

Rnj 
f h  d Rol w- sin On  (Y + 1)) sin (f33 (Y + 1)) dy (4.4.38) 

has been introduced. The coefficients in these equations from the zeroth order series 

Aorn  and Corn  may be evaluated from (4.4.20) and (4.4.21), respectively. Equations 
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(4.4.29), (4.4.30), (4.4.36) and (4.4.37) thus constitute a set of 4N linear differential 

equations for the unknown coefficients from the first-order series. 

It is worth noting that since the integrals (4.4.31)-(4.4.33) and (4.4.38) are 

not time dependent, they need only be calculated once for a particular choice of 

background flow. Taking this a step further it is possible to rewrite the integrals 

(4.4.31), (4.4.32) and (4.4.38) in terms of the flow parameters by explicitly using 

the choice of background flow made in section (4.2.2). By making the substitutions 

for U1, dlti/dy and dR i  I dy, as defined in (4.2.8), (4.2.7) and (4.2.6) respectively, 

these integrals become 

j 

Znj 

Rnj 

+ 72 ,A4  (4.4.39) 

(4.4.40) 

(4.4.41) 

2 	n3  
- 72) S pro  

2 

2 
(D — 1) S 

2 	1-'913 

where the additional integrals 4,3, M J'f,j and Pn3  have been defined as 

f sin (On  (y + 1)) sin (03  (y + 1)) dy 	 (4.4.42) 

f y sin (f3T, (y + 1)) sin (33  (y + 1)) dy 	 (4.4.43) 

f log (cosh Sy) sin (fin  (y + 1)) sin (83  (y + 1)) dy 	(4.4.44) 
---1 
ft:  

sech 2 Sy sin (13, (y + 1)) sin 	(y + 1)) dy 	(4.4.45) 

for j, n = 1, 	, N. The advantage to using the integrals in the form (4.4.39)- 

(4.4.41) rather than that of (4.4.31), (4.4.32) and (4.4.38) is that the calculation of 

the intermediate integrals (4.4.42)-(4.4.45) need be only done once for a choice of 

steepness parameter S and the number of coefficients in each Fourier series N. This 

means that the integrals (4.4.39)-(4.4.41) may be be computed for a whole suite of 

values of the other flow parameters (namely 71, -y2, F0 and D) at a comparatively 

light computational cost. In the results section 4.5.1, for instance, the values of the 

Lni 

-A4 nj 

Ainj 

Pnj 
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background shear are varied while the other parameters, including S and N, are 

held constant. There are typically a large number of coefficients used in each series 

and as such accurate evaluation of the series is made practical by only calculating 

the integrals once; that is, repeatedly computing the four sets of N2  integrals would 

be prohibitive. 

The system of 4N ordinary differential equations (4.4.29), (4.4.30), (4.4.36) and 

(4.4.37) is solved using an adaptive Runge-Kutta method of orders 4 and 5, namely 

the 0DE45 routine in MATLAB. This is both accurate and will select appropriate 

sized time-steps so that the error will be controlled adaptively. Up to 401 coefficients 

will be used in evaluating the Fourier series. With such a large choice of N it is 

necessary to use quite a fine grid when calculating the integrals (4.4.42)—(4.4.45). A 

highly accurate Gaussian quadrature scheme is used to evaluate all integrals, with 

the nodal points computed using a routine made available by von Winckel [63]. For 

this unevenly spaced grid it is necessary to use up to 4001 integration points to 

evaluate accurately the large number of integrals required here. 

4.4.1. Choice of initial conditions. A careful choice of the initial values 

of the Fourier series coefficients is required so that the method outlined above 

will mimic the inviscid version of the two-layer shear problem. Recall that in the 

inviscid version the density interface is given a small sinusoidal perturbation. This 

is achieved for the viscous flow by perturbing the background density profile (4.2.6) 

so that the point of inflection in the hyperbolic tangent is about the small amplitude 

sinusoid y = e sin kx rather than y = 0. The perturbed form of density is 

D+1 
+

— 1 
Ppert (X )y) =  	 tanh 

	

2 	2 	
(S (y — e sin kx)) (4.4.46) 

and the background vorticity (4.2.7) may be perturbed in a similar way to give 

+ ±  —  
(pert (X, Y) = 	 tanh (S (y — E sin kx)) . 	(4.4.47) 

	

2 	2 

The initial values for the first-order Fourier series coefficients il10n(0), A1,(0), 

B17,(0), C1on(0), CD,(0) and D1,,(0), for n = 1, 	, N, are then chosen so that 
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the perturbed series solutions (4.4.1) and (4.4.2) match the perturbations to the 

base flow (4.4.46) and (4.4.47) at t = 0. To obtain these values the two expressions 

for density (4.4.2) and (4.4.46) are equated and it follows by simple rearrangement 

that R 1  (x, y, 0) the initial first-order part of density is 

D —1 
Ri(x,y, 0) = 	 itanh (S (y — E sin kx)) — tanh Sy} 	(4.4.48) 

2E 

and similarly, by equating the expressions of vorticity (4.4.1) and (4.4.47), the 

perturbed part of vorticity 1/1(x, y, 0) is found to be 

i (x , y , 0) — 	
2E

1'2 	 Itanh (S (y — e sin kx)) — tanh Sy} . 	(4.4.49) 

It is now possible to equate these choices for Ri (x, y, 0) and 	(x, y, 0) to their 

Fourier series equivalents (4.4.23) and (4.4.22) so that for the density we have 

E [cion(0) + Gin (0) cos kx + D 1  (0) sin kx] sin (3„ (y + 1)) 
n=1 

D — 1 
Itanh (S (y — E sin kx)) — tanh Sy} 

2E 
(4.4.50) 

and the equivalent expression for the initial perturbation to the background vortic-

ity is 

E [Aion(o) + Amn (0) cos kx + B 1  (0) sin kx] sin (On (y + 1 )) 
n=1 

—  Itanh (S (y — E sin kx)) — tanh Sy} . 
2E 

(4.4.51) 

The expressions (4.4.50) and (4.4.51) are then integrated to obtain the appropri-

ate initial values for the Fourier series coefficients. Both sides of each of (4.4.50) 

and (4.4.51) are multiplied by the Fourier basis function sin (11 3  (y + 1)), with 

j = 1,...,N, and integrated in the x-direction from x = 0 to x = 2rIk and 

then integrated again in the y-direction from y = —1 to y = h. The results of these 



C103(0) 
27rE(h + 1) A°3  

- 72) k A  . A103  (0) 
271-E(h + 1) ("2  
(fl — 1) k 

(4.4.52) 

(4.4.53) 
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integrations are then rearranged to obtain 

for j = 1, 	, N. Further expressions for the initial values of the other coefficients 

may be obtained in a similar way. To obtain expressions for the even coefficients 

A 13 (0) and C13 (0), (4.4.50) and (4.4.51) are multiplied by cos kx sin (03  (y + 1)), 

with j = 1,... , N, before being integrated and the resulting initial values are 

A 13  (0) = (71 — 112)k  A  
re(h + 1) 3  

(D- l) k A  
C13 (0) = 

rs(h + 1) A3  

(4.4.54) 

(4.4.55) 

for j = 1, . , N. Finally (4.4.50) and (4.4.51) are multiplied by sin kx sin (03  (y + 1)) 

and then integrated to give 

B13(0) 

D13 (0) 

= 

= 

(71 - 72) k 8  
(4.4.56) 

(4.4.57) 

7 e(h + 1) 	3  

(D - 1) k 
.8 

rE(h + 1) 	3  

	

for j = 1, 	, N, and in (4.4.52)—(4.4.57) the additional integrals integrals A03  , A3  

and 83  have been introduced and are defined as 

fair/k ph 

	

Aoi  — Jo 	j_ i  Itanh (S (y — E sin kx)) — tanh Sy} sin (03  (y + 1)) dydx (4.4.58) 

27r/k fh 
A = 	Itanh (S (y — E sin kx)) — tanh Sy} cos kx sin (03  (y + 1)) dydx 

	

Jo 	i 
(4.4.59) 

rnik ph 

	

B, = J 0 	Li  Itanh (S (y — E sin kx)) — tanh Sy} sin kx sin (03  (y + 1)) dydx 

(4.4.60) 

for j = 1, . . . , N. As with the integrals in the previous section, the quantities 

A03 , A3  and 83  are computed with a highly accurate Gaussian quadrature scheme, 
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with the number of grid points used adjusted with the choice of N, the number of 

coefficients in each series. These double integrals similarly need only be calculated 

once for a choice of steepness S, initial perturbation amplitude c and number of 

Fourier series coefficients N with initial conditions for various values of the shear 

parameters, -y i  and 72, and the density ratio D available at no extra computational 

cost from the expressions (4.4.52)—(4.4.57), once the double integrals (4.4.58) and 

(4.4.60) have been evaluated. It should be emphasised that obtaining the initial 

condition in this fashion relies on choosing a small value for the initial perturbation 

amplitude 6. As a consequence of the Fourier series being chosen as monochromatic 

in x the possible initial conditions are restricted to functions that may represented 

in that form. Although the ideal perturbed initial conditions (4.4.46) and (4.4.47) 

cannot be exactly captured by the reduced series, the resulting initial values for the 

series coefficients (4.4.52)—(4.4.57) will be accurate enough as long as e is small. 

4.5. Results 

The focus of this study is on the viscous first-order perturbation series method 

outlined in section 4.4. This technique makes use of Fourier series solutions that 

only contain the zeroth and first modes in x. As such the solution is not fully 

general and is therefore restricted to linearized systems in which wave amplitude 

remains small. Clearly such a linearization would not be appropriate in unstable 

flows where amplitude increases rapidly, since eventually non-linear terms would 

dominate. An example of such a situation is where the amplitude of an interfacial 

wave grows to be much larger than its initial value; that is, where the solution 

deviates substantially from the base flow. This scheme is not suitable to compute 

Kelvin-Helmholtz (as modelled in chapter 3) or Rayleigh-Taylor instabilities, for 

instance. However, the computational efficiency of the scheme combined with the 

indications from the linearized inviscid analysis that standing wave type solutions 

exist (where the maximum wave height of the time dependent solution does not 
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get larger than that of the initial condition) suggest that these techniques are well 

suited to handling this type of 2-layer shear flow. 

There are a large number of parameters that define the base flow and the initial 

condition and it is not the intention of this study to examine exhaustively the effect 

of each of these. The approach is to assume that most are held constant, varying 

only a few key parameters to emphasise various solutions of interest. As such, 

throughout the following work the density ratio is set as constant at D = 0.99, as 

would be appropriate for a seawater-freshwater boundary, see for instance Phillips 

[45]. Similarly, the size of the initial interfacial perturbation is chosen to be E = 0.01 

and the steepness parameter used is S = 20. In an attempt to mimic the inviscid 

situation the inverse Reynolds' number v and the inverse Prandtl number a are 

both chosen as small; that is, the fluid is assumed to be nearly inviscid and the 

layers of different densities will not mix too rapidly. This is achieved by choosing 

ii = 10-5  and a = 10-5 . The linearized inviscid analysis of section 4.3 indicated 

that the Froude number F0  only affects the group velocity of the wave and, under 

the assumption that this will continue to be the case in the viscous version of the 

flow, it will be set to zero with a view to focussing on the standing wave behaviour, 

rather than a hybrid of standing and travelling wave behaviours. The parameters 

left to be varied are the two shear parameters, 71 and 72. 

Several cases of interest will be examined in detail. The first of these, discussed 

in section 4.5.1, is a layer of constant shear where = 72. By examining how 

the evolution of the flow changes for different shear layer strengths it is possible 

to make further comparisons when, in subsequent cases, the shear layer strength 

in each layer is allowed to differ. In section 4.5.2 it is assumed that there is zero 

vorticity in the top layer, with y i  = 0, and weak shear in the lower layer, so that 

0. One of the difficulties in using the series representation (4.4.22) is that 

choosing values for the shear layer strengths that differ by too large an amount will 

introduce erroneous peaks and troughs in the initial conditions. This effectively 

places a restriction on the sorts of cases that may be studied and the choices that 
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are used in section 4.5.2 take this restriction into account. This is something of 

a moot point as it is unlikely that a situation where two fluid layers are able to 

maintain a very large sharp difference in vorticity could physically arise. 

Throughout this discussion of results several summary variables will be used. 

As a large of number of cases will be run it is inconvenient to examine the raw 

vorticity and density profiles at each time step. To avoid doing this, two new 

variables are created to summarise the vorticity and density profiles at each time 

step. The main interest in the evolution of density lies in how the diffuse interface 

evolves. In order to follow this, in a way that is straightforward to interpret and 

consistent with the genuine interface of the inviscid scheme, we will consider the 

shape of the contour for p = (D + 1)/2. This is effectively the mean contour of 

density and for the choice of initial conditions described in section 4.4.1 would 

initially be a sinusoid centred at y = 0. The maximum and minimum values in 

y for the contour are recorded and the difference between them is taken to be a 

measure of wave amplitude, denoted throughout this results section as A. 

Similarly for vorticity, interest lies in how strong the vorticity field is at any 

given point in time. To account for the possibility that vorticity may either be 

strongly negative or strongly positive both the maximum and minimum values, ( max  

and („„n , are recorded at each computed time step. In addition to these summary 

variables it is instructive to look at contour plots of the variables in question to 

get information about the detailed structure of the solution. For instance looking 

only at the amplitude Ap  does not give any indication as to whether the wave is 

travelling, nor does looking at the maximum and minimum of vorticity indicate 

where these points occur. Typically the solution will evolve in a similar fashion for 

the groups of cases outlined below so contour plots will be used sparingly as an 

example of how a suite of solutions behaves. 

4.5.1. Layer of constant shear (-yi  = 72). Solutions from the viscous scheme 

for a layer of constant shear are now presented. Seven values for .strength of the 

shear layer are considered, namely the values = 72 = 0, , 0.6 in increments of 



4.5. RESULTS 	 132 

0.1. Additionally the extreme case of -11 = -y2 = 20 is examined to give an example 

that varies greatly from the inviscid predictions. 

The first case to be considered in detail is that of 	= ^r2 = 0. Whilst it might 

seems counterintuitive to expect standing waves in what is essentially a stationary 

fluid, the inviscid analysis predicts such behaviour will occur. This case should 

be a useful test of the extent of the comparison that is possible between the two 

schemes. The angular frequency of the wave in the inviscid case may be calculated 

from equation (4.3.11) and in this case (4) = ±0.0619, so that a complete cycle of 

the oscillation will take tcpci e  = 1/27r1w1 = 101.6. It is sufficient, therefore, to run 

this and all subsequent cases from t = 0 to at least t = 500. This will ensure that 

at a minimum four complete cycles of the oscillatory behaviour are computed for 

each choice of shear layer strength. It is expected from equation (4.3.11) that as 

the values of -yi and -y2  are increased the period of oscillation will become shorter. 

Some contours of density and vorticity for early times are shown in figure 

4.2. At each of the selected times a single contour of density is shown, that of 

p = 0.995, with contours of vorticity for the central part of the computational 

domain. The corresponding plots of A p , (min  and (max  for this case are shown 

in figure 4.3, up to the time t = 2000. Initially the density contour is sinusoidal 

and the vorticity is uniform, and as such no vorticity contours are shown in figure 

4.2(a). For the next earliest time t = 15.8, shown in figure 4.2(b), the density 

contour has decreased in amplitude whilst two spikes have been induced in the 

vorticity profile. These spikes approximately coincide with the zeros of the sinusoid, 

with the spikes at (x, y) = (0,0) and (7r, 0) taking negative and positive values of 

vorticity, respectively. As the amplitude of the interfacial wave in density decreases 

further, these spikes increase in amplitude so that by the time t = 23.2, shown 

in figure 4.2(c), the vorticity has reached a relative maximum and minimum when 

the wave has decreased to zero amplitude. Following this, at the times t = 34.4 

and 40.5 as shown in figure 4.2(d) and 4.2(e), the amplitude of the wave begins to 

grow again, now with the position of the maximum and minimum switched, and the 
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FIGURE 4.2. Contours of vorticity against a single contour of den-
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vorticity spikes around y = 0 begin to decrease in amplitude and start to become 

elongated in the y direction, eventually pinching in at the centre to form two pairs 

of vortices as in figure 4.2(f). Each of these vortices then starts to move away from 

the central region, and as they do a patch of vorticity of opposite polarity appears 

at the zeros of the wave. The outer vortices then diminish in amplitude so that 

by t = 52.6, shown in figure 4.2(h), the two new patches of positive and negative 

vorticity (note that these are at the opposite position to the spikes at the earlier 

times) have become the dominant feature of the vorticity profile. At around this 

point the amplitude of the wave, which had been growing, begins to decrease again. 

This pattern of behaviour is not dissimilar to that presented by Finn [22] for the 

situation of a hybrid between a Rayleigh-Taylor instability and a shear instability 

at moderate viscosity. 

This mechanism then repeats itself, essentially giving a self-perpetuating cycle 

that sees the amplitude of the wave oscillate as counter rotating vortices are induced, 

which in turn cause the wave to continue oscillating. For instance at the time shown 

in figure 4.2(b), the spike of negative vorticity at (x, y) = (0, 0) induces clockwise 

rotation in the flow, whilst the positive spike at (x, y) = (7r, 0) is associated with 

anti-clockwise rotation. The effect of this on the wave is that the height at the point 

x = 7r/2 decreases, effectively being pushed down from either side by the vortices. 

Likewise, at the point x = 37r/2 the wave is pushed up by the net effect of the 

rotational flow. This situation is reversed at later times, for instance at the time 

shown in figure 4.2(h) when the direction of rotation of the two central vortices is 

opposite to those shown in figure 4.2(b). 

Changes in the density profile may similarly have an effect on the vorticity 

field. The main driver of this effect is the presence of the density derivative in the 

first-order vorticity equation (4.4.10). This is demonstrated clearly by examining 

the behaviour for early times. When the initial condition, namely a uniform field 

of = 0, is substituted into equation (4.4.10) it is possible to reduce the equation 
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FIGURE 4.3. a) The amplitude of the interfacial wave Ap  and b) the minimum and maximum of vorticity are shown 
for the case of -y1 = 72 = 0 between t = 0 and 2000. 
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down to 

ac i 	aR, = _ at 	ax (4.5.1) 

for t = 0. Since the initial first-order part of the density profile R 1  is the difference 

between a perturbed and unperturbed hyperbolic tangent, as outlined in equation 

(4.4.46), it follows from (4.5.1) that at t = 0 

ani 	D — 1  sech2  
2 	

(S (y — e sin kx)) S cos kx. 

This suggests that for early times vorticity is a spike in y about a sine profile, 

modulated by a cosine in the x direction; such a profile is seen in the vorticity con-

tours of figure 4.2(b)-(d). For later times the development of the solution becomes 

more complicated as the effects of the advection terms in equations (4.4.10) and 

(4.4.11) begin to play a more prominent role, compounded by the diffusion of the 

background flow. 

As a result of these effects, as well as some slight differences between the starting 

points of the inviscid and viscous schemes, the inviscid standing wave behaviour is 

not perfectly replicated in the viscous flow. The frequency of oscillation is slightly 

longer than in the inviscid case with tcyc i e  110 for the first few oscillations 

of the viscous solution. While the linear standing waves of the inviscid solution 

never grow larger than their initial amplitude, here the maximum height the wave 

attains over each oscillation varies markedly for early times. This maximum height 

eventually settles down at a value of approximately Af, 0.25, slightly larger than 

the amplitude of the initial wave. 

The broad pattern established by this first case, where a relative maximum in 

the wave amplitude coincides with a drop in the magnitude of the minimum and 

maximum values of vorticity, is also seen in the subsequent cases. It is instructive, 

at least for this case where the wave does not travel, to consider the values of 

vorticity at the points (x, y) = (0,0) and (7r, 0). These are shown in figure 4.4, with 

the corresponding wave amplitude in figure 4.3(a). Here the relationship between 
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FIGURE 4.5. Contours of vorticity against a single contour of den-
sity at t = 1972.3 for the case of 7 1  = -y2  = 0. 

the wave amplitude and the value of vorticity at the fixed zero points of the wave 

is demonstrated more clearly than in figure 4.3(b). An interesting feature that this 

reveals is that the vorticity at (x, y) = (0, 0) attains a larger (absolute) value when 

it takes a positive value, even though it is initially negative, and vice versa for the 

point at (x, y) = 0). A comparison of this type is more problematic for later 

cases where these points of minimum and maximum vorticity are not fixed in space. 

The .effect of diffusion on the solution for vorticity means that at later times 

the vorticity differs from the background flow not only in the interfacial region, 

but further out as well. At later times the computed solutions for this case, for 

instance, show a series of alternating small amplitude vortices. An example for 
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X 

FIGURE 4.6. Contours of vorticity against a single contour of den-
sity at t = 50.2 for the case of 'y i  = 72 -= 0.1. 

t --= 1972.3 is shown in figure 4.5. These extra outer vortices are residual remnants 

from earlier times that are in the process of diffusing away and their effect on the 

interfacial region is negligible since their amplitude is small. Note that shortly after 

the time shown in figure 4.5, the vorticity profile is again dominated by a pair of 

larger amplitude central vortices. 

In discussing the remaining cases it may be taken as read that the basic mecha-

nism that maintains the oscillatory behavior in the case of -yi = -12 = 0 also does so 
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in these subsequent cases. A key difference between the case detailed above and the 

cases of non-zero shear is that the wave may travel slightly as the solution evolves. 

The secondary vortices may similarly travel and will typically do so in accordance 

with the background velocity field (that is the shear profile). An example of these 

travelling secondary vortices may be seen in figure 4.6, where the contours of vor-

ticity and the single contour of density are shown for the case of 71  = 72 = 0.1 at 

the moderate time of t = 50.2. 

Figures 4.7 and 4.8 show the values for Ap , cyan and (max for the six cases of 

71 = 72 = 0.1, , 0.6 for times between t = 0 and 500. Note that for each of these 

cases the values for (mm and (max emerge from the same initial value, as would be 

expected and, as in the previous case, there is degree of symmetry to these values 

although here they are reflected about the choice of background shear value, rather 

than zero. The behaviour at moderate times is of interest here. In particular for 

the first two cases, namely 71  = 72 = 0.1 and 0.2 we see a similar situation to 

the case of a stationary fluid. The behaviour of the flow is such that the initial 

interfacial wave oscillates and, as before, the points of inflection in the wave height 

coincide with relative minima in the strength of the vorticity. The frequency of 

oscillation becomes shorter as the strength of the shear layer is increased. Note 

that for 71 = 72 = 0.1 we see four and half cycles between t = 0 and 500, but 

for 71  = = 0.2 there are five and a quarter oscillations in the same time span. 

For the case of 71 = 72 = 0.2 the maximum height the interfacial wave attains for 

successive oscillations decreases slowly through time. 

The damped behaviour seen in the case of 71 = 72 = 0.2 becomes more 

pronounced as the shear layer strength is increased. In the remaining cases of 

71 = '72 = 0.3, 0.4, 0.5 and 0.6, the wave is still oscillatory, but is increasingly 

heavily damped. For the case of ,y 1  = = 0.3 the damping is quite gradual and 

at t = 500 there is still a wave of a distinct size. In contrast, for the case of 

'71 = -72 -= 0.6 the wave amplitude becomes negligible after about two oscillations. 
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FIGURE 4.7. Figures 7(a) and (b) show the wave amplitude and 
the minimum/maximum of vorticity for -y 1  = 72  = 0.1. Similarly, 
figures 7(c) and (d) show these variables for the case of yi = 'Y2 -= 
0.2 and figures 7(e) and (f) are for 71 = -72 = 0.3. 
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FIGURE 4.8. Figures 8(a) and (b) show the wave amplitude and 
the minimum/maximum of vorticity for -y 1  = -y2  = 0.4. Similarly, 
figures 8(c) and (d) show these variables for the case of 	= 	= 
0.5 and figures 8(e) and (f) are for 71 = 	.= 0.6. 
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The key difference between the damped and undamped cases is in the role of the 

advection terms in the governing equations (4.4.10) and (4.4.11). In particular, as 

the shear layer strength is increased the horizontal base speed U01 (y) becomes quite 

large in the neighbourhood of the interfacial region, meaning that the terms U0  '94- 

in equation (4.4.10) and U0 in equation (4.4.11) play a more dominant role. So 

strong does this effect become for the larger values of shear layer strength that the 

oscillatory pattern is barely able to become established before being overwhelmed 

by the presence of the strong shear. The net result is that for a strong shear flow 

such as the case = = 0.6 an initial disturbance in the density will quickly be 

subsumed into the background flow profile. 

As the strength of the shear layer is increased far beyond this point the oscil-

latory behaviour no longer occurs at all. The values of Ap, (min and (max for the 

extreme case of 71  = 72 = 20 are shown in figure 4.9. Here the amplitude of the 

wave decreases to zero rapidly without any oscillation and by the last time shown 

the amplitude has decreased to less than 10-9 . The maximum and minimum of 

vorticity behave in a similar fashion to the previous damped cases; the minimum 

and maximum values are symmetrical about = 20 and increase for a short time 

before decreasing sharply. 

4.5.2. Zero shear in one layer (71 = 0, 72 0). The case where no back-

ground shear is present in the top layer is now considered. Keeping the value of 

71 fixed at zero, the lower layer shear parameter -12 is varied over a range of small 

values. As mentioned earlier, the permitted difference between the two shear pa-

rameters is limited to being small so that unwanted spikes in the initial vorticity 

profile are not introduced. Throughout this section the density ratio, steepness 

parameter and perturbation size will remain the same as in section 4.5.1. 

The wave amplitude and the minimum and maximum values of vorticity for 

the first two choices of 72 , that is 72  = 0.01 and 72  = 0.02, are shown in figure 

4.10. Both these solutions display a different of kind oscillatory behaviour than 

the standing wave-like solutions seen so far. There is an overall slow decrease in 



4.5. RESULTS 	 144 

t 

b) 	20.006 

20.004 

20.002 

20 

- 19.998 

19.996 

,  

10 15 
	 20 	25 

19.994
o 
	

5 
t 

FIGURE 4.9. For the case of 71  = 72  = 20 between t = 0 and 25 
a) the amplitude of the interfacial wave Ap  and b) the minimum 
and maximum of vorticity. 

the amplitude of the wave and the damped oscillations occur on top of this. The 

mechanism by which the oscillations are maintained is similar to that outlined in 

section 4.5.1. For early times the oscillations are in the order of the wave's amplitude 

but become heavily damped as the solution progresses. For example in the case of 

72 ---= 0.02, by the last computed times the wave is decreasing in amplitude free of 

any oscillations. Similarly, both the minimum and maximum in vorticity exhibit 

oscillatory behaviour for early times, but by t = 1000 for the cases shown here the 
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FIGURE 4.10. Figures 10(a) and (b) show the wave amplitude and 
the minimum/maximum of vorticity for 71 = 0 and -y2 = 0.01. 
Similarly, figures 10(c) and (d) show these variables for the case of 
-yi = 0 and 72 = 0.02. 
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values for the maximum and minimum of vorticity have settled down to l:ma. 

and (min 	0, respectively. It is likely that some oscillatory behaviour in vorticity is 

masked in these plots, where this variation involves values between these minimum 

and maximum values. An example of this may be seen for the case of -y 2  = 0.01 

where at later times the wave amplitude is clearly oscillating, but the minimum 

and maximum of vorticity are constant. 

As predicted by the linearized inviscid solution, these waves travel as they 

evolve. The solution for -y2 = 0.02, for instance, is a travelling wave of decreasing 

amplitude for times after t 7.-.1 600. Since steady solutions have been computed for 

similar flow configurations, see for instance Pullin and Grimshaw [48], it is possible 

that the decrease in amplitude seen here is due, at least in part, to the gradual 

diffusion of the sharp interfacial region. If this diffusion were not present it is 

possible that the wave would converge to a steady solution after the oscillatory 

behaviour had damped away. 

Similar to the case of constant shear, if the value of 72 is increased much beyond 

this point the behaviour of the solutions becomes more heavily damped. Three 

further values of 72  are chosen, 72 = 0.03, 0.04 and 0.05, and the wave amplitude 

and vorticity values for these cases are summarised in figure 4.11. All three cases 

feature an oscillatory component that quickly damps away leaving a wave that 

gradually decreases in height. This is similar to the behaviour of the first two cases 

in this section, although here the oscillatory behaviour is barely established before 

it damps away. The amplitude of the oscillations for these cases is small compared 

to size of the wave and the minimum and maximum values of vorticity do not vary 

much. As with the solution for 72 = 0.01 and 0.02, the maximum and minimum 

values of vorticity are rather uninformative as the oscillatory component in the 

vorticity is greater than zero but less than the choice for 7 2 . 

4.5.3. Comparison with finite difference methods. To compare the ac-

curacy of the linearized perturbation approach against a fully non-linear finite dif-

ference approach a test case will be examined. The case of 71  = 72 = 0 will be run 
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FIGURE 4.11. Figures 11(a) and (b) show the wave 
the minimum/maximum of vorticity for yi = 0 a 
Similarly, figures 11(c) and (d) show these variables 

= 0 and 72 = 0.04. and figures 11(e) and (f) are 
= 0.05. 
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nd = 0.03. 
for the case of 
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FIGURE 4.12. Comparison of wave amplitude for the case of -y i  = 
'72 = 0 computed with the perturbation series technique (solid line) 
and a finite difference method (dashed line). 

using two different methods, namely the first-order perturbation series method and 

an efficient finite difference scheme. A larger perturbation of e = 0.05 is used here 

so that the grid scale of the finite difference method need not be too fine. The finite 

difference scheme is an alternating direction implicit ' (AD I) technique that solves 

the full version of the governing equations (4.2.3)—(4.2.5) using Peaceman-Rachford 

methods. Full details of this scheme will not be included here for reasons of space, 

but it is fully outlined in chapter 3 where it was used to model the Kelvin-Helmholtz 

instability. This method is implemented over an evenly spaced grid with 200 points 

in the x-direction and 400 points in the y-direction. 

The wave amplitude from t = 0 to t = 50 as computed by both methods is 

shown in figure 4.12. Within this time period both solutions pass through about 
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half an oscillation, although the period of the ADI solution is slightly longer. Even 

for early times the two amplitudes do not match precisely and by the end of the 

time interval have diverged significantly. It is notable that while the amplitude of 

the perturbation series solution approaches zero at its minimum, the corresponding 

point in the finite difference scheme is much further from zero as a consequence of 

the choice of grid size. The differences between the solutions for moderate times 

may be due to the extra non-linearity that is included in the ADI scheme, partic-

ularly the fully non-linear advection terms of the governing equations (4.2.4) and 

(4.2.5). Additionally, since the size of the initial wave is larger than is ideal un-

der the assumptions of the perturbation series scheme small inaccuracies may have 

been introduced. The.resulting differences between the two schemes are indicative 

of the limitations of this method and the ADI solution is expected to be more 

representative of the true solution where a initial wave of this size is used. 

4.6. Conclusion 

A two-layer shear flow has been studied for both viscous and inviscid fluids. 

The predictions from the inviscid version of the problem in section 4.3, that stand-

ing waves are permitted and that these may travel, were found to hold true when 

compared with solutions computed by the perturbation series approximation to the 

viscous problem of section 4.4. In the main, the inviscid version tended to underes-

timate the frequency of oscillation seen in the viscous solutions. Additionally, the 

effect of the inclusion of viscosity, a diffuse interface and the extra non-linearity in 

the viscous scheme meant that the behaviour of those solutions, although still con-

taining an oscillatory component, was more complicated than the standing waves 

predicted for the inviscid flow. 

Several different types of oscillatory behaviours were obtained from the viscous 

perturbation series scheme. For a layer of constant shear the solutions were es-

sentially standing waves. As the shear layer strength was increased these became 

more and more heavily damped. The interaction between vorticity and density, 
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in particular the way that this perpetuates the oscillatory behaviour, was outlined 

in detail in section 4.5.1 and this mechanism also features in the more complex 

solutions of section 4.5.2 where no shear is present in the upper layer. Although 

there is an oscillatory component to those solutions it is typically damped and for 

later times the behaviour is dominated by a wave whose amplitude decreases. As 

with the case of a layer of constant shear, the damping of the oscillatory part of 

these solutions becomes heavier as the shear layer strength is increased. 

The main advantage to using the perturbation series technique is in speed of 

computation. It is undoubtedly more efficient than using a method based on full 

double Fourier series or a finite difference technique, but also has certain restrictions 

that those methods do not. In particular, the choice of keeping the Fourier series 

monochromatic in x limits the possible initial conditions and the scope for the 

flow to evolve in certain ways. As such, this technique is only suitable for certain 

linearized problems where the flow in question is able to be captured accurately 

by the chosen representation. Nevertheless, a comparison of the linearized viscous 

solutions of this chapter with the fully non-linear results obtained with an ADI 

finite-difference scheme give some confidence that the overall features reported here 

are broadly representative of the true situation. 



CHAPTER 5 

Conclusion 

Three interfacial wave problems were considered in this thesis. Appropriate 

solution techniques have been selected and implemented for each of these fluid 

flows. These techniques were all developed with a view to maximising the efficiency 

and accuracy with which the respective interfacial waves could be computed. Where 

an inviscid flow was considered this involved following the evolution of an infinitely 

thin interface between incompressible fluids, and for viscous fluids these genuine 

interfaces were replaced in compressible flow with interfacial regions of finite width. 

The inviscid 3-layer intrusion flow investigated in chapter 2 exhibited a wide va-

riety of steady non-linear interfacial waves. These steady waves were calculated to a 

high degree of accuracy using a spectral method based on Fourier series. The com-

puted solutions included waves that showed superharmonic resonances and limiting 

waves. A particularly interesting feature of the resonant waves was the existence of 

multiple resonances where, as in the case shown in figure 2.6, a wave would display 

successive resonances as its amplitude was increased. 

In chapter 3 the steady spectral method used for the intrusion flow was extended 

to treat the time-dependent inviscid Kelvin-Helmholtz instability. This chapter 

also introduced a vorticity-streamfunction formulation to investigate the viscous 

version of this problem and both approaches successfully reproduced some well-

known features of the Kelvin-Helmholtz instability. For both inviscid and viscous 

flow a small perturbation to the interface grew exponentially from a small sinusoid 

to become a moderate amplitude non-linear wave. In the inviscid case a curvature 

singularity formed at around this point preventing the wave from evolving further. 

The viscous flow was not impeded by a curvature singularity and the interface 
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continues in its evolution to the point that it turns over and eventually forms a 

'cat's eye'-type spiral. 

A different approach to modelling a viscous flow was adopted in chapter 4 

where a two-layer shear flow was investigated using perturbation series techniques. 

A linearized analysis of the associated inviscid problem indicated that a small distur-

bance would result in standing waves at the interface. This allowed the assumption 

to be made that the corresponding interfacial wave in viscous flow would not grow 

much larger than its initial size, which suggests that a perturbation series analy-

sis of the viscous governing equations is appropriate. Care was taken to specify 

a representation of the solution and an initial condition for the viscous problem 

that would closely match the inviscid version of the problem. Standing waves were 

found to exist in viscous flow and a number of other oscillatory behaviours were 

also seen at the interface. 

There is much scope for future work on these types of fluid flow problems. 

The methods presented here are quite adaptable and may potentially be applied 

to a wide array of flows. A logical next step would be to study the Holmboe in-

stability, a situation quite similar to the 3-layer flow of chapter 2 as well as the 

Kelvin-Helmholtz instability. Such a study might involved adapting the techniques 

of chapter 3 to the Holmboe problem. A straightforward extension of the mate-

rial in chapter 4 may involve further comparisons between the perturbation series 

technique and the fully non-linear ADI method where a smaller perturbation am-

plitude than that used in section 4.5.3 might see better agreement between the two 

techniques. Additionally, the techniques used to model shear flows in this thesis 

are applicable to flows that do not contain shear. Some possible situations where 

they may be applied are in the Rayleigh-Benard problem (where a stratifed fluid is 

heated from below) and on viscous shaking in a tank (where resonance effects are 

possible). 
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