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Abstract 

The Huon Estuary is a micro-tidal estuary in south-east Tasmania that is an important 

area for salmon aquaculture. In 2008 the salmon aquaculture industry in Australia is 

worth $260M (AUD) per year. Salmon aquaculture began in the Huon Estuary in the 

1980's and production has since increased significantly. The Huon Estuary is 

nitrogen (N) limited and salmon farming is a significant input of N to this ecosystem. 

Both industry and government regulators are alert to the potential for eutrophication 

and increased harmful algal blooms if the assimilative capacity for N of the estuary is 

exceeded. As part of a larger project on the ecology of the Huon Estuary, this PhD 

research has two main objectives; firstly to determine whether phytoplankton in the 

Huon Estuary are using nitrogen that had, primarily, an oceanic source (e.g. nitrate) 

or was more locally supplied or regenerated (e.g. ammonium and urea) and secondly 

to examine the physiology of G. catenatum a toxic dinoflagellate that dominates the 

summer and autumn Huon Estuary phytoplankton biomass in many years. 

Uptake rates of NO3, NH4+  and urea were measured on four occasions (28-29 May 

2003, 23-24 Sept 2003, 18-19 Nov 2003, and 24-25 Feb 2004) in the Huon Estuary 

using a 15N tracer technique. Uptake rates were measured at Garden Island and 

Hideaway Bay in the lower estuary and at 5 and 20 m during the day and also at 5 

and 20 m during the night. The mean uptake rates (mean across time of year, site, 

time of day and depth) for NH 4+  (0.13 j.tg N jig chl a If') and urea (0.09 jig N jig chl a 

If 1 ) were 4.5 and 3.2 times higher than the uptake of NO3" ( 0.3 i.tg N jig ch la li t ). 

Overall NH4+, NO3" and urea were responsible for 52, 37.5 and 10.5% of N uptake 

respectively. 

Gymnodinium catenatum is a toxic dinoflagellate that blooms periodically in the 

Huon Estuary and in years that it blooms it dominates the phytoplankton biomass and 

has caused closure of shellfish farms in the area. Laboratory experiments on effect of 

temperature and irradiance on growth rate, effect of different nitrogen species on 

growth rate and preferential uptake of different nitrogen species by G. catenatum 
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were undertaken to better understand the physiology of this species and to test a 

hypothesis that G. catenatum vertically migrates to access NH 4+  at depth during 

summer. The effect of 12 different temperatures ranging from 11.9-25.2 °C and 

irradiances from 5-283 gmol photons 1112  s-I  on growth and biochemical composition 

of G. catenatum. The highest predicted growth rates (>0.2 d -I ) occurred during 

summer and autumn as might be expected based on observations of bloom dynamics 

of this species in the Huon Estuary which supports both a summer and autumn bloom 

in many years 

G. catenatum was able to grow using NO3 - , NH4+  or urea as its sole nitrogen source. 

There was no significant difference in growth on any of these nitrogen sources. 

Preferential uptake of NH4+, NO3 -  or urea was examined by growing G. catenatum on 

a mixture of NO3 - , NI-14+  and urea. The results clearly showed that NH4+  was taken 

up first, followed by NO3 -  and finally urea. Maximum mean uptake rates were 170, 

98 and 30 pg cell' hour -I  respectively for NH4 +, NO3 -  and urea. 

In addition to the laboratory experiments the nitrogen uptake characteristics of a 

bloom of G. catenatum was examined at Pelican Island, Southport (30-31/03/2004) 

nearby the Huon Estuary. Mean urea uptake was greatest (0.045 ligN [tg chl a If') 

followed by NH4+  (0.029 lagN chl all') and the lowest uptake was of NO 3 -  (0.025 

pgN 1.1g chl ali t ). For G. catenatum growing in the Huon Estuary it seems 

increasingly apparent that it functions as a nitrogen scavenger. When N 

concentrations are exhausted, it is able to migrate through the water column seeking 

whatever form of nitrogen is available. 
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1 INTRODUCTION 

1.1 Eutrophication in coastal ecosystems 

Eutrophication is widely considered to be one of the greatest threats to estuarine and 

coastal ecosystems around the world (Howarth et al., 2002, Howarth et al., 2005). 

Eutrophication as defined by Nixon (1995) is an increase in the rate of supply of 

organic matter to an ecosystem. The rate of organic matter supply to an aquatic 

ecosystem can increase through a number of different mechanisms. Clearing of 

catchments is widely associated with more runoff and a greater supply of organic 
matter and nutrients into downstream water bodies. Agriculture and sewage may be 

the source of more inorganic nutrients which can, in turn, support more 
photosynthesis and thereby contribute more organic matter into an ecosystem (Laws, 

1993). The organic loading itself may result in anoxia thereby changing the cycling of 

N and P sometimes resulting in these nutrients becoming periodically more abundant 

in the water column. Thus there are a range of different mechanisms whereby an 

aquatic ecosystem may become more eutrophic (Smith et al., 1999). The responses of 

ecosystems, however, to an increase in organic matter supply can be complex 

depending on a large number of physical and biological factors (Cloem, 2001). In 

most cases the organisms that can directly use the nutrients, typically photosynthetic 

autotrophs, are the first to respond to eutrophication (Philippart & Cadee, 2000). The 

magnitude of these responses, however, is determined by the nature of the inputs and 

by complex interactions between physics, chemistry and biology within the water 

body and its sediments. 

In some coastal ecosystems moderate eutrophication is considered beneficial because 

it increases primary productivity and this in turn increases the biomass of fish and/or 

shellfish species for human consumption (Nixon, 1990, Jorgensen & Richardson, 

1996). However in most coastal ecosystems eutrophication has deleterious effects 

such as: 
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• Shifts in phytoplankton community composition. Decoupling of base trophic 

levels with higher trophic levels that can result in a shift towards toxic species 

of phytoplanIcton. 

• Low dissolved oxygen concentrations (hypoxia) and absence of oxygen 

(anoxia) can be the result of increased plant, animal and bacterial respiration 

caused by increased organic matter from primary production (autochthonous) 

or organic matter input from outside the ecosystem (allochthonus). 

• Increased turbidity caused by greater phytoplanlcton biomass can degrade or 

destroy seagrass and macroalgae habitats for which light transmission down 

through the water column to the bottom is important. 

In almost all ecosystems, sometime during the annual cycle one nutrient or a 

sequence of different nutrients can become limiting to primary production (Elser et 

cd., 1990). When a nutrient is limiting for primary productivity an increase in the rate 

of supply of that nutrient will stimulate primary productivity (Smayda, 1989). 

Typically more biomass is produced as a response to more nutrients (Clark, 1989, 

Vollenweider, 1992). Thus increased nutrient inputs also result in an increased 

organic matter supply to the ecosystem. For temperate coastal ecosystems primary 

productivity in these systems is usually limited by the availability of N (Ryther & 

Dunstan, 1971, Howarth & Marino, 2006). The reason that eutrophication is 

becoming such a widespread threat to coastal ecosystems is that there has been a 

rapid increase in the amount of nitrogen getting into our aquatic ecosystems from 

sewage and agriculture (Nixon, 1990) (Galloway etal., 2004). In the 1950's fertiliser 

production using the Haber process began resulting in the steady increase in N 

fertilizer and subsequent runoff of relatively more N into the coastal zone. A classic 

example is the steady rise in N in the plume off the Mississippi River during the last 

50 years (Turner etal., 1998). In this case there has been a relative decline in the 

silicate concentrations producing a large scale example of selective resource 

limitation with an impact on the ecology ranging from phytoplankton to fish. The 

continental shelf off the Mississippi River has seen the ratio of silicate to dissolved in 
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organic nitrogen loading ratio has declined from around 3:1 to 1:1 during this century 

because of fertilizer application, agriculture and other land-use practices in the 

watershed. Diatoms require dissolved silicate and their growth can become Silicate 

limited when the atomic ratio of silicate to dissolved inorganic nitrogen 

(Silicate:D1N) approaches 1:1. Considerable research indicates this shift in N loading 

is the primary reason this coastal ecosystem now produces a large anoxic zone 

potentially supporting disruptive harmful algal blooms (Turner et al., 1998). 

Harmful algal blooms (HAB) have been classified depending upon their type of 

impact into three categories (after Hallegraeff, 1993): 

1. Those not directly toxic to humans or other organisms. This type of HAB is 

typically a large bloom that causes high biological oxygen demand (BOD) 

during decomposition. Particularly in situations with low rates of mixing the 

resulting hypoxia or anoxia can lead to the death of other organisms. Large 

fish kills have been associated with this type of bloom. 

2. Toxic algal blooms caused by a range of species, most commonly 

dinoflagellates, that have a negative biological effect upon humans. For 

example a range of species produce toxins which effect people once ingested. 

These include: 

a. PSP - paralytic shellfish poisoning, same toxins are found in 

cyanobacteria 

b. DSP - diarrheic shellfish poisoning 

c. ASP - Amnesic shellfish poisoning 

d. Ciguatera poisoning 

e. NSP - neurotoxic shellfish poisoning 

3. Blooms causing direct negative biological effects upon organisms other than 

humans. For example HAB species that kill fish via damaged or clogged gills 

and a range of other known and unknown mechanisms. 
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Four explanations for the apparent increase in algal blooms have been proposed: a 

greater scientific awareness of toxic species; the growing utilization of coastal waters 

for aquaculture; the stimulation of plankton blooms by domestic, industrial and 

agricultural wastes and/or unusual climate conditions; and the transportation of algal 

cysts either in ships' ballast water or associated with moving shellfish stocks from 

one area to another (Hallegraeff, 1993). Most of the species known to cause HABs 

are dinoflagellates. 

The continuous plankton recorder transects of the North Atlantic (Edwards & 

Richardson, 2004, Edwards et al., 2001) have shown clear evidence that whole 

regions of the ocean have increased abundances of dinoflagellates. The mechanism 

proposed to explain the growing dominance of dinoflagellates observed in the pelagic 

ocean is warming due to climate change. The proponents hypothesized that warming 

of the ocean surface due to climate change results in increased temperature 

stratification. An increase in stratification would reduce vertical mixing, the major 

process whereby nitrate is injected into the euphotic zone. It is not yet clear whether 

global warming is having a global impact on stratification through warming, or polar 

ice melting or increased precipitation. If large scale changes to stratification do occur 

the consequences could be significant in terms of increase HABs. The seasonal 

pattern of stratification and blooms may provide some insights. 

Low stratification or high turbulence has a seasonal dynamic in the temperate zone. 

Conditions of high turbulence and high nutrients are typically found in winter. The 

diatom blooms that are associated with the transition from winter into spring suggest 

diatoms are more capable of coping with turbulence than species that occur later in a 

seasonal succession. This seasonal cycle of diatoms in spring often leading to 

dinoflagellate blooms in summer or autumn and the commonly associated reduction 

in turbulence was conceptualized by Margalef (1978). Margalef (1978) defined 

niches for diatoms and dinoflagellates along 2 axis, one the concentration of nutrients 

and the second the amount of turbulence (Fig. 1). Others have refined Margeler s 

seminal work (Margalef, 1978) by expanding the conceptual space and populating it 
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with species and their characteristic behaviours (e.g. Smayda & Reynolds, 2001). 

There can be no doubt that many ecosystems have a seasonal transition to lower 

turbulence and an increased proportion of dino flagellates but the underlying causes of 

this succession can be complex (Gilbert et al., 2008). In contrast considerable 

experimental research on diatoms has successfully separated the multitude of factors 

associated with this seasonal dynamic and substantiated the strong association 

between enhanced growth and greater turbulence (Litchman, 1998, Litchman & 

Klausmeier, 2001, Litchman et al., 2004). 

  

  

In
cr

ea
si

ng
  n

ut
rie

nt
s  

Increasing turbulence 

Figure 1.1 A simple conceptual map of the niche space associated with nutrient concentrations 
and turbulence. Adapted from Margalef (1978). 

In the coastal zone there is growing evidence that HABs are linked with increasing 

eutrophication (Smayda, 2002) especially inputs of N (Paerl, 1997, Paerl, 1988). 

Other limiting nutrients have certainly been observed with Fe increasingly recognized 

for limiting growth in high nitrogen low chlorophyll a areas that are remote from 

atmospheric inputs of dust. Some blooms are stimulated by additional P. or other 

compounds including cobalt and vitamins (Segatto etal., 1997). While there is 

insufficient evidence to be conclusive regarding the frequency, duration and extent of 

different types of nutrient limitation there are several lines of evidence that coastal 
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ecosystems are more likely to be periodically limited by the availability of N than 

other nutrients (Graneli etal., 1990, Ryther & Dunstan, 1971, Bricker etal., 1999). 

One consequence of the importance of nitrogen to phytoplanlcton dynamics has been 
a great deal of research upon the nitrogen nutrition of phytoplankton. It has been 

commonly assumed that phytoplankton should grow better on NH 4+  than NO 3 -, 

particularly under conditions of low irradiance, as growth on NO 3 -  imposes a 

substantial extra cost in terms of reducing power. There is, however, little evidence 

of this factor being a significant determinant of growth rates even at very low 

irradiances (Thompson etal., 1989). Many species preferentially take up NH4 +  over 

NO3-  when both are present, with some indication of a threshold effect (Dortch et al., 

1991, Dortch, 1990). A considerable amount of research has been focused on 

answering the question, if not determined by an energetic constraint then what would 

control the balance between NO3 -  and NH4+  assimilation? 

Although there is substantial geographic and temporal variation one of the most 

persistent observations of phytoplankton ecology at temperate latitudes is a spring 

bloom that consumes most of the available NO 3" in the euphotic zone. Frequently 

this bloom is composed largely of diatoms leading to a hypothesis that diatoms may 

have enhanced genetic capabilities and thus be physiologically more capable of using 

NO3-. Experiments to test this hypothesis have shown that some species do grow 

better on particular forms of NO3 -  (Levasseur et al., 1993) but not necessarily 

diatoms. Experiments on diatoms in turbulent environments also have a long history 

examining aspects of their physiology that might be advantageous (Marra, 1978) 

relative to dinoflagellates (Chan, 1978). More recently there has been a refinement of 

the general hypothesis that turbulence favours diatoms to include NO3 -  uptake and 

reduction as a method to use the excess light energy that must periodically be 

acquired by a phytoplankton cell in a well mixed water column (Lomas & Glibert, 

2000, Lomas & Gilbert, 1999) and a chlorophyll content adapted to the average 

irradiance. Indeed some fraction of the competitive advantage diatoms possess in 

turbulent environments seems to be associated with the reduction of NO3 - . 
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Temporal variability in nutrient availability exists on many time scales such as 

seasonal fluctuations at mid to high latitudes (Parsons & Takahashi, 1973), estuaries 

which experience nutrient pulses associated variations in flow (Mallin et al., 1993) 

and on shorter time scales especially in near shore environments (Fong et al., 1993). 

If the nutrient pulses are rare relative to the life spans of the organisms then long 

lived species will dominate, while intermediate pulses should give a mixture of 

species and a rise in diversity (Floder & Sommer, 1999). Long periods of high 

nutrient availability with low N:P ratios are often associated with a loss of diversity 

and nuisance algal blooms (Birch etal., 1981). 

Harmful algal blooms, however, are rarely diatoms and frequently occur later in the 

season when NO3 -  is relatively less available. Many HAB have also been associated 

with greater availability of reduced N such as N114+  or dissolved organic N (DON). 

Relatively little research has been conducted on the capacity of phytoplanIcton to use 

organic N for growth. Most of this has focused on urea as a proxy for all forms of 

organic N. Early research demonstrated the importance of urea in the natural 

environment, where it was frequently observed to be z50% of all N uptake (e.g. 

McCarthy, 1972). Similar results have been reported in a range of studies although 

there are relatively few studies and a generic perspective is not easily obtained. Other 

organic forms of dissolved N have received relatively little attention, although the 

pioneering work of Antia (e.g. Antia & Harrison, 1991 and references therein) did 

show considerable capacity of many species to use many forms of DON even though 

their growth rates were low. In the field it has been shown that phytoplankton will 

use a range of DON (Hellebust, 1970, Hollibaugh, 1976). Use of DON is still being 

actively investigated today (e.g. Stolte etal., 2002, Bronk etal., 2007) and some 

interesting recent work again showing taxonomic differences in DON use (Wawrik et 

al., 2009). The use of DON and the use of specific forms of DON would seem to 

have a significant genetic component that may be important in defming the ecological 

niche occupied by some species, a subject that requires further investigation. 
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Perhaps the most intriguing differences in the use of NO 3-  versus NH 4+  is the contrast 

between the two dominant picoplanktors, Synechococcus and Prochlorococcus. 

These two genera dominate the world's oceans yet Prochlorococcus has only very 

limited capacity to use NO3 -. Although the lack of nitrate reductase is not universal 

among strains of Prochlorococcus it is important in determining its niche (Moore et 

al., 1998, Rocap etal., 2003). Thus the availability of different forms of nitrogen is 

an important factor contributing to the relative success and productivity of different 

phytoplankton (Berg etal., 1997). Typically, the abundance of dinoflagellates can be 

correlated with low nitrate concentrations and high rates of NH4 +  or dissolved organic 

nitrogen (DON) supply (Carlsson et al., 1998). Many studies show that 

phytoplankton biomass may increase with overall nitrogen availability (Boynton et 

al., 1982) and the DON component may shape the phytoplankton succession and lead 

to a harmful algal bloom (Paerl, 1988) . While molecular techniques are making it 

easier to assess whether a species has the potential to use a particular form of N they 

cannot tell us whether this capacity actually provides a competitive advantage. Field 

experiments that measure fluxes and laboratory experiments that assess outcomes 

with, and without, a specific nitrogen source are still the major tools to determine 

whether a specific nitrogen compound is important in ecology of a particular species. 

This sort of research seems likely to be required for all flAB species. 

As discussed above the availability of particular forms of nitrogen often has a 

seasonal dynamic but it may also have a spatial component. For example, point 

sources can provide locally elevated concentrations of particular forms of nitrogen. 

Often the euphotic zone can be stripped on DIN during a spring bloom. The nitrate in 

deeper waters is not readily available to photosynthetic organisms. Some large scale 

dinoflagellate blooms have been shown to vertically migrate during the dark for this 

N returning to the euphotic zone for light energy during the day (Eppley et al., 1968, 

Hasle, 1950, Cullen & Horrigan, 1981). Considerable work has been done on the 

physiology of vertical migration through temperature and nutrient gradients 

(Kamykowski, 1981, Kamykowski, 1995, Kamykowski & Yamazaki, 1997). Field 
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observations indicate that G. catenatum vertically migrates through temperature, 

salinity and nutrient gradients in the Huon Estuary (Doblin etal., 2006). Testing the 

hypothesis that G. catenatum may vertically migrate to access NO3 -  or NH4+  was one 

of the major components of this research. 

In the coastal zone and following the spring bloom the water column is often 

resupplied with DIN in forms other than NO3 -. If the water column is stratified this 

can result in elevated NH4+  near the bottom. This is especially true if dissolved 

oxygen is low (Laws, 1993) due to inhibition of de-nitrification (Bonin & Raymond, 

1990). In stratified ecosystems with low vertical exchange the NH 4+  gradient can be 

considerable and again dinoflagellates may migrate vertically to access this N source. 

1.2 The Huon Estuary 

The Huon River estuary and its catchment is located in southeast Tasmania between 

latitude 42° 45' S and 43° 45' S (Figure 1.2 and Figure 1.3). Tasmania is the 

southernmost island state of Australia. Tasmania has a maritime climate that is 

dominated by zonal westerly's, resulting in a variable cool temperate climate. The 

Huon Estuary is a drowned river valley — 401cm long and 4.51cm wide at the mouth (at 

Huon Island) where it joins the southern end of the D'Entrecasteaux Channel, a semi-

protected channel formed between the Tasmanian mainland and Bruny Island (Figure 

1.3). The depth ranges from 40m at the mouth to 10 m at Port Huon, above which the 

depth decreases rapidly to between 2 and 4 m deep on the east and west sides of Egg 

Island (Figure 1.2). It is a salt wedge estuary, with the marine water extending from 

the mouth of the estuary up to Ranelagh, upstream of Huonville (Figure 1.2) where 

saltwater can penetrate under low river flows. 
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Figure 1.2 Location and features of the Huon Estuary in south-eastern Tasmania, adapted from 
CSIRO Huon Estuary Study Team (2000). 

The catchment of the Huon Estuary is classified as largely natural as it has been 

subject to only moderate modification by human activity. Much of the upper 

catchment remains as undisturbed native forest, increasing areas of the mid- and 

lower-catchment are now been subjected to managed forestry activities. 

Approximately, 5.6 % of the total catchment has been cleared- for a patchwork of 

primary agriculture activity such as horticulture and livestock grazing. Human 
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settlement is sparse, approximately 15,000 spread across a series of small townships 

along the lower reaches of the River, and also bordering the estuary. 

Figure 1.3 Location of the Huon Estuary catchment, adapted from CSIRO Huon Estuary Study 
Team (2000). Also in this map is the D'Entrecasteaux Channel, Port Esperance (Dover) and 
Southport. 

Salmon aquaculture began in the 1980s and has grown significantly since then. 

Salmon farming is one of the largest aquaculture industries in Australia, estimated to 

be worth 260 million dollars in 2008 and it is expected to continue to grow. Almost 

all salmon produced in Australia is from Tasmania and the majority of salmon farms 

are situated in the south-east where there are plenty of sheltered sites and the water 

temperature is most suitable. When the salmon aquaculture industry began in the 
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early 1980's there was limited understanding and knowledge of environmental 

effects. As salmon farming continued to grow in Tasmania it became increasingly 

recognised that expansion needed to be underpinned by a sound scientific knowledge 

of the effects of salmon farming on the environment. 

In 1996 a large study commenced in the Huon Estuary- the Huon Estuary Study 

(HES). The goal of the HES was to examine the physical and biological 

characteristics and environmental status of the estuary and to gain an integrated 

understanding of the system. One of the key drivers for the research was too examine 

potential impacts of salmon farming on the Estuary. The 3 year HES involved 

collection of physical, chemical and biological data throughout the estuary and the 

development of a relatively simple (2D box) coupled hydrodynamic and bio-

geochemical model. Nutrient data from the Huon Estuary Study indicated that it is a 

N limited system. 

Models based upon data from the HES predicted that a doubling in the production of 

salmon would result in only a small increase in the likelihood of algal blooms, while 

greater inputs could significantly increase the likelihood of phytoplankton blooms 

and potential eutrophication, but that further investigation was required to improve 

understanding of the links between nitrogen and phytoplankton growth and biomass 

in the Huon Estuary. A key gap identified from the HES was the lack of knowledge 

on how different forms of N may affect the phytoplankton biomass and its 

composition in the estuary. 

The biogeochemical model from the more recent Aquafin CRC was used to calculate 

nitrogen budgets for the Huon Estuary and D'entrecasteaux Channel in 2002 

(Vollcman etal., 2009). The largest input of N (60%) to the Huon Estuary and 

D'entrecasteaux Channel comes from the surrounding marine waters. This N is 

mostly delivered in winter and is primarily NO3 -  . The Huon River delivers about 23 

% but this is mostly considered refactory N. Salmon aquaculture accounts for 17% of 

the N and while it is only a relatively small amount almost all of this N is labile NH4 + . 
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For the D'entrecasteaux Channel and Huon Estuary in 2002, N from salmon 

aquaculture was estimated to be 843 tonnes: 313 tonnes of N input to the Huon and 

543 input into the D'Entrecasteaux Channel. The salmon aquaculture industry has 

increased production significantly since 2002 and in 2009 it is estimated that there 

will be a 210% increase in N to 1747 tonnes across both the Huon Estuary and 

D'Entrecasteaux Channel. But industry and regulators have capped production in the 

Huon Estuary, so only 243 tonnes of N will be input to the Huon in 2009. However 

there will be a —3 times increase in the D'Entrecasteaux from 530 to 1747 tonnes in 

2009. 

Dinoflagellates are important components of the phytoplankton community in the 

Huon Estuary, often forming the majority of the biomass. Periodic blooms of the 

toxic species, G. catenatum, result in closure of shellfish farms in the Huon Estuary 

and D'Entrecasteaux Channel (Hallegraeff et al., 1989). This large dinoflagellate 

species (35um) intermittently forms dense and often mono-specific blooms in the 

Huon Estuary and is a major contributor to the phytoplankton biomass in the estuary 

during blooms (Thompson et al., 2008, Hallegraeff et al., 1995). Blooms occur only 

in some years and not in others and appear to be associated with particular climatic 

triggers (early summer rainfall followed by periods of low winds; Hallegraeff et al., 

1995). However, these triggers have not proven to be universally required as 

significant blooms have occurred without these cues. During bloom years, the 

phytoplankton biomass is also much greater than would be predicted from the 

available NO3 -  in the estuary. As G. catenatum is capable of rapid diurnal vertical 

migration it has been hypothesised that these blooms may be using NH4+  derived 

from bottom waters (Doblin et al., 2006). 

1.3 Research Objectives 

This research will combine laboratory and field experiments to address the current 

lack of knowledge on the effects of nutrient input composition on phytoplankton in 

the Huon Estuary. The first objective of this research was to determine whether 
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phytoplankton in the Huon Estuary are using nitrogen that has an oceanic source 

(primarily NO3) or more locally supplied or regenerated source (primarily NH 4+  and 

urea). Given the large role G. catenatum plays in the Huon Estuary with high 

biomass blooms forming during summer and autumn it was also considered that 

better understanding the physiology of G. catenatum would be key to understanding 

phytoplankton dynamics in the Huon Estuary. The second objective of this research 

was to understand the physiological responses of G. catenatum to light, temperature 

and different nitrogen species. Specifically, this thesis sets out to: 

• Determine the nitrogen uptake preference and dynamics of the seasonal 

phytoplankton assemblage in the Huon Estuary (Chapter 2) 

• Investigate the effect of temperature and irradiance on growth rate and 

biochemical composition of G. catenatum (Chapter 3) 

• Describe the physiology and nutrient uptake dynamics and preference of the 

dinoflagellate Gymnodinium catenatum, a significant seasonal contributor to 

the phytoplankton biomass in the Huon Estuary (Chapters 4). 

• Determine whether diurnally migrating G. catenatum blooms are able to 

access and uptake nitrogen available at depth during the night in the field 

(Chapter 5). 

- 
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2 NITROGEN UPTAKE BY 

PHYTOPLANKTON IN THE HUON 

ESTUARY, SOUTH-EAST TASMANIA, 

AUSTRALIA 

2.1 Introduction 

The Huon Estuary has been the subject of intensive environmental studies since 1996 

as part of a program to ensure the sustainability of aquaculture in the Estuary. One of 

the key topics being addressed is the link between nutrients and phytoplanlcton 

blooms in the estuary. The Huon Estuary Study (Team, 2000) suggested that 

phytoplankton growth in the Huon Estuary is limited primarily by the availability of 

nitrogen (N). 

In coastal ecosystems the main sources of N used by phytoplankton are nitrate 

(NO3-), ammonium (NH4 4) and urea (Twomey et al., 2005). Some phytoplankton 

are able to use all these sources of N for growth (Antia etal., 1975). However there 

is evidence that some species/groups of phytoplankton favour/prefer one form of 

nitrogen over another. For example diatoms have been shown to be associated with 

increased NO3-  uptake (Heil etal., 2007, Berg etal., 2003, Bode & Dortch, 1996). In 

addition to some species groups having preferences for particular N substrates there 

are a number of environmental factors that also have an effect on N uptake, 

including: temperature, light, substrate concentration and inhibition (Varela & 

Harrison, 1999, Dortch, 1990). 

Dinoflagellates are important components of the phytoplankton community in the 

Huon Estuary, often forming the majority of the biomass. Periodic blooms of the 

toxic species, G. catenatum, result in closure of shellfish farms in the Huon Estuary 
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and D'Entrecasteaux Channel (Hallegraeff et al., 1989). This large dinoflagellate 

species (35um) intermittently forms dense and often mono-specific blooms in the 

Huon Estuary and is a major contributor to the phytoplankton biomass in the estuary 

during blooms (Thompson etal., 2008, Hallegaeff et al., 1995). Blooms occur only 

in some years and not in others and appear to be associated with particular climatic 

triggers (early summer rainfall followed by periods of low winds; Hallegraeff et al., 

1995). However, these triggers have not proven to be universally required as 

significant blooms have occurred without these cues. During bloom years, the 

phytoplankton biomass is also much greater than would be predicted from the 

available NO3-  in the estuary. As G. catenatum is capable of rapid diurnal vertical 

migration it has been hypothesised that these blooms may be using NH 4+  derived 

from bottom waters (Doblin et al., 2006). Field observations indicate that G. 

catenatum vertically migrates diurnally from 5m to 20m through temperature, 

salinity and nutrient gradients in the Huon Estuary (Doblin et al., 2006). Testing the 

hypothesis that G. catenatum may vertically migrate to access NO3 -  or NH4+  was one 

of the major components of this research. For this reason N uptake experiments were 

to be setup at 5m and 20m during the day when it was expected that G. catenatum 

would be concentrated at 5m. Experiments were also set up at 5m and 20m during 

the night when it was expected that G. catenatum would be concentrated at 20m. 

However, large blooms of G. catenatum were rare in the Huon Estuary in 2002, 2003 

and 2004. So our 2003-2004 field trips, were unable to provide information about the 

N uptake strategies of G. catenatum during a vertically migrating bloom. For this 

reason we focused on determining which nitrogen sources: nitrate (NO3-), ammonium 

(NH4  +) or urea are important for supporting phytoplankton growth in the Huon 

Estuary. These field experiments have focused upon whether the phytoplankton are 

using nutrients that have an oceanic source (primarily nitrate) or more locally 

supplied or regenerated nutrients (primarily ammonium and urea). Given that 

phytoplankton in Australian estuaries are nitrogen limited (Harris, 2001) the 

possibility exists that additional nitrogen inputs to the ecosystem may cause an 

increase in phytoplankton biomass or increase blooms of nuisance or toxic species. 
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The research in this chapter is designed to investigate which of these N sources 

supports the growth of phytoplankton in this region. 

2.2 Methods 

The research included 4 field trips in the Huon Estuary on the 28-29 May 2003, 23-24 

September 2003, 18-19 November 2003, and 24-25 February 2004. It is recognized 

that 4 sampling trips per year, even when statistically different, may not fully 

represent seasonal affects. Regardless, for the sake of simplicity in presentation, these 

temporal periods are referred to as seasons. During these field trips a 15N tracer 

technique was used to measure uptake of 3 different nitrogen (N) sources (NO3 -, 

NH4+  and urea) by the natural phytoplankton assemblage. Two sites, Garden Island 

(latitude 43° 16' 3" S longitude 147° 6' 30" E) and Hideaway Bay (latitude 43° 16' 14" 

S longitude 147° 5' 2" E), were used for this field work (Figure 2.1). N uptake 

experiments were setup at 5 m and 20 m water depth during both the day and night. 
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Figure 2.1 Location for nitrogen uptake experiments in the Huon Estuary during 2003-2004. 

Four field trips (28-29 May 2003, 23-24 Sept 2003, 18-19 Nov 2003,  and  24-25 Feb 

2004) were undertaken to measure N uptake at Garden Island and Hideaway Bay: 2 

sites near the mouth of the Huon Estuary. In this section  of  the thesis  data  collected 

on the September 23-24 is considered early spring, November 18-19 is referred to as 

late spring, February 24-25 is late summer and May 28-29  is  late  autumn.  A 15N 

Tracer technique (Dugdale & Goering, 1967) was used to measure the uptake of 

NO3-, NH4+  and urea at 5 m and 20 m depths during the day and night. Water was 
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collected from the 2 depths using a 10 1 Niskin bottle and dispensed into 500m1 glass 

Schott bottles made by Schott Duran. The water collected for the incubations were 

not pre-filtered before dispensing into the 500 ml Schott bottles. There were two main 

reasons for not pre-filtering the water for the incubations. Firstly, ensuring that long 

chains of G. catenatum were not excluded from incubations. G. catenatum chains of 4 

to 8 cells are common. A quick estimate of the size of these chains, 30 microns x 8 

cells = 240 microns suggests that screening at 200 microns (a commonly used screen) 

would exclude a proportion of this species. Secondly, we wanted to estimate the real 

in situ N uptake rate including, losses due to grazing. For each depth three 500 ml 

schott bottles were spiked with 0.3 1.1M 15N- NO3-  (99.3 atom percent 15N), three 500 

ml schott bottles were spiked with 0.1 1.1M 15N-NH4+  (99.6 atom percent 15N) and 

three 500 ml schott bottles were spiked with 0.068 i.tM 15N-urea (98.61 atom percent 

15N). In addition at each depth one 500m1 schott bottle was filled with water but not 

spiked with any 15N substrate, this unspiked bottle was used to determine the 

background 15N (un-enriched atom % excess). These samples were incubated in 500 

ml Schott bottles for 4 hours in-situ at the depths they were collected from. Four 

hour incubations were chosen because they are short enough to limit the chances of 

substrate exhaustion (La Roche, 1983) and also reduce the problems caused by 

substrate dilution(Glibert et al., 1982), but an incubation period of 2-6 hours is also 

long enough to minimise the bias introduced by initial high uptake rates that 

sometimes occur in phytoplankton (Dugdale & Wilkerson, 1986). After the 

incubation the water samples were filtered onto pre-combusted (450°C for 4 hours) 

25 mm WhatmanTm  glass fibre filters and stored frozen until analysis. The filters 

were dried in an oven at 60°C overnight before they were analysed using a Carlo Erba 

NA1500 CNS analyzer interfaced via a Conflo II to a Finnigan-MAT Delta S isotope 

ratio mass spectrometer to determine the N isotope ratios. Absolute uptake rates were 

calculated using the Dugdale and Goering (1967) equation: 

p = Na t(Rt) l  
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where p is the absolute uptake 0.1g N r' 	N is the total particulate nitrogen (jig N), 

at  is the atom % excess of 15N (= atom % - background), R is the atom % enrichment 

[a, (SIASL + Sep], ae is the atom % enrichment of labelled 15N source, SL is the 

concentration of labelled 15N, Su is the concentration of unlabelled 14N and t is the 

incubation time (h). Specific uptake v (ligN i.tgChla -1  II I ) is the absolute uptake p 

normalised to chla and is calculated using this equation: 

v = p/Chla 

Where, p is the absolute uptake (4 N r' II I ) and Chia is total chlorophyll a (jig Chla 

It is common for researchers investigating N uptake to normalise N uptake to 

particulate N (PN). In this research N uptake has been normalised to chi a as an 

indicator of phytoplankton biomass. The fact is that chl a is the preferred method of 

measuring phytoplankton biomass worldwide. It is well known that measurements of 

particulate N or particulate C are not as reliable, primarily due to the potential 

contamination by detritial C or N. A number of highly respected researchers have 

proposed methods to improve the estimation of phytoplankton biomass from POC or 

PON including Karl Banse (Banse, 1977) or methods that rely on neither (Holm-

Hansen & Booth, 1966) but these methods are complex or difficult to apply to 

individual samples. One result is that very few researchers report phytoplankton 

biomass in units of PN or PC. In spite of these difficulties a number of researchers 

have normalized their N uptake measurements to PN and reported them in this 

manner. This may have more to do with the fact that the analysis required to obtain 

the results from the uptake experiments also gives a value for PN, rather than any 

more strategic reasoning. The truth is that N per cell shows about the same amount 

of variability as chl a per cell (Thompson, 1999) in response to irradiance and 

temperature. For these reasons we have normalized N uptake to chi a. 
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When water was collected for the N uptake experiments, triplicate 10 ml samples 

were taken for measurement of ambient NO3-, NH4  + and urea concentrations and 2 L 

was filtered for pigment analyses using high performance liquid chromatography 

(HPLC). 

Nutrient samples were stored at -20 °C prior to analysis. Analytical techniques for 

nitrate and/or nitrite (Wood etal., 1967), silicate (Murphy 84 Riley, 1962) and 

phosphate (Armstrong, 1951) were adapted and performed using Quick-Chem Tm  

methods on a flow injection LACHAT instrument as per the following protocols for 

nitrate and/or nitrite (Quik-ChemTm  Method 31-107-04-1-A; detection limit 0.03— 

mM), silicate (Quik-ChemTM Method 31-114-27-1-D; detection limit —0.05 mM) 

and phosphate (Quik-ChemTM Method 31-115-01-1-G; detection limit —0.02 mM). 

Ammonium was measured using the technique of Kerouel and Aminot (Kerouel & 

Aminot, 1997) adapted for flow injection (Watson etal., 2004)with a detection limit 

of —0.05 mM. Urea samples were analysed using a diacetyl monoxime technique 

according to the method of (Mulvenna & Savidge, 1992). To reduce the health risks 

associated with thio-semicarbazide, a reagent for this technique, we substituted 

semicarbazide (a less toxic but similar compound). 

It was not possible to measure ambient concentrations of nutrients prior to 

commencing an experiment. Consequently fixed concentrations of NO3 -, NH4+  and 

urea were added as listed above, with a target of 10% of the ambient concentration. 

The majority (59%) of 15N additions were <15% of ambient concentrations. There 

were, however, a number of instances where ambient concentration were less, at 

certain depths or times of the year, than anticipated. Adding less 15N may have been 

more appropriate at these times of the year although it increases the likelihood of 

running out of labelled substrate and thus underestimating uptake rates. Under 

conditions of extreme N limitation where 0.3 j.tM 15N- NO3-, 0.1 gM 15N-NH4+  or 

0.068 uM 15N-urea represent substantially more than 15% of the ambient 

concentration the labelled N is no longer a tracer but becomes an increasingly 

important source. Under these conditions it is likely that real in situ uptake rates were 
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overestimated by the technique. The worst cases were for nitrate in late spring and 

late summer (Table 2.1) where uptake of nitrate is probably over estimated in the 

results presented here. 

Table 2.1 Estimated proportions (% of ambient concentration) of 15N added as a tracer for all 
field trips in the Huon Estuary. 

28/05/2003 

23/09/2003 

18/11/2003 

24/02/2004 

site 	time 	depth (m) %"N NH 4+ 	°/0 1 N NO3" 	 )̀/0 "N urea  
5 	 11 	9 	22 day Hideaway 	 20 	 18 	9 	19 

Bay 	 5 	 8 	8 	16 night 20 	 19 	7 	13 
5 	 7 	9 	33 day Garden 	 20 	 12 	7 	20 

Island 	 5 	 15 	8 	25 night 20 	 12 	8 	13 
5 	 13 	9 	14 day Hideaway 	 20 	 32 	8 	16 

Bay 	 5 	 25 	8 	20 night 20 	 65 	8 	20 
5 	 60 	8 	11 day Garden 	 20 	 91 	8 	13 

Island 	 5 	 43 	8 	19 night 20 	 98 	8 	15 
5 	 15 	430 	21 day Hideaway 	 20 	 16 	54 	17 

Bay 	 5 	 10 	820 	32 night 20 	 13 	40 	14 
5 	 114 	3000a 	17 

Garden 	day 	20 	 13 	44 	15 
Island 	 5 	 229 	3000a 	34 night 20 	 20 	52 	16 

5 	 36 	295 	15 day Hideaway 	 20 	 7 	53 	15 
Bay 	 5 	 23 	485 	11 night 20 	 6 	58 	13 

5 	 32 	663 	10 
Garden 	day 	20 	 10 	61 	 9 
Island 	 5 	 7 	51 	 8 night 20 	 23 	1785 	 9 

Date 

a  % enrichment calculated by using the detection limit (0.03 mM) of the NO 3" detection method 
used. 

2.2.1 CTD profiles 

A SeabirdTM  SBE19+  conductivity, temperature and depth (CTD) profiler was used to 

measure the salinity, temperature and fluorescence of the water column during the 

field experiments. The measurements throughout the water column presented are the 
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downwards cast with the initial period removed where the instrument was beginning 

to pump water through the sensors. 

The CTD sensors: salinity, temperature and fluorescence are factory calibrated. The 

sensors were further checked prior to fieldwork by measurement of standard samples 

for salinity and temperature and field samples for fluorescence. 

2.2.2 Phytoplankton Counts 

Water collected for the surface N uptake experiment during the day was used to 

enumerate phytoplankton. One litre water samples were taken and preserved in the 

field using Lugol's iodine fixative solution (110 g potassium iodide, 50 g iodine, 1 

litre distilled water, 100 ml glacial acetic acid) to approximately 2% final 

concentration. The samples were stored until they could be counted under the light 

microscope. Prior to counting the Lugol's preserved samples were transferred to 1 

litre measuring cylinders (volume recorded — V1) and allowed to settle for at least 24 

hours. After this time, approximately 900 ml were siphoned off and the remaining 

sample was transferred to a 100-ml measuring cylinder and again allowed to settle for 

at least 24 hours. Then approximately 90 ml were siphoned off, the final volume 

recorded (V2) and thoroughly mixed before a 1-ml aliquot was taken, placed in a 

Sedgwick Rafter counting chamber and examined using an Olympus IX71 

microscope to identify and count the phytoplankton. 

The Sedgwick Rafter counting chamber has a grid of 1000 squares, each of 1 tl. For 

microplankton, (cells generally larger than 20 tm diameter) at least 100 squares or 

10% of the counting chamber was scanned (except in cases where there were dense 

blooms of one or more microplankton species, when at least one column of 20 

squares was scanned) at 200x magnification. For nanoplankton, (2-20 1-1.M in 

diameter) the chamber was examined under 400x magnification until at least 300 

cells of the dominant nanoplankton "species" had been counted. Flagellates in the 

nanoplankton were grouped, as time constraints did not allow fuller identification. 
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Cells per litre = 

cell "species" count * (1000 / number squares counted) * (V2 *1000 /V1) 

2.2.3 CHEMTAX 

Pigment data from HPLC analysis was further analysed to give the proportions of 

chlorophyll a present in the following algal taxonomic categories: Cyanophyta, 

Prochlorophyta, Chrysophyta, Cryptophyta, Bacillariophyta (diatoms), Haptophyta, 

Prasinophyceae, and Dinophyta (Mackey et al., 1996). Initial input ratio matrices 

were adjusted from those proposed in Mackey, Mackey et al. (1996) by including 

four types of Haptophytes: 

Haptophyte N — Type 1 = fucoxanthin e.g. Isochrysis spp. 

Haptophyte S- Type 2 = Chl c3 + fucoxanthin e.g. Ochrosphaera neopolitana 

Haptophyte Type 3 = Chi c3+ 19'Hexanoyloxyfucoxanthin + fucoxanthin + and 

sometimes 19'butanoyl derivative e.g. Chyrsochromulina strobulis 

Haptophyte Type 4 = c3 + 19'butanoyloxyfucoxanthin +19'hexanoyloxyfucoxanthin 

and fucoxanthin e.g. Imantonia rotunda. 

The peridinin:chlorophyll a ratio was modified from 0.515:1 as in Mackey, Mackey 

etal. to 0.36:1 after Hallegraeff, Nichols etal. (1991). The latter was based on 

extensive culture studies for Gymnodinium catenatum. This has the effect of 

increasing the proportion of the chlorophyll a that CHEMTAX will allocate to 

dinoflagellates for a given amount of peridinin. Based on personal observations this 

results in CHEMTAX estimates of dinoflagellates that are more consistent with the 

estimated proportion of biomass calculated by cell counts and adjusted for cellular 

bio-volumes. 
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2.2.4 Statistical analysis 

2.2.4.1 Phytoplankton Dynamics 

In order to determine whether there were significant effects of season on the 

phytoplanlcton composition we first determined whether phytoplankton data from 

both sites could be pooled for subsequent analysis. The pigment data were 

percentage data, thus nonparametric tests were used. The effect of site was tested for 

using a signed Wilcoxin ranks test. There was no significant difference in the 

phytoplankton community associated with site and the data from the 2 sites were 

pooled together. The effect of season on abundance of four phytoplankton groups: 

diatoms, dinoflagellates, cryptophytes and prasinophytes (the main contributors to the 

phytoplankton assemblage throughout the year) was tested using a Kruskal-Wallis 

analysis of variance (ANOVA) on ranks for each phytoplankton group. A Dunn's 

post hoc test was used to make multiple comparisons following the Kruskal-Wallis 

ANOVA on ranks. 

2.2.4.2 Nitrogen uptake data 

The Hideaway Bay and Garden Island N uptake data sets comprised 96 independent 

observations of N uptake (Table 1.1). A few samples were lost and the plan for a 

balanced experimental design (time of day, depth, season) were only 91% completed 

with 3 (x 3 replicates) missing data points. In Hideaway Bay data there were no chl a 

results for the September field trip during the night at Depth (20m) for calculating 

specific uptake rates. A balanced dataset was required for multifactor ANOVA, so the 

corresponding chl a results from the Garden Island were used to replace these 

missing chl a results. The CTD plots from both Hideaway Bay and Garden Island 

both showed similar fluorescence profiles and based on fluorescence estimates of chi 

a were both —0.25 jig L -1  at depth (20m) during the night. The Garden Island data Set 

was missing nitrogen uptake measurements for September at the surface (5 m) during 

the day and February at depth (20m) during the night. To enable analysis using a 
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multifactor ANOVA a balanced data set was achieved by constructing the missing 

data from the mean and standard deviation across the 4 field trips (Table 2.1) for the 

corresponding depth and time (Little & Rubin, 1987). 

Comparisons between the Hideaway Bay and Garden Island sites results for NH 4+, 

NO 3  -, urea and absolute N (NH4++NO3 -+urea) uptake using paired t tests. The tests 

for normality and equal variance were Kolmogorov-Smimov test (with Lilliefors' 

correction) and Levene median test. Where data was not normally distributed (NH4 +, 

Urea and absolute N (NH4 ++NO3 -+urea) uptake) 0.05 was added to make all values 

positive and then they were log transformed. Following the transformation only urea 

did not conform to a normal distribution. Where there were no significant differences 

between sites data was pooled across sites for subsequent statistical analyses. 

An overall analysis to determine whether there were differences between uptake of 

NH4+, NO3 -  and urea in the Huon Estuary (averaged across season, time of day and 

depth) was undertaken using a non-parametric Kruskal-Wallis ANOVA on ranks test 

(P=<0.001) and post hoc multiple comparisons made using Tukey's Test. 

A subset of the data: nitrogen uptake during the day and at the surface (5m) was used 

to examine the effect of time of year on absolute and specific nitrogen (NH 4++NO3 - 

+urea) uptake. For absolute N uptake (NE4++NO3 -+urea), data were log transformed 

and analysed by ANOVA. Post hoc multiple comparisons of this data were made 

using the Holm-Sidak test. Specific N uptake (NH 4++NO3 -+urea) data were analysed 

by ANOVA and post hoc multiple comparisons were made using the Holm-Sidak 

test. 

Differences between specific uptake of NH, NO3 - and urea at four times 

throughout the year (during the day and at surface (5m)) were also analysed using a 

two-way ANOVA, followed by post hoc multiple comparisons by the Holm-Sidak. 

Prior to analysis by ANOVA, data were transformed (log(x+0.05)), but they still 

failed the Levene Median test for equal variance. 
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Multi-factor ANOVA was used to examine the effect of season, time of day, and 

depth on specific uptake of NH4+, NO3 - and urea independently. Many attempts 

were made to find a suitable way to transform NI-14 +, NO3 - and urea datasets to meet 

the requirements of ANOVA for normality and equal variance, however, they were 

not successful. A log transform (log(x+0.05) visibly improved the shape of the 

distribution of the NH4+, NO3 - and urea datasets, therefore were used, even though 

the data still failed the tests for normality and equal variance. Although ANOVA is 

reasonably robust to lack of homogeneity of variance and normality (Sokal & Rohlf, 

1995) the reader is thus cautioned that the conclusions of these statistical analysis 

should be viewed with some caution. 

Where data was transformed for analysis, the Multifactor ANOVA results (least 

squares means and standard errors) were back-transformed for reporting in the text 

and figures. As standard errors cannot be directly back-transformed upper and lower 

95% confidence intervals were reported. The 95% confidence intervals were 

calculated as below: 

Lower 95% confidence interval= 10^(X-SE*t) 

Upper 95% confidence interval= 10^(X+SE*0 

Where X=mean, SE=standard error and t is the t statistic (a=0.05) for n-1 degrees of 

freedom. Both the mean and standard error are to be in the log form for this 

calculation. To improve the accuracy of the 95% confidence intervals the standard 

errors from the ANOVA were not used, because use of these standard errors is only 

accurate when the assumptions for equal variance in the dataset are met. As our 

NH4+, NO3 - and urea data did not pass the requirements for equal variance, standard 

errors were calculated for each cell of the ANOVA using the relevant original data. 

2.3 Results 
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(20m) during the four field trips in the Huon Estuary. 
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Figure 2.3 Mean ambient concentrations of nutrients (NH 4+, NO3 ", urea, Silicate and PO43-) at 
surface (5m) and bottom (20m) depth during each of the field trips. 
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2.3.1 Late autumn 

- 	Physical conditions 

During the late autumn field trip the temperature ranged from 13.5 °C at the surface 

and was 13.7°C at a depth of 30 m (Figure 2.4). Salinity was also fresher (34.0) from 

the surface to 3m depth while at depths below the salinity was closer to a salinity 

expected of a full marine environment (>34.8). At the surface irradiance was 90 

[Lmol photons m -2  s-1  and decreased quickly in the surface layers. At depths of 30 

metres there was very little irradiance —40 limo' photons Tr1-2  

Chemical conditions 

In late Autumn [NO3 and [Silicate] ] were high at —4 jtM in the surface (5m), at 

depth (20m), [NO 3  was similar at —4 i_tM but the [Silicate] was 2.8 ji.M. In the 

surface (5m) [NH] and [urea] were 1.1 and 0.3 i.tM respectively. At depth (20m) 

[NH] was lower, 0.7 gM and [urea] was slightly increased at 0.4 i.tM. At the 

surface (5m) and depth (20m) [PO43-] was 0.55 and 0.5 1.1M, respectively. 

Biological conditions 

During the late autumn field trip chlorphyll a (chla) was lowest 0.23 and 0.1 ug 

respectively in both the surface (5m) and at depth (20m). Fluorescence was at its 

maximum near the surface 0.7 units and decreased with depth to 0.3 units. The 

phytoplankton assemblage was dominated by dinoflagellates (49% of total chl a). 

The next two most dominant groups were prasinophytes and diatoms 23 and 19% of 

total chl a, respectively. The remainder of the phytoplankton consisted of 

cryptophytes and haptophytes type N (only contain fucoxanthin). Based upon 

CHEMTAX analysis of the HPLC pigment data there were no significant differences 

in phytoplankton community composition between site, day or night and surface or 

depth. There was no microscopic examination of samples in late autumn to 

substantiate the CHEMTAX phytoplankton community composition. 
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Figure 2.4 Conductivity, temperature and depth profile of Hideaway Bay site during the day for 
the late autumn (28/05/2003) N uptake experiment. 

2.3.2 Early spring 

Physical conditions 

Temperature was at its lowest, 11.4 and 11.6 °C during early spring in the surface 

(5m) and at depth (20m) respectively. Irradiance had increased from late autumn to 

early spring in both the surface (-300 iimol photons ni2  s-1 ) and depth ( —50 ilmol 
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photons I/1-2  s-1 ). Relative to late autumn the salinity was lower (34.5 and 34.8) in 

early spring at surface and depth, respectively. 

Chemical conditions 

NO3-  concentrations were still — 4 i.tM in both the surface (5m) and at depth (20m) in 

early spring. The concentration of NH4+  reached was at its lowest in both the surface 

and at depth, 0.4 and 0.2 1iN4 respectively, during early spring compared with the 

other field trips. The concentrations of urea at both depths were —0.5 W. The 

concentrations of silicate were at their highest in the surface (5m) during the early 

spring —5 JIM. At depth the silicate concentration was less than half this 

concentration (2.3 gM). Concentrations of phosphate (PO4 3") were —0.4 1.1M at 

surface (5m) and depth (20m). 

Biological conditions 

During early spring the chla concentrations were low and similar in both the surface 

and at depth (0.3 and 0.2 jig 14 , respectively ). Fluorescence was greatest near the 

surface 0.3 units and decreased to — 0.27 units at depths below 17 m. Phytoplankton 

were dominated by diatoms at the surface (30-40% of total chlorophyll a) and even 

more dominated at depth (50-60%). Dinoflagellates represented 20-30% of the 

phytoplankton. There was one exception to these generalisations at Hideaway Bay 

during the night at the surface (5m). In this sample dinoflagellates accounted for > 

60% of the phytoplankton. The remainder of the phytoplankton were composed of 

chryptophytes, prasinophytes, chlorophytes, haptophytes types N and S and 

cyanobacteria. The chlorophytes and cyanobacteria seemed to be restricted to the 

surface (5m) samples. The most numerous diatoms in this sample were 

Pseudonitzschia pseudodelicatissima (1248 cell L-1 ), Nitzscia closterium (793), 

Skeletonema costatum (521 cell L -1 ) and Chaetoceross spp. >15i.tm (401 cell 1- ') 

(Table 2.1). The dinoflagellates were represented by 15 p.m Gymnodiniod 

dinoflagellates (273 cell 1 -1 ), Gymnodinium catenatum (132 cell 1 - ') Dinophysis spp. 
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(36 cell 1- ') and Ceratium spp. (27 cell 1 - '). There were no cryptophytes observed in 

these samples. It very likely that they were identified in CHEMTAX because of the 

alloxanthin in the relatively large population of pigmented Dinophysis species with 

chloroplasts that originate from cryptophytes via the intermediate host of Myrionecta 

rubra (=Mesodinium rubrum) (Park et al., 2006, Nagai etal., 2008) 
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Figure 2.5 CTD profile of Hideaway Bay site during the day for the early spring (23/09/2003) N 
uptake experiment. 

2.3.3 Late spring 

Physical conditions 

The temperature was increased at both depths, the temperature in the surface was 

slightly higher 13.2 °C, than at depth 12.8 °C. The irradiance was at it greatest during 

late spring experiment being 350 and 50 gmol photons I/1-2  s -1  in the surface and at 
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depth respectively. The salinity was lower ( 34.4 and 34.6) than in the previous early 

spring field trip at surface (5m) and depth (20m) respectively. 

Chemical conditions 

The concentration of NO3-  in late spring decreased in the surface and at depth to 0.2 

and 1 I.LM respectively from the NO3 -  concentrations — 4 jim in early spring. The 

NH 4+  concentration increased from its lowest concentrations in early spring to 0.5 and 

0.7 jiM for the surface and at depth respectively. The urea concentration showed a 

slight decrease from early spring to late spring, from 0.5 to 0.38 j.tM in the surface. 

However at depth urea concentration remained the same as in early spring —0.44. 

Silicate was at its lowest concentration in the surface and at depth, 2.5 and 2 11M 

respectively. PO43-  also reached its lowest concentration during late spring in the 

surface and at depth, 0.2 and 0.3 gM respectively. 

Biological conditions 

Chla increases in the surface and at depth to 0.9 and 1.5 jig F l respectively during late 

spring. Fluorescence was at its lowest near the surface (0.4 units) and then reached its 

maximum (0.8 units) at — 7 m. The chi a then decreases again with depth to 0.6 jig 1 -1  

at 25m. The phytoplankton community shifted to a cryptophyte (40-60% of total 

chlorophyll a) domination. Diatoms and prasinophytes were the next most dominant 

components of the community. There were also a small portion of dinoflagellates in 

all samples and some cyanobacteria present in the surface samples from Hideaway 

Bay. There was one sample that had a clearly different composition from all the 

others. This sample was dominated instead by diatoms and had a large % of 

dinoflagellates. There were no clear trends between sites, time of day or depth. The 

cryptophytes were comprised of small round flagellates (863 cell F 1 ). The diatoms 

were dominated by a high numbers of Guinardia flaccida (41223 cell 	and 

Rhizosolenia fragillissima (4607 cell 1 -1 ). The majority of the dinoflagellates were 
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Figure 2.6 CTD profile of Hideaway Bay site during the day for the late spring (18/11/2003) N 
uptake experiment. 

2.3.4 Late summer 

Physical conditions 

Temperatures were at their highest in late summer, 15.5 °C for both surface (5m) and 

at depth (20m). However the irradiance had decreased since the field trip in early 

spring and was now at 130 umol photons m -2  s-1  in the surface (5m)  and  at —20 umol 
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photons rn -2  s -1  at depth (20). In the surface (5m) the salinity was 34.4 the same as 

late spring. However at depth (20 m) the salinity was 34.8 slightly greater than in late 

spring. 

Chemical conditions 

NO 3 -  was still at low concentrations in both the surface and at depth during late 

summer, 0.3 and 0.4 [iM, respectively. Both NH' and urea showed increases from 

late spring to late summer. NH 4+  concentrations increased to 0.6 1.1.N4 in the surface 

and to 1.1 iiM in at depth (20 m). Urea showed an increase to 0.6 iiM in both the 

surface and at depth from concentrations below 0.4 iiM in late spring. Silicate 

increased from its lowest concentrations that occurred during late spring to 4 tiM and 

3.7 AM in the surface and at depth, respectively. PO4 3-  showed a similar trend 

increasing from the lowest concentrations that occurred in late spring to —0.3 1AM in 

both the surface and at depth. 

Biological conditions 

Chia concentration reached their maximum 1.2 ug r' in the surface (5 m) during late 

summer. However at depth (20 m) the chla concentration decreased to 0.3 ug 1 -1  close 

to the lowest chla concentrations recorded at depth during late autumn and early 

spring. Fluorescence showed that the max concentrations, >1.2 units occurred 

between 3 and 10 m depth and decreased to between 0.1 and 0.3 units. Composition 

of samples was not clearly dominated by any one taxonomic group. A mixture of 

diatoms, cryptophytes, prasinophytes and dinoflagellates were present. These 

samples had the most variable composition and there were no clear trends associated 

with time of day, location or depth. There were also small proportions of haptophyte 

N and S and cyanobacteria groups in some of these samples. The most numerous 

diatoms were S. costatum (938150 cell 0, N. closterium (49499 cell 14 ), 
Chaetoceross spp. (29695 cell r'). The dinoflagellates were represented by G. 
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Figure 2.7 CTD profile of Hideaway Bay site during the day for the late summer (24/02/2004) N 
uptake experiment. 

2.3.5 Effect of Season on phytoplankton composition 

Season affected the four main phytoplankton groups: dinoflagellates, diatoms, 

cryptophytes and prasinophytes that were recorded during  the  four  field  trips in 

different ways (Figure 2.9). Dinoflagellates were responsible for 48  and  29% of the 

total chl a in late autumn and early spring respectively. This was reduced in late 
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spring and late summer where only 7 and 14% respectively, of the total chi a 

belonged to the dinoflagellates. The cryptophytes showed the opposite pattern where 

9 and 10% of total chla was attributed to them in late autumn and early spring 

respectively. Whilst in late spring and late summer the cryptophytes accounted for a 

much larger amount of the chla, being 40 and 29% respectively. The high proportion 

of `cryptophytes' during late spring and late summer probably represents Dinophysis 

species. During early spring and late summer the diatoms contributed the most to 

total chl a, 47 and 38% respectively. During late autumn and late spring the diatoms 

contributed less to the total chla, 18 and 31% respectively. The prasinophytes were 

greatest during late autumn and late spring, 23 and 21% respectively. In early spring 

the prasinopytes were at their lowest, 9% of the total chl a. During late summer the 

prasinophytes accounted for 15% of the total chl a. 
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Figure 2.8 Phytoplankton composition derived from pigments from HPLC analysis of samples 
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Table 2.2 Phytoplankton composition by cell count of field trips undertaken in the Huon 
Estuary. Cell counts for the first trip 28-29/05/2003 were not available. 

TAXON 
Huon 23/09/2003 
(cells 1 .1 ) 

Huon 18/11/2003 

(cells 1 -1 ) 

Huon 24/02/2004 
(cells 0) 

Amphora 54 
Cerataulina pelagica 682 519 
Coscinodiscus sp 21 319 871 
Lauderia annulata 86 82 
Melosira 352 
Nitzschia closterium 793 2385 49499 
Nitzschia sp 91 
Pleurosigma 18 171 
Pseudonitzschia pseudodelicatissima 1248 2136 19234 
Guinardia striata = Rhizosolenia 
stolterfothii 569 56 
Skeletonema costatum 521 1602 938150 
Eucampia 360 
Grammatophora 311 
Paralia 280 
Guinardia delicatula = Rhizosolenia 
delicatula 227 936 
Corethron criophilum 77 
Chaetoceros spp > 10um 401 1988 6630 
Chaetoceros spp < 10um 1681 29695 
Leptocylindrus danicus 91 341 104 
Guinardia flaccida 9 41223 61 
Dactyliosolen fragillissimus = Rhizosolenia 
fragillissima 4607 1608 
Rhizosolenia fallax 58 557 787 
Gymnodinioid dinoflagellate 15um 273 
Prorocentrum 15 
Ceratium spp 27 1024 226 
Dissodinium (Pyrocystis) lunula 13 
Dinophysis spp 36 228 344 
Gymnodinium catenatum 132 33 2657 
Mesodinium rubrum 1450 
flagellates 5-10 urn round 863 1355 

2.3.6 Comparison of Nitrate, Ammonium and Urea uptake: all 

Huon Estuary data. 

In terms of understanding the nutrient dynamics of the Huon Estuary the comparison 

of nitrate, ammonium and urea uptake is the most basic, and potentially the most 

useful, for comparison with other studies. Paired t tests showed there was no 
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significant difference between sites for NH4+  (P=0.612), NO3-  (P=0.565), urea 

(P=0.194) and combined N (NH4++NO 3-  +urea )(P=0.327). This enabled pooling of 

data across sites. For each measurement of NO 3-  uptake there was a corresponding 

measure of NH4  + and urea uptake. There were significant differences between NH 4  +, 

NO3-  and urea uptake rates (P=<0.001). Pair-wise comparisons between them 

revealed that uptake of NH4 +  was statistically greater than the uptake of NO 3-  and 

urea. And urea uptake was also statistically greater than nitrate uptake. 

Table 2.3 An overall comparison of the uptake of nitrate, ammonium and urea by phytoplankton 
in the Huon Estuary sampled during four seasons, at two locations, two times of day and two 
depths (n=96). 

nitrogen 
source 

median 
uptake rate 

mean 
uptake rate 

std. 
dev. 

std. 
err. 

% total 
uptake 

specific 
uptake a  

uptake b  

NH 4+  

NO3-  

Urea 
NH4+  
NO3-  
Urea 

0.082 

0.018 

0.042 

0.031 

0.009 

0.015 

0.133 

0.027 

0.096 

0.090 

0.019 

0.071 

0.145 

0.028 

0.126 

0.13 

0.03 

0.133 

0.015 

0.003 

0.013 

0.014 

0.003 

0.014 

52.0 

10.5 

37.5 

50.3 

10.6 

39.7 

(pg N-gg chla-l • 	) 
b  (ug N.L-I  hour') 
c  total uptake = 	+ NO3 -  + Urea 
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Figure 2.10 Mean specific uptake rates for ammonium, nitrate and urea averaged across all 
depths, times, and seasons). Standard error are displayed (n=96) and where there are different 
subscripts on the bars there were significant differences. 

2.3.6.1 Effect of season on combined nitrogen uptake and specific uptake of 

different nitrogen species 

The difference in combined N (NH4++NO3-  + urea) uptake between the four field 

trips was examined (Figure 2.11). Combined N uptake was at its lowest (0.010 lig N 

r' if') on the late autumn field trip (28-29/05/2003). The early and late spring field 

trips (23-24/09/2003 and 18-19/11/2003) were both increased (0.201 and 0.282 lig N 

F' h- ', respectively) compared to the late autumn field trip (28-29/05/2003). However 

Combined N uptake was at its greatest (0.820 jig N r' if') in late summer (24- 

25/02/2004). 

When combined N (NH4++NO3-  + urea) uptake was standardised to chi  a, there was a 

slightly different pattern (Figure 2.12). Combined N uptake was lowest in late 

autumn and late spring. Combined N uptake in early spring and late summer were 

both significantly greater than in late autumn, however late spring was not 

significantly different to early spring. Only late summer combined N uptake was 

significantly greater than late spring. 
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Figure 2.11 Mean combined nitrogen uptake (NH 4++NO3  --I-urea pooled across both sites) in the 
surface (5m) and during the day for the four field trips in the Huon Estuary. 95% confidence 
intervals (n=6) are displayed and significant differences between field trips are indicated where 
subscripts on bars are different. 
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Figure 2.12 Mean specific combined nitrogen uptake (NH 4++NO3 -+urea pooled across both sites) 
in the surface (5m) and during the day for the four field trips in the Huon Estuary. Standard 
error bars (n=6) are displayed and significant differences between field trips are indicated where 
subscripts on bars are different. 

The pattern of specific N uptake between NH4 +, NO3 and urea was unique for each 

of the fieldtrips (Figure 2.13). On the late autumn field trip (28-29/05/2003) NH4+  

uptake (0.040 jig N jig chl a If') was ten times greater than NO 3  - uptake (0.003 jig N 

jig chl a W I ), but urea uptake (0.017 jig N jig chl a If') was not different from either 

NH4+  or NO3 - uptake. The early spring field trip (23-24/09/2003) showed a similar 
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Figure 2.13 Uptake of NH 4+ , NO3  - and urea in the surface (5m) during the day in A) 28 May 
2003, B) 23 September 2003, C) 18 November 2003, D) 24 February 2004. 95 % confidence 
intervals (n=6) are displayed and different subscripts on bars indicate where there are 
Significant differences. 

2.3.6.2 Effect of Season, time of day and depth on ammonium uptake 

Main Factors: Season, time of day and depth were all significant for  NH4+  uptake 

(Table 2.4). However, an unambiguous interpretation of the main effects for NH 4+ , 
51 



was not possible because there was an interaction between season, time of day and 

depth, such that the effect on one factor is not consistent at all combinations of the 

other factors. 

There was an interaction between season and depth for NH4 +, but it was further 

complicated by the fact that the interaction between season and depth in the surface 

(5m) is dependent on the level of time of day (Figure 2.14 A and B). NH 4+  uptake 

during the day at surface (5m) was lowest in late autumn, 0.040 ggN jig chl a 1  h'. 

NH4+  uptake during the day at surface (5m) increased by 4 times or more in early 

spring, late spring and late summer, 0.248, 0.186 and 0.238 pigN jig chid' 

respectively. In late spring at the surface (5m) NI-1 4+  uptake decreased by —4 times 

from 0.186 during the day to 0.044 j.igN jig chi d i  h', during the night. At the surface 

(5m) during late autumn, early spring and late summer there was no effect of time of 

day on uptake of NH4+ .At depth (20m) the interaction between season and depth is 

not dependant on the time of day (Figure 2.15). NH 4+  uptake at bottom (20m) during 

late autumn and late spring respectively 0.012 and 0.020 ligN ligchlci l  W I , was 

between 5-10 times lower than in early spring or late summer respectively, 0.103 and 

0.114 j.igN pig chl d i  W I . There were no significant differences in NH 4+  uptake when 

time of day was evaluated at depth (20m) when the four field trips were averaged 

(Figure 2.16). 
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Figure 2.14 Mean NH 4+  uptake from four field trips A) Day at surface (5m) and B) Night at 
surface (5m). 95% Confidence intervals (n=6) are displayed and different subscripts on bars 
indicate where there are significant differences between fieldtrips. Where there is an * on bars 
from the same field trip in both A) and B) subfigures this indicates a significant difference 
between them. 
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Figure 2.15 Mean NH 4+  uptake from four field trips at depth (20m). 95% Confidence intervals 
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Figure 2.16 Mean NH 4+  uptake during the day and night at depth (20m). 95% Confidence 
intervals (n=24) are displayed and different subscripts on bars indicate where  there  are 
significant differences. 

2.3.6.3 Effect of Season, time of day and depth on nitrate uptake 

The effects of the main factors, season and depth, had significant effects upon NO3 -  
uptake (Table 2.4). The effect of season on NO 3 -  was dependant  on  the depth. The 

time of day (day or night) did not have a significant effect on uptake of NO 3-. There 

was no effect of time of day on uptake of NO3-  during any  of  the field trips. There 

was an interaction between season and depth for NO3 -. In the surface (5m) uptake of 

NO3-  was lowest in late autumn, 0.002 lig N i.tg chl d 1  11-1 , when compared to all the 

other field trips (Figure 2.17). In the surface (5m) NO3 -  uptake  was  greater in both 

early spring and late summer, 0.046 and 0.053 ii.g N i.ig chla 1  114  in late  autumn or 

late spring. The NO3 -  uptake in late spring in the surface 0.022 pig  N gg  chl a -1  11 1  
was approximately 10 times greater than in late autumn but less than half of the NO3 -  

uptake rates for early spring and late summer in the surface (5m).  At depth  (20m) 

NO3-  uptake was low in late autumn, late spring and late summer,  0.0038,  0.0065 

and 0.01 jig N jig chi d 1  II I , but during early spring there was an increase in NO3 -  

uptake by —5 times. In late spring at bottom (20m), NO3 -  uptake  was 3.3  times lower 

than late spring in the surface (5m). In late summer at bottom (20m)  NO 3-  uptake 

was 5.5 times lower than late summer in the surface (5m). 
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Figure 2.17 Mean NO 3 -  uptake from four field trips A) surface (5m) and B) depth (20m). 95% 
Confidence intervals (n=12) are displayed and different subscripts on bars indicate where there 
are significant differences between fieldtrips. Where there is an * on bars from  the  same field 
trip in both A) and B) subfigures this indicates a significant difference between them. 

2.3.6.4 Effect of Season, time of day and depth on urea uptake 

The main factors of season, time of day and depth all had significant  effect  on urea 

uptake (Table 2.4). The effect of season on urea uptake was dependant on the depth 

(Figure 2.18) and time of day (Figure 2.19). There was also an interaction between 

time of day and depth for urea uptake (Figure 2.20). 

Uptake of urea during the day was at its lowest in late autumn (0.011  ilg  N jig chl a-1  

h-1 ) and late spring (0.019 jig  N  jig chl a t  11 1 ). Early spring (0.075 ps N jig chl a -1  h-

i) and late summer (0.111 jig  N  pig chl d i  II I ) urea uptake during the  day  was at least 

3 times greater than late autumn and late spring uptake. Urea uptake  at  night in early 
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spring (0.116 jig N jig chl a -1  h-1 ) and late spring (0.061 jig N jig chi a 1  h1 ) was 1.5- 

3 times greater than uptake during the day in early spring and late spring. 

Uptake of urea in the surface (5m) was least during late autumn, 0.014 jig N jig chl d 

I  h-1  (Figure 2.19). Compared to late autumn urea uptake in the surface (5m) during 

early spring and late spring increased by almost 10 times to 0.123 and 0.087 jig N jig 

chl a-1  h-1  respectively. The greatest urea uptake in the surface (5m) was during late 

summer, 0.286 pig N jig chl a1  h-1 . At depth (20m) Urea uptake was 10-20 times 

greater in early spring (0.07 jig N jig chl a -1  h-1 ) and late summer (0.046 ggN jig N 

jig chl a1  h1 ) than in late autumn (0.004 jig N jig chi a -1  h-1 ) and late spring (0.006 

ggN jig N jig chl a -1  h-1 ). 

Uptake of urea was — 2 times greater at night in the surface (5 m) (0.134 jig N jig chl 

a-1  h-1 ) compared to the day in the surface (5m) (0.073 jig N jig chl d 1  h-1 ) (Figure 

2.20). During the day, urea uptake in the surface (5m) (0.073 jig N jig chl a -1  h-1 ) was 

—3 times greater than urea uptake in the bottom (20m) (0.025 jig N jig chi a1  h-1 ). 

During the night urea uptake in the surface (5m) (0.134 jig N jig chl a -1  h-1 ) was 4.8 

times greater than urea uptake in the bottom (20m) (0.028 jig N jig chl a -1  h-1 ). 
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Figure 2.18 Mean Urea uptake from four field trips A) surface (5m) and B) depth (20m). 95% 
Confidence intervals (n=12) are displayed and different subscripts on bars indicate where there 
are significant differences between fieldtrips. Where there is an * on bars from  the  same field 
trip in both A) and B) subfigures this indicates a significant difference between them. 
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Figure 2.19 Mean Urea uptake from four field trips A) Day and B) Night. 95% Confidence 
intervals (n=12) are displayed and different subscripts on bars indicate where there are 
significant differences between fieldtrips. Where there is an * on bars from the same field trip in 
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Figure 2.20 Mean Urea uptake during the day and night and at surface (5m) and depth (20m). 
95% Confidence intervals (n=24) are displayed and different subscripts on bars indicate where 
there are significant differences. 
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Table 2.4 Summary of effects of season, depth, time of day and any interactions between these 
factors on the uptake of NH4+, NO3-  and urea. See Materials and Methods for details of statistical 
analysis. 
Factor NH4+  NO3-  Urea 

Season (S) Significant effect Significant effect Significant effect 

P=<0.001* P=<0.001* P=<0.001* 

Time of day Significant effect No effect Significant effect. 

(T) P=<0.001* P=0.001* 

Depth (D) Significant effect Significant effect Significant effect 

P=<0.001* P=<0.001* P=<0.001* 

S x T Significant 

interaction 

No interaction No interaction 

P=0.039 

S x D Significant Significant Significant 

interaction. interaction. Interaction. 

P=0.031 P=<0.001. P=<0.001. 

D x T No interaction No interaction Significant 

interaction. 

P=0.005. 

SxDxT Significant 

interaction. 

No interaction No interaction 

P=0.005 

* Main effects do not have a simple interpretation because the factor's effect depends upon the 
level of another factor. Need to look at interactions of this factor with other factors. 

2.3.6.5 % N uptake for NH4÷, NO3" and urea 

NH4+  made up for more than 50% of the N uptake for each of the four field trips 

(Table Table 2.6). During the late autumn field trip NH4 +  was at its greatest 

percentage (62.7%) of the N uptake. Urea uptake was the next most important 
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component of N uptake, ranging from 28.5-41.6%. Whilst NO 3 -  made up the smallest 

percentage (7.3-15.8%) of the N uptake for each of the four field trips. The 

percentage of N uptake made up by NO3 -  was greatest in the early and late spring 

field trips, 15.8 and 10.3% respectively. 

Table 2.6 Percentage of N uptake (NH4+NO3+Urea) for each of the four fieldtrips (Combined 
Times and Depths) 
Field trip % N H4+  % NO3" % Urea 

28-29/05/2003 62.7 8.8 28.5 

23-24/09/2003 52.4 15.8 31.8 

18-19/11/2003 50.7 10.3 39.0 

24-25/02/2004 51.1 7.3 41.6 

2.4 Discussion 

2.4.1 Comparison of N uptake characteristics of the Huon Estuary 

with other ecosystems 

Nitrogen uptake rates in the Huon Estuary are at low end of the range found in many 

other estuaries and coastal ecosystems that have been studied (Bode etal., 2005, 

Rosser & Thompson, 2001, Twomey et al., 2005, Veuger etal., 2004, Tremblay et 

al., 2000, Furnas, 1983, Furnas etal., 1986, Bode & Dortch, 1996, Fernandez et al., 

1996) . The low absolute rates of nitrogen uptake reflect the generally low biomass 

of phytoplanlcton found in the Huon Estuary. Analysis of more than 1000 samples 

from more than 20 sites collected during 1996-1998 in the Huon Estuary gave a 

median chlorophyll a concentration of 0.60 ug L-1  (Team, 2000). The low median 

biomass indicates the Estuary is largely oligotrophic. In comparison many of the 

other estuaries, fjords and coastal regions that have been studied are subject to higher 

nitrogen concentrations and are categorized as eutrophic for example, Chesapeake 

Bay (Glibert et al., 1991, McCarthy et al., 1977), Swan-Canning Estuary (Rosser & 

Thompson, 2001), the Thames (Middelburg & Nieuwenhuize, 2000), Neuse River 
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Estuary (Boyer etal., 1994, Twomey et al., 2005), and the Pearl river estuary (Yin et 

al., 2000). 

Mean specific uptake rates for the Huon Estuary were: NH4 +  (0.133 jig N.pg 

), urea (0.096 jig N-pg chla t  II I ) and NO3-  (0.027 jig Nlig chief I . li t ). Whilst 

these N uptake rates are low in comparison to other ecosystems as discussed above, 

the phytoplanlcton of the Huon Estuary show similarities in nitrogenous nutrition to 

the N uptake characteristics of phytoplankton from the majority of these other 

estuarine, coastal and oceanic ecosystems. 

The overall composition of N uptake in the Huon Estuary for NH4+, NO3-  and urea 

52, 10.5 and 37.5 % respectively. Reduced forms of N (NH4 +  and urea) made up 

89.5% of the N taken up, a result consistent with overall N uptake in many estuarine, 

coastal and some oceanic ecosystems: NH4+  and urea were taken up preferentially in 

Chesapeake Bay (McCarthy et al., 1977), In the western English Channel 

Regenerated forms of N accounted for up 70% of the overall N uptake (L'Helguen et 

al., 1993), in the southern Atlantic near Brazil, NH 4+  and urea accounted for 74% 

and 96% of oceanic and coastal N uptake, respectively (Metzler et al., 1997), in the 

Swan-Canning Estuary evidence showed that NH 4+  was most important N source 

overall (Rosser & Thompson, 2001) and at Station P in the Pacific over a long time 

series NH 4+  and urea were responsible for the majority of the primary production 

(Harrison, 2002). 

The overall N uptake characteristics are useful in understanding an ecosystem and 

which types of N are most important for supporting primary productivity on a large 

scale. The magnitude and composition (NH4+, NO3-  and urea) of N uptake by 

phytoplankton is, however, affected by physical conditions like temperature, 

irradiance, and substrate concentrations which change on a range of temporal and 

spatial scales, So to understand N uptake in the Huon Estuary the effect of depth 

(surface 5m or bottom 20m), time of day (day or night) and Seasons: late autumn, 

early spring, late spring and late summer on magnitude and the composition (NH4 + , 
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NO3-  and urea) of N uptake were examined. These result provide insight into 

phytoplankton strategies and dynamics of Huon Estuary phytoplankton assemblage as 

relevant to N uptake. Season and depth were responsible for most of the variation in 

NH, NO3-  and urea uptake with less effect of time of day. For this reason the 

following discussion on uptake of individual N species (NH4 +, NO3-  and urea) 

focuses on the effect of season and depth. For NI-I4+  and NO3-  season was 

responsible for the majority of the variation and depth was responsible for less 

variation but still important. For urea, however, depth was responsible for the 

majority of the uptake variation, followed by season and with time of day responsible 

for the least. 

2.4.2 Late autumn 

During late autumn the chlorophyll a concentrations at 5 and 20m were — 0.2 gg 

the lowest observed. There was a slight rise in concentration to — 0.6 gg L-1  closer to 

the surface. Based on the presence of peridinin CHEMTAX (Mackey et al., 1996) the 

dominant taxa were dinoflagellates with 48% of the total chlorophyll a. The 

dominant species were G. catenatum and Ceratium spp. (Thompson et al., 2008). 

Late autumn dominance of the phytoplankton community by dino flagellates is a 

common situation in temperate estuarine ecosystems (Marshall et al., 2005, Smayda 

& Reynolds, 2001, Lopes et al., 2007). In the Huon Estuary this high percentage of 

dinoflagellates probably represents a residual summer-autumn community which may 

be better adapted to growth at higher temperatures. The near zero growth rate of G. 

catenatum at 12°C (see Figure 3.22 Chapter 3) suggests it would be severely 

disadvantaged at 13.5°C relative to the growth rates of many other species at this 

temperature (Eppley, 1972). For example the diatom Skeletonema costatum, was also 

present in the Huon Estuary, and has been reported to grow at a rate of-3 divisions 

per day at 10°C (Falkowski, 1977). 

During the late autumn field trip combined N uptake was low 0.010 jig N 	—86 

times less than the greatest absolute uptake from the late summer field trip. Nitrogen 
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uptake rates are typically low in late autumn/winter (L'Helguen et al., 1996, 

Wilkerson etal., 2006, Collos etal., 2003, Wafar etal., 2004) because of low 

irradiance and/or low temperature which limit phytoplankton growth. Specific 

uptake of NH4+, NO3-  and urea made up for 62.7, 8.8 and 28.5% of the total specific 

N uptake respectively. NH4 +  and urea made up 91.2 % of the total N uptake in 

autumn. That NO3 -  contributes only 8.8% of total N uptake in the Huon in late 

autumn is likely because the residual summer-autumn phytoplankton community is 

not well adapted to using NO3-  (late autumn ambient NO3-  —4uM). The distribution 

of uptake between N forms in the Gulf of St Lawrence during autumn was very 

similar to that seen in the Huon Estuary, with NH4 +  (62%) and urea (28%) being 

preferred while NO3 -  only made up 10% of the total N uptake (Tremblay et al., 

2000). In contrast, however, to the Huon Estuary the low nitrate uptake during 

autumn in the Gulf of St Lawrence may be a result of the low ambient NO3 -  

concentrations (<1 11M at 3 of 4 stations). In the Western English Channel during 

autumn there were some differences in N composition compared the Huon Estuary. 

NH 4+  accounted for only 45% of the total N uptake and NO 3-  and urea almost equal 

amounts 23 and 21% respectively and NO2 -  made up the remaining 10% (Wafar et al., 

2004). The relatively high ambient NO3 -  concentrations (4-5 tiM) coupled with a 

phytoplankton assemblage adapted to exploit are responsible for the increase in NO3 -  

uptake but clearly NH 4+  and urea were still the preferred N sources in autumn as they 

were being taken up at higher rates than NO 3-  while ambient NH4+  concentrations 

(0.1 ttM) are much lower in comparison to NO3 - . 

2.4.3 Early spring 

Chia increased from late autumn to early spring by —1.3 and —1.5 times in the surface 

and bottom respectively. CHEMTAX showed a significant shift in phytoplankton 

composition towards diatoms based on the increase in the pigment fucoxanthin. The 

dominant diatoms by abundance were Pseudonitzschia pseudodelicatissima, 

Nitzschia closterium and Skeletonema costatum. There were also low numbers of 

63 



Gymnodinium catenatum and a small Gymnodiniod dinoflagellate. A shift to diatom 

dominance is typical of spring phytoplanIcton assemblages in temperate locations 

(Smayda, 1980) 

Uptake of NH4+, NO3-  and urea increased by —20 times from late autumn to early 

spring. This increase in N uptake coincided with the lowest temperatures of all the 

field trips (12°C) and a 4 -5 times increase in irradiance when compared with 

irradiance from the late autumn fieldtrip. Both NH 4+  (51.4%) and urea (31.8%) were 

still the largest component of the total n uptake, But the greatest NO3 -  uptake rates 

were measured during this early spring field trip (16.9 %) in comparison to the other 

field trips. Peak NO3 -  uptake rates are associated with a diatom dominated spring 

bloom in other temperature marine ecosystems e.g., the Gulf of St Lawrence 

(Tremblay et al., 2000), Menai Straight (Rodrigues & Williams, 2002) and San 

Fransisco Bay (Wilkerson et al., 2006). The low temperatures and high irradiance 

typical of spring conditions in temperate locations can create a situation where 

phytoplankton cells capture more light energy than they are capable of converting to 

growth. It has been hypothesized that one component of the diatoms' ability to 

exploit these spring conditions could be an ability to take up NO3 -  and reduce it using 

excess photosynthetic energy, then releasing the more reduced N forms (NO 2-, NH4+  

and DON), thus using up potentially harmful excess energy(Lomas & Gilbert, 1999). 

2.4.4 Late Spring 

Chlorophyll a increased from early spring to late spring, by —3 and —8 times in the 

surface and bottom depths respectively. The large increase in chl a at the bottom to a 

concentration — 2 times the surface chi a suggests the decline and subsequent sinking 

of the spring bloom as observed in other ecosystems with strong diatom communities 

(Waite et al., 1992a, Waite et al., 1992b). The absolute and specific N uptake rates 

were not significantly different relative to early spring, however, the late spring 

absolute uptake rate increased by —1.4 times from the early spring. This increase was 

associated with a large increase in phytoplankton biomass. In addition the specific N 
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uptake rate decreased by —1.5 times from the early spring suggesting that the 

phytoplanlcton assemblage may be N limited (Smith, 1982, Howarth et al. , 1988). 

Simultaneously ambient NO3" concentrations and N:P ratios all indicate the likelihood 

of N limitation in late spring (Figure 2.21). The molar N:P during late spring was 2.3, 

or about 2 times less than in late autumn and early spring and well below the Redfield 

ratio for N:P of 16 (Hecicy & Kilham, 1988). The ambient concentrations of NO 3 -  

fell from —4 1.tM in early spring to 0.2111M in late spring at the surface. These 

concentrations are well below 1 gM, the half saturation constant for uptake NO 3" by 

coastal phytoplankton assemblages (Dortch, 1990, Eppley etal., 1969). It appears 

likely that it is N limiting growth and indirectly responsible for the sinking of the 

spring bloom as was the case in the sub arctic study (Waite et al., 1992a). 
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Figure 2.21 Change in surface (5m) A) NO 3-  (11M) and B) N:P on the four field trips in the Huon 
Estuary. Reference lines are included for half Saturation constant (Ks) for NO 3-  uptake by 
coastal phytoplankton (Eppley et al., 1969) and Redfield ratio for N:P (Redfield, 1958) 

2.4.5 Late Summer 

In contrast with late spring where phytoplankton biomass was greatest at the bottom 

(20m) due to the decline and sinking of the spring bloom, during late summer the 

greatest chi a concentration of all field trips, 1.21.1.g r' was at the surface (5m). At the 

bottom (20m) chl a had fallen to a concentration, 0.25 tg r' comparable to the low 

concentrations in the bottom (20m) during late autumn and early spring field trips.. 

In late summer the water temperature was at 15.5 °C, the highest temperature of all 

the fieldtrips and irradiance in the surface (5m) was 267iimol photons 1112  

relatively high in comparison to the irradiance from the late autumn fieldtrip at the 

same depth. These favourable conditions for phytoplankton growth coupled with a 
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stratified water column result in a mixed phytoplankton assemblage. The most 

dominant phytoplankton groups represented in this phytoplankton assemblage 

according to CHEMTAX analysis of pigments, were in order of dominance: diatoms, 

cryptophytes, dinoflagellates. The most abundant diatoms by abundance were 

Pseudonitzschia pseudodelicatissima, Nitzschia closterium and Skeletonema 

costatum. The dinoflagellates were dominated by Gymnodinium catenatum but 

Dinophysis spp and Ceratium spp. were also present in reasonable abundance. The 

CHEMTAX identification of cryptophytes during late summer associated with 

relatively high concentration of alloxanthin is hypothesized to represent mostly 

pigmented Dinophysis species. Their chloroplasts that originate from cryptophytes 

via the intermediate host of Myrionecta rubra (=Mesodinium rubrum)(Nagai et al., 

2008, Park etal., 2006). There has not yet been any ecological studies of this 

complex multi trophic level interaction since the recent discovery that it was required 

for alloxanthin to be present in Dinophysis (Nagai et al., 2008, Park et al., 2006). A 

mixed phytoplankton assemblage, including diatoms and dinoflagellates in summer 

is characteristic of the Huon Estuary (Team, 2000) and other temperate estuaries and 

coastal areas including Chesapeake Bay (Adolf et al., 2006, Marshall et al., 2005) 

The specific N uptake in late summer was 9 times greater than during late autumn but 

was not significantly different to the specific uptake rates measured in early spring. 

Whilst the magnitudes of specific N uptake during late summer and early spring were 

not significantly different, there were notable differences in the importance of the 

various N substrates. Ammonium uptake was equally important during early spring 

and late summer being 52 and 51 % of total N uptake, respectively. The differences 

were in NO3" uptake which peaked in early spring at 16% but was only half that in 

late summer. During late spring and late summer ambient NO3" concentrations of — 

0.2 11M were well below the half saturation constant for coastal phytoplankton limit 

the capability of phytoplankton to take up nitrate at the surface. In contrast urea 

reached its greatest concentration in late summer and made up the greatest proportion 

of N uptake for the late summer fieldtrip at 42%. The importance of urea and other 
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forms of DON in summer has been reported in many systems including: Neuse River 

Estuary (Twomey et al., 2005), Chesapeake Bay (Lomas et al., 2002), and the Scheldt 

Estuary (Andersson et al., 2006). 

2.4.6 Summary 

Ammonium uptake was most important throughout the year. Nitrate uptake, 

however, played an important role in the early and late spring. The results are 

consistent with the hypothesis that NO3 - may be important as a method for diatoms 

to get rid of excess energy in the high irradiance conditions that spring produces. 

Urea was important as a N source in all seasons but, particularly during late spring 

and late summer when NO 3  - was in low supply. 

Overall the uptake of N in the Huon Estuary was dominated by NH4 +  (52%). 

Considering the availability of the various forms of N the ammonium preference 

shown by the phytoplankton community was 9 times greater than for nitrate. These 

results are consistent with those from other ecosystems. The strong dependence of 

phytoplankton in the estuary on NH 4+  and urea for N highlights the need to know 

both the input of N into the ecosystem and the rates of nutrient cycling to manage this 

ecosystem. 

68 



B) NO3-  

ful T  

0.10 	 

0.08 - 

0.06 - 

0.04 - 

0.02 - 

0.00 

0.5 	 

0.4 - 

0.3 

0.2 

0.1 

0.0 

A) NH4+  
MM Day 5m 
I Day 20m 

Night 5m 
I 1 Night 20m 

N
 u

pt
ak

e  
(ji

g
  N

 n
  C

hi
a  

h-
1)  

N
 u

pt
ak

e  
G

ig
  N

 p
g  

C
hi

a  
h-

1)  
N

 u
pt

a
ke

  (
lig

  N
 p

g  
C
hi

a  
h-

1)  
2.5 Appendix 

0.5 

C) Urea 

Ii JIT  

Jun 
	

Jul 	Aug 	Sep 	Oct 	Nov 	Dec 	Jan 
	

Feb 	Mar 

2003-2004 

Figure 2.22 Mean uptake rates (from Hideaway Bay and Garden Island) during the day at 5m, 
night at 5m, day at 20m and night 20m for A) NH 4+, B) NO3" and C) Urea. Error bars are 95% 
Confidence intervals. Note the different N uptake scale for NO 3- . 

0.4 - 

0.3 - 

0.2 - 

0. 1 - 

0.0 
May Apr 

69 



Table 2.4 Results of ANOVA for effect of Season on absolute nitrogen uptake during the day and 
at surface (5m) in the Huon Estuary.  
Source of Variation 	OF 	F 	P  
Season 	 3 	79.195 	<0.001 
Residual 	 20 
Total 	 23 

Table 2.5 Results of ANOVA for effect of Season on specific nitrogen uptake during the day and 
at surface (5m) in the Huon Estuary.  
Source of Variation 	DF 	F 	P  
Season 	 3 	16.111 	<0.001 
Residual 	 20 
Total 	 23 

Table 2.6 Results of ANOVA for effect of Season on specific uptake of NH4, NO3 and Urea 
during the day and at surface (5m) in the Huon Estuary. 

Source of Variation DF F P 
Season (S) 3 46.612 <0.001 
Nitrogen Species (N) 2 55.956 <0.001 
S x N 6 4.666 <0.001 
Residual 60 
Total 71 

Table 2.7 Results of ANOVA for effect of Season, time of day and depth on NH4+  uptake in the 
Huon Estuary 
Source of Variation DF F P 
Season (S) 3 62.908 <0.001 
Time of day (T) 1 15.021 <0.001 
Depth (D) 1 58.071 <0.001 
S x T 3 2.930 0.039 
S x D 3 3.099 0.031 
T x D 1 0.045 0.833 
SxTxD 3 4.549 0.005 
Residual 80 
Total 95 

Table 2.8 Results of ANOVA for effect of season, time of day and depth on NO 3-  uptake in the 
Huon Estuary. 
Source of Variation OF F P 
Season (S) 3 53.774 <0.001 
Time of day (T) 1 1.472 0.229 
Depth (D) 1 22.495 <0.001 
S x T 3 2.515 0.064 
S x D 3 15.374 <0.001 
T x D 1 2.249 0.138 
SxTxD 3 0.0214 0.478 
Residual 80 
Total 95 
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Table 2.9 Results of ANOVA for effect of season, time of day and depth on urea" uptake in the 
Huon Estuary. 
Source of Variation DF F P 
Season (S) 3 63.157 <0.001 
Time of day (T) 1 12.492 <0.001 
Depth (D) 1 113.643 <0.001 
S x T 3 3.368 0.023 
S x D 3 15.095 <0.001 
T x D 1 8.293 0.005 
SxTxD 3 2.702 0.051 
Residual 80 
Total 95 
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3 EFFECT OF TEMPERATURE AND 

IRRADIANCE ON THE GROWTH AND 

BIOCHEMICAL COMPOSITION OF THE 

TOXIC DINOFLAGELLATE 

GYMNODINIUM CATENATUM FROM 

SOUTH-EAST TASMANIA, AUSTRALIA 

3.1 Introduction 

To increase our understanding of Huon Estuary bloom dynamics and their inter-

annual variability it is necessary to characterise the physiological responses of the 

dominant species to different temperature and irradiance conditions. Gymnodinium 

catenatum (G. catenatum) has been identified as an important part of the 

phytoplankton community whose bloom dynamics are poorly understood in the Huon 

Estuary. Several studies have examined the effect of temperature on other strains of 

G. Catenatum (Bravo & Anderson, 1994, Ellegaard et al., 1993, Band-Schmidt et al., 

2004) but these are limited in their scope and application in models as they only 

examine growth at one irradiance, more recently Yamamoto, et al., (2002) has 

examined the effect of temperature on a Japanese strain and published the first 

growth versus irradiance curve for this species. 

The effect of temperature and irradiance on growth in phytoplanIcton has been studied 

widely. The effect of temperature on growth rate of phytoplankton has been 

described by a variety of relationships including exponential (Eppley, 1972), Linear 

(Montagnes etal., 2003), and even Sigmoid (Bouterfas et al., 2002). In general, 

growth rate increases with temperature to a maximum. At temperatures greater than 

the temperature where growth is at its maximum there is a sharp decrease in growth 
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rate. Thompson (2006) has reviewed several models for the effect of growth rate on 

phytoplankton and concludes that "Logan's (1976) model provides the best 

parameterisation of the empirical relationship between temperature and micro-algal 

growth rate". While generalised models of growth rate as a function of temperature 

have been developed in the past increasingly models capable of predicting species 

succession and phytoplankton community composition are required to better manage 

our ecosystems. Hence, there is a growing need for species specific models for effect 

of temperature on growth rate. 

The relationship between growth rate and irradiance has been described by a number 

of saturating curves (rectangular hyperbola). The advantages and disadvantages of 

more commonly used curves has been investigated by Jassby and Platt, (1976). 

These curves can all be used to estimate parameters such as gmm„ a, and Ek. Where 

gmax  is the maximum growth rate above which increases in irradiance do not increase 

growth rate, a is the initial slope of the light limited section of the curve and Ek is the 

irradiance coefficient (irradiance at the point where the initial slope intercepts the 

Ilmax). Some of the models include a parameter for the compensation irradiance, Ec 

(irradiance where growth=respiration) and most can be easily modified to include a 

parameter for E. 

The relationship between growth rate (g max) and temperature is well established and is 

discussed above, but the other parameters of growth versus irradiance curves (a, Ek 

and Ec) have also been shown to vary between classes of phytoplankton (Banse, 

1976) and with temperature (Verity, 1982b, Yoder, 1979). Unfortunately there are 

only relatively few studies (Li & Morris, 1982, Thompson, 1999, Geider et al., 1985, 

Verity, 1982b, Palmisano etal., 1987) that report how the physiological parameters a, 

Ek and Ec  vary in response to both light and temperature. Most of these use only a 

narrow, and sometimes inappropriate, range of temperatures and irradiances. These 

constraints limit both understandings of phytoplankton physiology and attempts to 

make the science more predictive. 

78 



More recently the mechanisms behind growth and physiological acclimation of 

phytoplankton to irradiance and temperature have begun to be elucidated. Of 

particular interest is the conclusion that seemingly opposite temperature and 

irradiance conditions result in the same responses: growth at high temperature and 

high irradiance is physiologically similar to growth at low temperature and a 

comparatively low irradiance (Maxwell et al., 1994). Biochemical components like 

chlorophyll a (chi a) content (quota) also show a similar response in these seemingly 

opposite temperature and irradiance conditions (Wilson et al., 2003). The reason for 

this is that the energy balance of the cell as determined by 'excitation pressure' on 

photosystem II (PS11) is what triggers the physiological response(s) of the cell. So at 

high temperatures reactions for growth are accelerated and the demand for energy by 

the cell is high. If the irradiance is sufficiently high to provide enough energy for the 

cell then chl a quota will be maintained at a low level. Because the rate of chemical 

reactions is rapidly reduced at lower temperatures, a similar response occurs at low 

temperature and at much lower irradiance where the cell cannot process very much 

light energy through the biochemical reactions of photosynthesis so that the 

excitation pressure on PSII is still high. Thus even at a low irradiance the chla quota 

will be maintained at a low level. At high or low temperatures under reduced 

irradiance it would be expected that the chl a quota would be increased to increase 

energy captured per cell but that the absolute irradiance that stimulates chl a synthesis 

will vary with temperature. Consequently understanding phytoplankton physiology 

requires that the effects of temperature and light be considered together because they 

both play a role in determining the physiological status of the cell. 

In this study the effect of temperature ranging from 12 to 28.5°C and irradiances 

from 5 to 458 pmoles of photons tn -2  s -1  on the growth rate and biochemical 

composition of a Huon Estuary strain GCHUO2 of G. catenatum were investigated, 

with the intention of determining: 

• the growth rates of a Huon Estuary strain of G. catenatum under different 

combinations of temperature and light; 
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• the physiological responses of this species to variation in irradiance and 

temperature, and; 

• the parameters necessary to model the gross growth rate of this species in the 

Huon Estuary. 

To achieve this, growth versus irradiance curves were constructed from the growth 

rates of each of the twelve different temperatures examined. A comparison of these 

results to other strains that have been isolated from a number of other coastal areas 

around the world is presented and discussed. Relationships between parameters of the 
growth versus irradiance curves with temperature were used to construct a model for 

the growth response of this species to a range of temperature and irradiance 

conditions likely to be encountered in the Huon Estuary and other temperate 
ecosystems that this species currently inhabits or may inhabit in the future. 

3.2 Methods 

3.2.1 Strain and culture conditions 

A toxic strain of G. catenatum, GCHUO2 (Ellegaard & Oshima, 1998) was used in 

this experiment. The GCHUO2 strain was isolated from the Huon Estuary on the 

6/6/1986 by Susan Blackburn This strain is maintained at the CSIRO Collection of 

Living Microalgae in GSe growth media at 20 °C. 

Stock cultures were maintained in 40 ml of a seawater medium (GSe) with GPM 

nutrients (Loeblich, 1975) and the addition of 10-8  M of Selenium (IV) in 50m1 

Erlenmeyer flasks at 18 °C, bottom illumination of 150 pimol photons m -2  s-I (Philips 

deluxe cool white fluorescent tubes) and a 12:12 light:dark cycle. Irradiances were 

measured with a Biospherical Instruments® QSL-100 meter using a 4 it spherical 

sensor. Experimental cultures were grown in GPM (Loeblich, 1975) + 10 -8  M of 

Selenium (IV) enriched medium prepared from seawater (collected from offshore 

eastern Tasmania, 42 36.00 S 148 14.00 E), treated with activated charcoal 
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(McLachlan, 1973), filtered (1gm, followed by 0.45 pm) autoclaved in a Teflon 

container, and adjusted to —28 practical salinity units (PSU) seawater adding sterile 

Milli-QV water (MQ). The nutrients were added via a sterile Millipore St erivexTM 

0.22 gm filter under the sterile conditions of a laminar flow hood (Clemco CF 435). 

Once sterile, all medium transfers and culture inoculations were undertaken in the 

sterile conditions of a laminar flow hood (Clemco CF 435). 

3.2.2 Temperature and irradiance gradient incubator table 

The experiment used a 45 mm thick aluminium block in which a temperature gradient 

could be established by heating one end and cooling the other using two different 

temperature water baths (Figure 3.1). The different irradiances were established at 

each temperature using different density computer generated black dots, laser-printed 

onto transparency film. The printed transparencies were placed between the 

fluorescent tubes and the cultures which were illuminated from underneath. At each 

temperature in the gradient table there were 6 different irradiances. The gradient table 

was designed to be used with 70 ml polycarbonate containers. A 50 ml borosilicate 

test tube (Pyrex' or KimaxTm) was attached to these containers via a polypropylene 

custom made adapter (Figure 3.2) so that the fluorescence could be easily measured 

by inverting the culture vessel and placing the test tube into a Turner Designs model 

10 AU fluorometer (Mountainview, California, USA). 

The irradiance inside an empty culture vessel was measured at each location in the 

gradient incubator table using a Biospherical Instruments® QSL-100 meter with a 4 TE 

spherical sensor (California, USA). Six fluorescent tubes (Osram cool white) were 

used to illuminate the gradient incubator table from below. 
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Figure 3.1 Layout of the temperature and irradiance gradient table. 
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Figure 3.2 70 ml polycarbonate container with 50 ml glass test tube attached to the top via a 
polypropylene custom made adapter. 
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3.2.3 Effect of culture vessels 

G. catenatum was grown in three different culture vessels to determine if the type of 

culture vessel affects growth rate in this species (after (Metaxas, 1989)). In 

particular, it was necessary to determine if the 70 ml polycarbonate container that had 

to be used with the temperature gradient table would have a negative effect on growth 

rate in comparison to other culture vessels commonly used in the laboratory. 

Qualitative effects of culture vessels have been observed on growth of G. catenatum 

before, however they have not been tested experimentally. Three replicate cultures 

were grown in 50m1 PyrexTm  or Kimax-rm  test tubes with polypropylene tops, 70 ml 

polycarbonate containers with 50 ml test tube "tops" (Figure 3.2) and 250 ml Pyrex I'm  

flasks with 50 ml test tube type side-arms and polypropylene tops. The cultures were 

inoculated so they would have a starting cell concentration of 1.12 x le 1: 1 . The 

cultures were grown at 18 °C, 130 mot photons r11-2  s-1  and a 12:12 L:D for nineteen 

days. Fluorescence of the cultures was measured every three to four days and initial 

and final cell counts were also taken so that the growth rate could be determined. 

3.2.4 Preconditioning of p, versus I experimental cultures 

Twelve cultures were grown at 18 °C and six irradiances ranging from 5 to 283 j.tmol 

photons t11-2  s-1  for three weeks to acclimatise the cells to the irradiances that would 

be used in the experiment. Using these cultures as inocula, temperature acclimation 

was incremental as follows. Twenty-four 70 ml polycarbonate containers each 

containing 48 ml GSe medium were added to the centre of the temperature and 

irradiance gradient table (18.2,18.9, 20.7 and 21.1 °C). At each temperature in the 

gradient incubator table there were six different irradiances. These vessels were 

inoculated with 2 ml from the irradiance acclimated cultures that had the closest 

irradiance to that location in the gradient incubator table. After a week the cultures at 

18.2 and 18.9 °C in the gradient incubator table were shifted to the next lowest 
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temperature and the cultures at 20.7 and 21.1 °C shifted to the next highest 

temperature. The shifted cultures were replaced by another twelve vessels inoculated 

from the appropriate irradiance acclimated cultures. Every four to five days this 

process was repeated until all seventy-two cultures had been added to the gradient 

incubator table. All the cultures were incubated at their experimental temperature for 

a further week prior to commencing the experiment described in section 3.2.5. 

3.2.5 Temperature and irradiance experiment 

From the seventy-two pre-experimental cultures, seventy-two new cultures were 

started in 70 ml polycarbonate containers with 50 ml test tubes attached via a custom-

made adaptor (Figure 3.2). These new cultures were set up by visually assessing the 
density of the acclimatised individual pre-experimental cultures (see section 3.2.4). 

Depending on their density, 1,2,5 or 10 ml was transferred using a pipette under 

sterile conditions into the new 70 ml experimental polycarbonate containers, and GSe 

medium was added to make up a total culture volume of 50 ml. At some of the low 

irradiance extremes pre-experimental cultures had shown little or no growth and new 

cultures were inoculated from another culture at the same temperature but a higher 

irradiance. These seventy-two new cultures of G. catenatum were grown at 12 

different temperatures: 11.9, 13.4, 15.5, 16.3, 18.2, 18.9, 20.7, 21.1, 22.8, 23.0, 24.9 

and 25.2 °C (temperatures are those measured when lights were on)and at six 

different irradiances ranging from 5 to 283 iAmol photons M-2  sl  for forty-nine to 

seventy-two days. The temperature, irradiance and initial cell densities of the G. 

catenatum cultures in the gradient table experiment are listed in Table 3.1 .The 

light:dark cycle used throughout this experiment was 14:10. One of the limitations of 

the gradient table experiment setup was that to achieve the irradiance conditions 

required for the experiment the fluorescent tubes providing the light had to be 

positioned almost immediately below the gradient table. Positioning the lights so 

close to the gradient table and cultures meant that when the lights were on it 

increased the temperature of some cultures. The cultures effected most by this 
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increase in temperature were those positioned in the lower temperature areas of the 

gradient table. When the lights were on some cultures increased in temperature by 

2 °C. To reduce this side effect of the lights increasing the temperature of some 

cultures a fan was added to dissipate the heat from under the gradient table. 

Some of the cultures incubated at low irradiances across all temperature treatments 
did not exhibit any growth over the period of forty-nine days. For these "no growth" 

cultures, 40 ml was removed for chlorophyll analysis and new media added to replace 

the amount removed. The cultures were then shifted to the next highest irradiance 

every three to four days, until these 'no growth' cultures that were originally at 

irradiances below 25 gmol photons in -2  s 1  were at irradiances greater than 60 gmol 

photons 111-2  s-1 . Throughout this twenty-three day period the fluorescence was 

measured four times. 

At the conclusion of these experiments on the effects of light and temperature it was 
apparent that at the highest temperatures the irradiances were not saturating growth 

(see section 3.3.2.2). Consequently some additional experiments at the extremes of 

high temperatures and high irradiances were conducted (see section 3.2.6). 
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Table 3.1 Temperature, irradiance and initial starting cell densities for each culture of G. 
catenatum in the temperature gradient table. 
Culture ID Temperature (°C) Irradiance (pMol photons m 4  s -1) Initial Cells/I 
Al 25.8 208 29000 
A2 25.6 208 38000 
A3 25.6 192 72000 
A4 25.6 183 52000 
A5 25.8 127 139000 
A6 25.6 78 95000 
A7 25.5 50 67000 
A8 25.4 43 33000 
A9 25 20 4000 
Al 0 25 15 6000 
All 25 8 14000 
Al2 25 6 8000 
B1 24 242 51000 
B2 24 225 26000 
B3 23.8 203 17000 
B4 23.8 178 35000 
B5 23.8 142 42000 
B6 23.8 77 18000 
B7 23.6 53 18000 
88 23.6 42 7000 
89 23.4 23 13000 
810 23.5 15 11000 
B11 23 9 0 
B12 23.2 8 1000 
Cl 22.4 238 3000 
C2 22.2 233 28000 
C3 22.2 197 10000 
C4 22 180 15000 
C5 22 125 12000 
C6 22 67 14000 
C7 22 50 13000 
C8 22 40 13000 
C9 22 27 20000 
Cl 0 21.8 16 7000 
Cl 1 21.8 8 4000 
C12 21.6 6 0 
D1 19.8 250 2000 
02 19.5 230 9000 
D3 20.2 187 12000 
D4 19.5 147 4000 
D5 20.2 123 10000 
06 19.5 80 5000 
07 20.2 47 3000 
D8 19.4 32 12000 
09 20 23 13000 
010 19.4 15 7000 
al 1 20 8 7000 
012 19 5 2000 
El 17.8 258 17000 
E2 17 217 9000 
E3 17.6 167 14000 
E4 16.8 150 40000 
E5 17.6 113 16000 
E6 17 67 12000 
E7 17.6 43 19000 
E8 16.8 33 10000 
E9 17.5 23 4000 
El 0 16.8 15 5000 
Ell 17.4 7 3000 
E12 16.8 5 5000 
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Table 3.1 continued 
Culture ID Temperature (°C) Irradiance (pMol photons m4  s-1 ) Initial Cells/I 
Fl 15 242 39000 
F2 13.2 175 7000 
F3 14.6 207 22000 
F4 12.8 167 10000 
F5 14.8 130 10000 
F6 13 63 57000 
F7 14.6 47 66000 
F8 13.2 37 21000 
F9 14.8 21 16000 
F10 13.2 13 10000 
Ell 14.5 8 3000 
F12 13 5 3000 

3.2.6 Growth at high temperature and high light 

3.2.6.1 Pre-acclimatisation 

Two cultures were acclimatised in 50 ml Erlenmeyer flasks at 25.6 °C at two higher 

irradiances 291 and 458 gmol photons T11-2  S-1  for eight days. The cell density of the 

acclimatised cultures was determined by cell counts at the end of the eight-day 

period. 

3.2.6.2 Culture conditions 

The cultures were illuminated from below with fluorescent tubes (Osram cool 

white). The light:dark period used was 14:10. 

3.2.6.3 Growth at 28.5 °C 

The 70 ml polycarbonate experimental vessels with 50 ml test tube attached via 

custom adapter (Figure 3.2) were filled with 50 ml of GSe medium and inoculated 

with 5 ml from the pre-acclimatised cultures (see section 3.2.6.1). The cultures were 

then grown at 291 and 458 gmol photons 111-2  s-1  with the temperature increased to 

28.5 °C and grown for fourteen days. Fluorescence was monitored and at the end of 

the experiment the cell density of the cultures was determined by cell counts. 

3.2.6.4 Growth at 25.0 °C 

Two experimental vessels with 50 ml GSe were inoculated with 5 ml from the pre-

acclimatised cultures (see section 3.2.6.1). The new cultures were grown at 25.0 °C 
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and 291 and 458 gmol photons m -2  s 	seventeen days. In addition, another two 

culture vessels with 50 ml of GSe medium were inoculated with 5 ml from the 

experimental cultures gown at 28.5 °C (see section 3.2.6.2) and were also gown at 

25 °C and 291 and 458 gmol photons m -2  s-I  for eighteen days. Fluorescence was 

measured every two to three days for the four cultures grown at 25 °C and growth 

rates were calculated according to the method outlined in section 3.2.7. 

3.2.7 Growth rates 

A 3 ml sample was taken from each of the seventy-two cultures and fixed with 
Lugol's iodine solution (Throndsen, 1978) for an initial cell count. Every three to 

four days throughout the experiment the fluorescence of the cultures was measured 

using a Turner Designs model 10 fluorometer (Mountainview, CA, USA). A strong 

linear relationship between cell density and fluorescence was observed under some 

conditions (r2 = 0.99; n= 11; P < 0.0001) (Figure 3.3) although this may not have held 

for all treatments (see section 3.3.2.1). During fluorescence measurements the 
cultures were removed from the gradient table and kept insulated and in the dark until 

being mixed by two gentle inversions into the 50 ml test tubes. The tubes were wiped 

clean with a KimwipeTM and inserted into the fluorometer. The fluorescence 

measurements were made at 10:00 each day. When the cultures had reached 120 

fluorescence units (this was pre-determined as the fluorescence just prior to stationary 

phase) or the experiment was completed (whichever occurred first), 3 ml samples 

were taken for final cell counts. Both fluorescence measurements and cell counts 

were used to calculate the specific growth rate (g) of each culture using the following 

equation (Guillard, 1973): 

=(1/A01n(Nt/N°) 

Equation 1 

Where t is time, N°  and Nt  respectively are initial and final culture density 

measurements (fluorescence or cell counts). 
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Figure 3.3 Cell density vs. fluorescence of G. catenatum fit with a linear model. Grown at 22.0 
°C and —300 pmol photons 111-2  S-1 . 

3.2.8 Growth vs. irradiance curves 

To determine the physiological parameters of the growth rate versus irradiance curve 

for each of the temperature treatments, the data were fitted with the model Platt et al. 

(1975). This model was modified to include an x-intercept. The model is as follows: 

tanh(aE/gn.)-Ec 

Equation 2 

Where 11 is growth rate at irradiance E, tmax is the estimated maximum growth rate; a 

the initial slope of the curve and E, the compensation irradiance. The growth rate data 

determined by fluorescence and cell counts were used to fit the model. 
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3.2.9 Biochemical analysis 

When the cultures had reached 120 fluorescence units or the experiment was 

completed (see section 3.2.6), samples were taken for chemical analysis. For carbon 

and nitrogen analysis 20 ml of each culture was filtered under less than 5 mm Hg 

vacuum through a Pa11TM  A/E 13 mm glass fibre filter. These 13 mm filters were 

dried and analysed on a LecoTM  CHN analyser. For Chlorophyll analysis 20 ml was 

filtered under less than 5 mm Hg vacuum through a WhatmanTM  GF/F filter. The 

filters were stored in cryogenic vials (CryovialTM) immersed in liquid nitrogen until 

extraction. All glassware used for extraction was cleaned in dilute ExtranTM  solution, 

rinsed three times with Milli-Q (MQ) water and once with acetone (AR grade). 

Frozen filters were cut into halves and placed in a clean 10 ml centrifuge tube. Three 

millilitres of 100% acetone was added to each tube. The tube was covered with 

ParafilmTM and vortexed for thirty seconds before placing the tube in an ice-water 

bath and sonicating (UnisonicTM) the filter and acetone for fifteen minutes in the dark. 

The filters and acetone were then stored for at least eighteen hours at 4 °C. After this 

time, 0.2 ml MQ was added to each tube (to bring solvent to 90:10 acetone:water) 

and the filter and solvent sonicated for a further fifteen minutes in ice water and in the 

dark. Solvent and filter were then transferred to a BioradTM  column containing a 

small GF/F filter acting as a plug. The sample tubes were rinsed with 2 x 0.5 ml of 

acetone/water (90:10) which was quantitatively added to the BioradTM  column. Each 

BioradTM column was fitted into a centrifuge tube and centrifuged for five minutes at 

5000 rpm. The filtrate was stored overnight in the dark at 4 °C until just prior to 

analysis. Samples were analysed for chlorophyll a and c, using a GBC UVNIS 916 

spectrophotometer with 40 mm path length optical glass cells. Absorbance was read 

at wavelengths of 750, 664, 647 and 630 nm. The absorbance at 750 nm was 

subtracted from the absorbance at each of the other three wavelengths and substituted 

into the following equations (after (Jeffrey et al., 1997)): 

Chla extract = 11.85A664/1 - 1.54A647/1 - 0.08A630/1 
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Equation 3 

Chic extract = 24.52A63011 - 1.67A664/1 - 7.60A647/1 

Equation 4 

A = corrected absorbance at specified wavelength. 

1 = path length in cm. 

The concentration of chlorophyll in the sample in 1..ig r' was obtained by the 

following equation: 

Chlx sample = Chlx extract * (vN) 

Equation 5 

v = volume of extract (ml). 

V = volume of seawater filtered (1). 

The total concentration of chlorophyll in the sample in ug 1 -1  was obtained by the 

following equation: 

Chl total = Chla sample + Chic sample 

Equation 6 

Some of the cultures at low irradiances across all temperature treatments did not 

exhibit any growth after forty-nine days. Consequently a decision was made to take a 

large volume (40 ml) for chlorophyll analysis, due to the cell density in these cultures 

being very low with insufficient culture available for carbon and nitrogen analysis. 

However a large amount of variation existed in the chla values even after 40 ml was 

extracted for analysis from these very low density cultures. Therefore this chla data 

was not included in any of the figures or analyses in this study. 
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3.2.10 G. catenatum energetics model 

Using cellular energetics as a conceptual framework, an energetics model was 

developed for G. catenatum. The concepts and definitions used by Richardson et al. 

(1983) were adopted for the purposes of this study. The primary concept is that the 

amount of growth is determined by how much of the available light energy (potential 

growth) is used up by maintenance and capital energy costs. The excess energy can 

then be directed to growth processes: 

= light energy — (capital costs + maintenance costs) 

Equation 7 

Where g is growth, light energy is energy captured from light via photosynthesis; 

capital costs are energy costs associated with synthesising a new cell; and 

maintenance costs are associated with the survival of a cell (i.e. re-synthesis of 

cellular components and recovery of cellular solutes etc.). 

Growth rate for G. catenatum was modelled by using the relationships between 

temperature and the parameters of the growth vs. irradiance curve, g ma,„ a and Ec  (see 

section 3.3.2.3, 3.3.2.4 and 3.3.2.6 respectively). These relationships were used to 

parameterise the modified growth vs. irradiance model of Platt etal. (1975). Growth 

rate was modelled from 11 to 35 °C, under light saturating conditions (1000 gmol 

photons m-2  s-1 ) and light limiting conditions (30 gmol photons 111-2  S -1 ). 

3.2.11 Statistical analysis 

A one-way ANOVA was used to test if the type of culture vessel had a significant 

effect on growth rate. SigmastatTM 2.03 was used for all statistical analyses and alpha 

was set at 0.05. 
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3.3 Results 

3.3.1 Vessel effects on growth rate 

Growth rates from G. catenatum cultures grown in the 70 ml polycarbonate container 

and the 250 ml sidearm flask were significantly greater (n= 12, P=0.019) than in the 

50 ml Pyrex Tm  or Kimax tubes Tm  (Figure 3.4). 

0.16 

b 
-I- 

Culture Vessel 

50 ml test tube 
CI 70 ml polycarbonate container 
■ 250 ml side-arm flask 

Figure 3.4 Mean growth rate and standard error (n=4) of Gymnodinium catenatum grown in 
three different culture vessels. Statistically significant differences are indicated by superscripts. 
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3.3.2 Effect of temperature and irradiance on growth 

The G. catenatum culture at 20.8 °C and 67 lanol photons r11-2  s-1  exhibited an eleven 

day lag phase before beginning to grow exponentially as indicated by the linear 

relationship of natural log fluorescence with time (Figure 3.5). There was a much 

longer lag phase of eighteen days at 16.3 °C and 23 gmol photons 111-2  S-1  where the 

subsequent exponential increase in fluorescence was much slower. The initial lag 

phase was excluded from all the data for the seventy-two cultures, the data were then 

fit with a linear model and the growth rate determined according to the method of 

Guillard (1973). The examples given in Figure 3.5are representative of the seventy-

two cultures for which growth was measured. 
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Figure 3.5 Fluorescence of two Gymnodinium catenatum cultures following inoculation on day 
zero and grown under different temperature and irradiance conditions. 

3.3.2.1 Comparison of different methods for determining growth rate 

The growth rates of G. catenatum cultures determined by in vivo fluorescence and 

cell counts were compared (Figure 3.6). Comparison of the growth rates from cell 

counts and fluorescence showed that low growth detected by cell counts was not well 

detected by fluorescence, for this reason it was decided that growth rates from cell 

counts would be used in preference to growth rates from fluorescence. 
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Figure 3.6 Comparison of growth rate by cell counts and growth rate by fluorescence of 
Gymnodinium catenatum. 

3.3.2.2 Growth vs. irradiance curves 

Growth versus irradiance curves were constructed using data from cultures gown at 

11.9, 13.4, 15.5, 16.3, 18.2, 18.9, 20.7, 21.1, 22.8, 23.0, 24.9 and 25.2 °C. Within 

each temperature there were six different irradiances ranging from 4 to 283 gmol 

photons 111-2  S-1 . Growth versus irradiance curves were constructed using growth 

rates calculated from cell counts. The modified model developed by Platt et al. 

(1975) (Equation 2) describes the majority of the data well (Figure 3.7). From the 
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growth versus irradiance curves several parameters with physiological significance 

can be determined: maximum growth rate (u max), initial slope (a), irradiance 

coefficient (Ek) and compensation irradiance (E c). The parameters for each of the 

growth versus irradiance curves at each temperature are given in Table 3.2. The 

parameters of the growth versus irradiance curves ( umax, a, Ek and Ec) will be 

examined individually with respect to temperature in sections 3.3.2.3 to 3.3.2.6. 

There are several instances where parameters of the model at particular temperatures 

have not been included in figures. This is because there was not enough data to 

describe these parameters accurately, evidenced by large standard errors associated 

with these parameters in most cases. The parameters that have been excluded at 

particular temperatures are marked with an asterisk in Table 3.2. 

The greatest observed growth rate in this experiment was 0.236 d -1  and occurred at 23 

°C and 203 umol photons IT1-2  s-I (Figure 3.7). However it is important to note that at 

24.9 and 25.2 °C growth rates showed little or no saturation even at irradiances 

greater than 200 urnol photons m -2  s -1 . Also the model (Equation 2) could not be fit 

to the 11.9 °C data because only one culture grew (0.021 Cr ' ) in this treatment at an 

irradiance of 175 umol photons m-2  s -1 . 
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Figure 3.7 Growth vs. irradiance curves using the modified model of Platt et al. (1975) (Equation 
2) for Gymnodinium catenatum at twelve different temperatures. A data point was excluded 
from the model fit at 20.7 °C (open circle). 
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Table 3.2 Parameters of the modified model of Platt et al. (1975) fit to the growth vs. irradiance 
data for Gymnodinium catenatum at twelve different temperatures. The standard error (SE) for 
these parameters are included. Ek was calculated by solving the modified model of Platt et al. 
(1975) (Equation 2) at the irradiance corresponding to half umax.  
Temper 

ature 	r2 	max 	SE („max) 	a 	SE (a) 	E. 	SE (E.) 	Ek 

(°C) 

25.2 	0.98 	1.271E+03* 	2.992E+06 	0.0E+00* 	2.20E-03 	44 	5.5 	1.1E+11* 

24.9 	0.96 	0.557* 	0.615 	2.8E-03 	3.90E-03 	22 	7.4 	230.8* 

23 	0.90 	0.226 	0.036 	1.5E-02 	8.20E-03 	16 	6.9 	98.8 

22.8 	0.95 	0.285 	0.068 	8.0E-03 	4.40E-03 	0 	9.4 	86.6 

21.1 	0.95 	0.239 	0.025 	1.5E-02 	5.30E-03 	14 	4.8 	46.2 

20.7 	0.95 	0.218 	0.024 	1.5E-02 	5.90E-03 	6 	5.2 	46.2 

18.9 	0.91 	0.185 	0.015 	3.3E-02 	1.15E-02 	10 	3.5 	20.8 
18.2 	0.93 	0.194 	0.016 	2.5E-02 	8.90E-03 	1 	4.9 	27.7 

16.3 	0.46 	0.117 	0.008 	4.3E-01* 	1.04E+01 	4 	79.0 	1.6 
15.5 	0.75 	0.105 	0.010 	7.9E-02* 	4.81E-02 	1 	4.2 	8.7 
13.4 	0.57 	0.058 	0.010 	2.1E-01* 	3.60E-01 	8 	1.8 	3.3 

11.9 	0.00 	1.891E+02 	6.797E+10 	0.0E+00* 	4.68E+04 	0* 	1.6E+06 	#N/A  
* indicate parameters not included in figures. The model could not determine these parameters 
accurately because of data limitations at some temperatures. 

3.3.2.3 The effect of temperature on maximum growth (max) 

At those temperatures where J.tmax  could be estimated from the growth versus 

irradiance data (temperatures between 13.4 and 23 °C) there was a linear increase in 

!A max  as temperature increased (Figure 3.8). !Amax  was smallest (0.064 (1 -1 ) at 13.4 °C 

and greatest (0.285 d -1 ) at 22.8 °C. The data were described well by Logan's (1976) 

model that was modified to include a y-intercept (r 2=0.97;n=12;P=<0.0001): 

max  = fot i e (flx )  - e[fiT ( 7'  "1  - 111+ °  m  AT 	Y  

Equation 8 

Where 'Lima), is the maximum growth rate, al is the rate of temperature-dependent 

processes at a basal temperature; 13 is equivalent to a composite Q i 0; T,„ is the upper 

temperature threshold; AT is the temperature range where the curve plateaus; x is the 

temperature; and Yo is the y-intercept of the curve. 
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Table 3.3 Parameters from the modified model of Logan (1976) for Gymnodinium catenatum 
GCHUO2. 
Parameter Model Estimate SE P 

al 0.32 1.32 0.82 
13 0.07 0.76 0.93 
T,„ 48.78 429.42 0.91 
AT 6.99 42.21 0.87 
Yo -0.59 3.44 0.87 
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Temperature (°C) 

Figure 3.8 Effect of temperature on umax of Gymnodinium catenatum. Each urnaz  value is from 
the modified model of Platt et aL (1975). Standard errors were also estimated from the model. 
For details regarding the open circle see section 3.2.8 and for the grey circle see section 3.2.6. 

3.3.2.4 The effect of temperature on the initial slope (a) 

At temperatures <18 °C a was not included in Figure 3.9 for the reasons outlined in 

3.3.2.2. At temperatures above 18 °C there was a decrease in a with increasing 
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temperature. The data had an r2=0.81 when fitted with a linear model, y=0.096+- 

0.0038x (n = 7, P =0.0056). 
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Figure 3.9 Effect of temperature on a of Gymnodinium catenatum. Each a value is from the 
modified model of Platt et al. ((1975)). The standard error for a was estimated from the model. 

3.3.2.5 The effect of temperature on irradiance co-efficient (Ek) 

The half-saturation co-efficient for growth as a function of irradiance (Ek) was 

estimated by solving (using the Solver add-in provided with Microsoft Excel) the 

modified model of Platt etal. (1975) (see Equation 2) for the irradiance at half the 

estimated iimax . Ek increased with increasing temperature (Figure 3.10). The lowest 

Ek, 1.6 ttrnol photons m -2  s -1  was at 16.3 °C and the highest Ek, 98 imol photons m 2  S -

I  at 22.8 °C. The exponential model y=0.035exp°34x  (r2=0.98, n = 8, P0.0001) 

described the Ek data very well. 
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Figure 3.10 The effect of temperature on the half-saturation co-efficient for growth as a function 
of irradiance (E k) for Gymnodinium catenatum. Ek was calculated from the model of Platt, 
Denman et al. (1975) 

3.3.2.6 The effect of temperature on compensation irradiance (E,) 

The compensation irradiance (Ec) increased with increasing temperature (Figure 

3.11). The highest compensation irradiance was 47 umol photons 1112  s -1  at 25.2 °C. 

This trend was described well with the model y=exp'1124x  (r2=0.43, n = 11, P<0.001). 

The standard error at 16.3 °C is much larger than at any other temperature, because 

there is only one point on the initial slope of the curve, making it difficult for the 

model to estimate E, without an associated large error. 
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Figure 3.11 Effect of temperature on E, of Gymnodinium catenatum. Each E c  value is from the 
modified model of Platt, Denman et al. (1975) (Equation 2). The standard error for E, is also 
from the model. 

3.3.3 Effect of high temperature and high irradiance on growth rate 

Growth rates calculated from the change in fluorescence over time at 25 °C and 291 

and 458 lAmol of photons 1112  s-1  were not significantly different from each other 

(P<0.05). At 28.5 °C growth rates calculated from fluorescence and at 291 and 458 

ptmol photons m-2  s-1  were not significantly different from (Figure 3.12). 
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Figure 3.12 Growth rates of Gymnodinium catenatum at 25 and 28.5 °C and 291 and 458 umol 
photons 1112  1 1 . Superscript text indicates where there were significant differences (P<0.05) 
between growth rates. 

The growth rates were added to the growth versus irradiance curve with those from 

24.9 to 25 °C. The combined data fit the model well (Figure 3.13). The parameter 

estimates of the modified model of Platt etal. (1975) are included in Table 3.4. 
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Figure 3.13 Growth vs. irradiance curve of Gymnodinium catenatum grown at 24.9 to 25.0 °C 
with growth rates for cultures grown at 291 and 458 pmol photons In-2  S-1  added. The modified 
model of Platt, Denman etal. (1975) was fitted to the data. 

Table 3.4 Parameter estimates from the modified model of Platt, Denman et aL (1975) for growth 
at 24.9 to 25 °C with new growth rates added from cultures grown at 298 and 454 pmol m -z  s-i . 

Model 
Parameter SE P 

Estimate 

Pmax 0.21 0.019 <0.0001 
a 0.01 0.004 0.021 
Ec  20.0 6.66 0.024 

3.3.4 Effect of light and temperature on biochemical composition 

The mean for chlorophyll a, carbon, and nitrogen quotas were 72, 4445 and 587 pg -1  
respectively (Table 3.5). The mean C:chl a and C:N ratios are 57 and 8.1 

respectively. These means are from G. catenatum grown at temperatures ranging 

from 13.4 to 25.2 °C and irradiances between 25 and 258 umol photons m -2  s1  (note 

105 



cultures grown at <25 mole of photons m- 2  sl  across all temperatures were not 

included in these biochemical quotas; see section 3.2.9). 

Table 3.5 Mean biochemical quotas of Gymnodinium catenatum grown at temperatures ranging 
from 13.4 to 25.2 °C and irradiances between 5 and 280 gmol photons In-2  S-I . 

Chl a quota (pg 
ce11 -1 ) (n=42) 

C quota (pg 
ce11 -1 ) (n=41) 

N quota (pg 
cell"") (n=41) 

C:Chla 
(n=40) 

C:N 
(n=40) 

Mean 72 4445 587 57 8.1 
S.E. 3.1 551.5 85.7 4.2 0.42 
CV (%) 28 80 95 47 33 

Table 3.6 Temperature range and number of cultures in each binned temperature group. 
Binned temperature groups were used to examine the trends in biochemical composition with 
temperature and irradiance.  
Binned 
temperature 

Temperature range 
included (°C) 

Number of 

cultures 
(°C) 

25 24.7-25.5 7 
22.9 22.8-23.3 8 
20.9 20.8-21.3 7 
18.5 18.2-18.9 8 
15.9 15.4-16.4 7 
13.4 13.3-13.5 4 

To examine trends in carbon and chlorophyll a, similar (A temp. z 1 °C) temperature 

groups were binned together (Table 3.6). This did not occur at the lowest 

temperatures 11.9°C and 13.4 °C where there were only four cultures which were 

sampled for chla and carbon and all grown at 13.4 °C. Both carbon cell' (carbon 

quota) and chlorophyll a ce11 -1 (chla quota) show an exponential decrease as 

irradiance increased in both 25 and 22.9 °C binned temperature groups (Figure 3.14). 

The carbon and chla quota range from 1979 to 11069 pg cell' and 61 to 132 pg cell' 

respectively at 25 °C and from 2050 to 8153 pg cell - ' and 52 to 108 pg cell -I  
respectively at 22.9 °C. At 25 °C the 5.6 fold decrease in carbon with increasing 

temperature is much larger than the 2 fold decrease in chla. Similarly at 22.9 °C the 

difference in magnitude decrease for carbon and chla quotas were maintained: a 

larger 4 fold decrease in carbon quota and only a 2.1 fold decrease in chla quota. 
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With the exception of a slight decrease in carbon quota with increasing irradiance at 

15.9, 18.5 and 20.9°C the carbon and chl a quotas did not exhibit a clear decrease 

with increasing irradiance as at the higher temperatures. At 15.9, 18.5 and 20.9 °C, 

95.2 % of carbon quotas are all <5000 pg cell', or considerably lower than at the 

higher temperatures and lower irradiances. At 15.9, 18.5 and 20.9 °C, 82.6 % chla 

quotas ranged between 50 to 100 pg 	At 13.4 °C the carbon quotas were 

greatest, between 7000 and 9000 pg 	at the two intermediate irradiances. At the 

lowest and highest irradiances the carbon quotas were reduced to values between 

5000 and 7000 pg cell) . The chl a quota at 13.4 °C was approximately 50 pg 

across the different irradiances with the exception of a slight increase in chla at the 

lowest irradiance (50 pimol photons M-2  S -1 ). 
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binned temperature groups, only the 25 °C binned temperature group had a slope (- 

0.212) significantly different from 0 (r2=0.58; n=7; P=0.046). However, trends were 

apparent; the strongest trends were at temperatures of 25, 20.9 and 15.9 °C which had 

the highest r2  values of 0.58, 0.41 and 0.29 respectively. The slopes of the regressions 

were all negative at the higher temperatures (25, 22.9 and 20.9 °C) and the negative 

slope decreased as temperature decreased until the slope of the C:chla versus 

irradiance became positive for the lower temperature groups (18.5, 15.9 and 13.4 °C). 

The complex interaction between irradiance and temperature on C:chla (Figure 3.15) 

can be simplified by considering only the effects of the highest irradiances. At 

irradiances >200 ptmol photons ni2  s -1  there was an exponential decrease in C:chla as 

temperature increased (Figure 3.16). A linear model was fitted to the natural log of 

this data and the slope (-0.095 +1- 0.0157) and y-intercept (6.1 +1- 3.33) were both 

significantly different from 0 with respective P values of<0.0001 and <0.0001. 
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Figure 3.15 The effect of irradiance on C:chla of Gymnodinium catenatum on cultures binned 
into six temperature groups. Straight lines are fitted to the C:chla data for each binned 
temperature group. The dotted line represents the expected C:chla ratio from Geider's model 
(Geider, 1987) 
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Figure 3.16 Effect of temperature on In C:chla in Gymnodinium catenatum cultures grown at 
irradiances >200 gmol photons In-2  s-I . The white circle was treated as an outlier and excluded 
from the regression. 

3.3.5 A model for carbon: chlorophyll a 

Plotting the slope of the regressions for C:chla with irradiance for each of the 

temperature groups in Figure 3.15 showed that there was a clear trend for the slope to 

decrease as temperature decreased (Figure 3.17). The linear model fitted the slope 

data well (r2=0.73; n = 6; P = 0.030): 

slope=0.53+-0.028T 

Equation 9 
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Where T= temperature and the slope is the slope of the C:chla relationship with 

irradiance at that temperature. 
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Figure 3.17 The effect of temperature on m(slope) of the line fit to C:chla vs irradiance for 
Gymnodinium catenatum binned into six temperature groups (data from Figure 3.15). 

The y-intercept for each of the lines fitted to the C:chla versus irradiance in Figure 

3.15 were plotted against temperature (Figure 3.18) and were described well with this 

equation (r2  = 0.88; n = 6; P =0.041): 

y-intercept=430+-42T+1.14T 2  

Equation 10 

where T = temperature and y intercept is the y-intercept of the C:chla versus 

irradiance relationship at the temperature specified. 
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Figure 3.18 The effect of temperature on the y-intercept of the line fitted to C:chla vs. irradiance 
for Gymnodinium catenatum binned into six temperature groups (data from Figure 3.15). 

From these sub-models it is possible to create an overall model that describes the 

effect of temperature and irradiance on C:chla by substituting Equation 9 and 

Equation 10 into a linear model equation and adding an irradiance term. The 

parameters of the model were refined using an algorithm for least-squares estimation 

of nonlinear parameters (Marquadt, 1963). The model is: 

C : chla = (0.76 + (-0.036T)/) + (516 + (-48T) +1.19T') 

Equation 11 

Where T= temperature and I =Irradiance. 

The model is presented on three dimensions and the observed data are also included 

in Figure 3.19. C:chla ratios were greatest (up to 143.3) at low temperature ez 14 
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Figure 3.19 Effect of temperature and irradiance on C:chla of Gymnodinium catenatum. A 3D 
surface from the model (Equation 11) is used to describe the data. 

3.3.6 Energetics model 

A simple conceptual model based on cellular energetics has been applied to light 

saturating (Figure 3.20) and light limiting (Figure 3.21) conditions for G. catenatum. 
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The results from the conceptual energetics model of G. catenatum describe the 

response of G. catenatum growth (modelled using G. catenatum growth vs. irradiance 

curves) well. 

Input data for the maintenance costs used in the model comes from the estimates of 

Ec  from each growth versus irradiance experiment at each temperature. These were 

shown to have an exponential relationship with temperature. Growth rates were 

simply 1.ima, values from each temperature. The relationship between capital costs and 

temperature were derived from the 'IF shaped carbon quota versus temperature data. 
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Figure 3.20 Model of temperature effect on energetic costs for Gymnodinium catenatum in light 
saturated (1000 umol photons m -2  s-1 ) conditions 
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Figure 3.21 Model of temperature effect on energetic costs for Gymnodinium catenatum in light 
limited (<80 pmol photons It1-2  S-1 ) conditions. 

117 



3.4 Discussion 

3.4.1 Effect of temperature and irradiance on Gymnodinium 

catenatum growth 

Growth rates of G. catenatum grown in culture at temperatures ranging from 11.9- 

25.2 °C and irradiances ranging from 5 to 283 gmol photons m -2  s-I  are presented in a 

contour plot providing a visual summary of all the growth rate data collected in this 

experiment (Figure 3.22). The greatest growth rates of >0.2 d -I  occurred at 

combinations of temperatures between 20 to 25 °C and irradiances >140 gmol 

photons 111-2  s1 . There were also two areas where growth rates were <0 d 1 : where 

temperature was 11.9 °C and irradiance was <150 gmol photons Tr1-2  S 1  and where 

temperature was >23 °C and irradiances were <35 gmol photons m -2  s-I . 

The physiology of G. catenatum will be discussed through examining the effect of 

temperature on the parameters of the growth vs. irradiance curve and effect of 

temperature and irradiance on the biochemical composition of this species. 
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Figure 3.22 Contour plot of growth rate (d-1) of Gymnodinium catenatum grown at different 
combinations of temperature and irradiance. 
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3.4.2 Effect of temperature on parameters of the growth vs. 

irradiance curve 

3.4.2.1 Maximum growth rate (u max) 

Effect of temperature on Amax 

The iimax  increased linearly with temperature for G. catenatum in this study. The 

reason that Logan's (1976) model fit the data well (r2=0.97) where none of the 

parameters are statistically significant is because Logan's model was made to fit 

exponential increases in tt max  with temperature. However, clearly the data increased 

linearly up to the greatest il max  in this study. This result contrasts with several other 

studies that show that g max  increases exponentially with temperature (Li & Morris, 

1982, Ojala, 1993, Eppley, 1972). Montagnes etal., (2003) provide some examples 

of linear increases in g max  and argue that in the majority of cases Ilmax  increases 

linearly with temperature. But as pointed out by Thompson (Thompson, 2006) it is 

likely that what appears as linear relationships may in reality be exponential. This is 

because in many cases only a small temperature range has been examined, or 

experimental artefacts are caused by limiting light at high temperatures or the failure 

to measure growth at the temperature where IAmax  is greatest (because of the abrupt 

transition from the greatest g max  to temperatures that cause death for many 

phytoplankton). 

Unfortunately the majority of alternative studies examining temperature and growth 

rate in G. catenatum did not use a sufficient range of temperatures to determine what 

kind of relationship there is between resource saturated growth rate and temperature 

(Blackburn etal., 1989, Ellegaard et al., 1993, Yamamoto et al., 2002). Additionally, 

of the studies that have enough data to evaluate this relationship, the growth rates 

from Band-Schmidt et al. (2004) show a linear function of temperature while Bravo 

and Andersen (1994) provide results which appear exponential for the temperatures 
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up to 16°C. Therefore, existing studies show it is not possible to generalise about the 

exact nature of the relationship between resource saturated growth and temperature 

for this species. The GCHUO2 strain examined in the present study showed a strong 

linear increase in umax  with increasing temperature. A linear increase hi unax is likely 

to be a disadvantage in competition with the many phytoplankton species that have 

exponential increases in u max  (Li and Morris, 1982; Ojala, 1993) 

Greatest Amax  

The greatest growth rates measured for G. catenatum in this study (>0.2 d-i ) occurred 

in cultures grown at temperatures from 20 to 25 °C and at irradiances ;450 to 250 

umol photons TI1-2 	Earlier studies are similar in that the highest growth rates occur 

at temperatures >20 °C with the exception of Blackburn et al. (1989) where the 

growth rate of the Huon Estuary strain GCHUO1 peaked at 17.5 °C and decreased 

quickly after 20 °C (Figure 3.23). 

1.tma,, is the parameter of growth versus irradiance curves that indicates where growth 

is at a maximum, i.e. where growth rate no longer continues to increase with 

increasing irradiance. Because, of the scarcity of other !A max  values in the literature 

for G. catenatum. The results from the present study will be compared with growth 

rates from other studies (Figure 3.23), where irradiances are assumed to be excess to 

the requirements of G. catenatum. The conditions used in each of the other studies 

are included in Table 3.7. However, these assumptions based on other species may 

not always be accurate, particularly at extremes of temperature. At the highest 

temperature (25.2 °C) used in the initial study, growth was a linear function of 

irradiance up to 250 umol photons 1112  s 	no indication of saturation. In a 

subsequent experiment, cultures were exposed to a temperature of 25 °C and higher 

irradiances (291 and 458 umol photons ni 2  s -1 ). Growth rates at these higher 

irradiances were slightly lower than those at 208 umol photons I11-2  s-  indicating that 

growth was saturated at < 291 ttmol photons m -2  s. 
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These results indicate that in several studies light may have been limiting growth at 

higher temperatures and thus these may not be entirely accurate resource saturated 

growth rates. The fact that light requirements increase quickly at higher temperatures 

is evident in the exponential relationship between I sat  or Ek and temperature (Collins 

& Boylen, 1982). In the present study irradiances of z25 ilmol photons m -2  s-1  
saturated growth at 13.4 °C, but in excess of 250 gmol photons T112  s -1  was required to 

saturate growth at temperatures greater than 23 °C. Given the nonlinear nature of the 

increase in irradiance required to saturate growth with increasing temperature it is 

difficult to choose an irradiance that will saturate growth as temperature increases. 

One way of avoiding light limitation in experiments investigating resource saturated 

growth at a range of temperatures is to set the irradiance at >2Ek at the highest 

temperature. In this case irradiance will be in excess of requirements at the lower 

temperatures. However by setting the irradiance at >2Ek of the highest temperature, 

the risk of exposing the cells to levels of irradiance they cannot tolerate at lower 

temperatures appears. The cells will either have to employ strategies to ameliorate the 

effect of the excess irradiance, or are likely to suffer photo damage - both of which 

will impact on growth rate negatively. 

Temperature limits for growth 

The poor growth response at 11.9 °C indicates that this is the lower temperature limit 

for growth in this strain of G. catenatum.lt  is clear that temperature was limiting 

growth response because irradiance had little effect (only one culture grew at 0.021 d -
1  in this treatment at irradiance of 175 gmol photons T11-2  s-1 ). Growth for GCHUO2 

was within the range of lower temperature limits reported by earlier studies 

(Ellegaard et al., 1993, Band-Schmidt et al., 2004, Bravo & Anderson, 1994, 

Yamamoto et al., 2002, Blackburn et al., 1989) in which growth ceased at 

temperatures ranging from 9 to 12.5 °C. 

At 28.5 °C, G. catenatum growth rates calculated from fluorescence were not 

significantly different from zero. The Spanish strain ( from water temperatures rarely 
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exceeding 20 °C) also showed growth rates of that decreased very quickly to near 0 d -
growth rates at temperatures close to 28.5 °C (Blackburn et al., 1989, Bravo & 

Anderson, 1994), and the Australian GCHUO1 strain examined by Blackburn, et al. 

(1989) had a growth rate close to 0 eat 25 °C. Other strains isolated from Japan and 

Mexico (where water temperatures can reach 28 °C in Japan and in excess of 28 °C in 

Mexico) exhibited growth rates > 0.2 d -1  at 28.5 °C and still had relatively high 

growth rates at 30 °C (Band-Schmidt et al., 2004, Yamamoto et al., 2002). The 

ability of these two strains to grow better at higher temperatures may indicate there 

are ecotypes of G. catenatum better suited to sub-tropical water temperatures within 

the G. catenatum complex. The G. catenatum strain isolated from cysts in the 

sediments near Island Hven in Denmark showed growth rates similar to the other 

strains at temperatures from 10-15 °C but exhibited growth similar to the Mexican 

and Japanese strain at 28.5 °C. The Spanish strain (Bravo & Anderson, 1994) was 

similar to all other strains at temperatures from 10-15 °C, above 20 °C growth rates of 

this strain are greater than all the other strains. 

While growth rates were negligible at 28.5 °C and 291 and 458 gmol photons /71-2  s-i , 

in the present study the majority of cells were still motile and appeared 

morphologically normal at the end of the experiment (characteristics expected from 

healthy cultures of G. catenatum). It appears the cultures were able to acclimatise 

sufficiently to the temperature extreme, but that under these conditions no growth 

(measured by the fluorescence method) was observed 
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Figure 3.23 Effect of temperature on Gymnodinium catenatum growth rate in different studies. 
All growth rates were adjusted based on the daily irradiance of the present study (9.07 mol 
photons 111-2  day -1 ). 
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Table 3.7 Conditions for different experiments on effect of temperature on growth rate of 
Gymnodinium catenatum.  

Study 	Strain 
Isolation 

location 
Medium 

Irradiance 

Salinity (mol photons 

m -2 day-1 ) 

Light: 

dark 

cycle 

Blackburn et 
al. (1989) 

Band-Schmidt 
et al. (2004) 

Bravo and 
Andersen 
(1994) 

Ellegaard et 
al. (2002) 

Yamamoto et 
al. (2002) 

Present study 

GCHUO1 

GCCV10 

Not 
Specified 

Not 
Specified 

Not 
specified 

GCHUO2 

Huon 
Estuary, 
Australia 
Bahia 
Concepcion 
, Mexico 

Galicia, 
Spain 

Island 
Hven, 
Denmark 
Hiroshima 
Bay, Japan 
Huon 
Estuary, 
Australia 

* Irradiance N/A so used 150 pmol photons In-2  s4  as this was the lowest irradiance used in the 
other studies. 

A comparison of growth vs. irradiance curves between the present study and 

(Yamamoto et al., 2002) showed that at lower temperatures (-15 °C) g max  and a were 

not different between these strains. There was a difference between E„ but it is likely 

that this may be an artefact of the small amount of data points on the initial slope in 

both studies. 
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Figure 3.24 Gymnodinium catenatum growth vs. irradiance comparison: the modified model of 
Platt et al. (1975) (Equation 2) is fitted to data from 15.0 °C (Yamamoto et al., 2002) and 15.5 °C 
from the present study. 

Based on mean temperature for the Huon Estuary (Figure 3.25) and results from the 

present study, some inferences can be made about growth of G. catenatum at 

different times of the year in the Huon Estuary. Between 150-250 days (winter 

approaching early spring) temperatures in the surface are —11 °C or less and sub-

surface temperatures are —12 °C. Based on our experimental results G. catenatum 

will not be able to grow at temperatures this low. Temperatures at 50 days are —16 °C 

and during summer in the Huon Estuary temperatures of 20 °C are not uncommon. 

But at temperatures ranging from 16-20 °C and saturating light G. catenatum will 

only be capable of growth —0.1-0.2 d -1 . 
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Figure 3.25 Mean (+1- I SE) temperature in the surface (0-2m) and sub-surface waters of the 
Huon Estuary (1996-1998). Data for the lower estuary (from Port Huon to Huon Island) from 
the Huon Estuary Study (CSIRO Huon Estuary Study Team, 2000). 
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3.4.2.2 Initial slope (a) 

The initial slope (a) for G. catenatum was similar to that of other dinoflagellates 

(Prezelin & Sweeney, 1977, Garcia & Purdie, 1992). Dinoflagellates have been 

shown to be less efficient at converting light to growth and have lower initial slopes 

of the n versus irradiance curve than diatoms (Langdon, 1987, Rivkin etal., 1982). 

At temperatures greater than 18 °C, a decreases in order of magnitude from 0.03 to 

0.002 and fits a line with a negative slope (r2=0.81). This means that the growth 

efficiency of G. catenatum decreased as the temperature increased above 18 °C. 

Several studies have shown that respiration rate increases with temperature (Collins 

& Boylen, 1982, Vona et al., 2004, Verity, 1982a, Verity, 1982b) It seems likely that 

the decreased growth efficiency of G. catenatum in this study is the result of 

increased respiration at these higher temperatures. However of the few studies that 

have looked at the effect of temperature on a, some show no effect of temperature 

(Thompson, 1999, Geider et al., 1985) while a few show an effect of temperature on 

a (Verity, 1982b, Palmisano et al., 1987). Most of the studies that have investigated 
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the effect of temperature on a were conducted on diatoms, chlorophytes and 

cyanophytes. There are no papers that examine the effect of temperature on a in 

dinoflagellates in any detail. The reason why G. catenatum exhibits an effect of 

temperature on a but isn't seen in other phytoplankton groups could be that diatoms 

and other groups have a much smaller respiration rate standardized to biomass, and 

that changes in a due to temperature may be difficult to elucidate. In comparison, 

dinoflagellates have a higher respiration rate standardized to biomass (Chan, 1978), 

also evidenced by their higher compensation irradiances (Langdon, 1988). Because 

of these differences in respiration/biomass the effect of temperature on a may be 

more easily observed in dinoflagellates and other species that have greater 

respiration/biomass. 

3.4.2.3 Irradiance co-efficient (E0 

Ek increased exponentially with temperature in G. catenatum. Our results were 

consistent with those of Collins and Boylen, (1982) whose study on the cyanobacteria 

Anabeana variabilis shows an exponential relationship between Ek and temperature. 

Few other studies have investigated the effect of temperature on Ek 

3.4.2.4 Compensation irradiance (E s) 

Dinoflagellates exhibit some of the highest compensation irradiances (Langdon, 

1987), however they also exhibit a wide range of compensation irradiances in some 

cases comparable to diatoms which are considered to be one of the most efficient 

classes (Langdon, 1988). The compensation irradiance in our study ranged quite low 

(<1 gmol photons 111-2  s - 5, comparable to some diatoms (Yoder, 1979, Langdon, 

1987, Thompson, 1999), to relatively high (>20 mol photons t11-2  S- 1) but not 

unusual for dinoflagellates (Langdon, 1987, Chan, 1978). There appeared to be a 

trend of increasing compensation irradiance with temperature in G. catenatum as 

might be expected if the respiration rate is increasing with temperature. It has been 

demonstrated (Langdon, 1988, Langdon, 1987) that E c  is positively correlated with 

the maintenance respiration (i.e. more energy derived from light by photosynthesis is 
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needed to match the higher respiration rate and hence the irradiance at which 

photosynthesis equals the respiration rate will be higher). Increases in E c  have also 

been observed when a culture is acclimated to a higher irradiance prior to 

determining an instantaneous photosynthesis or growth versus irradiance curve 

(Iriarte & Purdie, 1993). At high temperatures respiration is increased, because 

chemical processes are able to proceed at a higher rate. Under high light the base 

level respiration is also increased as the cell implements strategies to protect itself 

from the excess light. The present study and several others have shown that E, can 

increase with temperature (Verity, 1982b, Palmisano et al., 1987) however this is not 

the case in all studies (Thompson, 1999, Li & Morris, 1982, Geider et al., 1985). 

Once again there is a lack of studies that examine the effect of temperature on E, in 

dinoflagellates. However, it is possible that because of higher respiration rates in 

dinoflagellates there is no effect of temperature in E c  or that changes in E, were 

significantly less and thus not detected in other more light efficient groups like the 

diatoms and chlorophytes. 

3.4.3 Effect of temperature and irradiance on the bio-chemical 

composition of G. catenatum 

Cellular energetics will be used as a framework for understanding the physiology of 

G. catenatum while discussing the effect of the temperature and irradiance on 

biochemical composition. Some terms and concepts described in Richardson, et al., 

(1983), including "running costs", "capital costs" and "maintenance costs" will be 

used. Brief definitions of these terms are given below: 

• Running costs: energy costs for running particular pathways, i.e. the AT P and 

reductant input per unit net product. 

• Capital costs: energy costs associated with the synthesis of catalytic and structural 

cell material. 
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• Maintenance costs: energy costs associated with cell survival, i.e. re-synthesising 

protein or pigments that are continually breaking down. 

Running costs are not considered important for responding to energy limitation, as 

biophysical and biochemical properties of organisms are very similar. However, 

reducing capital and maintenance costs are considered important for phytoplankton to 

adapt to energy limitation. For example, by reducing cell biomass, the cell requires 

less energy to divide, because a smaller amount of cell material needs to be 

synthesised, thus reducing capital costs. This also means that less cellular materials 

need to be repaired and resynthesised for the cell to survive, reducing maintenance 

costs. 

The mean C, N and C:chla averaged across cultures grown at all temperature and 

irradiances were highly variable as indicated by the co-efficient of variation of 33% 

for C:N and 47% for C:chla. This indicates that there was an effect of temperature 

and irradiance on the biochemical composition, caused by G. catenatum adapting to 

growth over a wide range of conditions. The effect of temperature and irradiance on 

the biochemical composition will be discussed in detail in the following paragraphs. 

The carbon and nitrogen quota of G. catenatum in this study displayed the `1.1' shape 

that has been observed in a variety of species and different groups (Goldman & 

Mann, 1980, Goldman, 1977, Jorgensen, 1968, Thompson etal., 1992) including a 

dinoflagellate (Nielsen, 1996) in response to temperature. Some studies have not 

found this `ti' shaped response, however these may be an artefact of the temperature 

range being too small or the irradiance being too high. Goldman (1977) explained this 

`u.' shaped response by asserting that it was "a temperature dependent uncoupling 

between growth and nutrient uptake, which is manifested as a change in cell size". 

The results from this study suggest that the accumulation of carbon and nitrogen are a 

response to unfavourable conditions of temperature and irradiance for growth and are 

described below. 
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Growth rate of G. catenatum is < 0.1 d-1  under two different scenarios in this 

experiment: when temperature drops below 16 °C, and at temperatures >20 °C and 

irradiance < 100 Amol photons I11-2  s-1 . When these scenarios are examined 

energetically they are quite different. While C and N are accumulated under both 

scenarios, I suggest that their uses will be different because of the underlying 

differences in the energy status of the cell at these different conditions. 

At low temperature the cells energy demand will be lower because of reduced 

respiration as indicated by the steeper initial slope and relatively low E c  measured in 

this study. Hence at low temperature, energy limitation is not the primary issue; but 

the impaired ability of the cell to process CO2 because of the effect of lower 

temperature on the enzymes responsible for this process would be explain the 
increase in C and N (Morris & Glover, 1974, Raven & Geider, 1988). To counter this 

the cell produces more enzymes and hence this increases the C and N quotas. 

At high temperature and low irradiance the cell is under severe energy limitation, 

because of higher energy demands at increased temperature and not enough light to 

meet those demands. In addition, the degradation of pigments and other cellular 

components speeds up at higher temperatures. G. catenatum responds by increasing 

quota of chla so that it can harvest more energy from the available light. It is also 

suggested that the increase in carbon and nitrogen quota is related to the cell building 

more chloroplast and other structures required for increasing light harvesting 

capability. This would seem consistent with the low carbon and nitrogen quotas at the 

same temperature but higher irradiances. If increased carbon and nitrogen quotas 

were associated with thermal protection it would be expected that the quotas would 

be still high when irradiance increases. 

Each of these coping mechanisms related to the effects of temperature directly on the 

cell or indirectly by causing energy limitation contribute to increasing both the capital 

and maintenance costs of the cell. It is a testament to the adaptability of 

phytoplankton to be able to maximise growth under a wide range of temperature and 
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irradiance conditions and also have strategies for protection and survival in extreme 

temperature and irradiance conditions. 

3.4.4 Carbon:chlorophyll a 

Eliminating irradiances that were not saturating, C:chl a was binned across 

irradiances > 200 umol photons I11-2  s -1  and plotted against temperature, finding that 

C:chla decreased exponentially ( 2=0.78) as temperature increased. This exponential 

decrease in C:chla at saturating irradiance with temperature is consistent with the 

relationship predicted by the generalised model of Geider (1987) for effect of 

temperature and light on C:chla. However, the C:chl a decreases as irradiance 

increases at 22.9 and 25.0 °C in contrast to the prediction of Geider's model. These 

results highlight the generalised nature of Geider's model and that G. catenatum is an 

example of a species which exhibits different responses in C: chla to irradiance at 

high temperatures. 

An empirical model for the effect of temperature and irradiance on the C: chla of G. 

catenatum was developed using the C and chi a quotas obtained at different 

temperature and irradiances in this study. The model for G. catenatum predicts an 

increase in C:chl a at combinations of high temperature and low irradiances in spite 

of a two times increase in chla which would drive the C:chl a down if it were not 

offset by a much larger increase in carbon. The much higher C:chl a values at low 

temperatures are the result of the large increase in C quota while the changes in chla 

were relatively small in comparison. 

An empirical model of C:chl a for a dinoflagellate that exhibits a carbon 

accumulation strategy under conditions unfavourable for growth may be useful for 

understanding primary production in systems that are dominated by dinoflagellates. 

However, we need to understand whether other dinoflagellates show similar 

responses to light and temperature before this a C:chl a model like this could be 

extrapolated to the dinoflagellates for predictive modelling. 
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3.4.4.1 Energetics model 

Under light saturating conditions a combination of high but decreasing capital costs 
and a smaller increase in respiration with temperature result in an almost linear 

increase in gmax  from 11 °C up to the greatest ilma„ at ;--23 °C. There is a sharp 

decline in Amax as respiration begins to increase much faster at temperatures greater 
than 23 °C. These are consistent with our understanding of the variation in 

physiological processes as the cell's maintenance costs become greater than the 

capital costs and the energy input from the cell can no longer meet the cellular energy 

requirements as temperature approaches the physiological maximum. Therefore, !Amax 

is reduced and eventually the cell will no longer be able to survive at temperatures 

z28.5 °C, where the cell cannot resynthesise and repair its components faster than 

they are breaking down. 

Under light limiting conditions, the energy input is reduced. This manifests itself as 

lower Ilma„ across the range of temperatures and also a lower maximum temperature 

where growth becomes zero. Under light limiting conditions capital costs play an 

important role in determining the rate of g max  increase up to its greatest gmax  at 20 

°C. In contrast to light saturating conditions, capital costs increase above the greatest 

umax  presumably because the cell is building a greater light harvesting capacity. The 

increased capital costs at low light and high temperatures were the main reason for 

the rapid decrease in gmax  (in light saturating conditions increases in respiration were 

more important). It is because of the lower available energy (even after the cell 
increases its light harvesting capacity) that growth ceases at a lower maximum 

temperature (z26 °C). 

3.4.5 Summary 

This is the most comprehensive study of the effect of irradiance and temperature on 

G. catenatum growth and physiology to date. Growth versus h -radiance curves been 

determined for twelve temperatures from 11.9-25.0°C and a comparison of the 

growth rates from the present study with five other studies on different G. catenatum 
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strains has revealed similarity between the growth responses of these strains 

particularly at temperatures between 10-20 °C. At temperatures >= 28.5 °C the 

strains from Japan and Mexico appeared to be able sustain growth rates 

approximately 0.2 d -1 , whilst the other strains did not grow. Indicating that there may 

be evidence for a tropical ecotype better suited to growth at higher temperatures. 

The biochemical composition of G. catenatum has also been examined revealing that 

G. catenatum is able to adapt to low temperature conditions by increasing its Carbon 

quota. At higher temperatures and lower irradiances G. catenatum responds by 

increasing chla but this is accompanied by an even greater increase in C quota. These 

results give us an insight into the strategies that this species uses for growth and 

survival in unfavourable conditions. An empirical model to describe the effects of 

light and temperature on C:chl a was constructed and may be useful information that 

helps advance modelling of this species or other similar species in the future. 

Relationships between the parameters (max, a and E c) from the growth versus 

irradiance curves and temperature were investigated and modelled. The models of the 

effect of temperature on max, a and Ec  provide the basis for development of a G. 

catenatum growth model. For example this model could predict growth rates for G. 

catenatum in the Huon Estuary using modelled 3D high resolution temperature and 

irradiance data (Herzfeld etal., 2005). A simple model of G. catenatum growth rate 

would enable comparison with historical bloom data and may helpgive to better 

understand the role of temperature and irradiance in the development of blooms of 

this species. 
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4 NITROGEN PREFERENCE AND UPTAKE 

BY GYMNODINIUM CATENATUM IN 

CULTURE 

4.1 Introduction 

The toxic dinoflagellate Gymnodinium catenatum forms dense blooms in many 

coastal areas and estuaries around the world (Blackburn etal., 1989, Canada etal., 

1991, Fraga etal., 1992, Holmes etal., 2002, La Barbara-Sanchez & Gamboa-

Maruez, 2001, Matsuoka & Fulcuyo, 1994, Mee etal., 1986, Nehring, 1995, Park et 

al., 2004, Ramirez-Camarena etal., 1999, Sordo etal., 2001, Oh etal., 2002). 

Phytoplankton productivity in the majority of these ecosystems are limited by 

nitrogen (N) (Boynton et al., 1982), therefore, improving our understanding of the 

nitrogen uptake strategies that allow this relatively slow growing organism to 

dominate is critical for understanding bloom dynamics and improving predictive 

modelling for this species (McCarthy, 1972, McCarthy etal., 1982). 

There has been considerable research on the effect of physical conditions ( e.g. 

temperature and/or salinity) on the physiology of G. catenatum (Band-Schmidt et al., 

2004, Blackburn et al., 1989, Bravo & Anderson, 1994, Ellegaard et al., 1993, 

Yamamoto et al., 2002) as well as nitrate (NO 3 ) and ammonium (NH) uptake 

kinetics (Flynn etal., 1996, Yamamoto et al., 2004) However, there is little 

information on the N preferences of this species or its ability use urea for growth, a N 

source whose importance is becoming increasingly recognised (Glibert et al., 2004, 

Twomey et al., 2005). With increased N-rich anthropogenic inputs to many of our 

estuaries and coastal ecosystems, there may be potential for HAB species to exploit 

changes in macronutrient ratios. Changes in these ratios (e.g. N:P or N:Si) can cause 

changes in phytoplankton composition. This has been demonstrated in cultures (Baek 

etal., 2008), mesocosms (Escaravage & Prins, 2002), and also observed in the field 
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(Riegman etal., 1992, Heil etal., 2007). Furthermore, not only are macronutrient 

ratios important but also nutrient speciation has been shown to play a role in 

competitive interactions between phytoplankton (Riegman et al., 1996, Heil et al., 

2007, Baek et al., 2008) 

The majority of coastal systems are N limited, and the ability for some species to use, 

or have enhanced growth rates on different N species can give a competitive 

advantage. Some species have increased growth on NH 4+  when compared with NO3 " 

or urea (Chang etal., 1995, Leong & Taguchi, 2004, Chang & McClean, 1997). 

Other species are unable to grow using particular N species. For example, some 

species cannot use urea as a sole source (Lourenco etal., 2002, Yamaguchi etal., 

2001) or growth is reduced when urea is utilised (Yamaguchi & Itakura, 1999, 

Tungaraza etal., 2003). Some HAB species appear to prefer urea as a N-source, 

suggesting that urea may be important for bloom development (Kana et al., 2004, 

Berg etal., 1997). Riegman etal. (1996) has also demonstrated in laboratory cultures 

how the use and affinity for different N sources may cause changes in species 

composition of mixed phytoplankton communities. 

G. catenatum bloom populations in the Huon Estuary, south east Tasmania are known 

to undergo diurnal vertical migration (DVM). It has been hypothesised that this 

allows access to NH4+  available at depth (Doblin et al., 2006, Team, 2000). This 

could provide a distinct competitive advantage when N has been depleted in the 

upper layer of the estuary. To be able to test this hypothesis we sought to determine 

first if NH 4+  or urea could be used as a sole N-source for growth, and whether NH 4+  

or urea afforded any advantage in growth rate. In addition we also wished to 

determine whether G. catenatum displayed a specific N-source preference when 

simultaneously exposed to similar concentrations of NH4+, NO3" or urea. 
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4.2 Methods 

Three strains of G. catenatum; GCHUO2, GCVSO4 and GCLV01 were used in the 

following experiments. A pre experiment investigating the toxicity of ammonium 

used GCHUO2, GCHUll and GCDE08 strains. All the G. catenatum strains used in 

these experiments are non-axenic.These strains are maintained at the CSIRO 

Collection of Living MicrOalgae in GSe medium at 20 °C. The collection details for 

each of these strains are in Table 4.1. Individual experiments had different 

temperature and irradiance conditions because these experiments had to be carried out 

in temperature controlled rooms used primarily for maintaining the CSIRO collection 

of microalgae. So the temperature and irradiance in each experiment was determined 

by which temperature controlled room could be used for the experiment. Temperature 

and irradiance conditions are listed in the descriptions of each experiment. 

Table 4.1 Gymnodinium catenatum strain details. 
Collection Code Source Locality Isolation Date Isolator 

GCHUO2 Huon Estuary 6/6/1986 S. Blackburn 
GCHU11 Huon Estuary 20/6/1988 S. Blackburn 
GCVSO4 Huon Estuary (Verona Sands) 2002 M. de Sales 
GCLV01 Louisville (Triabunna) 2002 M. de Sales 
GCDE08 Derwent Estuary 15/6/1987 S. Blackburn 

4.2.1 Determining tolerance to ammonium concentrations 

Forty ml of GSe medium (Blackburn et al., 2001) (without NO3) was added to 15 

culture vessels (70 ml polycarbonate containers (Labserv Biolab Ltd. Auckland New 

Zealand) with 50 ml test tube adapters (see Figure 3.2 in Chapter 3). These cultures 

were inoculated with different strains of G. catenatum: 5 with GCHUO2, 5 with 

GCHUll and 5 with GCDE08. NH 4+  was added to all cultures so that each strain 

would have a culture growing at 10, 20, 40, 80 and 16011M concentrations of NH4 +. 

Culture conditions were: 20 °C, z300 gmol photons tn -2  s-1  and 12:12 L;D cycle. 

Growth was calculated using measurement of in-vivo fluorescence as a proxy for 
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biomass, every 2-3 days over the 31 day s of the experiment. Growth rate was 

calculated according to (Guillard, 1973) (see 3.2.7 in Chapter 3). 

Based on the results of the experiment above a second experiment was carried out to 

determine whether growth could be sustained using non-lethal concentrations of 

NH 4+  as a sole source of nitrogen. For this experiment, duplicate cultures of HUO2 

and HUll were gown with either 101.IM or 20 ptM of NH4 +  as a sole N source. 

Cultures grown on excess NO3" (initial concentration —800 1AM) were used as a 

control. Growth of all cultures was monitored using in-vivo fluorescence as 

previously described, and growth rates calculated using data from the exponential 

growth phase. 

4.2.2 Growth on ammonium 

Cultures of GCHUO2 and GCVSO4 were preconditioned by N-starvation by growth 

in GSe medium without added NO3 -  for 14 days prior to the experiment, so that 'carry 

over' of NO3-  into the treatments with different N sources would be minimized. 

Triplicate cultures of both strains were grown in 70 ml polycarbonate containers with 

50 ml test tubes attached (see Figure 3.2 in Chapter 3) containing 47.5 ml of GSe 

medium without NO3 -  and the addition of 10 uM of NI-14 + . Triplicate control cultures 

contained 47.5 ml Gse medium containing NO 3 -  in excess (-800 iM). All cultures 

were grown under optimal temperature and saturating light conditions (22 °C and 150 

umol photons r11-2  s -1 ) with a L:D cycle of 12:12. As NH4+  appeared to have negative 

effects on growth rate at concentrations of >40 uM, NH 4+  was maintained at less than 

20 uM with regular aseptic additions of sufficient NH4 +to give an increase of 101.1M 

when significant draw-down of NI-14 +  was estimated. Draw-down was monitored 

every 2-3 days using a spectrophotometric technique developed by Solorzano (1969), 

further details of this technique are given in Parsons, etal. (1984). Cultures were 

grown for 19 days and cell density monitored using in-vivo fluorescence ever 2-3 

days and growth rates calculated as described in Chapter 2. Growth rates between 

days 3 and 6 (when NH 4+  was not significantly depleted) were used to examine 
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significant difference between growth using NH 4+  or NO3 -  as a sole N source and 

whether there were significant strain-specific responses between GCHUO2 and 

GCVSO4. Statistical analyses used a 2 way ANOVA using the program Sigmastat 

2.03 and a-value of 0.05. The data passed both the Kolmogorov-Smimov test (with 

Lilliefors' correction) for normality and Levene's median test for equal variance. 

4.2.3 Growth on Urea 

Strains GCHUO2 and GCVSO4 were pre-conditioned by growing them in GSe/10 

(GSe medium with 1/10 normal concentrations of nutrients) for at least 14 days. 

When cultures reached —5 x 105  cells r', one ml of culture was used as an inoculum 

for experimental cultures. Triplicate control and treatment cultures of both GCHUO2 

and GCVSO4, were grown in 70 ml polycarbonate containers with 50 ml test tubes 

attached (see Figure 3.2 Chapter 3). Control cultures contained 50 ml GSe medium 

containing NO3 -  in excess (-800 [tM). Treatment cultures contained 50 ml of GSe 

medium without NO 3 -  and urea added to achieve an initial concentration of 10 p.M. 

Cultures were grown at 23 °C and 1601.tmol photons 111-2  S-1  with a L:D cycle of 18:8. 

Cultures were grown for 14 days and cell density monitored using in-vivo 

fluorescence every 2-3 days and growth rates calculated as previously described (see 

3.2.7 in Chapter 3). The concentration of urea was not monitored as the experiment 

progressed. However, assuming a maximum growth rate of —0.3 d -1 , the N 

requirements for G. catenatum were calculated for the experimental period and urea 

was added periodically to make sure urea was in excess. 

After the first 14 day experimental period each culture was used as an inoculum for a 

second set of experimental cultures. The second sets of cultures were inoculated to 

have the same starting cell densities. Growth rates of these cultures were monitored 

for a further 19 days and growth rates calculated as before. Growth rates from the 

first and second round of cultures were compared using a 2 way ANOVA using the 

program Sigmastat 2.03 and a-value of 0.05. The data passed both the Kolmogorov- 
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Smirnov test (with Lilliefors' correction) for normality and Levene's median test for 

equal variance. 

4.2.4 Preferential uptake of different nitrogen species 

Prior to the experiment, cultures of G. catenatum strains GCHUO2, GCVSO4 and 

GCLV01 were pre-conditioned by being grown for 14 days in GSe/10 (GSe at 1/10 

concentration). After 14 days cell counts were undertaken to allow standardised 

(same number of cells m1 -1 ) inocula for experimental cultures. 

Four 500 ml round bottom glass flasks capped with steri-stoppers manufactured by 

Heinz Herenzwere used because a larger volume of culture was required so that 2 ml 

samples could be removed from the culture every 3-5 days. The round bottom flasks 

provide better conditions than other culture vessels, presumably because of the large 

surface area that these vessels provide when 200-400 ml of media is added. When in 

culture G. catenatum has been observed to aggregate just below the surface and when 

provided with a larger surface areas grows better. These culture vessels had 420 ml 

of GSe with no added NO3 -, and were inoculated with GCHUO2, GCHU1 1, GCVSO4 

or GCLV01 at an initial concentration of 2.9 x 10 3  cells 1-I . NH4+, NO3-  and urea 

were all added aseptically at an equi-molar concentration of z4 11M. The cultures 

were then grown for 29 days under these conditions: 23.5 °C, 3161..tmol photons T11-2  

s-1  and L:D 18:8. The GCHUll culture displayed a much longer lag phase before it 

began to grow, for this reason it was excluded from the results for the purposes of this 

study. 

Samples were taken at 3-5 day intervals throughout the experiment and stored at -20 

°C for later analysis of NH4 +, NO3 -  and urea concentration. Ammonium was 

measured using the technique of Kerouel and Aminot (Kerouel & Aminot, 1997) 

adapted for flow injection (Watson etal., 2004)with a detection limit of-0.05 mM. 

Nitrate and/or nitrite (Wood et al., 1967), was measured using Quick-Chem' 

methods on a flow injection LACHAT instrument as per the following protocols for 
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nitrate and/or nitrite (Quik-ChemTm  Method 31-107-04-1-A; detection limit 0.03— 

mM), Urea was analysed by a spectrophotometric technique to quantify the reaction 

of urea with diacetylmonoxime (Mulvenna & Savidge, 1992). To reduce the health 

risks associated with thio-semicarbazide, a reagent for this technique, we substituted 

semicarbazide (a less toxic but similar compound). 

Samples for microscopic cell counts were also taken and counts carried out using lml 

samples in a Sedgewick-Rafter counting cell (ProsciTech Queensland, Australia). 

Phytoplankton in these samples were preserved using Lugol's iodine fixative solution 

(110 g potassium iodide, 50 g iodine, 1 litre distilled water, 100 ml glacial acetic 

acid) to approximately 2% final concentration. Cell counts were performed using an 

Olympus 1X71 microscope at a magnification of 200x. After day 12, cell counts 

became unreliable due to an increasing proportion of the cells adhering to the bottom 

of the flasks. Some of these cells did not resuspend with gentle hand swirling, 

therefore specific uptake rates are only presented for the period prior to day 12. 

An estimate of specific uptake was made by multiplying cell counts by the average N 

per cell. This estimate of N accumulation in the G.catenatum cells over time was then 
- used to calculate the specific uptake. The average N per cell (587 pg N cell 1 ) used in 

this calculation was determined in Chapter 3 of this thesis. 

4.3 Results 

4.3.1 Growth on different nitrogen species 

Growth was observed for G. catenatum in GSe with addition of NI-14+  at 10 AM and 

20 AM, however, no growth was observed at concentrations above 40 jiM , indicating 

that cells were dying. These results were confirmed by the growth of G. catenatum on 

NH 4+  solely at both 10 and 20 1.tM. The growth rate achieved at 20 111 ■A growth was 

not significantly different from that achieved on NO 3" in the initial stages of the 

experiment. The growth rate at 10 p.M NH4+  was significantly lower (by almost half 
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(P=0.02)) in comparison to the NO 3 -  control, although there was no significant 

difference between growth on 10 or 20 j.tM of NH4 + . 

0.12 
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NO3 (control) 	NH4 10 uM NH4 20 uM 

Figure 4.1 Mean growth of G. catenat um (GCHUO2, GCHUll and GCDE08) at different 
concentrations of NH4+ . Subscripts indicate significant differences between treatments. Error 
bars are +1 standard error from the mean (n=3). 

In the second set of experiments, where NH 4+  concentrations were kept > 10 [tM and 

less than 40 [iM, there were no significant differences in G. catenatum growth rates 

when grown on NO3 -or NH4+  (P=0.161) (Figure 4.2) and NO3 -  or urea (P=0.852) 

(Figure 4.3). Neither was there a significant difference between growth response of 

the GCHUO2 and GCVSO4 strains when gown on NO 3 -or NH 4+  (0.397) (Figure 4.2) 

and NO3 -  or urea (P=0.857) (Figure 4.3) 
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Figure 4.2 Growth of two strains of Gymnodinium catenatum (HUO2 and VSO4) on NO 3-  and 
NH4+ . Error bars are +I standard error from the mean (n=3). 
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Figure 4.3 Growth of two strains of Gymnodinium catenatum (HUO2 and VSO4) on NO 3-  and 
urea. Error bars are +1 standard error from the mean (n=3). 

4.3.2 Preferential uptake of different nitrogen species 

Mean ambient NH 4+  concentrations decreased sharply from 6.5 to 2.41.tM in the first 

4 days (Figure 4.4). From 4 to 7 days mean ambient [NO3 -] decreased in from 7.7 to 

6.5 gM, with an increased rate of disappearance between days 7 and 13. This 

coincides with the lower availability of N1-14+  and a decreased rate of disappearance in 

[N}41 over this same time period. From day 13 to 18 the mean ambient 

concentration of urea started to be disappear at its fastest rate from 5.4 to 1.6 04. By 

Day 18 the ambient [NH.] and [NO3 -] had reached their lowest. Between day 18 and 

29 urea disappearance continues but at a reduced rate compared to the initial rate. 
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Figure 4.4 Preferential uptake of nitrogen species by Gymnodinium catenatum. Mean NO3-, 
NH4+  and urea concentrations for G. catenatum over the 29 day experiment period (data from 
HUO2, VSO4 and LV01 strains). Error bars are +1 SEM (n=3). 

The maximum specific uptake rate for NH4+  was 5.3 +/- 0.92 c1-1  between the 0-4 day 

period (Figure 4.5). Uptake  of  NO3" was much lower by z6 times  at 0.9  +/- 0.30 d." 1  

and occurring between days 7-12. Urea uptake peaked between days  12  and 18 at 

approximately 0.51 +/- 0.40 d -1 , about half the uptake rate of NO 3 - . 
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Figure 4.5 Mean uptake rates for NO 3-, NH4+  and urea (data from GCHUO2, GCVSO4 and 
GCLV01 strains) for G. catenatum over the 29 day experiment period. Error bars are +1-1 
standard error from the mean (n=3). 

4.4 Discussion 

The strains of Gymnodinium catenatum from south east Tasmania are able to use 

NH4+, NO3 -  and urea equally well as sole N-sources for growth. This has been found 

in other studies, ten species of phytoplankton studied by Lourenco, Barbarino et al. 

(2002) were similar, in that the majority were able to grow soley on NH4 + , NO3 -  or 

urea. The studied included 3 chlorophytes, 2 diatoms, a dinoflagellate, a cryptophyte, 

a cyanophyte, a prymnesiophte and a eustigmatophyte. There were two exceptions 

Hillea sp. (eustigmatophyte) and Prorocentrum minimum (dinophyte) which didn't 

grow on NH4+. However, this was probably because the concentrations used were 

very high (1.18 mM) and therefore likely to be toxic. 
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The effect of NH4+ , NO3 -  and urea on growth rate of 4 phytoplanIcton species was 

also investigated by Levasseur, et al. , (1993). They showed Thalassiosira 

pseudonana, Chaetoceros gracilis, Dunalilella tertiolecta and Gymnodinium 

sanguineum were all capable of growth using NH4+, NO3 -  and urea as sole N sources. 

However, growth rates decreased for these species investigated when grown on urea. 

The ability to grow equally well on urea may be an important advantage for G. 

catenatum over other species that cannot grow using urea as a sole N source or have 

substantially reduced growth rates on N in this form. The ability to grow equally well 

using all of these N species would be advantageous in an environment where N is the 

limiting nutrient and it is available in these different forms. 

It is important to take into account the toxicity of NI-14 +  at higher concentrations to 

many phytoplankton. For example, our study showed NH 4+  was toxic for G. 

catenatum at concentrations >40 uM and in other studies the concentrations may be 

very high (0.05-1.18 mM) as these concentrations are required for large scale batch 

algal culture (Lourenco et al., 2002, Flynn et al., 1996) In most oceanic and coastal 

environments, generally NH 4+  concentrations experienced are much lower but NH 4+  

fluxes are relatively high, therefore providing a continuous supply of NH 4+  at low 

concentrations (i.e. <2 uM) unlikely to be toxic to the majority of phytoplankton. So 

it is important to investigate the effect of NH4 +  on growth of phytoplankton species at 

lower concentrations or non toxic concentrations if these results are going to be 

applied to understanding the physiology of phytoplankton in natural environments. 

We have shown that G. catenatum cannot tolerate NH 4+  concentrations in excess of 

40 uM and that NH4 +  at < 10 AM is limiting growth. This may indicate that G. 

catenatum has a relatively high half saturation constant for uptake of NH4 +  and 

growth. 

Table 4.2 gives half saturation constants (K s) for phytoplankton from different groups 

including: Dinoflagellates, Diatoms, Raphidophytes, Prymnesiophytes, Prasinophytes 

and Chlorophtyes the majority of phytoplankton species have K s  values for NH 4+  less 
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Table 4.2 Comparison of half saturation constants(K) for NO 3-  and NH4+  between 
phytoplankton species from different classes 

Species 	 Group 
NO3" Ks NH4+  Ks 

Reference 
(uM) 	(uM) 

than 3 1AM (Table 4.2). Hence, most phytoplankton are able to effectively take up 

NI-14+  at low concentrations commonly found in the environment. 

Gymnodinium catenatum 
Alexandrium catenella 
Alexandrium tamarense 
Alexandrium tamarense 

Prorocentrum minimum 

Gymnodinium splendens 

Skeletonema costatum 
Phaeodactylum tricomutum 

Thalassiosira Weissflogii 

Skeletonema costatum 

Chaetoceros sp. 
Chattonella antiqua 

Micromonas pusila 

Pavlova lutheri 

Dunaliella tertiolecta 
Dunaliella tertiolecta 

Dinophycae 	0.42 
Dinophycae 	7.7 
Dinophycae 	2.84 

Dinophycae 	1.31 

Dinophycae 	5.0 

Dinophycae 
	3.8 

Bacillariophyceae 	0.4-0.5 
Bacillariophyceae 

	7 

Bacillariophyceae 	2.8 

Bacillariophyceae 	0.4 

Bacillariophyceae 	3.1 

Raph idophyceae 
	2.81 

Prasinophyceae 	—0.182 

Prymnesiophycae 22.7 

Chlorophyceae 	11.1 

Chlorophyceae 	1.4 

1.02 	Flynn 1996 
3.3 	Matsuda 
1.49 	Mac Isaac 

Leong and 
Taguchi 
Lomas and 
Glibert 2000 
Eppley et al. 1.1 1969 

0.8-3.6 	Eppley 
<1 	Syrett 

Lomas and 
Glibert 2000 
Lomas and 
Glibert 2000 
Lomas and 
Glibert 2000 

2.19 , 	Nakamura 
Cochlan and 
Harrison 
Lomas and 
Glibert 2000 
Lomas and 
Glibert 2000 

0.1 	Eppley 1969 

0.12 

—0.182 

While growth rates of G. catenatum were not significantly different on NO 3 - , NH4+  or 

urea, when presented with a mixture of these N species (each at — 5-7 uM) preference 

for uptake is in this order: NH4 +> NO3 -  > urea. Uptake rates from the present study of 

NH 4+  were initially 5.3 +1- 0.92 d -1 , far greater, by —6-8 times, than uptake rates of 

NO3 -  and urea respectively at 0.9 +1- 0.30 and 0.5 +1- 0.4 d -I .These results indicate G. 

catenatum has a strong preference for NH4+. The uptake kinetic results for NO 3 -  and 

NH4+  from Flynn, Flynn et al. (1996) would suggest this also. However, uptake 

kinetics cannot be used to infer uptake preference directly. Based on first principles 

for balanced growth it would be expected that the N uptake rates of G. catenatum 
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would equal its growth rate. However, it has been shown in several studies that when 

cells are starved of N, as in this study, that when they are resupplied with N they 

exhibit uptake greater than their growth rate. This is commonly referred to as "surge 

uptake" (Parslow et al., 1984b, Parslow et al., 1984a). Our results show that initial 

uptake of NH4+  is almost 20 times the maximum growth rate of G. catenatum (0.30 d-

I ). This surge uptake is also reported by Flynn et al. (1996) for G. catenatum but the 

magnitude of increase was —2.5 times less than in the present study. In the present 

study the uptake of NO 3 -  and urea are also at rates greater than the growth rate but 

they have relatively large standard errors associated with them. It might be expected 

that the uptake of N would return to rates similar to the growth rate after an initial 

surge in uptake to recover after N starvation. 

4.4.1 Summary 

We have demonstrated that G. catenatum is physiologically diverse in its N uptake 

capabilities. It is able to grow equally well using NO3 -  , NH4+  and urea. Why is it 

then that G. catenatum has preferences for NH4+  and NO3 -  over urea? Perhaps while 

it poses no penalties for growth when energy from light is saturating, the preferences 

may be related to the preferences under energy limited circumstances. For example, 

Alexandrium minutum (dinophyceae) showed variations in growth rate when grown 

on NO3 -  that were highly dependent on the level of irradiance (Chang & McClean, 

1997). 

The present study and that of (Flynn et al., 1996) show that G. catenatum is capable 

of responding to pulses of N by 'surge uptake'(compared to max growth rate 0.3 d -1 ) 

when it is in a N starved condition. In addition, it has been clearly demonstrated that 

G. catenatum can grow equally well on NH, NO3 -  or urea. Combined, these 

physiological capabilities of G. catenatum increase its ability to compete for N in the 

environment and would contribute to its ecological success. 
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5 NITROGEN UPTAKE DURING A 

GYMNODINIUM CATENATUM BLOOM AT 

SOUTHPORT, SOUTH-EAST TASMANIA, 

AUSTRALIA 

5.1 Introduction 

It appears that there has been an increase in the occurrence of harmful algal blooms 

(HABs) in Australia (Hallegraeff, 1992) and around the world (Anderson et al., 2002, 

Hallegraeff, 1993). The results of these HABs includes fish kills, human health issues 

including such as PSP, DSP and the loss of biological diversity and productivity. That 

eutrophication plays an important role directly or indirectly in the stimulation of 

many HABs is now widely accepted (Anderson et al., 2002, Heisler et al., 2008). 

Coastal and estuarine systems phytoplankton are primarily nitrogen limited(Downing, 

1997). Hence, the increased interest in nitrogen nutrition of HAB species such as 

Alexandrium minutum (Chang & McClean, 1997), Heterosigma cartarae (now 

Heterosigma akashiwo) (Chang & Page, 1995),Gymnodinium sanguineum (now 

Akashiwo sanguinea) (Doucette & Harrison, 1991). In addition mechanisms that 

allow dinoflagellates to bloom when nitrogen availability is low are increasingly 

under investigation. These include the use of organic N such as urea and behaviours 

such as the vertical migration to obtain nitrogen from deeper in the water column 

(Cullen and Horrigan 1981). In some dinoflagellate species this behaviour has been 

proven to be a strategy for maximising photosynthesis and nutrient uptake where 

nutrients and light are vertically separated (MacIntyre et al. 1997, Ault 2000). G. 

catenatum has been observed undertaking a strong vertical migration (Toshinori et al. 

2001) and in the Huon Estuary, when it is the dominant phytoplankter, it has been 

observed to vertically migrate from — 5m to — 20 m on a daily basis (Team, 2000, 

Doblin etal., 2006). From these observations it was hypothesized that the blooms of 
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this toxic species may be facilitated by its vertical migration and possible access to 

nitrogen from depth. Large blooms of G. catenatum were rare in the Huon Estuary in 

2002, 2003 and 2004. So our 2003-2004 field trips, while providing information on 

the N uptake by the mixed phytoplanlcton community, were unable to provide 

information about the N uptake strategies of G. catenatum during a bloom. Discovery 

of a significant bloom of G. catenatum at Dover and Southport, some 15 km south of 

the Huon Estuary, allowed us to prepare a field trip to measure N uptake of G. 

catenatum in the field, and to specifically investigate the uptake of N during vertical 

migration of this species. 

5.2 Methods 

The N uptake experiments were set up in Southport adjacent to Pelican Island 

(latitude 43° 27' 00" S longitude 146° 58' 28" E) in autumn 2004 on the 30-31 March. 

During this field trip the same 15N tracertechnique as used in the Huon Estuary 

(Chapter 4) was used to measure the uptake of three different nitrogen (N) sources 

(NH, NO3-  and urea) by the natural phytoplankton assemblage. Based on the 

observations of vertical migration of G. catenatum in the Huon Estuary (Team, 

2000) it was intended that suitable depths would be selected based on the depth of the 

chla maximum as indicated by fluorescence profile of the water column. Because of 

technical limitations a vertical profile of fluorescence could not be obtained for the 

day sampling. Alternatively, we sampled near the surface (5m) and also near the 

bottom (15m) during the day. For the night sampling a fluorescence profile was 

obtained prior to sampling and sampling was undertaken near the surface (5m) and 

also at the depth of the fluorescence maximum (10m). 
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Figure 5.1 Location for nitrogen uptake experiments near Pelican Island at Southport, 30- 
31/3/2004. 

5.2.1 Nitrogen uptake 

The 15N tracer technique (Dugdale & Goering, 1967) was used to measure the uptake 

of NH4  ±, NO 3-  and urea at surface (5m) and bottom (15m) during the day and 

surface (5m) and chla maximum (10m) during the night. Water was collected from 

the selected depths using a 10 1Niskin bottle and dispensed into 500 ml glass Schott 

bottles manufactured by Schott DuranTM.  The water collected for the incubations was 

not pre-filtered before dispensing into the 500 ml Schott bottles. There were two main 
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reasons for not pre-filtering the water for the incubations. Firstly, ensuring that long 

chains of G. catenatum were not excluded from incubations. G. catenatum chains of 4 

to 8 cells are common. A quick estimate of the size of these chains, 30 microns x 8 

cells = 240 microns suggests that screening at 200 microns (a commonly used screen) 

would exclude a proportion of this species. Secondly, we wanted to estimate the real 

in situ N uptake rate including, losses due to grazing. For each depth three 500 ml 

Schott bottles were spiked with 0.3 jiM 15N- NO3-  (99.3 atom percent 15N), three 500 

ml Schott bottles were spiked with 0.11AM ' 5N-NH 4+  (99.6 atom percent 15N) and 

three 500 ml schott bottles were spiked with 0.068 	15N-urea (98.61 atom percent 

15N). In addition at each depth one 500m1 schott bottle was filled with water but not 

spiked with any 15N substrate, this unspiked bottle was used to determine the 

background 15N (un-enriched atom % excess). These samples were incubated in 500 

ml Schott bottles for 4 hours in-situ at the depths they were collected from. Four 

hour incubations were chosen because they are short enough to limit the chances of 

substrate exhaustion (La Roche, 1983)and also reduce the problems caused by 

substrate dilution(Glibert et al., 1982) , but an incubation period of 2-6 hours is also 

long enough to minimise the bias introduced by initial high uptake rates that 

sometimes occur in phytoplankton (Dugdale & Wilkerson, 1986). After the 

incubation the water samples were filtered onto pre-combusted (450°C for 4 hours) 

25 mm WhatmanTm  glass fibre filters and stored frozen until analysis. The filters 

were dried in an oven at 60°C overnight before they were analysed using a Carlo Erba 

NA1500 CNS analyzer interfaced via a Conflo II to a Finnigan-MAT Delta S isotope 

ratio mass spectrometer to determine the N isotope ratios. Absolute uptake rates were 

calculated using the Dugdale and Goering (1967) equation: 

p = Nat(Rt) l  

where p is the absolute uptake (gig N1 -1 	N is the total particulate nitrogen (i.tg N), 

at  is the atom % excess of 15N (= atom % - background), R is the atom % enrichment 

[a, (SLASL Su))], ae is the atom % enrichment of labelled 15N source, SL is the 

concentration of labelled 15N, Su is the concentration of unlabelled 14N and t is the 
161 



incubation time (h). Specific uptake v (14N ligChla -1 11 1 ) is the absolute uptake p 

normalised to chla and was calculated using this equation: 

v = p/Chla 

Where, p is the absolute uptake (1.tg N r' W I ) and Chla is total chlorophyll a (lig Chla 

r'). 

It is common for researchers investigating N uptake to normalise N uptake to 

particulate N (PN). In this research N uptake has been normalised to chl a as an 

indicator of phytoplankton biomass. The fact is that chl a is the preferred method of 

measuring phytoplankton biomass worldwide. It is well known that measurements of 

particulate N or particulate C are not as reliable, primarily due to the potential 

contamination by detritial C or N. A number of highly respected researchers have 

proposed methods to improve the estimation of phytoplankton biomass from POC or 

PON including Karl Banse (Banse, 1977) or methods that rely on neither (Holm-

Hansen & Booth, 1966) but these methods are complex or difficult to apply to 

individual samples. One result is that very few researchers report phytoplankton 

biomass in units of PN or PC. In spite of these difficulties a number of researchers 

have normalized their N uptake measurements to PN and reported them in this 

manner. This may have more to do with the fact that the analysis required to obtain 

the results from the uptake experiments also gives a value for PN, rather than any 

more strategic reasoning. The truth is that N per cell shows about the same amount 

of variability as chl a per cell (Thompson, 1999) in response to irradiance and 

temperature. For these reasons we have normalized N uptake to chi a. 

Samples were collected for the determination of ambient nutrient concentrations but 

not analyzed until after the experimental determination of uptake rates. For the 

purpose of the experiment ambient concentrations were assumed to be 11.1M NH4  +, 3 

1.1M NO3-  and 0.681.IM urea and high purity 15N NH4+, NO3-  and urea tracers were 

added to produce a 10% rise in estimated ambient concentration. In this experiment 
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ambient nutrient concentrations were lower than expected resulting in enrichments 

significantly greater than 10% for NH4+  +, NO3-  (Table 1.1), however, the actual 

concentration of 15N NH4+  and NO3-  were still low relative to other measurements in 

the Huon Estuary (Thompson et al., 2008) and other coastal and estuarine 

ecosystems. Hence, the N uptake rates derived from these incubations were 

indicative of potential ambient uptake rates for NH4 +  and NO3-. 

Table 5.1 Percentage (% of ambient concentration) of 15N added as a tracer for the Southport 
fieldtrip.  
Date 	Site 	Time 	depth (m) % 15N NH4 ' 	%15 N NO3" 	% ' 5N urea  

5 	 250 	3000 	 9 
Pelican 	Day 15 	 16 	21 	13 

30/03/2004 	Island, 5 	 250 	3000 	21 
Southport 	Night 20 	 89 	85 	16 

* % enrichment calculated by using the detection limit (< 0.03 inM) of the NO 3" detection 
method used. 

5.2.2 Nutrient Analysis 

Water samples were taken from the water collected for N uptake experiments. The 

water samples were not filtered prior to storage. These water samples were stored at - 

20 °C prior to nutrient analysis. Analytical techniques for nitrate and/or nitrite (Wood 

et al., 1967), silicate (Murphy & Riley, 1962) and phosphate (Armstrong, 1951 )were 

adapted and performed using Quick-Chem Tm  methods on a flow injection LACHAT 

instrument as per the following protocols for nitrate and/or nitrite (Quik-ChemTm  

Method 31-107-04-1-A; detection limit 0.03— inM), silicate (Quik-ChemTM Method 

31-114-27-1-D; detection limit —0.05 rnM) and phosphate (Quik-ChemTM Method 

31-115-01-1-G; detection limit —0.02 mM). Ammonium was measured using the 

technique of Kerouel and Aminot (Kerouel & Aminot, 1997) adapted for flow 

injection (Watson et al., 2004)with a detection limit of —0.05 mM. Urea samples were 

analysed using a diacetyl monoxime technique according to the method of (Mulvenna 

& Savidge, 1992). To reduce the health risks associated with thio-semicarbazide, a 

reagent for this technique, we substituted semicarbazide (a less toxic but similar 

compound). 
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5.2.3 High performance liquid chromatography 

Two L of water was filtered for pigment analyses by high performance liquid 

chromatography (HPLC). Most pigment samples were analyzed by high performance 

liquid chromatography (HPLC) using methods developed by Wright et al. (1991) for 

extraction and gradient elution. The separated pigments were detected at 436 nm and 

identified against standard spectra using Waters EmpowerTM software. 

Concentrations of all pigments were determined from standards (SigmaTM or DHI 

Denmark). Primary pigments identified by HPLC included: Chl c 1  and c2, peridinin, 

9'-cis-neoxanthin, 19'-butanoyloxyfucoxanthin, fucoxanthin, 19'- 

hexanoyloxyfucoxanthin, prasinoxanthin, violaxanthin, diadinoxanthin, alloxanthin, 

diatoxanthin, lutein, zeaxanthin, Chl b, Chl a, 13, E-carotene and 1340-carotene. 

5.2.4 Phytoplankton Counts 

Water collected for the surface N uptake experiment during the day was used to 

enumerate phytoplankton. One litre water samples were taken and preserved in the 

field using Lugol's iodine fixative solution (110 g potassium iodide, 50 g iodine, 1 

litre distilled water, 100 ml glacial acetic acid) to approximately 2% final 

concentration. The samples were stored in plastic containers in the dark until they 

could be counted under the light microscope. Prior to counting the Lugol's preserved 

samples were transferred to 1 litre measuring cylinders (volume recorded — V 1 ) and 

allowed to settle for at least 24 hours. After this time, approximately 900 ml were 

siphoned off and the remaining sample was transferred to a 100-ml measuring 

cylinder and again allowed to settle for at least 24 hours. Then approximately 90 ml 

were siphoned off, the final volume recorded (V2) and thoroughly mixed before a 1- 

ml aliquot was taken, placed in a Sedgwick Rafter counting chamber and examined 

using an Olympus IX71 microscope to identify and count the phytoplankton. 
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The Sedgwick Rafter counting chamber has a grid of 1000 squares, each of 1 pl. For 

microplanIcton, (cells generally larger than 20 pm diameter) at least 100 squares or 

10% of the counting chamber was scanned (except in cases where there were dense 

blooms of one or more microplankton species, when at least one column of 20 

squares was scanned) at 200x magnification. For nanoplankton, (2-20 gm in 

diameter) the chamber was examined under 400x magnification until at least 300 

cells of the dominant nanoplankton "species" had been counted. Flagellates in the 

nanoplankton were grouped, as time constraints did not allow fuller identification. 

Cells per litre = 

cell "species" count * (1000 / number squares counted) * (V2 *1000 / V1) 

5.2.5 CTD profiles 

A SeabirdTM  SBE19+  conductivity, temperature and depth (CTD) profiler was used to 

measure the salinity, temperature and fluorescence of the water column during the 

field experiments. The measurements obtained on the downward cast through the 

water column are presented with the initial period removed when the instrument was 

held at surface until flow past the sensors was established. 

The CTD sensors: salinity, temperature and fluorescence were factory calibrated. The 

factory calibrations were confirmed by comparison with independent instrumentation 

for salinity, temperature and fluorescence. 

5.2.6 CHEMTAX 

Pigment data from HPLC analysis was further analysed to give the proportions of 

chlorophyll a present in the following algal taxonomic categories: Cyanophyta, 

Prochlorophyta, Chrysophyta, Cryptophyta, Bacillariophyta (diatoms), Haptophyta, 

Prasinophyceae, and Dinophyta (Mackey et al., 1996). Initial input ratio matrices 
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were adjusted from those proposed in Mackey, Mackey et al. (1996) by including 

four types of Haptophytes: 

Haptophyte N — Type 1 = fucoxanthin e.g. Isociuysis spp. 

Haptophyte S- Type 2 = Chl c3 + fucoxanthin e.g. Ochrosphaera neopolitana 

Haptophyte Type 3 = Chi c3+ 19'Hexanoyloxyfucoxanthin + fucoxanthin + and 

sometimes 19'butanoyl derivative e.g. Chyrsochromulina strobulis 

Haptophyte Type 4 = c3 + 19'butanoyloxyfucoxanthin +19'hexanoyloxy -fucoxanthin 

and fucoxanthin e.g. Imantonia rotunda. 

The peridinin:chlorophyll a ratio was modified from 0.515:1 as in Mackey, Mackey 

etal. to 0.36:1 after Hallegraeff, Nichols etal. (1991). The latter was based on 

extensive culture studies for Gymnodinium catenatum. This has the effect of 

increasing the proportion of the chlorophyll a that CHEMTAX will allocate to 

dinoflagellates for a given amount of peridinin. Based on personal observations this 

results in CHEMTAX estimates of dinoflagellates that are more consistent with the 

estimated proportion of biomass calculated by cell counts and adjusted for cellular 

bio-volumes. 

5.2.7 Statistical analysis 

A three-way ANOVA was used to examine the effect of N species (NH4 +, NO 3  and 

urea), time of day, and depth on N specific uptake. The data failed the Kolmogorov-

Smimov test (with Lilliefors' correction) for normality but passed Levene's median 

test for equal variance. A log transform (log(x+0.05)) visibly improved the shape of 

the distribution of the N uptake data however following this transformation the data 

still failed the test for normality. However, because of the robustness of ANOVA to 

non normal data (Sokal & Rohlf, 1995), the three way ANOVA was still used to 

analyse the data. 
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Where data was transformed for analysis, the three-way ANOVA results (least 

squares means) were back-transformed for reporting in the text and figures. As 

standard errors cannot be directly back-transformed upper and lower 95% confidence 

intervals were reported. The 95% confidence intervals were calculated as below: 

Lower 95% confidence interval= 10' )  

Upper 95% confidence interval= 0(X+S Pt)  

Where X=mean, SE=standard error and t is the t statistic (a=0.05) for n-1 degrees of 

freedom. Both the mean and standard error were first transformed using logio for 

these calculations. 

5.3 Results 

5.3.1 Phytoplankton composition 

CHEMTAX analysis of pigments showed that the phytoplankton composition was 

dominated by dinoflagellates at Southport at all depths sampled during the day and 

the night (Figure 5.3). During the day at 5m dinoflagellates accounted for over 96 % 

of the phytoplankton, the remainder being 2.2, 1.2 and 0.6% of prasinophytes, 

diatoms and haptophytes N, respectively (Figure 5.2). During the day at 15m and 

during the night at 5m and 10m at least 75% of the phytoplankton were 

dinoflagellates. Diatoms were more abundant than during the day at 5m, accounting 

for between 6 and 8 %. Cryptophytes, or possibly Dinophysis, were 2-4 % of total 

chlorophyll a, while the remainder of the phytoplankton was haptophytes type N 

(containing only fucoxanthin) There were was large numbers of cryptophytes 26812 

cells observed in these samples(Table 5.2). The CHEMTAX results were 

confirmed by cell counts of the surface (5m) sample collected during the day (Figure 

5.3). The cell counts showed that there were high numbers of G. catenatum (86 229 

cell 1 -1 ) and also a number of diatom species and some cryptophytes. The diatoms 
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with the greatest abundances were Leptocylindrus danicus and Skeletonema costatum 

with 10031 and 9375 cells r' respectively. 

During the bloom of G. catenatum sampled at Pelican Island Southport, there was a 

narrow fluorescence maximum in excess of 7 fluorescence units at - 8m during the 

day (Figure 5.4 A). At night the maximum fluorescence occurred at -11m and the 

peak of fluorescence was much wider and spread over a greater depth range (6-13m) 

(Figure 5.4 B). 
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Figure 5.2 Phytoplankton composition (based on HPLC determined pigments  and  subsequent 
CHEMTAX analysis from samples during bloom of G. catenatum at Pelican Island, Southport 
during Day and night and Surface (5m) and depths (10 and 15m). 
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Figure 5.3 Total chl a, chl a attributed to G. catenatum and G. catenatum cell counts at Pelican 
Island, Southport during Day and night and Surface (5m) and depths (10 and 15m). G. 
catenatum attributed chl a calculated based on 60 pg chl a celF 1  (Hallegraeff et al., 1991). 

Table 5.2 Representative cell count of lugols fixed phytoplankton collected from 5m during the 
day at Southport 30/03/2004. 
TAXON Cell count (cells 1 -') 
Melosira 562 
pennate diatom 15um 375 
Skeletonema costatum 9375 
Thalassiosira spp 187 
Guinardia delicatula = 
Rhizosolenia delicatula 6094 
Chaetoceros spp > 10um 1875 
Chaetoceros spp < 10um 6375 
Leptocylindrus danicus 10031 
Dactyliosolen fragillissimus = 
Rhizosolenia fragillissima 187 
Rhizosolenia fallax 469 
dinoflagellate 6-8um 3656 
Ceratium spp 1856 
Dinophysis spp 56 
Protoperidinium sp 562 
Gymnodinium catenatum 86229 
cryptophytes small 7 -10um 26812 
flagellates 5-10 urn round 6187 

169 



14.4 
0 	 

2 - 

4 - 

E 6 

rl  8 - 
a) 
O 10 - 

12 - 

14 - 

Temperature ( °C) 

14.6 	14.8 	15.0 	15.2 	15.4 	15.6 	15.8 16.0 

Irradiance (pmol photons m-2  s-1 ) 

0 	200 	400 	600 	800 	1000 	1200 	1400 

34.5 
	

34.6 
	

34.7 
	

34.8 	34.9 
	

35.0 	35.1 
Salinity 

0 2 4 
Fluorescence (units) 

6 8 

  

- Temperature 
Irradiance 

	 Salinity 
	 Fluorescence 

 

14.4 
0 

2 - 

4 - 

E 6 

• 8 - 
a) 
O 1 0 - 

12 - 

14 - 

Temperature ( °C) 

14.6 	14.8 	15.0 	15.2 	15.4 	15.6 	15.8 

B) Night 

16.0 

34.5 
	

34.6 
	

34.7 
	

34.8 	34.9 
	

35.0 
	

35.1 
Salinity 

0 
	

2 
	

4 
	

6 
	

8 
Fluorescence (units) 

Figure 5.4 Profiles of temperature, irradiance, salinity and fluorescence at Pelican Island, 
Southport (30-31/03/2004) at A) day and B) night. 
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5.3.2 N uptake 

Ambient, tracer and total NH4+, NO3-  and urea concentrations are shown in Table 5.3. 

Table 5.3 Ambient, tracer and total NH4+, NO3-  and urea concentrations at different times and 
depths for Southport N uptake experiment. 

Day 5m Day 15m Night 5m Night 10m 
Ambient NH4 0.036 0.645 0.036 0.113 

Tracer NH4+  0.100 0.100 0.100 0.100 

Total NH4+  0.136 0.745 0.136 0.213 

Ambient NO3-  0.000 1.606 0.000 0.533 

Tracer NO3-  0.300 0.300 0.300 0.300 

Total NO3-  0.300 1.906 0.300 0.833 

Ambient Urea 0.793 0.522 0.330 0.435 

Tracer Urea 0.068 0.068 0.068 0.068 

Total Urea 0.861 0.590 0.398 0.503 

Specific uptake rates for NH4+, NO3-  and urea ranged from 0.012-0.063, 0.011-0.040 

and 0.012-0.081 pigN 	If', respectively (Figure 5.5) During the day at the 

surface, night at surface and night at depth urea uptake was 58.1, 43.9, 47.0 %, 

respectively of total N uptake (Table 5.4). There was only one instance (day at 15m) 

where NO 3-  uptake was greater than urea; when it was 51.7 % and urea only 

accounted for 24.5% of the total N uptake. NO3 -  uptake showed the greatest 

variability ranging from 12.8 % during the day at 5m to 51.7% day at Depth (15m). 

Uptake of NH4+  ranged from 22.4 to 34.3 % during the day at surface (5m) and night 

at surface (5m) respectively. 

Table 5.4 Percentage uptake of NH4 +, NO3-  , and urea during the day at 5 and 15m and during 
the night at 5 and 10m for the Southport fieldtrip.  
Date 	Site 	Time of day Depth (m) 	%NH4+ 	% NO3-  % urea  

5 	 29.1 	12.8 	58.1 
Pelican 	Day 15 	 23.8 	51.7 	24.5 

30/03/2004 Island, 5 	 34.3 	21.8 	43.9 
Southport 	Night 10 	 22.4 	30.7 	47.0 
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Figure 5.5 Absolute and specific uptake rates of NH 4+, NO3-  and urea at Pelican Island, 
Southport during the day and night and at the surface (5m) and depth (10 and 15m). 

When averaged across time of day and depths NH 4+ , NO3-  and urea specific uptake 

rates were 0.0292, 0.0253 and 0.0446 pig N jig chi c1 1 11 1  respectively  or  expressed as 

percentage of total N uptake (NH4 ++ NO3-  + urea) 29.5, 25.5 and 45% respectively 

(Figure 5.6) 
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Figure 5.6 Mean uptake for NH 4+ , NO3-  and urea when both times and depths were combined 
from Southport (see Fig 1.1 for location). Standard errors are included (n=12) 

The main effects of N species, time of day and depth on N uptake were all significant 

but interpretation of their effects was complicated because of the significant 

interactions between N species and depth and between time of day and depth (Table 

5.5). 

Table 5.5 Three way ANOVA for the effect of Nitrogen species (N), Time of  day  (T) and Depth 
(D) on the specific uptake of nitrogen at Southport during a Gymondium catenatum bloom. 

Factor 	Nitrogen uptake  
N species (N) 	Significant effect P=0.048 

Time of day (T) Significant effect P=<0.001 

Depth (D) 	Significant effect P=<0.001 

N x T 	No Interaction 

N x D 	Significant Interaction P=<0.001 

T x D 	Significant Interaction P=0.005 

NxTxD 	No Interaction 

While acknowledging the complications caused by the significant interaction some 

general trends in N uptake were evident. There was an — 2 times increase in the 
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specific uptake of NI-14 + , NO3-, and urea during the night when compared to uptake 

during the day (Figure 5.7). NH4 ±  and urea uptake at the surface was — 3 times 

greater than near the bottom but there was no effect of depth on NO 3-  uptake (Figure 

5.8). At the surface urea uptake was — 3 times greater than NO3 -  uptake  and 1.5 

times greater than NH4+  uptake. In addition NH 4+  uptake was — 2  times  greater than 

NO3-  uptake in the surface. Total specific nitrogen uptake was 2.3  times  greater in the 

surface at night than in the surface during the day (Figure 5.9). 
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5.4 Discussion 

Gymnodinium catenatum dominated the phytoplankton assemblage sampled near 

Pelican Island, Southport. G. catenatum was responsible for 87 and 73% of the Chla, 

during the day at 5 and 15 m respectively and 53 and 74% of the Chia during the 

night at 5 and 10m respectively. CHEMTAX results based on HPLC pigments 

indicated that the other phytoplankton groups responsible for the remaining Chla 

were diatoms, cryptophytes, prasinophytes and haptophytes N, listed in order of their 

contribution. The Chi a biomass and species composition of this bloom at Southport 

was similar to the summer and autumn blooms previously observed in the Huon 

Estuary with mean Chl a values of-3 gg 1-1  and G. catenatum responsible for greater 

than 50% of the phytoplankton assemblage (Thompson et al., 2008). It is suggested 

that the N uptake results from this G. catenatum dominated bloom at Southport will 

be useful in gaining insight into the behaviour and N uptake capabilities that enables 

G. catenatum to bloom so successfully in the South East of Tasmania and other parts 

of the world. 

Specific uptake rates for NH4+, NO3-  and urea ranged from 0.012-0.063, 0.011-0.040 

and 0.012-0.081 jig N jig chi a 1  h'. The specific uptake rates from Southport were 

at the lower end of the range reported by Rosser and Thompson (Rosser & 

Thompson, 2001) in the much more eutrophic Swan River. 

When averaged across time and depth urea uptake was greatest at 45% and NI-14 +  and 

NO3-  are both roughly equal in their contributions at 29.5 and 25.5 %, respectively. 

In comparison to the late autumn and late summer fieldtrips in the Huon estuary urea 

was responsible for a greater proportion of the phytoplankton uptake. It seems likely 

that the reason for this is that in southport both the preferred N sources (chapter 4) 

N114+and NO3-  have been exhausted in the surface and hence G. catenatum is forced 

to use urea and exploit deep NO 3-  via vertical migration. While in the Huon Estuary 

its hypothesised that NH 4+  uptake is more important during these times of year 

because of the added input of NH 4+  from salmon farming. These results are also in 
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good agreement with many studies which have shown that urea uptake is important 

for many phytoplankton species (Berman & Bronk, 2003), especially autumn 

dinoflagellate blooms (Glibert and Terlizzi 1999). 

Results from a series of experiments on G. catenatum show that this species grows 

equally well on NH4 +, NO3-  and urea as sole N sources (see Figure 4.2 and Figure 4.3 

in Chapter 4), but when presented with a mixture of NH 4+, NO3-  and urea they are 

taken up in the order NH 4+>NO3-> urea. This preference for NH4+  and NO3-  

indicates that there must be low supply of both of these substrates for urea uptake to 

be the most important N source for this G. catenatum dominated bloom at Southport. 

The ability of G. catenatum to vertically migrate (Doblin et al., 2006) means that to 

understand more clearly the behaviour and N uptake capabilities of this species in the 

field it is important to examine N uptake during the day and night and at depths 

related to its position in the water column. 
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Figure 5.10 Comparison with A) NH 4+and B) NO3-  G. catenatum uptake kinetics data from 
Flynn, Flynn et al. (1996). 

5.4.1 Day 

During the day at 5m urea uptake accounted for 58.1% of the N uptake, while NH 4+  
and NO3-  only accounted for 29.1 and 12.8 % respectively. Urea uptake was greater 

during the day at 5m because ambient concentrations of NH 4+  and NO3 -  were very 
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low 0.04 and <0.01 I.LM (below detection level) respectively. At such low 

concentrations the rate at which G. catenatum can take up any N substrates is 

substantially reduced (Flynn et al., 1996). However while urea is not the preferred 

source of N it was present at a much greater concentration, 0.79 tM hence the 

phytoplanIcton were taking up urea at a greater rate. While urea was being taken up at 

the greatest rate NH 4+  and NO3-  were also being taken up at lesser but significant 

rates. A considerable fraction of the NH 4+  and NO3-  uptake was associated with the 
15N tracer which was added at 2.5 and 30 times (respectively) greater concentrations 

than ambient. If the NH4+  and NO3-  could have been added at truly tracer levels 

(10% of ambient concentrations) NH4+  and NO3-  uptake would have been much less 

and urea would have made an even greater % of the uptake under these conditions. 

During the day at 15m NO 3-  uptake was greatest, responsible for 51.7% of N uptake 

and NH4+  and urea were responsible for almost equal amounts 23.8 and 24.5% 

respectively. The N uptake rates at depth appear to be related to the ambient substrate 

concentrations with NO3 -  uptake being greatest because it is available at 

concentrations of 1.6 p.M, greater than double the concentration of NH 4+  or urea 

during the day at this depth. 

The fluorescence profile is in the shape of a sharp peak with a maximum fluorescence 

at —8m indicating that during the day the greatest concentration of phytoplankton are 

at 8m and based on the G. catenatum dominated samples from the 5 and 15m samples 

and what we know about vertical migration of G. catenatum (Team, 2000, Doblin et 

al., 2006) it seems likely that G. catenatum is positioning itself at 8m during the day 

where it can access light for growth but also N in the form of elevated NO3 -  
concentrations like those observed at 15m. At 8m Irradiance is approximately 160 

111.1101 photons 1112  s -1  and temperature 15.8°C. Ek calculated from the model in 

Chapter 3 for 15.8 °C was 7.1 innol photons m -2  s-1 . These laboratory results indicate 

that the irradiance of 160 timol photons rr1-2  s -1  would be saturating growth and well 

in excess of the requirements for G. catenatum at this temperature. This type of 
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strategy has been reported by other dinoflagellates including (e.g. Ault, 2000)(Cullen 

and Horrigan 1981; Eppley, Holmhans etal. 1968; Hasle 1950. 

5.4.2 Night 

During the night at 5m urea uptake was 43.9% of N uptake, while NI-1 4+  and NO3-  

were responsible for 34.3 and 21.8%, respectively. Uptake during the night at 5m 

was similar in many ways to what was seen during the day at 5m. Urea uptake was 

most important and ambient concentrations of urea (0.32 i_tM at surface) were greater 

than either NH4+  or NO3-  uptake. Also, in-situ uptake rates of NH4+  and NO3-  were 

probably overestimated because of relatively high concentrations of the 15N tracer, as 

was also the case for the day at 5m. It might be expected that uptake rates of these N 

species would be lower at night because absence of light usually reduces the uptake 

of N substrates (MacIsaac & Dugdale, 1972) particularly NO 3-  which requires more 

energy for uptake and assimilation (Syrett, 1981). Clearly uptake rates are not 

reduced at night, in fact they are greater. It can be hypothesized that high noctural 

uptake rates resulted from cells that were N depleted. Under these conditions a range 

of cultures and field experiments have shown uptake of N, including NO 3  in the dark 

at rates usually only seen during the day (Harrison, 1976, Cochlan et al., 1991). 

During the night at 10m uptake of urea was 47% ot total N uptake, NO3 -  30.7% and 

NH 4+  22.4%. Uptake rates of both urea and NO 3-  were greater than the usually 

preferred NH4+, possibly because they were available at greater concentrations, 0.43 

uM and 0.53 uM respectively compared to NH4 +  at 0.11 uM. 

At night the shape of the fluorescence peak broadened and the maximum in 

fluorescence was deeper and less concentrated than the shallower the daytime 

fluorescence maximum (Figure 5.4 B). Within the broad night time fluorescence 

maximum the distribution of biomass was skewed towards the bottom of the 

maximum. This suggests that the majority G. catenatum dominated phytoplanIcton 

community found concentrated at 8m during the day probably migrated deeper to 

10m at night. In addition to this modest migration the phytoplankton spread out more 

180 



ranging from 5-13 m. Going deeper may be important for accessing NO 3-  and urea at 

greater concentrations but spreading out may also be important in maximising the 

substrate concentration per cell and scavenging any available N in the water column. 

This strategy may act to maximising uptake under conditions of very low ambient 

concentrations of NO3 -  in these and other similar coastal and estuarine systems 

worldwide. 

5.4.3 Summary 

This field study confirmed that G. catenatum uses NH4+, NO3-  and urea in the field as 

was also observed in the laboratory (Chapter 4). The results from this field study 

were consistent with the preferences for N substrates found in the laboratory, in this 

order NH44-> NO3-  >urea. The low ambient concentrations of NH4+and NO3-  in the 

surface layer clearly suggest the bloom was in a relatively late phase. Clearly at this 

stage of the bloom recycled N or organic N such as urea became a very important 

source of N. The ability of this species to vertically migrate means that during the day 

G. catenatum is able to position itself in the water column where it receives light in 

excess of its requirements for growth while migrating to depth also allows it to access 

greater concentrations of NO 3-. During the night when light is not available G. 

catenatum vertically migrated deeper in the water column and was able to access the 

greater concentrations of NO3 -  at these depths. While the vertical migration observed 

in this field study was not as dramatic as seen during the Huon Estuary study, the 

water column was not as deep and the N relatively closer to the surface. There is 

sufficient evidence from this study to validate the hypotheses from Doblin et al, 

(2006) that G. catenatum vertically migrates to access nitrogen at depth. 
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5.5 Appendix 

Table 5.6 Results of ANOVA for effect of nitrogen species, time of day and depth on nitrogen 
uptake at Southport. Data were log transformed (log(x+0.05)) failed Kolmogorov-Smirnov test 
(with Lilliefors' correction) for normality but passed levene's median test for equal variance. 

Source of Variation DF F 
N Species (N) 2 3.455 0.048 

Time of Day (T) 1 20.482 <0.001 

Depth (D) 1 32.518 <0.001 

N x T 2 0.178 0.838 

N x D 2 10.081 <0.001 

T x D 1 9.77 0.005 

N x Tx D 2 0.733 0.491 

Residual 24 
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6 SUMMARY 

6.1 Background 

The Huon Estuary receives a significant input of oceanic nutrients during winter and 

surface nutrients rise to > 3 AM nitrate, 0.4 prM phosphate, — 15 uM silicate (Fig. 1).. 

The Huon River is the major source of fresh water to the Estuary, it has a seasonal 

flow with a long-term average of 30 m s-I  in summer (Dec-Feb) rising to — 130 ms' 

during late winter (July-Aug). The Huon Estuary is a salt wedge with seasonally 

variable surface outflow and inflow at depth. The Huon River is a major source of 

refractory nitrogen (— 600 to 1100 tonnes annually) and dissolved silica to the Huon 

Estuary and D'Entrecasteaux Channel but a source of very little DIN. The Huon 

River dissolved organic N input is poorly quantified and the nitrogen forms are very 

poorly characterized. During the transition to spring nitrate and phosphate 

concentrations decline and by summer the nitrate concentrations are near zero while 

phosphate and silicate concentrations remain relatively high, suggesting a nitrogen 

limited ecosystem (Figure 6.1). It is only during summer that surface nitrate and 

ammonium concentrations are relatively similar. The finfish aquaculture industry 

contributes a significant amount of nitrogen to the Huon Estuary, — 313 tonnes of 

mostly ammonium in 2002. Both industry and government regulators are alert to the 

potential for eutrophication and increased harmful algal blooms if the assimilative 

capacity for N of the estuary is exceeded. As part of a larger project on the ecology of 

the Huon Estuary, this PhD research has two main objectives; firstly to determine 

whether phytoplankton in the Huon Estuary were using nitrogen that had, primarily, 

an oceanic source (e.g. nitrate) or was more locally supplied or regenerated (e.g. 

ammonium and urea) and secondly to examine the physiology of G. catenatum. 
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Figure 6.1 Surface nutrient concentrations from weekly samples at 5 sites during 1996-1998 
(adapted from Thompson et al. 2008). The y-axes on the left is for nitrate and silicate and the y-
axes on the right is for ammonium and phosphate. Mean +1- 1 SE. 

6.2 Nitrogen uptake dynamics in the Huon Estuary 

The availability of different forms of nitrogen in the Huon Estuary follows the pattern 

of seasonal abundance seen elsewhere in temperate ecosystems. During winter nitrate 

concentrations are high while during summer nitrate concentrations are low and 

primary production relies heavily upon urea and ammonium (Twomey et al., 2005). 

The availability of ammonium depends upon inputs and the recycling  of  particulate 

organic matter. The former is dominated by the — 800 tonnes supplied by the 

aquaculture industry. In addition the aquaculture industry supplies a considerable 

portion of its N load during summer when other inputs of DIN are estimated to be 
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low. Based upon what we know about the species that typically form HABs this input 

of DIN into a N limited system during summer could be expected to exacerbate HAB 

in this ecosystem. 

During this research, the uptake of NH 4+, NO3" and urea at 2 locations, 2 depths, 

during the day and night and at four times throughout the year provided the basis to 

assess the nitrogen uptake dynamics by phytoplankton in the Huon Estuary (Chapter 

2). Reduced forms of N (NH4 +  and urea) accounted for the majority of the overall N 

uptake, 52% and 37.5% respectively, while NO 3" uptake was responsible for only 

10.5% of the overall N uptake. Studies of N uptake in other coastal and estuarine 

ecosystems have also shown that reduced N forms account for a large component of 

the overall N uptake (e.g. McCarthy etal., 1977, L'Helguen etal., 1993, Metzler et 

al., 1997, Harrison, 2002, Rosser & Thompson, 2001) and that these forms of N are 

actively preferred in many cases (e.g. O'Donohue et al., 2000, Dauchez etal., 1991, 

Keene etal., 1991, Middelburg & Nieuwenhuize, 2000). 

Nitrate uptake accounted for the smallest component on all field trips but peaked at 

—15% of the N uptake during early spring. During the winter to spring transition 

[NO3] was drawn down and only low concentrations were measured on late spring 

and late summer field trips. This also coincided with the spring diatom bloom in the 

Huon Estuary sinking out of the water column in late spring when the chlorophyll a 

concentrations were greater at 20 m than at 5m. 

The NH 4+  accounted for >50% of N uptake by phytoplankton on all 4 field trips (late 

autumn, early spring, late spring and late summer). Urea was the next largest 

component of the N uptake on all 4 field trips but became a larger component, up to 

—40% of the N uptake during the late spring and late summer field trips. There is 

very little work on the seasonality of N uptake although this shift from nitrate to more 

ammonium and urea uptake has been observed by other researchers following a 

spring bloom (e.g. Bury etal., 2001, Kudela & Dugdale, 2000, Bronk etal., 1998, 

Torres-Valdes & Purdie, 2006). 
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Hydrodynamic and biogeochemical modelling of the Huon Estuary and 

D'Entrecasteaux Channel indicated a significant rise in expected chlorophyll a 

concentrations in response to the DIN loading from aquaculture (Vollcman et al., 

2009). The modelling also suggests the magnitude of this impact will not be uniform 

in time or space. Some locations are predicted to experience no change and other will 

have a substantial rise in chlorophyll a for most of the year. One of the challenges 

identified in the modelling was that the DIN sources and phytoplankton responses 

will be displaced in time and space making attribution difficult. A number of 

locations were identified as potentially susceptible to phytoplankton blooms associate 

with the N loading from aquaculture. In response to the modelling and the identified 

environmental risks a monitoring program has been put in place. This program spans 

the region and will regularly assess the environmental status of key parameters such 

as phytoplankton composition and biomass, dissolved oxygen and ammonium 

concentrations. 

6.3 Physiology and ecology of G. catenatum 

This thesis represents the most comprehensive study of the effects of irradiance and 

temperature on G. catenatum growth and physiology to date. Growth versus 

irradiance curves were determined for twelve temperatures from 11.9-25.0 °C and a 

comparison of the growth rates from the present study with five other studies on 

different G. catenatum strains has revealed considerable similarity between the 

growth responses of these strains particularly at temperatures between 10-20 °C. At 

temperatures >= 28.5 °C the strains from Japan and Mexico appeared to be able 

sustain growth rates approximately 0.2 d , while the other strains did not grow, 

indicating that Japanese and Mexican populations may constitute an warm-water 

ecotype. Relationships between the parameters OA max , a and Ec) from the growth 

versus irradiance curves and temperature were investigated and modelled. The 

models of the effect of temperature on i.t. a,„ a and Ec  provide the basis for 

development of a G. catenatum growth model useful to predictive ecological 
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responses in natural populations. This model can be applied by scientists or natural 

resource managers to determine when growth of this species will be fastest and 

whether the ecosystem they are investigating can support growth year round. For 

example the Huon Estuary winter temperatures are at the lower limit of growth of the 

strain examined in this research. In addition to this at temperatures from 16-20 °C, 

typical of summer in the Huon Estuary G. catenatum would only be capable of 

growth rates ranging from 0.1-0.2 d -i . 

The biochemical composition of G. catenatum was also examined revealing that G. 

catenatum adapts to low temperature conditions by increasing its carbon (C) quota. 

At higher temperatures and lower irradiances G. catenatum responded by increasing 

chla but this was accompanied by an even greater increase in C quota. These results 

give us insights into the strategies that this species uses for growth and survival in 

unfavourable conditions. At low temperatures G. catenatum increases C quota as 

observed in other species (Sakshaug & Andresen, 1986) possibly as a mechanism to 

allow survival through cold periods. In the case of G. catenatum it might be a carbon 

acquisition strategy that will lead to sexual reproduction and cyst formation. At high 

temperatures and low irradiances the increase in carbon quota was accompanied by 

an increase in chlorophyll a per cell. Increased carbon and chlorophyll a quotas are a 

common occurrence under these conditions (Geider, 1987) where cells require more 

structures (e. g. chloroplasts) for light capture and the enzymes are capable of high 

rates of operation. An empirical model to describe the effects of light and 

temperature on C:chl a was constructed and may be useful information that increases 

our understanding of physiological responses in this species or other similar species 

in the future. 

This work also demonstrated that G. catenatum has diverse N uptake capabilities. It 

grows equally well using NO3 -  , NH 4+  or urea in the laboratory (Chapter 4) and this 

is also evident from the field studies (Chapters 4, 5). The preference for NH4 +  and 

NO 3 -  over urea may reflect the energetic and biochemical costs associated with 

uptake and assimilation of the various sources. Perhaps, while it poses no penalties 
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for growth when energy from light is saturating, the preferences may be related to the 

preferences under energy limited circumstances. For example, variation in the 

growth rate of Alexandrium minutum (Dinophyceae) on NO3 -  were highly dependent 

on the level of irradiance (Chang & McClean, 1997). 

The ability of G. catenatum to vertically migrate means that during the day G. 

catenatum is able to position itself in the water column where it receives light in 

excess of its requirements, and migrates to depth at night to access greater 

concentrations of NO3-, probably also NI14+  and urea. While the vertical migration 

observed in this field study was not as dramatic as seen during the Huon Estuary 

study (CSIRO Huon Estuary Study Team, 2000, Doblin et al., 2006), the bloom did 

not take place in as deep a water column and the N was relatively closer to the 

surface. There is sufficient evidence from this study to validate the hypotheses from 

Doblin, Thompson et al. (2006) that G. catenatum vertically migrates to access 

nitrogen at depth. 

For G. catentatum growing in the Huon Estuary it seems increasingly apparent that it 

functions as a nitrogen scavenger. When N concentrations are exhausted, it is able to 

migrate rapidly through the water column seeking whatever form of nitrogen is 

available. Thus the dominance of this species is perhaps not due to it occupying a 

specialist niche associated with NH4+, but rather due to its greater capacity to access 

uptake N from different parts of the water column when it may be in short supply 

nearer the surface. This was clearly demonstrated by the experiments conducted at 

Southport during a G. catenatum bloom (Chapter 5). Urea was the most important N 

source ( — 40%) at the late stage of the bloom. The low ambient concentrations of 

NH4+  and NO3 -  in the surface layer were clearly insufficient to support more growth. 

At the bottom of the euphotic zone the vertically migrating bloom was able to find 

NO3-  and was fully capable to exploiting this N resource with NO 3 -  uptake 

dominating (-52%) over NI-14+  and urea uptake. Although nitrate reductase was not 

measured it has been shown for other dinoflagellates that high nitrate reductase 
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activity is present during blooms, even when ammonium is abundant relative to 

nitrate concentrations (Harrison, 1973). 

The present study and that of (Flynn et al., 1996) shows that G. catenatum is capable 

of responding to pulses of N by 'surge uptake'(relative to a maximum growth rate 0.3 

d-1 ) when it is in a N starved condition. Surge uptake is another mechanism that a 

species may use to exploit patches of elevated nutrients potentially giving them a 

competitive advantage relative to species without this capability (Cochlan & 

Harrison, 1991). Our results show that 'surge' uptake rates of NH4 +  were almost 20 

times the maximum growth rate of G. catenatum (0.30 (1-1 ). 

Based on this combined new understanding of the physiology and ecology of G. 

catenatum from lab and field studies, G. catenatum has a competitive advantage over 

non migratory species in environments where available nutrients (nitrogen) are 

vertically separated from sufficient irradiance for growth. The chain-forming nature 

and the tendency to form progressively longer chains during blooms can increase 

swimming speed (Fraga et al., 1987) allowing G. catenatum to vertically migrate 

over substantial depths, and this capacity appears to be more important than which N 

species is available in the water column. 

6.4 Future Research 

While this study has made significant progress in understanding the nitrogen uptake 

dynamics of phytoplankton in the Huon Estuary, there are significant gaps in our 

current knowledge of the sources of nitrogen and the bloom dynamics of 

Gynmodinium catenatum in the Huon Estuary system. Two areas for future research 

are: 

• Terrestrial sources of nitrogen: The Huon River remains a potentially 

major source of dissolved organic N (DON) input to the Estuary that is poorly 

quantified and very poorly characterized. Recent hydrodynamic and 

biogeochemical modelling (Volkman et al., 2009) suggests that this N is 
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largely refractory and exported out to sea, but it is currently unknown what 

proportion is retained and recycled in Huon Estuary, or may be used by 

phytoplanlcton in the estuary. 

• Development of a species specific model for Gymnodinium catenatum: A 

model that enables the prediction of growth rate based on temperature and 

irradiance was developed in Chapter 3. Combining this growth model with 

the increased understanding of the physiology of G.catenatum: N uptake 

preferences, capability for 'surge' uptake (Chapter 4) and vertical migration 

strategy to scavenge N (NH4+, NO3 -  and urea) (Chapter 5) and other important 

parameters like uptake kinetics for G. catenatum (NO3 -  and NH4+  ) from 

Flynn, Flynn et al. (Flynn et al., 1996), G. catenatum mortality rates 

(Volkman et al., 2009) and grazing in Huon Estuary (Thompson etal., 2008). 

A species specific model could then be coupled to a physical model of the 

Huon Estuary and D'Entrecasteaux Channel and used to compare with field 

data in trying to elucidate the drivers of the development of G. catenatum 

blooms. There may also be potential to apply a species specific model to 

other temperate ecosystems where G. catenatum is a problem. 
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