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SUMMARY 

A simple treatment of the elastic stability of angle-piectio# 

members, both columns and beams, has been developed, based on the 

measured deformations of typical members loaded in the laboratory° 

Detailed mathematical models describing the torsiOnal,or local 

buckling modes of the members are presented° Other buckling modes 

have been considered and the interaction of the various modes has 
P 

been discussed. Angle.-section columns, eccentrically loaded 

columns, cantilevers, centrally-loaded simply-supported beams, and 

laterally loaded columns, have been studied in particular. 

I hereby declare that, except as stated herein, this 

thesis contains no material which has been accepted 

for the award of any other degree or diploma in any 

University, and that, to the best of my knowledge or 

belief the thesis contains no copy of paraphrase of 

material previously published or written by another 

person, except where due reference is made in the 

text of this thesis. 
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INTRODUCTION  

Angle-section members, under various loading conditions, have 

been found to be unstable. 	In this thesis the conditions under which 

the instability occurs are presented and mathematical models are form-

ulated to describe the geometry of the deformed member and to calculate 

the load capacity of the member. Equal-leg angle-section members were 

tested as columns, eccentrically loaded columns, cantilevers, centrally 

loaded beams, and laterally loaded columns. The mathematical models 

which are developed herein describe the torsional and local buckling of 

the members. However, where applicable, other types of instability 

have been investigated; also some types of interaction which can occur 

between the possible modes of buckling have been considered. 

Only relatively recently, the torsional and local properties 

of structural members have become important. With the introduction 

of slender high-strength steel members, and materials such as aluminium 

and its alloys with low moduli of elasticity, the problem has been 

accentuated. 	Even today most design codes are based upon practices 

developed for mild steel members. 	In this century, considerable work 

has been carried out on the instability properties of columns. 	Two 

organisations which are particularly interested in the problem are the 

Column Research Council of America
1
and the Aluminium Research Develop- 

2 ment Association of Britain. Both organisations have published results 

or codes which could be used by practising engineers. The German code 

is one of the most progressive codes. 

In this thesis the problem of the buckling of angle-section mem-

bers has been investigated using a new approach. Large field methods 

of measuring geometrical shapes have been used to obtain the deformed 

shape of the member. 	The basic geometry is then described analytically 

and the analytic function is used as a basis for the mathematical model. 

The forces required to sustain the measured deformation are calculated 

and a differential equation is obtained by considering the statical 

equilibrium of the whole member. The analytic function describing the 

geometry can be specified to any order of approximation and consequently 

Ref. 1 Column Research Council Guide to Design Criteria for Metal Com-
pression Members, John Wiley & Sons, Inc. 

Ref. 2 Series of Aluminium Research Development Association Reports. 
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a number of successively more satisfactory mathematical models can be 

derived to describe the physical behaviour. 

For most cross-sections the member can buckle either by the whole 

cross-section rotating, in an undeformed state, or by part of the cross-

section defoIrming. The first type of instability is referred to as a 

torsional instability and the second as a local instability. For an 

equal-leg angle-section member, with both leg's loaded identically, 

torsional buckling and local buckling are the same phenomena, and the 

two terms are interchanged freely in all the literature. Under this 

loading each leg acts as a simply supported plate, and there is no mom-

ent acting around the corner of the cross-section. The buckling of an 

angle member has been treated by these various methods, each of which 

will be considered. 

The models tested were of such dimensions that the torsional mode 

was prominent, To emphasize torsional buckling behaviour the members 

tested had thinner walls, relative to width of leg, than are common in 

practice, but it has been indicated how the results obtained can be 

amended to give an understanding of the behaviour of more practical 

sections. 

This thesis does not set out to present a large quantity of 

results and to derive empirical formulae or relationships. Rather, it 

relies on the similarity of the geometry of the deformation of members 

of different proportions and sizes. The mathematical models developed 

are based upon the deformed geometry of a number of members tested in the 

laboratory, and the results derived are compared with those obtained from 

a few physical models. In the future, large-scale testing programmes 

for more practical members might be contemplated; it is thought that the 

necessary basic ideas are established in this thesis, 

This thesis is divided into four parts. The first part is 

devoted to forming a foundation upon which the author's work is built. 

Although no new ideas are presented therein, the understanding of the 

ideas is basic to the remainder of the thesis, 

The second section deals with the stability of a column which is 

axially loaded with a uniform stress distribution. Results presented 
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in this part have been derived in detail, because many of the ideas are 

used in the following sections. The work on a column under a pure axial 

load was presented by the author as a partial requirement for an honours 

bachelor's degree. 	In this thesis, the topic has been expanded by 

including the effect of non-uniform stress distribution produced by load-

ing the member through a bolt. A detailed comparison with other math-

ematical models is also presented. 

The third section deals with the instability of angle-section 

beams. This section leans heavily on the preceding section as it uses 

basically the same logic, although the mathematical models developed are 

more complicated. To the author's knowledge, there exist no other math-

ematical models which describe this problem, although beam-columns have 

been treated empirically. 

The fourth section, a detailed comparison between the results 

obtained in this thesis and those obtained by other mathematical models 

is given. Present design codes are considered, and possible amendments 

are suggested in the light of the results of the work described in the 

thesis, and the fundamental understanding which it has encouraged or made 

possible. 

This thesis establishes a new, simple mathematical model for the 

elastic behaviour of a column, and original mathematical models for the 

torsional buckling of a cantilever and a centrally loaded simply supported 

beam. Although the author has presented a mathematical model for a 

laterally loaded column, this topic needs further investigation. The 

thesis also considers the mathematical models describing the torsional-

flexural buckling of a column developed by other workers, and the rel-

evance of the lateral buckling model of beams developed by Tunoshenko. 



GEOMETRY AS A WORKING  TOOL 

In the history of engineering structural science, the basic under-

standing of the geometry of the deformations of a loaded member has led to 

the necessary valuable simplifications on which all analysis is based, and 

has thus played an important part in the advancement of the science. 

Geometry has the advantage that it can be easily measured. From the 

earliest problem, that of a loaded cantilever, the geometry has been the 

basis for the mathematical description. The theory of bending is based 

upon the geometrical assumption that plane sections remain plane. However, 

the parameters of the geometry must be evaluated by considering the stat-

ical equilibrium of the member. The early development of the theory of 

bending was slow, as the experimenters failed to combine the geometry and 

the equations of equilibrium. In fact, this lack of completeness in the 

model led early engineers to assume that the neutral axis of a beam in bend-

ing was at the lower edge. 

Later, prominent men, such as Timoshenko, have made advances 

because they have been able to base their mathematical descriptions upon 

geometry. One example, which was developed during this century, is the 

plastic analysis of members. Plastic analysis has become important because 

of the simplicity of its application, which in turn depends upon a simple 

deformation pattern. A framed structure in a fully plastic state is 

described by a rigid-plastic load-deformation relationship, in which all 

deformations occur within local regions known as plastic hinges. Lately, 

more sophisticated descriptions of elastic-plastic bending have been 

produced in which other deformations have been included. 

The author will consider the torsional buckling of angle-section 

members by measuring the geometry of the member in its deformed or buckled 

state. The geometrical approach has been made possible by the develop-

ment of optical methods of measuring geometry over large fields of view. 

Two such methods are the photo-elastic method, which measures stress in 

the plane of the model, and the moire fringe techniques, which measure 

deflections both in and normal to the plane of the model. For the work 

described here the moire fringe methods have been used, as they measure 

geometry directly. 
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MOIRE FRINGES 
FIGURE 1. 

AB and A'Bi are the initial and the final 
slopes of the plate at 0. 
ROI and Q0I are two rays. 
I is the image of both Q and R. 

LIGTENBERG APPARATUS 
FIGURE 2. 
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Moire Fringes  

When two sets of parallel lines are interfered, a moire fringe 

pattern is formed as shown in fig. 1. Where two lines intersect, a 

"white" fringe is formed, while a grey fringe occurs when a white and a 

black line intersect. In interference terms, a "white" fringe occurs 

when the lines are in phase, that is displaced by an integral number of 

line spaces. The "grey" fringes are formed when the lines are out of 

phase. 

Two of the available moire fringe methods have been used by the 

author in his experimental work. One method, the Ligtenberg method, 

measures changes in slope of a surface. The other method measures 

deflections in the plane of the surface. In this section of the thesis 

the author will only outline the experimental methods used. For complete 

details, such as the production of gratings, and the preparation of the 

models, reference may be made to Ligtenberg's
1 paper and two papers by 

2  
Middleton, Jenkins and Stephenson;'

3 
 the latter workers are engaged in the 

development of the techniques used at the University ofTasmania. The 

basic ideas involved in using the two methods are described in the follow-

ing sections. 

* 	* 	* 	* 

The Ligtenberg Method
1 

The Ligtenberg method produces moire fringes which are contours 

of equal change in slope of a surface. The surface to be examined is 

made reflective by gluing a sheet of Melanex, a commercially available 

sheet of plastic coated with aluminium, to the surface. Kodaflat matte 

solution, a pressure-sensitive glue is used. A set of photographically 

reproduced lines is mounted on a part of a cylindrical surface and a 

camera is arranged so that the lens is at the centre of the screen. The 

lines are reflected from the model's surface and an image is produced on 

the camera film. The model is loaded and the second exposureis taken. 

Ref. 1 Ligtenberg: "The Moire Method as a new experimental method for 
the determination of moments in small slab models". Vol. XII, 
No, 2, Proc, Soc. Experimental Stress Analysis. 

Ref. 2 E. Middleton and C. Jenkins: 'Moire methods for Strain Analysis 
for Student Use", Bulletin of Mech. Eng, Education, Issue 3, 
Vol, 5, 1966. 

Ref. 3 E. Middleton and L.P. Stephenton: "A reflex Spectrographic Tech-
nique for in-plane Strain Analysis". In printers hands. SESA 
Paper No. 1250. 



Ligtenberg moire apparatus for measuring slope. 

FIG. 3 

Crossed diffraction grating method of measuring 
displacements in the plane of the model. 

FIG. 4 
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The double exposure produces moire fringes which are lines of constant 

slope. The general arrangement of the apparatus is as shown in figs. 2 

and 3. 

An approximate relationship between the change of slope at each 

fringe can be derived by considering the model point which lies on the 

screen. The following notation will be used; d is the line spacing of 

the grid, a is the radius of curvature of the screen, vf is the change 

in slope of the model and n is an integer. In fig. 3, Q0I and ROI 

are the ray traces for the unloaded and loaded cases respectively. The 

distance QR is given approximately by 2ayi . For a "grey" fringe to 

form at I QR must be equal to 2(n + i)d . Thus the slope change is 

given by 

yr)= (2n + i)d/2a 	 (1) 

In the following experimental work this formula has been used for all 

points on the model surface. The errors involved in using this formula, 

when applied to off-centre points or when the model is not at the centre 

of curvature of the grid, have been indicated by Ligtenberg in his art-

icle. The slope measured is the slope in the direction normal to the 

grid lines. Two photographs, with the grid lines perpendicular must be 

taken to fully describe the geometry of the surface in terms of its slope 

in two directions at right angles to one another. 

Crossed Diffraction Grating Methods  

A moire pattern is produced when two diffraction gratngs are 

superimposed. Fringes are due to mis-matching of gratings or relative 

rotation of the two gratings. If one of the gratings is moved relative 

to the other, the pattern changes. A secondary moire fringe pattern can 

be obtained by superimposing the two primary patterns. The secondary 

fringes represent lines of constant displacement and are independent of 

the initial primary pattern. 

A grating is glued to the surface of the model and a reference 

grating is fixed to the model, so that the relative movement between the 

two gratings is restrained kinematically
1 

Usually three connections are 

Ref. 1 E. Middleton and L. P. Stephenson: "A reflex Spectrographic Tech-
nique for in-plane Strain Analysis". In printers hands. SESA 
Paper No. 1250. 



used; a point at which there is no relative movement, a line where there 

is movement in one direction only and a plane which allows complete free-

dom of movement and is used to maintain a constant air gap. With the 

three point system the reference grating is mounted kinematically, and 

the loading of the model does not load the reference grating. 

Two photographs are taken of the moire fringe pattern, one of 

the loaded model and another of the unloaded model. The secondary patt-

ern obtained from the two primary patterns represents lines of constant 

displacement normal to the grating lines. The optical system required 

to take the photographs is shown in fig. 4. The system can be broken 

down into four sections, a collimator, the model, a condenser system, and 

a camera, 

The models used for the transmission method are made of perspex. 

Gratings of one hundred, one thousand, and three thousand lines per inch 

are produced at the University of Tasmania. 

The moire fringes make it possible to measure the deformations 

of members under load, and hence to describe the deformations analytically. 

The analytic functions, in conjunction with stress-strain relationships, 

can be used to consider the statics of the problem, either to determine 

the loads applied or to enable a statical balance on any section or 

portion of a member to be carried out. It will be appreciated that the 

geometry is only approximated by the analytic functions and the degree of 

approximation is important. The complexity of the mathematics must be 

balanced by consideration of the accuracy with which the mathematical 

description is required to agree with the physical model. 

At this point it will be of benefit to introduce several terms to be used 

throughout this thesis. 	"Functional form" is a term used to indicate any 

one aspect of the geometry which is common to all problems of a certain 

type. For example, "plane sections remain plane" is the functional form 

for bending, and "radii remain straight" is the functional form for the 

torsion of a solid circular bar. The functional form does not necessar-

ily describe the shape of the member fully. The "mode" of a buckled 
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member or structure is the critical or buckled shape (or "eigen" shape) 

of the perfect member or structure. For a given structure there is 

usually more than one mode. 

A "mathematical model" refers to the mathematical description 

which can be built up once some basic assumptions have been made. It is 

important to realize there is more than one possible mathematical model 

suitable for describing a physical model. In the previous example of 

elastic bending, the basic assumptions are that plane sections remain 

plans and that the stress-strain relationship is linear. From these 

basic assumptions follow the relationships that the moment M is equal 

to EIK 9  and that the stress 6 at a point equals My/El 9  where E 

is Young's modulus, I is the moment of inertia about an axis through 

the centroid, K is the curvature of the line of centroids, and y is 

the distance from the centroidal axis. The next result, for example, is 

that the shear stresses and strains are parabolically distributed in a 

rectangular beam. The previous statements form one mathematical model 

of elastic bending. However, it should be noted that the model has a 

contradiction. It has been assumed that plane sections remain plane, 

but, as a result, the shear stresses and hence the shear strains are para-

bolically distributed. This result leads to another mathematical model 

in which plane sections do not remain plane. For most engineering 

purposes the first mathematical model describes the physical model suff-

iciently well. 

In some cases more than one mathematical model arises due to a 

mathematical approximation. Consider the beam again. If one derives 

the curvature distribution along the beam and uses the differential 

expression for curvature, 

K = b2w/ x2/(1 +  

the shape of the beam can be calculated. In most cases the approximate 

expression for the curvature K = b 2w/x 2  is sufficiently accurate. 

Any mathematical approximation should be included in the basic assumptions 

and also the limits of its application, because if the model is extended 

to apply for large deflections the approximations may not apply. 

In a mathematical model one tries to satisfy three conditions; 

compatible geometry, the equations of statical equilibrium and the boundary 
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conditions, all to a certain level of approximation. As no mathematical 

model fully describes the physical model, a compromise must be reached. 

in the approach taken it is relatively simple to describe a system of 

compatible geometrical deformations which satisfy the boundary conditions. 

However, usually only some of equations of statics are satisfied. The 

potential energy method is a means of obtaining an approximate solution 

in which all the equations of statics are satisfied on an average. In 

fact, if the correct geometry is fed into the enetgy equation it reduces 

to the equations of statics. 

In establishing a mathematical model it is advisable to start 

with the simplest functional form possible. Using large field measure-

ments the salient functional form is usually obtained easily, and the 

order of magnitude of any secondary component can be determined. In the 

previous paragraph, it has been stated that the functional form must sat-

isfy the boundary conditions. For certain problems some of the boundary 

conditions have little effect on the strength of the member. The contours 

of measured deformations, obtained by the moire methods, aid the invest-

igator in appreciating the important boundary conditions. Consider two 

beams one with a width-thickness ratio of approximately two and another 

with a large width-thickness ratio. Both beams have a curvature K x 
in 

the direction of the applied moment. But the orthogonal curvature is 

equal to -1)Kx  for the first beam and zero for the second, where .1)  is 

Poisson's ratio (see Fig. 5)0 Obviously the second beam does not satisfy 

the boundary conditions of zero moment and shear stress along the edge of 

the beam. In fact, it does, because the curvature changes from zero to 

x 
in a local region near the edge. If the curvature is assumed to 

change in a certain manner the consequences of neglecting the local edge 

effect can be calculated. The assumption of zero curvature across a long 

flat strip leads to a simpler mathematical model. As an example, consider 

a strip as a long beam, length L simply supported at each end and 

carrying a load 

ll'x q = q sin — L 

see fig. 6 9  the differential equation for the normal deflection w of a 

plate carrying a lateral load q is 

, 11-w/ x4 + 2  t vv/ .62x y 	tw/  y4 	cilD 	(2) 
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If we take w = aW(X) 9  where W(x) is a function at x only, the 

differential equation simplifies to 

Trx 4W/ex4 = q
o
/D sin --- L 

and the shape is 

w = qsL/Tr) 4y sin Ti!,1  9  

when the boundary conditions are satisfied. Alternatively, if we use 

w = W(y) sin 

then the differential equation becomes 

W(Tr/L) 4 	- (TrA) 2  sin1rx/L 2)2w/ by2  + sinlirx/L 

= q
0 
 sinlix/L 0 

This equation could be solved and the boundary conditions, zero moment 

and shear stress applied. However, the mathematics are much more comp-

licated. 

In buckling problems the end conditions have an important effect 

on the load capacity of the model. In developing a mathematical model 

for the buckling of a column, most experimenters aim either for fully 

built in end conditions or for a simply supported condition. In the 

experimental work associated with this thesis, no particular effort was 

made to obtain a certain type of end condition. The Ligtenberg apparatus 

was used to determine the end conditions. However, the mathematical 

models established have been adopted to apply to members with simply supp-

orted ends, and have been presented for this case. 

In this section it is hoped that the benefits of measuring the 

geometry of deformations of a loaded member have been indicated: Firstly 

in establishing the problem, that is in determining the boundary conditions 

and indirectly the loads applied; secondly in appreciating the salient 

features of the functional form. Geometry is a readily measurable prop-

erty which forms a foundation stone from which can be built, in a logical 

manner, a mathematical model. 
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BUCKLING  

A practical structure can be said to be unstable if it exper-

iences large deformations in the neighbourhood of a given load. The given 

load is called the critical load. One type of instability is plastic 

collapse due to the non-linearity of the load-deformation relationship of 

the material. Other structures are unstable in the elastic range. 

Generally the term "instability" applies only to elastic structures. It 

is important to realize that the stability of the structure depends not 

only on the structure but also on the loading method. 

This chapter is presented as a historical review of the 

of instability. However, the progress in understanding the behaviour of 

a single column is considered first, as most of the ideas associated with 

the general topic of buckling were established by considering a simply 

supported column. Next, the buckling of plates will be considered. 

Chronologically the development of the theory of the buckling of plates 

lagged slightly behind that of a column. The final part of this chapter 

will be devoted to ideas which apply generally to all structural and 

dynamic instability problems. Both types of problems have similar diff-

erential equations. 

Columns  

The mathematician, Euler, first introduced a mathematical model 

for the instability of an axially loaded simply supported column in the 

year 1744 9  see Fig. 7. Basing his model on a linear moment-curvature 

relationship and the approximate curvature expression 

K  = 2w/),_2 
A. 	9 

he obtained the equation of equilibrium for the column in terms of the 

normal deflection w 9  

Moment = Pw C e 2w/ x2  

The solution of the differential equation is trivial unless the load 

has the value 

crit 

in which case the deflection is indeterminate. The constant C is 

the flexural rigidity El 9 where E is Youngs Modulus and I is the 

smallest moment of inertia. Lagrange (1770) enlarged upon Eulerls work 

(3)  

(4)  
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by indicating that there is an infinite number of solutions which satisfy 

the boundary conditions and a corresponding load for each: 

n'TX y = A sin 	and P = 1 	n  (5 ) 

The shapes y = A sin n7rx are called the modes, or in mathematical 

	

terms eigen functions or characteristic functions. 	The loads are the 

critical loads or the eigen-values or the characteristic values. A 

model will be said to be mathematically unstable if the load-deform-

ation relation bifurcates at a number of buckling loads and at each 

load the deflection is indeterminate, (see fig. 8) 

When the more accurate expression for curvature is used, it is 

well known that there is a one-to-one correspondence between the load and , 

the deformation as shown in fig. 100 In terms of the symbols defined in 

fig. 9 the differential 'equation becomes' 

El 0/a + Py = 0 	Or 	E 62o/ 6 s 2  + PD ile s = 0 

which is equivalent to 

El ■ 20/ 2  + P sin 0 = 0 
	

(6) 

If the equation is multiplied by 2We s and integrated, in conjunction 

with the boundary conditions, the equation becomes 

EI(6 	s) 2  - 2P cos g = constant = 	2P cos°< . 

Using the following coordinate changes 

= u 1-1a/P 9 	k = sine(/2 	and 	k sin 0 = sin 0/2 9 

that is k cos 0 = i cos 0/2 (dQ/d0) 9 the solution is the first 

elliptic integral 

   

d0/ 1 - k 2  sin2  0 
	

(7 ) 

The relationship between the load and the end slope follows from this 

expression, 

L  0 

-2- 	= (complete elliptic function) r dod P 	 i _ k2 sin2  
jj 

-2-  

In the mathematical sense the second, more complicated, model is 

• stable.  Consequently the mathematical stability (or Eulerian stability) 

is a property of the mathematical model and not of the physical model. 
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The Eulerian critical load is a useful number since, in a large number of 

applications the member can be said to be physically unstable at this 

load. Often the instability is emphasized by the yielding of the mat-

erial near the critical load. 	In the plate and shell analysis it is not 

so useful since strains in the central planes of the shell or plate vary 

with deformations and the critical load has little relevance to the fail-

ure load. This applies for some of the members considered in this 

thesis. 

The analysis of Euler holds for simply supported boundary 

conditions; that is the end moment and deflection is zero. 	It is poss- 

ible to describe the shape for other boundary conditions by 

w . a sin 
1 	' 

where 1 is equal to kL and is known as the effective length, k is 

a constant. Then the Euler load becomes 

p = ( Tr) 2  El . 	 (8) 

For an axially loaded column the effective length has the physical mean-

ing that it is the length of the column which acts as a simply supported 

column. However when a lateral load is applied the effective length 

derived from the shape can not be used in Euler's load formula. (see 

fig. 11) 

Euler also derived the differential equation for a member with 

an initial curvature, 

Moment = Pw 	b2wA x2 b2w0/ x 2) 9  
(9) 

where w
0 
 is initial deflection. But it was Young who, early in the 

nineteenth century, derived the first expression for deflection of an 

initially crokked member. He assumed that the initial shape was the 

same form as the lowest buckling mode, 

w= a
0 
 sin Trx/I, . 0  

From this assumption it follows that 

a0  

a - 1  - P/Pcrit • 

Young also gave the solution to a column built in at one end and loaded 

eccentrically. 
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In the early twentieth century, Southwell showed that by a simple 

transformation of co-ordinates Young's result could be linearized. He 

then suggested that the relationship, now known as a Southwell Plot, was 

a good means of determining the critical load of a physical model. 

Southwell
1
developed the theory to show the validity of this expression for 

a simply supported column. He also suggested that it could be applied 

generally, except for the buckling of some shell structures. Southwell 

expressed the initial shape as an infinite Fourier series of the buckling 

modes 
OD 

0 
= 2: a

On 
sin (ntrx/Ii) 0 

n=0 

Then from the differential equation he obtained 

00 

w =z.  a
n sin (nTrX/L) 9 

n=0 

where 

an = a0 
(1/(1  - P/Pn)) 
	

(i o) 

and Pn are the eigen values. For loads near the critical load, the 

first term in the series dominates and the deflection is given approx-

imately by 
a
01 a = 1 ----FM- 

which can be rearranged to give 

(a - ao )/P = (a - a0 )/13 1  + a0/P 1 	(11) 

If (a - a0  )/P is plotted against the measured deflection a - a0 
 as 

in fig. 11 9  then the inverse of the slope is the critical load and the 

intercept is a measure of the initial crookedness. The initial crooked-

ness is a useful quantity in estimating the load capacity of a member 

which yields before the critical load is reached. Southwell indicated, 

that for the method to give a reasonable result the member must deform 

elastically, the first mode must predominate, and the deflections must be 

small. 

Following Southwellls suggestion, the Southwell plot has been 

Ref. 1 R. V. Southwell "On the Analysis of Experimental Observations 
in Problems of Elastic Instability", Proc. Roy. Soc. Series A 9  
p.135 9  1932. 
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used for various buckling problems. However, its. validity has only been 

indicated for some structures, such as frames. 	In general it has been 

used blindly. Gregory
1 has shown that it is often more convenient to use 

a Southwell plot on strains, but the strain typical of the buckling mode 

must be separated from the total strain. In the case of a column, only 

the bending strains must be considered, not the axial strains. To use 

any Southwell plot the investigator must have some idea of the buckling 

mode, so that he measures a geometric quantity which is indicative of the 

buckling mode. Gregory also showed, for a column loaded eccentrically, 

that the Southwell plot can be used for measuring the critical load, but 

in this case the intercept is a function of the eccentricity and the 

initial crookedness. For an eccentrically loaded column the Southwell 

plot cannot be shown to be linear, but for most purposes it is approx-

imately linear. 

Euler's formula for the ultimate load of a column was not gen-

erally accepted, as many members tested failed at loads less than those 

predicted by Euler. Larmarle realized that for stocky members the mat- 

	

erial yields before Euler's load is reached. 	He suggested that the 

failure stress should be given by 

P
cri 	

2 
t 

	El 
( \2 

if this value is less than yield stress and the yield stress if it is 

greater. 

Simultaneously, Considere and Engesser extended Euler's math-

ematical model to allow for the non-linearity of the material's stress-

strain curve. Both gave the buckling load as 

Pcrit 	(EL-L )2 • 

Engesser gave E as the tangent modulus, and defined it as 

— 
where s is stress and t strain. Considere said E is the reduced 

Ref. 1 M. S. Gregory "The Buckling of Structures" Ph.D. thesis, Uni-
versity of Tasmania. 

Ref. 2 M. S. Gregory "The Use of Measured Strains to obtain Critical 
Loads", Civ. Engineering, London, Vol. 55, No. 642, p.80-82. 
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modulus, the value of which lies between the elastic modulus and the tan-

gent modulus. He did not evaluate the reduced modulus, but stated that 

it was less than the tangent modulus, as only a portion of the cross—

section experienced a non—linear tress—strain relationship, Lately, the 

tangent modulus has been re—introduced as most columns tested fail near 

the tangent modulus critical load. This is thought to be due to the 

initial crookedness, which causes deformations for loads less than the 

critical load, and consequently at the critical load most of the cross—

section is plastic. 

With the use in practice of slender iron struts, empirical 

column formula were developed. The earlier formulae were based upon the 

test results obtained by Hodgkinson. The first English engineers used 

Tredgold's formula for rectangular columns and hinged ends 

max 
= 131 bh (1 + a L2/h2 ) 9 

	 ( 1 2 ) 

where a is a constant, L the length, b the width and h the depth. 

Gordon evaluated the constant for wrought iron using Hodgkinson's results. 

For a simply supported column 

max 	
N 

36,000/(1 + L2/12,000 h2  ) 

and for a built in column 

6  max = 36 90001(1 + L 2/3,000 h2 ) . 

Today, Perry—Robertson's formula is the most commonly used, this states 

6 a  
(d y  + (Se  (1 + ioc/p 2)) — j(‘ y  + 	(1 + Soc/f 	— 4e 3r(Se 9  

EL (1\ 2  where 	=e  A `L ) 	and 	is the yield stress, g-0  is a measure of 

the crookedness and eccentricity. Lately with the introductions of high 

strength steels the effect of residual stresses has become important and 

the Column Research Council 1 has indicated ways of including the effects 

of residual stresses, 

Plate Structures  

The study of the buckling of plate structures has developed along 

Ref. 1 Column Research Council Guide to Design Criteria of Metal Com-
pression Members. 
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similar lines to that of columns. However, the bulk of the mathematical 

work has been carried out in this century. The importance of these 

problems has been emphasized by the introductions of, first, steel ships, 

then aeroplanes and submarines. Also the uses of lightweight, low mod-

ulus of elasticity materials in aeroplanes has played an important part 

in the development of the understanding of plate buckling. 

In the early analysis of plates, the plate was simulated by two 

sets of orthogonal elastic beams. The differential equation for the 

normal deflections w of the plate, 

4. D  (41v/ 1 ,x4 	)11.w/ )y4 )  _ Nx 	x2 9  

derived by this means, neglected the effect of the twisting moments in 

the plates. 	It was Navier who in 1820 developed the correct differ- 

ential equation for a plate under an axial load Nx  

4.  D 4w/ x4 4.  2  84w/2x 2y 4w/ 	Nx  2vi/ x2 9 	( 1 3 ) 

but he was unable to provide a solution. (see fig. 13) 

The first occasion when plate buckling was met in practice was 

in 1845 when Robert Stephenson was commissioned to build railway bridges 

In England. Stephenson decided upon a tube design, through which the 

trains would pass. 	Fairbairn, an experimenter, was called in. He test- 

ed various models and cane to the conclusion: 

"Some curious and interesting phenomena presented themselves in 

the experiments - many of them are contrary to our preconceived notions 

of the strength of materials, and totally different to anything yet 

exhibited in any previous research. 	It has invariably been observed, 

that in almost every experiment the tubes gave evidence of weakness in 

their powers of resistance on the top side, to the forces tending to 

crush them". 

Simply, the top flange of the tube was failing by local instability due 

to the compressive bending stresses before the lower flange failed by 

yielding. 	Fairbairn called in his theoretical colleague, Hodgkinson, to 

examine the results. However, as time was short, Fairbairn was forced 

to test a large model with a span of seventy five feet. As a result of 

the test the cross-section of the tube remained rectangular but the top 

and bottom flanges were reinforced using a cellular structure. The tests 
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also indicated that the sides were unstable, and the instability could 

be improved by the use of vertical stiffeners. 

Jourawski in an extensive criticism of the tube bridges observed 

that the buckling of the sides of the tubes was due to compressive stress-

es at forty five degrees to the axis of the bridge. He demonstrated 

with models that'it was more efficient to have stiffeners at forty five 

degrees. Hodgkinson's examination of the failures produced the con-

clusion that the buckling load varied with the ratio of the thickness of 

the plate to the width of the plate. He also suggested that circular 

tubes are far more stable than rectangular tubes. 

Early in the investigation of plates, engineers, one of whom 

was Rankine, developed formulae for buckling loads of plates and I-beams, 

which were of the same form as those used for columns (equation 12). 

The appropriate constants were evaluated using the experimental results 

of the time. 

In the late nineteenth century, Bryan (1891) investigated math-

ematically the stability of thin rectangular plates with simply supported 

edge conditions, and produced the first acceptable result. Bryan used 

his theory to aid him in the proper selection of plates for ships' hulls. 

In the 20th century, the buckling of plates became of paramount import-

ance and Bryan's work formed a foundation for much of the mathematics 

which followed. 

In the twentieth century men such as Prandtl, Wagner, Goodier, 

Kappus, Vlasov, Bleich, and Timoshenko, have developed the theory of 

plate, torsional and lateral buckling. Their work will not be discussed 

In detail here as it will be referred to where applicable in the following 

chapters. 

Energy  

The general differential equation for the normal deflection w 

of a plate is 

	

+ 2k1 - ) 
	/ .2x y2 .4_ )4.w/ y4) = N 	

/ 
?:,x2 + 2N 	2w/ex y  

	

1) ) 	w/ 0 x 	xy 

+ N 2w/ 8 2y 

where Nx 9 N are the normal and N 	the shear forces per unit length xy 
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on the central plane of the plate. The differential equation must be 

solved in conjunction with the boundary conditions of the plate. For 

most problems the solution of the differential equation is too difficult. 

Timoshenko popularised the energy method of obtaining approximate sol-

utions of structural problems. Energy had been used previously by Ray-

leigh in dynamic eigen value problems, such as solving for the frequen-

cies of the linear vibrations of a system. 

The potential energy for a plate with no lateral loads is 

u 	pp( ( e 2w/ e. x2 e2w/ y2)2 2(1 	) ( ew/ e x 2) ( w2/ e y2 )  

) i(kIx (d w/d x) 2  + Ny ( w/ y) 2  + Nxy( 	x) 

x(2) w/6 y))dxdy 	(15) 

The energy can be considered in two parts. The first bracket is the 

internal strain energy of the deformed plate, and the second is the 

external energy of the applied loads. 

The energy expression can be treated in two ways. Timoshenko 

states that if N 	N and N 	can be expressed as Nx = A Cx 9 
x xy 

N = A C and N 	= C 	then conservation of energy gives 
xy 	xy 

)\ _  17C (dwAx) 2 + C (dwAY) 2  + 2C (dw/6x)(ew/ey)dxdy - 	x 	 xy 

F1 /F2 	
(16) 

and that the load parameter X must have a minimum value with respect 

to all geometric parameters. Ritz on the other hand states that the pot-

ential energy u must be a minimum, that is 

	

/6a1  = 0 	for any parameter ai  

Both approaches arrive at similar results. Timoshenko gives 

'>\/da1  = (F 1 /F 2 )/ ai  = (F 2  bF 1 P) ai  - F 1  F2/ a.)/F 2 2  

which simplifies to 

ai 	( e F 2/6 	+ bF2A ai )/F2 9  

when the expression for the load parameter is substituted into the express-

ion. The term in the brackets is a statement that the potential energy 

must be a minimum, or the Ritz criterion. 

IAA 2wAx24 21,v/6y2 2 ) 	2( 1 -V) ( 
2wA x2 &/e y2 tewAx,\ y) 2))dxdy  
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Usually the shape is expressed as a finite sum of orthogonal 

functions, each of which satisfies the boundary conditions, 

= 2: ai0i • 
i=1 

( 1 7) 

The functions need not be orthogonal. The expression for the deflection 

w is substituted into either expression (15) or (16) 9  which is then 

minimized with respect to all the n parameters. The result is a 

system of n linear equations, 

[A - )\13] 	= [do 	 (18) 

For the solution to be non-trivial the determinant of EA -AB] must be 

zero, which leads to a characteristic equation of n
th 

order which has n 

eigenvalues9
n • 

In the case where only a single term of the series 

is used, the espression for the conservation of energy (16) is sufficient 

to obtain a result. 

The energy expression can be obtained from the differential 

equation by a series of mathematical manipulations. Thus potential 

energy can be thought of as a process by which all the equations of 

statics of the member are satisfied on a weighted average. Later, only 

part of the energy expression will be used, and it will be shown that 

this is equivalent to obtaining a weighted solution of certain of the 

equations of statics. 	If the true solution of the mathematical model 

is substituted into the energy expression, the results obtained are the 

same as those obtained from the differential equation. 

For the series describing the approximate shape to converge 

rapidly the functions should be orthogonal, and a reasonable approximation 

to the true eigen functions. 	In general the value of the load parameter 

obtained is an upper bound on the exact solution of the mathematical 

model. As the differential equation is self adjoint, the series can be 

expressed as a series of the eigenfunction 0. then the load parameter 

F1  ( 1

0 ) + F1  (02  ) + F 1  (03  ) + 

F2 (01 ) + F2
(0

2
) + F

2
(0

3
) + 

which is greater than F1(01)/F2(02)  since 

.10 i2dx > 0 9 
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which is the definition for positive definite. 	The ratio of F 1 (95) 

to F2 (0 1 ) is the lowest critical load. 

Stability of Systems governed by Differential Equations  

Ariaratnam
1
showed, using an energy analysis, that for the buck-

ling of a column, certain types of trusses, and torsional-flexural 

buckling an infinite number of modes were obtained and these were all 

mutually orthogonal. Hence any shape could be expressed as a 

unique, infinite sum of the buckling modes. He also showed the val-

idity of the Southwell plot for each of the cases considered. 

. 	2 
Kjar has generalized these concepts. 	He states that if a 

differential equation 

L(x) - XN(x ) = o 

is self adjoint and positive definite with respect to the given bound-

ary conditions then this is a sufficiency condition for the equation to 

have an infinite number of eigen functions On  which are mutually or-

thogonal, and a corresponding number of eigen values 	. Positive 

definite is defined to be 

r J r9S N(0 ) > o and J r 1,(0 ) .> 0 	(18) 
e. 	r 	a 	r 

and self adjoint as 

j[a 	N(Os ) - Os  N(Or) = 0  

and 
	

(1 9) 

J r L(Ø) °s L(°r )  = ° 

where 0r and 0s are any two solutions to the differential equation, 

which satisfy the boundary conditions, and a and b are the two 

limits within which the differential equation applies. 	The condition 

has been extended to apply when the equation is self adjoint and pos-

itive definite with respect to a certain weighting function. 

Ref. 1 S. T. Arairatnam "The Southwell Method of Predicting Critical 
Loads of Elastic Structures", 	Quart. J. Mechs and Appl. 
Maths, 14, 1961. 

Ref. 2 A. R. Kjar, Doctor of Philosophy Thesis, University of Tasmania. 
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Stability of System governed by Simultaneous Linear Equations  

The last section described some conditions for the stability of 

a differential equation. In the following section the stability of a 

set of homogeneous linear equations is considered. Most of the ideas 

involved have been introduced in the section on energy. Other ideas 

will be established by means of the following two examples. 

Finite Difference Methods 

The problem of a column can be solved by a finite difference 

method. One finite difference method treats the column as a series of 

rigid rods hinged so that the moment applied at the hinges is related to 

the deformations. The relationship can be a straight finite difference 

moment-curvature relationship, 

/ 
M = EIK = EI (wi+1 - 2w. + w 	)/dx

2 
 9 

1 	1..4 
(20) 

or it can be weighted to take into account that the rods in a column are 

not rigid. Using the moment-deformation relationship (20) the equations 

of statics for a four bar chain, in terms of symbols defined in fig. 14 9  

become 

16E1 (w 2  - 2w1 )/L2  = - Pwl  

and 	 (21) 

N, 16E1 (2w1  - 2w2 )/L2  = - 

The eigen values of the system can be obtained from the characteristic 

equation, which is the condition that the determinant is zero. The 

eigen values are 

16E1 / 	16E1 P1 	k2 - 1-2. ) and P2 - 	2 (2 + TWL2  
L
2 

and the eigen functions are 

w11 	1 	w21 	1 and 	= - — w12 	w22 

which are linearly independent since 

w11 /W21 	w12/w22 

Hence any shape can be expressed as a sum of the two ratios 

w1 	Aw11 + Bw21 	and w2 = Aw12 + Bw22 . 

(22)  

(23)  

A sufficiency condition for the matrix to have real, positive eigen values 
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is that the matrix be positive definite and symmetric. The load-deflect-

ion graph is the same as for a column, except, now, there are only two 

bifurcations. 	It should he noted that if the column is split into an 

infinite number of links there are an infinite number of modes and loads, 

and the system of equations is equivalent to the differential equation. 

A System of n Degree3of Freedom 

A structure or member, with n degrees of freedom can be 

described by n differential equations. When a set of solutions is sub-

stituted into the differential equations, n simultaneous homogeneous 

linear equations are obtained. The condition for the solution to be non-

trivial,(that the determinant is zero) leads to n relationships, or 

ratios, between the n degrees of freedom, which are linearly independent 

of each other. However, there is an infinite number of modes, as for 

each ratio there exists an infinite number of modes. 

This chapter has presented a review of the buckling phenomena 

as it is applicable to the author's work. Mainly it emphasizes the 

basic points which have been employed, both as mathematical and exper-

imental techniques. The following references have been used in the 

compiling of this chapter and they give a more detailed discussion on the 

various topics. 
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TORSION  

The torsional properties of thin open-section members, with a 

special emphasis on a flat strip and angle section members, will be in-

vestigated in this section. The aspects which are relevant for angle 

section members have been examined experimentally. The results are 

applicable for elastic materials only, although both large and small 

deflections have been considered. 

If a flat, rectangular plate is twisted then the surface is 

defined by the Ligtenberg, moire fringe patterns in fig. 15. The sur-

face, known as an anticlastic surface, has the property that in two 

perpendicular directions the curvature is zero. If a co-ordinate system 

is set up such that the x-y axes lie in these directions, then the 

deflections w normal to the plane of the undeflected surface may be 

described analytically by the function 

W = CXy 

where C is a constant. 

From this geometrical model, the relationship, 

Torque T = Gbt 3  ( ;1 21NR)x!,y)/3 1  (23) 

may be derived, where G is the shear modulus, b the width of plate, 

t the thickness and Ww/xey is the twist. The torque-twist relat-

ionship was first obtained by St. Vennant. The model applies for small 

twists only, for large twists the surface becomes a helix. All the 

surfaces of the strip, including the edges, deform into anticlastic sur-

faces, thus the opposite ends of the plate are no longer parallel but 

slope towards each other as in fig. 16. 

When an open-section member made of flat plates is twisted, 

each plate element deforms to an anticlastic surface. Hence St. Vennant/s 

formula may be extended to apply to these sections, by replacing the width 

b by the perimeter m 9 that is the sum of the widths of the constituent 

plates. However, the relationship only applies when the ends of the 

members are free to warp. The product mt 3/3, or the torsional stiffness, 

is denoted by J , and GJ is known as the torsional rigidity. 

The twist of a plate has been defined as 6210•yex . In the 
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case of a member where the cross-section rotates, in an undeformed state, 

then the twist is independent of the y ordinate. 	If 0 is the rot- 

ation of the cross-section relative to some point, usually the shear 

centre, then the twist is lqic/,6 x 9  where x is the abscissa measured 

along the member. 	It is important to realize that both the torque and 

the rotation must be considered relative to the same point. 

For some composite sections the cross-section does not remain 

plane, because the ends of each plate are no longer parallel. As an 

example consider the cross-section of an I-beam which is shown in fig. 

17. The cross-section is said to have warped. When the member is 

restrained in some way to force plane sections to remain plane, or is 

twisted with varying twist, then longitudinal stresses and shear stresses 

are developed in the member. These stresses modify the torque-twist 

relationship to 

GJ 	x + Cw  00/ e x39 
	(24) 

where C
w is a warping constant. Reference may be made to one of the 

references at the conclusion of this section for the derivation of the 

relationship. 

The following work is concerned with equal leg, angle-section 

members; for these members the shear stresses do not effect the torque, 

hence the parameter Cw  is zero. However, it should be pointed out 

that secondary warping does occur, as the crcss-section of each leg of 

the angle warps and deforms into an anticlastic surface. The effect of 

the secondary warping can be noticed when a flat strip, which is built in 

at one end, is twisted. 	Near the built-in end, the cross-section is 

partially restrained against warping and the twist decreases. One 

could consider a fully built-in cantilever as one in which the end did 

not warp, and hence the twist is zero. From the Ligtenberg fringes in 

fig. 18 it can be seen that this is a very local effect. 

Bleich derived an expression for the torque of an equal leg, 

angle-section member involving the secondary warping of each leg using 

an energy approach. He gives 

= GJW:sx + (210 -0 3  e30/b x3/144 . 

In this thesis, the author derives the same expression by considering 
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the bending stiffness of the legs of the angle. For any section with 

primary warping the secondary warping may be neglected. 

The torque twist relationships both for a flat plate and for an 

angle member are shown in figs 19,20 and the elastic constants of prop-

ortionality are evaluated. 

For large twists, the torque-twist relationship of an angle-

section member deviates from a straight line, although the material is 

still elastic. 
1 

This phenomena has been investigated by Cullimore, and 

2 
Gregory, and it was found to be due to the development of longitudinal 

strains arising from the deformations out of the plane of the model. 

During twist, straight lines across the leg of the angle remain straight. 

Therefore the first component of the strain, the derivative of the dis-

placement in the direction of the axis of the member with respect to 

the ordinate in this direction, is linear across the leg. 

Consider an angle section member which is deforming such that 

is the rotation of the cross-section about the shear centre. Let r 

be a radial ordinate measured from the shear centre. Then the strain 

( due to twisting is 

= r2 (:1 0/kx) 2/2 

and, as straight lines remain straight, the total strain is 

= A + Br + r2 (/)95/bx) 2/2 , 

By considering the equilibrium of axial forces and moments, the values 

of A and B can be determined. The expression for the strain is 

re b 2/12 - br/2) 9 	(25) 

where b is the leg width of the angle. Geometrically, the strains 

mean that the member not only twists, but also bends. Notice that 

there is a line which remains straight; it is not the line of shear 

centres. Gregory3has Shown that the derived results are independent 

of the point chosen as the origin of the coordinate system. 

The longitudinal strain of an angle-section cantilever 

	

Ref. 1 	M. S. G. Cullimore & A. G. Pugsley "Torsion of Al Alloy Struct- 
ural Members", Aluminium Research Development Association Report 
No. 9. 

Ref. 2 M. S. Gregory, Australian Journal of Applied Science, Vol 11, 

	

3 	Nos. 1 & 2, 1960, Vol. 12, No. 2, 1961. 
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experiencing a twist were measured with Huggenberger strain gauges. 

The results obtained are given in fig. 21, where they are compared with 

•the results estimated by the previous mathematics. 	In this experiment 

a "built-in" cantilever was used, but the strains were measured where 

the twist was constant. The region was found using the Ligtenberg 

apparatus. 

For a section in which warping is important the torque twist 

relationship for a small twist is 

= G‘M 0/6 x c 1 e 3psbx3  

When large deflections are considered, two more terms must be considered. 

The first is derived in the same manner as for an angle, C
2 ( 0/6 x) 2 . 

The second term is due to the shear forces which act along the section 

N 9 and is related to the derivative of the longitudinal forces xy 

The form of this term is C
3

1■ 95/6 x ( 6 20/6 x2 ) . The tot-

al torque becomes 

= GA 90) x + C 1  630/6 x3  + C 2 ( 	x)3 	695/ax ( 6 20/6 x 2 )  • 

(26) 

For an elastic material, four local strain readings were used 

to determine the loads applied to a member under test experiencing an 

axial load, a torque and two bending moments. The twist and bending 

deflections were checked using Ligtenberg's apparatus. The four strain 

distributions are shown in fig. 22. 

This section has aimed at being a concise review of elastic 

torsion. It has introduced the terminology and derived the relationships 

used by the author. The effect of warping has been included, because, 

in the conclusions of the thesis, the methods available for generalizing 

the approach developed in this thesis, will be suggested. The section 

has also indicated, by means of geometry, the important features, which 

the author has included in the following sections on torsional buckling. 
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COLUMNS  

Three mathematical models will be developed in this chapter to 

describe the behaviour of columns. These models will describe the 

local buckling of the column under a uniform axial load and a linearly 

distributed end moment, provided the cross-section does not distort. 

The second part of the chapter deals with eccentric loads which cause the 

cross-section to distort.. The treatment given results from work on 

angle-section columns, loaded through one leg by a sJaLle bolt connect-

ion.. The effect of the longitudinal stress distribution, produced by 

loading the column through a bolt, has also been estimated using a 

"partial energy" approach. 

LOAD APPLIED THROUGH A BASE PLATE 

The first loading to be considered is an axial load, uniformly 

distributed across the cross-section. Simply supported end conditions 

are assumed, that is the rotation, the torque, and the moment, are zero 

at each end of the member. 

The notation associated with the problem is p, q are the co-

ordinates about principal axes of the cross-section. The x, y and r 

coordinates are associated with one leg of the angle. The ordinate y 

is measured across the leg from the root of the angle, the abscissa x 

is measured along the line of shear centres of the member from one end of 

the member, and the r ordinate is a radial ordinate measured from the 

shear centre. The displacements in the x and y directions are u 

and v respectively, and the displacements normal to the x-y plane 

are w 	The properties of the angle are leg width b thickness t, 

and length L • 	The notation is defined also in figure 23. 

Experimental Work 

The experimental models used to measure the deformations were . 

made of perspex; the dimensions were: leg width 4", length 8" and thick-

ness 1/8". These members were loaded through their centroids using a 

system of ball bearing supports as shown in fig. 24. The deflections 

w normal to the leg were measured using the Ligtenberg Moire method. 

The fringes obtained are shown in fig. 25. 

In the experimental work, the ideal pin-ended conditions were 



An angle-section column deforming under a uniformly 
distributed axial load. Note an approximate analytic 
function describing the shape is 

w = at cos nx/L . 

FIG. 24 

(a) 
	

(b) 

Ligtenberg fringes for one leg of an angle-section column deforming 
into the shape shown in Fig. 24. The root of tha angle is on the right 
(a) dw/dx (b) dw/dy. The quality of the fringes is the same as 
obtained forall experimental work. 

FIG. 25 
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not attained at the end of the column. Consequently only the section of 

the member with pin-ended boundary conditions was considered. The 

length of this section was measured directly from the 6w/eix fringes, 

see fig. 26. But the "effective length" I can be measured in this 

manner only if the shape of the member is symmetrical about the centre 

line. 	If this is not so then the end condition that the deflection at 

each end is zero is not satisfied. Another approach would be to calc-

ulate the geometrical boundary conditions from the measured deformations 

and to use the load-deformation relationships to derive the forces applied 

to the member. The calculated geometrical and statical boundary con-

ditions are then fed into the mathematical model. 	The second approach 

will not be used in this chapter. 

For the short members tested, the approximate shape the member 

deformed into was 

= ay cdtTrx/L , 

which has the boundary conditions of zero twist at each end, and not 

zero moment and zero rotation as for a simply supported column. How-

ever, by similar calculations to those that follow, it can be readily 

shown that a column with these boundary conditions has the same load 

capacity as a simply supported column. Thus the experimental results 

will be compared with the mathematical model which is to be developed. 

The crossed-diffraction grating method was used to measure the 

displacements u and v in the x and y directions in the plane of 

the leg of the angle. The moire fringes represent lines of constant 

displacement u or v . 

Basic Form of the Deformation 

From the 	sw/bx fringes (fig. 25) it is seen that the line of 

shear centres remained straight, that is, for a short member, the 

deflections produced by the bending of the member were small compared 

with those produced by the twisting. The 	fringes (fig. 25) 

indicate that the section rotated as a whole and without distortion, 

and hence w can be expressed as 

w = 0(x) , 	 (27) 

where 9f(x) is a function of x only, and is the angle through which 



effective length 1 

AB is the line of 
shear centres 

LIGTENBERG blOy FRINGES FOR ONE LEG OF AN 
ANGLE -SECTION COLUMN 

FIGURE 26 

CROSS DIFFRACTION GRATING FRINGES, LINES OF 
CONSTANT DISPLACEMENT Cu, v) 

FIGURE 27. 
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the section has rotated. The movement of the centroid of any section 

with x constant, under these conditions was b/(2 r7)0(x) . From the 

fringes for u and v it was found that horizontal lines, that is lines 

with x a constant, remained straight during deformation and 	/.6x 

was much greater than e v/2) y o In algebraic terms u and v were 

linear in y and x respectively. 

First Mathematical Model  

In the first mathematical model, all the internal stresses will 

be assumed to be small compared with the twisting moment per unit length, 

which is given by the expression 

m 	= D(1 - 1) )  xy  

where D is the flexural rigidity and 	is Poisson's ratio. The 

applied longitudinal forces per unit length Nx  are assumed to be con-

stant and invariant with the deformations, 

N
x 	

P/A 

where P is the total axial load and A is the cross-sectional area. 

The longitudinal forces have a component in the direction of the w de-

flections, which is equivalent to a shear force per unit length Q x  act-

ing across the leg of the angle 

Q = N v0) x 	P/A 6w/6 xo x 	x 

The equation of torque equilibrium on a plane with x constant is 

jrQx r dA + fMxy  dA =0 9 
A 	A 

or in terms of the deflection w 

P/A ) w/ x r dA + )(D(1 - 1) ) 1 2v7/ f3( y dA 9 	(28) 

which simplifies to the differential equation 

GJ14/4?$x (PIp/A) 4/6 x = 0 	(29) 

when the functional form of equation 27 is used. The torsional stiffness 

J equals 2bt 3/3 , the polar moment of inertia about the shear centre 

I equals 2b 3t/3 and G is the elastic shear modulus. The strut 

remains in the undeformed state for all loads except the load 



FORCES  ON AN ANGLE CROSS -SECTION 

FIGURE 28 
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p
erit = GJA/I p 9 
 ( 3o ) 

at which load the deformations are indeterminate. 

Second Mathematical Model  

The experimental work has determined the deformations and not 

the shape of the member. In setting up the equations of statical 

equilibrium the shape is important. The initial shape is taken to be 

u = w = v = 0 0 The mathematical model has as its basis the dis-

placements or deformations u, v and w ; where u is linear in y, 

v is linear in x and w = 0(x) . If the problem is limited to 

one of small deflections the change in curvatures K x 
and K of the 

leg, consistent with the specified deflections are 

K
x 

= $2w/6x2  

K  = 2wA y2 

and the change in twist, or torsion, is 

K 	= 	2w/ex y = 	x 0 
xy 
	 (31) 

From the expressions for u and v , the first approximations of the 

longitudinal strains are 

= 	u/6 x = (py + r)h(x) 

and 	 (32) 

= 	tv./ et y = ( Sx + t)j(y) 

where p, r, s, t are parameters. and h and j are functions. 

Internal Stresses 

The problem is further restricted in that the load-deformation 

relationship is taken to be linear, that is the material is elastic. 

When this is so the moments per unit length mx m and m 	required 
xy 

to maintain the deformations expressed in equation (31) are: 

m  = 	Dy  20/  x2 

m 	= 	D y 1, 2r:6/ x2 
and 	 (33) 

m 	= ( 1 -1) )D 	x 
xy 

where the flexural rigidity D denotes Et 3/12(1 - 1; ) 2  . Using the 

expressions (32) for the longitudinal strains the longitudinal forces 

per unit length acting on the central plane of the leg becomes 
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N
x = Et(cy + d)q(x) 0 

	

(34) 

In order to determine the other internal stresses the statical 

equilibrium of an element of the leg must be studied. When an element 

of the leg, thickness t, and defined by the planes x 9  x + dx y 9 

y + dy is considered, the following equations are obtained (see fig. 

29). 

Force equilibrium in w-direction: 

0Qx/le y + obQ3r/ x = 

moment equilibrium in w-x plane: 

Qx = 1111)P) x 	5111xle Y Nx 	x Nxy 	Y 	(35) 

and moment equilibrium in w-y plane: 

	

Qy  = 6my/ y - 6 mxy/ x - Ny 	y N3c3r ) 	x o  

The equilibrium equations (35) in conjunction with the load 

deformation relationships (33) give an expression for the shearing 

force per unit length, 

Q
x 	

- Dy 3Ø/è x3  - Nxy 95/2:4 x - Nxy91 • 	(36) 

Applied Forces 

As the axial force is applied through the centroid of the 

section of the member, the only applied end force is an axial force P 

and hence the resultant forces on a section D-D (see fig. 23) with 

x constant are: 

Axial force 	 1 

moment about minor axis 	• 	• 	0 	Mp = OPb/2 	

(37) 
moment about major axis 	• 	• 	• 	• 	M

Q 
= 0 

and torque about x-axis 	• 	• 	• 	T = 0 

The forces on any Section must be balanced by the stress 

resultants on that section. These are obtained by integrating the in-

ternal stresses. 	When three of these forces, the axial thrust and two 

moments, are considered the following three equations are obtained 
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qdA = 0 Pb/2 7 
A 

MQ  = 	Nx  pdA = 0 
 

(38) 

A 

and 
	

P .IN
x 

dA 9 

A 

where IdA denotes the integral over the whole section. From equations 

(38) the values of the parameters, c and d in the functions des- \ 	A 

cribing the longitudinal forces per unit length in both legs are 

determined. 

Nx1 = tP/A 344/41)
2  

(39) 
and 
	

Nx2 
= tP/A - 3P0y/4b

2 

The fourth force, the torque, is balanced by the moment of the internal 

stresses about the shear centre. The moment of the internal stresses • 

is independent of the point about which it is taken. The shear centre 

was chosen so that the shear forces N need not be evaluated. The xy 

torque balance gives 

dA -ydA - 	yvvP)3T dA = 
xy 	x 	 xy 

A 	 A 	 A 

0 	(40) 

When the expressions for m 9  Q 9 and N 	in equations 
xy 	x 

(33), (36), (39) are substituted into the equation (40) the differ-

ential equation is obtained as 

GJ 0/6 x - D 630A x 	- P )0A x 	= 0 

in which G is the shear modulus, J the torsional rigidity = 2bt 3/3 

and I is the polar moment of inertia = 2b 3t/3 . After rearrangement 

the equation becomes 

(P/2Db - GJt/DIp)e0/ x = 0 • 	(41) 

A solution of the mathematical model is 

w . an sin nIfx/I, 

where n is an integer, as it satisfies both the differential equation 

(41) and the boundary conditions: Mp = MQ  = T = 0 and w = 0 

at x = 0 and x = L • But there are two conditions on the 

solution: either an = 0 or 
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-(nIT/L) 3  + (P
n
t/AD-tGJ/DI )7/L = 0 
	

(42) 

Hence equation (41) has an infinite number of eigenvalues of P 9 given 

by (42), corresponding to an infinite number of eigen functions 

wn = any sin n irx/L 	n = i(i) co . 

Energy 

When a differential cannot be solved explicitly an approximate 

solution can often be found using a weighted integral of the differ-

ential equation. The expression for the weighted integral can be 

obtained from the differential equation. In this case the differential 

equation is multiplied by 'o2Ø/'x2  and integrated twice with respect 

to the x variable to give 

L 
2Ø/ 2 )2( 0J/2  0 piRixy 	N  ( die x) 2 	0  

DI /2t (1.1 	 x 	P/  
10 P  )0 

(43) 

which is identical to the energy expression 

Lb 
/ .2w/ 	

2 	\2 /. 2\2 
u 	D 	- 2 / - ..1)( 2

14,A x2 >12w/ y2 f j 2 	k 6 	6 x + o w / 4) y ) 	0  v 
00 

Lb 

	

( eINA y) 2 ) dy dx + 	f ir N
x  

w/ x) 2  dy dx 9 

0 0 

(44) 

when the functional form and the loading conditions are applied and the 

expression is integrated with respect to y • Thus the minimization of 

the energy expression is equivalent to the least squares method of 

averaging the differential equation. 

Initial Shape  

No physical membcr is initially straight, and as the mathematical 

model is non-linear, it is expected that the behaviour of the member 

depends upon the initial shape. When the initial shape is w = w 0  

the differential equation must be modified as the moments per unit 

length depend upon the change in curvatures and the change in twist: 

b2 (w - wo )/e. y2  , 	2 (vi - wo,)/6 x2  and 	w0 )/ 

respectively. When these corrections are included, equation (41) 

becomes 

	

)3 (91 - 1/(0)hx3  + Pt/DA Ø/x - GJt/I p 	grAx - )0(3,/ x) = 0 • (45) 
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The initial shape can be expressed as an infinite series of the eigen 

function of the differential equation (41), 

0 =a0  sin nirx/L 
0 	,  

This is possible as the eigen functions are orthogonal. The solution 

of the differential equation is then 

co 
.E an 

sin nlrx/L 
n=1 

with the coefficients an 
given by 

an = aOn (1  - F/Pn) 	
n = 0(1) CD. 
	(46) 

In the neighbourhood of P 1 	the first term of the series predominates 

and the shape is approximately 0 = a l  (1 - P/P 1 ) sinInc/L 	P1  is 

the lowest eigen value, which is called the critical load and is calc-

ulated using 

1 	
—/ 

= 2(Db 
2/L

2 
 + GJbt/I ) 

This mathematical model buckles in the Eulerian manner like a 

simple column. If the member is initially straight it can be in either 

one of two states, zero deflection or indeterminate deflection. 	The 

second state occurs only for well defined loads P n  . When initial 

shape is included, the load deflection relationship of the mathematical 

model approaches the lowest critical load asymptotically (fig. 30). 

Equation (46) justifies the use of the Southwell plot, that is plotting 

(w - wo )/P against w - wo  . The slope of the graph is the inverse of 

the first eigen value or critical load. The Southwell plot was used 

to evaluate the critical loads of the experimental members (see fig. 

31). 

op 

Third Mathematical Model  

In the first model the longitudinal strains on the centre plane 

of the leg were taken as 	= u/ x . In the model to be studied 

next, the shortening due to bending is also tol.be  considered. 	The 

approximate expression for curvature is still to be employed as the 

twists measured experimentally are not large enough to justify the use 

of more complex expression. From fig. 32 it can be seen that the bend-

ing deflections w modify the longitudinal strain to give 
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= uP x + ( w/ 3c) 2 	 (47) 

Following the steps of the previous section, using the load-deformation 

relationship and the equations of statical equilibrium on the section 

with x a constant, gives the longitudinal stresses as 

1 = Pt/A - (Pb0/2 	- (b 2p/r 1-.27 	x)y  _  4/6x) 2 (y2/2  
x  

+ b 2/12 - by/2)) 
	

(48) 
and 

N
x2 	

P/A + b 3t/ 2 (Pb0/2 	- (b 2P/ 1-20x)y -  0 x) 2x 

x (y2/2 + b2/12 - by/2)) 

When these values of the stresses are substituted into the torque 

equilibrium equation the differential equation is 

Ge1?“0x - D 3g5/) x31 /t + 2 j( ( 0/d x) 3 (y 2/2 + b 2/12 - by/2) 2  y dy - 
P 	0 

- PI /A 4/6 x = 0 

which on rearrangement gives 

) 30R) x3  + (P/2Db - GJt/DI ) 	x - Eb5t 2 ( 	x) 3/183DI = 0 

(49) 
When a 95/, x is replaced by 0' 	P/2Db - GJt/DI by Si: and 

b 5t/180DI by 	equation (49) simplifies to 

:120 1 /6 3c 2 	ji. 20 1 	01 3 = 
0, 	(50) 

or after integrating once 

dx = dØ'/(c - 0' 2012  - 2013/3Y2  9 

where c is a constant of integration (see Appendix B). This can be 

expressed in the form of an elliptic integral 

	

• 	2 	\-& 
dx 	B 1 40/(1 - k sin 8) -  9 

where Bt Q and k are defined appropriately. 

As discussed previously the approximate shape of the physical 

members was not 

w = ay sin ir x/r, but w = ay cos  

For this section of the work, the members are considered to have the 

same end conditions as the physical members. This is thought advisable 

as geometrical results of the third mathematical model are compared with 
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the geometrical results of the physical model. 

The functions 0 1 = B sin 2Kx/L satisfies the boundary con-

ditions and when substituted into the differential equation (50) gives 

B(2K/i) 2 (2k2sn32Kx/L - (1 + k2 )sn 2Kx/L) +2Ber! 2Kx/i - pB 2sn32Kx/L = 0 

4K is the period of the sn function and K is equal to the complete 

elliptic function, 
1772 22 \--1-p K = 	(1 - k sin 17 ) -dy0 

0 

(see Appendix B for properties of sn z ). By equating the coefficients 

1 	/ N of sn(210r./L) and sn3  (2Kx/L) two conditions are obtained: 

2(2KkL) 2  -13B
2 

= 0 	

(51) 

and 	(1 + k2 )(2K/L) 2  =J2. 2  0 

These two equations in conjunction with the k-K relationship 

is solved for a load-deformation relationship (P, B) ; the form of which 

is shown in fig. 33. For small deflections an approximate load-

deformation relationship is obtained by combining equations (51) and 

using the fact that K = ir/2 for small k • Hence 

P/Db2.- GJt/I D b
5 .0 2/3b0DI - (1r/L)a 	o / 	

(52) 

For P <2.0b(1r/L) 2  + GJtb/ip) the deflection is zero, which is ident-

ical with the simpler model. However, the third model predicts a 

unique deflection for each load, which is in contrast to the second 

mathematical model which buckles in the sense that the deflections are 

indeterminate at the critical load. Thus it appears that Eulerian 

buckling is a property of the mathematical model and not the physical 

member. In this respect the second model bears the same relationship 

to the first model as the "elastica" does to Euler's column. The math-

ematical model of the elastica includes a more exact expression for the 

curvature of the column. 

In order to calculate the magnitude of this effect we shall 

1" 
calculate deflection for a 4" x 4")( 	perspex angle member, 8" 8 

long, with E = 480,000 p.s.i.and 	= 0.3 • 	For P = P . + 100 crit 

B 2 = 120 x 8 )( 100/(480,000 X 64) = .00313 

and hence 	= 0.56 rads/in. 
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The maximum deflection can be estimated when it is assumed that 

the shape is 

. By (sinirilli + 1) and Sc6/2) x = B TO, cos 'Tr 

The assumption is of the same order as that made in obtaining the approx-

imate equation. 

Then 

w = 2 * 4 4  0056 V 8/Tr 

. 1.14 in. 

When P - Pcrit 
= 50 the deflection w is 0,808 inches. 

The two simultaneous equations (51) can be solved by trial and 

error to give the true load deflection relationship. For the same 

member 

and 

(9,

41.2  

= 

= 

' 
Eb t

2  /180DI 	= 

P/(2Db) 	GJt(6(1  

92.2 

. 0.00144P - 0.262 . 

Using the same deflection as above, B
2 = 0,00316 9  equation (51), 

8(Kk/L) 2  = B2/2 9 gives 

k2 = 0.59 and K
2 

= 3074 . 

With these values the second equation, (1 + k2  )4K 2/1, 2  = J12  9  becomes 

2 = 0.372 

or 	0.00144P = 0.372 + 0.262 9  

which reduces to 

P = 440 lbs or P - Pcrit = 158 lbs. 

Other points on the true load deflection curve have been calculated by 

the same method. The true curve is plotted with the approximate curve 

on graph 33. As can be expected the two curves agree in the region of 

small deflections, the region in which the assumption holds. 

The third mathematical model does not include the initial shape 

of the member. The importance of initial shape can be appreciated 

from the load deflection curve based upon the small deflection model. 

1" 
This curve is plotted on graph 33 for a 4" x 4" 8" X 	perspex 
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model with an initial twist of 0.001 in. The differential equation 

(49) can be modified to allow for any initial shape. The shear strains, 

the plate bending strains, and the longitudinal strains due to twisting 

depend upon the change in shape. When the initial shape is 

w
0 
 = B 

the modifications give 

3(91 00)Ax3  + F10/6 x/2Db GJt/DIp  (95  - 00)/ x 

b5t 	(95 - (,0)/x 	x/180DIp  = 0 

or 
	

2 (0 2  - 00 )h, x + IVO - 1)2'0 - 	- Øt)2Ø = 0. 	(53) 

The differential equation cannot be solved easily, if at all, and con-

sequently an approximate solution is obtained. 	It can be expected that 

the shape of the member changes with the load, as it did for the init-

ially straight member. To obtain an approximate solution it is assumed 

that the change in shape is not appreciable, and that the initial shape 

is of the same form as the deformations. Take 

w
0
Ax = B

0
y sn 21(x/L and 	w/ x = By sn 

As for the initially straight member, two equations are obtained when 

the values of c?0:41c and
0 
 x are substituted into the differ-

ential equation (53). 	These are 

2k 	- B0)(2K/L) - p(B - Bo)B . 0 2 / 	/ .2 	 (54) 

and 	(B B0 )(2K/1) 2 (1 + k2 ) +11 1B - SV(B - B0 ) = 0 , 

The value of K is assumed to be Tr/2 , which is in keeping with the 

earlier assumption that the shape does not change to any extent. 

Physically, these assumptions mean that the shape is approximately 

described by 

w/)3 x = By sin Trx/li 

Under these conditions, the above two equations (54) combine to give 

AgBAB - B0) = 11" + ( 1T/L) 2  + pB(B - B0)/2 
	

(55) 

For a 4"x 4"x Ti 	8" perspex model with an initial deflect- 1" 

ion of B0  = 0.001 rads./in. this becomes 

0.00144B/(B - B 0 ) = 0.416 + 46.1B(B - B0) . 
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The load deformation curve corresponding to the above equation is also 

plotted on graph 33. It can be seen that for small deflections the 

curve is asymptotic to the initial deflection curve for the Euler 

type model, and for large deflection it approaches the approximate 

large deflection curve. 	It appears reasonable to assume that the 

true curve will be asymptotic both to the curve for the Euler type 

model and to the true large deflection curve. The load—deflection 

curve, obtained experimentally, for a. member with an initial maximum 

twist of 0.001 rads,/in, is given on graph 33. The curve lies with-

in the region expected, except for very large twists. Under these 

conditions the loading conditions have probably changed from those 

used in the mathematical model. 

Eccentric Loading  

In this section of the thesis the second mathematical model is 

expanded to cover the behaviour of an angle—section member under an 

eccentric load. It was shown previously that while the deflections 

due to bending of the line of shear centres are neglected, bending 

about the major principal axis has no effect on the differential 

equation, provided the section does not distort, a property of a symm-

etrical section. However, when the load is applied off the minor 

principal axis the differential equation is altered. 

When the eccentricity e is sufficiently large, then the 

moment P(w
s 

— P
e
) about the minor axis can be approximated by — Per, 

where w
s 

is the deflection of the centroid of the section (see fig. 

34). By considering the equilibrium of the elements on a section with 

x equals a constant the longitudinal stresses are found to be 

\/ N
xl 

= N
x2 

= P/2tb + b 	Pe(y — b/2)/b 3  t 9 

therefore 

Nxy 	= [2 f y(P12b + b 2 Pe(y — b/2)/b 3t) 	x dy-1 
0 

- IL1D 2/5 — Peb/ 2) 0 1 /x . 

The equation for torque equilibrium on this section then becomes 

I DA x3  + GJ 	/) x + (Pb 2, 3 + Peb 	) Ø'/x = 0 	(56) 
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FIGURE 34 
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and from this 

w = ay sin n 

and 

P
crit = 	=2(Db( 1r/L) 2  + GJbt/Ip)b/(b + 3 rb) • 

13 1 (57) 

See graph on fig. 34. 

From fig. 34 it can be seen that there is a good agreement 

between the load capacity of the physical member and the mathematical 

model. When the eccentricity is - 13/3 77 the critical load is in-

finite and the member is stable. If the eccentricity is less than 

- b/3 	the mathematical model predicts that the member will buckle 

in tension but not in compression. At this stage a member has not 

buckled in tension as the member has failed by another mechanism. 

This thesis has only presented the torsional buckling of the whole 

member. For some of the models tested with large eccentricities local 

compressional buckling occurred under the loading position. 

Applied Torque  

When a torque T is applied at the end of the column the diff-

erential equation is modified to give 

DI /t 31/5/)3c3  + (PI /A - GJ)) 0/6x = T, 

the solution of which is 

= a sin (kx/L) + TODIp/A - GJ) + C 9  

where C is a constant. The boundary conditions are 0 = 0 at 

x = 0 and x = L 	Thus 

C =0 

and 	a = - TL cosec (k)/(PI /A - GJ) 

The expression for the rotation is 

0 = T(x - L (cosec k)(sin kx/L))/(PIp/A - GJ) 

and the central rotation is 

0c = TL(1 - sec k/2)/2k(PI /A - GJ) 0 
	

(58) 

As the load tends to the critical load the parameter k tends to one, 

as shown by equation (58); the central rotation approaches infinity. 
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/ In the same manner that the relationship between the end slope 

of a column and the applied axial load and end moment is used in the 

analysis of buckling of frames, the relationship above could be used to 

modify the analysis of the buckling of frames out of their plane. The 

state of knowledge of the analysis of the instability of frames is given 

in Gregory's "Elastic instability - Analysis of Buckling Modes and 

Loads of Framed Structures" and his Doctor of Philosophy Thesis sub-

mitted at the University of Tasmania. 

It is suitable at this point to discuss the value of the math-

ematical models developed so far. First the shape of the deformed 

members is considered. In fig. 35 the measured values of the slope 

)w/6 x are compared with the analytic expression 

w = ay  cos 71' x/L 

Theconstant a has been chosen so that the maximum slope values agree. 

There is a slight difference in the shape and this can be accounted for 

if the analytic expression 

w/ x = ay sn 2Kx/L 

is used. 

For large deformations the functional form, used as a basis for 

all the mathematical models, was no longer valid, as the legs of the 

angle member began to bow. For large deflections the physical model 

deflected into the shape 

w = a1  y cos7 x + a 2y
2 cos 21rx/L 

instead of 

w = ay  cos ir x/i., • 

Note that the physical models do not have simply supported boundary 

conditions. For the Ligtenberg fringes and a graph of the twist, see 

fig. 36. If a mathematical model were developed, based upon the new 

shape, the lowest critical buckling load would be the same, but some more, 

higher valued, buckling loads and modes would be introduced. 

If there is a component of the shape of the form 

w = a1 y cos 11" 	+ a2y
2 cos 11"x/L 
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then the lowest or critical load would change and it would depend upon 

the ratio of a l  to a2  . From the Ligtenberg fringe photographs this 

ratio is large and consequently the critical load derived from this shape 

is approximately equal to the critical load obtained from the second 

mathematical model,. 

Another approach to the problem is to consider each leg of the 

angle-section member as a plate, as Timoshenko did. Then the leg of 

the angle members bows. 	In fact, the shape of the member depends 

upon the size of the member. The critical load obtained by considering 

the leg as a buckled plate is very close to the value from the second 

mathematical model. The mathematical model developed by Timoshenko 

is discussed in fuller detail in the conclusions. 

The calculated and measured values of the lowest critical load 

are quoted in the table below. All the members tested were made of 

perspex. The calculated values are obtained from the second math-

ematical model. For the members tested the first mathematical model 

predicts a lower critical load. From the form of the expression for 

the critical load, derived in the second mathematical model, it is 

sufficiently accurate to use the first mathematical model only for 

long members. 

Member 	Calculated Critical Load (lbs) 	Measured (lbs.) 

The maximum error is seventeen percent for the very short 

member. The errors for the remaining members are of the order of five 

percent. 
1" 

The critical loads for 8" x 4" X  4" x 	perspex angle- 

section member loaded eccentrically about the minor axis are shown in 

fig. 34. The differences between the calculated and measured values 

are of the order of five percent. This difference is considered sat-

isfactory, when it is realized that in a practical application the 

"effective length" of the member must be guessed, thus introducing an 

error of a larger magnitude. 
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Although some of the physical members failed above the critical 

load when the material yielded, the author does not suggest that a large 

deflection analysis is of value in general practice. This opinion is 

based upon two points. 	Firstly, the displacement is too large to be 

tolerated in practice, and secondly, any small lateral load will produce 

a large change, both in shape and maximum deflection. In other words, 

the members must be considered as physically unstable, 

COLUMNS WITH BOLTED END-CONNECTIONS  

Earlier work has shown that if an angle-section member is 

'loaded eccentrically about the minor axis, then the critical load 

increases as the load moves towards the shear centre, and if the column 

is loaded eccentrically about the major axis there is no change in the 

critical load. 	These results are true only if the cross-section does. 

not distort. 

Several aluminium angle cross-section members, bent from alumin-

ium sheet, were loaded through bolts placed at the-centre of one leg as 

shown in fig. 38, that is, with an eccentricity of b/2 5-  about the 
major axis. The most noticeable fact about the geometry of the loaded 

structure is that both legs no longerundergo the same deflection.. The 

loaded leg experiences a much larger deflection than the.unloaded, or 

outstanding leg. The ratio of the deflection near the critical load 

appears to depend primarily upon the type of root of the angle. Several 

perspex models were made with different amounts of glue at the root. 

Each had a different deflection ratio. Also the critical load for 

this member was much lower than the load given by the mathematical 

model based upon an undistorted cross-section. 	For the overall, or 

torsional mode of buckling to occur, the bolt must be tightened suff-

iciently to prevent any local buckling directly under the bolt. The 

local buckle was observed in all of the early columns tested. 

Ligtenberg moire fringes were obtained for both legs. These 

fringes are shown in fig. 39. A straightline across the legs no longer 

remained straight. The bcwing is most noticeable in the region of the 

bolt. Although in the central portion of the structure the.legs are 

not straight, the bow is not appreciable. Hence it appears that the 



The mechanism for loading an angle column through one leg. 
The member is deformed into the elastic buckling mode. 

FIG. 37 

The shape of a column which has been loaded past the elastic buckling load 
until plastic deformations have occurred. Note that the triangular mode only 
forms in one leg. 

FIG. 38 
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difference in the deflection of the two legs is taken up by the opening 

of the angle at the root. 	From the fringes in the other direction, 

the x direction, the shape of the central portion is roughly sinusoid-

al, which suggests that the longitudinal stress in the central region 

of the member is constant, as is to be expected for members with large 

length-leg width ratios. 	The effective length of the member is 

roughly half the total length, as the bolted connections produced 

built-in end conditions. 

First Mathematical Model  

The first mathematical model has the longitudinal stress on the 

central plane of the legs constant in the central half of the column, 

1/4 < x < 3L/4 

the leg remaining straight and the included angle at the root changing. 

The shape of the deformations of both legs will be assumed to be of the 

same form within the central half of the member, and given by 

wl 	a1 y0 for the loaded leg 

and 
	

w2 	a2y0 for the unloaded leg 
	

(59) 

This model induces a finite moment at the root and zero moment in the . 

legs. 	Naturally the moment is not discontinuous, but as a first 

approximation the discontinuous model will be used. 	It has further 

been assumed that the moment at the toot of the angle is linearly 

related to change in the angle contained between the legs 

‘.= C(al  - a2 )0 
' Y 

Actually the root of the angle is at a high stress as it will have 

high residual stresses from the formative process, and also high 

shear stresses due to stress concentration at the corner. 	These 

facts could produce the weakness at the root. The constant of 

portionality has been evaluated experimentally, and it would appear 

that the constant must be so evaluated for each different type of angle 

section member. 

As before, only certain equations of equilibrium are satisfied. 

Two elements are considered; a strip width b 9 thickness t and 

length dx from each leg, see fig0400 When the linear bending theory 
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is applied to the bending moment about the major axis the longitudinal 

stresses are 

Nx1 	
P/A + My/I 2 TT 

PP 

and Nx2 
= P/A My/I 2 7. 

PP. 

The shear stress across the thickness Qx 
are obtained by considering 

the internal statical balance. The expression for the shear stress, 

Qx  = - Dy 304 x3  - NxyW) x - Nxy0 	(60) 

is derived in appendix A. 

The above formula (60) for the shear stresses does not take into 

account the rapid change of moment m around the root of the angle-

section member, which produces shear stresses and twisting moments on 

the planes, with x constant, in the vicinity of the root of the 

member (see fig. 40). 	In the following analysis, the torque of these 

two quantities about the shear centre is combined, and considered as 

the one torque, called the local torque. 	The total local torque is 

assumed to vary linearly with the x-ordinate. The torque equilibrium 

of one leg of the member gives the value of the local torque at the end 

of the member as 

L/2 
T" = 	f C(al  - a2)0 dx = + (a l  - a2 )T' „ 

0 

and thus the distribution of local torque is 

+ (a, - a2 )T 1 (L/2 - x)2/1., 

The torque equilibrium for an element from the loaded leg gives 

(j( my dy)R x dx + 	j(  Q y dy)/x dx = m dx+(a l  - a2)2TIL dx 0 
0 x 	0 x  

When the appropriate expressions for m 	m 	Qx and Nx are , xy 

substituted into the equilibrium equation the following differential 

equation in 0 is obtained, 

a DI /2t'00 x4  + a (PI /2A + Peb 4/4 771 - GJ/2) 2
0/ x2 

1 	p 	1 	p• • 	. pp 

= C(al  - a2 )0 + 2T 1 (a1  - a2 )/Z 	(61) 

In the same manner the equation for the torque equilibrium of the element 

from the unloaded leg gives the differential equation 

a2DIp/2t 1 20h x4  + .a2  (PI /2A - Peb 4/4 r 	/2) 0/2) x2  = 

(a, 1  - a2 )0 7 ,27 1:(a - a )/L 	(62) 
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We shall assume that the boundary conditions are that the rotation is 

zero at x = 0 9  the twist iszero at x = L/2 and the moment is 

zero at x = L/4 and 3L/4 . The solution is then 

w1 = a1 y(cos (2nrrx/L) - 1) 

and 	w2 = a2y(cos (2ncrx/L) - 1) 

If 1 is the effective length, then two linear equations in the 

unknowns a 1 and a2 are obtained, 

(DI /2t)( Tr/1) 4  - (PI /2A + Peb4 / r-- 	/1  .2 /4 	- GJ/2)( 42 I 	1r/) - C 9  4- C 
PP 

4- C 9  (4- DI/2t)( 1r/L) 4  (p/p/2A Peb 4/4 r2 Ipp  - GJ/2)(7r/1 C 

a 1 

a2 

= [0] 	 (63) 

For the solution to be non-trivial the determinant of theleft-hand side 

must be zero, which gives a quadratic characteristic equation- in P 

For each value of n there are two solutions for P 9 and, although at 

these loads both displacements are indeterminate, the ratio of the two 

displacements can be determined. The ratio has two values, one 

corresponding to each load. Nevertheless there are an infinite number 

of modes and critical loads, as n• can vary from zero to infinity. 

The two ratios obtained for the one value of n are linearly 

independent, or orthogonal, and, as the functions cos nirx/L + 1 and 

coszkifx/L are orthogonal, all the modes are orthogonal and any shape 

can be expressed as a unique sum of the modes, such as 

co 
w1 = y E aln(cos nIrx/i + 1) + a2n(cos n1Tx/L + 1) n=1,   

OD 

and 	w2 = Y 2: R mnaln(cos n1Tx/L + 1) + R 2na2n(cos nlrx/L + 1) 9  
n=1 

where aln and a2n are constant and R ln and R 2n are the critical 

ratios for the shape cos (nlrx/i) - 1 . 

One of the members which was tested was made of aluminium sheet. 

having Young's modulus E = 10 psi , and thickness t = 0.65", and 

length L = 24" and leg width 4" • For this member the two simul-

taneous linear equations are 

(260.6 - 0.394P)a1  - 14382  = 0 

and 	143a1  + (260.6 - 0.o22P)a 2  = 0 
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which combine to give the characteristic equation 

(261 - 0.394P)(261 - 0.022P) = 143 2  

or 
. 

0000995P
2 
 9704P - 47,800 = 0 . 

	

The lowest critical load is 485 lbs and the ratio is 0.49. 	The 

results of the other tests will be discussed at the end of the second, 

more complicated, mathematical model, at which stage the two mathem-

atical models will be compared. 

When the initial shapes w
01 

= a01  y00  and wOz = 802700 

are included, the torque equilibrium equations become 

	

(DI /2t) 	1 - aoi  00  d x4  + a 1 (PI p/2.A + Peb 4/4 1 'pp ) 2$/x2  - 

- GJ/2 2 (a 1 0 - a01 00 )/ox
2 
 = (0 + 2V/L)(a1 - a01 - a2 + 802 ) 

and 

DI /2t ) 4 (a2PS - a02  00  )/2) x4  + a2 (PIp/2A - Peb 4/4 F  i
) 20/e  x 2 

PP 

- GJ/2 b2 (a20 - 8000 )/)  x2 = - (c + 2V/1)(a1 - 801 - 82 4- 802 )  ' 

If the initial shape is 

= cos (nTex/L) + 1 
0 

then the solutions to the equations are 

01  = al (cos (nTrx/L) + 1) and 02  = a2(cos (n1rX/L) + 1) 

provided the following two linear equations are satisfied 

(al  - a01 )(Tr/L) 4DI p/2t - a1 (1r/L) 2(PI /2A + Peb 4/4 j  i) + 
PP 

▪ (a l  - a01 )GAITYL) 2/2 = C(a l 	8.01  - a2  + a02 ) 

	

(a2  a02 )( 1r/L) 4DIp/2t - a2 (1r/L) 2 (PI p/2A - Peb 4/4 Ti 	) pp 

•(82 - 802 )Gj("/L)2/2  = 	C(81 - 801 _82  - 802 )  • 

In order to simplify the mathematical manipulations, a simpler 

notation will be used; 

= DI (11- /1) 4/2 + GJ(lr/1) 2/2 

F = (1r/L) 2pi /2A 
P 

G = (7f/L) 2Pb 5/16I 	= ( ir/L) 2Peb4/4' 5 I 
PP 	PP 

K = (E - (C - (g .4-  )P)(E — C - (P - VP) - C 2  . 

Under these conditions the equations (64) become 

and (64) 

and 
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(al - a01 )E 	al (F 	G)  = C(a-  - 801 - 8 2 	802 )  
(65) 

(a2 	a02 )E 	a2 (F  G) = - C(al 	a01 	a2 	a02 )  

If PI is a critical load and we assume that the ratio of a 01  and 

a
02 is the corresponding critical ratio, then 

a02  c  (E - C) - (F + G)P'  
a
01 

- (EC) - P'(F - G) 	

(66) 
and 
	

((E - C) - (F - G)PIME - C) - (F + G)PI) = C 2  

Solving the equations for the deflection a l  gives 

X a l  = ((E.- C)((E - C) - (F - G)P) - 0 2 )a0 	(I? - e.)Pa02 

or 	a 1 /a01  = (E 
	0) 2 	0 2 	pp,( F2 	0 2) 

	(67) 

when the ratio of the initial shapes is critical. 	On applying equation 

(65), equation (66) becomes 

/ 2 	./ a
1
/a

01 
= 2FPI(E 	C) - kF - G

2 
 )kP' + P)P' 9 

which on multiplying by (P - P') gives 

Pt)  8/a01 	
. 

= - PIUF
2 

- G
2
)(P2 - P'

2 
 ) - 2F(P - P')(E - C)) - 	(-1  

or 

(P 	P') a
1/a01 
 - P'((F2  - G2 )P2  - 1 	

(F2 	G2)p ,2 2F ‘ E - C)P 

2F(E - C)P I ) . 

When the characteristic equation, 

(E - 0) 2  + (F2  - G 2 )1" - (E - C)2FP' - C 2  = 0 

and the expression for 	are substituted into the equation for 

(I) - 	a1 /a01  9  then 

(P - PI) a
1
/a

01 
= 	F , (  (E  0) 2 	0  (E  0) 2 	0 2 )  

therefore 	a 1  = 	PIa
01

/1) - P' 

(6a) 
or 	 al = a01 /(1 	P/P1)  

Similarly it can be shown that 

a2 = a02/(1 	P/Pt)  

and if the ratio of the initial shapes 
a01/a02 is the second critical 

ratio, the one corresponding to the critical load P" , then 

a
1 = a01 /(1 	P/P") 

a2 = a02/(1 	P/P")  



load P 

a 1/a 2 
= 

load P 

<ai /aye° a01402 

P 	Pcrit 

load P load P 

a01 /a02 > ay/a l   1 2 a01402‹ 

a l /a2  is the ratio of the measured deflections. 
a01/a02  is the ratio of the initial shapes. 
ai/q is the ratio corresponding to the lowest critical load 

VARIATION OF THE RATIO OF THE DEFLECTIONS OF THE TWO LEGS OF 
AN ANGLE-SECTION COLUMN LOADED THROUGH ONE LEG 

FIGURE 41 
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Hence, if the initial shapes are expressed as infinite sums, 

co 
w
01 = 2: a

On
y(cos nIrx/1 + 1) + a02ny(cos  n1Tx/i + 1) 

n=1 

and (69) co 

w02 = E RinaolnY( cos nirx/i + 1) 4 R._ oz a__ y(cos nlrx/L + 1) n n=1 

then the shape of the loaded member is 

co 
= 	(a01n/(1 	P/P1n) 	a02n/(1 	P/P2n

)) y ( cos nirk/1 + 1) 1 
n=1 

and 	 (70) 
co 

w2 = 	(a 	 (cos nirx/1 + 1) R  01n1n/(1 	P/2  ) 1n 	a R /(1 P/P  02n2n 2nn  y  n=1 

When P
11 is less than any other critical load then these results simp-

lify to 

w1 = (a0
11 	- P/P 11 ))(cosTrx/1 + 1) 

and 
	

w2 = (R 11 a0 11 	- P/P11 ))(coslix/1 + 1) 	9  

and it follows that a Southwell plot can be applied to either deflection. 

In fig. 41 are plotted typical ratio-load graphs. We find there are 

four types. 

The graphs of the last three types have been obtained. How-

ever the measured critical ratio was usually considerably different from 

the calculated value. This is thought to be so because the mathematical 

model applies only over the central section, whereas the measured ratio 

is the ratio of the total deflections, and includes the end effects and 

displacements due to the stress distribution around the bolt. 

Second Mathematical Model  

The second mathematical model includes the effect of the stress 

distribution produced by loading the member through a bolt as shown in 

fig. 38. The geometry of the deformations is assumed to have the same 

functional form as for the first model, although it must now apply in the 

vicinity of the bolt, where it is a poor fit to the actual geometric 

form. The functional form used is 

w1 = a1 y0 

and 	 w2 = a2y0 
	(71 ) 

*  * 
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THE CO-ORDINATE SYSTEM USED TO DEFINE THE LONGITUDINAL 
STRESS DISTRIBUTION FOR AN ANGLE-SECTION MEMBER AND FOR 

A PLAT PLATE 

FIGURE 42. 
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Stress Distribution Around a Bolt 

Before the second mathematical model can be established a 

function form for the longitudinal stresses Nx  in the neighbour-

hood of the bolt must be obtained. The problem has been simplified 

by assuming that the difference between the stress distribution and 

the linear bending theory distribution 

N
x
" = Nx - P/A I Pby/4I pp 	

(72) 

is of the same form for an angle-section member as for a plate. The 

functional form for both will be taken as 

Nx" = .f(x)(g(y) f Cy + D) . 
	(73) 

The coordinate system of the angle is: y measured across the leg of 

the angle from the root and x measured in the direction of the load 

from the loaded end. Only one half of the member will be considered. 

The coordinate system of the plate is y is measured across the plate 

from the centre line of the plate and the x :ordinate is the same as 

for the angle. See fig. 42. The problem has been considered both 

experimentally and numerically. 

Only one model was tested experimentally. This was a 

1" 4" y 8"x — flat, perspex plate. The load was applied 	from the 

free edge through a bolt. The u and v displacements in the plane 

of the leg of the-:anglehaVe:.been,measuredueirig the cross-diffraction 

grating method. Also local strain measurements were made using light, 

Huggenberger mechanical strain gauges with 1" gauge length to check 

the results. Numerically, the problem was examined by a finite 

element technique. The basic ideas of the finite element method are 

1 
discussed by Zienkiewicz. The digital computer programme used was 

developed at the University of Tasmania by E. Middleton. 

Although only one.model Was tested in the laboratory the effect 

of changing the ratio of the length and width of the plate was invest-

igated numerically. The results are indicated in graph 43. 	It 

appears that, as a first approximation, the distribution of the stresses 

is independent of the leg width ratio. The effect of moving the point 

Ref. 1 0. C. ZienkieWicz, G. S. IT:Aister: "Stress Analysis; John Wiley 
and Sons. 
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Note; 	The stress distribution 
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FIGURE 43. 
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of application of the load away from the free edge was also considered 

numerically. The two cases were Calculated. 	The load was applied 

at the free edge and at a point one quarter of the leg width from the 

free edge. 	The results are shown in graph 44.  It can be seen that, 

although the maximum stress under the load was less, the effect was 

very local. 

As the functional form for the stresses will be integrated in 

considering the overall buckling of the member, its accuracy is not 

particularly important. The functional form was obtained by using an 

average fit in the y direction and by fitting the distribution of the 

stresses along the line through the bolt in the x direction. The 

one used in the following discussion is 

N
x 	

(P/A I Pby/4I
pp

) + Pe-x/dt(e-(Y- '
1,/0)2 

 + C 	Dy) 	(74) 

where 2b is the width of the plate, t is the thickness and d is 

the diameter of the bolt. This form applies only in the region 

0 < x < L/2 . 

Thus, in the following discussion, only half of the angle-section 

member will be considered. The parameters A and B are evaluated 

by considering the statical equilibrium of the member. The total 

axial force and the bending moment on a given cross-section due to the 

second term N
x" are zero. 

If a more accurate stress distribution is required, it can be 

obtained from the stress distribution under a point load on a semi-

infinite plane. 	However, a term of the form 

Nx 	
f(x)(C 	Dy) 

must also be included, to enable the equilibrium of the statical actions 

on the general cross-section. 	This model has not been included as the 

mathematical model which follows is sufficiently complex. 

Two differential equations can be arrived at, in the same manner 

as for the first mathematical model, by considering the equilibrium of a 

part of each leg. The equations are 
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Note: The analytical 
expression is a better fit 
to the stress distribution 
at x = in in Figure 44 
than at x = 11" in Figure 43. 
The distribution in Figure 44 
will be closer to the stress 
distribution in the angle-
section member than that in 
Figure 43. 
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LONGITUDINAL STRESSES FOR AN 8" x 3e,  x in RECTANGULAR PLATE 
LOADED THROUGH A QUARTER POINT AND 2" FROM AN EDGE 

FIGURE 44. 
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a
1 

DI
p/2t :) 30A x3  - a

1 
 GJ/20/ \dx + .1 a 1 y2 x dy = 
 0 

= (a l  - a2 )(+ T 1 2x/L + C 	dx) 

and 

_I a
2 
DI

p
/2t 30/2)x3  - a

2
GJ/2 \t,  0A x +f a

2
N
x2y

2 p/ x dy 
0 

(a l  - a2 )( - T 1 2x/L - c f 0 dx) . 
0 

When the expression for the longitudinal stress 

(y 2  N
x  

P/A Py/ 1-2 Ipp  + Pe(e-_b/2) 	C I Dy)/dt 	(77) 

Is substituted into the differential equations, the equations become 

too difficult to solve. An approximate result is obtained by using 

an averaging, integration process. 	Firstly, we rewrite equation (75) 

assuming that the longitudinal stresses can be expressed as a product 

of a function of x and a function of y • Let N
x

1  be the function 

of x and K be the result of the integration with respect to y 

Then the first equation becomes 

a l  DI /2t 3Ø/x3  + GJ/2 rEsA x K N1 	x = 1 xi 

(T 1 2x/L +IC0 dx)(a l  - a2 ) . 
0 

When the equation is multiplied by a l  44/ x 2  and integrated 

twice with respect to x the equation becomes 

L/2 
(a1 2DIp/2( 

‘z,2.0/.6 x 2 ) 2 4. GJ/2(  x) 2 	
K 1 Nxl

' 	
x) 2 )dx - j(   0 

	

L/2 x 	 L/2 . - 	K i  N '
xi / x(

\  
o 500 x)

2 
 dx dx - 2T 1 /i Jr a l  (a l  - a2 )0dx + 

	

0 0 	 0 
L4,2 

\ d + 3/2 	Ca 1 (a 1 - a 2 )p
2 
 dx = 0 

0 

for the given boundary conditions. 	Similarly the second equation (76) 

becomes 

L/2  
f (a2

0  20/ x 2 ) 2 + G J/2(  0/ • x - 2 'DI p/2( 	a ) + K
2
N
x2 ( 0/ti x) 2 )dx - 

0 

	

L/2 x 	 L/2 
i‘ 	'A \ 2  - J fK 2 ON / x( OP/0 x) dx dx + 2T 1 /L f a l (a l - a2 )0dx -  x2 00 

L/2 
\ - 3/2 	Ca l  (a l  - a2 )p dx = 0 . 

0 

If these two equations are added, the sum, which will be referred to as 

the "averaging integral", is 

(75)  

(76)  



- 55 - 

L/2 
(a„:" 4- a 2 )DI /2t( 2Ø/x2)2 

GJ/201 90 )02) 
2 	p 

	

0 	' 
L/2 x 

+ (a 2K N ' + 
a22K2Nx2 

)( 	x) 2dx - f f (a 1 2K 1 1 Nxl 	x + 1 	1 x1 00 
L/2 	L/2 

cl 	\ + a
2
2K
2x2y/b x)(b 0/ 	

r 2
ibx) 2dxdx - (2T'/L 	Odx - 3/2C 	W dx)4  

0 	0 

(a 1 2  - 2a 1 a2 	a22) = 0 

The averaging integral can be treated in the same way as an energy 

expression and the same conditions apply, namely 

u = 0 	and 	u/ .  a1  = b u/4) a2  = 0 • 	(76) 

Also, as the derivative of the differential equations are self adjoint 

and positive definite, the value of the critical load obtained by apply-

ing the averaging integral to an approximate shape will be an upper 

bounA on the true eigenvalue of the simultaneous, linear, differential 

equations. 	The same conditions apply to both the "averaging integral" 

and the energy expression, as both are specific applications of the 

least square method of obtaining approximate solutions to differential 

equations.
1  
 The energy expression for this problem gives the bound to 

a mathematical model which is inherently more accurate than the math-

ematical model considered. 	Thefirst part of the "averaging integral" 

is identical to te equivalent terms in the energy expression for a 

plate. 

As an example, the first mathematical model will be solved 

using the "averaging integral" in conjunction with the functional form 

0 = cos 21rx/h + 1 	(77) 

The conditions for the "averaging integral" to be a minimum are 

u/1 a1  = a1 (DI p (21T/L) 4L/8t + GJ(27r/L) 2/8 - PI p
(21r/L) 2L/4A _ 

-4;125 (21r/L) 2/64I pp ) - (a l  - a2)0CL/4 = 0, 

bu/ba2 	a2 (DIp (211r/L) 4L/8t + GJ(27/L) 2/8 - Pl p (21r/L) 2L/4A + 

+ LP0(2 1r/L) 2/64Ipp) + (a l  - a2 )0CL/4 = 0 • 

Ref. 1 Applied Mech. Review Vol.19, No.9, Sept. 1966, "The Method of 
Weighted Residuals", B.A. Finlayson and L.E. Scriven. 
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The two equations are identical to the equations of statical equilibrium 

obtained previously. 

For the second model, the solution to the differential equation 

is not known and an approximate shape which satisfies the boundary 

conditions will be used, 

cos 27r/L + 1 . 

Also the term 

L/2 x 
- 	(a 2K N 1 1 	 1  x1 	x a2 2K 2 Nx2 1 / x)( r" x)2dx  00 

will be neglected. For the problem considered, this term is always of 

the same sign as the other terms involving the longitudinal stresses 

N
x and hence the approximate solution is an upper bound on the solution 

of the "averaging integral", and hence to the eigen value of the diff-

erential equations. 

The values of the parameters C and D in the expression for 

the longitudinal stresses can be evaluated by considering the equations 

of axial force equilibrium and moment equilibrium. An approximate 

expression is 

/2) .2 / (y-b/ pt/A 7 Ptby/4I 	+ Pe-x  ke- 	 FT/A 3irby/4I )/dt . (78) 

	

PP 	 PP 

The term 

L/2 b f 	N y2 (  0,/ 30 2 _y dx 
d 

J x 
0 0 

of the averaging integral consists of two parts 

L/2 b 0  
f f (y'Pt/A Ptby3/4I )( )90 x) 2  dy dx 

PP 00 

	

L/2 b 	/ .2 
+ 	y

2
Pe-x (e-(-b/2) -11/A 7 ,Firby/4I )() 	x) 2/dt dy dx . 

	

00 	 PP 

The second part involves the stresses around the bolt. 	The double 

integral can be considered as the product of the two integrals 

L/2 
Jr e-x ein2 (21ex/L)dx = - 8(e-L  - 1)7 /(1611'2  + (L/2) 2 ) 

. 0 

=f 81T2/(1613 2  .-f (1/2) 2 ) 

and 

y2e-(y - b/ 2)
2 
 dy 	

2 + b 2 /4 . 
0 
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It should be noted that these results are approximate, as all terms 

involving exponentials have been neglected. Also, the results do not 

appear to be dimensionally correct. 	This arose because the exponents 

of the exponential terms in the functional form are not non-dimensional. 

Thus the conditions for the "average integral" of the second 

mathematical model to be a minimum are 

a1 (DI p (2111L) 4/2t + GJ(211-/L)/2 - PI (217r/L) 2/Az- pb 5 (2m- /L) 2/161  + 
PP ,  

+ P8 2 (/2 + b 2 /4 - b 3 	 /3A - 174: b 5/16I )/d(16 11' 2  + (L/2) 2 )) - 
PP 

	

- C(8. 1  - a2) . 0 	(79) 

and 

a 2 (DI p
(24(

/
L) 4/2t + GJ(2 qL) 2/2 - PI(2M-/L),A2+ OP(21171,) 2/161  + 

P 	 PP _, 	/ 	- 	2 	/ / 2\\ 
+ P8 2  k-b 3  TT;73A + rii- b /5/161 )/d(161  + 'L/2) . )) + C(al  - a2 ) = 0 . 

PP 
(ao) 

A non-trivial solution to the two homogeneous, linear equations can be 

obtained when the determinant is zero, which gives the critical value 

of the loan parameter. 

For a column with leg width b = 4" , thickness .t = 0.065" , 

length L . 24" Young's modulus E . 10
7 p.s.i. and constant 

C = 143 lbs. the two equations are 

(261 - 0.369P), + 143 	al l 
=0 

and 	+ 143 , (261 + 0.015P) 

and the lowest critical load is. 500 lbs. 

The results for other members are quoted in the table below. 

The first value refers to the critical load obtained when the cross-

section distorts but the stresses around the bolt are neglected, and 

the third value includes the effect of the stress distribution. The 

fourth value is the "critical load" obtained experimentally. 

Critical Load 

4" 4" 24" .065" 625 485 500 470 

4" 4" 8" .065" 1770 880 1180 

4" 4" 12.5" .065" 1040 580 670 640 

3" 3" 24" .065" 770 620 630 645 

Member Ratio 
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As is to be expected, the effect of the stress distribution around the 

bolts is negligible for long members. The ratio of the deflections of 

the two flanges does not change appreciably with the inclusion of the 

secondary stresses. The largest change was for the 4" x 4" 

0.065" member, in which case the change was an increase of ten 

percent. 

As for previous models tested, some of the members stiffened 

for loads greater than the "critical load". The member with a leg width 

of four inches and length of twenty four inches carried en ultimate load 

of 720 pounds, compared with a critical load of 470 pounds. On the 

other hand, the ultimate load and the critical load of the member with 

the leg width of three inches were identical. For the second member, 

the material yielded before any significant longitudinal strains due to 

the twisting of the section were produced. 

The angle-section members tested were all bent from thin alum-

inium sheet, and consequently the roots of the angle-section members were 

weak. Extruded angle-section members quite often have a heavy fillet 

at the root of the section. For these members, the author does not 

think that the 'Mathematical model developed in this section will apply. 

One would expect that for these members the angle contained between the 

two legs of the member would remain constant, and that there would be an 

appreciable amount of bowing of the legs. If this is the case, a math-

ematical model could be developed using a functional form of the type, 

w l  = (a 1 y2  + by)0(x) and w2  = (a2y2  + by)0(x) . 

The problem could also be treated by the usual method of considering each 

leg as a,plate, and applying compatibility of geometry and statical 

actions at the root. This method, used often in published work, will 

be discussed in the conclusions at the end of this thesis. 

TORSIONAL-FLEXURAL BUCKLING  

One of the basic assumptions of the previous part of this chapter 

was that the line of shear centres remained straight and that the sect-

ion rotated in an undeformed state about the Shear centre. For long 

members, the foregoing assumption is no longer justified because the 

member bends. In this chapter on buckling it has been shown how Euler 

developed a mathematical model which took into account the possibility 
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of the members buckling by bending. 	In the following section the 

interaction of the torsional mode and the flexural mode will be consid-

ered. 	This exercise has been carried out before by various people, 

2 
including Bleich, Timoshenko

2
and Goodier 3 but in this thesis the 

equations of statics will be established directly by the same method 

as that used in th models developed previously. 

The notation introduced before will be maintained except that 

the deflections of the shear centre not the centroid in the directions 

of the two principal axes will be denoted by p and q • Thus as the 

polar-coordinate of the centroid is b/2 	the displacements of the 

centroid are q + 0 b/277 and p • Thus the total moments about the 

two principal axes of the cross section are 

= P(q Øb/2  r2) 

( 8 1 ) 
and 
	

MQ  = Pp , 

which, in conjunction with the load deformation relationship, gives the 

two differential equations 

El 	2,:01 x2  = - P(q + Øb/2 72) 
PP 

1 2p/ x2 = 	pp  
and 	EI

QQ 

The longitudinal stresses produced by bending of the member are 

N
x  

P/A + Pp(y - b/2)/ [7 I QQ P(q + 4/2 1-2)y/ ,11 I 
PP 

The St. Venant shear stresses are 

GJ 2w/ 	y = GJØAx 

and the plate bending, shear stresses Qx  are 

- r)30/ x3  + Nxy 95/1 x - Nxy0 

The equation of torque equilibrium on a section, with x constant, using 

the values quoted above, becomes 

Ref. 1 F. Bleich: "Buckling Strength of Metal Structures", McGraw-Hill 
Book Co. Inc. 

Ref. 2 S. P. Timoshenko & J. M. Gere: "Theory of Elastic Stability", 
McGraw-Hill Book Co. Inc. 

Ref. 3 J. N. Goodier: "Torsional and Flexural Buckling of Bars of Thin 
Walled Open Sections Under Compressive and Bending Loads", A.S. 
M.E., Trans. 1942. 
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T =0 = (DI p/t)03A x 3  - GJAILVe,x - 

11 _ 0  (pt/A)(( 	x - P/2) x)/V + 	x)y dy - 

(pt/A)(( 	x + 	x)/ r2  + Y 19JA x)y dy - 

-f (Ptp(y - b/2)/ r-2IQQ )(( q/ x - 	/e )/r2 + y 	x)y  ay  - 
o 

- (PtP/y - b/2)/ DIQQ )((b 	x + 	x)/ 	+ y c)0/ ex)y dy - 

(Pt(q + b0/2 	)( ( q/6 x - 	x)/ 	y), 0/) x)y dy - 
PP 0 

- (pt(q + b0/2 	i )((. q/ 2>x + 	x)/ 	Y )0/6x)y dy 	(82) 
PP 

which simplifies to 

DI /t )30/3c 3  + (PI /A - Gc3-) 0/6x + Ptb 2/ 	2,q/x + 

+ P
p
t/6i

QQ 	q/2) x + 1/ D )10/6x) - Ptb4(q + b0/2 r.2)/4I 	P/e‘x = 0. 
PP 

A set of solutions to the three simultaneous differential 

equations (81e), (B1b) and (82) in 0 p and q for simply supported 

boundary conditions is 

0 = 00 sin nirx/I, 

p = po sin nlrx/I) 

and ci = qo sin nTrx/L 

provided the conditions 

and 

p000 = 0 , 

00Ptb 2/A 	+ PtI p/A00  - DI p (Tr/L) 2/t00  - GJO0  = 0 

/ . EIppq0 ( 1r/L) 2  = p(q + b0/2 T5) 0 

/ 
EIQQp0o(/L) = Pp 0 

are fulfilled. 

The conditions indicate that there are two independent modes of 

failure, either p = coo  , 0 = 0 and q = 0 , which is the case 

of pure flexural buckling about the minor axis, of q = ago  and 0=0. 
p = 0 , which is a mode in which there is an interaction between 

bending about the major axis and torsion. The critical load for the 

first type of failure is Euler's buckling load. 

(83)  

(84)  

(85)  

(86)  

(87)  
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For the second type of failure to occur the two equations, 

(85) and (86), must be satisfied. 	To give a non-trivial solution the 

determinant must be zero, which gives the following characteristic 

equation 

(P - Pn)(P - Qn ) 	3P2/8  = 0 
	

(88) 

if the notation 

P
n 

= El (n -rr/L) 
PP 
	2 

and 
	

Qn  = op' /t)(nr/L) 2 
 + GJ)/tI 

/ . 

is introduced. There are two solutions to this equation, hence there 

are three types of failure in all, one of pure bending, and two of 

combined bending and torsion. 

If we consider the mode in which the torsional displacements 

predominate, then the torsional critical load O n  is less than the 

axial critical load and the critical load is approximately Equal to 

the torsional critical load. The displacement in the QQ direction 

of any point on the cross-section is q + r0 , where r is the polar 

ordinate of the point. 	For the point to be stationary r = 

From equation (85) 

q/0 = A(GJ + 2Pt/3A 2Db 3 Tr2/32)/Pt 9  

which is zero when P = Q n • That is the section rotates about the 

shear centre, which is the assumption used when the pure torsional mode 

was being investigated. 

Graph (46) indicates how the lowest critical load varies with 

the length of the member. The relationships obtained by the simpler 

model is also indicated, and, as expected, the result it gives is 

not conservative for slender members. The result obtained from the 

flexural-torsional mode is more complicated than necessary; for any 

member where it is necessary to use this model, the term 

DI /t '?3Ø/x3  may be neglected. 	However, if this model is adapted 

for any other cross-section by replacing DI p/t by a warping constant, 

then the term cannot be neglected. 

It is interesting to note that Timoshenko, in developing his 

model for torsional-flexural buckling, has taken the longitudinal 
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stresses as constant, when he considers the torque equilibrium. 	In 

the previous calculations the variation in the stresses due to bending 

has been included and this has produced the equation, 

p0Ø0  =0, 

which is a redundant equation. 

Eccentric Loading  

Both Timoshenko and Goodier have produced models for the buck-

ling of members experiencing axial loads and end moments. Although 

the approaches adopted differ, the assumptions are the same, and so 

are the resulting differential equations. Both assume that the long-

itudinal stresses depend only upon the applied loads. 	Goodier gives 

the three equations of statics as 

EI QQ ) 213/ x 2  + Pp + MRS = - MQ 

EI 	2ci/e. x 2  + Pq + (M + Pb/2 5)0 = - M
' 	

(90) 
PP 	 P  

and 	DI /t )330/)3 x3  - (GJ - Mp7b/4 2 - PI /A) 1?0/b x
2  + 

m  .2 coo  x2 	/
Pb 

 / k/ 2 17 M) 
1 2 10 x2 . 0  . 	(91) 

Both Timoshenko and Goodier assume that the graphs of the 

deformations p, q and 0 against the loads are asymptotic to a 

given load condition. 	At a load near the critical load the equations 

of statics, stated above, are satisfied. 	If pl, ql and 0 1  now 

denote the change in deformations from this state, the new equations 

of statical equilibrium have zeroes on the right hand side, as the 

change in the loads is negligible. 	In making this assumption the 

problem has been forced into an eigen value problem. Thus while the 

load-deformation relationships obtained will be erroneous, the critical 

loading conditions obtained should approximate to the asymptote of the 

real relationship. 

The end moments of the models tested have been applied by means 

of an eccentric load, thus, if the moments are M = - Pe and 

M
Q 

= -
Q 

the critical conditions become 

/ . 
EI QQ (Ir/L)

2  p
0 

- Pp0  + PeQ00  . 0 

(89) 
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/ 
EI

pp
(Tr/L)a  q

0 
 - Pq

0 
 p(b/2  — e)Ø

0 
= 0 

and DI (V/L) 30
O
/t + (GJ - 7M b/4 T-2 - PI /A)(Tr/1) 2  

+ (Pb/2 	— Pe
p
)p
0
(TrA) 2  = 0 . 

It should be noted that when the load is eccentric about both axes all 

three types of instability are combinations of the torsional modes and 

the flexural modes about both axes. 	The three critical loads are 

the solutions to the cubic, characteristic equation obtained from the 

determinant of the above equations. 

For the case where e
Q 	

0 , the characteristic equation is 

(Pn  - P)(QnI0/A - P(I0/A - 7bep/4 17)) - P(b/2 	ep ) 2  = 0 . 

(92) 

The critical load is infinity when the eccentricity is approximately 

0.38b/ TT, which compares well with b/3 F for the simpler model. 

When e = 0 the characteristic equation condenses to 

(p _ pn l)((p - Qn)(P - Pn ) - P2ep2A/I0 ) + Pb 2A(P - Pn)/8I0  = 0 

which indicates that the lowest critical load is not independent of 

bending about the major axis, as obtained from the simpler model. 

P
n
' is the other flexural critical load. However, if the character-

istic equation is expressed in the form 

= Q
n 

- PA/I0 (ep
2/(P

n
1 /P - 1) + b 2/8(Pn/P - 1)) 9  

It follows that as the ratios P/P
n

1  and P/P
n 

tend to zero, as 

would be the case for a torsionally weak member, the critical load 

tends to the critical load for the torsional mode of a column loaded 

through the centroid. 

This section of the thesis has extended the mathematical model 

to make it more applicable to members met frequently in engineering 

practice. 	It has also shown that the simpler model is the limiting 

case of the more complex model. 

SUMMARY  

In this chapter has been established mathematical models to 

describe the behaviour of the columns tested by the author. Although 

each mathematical model has been discussed at the end of each major 

section of the chapter, it is thought worthwhile to briefly summarize 
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the chapter. 

Mathematical models have been developed to describe the buck-

ling mode of short columns loaded with en axial load, with en end 

moment about the minor axis, or an end torque. The second mathematical 

model is recommended as the most practical model. 

The next section of the chapter deals with columns loaded through 

one leg. While the mathematical models developed are really only 

relevant to the type of member tested, that is angle-cross-sections 

with little or no fillets, the mathematical models indicate two things. 

The assumption that the cross-section does not distort when the column 

is loaded eccentrically about the major axis is a non conservative 

estimate. The second point is the actual manner in which the load is 

applied, or the longitudinal stress distribution near the ends, has no 

important effect on the overall buckling mode and load of the member. 

However, end connections are important as far as regards secondary 

effects, such as local buckling due to high stress concentrations or 

weakness in the metal due to heating. 

The third section develops a mathematical model describing the 

flexural-torsional buckling modes of long members. The mathematical 

model is basically the same as the ones developed by Timoshenko, 

Bleich and Goodier. 

All the mathematical models use the basic functional form of 

straight lines across the leg of the angle remain straight during 

buckling, and all the problems are attacked by the same approach. 
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FIGURE 47 

deformations 

AB - small, elastic deformations 
BC - large, elastic deformations 
CD - elasto7plastic deformations 
DE - plastic unloading with a control on the deformation 
DE' - plastic colli4pse 

TYPICAL LOAD-END ROTATION RELATIONSHIP FOR A CENTILEVER. 

FIGURE 48. 

LIGTENBERG FRINGES (ew/6x) for A POINT LOADED CANTILEVER 

FIGURE 49 



STABILITY OF ANGLE-SECTION BEAMS 

This chapter deals with the stability of angle-section beams 

in bending. The majority of the experimental work associated with 

this chapter was done on cantilevers. However, the ideas obtained 

from the results and the mathematical models developed are used to 

discuss the general stability of angle-section beams and to predict 

the behaviour in a number of cases. Some simply supported, centrally 

loaded beams have also been tested. The chapter is limited to the 

case of bending about the minor axis, although, following the work 

done on columns with eccentric loads, the effect of bending about the 

major axis will be discussed. 

The members tested failed by local instability, but the failure 

of members by overall lateral instability is also discussed. 

STABILITY OF ANGLE-SECTION CANTILEVERS  

To examine the stability of angle-section beams in bending, 

several cantilevers were tested. When a cantilever was loaded so 

that compressive stresses were produced at the root of the angle the 

instability was due to plastic bending deformations and it was found 

that the failure load could be estimated using the common,fully 

plastic analysis method for beams1 When the outstanding legs of the 

angle member were in compression, the member was unstable in the 

elastic range. For the members tested the instability mode was one 

of pure torsion, the deflections caused by twisting being much larger 

than those caused by the bending of the member. 	The loads at which . 

the members failed were considerably smaller than those calculated 

2 
from the lateral buckling model of Timoshenko. The mode obtained was 

due to local buckling of the legs of the angle. The main body of the 

chapter will be devoted to establishing a mathematical model describ-

ing the local buckling mode. The relevance of the lateral buckling 

mode will be considered at the end of the chapter. 

A typical graph of load against total rotation is shown in fig. 

48. The graph can be divided into four sections. 	In section AB the 

Ref. 1 J. Baker, M. R. Horne, J. Heyman: "The Steel Skeleton", Vol. 
Cambridge University Press. 

Ref. 2 S. P. Timoshenko: "Theory of Elastic Stability". 



The loading of an angle-section cantilever. 

FIG. 50 

The plastic deformations of a cantilever. The member on the left has 
been allowed to collapse without any control on the deformations. 

FIG. 51 
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rotations are small and the section rotates in an un-deformed state. 

In section BC the rotations are large but elastic. 	In section DE 

most of the deformation takes place in a relatively short length and 

the cross section experiences plastic distortion. 	The plastic mode 

is shown in fig. 51. 	An isosceles triangle is seen in both legs. 

The total rotation is approximately 30 0 . This mode is independent 

of the leg width and the length. Section CD is an intermediate state 

between the elastic large deformation mode and the fully plastic 

"triangular" mods. 

Apparatus 

All the angle section cantilevers were bent from 0.050 inch 

aluminium sheet. For all the members the ratio of the leg-width b 

to the thickness t far exceeded the allowable structural design 

code value 16 . Models were tested with various leg-widths b and 

overall lengths L 

To produce a "built-in" end, each leg of the cantilever was 

clamped between a flat plate and a side of a vee block as shown in 

fig. 47. The plates were held securely with four quarter inch diam-

eter bolts. 	The mounting was such that zero twist )91/x occurr- 

ed at the "built-in" end of the cantilever. The models were loaded 

using dead weights. 	However, in the plastic range, the deflections 

were controlled so that measurements could be made while the member 

unloaded plastically (that is on the downwards sloping part DE of the 

load-deflection curve). 

The loaded shape of a cantilever WPS measured using the Lig-

tenberg reflective method. When the Ligtenberg apparatus was used 

the model was mounted so that one leg was vertical. This necessitated 

loading the model through a pulley system. 	Strains at required places 

on the legs were measured using mechanical,Huggenburger strain gauges. 

Point rotation measurements were taken using a light source and a 

small mirror mounted on the model. 

Small Deflection, Elastic Mathematical Model  

First, the discussion of the problem will be limited to one 

involving small rotations. The mathematical model will attempt to 
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describe section AB of the load-deformation graph. 	The elastic, 

small deflection plate theory is relevant, and the results derived 

in appendix A, will be employed. The Ligtenperg moire fringes show 

that all sections rotated without deformation of the cross-section. 

They also show that for some members only part of the member 

twisted. 	The fraction of the cantilever which deformed depended 

upon the ratio of the leg width to the length. This fraction 

decreased as the ratio decreased. 

To establish the mathematical model the following co-ord-

inate system is set up. The co-ordinate is measured along the 

cantilever from the free end and the y co-ordinate is measured across 

the leg from the root of the angle. The deformations out of the 

plane of the leg are denoted by w and the rotations, that is 

y , by 0 (see fig. 47). A basis for the mathematical 

model will be w = y0(x) , where 0(x) is a function of x only. 

The longitudinal stresses Nx  will be linear in y and unaffected 

by the deformations. 	Initially the unloaded member will be taken 

to be straight. 	The expression for the shear stresses, O x  derived 

in Appendix A under these conditions becomes 

Qx = - 	-.1)  ) 2.w/e 	y - x 

- M 	y . 
xy 

From the moment equilibrium and the axial force equilibrium on a 

section, x constant, the longitudinal stresses are 

Nx  = Wx(y - b/2)/Icx2  17 9 	 (93) 

where W is the point load applied at the end of the cantilever. 

The torque equilibrium about the x-axis produces the differential 

equation, 

	

(2b 3D/3) )30/ x3  + (b4 tWx/6 f.-Nc2 ) 0/ x — GJ reC/b x = 0 	(94) 

which can be simplified to 

1) 30/2) 	+ dx ord 	- aØ/x = 0 	(95) 

by substituting d = Wbt/42DI QC2 and a = 3GJ/2b 3D . 

The stability of the differential equation can be investigated 
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by examining the adjoint properties of the equation, as explained in 

the chapter on buckling. 	The differential equation is of the form 

2Ø/2 + x A wo ?C 0= 0 

If 0r and 0s are any two solutions of the differential equation 

which also satisfy the boundary conditions; 0 = 0 at x = 0 

and x = L then the integrals 

csr ( VI x2  + )sos ) - 08 ( 29S1 x 2  + 0r  )dx 

and 
0 45rris x°s9Cr dx  

are zero if the equation is self adjoint. 	The second integral is 

zero and the first simplifies to 

Jo. ( 0r  20s/ x2 os  20r/ x2) dx  9  

which on integration by parts leads to 

0r '95s/ x  jLLL  
 PirA x  4s/ x)(  01A ") 

4 0.3(0 0 sd) x) dx 

Under the boundary conditions the second integral takes the value 

zero. Hence the differential equation is self adjoint and there are 

an infinite number of orthogonal, eigen functions and eigen values 

(P 0 ) 	That is, the mathematical model predicts that the rotation r r 

is zero for all loads except the eigen values, at which loads the 

rotation is infinite. 

When the member has an initial crookedness 0 the differ-.

ential equation can be expressed in the form 

2 (0 - 00 )/ex 2  +00 ) + xwX0 = 0, 

From the self—adjoint properties of the differential equation of the 

initially straight member it follows that the initial shape can be 

expressed as a unique sum of the orthogonal eigen functions, 

CO 
0
0 
 = 

r 
E.  A Or  
=1 r  

and the shape 0 for any initially crooked member is 
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co 	A r 	d 
= 	1 - W/W )ur 

	

r=1 	r  

Physically, this means that the rotation tends to infinity as the load 

approaches the lowest eigen value. 

The differential equation (95) can be solved directly. 	An 

expression for the lowest critical load, or eigen value, will now be 

obtained. 	The solution of the equation is 

90 x = A l  tdx -- a J 1 /3 (2(dx - a) 3/2/3d) + A 2  57:77J_1 /3  

(2(dx - a) 3/2/3c6 	(96) 

where A1 and A 2 
are constants. It can be seen that for small x 

this expression is immaginary as dx - a is negative. If 

- 1) - a = 0 , then we define 1 as the effective length over 

which the member deforms. For x = L - 1 it is assumed that 

x = 0 • 	From the moire fringe photographs (fig. 49) the 

boundary conditionsara0Ax = 0 at x = L and x = L - 1 . 

The second condition gives A 2  = 0 as J.43 (0) = a), and the 

first condition gives 

2(d1, - 10 3/2/3d = 2.9 , 
	(97) 

as 2.9 is the first zero of the Bessell function of the one third 

order. This implicit equation can be solved for the critical load. 

The other eigen values can be obtained by replacing 2.9 by the approp-

riate zero of the Bessell function. 

As an example consider a cantilever with b = 2" , 

= 1/20" 9  L = 10.25" 9  E = 107  and‘ 	= 0.3 • 	Then 

a = 3GJ/2bD = 6(1 -70)/b
2 

= 1,05 

and 	d = 3W1/2b 2
D = 0.00464 . 

The implicit equation can be solved by trial and error to give 

W it = 41 pounds. The length of the member which is distorted is 
cr 

1 = L - a/d = 10.25 - 1.05/0000464 = 4.5" . 

These values compare well with the experimental values of 40 

pounds and 4075" • The shape predicted mathematically is compared 

graphically with the one obtained experimentally on graph 52. The 
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agreement between the two shapes is acceptable although the following 

table indicates the agreement is not always as good. 

4 •Z 
+3  0 

1-q 

o 
.p 0 

tiprd.ri 
CD -r1 

r-1 

0 m 0 
04-1 
cu 

+-P 

-P ---, 
.ri 	m 
$.4 	.0 
Or-1 

-e 
•-4 
f..4 
0 

P4 
■,„„. 

..4 
I 

-P 	.0  
0 	-P 
CD 	40 
4-1 0 0 
4-1 	W 

-1-1 

ncl f-I 
CD 

g tO 
0 0 
QQ) 

- 

12.5 3 0.05 60 4 36.5 0.50 6.2 7.4 

10.25 2 0.05 40 5 41 0.54 4.70 4.75 

18 2 0.05 40 9 19 0.66 6.1 6.9 

41.5 2 0.05 .40 20.5 6.8 0.80 

60 4 0.25 16 15 62.5 0.77 

30 4 0.25 16 7.5 1,400 0.63 

6 0.8 0.037 22 7.5 110 0.63 

From inspection of the implicit equation (97) it is obvious 

that 

W' = 2 1-"i( 	)D/L 

is a lower bound to the critical load. The ratio of the lower bound 

to the critical load has been calculated for various-sections. 	The 

ratios appear in the above table. 	It has been fo land that, as a 

first approximation, the ratio is independent of the leg-width to 

thickness ratio b/t , but varies with the length to leg-width ratio 

L/b . 	The ratio is plotted against L/b on graph (53) for various 

b/t . The algebraic expression for the relationship is 

w
crit 	L/b  
W' 	L/b + 4.71 

or 	crit • w'(1 + 4.7bYL 

This leads to an approximate expression for the critical load. 

Wcrit = 2 E(1 	)D (1 + 4.7b/L)/L . 
	

(98 ) 

Although the approximate formula was derived empirically, a 

numerical justification can be made. 	If the load is found by an 

iterative process it becomes 

VV= a/dL, 

then 	NV . a(1 • 1.65 (b/L) 2/3 )/dL s 

and then V/ . a(1 + 1,065 (b/L) 2/3 (1 + 1.65 (b/L)2/3)2/3)/dL  , 

or in simple terms 	P = (a/dL) (a function of .b/L) 
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For most practical members the function of b/L is the function 

1 + 4.7b/L 

For members with large length to leg-width ratios, an approx-

imate functional form is 

= ay cos (x - L - 1)/1 . 

This is the functional form if it is assumed that the longitudinal 

stresses are constant over the deformed length, 

Nx 
= W(L - 1/2)(y - b/2)/I QQ  

The approximate functional form is used in the following sections to 

obtain approximate values of rotation from the experimental values 

of twist. 

Elastic, Large Deflection Mathematical Model. 

The rotation of the member does not run away to infinity at 

the critical load as shown by the first model. 	In fact the stiffness 

of the member increases if the member is loaded above the critical 

load. 	In an earlier chapter on twisting of an angle section member, 

it was shown that longitudinal strains are developed during twisttn. 

The expression for these strains is 

(
x =( Ø/ x) 2 (r2/2 + b2/12 - by/2) 

(see equation 25). 	The following calculation will indicate the relat- 

ive magnitudes of the strains due to twisting and the strains due to 

bending of a cantilever. The cantilever measured had the following 

dimensions, leg-width = 2" 9 thickness = 1/20" and length = 18" 

The strain due to bending given by the linear bending model is 

= my/I ppE = 6wL/ 51) 2tE 

= 304p x 10
-4 

To calculate the twist at the point of measurement the approximate 

functional form is used 

0 = a(cos\Trx/1 + 1) 

or 	bebx = QIr/2l Sin 'Vx/1 

where G is the total rotation of the end of the cantilever. From 
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the load-rotation graph for the values of the end rotation for the 

loads 19, 21 and 21.5 Pounds, are 10 0 , 160  and 190  respectively. 

See graph 54. 

For P . 21 pounds, 	= 160  = 0.28 rads, therefore 

= 	(0.28/2)(9117) sin (21T/7) = 0.049 , therefore 

t
x

1  = ( 0 .049) 2/3 = 0.0008 • 	At a load of 21.5 pounds the max- 

imum strain is 0.0015 and at 19 pounds it is 0.0003. 

The experimental and calculated strains are compared in graph 

55.  As was to be expected, the twisting strains are of the same 

order as the bending strain near the critical load. Consequently 

the small deflection model breaks down. 	It should be noted that the 

load at which the twisting strains become important depends upon the 

initial crookedness of the member. 

If the twisting strains are taken into account, the moment 

about the shear centre of the w-component of the longitudinal stresses 

must be modified. The integral becomes 

0 Nxy 	
x dy = (Wxb4/6 r2 IQQ ) 	x + Eb5t( 0/e x) 3/180 

The approximation for the curvature Kx = 
) 2‘0 x

2 , is still 

applicable even for the largest twist measured, which is of the order 

of 0.05 rads. per inch. When this integral is included the differ-

ential equation describing an initially straight member becomes 

(DI /t))) 30ni x3  +kNA?b4t/6 p I
QQ 

- G,T)):) 9C/. x + Eb 5t(  x) 3/180 . 0 

(99) 

No solution has been found for this equation. However, for the members 

with large leg width-thickness L/b ratio an approximate maiel could 

be established, if it is assumed that the longitudinal bending 

stresses do not vary within the deformed length of the member. 	In 

this case, the large deflection model for a column could be used to 

obtain an approiimate load deformation relationship. 

Fully Plastic Mathematical Model  

As the deformations become large, the material yields and 

plastic effects become pronounced. 	The cross section distorts and 

finally the member collapses, or unloads if it is loaded so that the 
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deflections are controlled. 	The fully plastic mode of failure by 

buckling is shown in figs. (56) and (57). 	It is interesting to note 

that the apices of the triangles form at the plane of maximum twist. 

Here, the maximum moment is at 45
0 to the axis. 	In practice the 

line of plastic moment is formed at sixty degrees. The difference 

in the angle is probably due to changes both in the twist and the 

moment over the deformed length. 

A mathematical model was developed for this mode, as it was 

hoped to produce an upper bound on the load the member can carry. 

This did not prove, successful, as, in most cases, the fully plastic 

mode was formed after the member partially unloaded. The functional 

form for the mathematical model as shown in fig. 56. Both triangles 

DEC and DLK are isosceles triangles and the lines EC and LK are 

both at thirty degrees to DA • The line ADB remained straight 

when the mode was first formed. The mode was the same for all the 

different members considered. 

Using the notation, that Nx1  and Nx2 are the longitudinal 

stresses in the two legs on either side of the "plastic hinge", 1 1  

is the distance from the load to the apex of the triangle, d is the 

maximum displacement and m is the plastic moment per unit length, 

the following equilibrium equations are obtained: 

The moment equilibrium about the minor axis for the material to the 

left of CDK gives 

2 f Nip  dy = 	+ 4bm cos 60°/cos 	• 	(100) 
0 

The moment equilibrium about the minor axis for the material to the 

left of CDL gives 

2f Nx1
p dy + 2 f Nx2p dy = 2W1' . 

0 	0 

Vertical stress resultant equilibrium gives 

)( Nx1 dy = - f Nx2 
dy . 

0 	0 

, Now consider moment equilibrium on triangle .DEC , and we obtain 

(102)  

f Nx1 dy/2b dy + Nx2 dy/2b dy = - 2bm 
0 

(103)  
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If equations (100), (101), (102) and (103) are combined, and we note 

that y = 12p + b/2 , then 

d P- W1 1 /4b + d ,P.(1U112 + 2mb )2b = •2bm 
	

( 104) 

For a cantilever of length, L = 10.25" , and leg width b = 2" 

and plastic moment m = 12 pounds per inch, the expression gives the 

load P = 23 pounds, which compares favourably with the measured 

value of the load 27 pounds. For a cantilever of length forty-three 

inches the estimated load is 4.9 pounds and the measured value is 

6.1 pounds. 

LATERAL BUCKLING OF A CANTILEVER  

As mentioned before, none of the cantilevers tested failed by 

lateral buckling. However the members tested would not find general 

use in practice. All members should be tested both for local buckling 

and lateral buckling. 

Lateral Buckling of a Strip 

Timoshenkols lateral buckling model
1
is identical for both an 

angle-section cantilever and a flat plate cantilever as for both sect- 

ions the primary warping is neglected. 	A flat plate cantilever was 

tested to check the validity of Timoshenko's model (see fig. 58). 

Fringes typical of Timoshenko's model are shown in fig. (59) 

a and b, while fringes which were obtained are shown in fig. (59) c 

and d. Fig. c indicates that the bending deformations are large 

compared with the twisting deformations. 	Fig. d indicates that the 

built-in end does not prevent warping of the cross-section to any 

extent, in this respect the boundary conditions agree with Timoshenko's 

model, which states that the maximum twist is at the built-in end. 

Fig. d indicates that the cross section has deformed. 

The local buckling of the seCtion is due to the variation of the 

strain across the model due to the applied moment. The same type of 

local buckling occurred when the author tested a flat plate loaded eccen-

trically as a column. In the case of the column the function form was 

Fig. 1 S. P. Timoshenko & Gere: "Theory of Elastic Stability", 
McGraw-Hill Book Co. 
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= A(y + B) 2  sinlrx/L 

where A and B are parameters, L is the length, y is measured 

across the plate and x in the direction of the load. One would 

expect the distortion of the cross-section of the cantilever to be more 

prominent than that of the column, as no axial load is present. 

The local section deformation appears to be a secondary effect 

and has no effect on the load capacity of the member. For a 

2" A .052" K 9.25" aluminium cantilever with a Young's modulus of 

_6 
10 x 1. p.s.i., Timoshenko gives the critical load as 

crit = 2Ebt 3/2 2(1 +1) ) L2  

. 13,6 pounds, 

The critical load of 13.6 pounds is obtained from the Southwell plot 

on the bending strains. 

Timoshenko gives the critical load for an angle cantilever as 

4„013Eb 2t 2/3L2  F1-77:1)  „ 	(106) 

For the sake of the comparison we shall use the approximate local 

buckling load. For the member to fail by lateral buckling, the 

following inequality must apply, 

4.,013Eb 2t 2/32..17-r--t) 	2 M1 - -1))D(1.+ 4.7b/LVL 

or 	b/L < (t/b(1 + 4.7b/L)/4.013 i2(1 +-)) 
	

(107) 

For most extruded aluminium section the ratio of the leg width to the 

thickness is sixteen, the ratio laid down by steel codes. For such 

members, lateral buckling will occur if L/b is greater than 104 . 

The bending stiffness of the leg of the angle-section member 

can be taken into account using Timoshenko's model for the lateral 

buckling of cantilever in which warping of the cross-section is 

included. Timoshenko gives the buckling load as 

P 	= Eb 2t2/32 J 1 	4.  1)  
crit 

and quotes values of X for value ratios of L
2
GJt/DI or 

6(1 - -1) )(L/b) 2 	As the ratio tends to infinity, X tends to 

4.013 • 	For large ratios Timoshenko gives the approximate relation- 

ship 
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= 4.0 1 3/( 1 - b/L i6(1 - 	)) 

which for practical applications, equa -s.s 4.013 . 	For the more detail- 

ed model the twist at the built-in end is zero. Thus there must be a 

very local change from zero twist to maximum twist in the vicinity of 

the built-in end. 

It is possible to consider the interaction between the local 

buckling mode and the lateral buckling mode. 	The three equations of 

statical equilibrium on a section normal to the axis of the cantilever 

are 

EI
QQ 

b2p0) x 2  + Px = 0 

El 	
x 2 pxo = 0  

PP 

and DI /t VO/ x 3  - GJ g5/x + Plx•cA x + P(q i  - q) + 

+ (P1b4t/6
QQ 	

x = 0 , 

which combine to give 

DI /t ;1 4r?fA x4  + (PLb 4t/6
QQ 

- G,T) 9C/2)3c — P2x20/EI 	. 0 . pp 

This equation must be solved by an approximate method, and as the 

equation can not be expressed in a form so that the self adjoint test 

can be applied, there would appear to be no available indication of 

the relationship between the approximate eigen value and the true 

value. 

SIMPLY SUPPORTED BEAMS  

Central Load  

The bending moment diagram for a simply supported, centrally 

loaded beam is linear. 	The boundary conditions for the twist are such 

that half the beam can be cbnsidered as a cantilever. The maximum 

bending moment for the beam is WL/4 . Thus the differential equation 

is 

b 3D( )3r/O)x3 )/3 + b4tWx( 	x)/12 r2 - GJ() 	ox) = 0 , (108) 

or 
	

395/6 x3  + (dx - a) Ø/x = 

and the Critical load is 

Wcrit 	
4 5(1 - 1) )D(1 + 9.4b/L)/L . 	(109) 

The notation is for a cantilever and is defined in fig. 62. 



A simply supported beam as arranged when the Ligtenberg 
apparatus is used to measure the shape. The buckling mode 
is the elastic symmetric mode. 

FIG. 60 

The plastic deformation of a simply supported, centrally 
loaded beam. 

FIG. 61 
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A few beams were tested under two sets of conditions. 	One set 

of supports consisted of rollers in vee-blocks as shown in fig. 62. 

The alternative set of supports, illustrated in fig. 60, was used in 

conjunction with the Ligtenberg apparatus. 	Some experimental results 

obtained by Gregory were also used to extend the available information. 

Some of the beams which were tested buckled in the symmetric mode 

described above, see Ligtenberg fringes in fig. 63. 	For this mode 

the implicit equation is 

2(dL/2 - a) 3/2/3d = 2.9 . 	(110) 

(See equation 97.) Other beams buckled in an antisymmetric mode. 

The fringes obtained are shown in fig. 64. The boundary conditions 

for this mode are, the moment is zero at the midpoint and at a point 

where 

= a/d 

For these boundary conditions the shape is 

c6(A x = A 2  faT:71.- J .43(2(dx - a) 3/2/3d) 

(see equation 96) and the implicit equation is 

2(dL/2 - a) 3/2/3d = 3.1 (112) 

The critical loads obtained from equations (110) and (112) are very 

close in value. 	Thus the mode the model deforms into depends largely 

upon the initial shape and the boundary and loading conditions. For 

the second mode ( ,Yaation 111) all the beam deforms, although most of 

the deformations take place in the central region of the beam. 

The plastic mode was asymmetric. The mode was triangular and 

of the same form as the cantilever (see fig. 61). 	However, because 	of 

the asymmetry the relative rotation of the two ends is thirty degrees. 

To enable this relative rotation to occur, one end of the beam jumps 

out of its support. For beams with large L/b ratios the elastic 

deformations are negligible and the failure is catastrophic. 

Gregory tested a series of beams in which one parameter, the 

leg . width, varied. 	The results were suplemented by some tested by . 

the author. 	The members were tested both with the root of the angle 

in tension and compression. The members either failed by plastic 

bending or elastic or plastic buckling. All the members with their 
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roots in compression attained the plastic moment. 	In fact, some had 

added strength due to the opening of the cross-section. 	For the 

members with the free edge in compression the failure was either by 

instability or by plastic deformation. 	The elastic, instability 

curve and the fully plastic moment curve are plotted in fig. 65. 

Both curves are unsafe estimates of the loads carried by the beam. 

However, most of the beams tested failed in instability mode after the 

strains were plastic. One way of estimating the critical load is to 

use the tangent modulus, in the way Bleich has applied it to plates 

(refer to Conclusions). 

Uniform Bending Moment  

The local buckling of a beam bending under a uniform moment 

has been discussed previously in the section on eccentrically loaded 

columns. However, it will be repeated here briefly for the sake of 

completeness. 

When a bending moment M Q  is applied about the minor axis of 

the cross-section thelongitudinal stresses are 

Nx 
= M

Q
t( - b/2)/ f5

W 

and the differential equation for torsional equilibrium on a section 

normal to the axis of the beam is 

DI /t 3r/10)x 3  + (M
Q
tb4/6 r2 	- GJ) 0/6 x = 0 0 

The solution to the equation for a beam of length L with simply 

supported end conditions is 

= A sin nTrx/L 

and the critical moments are 

mcrit = (DI (n1r/L) 2/t + GJ)6 F5 I
C4c2

/b4t 

where n is an integer. The maximum stress at the critical condition 

is 

= E(t/b) 2 ((Trb/L) 2 	6( 1  - -) ))/6( 1  - -02 ) . 	(113) 

This expression is of the same basic form as for the buckling of a 

centrally loaded, simply supported beam. 

6 0  = E(t/b) 2(60 	) 	f(b/L))/6(1 - 	2 ) ) 	(114) 



where f(b/L) is a function of the ratio of the leg width to the 

length. 

When a moment M is applied about the major axis and the 

cross-section rotates as a whole, the critical load is infinite 	As 

for an eccentrically loaded column, two mathematical models can be 

developed if it is assumed that the cross-section distorts. 

COMBINED AXIAL AND LATERAL LOADIEGS  

In the following section, some ideas are presented which help 

with the understanding of the behaviour of members under the.action of 

combined axial loads and central lateral loads. 	The ideas suggested 

have not been intensively tested and have been included mainly to tie 

together the work previously presented. Also, this material is 

presented to indicate the ease with which the basic assumptions of 

torsional buckling can be extended to most problems. 

The beam-columns tested had simply supported end connections 

and were loaded in an Amsler machine as shown in fig. 66. 	Initially 

the aluminium base plates were welded on to the member. 	However the 

heat affected the aluminium and the member failed in the regions near 

each end. 	The American Society of Civil Engineers Committee invest- 

igating aluminium alloys has recommended a separate code to apply 

within a region of one inch from any aluminium weld. 	In the code the 

allowable stresses are reduced considerably near the weld. 	In the 

models finally used, the base plate was rivetted to the angle member. 

Only beam columns with one set of dimensions were tested. The 

shape was recorded using the Ligtenberg apparatus. 	The test was 

further limited in that only small lateral loads could be applied. 

The highest lateral load used was sixty pounds. 

Previous work has shown that the shape of a simply supported, 

centrally loaded, beam is antisymmetrical about its central point and 

the curvature is zero at the centre. However, the deformations of a 

column are symmetric about the central point and the twist at the 

centre is zero. 	Hence there must be a. change from one mode to 

another as the lateral and axial loads are altered. 

Meaiuring the buckling mode was difficult, as it was not 
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possible to apply the axial and lateral loads proportionally. With the 

apparatus used, a large axial load was required before a lateral load 

could be applied and hence the symmetric component of the shape often 

predominated, even near the buckling load. 	A typical progression of 

shape is shown in fig. 67. For some models, an axial load was applied, 

then a lateral load and finally the axial load was increased until the 

critical interaction was obtained. For large lateral loads, the shape 

is assumed to be the same as for a simply supported beam. 

A third mode was often present. As the ends of the beam 

column were not prevented from rotating the beam often snapped from 

the symmetric, simply-supported mode into a mode in which half the 

beam took the same shape as a cantilever, that is there was zero twist 

at the centre and near the end. The beam column in snapping from one 

mode to the other experiences a change in load. 	This is possible as 

the axial loading machine applies a given strain not a given load. 

A mathematical model can be developed for the torsional buckling 

of a beam column, whose outstanding legs are in compression, if it is 

assumed that the section rotates as a whole. 	A differential equation 

for the member can be obtained by considering the torque equilibrium on 

a section normal to the axis of the column. 	The notation used is: 

x is the ordinate measured from the end of the beam, 0 is the 

rotation of the beam, P is the axial load, W is the lateral load 

and L is the length of the beam. 	The differential equation is 

/ rr 	\ ./ 
p/
/‘ 

DI /t 3c/rA x3  + (PI /A - GJ + Wxb
4  t/12,re I (X2 )  o 0 x = 0 

or 0910sx3  + (dx - a)695Ax . 0 9  (115) 

the solution of which is 

= C fiT77-a J 1 13 (2/5d-1 (dx - a) 3/2 ) + D gi7:77a. 

J(2/5d-1 (dx - a) 3/2 ) 

The values of the constants C and D must be determined by consid-

ering the boundary conditions. 

For small axial loads the mode will be assumed to be the same 

as for a centrally loaded beam. The curvature is zero at the centre, 

L/2 , and at 
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1. = a/d = (PI /A - GJ)12 17 IQQAb4  . 

Thus the constant C is zero and we have 

2(dL/2 - a) 3/2/3d = 3.1 • 	(116) 

For x less than 1 the curvature is unreal. The second condition 

gives a critical relationship between the axial load and lateral load, 

and it is assumed to apply provided the quantity 1 is greater than 

or equal to zero. 	The relationship is plotted as curve 1 in fig. 68, 

for a member with L = 12" 9  b = 2.5" , t = 0.065" and 

E = 8 x 10
6 

p.s.i. 

As stated before, the beam column snapped through to another 

mode. 	For this mode, the twist is zero at the centre, x = L/2 

and at the point x = 1 , in which case the constant D is zero and 

the critical relationship between the two loads is 

2(dL/2 - a) 3/2/3d = 2.9 . 
	(117) 

The relationship is plotted as curve 2 in fig. 68. 	For lateral 

loads which are approximately one third of the critical load of a 

centrally loaded beam the difference between curves one and two is 

small. 	The snap through buckling occurred in this region. 	The 

snap through occurred after the total, lateral load was applied and 

the axial load increased. 

If the quantity 1 is less than zero, the shape does not ful-

fil the boundary condition of zero moment at the end. 	Under these 

conditions, that is for small lateral loads, the mode will be taken to 

satisfy the boundary conditions, zero twist at the centre and zero 

moment at the ends, which leads to two simultaneous, linear equations 

in the parameters C and D 

= 0 = C dL/2 - a J
113

(2(dL/2 a) 3/2/3d) + 

+ D dL/2 - a J-1/3(2(dL/2  - 03/2/3d) 

and 4 20/ x2 	
= C -a J

1/3
(*) 3/2/3d) + 

+ D -a J.0 /3 (2(-a) 3/2/3d) 
- 	

(118) 

The determinant of the two equations (118) must be zero for the sol-

ution to be non trivial. 	This produces a critical relationship 
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between the two loads. The relationship appears as curve 3 in fig. 68. 

For the member considered, curves 3 and 1 are tangential in the neigh-

bourhood of the loading at which the change of mode was assumed to take 

place. 

If equation (116) or (117) is assumed to extend for very small 

lateral loads the critical load for a column is 

P
crit 

= GJA/Ip 

which is the same value as was obtained from the first mathematical 

model for a column, that is when the bending stiffness of the legs was 

neglected. The first model for a column gave the critical load as 

independent of the shape of the column. 	For a long column this value 

is a good approximation to the actual critical load of the column. 

For long beam-columns the critical relationship between the lateral 

and axial loads may be taken conservatively as a straight line between 

the critical axial load and the critical bending load. 

The lateral load WI at which the quantity 1 is zero is 

W I 
1---/ 

= (4095) 2 	8DI
p 

I
W 

12 42/1, 3 t 2 b4 

and the ratio of this load to the critical bending load is 

410/W
crit  

160310
2)

( - 1) )(L
2  + 9 0 410L) 9  

if the appro(late value of the bending load is used. 	As the length 

L decreases the ratio increases. 	Also as the length decreases the 

difference between critical axial load and the approximate value, given 

by the first mathematical model increases. Hence it becomes more 

important to consider the symmetric mode of buckling. The straight 

line approximation appears to be a good approximation to the critical 

relationship, even for short columns if the true critical, axial and 

bending loads are used; see fig. 68. 	A linear relationship is often 

used, both in design codes and empirical experimental relationships, 

for interaction problems. It is used when the lateral buckling or 

flexural-plastic buckling of a beam column is considered. 

The member tested had the following dimensions, length 

L = 24" , leg width b = 2i" , and thickness t = 0.065" . 

The approximate relationship for the member is plotted in fig. 69. 
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The member may be considered as a long member. The experimental 

values are also plotted,and are less than the values given by the 

mathematical model. 

In the previous calculations, the central lateral load has been 

applied so that the free edge of the leg is in compression. 	In the 

case of a centrally loaded beam with the free edge in tension the beam 

fails by plastic collapse. Thus the question arises, "What is the 

behaviour of a beam column when a negative moment is applied so the 

extreme fibre, is in tension?" This question will not be answered 

here, although it is obvious that both the buckling mode and the 

plastic failure due to bending will have to be considered. 	In con- 

sidering the buckling properties, new modes will have to be invest- 

igated. 	For the plastic analysis, an estimate of the moment must be 

made. A suitable first approximation might be 

/ wL/4 + PWL3  /48E10 - 	M 

where PE is the flexural, Euler buckling load. 

Returning to the general problem, we may note that the poss-

ibility of the beam-column failing by flexural or lateral-torsional 

buckling or plastic failure should be considered. Taking the 

problem one step further, the interaction between the modes could be 

considered. 

SUMMARY  

A detailed mathematical model has been developed in this 

thesis to describe the behaviour of a point loaded cantilever. 	The 

estimated shapes and critical loads agree well with the measured 

values. 	This model has been extended to cover a centrally loaded 

simply supported beam and a laterally loaded column. However, the 

beams and laterally loaded columns have the difficulty that more than 

one mode exists. As already pointed out the two modes of the beam are 

thought to depend upon the initial shape and the loading of the beam. 

It is also probable that the mode depends upon the dimensions of the 

beam, especially the leg width-length ratio. 

The critical load of a beam is virtually independent of the 

length of the beam for most practical members. 	It also appears that 
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the lower limit of the critical, maximum moment is independent of the 

way in which the beam is loaded. The following conditions can be 

used as conservative design criteria: 

for a column the axial stress 
	

da
crit 	

GJ/I 

for a beam the maximum bending stress Cm
crit 

= E(t/b)
2
/(1 +1) ) 

and for a laterally loaded column 	6/6.a 	+ 6m/6121
i 

. 1 . 
crit 	crt  

The mathematical model for a laterally loaded column is very limited 

in its application and the problem needs more consideration, but it 

appears from the model developed that the linear relationship between 

the axial and bending stresses is sufficiently accurate for design 

purposes. 

It should be emphasized that this chapter has introduced many 

unsolved problems and the ideas presented are only a guide to the 

fundamental understanding of the problem. Problems which arise from 

the work done are the non-elastic buckling modes and loads, the inter-

action of the lateral and local buckling modes of beams, general load-

ing of beams, flexural-torsional buckling of laterally loaded columns, 

and also the effect of opposing lateral and axial loads. 	The math- 

ematical solutions of most of these problems will involve complex 

mathematical models, which will be of little practical benefit, and 

thus it appears that the expressions for the stresses in this summary 

are good design criteria. 



CONCLUSIONS  

In this chapter four topics will be considered. The relation-

ships between the mathematical models developed in this thesis and 

those developed previously will be discussed,and it will also be shown 

how these mathematical models can be extended to apply to a general 

cross-section. The design codes established as a guide in designing 

members of the type will be studied and the unanswered questions 

rising from the work carried out will be stated and possible lines of 

attack will be suggested. Mention will also be made of plastic 

buckling, although this topic has only been touched upon in the thesis. 

Timoshenko
1
has considered the torsional buckling of short, 

equal leg, angle-section members. He arrived at la simple mathematical 

model, called the first mathematical model in this thesis. 	He also 

derived a more complex model which included the plate stiffness of the 

member. The angle-section member was considered as two flat rect-

angular plates buckling under a uniformly distributed compressive load. 

The assumed boundary conditions were that the line of shear centres 

remains straight and that this line acts as a pin-joint between both 

legs, as the moment m round the corner is zero, The ends of the 

member were assumed to be pin-jointed. The problem then reduced to 

one of the buckling of a rectangular, flat plate with one free edge 

and three pin-jointed edges, under uniform compression in the axial 

direction x • In fact it was assumed that any change in the long-

itudinal stresses N
x 

due to the deformations was negligible and the 

stresses were taken as constant and equal to the ratio of the force P 

to the cross-sectional area A . 

The deflections w normal to the leg were taken to be of the 

form 

w = f(y) sin (Tlx/L) ; 

where f(y) is a function of y only, and w satisfies the boundary 

conditions at x = 0 L • 	If w satisfies the equilibrium 

equation for a plate element, 

b,4w/  x4 + 2 !• 41801 x2 y2 + 40s y4 = Nx/D  2vi/b x2 

then 	w = A(cosh y + B sinh (Sy) sin7rx/L 

!,.‘t 
Ref. 1 S. P. Timoshenko: "Elastic Instability". 
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for a unique load given by 

P = 2mD/b 

where D is Et 3/12(1 - -) 2) is the flexural rigidity, E is Young's 

modulus, 7) is Poissons ratio, t is the leg thickness, and m is 

a parameter which depends upon the ratio of the length of the member 

L to the leg width b and the elastic properties of the material. 

For a Poisson's ratio 	of 0.3 the constant m becomes 

= 0.425 + b 2/L 2  

Bleich has made a detailed survey of the local buckling of 

columns of general cross-section. He treats each leg of the member 

as a plate with either one or two elastic supports. The coefficient 

of restraint of the support depends upon the neighbouring elements. 

The analysis includes both an elastic and an inelastic treatment. 

For an inelastic material the elastic modulus is replaced by the tan- 

gent mo.-.1u=4. 	It was also assumed that the ratio of the tangent and 

elastic moduli 	is the same for both shear and normal deformations 

at any given axial loading. Bleich treats equal-leg angle-section 

members as a special case. The average critical stress is 

= prr  2E  ff. (  fib ) 2 (  ss:  
(b/1) 2  + 0 0 425)/12(1 -1) 2 ) 

	
(119) 

for -1) = 0.3 . 

Bulson also gives a detailed analytic treatment for local 

buckling of thin, open section members. He gives the experimental 

results he obtained and compares them with the analytic results. For 

a member which buckles inelastically, he suggests an average modulus 

El (where E
t 

is the tangent modulus and E
sec 

is the secant modulus) 

given by 

E' - 	i - 4Et+E  sec 

The expression for the critical load of a member buckling 

torsionally, derived in this thesis is 

= E(t/b ) 2 ((b/1) 2  + 6(1 	)/Te2)/12(1 - -) 2 ) . 	(120) 

When a Poisson's ratio of 0.3 is considered the expression is 

identical to the one obtained by Timoshenko and Bleich l  (equation 
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119). 	However, it •has the advantage that it is simply derived and 

the value of the constant m can be readily evaluated for various 

Poisson's ratio values. 

Bleich also discussed the thickness of plates required so 

that a column fails by flexural buckling before local buckling 

occurs. The inequality expressing this condition is 

( 1171) 2Eb3t/12 = 1r 2E/(1/p) 2  4: Tr 2E/12(1 .4 2 )(t/b)((b/1 2  

-I- 0.425) 

"= k(t/b) 2IY2E/12(1 - -V 2 ) 

Or 	 t/b 45. C 1-7C 9 (121) 

where C is a function of the slenderness ratio Vivo Bleich also 

extends the inequality for inelastic buckling, by assuming a linear 

relationship between C and the square root of the slenderness ratio° 

For equal leg, angle section members Bleich gives 

b/t !I 0.6520 o 

The Column Research Council Guide to Design Criteria for 

Metal Compression Members states that the American Institution of 

Steel Construction bases its code for local buckling on any supported 

edge being simply supported and that a local buckling must not form 

before the material yields, which gives the yield stress 

igY= (t/b) 2 2E/12(1 - -02 )((0/1) 2 	0.425) 

for an outstanding leg. For a steel with a yield stress of 36kpsi the 

2 
allowable leg width—thickness ratio is 17.6. 	A.I.S.C. practice gives 

the limits: 

for an outstanding leg: 	b/t .1= 3000/1Z 

and for an element supported along each edge: 

b/t 	8000/1-47 

The German code DIN 4114 follows the same attitude as was used 

by Bleich, and designs the column so that local buckling does not occur 

Ref. 1: F. Bleich "Buckling Strength of Metal Structures" 
Ref. 2: American . Institute of Steel Construction, "Manual of Steel 

Construction". 
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before overall buckling. 	The code states, for the outstanding leg; 

if the slenderness ratio 1/p.> 75 then b/t = 0.2 i/p else 

b/t = 15 . 

For a member supported along each edge, a table is provided, in 

which a formula for the permissible ratio is quoted. The ratio 

depends upon the shape and dimensions of the overall cross-section. 

The code also allows for the stiffness of the joints between two 

con tituent plates. 

The British Code BS449 1959 gives a formula for the following 

ratio for the three steels mentioned. The ratios are based upon the 

yield criteria. 	For steel BS15 the allowable leg width thickness 

ratio is sixteen, for BS548 and 968 the ratio is fourteen. The draft 

(1966) for the Australian Code SAA Inst. 351 uses the AISC formulae 

for the detailed design of compression members. 

The American Society of Civil Engineers
1
suggested specifications 

for different aluminium alloys. In determining the allowable dim-

ension of members governed by local buckling of the constituent 

elements it is assumed that all supported edges are simply supported. 

This is conservative. 

Few codes consider the local buckling of a leg with non uni-

form stress. However the ASCE committee has included the cases when 

a member is bending about the minor or major axis. Timoshenko has 

solved the problem of the buckling of a plate with linearly distrib-

uted longitudinal stresses using an energy approach. The mathematic-

al model developed in this thesis gives the maximum allowable bending 

stress in a cantilever or centrally loaded simply supported beam as 

	

6 . Mb/2 0 1QQ 
= WcritL/8 	IQQ 	

E(0) 2(1 + 9 0 4b/L)/(1 +1)) 

For large L a conservative allowable stress is 

E(t/b) 2/(1 +70)  or 	1r 2E(b/t) 2/(305) 2 	(122) 

which is the value quoted by the ASCE committee. 	This value is also 

a conservative estimate for a beam bending under a uniform bending 

Ref. 1 Proc. Am. Soc. of Civ.. Eng. Journal of Structural Div.AVo1..88 
Dec. 62, "Suggested.Specifications for Aluminium Alloy'. 
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moment as for that loading 

(E(t/b) 2/(1 +1)))(1 +11#2 (b/L) 2/6(1 -1))) . 

In fact equation (122) is conservative estimate of the stress for all 

beams. 

When an angle section member is loaded about the major axis a 

conservative assumption would be to assume each leg was simply support-

ed and the stress varied linearly from zero to a maximum, which gives 

an allowable stress of 

di= 1eE(t/0 2/(4.4) 2  (123) 

for long members. 

In the work presented previously it be assumed that the root 

of the angle-section member is weak and the included angle changes 

when a moment is applied about the major axis. Most extruded or 

rolled sections have a fillet, which strengthens the root of the angle. 

Consequently the tendency will be for the included angle to be main-

tained and for the legs of the cross-section to deform. 	It is poss- 

ible to analyse this functional form by considering each plate sep-

arately and applying compatibility of statics and geometry at the root. 

When the functional form is taken to be rotation of the cross-section 

in an undeformed state, bending about the major axiL does not cause 

torsional instability. The experimental analysis of beams has been 

limited to bending about the minor axis. Bending about the major 

axis can be considered by either of the methods described above, 

although it is reasonable to assume that the true functional form is a 

combination of the two forms. 

All the design codes quoted are based on a conservative 

estimate of the load capacity of a member. The mathematical models 

developed by the author allow for a less conservative design of both 

beams and columns, with very little extra computation. 	However in the 

case of a general bbam, it is unlikely that the differential equations 

which are derived from the mathematical model will prove se.vable. 

Flexural-torsional buckling of thin-open section members in 

compression has been studied in some detail by Timoshenko, Weber, 
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1 
Wagner and Goodier; the stiffness of the plates of which the member 

consists was neglected. For a long member this assumption is sat-

isfactory. However, the plate action of a short member is important 

and increases the load a member can carry. Bleich has used an 

energy approach to arrive at a solution for the flexural-torsional 

buckling of short members. However, the results obtained vary from 

those obtained in this thesis as Bleich
1
has neglected the Poisson's 

ratio effect in allowing for the bending stiffness. The author con-

siders the approach used in this thesis is more satisfactory as it is 

a direct approach. 

The characteristic equation for the critical load of a gen-

eral cross-section is 

I (P - P1 	YO 	- )(P - P 2 )(P - P 3
)/A - P2 2(P P ) - 

P 	1 

	

- P2x0
2 (P - P2 ) = 0 
	

(124) 

where P 1 and P 2 are the two flexural, Euler buckling loads and 

/ \\ / P3 = A(GJ + C
w
(n1r/L)

2
)/I 

which is the torsional buckling load. The constant Cw  is the 

warping constant introduced in the section on torsion. For an equal 

leg angle section member the constant C w  is zero. 

The results obtained in the section on torsional-flexural 

buckling and by Timoshenko, Bleich and Goodier depend upon the bound-

ary condition for the three variables, the two deflections, u, v 

and the rotation w , being compatible. Baker and Roderick
2
have 

tested a variety of members of varying cross-sections and dimensions. 

But the boundary conditions of the models tested were not compatible, 

as the warping was restrained at the ends. They suggested using the 

same basic, characteristic equation (124) except that the values of 

P 	? and P
3 

ued, should be the values obtained when the flex- '. - 2 

ural and torsional buckling are considered as independent and each mode 

- satisfies the appropriate boundary condition. Renton 3  solved the 

Ref. 1 See sections on Torsion and Torsional-Flexural Buckling 
Ref. 2 J. F. Baker & J. W. Roderick: "Strength of Light Alloy Struts" 

Al. Dev. Assoc. Report No. 3. 
Ref. 3 J. D. Renton: 	"A Direct Solution of Torsional-Flexural Buck- 

ling of Axial Loaded Thin-Walled Bars", The Structural Eng., 
Vol. 18 1  No. 9, Sept. 1960. 
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problem for any set of end conditions, both statical and geometric. 

He compared his analytic results with Baker and Roderick's results. 

The difference between Renton's mathematical model and the approximate 

mathematical model is very small. The difference is most noticeable 

for a T-section and angle section members. 

Bleich gives some diagrams which show the susceptibility to 

flexural and torsional-buckling of members having cross-sections of 

various shapes. Only tee-members and the angle section members are 

1  
prone to torsional buckling. Bijlaard and Fischer, in discussing the 

interaction between local and overall buckling, state: "The inter-

action effect is negligible for box sections as indicated by both 

theory and experiment...; the same conclusions apply to common size 

of H and channel sections, but not to sections for which torsional 

instability is an important factor, such as the tee and angle sections". 

One of the conditions for calculating the critical loads for 

the various types of buckling was that the mode being investigated 

predominated. 	In the case of local buckling it WPS assumed the line 

of shear centres remained straight. 	In the case of torsional-flexural 

buckling it was assumed the cross-section did not distort. 

A. Chajes and G. Winter
2
have arranged the torsional-flexural 

model into a form suitable for a design office tool. 	The critical 

load P for a cross-section with one axis of symmetry can be expressed 

as 

P/P
1 
 + P/P

3 
- KP2/P1

P
3 

. 1 
	

( 1 2 5) 

where P1 and P
3 

are the flexural and torsional critical loads and 

K is a factor which depends only upon the geometry of the cross-

section. 	He also gives the values of the torsional load P 3  .the 

constant K, and the type of failure as graphs plotted against a non-

dimensional parameter of the cross-section. 

Most codes mention that a column should be checked for torsion-

al instability. 	However, only Addendum No. 1 (1961) to the British 

Ref. 1 Column Research Councils Guide to Design Criteria for Metal 
Compression Members. 

Ref. 2 A. Chajes and G. Winter, Proc. A.S.C.E. Struct. Vol. 9 1 , 
Aug. 1965. 
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Code BS499 tackles the problem numerically. 	A table of equivalent 

slenderness ratios 1/p are quoted for various cross-sections. 	Also 

the Joint Committee of the British Instruction of Structural Engineers 

and the Institute of Welding mention torsional buckling in their report 

on "Fully rigid multi-storey steel frames". They set limits on the 

distribution factor at a joint so that sufficient restraint is 

provided to overcome torsional instability. 

When a column is loaded laterally a straight line interaction 

curve is usually considered sufficient, 

p/p
ult 

+ M/M
ult 	

1 
	

(126) 

where Pult and M
ult are the load capacity of the member under an 

axial load P and as moment M respectively. 	This is the case for 

the local buckling of the member. However, in general the ultimate 

moment can either be the lateral buckling load, plastic moment or the 

moment to cause local buckling. Curves of the form 

P/Pult + M/(K M
ult 

(1 - P/P
ult

)) 	1 

or 	P/P
ult 

+ (M/M
u1t

) 2/K 
	

(127) 

have also been considered. 	The first alternative is quoted in some 

codes, for example the AISC Manual of Steel Construction. 	The second 

alternative is used in connection with lateral buckling,and also as an 

upper bound on the true load capacity. 	The work in this thesis 

indicates that the linear relationship is a good approximation for local 

buckling. 

The large deflection, elastic model for the torsional instabil-

ity of a column indicates that an elastic member is able to carry a 

load greater than the critical load, if the deformations are not 

important. 	However, the increased load capacity of the member 

decreases as the leg width-thickness ratio decreases. If we consider 

an initially straight member end denote the increase in load above the 

critical load at which a unit twists is achieved by P, then the 

ratio of the increase to the critical load P 	is crit 

P i/P rit 
	

(1 -1))b
2
(b/t)/40((b/1) 2 2  + 6(1 -1))) 

If the thickness is increased or the leg width decreased the ratio 
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decreases. 

This thesis has not considered the behaviour of a member once 

the material becomes plastic. Most design codes are based upon the 

Bleich approach of replacing the modulus of elasticity by a "modulus 

of plasticity". The codes also include an empirical expression for 

the ratio of the two moduli r . One of the most interesting facts 

observed is that all members tested, whether as beams or columns, 

failed in the same plastic "triangular" mode (figs. (61), (51) and 

(38). 	However as pointed out, this functional form cannot be used to 

obtain an upper bound on the load capacity, as it appears that the 

member has partially unloaded before the true "triangular" mode is 

formed. 

Codes also take into account the load capacity of a member in 

which a local buckle has occurred. But the suggested specifications 

of the ASCE specifically state that single angle, double angle, 

crucifix and tee members should not be included, their reason being 

that the interaction between local buckling and overall buckling is 

important for these sections. 	The effective leg width for other 

sections is taken as a fraction of the leg width which depends upon 

the load being carried and the critical load to cause local buckling. 

The effective leg width is used in calculating the load capacity of the 

member. 

In all the mathematical models developed in this thesis, the 

change of loading as the deformations increase has been neglected. 	In 

the case of both the cantilevers and the beams tested the direction of 

the load was independent of the deformations. 	The beams were loaded 

through the shear centre and although the mathematical models 

describing the local buckling is not effected by the way the model is 

loaded, when the lateral buckling of the beam is considered this is 

important.. For large deflections of an eccentrically loaded column, 

it is thought that the bearing stresses on the base redistribute in 

such a manner as to increase the eccentricity and consequently stiffen 

the model. The discrepancy between the measured and the estimated 

graph in Fig. 33 could be explained by this fact. 
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All the members investigated have been tested as single members, 

and have not been integrated into a truss. Thus the problem rises as 

to how a member acts in a. truss. The primary problem is the boundary 

conditions. Both the beams and the columns have been considered as 

pin-ended. While it would appear reasonably simple to consider a 

column with any boundary conditions, the boundary conditions of a 

laterally loaded beam would be more difficult to apply, especially as 

the mode is complex and it is possible to obtain two modes. 	Already 

the possibility of including the variation of the torsional strength of 

a member with the axial load and end moment to the overall buckling of 

a frame has been mentioned. However, the problem is not as serious 

as it first appears as the critical load, both for long columns and 

long beams, is independent of the length. 

Other applications of angle section members must be considered. 

Often two angles are bolted together to act as a strut. The local 

buckling of the individual angle members can be considered by using 

the mathematical models developed. 	However, in considering the 

overall torsional and flexural buckling of the member, the member must 

be considered as a tee-member. 	The problem of double bulb angle 

struts is considered by Cullimore. 

The torsional buckling of a member about a fiyed axis of 

1 
rotation is considered by Bleich. Maurice Sharp

2
investigates the use 

of longitudinal stiffeners on flat angle, one application of angle-

section member. 	If a lip is added to the free edge of the leg of the 

angle member the load capacity of the member is increased. Bulson
3 

discusses analytically the effect of lips on cross-section. 	Sharp 

also includes the action of a lip in his paper. 

The last section of this chapter has been devoted to common 

applications of angle-section members. All the references quoted have 

treated the problem using the classical approach. 	It is quite poss- 

Ref. 1 F. Bleich "Buckling Strength of Metal Structures" 
Ref. 2 M. L. Sharp "Longitudinal Stiffness for Compression Members" 

Proc. Am. Soc. of Civ. Eng., Struct. Div., October 1966. 
Ref. 3 P. S. Bulson "Local Instability Problems of Light Alloy 

Struts". Al. Dev. Assoc. Report No. 29. 
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ible to attack these problems in the same manner as used in this 

thesis, and the author feels that, as a result, a more simplified 

mathematical model can be obtained, based upon a clear understanding 

of the problem. 

While the mathematical models developed by the author have in 

general not broken new ground, the approach used has enabled an 

examination to be made of the local buckling of all structura:members 

using basically the same functional form for the geometry, the same 

underlying ideas, and similar mathematical models. The author feels 

that this approach is of benefit, as the review of existing literature 

on this topic has shown that many different approaches are required to 

cover the topics considered, ane; roost of these approaches involve 

complicated and somewhat abstract mathematics. 	The geometric 

approach will be of particular importance when more complex problems 

are considered. For these problems an advanced numerical or 

algebraic analysis of each member will most likely have to be used, 

The geometric functional form approach can be simply and logically 

applied to these problems. 



APPENDIX A  

ELASTIC BENDING OF THIN PLATES  

In the following section of the thesis, the mathematical model 

of bending of thin plates is developed. The results obtained have 

been applied repeatedly throughout the thesis. The analysis closely 

follows the lines followed by Timoshenko
1
except that some of the 

symbols have been defined differently. The model is based upon the 

fact that all the strains vary linearly across the section, that is, 

throughout the thickness. The model includes the case when the 

centre plate deforms. 

The coordinate system with which the model will be developed 

will be x, y axes in the plane of the unloaded plate and the z 

direction normal to the x-y plane. The deflections in the z 

direction will be denoted by w . (see fig. 29) 	The element to be 

considered is of thickness, t and defined by the planes x, x+ax, y 

and yvly . The following notation will be used 

N N 	longitudinal stresses on the central plane x y 

shear stresses on the central plane 
xy 

normal shear stresses Qx  Qy  

m 	bending moments about x and y axis 
x y 

and 	m 	twisting moments 
xy 

All symbols are quantities per unit length. 

thickness 

flexural rigidity, D Et 3/12(1 -7) 2 ) 

and 	KK 	curvatures 
x y 

The symbols are defined graphically in fig. 29. 

In general the shape of the plate is known, so that the aim 

will be to develop expressions for the internal actions of the plate 

in terms of known geometry using the load deformation relationship. 

In the case of small deflections the change in the curvatures is 

K
x 
	2w/x2  

and 
	K 	?3 2wA y2 

Ref. 1 S. P. Timoshenko "Plates and Shells", McGraw-Hill Book Co., 
Inc. 



Nxi4NWey dy 
/e) dy • 

Y Y Y 

thxy+  /e5r- 

Nxv+bN 	dY Q-. 

dy 

Nx  + )3N3dx  dx 

All cuts are parallel to the 
x, y, z axes. 

All forces are parallel to the 
x,y and z axes. 

Thickness of element t 

Qx) Qy shear forces 

	

Nx) 	longitudinal 
forces 
m 0 m,m moments. 

	

x y  xy 

All forces are forces per 
unit lengths 

FORCES ON AN ELEMENT dx dx t 

FIGURE 29 
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and the change in twist is 

K 	= 2w/x  
xy 

If the problem is further restricted and only linear load deformation 

relationships are considered, that is the materials are elastic, the 

moments per unit length required to maintain the deformations are 

	

D( 2vv/ x2 	.142w/e,y2) 
mx 	- D(K +1)K ) x 	y 

- D(K +1)K ) 
	D(  12w/ y2 	VwRi x2 )  

y  x 

and m 	D(1 -1)) )2u0 y 6x = K D(1 - 1) ) . 
xy 	 xy 

The internal shearing stresses can be obtained by considering 

the equilibrium of an element of the plate. The equations of 

equilibrium are 

force equilibrium in the z direction 

1 Qx/ y + Qy/ x = o 

force equilibrium in the x direction 

?$Nxy/6 y + )sNd x = 0 , 

force equilibrium in the y direction 

+ 6N3 /6 y = 0 9  

moment equilibrium in the zx plane 

Qx  = m3di x - ?)mxy/ è y — Nx  w/ 6 x - N 	y  

moment equilibrium in the zy plane 

Q = m 	y  — 6m /6x - N w/ y - N 6 w/ 6 x . 

	

xy 	xy 

The equilibrium equations in conjunction with the load deformation 

relationships give an expression for the shearing forces for unit 

length in terms of the geometry, 

Q 	= - D( ?3:5',16  x3  + 	•310 )c) y2 ) - (1 -1)  )D . 30o y2 ie3 x - 
x 

	

- N 	x — N 	w/6 y 
xy 

and 

= - ]D( 30 Y3 	x2)3  Y) - 	- 1)  )1) e3viii 3,2  - 
Y 

	

_ N 	y - N xy 
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It should be noted that although the final expressions depends upon 

having small deflections and a linear mode deformation relationship, 

the equations of equilibrium are independent of both these 

restrictions. 



APPENDIX B  

Solution of the differential equation, third model for a 

column loaded through a base plate 

20/63c2  +.0.20 — 	 t‘ p = u • 

Multiply by 2 00) x ; 

2 	x V0/ x 2  + 21'00 2:4 	x - 2 p 	95/?) x = 0 

After integrating with respect to x the equation becomes 

( 0/ 6 )02 4. ..0.202  2/3 (504  c  

Or  PS/)37C = (C 02 (11-2  — 2/302 ))4  . 

Properties of the elliptic functions 

f 	• 	2 \ 
cnz = k1 - Sn zr 9 

22 1 
 

dnz = (1 - k sn z) 2  

dsnz/dz = cnz dnz 

denz/dz = - snz dnz 

d dnz/dz = - k 2 snz dnz 

and 	d 2 snz/dz
2  k2 sn3z - k

2 snz - snz + k
2 

sn
3 z 



NOTATION  

leg width of angle 

length 

1 	effective length 

thickness of leg 

flexural rigidity Et 3/12(1 - 10 2 ) 

torsional rigidity 2bt 3/3 

polar moment of inertia about the shear centre 

I
PP, 

I
W 	

moments of inertia about the principal axes 

radius of gyration 

A 	cross-sectional area 

X9 y 	co-ordinates associated with the leg of an angle-member 

Pt q 
	principal co-ordinates of cross-section of angle members 

polar ordinate about the shear centre 

deflection normal to the leg of the angle 

W.1 w2 
	deflections of the individual leg; often the same, 

w 1 = w2  = w 

U 9  V 
	

displacements in the x, y directions 

rotation of the cross-section 

a, B 
	

twist parameters 

Youngs modulus 

plastic modulus 

1- 	ratio of Youngs and plastic moduli 

shear modulus 

1) 	Poisson's ratio 

Cw 	warping constant 

torque 

axial load 

lateral load 

critical loads 
Wcrit' crit 

M M
Q 	

moments about the principal axes 
P 9   

m 9  m, m 	moments per unit length of plate x y xy 

N N 	longitudinal forces per unit length of plate x y 



- 

N 	shear force per unit length of plate 
xy 

Q , Q 	shear forces per unit length plate acting a cross the 
x y 

thickness of the plate 

K 9 K 	curvatures in x and y directions 
x y 

twist xy 

strain 

cr 	stress 

eccentricity 

X 	eigen value 

potential energy 


