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ABSTRACT 

Three solar cosmic ray ground level enhancements (GLEs) have been analysed to 

better understand the acceleration of protons to relativistic energies during major solar 

eruptive events. These GLEs, amongst the largest of solar cycle 23, occurred on 14 July 

2000, 15 April 2001 and 20 January 2005. 

A global analysis technique is used to derive the spectrum, the axis of symmetry of 

the particle arrival and the anisotropy of relativistic solar protons arriving at Earth. The 

modelling procedure employs a least squares method to efficiently analyse parameter 

space for optimum solutions. 

Theoretical shock and stochastic acceleration models were used to investigate the 

source mechanisms. For each GLE, fluxes generated from the response of the global 

neutron monitor network were input to a generalised non-linear least squares program to 

assess the respective acceleration models. Analyses were restricted to protons of energy 

>450 MeV to avoid complications arising from transport processes which can delay the 

arrival of low-energy protons. 

Each GLE was marked by a strong anisotropic onset. However, for the July 2000 

and January 2005 GLEs, the field-aligned component of the pitch angle distribution 

began to broaden several minutes after their onset and, in addition, local scattering 

began to increase. For the July 2000 GLE the isotropic component in pitch angle 

distributions is probably due to scattering effects associated with the interplanetary 

magnetic field (IMF). For the January 2005 GLE, part of the underlying isotropic 

component in the pitch angle distributions is attributed to bi-directional flow. Back-

scattering from a reflecting boundary beyond Earth is a likely cause. In the case of the 

April 2001 GLE, the comparatively smaller isotropic component in the pitch angle 

distributions is probably the result of limited local scattering associated with the IMF. 

During the rising phase of the July 2000 GLE, the spectrum derived from neutron 

monitor observations is best fitted by a shock acceleration spectral form. In contrast, 

the spectrum at the peak and declining phases is best fitted by a stochastic acceleration 

spectral form. These results indicate that at least two processes accelerated protons to 

relativistic energies: (1) a shock driven by a coronal mass ejection (CME) and (2) a 

stochastic process associated with magnetic reconnection. For each phase of the 
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15 April 2001 GLE, the spectrum derived from neutron monitor observations is best 

fitted by a shock acceleration spectral form. This implies that protons were accelerated 

to relativistic energies by a CME-driven shock. The 20 January 2005 solar eruption 

produced the highest intensity of relativistic solar particles since the famous event on 23 

February 1956. For each phase of the January 2005 GLE, the spectrum derived from 

neutron monitor observations is best fitted by a stochastic acceleration spectral form. 

This result suggests that a stochastic process cannot be ruled out as a mechanism for 

accelerating protons to relativistic energies for this solar event. 

In summary, the major finding of this study indicates that, along with CME—driven 

shocks, sites of magnetic reconnection in the solar corona are a potential source of 

relativistic protons that give rise to GLEs. 
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INTRODUCTION 

1.1 SOLAR ERUPTIVE EPISODES 

A central question of solar physics concerns the mechanisms responsible for the 

production of relativistic protons which give rise to ground level enhancements 

(GLEs) in the cosmic ray flux. GLEs are sudden increases in the cosmic ray 

intensity recorded by ground-based detectors and are associated with large solar 

eruptive episodes. Relativistic protons produced from these solar events represent a 

direct sample of matter from some of the most energetic processes in the solar 

system (e.g., solar flares and coronal mass ejections (CMEs)). Solar flares 

(Figure 1.1, left) are enormous explosions which occur in the solar corona, while 

CMEs (Figure 1.1, right) represent vast structures of plasma and magnetic fields that 

are expelled from the Sun into the heliosphere (the region dominated by the solar 

wind momentum). 

FIGURE 1.1: The 14 July 2000 solar flare as recorded by EIT on board SOHO at 171 A (left). Source: 
http://soho.nascom.nasa.gov/hotshots/2001_04_15/c2fl.gif . The 15 April 2001 CME as recorded by 
the LASCO/C2 coronagraph on board SOHO (right). Source: http://sci.esaint/science-e-
media/img/27/21997.jpg.  
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These energetic solar processes can convert in excess of 10 32  ergs of magnetic 

energy into kinetic (accelerated particles) and thermal (heated plasma) energies on 

timescales of a fraction of a second to several tens of minutes. 

Technological systems in space and on the Earth's surface are subject to adverse 

effects from these powerful solar events. The interaction of plasma generated from 

these solar phenomena with the Earth's magnetic field can result in electricity grid 

disruption, telecommunication disruption, satellite memory failures, solar cell 

degradation, navigation disruption and astronaut radiation hazards. Therefore, the 

consequences of major solar eruptive episodes can be quite dramatic, having 

significant economic as well as human impacts. 

1.2 THE CURENT DEBATE 

The relationship between flares and CMEs, and their role in accelerating 

particles to relativistic energies during major solar events remains a topic of ongoing 

research and debate. Solar energetic particle events (SEPs) have been divided, albeit 

controversially, into two distinct classes, impulsive and gradual events (Reames 

1999). The two classes differ in their typical sizes (with gradual events yielding 

much larger particle intensities and fluences) and in the spatial distribution of their 

source regions (Tylka & Lee 2006). 

Impulsive events originate from a narrow range of solar longitudes that are 

magnetically well-connected to the observer. For these events, Reames (1999) and 

others attribute particle acceleration to flare processes such as wave-particle 

interactions following magnetic reconnection. Impulsive events are characterized by 

low particle fluxes, high 3Her4He ratios (>0.1), high Fe charge states (-20) (attributed 

to the ionization process during magnetic reconnection) and high Fe/0 ratios (— 10 

times that of normal coronal abundances) (Reames 1999). In contrast, for gradual 

events, particles are accelerated out of the ambient plasma over a broad range of 

longitudes by CME-driven shocks. These events are characterized by low 3He/4He 

ratios (<0.1), low Fe charge states (<14) and Fe/0 ratios at coronal abundances 

(Reames 1999). 

At energies of a few MeV per nucleon, impulsive and gradual events can be 

distinguished by compositional signatures. However, when the compositional 

signatures of gradual events are examined at energies above a few MeV per nucleon, 

at least some of the compositional distinction becomes blurred (Tylka & Lee 2006). 
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For example, some gradual events show Fe/0 abundance ratios above 2.0 and mean 

ionic (e.g., Fe) charges close to those typically associated with solar flares. 

Cane et al. (2006) attribute such compositional characteristics  to  a direct flare 

component, questioning the validity of the two-class paradigm. 

Many researchers consider the presence of a direct flare component in gradual 

events unlikely. Reasons include timing considerations (e.g., Kahler (1994); 

Debrunner et al. (1997); Bieber et al. (2004); Falcone et al. (2003)) and the very 

small source regions (e.g., Tylka et al. (2005)). Tylka & Lee (2006) suggest that 

since flares are often associated with fast CMEs, the CME-driven shocks could have 

access to flare particle seed populations from previous flare activity. They argue that 

it is the interplay of variables such as seed populations and shock geometry that 

provide the framework for understanding the compositional variability at high 

energies for gradual events. 

The application of CME kinematic models (e.g., the flux-rope catastrophe model 

of Lin & Forbes (2000); see also Lin, Soon & Baliunas (2003) for a review of the 

various models) hints at the possibility that flares and CMEs might be manifestations 

of the same eruptive process. This suggests that it would be difficult to isolate the 

key signatures of relativistic particle acceleration. 

FIGURE 1.2: The standard model for large solar eruptions (Lin, Soon & Baliunas, 2003). The 
illustration depicts the two-ribbon flare model of Forbes & Acton (1996) and the CME configuration 
of Lin & Forbes (2000). 
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Figures 1.2 and 1.3 illustrate the basic idea of the eruptive flare model. Magnetic 

reconnection occurs in the current sheet produced by the stretching of the erupting 

solar magnetic field. The dissipating current sheet leads to the impulsive release of 

magnetic energy and the ejection of the magnetic flux rope (CME). 

FIGURE 1.3: Illustration showing the Lin & Forbes (2000) standard model for large solar eruptions 
(grey lines) overlaying SOHO observations of an eruptive flare. Candidate sites for particle 
acceleration include CME-driven shocks and dissipating current sheets. Source: http://cfa-
www.harvard.edu/press/archive.  

In contrast to analysing the low-energy particle compositional characteristics of 

gradual events, the high-energy particle spectra of these events provide an alternative 

method for investigating particle acceleration at the Sun. The form of the energy 

spectra should be determined by the acceleration process. This provides a useful tool 

for probing the origin of the relativistic particles which produce GLEs. 
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1.3 AIMS OF THIS STUDY 

The major aim of this study was to gain insight into the processes which 

accelerated the particles to relativistic energies and produced the 14 July 2000, 

15 April 2001 and 20 January 2005 GLEs. For these GLEs, the intensities of 

relativistic particles (as measured by neutron monitors) were amongst the largest of 

the solar cycle 23. In particular, the 20 January 2005 GLE produced the highest 

intensity of solar relativistic particles since the famous GLE on 23 February 1956. 

Importantly, the solar eruptions which produced these GLEs were each associated 

with a large solar flare and CME. 

Acquiring high-energy particle spectral characteristics for these major solar 

events provides an opportunity to investigate the mechanisms responsible for 

relativistic particle acceleration. This study used the global analysis technique for 

modelling GLEs to derive the particle arrival direction, pitch angle distribution and, 

importantly, the spectrum for each GLE event. The technique has been developed 

over many years (Shea & Smart 1982; Humble et al., 1991, Cramp et al., 1997) and 

is described in detail in Chapter 2. 

Particle acceleration within the solar corona may occur in a variety of ways: 

direct particle acceleration in neutral current sheets by DC electric fields; stochastic 

acceleration through the process of resonant wave-particle interactions; and 

acceleration at coronal shocks. However, current theoretical models of direct particle 

acceleration via DC electric fields fail because they cannot explain the presence of 

energetic protons above a few MeV (Miller et al., 1997). As a result, this study 

focussed only on the shock and stochastic acceleration processes, both of which are 

capable of accelerating protons to relativistic energies. 

To determine the acceleration processes, analytical and numerical spectra 

representing shock and stochastic acceleration, respectively, were fitted to neutron 

monitor observations using a non-linear least squares method (section 2.2.3). The 

widely-utilised Ellison & Ramaty (1985) analytical expression was used to model 

diffusive shock acceleration. In the case of stochastic acceleration, two different 

spectral forms were used. The first incorporates an idealised pre-acceleration step 

via mono-energetic injection. The second incorporates a more realistic injection 

function using a pre-acceleration step via DC electric fields in a reconnecting neutral 

current sheet 
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Bombardieri et al. (2006, 2007) included low-energy spacecraft observations of 

proton intensities in spectral fits to determine the mechanism/s responsible for 

relativistic particle acceleration for the 14 July 2000 and 15 April 2001 solar events. 

However, interplanetary processes such as pitch angle scattering (due to resonant 

interactions and small-scale magnetic inhomogeneities) and magnetic cloud 

structures can affect the propagation of low-energy protons en-route to Earth. In 

addition, for major solar events where a CME-driven shock is generated, streaming 

particles become trapped near the shock by self-generated Alfven waves (i.e., 

streaming-limited intensities), flattening the spectra of escaping particles at low 

energies (Reames 1999). Because the gyroradii of relativistic protons >450 MeV are 

at least equal to or greater than the coherence length of interplanetary magnetic field 

turbulence, they are less likely to be affected by interplanetary transport effects. To 

minimise these effects, analytical and numerical representations of shock and 

stochastic acceleration respectively were only fitted to neutron monitor energies 

(>450 MeV). This allowed for a more accurate determination of the acceleration 

process. In addition, the effect of velocity dispersion on relativistic protons (i.e., 400 

MeV to 10 GeV) is less than the 5-minute sampling time of neutron monitor data 

used in this thesis and thus can be neglected. 

Spacecraft observations are able to acquire data at wavelengths relevant to 

energetic particle and plasma emissions in the solar corona and complement neutron 

monitor observations of high-energy particles. Solar cycle 23 has seen an 

unprecedented number of spacecraft coordinated to observe and measure variations 

in solar output (e.g., SOHO, ACE, Wind, TRACE, RHESSI, GOES). The availability 

of multiple spacecraft instruments allowed for a more complete analysis of 

interplanetary medium through which the particles propagated and particle 

acceleration process. 

1.4 INSTRUMENTATION 

For over fifty years neutron monitors have remained the state-of-the-art 

instrument for measuring intensity variations of 1 to 15 GV solar cosmic rays 

(Moraal, Belov & Clem, 2000). Several different styles of neutron monitors have 

been developed, including the 1957 International Geophysical Year (IGY) neutron 

monitor and the much larger NM-64 type detector designed by Carmichael (1968) 

for the International Year of the Quiet Sun (IQSY) in 1965 (Hatton 1971). The 
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majority of the world-wide neutron monitor network comprises NM-64s. The 

simultaneous detection of relativistic particles via this network provides a unique 

opportunity for determining the anisotropy, axis of symmetry of the particle arrival 

and, importantly, the spectral characteristics of large solar events. In particular, the 

latter characteristic is best determined from neutron monitor observations covering a 

range of magnetic latitudes. 

Following a major solar eruption, particles which escape the coronal field into 

the interplanetary medium are guided via the interplanetary magnetic field (IMF). 

The trajectory of a particle in a magnetic field of strength B has a gyro-radius r given 

by: 

Br = 
Ze 

where p is the momentum of the particle and Ze is the particle's charge (in 

coulombs). The gyro-radius is proportional to the momentum, and the ratio plZe is a 

measure of the particle's resistance to the deviating effect of the field. Particle 

rigidity P is described in terms of a particle's momentum per unit charge, 

pc p 
Ze 

(1.2) 

When energetic particles approach the Earth they are deflected by the 

geomagnetic field. To penetrate the geomagnetic field to the top of the atmosphere 

at a given position, the particle must have a rigidity which is greater than the 

geomagnetic cutoff for that location (i.e., the minimum rigidity below which a 

particle does not have access to a particular site on the Earth's surface). The values 

of the geomagnetic cutoff range from 0 near the geomagnetic poles to approximately 

15 GV in equatorial regions (Moraal, Belov & Clem, 2000; Smart, Shea & Fliickiger, 

2000). Particles not deflected by the magnetic field enter the atmosphere and 

undergo multiple interactions, resulting in showers of secondary particles (Figure 

1.4) which may reach ground level and be detected by neutron monitors. 
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Neutron monitors record predominantly the secondary neutrons from 

atmospheric cascades by counting the ionization events induced by these neutrons in 

appropriately-designed counters. 

FIGURE 1.4: Representation of an incident relativistic proton colliding with atmospheric nuclei at 
approximately 20 km above the city of Chicago. Secondary particles include neutrons, electrons, 
positrons, muons and gamma rays. Source: http://astro.uchicago.edu/cosmus/projects/aires/  

Most neutron monitors employ proportional counters filled with BF 3  in which 

the boron has been 90% enriched with the 1°B isotope. Secondary neutrons resulting 

from the cascade are captured by boron nuclei via the nuclear reaction: 

10B5 7  n —> Li3 + a 	 (1.3) 

Even though the secondary neutrons do not leave an ion trail in the proportional tube, 

the absorption of a neutron by a 1°B nucleus is followed by the emission of charged 

particles, which are detected by proportional counters registering pulses from ionized 

Li atoms and alpha particles. 
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Figure 1.5 illustrates the configuration of a NM-64 neutron monitor. 

Surrounding each proportional counter is the moderator, which acts as an inner 

reflector redirecting neutrons that have not interacted in the counter back towards the 

detecting medium. The moderator is generally composed of polyethylene as it 

provides for smaller local neutron production. Surrounding the moderator is the lead 

producer, which provides a thick, large-nucleus target for inelastic interactions 

whereby secondary neutrons are produced. The reflector surrounds the lead producer 

and reflects any escaped secondary neutrons back towards the counter. The reflector 

also absorbs low-energy neutrons produced in the atmosphere as well as in materials 

close to the monitor. 

Proportional counters filled with 3He offer an alternative to the standard BF 3  

counters. He counters require higher pressures to improve their efficiency, otherwise 

their interaction cross-sections are too low. They have been carefully designed to 

have the same detection efficiency as a standard NM64 counter so that they may be 

inter-changed in a system. However, He counters have much higher temperature 

sensitivity and therefore require greater environmental temperature stability. 

BF 3  Counter 

FIGURE 1.5: Schematic diagram of a NM-64 neutron monitor. The monitor consists of BF 3  counters 
surrounded by polyethylene moderators, a thick lead producer and outer reflector. 

Due to their long term reliability and automated data acquisition, the world-wide 

network of neutron monitors plays a fundamental role in studies of solar cosmic ray 

physics. Data sets generated by this network form the basis of this study. 
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1.5 THESIS OUTLINE 

The purpose of this study was to gain insight into the process/es which 

accelerated particles to relativistic energies producing the 14 July 2000, 

15 April 2001 and 20 January 2005 GLEs. Chapter 2 presents a discussion of the 

various models used. This discussion first provides a review of the historical 

background of GLE modelling. Second, a detailed description is given of the global 

analysis technique used to model the arrival of relativistic particles at 1 AU. Third, 

descriptions of the theoretical shock acceleration and stochastic acceleration models 

used to analyse relativistic particle acceleration are presented. Chapter 2 is 

completed with a brief discussion of the non-linear least squares routine used to fit 

the acceleration spectra to neutron monitor observations. Chapters 3, 4, and 5 

contain results from modelling the neutron monitor responses of the 14 July 2000, 

15 April 2001 and 20 January 2005 GLEs, respectively. In addition, each of these 

chapters presents a discussion of the results of fitting the analytical/numerical shock 

and stochastic acceleration spectra to the neutron monitor observations. In Chapter 6 

the results presented in Chapters 3, 4 and 5 are discussed in terms of interplanetary 

conditions at the time of each GLE, the impact of transport processes on low-energy 

proton intensities, and the source mechanisms responsible for relativistic particle 

acceleration. A conclusion is presented in Chapter 7, including discussions on 

improvements to the GLE model and additional research avenues that should be 

followed. 
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MODELLING 

2.1 INTRODUCTION 

This chapter is divided into two sections. Section 2.2 outlines the historical 

development of GLE modelling, beginning with the developments in understanding 

the interplanetary magnetic field and its role in the transport of particles from the Sun 

to the Earth. This is followed by a review of the developments leading to the 

analytical models which describe the trajectories of cosmic rays through the 

geomagnetic field, including several definitions of terms related to cut-off rigidities. 

The final part of section 2.2 describes both the technique used to model the neutron 

response to higher-energy protons, and the least-squares method used to efficiently 

analyse parameter space for optimum solutions. 

Section 2.3 describes the shock and stochastic acceleration processes which can 

accelerate particles to relativistic energies. This is followed by a description of the 

analytical and numerical solutions of equations which describe these acceleration 

processes. Finally, the method used to fit shock and stochastic acceleration spectra 

to neutron monitor observations of high energy protons is described. 

2.2 MODELLING GLEs 

2.2.1 	Interplanetary Magnetic Field 

The systematic study of cosmic ray temporal variations under the direction of S. 

E. Forbush commenced in the late 1930s with the deployment of a global network of 

four Compton ionisation chambers. The first observation of relativistic solar 

particles with these ionisation chambers was made on 28 February 1942. The 

analysis and interpretation of these data were postponed during World War 2. In 
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1946, Forbush resumed his research and established that cosmic rays of solar origin 

were responsible for the increases in count rate of the detectors. 

The next step in solar cosmic ray physics related to understanding the 

propagation of these relativistic particles through the interplanetary medium to the 

Earth and the mechanism/s which produced the anisotropies observed by ground-

based instruments. 

Initial investigations were hampered by a lack of knowledge of the IMF. 

Biermann (1957) and references therein proposed that the solar ejection of particles 

was a continuous process and not limited to individual eruptions such as solar flares. 

This was based on observations suggesting that molecular ions in type 1 comet tails 

experienced acceleration radially outward from the Sun. This led Biermann to 

conclude that solar corpuscular radiation is emitted continually from the Sun. 

Parker (1958) in a seminal paper postulated that the plasma in interplanetary 

space is a supersonic extension of the solar corona and introduced the term 'solar 

wind'. He further suggested that the field remained attached to the rotating Sun, 

resulting in a large-scale pattern of an Archimedean spiral (Figure 2.1). 

2AU 

2AU 2AU 

2AU 

FIGURE 2.1: The spiral structure of the IMF on the equatorial plane. Source: Akasofu (2001) 

In the case of an undisturbed field this resulted in an angle of —60 0  between the 

lines of force and the radial direction at the orbit of Earth, based on a solar wind 

speed of —300 km s -1 . The average quiet-time solar wind speed is now known to be 
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FIGURE 2.2: Schematic representation of the 'garden hose' field line connecting the Sun to the Earth. Source: 

Duldig (1994). 

Parker (1961) proposed that magnetic irregularities generated by 

turbulence and instabilities in the solar corona and interplanetary medium 

would be superimposed on this large scale structure (McDonald 2000). 

McCracken (1962b) was the first to provide verification (from neutron monitor 

observations) that the IMF was consistent with the geometry derived by Parker 

(1961). In-situ spacecraft measurements of the IMF in the mid 1960s provided 

additional evidence for a spiral configuration. Ness, Scearce & Seek (1964), using 

magnetic field observations from IMP-I, noted a sudden reversal in the IMF 

direction in which the magnetic intensity passed through zero. Further spacecraft 

observations revealed a well-defined sector structure with a polarity pattern repeating 

itself every 27 days. Wilcox, Hoeksema & Scherrer (1980) interpreted such 

observations as due to the presence of a heliospheric neutral current sheet separating 

two hemispheres of opposite polarity (Figure 2.3). 

Near-Earth satellites, such as ACE, WIND and SOHO, continue to make direct 

measurements of the IMF, and the Ulysses spacecraft continues to probe the 

heliosphere at high solar latitudes (i.e., >70° from the ecliptic). These and other 

spacecraft (e.g., STEREO), will continue to provide important information on the 

characteristics of the IMF and the propagation of particles to Earth. 
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FIGURE 2.3: The three-dimensional structure of the Parker spiral, including the heliospheric current sheet. 

Source: http://wso.stanford.edu/gifs/helio.gif/  

2.2.2 	Asymptotic Directions of Approach 

The motion of a cosmic ray particle in the vicinity of Earth is governed by the 

geomagnetic field. Using an accurate mathematical model of the Earth's magnetic 

field, it is possible to trace the path of a particle until it reaches the ground. Particles 

of different energy will follow different paths through the geomagnetic field. 

Instead of considering energy, it is useful to use particle rigidity (units: volt), 

defined as the relativistic momentum per unit charge. Particles with equal rigidity 

will follow identical paths through a magnetic field. A cosmic ray particle travelling 

towards the Earth will follow the same path as a particle with opposite charge 

travelling away from the Earth anti-parallel to the cosmic ray arrival direction. It is 

therefore instructive to trace the trajectory of negative particles from points of 

interest on the Earth because this is far less computationally intensive than the full 

sky coverage required if working in the opposite sense. 

Various models have been produced to calculate the path of an arriving particle 

through the Earth's magnetic field to an impact point on the Earth's surface. The 

first attempts to calculate the trajectories of solar particles through the geomagnetic 

field involved assumptions about arrival directions from the Sun that did not take 

into account the IMF as we know it today. Furthermore, models of the geomagnetic 

field were based on a simple dipole approximation (e.g., Firor (1954)). The advent 
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of more powerful computers in the early 1960s enabled more advanced geomagnetic 

field models to be developed, which resulted in more complex calculations of cosmic 

ray trajectories. The foundation of the modern method of trajectory calculations was 

developed by McCracken, Rao & Shea (1962) based on the numerical solution of the 

equations of motion (equation 2.1). 

In a spherical coordinate system (r ,0 ,0) the equations of motion for charged 

particles are 

2 	2 du, 	e t 	\ I) 	o0  
= kv B –0 B )+--e--9  +— 0 o 	o e dt mc 	 r r 

2 doe  e 	 or Vo  ± Vo  

	

= —(V,Br  – VrBo ) 	 
dt 	Inc '" 	 r 	rtan0 

do 0 	e t rBe–v6,Br) vr  vo ±  vovo 
dt mc  r 	rtan0 

dr —= Ur 
dt 

d0 = 1)9  
dt r 

d0 v0  , 
dt rsin0 

where Br  , Bo  Bo  are known as explicit functions of (r ,0 ,0) (i.e., the magnetic 

field components), vr  , v9 , v the particle velocity components, c is the speed of 

light, e and m are respectively the charge and mass of the particle and r is the radial 

distance from the centre of the Earth (Smart, Shea & Fliickiger 2000). 

When particle trajectories are calculated by this method, it is found that for a 

given rigidity there may be some trajectories that remain forever within the 

geomagnetic field or intersect the Earth's surface. These trajectories are termed re-

entrant and indicate that the site is not accessible from space for that rigidity and 

arrival direction at the monitor (Figure 2.4 lefi). The accessible directions are known 

(2.1) 
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as asymptotic directions of approach (Figure 2.4 right) and the set of rigidity-

dependent accessible directions defines the neutron monitors asymptotic cone of view 

(McCracken 1962a). 

To better resolve the responses of neutron monitors, Rao, McCracken & 

Venkatesan (1963) used a 9-direction trajectory calculation sequence to approximate 

the angular response of a neutron monitor (Smart, Shea & Fliickiger 2000). 

Calculations are performed for trajectories of particles which have arrival directions 

at Earth's surface of 16° and 32° from the zenith (azimuths of 0°, 90°, 180°, 270°) as 

well as those arriving vertically. The increasing solid angle away from the zenith 

compensates for the decreasing flux caused by increased atmospheric attenuation; 

therefore each cone represents an approximately equal contribution to the total 

counting rate (Rao, McCracken & Venkatesan 1963). The use of the 9-direction 

approximation method produces a more accurate representation of the neutron 

monitor asymptotic cone of view compared to models using simple vertical 

approximation methods (e.g., Belov etal. (2001); Vashenyuk et al. (2003)). 
\  
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FIGURE 2.4: Illustration of re-entrant (left) and allowed (right) charged particles trajectories (vertical direction) 

from Lomnicky S' tit (Slovakia), which has a cut-off of-4 GV. Re-entrant trajectory is calculated for a particle of 

—3GV. GSM is the geocentric solar-magnetospheric coordinate system. Source: Kudela & Usoskin (2004). 

The work of McCracken, Rao & Shea (1962) and McCracken (1962a) 

represented a watershed in modelling cosmic ray phenomena. Using high-order 

simulations (for that time) of the geomagnetic field, McCracken and his colleagues 

were able to calculate particle access to specific cosmic ray stations on the Earth to 
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describe the cosmic ray anisotropy. Furthermore, they also showed that the observed 

cosmic ray intensity could be well ordered by geomagnetic cut-off rigidities (Smart, 

Shea & Fluckiger 2000). 

During the mid-1960s it became clear that the solar wind caused significant 

distortion to the geomagnetic field, compressing the field lines on the day-side and 

producing a tail on the night-side (Ness, Scearce & Seek 1964). This asymmetry, as 

well as the effects of currents in the magnetopause and the neutral sheet in the 

geomagnetic tail, resulted in variations in the asymptotic viewing cones of neutron 

monitor detectors as the Earth rotated (Ahluwalia & McCracken 1965). 

Magnetospheric models were developed to account for a specified time (year, day, 

month, hour and geomagnetic disturbance). Whilst analyses of GLEs with these 

improved models (e.g., Gall, Jimenez & Camacho (1968); Gall, Jimenez & Orozco 

(1969); Gall, Smart & Shea (1971); Smart, Shea & Gall (1969)) incorporated a 

significant improvement in the calculation of the asymptotic cones of acceptance, 

they did not take into account the effects of the various current systems flowing 

within the magnetosphere, or variations in solar wind speed with time. It was not 

until the mid-to late 1980s that more sophisticated magnetospheric models, which 

provided a more realistic representation of magnetospheric processes, became 

available (Smart, Shea & Flackiger 2000). 

2.2.3 	The Geomagnetic Field 

Current methods for calculating asymptotic directions are essentially the same 

as that of McCracken, Rao & Shea (1962) except for the incorporation of more 

advanced geomagnetic field models (Smart, Shea & Fluckiger 2000). The software 

employed in the present study to calculate the asymptotic directions of approach was 

developed at the University of Bern by E. Kobel (Kobel 1989; 

Flackiger & Kobel 1990). The internal field is represented by the International 

Geomagnetic Reference Field (IGRF) model and the external field is represented by 

the magnetospheric model of Tsyganenko (1989). 

The Internal Field 
The geomagnetic field originates primarily within the planets interior, with a 

small part produced by currents in the ionosphere and the magnetosphere. The 

geomagnetic field in undisturbed form has an underlying offset dipolar configuration, 
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but is compressed on the day-side and expanded on the night-side as a result of 

interaction with the solar wind. 

The internal component of the field may be represented by centred or eccentric 

dipole models, but a more accurate spherical harmonic series is usually employed. 

The IGRF is a series of models of the main geomagnetic field, each consisting of a 

set of spherical harmonic coefficients (Kodama 1992) for a series expansion of the 

geomagnetic potential, V and takes the form 

oo 	 n 

	

V(r,0,0)= aZ(a / r) 1 E len. cos m0 + h: sin mOIP: cos(8) 	(2.2) 
n=1 	m=0 

where g: and h: are Gauss coefficients describing the magnetic field, P: are the 

Schmidt-normalised associated Legendre polynomials, a is the mean radius of the 

Earth, r is the radial distance from the centre of the Earth and 0 is the geocentric 

co- latitude. In the dipole case, the expansion results in simple algebraic equations in 

(r,0,0) that can be repeatedly evaluated to find a solution for a trajectory initiated 

from a specified direction at a specific energy. As the complexity of the magnetic 

field expansion increases, the number of terms to be evaluated increases by n 

(Smart, Shea & Fltickiger 2000). 

IGRF coefficients are found by least-squares fitting of the model to datasets 

obtained from ground, marine, air and spacecraft measurements (Tsyganenko 1990). 

A set of coefficients has been calculated for each five-year period from 1945. The 

most recent IGRF available at the time of this study was a predictive model for 2005- 

2010 based on a secular variation to the parameters and measurements taken no later 

than one or two years prior to the epoch. Once data from this period have been 

collected, the coefficients will be revised and the new model will become the 

Definitive Geomagnetic Reference Field (DGRF) for that epoch. Linear 

interpolation between coefficients for different epochs and extrapolation from the 

most recent IGRF allows the determination of the model for any given time. 

The External Field 
The external magnetic field is the sum of the fields transported by the solar wind 

and those which the solar wind induces in the magnetosphere. The external field is 
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much less stable than the internal field, and the factors contributing to the external 

field are not completely understood. Therefore, additional external magnetic field 

models are required to account for the effects of various current systems flowing 

within the magnetosphere (Figure 2.5). 

FIGURE 2.5: Schematic of the major magnetospheric currents systems, which include the magnetopause current, 

tail current, neutral sheet current and the ring current. Source http://www-solar.mcs.st-and.ac.uld  

The magnetopause shrinks, expands and erodes with varying degrees of 

connectivity to the IMF. The magnetopause current results from the deflection of 

solar wind plasma by the day-side magnetosphere. As this is a Lorentz force effect 

(the electromagnetic force on a charged particle moving in electric and magnetic 

fields), protons and electrons are affected oppositely resulting in a current in the 

dawn/dusk direction. The magnetopause current is closed either by the tail current or 

field-aligned currents through the day-side high latitude ionosphere. 

The tail current sheet warps, bends and twists in response to wobbling at the 

geo-dipole and variations in the IMF. Tail currents are the result  of  a Lorentz force 

produced as the solar wind flows across open field lines in the magnetotail. The 
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currents are confined to the outer reaches of the tail as it is only there that a 

component of the magnetic field is perpendicular to the direction of flow of the solar 

wind plasma. The tail currents result in a dawn-to-dusk electric field across the 

magnetotail, effectively creating a magneto-hydrodynamic generator which extracts 

kinetic energy from the solar wind. The J x B force resulting from the currents 

confines the tail plasma to a sheet. It is across this sheet that the neutral sheet current 

flows as a discharge of the dawn to dusk electric field across the tail. 

The injection of accelerated particles into the inner magnetosphere results in the 

formation of a storm-time ring current. The ring current is a gradient-drift effect. 

The magnetic field is strongest close to the Earth, so as particles gyrate along field 

lines from one hemisphere to the other they encounter a gradient in the magnetic 

field. This gradient causes the particles to flow around the Earth, with protons and 

electrons moving in opposite directions thus producing a clockwise current when 

viewed from the north. 

These currents all contribute to the external magnetic field. Since the internal 

field strength decreases as r-3 , beyond about 10 Earth radii the geomagnetic field is 

dominated by the external components. The outer regions of the magnetosphere are 

also the most variable since the various currents are closely connected with highly-

variable solar wind conditions. To achieve an accurate model of the magnetosphere, 

the mathematical representation must account for variations in these current systems. 

2.2.4 	The Modified Tsyganenko (1989) magnetosphere model 

The Tsyganenko (1989) magnetosphere model (Figure 2.6), hereafter referred to 

as TY89, takes into account the effect of warping the tail current sheet in two 

dimensions due to the geo-dipole tilt, as well as spatial variations of the current sheet 

thickness along the Sun-Earth and dawn-dusk directions. The three main components 

used to construct the TY89 model are the magnetopause current, the neutral sheet 

current, and the ring current. TY89 contains 26 input parameters to allow the user to 

simulate specific magnetospheric conditions. Six levels of geomagnetic activity can 

be specified (Kp 0 to 5). The model is valid for geocentric distances up to 70 Earth 

radii. 

For this study, improvements to the geomagnetic field model include the 

addition of a Dst index parameter to account for larger geomagnetic disturbances 

(Boberg et al., 1995). The Dst index essentially monitors ring current field 
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variations. The addition of this parameter enables a more accurate determination of 

the asymptotic cone of view of a neutron monitor. 

XSM 

FIGURE 2.6: Schematic of the geomagnetic field topology derived from the Tsyganenko (1989) magnetospheric 
model. The field is projected on the XGsM, ZGsm plane. Source: Smart, Shea & Fliickiger (2000) (originally from 
Fltickiger & Kobel 1990). 

Cosmic ray trajectories are traced through the magnetic field by numerical 

integration of the differential equation of motion (equation 2.1). The integration 

method of Stoer & Burlirsh (1980) is used, as it is faster than the Runge-Kutta 

method. Input parameters are date, time, Kp and Dst (level of geomagnetic 

disturbance), location on Earth and arrival direction at or near the Earth's surface. 

From this information, the direction of approach and the entry point at the 

magnetopause can be calculated. Cut-off rigidities are obtained by performing 

trajectory calculations systematically through the rigidity spectrum. 

Asymptotic directions of approach are calculated using the full cone of view of 

the neutron monitor. This is achieved by using the nine-direction approximation 

method as described in section 2.2.2. Calculations begin at 20 GV with rigidity step-

size dependant upon the particular station and decreasing to a minimum of 0.1 GV as 

the geomagnetic cut-off is approached. For stations with geomagnetic cut-off above 

the atmospheric cut-off (-1 GV) calculations continue through the penumbral region 

to the point below which all trajectories are forbidden. This is often termed the 

Stormer cut-off rigidity. Calculations are terminated at 1 GV for stations with 

Stormer cut-offs below this rigidity (Cramp 1996). 
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2.2.5 	Cutoff Rigidity Terminology 

Knowledge of the threshold rigidities for cosmic ray particles arriving at 

different geographic locations on the globe is of great importance in the study of the 

spectrum of solar cosmic rays. The path of a cosmic ray particle through the 

geomagnetic field is dependent upon its rigidity and direction of motion. As a 

consequence there are minimum rigidities below which particles do not have access 

to particular sites on the Earth's surface. These are known as geomagnetic cut-off 

rigidities (as defined in section 1.4). The vertical cutoff at the geomagnetic equator 

is —17 GV and decreases to almost zero at the poles. In order to determine 

geomagnetic cut-offs it is necessary to systematically calculate the trajectories of 

arriving particles as a function of rigidity. 

Re-entrant trajectories (see section 2.2.2) are combinations of rigidity and 

arrival directions which are not accessible at the surface location from outside the 

Earth's magnetic field. Considering one arrival direction at some point on Earth and 

calculating a set of trajectories at decreasing rigidities, there comes a point where the 

first re-entrant particle is encountered. The rigidity at which this transition occurs is 

called the upper cut-off rigidity, P u. At lower rigidities there may be some re-entrant 

and some allowed trajectories until a rigidity is reached below which all trajectories 

are re-entrant. This is known as the lower cut-off rigidity, PL. The region between 

allowed and forbidden trajectories is known as the penumbra. Some low-latitude 

stations do not exhibit a penumbral region in their asymptotic cones of view, so that 

Pu is equal to PL. 
For stations with a penumbral region it is useful to define the effective 

geomagnetic cut-off rigidity, Pc, which is defined such that if all trajectories above 

Pc are allowed and trajectories below it are re-entrant, the resulting count rate of a 

neutron monitor would be equal to the actual count rate. The effective geomagnetic 

cut-off rigidity may be calculated as a linear average of allowed rigidity intervals in 

the penumbra or from functions weighted by the particle spectrum and/or detector 

response. In the case of a linear average, this would have the form of 

Pu  

Pc = Pu — E AP(allowed) (2.3) 
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where the trajectory calculations were performed at rigidity intervals of AP and only 

allowed trajectories are included in the summation. The above definitions for Pu  , 

PI, and Pc  follow the conventions set down by Cooke etal. (1991) and are described 

in detail in Cramp (1996). 

Some sites have effectively a zero geomagnetic cut-off. At such sites 

atmospheric interactions determine the threshold rigidity for access. As particles 

propagate through the atmosphere their kinetic energy is reduced as a result of 

interaction with atmospheric nuclei. Particles must therefore have sufficient energy 

to penetrate the atmosphere in order to generate a neutron monitor response. The 

effective atmospheric cut-off is defined as the energy (rigidity Pain!) below which 

particles do not make a significant contribution to the count rate of a ground-based 

detector. This will depend on the flux of arriving relativistic particles but is 

generally —450 MeV (-1 GV in terms of rigidity). It is important to note that Pam, 

depends on altitude and is somewhat lower at sites such as South Pole (2820 m) 

when compared to sites located at sea level. 

2.2.6 	Atmospheric Corrections 

The response of a neutron monitor varies with altitude due to variations in 

atmospheric pressure. For example, a sea-level neutron monitor will record a smaller 

number of secondary neutrons compared to a monitor at higher altitude. This is due 

to increased atmospheric depth and therefore increased atmospheric particle 

absorption. 

The GLE modelling procedure requires that observed increases at each station 

be directly comparable. This is achieved by applying suitable pressure corrections to 

the data so that all neutron monitors have their count rates corrected to a standard 

atmospheric depth (equatorial sea-level). 

The attenuation length represents the e-fold absorption of particles by the 

atmosphere. This depends on the spectrum of particles and, as a result, the 

attenuation lengths of galactic and solar cosmic rays are different. Since both 

galactic and solar cosmic ray particles are present during a GLE, a method utilizing 

the attenuation length of both populations is required. 

The attenuation length for galactic cosmic rays 2g is derived from the 

barometric correction coefficient, fi, for a given station, 
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(2.4) 1 

This value is used to correct data to standard atmospheric pressure at the station. The 

attenuation length for solar particles Ai/  can vary throughout a GLE and is generally 

calculated for each time interval. This method compares the response at two stations 

at different altitudes but with essentially the same viewing directions. Pairs of 

neutron monitor stations used in this study include Mt Wellington and Hobart or Mt. 

Washington and Durham (see Wilson et al. (1967) for a description of the procedure 

by which the calculation is made). 

The relationship between the intensity at sea level and altitude is given by 

N,(sl)= N,(alt)exp(—aAp) 

Ng (sl)= Ng (alt)exp(—f3Ap) 	 (2.5) 

where N, and Ng  are the count rates arising from the solar and galactic particles, 

respectively, s/ represents the sea level component, alt represents the altitude, a and /1 

are the pressure coefficients for solar and galactic cosmic ray particles respectively, 

and Ap is the pressure difference between stations that are being considered. These 

relationships lead to 

= expka — f3) A p ] 
AN,(sl) 

where AN, is the observed percentage increase, defined as 

No  — Ng  
AN, = 	x100 

Ng  

and No = N5 + Ng  (i.e. the total observed count rate). If/3 is known then a may be 

determined through equation 2.6. 
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1 (2.9) = 
a-8 

McCracken (1962a) showed that the fractional increase in counting rate 

corrected to a standard pressure is 

	

( 	( x  C 	p F 	exp 	— exp 	exp(  P°  P ) 

, 

(2.8) 

where Co  and po  are the mean counting rate and pressure prior to the GLE increase, 

CE  and p0  + gp are the counting rate and pressure at some time during the GLE 

event, p is the standard pressure, 2 .1. is the attenuation length ct -1  and .1 is the 

attenuation length derived from fl and a from the relationship 

Equation 2.8 can be used to correct the fractional increase observed at an altitude 

station to sea-level pressure. In this case the equation becomes 

AN(SL) = AN exp(  P  Psi') 
	

(2.10) 

where AN is the observed percentage increase at the station; AN(SL) is the 

corrected increase; p is the pressure at the station in g cm -2 ; pa  is the atmospheric 

pressure at equatorial sea-level (i.e., 1033 g cm -2  ) and i is the attenuation length as 

described above (Cramp 1996). 

2.2.7 	Modelling the Neutron Monitor Response 

The global method for modelling the solar cosmic ray ground level response by 

neutron monitors has been developed over many years (Shea & Smart 1982; 

Fliickiger & Kobel 1990; Humble et al., 1991) and is described in detail by 

Cramp (1996) and Cramp et al. (1997). This method employs a least-squares fitting 

technique to determine the axis of symmetry of the particle arrival, the spectrum and 

the anisotropy of the high-energy solar protons that give rise to the increased neutron 

monitor response. Furthermore, the use of a least-squares package allows one to 
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efficiently analyse parameter space and derive an optimal solution for each of the 

time intervals considered. However, for the technique to work effectively, data are 

needed from neutron monitors at a range of locations around the globe. A range of 

cut-off rigidities (geomagnetic latitudes) allows the determination of spectral 

characteristics, whilst a range of latitudes and longitudes are necessary to determine 

the extent of anisotropy. 

The response of a neutron monitor to particles arriving at the top of the 

atmosphere above a site is modelled using the following form (Cramp etal., 1997) 

AN 1 9  E Q(0,0) (P) .0) 	G(a) AP 

E P  
— 	 (1941  LQ(0,0)(P).100s(P) AP 

(2.11) 

where 

A N is the count rate increase due to solar cosmic rays corrected to sea level; 

N is the pre-event baseline count rate due to galactic cosmic rays; 

P is the particle rigidity (GV); 

'min is the lowest particle rigidity considered in the analysis; 

Pmax is the maximum particle rigidity; 

Q is 1 for accessible arrival directions, 0 otherwise; 

J is the solar proton flux; 

J0  is the interplanetary differential nucleon flux adjusted for the level of 

solar cycle modulation; 

S is the neutron monitor yield function; 

G is the pitch angle distribution of the arriving solar protons; 

A, 	represent the latitude and longitude of the asymptotic viewing direction 

associated with OA and rigidity P; 

cos a = sin A(P) sin Os  + cos A(P) cos 19, cos(P(P)— Os); 

s  , Os ) is the axis of symmetry of the pitch angle distribution. 
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Pm ,„ in the calculation is the lowest allowed rigidity as defined in section 2.2.5, 

except where this is less than the cut-off due to atmospheric absorption, which is 

assumed to be 1 GV. For high-altitude polar sites (e.g., South Pole) this is not 

accurate as lower rigidity particles do have access to the sites. However, 

Cramp (1996) showed that the resulting errors in best fit parameters are insignificant. 

Pm. is generally taken to be 20 GV unless there is evidence from surface or 

underground muon telescopes of significant fluxes of higher rigidity particles (as was 

the case for the 29 September 1989 GLE (Swinson & Shea 1990; Humble et al., 

1991). The asymptotic cone of view calculations define Q, which has a value of 0 

for all forbidden directions above P„„„ and 1 otherwise. 

Increases are modelled above the pre-event background arising from galactic 

cosmic rays taking into account the level of solar cycle cosmic ray modulation 

(Badhwar & O'Neill 1996). For each neutron monitor the background is determined 

by summing the response of the solar cycle-modulated cosmic ray nucleon spectrum 

Jc, and the neutron monitor yield function S over all allowed rigidities. This 

function is defined so that the response to galactic cosmic rays is 100 particles (cm 2  s 
sr GV) -1  above 1 GV. The analyses presented in this study have been performed 

using the Debrunner etal. (1982) neutron monitor yield function. This yield function 

was calculated using a Monte Carlo approach and is considered to be one of the best 

available, particularly at low rigidities. 

2.2.8 	Least-Squares Determination of Parameters 

The least squares package used for this study, Gaushaus, was written at the 

University of Wisconsin Computing Centre and released in their Supplementary 

Program Series (No. 603) in 1966. An iterative technique combining the Gauss 

(Taylor series) technique and the method of steepest descent is used to obtain the 

final parameters from a series of initial guesses. The least-squares method involves 

minimising the sum of squares of differences between observed data and values 

calculated using a model function. It is represented by 

ss=± [Yk - f(61, k)1 2 
	

(2.12) 
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where Yk  is the kth  observed data point, f is the model function, 0 is the set of 

parameters and 4 is a set of constraints appropriate to the kth  observation. For each 

iteration, a set of new parameters 0 are derived with the aim of decreasing the value 

of SS. 

Gaushaus has three criteria for the termination of calculations. The first 

involves manually setting a maximum number of iterations at which calculations are 

terminated even though convergence may not have been achieved. The remaining 

two criteria are (i) sum of squares convergence and (ii) parameter convergence. If 

the sum of squares convergence criterion is ei , calculations will terminate when 

ss ( cv)- ss ( cv -1) 

ss ( wi-1) 

  

< (2.13) 

  

where SS is defined as above, -6i is the set of parameter values and 1, i — I represent 

consecutive iterations. If the parameter convergence criterion is e2, calculations will 

terminate when 

< Cz for all Of 	 (2.14) 

  

where Of  is the jth  parameter, ] ranges from one to the number of parameters and i, 

i —1 represent consecutive iterations. If both ei and e2  are set, calculations will 

terminate when either of these criteria are satisfied. 

The output from Gaushaus includes the final function values, final parameter 

values and individual 95% confidence limits for each parameter. These confidence 

limits are based on a linear hypothesis. However, the main assumption of this error 

calculation is invalid as the model employed here is highly non-linear. For example, 

the spectral exponent is dependent on any change of slope parameter and the 

spectrum is also dependent on the particle arrival direction and pitch angle 

distribution due to the rigidity dependence of viewing directions. However, some 

attempt to estimate the errors can be made. It is only practical to consider one 

parameter at a time, while fixing the best fit values of all other parameters. The 
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significance of the change of the SS value gives a measure of the significance of the 

change in the parameters. This method is used in this thesis to estimate uncertainties 

in parameters. 

The observed data points are the percentage increases recorded by neutron 

monitors. Clearly it is necessary to have at least as many stations as parameters. The 

model should accurately reproduce the observed increases, as well as produce null 

responses for those stations that did not record an intensity increase. Inclusion of 

data from stations with null responses places additional bounds on the spectra and 

anisotropy characteristics. 

Weighted least squares 

Errors in observed values may not be equal and, as a result, observations should 

not be treated equally in the minimisation of SS. It such cases it is usual to minimise 

a weighted sum of squares, WSSN, where subscript N denotes fitting to neutron 

monitor data. The sum of squares represented by equation 2.12 is replaced by 

n 	, 	, 	„ 

WSS N = E wklYk - f (0 ,k A 2  (2.15) 

where wk  is the weight assigned to the le h  observation, Yk  . In the specific 

application of the weighted least squares method, the observed values K are the 

actual percentage increases in count rate. The calculated function values, f( j, k ), 

are the calculated increases from the model, given the input parameters 0. The 

weight applied to each observation is defined as 

w = 
background + increase 

background 
	 x100 (2.16) 

where the background is the average count rate prior to the GLE and increase is the 

increase in count rate above the background level. The value of the background is 

obtained from an average over one hour of data, but scaled to the same time interval 

over which the increase is recorded (Cramp 1996). 
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2.2.9 	Pitch angle distributions 

The propagation of particles through the interplanetary medium results in a 

distribution of pitch angles which can be described using a functional form. 

Formally, the particle pitch angle a (0,0) is defined as the angle between the axis of 

symmetry of the particle distribution (0,, 0,) and the asymptotic direction of view at 

rigidity P associated with the arrival direction (0, 0). The most widely-used functions 

have been cosine or Gaussian relationships. However, Smart & Shea (1990) found 

that significantly better results could be obtained with an exponential function of the 

form 

a —sin a cos a  
G(a). exp

[  -0.5( )]  
A 

(2.17) 

The pitch angle distribution used in this study is a simplification of the 

exponential form described by Beeck & Wibberenz (1986). It has the functional 

form 

 

_ 
-0.5(a — sina cosa)  1 

A-0.5(A— B)(1— cos a) 

 

G(a)= exp 

 

(2.18) 

 

- 

 

where A and B are variable parameters (Cramp etal., 1997). 

The pitch angle distribution function represented by equation (2.18) can be 

further modified to allow for bi-directional flow: 

G i(a)=G1 (a)+ C x G2 (a 1 ) 	 (2.19) 

where G1 and G2 are of the same form as in equation (2.18) with independent 

parameters A1, B 1 , A2 and B2; a'= ir- a; and C is the ratio of reverse-to-forward flux 

ranging from 0 to 1. 

Reverse-propagating particles have opposite flow (pitch angles >90°). This can 

arise if particles initially travelling outward from the Sun encounter magnetic 

turbulence in the disturbed interplanetary medium beyond Earth's orbit, resulting in 
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the back-scattering of relativistic protons. Alternatively, bi-directional flow can be 

the result of particles arriving from the Sun along two different paths in a closed 

interplanetary magnetic loop configuration. 

2.2.10 Spectrum 

The form of the particle spectrum is related to the acceleration process. One 

advantage of the modelling technique used in this study is the ability to utilise 

various spectral forms, such as pure and modified power laws, as well as spectra 

based on theory (Ellison & Ramaty 1985), to achieve the best fit between observed 

and calculated responses. The Ellison & Ramaty shock spectrum is approximated by 

a power law with exponent -y-(1- 16 2)(1+6y) (Cramp 1996), where y is the spectral 

index, 18 is the ratio of the particle speed to the speed of light and 67 is an exponent 

modifier to account for a non-infinite shock interacting for a finite time. This form is 

referred to as the modified Ellison & Ramaty spectrum. 

An empirical functional form that can be employed to fit the neutron monitor 

observations is 

J11 = K P -(y-87(P-1)) 
	

(2.20) 

where Jil is the peak cosmic ray flux arriving from the Sun along the axis of 

symmetry of the pitch angle distribution. The parameters are the particle rigidity (P), 

the parallel flux at 1 GV (K), the power law exponent (y) and the change of y per GV 

(k), where a positive value of oy results in a spectrum that steepens with increasing 

rigidity. This functional form is referred to as the modified power law spectrum 

2.3 MODELING PARTICLE ACCELERATION 

Particle acceleration within the solar corona may occur in a variety of ways: 

acceleration at coronal shocks, either CME- or flare-driven; stochastic acceleration 

through the process of resonant wave-particle interactions; and direct particle 

acceleration in neutral current sheets by DC electric fields. Theoretical studies 

suggest that relativistic particle acceleration directly via DC electric fields is unlikely 

(Miller et al. 1997) and therefore, this process is not discussed further. The 

remainder of this chapter focuses on analytical and numerical solutions of equations 
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which describe shock and stochastic acceleration processes, both of which are 

capable of accelerating protons to relativistic energies. 

2.3.1 	Shock Acceleration 

Astrophysical shocks have been invoked as mechanisms capable of accelerating 

particles to relativistic energies. Such shocks exist in a wide variety of astrophysical 

sites including supernova remnants, active galactic nuclei, extra-galactic radio jets 

and interplanetary shocks resulting from coronal mass ejections. Particle 

acceleration by collisionless shocks (i.e., non-linear disturbances that involve 

momentum and energy transfer between particles purely by plasma processes) has 

been the subject of numerous theoretical investigations for decades (for a review of 

the literature see Jones and Ellison (1991)). 

Shock 

FIGURE 2.7: Schematic of the diffusive shock acceleration process showing a particle (black circle) moving 

back and forth across a shock (thick black line) and being accelerated. u is the plasma flow speed indicated by 

the size of the black arrows. Note u. 1 >u2  and there is always a net gain in particle energy after a complete cycle. 

Energy gain is indicated by the grey arrows. 

In collisionless shocks, charged particles gain energy via scattering due to 

magnetic field turbulence (Alfven waves) back and forth between the converging 

upstream and downstream plasmas (Figure 2.7). This basic physical process, called 

diffusive or first-order Fermi shock acceleration, is the same in relativistic and non-

relativistic shocks (Ellison & Double 2002). Most collisionless shocks are non-

relativistic, i.e., the flow speed of the unshocked plasma in the reference frame at rest 

with the shock, is much less than the speed of light (Ellison and Double 2002). 
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The Diffusion-Convection  Equation Describing Shock Acceleration 

If the distribution function in space and scalar momentum of accelerated 

particles f (x, p), is considered to be isotropic to the first order, then the steady-state 

Boltzmann equation describing the transport of particles with v > u (where v is the 

individual particle velocity and u is the plasma flow velocity) can be written in the 

form of a diffusion-convection equation (Jones & Ellison 1991) 

:x[uf(x, p) _K' 
 pil  1 r  au )  a [pf(x, A  

ex j 3 ax ) ap 
(2.21) 

• 2 where K = K11 COS
2 9Bn ± K1 sin 0Bn is the diffusion coefficient in the direction normal 

to the shock, OB„ is the angle between the shock normal and the mean magnetic field, 

and Km  and K1  are the diffusion coefficients parallel and perpendicular to the 

magnetic field respectively (Jones & Ellison 1991). 

From this equation, Axford, Lear & Skadron (1977) and Blandford & Ostriker 

(1978) established that a shock propagating through a region where particles gain 

energy by scattering freely between the converging upstream and downstream 

plasma flows (without influencing the shock structure), would produce a 

suprathermal population of particles described by a power-law momentum 

distribution function 

f (p)d 3p oc p' d3  p 	 (2.22) 

where f (p)d3  p is the number density of particles in momentum space, p is the 

momentum and o= 3r/(r-1) is the spectral index, where r is the compression ratio of 

the shock (r = ul/u2, the ratio of the upstream and downstream plasma flow 

velocities). 
Based on this, Ellison & Ramaty (1985) developed a corresponding diffusive-

shock acceleration expression in the differential particle intensity domain, which is 

essentially a power law truncated with an exponential 
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(ddjEj cc  (ddjE J o  ex13( EE0 ) 
(2.23) 

where 

(

dJ )31[2(r-01 (E2 +2Emoc2 )-(1/2)[(r+2)/(r-1)] 
- CC n. +2E , moc2
dE 0 

(2.24) 

and (dJ/dE)0 is the differential particle intensity, 

nmi  is the number density of seed particles injected far upstream of the shock, 

c is the speed of light, 

m0c2  is the proton rest mass energy, 

E is the particle energy, 

Ei  is the particle injection energy, 

r is the shock compression ratio. 

The exponential turnover in equation (2.23) was incorporated to account for the 

various effects which might limit the number of particles accelerated to higher 

energies in an actual three-dimensional shock. These effects include the finite 

temporal evolution of the shock compared to particle acceleration times and the finite 

spatial distribution of the shock compared to particle diffusion lengths. In addition, 

particle acceleration is also thought to be less effective above the energy E0 (e-

folding energy) when proton intensities can no longer sustain the growth of resonant 

waves. This process leads to the leaking of high-energy particles from the 

acceleration region, thereby truncating the power law behaviour. Ellison & Ramaty 

(1985) found that for several large solar events the electron and proton spectra were 

consistent with predictions for diffusive-shock acceleration. 

The Ellison & Ramaty (1985) diffusive shock acceleration equation, and 

variations thereof, have been extensively cited in the literature and widely used to 

model SEP acceleration (e.g., Lockwood et al. (1990); Mazur et al. (1992); 

Lovell, Duldig & Humble (1998); Tylka et al. (2000, 2001); Mewaldt (2005); Tylka 

& Lee (2006); Bombardieri et al. (2006, 2007)). 
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2.3.2 	Stochastic Acceleration 

Stochastic acceleration is broadly defined as any process in which a particle can 

gain or lose energy in a short time interval, but where the particle systematically 

gains energy over longer intervals of time (Miller et al. 1997). Energy from 

magnetohydrodynamic (MHD) turbulence is transferred to particles through the 

process of wave-particle resonant interactions. In such an interaction, a particle 

gyrating along the magnetic field follows and is accelerated by the electric field of an 

wave, which has a velocity much less than the particle. Alfven waves are 

incompressible transverse oscillations which propagate along field lines with 

magnetic tension as a restoring force. They can be thought of as propagating wiggles 

in magnetic field lines. In gyro-resonant interactions, the oscillations are rapid 

enough so that the first adiabatic invariant of the particle is not conserved and the 

particle is scattered in pitch angle and is simultaneously energised (Miller 1991). 

The origin of Alfven waves is a topic of much conjecture. However, it is thought 

that they are generated at large wavelengths by plasma outflow jets created at 

magnetic reconnection sites or by large-scale magnetic field perturbations 

(Miller et cd., 1997; Priest & Forbes 2002). Magnetic reconnection refers to the 

breaking and reconnecting of oppositely- directed magnetic field lines in a plasma. 

Current sheets store magnetic energy by increasing the energy density of the 

magnetic field. 

FIGURE 2.8: Schematic representation of the reconnection process at the Earth's magnetotail as observed by the 
Cluster spacecraft. Source: http://sci.esa.int/science-e-media/img/3a/Reconnection-scales.tiff/  
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Plasma instabilities can arise near strong current sheets, which are prone to collapse 

(dissipate). This results in magnetic reconnection, which rapidly converts stored 

magnetic energy into kinetic and thermal energy. High-velocity plasma outflow jets 

(limes et al., 1997; Miller etal., 1997; Galsgaard et al., 2005) are produced as a 

result of the magnetic reconnection process (Figure 2.8). Such jets represent a 

potential source of MHD turbulence which can initiate stochastic acceleration. 

Separatrix curve 

FIGURE 2.9: Schematic representation of photospheric footpoint topology. Current sheets are hypothesised to 
form at a separatrix curve in two-dimensions (top) and separatrix surface in three dimensions (bottom). Source: 
Priest & Forbes (2002) 

Current sheets form due to gradients in the magnetic field which are created by a 

variety of mechanisms such as MHD instabilities and MHD motions. Figure 2.9 

illustrates the complexity of current sheet topology in two and three dimensions. In 

two dimensions (Figure 2.9 top), the field is due to four sources of alternating sign in 
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a line, creating an X type magnetic null point where the magnetic field intensity, B, 

is zero. Emanating from the null point are four separatrix curves, which divide the 

plane into topologically-distinct regions. Current sheets are thought to occur at both 

the magnetic null (X) points and separatrix curves (Priest & Forbes 2002). In three 

dimensions (Figure 2.9 bottom), the field is due to four photospheric sources on a 

plane possessing two separatrix surfaces in the form of domes. The domes separate 

the volume into topologically-distinct regions, which intersect each other via a 

separator. Current sheets can form at both the separatrix surface (the 3D equivalent 

to the separatrix curve) and separator. 

The magnetic reconnection process is ubiquitous in the solar corona and has 

been invoked as the main driver of solar eruptive episodes (Innes et al., 1997; 

Priest & Forbes 2000 & 2002). Importantly, stochastic processes resulting from 

magnetic reconnection can accelerate particles to relativistic energies. 

With the advent of the RHESSI spacecraft, there is now strong observational 

evidence supporting the importance of current sheets in major solar eruptive episodes 

(Ciaravella et al., 2002; Ko et al., 2003; Sui & Holman 2003; Webb et al., 2003; 

Gary & Moore 2004; Sui, Holman & Dennis 2004, Lin et al., 2005, Bemporad et al., 

2006). 

Stochastic Acceleration: Solutions to the Fokker-Planck Equation 

Stochastic acceleration initiated by processes associated with magnetic 

reconnection (e.g., MHD turbulence), can be described by either a diffusion equation 

in momentum space or a Fokker-Planck equation in energy space (equation 2.25). 

The Fokker-Planck equation describes the time evolution of the probability density 

function of the position and velocity of a particle. The diffusion equation is 

characterised by a momentum diffusion coefficient, whereas the Fokker-Planck 

equation displays the diffusive and convective nature of the stochastic acceleration 

process. 

	

aN(E,t)_ a 	 N(E,t)  
1 132,[p(E)N(E,t)] 	[A(E)N(E,t)] 	+Q(E,t) (2.25) 

at 	2 aE - 	 aE 	 r(E,t) 

where, 
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N(E,t) is the number density of particles as a function of energy and time; 

A(E) contains the systematic effect of stochastic acceleration and deceleration 

processes; 

D(E) contains the diffusive effects as a result of dispersion due to the systematic 

energy change rate; 

T is the energy-dependent escape time; 

Q is the injection rate. 

The Fokker-Planck equation has been solved analytically in the non- and ultra-

relativistic domains (Ramaty 1979; Miller, Guessoum & Ramaty, 1990); however 

there is no analytical time-dependent solution (which describes both instantaneous 

and continuous injection) for the Fokker-Planck equation in the trans-relativistic 

domain. 

Perez-Peraza & Gallegos-Cruz (1994) and Gallegos-Cruz & Perez-Peraza 

(1995) presented solutions to the Fokker-Planck equation (2.25) in the energy 

domain, based on the WKBJ (Wentzel, Karmer, Brilloun, Jeffery) numerical 

approximation method. The WKBJ method is a useful technique for solving 

differential equations (see Gallegos-Cruz & Perez-Peraza (1995) for a complete 

review of the technique). These solutions are valid over the entire energy range (i.e., 

non-relativistic, trans-relativistic, ultra-relativistic) for both time-dependent and 

steady-state conditions. Furthermore, Perez-Peraza & Gallegos-Cruz (1994) 

demonstrated that steady-state spectra obtained using the WKBJ method are in 

excellent agreement with steady-state spectra obtained by Miller et al. (1990), 

thereby providing confidence in the technique. 

When the time evolution term in equation (2.25) is removed (i.e., aNiat is 

equal to zero), the general solution for the steady-state condition is written as 

equation (2.26) (equation (21) in Gallegos-Cruz & Perez-Peraza (1995)) 

N (E) Du  4  (E)  E 
q(E )  expki 	2a 1/2R2 )dE' 	(2.26) 

2a 1/4  -1 E0 D314 (E') 

where, 

N(E) = particles per unit energy; 
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D = (a/3) 16 3 6 2 , where a = (5 + a),(3 + (a/3),6 -1 , g is set to 1 s - I , fl = V/C, 

E = energy + proton rest mass energy and a is the acceleration efficiency (NB: 

here a does not represent the pitch angle distribution); 

q(E') is the injection spectrum; 

R I  and R2 are analytical functions of energy 

Stochastic Acceleration: Mono-Energetic Continuous Injection 

A selective injection process is required to supply particles into the acceleration 

region where they are then re-accelerated to higher energies via resonating Alfven 

wave—particle interactions. Equation (2.27) (equation (43) in Gallegos-Cruz & 

Perez-Peraza (1995)) incorporates an idealized pre-acceleration step via continuous 

mono-energetic injection at a characteristic supra-thermal energy Ei . Equation (2.27) 

represents the steady state analytical solution to equation (2.26) incorporating a 

mono-energetic injection function. 

(.7012)00i fir N1/2 
GO) 

2b 
+ fie ]

-(b+1)/ 
N(E)L- / 3)1/2 a1/4(E)a l/ 4 

r
17 .  \ D3/ 2 
OPO 	6-0 60 + ASO 

(2.27) 

x exp[(i)(fi -1— 	)] 

where, 

N(E)= particles per unit energy; 

90 = rate of particle injection; 

fi= v/c; 

Ei = energy of injected particles; 

a 2:: (5+a)/3 + (a/3)P -1 , with gset to 1 s -1 ; 

e = energy + proton rest mass energy; 

a is the acceleration efficiency; 

b= [(3/a)(8 + a)] I/  

Stochastic Acceleration: Neutral Current Sheet Injection 

Equation (2.28) is an alternative steady-state numerical solution to equation 

(2.26) and incorporates a more realistic injection function which represents an initial 
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acceleration phase by DC electric fields within a neutral current sheet. The rapid 

dissipation of the magnetic field within current sheets releases stored magnetic 

energy. A major fraction of this released energy generates MHD turbulence and 

particles are then further accelerated to relativistic energies via resonating Alfven 

wave—particle interactions. Equation (2.28) is based on an updated version of 

equation (51) in Gallegos-Cruz & Perez-Peraza (1995) (J. Perez-Peraza 2006, private 

communications). Further numerical quadrature was used to evaluate this integral, 

which is written as 

9.44 x10 -7  6 1/2  exp(—  JE )  x 	exp[JE, —1.12(E/  E,r LE' (2.28) N(E) (acc/3 )1/2 x 	fi l/ 4 	E, 	E'114 ,3/2 DINE') 

where 
= (6 2 m  2 c  I/2/e  ; 

D = (a13) /3 3 6.2 ; 

Ei  is the injection threshold value; 

Ec = 1.7926x10 3(B 3L/n) = 4.5 MeV. 

Here N(E) is particles per unit energy; a and J are analytical functions of energy 

as described by Gallegos-Cruz & Perez-Peraza (1995) and Perez-Peraza et al. (2006); 

c is the energy + proton rest mass energy; B is the background magnetic field 

strength in the neutral current sheet (5 x 10-4 T); n is the local particle number 

density (10 13  cm -3); and L is the length of the neutral current sheet (107  cm). 

2.3.3 	Non-Linear Least Squares Analysis 

The generalized non-linear least squares (GNLS) package used in this study is a 

FORTRAN program developed by Powell and MacDonald (1972). This program is 

designed to solve the GNLS problem where the model may be non-linear in its 

parameters and independent variables, and both are subject to errors. Furthermore, 

the program calculates all derivatives used in the analysis by numerical 

approximation, thereby avoiding the need for user-supplied input derivatives. The 

GNLS program converges rapidly to a solution yielding estimates of the parameters 

and providing good approximations to their variances. 
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To formalize the method, let the non-linear model represent a function 

y= f(x, a), where the components of a represent the parameters ak, k = 1, 2, , NP 

(Powell and MacDonald (1972)). The least squares condition requires that the sum 

of squares be minimized as follows: 

WSS 	W  v- 
2 Wx, Rx2, 	 (2.29) 

i=1 

where; 

= 	y, and R = X, — xi  are the least square residuals, 

w =1/ a 2  and wx,  = 1/ ax2  are the weights w in terms of the variances a of y, 	Y, 

the observations. 

N is the number of observations. 

The program uses the Deming method to refine the user-supplied starting 

parameter guesses before the 'general method' is employed to find the final least 

squares approximations. The Deming method uses weights derived from uncertainty 

measures for each variable at each measured point. However, the Deming iterative 

solution is only an approximation and, on convergence, does not necessarily lead to a 

true least-squares solution. In contrast, the 'general method' iteration converges to a 

solution with a sum of squares always less than that found by the Deming method 

(MacDonald 1974). 

For this study, the diffusive-shock acceleration equation (2.23) and stochastic 

acceleration equations (2.27) and (2.28) were incorporated into the GNLS program 

as functions in the log domain. The variable parameters for equation (2.23) are the 

shock compression ratio r and the e-folding energy E0 (MeV). The variable 

parameters for equations (2.27) and (2.28) are the acceleration efficiency a and a 

normalization factor. The neutron monitor input into the GNLS fitting routine is 

chosen at selected energies with data points weighted by errors in the flux data, 

spaced evenly on a logarithmic scale. 

41 
MODELLING 



2.4 SUMMARY 

The historical development of GLE modelling has been briefly reviewed. This 

sets into context the form of the modelling used to investigate the 14 July 2000, 15 

April 2001 and 20 January 2005 GLEs. Geomagnetic field disturbances are 

accounted for by the use of the Tsyganenko (1989) magnetospheric model. This 

model was upgraded to include the Dst index (Boberg et al., 1995), allowing for a 

more accurate determination of viewing directions for appropriate levels of 

geomagnetic disturbance. To better resolve the responses of neutron monitors and 

produce a more accurate model of the arrival of relativistic particles at the Earth, 

asymptotic viewing cones were calculated using nine different arrival directions 

(vertical; and 90°, 180°, 270° and 360° azimuth at 16° and 32° zenith). The 

modelling procedure employed a least-squares method to efficiently analyse 

parameter space for optimum solutions. An exponential function was used to model 

the particle pitch angle distribution and a modification of this function was used to 

model bi-directional flow. 

This chapter has also examined the theoretical framework behind the shock and 

stochastic mechanisms which can accelerate protons to relativistic energies (section 

2.3). An analytical description of the widely used Ellison & Ramaty (1985) diffusive 

shock acceleration equation is given. In addition, analytical and numerical 

descriptions of stochastic acceleration via mono-energetic continuous injection and 

neutral current sheet injection are presented. To determine the acceleration processes 

responsible for the 14 July 2000, 15 April 2001 and 20 January 2005 GLEs, these 

analytical and numerical spectral forms were fitted to neutron monitor measurements 

of relativistic proton fluxes covering the energy spectrum up to 10 GeV, as described 

in the following chapters. 
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THE 14 JULY 2000 GLE 

3.1 INTRODUCTION 

The 14 July 2000 X5.8/3B solar flare and associated full halo CME (Figure 3.1) 

represent the largest of a series of solar transient phenomena which occurred during a 

period of intense solar activity extending from 10 to 15 July 2000. This period, 

described as the 'Bastille Day Epoch' by Dryer et al. (2001), produced three X-class 

flares (including the Bastille Day flare) and two halo CMEs that were observed with 

the LASCO coronagraphs (C2/C3) on board the SOHO spacecraft. The CMEs, 

associated shocks and magnetic cloud structures caused major disturbances to the 

IMF and the geomagnetic field (Dryer et al., 2001). The primary source of this 

activity was NOAA active region 9077, located near the solar meridian N22°, W07° 

at the time of the Bastille Day flare. 

FIGURE 3.1: The 14 July 2000 solar flare as recorded by EIT on board SOHO  at 171 A (left). Source: 
see Figure 1.1. The 14 July 2000 CME as recorded by the LASCO/C2 coronagraph on board SOHO 
(right). Source: http://soho.nascom.nasa.gov/hotshots/2000_07_14/1054_c2.jpg/  
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3.2 OBSERVATIONS 

Soft X-rays observed by the GOES 8 geostationary satellite commenced at 

10:03 UT, and reached a peak at 10:24 UT (Figure 3.2). Klein etal. (2001) reported 

prominent bright continuum radio emission accompanied by a group of intense Type 

III bursts from microwave to hectometric wavelengths, with a sudden onset near 

10:22 UT and a bright phase between 10:30 and 10:40 UT. Reiner et al. (2001) 

reported that the flare produced very intense, long-duration Type III radio emissions 

associated with electron acceleration deep in the solar corona. During its 

propagation through the solar corona and interplanetary medium, the associated 

CME generated decametric to kilometric Type II radio emissions 

(Reiner etal., 2001). Share et a/. (2001) reported that hard X-ray and 'y-ray line 

emissions were observed by the HXS and GRS detectors on board the Yohkoh 

spacecraft at 10:20 UT, approximately four minutes before the peak in soft X-ray 

emission (10:24 UT). Both emissions peaked at 10:27 UT with 'y-ray emission 

lasting until approximately 10:40 UT. The HEPAD detectors on board GOES 8 

recorded sudden increases in relativistic protons (370-850 MeV) between 10:30 and 

10:35 UT (Figure 3.2). 
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FIGURE 3.2: GOES 8 observations of soft X-ray emissions at 1-8 A (low energy channel) (left). Five 
minute GOES 8 observations of relativistic proton fluxes (right). P8 to P10 represent the HEPAD 
detector differential energy channels (particles (cm 2  s Sr MeV) -1 ) with the following characteristics of 
nominal energy range (MeV): P8 = 370-480; P9 = 480-640; P10 = 640-850. 
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The GLE onset occurred between 10:30 and 10:35 UT at several stations, with 

Thule recording an onset at -10:32 UT in 1-minute data. 
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FIGURE 3.3: GLE intensity/time profiles (corrected to sea-level pressure) for 14 July 2000 as recorded 
by (a) SANAE, (b) Thule, (c) South Pole, (d) Mawson, (e) Tixie Bay and (/) Climax neutron monitors. 
The Climax intensity above background is shown on a different scale. 
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The largest neutron monitor responses were observed at South Pole and 

SANAE, with respective maxima in 5-minute data of 58.3% and 54.5% above the 

pre-increase levels. The event was seen at Climax, indicating the presence of 

particles with rigidity of at least 3.0 GV. The LomnicicY §tit neutron monitor, with a 

geomagnetic cut-off of 4.0 GV, recorded an increase of marginal significance that 

may or may not be related to the GLE. Corrections of observed increases to a 

standard sea-level atmospheric depth of 1033 g cm -2  were made using the two-

attenuation length method of McCracken (1962a). An attenuation length of 110 g 

cm-2 was derived from a comparison of data from Mt Wellington, Hobart and 

Kingston neutron monitors. Figure 3.3 shows the details of the pressure-corrected 

sea-level intensity-time profiles for selected neutron monitors. SANAE was found to 

have the largest response (42.1%, Figure 3.3a) and was used as the normalisation 

station for this analysis. 

FIGURE 3.4: Viewing directions of neutron monitors in geographic coordinates at 10:40 UT 
(10 minutes after GLE onset) on 14 July 2000. Geomagnetic conditions were slightly disturbed (Kp = 
4; Dst = -18). Lines for each station represent the vertical viewing direction at different rigidities. '4' 
represents the vertical viewing direction at maximum rigidity (-4 GV),  while  '1' represents the 
vertical viewing direction at the atmospheric cutoff (-1 GV). The solid  circles  show the median 
rigidity of response to the GLE for each station. Star and filled star symbols designate the position of 
the sunward and anti-sunward field direction respectively. Station abbreviations are: APT = Apatity, 
Russia; GSB = Goose Bay, Canada; WK = Inuvik, Canada; KIN = Kingston, Australia; MAW = 
Mawson, Antarctica; MCM = McMurdo, Antarctica; SAN = SANAE, Antarctica; SPO = South Pole, 
Antarctica; TER = Terre Adelie, Antarctica; THU = Thule, Greenland; TXB = Tixie Bay, Russia. 
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Figure 3.4 shows the viewing directions (in geographic coordinates) of selected 

neutron monitors at 10:40 UT. The Thule neutron monitor, with a viewing direction 

near the measured field direction (ACE) recorded a rise to maximum intensity (39%) 

in approximately 10 minutes (Figure 3.3b) indicating that relativistic protons had 

very good access to Sun-Earth connecting field lines. This is in contrast to other 

events where the rise to maximum intensity can take many hours (e.g., the GLE of 

19 October 1989). The rapid rise is surprising considering the source of the 

14 July 2000 solar eruption, near the solar meridian, which is at a considerable 

distance from the nominal garden hose foot-point (i.e., W60°). Significant increases 

in neutron monitor responses at 10:40 UT were also observed at stations viewing in 

the anti-sunward field direction (e.g., Tixie Bay, 12.8%; Figure 3.3e), as well as 

stations viewing perpendicular to the measured sunward field direction (e.g., Apatity, 

30.6% and Inuvik, 15.3% not shown in Figure 3.3). 

3.3 MODELLING THE NEUTRON MONITOR RESPONSE 

The geomagnetic field model as described in section 2.2.4 with IGRF 2005 

parameters was employed to determine the asymptotic viewing directions of neutron 

monitors. Observations from 30 neutron monitors were modelled for every five-

minute interval between 10:35 and 10:55 UT during the rise and peak phases of the 

event. During the decay phase, observations were modelled every ten-minutes from 

11:00 to 14:00 UT. Each indicated time represents the start of a five-minute 

integration interval. Parameter determinations are less accurate later in the event, 

when the increase above background is small. Fits were discontinued at 14:00 UT by 

which time the increase above the background at the normalisation station (SANAE) 

was —10 %. 

Tables 3.1 and 3.2 show the calculated percentage increase for time intervals 

representing the rise (10:35 to 10:50 UT), peak (10:55 UT, 11:00 UT) and decline 

(11:10, 11:20, 11:40 and 11:50 UT) phases of the event along with the actual 

increases corrected to standard sea-level atmospheric depth. Good fits to 

observations were achieved during all phases of the 14 July 2000 GLE. However, 

South Pole and Mawson responses were not as well fitted during the high intensity 

phase of the event. 
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TABLE 3.1 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 14 JULY 2000 GLE FOR THE MODIFIED POWER LAW FIT 

Station 
Lat. 

(deg.) 

Lon. 

(deg.) 

P„b  

(GV) 

Alt. 

(m) 

10:35 UT 

Observed' 	Calculated a  

10:40 UT 

Observed 	Calculated" 

10:45 UT 

Observed' 	Calculated d  

10:50 UT 

Observed' 	Calculated "  
Apatity 	 67.55 33.33 0.61 177 20.0 18.7 30.6 22.9 32.2 28.6 28.2 29.1 
Aragats 	 40.50 44.17 7.60 3200 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.1 
Climax 	 39.37 253.82 3.03 3400 3.1 4.4 3.5 5 2.7 4.1 3.3 3.9 
Goose Bay 	 53.27 299.60 0.52 46 8.6 9.0 18.5 18.6 23.2 23.6 24.1 26.9 
Haleakala 	 20.27 203.73 13.3 3033 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Hennanus 	 -34.42 19.22 4.90 26 11.1 4.4 15.3 12.1 15.6 14.1 16.1 14.0 
Hobart 	 -42.90 147.33 1.88 18 1.6 1.8 0.0 0.2 1.1 0.2 1.8 0.3 
lnuvik 	 68.35 226.28 0.18 21 7.5 5.1 15.6 13.3 18.9 18.3 20.8 21.5 
Jungfraujoch 	 46.55 7.98 4.48 3475 0.8 1.2 0.5 0.1 0.2 0.2 0.4 0.3 
Kerguelen Island 	 -49.35 70.25 1.19 33 6.4 10 14.9 20.9 22.7 24.3 26.2 25.1 
Kiel 	 54.33 10.13 2.29 54 3.3 4.6 7.4 8.4 8.2 8.0 7.0 7.1 
Kingston 	 -42.99 147.29 1.88 65 8.6 4.3 16.2 12.0 15.4 14.4 14.2 13.9 
LARC 	 -62.20 301.04 2.21 40 1.2 1.8 1.3 0.8 1.3 0.8 1.2 0.9 
Lomnicky 	 tit 	 49.20 20.22 4.00 2634 4.1 7.7 1.7 4.8 4.0 3.9 3.2 3.8 
Magadan 	 60.12 151.02 2.10 220 6.7 8.0 17.6 17.3 20.8 24.3 24.1 27.4 
Mawson 	 -67.60 62.88 0.22 30 7.3 4.6 11.2 12.0 11.5 14.6 12 14.6 
McMurdo 	 -77.85 166.72 0.01 48 2.0 5.0 11.4 11.8 20.1 18.5 26.3 22.0 
Moscow 	 55.47 37.32 2.46 200 4.1 4.3 8.4 9.3 9.1 7.5 8.7 7.1 
Mt. Wellington 	 -42.92 147.23 1.89 725 10.0 4.4 14.2 11.8 16.2 14.3 15.3 13.6 
Newark 	 39.68 284.25 1.97 50 6.3 6.3 8.9 10.9 7.7 9.6 8.8 8.1 
Oulu 	 65.05 25.47 0.81 15 17.3 14.7 24.8 19.7 25.0 25.3 24.8 26.5 
Potchefstroom 	 -26.68 27.10 7.30 1351 1.1 0.6 1.2 0.0 1.6 0.0 0.2 0.0 
Rome 	 41.86 12.47 6.32 0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 
SANAE " 	 -71.67 357.15 1.06 856 22.2 22.2 30.0 30.0 37.5 37.3 41.8 41.8 
South Pole 	 -90.00 0.00 0.10 2820 5.2 4.9 12.8 13.0 21.1 18.8 25.2 22.3 
Terre Adelie 	 -66.67 140.02 0.01 45 3.7 5.5 9.7 12.1 16.2 19.1 18.9 23.0 
Thule 	 76.50 291.30 0.00 260 23.7 23.3 39.6 37.1 34.2 33.3 35.8 36.5 
Tixie Bay 	 71.58 128.92 0.53 0 3.2 6.3 12.8 16.0 16.7 20.4 21.2 22.8 
Tsumcb 	 -19.20 17.58 9.29 1240 0.3 0.3 0.0 0.0 0.0 0.0 0.9 0.0 
Yakutsk 	 62.03 129.73 1.70 105 3.7 4.7 10.2 12.1 14.6 17.1 15.7 19.3 
'Normalisation staf on 
b  Nominal vertical geomagnetic cutoff rigidities represent the minimum rigidities below which particles do not have access to a particular site on the Earth's surface. The cut-off at the 
geomagnetic equator is - 17 GV, decreasing to zero at the geomagnetic poles. 
` Actual % increases corrected to standard sea level atmospheric depth. 
d  Calculated % increases 
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TABLE 3.2 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 14 JULY 2000 GLE FOR THE MODIFIED POWER LAW FIT 

Station 
10:55 UT. 

Observed! 	Calculated 

11:00 UT 

Observed ' 	Calculated' 

11:10 UT 

Observed b 	Calculated' 

11:20 UT 

Observed b 	Calculated ' 

11:40 UT 

Observed ' 	Calculated' 

11:50 UT 

Observed h 	Calculated ' 

Apatity 	 26.2 27.4 28.4 28.3 26.4 27.4 24.9 26.7 20.9 21.8 21.5 20.6 
Aragats 	 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 
Climax 	 2.9 3.3 2.0 2.8 2.5 2.1 0.5 1.6 1.4 1.0 0.0 0.6 
Goose Bay 	 27.9 30.5 30.8 31.9 26.7 31.9 28.9 32.5 22.8 26.5 22.5 25.2 
Haleakala 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hcrmanus 	 13.4 13.2 13.6 13.0 12.8 11.4 12.0 11.0 9.9 9.1 7.6 7.6 
Hobart 	 0.6 0.4 0.0 0.4 0.0 0.2 0.6 0.2 0.9 0.1 0.0 0.1 
lnuvik 	 22.2 22.6 25.8 24.0 27.3 23.6 27.1 23.2 24.2 19.4 21.8 18.1 
Jungfraujoch 	 0.3 0.3 1.2 0.3 0.1 0.2 0.6 0.1 0.7 0.1 0.9 0.0 
Kerguelen Island 	 26.9 24.1 28.0 24.8 26.7 24.9 26.2 24.4 22.7 20.0 20.6 19.5 
Kiel 	 6.7 6.2 6.5 6.0 4.8 4.4 4.5 3.6 1.5 2.6 2.6 1.9 
Kingston 	 14.5 14.1 14.7 13.9 12.7 13.1 11.4 12.8 10.1 10.4 8.2 7.8 
LARC 	 1.0 0.8 1.3 0.9 1.0 0.6 0.8 0.5 0.4 0.2 0.5 0.2 
Lomnicky gat. 	 1.6 3.4 3.0 3.1 2.0 2.3 0.7 1.3 0.5 0.9 2.0 0.7 
Magadan 	 25.1 30.5 28.6 32.3 27.3 31.7 30.7 31.9 24.5 25.6 23.1 24.3 
Mawson 	 10.8 13.3 10.6 12.5 10.6 10.8 8.6 9.1 7.0 7.6 6.2 7.0 
McMurdo 	 24.5 23.4 24.0 25.3 26.1 25.2 29.8 25.8 21.9 23.0 20.4 22.4 
Moscow 	 8.6 6.0 7.8 6.2 6.7 5.4 5.7 4.5 3.7 3.1 3.9 2.7 
Mt. Wellington 	 15.8 14.4 14.6 14.6 11.8 12.0 11.3 10.5 9.3 8.5 9.5 8.5 
Newark 	 7.3 7.6 5.4 6.8 4.8 5.4 3.4 3.6 3.0 2.8 1.1 2.1 
Oulu 	 27.9 25.9 28.8 27.5 27.3 26.6 25.1 26.5 20.4 21.7 20.9 20.8 
Potchefstroom 	 0.6 0.0 2.5 0.1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 
Rome 	 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SANAE " 	 42.2 42.2 39.1 39.0 38.6 38.4 35.2 35.1 26.1 26.0 24.1 24.1 
South Pole 	 28.7 25.6 30.1 27.0 32.0 28.1 32.0 30.2 30.6 29.3 32.3 31.4 
Terre Adclic 	 22.4 24.2 22.1 26.0 25.8 26.0 24.6 26.0 23.4 21.4 21.9 20.5 
Thule 	 32.2 33.5 28.7 29.8 31.1 33.4 28.4 31.4 25.7 27.8 25.3 26.4 
Tixic Bay 	 21.4 23.3 24.8 25.4 21.5 25.4 21.0 26.0 17.3 21.6 17.6 21.0 
Tsumcb 	 0.4 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Yakutsk 	 15.9 19.8 16.6 21.1 13.8 21.1 14.2 20.1 11.3 17.9 11.2 16.0 
a  Normalisation station 
b  Actual % increases corrected to standard sea level atmospheric depth. 
' Calculated % increases 
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In particular, the model slightly overestimated the neutron monitor response at 

Mawson and underestimated the neutron monitor response at South Pole. Model fits 

to observations for time intervals not shown in Tables 3.1 and 3.2 are presented in 

Appendix A. 

3.3.1 	Arrival Directions 

Figure 3.5 illustrates the GSE latitude and longitude of the axis of symmetry of 

the particle pitch angle distribution (arrival direction), together with the IMF 

direction. The average GSE longitude of the IMF direction (as measured by ACE) 

was 3300, which implies that (longitudinally) particles were flowing from the Sun 

close to a nominal Parker spiral. The apparent longitude of the arrival direction 

between 10:30 and 11:00 UT was centred slightly east of the Sun-Earth line, and is 

approximately 30° east of the measured field direction. Between 11:10 and 12:40 UT 

the model shows good agreement with the measured IMF longitude. However, from 

12:40 to 15:00 UT, model longitudes move east of the measured field longitude by 

up to —120°. 
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FIGURE 3.5: GSE longitude (top) and GSE latitude (bottom) of the apparent arrival directions (this 
study; solid circles) plotted with the negative magnetic field direction (1-hour centred moving 
averages; line) as measured by the MAG instrument onboard the ACE spacecraft. 
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From 10:30 to 10:55 UT the apparent latitude of the arrival direction shows 

good agreement with the measured field latitude. However, during the decline phase 

model latitudes are in poor agreement with the measured field latitude, although they 

do follow the overall southerly trend. As noted by Bieber et al. (2002) there is no 

reason why the magnetic field measured at a point should be the same as the average 

field sampled by the particle over its orbit. For example, a 2 GV proton has a Larmor 

radius of —0.01 AU, which is of the order of the coherence length of interplanetary 

magnetic turbulence. Therefore, model flow vectors need not align exactly with the 

measured magnetic field vector. 

3.3.2 	Pitch Angle Distributions 

The particle pitch angle a is defined as the angle between the particle velocity 

and the mean magnetic field. The pitch angle distribution used here is a 

simplification of the exponential form described by Beeck & Wibberenz (1986) and 

is defined by parameters A and B (see section 2.2.9). Parameter A has most effect on 

the width of the anisotropy while B has most effect on the relative flux at pitch 

angles >90°. The distribution can be considered as having an anisotropic component 

(representing particles which arrive directly from the Sun) and an isotropic 

component (where the effects of local scattering dominate the distribution). 

The temporal development of the pitch angle distribution between 10:35 and 

11:40 UT is illustrated in Figure 3.6 and the fitted parameters are listed in Table 3.3. 

TABLE 3.3 

PITCH ANGLE DISTRIBUTION 
PARAMETERS 
14 JULY 2000 

Time ° 
(UT) 

A b  B e  

10:35 	 0.012 0.509 
10:40 	 0.318 1.171 
10:45 	 0.140 1.488 
10:55 	 0.030 1.398 
11:10 	 0.030 2.350 
11:40 	 0.470 3.447 
a  Time refers to the start of a 
five-minute interval. 

b  Parameter A has most effect 
on the width of the anisotropy. 

' Parameter B has most effect on the 
relative flux in the reverse direction. 
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Near GLE onset (10:35 UT) the particle arrival was strongly anisotropic. This 

suggests that, initially, relativistic protons injected into the interplanetary medium 

arrived directly from the Sun without being affected to significant degrees by local 

scattering. However, the anisotropy decreased rapidly over the next 20 minutes and 

remained relatively unchanged thereafter. This indicates that relativistic particles 

experienced significant scattering. 

Pitch Angle (Degrees) 

FIGURE 3.6: Derived pitch angle distributions for 10:35, 10:40, 10:45, 10:55, 11:10 and 11:40 UT, 
during the 14 July 2000 GLE. 

3.3.3 	Spectrum 

An advantage of the GLE modelling technique used in this study is the ability to 

utilize various spectral forms such as pure and modified power laws, as well as 

theoretical shock acceleration spectra (Ellison & Ramaty, 1985), to achieve the best 

fit between observed and calculated responses (see section 2.2.10). In contrast, 

Bieber et al. (2002) determined spectral exponents from the ratio of count rates of the 

standard (NM64) neutron monitor at the South Pole and an unshielded (Polar Bare) 

neutron monitor at the same site. Their technique utilises the different response 
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functions of these neutron monitors. The yield function used by Bieber et al. (2002) 

differs from that used in this study (Debrunner, Fluckiger & Lockwood 1982). Use 

of the Debrunner et al. function generally produces steeper power law spectra 

compared to the model of Bieber & Evenson (1991). Lockwood et al. (2002) 

combined the Debrunner et al. yield function with the Bieber & Evenson (1991) 

method to calculate spectral exponents, albeit with Mt. Washington and Durham 

stations, and also obtained steeper spectral exponents. 

TABLE 3.4 

MODEL PARAMETERS AND ASSOCIATED SPECTRAL FORMS 

Power Law Modified Power Law Modified Ellison & Ramaty 	I 
Time ° Inc b  Jr, y ° 	wss ' J11 Y eryf wss g J 11  y Sy h  wss ' 
10:30 3.39 2 -4.35 22 2 -4.30 2.35 x 10 -3  22 2 -3.97 0.12 22 
10:35 22.12 49 -5.18 221 50 -5.21 5.61x104  220 21 -2.97 5.40 218 
10:40 29.87 55 -5.76 311 4 -0.01 4.15x10°  274 9 -0.54 15.64 273 
10:45 37.38 98 -6.33 173 40 -3.97 2.10x10°  131 19 -0.98 17.76 132 
10:50 41.66 120 -6.64 193 100 -5.76 1.01x10°  157 80 -4.63 7.35 152 
10:55 42.07 114 -6.86 200 132 -6.89 3.80x10- ' 146 86 -5.10 7.38 157 
11:00 39.00 101 -6.98 200 142 -7.57 4.78 x 10-3  138 79 -5.22 7.95 158 
11:10 38.43 119 -7.31 290 189 -7.96 6.40 x 104  222 109 -5.93 7.06 253 
11:20 35.03 118 -7.54 261 186 -8.43 3.91 x 10 -3  186 116 -5.64 11.73 203 
11:30 28.58 98 -7.76 187 179 -8.68 2.71 x 10 -9  117 105 -6.60 7.62 160 
11:40 26.00 96 -7.67 233 191 -8.76 8.60 x 10 -3  164 104 -5.53 14.68 180 
11:50 23.98 109 -7.91 161 241 -9.19 4.46x10 -5  100 129 -6.48 11.00 127 
12:00 21.96 106 -8.00 165 239 -9.41 4.61x 10 107 139 -5.37 24.29 108 
12:10 19.46 89 -7.95 158 204 -9.46 3.48x 1(0 96 108 -6.58 11.90 135 
12:20 17.36 86 -8.14 116 211 -10.00 1.26x IV 63 116 -5.90 22.60 66 
12:30 17.44 89 -8.27 145 212 -9.77 1.34x10-5  95 86 -6.67 16.64 125 
12:40 14.70 61 -7.82 139 136 -9.09 1.75 x 10 -9  95 68 -5.72 16.27 109 
12:50 15.03 67 -7.97 99 103 -9.33 4.02x10 74 80 -6.36 13.36 83 
13:00 14.78 66 -7.83 101 147 -9.85 5.49x 10 -2  75 79 -5.82 15.67 90 
13:10 12.36 53 -7.95 90 117 -9.35 1.20 x 10 -5  63 62 -6.28 13.70 83 
13:20 12.20 59 -8.03 81 Ill  -9.29 8.24x10 -9  62 54 -6.16 13.02 81 
13:30 11.07 49 -7.81 65 89 -8.76 7.72x10-6  56 50 -6.16 10.45 84 
13:40 10.58 49 -8.05 76 90 -8.78 6.31 x 10- ' 71 54 -5.62 18.45 64 
13:50 10.02 48 -7.97 54 50 -6.21 5.21 x 10°  49 50 -7.57 2.13 53 
14:00 10.02 44 -8.00 53 56 -7.20 2.80 x 10°  51 47 -5.97 15.72 48 
"Time (UT) refers to the start of a five-minute interval. 
b  Sea-level corrected percentage increases above the pre-event galactic cosmic ray background of the normalization 
station, SANAE. 
` Flux (particles (cm 2  s sr GV) I  ) at 1 GV summed over the forward steradian. 
a  Spectral slope (at 1 GV for modified power law and modified Ellison and Ramaty forms). 

Best-fit weighted sum of squares employing the power law spectral form. 
f Modified power law exponent modifier (Sy). 
g Best fit weighted sum of squares employing the modified power law spectral form. 
h  Ellison & Ramaty spectral modifier (ay). 
'Best fit weighted sum of squares employing the modified Ellison & Ramaty (1985) spectral form.  

Modelling results showed that the modified power law spectral form, in general, 

produced the best fit (Table 3.4). The derived particle spectra are illustrated in 

Figure 3.7. The spectral slope varied considerably during the rise phase of the event 

(10:35-10:55 UT). At 10:35 UT the spectrum was represented by a power law but by 

10:40 and 10:45 UT the change of slope parameter (6y) was significant. By 

11:00 UT the spectrum again exhibited small values of 6y. 
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FIGURE 3.7: Derived modified power law rigidity spectra for 10:35, 10:40, 10:45, 10:55, 11:10 and 
11:40 UT, during the 14 July 2000 GLE. 

3.4 CONFIDENCE LIMITS ON PARAMETERS 

Rigorous error analyses of the derived parameters are difficult due to the 

complexity of the model and the strong interdependence between the parameters of 

the fit. An attempt to estimate the uncertainty of the derived parameters can be made 

by considering the relative changes in the sum of squares between the observed and 

calculated increases for each solution, giving a measure of the significance of the 

change in the parameters. 

Uncertainties for the geographic latitude and longitude of the apparent arrival 

directions are influenced by the adequacy of the asymptotic direction calculations to 

describe the actual propagation of the particles through the magnetosphere (Lovell, 

Duldig & Humble 1998). The degree of anisotropy of the particle distribution is also 

an important factor. Broader pitch angle distributions result in less confidence in the 

axis of symmetry. The uncertainty for the particle arrival directions at 10:35 UT is 

estimated to be ±8° in latitude and ±16° in longitude. At 13:25 UT these 
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uncertainties are estimated to be ±20 0  in both latitude and longitude. Uncertainties 

for parameters at most other times will lie between these values. 

The uncertainty of the spectral slope (y) at 10:35 UT is expected to exceed that 

at most other times due to the dominance of the particle anisotropy at this time. The 

very small spatial extent of the particle arrival distribution means that only a few 

stations with similar asymptotic viewing directions and rigidity apertures observed 

this part of the event. Consequently, spectral information is restricted to a narrow 

rigidity range leading to an uncertainty in the slope. The spectral slope (y) at 

10:35 UT is -5.2 ±1.0. At 13:25 UT y is -8.0 ±0.1. The uncertainty in the change of 

slope (6y) at 10:35 UT is small, while at 13:25 UT the uncertainty in 6y is estimated 

at ± 0.2. The uncertainty in the calculated flux at 1 GV is less than 10%. 

3.5 MODELLING PARTICLE ACCELERATION 

Modified power law empirical spectra deduced from the neutron monitors were 

used to generate the input to the GNLS program at selected energies (spaced evenly 

on a logarithmic scale) with data points weighted by errors in the flux data. This 

spectral form was used to avoid a circular argument when fitting the full Ellison & 

Ramaty (1985) spectral form (equations 2.23 & 2.24) to synthetic neutron monitor 

data. Best-fit variable model parameters derived from the program were re-input into 

equations (2.23), (2.27) and (2.28) to generate theoretical shock and stochastic 

acceleration spectra up to 5 GeV. 

3.5.1 	Results 

Tables 3.5, 3.6 and 3.7 present the best fit theoretical spectra for the data 

generated from the empirical fits to the neutron monitor observations at the rising 

phase (10:45 UT), peak phase (10:55 and 11:00 UT) and declining phase (11:10 and 

11:40 UT). A Kolmogorov-Smimov test at 95% confidence shows that all post-fit 

residuals were random, giving confidence in the weighted sum of squares result. 

Table 3.5 lists the results and standard errors for the variable model parameters 

(compression ratio and e-folding energy E0) from the shock acceleration non-linear 

least squares fitting routine. 
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TABLE 3.5 

VARIABLE MODEL PARAMETERS: SHOCK ACCELERATION 

14 JULY 2000 

Time ° 
(UT) 

b r &p c  
(MeV) WSS d  

10:45 	 1.93±0.02 1869±06 88 
10:55 	 1.78±0.01 1723±55 154 
11:00 	 1.76±0.02 1527±72 209 
11:10 	 1.72 ±0.02 1442±68 234 
11:40 	 1.75±0.03 1211±46 1047 
° Time refers to the start of a five-minute interval 
b  Shock compression ratio 

e-folding energy 
d  Weighted sum of squares  

TABLE 3.6 

VARIABLE MODEL PARAMETERS: STOCHASTIC 

ACCELERATION MONOENERGETIC INJECTION 

14 JULY 2000 

Time' 
(UT) b  N 

a  c 

(s-1) 
WSS 

 
d  

10:45 	 891 ±225 0.0511 ±0.0020 541 
10:55 	 3213±128 0.0410±0.0004 10 
11:00 	 4104 ±349 0.0375±0.0007 34 
11:10 	 7068 ±646 0.0340 ±0.0007 38 
11:40 	 9878±1162 0.0291±0.0005 115 
°Time refers to the start of a five-minute interval 
b  Normalization factor 

Acceleration efficiency 
d  Weighted sum of squares  

TABLE 3.7 

VARIABLE MODEL PARAMETERS: STOCHASTIC 

ACCELERATION NEUTRAL CURRENT SHEET INJECTION 

14 JULY 2000 

Time ° 
(UT) N b 

a  c 

(s-1 ) 
W SS d  

10:45 	 0.30 ±0.09 0.0301 ±0.0012 671 
10:55 	 1.45 ±0.03 0.0234 ±0.0001 2 
11:00 	 2.10±0.01 0.0215±0.0002 11 
11:10 	 4.30±0.30 0.0195±0.0002 12 
11:40 	 9.08 ±0.80 0.0164 ±0.0002 35 
°Time refers to the start of a five-minute interval 
b  Normalization factor 

Acceleration efficiency 
d  Weighted sum of squares  

56 
14 JULY 2000 GLE 



1 o 	 1 	1 	1 	1 	11 1 	1 	1 	111 

10-2  = 

10-6  

1 0
-7 E 

—11—  STOCHASTIC MODEL A 

—411-- STOCHASTIC MODEL B 

I 	I 	I 	III 
0 0 0 0 0 0 
0 0 0 0 0 (D 
LO (0 CO CI) 

I 	I 	III 
0000= o 0000 

LO 	co cn g  
- 

0 0 
0 0 0 
0 0 0 
(N1 Cn 

10-8  

The proton spectrum at 10:45 UT is best fitted with this spectral form. The 

shock compression ratio for this interval is 1.93 ± 0.03 with an e-folding energy of 

1.87 GeV ± 0.06. This value of the e-folding energy corresponds to a rigidity of-2.7 

GV, which is consistent with the maximum proton rigidity of —3 GV observed for 

this event. 

Tables 3.6 and 3.7 list the results and standard errors for the variable model 

parameters (normalization factor N and acceleration efficiency a) from the stochastic 

acceleration mono-energetic continuous injection and NCS injection models. The 

proton spectra at the peak (10:55 and 11:00 UT) and in the declining phase 

(11:40 UT) are best fitted with these spectral forms. 

Energy (MeV) 

FIGURE 3.8: Least squares Y-residual plotted against kinetic energy for the 14 July 2000 GLE. These 
plots illustrate more clearly the better fit of stochastic acceleration with NCS injection (black line) as 
opposed to stochastic acceleration with mono-energetic injection (light grey line): 11:00 UT peak 
phase (left panel) and 11:40 UT decline phase (right panel). 

Figure 3.8 shows the residuals calculated from the non-linear least squares 

fitting routine for two intervals (11:00 and 11:40 UT) plotted against kinetic energy. 

This figure illustrates more clearly the improved fit of the stochastic acceleration 
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model via neutral current sheet injection when compared to the stochastic 

acceleration model via mono-energetic continuous injection. For the time intervals 

modelled, a ranged from 0.02 to 0.03 s -i , which is consistent with values reported 

from previous studies (Murphy & Ramaty 1984; Miller, Guessoum & Ramaty 1990; 

Miller 1991). Because the stochastic acceleration model with NCS injection 

represents a more realistic injection process; this model is used hereafter. 

Figure 3.9 illustrates the results of the shock and stochastic acceleration model 

spectral fits at the rise (10:45 UT) and peak (10:55 UT) phases of the event. 

FIGURE 3.9: Energy spectral fits to flux values generated from ground-based neutron monitor 
observations (ranging from —400 MeV to 5 GeV) for intervals 10:45 UT (rising phase) and 10:55 UT 
(peak phase). Fluxes (black dots) are shown with corresponding 1-sigma error bars. Fitted curves are 
of the Ellison & Ramaty (1985) shock acceleration (light grey line) and the Gallegos-Cruz & Perez-
Peraza (1995) stochastic acceleration Model B spectral forms (black line). 

Figure 3.10 shows the residuals calculated from the non-linear least squares 

fitting routine for intervals 10:45 UT and 10:55 UT plotted against kinetic energy. 

Figure 3.10 (left panel) illustrates the better fit of the Ellison & Ramaty (1985) shock 

acceleration model compared to the stochastic acceleration model (via NCS 
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injection) at 10:45 UT (rising phase). In contrast, Figure 3.10 (right panel) 

illustrates the converse at 10:55 UT (peak). 

Energy (MeV) 

FIGURE 3.10: Least squares Y-residual (GNLS fitting routine) plotted against kinetic energy for the 
14 July 2000 GLE. Stochastic acceleration model with NCS injection (black line) and Ellison & 
Ramaty (1985) shock acceleration model (light grey line): (a) 10:45 UT and (b)10:55 UT. 

3.5. SUMMARY 

The arrival of relativistic protons at 1 AU for the 14 July 2000 GLE has been 

modelled using a global analysis technique which deduces the spectrum, arrival 

direction and anisotropy of high-energy protons. The largest neutron monitor 

responses were observed at South Pole and SANAE with respective maxima in 

5-minute data of 58.3% and 54.5% above the pre-increase levels. Significant 

increases in neutron monitor responses were also observed at stations viewing in the 

anti-sunward field direction (e.g., Tixie Bay), including stations viewing 

perpendicular from the measured sunward field direction (e.g., Inuvik). Particles of 

at least 3 GV were present because the event was observed by the Climax neutron 

monitor. The maximum intensity was reached in approximately 20 minutes, 

indicating that relativistic protons had reasonable access to Sun-Earth connecting 

field lines. The decay phase lasted several hours. The event was characterised by a 

strongly anisotropic onset followed by a rapid decrease in anisotropy. This indicates 
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that initially particles injected into the interplanetary medium propagated to Earth 

essentially scatter free. However, there is evidence to suggest that particles arriving 

at Earth shortly after were affected by significant degrees of scattering. 

Theoretical shock and stochastic acceleration spectral forms were employed to 

investigate the acceleration process. The spectrum during the rise phase (10:45 UT) 

was best fitted with a shock acceleration spectral form; implying relativistic proton 

acceleration by a coronal shock. In contrast the spectra at the peak (10:55, 

11:00 UT) and declining phases (11:10, 11:20 and 11:40 UT) of the event were best 

fitted by a stochastic acceleration spectral form; implying relativistic proton 

acceleration by processes associated with magnetic reconnection. This result 

suggests that two different mechanisms were involved in relativistic proton 

acceleration during the 14 July 2000 solar event. 
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THE 15 APRIL 2001 GLE 

4.1 INTRODUCTION 

The 15 April 2001 solar event produced an X14.4/2B solar flare and associated 

CME (1200 km sl ) (Figure 4.1) which represented the largest  of  a series of solar 

eruptions that occurred during a period of intense solar activity extending from 

28 March to 21 April 2001. This period produced seven M-Class and nine X-class 

flares. Several CMEs were observed with the LASCO coronagraphs (C2/C3) on 

board the SOHO spacecraft (Sun et al., 2002). The primary source of this activity 

was NOAA active region 9415 located near the solar western limb S20°, W85° at the 

time of the event. 

FIGURE 4.1: The 15 April 2001 solar flare as recorded by EIT on board SOHO  at 171 A (left). Source: 
http://soho.nascom.nasa.gov/hotshots/20010415/eitl95fl.gif/ . The 15 April 2001 CME as recorded 
by the LASCO/C2 coronagraph on board SOHO (right). Source: see Figure 1.1. 
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4.2 OBSERVATIONS 

Soft X-rays observed by the GOES 10 geostationary satellite commenced at 

13:19 UT, peaking at 13:50 UT (Figure 4.2a). The HXS instrument on board Yohkoh 

first observed X-rays at 13:36 UT, peaking at 13:50 UT. CME onset (based on CME 

height-time measurements extrapolated back to the solar surface) is estimated at 

13:32 UT (Bieber et al., 2004; Gopalswamy et al., 2003). During its propagation 

through the solar corona and interplanetary medium, the CME generated decametric 

to kilometric Type II radio emissions (Waves experiment (Bougeret et al., 1995) on 

board the Wind spacecraft) and is interpreted as evidence of a shock. The 

interplanetary shock was detected in situ on 18 April 2001 at 00.50 UT by Wind. 

Gopalswamy et al. (2003) reported intense type III radio bursts from 13:40 to 

14:54 UT. The HEPAD detectors on board GOES 10 recorded sudden increases in 

relativistic protons (350-700 MeV) between 13:50 and 13:55 UT (Figure 4.2). 
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FIGURE 4.2: GOES 10 observations of soft X-ray emissions at 1-8 A (low energy channel) (left). Five 
minute GOES 10 observations of relativistic proton fluxes (right). P8 to P10 represents the HEPAD 
detector differential energy channels (particles (cm 2  s sr MeV) -I ) with the following characteristics of 
nominal energy range (MeV): P8 = 350-420; P9 = 420-520; P10 = 510-700. 

GLE onset was observed in neutron monitor data in the 1-minute interval 

commencing at 13:56 UT. The largest response was observed at South Pole with a 

maximum in 5-minute data of —225% above the pre-increase level. The 

15 April 2001 GLE is the second largest in terms of peak intensity for solar cycle 23. 

At 21:00 UT the increase above the galactic cosmic ray background was still 10%. 
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Corrections of observed increases to a standard sea-level atmospheric depth of 

1033 g cm-2  were made with the following best fit attenuation lengths using the 

method of McCracken (1962a): 115 g cm-2  (from 14:00 to 14:15 UT), 110 g cm-2  

(from 14:20 to 15:15 UT) and 100 g cm -2  (from 15:20 to 16:00 UT). GLE 

intensity/time profiles are presented in Figure 4.3. 

0 WI 0 WI 
.9  2 8 2 2 tr-' 0  2 0  22  0  `4.?. ..̀2  2 8 	'4' 8 8 tfi 

,k; esi 6 6 	6 6 6 	cii A: A: 	 cn 4 4 

2001 April 15 Universal Time 

FIGURE 4.3: GLE intensity/time profiles for 15 April 2001 as recorded by (a) South Pole, (b) Nain, (c) 
Peawanuck, (d) Calgary, (e) Apatity and (/) Jungfraujoch neutron monitors. The viewing directions of 
the Peawanuck (4.3c) and Apatity (4.3e) neutron monitors approximately represent the sunward and 
anti-sunward field direction, respectively. The percentage increase for Jungfraujoch is shown on a 
different scale. 
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The rise to maximum intensity at South Pole (126% corrected to standard sea 

level pressure) took approximately 35 minutes (Figure 4.3a), suggesting that 

relativistic protons had reasonable access to Sun-Earth connecting field lines. The 

event was seen at Jungfraujoch (Figure 4.3f), indicating the presence of particles with 

rigidity of at least 4.5 GV. The Rome neutron monitor (with a geomagnetic cut-off 

of 6.3 GV and not shown in Figure 4.3) recorded an increase of marginal 

significance that may or may not be related to the GLE. Nain was found to have one 

of the largest responses (118%) and was used as the normalisation station for this 

analysis. 

Figure 4.4 shows the viewing directions (in geographic coordinates) of selected 

neutron monitors at 14:30 UT. Note that Peawanuck (Figure 4.3c), with a viewing 

direction near the nominal sunward field direction, observed an earlier onset and 

more rapid rise than did Apatity (Figure 4.3e), whose viewing direction was near to 

the anti-sunward field direction. 

FIGURE 4.4: Viewing directions of neutron monitors in geographic coordinates at 14:30 UT (peak) on 
15 April 2001. Geomagnetic conditions were slightly disturbed (Kp = 4; Dst = -15). Lines for each 
station represent the vertical viewing direction at different rigidities. '10' represents the vertical 
viewing direction at —10 GV, while '1' represents the vertical viewing direction at the atmospheric 
cutoff (-1 GV). The open diamonds show the median rigidity of response to the GLE for each station. 
Star and filled star designate the position of the nominal and anti-sunward field direction respectively. 
Station abbreviations are: APT = Apatity, Russia; MAG = Magadan, Russia; MAW = Mawson, 
Antarctica; NAI = Nain, Canada; PWK = Peawanuck, Canada; MCM = McMurdo, Antarctica; SAN = 
SANAE, Antarctica; SPO = South Pole, Antarctica; TER = Terre Adelie, Antarctica; THU = Thule, 
Greenland; TXB = Tixie Bay, Russia. 
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4.3 MODELLING THE NEUTRON MONITOR RESPONSE 

The geomagnetic field model described in section 2.2.4 was used to determine 

the asymptotic viewing directions of neutron monitors. Observations from 32 

neutron monitors were modelled for every five-minute interval between 14:00 and 

16:00 UT. Each indicated time represents the start of a five-minute integration 

interval. Table 4.1 shows the calculated percentage increase for time intervals which 

represent the rising (14:10 and 14:20 UT), peak (14:30 UT) and decline (14:45 UT) 

phases of the event along with the actual increases (corrected to a standard sea level 

atmospheric depth). Good fits to observations were achieved for most stations. 

However, the model underestimates the responses at Bern, Cape Schmidt, 

Peawanuck, Terre Adelie and Thule and overestimates the response at Apatity. 

Model fits to observations for time intervals not shown in Table 4.1 are presented in 

Appendix B. 

4.3.1 	Arrival Directions 

Figure 4.5 illustrates the GSE longitude and latitude of the arrival direction, 

together with the IMF direction as measured by the ACE spacecraft. 
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FIGURE 4.5: GSE longitude (top) and GSE latitude (bottom) of the apparent arrival directions (this 
study; solid circles) plotted with the negative magnetic field direction (1-hour centred moving 
averages) as measured by ACE. 
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TABLE 4.1 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 15 APRIL 2001 GLE FOR THE MODIFIED POWER LAW FIT 

Station 
Lat. 

(deg.) 

Lon. 

(deg.) 

P „b  

(GV) 

Alt. 

(m) 

14:10 UT 

Observed' 	Calculated" 

14:20 UT 

Observed: 	Calculated" 

_ 
14:30 UT 

Observed' 	Calculated "  

14:45 UT 

Observed: 	Calculated "  
Alma Ata 	 43.25 76.92 6.69 3340 1.4 0.3 1.3 0.2 1.3 0.7 0.7 0.6 
Apatity 	 67.55 33.33 0.61 177 18.9 18.1 27.2 39.6 32.8 47.7 34.8 50.0 
Athens 	 37.97 23.72 8.72 40 0.0 0.0 1.3 0.0 2.2 0.1 1.5 0.1 
Bern 	 46.55 7.98 4.42 570 2.9 3.7 6.2 2.6 5.1 3.9 6.2 3.0 
Calgary 	 51.08 245.87 1.09 1128 117.7 103.1 120.4 103.7 118.3 111.9 97.4 94.2 
Cape Schmidt 	 68.92 180.53 0.45 0 21.1 14.9 44.3 29 54.0 40.8 60.7 49.7 
Fort Smith 	 60.02 248.07 0.30 0 51.2 62.5 65.4 77.9 81.1 90.5 90.5 88.8 
lrkustk 	 52.28 104.02 3.66 435 11.1 13.9 11.1 11.0 11.5 12.0 9.1 10.1 
Jungfraujoch 	 46.55 7.98 4.48 3475 4.1 3.6 3.2 2.6 3.3 3.7 2.6 2.9 
Kerguelen Island 	 -49.35 70.25 1.19 33 8.9 11.1 25.6 23.9 38.6 35.0 44.8 39.0 
Kiel 	 54.33 10.13 2.29 54 15.2 16.1 20.7 22.7 23.6 23.5 20.8 22.9 
Kingston 	 -42.99 147.29 1.88 65 36.5 47.3 54.0 59.5 58.0 62.6 50.1 57.1 
LARC 	 -62.20 301.04 2.21 40 16.4 15.4 19.3 18.4 18.6 19.6 13.6 15.9 
Lomnickj,  'S.  tit 	 49.20 20.22 4.00 2634 5.2 6.5 5.2 5.5 4.7 6.6 3.7 5.6 
Magadan 	 60.12 151.02 2.10 220 35.3 44.4 44.8 54.6 48.4 59.3 44.6 56.1 
Mawson 	 -67.60 62.88 0.22 30 68.4 64.2 96.9 85.8 101.6 94.4 94.4 81.4 
McMurdo 	 -77.85 166.72 0.01 48 76.7 77.1 78.9 85.4 94.1 96.6 76.0 86.7 
Moscow 	 55.47 37.32 2.46 200 17.2 17.5 23 26.7 26.0 26.9 23.0 24.2 
Nain " 	 56.55 298.32 0.45 0 104.8 104.9 108.2 108.2 117.8 117.9 98.0 98.0 
Newark 	 39.68 284.25 1.97 50 27.9 36.3 30 36.5 29.9 39.0 28.0 29.7 
Norlisk 	 69.26 88.05 0.63 0 5.3 8.5 17.7 19.3 25.5 29.5 31.2 33.8 
Novosibirsk 	 54.80 83.00 2.91 163 16.1 20.6 17.3 21.9 17.2 22.1 16.1 21.2 
Oulu 	 65.05 25.47 0.81 15 27.3 21.2 45.5 43.2 53.4 50.8 45.8 51.6 
Peawanuck 	 54.98 274.56 0.27 52 114.3 103.9 110.2 98.1 111.6 100.2 99.2 80.9 
Potchcfstrom 	 -26.68 27.10 7.30 1351 0.0 0.3 2.2 0.2 1.2 0.6 0.5 0.5 
Rome 	 41.86 12.47 6.32 60 1.4 0.3 2.4 0.3 1.5 0.7 1.6 0.6 
SANAE 	 -71.67 357.15 1.06 856 78.2 79.9 96.4 90.4 102.2 95 97.2 82.9 
South Pole 	 -90.00 0.00 0.10 2820 111.2 112.7 112.6 110.3 126.2 121.6 105.4 99.7 
Terre Adelic 	 -66.67 140.02 0.01 45 32.7 23.7 45.1 36.8 60.6 46.2 65.8 49.5 
Thule 	 76.50 291.30 0.00 260 56.9 33.7 72.2 55.7 81.0 64.2 78.9 72.8 
Tixic Bay 	 71.58 128.92 0.53 0 5.5 8.8 17.7 19.0 30.5 29.7 37.2 35.1 
Yakutsk 	 62.03 129.73 1.70 105 16.5 21.4 40.7 40.6 41.0 52.5 44.8 58.3 

Normalisation stafon 
Nominal vertical geomagne ic cutoff rigidities represent the minimum rigidities below which particles do not have access to a particular site on the Earth's surface. The cut-off at the 

geomagnetic equator is - 17 GV, decreasing to zero at the geomagnetic poles. 
' Actual % increases corrected to standard sea level atmospheric depth. 
d  Calculated % increases 
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The method of Bieber et al. (2002) was replicated to permit direct comparisons with 

ACE measurements. The average GSE longitude of the IMF direction as measured by 

ACE during the GLE was — 320°, which implies that particles were flowing 

(longitudinally) from the Sun close to a nominal Parker spiral (i.e., 315°, GSE 

coordinates). Between 14:00 and 14:30 UT the apparent longitude of the arrival 

direction is in good agreement with the measured field longitude. From 14:40 UT 

onwards, model longitudes begin to move east of the Sun-Earth line and by 16:00 the 

model longitudes are 60° east of the measured field longitude. 

The latitude of the arrival direction near event onset (14:00 UT) was 

approximately 40° north of the measured field latitude. However, from 14:10 UT 

model latitudes are in good agreement with measured field latitudes. It is important 

to mention that model flow vectors need not align exactly with the measured 

magnetic field vector (see section 3.3.1). The uncertainty for the particle arrival 

direction at 14:15 UT is estimated to be ±2° in latitude and ±3° in longitude. At 

16:00 UT these uncertainties are estimated to be ±12° in latitude and ±8° in 

longitude. Uncertainties for parameters at most other times will lie between these 

values. 

4.3.2 	Pitch Angle Distributions 

The development of the pitch angle distribution during the 15 April 2001 GLE is 

presented in Figure 4.6 and the fitted parameters are listed in Table 4.2. 

TABLE 4.2 

PITCH ANGLE DISTRIBUTION 
PARAMETERS 
15 APRIL 2001 

b  (UT) 	A 

	

14:00 	0.387 	0.512 

	

14:10 	0.753 	0.591 

	

14:15 	1.112 	0.720 

	

14:20 	1.564 	0.836 

	

14:30 	1.611 	1.043 

	

14:45 	2.990 	1.366 

Time" 	 B 

"Time refers to the start of a 
five-minute *nterval. 
Parameter A has most effect 

on the width of the anisotropy. 
Parameter B has most effect on the 

relative flux in the reverse direction.  
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FIGURE 4.6: Derived pitch angle distributions for 14:00, 14:10, 14:15, 14:20, 14:30 and 14:45 UT 
during the GLE of 15 April 2001. 

The particle arrival near onset (14:00 UT) was strongly anisotropic. The 

anisotropy decreased, albeit slowly, from 14:00 to 14:45 UT and remained relatively 

unchanged until at least 16:00 UT. This suggests that relativistic protons injected 

into the interplanetary medium were only moderately affected by local scattering 

associated with the IMF. 

4.3.3 	Spectrum 

The spectral form used in this analysis was a modified power law in rigidity. 

The derived spectral parameters from 13:55 to 16:00 UT are presented in Table 4.3. 

A selection of the spectra is presented in Figure 4.7. At 14:00 UT (near onset) the 

spectral index was initially hard at -0.43 with a change of slope parameter (k) of 

1.15. At 14:15 UT (rise phase) the spectral index was -2.70 with a sy of 1.43. At 

14:30 UT (peak) the spectral index was softer at -4.76 with a Sy of 0.60 and at 

14:45 UT (fifteen minutes into the decline phase) the spectral index was -5.19 with a 

67 of 0.52. 
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2 	3 	4 5 6 7 1 2 	3 	4567 

TABLE 4.3 

DERIVED SPECTRAL PARAMETERS 

Time' Inc b  Jo` y` Sy ' 

13:55 	 7.0 0.02 -0.41 0.39 
14:00 	 44.3 0.62 -0.43 1.15 
14:05 	 86.9 2.12 -0.01 2.06 
14:10 	 104.8 6.73 -0.87 2.06 
14:15 	 110.2 24.47 -2.70 1.43 
14:20 	 108.2 31.64 -2.93 1.55 
14:25 	 113.8 40.03 -3.12 1.61 
14:30 	 117.8 90.07 -4.76 0.60 
14:35 	 115.4 103.13 -4.91 0.69 
14:40 	 104.7 83.25 -4.64 0.85 
14:45 	 98.0 100.03 -5.19 0.52 
14:50 	 92.5 117.82 -5.50 0.51 
14:55 	 85.7 131.03 -5.90 0.29 
15:00 	 80.4 118.48 -5.72 0.49 
15:05 	 73.3 105.45 -5.60 0.62 
15:10 	 70.5 113.79 -5.75 0.61 
15:15 	 68.4 155.46 -6.62 0.00 
15:20 	 61.8 116.95 -5.91 0.80 
15:25 	 58.2 116.07 -6.16 0.47 
15:30 	 53.1 90.38 -5.58 1.08 
15:35 	 51.4 83.72 -5.62 0.89 
15:40 	 49.3 81.99 -5.62 0.99 
15:45 	 43.9 167.12 -6.83 0.11 
15:50 	 42.9 190.10 -7.11 0.01 
15:55 	 37.8 153.39 -6.99 0.01 
16:00 	 37.0 149.02 -7.01 0.00 

° Time (UT) refers to the start of a five-minute interval. 
Sea-level corrected percentage increases above the pre-event 

galactic cosmic ray background of the normalization station, Nain. 
` Flux (particles (cm' s sr GV) -1 ) at 1 GV summed over the 
forward steradian. 
° Spectral slope (y). 
° Modified power law exponent modifier (Sy).  

	 14:00 UT 
- - 14:10 UT 

- - 14:15 UT 

10 1  = 

10° = 

10-2 = 

to-3 = 

-102 . 

\ 

Rigidity (GV) 

FIGURE 4.7: Derived modified power law rigidity spectra for 14:00, 14:10, 14:15, 14:20, 14:30 and 
14:45 UT during the GLE of the 15 April 2001. 
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The uncertainty of the spectral slope (y) at 14:15 UT is expected to exceed that 

at most other times due to the dominance of the particle anisotropy at this time. The 

spectral slope (y) at 14:15 UT was -2.70 ±0.8 while at 16:00 UT y was -7.1 ±0.3. 

The uncertainty in the change of slope (8y) at 14:15 UT is 1.43 ±0.6. The uncertainty 

in the calculated flux at 1 GV is — 6%. 

4.4 MODELLING PARTICLE ACCELERATION 

The analytical spectra deduced from the neutron monitors were used to generate 

the input to the GNLS program with data points weighted by errors in the flux data. 

Best-fit variable model parameters derived from the program were used to generate 

theoretical shock and stochastic acceleration spectra up to 10 GeV. 

4.4.1 	Results 

Tables 4.4 and 4.5 present the results of the analytical shock and stochastic 

(model B) acceleration model spectral fits to the data generated from the analytical 

fits to the neutron monitor observations at the rise (14:00, 14:10 and 14:20 UT), peak 

(14:30 UT), and decline (14:45 UT) phases. Figure 4.8 illustrates the results of these 

spectral fits at the rise (14:20 UT) and peak (14:30 UT) phases of the event. A 

Kolmogorov-Smirnov test at 95% confidence shows that all post-fit residuals were 

random, giving confidence in the weighted sum of squares result. 

Table 4.4 lists the results and standard errors for the variable model parameters 

(compression ratio and e-folding energy E0) from the shock acceleration non-linear 

least squares fitting routine. 

TABLE 4.4 VARIABLE MODEL PARAMETERS: 

SHOCK ACCELERAT ON, 15 APRIL 2001 

Time °
(UT) r b Eo` 

(MeV) WSS d  

14:10 	 2.60±0.02 2667±107 835 
14:20 	 2.05 ±0.02 3045 ±57 51 
14:30 	 1.86±0.01 4104±30 10 
14:45 	 1.83±0.01 3559±29 31 
"Time refers to the start of a five-minute interval 
b  Shock compression ratio 
' e-folding energy 
d  Weighted sum of squares  
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TABLE 4.5: VARIABLE MODEL PARAMETERS 

STOCHASTIC ACCELERATION: NCS INJECTION 

15 APRIL 2001 

Time" 
(UT) N b 

ac 

(s-I ) WSS d  

14:10 0.01 ±0.01 0.045 =0.008 2976 
14:20 0.05 =0.01 0.041 =0.002 251 
14:30 0.20 ±0.03 0.036 =0.001 84 
14:45 0.30 ±0.01 0.035 =0.001 54 
"Time refers to the start of a five-minute interval 
b Normalisation factor 
' Acceleration efficiency 
d  Weighted sum of squares 

The proton spectra during all phases of this event are best fitted with this 

spectral form, as is clear from a comparison with the weighted sums of squares for 

the stochastic acceleration model fits in Table 4.5. 

Energy (MeV) 

FIGURE 4.8: Energy spectral fits to flux values generated from ground-based neutron monitor 
observations (ranging from —400 MeV to 10 GeV) for intervals 14:20 UT (rising phase) and 14:30 UT 
(peak). Fluxes (black dots) are shown with corresponding 1-sigma error bars. Fitted curves are of the 
Ellison & Ramaty (1985) shock acceleration (light grey line) and Gallegos-Cruz & Perez-Peraza 
(1995) stochastic acceleration (NCS injection) spectral forms (black line). 
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Figure 4.9 shows the residuals (calculated from the non-linear least squares 

fitting routine) plotted against kinetic energy and illustrates more clearly the 

improved fit of the Ellison & Ramaty (1985) shock acceleration model when 

compared to the Gallegos-Cruz & Perez-Pereza (1995) stochastic acceleration model 

(via NCS injection). 

Energy (MeV) 

FIGURE 4.9: Least squares Y-residual plotted against kinetic energy for the 15 April 2001 GLE. 
These plots illustrate the better fit of the Ellison & Ramaty (1985) shock acceleration model (light 
grey line) as opposed to stochastic acceleration (NCS injection) model (black line): (a) 14:20 UT 
(rising phase),(b) 14:30 UT (peak). 

4.5. SUMMARY 

The arrival of relativistic protons at 1 AU for the 15 April 2001 GLE has been 

modelled using the global analysis technique described in Chapter 2. The largest 

neutron monitor response was observed at South Pole with a maximum in 5-minute 

data of —225% above the pre-increase level. The event was seen at Jungfraujoch 

indicating the presence of particles with rigidity of at least 4.5 GV. The maximum 

intensity was reached in approximately 35 minutes. The event was marked by an 

anisotropic onset followed by a comparatively slow decrease in anisotropy. This 
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suggests that relativistic protons injected into the interplanetary medium were 

affected by minor degrees of local scattering. 

Theoretical shock and stochastic acceleration spectral forms were employed to 

investigate the acceleration process. The spectra up to 10 GeV during the rising 

(14:10 UT), peak (14:30 UT) and declining (14:45 UT) phases of the event are best 

fitted by a shock acceleration spectral form. This implies that for the 15 April 2001 

solar event protons were accelerated to relativistic energies by a CME-driven shock. 
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THE 20 JANUARY 2005 GLE 

5.1 INTRODUCTION 

The 20 January 2005 solar event produced the highest intensity of relativistic 

solar particles since the famous event on 1956 February 23. The largest 1-minute 

record at Terre Adelie was —46 times the pre-event level. This is the largest sea-level 

increase since 1956 (Leeds —47 times in 15-minute data). Furthermore, the location 

of X-ray and y-ray emission was near to Sun-Earth connecting magnetic field lines 

(N14° W61°) providing the opportunity to directly observe the acceleration source 

from Earth. 

FIGURE 5.1: The 20 January 2005 solar flare as imaged by TRACE (left). Source: 
http://svs.gsfc.nasa.gov/vis/a000000/a003100/a003162/fast_closeHR.0141_web.jpg/ . The 20 January 2005 CM E 
as imaged by LASCO/C2 coronagraph on board SOHO (right). Source: courtesy ESA/NASA 

5.2 OBSERVATIONS 

The 20 January 2005 solar event was associated with a GOES-classified 

X7. 1/2B solar flare and fast CME (Figure 5.1). This event represented the largest of 

a series of solar eruptions that occurred during a period of intense solar activity 
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data of — 5440 % above the pre-increase level. The impulsive nature of the neutron 

monitor intensity/time profiles for Terre Adelie, McMurdo and South Pole, and the 

rapid rise (5 minutes) to maximum, is typical of well-connected events. 
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FIGURE 5.3: GLE profiles (corrected to sea-level pressure) for 20 January 2005 as recorded by the 
Terre Adelie, McMurdo, South Pole, SANAE, Mawson and Jungfraujoch neutron monitors. The 
percentage increase for Jungfraujoch is shown on a different scale. 
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The rapid rise seen in the Terre Adelie, McMurdo and South Pole neutron 

monitor intensity/time profiles (Figures 5.3a, b and c) indicates that relativistic 

protons had rapid access to Sun-Earth connecting field lines. Other neutron monitors 

recorded different responses (e.g. Figures 5.3d, e andf). The Erevan neutron monitor 

(cut-off 7.6 GV, altitude 3200 m) recorded a small but significant increase. Small 

increases were also seen by the Tibet neutron monitor (cut-off 14.1 GV, altitude 

4300 m) (Myasaki et al., 2005), the GRAND muon telescope (D'Andrea & Poirer 

2005) and the Aragats muon detector (Bostanjyan et al., 2007), indicating the 

presence of very low fluxes of particles >15 GeV. 

The modelling of the sea-level neutron monitor response incorporated the 

Debrunner et al. (1982) yield function. Application of this function indicates that the 

low fluxes of higher rigidity particles observed in muons and at Tibet will not 

produce significant responses at other neutron monitors with high cut-offs. This is 

consistent with the results for spectra, pitch angle distributions and arrival directions 

obtained here. 
Corrections of observed increases to a standard sea-level atmospheric depth of 

1033 g cm-2  were made using the two-attenuation length method of 

McCracken (1962a). An attenuation length of 100 g cm-2  was derived from a 

comparison of Mt. Washington and Durham neutron monitors. The results presented 

in the following section were relatively insensitive to changes in the attenuation 

length (e.g., 90, 95 and 110 g cm -2). After correcting the observed increases to 

standard sea-level atmospheric depth, Terre Adelie was found to have the largest 

response (Figure 5.3a) and was used as the normalisation station for this analysis. 

Figure 5.4 shows the viewing directions (in geographic coordinates) of selected 

neutron monitors at 06:55 UT (peak). ACE measurements indicate that the IMF 

direction was located at high southern latitudes (as indicated by the large black circle 

in Figure 5.4). This explains the substantial increases observed at Terre Adelie, 

McMurdo and South Pole stations (Figures 5.3a, b and c), whilst the very much 

smaller increases observed at SANAE and Mawson (Figures 5.3d and e respectively) 

indicate pitch angle distributions that are both extremely anisotropic and asymmetric. 
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FIGURE 5.4: Viewing directions of neutron monitors in geographic coordinates  at  06:55 UT (peak) on 
20 January 2005. Geomagnetic conditions were relatively quiet (Kp = 2; Dst = -58). Lines for each 
station represent the vertical viewing direction at different rigidities. '5' represents the vertical 
viewing direction at maximum rigidity (-5 GV), while '1' represents the vertical viewing direction at 
the atmospheric cutoff (-1 GV). The small filled black circles represent 1 GV increments. The large 
filled black circle represents the IMF direction as measured by ACE  at  06:55 UT. Station 
abbreviations are: APT = Apatity, Russia; BBG = Barentsburg, Russia; CPS = Cape Schmidt, Russia; 
MC = Inuvik, Canada; MAW = Mawson, Antarctica; NAI = Nain, Canada; MCM = McMurdo, 
Antarctica; SAN = SANAE, Antarctica; SPO = South Pole, Antarctica; TER = Terre Adelie, 
Antarctica; THU = Thule, Greenland; TXB = Tixie Bay, Russia. 

5.3 MODELLING THE NEUTRON MONITOR RESPONSE 

The geomagnetic field model described in section 2.2.4 was used to determine 

the asymptotic viewing directions of the neutron monitors. Observations from 

41 neutron monitors were modelled every five minutes between 06:50 and 08:00 UT. 

Tables 5.1, 5.2 and 5.3 show the observed percentage increase (corrected to standard 

sea-level atmospheric depth) for 5-minute time intervals over  this  period, along with 

the calculated increases. For the 5-minute interval 06:55 to  07:00  UT (Table 5.1) 

good fits to observations were achieved for stations which recorded large increases 

(e.g., McMurdo, South Pole and Nain). However, a number  of  stations are poorly 

modelled due to the difficulty the model had in accounting for the extreme 

asymmetric anisotropy of the event during this time interval. From 07:00 to 

08:00 UT reasonable fits to observations were achieved. 
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TABLE 5.1 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 20 JANUARY 2005 GLE FOR THE MODIFIED POWER LAW FIT 

Station Lat. 
(deg.) 

Lon. 
(deg.) 

pcb 

(GV) 
Alt. 

(m) 
06:50 UT 

Observed ' 	Calculated" 
06:55 UT 

Observed ' 	Calculated" 
07:00 UT 

Observed' 	Calculated" 
07:05 UT 

Observed" 	Calculated" 
Alma Ata 	 43.25 76.92 6.69 3340 0 2.1 0.0 0.0 0.5 0.5 0.4 1.1 
Apatity 	 67.55 33.33 0.61 177 10.2 9.5 107.7 112.5 169.5 183.5 164.4 167.6 
Athens 	  37.97 23.72 8.72 40 0.2 0.8 2.5 0.0 1.2 0.1 0.9 0.3 
Baksan 	 43.28 42.69 5.70 1700 0.3 2.2 0.0 0.0 2.1 0.8 1.3 1.7 
Barentsburg 	 78.06 14.22 0.07 0.0 0.0 0.0 10.6 0.5 88.1 63.2 83.2 104.2 
Bern 	  46.55 7.98 4.42 570 2.3 5.3 3.8 0.2 7.1 2.4 8.4 4.6 
Calgary 	 51.08 245.87 1.09 1128 17.7 94.0 103 109.4 104.9 176.1 121.2 187.1 
Cape Schmidt 	 39.37 253.82 3.03 3400 1.0 13.5 7.8 100.7 164.5 206.3 288.0 296.7 
Climax 	 68.92 180.53 0.45 0.0 121.9 48.6 63.6 3.2 37.7 16.9 24.4 20.7 
Durham 	 43.10 289.17 1.58 0.0 169.0 58.9 103.0 20.0 119.9 68.1 110.8 83.9 
Erevan 	  40.50 44.17 7.58 3200 0.2 1.1 0.4 0.0 0.5 0.2 0.6 0.6 
Fort Smith 	 60.00 258.10 0.30 0.0 23.1 2.7 128.9 38.3 233.0 146.6 253.5 215.0 
Hermanus 	 -34.42 19.22 4.90 26 2.1 2.2 1.5 0.1 3.8 2.4 6.7 4.5 
Inuvik 	  68.35 226.28 0.18 21 4.3 14.3 6.3 0.9 10.8 8.8 11.4 14.8 
Irkustk 	  52.28 104.02 3.66 435 0.3 0.0 27.1 0.4 218.9 76.6 282.7 146.3 
Jungfraujoch 	 46.55 7.98 4.48 3475 0.6 5.0 1.7 0.2 3.5 2.3 3.5 4.0 
Kerguelen Island 	 -49.35 70.25 1.19 33 3.6 3.3 57.5 18.5 136.2 104.1 165.9 156.9 
Kiel 	  54.33 10.13 2.29 54 12.2 18.7 47.7 5.6 83.7 34.5 87.5 50.2 
Kingston 	 -42.99 147.29 1.88 65 2.3 10.0 21.2 20.5 75.4 75.3 116.1 96.3 
LARC 	  -62.20 301.04 2.21 40 7.5 4.7 32.3 2.2 39.1 17.6 43.3 21.5 
LomnickY S' tit 	 49.20 20.22 4.00 2634 0.7 6.6 3.5 0.4 7.3 5.2 9.1 8.4 
Magadan 	 60.12 151.02 2.10 220 0.8 78.4 14.5 24.7 50.9 84.6 90.3 119.5 
Mawson 	 -67.60 62.88 0.22 30 25.4 265.6 114.3 213.2 172.7 233.7 183.4 172.0 
McMurdo 	 -77.85 166.72 0.01 48 1234.6 1953.5 1946.1 2095 843.4 888.1 578.1 585.3 
Mexico City 	 19.33 260.80 8.61 2274 0.6 1.9 0.3 0.0 1.0 0.2 0.9 0.4 
Moscow 	 55.47 37.32 2.46 200 1.4 18.8 20.1 7.2 52.5 39.3 93.8 60.3 
Mt. Washington 	 44.30 288.70 1.46 1909 169.6 74.1 125.9 36.3 134.5 104.7 124.8 101.1 
Nain 	  56.55 298.32 0.45 0 67.9 37.2 268.3 273.6 218.2 207.6 211.1 168.5 
Newark 	 39.68 284.25 1.97 50 87.2 42.5 68.3 8.6 82.3 38.0 75.5 41.3 
Norlisk 	 69.26 88.05 0.63 0 9.9 6.2 66.8 70 126.0 180.1 128.6 207.9 
Novosibirsk 	 54.80 83.00 2.91 163 0.0 20.0 7.7 3.4 23.1 26.2 53.3 42.8 
Oulu 	  65.05 25.47 0.81 15 25.5 26.2 174.7 144.7 252.9 223.3 216.9 201.3 
Potchefstrom 	 -26.68 27.10 7.30 1351 1.5 1.8 0.0 0.0 0.2 0.4 0.0 0.8 
Rome 	 41.86 12.47 6.32 60 0.8 2.2 0.0 0.0 0.5 0.6 0.5 1.1 
SANAE 	 -71.67 357.15 1.06 856 36.5 34.3 51.4 11.7 110.7 95.2 142.6 116.3 
South Pole 	 -90.00 0.00 0.10 2820 1408.4 996.0 952.1 888.5 513.3 446.7 301.0 287.2 
Terre Addle' -66.67 140.02 0.01 45 2034.5 2034.6 2490.5 2490.6 1130.3 1130.4 773.6 773.7 
Thule 	  76.50 291.30 0.00 260 0.0 0.0 7.2 3.2 17.5 67.6 41.2 110.5 
Tsumcb 	 -19.20 17.58 9.29 1240 0.1 0.4 0.0 0.0 0.0 0.1 0.4 0.2 
Tixie Bay 	 71.58 128.92 0.53 0 0.0 1.7 52.1 28.2 179.1 145.2 203 211.1 
Yakutsk 	 62.03 129.73 1.70 105 8.2 81.6 42.5 49.8 108.2 144.5 146.4 200.5 
" Normalisation station. Nominal vertical geomagnetic cutoff rigidities represen the minimum rigidities below which particles do not have access to a particular site on the Earth's surface. The cut-off at the 
geomagnetic equator is - 17 GV, decreasing to zero at the geomagnetic poles.' Actual % increases corrected to standard sea level atmospheric depth. d Calculated % increases 
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TABLE 5.2 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 20 JANUARY 2005 GLE FOR THE MODIFIED POWER LAW FIT 

Station 07:10 UT 
Observed " 	Calculated 

07:15 UT 
Observed b 	Calculated' 

07:20 UT 
Observed" 	Calculated' 

07:25UT 
Observed b 	Calculated' 

07:30 UT 
Observed b 	Calculated' 

07:35 UT 
Observed" 	Calculated ' 

Alma Ata 	 0.4 1.0 0.7 0.8 0.8 0.6 0.7 0.4 0.4 0.3 0.6 0.3 
Apathy 	 147.1 146.0 133.2 133.6 139.6 134.8 126.9 130.7 109.6 118.6 98.8 108.1 
Athens 	  0.0 0.3 1.8 0.2 1.1 0.2 0.0 0.1 0.0 0.1 
Baksan 	 1.9 1.5 2.0 1.2 2.2 1.0 1.3 0.8 0.0 0.5 1.1 0.4 
Barentsburg 	 87.2 111.2 94.3 111.3 110.4 124.2 117.6 114.5 104.5 100.9 92.1 89.5 
Bern 	  5.4 4.1 5.5 3.7 3.7 3.3 5.6 2.6 4.8 1.9 4.8 1.7 
Calgary 	 145.4 165.8 161.9 154.0 144.0 140.6 119.8 122.5 103.7 105.1 91.2 92.4 
Cape Schmidt 	 205.7 221.4 176.7 183.8 137.0 134.5 121.6 116.7 104.4 100.1 88.1 84.1 
Climax 	 15.9 19.7 12.3 18.6 9.0 16.5 7.9 14.6 7.0 11.0 6.2 9.8 
Durham 	 94.6 72.5 87.0 64.3 80.3 66.2 72.5 63.4 64.2 54.5 55.7 46.8 
Erevan 	  0.9 0.6 0.7 0.4 0.6 0.3 0.6 0.2 0.4 0.2 0.5 0.1 
Fort Smith 	 198.3 180.7 164.4 164.4 150.2 132.4 127.4 115.0 108.9 99.1 87.5 83.4 
Hermanus 	 7.0 3.9 6.4 3.2 6.1 2.7 3.0 2.1 2.6 1.5 4.3 1.2 
lnuvik 	  8.5 13.5 7.9 11.3 7.7 9.9 5.8 5.4 5.2 4.4 
Irkustk 	  222.1 136.7 176.7 131.6 137.7 124.5 114 114.3 93.3 99.8 80.8 83.4 
Jungfraujoch 	 2.7 3.7 3.5 3.2 3.1 2.8 2.8 2.2 3.0 1.6 2.7 1.3 
Kerguelen Island 	 150.4 141.6 150.0 131.0 135.5 126.8 119.5 113.6 101.1 100.1 88.0 85.8 
Kiel 	  66.1 46.5 51.6 38.3 42.4 35.2 31.5 23.6 26.6 20.6 
Kingston 	 96.0 88.5 85.4 79.7 75.9 72.1 51.7 56.5 47.4 45.8 
LARC 	  32.0 22.1 26.8 20.5 23.6 19.1 22.6 16.1 20.4 14.0 18.9 12.7 
LomnickY gtit 	 6.4 7.9 6.3 7.1 5.9 6.5 4.4 4.8 4.0 3.6 4.2 3.1 
Magadan 	 76.6 97.0 65.4 84.9 57.8 69.5 46.4 59.0 37.6 49.3 32.3 42.9 
Mawson 	 156.1 152.6 146.9 139.6 149.0 146.2 148.4 145.9 134.4 132.4 123.7 123.9 
McMurdo 	 397 388.8 297.5 285.3 225.2 217.4 174.8 164.8 126.3 129.3 97.0 108.5 
Mexico City 	 0.1 0.3 0.7 0.3 1.0 0.2 0.9 0.2 0.8 0.1 0.9 0.1 
Moscow 	 80.9 50.9 58.0 43.7 49.6 40.7 40.2 32.3 32.8 26.4 28.5 24.6 
Mt. Washington 	 105.2 95.0 97.0 88.4 97.3 93.8 88.7 78.6 80.0 74.8 69.2 66.5 
Nain 	  187.3 152.5 171.8 145.4 171.5 145.4 157.2 131.6 141.2 114.6 130.2 104.0 
Newark 	 59.4 38.9 51.7 36.6 46.8 35.6 39.3 29.3 34.9 25.8 30.1 22.2 
Norlisk 	 129.0 167.7 125.7 146.1 108.3 131.7 98.6 121.5 83.9 106.7 72.3 92.6 
Novosibirsk 	 39.6 37.1 32.3 30.2 27.2 26.7 22.0 21.5 18.8 16.1 16.4 14.8 
Oulu 	  168.2 164.8 150.6 145.2 149.4 138.2 140.4 133.0 124.1 119.5 115.3 107.6 
Potchcfstrom 	 1.5 0.8 1.0 0.6 1.2 0.5 1.3 0.4 0.0 0.3 0.0 0.2 
Rome 	  2.2 1.2 1.9 0.9 2.2 0.8 2.3 0.6 0.3 0.4 1.0 0.4 
SANAE 	 131.0 118.6 110.8 117.3 134.6 129.0 133.3 120.7 120.5 107.1 102.1 98.1 
South Pole 	 216.3 224.9 179.4 193.5 161.5 174.4 137.1 150.9 115.3 126.0 102.9 111.5 
Terre Adelie" 479.7 479.8 319.9 320.0 223.6 223.6 174.8 174.8 136.8 136.8 111.0 111.1 
Thule 	  71.7 114.9 86.3 115.4 100.7 124.8 114.4 113.9 114.5 98.9 103.7 83.8 
Tsumeb 	 1.0 0.2 0.1 0.2 0.6 0.1 0.0 0.1 0.0 0.1 
Tixic Bay 	 165.6 170.4 135.7 148.8 110.2 128.7 89.9 116.3 81.2 101.0 70.7 85.8 
Yakutsk 	 124.4  159.2 111.8 139.5 99.2 116.0 83.9 101.9 67.9 85.1 55.6 75.7 
"Normalisation station. Actual % increases corrected to standard sea level atmospheric depth. 'Calculated % increases 
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TABLE 5.3: 
COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 20 JANUARY 2005 GLE FOR THE MODIFIED POWER LAW FIT 

Station 07:40 UT 
Observed b 	Calculated' 

07:45 UT 
Observed b 	Calculated' 

07:50 UT 
Observed b 	Calculated' 

07:55UT 
Observed b 	Calculated' 

08:00 UT 
Observed b 	Calculated' 

Alma Ata 	 0.6 0.2 0.2 0.2 0.3 0.3 0.2 0.4 0.2 0.5 
Apatity 	 91.5 97.0 80.4 84.9 75.0 76.1 71.9 73.4 73.3 70.8 
Athens 	  0.0 0.1 0.0 0.1 0.0 0.1 0.4 0.1 0.0 0.1 
Baksan 	 1.7 0.4 0.3 0.3 0.9 0.4 1.2 0.6 0.7 0.7 
Barentsburg 	 77.0 82 63.9 71.0 55.8 65.1 49.8 63.4 51.0 63.4 
Bern 	  4.0 1.4 3.9 1.4 4.2 1.5 4.3 2.0 3.5 2.3 
Calgary 	 82.9 83.4 74.1 74.4 66.1 69.2 63.1 65.9 62.3 63.5 
Cape Schmidt 	 73.3 71.4 62.7 63.0 58.9 59.9 60.3 59.2 65.3 59.3 
Climax 	 6.3 9.4 4.4 8.9 4.9 8.7 3.3 10.9 5.3 10.4 
Durham 	 49.9 41.2 45.0 36.0 41.7 37.7 41.4 36.6 42.0 36.8 
Erevan 	  0.1 0.1 0.3 0.1 0.4 0.1 0.1 0.2 0.2 0.3 
Fort Smith 	 76.1 71.3 69.4 63.0 70.1 60.0 67.4 59.2 64.3 59.3 
Hermanus 	 3.7 1.2 3.5 1.0 2.6 1.2 4.0 1.6 2.7 1.9 
Inuvik 	  5.5 4.1 5.1 3.8 5.9 4.1 6.1 4.9 5.3 6.0 
Irkustk 	  71.8 71.4 65.8 62.7 66.0 60.7 61.3 59.7 62.0 60.1 
Jungfraujoch 	 2.5 1.2 2.2 1.2 2.1 1.2 2.0 1.9 2.1 2.1 
Kerguelen Island 	 79.1 74.8 72.6 64.9 66.8 61.9 68.3 60.7 64.9 60.2 
Kiel 	  23.6 17.9 22.0 15.5 20.8 16.1 21.2 18.1 23.5 19.6 
Kingston 	 39.1 38.8 35.9 37.2 36.5 34.1 38.0 35.7 37.8 37.7 
LARC 	  17.2 10.1 13.8 10.1 15.9 10.4 14.9 11.6 13.4 11.7 
Lomnicky S.  tit 	 3.3 2.6 3.3 2.7 4.2 2.9 4.8 3.7 4.5 4.3 
Magadan 	 30.0 38.9 28.0 38.3 29.6 36.3 31.7 34.0 32.2 36.2 
Mawson 	 114.9 114.9 102.9 103.1 95.2 97.4 85.1 88.8 79.7 82.2 
McMurdo 	 85.6 92.8 86.6 85.6 78.0 79.9 65.2 74.3 60.1 66.8 
Mcxico City 	 1.3 0.1 0.6 0.1 1.5 0.1 0.4 0.2 0.6 0.2 
Moscow 	 24.6 20.9 22.5 18.4 22.2 19.5 22.9 21.9 24.3 20.5 
Mt. Washington 	 61.7 63.1 53.8 49.9 50.9 51.7 46.8 50.7 44.6 50.6 
Nain 	  117.4 97.3 107.7 87.9 99.4 81.9 90.8 74.8 83.6 69.6 
Newark 	 29.1 20.7 27.0 18.1 23.0 18.4 25.3 19.8 25.3 21.4 
Norlisk 	 64.0 79.2 59.6 69.4 58.4 63.6 56.4 63.0 56.1 62.3 
Novosibirsk 	 14.4 12.1 13.4 12.5 13.7 12.6 17.0 13.8 16.8 13.9 
Oulu 	  105.7 95.2 93.4 83.8 86.8 75.7 86.3 73.4 78.4 70.6 
Potchcfstrom 	 0.2 0.2 0.4 0.2 0.5 0.2 1.1 0.3 0.0 0.4 
Rome 	 0.3 0.3 0.1 0.3 1.4 0.4 1.7 0.5 1.7 0.6 
SANAE 	 93.5 92.4 79.5 81.1 69.2 74.5 65.4 70.9 63.6 69.0 
South Pole 	 93.8 101.1 85.8 93.0 85.6 88.5 80.5 79.9 71.9 71.6 
Terre Adelie" 	 90.8 90.8 83.1 83.1 76.0 76.1 72.8 72.8 66.1 66.1 
Thule 	  86.5 73.4 68.4 64.5 64.8 60.8 61.8 59.7 61.3 59.7 
Tsumeb 	 0.3 0.0 0.0 0.0 0.1 0.1 0.3 0.1 0.0 0.1 
Tixie Bay 	 61.5 72.8 53.7 64.0 45.9 60.2 48.3 59.7 49.7 59.7 
Yakutsk 	 47.9 65.6 44.1 58.2 43.5 56.2 48.2 54.5 50.9 53.7 
" Normalisation station. Actual % increases corrected to standard sea level atmosphere depth. 'Calculated % increases 
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5.3.1 	Arrival Directions 

Figure 5.5 illustrates the GSE longitude and latitude of the arrival directions, 

together with the IMF direction as measured by ACE. The average GSE longitude of 

the IMF direction as measured by ACE during the first 35 minutes of the event was 

— -600 . This implies that particles were flowing from the Sun (longitudinally) close 

to a nominal Parker spiral (i.e., -45°, GSE coordinates). At 06:55 and 07:00 UT the 

apparent arrival longitude is in good agreement with the measured field longitude. 

However, there is inconsistency between the apparent and the measured longitude of 

the field direction from 07:05 UT onwards. By 07:30 UT the model longitude is 

approximately 60° east of the measured field longitude. 
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FIGURE 5.5: GSE longitude (top) and GSE latitude (bottom) of the arrival directions (solid circles) 
plotted with the negative magnetic field direction (1-hour centred moving averages) as measured by 
the ACE spacecraft (solid line). 

From 06:55 to 07:15 UT the latitude of the arrival direction is in good 

agreement with the measured field latitude (i.e., centred at high southern latitudes in 

GSE coordinates). However, from 07:15 UT the apparent latitude began to move 

north, and by 07:30 UT the apparent latitude is approximately 45° north of the 

measured field latitude. It is important to mention that model flow vectors need not 
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align with the measured magnetic field vector (see section 3.3.1). The uncertainty 

for the particle arrival direction at 06:55 UT is estimated to be ±1° in latitude and 

±18° in longitude. At 08:00 UT the uncertainty is estimated to be ±10° in latitude 

and ±21 0  in longitude. Uncertainties for parameters at most other solutions will lie 

between these values. 

5.3.2 	Pitch Angle gistributions 

The temporal development of the pitch angle distribution during GLE is 

presented in Figure 5.6 and the fitted parameters are listed in Table 5.4. The particle 

distribution can be divided into an anisotropic component (representing particles 

which arrive directly from the Sun) and an isotropic component (where the effects of 

local scattering dominate the distribution). The particle arrival at the peak (06:55 

UT) was strongly anisotropic (Figure 5.6). This suggests that initially relativistic 

protons injected into the interplanetary medium arrived directly from the Sun without 

being affected by local scattering. However, the degree of anisotropy decreased and 

by 08:00 UT, well into the decline phase, there is evidence for significant scattering. 
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FIGURE 5.6: Derived pitch angle distributions for 06:55, 07:00, 07:10, 07:30, 07:40 and 08:00 UT, 
during the GLE of 20 January 2005. 
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TABLE 5.4 

PITCH ANGLE DISTRIBUTION 
PARAMETERS 

20 JANUARY 2005 
Time ° 
(UT) 

A "  B °  

06:55 	 0.319 0.010 
07:00 	 0.287 0.504 
07:10 	 0.354 1.082 
07:30 	 0.085 2.321 
07:40 	 0.713 2.820 
08:00 	 0.408 4.128 
° Time refers to the start of a 
five-minute 'nterval. 

b  Parameter A has most effect 
on the width of the anisotropy. 
Parameter B has most effect on the 

relative flux in the reverse direction. 

5.3.3 	Spectrum 

The spectral form used in this analysis is a modified power law in rigidity, as 

described in section 2.2.10. Particle spectra derived between 06:50 and 07: 15 UT are 

illustrated in Figure 5.7 and fitted parameters are presented in Table 5.5. 

Rigidity (GV) 

FIGURE 5.7: Derived modified power law rigidity spectra for 06:55, 07:00, 07:10, 07:30, 07:40 and 
07:15 UT, during the GLE of 20 January 2005. 
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Model fits to observations for the 06:50 to 06:55 UT interval (rising phase) had 

large residuals for some stations, due to the extreme asymmetric anisotropy. 

Nonetheless, the model produced a spectral index (y) of -5.5 with a small change of 

slope parameter (6y) of 0.04. At 06:55 UT (peak) the spectral index was very soft at 

-9.2±0.6, again with a small change of slope parameter (6y) of 0.07. The index 

hardened during the declining phase, ranging from -7.7±0.5 at 07:00 UT to -7.0±0.4 

an hour later, with sy having insignificant values. These spectra agree with results 

reported by Biitikofer et al. (2006) and Plainaki et al. (2007). The uncertainty of the 

spectral index (y) at 06:55 UT (peak) is expected to exceed that at most other times 

due to the dominance of the particle anisotropy at this time (see discussion section 

3.4). The uncertainty in the change of slope (Sy) for this period was negligible. The 

uncertainty in the calculated flux at 1 GV is less than 10 %. 

TABLE 5.5 

DERIVED SPECTRAL PARAMETERS 
Time ° 	Inc  
06:50 	 2034.5 2244.2 -5.54 0.04 
06:55 	 2490.5 20451.4 -9.19 0.07 
07:00 	 1130.3 4694.3 -7.68 0.00 
07:05 	 773.6 2531.8 -7.35 0.00 
07:10 	 479.7 1505.1 -7.25 0.00 
07:15 	 319.9 1058.4 -7.31 0.01 
07:20 	 223.6 825.1 -7.28 0.02 
07:25 	 174.8 823.3 -7.47 0.00 
07:30 	 136.8 723.4 -7.64 0.00 
07:35 	 111.0 562.0 -7.64 0.00 
07:40 	 90.8 489.8 -7.65 0.00 
07:45 	 79.5 440.2 -7.59 0.00 
07:50 	 69.2 402.8 -7.40 0.00 
07:55 	 72.8 306.8 -7.16 0.00 
08:00 	 66.1 239.2 -7.00 0.00 
° Time (UT) refers to the start of a five-minute 
interval. 
Sea-level corrected percentage increases above the 

pre-event galactic cosmic ray background of the 
normalization station, Terre Adelie. 

Flux in particles (cm2  s sr GV) l at 1 GV summed 
over the forward steradian. 
d  Spectral slope (y). 

Modified power law exponent modifier (Sy).  

5.4 MODELLING PARTICLE ACCELERATION 

The analytical spectra deduced from the neutron monitors were used to generate 

the input to a generalised non-linear least squares program with data points weighted 

by errors in the flux data. Best-fit variable model parameters derived from this 

program were re-input into the Ellison and Ramaty (1985) theoretical shock 

acceleration model (equation 2.23) and the Gallegos-Cruz & Perez-Pereza (1995) 
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theoretical stochastic acceleration model B (equation 2.28) to generate analytical 

spectra up to 10 GeV. 

5.4.1 	Results 

Tables 5.6 and 5.7 present the results of the spectral fits to the data generated 

from the analytical fits to the neutron monitor observations for this GLE, at the peak 

(06:55 UT) and declining (07:10 UT) phases, while Figure 5.8 illustrates these 

results. 

TABLE 5.6: VARIABLE MODEL PARAMETERS: 

SHOCK ACCELERATION, 20 JANUARY 2005 

Time' 
(UT) 

b r Ep c  
(MeV) 

WSS d  

06:55 	 1.417±0.002 5116± 500 28 

07:00 	 1.491±0.003 9372± 1213 36 

07:10 	 1.559±0.005 6383± 685 53 

07:20 	 1.602±0.006 4432± 402 78 

07:30 	 1.609±0.007 3525± 309 116 

07:45 	 1 514 ±0.010 3075± 258 142 

08:00 	 1.723±0.013 3371± 282 174 

a  Time refers to the start of a five-minute interval 
b  Shock compression ratio 

e-folding energy 
d  Wei•hted sum of s uares 

TABLE 5.7: VARIABLE MODEL PARAMETERS 

STOCHASTIC ACCELERATION 

NEUTRAL CURRENT SHEET INJECTION, 20 JANUARY 2005 

Time' 
(UT) 

le a' 
(S -1 ) 

WSS d  

06:55 	 1985±96 0.0146 ±0.000 1 2 

07:00 	 72±4.0 0.0215 ±0.0003 6 

07:10 	 14±1.0 0.0242 ±0.0003 6 

07:20 	 8±1.0 0.0238±0.0002 6 

07:30 	 11±1.0 0.0218±0.0002 6 

07:45 	 2±0.4 0.0221 ±0.0002 6 

08:00 	 8 ±0.1 0.0263±0.0003 8 

°Time refers to the start of a five-minute interval 
Normalisation factor 
Acceleration efficiency 

d Weighted sum of squares  

A Kolmogorov-Smirnov test at 95% confidence shows that all post-fit residuals 

were random, giving confidence in the weighted sum of squares result. Table 5.7 lists 
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the results and standard errors for the variable model parameters (normalisation 

factor N and acceleration efficiency a) from the stochastic acceleration non-linear 

least squares fitting routine. The proton spectra during the peak (06:55 UT) and 

decline (07:00 to 08:00 UT) phases are best fitted with this spectral form, implying 

proton acceleration by processes resulting from magnetic reconnection. 

Energy (MeV) 

FIGURE 5.8: Energy spectral fits to flux values generated from ground-based neutron monitor 
observations (ranging from —400 MeV to 10 GeV) for intervals 06:55 UT (peak) and 07:10 UT 
(declining phase). Fluxes (black dots) are shown with corresponding 1-sigma error bars. Fitted 
curves are of the Ellison & Ramaty (1985) shock acceleration (light grey line) and the Gallegos-Cruz 
& Perez-Peraza (1995) stochastic acceleration (NCS injection) spectral forms (black line). 

Figure 5.9 shows the residuals (calculated from the GNLS fitting routine) 

plotted against particle energy and illustrate more clearly the better fit of the 

stochastic acceleration model compared to the shock acceleration model. For the 

time intervals modelled, the acceleration efficiency a ranged from 0.01 to 0.03 s -1 , 

which is consistent with values reported in previous studies (Miller, Guessoum & 

Ramaty 1990; Miller 1991). 
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FIGURE 5.9: Least squares Y-residual plotted against kinetic energy for the 20 January 2005 GLE. 
These plots illustrate the better fit of the Gallegos-Cruz & Perez-Peraza (1995) stochastic acceleration 
model (black line) as opposed to the Ellison & Ramaty (1985) shock acceleration model (light grey 
line): (a) 06:55 UT (peak), (b) 07:10 UT (declining phase). 

5.5. SUMMARY 

The 20 January 2005 GLE had an extremely impulsive onset as shown by the 

neutron monitor intensity/time profiles and a rapid rise to maximum (approximately 

5 minutes). The GLE event was marked by a highly anisotropic onset followed by a 

fairly rapid decrease in anisotropy. This indicates that initially, particles injected into 

the interplanetary medium propagated to Earth essentially scatter-free. However, 

there is evidence to suggest that particles arriving at Earth shortly after were affected 

by significant degrees of scattering. 

Model-derived and ACE measurements of the IMF direction indicate an initial 

source of relativistic particles arriving at high southern latitudes. This explains the 

substantial increases observed at Terre Adelie, McMurdo and South Pole stations, 

whilst the very much smaller increases observed at SANAE and Mawson indicate 

pitch angle distributions that were both extremely anisotropic and asymmetric. 

I 
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Theoretical shock and stochastic acceleration spectral forms were employed to 

investigate the acceleration process. The spectra at all phases of the event are best 

fitted with a stochastic acceleration spectral form. This result suggests that a 

stochastic process associated with magnetic reconnection was a source of relativistic 

protons. 
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DISCUSSION 

6.1 INTRODUCTION 

The major aim of this study was to gain insight into the acceleration process/es 

responsible for the production of relativistic protons which led to the 14 July 2000, 

15 April 2001 and 20 January 2005 GLEs. To achieve this, analytical and numerical 

spectral forms representing shock and stochastic acceleration mechanisms were fitted 

to ground-based measurements of relativistic proton fluxes, covering the energy 

spectrum up to 10 GeV. This chapter considers the results presented in Chapters 3, 4 

and 5 in terms of interplanetary conditions at the time of each GLE, the impact of 

transport processes on low-energy proton intensities, and the source mechanisms 

responsible for relativistic particle acceleration. 

6.2 STATE OF THE INTERPLANETARY MEDIUM 

6.2.1 	14 July 2000 

A period of intense solar activity from 10 to 15 July 2000 produced the Bastille 

Day GLE from an eruption on 14 July 2000. Several shocks and associated magnetic 

structures are apparent from ACE measurements, indicating that the IMF had 

experienced sizeable disturbances from 11 to 16 July (Figure 6.1). 

Particle pitch angle distributions at Earth during a GLE provide information 

about the interplanetary medium through which the particles have travelled. 

Figure 6.2 illustrates the distributions during the rise and peak phases of this GLE. 

The particle arrival near onset (10:35 UT) was strongly anisotropic, indicating 

focussed transport conditions and thus implying minimal particle scattering. 
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FIGURE 6.1: Magnitude of the magnetic field intensity as measured by ACE from 11 to 17 July 2000 
(Days 193-199). Dashed line indicates the onset time of GLE 59 (10:32 UT in 1-minute data) at 
Earth. 

However, at 10:40 UT the field-aligned component of the pitch angle 

distribution (i.e., particles moving in the forward direction) began to broaden and 

local scattering began to increase. Pitch angle distributions from 10:40 UT also 

show enhancements above 90°, implying the possibility of particle propagation in the 

reverse direction (i.e., bi-directional flow). Bi-directional flow can result from: (1) 

enhanced turbulence in the interplanetary medium or a shock beyond Earth's orbit 

which results in the back-scattering of particles; or (2) particles arriving from the Sun 

along two different paths of a closed interplanetary magnetic loop 

(Ruffolo et al., 2006). This was examined by incorporating a modification of the 

pitch angle distribution function (see section 2.2.9). Results indicated no evidence 

for an excess of reverse-propagating particles (i.e., a significant peak in the pitch 

angle distribution above 90° at the intervals examined). 

Bieber et al. (2002) proposed that the rapid decrease in anisotropy for this event 

was strongly influenced by a magnetic disturbance located 0.3 AU beyond the Earth, 

which reflected —85% of the relativistic solar protons back toward the Earth. Their 

hypothesis is supported by ACE and Wind spacecraft observations of shocks and 

associated magnetic structures which passed the Earth on 13 July 2000, as well as the 

rapid increase in the neutron monitor response of stations viewing in the anti-

sunward field direction (see Figure 3.3). However, significant increases in neutron 

monitor responses at 10:40 UT (approximately 10 minutes after GLE onset) were not 

only observed at stations viewing in the anti-sunward field direction (e.g., Tixie Bay, 
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12.8%), but also at stations viewing perpendicular to the nominal sunward field 

direction (Apatity, 30.6%, and Inuvik, 15.3%). Therefore, the underlying isotropic 

component (Figure 6.2) is associated with local turbulence in the IMF. 

1 	 
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FIGURE 6.2: Derived pitch angle distributions at 10:35, 10:40, 10:55, 11:10 and 11:40 UT during the 
14 July 2000 GLE. 

Measurements of the IMF intensity several hours after GLE onset provide 

information on the state of the medium into which the particles were injected. ACE 

detected a moderate magnetic disturbance (15 nT) at 14:55 UT (Smith etal., 2001). 

The broadening of the width of the pitch angle distribution in the forward 

direction, as illustrated in Figure 3.6, suggests that relativistic particles may have 

encountered this disturbance (i.e., a shock/magnetic cloud structure) en-route to 

earth. 
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6.2.2 	15 April 2001 

The 15 April 2001 solar event was the largest of a series of solar eruptions that 

occurred during a period of intense solar activity extending from 28 March to 

21 April. However, ACE observations suggest that interplanetary conditions and the 

medium into which the particles were injected were relatively quiet (Figure 6.3). For 

example, the average solar wind speed was —400 km/s and the average magnetic field 

strength for this period was —5 nT, which is typical for a quiet-time solar wind. 

Figure 6.4 shows that the particle arrival near GLE onset (14:00 UT) was anisotropic, 

indicating focussed transport conditions with minimal particle scattering. The 

anisotropy decreased relatively slowly from 14:00 to 14:45 UT and then remained 

unchanged until at least 16:00 UT. Pitch angle distributions from 14:30 UT show 

enhancements above 90°, implying the possibility of particle propagation in the 

reverse direction (i.e., bi-directional flow). Again this was examined using the 

method described in section 2.2.9. The results indicated no evidence for an excess of 

reverse-propagating particles. 

103 	104 	105 	106 	107 
	

108 
	

109 
Day of Year 2001 

FIGURE 6.3: Magnitude of the magnetic field intensity as measured by ACE for the period 
13 to 18 April 2001 (Days 103 to 109). Dashed line indicates the onset time of GLE 60 (13:55 UT in 
5-minute data) at Earth. 

Whilst ACE measurements of the IMF strength indicate the passage of shocks 

and associated magnetic structures for the period 13 to 14 April (Figure 6.3), the low 

magnetic strength of these disturbances suggest that they were unlikely to produce a 

significant reflective magnetic barrier beyond Earth. Therefore, the small underlying 
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— 14:10 UT 	
 14:30 UT 

— — 14:45 UT 

isotropic component in pitch angle distributions (Figure 6.4) is probably the result of 

limited local IMF scattering effects. 

0 20 40 60 80 100 120 140 160 180 
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FIGURE 6.4: Derived pitch angle distributions for 14:00 UT (near onset), 14:10 UT (rising phase), 

14:30 UT (peak) and 14:45 UT (declining phase). 

6.2.3 	20 January 2005 

A series of solar eruptions occurred during a period of intense solar activity 

extending from 14 to 20 January 2005. The largest of these eruptions produced the 

20 January 2005 GLE. Figure 6.5 shows that ACE measurements of the IMF 

strength from 16 to 19 January indicate the passage of several strong shocks and 

associated magnetic structures which may have resulted in a sizable magnetic 

disturbance beyond the Earth. However, by the time the GLE commenced the IMF 

had recovered somewhat. The magnitude of the IMF intensity between GLE onset 

and the arrival of the shock at Earth (-36 hours), gives an indication of the state of 

the medium into which the particles were injected. The average IMF intensity as 

measured by ACE for this period was —5 nT (Figure 6.5). 
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FIGURE 6.5: Magnitude of the magnetic field intensity as measured by ACE from 14 to 
23 January 2005 (Days 14-23). Dashed line indicates the onset time of GLE 69 (06:48 UT in 
1-minute data) at Earth. 

Solar wind speed measurements from Wind and ACE were not available as the 

intense particle emission saturated their detectors. However, the CELIAS proton 

detector on board the SOHO spacecraft was unaffected and its measurements 

indicated the solar wind speed ranged from 600 to 800 km s -1  (hourly averages). 

This suggests that relativistic particles were injected into a relatively smooth 

interplanetary medium with a slightly smaller than nominal path length as a result of 

the higher solar wind speed. 

The particle arrival at 06:50 UT (onset) and 06:55 UT (peak) (Figure 6.6) were 

strongly anisotropic, indicating focussed transport conditions with minimal particle 

scattering. After —07:00 UT the field-aligned component of the pitch angle 

distribution in the forward direction began to broaden and local scattering began to 

increase. By 07:40 UT there is evidence for significant particle pitch angle scattering 

above 900 ; therefore, the possibility of bi-directional flow was examined. 

Modelling shows that by 07:40 UT (Figure 6.6, right) there is evidence of an 

excess of reverse-propagating particles (i.e., a significant enhancement in the pitch 

angle distribution above 90°). Table 6.1 shows the improved fits to observations 

when bi-directional flow parameters (section 2.2.9) are included in the modelling. 

This enhancement could be attributed to a shock or strong turbulence in the disturbed 

interplanetary medium beyond Earth's orbit resulting from previous solar activity 

described above, which resulted in the back-scattering of relativistic protons. 

Alternatively, bi-directional flow could be attributed to particles arriving from the 
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Sun along two different paths in a closed interplanetary magnetic loop configuration. 

However, the author is unaware of any evidence in the literature to support the 

existence of a closed interplanetary magnetic loop configuration for this event. This 

suggests that back-scattering from a reflecting boundary beyond Earth is a more 

likely cause for the bi-directional flow. 

Pitch Angle (Degrees) 

FIGURE 6.6: Derived pitch angle distributions for the 20 January 2005 GLE at 06:55 (peak) and 07:10, 
07:40, 08:00 UT decline phases (left) and for the same intervals incorporating a modification of the 
pitch angle distribution function to model bi-directional flow (right). 

TABLE 6.1 

PITCH ANGLE DISTRIBUTION 
EFFECT OF BI-DIRECTIONAL FLOW 

Time a 	Standard Pitch 	Bi-directional 
(UT) 	Angle (WSS) 	Flow (WSS) 

07:40.... 2500 2440 
07:50.... 1720 1500 
08:00.... 1120 910 
a  Time refers to the start of a five-minute interval. 
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6.3 TRANSPORT PROCESSES AND LOW-ENERGY PROTON INTENSITIES 

If the path length through the IMF during a GLE is known, one can calculate the 

expected proton arrival times at the Earth for any energy. This allows one to 

determine whether interplanetary transport processes (see Section 1.3) affected the 

propagation of low-energy protons en-route to Earth, thereby delaying their arrival. 

The time At required for particles to travel along the IMF is: 

At =s/fic 	 (6.1) 

where s is the distance from the Sun along a nominal IMF line to Earth and fi is the 

particle speed in units of the speed of light c. 

Following Lockwood et al. (1990), the distance depends on the solar wind speed 

Vs„, and the angular speed C2 of the Sun and is given by: 

41+ a 2 r 	ln ar + +  a 2r 	} 
s= 

2 	 2a 
(6.2) 

with a = Qcos A IV,  where A is the heliographic latitude and r is the heliocentric 

radial distance. The value of A is taken to be the heliographic latitude of the foot 

point of the nominal Sun-Earth field line. The angular speed of the Sun varies from 

2.9 x 10 6  to 2.7 x 10 6 s' between 0° and 30° heliolatitude. 

Equation (6.2) provides a first-order approximation of the path length. Using a 

zero proton pitch angle (because of the rapid focussing of a particle spiralling in a 

divergent field) the path length for the 14 July 2000 GLE is estimated at 1.1 AU, 

based on a mean solar wind speed Vsw  of —600 km s-1 . For this event no significant 

flux above 3 GV (2.2 GeV) was detected by neutron monitors at sea level and the 

injection time at the Sun was calculated using this maximum energy (i.e., )8 = 0.95). 

The proton travel time is calculated to be 565 ±40 seconds. To estimate the injection 

time at the Sun the travel time is simply subtracted from the onset time of the 

14 July 2000 GLE (10:32 UT ±30 seconds, 1-minute data), to give 

10:23 UT ±50 seconds. This calculation includes a 10% uncertainty in the mean 

solar wind speed. For the 15 April 2001 GLE, the path length along the IMF is 
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estimated at 1.2 AU, based on a mean solar wind speed Vs„ of —400 km s-1 . This 

result is in agreement with Bieber et al. (2004). In contrast, Saiz et al. (2005a), using 

the "inverse velocity method", calculated a path length of 1.7 AU. However, they 

did not have confidence in this result and considered the result of Bieber et al. (2004) 

(which uses a detailed interplanetary transport model) to be more accurate. No 

significant flux above 6.3 GV (5.4 GeV) (i.e., fi = 0.99) was detected by neutron 

monitors at sea level. For a path length of 1.2 AU, the travel time at this energy is 

calculated to be 590 +85 seconds. From the neutron monitor onset time of 

13:55 UT ±30 seconds, the injection time at the Sun is estimated at 

13:45 UT ±90 seconds. 

For the 20 January 2005 GLE, the path length along the IMF is estimated at 

1.1 AU, based on a mean solar wind speed Vs, of —600 km s-1 . No significant flux 

above 7.6 GV (6.7 GeV) was detected by sea-level neutron monitors. The proton 

travel time at this energy (i.e., )3 = 0.99) is calculated to be 540 +40 seconds. Based 

on a neutron monitor onset time of 06:48 UT ±30 seconds, the injection time at the 

Sun is estimated at 06:39 UT +50 seconds. Bieber et al. (2004) and 

Saiz et al. (2005a, 2005b) derived relativistic proton injection times for the 

15 April 2001 and 20 January 2005 GLEs within 3 minutes of the estimates 

calculated here. 

6.3.1 	Comparisons with GOES observations 

Spacecraft data have been corrected for arrival-time velocity dispersion by 

simply shifting the GOES proton time-lines backwards by the difference in transit 

time estimates. Figure 6.7 shows that for all three GLE events the particle intensities 

at spacecraft energies (from —30 to —100 MeV) are considerably lower than predicted 

from fitted spectra. Using the 15 April 2001 GLE as an example, a 30-MeV particle 

injected into a smooth interplanetary medium at approximately 13:45 UT would 

require a travel time of approximately 41 minutes, arriving at 1 AU at —14:26 UT. 

Figure 6.7b shows that at 14:45 UT, 30-MeV proton intensities remain significantly 

lower than expected values. 

After correction for dispersion, further delays in the arrival time or suppression 

of release of low-energy protons also apply to the 14 July 2000 and 20 January 2005 

GLEs. This suggests that for each of these events, the propagation of low-energy 
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FIGURE 6.7: Energy spectral fits to flux values generated from ground-based neutron monitor observations during the decline phases of the three events: (a) 14 July 2000 
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line) and the Gallegos-Cruz & Perez-Peraza (1995) stochastic acceleration (NCS injection, equation (2.28)) spectral forms (black line). 
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protons en-route to Earth was probably affected by processes which resulted in the 

trapping of particles at the source and/or other interplanetary transport effects, as 

outlined in section 1.3. By excluding spacecraft data, the impact of such effects on 

spectral analyses is minimised (Bombardieri et al., 2008, ApJ, submitted). 

6.4 SOURCE MECHANISMS 

6.4.1 	14 July 2000 GLE 

Bombardieri et al. (2006) showed that during the rising phase of the 

14 July 2000 GLE, the form of the spectrum varied considerably suggesting a change 

in the source of relativistic particles (Figure 6.8). Best-fit spectra at 10:45 UT suggest 

protons were accelerated to relativistic energies at the bow shock of the 14 July 2000 

CME. This is supported by the detection of Type II decametric to kilometric radio 

emissions as the shock propagated through the corona (Reiner et al., 2001). 
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FIGURE 6.8: Best fit particle acceleration spectra (ranging from —400 MeV to 5 GeV) for the 14 July 
2000 GLE. Fitted curve for 10:45 UT (black line) is the Ellison & Ramaty (1985) shock acceleration 
model (black line). Fitted curve at 10:55 UT (peak) is the Gallegos-Cruz & Perez-Peraza (1995) 
stochastic acceleration model, equation (2.28) (grey line). 
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Estimates place the initial speed of the CME at between —1800 km s -1  and 

2800 km (Reiner et al., 2001). The maximum energy produced by the shock, as 

characterised by the e-folding energy (Ellison & Ramaty 1985), is —2 GeV. This is 

very close to the maximum energy observed by sea-level neutron monitors. 

However, the neutron monitor spectrum at the peak of the GLE is best fitted by a 

stochastic acceleration spectral form. This implies that resonant wave-particle 

interaction resulting from magnetic reconnection was an additional source of 

relativistic protons. Reconfiguration of the coronal magnetic field in the wake of the 

CME involved magnetic reconnection, where dissipating current sheets formed high-

velocity plasma outflow jets. Such jets could be the source of the MHD turbulence 

which initiated stochastic acceleration (Innes 1997; Miller et al., 1997; Priest & 

Forbes 2002). With the advent of the RHESSI spacecraft there is now strong 

observational evidence supporting the importance of current sheets in major solar 

eruptive episodes (e.g., Ciaravella et al. (2002); Ko et al. (2003); Sui & Holman 

(2003); Webb et al. (2003); Gary & Moore (2004); Sui, Holman & Dennis, (2004), 

Lin et al. (2005)). 

Bombardieri et al. (2006) found that MHD turbulence was important in 

relativistic particle acceleration for the 14 July 2000 GLE. Further investigation by 

Bombardieri et al. (2007) using a more realistic stochastic acceleration model 

support these initial findings. 

Klein et al. (2001) provided additional evidence to support relativistic proton 

acceleration by dissipating neutral current sheets in the wake of the CME. Using 

radio, X-ray, EUV and visible light observations, they were able to trace the non-

radial propagation path of a filament to the north-western solar quadrant. 

Klein et al. (2001) proposed that this filament interacted with coronal structures 

(large-scale coronal loops) near to Sun—Earth connecting magnetic field lines (i.e., 

near 60° western heliolongitude). This interaction involved reconfiguration of the 

coronal magnetic field in the wake of the erupting filament (CME). They based this 

finding on radio observations of a prominent bright continuum radio source, 

accompanied by a group of intense Type III radio bursts from microwave to 

hectometric wavelengths, which coincided with a rise in neutron monitor count rates. 

Klein et al. (2001) proposed that the reconfiguration of the coronal magnetic field led 

to relativistic proton production and that the major driver of these changes was the 

ejected magnetic field configuration around the erupting filament which was part of 
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the CME. In part, the work of Klein et al. (2001) is supported by results presented 

here, which suggests that the bow-shock of the 14 July 2000 CME was not the only 

source of relativistic particles for this event and that MHD turbulence from magnetic 

reconnection, created by reconfiguration of the coronal magnetic field in the wake of 

the CME, was also a potential source. 

6.4.2 	15 April 2001 GLE 

The high to moderate degrees of anisotropy during the early stages of the 15 

April 2001 GLE and the relatively stable interplanetary conditions affords the 

opportunity to investigate the acceleration process more effectively, particularly 

during the early stages of the event. Bombardieri et al. (2007) showed that the 

spectra up to 10 GeV at the rise (14:10 UT), peak (14:30 UT) and decline (14:45 UT) 

phases of GLE 60 were best fitted by a shock acceleration spectral form. 
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FIGURE 6.9: Best-fit particle acceleration spectra (ranging from —400 MeV to 10 GeV) for the 15 
April 2001 GLE. Fitted curve for 14:10 UT (rising phase) and 14:30 UT (peak) is the Ellison & 
Ramaty (1985) shock acceleration model. 

The most likely acceleration source was the bow shock of the 15 April 2001 

CME. This result is supported by the detection of Type II decametric to kilometric 
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radio emissions as the shock propagated through the corona and is in agreement with 

investigations by Tylka et al. (2002), Gopalswamy et al. (2003) and Bieber et al. 

(2004). Estimates place the initial speed of the CME at —1200 km/s (Tylka et al., 

2002), greater than the —750 lcm/s required to produce SEPs (Reames 1999). The e-

folding energy at 14:30 UT (peak) is —4.1 GeV, which is near to the maximum 

energy (-5 GeV) observed by sea-level neutron monitors for this GLE. Bombardieri 

et al. (2007) report no significant change in the spectrum (Figure 6.9) at the time 

intervals modelled, suggesting that the 15 April CME-driven shock was dominant in 

relativistic particle acceleration. This is in contrast to the 14 July 2000 GLE where 

the spectrum varied significantly during the rise phase of the event (Figure 6.8). 

6.4.3 	20 January 2005 GLE 

The location of the intense emissions (N14° W61°) for the 20 January 2005 

solar eruption must have been close to the nominal Sun-Earth connecting magnetic 

field line. The extremely rapid rise (-5 minutes to peak intensity) in neutron monitor 

count rates is evidence for excellent connectivity. The strong anisotropy near GLE 

onset indicates that relativistic particles travelled along the IMF essentially 

scatter-free. Bieber et al. (2005) noted that over a 6-minute interval the neutron 

monitor count rate (in 1-minute data) at South Pole, McMurdo and Terre Adelie 

increased by factors of 56, 30 and 46 respectively. For the same interval other 

stations observed increases of only a factor of 3. This suggests that relativistic 

protons arriving at 1 AU were initially confined to a narrow beam. These 

characteristics provide a rare opportunity to directly observe the acceleration source 

from Earth during the initial phase of the event. 

Of the models employed, results show that the proton spectra from the peak 

(06:55 UT) to the decline (07:30 UT) phases of the event are best fitted by the 

stochastic acceleration model (Bombardieri et al., 2008, ApJ, in press). Furthermore, 

the overall form of the spectrum is similar for all the intervals modelled. This 

suggests that resonant wave-particle interaction resulting from magnetic 

reconnection was a potential source of relativistic protons. Mechanisms for 

relativistic particle production involving magnetic reconnection include solar flares 

and coronal neutral current sheet reconnection behind an erupting CME (e.g., Lin & 

Forbes (2000); Klein et al. (2001); and Lin et al. (2005)). 
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The 20 January 2005 solar eruption was associated with a very fast CME with an 

estimated speed of 2500 km s' (Simnett 2006). The role played by this CME in 

relativistic proton acceleration is unclear. Chenglong Shen et al. (2007) found that 

CME speed alone does not reflect the real strength of a CME-driven shock. They 

showed that the 15 September 2001 CME, with a speed of 750 km s -1 , produced a 

larger SEP event (i.e., drove a stronger shock) than the 15 June 2000 CME with a 

speed of —1400 km s -1 . Chenglong Shen et a/. (2007) argue that the plasma density 

upstream of a shock, as well as the magnetic field strength, are important factors 

when considering shock strength. Therefore, the fact that the 20 January 2005 CME 

was fast does not necessarily mean it was capable of driving a shock strong enough 

to accelerate particles to energies > 10 GeV. However, one must be cautious not to 

rule out entirely the role of the 20 January 2005 CME in relativistic particle 

acceleration for this event. 

Energy (MeV) 
	

Energy (MeV) 

FIGURE 7.10: Best fit particle acceleration spectra (ranging from —400 MeV to 10 GeV) for the 20 
January 2005 GLE. Fitted curves for the peak (06:55 UT) (left) and decline phases (07:00, 07:10 and 
07:20 UT) (right) of the event, are from the Gallegos-Cruz & Perez-Peraza (1995) stochastic 
acceleration model, equation (2.28). 
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The values of e-folding energy derived from the shock acceleration model 

(Table 5.4) are larger than those found for the 14 July 2000 and 15 April 2001 GLEs. 

This suggests that spectra with rapid roll-off below 10 GeV cannot fit the spectrum 

derived from neutron monitor observations. Therefore, for the time intervals 

modelled, the stochastic acceleration spectral form gives a better representation of 

the neutron monitor response. 

6.5 Summary 

This chapter has examined the results presented in Chapters 3, 4 and 5 with 

particular focus on the state of the IMF at the time of each GLE and possible source 

mechanisms for relativistic proton acceleration. Each GLE was marked by a strong 

anisotropic onset, implying that initially particle propagation was essentially scatter-

free. However, for the 14 July 2000 and 15 April 2001 GLEs there is evidence for 

significant scattering several minutes after their respective onsets. In the case of the 

14 July 2000 GLE, the broadening of the pitch angle distributions in the forward 

direction and the isotropic component (at pitch angles greater than 90°) is probably 

due to scattering effects associated with the IMF and relativistic particles 

encountering a shock en-route to earth. For the 20 January 2005 GLE, part of the 

underlying isotropic component in pitch angle distributions is attributed to bi-

directional flow. Back-scattering from a reflecting boundary beyond Earth is a likely 

cause. For the 15 April 2001 GLE, the comparatively smaller isotropic component in 

the pitch angle distributions is probably the result of limited local scattering 

associated with the IMF. Low-energy proton intensities for each GLE are 

considerably lower than predicted from fitted spectra. This implies that trapping at 

the source and/or transport processes affected the propagation of low-energy protons 

en-route to Earth. For the 14 July 2000 GLE sources of relativistic particle 

acceleration include: 1) a coronal shock driven by the 14 July 2000 CME and 2) 

MHD turbulence resulting from coronal current sheet magnetic reconnection created 

by reconfiguration of the magnetic fields in the wake of a CME. In the case of the 

15 April 2001 GLE protons were accelerated to relativistic energies by a coronal 

shock driven by the 15 April 2001 CME. For the 20 January 2005 GLE a stochastic 

process cannot be ruled out as a mechanism for accelerating protons to relativistic 

energies. Possible sources include the 20 January 2005 solar flare or sites of 

magnetic reconnection formed in the wake of the 20 January 2005 CME. 
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CONCLUSION 

The ground level response of the relativistic protons which gave rise to the 

14 July 2000, 15 April 2001 and 20 January 2005 GLEs have been analysed to better 

understand the role of flares and CMEs in relativistic proton acceleration. 

The global analysis technique described in Chapter 2 was used to derive the 

spectrum, the axis of symmetry of the particle arrival and anisotropy of relativistic 

solar protons that give rise to the increased neutron monitor response. The modelling 

procedure employs a least-squares method to efficiently analyse parameter space for 

optimum solutions. The modified power law spectral form, used in the analyses 

presented in Chapters 3-5, was generally found to produce the best fit between 

observed and calculated neutron monitor responses. An exponential function was 

used for pitch angle distributions and a modification of this function was used to 

model bi-directional flow. The geomagnetic field model of Tsyganenko (1989), with 

International Geomagnetic Reference Field (IGRF) 2005 parameters and adjustments 

for geomagnetic disturbance as measured by Kp, was employed to determine the 

asymptotic viewing directions of ground-based instruments. This model was 

upgraded to include the Dst (disturbance storm time) index, allowing for a more 

accurate determination of viewing directions for appropriate levels of geomagnetic 

disturbance (Boberg et al., 1995). 

To investigate the mechanisms responsible for relativistic proton acceleration, 

analytical and numerical spectra representing shock and stochastic acceleration 

processes were fitted to neutron monitor observations of high-energy protons. The 

Ellison & Ramaty (1985) analytical expression was used for shock acceleration. 

This widely-used model describes the ability of a particle to gain energy by 

scattering multiple times between magnetic field irregularities, both upstream and 
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downstream of a coronal shock. The Gallegos-Cruz & Perez-Pereza (1995) 

numerical expression was used for stochastic acceleration, whereby energy from 

turbulence resulting from magnetic reconnection is transferred to particles through 

the process of wave-particle resonant interactions. The analytical spectra deduced 

from the neutron monitors were used to generate the input to a generalized non-linear 

least squares program with synthetic data points weighted by errors in the flux data. 

Analysis was restricted to protons of energy >450 MeV to avoid complications from 

interplanetary processes which can depress the intensity of low-energy protons at 

Earth. 

For the 14 July 2000 GLE, the particle arrival at 1 AU was strongly anisotropic. 

This suggests that relativistic particles were affected by limited scattering en-route to 

Earth. However, several minutes after onset, the field-aligned component of the 

pitch angle distribution began to broaden and local scattering began to increase. The 

broadening of the distribution in the forward direction and the overall isotropic 

component is due to scattering effects associated with the local IMF and relativistic 

particles encountering a shock en-route to earth. This is consistent with spacecraft 

observations suggesting that the medium through which the particles propagated was 

relatively disturbed. The spectrum at 10:45 UT (rise phase) is best fitted with a 

shock acceleration spectral form. In contrast the spectra at the peak (10:55 UT) and 

declining phases (11:10 and 11:40 UT) are best fitted by a stochastic acceleration 

spectral form. This change in spectral form implies more than one source of 

relativistic protons. Sources include: 1) a coronal shock driven by the 14 July 2000 

CME and 2) MHD turbulence resulting from coronal current sheet magnetic 

reconnection created by reconfiguration of the magnetic fields in the wake of a CME. 

The particle arrival at onset for the 15 April 2001 GLE was again strongly 

anisotropic, suggesting that relativistic particles were affected by limited scattering 

en-route to earth. Whilst the field-aligned component of the pitch angle distribution 

did broaden, the overall isotropic component was notably smaller compared to that 

modelled for the 14 July 2000 and 20 January 2005 GLEs. This result is probably 

due to limited local scattering associated with the IMF and is consistent with 

spacecraft observations suggesting that the medium through which the particle 

propagated was relatively undisturbed. Neutron monitor observations up to 10 GeV 

at the rise (14:10 UT), peak (14:30 UT) and decline (14:45 UT) phases of the event 

are best fitted by a shock acceleration spectral form. The form of these spectra did 
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not vary considerably, suggesting that the acceleration mechanism did not change. 

This implies that a coronal shock was the most likely mechanism for producing 

relativistic protons at 1 AU and the most likely source for this shock was the 

15 April 2001 CME. 

The 20 January 2005 solar eruption produced the highest intensity of relativistic 

solar particles since the famous event on 23 February 1956. For the 2005 GLE the 

rise to maximum was extremely rapid (-5 minutes). The event was marked by a 

highly anisotropic onset followed by a fairly rapid decrease in anisotropy. Part of the 

underlying isotropic component in pitch angle distributions is attributed to bi-

directional flow. Back-scattering from a reflecting boundary beyond Earth is a likely 

cause. ACE measurements of the IMF indicate that relativistic particles were 

injected into a relatively smooth medium. However, measurements of the IMF prior 

to the GLE indicate the passage of shocks and associated magnetic structures which 

could have contributed to enhanced turbulence beyond the Earth. From 06:55 UT 

(peak phase) to 07:30 UT (decline phases), the spectrum derived from neutron 

monitor observations is best fitted by a stochastic acceleration spectral form. This 

result suggests that a stochastic process cannot be ruled out as a mechanism for 

accelerating protons to relativistic energies. Possible sources include the 20 January 

2005 solar flare and coronal neutral current sheet reconnection in the wake of the 

associated CME. 

Future investigations should compare the Lee (2005) and Giacalone (2005) 

models of diffusive shock acceleration with the widely-used Ellison and Ramaty 

(1985) model. These recent studies show that, for a range of shock normal angles, 

the high-energy part of the spectrum will be dominated by particles produced when a 

shock is quasi-perpendicular. Importantly, these authors argue that the rollover at 

higher energies is not an exponential as assumed by the Ellison and Ramaty shock 

model, particularly in the case of quasi-perpendicular shocks. Therefore, for events 

where modified power law spectra show very little roll-over (e.g., the 

20 January 2005 GLE) it is possible that such shock models could potentially provide 

better fits to neutron monitor observations than that achieved by the E&R model. 

Incorporation of these new models and those used in this study into the global 

analysis technique would enable a direct fit to neutron monitor observations, instead 

of the two-stage approach that was employed in this study. Furthermore, the 
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inclusion of the most recent Tsyganenko magnetospheric model will further improve 

the accuracy of trajectory calculations. 

In conclusion, the major finding of this study indicates that, along with CME-

driven shocks, sites of magnetic reconnection in the solar corona are a potential 

source of relativistic protons that give rise to GLEs. 
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APPENDIX A 

RESULTS: 14 JULY 2000 

TABLE AI 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 14 JULY 2000 GLE 

Station 
Lat. 

(deg.) 

Lon. 

(deg.) 
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(m) 
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Aragats 	 40.50 44.17 7.60 3200 0.0 	0.0 
Climax 	 39.37 253.82 3.03 3400 1.5 	0.6 
Goose Bay 	 53.27 299.60 0.52 46 21.8 	23.9 
Haleakala 	 20.27 203.73 13.3 3033 0.0 	0.0 
Hermanus 	 -34.42 19.22 4.90 26 0.0 	0.0 
Hobart 	 -42.90 147.33 1.88 18 7.7 	8.0 
Inuvik 	 68.35 226.28 0.18 21 20.7 	16.1 
Jungfraujoch 	 46.55 7.98 4.48 3475 0.0 	0.0 
Kerguelen Island 	 -49.35 70.25 1.19 33 19.1 	17.4 
Kiel 	 54.33 10.13 2.29 54 1.9 	1.5 
Kingston 	 -42.99 147.29 1.88 65 7.1 	8.1 
LARC 	 -62.20 301.04 2.21 40 2.6 	0.4 
Lomnicky 'Slit. 	 49.20 20.22 4.00 2634 0.3 	0.1 
Magadan 	 60.12 151.02 2.10 220 6.3 	5.9 
Mawson 	 -67.60 62.88 0.22 30 23 	23.1 
McMurdo 	 -77.85 166.72 0.01 48 18.6 	20.4 
Moscow 	 55.47 37.32 2.46 200 2.2 	2.2 
Mt. Wellington 	 -42.92 147.23 1.89 725 8.1 	7.3 
Newark 	 39.68 284.25 1.97 50 2.0 	1.8 
Oulu 	 65.05 25.47 0.81 15 19.7 	18.6 
Potchefstroom 	 -26.68 27.10 7.30 1351 0.8 	0.0 
Rome 	 41.86 12.47 6.32 0 0.0 	0.0 
SANAE ° 	 -71.67 357.15 1.06 856 22 	22.0 
South Pole 	 -90.00 0.00 0.10 2820 31.3 	30.6 
Terre Adelie 	 -66.67 140.02 0.01 45 18.3 	18.4 
Thule 	 76.50 291.30 0.00 260 22.9 	23.1 
Tixie Bay 	 71.58 128.92 0.53 0 15.3 	18.8 
Tsumeb 	 -19.20 17.58 9.29 1240 0.0 	0.0 
Yakutsk 	 62.03 129.73 1.70 105 10.3 	15.7 
a  Normalisation station. 
b  Nominal vertical geomagnetic cutoff rigidities represent the minimum rigidities below which particles do not have access to a 
particular site on the Earth's surface. The cut-off at the geomagnetic equator is - 17 GV, decreasing to zero at the geomagnetic 
poles. 
Actual % increases corrected to standard sea level atmospheric depth. 

° Calculated % increases. 
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TABLE A4 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 14 JULY 2000 GLE 

Station 12:10 UT. 

Observed b 	Calculated 

12:20 UT 

Observed " 	Calculated' 

12:30 UT 

Observed b 	Calculated' 

12:40 UT 

Observed" 	Calculated' 

12:50 UT 

Observed" 	Calculated' 

13:00 UT 

Observed" 	Calculated' 
Apatity 	 17.2 17.1 16.1 15.9 15.4 14.9 15.4 13.8 13.2 13 11.5 11.4 
Aragats 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Climax 	 0.8 0.5 0.2 0.3 1.2 0.3 0.4 0.5 0.8 0.4 1.0 0.5 
Goose Bay 	 18.5 20.7 16.7 18.3 15.5 18.3 15.2 15.6 13 15.8 12.8 15.5 
Haleakala 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hcrmanus 	 0.4 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 
Hobart 	 7.2 7.0 7.0 5.4 4.6 5.1 4.8 5.4 6.7 5.0 7.2 4.6 
lnuvik 	 18.5 15.1 16.3 13.9 16.3 12.6 16.7 12.7 14.5 11.4 12.6 9.9 
Jungfraujoch 	 0.0 0.0 0.3 0.0 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 
Kerguelen Island 	 18.1 15.6 16.2 14.4 14.6 13.6 14.4 13.0 12.8 12.1 12.6 11.3 
Kiel 	 2.7 1.5 1.8 0.9 1.7 0.9 3.1 1.3 2.0 1.0 1.9 1.1 
Kingston 	 5.7 7.2 5.5 5.7 3.4 5.6 6.6 5.4 4.7 5.4 3.1 4.6 
LARC 	 0.8 0.5 0.0 0.3 0.3 0.3 0.0 0.5 1.9 0.4 1.5 0.4 
Lomnicky kt 	 0.4 0.1 0.0 0.0 0.5 0.1 0.5 0.1 0.0 0.1 0.1 0.1 
Magadan 	 5.2 5.4 3.7 4.3 3.6 4.2 3.6 4.4 2.3 4.2 4.4 4.5 
Mawson 	 21.2 20.1 20.3 18.2 14.6 18.2 15.1 15.1 13.9 15.5 13.0 14.6 
McMurdo 	 17.8 19.3 16.8 18.3 14.6 16.0 14.8 15.9 13.3 14.1 11.7 11.8 
Moscow 	 2.8 1.9 0.6 1.2 1.6 1.5 0.9 1.8 1.6 1.5 1.1 1.7 
Mt. Wellington 	 7.1 6.6 5.2 4.9 5.9 5.0 5.8 5.4 5.4 4.5 5.2 5.0 
Newark 	 3.1 1.5 2.8 1.0 0.6 1.1 2.1 1.5 0.6 1.3 0.0 1.6 
Oulu 	 17.4 17.1 16.5 16.1 15.9 15.0 13.6 13.9 12.9 13 11.4 11.5 
Potchcfstroom 	 2.2 0.0 0.7 0.0 1.2 0.0 1.7 0.0 0.1 0.0 0.2 0.0 
Rome 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SANAE b 	 19.5 19.4 17.4 17.4 17.5 17.5 14.7 14.7 15.1 15.0 14.8 14.8 
South Polc 	 27.4 26.8 25.4 24.9 24.1 23.1 21.6 21.3 19.9 19.3 18.5 17.8 
Terre Addle 	 16.7 17.0 14.9 15.9 13.3 14.9 13.7 13.9 12.9 12.9 11.8 11.5 
Thule 	 21.5 21.5 20.3 19.4 16 18.5 16.1 15.4 14.5 15.9 11.9 14.4 
Tixic Bay 	 13.9 17.2 14.7 16.1 12.7 15.2 9.5 14 10.3 13.0 9.8 11.7 
Tsumcb 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Yakutsk 	 8.9 13.9 8.5 12.9 7.7 10.7 7.1 11.8 6.9 10.7 5.3 9.3 

Normalisation station. 
b  Actual % increases corrected to standard sea level atmospheric depth. 
' Calculated % increases. 
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TABLE A3 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 14 JULY 2000 GLE 

Station 13:10 UT. 

Observed" 	Calculated' 

13:20 UT 

Observed" 	Calculated' 

13:30 UT 

Observed" 	Calculated' 

13:40 UT 

Observed" 	Calculated" 

13:50 UT 

Observed" 	Calculated" 

14:00 UT 

Observed" 	Calculated' 
Apatity 	 12.6 11.9 10.5 10.5 9.7 9.3 9.4 9.2 8.8 8.2 8.8 8.3 
Aragats 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Climax 	 1.5 0.3 1.2 0.3 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.1 
Goose Bay 	 11.1 13.0 9.6 12.4 11.2 12.5 9.9 11.3 8.7 11.0 8.7 11.0 
Haleakala 	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hermanus 	 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Hobart 	 6.3 3.6 4.8 4.0 5.5 3.7 6.3 3.3 4.9 3.1 4.9 3.0 
lnuvik 	 11.7 10.5 13.5 9.6 11.9 8.4 11.7 8.4 10.2 7.3 10.2 7.1 
Jungfraujoch 	 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Kerguelen Island 	 12.3 10.7 9.0 9.7 9.7 9.6 8.7 9.9 6.4 8.0 6.4 7.9 
Kiel 	  1.7 0.9 0.3 0.8 1.3 1.0 0.4 0.8 0.7 0.5 0.7 0.5 
Kingston 	 4.3 4.5 4.9 4.1 4.6 4.2 3.1 3.7 2.4 3.7 2.4 3.5 
LARC 	 0.9 0.3 0.9 0.3 0.5 0.4 0.5 0.2 0.7 0.1 0.7 0.1 
LomnickY Sat 	 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Magadan 	 3.5 3.6 2.6 3.7 3.0 3.5 2.9 3.1 2.6 2.8 2.6 2.9 
Mawson 	 13.1 12.8 11.1 12.4 13.0 12.4 10.8 11.1 11.0 11.2 11.0 11.4 
McMurdo 	 11.7 13.1 10.8 11.8 10.2 10.9 9.9 10.4 8.1 9.0 8.1 9.0 
Moscow 	 0.0 1.2 0.9 1.2 1.1 1.4 0.0 1.1 0.9 0.6 0.9 0.8 
Mt. Wellington 	 3.7 3.9 3.3 3.5 4.5 3.8 3.3 2.9 2.8 3.1 2.8 3.3 
Newark 	 0.0 1.1 0.3 1.0 0.2 1.1 0.0 0.8 0.0 0.6 0.0 0.7 
Oulu 	 12.3 11.9 11.1 10.5 10.6 9.3 9.1 9.3 9.3 8.0 9.3 8.1 
Potchefstroom 	 1.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.5 0.0 0.5 0.0 
Rome 	 0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SANAE " 	 12.4 12.3 12.2 12.1 11.1 11.1 10.6 10.6 10.0 10.0 10.0 10.0 
South Pole 	 17.6 17.3 15.7 15.1 15.6 15.2 14.5 13.9 13.0 12.0 13.0 12.0 
Terre Adclic 	 12.3 11.9 10.5 10.4 8.2 9.1 10.8 9.2 8.5 7.5 8.5 7.4 
Thule 	 12.2 12.6 12.2 13.8 10.7 10.6 10.3 10.9 8.0 9.0 8.0 8.8 
Tixie Bay 	 7.9 11.9 8.4 10.4 6.9 9.0 6.9 9.2 5.3 7.5 5.3 7.4 
Tsumeb 	 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Yakutsk 	 5.1 8.1 5.3 7.8 3.9 8.0 3.6 8.0 5.3 7.0 5.3 7.2 

Normalisation station. 
Actual % increases corrected to standard sea level atmospheric depth. 
Calculated % increases. 
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APPENDIX B 

RESULTS: 15 APRIL 2001 

TABLE B1 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 15 APRIL 2001 GLE 

Station 
Lat. 

(deg.) 

Lon. 

(deg.) 

P,5  

(GV) 

Alt. 

(m) 

13:55 UT 

Observed ' 	Calculated" 

14:00 UT 

Observed' 	Calculated" 

Alma Ata 	 43.25 76.92 6.69 3340 0.8 	1.3 1.3 	1.7 
Apatity 	 67.55 33.33 0.61 177 0.7 	0.0 4.9 	4.0 
Athens 	 37.97 23.72 8.72 40 0.0 	0.4 2.1 	0.2 
Bern 	 46.55 7.98 4.42 570 0.0 	0.4 1.1 	3.4 
Calgary 	 51.08 245.87 1.09 1128 12.4 	9.8 42.7 	41.4 
Cape Schmidt 	 68.92 180.53 0.45 0 0.0 	1.5 1.7 	4.7 
Fort Smith 	 60.02 248.07 0.30 0 10.0 	9.7 30.6 	34.2 
Irkustk 	 52.28 104.02 3.66 435 2.5 	1.3 5.8 	8.9 
Jungfraujoch 	 46.55 7.98 4.48 3475 0.0 	0.4 1.4 	3.2 
Kerguelen Island 	 -49.35 70.25 1.19 33 0.9 	0.0 1.3 	2.8 
Kiel 	 54.33 10.13 2.29 54 1.3 	0.1 4.6 	3.8 
Kingston 	 -42.99 147.29 1.88 65 0.0 	2.3 2.4 	14.8 
LARC 	 -62.20 301.04 2.21 40 0.2 	2.9 8.7 	12.2 
Lomnicky gtit 	 49.20 20.22 4.00 2634 0.3 	0.3 1.7 	3.8 
Magadan 	 60.12 151.02 2.10 220 0.1 	1.2 9.9 	11.3 
Mawson 	 -67.60 62.88 0.22 30 0.0 	0.0 10.4 	7.3 
McMurdo 	 -77.85 166.72 0.01 48 3.5 	2.0 24.8 	14.3 
Moscow 	 55.47 37.32 2.46 200 0.4 	0.1 2.8 	3.8 
Nain ° 	 56.55 298.32 0.45 0 6.9 	6.9 44.3 	44.3 
Newark 	 39.68 284.25 1.97 50 2.9 	3.7 11.1 	16.3 
Norlisk 	 69.26 88.05 0.63 0 0.0 	0.0 0.6 	2.6 
Novosibirsk 	 54.80 83.00 2.91 163 0.0 	0.4 5.5 	7.0 
Oulu 	 65.05 25.47 0.81 15 0.2 	0.0 5.4 	4.1 
Peawanuck 	 54.98 274.56 0.27 52 5.0 	10.0 54.4 	51.5 
Potchefstrom 	 -26.68 27.10 7.30 1351 1.5 	0.6 0.2 	1.1 
Rome 	 41.86 12.47 6.32 60 1.5 	0.4 2.0 	0.9 
SANAE 	 -71.67 357.15 1.06 856 3.7 	1.5 23.4 	23.9 
South Pole 	 -90.00 0.00 0.10 2820 1.6 	2.6 24.3 	27.3 
Terre Addlie 	 -66.67 140.02 0.01 45 1.3 	0.1 14.1 	4.2 
Thule 	 76.50 291.30 0.00 260 6.7 	5.6 31.6 	24.8 
Tixie Bay 	 71.58 128.92 0.53 0 0.0 	0.1 0.9 	2.8 
Yakutsk 	 62.03 129.73 1.70 105 3.2 	0.1 7.1 	4.4 

Normalisation station. 
Nominal vertical geomagnetic cutoff rigidities represent the minimum rigidities below which particles do not have access 

to a particular site on the Earth's surface. The cut-off at the geomagnetic equator is 17 GV, decreasing to zero at the 
geomagnetic poles. 
° Actual% increases corrected to standard sea level atmospheric depth. 
° Calculated% increases. 
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TABLE B2 

COMPARISON OF OBSERVED AND CALCULATED INCREASES F 

Station 
14:05 

Observed h  

UT 

Calculated 

14:15 

Observed h  

UT 

Calculated' 

14:25 UT 

Observed h 	Calculated' 

14:35 UT 

Observed h 	Calculate& 

14:40 UT 

Observed h 	Calculated' 

14:50 UT 

Observed' 	Calculated" 
Alma Ata 	 1.4 0.4 1.7 0.3 1.3 0.2 1 0.5 0.9 0.4 0.7 0.4 
Apatity 	 12.7 10.8 21.2 30.7 30.5 44.6 34.3 50.0 32.3 49.8 34.8 49.8 
Athens 	 1.2 0.0 0.0 0.0 1.9 0.0 0.0 0.1 0.0 0.0 0.7 0.1 
Bern 	 2.8 4.3 4.4 3.5 4.0 2.3 6.9 3.2 5.4 2.5 4.3 2.4 
Calgary 	 76.3 77.1 121.1 104.3 119.9 107.8 113.7 108.7 107.4 99.6 91.9 88.9 
Cape Schmidt 	 10.2 6.5 33.6 21.7 51.5 34.2 54.3 41.7 58.9 45.0 61.7 53.4 
Fort Smith 	 39.7 47.9 58.2 71.7 69.0 80.9 91.5 90.1 93.7 90.1 89.3 86.7 
Irkustk 	 8.8 12.7 11.1 11.6 12.1 10.6 10.2 10.1 9.9 10.1 8.0 8.3 
Jungfraujoch 	 3.5 4.3 4.3 3.5 3.3 2.3 3.2 3.0 2.9 2.4 2.8 2.3 
Kerguelen Island 	 3.6 5.4 18.0 18.4 30.1 30.4 39.9 37.3 42.2 37.1 46.6 40.1 
Kiel 	 10.7 10.6 19.1 20.3 23.4 24.2 21.7 22.8 21.6 23.4 17.4 19.3 
Kingston 	 15.4 32.3 47.4 55.1 59.1 61.3 55.1 62.7 54.8 61.8 47.3 54.2 
LARC 	 14 14.0 17.3 19.6 18.7 20.3 16.0 17.8 14.6 16.0 12.1 13.3 
Lomnickj S'tit 	 3.6 5.6 6.1 6.0 4.8 5.6 4.3 5.9 4.6 5.5 4.0 5.4 
Magadan 	 23.7 27.2 42.0 51.0 46.2 56.7 48.0 56.3 46.2 56.9 41.3 52.1 
Mawson 	 47.3 39.7 84.1 78.9 95.9 88.1 103.5 90.2 101.6 84.1 94.7 79.6 
McMurdo 	 51.5 45.3 80.2 79.7 79.8 85.2 76.5 88.4 74.0 86.5 74.3 85.9 
Moscow 	 9.3 7.9 20.6 18.2 24.6 26.9 22.8 21.5 23.3 24.0 22.4 23.6 
Nain ° 	 86.9 86.9 110.2 110.2 113.8 113.9 115.4 115.5 104.7 104.8 92.5 92.5 
Newark 	 20.9 33.7 28.3 36.9 32.9 38.1 29.2 35.3 28.3 33.2 23.7 28.1 
Norlisk 	 0.5 3.4 13.4 14.2 21.1 26.7 28.3 32.7 30.1 32.0 32.5 34.5 
Novosibirsk 	 10.5 14.1 17.6 23 16.8 23.6 16.7 22.7 16.4 20.9 13.9 20.4 
Oulu 	 16.5 12.5 36.3 34 52.4 47.4 53.7 51.7 47.8 51.2 42.4 51.5 
Peawanuck 	 109.2 86.3 107 101.9 110.7 101.5 109.7 95.7 103.0 88.5 94.1 73.5 
Potchefstrom 	 0.0 0.3 2.4 0.3 1.2 0.2 0.7 0.5 0.0 0.3 0.1 .  0.4 
Rome 	 1.0 0.3 1.5 0.3 2.4 0.2 1.7 0.5 1.5 0.4 1.7 0.5 
SANAE 	 56.4 67.9 92.8 89.2 99.0 94.3 101.1 94.3 97.8 88.4 93.7 77.7 
South Pole 	 77.1 81.6 106.9 112.4 115.3 114.7 124.3 115.8 110.7 105.3 100.4 94.8 
Terre Adelie 	 22.8 10.2 40.9 29.3 58.6 39.2 61.4 43.6 59.6 45.5 69.8 52.2 
Thule 	 47.3 33.0 64.3 48.7 77.0 61.4 81.1 71.7 82 74.6 75.1 69.7 
Tixic Bay 	 1.0 3.4 12.8 14.1 24.6 26.2 32.5 32.3 34.4 32.3 40.3 37.0 
Yakutsk 	 
,. 	_ . 	.. 3.0 9.3 27.6 32.0 39.0 45.6 43.6 55.9 45.9 59.3 44.3 60.4 

orma isa ion station. 
° Actual% increases corrected to standard sea level atmospheric depth. 
' Calculated% increases. 
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TABLE B3 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE 15 APRIL 2001 GLE 

Station 
14:55 

Observed " 

UT 

Calculated 

15:00 

Observed 6  

UT 

Calculated' 

15:05 UT 

Observed " 	Calculated' 

15:10 UT 

Observed " 	Calculated' 

15:15 UT 

Observed " 	Calculated' 

15:20 UT 

Observed " 	Calculated' 
Alma Ata 	 0.6 0.6 0.1 0.4 0.1 0.2 0.1 0.2 0.4 0.6 0.1 0.1 
Apatity 	 36.6 48.9 40.1 46.8 39.5 42.4 37.8 39.4 35.3 36.5 30.5 34.9 
Athens 	 1.4 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.6 0.2 2.3 0.0 
Bern 	 6.8 3.0 4.3 2.0 2.1 1.5 4.3 1.3 2.1 1.9 2.7 0.8 
Calgary 	 88 82.8 82.0 77.7 76.1 71.3 70.2 69.6 64.2 68.0 54.4 60.0 
Cape Schmidt 	 71.4 57.9 65.3 54.3 64.2 54.9 62.0 51.6 59.1 48.8 54.8 48.7 
Fort Smith 	 82.4 83.6 79.6 78.8 77.2 73.3 74.4 70.8 72.9 69.9 67.7 63.0 
lrkustk 	 7.1 8.6 6.8 6.9 7.2 6.0 6.5 5.2 6.5 5.7 5.1 3.2 
Jungfraujoch 	 2.3 2.9 2.3 1.9 1.8 1.5 1.9 1.2 1.8 1.8 0.9 0.7 
Kerguelen Island 	 46.2 40.4 44.5 39.0 40.4 36.6 38.3 35.6 37.3 35.6 35.9 31.6 
Kiel 	 17.8 20.4 17 17.5 16.6 17.6 15.4 16.2 13.5 14.3 12.3 13.3 
Kingston 	 45.1 51.8 43.1 45.8 41.4 45.2 37.7 42.6 34.1 39.3 31.1 34.7 
LARC 	 14.0 13.1 12.0 11.1 10.2 9.9 8.3 9.5 8.6 8.8 7.1 6.2 
LomnickY gat._ 4.0 4.6 3.1 4.1 3.3 3.6 3.0 3.3 2.7 3.6 1.8 2.1 
Magadan 	 38.4 46.3 35.2 44.3 33.5 40.8 30.8 36.8 29.1 34.6 26.0 33.3 
Mawson 	 88.2 75.6 77.6 69.4 75.9 64.3 71.3 61.0 65.5 57.0 63.8 54.0 
McMurdo 	 70.0 82.8 73.1 77.3 74.5 73.2 71.4 71.5 67.7 70.4 59.8 62.3 
Moscow 	 20.4 22.4 18.6 20.7 17.1 21 16.9 18.8 15.9 16.0 14.2 14.6 
Nain ' 	 85.7 85.7 80.4 80.4 73.2 73.2 70.5 70.5 68.4 68.4 61.8 61.8 
Newark 	 22.9 24.7 21.1 22.6 18.8 21.9 15.5 19.4 15.8 17.4 13.9 14.3 
Norlisk 	 32.7 33.9 33.5 34.4 32.8 32.1 34.1 31.9 32.2 31.5 29.9 27.2 
Novosibirsk 	 14.8 18.9 12.2 18.2 13.1 16.2 11.6 15.3 9.4 14.8 8.9 12.2 
Oulu 	 43.4 50.6 39.5 47.5 38.4 44.0 35.1 41.2 33.9 37.8 33.8 36.2 
Pcawanuck 	 83.0 66.1 81.2 62.3 77.9 57.2 75.5 54.5 71.4 50.8 69.7 45.1 
Potchefstrom 	 0.7 0.5 0.2 0.3 0.0 0.2 3.1.0 0.2 0.2 0.5 0.7 0.1 
Rome 	 2.3 0.6 2.0 0.4 3.2 0.3 3.1.0 0.2 2.3 0.6 0.4 0.1 
SANAE 	 88.2 72.5 80.9 68.2 70.8 61.4 64.0 56.8 56.9 52.4 44.6 50.4 
South Pole 	 97.4 88.0 90.1 82.4 85.4 75.9 81.9 74.3 82.7 73.9 59.5 64.3 
Terre Adelie 	 64.0 54.7 58.2 53.3 53.5 54.4 50.9 51.6 48.3 48.1 46.5 46.5 
Thule 	 72.0 69.5 69.5 67.3 65.6 60.6 59.1 54.2 56.1 50.5 54.8 52.3 
Tixic Bay 	 40.4 38.8 39.0 37.3 36.8 37.3 33.2 36.0 33.0 34.8 31.9 32.9 
Yakutsk 	 44.9 61.3 40.4 58.5 39.2 56.9 37.2 53.2 35.8 49.9 35.3 46.3 
" Normalisation station. 

Actual% increases corrected to standard sea level atmospheric depth. 
Calculated% increases. 
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TABLE B4 

COMPARISON OF OBSERVED AND CALCULATED INCREASES FOR THE IS APRIL 2001 GLE 

Station 15:25 

Observed' 

UT 

Calculated 

15:30 

Observed "  

UT 

Calculated' 

15:35 UT 

Observed b 	Calculated' 

15:40 UT 

Observed " 	Calculated' 

15:45 UT 

Observed b 	Calculate& 

15:50 UT 

Observed b 	Calculated' 
Alma Ata 	 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.2 0.0 0.2 
Apatity 	 28.1 31.8 27.2 30.8 24.6 29.5 26.0 29.7 21.7 30.0 23.2 27.5 
Athens 	 1.6 0.0 0.6 0.0 0.0 0.0 1.9 0.0 3.3 0.0 0.0 0.1 
Bern 	 0.5 1.0 0.4 0.6 2.9 0.7 4.5 0.5 2.6 1.0 2.4 0.9 
Calgary 	 50.7 56.2 49.1 51.3 44.9 49.9 42.9 47.1 39.9 43.4 36.5 39.6 
Cape Schmidt 	 50.1 42.3 46.2 40.8 36.4 36.0 36.9 36.1 33.4 30.1 33.6 27.5 
Fort Smith 	 64.5 59.6 55.9 54.3 53.8 51.5 49.7 49.7 46.0 48.3 43.1 44.7 
lrkustk 	 4.5 3.9 3.7 2.7 4.8 3.0 3.1 2.5 4.2 3.0 2.0 2.5 
Jungfraujoch 	 1.1 1.0 1.0 0.6 1.0 0.7 1.0 0.5 0.4 0.9 0.5 0.9 
Kerguelen Island 	 33.9 30.4 33.1 29.0 31.1 27.2 31.7 26.9 29.4 31.0 29.5 28.6 
Kiel 	  12.3 11.6 11.7 10.8 10.4 9.2 9.3 9.9 10.2 9.7 8.6 7.9 
Kingston 	 31.5 33.5 25.7 30.0 25.8 30.0 23.6 27.9 23.7 23.2 21.1 20.0 
LARC 	 5.4 6.4 5.9 5.6 5.8 6.0 5.5 5.3 4.9 5.1 4.3 4.5 
Lomnicky 'SOL. 	 1.4 2.1 1.6 1.5 1.3 1.5 1.3 1.8 1.2 1.9 1.0 1.6 
Magadan 	 23.1 30.5 22.2 28.4 19.8 27.0 19.8 25.7 17.7 22.1 16.4 18.8 
Mawson 	 55.8 47.7 54.3 45.3 49.9 42.9 45.1 41.4 38.9 30.7 27.5 28.5 
McMurdo 	 55.0 57.4 55 53.3 48.8 49.7 45.4 46.5 40.1 33.7 38.1 30.5 
Moscow 	 12.9 14.2 12.2 11.9 12.1 13.0 10.4 10.5 11.1 11.3 10.0 10.3 
Nain " 	 58.2 58.2 53.1 53.2 51.4 51.4 49.3 49.3 43.9 43.9 42.9 43.0 
Newark 	 16.7 13.7 11.8 12.7 12.1 12.7 12.0 12.3 12.2 10.8 11.6 8.8 
Norlisk 	 29.5 26.7 28.5 26.1 27.5 24.8 24.4 23.9 23.6 31.5 24.0 28.9 
Novosibirsk 	 7.9 11.3 7.3 10.3 7.0 9.6 7.6 10.1 5.8 7.9 6.0 7.3 
Oulu 	 30.1 32.3 28.4 31.6 28.1 30.0 25.6 29.7 26.3 30.3 21.9 27.8 
Pcawanuck 	 64.6 43.2 60.1 39.9 58.8 39.1 53.8 36.7 52.3 46.7 46.5 43.8 
Potchcfstrom 	 0.8 0.1 0.0 0.0 2.0 0.1 1.9 0.0 0.8 0.2 1.3 0.2 
Rome 	 2.7 0.2 1.9 0.0 1.1 0.1 1.3 0.1 1.3 0.2 1.1 0.2 
SANAE 	 41.7 46.7 37.8 43.3 35.3 42.2 38.4 42.2 35.5 34.4 29.0 32.6 
South Pole 	 59.5 60.9 52.1 55.6 49.1 53.4 44.6 50.1 42.1 41.6 38.6 38.8 
Terre Adelie 	 38.5 39.4 36.5 38.8 39.1 34.1 42.1 32.6 41.7 29.8 38.8 27.4 
Thule 	 52.2 49.2 49.2 44.5 47.0 42.4 47.0 45.0 44.9 40.8 41.9 40.0 
Tixic Bay 	 29.9 29.8 29.1 29.4 25.4 26.6 23.3 26.0 25.4 30.5 26.9 28.1 
Yakutsk 	 32.0 42.6 30.0 40.7 30.7 36.6 29.7 37.3 28.1 32.7 25.2 30.2 
"Normalisation station. 
" Actual% increases corrected to standard sea level atmospheric depth. 
' Calculated% increases. 
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TABLE B4 

COMPARISON OF OBSERVED AND CALCULATED INCREASES 
FOR THE 15 APRIL 2001 GLE 

Station 
15:55 UT 

Observed ° 	Calculated° 

16:00 UT 

Observed b 	Calculated' 

Alma Ata 	 0.0 0.2 0.0 0.2 
Apatity 	 20.5 26.5 19.3 24.5 
Athens 	 0.0 0.1 0.0 0.1 
Bern 	 1.2 0.9 0.3 0.8 
Calgary 	 33.8 37.5 32.0 36.3 
Cape Schmidt 	 32.2 26.7 36.3 24.6 
Fort Smith 	 40.5 43.2 38.4 39.8 
Irlcustk 	 3.7 2.7 3.1 2.5 
Jungfraujoch 	 0.7 0.9 0.4 0.8 
Kerguelen Island 	 29.6 27.3 27.4 25.5 
Kiel 	 8.0 8.4 7.3 7.7 
Kingston 	 20.8 20.4 19.2 19.7 
LARC 	 5.6 4.4 5.3 4.2 
Lomniclq 	tit 	 0.9 1.6 1.0 1.5 
Magadan 	 16.6 18.7 13.6 16.8 
Mawson 	 26.2 27.0 22.2 25.4 
McMurdo 	 36.8 29.9 34.8 27.7 
Moscow 	 10.3 9.9 9.3 8.3 
Nain ° 	 37.8 37.8 37.0 37.0 

Newark 	 10.5 8.2 9.3 7.8 
Norlisk 	 21.3 27.8 19.8 25.7 
Novosibirsk 	 4.4 6.6 5.8 6.4 
Oulu 	 23.2 26.8 20.4 24.7 
Peawanuck 	 43.9 39.8 42.1 39.0 
Potchefstrom 	 0.4 0.2 0.9 0.2 
Rome 	 0.7 0.3 0.1 0.2 
SANAE 	 25.3 29.9 24.0 28.4 
South Pole 	 37.2 36.5 35.5 34.9 
Terre Addle 	 35.9 26.3 33.7 24.4 
Thule 	 39.7 35.3 35.7 32.8 
Tixie Bay 	 28.9 26.8 24.4 25.0 
Yakutsk 	 23.0 29.7 22.2 28.3 

"Normalisation station. 
b  Actual% increases corrected to standard sea level atmospheric depth. 
' Calculated% increases. 

123 
APPENDIX B 



APPENDIX C 

REFEREED PUBLICATIONS 

Bombardieri, D. J., Duldig, M. L., Michael K. J., & Humble, J. E. 2006, Relativistic 

Proton Production During the 2000 July 14 Solar Event: The case for Multiple 

Source Mechanisms, Astrophys. J, 644, 565 

Bombardieri, D. J., Michael K. J., Duldig, M. L., & Humble, J. E. 2007, Relativistic 

Proton Production during the 2001 April 15 Solar Event, Astrophys. J, 655, 813 

Bombardieri, D. J., Duldig, M. L., Humble, J. E., & Michael K. J. 2008, An Improved 

Model for Relativistic Proton Acceleration Applied to the 2005 January 20 and 

Earlier Solar Events, Astrophys. J, 682, in press 

Klekociuk, A. R., Bombardieri, D. J., Duldig, M. L., & Michael K. J. 2008, 

Atmospheric chemistry effects of the 2005 January 20 Solar Proton Event, 

Advances in Geoscience, 14, in press 

124 
APPENDIX C 


