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Abstract 

In the field of mathematics education, this thesis is intended to make a 

contribution to the literature on the teaching and learning of mental 

computation. The aim of the thesis is to explore the role and potential of mental 

computation in strengthening numeracy practices across the middle years of 

schooling by providing a detailed analysis of the mental computation 

experiences of both middle years teachers and their students (Grades 5 to 8). A 

focus of the study is mental computation with part-whole numbers including 

fractions, decimals, and percents, extending previous research that has focused 

almost exclusively on mental computation with whole numbers. Given the 

emphasis of the middle years mathematics curriculum on part-whole numbers, it 

is argued that this period of schooling is a critical time for developing mental 

computation. 

The seminal work of Shulman (1986, 1987) in relation to seven domains of 

teacher knowledge is the theoretical framework underpinning the design of the 

study that was conducted through four phases. Phase 1 considers how teachers 

in middle years classrooms are addressing mental computation. The responses 

of 34 teachers (16 primary and 18 secondary) to a questionnaire are analysed 

using the work of Shulman as a framework. Phases 2 and 3 focus on one aspect 

of Shulman's work — knowledge of learners' and their characteristics — as 

evidenced by the students' experiences. In the second phase, data were collected 

from three instruments: a mental computation test, a comparison test (with pairs 

of fractions and decimals), and a questionnaire. A total of 172 middle years 

students participated from eight classes. In the third phase, 46 students 

participated in a task-based interview to investigate the mental computation 

strategies students use to solve non-contextual fraction, decimal, and percent 

problems. Finally, in the fourth phase of the study, seven key teachers 

participated in an interview session to investigate how teachers position 

fractions, decimals, and percents in relation to mental computation. 



Outcomes associated with the teachers are presented in relation to each aspect 

of interest to Shulman (1987): general pedagogical knowledge; curriculum 

knowledge; pedagogical content knowledge; knowledge of educational 

contexts; knowledge of educational ends, purposes and values; content 

knowledge; and knowledge of learners and their characteristics. Student 

outcomes are presented through the construction of a profile of mental 

computation based on three levels of student performance on the mental 

computation test (High, Middle, and Low). Part-whole mental computation 

strategies used by the students are described and discussed in relation to 

strategies observed for whole number. Additionally, mental computation 

competence is also considered in relation to working procedurally and 

conceptually, with the majority of student responses classified as working 

conceptually. A set of recommendations regarding professional development 

are provided based on the findings, with suggestions for future research. 
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Chapter 1 

Introduction 

1.1 School Experience: Background to the 
Research 

In September 1999 I started working at a school in South London. My position 

as a Learning Support Assistant involved working with two boys, one in Grade 

5 and the other in Grade 6. My time with them was spent both in and out of the 

classroom; generally morning sessions were allocated to literacy and numeracy 

and afternoon sessions allocated to other areas of the curriculum. It was in 

these two classrooms, working closely with the teachers that I first became 

aware of some of the changes and new directions that mathematics education 

was embracing. Mathematics had not featured particularly on my life's radar, 

as the churning out of long, repetitious written computations at school had far 

from inspired me. 

My position at Elm Court coincided with the arrival of the new National 

Numeracy Strategy that was being implemented in schools across the United 

Kingdom and as a staff member I was required to participate in a program of 

professional learning focusing on numeracy. Much of the time in these sessions 

was spent revisiting estimation, solving problems mentally, and then as a 

group, discussing our solutions. There were many discussions as to who had 

the best strategies, which were the quickest strategies, and which strategies we 

imagined the students might come up with. Few of us could remember being 

asked how we had solved a problem and few of us had entertained the idea that 

we might all be doing it differently. Right answers came from the correct 

application of a written algorithm or a very good memory. What was clear 

from these sessions was that here was a group of primary teachers and their 

support staff being interested, becoming involved, and perhaps even a little 

excited about working with number. 
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My return to Tasmania in 2001 proved timely. I visited my Honours supervisor 

in Psychology to share my experiences and discovered that a project on 

developing mental computation was being advertised in the Faculty of 

Education. I soon discovered that there was much happening in the state in 

relation to the teaching and learning of mental computation. 

1.2 Mental Computation Research in 
Tasmania: A Collaborative Environment 

In 1999 the Department of Education Tasmania (DoET) and the Tasmanian 

Catholic Education Office (CEO), together with the Department of Education 

and Training (DEAT) in the Australian Capital Territory (ACT) approached the 

University of Tasmania to develop a collaborative numeracy project. A priority 

for these three educational systems was the development and implementation 

of numeracy policy, with any new policies being founded on current and 

innovative research activities. In 2000 the pilot project Enhancing Numeracy 

OutcomeS (ENOS) was conducted in six primary schools (Grades K — 6) in 

Tasmania and the ACT. This project explored the development of numeracy 

through mental computation. 

The positive outcomes of the ENOS project motivated the mathematics 

education research team at the University of Tasmania and the three 

educational systems (now Industry Partners) to extend the research and develop 

a large-scale mental computation project to be conducted over a three-year 

period. In 2001 the project, Assessing and Improving the Mental Computation 

of School-Aged Students, was successful in receiving federal funding through 

Strategic Partnerships with Industry — Research and Training (SPIRT). With 

the completion of the project in 2004, the two main outcomes were: 

1. Describing levels of achievement in mental computation by providing a 

theoretical framework of mental computation ability, including 

descriptions of sequential competency levels for students; and 

2. Developing curriculum resources and materials to support teachers in 

developing programs and assessing mental computation, based on the 
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sequential approach for improving students' mental computation ability 

through Grades 3 to 10. 

1.3 Aim and Objectives of the Study 
This PhD was developed as a companion project to Assessing and Improving 

the Mental Computation of School-Aged Students. It was supported by one of 

the Industry Partners — the DoET — as an Australian Postgraduate Award 

Industry (APAI) scholarship. The DoET specified an area of concern within its 

educational system, namely the need to strengthen continuity of numeracy and 

approaches to teaching and learning mathematics at the point of transfer from 

primary school to secondary school. As this study is related to Assessing and 

Improving the Mental Computation of School-aged Students, it was proposed 

that mental computation would be the vehicle for exploring the development of 

numeracy at this level of schooling — the middle years — with both teachers and 

their students. Both mental computation projects were supported by the 

Australian Research Council (Grant No. CO0107187). 

The aim of the study is to explore the potential role of mental computation in 

strengthening numeracy across the middle years of schooling. Facility in 

working mentally with fractions, decimals, and percents is the avenue through 

which this aim is explored. Two objectives underpin the research activity: 

• First, an educational objective, to provide the DoET with a set of 

recommendations to assist the on-going development and evaluation of 

numeracy targets for mental computation. 

• Second, a research objective, to profile a number of aspects of mental 

computation at the middle years level, including the experiences of 

teachers and students, as well as students' mental computation skills 

and strategies. 

The following set of research questions are posed for the study: 

1. How is mental computation being addressed by teachers in middle 

mathematics years classrooms? 
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2. How is mental computation being experienced by middle years 

students? 

3. What strategies do students use to solve mental computation problems 

with fractions, decimals, and percents? 

4. How do teachers position the teaching and learning of fractions, 

decimals, and percents in relation to mental computation? 

1.4 Defining Mental Computation: The 
Case Against Mental Arithmetic 

The definition of mental computation adopted for the study is provided by 

Reys, Reys, and Hope (1993): "the ability to derive exact numerical answers 

without the aid of calculating or recording devices" (p. 306). The use of the 

word exact in this definition effectively distinguishes mental computation from 

estimation — a skill closely related but involving approximation. Another 

common definition of mental computation is offered by Sowder (1988, p. 182): 

"the process of carrying out arithmetic calculations without the aid of external 

devices." The use of the word arithmetic, however, may draw attention away 

from the emphasis on students' individual thinking strategies suggested by 

McIntosh, Reys, and Reys (1997). 

The meanings attached to the terms mental computation and mental arithmetic, 

are quite different in light of the agendas of the educational climates that they 

represent. The term mental computation appears to have been coined by 

Barbara and Robert Reys in the late 1970s in relation to their research on 

computational estimation. During the early 1980s the United States adopted the 

term mental computation as educators were encouraged to support new 

approaches to teaching and learning number, in particular a more balanced 

approach to computation (Reys & Nohda, 1994). In the United Kingdom the 

term mental arithmetic was still in circulation during the 1990s, due to its "air 

of respectability and tradition" (Thompson, 1999a, p. 147). It has since been 

replaced by the term mental calculation, which according to Thompson 

encompasses more than just the ability to recall number facts from memory — 

an emphasis of mental arithmetic — and extends to include and stress the 
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importance of mental thinking strategies. Leading the way in Australia, 

prominent researchers in the field, have embraced mental computation and this 

is now the term that is favoured in Australian curriculum standards and 

documents. 

In trying to encapsulate what mental computation is, one approach is to start by 

considering what mental computation is not. Anghileri (1999) offers a simple 

but powerful description of mental computation as not merely calculating in 

the head but rather calculating with the head (p. 186). The message that 

permeates the curriculum is that mental computation is not mental arithmetic, 

at least not in the old sense. Morgan (2000, p. 2) characterises traditional 

mental arithmetic in five ways: 

1. Answers are of paramount importance; 

2. Answers are often obtained by applying memorised rules, with little 

concern for the mathematical processes involved; 

3. Lessons are characterised by a series of short, low-level, unrelated 

questions; 

4. Time is emphasised with answers being quickly calculated, recorded, 

and marked; and 

5. Sessions are effectively focussed on testing and not teaching. 

Only remnants of this description of mental arithmetic are useful in 

constructing a picture of mental computation. 

In relation to Morgan's first point, it is perhaps the word paramount that is 

problematic, as answers to mathematical problems are always important. This 

might be because mental arithmetic has long been associated with "a collection 

of facts not with networks of relationships" (McIntosh, 1990, p. 25). Mental 

computation, however, involves.a more holistic approach to calculating, where 

questions "How?" and "Why?" are equally as important as "What?" Working 

mentally might involve manipulating the calculation process, for example, 

encouraging students to develop their own questions when provided with an 

answer as the starting point (McIntosh, De Nardi, & Swan, 1994). Teachers can 

address this in the classroom by "indicating to students that developing and 

using thinking strategies is a valued process" (Green, 1999, p. 141). 
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The mechanical application of rules is a feature Morgan associates with mental 

arithmetic. Anghileri (2000) agrees, maintaining that "the meaning of 

arithmetic has over time become limited to performance of standard algorithms 

without an underlying understanding" (p. 1). Mental computation is also more 

than memorised number facts. The emphasis on understanding the workings of 

the number system, including the relationships between numbers and 

operations, is now espoused as the foundation for developing mental 

computation skills. 

Mental computation activities may take on almost any form that is appropriate 

at a given time in a classroom; they do not resemble the restrictive nature of 

mental arithmetic activities — Morgan's third point. With a focus on 

understanding, mental computation has taken on a "less is more" approach. 

Mental computation might involve, for example, just one or two mathematical 

problems: the difference being the depth of investigation as facilitated by the 

teachers. 

An emphasis on reasoning and justification as facilitated through investigation 

and discussion is central to mental computation. Morgan also equates time in 

mental arithmetic with speed. Emphasising speed in relation to computation is 

a practice that McIntosh (1998) strongly suggests must stop. He writes, "If 

children are given time, they try — often with success — to invent an algorithm. 

If we emphasise speed, we remove this possibility" (p. 47). It seems the 

emphasis on time should actually be to give students a chance to be creative, 

think deeply, and consider the strategies that others use or devise their own. 

Morgan's final point is that mental arithmetic sessions are simply test 

orientated. The focus of mental computation, however, can be quite different, 

with sessions being the basis for investigations of more depth to develop 

understanding of essential mathematical concepts. Importantly, the students' 

experience of mental computation should emphasise "supporting and 

encouraging their attempts to think for themselves" (McIntosh, 1998, p. 47). 
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It could also be argued that mental arithmetic is a fairly isolated, individual 

activity, a feature that Morgan does not include in his discussion. Potentially 

mental computation investigations might involve one to one discussions 

between a teacher and a student, between the students themselves, or larger 

whole-class investigations. Mental computation is not a restrictive activity and 

this interpretation of mental computation is very much in alignment with the 

current understanding of numeracy in Australia. 

1.5 Numeracy - 50 Years Young 
Having first appeared in the United Kingdom in the Crowther Report (1959), 

the term numeracy is approaching its 50 th  birthday. The term may have evolved 

somewhat over the years but this does not necessarily mean it has aged. 

Crowther imparted a sophisticated view of numeracy that encompassed both 

"understanding of the scientific approach to the study of phenomena — 

observation, hypothesis, experiment, verification" and the need "to think 

quantitatively" (quoted in Cockcroft, 1982). Over two decades later, the term 

numeracy reappeared in the Cockcroft Report (1982) representing a "culture of 

utility" (Noss, 1998). Cockcroft put forward a broader view of numeracy, 

stressing the practicalities of mathematics education in relation to the 

workplace and adult life, specifically including "appreciation and 

understanding of information which is presented in mathematical terms" 

(p. 11). Australia and New Zealand essentially inherited the term numeracy 

from the United Kingdom. Although Australia and the United Kingdom share a 

functional view of numeracy that emphasises the value of individuals having 

mathematical skills to cope with their everyday life experiences, Australia has 

moved away from a solely number-based conception of numeracy that 

educators in the United Kingdom have adopted (Doig, 2000). Numeracy in 

Australia is perhaps more comparable to the tenets of "quantitative literacy" as 

proposed in the United States (e.g., Steen, 2001) and "mathematical literacy" 

as defined by the Organisation for Economic Co-operation and Development 

(OECD, 2006) in Europe. Across the different education systems — both public 

and private — within Australia, most educators share a common definition of 

numeracy (Australian Association of Mathematics Teachers (AAMT), 1998): 
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To be numerate is to use mathematics effectively to meet the general 

demands of life at home, in paid work, and for participation in 

community and civic life. In school education, numeracy is a 

fundamental component of learning, discourse and critique across all 

areas of the curriculum. It involves the disposition to use, in context, a 

combination of: 

Underpinning mathematical concepts and skills from across the 

discipline (numerical, spatial, graphical, statistical, and algebraic); 

Mathematical thinking and strategies; 

General thinking skills; and 

Grounded appreciation of context. (p. 2) 

Although there are variations in how numeracy is conceptualised, notably 

numeracy has forged an identity of its own having been overshadowed in 

education practice by literacy definitions and interventions (Luke, Elkins, 

Weir, Land, Carrington, Dole et al. 2003). How numeracy is conceptualised 

affects not only the school mathematics curriculum but also the relationship 

between mathematical content knowledge and pedagogy. Noss (1998) 

reinforces the view that new numeracies may continue to evolve to represent 

the ever changing social and economic needs of society. 

1.5.1 Numeracy and the Tasmanian curriculum 
In Tasmania the established definition of numeracy weaves together the five 

strands of the mathematics curriculum as outlined in the Mathematics 

Guidelines K - 8 (Department of Education and the Arts Tasmania (DEAT, 

1992): 

To be numerate is to have and be able to use appropriate mathematical 

knowledge, understanding, skills, intuition, and experience whenever 

they are needed in everyday life. Numeracy is more than just being 

able to manipulate numbers. The content of numeracy is derived from 

five strands of the mathematics curriculum - space, number, 

measurement, chance and data, and (pattern and) algebra - as 
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described in the National Statement and Profile. (Numerate Students, 

Numerate Adults (DEAT, 1995, P.  6) 

Tasmania is one of several of Australian states implementing curriculum 

reform founded on a values-based philosophy (e.g., Education Queensland, 

2000; South Australia Curriculum Standards and Accountability (SACSA), 

2001). In Tasmania, the Essential Learnings framework (DoET, 2002, 2003) 

details five curriculum organisers, which are considered the areas of essential 

learning for students Grades K — 10: Thinking, Communicating, Personal 

Futures, Social Responsibility and World Futures. These are guided by a core 

set of values and purposes and are followed by a set of principles to direct 

learning, teaching, and assessment. Although innovative, the Essential 

Learnings raises many questions and challenges for educators involved in the 

more traditional curriculum areas such as mathematics and science. Reference 

to being numerate is listed as a key element of one of the curriculum 

organisers, communicating. The first part of the description associated with 

being numerate links mathematical concepts and skills to "everyday problems" 

and the "demands of everyday life." It upholds that: 

Being truly numerate requires the knowledge and disposition to think 

and act mathematically and the confidence and intuition to apply 

particular mathematical principles to everyday problems. (p. 21) 

The second part of the being numerate description moves to a cross-curricular 

focus: 

Being numerate not only includes numeracy skills and understandings, 

but it also involves the critical and life-related aspects of being able to 

interpret information thoughtfully and accurately when it is represented 

in numerical and graphic form. This aspect of numeracy is akin to 

critical literacy — being able to recognise that information can be 

constructed to influence the reader or viewer. (p. 21) 

School-based mathematics is a foundation learning area for numeracy but not 

in an exclusive sense. Developing the desired skills and competencies for being 

numerate — justifying, reasoning, communicating — becomes a responsibility 
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across the curriculum. The Essential Leamings message is "teaching for 

numeracy" as opposed to "teaching numeracy" (D. Neal, personal 

communication, March, 2003). 

1.5.2 Situating mental computation 
For those who favour a definition of numeracy that privileges number over 

other aspects of mathematics, mental computation is valued in terms of 

developing sound conceptual understanding of number properties, operations, 

and fostering number relationships. Yet within a broader definition of 

numeracy that encompasses a wider range of skills, mental computation is 

valued as the means to engage in interpreting, communicating, and applying 

mathematical knowledge. Mental computation then, can be accommodated 

within either perspective and provides a foundation for exploring numeracy at 

the middle school level. 

1.6 Numeracy in the Middle Years 
For students the middle school years are marked by the transition from the final 

years of primary school to the early years of secondary school. In Australia this 

involves, for the most part, moving through Grade 5 to Grade 8, in some states 

incorporating Grade 9. Students moving through the middle years of schooling 

are typically between the ages of 10 to 15. Some schools cater for all 

compulsory years of schooling including primary and secondary. Other schools 

offer a primary or secondary education only. Therefore, the experience of the 

middle years transition may involve remaining at the same school, or relocating 

to a new secondary school site. What drives the interest in this period of 

schooling for all educators is the "unique developmental and educational needs 

of young adolescent learners" (Barber, 1999). The perceived lack of alignment 

between the developmental characteristics of students in adolescence and the 

school organisation along with its programs continues to be the platform for the 

middle school reform agenda, particularly in the United States (Beane & 

Brodhagen, 2001). 
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The advent of the new millennium has brought about fundamental social and 

economic changes worldwide. In Australia, educators are faced with the task of 

considering the learning needs of students and how best to prepare students to 

be competent, global citizens. The values-based curriculum reforms are one 

outcome of this preparation. In the report Beyond the Middle, Luke et al. 

(2003) write, "middle years education has become a clear motivational force 

for reform and for the framing and focusing of teachers' and students' work in 

schools and classrooms" (p. 12). Accordingly there are a number of significant 

issues of teaching and learning that challenge the area of numeracy. 

The middle years are arguably a critical time in addressing the essential needs 

of numeracy. Willis (1998) identifies three critical aspects of numeracy: 

mathematical knowledge, contextual knowledge, and strategic knowledge. 

Balancing these three aspects becomes more challenging in the middle years as 

the dimensions of numeracy expand; contextual knowledge and strategic 

knowledge become more integrated in the actual experiences of the students 

(Siemon, Virgona, & Corneille, 2001). In the mathematics curriculum there is 

an explosion of key mathematical ideas associated with each of the curriculum 

strands, along with number, these include pattern and algebra, space, 

measurement, and chance and data. Within the number strand alone, the 

conceptual basis shifts from additive reasoning to multiplicative reasoning, and 

the number system expands to include part-whole numbers (or rational 

numbers). An important contribution of this study is the bringing of fractions, 

decimals, and percents into the domain of mental computation, responding to 

the call of McIntosh (2002a) who advocated that it is a matter of urgency to 

"find effective ways to ensure that well developed approaches to number find 

their way particularly into the majority of middle school classrooms" (p. 463). 

In terms of students' outcomes during the middle school years, there is some 

indication that students regress or level out in terms of academic performance 

standards. This is referred to as a "performance dip" or the "plateau effect." 

The phenomenon often seems to be included in discussions as an anecdotal 

overtone, a shared general understanding. There is, however, some evidence 

based research emerging to support this claim. In the report on the Victorian 
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Quality School Project, Hill, Rowe, Holmes-Smith, and Russell (1996, P.  32) 

report a "flattening out of the growth trajectory" beginning in Year 4 and 

continuing until Year 9. This pattern is described for three strands of the 

English profile but is not as marked for the mathematics strands. Similarly, in 

the document Middle Years Numeracy Research Project: 5 — 9 the authors 

report a "performance dip" in numeracy between Year 6 and Year 7 (Siemon et 

al. 2001). There are many challenges that impact on the teaching and learning 

of numeracy at the middle school level: some of these will be covered in the 

following chapter. 

1.7 Thesis Overview 
Following the Introduction, the thesis is divided into seven chapters. Chapter 2 

contains a review of the literature in the field of mental computation, drawing 

on work from related fields to support the objectives and the set of research 

questions which are outlined at the close of the chapter. In Chapter 3, a 

discussion of mixed methodology research with an emphasis on mathematics 

education is presented. As well, the design of the study — which was conducted 

through four phases — is introduced along with the theoretical framework. The 

life of the project is also detailed in Chapter 3 including details on the 

participants, instruments, procedures, ethical considerations, data analysis, and 

limitations related to the study. 

The results of the study are presented over four chapters. In Chapter 4 the 

results of a questionnaire completed by 34 middle years teachers are analysed 

(Phase 1). Chapter 5 and Chapter 6 focus on the students' experiences of 

mental computation and comprise Phases 2 and 3 of the study respectively. In 

Chapter 5, data were collected from three instruments: a mental computation 

test, a comparison test (with pairs of fractions and decimals), and a 

questionnaire. A total of 172 middle years students participated from eight 

classes. This is followed, in Chapter 6, by an analysis of 46 task-based 

interviews, investigating the mental computation strategies students use to 

solve non-contextual fraction, decimal, and percent problems. In the final 

results chapter — Chapter 7 — the responses of seven key teachers who 
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participated in an interview session are presented (Phase 4). Finally, in Chapter 

8, the findings in relation to the research literature along with the implications 

of the observed outcomes for the research questions are discussed. 
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Chapter 2 

Literature Review 

2.1 Introduction 
In this chapter, the review of the literature spans five main areas. 

The review starts by unpacking mental computation in terms of its value as 

reflected in current national and international curriculum and in relation to 

theoretical thought, both historical and current. The second main area of the 

review considers some of the pedagogical issues for teachers with the current 

emphasis on mental computation and the impact on learning environments. The 

review then proceeds to examine the two fields of research that frame the 

study: a) mental computation and b) fractions, decimals, and percents. It argues 

that the links between the two fields have not been well established. In terms 

of mental computation, research activities have been conducted fairly 

consistently since the 1980s. Methodological approaches have been situated 

both in the quantitative and qualitative domains, with valuable contributions 

from each discussed. In the fourth section on fractions, decimals, and percents, 

the three concepts are examined selectively, from a mental computation 

perspective. In the fifth section the concepts of working procedurally and 

working conceptually are briefly reviewed. The literature review then closes 

with the aim of the current study and the objectives and research questions 

proposed for the study. 

2.2 Unpacking Mental Computation 
Scenario. For the problem 10% of 45, Daniel was able to arrive at his answer 

via a rule he had learned, "Four point five — I'm just moving the tens down into 

the units and the units into the tenths." For solving 10% of 45 it worked. He 

extended this strategy to solve 20% of 15, "I think that's point one five," 

although he did not sound sure about his answer. His explanation, "Well, umm, 

ten percent is one point five so I thought twenty percent would just do down 

again." He continued to employ this strategy again, oblivious to his error, to 
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solve 30% of 80, "point eight - I was thinking ten percent would make it into 

units, twenty percent would make it into tenths and then thirty percent would 

take it into the hundredths?" 

If the answers — either correct or incorrect — were the only point of interest to a 

teacher or a researcher then much of above scenario would be superfluous. It is 

the value of unpacking a student response that underpins the current emphasis 

on mental computation. 

2.2.1 The value of working mentally 
The value of mental computation is evident in terms of its links to mathematics 

education reform efforts, particularly in emphasising sense-making and 

conceptual understanding, which are two aspects that drive mathematics reform 

initiatives (Parker & Leinhardt, 1995). Mental computation is considered to 

facilitate and strengthen the development of understanding associated with the 

workings of the number system (Reys, 1984). This includes the properties of 

numbers and operations, and the relationships between them. Mental 

computation is also considered to support the development of number sense 

(Markovits & Sowder, 1994; McIntosh, Reys, & Reys, 1992; Sowder, 1988). 

An important element of number sense according to McIntosh et al. (1992) is 

the motivation of the learner in developing and choosing computational 

strategies. Number sense then underpins mental computation in terms of 

making decisions about the effectiveness of particular mental strategies and 

also in determining the reasonableness of an answer. Working mentally assists 

students to develop problem solving skills as students develop a critical 

perspective as to why one strategy might be considered more efficient for a 

particular problem and how to use the mathematical knowledge they have to 

work through a problem. It is also purported that mental computation fosters 

creative and independent thinking around number concepts (Reys, 1984). 

Reys (1984) argued that mental computation promotes later success in the 

transition to written computation, particularly in terms of algorithmic 

procedures being taught with firm conceptual understanding rather than 

15 



students relying solely on learned sets of rules and procedures (Kamii & 

Dominick, 1998). Additionally, mental computation is a basis for developing 

estimation skills (Reys, 1984). It is conceivable that success in mental 

computation can be achieved without computational estimation skills, as 

learned procedures are carried out in a mechanistic manner (Sowder, 1992). 

The reverse, however, does not necessarily apply. Reys (1988) suggests that 

many students follow a misconceived idea that estimation is about finding an 

exact answer and then rounding it to produce an estimate. But really in terms of 

its value as a skill there are many situations in real life that only require an 

estimate. Sowder (1988) suggests that "researchers do not appreciate the 

potential power of estimation, particularly as a unifying theme throughout the 

study of rational numbers" (p. 189). 

A key idea that supports numeracy is the application of mathematics both 

formally and informally in everyday contexts. Appropriately, mental 

computation is highly valued for its practicality and immediate social utility 

(McIntosh, Nohda, Reys, & Reys, 1995). There is a strong case for the 

utilitarian value of mental computation. Northcote and McIntosh (1999) argued 

that mental computation is a critical adult skill. The authors conducted survey 

research and found that for the most part, everyday calculations performed by 

adults were done mentally (85%). These calculations predominantly involved 

the calculation of time and calculations during shopping activities. Addition 

and subtraction featured as the most commonly used operations. Their research 

supports the earlier work of Wandt and Brown (1957) who reported that 

calculating mentally accounted for three quarters of the calculations completed 

by adults. It follows that being able to compute mentally is often the simplest 

way to calculate, particularly in everyday situations where applications of 

written techniques can be laborious and simply inappropriate (McIntosh, 

1998). Mental computation is also a universally valued skill due to its 

applicability for solving problems encountered in everyday situations, such as 

totalling amounts and working out discounts. New technologies are also 

evolving at an ever-increasing rate and students need mathematical skills that 

are flexible and support technical competency. 
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2.2.2 Mental computation: Its place in the 
curriculum 

A gauge of the value of mental computation is the level of recognition and 

emphasis it receives in current mathematics curriculum and policy documents. 

At a basic level, curriculum as subject matter provides answers to questions 

such as what to teach, how to teach, and when to teach (Print, 1993). For 

mental computation these questions need to be considered in relation to written 

computation and the use of calculators. Within the Australian mathematics 

curriculum, importance is generally placed on students being able to choose an 

appropriate calculative method — either mental, written, or calculator 

(Curriculum Corporation, 2000). This reflects the more balanced approach to 

computation that has developed consistently during the 1980s as part of 

mathematics education reform efforts (Hope, 1987; McIntosh, 1990; Reys & 

Nohda, 1994). 

2.2.2.1 National curriculum emphasis 

Within Australian curriculum and standards documents, mental computation is 

embedded in the description of learning and outcomes associated with Number. 

Experiences in computation and estimation, along with experiences in number 

and numeration in the Number Strand, are detailed in A National Statement on 

Mathematics for Australian Schools (Australia Education Council (AEC), 

1991). In choosing an appropriate method for either an exact or an approximate 

calculation, mental computation is described in the following fashion: 

People need to carry out straightforward calculations mentally, and 

students should regard mental arithmetic as a first resort in many 

situations where a calculation is needed. Strategies associated with 

mental computation should be developed explicitly throughout the 

school years, and should not be restricted to the recall of basic facts. 

People who are competent in mental computation tend to use a range of 

personal methods which are adapted to suit the particular numbers and 

situation. Therefore, students should be encouraged to develop personal 

mental computation strategies, to experiment with and compare 

strategies used by others, and to choose from amongst their available 
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strategies to suit their own strengths and the particular context. (ACE, 

1991, p. 109) 

Although the emphasis on mental computation is to be welcomed, the welcome 

appears to weaken beyond the whole number boundary. Mathematics — A 

Curriculum Profile for Australian Schools (AEC, 1994) allocates one of seven 

strand organisers within the Number Strand to mental computation. In the six 

level outcomes described specifically for mental computation, the first four 

levels are concerned solely with whole numbers. At the fifth level, "simple 

fractions" are mentioned and at level six, the following outcome is described 

for students: "Estimates and calculates mentally with whole and fractional 

numbers, including finding frequently used fractions and percentages of 

amounts" (AEC, 1994, p. 104). Of the individual states and territories in 

Australia some have placed a greater degree of emphasis on mental 

computation than others. In Tasmania, for example, mental computation has 

featured in curriculum materials since early in the 1990s (DEAT, 1992). In 

contrast, it is only recently that curriculum review in Queensland has explicitly 

addressed mental computation, in particular the issue of how best to teach 

mental computation — juxtaposing teacher taught strategies with strategies 

invented by the students (Heirdsfield, 2003a). 

2.2.2.2 International curriculum emphasis 

At the lower levels of the New Zealand curriculum, facility with whole 

numbers is emphasised for mental computation. At Level 3, covering the 

middle school years, "mental methods" is one of three approaches to finding 

"fractions of whole numbers and decimal amounts (including money and 

measurements)" (Ministry of Education, 1992, p. 41). At Level 5, which covers 

the later secondary school years, mental strategies are to be developed for 

operations with "positive and negative numbers using a calculator, a variety of 

methods, and other approaches" (p. 49). A similar emphasis on mental 

computation exists in the latest Standards document released by the National 

Council of Teachers of Mathematics (NCTM, 2000) in the United States. 

Whereas the focus in the Numbers and Operations Standard of the early grades 

is on whole numbers, in the standard for Grades 6 — 8, fractions and decimals 

18 



are mentioned in relation to choosing appropriate calculation methods. This is 

expanded with a rationale for mental computation and estimation. 

Students should also develop and adapt procedures for mental 

calculation and computational estimation with fractions, decimals, and 

integers. Mental computation and estimation are also useful in many 

calculations involving percents. Because these methods often require 

flexibility in moving from one representation to another, they are useful 

in deepening students' understanding of rational numbers and helping 

them think flexibly about these numbers. (NCTM, 2000, pp. 220-221) 

In the United Kingdom mental calculation has assumed a place "at the heart of 

numeracy" and, as such, is one of the key principles underpinning the approach 

to teaching numeracy as recommended in the National Numeracy Strategy 

(DfEE, 1998, 1999). This strategy was introduced in 1998 as a government 

initiative to support higher numeracy performance for primary and secondary 

school students. The mathematics program in the United Kingdom is relatively 

prescriptive, with guidelines for expected student achievement outlined in 

terms of the types and size of numbers students should be able to work with 

mentally at different ages (Threlfall, 2000). Again, the British focus is largely 

based on whole numbers. There are sketchy directions in the Primary 

Framework for Literacy and Mathematics: Year 6 progression to Year 7 

outlining that students should be able to draw on their personal collections of 

strategies for solving whole number problems: "Consolidate and extend mental 

methods of calculation to include decimals, fractions and percentages" (DfES, 

2006). Guidelines for working with whole numbers, however, are much more 

specific than those outlined for fractions, decimals, and percents, for example; 

"multiply a two-digit by a one-digit number." 

In the Netherlands mental computation has a clear role in the realistic 

mathematics education movement, particularly in the lower grades (Blote, 

Klein, & Beishuizen, 2000; Neuman, 1995; Treffers 8z Beishuizen, 1999). As a 

foundation for developing number sense the Dutch have embraced mental 

representations for developing mental processes, for example, based on the 
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number line (Beishuizen, 1997). Heirdsfield (2003a) suggests that an emphasis 

on developing mental representations is one of the main differences between 

the Dutch approach to mental computation and that of Australia, New Zealand, 

and the United States. 

2.2.3 A historical perspective 
The current emphasis on mental computation is not necessarily a new 

phenomenon within the field of mathematics education. The "mental" aspect of 

mathematics has been a fundamental part of teaching number over the last 

century, although interest has periodically waxed and waned. Trends are 

described briefly by Reys (1984), Reys and Barger (1994), and Pepper (1997). 

Discussions tend to start at the end of 19 th  century: an era in education marked 

by the strong hold of the mentalist philosophy of education that was dominant 

in the United States and to a lesser extent in the United Kingdom (Thompson, 

1999a). Mental discipline theory likened the human mind to a muscle, which 

by its very nature required exercise to promote development and increase 

strength (Stanic, 1986a). A basic premise of the mentalist view of learning was 

grounded in the physicality of strengthening the faculties of the mind, 

particularly the intellect, the senses, and the will. Mathematical activity that 

involved the repetition and rehearsal of number facts, particularly 

multiplication tables, was considered the "perfect technique for developing the 

faculties of the mind" (Reys, 1984, p. 549). The fundamental mentalist 

argument for the inclusion of mental arithmetic was based upon the nature and 

perceived benefits of the activity, with little regard for the mathematical 

content. 

Not surprisingly, mental computation has fluctuated with the impact of 

different theories of learning. Goldin (2000), for example, argues that it is hard 

to overestimate the impact of behaviourism on research and school practices. 

He refers to "an exclusive emphasis on discrete, rule-based, easily testable 

skills, and the explicit de-emphasis of understanding as an educational goal" 

(p. 536). Associatism and behaviourism were dominant in the early part of the 

20th  century. These approaches were fundamentally mechanistic and centred on 

the notion that "learning is largely a matter of habit formation" (Schoenfeld, 
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2002, P.  437). The work of E. L. Thorndike (1874-1949) was extremely 

influential in matters of educational pedagogy, including instruction and 

assessment. His basic learning theory involved developing and strengthening 

the associations between stimuli and responses. In his discussion Schoenfeld 

(2002) uses the example of "5 x 3" and "15" to demonstrate the mental bond 

that exists between them. To Thorndike, bonds such as multiplication facts 

should be taught together to reinforce and strengthen the bonds between 

isolated instances of mathematical knowledge. This period marks the birth of 

"drill and practice" in mathematics. 

Reys and Nohda (1994) argue that mental computation is a "higher-order 

thinking process" and that this position moves mental computation into the 

realm of "thinking strategies" (p. 12). Reys and Barger (1994) write, "Students 

are encouraged to generate thinking strategies based on their prior experience 

and knowledge" (p. 39). This view of mental computation is embedded in 

constructivist thought. From a constructivist perspective: 

We construct our knowledge of our world from our perceptions and 

experiences, which are themselves mediated through our previous 

knowledge. Learning is the process by which human beings adapt to 

their experiential world." (Simon, 1995, p. 115) 

For the learning of mathematics, students as learners construct their own 

knowledge both individually and collectively. 

Underpinned by constructivist thought, educators have been encouraged to 

conduct research and increase professional development activity to support the 

objectives of mental computation as set out in educational policies. Just as new 

social and economic conditions prompted educators to rethink the needs of 

students for the 20 th  century (Stanic, 1986b), educators worldwide have been 

scrutinising current curricula, endeavouring to anticipate the skills that students 

of the 21 st  century will need to become competent members of society (Steen, 

2001). This thesis argues that mental computation is one of those skills. 
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2.3 Pedagogical Issues: Mental Computation 
in the Classroom 

Advice to teachers on developing mental computation is generally embedded 

within pedagogy associated with teaching numeracy (Askew, Brown, Rhodes, 

Johnson & Wiliam, 1997; Askew, Denvir, Rhodes, & Brown, 2000) and also in 

developing number sense (Anghileri, 2000). Number sense and mental 

computation are frequently paired in the literature in the manner of a 

harmonious, symbiotic relationship. Number sense is less easy to define than 

mental computation, which suggests it is a multifaceted construct (Case 1989; 

Maclellan, 2001; Resnick, 1989). There is general acceptance that number 

sense is not about the numerical knowledge as such but rather it is about how 

mathematical knowledge is manipulated with the emphasis on flexibility, 

reasoning, and thoughtfulness (Maclellan, 2001). McIntosh, Reys, & Reys 

(1992) define number sense as: 

...a person's general understanding of number and operations along with 

the ability and inclination to use this understanding in flexible ways to 

make mathematical judgements and to develop useful strategies for 

handling numbers and operations. It reflects an inclination and an ability 

to use numbers and quantitative methods as a means of communication, 

processing and interpreting information. (p. 3) 

Heirdsfield (2003a) points out that, whereas many teachers readily 

acknowledge and support the emphasis on mental computation in the 

curriculum, they actually fail to see it as part of a larger picture in terms of 

developing number sense. This observation has pedagogical implications for 

classroom practice, including how mental computation is developed and what 

assessment practices are used by teachers. There is no research to date that 

considers the teachers' views on mental computation, including reports of how 

teachers are addressing mental computation in the classroom. 

2.3.1 A balancing act 
Traditionally a large amount time in the mathematics classroom has been 

devoted to written computation instruction in the form of standard written 

algorithms; McIntosh, Reys, and Reys (1997) suggest approximately 85% to 
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95% of time was spent in this manner. Advocates of mental computation, 

however, argue that mental computation should be the main form of 

computation in schools (e.g., Willis, 1990, 1992). McIntosh (1990) painted a 

picture of three methods of computation and it is not hard to detect where his 

loyalties lie: 

So there we have the picture: great amounts of time and energy 

dedicated to written calculation which is little used or trusted by people 

out of school. Little or no time devoted to improving mental 

computation which is used daily by everyone. Little or no time devoted 

to calculator use, though everyone would agree that the calculator 

could, indeed does, make everyone able to compute. (p. 25) 

If mental computation were to overshadow written computation in the 

curriculum, the question still remains, when should written algorithms be 

introduced to students during their school years? There is growing support for 

the view that written algorithms should be introduced at a much later stage of 

schooling (from Grade 4) than is traditionally the case (from about Grade 2) 

(McIntosh, 2002b, 2005; Thompson, 1999b). This would mirror the approach 

to written algorithms espoused in both the Netherlands and Germany 

(Beishuizen, 1997). Research has shown that vertical written algorithms for 

addition can interfere with the development of children's natural (or invented) 

strategies for solving problems (Cooper, Heirdsfield, & Irons, 1995; Ginsburg, 

Posner, & Russell, 1981). Heirdsfield, Cooper, and lions (1999) conducted a 

case study on a competent student and found that he could compute quite 

competently before written algorithms were introduced, thus demonstrating 

number sense and flexibility. The authors question what written algorithms can 

offer this student. Additionally, invented strategies — that often involve 

calculating from left to right — are more accurately used than those mental 

strategies that move from right to left mirroring written algorithmic procedures 

(Carraher, Carraher, & Schliemann, 1987; Kamii, 1989; Kamii, Lewis, & 

Jones, 1991). 

De-emphasising written computation is a considerable change for mathematics 

teaching. Plunkett (1979) was one of the first to capture and contrast the 
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fundamentals of mental algorithms with written algorithms. This is summarised 

in Table 2.1. 

Table 2.1 

The Characteristics of Written and Mental Algorithms 

Written as 	 Mental as 

Written: Calculation is permanent and 
correctible. 

Standardised: Calculation procedure is 
always the same. 

Contracted: Calculations consist of 
summarised lines of equations. 

Efficient: Every column in a calculation 
(working from the right) is treated as 
ones. 

Automatic: Calculation can be executed 
with little or no understanding. 

Symbolic: Calculations are based on the 
manipulation of symbols. 

General: A method will work for any 
combination of numbers for an 
appropriate operation. 

Analytic: Numbers are broken up and 
digits are dealt with separately. 

Not easily internalised: Generally do not 
reflect the ways people think naturally 
about numbers. 

Encourage cognitive passivity: 
Calculation requires limited decision 
making. 

Fleeting: Calculations can be momentary 
and passing. 

Variable: There are many different ways 
to calculate. 

Flexible: Calculations are adapted to suit 
the numbers involved. 

Active: Calculation choice is often 
controlled by the user. 

Holistic: Calculations often involve 
working with complete numbers. 

Constructive: Calculation follows a 
pathway from one part of the question to 
the answer. 

Not designed for recording: Recording of 
calculations is generally not predicable. 

Requiring understanding: Understanding 
demonstrated through the flexible 
construction of calculations. 

Iconic: Calculation may be supported by 
a visual tool or image. 

Early approximation to correct answer: 
as demonstrated through the practice of 
working left to right. 

Limited: Do not always suit difficult 
calculations or every problem. 

With the advent of the technological age there surfaced another compounding 

element that educators had to consider alongside mental and written 

computation — the introduction of calculators in classrooms. Educators were 

forced to consider what might be needed to support students in using 

technology effectively and efficiently. Those giving standing to mental 

computation were quick to recognise that mental computation was important in 

"the efficient use of technology" (Reys, 1984, p. 549) and needed in order to 
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check calculator results (Cockcroft, 1982), so that students did not simply 

develop unquestionable faith in the = sign. 

2.3.2 Developing mental computation: Teacher-
taught versus student-invented 

For teachers, instructional emphasis in relation to mental computation is 

commonly presented as a dichotomous position: teacher-taught strategies 

versus student-invented strategies. Managing this tension is perhaps one of the 

biggest challenges teachers face in developing mental computation with their 

students. Traditional pedagogy suggests that teachers look for the best mental 

computation procedures and teach them. "Best" might be defined as "the most 

common" or the methods that appear to be most easily understood by the 

majority of students, or possibly methods best understood by the teacher. 

Threlfall (2000) expresses concern that explicit instruction from teachers 

compromises the strategic and flexible elements of students' own thinking 

processes. He writes, "in a structured teaching situation there is a decision 

about how to calculate, but it is made for the child by the teacher, in effect, 

through the teacher's intention to practise particular approaches" (p. 81). This 

model of teaching mental computation is aligned with behaviourist theory of 

learning — where students are given specific strategies to learn and their ability 

to incorporate the strategies in computation problem solving forms the basis of 

assessment. There is always the possibility that learning strategies and then 

executing them, directed solely by the teacher, will not be any more successful 

than written algorithms (McIntosh, 1991). 

A prevailing issue regarding the assessment of mental computation concerns 

the use of traditional testing in classrooms. This involves pencil and paper tests 

where the students record only an answer: thus the focus is on what knowledge 

students have acquired and can recall in the given testing situation. As the sole 

mental computation activity this form of assessment is reminiscent of the era of 

mental arithmetic (Heirdsfield, 2003a) and her concern is that the emphasis on 

student understanding, that now drives the push for mental computation, is not 

reflected in assessment practices that are comprised solely of traditional 

testing. 
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Callingham and McIntosh (2002) consider that in terms of documented 

outcomes for mental computation, there are generally too few expectations for 

whole numbers other than for basic number facts. They also note that there is 

"none at all for decimals, percentages, and fractions" (p. 423). Some 

expectations and outcomes are noted for the fraction, decimal, and percent 

content domains, yet specific goals are rarely addressed for mental 

computation. 

2.4 Mental Computation: The Research 
Domain 

There are two features of mental computation research that are of particular 

relevance to the current study. First, mental computation involving whole 

numbers has dominated the research field and this provides the focus for 

discussing the literature in this section. Second, qualitative research has rarely 

extended beyond the upper primary grades to incorporate the early years of 

secondary school. Quantitative studies that do incorporate the middle years do 

so within a range of grades, providing only snapshots of how students at this 

level of schooling perform (Caney, 2002). 

Quantitative research contributions have tended to come from large student 

sample sizes where data have been collected using pencil and paper tests of 

mental computation ability. This type of methodological approach does not 

appear to reflect a contemporary, constructivist view of mental computation 

that emphasises individual thinking strategies. Generally, however, researchers 

do not advocate pencil and paper tests of mental computation as an appropriate 

testing and assessment tool for teachers and use in the classroom. Mental 

computation tests are largely research tools and in this way research in this area 

has provided some valuable contributions. Quantitative research in the field of 

mental computation has provided a perspective on three aspects: levels of 

mental computation performance, error patterns, and comparative international 

performance. 
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2.4.1 Levels of mental computation performance 

In the context of performing calculations mentally, how to monitor students' 

progress was the motivation for the work of Callingham and McIntosh (2001, 

2002). The authors argued that, although there is an accepted hierarchy of 

development to support written computations, teachers are left largely to their 

own devices in developing, implementing, and assessing mental computation 

programs. Using Rasch modelling as the theoretical framework, the authors 

considered the mental computation performance of students across Grades 3 to 

10 (N = 1452) and constructed a developmental scale of mental computation 

ability in which they described eight levels of performance. These levels 

represented an increasing complexity in the type of problems students could 

solve successfully according to the type of numbers, both whole numbers and 

part-whole numbers, and across the four operations (Callingham & McIntosh, 

2001). 

In extending the research, Callingham and McIntosh (2002) used the levels of 

mental computation performance to report on two aspects of student 

performance: patterns of student ability across the school years and growth for 

individual year groups. Grades 3 and 4, for example, were the grades where 

students exhibited the greatest period of growth in mental computation 

competence. Across Grades 6 and 7, however, the growth rate plateaued before 

increasing again between Grades 7 and 8. Callingham and Watson (2004) 

considered the four operations with part-whole numbers only and further 

extended the work by identifying six levels of increasing complexity across 

fraction, decimal, and percent problems. 

This body of research represents a substantial quantitative contribution to 

mental computation research, as the data on student performance were based 

on rigorously designed tests of mental computation ability and analysed with a 

complex statistical model. Although McIntosh et al. (1995) developed a set of 

mental computation tests with some link items, comparisons across grades 

were limited, as the individual grade tests were different. Similarly, Bana and 

Korbosky (1995) demonstrated increasing performance across the primary 
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grades for basic number facts, but the work did not expand on types of 

computation problems that might be appropriate for students working at 

different levels. The work of Callingham and McIntosh (2002) has important 

implications for classroom teachers in providing a research base from which to 

sequence activities that develop mental computation and support assessment of 

ability. Resources developed from the work of Callingham and McIntosh 

(2001, 2002) support teachers in making decisions about their students learning 

and in confidently making judgements as to what types of problems might be 

appropriate and when (McIntosh, 2004). 

2.4.2 Errors in mental computation 
In investigating students' mathematical ideas, describing common errors that 

students make, the sources of these errors, and the associated underlying 

misunderstandings is a popular line of research (Even & Tirosh, 2002). In the 

field of mental computation, quantitative studies have contributed to research 

of this nature (Bana, Farrell, & McIntosh, 1995; McIntosh, 2002; Watson, 

Kelly, & Callingham, 2004). Generally, the errors that students make in mental 

computation appear to be different qualitatively from those described for 

written computation (McIntosh, 1998). 

Bana et al. (1995) selected 12 non-contextual number problems from a mental 

computation test to investigate errors across Grades 3, 5, 7, and 9. The test 

items reflected key mathematical content areas and were chosen to illustrate 

interesting error patterns. They reported on specific error percentages 

associated with each item; for example, 190 was given as the answer to 38 x 50 

and this was recorded by 4%, 8%, and 7% of students in Grades 5, 7, and 9 

respectively. The authors went on to suggest that this type of answer 

demonstrated a lack of understanding related to the order of magnitude of 

numbers or place value understanding. It was also possible to see that for many 

of the items the number of correct responses increased consistently over Grade 

3 to Grade 9 and the number of students not attempting problems decreased in 

a similar fashion. 
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Building on these earlier studies McIntosh (2001) sought to increase the 

sample sizes and number of questions, analysing the most common errors made 

at each grade level (3 — 10). Again, the incorrect responses from pencil and 

paper tests of mental computation were clustered and the most common 

incorrect responses for the different number types described. McIntosh 

suggested that in working mentally at the most basic level, errors can be 

identified as either procedural errors or conceptual errors. From the same data 

set Watson et al. (2004) adopted a developmental approach and completed a 

more fine-grained error analysis that focussed on items from one of the eight 

development levels previously described (Callingham & McIntosh, 2001, 

2002). 

2.4.3 International student performance 
A third research area involves comparative studies of mental computation 

performance at an international level. During the 1990s Australia joined Japan 

and the United States to conduct research on mental computation performance 

that could be compared internationally. McIntosh et al. (1995) were able to 

present some general trends from data collected from Grades 2 to 9. For 

example, initially the performance of the Japanese students at Grades 2/3 was 

much higher than for students from Australia and the United States. The 

difference was minimised, however, by Grade 8/9 with the performance of the 

Australian students exceeding that of the Japanese students. The individual 

results for the Japanese students are reported in Reys, Reys, Nohda, and Emoir 

(1995). There has also been interest in the related field of number sense in 

relation to comparative performance on an international level (McIntosh, Bana, 

& Farrell, 1997; McIntosh, Reys, Reys, Bana, & Farrell, 1997). These 

researchers also conducted an investigation into student attitudes to mental 

computation and the types of problems students would prefer to do mentally 

(McIntosh, Bana, & Farrell, 1995). 

2.4.4 Mental computation strategies 

Studies in the field of mental computation that have used a qualitative 

methodology have sought to capture the mathematical thinking in which 
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students engage and investigate the development and use of mathematical 

concepts. Task-based interviews have been the main method of inquiry 

(Goldin, 2000; Heirdsfield, 2002b; Hunting, 1997). Several key findings 

associated with mental computation have emerged from qualitative studies. 

First, mental strategies that students report often do not reflect the algorithmic 

procedures that school mathematics has emphasised through written 

computation. From the 1980s the literature is alive with quotes from students 

explaining the bizarre and wonderful ways that they solved problems. 

Accordingly, many of the strategies were self developed or self taught and 

often with limited knowledge of formal algorithms (Carroll, 1997; Kamii, 

Lewis, & Livingston, 1993). The explanations provided by students were not 

ways of thinking that were explicitly taught or expected of students in the 

classroom. 

A second important finding is that the introduction of written computation can 

have a negative effect on the continued development of mental computation 

strategies (Cooper, Heirdsfield, & Irons, 1996; Ginsburg, Posner, & Russel, 

1981; Heirdsfield & Cooper, 1996; Kamii & Dominick, 1998). Heirdsfield and 

Cooper (1996) found that although young children were inventive in solving 

unfamiliar problems, they tended to make use of written algorithms for mental 

computation once taught them. 

There is also evidence that mathematical computations embedded in a context 

tended to elicit invented strategies, whereas noncontextual computations 

tended to elicit mental versions of written algorithms (Carraher, Carraher, & 

Schliemann, 1987). Cooper et al. (1995) reported similar findings after 

comparing children's mental strategies for algorithmic exercises and word 

problems in Grades 2 and 3. 

The literature includes a large assortment of descriptions of solution sequences 

or strategies employed by students for working with multi-digit whole 

numbers. Essentially, working mentally involves "a wider range of strategies 

than traditional written procedures" (Heirdsfield, 2002a). Research that 

investigates and describes the strategies that students use to solve problems 
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mentally beyond basic number facts, has predominantly involved the addition 

and subtraction of two-digit whole numbers, as either non-contextual problems 

or word problems. Threlfall (2000) suggests that this level of calculation is a 

reasonable expectation for all students to achieve and problems are unlikely to 

be solved solely by recall. It follows that the studies focus on students in the 

middle to upper years of primary school. Of the studies that describe the 

variety of mental strategies that students use, the underlying interest is in how 

these strategies initially develop. 

2.4.4.1 Whole number strategies: Addition and 
subtraction 

In relation to mental computation, McIntosh, de Nardi, and Swan (1994) 

document two types of strategies: changing the operation and using 

commutativity. The former is likely to involve changing the operation of a 

subtraction problem to addition. The latter involves changing the order of the 

numbers in the problem. For addition this requires the student to understand 

that the order of the operands does not affect the final outcome, for example, 

4 + 6 = 6 + 4, following the rule of commutativity. The strategy, however, is 

not mirrored for subtraction. These two strategies are called initial strategies, as 

this conceptual "rearrangement" of the problem appears to precede any 

computational activity. 

Mental computation strategies for solving basic number fact problems (single 

digits numbers to 20) have been well documented. The summary presented in 

Table 2.2 is collated from the work of Carpenter and Moser (1984), Thompson 

(1999), and McIntosh et al. (1994), and provides a comprehensive description 

of counting strategies. 
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Table 2.2 

Summary of Strategies for Basic Number Facts 

Strategy 	 Addition 	 Subtraction 

Description 	Example 
	

Description 
	Example 

Count all Count out each 	3 + 5 
operand & count Count out "1, 2, 
altogether 	3" and "1, 2, 3, 

4, 5" and count 
all, "1, 2, 3, 4, 
5, 6, 7, 8" 

Count out first 
operand, count 
down to the 
second operand 
and recount 
remainder 

8 - 3 
Count out "1, 2, 
3, 4, 5, 6, 7, 
count down "1, 
2, 3" and 
recount "1, 2, 3, 
4, 5" 

Count on from 
first number 

Start with one 
number & count 
on the second 
number (count 
on from the 
larger number 
involves 
commutativity) 

3 + 5 

"3 plus 4, 5, 6, 
7, 8" or "5 plus 
6, 7, 8" 

a) Count back 
from first 
operand 

b) Count back to 
second operand 

c) Count up 
from operand 
changing the 
problem into one 
involving 
addition 

8 - 3 

a) 8, count back 
"8, 7, 6, 5" 

b) 8, count back 
"8, 7, 6, 5, 
keep tally of 5 

c) "3. 4, 5, 6, 7, 
8" - keep tally 
of 5 

Use known fact Use known 
number facts, 
number bonds, 
doubles, or near 
doubles 

3 + 5 
"3 plus 3 is 6, 
plus 2. 8" or "5 
plus 5 is 10, 
take 2. 8" 

Use known 
number facts, 
number bonds, 
doubles, or near 
doubles 

8 - 3 
"8 take 4 is 4 
[know 4 plus 4 
is 8] so add one 
to get 5" 

Bridge to 10 Use known 
number bonds or 
doubles to make 
10 first & then 
work with the 
remainder 

8 + 5 
"8 plus 2 is 10, 
add on another 
3. 13" 

Use known 
number bonds or 
doubles to make 
10 first and then 
work with the 
remainder 

13-5 

"13 take 3 is 10, 
take 2 is 8" 

Beyond problems involving single digits many of the strategies in Table 2.2 

can be extended. McIntosh et al. (1994) distinguish between elementary 

counting (counting in ones) and counting in larger units. The latter is generally 

a more sophisticated approach to counting that might involve, for example, any 

of the counting strategies listed above but using twos, fives, or tens, as well as 

strategies such as repeated addition (and subtraction) and skip counting. 
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As students' mathematical thinking develops students move beyond basic 

counting strategies to strategies that are considered more efficient for working 

with numbers larger than 20 (McIntosh, 1998). Although the literature is 

replete with terminological variations, researchers appear to distinguish 

between three types of invented strategies. First, Fuson, Wearne, Hiebert, 

Murray, Human, Olivier, et al. (1997) discuss strategies that involve combining 

units separately, or collections-based solutions. Sequential strategies are a 

second category (Fuson et al. 1997) and are also referred to as counting-based 

solutions. The former involves separating and recombining the numbers. The 

latter involves keeping a running total during the calculation. A third type of 

strategy documented involves a wholistic approach (Cooper et al. 1996). In 

using this type of strategy, Carpenter, Franke, Jacobs, Fennema, and Empson 

(1997) report, "the numbers are adjusted to simplify the calculation" (p. 4). In 

the following summary, whole number strategies involving collections are 

considered first with a particular emphasis on the treatment of place value. The 

examples used to illustrate particular strategies are from the student interview 

data collected as part of the current study. 

In Figure 2.1 the student separates both operands and then regroups the 

numbers according to place value. This calculation process can involve either 

working first from the left (with the tens) or from the right (with the units), the 

latter reflecting the formal written algorithm (Cooper et al. 1995). The strategy 

is known as regrouping (Ginsberg et al. 1981), separated place value (Cooper 

et al. 1996), 1010 (Beishuizen, 1993; Klein & Beishuizen, 1998), and the split-

method (Thompson, 1999). McIntosh et al. (1994) simply refer to this strategy 

as used tens/hundreds. 

58 + 34 

"92. 50 plus 30 is 80 and then 8 plus 4 is 12, 80 plus 12 is 92" 

50 + 30 = 80 
8 +4 = 12 

80 + 12 = 92 

Figure 2.1. A Grade 6 student using a collection based strategy for two-digit addition. 
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A different strategy for the same problem, 58 + 34, is presented in Figure 2.2 

and in this case it still involves manipulation of the numbers based on place 

value. The difference is, however, that the student keeps or preserves one of the 

numbers (often the largest), but splits the second number by place value (or 

other quantity). The numbers are added progressively in parts as a mechanism 

for keeping track of the answer during the process. This is referred to as a 

counting (or sequence) based strategy (Carpenter et al., 1997). Again, in adding 

the second number, the calculation may involve working with the tens first or 

with the units first. This strategy is known as aggregation (Cooper et al. 1996), 

NIO (Beishuizen, 1993; Klein & Beishuizen, 1998), jump-method (Thompson, 

1999) and worked with parts of a second number (McIntosh et al. 1994). There 

is some evidence that working from the left using the tens is more natural for 

students in their early number development (Cooper et al. 1996). 

58 + 34 

"92. Well with the 58 I just added the 30 so ended up with 88 and then added 
the 4" 

58 + 30 = 88 
88 + 4 = 92 

Figure 2.2. A Grade 7 student using a counting based strategy for two -digit addition. 

The third category of strategies is broadly identified as wholistic strategies 

(Cooper et al. 1996). Carpenter et al. (1997) refer to compensating: an example 

using 58 + 34 is presented in Figure 2.3. The first operand, 58, is recognised by 

the student, as being close to 60, which transforms the problem into what is 

arguably an easier computation. This strategy is known as levelling or 

compensation (Cooper et al. 1996), or over-jump (Thompson, 1999), and is 

also considered a form of bridging (McIntosh et al. 1994). Adjusting both 

operators in the same problem, for example, "60 + 32" is an example of 

levelling (Cooper et al. 1996). This final class of strategies is argued to show a 

deeper level of understanding. Askew (2003) suggests that the use of the first 

two types of strategy is a good indicator of conceptual understanding of how 

numbers work; the third category shows a level of understanding that could be 

described as strategic. This group of strategies tends to be dictated by the 
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properties of operands involved in a computation problem with both operands 

involved considered in relation to each other. 

58 + 34 

"92. 58 is nearly 60 so I just add 60 and 34 which is 94 and take 2" 

58 +2 = 60 
60 + 34 = 94 
94 — 2 = 92 

Figure 2.3. A Grade 6 student using a levelling strategy for two -digit addition. 

Importantly, within any of these three different categories of strategies, the 

more elementary counting strategies may be used during the calculation 

process. 

2.4.4.2 Whole number strategies: Multiplication and 
division 

Mental computation involving the operations of multiplication and division has 

received less research attention than addition and subtraction. Drawing on the 

wider literature base, however, invented strategies for solving word problems 

contribute to the discussion for single digits (e.g., Anghileri, 1999; Kouba, 

1989; Mulligan & Mitchelmore, 1997) and for larger numbers of digits (e.g., 

Murray, Olivier, & Human, 1994). These studies all discuss the fundamental 

conceptual understandings associated with multiplication and division that are 

a platform from which students go on to develop strategies to work with 

problems of larger number combinations. These are referred to in the literature 

as the multiplication "laws." Along with the commutative law (described in 

relation to addition) they include: the associative law (e.g., 3 x 6 = 3 x (3 x 2)), 

and the distributive law (e.g., 13 x 6 = (10 x 6) + (3 x 6)). Typically these laws 

develop first through working with smaller numbers or within the confines of 

the multiplication tables (Anghileri, 1999). 

In working with basic number facts for single-digit multiplication and related 

division facts, McIntosh (2005) describes four strategies, including 

commutativity. A summary is provided in Table 2.3. The first strategy, 

doubling, is considered the springboard from which students are introduced to 
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the concept of multiplication. Doubling is such a powerful strategy that "they 

[students] appear to gain control of this long before they can perform other 

multiplications" (McIntosh, 2005, p. 6). The second strategy is based on 

doubling with the additional step of adding one more lot for problems 

involving multiplication by three. Skip counting — the third strategy — involves 

students using familiar number patterns to count in groups. 

Table 2.3 

Summary of Strategies for Basic Number Facts (Multiplication) 

Strategy 	 Description 	 Example 

Doubling 	 For problems involving 	2 x 6 
multiples of 2 (and later 4). 	

"double 6 is 12" 

Adding one more lot Based on doubling for problems 3 x 6 
involving multiples of 3. 	

"double 6 is 12 and add 
one more 6, 18" 

Skip counting 	Use of number patterns. 	3 x 6 

"6, 12, 18" 

Commutativity 	Multiplication pairs can be 	2 x 6 
reversed with the same answer. "2 times 6 is the same 

as 6 times 2, 12" 

These four strategies, described in relation to basic number facts involving 

multiplication, are also applicable for problems involving division. Students 

commonly approach division by changing a division problem into one 

involving multiplication. For example 18 ÷ 3 is changed to 3 x? = 18, with 

students reforming the problem to be "how many 3's make 18?" to which a 

number of familiar strategies apply such as doubling and skip counting. 

Contrary to addition and subtraction, many of the strategies for solving multi-

digit multiplication and division problems are basically extensions of those 

used for single-digit problems. Doubling and halving, for example, remain 

extremely important strategies: two variations are shown in Figure 2.4 and 

Figure 2.5. For the problem 24 x 3, the first student doubles 24 and then adds 

another 24. This is a version of adding one more lot as identified by McIntosh 
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(2005) but with a larger number. The second example involves the 

simultaneous act of doubling and halving as the problem is translated from 

24 x 3 to 12 x 6. 

24 x 3 
"I went double 24 is 48 and then added the other 24. 72." 

24 x 2 =48 
48 + 24 = 72 

Figure 2.4. A Grade 8 student using a doubling/add one more lot strategy. 

24 x 3 
"72. I worked that out as 12 x 6.. .halving to 12 first and then doubling the 3." 

12 x 6 = 72 = 24 x 3 
Figure 2.5. A Grade 8 student using a doubling/halving strategy. 

As well as skip counting (refer to Table 2.3), a number of the basic counting 

strategies that students become familiar with for addition and subtraction are 

used for solving problems involving multiplication. Heirdsfield, Cooper, 

Mulligan, and Irons (1999) reported the mental strategies that students used to 

solve word problems involving combinations of single-digit and multi-digit 

numbers and the operations of multiplication and division. They devised a 

typology of five strategies, the first of which is counting strategies. This 

strategy is described as "any form of counting, skip counting, forwards and 

backwards, repeated addition and subtraction, and halving and doubling 

strategies" (p. 91). Essentially this category includes many of the strategies for 

basic facts listed by McIntosh et al. (1994). It also condenses the calculation 

strategies Mulligan and Mitchelmore (1997) described, including direct 

counting, rhythmic counting, skip counting, and additive calculation. 

Figure 2.6 details an example of a separation strategy where the student 

separates the numbers by place value (Heirdsfield et al., 1999). This strategy is 

underpinned by the distributive law and parallels a strategy used for addition. 

In their work, Heirdsfield et al. (1999) distinguished between working from the 

left and working from the right as individual strategies. Being able to identify 

those students using a separation strategy starting from the right was important 
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for the authors, who were interested in a potential instructional effect following 

the introduction of formal written algorithms for multiplication. For larger 

combinations of numbers Heirdsfield et al. (1999) also reported examples of 

students working from the left and right to solve 100 + 5. 

24 x 3 
"72. I did 20 times 3 and then 4 three times, add them together." 

20 x 3 = 60 
4 x 3 = 12 

60 + 12 = 72  
Figure 2.6. A Grade 8 student using a separation strategy. 

Wholistic strategies in relation to addition and subtraction were described in 

Section 2.4.4.1. Heirdsfield et al. (1999) report a parallel strategy for problems 

involving multiplication and division where numbers are treated in a wholistic 

fashion. The problem 24 x 3 is shown in Figure 2.7 and the strategy involves 

changing the first operand "24" to "25": the student also uses skip counting, 

i.e., "25, 50, 75." This was the fourth strategy described by the authors. For 

larger combinations of numbers Heirdsfield et al. (1999) also reported 

examples of students working from the left and right to solve 100 + 5 using a 

separation strategy. 

24 x 3 
"72. 24 is close to 25 so I went 25, 50, 75, and then took 3 off." 

25 x 3 = 75 
75 — (1 x 3) = 72  

Figure 2.7. A Grade 6 student using a wholistic strategy. 

Finally, the importance of a student's individual store of basic number facts 

was discussed for addition and subtraction. Basic facts is the fifth strategy 

described by Heirdsfield et al. (1999) in relation to multiplication and division. 

Number facts are not necessarily just common table facts but may also be 

familiar sets of doubles, number bonds, or virtually any number relationship 

that is meaningful to the individual. Anghileri (2000) writes, "making 

connections among the facts will not only minimize the number of facts to be 

learned but will encourage strategies that will reduce the working in later 
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calculations" (pp. 78-79). In this way many single-digit problems where 

students initially use a counting strategy later become part of a pool of basic 

facts from which the student can draw upon (Heirdsfield et al. 1999). Multi-

digit problems are commonly solved by splitting the numbers by place value, 

however, students also use other quantities, for example, 24 x 3 as 15 x 3 and 9 

x 3, if it is meaningful for them. Building a store of known facts to use for 

mental computation is a far cry from the repetitious nature of learning tables by 

rote. 

2.4.5 Mental computation: Its associated links 
The question, "Why are some children better than others at working mentally?" 

has motivated some consideration by mathematics educators. American 

researcher Hope (1985) examined the literature to furnish a profile of expert 

mental calculation. Hope and Sherrill (1987) went on to study the 

characteristics of skilled and unskilled senior secondary students and their 

ability to calculate multiplication problems mentally. One of the main findings 

they reported was that unskilled students tended to use versions of written 

algorithms that involved working digit by digit and strictly from right to left. 

The authors noted that these calculations were often accompanied by the use of 

"imaginary writing instruments" (p. 106). Skilled students, however, adapted 

strategies to suit the number properties of the given task and, in particular, 

discarded "carrying," a feature adopted from written computation. 

Heirdsfield and Cooper (1997) looked at the issue of student competence from 

the perspective of proficiency, observing that some students employed one 

strategy consistently to solve a selection of problems whereas other students 

employed a variety of strategies. On this basis students were categorised as 

being unistrategy or multistrategy. Like their predecessors Hope and Sherrill 

(1987), Heirdsfield and Cooper report overdependence on right to left 

strategies, reflecting written algorithmic procedures for unistrategy students. It 

is argued that these students were operating with little number sense, and 

blindly applying a strategy with little attention to the numbers involved in a 

given problem. Heirdsfield (2001, 2002, 2003) and Heirdsfield and Cooper 

(2002) went on to examine accuracy and flexibility in some detail. Heirdsfield 
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(2001) examined accuracy in mental computation, identifying that proficient 

students have a much larger and stronger set of mathematical connections 

available to them. Complex interactions were reported between knowledge 

bases including aspects of number sense, and metacognitve components of 

mental computation, such as the students' perceptions of their ability. 

Alternatively, students who demonstrated accuracy in their mental computation 

work, but were not flexible in choosing efficient strategies, were limited in 

their mathematical knowledge connections. 

Threlfall (2002) poses the question: "Is children's mental calculation 

strategic?" He touches on a complex issue. Threlfall questions the 

appropriateness of the term "strategy," arguing that this implies that such 

decisions are strategic and choice based. He maintains that it is misleading in 

the sense that it implies students are conscious about the choices they make to 

solve problems. The issue as to how conscious students are in their strategy 

choice is difficult. 

2.5 Fractions, Decimals, and Percents 
Fractions, decimals, and percents are versatile mathematical concepts that 

feature in the everyday mathematical experiences of both children and adults. 

One form of this experience involves working mentally yet the role of mental 

computation in developing these quite sophisticated concepts is not clear. 

Research investigating those mental strategies students use to solve fraction, 

decimal, and percent problems and how these strategies develop has received 

considerably less attention than its whole number counterpart (Caney & 

Watson, 2003). Over time some researchers have posed questions that allude to 

important directions for future research in this area; for example, Reys and 

Barger (1994, p. 45) ask, "How self-generated mental thinking strategies apply 

to the study of non-whole number work (e.g., fractions, percent)?" In terms of 

combining these areas of research, however, little progress has been made. The 

general literature surrounding each of the three concepts under consideration in 

this section — fractions, decimals, and percents — is vast. Therefore, work is 

selectively reviewed from the perspective of mental computation to support the 

research questions proposed for the study. 
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Fractions, decimals, and percents as related concepts, are integral parts of 

middle school curricula across the globe, building on whole number concepts 

and students' intuitive ideas and informal experiences with rational number. 

These concepts are, however, repeatedly reported as being difficult for students 

(Behr, Harel, Post, & Lesh, 1992; Kieren, 1988; Siemon, Virgona, & Corneille, 

2001), and are associated with low standards of performance in studies 

comparing students' performance on an international level (TIMSS). Parker 

and Leinhardt (1995) completed a review of percent literature that opens with 

the question: "Why is percent, a ubiquitous mathematical concept, so hard to 

learn?" (p. 421). The same question applied to fractions and decimals has 

motivated much discussion and research in the mathematics community. 

Fractions, decimals, and percents feature different notational (symbolic) 

systems, although in many ways this is a surface difference as all three areas 

share founding concepts built on multiplicative structures. The complexity of 

rational numbers has been captured through the semantic analysis of rational 

number subconstructs (Jones, Langrall, Thornton, & Nisbet, 2000), which 

include: decimals, equivalent fractions, ratio, multiplicative operators, 

quotients, and measures on a number line (Behr et al, 1992, 1993; Kieran, 

1988, 1992; Sowder, Bezuk, & Sowder, 1993). Others position rational number 

itself as a subconstruct of proportional or multiplicative reasoning (Lamon, 

1999; Thompson & Saldanha, 2003; Vergnaud, 1988). Neither position 

dismisses or reduces the intricate conceptual links, which is why this is such a 

difficult area for students. 

The mere presence of a decimal point, the fraction bar, or the percent symbol, 

is one aspect that students find exceedingly difficult to integrate into their 

mathematical thinking. Research has shown that students find it very difficult 

to discard their whole number thinking, which can be the start of 

misconceptions that endure throughout the school years (Behr, Wachsmuth, 

Post, & Lesh, 1984; Hart, 1981; Stephens & Pearn, 2003). The links between 

rational number representations may never become apparent for some students 
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(Markovits & Sowder, 1994). Many researchers have also noted that errors in 

the most basic fraction, decimal, and percent problems are often incorrect 

applications of written algorithms, and accordingly, are classed as procedural 

errors. A cause for concern across the three domains is the demonstrated 

absence of number sense when students engage in computation problems 

(Hiebert & Wearne, 1985). 

For each of the three concepts — fractions, decimals, and percents — there is a 

well established body of literature that focuses on where students go wrong, the 

types of errors they make, and importantly, what we can infer from this in 

terms of unearthing underlying conceptual difficulties and misunderstandings. 

Traditionally the interest of researchers has favoured documenting the thinking 

and knowledge of those students struggling to advance in their mathematical 

understanding, over those defined broadly as successful. More recently, 

however, the general interest in students' thinking strategies has emphasised 

that it is equally important to focus on student success and ask what is it that 

students understand in relation to particular mathematical ideas? How do they 

use these understandings? What mathematical connections are fundamental? 

This perspective is suited to the study and practice of mental computation. The 

only study to date that has considered fractions, decimals, and percents solely 

from the perspective of mental computation strategies is Caney and Watson 

(2003). The authors began to document the strategies that students use to solve 

problems involving fractions, decimals, and percents noting the replication of 

mental strategies from the whole number domain. The data set for this 

preliminary work is part of the SPIRT project — Assessing and Improving the 

Mental Computation of School-Aged Students — to which the current study is 

related. 

In this section, examples of research concerning fractions, decimals, and 

percents are reviewed, highlighting work more specifically related to the field 

of mental computation. Although mental computation strategies are generally 

not the focus of these studies, descriptions of such strategies are embedded in 

many tasks. 
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2.5.1 Fractions 
Examples of computations with fractions tend to highlight the fractional 

misunderstandings that students carry through schooling, such as treating the 

numerator and denominator as separate whole numbers and adding 

accordingly, for example, 1/2 + 3/4 = 4/6 (Stephens & Pearn, 2003) and 
1/2  ± 1 /3 . 2/5  - / (Silver, 1983). Such examples are often used as evidence of 

procedural thinking. Examples of students successfully solving fraction mental 

computation problems are less common in the research literature. Hart (1981) 

documented responses to some fraction problems in her discussion of two tests 

that formed part of a research program — Concepts in Secondary Mathematics 

and Science. For the "easiest" computation problem, 101/2 x 3, she suspects that 

the students could be employing a repeated addition strategy based on (3 x 10) 

and (3 x 1/2), but comments that this strategy would perhaps fail a student in 

attempting the harder problems such as 31/2 x 21/2. In a study investigating 

students' informal fraction knowledge, Mack (1990) recorded that students 

invented their own algorithms for some of the fraction subtraction problems. 

For example, the problem 4 1 /8 — 1 5/8, Mack (1990) describes the following 

strategy based on regrouping: "First subtract one from four to get three, next 

subtract 5/8 from three ("because you can't subtract 5/8 from 1 /8") to get 

then add 1 /8 to 23/8 ("because that's still left from what you started with") to get 

24/8 or 21/2." (p. 26). 

Weber (1999) studied the impact of a series of lessons designed to strengthen 

students' conceptual understanding of mental computation procedures with 

fractions. Several examples of students working mentally with fractions (post-

interview) are presented. For the problem 5/8 ± 1/2 a student gave the following 

response starting with knowledge of equivalent fractions: "Four eighths is a 

half, so one half plus one half is one and that one eight is left over." In a 

division problem, 5 + 1 /3, two examples of mental strategies were recorded. 

The first student responded: "15. Basically it is like saying how many one 

thirds are there in five? Say ten divided by two is five.. .so five divided by one 

third, there are fifteen sets of one third in five" (p. 56). Initially this student was 

able to engage in the problem by changing the expression of the operation. The 
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second student responded, "15. There are three parts in each whole then three 

times five would be fifteen" (p. 55). Weber reports that these strategies were 

based on a representation of division based on how many of the divisors were 

contained in the dividend. 

Caney and Watson (2003) observed a number of strategies that students used to 

solve fraction problems mentally. Some of these strategies included changing 

the representation of problems, for example, changing 3/4 — '1/2 to its equivalent 

decimals representation and changing the operation of a problem from division 

to multiplication. A repeated addition strategy was also reported for the 

problem 4 x 3/4 whereby students described progressively adding 3/4. 

2.5.2 Decimals 
How students work mentally with decimals and the four operations has not 

featured extensively in recent research activity. It seems plausible, however, 

that this is an area where mental computation strategies will mirror those used 

to solve whole number problems due to the explicit links within the place value 

system. Perhaps the area that has received the most attention is the 

development of decimal understanding and misunderstandings through decimal 

comparison tasks (e.g., Resnick, Nesher, Leonard, Magone, Omanson & Peled, 

1989; Stacey & Steinle, 1998; Steinle & Stacey, 2003, 2004). 

Hiebert and Wearne (1985) outlined a model for students' decimal computation 

procedures and tested the model on a sample largely comprised of middle years 

students (Grades 5, 6, 7, and 9). Part of the research involved interviewing 

students to substantiate how closely the model predicted the processes students 

actually used to solve the decimal problems. Many of the responses were 

procedural in nature and were based on students explaining how they worked 

through a problem after completing a written item. For the problem 

0.23 + 0.41, for example, a student response is recorded: "Cause you just add it 

... you go to line up the decimals first, then you add the problem like any other 

addition problem, then you just bring the decimal straight down" (p. 198). 

Successful solutions were not discussed in the scope of this study but the 
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implication was that the student sample, having been introduced to written 

algorithms, would use procedural strategies. 

Weber (1999) also provided examples of students working through decimal 

problems, for example, 0.07 + 0.2 (post-interview): 

"Two tenths and seven hundredths. Twenty-seven hundredths. Just added 

a zero at the end of the two and then zero and your seven is seven and 

zero and two is two. [Why do you add the zero and the two and not the 

seven and the two?] You can't add like hundredths and tenths together." 

(p. 54) 

Another example for the problem 4 — 0.9: "Three and one tenth. I just rounded 

the nine tenths to one and then I subtracted and got three and added the tenth 

that I took away" (p. 54). This example would seem to demonstrate an element 

of number sense and aligns with the idea of bridging as a mental computation 

strategy (Caney & Watson, 2003). Caney and Watson suggest that students use 

ideas such as bridging to a whole or a reference point in a similar way to 

bridging to 10 with whole numbers. From a number sense perspective, 

Anghileri (2000) advises that making links between decimal representations 

and percents (e.g., 1 /io = 10% and 1 /100 = 1%), and also developing decimal 

benchmarks, can help to "establish more meaningful calculation and 

flexibility" (p. 114). 

2.5.3 Percents 
The key skills behind solving percent application problems involve a variety of 

arithmetic procedures such as common fraction, decimal-fraction, percent 

conversions, whole number multiplication and division, and decimal-fraction 

multiplication and division (Parker & Leinhardt, 1995). What role might 

mental computation play? In an investigation into middle school students' 

understanding and knowledge of percent, Dole, Cooper, Baturo, and Conoplia 

(1997) reported that a characteristic of proficient students was strong mental 

computation skills. Lembke and Reys (1994) investigated the strategies 

students use to solve percent problems at different levels of mathematical 

development. The authors were interested in the role of intuitive percent 
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knowledge and how this interacts with school-taught ideas about percent. This 

research involved an element of mental computation but students also had a 

variety of aids available to support their work, including calculators, paper and 

pen, and concrete aids. 

Students' use of percent benchmarks involves an association with the fractional 

parts of a whole (Parker & Leinhardt, 1995), and particularly concerns 

interpreting the common fractions 1/2 as 50%, 1/4  as 25%, and 1/4 as 75%. 

Lembke and Reys (1994) attach the following explanation to the benchmark 

strategy for percent, describing it as, "Uses of common reference points to 

establish boundaries or initial values when estimating or finding exact values" 

(p. 243). The ability to use percent benchmarks intuitively appears to make 

sense to young students before formal instruction occurs (Risacher, 1992). 

Parker and Leinhardt (1995) caution that emphasis on benchmarks, to any great 

extent, may hinder students' progress. They argue that benchmarks do not help 

students work with non-benchmark values (e.g., 32%) and that the concept of 

percent is reduced to a mere association with familiar fractions or a basic 

divisional process (e.g., divide by 2). Importantly, however, the value in 

understanding benchmark percents does seem to feature when estimation and 

checking of answers is required. This is what Lembke and Reys (1994) 

contended as they reported the benchmark strategy being used by students to 

justify their answers. The authors report, "this solution, although not exact, 

reflects conceptual understanding and the invention of a useful approach to 

approximating answers" (p. 247). Caney and Watson (2003) also reported the 

use of benchmarks but within the context of changing the representation of the 

problem from percents to fractions in mental computation. They provided an 

example of a student working in the following way, "25% of 80, that's 20. 

That's a quarter, just like a quarter." Multiple representations for percent were 

recorded as a separate strategy by Lembke and Reys (1994). 

The role of number sense in relation to understanding percent was investigated 

by Gay and Aichele (1997). The authors reported the use of benchmark 

percents in making comparisons in several number sense tasks. They observed 
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that students performed better on problems involving 50%, 100% and 25%. 

They also reported the use of fractional relationships by some students, 

although they later commented that the students could often quote relationships 

between fractions, decimals and percent but "did not seem to use the 

interrelationships among numerical equivalents with confidence" (p. 33). 

Although computation was not a specific requirement of the problems used by 

Gay and Aichele (1997), some instances of strategies were detailed. In solving 

65% of 35, for example, "one seventh-grade student noted that one-half of 35 

was 17 and that 15% more was needed" (p. 32). Moss and Case (1999) 

described several strategies reported by students for the problem 65% of 160 

that involved splitting the operator into parts, for example, 60% and 5% or 

50% and 15%. Moss (2002) described an invented algorithm for the problem: 

calculate 75% of the length of an 80cm desktop? Students started by finding 

50%, then worked out 25% before adding the total parts. Similarly for the 

problem 25% of 15, Gay and Aichele (1997) described a strategy: "50% of 15 

was one-half of 15 which was 7.5, and one-half of 7.5 was 3.75" (p. 32). 

Although the use of a benchmark value was referred to in the latter strategy, it 

resembles a repeated halving strategy reported by Caney and Watson (2003, 

p. 6). 

A further strategy reported by Lembke and Reys (1994) is a ratio (or 

proportion) strategy, providing the following definition of a procedure: "Sets 

up a comparison or a proportion to solve the problem or finds a proportionality 

constant" (p. 243). This strategy was reported for problems that involved 

quantities larger than 100, for example 21% of 400, but also in terms of 

working with 75% in a problem that essentially asked about 25%. 

As a final comment, these examples — described for fractions, decimals, and 

percents — are generally not reported within a mental computation context. 

They appear in studies focussing on number sense and improving students' 

conceptual understanding of these domains, and hint at the possibility of 

documenting the ways for solving problems mentally that are invented or self-

generated strategies. 
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2.6 Working Procedurally, Working 
Conceptually 

The theme of working procedurally and working conceptually underpinned 

Section 2.5, as research involving part-whole numbers is frequently used to 

illustrate the two types of knowledge in relation to student performance. 

Procedural knowledge relates to the connections between the system of 

symbols that represent mathematical ideas and the rules for which the symbols 

can be manipulated to solve mathematical problems. Conceptual knowledge 

relates to the connections between pieces of information, with relationships 

creating rich networks to support conceptual understanding (Hiebert & 

LeFevre, 1986). Both types of knowledge have endured over time in the field 

of mathematics education. There have been many attempts to capture the 

characteristics of these two domains and their contribution to mathematical 

understanding; for example, Skemp (1976, 1986) distinguishes between 

instrumental and relational understanding, and Baroody and Ginsburg (1986) 

discuss meaningful knowledge and mechanical knowledge. 

For mental computation, working procedurally is associated with the teaching 

of formal procedures for solving written computations. Weber (1999) classified 

pre- and post-interview responses using the procedural/conceptual distinction 

when exploring the outcomes of a mental computation instructional program 

for a Grade 8 class. His study suggested that when the teaching of computation 

centres on written procedures (algorithms), students' mental computation 

competence is likely to be restricted to mental versions of written algorithms 

with little demonstration of understanding the number system in which they are 

working. With an interest in the middle years, Weber pointed out that for the 

whole number problems in particular, learned procedures were often 

exclusively used, although this was not the case for rational number problems 

where students were perhaps less familiar with traditional written procedures 

and seemed to benefit most from instruction emphasising conceptual 

knowledge. These results are aligned with a study by McIntosh (2002) in 

which common errors in mental computation were also classified as procedural 

or conceptual. Overall, the errors recorded for whole numbers were more often 
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than not associated with procedural workings, and the errors made on problems 

involving fractions and decimals were largely attributed to conceptual 

misconstructions. In a similar manner, Caney and Watson (2003) applied the 

instrumental/conceptual distinction in describing mental computation responses 

for solving fraction, decimal, and percent problems. Responses classified as 

working instrumentally were classified as reflecting learned procedures, such 

as written algorithms or rules. Students' responses classified as working 

conceptually, however, involved the use of their knowledge of part-whole 

quantities and operations. Importantly, these studies suggested that the use of 

written procedures and rules as mental strategies are indicators that students are 

working procedurally, rather than conceptually. 

2.7 Summary and Research Questions 
The current emphasis on mental computation is situated within constructivist 

thought and places value on students' thinking strategies as avenues for which 

to develop conceptual understanding. The real life applicability of mental 

computation adds weight to its inclusion in current curricula. As such its 

importance is recognised both nationally and internationally in relation to 

teaching numeracy and has generated much advice for teachers. Pedagogical 

issues include de-emphasising written computation, focussing on teacher-

taught strategies versus student-invented strategies, and assessing mental 

computation. The research base and resulting discussion, however, has been 

generated in relation to the primary school years and also focuses on whole 

number mental computation, particularly for the operations of addition and 

subtraction. Middle and secondary levels of schooling are considered in 

relation to levels of mental computation performance and errors in mental 

computation; research that is quantitative in nature. In middle years classrooms 

the number system expands significantly to include part-whole numbers, yet 

little consideration of the role mental computation might play in developing 

these important concepts has been documented. At the forefront of researchers' 

interest concerning fractions, decimals, and percents, the themes of working 

procedurally and working conceptually are commonly explored and these 

themes also surface in relation to mental computation. 
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This chapter has outlined the literature relevant to the aim of this study: to 

explore the potential role of mental computation in strengthening numeracy 

across the middle years of schooling. Two objectives frame the research 

activity: 

• First, an educational objective, to provide the DoET with a set of 

recommendations to assist the on-going development and evaluation of 

numeracy targets for mental computation. 

• Second, a research objective, to profile a number of aspects of mental 

computation at the middle years level, including the experiences of 

teachers and students, as well as students' mental computation skills 

and strategies. 

Based on the foregoing literature review of the field of mental computation and 

related areas, the following research questions are posed for the current study: 

1. How is mental computation being addressed by teachers in 

middle years mathematics classrooms? 

2. How is mental computation being experienced by middle years 

students? 

3. What strategies do students use to solve mental computation 

problems with fractions, decimals, and percents? 

4. How do teachers position the teaching and learning of fractions, 

decimals, and percents in relation to mental computation? 

Each of the four research questions is addressed individually in one of the four 

phases of the study, the design of which comprises Chapter 3. 
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Chapter 3 

Research Methodology and Design 

3.1 Introduction 
This chapter comprises five main sections. The first section explores some of 

the research perspectives and methodological issues that impact on mixed 

method designs. The intention of this section is not to evaluate one paradigm 

(quantitative or qualitative) by contrasting it with another but rather to 

acknowledge the qualities of each in relation to the study. The second section 

outlines the research design and introduces Shulman's framework (1987) in 

relation to the research questions. The methods of inquiry that the design 

encompasses are discussed in the third section. The works of several authors 

are referred to in outlining and discussing the design of the study from a mixed 

methodology perspective. Although several of the references post date the 

design, they provide validation tools and have been useful in describing the 

design of the study. The fourth section details the life of the project including 

those who participated, the instruments used, the procedures followed and the 

necessary ethical considerations for conducting research in an educational 

setting. The fifth and final section of the chapter outlines the limitations 

associated with the study described in terms of generality and trustworthiness 

(Schoenfeld, 2002). 

3.2 Research Perspective and Methodology 
Mixed method approaches encompass "collecting and analysing both 

qualitative and quantitative forms of data in a single study" (Creswell, 2003, 

p. 15). Key concepts associated with this approach include: pluralism, 

integration, and synthesis. Originating in the United States, many fields under 

the umbrella of the social and behavioural sciences have embraced mixed 

methods. Education, evaluative nursing, public health, sociology, clinical 

research, administrative sciences, and community psychology are some of the 

broad fields of research identified by Tashakkori and Teddlie (1998). 
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3.2.1 Keeping the peace: The pragmatist position 

Approaching research using mixed methods is associated with the paradigm of 

pragmatism. Paradigms, as worldviews or belief systems (Guba & Lincoln, 

1994), guide the work that a researcher undertakes by providing a set of 

"interlocking philosophical assumptions" (Greene & Caracelli, 1997, p. 101) 

including knowledge claims (epistemologies), strategies of inquiry 

(methodologies) and methods to conduct the research (Creswell, 2003). In the 

social and behavioural sciences the dominant paradigms have been the 

traditional positivist position with epistemologies that lend themselves to 

quantitative methods of inquiry and the interpretivist position where methods 

of inquiry are essentially more qualitative in nature. For many decades 

advocates of these two paradigms have competed for some sort of supremacy 

across many of the fields of the social and behavioural sciences. A critical 

question for advocates of mixed methodologies is, "where are mixed methods 

situated in relation to the dominant paradigms?" 

The sometimes heated debate between supporters of the positivist and 

interpretivist paradigms is often described by applying an analogy of war. In 

extending the war analogy, Tashakkori and Teddlie (1998) position the 

pragmatists as the pacifists or the peace keepers in the social science paradigm 

wars. This is because pragmatists accept that the two approaches are 

compatible and that it is possible, and even advantageous, to combine elements 

associated with both. Although this stand is the foundation of mixed 

methodology, it is also the point at which critics of the position censure 

pragmatism, for disregarding the irrevocable link between epistemology and 

methods of inquiry. 

Pragmatists firmly place the research question(s) or the research problem(s) at 

the heart of an investigation. In this sense "researchers have adopted the tenets 

of paradigm relativism or the use of whatever philosophical and 

methodological approach works for the particular research problem under 

study" (Tashaklcori & Teddlie, 1998, p. 5). This is an important distinction 

from the positivist and interpretivist paradigms, which have in the past 
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emphasised the pre-eminence of the research methods employed or an 

epistemological position. 

A motivation for using mixed methods approaches is described by Greene and 

Caracelli (1997): "to generate deeper and broader insights, to develop 

important knowledge claims that respect a wide range of interests and 

perspectives" (p. 97). The notion of triangulation is central, where findings 

from different data sources are corroborated, with the unique perspectives of 

each source used to overcome the deficiencies of the other. Triangulation was 

the key idea that sparked interest in the seminal work of Campbell and Fiske 

(1959). Using what has been described as a within methods triangulation (Jick, 

1979), Campbell and Fiske used different quantitative techniques to study a 

psychological trait. Jick (1979) used the term across methods triangulation to 

illustrate the application of quantitative and qualitative methods to study 

phenomena. Clearly working within a pragmatic paradigm is attractive to 

researchers in terms of its emphasis on multiplicity and practicality. 

One issue that affects all paradigms equally — no matter how diverse — is that of 

quality through rigorous research design. Essentially the literature in the area of 

mixed methods has moved from discussions of viability to issues of design and 

quality. Authors such as Tashaldwri and Teddlie (1998) and Creswell (2003) 

are working to develop typologies of mixed method designs. Miles and 

Huberman (1994) make the comment that, "The question, then, is not whether 

the two sorts of data and associated methods can be linked during study design, 

but whether it should be done, how it will be done, and for what purposes" 

(p. 41). These aspects are addressed in relation to the research design that is 

detailed in Section 3.3. 

3.2.2 Mixed methods research in the field of 
mathematics education 

The stronghold of positivism, and its associated quantitative methods, has in 

more recent times weakened across many of the social science fields (Simon, 

2004) and this includes mathematics education. The contributions of qualitative 
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approaches are now more widely recognised. Inquiry that combines the two 

methodologies is an approach welcomed by the mathematics education 

community (Lesh, 2002) in conducting research "aimed at making a difference 

in theory or in practice" (p. 32). 

In a four-yearly review of research in mathematics education in Australasia 

produced by the Mathematics Education Research Group of Australasia 

(MERGA), Walshaw and Anthony (2004) report on methods of data collection 

and analysis associated with the field through a review of publications from 

2000 to 2003. The authors report that three of the most commonly used 

methods — task assessments, observations, and questionnaires — were used 

individually or collectively with other methods. It seems that researchers 

working in the field of mathematics education often do not explicitly 

acknowledge working within a mixed methods framework, although the use of 

several different methods within a study suggests a multifaceted look at the 

phenomenon of interest. This is demonstrated by a study design that moves 

from the quantitative to the qualitative, where, for example, students 

independently solve problems and document their mathematical responses 

(survey methods) and then later talk about and explain their thinking, perhaps 

attempting to apply it to a different but related problem situation (interview 

methods). The work on students' understanding of decimal notation (Stacey & 

Steinle, 1998; Steinle & Stacey, 2003; 2004) is one example of this. By 

employing quantitative data collection techniques the authors document several 

mathematical behaviours as inferred through students' written responses. 

Through interviews the authors are able to describe the students' thinking and 

thus confirm and further elucidate their initial findings. From the field of 

chance and data, investigations into students' levels of understanding 

associated with concepts such as random, average, and probability provide 

other examples, as data are generated and collated from both survey and 

interview methods (Watson & Caney, 2005; Watson & Kelly, 2004). Watson 

and Caney (2005) further report higher levels of response to an interview item 

than an identical item presented in surveys. These works provide convincing 

examples of where quantitative and qualitative methods intertwined have 

produced results that explore the complexity of the area of interest. In addition, 

54 



the findings such as those reported by Watson and Caney have implications in 

terms of influencing the decisions teachers make in assessing their students' 

performance. 

Datta (1994) writes from an evaluative background and perspective and lists four 

persuasive and practical reasons in support of mixed methodologies. First, for 

decades paradigms associated with quantitative and qualitative research have been 

used to frame research activity. Second, this use has been supported and 

encouraged by many evaluators and researchers. Third, both paradigms have 

received and continue to receive funding. Fourth, as a consequence of the support 

both quantitative research and qualitative research have influenced decision 

making and policy. These points seem applicable to the field of mathematics 

education. Large-scale research projects that are privileged to have extended 

timeframes and funding frequently conduct inquiry through both quantitative and 

qualitative methods. The Effective Teachers of Numeracy project (Askew et al. 

1997), for example, used questionnaires, interviews, and observations of teachers, 

along with a measure of students' numeracy performance, to investigate the 

complexity of what constitutes effective mathematics teaching. The work of the 

Trends in International Mathematics and Science Study (TIMSS) group provides 

an international perspective on issues of mathematics education, employing 

quantitative methods to explore teaching practice and student performance for 

comparative benchmarking. The group has also conducted studies of classrooms 

using video analysis to gather rich descriptions of teaching and evidence of how 

the curriculum is being implemented (e.g., Givvin, Hiebert, Jacobs, 

Hollingsworth, & Gallimore, 2005; Stigler & Hiebert, 1997). Among a number of 

benefits listed, the descriptive data enables the study of complex processes and 

facilitates the integration of qualitative and quantitative information 

(http://nces.ed.gov/timss/faqvideo.asp?FAQType=2).  
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3.3 Research Design 
3.3.1 Teacher knowledge framework 
The seminal work of Shulman (1986, 1987) in relation to domains of teacher 

knowledge is the theoretical framework that underpins the design of the study. 

Originally Shulman (1986) proposed a framework for analysing teachers' 

knowledge differentiating subject-matter knowledge, pedagogical content 

knowledge and curricular knowledge. He expanded this work in 1987 to 

specify seven domains of knowledge: a) content; b) general pedagogical; 

c) curricular; d) pedagogical content; e) learners and their characteristics; 

0 educational contexts; and g) educational ends, purposes and values. 

Generally, Shulman does not appear to make any claims about the 

exclusiveness and parameters of each knowledge domain. His work was 

motivated by an era when there was extensive interest in questions of effective 

teaching, teaching expertise, and the professionalism of teaching, particularly 

in the United States. 

Although Shulman's approach originated in the 1980s, recent research in 

mathematics education has employed Shulman's domains of teacher 

knowledge in a variety of contexts for assessing teachers. Watson (2001) used 

all seven knowledge domains as the framework for a profile for detailing 

teacher competence in relation to a particular mathematics curriculum strand, 

in this case probability and statistics. Shulman's knowledge domains have also 

been used individually; for example, Kanes and Nisbet (1996) employed the 

content knowledge, pedagogical content knowledge, and curriculum 

knowledge categories to explore the knowledge bases of mathematics teachers. 

Mayer and Marland (1997) also explored teachers' knowledge of students. 

The important aspects of teacher knowledge for mental computation in 

association with Shulman's knowledge domains include the following: 

a) Content knowledge: Mental computation in relation to whole 

numbers, fractions, decimals, and percents. 

b) General pedagogical knowledge: Professional teaching background. 
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c) Curriculum knowledge: The place of mental computation in relation 

to other topics in the curriculum. 

d) Pedagogical content knowledge: How to develop mental computation 

through activities and in relation to class organisation, time and 

assessment. 

e) Knowledge of learners and their characteristics: Likely student 

responses to mental computation tasks and perception of the students' 

attitude to mental computation. 

0 Knowledge of educational contexts: Understanding of the primary and 

secondary school contexts. 

g) Knowledge of educational ends, purposes, and values: How mental 

computation fits within the broader context of mathematics and 

numeracy; and the alignment of mental computation in terms of a skill 

that students need to be competent members of society. 

3.3.2 Four phase research design 
This study combines elements of quantitative and qualitative inquiry in a 

mixed method design. Miles and Huberman (1994) maintain that "qualitative 

data are useful when one needs to supplement, validate, explain, illuminate, or 

reinterpret quantitative data gathered from the same setting" (p. 10). Essentially 

this is the premise from which the design of this study originates and it is 

illustrated in Figure 3.1. The four phases of the study follow a sequential 

implementation, as opposed to a concurrent one. This is because each phase 

influences the next in terms of sampling or content (Creswell, 2005). The work 

of Shulman (1986,1987) which underpins the design is also represented in the 

Figure. 
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Figure 3.1. Four phase research design. 

Phase 1. The first phase of the study addresses the question, how is mental 

computation being addressed by teachers in middle years mathematics 

classrooms? A range of data is collected on multiple aspects of teachers' 

experience and responses encompass all seven of Shulman's knowledge 

domains through a questionnaire instrument. 

Phase 2 and 3. In the second and third phases of the study, the focus is on 

documenting the characteristics of students as learners in relation to mental 

computation (Shulman, 1987). Within the context of this study, this does not 

entail an investigation of the teachers' own understanding of the characteristics 

of their students but rather an exploration of the students' own understanding 

and experience of mental computation (Phase 2) and students' thinking in 

relation to fraction, decimal, and percent mental computation (Phase 3). 

Phase 4. This phase was guided by the research question: how do teachers 

position the teaching and learning of fractions, decimals, and percent in 

relation to mental computation? Like Phase 1, the fourth phase of the study 

addresses the majority of Shulman's teacher knowledge domains with a 

presentation of the discussion generated by the responses of teachers in Phase 
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1, including their perspectives on the interview data gathered from the students 

during Phase 3. 

3.4 Methods of Inquiry 
As Figure 3.1 illustrates, the four phases of the research design culminate in 

two profiles: a student profile of mental computation and a teacher profile of 

mental computation. This section provides an account of the methods and 

techniques utilised in the generation of the study's data to construct the two 

profiles. In particular, the discussion focuses on the use of profiling through 

survey and interview methods as applicable to the study. According to 

Tashakkori and Teddlie (1998) both these methods of inquiry belong to the 

category "asking individuals for information and/or experiences" (p. 100). 

They are fundamentally self-report techniques. 

3.4.1 Profiling 

Watson (2001), who developed a single profiling instrument, describes the 

term profile as "a framework for reporting teachers' achievements and 

competencies" and identifies the context for which the profile was being 

implemented as "teaching the topics chance and data in the mathematics 

curriculum" (p. 306). In the context of this study, the term is not restricted to a 

single instrument but is concerned with the process of investigating the 

attributes and experiences of teachers and students in relation to mental 

computation. The profiling approach is well aligned with a mixed methods 

study. An example is the work of McIntosh, Bana, and Farrell (1995) who 

surveyed students in relation to three aspects of mental computation: the types 

of computational problems students prefer to do, attitudes towards mental 

computation, and an assessment of mental computation performance. Although 

the authors do not employ the term profiling, their work provided a snapshot of 

students across Grades 3, 5, 7, and 9. 

3.4.2 Survey methods 

Survey methodologies in general have long served the research needs of the 

social sciences (Sarantakos, 1993) and are commonly associated with a 
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quantitative approach to research. Information can be collected through oral 

and written questioning techniques and essentially "they provide a quantitative 

or numeric description of trends, attitudes, or opinions of a population by 

studying a sample of that population" (Creswell, 2003, p. 153). 

Among the strengths associated with survey methods, one of the primary 

features is that it is possible to collect large quantities of information within a 

relatively short period (Thomas, 2003). In addition to the time-saving aspect, 

this can be a relatively inexpensive endeavour. Second, respondents can 

participate at their convenience. Third, a wide variety of information can be 

gathered, with an assortment of research questions (Muijs, 2004). Fourth, the 

information generated is likely to reveal the present status of the selected 

characteristics, with a considered and objective view of the issues. 

There are, however, a number of limitations associated with survey methods, 

one of which is the restricted opportunity for respondents to clarify or expand 

their responses (Thomas, 2003). As survey questions tend to be standardised, 

the instrument itself is likely to limit the length and depth of responses (Muijs, 

2004). Sarantakos (1993) points out that there is usually no opportunity to 

motivate respondents. These issues give rise to another concern — the 

limitations associated with self reported data. Four issues are raised by 

Sarantakos (1993) in relation to the priories that researchers using survey 

methods are obliged to relinquish control over: (a) the order in which 

respondents address the questions, (b) the true identity of the respondents, 

(c) the conditions under which the questionnaire is answered by the 

respondents, and (d) the provision of partial responses. In relation to the final 

point, non-responses to questionnaire instruments can be extremely 

problematic for researchers. Tashakkori and Teddlie (1998) caution that non-

responses can affect the generalizability and inference quality of a study. It can 

be very difficult, even impossible, to control or predict the total number of 

responses. Attention to the length and presentation of a questionnaire 

instrument then is important in terms of encouraging participation. 
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In mathematics education, survey methodologies have been used widely to 

investigate aspects of classroom and teaching practice. The study of teacher 

beliefs is an area that commonly employs closed scale survey instruments (e.g., 

Beswick, 2002). Students' understanding of mathematical content associated 

with specific curriculum areas, for example chance and data, have also been 

investigated using survey methodologies (Watson, 1994). 

3.4.3 Interviews 

Universally, interviewing is one of the most accepted methods for conducting 

research. Indeed Kvale (1996) points out that "conversation is an ancient form 

of obtaining knowledge" (p. 8) and introduces the term "professional 

conversation" to describe the style of communication that takes place during a 

research interview. In many respects "conversations" have traditionally been an 

implicit and peripheral part of research conducted by psychologists and social 

scientists. They are now central to many of the methodological approaches 

associated with qualitative research. Cannold (2001) suggests that interviews 

are "conversations between researcher and participant in which the researcher 

seeks to elicit the participant's subjective point of view on a topic of interest to 

the researcher" (p. 179). The appeal of interviewing is the experience of one-

to-one communication and interaction between the researcher and the 

participant(s). 

Generally interviews tend to be described in terms of whether they are 

structured or unstructured. In considering the continuum between these two 

forms there is, however, as much variation in the style of interviews as there is 

in the terminology used to describe them. Structured interviews are associated 

with a formal setting, pre-established questions, and limited response 

categories. The interviewer retains a neutral and unobtrusive role (Denzin & 

Lincoln, 2004). In effect these interviews lend themselves to quantitative 

methods of data collection and analysis. Conversely, unstructured interviews 

feature non-directive, open-ended questions, and encourage dialogue and 

interaction between the interviewer and interviewee (Denzin & Lincoln, 2004). 

In general unstructured interviews are aligned with qualitative research. Much 
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of the time this polarization of structured versus unstructured is only helpful to 

the extent that it delineates the boundaries for researchers. Tashakkori and 

Teddlie (1998) point out the qualitative/quantitative distinction here is not 

especially useful as many data collection procedures contain elements of both 

approaches. Perhaps the idea of a continuum is more beneficial, giving 

researchers the freedom to combine features as they best suit — consequently 

many researchers favour a semi-structured interview format. 

In mathematics education, a revival of interest in the clinical interview in the 

1980s coincided with an increased emphasis on learning as conceptualised by 

constructivism, in particular with the rediscovering of Piaget's clinical 

interview techniques (Hunting, 1997). Essentially the impetus was to provide a 

more informed view of students' mathematical understanding and 

development. Heirdsfield (2002b) lists a number of Australian projects that 

essentially focus on a diagnostic interview. These include Count Me In Too 

(CMIT, Bobis & Gould, 1999) and the Early Numeracy Research Project 

(ENRP, Clarke, Rowley, Gervasoni, Horne, McDonough, & Cheeseman 2001). 

Structured, task-based interviews are a method of qualitative inquiry that has 

taken on distinctive characteristics suited for research in mathematics 

education (Goldin, 2000). Goldin's descriptor — task-based — is important in 

terms of reinforcing that the participants' interactions are not merely with the 

interviewer but also with the task environment (p. 519). During interviews 

mathematical dialogue between interviewers and the participants is obviously 

central. The process of observing and engaging with participants, however, is 

perhaps what brings the interviewer a little closer to what Kvale (1996) refers 

to as, "a construction site of knowledge" (p. 2). Through these interactions the 

interviewer endeavours to make inferences about the phenomenon observed; in 

the context of the current study this is the mathematical thinking and learning 

that participants engage in during mental computation activities. These 

inferences contribute to a shared understanding of the field of mathematics 

education. This type of interview is particularly suited to the study of students' 

mental computation performance. Without an interview, investigating mental 

computation is reduced to a form of answer-only mental arithmetic questions. 
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3.5 The Study 
The fourth section of this chapter provides a detailed description of how the 

methods of inquiry were developed and implemented at each phase of the study 

in terms of collecting and analysing the data. This includes details of the 

schools and the participants. Associated appendices are at Appendix A. 

3.5.1 Participants: Sample and selection 
Nonprobability sampling (Creswell, 2005) was employed in the study as the 

original sample of teacher participants was chosen from one Australian state to 

reflect the target population — teachers of middle years students. Teachers 

selected for interview were chosen for their experience and involvement in the 

teaching and learning of mental computation as the central phenomena 

(purposeful sampling, p. 204). The student sample was selected due to their 

association with a key teacher (convenience sampling, p. 204), although the 

selection of individual students for the interviews was guided by a set of 

criteria (purposeful sampling). 

3.5.1.1 Schools 

Eighteen state government schools were initially approached to participate in 

the study. The sample included six primary schools (Grades K — 6), six district 

schools (Grades K — 10) and six secondary schools (Grades 7 — 10). In the 

Tasmanian education system primary teachers teach up to Grade 6, whereas 

secondary teachers teach from Grade 7. Schools were selected in consultation 

with the Department of Education Tasmania, the Industry Partner supporting 

the study. Schools were identified in consultation with the State-wide Co-

ordinator for Numeracy on the basis of having an interest in developing 

numeracy across the school. This interest was reflected in either a school 

numeracy policy or a staff commitment to the Department to participate in 

numeracy professional development programs. Of the schools suggested by the 

Department, one primary school and one district school were also participating 

in the project — Assessing and Improving the Mental Computation of School-

Aged Students (see Section 1.2). 
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Of the eighteen schools initially approached, twelve Principals supported Phase 

1 of the study (four primary, four district, and four secondary) with teachers 

from ten of these schools responding (three primary, four district, and three 

secondary). Unexpectedly, from the initial round of schools contacted, more 

secondary teachers responded to the questionnaire than primary teachers. 

Accordingly, a further six primary schools and three district schools were 

approached to be involved in Phase 1 during the following school term which 

succeeded in providing a more balanced sample of primary and secondary 

teachers. At the time of the study, the state was divided into six districts that 

provided support services to children in Tasmanian government schools: four 

of these districts were represented in the study. The demographic details of the 

schools involved in the study are presented in Table 3.1. 

Table 3.1 

Demographic Details of Participating Schools 

School School 	Number of 	Number of 	Educational 	Number of 
District 	ID 	students at 	students at 	Needs Index 	teachers 

Gr 5 and Or 6 Or 7 and Gr 8 	(ENI) % 	(N = 34) 

A 
	

1* 	82 	 — 	 32.99 	1 

2 	24 	 — 	 56.92 	1 

3 	104 	 38.77 	1 

4* 	 305 	39.03 	6 

5 	39 	 39 	 70.56 	3 

6* 	38 	 57 	 63.39 	3 
7* 	102 	 — 	 39.80 	1 

8 	94 	 36.35 	2 

9* 	344 	 44.94 	2 

10 	79 	 120 	68.56 	4 

11* 	81 	 81 	 49.58 	3 

12* 	101 
	

51.87 	1 

13 	159 
	

38.66 	1 

14 	66 
	

35.04 	1 

15* 	135 
	

173 
	

54.18 	1 

16 	 305 	39.03 	2 

17 	92 	 90 	 45.07 	1 
Note. * Denotes those schools from which key teachers were from and whom participated in all phases of 
the study, not just Phase I. 
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3.5.1.2 Phases 1 and 4: Teacher questionnaire and 
interview 

In total 34 middle school teachers (Grades 5 — 8) participated in Phase 1 of the 

study by completing a mental computation questionnaire. The sample of 

teachers included 16 primary teachers (Grades 5 — 6) with more female 

teachers at the primary level (n = 13) than males (n = 3). At the secondary level 

18 teachers (Grades 7 — 8) participated in the study with equal numbers of male 

and female teachers (n = 9). 

The primary teachers (n = 16) either taught a single Grade 5 or Grade 6 class, 

or a composite Grade 5/6 class. One primary teacher taught a composite Grade 

4/5 class. For the teachers at the secondary level (n = 18), many combinations 

of classes taught were noted. Some teachers reported taking mathematics with 

a single Grade 7 or Grade 8 class, others taught mathematics to several Grades 

7 and/or Grade 8 classes, and some teachers were mathematics teachers across 

Grades 7 to 10. 

Of the 34 teachers who completed the questionnaire in Phase 1, eight teachers 

were asked to participate further in the study as key teachers. This sample of 

teachers included four primary teachers and four secondary teachers and each 

teacher came from a different primary, secondary, or district school. The eight 

key teachers were chosen based on their responses to the questionnaire that 

indicated they were actively developing a culture of mental computation in 

their classrooms. Importantly these teachers had to be willing to share their 

classroom with a researcher and involve one of their classes in Phase 2 and 

Phase 3 of the study. For the primary teachers this involved the class taught on 

a daily basis. If teachers had several mathematics classes of the same grade 

level, as was the case with some of the secondary teachers, teachers were asked 

to choose a class that consisted of middle to high ability students. 

Unfortunately one key teacher was unable to attend an interview session; 

therefore the final interviews were conducted with seven key teachers. 

3.5.1.3 Phase 2: Student number tests and questionnaire 

Associated with the eight key teachers, eight classes of students in Grades 

65 



5 - 8 participated in the study by completing a student mental computation 

questionnaire and two number tests (N = 172). The sample of students 

comprised 83 primary students in Grades 5 or 6 (aged 10 to 12), and 89 

secondary students in Grades 7 or 8 (aged 12 to 14). Details of the distribution 

of students across grades are presented in Table 3.2. 

Table 3.2 

Number and Distribution of Students in Phase 2 Across Grades 5 -8 

Classes Primary Secondary Total 

Grade 5 Grade 6 Grade 7 Grade 8 

Class ID 13 5 18 

Class 2P 21 21 

Class 3P 8 17 25 

Class 4P 3 16 19 

Class 5D 20 20 

Class 6S 24 24 

Class 7S 23 23 

Class 8D 22 22 

Subtotal 24 59 23 66 

Total 83 89 172 
Note. Classes are specified as being from district schools (D); primary schools (P); and secondary schools (S). 

3.5.1.4 Phase 3: Student interviews 

From the eight classes of students that participated in Phase 2 of the study, 55 

students were selected to participate in an individual task-based interview: six 

to eight students per class as described in Table 3.3. Students were selected for 

interview based on achievement on the two classroom tests: a mental 

computation test and a comparison test involving pairs of fractions and 

decimals. As well, the teachers of those students selected by the researcher 

were asked to judge whether the students were articulate and would be willing 

to discuss their ideas with a researcher. There were several cases where the 

teacher did not recommend a student selected by the researcher. 
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As the study intended to investigate the successful mathematical thinking 

strategies used by students, particularly for part-whole mental computation, 

initially selecting middle to high ability students was important because these 

were the students most successful with the target content. Given that the 

classes were accessed through the key teachers, however, it was not possible 

to have such an exclusive sample. During the data analysis stage of the study, 

nine students were excluded from further in-depth analysis. These students 

were generally not very successful with the part-whole interview questions 

and solved few of the questions overall. Data collected from these students 

were therefore extremely limited and did not significantly contribute to the 

relevant research question for Phase 3: what strategies do students use to solve 

mental computation problems with fractions, decimals, and percents? For that 

reason, the final number of student interviews used for Phase 3 was 46. 

Table 3.3 

Number and Distribution of Students in Phase 3 Across Grades 5 —8 

Classes Primary Secondary 

Grade 5 Grade 6 Grade 7 Grade 8 

Class ID 

Class 2P 

Class 3P 

Class 4P 

Class 5D 

Class 6S 

Class 7S 

Class 8D 

6 

1 

2 

— 

— 

2 

7 

7 

4 

— 

— 

— 

8 

6 

6 

6 

Subtotal 9 20 8 18 

Total 29 26 
Note. Classes are specified as being from district schools (D); primary schools (P); and secondary schools (S). 
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3.5.2 Data collection instruments 

3.5.2.1 Phase 1: Teacher questionnaire 

A teacher questionnaire was developed to explore how teachers in the middle 

years are addressing mental computation and investigate what pedagogical 

practices might be needed to support mental computation at this level. The 

questions explicitly covered six of Shulman's knowledge domains, and are 

outlined in Table 3.4. The order of the questions in Table 3.4 reflects the order 

in which the questions are presented in the results. The order was different in 

the actual instrument completed by the teachers. The full questionnaire is 

presented in Appendix A.1. 

Questions were multiple choice, multi-part Likert type items or open-ended 

questions. The questionnaire instrument was designed so that three of the open-

ended questions were at the beginning of the questionnaire. The intention was 

to encourage the teachers to respond according to their own understanding of 

mental computation and reflect on their practices before being exposed to ideas 

and situations embedded in the questionnaire. It was anticipated that these 

questions would encourage a reflective attitude that would be sustained 

throughout the questionnaire (Watson, 2001). 

The Likert-type questions required teachers to respond to individual statements 

related to an overarching main question. Teachers were asked to rate each 

component of the statement based on a five point Likert scale, for 'example, 

Always (1), Frequently (2), Sometimes (3), Rarely (4), and Never (5). These 

scales were altered depending on the nature of the items involved. It was 

important to offer teachers the chance to shed light on their responses by 

explaining the conditions that affected their replies. For this reason at the end 

of each question space was provided for teachers to record additional 

comments regarding their responses and experiences. This feature also 

addressed a criticism of questionnaire design, referred to earlier in the chapter, 

that the nature of questionnaire instruments seldom provides respondents the 

opportunity to clarify or elaborate on their responses (Thomas, 2003). 
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Table 3.4 
Description and Design of the Teacher Questionnaire 

General pedagogical knowledge 

Question 15 	Years of teaching experience 

Question 16 	Current year groups 

Question 17 	Previous year groups 

Question 18* 	Mathematical expertise 

Question 19 	Related professional development 

Educational ends, purposes, and values 

Question 1 	Valuing mental computation 

Knowledge of educational contexts 

Question 3 	Exploring issues in relation to mental computation at the 
primary and secondary school levels 

Curriculum knowledge 

Question 4 
	

Whole numbers, part-whole numbers, and related activities 

Question 7 
	

Time devoted to computation 

Pedagogical content knowledge 

Question 2 

Question 5 

Question 6 

Question 8 

Question 9 

Mental computation activities (Part A) 

Mental computation activities (Part B) 

Classroom organisation 

Assessing mental computation 

Associated mathematical competencies 

Knowledge of learners' characteristics 

Question 10** 	Mental computation strategies 

Question 11 	Enjoyment and challenges 

Question 12 	Student attitudes 
Note. * Question 13 was later excluded from the analysis (see Appendix A.1). Question 14, relating to the 
sex of the teachers does not appear in this list. **Denotes those questions that also address Shulman's 
content knowledge, which was the only knowledge domain not explicitly addressed. 

The design of the questionnaire, including the layout, was influenced by the 

teacher questionnaire used in the Leverhulme Numeracy Research Programme 

(LNRP). Several of the questions developed for the section of the questionnaire 

— Pedagogical Content Knowledge — were sourced from the LNRP instrument: 

examples are presented in Table 3.5. For each question the wording was 

changed to reflect an emphasis on mental computation as the original 

instrument focused on teachers' effective numeracy practices. 
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Teacher mental computation 	 LNRP teacher questionnaire 
questionnaire 

Question 5. In developing mental 
computation, how often do you use the 
following activities? 

• strategy discussion 
• quick recall questions 

Question 11. Please indicate 
approximately how often your 
mathematics teaching involves each of the 
following: 

• pencil/paper calculations 
• mental calculation-rapid recall of 

bonds 
Question 6. How do you organise your 
class for mental computation? 

• whole class (daily) 
• small groups (ability) 

Question 1. Please indicate approximately 
how often your mathematics teaching 
involves organising this class for all or part 
of a lesson: 

• whole class 
• ability/attainment groups 

Question 8. In assessing mental 
computation, how often do you use each 
of the following types of assessment? 

• teacher-made tests (timed) 
• observation of students 

Question 15. In assessing the work of the 
pupils in your mathematics class, how 
often do you use each of the following 
types of assessment? 

• teacher-made tests 
• non-scheme standardised tests 

Question 9. To be good at mental 
computation, how important do you 
think it is for students to... 

• recall number bonds and tables? 
• use knowledge of written 

algorithms? 

Question 13. To be good at mathematics in 
school, how important do you think it is 
for pupils to... 

• recall number bonds and tables? 
• recall methods (e.g. subtracting 3 

digit numbers) 

Table 3.5 

Use of the LNRP in Questionnaire Design 

Note. For each question just two examples from the list following the main question have been included in this table. 
All questions appear in full in Appendix Al. 

Before the final questionnaire was distributed, two primary and two secondary 

teachers not otherwise involved in the study were asked to review the 

questionnaire. The four teaches were experienced teachers and had been 

extensively involved in the mathematics education research community, a 

perspective that was considered important given the nature of the task. The 

teachers were informed about the purpose of the questionnaire and asked to 

comment on: content, structure, layout, clarity, and wording. These comments 

helped to refine the questionnaire particularly in terms of language consistency 

and clarity with minor changes being made regarding the content of some 

questions. 
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3.5.2.2 Phase 2: Student number tests and questionnaire 

Three instruments — two number tests and a questionnaire — were developed to 

provide a comprehensive perspective on teachers' knowledge of learners' 

characteristics. The data from the three instruments contributed to profiling 

middle years students in relation to mental computation. 

Mental computation test. The mental computation test was developed as a short 

version of a mental computation test developed for Grades 3 — 10 as part of the 

SPIRT project (refer to Section 1.2). The original test comprised 50 items for 

students at Grade 3/4 and 65 items for students at Grades 5/6, 7/8, and 9/10 

(Callingham & McIntosh, 2001, 2002). For the primary students, 20 items were 

selected and for the secondary students 25 items were selected from the pool of 

test items. The mental computation test items used in this study are presented 

in Table 3.5. The items were selected using the hierarchical levels of mental 

computation associated with types of items (Callingham & McIntosh, 2001, 

2002). The levels represent a hierarchical progression of the difficulty of items 

as determined from students' performances on the test of mental computation. 

These levels provided the framework for designing the tests used in the study. 

Table 3.5 

Distribution of Mental Computation Items by Level 

Level Whole number Part-whole number 

Add. Sub. Mult. Div. Fractions Decimals Percents 

8 1/2 + 1 /3 * 30% of 80 
7 3 + 1/2 

4 x 3/4* 
0.6 x 10 

0.5 + 0.75 
3 + 0.5* 

1.25 _0.5* 

75% of 200* 
10% of 45 

6 24 x 3 l_ 1 /3  
1 t/4 — 

1 — 0.4 25% of 80 

5 37 + 24 52— 25 70 + 5 1/2 + 3/4  
2 	3 

/7 -I- 	/7 

0.25 + 0.25 50% of 24 

4 21 + 3 
3 17-8 
2 9 + 8 5 x 6 
1 

Note: * denotes items for secondary students only 
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The whole number items included a lower level item (Levels 1 to 4) and a 

higher level item (Levels 5 to 8) for each of the four operations. The lower 

level whole number items were selected as a basic number facts (for addition 

and subtraction) and numbers less than 20 (for multiplication and division). 

The higher level whole number items comprised double digits (for addition and 

subtraction) and one double digit operand (for multiplication and division). In 

the original tests developed by Callingham and McIntosh (2001) some items 

involving halves and quarters appeared at Level 5, however, part-whole 

number items were clustered around Level 6 and Level 7. At least one problem 

at Level 5 was chosen for each of fractions, decimals, and percents. The rest of 

the items involving part-whole numbers were chosen to include a selection of 

the operations. The percent items included an increase in difficulty of the 

percentage from 50% (at Level 5) to 30% (at Level 8). 

The original tests developed by Callingham and McIntosh (2001) distinguished 

between short items (five second response time) and long items (fifteen second 

response time). For the current study, however, a 10 second response time per 

item was allocated, as the study was not investigating the affect of response 

time on test performance. 

Decimal and fraction comparison tests. Although mental computation was 

central to the student profile, an additional task using part-whole numbers was 

included to assist in understanding the target mathematical content. 

Furthermore, both mental computation and number comparisons are paired 

skills contributing to developing students' number sense (Sowder, 1988). 

Decimal comparison tasks have been well researched to investigate how 

students interpret decimal notation and make comparisons about the magnitude 

of decimal numbers (Stacey & Steinle, 1998; Steinle & Stacey, 2003; Steinle & 

Stacey, 2004). Based on their research, Steinle, Stacey, and Chambers (2002) 

developed three tests for teachers to use in their classrooms: the tests ranged 

from ten to thirty items. The decimal comparison test used in this study 

contained twelve pairs of decimals from two of the tests. The first ten pairs 

were chosen from the Quick Comparison Test and the last two pairs from the 
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Zero Comparison Test (Steinle et al. 2002). In comparing the pairs of decimals, 

students were instructed to circle the largest decimal in each pair or record an = 

sign if the two decimals were of equal value. 

The fraction comparison task was designed to replicate the decimal comparison 

test and involved students' circling the largest fraction in eight pairs of 

fractions. Item selection was influenced by Stephens and Pearn (2003). The 

comparison tests are presented Figure 3.3. 

For each pair, circle the largest fraction. 

a) 2
/4 3/4 e) 3/4 

3/9  

b) 3/8  6/8  0 1/5  
1 /8 

c) 4/8  
4/12 g) 5/6 3 /4 

d) 9/10 
2/3  h) 1/9  

2/12 

For each pair, circle the largest decimal OR write = if they are the same. 

a) 4.67 4.8 g) 0.8 0.0008 
b) 4.2 4.67 h) 8.41237 8.41 
c) 0.80 0.8 i) 3.77 3.7777 
d) 0.45 0.450 0 2.543 2.5431 
e) 0.731 0.73100 k) 3.0 3 
0 0.86 1.3 1) 0.5 0.36 

Figure 3.3. Comparison tests involving pairs of fractions and decimals. 

Questionnaire. The questionnaire was developed to explore the characteristics 

of middle years students in relation to their experiences of mental computation. 

The content of the questionnaire is outlined in Table 3.6. Most of the questions 

were Likert type questions that required students to respond to individual 

statements that were based on a five-point scale. For two questions set 

responses were ordered by the students, for example, students were asked to 

order calculator, mental computation, and written computation 1 — 3 against 

descriptors most (1), some (2), and least (3). Some questions were adapted 

from a survey instrument designed by McIntosh, Bana, and Farrell (1995). For 

Question 8, students simply had to indicate their preference by choosing either 

yes or no. This particular question involved 12 mental computations items: the 

students were not required to provide answers but simply indicate whether they 

would consider doing the problems mentally. This question was adapted from 
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McIntosh et al. (1995). The student questionnaire and instructions are 

presented in full in Appendix A.1. 

Table 3.6 

Overview of the Student Mental Computation Questionnaire 

Question 1 	Your views* 

Question 2 	Use of computation in class* 

Question 3 	Use of computation outside school 

Question 4 	Whole numbers, part-whole numbers, and related activities* 

Question 5 	Classroom organisation* 

Question 6 	Using mental maths 

Question 7 	Mathematical competencies* 

Question 8 	Mental computation preference test 

Question 9 	Self assessment 

Question 10 	Attitudes* 

Question 11 	Activities* 
Note.* Denotes those questions that are linked to the teacher questionnaire. 

As well as contributing to the mental computation profile of middle years 

students, responses to the questionnaire provided by the students are 

considered in relation to the responses provided by the teachers to similar 

questions. In this case the perspective of the students contributes to the 

discussion of how teachers are addressing mental computation as framed by 

Shulman's teacher knowledge domains, the framework for the study. 

3.5.2.3 Phase 3: Student interviews 

The student interviews were a third component in constructing a mental 

computation profile of students along with the number tests and the 

questionnaire. This constituted an important mathematical content focus in 

understanding middle years students as learners (Shulman, 1987). An 

individual task-based interview (Goldin, 2000) was developed to explore the 

strategies students used to solve fraction, decimal, and percent problems 

mentally. A second part of the interview schedule is not considered within the 

context of this study, details of questions asked are included in Appendix A.1. 

74 



At the beginning of each interview students were presented with three multi-

digit whole number mental computation problems: 24 x 3, 54 + 38, and 52 —25. 

The purpose of the whole number questions was for students to become 

familiar with the interview protocol and what was expected of them in working 

through calculations in the interview setting, as well as to establish a rapport 

with the researcher. It was anticipated that students would have more 

experience working mentally with problems involving whole numbers, thus 

questions of this type seemed an appropriate way to start the interview session. 

After the introductory whole number problems, the interview continued with 

students solving mental computation problems for fractions, decimals, and 

percents. The full set of interview questions are detailed in Appendix A.1. 

The core set of mental computation problems was based on the classroom 

mental computation test that students completed as part of Phase 2 of the study. 

These problems were chosen directly from the mental computation tests 

developed by Callingham and McIntosh (2001, 2002). Additional items were 

chosen from a second version of the test and were asked if time permitted. 

The interview schedule included a series of appropriate follow up questions for 

students depending on their initial responses (Goldin, 2000). Three types of 

questioning techniques were used to explore the responses provided by the 

students and these are outlined with examples in Table 3.7. 

Table 3.7 

Questioning Techniques Used During Student Interviews 

Questioning Techniques 	Examples 

Nondirective 	 "What did you do for that one?" 

"How did you work it out?" 

Suggestive (minimal) 	"What's the first thing that you tried?" 

"Can you tell a little bit more about what 
you did with the 1/2?" 

Guided 
	

"4 x 3/4  is hard. Can you think about 2 x 3/4 
instead?" "Now how does that help you 
work out 4 x 3/4?" 
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3.5.2.4 Phase 4: Teacher interviews 

The interview sessions with the key teachers were semi-structured in that each 

of the teachers was asked the same basic questions: these questions are 

presented in Appendix A.1. They included three components designed to 

generate discussion. First, teachers were asked to respond to a set of general 

questions as generated from the combined set of earlier teacher questionnaire 

responses (Phase 1). In particular the questions were designed to address 

Shulman's teacher knowledge domains of general pedagogical knowledge, 

knowledge of educational contexts, and knowledge of educational ends, 

purposes and values, in relation to fractions, decimals, and percents. Second, 

for some individual teachers there were a few clarification questions regarding 

their own responses to the initial questionnaire. The interviews also afforded 

the opportunity for teachers to express opinions or raise related issues that the 

questionnaire did not address directly. Third, teachers were asked to comment 

on some examples of student work collected during the student interviews. 

Given that the interviews post-dated the student interviews it was considered 

important to include an element of feedback for the teachers involved in the 

study. 

3.5.3 Procedures 
The study received ethical approval from the Southern Tasmania Social 

Sciences Human Research Ethics Committee at the University of Tasmania in 

2003. The committee abides by the guidelines outlined in the National 

Statement on Ethical Conduct in Research Involving Humans (National Health 

and Medical Research Council, 1999). The study also had permission and 

approval of the DoET, and satisfied department criteria for Conducting 

Research in Tasmanian Government Schools. For all appendices relating to this 

section, see Appendix A.2. 

All student data were collected over the three school terms that make up a full 

academic calendar year in Tasmania. Table 3.8 outlines in full the data 

collection timeline for the study, including ethical considerations. For the 

teachers the questionnaire data were collected during the first and second terms 
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of Year 2. The final interview sessions, however, with the key teachers were 

conducted during the second school term of Year 3. These final teacher 

sessions were scheduled at a later time so that the interview questions could be 

developed as a direct result of the questionnaire analysis, and also to allow time 

for the researcher to analyse aspects of the student data to provide feedback to 

the key teachers. 

Table 3.8 

Timeline for Ethical Requirements and Data Collection 

Year 1 Year 2 Year 3 

Term 3 Term 1 Term 2 Term 3 Term 1 Term 2 Term 3 

Submit ethics — 
University and DoET 

Di 

Ethics approval granted Di 

Identification of project 
schools 

Di 

Communicate with 
principal and teachers 

so 

Administer voluntary 
teacher questionnaire 

Di Di 

Select and contact 
teachers for further 
project involvement 

Di 

Notify parents of class 
involvement 

so 

Administer classroom 
student questionnaire 

Di Di 

Select students for 
interview and obtain 
parental consent 

Di Di 

Conduct student 
interviews 

D4 IMO 

Conduct follow up 
teacher sessions 

as 

Notify University and 
DoET that data 
collection phase 
completed 

Di 
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3.5.3.1 Phase 1: Teacher questionnaire 

School Principals were informed about the study with a letter of invitation and 

accompanying information sheet. These letters were followed by a telephone 

call from the researcher. Those Principals who agreed to support the study gave 

permission for the questionnaire to be distributed to the teachers in their 

schools who were currently teaching mathematics at the middle school level 

(Grades 5 — 8). This included Grade 5/6 classroom teachers in the primary 

schools and all teachers who taught mathematics at Grade 7 and Grade 8 in 

district or high schools. Teachers were given a three-week period to complete 

the questionnaire independently and then return it by post to the researcher. To 

increase and balance the teacher sample size for Phase 1, two rounds of the 

questionnaire took place, as noted in Section 3.5.1.1. 

Ethical considerations. Teacher questionnaires were accompanied by a detailed 

information sheet, which included an overview of the purpose and aims of the 

study, appropriate contacts (for example, where to direct concerns or 

complaints), and statements on the treatment of confidentiality and withdrawal 

of participants. This information also stated that a small number of teachers 

would be asked to involve their students and further participate in a semi-

structured interview and feedback session. The cover page of the questionnaire 

included a consent form containing a statement of informed consent to be 

completed by the teachers and returned with the questionnaire. All teachers 

were sent a letter of appreciation to convey the gratitude of the researcher for 

their time, effort, and support of research activities in the field of mathematics 

education. 

3.5.3.2 Phase 2: Student number tests and questionnaire 

The student instruments were administered by the researcher during a 

mathematics session as nominated by the primary teacher or as scheduled in 

the secondary timetables. The questionnaire and the tests were independent 

tasks; however it was made clear to the students that they could ask questions 

at any time. The secondary students took approximately 20 minutes to 

complete the questionnaire, including the written comparison tests. Generally, 

the primary students took a little longer due to the reading demands. The 
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mental computation test was read aloud to the class by the researcher. At no 

time did the students see the written form of the mental computation questions. 

Ethical considerations. Parents/Guardians received a detailed information sheet 

and a 'Withdrawal of Participation' form. This process of notifying 

Parents/Guardians was administered by the individual schools as requested by 

the Research Ethics Committee at the University. Full parental consent was 

not an ethical requirement for the class data collection but parents were given a 

period of time to withdraw their children if they did not wish them to 

participate in the classroom activities. Students were also asked to sign a 

consent form at the time the questionnaire was administered: this was included 

on the questionnaire cover page. 

3.5.3.3 Phase 3: Student interviews 

The students selected for an interview were interviewed individually in a 

separate room in their respective schools. The interview sessions were 

approximately 30 to 40 minutes for both the primary and the secondary school 

students. During the interviews the students were videotaped with full parental 

permission. Participation in these interviews was voluntary and the students 

were told they could conclude the session any time they desired. No students 

stopped or asked to leave early. The students were not provided with any other 

computational tools, such as a calculator, or permitted to use pencil and paper, 

however students were not stopped from using their fingers. At the beginning 

of the interviews students were told they could work through the problems out 

loud or work out their answer and then discuss the strategies used with the 

researcher. There were no constraints on the students in terms of appropriate 

language, for example, the students were free to use any decimal, fraction, or 

percent representation regardless of the nature of the problem statement. 

Ethical considerations. For students to participate in the interviews full consent 

was an ethical requirement and this involved Parents/Guardians returning a 

signed consent form to the school giving permission for their child to be 

interviewed. At the time of interviewing, students were also asked to sign an 
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interview consent form and were given access to an information sheet. As an 

expression of gratitude, students who participated in an interview were later 

given a Certificate of Appreciation for their involvement. 

3.5.3.4 Phase 4: Teacher interviews 

The key teachers were invited to take part in a final follow up session with the 

researcher. These sessions were organised individually at a time and place 

nominated by each teacher. The sessions were either recorded or transcribed. 

Ethical considerations. At the beginning of the interview session, key teachers 

were asked to sign a consent form that allowed the researcher to use any of the 

information collected, provided that the teachers or their schools could not be 

identified. Examples of the students' work were shown to the teachers. This 

included examples from students in their own class and from other classes, 

although at no time was the identity of any of the students disclosed. 

3.5.4 Data analysis and presentation 

The data sets for each of the four phases of the study are analysed and 

presented across four results chapters. The links between the data sets are 

considered in the final discussion (Chapter 8). 

3.5.4.1 Phase 1: Teacher questionnaire 

Phase 1 of the study generated questionnaire data for 34 middle years teachers. 

The Likert-type items on the teacher questionnaire were analysed descriptively 

using frequencies of responses. Differences between the two groups of 

teachers, primary and secondary, and also level of participation in professional 

development are described where appropriate. The open-ended questions 

included in the teacher questionnaire were analysed using a clustering 

procedure (Miles & Huberman, 1994) and organised using Shulman's teacher 

knowledge domains. This is an iterative qualitative clustering process used to 

identify categories of responses and emergent themes. 
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3.5.4.2 Phase 2: Student number tests and questionnaire 

Phase 2 of the study generated three data sets from the 172 middle years 

students. The analyses associated with each data set are described in this 

section. 

Mental computation test. In the first place, students' responses for each item on 

the mental computation test were scored as correct or incorrect (including 

items not attempted). Data were organised by total score. Students were then 

grouped according to the criteria outlined in Table 3.9, which includes links to 

the levels of mental computation performance described by Callingham and 

McIntosh (2001). Given the small number of primary and secondary students 

answering 1 — 4 items correctly, these students were combined with the 

students answering 5 — 11 items correctly. The same process applied to the 

secondary students with the four students answering 23 — 25 items correctly 

combined with students answering 17 — 22 items. Students were assigned to 

one of three groups: Group H(igh) aligned with Level 7, Group M(iddle) with 

Level 6, and Group L(ow) with Level 5 as described by Callingham and 

McIntosh (2002). The spread of student performance on the mental 

computation test is discussed in Section 5.2. 

Table 3.9 

Mental Computation Test Scoring Criteria 

School level Number Level of Number Group 
of items mental of 
correct computation 

performance 
students 

Primary 1-4 4 3 Low 

5-11 5 34 

12-16 6 28 Middle 

17-20 7 18 High 

Secondary 1-4 4 5 Low 

5-11 5 29 

12-16 6 28 Middle 

17-22 7 23 High 

23-25 8 4 
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Decimal and fraction comparison tests. Performance on the fraction 

comparison and decimal comparison tests was considered across the three 

groups of students — Group H, Group M, and Group L — as determined by 

mental computation performance. For each of the three groups, students with 

similar numbers of correct responses were clustered to enable the researcher to 

look for patterns of responses across the comparison items. 

Questionnaire. Responses to the Likert-type items on the student questionnaire 

were analysed descriptively using frequencies, as was used with the teacher 

questionnaire data. Like the comparison tasks, performance is considered 

across the three groups of students (Group H, Group M, and Group L), as 

determined by mental computation performance. As the student sample size 

was larger than for the teachers, comparisons of means for responses across the 

Likert indicators using one-way ANOVA were conducted between the three 

student groups. Effects are considered significant at p < 0.05. 

3.5.4.3 Phase 3: Student interviews 

Phase 3 of the study generated interview data for 55 middle years students. The 

first task undertaken in analysing the student interviews involved transcribing 

the digital videotapes of the interview sessions. This was a lengthy process due 

to the number of hours recorded — approximately 30 hours in total. As well it 

was intended that the hard copy transcripts would reflect the video data as 

closely as possible. This attention to detail included recording details of the 

sessions such as pauses, additional questions, hand movements and if necessary 

notes on the body language of the students. Examples of the students working 

during the interviews using direct quotes are presented whenever appropriate. 

At times this includes hesitations, pauses (although "umms" have been 

removed), interviewer questions and incorrect use of language (although 

interpretations are provided as considered necessary). The interview questions 

are written in numerical form, however, student quotes are written in full to 

assist in interpreting the numerical language used. 
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When the transcription process was complete, the first analysis was undertaken 

on the interview data from the mental computation items for fractions, 

decimals, and percents. Like responses were grouped according to three types 

of responses generated during the interviews: successful responses (correct 

answer followed by a discernable strategy), guided responses (success 

achieved with interviewer intervention), and unsuccessful responses 

(demonstration of misunderstandings through error). The second analysis 

involved classifying responses as procedural or conceptual. In line with Caney 

and Watson (2003), working procedurally involved responses that appeared to 

be learned by rote and have no accompanying explanation that displays 

conceptual understanding of the processes taking place. Working conceptually 

involved responses in which students do appear to connect their knowledge of 

part-whole quantities and operations to solve problems mentally. These two 

classifications essentially relate to the manner in which the strategies were 

employed, not necessarily a strategy as such. Descriptive analyses for both 

interview analyses are presented in Sections 6.2 to 6.4. 

3.5.4.4 Phase 4: Teacher interviews 
Phase 4 of the study generated interview data for seven key teachers. 

Transcripts were prepared for each of the interview sessions. Like the 

questionnaire data (Phase 1) each interview question was aligned with one of 

Shulman's teacher knowledge domains. Five were addressed in this phase: 

knowledge of educational ends, purposes, and values; knowledge of contexts; 

curriculum knowledge; pedagogical content knowledge; and knowledge of 

learners. Across each of the questions, the teachers' responses were pooled and 

then coded to identify themes — generally a code word was assigned using a 

key word highlighted in the teacher's response. This enabled like responses to 

be clustered or unique responses to be isolated for discussion (Miles & 

Huberman, 1994). Data are organised using Shulman's teacher knowledge 

domains as headings and direct quotes are used where appropriate. 
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3.6 Limitations of the Research 
The limitations of the study are described in terms of generality and 

trustworthiness (Schoenfeld, 2002). In the first place generality (or scope) 

concerns the "the set of circumstances in which the author(s) of a study claim 

that the findings of the study apply" (pp. 466). In this study, the sample size for 

the teacher questionnaire is moderately small with data collected from 34 

primary and secondary teachers. This is not necessarily an uncommon 

phenomenon when collecting information of a voluntary nature. It does, 

however, have consequences in terms of the generalizability of the results and 

conclusions. The sample of schools was chosen to have an interest in numeracy 

development and in some cases specific links with mental computation 

programs or research. Additionally the focus on mental computation may have 

encouraged or attracted only those teachers with a specific interest in the topic 

— either personal or professional — to respond. In this sense, data may 

unintentionally be skewed to encompass, for example, more favourable beliefs 

or more frequent reports of mental computation activities. There is also the 

possibility that this type of bias may affect the responses of students, however, 

it is considered that the larger student sample size would negate this. 

Schoenfeld (2002) also regards trustworthiness as an attribute to judge 

(mathematics) research. He suggests researchers consider trustworthiness in 

terms of "How well substantiated is the claimed generality of the study? How 

solid are the warrants for the claims? Do they truly apply in the circumstance in 

which the author(s) assert that the results hold?" (p. 467). In this study the data 

set is largely composed of data collected via self report techniques. Although 

this is a very common form of data collection across many fields in the social 

sciences, it is the responsibility of the researcher to acknowledge the 

shortcomings of such techniques. With the teachers it can be argued, for 

example, that a divergence exists between reported pedagogical beliefs and 

experiences and the reality of how teachers actually conduct their teaching 

activities. In this sense information is "filtered through the views of the 

interviewees" (Creswell, 2003, p. 187) and it is not always possible to 

distinguish objective and subjective perspectives. 
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It is also acknowledged that the occasional Likert-type statement contained 

either a qualifier or a double meaning. Even with the six pilot readers, these did 

not get picked up. 

The thesis now continues to a presentation and discussion of the results of the 

study over four chapters. These chapters comprise data from the four phases of 

the study, as outlined in Figure 3.1. A brief summary section is provided at the 

end of each chapter with the general discussion of results in relation to current 

literature, beginning in Chapter 8. 
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Chapter 4 

Results (Phase 1): Reports From Middle 
Years Teachers 

4.1 Introduction 
The review of the literature highlighted that although there has been 

considerable advice to teachers to support students' numeracy development by 

fostering mental computation, little research focuses specifically on teachers' 

knowledge of mental computation and how they are working to develop mental 

computation in the classroom. This chapter focuses exclusively on this area and 

uses a framework of teacher knowledge (Shulman, 1986, 1987) to address the 

research question: how is mental computation being addressed by teachers in 

middle years mathematics classrooms? This chapter reports on Phase 1 of the 

study, which involved a teacher questionnaire completed by 34 middle years 

teachers: the sample included 16 primary and 18 secondary teachers. The full 

details of the analyses associated with each section of the questionnaire are 

presented in Appendix B. 

4.2 General Pedagogical Knowledge 

In this study the professional backgrounds of the middle years teachers are 

considered as a measure of the teachers' general pedagogical knowledge. This 

included current and previous teaching experience, mathematical expertise, and 

details of professional development related to mental computation that teachers 

had participated in during the last five years. The information provides a 

setting for examining the teachers' responses across the rest of Shulman's 

teacher knowledge categories. Analyses are detailed in Appendix B.1. 

4.2.1 Current teaching experience 
The sample of middle years teachers that participated in the study was made up 

of relatively experienced teaching professionals. At the start of the school year 
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in which the study was conducted, approximately two thirds (N = 34) of the 

teachers reported that they had been in the teaching profession for ten or more 

years. Of the 16 primary teachers, three quarters of the teachers had ten or 

more years of teaching experience. The remaining primary teachers reported a 

minimum of two years experience. Of the 18 secondary teachers, half reported 

ten or more years of teaching experience. Just less than half reported a 

minimum of two years experience with two secondary teachers indicating that 

it was their first year of teaching. 

4.2.2 Previous teaching experience 
The teachers were also asked to list the details of grades they had taught in past 

years. The majority of the primary teachers (n = 16) indicated experience with 

either the upper primary grades (Grades 4 — 6) or across all primary grades 

(Grades 1 — 6). Additionally, three teachers indicated experience across a 

number of secondary grades. Of the 18 secondary teachers, the majority 

indicated experience across all the secondary grades (Grades 7 — 10), and for 

two teachers this also included senior secondary grades (Grades 11 — 12). Five 

of the secondary teachers also indicated experience in the upper primary grades 

(Grades 5 — 6). There were two secondary teachers who also had experience in 

the early to middle primary grades (Grades 1 — 4). 

4.2.3 Formal mathematical expertise 
Mathematics teachers at the secondary level (n = 18) were asked to indicate if 

mathematics was their main area of teaching expertise. The teachers were not 

required to list specific courses and qualifications but some chose to include 

this information. Of the secondary teachers, one third had trained or reported 

backgrounds in science and/or mathematics. One teacher with a science 

background commented that mathematics was his "main area of enjoyment and 

preferred teaching area" (Teacher 4). Two thirds of the teachers simply stated 

that mathematics was not their area of expertise. One teacher in the sample of 

secondary teachers indicated that she was primary trained but now teaching 

Grade 8 as part of a middle school program. It was noted in Section 3.5.1.2 that 
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for the teachers at the secondary level many combinations of classes were 

reported with few teachers taking only mathematics classes. 

4.2.4 Professional development related to 
mental computation 

Teachers were asked if they had undertaken any professional development 

related to mental computation in the last five years. Those teachers who 

answered yes (n = 25) were encouraged to list the details of these sessions 

including: by whom it was organised, by whom it was led, and the number and 

length of the session(s). Many of the teachers recorded more than one session. 

Accordingly teachers were classified as having extensive, moderate, limited or 

no involvement in professional development related to mental computation. 

The spread of primary and secondary teachers across the four classifications is 

shown in Table 4.1. 

Table 4.1 

Participation of Teachers in Professional Development Related to Mental 
Computation 

Level of participation 

Extensive 

Moderate 

Limited 

None 

Total number of teachers 

Primary 	Secondary 
Teachers 	Teachers 

5 	 3 

8 	 2 

2 	 5 

1 	 8 

16 	 18 

In terms of the collective professional development that this sample of teachers 

had undertaken, approximately half had participated in multiple individual 

sessions or had participated in more than one extended mental computation 

numeracy program or research project, which reflects the interest and emphasis 

on mental computation within the educational community in Tasmania. 

Accordingly, eight teachers were classified with extensive involvement in 

professional development, with participation in the extended programs 

generally voluntary. Teachers classified as being moderately involved in 
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professional development involving mental computation (n = 10) had 

participated in either a larger extended program or research project that 

consisted of a number of related sessions or had been involved in several single 

sessions. Those teachers with limited involvement in professional development 

(n = 7) had participated in either single District numeracy sessions organised 

by the DoET or single sessions organised by their own schools and led by a 

colleague. Two examples of the latter provided by the teachers involved a 

session organised by the school mathematics committee and a session 

organised as part of a school mathematics investigation day. Nine teachers had 

not participated in any such sessions, the majority of whom were secondary 

teachers. 

Overall, primary teachers had participated in more professional development 

sessions or programs related to mental computation than the secondary 

teachers, with the secondary teachers classed mostly as having limited 

professional development or none at all. The teachers' level of professional 

development and the primary/secondary distinction are two variables that will 

be used to examine the remaining sections of the questionnaire (Sections 4.3 — 

4.7). 

4.3 Knowledge of Educational Ends, 
Purposes, and Values 

The teachers were asked to record up to three values they associated with 

mental computation, with the question addressing the educational ends, 

purposes, and values aspect of Shulman's teacher knowledge framework. Four 

main values emerged from the responses of teachers: a mathematical 

understanding value, the value of real life applicability, an affective value, and 

a teaching value. These are detailed, with examples, in Table 4.2. The 34 

teachers generated 91 responses in total, although two responses were classed 

as undefined, as they did not sufficiently address the question. Analyses are 

detailed in Appendix B.2. 
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Mental computation was valued primarily by the teachers for its contribution to 

developing mathematical understanding. Encompassing several sub-

categories, the greatest numbers of comments, approximately half of the 

responses, were made in relation to the contribution of mental computation to 

mathematical understanding. In unpacking mathematical understanding the 

teachers placed importance on mathematical thinking, problem solving, sense 

making, and improving efficiency (including an emphasis on speed and being 

able to recall number facts). 

Table 4.2 

Values Teachers Associate with Mental Computation 

Values 	 Example response 	 Number of 
responses 

Mathematical Understanding 

Encouraging 	"They encourage children to think through 	9 (10.1%) 
mathematical thinking 	simple strategies." 

Avenue for developing "Mental computation can help to identify 	6 (6.7%) 
problem solving skills 	strategies they can use in problem solving." 

Sense-making 	"Can demonstrate and/or reinforce 	 12 (13.5%) 
understanding of processes [&] connections." 

Improving efficiency 	"Allows quicker solution of problems — 	13 (14.6%) 
answers at fingertips." 

Real life applicability 	"Mental computation skills make up the bulk 23 (25.8%) 
of maths used on a daily basis in the real 
world." 

Affective 

Avenue for developing 
confidence and 
enjoyment 

Independence 

"Feeling confident to quickly estimate and 
then accurately compute is powerful." 

"Independence from physical aids, e.g. 
calculator, pen & paper." 

Teaching 	 "They are usually short activities or practices 	8 (9.0%) 
not requiring too much formal writing." 

Total number of responses 	89 

The second value that emerged concerned the notion that mental computation 

was valuable in terms of its applicability as a real life skill. Teachers put 
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emphasis on mental computation skills being "fundamental life skills," "life 

long skills," and being useful on a "daily basis." 

The teachers also positioned mental computation in terms of having an 

affective value that encompassed two sub-categories of responses. The first 

involved ideas of developing the confidence of students and also the students' 

enjoyment of mental computation. Several responses referred to accessibility 

and the benefits for "each child" and "all students." The second idea concerned 

the notion of independence, including not only independence from aids, for 

example, "electronic devices," but also independence in terms of "being able to 

understand and solve problems independently" (Teacher 13) One teacher 

reported mental computation as being valued in terms of its empowering 

qualities for students (Teacher I). 

The fourth value identified by the teachers concerned a general teaching value. 

Responses were grouped together primarily in that the link between mental 

computation and an associated teaching domain were identified. For example, 

teachers referred to mental computation as assisting in "assessing 

understanding" (Teacher 31), and "as the starting point of maths work" leading 

into written maths (Teacher 14). Several teachers referred specifically to the 

structure of the activities as being short and that it was often "easier and 

quicker to get an answer to a why (or how) question, than to ask for it in 

writing" (Teacher 8). 

Space was provided on the questionnaire for the teachers to provide three 

responses. Some teachers provided multiple responses (two or three) that were 

all attributed to a single value and some teachers provided multiple responses 

each of which represented a different value. In either case, responses were 

counted individually. A summary of the spread of responses across the teachers 

is presented in Appendix B.2. The summary indicated that 20.6% of the 

teachers provided three responses with each of these responses representing 

one of the three main values. Just over half of the teachers (58.8%) provided 

responses that represented two of the main values. These teachers may have 

provided either three responses, two of which represented one value and one 
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response that corresponded to a different value, or two different responses that 

represented two values. The remaining teachers (20.6%) responded in relation 

to only one of the main values. In a similar manner, some teachers provided 

two or three responses that all corresponded to the same value, or a single 

response that represented one of the values. 

Overall, nearly every teacher provided at least one idea that represented the 

value of mental computation in association with an element of mathematical 

understanding. For most of the primary teachers this was coupled with at least 

one of the other values. The pattern of responses was similar for the secondary 

teachers, although there were slightly more secondary teachers who only 

focused on the value of mathematical understanding. The level of professional 

development did not differentiate the teachers' knowledge of the educational 

purposes, and values associated with mental computation. 

4.4 Knowledge of Educational Contexts 
Teachers were asked the question, in what ways does the emphasis on mental 

computation change as students move through primary school and into 

secondary school? This question addressed the teachers' knowledge of 

educational contexts, in this case, mental computation in the middle years of 

schooling. Analyses are detailed in Appendix B.3. 

All teachers concurred that mental computation should be emphasised 

throughout primary school with many of the teachers indicating strong 

agreement (70.6%). Although responses were similar when considering the 

role of mental computation in secondary school, fewer teachers were in strong 

agreement (55.9%) and a small number of teachers indicated that they were 

uncertain (12.5%). 

Teachers were then asked an open-ended question concerning what they 

actually thought happened with mental computation in the transition from 

primary to secondary school. Overall, just over a third of the teachers (35.3%) 

indicated that mental computation decreased as students progressed through the 
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school system; comments were directed at the secondary level and are further 

explored in Table 4.3 The comments of just under a third of the teachers 

(32.4%) suggested that an emphasis on mental computation was generally 

limited but did not specify a particular school level. Just under a quarter of the 

teachers did not make a comment, indicated they were unsure, or did not 

significantly address the question, for example, "It depends on the students/the 

teachers/schools" (Teacher 32). One primary teacher suggested mental 

computation was improving at both levels particularly for schools involved in 

professional development programs and projects. 

Many of the teachers made suggestions as to why mental computation was 

generally limited or why it decreased as students progressed through the school 

grades. The teachers generated twenty-seven suggestions that were clustered 

into four emergent themes: curriculum-related, environment-related, teacher-

related, and student-related. Examples are presented in Table 4.3. 

Of the themes identified by teachers as influencing a decline in mental 

computation over the middle years, comments were weighted overall towards 

content-related themes and environment-related themes. Curriculum-related 

responses included the predominance of other methods of computation such as 

written computation and calculators in relation to mental computation. As well 

the influence of particular teaching activities was raised, for example, "The use 

of 'Speed maths' [where you answer as many Q's as possible in a give time 

limit] predominates" (Teacher 3). Environment-related factors relating to a 

decreased emphasis on mental computation stressed time restraints for 

teachers, particularly in relation to the crowded mathematics curriculum, 

resulting in limited time for mental computation. There were also two 

comments directed at parents and their expectations of teachers. 
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Table 4.3 

Themes Identified by Teachers as Affecting a Decline in Mental Computation 
over the Middle Years 

Theme 	 Examples 	 Number of 
responses 

Curriculum-related 

Emphasis on other 
methods of 
computation 

Teaching activities 

"An increasing reliance on aids as students 	7 (25.9%) 
progress through the schools, e.g. paper/pen, 
calculators, charts." 

"At times its 'taught' by mental maths 10 	3 (11.1%) 
questions rather than discussing different 
strategies & using purposeful activities." 

Environment-related 

Constrained by time 
and large content 
demand 

Parental 
expectations 

"The secondary classroom becomes 
content/curriculum driven and there is less time 
for mental computation activities." 

7 (26.0%) 

"Parents like work in books [to] know all 	2 (7.4%) 
children are taking part." 

Teacher-related 

Teacher preference, 
assumptions and 
competence 

Student-related 

Perception of 
students 

Behaviour 
management 

"A large number of teachers are challenged to 	4 (14.8%) 
run with student thinking strategies." 

2 (7.4%) 

"Secondary school students need to be 
motivated and confident within peer groups to 
'perform' or participate." 

"I think it gets ignored or not used ... behaviour 	2 (7.4%) 
management in classrooms." 

Total number of responses 	27 

Fewer responses overall were teacher- or student-related. Teacher-related 

responses concerned both the competence of teachers in this area and also the 

personal assumptions that teachers might hold, for example, "Mental 

computation by high school is seen as something most kids should already 

have! As such its importance is downgraded in years 7-10" (Teacher 3). One 

secondary teacher suggested that teachers might possibly perceive mental 

computation as an educational fad, commenting, "A new idea, approach, 

technique, etc, becomes the flavour of the month and slips by the way when 
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teachers take on new ideas" (Teacher 33). Both behavioural management issues 

and comments on the teachers' perceptions of the students were classed as 

student-related. These comments included ideas about confidence and peer 

groups. A Grade 8 teacher noted, "A lot of secondary school students are not as 

keen to participate in mental computation in case they are embarrassed in front 

of others, or else they've developed a negative approach to number" (Teacher 

22). 

4.5 Curriculum Knowledge 
This section addresses two aspects associated with teachers' curriculum 

knowledge. The first aspect of interest is the position of mental computation in 

relation to calculator and written computation. The second aspect considered, 

is the emphasis of mental computation in developing computation skills with 

whole and part-whole numbers as well as estimation and calculator skills. 

Analyses are detailed in Appendix B.4. 

4.5.1 Time devoted to developing written, 
mental, and calculator computation in the 
classroom 

Teachers were asked to estimate the comparative amount of time (in percent) 

devoted to developing written, calculator, and mental computation skills. 

Responses originally provided as percentages were categorised according to 

descriptors — most, some, least, and even. Patterns of responses are reported in 

Table 4.4 with the method of computation featured most in each of the pattern, 

highlighted. 

Approximately half of the teachers reported spending time developing written 

computation skills more than for mental or calculator computation. Pattern I 

was the most common pattern of how teachers' divided time among the three 

methods of computation (36.4%) and was predominantly a response given by 

the primary teachers. An example of a typical distribution of time was written 

work — most (60%), calculator work — least (10%), and mental work — some 
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(30%). Patterns 2 and 3, where teachers also reported the most time being spent 

on written computation skills, accounted for a further 15.2% of teachers. 

Table 4.4 

Estimated Time Devoted to Developing Written, Calculator, and Mental 
Computation Skills in the Classroom 

Pattern Written Mental Calculator Number of responses 

Primary Secondary 

I Most Some Least 10(30.3%) 2 (6.1%) 

2 Most Least Some 0 (0.0%) 2 (6.1%) 

3 Most Even Even 0(0.0%) 3(9.1%) 

4 Some Most Least 5 (15.2%) 2 (6.1%) 

5 Least Most Some 1 (3.0%) 1 (3.0%) 

6 Even Most Even 0 (0.0%) 1 (3.0%) 

7 Some Least Most 0 (0.0%) 1 (3.0%) 

8 Even Even Least 1 (3.0%) 1 (3.0%) 

9 Even Least Even 1(3.0%) 2 (6.1%) 

Total number of responses 	 33 

The second most common pattern overall featured mental computation 

(21.2%). Seven teachers divided their time to according to Pattern 4, 

emphasising developing skills with mental computation over written 

computation, with a small amount of time devoted to working with calculators, 

for example written work — some (40%), calculator work — least (10%), and 

mental work — most (50%). Calculator computation received limited attention 

in comparison with written and mental computation with just one secondary 

teacher indicating that calculator work accounted for most of the time spent 

developing computation skills (Pattern 7). 

Overall, responses from secondary teachers were more varied than those 

reported by primary teachers with four of the patterns described (2, 3, 6, and 7), 

being exclusively reported by secondary teachers. The extent of the variation is 

captured in two examples. One secondary teacher recorded just 5% for written, 
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25% for calculator, and 70% for mental work (Pattern 5, Teacher 20), another 

indicated 70% for written, 10% for calculator, and 20% for mental work 

(Pattern 1, Teacher 23). Overall, the responses of primary teachers were 

relatively consistent, with the majority of teachers reporting either Pattern 1 or 

Pattern 4. When grouped by level of professional development, those teachers 

with limited or moderate involvement largely reported patterns that emphasised 

written computation. For those teachers with extensive involvement in 

professional development, however, the emphasis on written computation or 

mental computation was more even, and this was similar for those teachers 

with no involvement in professional development related to mental 

computation. The teacher who emphasised calculator computation fell into this 

final group. 

4.5.2 Developing mental computation with whole 
numbers, part-whole numbers and related 
activities 

Whole number mental computation. Overall, the majority of both primary and 

secondary teachers indicated that developing mental computation skills always 

or frequently occurred when working with basic whole number facts (42.4% 

and 45.5% respectively). Responses were identical for basic number facts with 

addition and subtraction and also for basic number facts with multiplication 

and division (refer to Figures 4.1 and 4.2). For both sets of operations, the four 

teachers who marked sometimes and rarely were from the secondary level. 

The teachers were also asked to report how frequently they worked to develop 

mental computation skills with multi-digit whole numbers. For the operations 

of addition and subtraction with multi-digit numbers more than half of the 

teachers indicated this occurred frequently in class (54.5%). The most 

noticeable change in the teachers' responses was that fewer teachers marked 

always for multi-digit numbers (15.2%) than for basic number facts (42.4%) 

(refer to Figure 4.1). For the operations of multiplication and division, a greater 

number of teachers also indicated that developing mental computation skills 

97 



always occurred for basic facts (42.4%) than for multi-digit numbers (6.1%). 

Consequently more teachers reported sometimes (30.3%) or rarely (15.2%). 
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Figure 4. 1. Developing whole number mental computation (addition and subtraction). 
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Figure 4.2. Developing whole number mental computation (multiplication and division). 

Although there was a trend for teachers with moderate or extensive 

involvement in professional development related to mental computation to 

develop mental computation with the operations of addition and subtraction 

with whole numbers over those with limited to no involvement, this distinction 

was not apparent with multiplication and division with whole numbers. 

Fractions, decimals, and percents. Just under half of the teachers indicated that 

they would sometimes work to develop mental computation skills with 

fractions (48.5%) (refer to Figure 4.3). Although many of the teachers 
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• Sometimes 

▪ Rarely 

• Never 
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indicated developing mental computation with fractions occurred frequently 

(27.3%) or always (12.1%), several primary and secondary teachers indicated 

that they rarely developed mental computation with fractions (12.1%). The 

pattern of response shifted slightly, however, when teachers considered 

working mentally with decimal numbers. Here, more teachers indicated that 

they frequently developed mental computation skills (45.5%). Although 

percent was a topic where most teachers appeared to develop mental 

computation skills frequently or sometimes (36.4% each), when compared to 

fractions and decimals, percent also had a slightly higher number of teachers 

who marked rarely (18.2%). 
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Figure 4.3. Developing mental computation with fractions, decimals, and percents. 

Developing mental computation skills with fractions and percents appeared to 

be emphasised less frequently by teachers than with whole numbers. There was 

some indication that teachers developed mental skills with decimals more 

frequently than with fractions and percents: the more traditional link with 

whole number place value and the four operations might account for this. 

Developing fractions with mental computation, however, was reported more 

frequently by those teachers with greater involvement in relevant professional 

development, although this trend did not extend to decimals or percents. 

Estimation and calculator activities. The majority of teachers indicated that 

developing mental computation skills always or frequently occurred with 
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estimation activities (36.4% and 39.4% respectively), as shown in Figure 4.4. 

Responses for these two categories dropped, however, for calculator activities 

(always (12.1%) and frequently (24.2%)) and a greater number of teachers 

indicated mental computation skills were sometimes (42.4%) or rarely (18.2%) 

developed with calculator activities. 

• Always 
0 Frequently 
• Sometimes 
• Rarely 
• Never 

Estimation 	 Calculator 

Figure 4.4. Developing mental computation with estimation and calculator activities. 

4.6 Pedagogical Content Knowledge 
This section of the questionnaire asked teachers to report some of their 

teaching practices associated with mental computation. These practices 

included teaching activities, classroom organisation, assessment, as well as 

related mathematical competency associated with mental computation. 

Collectively, these four aspects are considered to address teachers' pedagogical 

content knowledge. Like Section 4.5, the figures used through this section 

represent data associated with all the teachers although differences between 

primary and secondary teachers are described where appropriate, as well as 

participation in professional development. Analyses are detailed  in  Appendix 

B.5. 

4.6.1 Mental computation activities 
Part A: Initially, teachers were asked to describe a common mental 

computation activity or session they used to develop mental computation skills. 

Descriptions of the sessions or activities provided by teachers were classified 

as traditional or non-traditional and are summarised in Table 4.5. In total 52 
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responses were provided by 33 teachers, as many provided more than one 

response. Five responses, however, were classed as undefined with teachers 

providing very little description of the session, for example, "Mental maths at 

the start of each lesson" (Teacher 6). 

Table 4.5 

Traditional and Non-traditional Mental Computation Activities 

Mental 
	

Example responses 	 Number of 
computation 	 responses 
activity 

Traditional 
	

12 (25.5%) 

Test-based (no 
discussion) 

Test-based 
(with 
discussion) 

Answer-based 
(with class) 

Team-based 

"Automatic response - 1 minute per column, facts to 
10, 20, 30, 50, 100, 144 on column (+, x, ÷)." 

"We use mental computation each day in the morning 
as a warm up session which involves answering 20 
tables, sums/money problems etc. We then discuss 
strategies to solve them." 

"Game to learn/reinforce tables, i.e. standing behind 
chair of a student; multiplication posed by teacher; 
winner moves on, loser sits in chair. A variation of 
above using a foam ball passed the student who gets 
the multiplication correct; that student then asks a 
question & passes the ball to the person who is first to 
put hand up (and get it correct)." 

"Noughts & Crosses - I have my own grid made up 
with 9 questions, each team takes turn choosing a 
square. If the answer is correct, they get a nought or 
cross (on board). If incorrect, question can go the 
other team. Winner is the team with 3 noughts/crosses 
in a row." 

4 (8.5%) 

4 (8.5%) 

1(2.1%) 

Non-
traditional 

Strategy 
discussion 

7(14.9%) 

"Addition of 2-digit no's e.g. 25+36; Chn have time to 
think and then answer together at the same time; 
Discuss strategies, write on whiteboard; Practise a 
series of adding 2 digit numbers, assist chn who might 
be struggling; continue practicing for the week, 
introduce difference strategies e.g. 0-99 chart; Discuss 
which strategies chn find useful." 

"Today's Number is (82) - Students share everything 	15 (31.9%) 
they know about this number." 

"Nominating the numbers which would normally 	4 (8.5%) 
reside in a 10 x 10 grid (blank) e.g. third row middle? 
It requires visualisation of filled in grid." 

Conceptual 
number work 

With concrete 
aids 

Total number of responses 	47 
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The traditional activities were predominantly test-based activities involving 

versions of individual automatic response. Four teachers, however, reported 

some degree of discussion as follow up of the test-based activities. Two other 

types of activities were classed as traditional. The first involved an answer-

focused activity that, although similar to the testing-based activities, is a more 

"public" activity involving a whole class. The second, of which there was only 

one example, described a team-based activity. A feature of all the traditional 

activities was that essentially they appeared to involve little or no discussion. 

Descriptions of activities that were classed as non-traditional, however, 

involved mainly activities based around discussion. This predominantly 

involved activities involving conceptual number work that contributes to 

foundation number work as a basis for developing strategies. As well, seven 

teachers described activities that specifically involved discussion of strategies. 

Four teachers also described activities that involved using concrete aids; an 

example of a 0 — 99 grid is given in Table 4.5. Cards, dice, and number boards 

were among the other examples of concrete aids provided. 

Overall the responses provided by the teachers showed a relatively even 

distribution of traditional and non-traditional activities. There were, however, a 

higher percentage of more traditional types of activities reported by the 

secondary teachers, with only three reports of conceptual number work and no 

reports of strategy discussion. Across the four levels of professional 

development participation (see Table 4.6), those teachers with none or limited 

experience provided more traditional responses overall than did those teachers 

with moderate or extensive participation. 
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Table 4.6 

Distribution of Traditional, Non-traditional, and General Mental Computation 
Activities by Teachers' Level of Participation in Professional Development 

Level of participation in professional development 

None Limited Moderate Extensive 

No response 0 1 0 0 

General 4 0 1 0 

Traditional 5 6 5 6 

Non-traditional 1 2 11 12 

Part B: Teachers were also provided with a list of specific teaching activities 

later in the questionnaire, and asked to report the frequency with which they 

used the activities to develop mental computation skills. The activities are 

listed in Figure 4.5. Overall, games and strategy discussion were the activities 

reported in conjunction with mental computation most frequently (47.1% and 

50.0% respectively). More primary teachers reported using games frequently 

than did secondary teachers. Similarly, the primary teachers reported 

discussing strategies slightly more frequently than secondary teachers. In 

looking at the results across the teachers' level of professional development, 

there was a trend for teachers with a greater level of involvement to use 

discussion of strategies more frequently than those with a lower level of 

involvement in professional development. In using games, however, this 

pattern was not apparent. 

The activity for which the reports of teachers were the least consistent overall 

was for 20 quick recall questions. Responses were spread relatively evenly 

over the indicators always to rarely. Only one primary teacher indicated this 

was an activity never used for developing mental computation in class. These 

results suggest that the teachers held more contrasting views on the value of 

recall questions as an appropriate activity for developing mental computation. 

This item, however, elicited the highest number of teachers who marked this as 

something they always did (26.5%). There were no differences between the 

responses of primary and secondary teachers. Activities involving memorizing 
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Figure 4.5. Activities teachers use to develop mental computation skills. 
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were not frequently reported by the teachers, with the majority marking 

sometimes (44.1%) and rarely (38.2%). The pattern of responses for primary 

teachers and secondary teachers was similar although of the 14.7% of teachers 

who indicated they used activities involving memorizing frequently, most 

were secondary. 

Teachers reported using open-ended questions with more than one answer, 

real life problems and the students' own investigations on occasion, with 

sometimes being the modal response across all three activities. It is 

conceivable that without the provision of examples the teachers interpreted 

these items differently: of the list provided to teachers these activities are 

perhaps less well defined than some of the others. In using open-ended 

questions most of the sometimes responses were from secondary teachers. 

Primary teachers, however, indicated that open-ended questions were an 

activity they frequently used in class. Smaller numbers of teachers marked 

rarely and never and these responses were mainly reported by teachers at the 

secondary level. Primary and secondary teachers did not differ in their 

responses to students' own investigations or in using real life problems. 

Possibly there is an association between this question and the previous 

question involving students' own investigation, as responses for frequently 

and sometimes were virtually identical. 

There were some inconsistencies in the responses of teachers for Part A and 

Part B. In Part B, where teachers responded to a list of activities, many 

reported employing games and engaging in the discussion of strategies. These 

were the most frequently reported types of mental computation activities 

conducted in the classroom. Interestingly, however, in Part A where teachers 

provided their own descriptions of activities, a number of activity descriptions 

essentially involved a game but were classed as traditional given the lack of 

apparent discussion. Additionally in Part A, many of these "typical activities" 

also involved descriptions of automatic response even though overall teachers 

indicated discussions of strategies was a more common practice than 

automatic response. 
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4.6.2 Assessment of mental computation 
The assessment practices reported by teachers for mental computation are 

depicted in Figure 4.6 based on how frequently teachers reported using the 

particular methods listed. The items pertaining to the use  of teacher-made 

tests — both timed and un-timed — as forms of mental computation assessment 

generated the most wide-ranging variations in responses amongst teachers. 

Responses were spread relatively evenly over the indicators always  to  never 

than for the other items. Generally, the primary and secondary teachers 

responded similarly; the only small difference was that secondary teachers 

tended to indicate using testing more frequently than did primary teachers. 

The level of teachers' professional development did not affect responses. Just 

under half of the teachers indicated that timed mental computation testing was 

rarely or never used (43.8% combined). Interestingly, from the list of mental 

computation activities presented to teachers (Section 4.6.1), the pattern of 

teachers' responses to quick recall questions was also distributed evenly over 

the five indicators. More teachers, however, marked never for the use testing 

than for quick recall questions. Possibly some teachers consider the two 

activities to be quite different. 

The limited use of tests from commercial schemes suggests that when teachers 

do use testing as a form of assessment, they develop their own materials as the 

majority of teachers indicated they rarely or never (34.4% each) used tests 

from commercial schemes. 

• Always 

O  Frequently 
Sometimes 

E2  Rarely 

• Never 

Figure 4.6. Mental computation assessment techniques reported  by  teachers. 
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Observation of students and discussions with students were rated similarly 

overall, with approximately half of the teachers indicating these were frequent 

forms of mental computation assessment (50% and 47.1% respectively). A 

consensus on using observation and discussion as methods of assessment was 

stronger for the primary teachers, with secondary teachers overall reporting 

these methods less frequently. Observation of students was also reported more 

frequently for those teachers with a higher level of involvement in 

professional development, although there was no difference regarding using 

discussions with students. "A lot of listening!" was an additional comment 

made be a Grade 5 teacher (Teacher 4), and "Explain how you got that Josh" 

was an explicit example provided by a Grade 6/7 teacher (Teacher 7). 

4.6.3 Classroom organisation 
Teachers were asked to report how they grouped students for mental 

computation: Figure 4.7 presents the results of the relative frequencies of the 

responses by teachers. Overall responses showed that mental computation 

was largely structured around working with the whole class and was 

integrated into classroom work as a daily activity, with just over half of the 

teachers indicating that mental computation was frequently organised as a 

daily whole class activity (55.9%). The responses of the secondary teachers 

largely contributed to the sometimes to never categories. Teachers seemed to 

prefer working with the whole class in daily sessions, as whole class weekly 

sessions were reported less frequently. 

• Always 

C3 Frequently 

Sometimes 

0 Rarely 

• Never 

Whole class Whole class Small groups Small groups Independent 
(daily) 	(weekly) 	(ability) 	(mixed 	task 

ability) 

Figure 4.7. Classroom organisation for mental computation reported by teachers. 
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Teachers also rated their use of homogenous small groups when teaching 

mental computation. The secondary teachers provided responses that 

encompassed all five indicators with six teachers indicating it was a form of 

classroom organisation that they rarely used and four teachers indicating it 

was never used. The primary teachers, however, more consistently marked 

sometimes, with four teachers indicating small ability groups were used 

frequently. The patterns of response were not markedly different when 

teachers were asked about small student groups assembled by mixed ability. 

Just under half of the teachers reported that in their class, mental computation 

was sometimes structured as an independent task (48.5%). More of the 

secondary teachers indicated that this was frequent than did primary teachers 

and consequently more of the primary teachers indicated this was rare. An 

additional comment made a secondary teacher pointed out that for mental 

computation there was "much opportunity for incidental learning" (Teacher 

20). 

4.6.4 Mental computation and associated 
mathematical competency 

The teachers were asked to consider the association of nine mathematical 

competencies with the development of mental computation skills. These 

competencies included: recalling number bonds and tables, using knowledge 

of written algorithms, thinking logically, thinking creatively, being accurate 

and quick, having a selection of strategies, being able to estimate, providing 

reason to support answers, and checking answers. The teachers reported eight 

of the nine competencies presented as being essential or important in 

supporting mental computation, as shown in Figure 4.8. The modal responses 

dropped slightly for using knowledge of written algorithms to somewhat 

important (47.1%): the majority of primary teachers indicated this. 

Additionally, using knowledge of written algorithms and being accurate and 

quick were the two competencies which a small number of teachers did not 

positively support in relation to mental computation. Generally, these teachers 

were those with a higher level of involvement in professional development 

related to mental computation. In fact all but one of the teachers with no 
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Figure 4.8. Mathematical competencies teachers associate with mental computation. 
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professional development involvement marked using knowledge of written 

algorithms as essential or important. There were no instances of the teachers 

marking the useless indicator. 

4.7 Knowledge of Learners' Characteristics 
Three aspects of mental computation are considered in this section that relates to 

Shulman's knowledge of learners' characteristics. First, the teachers provided 

comment on what they thought students might enjoy (Part A) or find demanding 

(Part B) about mental computation. Second, the teachers considered a series of 

attitudinal statements related to mental computation and rated how common they 

believed the attitudes to be amongst their students. For analysis these statements 

have been separated into those that present a more positive attitude to mental 

computation and those that are more negative. Third, the teachers were presented 

with an opportunity to document the mental computation strategies their students 

might use in solving six problems mentally. Associated analyses are presented in 

Appendix B.6. 

4.7.1 Students' enjoyment of and challenges 
associated with mental computation 

Part A: Teachers' perception of students' enjoyment of mental computation. 

Twenty-eight teachers provided responses to Part A and many teachers indicated 

that their classes enjoyed mental computation, providing a range of reasons as to 

why. Five teachers indicated that their students enjoyed mental computation by 

simply responding with, "yes," but offered no further explanation. Four teachers 

responded more indifferently, for example, "Some children thrive on it, some find 

it very challenging" (Teacher 7). The responses of seventeen teachers that were 

more detailed were assigned to categories that represented four emerging themes. 

These themes are described in Table 4.9. Although no primary teachers reported a 

lack of enjoyment, two secondary teachers gave more negative reports: "They 

don't like it and find it difficult, there is a lack of memorisation of common 
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computation rotes" (Teacher 9) and "They don't enjoy having to try, i.e. working 

hard to have to learn, remember strategies" (Teacher 17). 

Table 4.9 

Reasons Teachers Attributed to Students' Enjoyment of Mental Computation 

Themes 	 Examples 	 Number of 
responses 

Enjoyment attributed to the 	"Short, sharp not threatening 	9 (52.9%) 
mental computation activities 	activities that go down well." 

Enjoyment attributed to success 	"Some of my class find it most 	4 (23.5%) 
enjoyable because they are able to 
calculate quickly mentally." 

Enjoyment attributed to being 	"Yes. The more challenging the 	3 (17.6%) 
challenged 	 more they like it." 

Enjoyment attributed to 	"Those who understand the patterns 	1 (5.9%) 
understanding 	 & links find it easy." 

Total number of responses 	17 

Responses clustered around the notion that students enjoyed the characteristics 

and structure of the activities teachers used to develop mental computation were 

assigned to the first theme. One teacher made the following comment in relation 

to his students, "Enjoy when seen as unstructured — e.g. Today's number is, or 

What's my number? Follow Me cards" (Teacher 3). This was the most common 

theme that emerged from the teachers' reports — particularly the primary teachers 

— and represents a pedagogical emphasis. 

A second theme that emerged was that of enjoyment associated with success, 

although these comments appeared to be directed at "more able students." Three 

secondary teachers proposed that their students enjoyed the challenge of working 

mentally; however, it is difficult to know if students liked the "challenge" of the 

content or the structure of the activity. It is possible that being challenged was 

associated with timed activities. One secondary teacher referred to the 
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understanding behind mental computation as promoting enjoyment; the fourth 

theme. 

Part B: Teachers' perception of challenges students might associate with mental 

computation. The challenging aspects of mental computation that 17 teachers 

associated with their students are described across five themes. The themes are 

presented with examples in Table 4.10. Responses assigned to the first theme 

included a number of different mathematical skills that when lacking, can make 

mental computation a demanding task, for example, visualisation and checking 

the reasonableness of an answer. Generally, this was a response provided by the 

secondary teachers. 

Table 4.10 

Challenges Teachers Associate with their Students and Mental Computation 

Themes 	 Examples 	 Number of 
responses 

Lack of associated skills "Many of my students are not 'flash' so 	5 (29.4%) 
are not confident with tables and simple 
calculations" 

Speed 
	

"They feel challenged if they are timed or 	4 (23.5%) 
speed is required" 

Language and discussion "If they have trouble expressing 	 3 (17.6%) 
themselves, they often find it hard to work 
on mental computations" 

Expanding mental 
	

"Accommodating new strategies to 	3 (17.6%) 
computation 	 mentally work with bigger numbers or 

other e.g. percents" 

Dependence 	 "They are too used to using pen and paper 	2 (11.8%) 
or calculator, instead of using their brain 
to estimate or work out the answer" 

Total number of responses 	17 

Four teachers reported that being able to work quickly was a challenge for their 

students, which suggests that for mental computation speed is emphasised in 

some classrooms, although generally being quick was not rated highly on the list 
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of competencies associated with mental computation. Limited literacy skills 

including language and ability to participate in discussions, were reported by 

three teachers as a factor that presents as challenging for some students in relation 

to mental computation. Three primary teachers posited that expanding mental 

computation strategies to, for example, work with double-digit numbers or to 

explore multiple ways for solving problems was challenging for some students. A 

final theme reported by two teachers was that mental computation was 

challenging due to the dependence of students on other methods of computation, 

for example, written computation. This dependence on other methods of 

computation was one of the primary factors suggested by teachers that 

contributed to a perceived decline in the use of mental computation activities as 

students moved into secondary school (as reported in Section 4.4). 

4.7.2 Student attitudes towards mental 
computation 

Positive attitudes. The relative frequencies of the teachers' responses across four 

positive views are reported in Figure 4.9. Overall, few of the more positive 

attitudes associated with mental computation received strong support or strong 

disagreement from the teachers. The teachers did report, however, that students 

would support mental computation as being useful outside of school. This was the 

only attitude to receive favourable support from both primary and secondary 

teachers, with the modal response being frequent (39.4%). Across the other three 

items, the modal response was occasional. 
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things out 

Figure 4.9. Teachers' perception of the students' positive attitudes to mental 
computation. 

The responses to the view "It's fun" were not restricted to either the primary or 

secondary teachers across the very common to occasional indicators.  Of  the six 

teachers who indicated this view was rare or marked never, however,  five  were 

from the secondary level. For the view, "I'd rather do it in my head  than  write it 

down" the modal response was occasional (41.2%), with a greater contribution 

by secondary teachers. The primary teachers were generally more supportive 

indicating this was a frequent view amongst their students than the secondary 

teachers. There was no difference between the responses of the primary and 

secondary teachers to the view "It's the quickest way to work things  out."  It is 

likely that the level of mental computation being developed in the classroom 

would influence how teachers responded to this item. For example, teachers 

emphasising mental computation with basic number facts might view  this  more 

positively than teachers working with larger combinations of digits. 

Two teachers contributed their own comments. A primary teacher listed an 

alternative view, "It's faster to write it down" (Teacher 7) but did not indicate if 

this was a common view amongst students. A secondary teacher commented, 

"We rarely talk about mental maths" (Teacher 34). It would appear  that  for this 
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teacher her responses were based solely on observations of students and not on 

discussions with the students. 

Negative attitudes. The frequencies of the teachers' responses to five more 

negative views are shown in Figure 4.10. From the teachers' perspective, students 

would not tend to view mental computation as something "below" their year level 

or describe mental computation as stressful — two of the more negative attitudes. 

In response to the view of mental computation being "for the younger kids," the 

majority of responses from the primary teachers (approximately three quarters) 

were rarely or never, with more of the secondary teachers indicating their 

students frequently or occasionally expressed this view. Possibly teachers 

believed that mental computation for their students was something they thought 

they "had done" in primary school, particularly if the work involved revisiting 

number facts. 

It's for the 	It's stressful 	It's hard 	It's hard 	I can just use 
younger kids 	 because I'm 	because I 	a calculator 

not very 	never 
quick 	remember 

every thing 

• Very  common 
El  Frequent 
• Occasional 
la Rare 

• Never 

Figure 4.10. Teachers' perception of the students' negative attitudes  to  mental 
computation. 

The view, "It's stressful" was included to represent a general performance anxiety 

that could be associated with mental computation. Responses across the 

indicators, frequent to never, were relatively uniform overall for teachers, 

however, primary and secondary teachers responded quite differently. The 
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majority of responses from the primary teachers indicated that the view "It's 

stressful" was not a common view amongst their students. The exceptions were 

one teacher who marked very common and one teacher who marked frequent. For 

secondary teachers however, the modal response was frequent. This attitude may 

be related to the types of activities teachers are using to develop mental 

computation skills and what skills they emphasise. 

There was some consensus among the teachers that their students might 

negatively associate speed with mental computation performance as just under a 

third of teachers indicated that the view "It's hard because I'm not very quick" 

was frequent amongst their students (32.4%), although the responses of primary 

and secondary teachers did not differ over this view. A related view was "It's 

hard because I never remember everything," emphasised memory. Overall, more 

teachers marked this as rare (29.4%) amongst their students than with the 

previous view emphasising speed. For the primary teachers in particular this was 

a rare attitude, with two teachers indicating never. 

There was also some consensus among the teachers that their students would 

prefer to use a calculator instead of working mentally. The view was more 

commonly perceived amongst secondary teachers with all of the very common 

responses and just over half of the frequent responses being from secondary 

teachers. Although fewer teachers rated this view as rare or never overall, more 

primary teachers marked rare than any other response. It could be that access to 

calculators is more common in the secondary classrooms and therefore students 

are thought to be more likely to want to engage with them. 

Overall, there was more difference between the responses of the primary and 

secondary teachers to the negative views than the positive ones. Generally the 

secondary teachers indicated that the relatively negative views were more 

common amongst students than did the primary teachers. 
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4.7.3 Mental computation strategy use 

Teachers were asked to list the mental strategies they would expect from their 

students for six mental computation problems: a) 58 + 34, b) 52 — 25, c) 24 x 3, 

d) 0.5 + 0.75, e) 4 x 3/4, and f) 10% of 80. This was primarily an opportunity to 

explore the teachers' knowledge of students as learners in terms of appreciating 

the strategies the students might use in solving mental computation problems. It is 

possible, however, for the question to be a secondary measure of the teachers' 

content knowledge. For each problem, the common strategies provided by the 

teachers are categorised. Additionally, the percentages of teachers providing more 

than one response per question are reported. A few examples of undefined 

strategies were identified; details are provided in Appendix B.6. 

Whole number addition (two-digit). For the problem 58 + 34, 32 teachers 

generated 63 responses, with one response categorised as undefined: these are 

summarised in Table 4.11. Splitting both numbers according to place value was 

the most common response recorded by the teachers. The majority of examples 

showed working with the tens first followed by the units. The second most 

frequently reported response involved a process of levelling or compensating, 

whereby the 58 is made into 60 by taking 2 off the 34, and the problem becomes 

60 + 32. Teachers also reported a strategy whereby students preserve one number 

and then sequentially add on the second number in parts, in this case using place 

value. Six teachers reported a strategy that mirrored a vertical written algorithm. 

The final strategy involved a form of bridging first the 58 to 60, adding 34, and 

then taking 2 was the main example provided. 

117 



Table 4.11 

Summary of Strategies Associated with 58 + 34 

Strategy Description Examples Number of 
responses 

Place value split Split 58 and 34 by place 
value 

(50 + 30) + (8 + 4) 29 

Levelling Change 58 and 34 60+ 32 11 

Worked with parts of 
a second number 

Keep 58 and split 34 by 
place value 

58 + (30 + 4) 9 

Used written 
algorithm 

Work through a mental 
version of a vertical 
algorithm 

58 

+ 34 

6 

Bridging Keep 34 and change 58 

Change 34 and 58 

(60 + 34) — 2 

(60 + 35) — 3 

6 

1 

Total number of examples 62* 
*1 response categorised as undefined 

Whole number subtraction (two-digit). Strategies reported by 31 teachers for the 

problem 52 — 25 are reported in order of frequency in Table 4.13. Overall the 

teachers generated 57 responses, although four were categorised as undefined. 

The most frequently reported strategy for the problem 52 — 25 involved working 

with parts of a second number using to place value. Two types of examples were 

recorded. In splitting the 25 into parts, one teacher wrote this as "52 —10 = 42, 

— 10 = 32, — 5." The second example involved responses of teachers explaining 

the link with 25 being half of 50. Ten teachers provided examples that involved 

splitting both numbers by place value. This is an interesting choice for this 

particular problem in that moving through the problem in the same manner as 

reading a sentence, students might find working with the 2 and the 5 difficult to 

manage as units. Some teachers gave examples of additive strategies and three 

teachers noted a written vertical algorithm. Single examples of bridging and 

levelling were also recorded. 
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Table 4.12 

Summary of Strategies Associated with 52 — 25 

Strategy Description Examples Number of 
responses 

Worked with parts of 
a second number 

Keep 52 and split 25 by 
place value 

Split 52 and keep 25 by 
place value 

(52 — 20) — 5 

(50 — 25) + 2 

6 

24 

Place value split Split 52 and 25 by 
place value 

(50— 20) — 5 + 2 10 

Additive strategy Start with 25, count up 25, 35, 45 + 7 

25, 25, + 2 

Counted up in 5s 
from 25, then added 
2 

1 

3 

1 

Used written 
algorithm 

Worked through a 
mental version of a 
vertical algorithm 

52 

— 25 

4 

Bridging Keep 25 and change 52 

Keep 52 and change 25 

(55 — 25) — 3 

(52 — 30) + 5 

1 

1 

Used visual tool A visual picture is 
described 

Number line I 

Levelling Change 52 and 25 50 — 23 

Total number of examples 	53 
*4 responses categorised as undefined 

Whole number multiplication (two-digit). For the problem 24 x 3, 32 teachers 

generated 68 responses, although six responses were categorised as undefined: 

responses are summarised in Table 4.13. The most frequently reported strategy 

involved a distributed split, the main group of examples involving place value. A 

much smaller number of teachers split the 24 by a quantity not related to place 

value, working with 3 x 12 and 3 x 12. As well two teachers described adding 24 

in succession or multiplied two 24's, adding the final 24. The second most 

frequently reported strategy by the teachers involved bridging from 24 to 25 

(25 x 3) and taking 3 away as the final step in the calculation. Eight teachers 

noted a written vertical algorithm and six teachers provided examples of 

119 



doubling/halving where students would change the problem from 24 x 3 to 

12 x 6. Finally, five teachers detailed an additive strategy of repeated addition. 

Table 4.13 

Summary of Strategies Associated with 24 x 3 

Strategy Description Examples Number 
of 

responses 

Distributed split Keep 3 and split 24 by 
place value 

(3 x 20) + (3 x 4) 

(3 x 12) + (3 x 12) 

24 

4 
Keep 3 and split 24 by 
other quantity 

Keep 24 and split 3 (24 x 2) + 24 2 

Bridging Keep 3 and change 24 (25 x 3) — 3 13 

Used written algorithm Work through a mental 
version of a vertical 
algorithm 

24 

x3 

8 

Doubling/halving Change 24 and 3 12 x 6 6 

Repeated addition Keep 24 and split 3 by 
other quantity 

24 + 24 + 24 5 

Total number of strategies 	62 
*4 responses categorised as undefined and 2 were incorrectly recorded 

Decimal addition. Twenty-eight teachers generated 42 responses for the problem 

0.5 + 0.75: these are summarised in Table 4.14. The most commonly reported 

strategy involved changing the representation of the decimal to the fraction 

equivalent with 11 teachers noting this. Some teachers also went further 

explaining how students would actually add the fractions together. Splitting the 

0.75 into the quantities 0.5 and 0.25 was more frequently reported than the place 

value split, 0.7 and 0.05. Seven examples involving a written algorithm and five 

examples involving whole number knowledge were also recorded. 
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Table 4.14 

Summary of Strategies Associated with 0.5 + 0.75 

Strategy 	 Description 	 Examples 	Number of 
responses 

Change representation Simple change to fraction 1/2 + 3/4 	 6 
equivalents 

Change to 1/2 + 3/4 and add 1/2 + 1/2 + 3/4 	 5 
parts 

Split by other quantity Keep 0.5 and split 0.75 	0.5 + 0.5 + 0.25 	9 
by other quantity 

Split by place value 	Keep 0.5 and split 0.75 	0.5 + 0.7 + 0.05 	3 
by place value 

Written algorithm 	Work through a mental 	0.75 	 7 
version of a vertical + 0.5  algorithm 

Whole number 	Describe in whole 	"50 + 75" 	 3 
number context 

Used a money context 	50c + 75c 	 2 

Total number of strategies 	35 
*2 responses categorised as undefined and 4 were incorrectly recorded 

In addition to the 35 correct responses provided by the teachers for the problem 

0.5 + 0.75, four responses were classed as undefined. Responses included general 

comments, for example, "using knowledge of tenths and whole numbers." Two 

errors were also recorded, for example, "$0.50 + $0.75 = 80c, = 0.80." It was not 

clear, however, whether the error was made inadvertently by the teachers or was 

intentional in terms of suggesting an example of an incorrect strategy that 

students might use. 

Fraction multiplication. Twenty-nine teachers recorded 49 strategies for the 

problem 4 x 3/4: these are summarised in Table 4.15. There was a wide array of 

strategies reported although individually they were reported by small numbers of 

teachers. The most common strategy reported involved using quarters in an 

algorithmic fashion. Repeated addition was described by six teachers and a 

further six teachers reported a strategy whereby students would, in the first place 

simplify the problem to 2 x 3/4, effectively a multiplicative/distributive split. Six 
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teachers described a visual picture that students might use solving this problem 

mentally, examples included circles, number lines and apple piles. Four teachers 

reported a form of bridging. For this problem students bridge from 34 to a whole 

and then subtract as a final step in the calculation. Two teachers identified a rule 

that could be applied to the problem. Doubling/halving was identified as a 

separate strategy; however, it could be that the strategy represents a later version 

of the multiplicative/distributive split. The final set of strategies involved 

individual examples of changing the representation of the fraction 3/4 to 75% or 

0.75. A third possibility was included in this group of strategies whereby two 

teachers identified that students may interpret the operation of multiplication with 

the use "of." 

Table 4.15 

Summary of Strategies Associated with 4 x 3/4 

Strategy Description Examples Number of 
responses 

Algorithms with quarters Multiply quarters 4 x 3 = 12 quarters, 
12/4 = 3 

11 

Repeated addition Add 3/4 successively 3/4 + 3/4 + 3/4 + 3/4 6 

Multiplicative/distributive 
split 

Split the 4 Work out 2 lots of 3/4, 
then double answer 

6 

Split by other quantity Keep 4 and split 3/4 
by 1/4 

1/4  x 4 = 1; 1 x 3 = 3 6 

Visualisations Use of diagram/ 
number line 

Imagine 4 pies each 
with 3/4 

6 

Bridging Bridging to the 
closest whole 

4 x 1=4; 4 x 1/4=1; 
4-1=3 

4 

Rule Learned rule Cancel 4s = 3 2 

Doubling/halving Change 4 and 3/4 2 x 11/2 1 

Change representation Change to percent 
equivalent 

3/4 is 75% so 75% of 
4 is 3 

1 

Change to decimal 
equivalent 

0.75 x 4 1 

Change operation 
to 'of 

Some know 'x' can 
mean 'of 

2 

Total number of strategies 	46 
*3 responses categorised as undefined 
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For 4 x 3/4, three responses were classed as undefined. Responses included general 

comments, for example, "break into stages." 

Percent. Twenty-nine teachers recorded 41 strategies for the problem 10% of 80: 

these are summarised in Table 4.16. The most frequently reported strategy 

involved the use of related number knowledge, which is separated into three 

possibilities. Changing the representation of the 10% to its fraction equivalent of 

1 / 1 0 was reported by 12 teachers, although this strategy was more common than 

changing the representation to 0.1, which was reported by just one teacher. There 

were nine reports of a rule associated with the problem 10% of 80. Most 

descriptions of strategies involved, for example, removing the zero, with one 

strategy reflecting a version of a written algorithm. 

Table 4.16 

Summary of Strategies Associated with 10% of 80 

Strategy Description Examples Number of 
responses 

Related number 
knowledge 

Use of division 80 ÷ 10 10 

Use of multiplication How many times 
10 goes into 80 

5 

Knowledge base of 10% 
in relation to 100% 

10% means 10 
out of 100 so 
answer must be 
<10 since 80 is 
<100 

3 

Changed 
representation 

Simple change to fraction 
equivalent 

Vio of 80 11 

Simple change to decimal 
equivalent 

0.1 of 80 1 

Rule Place value rule 
associated with zero or 
procedure 

Take off zero = 8 
or 10/100 x 80 

9 

Total number of strategies 39 
*2 responses categorised as undefined 
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Table 4.17 presents the number of strategies provided by the 34 teachers for each 

of the six mental computation problems. A majority of teachers were able to 

detail at least one or two strategies for each of the problems. Generally, there was 

a reduction in the number of strategies detailed for solving part-whole number 

problems compared to whole number problems. This is perhaps an indication that 

mental strategies for the fraction, decimal, and percent problems were not as 

widely known to the teachers. The number of teachers who did not report any 

strategies for the part-whole number problems is also higher than for the whole 

number problems. 

Table 4.17 

Number of Strategies Provided for Six Mental Computation Problems by 
Teachers 

Mental computation 
problems 

No strategies 
reported 

1 or 2 
strategies 

3 or 4 
strategies 

5 or 6 
strategies 

58 + 34 5.9% 73.5% 14.7% 5.9% 

52 — 25 8.8% 76.5% 17.6% 2.9% 

24 x 3 5.9% 64.7% 29.4% 0.0% 

0.5 + 0.75 17.6% 76.5% 5.9% 0.0% 

4 x 3/4 14.7% 73.5% 11.8% 0.0% 

10% of 80 14.7% 82.4 2.9% 0.0% 

Primary teachers provided more examples for the first two whole number 

problems 58 + 34 and 52 — 25, and also for the decimal addition problem, 0.5 + 

0.75. Teachers did not differ in their responses across the other three problems 

and responses for all problems were relatively even across the different levels of 

professional development. 

The number of teachers reporting strategies involving versions of written 

algorithms was generally quite low. Overall there were fewer algorithmic 

strategies reported for the part-whole number problems; perhaps the teachers 
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perceived that the application of written algorithms is more difficult for students 

in transferring written algorithms to the part-whole domains. Additionally, 

teachers may not have reported algorithmic strategies because their students had 

yet encountered formal written algorithms. 

4.8 Chapter Summary 
As a starting point for the study, the results of the teacher questionnaire present a 

collective overview of how middle years teachers are addressing mental 

computation. Using Shulman's teacher knowledge domains as a framework for 

organising the teachers' experiences, initially a number of characteristics 

emerged. Representing the teachers' knowledge of the educational ends, 

purposes, and values, nearly every teacher attributed the value of mental 

computation to developing mathematical understanding. This is perhaps not 

necessarily surprising given that mental computation is generally detailed in the 

current mathematics curriculum in Tasmania. For a number of the secondary 

teachers, however, this was the only value they ascribed to mental computation. 

Many teachers also acknowledged the real life applicability of mental 

computation. 

In relation to the teachers' knowledge of educational contexts, the teachers 

strongly supported an emphasis on mental computation in primary school. The 

view, however, was not as strongly supported in relation to secondary school. The 

teachers indicated that the emphasis on mental computation declined as students 

moved from primary school into the secondary school, with reasons emphasising 

curriculum-related factors (predominantly other methods of computation) and 

environment-related factors (crowded curriculum and parental expectations). 

Accordingly the teachers reported that time devoted to written computation out-

weighed that spent developing mental and calculator computation — an element of 

the teachers' curriculum knowledge. The teachers displayed an inconsistent 

approach to developing mental computation across different types of numbers. In 

the first place, the teachers' reported developing mental computation with multi- 
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digit whole numbers less often than with basic number facts. As well, mental 

computation in relation to fractions and percents was reported less often in 

relation to multi-digit whole numbers. Working with decimals, however, was 

reported at a similar level to multi-digit numbers, particularly for the operations 

of multiplication and division. 

Representing the teachers' pedagogical content knowledge, middle years teachers 

reported organising mental computation as a daily activity involving the whole 

class. They also acknowledged the importance of a range of mathematical 

competencies in terms of contributing to the students' mental computation 

development. When asked to describe their own mental computation activities, 

the teachers' provided an even distribution of both traditional activities (test and 

answer based) and non-traditional activities (discussion and conceptual number 

work). Few actual descriptions of the non-traditional activities, however, were 

provided by the secondary teachers. In responding to a list of classroom activities 

the teachers reported that games and strategy discussion were the activities most 

frequently used to develop mental computation; subsequently observation of and 

discussions with students were the most frequently reported forms of assessment. 

Overall, the teachers were more evenly divided in their responses to quick recall 

questions as a mental computation activity and this was also apparent in their 

responses to using testing (both timed and untimed) as an assessment technique. 

Both the activities used to develop mental computation and the types of 

assessment were considered as aspects of the teachers' pedagogical content 

knowledge. 

In relation to the teachers' knowledge of learners' characteristics three aspects 

associated with mental computation were considered. First, the teachers conveyed 

that the students' enjoyment of mental computation was largely due to the 

characteristics and structure of the activities used in the classroom. Lack of skills 

and speed in relation to mental computation were considered the challenging 

aspects for students. Second, in relation to attitudes displayed by students, the 

teachers felt the students would support the of view mental computation as being 
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useful outside of school — a positive view. Of the more negative views, which 

were more strongly supported by the secondary teachers, teachers felt that 

students would report mental computation as stressful, hard due to speed, and 

would consider using a calculator over mental computation. Third, in describing 

the strategies students might use, across three whole number problems (58 + 34, 

52 — 25, and 24 x 3), splitting the numbers by place value was the most 

commonly reported strategy provided by the teachers. The teachers did not 

consider the same strategy in relation to the decimal problem (0.5 + 0.75). 

Alternatively, the teachers indicated that students were more likely either to 

change the representation of the problem to fractions or to split by a different 

quantity (0.5 + 0.5 + 0.25). The most frequently reported strategy by the teachers 

for the problem 4 x 3/4 involved an algorithm with quarters, and finally for the 

problem 10% of 80 the teachers reported the use of division associated with the 

strategy of using related number knowledge. 

As a general comment, the primary teachers were more unified in reporting how 

they were addressing mental computation than the secondary teachers. For 

example, in recording time devoted to developing mental computation skills 

(Section 4.5.1), the majority of the primary teachers reported just two response 

patterns. The secondary teachers, however, described nine different patterns 

emphasising mental, written, and calculator computation. Although the teachers' 

levels of professional development did not have a strong impact on the responses 

provided by teachers, pedagogical content knowledge was one area where there 

were differences. Closer inspection of the data revealed that generally it was the 

same group of teachers creating the differences, that is secondary teachers with 

no or limited professional development. Pedagogical content knowledge is, in a 

sense, a more practical area related to the implementation of mental computation 

in classrooms. Differences were reported, for example, for the distribution of 

traditional and non-traditional activities. The other areas where no differences 

were noted between teachers with different levels of professional development — 

knowledge of educational ends, purposes, and values and also knowledge of 
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educational contexts — are more to do with teachers' own beliefs and 

understandings, which are likely to be more deep-rooted in the teachers' 

professional experiences. 

Many of the teachers who participated by completing the questionnaire phase of 

the study exhibited an encouraging attitude to mental computation, although still 

in the shadow of written computation. The sample of middle years teachers who 

responded to the questionnaire did so voluntarily and it is possible that only those 

teachers with a particular interest in developing mental computation were 

motivated to return the questionnaire. The results in relation to Shulman's 

knowledge domains are addressed in full in the final discussion in Chapter 8. 

In Chapter 5 the presentation of the results continues with the results and initial 

discussion of the three student instruments. The results generated from the mental 

computation test, number comparison tests, and student questionnaire and are 

presented and discussed in terms of developing a mental computation profile of 

middle years students. The profile represents an investigation of students' 

characteristics as learners based on evidence collected from the students 

themselves, and comprises the second phase of the study. 

128 



Chapter 5 

Results (Phase 2): Profiling Middle Years 
Students 

5.1 Introduction 
One of the aims of the current study is to profile students in the middle years in 

relation to mental computation. The profiling approach addresses one of 

Shulman's teacher knowledge categories discussed in Chapter 4 — understanding 

the characteristics of learners. This chapter is guided by the question: how is 

mental computation being experienced by middle years students? Profiling of the 

students is achieved using three data sets, collected from three instruments 

administered at the same classroom session to eight classes and a total of 172 

students. In the first place the results of a mental computation test are analysed to 

determine the students' level of mental computation performance (Callingham & 

McIntosh, 2001, 2002). Based on the students' total test scores, three groups of 

student mental computation performance are established and described, with 

students assigned to either Group H (high performance), Group M (middle 

performance) or Group L (low performance). The performance of students on two 

written comparisons tasks, one with pairs of fractions and one with pairs of 

decimals, are then analysed across the three groups to which all students were 

assigned. The third and final stage involved analysing perspectives of students on 

a number of aspects related to mental computation, expanding the profile from a 

sole emphasis on mathematical performance to include for example, attitudes, 

beliefs, and self assessment. Data was collected through a student questionnaire 

and are also considered across the three established groups of student mental 

computation performance. The full details of analyses associated with each of the 

data sets are available in Appendix C. 
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In the last section of the chapter, data are reported for two additional questions 

from the questionnaire completed by the students. The questions focus on 

classroom activity related to mental computation and are of interest in 

understanding the classroom environment, but do not directly contribute to the 

profile. Data are reported for the total student sample with differences between 

primary and secondary students highlighted. 

The middle years students appeared to take the task of completing the 

questionnaire and number tasks seriously. This is suggested by the very small 

number of non-responses overall and there were no questionnaires returned with 

disparaging comments. The perceived level of concentration and engagement 

during the administration of the questionnaire in the classrooms was very high. 

5.2 Performance on the Mental Computation 
Test 

The students' total mental computation test scores were assigned to one of three 

groups based on performance on the mental computation test, Group H (high 

performance), Group M (middle performance) and Group L (low performance). 

The three groups of students provided a base from which to build a profile of 

middle years students in relation to mental computation and were associated with 

the mental computation performance levels described by Callingham and 

McIntosh (2001, 2002). 

Of the eight levels (1 — 8) of mental computation performance described by 

Callingham and McIntosh (2002), in this study Group H is aligned with Level 7, 

Group M with Level 6, and Group L with Level 5. Callingham and McIntosh 

(2002) recorded the percentage of students in Grades 3 to 10 at each of the eight 

levels. Collectively, Level 5, Level 6, and Level 7 accounted for the largest 

groups of students in Grade 5 to 8. From the content analysis performed by the 

authors, whole number items from Level 5 onwards expand to include more 
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sophisticated combinations of multi-digit numbers across the four operations. 

Few items involving part-whole numbers appear before Level 5. 

The overall performance of the students is presented in Table 5.1 with the 

students' performance on individual mental computation items reported in 

Appendix C.1. The process for determining students' levels was described in 

Section 3.5.4.2. 

Table 5.1 

Three Groups of Student Performance on the Mental Computation Test 

Groups Primary 
students 

Secondary 
students 

Number of 
students 

High (H) 18 (21.7%) 27 (30.3%) 45 (26.2%) 

Middle (M) 28 (33.7%) 28 (31.5%) 56 (32.6%) 

Low (L) 37 (44.6%) 34(38.2%) 71(41.3%) 

Number of 
students 

83 89 172 

Just over a quarter of the students were assigned to Group H (26.2%), the highest 

level of mental computation performance. Overall these students made only a few 

(if any) errors on the test. Just three instances of errors on whole number items 

were recorded for students in Group H and involved multi-digit addition and 

subtraction of items at Level 5 and Level 6. For the primary students all errors 

were on part-whole items; the two items that stood out as being the most difficult 

were two Level 7 items, 10% of 45 and 0.5 + 0.75 (primary students were not 

given items higher than Level 7). For the secondary students in Group H few 

were successful in answering 30% of 80 and 1/2 + 1 /3, both Level 8 items. Errors 

across Group H were mainly spread over the Level 7 items, for example, 

approximately a third of the secondary students made errors on 10% of 45, 3 ÷ 1/2, 

and 4 x 3/4. 
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Students assigned to Group M (32.6%), the middle group, were less successful on 

the whole number items than students in Group H and additionally the number of 

students making errors on the part-whole items increased. Primary students in the 

middle group were largely successful in answering the whole number items, 

although 24 x 3 (at Level 6) was the item with the highest number of errors. Not 

one primary student successfully answered 10% of 45 and few were successful in 

answering 0.6 x 10 and 0.5 + 0.75, all Level 7 items. For secondary students the 

hardest whole number item was 52 — 25 (at Level 5), with very few students 

answering the Level 7 part-whole items correctly. There was a decrease in 

performance for all students in the middle group across the Level 5 and Level 6 

part-whole items, compared to students in the highest group. 

Students assigned to the lowest group of mental computation performance, Group 

L (41.3%), were not successful in solving the whole number items at Level 5 and 

Level 6. More than half of the primary students in the lowest group, for example, 

did not attempt or were unsuccessful in solving 52 — 25 and 24 x 3. These 

students were, however, generally successful in solving the whole number 

questions at Level 2 to Level 4, including 9 + 8, 17 — 8, 5 x 6, and 21 —7. 

Overall, students in Group L answered few (if any) part-whole items. Primary 

students were most successful in answering items 50% of 24 and 1/2  + 1/4. 

Secondary students were most successful in answering items 50% of 24, 25% of 

80 and 0.25 + 0.25. Interestingly, half of the primary students in Group L were 

successful in answering the item 3 + 1/2, although no secondary students assigned 

to the lowest group provided a correct answer for the same item. 

5.3 Performance on the Comparison Tests 

Overall, 166 students attempted the fraction comparison task and 171 attempted 

the decimal comparison test (N = 172). Students' performance on individual 

fraction and decimal comparison items is reported in Appendix C.2. 
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5.3.1 Performance on the fraction comparison test 

The spread of student performance on the fraction comparison task across the 

three groups of students is presented in Table 5.2. Two thirds of the students 

assigned to the highest group for mental computation performance (n = 45), 

correctly identified the largest fraction in all eight pairs (33.3%) or made a single 

error (33.3%). The error for most students involved the last item on the test, with 

students indicating that 1 /9 was a larger fraction than 2/ 12 . 

Table 5.2 

Student Performance on the Fraction Comparison Test 

Number of items 
answered correctly 

Group H Group M Group L Number of 
students 

8 15 (33.3%) 2(3.6%) 2(2.8%) 19(11.0%) 

7 15 (33.3%) 9 (16.1%) 3 (4.2%) 27 (15.7%) 

6 1(2.2%) 9 (16.1%) 8 (11.3%) 18 (10.5%) 

5 8 (17.8%) 21(37.5%) 37 (52.1%) 66 (38.4%) 

4 0(0.0%) 3 (5.4%) 8 (11.3%) 11(6.4%) 

3 3(6.7%) 9(16.1%) 8(11.3%) 20(11.6%) 

2 2 (3.6%) 2 (3.6%) 2 (2.8%) 6 (3.5%) 

1 1 (2.2%) 2 (3.6%) 2 (3.6%) 5 (2.9%) 

0 2 (4.4%) 1(1.8%) 3 (4.2%) 6(3.5%) 

Number of students 45 56 71 172 

172 

Just two students in Group M (middle performance) correctly answered all eight 

items with a further nine students making a single error. Like the students in the 

Group H, the error most commonly involved comparing the fractions 1 /9  and 2/12. 

The largest number of students in Group M correctly identified the largest 

fraction in five pairs (37.5%). Approximately half of these students, however, 

made errors on the same three items: those where the pair of fractions involved 
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the same numerator, for example, 4/8 and 4/12, 3/4 and 3/9, and 1 /5 and 1 /8. For these 

same students, the pattern of response across all eight pairs of items showed that 

students consistently chose those fractions with the larger denominator as being 

"larger," suggesting the students were not seeing the fraction as a composite 

relational entity. Generally, however, most students were successful in 

identifying the larger of two items where the comparison involved fractions with 

the same denominators: 2/4 and 3/4, and 3/8 and 6/8. A different pattern of response 

was identified for students who correctly identified just three of the larger 

fractions (16.1% in Group M). In comparing fractions with the same 

denominator, these students chose the fraction with the smaller numerator as 

being "larger," for example, 3/8 over 6/8, and also choose "larger" fractions based 

on the size of the denominators, for example, 2/3 over 9/10. These students 

persistently choose fractions with smaller numerators and denominators as being 

"larger." 

In the lowest group, Group L, just five students correctly identified the largest 

fraction in all eight pairs, or made a single error. Like students in Group M, the 

largest cluster of students correctly identified the largest fraction in five pairs 

(52.1%). The tendency for students to choose fractions with larger denominators 

as being larger overall was stronger for students in Group L, than for Group M. 

As well, there was also a small number of students (11.3%) who appeared to be 

associating larger fractions with smaller denominators, although student numbers 

were similar to students in Group M. 

Across each of the three groups there were small numbers of students who 

marked some items as being the same despite being asked to mark the larger 

fraction. It seems likely that students were comparing these fractions based on the 

number of parts missing from the whole, which in this case is one part for both 

fractions. For example, for the item comprising 9/10 and 2/3 there is 1 /10 missing 

from the whole (to leave 9/10) and also 1 /3  missing from the whole (to leave 2/3). 

There were also small numbers of students answering just one or two items 
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correctly (9.9% of the total number of students); in most cases these were the 

only items attempted. 

5.3.2 Performance on the decimal comparison test 
The spread of student performance on the decimal comparison test across the 

three groups of students defined by mental computation performance is presented 

in Table 5.3. Approximately half of the students assigned to Group H for mental 

computation performance correctly identified the largest decimal in all twelve 

pairs (51.1 To). Small numbers of students (five or fewer) were spread over the 

other possible scores, with no students identifying less than four correct pairs 

overall. 

Table 5.3 

Student Performance on the Decimal Comparison Test 

Number of items 
answered correctly 

Group H Group M Group L Number of 
students 

12 

11 

10 

9 

23(51.1%) 

5(11.1%) 

4(8.9%) 

4(8.9%) 

7(12.5%) 

10 (17.9) 

4(7.1%) 

7 (12.5%) 

6(8.5%) 

2(2.8%) 

6(8.5%) 

3 (4.2) 

36(20.9%) 

17(9.9%) 

14(8.1%) 

14(8.1%) 

8 2 (4.4%) 4(7.1%) 5 (7.0%) 11(6.4%) 

7 2 (4.4%) 3 (5.4%) 9 (12.7%) 14(8.1%) 

6 0(0.0%) 8(14.3%) 11(15.5%) 19(11.0%) 

5 2(4.4%) 5(8.9%) 12(16.9%) 19(11.0%) 

4 1(2.2%) 3 (5.4%) 11(15.5%) 15 (8.7%) 

3 0(0.0%) 3(5.4%) 4(5.6%) 7(4.1%) 

2 0(0.0%) 0(0.0%) 2 (2.8%) 2 (1.2%) 

1 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

0 0(0.0%) 0(0.0%) 1(1.4%) 1(0.6%) 

Number of 
students 

45 56 71 172 

172 
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For the students assigned to Group M for mental computation performance, the 

spread of responses was more evenly distributed across the twelve possible scores 

than for Group H. The number of students correctly identifying ten or more larger 

decimals decreased overall in comparison with the students in the Group H. For 

students in the middle group who correctly identified the larger of four to seven 

decimal pairs, there was some indication that students were choosing the longer 

decimals as being larger, although not always consistently across all 12 items. 

Many students experienced difficulty with items that involved comparing decimal 

values containing zeros: 0.8 and 0.80, 0.450 and 0.45, 0.731 and 0.73100, and 3 

and 3.0. Similarly the choices made by students tended to be related to a certain 

type of decimal such as the truncated decimals, for example, 3.77 and 3.7777. 

Performance on some individual items, however, was quite high, for example, 

most students in Group M chose 4.8 as being larger than 4.67; similarly students 

generally chose 0.5 as being larger than 0.36. 

In Group L, the majority of students correctly identified four to seven of the 

larger decimals. Decimals with more digits featured consistently in the pattern of 

responses; for example, on individual items more students in Group L marked 

4.67 as being larger than 4.8, than in the Group M. More than half also 

experienced difficulty with items that involved comparing decimal values 

containing zeros, with similar results across the truncated decimals. 

A different pattern was identified for a smaller group of students in Group L. 

These students consistently chose the decimals with the least number of zeros as 

being larger, and also identified the truncated decimals as being larger, a pattern 

of response that indicated students were engaging in reasoning based on the idea 

that shorter decimals represent a larger value. Less students in Group L (19.8%) 

were able to identify ten or more of the larger decimals, compared to either Group 

M (or Group H). 
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5.4 Student Mental Computation 
Questionnaire 

In expanding the profile from a sole emphasis on mathematical performance, data 

from the student questionnaire are also considered across the three groups of 

students (Group H, Group M, and Group L) and constitutes the third stage in 

building a student profile of mental computation. The combined data for all 

students are reported and then analysed across the three student groups based on 

mental computation performance. For individual questions, comparisons of 

means between the three groups are reported using one-way ANOVA with effects 

considered significant at p < 0.05. Only significant differences are reported in this 

section although the full details of analyses associated with each question are 

available in Appendix C.3. 

5.4.1 Student beliefs: The importance of mental 
computation 

Five beliefs statements were presented to the students for their consideration; 

relative frequencies of responses across the total number of students are presented 

in Figure 5.1. The majority of the students communicated that they considered 

mental computation important at both the primary and secondary school levels. 

Two opposing statements were also presented to students regarding the relative 

importance of mental computation and written computation compared to each 

other. For both statements there were high levels of responses that indicated the 

students were uncertain; generally the students more widely supported the 

statement emphasising mental computation over written computation. The 

statement concerning the importance of mental computation in relation to its use 

by adults provoked a more varied range of responses amongst the students. Half 

of the students agreed or strongly agreed with the statement, with just under a 

quarter of the students expressing disagreement or strong disagreement. 
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Figure 5.1. Students' views on the importance of mental computation. 

The responses of students across the three groups did not differ significantly 

across the five views between the Group H and Group M, or Group M and 

Group L. Between the highest and lowest groups, however, there were 

differences. Students in Group H indicated stronger agreement for the importance 

of mental computation at the secondary level than did students in Group L, 

F(2,167) = 4.424, p < 0.05. Similar results were obtained when students 

considered mental computation at the primary level, although this was  less 

pronounced at F(2,167) = 2.902, p = 0.058. Students in Group L, however, 

expressed more support for the importance of mental computation as associated 

with adult use than did students in Group H or Group M, F(2, 167) = 3.160, 

p < 0.05. 

5.4.2 Student self assessment 
Students completed a self assessment over five statements relating to aspects of 

their mental computation ability. A summary of responses is provided  in 

Figure 5.2 and differences between the three student groups are described. 
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Figure 5.2. Students' reported self assessment on aspects of computation. 

More than half of the students strongly agreed or agreed that they were "quite 

good at tables and number facts," with a similar pattern of responses reported for 

enjoying "harder maths problems." Additionally, over half of the students 

expressed disagreement (or strong disagreement) with the idea that mental 

computation on the whole was difficult. As a group, many of the students were 

indecisive about their mental computation ability in relation to written 

computation and vice versa. Those who offered a stronger opinion appeared to 

nominate written computation over mental computation, although there were no 

significant differences between groups on this latter pair of statements. 

Students in both Group H and Group M differed significantly from students in 

Group L in assessing whether they were "quite good at tables and number facts" 

F(2,169) = 8.383, p < 0.001. Students in Group L reported a much lower opinion 

of their ability. Students also significantly differed in their reported enjoyment of 

"harder maths problems," F(2,169) = 9.335, p < 0.001. Students in Group H, 

expressed higher agreement with the statement than students in either Group M or 

Group L. Similarly students in Group H differed significantly from Group M or 

Group L in their agreement with the statement "I find most mental maths work 

139 



difficult" F(2,169) = 7.767, p < 0001, with students in the highest  group  less 

likely to disagree. 

5.4.3 Attitudes towards mental computation 

Students were asked to consider a series of nine attitudinal statements,  with  data 

used to answer the question, what attitudes do students in the middle years hold 

towards mental computation? The data were separated into those statements that 

presented a more positive attitude to mental computation (Figure 5.3) and those 

that were more negative (Figure 5.4). 

Positive Attitudes. The students displayed a relatively positive attitude  in 

considering the usefulness of mental computation outside of school and supported 

the view that mental computation can be the quickest way to work through a 

problem. Generally students indicated that mental computation was "fun" 

although responses were more varied across the five indicators. The students also 

reported that working mentally was not always preferable to "being able to write 

it down," with the largest number of students disagreeing with the view. There 

were no significant differences across the more positive attitudes among the three 

groups of students. 
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Figure 5.3. Students' responses to positive attitudes to mental computation. 
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Negative Attitudes. The students did not support the idea that mental computation 

was for students in lower grades. As well, the students did not appear  to  associate 

mental computation with speed, although responses across the three groups 

differed (F(2,169) = 8.755, p < 0.001). Students in Group L reported more 

support for the view than did students in Group H. Similarly, students  in  Group L 

also reported more support for the belief in mental computation as "being hard" 

because of having to "remember everything" than students in Group M and 

Group H, F(2,169) = 6.574., p = 0.05. 
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Figure 5.4. Students' responses to negative attitudes to mental computation. 

Students were varied in their responses to the suggestion of mental computation 

as being "stressful," although generally it was not supported with disagree the 

modal response. Additionally students in Group L were also more inclined to 

support the view relating to the ease of using calculators instead of mental 

computation than students in Group H, F(2,168) = 3.427, p < 0.05, although 

generally calculator use was not strongly supported by the students as  a  whole. 

5.4.4 Students' use of written, calculator, and 
mental computation 

Students were asked to report on their use of written, calculator, and mental 

computation work in two settings: during their class mathematics time and 
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outside of school. The students were asked to rate the two settings using 

descriptors: 1 = most, 2 = some, and 3 = least. For this question a summary of the 

patterns of student responses is provided in Table 5.4. In some cases, for example 

Pattern 10, students did not rate all three computation categories. As well some 

students marked two out of the three categories with descriptors same or even, for 

example Pattern 7. 

Table 5.4 

Students' Reported Use of Written, Calculator, and Mental Skills 

Pattern Written Calculator Mental Number of 
students (in 

class) 

Number of 
students 

(outside of 
school) 

1 Most Least Some 84(49.1%) 15(8.7%) 

2 Most Some Least 18 (10.5%) 21(12.2%) 

3 Most Even Even 3(1.8%) 1(0.6%) 

4 Some Most Least 1 (0.6%) 9 (5.2%) 

5 Some Least Most 35 (20.5%) 51(29.7%) 

6 Least Some Most 5 (2.9%) 40 (23.3%) 

7 Even Even Most 0(0.0%) 3(1.7%) 

8 Even Least Even 5 (2.9%) 0 (0.0%) 

9 Even Even Least 1 (0.6%) 0 (0.0%) 

10 Most 9(5.3%) 2(1.2%) 

11 Most 6 (3.5%) 8(4.7%) 

12 Least Most Some 1 (0.6%) 13(7.6%) 

13 Even Even Even 3 (1.8%) 2(1.2%) 

14 Most 4(2.3%) 

15 Even Most Even 1(0.6%) 

16 Least Even Even 2(1.2%) 

Total number of responses 	171 	172 
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In considering first what methods of computation students used most in their 

mathematics class, Patterns 1, 2, and 5 were the most commonly reported by the 

students. Two thirds of the students overall (66.7%) reported a pattern whereby 

written work featured (shown in Table 5.4 as most) and a further 26.9% of 

students reported working mentally most. 

In reporting what methods of computation students used most outside of school, 

the responses were more varied than those reported for mathematics class time. 

The use of the most common pattern reported for in class — Pattern 1 (49.1%) — 

which ordered written work, mental work, and then calculator work, decreased 

considerably with only 8.7% of students indicating this was what they used 

outside of school. Students reporting Pattern 5 in class (20.5%), which ordered 

mental work first, followed by written work and calculator work, increased 

slightly to 29.7% in use outside school. Noticeably, Pattern 6, which was 

reported in class by only 2.9% of students, increased to 23.3% for outside of 

school again featuring mental computation. Calculator computation in class was 

reported as most by only two students. In reporting calculator use outside of 

school, however, 15.7% of students marked a pattern that specified calculator use 

as most. Overall, only 14.6% of students reported the same computation pattern 

in both the class setting and outside of school, with most students associating the 

use of mental computation outside of the school environment. 

Table 5.5 presents the responses of students across the three groups of students 

defined by mental computation performance in Section 5.2. Across the three 

methods of computation used in class, approximately three quarters of the 

students in Group H and Group M reported a pattern that featured written 

computation. For students in Group L written computation was reported for just 

over half of the students with an increase in students reporting a pattern that 

featured mental computation. For students in each of the three groups, the 

emphasis changed from written computation to mental computation when 

considering computation outside of school. It was highest for students in Group H 
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with approximately three quarters reporting a pattern that featured mental 

computation outside of school, compared to a quarter for use in class. As well, a 

small number of students in each group reported a pattern that featured using 

calculators for computation outside of school. 

Table 5.5 

Computational Use Across the Three Student Groups Defined by Mental 
Computation Performance 

Computation used in class 

Mental 

Written 

Group H 

11(24.4%) 

32(71.1%) 

Group M 

9(16.1%) 

42 (75.0%) 

Group L 

28 (39.4%) 

40 (56.3%) 

Calculator 0 (0.0%) 1(1.8%) 0 (0.0%) 

Other* 2 (4.4%) 4(7.1%) 3 (4.2%) 

Totals 45 (100%) 56(100%) 71(100%) 

Computation used outside of class 

Group H Group M Group L 

Mental 32(71.1%) 30 (53.6%) 38 (53.5%) 

Written 7(15.6%) 14 (25.0%) 18 (25.4%) 

Calculator 6(13.3%) 10(17.9%) 12(16.9%) 

Other* 0 (0.0%) 2 (3.6%) 3 (4.2%) 

Totals 45 (100%) 56 (100%) 71(100%) 
Note: * totals refer to those patterns reported in Table 5. 4 where students did not nominate a computational preference 
(most) instead marking the choices even and least. 

5.4.5 Students' mental computation preferences 

As part of the questionnaire, students were presented with 12 computation items 

and asked to indicate which items they would choose to do mentally by indicating 

yes or no. Students were not asked to record answers. The data are reported across 

the three student groups defined by mental computation performance (see Figure 

5.5, 5.6, and 5.7) and there were differences between the types of items students 

would consider using mental computation to solve, indicating that the students 
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had limits associated with what they considered reasonable or felt comfortable 

with for mental computation. 

The responses of students in Group H were relatively consistent across the items 

(refer to Figure 5.5), with the majority of students indicating they would attempt 

most of the items mentally. Across the addition and subtraction items the 

proportion of students marking yes decreased across the items: 58 + 34, 

47 + 54 + 23, 165 + 98, and 264 — 99. The pattern of response was similar across 

the multiplication items from 7 x 25, 60 x 70, 945 x 100, and 14 x 83, the last of 

which was the only item to provoke a response whereby most students indicated 

they would not attempt the item mentally. The other item that provoked a 

different response pattern was 10% of 45 with half of the students indicating they 

would attempt the item mentally and half indicating they would not. More than 

three quarters of the students indicated they would choose to do 1 — I /3,  ½  + 3/4, 

and 6.0 + 4.5 mentally. 
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Figure 5.5. Group H students preferences for mental computation items  (n  = 45). 

For students in Group M responses across the addition items were similar to 

students in Group H, although generally the numbers of students marking yes 
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progressively decreased (refer to Figure 5.6). For the item, 264 — 99, however, 

more than half of the students indicated this was not an item they would choose to 

do mentally. Across the multiplication items 7 x 25 and 60 x 70, responses that 

favoured mental computation were only slightly higher than those than did not. 

For the item 945 x 100, however, more students indicated that this was not an 

item they would choose for mental computation and like students in Group H, 

most students indicated they would not choose to do 14 x 83 as a mental problem. 

Apart from 10% of 45, the majority of students in Group M indicated they would 

attempt the fraction and decimal items, although again the proportion  of  students 

marking yes was less than in Group H. 

Figure 5.6. Group M students preferences for mental computation items  (n  = 56). 

For the students in Group L responses across the addition items did not vary from 

the responses provided by students in Group M (see Figure 5.7). More than half 

of the students in Group L, however, would choose to do the problem 264 —99 

mentally, unlike students in Group M. The proportion of students indicating they 

would choose the multiplication items to do mentally decreased progressively. 

Across the fraction, decimal, and percent items, students in Group L were 

relatively even in their preferences. More students indicated they would not 
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attempt 10% of 45 or 1 — 1 /3 mentally, although more students indicated they 

would attempt 1/2 + 3/4  and 6.0 — 4.5. 

Figure 5.7. Group L students preferences for mental computation items (n = 71). 

5.4.6 Students' use of mental computation with 
whole numbers, part-whole numbers and 
related activities 

The different types of numbers and activities are considered in three groups of 

similar items in relation to mental computation. A summary of the responses of 

students is presented in Figure 5.8. Overall students reported using mental 

computation to solve fraction, decimal, or percent items less often than they did 

for operations with whole numbers. 

Whole numbers. Half of the students (50.3%) indicated that they frequently used 

mental computation to help them "add and subtract numbers," with a further 

20.5% indicating that they always did. The frequency levels of the same 

indicators decreased, however, for responses to multiplication and division. Here, 

32.7% of students indicated that they frequently used mental computation to 

"multiply and divide numbers" and 12.3% indicated that they always  did.  The 

147 



• Always 
E3 Frequently 

Sometimes 
0 Rarely 
• Never 

0 

60 

50 

40 

30 

20 - 

10 - 

•  

percentage of students who marked rarely also increased to 17.0% for  the 

operations of multiplication and division compared to 0.6% for addition and 

subtraction. Student responses to the question regarding using mental 

computation to "work out tables you can't remember" were very similar to 

reports related to multiplication and division. 

Add. & M ult. & Work out Percents Fractions Decimals Estimate Check a 
subt. with Div. with 	tables 	 an answer calculator 

whole 	whole 	 answer 
numbers numbers 

Figure 5.8. Mental computation with whole numbers, part-whole numbers and related 
activities. 

In using mental computation for whole number problems there were significant 

differences between students in Group H and students in both Group  M  and 

Group L, F(2,168) = 5.600, p < 0.05), with students in Group H, indicating they 

more frequently used mental computation with whole number problems for 

addition and subtraction. Students did not significantly differ in their reported use 

of mental computation for whole number problems with multiplication and 

division or to work out tables. 

Fractions, Decimals, and Percents. In considering how often students used 

mental computation to work out fractions, decimals, and percents,  the  responses 

were relatively consistent across all three types of numbers,  in  particular the 

number of students marking sometimes was almost identical (42.4%, 41.8%, and 

42.1%). There was a small increase in rarely responses for the area  of  percents 

(34.5%) compared to fractions (24.7%) and decimals (25.3%). There  was  also a 
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small number of students who indicated they never use mental computation 

across these topics compared to none for whole numbers. 

The students did not differ significantly in their reported use of mental 

computation with either percents or fractions; there were differences, however for 

the use of decimals (F(2, 167) = 4.455, p < 0.05). It was the students in Group H 

who indicated more frequent use of mental computation with decimals than did 

students in Group M or Group L. 

Estimation and Calculator Activities. Students indicated that they sometimes used 

mental computation in estimation activities (43.5%), with indicators always and 

frequently narrowly accounting for the largest group of students overall (19.4% 

and 23.5% respectively). Students were also asked about using mental 

computation to check a calculator answer and the majority also indicated this 

occurred sometimes (41.8%). Differences between the three groups of students in 

their reported use of mental computation with estimation activities or calculator 

activities were not significant. 

5.4.7 Mathematical competencies associated with 
mental computation 

The students were asked to report on the importance of nine mathematical 

competencies associated with mental computation, including: remember tables, 

be able to work things out on paper, think logically, be creative, get the right 

answer, have a range of ways to work things out, be able to estimate, give reasons 

for answers, and be able to answer quickly. A summary of responses is provided 

in Figure 5.9. Across all nine mathematical competencies, the modal response 

reported by the students was important. In combining the essential and important 

indicators, an emphasis on remembering tables was supported by 83.6% of 

students. The lowest cumulative percentages were for "be creative" (54.7%) and 

"be able to answer quickly" (51.5%). There were no significant differences across 
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Figure 5.9. Students association of mathematical competencies with mental computation. 
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the competencies associated with mental computation for the three groups of 

students as defined by mental computation performance. 

5.5 Questions related to classroom activity 

5.5.1 Classroom organisation 

In terms of the experience of mental computation in the classroom, students 

reported working on their own as the most frequent way for the class to be 

organised, as shown in Figure 5.10. Students reporting working with the whole 

class or with friends less frequently. Additionally, working in small groups was 

not reported as a frequent activity for these students, with half indicating 

sometimes and just over a third of the students indicating rarely or never. 

• Always 
13 Frequently 

Sometimes 
0 Rarely 
• Never 

Figure 5.10. Classroom organisation for mental computation reported by 
students. 

5.5.2 Mental computation activities 

Students were asked to report which of the mental computation activities listed in 

the questionnaire were conducted in their classes. A summary of the activities and 

student responses are presented in Figure 5.11. The activity that the students most 

frequently associated with mental computation in the classroom involved 

"discussing different solutions," with students responding similarly to the item 

concerning "real life problems." The use of "20 quick questions" was the activity 
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Figure 5.11. Activities students associate with mental computation. 
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that the students reported less frequently than other activities. Reported by 

approximately a third of the students, this was the only item where the modal 

response was rarely. Secondary students were less likely to report "games" as 

a classroom activity than primary students (F(1,170) = 24.640, p < 0.001), 

although they were more likely to report "memory activities" (F(1,169) = 

5.338, p < 0.05) and "textbook activities" than primary students (F(1,168) = 

4.401, p < 0.05). 

5.6 Chapter Summary 

In the second phase of the study, mental computation performance is 

described in relation to three groups of students defined by the mental 

computation performance levels described by Callingham and McIntosh 

(2001, 2002). Across the three groups, the numbers of students in the lowest 

group, Group L, were slightly higher than for Group M or Group H. This is 

perhaps due to the fact that there were limited items on the mental 

computation test to distinguish students at lower levels effectively. It is likely 

that students in Group L represent at least Level 5 and Level 4, as the lower 

levels are comprised of only whole number items. It is also a reasonable 

expectation that some of the students answering only one or two items may 

not provide a complete representation of student performance associated with 

Level 5. 

The test items used in the current study are a sample from the original tests 

used to develop the mental computation levels (Callingham and McIntosh, 

2001). The original tests were constructed using a much larger number of 

items and were administered over a considerable sample size. Even with 

fewer items than the original tests, there appears to be a high level of 

consistency between Callingham and McIntosh's mental computation 

performance levels and the three groups identified in this study. For each of 

the three groups, mental computation competence increased for both whole 

and part-whole numbers. For the whole number items the students increased 

in their competence across the items involving multi-digit numbers but not so 

much for the items involving single digits. For the items involving fractions, 
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decimals, and percents students in the lowest group, Group L, achieved some 

success with items that involved 50% and 25% and the equivalents 

representations in decimals and fractions. Students in the highest group, 

Group H, however, demonstrated a consistently high level of competence 

across the range of items involving part-whole numbers and operations. 

Taking each of the three groups of students, as determined by mental 

computation performance, it was then possible to look at the consistency of 

performance on a different type of task — comparing fractions and decimals — 

but one closely related to number sense like mental computation. Two thirds 

of the students assigned to Group H were competent in successfully 

identifying the largest fraction in eight pairs or making a single error. The 

results for the decimal comparison task were similar, indicating that the 

students at the higher level of mental computation performance could 

demonstrate a quite good understanding of the magnitude of fraction and 

decimals numbers. 

Students at the lowest mental computation performance and assigned to 

Group L, did not perform as strongly as students in Group H. Just over half of 

the students, for example, correctly identified five of the larger fractions with 

analysis of the pattern of response showing students were relatively consistent 

in choosing fractions with larger/longer denominators as being larger. It is 

likely students were influenced by the traditional association of increasing 

number of digits with size, a familiar whole number concept. Furthermore, 

when choosing decimals it appeared that the same principle was being 

practiced. Over Group M and Group H, however, the number of students 

reasoning by size decreased, implying that students' understanding of rational 

number concepts was perhaps evolving. 

The student responses to the mental computation questionnaire were also 

analysed across the three groups defined by mental computation performance. 

The question regarding the students' perception of the importance of various 

mathematical competencies in relation to mental computation (Section 5.4.7) 
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was the only question over which the three groups of students did not differ 

significantly on any part of the question. 

Across the five beliefs regarding the importance of mental computation 

(Section 5.4.1), only students in the highest and lowest groups differed 

significantly on some of their responses. Students in Group H expressed a 

higher level of agreement for the importance of mental computation over the 

primary and the secondary years than students in Group L. A higher level of 

association with mental computation as important because of adult use, 

however, was reported by students in Group L over students in Group H. 

Students completed a self assessment relating to some of aspects of mental 

computation ability (Section 5.4.2). Students in the lowest mental 

computation group were less inclined to support their ability to work with 

tables and number facts and also in enjoying harder problems than students in 

the highest and middle groups. Accordingly, students in the lower group were 

more likely to agree with the perception of mental computation as difficult. 

There was very little difference between the students reported ability with 

written computation over mental computation and vice versa. Slightly more 

students overall were inclined to nominate written computation although this 

choice was not different for the three groups of students. 

The students also rated their level of agreement with a set of attitudes related 

to mental computation (Section 5.4.3). Overall, the students across the three 

groups did not differ in their responses to the attitudes described as more 

positive. Of the more negative attitudes, however, more students in the lowest 

mental computation group compared to the other two groups, agreed with the 

association of mental computation as "hard" due to "having to remember 

everything." Interestingly, more students in the same group disagreed with the 

association of mental computation as "hard" due to speed and having to work 

quickly, than was reported by the other two groups. 

In comparing the use of written, mental, and calculator computation (Section 

5.4.4), all three groups of students reported a higher level of use of written 
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computation in the mathematics classroom. Although the percentage of 

students in Group L was less than in Group M and Group H, more Group L 

students reported a pattern emphasising mental computation than did students 

in Group M and Group H, perhaps through encouragement from the teacher or 

perhaps through an unwillingness to record their mathematics. In reporting the 

comparative use of the three methods of computation outside of school, 

however, students in Group H reported a much higher use of mental 

computation than students in Group L and Group M. Overall the difference in 

the use of computation between the school and non-school environments was 

more extreme for students at the highest level of mental computation. 

The size of the numbers involved in a problem influenced the students' 

choices as to whether they would consider using mental computation, 

particularly for whole numbers (Section 5.4.5). Across the three groups, there 

was a steady decline in the proportions of students indicating they would 

choose to do a problem mentally, particularly between Group H and the other 

two groups. Between Group M and Group L the decline was related to 

specific items. 

In the final question (Section 5.4.6), there were no significant differences 

between the three groups for reported use of mental computation with 

fractions, percents, for estimation activities or for calculator activities. 

Students at the highest mental computation level differed from the other two 

groups by indicating they more frequently used mental computation with 

whole number problems for addition/subtraction. There were no differences 

between the groups, however, for the operations of multiplication and 

division. For decimals there was a higher use of mental computation reported 

by students in Group H than for Group M and Group L. 

In Chapter 6 the study advances to consider mental computation competence 

at the middle school level through task-based interviews with 55 students. The 

avenue through which to achieve this is a mathematical content focus on 

156 



working mentally with fractions, decimals, and percents. This comprises the 

third phase of the study. 
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Chapter 6 

Results (Phase 3): Strategies for 
working mentally with percents 

fractions, and decimals 

6.1 Introduction 
Like Chapter 5, this chapter builds on one of Shulman's domains of teacher 

knowledge — understanding learners' and their characteristics. It comprises 

Phase 3 of the study. In exploring the potential role of mental computation in 

strengthening numeracy across the middle years of schooling, this chapter 

presents the results of 46 student task-based interviews, which have a 

mathematical content focus devoted to fractions, decimals, and percents. 

Individually the three conceptual domains under consideration — fractions, 

decimals, and percents — have received extensive attention from mathematics 

educators. As discussed in the Chapter 2, however, the role of mental 

computation within these areas has not been investigated. 

Across three sections, the level of each mental computation problem on the 

mental computation scale developed by Callingham and McIntosh (2002) is 

identified. Then the strategies that students used to solve mental computation 

problems with percents, fractions, and decimals with consideration of the 

characteristics of the mental computation problems are detailed. This analysis 

builds on the work of Caney and Watson (2003), who described mental 

strategies for some fraction, decimal, and percent problems that transferred 

from the more familiar whole number domain. This chapter further examines 

the strategies, reporting the frequency of strategy use among the students. 

Additionally, students' mental computation responses are also considered in 

relation to procedural and conceptual thinking as described in Section 3.5.4.3. 

Working procedurally involves strategies that are learned by rote and have no 

accompanying explanation that displays conceptual understanding of the 

processes taking place. Working conceptually then involves strategies in 
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which students do appear to connect their knowledge of part-whole quantities 

and operations to solve problems mentally. 

Data are reported for students in the High group (n = 24) and Middle group 

(n = 22), as defined by mental computation performance in Chapter 5. 

Generally the two groups were relatively even in the numbers of primary and 

secondary school students. Although a small number of students (n = 9) from 

the Low mental computation performance group made up the sample of 

interview participants, responses of these students are not considered. 

Students in Group L were generally not very successful with the part-whole 

interview questions and answered fewer interview questions than those 

students in the other groups overall. Data collected from these students was 

therefore extremely limited. 

Student quotes are used throughout this chapter, with students identified by an 

individual number. Each number is preceded by a P denoting a primary 

student or an S denoting a secondary student, for example, P98 and S130. 
Associated appendices are detailed in Appendix D. 

6.2 Mental Computation Strategies with 
Percents 

The first problem in the percent section of the interview was 50% of 24; a 

smaller number of students were also asked 50% of 21 as a variation of the 

first problem using an odd number. For the secondary students, the problem 

50% of 21 was reserved for students who displayed difficulties with any 

further problems presented. Problems involving 25% and 75%, commonly 

referred to as "benchmark" percents followed, with smaller numbers of 

students also solving problems that involved 10% and multiples of 10%. 

Responses to the four problems involving the benchmark percents were 

considered conceptual in nature. Conversely, in problems concerning 10%, 

students produced some responses that were considered procedural, 

particularly with the inclusion of rule-based strategies. These are highlighted 

with the discussion for each of the relevant problems. 
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The problem 50% of 24 (at Level 5) involves a halving concept; three 

strategies by which students solved the problem are presented in Table 6.1. 

The majority of the students changed the representation of 50% to Y2 (n = 30), 

using the half in an equivalent manner to 50%, for example, "Twelve. 

Because fifty percent is just half, all the time, just half" (P19). Only one 

student referred to the alternative decimal representation point five in his 

explanation, "Fifty percent is half or point five of it so you just have to halve 

twenty-four" (P63), although this was not listed as a separate strategy. 

Table 6.1 

Mental Strategies Associated with 50% of 24 

Strategy description Number of responses 

Group H Group M 

Changed representation (50% = 1/2) 17* 13 

Number knowledge related to 50% 0 3 

Split by place value (50% of 20 + 50% of 4) 1 1 

Total number of responses 18 17 

Students also used their number knowledge related to 50% (n = 3). One 

student, for example, referred to the link with the operation of division, "I just 

divided it by two because fifty percent is half of it" (S118). Addition and 

multiplication facts were also referred to: "Half of twenty-four is twelve — I 

worked it out with my times table and I knew that twelve twos are twenty-

four" (P24). A slightly different response involved a student describing 100 as 

a whole, for example, "Well you just halve twenty-four which is twelve. I just 

knew that fifty is half of a hundred so you are halving twenty-four" (P98). 

Place value was explicitly described in the explanations of 50% of 24 

provided by two students although both approached the problem differently. 

The first student started working from the left (tens first): "Twelve. Just halve 

the twenty which is ten and then add the four — oh — add the two which is half 

of four" (S120). The second student worked from the right (units first): 
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"Twelve. Just halve it. Half the four and half the two — I basically knew but 

then did the maths thing, with the half four, half two" (P43). 

Table 6.2 details three strategies used by students to solve 50% of 21 (at Level 

5). In describing responses to 50% of 21, students predominantly halved using 

a strategy that involved a place value split (n = 9), for example, "That'd be ten 

point five. Well you couldn't half twenty-one, you had to do half of twenty, is 

ten, then you have to half one by a decimal or a fraction so it would be ten 

point five" (P63). Again some students reported working both from the left 

(tens first) and some from the right (units first). The representation of the 

answer shifted between 10 1/2 and 10.5. One student described his response 

using the context of money: 

In dollars it would be fifty percent so, it would be ten dollars fifty or 

ten point five. I rounded it down to an even number, to the nearest 

number which was easiest, which was twenty, so fifty percent of 

twenty add a half. (P91) 

Table 6.2 

Mental Strategies Associated with 50% of 21 

Strategy description 	 Number of responses 

Group H 	Group M 

Split by place value (50% of 20 + 50% of 1) 	6 	 3 

Number knowledge related to 50% 	 0 	 3 

Changed representation (50% = 1/2) 	 2 	0 

Total number of responses 	8 	 6 

Three students were observed using their knowledge of near numbers in 

relation to 50%. The first student used 11 to solve 50% of 21: 

Ten and a half, ten point five. Because odd numbers don't really have 

half, so you have to take it from the nearest number cause it can't be 

eleven because eleven plus eleven is twenty-two, fifty percent of 

twenty-one would be ten and a half. (P37) 
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Two students used their knowledge of multiplication; one student gave a 

lengthy description with mention of the times tables, an excerpt of which 

follows for 50% of 21 (P31): 

Interviewer: [Very long response time prompts interviewer to 

encourage the student] What are you thinking about? 

Student: 	I know that two numbers go into twenty-one; I was just 

thinking what would go into that. Fifty percent of 

twenty-one would be ten and a half. I was just thinking 

of the times tables and like, I was just thinking of the 

sevens and sixes, nines and eights, that go into that 

number. 

Interviewer: Right, so you were looking for something that went into 

it? 

Student: 	Yeah and then I found out that it had like two of the one 

number into that — ten and a half." (P31) 

A further two students described thinking of 50% as a fraction which is a 

similar strategy reported in relation to 50% of 24. 

Moving from 50% to 25%, students were asked to solve the problem 25% of 

80 (at Level 6). Four strategies were observed and these are detailed in Table 

6.3. The first strategy involved students drawing on their number knowledge 

related to 25% (n = 18). In some cases students gave extra information that 

involved describing the link between 25%, 1/4, and 100, for example, "Twenty-

five percent is a quarter of a hundred, so I did quarter of eighty is twenty" 

(S131). An extension of this strategy involved students further explaining the 

link with division, for example, "I think it's twenty because twenty-five 

percent is a quarter of a hundred and so I just divided eighty by four and I got 

twenty" (S157), or referring to a multiplicative relationship, "Twenty-five 

percent of eight is two because it's four twos makes eight, so four twenty's 

makes eighty" (P93). There was one case where repeated counting was 

observed: 

Is that a quarter of it? Cause I went twenty, forty, sixty, eighty and like 

that's four, cause how you have one whole in the fraction, there's like 
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four in it, cause there's a quarter, half, three quarters, and then a 

whole. (P6) 

Table 6.3 

Mental Strategies Associated with 25% of 80 

Strategy description 	 Number of responses 

Group H 	Group M 

Number knowledge related to 25% 	 12 	 6 

Repeated halving 	 5 	 7 

Changed representation (25% = 'A) 	 3 	 2 

Split by place value (10% + 10% + 5%) 	 1 	 0 

Total number of responses 	21 	 15 

A second strategy that students used was a repeated halving strategy (n = 12), 

for example, "I went fifty percent of eighty is forty and then I made it fifty 

percent of the fifty percent, half of the half, and then went half of forty is 

twenty" (P62) and "Twenty. Because twenty-five percent is the same as a 

quarter and to find out a quarter you just halve it, then halve the half" (S149). 

The third strategy involved changing the representation of 25% to a 'A (n = 5); 

this was similar to that described for 50% of 24 although in this case students 

simply reasoned, for example, that, "Twenty-five is a quarter and a quarter of 

eighty is twenty" (P91). 

The fourth and final strategy, used by only one student, involved splitting the 

25% into parts (by place value) rather than splitting the 80, which is what the 

other examples essentially involved. The student responded, "Ten percent of 

eighty is eight and times that by two you get sixteen and then the five percent 

is half of eight, so it's four and add that to sixteen and get twenty" (S152). 

The problem 25% of 80 was followed with 75% of 200 (at Level 7): four 

strategies are summarised in Table 6.4. In using number knowledge related to 

quarters (n = 13), students described division with a link to 100%, for 

example, "One hundred and fifty. Basically I divided two hundred into four 

163 



because you know that it goes like twenty-five, fifty, seventy-five, and that it 

takes four twenty-fives to get to one hundred so you divide it by four" (S147). 

The link with multiplication was also reported, for example, "I did a quarter of 

two hundred first and then — that would be fifty — and then I just timesed it by 

three to make one hundred and fifty" (P44) and "If you split them up into 

quarters, then each quarter is fifty, three fifty's together" (S120). 

Table 6.4 

Mental Strategies Associated with 75% of 200 

Strategy description 	 Number of responses 

Group H 	Group M 

Number knowledge related to 75% 	 8 	 5 

Repeated halving 	 6 	 5 

Split by other quantity (75% of 100) 	 6 	 2 

Changed representation (75% = 3/4) 	 1 	 0 

Total number of responses 	21 	12 

The repeated halving strategy was used by eleven students, for example, 

"Seventy-five percent of two hundred, if it was fifty percent it would become 

a hundred but there's another twenty-five there to make it seventy-five and so 

you take, you get half of a hundred and add it on to the hundred" (P95). 

Students also reported another strategy for 75% of 200 that involved halving 

and doubling but in a different fashion to the repeated halving strategy (n = 8). 

This strategy, involved a first step of working out 75% of 100, for example, 

"Because I know that seventy-five percent of a hundred is seventy-five and 

two hundred is twice as much as a hundred, so I just double the seventy-five" 

(P157). There was only one instance of a strategy where the student explicitly 

changed the representation from 75% to 3/4: "Because seventy-five percent is 

three quarters and three quarters of two hundred is one hundred and fifty" 

(P101). 

The problem 10% of 45 (at Level 7) was the first problem that did not involve 

one of the benchmark percents (50%, 25%, or 75%), and it appeared to be a 
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more difficult problem for students. Three strategies for solving 10% of 45 are 

detailed in Table 6.5. Ten students employed a rule they had learnt in 

association with 10%, for example, "Four point five. Because this is a trick 

that you can do if it's like ten percent or something — move the decimal point 

forward one" (P48). Some students were able to include within their 

explanations that this rule was associated with dividing by ten, for example, 

"Four point five. Just dividing by ten so I come back to my decimal table with 

decimal point to the ones, tens, hundreds, and it just moves along" (P47). 

These responses were categorised as procedural, given their rule-based nature. 

Table 6.5 

Mental Strategies Associated with 10% of 45 

Strategy description Number of responses 

Group H Group M 

Used a rule 9 1 

Number knowledge related to 10% 6 1 

Split by place value (10% of 40 + 10% of 1 0 
5) 

Total number of responses 16 2 

In using number knowledge related to 10%, students (n = 7) referred to the 

link with division, for example, "Four point five. Because I found out — I 

divided ten by forty-five because ten percent of a hundred is ten so I just 

divided ten by forty-five and I got four point five" (S157). This example is 

interesting because the description of the operation is incorrectly stated 

although correctly calculated. A few students also referred to "how many," for 

example, "Four point five. Ten percent of forty-five, that's how many tens 

goes into forty-five — that's four times and remainder five" (S70). One student 

reasoned using his knowledge of near numbers forty and fifty to work with 

forty-five. 

Student: 	Four and a half. Well it couldn't be four because it is 

too small and it couldn't be five because that's too big. 

Interviewer: What do you mean too big? 
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Student: 	Like if it was five it would be fifty. If it was four it 

would be forty. Put it in the middle of them two. (P93) 

One student used a place value split, for example, "Four and a half. Ten 

percent of forty is four and then I was working out ten percent of five which is 

a half, so four and a half (P101). No students referred to 10% as one tenth. 

Three strategies were observed for the problem, 20% of 15 (at Level 7), as 

summarised in Table 6.6. The first strategy reported by nine students involved 

starting with 10% (half of 20%) and doubling the answer, for example, "Well 

you'd do ten percent which is one point five and then times it by two, so it's 

three" (S158). Instances of the students using a money context were also 

observed in association with this strategy: "Three. A dollar and a half is ten 

percent, and just double it" (S144). 

Table 6.6 

Mental Strategies Associated with 20% of 15 

Strategy description Number of responses 

Group H Group M 

Split by other quantity (10% of 15 + 8 1 
10% of 15) 

Changed representation (20% = 1 /5) 4 0 

Related number knowledge 2 I 

Total number of responses 14 2 

Four students changed the 20% to a fraction representation of 1 /5 , for example, 

"Twenty percent is the same as a fifth and a fifth of 15 is 3" (P47). A more 

detailed example of a student working with 1 /5  is the following. 

Student: 	OK I'm going to do it this way now, so I'm going to do 

twenty over one hundred and then two over ten and 

then one over five and I think I'm going to say three. 
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Interviewer: So how did that help you work out, what did you do 

next? That's such a big jump to then know that it's 

three! 

Student: 	I went it's a fifth and then the fifth goes into fifteen, 

like five goes into fifteen how many times and that was 

just basically it! (P43) 

The third strategy that students used was their related number knowledge, in 

this case linking 20% to 100% as "the whole," and working with 

multiplication or division. An example of a student working in this way is as 

follows. 

Student: 	Three. Well with, you get fifteen and twenty percent 

you just need five of those numbers and three times five 

is fifteen so it works up to be three. 

Interviewer: When you say five of those numbers what do you mean 

by that? 

Student: 	Like twenty times five makes the one hundred, so that's 

a whole. (P93) 

Ten out of 21 students were successful in solving 30% of 80 (at Level 8); the 

responses are summarised in Table 6.7. Four students split 30% working out 

10% first, for example, "I just did ten percent of eighty is eight and then 

timesed it by three" (P44). Two students worked with fractions 

representations, for example: starting with tenths: "So that's three tenths, 

thirty percent of eighty, one tenth of eighty would be eight, times three, 

twenty-four." Another student also persisted with a fraction strategy, "Well 

thirty over one hundred, then three over ten then, that's all I can go to! So 

thirty percent of eighty, three over ten and ten goes into eighty eight times, 

eight times three is twenty-four? Twenty-four!" Just one student applied a rule 

related to decimals starting with, "I knew that if you moved the decimal point 

one it would be eight, and times eight times three" (S48); again the 

application of a rule was considered procedural. 
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Table 6.7 

Mental Strategies Associated with 30% of 80 

Strategy description Number of responses 

Group H Group M 

Split by other quantity (10% of 80) 4 0 

Changed representation (30% to 3/10) 3 1 

Used a rule 1 0 

Split by other quantity (20% of 80 + 10% 
of 80) 

1 0 

Total number of responses 9 1 

Finally, one student was observed solving 30% of 80 in a different way. First, 

he worked out 20% of 80, "Twenty make it twenty, divide eighty by five 

which would give me ... that's sixteen, yeah sixteen." He then went on to 

work out ten percent of eighty, "Then divide it by ten that time, ten that's 

eight — so add that on, it's twenty-four" (S160). 

Four students were also successful in solving 40% of 64. Again, these 

students worked with 10%, then two students "timesed it by four," whereas 

the other two students described using doubling, for example, "I did ten 

percent of sixty-four and then doubled it and then doubled it again" (P44). 

6.3 Mental Computation Strategies with 
Fractions 

Addition. The problem 2/7  + 3/7  (at Level 5) was for the most part given to the 

primary students. Of the 15 successful responses to 2/7 + 3/7, most students 

reported adding the "top numbers." Several students pointed out that, for 

example, "I left them because they weren't higher, they weren't different and 

the three and the two didn't go over seven" (P41) One of these students was 

also asked how it would be different if the problem was 2/7  + 6/7 ; she replied, 

"It would have to go into mixed numerals so one and one seventh" (P63). 

There was some variation in how students talked about the "bottom numbers" 
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or the "sevens." Some students reported, "You don't need to add them 

because they just mean the same thing" (P21) or that "The bottom numbers 

are equal" (P49). 

For the problem 1/2 + 3/4 (at Level 6) most students employed a strategy that 

essentially involved bridging to 1 (or the whole), as reported in Table 6.8. The 

difference in approach was based on whether students bridged from the 1/2 or 

from the 3/4. Twenty-four students used two halves to make a whole, for 

example, "One and a quarter. Basically two quarters is the same as half so if 

you've got two halves that equals a whole and then you just add one quarter to 

that" (S147). Eight students worked up to a whole from three quarters: "So 

half the half which gives you a quarter and that makes a whole if you add 

three quarters, and you've got a quarter left over" (S114). One student further 

described a mental picture that supported this strategy. 

Interviewer: 

Student: 

Interviewer: 

Student: 

Interviewer: 

Student: 

Interviewer: 

Student: 

Let's try something like 'A + 3/4. 

I'm doing another circle. 

OK talk me through it then. 

One whole and one quarter. I used a clock again. 

That's fine! 

And just imagined it, shading in the adds, like adding 

three and just came up to one whole... 

So what did you do when you got to your one whole? 

I imagined another one, another clock and put on the 

quarter. (P41) 

A second strategy reported by students involved performing addition after 

converting the 'A to quarters and arriving at 5/4, for example, "So two quarters 

and three quarters would be five quarters or one and one quarter" (S77). 

Students demonstrated an implicit understanding of equivalence. 
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Table 6.8 

Mental Strategies Associated with 1/2 + 

Strategy description 	 Number of responses 

Group H 	Group M 

Bridging (using 1/2 or using 3/4) 
	

15 	 17 

Number knowledge related to 	 5 	 2 
equivalence 

Total number of responses 	17 	 19 

Subtraction. For the problem 1 — 1 /3 (at Level 6), all students explained the 

relationship of 1 /3 to a whole (n = 19), for example, "Because three thirds 

makes a whole and if you take one off then it would be two thirds" (P48). In 

describing their responses two students also used mental pictures including 

one student who reported using a clock with a "Y" shape to divide the pieces 

before taking them away. The second student talked about the using pizzas, 

"You just break the 1 down into the three parts — say if it was a pizza, cut it 

into three pieces and you take 1 piece, you've got two left, which means 

you've got two thirds" (S118). 

The problem 11/4 — 1/2 (at Level 6) was asked of five students and four were 

successful in solving the problem. Two students made the one half into two 

quarters and was then able to take the quarters off individually: for example, 

"Two quarters is a half so if I've got 1 and then quarter left over; well, then I 

could take that away and then take another quarter off' (P62). Two students 

reported a slightly different approach, for example, "Well you just take one 

quarter off and then you take half and then you add the quarter back on" 

(P19). 

Multiplication. Four successful strategies for the problem 4 x 3/4 (at Level 7) 

are detailed in Table 6.9. First was a strategy that involved splitting the 4 and 

preserving the 3/4, although some variations were observed. Some students 

used a multiplicative split involving the 4, (2 x 3/4) x 2. One student working 

this way, for example, reported, "Two times three quarters which is one and a 
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half and then just timesed that by two to make it four times" (P93). As well 

some students referred to "doubling" the 11/2. Students also worked with the 4 

in a more distributive fashion, (2 x 3/4) + (2 x 3/4), for example, "Three. I 

doubled three quarters - well I timesed three quarters by two and I got one and 

a half, and added one and a half and one and a half to get the answer" (S157). 

Students were also observed adding two three quarters and then recognising 

the link with multiplication (or doubling), for example, "Three. I just added 

three quarters, two of them to one and half and just doubled that" (S66). 

Table 6.9 

Mental Strategies Associated with 4 x 3/4 

Strategy description 	 Number of responses 

Group H 	Group M 

Split by other quantity (4 into (2 x 3/4) x 2 	7 	 8 
or 4 into (2 x 3/4) + (2 x 3/4)) 

Split by other quantity (4 x 1/2) + (4 x Vi) 	5 	 0 

Algorithm with quarters 	 3 	 I 

Bridging 	 0 	 3 

Total number of responses 	15 	 12 

A second strategy involved preserving the 4 and splitting the 3/4 according to 

the distributive property (4 x 1/2) + (4 x 1/4); for example, "I did four times half 

which is two and then four times a quarter which is another whole number, 

two plus one is three" (S140). The explicit use of addition was also described 

in this strategy, "You add half four times that's two and then add three 

quarters, I mean one quarter four times, that's one and add them together, 

that's three" (S117). Similarly, a secondary student explained the counting 

process involved in this strategy: "Three. I took the three quarters and made 

all of them into half and put those — cause that's half, half, half, half, whole, 

whole, and now I've got two and there's four quarters left over, so there's a 

whole" (S65). 

171 



A third strategy reported by four students involved working through an 

algorithm with quarters, for example, "Four times three quarters, so three 

quarters times four so that's six, nine, twelve over four as an improper 

fraction. So twelve into four is three so it would be three, three whole, 

something like that" (S77). These responses were considered to demonstrate 

procedural thinking. 

Bridging was a final strategy reported by just three students. The descriptions, 

however, were very detailed and revealed three slightly different versions of a 

bridging strategy. The first involved a form of bridging that appeared to stem 

from counting. In a lengthy description the student counted quarters keeping 

track of the whole numbers on his fingers: 

Well what I thought was, you start off with three quarters and then you 

add another three to make six quarters but then you add one of those 

quarters back to three to make a whole and so now you've four 

quarters to make a whole and then you've got two left. Then you add 

another three onto that, you add the other two out of the three to make 

two wholes sort of thing and a quarter and that's two times I think, 

three times! Then you add another one there [counts on with fingers] 

got that four times, so one, two, three — three whole. (P31) 

Another student reported a bridging strategy that was supported by a mental 

picture, "I can imagine all the three quarters, four of the three quarters and I 

take one — it would be three wholes because you take one of the three quarters 

and put quarter back into each of the other three quarters and that's three 

wholes" (P95). The last bridging approach, from a secondary student, 

involved making all the three quarters into wholes and then subtracting, 

"Three. I just made them all into one and then take away one, take away four 

quarters" (S131). 

Division. Many students gave 11/2 as the answer for 3 ÷ 1/2 (at Level 7), 

mistaking the "by half" with "in half." This distinction was pointed out by the 

researcher with the chance for students to try again, or in some cases the 

question was rephrased as "three how many halves?" Table 6.10 details the 

five successful strategies that students described. 
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The strategy that the largest number of students reported involved knowing 

that dividing by a half would double the whole number. The detail of the 

responses distinguished students working procedurally and working 

conceptually. Approximately half of the students who used a doubling rule 

simply imparted, for example, "If it's half on one side, you just double this 

number over here" (S70). Other students, however, revealed more of the 

thinking behind this process. An example of one student working this way 

was, "Because it is one whole and you take the halves, and there's two halves 

to each whole, so it doubles the amount of wholes" (P95). 

Table 6.10 

Mental Strategies Associated with 3 ÷ 1/2 

Strategy description Number of responses 

Group H Group M 

Doubling (Procedural and Conceptual) 9 6 

Split by other quantity (1 ÷ 1/2 x 3) 9 2 

Repeated addition (with 1/2's) 1 8 

Number knowledge related to whole 
number referent 

1 0 

Used algorithm o 1 

Total number of responses 20 17 

Split by other quantity was the second strategy observed and involved spitting 

the three in ones or wholes, identifying that each whole has two halves and 

then multiplying it by 3, for example, "So there's two halves in a whole, 

which would be two for each one, so I timesed the two, three times" (P48). 

Often students interchanged talking about "timesing" and "adding." 

Students also reported a third strategy that involved repeatedly combining 

halves in an additive manner. A secondary student reported, for example, 

"Basically you just see how many halves make a whole so you've got like two 

halves make one and then you add another two halves to get two and then 

173 



another two halves to get three" (S147), as well as counting, "To halve one 

whole is two, so you just two, four, and six" (P98). 

One student demonstrated a unique approach working with a whole number 

referent of 300, also describing 30 in his thinking: 

Interviewer: Try this one, 3 1/2. 

Student: 	Six. Because say it was three hundred, fifty into three 

hundred goes six, if it's like half. 

Interviewer: Is that what you were thinking of when you worked out 

the six there? 

Student: 	No, I just go five into thirty, six. I said three hundred ... 

just easier. (P49) 

There was just a single example of a secondary student, who when prompted 

to give more detail, described a type of algorithm rule or shortcut: 

Interviewer: 3 1/2. 

Student: 	That would be six. 

Interviewer: How does that work? 

Student: 	Because I just figured out how many times a half goes 

into three. 

Interviewer: Can you break that down even more? 

Student: 	I don't know if it would work with all of them, but to 

divide the whole number by — not divide, times the 

whole number by the umm, denominator, I think, the 

one on the bottom. I think that would work with those 

ones, yeah. (S157) 

Again, these two final responses, although quite different to each other, were 

considered procedural. 

Two problems that used "of" as the operator were also presented to students, 

1/2 of 1 /3 (at Level 7) and 1/2 of 3/4 (at Level 7). Those students who solved the 

problems successfully demonstrated an understanding of equivalence through 

doubling and halving. The problem 1/2 of 1 /3, answered successfully by 16 
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students, most students simply reasoned, for example, "Well two sixths is the 

same as one third so I just halved it into one sixth" (S140); others reported 

doubling the 1 and the 3 from the third first. A few students described mental 

pictures in working through the problem, for example, "I imagined a third, 

because it is sort of a Y shape, I imagined a third filled in and I cut that in half 

because if it was a third, half of it would be one sixth (P95)." Some students 

appeared extremely uncertain about their answers (which were correct), but 

their explanations were often more detailed than those from students for 

whom the problem appeared easier. The following is an excerpt from a 

secondary student: 

Interviewer: 1/2 of 1 /3? 

Student: 	Would it be one sixth or something? Don't know! 

Interviewer: Is there a way you can check that? How are you 

thinking about it? 

Student: 	Well you couldn't really do half into a third. 

Interviewer: So what do you have to do? 

Student: 	So if I did the sixth it might to into it easier. That's an 

even number. 

Interviewer: And does it work? 

Student: 	I think so. (S131) 

Fewer students were asked to solve '1/2 of 3/4 (n = 13) and seven students were 

successful. The students reported "making it" or "converting it" (the 3/4) into 
6/8. As was the case for 1/2 of 1 /3, some students were more explicit in their 

explanations as to how they did this, for example, "Three eighths. I double 

them and halved the fraction from there. [So you doubled the...] Both of the 

numbers and then halved one of them" (P48). One student described a mental 

picture that supported her thinking that added an interesting dimension to this 

problem. 

Interviewer: What about 1/2 of 3/4? 

Student: 	I wouldn't have a clue! 

Interviewer: How do you think you might be able to start with that 

one? 
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Student: 	With a whole I guess, cut it into quarters.. .its three 

eights. 

Interviewer: How did you come up with that? 

Student: 	Well I had my picture of three quarters and then I 

halved. 

Interviewer: With the rectangle? [Student referred to using a 

rectangle in a previous question] 

Student: 	Yeah — and then I halved every quarter and then I got 

rid of one of the quarters and then saw what was in the 

middle, which was three. 

Interview: 	So you were actually turning it into... 

Student: 	Eighths. (P101) 

6.4 Mental Computation Strategies with 
Decimals 

Addition. Fifteen students solved the decimal problem 0.25 + 0.25 (at Level 

5); see Table 6.11. The majority of students changed the representation of the 

problem to whole numbers, which involved, for example, explaining the 

problem: "Twenty-five plus twenty-five is fifty." 

Table 6.11 

Mental Strategies Associated with 0.25 + 0.25 

Strategy description 	 Number of responses 

Group H 	Group M 

Number knowledge related to whole number 	 5 	 8 
referent 

Used a rule 

Used written algorithm 

Total number of responses 	6 	 9 

The answers that students gave indicated that language was important, as 

three types of answers were scored as successful, point five, point five zero 

and point fifty. Further questioning revealed some interesting aspects of 
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knowledge regarding working with place value and zeros in the decimal 

domain. 

Student: 	Point five zero or point five because it is just doubling, 

twenty-five plus twenty-five basically. Sometimes I 

say point five sometimes I don't. Sometimes I just feel 

like it. 

Interviewer: Does that zero matter? 

Student: 	No because you can have it in anything, you can have 

zero, zero, zero it doesn't matter. (P49) 

Other times further questioning revealed the student did not necessarily have a 

good understanding of place value with decimals. When asked about the 

additional zero in point five zero, one student replied, "It means it's in the tens 

and not a unit" (P13). Just one student had leant a rule from a teacher of a 

previous grade, "Point five. I just went like twenty-five plus twenty-five that's 

fifty so you take the zero off and put that in front and then it's zero point five. 

That's what we've learnt; I learnt that last year" (P6). 

There was only one student (P63) who solved the problem 0.25 + 0.25 

differently. Although this student followed an algorithmic procedure making 

use of place value, he changed the representation of the problem to fractions: 

"Point five. Because the zero point zero five, you add them together and that 

makes one tenth, so add it on to one of the twos which makes three and then 

you do the two plus the three tenths makes five tenths." This response was 

considered to show clear conceptual understanding of both place value and the 

connection to fractions. A procedural version of this strategy would have 

involved a more traditional use of a written algorithm based on the use of 

carrying and positioning of the decimal points. No students referred to the link 

between 0.25 and 'A. 

The problem 0.5 + 0.75 (at Level 7) elicited a number of strategies that for 

most of the students involved splitting the 0.75 in one of two ways: by 0.7 and 

0.05 or by 0.5 and 0.25. Strategies are described in Table 6.12. Splitting by 
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place value (0.7 and 0.05) was more frequently used than splitting by other 

quantity (0.5 and 0.25). In using both strategies, however, students tended to 

emphasise either whole number knowledge or decimal place value 

knowledge, although both were considered procedural in nature. 

Students who described working with 50 and 70 as 120 were considered to be 

splitting by place value based on connections to whole numbers. Conversely 

students who described working with 5 and 7 as 1.2 were considered to be 

splitting by place value based on place value knowledge. An example of each 

for 0.5 + 0.75 follows: 

Student: 	One point two five. Seventy and fifty makes one 

hundred and twenty plus five and it was the point 

before so now it is up to a certain point it goes over to 

one point two five. (S114) 

Student: 	Would be one point two five. Well I just added seven to 

the point, well point seven to the point five to get one 

point two and just add like point zero five. (S152) 

Table 6.12 

Mental Strategies Associated with 0.5 + 0.75 

Strategy description Number of responses 

Group H Group M 

Split by place value (0.7 + 0.05) 
Whole number knowledge 
Decimal place value knowledge 

4 
3 

2 
1 

Split by other quantity (0.5 + 0.25) 

Decimal place value knowledge 2 2 

Number knowledge related to whole number 
referent 

3 3 

Changed representation (0.5 = 1/2 and 0.75 = 3/4) 2 1 

Used written algorithm 1 1 

Total number of responses 15 10 
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Four students demonstrated splitting the 0.75 into a different quantity, for 

example, "Cause point five and point five it gives you a total of one and the 

plus point five gives you one point two five" (S160). 

The responses of six students were classified as using whole number 

knowledge. Like responses to the first problem 0.25 + 0.25, students simply 

reported adding "Fifty and seventy-five" for 0.5 + 0.75, with little indication 

of how they linked this interpretation to decimal place value. 

Three students changed the representation of the problem from decimals to 

fractions: retaining a decimal answer: 

One point two five. I just did it as sort of like a fraction, as half, I 

mean three quarters add half and then so it's one and a quarter and 

then a quarter is equal to point two five, so it's one point two five. 

(P44) 

A written algorithm procedure was the strategy behind the responses of two 

students. Both students, however, described the place value positions with 

reference to fractions. One of the students followed on from the first addition 

problem 0.25 + 0.25, again describing an algorithmic procedure with 

reference to fractions: "One point two five. Leave the hundredths five where it 

is and just add five and seven which is twelve and move the one into the units 

and the two stays in the tenths" (P63). Although both students lapsed into 

using the language of whole numbers, this response was considered 

conceptual with their apparent understanding of place value and fractions. 

The problem 6.2 + 1.9 (at Level 7) required students to work with both the 

whole numbers that come before the decimal point and the following decimal 

digits. Although a number of different strategies were suggested by the 

students, and are described in Table 6.13, the majority of responses were 

focused around splitting the two numbers according to the decimal point, "I 

added one onto six, so that's seven and then I added the two and the nine and 

that's one point one and I added that onto the seven" (S158). In most cases the 

students started working from left with the whole numbers, although a few 
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students started working from right with the decimals. One response stood out 

as being a little different and was considered conceptual as the student 

employed a strategy based on the principle of commutativity, "I went six point 

nine plus point two which gave you seven point one plus a whole, gave me 

eight point one" (S160). She rearranged the numbers in the problem so that 

the first number comprised the larger whole number and larger decimal value. 

Table 6.13 

Mental Strategies Associated with 6.2 + 1.9 

Strategy description Number of responses 

Group H Group M 

Split by place value (6 + 1) + (0.2 + 0.9) 18 16 

Split by other quantity (1 + 0.9) 0 3 

Bridging (6.2 + 2) — 0.1 1 o 
Total number of responses 19 19 

Three secondary students used a strategy whereby one number in the problem 

is split and added cumulatively, for example: 

Eight point one. I added the nine, point nine first to get seven point 

one and then just added one to it, point nine to the six point two, get 

seven point one, and then added just one to seven. (S152) 

Just one student reported a form of bridging: "Eight point one. I made one 

point nine, two and then six point two add two is eight point two and then just 

took one off to make it eight point one" (P44). 

An additional problem, 0.19 + 0.1 (at Level 7) was given to just seven 

students, six of whom answered successfully. Although most students used 

their whole number knowledge, for example, "it's just like nineteen plus ten," 

one student reported, "Point two nine. Because point one is one tenth so it is 

just ten plus ten, add on the nine" (S63). This student is the same student who 

reported using fraction representations for the earlier addition problems. 
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Subtraction. Of the 19 successful responses to the problem 1 — 0.4 (at Level 6) 

there were two different whole number representations reported by students. 

Referring to the 1 as 10 was the main strategy, for example, "I just put the one 

as a ten so I put it as a whole decimal number, just moved it over from the 

other side of the thing which put it into a ten take four which equals point six" 

(S118). The second whole number variation involved thinking of the one as 

one hundred and was used by just one student: "I could think of it as one 

hundred and the point four as forty and so there's got to be sixty left" (P21). 

To solve the problem 4.5 — 3 (at Level 6), just one student used a whole 

number representation: "If you made it forty-five and thirty you just do forty-

five take thirty is fifteen and then put a point in between the one and the five" 

(P44). The majority of the students (n = 22) used a strategy that involved 

attending to the whole numbers first, 4 — 3, and then working with the 0.5, 

effectively splitting the 4.5 by place value: refer to Table 6.14. 

Student: 	One point five. Because it is three ones is a whole 

number and taking three off four, because four is a 

whole number which leaves you one point five. 

Interviewer: So what were you doing with the point five then? 

Student: 	Nothing, you don't need to do anything with it. (P49) 

Table 6.14 

Mental Strategies Associated with 4.5 — 3 

Strategy description 	 Number of responses 

Group H 	Group M 

Split by place value 	 11 
	

11 

Changed representation (4.5 = 45) 

Total number of responses 	12 	11 

All strategies recorded for the two decimal subtraction problems were 

considered procedural. Although three students referred to fractions during 

their explanations their responses were not considered conceptual in the same 

way that several of the addition problems were. 
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Multiplication. Twenty-seven students were successful in solving 3 x 0.6 (at 

Level 7). Most students used the number fact "3 x 6 is 18" as their immediate 

response. It was how the students justified where the decimal point should go 

that distinguished responses, although all responses were considered 

procedural (refer to Table 6.15). When questioned about the position of the 

decimal point, students gave many varied explanations. A number of students 

explained how it "becomes" a whole number, or why "it is more than 1." In 

doing this the whole was often referred to as being "a ten" or "in the tens," for 

example, "One point eight. So three sixes are eighteen, so it is over ten so 

every ten is another group of tens before the point" (P95). Similarly, several 

students used a representation of a hundred in the same way to mean a whole, 

for example: 

That would be one point eight. I thought of the point six as sixty and I 

timesed it by three to get eighteen and then I put the decimal point in the 

middle. Since I got one hundred and eighty if there's anything over one 

hundred that has to go before the decimal point. (S149) 

Another student (S152) reasoned in the following way. 

Student: 	One point eight. I just times three by six and got the one 

point across from the six, the decimal point goes in 

between. 

Interviewer: Now that decimal point, how do you know that it goes in 

the middle there? 

Student: 	Cause once a number just after the decimal point, once it 

gets higher than nine, it becomes a whole point 

something. 
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Table 6.15 

Mental Strategies Associated with 3 x 0.6 

Strategy description Number of responses 

Group H Group M 

Used a rule 

Number knowledge related to whole 
number referent 

Used a rule (with reasoning) 

Doubling/addition 

14 

2 

6 

2 

Total number of responses 17 10 

Six students were considered to be working more conceptually with the 

problem 3 x 0.6. Four students initially gave responses that were based on a 

decimal rule. These students were, however, able to reason further by 

eliminating alternative answers that were not appropriate, for example, "I just 

sort of knew it because it wouldn't be eighteen point zero or zero point one 

eight" (P44) and "Because if it didn't it would be zero point one eight which 

is less than what we started with, or eighteen which it just wouldn't be!" 

(S158). 

Finally, two students reported a strategy that involved doubling and adding, 

also considered to demonstrate working conceptually: "One point eight. Just 

added six, doubled six — one point two — and then add another point six on 

that" (S66). Another student extended an initial response to reason: "You 

could just add up like the sixes, like six, twelve so you've still got the one and 

you've got the decimal point and then the six plus" (S153). Interestingly many 

students were observed making several attempts at answering this problem 

before settling on 1.8, these included, "point eighteen," "point one eight," and 

"one point eighty." 

For the problem 0.6 x 10 (Level 7), the majority of students referred to a rule 

in much the same way as reported for the problem 3 x 0.6; refer to Table 6.16. 

Two rules, however, were observed as students reasoned about the appropriate 
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place for the decimal point. The first rule emphasised a learnt procedure 

linking the decimal point to place value: 

Student: 	It is like behind the decimal and then you just times it 

by ten and it goes above the decimal, like in front of it. 

(S117) 

Or alternatively: 

Student: 	When you are dividing by ten you move the number 

down a column so the six would go into the hundredths; 

but if you are timesing by ten, it goes up to the left in 

the units column so it would just be six point zero. 

(P63) 

A different type of rule focused on "adding zeros," for example, "You times it 

by ten so you put a zero after it. So you replace where the six is with the zero 

and put the six before the decimal" (S153). 

Table 6.16 

Mental Strategies Associated with 0.6 x 10 

Strategy description Number of responses 

Group H Group M 

Used a rule 
Decimal rule related to place value 9 3 
Zero rule 5 3 

Number knowledge related to a number 
fact 

2 4 

Used a rule (with reasoning) 0 2 

Total number of responses 16 12 

Six students used their whole number knowledge referring to the number fact 

6 x 10 and were unable to offer any further explanation relating to the decimal 

point. 

Two students were classed as working conceptually as they both went on to 

explain the use of a rule, for example, "Well point sixty is the same as point 
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six so it can't be that and sixty would be too big cause point six times ten 

wouldn't be that much" (S140). One student (S118) worked in a similar way: 

Interviewer: What about this one, 0.6 x 10? 

Student: 	Which would be six. I've dropped the decimal point 

which would be six times ten which equals sixty and 

then you go back and put the decimal point in which 

would be after the six. 

Interviewer: Why does it have to go after the six? 

Student: 	It is a bit unrealistic saying when it was point six to 

start off, it would be sixty to finish sort of thing. You 

know it has got to be bigger than 1 but not all that much 

bigger. 

Interviewer: Right. 

Student: 	It is not into like the twenties and thirties it would be 

sort of in between ten and zero sort of thing. 

Division. Although the problem 3 ÷ V2 (at Level 7) was given to most students 

in the fraction section, the problem 3 ÷ 0.5 (also at Level 7) was presented to 

some students as part of the decimal section; strategies are detailed in Table 

6.17. 

Table 6.17 

Mental Strategies Associated with 3 + 0.5 

Strategy description 	 Number of responses 

Group H 	Group M 

Changed operation (to multiplication) 	 8 	3 

Whole number knowledge 	 1 	0 

Total number of responses 	9 	3 

Nine students were considered to be working conceptually in solving 3 ÷ 0.5 

by changing the operation of division to multiplication referring to, for 

example, "doubling" or "how many halves." Additionally four of the nine 

students also changed the decimal representation to fractions: "That would be 
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six I think. You've got the three and then you've got the point five, which is 

basically half, and it takes six halves to make three" (S63). 

Just one student solved the problem differently using whole number 

knowledge in a procedural fashion: "Six. Because it is the same as using 

thirty, how many fives in thirty...I just go back to normal numbers instead of 

decimals because that's like complicating and then you know where the 

decimal point is" (P49). 

6.5 Chapter Summary 
The chapter focused on the successful strategies middle years students used to 

solve part-whole problems mentally. In Table 6.18 the prevalence of strategies 

across fractions, decimals, and percents is considered. In relation to the work 

of Watson and Caney (2004), some strategy descriptions have been refined. 

Two of the strategies described were common across each of the three 

domains (shown in bold text). 

Table 6.18 

Overview of Strategies Across Percents, Fractions, and Decimals 

Strategy description Percents Fractions Decimals 

Changed representation Yes No Yes 

Related number knowledge Yes Yes Yes 

Split by place value Yes No Yes 

Split by other quantity Yes Yes Yes 

Doubling/halving Yes No Yes 

Bridging No Yes Yes 

Used a rule Yes Yes Yes 

Used written algorithm No Yes Yes 

Changed representation. hl this study the students changed the representation 

of percent and decimal problems but not fraction problems. Fraction 

representations, were however, cited frequently by the students in relation to 
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problems involving percents and decimals, particularly the intuitive use of 

halves and quarters. Decimal values were rarely referred to outside of the 

decimal problems. There was some use of "point five" in providing initials 

answers although this appeared to be as an alternate version of a half rather 

than as an individual strategy. For the percent problems, the use of this 

strategy decreased as the percent value moved away from the benchmark 

percents. 

Related number knowledge. This strategy is perhaps less defined than some of 

the other strategies. At times "knowledge" was specific to one of the areas 

being considered, for example, equivalence with some of the fraction 

problems. At other times the three areas shared "themes," for example, in 

relation to the percent problems, students' related number knowledge often 

involved discussion of links with the concepts behind the four operations and 

the relationship of the whole. 

Split by place value. This strategy was observed for problems involving 

percents and decimals which is not surprising as fraction representations do 

not explicitly denote place value relationships. For the percent problems 

students were observed splitting either the operand, for example, 50% of 20 

and 50% of 4 or the percent operator, for example, 20% of 80 and 5% of 80. 

Similarly, for the problem 0.5 + 0.75 students were observed splitting the 0.75 

into 0.7 and 0.05. For one of the decimal problems that elicited a place value 

split strategy, 6.2 + 1.9, it was the decimal point itself that encouraged the 

split and students were observed splitting both operators or preserving one and 

splitting the other. 

Split by other quantity. In splitting by a quantity not specified by place value 

students used number relationships in percent, for example in 75% of 200, 

splitting the 200 into 100 and similar examples were observed for some of the 

fractions problems, for example in 4 x 3/4, students split both the 4 or the 3/4. 

An example of students splitting by other quantity for decimals, the problem 

0.5 + 0.75 elicited the use of 0.5 and 0.25. The strategy was, however, similar 
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to split by place value in that generally one operand in the problem was 

preserved. 

Doubling and halving. For percent students were observed using repeated 

halving to solve problems comprising 25% and 75% in relation to 50% as a 

benchmark value. The strategy was also used implicitly to solve problems 

based on 10%, such as 20% of 15, which was classed as split by other 

quantity. In relation to decimals, doubling was observed for the problem 

3 x 0.6 whereby students started working through the problem by doubling 

0.6. 

Bridging. Students were observed using bridging to solve fraction problems 

and essentially this involved bridging to one or a whole. Just a single example 

of bridging was observed for the decimal problem 6.2 + 1.9 where the student 

made the 1.9 a 2. This strategy was not observed for percent problems. 

Used a rule. The application of rules for the percent problems generally 

involved "moving" the decimal point and was only observed for the higher 

level problem involving 10%. Similarly, there were only a few instances 

where students used a rule to solve a fraction problem. This strategy was more 

common with the decimals problems although interestingly the level of 

explanation generally determined whether students were working procedurally 

or conceptually. 

Used written algorithm. Generally, this strategy did not feature greatly across 

the three areas: it was not observed at all with the percent problems. 

Visualisation was one of the other strategies described by Watson and Caney 

(2003). Although a number of examples of students describing pictures to 

solve problems mentally were observed, this was not listed as an individual 

strategy as generally the use of mental pictures appeared to be supplementing 

other strategies. As well, working from the right (or from the left) does not 

appear to be as important when working with part-whole numbers as it does 

when working with whole numbers. 
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Overall, the strategies used by the students to solve percents and fractions 

were considered to be more conceptual in nature than those reported for 

solving the decimal problems; the number of responses in each category are 

reported in Table 6.19. Although few examples of rules or use of algorithm 

procedures were observed it was the procedural use of whole number 

representations that shaped this finding. This shows that for the areas of 

fractions and percents, mental computation is one good avenue to take in 

pursing assessment of conceptual understanding as the strategies themselves 

would seem good indicators of some key part-whole concepts. This does not 

seem as clear-cut in developing decimal understanding. Here, the strategy 

itself does often not reveal understanding of some the students' ideas behind 

concepts such as place value and manipulation of the decimal point. In many 

cases, it was only further questioning that prompted students to reveal a little 

more of their "number sense" thinking or not as the case may have been. 

Table 6.19 

Summary of Procedural and Conceptual Responses for Percents, Fractions, 
and Decimals 

Strategy 
description 

Group H Group M Total 

Procedural Conceptual Procedural Conceptual 

Percents 10 97 1 54 162 

Fractions 7 76 3 58 144 

Decimals 91 19 67 11 188 

Throughout this chapter, strategy use was reported separately for students 

identified as Group H and Group M. In general the numbers of students 

successful in solving individual problems was uneven making direct 

comparisons between the groups difficult. Overall there appeared to be very 

little difference between the two groups in regard to strategy use, which 

suggests that once students can solve problems involving part-whole numbers 

choosing to use a particular strategy is not linked to mental computation 

ability. For those problems where the number of responses across the two 
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groups was similar, however, a trend in the results is worth reporting. Across 

the fraction and decimal problems, generally responses for the problems 

involving addition or subtraction were similar for both groups of students in 

that responses tended to cluster around the most common strategy. This 

included 1/2 + 3/4, 0.25 + 0.25, 6.2 + 1.9, and 1 —0.4; the exception was for 

0.5 + 0.75 where both groups used a number of different strategies. For a 

number of the problems involving multiplication or division the groups did 

differ in their strategy use. For example, students in Group H used a doubling 

strategy or split by other quantity strategy to solve the problem 3 ÷ 1/2. 

Students in Group M predominantly used a repeated addition strategy. A 

similar pattern was observed for 4 x 3/4 and 0.6 x 10. It could be that strategy 

use is related to the sophistication of the operation and is likely to be 

associated with the higher level items, particularly Level 7. 

In the final results chapter — Chapter 7 — the spotlight returns to the teachers as 

data from the seven key teachers who participated in an interview session is 

presented (Phase 4). Although five of Shulman's teacher knowledge domains 

are considered, how teachers position fractions, decimals, and percents in 

relation to mental computation is a particular focus of the chapter. 
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Chapter 7 

Results (Phase 4): Key Teacher 
Interviews 

7.1 Introduction 
This chapter reports on Phase 4 of the study, where key teachers participated 

in an interview session following the completion of the two student data 

collection phases. The data generated from the teacher interviews is presented 

in a similar fashion to the results of the teacher questionnaire (Chapter 4), 

with the interview questions organised by Shulman (1986; 1987). Five 

elements of the framework are addressed: knowledge of educational ends, 

purposes, and values, knowledge of contexts, curriculum knowledge, 

pedagogical content knowledge, and knowledge of learners' characteristics. 

The selection of the eight key teachers was described in Section 3.5.1.2. The 

sample comprised four primary teachers and four secondary teachers, with 

each teacher located at a different primary, secondary, or district school. As 

well the teachers represented three different levels of professional 

development: extensive, moderate, and limited. One teacher did not 

participate in the interview session; therefore the responses of seven key 

teachers are discussed in this chapter guided by the research question: how do 

teachers position the teaching and learning of fractions, decimals, and percent 

in relation to mental computation? The professional backgrounds of each of 

the key teachers are outlined in Appendix E. 

This chapter refers to earlier teacher data reported in Chapter 4 and draws on 

student data reported in Chapter 6. Teachers were asked specifically to 

comment on mental computation in relation to fractions, decimals, and 

percents to reflect the emphasis of the student interviews (Chapter 6). 
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7.2 Knowledge of Educational Ends, 
Purposes, and Values 

As part of the mental computation questionnaire, teachers were asked to 

provide reasons as to why they value mental computation. In the interview the 

key teachers were asked to consider the position of mental computation in 

relation to numeracy. Additionally, some of the teachers were specifically 

asked how they would like their students to leave their class at the end of the 

year, in terms of the students' numeracy experiences. 

Overall, the primary and the secondary teachers expressed a different 

emphasis on mental computation in relation to numeracy. For the secondary 

teachers in particular, mental computation had a clear mathematical value for 

students in terms of having "a choice of methods" and as an avenue for 

"continual revision and strengthening of number facts" (Teacher C, 

secondary). Teacher D (secondary) emphasised the role mental computation 

can play in developing conceptual understanding in mathematics. Teacher B 

(secondary) listed a number of aspects of mental computation that he 

considered important. Like Teacher C, Teacher B started with a focus on 

mathematical understanding, for example, "understanding of the basic 

workings of numbers" and "thinking about the reasonableness of solutions 

and answers," and then moved on to the issue of mental computation as an 

avenue for communication: "I hope my students can communicate their maths 

to someone else fairly coherently, and talk about maths with other people." In 

relation to his Grade 7 class, Teacher E (secondary) said he specifically 

wanted his students to be "confident and competent and working with a range 

of whole number strategies," as well as understanding the links between 

fractions, decimals, and percents in terms of "equivalent representations." 

Responses provided by the primary teachers emphasised mathematical 

understanding but also considered mental computation in relation to the 

broader territory of numeracy. Teacher A (primary), for example, considered 

mental computation as "an avenue for promoting success and enjoyment [in 
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mathematics] based upon strategies that they [the students] have constructed 

their own way" and for Teacher G (primary) mental computation was simply 

about providing "the opportunity and the time to think [mathematically] for 

themselves." Teacher F (primary) focussed on the idea of developing 

confidence through mental computation. She also discussed the issue of 

efficiency and using mental computation to encourage students to be critical 

of the answers they get, and in choosing strategies. 

7.3 Knowledge of Educational Contexts 
The teachers were asked to provide further comment on the question: how do 

you think mental computation might change as students move from primary to 

secondary school? This question was originally part of the teacher 

questionnaire (refer to Section 4.4). 

A theme shared by three teachers, two primary and one secondary, was that 

mental computation would never be given enough emphasis unless it was 

backed by a whole school approach. For example, "With a whole school 

approach there would be less resistance from students if it [mental 

computation] is just what they're used too" (Teacher G, primary). Teacher A 

(primary) expressed a similar sentiment: "It's a better result when it comes up 

from the primary and it's permissible to go down that track and continue. 

Developing a mental computation culture from scratch is hard." As a 

secondary teacher, Teacher E made several comments. First, he acknowledged 

the challenge of working mentally with secondary students: 

The older the kid is, the harder I've found it and then it's an absolute 

ongoing tension. For high school kids it seems like a real safety net, 

going back to the algorithms and it's because they see it as proper maths 

and what's regarded as the really important stuff This perception is 

really challenging to break down. 

Second, he reiterated his comments which he detailed at the end of his 

questionnaire: 

At a more systematic level we need to engage teachers in questions 

about what they believe to be the "big picture" concepts in mathematics. 
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From here and this re-evaluation we need to focus on deeper 

understanding and teaching for this. I have no doubt that mental 

computation is a major big picture item. A major up-slcilling of teachers 

— especially middle and upper primary to lower secondary — on mental 

computation is needed desperately. (Teacher E) 

7.4 Curriculum Knowledge 
Fractions, decimals, and percents. As part of the questionnaire, teachers were 

asked to consider mental computation across the four operations with basic 

number facts and multi-digit numbers, and also with fractions, decimals, and 

percents (refer to Section 4.5.2). During the interview session the teachers 

were asked to predict what they thought the collective pattern of teachers' 

responses might be for that question and provide further comment. 

One of the primary teachers (Teacher A) speculated that teachers working to 

develop mental computation skills would "definitely be weighted towards the 

whole number domain." This comment reflected the comments of all the 

teachers interviewed, for example, "It wouldn't surprise me if the emphasis on 

mental computation is quite low across the decimals, fractions, and percents 

area" (Teacher C, secondary), adding that many people think of "number as 

whole number." Teacher D, a secondary teacher, expressed a similar view, 

although he emphasised the confidence of teachers in relation to this area: 

I would guess that mental computation might decrease for fractions, 

decimals, and percents. For me working mentally is a whole approach to 

number — it is not something I pick and choose to do as such. I guess 

this could be related to the confidence of the teachers with fractions, 

etc? I think it might be something some teachers avoid as they don't feel 

that confident working mentally in this area. 

The same issue of teachers' confidence was also expressed by Teacher E 

(secondary). As a secondary teacher he speculated that teachers interpreting 

mental computation as automatic response may indicate frequently working 

with mental computation when really "they don't trust their own mental 

facility particularly with fractions and decimals." He went on to comment: 
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I tend to go a lot more slowly with fractions and decimals than I would 

if you're doing work with whole numbers. I really like hearing kids say 

I changed them to decimals but a lot of the time the kids get to me in 

high school and generally they have to ask permission if they can work 

this way, asking am I really allowed to do that? That's an interesting 

sort of comment to hear. 

One of the other secondary teachers (Teacher B) also suggested that although 

teachers at the primary level would work "a little" with whole numbers, they 

would "rarely" work mentally with those numbers that involve a part-whole 

relationships. Generally, however, the teachers did not direct comments 

specifically at the primary or secondary level. 

Following discussion of the first question, some of the teachers were 

presented with a quote from the A National Statement on Mathematics for 

Australian Schools (Australian Education Council (AEC), 1991): "People 

need to carry out straightforward calculations mentally, and students should 

regard metal arithmetic as a first resort in many situations where a calculation 

is needed" (p. 104). They were then asked to respond to the quote, by 

reflecting on fractions, decimals, and percent. 

The responses of two of the secondary teachers were interesting. First Teacher 

B emphasised the link between the whole and part-whole number domain: 

It shouldn't be different — there's no reason you can't extend basic skills 

of whole numbers and apply to new concepts — maybe we need to be 

more explicit about this? Some kids can't even see where concepts like 

fractions and decimals (other than money) fit in society let alone 

consider solving problems in their heads. 

The comments of the second teacher, Teacher D (secondary), identified with 

the quote in a different way: 

I tell them all the time that a real skill is being able to work things out 

themselves and not rely on a calculator or mobile phone, but this is not a 
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message that you just pass on, it needs to be a message they get all the 

time in maths, every year, from every teacher. 

Developing written, calculator, and mental computation. As part of the 

curriculum knowledge section in the questionnaire, teachers were also asked 

to estimate the comparative amount of time they devoted to developing 

written, calculator, and mental computation skills. In the interview, however, 

the teachers were asked if working with specific types of number (e.g., 

fractions) would have an effect on their responses. 

Four of the teachers responded that they would not change the time allocated 

to the three methods of computation for different types of numbers. The 

original responses of these teachers from the questionnaire were, however, 

quite diverse. Two teachers (one primary and one secondary) indicated the 

highest amount of time was devoted to written computation. Of the other two 

secondary teachers, the first preferenced mental computation although 

responses were virtually even for written and calculator computation. The 

other teacher reported a much higher percentage of time devoted to mental 

computation with almost no time allocated to written computation. 

Three of the teachers acknowledged they would adjust the time allocated to 

the three methods of computation, particularly fractions. Teacher G (primary) 

remarked that she would actually "raiSe" the percent she had previously 

allocated to mental computation for fractions "because when you write 

fractions down too early, that's when they get muddled." Teacher F (primary) 

responded similarly with her response linking back to the first interview 

question: 

Actually I would probably even put mental computation a bit higher for 

fractions. I've found that if you do the pen and paper without the mental 

computation skills and without understanding what they're doing, they 

loose it [mental skills]. You don't quite know what they are 

understanding unless they're telling you and talking about it. 
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Both of these primary teachers had participated in extensive professional 

development involving mental computation. 

Teacher C (secondary) was surprised by the high proportion of time some 

teachers allocated to working mentally. She commented that for fractions, 

decimals, and percents her mental computation work would probably decrease 

slightly from that which she allocated in her questionnaire. She reported 

increasing written computation from 60% to 70%, and decreasing calculator 

work from 25% to 20% along with mental computation from 15% to 10%. 

7.5 Pedagogical Content Knowledge 

The teachers were asked to report some of their teaching practices associated 

with mental computation in the questionnaire. This included mental 

computation teaching activities and assessment of mental computation. Both 

aspects were addressed in the interview although again teachers were asked 

whether working with fractions, decimals, and percents would influence their 

responses. 

Mental computation activities. Teacher C (secondary) outlined what appeared 

to be a more traditional approach to mental computation compared to the 

other teachers, describing a session of questions and answers in which 

students worked individually. When asked about the level of discussion 

involved, she commented that the class really only discussed problems if a lot 

of students were making the same errors. In this scenario, students who got a 

correct answer would tell the class how they had worked it out. 

Most of the teachers focussed on discussions with their students. One of the 

primary teachers (Teacher A) tied mental computation to problem solving, 

which he identified as "the crux of mathematical investigation." He also 

highlighted real life problems and open-ended questions with "multiple 

pathways" as the activities on which he founded mental computation. He also 

added that the verbal aspect of mental computation was important to develop 

a kind of "self talk." 
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The response of Teacher B (secondary) was similar in that he nominated 

open-ended questions with more than one answer and real life problems as the 

most common mental computation activities that he used. He added, however, 

that he probably did not do enough visualisation when it came to fractions, 

decimals, and percents that would support the computation aspect, particularly 

in working towards written computation. 

In relation to games, Teacher G (primary) reflected that she "could do more 

with games," focussing more on activities involving open ended challenges 

and lots of class discussion of mental strategies. She commented, "when I first 

started teaching I had heaps of games that were great for mental but it was 

very much that's not what we should be doing — that was 18 years ago and 

now I wish I'd kept some!" 

Assessment of mental computation. Like the previous question on mental 

computation activities, most of the teachers focussed on the use of observation 

and discussion with their students as the basis for assessment. The only 

teacher to convey a different and more traditional approach to assessment was 

again Teacher C (secondary). Following on from her explanation of a typical 

mental computation session involving testing, she reported using a class 

average on the tests, "they [the students] mark their own work, but then we 

put the results up in the classroom to share them." For several of the other 

teachers, however, the informal use of observation and discussion featured. 

For example: 

Assessment of mental computation is really informal in the sense that I 

look for clues in to how they're [the students] coping through their 

responses and also body language. Overall I take the attitude that an 

important element of assessment is feedback. Where will a wrong 

answer with no feedback get you? This can be a very lonely place to 

be. (Teacher A, primary) 
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There's a lot of bravery involved in mental work. It's not hard to tell 

when kids have some mental computation strategies through informal 

discussion. (Teacher B, secondary) 

The key thing I'm looking for is their ability to justify so I look for 

assessment tasks that always, always ask the kids to explain and 

critique. (Teacher E, primary) 

The comments of Teacher F, a primary teacher, placed the assessment of 

mental computation in the broader context of numeracy: 

For me, after years of teaching the higher grades in primary school, 

mathematics and numeracy is the area I still find the hardest to assess 

in the curriculum. Sometimes I really think the kids have got a concept 

and the next week it seems like we never even covered it. Working 

mentally has really opened the lines of communication for me. 

7.6 Knowledge of Learners' Characteristics 

Three number problems with examples of the students working mentally were 

shown to the teachers, one example each for fractions, decimals, and percents. 

The teachers were given the opportunity to provide comment on the examples, 

which were collated from the student interviews and involved the problems 

75% of 200 and 4 x 3/4. Overall, several of the teachers commented on the 

similarity of strategies with those that they were familiar with from the whole 

number domain. One secondary teacher added that she "hadn't considered 

working mentally with fractions, decimals, and percents in the same way as 

whole number" (Teacher C). She also added she would like to see "more of 

this made available for teachers." One of the primary teachers (Teacher G) 

acknowledged that she was "not as familiar with how well known mental 

computation strategies were applied to working with fractions, decimals, and 

percents." 

A different response, from one of the primary teachers (Teacher A) was that 

generally he did not feel "the need to have the students working out complex 
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fraction computations mentally," however he noted that all three problems 

involved a whole number (e.g. 4 x 3/4) and that he really liked this link 

between the whole and part-whole number domains. A final comment by one 

of the secondary teachers: 

Students walking away with only a symbolic understanding of the 

number system that is supported by very little conceptual understanding 

really worries me. These are really good examples of students working 

with good conceptual understanding. (Teacher D, secondary) 

7.7 Chapter Summary 

As the final phase of the study, the interviews with the key teachers provided 

the opportunity to further explore some of the results generated through the 

questionnaire, and also encourage teachers to think about and discuss mental 

computation with part-whole numbers. A number of themes were extracted 

from the interview data. First, in relation to teachers' knowledge of the 

educational ends, purposes, and values associated with mental computation, 

the primary teachers generally considered mental computation within the 

broader context of numeracy, whereas the secondary teachers focussed almost 

solely on the mathematical value. Second, the need for educational systems to 

develop a whole school approach to mental computation was raised in relation 

to the teachers' knowledge of educational contexts. Third, as part of the 

teachers' curriculum knowledge, the teachers indicated that mental 

computation was largely associated with whole numbers. Several teachers 

suggested that teachers' confidence in working with part-whole numbers was 

a possible reason for this. The fourth theme that emerged was that generally 

the key teachers advised that their approach to and practice of mental 

computation would not change between whole and part-whole numbers, 

however, a few differences between the key teachers across the areas related 

to curriculum and pedagogical content knowledge were noted. 
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This chapter concludes the presentation of the results of the study. A 

discussion of the links between the teachers and the students, as well as 

recommendations for professional development and suggestions for future 

research based on the findings are considered in the next chapter. 
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Chapter 8 

Discussion 

8.1 Introduction 
In addressing the essential needs of numeracy, opportunities in mathematics 

abound in the middle years of schooling. Investigating the potential role of 

mental computation in strengthening numeracy practices across the middle 

years was the motivation for the study. The study was conducted through four 

phases — each addressing a research question — and presented in four results 

chapters: 

• Phase 1 — How is mental computation being addressed by teachers 

in middle years mathematics classrooms? (Chapter 4) 

• Phase 2 — How is mental computation being experienced by 

middle years students? (Chapter 5) 

• Phase 3 — What strategies do students use to solve mental 

computation problems involving fractions, decimals, and percents? 

(Chapter 6) 

• Phase 4 — How do teachers position the teaching and learning of 

fractions, decimals, and percents in relation to mental 

computation? (Chapter 7) 

The seminal work of Shulman (1986, 1987) provided the theoretical 

framework underpinning the design of the study, and the thread that 

connected each of the four phases. Shulman described seven domains of 

teacher knowledge: content knowledge; general pedagogical knowledge; 

curricular knowledge; pedagogical content knowledge; knowledge of learners 

and their characteristics; knowledge of educational contexts; and knowledge 

of educational ends, purposes and values. In the study these knowledge 

domains provided a framework for profiling the experiences of teachers in 

relation to mental computation. The framework has been used in three 
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distinctive ways; in the first place, all of the teacher knowledge domains have 

been explored in a single study, although some domains have been considered 

in more detail than others. Watson (2001) also used all the domains to design 

a teacher profiling instrument for chance and data. Similarly, Watson, 

Beswick, Caney, & Skalicky (2006) designed a profiling instrument to assess 

teachers' knowledge in relation to middle years numeracy. The instrument 

was used to measure change in teachers' knowledge during a numeracy 

professional development program. Generally, other studies have focused on 

just one or two of the domains (e.g., Ball & Bass, 2000; Kanes & Nisbet, 

1996; Mayer & Marland, 1997). Second, the application of the framework has 

focussed on mental computation as one aspect of the mathematics curriculum 

whereas the domains have been more frequently used to describe the 

pedagogy of teaching more generally. In this sense, using the work of 

Shulman, the focus of the study has been to use the knowledge domains in a 

practical application rather than to discuss their development and whether the 

description of each knowledge domain represents entirety. Third, by profiling 

the students' experiences, the study captured not only the teachers' knowledge 

of the students' as learners but importantly evidenced and captured some of 

the mental computation experiences teachers' should know about their 

students. 

In this final chapter, the nature of each of Shulman's teacher knowledge 

domains is considered in order of importance as they relate to the study. In the 

first place teachers' general pedagogical knowledge is considered in relation 

to the total sample of teachers and the key teachers. Following this, 

curriculum knowledge, pedagogical content knowledge, and the 

characteristics of learners are considered in relation to mental computation 

from both the perspective of the teachers and their students. Content 

knowledge is briefly discussed as this domain overlaps with both general 

pedagogical knowledge and knowledge of learners' characteristics. Finally, 

knowledge of educational ends, purposes, and values, and educational 

contexts are considered within the larger picture of numeracy and 

mathematics. 

203 



8.2 General Pedagogical Knowledge 
Teachers' general pedagogical knowledge is concerned broadly with teaching 

principles and concepts and for Shulman (1987) it was a type of knowledge 

that appeared to "transcend subject matter" (p. 8). In the study, the intention 

was not to investigate what general pedagogical knowledge might be needed 

to support mental computation nor how it could be developed, but rather as a 

descriptive base for positioning the results within the sample of teachers. 

General pedagogical knowledge was considered to be related to teachers' 

experience, and was captured in Phase 1, through data on the professional 

backgrounds of the middle years teachers. 

In detailing their professional backgrounds, the teachers provided information 

of their current and previous teaching experience and mathematical expertise, 

as well as details of professional development related to mental computation 

that teachers had participated in during the last five years (Section 4.2). 

Responses to the questionnaire were analysed first, by the teachers' school 

level (either primary or secondary) and second, by the teachers' level of 

participation in professional development (extensive, moderate, limited, or 

none). 

Overall, the sample of 34 teachers were relatively experienced teachers, with 

two thirds of the group reporting over ten years in the profession. Additionally 

their experiences were largely associated with the grades they were currently 

teaching. Of the secondary mathematics teachers, only one-third reported 

science or mathematics backgrounds that complemented their educational 

qualifications. The potential impact of the lack of specialist knowledge of the 

group is considered later in this chapter in relation to teachers' content 

knowledge. 

The spread of professional development participation was relatively even 

across the four possible categories for the sample of teachers, however, 

primary teachers had participated in more professional development related to 
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mental computation than the secondary teachers. With these details in mind, 

most of the characteristics of the main teacher sample were reflected across 

the seven key teachers interviewed in Phase 4. Key teachers had all 

participated to some extent in professional development. Teacher C was the 

only key teacher to be classified as having participated in limited professional 

development and her perspective on mental computation was generally 

different from that of the other key teachers as highlighted in Chapter 7. 

8.3 Curriculum Knowledge 
Curriculum knowledge was originally referred to as the "tools of the trade" by 

Shulman (1987, p. 9). It was interpreted in this study as the awareness of how 

mental computation relates to aspects of the curriculum including differences 

from other methods of computation (written and calculator) and between 

different types of numbers (whole and part-whole numbers). 

8.3.1 Time spent developing part-whole 
numbers 

Generally, the teachers in the study reported that they spent more time 

developing written computation over mental or calculator computation 

(Section 4.5.1). During discussions with pre-service teachers, McIntosh 

(1990) posed the question "What percentage of the time devoted to 

computation in primary schools is concerned with: a) written computation, 

b) calculator use, and c) mental computation?" He reported that the responses 

varied little across the sample of teachers and followed a pattern of 

approximately 90% devoted to written computation and 5% each of calculator 

and mental computation. Inspection of the actual percentages as distributions 

of time reported by the teachers in this study, however, revealed that in many 

cases the balance only just favoured written computation, with the average 

percentage of 56%. Teachers in this study did appear to be allocating a lot 

more time to developing mental computation skills; although the strong hold 

of the more familiar domain of written computation was still apparent. It 

seems some middle years teachers in this study are not yet ready to whole 
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heartedly support the view that mental computation should be the main form 

of computation in schools (Willis, 1990, 1992). 

When considering mental computation with fractions, decimals, and percents, 

the key teachers indicated that generally they would not change the time 

allocated to developing mental computation skills. Although, two key teachers 

indicated they would perhaps increase mental computation a little for fractions 

at the primary level. In comparison with the larger sample of teacher 

responses, however, working with decimals was reported more frequently 

than working with fractions with mental computation. Teacher C was the only 

key teacher to report that she would decrease working mentally across the 

part-whole domain and would increase the focus on written computation. She 

considered that the symbolic representation of part-whole numbers was 

particularly important for students in the early secondary years. 

Interestingly, two of the key teachers commented that the competency of the 

teachers in relation to fractions, decimals, and percents would play a large part 

in determining how much time teachers might allocate to working mentally in 

this area. This assumption, however, is not being made in regards to Teacher 

C in the absence of an assessment of Teacher C's own understanding of 

fractions, decimals, and percents (content knowledge). The theme of teacher 

competence emerged in response to other questions on the questionnaire 

suggesting teachers' content knowledge itself is a key factor when considering 

the teaching and learning of mathematics (Ma, 1999). 

Of the students who were asked a similar question as part of the questionnaire 

instrument (Phase 2), two thirds reported using written computation more than 

mental computation and calculators in their mathematics classroom (Section 

5.4.4). Their responses reflect the prominence given to written computation. 

There was a smaller group of students (approximately one-quarter) who 

reported using mental computation more than the other two methods of 

computation. The majority of these students were from the primary level, 

consistent with the teacher reports of spending more time on mental 

computation also being from the primary level. 
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8.3.2 Developing mental computation with 
particular types of numbers 

Developing mental computation strategies with basic whole number facts was 

reported by the majority of teachers (Section 4.5.2). It is possible that teachers 

attribute mental computation at the level of basic number facts as within the 

realm of recall for middle years students, particularly as responses across the 

four operations were alike. For some teachers, however, developing mental 

computation strategies with multi-digit whole numbers was not reported as 

frequently as for basic facts with whole numbers. Developing mental 

computation strategies for decimals was reported similarly to multi-digit 

numbers; perhaps the traditional link with whole number place value accounts 

for this. Reports of developing mental computation strategies with fractions 

and percents were fewer in number, possibly teachers were not as comfortable 

working in this area as with the more familiar whole number domain or did 

not view mental computation as being relevant to working with fractions or 

percents. Teachers certainly reported fewer strategies for these part-whole 

number domains when asked to detail the strategies students might use to 

solve problems of this type mentally. One of the primary key teachers initially 

expressed a view that he did not feel the need for his students (at Grade 6) to 

be performing "complex" computations with fractions that involved "adding 

different numerators and denominators." The type of computation he was 

referring to, however, is considerably more complex than the problems used 

in this study, many of which comprised both a whole number and a fraction 

for example. This is perhaps an area where more direction is needed for 

middle years teachers to ascertain what type of problems are reasonable for 

their students to be solving mentally. The work of Callingham and McIntosh 

(2001, 2002) and Callingham and Watson (2004) provide the foundation for 

this, particularly in linking types of problems to mental computation 

assessment. 

Students were also asked a similar question as part of the questionnaire, 

although the item was framed in terms of use of mental computation skills 
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(Section 5.4.6). A high use of mental computation was reported by the 

students when adding and subtracting whole numbers. For the students, 

however, the items concerning whole numbers were not separated into basic 

number facts and multi-digit number as was the case in the questions for 

teachers. The distribution of students' responses agreed more closely with the 

teachers' reports on working to develop multi-digit whole numbers for 

addition and subtraction than with the teachers' reports on basic number facts. 

For the item involving multiplication and division with whole numbers, the 

distribution of student responses also agreed more closely with the teachers' 

reports on multi-digit numbers than with the teachers' reports on basic number 

facts but there was slightly less agreement overall by the students. It might be 

that students prefer other methods of calculating, such as written or using a 

calculator, especially if the operations of multiplication and division are 

perceived as "harder." Generally the four operations with whole numbers are 

more traditionally associated with mental computation and as such students 

might be more likely to consider working and calculating mentally with these. 

In terms of using mental computation with fractions, decimals, and percents 

the modal response reported by the students was sometimes, although only for 

fractions did the teachers' patterns of responses mirror the students. For the 

question relating to decimals, the responses were more varied than for 

fractions, with the modal responses for the teachers being frequently followed 

by sometimes, whereas for the students it was sometimes followed by rarely. 

Similarly with percents, the students reported using mental computation less 

often than the teachers, although the majority of teachers indicated it was a 

topic where they frequently or a least sometimes developed mental 

computation skills. Possibly this discrepancy arises because students are not 

encouraged to use their mental computation skills for solving problems 

involving fractions, decimals, and percents, or do not feel as competent. It is 

also possible that what teachers regard as developing mental strategies with 

part-whole numbers is not influencing the students to work mentally with 

these types of numbers when faced with a problem. 
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8.4 Pedagogical Content Knowledge 
The concept of pedagogical content knowledge was identified by Shulman 

(1986, 1987) as a "special amalgam of content and pedagogy that is uniquely 

the province of teachers" (p. 8). Essentially, pedagogical content knowledge is 

about knowing how to represent content to make it accessible for students. In 

this study pedagogical content knowledge was addressed in Chapter 4 through 

consideration of teachers' self-reported classroom practices in relation to 

mental computation, including teaching activities, assessment activities, 

general mathematical competencies, and classroom organisation. A number of 

these aspects were followed up through the teacher interviews, presented in 

Chapter 7 specifically in relation to part-whole numbers. With the exception 

of assessment activities, similar questions were asked of students as reported 

in Chapter 5. 

8.4.1 Mental computation activities and 
assessment 

In Chapter 4, it was reported that compared to the primary teachers, more 

secondary teachers recorded traditional types of mental computation activities 

when asked to describe a common mental computation session or activity 

(Section 4.6.1). Generally this was also the same group of teachers who had 

limited or no professional development related to mental computation. An 

"output" of professional development in relation to mathematics is often an 

opportunity for teachers to gain exposure to a range of teaching activities. It 

seems that in this study, the primary teachers who had participated in 

professional development were implementing activities aligned with a 

strategies approach to mental computation that many of the teachers in 

Tasmania were being exposed to at the time the data collection phase of the 

study took place. When provided with a list of specific teaching activities, 

slightly more primary teachers also reported using "strategy discussion" to 

develop mental computation skills than secondary teachers. 

On the questionnaire, "strategy discussion" also appeared in relation to 

assessment of mental computation (Section 4.6.2). The patterns of response 
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across the two items were similar with responses the same for many teachers 

suggesting that in discussing strategies mental computation is conducted in a 

formative manner. Similarly, the teachers' pattern of response for use of quick 

recall questions as a mental computation activity and testing (timed and un-

timed) as an assessment activity was distributed evenly across the five Liken 

indicators. In this case, however, teachers were not generally providing the 

same response, suggesting some teachers would question the appropriateness 

of mental computation testing in relation to assessment but might still use it as 

a specific classroom activity, such as a "warm up" to start a lesson. 

Responses of the students (Section 5.5.2) agreed closely with those of the 

teachers for memory activities, with both groups indicating this was an 

activity that was only occasionally or rarely used. For games, however, there 

was less agreement, with students reporting games less than that reported by 

the teachers. The teachers on the other hand indicated that this was one of the 

most common activities used to develop mental computation in the classroom. 

For the teachers, discussion of strategies was another common activity for 

developing mental computation and overall the students' responses supported 

this. Although the modal response was frequent for the teachers, the students' 

responses were distributed over frequent to occasional. For activities 

involving 20 quick questions, the students' perception of this activity with 

mental computation departed from that provided by the teachers. Teachers 

reported that they conducted 20 quick mental computation questions more 

frequently than was reported by the students, the modal response for students 

being rare. 

8.4.2 Classroom organisation 
Overall, mental computation was reported as a daily, whole class activity but 

more so for the primary teachers than the secondary teachers (Section 4.6.3). 

Alternatively, secondary teachers reported that mental computation was more 

of an independent task in their classrooms. Possibly, this is related to the 

finding that secondary teachers reported more traditional, testing-based mental 
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computation activities which Morgan (2000) describes as "activities 

conducted in isolation" (p. 2). 

It was also possible to compare how the teachers reported organising their 

classrooms for mental computation activities with the students' perceptions. 

The students' perceptions of how the class was organised differed from how 

the teachers reported organising it. For the students, mental computation was 

more frequently reported as an independent activity whereas more than half of 

the teachers reported working with the whole class for daily sessions as the 

most frequent way of organising mental computation. Students were only 

asked to report on mental computation as a whole class activity, whereas for 

the teachers it was separated into whole daily sessions and whole class weekly 

sessions. With this in mind the responses of the students agreed more closely 

with the teachers' reports of whole class weekly sessions than for whole class 

daily sessions. Being in a primary classroom or a secondary classroom did not 

affect student responses. 

8.4.3 Associated mathematical competency 
Generally, the teachers did not distinguish between the selection of nine 

mathematical competencies presented in the questionnaire (Section 4.6.4) in 

terms of supporting mental computation. Comparatively, responses to the item 

"using knowledge of written algorithms" received slightly less support than 

the other items and was it noted that all but one of the teachers with no 

professional development marked the item as essential or important. 

For each of the competencies associated with mental computation the pattern 

of response reported by the students was very similar to that reported by the 

teachers. One difference between the two sets of responses was that teachers 

reported "using knowledge of written algorithms" as being slightly less 

important than students reported in the companion item, "being able to work 

things out on paper." This would seem to fit with the level of association that 

the students reported with written computation and mathematics class time as 

described in Section 5.4.4. 
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8.5 Knowledge of Learners' Characteristics 
In the study, knowledge of learners' characteristics was addressed in two 

ways. First, from the perspective of the teachers, as they were asked to 

anticipate students' responses to a set of attitudes and detail the strategies they 

might expect their students to use in solving mental computation problems. 

Second, from the perspective of the students themselves, data were gathered 

to inform teachers of what might be important for them to know about their 

students. 

8.5.1 Teachers' knowledge of their students' 
attitudes 

Teachers were asked to consider how students would respond to a list of 

attitude statements (Section 4.7.2) and the same list was included in the 

student questionnaire (Section 5.4.3). In comparing the students' responses to 

the positive views associated with mental computation with the teachers' 

perception of the students, several similarities and differences were apparent. 

Generally both the teachers and the students responded positively to the view 

"It's fun." There was, however, an increase in the number of secondary 

students who did not associate "fun" with mental computation and this was 

recognised by some of the secondary teachers, five of whom reported that this 

attitude would be rarely or never heard. The pattern of responses for both the 

teacher the students to the view "I'd rather do it my head then write it down" 

were relatively similar. The distribution of primary responses (teachers and 

students) was slightly more positive than for the secondary groups. The 

students' responses also agreed closely with the teachers responses for the 

view "It's the quickest way to work things out." 

The students were more positive in their responses to the view "It's really 

useful outside of school" than was indicated by the teachers: many of whom 

indicated this view would be rare amongst their students, the students do 

appear to see the value of mental computation in terms of its real life 
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application. This was certainly a value that the teachers themselves associate 

with mental computation. 

The two views where the responses of the teachers and the students did not 

closely concur were "It's hard because I can't remember everything" and "It's 

hard because I'm not very quick." For the former view, teachers reported this 

as relatively frequent amongst their students, although many of the students 

expressed disagreement with this view. For these students an association with 

memory did not appear to have a negative affect on the students' view of 

mental computation. The results show a similar picture for the latter view that 

emphasised speed, "It's hard because I'm not very quick." The teachers 

perceived this view as more common that the students reported it, although 

secondary teachers tended to support this more than the primary students did. 

For the three more negative views associated with mental computation, the 

responses of the teachers and the students agreed more closely. In particular 

the distribution of the secondary students mimicked the distribution of the 

secondary teaches for the view "It's for the younger kids." 

8.5.2 Mental computation strategies 

Strategies for solving mental computation problems are very much the focal 

point of the mental computation literature and are positioned in this study as a 

key aspect of teachers' knowledge in relation to appreciating the ways 

students might solve part-whole problems mentally. In Phase I of the study, 

the teachers were asked to list the mental strategies they would expect from 

their students for six mental computation problems. Four problems are 

reported in this section and compared with the actual strategies that the 

students were observed using during the interviews. The students' strategies 

for solving the whole number problems were not described in Chapter 6 

which focussed on mental computation strategies for part-whole numbers. 

Student data is, however, provided as part of Appendix D. 
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For the multi-digit addition problem, 58 + 34, the most common strategy 

reported by the teachers involved a place value split (e.g. 50 + 30 and 8 + 4). 

It was also the most common strategy used by the students. The second most 

common strategy that the teachers would expect students to use was that of 

levelling (e.g., 60 + 32), however, no students were observed using this 

strategy, preferring either a cumulative strategy or describing a version of a 

written algorithm. Again, for the multi-digit multiplication problem, 24 x 3, 

the most common strategy — split by other quantity (e.g. 20 x 3 and 4 x 3) — 

was reported by the teachers and used by the students. However, bridging 

(e.g., 25 x 3) the second most common strategy reported by the teachers was 

not used by any of the students in the interviews. 

Two problems involving part-whole numbers were also given to the teachers 

and asked of students. In the first place, the most common strategy reported 

by the teachers for the problem 4 x 34 involved a form of an algorithm. 

Students, however, were observed using a strategy that involved splitting by 

other quantity using either the 4 or the 3A. Again, for the problem 0.5 + 0.75, 

the teachers expected responses did not concur with those provided by the 

students. In this case, the most common strategy recorded by the teachers 

involved changing the representation of the problem from decimals to 

fractions. The most common strategy used by the suldents, however, involved 

splitting by place value. Based on the four examples, it seems teachers 

knowledge of their students' strategies aligned more closely for the problems 

involving whole numbers than for problems involving part-whole numbers. 

8.5.3 Working conceptually, working procedurally 

The students' interview responses were classified as working procedurally or 

working conceptually, an approach used by Callingham (2004), Caney and 

Watson (2003), McIntosh (2002), and Weber (1999) in relation to mental 

computation. Generally, the students were classified as working procedurally 

if their mental computation strategy reflected a traditional written algorithm or 

a rule and was not accompanied by any further reasoning. For decimals in 

particular many more responses were classed as procedural and this was 
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largely due to the procedural use of whole number language. A key finding of 

the student interviews (Phase 3) was that few examples of students working 

procedurally with part-whole numbers were observed for problems involving 

percents and fractions. There are several points to consider in relation to this 

finding. In the first place, at least half of the sample of middle years students 

were at the primary level (Grade 5 and Grade 6) and it was likely that students 

had limited exposure to the traditional written methods for solving part-whole 

problems, particularly for percents and fractions. A version of a traditional 

written algorithm with quarters was observed for the problem 4 x 3/4, which 

indicated that some of the students were familiar with working through this 

type of problem in a written context. There were, however, no examples 

observed of students simply "cancelling," a rule demonstrated by several 

teachers in the questionnaire. A single example of a procedural response was 

recorded for the fraction problem 3 + 1/2. Interestingly, however, just two 

examples of a student using a mental form of a written algorithm for a 

decimal problem were recorded for the problem, 0.5 + 0.75. This is perhaps 

surprising, as it is reasonable to expect more use of a traditional written 

algorithm given that decimal algorithms (for the four operations) are likely to 

be more familiar to students from the whole number domain. Percents and 

fractions, on the other hand, have written methods that are quite different. 

The finding that examples of students working procedurally with part-whole 

numbers were generally limited may also be an artefact of the problems used 

in the interviews. The majority of the problems involved benchmark values, 

for example, 50%, 25%, 1/2, 3/4, 0.5, and 0.25, and often in combination with a 

whole number. The use of these benchmarks values is discussed in the 

literature in detail in relation to number sense. McIntosh (1992), for example, 

includes working with benchmarks in his overview of a number sense 

framework. As well, Moss (2002) provides several scenarios in which 

students demonstrate their flexible approach in moving between alternate 

representations of 50%, 25%, and 75%. Being able to use benchmarks capably 

is viewed as an important aspect for students in developing an understanding 

of the links between the different rational number constructs. In relation to 

percent, Parker and Leinhardt (1995) stress that an over emphasis on 
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benchmark values may hinder students in being able to deal with harder 

problems that they may encounter later in their schooling years. In this study, 

however, the students were generally quite competent in working with the 

benchmark values, suggesting that for mental computation the benchmark 

values may be a very good level of mental computation to cover in the middle 

years. 

The procedural/conceptual distinction is a familiar dichotomy for teachers. 

The characteristics of each have an intuitive feel to them, which is perhaps 

why the terms have endured as contemporary researchers attempt to explore 

the complexities of each notion. Hiebert and LeFevre (1986) write, "The core 

of each is easy to describe, but the outside edges are hard to pin down" (p. 3). 

A recommendation for teachers in using the distinction for mental 

computation is to regard strategies that reflect written algorithms or rules as 

indicators that students might be working procedurally. This could be a cue 

for teachers to prompt students to expand on their thinking, for example, to 

explain why a rule might work and how it could be applied to a similar 

problem. Asking for alternate strategies would be another avenue for teachers 

to explore with their students — particularly if students appear to be relying on 

versions of written algorithms for mental computation (Caney, 2004). It 

should be noted that in the whole number domain, some counting strategies 

could also be considered procedural. They are used widely by students, often 

inappropriately, and are on the whole inefficient particularly when working 

with multi-digit numbers. Counting strategies, however, did not feature 

particularly in this study. Traditional written procedures have been shown to 

be very powerful (Weber, 1999; Reys et al. 1995) and once learned persist in 

students' thinking even in situations when a strategy is clearly inefficient and 

somewhat arduous to work through. Although current debate centres on the 

role of teacher-taught mental computation strategies versus student-invented 

strategies (e.g. Threlfall, 2000), perhaps discussion should also focus on the 

role of teachers in facilitating mental computation conversations with students 

with an emphasis on intervention being not so much about what strategies to 

use but how to delve deeper into their students' thinking. There are, however, 

many pedagogical challenges associated with listening to students that middle 
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years teachers face. English and Doerr (2004) acknowledges that "Within a 

given classroom ... teachers are faced with the challenge of understanding the 

multiple ways that children might interpret a problem situation and the 

multiple pathways they might take for refining and revising their ideas" 

(p. 215). They also note that research concerning how teachers learn about 

their students (e.g., questioning techniques) is limited for the middle and 

secondary years. 

Hiebert and LeFevre (1986) contend that although the procedural and 

conceptual distinction has a long history, "current discussions treat the two 

forms of knowledge as distinct but linked in critical mutually beneficial ways" 

(p. 2). In this study, the procedural/conceptual distinction was applied to 

student responses in their entirety, and not necessarily associated with 

individual strategies as such. It seems appropriate to keep the distinction just a 

shade blurred, some strategies are almost default examples of working 

conceptually. Through a description of bridging, for example, students are 

demonstrating their knowledge of near numbers, usually accompanied by an 

understanding of the operations involved as the problem is readjusted at the 

end to achieve an answer. Reys et al. (1995) write that "The acts of both 

generating and applying a strategy are significant" (p. 304). 

8.6 Content Knowledge 
Mathematical content knowledge has not been specifically addressed in this 

study, although two aspects of the questionnaire are worth discussing in 

relation to what is widely known as teachers knowledge of particular "subject 

matter." It was mentioned in Section 8.2 that of the 18 secondary teachers 

who participated in Phase 1, two-thirds had no particular mathematical 

educational qualifications to complement their teacher qualifications. 

Although it is widely acknowledged that a qualification per se may not be an 

adequate single measure of a teacher's knowledge of a content strand, the 

issue has concerned some in that lack of a particular level (of mathematics, for 

example) will impede or place limitations of how far the teacher can take their 

students with that subject. In this study, the complexity of mathematical 
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knowledge expected by teachers was not great, and could be considered as 

part of the domain of "everyday" numeracy; hence it was not further 

considered. 

Another aspect of the questionnaire that can be considered a secondary 

measure of teachers' content knowledge are the number of responses that 

teachers' provided in relation to their expected use of mental strategies in the 

part-whole domain by students. A higher proportion of teachers did not report 

any strategies across the part-whole domain problems in comparison to whole 

numbers. It is possible that teachers themselves were not familiar with 

strategies for solving problems involving these types of numbers. 

8.7 Knowledge of Educational Ends, 
Purposes, and Values 

Mental computation is embedded within the broader context of mathematics 

and numeracy. When asked to consider the value of mental computation, the 

teachers who completed the questionnaire identified the link to mathematical 

understanding, its real life applicability, and an affective value. Inherently 

these three values are perhaps long-term values in that they are the part of the 

collective role teachers' play in society in preparing students to become 

competent community members. A value of a different nature, identified by a 

smaller number of teachers, was that of mental computation in relation to 

teaching activities. This value is of short-term, individual interest for teachers 

in that it is likely to be related to a lesson or unit of work. 

In Section 4.3 it was reported that there was the tendency for teachers at the 

secondary level to emphasise the value of mathematical understanding in 

relation to mental computation. This finding was reinforced through the 

interviews with the key teachers as discussions with the secondary key 

teachers were focused on mental computation in relation to its mathematical 

links with number. The primary teachers, however, linked mental computation 

with what could be considered the broader aspects of numeracy. The 

secondary teachers appeared to have a narrower view of the value of mental 
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computation. Given that the secondary teachers were more likely to teach only 

mathematics or science, whereas the primary teachers taught mathematics as 

one part of a suite of curriculum areas, this is perhaps not surprising. It 

highlights, however, a potential obstacle for developing a consistent approach 

to mental computation that bridges both the primary and secondary levels. 

8.8 Knowledge of Educational Contexts 
Like Shulman's domain of knowledge of educational ends, purposes, and 

values, knowledge of educational contexts is fundamentally about the milieu 

in which mental computation is embedded. Shulman's interpretation of 

educational contexts was fairly broad encompassing, "workings of the group 

or classroom, the governance and financing of school districts, to the character 

of communities and cultures" (p. 8). In the current study it relates to the 

teachers' consideration of the primary and secondary school contexts and how 

they might impact on the teaching and learning of mental computation. 

Regardless of the teachers' own beliefs about the importance of mental 

computation in both primary and secondary school, the teachers' overall 

perception was that mental computation declined as students moved into the 

secondary years. Reasons for the decline were mainly curriculum-related 

(emphasis on other methods of computation and aids, and teaching activities) 

and environment-related (constraints imposed by the curriculum and parental 

expectations) with fewer teachers reporting teacher- or student-related 

reasons. Generally this finding aligns with the well ingrained view of primary 

schooling as student-centred and secondary schooling as subject or discipline 

centred (Carrington, Pendergast, Bahr, Kapitzke, Mayer, & Mitchell, 2001). 

In reviewing the results of this study, three of the seven key teachers raised 

the lack of a whole school approach to mental computation (and in relation to 

numeracy) as an important issue. This issue is topical within the realm of 

middle school generally (Carrington et al, 2001; Hill & Russell, 1999) and has 

surfaced specifically in relation to middle years numeracy (Luke et al, 2002). 

It was interesting that the three teachers were from different schooling 
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environments, including one district teacher, one primary teacher and one 

secondary teacher. Comments seemed to be school specific. On the surface 

district schools would appear to have an advantage in that at the very least all 

grades and teachers are contained within one school site. Strengthening 

middle years numeracy in Tasmania, however, requires coordination between 

multiple school sites which will be an ongoing challenge for those involved in 

planning the directions education in the state will take. 

8.9 Directions for Further Research 
A number of potential directions for further research have been generated by 

this study. In relation to the students, interview data was collected across three 

areas — fractions, decimals, and percents — and therefore data on strategies 

relating to particular operations is, in one sense limited. For the purposes of 

the study, however, it seemed necessary to explore all three in one study given 

the links between the three domains. A different path that this study could 

have taken would have been to consider just one of the areas and expand on 

the problems relating to the four operations (in the case of fractions and 

decimals) or relating to the three types of percent application problems 

(Ashlock, Johnson, Wilson, & Jones, 1983). Additionally, the responses of the 

students from the Low Group, as defined by mental computation performance, 

were not included in this study. The teaching community would certainly 

benefit from a more detailed analysis of students working at the lower level of 

mental computation. This would be particularly useful in charting the 

development of mental computation involving part-whole numbers. 

An observation from the literature reviewed for this study is that mental 

computation research involving students outweighs research involving 

teachers. Expanding the teachers' profiles as used in this study with 

observations of the teachers working in their classrooms would be one way of 

addressing this imbalance. Our understanding of middle years mathematics 

classrooms could also be enhanced through case studies involving middle 

years teachers' development of mental computation with their students. Both 

avenues align with Shulman's (1987a) view that multiple data sources are 
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needed to assess teachers. Generally, further research on the teaching and 

learning of mental computation is likely to be influenced more broadly by the 

tenets of quantitative literacy (Steen, 2001), including: cross-curriculum 

learning opportunities and authentic assessment. 

Another avenue for further research concerns the development of an evidence 

base to support informal written strategies or written ways of recording 

students' thinking that are not confined to standard written algorithms. 

Macicinlay (1996) writes "we tend not to see as much evidence of informal 

written methods in the classroom because there is usually firmer direction 

given about the way children should record their work on paper" (p. 2). It 

seems a logical progression from the current emphasis on mental computation 

to encourage students to document their thinking in ways that are meaningful 

to them (Australian Education Council, 1991; Campbell, Rowan, & Suarez, 

1998). The focus of work in this area has again involved primarily whole 

numbers (e.g., Carroll & Porter, 1998; McIntosh, 2002, 2005), however, 

building a body of knowledge and research involving part-whole numbers 

could also be an essential factor in strengthening numeracy across the middle 

years. 

8.10 Recommendations for the Department 
of Education Tasmania 

In funding both this study and the project — Assessing and Improving the 

Mental Computation of School-Aged Students — the DoET has created a body 

of information on mental computation collected from local teachers and their 

students. The information generated from this study will be useful to the 

DoET in terms of supporting professional development activities for teachers, 

particularly as the study engaged both teachers and students. This section 

therefore addresses the first objective outlined for the study: 

To provide the DoET with a set of recommendations to assist the on- 

going development and evaluation of numeracy targets for mental 

computation. 
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First, not only do teachers need to be encouraged to continue a strong mental 

computation focus in the middle years, but also this focus needs to extend 

further than whole number mental computation. In this study, there was a 

decline in the number of teachers reporting that they developed mental 

computation with part-whole numbers compared to the number developing 

whole number mental computation. This was largely attributed to the need to 

develop written computation and also to the pressure of a crowded 

mathematics curriculum. Mental computation with part-whole numbers need 

not be another "topic" to cover, a perception that can perhaps be attributed to 

the structure of the curriculum, but rather a way of teaching mathematical 

content. Certainly highlighting the importance of mental computation in 

relation to the part-whole number domain sends the message to middle years 

teachers that mental computation is relevant to the secondary classroom 

(Callingham & Watson, 2004). The DoET's support for research in this very 

area adds weight to that message. 

Second, in building teachers' capabilities to develop mental computation with 

middle years students, knowledge of learners' characteristics (Shulman, 1987) 

must be a key feature of any program or initiative supported by the 

department. This means that teachers need to be exposed to examples of 

students' thinking and students' working through problems. Using examples 

such as the ones presented in Chapter 6 can connect teachers with their 

students and encourage teachers to look further than their own methods of 

solution, particularly for part-whole numbers. 

Third, in relation to teachers' pedagogical content knowledge, this study 

establishes that the benchmark values, e.g. 50%, 1/2, 0.5, 25%, 1/4, and 0.25, are 

an appropriate level of mental computation for students in the middle years. 

At this level many of the strategies that students need are likely to be familiar 

to them from working with whole numbers, for example, doubling and 

halving strategies and also splitting numbers. Additionally problems 

comprising a combination of a whole and part-whole numbers, for example 

4 x 3/4, can potentially bridge the whole number, part-whole number divide. 
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Both aspects are starting points for teachers preparing students to work 

mentally with fractions, decimals and percents. 

Fourth, teachers need to pay special attention to decimal mental computation. 

In this study it was found that students, although generally successful in 

solving decimal problems, were more often working procedurally rather than 

demonstrating their conceptual understanding. Although whole number 

strategies were seen to transfer to the decimal problems, the understandings 

behind the use of the strategies were often masked by the use of whole 

number language. In the interviews it was not until the students were asked 

"why" in relation to their answers, and not just "how," that their 

understandings were exposed. For this reason, teachers will need to create 

multiple opportunities for students to expand on their thinking with decimal 

mental computation. 

Fifth, it is important to find ways to look at students' ability levels in relation 

to numeracy that go further than grade-based distinctions. For the middle 

years in particular, Hill and Russell (1999) identify that a "convergence in 

structures and approaches to teaching and learning between the final year of 

primary schooling and the first year of second schooling" (p. 9) is necessary. 

In this study, the use of the levels of mental computation competence 

(Callingham & McIntosh, 2002) showed that middle years students were 

spread primarily across Levels 5, 6, and 7, with no clear cut association of 

level with grade. 

Sixth, if consistency across the primary/secondary divide is to be addressed in 

the future, the DoET needs to consider targeted professional development 

programs for middle years teachers. Very few Tasmanian schools have 

separate middle years programs and most primary and secondary schools are 

situated on different sites with individual mathematics and numeracy 

programs. In this study more primary teachers had accessed professional 

development in relation to mental computation and overall than their 

secondary colleagues. 
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Finally, Shulman's work provided a useful and encompassing framework for 

this study. It also has the potential for providing a comprehensive framework 

from which to design professional development programs for teachers. 

Individually, Shulman's domains are familiar to teachers and are applicable to 

everyday life in a classroom. Together, however, they constitute a framework 

for capturing the breadth of teachers' experiences, an example of which is 

detailed by Watson, Beswick, Caney and Skalicky (2006). Collaborating with 

the numeracy team at the DoET, the authors show how a professional 

development numeracy program used Shulman's work to underpin its design 

and implementation. In a similar fashion to this study, Shulman's domains 

were used to devise a teacher profiling instrument the results of which 

contributed to providing a program that would meet the specific needs of the 

participating middle years teachers. 

8.11 Limitations 
The limitations outlined in Chapter 3 concerned particular methodological 

choices. In this section several reflective limitations are briefly drawn to 

attention, representing lessons learned during the data collection phases of the 

study. They are largely drawn from the experience of interviewing students. In 

the first place, it was difficult on occasions to accommodate the time 

individual students needed to think and work mentally within an interview 

session. Unavoidably, within a set interview time, students who were slower 

at working through problems mentally were not able to be presented with the 

number of problems, as would have been ideal. Alternatively, it was possible 

to give students who worked at a quicker pace additional problems to solve. 

This was particularly an issue when working within the secondary 

environment, as the school timetable was generally tight and inflexible. At the 

primary level, however, interview sessions were able to take a little longer if 

necessary. 

A second issue is that of the intervention of the researcher with some students 

during the interview. Again, on occasion, some students were prompted with a 
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question categorised as a guided (refer to Section 3.5.2.3). From a research 

perspective the discussion that then takes place with the student following a 

guided question is not as valid as an initial response, particularly for mental 

computation. This said, however, in an interview situation it is important for 

the researcher to support students and keep the interview experience both 

positive and interesting. In a classroom setting the use of guided questions 

would be used by the teacher more freely to generate discussion and support a 

culture where students' thinking is at the forefront of mathematical activity. 

A third point relates to the classification of mental strategies in general. 

Threlfall (2002) maintained that the array of the attempts to name and group 

strategies in the literature still does not capture the diversity of student 

thinking that would be found in any given classroom. Although there is 

perhaps a lack of agreement on the terminology used to describe strategies, 

fundamentally it is important that teachers understand the general ways in 

which students work with numbers. For whole numbers this aspect is well 

captured by researchers and available for teachers. Threlfall's concern is 

perhaps exacerbated by the tendency for researchers to capture "complete 

strategies" whereas in reality some strategies may be used in a singular sense 

or in a combined fashion. Students sometimes change their strategy part way 

through a discussion and research in this area does not necessarily capture 

these scenarios. 

8.12 Conclusion 
This thesis establishes that middle years numeracy practices could be 

strengthened through a greater emphasis on mental computation that extends 

further than working with whole numbers to embedding a strategies approach 

within the part-whole number domain. The research grows out of an interest 

in mental computation that spans some two decades and was largely inspired 

by the emergence of constructivist thought. In general, the research that has 

transpired showcases mental computation strategies with whole numbers, 

particularly addition and subtraction, and perhaps for that reason the focus of 

the research has been at the primary school level. It is not feasible, however, 
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to consider numeracy in relation to the middle years mathematics curriculum 

without acknowledging the significance of the part-whole number domain, 

including fractions, decimals, and percents. As key mathematical ideas these 

three concepts have collectively been the subjects of a large body of research 

within the mathematics education community but not in relation to mental 

computation — one of the main contributions of this study. 

In this study a profile of middle years students was constructed using multiple 

data sets. Three groups of students' mental computation competence — high, 

middle, and low — were established. These groups were then used to look at 

performance on two comparisons tests involving decimals and fractions, and 

also the students' experiences in relation to mental computation. For the 

students in the middle and high performing groups, the mental computation 

strategies that the students used were then documented for problems involving 

fractions, decimals, and percents. In relation to numeracy education, profiling 

students has proven to be a constructive way to look at both the multiplicity of 

students' abilities for a particular mathematical content area, as well as their 

perspectives, modelling an approach that transcends traditional grade-based 

classifications. 

In keeping with goals of the project, Assessing and Improving the Mental 

Computation of School-Aged Students, this study has engaged both students 

and their teachers. A different approach to profiling the teachers was 

employed whereby a profiling instrument was constructed to capture the 

experiences of the middle years teachers. The work of Shulman (1986, 1987) 

in describing seven essential domains of teacher knowledge was used as the 

theoretical framework underpinning the profiling instrument. Additionally, 

differences between the teachers in terms of school level (primary and 

secondary) and level of professional development could be assessed. 

Previously, much of the advice afforded to teachers regarding mental 

computation has filtered through numeracy discourse with the exception of 

student thinking strategies which, for whole numbers, have been well 

documented. As part of this study, a set of teaching recommendations 

concerning the teaching and learning of mental computation has been 
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provided. It is likely that professional development programs will be the 

platform from which the recommendations can start to be addressed. The 

recommendations are intended to complement the body of mental 

computation research that has already been conducted in Tasmania. 

As an approach to the teaching and learning of number, the meaning of mental 

computation has moved away from the confines of mental arithmetic to 

encompass students' thinking strategies with the goal of developing 

conceptual understanding. Ultimately, the value of mental computation is that 

it brings life to the mathematics classroom through conversation and 

discussion. The tenets of mental computation therefore extend further than 

working with number, to model what should be embedded more broadly as 

the pedagogical approach to mathematics teaching. If indeed mental 

computation is the heart of numeracy, then the life blood of mental 

computation is surely the student voice. 
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