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ABSTRACT 

Keywords: B-ISDN, congestion, ATM, statistical multiplexer, cell-loss. 

Cell loss is often assumed to occur at random. However, when an ATM cell is lost 

because of buffer overflow at a statistical multiplexer, there is an altered probability that the 

cells following it will be lost. 

In this report, conditional probabilities of cell-loss due to congestion are modelled 
mathematically, and then simulations used to verify the models are described. Conditional 
probabilities are modelled and simulated using M/M/1/K, MID/1/K, M/D/1/K with minimum 

interarrival times and SPP/D/1/K queues. 

Results from the models and simulations show that cell loss exhibits 'bursty' 
behaviour. If one cell is lost, the probability of following cells being lost is substantially 
higher than the overall cell loss probability. Consequently, cell loss has to be characterised by 
more than just an average rate. The average and variance of the number of cells lost are 
proposed as additional statistics to characterise cell loss caused by buffer overflow. In this 
paper these statistics are calculated and tabulated for M/M/1/K and M/D/1/K multiplexer 

models. 

Some of the repercussions of the bursty nature of cell loss for Broadband services are 

discussed. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Scope of Project. 

In this report, ATM traffic and congestion control issues are surveyed before 

examining in detail patterns of cell loss in an ATM multiplexer and its consequences. 

Once overflow occurs in a node, the probability of the following cells being lost is 

high, because the buffer is close to full. This results in a clustering of cell losses due to buffer 

overflow. Although of importance in traffic management, a literature search suggests this 

area has not been investigated in any depth. Only two papers have been found that refer to it. 

The first [Ramaswami] discusses conditional probability of packet loss where arrivals are 

cyclic, while the second [Ohta and Kitami] discusses it briefly in the context of Forward 

Error Correction schemes. 

The report is structured as follows: Chapter 1 surveys ATM traffic management. 

Chapters 2, 3, 4, 5 and 6 describe mathematical and simulation modelling of ATM 

multiplexer cell loss caused by buffer overflow. Chapter 7 is the conclusion, which is 
followed by a bibliography and appendices. Appendices A to D are derivations of some of 

the formulae used. Appendices E to F are listings of SIMSCRIPT programs used for 

simulation modelling of M/M/1/K, MID/1/K, M/D/1/K with minimum interarrival times, and 

SFP/D/1/K respectively. 
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1.2 	B-ISDN and ATM 

1.2.1 	B-ISDN 

B-ISDN is an abbreviation for Broadband Integrated Services Digital Network. B-

ISDN will provide digital services requiring a broad range of bandwidths, from narrow band 

services such as voice to wideband services such as High Definition Television. B-ISDN will 

make possible high speed image transmission, interactive video, and other exotic services as 

well as providing established services like voice, telemetry and data transfer. B-ISDN is 

possible because of advances in fibre optics, semiconductor manufacturing, reliable 

programming and increased demand for high bandwidth services. Fibre optic cable can 

provide bit rates in the hundreds of Megabits to Gigabits range. B-ISDN is expected to evolve 

as a backbone service for local, metropolitan and wide area networks and eventually be 

extended to the office desktop and the home. 

The following figure illustrates the B-ISDN reference configuration [Handel]. It is 

similar to the Narrowband ISDN reference configuration. 

Figure 1. B-ISDN Reference Configuration 
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B-TE1 is broadband ISDN Terminal equipment. TE2 or B-TE2 is non ISDN 

equipment. B-TA is broadband Terminal adaptor equipment for non-ISDN equipment. B- 

NT1 and B-NT2 are the network terminators. B-NT2 need not be present. For example B- 

NT2 might be a customer network that interfaces to a B-ISDN network. R, Sb and Tb are the 

interfaces between these equipment types. 
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1.2.2 ATM Networks 

Asynchronous Transfer Mode has been chosen as the mode of transmission of B-

ISDN. ATM has evolved from the DQDB MAN. ATM is a universal, packet service. ATM 

packets, called cells, are a uniform 53 octets in size. The small size of the cells makes ATM 

flexible enough to emulate any service, as well as simplifying switching. 

ATM can make more efficient use of the available channel capacity. ATM allocates 
cells to a service as the service requires. Some B-ISDN services tend to be bursty with 

periods of high activity interspersed with periods of low activity. A large bandwidth service 

may take up a large proportion of a channel's capacity while transmitting, but if it is a 'bursty' 

service it may have long periods of relative inactivity. By comparison, a service using 

Synchronous Transfer Mode (S TM) is allocated a channel of fixed bandwidth regardless of 

any variability in its requirements. A constant bit rate service using STM will be efficient in 

its channel use, but a bursty service using STM will not be, as the channel's capacity must 
meet the peak requirements of the service. With a bursty service, this peak is reached only 

occasionally, so some of the channel is unused most of the time. 

ATM networks are high speed, fibre optic based networks. At the User Network 

Interface (UNI), an output virtual channel of 622.08 Mbits/s and an input Virtual Channel of 

155.52 Mbits/s is proposed. Multiplexers provide the UNI and connect the links of the 

network. Buffering of cells may occur at a multiplexer to cope with short term traffic surges. 

The following figure shows the protocol reference model for ATM networks. The 

relation between the ATM and the OSI reference model has not been clearly defined yet, 
however the PHY layer corresponds to layer one of the OSI model while the AAL and ATM 

layers correspond to the lower edge of layer two of the OSI model. 



Figure 2. ATM Protocol Reference Model Subla ers (DePrvcker 
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The ATM Adaptation Layer maps higher level data units into cell payloads. There are 

four AAL services, classified by the need for timing between source and destination, bit rate, 

and connection mode. This is illustrated in the following diagram. 

Figure 3. Service Classes for AAL (DePrycker) 
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For traffic classes A, B, C, and D there corresponds an AAL type I, 2, 3, and 4. 

Class A traffic is connection oriented, constant bit rate, and there is a fixed timing 

relationship between the source and the destination. Variability in the delay needs to be 

small. An example of Class A traffic is PCM voice traffic at 64 kbit/s. 

Class B traffic is similar to Class A, but has a variable bit rate. An example of Class B 

traffic is variable bit rate video. 

Class C traffic is also connection oriented, variable bit rate, but there is not a timing 

relationship between the source and destination. An example of type C traffic is connection 

oriented data transfer. 

Class D traffic is similar to Class C, but is connectionless. 

The AAL has two sub-layers, the Convergence Sub-layer and the Segmentation and 

Reassembly Sub-layer. The convergence sublayer has different functions, depending on the 

service. It may have Forward Error Correction, handling of lost cells or timing information. 

These functions are implemented through prefixing and suffixing of a header and trailer. 

The SAR sublayer's function is segmentation and reassembly of convergence sublayer 

program data units (CS-PDUs) into ATM cell payloads. The CS-PDU is split into service 

data units whose length depends on the AAL type. The mapping of CS-PDUs to ATM cells is 

discussed in the next section. 

The ATM layer receives an SAR-PDU from the AAL layer which it prefixes with a 

cell header to form an ATM cell. 

The ATM layer deals in units of cells. Its four functions are Cell multiplexing / 

demultiplexing; Cell VP! / VCI translation; Cell header generation / extraction; and Generic 

Flow control. Cells are multiplexed and demultiplexed from different connections (identified 

by different VCI and / or VPI) onto a single cell stream. At an ATM switch, the VCI or VPI 

may need translation for transmission to the next node. The cell header is also affixed to (or 

removed from) the body of the cell at this sublayer. A User Network Interface flow control 

mechanism using the GFC bits is also implemented at this level. 

13 
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The following figure is a diagram of an ATM cell at the User Network Interface. GFC 

is the Generic Flow Control field; VPI is the Virtual Path Indicator; VCI is the Virtual 

Channel Indicator; PT is the Payload Type; RES is reserved, possibly for future traffic types; 

CLP is the cell loss priority; HEC is the Header Error Control. 

Cells at the Network Node Interface do not have a GFC and have a larger VPI. 

The Generic Flow Control field is four bits long and is intended to be used for 

controlling short term overload at the customer network. Multiple terminals may share a 

single access link to the network. The GFC is used to control overload from terminals on the 

same access link. 

The VPI is a sixteen bit connection identifier used for routing of the cell. As the cell 

traverses the network, its value may change. 

The VPI identifies an end to end path for the cell. It is eight bits at the UNI and twelve 

bits at the NNI. 

The PT identifies whether the cell contains user or network information. The only 

value defined so far is user information, with a value of 00. 

The CLP bit can be set by the user, or the network. If the traffic is CBR, it is set to 

zero, indicating a high priority. If it is VBR, it may be zero or one. It may be set by the 

Virtual Leaky Bucket algorithm or if the traffic is lower priority. 

The HEC is a CRC code to protect the header data. Although defined at the ATM level 

it is used at the PHY level. 
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The PHY layer is made up of two sublayers: the Physical Medium (PM) and 

Transmission Convergence (TC) sublayers. The TC sublayer deals in bits provided from the 

PHY sublayer. Its five functions are Cell rate decoupling, HEC sequence generation and 

verification, Cell delineation, Transmission frame adaptation, and Transmission frame 

generation / recovery. The PM sublayer is responsible for the transmission and reception of 

bits. The two functions it performs are bit timing and specification of the actual transmission 

medium. 

1.2.3 	Mapping of Services onto ATM. 

We now describe how Convergence Sublayer Program Data Units (CS-PDUs) of each 

traffic type are mapped onto ATM cells. 

For type 1 traffic each CS-PDU is split into 47 byte SDU payloads that are prefixed 

with a one byte of sequence information. 

For type 2 traffic the CS-PDU is split into SAR payloads that are then prefixed by a 

sequence number and Information type and is suffixed by a length indication and CRC. The 

information type may be a BOM, COM, or EOM. All the details of this traffic type have not 

been resolved. 
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In type 3 traffic, the CS-PDU is split into 44 byte SDUs and prefixed by a two byte 

header and a two byte trailer. The header contains segment type, sequence number and 
multiplexing information. The trailer contains a length indication and a CRC. 

The segment type can be a BOM, COM, EOM or SSM (Single segment message). 

Type 4 traffic uses the same format as type 3 traffic, although the MID field is used 

differently. 

Each 48 byte segment constitutes the payload of an ATM cell. This cell is then 

prefixed with a five byte header. 

Voice is sampled and mapped one sample per cell as in type 1. There is no complex 

assembly or reassembly. 

Video traffic is transmitted using the Discrete Cosine Transform and the MPEG 

protocol. A reference frame is constructed using the DCT which is then segmented as for 

type 2 traffic. Successive frames are either transmitted as differences to the predicted frame 

or as a new reference frame, depending on which results in the least traffic. The MPEG 

protocol specifies every fifteenth frame as a reference frame, and as many previous frames 

as wanted can be used to predict the next frame. If cells are lost, the receiver can predict 

where the next frame is likely to be. Consequently, excessive cell loss can result in poor 

picture quality. There are no requests for a refresh. 

Data traffic is mapped as described for type three or four traffic depending on whether 

it is connection oriented or connectionless. 

1.3 	ATM Traffic 

The choice of ATM as the transport mode for B-ISDN reflects the bursty nature 

expected of B-ISDN services. Data, video and images are all bursty. Table 1 [DePrycker] 

shows some typical values of burstiness. ATM can take advantage of this variability by 

statistical multiplexing. In statistical multiplexing, the sum of the peak input rates is greater 



File transfer 
Voice 

Interactive 
Data 

Image 
Interactive 
Compressed 
Web 

17 

than the carrier's output capacity. However, because of the burstiness of the inputs, the 
average input rate is less than the carrier's capacity, so a better throughput is obtained than 

with STM. 

Table 1. Broadband Services: Bit rates and Burstiness [DePrycker] 

Service E[s(t)] 

  

Voice 	 32 kbit/s 	 2 

Interactive data 	 1-100 kbit/s 	 10 

Bulk data 	 1-10 Mbit/s 	 1-10 

Standard quality video 	 20-30 Mbit/s 	 2-3 

High definition TV (HDTV) 	 100-150Mbit/s 	 1-2 

High quality video telephony 	 —2 Mbit/s 	 5 

The use of ATM has ramifications for network design, admission procedures, traffic 

management and fairness of access to users of the same service. Because ATM traffic is 

heterogeneous, different and sometimes conflicting service requirements are needed. For 

example, voice traffic is susceptible to delay but can cope with some cell loss, whereas data 

is susceptible to cell loss, but delay is less important. Figure 5 [Hong et al] shows some 

approximate ATM traffic performance requirements. 

Figure 5. Approximate ATM traffic performance requirements (Hong et al) 
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Voice is PCM voice traffic. The standardprovides for operation at 64 kbit/s, however 

with DPCM and ADPCM, it can be reduced to 16 kbit/s. Voice traffic can tolerate high cell 

loss rates but is susceptible to delay. 

File transfer refers to the transfer of bulk data over communications links. Examples 

are new software releases, and backups. The time taken for file transfer is usually 

unimportant, but the error rate is, so retransmits are acceptable if cells are lost. 

An example of interactive data is a database query. Because it is interactive, delay is 

less acceptable than with file transfer, but some can be tolerated. As with file transfer some 

error can be accepted, and corrected through cell retransmits. 

With image transmission, (eg. CAD/CAM) the delay requirements are similar to 

interactive data, but image has more stringent error requirements, although some can be 

tolerated and disguised through DCT coding and extrapolation. Retransmissions may be 

acceptable. 

Interactive compressed video (eg. Videophone) operates in real time, so has stringent 

delay and error requirements. Retransmission of lost cells is not possible, and error correction 

options are limited, since most of the redundancy has been removed from the images. DCT 

coding and extrapolation are the only methods of correcting errors. 

Statistical multiplexing implies a finite probability that the input services demand will 

exceed the output capacity. Consequently buffering at the multiplexer is needed to cope with 

short term high inputs. However, for design simplicity and to minimise delay for delay 

sensitive services such as voice, the buffer must be small. Consequently, there is a finite 

probability that a cell will be lost because of buffer overflow. The probability of successive 

cells being lost after one cell is lost is the topic of the remaining chapters of the paper. 

The following table shows two traffic descriptors of ATM traffic and some of their 

typical values. These are the average bit rate and the burstiness, where burstiness is defined 

as peak bit rate divided by average rate. Other traffic descriptors are: Average Burst Length, 

Peak Bit Rate, Homogeneity, Heterogeneity and Offered Load. The effects of a change in 

these parameters has been summarised [Bae] as follows: 
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- As average burst length increases, cell loss and delay decrease, provided the average 

rate remains constant; 

- As peak bit rate increases, cell loss and delay increases provided the average rate 

remains constant; 

- As the number of homogeneous sources increases, the cell loss decreases provided the 

average rate remains constant; 

- With a heterogeneous load, the effect of the high rate traffic components dominate the 

cell loss and delay statistics; 
- As offered load decreases, cell loss decreases, although not instantaneously. 

1.4 	ATM Service Categories 

The quality of service in ATM traffic can be defined at the connection level, burst 

level and cell level. At the connection level it can be expressed in terms of connection 
blocking probabilities; at the burst level, in terms of burst blocking probabilities and at the 

cell level in terms of cell loss probabilities and cell delay. 

Initially, only two qualities of service are to be defined, both at the cell level. Variable 
Bit Rate traffic will be statistically multiplexed with some cell loss and delay. It will be 
cheaper than the other service, the Continuous Bit Rate. CBR traffic will have reserved 
bandwidth. Consequently it will have low cell loss and delay. To identify each quality, the 
Cell Loss Priority (CLP) field of the cell header will be used. For CBR traffic, the CLP will 
be 0. For VBR, the CLP may be 0 or 1, depending on the importance of the cell (as in DCT 

coding) and on whether the cell has been marked by the Virtual Leaky Bucket algorithm as 

having exceeded the contracted bandwidth. 

Qualities of service to be introduced later are VBR Reserved Connection Bandwidth 
and Reserved Burst Bandwidth. VBR Reserved Connection Bandwidth will be statistically 

multiplexed, but with a lower cell loss and delay than VBR. 

Reserved Burst Bandwidth Service will reserve bandwidth before sending a burst into 
the network. To reserve the bandwidth, it will send a request into the network for the burst 
bandwidth. If available, the bandwidth will be made available to it. Otherwise it must request 

the burst bandwidth again. After the request is successful and the burst is transmitted, the 
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user will send an end-of -burst indication into the network to deallocate the reserved 

bandwidth. 

1.5 	Traffic and Congestion Controls 

1.5.1 	Congestion Collapse 

As the load on a network increases, it would be desirable if the throughput increased 
linearly up to the maximum, and then stayed at the maximum beyond that. Also, it would be 
desirable if delay stayed within acceptable limits. Unfortunately, what tends to happen as the 
load increases is 'congestion collapse'. The throughput increases as the load increases, but as 

the load increases, so does the delay, causing timeouts. The timeouts may cause retransmits, 
exacerbating the congestion. Beyond a certain point, the throughput starts to decline, and may 
collapse entirely under the weight of retransmits and timeouts. This is congestion collapse. 

Figure 6. Congestion Collapse 
Throughput 

Offered traffic 

Performance collapse of the network caused by congestion is one of the main areas of 
network research. It is a problem that requires dynamic rather than static solutions. Static 
approaches such as multiplexers with large buffer space, high speed links and fast processors 
will not prevent congestion. An increase in buffer space will increase the probable delay at a 
node, affecting the performance of delay sensitive services such as voice. Installing high 

speed links and processors may cause mismatch between source and sink capacity resulting 
in greater overall traffic due to retransmissions. Even with high speed links and processors 
equally matched, congestion may still occur if several nodes direct traffic to the one node at 
the same time. For these reasons, congestion needs to be dealt with dynamically using 
protocols that specify what to do when congestion is detected rather than statically in a vain 
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attempt to prevent it. In particular buffer overflow is a symptom of congestion and not its 

cause. 

Some difficulties of congestion control are that protocols have to have a low overhead; 
be simple, as they will be implemented in hardware; be fair to users of the same service; be 

responsive; be robust; and maximise the overall network throughput. In ATM networks 
remedial action to deal with congestion needs to be local as many of the assumptions on 
which other network's congestion strategies are based are no longer true. In particular, the 
ratio of admission to propagation time is significantly large. A large fibre optic network may 

have 40 Mbits of data in transit. [Woodruff] 

Congestion occurs when total demand exceeds available resources. When this happens, 

the available resources can be increased or demand can be reduced. Demand can be reduced 
by service denial or service degradation. Depending on the nature of the service, one of these 
options is appropriate. Service denial is appropriate for connection oriented services such as 
voice, while service degradation is appropriate for packet oriented services such as data. 

1.5.2 	Preventive Controls 

ATM preventive controls fall into two general categories; admission controls and 

bandwidth enforcement. Of the two, admission controls are the most promising.[Bae and 

Suda]. 

A call is admitted if its service requirements can be met by the bandwidth that can be 
allocated to it. Effectively, a service contract between the network and the caller is made. The 
caller undertakes to transmit traffic within specified limits while the network will deliver 

sufficient bandwidth to provide a service of a given standard. 

The most difficult aspect of admission control schemes is determining the equivalent 
bandwidth of a call, and hence whether the call can be admitted. Traffic attributes used in 

making this decision are called traffic descriptors. The most important traffic descriptors in 
deciding to admit a call are the peak bit rate, average burst length and burstiness of the call 
and what cell transmission delays and cell loss probabilities are tolerable.[Hong]. Some work 

has been done using Expert Systems to predict the bandwidth requirements of the call 
[Erfani], and using Artificial Neural Networks in deciding on call admission [Hiramatsu]. 
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Bandwidth enforcement has been proposed by means of the leaky bucket algorithm. 
Conceptually, this works on the idea of a pool of tokens generated at the average throughput 
of the network up to some maximum. The maximum is the maximum burst length. As a cell 
is admitted to a node, it claims a token from the network. If no tokens are available, the cell is 
discarded. The effects of the leaky bucket algorithm are excessively stringent, so it has been 
modified to the Virtual Leaky Bucket algorithm, and is used as a reactive control. 

1.5.3 	Reactive Controls 

Once congestion occurs the network must react to reduce it. Congestion manifests 
itself as timed out cells, long queuing times at nodes and buffer overflow. Congestion can be 
dealt with at the call level on an end to end basis much as happens in the X.25 packet level or 
it can be dealt with at the cell level. 

Because of the high propagation time to admission time ratio, call level attempts at 
throttling back traffic have been found to be too slow and unstable, and hence ineffective. 
Because so much data is in transit, reducing traffic loads at the source may occur too late to 
prevent the worst effects of the congestion. 

More promising is the cell level reactive control, the Virtual Leaky Bucket algorithm. 
This is a modification of the Leaky Bucket algorithm. It works in the same manner as the 
Leaky Bucket algorithm in that a pool of tokens is generated at the average throughput of the 
network up to some maximum, where the maximum is the maximum burst length, and as a 
cell is admitted to a node, it claims a token from the network. However, unlike the Leaky 
Bucket algorithm, if no tokens are available the Virtual Leaky Bucket does not discard the 
cell. The cell is still admitted, but it is marked as having violated the bandwidth limitations of 
the network. Should congestion occur, marked cells can be discarded from the network. The 
VLB can be implemented simply by a one bit flag in the cell (the Cell Loss Priority) and a 
counter in the node. 

Another cell level scheme is to carry forward in the cell explicit forward congestion 
information. If there are alternative routes a network node can use a different one that avoids 
the congestion. 
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1.5.4 	Priority Schemes 

Priority schemes are also based on the CLP field in the cell header. Priority schemes 

attempt to use the fact that some cells are more important than others. For example, in video 

transmission, Discrete Cosine Transform coding produces data of different perceptual 

importance. Also, cells which have been marked by the VLB scheme will have a lowered 

priority. Priority scheduling schemes give priority to important cells in transmission whereas 

selective discard schemes drop less important cells when more important cells arrive at a full 

buffer. 

1.6 	Error Control 

As in congestion control, many of the assumptions underlying error control in other 

networks are not true of ATM networks. In particular the propagation time to admission time 

ratio is considerably higher and fibre optic error rates are low, about one cell in 10 11 . 

These differences mean that flow and error control need to be independent. This can be 

contrasted with window based schemes in X.25 where they are not. If a window technique is 

applied to ATM for both flow and error control, the window would need to be large to make 

most use of the ATM bandwidth, but it would need to be small to provide error control. The 

high propagation time to admission time makes this a problem in ATM networks while it is 

not a problem in lower speed networks. 

Schemes proposed have been the ARQ, Go-back-N and Go-back-N with selective 

repeat. The latter is preferred, although it may entail some reordering of cells at the end 
terminal. However, it appears to require less overall retransmissions than the other options. 

The extent of the scheme can be link by link or edge to edge. The latter is preferred because 

no node protocol processing is required and so is faster overall. 

Another approach to error control is Forward Error Control. A scheme called CREG-

VP has been devised that uses parity and cell loss detection cells to recover lost cells. [Ohta 

and Kitami]. Consecutive cell losses can be recovered up to a limit dependent on the number 

of parity and cell loss detection cells used. 



CHAPTER 2 

BUFFER OVERFLOW MODELLING 

To derive quantitative results for the conditional probability of buffer overflow cell 

loss, the multiplexer queue is modelled by queues with differing arrival and service 

distributions. 

Many telecommunication processes can be modelled by queues, and queuing theory is 
an important area of mathematical statistics. Unfortunately it is also a difficult area, and often 

simplifying assumptions need to be made to make the analysis tractable. Simulation of 
queues is often used to derive results quantitatively, but unfortunately many of the interesting 

events about which we would like to collect statistics occur relatively infrequently, meaning 
very long simulation runs are needed. Buffer overflow occurs infrequently at low server 

utilisation. 

Queues are characterised by their arrival distribution, service distribution, number of 
servers and buffer size. The notation 'Arrivals/Service/Servers/Buffer' is used to characterise 
the queue. The M/M/1/K queue is the queue with Markov (random) arrivals, Markov service 
times, one server and finite buffer space of K. Other queues we examine are the M/D/1/K 

queue which is the queue with Markov arrivals, constant (deterministic) service times, one 
server and finite buffer space; the M/D/1/K queue with minimum interarrival times and the 
SPP/D/1/K queue which is the queue with Switched Poisson Process arrivals, constant 
service times, one server and finite buffer size. All the queues dealt with in this report are 

First In-First Out queues. 

In this report the M/M/1/K queue is considered first. This is the finite space, single 

server queue with exponentially distributed arrival and service times. It is considered first 
because it is the easiest queue model to deal with. Many results are available for this queue 
and it is m'athematically tractable. Once this is analysed satisfactorily, the M/D/1/K queue is 
considered. This is the finite space, single server queue with exponentially distributed arrival 
times and deterministic service times. Because cells are a uniform size this is a better model 

of a multiplexer than the M/M/1/K queue, although the M/D/1/K queue is much more 
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difficult mathematically. The Markov Modulated Poisson Distribution has been suggested as 

a good model for bursty traffic arrivals [Heffes and Lucantoni]. We consider the two state 
MMPD called the Switched Poisson Process, in the SPP/D/1/K queue model. Also 

considered is the M/D/1/K queue with minimum interarrival times. In all these models 

variable rate traffic is statistically multiplexed. There is no reserved bandwidth traffic. 

Mathematical models (or approximation for the minimum interarrival times) of the 

behaviour of all these queues are described. To verify the models simulations have been 

constructed and the results from the simulations tabulated with those from the mathematical 
models. Simulation programs were written in STMSCRIPT 11.5 and ran on an INTEL based 

80-486 PC running at 33 MHz. SIMSCRIPT is a general purpose simulation language in 

which queues can be modelled easily. Arrival and Service times of various distributions are 

available as library routines, and more complicated distributions (such as the Switched 

Poisson Process) can be constructed from them. SIMSCRIPT has good reporting facilities. 

Simulation models have the following components [Russel]: 

- a mechanism for representing arrivals of new objects; 

- the representation of what happens to the objects in the system; 

- a mechanism for ending the simulation. 

In our models the objects are 53 octet cells, the system is a multiplexer queue and the 

simulation ends when interrupted by the user, hopefully after a steady state has been reached. 

The multiplexer is represented by a First-In-First-Out queue, which requests access to a 

server. The cell arrival distribution is simulated by waiting a length of simulated time defined 

by the arrival distribution, before generating a request for the server. The request for the 
server causes a SIIVISCRIPT queue entry to be made. The server time is simulated in the same 

way as the arrival time. When the queue is beyond its limit size, the entry is not made on the 
queue, but is recorded as a buffer overflow error. Runs of errors are recorded in a table. 

Reporting of errors is done every 100,000 transmitted cells by writing a line of a report to a 

disk file. By reporting in this way, it is easier to see when the system reaches a steady state, 

and data is not lost if the processor is accidentally switched off during the simulation. 

The computational effort involved in the simulations is considerable, especially at low 

server utilisation rates less than 0.5. The queue statistics converge more quickly for some of 

the models than for others. The M/M/1/K models stabilise comparatively quickly, usually 

within an hour. However, the M/D/1/K simulations require several hours to stabilise and may 



require a day or more to stabilise if server utilisation is low. The SPP/D/1/K and Minimum 

interarrival time queues need to be run for at least a day, preferably longer. 

Long simulation times are needed because buffer overflow occurs rarely at low server 
utilisation. Overflow occurs more frequently as the buffer size is reduced. When the arrival 
process is Markovian, the conditional probability of cell loss is unaffected by buffer length. 

Included in the appendices are listings of the simulation programs. They are written in 

SIMSCRIP'TII. 
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CHAPTER 3 

M/M/1/K MODEL AND SIMULATION 

3.1 	Conditional Probability of Cell loss for M/M/1/K. 

The M/M/1/K queue is the single server queue with exponentially distributed arrival 

and service times, with a maximum of K entries. [Kleinrock]. A useful property of the 

exponential distribution is its memoryless nature. If an event with exponentially distributed 

probability has not occurred at time T, the probability of it occurring in the time interval (T, 

T+x) is the same as the probability of it occurring in time interval (0, x). This is shown in the 

following figure, where the probability density function of an event at time zero and time T 

are graphed. 

Figure 7. Memoryless Property of Exponential Distribution 

ko 

In considering the buffer overflow problem, because of the memoryless nature of the 

exponential distribution, it is unnecessary to know how long it has been since the last service. 

Let the time until the next service be the random variable y. From the memoryless nature of 

the distribution, y can be taken to be 0 at the time the cell is lost. The exponential distribution 

is [Kleinrock]: 

(1) 
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The exponential probability density function of k arrivals in time x from an arbitrary starting 
point is given by [Kleinrock] 

mwk-i 
a(x)= 	e 

(k — 1)! 
(2) 

We assume independence between arrivals and services. Because arrivals and services occur 
at random in M/M/1/K and the queue is full at the time of the overflow this would seem a 
reasonable assumption. For statistically independent random variables, the joint probability 

density function is their product [Haykin]. That is: 

pxy  = a( x). s( y) 
	

(3 ) 

The probability of one service in the interval (0, A) and k arrivals in the interval (0, B) is: 

f A f B 

0 0 
pxy  (a, 13)dadfl 	 (4) 

To calculate the probability of buffer overflow occurring, we want X (arrivals) and Y 

(services) such that: 

0 X Y and 0 < Y < 00 

This defines an infinite triangular area on the X, Y plane as shown in the following figure. 

Figure 8. Bounds of Integration for MVM/1/K 

x<y 

Integrating over this area gives the probability of k arrivals before one service. 

LI 
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Remembering that one cell has been lost, the above probability is identical to the probability 
that the burst of lost cells is k+1 long. 

	

y 	x XI 

	

Pr(burst of length k+1) = 	
f 	X(A)kl CAICILY 

 

	

o o 	(k -1)! 

This integral is straightforward to calculate using integral tables [Gradshteyn], and can be 

shown to be: 

dvdy 	(5 ) 

Pr(burst of length k+ 1) = (6) 

where p is the server utilisation, equal to X/[t. 

The following table shows expected probabilities of burst lengths for different values 

of channel utilisation derived from the above formula, and observed rates from simulation 

experiments. The values for server utilisation of 0.4 and 0.9 are plotted in the following 

graphs. There is good agreement between the theoretical and simulation values. Note that the 

plot of the predicted cell loss is partially obscured. 

Table 2. Cell Loss Burst Lengths 
M/M/1/K 

Burst length (simulated /predicted) 

2 3 4 5 

P 
0.4 0.285 0.285 0.081 0.082 0.023 0.023 0.006 0.007 

0.5 0.334 0.333 0.117 0.111 0.036 0.037 0.012 0.012 

0.6 0.370 0.375 0.140 0.141 0.054 0.053 0.020 0.020 

0.7 0.430 0.412 0.18 0.170 0.076 0.070 0.027 0.029 

0.8 0.440 0.444 0.186 0.198 0.090 0.088 0.038 0.039 

0.9 0.474 0.474 0.223 0.224 0.106 0.106 0.054 0.050 
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Figure 10. Graph of Predicted and Simulated Cell Loss Lengths 
M/M/11K p=0.9 

0.5 

0.4 

0.3 
Probability 

0.2 

0.1 

0 
2 
	

3 	 4 
	

5 

Burst length 

• predicted 

simulated 

Figure 9. Graph of Predicted and Simulated Cell Loss Lengths 
M/M/1/K p=0.4 

30 

0.3 

0.25 

0.2 

Probability 0.15 

0.1 

0.05 

0 

3.2 	Average Cell Loss Run for M/M/1/K 

Useful statistics in characterising cell loss are the mean number of cells lost in a burst 
and the variance of the number of cells lost. In this and the next section analytic expressions 

for these statistics are derived. 

The average cell loss length is defined by: 

x .Ek Pr(k cells lostl 1 cell lost) 
k=I 

For the M/M/1 case the probability that the cell loss length is exactly k cells is : 



Pr (number of cells lost due to buffer overflow is exactly k) 

= Pr (length k) - Pr (length k+1) 

P  k-1 ( P )k = ( 1+ p 	(1 -13 ) 

pk-1 

( 1 + P)k  

Consequently, the average number of cells lost is: 

k-1 

k 	 
k=1 ( 1 + P) k  

which is shown in appendix A to be: 

l+p 	 (7) 

The following table and figure show average cell loss lengths for different values of p 

derived from simulation and using equation (7). There is good agreement between the 

simulation and the formula. 

Table 3. Average Cell Loss 
Simulated and Predicted 

M/M/1/K 

P Simulated Predicted (1+p) 

0.4 1.399 1.4 

0.5 1.497 1.5 

0.6 1.611 1.6 

0.7 1.700 1.7 

0.8 1.788 1.8 

0.9 1.898 1.9 
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Figure 11. Average Cell Loss 
Simulated and Predicted 

M/M/1/K 

3.3 	Variance of Cell Loss Run for M/M/1/K 

The variance of the average cell loss run length can be calculated as follows: 

(y2 = 	Pk( Xi 
k=1 

13k-1 = 
	(k (1

+ P))2  
( 1 + P)k  

In appendix B we show that: 

02 	= p(1+ p) 	 (8) 

The following table and graph shows the variance for the average cell loss for different 
values of p derived from the simulation and equation 17. There is good agreement between 

the simulation and the data. The small variation at utilisation of 0.6 and 0.7 is due to short 

simulation times. 



-0 -Simulated 

Predicted 

Table 4. Variance of Cell Loss 
Simulated and Predicted 

M/M/1/K 

P Simulated Predicted p(1+p) 

0.4 0.54 0.56 

0.5 0.75 0.75 

0.6 0.99 0.96 

0.7 1.23 1.19 

0.8 1.44 1.44 

0.9 1.72 1.71 

Figure 12. Variance of Cell Loss 
M/M/1/K 
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From these results, the coefficient of variation for the average run loss is: 

p(i+p)  
(1+p)2  

1+p 



CHAPTER 4 

M/D/1/K MODEL AND SIMULATION 

4.1 	Conditional Cell Loss Probability for M/D/1/K 

Although not difficult to analyse, the M/M/1/K queue is not a good model of the 

behaviour of an ATM multiplexer. Since all cells are 53 octets long, and the time a 

multiplexer takes to process a cell is dependent on the cell size and the output line speed 

which is constant, then the time taken to process a cell can be expected to be constant. 

Consequently, a better model of a multiplexer uses a constant service time. So the M/D/1/K 

queue is a better model. However, because service times are not memoryless this is much 

more difficult to analyse than the M/M/1/K queue, and a different approach is needed. By 

considering conditional probability results and making use of the randomness in the arrival 

process, an analytic model of buffer overflow in the M/D/1/K queue can be derived. 

Consider any cell N which is about to arrive, and will be lost because the buffer is full. 

What is the probability that cell N+1 will be lost as well? A result from conditional 

probability [Haykin] is Baye's Rule: 

Pr(AIB) = Pr(A and B)/ Pr(B) 

Considering the buffer overflow problem, then: 

Pr(cell N+1 is lost I cell N is lost) 

= Pr (cell N+1 is lost and cell N is lost)/ Pr(cell N is lost) 	 (9) 

We now attempt to derive expressions in terms of service and arrival rates for the two 

probabilities on the right hand side of equation (9). 

Pr(cell N is lost) = Pr (1 arrival before 1 service and queue is full). 	(10) 

34 



35 

and: 

Pr(cell N+1 is lost and cell N is lost) 

= Pr(2 arrivals before 1 service and queue is full). 	 (11) 

Substituting (10) and (11) into (9) gives: 

Pr(cell N+1 is lostl cell N is lost) 

Pr(2 arrivals before 1 service and queue is full)  
Pr(1 arrival before 1 service and queue is full) 

It is necessary to assume that the events (queue is full) and (n arrivals before one service) are 
independent. This seems reasonable since the arrival process is independent of the queue 
contents. 

For independent events A, B : 

Pr (A and B) = Pr (A) . Pr (B) 

So equation (12) becomes: 

Pr(cell N+1 is losticell N is lost) 

Pr(2 arrivals before 1 service). Pr(queue is  full)  
Pr(1 arrival before 1 service). Pr(queue is full) 

Pr(2 arrivals before 1 service). 
Pr(1 arrival before 1 service). 

(13) 

Equation 13 can be generalised to k arrivals before one service. 

Pr(cell N+1, N+2,...,N+k are losticell N is lost) 

Pr(k arrivals before 1 service and queue is full). 
Pr( 1 arrival before 1 service and queue is full). 

(12) 



Pr(k arrivals before 1 service). Pr(queue  is full)  
Pr(1 arrival before 1 service). Pr(queue is full) 

So, in general: 

Pr(k arrivals before 1 service) 
Pr(burst of length k) — 

Pr(1 arrival before 1 service) 

We now apply this result to the M/D/1/K queue. 

Since arrivals occur at random and service times are deterministic, we assume the 
amount of time any arrival sees until the next service has a uniform distribution, with 
maximum value the service time. That is, the probability density function of the service time 

is the service rate for the interval (0, service time) and zero elsewhere. This assumption 

appears reasonable because of the randomness in the arrival process. 

Thus the probability density function for one service in time y is: 

1 
for y E (0,—) and zero elsewhere. 

For the M/D/1/K queue, arrivals are exponentially distributed. The probability density 

function of k arrivals in time x is [Kleinrock]: 

xpa)k-i 
a(x)= 	e 

(k —1)! 
(15) 

Using the assumption of independence, the joint probability density function is the product of 

the above two functions. 
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(14) 

n. koLok-t e-ax 
Pxy  = " (k —1)! 

for y E (0,1), and 0 elsewhere (16) 

Since s(y) is zero for y not in the interval (0,14.1) then to determine the probability of k 

arrivals before one service we integrate over the finite triangular area shown in the following 

figure. 



Figure 13. Bounds of Integration for M/D/1/K 

That is: 

Pr (k arrivals before 1 service) = 	pt .  x (kok-l e-kx dxdy  
00 

This integral can be evaluated with the help of Integral tables [Gradshteyn] and the 
mathematics package 'Mathematica'. [Wolfram]. 

Pr (k arrivals before 1 service) = 	1 
P i=o 	i! 

k-I r(i  +1909p)  

(15) 

Where F(a, zo,zi) is the generalised incomplete gamma function defined by: 

F(a, zo, ) = 	ta le 'clt 

Consequently, when a burst of cells is lost, the probability that the burst will be of length k is 

given by: 
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(17) 

Pr(burst is k or more cells long)= 

r(i +1,0, p)  

P i=o 	if  
1- 1 	p) 

(19) 

The following table uses the above formula to show expected probabilities of burst lengths 
for different values of queue utilisation, along with simulation data. Note that the simulation 

and calculated rates matches well. 
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Table 5. Probability of Cell Loss Greater Than or Equal to N 
M/D/1/K 

Simulated/predicted 

2 3 4 5 

0.4 0.111 0.125 0.0109 0.0119 0.0012 0.0009 0.0001 0.0001 

0.5 0.137 0.153 0.0151 0.0182 0.0014 0.0016 0.0001 0.0002 

0.6 0.166 0.181 0.0225 0.0256 0.0026 0.0030 0.0003 0.0003 

0.7 0.195 0.207 0.0303 0.0337 0.0040 0.0046 0.0005 0.0005 

0.8 0.224 0.233 0.0400 0.0429 0.0060 0.0065 0.0007 0.0008 

0.9 0.253 0.258 0.0514 0.0528 0.0087 0.0089 0.0012 0.0017 

The following figure is a graph of simulated and predicted values for server utilisation 

of 0.4. It shows that the predicted and simulated cell loss rates match adequately, although 

not as well as at higher utilisation. For lower utilisation, overflow occurs less frequently, so 

much longer simulation runs are needed. This may be sufficient to account for the small 

difference between the prediction and the simulation. 

Figure 14. Graph of Predicted and Simulated Cell Loss 
M/D/1/K 
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The following figure is a graph of simulated and predicted values for server utilisation 

of 0.9. It shows that the predicted and simulated cell loss rates match well. 
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4.2 	Average Cell Loss Run for M/D/1/K 

As was done for the M/M/1/K model of a multiplexer, we now derive analytic 

expressions for the mean and variance of the number of cells expected to be lost in a burst. 

We now derive the probability that the burst is exactly length k. 

Pr (number of cells lost due to buffer overflow is exactly k) 

= Pr (length k) - Pr (length k+1) 

1— —1 F(1, 0, p) 

1 F(k + 1, 0, p)  
=p 	k!  

1 -
1 	p) 

(20) 



The average number of cells lost in a run is: 

00 

Pr(k cells lost! 1 cell lost) 
k=1 

Consequently, for the M/D/1/K queue the average number of cells lost is: 

1 1  
k=1 P 	" 	 (1---r(1,0,p)) 

This is shown in appendix C to be: 

p2 

2(p + CP —1) 

The following table shows the simulated and predicted values for the average run loss 

length. There is good agreement between the simulated and predicted values. An interesting 

observation is that the average cell loss increases only slightly as the server utilisation 

increases. 

Table 6. Average Cell Loss 
Simulated and Predicted 

M/D/1/K 

P Simulated Predicted 

0.4 1.13 1.14 

0.5 1.15 1.17 

0.6 1.20 1.21 

0.7 1.23 1.25 

0.8 1.27 1.28 

0.9 1.32 1.32 
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Figure 16. Average Cell Loss 
M/D/1/K 
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4.3 	Variance for M/D/1/K 

The variance of the number of cells lost in a run can be calculated as follows. 

02 
Pk( Xi 

k=1 

1 i■ MG 	 (k 	p2 

P±e-P-11 	k! 	2(p+ e-P —1) 

In the appendix this is shown to be: 

ePp2 (6 — 6e +4p+ 2ePp + ePp2 ) 
12(1— eP + ePp) 2  

(22) 

From the above results we can calculate a coefficient of variation for the cell loss. 

eP  (6 — 6eP + 4p + 2eP erp2) 

6(1— eP + ePp) 

The following table and graph show the variance derived from equation 17 and the 

simulation. There is good agreement between the simulation and the equation. 
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Table 7. Variance of Cell Loss 
Simulated and Predicted 

M/D/1/K 

P Simulated Predicted 

0.4 0.15 0.15 

0.5 0.17 0.19 

0.6 0.25 0.24 

0.7 0.26 0.27 

0.8 0.31 0.32 

0.9 0.37 0.37 

Figure 17. Variance of Cell Loss 
M/D/1/K 
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4.4 	Another Look at M/M/1/K. 

The method used above for M/D/1/K is a general one that can be applied to other 

queue disciplines. By using conditional probabilities the same result for the M/M/1/K queue 

can be derived as was derived in 3.1. 

The probability of k arrivals before one service in the M/M/1 queue is 
1 +p 

(23) 

From the previous section: 

Pr(k arrivals before 1 service) 
Pr(burst of length k) 

Pr( 1 arrival before 1 service) 

Then, for the M/M/1 case: 

Pr(burst of length k) ( P )kv  ( P ) 
1+p 	1 + p 

_ P 
1 + p 

(24) 

which is the same result as in 3.1. 



CHAPTER 5 

MID/UK WITH MINIMUM INTERARRIVAL TIMES 

A further refinement of our model is to consider random arrivals subject to minimum 

interarrival times. Only approximate mathematical models of this traffic have been 

developed. However they give some indication of the behaviour of this traffic and compare 

reasonably well with simulation results. 

We consider the simplest minimum interarrival time case where there is a minimum 
time 8 which must elapse before the next arrival. The arrival probability function for this is 

not easy to describe, since the minimum time for the first arrival since the last is delta, but for 
the second arrival it is two delta and so on. This is a difficult arrival pattern to describe 

mathematically. However, we can approximate it by using a displaced exponential function 

of the form: 

p x  = 	 , for x > k8 and 0 elsewhere. 	(25) 

This probability density function is a modified exponential distribution. It describes an 

arrival process in which there is a delay of k multiplied by the interarrival period and then k 
arrivals with a Poisson distribution. There is no correlation between the minimum interarrival 

time and the server time. The following illustration shows the arrival distribution. 

Figure 18. Poisson Arrivals with Minimum Interarrival Times 
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Since the arrivals are random, the time until the next service from the time of each 
arrival will be uniformly distributed as before, between 0 and lig. 

The bounds of integration are defined by the modified Poisson distribution. We will 

integrate on the bounded area defined by: 

Oy-
1 

andk85.x5.y 	 (26) 
11  

This is shown in the following figure. 

Figure 19. Bounds of Integration for MID/1 with Minimum Interarrival Times 

14t 

k8 

Thus, an expression for the probability that there will be k arrivals before one departure is: 

f lip, r  y j lak  
o a 	 I-4Y 

( x  _ k8  )k-1 e -x(x-ka
'
),/„.h , (27) 

This integral cannot be evaluated analytically, but must be determined numerically for 

specific parameter values. Using the same approach as before, we are able to determine 

expected burst lengths for different values of server utilisation. The following table shows the 
expected values and simulation values for p=0.9,11.100, X,=90 and 8 = 0.001 seconds (one 

tenth of service time). Although the arrival distribution does not describe the arrivals exactly, 

it is a reasonable approximation. 
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Table 8. MID/1 with minimum interarrival times 
8=0.1 

Predicted / simulated 

P 2 3 4 5 

0.9 0.173 0.134 0.0178 0.0204 0.0016 0.0030 0.00006 0.00040 

The following figure is a graph of the expected and simulated data for p=0.9. The 

graph shows that the approximation to minimum interarrival times is acceptable. 

Figure 20. Expected / Simulated Interarrival Times 
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CHAPTER 6 

SWITCHED POISSON PROCESS 

The Switched Poisson Process has been suggested as a good model for bursty traffic 

such as data and video, where the channel switches between periods of high and low activity. 

[Heffes and Lucantoni], [Rossiter]. 

The Switched Poisson Process is characterised by four parameters Xi, X2, y, co. It is 

based on an underlying Alternating Poisson Process (APP). The process spends 
exponentially distributed time with mean of 1/y seconds in an 'on' mode where arrivals occur 

with an interarrival time described by a Poisson distribution with mean la i ; and 1/o) omega 

in an 'off mode where arrivals occur according to a Poisson distribution with mean 1/X2 

where ?q> ?■.2 0. When X2 = 0 the SPP becomes an Interrupted Poisson Process (IPP). 

Conditional cell loss probabilities can be approximated by linearly interpolating 
between the probabilities in the 'on' and 'off modes. The APP will be in the 'on' mode with 
probability co/(w+y) and in the off mode with probability y/(y+co). The rate of conditional cell 

loss lengths can be expected to be dependent on Xi .  when in the on mode and X2 when in the 

off mode. This is only an approximation as any 'hangover' effects between states is ignored. 

If the cell loss rate is dependent only on the state of the system, and ignoring hangover 

effects, the probability of cell loss is: 

Pr(k cells loss I I cell lost) = [yB(X,i) + coB(2 ■.2)] / (co+y) 

where B(X) is the conditional probability of cell loss when the arrival rate is X. 

The simulation studies suggest that the switching rate affects the cell loss rate. The 

following table and graph show the behaviour of the system for a SPP arrival process in 
which the average time spent in the 'on' and 'off mode are equal, but the average time 
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between switching varies. The predicted cell loss probability for two cells with y and o.) equal 

is 0.168. 

The table and graph suggest that when y and co are small, the hangover effect is most 

pronounced. As y and co increase, the hangover effect becomes less pronounced. 

Table 9. Switched Poisson Process 
Equal Switching Times 

= 0.8, X = 0.4 

Y 0) 2 3 

1000 1000 0.162 0.020 

100 100 0.1536 0.020 

10 10 0.169 0.023 

1 1 0.182 0.027 

0.1 0.1 0.210 0.038 

0.01 0.01 0.215 0.039 

0.0001 0.0001 0.218 0.038 

Figure 21. Switched Poisson Process 
Equal Switching Times 

Xi = 0.8, X2 = 0.4 

Table 10 shows predicted and simulated cell loss conditional probabilities for some 

Switched Poisson Processes with y and CO comparable to the arrival rate. There is reasonable 

agreement between predicted and simulated values, although there is some evidence of a 
hangover effect. To plot this data we need to normalise the base so that y + o = 1. We can 
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then see the behaviour of the model as y goes from zero to one and co goes from one to zero. 

Table 10 and the following graph show the channel utilisation against the normalised gamma. 
The hangover effect is more apparent on the normalised graph. Since the values of y and co 

used are comparable to the arrival rate, we would expect some evidence of a hangover effect. 

The normalised graph shows some bunching at higher server utilisations. Clearly, the 

SPP arrival process is quite complex, and linear interpolation between the two extreme points 

is only an approximation. 

Table 10. Switched Poisson Process 
= 0.8, A2=0.4 

Predicted and Simulated 

7 0) 2 3 4 

5.000 2.000 0.143 0.156 0.0123 0.0199 0.0026 0.0022 

2.000 1.000 0.149 0.177 0.0216 0.0215 0.0028 0.0033 

1.000 0.500 0.175 0.177 0.0250 0.0215 0.0028 0.0024 

1.000 1.000 0.168 0.182 0.0255 0.0271 0.0036 0.0035 

0.100 1.000 0.213 0.224 0.0460 0.0411 0.0060 0.0062 

0.010 1.000 0.223 0.224 0.0400 0.0410 0.0060 0.0060 

0.500 1.000 0.187 0.197 0.0206 0.0318 0.0044 0.0044 

0.100 0.010 0.214 0.199 0.0374 0.0340 0.0056 0.0050 

4.000 1.000 0.134 0.164 0.0340 0.0230 0.0050 0.0026 

1.000 0.010 0.112 0.113 0.0112 0.0090 0.0012 0.0018 
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Table 11. Normalised y for SPP/D/1/K 
= 0.8, X.2 = 0.4 

Predicted and Simulated 

Y co Yi(Y±()) pr(2) pred pr(2) sim 

0.010 1.000 0.010 0.223 0.224 

0.100 1.000 0.091 0.213 0.224 

0.500 1.000 0.333 0.156 0.197 

1.000 1.000 0.500 0.168 0.182 

1.000 0.500 0.667 0.149 0.171 

4.000 1.000 0.800 0.134 0.164 

1.000 0.010 0.990 0.112 0.113 

Figure 22. Normalised y for SPP/D/1/K 
A.1 = 0.8, A,2 = 0.4 

Predicted and Simulated 
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CHAPTER 7 

DISCUSSION OF RESULTS AND CONCLUSION 

7.1 	Characterisation of Cell Loss. 

The most important qualitative result in this paper is that cell loss due to buffer 
overflow is more likely to occur in runs than at random. Consequently, stating cell loss as a 

simple rate is insufficient to characterise the nature of cell loss. In chapters 3 through 6 we 
derived probability distribution functions that show cell run loss probabilities, and for the 
M/M/1/K and M/D/1/K cases, average and variance of the expected number of cells lost. 
Because of the exponential nature of the M/M/1 case, the conditional probability of losing 
one cell given that the previous one has been lost is a suitable statistic for characterising cell 
loss. However for the other models of cell loss, this is not a suitable statistic as it is not 

constant for each possible number of cells lost in the run. 

Although it is difficult to derive analytic expressions for them, the average length of a 
cell loss run and its variance are preferred statistics for characterising cell loss. These have 

been derived for the M/M/1/K and the M/D/1/K queues. In principle, these statistics can be 

derived for the approximations to the other two multiplexer models, although they are 

computationally difficult. 

For the M/D/1/K queue, the average cell loss run increases only by a small amount as 

the utilisation increases. For utilisation of 0.4 the average cell loss is 1.14, while for a 

utilisation of 0.9 the average cell loss is 1.32. 

7.2 	Repercussions for ATM Traffic. 

7.2.1 	Statistical Multiplexing 

The analysis in chapters 3 through 6 has described cell loss from the point of view of 
the network. We have modelled the traffic as coming into a multiplexer from several sources 
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to be processed by one deterministic server. We have seen that the conditional probability of 
cell loss is substantially higher than the overall cell loss rate. However, from the point of 
view of an individual input into the multiplexer, the situation is quite different. Because 
several inputs may be transmitting concurrently, if a cell is lost by one input, the next cell is 
not necessarily going to be lost by the same input. So the conditional probability of cell loss 

experienced by an individual input is likely to be less than those modelled in chapters 3 

through 6. 

However, if statistical multiplexing is being used, much of the capacity of the channel 
allocated to variable bit rate traffic can be expected to be used by one input at one time, 
depending on the burstiness of the service. As we have already noted, B-ISDN services tend 
to be bursty. So we would expect the results of chapters 3 through 6 to be limits that will be 

approached as the burstiness of the service increases. 

Even if the cell loss is at its maximum, will it have a significant effect on ATM traffic? 

For services such as voice which can cope with high loss rates, it would appear to not be 
significant. However, for video and data where loss rates need to be low, a string of cell 

losses, rather than isolated ones might be serious. 

Statistical multiplexing needs to be introduced cautiously. A conservative traffic policy 

is needed. Once cell loss occurs, retransmissions through congested nodes may cause the 
overall network performance to collapse. Depending on the service, different strategies to 

deal with congestion are needed. 

For circuit oriented services such as voice and video, it may be necessary to increase 

blocking probabilities to prevent additional traffic exacerbating the congestion. 

7.2.2 	Data Traffic 

• Some data transmission schemes use Forward Error Correction schemes, similar to 
Hamming Codes to cope with corrupted frames. If the frame cannot be corrected or 
interpolated, a retransmit is required. Such FEC schemes need to take into account the high 
probability that a frame will lose more than one consecutive cell, resulting in more 
retransmits than might be expected. [Ohta and Kitami] describe such a scheme. Generally, 
Hamming schemes introduce a great deal of additional redundancy into the message. Since 
optic fibre is such a reliable means of transmission, in most cases FEC schemes are not 

necessary, as it is more efficient to retransmit the message. 
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Retransmits due to congestion are to be avoided (as opposed to those due to 
congestion), since they may add to the traffic through already congested nodes, leading to 

congestion collapse. 

It is worth noting that although the probability of losing one cell, given that one has 

already been lost is substantially higher than the overall cell loss rate, the probability of 

losing more than a few cells trails off quickly. For the M/D/1/K queue with a utilisation of 

0.8, the probability of losing eight or more cells in a row is of the order of 10-6. 

Consequently, using the results of this paper, FEC schemes can be designed to a given 

tolerance, depending on the needs of the service. 

7.2.3 	Compressed Video 

Compressed video using MPEG protocol sends an initial image and then updates to the 

image followed by a refresh every 15 frames. Cell loss during the updates is not critical 

because Discrete Cosine Transform coding and extrapolation from previous frames can be 

used to disguise the loss. However, if many cells are lost or if a frame is corrupted during the 

initial image transmission, image quality suffers. There is no provision for retransmits in 

compressed video. If the initial image is protected by Forward Error Correction, then the 

same comments apply to it as does to data transmission. The FEC should be able to cope with 

less frequent bursts of errors rather than uniformly distributed errors. 

Generally, FEC schemes are not used with compressed video as they introduce a great 

deal of transmission overhead. 

7.3 	Summary 

This report has described mathematical models of the conditional cell loss 

probabilities of ATM multiplexer traffic and simulations that have tested the models. The 

models have been seen to match the simulations well. From the models and simulations it is 

apparent that cell loss due to buffer overflow in an ATM multiplexer persists. If one cell is 

lost, the probability of successive cells being lost is much higher than the overall cell loss 

rate. 
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The important result is that network designers need to be conservative in network 

design. This paper provides a mathematical understanding of observations from simulation 

studies that congestion persists in networks and the consequences of misengineering can be 

serious and prolonged. [Leland and Fowler], [Ramaswami]. 

Cell loss probability due to buffer overflow in a multiplexer needs to be described by 

more than the overall rate. Some possible statistics that can be used are the average cell loss 

run and its variance. For the M/M/1/K model, the conditional cell loss probability rate alone 

is a suitable statistic. Future research could be done into expressing cell loss runs in terms of 
confidence limits. For example, what is the upper limit of the cell loss run 95% of the time?. 

The analysis of the conditional probabilities of cell loss in the M/M/1/K and M/D/1/K 

queues has included derivation of analytic expressions for the calculation of conditional 

probabilites, and the average and variance of cell loss run length. As well as being 

multiplexer models they are quite interesting in their own right. 

The bursty nature of cell loss has implications for ATM traffic. Delay sensitive traffic 

such as voice may require higher blocking probabilities. Video traffic may incur more 

refreshes than otherwise expected. Data traffic might need forward error correction oriented 

towards bursts of cell loss followed by long periods of error free operation. 

Switched Poisson Process arrivals are quite complicated, as the cell loss is dependent 

on both the average time in each state and the switching rate. 

Future research on cell loss could involve the application of these results to any of the 

above areas, to extending the analysis to more complex arrival and service patterns, and to 

modelling cell loss from the perspective of an individual input into a multiplexer. 
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APPENDIX A 

Average Cell Loss Length M/M/1/K 

Theorem: 
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APPENDIX B 

Variance of Cell Loss M/M/1/1( 

Theorem: 
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So, 

LHS = 	(0(1+ p)2 (1+ 2p) —2(1+ p) 2  +(1+p) 3 ) 
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APPENDIX C 

Average Cell Loss M/D/1/K 

Theorem: 
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Where r(a, z0,z1) is the generalised incomplete gamma function defined by: 
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Now, remembering that et  = y  t 	then, 
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APPENDIX D 

Variance of Cell Loss M/D/1/K 

Theorem 
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APPENDIX E 

M/M/1/K SIMULATION PROGRAM 

Preamble 
" 	ISDN statistical multiplexer buffer simulation 
II 

Philip Branch, MTech project 1993. 

Use SLMSCRIPT to model the behaviour of a multiplexer. In particular 
determine whether cell (packet) loss occurs in bursts. 

normally, mode is undefined 	"Force variable declaration 
Processes include generator, arrival 	"Queue entries 
Resources include server 	"Queue server 

"Variable declarations 
Define head.date, head.time as text variable 
Define bufsize, duration as integer variable 
Define lambda, mu as real variable 
Define cell.count as integer variable 
Define cells.lost as integer, 1-dimensional array 
Define meamarrival, mean.service as real variables 
Define total.entries as integer variable 

"Time definitions 
Define .seconds to mean days 
Define .milliseconds to mean hours 
Define .microseconds to mean minutes 

end "preamble 
Main 

"Main routine 
i. 

normally, mode is undefined 

"Change time scale 
Let hours.v = 1000 
let minutes.v = 1000 

"Reserve space for statistic records 
reserve cells.lost(*) as 11 

II 

I I 

II 
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" Setup 1 server 
create every server(1) 
let U.server(1) = 1 

" Set up input and output files 
open unit 2 for input, file name is "CASIMPARAM.DAT" 
use 2 for input 

open unit 3 for output, file name is "CASIM\LOG.DAT" 
use 3 for output 

" Get date and time for heading 
call date.r yielding head.date, head.time 

"Print heading 
print 5 lines with head.date, head.time thus 
ISDN cell loss simulation M/M/1 Date ********** Time ******** 

Buffer 	Dura 
Size Lambda Mu tion 1 2 3 4 5 6 7 8 9 10 >10 

read bufsize, lambda, mu, duration as I 6, I 6, I 6, I 6 

while eof.v = 0 do 

let meamarrival = 1.0 / lambda 
let mean.service = 1.0 / mu 
let time.v = 0 
activate a generator now 
start simulation 
call printline 

"DEBUG 
print 1 line with lambda, mean.arrival, mu, mean.service thus 

lambda ***.*** mean.arrival ***.*** mu ***.*** mean.service 
"END DEBUG 

read bufsize, lambda, mu, duration as I 6, I 6, I 6, I 6 
loop 

stop 
end 
process arrival 

normally, mode is undefined 

request 1 server(1) 
work exponentiall(mean.service, 2) .seconds 

relinquish 1 server(1) 
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process generator 

normally, mode is undefined 

define counter as integer variable 

"DEBUG 
print 1 line with mean.arrival thus 
interarrival time  
"ENDDEBUG 

let counter = 0 
wait exponential.f (mean.arrival, 1) .seconds 
"while time.v < duration do 
while 2> 1 do 	"dummy loop. Continue forever. 

if counter > 10000 
let counter = 0 
call printline 

endif 
add 1 to counter 

add 1 to total.entries 

if N.Q.server > bufsize "server queue full. This one will be lost 
add 1 to cell.count 

"DEBUG 
" 	print 1 line with cell.count thus 
"Cell lost. cell.count = **** 
"END DEBUG 

else 

Record number of cells lost. Add 1 to each count for multiple cells. 
if cell.count > 0 

if cell.count le 10 
add 1 to cells.lost(cell.count) 

else 
add Ito cells.lost(11) 

endif 

There is room for an entry. Put in on the queue. 
let cell.count = 0 

endif 
activate an arrival now 

endif 
wait exponential.f (mean.arrival, 1) .seconds 

loop 
end 
routine isdnsim 

normally, mode is undefined 
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call resetall 
let time.v = 0 
activate a generator now 
start simulation 
call printline 
return 
end 
routine printline 

normally, mode is undefined 

print 1 line with bufsize, lambda, mu, duration, 
cells .lost( 1), 
cells.lost(2), 
cells.lost(3), 
cells.lost(4), 
cells.lost(5), 
cells.lost(6), 
cells.lost(7), 
cells.lost(8), 
cells.lost(9), 
cells.lost(10), 
cells.lost(11) thus 
**** **** **** ****** **** **** **** **** **** **** **** **** **** **** 

"Show total number of cells processed 
print 2 lines with total.entries thus 

Total cells processed = ********* 

return 
end 
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APPENDIX F 

M/D/I/K SIMULATION PROGRAM 

Preamble 
" 	ISDN statistical multiplexor buffer simulation 

Philip Branch, MTech project 1993. 

Use SIMSCRIPT to model the behaviour of a multiplexor. In particular 
determine whether cell (packet) loss occurs in bursts. 

normally, mode is undefined 	"Force variable declaration 
Processes include generator, arrival 	"Queue entries 
Resources include server 	"Queue server 

"Variable declarations 
Define head.date, head.time as text variable 
Define bufsize, duration as integer variable 
Define lambda, mu as real variable 
Define cell.count as integer variable 
Define cells.lost as integer, 1-dimensional array 
Define mean.arrival, mean.service as real variables 
Define total.entries as integer variable 

"Time definitions 
Define .seconds to mean days 
Define .milliseconds to mean hours 
Define .microseconds to mean minutes 

"Debug 
Define sv.time as real variable 

"End debug 

end "preamble 
Main 

"Main routine 

normally, mode is undefined 

"Change time scale 
Let hours.v = 1000 
let minutes.v = 1000 

"Reserve space for statistic records 
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reserve cells.lost(*) as 11 

" Setup 1 server 
create every server(1) 
let U.server(1) = 1 

" Set up input and output files 
open unit 2 for input, file name is "CASIM\PARAM.DAT" 
use 2 for input 

open unit 3 for output, file name is "C:\SIM\LOG.DAT" 
use 3 for output 

" Get date and time for heading 
call date.r yielding head.date, head.time 

"Print heading 
print 2 lines with head.date, head.time thus 
ISDN cell loss simulation MID/1 Date ********** Time ******** 

read bufsize, lambda, mu, duration as I 6, I 6, I 6, I 6 

let mean.arrival = 1.0 / lambda 
let mean.service = 1.0 / mu 
let time.v = 0 
activate a generator now 
start simulation 
call printline 

"DEBUG 
print 1 line with lambda, mean.arrival, mu, mean.service thus 

lambda ***.*** mean.arrival ***.*** mu ***.*** meamservice 
"END DEBUG 

stop 
end 
process arrival 

"Deterministic server time. 
normally, mode is undefined 

request 1 server(1) 

" Debug. Track times of service 
let sv.time = time.v 
" End debug 

work mean.service .seconds 

relinquish 1 server(1) 

end 
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process generator 

normally, mode is undefined 

define counter as integer variable 

"DEBUG 
print 1 line with mean.arrival, mean.service thus 
interarrival time *******.******** interservice time  
"ENDDEBUG 

wait exponential.f (mean.arrival, 1) .seconds 
"while time.v < duration do 
while 1 > 0 do "dummy loop, continue forever 

add 1 to counter 
if counter > 1000 

call printline 
let counter = 0 

endif 

add 1 to total.entries 

if N.Q.server > bufsize "server queue full. This one will be lost 
add 1 to cell.count 

"DEBUG 
" 	print 1 line with cell.count thus 
"Cell lost. cell.count = **** 
"END DEBUG 

else 

Record number of cells lost. Add 1 to each count for multiple cells. 
if cell.count > 0 

if cell.count le 10 
add 1 to cells.lost(cell.count) 

else 
add 1 to cells.lost(11) 

endif 

There is room for an entry. Put in on the queue. 
let cell.count = 0 

endif 
activate an arrival now 

endif 
wait exponential.f (mean.arrival, 5) .seconds 

loop 
end 
routine isdnsim 

normally, mode is undefined 
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call resetall 
let time.v = 0 
activate a generator now 
start simulation 
call printline 
return 
end 
routine printline 

normally, mode is undefined 

print 1 line with bufsize, lambda, mu, duration thus 
Buffer **** lambda (arrival) ***.*** mu (service) ***•*** duration ***** 
print 3 lines with 
cells.lost(1), 
cells.lost(2), 
cells.lost(3), 
cells.lost(4), 
cells.lost(5), 
cells.lost(6), 
cells.lost(7), 
cells.lost(8), 
cells.lost(9), 
cells .lost(10), 
cells.lost(11) thus 

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11+ 

******* ******* ******* *** **** ***** ** ******* *** ** ** ******* ******* 

"Show total number of cells processed 
print 2 lines with total.entries thus 

Total cells processed = ********* 

return 
end 
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APPENDIX G 

MINIMUM INTERRARRIVALS SIMULATION PROGRAM 

Preamble 
" 	ISDN statistical multiplexor buffer simulation 
I I 

Philip Branch, MTech project 1993. 

Use SIMSCRIPT to model the behaviour of a multiplexor. In particular 
determine whether cell (packet) loss occurs in bursts. 

normally, mode is undefined 	"Force variable declaration 
Processes include generator, arrival 	"Queue entries 
Resources include server 	"Queue server 

"Variable declarations 
Define head.date, head.time as text variable 
Define bufsize, duration as integer variable 
Define lambda, mu as real variable 
Define cell.count as integer variable 
Define cells.lost as integer, 1-dimensional array 
Define mean.arrival, meamservice as real variables 
Define total.entries as integer variable 
Define minserve as integer variable 
Define last.time as real variable 
Define arrival.count as integer variable 

"Time definitions 
Define .seconds to mean days 
Define .milliseconds to mean hours 
Define .microseconds to mean minutes 	\ 

end "preamble 
Main 

"Main routine 
.. 

normally, mode is undefined 

"Change time scale 
Let hours.v = 1000 
let minutes.v = 1000 

"Reserve space for statistic records 
reserve cells.lost(*) as 11 

Il 

II 

II 

II 

II 
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"Setup 1 server 
create every server(1) 
let U.server(1) = 1 

"Set up input and output files 
open unit 2 for input, file name is "CASIM\PARAMLIDAT" 
use 2 for input 

open unit 3 for output, file name is "C:\SIM\LOG.DAT" 
use 3 for output 

"Get date and time for heading 
call date.r yielding head.date, head.time 

"Print heading 
print 5 lines with head.date, head.time thus 
ISDN cell loss simulation MIN TIME M/D/1 Date ********** Time ******** 

1 2 3 4 5 6 7 8 9 10 >10 

read bufsize, lambda, mu, duration, minserve as I 6, I 6, I 6, I 6,1 6 

let meamarrival = 1.0 / lambda 
let mean.service = 1.0 / mu 
let time.v = 0 
activate a generator now 
start simulation 
call printline 

stop 
end 
process arrival 

normally, mode is undefined 

request 1 server(1) 
work mean.service .seconds 

relinquish 1 server(1) 

end 
process generator 

normally, mode is undefined 

"Define time.temp as real variable 
Define time.minserve as real variable 

"DEBUG 
print 1 line with mean.arrival, minserve thus 
interarrival time *******.******** *****.***** 
"ENDDEBUG 



let time.v = 0 
let arrival.count = 0 
wait exponential.f (mean.arrival, 1) .seconds 
let time.minserve = mean.service / 2 

"DEBUG 
print 1 line with mean.service, time.minserve, mean.service thus 
service time *******.****** min arrival time ****.***** mean serv  
"DEBUG END 

while duration > 0 do 	"Dummy test. Loop forever 

add 1 to arrival.count 

if arrival.count > 100000 
let arrival.count = 0 
call printline 

endif 

add 1 to total.entries 

if N.Q.server > bufsize 
add 1 to cell.count 

else 

"Print a line every 100,000 arrivals 

"server queue full. This one will be lost 

Record number of cells lost. Add 1 to each count for multiple cells. 
if cell.count > 0 

if cell.count le 10 
add 1 to cells.lost(cell.count) 

else 
add 1 to cells.lost(11) 

endif 

There is room for an entry. Put in on the queue. 
let cell.count = 0 

endif 
activate an arrival now 

endif 

work time.minserve .seconds "Allow a minimum time between arrivals 

wait exponential.f (mean.arrival, 1) .seconds 

"DEBUG 
let time.temp = time.v - last.time 
print 4 line with N.Q.server, bufsize, time.v, last.time, minserve, 

time.temp, time.minserve thus 
"N.Q.server 	***** bufsize ***** 
"time.v 	*****.**** last.time *****.***** minserve  
"interrarrival time ****.***** time.minserve  
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"ENDDEBUG 

loop 
end 
routine isdnsim 

normally, mode is undefined 

call resetall 
let time.v = 0 
activate a generator now 
start simulation 
call printline 
return 
end 
routine printline 

normally, mode is undefined 

print 1 line with 
cells.lost(1), 
cells.lost(2), 
cells.lost(3), 
cells.lost(4), 
cells.lost(5), 
cells.lost(6), 
cells.lost(7), 
cells.lost(8), 
cells.lost(9), 
cells .lost( 10), 
cells.lost(11) thus 

****** ****** ****** ****** ****** ****** ****** ****** ****** ****** 

"Show total number of cells processed 
print 2 lines with total.entries thus 

Total cells processed = ********* 

return 
end 
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APPENDIX H 

SWITCHED POISSON PROCESS SIMULATION PROGRAM 

Preamble 
" 	ISDN statistical multiplexor buffer simulation 

Philip Branch, MTech project 1993. 

Use SIMSCRIF'T to model the behaviour of a multiplexor. In particular 
determine whether cell (packet) loss occurs in bursts. 

normally, mode is undefined 	"Force variable declaration 
Processes include generator, arrival 	"Queue entries 
Resources include server 	"Queue server 

"Variable declarations 

"Report headings 
Define head.date, head.time as text variable 

"Parameters 
Define bufsize, duration as integer variable 
Define gamma, omega as real variable 
Define lambdal, lambda2, mu as real variable 

"Performance monitoring variables 
Define cell.count as integer variable 
Define cells.lost as integer, 1-dimensional array 
Define mean.arrival, mean.service as real variables 
Define total.entries as integer variable 

"Time definitions 
Define .seconds to mean days 
Define .milliseconds to mean hours 
Define .microseconds to mean minutes 

end "preamble 
Main 

"Main routine 

normally, mode is undefined 

"Change time scale 
Let hours.v = 1000 
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let minutes.v = 1000 

" Reserve space for statistic records 
reserve cells.lost(*) as 11 

" Setup 1 server 
create every server(1) 
let U.server(1) = 1 

"Set up input and output files 
open unit 2 for input, file name is "CASIM\SPP\SPP.DAT" 
use 2 for input 

open unit 3 for output, file name is "CASIM\SPP\LOG.DAT" 
use 3 for output 

" Get date and time for heading 
call date.r yielding head.date, head.time 

"Print heading 
print 2 lines with head.date, head.time thus 
ISDN cell loss simulation 	MID/1 Switched Poisson 

Date ********** Time ******** 

"Buffer size, first Poisson rate, Second Poisson rate, service rate, 
" time in each Poisson 

read bufsize, gamma, omega, lambdal, lambda2, mu, duration 
as I 2, 5 D(10,5), I 8 
as ** ****.*** ****.*** ****.*** ****.*** ****.*** ******** 

let mean.arrival = 1.0 / lambdal 
let mean.service = 1.0 / mu 
let time.v = 0 
activate a generator now 
start simulation 
call printline 

"DEBUG 
print 1 line with lambda 1, mean.arrival, mu, mean.service thus 

lambda ***•*** mean.arrival ***.*** mu ***.*** mean.service 
"END DEBUG 

stop 
end 
process arrival 

"Deterministic server time. 
normally, mode is undefined 

request 1 server(1) 
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work mean.service .seconds 

relinquish 1 server(1) 

end 
process generator 

normally, mode is undefined 

define counter, switch.flag as integer variable 
define last.time as real variable 
define gamma.time as real variable 
define omega.time as real variable 
define switch.time as real variable 

let gamma.time = 1/gamma 
let omega.time = 1/omega 
let switch.time = exponential.f(omega.time,l) 

print 6 lines with gamma, omega, lambda 1, lambda2, mu, duration, 
gamma.time, omega.time 

thus 
PARAMETERS:- gamma omega lambdal lambda2 mu duration 

****.**** ****.**** ****.**** ****.**** ****.**** ******** 

TIMES:- 	gamma.time omega.time 
*******.***** ******.**** 

wait exponential.f (mean.arrival, 1) .seconds 

"while time.v < duration do 
while 1 > 0 do 	" dummy loop, continue forever 

add 1 to counter 
" if counter > 1000 

if counter > 10000 
call printline 
let counter = 0 

endif 

add 1 to total.entries 

if N.Q.server > bufsize "server queue full. This one will be lost 
add 1 to cell.count 

else 

Record number of cells lost. Add 1 to each count for multiple cells. 
if cell.count > 0 

if cell.count le 10 
add 1 to cells.lost(cell.count) 

else 
add 1 to cells.lost(11) 

endif 
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There is room for an entry. Put in on the queue. 
let cell.count = 0 

endif 

activate an arrival now 
endif 

" Time to flip to other Poisson rate ? 
if time.v - last.time > switch.time 

let last.time = time.v 
if switch.flag = 1 

let mean.arrival = 1 / lambdal 
let switch.flag = 2 

Calculate time to switch over to other rate 

let switch.time = exponentiall(gamma.time,1) 
else 

let mean.arrival = 1 / lambda2 
let switch.flag = 1 

Calculate time to switch over to other rate 

let switch.time = exponentialf(omega.time,1) 

endif 

"DEBUG 
" print 1 line with mean.arrival, switch.flag, switch.time thus 
" mean.arr= ****.****, mean.swit= ****.****,switch.time=  
"DEBUG END 

endif 
wait exponential.f (mean.arrival, 1) .seconds 

loop 
end 
routine isdnsim 

normally, mode is undefined 

let time.v = 0 
activate a generator now 
start simulation 
call printline 
return 
end 
routine printline 

normally, mode is undefined 
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define count, num.runs, tot.runs as integer variable 
define perc as real, 1-dimensional array 

reserve perc(*) as 11 
print 3 lines with 
cells.lost(1), cells.lost(2), cells.lost(3), cells.lost(4), cells.lost(5), 
cells.lost(6), cells.lost(7), cells.lost(8), cells.lost(9), cells.lost(10), 
cells.lost(11) thus 

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11+ 

****** * ******* ******* ******* ******* ******* ******* ******* ** ***** 
*** *** 

"Calculate percentages of run loss 
let tot.runs = cells.lost(1) + cells.lost(2) + cells.lost(3) + cells.lost(4) + 

cells.lost(5) + cells.lost(6) + cells.lost(7) + cells.lost(8) + 
cells.lost(9) + cells.lost(10) + cells.lost(11) 

let num.runs = tot.runs 
for count = 2 to 11 by 1 
do 

let num.runs = num.runs - cells.lost(count - 1) 
let perc(count) = 100 * num.runs / tot.runs 

loop 

print 3 lines with perc(2), perc(3), perc(4), perc(5), 
perc(6), perc(7), perc(8), perc(9) 

thus 

***.*** ***.* ** ***. *** ***.*** ** *.*** * **.*** ***.*** ***.** * 

"Show total number of cells processed 
print 3 lines with total.entries thus 
Total cells generated = ********* 

return 
end 
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