
3-D Sensing of Object Orientation
using

Back Propagation Neural Network

Muhammad Dimyati bin Abdullah

A thesis submitted in partial fulfilment of the requirements for the
Master of Technology program in Information Technology

in

Department of Electrical & Electronic Engineering
University of Tasmania

Australia

Supervisor
Professor D. T. Nguyen

1992

Abstract

This thesis is about the application of Neural Networks in the sensing of an

object position relative to a reference point. An object is rotated a certain

angle in space and a Neural Network was then used to estimate its

orientation. Previous methods had always been to transform 3-dimensional

data into 2-dimensional data before presenting it to the network. In this

thesis 3-dimensional data is used as the input to the Neural Network.

Training data was obtained via two methods, the first one was through a

Pascal program and the other through a commercial CAD software. The

input to the Backpropagation Network are coordinates of the object

vertices and the target output are the rotation parameters for each

particular position.

Acknowledgment

Firstly I would like to thank my supervisor Professor D. T. Nguyen for

his guidance and assistance in order for me to pursue this very interesting

subject. I would also like to thank Dr. D. H. Lewis who is the course

coordinator.

I am also indebted to my wife who has been most understanding and

helpful during the duration of the course, and to my children who are a

source of joy and purpose in times of difficulties.

I would also like to extend my gratefulness to all my coursemates and

other Post Graduate students for the assistance and enlightening discussion

that I had with them. Not least, I would also like to extend my thanks to

Ms Judy Bonsey the Department Secretary and Ms Sarah Day of ELICOS

for all their help.

2

Table of Contents 	 Page

1 Introduction 	 1

2 Object Recognition 	 4

2.1 2-D Vision 	 4

2.2 3-D Vision 	 7
2.3 Tactile Sensing 	 8

3 Artificial Neural Network
3.1 Introduction 	 12

3.2 Classification of Neural Networks 	 14

3.3 The Back Propagation Neural Network 	16
3.4 Network Dynamics 	 17
3.5 The Learning Parameters 	 19

4 Graphic Transformation
4.1 Using Autocad 	 21
4.2 3-D Graphic Program 	 21

4.3 The Transformation Matrix 	 22

5 Simulations 	 26

6 Results and Discussions 	 28

7 Conclusions 	 43

References
Appendix A
Appendix B

3

Chapter 1

INTRODUCTION

The determination of an Object Orientation or Object Pose Estimation is
currently being investigated in the realm of computer vision systems by
researchers such as T.Poggio and S. Edelman[1], B.Wirtz and
C.Maggioni[2], M.W. Wright and F. Fallside[3] who have obtained results
which show that the recovery of an object pose was possible when using
Artificial Neural Network(ANN) such as the Radial Basis Function, Kohonen
and Back Propagation. However in all the three research works carried out, 3-
D data was all transformed into 2-D data before being presented to their
respective ANNs. In the field of machine vision the determination of an
object pose plays an important part in object recognition.

Arguably one may question the point of having 3-D data when a computer
vision system can only display 2-D data on an image plane. Unfortunately

not all objects can be identified by vision only; in cases where vision is
impossible, the sense of touch or Tactile Sensing is much more appropriate.
In the field of Surveying data is collected using laser-scan technique and its
coordinates are in 3-D data format. In Computer Aided Design and Computer
Aided Manufacturing(CAD/CAM) the measurement of a product's
dimensions uses the Coordinate Measuring Machine(CMM) as part of its
Quality Control(QC). This process also generates data in 3-D data format.

With the combination of 2-D vision and 3-D data we can perhaps make the

process of QC more efficient in selecting or rejecting a particular product.

If a particular computer vision system can recognise an object in 2-D vision

as well as correlating it with 3-D data then the system will be a much robust

one. In the field of speech recognition integration of visual and auditory

speech signals [4] it was shown that better results were obtained when they

were fused together compared to if they were used on their own. Perhaps this

can give us a guideline in the fusion of 3-D data with 2-D image in order

obtaining a much improved computer vision system.

This thesis is about the use of an Artificial Neural Network to sense an

object's position using 3-D input data where the output data is the angle of

rotation about the X, Y and Z-axis through which the object had been rotated.

The simple Backpropagation Neural Network was used in conjunction with a •
CAD system to demonstrate the capability of the ANN to recognise and sense

object position when presented with 3-D data. It will also attempt to show the

ability of the Back Propagation ANN to identify the object even if there are

certain hidden surfaces.

This thesis will go through the basics of Neural Computing as well as some of

the transformation technique used in the generation of 3-D modelling in

Computer Aided Design(CAD). It will also look at problems faced by 2-D

2

vision object recognition and suggest how 3-D data can be obtained using

some of the presently available scanning and tactile sensing techniques.

3

Chapter 2

OBJECT RECOGNITION

In the field of robotics object recognition is a precursor to many other
important robotic tasks, including grasping, manipulation, assembly and
inspection. Before attempting such complex robotic tasks, there is the need
to be able to correctly recognise the relevant objects with respect to its
surrounding in the first place. Object recognition also means understanding
an object's position and orientation in space in a viewpoint-independent

manner [5].

The following sections present some of the techniques used in object
recognition, which include vision only system, range scanning and tactile
sensing.

2.1 2-D VISION

Most object recognition research works have been spurred by the ease with
which biological systems process visual inputs. Unfortunately, the task of
understanding a scene from machine vision only has proved to be difficult.

The analogy of an image matrix to the human retina has merely served to
illuminate the powerful kinds of processing taking place in the visual cortex,

processing that is poorly understood at present. The research of David Man

and Hildreth[6] has also tried to isolate those parts of human visual
information processing that seem to operate independently.

Stages used in machine vision usually involve image acquisition using static
images with the object being carefully illuminated. The process of
thresholding is then made to manipulate the grey level, thus establishing a
clear contrast upon the image in order to establish gradients for the object's
contour. This process also produce a binary image. The next step is edge
detection by convolving the image with the Laplacian of a Gaussian, also
known as Marr-Hildreth edge detection operator[6]. This process is usually
a computationally burdensome process. A chain coding process is then made
in order to obtain the perimeter(p) of the object as well as determining its
area(A). The ratio of p2/A is obtained and compared to existing database. If
similar ratio value exist in the database then the object is identified. Other
techniques being tried are segmentation and region analysis.

These image-space recognition systems perform recognition tasks on image
properties (2-D projective properties) rather than 3-D properties. These
systems are not viewpoint-independent but seek to recognise image properties
derived from a number of predetermined viewpoints. Recognition occurs
when one of these characteristic views is matched with an image space model
of the object. Oshima and Shiraj [7] used image space predictions about
polyhedra and cylinders to perform recognition. Multiple learning views are
computed from an object and are stored in a database for later use. Image

5

space curves and regions obtained via the methods mentioned above are then
matched with one of these views. Fisher[8] used an approach in which certain
weak constraints about a surface's images over different viewpoints were
computed to aid in determining the object's position and orientation.

Image space matching is not powerful because it loses the inherent sense of
the 3-D object to be recognised. The projective space approach fails to
maintain the consistent structure of an object across the many possible visual
interpretations. The question of "How many characteristic views of an object
are sufficient?" is open; clearly the answer is many. Establishing a metric on

this kind of matching is difficult especially if the sensed view is between two
stored views. Therefore 2-D projective invariants are still weak, and are not
robust enough to support consistent matching over all viewpoints.

Other problems in 2-D vision are when objects are presented in different
poses, with different surface textures, and with lighting problems which give
rise to specularity or reflection upseting the silhouette algorithms thus making
recognition impossible. More complicated objects having slots and holes will
definitely not be identified by such vision system. What all the 2-D vision
systems require is a way of inferring and understanding the 3-D structure of
the objects to be recognised. In a CAD/CAM environment the parts produced
are usually quite complicated with many hidden surfaces, therefore a more
integrated approach might be more suitable in this matter; after all seeing is
not always believing.

6

While some progress has been made, the state of machine vision is still
primitive. Most commercial machine vision systems available today use
simple template matching of the 2-D silhouettes. Recently some application
with the use of ANN in machine vision had begun to be available
commercially [9]

2.2 3 -D VISION

At present most machine vision works are centred on the problem of
obtaining depth and surface orientation from an image. 3-D data acquisition
must cover a wide spectrum of needs, for example, the detailed shape Of an
object in the scene might be needed instead of the mere range value of its
surface elements. If a full 3-D description is required, view integration must
be performed on multiple partial views of the object. In some cases, sparse
3-D data is all that is needed to understand a scene, however, in numerous
applications, the 3-D structure of the scene must be known and a 3-D range
sensing method must be implemented.

Generally speaking range sensing method can be classified into two types ie
active or passive[10]. In the latter case, scene illumination is provided by the
ambient light, while in the former case, a special lighting device illuminates
the scene. Passive ranging technique includes Photometric Stereo, Shape
from Shading, Range or Shape from Texture and Range from Passive Stereo.

7

These methods are usually concerned with the recovery of surface orientation
from one or multiple grey-level pictures.

Most active ranging techniques have little to do with the human visual
system. Their purpose is neither to model nor to imitate biological processes
but rather to provide an accurate range image to be used in a given
application involving 3-D operations. Active techniques include Striped
Lighting and Active Stereo, Moire Shadows, Laser or Ultrasonic Time-of-
Right Techniques, Conventional or Synchronised Triangulation Range finder,
Range from defocusing and Intensity-Guided Rangefuider.

Problems of using range sensing technique are the potentially hazardous
nature of some of the methods using laser imaging. In Photometric stereo,
great demands are made on the illumination of the scene and on proper
understanding of the reflectance properties of the objects to be viewed. All
the rangefulder techniques mentioned above face the same major problem: the
3-D data provided conveys information only for the "visible' part of the
scene. If a full 3-D image of an object is required, several images must be
acquired from different positions and view integration must be performed.

2.3 TACTILE SENSING

In a quality control process the task is usually to recognise the object, inspect
it, then finally classify it into various set standards. No matter how simple or

8

complex the task is, a conceptual approach always includes object
manipulation, image creation, image processing, and object classification, as

described in Figure 1.

OBJECT

MANIPULATE

CREATE
IMAGE

PROCESS
IMAGE

CLASSIFY
RESULTS REVIEW GOOD

BAD REINSPECT

Figure 1.0 CAD/CAM inspection process

During manual inspection, a human might simply manipulate the object with
his/her hand, look for specific features on it, compare what he sees to some
criteria, and decide if the comparison is good enough. At the most automated
levels, there is no human interaction. A robot places the object in a system
with some sensing mechanism, a computer automatically initiates imaging and

constructs an image from the sensor output, and the computer logic processes
the image data and classifies the object as good or bad.

Therefore from the above scenario it can be seen that the element of tactile
sensing is also needed to give a comprehensive picture of the object. Tactile

sensing is like imitating the human fingers in manipulating the object;
similiarly machine vision is like trying to imitate the vision of a human.

Tactile sensing using a Coordinate Measuring Machine can be used to acquire
3-D data of an object. These sensors vary in their ability to sense a surface, at
the lowest level, simple binary contact sensor such as microswitches report 3-
D coordinates of a contact point. In fact this method is being used extensively
in industry in the process called reverse engineering. In this process a sensor
traces the surface of the components to be copied. The 3-D data obtained is
stored in a database. A similar component can then be machined out of the
collected data.

The next level of tactile sensor reports grey values that are proportional to the
force or displacement of the sensor. The most capable of these sensors can
also sense surface orientation, returning a surface normal vector.

Example of object recognition using tactile sensors is the work of Kinoshita,
Aida and Mori[111. They utilised a five-fmgered hand containing 22 binary
sensors to discriminate between objects. Each object was grasped from a

number of different vantage points and the resulting binary pattern recorded.
A discriminating plane was calculated in the sensor space from these learning
samples. Then, the object was grasped a number of times and its membership
in the discrimination space was computed. This work was able to distinguish

a square pillar from a cylinder at 90% reliability.

1 0

In this thesis simulated 3-D data was obtained from CAD drawings in the
initial form of wire frame drawings. These drawings can be further
manipulated to produce solid drawings as well as rendering and shadowing.

11

Chapter 3

ARTIFICIAL NEURAL NETWORKS

3.1 INTRODUCTION

An Artificial Neural Network is a massively interconnected network of a
large numbers of processing elements, called neurons or nodes. A neuron
receives input stimuli from other neurons if they are connected to it or/and the
external world. A neuron can have several inputs, but has only one output.
This output however can be routed to the inputs of several other neurons.
Each neuron has certain constant parameters associated with it. These are its
threshold, transfer function and weights associated with its inputs. Each
neuron performs a very simple arithmetic operation, i.e. it computes the
weighted sum of its inputs, subtracts its threshold from the sum, and passes
the result through its transfer function. The output of the neuron is the result
obtained fom this function. The output of the neuron is therefore a
mathematical function of its input and can be expressed as

y = f(Ewixi - 0) 	i = 0,....,N

Here, y is the output of a neuron, N is the number of inputs, wi is the weight
associated with input i, xi is the value of input of input i, and 0 is the

threshold. The three most common transfer functions used in neural networks

12

are the hardlimiter, threshold and sigmoid non-linearities, as illustrated in

Figure 2.

Haraniter 0 or 1 	Threshold

Figure 2. Activations/Transfer functions

Neural-net models are specified by the net topology, node characteristics and

training or learning rules. The function of a neural net model is determined
by these parameters. The net topology, or the architecture of the net
determines the inputs of each node. The node characteristics (threshold,
transfer function, and weights) determine the output of the node. The training
or learning rule determines how the network will react when an unknown
input is presented to it.

An important characteristic of ANN which lends them a degree of superiority
over other systems is their ability to learn by example. Some types of neural

net can be trained to perform tasks such as recognition by repeatedly
presenting input patterns to the net. Depending on the type of net, the desired
result may or may not be available to the net. This process of adaptation is

13

called learning. If the desired result is given to the net, the learning is

supervised. If it is not, the learning is unsupervised.

A second characteristic that makes ANN superior to other recognition
systems is its ability to tolerate noise in an input pattern. If a net has been
trained sufficiently, it is capable of performing well even if input patterns are

noisy or incomplete.

Another important aspect of ANNs which is of importance to this thesis is

their ability to fuse information together in an optimal way. This ability can
overcome the problem of integrating multiple views in object recognition as
well as fusing different information collected from a multisensor system.

3.2 CLASSIFICATION OF NEURAL NETS

Figure 3 shows a taxonomy of six important neural nets used for classification
of static input patterns. Nets can have either binary or continuous valued
inputs. Binary inputs take on one of two possible values, while continous-
valued inputs can take on any value in a specified range.

Both types can be supervised or unsupervised during training. During

supervised training, the net is given the correct output along with the training
pattern. The net produces an output based on its current weights, and
compares it with the correct or target output. If there is a difference, the

14

input

Sup erldied
Ilditlayer
Pero eptron/BP

Perceptrou

k -nearest
neighbor
mixture .

Gaussian
classifier

Trik-pervised

weights are changed as a function of the difference between the outputs.
Examples are the Hopfield net[12] and the Hamming net[12] with binary
inputs, and the Back Propagation/Multilayer perceptron with continuous
inputs. For the unsupervised training, no information concerning the correct

output is provided to the net. The net constructs an internal model that
captures regularities in input training pattern. In other words, the net forms its
own exemplars(during training) by clustering input patterns which are similar
to each other within a specified tolerance. Kohonen's feature-map-forming
nets [12] are examples of this type of net.

In this thesis the Multilayer Perceptron or Back Propagation Neural Net is
used in order to recognise the object as well as its orientation.

Neural-network dadfiers for fixed pathrus
____---------

llinamilifil
...-

	

Supefyised 	Una frA rvis ed ,..

\---____.

	

Hopfield net 	HamMing net 	Carii\en ter/
Gros s b erg
dm ier 9

Leader
Optimum 	clustering
classifier 	algorithm

self -organizing
feature maps

-K-means
clustering
algorithm •

Figure 3. Classification of Neural Networks

15

••:,,

•

; 	 • •

, 	.•__

• • 	
„

11

Output. Array

Hidden Layer 1:

„ ; Hidden Layer

Hidden Layer

47,11

3.3 THE BACK PROPAGATION NEURAL NETWORK

The Back Propagation(BP) network consists of input layer, hidden layerls

and an output layer, each layer however may contain a different number of
nodes. The BP network is a supervised network where input as well as output

sets of training vectors have to be presented to it for training purposes. Every
node in the output layer is connected to every unit in the input layer. Figure 4
shows an example of a BP network.

;

7 Input Array
n

Figure 4. Back Propagation Network with Hidden Layer

16

The output generated by the network is compared with the target output. The
difference between output and target is the error signals which is then back
propagated into the network and the corresponding weight changes at various
nodes are then made until the output of the network is similar to the target
output. Thus, a Back Propagation network learns a mapping function by
repeatedly presenting patterns from a training set and adjusting the weights.
Each pass through the training set is called a cycle.

Input patterns that are similar to each other produce output patterns that are
similar because of the direct mapping of inputs to outputs in a two-layer
network. A two-layer network cannot learn the exclusive-OR functions,
therefore in order to learn any arbitrary mapping the network must have at
least three layers.

3.4 NETWORK DYNAMICS

The activation of the units in the hidden layers constitutes an internal
"representation" of the input patterns. These hidden units learn to encode

features that are not explicitly present in the input patterns. By applying the
Generalised Delta Rule(GDR), a multilayer network can learn to develop

features that are necessary to perform the desired mapping. GDR is also
known as the Hebbian learning algorithm and can be defmed as follows:

17

0.50

0.25 —
Activation — (loci-

-0.25 -

-0.50 	1 	I I 	If 	I 	I 	I 	I 	I 	I 	I 	I
7 -6 -5 -4 -3 -2 -1 0 1 23 4 567

Net Input

1) Apply an input vector and calculate the output Y.
2) Calculate the weight changes using the equation below:

8j = (- 	Aw . . = .1 1 	J

where Awji is the correction associated with the weight from the ith neuron
in the input layer to the jth neuron in the output layer. Oi is the ith component

of the input vector and is r the "learning rate" which controls the size of the

weight changes.

The Back Propagation activation used in this thesis is the sigmoid activation
function as shown in Figure 5.

1
Oj 	 0.5 	 netj = Oi + Eiwijoi

1 	e-netj

Figure 5. Sigmoid Activation Function

18

Neti is the sigmoid activation function used to modify each weight, Oi is the

bias for unit j. The biases are also learned in the same manner in which the
weights are learned. Unit activations range from -0.5 to 0.5, and networks

learn more quickly if the input patterns are scaled in this range.

The GDR guarantees a steepest gradient descent in the total root mean
square(RMS) error. This measure is computed by summing the squares of the

target minus the output for every output unit and for every pattern, averaging

this, then taking the square-root as shown in the expression below:

_)2
Total RMS error =

patterns x # output units

where p is the pattern, o is the output unit, and t is the target output unit.

3.5 THE LEARNING PARAMETERS

Gradient descent is guaranteed if small weight changes are made, this
however will take too long therefore a learning rate 1 as mentioned earlier

was introduced to speed it up. The learning rate is usually between 0.01 to 1

but for simpler problems it can be more than 1. The aim of this is to set the
learning rate as high as possible without making the RMS fluctuate

significantly. Difficult problems have relatively constant error functions with

19

tiny solution regions, thus requiring a small 11 or less, and require many
learning cycles. In order to increase learning rate a momentum term a [13] is

added so as not to make RMS oscillate. The momentum term determines
what portion of the previous weight changes will be added to the current
weight changes. The total weight change equation then becomes:

Awii(t+1) = ii(8joi) 	aAwii(t)

where i(Sjoi) is the current weight change dictated by the GDR. In practice,

the value of 1 and a are always adjusted until the total RMS error display

shows a generally decreasing value with time.

Each weight matrix has its own learning rate and momentum term. By having
control over the learning rate at each layer, one can effectively balance the
speed at which the different layers adjust their weights. A further condition of
true gradient descent in the total RMS error is that the weights be changed

only after the entire training set has been processed.

20

Chapter 4

GRAPHICAL TRANSFORMATION

4.1 USING AUTOCAD

A 3-D object was created using AUTOCAD®[1 4] and stored in the

computer, the object can be manipulated to rotate about X, Y or Z axis. For
every new position the vertices of the object were recorded using the
INQUIRY command of the CAD program. It was also possible to have a
solid view of the object instead of a wireframe drawing using the HIDE
command which removed hidden lines in the drawing.

4.2 3-0 GRAPHIC PROGRAM

Another method used in this process to obtain the vertices' coordinates at

various positions is to write a simple 3-D graphic program using Turbo

Pascal. To specify a rotation transformation for an object, an axis of

rotation(about which the object is to be rotated) as well as the amount of

angular rotation must be designated. In 3-D, an axis of rotation can have

plenty of spatial orientation. The easiest rotation axes to handle are those that

are parallel to the coordinate axes. This method of rotation about the three
coordinate axes can also be used to produce a rotation about any arbitrarily
specified axis of rotation. The convention adopted in this thesis is for counter

clockwise rotations about a coordinate axis produces a positive rotation

21

angles, if we are looking along the positive half of the axis toward the

coordinate origin. The Pascal program is in Appendix B.

4.3 THE TRANSFORMATION MATRIX

For the rotation about X, Y and Z axis the coordinates of the vertices are
submitted to the following transformations matrix;

10 0 0
Rx = 0 cos° sine 0

0 -sine cos0 0
0 O. 0 1

cos0 0 -sine 0
Ry = 0 1 0 0

sine 0 cos° 0
000 1

.0111111.

cose sine 0 0
Rz = -sine cos° 0 0

00 1 0
0 0 0 1 _)

Translation of the coordinates is specified by the following matrix

1 000
TL= 	0100

0 0 	1 0
x y 	zl

22

In order to visualise the shape of the object, lines are drawn connecting all the
vertices, however these lines are not being used as part of the training set for
the Neural Network. The Turbo Pascal program was used to generate the

coordinates for various positions of the object. This values were then cross-

checked with those values obtained using Autocad.

A problem of using 3-D data is the amount of transformation that must be
undertaken in order to rotate the various vertices about the X,Y and Z-axis. If
the object is rotated about an arbitrary axis where the specifications for the

rotation axis and rotation angle are given, then the transformation procedure

is as follows:

1. Translate the object so that the rotation axis passes
through the coordinate origin.

Rotate the object so that the axis of rotation
coincides with one of the coordinate axes.

	

3. 	Perform the specified rotation.

Apply inverse rotations to bring the rotation axis
back to it original orientation.

	

5. 	Apply the inverse translation to bring the rotation
axis back to its original position.

Therefore the complete transformation is as follows;

[x, y, z]' = Tul.Rx 	 x, y, z]

23

However in this thesis the rotation of the object was made about it centre of

gravity which acted as the point of coordinate origin, thus eliminating the

need to translate or inverse translate the object. Therefore the only

transformations needed are as follows:

[x, y, z]' = Rz.Ry.Rz.[x, y, z]

In this case the object is a simplistic drawing of a car as in Figure 6 & 7.

24

N NN

N

Figure 6. Wireframe drawing

Figure 7. 3-D Solid Drawing

25

Chapter 5

SIMULATIONS

Simulations were carried out for two cases; the first one was concerned with

the use of 3-D data of the object vertices' coordinates for a variety of poses.
The first set of 3-D data were simulated as though it was obtained via a tactile
sensing mechanism and the problems of hidden vertices were therefore

eliminated. The input values for the Back Propagation network were the
various vertices' coordinates and the target values are the rotational

parameters. Since the object can assume a large number of positions in space,

the rotational parameter were limited between 0 - 30 degrees with 5_degree

intervals for all axes. The training data set(SET12345.DAT) and the test data

set(TESTDATA.DAT) that were used are in Appendix A. The first BP

network is called NET 1.

As for the second simulation, the data used includes X, Y and Z coordinates,

but some coordinates were set to zero in order to represent the hidden

vertices or points. For viewing purposes the object was only rotated about

the Z-axis, ie. simulated rotation of the object on a flat plane with the

observer looking downwards 45 degrees from left hand side of the reference

car position. For every position a hide command was used to produce a solid

drawing thus blocking away the hidden vertices. Rotation about the Z-axis
were made from 0 - 360 degrees with 15_degree intervals in order to produce

training data set. The training data set(HI)E15.DAT) and the test data

26

set(H1DEDATA.DAT) for these are in Appendix A, and the second BP

network is called NET2.

The second simulation also simulates how 3-D data obtained by tactile
sensing can be integrated with another set of 3-D data obtained through 3-D
vision system. This is assumes that the vision system is viewing from a fixed
point, therefore there is a possibility that it cannot detect hidden vertices.

All the data were normalised between 0.5 and -0.5. This setting was
recommended by the maker of the Back Propagation Network network
software being used ie. ANSIM® [15]. The target outputs are the ratio of

(angle of rotation)/360. Damaged weights were set between 0.5 to -0.5,
learning rate was set at 0.1 and the momentum was set at 0.6, however these
values were occasionally changed in order to speed up training or to reduce

the RMS error fluctuation. Training was done until the RMS error dropped

below 0.0005. The Back Propagation network used for NET1 and NET2 had

two hidden layers each having 49 nodes. Both NET1 and NET2 which had

been trained is available in the diskettes enclosed with this thesis.

All the training data needed to be processed earlier in order to eliminate

repeated data as well as conflicting data, such as those which had the same

input data but different output data, ie the angles of rotation are not the same

but the input data is similar.

27

Chapter 6

RESULTS AND DISCUSSIONS

For the first simulations using NET1, the test data TESTDATA.DAT is

used. The results are illustrated in Figure 8 to Figure 15 as well as in Table

1.0.

Figure 8 uses test data 11 which is part of the training data set. As expected
the output position(Rout) produced by the network is very close to the target

value(Rtrue). Figure 8 shows that the output image is superimposed upon the

target image. The image of the car that is lying parallel to the Y-axis serves as

a reference position as well as the initial position of the car.

However test data 2 and 4 are not the values that are used in the training of

the network, but these values lie within the range of the training data set.

Figure 9 and 10 show that when test data 2 and 4 are presented to the

network, they were able to estimate its position correctly as well.

Test data 6 and 8 are similar to test data 2 and 4, but these data set were

purposely corrupted. Test data 6 has one set of corrupted vertice coordinates,

while test data 8 had 2 sets of corrupted vertices' coordinates. From the table

28

TEST
DATA

TRUE ROTATION

Rtrtie
Angle Normalised

OUTPUT
ROTATION

Rout
Normalised

IRtrue-Rout I I % ERROR I

Rx 	0 0.0000 0.0009 0.0009 0.09
1 Ry 	0 0.0000 0.0006 0.0006 0.06

Rz 	0 0.0000 0.0007 0.0007 0.07

Rx 	3 0.0083 0.0077 0.0006 7.23
2 Ry 	14 0.0389 0.0390 0.0001 0.25

Rz 29 0.0806 0.0814 0.0008 0.99

Rx 	7 0.0194 0.0192 0.0002 1.03
3 Ry 	7 0.0194 0.0194 0.0000 0.00

Rz 	7 0.0194 0.0192 0.0002 1.03

Rx 	21 0.0583 0.0584 0.0001 0.17
4 Ry 	6 0.0167 0.0165 0.0002 1.20

Rz 	11 0.0306 0.0306 0.0000 0.00

Rx 	15 0.0417 0.0417 0.0000 0.00
5 Ry 	24 0.0667 0.0669 0.0002 0.30

Rz 	1 0.0028 0.0028 0.0000 0.00

RX 	3 0.0083 0.0049 0.0034 40.96
6 Ry 	14 0.0389 0.0115 0.0274 70.44

Rz 29 0.0806 0.0923 0.0117 14.52

Rx 	7 0.0194 0.0085 0.0109 56.19
7 Ry 	7 0.0194 -0.0080 0.0278 141.89

Rz 	7 0.0194 0.0295 0.0101 52.06

Rx 	21 0.0583 0.0309 0.0274 47.00
8 Ry 	6 0.0167 0.0117 0.0005 3.00

Rz 	11 0.0306 0.0721 0.0415 135.62

Rx 	30 0.0833 0.0783 0.0050 6.00
Ry 	30 0.0833 0.0825 0.0008 0.96
Rz 	30 0.0833 0.0934 0.0101 12.12

Rx 	30 0.0833 0.0633 0.0200 24.01
10 Ry 160 0.4444 0.1244 0.3200 72.01

Rz 	333 0.9240 0.1515 0.7725 83.60

Rx 	30 0.0833 0.0822 0.0011 1.32
11 Ry 	30 0.0833 0.0828 0.0005 0.60

Rz 	30 0.0833 0.0825 0.0008 0.96

Table 1.0 RESULT1

29

above the percentage error is quite high, however looking at it in Figure 11

and 12 the total deviation is not very large, especially the one in Figure 11.

Test data 9 uses test data 11 which is part of the training data set. However

test data 9 had 3 set of corrupted vertices' coordinates. From table 1.0 above

as well as Figure 13 it can be shown that NET1 still manage to estimate the

position of the car image. The percentage error is also significantly smaller

than that obtained when using data 6 and 8.

Figure 14 shows the result of using a test data which does not lie within the
training data set, therefore the network fails to identify its position. For test
data 7, even though the percentage error is very high, the deviation observed

in Figure 15 is not as drastic as that in Figure 14.

Generally speaking NET1 is able to identify correctly all the 3-D test data

sets which were presented to it, provided these data sets were not corrupted

and lay within the preset limits.

For the second simulation, 3-D data sets as well as data sets with some

hidden vertices(hidden vertices are set to zero) are used as the training set.

However for this simulation the image of the car is only rotated about the Z-

axis and the viewing angles are as mentioned in Chapter 5.

30

C) 	C)
01 Cr) Cr)

e•
Lr7 co •
Cri Cr' Cr'
hi NI C•J

31

. 	•

•-:, 3 '
....'s

-... ?

:.

•

• ,.„
•,

• •S

ss,

i
.1

32

"?"‘

Ni
• 0°)

v-I 	 N-1 	•
 Ni Lr)

33

34

0°1 cry

Cr)
%.1:1 itr

.- 	 • ro -1-1 Tr co

•••••'.

ks,

cs.J

35

9£

LA.) k•O CO • 	- 	• cr.
N LO C)

, ••

„

S N
...;.%

.5„

,

v • 	•

• •
• •

S.

• • • •

'sse„

•„.

,
•

1

C .,

•

4ç '4,
•

1 '4,
•

...• 	..••• 	•

tk,

„

Cr) CO Tr'
TV r,- 1.11

	

C) CO 	 • • •

	

C> ;41:3 CO 	CN.1 '414 'Tr,

	

co .4-1 co 	c...J Nr tr)

37

I 1 I $$$$$ •

kr,, \ 	k 	'''.•• 	 / ‘ .'
.t A 	1 	'

1 	k 	‘ 	; 	. N 	;'‘ •!
:•• 	1 	,

k 	t. 	Zt 	 '' 	' 	\ 	\ 	• 	k 	i k
4. 	0. 	,.. 	 ,. k.

“ 	k 	 1, 0

	

.......... „.) 	It A 1 	i ' ' i 	
:

k k 	 t ‘ '

k. - ... , 	,, '½ k 	' t 1

‘1 ‘ 	i i 4
' 	\ ii ' i 	i, 	':;.** 	1 \
i 't 	 4 	t
i 1 Z 	\ 	i. 	'4. 	 • 't 	k

•% 	: 	Z 	k 	

• 	..,...•..•..•.• .

‘ 	\ %
.' 	'

Is k i 	• 	.. 	' 	.'... ' ., 	 .;, ‘ 	 \ 	• 1 ,
. 	-.,,..;::::5:;.".:•:,•:',..;::...Z.•:::.....,.,.,.,,,. ; .,.,_,.„„......,_,. ,..,.,„,,......„,...„......„„.,.„.„ ... ::5„, „,:,...„.,.,.,1A

csn 	 zs
C*-

Table 2 presents the results obtained after using the test data

HIDEDATA.DAT for NET2.

TEST TRUE ROTATION 	OUTPUT
	

Rtrue-Rout I % ERROR I
DATA 	 ROTATION

Rtrue 	 Rout
Angle Normalised 	Normalised

1 Rz 0 -0.5000 -0.4977 0.0023 0.46

2 Rz 30 -0.4167 -0.4167 0.0000 0.00

3 Rz 80 -0.2778 -0.2779 0.0001 0.04

4 Rz 120 -0.1667 -0.1665 0.0002 0.12

5 Rz 160 -0.0556 -0.0554 0.0002 0.36

6 Rz 200 0.0556 0.0555 0.0001 0.18

7 Rz 240 0.1667 0.1668 0.0001 0.06

8 Rz 280 0.2778 0.2780 0.0002 0.08

Rz 320 0.3889 0.3908 0.0019 0.49

Table 2 RESULT2

The results obtained from NET2 show that it manages to identify all the test

data presented to it. Figure 16 and 17 are the illustrations for test data 5 and

9. Due to the complexity of merging two solid drawings to illustrate the

success of NET2 in identifying the pose of the object, some vivid

imagination is called for. In the second simulation, test data 1 and 2 were also

used as part of the training data set of NET2 and it is being used here as a

control.

39

Results in Table 2 also show that the degree of accuracy in determining the
object position is better compared to that obtained in the first simulation. In
the first simulation, test data 6 has one corrupted data, and the percentage

error in the output was quite high. NET2 is able to determine the object

position correctly eventhough the test data presented to it has corrupted data.
This is because NET2 had been trained with two sets of complementary 3-D
data set, with one sets having some coordinates corrupted in order to

represent it as hidden vertices or points.

40

Figure 16. 2nd Simulation - Test data 5.

41

Figure 17. 2nd Simulation - Test data 9.

42

Chapter 7

CONCLUSIONS

From the results obtained in the simulations, the following conclusions can be
drawn;

* The Back Propagation neural network is able to learn to estimate
the pose of an object relative to a standard view using 3-D data.

* The integration of full 3-D data plus data having some hidden vertices
makes the Network more accurate in estimating object position.

* The fusion of 3-D data obtained different sensors is possible using
Neural Network thus making the object recognition system more
robust.

The technique used in this thesis does have its limitations such as;

* To estimate the pose position for the entire viewing sphere a large
training data set had to be produced. Since this thesis used a

Personal Computer, severe constraints were put on computer
speed and memory.

43

Preprocessing of the solid model feature is a necessary step before

presenting it to the network. This involves a tedious cross-checking

of training data(in order to root out repeated data sets and contradicting

data sets) and the determination of hidden vertices.

It is hoped that in future we can utilise this system using real object as well as

running it on a CAD/CAM system as part of the Quality Control process.
With this system perhaps a more robust object recognition system can be
implemented.

44

References

1. T.Poggio and S. Edelman, "A network that learns to recognise three-
dimensional objects," NATURE 343:263-266, 18 Jan. 1990.

2. B. Wirtz and C. Maggioni, " 3D-Pose Estimation by an Improved
Kohonen net.," International Workshop on Visual Form, Capri. Plenum
press, 1991.

3. M.W. Wright and F. Fallside, " Object Pose Estimation by Neural
Network," University of Cambridge, UK.

4. Ben P. Yuhas, Moise H. Goldstein, Jr, and Terrence J. Sejnowski,
"Integration of Acoustic and Visual Speech Signals Using Neural Networks,"
IEEE Communications Magazine - Nov. 1989 pp. 65-71.

5. Peter K. Allen, "Robotic Object Recognition Using Vision and Touch,"
Kluwer Academic Publishers - 1987, pp. 4

6. David Marr and Hildreth, "Theory of Edge detection," Proc. Royal
Society of London Bulletin, Vol. 204, pp. 301-328, 1979.

7. Oshima, M. and Y. Shiraj, "Object recognition using three dimensional
information," IEEE trans. on Pattern Analysis and Machine Intelligence, Vol.
PAMI-5, no. 4, pp. 353-361, July 1983

8. Fisher, R. B, " Using Surfaces and Object Models to Recognize Partially
Obscured Objects," Proc. UCAI 83, pp. 989-995, Karlsruhe, August 1983.
Extracted from "Robotic Object Recognition Using Vision and Touch," by
Peter K. Allen, Kluwer Academic Publishers - 1987, pp. 15.

9. "Neural Computing from laboratory into industry," The Journal of the
Instituition of Engineers Australia Vol 6 No 9, 15 May 1992 pp.16 -18.

10. Denis Poussart and Denis Laurendeau, "3-D Sensing for Industrial
Computer Vision," - Edited by Jorge L.C. Sanz in "Advances in Machine
Vision," (Springer-Verlag, Germany - 1988), p.122 - 159.

45

11. Kinoshita, ,G., S. Aida and M. Mori, " A pattern cassification by
dynamic tactile sense information processing," Pattern Recognition, vol. 7,
pp.243-250, 1975. Extracted from "Robotic Object Recognition Using Vision
and Touch," by Peter K. Allen, Kluwer Academic Publishers - 1987, pp.
64-65.

12. Richard p. Lippmann, "An introduction to computing with Neural Nets,"
IEEE ASSP magazine, Vol 4, No. 2, April 1987.

13. J. L McClelland and D.E. Rummelhart, "Explorations in Parallel
Distributed Processing," MIT Press, 1988.

14. AUTOCAD - Copyright (C) Autodesk, Inc.

15. ANSIM - Copyright (C) Science Applications International Corporation.

46

Appendix A

Due to the large amount of training data sets and test data sets, the
print out will be more than a hundred pages. In order to save time
and effort all the following informations are available in the
enclosed diskette.

SIMULATION I
	

Filename

Training data sets text form
Training data sets data form

Trained BP network program

Test data sets
Results of Simulation I

SET12345.TXT

SET12345.DAT
NET1
TESTDATA.TXT
RESULT1.TXT

SIMULATION II
	

Filename

Training data sets text form
Training data sets data form

Trained BP network program
Test data sets

Results of Simulation II

HIDE15.TXT
HIDE15.DAT
NET2.NET
HIDEDATA.TXT
RESUL'F2.TXT

47

TESTDATA.TXT
TRAIN 3, 16, 3, 1

/* Input vector 1: */
-0.125000, -0.300000, -0.050000,
-0.125000, 0.200000, -0.050000,
0.125000, 0.200000, -0.050000,
0.125000, -0.300000, -0.050000,
-0.125000, -0.300000, 0.000000,
-0.125000, -0.150000, 0.000000,
-0.125000, 0.150000, 0.000000,
-0.125000, 0.200000, 0.000000,
0.125000, 0.200000, 0.000000,
0.125000, 0.150000, 0.000000,
0.125000, -0.150000, 0.000000,
0.125000, -0.300000, 0.000000,
-0.075000, -0.100000,0.050000,
-0.075000, 0.100000, 0.050000,
0.075000, 0.100000, 0.050000,
0.075000, -0.100000, 0.050000,

/* Output vector 1: */
0.000000, 0.000000, 0.000000,

/* Input vector 2: */
-0.245300, -0.209500, =0.063500,
0.002300, 0.224100, -0.088800,
0.214400, 0.106500, -0.028400,

-0.033200, -0.327100, -0.003000,
-0.254600, -0.201400, -0.015000,
-0.180400, -0.071300, -0.022600,
-0.031800, 0.188900, -0.037900,
-0.007000, 0.232300, -0.040400,
0.205100, 0.114700, 0.020100,
0.180400, 0.071300, 0.022600,
0.031800, -0.188900, 0.037900,
-0.042500, -0.319000, 0.045500,
-0.122500, -0.043300, 0.035400,
-0.023400, 0.130200, 0.025200,
0.103900, 0.059600, 0.061500,
0.004800, -0.113900, 0.071700,

/* Output vector 2: */
0.008300, 0.038900, 0.080600,

48

/* Input vector 3: */
-0.158600, -0.286700, -0.028200,
-0.090700, 0.205000, -0.088700,
0.155500, 0.174800, -0.058200,
0.087700, -0.316900, 0.002300,
-0.163900, -0.279900, 0.021100,
-0.143500, -0.132400, 0.002900,
-0.102800, 0.162600, -0.033400,
-0.096000, 0.211800, -0.039400,
0.150300, 0.181500, -0.009000,
0.143500, 0.132400, -0.002900,
0.102800, -0.162600, 0.033400,
0.082400, -0.310100, 0.051500,
-0.092700, -0.082500, 0.052200,
-0.065600, 0.114200, 0.028000,
0.082200, 0.096000, 0.046300,
0.055100, -0.100600, 0.070500,

/* Output vector 3 : */
0.019400, 0.019400, 0.019400,

/* Input vector 4: */
-0.185100, -0.267600, 0.047400,
-0.077700, 0.187100, -0.130800,
0.166400, 0.139600, -0.104600,
0.058900, -0.315000, 0.073600,
-0.186500, -0.249100, 0.093900,
-0.154300, -0.112700, 0.040400,
-0.089800, 0.160100, -0.066500,
-0.079000, 0.205600, -0.084300,
0.165000, 0.158100, -0.058200,
0.154300, 0.112700, -0.040400,
0.089800, -0.160100, 0.066500,
0.057600, -0.296500, 0.120000,

. -0.096100, -0.058200, 0.074200,
-0.053100, 0.123700, 0.002900,
0.093300, 0.095200, 0.018600,
0.050400, -0.086600, 0.089900,

/* Output vector 4: */
0.058300, 0.016700, 0.030600,

49

/* Input vector 5 : *1
-0.131400, -0.300500, -0.024000,
-0.070300, 0.181500, -0.142300,
0.158000, 0.177500, -0.040600,
0.097000, -0.304500, 0.077700,
-0.150800, -0.287200, 0.020100,
-0.132500, -0.142600, -0.015400,
-0.095900, 0.146600, -0.086300,
-0.089800, 0.194800, -0.098100,
0.138600, 0.190800, 0.003600,
0.132500, 0.142600, 0.015400,
0.095900, -0.146600, 0.086300,
0.077500, -0.291200, 0.121800,
-0.100100, -0.081900,0.037300,
-0.075700, 0.110900, -0.010000,
0.061300, 0.108500, 0.051000,
0.036900, -0.084300, 0.098300,

/* Output vector 5 : */
0.041700, 0.066700, 0.002800,

/* Input vector 6: */
0.000000, 0.000000, 0.000000,
0.002300, 0.224100, -0.088800,
0.214400, 0.106500, -0.028400,

-0.033200, -0.327100, -0.003000,
-0.254600, -0.201400, -0.015000,
-0.180400, -0.071300, -0.022600,
-0.031800, 0.188900, -0.037900,
-0.007000, 0.232300, -0.040400,
0.205100, 0.114700, 0.020100,
0.180400, 0.071300, 0.022600,
0.031800, -0.188900, 0.037900,
-0.042500, -0.319000, 0.045500,
-0.122500, -0.043300, 0.035400,
-0.023400, 0.130200, 0.025200,
0.103900, 0.059600, 0.061500,
0.004800, -0.113900, 0.071700,

/* Output vector 6: *1
0.008300, 0.038900, 0.080600,

50

• /* Input vector 7 : */
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.155500, 0.174800, -0.058200,
0.087700, -0.316900, 0.002300,
-0.163900, -0.279900, 0.021100,
-0.143500, -0.132400, 0.002900,
-0.102800, 0.162600, -0.033400,
-0.096000, 0.211800, -0.039400,
0.150300, 0.181500, -0.009000,
0.143500, 0.132400, -0.002900,
0.102800, -0.162600, 0.033400,
0.082400, -0.310100, 0.051500,
-0.092700, -0.082500, 0.052200,
-0.065600, 0.114200, 0.028000,
0.082200, 0.096000, 0.046300,
0.055100, -0.100600, 0.070500,

/* Output vector 7 : */
0.019400, 0.019400, 0.019400,

/* Input vector 8 : */
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.058900, -0.315000, 0.073600,
-0.186500, -0.249100, 0.093900,
-0.154300, -0.112700, 0.040400,
-0.089800, 0.160100, -0.066500,
-0.079000, 0.205600, -0.084300,
0.165000, 0.158100, -0.058200,
0.154300, 0.112700, -0.040400,
0.089800, -0.160100, 0.066500,
0.057600, -0.296500, 0.120000,
-0.096100, -0.058200, 0.074200,
-0.053100, 0.123700, 0.002900,
0.093300, 0.095200, 0.018600,
0.050400, -0.086600, 0.089900,

/* Output vector 8 : */
0.058300, 0.016700, 0.030600,

51

/* Input vector 9: */
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,

-0.150800, -0.287200, 0.020100,
-0.132500, -0.142600, -0.015400,
-0.095900, 0.146600, -0.086300,
-0.089800, 0.194800, -0.098100,
0.138600, 0.190800, 0.003600,
0.132500, 0.142600, 0.015400,
0.095900, -0.146600, 0.086300,
0.077500, -0.291200, 0.121800,
-0.100100, -0.081900, 0.037300,
-0.075700, 0.110900, -0.010000,
0.061300, 0.108500, 0.051000,
0.036900, -0.084300, 0.098300,

/* Output vector 9: */
0.041700, 0.066700, 0.002800,

/* Input vector 10: */
0.201400, -0.217000, -0.143000,
0.081000, 0.207600, 0.091900,
-0.128300, 0.101000, 0.177400,

-0.007900, -0.323700, -0.057500,
0.176900, -0.201500, -0.183700,
0.140800, -0.074100, -0.113200,
0.068500, 0.180700, 0.027700,
0.056500, 0.223200, 0.051200,
-0.152800,0.116500,0.136700,
-0.140800, 0.074100, 0.113200,

-0.068500, -0.180700, -0.027700,
-0.032400, -0.308100, -0.098200,
0.062300, -0.037400, -0.113300,
0.014200, 0.132500, -0.019400,
-0.111400, 0.068500, 0.031900,

-0.063300, -0.101400, -0.062000,

/* Output vector 10: */
0.083300, 0.444400, 0.925000,

52

/* Input vector 11: */
-0.282400, -0.165800, 0.029900,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,

-0.094900, -0.274100, 0.154900,
-0.288600, -0.133400, 0.067400,
-0.191200, -0.039600, 0.002500,
0.003700, 0.147900, -0.127500,
0.036200, 0.179100, -0.149100,
0.223700, 0.070900, -0.024100,
0.191200, 0.039600, -0.002500,
-0.003700, -0.147900, 0.127500,
-0.101100, -0.241600,0.192400,
-0.127500, 0.002500, 0.043300,
0.002500, 0.127500, -0.043300,
0.115000, 0.062500, 0.031700,

-0.015000, -0.062500,0.118300,

/* Output vector 11: */
0.083300, 0.083300, 0.083300,

/* Input vector 12 : */
-0.282400, -0.165800, 0.029900,
0.042400, 0.146700, -0.186600,
0.229900, 0.038400, -0.061600,
-0.094900, -0.274100, 0.154900,
-0.288600, -0.133400, 0.067400,
-0.191200, -0.039600, 0.002500,
0.003700, 0.147900, -0.127500,
0.036200, 0.179100, -0.149100,
0.223700, 0.070900, -0.024100,
0.191200, 0.039600, -0.002500,
-0.003700, -0.147900, 0.127500,
-0.101100, -0.241600, 0.192400,
-0.127500, 0.002500, 0.043300,
0.002500, 0.127500, -0.043300,
0.115000, 0.062500, 0.031700,

-0.015000, -0.062500,0.118300,

/* Output vector 12: */
0.083300, 0.083300, 0.083300,

END

53

RESULT1.TXT

TRAIN 3, 16, 3, 1

/* Input vector 1: */
-0.125000, -0.300000, -0.050000,
-0.125000, 0.200000, -0.050000,
0.125000, 0.200000, -0.050000,
0.125000, -0.300000, -0.050000,
-0.125000, -0.300000, 0.000000,
-0.125000, -0.150000, 0.000000,
-0.125000, 0.150000, 0.000000,
-0.125000, 0.200000, 0.000000,
0.125000, 0.200000, 0.000000,
0.125000, 0.150000, 0.000000,
0.125000, -0.150000, 0.000000,
0.125000, -0.300000, 0.000000,
-0.075000, -0.100000, 0.050000,
-0.075000, 0.100000, 0.050000,
0.075000, 0.100000, 0.050000,
0.075000, -0.100000, 0.050000,

/* Output vector 1: */
0.000900, 0.000525, 0.000679,

/* Input vector 2: */
-0.245300, -0.209500, -0.063500,
0.002300, 0.224100, -0.088800,
0.214400, 0.106500, -0.028400,

-0.033200, -0.327100, -0.003000,
-0.254600, -0.201400, -0.015000,
-0.180400, -0.071300, -0.022600,
-0.031800, 0.188900, -0.037900,
-0.007000, 0.232300, -0.040400,
0.205100, 0.114700, 0.020100,
0.180400, 0.071300, 0.022600,
0.031800, -0.188900, 0.037900,
-0.042500, -0.319000, 0.045500,
-0.122500, -0.043300, 0.035400,
-0.023400, 0.130200, 0.025200,
0.103900, 0.059600, 0.061500,
0.004800, -0.113900,0.071700,

/* Output vector 2: */
0.007657, 0.039005, 0.081384,

54

/* Input vector 3 : */
-0.158600, -0.286700, -0.028200,
-0.090700, 0.205000, -0.088700,
0.155500, 0.174800, -0.058200,
0.087700, -0.316900, 0.002300,
-0.163900, -0.279900, 0.021100,
-0.143500, -0.132400, 0.002900,
-0.102800, 0.162600, -0.033400,
-0.096000, 0.211800, -0.039400,
0.150300, 0.181500, -0.009000,
0.143500, 0.132400, -0.002900,
0.102800, -0.162600, 0.033400,
0.082400, -0.310100, 0.051500,
-0.092700, -0.082500, 0.052200,
-0.065600, 0.114200, 0.028000,
0.082200, 0.096000, 0.046300,
0.055100, -0.100600, 0.070500,

/* Output vector 3 : */
0.019228, 0.019377, 0.019226,

/* Input vector 4: */
-0.185100, -0.267600, 0.047400,
-0.077700, 0.187100, -0.130800,
0.166400, 0.139600, -0.104600,
0.058900, -0.315000, 0.073600,
-0.186500, -0.249100, 0.093900,
-0.154300, -0.112700, 0.040400,
-0.089800, 0.160100, -0.066500,
-0.079000, 0.205600, -0.084300,
0.165000, 0.158100, -0.058200,
0.154300, 0.112700, -0.040400,
0.089800, -0.160100, 0.066500,
0.057600, -0.296500, 0.120000,
-0.096100, -0.058200, 0.074200,
-0.053100, 0.123700, 0.002900,
0.093300, 0.095200, 0.018600,
0.050400, -0.086600, 0.089900,

/* Output vector 4: */
0.058492, 0.016460, 0.030509,

55

/* Input vector 5 : */
-0.131400, -0.300500, -0.024000,
-0.070300, 0.181500, -0.142300,
0.158000, 0.177500, -0.040600,
0.097000, -0.304500, 0.077700,
-0.150800, -0.287200, 0.020100,
-0.132500, -0.142600, -0.015400,
-0.095900, 0.146600, -0.086300,
-0.089800, 0.194800, -0.098100,
0.138600, 0.190800, 0.003600,
0.132500, 0.142600, 0.015400,
0.095900, -0.146600, 0.086300,
0.077500, -0.291200, 0.121800,
-0.100100, -0.081900, 0.037300,
-0.075700, 0.110900, -0.010000,
0.061300, 0.108500, 0.051000,
0.036900, -0.084300, 0.098300,

/* Output vector 5 : */
0.041697, 0.066895, 0.002844,

/* Input vector 6: */
0.000000, 0.000000, 0.000000,
0.002300, 0.224100, -0.088800,
0.214400, 0.106500, -0.028400,

-0.033200, -0.327100, -0.003000,
-0.254600, -0.201400, -0.015000,
-0.180400, -0.071300, -0.022600,
-0.031800, 0.188900, -0.037900,
• -0.007000, 0.232300, -0.040400,

0.205100, 0.114700, 0.020100,
0.180400, 0.071300, 0.022600,
0.031800, -0.188900, 0.037900,
-0.042500, -0.319000, 0.045500,
-0.122500, -0.043300, 0.035400,
-0.023400, 0.130200, 0.025200,
0.103900, 0.059600, 0.061500,
0.004800, -0.113900,0.071700,

/* Output vector 6: */
0.004870, 0.011496, 0.092333,

56

/* Input vector 7: */
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.155500, 0.174800, -0.058200,
0.087700, -0.316900, 0.002300,
-0.163900, -0.279900, 0.021100,
-0.143500, -0.132400, 0.002900,
-0.102800, 0.162600, -0.033400,
-0.096000, 0.211800, -0.039400,
0.150300, 0.181500, -0.009000,
0.143500, 0.132400, -0.002900,
0.102800, -0.162600, 0.033400,
0.082400, -0.310100, 0.051500,
-0.092700, -0.082500, 0.052200,
-0.065600, 0.114200, 0.028000,
0.082200, 0.096000, 0.046300,
0.055100, -0.100600, 0.070500,

/* Output vector 7 : */
0.008524, -0.008010, 0.029528,

/* Input vector 8 : */
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.058900, -0.315000, 0.073600,
-0.186500, -0.249100, 0.093900,
-0.154300, -0.112700, 0.040400,
-0.089800, 0.160100, -0.066500,
-0.079000, 0.205600, -0.084300,
0.165000, 0.158100, -0.058200,
0.154300, 0.112700, -0.040400,
0.089800, -0.160100, 0.066500,
0.057600, -0.296500, 0.120000,
-0.096100, -0.058200, 0.074200,
-0.053100, 0.123700, 0.002900,
0.093300, 0.095200, 0.018600,
0.050400, -0.086600, 0.089900,

/* Output vector 8 : */
0.030911, 0.011737, 0.072127,

57

/* Input vector 9: */
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,

-0.150800, -0.287200, 0.020100,
-0.132500, -0.142600, -0.015400,
-0.095900, 0.146600, -0.086300,
-0.089800, 0.194800, -0.098100,
0.138600, 0.190800, 0.003600,
0.132500, 0.142600, 0.015400,
0.095900, -0.146600, 0.086300,
0.077500, -0.291200, 0.121800,
-0.100100, -0.081900,0.037300,
-0.075700, 0.110900, -0.010000,
0.061300, 0.108500, 0.051000,
0.036900, -0.084300, 0.098300,

/* Output vector 9: */
0.035209, 0.037634, 0.002483,

/* Input vector 10: */
0.201400, -0.217000, -0.143000,
0.081000, 0.207600, 0.091900,
-0.128300, 0.101000, 0.177400,

-0.007900, -0.323700, -0.057500,
0.176900, -0.201500, -0.183700,
0.140800, -0.074100, -0.113200,
0.068500, 0.180700, 0.027700,
0.056500, 0.223200, 0.051200,
-0.152800, 0.116500, 0.136700,
-0.140800,0.074100,0.113200,

-0.068500, -0.180700, -0.027700,
-0.032400, -0.308100, -0.098200,
0.062300, -0.037400, -0.113300,
0.014200, 0.132500, -0.019400,
-0.111400,0.068500,0.031900,

-0.063300, -0.101400, -0.062000,

/* Output vector 10: */
-0.063281, 0.124374, 0.151512,

58

/* Input vector 11: */
-0.282400, -0.165800, 0.029900,
0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000,

-0.094900, -0.274100, 0.154900,
-0.288600, -0.133400, 0.067400,
-0.191200, -0.039600, 0.002500,
0.003700, 0.147900, -0.127500,
0.036200, 0.179100, -0.149100,
0.223700, 0.070900, -0.024100,
0.191200, 0.039600, -0.002500,
-0.003700, -0.147900, 0.127500,
-0.101100, -0.241600,0.192400,
-0.127500, 0.002500, 0.043300,
0.002500, 0.127500, -0.043300,
0.115000, 0.062500, 0.031700,

-0.015000, -0.062500, 0.118300,

/* Output vector 11: */
0.078250, 0.082452, 0.093415,

/* Input vector 12: */
-0.282400, -0.165800, 0.029900,
0.042400, 0.146700, -0.186600,
0.229900, 0.038400, -0.061600,
-0.094900, -0.274100, 0.154900,
-0.288600, -0.133400, 0.067400,
-0.191200, -0.039600, 0.002500,
0.003700, 0.147900, -0.127500,
0.036200, 0.179100, -0.149100,
0.223700, 0.070900, -0.024100,
0.191200, 0.039600, -0.002500,
-0.003700, -0.147900, 0.127500,
-0.101100, -0.241600,0.192400,
-0.127500, 0.002500, 0.043300,
0.002500, 0.127500, -0.043300,
0.115000, 0.062500, 0.031700,

-0.015000, -0.062500,0.118300,

/* Output vector 12: */
0.082166, 0.082764, 0.082546,

END

59

HIDEDATA.TXT

TRAIN 3, 16, 3, 1

/* Input vector 1: */
-0.125000, -0.300000, -0.050000,
-0.125000, 0.200000, -0.050000,
0.000000, 0.000000, 0.000000,

0.125000, -0.300000, -0.050000,
-0.125000, -0.300000, 0.000000,
-0.125000, -0.150000, 0.000000,
-0.125000, 0.150000, 0.000000,
-0.125000, 0.200000, 0.000000,
0.125000, 0.200000, 0.000000,
0.125000, 0.150000, 0.000000,
0.125000, -0.150000, 0.000000,
0.125000, -0.300000, 0.000000,
-0.075000, -0.100000, 0.050000,
-0.075000, 0.100000, 0.050000,
0.075000, 0.100000, 0.050000,
0.075000, -0.100000, 0.050000,

/* Output vector 1: */
-0.500000, -0.500000, -0.500000,

/* Input vector 2: */
-0.258300, -0.197300, -0.050000,
-0.008300, 0.235700, -0.050000,
0.000000, 0.000000, 0.000000,

-0.041700, -0.322300, -0.050000,
-0.258300, -0.197300, 0.000000,
-0.183300, -0.067400, 0.000000,
-0.033300,0.192400, 0.000000,
-0.008300, 0.235700, 0.000000,
0.208300, 0.110700, 0.000000,
0.183300, 0.067400, 0.000000,
0.033300, -0.192400, 0.000000,
-0.041700, -0.322300, 0.000000,
-0.115000, -0.049100, 0.050000,
-0.015000, 0.124100, 0.050000,
0.115000, 0.049100, 0.050000,
0.015000, -0.124100, 0.050000,

/* Output vector 2: */
-0.500000, -0.500000, -0.416700,

60

/* Input vector 3 : */
-0.317100, 0.071000, -0.050000,
0.175300, 0.157800, -0.050000,
0.218700, -0.088400, -0.050000,
0.000000, 0.000000, 0.000000,
-0.317100, 0.071000, 0.000000,
-0.169400, 0.097100, 0.000000,
0.126000, 0.149100, 0.000000,
0.175300, 0.157800, 0.000000,
0.218700, -0.088400, 0.000000,
0.169400, -0.097100, 0.000000,
-0.126000, -0.149100, 0.000000,
-0.273700, -0.175200, 0.000000,
-0.111500,0.056500, 0.050000,
0.085500, 0.091200, 0.050000,
0.111500, -0.056500, 0.050000,
-0.085500, -0.091200, 0.050000,

/* Output vector 3 : */
-0.500000, -0.500000, -0.277800,

/* Input vector 4: */
-0.197300, 0.258300, -0.050000,
0.235700, 0.008300, -0.050000,
0.110700, -0.208300, -0.050000,
0.000000, 0.000000, 0.000000,
-0.197300, 0.258300, 0.000000,
-0.067400, 0.183300, 0.000000,
0.192400, 0.033300, 0.000000,
0.235700, 0.008300, 0.000000,
0.110700, -0.208300, 0.000000,
0.067400, -0.183300, 0.000000,
-0.192400, -0.033300, 0.000000,
-0.322300, 0.041700, 0.000000,
-0.049100, 0.115000, 0.050000,
0.124100, 0.015000, 0.050000,
0.049100, -0.115000, 0.050000,
-0.124100, -0.015000, 0.050000,

/* Output vector 4 : */
-0.500000, -0.500000, -0.166700,

61

/* Input vector 5 : */
0.000000, 0.000000, 0.000000,

0.185900, -0.145200, -0.050000,
-0.049100, -0.230700, -0.050000,
-0.220100, 0.239200, -0.050000,
0.014900, 0.324700, 0.000000,
0.066200, 0.183700, 0.000000,
0.168800, -0.098200, 0.000000,
0.185900, -0.145200, 0.000000,
-0.049100, -0.230700, 0.000000,
-0.066200, -0.183700, 0.000000,
-0.168800, 0.098200, 0.000000,
-0.220100, 0.239200, 0.000000,
0.036300, 0.119600, 0.050000,
0.104700, -0.068300, 0.050000,
-0.036300, -0.119600, 0.050000,
-0.104700, 0.068300, 0.050000,

/* Output vector 5 : */
-0.500000, -0.500000, -0.055600,

/* Input vector 6 : */
0.000000, 0.000000, 0.000000,

0.049100, -0.230700, -0.050000,
-0.185900, -0.145200, -0.050000,
-0.014900, 0.324700, -0.050000,
0.220100, 0.239200, 0.000000,
0.168800, 0.098200, 0.000000,
0.066200, -0.183700, 0.000000,
0.049100, -0.230700, 0.000000,
-0.185900, -0.145200, 0.000000,
-0.168800, -0.098200, 0.000000,
-0.066200, 0.183700, 0.000000,
-0.014900, 0.324700, 0.000000,
0.104700, 0.068300, 0.050000,
0.036300, -0.119600, 0.050000,
-0.104700, -0.068300, 0.050000,
-0.036300, 0.119600, 0.050000,

/* Output vector 6: */
-0.500000, -0.500000, 0.055600,

62

/* Input vector 7 : *1
0.322300, 0.041700, -0.050000,
0.000000, 0.000000, 0.000000,

-0.235700, 0.008300, -0.050000,
0.197300, 0.258300, -0.050000,
0.322300, 0.041700, 0.000000,
0.192400, -0.033300, 0.000000,
-0.067400, -0.183300, 0.000000,
-0.110700, -0.208300, 0.000000,
-0.235700, 0.008300, 0.000000,
-0.192400, 0.033300, 0.000000,
0.067400, 0.183300, 0.000000,
0.197300, 0.258300, 0.000000,
0.124100, -0.015000, 0.050000,
-0.049100, -0.115000, 0.050000,
-0.124100, 0.015000, 0.050000,
0.049100, 0.115000, 0.050000,

/* Output vector 7 : */
-0.500000, -0.500000, 0.166700,

/* Input vector 8 : */
0.273700, -0.175200, -0.050000,
0.000000, 0.000000, 0.000000,

-0.175300, 0.157800, -0.050000,
0.317100, 0.071000, -0.050000,
0.273700, -0.175200, 0.000000,
0.126000, -0.149100, 0.000000,
-0.169400, -0.097100, 0.000000,
-0.218700, -0.088400, 0.000000,
-0.175300, 0.157800, 0.000000,
-0.126000, 0.149100, 0.000000,
0.169400, 0.097100, 0.000000,
0.317100, 0.071000, 0.000000,
0.085500, -0.091200, 0.050000,
-0.111500, -0.056500, 0.050000,
-0.085500, 0.091200, 0.050000,
0.111500, 0.056500, 0.050000,

/* Output vector 8 : */
-0.500000, -0.500000, 0.277800,

63

/* Input vector 9: */
0.097100, -0.310200, -0.050000,
-0.224300, 0.072900, -0.050000,
0.000000, 0.000000, 0.000000,

0.288600, -0.149500, -0.050000,
0.097100, -0.310200, 0.000000,
0.000700, -0.195300, 0.000000,
-0.192200, 0.034600, 0.000000,
-0.224300, 0.072900, 0.000000,
-0.032800, 0.233600, 0.000000,
-0.000700, 0.195300, 0.000000,
0.192200, -0.034600, 0.000000,
0.288600, -0.149500, 0.000000,
0.006800, -0.124800, 0.050000,
-0.121700,0.028400, 0.050000,
-0.006800, 0.124800, 0.050000,
0.121700, -0.028400, 0.050000,

/* Output vector 9: */
-0.500000, -0.500000, 0.388900,

END

64

RESULT2.TXT

TRAIN 3, 16, 3, 1

/* Input vector 1: */
-0.125000, -0.300000, -0.050000,
-0.125000, 0.200000, -0.050000,
0.000000, 0.000000, 0.000000,

0.125000, -0.300000, -0.050000,
-0.125000, -0.300000, 0.000000,
-0.125000, -0.150000, 0.000000,
-0.125000, 0.150000, 0.000000,
-0.125000, 0.200000, 0.000000,
0.125000, 0.200000, 0.000000,
0.125000, 0.150000, 0.000000,
0.125000, -0.150000, 0.000000,
0.125000, -0.300000, 0.000000,
-0.075000, -0.100000, 0.050000,
-0.075000, 0.100000, 0.050000,
0.075000, 0.100000, 0.050000,
0.075000, -0.100000, 0.050000,

/* Output vector 1: */
-0.499785, -0.499774, -0.497748,

/* Input vector 2 : */
-0.258300, -0.197300, -0.050000,
-0.008300, 0.235700, -0.050000,
0.000000, 0.000000, 0.000000,

-0.041700, -0.322300, -0.050000,
-0.258300, -0.197300, 0.000000,
-0.183300, -0.067400, 0.000000,
-0.033300, 0.192400, 0.000000,
-0.008300, 0.235700, 0.000000,
0.208300, 0.110700, 0.000000,
0.183300, 0.067400, 0.000000,
0.033300, -0.192400, 0.000000,
-0.041700, -0.322300, 0.000000,
-0.115000, -0.049100, 0.050000,
-0.015000, 0.124100, 0.050000,
0.115000, 0.049100, 0.050000,
0.015000, -0.124100, 0.050000,

/* Output vector 2 : */
-0.499730, -0.499743, -0.416651,

65

/* Input vector 3 : */
-0.317100, 0.071000, -0.050000,
0.175300, 0.157800, -0.050000,
0.218700, -0.088400, -0.050000,
0.000000, 0.000000, 0.000000,
-0.317100, 0.071000, 0.000000,
-0.169400, 0.097100, 0.000000,
0.126000, 0.149100, 0.000000,
0.175300, 0.157800, 0.000000,
0.218700, -0.088400, 0.000000,
0.169400, -0.097100, 0.000000,
-0.126000, -0.149100, 0.000000,
-0.273700, -0.175200, 0.000000,
-0.111500, 0.056500, 0.050000,
0.085500, 0.091200, 0.050000,
0.111500, -0.056500, 0.050000,
-0.085500, -0.091200, 0.050000,

/* Output vector 3 : */
-0.499968, -0.499974, -0.277975,

/* Input vector 4: */
-0.197300, 0.258300, -0.050000,
0.235700, 0.008300, -0.050000,
0.110700, -0.208300, -0.050000,
0.000000, 0.000000, 0.000000,
-0.197300, 0.258300, 0.000000,
-0.067400, 0.183300, 0.000000,
0.192400, 0.033300, 0.000000,
0.235700, 0.008300, 0.000000,
0.110700, -0.208300, 0.000000,
0.067400, -0.183300, 0.000000,
-0.192400, -0.033300, 0.000000,
-0.322300, 0.041700, 0.000000,
-0.049100, 0.115000, 0.050000,
0.124100, 0.015000, 0.050000,
0.049100, -0.115000, 0.050000,
-0.124100, -0.015000, 0.050000,

/* Output vector 4: */
-0.499973, -0.499976, -0.166540,

66

/* Input vector 5: */
0.000000, 0.000000, 0.000000,

0.185900, -0.145200, -0.050000,
-0.049100, -0.230700, -0.050000,
-0.220100, 0.239200, -0.050000,
0.014900, 0.324700, 0.000000,
0.066200, 0.183700, 0.000000,
0.168800, -0.098200, 0.000000,
0.185900, -0.145200, 0.000000,
-0.049100, -0.230700, 0.000000,
-0.066200, -0.183700, 0 .000000,
-0.168800, 0.098200, 0.000000,
-0.220100, 0.239200, 0.000000,
0.036300, 0.119600, 0.050000,
0.104700, -0.068300, 0.050000,
-0.036300, -0.119600, 0.050000,
-0.104700, 0.068300, 0.050000,

/* Output vector 5 : */
-0.499973, -0.499976, -0.055445,

/* Input vector 6: */
0.000000, 0.000000, 0.000000,

0.049100, -0.230700, -0.050000,
-0.185900, -0.145200, -0.050000,
-0.014900, 0.324700, -0.050000,
0.220100, 0.239200, 0.000000,
0.168800, 0.098200, 0.000000,
0.066200, -0.183700, 0.000000,
0.049100, -0.230700, 0.000000,
-0.185900, -0.145200, 0.000000,
-0.168800, -0.098200, 0.000000,
-0.066200, 0.183700, 0.000000,
-0.014900, 0.324700, 0.000000,
0.104700, 0.068300, 0.050000,
0.036300, -0.119600, 0.050000,
-0.104700, -0.068300, 0.050000,
-0.036300, 0.119600, 0.050000,

/* Output vector 6 : */
-0.499972, -0.499975, 0.055471,

67

/* Input vector 7: */
0.322300, 0.041700, -0.050000,
0.000000, 0.000000, 0.000000,

-0.235700, 0.008300, -0.050000,
0.197300, 0.258300, -0.050000,
0.322300, 0.041700, 0.000000,
0.192400, -0.033300, 0.000000,
-0.067400, -0.183300, 0.000000,
-0.110700, -0.208300, 0.000000,
-0.235700, 0.008300, 0.000000,
-0.192400, 0.033300, 0.000000,
0.067400, 0.183300, 0.000000,
0.197300, 0.258300, 0.000000,
0.124100, -0.015000, 0.050000,
-0.049100, -0.115000, 0.050000,
-0.124100, 0.015000, 0.050000,
0.049100, 0.115000, 0.050000,

/* Output vector 7 : */
-0.499971, -0.499976, 0.166763,

/* Input vector 8 : */
0.273700, -0.175200, -0.050000,
0.000000, 0.000000, 0.000000,

-0.175300, 0.157800, -0.050000,
0.317100, 0.071000, -0.050000,
0.273700, -0.175200, 0.000000,
0.126000, -0.149100, 0.000000,
-0.169400, -0.097100, 0.000000,
-0.218700, -0.088400, 0.000000,
-0.175300, 0.157800, 0.000000,
-0.126000, 0.149100, 0.000000,
0.169400, 0.097100, 0.000000,
0.317100, 0.071000, 0.000000,
0.085500, -0.091200, 0.050000,
-0.111500, -0.056500, 0.050000,
-0.085500, 0.091200, 0.050000,
0.111500, 0.056500, 0.050000,

/* Output vector 8 : */
-0.499967, -0.499974, 0.278011,

68

/* Input vector 9: */
0.097100, -0.310200, -0.050000,
-0.224300, 0.072900, -0.050000,
0.000000, 0.000000, 0.000000,

0.288600, -0.149500, -0.050000,
0.097100, -0.310200, 0.000000,
0.000700, -0.195300, 0.000000,
-0.192200, 0.034600, 0.000000,
-0.224300, 0.072900, 0.000000,
-0.032800, 0.233600, 0.000000,
-0.000700, 0.195300, 0.000000,
0.192200, -0.034600, 0.000000,
0.288600, -0.149500, 0.000000,
0.006800, -0.124800, 0.050000,
-0.121700, 0.028400, 0.050000,
-0.006800, 0.124800, 0.050000,
0.121700, -0.028400, 0.050000,

/* Output vector 9: */
-0.499939, -0.499954, 0.390846,

END

69

Appendix B

PROGRAM IMAGE_VIEWING_3D

USES crt, GRAPH;

CONST PI = 3.14159265; XSCALE = 540; YSCALE = 600; ZSCALE = 460;
ALP = 5*PI/6; NUMBER_OF_POINTS = 16;

TYPE Pointtype = array [1..number_of points,1..4] of real;
Transform = array [1..4,1..4] of real;
Coordinate = array [1..number_of points] of REAL;

VAR
GD,GM,XCENTR,YCENTR,i 	: integer;
XPOINTN,YPOINTN,ZPOINTN 	: Coordinate;
XGRAPHIC,YGRAPHIC 	: Coordinate;
POINT,DUMMYPOINT 	: Pointtype;
TRANS,TRANROTXROTZ,DUMMY 	: Transform;

THETA,alpha,zeta 	: real;
degreX,DEGREY,DEGREZ : real;
PERSPECTIVE,CONTINUE 	: string[1];
st 	 : string[5];

(* 	 PROCEDURE OPEN GRAPHIC MODE *)

PROCEDURE OPEN_GRAPHIC_MODE;

BEGIN
gd := detect;
Initgraph (gd,gm,");
if graphresult <> grok then Halt(1);

END;

(* 	 PROCEDURE COORDINATE IMAGE
	 *)

PROCEDURE COORDINATE_IMAGE(xcentr,ycentrinteger);

BEGIN
setcolor(green);
line(xcentr,ycentr,xcentr,(ycentr-25)); 	(* 	 Y axis *)

70

line(xcentr,ycentr,(xcentr+30),ycentr); 	(* 	X axiz *)
line(xcentr,ycentr,(xcentr+TRUNC(20*COS(ALP))),

(ycentr+trunc(20*sin(a1p)))); (* 	Z axiz *)
setcolor(green);
line(xcentr,(ycentr-25),xcentr,(ycentr-70)); (* 	Y axis *)
outtextxy((xcentr-5),(ycentr-80),'Y');
line((xcentx+30),ycentr,(xcentr+150),ycentr); (* 	X axiz *)
outtextxy((xcentr+155),ycentr,'X');
line((xcentr+TRUNC(20*COS(ALP))),(ycentr+trunc(20*sin(alp))),

(xcentr+TRUNC(80*COS(ALP))),(ycentr+trunc(80*sin(alp))));
outtextxy((xcentr+TRUNC(80*COS(ALP))-5),(ycentr+5+trunc(80*sin(alp))),'Z');

end;

(* 	 PROCEDURE INITIAL IMAGE 	 *)

PROCEDURE INITIALIMAGE;
VAR 	ij 	: integer;
BEGIN
(* point[a,b] --> a represents point number, b represents x,y,z *)

point[1,11 := -0.125; point[1,2] :=-0.3; point[1,3] := -0.05;
point[2,1] := -0.125; point[2,2] := 0.2; point[2,3] := -0.05;
point[3,1] := 0.125 ; point[3,2] := 0.2; point[3,3] := -0.05;
point[4,1] := 0.125 ; point[4,2] :=-0.3; point[4,3] := -0.05;
point[5,1] :=-0.125; point[5,2] :=-0.3; point[5,3] := 0.0;
point[6,1] :=-0.125; point[6,2] :=-0.15; point[6,3] := 0.0;
point[7,1] :=-0.125; point[7,2] := 0.15; point[7,3] := 0.0;
point[8,1] :=-0.125; point[8,2] := 0.2; point[8,3] := 0.0;
point[9,1] := 0.125; point[9,2] := 0.2; point[9,3] := 0.0;
point[10,1] :=0.125; point[10,2] := 0.15; point[10,3] := 0.0;
point[11,11 :=0.125; point[11,2] :=-0.15; point[11,3] := 0.0;
point[12,1] :=0.125; point[12,2] :=-0.3; point[12,3] := 0.0;
point[13,1] :=-0.075; point[13,2] :=-0.1; point[13,3] := 0.05;
point[14,1] :=-0.075; point[14,2] := 0.1; point[14,3] := 0.05;
point[15,1] :=0.075; point[15,2] := 0.1; point[15,3] := 0.05;
point[16,1] :=0.075; point[16,2] :=-0.1; point[16,3] := 0.05;

for i := 1 to number_of points do point[i,4] := 1;
for i := 1 to 4 do begin for j := 1 to 4 do trans[ij] := 0; end;
for i := 1 to 4 do trans[i,i] := 1;

END;

(* 	 PROCEDURE CALCULATION OF NEWCOORDINATE

71

PROCEDURE CALCULATION_OF_NEWCOORDINATE;
VAR 	i,j,k 	: integer;

sum 	: real;
BEGIN

for i := 1 to number_of points do
for j:= 1 to 4 do

begin
sum := 0;
for k := 1 to 4 do sum := sum + point[i,k]*trans[k,j];
dummypoint[i,j] := sum ;

end;
for i:=1 to number_of points do

for j:= 1 to 4 do point[i,j]:=dummypoint[i,j];
END;

(* 	 PROCEDURE CALCULATION OF TRASFORMATION

PROCEDURE CALCULATION_OF_TRANSFORMATION;
VAR 	ij,k 	: integer;

sum 	: real;
BEGIN

for i := 1 to 4 do
for j:= 1 to 4 do

begin
sum := 0;
for k := 1 to 4 do sum := sum + tranrotxrotz[i,k]*trans[k,j];
dummy[ij] := sum ;

end;
for i:=1 to 4 do for j:= 1 to 4 do trans[i,j]:=durnmy[i,j];

END;

(* 	PROCEDURE CALCULATION FOR DRAWING

PROCEDURE CALCULATION_DRAWING(xcenco,ycenco:integer);

VAR 	i : integer;

BEGIN
for i := 1 to number_of points do

begin
xgraphic[i] := xcenco+point[i,3]*zscale*cos(alp)+point[i,1]*xscale;
ygraphic[i] := ycenco+point[i,3]*zscale*sin(alp)-point[i,2]*yscale;

end;
END;

72

(* 	 PROCEDURE INPUT VIEWER
	 *)

PROCEDURE INPUT_VIEWER;

VAR 	i 	: integer;
check 	: string[1];

BEGIN
[outtextxy(50,350,'Out of this program is 90 degrees rotation');
outtextxy(50,360;allowed rage rotation from 0 to 90 degrees'); }
outtextxy(250,450,'FIGURE 15. DATA SET 7');
check :=
repeat

readln (degreX); str(trunc(degreX),st);
if (degreX > 360) then check:='F';
if degreX = 360 then continue:='F';
DEGREX := degreX*pi/180;

readln(degreY);str(trunc(degreY),st);
if (degreY > 360) then check:='F';
if degreY = 360 then continue:='F';
DEGREY := degreY*pi/180;

readln(degreZ);str(trunc(degreZ),st);
if (degreZ > 360) then check:='F';
if degreZ = 360 then continue:='F';
DEGREZ := degreZ*pi/180;

until check='T';
[setcolor(yellow);outtextxy((150+50),370,st); }

END;

(* 	 PROCEDURE ROTATION ABOUT X AXIS

PROCEDURE ROTATION_X_AXIS(DEGREX : real);
VAR 	i,j 	: integer;
BEGIN

for i := 1 to 4 do begin for j := 1 to 4 do tranrotxrotz[i,j] := 0; end;
tranrotxrotz[1,1] : =1;
tranrotxrotz[2,2]:= cos(DEGREX);tranrotxrotz[3,2]:= sin(DEGREX);
tranrotxrotz[2,3]:=-sin(DEGREX);tranrotxrotz[3,3]:= cos(DEGREX);
tranrotxrotz[4,4]:= 1;

END;

73

(* 	 PROCEDURE ROTATION ABOUT Y AXIS
	 *)

PROCEDURE ROTATION_Y_AXIS(DEGREY : real);
VAR 	i,j 	: integer;
BEGIN

for i := 1 to 4 do begin for j := 1 to 4 do tranrotxrotz[i,j] := 0; end;
tranrotxrotz[1,1]:=cos(DEGREY) ;tranrotxrotz[1,3] := sin(DEGREY);
tranrotxrotz[3,1]:=-sin(DEGREY);tranrotxrotz[3,3] := cos(DEGREY);
tranrotxrotz[2,2] := 1;tranrotxrotz[4,4]:= 1;

END;

(* 	 PROCEDURE ROTATION ABOUT Z AXIS

PROCEDURE ROTATION_Z_AXIS(DEGREZ : real);
VAR 	i,j 	: integer;
BEGIN

for i := 1 to 4 do begin for j := 1 to 4 do tranrotxrotz[i,j] := 0; end;
tranrotxrotz[1,1]:=cos(DEGREZ) ;tranrotxrotz[1,2] := -sin(DEGREZ);
tranrotxrotz[2,1]:=sin(DEGREZ);tranrotxrotz[2,2] := cos(DEGREZ);
tranrotxrotz[3,3] := 1;tranrotxrotz[4,4]:= 1;

END;

(* 	 PROCEDURE DRAWING IMAGE

PROCEDURE DRAWING_IMAGE;
VAR I 	: INTEGER;
BEGIN
setcolor(GREEN); 	(* draw bottom plane *)

moveto(trunc(xgraphic[4]),trunc(ygraphic[4]));
for i := 1 TO 4 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));

setcolor(green); (* draw line *)
moveto(trunc(xgraphic[12]),trunc(ygraphic[12]));

for i := 5 TO 12 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));

setcolor(green); (* draw line *)
moveto(trunc(xgraphic[16]),trunc(ygraphic[16]));

for i := 13 TO 16 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));

setcolor(GREEN); (* draw line *)
moveto(trunc(xgraphic[1]),trunc(ygraphic[1]));
lineto(trunc(xgraphic[5]),trunc(ygraphic [5]));

moveto(trunc(xgraphic[2]),trunc(ygraphic[2]));

*)

*)

74

lineto(trunc(xgraphic[8]),trunc(ygraphic[8]));

moveto(trunc(xgraphic[3]),trunc(ygraphic[3]));
lineto(trunc(xgraphic[9]),trunc(ygraphic[9]));

moveto(trunc(xgraphic[4]),trunc(ygraphic[4]));
lineto(trunc(xgraphic[12]),trunc(ygraphic[12]));

moveto(trunc(xgraphic[6]),trunc(ygraphic[6]));
lineto(trunc(xgraphic[13]),trunc(ygraphic[13]));

moveto(trunc(xgraphic[7]),trunc(ygraphic[7]));
lineto(trunc(xgraphic[14]),trunc(ygraphic[14]));

moveto(trunc(xgraphic[10]),trunc(ygraphic[10]));
lineto(trunc(xgraphic[15]),trunc(ygraphic[15]));

moveto(trunc(xgraphic[11]),trunc(ygraphic[11]));
lineto(trunc(xgraphic[16]),trunc(ygraphic[16]));

moveto(trunc(xgraphic[6]),trunc(ygraphic[6]));
lineto(trunc(xgraphic[11]),trunc(ygraphic[11]));

moveto(trunc(xgraphic[7]),trunc(ygraphic[7]));
lineto(trunc(xgraphic[10]),trunc(ygraphic[10]));

END;

(* 	 PROCEDURE GETTING POINT3D

PROCEDURE GE1TING_POINT3D;
VAR i,J 	: integer;

openfile : text;
BEGIN

assign(openfile,'c:\thesis\DATASET2.TXT);
Rewrite(openfile);

for i := 1 TO 16 do
begin

FOR J := 1 TO 3 DO write(openfile,point[ij]:8:4);
writeln(openfile);

end;
writeln(openfile);writeln(openfile);

75

writeln (openfile,degrex/(2*pi): 8 :4,degrey/(2*pi):8 : 4,degrez/(2*pi): 8 :4) ;

close(openfile);

END;

PROCEDURE FRAME;

BEGIN

(RECTANGLE(1,17,640,480);)
FLOODFILL(300,20,black);
setcolor(GREEN);

MOVET0(50,18);LINET0(638,18);LINET0(638,478);
LINET0(50,478);LINET0(50,18);

END;

(************* MAIN PROGRAM***********)

BEGIN
continue:='T';
OPEN_GRAPHIC_MODE;
repeat

setcolor(black);
frame;

initial_image;coordinate_image(325,200);
c alc ulation_drawing (325,200) ; setcolor(green);
{ DRAWING_IMAGE;coordinate_image(325,200);)

INPUT_VIEWER;

if continue=T then
begin

ROTATION_Z_AXIS(degreZ);

(* object *)

76

CALCULATION_OF_TRANSFORMATION;
ROTATION_Y AXES(degreY);
CALCULATION_OF_TRANSFORMATION;
ROTATION_X AXES(degreX);
CALCULATION_OF_TRANSFORMATION;
CALCULATION_OF_NEWCOORDINATE;
GETTING_POINT3D;
coordinate_image(325,200);
CALCULATION_DRAWING(325,200);

DRAWING_IMAGE;

READLN
end

until continue='F';
CLOSEGRAPH;

END.

77

