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Abstract 

This thesis is about the application of Neural Networks in the sensing of an 

object position relative to a reference point. An object is rotated a certain 

angle in space and a Neural Network was then used to estimate its 

orientation. Previous methods had always been to transform 3-dimensional 

data into 2-dimensional data before presenting it to the network. In this 

thesis 3-dimensional data is used as the input to the Neural Network. 

Training data was obtained via two methods, the first one was through a 

Pascal program and the other through a commercial CAD software. The 

input to the Backpropagation Network are coordinates of the object 

vertices and the target output are the rotation parameters for each 

particular position. 
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Chapter 1 

INTRODUCTION 

The determination of an Object Orientation or Object Pose Estimation is 
currently being investigated in the realm of computer vision systems by 
researchers such as T.Poggio and S. Edelman[1], B.Wirtz and 
C.Maggioni[2], M.W. Wright and F. Fallside[3] who have obtained results 
which show that the recovery of an object pose was possible when using 
Artificial Neural Network(ANN) such as the Radial Basis Function, Kohonen 
and Back Propagation. However in all the three research works carried out, 3- 
D data was all transformed into 2-D data before being presented to their 
respective ANNs. In the field of machine vision the determination of an 
object pose plays an important part in object recognition. 

Arguably one may question the point of having 3-D data when a computer 
vision system can only display 2-D data on an image plane. Unfortunately 

not all objects can be identified by vision only; in cases where vision is 
impossible, the sense of touch or Tactile Sensing is much more appropriate. 
In the field of Surveying data is collected using laser-scan technique and its 
coordinates are in 3-D data format. In Computer Aided Design and Computer 
Aided Manufacturing(CAD/CAM) the measurement of a product's 
dimensions uses the Coordinate Measuring Machine(CMM) as part of its 
Quality Control(QC). This process also generates data in 3-D data format. 



With the combination of 2-D vision and 3-D data we can perhaps make the 

process of QC more efficient in selecting or rejecting a particular product. 

If a particular computer vision system can recognise an object in 2-D vision 

as well as correlating it with 3-D data then the system will be a much robust 

one. In the field of speech recognition integration of visual and auditory 

speech signals [4] it was shown that better results were obtained when they 

were fused together compared to if they were used on their own. Perhaps this 

can give us a guideline in the fusion of 3-D data with 2-D image in order 

obtaining a much improved computer vision system. 

This thesis is about the use of an Artificial Neural Network to sense an 

object's position using 3-D input data where the output data is the angle of 

rotation about the X, Y and Z-axis through which the object had been rotated. 

The simple Backpropagation Neural Network was used in conjunction with a •  
CAD system to demonstrate the capability of the ANN to recognise and sense 

object position when presented with 3-D data. It will also attempt to show the 

ability of the Back Propagation ANN to identify the object even if there are 

certain hidden surfaces. 

This thesis will go through the basics of Neural Computing as well as some of 

the transformation technique used in the generation of 3-D modelling in 

Computer Aided Design(CAD). It will also look at problems faced by 2-D 
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vision object recognition and suggest how 3-D data can be obtained using 

some of the presently available scanning and tactile sensing techniques. 
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Chapter 2 

OBJECT RECOGNITION 

In the field of robotics object recognition is a precursor to many other 
important robotic tasks, including grasping, manipulation, assembly and 
inspection. Before attempting such complex robotic tasks, there is the need 
to be able to correctly recognise the relevant objects with respect to its 
surrounding in the first place. Object recognition also means understanding 
an object's position and orientation in space in a viewpoint-independent 

manner [5]. 

The following sections present some of the techniques used in object 
recognition, which include vision only system, range scanning and tactile 
sensing. 

2.1 2-D VISION 

Most object recognition research works have been spurred by the ease with 
which biological systems process visual inputs. Unfortunately, the task of 
understanding a scene from machine vision only has proved to be difficult. 

The analogy of an image matrix to the human retina has merely served to 
illuminate the powerful kinds of processing taking place in the visual cortex, 

processing that is poorly understood at present. The research of David Man 



and Hildreth[6] has also tried to isolate those parts of human visual 
information processing that seem to operate independently. 

Stages used in machine vision usually involve image acquisition using static 
images with the object being carefully illuminated. The process of 
thresholding is then made to manipulate the grey level, thus establishing a 
clear contrast upon the image in order to establish gradients for the object's 
contour. This process also produce a binary image. The next step is edge 
detection by convolving the image with the Laplacian of a Gaussian, also 
known as Marr-Hildreth edge detection operator[6]. This process is usually 
a computationally burdensome process. A chain coding process is then made 
in order to obtain the perimeter(p) of the object as well as determining its 
area(A). The ratio of p2/A is obtained and compared to existing database. If 
similar ratio value exist in the database then the object is identified. Other 
techniques being tried are segmentation and region analysis. 

These image-space recognition systems perform recognition tasks on image 
properties (2-D projective properties) rather than 3-D properties. These 
systems are not viewpoint-independent but seek to recognise image properties 
derived from a number of predetermined viewpoints. Recognition occurs 
when one of these characteristic views is matched with an image space model 
of the object. Oshima and Shiraj [7] used image space predictions about 
polyhedra and cylinders to perform recognition. Multiple learning views are 
computed from an object and are stored in a database for later use. Image 
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space curves and regions obtained via the methods mentioned above are then 
matched with one of these views. Fisher[8] used an approach in which certain 
weak constraints about a surface's images over different viewpoints were 
computed to aid in determining the object's position and orientation. 

Image space matching is not powerful because it loses the inherent sense of 
the 3-D object to be recognised. The projective space approach fails to 
maintain the consistent structure of an object across the many possible visual 
interpretations. The question of "How many characteristic views of an object 
are sufficient?" is open; clearly the answer is many. Establishing a metric on 

this kind of matching is difficult especially if the sensed view is between two 
stored views. Therefore 2-D projective invariants are still weak, and are not 
robust enough to support consistent matching over all viewpoints. 

Other problems in 2-D vision are when objects are presented in different 
poses, with different surface textures, and with lighting problems which give 
rise to specularity or reflection upseting the silhouette algorithms thus making 
recognition impossible. More complicated objects having slots and holes will 
definitely not be identified by such vision system. What all the 2-D vision 
systems require is a way of inferring and understanding the 3-D structure of 
the objects to be recognised. In a CAD/CAM environment the parts produced 
are usually quite complicated with many hidden surfaces, therefore a more 
integrated approach might be more suitable in this matter; after all seeing is 
not always believing. 
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While some progress has been made, the state of machine vision is still 
primitive. Most commercial machine vision systems available today use 
simple template matching of the 2-D silhouettes. Recently some application 
with the use of ANN in machine vision had begun to be available 
commercially [9] 

2.2 3 -D VISION 

At present most machine vision works are centred on the problem of 
obtaining depth and surface orientation from an image. 3-D data acquisition 
must cover a wide spectrum of needs, for example, the detailed shape Of an 
object in the scene might be needed instead of the mere range value of its 
surface elements. If a full 3-D description is required, view integration must 
be performed on multiple partial views of the object. In some cases, sparse 
3-D data is all that is needed to understand a scene, however, in numerous 
applications, the 3-D structure of the scene must be known and a 3-D range 
sensing method must be implemented. 

Generally speaking range sensing method can be classified into two types ie 
active or passive[10]. In the latter case, scene illumination is provided by the 
ambient light, while in the former case, a special lighting device illuminates 
the scene. Passive ranging technique includes Photometric Stereo, Shape 
from Shading, Range or Shape from Texture and Range from Passive Stereo. 
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These methods are usually concerned with the recovery of surface orientation 
from one or multiple grey-level pictures. 

Most active ranging techniques have little to do with the human visual 
system. Their purpose is neither to model nor to imitate biological processes 
but rather to provide an accurate range image to be used in a given 
application involving 3-D operations. Active techniques include Striped 
Lighting and Active Stereo, Moire Shadows, Laser or Ultrasonic Time-of-
Right Techniques, Conventional or Synchronised Triangulation Range finder, 
Range from defocusing and Intensity-Guided Rangefuider. 

Problems of using range sensing technique are the potentially hazardous 
nature of some of the methods using laser imaging. In Photometric stereo, 
great demands are made on the illumination of the scene and on proper 
understanding of the reflectance properties of the objects to be viewed. All 
the rangefulder techniques mentioned above face the same major problem: the 
3-D data provided conveys information only for the "visible' part of the 
scene. If a full 3-D image of an object is required, several images must be 
acquired from different positions and view integration must be performed. 

2.3 TACTILE SENSING 

In a quality control process the task is usually to recognise the object, inspect 
it, then finally classify it into various set standards. No matter how simple or 
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complex the task is, a conceptual approach always includes object 
manipulation, image creation, image processing, and object classification, as 

described in Figure 1. 

OBJECT 

MANIPULATE 

CREATE 
IMAGE 

PROCESS 
IMAGE 

CLASSIFY 
RESULTS REVIEW GOOD 

BAD REINSPECT 

Figure 1.0 CAD/CAM inspection process 

During manual inspection, a human might simply manipulate the object with 
his/her hand, look for specific features on it, compare what he sees to some 
criteria, and decide if the comparison is good enough. At the most automated 
levels, there is no human interaction. A robot places the object in a system 
with some sensing mechanism, a computer automatically initiates imaging and 

constructs an image from the sensor output, and the computer logic processes 
the image data and classifies the object as good or bad. 

Therefore from the above scenario it can be seen that the element of tactile 
sensing is also needed to give a comprehensive picture of the object. Tactile 



sensing is like imitating the human fingers in manipulating the object; 
similiarly machine vision is like trying to imitate the vision of a human. 

Tactile sensing using a Coordinate Measuring Machine can be used to acquire 
3-D data of an object. These sensors vary in their ability to sense a surface, at 
the lowest level, simple binary contact sensor such as microswitches report 3- 
D coordinates of a contact point. In fact this method is being used extensively 
in industry in the process called reverse engineering. In this process a sensor 
traces the surface of the components to be copied. The 3-D data obtained is 
stored in a database. A similar component can then be machined out of the 
collected data. 

The next level of tactile sensor reports grey values that are proportional to the 
force or displacement of the sensor. The most capable of these sensors can 
also sense surface orientation, returning a surface normal vector. 

Example of object recognition using tactile sensors is the work of Kinoshita, 
Aida and Mori[111. They utilised a five-fmgered hand containing 22 binary 
sensors to discriminate between objects. Each object was grasped from a 

number of different vantage points and the resulting binary pattern recorded. 
A discriminating plane was calculated in the sensor space from these learning 
samples. Then, the object was grasped a number of times and its membership 
in the discrimination space was computed. This work was able to distinguish 

a square pillar from a cylinder at 90% reliability. 

1 0 



In this thesis simulated 3-D data was obtained from CAD drawings in the 
initial form of wire frame drawings. These drawings can be further 
manipulated to produce solid drawings as well as rendering and shadowing. 
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Chapter 3 

ARTIFICIAL NEURAL NETWORKS 

3.1 INTRODUCTION 

An Artificial Neural Network is a massively interconnected network of a 
large numbers of processing elements, called neurons or nodes. A neuron 
receives input stimuli from other neurons if they are connected to it or/and the 
external world. A neuron can have several inputs, but has only one output. 
This output however can be routed to the inputs of several other neurons. 
Each neuron has certain constant parameters associated with it. These are its 
threshold, transfer function and weights associated with its inputs. Each 
neuron performs a very simple arithmetic operation, i.e. it computes the 
weighted sum of its inputs, subtracts its threshold from the sum, and passes 
the result through its transfer function. The output of the neuron is the result 
obtained fom this function. The output of the neuron is therefore a 
mathematical function of its input and can be expressed as 

y = f( Ewixi - 0 ) 	i = 0,....,N 

Here, y is the output of a neuron, N is the number of inputs, wi is the weight 
associated with input i, xi is the value of input of input i, and 0 is the 

threshold. The three most common transfer functions used in neural networks 

12 



are the hardlimiter, threshold and sigmoid non-linearities, as illustrated in 

Figure 2. 

      

      

      

      

 

Haraniter 0 or 1 	Threshold 

 

  

Figure 2. Activations/Transfer functions 

Neural-net models are specified by the net topology, node characteristics and 

training or learning rules. The function of a neural net model is determined 
by these parameters. The net topology, or the architecture of the net 
determines the inputs of each node. The node characteristics (threshold, 
transfer function, and weights) determine the output of the node. The training 
or learning rule determines how the network will react when an unknown 
input is presented to it. 

An important characteristic of ANN which lends them a degree of superiority 
over other systems is their ability to learn by example. Some types of neural 

net can be trained to perform tasks such as recognition by repeatedly 
presenting input patterns to the net. Depending on the type of net, the desired 
result may or may not be available to the net. This process of adaptation is 
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called learning. If the desired result is given to the net, the learning is 

supervised. If it is not, the learning is unsupervised. 

A second characteristic that makes ANN superior to other recognition 
systems is its ability to tolerate noise in an input pattern. If a net has been 
trained sufficiently, it is capable of performing well even if input patterns are 

noisy or incomplete. 

Another important aspect of ANNs which is of importance to this thesis is 

their ability to fuse information together in an optimal way. This ability can 
overcome the problem of integrating multiple views in object recognition as 
well as fusing different information collected from a multisensor system. 

3.2 CLASSIFICATION OF NEURAL NETS 

Figure 3 shows a taxonomy of six important neural nets used for classification 
of static input patterns. Nets can have either binary or continuous valued 
inputs. Binary inputs take on one of two possible values, while continous-
valued inputs can take on any value in a specified range. 

Both types can be supervised or unsupervised during training. During 

supervised training, the net is given the correct output along with the training 
pattern. The net produces an output based on its current weights, and 
compares it with the correct or target output. If there is a difference, the 
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weights are changed as a function of the difference between the outputs. 
Examples are the Hopfield net[12] and the Hamming net[12] with binary 
inputs, and the Back Propagation/Multilayer perceptron with continuous 
inputs. For the unsupervised training, no information concerning the correct 

output is provided to the net. The net constructs an internal model that 
captures regularities in input training pattern. In other words, the net forms its 
own exemplars(during training) by clustering input patterns which are similar 
to each other within a specified tolerance. Kohonen's feature-map-forming 
nets [12] are examples of this type of net. 

In this thesis the Multilayer Perceptron or Back Propagation Neural Net is 
used in order to recognise the object as well as its orientation. 
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Figure 3. Classification of Neural Networks 
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3.3 THE BACK PROPAGATION NEURAL NETWORK 

The Back Propagation(BP) network consists of input layer, hidden layerls 

and an output layer, each layer however may contain a different number of 
nodes. The BP network is a supervised network where input as well as output 

sets of training vectors have to be presented to it for training purposes. Every 
node in the output layer is connected to every unit in the input layer. Figure 4 
shows an example of a BP network. 

; 

7 Input Array 
n 

Figure 4. Back Propagation Network with Hidden Layer 
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The output generated by the network is compared with the target output. The 
difference between output and target is the error signals which is then back 
propagated into the network and the corresponding weight changes at various 
nodes are then made until the output of the network is similar to the target 
output. Thus, a Back Propagation network learns a mapping function by 
repeatedly presenting patterns from a training set and adjusting the weights. 
Each pass through the training set is called a cycle. 

Input patterns that are similar to each other produce output patterns that are 
similar because of the direct mapping of inputs to outputs in a two-layer 
network. A two-layer network cannot learn the exclusive-OR functions, 
therefore in order to learn any arbitrary mapping the network must have at 
least three layers. 

3.4 NETWORK DYNAMICS 

The activation of the units in the hidden layers constitutes an internal 
"representation" of the input patterns. These hidden units learn to encode 

features that are not explicitly present in the input patterns. By applying the 
Generalised Delta Rule(GDR), a multilayer network can learn to develop 

features that are necessary to perform the desired mapping. GDR is also 
known as the Hebbian learning algorithm and can be defmed as follows: 
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1) Apply an input vector and calculate the output Y. 
2) Calculate the weight changes using the equation below: 

8j = ( - 	Aw . . = .1 1 	J 

where Awji is the correction associated with the weight from the ith neuron 
in the input layer to the jth neuron in the output layer. Oi is the ith component 

of the input vector and is r the "learning rate" which controls the size of the 

weight changes. 

The Back Propagation activation used in this thesis is the sigmoid activation 
function as shown in Figure 5. 

1 
Oj 	 0.5 	 netj = Oi + Eiwijoi 

1 	e-netj 

Figure 5. Sigmoid Activation Function 

18 



Neti is the sigmoid activation function used to modify each weight, Oi is the 

bias for unit j. The biases are also learned in the same manner in which the 
weights are learned. Unit activations range from -0.5 to 0.5, and networks 

learn more quickly if the input patterns are scaled in this range. 

The GDR guarantees a steepest gradient descent in the total root mean 
square(RMS) error. This measure is computed by summing the squares of the 

target minus the output for every output unit and for every pattern, averaging 

this, then taking the square-root as shown in the expression below: 

_ 	)2 
Total RMS error = 

# patterns x # output units 

where p is the pattern, o is the output unit, and t is the target output unit. 

3.5 THE LEARNING PARAMETERS 

Gradient descent is guaranteed if small weight changes are made, this 
however will take too long therefore a learning rate 1  as mentioned earlier 

was introduced to speed it up. The learning rate is usually between 0.01 to 1 

but for simpler problems it can be more than 1. The aim of this is to set the 
learning rate as high as possible without making the RMS fluctuate 

significantly. Difficult problems have relatively constant error functions with 
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tiny solution regions, thus requiring a small 11 or less, and require many 
learning cycles. In order to increase learning rate a momentum term a [13] is 

added so as not to make RMS oscillate. The momentum term determines 
what portion of the previous weight changes will be added to the current 
weight changes. The total weight change equation then becomes: 

Awii(t+1) = ii(8joi) 	aAwii(t) 

where i(Sjoi) is the current weight change dictated by the GDR. In practice, 

the value of 1  and a are always adjusted until the total RMS error display 

shows a generally decreasing value with time. 

Each weight matrix has its own learning rate and momentum term. By having 
control over the learning rate at each layer, one can effectively balance the 
speed at which the different layers adjust their weights. A further condition of 
true gradient descent in the total RMS error is that the weights be changed 

only after the entire training set has been processed. 
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Chapter 4 

GRAPHICAL TRANSFORMATION 

4.1 USING AUTOCAD 

A 3-D object was created using AUTOCAD®[1 4] and stored in the 

computer, the object can be manipulated to rotate about X, Y or Z axis. For 
every new position the vertices of the object were recorded using the 
INQUIRY command of the CAD program. It was also possible to have a 
solid view of the object instead of a wireframe drawing using the HIDE 
command which removed hidden lines in the drawing. 

4.2 3-0 GRAPHIC PROGRAM 

Another method used in this process to obtain the vertices' coordinates at 

various positions is to write a simple 3-D graphic program using Turbo 

Pascal. To specify a rotation transformation for an object, an axis of 

rotation(about which the object is to be rotated) as well as the amount of 

angular rotation must be designated. In 3-D, an axis of rotation can have 

plenty of spatial orientation. The easiest rotation axes to handle are those that 

are parallel to the coordinate axes. This method of rotation about the three 
coordinate axes can also be used to produce a rotation about any arbitrarily 
specified axis of rotation. The convention adopted in this thesis is for counter 

clockwise rotations about a coordinate axis produces a positive rotation 
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angles, if we are looking along the positive half of the axis toward the 

coordinate origin. The Pascal program is in Appendix B. 

4.3 THE TRANSFORMATION MATRIX 

For the rotation about X, Y and Z axis the coordinates of the vertices are 
submitted to the following transformations matrix; 

10 0 0 
Rx = 0 cos° sine 0 

0 -sine cos0 0 
0 O. 0 1 

cos0 0 -sine 0 
Ry = 0 1 0 0 

sine 0 cos° 0 
000  1 

.0111111. 

cose sine 0 0 
Rz = -sine cos° 0 0 

00 1 0 
0 0 0 1 _) 

Translation of the coordinates is specified by the following matrix 

1 000  
TL= 	0100  

0 0 	1 0 
x y 	zl 
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In order to visualise the shape of the object, lines are drawn connecting all the 
vertices, however these lines are not being used as part of the training set for 
the Neural Network. The Turbo Pascal program was used to generate the 

coordinates for various positions of the object. This values were then cross-

checked with those values obtained using Autocad. 

A problem of using 3-D data is the amount of transformation that must be 
undertaken in order to rotate the various vertices about the X,Y and Z-axis. If 
the object is rotated about an arbitrary axis where the specifications for the 

rotation axis and rotation angle are given, then the transformation procedure 

is as follows: 

1. Translate the object so that the rotation axis passes 
through the coordinate origin. 

Rotate the object so that the axis of rotation 
coincides with one of the coordinate axes. 

	

3. 	Perform the specified rotation. 

Apply inverse rotations to bring the rotation axis 
back to it original orientation. 

	

5. 	Apply the inverse translation to bring the rotation 
axis back to its original position. 

Therefore the complete transformation is as follows; 

[ x, y, z]' = Tul.Rx 	 x, y, z] 
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However in this thesis the rotation of the object was made about it centre of 

gravity which acted as the point of coordinate origin, thus eliminating the 

need to translate or inverse translate the object. Therefore the only 

transformations needed are as follows: 

[ x, y, z]' = Rz.Ry.Rz.[ x, y, z] 

In this case the object is a simplistic drawing of a car as in Figure 6 & 7. 

24 



N NN  

N 

Figure 6. Wireframe drawing 

Figure 7. 3-D Solid Drawing 
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Chapter 5 

SIMULATIONS 

Simulations were carried out for two cases; the first one was concerned with 

the use of 3-D data of the object vertices' coordinates for a variety of poses. 
The first set of 3-D data were simulated as though it was obtained via a tactile 
sensing mechanism and the problems of hidden vertices were therefore 

eliminated. The input values for the Back Propagation network were the 
various vertices' coordinates and the target values are the rotational 

parameters. Since the object can assume a large number of positions in space, 

the rotational parameter were limited between 0 - 30 degrees with 5_degree 

intervals for all axes. The training data set(SET12345.DAT) and the test data 

set(TESTDATA.DAT) that were used are in Appendix A. The first BP 

network is called NET 1. 

As for the second simulation, the data used includes X, Y and Z coordinates, 

but some coordinates were set to zero in order to represent the hidden 

vertices or points. For viewing purposes the object was only rotated about 

the Z-axis, ie. simulated rotation of the object on a flat plane with the 

observer looking downwards 45 degrees from left hand side of the reference 

car position. For every position a hide command was used to produce a solid 

drawing thus blocking away the hidden vertices. Rotation about the Z-axis 
were made from 0 - 360 degrees with 15_degree intervals in order to produce 

training data set. The training data set(HI)E15.DAT) and the test data 
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set(H1DEDATA.DAT) for these are in Appendix A, and the second BP 

network is called NET2. 

The second simulation also simulates how 3-D data obtained by tactile 
sensing can be integrated with another set of 3-D data obtained through 3-D 
vision system. This is assumes that the vision system is viewing from a fixed 
point, therefore there is a possibility that it cannot detect hidden vertices. 

All the data were normalised between 0.5 and -0.5. This setting was 
recommended by the maker of the Back Propagation Network network 
software being used ie. ANSIM® [15]. The target outputs are the ratio of 

(angle of rotation)/360. Damaged weights were set between 0.5 to -0.5, 
learning rate was set at 0.1 and the momentum was set at 0.6, however these 
values were occasionally changed in order to speed up training or to reduce 

the RMS error fluctuation. Training was done until the RMS error dropped 

below 0.0005. The Back Propagation network used for NET1 and NET2 had 

two hidden layers each having 49 nodes. Both NET1 and NET2 which had 

been trained is available in the diskettes enclosed with this thesis. 

All the training data needed to be processed earlier in order to eliminate 

repeated data as well as conflicting data, such as those which had the same 

input data but different output data, ie the angles of rotation are not the same 

but the input data is similar. 
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Chapter 6 

RESULTS AND DISCUSSIONS 

For the first simulations using NET1, the test data TESTDATA.DAT is 

used. The results are illustrated in Figure 8 to Figure 15 as well as in Table 

1.0. 

Figure 8 uses test data 11 which is part of the training data set. As expected 
the output position(Rout) produced by the network is very close to the target 

value(Rtrue). Figure 8 shows that the output image is superimposed upon the 

target image. The image of the car that is lying parallel to the Y-axis serves as 

a reference position as well as the initial position of the car. 

However test data 2 and 4 are not the values that are used in the training of 

the network, but these values lie within the range of the training data set. 

Figure 9 and 10 show that when test data 2 and 4 are presented to the 

network, they were able to estimate its position correctly as well. 

Test data 6 and 8 are similar to test data 2 and 4, but these data set were 

purposely corrupted. Test data 6 has one set of corrupted vertice coordinates, 

while test data 8 had 2 sets of corrupted vertices' coordinates. From the table 
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TEST 
DATA 

TRUE ROTATION 

Rtrtie 
Angle Normalised 

OUTPUT 
ROTATION 

Rout 
Normalised 

IRtrue-Rout I I % ERROR I 

Rx 	0 0.0000 0.0009 0.0009 0.09 
1 Ry 	0 0.0000 0.0006 0.0006 0.06 

Rz 	0 0.0000 0.0007 0.0007 0.07 

Rx 	3 0.0083 0.0077 0.0006 7.23 
2 Ry 	14 0.0389 0.0390 0.0001 0.25 

Rz 29 0.0806 0.0814 0.0008 0.99 

Rx 	7 0.0194 0.0192 0.0002 1.03 
3 Ry 	7 0.0194 0.0194 0.0000 0.00 

Rz 	7 0.0194 0.0192 0.0002 1.03 

Rx 	21 0.0583 0.0584 0.0001 0.17 
4 Ry 	6 0.0167 0.0165 0.0002 1.20 

Rz 	11 0.0306 0.0306 0.0000 0.00 

Rx 	15 0.0417 0.0417 0.0000 0.00 
5 Ry 	24 0.0667 0.0669 0.0002 0.30 

Rz 	1 0.0028 0.0028 0.0000 0.00 

RX 	3 0.0083 0.0049 0.0034 40.96 
6 Ry 	14 0.0389 0.0115 0.0274 70.44 

Rz 29 0.0806 0.0923 0.0117 14.52 

Rx 	7 0.0194 0.0085 0.0109 56.19 
7 Ry 	7 0.0194 -0.0080 0.0278 141.89 

Rz 	7 0.0194 0.0295 0.0101 52.06 

Rx 	21 0.0583 0.0309 0.0274 47.00 
8 Ry 	6 0.0167 0.0117 0.0005 3.00 

Rz 	11 0.0306 0.0721 0.0415 135.62 

Rx 	30 0.0833 0.0783 0.0050 6.00 
Ry 	30 0.0833 0.0825 0.0008 0.96 
Rz 	30 0.0833 0.0934 0.0101 12.12 

Rx 	30 0.0833 0.0633 0.0200 24.01 
10 Ry 160 0.4444 0.1244 0.3200 72.01 

Rz 	333 0.9240 0.1515 0.7725 83.60 

Rx 	30 0.0833 0.0822 0.0011 1.32 
11 Ry 	30 0.0833 0.0828 0.0005 0.60 

Rz 	30 0.0833 0.0825 0.0008 0.96 

Table 1.0 RESULT1 
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above the percentage error is quite high, however looking at it in Figure 11 

and 12 the total deviation is not very large, especially the one in Figure 11. 

Test data 9 uses test data 11 which is part of the training data set. However 

test data 9 had 3 set of corrupted vertices' coordinates. From table 1.0 above 

as well as Figure 13 it can be shown that NET1 still manage to estimate the 

position of the car image. The percentage error is also significantly smaller 

than that obtained when using data 6 and 8. 

Figure 14 shows the result of using a test data which does not lie within the 
training data set, therefore the network fails to identify its position. For test 
data 7, even though the percentage error is very high, the deviation observed 

in Figure 15 is not as drastic as that in Figure 14. 

Generally speaking NET1 is able to identify correctly all the 3-D test data 

sets which were presented to it, provided these data sets were not corrupted 

and lay within the preset limits. 

For the second simulation, 3-D data sets as well as data sets with some 

hidden vertices(hidden vertices are set to zero) are used as the training set. 

However for this simulation the image of the car is only rotated about the Z-

axis and the viewing angles are as mentioned in Chapter 5. 
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Table 2 presents the results obtained after using the test data 

HIDEDATA.DAT for NET2. 

TEST TRUE ROTATION 	OUTPUT 
	

Rtrue-Rout I % ERROR I 
DATA 	 ROTATION 

Rtrue 	 Rout 
Angle Normalised 	Normalised 

1 Rz 0 -0.5000 -0.4977 0.0023 0.46 

2 Rz 30 -0.4167 -0.4167 0.0000 0.00 

3 Rz 80 -0.2778 -0.2779 0.0001 0.04 

4 Rz 120 -0.1667 -0.1665 0.0002 0.12 

5 Rz 160 -0.0556 -0.0554 0.0002 0.36 

6 Rz 200 0.0556 0.0555 0.0001 0.18 

7 Rz 240 0.1667 0.1668 0.0001 0.06 

8 Rz 280 0.2778 0.2780 0.0002 0.08 

Rz 320 0.3889 0.3908 0.0019 0.49 

Table 2 RESULT2 

The results obtained from NET2 show that it manages to identify all the test 

data presented to it. Figure 16 and 17 are the illustrations for test data 5 and 

9. Due to the complexity of merging two solid drawings to illustrate the 

success of NET2 in identifying the pose of the object, some vivid 

imagination is called for. In the second simulation, test data 1 and 2 were also 

used as part of the training data set of NET2 and it is being used here as a 

control. 
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Results in Table 2 also show that the degree of accuracy in determining the 
object position is better compared to that obtained in the first simulation. In 
the first simulation, test data 6 has one corrupted data, and the percentage 

error in the output was quite high. NET2 is able to determine the object 

position correctly eventhough the test data presented to it has corrupted data. 
This is because NET2 had been trained with two sets of complementary 3-D 
data set, with one sets having some coordinates corrupted in order to 

represent it as hidden vertices or points. 
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Figure 16. 2nd Simulation - Test data 5. 
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Figure 17. 2nd Simulation - Test data 9. 
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Chapter 7 

CONCLUSIONS 

From the results obtained in the simulations, the following conclusions can be 
drawn; 

* The Back Propagation neural network is able to learn to estimate 
the pose of an object relative to a standard view using 3-D data. 

* The integration of full 3-D data plus data having some hidden vertices 
makes the Network more accurate in estimating object position. 

* The fusion of 3-D data obtained different sensors is possible using 
Neural Network thus making the object recognition system more 
robust. 

The technique used in this thesis does have its limitations such as; 

* To estimate the pose position for the entire viewing sphere a large 
training data set had to be produced. Since this thesis used a 

Personal Computer, severe constraints were put on computer 
speed and memory. 

43 



Preprocessing of the solid model feature is a necessary step before 

presenting it to the network. This involves a tedious cross-checking 

of training data( in order to root out repeated data sets and contradicting 

data sets) and the determination of hidden vertices. 

It is hoped that in future we can utilise this system using real object as well as 

running it on a CAD/CAM system as part of the Quality Control process. 
With this system perhaps a more robust object recognition system can be 
implemented. 
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Appendix A 

Due to the large amount of training data sets and test data sets, the 
print out will be more than a hundred pages. In order to save time 
and effort all the following informations are available in the 
enclosed diskette. 

SIMULATION I 
	

Filename 

Training data sets text form 
Training data sets data form 

Trained BP network program 

Test data sets 
Results of Simulation I 

SET12345.TXT 

SET12345.DAT 
NET1 
TESTDATA.TXT 
RESULT1.TXT 

SIMULATION II 
	

Filename 

Training data sets text form 
Training data sets data form 

Trained BP network program 
Test data sets 

Results of Simulation II 

HIDE15.TXT 
HIDE15.DAT 
NET2.NET  
HIDEDATA.TXT 
RESUL'F2.TXT 
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TESTDATA.TXT 
TRAIN 3, 16, 3, 1 

/* Input vector 1: */ 
-0.125000, -0.300000, -0.050000, 
-0.125000, 0.200000, -0.050000, 
0.125000, 0.200000, -0.050000, 
0.125000, -0.300000, -0.050000, 
-0.125000, -0.300000, 0.000000, 
-0.125000, -0.150000, 0.000000, 
-0.125000, 0.150000, 0.000000, 
-0.125000, 0.200000, 0.000000, 
0.125000, 0.200000, 0.000000, 
0.125000, 0.150000, 0.000000, 
0.125000, -0.150000, 0.000000, 
0.125000, -0.300000, 0.000000, 
-0.075000, -0.100000,0.050000, 
-0.075000, 0.100000, 0.050000, 
0.075000, 0.100000, 0.050000, 
0.075000, -0.100000, 0.050000, 

/* Output vector 1: */ 
0.000000, 0.000000, 0.000000, 

/* Input vector 2: */ 
-0.245300, -0.209500, =0.063500, 
0.002300, 0.224100, -0.088800, 
0.214400, 0.106500, -0.028400, 

-0.033200, -0.327100, -0.003000, 
-0.254600, -0.201400, -0.015000, 
-0.180400, -0.071300, -0.022600, 
-0.031800, 0.188900, -0.037900, 
-0.007000, 0.232300, -0.040400, 
0.205100, 0.114700, 0.020100, 
0.180400, 0.071300, 0.022600, 
0.031800, -0.188900, 0.037900, 
-0.042500, -0.319000, 0.045500, 
-0.122500, -0.043300, 0.035400, 
-0.023400, 0.130200, 0.025200, 
0.103900, 0.059600, 0.061500, 
0.004800, -0.113900, 0.071700, 

/* Output vector 2: */ 
0.008300, 0.038900, 0.080600, 
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/* Input vector 3: */ 
-0.158600, -0.286700, -0.028200, 
-0.090700, 0.205000, -0.088700, 
0.155500, 0.174800, -0.058200, 
0.087700, -0.316900, 0.002300, 
-0.163900, -0.279900, 0.021100, 
-0.143500, -0.132400, 0.002900, 
-0.102800, 0.162600, -0.033400, 
-0.096000, 0.211800, -0.039400, 
0.150300, 0.181500, -0.009000, 
0.143500, 0.132400, -0.002900, 
0.102800, -0.162600, 0.033400, 
0.082400, -0.310100, 0.051500, 
-0.092700, -0.082500, 0.052200, 
-0.065600, 0.114200, 0.028000, 
0.082200, 0.096000, 0.046300, 
0.055100, -0.100600, 0.070500, 

/* Output vector 3 : */ 
0.019400, 0.019400, 0.019400, 

/* Input vector 4: */ 
-0.185100, -0.267600, 0.047400, 
-0.077700, 0.187100, -0.130800, 
0.166400, 0.139600, -0.104600, 
0.058900, -0.315000, 0.073600, 
-0.186500, -0.249100, 0.093900, 
-0.154300, -0.112700, 0.040400, 
-0.089800, 0.160100, -0.066500, 
-0.079000, 0.205600, -0.084300, 
0.165000, 0.158100, -0.058200, 
0.154300, 0.112700, -0.040400, 
0.089800, -0.160100, 0.066500, 
0.057600, -0.296500, 0.120000, 

. -0.096100, -0.058200, 0.074200, 
-0.053100, 0.123700, 0.002900, 
0.093300, 0.095200, 0.018600, 
0.050400, -0.086600, 0.089900, 

/* Output vector 4: */ 
0.058300, 0.016700, 0.030600, 
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/* Input vector 5 : *1 
-0.131400, -0.300500, -0.024000, 
-0.070300, 0.181500, -0.142300, 
0.158000, 0.177500, -0.040600, 
0.097000, -0.304500, 0.077700, 
-0.150800, -0.287200, 0.020100, 
-0.132500, -0.142600, -0.015400, 
-0.095900, 0.146600, -0.086300, 
-0.089800, 0.194800, -0.098100, 
0.138600, 0.190800, 0.003600, 
0.132500, 0.142600, 0.015400, 
0.095900, -0.146600, 0.086300, 
0.077500, -0.291200, 0.121800, 
-0.100100, -0.081900,0.037300, 
-0.075700, 0.110900, -0.010000, 
0.061300, 0.108500, 0.051000, 
0.036900, -0.084300, 0.098300, 

/* Output vector 5 : */ 
0.041700, 0.066700, 0.002800, 

/* Input vector 6: */ 
0.000000, 0.000000, 0.000000, 
0.002300, 0.224100, -0.088800, 
0.214400, 0.106500, -0.028400, 

-0.033200, -0.327100, -0.003000, 
-0.254600, -0.201400, -0.015000, 
-0.180400, -0.071300, -0.022600, 
-0.031800, 0.188900, -0.037900, 
-0.007000, 0.232300, -0.040400, 
0.205100, 0.114700, 0.020100, 
0.180400, 0.071300, 0.022600, 
0.031800, -0.188900, 0.037900, 
-0.042500, -0.319000, 0.045500, 
-0.122500, -0.043300, 0.035400, 
-0.023400, 0.130200, 0.025200, 
0.103900, 0.059600, 0.061500, 
0.004800, -0.113900, 0.071700, 

/* Output vector 6: *1 
0.008300, 0.038900, 0.080600, 
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• /* Input vector 7 : */ 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.155500, 0.174800, -0.058200, 
0.087700, -0.316900, 0.002300, 
-0.163900, -0.279900, 0.021100, 
-0.143500, -0.132400, 0.002900, 
-0.102800, 0.162600, -0.033400, 
-0.096000, 0.211800, -0.039400, 
0.150300, 0.181500, -0.009000, 
0.143500, 0.132400, -0.002900, 
0.102800, -0.162600, 0.033400, 
0.082400, -0.310100, 0.051500, 
-0.092700, -0.082500, 0.052200, 
-0.065600, 0.114200, 0.028000, 
0.082200, 0.096000, 0.046300, 
0.055100, -0.100600, 0.070500, 

/* Output vector 7 : */ 
0.019400, 0.019400, 0.019400, 

/* Input vector 8 : */ 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.058900, -0.315000, 0.073600, 
-0.186500, -0.249100, 0.093900, 
-0.154300, -0.112700, 0.040400, 
-0.089800, 0.160100, -0.066500, 
-0.079000, 0.205600, -0.084300, 
0.165000, 0.158100, -0.058200, 
0.154300, 0.112700, -0.040400, 
0.089800, -0.160100, 0.066500, 
0.057600, -0.296500, 0.120000, 
-0.096100, -0.058200, 0.074200, 
-0.053100, 0.123700, 0.002900, 
0.093300, 0.095200, 0.018600, 
0.050400, -0.086600, 0.089900, 

/* Output vector 8 : */ 
0.058300, 0.016700, 0.030600, 
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/* Input vector 9: */ 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 

-0.150800, -0.287200, 0.020100, 
-0.132500, -0.142600, -0.015400, 
-0.095900, 0.146600, -0.086300, 
-0.089800, 0.194800, -0.098100, 
0.138600, 0.190800, 0.003600, 
0.132500, 0.142600, 0.015400, 
0.095900, -0.146600, 0.086300, 
0.077500, -0.291200, 0.121800, 
-0.100100, -0.081900, 0.037300, 
-0.075700, 0.110900, -0.010000, 
0.061300, 0.108500, 0.051000, 
0.036900, -0.084300, 0.098300, 

/* Output vector 9: */ 
0.041700, 0.066700, 0.002800, 

/* Input vector 10: */ 
0.201400, -0.217000, -0.143000, 
0.081000, 0.207600, 0.091900, 
-0.128300, 0.101000, 0.177400, 

-0.007900, -0.323700, -0.057500, 
0.176900, -0.201500, -0.183700, 
0.140800, -0.074100, -0.113200, 
0.068500, 0.180700, 0.027700, 
0.056500, 0.223200, 0.051200, 
-0.152800,0.116500,0.136700, 
-0.140800, 0.074100, 0.113200, 

-0.068500, -0.180700, -0.027700, 
-0.032400, -0.308100, -0.098200, 
0.062300, -0.037400, -0.113300, 
0.014200, 0.132500, -0.019400, 
-0.111400, 0.068500, 0.031900, 

-0.063300, -0.101400, -0.062000, 

/* Output vector 10: */ 
0.083300, 0.444400, 0.925000, 
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/* Input vector 11: */ 
-0.282400, -0.165800, 0.029900, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 

-0.094900, -0.274100, 0.154900, 
-0.288600, -0.133400, 0.067400, 
-0.191200, -0.039600, 0.002500, 
0.003700, 0.147900, -0.127500, 
0.036200, 0.179100, -0.149100, 
0.223700, 0.070900, -0.024100, 
0.191200, 0.039600, -0.002500, 
-0.003700, -0.147900, 0.127500, 
-0.101100, -0.241600,0.192400, 
-0.127500, 0.002500, 0.043300, 
0.002500, 0.127500, -0.043300, 
0.115000, 0.062500, 0.031700, 

-0.015000, -0.062500,0.118300, 

/* Output vector 11: */ 
0.083300, 0.083300, 0.083300, 

/* Input vector 12 : */ 
-0.282400, -0.165800, 0.029900, 
0.042400, 0.146700, -0.186600, 
0.229900, 0.038400, -0.061600, 
-0.094900, -0.274100, 0.154900, 
-0.288600, -0.133400, 0.067400, 
-0.191200, -0.039600, 0.002500, 
0.003700, 0.147900, -0.127500, 
0.036200, 0.179100, -0.149100, 
0.223700, 0.070900, -0.024100, 
0.191200, 0.039600, -0.002500, 
-0.003700, -0.147900, 0.127500, 
-0.101100, -0.241600, 0.192400, 
-0.127500, 0.002500, 0.043300, 
0.002500, 0.127500, -0.043300, 
0.115000, 0.062500, 0.031700, 

-0.015000, -0.062500,0.118300, 

/* Output vector 12: */ 
0.083300, 0.083300, 0.083300, 

END 
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RESULT1.TXT 

TRAIN 3, 16, 3, 1 

/* Input vector 1: */ 
-0.125000, -0.300000, -0.050000, 
-0.125000, 0.200000, -0.050000, 
0.125000, 0.200000, -0.050000, 
0.125000, -0.300000, -0.050000, 
-0.125000, -0.300000, 0.000000, 
-0.125000, -0.150000, 0.000000, 
-0.125000, 0.150000, 0.000000, 
-0.125000, 0.200000, 0.000000, 
0.125000, 0.200000, 0.000000, 
0.125000, 0.150000, 0.000000, 
0.125000, -0.150000, 0.000000, 
0.125000, -0.300000, 0.000000, 
-0.075000, -0.100000, 0.050000, 
-0.075000, 0.100000, 0.050000, 
0.075000, 0.100000, 0.050000, 
0.075000, -0.100000, 0.050000, 

/* Output vector 1: */ 
0.000900, 0.000525, 0.000679, 

/* Input vector 2: */ 
-0.245300, -0.209500, -0.063500, 
0.002300, 0.224100, -0.088800, 
0.214400, 0.106500, -0.028400, 

-0.033200, -0.327100, -0.003000, 
-0.254600, -0.201400, -0.015000, 
-0.180400, -0.071300, -0.022600, 
-0.031800, 0.188900, -0.037900, 
-0.007000, 0.232300, -0.040400, 
0.205100, 0.114700, 0.020100, 
0.180400, 0.071300, 0.022600, 
0.031800, -0.188900, 0.037900, 
-0.042500, -0.319000, 0.045500, 
-0.122500, -0.043300, 0.035400, 
-0.023400, 0.130200, 0.025200, 
0.103900, 0.059600, 0.061500, 
0.004800, -0.113900,0.071700, 

/* Output vector 2: */ 
0.007657, 0.039005, 0.081384, 
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/* Input vector 3 : */ 
-0.158600, -0.286700, -0.028200, 
-0.090700, 0.205000, -0.088700, 
0.155500, 0.174800, -0.058200, 
0.087700, -0.316900, 0.002300, 
-0.163900, -0.279900, 0.021100, 
-0.143500, -0.132400, 0.002900, 
-0.102800, 0.162600, -0.033400, 
-0.096000, 0.211800, -0.039400, 
0.150300, 0.181500, -0.009000, 
0.143500, 0.132400, -0.002900, 
0.102800, -0.162600, 0.033400, 
0.082400, -0.310100, 0.051500, 
-0.092700, -0.082500, 0.052200, 
-0.065600, 0.114200, 0.028000, 
0.082200, 0.096000, 0.046300, 
0.055100, -0.100600, 0.070500, 

/* Output vector 3 : */ 
0.019228, 0.019377, 0.019226, 

/* Input vector 4: */ 
-0.185100, -0.267600, 0.047400, 
-0.077700, 0.187100, -0.130800, 
0.166400, 0.139600, -0.104600, 
0.058900, -0.315000, 0.073600, 
-0.186500, -0.249100, 0.093900, 
-0.154300, -0.112700, 0.040400, 
-0.089800, 0.160100, -0.066500, 
-0.079000, 0.205600, -0.084300, 
0.165000, 0.158100, -0.058200, 
0.154300, 0.112700, -0.040400, 
0.089800, -0.160100, 0.066500, 
0.057600, -0.296500, 0.120000, 
-0.096100, -0.058200, 0.074200, 
-0.053100, 0.123700, 0.002900, 
0.093300, 0.095200, 0.018600, 
0.050400, -0.086600, 0.089900, 

/* Output vector 4: */ 
0.058492, 0.016460, 0.030509, 
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/* Input vector 5 : */ 
-0.131400, -0.300500, -0.024000, 
-0.070300, 0.181500, -0.142300, 
0.158000, 0.177500, -0.040600, 
0.097000, -0.304500, 0.077700, 
-0.150800, -0.287200, 0.020100, 
-0.132500, -0.142600, -0.015400, 
-0.095900, 0.146600, -0.086300, 
-0.089800, 0.194800, -0.098100, 
0.138600, 0.190800, 0.003600, 
0.132500, 0.142600, 0.015400, 
0.095900, -0.146600, 0.086300, 
0.077500, -0.291200, 0.121800, 
-0.100100, -0.081900, 0.037300, 
-0.075700, 0.110900, -0.010000, 
0.061300, 0.108500, 0.051000, 
0.036900, -0.084300, 0.098300, 

/* Output vector 5 : */ 
0.041697, 0.066895, 0.002844, 

/* Input vector 6: */ 
0.000000, 0.000000, 0.000000, 
0.002300, 0.224100, -0.088800, 
0.214400, 0.106500, -0.028400, 

-0.033200, -0.327100, -0.003000, 
-0.254600, -0.201400, -0.015000, 
-0.180400, -0.071300, -0.022600, 
-0.031800, 0.188900, -0.037900, 
• -0.007000, 0.232300, -0.040400, 

0.205100, 0.114700, 0.020100, 
0.180400, 0.071300, 0.022600, 
0.031800, -0.188900, 0.037900, 
-0.042500, -0.319000, 0.045500, 
-0.122500, -0.043300, 0.035400, 
-0.023400, 0.130200, 0.025200, 
0.103900, 0.059600, 0.061500, 
0.004800, -0.113900,0.071700, 

/* Output vector 6: */ 
0.004870, 0.011496, 0.092333, 
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/* Input vector 7: */ 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.155500, 0.174800, -0.058200, 
0.087700, -0.316900, 0.002300, 
-0.163900, -0.279900, 0.021100, 
-0.143500, -0.132400, 0.002900, 
-0.102800, 0.162600, -0.033400, 
-0.096000, 0.211800, -0.039400, 
0.150300, 0.181500, -0.009000, 
0.143500, 0.132400, -0.002900, 
0.102800, -0.162600, 0.033400, 
0.082400, -0.310100, 0.051500, 
-0.092700, -0.082500, 0.052200, 
-0.065600, 0.114200, 0.028000, 
0.082200, 0.096000, 0.046300, 
0.055100, -0.100600, 0.070500, 

/* Output vector 7 : */ 
0.008524, -0.008010, 0.029528, 

/* Input vector 8 : */ 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.058900, -0.315000, 0.073600, 
-0.186500, -0.249100, 0.093900, 
-0.154300, -0.112700, 0.040400, 
-0.089800, 0.160100, -0.066500, 
-0.079000, 0.205600, -0.084300, 
0.165000, 0.158100, -0.058200, 
0.154300, 0.112700, -0.040400, 
0.089800, -0.160100, 0.066500, 
0.057600, -0.296500, 0.120000, 
-0.096100, -0.058200, 0.074200, 
-0.053100, 0.123700, 0.002900, 
0.093300, 0.095200, 0.018600, 
0.050400, -0.086600, 0.089900, 

/* Output vector 8 : */ 
0.030911, 0.011737, 0.072127, 
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/* Input vector 9: */ 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 

-0.150800, -0.287200, 0.020100, 
-0.132500, -0.142600, -0.015400, 
-0.095900, 0.146600, -0.086300, 
-0.089800, 0.194800, -0.098100, 
0.138600, 0.190800, 0.003600, 
0.132500, 0.142600, 0.015400, 
0.095900, -0.146600, 0.086300, 
0.077500, -0.291200, 0.121800, 
-0.100100, -0.081900,0.037300, 
-0.075700, 0.110900, -0.010000, 
0.061300, 0.108500, 0.051000, 
0.036900, -0.084300, 0.098300, 

/* Output vector 9: */ 
0.035209, 0.037634, 0.002483, 

/* Input vector 10: */ 
0.201400, -0.217000, -0.143000, 
0.081000, 0.207600, 0.091900, 
-0.128300, 0.101000, 0.177400, 

-0.007900, -0.323700, -0.057500, 
0.176900, -0.201500, -0.183700, 
0.140800, -0.074100, -0.113200, 
0.068500, 0.180700, 0.027700, 
0.056500, 0.223200, 0.051200, 
-0.152800, 0.116500, 0.136700, 
-0.140800,0.074100,0.113200, 

-0.068500, -0.180700, -0.027700, 
-0.032400, -0.308100, -0.098200, 
0.062300, -0.037400, -0.113300, 
0.014200, 0.132500, -0.019400, 
-0.111400,0.068500,0.031900, 

-0.063300, -0.101400, -0.062000, 

/* Output vector 10: */ 
-0.063281, 0.124374, 0.151512, 
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/* Input vector 11: */ 
-0.282400, -0.165800, 0.029900, 
0.000000, 0.000000, 0.000000, 
0.000000, 0.000000, 0.000000, 

-0.094900, -0.274100, 0.154900, 
-0.288600, -0.133400, 0.067400, 
-0.191200, -0.039600, 0.002500, 
0.003700, 0.147900, -0.127500, 
0.036200, 0.179100, -0.149100, 
0.223700, 0.070900, -0.024100, 
0.191200, 0.039600, -0.002500, 
-0.003700, -0.147900, 0.127500, 
-0.101100, -0.241600,0.192400, 
-0.127500, 0.002500, 0.043300, 
0.002500, 0.127500, -0.043300, 
0.115000, 0.062500, 0.031700, 

-0.015000, -0.062500, 0.118300, 

/* Output vector 11: */ 
0.078250, 0.082452, 0.093415, 

/* Input vector 12: */ 
-0.282400, -0.165800, 0.029900, 
0.042400, 0.146700, -0.186600, 
0.229900, 0.038400, -0.061600, 
-0.094900, -0.274100, 0.154900, 
-0.288600, -0.133400, 0.067400, 
-0.191200, -0.039600, 0.002500, 
0.003700, 0.147900, -0.127500, 
0.036200, 0.179100, -0.149100, 
0.223700, 0.070900, -0.024100, 
0.191200, 0.039600, -0.002500, 
-0.003700, -0.147900, 0.127500, 
-0.101100, -0.241600,0.192400, 
-0.127500, 0.002500, 0.043300, 
0.002500, 0.127500, -0.043300, 
0.115000, 0.062500, 0.031700, 

-0.015000, -0.062500,0.118300, 

/* Output vector 12: */ 
0.082166, 0.082764, 0.082546, 

END 
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HIDEDATA.TXT 

TRAIN 3, 16, 3, 1 

/* Input vector 1: */ 
-0.125000, -0.300000, -0.050000, 
-0.125000, 0.200000, -0.050000, 
0.000000, 0.000000, 0.000000, 

0.125000, -0.300000, -0.050000, 
-0.125000, -0.300000, 0.000000, 
-0.125000, -0.150000, 0.000000, 
-0.125000, 0.150000, 0.000000, 
-0.125000, 0.200000, 0.000000, 
0.125000, 0.200000, 0.000000, 
0.125000, 0.150000, 0.000000, 
0.125000, -0.150000, 0.000000, 
0.125000, -0.300000, 0.000000, 
-0.075000, -0.100000, 0.050000, 
-0.075000, 0.100000, 0.050000, 
0.075000, 0.100000, 0.050000, 
0.075000, -0.100000, 0.050000, 

/* Output vector 1: */ 
-0.500000, -0.500000, -0.500000, 

/* Input vector 2: */ 
-0.258300, -0.197300, -0.050000, 
-0.008300, 0.235700, -0.050000, 
0.000000, 0.000000, 0.000000, 

-0.041700, -0.322300, -0.050000, 
-0.258300, -0.197300, 0.000000, 
-0.183300, -0.067400, 0.000000, 
-0.033300,0.192400, 0.000000, 
-0.008300, 0.235700, 0.000000, 
0.208300, 0.110700, 0.000000, 
0.183300, 0.067400, 0.000000, 
0.033300, -0.192400, 0.000000, 
-0.041700, -0.322300, 0.000000, 
-0.115000, -0.049100, 0.050000, 
-0.015000, 0.124100, 0.050000, 
0.115000, 0.049100, 0.050000, 
0.015000, -0.124100, 0.050000, 

/* Output vector 2: */ 
-0.500000, -0.500000, -0.416700, 
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/* Input vector 3 : */ 
-0.317100, 0.071000, -0.050000, 
0.175300, 0.157800, -0.050000, 
0.218700, -0.088400, -0.050000, 
0.000000, 0.000000, 0.000000, 
-0.317100, 0.071000, 0.000000, 
-0.169400, 0.097100, 0.000000, 
0.126000, 0.149100, 0.000000, 
0.175300, 0.157800, 0.000000, 
0.218700, -0.088400, 0.000000, 
0.169400, -0.097100, 0.000000, 
-0.126000, -0.149100, 0.000000, 
-0.273700, -0.175200, 0.000000, 
-0.111500,0.056500, 0.050000, 
0.085500, 0.091200, 0.050000, 
0.111500, -0.056500, 0.050000, 
-0.085500, -0.091200, 0.050000, 

/* Output vector 3 : */ 
-0.500000, -0.500000, -0.277800, 

/* Input vector 4: */ 
-0.197300, 0.258300, -0.050000, 
0.235700, 0.008300, -0.050000, 
0.110700, -0.208300, -0.050000, 
0.000000, 0.000000, 0.000000, 
-0.197300, 0.258300, 0.000000, 
-0.067400, 0.183300, 0.000000, 
0.192400, 0.033300, 0.000000, 
0.235700, 0.008300, 0.000000, 
0.110700, -0.208300, 0.000000, 
0.067400, -0.183300, 0.000000, 
-0.192400, -0.033300, 0.000000, 
-0.322300, 0.041700, 0.000000, 
-0.049100, 0.115000, 0.050000, 
0.124100, 0.015000, 0.050000, 
0.049100, -0.115000, 0.050000, 
-0.124100, -0.015000, 0.050000, 

/* Output vector 4 : */ 
-0.500000, -0.500000, -0.166700, 
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/* Input vector 5 : */ 
0.000000, 0.000000, 0.000000, 

0.185900, -0.145200, -0.050000, 
-0.049100, -0.230700, -0.050000, 
-0.220100, 0.239200, -0.050000, 
0.014900, 0.324700, 0.000000, 
0.066200, 0.183700, 0.000000, 
0.168800, -0.098200, 0.000000, 
0.185900, -0.145200, 0.000000, 
-0.049100, -0.230700, 0.000000, 
-0.066200, -0.183700, 0.000000, 
-0.168800, 0.098200, 0.000000, 
-0.220100, 0.239200, 0.000000, 
0.036300, 0.119600, 0.050000, 
0.104700, -0.068300, 0.050000, 
-0.036300, -0.119600, 0.050000, 
-0.104700, 0.068300, 0.050000, 

/* Output vector 5 : */ 
-0.500000, -0.500000, -0.055600, 

/* Input vector 6 : */ 
0.000000, 0.000000, 0.000000, 

0.049100, -0.230700, -0.050000, 
-0.185900, -0.145200, -0.050000, 
-0.014900, 0.324700, -0.050000, 
0.220100, 0.239200, 0.000000, 
0.168800, 0.098200, 0.000000, 
0.066200, -0.183700, 0.000000, 
0.049100, -0.230700, 0.000000, 
-0.185900, -0.145200, 0.000000, 
-0.168800, -0.098200, 0.000000, 
-0.066200, 0.183700, 0.000000, 
-0.014900, 0.324700, 0.000000, 
0.104700, 0.068300, 0.050000, 
0.036300, -0.119600, 0.050000, 
-0.104700, -0.068300, 0.050000, 
-0.036300, 0.119600, 0.050000, 

/* Output vector 6: */ 
-0.500000, -0.500000, 0.055600, 
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/* Input vector 7 : *1 
0.322300, 0.041700, -0.050000, 
0.000000, 0.000000, 0.000000, 

-0.235700, 0.008300, -0.050000, 
0.197300, 0.258300, -0.050000, 
0.322300, 0.041700, 0.000000, 
0.192400, -0.033300, 0.000000, 
-0.067400, -0.183300, 0.000000, 
-0.110700, -0.208300, 0.000000, 
-0.235700, 0.008300, 0.000000, 
-0.192400, 0.033300, 0.000000, 
0.067400, 0.183300, 0.000000, 
0.197300, 0.258300, 0.000000, 
0.124100, -0.015000, 0.050000, 
-0.049100, -0.115000, 0.050000, 
-0.124100, 0.015000, 0.050000, 
0.049100, 0.115000, 0.050000, 

/* Output vector 7 : */ 
-0.500000, -0.500000, 0.166700, 

/* Input vector 8 : */ 
0.273700, -0.175200, -0.050000, 
0.000000, 0.000000, 0.000000, 

-0.175300, 0.157800, -0.050000, 
0.317100, 0.071000, -0.050000, 
0.273700, -0.175200, 0.000000, 
0.126000, -0.149100, 0.000000, 
-0.169400, -0.097100, 0.000000, 
-0.218700, -0.088400, 0.000000, 
-0.175300, 0.157800, 0.000000, 
-0.126000, 0.149100, 0.000000, 
0.169400, 0.097100, 0.000000, 
0.317100, 0.071000, 0.000000, 
0.085500, -0.091200, 0.050000, 
-0.111500, -0.056500, 0.050000, 
-0.085500, 0.091200, 0.050000, 
0.111500, 0.056500, 0.050000, 

/* Output vector 8 : */ 
-0.500000, -0.500000, 0.277800, 
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/* Input vector 9: */ 
0.097100, -0.310200, -0.050000, 
-0.224300, 0.072900, -0.050000, 
0.000000, 0.000000, 0.000000, 

0.288600, -0.149500, -0.050000, 
0.097100, -0.310200, 0.000000, 
0.000700, -0.195300, 0.000000, 
-0.192200, 0.034600, 0.000000, 
-0.224300, 0.072900, 0.000000, 
-0.032800, 0.233600, 0.000000, 
-0.000700, 0.195300, 0.000000, 
0.192200, -0.034600, 0.000000, 
0.288600, -0.149500, 0.000000, 
0.006800, -0.124800, 0.050000, 
-0.121700,0.028400, 0.050000, 
-0.006800, 0.124800, 0.050000, 
0.121700, -0.028400, 0.050000, 

/* Output vector 9: */ 
-0.500000, -0.500000, 0.388900, 

END 
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RESULT2.TXT 

TRAIN 3, 16, 3, 1 

/* Input vector 1: */ 
-0.125000, -0.300000, -0.050000, 
-0.125000, 0.200000, -0.050000, 
0.000000, 0.000000, 0.000000, 

0.125000, -0.300000, -0.050000, 
-0.125000, -0.300000, 0.000000, 
-0.125000, -0.150000, 0.000000, 
-0.125000, 0.150000, 0.000000, 
-0.125000, 0.200000, 0.000000, 
0.125000, 0.200000, 0.000000, 
0.125000, 0.150000, 0.000000, 
0.125000, -0.150000, 0.000000, 
0.125000, -0.300000, 0.000000, 
-0.075000, -0.100000, 0.050000, 
-0.075000, 0.100000, 0.050000, 
0.075000, 0.100000, 0.050000, 
0.075000, -0.100000, 0.050000, 

/* Output vector 1: */ 
-0.499785, -0.499774, -0.497748, 

/* Input vector 2 : */ 
-0.258300, -0.197300, -0.050000, 
-0.008300, 0.235700, -0.050000, 
0.000000, 0.000000, 0.000000, 

-0.041700, -0.322300, -0.050000, 
-0.258300, -0.197300, 0.000000, 
-0.183300, -0.067400, 0.000000, 
-0.033300, 0.192400, 0.000000, 
-0.008300, 0.235700, 0.000000, 
0.208300, 0.110700, 0.000000, 
0.183300, 0.067400, 0.000000, 
0.033300, -0.192400, 0.000000, 
-0.041700, -0.322300, 0.000000, 
-0.115000, -0.049100, 0.050000, 
-0.015000, 0.124100, 0.050000, 
0.115000, 0.049100, 0.050000, 
0.015000, -0.124100, 0.050000, 

/* Output vector 2 : */ 
-0.499730, -0.499743, -0.416651, 
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/* Input vector 3 : */ 
-0.317100, 0.071000, -0.050000, 
0.175300, 0.157800, -0.050000, 
0.218700, -0.088400, -0.050000, 
0.000000, 0.000000, 0.000000, 
-0.317100, 0.071000, 0.000000, 
-0.169400, 0.097100, 0.000000, 
0.126000, 0.149100, 0.000000, 
0.175300, 0.157800, 0.000000, 
0.218700, -0.088400, 0.000000, 
0.169400, -0.097100, 0.000000, 
-0.126000, -0.149100, 0.000000, 
-0.273700, -0.175200, 0.000000, 
-0.111500, 0.056500, 0.050000, 
0.085500, 0.091200, 0.050000, 
0.111500, -0.056500, 0.050000, 
-0.085500, -0.091200, 0.050000, 

/* Output vector 3 : */ 
-0.499968, -0.499974, -0.277975, 

/* Input vector 4: */ 
-0.197300, 0.258300, -0.050000, 
0.235700, 0.008300, -0.050000, 
0.110700, -0.208300, -0.050000, 
0.000000, 0.000000, 0.000000, 
-0.197300, 0.258300, 0.000000, 
-0.067400, 0.183300, 0.000000, 
0.192400, 0.033300, 0.000000, 
0.235700, 0.008300, 0.000000, 
0.110700, -0.208300, 0.000000, 
0.067400, -0.183300, 0.000000, 
-0.192400, -0.033300, 0.000000, 
-0.322300, 0.041700, 0.000000, 
-0.049100, 0.115000, 0.050000, 
0.124100, 0.015000, 0.050000, 
0.049100, -0.115000, 0.050000, 
-0.124100, -0.015000, 0.050000, 

/* Output vector 4: */ 
-0.499973, -0.499976, -0.166540, 
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/* Input vector 5: */ 
0.000000, 0.000000, 0.000000, 

0.185900, -0.145200, -0.050000, 
-0.049100, -0.230700, -0.050000, 
-0.220100, 0.239200, -0.050000, 
0.014900, 0.324700, 0.000000, 
0.066200, 0.183700, 0.000000, 
0.168800, -0.098200, 0.000000, 
0.185900, -0.145200, 0.000000, 
-0.049100, -0.230700, 0.000000, 
-0.066200, -0.183700, 0 .000000, 
-0.168800, 0.098200, 0.000000, 
-0.220100, 0.239200, 0.000000, 
0.036300, 0.119600, 0.050000, 
0.104700, -0.068300, 0.050000, 
-0.036300, -0.119600, 0.050000, 
-0.104700, 0.068300, 0.050000, 

/* Output vector 5 : */ 
-0.499973, -0.499976, -0.055445, 

/* Input vector 6: */ 
0.000000, 0.000000, 0.000000, 

0.049100, -0.230700, -0.050000, 
-0.185900, -0.145200, -0.050000, 
-0.014900, 0.324700, -0.050000, 
0.220100, 0.239200, 0.000000, 
0.168800, 0.098200, 0.000000, 
0.066200, -0.183700, 0.000000, 
0.049100, -0.230700, 0.000000, 
-0.185900, -0.145200, 0.000000, 
-0.168800, -0.098200, 0.000000, 
-0.066200, 0.183700, 0.000000, 
-0.014900, 0.324700, 0.000000, 
0.104700, 0.068300, 0.050000, 
0.036300, -0.119600, 0.050000, 
-0.104700, -0.068300, 0.050000, 
-0.036300, 0.119600, 0.050000, 

/* Output vector 6 : */ 
-0.499972, -0.499975, 0.055471, 
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/* Input vector 7: */ 
0.322300, 0.041700, -0.050000, 
0.000000, 0.000000, 0.000000, 

-0.235700, 0.008300, -0.050000, 
0.197300, 0.258300, -0.050000, 
0.322300, 0.041700, 0.000000, 
0.192400, -0.033300, 0.000000, 
-0.067400, -0.183300, 0.000000, 
-0.110700, -0.208300, 0.000000, 
-0.235700, 0.008300, 0.000000, 
-0.192400, 0.033300, 0.000000, 
0.067400, 0.183300, 0.000000, 
0.197300, 0.258300, 0.000000, 
0.124100, -0.015000, 0.050000, 
-0.049100, -0.115000, 0.050000, 
-0.124100, 0.015000, 0.050000, 
0.049100, 0.115000, 0.050000, 

/* Output vector 7 : */ 
-0.499971, -0.499976, 0.166763, 

/* Input vector 8 : */ 
0.273700, -0.175200, -0.050000, 
0.000000, 0.000000, 0.000000, 

-0.175300, 0.157800, -0.050000, 
0.317100, 0.071000, -0.050000, 
0.273700, -0.175200, 0.000000, 
0.126000, -0.149100, 0.000000, 
-0.169400, -0.097100, 0.000000, 
-0.218700, -0.088400, 0.000000, 
-0.175300, 0.157800, 0.000000, 
-0.126000, 0.149100, 0.000000, 
0.169400, 0.097100, 0.000000, 
0.317100, 0.071000, 0.000000, 
0.085500, -0.091200, 0.050000, 
-0.111500, -0.056500, 0.050000, 
-0.085500, 0.091200, 0.050000, 
0.111500, 0.056500, 0.050000, 

/* Output vector 8 : */ 
-0.499967, -0.499974, 0.278011, 
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/* Input vector 9: */ 
0.097100, -0.310200, -0.050000, 
-0.224300, 0.072900, -0.050000, 
0.000000, 0.000000, 0.000000, 

0.288600, -0.149500, -0.050000, 
0.097100, -0.310200, 0.000000, 
0.000700, -0.195300, 0.000000, 
-0.192200, 0.034600, 0.000000, 
-0.224300, 0.072900, 0.000000, 
-0.032800, 0.233600, 0.000000, 
-0.000700, 0.195300, 0.000000, 
0.192200, -0.034600, 0.000000, 
0.288600, -0.149500, 0.000000, 
0.006800, -0.124800, 0.050000, 
-0.121700, 0.028400, 0.050000, 
-0.006800, 0.124800, 0.050000, 
0.121700, -0.028400, 0.050000, 

/* Output vector 9: */ 
-0.499939, -0.499954, 0.390846, 

END 
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Appendix B 

PROGRAM IMAGE_VIEWING_3D 

USES crt, GRAPH; 

CONST PI = 3.14159265; XSCALE = 540; YSCALE = 600; ZSCALE = 460; 
ALP = 5*PI/6; NUMBER_OF_POINTS = 16; 

TYPE Pointtype = array [1..number_of points,1..4] of real; 
Transform = array [1..4,1..4] of real; 
Coordinate = array [1..number_of points] of REAL; 

VAR 
GD,GM,XCENTR,YCENTR,i 	: integer; 
XPOINTN,YPOINTN,ZPOINTN 	: Coordinate; 
XGRAPHIC,YGRAPHIC 	: Coordinate; 
POINT,DUMMYPOINT 	: Pointtype; 
TRANS,TRANROTXROTZ,DUMMY 	: Transform; 

THETA,alpha,zeta 	: real; 
degreX,DEGREY,DEGREZ : real; 
PERSPECTIVE,CONTINUE 	: string[1]; 
st 	 : string[5]; 

(* 	 PROCEDURE OPEN GRAPHIC MODE *) 

PROCEDURE OPEN_GRAPHIC_MODE; 

BEGIN 
gd := detect; 
Initgraph (gd,gm,"); 
if graphresult <> grok then Halt(1); 

END; 

(* 	 PROCEDURE COORDINATE IMAGE 
	 *) 

PROCEDURE COORDINATE_IMAGE(xcentr,ycentrinteger); 

BEGIN 
setcolor(green); 
line(xcentr,ycentr,xcentr,(ycentr-25)); 	(* 	 Y axis *) 

70 



line(xcentr,ycentr,(xcentr+30),ycentr); 	(* 	X axiz *) 
line(xcentr,ycentr,(xcentr+TRUNC(20*COS(ALP))), 

(ycentr+trunc(20*sin(a1p)))); (* 	Z axiz *) 
setcolor(green); 
line(xcentr,(ycentr-25),xcentr,(ycentr-70)); (* 	Y axis *) 
outtextxy((xcentr-5),(ycentr-80),'Y'); 
line((xcentx+30),ycentr,(xcentr+150),ycentr); (* 	X axiz *) 
outtextxy((xcentr+155),ycentr,'X'); 
line((xcentr+TRUNC(20*COS(ALP))),(ycentr+trunc(20*sin(alp))), 

(xcentr+TRUNC(80*COS(ALP))),(ycentr+trunc(80*sin(alp)))); 
outtextxy((xcentr+TRUNC(80*COS(ALP))-5),(ycentr+5+trunc(80*sin(alp))),'Z'); 

end; 

(* 	 PROCEDURE INITIAL IMAGE 	 *) 

PROCEDURE INITIALIMAGE; 
VAR 	ij 	: integer; 
BEGIN 
(* point[a,b] --> a represents point number, b represents x,y,z *) 

point[ 1,11 := -0.125; point[ 1,2] :=-0.3; point[ 1,3] := -0.05; 
point[ 2,1] := -0.125; point[ 2,2] := 0.2; point[ 2,3] := -0.05; 
point[ 3,1] := 0.125 ; point[ 3,2] := 0.2; point[ 3,3] := -0.05; 
point[ 4,1] := 0.125 ; point[ 4,2] :=-0.3; point[ 4,3] := -0.05; 
point[ 5,1] :=-0.125; point[ 5,2] :=-0.3; point[ 5,3] := 0.0; 
point[ 6,1] :=-0.125; point[ 6,2] :=-0.15; point[ 6,3] := 0.0; 
point[ 7,1] :=-0.125; point[ 7,2] := 0.15; point[ 7,3] := 0.0; 
point[ 8,1] :=-0.125; point[ 8,2] := 0.2; point[ 8,3] := 0.0; 
point[ 9,1] := 0.125; point[ 9,2] := 0.2; point[ 9,3] := 0.0; 
point[ 10,1] :=0.125; point[ 10,2] := 0.15; point[ 10,3] := 0.0; 
point[ 11,11 :=0.125; point[ 11,2] :=-0.15; point[ 11,3] := 0.0; 
point[ 12,1] :=0.125; point[ 12,2] :=-0.3; point[ 12,3] := 0.0; 
point[ 13,1] :=-0.075; point[ 13,2] :=-0.1; point[ 13,3] := 0.05; 
point[ 14,1] :=-0.075; point[ 14,2] := 0.1; point[ 14,3] := 0.05; 
point[ 15,1] :=0.075; point[ 15,2] := 0.1; point[ 15,3] := 0.05; 
point[ 16,1] :=0.075; point[ 16,2] :=-0.1; point[ 16,3] := 0.05; 

for i := 1 to number_of points do point[i,4] := 1; 
for i := 1 to 4 do begin for j := 1 to 4 do trans[ij] := 0; end; 
for i := 1 to 4 do trans[i,i] := 1; 

END; 

(* 	 PROCEDURE CALCULATION OF NEWCOORDINATE 
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PROCEDURE CALCULATION_OF_NEWCOORDINATE; 
VAR 	i,j,k 	: integer; 

sum 	: real; 
BEGIN 

for i := 1 to number_of points do 
for j:= 1 to 4 do 

begin 
sum := 0; 
for k := 1 to 4 do sum := sum + point[i,k]*trans[k,j]; 
dummypoint[i,j] := sum ; 

end; 
for i:=1 to number_of points do 

for j:= 1 to 4 do point[i,j]:=dummypoint[i,j]; 
END; 

(* 	 PROCEDURE CALCULATION OF TRASFORMATION 

PROCEDURE CALCULATION_OF_TRANSFORMATION; 
VAR 	ij,k 	: integer; 

sum 	: real; 
BEGIN 

for i := 1 to 4 do 
for j:= 1 to 4 do 

begin 
sum := 0; 
for k := 1 to 4 do sum := sum + tranrotxrotz[i,k]*trans[k,j]; 
dummy[ij] := sum ; 

end; 
for i:=1 to 4 do for j:= 1 to 4 do trans[i,j]:=durnmy[i,j]; 

END; 

(* 	PROCEDURE CALCULATION FOR DRAWING 

PROCEDURE CALCULATION_DRAWING(xcenco,ycenco:integer); 

VAR 	i : integer; 

BEGIN 
for i := 1 to number_of points do 

begin 
xgraphic[i] := xcenco+point[i,3]*zscale*cos(alp)+point[i,1]*xscale; 
ygraphic[i] := ycenco+point[i,3]*zscale*sin(alp)-point[i,2]*yscale; 

end; 
END; 
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(* 	 PROCEDURE INPUT VIEWER 
	 *) 

PROCEDURE INPUT_VIEWER; 

VAR 	i 	: integer; 
check 	: string[1]; 

BEGIN 
[outtextxy(50,350,'Out of this program is 90 degrees rotation'); 
outtextxy(50,360;allowed rage rotation from 0 to 90 degrees'); } 
outtextxy(250,450,'FIGURE 15. DATA SET 7'); 
check := 
repeat 

readln (degreX); str(trunc(degreX),st); 
if (degreX > 360 ) then check:='F'; 
if degreX = 360 then continue:='F'; 
DEGREX := degreX*pi/180; 

readln(degreY);str(trunc(degreY),st); 
if (degreY > 360 ) then check:='F'; 
if degreY = 360 then continue:='F'; 
DEGREY := degreY*pi/180; 

readln(degreZ);str(trunc(degreZ),st); 
if (degreZ > 360 ) then check:='F'; 
if degreZ = 360 then continue:='F'; 
DEGREZ := degreZ*pi/180; 

until check='T'; 
[ setcolor(yellow);outtextxy((150+50),370,st); } 

END; 

(* 	 PROCEDURE ROTATION ABOUT X AXIS 

PROCEDURE ROTATION_X_AXIS(DEGREX : real); 
VAR 	i,j 	: integer; 
BEGIN 

for i := 1 to 4 do begin for j := 1 to 4 do tranrotxrotz[i,j] := 0; end; 
tranrotxrotz[1,1] : =1; 
tranrotxrotz[2,2]:= cos(DEGREX);tranrotxrotz[3,2]:= sin(DEGREX); 
tranrotxrotz[2,3]:=-sin(DEGREX);tranrotxrotz[3,3]:= cos(DEGREX); 
tranrotxrotz[4,4]:= 1; 

END; 
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(* 	 PROCEDURE ROTATION ABOUT Y AXIS 
	 *) 

PROCEDURE ROTATION_Y_AXIS(DEGREY : real); 
VAR 	i,j 	: integer; 
BEGIN 

for i := 1 to 4 do begin for j := 1 to 4 do tranrotxrotz[i,j] := 0; end; 
tranrotxrotz[1,1]:=cos(DEGREY) ;tranrotxrotz[1,3] := sin(DEGREY); 
tranrotxrotz[3,1]:=-sin(DEGREY);tranrotxrotz[3,3] := cos(DEGREY); 
tranrotxrotz[2,2] := 1;tranrotxrotz[4,4]:= 1; 

END; 

(* 	 PROCEDURE ROTATION ABOUT Z AXIS 

PROCEDURE ROTATION_Z_AXIS(DEGREZ : real); 
VAR 	i,j 	: integer; 
BEGIN 

for i := 1 to 4 do begin for j := 1 to 4 do tranrotxrotz[i,j] := 0; end; 
tranrotxrotz[1,1]:=cos(DEGREZ) ;tranrotxrotz[1,2] := -sin(DEGREZ); 
tranrotxrotz[2,1]:=sin(DEGREZ);tranrotxrotz[2,2] := cos(DEGREZ); 
tranrotxrotz[3,3] := 1;tranrotxrotz[4,4]:= 1; 

END; 

(* 	 PROCEDURE DRAWING IMAGE 

PROCEDURE DRAWING_IMAGE; 
VAR I 	: INTEGER; 
BEGIN 
setcolor(GREEN); 	(* draw bottom plane *) 

moveto(trunc(xgraphic[4]),trunc(ygraphic[4])); 
for i := 1 TO 4 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i])); 

setcolor(green); (* draw line *) 
moveto(trunc(xgraphic[12]),trunc(ygraphic[12])); 

for i := 5 TO 12 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i])); 

setcolor(green); (* draw line *) 
moveto(trunc(xgraphic[16]),trunc(ygraphic[16])); 

for i := 13 TO 16 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i])); 

setcolor(GREEN); (* draw line *) 
moveto(trunc(xgraphic[1]),trunc(ygraphic[1])); 
lineto(trunc(xgraphic[5]),trunc(ygraphic [5])); 

moveto(trunc(xgraphic[2]),trunc(ygraphic[2])); 

* ) 

* ) 
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lineto(trunc(xgraphic[8]),trunc(ygraphic[8])); 

moveto(trunc(xgraphic[3]),trunc(ygraphic[3])); 
lineto(trunc(xgraphic[9] ),trunc(ygraphic[9])); 

moveto(trunc(xgraphic[4]),trunc(ygraphic[4])); 
lineto(trunc(xgraphic[12] ),trunc(ygraphic[12])); 

moveto(trunc(xgraphic[6]),trunc(ygraphic[6])); 
lineto(trunc(xgraphic[13] ),trunc(ygraphic[13])); 

moveto(trunc(xgraphic[7]),trunc(ygraphic[7])); 
lineto(trunc(xgraphic[14] ),trunc(ygraphic[14])); 

moveto(trunc(xgraphic[10]),trunc(ygraphic[10])); 
lineto(trunc(xgraphic[15] ),trunc(ygraphic[15])); 

moveto(trunc(xgraphic[11]),trunc(ygraphic[11])); 
lineto(trunc(xgraphic[16] ),trunc(ygraphic[16])); 

moveto(trunc(xgraphic[6]),trunc(ygraphic[6])); 
lineto(trunc(xgraphic[11] ),trunc(ygraphic[11])); 

moveto(trunc(xgraphic[7]),trunc(ygraphic[7])); 
lineto(trunc(xgraphic[10] ),trunc(ygraphic[10])); 

END; 

(* 	 PROCEDURE GETTING POINT3D 

PROCEDURE GE1TING_POINT3D; 
VAR i,J 	: integer; 

openfile : text; 
BEGIN 

assign(openfile,'c:\thesis\DATASET2.TXT); 
Rewrite(openfile); 

for i := 1 TO 16 do 
begin 

FOR J := 1 TO 3 DO write(openfile,point[ij]:8:4); 
writeln(openfile); 

end; 
writeln(openfile);writeln(openfile); 
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writeln (openfile,degrex/(2*pi): 8 :4,degrey/(2*pi):8 : 4,degrez/(2*pi): 8 :4) ; 

close(openfile); 

END; 

PROCEDURE FRAME; 

BEGIN 

( RECTANGLE(1,17,640,480);) 
FLOODFILL(300,20,black); 
setcolor(GREEN); 

MOVET0(50,18);LINET0(638,18);LINET0(638,478); 
LINET0(50,478);LINET0(50,18); 

END; 

(************* MAIN PROGRAM***********) 

BEGIN 
continue:='T'; 
OPEN_GRAPHIC_MODE; 
repeat 

setcolor(black); 
frame; 

initial_image;coordinate_image(325,200); 
c alc ulation_drawing (325,200) ; setcolor(green); 
{ DRAWING_IMAGE;coordinate_image(325,200); ) 

INPUT_VIEWER; 

if continue=T then 
begin 

ROTATION_Z_AXIS(degreZ); 

(* object *) 
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CALCULATION_OF_TRANSFORMATION; 
ROTATION_Y AXES(degreY); 
CALCULATION_OF_TRANSFORMATION; 
ROTATION_X AXES(degreX); 
CALCULATION_OF_TRANSFORMATION; 
CALCULATION_OF_NEWCOORDINATE; 
GETTING_POINT3D; 
coordinate_image(325,200); 
CALCULATION_DRAWING(325,200); 

DRAWING_IMAGE; 

READLN 
end 

until continue='F'; 
CLOSEGRAPH; 

END. 
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