3-D Sensing of Object Orientation using
 Back Propagation Neural Network

Muhammad Dimyati bin Abdullah

A thesis submitted in partial fulfilment of the requirements for the Master of Technology program in Information Technology

 inDepartment of Electrical \& Electronic Engineering
University of Tasmania Australia

Supervisor
Professor D. T. Nguyen
1992

Abstract

This thesis is about the application of Neural Networks in the sensing of an object position relative to a reference point. An object is rotated a certain angle in space and a Neural Network was then used to estimate its orientation. Previous methods had always been to transform 3-dimensional data into 2 -dimensional data before presenting it to the network. In this thesis 3 -dimensional data is used as the input to the Neural Network.

Training data was obtained via two methods, the first one was through a Pascal program and the other through a commercial CAD software. The input to the Backpropagation Network are coordinates of the object vertices and the target output are the rotation parameters for each particular position.

Acknowledgment

Firstly I would like to thank my supervisor Professor D. T. Nguyen for his guidance and assistance in order for me to pursue this very interesting subject. I would also like to thank Dr. D. H. Lewis who is the course coordinator.

I am also indebted to my wife who has been most understanding and helpful during the duration of the course, and to my children who are a source of joy and purpose in times of difficulties.

I would also like to extend my gratefulness to all my coursemates and other Post Graduate students for the assistance and enlightening discussion that I had with them. Not least, I would also like to extend my thanks to Ms Judy Bonsey the Department Secretary and Ms Sarah Day of ELICOS for all their help.
Table of Contents Page
1 Introduction 1
2 Object Recognition 4
2.1 2-D Vision 4
2.2 3-D Vision 7
2.3 Tactile Sensing 8
3 Artificial Neural Network
3.1 Introduction 12
3.2 Classification of Neural Networks 14
3.3 The Back Propagation Neural Network 16
3.4 Network Dynamics 17
3.5 The Learning Parameters 19
4 Graphic Transformation
4.1 Using Autocad 21
4.2 3-D Graphic Program 21
4.3 The Transformation Matrix 22
5 Simulations 26
6 Results and Discussions 28
7 Conclusions 43
References
Appendix A
Appendix B

Chapter 1

INTRODUCTION

The determination of an Object Orientation or Object Pose Estimation is currently being investigated in the realm of computer vision systems by researchers such as T.Poggio and S. Edelman[1], B.Wirtz and C.Maggioni[2], M.W. Wright and F. Fallside[3] who have obtained results which show that the recovery of an object pose was possible when using Artificial Neural Network(ANN) such as the Radial Basis Function, Kohonen and Back Propagation. However in all the three research works carried out, 3D data was all transformed into 2-D data before being presented to their respective ANNs. In the field of machine vision the determination of an object pose plays an important part in object recognition.

Arguably one may question the point of having 3-D data when a computer vision system can only display 2-D data on an image plane. Unfortunately not all objects can be identified by vision only; in cases where vision is impossible, the sense of touch or Tactile Sensing is much more appropriate. In the field of Surveying data is collected using laser-scan technique and its coordinates are in 3-D data format. In Computer Aided Design and Computer Aided Manufacturing(CAD/CAM) the measurement of a product's dimensions uses the Coordinate Measuring Machine(CMM) as part of its Quality Control(QC). This process also generates data in 3-D data format.

With the combination of 2-D vision and 3-D data we can perhaps make the process of QC more efficient in selecting or rejecting a particular product.

If a particular computer vision system can recognise an object in 2-D vision as well as correlating it with 3-D data then the system will be a much robust one. In the field of speech recognition integration of visual and auditory speech signals[4] it was shown that better results were obtained when they were fused together compared to if they were used on their own. Perhaps this can give us a guideline in the fusion of 3-D data with 2-D image in order obtaining a much improved computer vision system.

This thesis is about the use of an Artificial Neural Network to sense an object's position using 3-D input data where the output data is the angle of rotation about the X, Y and Z -axis through which the object had been rotated. The simple Backpropagation Neural Network was used in conjunction with a CAD system to demonstrate the capability of the ANN to recognise and sense object position when presented with 3-D data. It will also attempt to show the ability of the Back Propagation ANN to identify the object even if there are certain hidden surfaces.

This thesis will go through the basics of Neural Computing as well as some of the transformation technique used in the generation of 3-D modelling in Computer Aided Design(CAD). It will also look at problems faced by 2-D
vision object recognition and suggest how 3-D data can be obtained using some of the presently available scanning and tactile sensing techniques.

Chapter 2

OBJECT RECOGNITION

In the field of robotics object recognition is a precursor to many other important robotic tasks, including grasping, manipulation, assembly and inspection. Before attempting such complex robotic tasks, there is the need to be able to correctly recognise the relevant objects with respect to its surrounding in the first place. Object recognition also means understanding an object's position and orientation in space in a viewpoint-independent manner [5].

The following sections present some of the techniques used in object recognition, which include vision only system, range scanning and tactile sensing.

2.1 2-D VISION

Most object recognition research works have been spurred by the ease with which biological systems process visual inputs. Unfortunately, the task of understanding a scene from machine vision only has proved to be difficult. The analogy of an image matrix to the human retina has merely served to illuminate the powerful kinds of processing taking place in the visual cortex, processing that is poorly understood at present. The research of David Marr
and Hildreth[6] has also tried to isolate those parts of human visual information processing that seem to operate independently.

Stages used in machine vision usually involve image acquisition using static images-with the object being carefully illuminated. The process of thresholding is then made to manipulate the grey level, thus establishing a clear contrast upon the image in order to establish gradients for the object's contour. This process also produce a binary image. The next step is edge detection by convolving the image with the Laplacian of a Gaussian, also known as Marr-Hildreth edge detection operator[6]. This process is usually a computationally burdensome process. A chain coding process is then made in order to obtain the perimeter(p) of the object as well as determining its $\operatorname{area}(\mathrm{A})$. The ratio of $\mathrm{p}^{2 / A}$ is obtained and compared to existing database. If similar ratio value exist in the database then the object is identified. Other techniques being tried are segmentation and region analysis.

These image-space recognition systems perform recognition tasks on image properties (2-D projective properties) rather than 3-D properties. These systems are not viewpoint-independent but seek to recognise image properties derived from a number of predetermined viewpoints. Recognition occurs when one of these characteristic views is matched with an image space model of the object. Oshima and Shiraj[7] used image space predictions about polyhedra and cylinders to perform recognition. Multiple learning views are computed from an object and are stored in a database for later use. Image
space curves and regions obtained via the methods mentioned above are then matched with one of these views. Fisher[8] used an approach in which certain weak constraints about a surface's images over different viewpoints were computed to aid in determining the object's position and orientation.

Image space matching is not powerful because it loses the inherent sense of the 3-D object to be recognised. The projective space approach fails to maintain the consistent structure of an object across the many possible visual interpretations. The question of "How many characteristic views of an object are sufficient?" is open; clearly the answer is many. Establishing a metric on this kind of matching is difficult especially if the sensed view is between two stored views. Therefore 2-D projective invariants are still weak, and are not robust enough to support consistent matching over all viewpoints.

Other problems in 2-D vision are when objects are presented in different poses, with different surface textures, and with lighting problems which give rise to specularity or reflection upseting the silhouette algorithms thus making recognition impossible. More complicated objects having slots and holes will definitely not be identified by such vision system. What all the 2-D vision systems require is a way of inferring and understanding the 3-D structure of the objects to be recognised. In a CAD/CAM environment the parts produced are usually quite complicated with many hidden surfaces, therefore a more integrated approach might be more suitable in this matter; after all seeing is not always believing.

While some progress has been made, the state of machine vision is still primitive. Most commercial machine vision systems available today use simple template matching of the 2-D silhouettes. Recently some application with the use of ANN in machine vision had begun to be available commercially[9].

2.2 3-D VISION

At present most machine vision works are centred on the problem of obtaining depth and surface orientation from an image. 3-D data acquisition must cover a wide spectrum of needs, for example, the detailed shape of an object in the scene might be needed instead of the mere range value of its surface elements. If a full 3-D description is required, view integration must be performed on multiple partial views of the object. In some cases, sparse 3-D data is all that is needed to understand a scene, however, in numerous applications, the 3-D structure of the scene must be known and a 3-D range sensing method must be implemented.

Generally speaking range sensing method can be classified into two types ie active or passive[10]. In the latter case, scene illumination is provided by the ambient light, while in the former case, a special lighting device illuminates the scene. Passive ranging technique includes Photometric Stereo, Shape from Shading, Range or Shape from Texture and Range from Passive Stereo.

These methods are usually concerned with the recovery of surface orientation from one or multiple grey-level pictures.

Most active ranging techniques have little to do with the human visual system. Their purpose is neither to model nor to imitate biological processes but rather to provide an accurate range image to be used in a given application involving 3-D operations. Active techniques include Striped Lighting and Active Stereo, Moire Shadows, Laser or Ultrasonic Time-ofFlight Techniques, Conventional or Synchronised Triangulation Range finder, Range from defocusing and Intensity-Guided Rangefinder.

Problems of using range sensing technique are the potentially hazardous nature of some of the methods using laser imaging. In Photometric stereo, great demands are made on the illumination of the scene and on proper understanding of the reflectance properties of the objects to be viewed. All the rangefinder techniques mentioned above face the same major problem: the 3-D data provided conveys information only for the "visible' part of the scene. If a full 3-D image of an object is required, several images must be acquired from different positions and view integration must be performed.

2.3 TACTILE SENSING

In a quality control process the task is usually to recognise the object, inspect it, then finally classify it into various set standards. No matter how simple or
complex the task is, a conceptual approach always includes object manipulation, image creation, image processing, and object classification, as described in Figure 1.

Figure 1.0 CAD/CAM inspection process

During manual inspection, a human might simply manipulate the object with his/her hand, look for specific features on it, compare what he sees to some criteria, and decide if the comparison is good enough. At the most automated levels, there is no human interaction. A robot places the object in a system with some sensing mechanism, a computer automatically initiates imaging and constructs an image from the sensor output, and the computer logic processes the image data and classifies the object as good or bad.

Therefore from the above scenario it can be seen that the element of tactile sensing is also needed to give a comprehensive picture of the object. Tactile
sensing is like imitating the human fingers in manipulating the object; similiarly machine vision is like trying to imitate the vision of a human.

Tactile sensing using a Coordinate Measuring Machine can be used to acquire 3-D data of an object. These sensors vary in their ability to sense a surface, at the lowest level, simple binary contact sensor such as microswitches report 3D coordinates of a contact point. In fact this method is being used extensively in industry in the process called reverse engineering. In this process a sensor traces the surface of the components to be copied. The 3-D data obtained is stored in a database. A similar component can then be machined out of the collected data.

The next level of tactile sensor reports grey values that are proportional to the force or displacement of the sensor. The most capable of these sensors can also sense surface orientation, returning a surface normal vector.

Example of object recognition using tactile sensors is the work of Kinoshita, Aida and Mori[11]. They utilised a five-fingered hand containing 22 binary sensors to discriminate between objects. Each object was grasped from a number of different vantage points and the resulting binary pattern recorded. A discriminating plane was calculated in the sensor space from these learning samples. Then, the object was grasped a number of times and its membership in the discrimination space was computed. This work was able to distinguish a square pillar from a cylinder at 90% reliability.

In this thesis simulated 3-D data was obtained from CAD drawings in the initial form of wire frame drawings. These drawings can be further manipulated to produce solid drawings as well as rendering and shadowing.

Chapter 3

ARTIFICIAL NEURAL NETWORKS

3.1 INTRODUCTION

An Artificial Neural Network is a massively interconnected network of a large numbers of processing elements, called neurons or nodes. A neuron receives input stimuli from other neurons if they are connected to it or/and the external world. A neuron can have several inputs, but has only one output. This output however can be routed to the inputs of several other neurons. Each neuron has certain constant parameters associated with it. These are its threshold, transfer function and weights associated with its inputs. Each neuron performs a very simple arithmetic operation, i.e. it computes the weighted sum of its inputs, subtracts its threshold from the sum, and passes the result through its transfer function. The output of the neuron is the result obtained fom this function. The output of the neuron is therefore a mathematical function of its input and can be expressed as

$$
\mathrm{y}=f\left(\Sigma_{\mathrm{w}} \mathrm{x} \mathrm{x}_{\mathrm{i}}-\theta\right) \quad \mathrm{i}=0, \ldots, \mathrm{~N}
$$

Here, y is the output of a neuron, N is the number of inputs, w_{i} is the weight associated with input i, x_{i} is the value of input of input i, and θ is the threshold. The three most common transfer functions used in neural networks
are the hardlimiter, threshold and sigmoid non-linearities, as illustrated in Figure 2.

Figure 2. Activations/Transfer functions

Neural-net models are specified by the net topology, node characteristics and training or learning rules. The function of a neural net model is determined by these parameters. The net topology, or the architecture of the net determines the inputs of each node. The node characteristics (threshold, transfer function, and weights) determine the output of the node. The training or learning rule determines how the network will react when an unknown input is presented to it.

An important characteristic of ANN which lends them a degree of superiority over other systems is their ability to learn by example. Some types of neural net can be trained to perform tasks such as recognition by repeatedly presenting input patterns to the net. Depending on the type of net, the desired result may or may not be available to the net. This process of adaptation is
called learning. If the desired result is given to the net, the learning is supervised. If it is not, the learning is unsupervised.

A second characteristic that makes ANN superior to other recognition systems is its ability to tolerate noise in an input pattern. If a net has been trained sufficiently, it is capable of performing well even if input patterns are noisy or incomplete.

Another important aspect of ANNs which is of importance to this thesis is their ability to fuse information together in an optimal way. This ability can overcome the problem of integrating multiple views in object recognition as well as fusing different information collected from a multisensor system.

3.2 CLASSIFICATION OF NEURAL NETS

Figure 3 shows a taxonomy of six important neural nets used for classification of static input patterns. Nets can have either binary or continuous valued inputs. Binary inputs take on one of two possible values, while continousvalued inputs can take on any value in a specified range.

Both types can be supervised or unsupervised during training. During supervised training, the net is given the correct output along with the training pattern. The net produces an output based on its current weights, and compares it with the correct or target output. If there is a difference, the
weights are changed as a function of the difference between the outputs. Examples are the Hopfield net[12] and the Hamming net[12] with binary inputs, and the Back Propagation/Multilayer perceptron with continuous inputs. For the unsupervised training, no information concerning the correct output is provided to the net. The net constructs an internal model that captures regularities in input training pattern. In other words, the net forms its own exemplars(during training) by clustering input patterns which are similar to each other within a specified tolerance. Kohonen's feature-map-forming nets[12] are examples of this type of net.

In this thesis the Multilayer Perceptron or Back Propagation Neural Net is used in order to recognise the object as well as its orientation.

Figure 3. Classification of Neural Networks

3.3 THE BACK PROPAGATION NEURAL NETWORK

The Back Propagation(BP) network consists of input layer, hidden layer/s and an output layer, each layer however may contain a different number of nodes. The BP network is a supervised network where input as well as output sets of training vectors have to be presented to it for training purposes. Every node in the output layer is connected to every unit in the input layer. Figure 4 shows an example of a BP network.

Figure 4. Back Propagation Network with Hidden Layer

The output generated by the network is compared with the target output. The difference between output and target is the error signals which is then back propagated into the network and the corresponding weight changes at various nodes are then made until the output of the network is similar to the target output. Thus, a Back Propagation network learns a mapping function by repeatedly presenting patterns from a training set and adjusting the weights. Each pass through the training set is called a cycle.

Input patterns that are similar to each other produce output patterns that are similar because of the direct mapping of inputs to outputs in a two-layer network. A two-layer network cannot learn the exclusive-OR functions, therefore in order to learn any arbitrary mapping the network must have at least three layers.

3.4 NETWORK DYNAMICS

The activation of the units in the hidden layers constitutes an internal "representation" of the input patterns. These hidden units learn to encode features that are not explicitly present in the input patterns. By applying the Generalised Delta Rule(GDR), a multilayer network can learn to develop features that are necessary to perform the desired mapping. GDR is also known as the Hebbian learning algorithm and can be defined as follows:

1) Apply an input vector and calculate the output Y.
2) Calculate the weight changes using the equation below:

$$
\delta_{\mathrm{j}}=\left(\mathrm{t}_{\mathrm{j}}-\mathrm{o}_{\mathrm{j}}\right), \quad \Delta \mathrm{w}_{\mathrm{ji}}=\eta \delta_{\mathrm{j}} \mathrm{o}_{\mathrm{i}}
$$

where $\Delta \mathrm{w}_{\mathrm{ji}}$ is the correction associated with the weight from the ith neuron in the input layer to the j th neuron in the output layer. O_{i} is the ith component of the input vector and is η the "learning rate" which controls the size of the weight changes.

The Back Propagation activation used in this thesis is the sigmoid activation function as shown in Figure 5.

1

$$
\begin{aligned}
& \mathrm{O}_{\mathrm{j}}= \\
& -0.5 \\
& \text { net }_{\mathrm{j}}=\theta_{\mathrm{j}}+\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{ji}} \mathrm{o}_{\mathrm{i}} \\
& 1+e^{\text {-netj }}
\end{aligned}
$$

Figure 5. Sigmoid Activation Function
$\mathrm{Net}_{\mathrm{j}}$ is the sigmoid activation function used to modify each weight, θ_{j} is the bias for unit j . The biases are also learned in the same manner in which the weights are learned. Unit activations range from -0.5 to 0.5 , and networks learn more quickly if the input patterns are scaled in this range.

The GDR guarantees a steepest gradient descent in the total root mean square(RMS) error. This measure is computed by summing the squares of the target minus the output for every output unit and for every pattern, averaging this, then taking the square-root as shown in the expression below:

where p is the pattern, o is the output unit, and t is the target output unit.

3.5 THE LEARNING PARAMETERS

Gradient descent is guaranteed if small weight changes are made, this however will take too long therefore a leaming rate η as mentioned earlier was introduced to speed it up. The learning rate is usually between 0.01 to 1 but for simpler problems it can be more than 1 . The aim of this is to set the learning rate as high as possible without making the RMS fluctuate significantly. Difficult problems have relatively constant error functions with
tiny solution regions, thus requiring a small η or less, and require many learning cycles. In order to increase learning rate a momentum term α [13] is added so as not to make RMS oscillate. The momentum term determines what portion of the previous weight changes will be added to the current weight changes. The total weight change equation then becomes:

$$
\Delta w_{j i}(t+1)=\eta\left(\delta_{j} o_{i}\right)+\alpha \Delta w_{j i}(t)
$$

where $\eta\left(\delta_{j} o_{i}\right)$ is the current weight change dictated by the GDR. In practice, the value of η and α are always adjusted until the total RMS error display shows a generally decreasing value with time.

Each weight matrix has its own learning rate and momentum term. By having control over the learning rate at each layer, one can effectively balance the speed at which the different layers adjust their weights. A further condition of true gradient descent in the total RMS error is that the weights be changed only after the entire training set has been processed.

Chapter 4

GRAPHICAL TRANSFORMATION

4.1 USING AUTOCAD

A 3-D object was created using $A U T O C A D ®[14]$ and stored in the computer, the object can be manipulated to rotate about X, Y or Z axis. For every new position the vertices of the object were recorded using the INQUIRY command of the CAD program. It was also possible to have a solid view of the object instead of a wireframe drawing using the HIDE command which removed hidden lines in the drawing.

4.2 3-D GRAPHIC PROGRAM

Another method used in this process to obtain the vertices' coordinates at various positions is to write a simple 3-D graphic program using Turbo Pascal. To specify a rotation transformation for an object, an axis of rotation(about which the object is to be rotated) as well as the amount of angular rotation must be designated. In 3-D, an axis of rotation can have plenty of spatial orientation. The easiest rotation axes to handle are those that are parallel to the coordinate axes. This method of rotation about the three coordinate axes can also be used to produce a rotation about any arbitrarily specified axis of rotation. The convention adopted in this thesis is for counter clockwise rotations about a coordinate axis produces a positive rotation
angles, if we are looking along the positive half of the axis toward the coordinate origin. The Pascal program is in Appendix B.

4.3 THE TRANSFORMATION MATRIX

For the rotation about X, Y and Z axis the coordinates of the vertices are submitted to the following transformations matrix;
$R x=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 \\ 0 & -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$R y=\left[\begin{array}{rrrr}\cos \theta & 0 & -\sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathrm{Rz}=\left[\begin{array}{cccc}\cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Translation of the coordinates is specified by the following matrix

$$
\mathrm{T}_{\mathrm{L}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\mathrm{x} & \mathrm{y} & \mathrm{z} & 1
\end{array}\right]
$$

In order to visualise the shape of the object, lines are drawn connecting all the vertices, however these lines are not being used as part of the training set for the Neural Network. The Turbo Pascal program was used to generate the coordinates for various positions of the object. This values were then crosschecked with those values obtained using Autocad.

A problem of using 3-D data is the amount of transformation that must be undertaken in order to rotate the various vertices about the X, Y and Z -axis. If the object is rotated about an arbitrary axis where the specifications for the rotation axis and rotation angle are given, then the transformation procedure is as follows:

1. Translate the object so that the rotation axis passes through the coordinate origin.
2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.
3. Perform the specified rotation.
4. Apply inverse rotations to bring the rotation axis back to it original orientation.
5. Apply the inverse translation to bring the rotation axis back to its original position.

Therefore the complete transformation is as follows;

$$
\left[\begin{array}{lll}
x, & y & z
\end{array}\right]^{\prime}=T_{L^{-1}} \cdot R^{-1} \cdot R^{-1} \cdot R z^{-1} \cdot R z \cdot R y \cdot R x \cdot T_{L}[x, y, \quad z]
$$

However in this thesis the rotation of the object was made about it centre of gravity which acted as the point of coordinate origin, thus eliminating the need to translate or inverse translate the object. Therefore the only transformations needed are as follows:

$$
\left[\begin{array}{ll}
\mathrm{x}, & \mathrm{y}, \\
\mathrm{z}
\end{array}\right]^{\prime}=\operatorname{Rz} \cdot \operatorname{Ry} \cdot \operatorname{Rz} \cdot[\mathrm{x}, \mathrm{y}, \mathrm{z}]
$$

In this case the object is a simplistic drawing of a car as in Figure $6 \& 7$.

Figure 6. Wireframe drawing

Figure 7. 3-D Solid Drawing

Chapter 5

SIMULATIONS

Simulations were carried out for two cases; the first one was concerned with the use of 3-D data of the object vertices' coordinates for a variety of poses. The first set of 3-D data were simulated as though it was obtained via a tactile sensing mechanism and the problems of hidden vertices were therefore eliminated. The input values for the Back Propagation network were the various vertices' coordinates and the target values are the rotational parameters. Since the object can assume a large number of positions in space, the rotational parameter were limited between 0-30 degrees with 5_degree intervals for all axes. The training data set(SET12345.DAT) and the test data set(TESTDATA.DAT) that were used are in Appendix A. The first BP network is called NET1.

As for the second simulation, the data used includes X, Y and Z coordinates, but some coordinates were set to zero in order to represent the hidden vertices or points. For viewing purposes the object was only rotated about the Z -axis, ie. simulated rotation of the object on a flat plane with the observer looking downwards 45 degrees from left hand side of the reference car position. For every position a hide command was used to produce a solid drawing thus blocking away the hidden vertices. Rotation about the Z -axis were made from 0-360 degrees with 15_degree intervals in order to produce training data set. The training data set(HIDE15.DAT) and the test data
set(HIDEDATA.DAT) for these are in Appendix A, and the second BP network is called NET2.

The second simulation also simulates how 3-D data obtained by tactile sensing can be integrated with another set of 3-D data obtained through 3-D vision system. This is assumes that the vision system is viewing from a fixed point, therefore there is a possibility that it cannot detect hidden vertices.

All the data were normalised between 0.5 and -0.5 . This setting was recommended by the maker of the Back Propagation Network network software being used ie. ANSIM ${ }^{\circledR}$ [15]. The target outputs are the ratio of (angle of rotation)/360. Damaged weights were set between 0.5 to -0.5 , learning rate was set at 0.1 and the momentum was set at 0.6 , however these values were occasionally changed in order to speed up training or to reduce the RMS error fluctuation. Training was done until the RMS error dropped below 0.0005. The Back Propagation network used for NET1 and NET2 had two hidden layers each having 49 nodes. Both NET1 and NET2 which had been trained is available in the diskettes enclosed with this thesis.

All the training data needed to be processed earlier in order to eliminate repeated data as well as conflicting data, such as those which had the same input data but different output data, ie the angles of rotation are not the same but the input data is similar.

Chapter 6

RESULTS AND DISCUSSIONS

For the first simulations using NET1, the test data TESTDATA.DAT is used. The results are illustrated in Figure 8 to Figure 15 as well as in Table 1.0 .

Figure 8 uses test data 11 which is part of the training data set. As expected the output position ($\mathrm{R}_{\text {out }}$) produced by the network is very close to the target value $\left(\mathrm{R}_{\text {true }}\right)$. Figure 8 shows that the output image is superimposed upon the target image. The image of the car that is lying parallel to the Y -axis serves as a reference position as well as the initial position of the car.

However test data 2 and 4 are not the values that are used in the training of the network, but these values lie within the range of the training data set. Figure 9 and 10 show that when test data 2 and 4 are presented to the network, they were able to estimate its position correctly as well.

Test data 6 and 8 are similar to test data 2 and 4, but these data set were purposely corrupted. Test data 6 has one set of corrupted vertice coordinates, while test data 8 had 2 sets of corrupted vertices' coordinates. From the table

$\begin{aligned} & \text { TEST } \\ & \text { DATA } \end{aligned}$	TRUE ROTATION			OUTPUT ROTATION	$\mid \mathbf{R}_{\text {true }}$	\% ERROR \|
	$\mathbf{R}_{\text {trù }}$			$\mathbf{R}_{\text {out }}$		
		Angle	Normalised	Normalised		
	Rx	0	0.0000	0.0009	0.0009	0.09
1	Ry	0	0.0000	0.0006	0.0006	0.06
	Rz	0	0.0000	0.0007	0.0007	0.07
	Rx	3	0.0083	0.0077	0.0006	7.23
2	Ry	14	0.0389	0.0390	0.0001	0.25
	Rz	29	0.0806	0.0814	0.0008	0.99
	Rx	7	0.0194	0.0192	0.0002	1.03
3	Ry	7	0.0194	0.0194	0.0000	0.00
	Rz	7	0.0194	0.0192	0.0002	1.03
	Rx	21	0.0583	0.0584	0.0001	0.17
4	Ry	6	0.0167	0.0165	0.0002	1.20
	Rz	11	0.0306	0.0306	0.0000	0.00
	Rx	15	0.0417	0.0417	0.0000	0.00
5	Ry	24	0.0667	0.0669	0.0002	0.30
	Rz	1	0.0028	0.0028	0.0000	0.00
	Rx	3	0.0083	0.0049	0.0034	40.96
6	Ry	14	0.0389	0.0115	0.0274	70.44
	Rz	29	0.0806	0.0923	0.0117	14.52
7	Rx	7	0.0194	0.0085	0.0109	56.19
	Ry	7	0.0194	-0.0080	0.0278	141.89
	Rz	7	0.0194	0.0295	0.0101	52.06
	Rx	21	0.0583	0.0309	0.0274	47.00
8	Ry	6	0.0167	0.0117	0.0005	3.00
	Rz	11	0.0306	0.0721	0.0415	135.62
9	Rx	30	0.0833	0.0783	0.0050	6.00
	Ry	30	0.0833	0.0825	0.0008	0.96
	Rz	30	0.0833	0.0934	0.0101	12.12
	Rx	30	0.0833	0.0633	0.0200	24.01
10	Ry	160	0.4444	0.1244	0.3200	72.01
	Rz	333	0.9240	0.1515	0.7725	83.60
11	Rx	30	0.0833	0.0822	0.0011	1.32
	Ry	30	0.0833	0.0828	0.0005	0.60
	Rz	30	0.0833	0.0825	0.0008	0.96

Table 1.0 RESULT1
above the percentage error is quite high, however looking at it in Figure 11 and 12 the total deviation is not very large, especially the one in Figure 11.

Test data 9 uses test data 11 which is part of the training data set. However test data 9 had 3 set of corrupted vertices' coordinates. From table 1.0 above as well as Figure 13 it can be shown that NET1 still manage to estimate the position of the car image. The percentage error is also significantly smaller than that obtained when using data 6 and 8 .

Figure 14 shows the result of using a test data which does not lie within the training data set, therefore the network fails to identify its position. For test data 7 , even though the percentage error is very high, the deviation observed in Figure 15 is not as drastic as that in Figure 14.

Generally speaking NET1 is able to identify correctly all the 3-D test data sets which were presented to it, provided these data sets were not corrupted and lay within the preset limits.

For the second simulation, 3-D data sets as well as data sets with some hidden vertices(hidden vertices are set to zero) are used as the training set. However for this simulation the image of the car is only rotated about the Zaxis and the viewing angles are as mentioned in Chapter 5.

웅옹
욖웅
呙品

जSBMEs, SETA SET $\%$

Table 2 presents the results obtained after using the test data HIDEDATA.DAT for NET2.

Table 2 RESULT2

The results obtained from NET2 show that it manages to identify all the test data presented to it. Figure 16 and 17 are the illustrations for test data 5 and 9. Due to the complexity of merging two solid drawings to illustrate the success of NET2 in identifying the pose of the object, some vivid imagination is called for. In the second simulation, test data 1 and 2 were also used as part of the training data set of NET2 and it is being used here as a control.

Results in Table 2 also show that the degree of accuracy in determining the object position is better compared to that obtained in the first simulation. In the first simulation, test data 6 has one corrupted data, and the percentage error in the output was quite high. NET2 is able to determine the object position correctly eventhough the test data presented to it has corrupted data. This is because NET2 had been trained with two sets of complementary 3-D data set, with one sets having some coordinates corrupted in order to represent it as hidden vertices or points.

Figure 16. 2nd Simulation - Test data 5.

Figure 17: 2nd Simulation - Test data 9.

Chapter 7

CONCLUSIONS

From the results obtained in the simulations, the following conclusions can be drawn;

* The Back Propagation neural network is able to learn to estimate the pose of an object relative to a standard view using 3-D data.
* The integration of full 3-D data plus data having some hidden vertices makes the Network more accurate in estimating object position.
* The fusion of 3-D data obtained different sensors is possible using Neural Network thus making the object recognition system more robust.

The technique used in this thesis does have its limitations such as;

* To estimate the pose position for the entire viewing sphere a large training data set had to be produced. Since this thesis used a Personal Computer, severe constraints were put on computer speed and memory.
* Preprocessing of the solid model feature is a necessary step before presenting it to the network. This involves a tedious cross-checking of training data(in order to root out repeated data sets and contradicting data sets) and the determination of hidden vertices.

It is hoped that in future we can utilise this system using real object as well as running it on a CAD/CAM system as part of the Quality Control process. With this system perhaps a more robust object recognition system can be implemented.

References

1. T.Poggio and S. Edelman, "A network that learns to recognise threedimensional objects," NATURE 343:263-266, 18 Jan. 1990.
2. B. Wirtz and C. Maggioni, " 3D-Pose Estimation by an Improved Kohonen net.," International Workshop on Visual Form, Capri. Plenum press, 1991.
3. M.W. Wright and F. Fallside, " Object Pose Estimation by Neural Network," University of Cambridge, UK.
4. Ben P. Yuhas, Moise H. Goldstein, Jr, and Terrence J. Sejnowski, "Integration of Acoustic and Visual Speech Signals Using Neural Networks," IEEE Communications Magazine - Nov. 1989 pp. 65-71.
5. Peter K. Allen, "Robotic Object Recognition Using Vision and Touch," Kluwer Academic Publishers - 1987, pp. 4
6. David Marr and Hildreth, "Theory of Edge detection," Proc. Royal Society of London Bulletin, Vol. 204, pp. 301-328, 1979.
7. Oshima, M. and Y. Shiraj, "Object recognition using three dimensional information," IEEE trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, no. 4, pp. 353-361, July 1983
8. Fisher, R. B, " Using Surfaces and Object Models to Recognize Partially Obscured Objects," Proc. IJCAI 83, pp. 989-995, Karlsruhe, August 1983. Extracted from "Robotic Object Recognition Using Vision and Touch," by Peter K. Allen, Kluwer Academic Publishers - 1987, pp. 15.
9. "Neural Computing from laboratory into industry," The Journal of the Instituition of Engineers Australia Vol 6 No 9, 15 May 1992 pp.16-18.
10. Denis Poussart and Denis Laurendeau, "3-D Sensing for Industrial Computer Vision," - Edited by Jorge L.C. Sanz in "Advances in Machine Vision," (Springer-Verlag, Germany - 1988), p.122-159.
11. Kinoshita, G., S. Aida and M. Mori, " A pattern cassification by dynamic tactile sense information processing," Pattern Recognition, vol. 7, pp.243-250, 1975. Extracted from "Robotic Object Recognition Using Vision and Touch," by Peter K. Allen, Kluwer Academic Publishers - 1987, pp. 64-65.
12. Richard p. Lippmann, "An introduction to computing with Neural Nets," IEEE ASSP magazine, Vol 4, No. 2, April 1987.
13. J. L McClelland and D.E. Rummelhart, "Explorations in Parallel Distributed Processing," MIT Press, 1988.
14. AUTOCAD - Copyright (C) Autodesk, Inc.
15. ANSIM - Copyright (C) Science Applications International Corporation.

Appendix A

Due to the large amount of training data sets and test data sets, the print out will be more than a hundred pages. In order to save time and effort all the following informations are available in the enclosed diskette.

SIMULATION I

Training data sets text form
Training data sets data form
Trained BP network program
Test data sets
Results of Simulation I

SIMULATION II

Training data sets text form
Training data sets data form
Trained BP network program
Test data sets
Results of Simulation II

Filename

SET12345.TXT
SET12345.DAT
NET1
TESTDATA.TXT
RESULT1.TXT

Filename

HIDE15.TXT
HIDE15.DAT
NET2.NET
HIDEDATA.TXT
RESULT2.TXT

TESTDATA.TXT

TRAIN 3, 16, 3, 1
/* Input vector 1 : */
$-0.125000,-0.300000,-0.050000$, $-0.125000,0.200000,-0.050000$, $0.125000,0.200000,-0.050000$, $0.125000,-0.300000,-0.050000$, $-0.125000,-0.300000,0.000000$, $-0.125000,-0.150000,0.000000$, $-0.125000,0.150000,0.000000$, - $0.125000,0.200000,0.000000$, $0.125000,0.200000,0.000000$, $0.125000,0.150000,0.000000$, $0.125000,-0.150000,0.000000$, $0.125000,-0.300000,0.000000$, $-0.075000,-0.100000,0.050000$, $-0.075000,0.100000,0.050000$, $0.075000,0.100000,0.050000$, $0.075000,-0.100000,0.050000$,
/* Output vector 1 : */ $0.000000,0.000000,0.000000$,
/* Input vector 2 : */
$-0.245300,-0.209500,-0.063500$, $0.002300,0.224100,-0.088800$, $0.214400,0.106500,-0.028400$, $-0.033200,-0.327100,-0.003000$, $-0.254600,-0.201400,-0.015000$, $-0.180400,-0.071300,-0.022600$, $-0.031800,0.188900,-0.037900$, $-0.007000,0.232300,-0.040400$, $0.205100,0.114700,0.020100$, $0.180400,0.071300,0.022600$, $0.031800,-0.188900,0.037900$, $-0.042500,-0.319000,0.045500$, $-0.122500,-0.043300,0.035400$, $-0.023400,0.130200,0.025200$, $0.103900,0.059600,0.061500$, $0.004800,-0.113900,0.071700$,
/* Output vector 2 : */
$0.008300,0.038900,0.080600$,
/* Input vector 3 : */
$-0.158600,-0.286700,-0.028200$, $-0.090700,0.205000,-0.088700$, $0.155500,0.174800,-0.058200$, $0.087700,-0.316900,0.002300$, $-0.163900,-0.279900,0.021100$, $-0.143500,-0.132400,0.002900$, $-0.102800,0.162600,-0.033400$, $-0.096000,0.211800,-0.039400$, $0.150300,0.181500,-0.009000$, $0.143500,0.132400,-0.002900$, $0.102800,-0.162600,0.033400$, $0.082400,-0.310100,0.051500$, $-0.092700,-0.082500,0.052200$, -0.065600, $0.114200,0.028000$, $0.082200,0.096000,0.046300$, $0.055100,-0.100600,0.070500$,
/* Output vector 3 : */ 0.019400, 0.019400, 0.019400,
/* Input vector 4 : */ $-0.185100,-0.267600,0.047400$, $-0.077700,0.187100,-0.130800$, $0.166400,0.139600,-0.104600$, $0.058900,-0.315000,0.073600$, $-0.186500,-0.249100,0.093900$, $-0.154300,-0.112700,0.040400$, $-0.089800,0.160100,-0.066500$, $-0.079000,0.205600,-0.084300$, $0.165000,0.158100,-0.058200$, $0.154300,0.112700,-0.040400$, $0.089800,-0.160100,0.066500$, $0.057600,-0.296500,0.120000$, $-0.096100,-0.058200,0.074200$, $-0.053100,0.123700,0.002900$, $0.093300,0.095200,0.018600$, $0.050400,-0.086600,0.089900$,
/* Output vector 4 : */
$0.058300,0.016700,0.030600$,
/* Input vector 5 : */
$-0.131400,-0.300500,-0.024000$, $-0.070300,0.181500,-0.142300$, $0.158000,0.177500,-0.040600$, $0.097000,-0.304500,0.077700$, $-0.150800,-0.287200,0.020100$, $-0.132500,-0.142600,-0.015400$, $-0.095900,0.146600,-0.086300$, $-0.089800,0.194800,-0.098100$, $0.138600,0.190800,0.003600$, $0.132500,0.142600,0.015400$, $0.095900,-0.146600,0.086300$, $0.077500,-0.291200,0.121800$, $-0.100100,-0.081900,0.037300$, $-0.075700,0.110900,-0.010000$, $0.061300,0.108500,0.051000$, $0.036900,-0.084300,0.098300$,
/* Output vector 5 : */ $0.041700,0.066700,0.002800$,
/* Input vector 6 : */
$0.000000,0.000000,0.000000$, 0.002300, 0.224100, -0.088800, $0.214400,0.106500,-0.028400$, $-0.033200,-0.327100,-0.003000$, $-0.254600,-0.201400,-0.015000$, $-0.180400,-0.071300,-0.022600$, $-0.031800,0.188900,-0.037900$, -0.007000, 0.232300, -0.040400, $0.205100,0.114700,0.020100$, $0.180400,0.071300,0.022600$, $0.031800,-0.188900,0.037900$, $-0.042500,-0.319000,0.045500$, $-0.122500,-0.043300,0.035400$, -0.023400, 0.130200, 0.025200, $0.103900,0.059600,0.061500$, $0.004800,-0.113900,0.071700$,
/* Output vector 6 : */ 0.008300, 0.038900, 0.080600,
/* Input vector 7 : */
$0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $0.155500,0.174800,-0.058200$, $0.087700,-0.316900,0.002300$, $-0.163900,-0.279900,0.021100$, $-0.143500,-0.132400,0.002900$, $-0.102800,0.162600,-0.033400$, $-0.096000,0.211800,-0.039400$, $0.150300,0.181500,-0.009000$, $0.143500,0.132400,-0.002900$, $0.102800,-0.162600,0.033400$, $0.082400,-0.310100,0.051500$, $-0.092700,-0.082500,0.052200$, - $0.065600,0.114200,0.028000$, $0.082200,0.096000,0.046300$, $0.055100,-0.100600,0.070500$,
/* Output vector 7 : */
$0.019400,0.019400,0.019400$,
/* Input vector 8 : */
$0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, 0.000000, 0.000000, 0.000000, $0.058900,-0.315000,0.073600$, $-0.186500,-0.249100,0.093900$, $-0.154300,-0.112700,0.040400$, $-0.089800,0.160100,-0.066500$, $-0.079000,0.205600,-0.084300$, $0.165000,0.158100,-0.058200$, $0.154300,0.112700,-0.040400$, 0.089800, -0.160100, 0.066500, $0.057600,-0.296500,0.120000$, $-0.096100,-0.058200,0.074200$, $-0.053100,0.123700,0.002900$, $0.093300,0.095200,0.018600$, $0.050400,-0.086600,0.089900$,
/* Output vector 8 : */
$0.058300,0.016700,0.030600$,
/* Input vector 9 : */ $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $-0.150800,-0.287200,0.020100$, $-0.132500,-0.142600,-0.015400$, $-0.095900,0.146600,-0.086300$, $-0.089800,0.194800,-0.098100$, $0.138600,0.190800,0.003600$, $0.132500,0.142600,0.015400$, $0.095900,-0.146600,0.086300$, $0.077500,-0.291200,0.121800$, $-0.100100,-0.081900,0.037300$, $-0.075700,0.110900,-0.010000$, $0.061300,0.108500,0.051000$, $0.036900,-0.084300,0.098300$,
/* Output vector 9 : */ $0.041700,0.066700,0.002800$,
/* Input vector 10 : */
$0.201400,-0.217000,-0.143000$, $0.081000,0.207600,0.091900$, $-0.128300,0.101000,0.177400$, $-0.007900,-0.323700,-0.057500$, $0.176900,-0.201500,-0.183700$, $0.140800,-0.074100,-0.113200$, $0.068500,0.180700,0.027700$, $0.056500,0.223200,0.051200$, - $0.152800,0.116500,0.136700$, $-0.140800,0.074100,0.113200$, $-0.068500,-0.180700,-0.027700$, $-0.032400,-0.308100,-0.098200$, $0.062300,-0.037400,-0.113300$, $0.014200,0.132500,-0.019400$, $-0.111400,0.068500,0.031900$, $-0.063300,-0.101400,-0.062000$,
/* Output vector 10 : */
$0.083300,0.444400,0.925000$,
/* Input vector 11 : */
-0.282400, -0.165800, 0.029900, $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $-0.094900,-0.274100,0.154900$, $-0.288600,-0.133400,0.067400$, $-0.191200,-0.039600,0.002500$, $0.003700,0.147900,-0.127500$, $0.036200,0.179100,-0.149100$, $0.223700,0.070900,-0.024100$, $0.191200,0.039600,-0.002500$, $-0.003700,-0.147900,0.127500$, $-0.101100,-0.241600,0.192400$, - $0.127500,0.002500,0.043300$, $0.002500,0.127500,-0.043300$, $0.115000,0.062500,0.031700$, $-0.015000,-0.062500,0.118300$,
/* Output vector 11 : */ $0.083300,0.083300,0.083300$,
/* Input vector 12 : */
$-0.282400,-0.165800,0.029900$, $0.042400,0.146700,-0.186600$, $0.229900,0.038400,-0.061600$, $-0.094900,-0.274100,0.154900$, $-0.288600,-0.133400,0.067400$, $-0.191200,-0.039600,0.002500$, $0.003700,0.147900,-0.127500$, $0.036200,0.179100,-0.149100$, $0.223700,0.070900,-0.024100$, $0.191200,0.039600,-0.002500$, $-0.003700,-0.147900,0.127500$, $-0.101100,-0.241600,0.192400$, $-0.127500,0.002500,0.043300$, $0.002500,0.127500,-0.043300$, $0.115000,0.062500,0.031700$, $-0.015000,-0.062500,0.118300$,
/* Output vector 12 : */
$0.083300,0.083300,0.083300$,

END

RESULT1.TXT

TRAIN 3, 16, 3, 1
/* Input vector 1 : */
$-0.125000,-0.300000,-0.050000$, $-0.125000,0.200000,-0.050000$, $0.125000,0.200000,-0.050000$, $0.125000,-0.300000,-0.050000$, $-0.125000,-0.300000,0.000000$, $-0.125000,-0.150000,0.000000$, - $0.125000,0.150000,0.000000$, $-0.125000,0.200000,0.000000$, $0.125000,0.200000,0.000000$, 0.125000, $0.150000,0.000000$, $0.125000,-0.150000,0.000000$, $0.125000,-0.300000,0.000000$, $-0.075000,-0.100000,0.050000$, $-0.075000,0.100000,0.050000$, $0.075000,0.100000,0.050000$, $0.075000,-0.100000,0.050000$,
/* Output vector 1 : */ $0.000900,0.000525,0.000679$,
/* Input vector 2 : */
$-0.245300,-0.209500,-0.063500$, $0.002300,0.224100,-0.088800$, $0.214400,0.106500,-0.028400$, $-0.033200,-0.327100,-0.003000$, $-0.254600,-0.201400,-0.015000$, $-0.180400,-0.071300,-0.022600$, $-0.031800,0.188900,-0.037900$, $-0.007000,0.232300,-0.040400$, $0.205100,0.114700,0.020100$, $0.180400,0.071300,0.022600$, $0.031800,-0.188900,0.037900$, $-0.042500,-0.319000,0.045500$, $-0.122500,-0.043300,0.035400$, $-0.023400,0.130200,0.025200$, $0.103900,0.059600,0.061500$, $0.004800,-0.113900,0.071700$,
/* Output vector 2 : */
$0.007657,0.039005,0.081384$,
/* Input vector 3 : */
$-0.158600,-0.286700,-0.028200$, $-0.090700,0.205000,-0.088700$, $0.155500,0.174800,-0.058200$, 0.087700, -0.316900, 0.002300, $-0.163900,-0.279900,0.021100$, $-0.143500,-0.132400,0.002900$, $-0.102800,0.162600,-0.033400$, $-0.096000,0.211800,-0.039400$, $0.150300,0.181500,-0.009000$, $0.143500,0.132400,-0.002900$, $0.102800,-0.162600,0.033400$, $0.082400,-0.310100,0.051500$, $-0.092700,-0.082500,0.052200$, - $0.065600,0.114200,0.028000$, $0.082200,0.096000,0.046300$, $0.055100,-0.100600,0.070500$,
/* Output vector 3 : */
$0.019228,0.019377,0.019226$,
/* Input vector 4 : */
$-0.185100,-0.267600,0.047400$, $-0.077700,0.187100,-0.130800$, $0.166400,0.139600,-0.104600$, $0.058900,-0.315000,0.073600$, $-0.186500,-0.249100,0.093900$, -0.154300, -0.112700, 0.040400, $-0.089800,0.160100,-0.066500$, $-0.079000,0.205600,-0.084300$, $0.165000,0.158100,-0.058200$, $0.154300,0.112700,-0.040400$, $0.089800,-0.160100,0.066500$, $0.057600,-0.296500,0.120000$, $-0.096100,-0.058200,0.074200$, $-0.053100,0.123700,0.002900$, $0.093300,0.095200,0.018600$, $0.050400,-0.086600,0.089900$,
/* Output vector 4 : */
$0.058492,0.016460,0.030509$,
/* Input vector 5 : */ $-0.131400,-0.300500,-0.024000$, $-0.070300,0.181500,-0.142300$, $0.158000,0.177500,-0.040600$, $0.097000,-0.304500,0.077700$, $-0.150800,-0.287200,0.020100$, $-0.132500,-0.142600,-0.015400$, $-0.095900,0.146600,-0.086300$, $-0.089800,0.194800,-0.098100$, $0.138600,0.190800,0.003600$, $0.132500,0.142600,0.015400$, 0.095900, -0.146600, 0.086300, $0.077500,-0.291200,0.121800$, $-0.100100,-0.081900,0.037300$, $-0.075700,0.110900,-0.010000$, $0.061300,0.108500,0.051000$, $0.036900,-0.084300,0.098300$,
/* Output vector 5 : */ $0.041697,0.066895,0.002844$,
/* Input vector 6 : */ $0.000000,0.000000,0.000000$, $0.002300,0.224100,-0.088800$, 0.214400, 0.106500, -0.028400, $-0.033200,-0.327100,-0.003000$, $-0.254600,-0.201400,-0.015000$, $-0.180400,-0.071300,-0.022600$, $-0.031800,0.188900,-0.037900$, $-0.007000,0.232300,-0.040400$, $0.205100,0.114700,0.020100$, $0.180400,0.071300,0.022600$, $0.031800,-0.188900,0.037900$, $-0.042500,-0.319000,0.045500$, $-0.122500,-0.043300,0.035400$, $-0.023400,0.130200,0.025200$, $0.103900,0.059600,0.061500$, $0.004800,-0.113900,0.071700$,
/* Output vector 6: */ 0.004870, 0.011496, 0.092333,
/* Input vector 7 : */
$0.000000,0.000000,0.000000$, 0.000000, 0.000000, 0.000000, 0.155500, 0.174800, -0.058200, $0.087700,-0.316900,0.002300$, $-0.163900,-0.279900,0.021100$, $-0.143500,-0.132400,0.002900$, $-0.102800,0.162600,-0.033400$, $-0.096000,0.211800,-0.039400$, $0.150300,0.181500,-0.009000$, $0.143500,0.132400,-0.002900$, $0.102800,-0.162600,0.033400$, $0.082400,-0.310100,0.051500$, $-0.092700,-0.082500,0.052200$, $-0.065600,0.114200,0.028000$, $0.082200,0.096000,0.046300$, $0.055100,-0.100600,0.070500$,
/* Output vector 7 : */
$0.008524,-0.008010,0.029528$,
/* Input vector 8 : */
$0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, 0.000000, 0.000000, 0.000000, $0.058900,-0.315000,0.073600$, $-0.186500,-0.249100,0.093900$, $-0.154300,-0.112700,0.040400$, $-0.089800,0.160100,-0.066500$, $-0.079000,0.205600,-0.084300$, $0.165000,0.158100,-0.058200$, $0.154300,0.112700,-0.040400$, $0.089800,-0.160100,0.066500$, $0.057600,-0.296500,0.120000$, $-0.096100,-0.058200,0.074200$, $-0.053100,0.123700,0.002900$, $0.093300,0.095200,0.018600$, $0.050400,-0.086600,0.089900$,
/* Output vector 8 : */
0.030911, 0.011737, 0.072127,
/* Input vector 9 : */
0.000000, 0.000000, 0.000000, $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $-0.150800,-0.287200,0.020100$, $-0.132500,-0.142600,-0.015400$, $-0.095900,0.146600,-0.086300$, $-0.089800,0.194800,-0.098100$, $0.138600,0.190800,0.003600$, $0.132500,0.142600,0.015400$, $0.095900,-0.146600,0.086300$, $0.077500,-0.291200,0.121800$, $-0.100100,-0.081900,0.037300$, $-0.075700,0.110900,-0.010000$, $0.061300,0.108500,0.051000$, $0.036900,-0.084300,0.098300$,
/* Output vector 9 : */ 0.035209, 0.037634, 0.002483,
/* Input vector 10 : */ $0.201400,-0.217000,-0.143000$, $0.081000,0.207600,0.091900$, $-0.128300,0.101000,0.177400$, $-0.007900,-0.323700,-0.057500$, $0.176900,-0.201500,-0.183700$, $0.140800,-0.074100,-0.113200$, $0.068500,0.180700,0.027700$, $0.056500,0.223200,0.051200$, -0.152800, 0.116500, 0.136700, $-0.140800,0.074100,0.113200$, $-0.068500,-0.180700,-0.027700$, $-0.032400,-0.308100,-0.098200$, $0.062300,-0.037400,-0.113300$, $0.014200,0.132500,-0.019400$, $-0.111400,0.068500,0.031900$, $-0.063300,-0.101400,-0.062000$,
/* Output vector 10 : */
-0.063281, 0.124374, 0.151512,
/* Input vector 11 : */
$-0.282400,-0.165800,0.029900$, $0.000000,0.000000,0.000000$, $0.000000,0.000000,0.000000$, $-0.094900,-0.274100,0.154900$, $-0.288600,-0.133400,0.067400$, $-0.191200,-0.039600,0.002500$, $0.003700,0.147900,-0.127500$, $0.036200,0.179100,-0.149100$, $0.223700,0.070900,-0.024100$, $0.191200,0.039600,-0.002500$, $-0.003700,-0.147900,0.127500$, $-0.101100,-0.241600,0.192400$, $-0.127500,0.002500,0.043300$, 0.002500, 0.127500, -0.043300, $0.115000,0.062500,0.031700$, $-0.015000,-0.062500,0.118300$,
/* Output vector 11 : */ $0.078250,0.082452,0.093415$,
/* Input vector 12 : */ -0.282400, -0.165800, 0.029900, $0.042400,0.146700,-0.186600$, $0.229900,0.038400,-0.061600$, $-0.094900,-0.274100,0.154900$, $-0.288600,-0.133400,0.067400$, $-0.191200,-0.039600,0.002500$, $0.003700,0.147900,-0.127500$, 0.036200, 0.179100, -0.149100, $0.223700,0.070900,-0.024100$, $0.191200,0.039600,-0.002500$, $-0.003700,-0.147900,0.127500$, $-0.101100,-0.241600,0.192400$, - $0.127500,0.002500,0.043300$, $0.002500,0.127500,-0.043300$, $0.115000,0.062500,0.031700$, $-0.015000,-0.062500,0.118300$,
/* Output vector 12 : */
$0.082166,0.082764,0.082546$,
END

HIDEDATA.TXT

TRAIN 3, 16, 3, 1
/* Input vector 1 : */ $-0.125000,-0.300000,-0.050000$, $-0.125000,0.200000,-0.050000$, $0.000000,0.000000,0.000000$, 0.125000, -0.300000, -0.050000, $-0.125000,-0.300000,0.000000$, $-0.125000,-0.150000,0.000000$, $-0.125000,0.150000,0.000000$, $-0.125000,0.200000,0.000000$, $0.125000,0.200000,0.000000$, $0.125000,0.150000,0.000000$, 0.125000, -0.150000, 0.000000, $0.125000,-0.300000,0.000000$, $-0.075000,-0.100000,0.050000$, $-0.075000,0.100000,0.050000$, $0.075000,0.100000,0.050000$, $0.075000,-0.100000,0.050000$,
/* Output vector 1: */ $-0.500000,-0.500000,-0.500000$,
/* Input vector 2 : */ $-0.258300,-0.197300,-0.050000$, $-0.008300,0.235700,-0.050000$, $0.000000,0.000000,0.000000$, $-0.041700,-0.322300,-0.050000$, $-0.258300,-0.197300,0.000000$, $-0.183300,-0.067400,0.000000$, $-0.033300,0.192400,0.000000$, $-0.008300,0.235700,0.000000$, $0.208300,0.110700,0.000000$, $0.183300,0.067400,0.000000$, $0.033300,-0.192400,0.000000$, $-0.041700,-0.322300,0.000000$, $-0.115000,-0.049100,0.050000$, - $0.015000,0.124100,0.050000$, $0.115000,0.049100,0.050000$, $0.015000,-0.124100,0.050000$,
/* Output vector 2 : */
$-0.500000,-0.500000,-0.416700$,
/* Input vector 3 : */
$-0.317100,0.071000,-0.050000$, $0.175300,0.157800,-0.050000$, $0.218700,-0.088400,-0.050000$, $0.000000,0.000000,0.000000$, -0.317100, 0.071000, 0.000000, -0.169400, 0.097100, 0.000000, $0.126000,0.149100,0.000000$, $0.175300,0.157800,0.000000$, $0.218700,-0.088400,0.000000$, $0.169400,-0.097100,0.000000$, $-0.126000,-0.149100,0.000000$, $-0.273700,-0.175200,0.000000$, $-0.111500,0.056500,0.050000$, $0.085500,0.091200,0.050000$, $0.111500,-0.056500,0.050000$, $-0.085500,-0.091200,0.050000$,
/* Output vector 3 : */ $-0.500000,-0.500000,-0.277800$,
/* Input vector 4 : */
-0.197300, 0.258300, -0.050000, 0.235700, 0.008300, -0.050000, $0.110700,-0.208300,-0.050000$, $0.000000,0.000000,0.000000$, $-0.197300,0.258300,0.000000$, $-0.067400,0.183300,0.000000$, $0.192400,0.033300,0.000000$, $0.235700,0.008300,0.000000$, $0.110700,-0.208300,0.000000$, $0.067400,-0.183300,0.000000$, $-0.192400,-0.033300,0.000000$, $-0.322300,0.041700,0.000000$, -0.049100, $0.115000,0.050000$, $0.124100,0.015000,0.050000$, $0.049100,-0.115000,0.050000$, $-0.124100,-0.015000,0.050000$,
/* Output vector 4 : */
$-0.500000,-0.500000,-0.166700$,
/* Input vector 5 : */ $0.000000,0.000000,0.000000$, $0.185900,-0.145200,-0.050000$, $-0.049100,-0.230700,-0.050000$, $-0.220100,0.239200,-0.050000$, $0.014900,0.324700,0.000000$, $0.066200,0.183700,0.000000$, $0.168800,-0.098200,0.000000$, $0.185900,-0.145200,0.000000$, $-0.049100,-0.230700,0.000000$, $-0.066200,-0.183700,0.000000$, -0.168800, 0.098200, 0.000000, - $0.220100,0.239200,0.000000$, $0.036300,0.119600,0.050000$, $0.104700,-0.068300,0.050000$, $-0.036300,-0.119600,0.050000$, $-0.104700,0.068300,0.050000$,
/* Output vector 5 : */
$-0.500000,-0.500000,-0.055600$,
/* Input vector 6 : */
$0.000000,0.000000,0.000000$, $0.049100,-0.230700,-0.050000$, $-0.185900,-0.145200,-0.050000$, $-0.014900,0.324700,-0.050000$, $0.220100,0.239200,0.000000$, $0.168800,0.098200,0.000000$, $0.066200,-0.183700,0.000000$, $0.049100,-0.230700,0.000000$, $-0.185900,-0.145200,0.000000$, $-0.168800,-0.098200,0.000000$, $-0.066200,0.183700,0.000000$, $-0.014900,0.324700,0.000000$, $0.104700,0.068300,0.050000$, $0.036300,-0.119600,0.050000$, $-0.104700,-0.068300,0.050000$, $-0.036300,0.119600,0.050000$,
/* Output vector 6 : */
$-0.500000,-0.500000,0.055600$,
/* Input vector 7 : */
0.322300, 0.041700, -0.050000, $0.000000,0.000000,0.000000$, $-0.235700,0.008300,-0.050000$, $0.197300,0.258300,-0.050000$, $0.322300,0.041700,0.000000$, 0.192400, -0.033300, 0.000000 , -0.067400, -0.183300, 0.000000, $-0.110700,-0.208300,0.000000$, $-0.235700,0.008300,0.000000$, $-0.192400,0.033300,0.000000$, $0.067400,0.183300,0.000000$, $0.197300,0.258300,0.000000$ $0.124100,-0.015000,0.050000$ $-0.049100,-0.115000,0.050000$, $-0.124100,0.015000,0.050000$, $0.049100,0.115000,0.050000$,
/* Output vector 7 : */
$-0.500000,-0.500000,0.166700$,
/* Input vector 8 : */
$0.273700,-0.175200,-0.050000$, $0.000000,0.000000,0.000000$, $-0.175300,0.157800,-0.050000$, $0.317100,0.071000,-0.050000$, $0.273700,-0.175200,0.000000$, $0.126000,-0.149100,0.000000$, $-0.169400,-0.097100,0.000000$, $-0.218700,-0.088400,0.000000$, $-0.175300,0.157800,0.000000$, $-0.126000,0.149100,0.000000$, $0.169400,0.097100,0.000000$, $0.317100,0.071000,0.000000$, $0.085500,-0.091200,0.050000$, $-0.111500,-0.056500,0.050000$, $-0.085500,0.091200,0.050000$, $0.111500,0.056500,0.050000$,
/* Output vector 8 : */
$-0.500000,-0.500000,0.277800$,
/* Input vector 9 : */ $0.097100,-0.310200,-0.050000$, $-0.224300,0.072900,-0.050000$, $0.000000,0.000000,0.000000$, $0.288600,-0.149500,-0.050000$, $0.097100,-0.310200,0.000000$, $0.000700,-0.195300,0.000000$, $-0.192200,0.034600,0.000000$, $-0.224300,0.072900,0.000000$, $-0.032800,0.233600,0.000000$, $-0.000700,0.195300,0.000000$, $0.192200,-0.034600,0.000000$, $0.288600,-0.149500,0.000000$, $0.006800,-0.124800,0.050000$, $-0.121700,0.028400,0.050000$, $-0.006800,0.124800,0.050000$, $0.121700,-0.028400,0.050000$,
/* Output vector 9 : */
$-0.500000,-0.500000,0.388900$,

END

RESULT2.TXT

TRAIN 3, 16, 3, 1
/* Input vector 1 : */ $-0.125000,-0.300000,-0.050000$, $-0.125000,0.200000,-0.050000$, $0.000000,0.000000,0.000000$, $0.125000,-0.300000,-0.050000$, $-0.125000,-0.300000,0.000000$, $-0.125000,-0.150000,0.000000$, $-0.125000,0.150000,0.000000$, $-0.125000,0.200000,0.000000$, $0.125000,0.200000,0.000000$, $0.125000,0.150000,0.000000$, $0.125000,-0.150000,0.000000$, $0.125000,-0.300000,0.000000$, $-0.075000,-0.100000,0.050000$, $-0.075000,0.100000,0.050000$, $0.075000,0.100000,0.050000$, $0.075000,-0.100000,0.050000$,
/* Output vector 1 : */ $-0.499785,-0.499774,-0.497748$,
/* Input vector 2 : */
$-0.258300,-0.197300,-0.050000$, $-0.008300,0.235700,-0.050000$, $0.000000,0.000000,0.000000$, $-0.041700,-0.322300,-0.050000$, $-0.258300,-0.197300,0.000000$, $-0.183300,-0.067400,0.000000$, $-0.033300,0.192400,0.000000$, $-0.008300,0.235700,0.000000$, $0.208300,0.110700,0.000000$, $0.183300,0.067400,0.000000$, $0.033300,-0.192400,0.000000$, $-0.041700,-0.322300,0.000000$, $-0.115000,-0.049100,0.050000$, $-0.015000,0.124100,0.050000$, $0.115000,0.049100,0.050000$, $0.015000,-0.124100,0.050000$,
/* Output vector 2 : */
$-0.499730,-0.499743,-0.416651$,
/* Input vector 3 : */ $-0.317100,0.071000,-0.050000$, $0.175300,0.157800,-0.050000$, $0.218700,-0.088400,-0.050000$, $0.000000,0.000000,0.000000$, -0.317100, 0.071000, 0.000000, $-0.169400,0.097100,0.000000$, $0.126000,0.149100,0.000000$, $0.175300,0.157800,0.000000$, 0.218700, -0.088400, 0.000000, $0.169400,-0.097100,0.000000$, $-0.126000,-0.149100,0.000000$, $-0.273700,-0.175200,0.000000$, $-0.111500,0.056500,0.050000$, $0.085500,0.091200,0.050000$, $0.111500,-0.056500,0.050000$, $-0.085500,-0.091200,0.050000$,
/* Output vector 3 : */ $-0.499968,-0.499974,-0.277975$,
/* Input vector 4 : */ -0.197300, 0.258300, -0.050000, $0.235700,0.008300,-0.050000$, $0.110700,-0.208300,-0.050000$, $0.000000,0.000000,0.000000$, $-0.197300,0.258300,0.000000$, $-0.067400,0.183300,0.000000$, $0.192400,0.033300,0.000000$, $0.235700,0.008300,0.000000$, $0.110700,-0.208300,0.000000$, $0.067400,-0.183300,0.000000$, $-0.192400,-0.033300,0.000000$, $-0.322300,0.041700,0.000000$, $-0.049100,0.115000,0.050000$, $0.124100,0.015000,0.050000$, $0.049100,-0.115000,0.050000$, $-0.124100,-0.015000,0.050000$,
/* Output vector 4 : */
$-0.499973,-0.499976,-0.166540$,
/* Input vector 5 : */
$0.000000,0.000000,0.000000$, $0.185900,-0.145200,-0.050000$, $-0.049100,-0.230700,-0.050000$, $-0.220100,0.239200,-0.050000$, $0.014900,0.324700,0.000000$, $0.066200,0.183700,0.000000$, $0.168800,-0.098200,0.000000$, $0.185900,-0.145200,0.000000$, $-0.049100,-0.230700,0.000000$, $-0.066200,-0.183700,0.000000$, $-0.168800,0.098200,0.000000$, $-0.220100,0.239200,0.000000$, $0.036300,0.119600,0.050000$, $0.104700,-0.068300,0.050000$, $-0.036300,-0.119600,0.050000$, $-0.104700,0.068300,0.050000$,
/* Output vector 5 : */
$-0.499973,-0.499976,-0.055445$,
$/ *$ Input vector $6: * /$
$0.000000,0.000000,0.000000$,
$0.049100,-0.230700,-0.050000$
$-0.185900,-0.145200,-0.050000$,
$-0.014900,0.324700,-0.050000$,
$0.220100,0.239200,0.000000$,
$0.168800,0.098200,0.000000$
$0.066200,-0.183700,0.000000$
$0.049100,-0.230700,0.000000$,
$-0.185900,-0.145200,0.000000$
$-0.168800,-0.098200,0.000000$
$-0.066200,0.183700,0.000000$
$-0.014900,0.324700,0.000000$
$0.104700,0.068300,0.050000$
$0.036300,-0.119600,0.050000$
$-0.104700,-0.068300,0.050000$
$-0.036300,0.119600,0.050000$
/* Output vector 6 : */
$-0.499972,-0.499975,0.055471$,
/* Input vector 7 : */ 0.322300, 0.041700, -0.050000, $0.000000,0.000000,0.000000$, $-0.235700,0.008300,-0.050000$, $0.197300,0.258300,-0.050000$, $0.322300,0.041700,0.000000$, $0.192400,-0.033300,0.000000$, $-0.067400,-0.183300,0.000000$, $-0.110700,-0.208300,0.000000$, $-0.235700,0.008300,0.000000$, $-0.192400,0.033300,0.000000$, $0.067400,0.183300,0.000000$, $0.197300,0.258300,0.000000$, $0.124100,-0.015000,0.050000$, $-0.049100,-0.115000,0.050000$, $-0.124100,0.015000,0.050000$, $0.049100,0.115000,0.050000$,
/* Output vector 7 : */ $-0.499971,-0.499976,0.166763$,
/* Input vector 8 : */ 0.273700, -0.175200, -0.050000, $0.000000,0.000000,0.000000$, $-0.175300,0.157800,-0.050000$, $0.317100,0.071000,-0.050000$, $0.273700,-0.175200,0.000000$, $0.126000,-0.149100,0.000000$, $-0.169400,-0.097100,0.000000$, $-0.218700,-0.088400,0.000000$, $-0.175300,0.157800,0.000000$, $-0.126000,0.149100,0.000000$, $0.169400,0.097100,0.000000$, $0.317100,0.071000,0.000000$, $0.085500,-0.091200,0.050000$, $-0.111500,-0.056500,0.050000$, $-0.085500,0.091200,0.050000$, $0.111500,0.056500,0.050000$,
/* Output vector 8 : */
-0.499967, -0.499974, 0.278011,
/* Input vector 9 : */
$0.097100,-0.310200,-0.050000$, $-0.224300,0.072900,-0.050000$, $0.000000,0.000000,0.000000$, $0.288600,-0.149500,-0.050000$, $0.097100,-0.310200,0.000000$, $0.000700,-0.195300,0.000000$, $-0.192200,0.034600,0.000000$, $-0.224300,0.072900,0.000000$, $-0.032800,0.233600,0.000000$, $-0.000700,0.195300,0.000000$, 0.192200, -0.034600, 0.000000, $0.288600,-0.149500,0.000000$, $0.006800,-0.124800,0.050000$, $-0.121700,0.028400,0.050000$, $-0.006800,0.124800,0.050000$, $0.121700,-0.028400,0.050000$,
/* Output vector 9 : */
$-0.499939,-0.499954,0.390846$,

END

Appendix B

```
PROGRAM IMAGE_VIEWING_3D
USES crt, GRAPH;
CONST PI = 3.14159265; XSCALE = 540; YSCALE = 600; ZSCALE =460;
    ALP = 5*PI/6; NUMBER_OF_POINTS = 16;
TYPE Pointtype = array [1..number_of_points,1..4] of real;
    Transform = array [1..4,1..4] of real;
    Coordinate = array [1..number_of_points] of REAL;
VAR
    GD,GM,XCENTR,YCENTR,i : integer;
    XPOINTN,YPOINTN,ZPOINTN : Coordinate;
    XGRAPHIC,YGRAPHIC : Coordinate;
    POINT,DUMMYPOINT : Pointtype;
    TRANS,TRANROTXROTZ,DUMMY : Transform;
    THETA,alpha,zeta : real;
    degreX,DEGREY,DEGREZ : real;
    PERSPECTIVE,CONTINUE : string[1];
    st : string[5];
(*---------------------------------------------------------
PROCEDURE OPEN_GRAPHIC_MODE;
BEGIN
    gd := detect;
    Initgraph (gd,gm,' ');
    if graphresult <> grok then Halt(1);
END;
(*
        PROCEDURE COORDINATE IMAGE-
        *)
PROCEDURE COORDINATE_IMAGE(xcentr,ycentr:integer);
```

```
BEGIN
```

BEGIN
setcolor(green);
setcolor(green);
line(xcentr,ycentr,xcentr,(ycentr-25));
line(xcentr,ycentr,xcentr,(ycentr-25));
(*----------- Y axis *)

```
        (*----------- Y axis *)
```

```
    line(xcentr,ycentr,(xcentr+30),ycentr); (*----------- X axiz *)
line(xcentr,ycentr,(xcentr+TRUNC(20*COS(ALP))),
        (ycentr+trunc(20*sin(alp)))); (*----------- Z axiz *)
    setcolor(green);
    line(xcentr,(ycentr-25),xcentr,(ycentr-70)); (*----------- Y axis *)
    outtextxy((xcentr-5),(ycentr-80),'Y');
    line((xcentr+30),ycentr,(xcentr+150),ycentr); (*----------- X axiz *)
    outtextxy((xcentr+155),ycentr,'X');
    line((xcentr+TRUNC(20*COS(ALP))),(ycentr+trunc(20*\operatorname{sin}(alp))),
        (xcentr+TRUNC(80*COS(ALP))),(ycentr+trunc(80*sin(alp))));
outtextxy((xcentr+TRUNC(80*COS(ALP))-5),(ycentr+5+trunc(80*sin(alp))),'Z');
end;
```


PROCEDURE INITIAL_IMAGE;
VAR i,j : integer;
BEGIN
(* point[a,b] --> a represents point number, b represents $x, y, z{ }^{*}$)
point[1,1$]:=-0.125 ; \operatorname{point}[1,2]:=-0.3 ;$ point $[1,3]:=-0.05 ;$
point [2,1$]:=-0.125 ;$ point $[2,2]:=0.2 ;$ point $[2,3]:=-0.05 ;$
point[3,1$]:=0.125 ;$ point[3,2$]:=0.2 ;$ point $[3,3]:=-0.05 ;$
point $[4,1]:=0.125 ;$ point[4,2] :=-0.3; point[4,3] := -0.05;
point $[5,1]:=-0.125 ;$ point $[5,2]:=-0.3 ;$ point $[5,3]:=0.0$;
point $[6,1]:=-0.125 ;$ point $[6,2]:=-0.15 ;$ point $[6,3]:=0.0$;
point $[7,1]:=-0.125 ;$ point $[7,2]:=0.15 ;$ point $[7,3]:=0.0$;
point[8,1$]:=-0.125 ;$ point[8,2] $:=0.2 ;$ point $[8,3]:=0.0$;
point $[9,1]:=0.125 ;$ point $[9,2]:=0.2 ;$ point $[9,3]:=0.0 ;$
point[10,1$]:=0.125 ;$ point $[10,2]:=0.15$; point $[10,3]:=0.0$;
point $[11,1]:=0.125 ;$ point $[11,2]:=-0.15$; point $[11,3]:=0.0$;
point[12,1$]:=0.125$; point[12,2$]:=-0.3$; point $[12,3]:=0.0$;
point[13,1$]:=-0.075 ;$ point[13,2$]:=-0.1 ;$ point $[13,3]:=0.05 ;$
point[14,1$]:=-0.075 ; \operatorname{point}[14,2]:=0.1 ; \operatorname{point}[14,3]:=0.05 ;$
point[15,1$]:=0.075 ; \operatorname{point}[15,2]:=0.1 ;$ point[15,3$]:=0.05$;
point $[16,1]:=0.075 ;$ point $[16,2]:=-0.1 ;$ point[16,3$]:=0.05$;
for $\mathrm{i}:=1$ to number_of_points do point $[i, 4]:=1$;
for $\mathrm{i}:=1$ to 4 do begin for $\mathrm{j}:=1$ to 4 do trans $[i, j]:=0$; end;
for $i:=1$ to 4 do $\operatorname{trans}[i, i]:=1$;
END;

```
PROCEDURE CALCULATION_OF_NEWCOORDINATE;
VAR \(\mathrm{i}, \mathrm{j}, \mathrm{k}\) : integer;
    sum : real;
BEGIN
    for \(\mathrm{i}:=1\) to number_of_points do
        for \(\mathrm{j}:=1\) to 4 do
            begin
                sum :=0;
                for \(k:=1\) to 4 do sum := sum + point[i,k]*trans[k,j];
                dummypoint \([i, j]:=\) sum;
            end;
    for \(\mathrm{i}:=1\) to number_of_points do
        for \(\mathrm{j}:=1\) to 4 do point \([\mathrm{i}, \mathrm{j}]\) :=dummypoint \([\mathrm{i}, \mathrm{j}]\);
END;
(*---------------------PROCEDURE CALCULATION OF TRASFORMATION
                            --------**)
PROCEDURE CALCULATION_OF_TRANSFORMATION;
VAR i,j,k : integer;
            sum : real;
BEGIN
    for \(\mathrm{i}:=1\) to 4 do
        for \(j:=1\) to 4 do
            begin
                sum :=0;
                    for \(\mathrm{k}:=1\) to 4 do sum := sum + tranrotxrotz \([\mathrm{i}, \mathrm{k}] * \operatorname{trans}[\mathrm{k}, \mathrm{j}]\);
                dummy[i,j]:= sum ;
            end;
    for \(\mathrm{i}:=1\) to 4 do for \(\mathrm{j}:=1\) to 4 do \(\operatorname{trans[i,j]:=dummy[i,j];~}\)
END;
(*----------------PROCEDURE CALCULATION FOR DRAWING--------------------*)
PROCEDURE CALCULATION_DRAWING(xcenco,ycenco:integer);
VAR i : integer;
BEGIN
for \(\mathrm{i}:=1\) to number_of_points do begin
xgraphic[i] := xcenco+point[i,3]*zscale*cos(alp)+point[i,1]*xscale;
ygraphic[i] := ycenco+point[i,3]*zscale*sin(alp)-point[i,2]*yscale; end;
END;
```

```
(*---------------------PROCEDURE INPUT VIEWER
*)
PROCEDURE INPUT_VIEWER;
VAR \begin{tabular}{cc}
i & : integer; \\
check & : string[1];
\end{tabular}
BEGIN
    {outtextxy(50,350,'Out of this program is 90 degrees rotation');
    outtextxy(50,360,'allowed rage rotation from 0 to 90 degrees');}
    outtextxy(250,450,'FIGURE 15. DATA SET 7');
    check := 'T';
    repeat
        readln(degreX);str(trunc(degreX),st);
        if (degreX > 360) then check:='F';
        if degreX = 360 then continue:='F';
        DEGREX := degreX*pi/180;
readln(degreY);str(trunc(degreY),st);
    if (degreY > 360) then check:='F';
    if degre Y = 360 then continue:='F';
    DEGREY := degreY*pi/180;
    readln(degreZ);str(trunc(degreZ),st);
if (degreZ > 360) then check:='F';
if degreZ = 360 then continue:='F';
DEGREZ := degreZ*pi/180;
    until check='T';
    {setcolor(yellow);outtextxy((150+50),370,st); }
END;
```PROCEDURE ROTATION ABOUT X AXIS*)PROCEDURE ROTATION_X_AXIS(DEGREX : real);
```

* 

```
*
VAR i,j :integer;
VAR i,j :integer;
BEGIN
BEGIN
 for i := 1 to 4 do begin for j:= 1 to 4 do tranrotxrotz[i,j] := 0; end;
 for i := 1 to 4 do begin for j:= 1 to 4 do tranrotxrotz[i,j] := 0; end;
 tranrotxrotz[1,1]:=1;
 tranrotxrotz[1,1]:=1;
 tranrotxrotz[2,2]:= cos(DEGREX);tranrotxrotz[3,2]:= sin(DEGREX);
 tranrotxrotz[2,2]:= cos(DEGREX);tranrotxrotz[3,2]:= sin(DEGREX);
 tranrotxrotz[2,3]:=-sin(DEGREX);tranrotxrotz[3,3]:= cos(DEGREX);
 tranrotxrotz[2,3]:=-sin(DEGREX);tranrotxrotz[3,3]:= cos(DEGREX);
 tranrotxrotz[4,4]:= 1;
 tranrotxrotz[4,4]:= 1;
END;
```

END;

```
```

(*

```
PROCEDURE ROTATION_Y_AXIS(DEGREY : real);
```

PROCEDURE ROTATION_Y_AXIS(DEGREY : real);
VAR i,j : integer;
VAR i,j : integer;
BEGIN
BEGIN
for i := 1 to 4 do begin for j:= 1 to 4 do tranrotxrotz[i,j] := 0; end;
for i := 1 to 4 do begin for j:= 1 to 4 do tranrotxrotz[i,j] := 0; end;
tranrotxrotz[1,1]:=cos(DEGREY) ;tranrotxrotz[1,3] := sin(DEGREY);
tranrotxrotz[1,1]:=cos(DEGREY) ;tranrotxrotz[1,3] := sin(DEGREY);
tranrotxrotz[3,1]:=-sin(DEGREY);tranrotxrotz[3,3] := cos(DEGREY);
tranrotxrotz[3,1]:=-sin(DEGREY);tranrotxrotz[3,3] := cos(DEGREY);
tranrotxrotz[2,2] := 1;tranrotxrotz[4,4]:= 1;
tranrotxrotz[2,2] := 1;tranrotxrotz[4,4]:= 1;
END;
END;
(*--------------------------------------------
(*--------------------------------------------
PROCEDURE ROTATION_Z_AXIS(DEGREZ : real);
PROCEDURE ROTATION_Z_AXIS(DEGREZ : real);
VAR i,j :integer;
VAR i,j :integer;
BEGIN
BEGIN
for i := 1 to 4 do begin for j:= 1 to 4 do tranrotxrotz[i,j] := 0; end;
for i := 1 to 4 do begin for j:= 1 to 4 do tranrotxrotz[i,j] := 0; end;
tranrotxrotz[1,1]:=cos(DEGREZ) ;tranrotxrotz[1,2]:= -sin(DEGREZ);
tranrotxrotz[1,1]:=cos(DEGREZ) ;tranrotxrotz[1,2]:= -sin(DEGREZ);
tranrotxrotz[2,1]:=sin(DEGREZ);tranrotxrotz[2,2] := cos(DEGREZ);
tranrotxrotz[2,1]:=sin(DEGREZ);tranrotxrotz[2,2] := cos(DEGREZ);
tranrotxrotz[3,3] := 1;tranrotxrotz[4,4]:= 1;
tranrotxrotz[3,3] := 1;tranrotxrotz[4,4]:= 1;
END;
END;
(*--------------------------------------------------------
(*--------------------------------------------------------
PROCEDURE DRAWING_IMAGE;
PROCEDURE DRAWING_IMAGE;
VAR I : INTEGER;
VAR I : INTEGER;
BEGIN
BEGIN
setcolor(GREEN); (* draw bottom plane *)
setcolor(GREEN); (* draw bottom plane *)
moveto(trunc(xgraphic[4]),trunc(ygraphic[4]));
moveto(trunc(xgraphic[4]),trunc(ygraphic[4]));
for i := 1 TO 4 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));
for i := 1 TO 4 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));
setcolor(green); (* draw line *)
setcolor(green); (* draw line *)
moveto(trunc(xgraphic[12]),trunc(ygraphic[12]));
moveto(trunc(xgraphic[12]),trunc(ygraphic[12]));
for i := 5 TO 12 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));
for i := 5 TO 12 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));
setcolor(green); (* draw line *)
setcolor(green); (* draw line *)
moveto(trunc(xgraphic[16]),trunc(ygraphic[16]));
moveto(trunc(xgraphic[16]),trunc(ygraphic[16]));
for i := 13 TO 16 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));
for i := 13 TO 16 do lineto(trunc(xgraphic[i]),trunc(ygraphic[i]));
setcolor(GREEN); (* draw line *)
setcolor(GREEN); (* draw line *)
moveto(trunc(xgraphic[1]),trunc(ygraphic[1]));
moveto(trunc(xgraphic[1]),trunc(ygraphic[1]));
lineto(trunc(xgraphic[5]),trunc(ygraphic[5]));
lineto(trunc(xgraphic[5]),trunc(ygraphic[5]));
moveto(trunc(xgraphic[2]),trunc(ygraphic[2]));

```
 moveto(trunc(xgraphic[2]),trunc(ygraphic[2]));
```

```
lineto(trunc(xgraphic[8]),trunc(ygraphic[8]));
moveto(trunc(xgraphic[3]),trunc(ygraphic[3]));
lineto(trunc(xgraphic[9]),trunc(ygraphic[9]));
moveto(trunc(xgraphic[4]),trunc(ygraphic[4]));
lineto(trunc(xgraphic[12]),trunc(ygraphic[12]));
moveto(trunc(xgraphic[6]),trunc(ygraphic[6]));
lineto(trunc(xgraphic[13]),trunc(ygraphic[13]));
moveto(trunc(xgraphic[7]),trunc(ygraphic[7]));
lineto(trunc(xgraphic[14]),trunc(ygraphic[14]));
moveto(trunc(xgraphic[10]),trunc(ygraphic[10]));
lineto(trunc(xgraphic[15]),trunc(ygraphic[15]));
moveto(trunc(xgraphic[11]),trunc(ygraphic[11]));
lineto(trunc(xgraphic[16]),trunc(ygraphic[16]));
moveto(trunc(xgraphic[6]),trunc(ygraphic[6]));
lineto(trunc(xgraphic[11]),trunc(ygraphic[11]));
moveto(trunc(xgraphic[7]),trunc(ygraphic[7]));
lineto(trunc(xgraphic[10]),trunc(ygraphic[10]));
```

END;

```
(*--------------------------------- PROCEDURE GETTING POINT3D
*)
```

PROCEDURE GETTING_POINT3D;
VAR i,J : integer;
openfile : text;
BEGIN
assign(openfile,'c:\thesisDATASET2.TXT');
Rewrite(openfile);
for $\mathrm{i}:=1$ TO 16 do
begin
FOR J := 1 TO 3 DO write(openfile,point[i,j]:8:4);
writeln(openfile);
end;
writeln(openfile); writeln(openfile);
writeln(openfile,degrex/(2*pi):8:4,degrey/(2*pi):8:4,degrez/(2*pi):8:4);
close(openfile);
END;

PROCEDURE FRAME;
BEGIN
\{ RECTANGLE(1,17,640,480); \}
FLOODFILL(300,20,black);
setcolor(GREEN);
MOVETO(50,18);LINETO(638,18);LINETO(638,478);
LINETO(50,478);LINETO(50,18);
END;

BEGIN
continue:='T';
OPEN_GRAPHIC_MODE;
repeat
setcolor(black);
frame;
initial_image;coordinate_image $(325,200)$;
calculation_drawing $(325,200)$;setcolor(green);
\{DRAWING_IMAGE;coordinate_image $(325,200) ;$ \} (* object ${ }^{*}$ )

INPUT_VIEWER;
if continue='T' then
begin
ROTATION_Z_AXIS(degreZ);

```
CALCULATION_OF_TRANSFORMATION;
ROTATION_Y_AXIS(degreY);
CALCULATION_OF_TRANSFORMATION;
ROTATION_X_AXIS(degreX);
CALCULATION_OF_TRANSFORMATION;
CALCULATION_OF_NEWCOORDINATE;
GETTING_POINT3D;
coordinate_image(325,200);
CALCULATION_DRAWING(325,200);
```

DRAWING_IMAGE;
READLN
end
until continue='F';
CLOSEGRAPH;
END.

