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ABSTRACT  

The apparent incompatibility of the quantum theory with 

general relativity is well known. In this thesis we consider a 

possible solution to this problem, namely the program of induced 

gravity. 

The problem of quantum gravity, namely its nonrenormalizabili-

ty, is due to its scale non-invariance. The assumption of the 

induced gravity program is to begin with a fundamental scale in-

variant Lagrangian which is renormalizable. Quantum fluctuations 

can break scale invariance and thus it is possible that the 

Einstein-Hilbert Lagrangian will be induced, as first shown by 

Sakharov. This breaking of a classical symmetry by quantum 

fluctuations is called dynamical symmetry breaking. 

It is possible to derive a relation between the induced 

Newtonian gravitational constant, G, and the stress-energy tensor 

of the matter fields. This formula, due to Adler and Zee, is 

derived. A review is given of all previous model calculations of 

G and their successes and failures noted. The extension to a 

quantized metric is considered and the properties of the scale 

invariant fundamental gravitational Lagrangian are studied. 

Since the idea of inducing gravity as a quantum effect is 

essentially a non-perturbative effect, we require non-perturbative 

techniques to obtain useful information. One such technique is 

the Delbourgo-Salam Gauge Technique. A review of this technique 

is given, followed by its application to the program of induced 

gravity. The philosophy of this ansgtze is used to calculate an 

iv 



approximation to the contribution to G from a general fermion-

graviton theory in terms of the spectral function of the fermion. 

The details of the Gauge Technique are then used to perform an 

actual calculation of the contribution to G from QED. 

The result is quite small, signifying that the contribution to 

G from the electrodynamic interactions of the low mass fermions 

does not lead to any unexpected surprises. 
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1. INTRODUCTION 

1.1. OVERVIEW 

Einstein's theory of gravitation has been with us for two 

thirds of a century and still it agrees perfectly with every 

experiment yet devised. Why is this? In a way, the answer is 

already known; general relativity is the simplest theory of gravi-

tation consistent with the idea of general covariance. Yet 

physicists demand more. A prediction is required, a prediction of 

the strength of gravity. The magnitude of the interaction between 

space-time and matter is embodied in a constant which dates back 

to Newton. This is of course the gravitational constant, G. 

Furthermore, physicists require a consistency for all inter-

action, and it is here that the theory of general relativity 

causes problems. It has recently been established that to 

quantize matter fields, but not gravity, is not only inconsistent 

but also inefficient. The field equations of general relativity 

can actually be predicted if and only if the metric itself is 

quantized. Furthermore, there is even tentative experimental 

evidence to support the necessity of quantization. These facts, 

and a faith in the consistency of nature, support the common 

belief for a quantized gravitational field. 

However the consequences of this are disastrous, since to 

quantize gravity leaves us with a theory that at high energies has 

no Predictive power whatsoever. The villain •of this nonrenorma-

lizability is well known; it is the non-dimensionless scale in the 

coupling, the gravitational constant. 
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Theories with scale invariance have many desirable features, 

not least being their apparent manifest renormalizability. A 

scale invariant theory with only one coupling constant would, in 

principle, be able to predict all dimensionless numbers, including 

mass ratios. Although a scale invariant theory contains no mass 

terms, quantum effects break scale invariance, and thus can 

dynamically induce a mass scale. The idea thus naturally arises; 

can one induce the scale of gravitation from a theory which has 

classical scale invariance? 

This is the idea of induced gravity. 

1.2 A HISTORICAL PERSPECTIVE 

The idea of inducing Einstein's gravity from quantum fluctua-

tions of the matter action is due to Sakharov (1967), who was 

motivated by a paper of Zel'dovich (1967) in which the idea of an 

induced cosmological constant was discussed. Besides a brief 

discussion in Misner, Thorne & Wheeler (1970) there was apparently 

virtually no published work directly in this area until 1980. 

However, a similar idea was being evolved, that of replacing the 

gravitational constant with a scalar field, which then acquires a 

non zero vacuum expectation value. This idea can be traced back 

to Fujii (1974) although the idea of replacing the gravitational 

constant by a scalar, and thus allowing the possibility of a scale 

invariant gravitational theory, dates back further, to the work of 

Giirsey (1963) and Brans & Dicke (1961). During the seventies the 

theory evolved to a more modern formalism (see for example Zee 

1980) but always there was the scalar field. The presence of a 
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scalar field is rather unsatisfying, due to the free parameters in 

the Lagrangian. These parameters imply a vacuum expectation value 

which is arbitrary since the effect of the scalar field is not 

manifested elsewhere. Consequently the induced gravitational 

constant is completely arbitrary. 

Meanwhile, however, the modern methods of field theory were 

being advanced; gauge theories, renormalization group, dimensional 

regularization, dynamical symmetry breaking, etc. These are 

essential to the modern understanding of induced gravity, which 

began with the paper by Adler (1980a) who showed that with a 

renormalizable Lagrangian with only spin 1/2 and spin 1 fields, 

the induced gravitational constant must be finite. The existence 

of an induced term now requires dynamical symmetry breaking. 

A few preliminary calculations were performed by Hasslacher & 

Mottola (1980) using an instanton gas approximation, and by Zee 

(1980) using a 1-loop calculation. However, the most important 

development was the derivation of a general formula for G, derived 

independently by Adler (1980b) and Zee (1981a). Since then, there 

has been further attempts at model calculations; for example for a 

asymptotically stable theory (Zee 1982a) and an outline of a 

lattice program to calculate G (Adler 1982). There has been 

extensions to the case when the metric is quantized (Adler 1982; 

Zee 1983a), and to the induced 0(R
2 ) terms (Zee 1982b; Brown & Zee 

1983). There has also been the important work of Khuri, who finds 

some general theorems concerning the upper and lower bounds for 

the possible magnitude of the induced G, as well as the sign 

(Khuri 1982a, 1982b, 1982c). 
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By now there are quite a few review papers on induced gravity 

(Adler 1980c; Zee 1981b, 1981c, 1983b) but the most extensive 

review is by Adler (1982). 

The central aim of induced gravity is of course, the calcu-

lation of G. This requires a technique for studying the non-

perturbative behavior of a gauge theory; in fact we require a 

technique that takes into consideration an infinite number of 

Feynman diagrams. The Gauge Technique is one such method. This 

idea goes back to Salam (1963) and others (Delbourgo & Salam 1964; 

Strathdee 1964). However it was not until later (Delbourgo & West 

1977a, 1977b) that the method was formulated into a productive 

technique, and by now it has had many applications. The gauge 

technique embodies the essence of dynamical symmetry breaking. It 

dynamically generates mass terms without any added fields, and so 

would appear to be a good candidate for a technique in the study 

of induced gravity. 

I shall use the philosophy of the gauge technique to derive a 

general expression for G
-1 

 /m
2
, and then use the actual results of 

the QED gauge technique to calculate an approximation for the 

contribution to G from QED. We find this contribution to be very 

small, namely 

— 	2 	8 G1 /m = (-9a) = 1. 2 x 10 2 . 
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1.3. SUMMARY OF THESIS 

I now give a short summary of each chapter. 

Chapter two is an introduction to the philosophy and formal-

ism of induced gravity. Here we explain the notion of dynamical 

symmetry breaking and derive the main result; namely the Adler-Zee 

expression for G. 

We follow this with a review of all previous model calcula-

tions for G, and explain their successes and failures. 

Chapter 4 discusses the effects of the induced R
2 

terms, as 

well as the bare 0(R 2
) Lagrangian whose presence is required for 

renormalization. The property of asymptotic freedom is discussed, 

as well as the notorious unitarity problem. These three chapters 

constitute the review section of this thesis; they have relied 

heavily on the review paper of Adler (1982), as well as the 

original papers. 

In chapter 5 we consider the fermionic contribution to G, and 

derive the Feynman rules and Ward identity for a graviton-fermion 

theory. The chapter ends with an expression for G in terms of the 

spectral function of the fermion. 

To calculate G we need to know the precise form of this 

spectral function. This is obtained from the gauge technique 

which is introduced in chapter 6, along with its successes and 

failures and its application to QED. Furthermore in this chapter 

we derive the necessary equations for the evaluation of the 

fermion spectral function. 

In our second last chapter we calculate a definite result for 

the value of G -1  /m 2 
purely in terms of the electromagnetic 
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coupling constant. 

We conclude with a discussion of the general implications of 

our result, of the future possibilities of this approach, and of 

induced gravity in general. 

An appendix is included on the subject of quantizing the 

gravitational field. The necessity of this quantization is 

argued, followed by a discussion of the consequences of quantiza-

tion to the program of induced gravity. 
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2. INDUCED GRAVITY 

2.1. VIA SPONTANEOUS SYMMETRY BREAKING 

The idea that gravity may be an induced quantum effect can be 

simply realized by the spontaneous symmetry breaking of an extra 

scalar field (Fujii 1974; Englert et al. 1975; Englert, Truffin & 

Gastmans 1976; Minkowski 1977; Chudnovskii 1978; Matsuki 1978; 

Smolin 1979; Linde 1979, 1980; Zee 1979, 1980). Note however that 

the scalar field is not necessarily elementary, thus this approach 

could be considered as starting from a Lagrangian which is not 

really fundamental. It does, however, illustrate the general idea 

of inducing gravity by a spontaneous symmetry breaking approach. 

The gravity action is assumed to be 

, 	 1 S = 5d 4 xl=qte 2
0 R + fya vSe - V(0)} 	(2.1) 

where e is a dimensionless coupling constant. 

Let 0 = 0 0  be the minimum of the potential V(0). 	For 0 at 

the minimum, we have 

S = Sof4 x1=1(167rG) -1 R + 13 ,1 08 v 0g 	- V(0 0 )} 	(2.2) 

e<0 > 0 

The Einstein-Hilbert Lagrangian has thus been induced, simply 

by requiring a non-zero vacuum expectation value for the field •. 

In general, G will be a function of both the temperature and 

of R, since <0> will depend on these. This will obviously have 

implications for cosmology (Linde 1980; Zee 1980). 

Note that since e is arbitrary, these models do not give a 

calculable G. 	Nevertheless, this model is still being studied 

where 161rG - 	1  2 ' 
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(Cerver6 & Estevez 1982; Fujii 1982). 

2.2. SCALE INVARIANCE 

Scale invariance is a very useful symmetry to impose on the 

Lagrangian for a number of reasons. Firstly scale invariant 

theories appear to be renormalizable by power counting. Further-

more the reduction of freedom implies potentially greater 

calculability as we shall see. They thus have a great aesthetic 

appeal. 

A scale transformation is as follows 

x
u 	

ax 	where a is a constant 

-■ a -d 	
(2.3) 

constants are invariant. 

0 is any field that has canonical dimension [0] = d, where 

the canonical dimension is defined as [mass] = 1, [length] = -1. 

For a gauge theory in 21. dimensions with 

= 
-1 	i 	ivy 4. 	_ m)*  
4g 2 LIV 

 

1. where D = 3 u + TiA A , we have [A n ] = 1, 

(2.4) 

[F i  ] = 2, 	[11)] uv , [g] = 2 - R.. 

Note that in 22. 	4 dimensions the coupling constant has 

attained a canonical dimensionality. We can of course define a 

L-2 
dimensionless coupling constant gR  by gR  = g(p) 	where p is an 

arbitrary mass parameter. 

A scale transformation is a special kind of conformal 

transformation; the latter is a 15-parameter group which is 
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defined by adding to the Poincare group the scale transformations 

and the special conformal transformations 6x  x I )C . 

This is equivalent to a local scale transformation, the metric and 

fields thus transform as 

g 	4  a
2
(x)g pv 	ov 

0 	4  (2.5) 

Thus Yang-Mills theory, for instance, is conformally invari-

ant in 22, = 4 dimensions but not for 2i 	4. 

Note also that R 2 
 is scale invariant but not conformally 

invariant. 

Although conformal invariance may be useful to impose, we 

shall until further notice only assume scale invariance. 

Classically, massless gauge theories and the massless 0 4 

theory are scale invariant. However, radiative corrections can 

break scale invariance, and this is one of the key principles 

behind dynamically induced gravity. To illustrate this dynamical 

symmetry breaking of classical scale invariance, we consider . 4 

theory: 

A. 4 
(2.6) 4! 

If we consider only the 1-loop quantum effects then it can be 

shown by either a direct 1-loop calculation or by finding the 

1-loop effective potential (Coleman & E. Weinberg 1973; see also 

Ramond 1981) that under a scale transformation x' P  4 ax, 

3X 2 
A 	A' = 	log a 

16ff
2 (2.7) 

The renormalized coupling constant A is thus scale dependent, 



,2 12 2 1 + 0g (p )log(---) + 

g
2

(11
2

)  g 2 (u l 2 )  = (2.10) 

10 

since it depends on the scale a. The simplest way to see the 

scale dependence is to consider the renormalization of A via a 

1-loop Feynman calculation. To keep A dimensionless we must 

introduce an arbitrary mass scale. Since the Feynman diagram 

contains an infinite part (i.e., a pole at 22, = 4) the finite 

part, and thus A, will change if this mass parameter or the scale 

is altered. 

The dependence of A on the scale a is often expressed by the 

0 function 

= 
d A(a)

2 - bOX
2  

0  
d log a 

For 4)
4 theory, 

3), 2 = 	+ 32ff 

(2.8) 

(2.9) 

Higher loop calculations give the further terms in 0. 

All this implies that the coupling has to be defined at some 

particular scale, usually called the renormalization point, p. 

has the dimensions of mass and under the above scale change, 

p + p' where a = p/p'. 

Similarily, for an SU(n) gauge theory with N f  flavours of 

massless 	fermions 	in 	the 	fundamental 	rep, 	we 	have 

Again, the further terms are given by higher loop calcula-

tions. 

1 	3 
The function B(g) = -b0 g + 0(g

5
) is also used to describe 
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the scale dependence. 

1. 11 	2 b0  = 	2 (—n - 7N f ) 
8r 

(2.11) 

For a particle interaction, -u ,2  can be interpreted as the 

four momentum squared, q 2
, a kinetic invariant that governs the 

energy scale of the process in question. 

lln 
Note that if bo  > 0, i.e., N f  < 2  , we have g

2 (-q2 ) + 0 as 

-q 2 
+ 0. in eqn. 2.10 which demonstrates the asymptotic freedom of 

nonabelian gauge theories. 

The gauge theory at the tree level had one free parameter; 

and now, with the loop corrections, it has two nonindependent 

parameters, g and M. We can however find a new free parameter 

M(g,u) which is independent of the renormalization point. 

From (2.10) we can see that the mass parameter 

-1/b ri g 2 II ( 2 ) 
M(g,u) = ue 	 (2.12) 

is independent of the scale, to one loop order. 	The expression 

incorporating all loop orders can also be found (Gross & Neveu 

1974) 

M(g,u) = me 
	Brrol 	

(2.13) 

Alternative ways of expressing the above is to say that M is 

renormalization group invariant, or that M satisfies the Callan-

Symanzik equation: 

a  (u-- + a(g) a ] M(g,u) = 0 	 (2.14) au 

M is now the only free parameter in the theory and all quan-

tities must be able to be expressed as a function of M. However M 

has the dimensions of mass, so any physical parameter P(g,u) with 
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canonical dimension d must be expressible in terms of a power 

(M) d
, simply by dimensional analysis. Furthermore, any dimension-

less physical parameter (thus renormalization group invariant) 

must be calculable from the theory. For example, mass ratios. 

itself cannot of course be calculated in isolation. It can how-

ever be measured. In OCD it is related by a calculable constant 

to the QCD parameter, which can be measured by the scaling viola-

tion in electroproduction. 

This process, of transforming a theory with a dimensionless 

parameter to one with a dimensional parameter is called dimension-

al transmutation (Coleman & E. Weinberg 1973). This process is 

obviously of great importance since a realistic fundamental theory 

with only one free parameter would in principle give all mass 

ratios including, for instance, MPlanck 

electron 

Note that the mass parameter M obviously breaks the scale 

invariance, just as expected. The above illustrates the mechanism 

of dynamical symmetry breaking via the renormalization process. 

There are other ways of considering dynamical symmetry 

breaking, although none as clear as the above; (Nambu & Jona-

Lasinio 1961; Johnson, Baker & Willey 1964; Jackiw & Johnson 1973; 

Cornwall & Norton 1973). These include considering analogies with 

the BCS theory of superconductivity or of trying to generate 

composite fields such as ITs; for example the Nambu-Jona-Lasinio 

type models, where there is also a nonvanishing fermion mass 

generated. For instance the Higgs mechanism requires a scalar 

field $, however this could be a composite of the fundamental 
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fermions, so that <0> = <;0> /3 	0. The analogy with supercon- 

ductivity will be elaborated upon later. 

2.3 THE FUNDAMENTAL LAGRANGIAN 

In flat space-time, there will be a purely matter Lagrangian, 

which will describe all the fundamental particles of Latter' 

physics. The exact form of this is of course not yet known, but 

it is expected to involve spin 1/2 fermions, spin 1 gauge parti-

cles, and possibly their supersymmetric partners. Since the theme 

that is being pursued here is that of dynamical symmetry breaking, 

fundamental scalars are viewed with reluctance. However, their 

optional appearance can be allowed under certain conditions stated 

shortly. 

In a general space time, f patter will be a function of the & 

metric guv , and imatter (gpv ,0] will be the generally covariant 

form of Latter;  i.e., all derivatives u 
will be replaced by the 

covariant derivatives v
u
. (0 generically denotes all matter 

fields). 

There must also be added a gravitational Lagrangian 

[g ] such thatigravv En 
 
u] 

= 0. The terms in L 	must be a Igray iv 	 g rav 

maximal set of generally covariant local composite operators 

constructed from the metric and the fields. Furthermore they must 

be of canonical dimension 4 and satisfy the symmetries of the 

theory (i.e. those of la atter ). 	These conditions comprise the 

dimensional algorithm (Weinberg 1957). For instance, terms like 

VAR or A iA piR are not allowed, - because they do not satisfy the 

required gauge invariance. 
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We now assume that the fundamental Lagrangian is scale in-

variant (see section 2.2). The resulting Lagrangian is much more 

aesthetically appealing than the arbitrariness implicit in a scale 

non-invariant fundamental Lagrangian. 

Scale invariance implies that a term like (1/16rG 0 )R is not 

allowed; neither is a bare cosmological constant A o . 

We also assume either (a) that there are no elementary scalar 

fields or (b) that the Lagrangian is invariant under supersym-

metry. Case (b) combined with the assumption that the Lagrangian 

is of polynomial form, implies that the term $ 2 Rcan not be 

allowed, since 6. 7' 0. 

With these conditions there are only three possible terms, 

those which are quadratic in the metric. These are 

(a) R2 

(b) = R 	RpvaT _ 4R R" + R2  
pvaT 	pv 

(c) C 

	

	
cpvaT 

pvaT 

where C 	is the conformally invariant Weyl tensor. In 
UVUT 

22.-dimensional space time, we have (Weinberg 1972) 

1 =R 
pvaT 	pvaT 	2z-2 (g paR vT 	g pTil va 	gvaR pT 	gvTR pa )  

+ (21-1)(2z-2)(g p ag VT 
- g pTg va ) 

The fundamental gravitational Lagrangian is thus 

Lgray =r 0 R
2 +s 0 	vG+ cr,C 	pvaT 	Igrav  

 pvaT 
/711T 

(2.15) 

(2.16) 

(2.17) 

This has been proven to be renormalizable (Stelle 1977). 

The coefficients r 0'  s0  and c0  are allowed to be non-finite. 

This Lagrangian will be discussed in chapter 4, along with the 

possible resolution of the problem usually cited in ,connection 
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with 0(R
2
) theories; namely the nonunitarity of the S-matrix. We 

note however a trivial resolution of all such problems, simply 

take r 0  = s 0  = c 0  = 0. This however appears to be impossible to 

allow, since 0(R 2
) terms are required as counterterms in the 

renormalization of LIatter [guv ,0]. 

So far, no mention of the known low energy gravity Lagrangian 

cL= /1774R has been made, other than its scale non-invariance. For 16IG 

such a term to appear, we require that it is only an effective 

Lagrangian, as explained in the next section. 

2.4 EFFECTIVE ACTIONS 

The idea of an effective action is simple. Consider a field 

theory with interacting quantum fields. To find the complete 

description of one of the fields, one simply functionally inte-

grates over all the others in the expression for the partition 

function. This can be illustrated by the weak interaction. 

Historically, the experimental data on weak interactions 

pointed to a current-current interaction: 

n.un 
F = t7„3 	+

u 
3 ) + hermitian conjugate 	(2.18) *4•- /I 

where for two generations, for instance, 

j- = (v e v)y u (eL) + (u c)y uU c (d L) u L 	sL 

Uc = ( cosesine c ) -sine c 
cose 

This theory describes the interactions of the fermions at low 

energies (i.e., less than 80 GeV), but fails at higher energies. 

Furthermore it is not renormalizable; the reason for this is 
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basically the presence of the dimensional coupling constant G F  = 

(300 GeV) -2 . 

It is now known that the above is only an effective Lagran-

gian of the true Weinberg-Salam Lagrangian: (For a review, see 

Fritzsch & Minkowski 1981). 

= 	iGpvG" 	11 (iA-1"31°)eR 

+ (Tr eL)(ik-ITA43'0)kl 

- G e  [eR 	eL 
Olv  )+ (v e[) e] 

[Gl aR s() 	G2 5R i t (1(31 ) 	+ h.c.]  

+ (3 11-4g 1 B 11-4gt i A ;;1)0 t (3 0+-ig'B ii +-12Lgt iAt)* 

- u
2
0
t 

- x(0
t
0)

2 

+ second generation and mixing terms. 	(2.21) 

This is a renormalizable theory describing the behaviour of 

fermions and the gauge bosons at all energies. Furthermore, it is 

scale invariant. The usual correspondence between  is 

obtained by considering the 4-fermion interaction at low energies. 

However the full effective fermion action, S eff , is obtained 

by functionally integrating out the gauge bosons and Higgs fields. 

exp(iS eff (*)) = .Sd[All Bosons] exp(44 4,ws ) 	(2.23) 

* denotes all the fermion fields. 	Note that the partition 
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function is then Z = Sd[flexp(iSeff  (0). 	S
eff 

= Sd 4 x f 

describes, completely, all the interactions of the fermions when 

no external gauge or Higgs fields are involved, it is valid at all 

energies. 	It also contains a dimensional parameter, GF , so the 

scale invariance has been broken. 

If we now consider only low energies, then we find that Leff 

=,14 + small corrections. 

The principle is the same for gravity. The full Lagrangian 

is the generally covariant matter 
Lagrangian'1.matterEgpv'll' 

plus 

the fundamental gravitational Lagrangian e 0...grav [gpv ].  

The effective action Seff[gpv]  is obtained simply by 

exp(iSeff [guv ]) = (3[0]exp(ild
4 xLmatterEgpv'll) 	(2.24) 

Let S
eff = j'd4xLeff' + f describes the interactions ofrav 5-eff 

gravitons and takes into consideration all the effects of internal 

matter fields. It is valid at all energies and contains a dimen-

sional scale G 0 (1019 GeV) -2 , just like in the weak interactions. 

The analogy between weak interactions and gravity should not be 

taken too far, however, since in the Weinberg-Salam theory we 

integrate over the gauge fields, while in the gravity case we 

integrate over the matter fields and not the gravitational gauge 

field. 

Note that as this effective Lagrangian is induced by the 

quantization of the matter fields, it is not a classical result. 

The metric g 	may or may not be quantized, the viewpoint is pv 

unaltered. 

We now consider the situation of slowly varying metrics, i.e. 

(a A gpv ) x Planck length << 1. 
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(By "gpv " I mean the background metric, g pv , in the back-

ground field method of quantizing the gravitational field in which 

gpv 
=g  

pv  h pv° )  

Thus it should be possible to expand a function of g 
pv in  

powers of a ) gpv  with constant coefficients. eff [gpv ] is a scalar 

density, so all terms in the power expansion will also be scalars. 

There are no scalars with just odd powers of a xg pv  so we can write 

1  1  
Leff Eg  pv 3  = f=g( I-6-Tru ( 2A) + ----R) + 0(a g )

4 

16nG  y pv 
(2.25) 

R is the only scalar of second order in a xg pv. The constants 

G and A are defined to be the coefficients as above and are termed 

the induced quantities. This idea was first put forward by 

Sakharov (1967; see also 1982). 

The 0(3 g ) 4 terms will contain R
2
, R

aB
R  R

aBy6
R
aBy6F 

and 
y iv  a(3 

possibly logarithmic terms due to trace anomalies from massless 

fields. 

+1-gravv is renormalizable and scale l_matter Ig uy' 41 	E gp i  

invariant. Thus no scale symmetry violating counterterms are 

possible, so the coefficients G
-1 and A must be finite. (However 

the coefficients of 0(8g pv )
4 need not be.) Thus the induced 

cosmological constant and Newton's constant should be calculable 

from the original LagrangianLatter'  with no possible ambiguity. 

It is possible, in fact, to find a general formula for these, 

as is done in the next section: 

As an aside, we note the analogy of induced gravity with that 

of superconductivity. 
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BCS model of 
superconductivity 

Gauge theory 

Mass gap A 

scale-mass 
term M of 
section 2.2 

Weakly varying Ginsburg-Landau 
electro-magnetic 	theory 

fiIld 

weakly varying 	Einsteins 
metric 	gravity 

-1 2.5 FORMULAE FOR A. 	AND G. ind 	ind 
A 	-1  We shall derive expressions for u and for G 	in terms of the 

flat space-time Lagrangian, or actually the trace of the stress 

energy tensor. This derivation is due to Adler (1980b, 1980c). 

For simplicity, we restrict g uy  to be classical from this 

point on. Note, however that for g pv  quantized,Lsrav [g pv I will 

make a contribution to the low enerqvL ff  via the high momentum 

gravitons. Now, the relationship between the effective Lagrangian 

!Leff , and the matter Lagrangian,4[0] is 

exp i5d4 xjLeff [gpv ] = ,Sd[0]exp iSd 4 xlim [g 	(2.26) 
uv 

1 whereLeff/i=g- = ITTr (1-2A) and remember that we neglect all terms 

of order (a x g uv ) 4 and higher. 

Operate on both sides with 2g (y) 	 where y represents 

	

uv 	6g pv (y) 

an arbitrary point in an arbitrary region of space-time. So 

4 o 
/1.174.71 exp(ijd x1%. 	(g 1)2g (y) 	Id 4 x  eff pv 	pv 	dg 	(y) 

iS (g 	,01 
jd[O]e m  " 	6  = 	 fd4  2g liv (y) 6g  (,) 	xiLm [g pv ,0] 

Now use the known results: 

(2.27) 

di 
di=if 

= 1 7---7 T 6g pv 
2 	p) 
1 	uv 

= -7/=7  guv dg 

(2.28) 

(2.29) 
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1 	pv 	a 	2. s(i=gR) = r=g(R --g R)dg 	+ 	w ) pv 2 pv ax 

2. 	ik 	11 k 
where w = g orik  — g or. k . 

(2.30) 

Divide by exp iSd 4xLeff [g liv1 = Sci[o]exp iSm [g pv,t] to get: 

5d[O]exp(iSin [g liv ,01)/9-57 T p u [g pv ,y] 
-i- g ( "(R(y)-4A) -  	(2.31) 87rG Sd[C exp iSm [g uv,0] 

= </ZT T u il [g pv ,y]>0 	 (2.32) 

Take g 	= n 	and thus 
pv 

 
'iv 

1 A = 	[npv,Ill>0 

This is the expression for the induced cosmological constant 

term for a classical metric. For a quantized metric, the expres-

sion is very similar (see appendix). 

To obtain the expression for G
-1 , we vary eqn. 2.31 around 

;iv n pv 	v 
Minkowski space time so that g 	= 	6gp . 	(2.34) 

Now, expand the metric using the general Riemann normal 

coordinates about the point y, but choose coordinates so that y=0. 

MV 	MV
= n

pv 	pav$ 
g 	- i.e. 	 x a X 0 

+ 	 (2.35) 

(2.33) 

1 pav$ 
Thus 	dg

pv  
 = 3 	x aX $ 

and 	612(y) = R(y) and g(y) = 1. 

-R(y) 	sc1(01exp(iSm (g vv ,01)8(T u P [g pv ,y1) 
So   - 	  

87TG 	fd(01exp(iSm (g uv ,01) 

Id[0]exp(iSm [g liv ,01)1=g(y) T u 4 (g pv ,y1ifd4 xdotg uv ,01 

53[0]exp(iSm [q uv ,0] 

- +[0]exp(iSm [g uv ,(idT 4 4 (g liv ,y1} 

qd[O]exp(iSm (g uv ,0])ijd4  xdilg uv1 01} 

(2.36) 

(2.37) 2 { Sd[ o] ex p( iSm [ g uv , 01 ) } 



6(g",4-77g T) = "="g T 6g" + 2g Pv  pv 	pv 	pv dg 
(2.41) 
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= 
 u 	uv 

+ 	;I P  [g pv ,y] id 4 x61,(g uv , 01 > 0T  

- 	;I P  (g pv,y] > 0  < iSd 4 x 611g pv, 0] > 0 	 (2.38) 

where < > o means the vacuum expectation value of the covariant 

time ordered product. 

Now, from eqns. 2.36 and 2.28 we have 

liV ,0] = 1 Sd 4x1=TXT T (g 
v
,x]6g 

pv 	2 	P 
= l n pavO (y) 	x x  /77r77  Eg  ,x]  

6 1` 	a 	v pv 

Thus-4-Y-G111137 	= <6T 11 [9 ,1, ]> 0  p 	pv 

(Y/d4 X x x {<T a rrc ,11/71777 T [1g ,x]>10' a 0 	aLsiuv 	pv 	pv 
i uavB 

-<T:(g liv ,y)> 0 </-g(x) T pv [g pv,x]> 0 } (2.40) 

Since we are only working to O(3g) 2 , the first term gives 

zero. This can be seen by noticing that dT P  is to be evaluated 

at x = 0 but 6g" = R Pavex ax near x = 0. But in the expression 

for 6(/74-  T u P ), 

(2.39) 

1 since 6i= Ti=g T uv de v . 

The first term vanishes as 0(x 2 ), and if the second term is 

not to vanish then the 6g" which is implicit in çL wiii  have to 

be operated on by two derivatives. These derivatives can come 

only from either a 8 A 80 	 operator or from the square of a 
a(a

0g pv ) 

3  operator acting onis. These operators appear in 
aa g pv  

aS- 	x 	x e  3S_  
T = 	= 	a 	 uv 	 + a a pv 	p 6g 	ag v 	a( a x gu v )  a( a x B eg un 

However these operators will give zero since does not depend 



Thus 	Pv (X l ( P 2) 	p2X 2 (132))  = 

so 	(x2 ) = 02 A2  (x2 ) 

Thus <T 	(x)> c? n 
8 	8 

]A(x
2

) pv 	p 	v 3x 	ax 

(2.45) 

(2.46) 

(2.47) 
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e v 
on 8 8 g u  for a spin 1/2 or spin I field, and depends on a xg" 

only once for a spin 1/2 field and not at all for a spin I field. 

For a spin 0 field the only term that can contribute is the 

RO 2 
term, but this was assumed (section 2.3) to be nonexistent in 

uv .  S... Thus <6T u [g ,y]> 0 	
(a Ag) 2 

is zero to order 	This would not pv  

be so if g uv  were quantized. 

With this in mind we can now partially take the Minkowski 

limit of eqn. 2.40 and write: 

:-.11(y) 	-i pav$ 	c 4 	T 
8wG 

- 	R 	(y) d x x a
x
a
{<T(y)T

pv
(x)>

0 
- <T(y)> <T 	(x)> 0 1 

0 	iv 

(2.42) 

where for convenience the notation T(x) = T I [n ,x] is used. 
a 	11V 

We now note that both these vacuum expectation values can be 

written as total divergences which then allows us to twice inte-

grate by parts. 

Note first that Lorentz covariance implies that <T 1.v (x)> 0  can 

be written as 

a 
liv 

 <T 	(x)> 	= A 1 (x 2 ) 0 	
a 

iv 

	

3x 	8x 

(Perhaps more familiar as a Fourier transform in p p  

<Tuv ( P)>0 = X1 ( P2)npv 	PpPv A2 (P2 " ]  

Now the conservation law
u
<T (x)> = 0 8x pv 	0 

implies, as a Fourier transform, p<(p)> 0  = 0. 

(2.43) 

(2.44) 
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for some scalar function A(x
2
). 

Substituting this into the integral, we have 

RuavOS d4 x x x <T (x)> o 

	

a 0 	iv 

= R pavOSd 4 x A(x 2 ) (ID 	a 	a 2 n 	)xx pv 
axv a  

= 312Sd 4 x A(x 2 ) 

IrR id4 x A(x 2 )f1c 2 

= 3/1+4 x 

 

% ,. / . 0 	 (2.48) 

This argument proceeds exactly the same for <T(0)T uv (x)>T0  

since it obeys the same conservation law. 

Thus, we can now divide by R(y) to find 

1 
jijd 4 x x 2 {<T (y)T (x) > To  - <T (y) o <T (x) > 0 } 	(2. 49 ) 8rG 

If we prefer, we can put y to zero and define T(x) = T(x) - 

1 so that ---- 16rG - 6 id4 x x2 <T(0)T(x)> I/01 	(2.50) 

This is the usual expression for the induced gravitational 

constant. 

It is interesting to consider the diagram for <T(0)T(x)>. 

To lowest order it is 

To all orders it is 

Recall that we have subtracted the disconnected part, which is 
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A 

Now let T(k) be the Fourier transform of <T(0)T(x)>0 , so 

	

1- 	x i .S 4  d 4
k 	2 e  -ikxy(k) dx 16w — G 	96 (20
4 

 

d 4 x -ikxen 2 m ,,, 

	

- 	K-e 	Y(k) 7;' 	4 
(2w) 

	

= 
	

k=0 
	 (2.51) 

But T(k) is a scalar function so is only a function of k 2 , 

and 	
k T(k

2 
 ) = 8I"(k

2
) + 4k2

T"(k
2 ) 

therefore 
1-i 	2 

16wG =  Ik=0 
(2.52) 

Note the simplicity of our final expression. 

The diagram for tv(k 2
), with the contraction of indices as 

u v 
	) is the amputated version of the following: 

pays = 

(The double wavy lines represent gravitons.) 

Observe that since g uy  is classical there are no graviton 

loops in this diagram. If g were to be quantized then there 

would be graviton loops since the virtual graviton fluctuations 

would have to be included into the energy-momentum tenson 

The next chapter deals with attempted calculations of G
-1

. 
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The Feynman diagram will in general give a divergent result and 

this must be removed, usually by analytic continuation of the 

dimension of the integrals, although other regularization methods•

are possible. 
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-1 
3. PREVIOUS ATTEMPTS AT MODEL CALCULATIONS FOR G 

In this chapter we consider all previously published work on 

the calculation of G -1 , both model calculations and more general 

considerations. These calculations are in approximate chronologi-

cal order. 

3.1 INSTANTON GAS APPROXIMATION IN A PURE SU(2) GAUGE THEORY 

It is possible to evaluate an approximation to the full non-

perturbative generating functional Z, by considering only certain 

non-perturbative effects, the instantons. An instanton is a 

finite action solution to the classical equations of motion 

obeying certain boundary conditions (localization in space-time). 

It is thus a stationary point of the Euclidean action. The 

-S generating functional Z = Sd[S]e [(0]  is dominated by stationary 

points, so to approximate the functional integral we consider 

1-loop quantum fluctuations about the instanton. We then 

integrate over all positions and sizes of the instantons, and sum 

over all possible multi-instanton contributions. However when 

instantons overlap calculations become complicated and other non-

pertubative effects may become important (e.g. merons), so we only 

consider non overlapping instantons. Thus we integrate over sizes 

of instantons, P, up to a maximum pmax 
This is the "dilute 

instanton gas approximation". For a good review see Coleman 

(1977). The pmax  is an artificial cut-off. 

The 1-loop correction to the pure SU(2) gauge theory 
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generating functional with a general conformally flat Euclidean 

metric g 	= e
20

6 	was considered by Hasslacher & Mottola (1980), pv 	pv 

using the dilute instanton gas approximation. The resultant 

1-loop action S 1 _ 100  = -1nZ is an approximation to S eff [g u ] (eqn. 

2.24), and thus enables G -1  and A to be evaluated without the use 

of the general formula = (k 2) (sqn. 2.52). 

The actual quantity calculated was 

.2gpv dS 1  
T p 1 loo 	

-loop  
- 	1/2 	dgpv 	

1 
- Tyrd(R-2A) + 0(30„ ) 4 (3.1) p  

The restriction to slowly varying metrics, so as to drop 

pv 0(3 x  g ) 4 
 terms, ensures a simple solution: 

P  (R) 

8
G(R -2A) =P 

 max 	dp 22 	5 19 	48 	2 
+ T(-75-log-7-)p R]p(P) 

p R 

D (p) = bx
4 e-x (Bernard 1979) 

8w 2 
where x = 2 	and b = 0.016. 

g (p) 

(3.2) 

We know how g 2
(p) varies with p for small g (the ultraviolet 

region) from the scale dependence given in eqn. 2.10 

8 112 81T 2 22 
2 	- 2 	ln(pp) 

g (P) 	g (u) 
(3.3) 

where p is an arbitrary renormalization point. 

Thus e 	
22/3

e
-x(p) 

-x=(pp) 	and consequently the above integral 

converges in the ultraviolet region. 

The first thing to note from the above is that the existence 

of an induced G 	is indicated. UnfortunatelyP
max 	is not (R)  

known, it requires a more detailed analysis of the infrared 

region, and so G -1 can not be calculated reliably. 	Also, it is 
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possible that the (logp
2
R)p

2
R term is merely an artifact of the 

dilute instanton gas approximation, as argued by Adler (1982), and 

that this will be compensated by either other non-perturbative 

effects or by the dependence of P max  on R. Thus the significance 

of this term is unclear, which is unfortunate since the sign of 

-1 
G depends on this term and pmax! 

Observe, however, two things. The first is the presence of a 

term 
e
-8 2 

/g
2 

which i 1. 	s associated with non-perturbative effects 

and which can be very small for g small. The other thing to 

notice is that, in the UV region at least, the minus sign in e -x  

ensures that with a low energy p, there cannot be a large 

contribution to G
-1 

from the gauge fields of an SU(2) gauge 

-1 theory, i.e. G 	= 0(11
2
). Of course, this need not be valid for 

other fields. 

3.2 A ONE LOOP CALCULATION WITH MASSIVE FERMIONS 

Zee (1981a) has calculated an approximation to 

for a fermion-graviton theory by calculating the 1-loop diagram 

The fermion is given a mass m, and two Pauli-Villars regula- 

tors are used. 	(This calculation has been done before. 	See 
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Sakharov 1975; Akama, Chikashige, Matsuki & Terazawa 1978.) 

However the purpose of these regulators is not just to control the 

infinities, it is to simulate dynamical symmetry breaking. 	i.e. 

the two masses of the regulators, ml  and m2 , are to be considered 

as perfectly physical. The momentum dependence of the mass m(q) 

is then approximated by a cutoff at the regulator mass. Only p 2 

terms are considered, so only two regulator masses are required. 

The result Zee obtains is 

22 2 
2 	m1

2 
-1 	2 	2  m-m 	m1 l G 	= Tir{m2 (  2 	2)10g--7 	m log--T} 	(3.4) 

	

m l m2 	m2 	m2 

Although this does not give a definite value for G-1 , it is 

still possible to draw some conclusions. We see that the sign of 

G-1 -1 i depends on the mass ratios between m l , m 2  and m; G s 

positive for m 2 < m 1 2 , m 2 2
. Since m l  and m 2  are supposed to 

simulate the dynamical symmetry breaking, we can conclude that the 

sign of G -1 , and not just the value, depends on the detailed 

mechanism of this breaking. (This dependence on the detailed 

dynamics was seen before in the instanton gas approximation.) 

A second conclusion is that to obtain a realistic value for 

G -1 , the masses of the regulators must be of the order of the 

Planck mass. This conclusion is not very strong, however, since a 

1-loop calculation can hardly simulate non-perturbative effects. 

The actual calculation by Zee is interesting in that it 

introduces a number of tricks to simplify the algebra. These 

tricks comprise replacing the fermion loop by a 1-loop scalar-

graviton vertex, and then letting one of the scalar momenta go to 

zero. This is only useful in obtaining a value of G
-1 , and one 
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loses the tensor information of the original diagram. 

3.3 SPECTRAL ANALYSIS OF <T(x)T(0)> o 

If we consider <T(x)T(0)>0T  as a scalar function of x, then we 

can formally write down its spectral representation. 

T 	 . <T(x)T(0)>0  = oc da
2 
 p(a

2 
 )1AE,(x,a) 

. 	2 
i.e. T(k) = 	da

2 ip(a )  
2 	2 . 0 	k -a +it 

where 	p( a2 ) = (210 3  Z64  (pn - a) 1 <0 IT (0) 1 n>1 2 

(3.5) 

(3.6) 

(3.7) 

Thus 
_-1 - 4 c

0 

 p(a
2

)
da

2 = -- 3w  a
4 (3.8) 

Since however p(a 2
) is gauge •invariant, it can be evaluated 

in a gauge where there are no ghosts (such as the axial gauge) and 

consequently the Hilbert space metric is positive definite. Thus 

p(a 2 ) > 0 and G-1  is always negative. 

As pointed out by Adler (1980b), this argument is flawed. 

2 
P( 	) This is because 	4

a 	is divergent as a 4 .... This is because T 
0 

 

contains a trace anomaly which in gauge theories is (Collins, 

Duncan & Joglekar 1977) 

T = 	T(F li  
20(g)  1 a

vF 
 auv

) 
 renormalized 	(14.6(g))com041) renormalized (3.9)  

This is true to all orders in perturbation theory. 

Since we have an asymptotically free theory, the a  co is 

just the free field limit, thus 

A 	 ■•• 



1 <T(x)T(0)>T 0 	x logarithms + 0  
(x 

50SO 	P(a
2

) 0 a
4 x logarithms(a 2 ) 

A 

Thus 
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<T(x)T(0)> 0  behaves as 	(81 (x)) 2 T 	a 	4 

3)0 

where A
1 (x)  (mx) is the free field space-like propagator for x 1 

a spin-1 particle with mass m, where K l  is the modified Bessel 

function of the third kind. (Bjorken & Drell 1965, Appendix C) 

Thus, since A1 (x)  1-
' 

we have 
x2  

T  <T(x)T(0)> 	1
o 

0 

(x
2

) 4 • 
(3.10) 

Actually, the true behavior is the above modified by logarithms, 

as can be seen from the Wilson operator product expansion (Wilson 

1968; Zimmerman 1970; see also Itzykson & Zuber 1980, p. 672). 

<;(x)T (0)> T°  0 	2.17 N (x) O N (f) 	 (3.11) 

where ON  are a sequence of operators, and C N  are C-number 

coefficients. The behavior, perturbatively, is 

xY x (possible power series in log x) 

where y is the canonical dimensionality of the operator ON . 

A 

2 
Regardless of logarithms, the integral 	"a  )  is divergent. 4 

a 

In the language of dispersion relations, we can say that 7(k) does 

not obey an unsubtracted dispersion relation. Alternatively, we 

could hope to handle the diverges using a dimensional regulariza-

tion approach. However an apparently positive integral can turn 
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out negative once the divergences have been subtracted off. 

3.4 AN INFRARED-STABLE YANG-MILLS THEORY 

The problems in the previous model calculations have been in 

the infrared. In the theories considered so far the problem has 

been the lack of knowledge of the IR behavior. However, it is 

possible to obtain the IR behavior of a Yang-Mills theory in a 

certain restrictive case, and that is an infrared stable theory 

with a small coupling constant. This is, of course, only a toy 

model. With such a model, G -1  is calculable (Zee 1982a). 

2 	-b0 The infrared-stable fixed point is g *  - 2b1 

where 	0(g) = 	-bo g -bi g -b2 g7 + 	 (3.14) 

we thus require 130  to be small and positive (so as to retain 

asymptotic freedom), and b i  to be negative. An example of such a 

theory is OCD with 16 flavours; however, these calculations are 

valid for any IR-stable Yang-Mills theory. 

2 
With g*  sufficiently small, all terms of 0(g* 2 ) 2 are ignored. 

The exact behavior of g(-q 2
) can then be found. Note that once 

the nature of the theory has been chosen (i.e. the gauge group and 

2 
the representations) g*  becomes a fixed quantity. 

The UV behavior is the usual asymptotic freedom as expected 

and the IR behavior is 

2 	-b g2 
g(x) 	0 * 

2 	4. 1 - e(Mx) 	 (3.15) 

g* 
2. 2 	2 2. 

Since g is a function of q and u , and since g *  is fixed, 



G-1 Cb
0 	2 lim - 

2 = 3 	16 	g* n+y e nJ (n) 
ii 

(3.17) 
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12 
the renormalization point, u, is fixed by choosing g

2 (-q2 ) = 

1 at q 2  = u 2 . (Note that the factor 	is chosen arbitrarily, but it 

must be a positive number less than 1.) 	Thus u
2  is now a 

measurable quantity. 

The function v(x) = <T(x)T(0)>
T is now approximated by C /x 8 , 0 

i.e. its free field value, see eqn. 3.10. 	Adler (1982) has 

evaluated the constant C for an SU(n) gauge theory to be 

3 x
6 2  C - 	 (n2-1) 

(2 r ) 4 

From all this, Zee obtains the formula 

(3.16) 

2 
where 	y - 	2 > 0 * b0 g * 

The function J(n) is a divergent integral for n  > 0. 

x
l+n nx J(n) = 	dx 	3 e 

0 	(1+x) 
(3.18) 

Thus to evaluate it we require a regularization process for 

instance a dimensional one. The integral is evaluated for n  < 0, 

where it is defined, and the resulting expression is then analyti-

cally continued to n > 0. The resulting expression for J(n) still 

has problems, since it has a cut along the positive real axis, 

which is where y lies. Thus J(y) is not yet defined. 

We define J(y) by symmetrizing from just above and just below 

the cut; i.e. 

1 J (y)  (3.19) 

This process of defining a divergent integral by analytically 
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continuing a parameter which it contains, gives a unique and 

unambiguous answer. The essence lies in the property of analytic 

continuation, which is known to always give a unique process no 

matter how it is carried out. For further discussion, see Adler 

(1982) or Zee (1982a). 

The resultant expression for J(y) can be evaluated by numeri-

cal integration, or by the method of steepest descent, which is 

what Zee does. 

The result is 

G
-1 	4 C 	2 	. 	2r 
 4  exp(-4/b og * ) sin( ---T 2 	 ) 
48 g* 	b

0
g
* 

(3.20) 

- 
Thus, the mass ratio G

1 
 /u

2 	
i is n terms of entirely known 

quantities. Furthermore u is measurable, so the induced Newtonian 

constant for this toy model is completely predicted. Note how-

ever, that the sign of G is very sensitive to the position of the 

fixed point, i.e. to the details of the infrared region. Zee 

(1981b) has suggested that this is a universal feature, and that a 

general argument for the sign of G may not exist. 

This toy model is useful in that it illustrates the principle 

of induced gravity, and the problems with which one must come to 

grips. 

3.5 A LATTICE CALCULATION FOR A PURE SU(n) GAUGE THEORY 

A procedure was outlined by Adler (1982) to calculate G
-1 

using the technique of Monte Carlo simulation on a lattice. The 

idea of using a lattice for gauge theories was originated by 
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Wilson (1974). 	The Monte Carlo method is one of the more 

successful methods employed for lattice calculations, and was 

introduced by Wilson and extended by Creutz (1980). This method 

is non-perturbative and is thus used to examine the IR behaviour 

of a gauge theory. The successes of lattice gauge theories have 

been to both pure Yang-Mills theory and also Yang-Mills theory 

with fermions. However, we shall only consider the former. 

Pure Yang-Mills gauge theory has no classical scale, but it 

has a non-perturbative dynamically induced scale. This scale can 

be written in a number of forms and related to the scale para-

meters used in QCD, such as AMS' Amom • 
We also have the lattice 

scale AL' the string tension 	and the scale introduced in eqn. 

2.3, M. 	(These are all formally renormalization point indepen- 

dent, though the perturbative QCD scale parameters do depend on 

the renormalization scheme.) The most accurately measured scale 

is the string tension IR, defined as the coefficient in the heavy 

quark-antiquark potential 

Vstatic (x) + Kx as x + co. 

Its value can be obtained either from the Regge slope or from 

the phenomenology of heavy quark bound states, and it is found 

that lies between 400 and 500 MeV (Eichten, Gottfried, 

Kinoshita, Lane & Yan 1980). Using Monte Carlo techniques, this 

can be related to the lattice scale via AIL  = (6 + 1) x 10 -3 /T 

(Creutz & Moriaty 1982). This parameter can be related to the A 

parameter in continuum QCD, (Hasenfratz & Hasenfratz 1980,Billoire 

1981), which can be measured from deep inelastic scattering 

experiments. 
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There is, for us, a more relevent parameter, namely the 

vacuum energy density, or gluon condensate 

2 	. 	. -28(g) 
 <01-2—F 1 F 1 "10>. 

b
0
g3 	4n2 pv 

This parameter can be measured by using the sum rules for 

charm production in e +e -  annihilation (Shifman, Vainshtein & 

Zakharov 1979) or it can be related to the string tension via 

Monte Carlo techniques (see, for example, Di Giacomo & Paffuti 

1982). Its value is approximately 0.012 GeV 4 . 

This quantity is of interest since it is related to the trace 

anomaly <T II II > o , and this is related to the induced cosmological 

constant (eqn. 2.5), so 

A i  1 	nd  2 b
0  x(gluon condensate) 2r G

ind 
(3.21) 

- 13( g )  <F 

	

2g 	UV 

1 A Compared with the experimental value, which is 77r- u  0 10-44 

GeV
4
, we see we have a discrepancy. This is the famous cosmologi-

cal constant problem. It is usually said that a resolution of 

this problem will come from a new symmetry which will imply that 

A the induced 	from other particles will exactly cancel out the 

A  above so the total 	will be zero. This, of course, is specula- 

tion. 

This calculation of G
-1 

from a lattice has not yet been 

performed, for the method requires knowledge of the IR behavior of 

	

A 	A 
the function T(x) = <T(x)T(0)> 0 . The approximate behavior is 

known from general considerations, since T(x) is a correlation 
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function, and has to be exponentially finite, i.e. 

T(x) + exp(-m
9 
 x) 	for x • cp. 	 (3.22) 

The mass parameter mg , called the glueball mass or mass gap, 

is the mass of the lowest lying glueball states; suspected to have 

PC 	++ J 	= 0 . 

This parameter can be calculated using Monte Carlo tech-

niques, see example Berg & Billoire (1983), who give 

m = (280+50)A
L 

= 750 MeV. 

The exact nature of T(x) in the IR region, however, has yet 

to be computed. It is however non-divergent and so can be 

integrated. 

On the other hand the UV part of the T(x) is known from 

asymptotic freedom and the Wilson operator product expansion, (see 

eqn. 3.11). Consequently we know that T(x) behaves like 

1  
xlogs for x + 0, and thus the integral 13

4
x x2 (x) is 

(x 2 ) 4 

divergent. To evaluate this integral we subtract off the diver-

gent piece Td (x) leaving a convergent integral which can be 

evaluated by numerical integration. The divergent piece T d (x) 

must then be evaluated separately by a process of analytic con-

tinuation. 

We can easily evaluate the most divergent part of T d (x) by 

asymptotic freedom, since this implies we consider the lowest loop 

contribution. 

22 
Thus g 2 (-x 2 ) - 	9 (P)  

 1 	2 2 1—b0 g (p )log(-x 2
p
2 ) 

•2 2 -1 
0 (log(-x p )) 	as • 0 

(3.23) 

(3.24) 



Thus Td (x)   as 
x8 (log(-x2 )) 2 x2 4- 0 	 (3.26) 

1 
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Furthermore 1121  0 g 2 , so 

1 T  
( 3. 25) 

We have thus evaluated the logarithms in eqn. 3.12. 

Consideration of all loops leads to the general expression 

(x) = 	b0 2 c g 
y  8  (1+Z Cn g2n ) 

	

x 	n=1 
(3.27) 

where C is given in eqn. 3.16. Note that evaluation of C
n 

requires consideration of all n+1 loop contributions. At present, 

only two loop calculations have been performed (Kataev, Krasnikov 

& Pivovarov 1982). Note also that there cannot be a 1/x 6 
term in 

Td , since by the operator product expansion this would imply an 

internal symmetry (including scale) invariant operator of mass 

dimension 2, and no such operator exists in YM gauge theories. 

Since we are evaluating the UV and IR pieces by different 

techniques, we must define a crossover point, x0  say. This would 

presumably be a small fixed number, but would depend on the 

accuracy of our other calculations, namely the coefficients C n  and 

the Monte Carlo simulation of the IR region of T(x). 

The integration of the above divergent integral, namely 

rO d4 x x 2 T d (x) has been evaluated by Adler to the extent that, by 0 

a process of analytic continuation, it has been re-expressed in a 

form which no longer has divergences. 	The actual analytic 

continuation is interesting in that the integral is reformulated 
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into an expression which has a branch cut in the space-time 

dimension, 21, from 22 = 2 to 22 = 03 . Consequently the true value 

at 29. = 4 must be found by approaching the point 21 = 4 from just 

below and just above the branch cut. 

Adler has thus reduced the calculation of G for a pure SU(n) 

gauge theory in terms of Monte Carlo simulations, numerical 

integrals and evaluation of perturbation theory coefficients. 

This result is interesting in that it should be possible within 

the near future to obtain some information from this program. 

Furthermore, although present efforts are concentrated on SU(2) or 

SU(3), it is not too difficult to extend these to SU(5) and thus 

relate G -1 
to the various mass scales of the grand unified 

theories. Indications are that no great surprises are expected in 

the results from SU(2), SU(3) or SU(5), except, of course, for the 

actual values of the scale parameters. 

- 3.6 BOUNDS ON G 1 
 IN AN ASYMPTOTICALLY FREE GAUGE THEORY 

(In this section only, we shall adopt Khuri's notation 

iq 	 -1 	1 T(q 2 ) = 	cd 4  x e 	x  <T(x)T(0)> 0  and so (161G) 	= 	T' (0), 

instead of eqn. 2.52.) 

Khuri (1982a, 1982b, 1982c) has established some general 

results for an asymptotically free gauge theory with massless 

fermions. These conditions imply (see eqn. 3.26 and Khuri 1982b) 

4 	 -q
2 -1 T(q

2
)+-CA q (log 1 ) 	as -q

2
4.8. 	(3.28) 

A' 



Thus (16TG) = -2* rz 
12u 	0 a

4 
(a + 2

) 

-1 	7(0) 	u
2 ç' P(a ) 	da2 

2 
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where 	CA = C7  (T
2 /2 6

x3) 	(see 3.16) 

Khuri's results originate from a study of the zeros of 

the techniques used are an adaptation of the work by Jin & Martin 

(1964). The main ingredients are consequences of analyticity. 

As an example of the power but simplicity of this approach, 

we assume T(q 2
) has precisely one zero, at -p

2 
< 0. We define a 

function H(q2 ) by 

H( q2 ) = 	
wl21 	

(3.29) 
q +p 

By eqn. 3.28 H(q)/q
2
+0 as 1q2  J -  and so we can write down a once-

subtracted dispersion relation for H(q2 ) 

2 	2 
s_ 	Im H(a

2 	
da ) 	2 

H(q ) = H(0) 
0 222  

Thus 

7(0) 2 2 	q
2
(q

2
+u

2
)  (  Im H(a

2
) 
 da

2 
7(q

2
) = 	2 (q +u ) - )0a2 (a2 -q2 ) 

Differentiating and putting q2 = 0, we have 

7(0) 	p2  Im T(a
2 
 ) 
 da

2 
(16nG) -1  

12p
2 + 12n 

0a4 (a2 +4 2 ) 

(3.30) 

(3.31) 

(3.32) 

But 
2 

7(k
2
) = 	da2  P(a )  

2 	. 
0 	k -a

2 
 +le 

(3.33) 

(see eqns. 3.6, 3.7) 

and so 	Im 7(a
2 ) = -Tu(a2 ) < 0 for a

2 > 0. 

Thus, in one case, we have determined an upper bound on G
-1 , 

 (16TG) 	< 7(0) -1 

	

12p 2 
 (3.36) 

(3.34) 

(3.35) 

2 
The properties of T(q) (analyticity on the plane with the 
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exception of 0 < q2 
< 	; and eqn. 3.34) imply that H(q

2
) defined 

in eqn. 3.29 is a particular type of function called a Herglotz 

function. 	(Khuri 1982a; Jin & Martin 1964; Khuri 1969; Shohat & 

Tamarkin 1943) 

If T(Z) has n real zeros (not necessarily distinct) at 

2 	 2 
Z = -p, j=1,...,n, and N complex-conjugate zeros at m i i=1,...,N; 

then 
H(Z) - 	-T(Z)  

2 	*2 n 	2 (z.-m.)(z.-m. )  
1=1 1 1 	1  

(3.37) 

is a Herglotz function. 

A key property of Herglotz functions is their boundedness; 

CIZ1
-1 

< 1H(Z)1 < C'1Z1 as 1Z1 - ■ (3.38) 

This result, and the restriction of eqn. 3.28 combine to limit the 

number and type of zeros that T(q2 ) can have. It is easy to see 

that there must be at most two zeros. Khuri analyzes all possible 

cases and derives sum rules analogous to eqn. 3.35 for each case. 

Assuming that the induced G-1 is positive, then Khuri shows that 

if T(q 2
) has one real zero, then T(0) must be positive (see eqn. 

3.35), if T(q 2
) has one real zero at q

2 
= 0 then T(0) = 0, and if 

T(q2 ) has a pair of complex-conjugate zeros, then T(0) must be 

less than zero. 

To derive an upper bound in terms of the mass scale of the 

theory we again use dispersion relations. In the case of one real 

zero, for instance, let 

 

(q
2
+11

2
)  h(q2 ) - 2 

T(q ) 
(3.39) 

Now Im h(a2 ) = - 07
2
+u

2
) 

Im T(a2)  

1T(a2 ) 1 2 
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2 
= n(a

2
+u

2
) 	

p(a
2

) 
2 

1T(a )1 

So Ira h(a
2
) > 0 and 111(a

2 )1 4. 0 	as lq
2 1 4 co 

Thus h(q 2
) obeys an unsubtracted dispersion relation 

h(q
2
) = 

cc°  p(a
2
)(a

2
411

2
) 	da

2 

0 17(0
2 )1 2

(a
2 -q 2 ) 

Thus h(0) > 0 and h'(0) > 0. 

Now, from eqn. 3.39, 

V(0) = (b(0) - u
2
b'(0))/(11(0)]

2
. 

so 	10 (0) < 1/h(0) 

From 3.42, we can write 

P(cr
2

)  16wG > 12 rce 	da
2 

IT(a
2 )1 2 

(3.42) 

(3.43) 

Choose L
2 

large enough so that 11 (a
2
) can be approximated by 

eqn. 3.28. 	(e.g. L
2 = 100A 2 ) 

Now since 

we have 

2  4 	a 2 -2 
p(a ) 	CA a (in--) 

A2 
(3.44) 

(16nG) -1 	100 	2 <n- CA A (3.45) 

Khuri calculates the other two cases in a similar manner. 

The final result is the greatest of the three upper bounds and 

gives for a pure SU(N) gauge theory. 

-1 	25 	2 	2 (16 	-1  < 	-1)A N  

12n 

(The number 252 	vary if we had a different 
w 2 12  

(3.46) 
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prescription for the onset of the validity of asymptotic freedom.) 

This result is the most important result since it implies 

that the origin of the induced gravitational constant must come 

from either a non-asymptotically free theory or a theory with a 

very large mass scale. 

If we assume that the scale A is very large, then the ques-

tion arises as to how close G -1 comes to the upper bound. Khuri 

(1982c) argues that, if we assume G
-1 

to be positive then 

G
-1 	2 

= 0(Mzero ), where  Mzero is the mass of the zero of T(q 2
). 

Furthermore Khuri shows that one would expect to obtain a small 

value of Mzero and thus not obtain a realistic value of G
-1

. The 

only way to obtain a realistic value of G -1  is if the zeros of 

T(q2 ) are a pair of complex conjugates at 

2 	. 
q
2 
= m + lyM 0 	 (3.47) 0 —  

where 	M 0 0(A) 	and 	y << M0 . 0 .  

Whether or not T(q 2
) does have this type of zeros is not 

known, but Khuri shows that it is not impossible. 

Assuming the above zeros, it is possible by similar tech-

niques to the derivation of the upper bound to find a lower bound 

for G
-1

. This is 

IT
2 .2 , 

(16vG)
-1  

16(log 10)144 C  " T 	0 	 (3.48) 

These results give tight restrictions on the properties that 

T(q2
) must have to give a realistic G

-1
. Furthermore, the lower 

and upper bounds on G -1 
are very restrictive. If we assume 

asymptopia starts at q 2 
0 10A

2
, then the ratio of the upper to the 

lower bound is approximately 50. 
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4. THE FUNDAMENTAL GRAVITATIONAL LAGRANGIAN 

We now consider one further formal development, namely that 

of a Lagrangian which is of fourth order in the metric 

derivatives. Such terms must be considered since a general 

covariant matter Lagrangian will require such terms as counter 

terms upon quantization of the gravitational field. 

4.1 OVERVIEW OF THE QUANTIZED LAGRANGTAN 

The general scale invariant polynomial Lagrangian of the 

quantized metric (or equivalently the vierbein) on a four-dimen-

sional manifold without boundaries is 

U 	 uvaT 
Lgray = aR

2 +bR uv  R v+dR uvaT  R 	 (4.1) 

This can obviously also be written as 

va 
L = r0uu R2+s,C+c^C pvaTC

p T 	
(4.2) 

where C 	is the conformally invariant Weyl tensor. In 2Z- pvaT 

dimensions we have 

1 C 	= R 	- . ,(g R -g R -g R +g R ) uvaT 	uvaT 	2x-c pa VT UT Va va uT VT pa 
R  +  (2Z-1) (2Z-2) 	 (4.3) ( gpaR vT -gpT R va )  

NW 
The tensor C = R va  Ru

T 
-4R R

pv
+R 2 

is the Gauss Bonnet density uT 	uv 

so that 1 
X = C d

4 x 
321r 

(4.4) 

is a topological invariant (the Euler number). i.e. 	- O. dg 
6 X 

liv 

In 4 dimensions x will not contribute to the field equations which 

for the Lagrangian 
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L = aR 2+bR R P  (4.5) pv 

are laR 2g Pv+ibR R cIte v-2aR e v-2bRGT R
POVT_

(2a+4)0Re v 	(4.6) 2 	2 at 	 2 

-bOR Pv+(2a+b)R ;Pv  = 0 

As an aside note that any vacuum solution of the Einstein 

field equations is also a solution of the above equations. 

Although x does not appear in the field equations, it is 

necessary for it to be retained since X 0 (the general case) 

will imply that the coefficient of G will have to be renormalized. 

In fact, even if x = 0 we still must retain this term since it is 

only a topological invariant in 2Z = 4 dimensions. Consequently 

when we perform a dimensional regularization of the theory, we 

must treat this term just like any other. Furthermore, dimen-

sional regularization is required to maintain gauge invariance and 

also to maintain the general coordinate invariance of the integra-

tion measure d[g pv ], which is otherwise destroyed (Fradkin & 

Vilkovisky 1975). 

We consider now the issue of renormalizability of L gray' 

Being a fourth derivative theory, the graviton propagator at high 

energies will behave as 1/k
4
. So loops containing gravitons will 

converge much faster than with L = (16rG) -1 R. In fact we see by 

power counting that no infinite series of counterterms should be 

required and thus the theory should be renormalizable (as expected 

by DeWitt & Utiyama 1962; Deser, van Nieuwenhuizen & Tsao 1974). 

The rigorous Proof of renormalizability (Stelle 1977) had to 

wait until the machinery of BRS identities was discovered. Stelle 

proved that the general 0(R 2 ) Lagrangian (without torsion) was 

renormalizable and that this is maintained when the gravity is 
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minimally coupled to a renormalizable matter field. 

Nonabelian gauge theories are renormalizable and also asymp-

totically free. It is natural to ask what is the ultraviolet 

behaviour of the 0(R 2
) theories, i.e. the momentum dependence of 

the coupling constants r -1 , s -1 and c-1 . It has in fact been 

°roved that these Lagrangians are asymptotically free (Fradkin & 

Tseytlin 1981, which followed from the work of Julve & Tonin 1978, 

Salam & Strathdee 1978). This was done by quantizing the theory 

using the background field method and taking the 1-loop approxima-

tion, to give the 1-loop UV coupling constant behaviour via the 

renormalization group equations; using, of course, dimensional 

regularization. 

22, 	a2(u2) 

a  k K  / - 	1 2 
1+-fba (u 2 

 )log(k
2
/u 2 ) 

where b>0 always 	(4.7) 

-1 and where we have c = -7 , which must be taken to be negative to 
a 

ensure that we can take a meaningful Euclidean continuation of the 

generating function; 

r 4 	1/2 	pvaT 
+ +ird x g 	cCp vaTC 

Z = id(g pv le (4.8) 

The above result was also obtained (Tomboulis 1980) by taking 

a 1/N expansion, where N is the number of massless non-interacting 

fields. The limit N 4- = provides an exactly solvable theory which 

is asymptotically free. This is essentially a non-perturbative 

result. 

To summarize, work on the quantization of 0(R
2
) Lagrangians, 

and the consequences thereof, is only just beginning. 	One must 
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mention the recent work of Christensen (1982), Barth & Christensen 

(1983) and Boulware, Horowitz & Strominger (1983). 

4.2 THE DYNAMICALLY INDUCED LAGRANGIAN 

The quantum fluctuations of the matter fields will not only 

1 
induce a I-67e term, but also induces 0(R

2
) terms. The three 

0(R 2
) terms are all scale-invariant dimension 4 operators, so the 

renormalization process will induce all of them as necessary 

counterterms, unless there exists a symmetry imposed on the entire 

Lagrangian. This symmetry will forbid induced terms from appear- 

poT 
ing with infinite coefficients. 	Indications are that C 	

v  
uvaT 

and C are always required in the bare gravity Lagrangian. However 

for a conformally invariant matter Lagrangian, the R
2 term appears 

not to be needed as a counterterm. The evidence for this (Tsao 

1977) comes from a calculation of the 1-loop counterterms for a 

general conformally invariant Lagrangian with unquantized metric, 

using a generalization of an algorithm ('t Hooft 1973) to calcu-

late explicitly the coefficients. The result is 

counterterm 
1  1  uvaT 

- 
2i-4 16y2

(k 1C gvatC-  +k 2G) (4.9) 

1 	-11 where kl  = Tu , k2  = 	for .a real spin 1/2 field. /z0 

The coefficient of R
2 
 in the gravity Lagrangian, r 0 , is thus 

arbitrary, and can be put to zero. 

Because of higher loops, however, this result is not conclu-

sive. (However Englert, Truffin & Gastmans 1976 have given an 

all-order proof that only conformally-invariant counterterms are 
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required. However they assume that the Lagrangian is conformally 

invariant in all dimensions.) 

Another indication that the induced R
2 

term is finite is due 

to Zee (1982b). The result is for scale invariant asymptotically 

free Yang-Mills theories and is a consequence of a general formula 

for the induced coefficient, r, in terms of T. This is a non-

perturbative exact result: 

c 4 	4  's 	T 
13824 	d j x x <T(x)T(0)> 0 (4.10) 

Zee finds this by expanding the Lagrangian to 1st order in 

has 	lcd 4 x evh pv 	..., and writing pv  
iS
eff = <exp( 

iSd441_,›T 
, 0 	 (4.11) 

Each of these exponentials is expanded, the right hand side 

1 to O(h)2.  The perturbation huv  is then specialized to Ic uvh and 

h is Taylor expanded about some point. The term quartic in 

derivatives gives the above formula. (See also Zee 1981a, 1983a.) 

This formula is equivalent, by a Fourier transform, to 

r 	1 -3.824C4 7(k) lk=0 

- 	7"(k 2)10. 0 	 (4.12) 

To decide if r is finite or not, we need to consider the 

behaviour of 7(x 2 ) = <T(x)T(0)> T * We know that the IR region 0 

converges since for Yang-Mills fields we have the characteristic 

exponential decay; eqn. 3.22, but in the UV region we have 

1 7(x 2 ) 0  --7-T  xlogs, by the Wilson operator product expansion, 
(x ) 

(eqn. 3.11). Thus the logarithm terms are the decisive factor. 

These logarithm factors are easily evaluated for an asymp- 
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toticallv free theory, (egns. 3.23 to 3.26) and give 

1 	 T(x) 	as x 2 -o O. 
8  22 x  

Thus the integral converges and r is finite. 

The problem with this is that it leaves the metric unquan-

tized. However, since 0(R
2
) theories are also asymptotically 

free, we suspect that the contribution to r will be finite when 

gravity is quantized as well. This belief is reinforced by the 

liT 
trace anomaly for S..= -/r- g c  CuvaTC

va 
given by Zee (1983a) as 

20(c)  ,rrn (17  uvat 
(4.13) pvat 

To summarize, r is probably finite, but this is not yet 

conc1usive. 

Using the spectral function a(m 2 ) of the scalar operator 

T(k 2
) we can actually find out the sign of the induced r. For; 

and 

21 -i 	2 T(k) = 	2 c dm a(m )-7--7 
0 	k -m 

2 
r  - 144 T"(k  )Ik=0 I SO 

co dm 2 cf ,_2, 
- 777 	`"I  0 m 

(4.14) 

(4.15) 

1  Since T2 0 eqn. 3.26, we have that (Khuri 1982b) 
x
8(

log(-x
2
))

2'  - 

0(m2 ) 0  m 4 x(log m 2 ) -2 and thus the integral converges, and so r is 

positive. 

Note that it is important to have r positive, as this ensures 

that the rR 2 
term does not produce a tachyon. 

It should be possible to calculate r just as easily as G -1
. 

For Zee's infrared stable gauge theory considered in section 3.4, 
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the result is 

2 r = (221184) -1 w 2C ybo g * 	 (4.16) 

tor 
Concerning the induced coefficient of Cu vaTC

iv 
	we suspect 

that it is not finite; one reason being that it appears as a 

counterterm in conformal matter theories; and another reason is 

that the expression for the induced c involves the full T pv  tensor 

and so the ultraviolet softening of T via the asymptotic freedom 

property of 0(g) probably does not occur. 

4.3 THE UNITARITY PROBLEM 

This is the main unsolved problem of all 0(R 2
) gravity 

Lagrangians and is the main criticism levelled at the induced 

gravity program. 

The unitarity problem is the non-realistic behaviour of the 

tree level propagator, namely the appearance of a ghost. 

This is guaranteed to appear from the 4th derivative terms 

which imply that the propagator will have the form 

11 	1  
—2-(-7 	2 2" in k 	k +m 

(4.17) 

The negative residue of the 2nd term signifies a ghost. 

If the theory has a mass scale (or if it is dynamically 

induced) then the mass of the ghost is related to it. Otherwise 

the limit in 0 is taken. 

-1  pvat 
To be more specific, the Lagrangian L - ---C 	C 	will uvoT 42 a 

have the tree level propagator of the form 
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1, 1  1  
—2"‘-2- 	2 2 2 )  m k 	k +a m 

(4.18) 

However, as was pointed out by a number of authors (Julve & 

Tonin 1978; Salam & Strathdee 1978) radiative corrections may 

alter the behaviour; for example push the mass up to infinity. 

However there is another way radiative corrections enter and 

that is through the momentum dependence of the coupling constant: 

1  1  
+ 12-log(k 2

/u
2

) 
a
2
(k

2
) 	a

2
(u

2
) 	

2 (4.19) 

Thus the pole will shift with the momentum. At the pole 

itself k 2 = - a
2m2

, but for k
2 

< 0, a
2
(k

2
) has an imaginary part. 

The pole is thus actually not on the real axis and so is not a 

physical particle, but is two unstable ghost particles. (See 

Hasslacher & Mottola 1981; Fradkin & Tseytlin 1981; Tomboulis 

1977, 1980.) 

Consequently it should not enter into the asymptotic states, 

and it is thus Possible that the S-matrix remains unitary. (Lee & 

Wick 1969a, 1969b, 1970; Cutkosky, Landshoff, Olive & Polkinghorne 

1969.) 

Whether this mechanism is in fact operative or not is not 

clear. Whether higher loop effects and non-perturbative effects 

destroy the mechanism is also not clear. What is clear, however, 

is that unitarity is a dynamical question and that there are 

definite mechnaisms by which it is possible to maintain unitarity. 

More work is obviously required in this area, but the 

unthinking rejection of 0(R 2 ) Lagrangians due to unitarity is 

invlid. 
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It is possible that the solution to the combined problem of 

renormalizability and unitarity lies in a completely different 

approach to gravity. 	Two of the more important ideas are 

supersymmetry and the incorporation of torsion. 	Recent work on 

torsion has been done by Neville (1978, 1980, 1981, 1982) and 

Sezgin & van Nieuwenhuizen (1980). The idea is usually to make 

the spin connection an independent propagating field, along with 

the graviton. So far, no realistic unitary theory of gravity 

which is either renormalizable or finite has yet been constructed. 
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- 
5. CALCULATION OF G

1 
 FROM THE FERMION PROPAGATOR 

The exact calculation of G
-1 

would require consideration of 

all fundamental particles present, and all the allowed interac-

tions. In this chapter we consider how to obtain an approximate 

- expression for G 1 
 in terms of the spectral function of the 

fermion, we do this by considering the contribution from only 

certain interactions. 

5..1 THE CONTRIBUTING FEYNMAN DIAGRAM 

-1 
Recall the formula for G 1 ; (eqn. 2.51) 

G-1 = 	1 , 10  
6 1-1 k 	ilk=0 	 (5.1)  

where 7(k) = T P P  (k) and 1/ "°' (k) is the amputated version of the u P 

diagram: 

The first restriction on the possible interactions is 

obtained by expanding the metric as g uv  = n + h. pv This is 

substituted into the general covariant matter Lagrangian density 

and the only interactions retained are those of first order in 

h . v 

The above diagram can then be expanded as 
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+ others. 

For QED, say, the "others" will simply be 

For a non-abelian gauge theory there will be additional terms 

like 

•••• 

•0' 

+ many more. 

For calculational purposes, we consider only the contribu-

tions to G-1 from the first diagram, and so we could define 

(k) = 
pvpa 

Note that we also could choose the definition 



(k) = 
pvpa 

p+k 

These two diagrams are not the same, and so the definition of 

pvpa
(k) that is chosen is the average of the two. This is 

equivalent to pair symmetrization in the indices, i.e. (pv)4-+(pa). 

This symmetrization will be denoted by "sym". 

Letting iS(p) be the full Dirac fermion propagator, -iA pa (k) 

be the undressed vertex and —ir (k) be the full vertex, we have 
pv 

(k) = -sym Sa 4p Tr(iS(p+k)(-i)r 	(k) iS(p)(-i)A 
PP (k)] (5.2) 

pvpa  pv  

where a 4p = d4 p/(21T.' 4  ) . Although we can write this either in terms 

of renormalized or bare quantities, we choose renormalized quanti-

ties. Thus any coupling constants and masses are the measurable 

renormalized ones. 

5.2 THE FERMION-GRAVITON INTERACTION TERM 

The Lagrangian for a spin-1/2 particle with mass m is 

i.= -4") 	tIJ where 11) = Cal* - (A/ *) 

So the general covariant Lagrangian density is 

L.  
1 af3 	v where 	vu ly = a p ip + TE V a  (3 11V 0v )* 

and 	v 117 = a
u
i +  -1,0 181/ a v (a psi ov ) 

where V $v is the vierbein. 

g 	(x) = V a  (x)17 8 v (x)n
aO pv 

(5.3) 

(5.4) 

55 
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The a, 0, y indices are the Lorentz indices of the vierbein 

and are raised and lowered simply with n as . 

Tensors with Lorentz indices, eg y a , are defined via the 

formula y
a 
= V 	etc. (For a review of the vierbein formalism, ap 

see Weinberg 1972, or Birrell & Davies 1982.) 

We now expand the metric as a perturbation about the covari-

ant Minkowski metric. This can be done either with the metric 

tensor g 	= n 	+ h 	or via the vierbein V 	= n 	+ e  The 
pv 	pv 	pv 	 au 	au 	au 

final result 	P  (k) will not depend on which method is employed, 
u P 

as we will see. 

Note that now we have n au ya  = yu , etc. and V all  = n a4  - c 

fl ux)  n av_ u where 	is the contravariant Minkowski metric. 
a 

Now the result we require is the vertex -iA av, so we need 

only consider the linear term in e au . 

(-g)
112 

= (-det(g ))
1/2 = det(V c' ) pv 

= 1 + 	ap= 1 + 	. 
1,1 	 a 11 

Thus we have 

= (i+cap_ Ii i i: rv av .:( a 4)._ (a  : 1 _ v av s]... -400 
li ap  / L2 w  L a v 	vw' l a 

1 — Bu 	Y + (l+c
ST 

 n . )—A i v y B E 
a
V 
yv

(a pv
av

)11) 
OT q 

4- (1+e 8T 11. ) ii;E Y  V 	(a v av )v"y * OT %  a yv u 	0 

Since a V av  = — a uc", we have to first order p 
	in e 	• au• 

i = ;(i7- n1) 	 e a" 

_ 	4. E  y u)(a  e av )11,  
4' 	va va 

We then integrate the last term by parts. 

The Feynman rule for the vertex 

* (n o v (ii7-m) - iiy al v )* 

(5.5) 

(5.6) 
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n
a is thus 	A 	= 	A 

pv  pay 

 

1  1 
= - n pv (f(04-0 1 )-111) + -J-((p+p') y ) v 

+ -1 (p
A
-13 1

x
){y x

,E  }  (5.7) 

A comment on the non-symmetric part will be given at the end 

of section 5.3 (see also van Nieuwenhuizen 1974). 

Note however the sign convention that has been choosen; this 

is due to the positive Too  requirement. 

1 
For, A00  = in + T(pi +pi).y, and if we sandwich A00  between 

two eigenstates of positive energy we get TpA oo lp = m > 0 as it 

should be. 

5.3 THE WARD IDENTITY 

It is easy to verify the following identity: 

(13+)e-m)(P -1E k v)-(p +k -LE k v )(t-m) A k v  = 
Xv 	p 2 pv  p p 2 ;Iv 

where p +k =p'. 
p p  p 

The analogy with the QED Ward identity 

r  = S
1(p+k)_8-1(p), 

- 
U 

suggests that the above identity may be the lowest order 

expression of a fermion-graviton Ward identity, which would read 

lv t _ 	l z 	v-1 (p) 	(5.8)  r k v  = S-1 (p+k)( -

z
- pv  pu 2 pv

k)_ 

 "10  

k)8
p 2 pv 

This is in fact an identity, as has been shown by Just & 
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Rossberg (1965) (see also DeWitt 1967; Brout & Englert 1966). 

The above identity shall now be proved using the generating 

functional 

Z[J] = 5Drildp[1],r)[A p ]exp 4d 4 x 45„.[J] 

where 1.[J] = L
rn-F

iTJ+54)+J aue
au 	B 

+ L 	1_0ther 	(5.9) 

g_rn  is the matter Lagrangian of all the fields, 
348  is the general coordinate gauge breaking term 

is the gravitational ghost term 

jLother 

terms for the other fields (the A). These will have no effect on 

the discussion as will be seen. 

We shall now perform an infinitesimal coordinate transforma-

tion at the point x. 

x u 4  x' u  = x u-A u (x) 

we have g(x) = g l'iv (x 1 )+(a x g pv )A
x  

(5.10) 

Thus 6g(x) = g(x)_g(x) = (3 A g uv )A A+g v a ll A+g x1i 3 v A (5.11) 

andSe a
u 

= 	= (3 Va)AX -Wcia A
A 

A u 	u 	 (5.12) 

The infinitesimal coordinate transformation of * and 4, are 

6*(x) = *'(x)-*(x) = (a A *)A-Z v *A
,v  P  (5.13) 2 u 

ST(x) = (a
A
To04. 1 Ta A u,v 

T u v 

By general covariance, 61L m  = 0, so 

564)+617j+jall6eau+6(1-eietother
)  (5.15) 

We now substitute the above transformations, integrate by 

parts to remove the derivatives from the A X  and expand the 

exponential exp icd 4  xADJ] to first order in A X . Note that since 

Z[J] is a scalar quantity it is unchanged by the coordinate trans-

formation, so the Sd 4x5f.term will functionally integrate to give 

contains source terms, gauge breaking terms and ghost 

(5.14) 
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zero for any A / . So we can factor A /  out to get 

p[A ][*][) exp(ird 4 xi[J] ) (5 a ly+la v 	z Xv 1P) x 2 
+ ( a ii"))J-la v (tTz xvJ) + J "a xv ap-a p (J ativ ax ) 

)/Ax } + 8 ( S-B +  5-G +  /other 	= 0 	(5.16) 

Now use the functional derivatives of Z[J] to express this as 

a functional differential equation. 

eg 	Lp[Ip]wid exp(i3d 4xifJ] (a 1 ) =1Ja xliz[J] 

Note that AZ[J]- c 	= V 	- n ap . 
dJaP 	au 	ap 

We then convert this to an equation in the generating func-

tional of connected graphs, W[J], defined by Z = exp(iW[J]). We 

thus obtain 

- 6 	1 v - 	 1 v 	 a [Ja x—_ + -2  a (J Z, 	) + J a x-6
8
J 

- —
2

a (-6  zJ) + J a P a 
6J 	 a 	 Xv 6J 	 X  6J 

ap 
ap 

a J+"other" 
- a J " 8 	 aX  ) 	 ] W[J] = 0 

dJ al  
(5.17) 

We now transform this to an equation in the generating 

functional of one particle irreducible amputated graphs, 

r(*, -*,e ,A ) = W[J] - idx(d*+;J+J au e +J PA
u

) 
au P 	 ap 

We thus obtain the relevent part of the gravitational gauge 

identity, namely 

Dr 1 v ar 	dr — 	1 v — 	ar, 	dr 
X 11, + Xv 	+ -- 3 X * — Ta (10E --) + 

 de ----a e 

	

Xv — 	X ap (541 	d* 64, 4) au 

ar - a 	V ) + "other" = 0 
p de 	aX ap 

(5.18) 

Recall that the "other" terms contain only the other fields, 

no * or *. 
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The above equation is defined at a certain point, call it x. 

	

To obtain the Ward identity required, we take 
8  8 	and then 

811)(Y) 	811)(z) 
_ 

set all fields (IP, *. e , A , ghosts) to zero. We then have: 
all 	11 

8
2 r  1 v  6

2 r  3 8(x y) + 2 9 ( 	E8(x-y)) 
8 * ( x) 6(z) 	8*(x) 8ti(z) AV  

6
2

r 	1 v 	6  
2 r  

+ 	a x 6(x-z) - -2-3 (8(x-z)E xv 	) 
6 (x) 84)(y) 	 6(x) 6*(y) 

6
3 r  

— a (  v
aX

) = 0 	(5.19) 
/I  6*(Y) 8c 	(x) 871)(z) ap 

All derivatives are with respect to x. 

We now Fourier transform this equation using 

(above) x exp(ikx+ipy-ip'z) d4 x d4 y d4 z and integrate 

by parts once or twice, to obtain: 

ir  

6 3 r e ikx+iPY-i P tz  
V ,k d4 x d 4 y d

4
z 

810(Y)8c au (x)671)(z) c" p  

..  6 2 r  
1  v = 	e i(p+k)x e

—pizd 4 xd
4
z(o  

A 2 Av 
64)(x) 67I)(z) 

x 2 r  
- (p l +k x 4E. k v ) 	eil3Y ei(p-P')x  d4 x d4 y 	(5.20) 

AV  
600641(17) 

and so; 

'''‘Fx 2 xv 
= s-1 (134. ,,,,_ l z k v ) _,_ 4.1c 	1, k v ls- 1 (p)  

r 0 
xu  ' vx  A 2 4 xv  ' 

which is the previously stated Ward identity (eqn. 5.8). 

Note that this is for the complete vertex, i.e. symmetric and 

antisymmetric parts. It is also true just for the symmetric part, 

as is easily seen by noting the changes in the above derivation 

for a symmetric source and metric perturbation, i.e. J Pvh 	where uv 



61 

= n 	+ h . The transformation dh (x) is given by eqn. 5.11 uv 	pv 	uv 	 pv 

which is symmetric in u and v. So the Ward identity is unaltered. 

0.  Note then that k P rantisymmetric .  Au 

However, we shall only be interested in the symmetric part of 

r 	for a simple reason. The aim is to find Au 
-1 	2 	uvpa G =  6 k pa uv 	rk=0 (5.21) 

and so by eqn. 5.1 none of the antisymmetric parts of r pv  or A 
PP 

will contribute at all. 

So from now on we shall simply symmetrize A pa  and r pv . 

It is interesting to note some properties of the antisym- 

metric part of r 	(and thus of T ); it does not enter into the uv 	uv 

value of A or G-1 , or the Ward identity above, or Einstein's field 

equation G 	= 8ffT . 	Furthermore if r 	is sandwiched between uv 	pv 	 pv 

Dirac spinors then the antisymmetric part cancels on application 

of the equation of motion. 	It is no wonder that rantisymmetric 

can usually be ignored. 	(Note however that one cannot neglect 

antisymmetric if the torsion is chosen to also be a propagating 

field.) 

5.4 THE FERMION SPECTRAL FUNCTION 

To calculate the function T 	(k) we need to have some 
PvP0 

access to the full vertices and propagators. The Ward identity 

relates the full vertex to the full propagator and we use the 

Lehmann spectral function, p(w), to relate the full and bare 

propagators. With suitable approximations, it will then be 

-1 i 
possible to write G 	n terms of 0(0. 
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/ L6P 1 (s) 	mP 2 (s)  
We know S(p) = 	2. 	ds 

p -s+le 

In c = 	+' 
rn  

p(w)dw  
i_CD - w + ie e(w) (5.22) 

where e(w) = sign(w) and m is the dynamically induced fermion 

mass. 

Now, by the Ward identity; 

S (p+k) r  (k)S(p)k' = (13  X-1 E  XvIcv)S ( P ) 	S (134-k) ( Px+k  A-11 E  Xvk v)  
1 	v 1 	1 	1 = Sp(w)dw Up x 7TE Avk )g.77,-) 	tri_ y_ w (p x+k x —TE Av k v )] 

= Sp(w)dw 0.11e_ 03 A xp (k)-4;k u 	(5.23) 

Note that the undressed vertex has mass parameter w. 

We consider only the longitudinal solution of the above 

equation; i.e. 

1 	1 S(p+k)r Au (k)S(p) = fp(w)dw oil_ 03 A xu (k) .0_ 43 	(5.24) 

The neglecting of the transverse contribution may or may not 

be serious. 

We now substitute this solution into equation 5.2 to obtain 

(k) = -sym  pdw p(w) Tr. 04. y_ w A ilv (k,w)i770 A pa (k,m) 	(5.25) pvpa 

To do this calculation we need to know the condition on p(w) 

such that the result is finite. We do this by using dimensional 

regularization of the space-time dimension 2Z. (For a review, see 

Delbourgo 1976.) 

We thus define the spectral function in 22. dimensions p(w,t), 

the propagator S(p,Z) and also define 

1   
(k,w,Z) = symit p Tr 	A (k,co)-1 A (k,m) 	(5.26) pvpa 	 0+Xw - py 	0-w pa 

Thus 
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G1 
	1_1 2 	u 	(lc co 

 z) pc=0 

	

do) p ( w ft/ uk 	p 	I G 	= iv S  (5.27) 

5.5 SPECTRAL RULES FOR p(w) 

2 u  
In calculating O k nu p

p 
(k,w,il k. 0  we shall be as general as 

possible and examine some structure of the entire n 
pvaa (k,w,i). 

To calculate il uvpa , we proceed in the usual way: 

We introduce the Feynman parameter a, transform p 	p + ak 

and take the trace over spinor indices. We use Tr(vv ) = g pv 2 I . 

Only terms which are even in powers of p need be kept, by sym-

metric integration. 

We then transform the indices on the p via 

1 	ST2t 
ZP f( P ) PuPv 	TV. ;Iv  P f( P ) P

2 (5.28) 

and 
r , 

P ) 	= 4 u  P f ‘ 1.(i+1) (n  n  PuPvPpPa 	
1  

+n 	n +n 	n )SLA 
2t, 	/ 

P L ■ P)P4  
m 

UV pa pa vP pp VG 

(5.29) 

This enables the result to be written as simply an integral 

over the Feynman parameter a. 

To express the result so far, we define five convenient 

tensors: 

K 1 = n n 
UV pa 

K 2 = n n +n Ti 
up va pa vp 

K 3 = kkn +k k n p v pa p a UV 

K 4 = k p
k 

p
n 
va+k uk a n vp+k vk pnpa+k vk a n pp 

K 5 =kkkk pv go a 

We find, after some calculation, 

(5.30a) 

(5.30b) 

(5.30c) 

(5.30d) 

(5.30e) 
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1 
II 	(k, w, i) = 2 1-2  coda (T 1I 1 +T 2 I 2 +T 3 I 3 ) 	(5.31) 
;typo 

1 where 	Tl  = 7-aT1T((42. 2 -2)1( 1-(1-1)K 2 ) 	(5.32) 

T2  = 4wm(w2-a(1-a)k2 )1< 1  

1 +(1-2a) 2  {-4-(a(1-a)k 2 +w2 )K4 -2a(1-a)K 5  

+ (wm+a(1-a)k 2 )K 3  

-(w2+2wm+a(1-a)k 2 )k 2 K 1 } 	 (5.33) 

1 113  = (4- (1- I) (1-2 a) 2 - a (1- a) )K 4  

+ (4 a (1- a)- St (1-2 a) 2 )K 3  

+ [ (3 I.-1 ) (1-2 a) 2 +4 ( R,-2) a (1-a) Jk 2 K i  

(5.34) 

where the integrals I I , 1 2 , 1 3  are defined by 

-2t 	t+1 	2 I 1 = Sd p f(p
2 4 )p = 	 l_i r(2-1.)(w -a(1-a)k

2
) 

(410 

- 
1 2  = S

22. 
 

d p f(p
2
) = 	2. r(2-L) (w2 -a (1-a) k2 ) t-2 

(4 ff) 

-2t 1 3 = Sd p f(p
2 2 
)p = 	 1_1  r (2- t) (0)2 -a (1-a) k2 ) 

2.-1 

(4 ir) 

where 	f(p2 ) = (p2  +a(1-a)k 2-w2 ) -2 

The three momentum integrals were evaluated by using: 

Sa 2 	
z 

Ip (p 
 2

)
T 	_ i(-1) T- 

 r(t+T)r(z-t-T)  
2 2z 	t 2 E-t-T • 

(p -m ) 	(410 r(t) r(z) (m ) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

At this point we could take the limit 9. 4 2 and separate the 

pole at t = 2 from the finite part. First however, we proceed via 

the shorter route and take Ejl ic=0 . 

We obtain 
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w20-1-1 	. a  
0120pv00(0,w,L)  _ ir(2-0 (  da  0 (1-a)  

2
2 - 2, (4y0  2.- 1 	(I pv il va" pa ri vp )  0 

+ (12(1-2a) 2  (1 m--) + -1-1 	 pv pa (12(1 -2a) 2 -32a(1-a))]n n } (5.40) w 	t-  

Integrating over a, we find 

C3 12c li pvpa W i
w,24ir(2")(w2)2.-129.-2  

3 (40 9.  
r 2 
1-2771 (I pp l va" 	vp n ) + (12(1 m ) 

pa 	w£1 	J pv pa 

Thus 

c*Ili P p P (0,w,9. )  _ 16ir(2-0( ) 	
1-2 

(4(1-T) 	2.1  ) 
(470 L  

and by equation 5.27, we have G -1  as 

G -1 = 
 1 

67r)(21r) 9.-2 r (2-1,) (4 (11) 	i=r ) p(w t) do) 

(5.41) 

(5.42) 

(5.43) 

Notice that there is a pole in L for all even dimensional 

spaces. We expand the terms and take the limit L -• 2, so 

-1 
	
-124 	P(w) G = — (w --mw) ----dw 2it  

15 2 4 	w2 1 	a 
+  (4) —5m(0) p ( w ) ( 	y ) + 3  p (w ,2) ] dw (5.44) 

-1 

	

 Since we do not want G 	infinite we require the spectral 

integral conditions; 

	

cw 2 p(w)dw = 0 	and 	iwp(w)dw = 0 	(5.45) 

-1 Note that cup(w)dw =m Z 	where Z 	= Sp(w)d0) 	0. 	Thus m o , 

	

0 	' 

the bare fermion mass, is required to be zero. We see once again 

the necessity of scale invariance. 

If these spectral integral conditions are satisfied then we 

have G 1  = 	. ( 1 5.w --4rw) lnw 2 p (w)+ (w 2 	2 4 	a (w, t) I 2. ,..2]dw 	(5.46) 

Notice that the w
2 

in lnw
2 can be scaled if desired to 
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ln(w
2
/II

2
) and the result will not be changed. This can also be 

expressed by noting that the replacement ã 1 p  4-0i29pis not unique 

since we could have a 4p + (11  1) 	1A2113.  
2 i-2 ' 

The parameter u is usually referred to as the renormalization 

point. The neglect of such a term is called "minimal renor-

malization." 

An obviously equivalent method of finding the above result is 

to take the limit I + 2 in equation 5.31 and to separate the pole 

at )2 = 2 from the finite part. Since we have need of this result, 

we write down the answer using the tensors defined previously in 

eqn. 5.30. 

1 
1 

u tivpa (k,w) = 	du {3f
2
[(C1 -lnf) 	zTI(14K1 -K-)-

11K 72 - 1 . 144 -2' 4r 2 CO 
1 	2 	5 2 +2f[(C3 -1nf){(-mw-w )K 1  +-k (1-2a)

2
K1 +

w2+a(1-a)k2 
8 	)K2 2 	8  

1 	1 -T(1-6a(1-a))K 3 -TfK 4 1 

1 	2 	2 	1 	1 +1-6.(w +a(1-a)k )K 2+Ta(1-a)K 3 +TmwK i  

1  
- 	(1-2 2 

a( 	
)k

1-a)  2 	8a(a-1)+1,  (17- a) + 2  64 	'4J 

1 
+(C 2 - 1nf){--

1  
{_4a (1 - a) (1-2a)

2 
 K 5 +T(wm+a(1-a)k

2
) (1-2a) 2 K 3 2 

- 1 (1-2a) 2 (w 2+2wm+a(1-a)k 2
)k

2
K1 

1 
(1-2 a) 

2 
(w2+ a (1- a) k2 )K4 

+wm(w 2
-a(1-a)k 2

)K 1 l 

f = w
2 -a(1-a)k 2 

where 	C1  = ln 47 - y - ln 2 + 

C2 = in 4r - y - ln 2 

(5.47) 
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1 
C 3 = in 4n - y - in 2 + - 2 

1 The infinite part (i.e. factor of 27 97) can be simply read off 

from the above expression as the terms which are multiplied by 

-inf. 

We shall, however, only be interested in the trace, i.e. 

li 1 ' (kw). 
P 

This simplifies the expression to: 

1 
n  P (k,(0) —  

' 	
da { f 2  [ (C i -lnf) 2741] 

P  4w 	0 

+2f{ (C 3 -1nf) [-15w
2
+8mw+ (10 (1-2 a) 

2 +13a (1- a) 	k ] 17 2 

+w 2 +4mw- [ (1-2a) 2+6a (1-a)- ]k — 
1 	2 
16 

15 	 9 
+(C2 -1nf)[- 	

2
T-(1-2a) w

2 
k
2 	2 
-Ta(1-a)(1-2a)  k

4 
 ] 

+16wm(w 2-a(1-a)k2 )-6wm(1-2a) 2
k
2

} 

2 
Taking 0kik=0 of the above equation we get the finite part 

2 p p 	-i 	2 	2 	2 

	

Elk n u P (k") Ik=0 - 706) -(3w2 	+Cw (5.49) 

which gives the sames G-1 as before, namely 

-1 	1 c 	2 4 	2 	2 4 
G 	= 	[(w -Tmw)(1nw )P(w) -1- 0.0 -Tmw)TT

a
P(w,1)1 9,=2 ]dw 	(5.50) 

In the next chapter we find a spectral function p(w,9.), which 

will enable us to calculate G
-1

. However before we do this, we 

consider one further aspect of induced gravity, the induced rR
2 

term, which was given in eqn. 4.12 as 

-i  
r = 	Tll(k

2 
 )I k2. 0  

In general, both the finite part and infinite part of 

ilp m  (k,w) would be expected to contain k
4 terms, thus r would 

1 
contain a contribution 7=7 Sp(w)dw. But 5 p(w)dw = Z

-1 
7' 0 and 

(5.48) 

thus r would be infinite. However an actual calculation of the k 4 
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P term in the infinite part of 11
P 

  (k,w) determines its coefficient 
P 

to be zero. 	Thus r is finite, which agrees with the tentative 

conclusions of section 4.2. 

Calculating the induced R2 coefficient gives a positive re-

sult, and thus the induced rR2 term will not produce a tachyon. 
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6. THE GAUGE TECHNIQUE 

To calculate G -1 
for a realistic theory, such as QED, we 

require p(w,L). In this chapter we shall show how to find an 

approximation to this function, using the method known as the 

gauge technique. 

6.1 THE GAUGE TECHNIQUE ANSATZE 

The essential theme of the gauge technique is that it is a 

non-perturbative method of solving the Schwinger-Dyson equations 

and, furthermore, guaranteeing that the gauge identities are 

automatically respected. These Ward identities relate the (n+1)- 

point function in terms of lower point functions and thus, with 

the Schwinger-Dyson equations which also couple the n-point func-

tions to a (n+1)-point function, we can combine and solve these 

identities. Of course, since the Ward identity only used the 

longitudinal part of the (n+1)-point function, some information 

will be lacking. The true solution would require consideration of 

all the Green functions. 

The initial idea of such a non-perturbative method (Salam 

1963; Delbourgo & Salam 1964; Strathdee 1964) used as a starting 

point an approximation known as two-particle unitarity. This 

approximation was not all that productive, it was not for some 

time that a much better method was found (Delbourgo & West 1977a, 

1977b. For a review, see Delbourgo 1979a, or Parker 1983, or 

Atkinson & Slim 1979). The technique is to write out the Dyson- 
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Schwinger equation of the electron propagator; 

_ 	-1 	. 5= 	pv S(p)( 	- 0-m 0 ) 	Z I 	+ le 2 4  
a k S(p)r p (p,p-k)S(p-k)y vD 	(k) (6.1) 

and replace the S(p)r p (p,p-k)S(p-k) by an expression obtained from 

the Ward identity, which is 

(p- p') /1S(p)r p (p,p')S(P 1 ) = S(p')-S(p) 

, 1  , 
= Idw P(w)---Y 1 ----tP-P')P 

0-w P O' -w 
(6.2) 

The ansatz is to consider only the longitudinal contribution 

of this to the full non-perturbative behavior and, as a first 

approximation, to neglect photon dressing for the propagator 

D (k). pv 

We shall not, however, completely ignore the transverse 

corrections, as we will see. Basically, the above ansatz leads to 

a pair of coupled Volterra integral equations which are solvable 

in any gauge for p(w), and thus S(p). This resulting solution 

can, in principle, then be substituted back into the 

Schwinger-Dyson equations and improved versions of S(p), D uv (k) 

and r (p,p-k) obtained in an iterative fashion. 

If we substitute the above ansatz into the Schwinger-Dyson 

equation (eqn. 6.1) we find that 

—1 — j  p(w)  Z  1 	0—w + ie e(w) (0—M0—E(p,w))dw 

where -ix(p,w) is the self energy; 

1 	1  v  	 uv (1-a) k k ) 
, E(13,0 = ie2 -4  k To=707Tr urs_je- w+i e  v (-n  k 2

+ie 	k
2 
+le 

(6.3) 

(6.4) 

We now take the imaginary part of eqn. 6.3 and use the fact 

that p(w) is real to obtain 
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1  4dca p(w)(w-mo -Re(P,O)Imp_ w 	lc c(w)  
ImE(p,w) - 	p(w) 
w-p (6.5) 

where we have taken p = (p2 ) 1/2 as the positive eigenvalue of the 

matrix g. 

-e  Using Im 	1 	
- lim 	e(w) - irti(p-w)e(w) p-w + ie e(w) 

e4.0 + (p-w) 2 +e 2 

ImE(w,w')  we have e(w)(w-mo -ReE(w,w))p(w) = dw'p(w 1 )  w( _ w)  

(6.6) 

(6.7) 

We would like, however, to have an equation fully in terms of 

renormalized quantities, so we need to replace mo  by m - ReE(m,m) 

+ 0(e4 ). 

The left hand side will then become 

e 	(0)-m+ReE (m,m)-ReE (w , w ) +0 ( e4  ) ) p (co ) 	(6.8) 

It would appear at first sight that the real part contains a 

divergence in the space-time dimension as st+2. This apparent 

problem is due to the fact that we have neglected the transverse 

corrections which will appear on the right hand side. These will 

cancel off the divergence since we know that p(w) is a renor-

malized function with no divergences at L -0. 2. Furthermore, as well 

as the 0(e 4
) terms on the left hand side there will be 0(e 4 ), 

0(e 6
), terms in the unknown transverse part on the right hand 

side, and so it would be an inconsistent approximation to retain 

these perturbative terms, especially since we are interested in 

the non-perturbative behavior. Consequently, we have 

..c.  e (w) (w-m) p (w) = 	dw' p (w') ImE(w,w1)  ir (w 1 -w) (6.9) 

The imaginary part of E(w,w') can be easily calculated and 
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thus this equation can be solved for p(w). 

Before we go on to calculate p(w), it should be noted that 

the gauge technique is not confined to QED. It has been applied 

to scalar electrodynamics (Delbourgo 1977), vector electrodynamics 

(Delbourgo 1978), two dimensional field theories such as the 

Schwinger model (Delbourgo & Shepherd 1978), the Thirring models 

(Delbourgo & Thompson, 1982; Thompson 1983), the Rothe-Stamatescu 

axial model (Thompson 1983), and also QED with massive photon 

(Delbourgo, Kenny & Parker 1982), Chiral QED (Delbourgo & Keck 

1980a), the Bloch-Nordsieck model in QED (Alekseev & Rodionov 

1980), Flavordynamics (Delbourgo & Kenny 1981), electrodynamics in 

the axial gauge (Delbourgo 1978; Delbourgo & Phocas-Cosmetatos 

1979) and also QCD (Delbourgo 1979b; Ball & Zachariasen 1978; 

Anishetty et. al. 1979; Baker 1979; Baker, Ball, Lucht & 

Zachariasen 1980; Khelashvili 1981; Cornwall 1980, 1983). 

6.2 THE IMAGINARY PART OF THE SELF ENERGY 

Since we require p(w,i), and not just p(w,2), we shall calcu-

late ImE(p,w) in arbitrary 22. dimensions. We have: 

2C-22.k  Lk 	p 	1 	k k 
E(P,w) = ie 	2  

	

1 	
y " (-gpv+a 	

v a) 2 	) 	(6.10) 
k +ie 	0+Y-w+ie 	k +ie 

we define X by z(p,w) = E l + za 

. 21'd k 	LI 0-y+w  where E l (p,w) = -le 	2 	2 2 . I p k +ie 	(p-k) - w +le 
(6.11) 

By the Cutkosky rules (Cutkosky 1960; see also Itzykson & 

Zuber 1980, pp. 315-316), we have 
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1 	2 2S-2i 	p 2ImE (p,w) = (2u) e d k (y (0-Y+w)y 0 )6 4. (k2 )64. ((p-k) 2 -w2 ) 

2 222  where 	6 4.(p -m ) = 6(13 -m )0(P0) 	 (6.12) 

.1. So 2ImE1 (p,w) = 2 (2 Tr) 2 e2c2 a k  

It is trivial to show that 

ImF(p,w) = 0ImF1  (p2 ,w2 )+wImF2  (p
2 

' w
2

) 

1 where 	ImF1 	pz = 	Tr(t3ImF) 
2 

 

1 ImF2 - 	Tr(ImF) 
2
t
w 

1 2 4ff2e2 Sa22.
k Tr[(-) (1-1)+10w] Thus ImE1 (p ' w) -  

2p 
t2 

x 6 4.(k2 )6+ ((p-k)
2
-w

2
) 

(6.15) 

4w 2 e 2 
= (L-1) 	

.1-21 
2 	d k(p•k-p2

)44( )  ((P-k)2 2 -w ) 

Using the 6 functions, we have 

ImEl (p,w) = -(1.-1)2u  2e2 (p2+2)  S ank 6 (k2 )6 4. (p2 -2pk-w 2 ) 2 
1 2 

Similarily, we have 

1 2 
ImE2 (p,w) = 4tu

2
e
2 Sa2t

k 6(k2 ) 6 4. ((p- k) 2 - w2 ) 

We now consider the second half of E(p,w), namely 

Z a (P,w) = _i(a-1)e 2 	ank 	1  .c k 2+i0 2  g  0-Y-0- ie 

1 	. 	1  we use the trick 	= lim( 1 	1 1 

k
4 	11 -0.0 - 

k

2 -112 k 2'  ja
2 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

to handle the quadratic singularity, and so define 

(a- 1)e2 	a:k  
(k - -

7
P-+ie 

z a (p,w,4 2 )  = 1  

Es—x—co+i e 
X 	(6.20) 
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Proceed as before to obtain 

Imq(p,w,P
2
) = 

2(a-1)e2r2c-
dk [2(p•k)

2
-p

2
k
2
-k

2
p•k] 2 

we 22 2 22 2 2 2 y2t 
= (a-1) ---f -[(p 	) -p (p +w )] d p tyk 2

-u
2
)8 4. (p-k)

2
-w

2
) (6.21) 

a 222 	2 2 2Sm2t 
and ImE2 (p,w,p ) = 2(a-1)e n p d k 6+ (k

2
-u

2
)6 + (p-k)

2
-w 2 ) (6.22) 

To evaluate the integral, we use the volume element formula 

t-1/2 
d
2t

k - w r(t-1/2)'' 	ax (sinhC) 2L-2 dc 

0 < iC < 'Tr 

(6.23) 

where C is the parameter defined by the time component of k; 

k 0  = (k
2

)
1/2 

 cosh, which is allowable, since k must be timelike 

because of  

We now choose a Lorentz frame where p = ((p
2

)
1/2

,0,0,...,0). 

-21 Thus 	k 14(k 2 -p 2 )8 .4. ((p-k) 2-w 2 ) 

r
t-1/2 

. .•31c2 	
2 t-1 

dC(k ) 	(sinhC) 2t-2 6 4. (k 2 -o 2 )14(p2 -w 2 +p 2 

r(t-1/2)  

-2p(p2 )
1/2

coshc) 
L-1/2 
	 (u

2
)  (sinhc) 22.-3 

2 	2 

2p(p
2 ) 1/2 e(P -( w" )  ) r(t-1/2) (2r)

21, 

(The 0-fn comes from the conditions cosh C > 1 and (
2

)
1/2 

1) 
	

> 

pcoshC.) 

ii  t-1/2 1  
2 11,-1 

A2t-3 
(P

2
,w

2
FP

2
) CP

2
- (w+u)

2
) 

(2r) 22. r(1-1/2) (4p ) 

where 	A 2 = (p2 -w 2
+p

2 ) 2 - 4p 2 p 2 

(p2 +w 2 -p 2 ) 2 - 4w 2 p 2 

(6.24) 
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Thus 	ImE a (p w) 
	it  

1 ' 	
-1 _ (a 	)  

4
z-1 (20 1  :

22_

f

21(-il

/1

2/

2) 

• 1 	21-3 2 2 2 	2 22 2 2 2 
lim -T[A 	(p ,w ,P )((p -w ) 	(p + 6) )) - A

21.-3
(/) 

2
, 032 )(13 

2
-w

2
)
2

I 
p4.0 

41-4 
-4(1-1)(a-1)e 22 it If

1-1/2 (p 2+w 2 )(p 2-w 2 )  
22. 	2(p

2
-w

2
)
2z-1 

where p21 = (p2 ) 2.  and we also obtain ImE
a 
2 

1-1/2 
wl 	2(a-1)e 2 

 ii 	ii 
2 2 2 21-3 

4
1-1

(210
2z 
 r(9.-1/2)(p

2
) 	

(p -w ) 

1 	a Collecting terms we have ImE l  = ImE i  + ImE i  

21-3 
a(p2+w 2 )(p 2-w

2
) 	e

2 
= (1-I)C 2. • 21 	161r 

5/2-1 
it  

where 	Cz = 
242.-7 r(1-1/2) 	

(so that C 2 = 1) 

1 ImE 2 = ImE 2 + ImE a 2 
2z-3 

(a+21-1)(p 2
-w

2
) 	. - e

2 

=2.  C 2
)
1-1 

(ID 
 

(6.25) 

(6.26) 

(6.27) 

Thus, replacing the e-fn and combining, we have 

e 2C 1 2 2 21-3 ImE(p,w) = 1-67-(p -w ) 	((1-1)a (P24.4)2),,(  4- 	2 (a+21-1)w )e(P
2
-w

2
) 

(ID
2

)
z 	' 	

(p ) 
(6.28) 

So: 2 	21-3 
-e C z (w 2

-w
,2

)  [(2.-1)a(w 2 +w ,2 )w + (a+21-3Ww 2 ] x 

Taking the limit 1+2 gives the usual result. 

ImE(w,w i ) - 	16ff 	2. (w
2

) 
e(w

2
-w

,2
) 	(6.29) 



76 

6.3 THE SOLUTION TO THE ANSATZE 

We now seek to solve the equation 

e(w)(w-m)P(0.1) = Scico l cs(cd ) 
,  Ina(w,wi,t)

Tr(u), - w) 

for P(w,i) 

For the time being we shall retain the general covariant 

gauge a, but later we shall see that it is necessary to choose the 

Landau gauge, a=0. 

We shall convert this equation into two coupled integral 

equations, which are amenable to solution. 

First of all convert to dimensionless variables, namely 

= w/m and define p(0) as mp(0m). 

Thus the above equation becomes 

e 2 	 t 0 (0
2
-0 	

2-3 ,2
)  

= 
161T

2 z 
(0-0')(0

2
)
2z-1

0 

- (a+29.-1)88'] 	(6.30) 

-1 	(181 
where the symbol S d0' means ( 	

)438'. -IBI 	)1  

Change to a new choice of dependent variables; 

5(0) = e(8)8
2
P(0) 

and define 	s1 (8 2 ) and s2 (0 2 ) by 

s(0) = 0s 1 (0
2
)+s 2 (0

2
) 
	

(6.31) 

We now use the observation that 

0 
dB l f(0')e(0') =S If(0 1 )-f(-0')](10' 

1 

and rewrite the above expression as 
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2L-4 0
2 2 	,2 

(0-1)(Bs 1 (0 2 )+s 2 (a
2
)) = 	2 •c dB' 2 	(0 -0 	) 	{[a(L-1)(0

2 A-By 2 ) 
1 	(0

2
)
1.-1

0 ,2 

-(a+21-1)0'
2
}0

2
s1(0 12 ) + [a(I-1)(0

2
+0'

2
)-(a+21-1)0 2

}0s2(0 12 )} 

2e2 

2 where t 	----C 
16w t' 

Examining the above, we compare the even functions of 0 in both 

sides and equate; to obtain 

= t2S1 z (Z-Z')
21-4 

Zs 1 (Z)-s2 (Z) 	{a(/-1) 1  +a(1-2)+1-21}s1 (Z') 	(6.32) L 	Z Z -2 	' 

where Z = 0 2 and Z' = 0' 2 . 

Similarily, comparing the odd functions of 0, we obtain 

21-4
a(1-1) 	a(1-2) 	1-21 s 2 (Z)-s 1 (Z) = t 2 (Z (Z-Z" 	 + ----}s (Z') (6.33) -2 	Z' 	Z' 	2 J1 

These equations, if solved, would give s l  and s 2 , and thus 

p(w,i,a) for any gauge and for any spacetime dimension. 

Unfortunately, these equations cannot be solved in general. 

They are two coupled linear Voltera integral equations of the 2nd 

kind, with non-degenerate kernel. Furthermore, the kernel K(Z,Z') 

is not even of the Faltung type K(Z-Z'). These statements are 

true for any value of a. 

In principle, of course, one could solve these equations 

numerically and/or using Picard's process of successive approxima-

tions (the Neumann series) obtained by an iterative process. See, 

for example, Tricomi (1955). It is possible to find a solution, 

however, for particular values of 1, namely 21-4 = non-negative 

integer. 

The simplest solution is obtained for 1=2, which is the 
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situation encountered in the normal QED gauge technique problem. 

To find the solution, we differentiate each equation four times to 

arrive at two 4th order linear differential equations, whose 

solutions are 4 F3  hypergeometric functions (Delbourgo, Keck & 

Parker 1981). 

Unfortunately the theory of 41! 3  functions is insufficiently 

developed for our purposes. Consequently we choose a particular 

value of a, namely a=0, which simplifies the problem to two 2nd 

order linear differential equations: 

d 2 d 
+ (1-3Z(1+2

2
c ))-cri - (1+3c 2 ) 2 )s1 (Z) = 0 

dZ 
(6.34) 

2 
(Z(1-Z)

d
2 	2 (1+3

2
C ) Z-- - 3 C

2 (1+3 2
C )) 

d 
dZ 	(Z) = 0 	(6.35) 

dZ 

The general solutions of these equations are 

s1  (Z) = C 2 F1 (1-c,l-c;2-2c;1-Z)+D 1  (Z-1)
2c-1

2 F1 (C,C;2c;1-Z) 	
(6.36) 

s 2 (Z) = K 2 F1  (-c 1-c.2-2c;1-Z)+D2 Z(Z-1)
2c-1

2 F1 (c,l+c;2c;1-Z) 

where 	C = -3C
2 	 (6.37) 

However, we have lost information in differentiating and 

separating. If we substitute these back into the two coupled 

integral equations and consider the behavior around Z=1 (i.e. do 

an expansion in powers of Z-1) and compare coefficients we find 

D 1 = D 2 and C = K = 0. 

We thus have (Delbourgo & West 1977b; Delbourgo & Keck 1980b) 

e(w)(w
2/m 2-1) 2c-1 	2 	2 

P(w) 	(!F(c,c;2c;1- (1)7)+F(c,l+c;2c;1- (±7)] 	(6.38) 
m 4 ; r(2c) 

where the constant D 1 has been chosen via appropriate normaliza- 

tion; 
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D
1  

4
c
r (2 c) 

(6.39) 
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6.4 THE SPECTRAL FUNCTION IN FOUR DIMENSIONS 

The infrared limit of p(w) as w+m is easy to see: 

w 2 	2c-1  
POO 0  (6.40) 

This however can be generalized to an arbitrary gauge from 

calculation directly from the integral, to derive 

2 	2(1-3)c - 1 
P(w) 0 c(w)  (- -1) (6.41) 

0-1-m 	m
2 

l e
2 (a-3)/8w 2 

or 	S(p) = constant x 2 2 ' -1--71  
A -m P -m 

(6.42) 

which reproduces the known result for all gauges (Abrikosov 1956; 

see also Ball, Horn & Zachariasen 1978). 

The ultraviolet behavior 71 += is not so simple (Delbourgo, 

Keck & Parker 1981; Atkinson & Slim 1979; Slim 1981). It is easy 

in the Landau gauge; we obtain 

p(w) 	(w 2/m2.c-1 ) 	(1 + 2111n •) w 	in (6.43) 

which leads to S(p) 1  
( 2/m 

2
) 
 c -1 

cm  

which agrees with Baker, Johnson & Willey (1964). 

In an arbitrary gauge, the situation is more complicated 

since we need to consider the full 4F 3 solution of p(w) and take 

w+m. 	It would appear however that the solution is of the form 

, -2, 
p(w) = c(wiw  (wal+Ma2) 
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2 	 221 
1 	ac 	1 	2ac 	(a-c) c  2 where a l  0 (± - a T)2  a 2  = 	 2c+ 	) 	(6.44) 

m 	 9 

1 - w
2 

1-a 	1 	ac 	1 	2ac 
(-  + 2.)  3 a 3  = 7(3+-s--c)-7(1—J-+2c+ (a-39)

2 2 
 c  )

2 
(6.45) 

It should be noted that in both these limits it is known that 

the apparent manifest gauge covariance of the gauge technique is 

actually true gauge covariance, i.e. satisfies 

2 	2 
S(x;a) = (-m 2x 2 ) -ae /16w S(x;0) (Delbourgo & Keck 1980b). 	How- 

ever, in intermediate regions this is not so, it would appear that 

one must incorporate at least part of the transverse vertices to 

achieve full gauge covariance. This fact can lead to ambiguous 

conclusions in particular applications (Atkinson & Slim 1979; 

Delbourgo, Keck & Parker 1981; Slim 1981; Gardner 1981). 

Before we move on to consideration of p(w,O we note a number 

of further properties of p(w,2). 

Using the general integral: 

çx c-1 (x+y) -dF(a,b;c - x)dx - 
r(a-c+d)r(b-c+d)r(c)  

0 	
; 

r(a+b-c+d)r(d) 

x F(a-c+d,b-c+d;a+b-c+d;1-y) 	(6.46) 

	

1 	 S - 
we see that Z 	

. p(odw  . 22c
; 	(r(1-c)) 2 . 	(6.47) 

2 t-2 2  and also 1p(w)(i)  wdw - 

r(2-2.-c)r(3-,-c) 	1  
(6.48) 

4  r(3- 2,)  r(2- t) 

Thus as 2.+2, m o  = Sp(w)wdw 0 (I-2)m -• O. 

This observation was used by Khare & Kumar (1978) to conjec-

ture that QED is actually a finite theory in the sense of the JBW 

program (Baker, Johnson & Willey 1964; Adler 1972). However Slim 

OD 
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(1979) showed that with the approximations made, the gauge tech-

nique does not imply a finite theory. 

Note however that we do have dynamical symmetry breakdown. 

The bare QED Lagrangian has no bare mass terms and thus is scale 

invariant. 

We also have 

 

2 st -1 	(r(2--))2  (2T) 	 2,  da) = 
4 

c 
rn 	 r (2-2.)r (2-0 

(6.49) 

Thus as 1+2 

.cp(w)w 2dw + 0(2.-2) 2  + 0(9.-2) 3 (6.50) 

The vanishing of these integrals is very important for the 

elimination of ultraviolet divergences, both in some other 

theories (e.g. Chiral QED; Delbourgo and Keck 1980a) and in 

induced gravity. 

6.5 THE APPLICABILITY OF THE GAUGE TECHNIQUE TO INDUCED GRAVITY 

We summarize the results of the previous chapter: 

1-2 -1 	1 	.5'  2 	2 4 G 	= lim 	(03 ) 	(w -Tmw)p(w,t)dw 2w(1-2) 1+2 

For this to be finite, we require the spectral rules 

S p(w)w 2dw = 0 

Sp(w)wdw = 0 

(6.51) 

(6.52) 

(6.53) 

The gauge technique provides a spectral function p(w) for QED 

that automatically satisfies these identities. Furthermore the 

gauge technique forces us to take the bare fermion mass as zero, 

so the dynamically induced fermion mass m signifies the very 



82 

essence of induced gravity. The fundamental Lagrangian is scale 

invariant and all masses are produced through a non-perturbative 

mechanism. 

Thus the philosophies of the gauge technique and induced 

gravity are not only compatible, but essentially the same. 

We thus proceed to calculate p(co,0 which is provided by the 

differential equations 6.32 and 6.33. Since we only need p(o3,1) 

for & near 2, we can write 

P(w,i) = P(w) 	( -2)n (w) 	 (6.54) 

or equivalently 

s i (Z,t) = s 1 (Z) + (2.-2)h i (Z) 	i = 1,2 	(6.55) 

where s 1 and s 2 are defined in eqn. 6.36 and 6.37. 

These will be substituted back into the differential equa-

tions, but only terms of order (2.-2) will be kept. This will 

enable us to calculate hi (Z) and h2 (Z), and thus G-1. 
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- 7. A CALCULATION OF G 1  /m2  for QED 

Using the results of the last chapter, we perform an actual 

calculation of G -1/m2
, giving the result purely in terms of the 

coupling constant for QED. 

7.1 SOLVING THE INTEGRAL EQUATION 

Recall the results of Chapter 5, (eqn. 5.46), namely 

-1 	1 c 2 w 	2 
2 

w
2 

G 	= 	(4) ln—,-) p(w)dw - —m3IT  cw ln--fp(w)dw 

	

m' 	In 

1 	2 2 ri to 	( co) d - 	n(w)dw (7.1) 

where p(w,i) = p(w) + (2.-2)n(w) + 0(1-2)
2 . 	Now, by equation 6.48 

and 6.49 we have 

5 	

w2 
w ln--p(w)dw = -r(-)1J1-04 -cm 

m2 

w2 
w ln--p(w)dw = 0 2 

(7.2) 

(7.3) 

Equations 6.55 and 6.31 define 11 1  and h 2' These are equiva-

lent to 

2 

	

m e(w) 	w 	w2 
n(w) - 	( h (—) + h (2--) ) 

w
2 	m 1 

m
2 	2 In 2 

It is thus immediate that 

h2 (Z) 

	

w n(w)dw = m 	dZ 

(7.4) 

(7.5) 
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and 	c'w 2 n(w)dw 	m2c 
h i (Z) dZ 

-1 
where 	Z = w2/m2 

-1 2 	2 	2 	h2 (Z) 
Thus 	G /m = Ti r( -)111 -04 	- 	-----dZ 

1 	Z 

1 h1  (Z)dZ 2N  1 

(7.6) 

(7.7) 

What remains to be done is the finding of the functions h i (Z) 

and h2 (Z) and the calculations of the integrals. 

Now, from the differential equations (eqns 6.32 and 6.33) we 

choose the Landau gauge a = 0 and expand to first order in 2. - 2, to 

obtain 

	

Zh 1 (Z) - h 2 (Z) = 	{[21n(Z-Z')-1nZ+d]s 1 (Z') + h i (Z')}dZ' 
1 

5
2
(Z') 	h2 (Z') 

	

h2 (Z) - h1 (Z) = 	{[21n(Z-Z')-1nZ+d] 	}dZ' 
1 

(7.8) 

(7.9) 

where d = constant and s i (Z), s 2 (Z) are given by eqns 6.36 and 

6.37 with C = K = 0. 

This is of the form 

Zh 1 - h2 = c h 1 (Z')dZ' + f 1 (Z) 
1 

Z h 2 (Z') 
h2 - h1 = cc ------dZ' + f2 (Z) Z' 1 

(7.10) 

(7.11) 

Now, f 1 (Z) and f 2 (Z) can be calculated, so these coupled integral 

equations are solvable by differentiation. 

Twice differentiating, we find 

Z(1-Z)h1 n + [1+Z(2c-3)]h1 1  - (1-) 2 h1  = -(Zf2 "+Zf 1 n+f2 1 +(1-c)f1 1 ) 

E R 1  (Z) 	(7.12) 



dW 1 	Z(2;-3)+1  
dZ 	Z(Z-1) 	1 (7.21) 
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Z(1-Z)h2 " + 2Z(;-1)h2 ' - ;(C-1)h2  = -(Z 2 f2 11 4- Zf1 ll i- (2-0Zf2 1 ) 

E R 2 (Z) 	(7.13) 

We write 

h 1 = A 1h 11 + B1h12 + h lp 

h 2  = A 2h 21  + B 2h 22  + h 2  

Al' A 2' B 1 and B 2 are constants. 

The solutions to the homogeneous part are 

h11 (Z) = 2 F1 (1-;,1-;;2-2;;1-Z) 

h12 (Z) = (Z-1) 2;-1 
2  F1 "c ' (; 	2;*1-Z) 

h21 (Z) = Z 2 F1 (1-;,2-;;2-2;;1-Z) 

h22 (Z) = Z(Z-1) 2;-1 
2  F1 " (; 1+;•2;;1-Z) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

From the general theory of the method of variation of para-

meters, we have 

Z h
12

(ZT)R
1 (Z') 	(Z h 	(Z 1 )R 1 (Z') 

hlp (Z) = -h - 11 (' - 'z)  c 1 Z 1 (1-Z')W1 (VI Z' 	h12" ) .1 1 Z 11(1-Z') W1 (VIZ'  
(7.20) 

where W1 = h 11h 12 ' - h11'h12 is the Wronskian for the differential 

equation 7.12. 

We have of course a similar equation for h 2p (Z). 

These Wronskians are easily evaluated by setting up a 1st 

order differential equation for them. 

so 	W1  = (2; 1) 
(Z-1) 2;-3 	

(7.22) 

This is all the information needed to calculate G
-1

, as shown 

in section 7.2. However, for completeness, some discussion on h 1  

and h2 will now be given. 
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The coefficients A 1 and A 2 are not arbitrary. To verify 

this, in fact to show that A l  = A 2  = 0, one proceeds to find the 

infrared behaviour (Z 0 1) of h 11 , h 12 , h 21 , h 22 , and of the 

actual solution p(w) of the integral equation 6.30. This is done 

by taking the limit Z 1 and P. + 2 (retaining 0(2,-2) terms) of 

eqn. 6.30 which converts it to a Volterra integral equation with a 

kernel of the Faltung, or convolution, type. This can then be 

solved via Laplace transforms to obtain 

p(x) 0 x
k-1

(1+k(t-2)((lnx)
2
+k1 lnx+k2 )+0(2,-2)

2 } 
	

(7.23) 

where 	k = 24(1-I) for the gauge a, and x = Z-1. 

7.2 A VALUE FOR G
-1
/m

2 

There are a number of ways one might try to evaluate the 

integrals in eqn. 7.7. The easiest way however is to note that 

the integrals to be evaluated are the same integrals which appear 

in the integral equations 7.10 and 7.11. Thus all that needs to 

be done is the evaluation of the ultraviolet (Z + limit of the 

functions h11 , h12 , h21 , h22 , hlp , h2p , fl , and f2 . These are all 

of the form 

c-1 
Z c + 0(Z 	) as Z + 

2 	-3e2 
Since c = -3& = 	2 	' 

the limit of all these functions is zero! 

Thus 
c ce  1 h 1

(Z)dZ = (Z h
2 (Z) 

)1 
	 dZ = 0 

Substituting this into eqn. 7.7 gives 

1 61r 



87 

G-1 _ 2 
l(-c)r(1-04-C  

m 

Substituting in the value E 2  = i Tr  for QED we find 

G -1 8 = — =120 2 90 m  

Note that this is very small but positive. It thus clearly does 

not give a realistic G -1
. Nevertheless, it is the contribution to 

G-1 from QED as given by our approximations. Thus we can conclude 

that the contribution to G
-1 

from QED is negligibly small. 
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8. CONCLUSIONS 

8.1 RESULTS 

The results obtained are important in a number of ways. 

Firstly, we have established the existence of a non-zero contribu-

tion to G -1 
from QED. Thus the basic principle of inducing the 

Einstein-Hilbert Lagrangian is exhibited, and the dynamical sym-

metry breaking of scale invariance is established. 

Secondly, we note that the calculated contribution to G -1  

from the fermionic sector of QED is very small, namely 

G -1 8 = 1.2 x 10 2 

Thus no suggestion is being made that the force of gravity is 

induced from the quantization of the electron field. However, 

note that the induced G -1  is positive, and so the third point to 

note is that a realistic G -1 
could be induced from the charged 

sector of a theory which has a fermion of mass 10 18 GeV, (or a 

charge q = 1/3 fermion of mass 10 17 GeV), or less if there are 

many such fermions. 

This conclusion, namely the necessity of a large mass scale, 

is also indicated by all previous model calculations of G -1
. It 

is expected that the future lattice calculations will support 

this. Thus, the necessity for a GUT is clearly indicated; the 

-1 contributions to G 	from the various particles in the GUT are 

clearly many, but the results of this work has been to show that a 

significant contribution may come from the charged fermions of the 

m 2 	9a 
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theory. 

8.2 EXTENSIONS 

A number of extensions come immediately to mind. One could 

repeat the above calculations for a variety of other models, for 

example scalar electrodynamics, or vector electrodynamics. One 

could easily calculate a general formula for the contribution of a 

spin 1 particle to G -1 , in analogy to the calculations of chapter 

5. It may then be possible to find an approximation to the 

contribution of the dressed photon loop to G-1 . 

More realistically, one could try and calculate a model 

spectral function for a quark, taking into account the gluon 

dressing. This could be approached by using the known limits of 

QCD and then guessing an interpolating model function for the 

spectral function. Unfortunately the interpolation is too ambigu-

ous to give useful results, especially since this must all be done 

in 21 dimensions. A better approach to QCD would be to use the 

gauge technique; a success in this area may soon be forthcoming 

but no truly realistic spectral function has yet been calculated 

for all values of the argument. 

We can indicate extensions in a more spectulative area, by 

incorporating the idea of dimensional reduction, since the idea of 

induced gravity is not restricted to 4 dimensions. However, since 

1 2 
we demand scale invariance, we cannot have a fundamental -- F 

 

term. Higher-dimensional theories already exist where this term 
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is absent, namely Kaluza-Klein theories, where the 
1 

F
2 

term is a 

result of dimensional reduction for the original Lagrangian which 

1 
contains a ----R term. This curvature term need not be fundam- 

ental, but could be induced from, say, the fermionic sector of the 

theory. Unfortunately it is probable that this scenario will 

produce non-renormalizable infinities. 

A further extension is to note that the Lagrangian of super-

gravity also contains a mass scale, and so it would be possible to 

incorporate the idea of induced gravity into supergravity. 

Furthermore this may solve the problem with the counterterms in 

the dimensional reduction approach. 

To summarize, the concept of induced gravity is an idea of 

profound importance, not necessarily tied to the conventional low 

energy theories, but as a key concept in the physics at the higher 

energies. 
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APPENDIX 

Up until now, we have almost entirely considered the metric 

as being a classical background field (with the exception of pv 

chapter 4). 	Given the problems posed by quantizing 0(R 2 ) 

theories, we may wish to circumvent the issue by not quantizing 

the metric at all. A theory with a classical metric does not 

require 0(R 2
) terms in the fundamental gravity Lagrangian. The 

idea of induced gravity is still useful since the value of G
-1 

could still in principle be predicted. Clearly the metric appears 

to us in a rather different way than the other fields, so the idea 

of leaving g  is not without its motivation or merits. 

There are, however, a number of arguments against this idea. 

The first argument is that leaving g pv  classical implies that the 

Einstein field equations must be introduced as a postulate, while 

a quantized metric enables a derivation to be given. (Fradkin & 

Vilkovisky 1976, 1977. See also Adler 1982.) In the context of 

induced gravity, the "heavy" matter fields (the unobservable ones) 

induce the Einstein-Hilbert Lagrangian, but the "light" fields can 

be assumed, as an approximation, to not contribute to G -1
; the 

resulting approximate Lagrangian is then a sum of 16G  and r 

imatter blight' g pv" 

If the metric is quantized, then the effective action can be 

shown to be stationary with respect to the metric and we thus have 

the semi-classical Einstein field equations 

c pv 	Az5pv = EhrG<O + IT I" 	10 - > matter 

(The metric 5' 1" is the classical background field metric, as used 
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in the background field formalism, where the quantized metric g" 

is split up into (5 /IV  and a quantum fluctuation so that 
a 	= 	h .) 'pv 	- pv 	uv 

A second argument against taking the semi-classical approach 

to gravity is that of inconsistency. Duff (1981) has shown that 

if one quantizes two classically equivalent systems which differ 

only by field redefinitions, one can obtain two non-equivalent 

quantum systems. Since our theories must be invariant under field 

redefinitions, the semi-classical quantum theory is inconsistent 

and so must be excluded. This conclusion is valid for any finite 

number of loops considered and it is only when infinite number of 

loops are considered, i.e. the full Quantum gravity theory, that 

consistency is maintained. 

The third argument is the existence of tentative experimental 

evidence against the semi-classical theory (Geilker & Page 1981). 

The possibility of this has been discussed before (see, for 

example, Kibble 1981). The argument rests upon the idea of the 

total wave function of experiment plus observer which thus does 

not collapse. This is the familiar Everett formulation of quantum 

mechanics (Everett 1957 and references in Geilker & Page 1981). 

This is shown to be necessary since a semi-classical theory of 

gravity is inconsistent with the idea of the collapse of the wave 

function. For instance, one can show (Eppley & Hannah 1977) that 

it is possible to collapse the wave function outside the light 

cone, and thus violate causality. The Everett formulation is thus 

assumed. 

The argument against the semi-classical theory stems from the 
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fact that it relates a definite classical metric with all of the 

components of the matter wave function. If one assumes that the 

observer is part of the system under consideration, and arranges 

masses according to a quantum-mechanical decision process (eg. 

radioactive decay), the "observed" mass configuration (along with 

the "observer") is just one component of the total wave function 

of the system. But the metric responds to all components of the 

wave function, and so one would expect a low correlation (can be 

made zero) of the metric with the mass configuration. This result 

is not only intuitively distasteful but also experimentally 

incorrect, as Geilker & Page have clearly shown. 

The full quantum theory has no definite metric and thus each 

component of the wave function is related to its own distinct 

metric, which would have a high correlation with the mass distri-

bution in that component. This is of course the intuitively more 

attractive idea. 

We thus conclude that the metric must almost certainly be 

quantized. Assuming this the general principles of induced 

gravity (sections 2.1-2.4) remains unaltered but the details 

change, namely the resulting value of the induced G
-1 . This is 

because the quantization of g uy  implies the existence of virtual 

graviton loops and so these must be included in Tpay:3 (eqn. 2.53). 

The induced G-1 and A will still however be finite by the argu-

ments of scale invariance and renormalizability of section 2.4. 

The resulting expressions for G
-1 

and A have been given by Adler 

(1982) and Zee (1983a). Zee also gives the expression for r, the 

induced coefficient of R
2
. The method used is the background 
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field formalism, 

guy = guy 	hpv 

The field h (x) is then treated no differently from the other uv 

fields and the quantization proceeds in the usual way. 	A gauge 

fixing term is introduced as well as the corresponding Faddeev-

Popov ghosts. We define the total action by 

S = Smatter + Sgravity  + Sghost 
+ S

gauge breaking 

where each of the terms depends on both 5' uv  and h 4v . We also 

introduce the external current J 	which is determined formally 

by the restriction <114v > j  = 0 and so we can write J uv (g as ). 

Following Zee, we define 

tly 6S 
T 1  (x) = zg 	----I 

6g 
g aT = g at 

6j aO  4 T 2 (x) = g(x) 	d y hao óg(x)I 

Not = l aT 

6 2 5  w( x) = 4g 	( g co (°) 	og pv 	6g3 ( 0 ) 
g at = n aT 

The results are 
A _ 

<T 1
(x)>

J -271 
-1 	i S 4 	2 ^ (167rG) 	= — d x x (‹T 1 (x)T 1 (0)>J -<T 2 (x)T 2 (0)>J-<W(x)>

T ) 96 

r -  -i 13824 
 S-4 	4 a x x (‹T 1 (x)T 1  (0)>

T-<T 2  (x)T 2 (0)> J-<W(x)>J ) J  

Clearly the results are similar to those obtained for a 

classical metric (eqns. 2.33, 2.50 and 4.10). No calculations 

have yet been performed from these formula but clearly some 

calculations must eventually be done to obtain a proper picture of 

the importance of induced gravity in nature. 
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