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ABSTRACT

This thesis is devoted to the study of the representation
theory of orthosymplectic superalgebras and their applications to
physical theories. Techniques are developed to educe typical and
atypical finite;dimensiona1, irreducible representations of
orthosymplectic superalgebras. These include superfield and
weight space procedures which are illustrated for several low-rank
orthosymplectic superalgebras. Young supertableaux are used to
enumerate finite-dimensional typical, tensor representations and
spinor representations of 0Sp(M/N), and atypical, tensor
representations of 0Sp(2/2), 0Sp(3/2) and 0Sp(4/2). Relations
~ between Kac-Dynkin and supertab]éau labels are obtained and used
to present conditions on diagram shape, necessary and sufficient
for atypicality. Modification rules for typical supertableaux of
0Sp(M/N), and for atypical supertableaux of 0Sp(2/2), 0Sp(3/2) and
0Sp(4/2) are presented. Dimension formulae, in diagram notation,
are discussed for typical, representations of OSp(M/N).

New superfield realisations are presented for the
determination of infinite-dimensional irreducible representations
of N-extended super-Poincaré algebras with central charges.

These are illustrated for the N=2 extended super-Poincaré algebra
with one central charge. Finally, a discussion of the roles played
by orthosymplectic supergroups in some physical theories is

presented.
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1. INTRODUCTION

The purpose of this chapter is to place the subject matter
of this thesis in an historical perspective so that the significance of
the results reported here may be appreciated in their proper

mathematical and physical context.

1.1 AN HISTORICAL PRELUDE

Symmetry principies play an important role in physics, lending
simp]iqity and elegance to physical laws and physical systems amid the
complexity which so often accompanies them. In particular, global
and local symmetries have become established as a fundamental feature
of modern particle physics. In the early 1970's a new symmetry
principle was introduced to physics which involved transformationé
relating states of different quantum spin-statistics [1-8]. It has
become known as supersymmetry. The algebraic structure of supersymmetry
is that of a graded Lie algebra, which is an extension of an ordinary
Lie algebra to include anticommutators. Graded Lie algebras first
appeared in the mathematical literature with the work of Nijenhuis
and Frohlicher [9,10] and later in connection with cohomology and deformation
theories [11,12]. The sequel contains a brief historical review of
the mathematical development of the theory of Lie superalgebras followed
by a discussion of the applications they have found in physics.

Prior to embarking on this, a few sentences will be devoted to
establishing precisely what characterises a Lie superalgebra.

Superalgebra is the term which has been adopted for Zz-graded
algebras, A = AB + AT’ which are algebras which satisfy the following:
ifach,beh anda,eZ,= (51}, thenabehA .. AlLie
superalgebra is a superalgebra G = G; * Gy with an operation £, ]

which satisfies



[a,b] = -(-1)*®[b,a] ' for a e G, b e G,

[a,[b,c]] = [[a,b],c] + (-1)%[b,[a,c]] fora e G, b e G,

A theory establishing the connection between Lie superalgebras and Lie
supergroups has been developed by Berezin and Kats [13] and Berezin and
Leites [14]. An extensive discussion of supergroups and supermanifolds
has been given by Kostant [48].

The program of the classification of Lie superalgebras was
begun by Pais and Rittenberg [17]. Under some rather strong restrictions,
including that the Killing form be nonsingular and the bosonic part be simple,
they find the only algebras to be 0Sp(1/2n). This wéz followed by the
work of Kaplansky and Freund [15,16] who exhibited two infinite families of
simple Lie superalgebras, the special linear, SU(m/n), and orthosymplectic,
0Sp(m/2n), algebras and postulated the existence of the exceptional Lie
superalgebras, F(4), G(3) and D(2,1;e2). The classification of all
simple Lie superalgebras whose Lie algebra is reductive was given by
Scheunert, Nahm and Rittenberg [18,19]. This work provided a complete
classification for all the 'classical' Lie superalgebras which, in
addition to the 'basic classical' Lie superalgebras mentioned above,
includes the two 'strange' series, P(n) and Q{(n). The complete
classification of all finite-dimensional, simple Lie superalgebras has
beén obtained by Kac [20]. He has shown that in addition to the classical
Lie supekalgebras there exist four series of the 'Cartan’ type, W(n),
S(n), H(n), §(n). Filtrations and Z-gradations of Lie superalgebras
play an important role in this classification. Parker [21] has given a
classification for the real forms of all the classical Lie superalgebras.

The representation theory of Lie superalgebras has seen the
following developments. Kac [22] has obtained character and

supercharacter formulae for 'typical’ finite-dimensional, irreducible



representations of the basic classical Lie superalgebras. For these
algebras he has derived [23] necessary and sufficient conditions for
a finite-dimensional, irreducible representation to be 'typical' and
has obtained dimension formulae for these representations; Djokovic
and Hochschild [24,25] showed that the only Lie superalgebras for
which all the finite-dimensional representations are completely
reducible are those which are isomorphic to a direct product of a
semi-simple Lie algebra with finitely many Lie superalgebras of the |
type 0Sp(1/2n). With the work of Corwin [26] and Djokovic [27] a
quite detailed representation theory for the Lie superalgebras
0Sp(1/2n) was developed.

The concept of Hermitian representations of simple Lie algebras
was generalized to classical Lie superalgebras by Scheunert, Nahm
and Rittenberg [28]. They demonstrated the existence of two classes
of such representations defined on a graded Hilbert space. These are
called star and grade star representations and are defined through
adjoint and grade adjoint operations. The finite-dimensional, star
and grade star representations of 0Sp(1/2) and SU(2/1) were subsequently
obtained by these authors [29].

The Casimir invariants for the general linear, special linear
and orthosymplectic Lie superalgebras and for the strange Lie superalgebras
have been constructed by Jarvis and Green [30] and Jarvis and Murray [31]
respectiVe]y. Following the classical approach of Perelomov and Popov,
Scheunert has constructed generating functions to obtain the eigenvalues
of the Casimir elements for the general linear, special 1§near ahd
orthosymplectic Lie superalgebras [32] while Balantekin and Bars [36]
have used characters to obtain formulae for the eigenvalues of all

Casimir operators of SU{(m/n), 0Sp(m/2n) and P(n).



Diagram techniques were introduced to the study of representations
of Lie superalgebras by Dondi and Jarvis [33,34] and Bars and Balantekin
[35,36]. These authors have studied the Lie superalgebras U(m/n),
Su(m/n) 0Sp(m/2n) and P(n), developing branching rules, character
formulae and dimension formulae for some representations. Later work
by Balantekin and Bars [37] and Bars, Morel and Ruegg [38] saw Young
supertabieaux techniques app]iéd to contravariant, covariant and mixed
representations of SU(m/n), while Delduc and Gourdin [39] have
'investigated SU(n/1) to establish which supertableaux correspond to
‘irreducible representations. Morel, Sciarrincand Sorba [40] have
receht]y developed new diagram techniques for the study of 0Sp(m/2n).
They have been successful in obtaining branching rules, in closed form,
for all typical tensor and spinor representations of these algebras.
King [41] has used standard schur function operations to derive simple
Kronecker product rules and branching rules for all representations
of SU(m/n) and for tensor representations of 0Sp(m/2n). He has also
given dimension formulae in terms of partition labels for these
representations, provided they are typical.

Superfield techniques were first applied to the study of
finite-dimensional representations of Lie superalgebras by Dondi and
Jarvis [33], who studied U(m/n) and SU(m/n). These techniques have
been further developed and applied to the orthosymplectic Lie
superalgebras by Farmer and Jarvis [42].

Following the initial work of Kac [23], weight space techniques
were further developed by Hurni and Morel [43,44] where applications to
the basic classical Lie superalgebras were considefed. Further
developments weke made by Farmer and Jarvis [45], applying these

techniques to the orthosymplectic superalgebras and explicitly



constructing all finite-dimensional, irreducible, star and grade star
representations of 0Sp(1/2), 0Sp(2/2, 05p(3/2) and D(2,1;a).
Some very interesting developments have been made recently by
Thierry-Mieg [46], who has obtaingd theorems which allow the
explicit construction of the irreducible representations of the basic
classical Lie superalgebras.

Lie superalgebras have become an important influence in the
physics world and in particular in theoretical particle physics,
where a very'significant fraction of the literature is currently
devoted to theories which are based on these algebras in some fofm.
The first applications of Lfe superalgebras came with the work of
Neveu and Schwarz [1] and Ramond [2] on string models. Independently,
Gol'fand and Likhtman [5] and Volkov and Akulov [6] showed how to
generalize the Poincaré group to include fermionic charges. With
the construction of an interacting field theory, invariant under this
graded Poincaré group, by Wess and Zumino [7,8], a way was opened
to circumVent the 'no-go' theorems of 0'Raifearteagh [49] and Coieman
and Mandula [50] and unify in a non-trivial way internal with space-
time symmetries. These supersymmetric field theories [51] have
turned out to have a less divergent ultraviolet behaviour than non-
supersymmetric field theories and it is even hoped that some theories, v
such as the N=4 super Yang-Mills theory may even be finite.
Despite this it is éti]l far from certain that these theories describe
the real physical world. With the work of Ferrara, Freedman and
van Nieuwenhuizen [52,53] and Deéer and Zumino [54], supersymmetry
became a local gauge symmetry and supergravity was born. From its

inception this theory generated much interest with the possibility of



unifying gravity with the other forcesvof nature in a finite field
theory. It has now become a vast subject (see [55,56] for reviews),
though the technical complexities have, to date, thwarted the complete
construction of what is hoped will be this unifying theory, the

N=8- extended supergravity. The majority of these global and local
supersymmetric field theories aré based on 0Sp(N/4) or SU(N/4) either
directly or via Inonu-wigﬁer contraction.

Although the greatest efforts in app]yinngie superalgebras
to physical problems have been in the above areas a number of other
applications have also been found in recent years. One of the most
useful is the BRS invariance of quantum gauge theories [57] where the
symmetries are generated by translations in a superspace [58,59].

Another interesting application is in relation to composite models

of quarks and leptons. In these models SU(M/N) plays the role of a
classification group which helps solve 'anomaly matching' and 'decoupling’
constraints [60,61,62]. These are necessary for the dynamical survival
of chiral symmetries, which are needed to explain the small masses of the
quarks and leptons relative to their physical size, or to the binding
energy of their composite structure.

There have been other applications for instance to internal
symmetries [63] and supersymmetric grand unification [64,65,66,67,68],
however, I would like to close this discussion with the one application
of superalgebras in Nature which has experimeﬁtal support. This is
in the area of nuclear physics and is a model based on the algebra SU(6/M)
[69,70]. It provides a classification scheme for many low lying nuclear
states of muclei in the Platinum-Gold region and predicts energy levels,
relations among décay rates and relations between nucleon transfer

reactions with accuracies of 10-20%.



1.2 THE THESIS STRUCTURE

Throughout this thesis it is assumed that the reader if
familiar with the representation theory of Lie algebras. Although
some knowledge of Lie superalgebras and their representations would
be useful, chapter two should serve as a brief introduction for those
unfamiliar with this subject. It should also serve to establish the
notation used here and the terminology necessary for communication.

For more comprehensive treatments of this subject the reader is
referred to the works of Kac [20,23] and Scheunert [47] on which the
material of chapter two is based.

As mentioned, chapter two serves as an introduction to the
theory of Lie superalgebras. The first section introduces the concepts
of graded vector spaces and graded algebras, from which are defined the
special class of Zz-graded algebras called Lie superalgebras. Many of
the formal definitions associated with these structures are given here.
The second section provides the classification of all finite-dimensional
simple Lie superalgebras which has been given by Kac [20]. The |
structures of the classical Lie superalgebras and their root systems
are discussed in some detail. In particular, the origin of the
orthosymplectic superalgebras becomes apparent here. The third section
proVide§ an introduction to the representationltheory of basic classical
Lie superalgebras.

The study of orthosymplectic superalgebras is begun in earnest
in chapter three. The general structure of the algebra is discussed
in §3.2, incorporating an explicit choice of simple roots and presenting
the general form of the Cartan matrix. This allows the complete algebra
to be constructed for any orthosymplectic superalgebra. Weight space
techniques are then developed for educing finite-dimensional, typical

and atypical, irreducible representations of these algebras.



These techniques ére then used to determine aZl finite-dimensional,
irreducible representations of the superalgebras B(1,1), C(2) and
D(2,1;a). For o« =1 these are the lowest rank algebras from each of
the three orthosymplectic classes. The star and gradé star
représentations.arevdetermined for each of these algebras.

Chapter four develops superfield techniques for the determination
of irreducible, typical and atypical, representations of orthosymplectic
superalgebkas. These methods are ba§ed on the theory of induced
representations. Using these techniques, all irreducible representations
of the superalgebras B(0,1), B(1,1), C(2) and D(2,1) are found.

Thése are in agkeement with the results of chapter three.

Young supertableaux are introduced into the study of the
representations of orthosymplectic superalgebras in chapter five.

- The relation between the Kac-Dynkin labels and the supertableau labels
is first established and used to express the conditions for atypical
representations in diagram notation. Modification rules are found
for the typical supertableaux of all orthosymplectic superalgebras

and the atypical supertableaux of B(1,1), C(2) and D(2,1). Dimension
formulae for typical representaﬁions are presented here in diagram
notation and branching rules to the underlying Lie algebra are given
for spinor representations of all orthosymplectic superalgebras and
atypical representations_of~B(1,]), C(2) and D(2,1). |

New superfield techniques are introduced in chapter six for
the study of irreducible realisations of the N-extended supersymmetry
algebra in the presence of central charges. After a general discussion
of the prdcedure, which is based on an induced representation construction,
the N=2 case is considered in detail. The results are found to be in
agreement with those obtained via the conventional methods, with the

"spin reducing' cases arising analogously to atypical representations.'



A review of the roles which orthosymplectic supergroups have
found in physical theories is presented in chapter seven. Perhaps
the most useful application currently known is the elegant formulation
it lends to the extended BRS symmetries of quantum gauge theories.
Discussed here are applications to non-abelian gauge theories, Kaluza-
Klein theories and gravity. Orthosymplectic supergroups play a quite
fundamental role in supersymmetric Yang-Mills and supergravity theories,
since the N-extended super Poincaré algebras, on which these theories
are based, can be obtained by Inonii-Wigner contracfion of 0Sp(N/4).

-This contraction procedure is presented in §7.2. This chapter concludes
with a discussion of Kaluza-Klein supergravity theories, wherein
orthosymplectic supergroups play the role of the ground state symmetry
of some compactifying solutions of these theories.

The thesis concludes in chapter eight with a summary,
reiterating the main new results obtained, and indicating avenues for
future research.

The appendices contain details of notation and some techniques
which have been_employed in the course of this work.  Also presented
are two proofs pertaining to the work of chapters three and five and
some useful identities for handling the e-calculus of chapters four and
SiX.

Each chqpter contains its own set of references, which though
leading to some duplicatfon has the advantage of making each chapter

self-contained.



10.

CHAPTER 1 - REFERENCES

1. A. Neveu and'J.H. Schwarz: Nucl. Phys. B 31, 86 (1971)
2. P. Ramond: Phys. Rev. D 3, 2415 (1971)
3. Y. Aharonov, A. Casher and L. Susskind: Phys. Lett 358, 512 (1971)
4. J.L. Gervais and B. Sakita: Nucl. Phys. B 34, 632 (1971) |
5. Yu A. Gol'fand and E.P. Likhtman: JETP Lett. 13, 323 (1971)
6. D.V. Volkov and V.P. Akulov: Phys. Lett. 46B, 109 (1973)
7. J. Wess and B. Zumino: Nucl. Phys. B70, 39 (1974)
8. J. Wess and B. Zumino: Phys. Lett. 49B, 52 (1974)
9. A. Nijenhuis: Proc. K. Ned. Adad. Wet. A58,3 (1955)
10. A. Frolichen and A. Nijenhuis: Proc. Natl. Acad. Sci. USA 43, 239 (1957)
11. L. Corwin, Y, Ne'eman and S. Sternberg: Rev. Mod. Phys. 47, 573 (1975)
12. A. Nijenhuis and R.W. Richardson, Jr.: Bull.Am.Math. Soc. 70, 406 (1964)
13. F.A. Berezin and G.I. Kats: Math. USSR. Sb.1l1l, 311 (1970)
14, F.A. Berezin and D.A. Leites: Sov. Math. Dokl. 16, 1218 (1975)
15. [I. Kaplansky: ‘'Graded Lie Algebras I, II', Univers{ty of Chicago
Report (1976)
16. P.G.0. Freund and I. Kaplansky: J. Math. Phys. 17, 228 (1976)
17. A. Pais and V. Rittenberg: J. Math. Phys. 16, 2062 (1975).
18. M. Scheunert, W. Nahm and V. Rittenberg: J. Math. Phys. 17, 1626 (1976)
19. M. Scheunert, W. Nahm and V. Rittenberg: J. Math. Phys. 17, 1640 (1976)
20. V.G. Kac: Adv. in Math. 26, 8 (1977)
21, M. Parker: J. Math. Phys. 21, 689 (1980)
22, V.G. Kac: Comm. in Alg. 5, 889 (1977)
23. V.G. Kac: ‘'Lecture Notes in Mathematics' 676, 597 (Springer, Berlin,
(1978)
24, G. Hochschild: I1linois J. Math, 20, 107 (1976)



25.
26.

27.
28.
29,
30,
31,
32,

33.
34,
35.
36.
37.
38.
39.
40.
41.

42.
43,
a4,
a5,
46.

11.

D.Z. Djokovic and G. Hochschild: [I1linois J. Math. 20, 134 (1976)

L. Corwin: 'Finite-dimensional representations of semi-simple graded Lie
algebras', Rutgers Univ. Report

D.Z. Djokovic: J. Pure Appl. Alg. 9, 25 (1976)

M. Scheunert, W. Nahm and V. Rittenberg: J. Math. Phys. 18, 146 (1977)

M. Scheunert, W. Nahm and V. Rittenberg: J. Math. Phys, 18, 155 (1977)

H.S. Green and P.D. Jarvis: J. Math. Phys. 20, 2115 (1979)

P.D. Jarvis and M.K. Murray: J. Math. Phys, 24, 1705 (1983)

M. Scheunert: Universitat Bonn, Physikalisches Institut, Preprint
No. HE-82-26 (1982)

P.H. Dondi and P.D. Jarvis: Z. Physik C 4, 201 (1980)

P.H. Dondi and P.D. Jarvis: J. Phys. A: Math. Gen. 14, 547 (1981)

A.B. Balantekin and I. Bars: J. Math, Phys, 22, 1149 (1981)

A.B. Balantekin and I. Bars: J. Math. Phys. 22, 1810 (1981)

A.B. Balantekin and I. Bars: J. Math. Phys. 23, 1239 (1982)

I. Bars, B. Morel and H. Ruegg: J. Math. Phys. 24, 2253 (1983)

F. Delduc and M. Gourdin: J. Math. Phys. 25, 1651 (1984)

B. Morel, A. Sciarrino and P, Sorba: LAPP preprint no.LAPP-TH-103 (1984)

R.C. King: 'Lecture Notes in Physics' 180, 41 (ed. M. Serdaroglu and
E. Inonu) (Springer, Berlin, 1983)

R.J. Farmer and P.D. Jarvis: J. Phys. A: Math. Gen. 16, 473 (1983)

J-P. Hurni and B. Morel: J. Math. Phys. 24, 157 (1983)

J-P. Hurni and B. Morel: J. Math, Phys. 23, 2236 (1982)

R.J. Farmer and P.D.Jarvis: J. Phys., A: Math. Gen. 17, 2365 (1984)

J. Thierry-Mieg: 'Proc. 12th Colloq. on Group Theoretical Methods in
Physics (Trieste, 1983) (ed. G. Denardo)(Springer, Berlin)

(To be published)



47.

48.

49,
50.
51,
52.

53.
54,
55,
56.

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70,

12.

M. Scheunert: 'The Theory of Lie Superalgebras'. Springer Lecture
Notes in Mathematics vol.716 (ed. A. Dold and B. Eckmann) (1978)

B. Kostant: ‘Lecture Notes in Mathematics' 570, 177 (Springer-Verlag,
1975)

L.0'Raifearteagh: Phys. Rev. 139, 258 (1965)

S. Coleman and J. Mandula: Phys. Rev. 159, 1251 (1967)

P. Fayet.and S. Ferrara: Phys. Rep. 32C, 250 (1977)

D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara: Phys. Rev, D 13,
3214 (1976) _

D.Z. ?réedman and P. van Nieuwenhuizen: Phys. Rev. D 14, 912 (1976)

S. Deser and B. Zumino: Phys. Lett. 62B, 335 (1976)

P. van Nieuwenhuizen: Phys. Rep. 68C, 189 (1981)

S.J. Gates, Jr., M.T. Grisaru, M. Rocek and W. Siegel: 'Superspace'
(Benjamin/Cummings Pub. Comp, Massachusetts, 1983)

C. Becchi, A, Rouet and A. Stora: Comm. Math.'Phys._gg, 127 (1975)

L. Bonora and M. Tonin: Phys. Lett. 98B, 48 (1981)

R. Delbourgo and P.D. Jarvis: J. Phys. A: Math. Gen. 15, 611 (1982)

T. Banks, A. Schwimmer and S. Yankielowicz: Phys, Lett. 96B, 67 (1980)

I. Bars and S. Yankielowicz: Phys. Lett. 101B, 159 (1981)

I. Bars: Phys. Lett. 1148, 118 (1982)

Y. Ne'eman: Phys. Lett. 818, 190 (1979)

S. Dimopoulos and S. Raby: Nucl. Phys. B 192, 353 (1981)

M. Dine, W, Fischler and M. Srednicki: Nucl. Phys. B 189, 575 (1981)

S. Dimopoulos and H. Georgi: Nucl. Phys. B 193, 150 (1981)

P. Fayet: Phys. Lett. 70B, 461 (1977)

S. Weinberg: Phys. Rev. D 26, 287 (1982)

A.B. Balantekin, I. Bars and F., lachello: Phys. Rev. lett. 47, 19 (1981)

A.B. Balantekin, I. Bars and F. lachello: Nucl. Phys. A 370, 284 (1981)



13.

2, AN INTRODUCTION TO LIE SUPERALGEBRAS

The primary function of this chapter is to provide the reader
with the notation, definitions and basic mathematical theory of Lie
supera]gebras,.necessary.to make the remainder of this thesis
inte]]igibie and to provide the appropriate context for the
representation theory of orthosymplectic Lie superalgebras.
Consequently this chapter ié basically a review of the mathematical
theory of Lie superalgebras which relies heavily 6h the works of
Corwin, Ne'eman and Sternberg [1], Pais and Rittenberg [2]. Freund
and Kap]ansky [3], Nahm, Rittenberg-and Scheunert [4,5,6,7], Rittenberg
and Scheunert [8] and particularly the comprehensive treatments by
Kac [9,10] and Scheunert [11]. To contain the length of this chapter
it has been thought expedient to only state results and refer the
reader to the literature for the relevant proofs.

In §2.1 the necessary basic definitions and concepts pertaining
to graded algebraic structures and Lie superalgebras are introduced.
Since the primary concern of this thesis. is with Lie superalgebras
these refer substantially to 22 -.graded structures. The extensions
to more general gradings are discussed by Scheunert [12].

The classification of Lie superalgebras is discussed in §2.2.
This deals mainly with the complete classification of all finite-
dimensional simple Lie Superalgebras over an algebraically closed field
of characteristic zero which has been provided by Kac'[9].

Finél]y §2.3 provides a short review of the work of Kac [10] on
finite-dimensional irreducible representations of simple Lie

superalgebras.
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2.1 INTRODUCTION TO GRADED ALGEBRAIC STRUCTURES AND
LIE SUPERALGEBRAS
Let T be the ring of integers, Z, or the residue class ring
| of Z modulo 2Z, 22 = 7/27 [13]. The two elements of 22 will be
denoted by 0 and 1. Al spaces and algebras are regarded over a ground
field, K, Which is algebraically closed and of characteristic zero.
A T-graded vector space, V, over the field K contains a family
of subspaces, VY, where YeI', such that
Ve © v,
Yer Y
An element of V is said to be homogeneous of degree Yel if it is an
element of VY'  If I = 22 the element of VB(VT) is called even (odd).

On any Z-graded vector space V = @ V. there exists a natural Zi
jel

grading, induced by the Z-grading and defined by

V- = @ V.. Vo= @ V... .
0 2] T jez 2j+1

A subspace U of V is called a T'-graded subspace if U= (@ ]
Y€

(U n VY)'_

Let V and W be two I'-graded vector spaces. A linear mapping
g: V> W is said to be homogeneous of degree V, VeI, if
g(Va) c wa+y vael'.  The mapping g is called a homomorphism of V into W
if it is homogeneous of degree O. |

An algebra A, over the field K, is a I'-graded algebz;a if its
underlying vector space is T'-graded, A = @ AY, and if

vel
AaA Vo, Be'. If A has a unit element, e, it follows that eeAO.

8 < Aa+6
A homomorphism of T-graded algebras is a homomorphismof the

underlying algebras and of the underlying T-graded vector spaces.

It is homogeneous of degree O.
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A graded subalgebra (or ideal) of a I'-graded algebra, A, is a
subalgebra (or idea]) of the algebra A which is, in addition, a graded
subspace of the underlying I'-graded vector space A.

A superalgebra is a I,-graded algebra A = As ® A-.

The elements of A5(AT) are called even (odd). If a e Aa'(a = 0,7),
then a is called homogeneous of degree a.
The graded tensor product, A ® B, of two associative

subalgebras A and B is the tensor product of the underlying vector

spaces with multiplication defined by the requirement that

(a@b)(a' ®b') = (-1)** (aa’) ® (bb')
va e A, a' eAa.,beBB,b' e B ; a',BeZz.
With this multiplication A ® B is an associative superalgebra.
A Lie superalgebra is a superalgebra, G = Ga(j Gr» with an

operation [ , ] satisfying the following:

[a,b] = -GJ)GB [b,a] (graded skew-symmetry)
[a,[b,c]] = [[a,b],c] + (-1)0‘B [b,[a,c]] (graded Jacobi identity)
vVa e Ga, b e GB, ceG; o,Be 22. |

If A is an associative superalgebra then defining [ , ] by

Ta,b]=ab -(-1)%¥ b2 vacA,LbeAy saBel,
turns A into a Lie superalgebra denoted AL.

The universal enveloping algebra of a Lie superalgebra is
constructed in the following way [9,11]. Let G = GG(D G; be a Lie
superalgebra and T(G) the tensor algebra over the vector space G.
~ The Zz-grading of G induces a Zz-grading of T(G). Let R be the two-sided
ideal of T(G) generated by elements of the form:

R=1[a,b] —-a®b + (-1)0‘B b® a.
The factor algebra U(G) defined by U(G) = T(G)/R is an associative

superalgebra.
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The canonical mapping G »~ U(G) induces a homomorphism i: G - U(G)L
~ of Lie superalgebras. The pair (U(G),i) is the universal enveloping
algebra of G.

The Poincaré-Birkhoff-Witt theorem can be used'to construct a
canonical basis for U(G) as follows. Let ay,...,a_ be a basis of

G6 and b]""’bn be a basis of GT’ then the elements of the form

1 m ' . .
ay ... biT...bin, where ki 20and 1 < iy <..cig <o,
form a basis of U(G).
Let V = VB C)VT be a Zz-graded vector space, with VB and VT

of dimension m and n respectively, and let

Enda(V) = {AekEnd(V): AV, =V, } .

8 B+a

End(V) =@ Enda(V) is endowed with a Zz-grading and a Lie superalgebra

structure, denoted by (V) = 2(m,n), can be defined on it by setting
[A,B] = AB - (-1)*B A A,B ¢ End(V).

A linear representation, p, of a Lie superalgebra G = GaC] GT in

V is a homomorphism
p: G (V).
The map ad: G > £(6) for which
(ad g)(a) = [g,a]l , a,g ¢ G

is a linear representation of the Lie superalgebra, G, called the
adjoint representation.

The adjoint representation of a Lie superalgebra, G, induces a
representation of the Lie algebra 66 in the odd subspace GT and is

denoted by ad|, or G5|G-.
! ‘
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It is now possible to introduce a generalized adjoint operation
for a Lie superalgebra, G, and the concepts of star and grade star
representations of G in a graded vector space, V, [7].

Let V = V6 @-VT be a finite-dimensional Zz—graded vector space.
Assume that on V there exists a non-degenerate hermitian form denoted
by ( ,.) such that V6 and VT are orthogonal with respect to this form,
i.e., (VG’VT) = {0}. If (, ) is positive definite then V is called
a graded Hilbert space.

For any linear operator A in V the adjoint operator, A+, with

respect to ( , ) is defined by
(A'x,y) = (x,Ay) vX,y € V.

For the Lie superalgebra 2(V) consider the following rules:
(i) The adjoint of an even (odd) element is even (odd).

(i)  (aA +bB)" = a*A® + pw”.

(iii) [A,B]" = [B7,A"I.

(iv) (aHt = A

VA,B e 2(V) and a,b e C.

An adjoint operation in a Lie superalgebra, G, is a mapping
A > A" of G into itself which satisfies the conditions (i) - (iv) above.
Let A be a homogeneous linear operator in V of degree a. The

grade adjoint operator;.A+, with respect to ( , ) is defined by
(A*x,y) = (—1)a£(x,Ay) VX € VE’ y € Vn .

For the Lie superalgebra %(V) consider the following rules:
(i') The grade adjoint of an even (odd) element is even (odd).

(11') (ah + bB)T = asat + pugt
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(i) (a81F = (-1)°® [8%,at]
Gv)  (aHT = ()%
VA ¢ Z(V)a , B e SZ,(V)B and a,b e C.
A grade adjoint operation in a Lie superalgebra, G, is a mapping

A~ A+ of G into itself which satisfies the conditions (i') - (iv') above.
Let G be a Lie superalgebra equipped with an adjoint (grade

adjoint) operation, and let V = Va() V- be a graded Qector space.

A star representation (grade star representation) of.G in V is a graded

representation p of G in V which satisfies
+
o) = o) (eah) = pm1) .

Let V be a finite-dimensional Zz—graded vector space and let

y : V- V be the lTinear mapping which satisfies
vy (v) = (-1N% ifveV, ; aelZ,.
The supértrace, str; is a linear form on 2(V) defined by
str(A) = Tr(yA) VA ¢ 2(V) .
From this definition it follows that
str([A,B]) = 0 VA,B € (V) .

Let G = Ga(D GT be a Zz-graded space and let f be a bilinear

form on G. Then f is called

consistent if f(a,b) =0 for a e G5 > b eGs

and  supersymmetric if f(a,b) = (-1)°*f(b,a) for a ¢ G, b < 6508 € Z,..
If G is a Lie superalgebra, f is called

imariant if f([a,b],c) = f(a,[b,c]) .
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The bilinear form (a,b) = str(ab) on 2(V) is consistent,
supersymmetric and invariant. The killing form on a Lie superalgebra, G,

is the bilinear form
(a,b) = str((ada) (adb)) .

A superalgebra, G, is said to be Z-graded if we are given a

family (Gj)j ¢ 7 of Zz-grgded subspaces of G such that
(i) 6 = @ G, ,
jeZ‘]
(11) 6365 < 6yyy Vi,j e Z.

The Z-grading is said to be comsistent with the Zz-gradihg of G if

% =j§262j > 6 =J.€:)ZGZJ'+1'
If G is a Z-graded Lie superalgebra, then Go is a subalgebra

and [Go’Gi] € G;. Thus the adjoint representation, restricted to Gy >

induces linear representations of Go in the subspaces Gi’ denoted by

6|6, .

0!; G is called irreducible if the representation of G, in G_;

is irreducible. |

| A Lie superalgebra; G = Ga@GT is solvable if and only if its
Lie algebra Gé is solvable. GB is solvable if Gén) = 0 for some n,
where Géi) is defined by

O e S RS )

(1) _ rpli-1) A(i-1)
...,661 = [6; ,’65 ].

A Lie superalgebra, G, is called semisimple if it contains no

solvable ideals.
A Lie superalgebra, G, is called simple if it does not have any

graded ideals which are different from {0} and G and if [6,G] = 0.
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2.2 CLASSIFICATION OF SIMPLE LIE SUPERALGEBRAS

The following discussion will be restricted to finite-
dimensional, simple Lie superalgebras, G = Ga C)GT’ over an
algebraically closed field, K, of characteristic zero. A classification
for all simple Lie superalgebras has been obtained by Kac [9] a]though
partial results, particularly for the classical superalgebras, have
also been obtained by others [2,3,4,5,6,14]. The two main categories
~are called Cartan and classical superalgebras. The classification
of the Cartan superalgebras relies on the concept of a fi]tration of
G [9] which will not be discussed here. A Lie superalgebra, G, is
called ¢1assica1 if it is simple and the representation of G6 in GT’
GBIGT’ is completely reducible. These can be subdivided into two
categories depending on whether GS in GT is reducible (¢ype I) or
irreducible (type II). The type I and type II classical superalgebras
can be further subdivided into those with non-degenerate killing form
and those with zero killing form. In Figure 2.1 the classification

scheme is sketched.

2.2a  CLASSIFICATION OF CLASSICAL LIE-SUPERALGEBRAS*
1. A(m,n):
Let S&(m,n) = { A € &(m,n)|str(A) =0 }.
Then from the property str([A,B]) = 0 it'can be seen that S¢(m,n) is an
ideal in 2(m,n) of dimension one less than the dimension of 2(m,n).

Z,- and Z-gradings of 2(m,n) induce the same gradings on Si(m,n).

* The following notation is used in this section: S¢_, Spn, SOn stand
for the fundamental representations of these Lie a]gegras, spink stands

for the irreducible spinor representation of SO, g denotes the simplest
representation of the Lie algebra Gy, CSp is Sp plus the 1-dimensional
centre, and Sg. standg for the adjoint representation of S¢,, *denotes
the dual module and S¢ and A ¢ denote symmetrical and exterior products.
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Figure 2.1 Classification of finite-dimensional Lie superalgebras over an algebraically

closed field of characteristic zero.

Finite-dimensional Lie superalgebras, G

Kac [9, pg 9]

G/R R = Solvable radical of G.

Solvable
Semisimple
Kac
(9, Thm 6]
’,,/////flEBls____““-§§_iz\fz~iimp1etely reducible
Cartan Classical
H(n), s(n),
H(n), S(n).
zero Killing form ' nondegenerate Killing form
Type I Type I1 Type 1 Type I1
A(n,n) D(n+1,n) A(m,n), m $ n 8(m,n), O(m,n), m-n $ 1
P(n) D(2,1; a) - C(n) F(4), 6(3).

Q(n)



S2(n,n) contains the one-dimensional ideal consisting of

scalar matrices AIZn'

We set
A(m,n) = Sg(m+1,n+1) for m=zn , m,n = 0.
A(n,n) = Sa(n+1,n+1)/Al . n>0.

2n+2

The Killing form of S&(m,n) is given by

(A,B) = 2(m-n) str(AB) A,B ¢ Sz(h,n)

From this it is found that for A(m,n) the Killing form is -
non-degenerate while for A(n,n) the Killing form is zero.

These are also known as unitary superalgebras.

2. B(m,n), D(m,n), C(n):

Let V = V6 + VT be a Zz-graded vector space with dim V6 =m,
dim VT =n. Let F be a nondegenerate, consistent, supersymmetric
bilinear form on V.

We define 0Sp(m/n) = OSp(m/n)a + OSp(m/n)T by
0p(m/n), = (A e almn) |F(ACx),y) = -(-1)5(%9 %) F(a(y)))

where s ¢ 22 3 XsY € V.

(i) Ifm=22+1, n=2r:

In some homogeneous basis of V the matrix of the form F can

be written as 0 ;2 0 : i
IE 0 0:
0 0 1.
e
0 Ir
I
1
— |-IY‘0-

22.
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and 0Sp(2% +1,2r) consists in this basis of the matrices of the

form [a b u : X X
T .

c -a v 'y

VLI : z oz

T T
Y1 Xy z;v d e
1 71~ .

-y X 2 fd

where a is any (& x 2)-matrix, b and ¢ are skew-symmetric (& x £)-matrices,
d is any (r x r)-matrix, e and f are symmetric (r x r)-matrices, u and v
are (2 x 1)-matrices, x and y are (£ x r)-matrices and z is an (r x 1)-
matrix.

Two important properties of this are
(a) 05p(21+],2r)5 is a Lfe algebra of type BQ,C)Cr’
(b) the representation of 05p(22+],2r)6 in OSp(2sL+],2r)T is

isomorphic to 5022+]Q§Sp2r.

(ii) Ifm=22, n=2r:

For this case the matrix of the form F and the matrices of
0Sp(2%2,2r) are the same as for (i) with the middie row and column
deleted. |

The properties analogous to (i) are
(a)  OSp(2¢,2r); for 2 22 is a Lie algebra of type D, ®C,
(b) the representation of 05p(22,2r)5 in 05p(22,2r)T

is isomorphic to 5022(2 SPop-

The case 2 = 1 admits the consistent Z-grading G_; @ G, @ G,
where Go; G_] and G] consist, respectively, of matrices of the

form:



[a 0! ]
0
’ : d e
L f -d]

"
4

T

L_'.y

_— — ] = - -

0,
!
0

0 O

y Y

24.

[ : XX
L0 00
i

0 x1:

0 -x _

where the various elements are matrices of the form as discussed in

(i) with ¢ = 1.

We set

B(m,n)

D(m,n)

c(n)

0Sp(2m/2n)
0Sp(2/2n-2)

0Sp(2m+1/2n) ,

3

b

3
v

3
v

>
v

O, n>20
2, n > 0
2.

These are also known as orthosymplectic superalgebras.

3. P(n), n > 2:

This is a subalgebra of S&(n+1,n+1) consisting of matrices

of the form a

where tr a = 0, b is a symmetric matrix and ¢ is a skew-symmetric

matrix.

P(n) admits the Z-graded structure P(n) = G_]@ GO®G]

where G, G_; and Gy consist, respectively of matrices of the form:
o:o]
- -
c., 0f

This the subalgebra of Sg(n+1,n+1),Q(n) = Q(n)/I,_,, where Q(n)

a

4. Q(n), n = 2:

v b

consists of matrices of the form

1
a

b

e

b

a

J where tr b = 0 and

12n+2 is the one-dimensional centre of Q(n).
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5. F(4):
This is a 40-dimensional Lie superalgebra for which F(4)6 is
a Lie algebra of type B3() A] and the representation of F(4)6 in F(4)-

is spin, ® S0y

6. G(3):
This is a 31-dimensional Lie superalgebra for which G(3)6 is

a Lie algebra of type G2 6}A1 and the representation of G(3)6 in
G(3)T is g, ) $%y.

7. D(2,1; a), a e K\{0,-1}:

This is a one-parameter family of 17-dimensional Lie superalgebras
consisting of all simple Lie superalgebras for which D(2,1;a)6 is a
Lie algebra of type A] @)A](ELA] and the representation of D(2,1;a)6
in D(2,];a)T is st, & Sty & Sy

In Table 2.1 are listed all the classical Lie superalgebras
for which the representations of GB in GT is irreducible. Also
presented are the corresponding Lie algebra GB and the representation

Qf Ga in GT'

Table 2.1

G 6; 6516, G G- 656

B(m,n) Brn ® C, 502m+1 ® Sp2n F(4) Bg ® A] Spin-/. (% Sy

D(m,n) D, €C. S0, @Sp,. [ G(3) | G, ®Ay | 9, @ SL,

D(2,15a) |A) BAG ASL, ® SL, @S2, [l Q(n) | A ad S8,

In Table 2.2 are listed all the classical Lie superalgebras for
which the representation of 66 in GT is reducible. These admit a

unique consistent Z-grading of the form G_]GB GOGB G] and the
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representations of G0 in G_] and G] are irreducible and for A(m,n)
and C(n) contragredient. Also presented are the corresponding Lie

algebra G6 and the representations of Go in G_] and G1.

Table 2.2

G G 6,16_4 G, 16,

Almn)m=n | A @A K | S ®Se (&K | SL ., ®S% @K

A(n,n) An@An sznﬂ ®sszn+1 SsLnH @Sznﬂ
*
C(n) C,_.q ®K CSPop_2 CSP* 500
2 ook 2
P(n) An AT S2 n+] S sznﬂ

A(m,n) and C(n) are called basic classical Lie superalgebras of
type I and B(m,n), D(m,n), D(2,1;0), F(4) and G(3) basic classical
Lie superalgebras of type II. The remainder of this chapter will
.concentrate on enumerating and discussing various properties of the basic

classical Lie superalgebras.

2.2b  ROOT SYSTEMS
Before discussing the properties of the root systems for the
basic classical superalgebras the notation used here for weights, weight
vectors, roots and roof'vectors is introduced.
Let G = G6 GDGT be a basic classical Lie superalgebra and let H
be a Cartan subalgebra of GG' Let p be a representation of G in a vector

space V. For X ¢ H* we set

VA = {v e V|p(h)v = X(h)v , h e H}.
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If VA =z 0 then X is called a weight of p and a nonzero

vector v e'Vx is called a weight vector.

X
A weight of the adjoint representation of G is called a root

of G. For a H* we set
Ga = { e ¢ G|[h,e] = a(h)e, heHl}.

If Ga z 0 then o is called a root of G and e, € Ga‘is called a

root vector.

A root o is called even if Gy n G = 0 and odd if

G n GT z 0. Let A, A

N and A] denote the sets of all roots, even

0
roots and odd roots respectively. We also introduce the following

sets
By = {acagla/2dn )

A {o'ceA]|2a¢A0}

1
The cartan subalgebra, H, can be considefed as a subspace of

the space of diagonal matrices D. | Consequently the roots are expressed

in terms of the standard basis\ei of D*. The systems of non-zero even

roots A'O and odd roots M for all the basic classical Lie superalgebras

have been given by Kac [10] and since we will need to refer to them later

they are reproduced here in Table 2.3.

Table 2.3

A(m,n).  The roots are expressed in terms of linear functions

8]""’€m+]’6] = 8m+2""’6n+2 = Entn+2

Ay = {ei-ej; Gi-éj}, izjs Ay = {i(ei-dj)} .

B(m,n). The roots are expressed in terms of linear functions

El,...,em, 6" = E:Zm"']’...’én = €2m+n .
' = o . . ] 1 .
Ay = {x 8y
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C(n). The roots are expressed in terms of linear functions

€0 8y = €35.005 S 9 T €y
A'O ={i261; tai + 5j} : A] = {is] + 8.} .

D(m,n). The roots are expressed in terms of linear functions
€],...,€m, 6] = €2m+1""’ n €2m+n .
Ay = frey tes; #2685 %8, 8., =] ;0

A] = {tei tdj} .

D(2,1; a). The roots are expressed in terms of linear functions

81, 52, €3 .
A'O = {1'281-} 5 A] = {ia] 1'52 tz-:3}

F(4). The roots are expressed in terms of linear functions
€1 €20 €35 G
A'O = {iei iej; te. 16]} , i=z3
A] = {-% (is] te, teq £81) } .

G(3). The roots are expressed in terms of linear functions
51’ €55 €35 6] with £ + €y + €3 = 0.
Ay = {ei - €53 teys 126]} s by = {151 813 16]} .

Some general properties of basic classical Lie superalgebras,
which are relevant for the explicit construction of the algebra and
the discussion of representation theory later in the chapter, will now
be presented. In all future work, unless explicitly stated otherwise,
G will refer to a basic classical Lie superalgebra.

It is first noted that if H is the Cartan subalgebra of G then

G = ED*Ga and Go = H. Furthermore, dim Ga = 1, for a = 0 except for

oeH
A(1,1) and [Ga’GB] 2 0 if and only if a,Banda + B are all elements of A.
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An invariant, non-degenerate, supersymmetric bilinear form,

(,), may be fixed on G. This form is unique, up to a constant factor,

B)
. * - -
defined on H™ by (a,B) = (ha, hB) then [ea, e_a] = (ea, e_a)ha where

and such that (Ga, G 0 for a = -B. If now a bilinear form is

h, is a non-zero vector determined by (ha, h) = a(h) where h ¢ H.
Finally it is noted that (i) if a ¢ A (respectively
(AO, Ays Zb, Z}) then -o ¢ A (respectively Bgs Bys Zb, Z}) and
(i1) Ka ¢ 4, for o = 0 and k = £1, if and only if a « A, and (o,a) =0
in which case k = 2.
Let 86 be a Borel subalgebra of GB (i.e. a maximal solvable
subalgebra of GS)’ containing H. Having fixed a Borel subalgebra

B = 86 + BT of G then, since the adjoint representation of H in G is

diagonalizable, G may be decomposed as follows:

G=N"@®H@&N and B=H@EN

where N~ and N+ are subalgebras with the properties that [H, N+] c N+
and [H, N"] < N". |

A root o is called positive if G, 0 N* = 0 and negative if
Gy N N~ =20. Let fo (resp p]) denote half the sum of all the even
(resp odd) positive roots and let p = Po - Py~ A positive root a is
called simple if it cannot be decomposed into a sum of two positive
roofs. Let I ='{a],...,ar}, where r is the rank of G, be the set of
all simple roots.

With the introduction of the above structurés further useful
properties of the basic classical Lie superalgebras can be enumerated.
It is first noted that all the subspaces Ga n N* are one dimensional.

+

Thus, non-zero elements e; € Ga nN ,er el n N~ and hi e Hy i =1,...,r

1 -(11-

may be chosen such that e:, e; and hi is the system of generators of G which

satisfies the following relations:
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u
o
>
.
Lamem |
>
.
=
d
i
o

(el &

, e.] = -a;.e.
i 137

H
)
+
s
—/
>

[h.

+
i ej]

where (aij) is the Cartan matrix which will be chosen to satisfy the

following normalizing conditions:

(1) a;; = +2 or 0; (ii) if a;; = 0 then the first non-zero element

among a is +1. The Cartan matrix will depend on the choice of B.

ii+k

The above elements e:, e; and hi generate G. The elements h]""’hr

span H and are linearly independent for all G except for G = A(n,n)

for which case there is a unique linear dependence:

(h] + h ) + 2(h2 + h + ...+ (n-1)(h + hn+]) + nhn = 0.

2n+1 2n) n-1

Having defined the Cartan matrix, G can be uniquely determined, up
to an isomorphism, by the pair ((aij),T) where T is a subset of
‘{1,...,r} consisting of those i for which a; is an odd root.

Basic classical Lie superalgebras admit a Borel subalgebra, B,

for which the corresponding Dynkin diagram has the form represented in

Table 2.4.
Table 2.4

G Dynkin diagram
A(m,n) O—0-----O0—@®----- O
B(m,n), m >0 O——~C------ LC—B------C===0
B(0,n) O—O0----- -0 O—<——@
C(n), n>2 ——O------0 O==<=—=0 o
D(m,n) O——C------ - ---- o=
F(4) O®—O=—==—=0—0 o
6(3) §——CO====C

D(2,1; a) QD<::::::::::::ii
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These diagrams cbnsist of r-nodes of the form o, (X and °
which are called white, grey and black respectively. The i-th node
is white if i ¢ T and grey or black if i ¢ T and a;; = 0 or +2

respectively. The i-th and j-th nodes are joined by Iaij aj1|

Tines except in the case D(2,1;a). If = 0 then a;; = =0

a..
J J1
+2 then all the entries in the i-th row are non-positive

355 %5

and if ai;
integers.

The pair ((aij)’ 1) is uniquely determined by the Dynkin
diagram except for D(2,1;a) and D(2,n). The Cartan matrix of

D(2,13a) is

0+ o
D = |-1 +2 0
a
-1 0 +2]

and the 3 x 3 -_submatrix corresponding to the last 3 nodes of the
Dynkin diagram of D(2,n) is D,
The remaining classical Lfe superalgebras, P(n) and Q(n), have
| special properties which would necessitate a separate treatment to that
given here. Since the body of this thesis is concerned with orthosymplectic
superalgebras, which belong to the class of basic classical Lie
superalgebras it was thought to be ihexpedient to discuss these algebras
in detail. Rather some general properties of P(n) and Q(n) which
differ from the basic classical Lie superalgebras will be noted.

Let G be a classical Lie superalgebra with G = C)*Ga its root
oeH :

decomposition with respect to the Cartan subalgebra H. Then if
G = Q(n), G, = H and if G is any of P(2), P(3) or Q(n) then the property
dim Ga =1 for o = 0 does not generally hold. Furthermore, for G any

of P(n) or Q(n), there does not generally exist on G a unique,
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non-degenerate, invariant, supersymmetric bilinear form.

Finally, the properties (1) [Ga, GB] z 0 if and only if a,B,a+B ¢ A,
(i1) (G, GB) =0 for a = -8, (iii) [e, e 1= (e, e_,)h . presented
eqr]ier as being va1id for the basic classical Lie superalgebras, are
no longer generally valid for P(n) and Q(n). These differing features
are a consequence of the fact that the basic classical Lie
superalgebras belong to the class of contragredient Lie superalgebras

[9] where as P(n). and Q(n) do not.

2.3 REPRESENTATIONS OF BASIC CLASSICAL LIE SUPERALGEBRAS

This section contains a short review of the work of Kac [10]
on finite-dimensional reprgsentations of simple Lie superalgebras.
This work is based on the theory of induced representations which are
now defined.

Let G be a Lie superalgebra with universal enveloping
superalgebra U(G). vLet H be a subalgebra of G and V be a H-module.
Since V is equally well a U(H)-module it makes sense to form the
tensor product U(G) &® U(H)V where U(G) @)U(H)V is a Zz-graded space
defined as the factor space of U(G) @ V by the Zz-graded subspace, I,
spanned by elements of the form gh €v - g&® h(v), g e U(G), h ¢ U(H),
veV. The space U(G) QDLKH)V can be endowed with the structure of a
G-module by defining the left action of g as glu®v) = gu® v, g ¢ G,
ue UG), veV. That U(G) QBIJ(H)V has the structure of a G-module
follows from the observation that I is invariant under the action of G.

Thus, if we consider x ¢ U(G) &® U(H)V say
x=(u®v)+(%h®w-g]®hwn=(uxv)+i,meieI

then gx = g(u® v) + g(g;h @ w - g; @ h(w))
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(g(u) @ v) + (glg;h) ®w - gg; ® h(w))

(g(u) ® v) + ((ggy)h ® w - (gg;) ® h(w))

(g(u) @ v) + (gh @ w - g, @ h(w)) , where g, = gg; € G

it , where i' ¢ I

+
-

(g(u) ® v)

= x' , where x' ¢ U(G) QDU(H)V .

- Therefore the action of G on U(G) QDU(H)V is well defined,by
g: u®v+I->gluy@v+I vgeG, ueUG), veV. This
G-module, constructed as above, is said to be induced from the
H-module V and is denoted by Indﬁ Vv [9,10]. This construction is
now used to develop the representation theory of simple Lie
superalgebras.

If G = GG + GT is a basic classical Lie superalgebra,
excluding A(n,n), and H is a Cartan subalgebra of G6 then we can fix
a Borel subalgebra, B, of G containing H as B = H E)N+. Let A e H*

be a linear function on H and define a one-dimensional B-module Vi by

G

. + . >
h(v, ) = A(h)W\ for h ¢« H and N (W\) = 0. Setting Y(A) = Indg v »

A
iU\) is a G-module which contains a unique maximal submodule I{r).

~

Setting V(A) = V(A)/I{r), the G-module V(A) is an irreducible
representation and is called an irreducible representation with

highest weight A .

h;, i =1,...,r be the generators of G described

+ -
Let e;s €5, hys

in §2.2b and set a; = A(hi) where A ¢ H*.  The representation V(A)

is finite-dimensional if and only if the following conditions are

satisfied [10].
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1) a; € L, for i 2 s, where s is the number of the non-white

node in the Dynkin diagram.

2) for type Il superalgebras b ¢ Z_, where b is given in
Table 2.5.
3) for b <2 in Table 2.5 the following supplementary conditions

must also be satisfied:

B{(m,n) : T I 0.
D(m,n) : dpik+l = v¢ T Buen T 0, bsm2;
a = a , b =m-1.

m+n-1 m+n
D(2,1;a): all a; 0 if b = 0y

(a3+1)a = t(a2+1) if b = 1.

F(4) : all a; = 0 ifb=0; b=z1;
8, = 3, = 0 ifb=2; a, = 2a4+1 if b= 3.
G(3) : all a; = 0 ifb=0; b=1l;
a, = 0 if b = 2.
Table 2.5
G b
B(O,n) %-an
B(m,n), m>0 8 = @py " eee T Anioq” %-am+n
‘ , 1
D(m,n) A T %+l Tt T %man-2 ?'(am+n-1 ¥ am+n)
D(2,13a) T (22 - a, - 0ay)

F(4) %(2a1 - 3a, - 4ay - 2a;)
6(3) %
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A general property of simple Lie superalgebras is that they
contain finite-dimensional representations which are not completely
reducible. In fact it has been shown by Djokovic and Hochschild
[15,16] that if G is a Lie superalgebra then all the finite
dimensional representations of G are completely reducible if and
only if G is isomorphic to the direct product of a semi-simple Lie
algebra with finitely many Lie superalgebras of the type B(O,n), n> 0.
Finite-dimensional representations of a Lie superalgebra, G, which.
are completely reducible are called typical.

Kac [10] has derived necessary and sufficient conditions for
a finite-dimensional, irreduéib]e G-module, V(A ), with highest
weight A, to be typical. For example a sufficieht condition is
that V(A ) is typical if (A+p,a) = 0 for any a « ZT. A necessary
condition for V(A ) to be typical is that dim V5 = dim Vi provided
G is not isomorphic to one of the algebras B(0,n).

In Table 2.6 the conditions for V(A ) to be typical are

presented where G is a basic classical Lie superalgebra [10].

Table 2.6
(m.n) ) )
A(m,n) : a z )Y a, - a, = 2m-2+ i+ j
m+ t=m+2 t t=1 t

forl<ism+l<jsm+n+]

n j
B(m,n) : } a, - % a,+2n-1-3=0
t=i t=n+]
n j m+§-]
a, - a, - 2 a, - a -i+j-2m+1 =20
55 C gepel © 0 t=je b

for1<isns jsm+n-1

B(O,n) : A1l finite-dimensional representations V(A ) are typical.
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C(n) poa; =z ) a, +1 -1
1 22 t
) )
a, = a, + 2 a, +2n -1 -1
L TR0
for 1 <1i<sn-1
n J .
D(m,n) : a, - S a, +2n -1 - j=z0
t=i t=n+1 :
forT<isns<jsm+n-1
SR
a, - a, - a +n-m-3i+1=20
t=i t t=n+] t m+n
for 1 s i <n
P oo e -
a, - a, - 2 a, - a - a -i+j-2m¥2 =20
t25 b g=pe T t=3+1 t m+n-1 m+n
for T<isn<jsm+n-2. *
D(2,1;a) a; =0 ; a]za2+0ta3+1+0L,
2 # a2+] 5 a] =.aa3 + a
G(3) a; =0 ; a; = a, * 1
ay # 3, + 3a3 +4 ; ay # 3a2 + 3a3 +6 3
ay # 3a2 + 6a3 +9; a, # 4a2 + 6a3 + 10;
F(4) Day = 0 s oAy za, 1
3y = a, + 2a3 + 3 I 2a2 + 2a3 +4

ay ®a, +2a3+ 23, +5 a, * 2a, + 2a5 + 2a, +6 3

we

a; = 2a2 + 4a3 + 2a4 + 8 ; ay =z 3a2 + 4a3'+ 2a4‘+ 9 .

*  There is an error in this expression in ref.[10] which is corrected here.



37.

Kac [10] has also derived the expression for the dimension
of a typical G-module V( A), with highest weight A , where G is a

basic classical Lie superalgebra. If d = dim AT then

d 1 {Atp,a)

dim V = 2 _TEBTET

aeAO
These dimension formulae are given explicitly in terms of the

Kac-Dynkin labels, ass defined earlier in Table 2.7.

Table 2.7
' + + 1 a.+a, +...ta_+j-i+l
A(m,n) : dim V(A) = 2(m 1)(n ])1s1sjsm 1+1 : J
j-i+1
a.+...+ta.+j-i+l
x 11 1 J
m+2<i<j<min+] j-i4]
. 2n-2 H a_i+...+aj+j"i+]
C(n) dim v(p) = 2°"7°°¢ L
2<i<j<n-1 joit]
x.H. ai+ ]+2a .+, +2an
2<i<js<n 2n-1—J+2
Smn)  + dim () = 202mDn q o At g 3t sy
> 1<igjsn-1 j-i+] n+lsi<j<min-1
- (a1+...+aj_])+2(aj+...+an-an+]-...- . ]) a +2n-2m+1-i-j
1sisj<n 2n+2-i-]
x Il (a.+...+aj_]+2(aj+.. o ]) +2m-1 j+1

n+l<i<j<m+n
2m-i-j+1

j-i+l
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.+ a.+...+a.+j-i+
a ; aJ J-1i 1v

Lo.ota+j-it]
. 2an I i J it
D(m,n) dim V(A) = 2 . o
1<i<jsn-1 j-it+] n+l<i<jsm+n-1| j-i+l
< 0 (ai+...+ai_])+2(aii:..+an-an+1-...eam+n_])-am+n+2n-2m+1—1-j
I<i<jsn 2n + 2 - i - ]
x T (ai+...+aj_])+2(aj+...+am+n_])+am+n+2m-i-j+l

<< embn—
n+l<igjsm+n-1 2m=i-j+1

(ai+...+aj)+2(aj+]+...+ani])+an+2n-1-3

B(0,n) : dimv(p) =, . I
1<i<jsn 2n-i-j
x T 2(a1+...+an_])+an+2n—21+1
1<i<n 2n-2i+1

16(a +1)(a3+1)[(Za]-az-aa3)(1+a)'] -1]

"‘D(2,13a) : dim V(A) >

G(3) : dim V(A7) %%{a +])(a3+1)(a2+a3+2)(a2+333+4)

2

X(a2+2a3+3)(2a2+3a3+5)(a]-2a2~3a3-5)

F(4) ~ o dim V(A) = %%(a2+1)(a3+1)(a4+1)(a2+a3+2)(a3+a4+2)

x(a,+2a,+3)(a,+a,+a,+3)(a,+2a,+2a,+5)
2 3 2 "3 74 2 =73 774

x(a2+2a3+a4+4)(2a]-3a2-4a3-2a4-9) .



39.

CHAPTER 2 - REFERENCES

10.

11.

12.

13.

14.

15.
16.

L. Corwin, Y. Ne'eman and S. Sternberg: Rev. Mod. Phys, 47, 573 (1975).

A. Pais and V. Rittenberg: J. Math. Phys. 16, 2062 (1975).

P.G.0. Freund and I. Kaplansky: J. Math. Phys. 17, 228 (1976).

W. Nahm, V. Rittenberg and M. Scheunert: Phys. Lett. 61B, 383 (1976).

W. Nahm, V. Rittenberg and M. Scheunert: J. MaTH. Phys. 17, 1626 (1976).

W. Nahm, V. Rittenberg and M. Scheunert: J. Math. Phys. 17, 1640 (1976).

M. Scheunert, W. Nahm and V. Rittenberg: J. Math. Phys. 18, 146 (1977).

V. Rittenberg and M. Scheunert: J. Math. Phys. 19, 709 (1978).

V.G. Kac: Adv. in Mathematics 26, 8 (1977).

V.G. Kac: 'Springer Lecture Notes in Mathematics'. Vol.676, p.597
(ed. A. Dold and B. Eckmann) (1978).

M. Scheunert: 'The Theory of Lie Superalgebras'. Springer Lecture
‘Notes in Mathematics. Vol1.716 (ed. A. Dold and B. Eckmann)(1978).

M. Scheunert: 'Graded Tensor Calculus'. Universitat Bonn,
Physikalisches Institut, Preprint No. HE-82-24 (1982).

J.B. Fraleigh: 'A First Course in Abstract Algebra'. Addison-Wesley
(1973).

D.Z. Djokovic: J. Pure Appl. Algebra 7, 217 (1976).

G. Hochschild: 1Illinois J. Math. 20, 107 (1976).

D.Z. Djokovic and G. Hochschild: I1linois J. Math. 20, 134 (1976).



40.

3. REPRESENTATIONS OF ORTHOSYMPLECTIC SUPERALGEBRAS:
WEIGHT SPACE TECHNIQUES

3.1 INTRODUCTION

In this chapter weight space techniques are used to explicity
construct irreducible representations of orthosympletic superalgebras.
~ The general method follows on the work of Kac [1,2]; explicit results
have been obtained by Hurni and Morel [3] for several particular
representations of various orthosymplectic superalgebras and also
by Thiery-Mieg and Morel [4] and Hurni and Morel [5] for various
special linear superalgebras.

The general construction of the algebra is first presented
followed by the procedure for obtaining irreducible representations.
This is illustrated by a complete analysis of the finite-dimensional
irreducible representations of the lTowest rank superalgebras from
each orthbsymp]ectic class, namely C(2), B(1,1) and D(2,1;a) (from
which D(2,1) is obtained by setting a = +1).

3.2 STRUCTURE OF THE ALGEBRA
The notation of chapter 2 is modified slightly to make the

relation between the simple roots and their corresponding generators

more apparent. Let hi (i =1,2,...r; r = rank of the superalgebra)
| be the generators of the Cartan subalgebra and let a: (a;) be the
generator corresponding to th ith positive (negative) simple root.
As discussed in [1] and ch.2 the algebra in this basis can be written
in the following form

+ = -
[ai, aj] = §.. h,

Lhys hyl

1
o

i
[hi’ a?] = *a.. a
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where the a;; are the elements of the Cartan matrix. The remaining
generators may be defined from those corresponding to simple roots
by (anfi-) commutation [3,5,6].

The weight space decomposition of a representation is given
by the eigenvalues a; and b' of a vector with respect to hi and k
respectively. The odd simple root 'hides' an even simple root of
the even subalgebra. Consequently there exists a hidden Cartan
generator, k, which is defined by equations (3.2, 3.5, 3.7, 3.9) for

B(o,n), B{m,n), D(m,n) and C(n) respectively.

B(o,n)
The Dynkin diagram with the set of simple positive roots chosen

and their associated generators is

O OO = == = = = O Oo—>—0

61'62 62'63 63_64 n-2" n-1 n-1""n n
+ + + + + + _ nt
% o3 ) @1 9y =B
The Cartan matrix is
2 -1
12 -l
12 -l
[a;;] =
-1 2 -1
-2 2

The remaining odd generators are constructed in the following way:

it

8" = [ [... [ [8™, ai_l], ai_z],...], af] 3.1

where 1 < i =<n-1. The generator, k, in the Cartan subalgebra of

Sp(2n) is
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k=14%hp. 3.2

The "hidden" Sp(2n) generator associated with the nth node of the

Dynkin diagram is taken as {Bni, Bni} .

B(m,n) m > 0

The Dynkin diagram with the set of simple positive roots chosen

and their associated generators is

O——O0------0 ® -O------ O——0=>=0
61=8y  8p=83 8,98, Sptep E1t€y  EuoT€n Eni1TEm Ep

+ + + _ n+ + + + +
| % %n-1 o‘n‘Bn On+1 %n+m-2 %ntm-1 %n+m

N )
12 -1
12 a1
q 2 -1
[a;5] = 10 +1
12 41
d 2 -1
a1 2 -1
] 2 2

The remaining odd generators are constructed in the following way:

l+

n

8, = [ [.. [[en,anll,oﬁ S
PP O - TS RO o] 3.3

i

J

it + + +
g =LL I [Bn+m S PO N o;]

i
n

) I+
u

II)

n+2

'Wl

where 1 < i < n; n+l < j < n+m.
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The 'hidden' generator, k, in the Cartan subalgebra of Sp(2n)

will be some linear combination of the hi's which satisfies the

requirements
[k, a?] =0 . ,  n+¥lsj<nm
[k, aﬁ_l] =+ ai_l | 3.4
[k, {8,8}] = + 2{8,8)
where {B8;B} refers to one of the 'hidden' generatofs given below.
We find
5

=y g e b 3.

Associated with the nth node of the Dynkin diagram there exists
a 'hidden' Sp(2n) generator which in the basis chosen can be taken as

- nE n X n+ n
one of {Bj , Bj+1} where n < j < n+m-1 or as {Bn+m’ Bn+m} .

D(m,n)
The Dynkin diagram with the set of simple positive roots chosen

and their associated generators is

o—-:0O------ O @
61'62 §5-83 8n-1"%n €1

+ + + l3n+
% % %-1 % Pn
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The Cartan matrix is

2 -1
-1 2 -1
-1 2 -1
-1 2 -1
[aij] = | -1 0 +1
-1 2 -1

The remaining odd generators are constructed in the following way:

iz _ nt + + *

By = [ Lo [ I80% o 415 ap 1, o.n],s af]
it _ i+ * + *

857 = L Loon DBy opygds oy -1 o] \e
it _ it *

Bn+m [Bn+m-2’ OLni-m]'

it _ it + t *
BJ - [ ['-- [ [Bn-!-m".an+m-1]’ an+m_2]9 ---], GJ]

n+ls<js<nm-1l ;3 1<i<n,
The 'hidden' generator in the Cartan subalgebra of Sp(2h) is

Mz = e Mg < g+ ) 37

The 'hidden' Sp(2n) generator associated with the n th Dynkin node can
be taken as one of'{sgi, égfl}, where n < j < n+m-2 or as

(g"*

+ n i i imple roots chosen.
n+m-1, Pnamis 10 the basis qf simple

-1 2 -1
-1 2 -1
-1 2
-1 0




C(n

), n > 2%

The

chosen and

Dynkin diagram with the set of simple positive roots

their associated generators is

[aij] =

The remain

™
Cae [+ =te |4

Lo X

8126, 8384 8p-370n-2  Sh2fno1r no
+ + + + +
%2 %3 %n-2 *n-1 *n
matrix is
+1
2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -2
-1 2]
ing odd generators are constructed in the following way:
+ o+ + +
=[0... D08ys 051, 03], ...1, 0f] 2<is<n
: t o+ + + .
gl S SO N S NP RV R RS RS

The 'hidden' 0(2) generator is

45.

3.9

* For the C(2) =~ A(1,0) case, see §3.4.
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3.3 FORMALISM FOR THE CONSTRUCTION OF REPRESENTATIONS
Consider a representation possessing a highest weight vector, A,

of weight, A, such that hiA = A(hi)A. = aiA . Let g: € Ga and
i

- + + -
g; € G'“i such that a; « Ay and let B, « Gai and B, « G'ai such that

¥ then g:A = 0 and B:A = 0 for all positive root vectors

1
g: and B: and the representation with highest weight vector A is

0. € A
]

spanned by the vectors

@) ! (g5) 2fg) (s;)kl <eg>k2...<s;2MN-)k‘/zMNA 3.10
where ij'e'{O,Z+}, kj e {0,1} and m is the dimension of the even
subalgebra O(M) x Sp(N). This is a consequence of the Poincaré-
Birkhoff-Witt theorem. The distinct multiplets of the even subalgebra
are generated from the 22N states
‘ (Bé)kz (B;ZMN)kl/ZMNA 3.11
by application of even generators.

Kac [1,2] has given conditions on the a; under which the
representation is finite-dimensional and irreducible (or_typica]).
If the conditions for 1rreducibi1ity afe not satisfied, the representation
is indecomposable, and the O(M) x Sp(N) structure of the irreducible
composition factors (atypical representations) may be explicitly determined.
In certain cases some of the X3 belong to infinite dimensional subspaces
and it is necessary to fevert to the induced module construction as
discussed in chapter 2 (see also [2,9]).

For the construction presented below it is useful to introduce
an 'inner product' on the representation space. Scheunert et al. [7]

have shown that for a Lie superalgebra there are two ways to do this

depending on the choice of conjugation operation on the algebra.
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As discussed in chapter 2 this can be either an adjoint (1) or a
superadjoint (%) to which correspond star and grade star representationé
respectively. Given that either exists, we have two different innér
products ( , )A or ( , )S defined with respect to a fixed basis of the

superalgebra by

(9 gp -+ Gphs F1 5 .qu)A=x_ 3.12
. - ¥ ot - - -
if (g))" ... (gp)7(gy)" f7 Fp ... Foh=xA
, - - - - - - _ Y1+Y2+---+Yp
and (9 95 -~ 90 s 1 Fp cen fq Mg = (1) y 3.13
if (91 gé - g;)+ f; fo .nn f;A = yA

and zero otherwise (i.e. if the vectors have different weights).

Here g;, f. are negative root vectors of degrees Y and nj respectively

—H-C

and (gigj) = (-l)Yin gj+gi+ , and adjoints and superadjoints are |
given in Appendix A. A characterisation of a vector v which belongs to
an invariant subspace is that its length (v,v) should vanish [9, exercise
20.9]; this criterion is app]ied to 'highest weight' vectors X5 of the
even subalgebra 0(M) x Sp(N).

Given the wj and the inner product, the first stage is to write

down the X5 by Schmidt orthogonalisation,

X3 = wj - i C2 Y 3.14
where the set ¢, conéists of all states of the form

i i i ' :
¢ = (gl) 1 (92) 2 cen (gm) m X; such that the weight of %, equals the
weight of wj and not all of the ij are zero. The coefficients Cz can
be determined by imposing the conditions (¢2’Xj) = 0 for all $ -

This gives
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(0sx3) = (Op05) - i (6,20,) €y
=Y, - (¢)ml.C2 = 0 3.15

= Yy = 6C

= C = <I)_1_y
. o
or in component; Cyp = (o )Qm Y 3.16
That this procedure ensures X5 is a highest weight of the even
subalgebra is proved in Appendix B. These coefficients are not
dependent on whether the inner product is defined using an adjoint
or a superadjoint operation. . In practite since & will 1in general
be block diagonal its inversion will not be as difficult as first
appears. Despite this it is often easier to determine these coefficients

by requiring X; to be a highest weight of the even subalgebra, i.e.
requiring a:.xj = 0 for all positive, even, simple root vectors, a?,
leads to a set of simultaneous equations which can be solved for the CQ.
The second stage is to evaluate the lengths (xj,xj) and identify
atypicality conditions and invariant subspaces. If a degeneracy exists,
in the sense that there is more than one Xj of a given weight, then to
determine whether the states of this weight belong to an invariant subspace
mappings of the following form must be considered

k. k k
+ 1 ~
(8,7 (8,7 % e (B ) H X7 Ry 2 by 0y 3.17

where-xk belongs to an invariant subspace. The ij will be some linear
combination of the degenerate states and the bl are some coefficients.
The linear dependence of the ij's under these mappings will tell us how

many of the degenerate states belong to the invariant subspace.
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The above construction shows that the whole representation
‘can be made star or grade star. Indeed since the individual (Xj’xj)A
and (Xj’Xj)s differ at most by a sign, thevcrucja1 question is whether
‘the representation is on a graded Hilbert space. In fact, we find no
such finite-dimensional star representations for B(m,n) and D(m,n), but
two classes for C(2), depending on how the adjoint is defined, in
agreement with Scheunert et al. [7,8]. In the grade star case there
exist two classes of finite-dimensiona] representations on a graded
Hilbert space depending on how the adjoint is defined, as discussed in

- Appendix B. These representation; are given for the cases studied in
the following sectiohs.

‘The result, that no finite-dimensional star representations
exist fdr B(m,n), D(m,n) and D(2,1;a) can be easily demonstrated as
follows. If EF designate the ‘hidden' Sp(2n) generators defined in
§3.2 and §3.6 then [E+,E'] = -ak, where a = -16 for B(m,n) and a = -4
for D(m,n) and D(2,1;a). For a given representation with highest
weight vector A, let kA = bA .. A finite-dimensional representation
requires b > 0. Therefore if

(A, )y = (A A)g = +1
then for star representations:

(E°0,EA)y = ((ET)TEA),

n

1
1)
o

= (E'A,E'A)A <0 if b =0.

However for grade star representations:

(E"A,E7A)g = ((E7)7E"A,A)g (-E¥EA,A) = ab

= (E'A,E'A)S >0 if b =0.

In the examples considered in the following sections we find that

-1

if in (3.14) C,~ =0, then for the procedure to be consistent (3.14) must

be written as

X: = v, -2 C 3.18
J )

j g %
22k
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It is found that although xj is not a highest weight of the even
subalgebra it is part of the infinite-dimensional invariant subspace and
therefore does not appear in the finite dimensional factor space.

If the Kac-Dynkin labels have been chosen appropriately [2] so that A is
the highest weight vector of a finite-dimensional factor space (so that
supb]ementary conditions may apply), then (Xj’ x&) = 0. To determine
vthe irreducible representations for these 'special’ caées, it is necessary

to examine explicity mappings from states in the invariant subspace to

states X3 for which (Xj’Xj) =z 0.

3.4 C(2) = 0Sp(2/2) = A(1,0)

Dynkin diagram: _ @—O
€ -61 261
1+ +
B %
Cartan matrix: (a;.) = (0 1]
’ ij -1 +2]

As discussed in §3.2 the odd generators are Bli and

B;i = [Bli,aEJ. The even generators corresponding to the even
+

positive and negative simple roots are ay The generators of the Cartan

subalgebra are hy and h,. The hidden 0(2) generator is
k = 2h1 - h2 . ' 3.19

The complete algebra is given in Appendix A.

The highest weight vector of an 0Sp(2/2) representation will be
designated by A, with weight components (al,az; b = 2a1-a2) where
hiA = A(hi)A = a;A and kA = A(k)A = bA.  Any 0Sp(2/2) representation

can be uniquely decomposed in terms of 0(2) x Sp(2) irreducible
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representations. In general we have four of these (see §3.3).
The weight components of the 0(2) x Sp(2) highest weight vectors are

given below.

Uy = A : (al,az; b)
Yy = BLK : (al,a2+1; b-l)
_ ole )
Y3 By A (al-l,az-l, b-1)
by = 8By (a;-1,3,; b-2) 3.20

Applying the procedure discussed in §3.3, we find the corresponding

0(2) x Sp(2) highest weight vectors are given by the following:

X] = ¥
Xp = ¥
I N
X3 = ¥3 o, 1 %2 X2
Xq = W4 ' | 3.21

As discussed in §3.3, to find the conditions under which a state X;
decouples from the highest weight we look for those conditions under
which (xi;xi) = 0. The inner products of the above states are given

by the following:

(Xlaxl)Al,z = (Xl’xl)Sl,Z

(Xp2Xo)a1 = ~(X22X2)p2 = ~(XpoXp) g1 = (XpaXp)gp = *3;

(X3:X3,)A1 = ‘(X3’X3)A2 = ’(X3’X3)Sl = (X3’X3)52 = ‘az(az'al+1)/(az+1)

(goxgdn1,2 = ~(aoXe)s1,2 = -31(3p7ay+1) 3.22

It can be seen that under the conditions (i) a, 0, and (ii) a2-a1+1 =0
the 0Sp(2/2) representation specified by the highest weight vector, A,

is not irreducible and can be decomposed as shown in Table 3.1.
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We require a, to be a non-negative integer for the representation

to be finite dimensional.

Table 3.1

Atypicality condition * Factor space Invariant subspace
al =0 : Xla X3 A X2’ X4
a2-a1+1 =0 X1s X2 X3» x4

From (3.22) it can be seen that the only finite-dimensional
irreducible representations defined on a graded Hilbert space are the

following.

Star representations:

Al: '{xl,xz X3’X4} if b> a, + 2, '{xl,xz} if b= a, + 2,
x} ifa, =b=0;
A2: {Xl’X23X3sX4} ifb+ 32 < 0, {Xl,X3} if az + b = 0.
Grade staf representations:*
S1: '{xl,x3} if a, + b=0;
S2: ‘{xl,xz,x4} ifa, =0 and 0 <b <2,
’{xl,xz} if Ba, - %b+1=0 ,'{xl} if a, = b =0.

These results are in agreement with those of Scheunert et al. [8] where
the representation labels (b,q) correspond to (%b-%,%a2+g) in the present

notation.

* The sets of grade star representations designated here as S1 and S2 have
been determined using the convention that the grading of A is of degree
zero. If the grading of A is chosen to be of degree 1, then S1 and S2
will simply interchange. This is also the case for the remaining results
of this chapter.
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Taking C(2) simply as the n = 2 case of the general treatment of C(n)
as given in Chapters 2 and 5 and [2] corresponds to taking the Cartan

matrix as

_ [0 +2]
(a;4) “|;1 +2|

‘With this, the value of the a, label in Chapters 2 and 5 and [2] will

‘be twice the value of the a, label in this section.

3.5 B(1,1) = 0Sp(3/2)

Dynkin diagram:

(X)—_=_———O

61-61 €y

gl* a;

Cartan matrix: (a,.) = 0 +1]
’ iJ -2 +2]

1+ ¢

~ As discussed in §3.2 the odd generators are 61i . Béi =[BT, aé]
and ézi = [B%i, aé] . The even‘generators are az corresponding to the
even positive and negative simple roots. The 'hidden' Sp(2) generators
are given by'{Bzi ,séi}. The generators of the Cartan subalgebra are
h1 and h,. The 'hidden’ Cartan generator corresponding to the Sp(2)
sector is given by

K = h, - %h, . 3.23

The complete algebra is given in Appendix A.

The highest weight vector of an 0Sp(3/2) representation will be
designated by A, with weight components (al,az; b =a; - %a, ), where
hy A = A(hi)l\s a;h, kn o= Ak)A = bA . Any 0Sp(3/2) representation

can be uniquely decomposed in terms of 0(3) x Sp(2) irreducible
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representations. In general there will be eight of these (see §3.3)
The weight components of the 0(3) x Sp(2) highest weight vectors are

given below:

by = A : : »(al,az; b)

Yy = gl a : (a,a,%2; b-1)

by = By7A ©t (a;-Lay b-l)

Yy = é%—A : (a1-2,a2—2; b-1)

Ve =-81'B%'A : (al-l,a2+2; b-2)

Vg = BBy A : (a)-2,a,; b-2)

Yy = B%'E%-A : (a1-3,a2-2;vb—2)

vg = BUBL BN ¢ (a)-3,a,5 b-3) 3.24

Applying the procedure discussed in §3.3, we find the corresponding

0(3) x Sp(2) highest weight vectors are given by the following:
Xl_wl sX2=‘P2
=P 4 2 o
X3 T ¥3 a,+2 2 X2
Xg = Vg a, % X3 (a,+1)(a,*2) % % X
X5 = Vg
2 - (ag2y) (gl gl
_ a X+ N X
X Yo + 2 5 (a,-2a,) 2 °"2 1
6 6 la2+2) 2 1
_ 2 - 2 - - 1 - 1- 1
X1V Y% X T T (aga 2 %2 X T Taymp 2 B2 0B b x

(a-ay%2) 1. 1. 1 -l e
Xg = Vg - (35:23112) {82 285 } X3 * 135127-a2 {82 »85 } Xp 3.25
As discussed in §3.3 the conditions for which (Xi’xi) = 0 are
the conditions for which X decouples from the highest weight; "The inner

products of the above states are given below:
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(xy2X1)g1 = (Xpoxg)gp = 1

(XZ’XZ)SI = -(XZ’XZ)SZ = 'al

(X3’X3)Sl = -(X3’X3)SZ = f32(32‘231+2)/(32+2)

(X43X4)Sl = _(X4’X4)SZ = +4(32'1)(32'al+1)/(32+1) ) az z 0

= +a’(a2-2a1+2)

(XS’XS)SI = (XS’X5)52 1

(xgxg)s1 = (XgoXg)sp = +4a135(2p72 1) (ap-22,42)
/[(ay+2)(a,-2a;)] 5 b =0
(x7:%7)g1 = (X7:X7)gp = -4(ay-1)(ay-a;+1)(a)-2a,42)
/(§2+1); a, = 0, b=0.
(x8,x8)Sl = —(x8,x8)Sz = 4a1(a2-a1+1)(a2-2a1+4) s b= 1. © 3.26

It can be seen that under the condition (az-a1+1) = 0, the
0Sp(3/2) representation specified by the highest weight vector, A, is not
irreducible and can be decomposed as shown in Table 3.2. As discussed
in §3.3, if b = 0,1 or a, = 0, then (3.25) must be modified as per (3.18).
If b = 0, then to obtain a finite-dimensional representation we must also
impose the supplementary condition a, = 0 [2] and the representation
is atypical. This gives the singlet, X» @S the only finite-dimensional
irreducible representation. For the 'special' cases a, = d orb =1,
the only finite-dimensiona] irreducible representations oécur.as factor
spaces.  These are: a, = 0, {XI’XZ’XS’Xs}’ the adjoint is obtained from
this by setting b = 2; b =1, {XI’XZ’X4}‘ If a, =0 and b = 1, we

obtain the fundamental {Xl’XZ}’ The decompositions for all atypical,
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irreducible, finite-dimensional representations are given in Table 3.2.
For the existence of a finite-dimensional representation, we require a,

and b to be non-negative integers.

Table 3.2

Atypicality condition Factor space Invariant subspaée
a; = 0 X1
a2'a1+1 =0 XlsX29X3’X5 X4’X69X7sX8

| From (3.26) and the above discussion we see that the only
finite-dimensional, irreducible representations defined on a graded

Hilbert space are the following grade star representations:

S1: {xl} if a, = b=20
S2: ) if a,=b=0
{XIXZ} ifb=1, a, = 0,1
3.6..0(2,1; a)
Dynkin diagram: 2’ 72
E]'E "’€3
gt 2¢5, o
: 0 +1 o
Cartan matrix: (a;.) = [-1 +2 0

1 -1 0 +2
As discussed in §3.2 the odd generators are sli, e%t = [Bli,aé] R
ol # ~
= [8"7,a3] and BZ [82 , 3] 3 ,a2] The even generators
corresponding to the even positive and negative simple roots are aé, qg .

The 'hidden' Sp(2) generators are given by {82 ,83‘} The generators
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of the Cartan subalgebra are hl’h2 and h3.' The ‘hidden' Cartan
(

generator is given by k = y—7—

k = (2h -hy-ah;)/(1+a) . 3.27

The complete algebra is given in Appendix A.

Thebhighest weight vector of a D(2,1; a) representation will be

1
1+ o

where hiA = A(hi)l\z a;A and kA = X(k)A= bA . Any D(2,1; a)

designated by A , with weight components (al,az,a3; b = (2a1-a2-aa3)),
representation can be uniquely decomposed in terms of SU(2) x SU(2) x SU(2)
irreducible representations. In generél there will be sixteen of these
(see §3.3 ). The weight components of the SU(2) x SU(2) x SU(2)

highest weight vectors are given below:

¥y = A : (al,az,a3; b)

v, =871 : (a),3,*1,a5+1; b-1)

Y3 = B%'A : (a)-1,a,-1,a5%1; b-1)

Yy = Sé' A : (a;-a,a,+1,a5-1; b-1)
g = By A : (a,-1-a,2,-1,a5-15 b-1)
Vg = 81-8%' A : (a;-1,3,,a3+2; b-2)

by = Bl-Bé- A - (20,852,855 b-2)

Vg = Bl_é%— A : (al-l-a,aé,a3; b-2)

by = By 837 A : (a)-1-6ay,255 b-2)
b10° By By A : (a)-2-0,2,-2,a55 b-2)
V1= eﬁ'é%’z\ : (a;-1-20,a,,25-2; b-2)
vy~ B85 B : (a-1-c,ay+1,a4+1; b-3)
by5= 878 By : (ay-2-0,3,-1,a4+1; b-3)
V14* Bl‘eé‘éé‘/\ : (ay-1-20, ay+l,a,-1; b-3)
Vs By B3 B A : (a,-2-20,3y-1,a3-1; b-3)

1-.1-.1-31- , ~ . :
lJ»}].G B8 82 83 82 A : (a1-2-2a,a2,a3, b-4) 3.28



corresponding SU(2) x SU(2) x SU(2) highest weight vectors are

Applying the procedure discussed in §3.3, we find the

given by the fo11owing:

X1

X3

= u’12 - a2+aa3-2a1+1+a

wl ’X2=w2

Py + Lo

37 3, 2 X2

by + —— o3
T X

Yo + 1 a, X +‘—!;— o - 1 o, O

5 75l 2 K4 T a3 X3 (a,+1]{a5+1] “2 %3 X2
s

V7

1 - 1 - apFoas-a; g .

Vg ¥ a2 "2 %7 * 372 %3 %6 * EEI&S&T?EI'{Bz 83 1 xq

- 1 - 0dz-ay

3 1

1 - -~ 1 - -
Oy  Xg * a, %2 X8~ (a,+1)(a,+2) “2 %2 %1

1 - le1-
'ba2+aa3-2a1 %2 {82 ’83 ¥ X1

1 -~ -~ - -

1
Y11 ~ 2. %3 Xg t 37 %3 Xg - (a;rD(a72) %3 %3 %

a - (al- l-
"oy %3 P2 0f N
aa3-a1+a

S 1- 1-

1 _ a,+0az-a; +l+o

Ya AT %2 X2 T 3703, Za.tia
2 2 773 %1

(a2+1)(a2+aa3-2a1+1+a)

1- ,1-

- 1- .1-

1 ol -
Yg * EEI?'“z X7 "3 +2 %3 X6 - agxasgtéa"{sz B3 1 x
1

58.
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X =y - 1 a_ X - .a_2+m {81- Bl-} X
14 14 73l "3 X127 ayveag-2a Flva T2 7730 Y
a,-a,+1
21 - 1= 1-
* (a5 (a,70ay-2a ) %3 By 5831 Xy
= Y, + L4 . Sy X1 + 1 o, 0o
X15 = Y15 a,*1 "2 X14 ayrl %3 X137 (e ) 2 73 X12
0d,-a,+o a,toa,-a,+1+o .
3791 1- ,1- 374 - 1- L 1-
'.a2+aa3-2a1+1+a {62 ’53 } Xg * (52+1)(a2+aa3—2a1+1+d) o {82 ’83 } Xq
- i oy 18y7.857) 20 ,
(ag*1){a,*0a,-2a +1%a] 3 2 73 X3 (a,+1)(a,+1)(a,*0a,-2a, +1+a)

- - 1- 1-

a2+ua3—a1+2+2a Cie e~
X16 = Y16 * 7,708,270+ {8; »B3 } xg

0a,-a,+2a :
3791 Cle ley~ 1 -1 -

a2+ua3-2a1+2+2a

(a 2+a2a32-a1a2—2aa1a3+aa2a3-a1+a(1+a)a3)

1 P TN ENPS CRY &
(éz+aa3-2a1)(a2+aa3-2a1+1+a) . {82 ’83 }{82 ’63 } X1

+

3.29

Examination of the above states reveals a degeneracy in the sense
that bg and bg PoOssess the same weightAand the same eigenvalues with respect
to the even subalgebra Casimin operators. Since the orthogona]ization |
procedure we have used does not allow us to overcome this multiplicity
problem, we have been obliged to determine the irreducible spaces to which
the corresponding SU(2) x SU(2) x SU(2) highest weight vectors, Xg and Xg>
belong by mapping from states in the invariant subspace to linear

combinations of §8 and ig. We can then determine from the nature of these



60.

linear combinations whether both, none or only one of xg and xq belong

to the invariant subspace. The inner products, (Xi’xi)’ of the

remaining states are given below:

(xyx)gq = (X12X)gp = #1

(xpox)s1 = ~(xpoXp)sp = -3

(x30x3)g1 = ~(X35X3)52 = +a2(§2-al+1)/(a2+1)
(xgs%g)sp = ~(xg>Xg)gp = +23l0ag-a;+a)/(az+l)

(XS’XS)SI = '(XS,XS)SZ = +aza3(az+aa3‘al+1+a)/[az+1)(a3+1)]

(X6’X6)Sl_= (XG’XG)SZ = +a1(a2-a1+1)
(X7’X7)Sl = (X7’X7)52 = +a1(aa3-a1+a)
-(az—a1+1)(a2+aa3-a1+1+a)(a2-l)

(x10°X107s1 = (X10°X107s2 =

/(a2+1) ; a, =0, b = 0.

(Xq1oX17)s1 = (XppoXqp)sp = -(0ag-ap+a) (ayteag-a +lta) (az-1)

/(a3+1) ; ag® 0,b=0.

(xp20%12)s1 = ~(Xp2oXq2)sp = 31(8p-ap*+1)(eag-as+a)
(a2+aa3-2a1+2+2a)/(a2+aa3—2a1+1+a) s b=z 1.
(xy37%13)s1 = ~(X3:X13)s2 = 212(ap72y#1) (agHeag=2a2+2e)
(a2+aa3-a1+1+a)/(a2+1)(a2+aa3-2a1+1+a) s b=z 1.
(xy4-X1a)s1 = ~(XpaX10)s2 = 2123(083-21%1) (apraaz-2a,+2+20)
(a2+aa3—a1+1+a)/(a3+1)(a2+aa3-2a1+1+a) s b=z 1.
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(X15:%15)51 = ~(Xg52X15)sp = -8p23(ap-a;*1){cag-a;+a)
(a2+aa3-a1+1+a)(a2+aa3-2a1+2+2a)/
(a2+1)(a3+1)(a2+aa3-2a1+1+a) ; b=z 1.

(X16:X16751 = (X1g°X16)52 = -21(ap-a +1)(0ag-a +a)
(a2+aa3-a1+1+d)(a2+aa3-2a1+3+3a)/(a2+aa3-2a1+1+a) ; b = 0,2.

3.30

It can be seen that under the conditions (i) a; = 0,
(i) a2-a1+l =0, (iii) adg-apta = 0 and (iv) 32+aa3-a1+1+a =0,
the 0Sp(4/2) representation specified by the highest weight vector, A,
is not irreducib]é and can be decomposed as shown in Table 3.3.
As discussed in §83.3, if b = 0,1,2 or a, = 0 or ay = 0, then (3.29) must
be modified as per (3.18). If b = 0, then to obtain a finite-dimensional
representation the supplementary conditions a, = ag = 0 must be imposed [2].
This gives the singlet, Xq»-@s the only finite-dimensional irreducible
representation. Similarly, if b = 1, then either of the supplementary
conditions C_: (a2+1) = a(a3+1) or C_: (a2+1) = -a(a3+1) must be imposed.
If C, is taken the only finite-dimensional, irreducible representation
- consists of'{xl,xz,xs} . If C_is imposed the only finite-
dimensional, irreducible representation consists of‘{xl,x3,x4} .
Other 'special' cases are: if b= 2or a, = 0 or az = 0, then one of
Xg OF Xq is part of the infinite-dimensional subspace; if a, = ag = 0
or a, = Oand b =2or az = 0 and b = 2, then both Xg and Xg belong to
the infinite-dimensional subspace. For the following atypical
representations Table 3.3 must be modified to include both Xg and Xg
in the invariant subspace: if condition (ii) above and az = 0 or

condition (iii) and a, = 0 or condition (iv) and ap, = ag are imposed.
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~If b=1 and a, 0 the fundamental {Xl,xz} is obtained.

a3

If b=2and a, = a3 = 0 the adjoint {XI’XZ’Xs’X7} is obtained.

Table 3.3 contains the decompositions for all atypical, finite-
dimensional, irreducible representations. For the existence of a
finite-dimensional representation 25,23 and b are required to be

non-negative integers.

Table 3.3
Atypicality | Factor space Invariant subspace
condition

a; = 0 X12X32Xg42Xg> X2:Xg2X7:Xg2Xg>»
X10°X11°X15 - X12°X13°X14°X16

a2—a1+1 =0 Xl,Xz,X4,X5, X39X6’X9’X10’
X7:Xg2X11°X14 X12°X13°X15°X16

aa3-a1+a =0 Xl’XZ’X3’X5’ X4’X7’X9,X11’
Xg2XgX10°X13  Xp2eX140X15°X16

a2+aa3-a1+1+a =0 X19X29X39X43 XS’XQ’XIO’X].].’

| X6’X7’X8’X12 X133X14sX15aX16

From an ané]ysis of (3.30) and considering fhe above discussion
it is observed that the only finite-dimensional, irreducibie representations
defined on a graded Hilbert space are the following grade star
representations with highest weight vectors of the eveﬁ subalgebra written

Xi(az,a3sb)
S1: {xl(0,0,0)}

‘ 1 a+2
{Xl(l,o’-a:rl_)s X3(0,1,'-&ﬁ-)}

{XI(‘G-']-’OQI) ’ X3(-O.-2,1,0)}
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Se: {xl(0,0,0)}

o 20+1
{Xl(oal" &1T)a X4(190,' —E;TJ}
a+l 2o0+1
{X1(09 - _&—a 1)9 X4(1a - a 3 0)}

{Xl(os l&as 1): Xz(ls é’9 0)}

{Xl(a'190s1)" Xz(aslao)}
For the above representations to be finite-dimensional a must be chosen

such that for xl(az,a3,b) each of ay,35 and b must be a non-negative

 integer.
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b, REPRESENTATIONS OF ORTHOSYMPLECTIC SUPERALGEBRAS:
SUPERFIELD TECHNIQUES

4.1 CONSTRUCTION OF INDUCED REPRESENTATIONS

The technique of induced representations for finding irreducible
representations of a group is a well éstablished procedure in group
theory [1,2]. There is a large class of groups which has irreducible
representations which can be written as induced representatiohs.

For example Mackey [1] has shown tﬁat for the class of groups having
invariant subgroups all_ﬁnitary irreducible representations can be
written as induced representations. The application of induced
representations to supergroups, G, involves the construction of functions
(superfields), ¢, defined on graded coset spaces,G/H,and taking values in |
a representation space, V, of the subgroup H of G. Application of these
techniques to supergroups was first made by Salam and Strathdee [3] who
considered the graded Poincare groﬁp. Subsequently much work has been
done on superfield formulations of supersymmetry and supergravity

(see van Nieuwenhuizen [4] for a review). The use of induced
representations to determine finite-dimensional irreducible representations
of simple graded Lie algebras was begun by Dondi and Jarvis [5,6] who
considered SU(m/1). Applications to orthosymplectic superalgebras have
been made by Farmer and Jarvis [7] and it is principally these results
which are reported here.

The procedure elucidated here was proposed by P.D.Jarvis and is,
cohceptua]ly, a graded extension of a technique pioneered by Bargmann [11].
Bargmann considered the application of function spaces Rz, being
homogeneoué polynomials in two complex variables, to the study of the

rotation group. This is a realization of a more abstract work by
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Schwinger [12] in which he introduces certain operators ag, aZ
which act as creation and annihilation operators of boson fields.
The orthonormal vector basis of the Hilbert space on which the
operators aC act is then defined in terms of the QC themseives.

In Bakgmann's approach the Hilbert space is given a priori as a
function space, R2, while the creation and annihilation operators
are realized as operators in R2 and consequently the répresentations
are directly defined on the function space. These boson operator
techniques were used to construct explicit states of irreducible
representations of the unitary groups by Baird and Biedenharn [13]
and later extended to the orthogonal and symplectic groups by Lohe
~and Hurst [14,15] and Zhelobenko [16j. This brings us io expound
the method used here as applied to supergroups.

Consider a supergroup G and subgroup H, with corresponding
superalgebras g and H . Representations of g are afforded by
functions ¢ on coset spaces G/H and taking their values in a
representation space V of M . If x and y are coset representatives
of G/H,then for g ¢ G the group action in an appropriate basis for V
is

(g 0); (x) = ﬁ: o (y) 4.1

where y is such that g-x = yh"l, h ¢ H and Eg is the matrix representing
h in the chosen basis for V.

The coset space G/H is the space of orbits that the subgroup H
sweeps out in G. One can choose an origin in this space and coordinatize
its neighbourhood by exponentiating the coordinates in the tangent space
at that point; 1i.e. a point in the coset space can be written as
expZ(xX + 6Q), where X and Q are generic even and odd elements of 5 %

and x and 6 are c-number and a-number parameters respectively.
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If now S(R) is an odd (even) element of )} and n(y) is an a-(c-)

" number parameter then the group action on G/H is infinitessimally

exp(ns) expZ(xX + 6Q) = expr[(x + n 6 fl(x,ez))x
+ (8 + n g,(x,69))Q] expz(n K, (x,0)K) 4.2

exp(yR) expZ(xX + 8Q) = expZl(x +y fz(x,ez))X
| +(6+y® gz(x,ez))Q] expZ(y ky(x,8)K) 4.3

where K e {. The particuTar basis chosen will determine the precise
form of the functions f,g and k and for an appropriate M théy may be
restricted to polynomials of low degree which can be obtained directly
via %CH formula. From (4.1), (4.2) and (4.3) it can be seen that the

group action induces a motion in the parameter space. This motion may be

generated by differential operators

S » I, (x,0%) 03/ x + g,(x,6%) 3/26 - k (x,8)K 4.4

R~ >§[f2(x,e)2 /3 x + gz(x,ez) 63/36 - k2(x,e)E 4.5

where K is the matrix of the infinitessimal generator K in the
representation space V.  Often it will be possible to decompose M as
Ho= Mo+ N
of }(0 are then easily extended to H by taking them to be zero on H -

+» Where ){ _ is an ideal (D1, ] < H,). Representations
The action on superfields corresponding to (4.2) and (4.3) is

given by

65 ®(x,0) = S &(x,8) and GR ®(x,0) = R &(x,9)

respectively. The representation obtained by expanding as power series
in x and polynomially in 6 is in general infinite dimensional, but possessing

a finite-dimensional factor related to the choice of V.
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As discussed in chapter 2, Kac [8] has argued that all irreducible
representations can be obtained by choosing H as a Bore] subalgebra,

H 0 the Cartan subalgebra and V one-dimensional. However, in general,
this leads to large dimensional coset spaces making the algebra
prohibitively complex. Consequently, in general, H will be chosen
larger tﬁan the Borel subalgebra and thus V greater than one-dimensional.

The form of the a]debra used in this chapter will not be that of
chapters 2 and 3 but rather the covariant form given by Jarvis and Green [9].
Here the 0Sp(m/n) generators are MAB = - [AB] MEA’ 1 < A,B < m+n.

These consist of the 0(m) generators Mab = Mba’ 1 <a,b <m the Sp(n)
generators Ma =M < a,B s n, and the odd generators Maa =M

8 Ba’ 1<
The generators satisfy the superalgebra

oa’

(MagMcpd = 95¢ Map - [ABI gpc Mgy - [CDI ggp Mye + [ABILCD] gpp Mge
4.6

where 9pB ° [AB] %A is the orthosymplectic metric and the sign factors
[ABlare +1 if 1<ABs<mor1lc<A<m ml<B < mn (or vice versa)

and -1 if m*l < A,B < m+n. The metric is taken as follows

[? é] m even ro
9ab ~ Y = [-1 OJ +.7
| {? 3 g} m odd
0 0 1 '
%a = S%a ° 0.

In the following sections Sp(1/2), 05p(2/2), 0Sp(3/2) and
0Sp(4/2) are examined. In each case the superfield transforms as an
arbitrary, irreducible representation of the chosen little group.
Full decompositions with respect to the even subalgebra for typical

and atypical representations are derived.
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4.2 0Sp(1/2):
In the notation of (4.6) the 0Sp(1/2) superalgebra consists of

the even Sp(2) generators Ma and the odd generators Mla where 1 < a,B < 2.

B
The odd generators will be writeen Mlass Qa and the Mas will be transformed
to the spherical basis M_, M_ and M% via M(‘)LB = ZM'(QE)QB where 0105503
. . _fo 1 21 = -1
are the Pauli matrices and_(eaB) = l_l OJ’ or M, = 5 My, M= -5M,,
and M3 = %M12' With the generators in this form the superalgebra becomes:
M3,00 = - #og) BPog  IM,,00=- (0,) °Q
3o 2'73'a "B 7%, o "B
[M,.M_] = 2, [My.M,] =« M,
{Q,,Q5} = - 2(0+€)a6 M- 2(0-8)a8 M, - 2(O3€)a8 Mg 4.8

with all other (anti-) commutators zero. |

The subalgebra { will be taken as H ='{M3,M+,Qz} with
" H g = M3} =U(1). The cosets are labelled by the elements
exp(xM_ + 601) and the superfields are functions &(x,8) carrying a

charge ﬁsz -M. Expanding the superfield in 6 gives simply
d(x,0) = A(x) + 6 p(x) 4.9

The differential representation of these generators (see 4.4

and 4.5) is
M. = 3/dx
M+ = - xza/ax - X8 3/36 + 2xM
_ 1
M3 = - x9/9ax - > 83/386 + M
Q1 = -093/3x +3/38
02 = - 0X3/3Xx + x3/36 +26M 4.10

Acting on the superfield with the above set of generators yields the

following variations for the component fields, writing A' = 3A x, etc.,
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M : 6A = A S = y'

M+ : 6A = -x2A' - 2Z2MxA sy = -xzw' - X - Mxy

My @ OA = -xA' - MA SU = -xy' - %u; - My

Q : oA = v | sv = <A’

Q2 : A = xy Sy = -xA' - ZMA 4.11
Now expand A(x) and y(x) as power series in x:

Ax) = § AN and  p(x) = 7 " x". 4.12

n=0 n=0

Substituting these into (4.11) and equating like powers of x gives the

following results

Mot 8A" = (n+1) AT sy = (n+1)yp"!

M0 6A" = o(n-1-2mA™ n a1 s = —(n-am)™l n 2
Myt A" = ~(n-M)A" T s = (M)

o A" =y"nsamr gy = (ne)A™!

Q2 . A" = wn-l’ n=>1 sy = —(n—ZM)An,' nx1

4.13

with al] other variations zero.
If M is taken as ha]feintegral, then it is clear from the explicit
component form of the variations (4.13), especially M+ énd Qa’ that the

inf{nite set'LAO,Al,...; wo,wl,n,J has an infinite invariant subset

'{A2M+1,A2M+2,. 2M 2M+1’...}.

A If these components are set to zero,

then the remaining finite subset'{AO,Al,...,AZM; wo,wl,.f.,wZM'l}'is
invariant (i.e. as a factor space).

Thus an arbitrary finite-dimensional irreducible representation
of 0Sp(1/2) has dimension 4M+1 and ‘superspin' M[10]. The superspin is

with respect to the second order Casimir invariant, Cz, (which for

0Sp(1/2) is the only independent Casimir invariant) acting on the
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superfield &(x,06) with eigenvalue M(M+s), where
C, = MM +M +M, - e Q. Q
2 -+ 3 37 & "o fa B

The component fields A and ¢ have spins M and M - %—, respectively

under Sp(2). The matrix elements acquire a more symmetrical form

Au+M LV viM-15 -

in the basis defined by BH= =y where u = -M,-M+1,...,M

s X
and v = -M+ M+ = M- 1.
2‘, 2 9 ey -2- .

1 3

M s8H = - sy = -vy”

MoM_ s 6B = (Melky)ghtl 6x” = (M+ 5% H

0.0, © 68" = *F2 sx” = -(veMe)BYEL 414
where Bi(M+1) = Xi(M+%)ss 0. An alternative form for these matrices is

given in Appendix E in terms of spin projection operators (see, for
 example, E1, E7, E8 ); it is in this form that they are required

for 0Sp(3/2) as treated in §4.4.

4.3 0Sp(2/2):
In the notation of (4.6) the 0$p(2/2) superalgebra consists of
the odd generators Qaa = Maa’ the 0(2) generator Lab = Mab and the

Sp(2) generators M, Here 1 < a,b < 2 refers to 0(2)‘and l<a,Bs?

8"
refers to Sp(2). The Sp(2) generators are again written in the spherical

M+,M_,M3'basis as in 84.2. These generators satisfy the superalgebra

[Lap> Qod = ~Sac Bo * Sbe Qaa

M3 Qo] = (-1* %'Qaa

M, Q] = 0 M, Q] = -0y

M, . M1 = o Mg, M,] = oM,

Qe Qppd = 28pM 0 Qgpn Qppb = 281, |
{Qa], sz} = -26abM3 - Lab 4.15

with all other (anti) commutators zero.
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The subalgebra H will be taken as H: = {Lab’ Mys M, Qa2}

with %(0 =’ &ab’ M3} = U(1) x U(1). The cosets are labelled by the

elements exp(xM_ + eaQal)' Superfié]ds are functions o(x, ea) which

form a representation of the U(1) x U(1l) little group carrying changes

M= -Mand [_ iL.  Expanding the superfield in 6% yields

b~ " €ab

o(x, 6%) = A(x) + o2 wa(x) + %-ea eb €ab H(x). 4.16

Note that indices can be lowered or raised using the 0(2) metric Gab

or inverse metric 53b respectively and €10 © 812 =+ 1.

Following (4.4, 4.5) the differential form of the generators,

writings_ = 3/26%, is

_ ab a .
M_ = 3/9x
M, = xa/ex - x8%a, +2xM+ 3 e® e e il
_ 1 .a '
M3 = -xa/ax-76 3a+M
- a
Qp = -0 8/x +3,
_ a a b a b .
Qup = -6° x3/x + xd,- 6% 6" 9 +26°M - 6" e il 4.17

The following field redefinitions are introduced so that the
components of the superfield transform as eigenvectors of the 0(2) x Sp(2)

even subalgebra.
NA': M= 0; w_,.,"'wl'kin;‘w_:wl‘in'

Following the procedure of §4.1, A(x), ¥, (x) and H(x) are expanded as
power series in x. . Examining the transformations of the components

An,'wi" and‘ﬁn under the above generators shows that the infinite set

0 wil,...; ﬁo,ﬁl,...} decomposes into an infinite

M+ 2M+2
2 1’ A M s thM’w2M+1’.'.;

WAl sy,

dimensional invariant subset {A
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1 2M

HZM-I, ~2M LA

H"",...} and a finite dimensional factor space {AO,A

0. a2y

0 1 2M-1, =0
. , Ho, ..

Uy s Wy seens ¥ ; H

'Thﬁs in general an arbitrary finite-dimensional representation
of 0Sp(2/2) hés dimension 8M and the component fields A, y_, ¥_ and H
have spins M, M + %3 M- %—and M - 1 respectively under Sp(2) and
charges ilL, i(L+1), i(L-1) and il respectively under 0(2).
| These representations may be atypical (see Chapters 2 and 3) and
thus reducible. To determine the conditions under which this may occur

the transformations of the component fields under the odd generators

are examined. This yields the following results

Qqp  6h =3 v+ g ¥
v, = *if L ya
v, = *iH - (12 —m)A
SH =30 (1- 40 vl -5 (1+ v 4.18
Qy P8 = -zl tgiw
- _u - L .
Su, = - H 3 (125 A
S 1 Ly oL Ly
§H = ?(1 - ?MJ vy o+ ?(1 + ?MJ Y 4.19
Qp = OA = %-x L %-x V.
S0, =+ 1 x H - (1% 5)(xA" - 2MA)
=] L . -
SH =51 (1 - m(xuy - 2My, +y,)
Lig+Lyxe -om ) 4.20
-7 AL v_ -y .
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Qgp = SR = -gxb rgxy
awi=-xﬁ;1(1x2L—M)(xA';2MA)
Gﬁ = l-(l - iL)(x P! = 2My, + y,)
2 M + + +
+ l.(l + l;)(x ' -2My + vy ) 4.21
2 M - - - :

It becomes apparent from these results that if L = 2M the set
{w;, H} form an invariant subspace of dimension (4M-1) with the set
{A, wi} invariant as a factor space of dimension (4M+1).

The irreducible representations obtained here are in agreement
with those of §3.4 where the label correspondence is a, = 2M - 1 and

b=1L+1.

4.4 0Sp(3/2):
7 The 0Sp(3/2) superalgebra consists of the odd generators

Qe = My » the 0(3) generators Lip = Myp and the Sp(2) generators Mas'

Here 1 < a, b < 3 refer to 0(3) and 1 < a, B < 2 refer to Sp(2).

These generators can be recast in the form
L, = Lyp +ilyy  Le= =Ly +ilyy Ly =ily
Q+q =0 0y Uy T Oy - 10 Q3 = Q3q -
In this form the genekators satisfy the following superalgebra
[L,, L] =2, [Lys L1 = 5L,
[MaB’ My6] - EBY MaG ¥ €as MBY ¥ ;ay MBG ¥ E86 May

[L,, Q] =% 20, [L,, Q3] = 5 Q,
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3a Q ] = = Q+

.
LMO.B’ QiY] -

[}
pen]
I+
>

[MGB’ QSY] = an Q3B + EBY Q3a
{Q3a’ QiB} =+ eaB Li {Q3a’ Q3B} - MaB
{Q+a, Q-B} = _ZMOLB - 28&8 L3 o 4.22

‘with all other (anti) commutators zero.
The subalgebra A will be taken as H = {L+, 30 Qs Qg M 8}

with r«o = {L3, Q34 MaB} = U(1) x OSp(l/Z). Cosets are 1ab§11ed by

the elements exp(xL_ + o* Q_a). Superfields are functions ¢A(x, ea)

carrying change [ = -L, and a 'superspin' M representation of the

U(1) x 0Sp(1/2) little group (see also E.1).

. [¢a(x, 85) ]

= 4.23
Pa0l*> 8g)]

o, (x, 68

In the following the spin-M indices will be suppressed. Expanding the

superfield in 6% gives

o(x, 6,) Ax) ) (p(x) + w'(x)] - [H(x) )
B 8 B B8 1 2 _
Ll + S + ?e 4.24
(a0 Bg)]  |a,(x) I [, (x)
‘where 6255 EaB he 68. The Sp(2) indices can be lowered or raised
using the Sp(2) metric €ug OF inverse metric eaB respectively where
%8 respectively where €10 = 521 =+ 1 and 68 = EB 8y, o8 = eBY 6 .
The components have the following sp1ns under Sp(2): A and H, M;
w M +'Z H w&, a, and ha, M- %—. PaB may be decomposed into fields

of definite:spin under Sp(2) by the following procedure:
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_1 1
PaB 2 (PocB PBOL) t2 (POLB * PaB)
_ 1 Y6 0 . -1
_ZEOLBE pcSY+P0LB+p0LB 4.25
' 0,-1 _ -0,-1 y§ 1
where p = Toa > (PSY + PGY)

aB

are the spin M and spin (M-1) projections defined in Appendix C.
. B : 1 4 - B -+l 8 _ . .
Since 6 PBa has spin (M - ?) but T Il By - 0, there is no spin

(M+1) projection.  Furthermore using (D5,D7) and (D.20)

Yd =AY6 = AYd 0 > |
€ P6Y M PYG/Z(M+1) = M PYé/c(M+1). 4.26
It should be noted that PSB is not an eigenvector of HtES . However,

it can be rewritten as

0 _ 0 0
(2M+1) Pyg = M(P+)a8 + (M+1)(P—)a6 4.27
0,  _ (o0 _ . oy8p0 ot
where (Pt)ae = (PaB €08 M PYa/ZM )
Mtz M M= -M -1
58 ,.0 _ (o0 : 58 0 -
such that 1 (Pi)YB (Pi)ya CUL B (P;)YB 0.
Thus we finally have in (4.24)
_ (00 -1
Pag = (P2)ag * Pag 428

The differentia]-repfesentatioh of the generators is (see (4.4,4.5)

and Appendix E)

aB - “a’B B %a - V%aB

=
1
D
[SH]
-+
@D
@

-
"

9/3 x

A

= -xza/ax - 823/3x 2x 8%3 o+ 2xL - 20% @
a 3a

—
|
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_ o
L3 = -x3/3x - 6 3a-+L

Q-a B aa

q = -20 xa/ax-x23 +2923 v20 L -20ft S 2
+a o o o o " TBa " 3a
Q&x = 3eaa/ax - xaq- €l3a' - 4.29

Upon examination of the action of L, on the superfield a modified
basis for the component fields is obtained in which they transform as
eigenvectors under the 0(3) x Sp(2) even subalgebra. The necessary

field redefinitions are (where [M] = (2M+1)%)

b, = Lty var

E& = -L[M] Pog + 3 Mg A

Hoo= (eI (LD - Uit weB g
w I an-1) T e-1) (M) (Leam) A

S (S 1 ) R )

+ 17 chee-n T -an-1)ay 4.30

and A, w;, a, and P&é

are unchanged.
Following the procedure of the previous sections and expanding
the component fields as power series in x reveals a finite dimensional

factor space in which their degrees (highest power of x in the finite

0
oB

From (4.29), taking into account (4.30), the 0(3) x Sp(2) =

N -1 . b -
factor) are A and as 2Ly s Wy P and PaB’ (2L-2); H and ha, (2L-4).

SU(2) x SU(2) decompositions obtained for arbitrary induced representations
with the chosen little group (corresponding to superfields of arbitrary

half-integer change L and 'superspin’ M) are given in Table 4.1.
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In general this class of representations is typical and thus irreducible
with total dimension 4(2L-1)(4M+1) for L > g-and M>0. ForM=20 the
superfield ¢p is a singlet under the little group and (4.23) and (4.24)
reduce to 9p(x,05) = 0(x,8,) = A(x) + 6%z (x) + 7 6%H(x) 4.31
and consequently A, wg and H form an invariant set. Examining the
btransformations of the component fields under the odd generators reveals
that for certain (L,M) the above set is reducible, corresponding to
atypical representations. Table 4.2 demonstrates this for Q;.

1

With (L =2M + 1, M > ?J the set P_ ﬁ @ and ﬁ form an invariant

B
subspace of dimension (32M2 2) = (16M - 2[16M , Wwith the set
(A, 528’ a, w;) invariant as a factor space. For (L =2, M =-%)
H and @a form a further invariant.subspace equivalent to the fundamental 5.
From (4.24) it is evident that L = O, %—and 1 must be treated as special
cases; 1if L = 0 the only finite-dimensional representation occurs for
M = 0, corresponding to the singlet A; no finite-dimensional
(L = %, M > 0) superfield can be constructed; the sequence (L =
M 2 0) has an invariant set (A, P&B’ W;, a&) which includes the
fundamental 5 = (3 x 1)/(1 x 2) for M = 0 and the adjoint
12 = (3vx 1+1x3)/(3x2) for M = %n The 0(3) x Sp(2) = SU(2) x SU(2)
decompositions obtained for these cases are summarised_fn Table 4.2.

The irreducible representations presented here are in agreement

with those of §3.5 where the label correspondence is 2, = 2L - 2 and

b=2M+1.
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Table 4.1  0(3) x Sp(2) = SU(2) x SU(2) decomposition of typical
0Sp(3/2) induced representations from little group
U(1) x QSp(l/Z) for L =2 3/2, M = 0.

'Even’ ~ Dimension '0dd' Dimension
A(L,M) (2L+1)(2M+1) aL,M - 3) (2L+1) (2M)
H(L-2,M) (2L-3) (2M+1) A(L-2,M - 3) (2L-3)(2M)
p0(L-1,m) (2L-1)(2M+1) LM - B (2e-1)(am)

plL-1,m-1) (2L-1)(2M-1) H(L-1M + ) (2L-1) (2M+2)
Total 2(2L-1) (4M+1) Total | 2(2L-1) (4M+1)

Table 4.2 0Sp(3/2) component field variations under Q$

2

I S Py R P
SA = -x wY L™ [M]x wY + L [M]x.aY 2[M]an

-1 1.25

5¢; = (ﬂ+s)ay[M](M+1) (L-1)""x°H
-12 -1

+ (ﬂ+e)aY (L+2M) (L7 T (2L-1)"Tx%A" + 2.7 TxA" - 24}

-2 50
A GV R (B DRI ST

-1.2

8y = (17, L(M+1) "1 (L=1)"1%2H

-'(n‘e)aY(L-ZM-1)(L-l)[M]"'{L“(ZL-])'] 2pn _ a7 TxAY - 2R}

" (L-2M-1)L'][M]'3'{(L-])']xzﬁlo 2xP0 - xzp';i 4 2(L-1)xp;i

Ho= (Me1)[MI(L-1)"] {xzﬁ; - 2Lk )

'12u

- (L+2M) (M) [M](2L-1)" T {(L 1) - 2(2L-3)(L-1)""

-1 (x

+ 2(2L-3)¢Y}

- (L-2M-1)(M+1)(2L-1) zw; - 2(2L-3)x¢;{+ F 2(L-1)(2L-3)L" Y

— 1 -1rm1-1,250 25-1 - : 1.2, _
ga, =L '[M] 'x Pl ™ X Plo (m e)aYLM] {L” 'x°A' = 2xA}
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O 2% an ol
g M O] LT, - 2Ma8 OB "+ 2L
+ (L2 ! {(L-])' w - 2xu])
+ W DM (Le2m) (LM L7 (2L 1)‘] Zan - T3y * )
s sPsle 5P+l P
= (M MaBGY 2 € va % 2€ 0% )
x (=[MI(L-1)" ]xzh ¢ At -n! C - )
- 1.2 1,
+(L-2M-1) LU (2L N7 -2 ey ¢ 2ap})
(L-2m-1)[M172 ((L-1)""(aL-1)"! K0 - 2(2L-3)(L-1)'](2L-1)']x51°Ya

+ 2(2L-3)~O J

- ez -1t w8 P -1 _ oaL- 3)xP. O 2(2L-3)(L-1)P;;}
+(n7e) g MI(L-1)"T(M+1)" =h x%H' - (L-2)xH}

Table 4.3 0(3) x Sp(2) = SU(2) x SU(2) decompositions of 0Sp(3/2)

induced representations from 1ittle group U(1) x 0Sp(1/2)

for atypical representations and 'special' cases (see text).

(L = 2M+1, M = 1) invariant space

P~1(2M,M-1) (aM+1) (2M-1) V(MM ) (4M+1) (2M)

Ho (2M-1,M) - (4M-1)(2M+1) N (2M-],M-—%— (4M-1) (2M)
Total 16M2-2 Total 16M°

(L = 2M+1, M 2 %) factor space

A(2MH, M) (2M+1) (4M+3) a(2M+1, M-%J (4M+3) (2M)
p0(2M,M) (2M+1) (4M+1) v (2m, M-+%o_ (4M+1) (2M+2)
Total 16(M+—‘)2 Total 16(M-+%92-2



81.

(L =1, M= 0)invariant space

A(T,M) (am+1) VY&M+%) T(2M+2)
~p7No,m-1) 1(24-1) S aT(M-g) 3(2m)

Total - 8M+2 Total 8M+2

(L 21, M =0) invariant space

A(L,0) 2L+] (SR 2(2L-1)
H(L-2,0) 2L-3
Total 4L-2 | aL-2

4.5 0Sp(4/2):

The generators of the 0Sp(4/2) superalgebra can be written in
the following way. Let 0 <y, v < 3 refer to the 0(4) indices and

1 <a, B< refer to the Sp(2) indices, then from (4.6) define

ce = dyoHvy
Lip = - {0 )55 Muv
1, v
Mab ?{0 )ab Muv
NOLBE MOLB
Q'b _— ' |
dao. S Mua _ _ 4.32
where o = (1,0) o, = (1, -9) 00, * 00, = 2nuv
6 =r(6T -03) G =1Go -50)
uw o 2 Yuv vl uwv o 2 YTuv V'l
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These generators satisfy the superalgebra

0340, bes} = -2, €35 Nog * €ab €op Lap t Cap Sap M

ab
[Mab’Mch = €he Mag * Fac Mbd * ehd Mac* Fad Mbe
[Mab ’QéCY] = Ebc Qf:ay Eac QébY 4.33

and similarly for LéB and Na The generators Léb can be written in a

B "
spherical basis L ,L ,L5 as in §4.2
The suba]gebré H will be taken as

H =" {L } with

3Map Nogobs Qaq
H 0° {L3’Mab’NaB} ~ U(1) x SU(2) x SU(2). Cosets are labelled by

ao

the elements exp(xL_ + 0 ) and superfields are functions

o]

Qi o
L

o(x,6_ ) carrying a charge L= -L and spins M x N under the lTittle group

aa
U(T) x SU(2) x SU(2):

o(x,8,,) = Alx) + 8% 5(y==(x) + v;F(x))

+ (00)2 £(F(x)) + (00)% 2(6%%(x)

3,aa t 3 4 |
+ (87) Z(Xaa(x) + Xaa(x)) + 0 D(x). | 4.34
where (06)30 = 3% eg (00)%B = g2 eg
3ao _ ab .o 4 _ - ,.3\a.
(67)%" = (00) e | 8" = (87) 810

and the summations are over all possible projections onto total spin
1 1
M+, N+5) fory (x)and x, (x) (M,Me1) for F_, (x) and (N,N;])
for Gas(x). The relevant projection operators are given in Appendix D.
The differential representation for the generators, writing

N 3/9d eao‘, is (see (4.4,4.5) and Appendix D)
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L. =3/, |
L, -(x? - 2ot )a/ax -(xere?) é-aa +2xL + 2(00f° W _(60)%8 ﬁaB
Ly = -x a/ax-;—eao‘ 3, L
Mab V= 6(: dpo * egaaa = Iqab
Nag = 0% 2,0+ 03 3aa"ﬁae
Qiaa = eaq /3 x + aaa
Qg = (xeaa + ezé) 3/Ax + X3, - 2(ee)gaba + (ee)gaaB +
0, Mo - 2, NE 4.3

As for the previous cases the fo]Towing field redefinitions are
introduced so that all component fields will transform as eigenvectors

under the even subalgebra 0(4) x Sp(2):

0 _ 0 o g
Fab = Fab Mab AT/4L
0 _ .0 o .

GaB = GaB + NaB A'/2L

™= X™ 4 (2™ "+ 3) Y6 - )

ler R
1

~ab 0' qaB .0’
D-M Fab/lZ(L-1) - N GaB/G(L-1)

[3L+2M(M+1) - 8N(N+1) -3]A“/24(L-;—)(L—1) 4.36
with mn = + and 2M° + 1 = £(2MH1).

Expanding the component fields as power series in x yields a
finite-dimensional factor space in which their degrees (highest power of x

in the finite factor) are:
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=0

A2L; o™ (2e-1); A F9,6" and ¢°

9(2[-'2) s

™ (2L-3); D,(2L-4).

“From (4.35), taking into account the definitions (4.36), the
0(4) x Sp(2) = SU(2)vx SU(2) x SU(2) decompositions obtained for arbitrary
induced representations.with the chosen little group (corresponding to
superfields of arbitrary half-integer change L and spins M and N) are
given in Table 4.4. This class of irreducible representations is in
general typical (with even and odd dimensions the sahe), and total
dimension 16(2L-1)(2M+1)(2N+1), with L = 5 and M,N = 0. In the basis
(4.36) it is found that superfields which cannot be decomposed arise for
certain (L,M,N) values, corresponding to atypical representations.
This is demonstrated for the component field variations under Qéaa in
Table 4.5. It is apparent from this table that when a particular
atypicality condition is imposed only a certain linear combination of

G0 and ng appears in the invariant subspace. This indicates that, in

aB

general, for atypical representations, of the two fields with weights
(L-1,M,N) one belongs to the invariant subspace and the other to the
faétor space.. The general atypicality conditions are L = Mm - 2Nn,
m,n = +,- . These are in agreement with the results of Kac [ 8] and
of §3.6 for D(2,1; o = 1) where the label correspondence is a, = 2M,

ag = 2(L-1), b = 2(N+1). The condition L = M~ - 2N* is however never
realized in this approach.. It corresponds to the condition a; =0 of
§3.6 for which only the trivial représentation (a2 = a5 = b= 6)‘occurs.
The complete 0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decompositions for the
remaining atypicality conditions are presented in Table 4.6. As a
specific example it can be noted that the adjoint

17 = (3x1x1 + 1x3x1 + 1x1x3)/(2x2x2) is derived from the invariant set

(A6 /(v for (L =1, M=N=0).
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The atypical representations found here and listed in Table 4.6 are

identical to those found for D(2,1; a=1) in §3.6 and listed in Table 3.3.

Table 4.4 0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decomposition of

typical 0Sp(4/2) irreducible induced representations

from 1ittle group U(1) x SU(2) x SU(2) for L = g, N > 0.

'Even’' Dimension '0dd" Dimension

AD(L-TELLMN) 2(2L-1)(2m1)(201) oL -1- -+%3Ni:%) 2(2L) (2M+2) (2N+1)

EO(L-1,M,N)  (2L-1)(2M+1)(2N+1) '(L-—M-é,Ni%—) 2(2L) (2M) (2N+1)
FE(L-1,M21,N) | 2(2L-1) (2M+1) (2N+1) >~<+t(L-g,M+ Lnedy  2(20-2) (2m+2) (2N41)
o(L-1,M,N) (2L-1)(2M+1) (2N+1) X (L —f,M-%—,Ni%) 2(2L-2) (2M) (2N+1)
GE(L-1,M,N21)  2(2L-1)(2M+1)(2N+1)

Total v 8(2L-1)(2M+1)(2N+1)  Total 8(2L-1) (2M+1) (2N+1)

Table 4.5 0Sp(4/2) component field variations under Qécy'

Gwmn = 2x(nne) AL 2x(nma) "

ao. ay  ac ac 'ay
i,.m n ! ~8ex0 1 ~de~0
-s(me). (me) |———xN"G. + xMF
2 ac o L(N"1) Se (M) | de
AN
- ——-—-——Z(L‘MT‘“‘N L {oma - xA‘}]

m m de 3 _~mn ( -L+M™e2N"+2) 'mn'
SFab ) Pab edc_?'xxe 2L-1 {wey ey J
n _ n 8¢ - 3 _~mn (L+Mm+2Nn+1) mn
GGaB - z PaB eéy_f 7 XXee = T 201 ﬁb }




=0 _ 1 ~ oml 3 ~mm MM+1 (-L+Mm+2Nn+2) mn  'mn
SFab ‘an WY Mab™ ( T ey ¥ T T Wyl )
0 1 & n[3.cmn 2(N"+1) . (L+M™+28"+1), . mn 'mn ]
SGyg fmin AN(N+1) NaBN [2 XXey * {- L ¥ 2L-1 }{ch’ch }J
mn _ 4, n (L+M™+2N"+1) om 'm
SXag = - 3(“ E)ay 2L-1 {Fac’Fac}

4, m (-L+Mm+2Nn+2) n n
=3y T Gyl
1 ,.m n I, 1 (L+M™2N"+1), ~de 20 ='0
-5z (me) (me) | - } MRS LF L)
3 ‘ac ay|  L-1 (M™+1) (2L-1) de’ de
2 (-L+M™aN"+2) , 28 S0 'O 2
(N"+1)(2L-1)
& = J l_(L+Mn—2Nn—1) {(2m-3) ;mn - x ;'mn}
non 4 L-1 cy cy
Where nmab and nnaB are spin M = %-and N = %—projectors respectively
and Pmade and PnaBYS are spin M + 1 and spin N £ 1 projectors

respectively. Also if B is any of FO,GO, F™ or G"

then {8,8'} = (2M-2)B - xB'

mn

Coemn o tmny mn _
and {waa’ Yao b= (ZM'I) Yaa = XVaq

86.
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Table 4.6 - 0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decompositions of atypical 0Sp(4/2) irreducible,

induced representations from little group U(1) x SU(2) x SU(2) for L 2 3/2, M,N = 0.

Atybicality Cdndition Irreducible Representations ) Dimensions
‘Even' A, F7, G, P 2016M2N + aM2 - 32Mn% - N - 8N + 1)
Factor
Snace
[roda® o', w7t v, w0 a(amdn + M2 - amn® - 2 - 2n?)
L=M-2N
‘tven' 6, F, 0, & 2016M2N + 122 - 32MN% - 2aMN - 24N% - 24N - 5)
Invariant
Space
oddt ottt R |8am®n + M - e - My - 6N - 6N - 1)
'Even' A, G', F7, F0 2016M2N + 12M2 + 32MNZ + 56MN + 24M + 8NC + 16N + 7)
Factor
Space
dd' w™, w1 (8GN + 3 + N+ 1aMN + 6M + 2N + AN + 2)
L=M+2N+2
' ‘Even' D, F', 6", & 2016M2N + 4MZ + 32MNC + 4OMN + 8M + 24N° + 24N +5)
Invariant
Space
dd' e, &L %, 10 18(aMEN + M2+ amn? + 10MY + 2M + 6N 4 6N + 1)
'Even' A, G', F*, 2(-16M2N - 12M% + 32MN2 + 2aMN + 24N% + 24N + 5)
Factor
Space
ddt ot w1 [8-am@n - a2+ awn? + 6N + 6NZ + 6N + 1)
L=-M+2N+1 -
‘Even' £, G, D, G 2(-16M2N - 4% + 32mn% + aMN + BN - 1)
Invariant .
Space
odd' vy %L w0t 7 |s(-amdn - M+ eunZ + 2N+ 2NP)

The above dimensions are, in general, only applicable for L 2 2,

M, N=21.

See text for the discussion regarding EO and G0 .
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5, REPRESENTATIONS OF ORTHOSYMPLECTIC SUPERALGEBRAS:
~ YOUNG SUPERTABLEAUX

5.1 INTRODUCTION

Young tableau and Schur function techniques provide a useful -
and elegant description of many properties related to irreducible
representations of semi-simple Lie algebras. The extension of
these techniques to Lie superalgebras was first made by Dondi and
Jarvis [1,8] and Bars and Balantekin [6,7]. Dondi and Jarvis [1]
presented the following branching rules for purely covariant or
purely contravariant representations of U(m/n) and Su(m/n)

u(m/n) + u(m) ® u(n) (v Y ey @ (E)
‘ £

u(mo/um) v ulm/w) @ ulv/n) O3 + Y 81 © ()
a

U(mutnv)mosnu) ¥ u(m/n) © U(w/v) (A} ¢ Xs {xoo} @ {c} 5.1
. gear

where £ is summed over all possible partitions and the operation (o)
is that of the inner Kroneckér product of representations of the
symmetric group Sr, r béing the rank of {A}. The above branching
rules, with the inclusion of a U(1) label, also apply for
su(m/n) + su(m) x su(n) x U(1). They have also given rules for
Kronecker products, and dimensions of some representations, for
u(m/n) and sy(m/n).

Bars and Balantekin [6,7] have used Young tableau techniques
generalized to supergroups to derive character and dimension formulae
for representations of sy{m/n) and 0Sp(m/2n) which may be derived

from direct products of (covariant and contravariant) fundamental
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representations. In particular they have noted that the characters
for the orthosymp]eétic and superunitary groups formally look the
same as the characters for the orthogonal and unitary groups
respectively, except for the replacement of supertraces by traées
~and superdeterminants by determinants. These works have also

drawn attention to the result that for Sy{m/n) and 0Sp(m/n) the
fundamental representation acts in a graded (m+n) dimensional space
V= V6 + VT » where VS is of degree zero ahd’VT is of degree one.
There are two possible gradings of V and consequently, by taking
tensor products, two classes of représentations. These are
designated, class I for which dim V6 = m and dim VT = n and class II
for which dim V5 = n and dim V; =m.  For 0Sp(m/n) King [2] has
referred to these classes by 0Sp(m/n) and SbO(m/n) respectively.
Later work [10] saw the derivation of a generating function to obtain
the eigenvalues of all Casimir operators of SU(m/n), while the
branching wles SU.(m/n) + Su(m) ®su(n) x U(1),

SU (m+v/u+n) + SU(m/p) x SU(v/n) x (1), and

Su.(mu+nv/mutnu) ¥ Su(m/n) ® Su.(u/v) have been extended to contravariant,
covariant and mixed supertableaux [9,11], though the mixed |
supertableaux may be reducible but indecomposable, i.e. atypical.

| Bars, Morel and Ruegg [11] have established the relation between

Young supertableaux and'the Kac-Dynkin diagrams for SU(m/n). The
connection is made by realising that the highest weight of the.
representation corresponds to that state in the decomposition

SU(m/n) ¥ Su(m) ®Su(n) ®U(1) for which the U(1) charge is maximum

if m < n or minimum if m > n.  They have thus established that purely

covariant or purely contravariant tableaux correspond to irreducible



91.

representations while mixed supertableaux may also correspond to

- indecomposable representations. An investigation of the mixed

supertableaux of sy(n/1) has been carried out by Delduc and -
Gourdin [16] for typical and atypical representations.. They have
established the cases for which the supertableau corresponds to dn
irreducible representation of su(n/1). These are typical or
atypical covariant, contravariant or mixed supertableaux for which
c,*C, < n or typical covariant, contravariant and mixed superfab]eux

171
for which c]+E] > n, where c.+c. is the sum of covariant and

171
contravariant boxes of the first columns. A mixed atypical
supertableaux, for which c]+E] >n, is only a part of an indecomposable
representation of SU{n/1) and the indecomposable representation is
a sum of four atypical components.

Wybourne [17] has used the theory of symmetric functions to
provide concise expressions for characters, dimensions and branching
rules for representations of y(m/n).

Some recent work of Morel, Sciarrino and Sdrba [13] has
considered the development of Young supertableaux for the study of
representations of 0Sp(M/N). They develop branching rules for the
decomposition of a supertableaux, corresponding to an irreducible
representation of OSp(m/N), into the irreduciﬁ]e representations of
0(M) x Sp(N) which compose it. For this purpose extensive use is
made of generalized Young tableaux. These are diagrammatic
techniques which have been developed by Girardi, Sciarrino‘and Sorba
for the study of Kronecker products of representations of S0(2m)
[14] and Sp(2n) [15]. In the interests of space it will not be

possible to develop these here, however the reader is encouraged to
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examine these works for the authors have been successful in obtaining
a closed form of the branching rules for all typical, tensor and
spinor representations of OSp(M/N). They have also given rules for
obtaining the decomposition of atypical representations, however

this requires a knowledge of all ifreducib]e, atypical representations
of lower dimension which satisfy the same atypicality condition as

the representation under investigation. If these should exist

Within the decomposition obtained by applying the rules used for
typical diagrams then they are simply deleted to yield an irreducible,
atypical representation.

King [2] has deve]dped Kronecker product rules and branching
rules, for tensor representations of 0Sp(M/N), in terms of standard
Schur function operations. He has also given dimension formulae
for these representations in terms of partftion labels. The
Kronecker product of two representations [Aj and [p] of OSp(M/N) is

given by

[Z] x [l = § [(Me) - (w/o)]
o

Branching rules for tensor representations [2] are given in (5.2)
and (5.3) while branching rules for spinor representations follow
from the character formulae [12] (5.16) and (5.17) for 0Sp(2m/2n)

and (5.20) and (5.17) for 0Sp(2m+1/2n). The dimension formulae

~ are presented in §5.5.
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5.2 ATYPICALITY CONDITIONS AND RELATIONS BETWEEN KAC-DYNKIN

AND SUPERTABLEAU LABELS

This section examines finite-dimensional, tensor representatiohs
of 0Sp(M/N) via standard Young diagkams. fhese can be realised by |
graded symmetrised, supertraceless tensors [1] and can be decomposed
in terms of irreducible representations of 0(M) x Sp(N), with

branching rule [2],

A] 5 Me] <Frgs 1Y Me <Erps | 5.2
g £ B
or 3 E0] M= ) [£/8] </e> 5.3

where £ runs over all divisors of A, Bvcorresponds to partitions
with even column lengths and § to partitions with even row 1engthsi
In order to present necessary and sufficient COnditions on the
diagram shape for the represenfation tb be atypical, each of the
algebras B(m,n), C(n) énd D(m,n) are examined to establish the
correspondence between the Kac-Dynkin labels which label the highest
weight of.an 0Sp(M/N) representation (as discussed in chs. 2 & 3)
and the diagram labels.
In this section we consider only 'standard' supertableaux in
the following sense: for B{(m,n) and D(m,n) the diagrams are such

h

that if c, is the length of the it cotumn then c,<m for i > n.

e =9

For C(n) = 0Sp(2/2n-2) we require c. <1 for i >n-1. Of course all
diagrams must be regular in the sense that for all column lengths €y

and row lengths " Sk 2 S and " 2 Tkl
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The conditions for atypicality are given in table 5.1.  These

conditions are general for 0Sp(M/N) when diagram labels are used.

Table 5.1 Atypicality conditions for 0Sp(M/N)

. 1 . .
(1) Ui+‘}\j+§N‘1+J‘]

(1) wtgNed+1 =2 +M+i
where ]_<_1‘_<_-;:—N; 1<j_<_[—2-M]
([%-M] is the largest integer less than or equal to'%-M.)

The diagram labelling is as given in (5.4).

For C(n) = 0Sp(2/2n-2) the correlation between the above diagram
labelling and that of §5.2c is k, = A

1 1

k] < n-1 then ui=] for k]+1 <1i<n-1.

+n-1, and v, = u.-1. If
. i i

It has been noted by King [12] that these atypicality
conditions may be interpreted as conditions on the ([%-M] x-% N) box
positions in the upper-left corner of the tableaux. The above

conditions may be written as

(i) hij =0
ii! h.. =h.
(13%)  hy; =y |
: AR |
where hij = (“i - j) + (Aj +5 N - i) +1

and hj = 2(“1 -i+1)-(M-N).
Thus (i') can be interpreted as the condition for the 'hook length'
of the (i,j) position to be zero while (ii') can be interpreted as
the condition necessary for a modification of the tableau in O(M-N)
to yield a regular tableau when starting the hook removal in the ith
column. In view of the close connection between the orthosymplectic
and orthogonal characters, as discussed‘earlier, and particularly

the equivalence between the super-character of 0Sp(M/N) and the
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O(M-N) character this seems an interestihg observation though its

implications remain to be explored.

5.2.a B(m,n), m>0

Consider the supertableau

{ =
| A
|
! A3
| T
~ i
[A] = ! Apo
: :
i
i
o
o Hpo
I
H3
H2 |
Uy 5.4
th column in the ith row ,

where li is the number of boxes beyond the n
with i <m and U is the number of boxes in the'jth column, with j < n.
This diagram will be designated as [A],Az,...,xm; u],uz,...,un]. A
general diagram in the decomposition (5.2), after the appropriate

modification, will have the form
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5.5
The relationships, for (5.5), between the40(2M+1) x Sp(2n) Dynkin
labels and the diagram labels are given by [3]:
a]=1-l]'112s32=]-12‘vu3,--- ,an_]=un_]'un > b =Hn >
ar']+'l = >\] - }\2 'Y an+2 = }\2 }\3 ’ £y ar.]+m_-l = Am_] - )\m s an+m = ZA[;]
5.6
where a{, aé s eee s aﬁ_] and b' refer to the Sp(2n) labels and
aﬁ+], aa+2 s eee s aﬁ+m refer to the 0(2m+1) labels.

To determine which diagram in (5.2) corresponds to the highest
weight vector, A, with weight components A(hi) = a5, A(k) = b, of a
B(m,n) representation we first consider the aétion of the odd negative
generators on A. The weights of these are presented in tables 5.2
and 5.3.  The action of all the odd negative generators can be
obtained by considering each of those in table 5.2 by themselves and
in conjunction with each of the even supplementary operators in
table 5.3. "Examination of these reveals that A can be uniquely
determined by application of the following sequence of selection
criteria: (i) select those states of maximum b', (ii) within this

subset select those states of maximum aﬁ-]’ (iii) from these select



97.

those states of maximum aﬁ-Z’ etc., until we finally select the
state of maximum ai. This state will be A. Expressed in diagram
notation these criteria are: (i) select those diagrams of maximum
pé, (ii) of these select those diagrams of maximum u;_], etc., until
we finally select the diagram with maximum ui. .The diagram which

corresponds to A is obtained by taking B = {0} and

112 |
Hy o : 5.7

''= u. in
i

(5.5). Therefore the Kac-Dynkin labels a, and b in terms of the

This diagram will be given by taking A% = Ai and

supertableau labels Ai and pj are:
a'l =U'| - Uz ’ a2 ='U2 = U3 9 cee an_] = Un_] - Lln ’
d = un + A-l ’ an+-l = A-l - Az 'Y an+2 = Az = A3 9 e e 9

am-1 = Ml T Am 0 Znem T P o BTy ' 5.8

Using (5.8) we can now rewrite the conditions for atypicality [4] in
diagram notation. These results are given in table 5.1. The proof
that the above choice (5.7) for £, uniquely determines A, is presented

in Appendix F.
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Note that for the B(O,n) algebra, as defined in ch 2., there

is a direct correspondence with the above by setting A1-= Ov i.

There are no atypical representations for B(0,n) [4].

5.2.b  D(m,n)

Consider again-the supertableau (5.4) for which (5.2) and
(5.5) are still applicable. The relationships for (5.5) between

the 0(2m) x Sp(2n) Dynkin labels and the diagram labels are given

by [3]:

A T MM 5 3 Ty T M3 s e s An g Ty Tl s D T
I T M TR 0 T2t A3 s e s Bun T A T A
+i - 1 ' +1 - 1 1
Tm-1 = el T Am o Pnam T Apa tAn o
Iem-1 = Amel T A Znim T Apy T Ap 5.9
where ai s aé s eees aé_] and b' refer to the Sp(2n) labels and
' ' * ty
N N T TN S refer to the 0(2m) labels. If
] . . i| t| .
Am # 0, both signs arise for R and aim This corresponds to

the fact that the 0(2m) representation is self-associated and reduces
to a sum of two inequiva]ent irreducible representatiohs of SO(2m)
under this restriction, so that under 0(2m) + SO(2m) we have
[A] + [A]+ +[A] . D\]+ and [A]_ are conjugate to one another
under an involutary outer-automorphism of SO(2m) involving a matrix
of determinant -1.
To determine which diagram in (5.2) corresponds to A, we
again consider the action of the odd negative generators on A. These

weights are presented in tables 5.2 and 5.4. The action of all the



99,

odd negative generators can be obtained by consfdering each of those
in table 5.2 by themselves and in conjunction with each of the even
subp]ementary operators in table 5.4. Examination of these reveals
that A can be uniquely determined by application of the same
'sequence of selection criteria as for B(m,n). | Cbnsequently the
diagrém which corresponds to A is again obtained by taking B = {0}
and £ as in (5.7). If Am 2 0 the sign ambiguity corresponds to

the decomposition of the graded tensor [x] into a sum of two

conjugate representations of D(m,n) with distinct Kac-Dynkin labels:

QT T e B Ty Ty s e s By Ty T W

R T T TS Bl B R A I

a:+m-1 R A a:+m = A1 T A s

= A A A=A - A L b= | 5.10

This decomposition is the super-analogue of the D(m) tensor reduction
described above and is related to the outer-automorphism of D(m,n)

+ +
generated by Cem ™ G-
from table 5.4 that this corresponds to the usual automorphism of

for the simple roots. It is clear

D(m) on eachvirreducible representation of 0(2m) x Sp(2n).

| Using (5.10), the conditions for atypicality [4] are
presented in diagram notation in table 5.1. Note that the
conditions are independent of the sign choibe for Am 2 0. The proof
that the choice (5.7) for £ uniquely determines A is given in

Appendix F.
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5.2.¢ C(n)

Consider the supertableau

[ K]

| (

|

' Yn-1

- [
[A] v,

|

V.

J

V2
2 5.1
where K is the number of boxes in the first row and Vj+] is the
number of boxes in the jth column, with j < n-1. In the decomposition
(5.3) a general diagram will take the following form after
modification,
Vi

The relationships, for (5.12), between the 0(2) x Sp(2n-2) Dynkin
labels and the diagram labels are given by [3]:

b' = S aé =V -tV s a3 =V - vé s e s
31 Vn-2 " Vn-1 0 3 T Vpq | 5.13
where b' is the 0(2) Yabel and a5 5 -ev s aa are the Sp(2n-2) labels.

Since the branching rule for 0(2) + U(1) = S0(2) is
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[b'] + {b'} + {b'} [5], then an 0(2) tensor [A] with Dynkin label
b will decompose into a direct sum [A]+ + [A]_ with Dynkin labels

bt

= +b' and b'~ = -b' respectively.

To determine whiéh diagram in (5.3) corresponds to A, the
action of the odd, negative Qenerators on A is again considered.
These results are presented in table 5.5. Examination of these
reveals that the 0(2) x Sp(2n-2) highest weight state of maximum b'
must be A. The diagram‘(5.12) which corresponds to A must,
therefore, have Ki =K This state is unique and is obtained by
taking € = {K]} and 6§ = {0}. For this situation (5.12) becomes
[K]] < vi, Vp s eee s Vg > To show that this is indeed the
only diagram in (5.3) contaihing [Kl] we need only show thaf if &
’cbntains more than one row, then [5/D] contains only diagrams [Ki] '
with K{ < Kp- This is achieved by consideratiqn of the chain ‘
0(2) 4r U(2) ¥+ 0(2) which diagrammatically can be expressed as
[§/D) +r {&} + [&/D] [5]. In U(2) we need consider only {&}.

If it has more than two rows it will be zero and if it has two rows,
i.e. if {&} = {E], 52}, then it will have the same 0(2) content as
{51 - &}.  Thus when we Consider the branching {g} + [&/D] there
will be no diagram consisting of just [K]] if £, = 0.

If Ky > n-1 the graded tensor [A] decomposes in a sum of two

conjugate representations of C(n) with distinct Kac-Dynkin labels:

+

b = + +

- b~ = 2n - Ky =258 Tkt a; =2n -« - 2 + vy

\)]-\)2 ’a3=\)2-\)3, * e ,an_]=\)n_2-\)n_] ,an‘:\)n_‘] -

i

5.14
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Using these we present the atypicality conditions in table 5.1.
Note that the conditions are independent of which of these two

conjugate representatiohs they are written for.



TABLE 5.2 Weight components for some odd negative generators of

B(m,n) and D(m,n).

n-- n-1- n-2- n-3- 3- 2- 1-
By Bn Bn Bn U By B 8n
‘hl 0 +1 -1
h2 +] -1 0
h3 "] 0
0
hn-4 +]
hn-3 +] -1
n-2 +1 -1 0
+] -1 0 0
n-1 _ :
hn 0+ +1 +1 - 4] 1+
(h,)  (-2) (0) (0) (0) (0) (o) (0)
hn+1 +1 +1. +] +1 +] +1 +]
hn+2
n+m
k -1 0 0 0 0 0 0

The terms in brackets indicate the appropriate values for

consideration of B(O,n).

103.



104.

TABLE 5.3 Weight compohents for even negative 'supplementary’
generators of B(m,n).

& & & & & S S S Sm2 3 %2 §
hy
hy
hn-] _
h, S IS D S B 1A A -1 -1l -2
hn+] 2 -1 -1 | -1 -1 -1 -1 -1 -1 -1 0 -2
hn+2 +1 -1 0 0 0 0 0 0 0 +1 -1 0
hn+3 +1 -1 | 0 -1 0
hn+5 *
hn+m-3 *1
-~ *l -]
hn+m—1' -1 0+ -1 0'
hn+m +2 0 -2 0 0
k 0 0 0 0 0 0 0 0 0 0 0 0
where e, = [...[[an+] ,an+2], an+3], cen an+i]

& = [...[[em,an+m], an+m-1]’ - an+i]

and <m.



TABLE 5.4 Weight components for even negative ‘'supplementary’
generators for D(m,n).
fr fo f3 fp foo T o T fa2 f3 f2

h]-

hy

hn-]

hn -1 -1 -1 -1 -] -1 -1 -1 -1 -1 -1 »—2
hn+]' -2 -1 -1 -1 -] -1 -1 -1 -1 -1 0 -2
hn+2 +41 -1 0 0 O 0 0 O 0 +1 -1 0
hn+3 +1 -1 0 -1 0
hosg -1 0

n+5 *l

hsn 3 0o 0 0 0 #

hn+m-2 -1 0 0 +1 -1

I .1 41 -1 0

hn+m +] +1 -1 - 0

k 0 0 0 0 0 0 0 O 0 0 0 O
where f]. = [...[[ocn_l_] 2040 an+3], an+1']

fn = [fm-Z’an+m]

£ = [ [,

i

m”nHn-

and 1 < i 5_m-1.

112 Gum-pds -

n+i
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Weight components for all negative-generators of C(n).

TABLE 5.5

By B B3 By B 1 By Boy Ba2 B3 B
hi 0 -1 -1 - -1 -1 -1 -1 -1 =2
h, a1 -1 0 0 0 0 0 0 41 -
3 0 +1 -] 0 0 0 0 0 -1 0
hy 0 +1 -1 0 0 0 0 0 0
hg 0+ 0 0 0 0 0
h s 0 +1
hn-2 0 0 +1 -1
h -1 +1] -1 0
n-1 o
hy +1 -1 0 0
k . S S -1 -1 -1 -1 -1 -1

The above tables show the weight components a(hi) and a(k) where

o are the roots associated with the indicated root vectors.
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5.3 BRANCHING RULES

5.3.a SPINOR REPRESENTATIONS

In this section branching rules are obtained which decompose
finite-dimensional, irreducible, spinor representations of 0Sp{M/N)
" in terms of irreducible répresentations of O(M) x Sp(N). . The

spinor representations of OSp(M/N) are characterised by 2 m being

+
an odd positive integer for 0Sp(2m+1/2n) m > 0, and by 0 4n1 being

an odd positive integer with CI L) even positive integer (or

+m
vice-versa) for Osp(Zm/Zn) m > 0. They can be represented in terms
of Young supertableau by defining a standard, spinor supertableau,
[A; A], where (A) refers to the partition defined in (5.4) and

[A; A] is the partition of (5.4) with an additional m 'spinorial’
boxes in the (n+1)th column. This spinor supertableau is labelled
analogously with (5.4) by Hyse--sh 35 in (5.4) and by
}\15=>\]+]—,...,AS
The relations between the Kac-Dynkin labels (ai,b) and the_spinor
supertableau labels are taken to be (5.8) and (5.10) for

0Sp(2m+1/2n) and 0Sp(2m/2n) respectively with Ai replaced by
x? =‘Ai + %-. Two notable features are, there are no spinor
representations for b = Boo<m and there are no atypical spinor
representations.

In the following sz/zn[K], sz[n] and x,  <e> refer
respectively to the 0Sp(2m/2n), 0(2m) and Sp(2n) characters of a
partition (k). Similar notation is used for 0Sp(2m+1/2n) and

0(2m#1). If (A) is taken as defined in (5.4) then (X) and (n)

are partitions of the form

107.

= Am + = where the Ai are the labels of (5.4).
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)\.I My -m
A >\2 . uz'm
Y I P e
-1 L
}\m T
5.15

Osp(2m/2n) m > O:

The branching rules expressed here for spinor representations
of 0Sp(2m/2n) are based on two results obtained by King [12].

Firstly, a consequence of Kac's character formulae [4] is that

Xomsanls A1 = Xgpn 8]+ xpplas A1 - x5 <w> 5.16
Secondly,
Xgmn[8] = Xpp/on[n"/A1 . 5.17
Consequently,
. = m i S N
sz/zn[A, Al X2m/2n[n /A] sz[A, Al Xon <u> 5.18

The following sequence of Schur function operations can now be

performed.

(85 Npmyon = ["/ALygyzn (05 Aoy <l

) [n"/AE Ly <E/B>p, [85 A1y <i>p,

]
~

Y (n"/Get) (R/0) 1y <(E/Bn)(W/n)>,,  5.19
» TN
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0Sp(2m+1/2n) m > 0:

For this case King [12] has obtained the fo]]owing result
. = m . : AT T A
X2m+1/2n (a5 2] X2m/2n [n"/A] X2m+1 (a5 A] X2n+1[”] 5.20

This can be expressed in a more edifying form through the following

sequence of Schur function operations:

m . ~ . ~
(85 Mamarjan = [0 /Rlomsan 185 Moy [hlpni

} n"/Ae),, <e/B>, a5 Al [/Mly

3
= g [nm/AL£]2m+] <€/B>, [83 31y <ﬁ/MBC>2n.

} [o/E by <E/B3p, (03 Ry <i/@p,  5.21

m e ~
[0 /E)pme1 /20 [85 Appyq <W/Q>pp 5.22
This gives the result

C 47 = m,cq . e n
Xem+1/2n (83 M = Xone1 o0 [M/ED - iy [85 Al g, /0> 8.23

From (5.21) the following expressions can now be obtained

z [nm/E£]2m+1 [A; 3‘]2m+l <g/B>2n <ﬁ/Q>2n

(85 Mopaq/2n L

n
~1

[a3 (n"/CET) (/1) 1y 1 <(E/Bn)(H/QN)>,, 5.24
£,T,N

The branching rules (5.19) and (5.24) are valid for all
spinor representations of 0Sp(2m/2n) and 0Sp(2m+1/2n), respectively.
Unfortunately these expressions are very complex involving negative
terms through the Schur function series G and C. It would be hoped

that future work could provide more compact forms for these branching

rules.
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| 5.3.b ATYPICAL REPRESENTATIONS

From an explicit knowledge of the atypical representations
for 0Sp(2/2), 0Sp(3.2) and 0Sp(4/2) as derived in chapters 3 and 4
it has been possible to determine branching rules for these cases-
which decompose irreducible, atypical representations of
0Sp(M/2) M = 2,3,4 in terms of irreducible representations of
O(M).x Sp(2). These results as disclosed ih (5.25), (5.26) and
~ (5.27) highlight the phenomenon that.the indecomposable, atypical
représentations contain an irreducible, atypical representation as
a factor and an irreducible, atypical representation of the same
atypicality type, but of lower dimension, in an invariant subpsace.
This is just the phenomenon which is apparent in tables 3.1, 3.2
and 3.3 and has been exploited by Morel, Sciarrino and Sorba [13]
in their branching rules for atypical diagrams and has been noted
by De]dﬁc and Gourdin [16] in their work on indecomposable
representations of SU(n/1) as discussed in §5.1. Thierry-Mieg [17]
has in fact proved this result quite generally for the basic classical
Lie algebras and used it to aid in compiling tables of irreducible
representations for a number of these algebras. The irreducible
representations obtained in this thesis for 0Sp(2/2}, 0Sp(3/2) and

~ 0Sp(4/2) agree with Thierry-Mieg's work.

0Sp(2/2):

| Standard Young supertableaux for tensor representations of
0Sp(2/2) are characterised by

A (number of boxes in the first row -1) and

1
H

(number of boxes in the first column). From table 5.1, atypical

representations are characterised by A] = Y- If the supertableau
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corresponding to the irreducible character of the atypical
Vrepresentation with A1 = v and Wy = v is denoted by the supertableau
with the subscript (I) then for v >1 (if v = 1 the final term on
the R.H.S. of (5.25) disappears)

. ; (_1)v-] .

A -~

(1)

| v {_— v r_——_—____Wv-ll

v-1

5.25

Using (5.2) or (5.3) the right hand side of (5.25) may be decomposed
into irreducible representations of 0(2) x Sp(2) to give the complete

branching.

0Sp(3/2):

As described in §5.2.a supertableéux-are labelled by A]’and
M (see 5.4) and from table 5.1 atypical representations are
characterised by Hy = A]+1. Again denoting the supertableau
corresponding to the irreducible character of the atypical
representation with A] = v and by = v+l by thé supertableau with
the subscript (I) then for v > 1 (for v = 1 (5.26) has no singlet on
the R.H.S.) | |

P v L v [v-1

v+l v+l \Y
| | 5.26
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The right hand side of (5.26) can now be decomposed into irreducible
representations of 0(3) x Sp(2) through the use of (5.2) or (5.3)

‘to obtain the complete branching.

0Sp(4/2):
As described in 85.2.b supertableaux are ]aBe]]ed by A], AZ
and My (see 5.4). The atypical representations of interest here
are characterised by (see table 5.1) (1) uy = A]¥2 and (2) My = A2+1.»
Again the irreducible supertableau of an atypical representation is

denoted by the subscript (I). Consider the following expression

1IN N N
L A N ¥ j A :
- - () .

(1) L - (1)
M M s

5.27

This expression is valid when interpreted in the following way.
(1) My S At 20

(a) If Ay > A, then set My = V2, A=V, A, =K

1
R R YR

—
o
~—
L]
-+
>

n

A then set by = v+2, A] =V, Ay T K=Y
ui = v, Ai = v-1, Aé = v-1,

.(2) W f Ay * 1

Let Hy = vil, AZ = v, A] = K, ui = v, Aé = v-1, A] = K.

For each of these cases the final term on the R.H.S. of (5.27) is
to be dropped for v=1. Using (5.2) or (5.3) the R.H.S. of (5.27) can

now be decomposed into irreducible representations of 0(4) x Sp(2).
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5.4 MODIFICATION RULES FOR YOUNG SUPERTABLEAUX

In this section consideration will be given to the treatment
of non-standard supertableaux. In particular the modification rules
will be presented through which non-standard supertableaux may be
expressed in terms of standard supertableaux. In this section we
maintain the same relations between the Kac-Dynkin labels and the
vdiagram labels as givén in 85.2 and call those diagrams typical
which do not satisfy either of the conditions of table 5.1 and
those diagrams atypical which satisfy either of these conditions.
Typical and atypical diagrams modify in significantly different ways.
In 85.4.a general modification rules are presented for all typical,
tensor supertableaux of 0Sp(M/N). In §5.4.b the modification rules
for atypical supertableaux are discussed and explicit results given
for 0Sp(2/2), 0Sp(3/2) and 0Sp(4/2). The results presented here
have been obtained by explicitly decomposing numerous supertableaux
using (5.2) or (5.3), with the aid of the group theory computer package
SCHUR.  General proofs for these results remain the work of future
investigations, but for the typical case a proof would presumably
follow directly from the results expressed in (5.35) and (5.36).
| ~As described earlier, standard tableaux for OSp(M/N) lie
within the envelope shown in (5.4) and (5.11). Non-standard
tableaux will include boxes outside this envelope. These 'extra’
boxes we label by row lengths, rj, or column lengths, c; as shown

below.
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r |
|
- L T
: r 1 ! !
- ‘ | i |
i "2 i |
S rs o '! :' 5.28
| ' ¢, Sy
5.4.a TYPICAL SUPERTABLEAUX "
0Sp(2m+1/2n) :
(1) If r > c the modification rule is
> Dy = (D70 Deh] L oho=2rgel 5.29

where h is the hook'boundary Tength to be removed from [A] starting
from the end box in " and working to the left and down with r being

the row in which the removal ends.

(2) If GG >n the modification rule is

D3> [y = (DS [-hl L b= 2] 5.30

where h is again the hook boundary length to be removed from [A]
starting from the end box in 1 and working to the right and up with
c being the column in which the removal ends.

If any modification results in an irregular diagram this diagram is

set to zero.
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0Sp(2m/2n) :

(1) If ry>cg the modification rule is

r

(> Dy = (1) -kl L b= 2rg-2 | 5.31

and proceed as for 0Sp(2m+1/2n) case (1).

>r the modification rule is

1

(2) -Ifc ]

0l - My = S DR ¥ I 2, 5.32

and proceed as for 0Sp(2m+1/2n) case (2).

These results have a natural interpretation in terms of the
character formulae of King [12]. For a typical, tensor representation
with corresponding standard Young supertableau [)\], as defined by

(5.4), he has noted that for

— m . ' T - 0
0Sp(2m+1/2n) : X2m+]/2n[A] - X2m+1/2n[n /E] X2m+][x] X2n+1[UJ
5.33

m ¢ 4
-and for OSP(Zm/zn) : X2m/2n[A] = X2m/2n[n /A] . sz[l] . in <H>
5.34

where (i) and (ﬁ) are defined in (5.15).

If [A'], as defined in (5.28), is a non-standard, typical
supertableau then the modification rules (5.29)-(5.32) tell us, in
the light of (5.33) and (5.34), that

' — m el ~y
D Jomayon = W /Epiyon DV dome Bt Jona 5.35

and

[A']Zm/Zn - [nm/A]Zm/Zn [X']Zm <‘I"\'>2n 5.36
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where, if r > c]

(Al) = (A]’ AZ, e Am-'l’ Am)

P

=>

—
|

- U]-m) uzfma LICIC ] un-ma C], CZ, DI ) ci)

and if c] Z_r] :

(A ) = (A]a AZ’ ce ey Ams r], r2; ceoy rj)

(') = (uy=my wp-m, ..y -m).

- Thus the modification of a supertableau is essentially a modification

of (') in 0(2m+1) or 0(2m) or of (1') in 0(2n+1) or Sp(2n).
5.4.b  ATYPICAL SUPERTABLEAUX

For a supertableaux to be atypical one or more of the conditions
of table 5.1 must be fulfilled. An analysis of these conditions
reveals that for regular, non-standard supertableaux, none of the
conditions (i) of this table can be fulfilled. However, for regular,
non-standard supertableaux in OSp(M/N) the maximum number of the
conditions (ii), of table 5.1, which may be simultaneously realized
is the lesser of (N/Z) and [M/2]. In the cases examined below it
is possible to realize only one atypicality condition for a given
regular, non-standard supertableaux.

In the notation of (5.4) non-standard, atypical diagrams for
0Sp(2/2) are characterised by A == v Non-standard, atypical

1
Non-standard, atypical diagrams for 0Sp(4/2) are characterised by

diagrams for 0Sp(3.2) are characterised by A] = u,-1 = v,

either (i) N o= u1°2 = v or (ii) Ay = u]-l = v. In the above v is
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any positive integer. For each of these cases the appropriate

modification rule is

[ = Dyt (DY D+ )V g 5.37

where.[A]M is diagram obtaiﬁed from [A] by application of the rules
given in §5.4.a and [A]A and [A]B are obtained as follows. If [A]

is an atypical diagram by virtue of ft satisfying one of the conditions
(fi) of tab]e 5.1 which relates say My and Aj then [A]A is obtained
from [A] by removal of a boundary which starts from the final box of
row j and ends in the final box of column i. [A]B is obtained by
removal of a similar boundary from [A]M remembering to carry any sign
factors_[A]M possesses onto [A]B. The branching rules developed in
§5.3 can now be used to yield irreducible representations for any of
these algebras. As a demonstration of the working of (5.37) an

example is given, for 0Sp(4/2), in table 5.6.
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~ TABLE 5.6 Modification in 0Sp(4/2) of the supertableau
[A] = [A=3, Xy=3, uy=4, ry=2] and its decomposition into
irreducible representations of 0(4) x Sp(2). This

tableau satisfies the atypicality condition uy = A2+1 and

v = 3.
|
Modification : - + (-1)3 Ly ()2 « (1117
[A] [AIy RN ' (Ag

o(4) x Sp(2) decomposition:

[A] + - [44] <2> - [43] <3> - [43] <I> - [42] <2>
- [42] <0> - [33] <4> - [33] <2> - [33] <0>
- [41] <1> - [32] <3> - [32] <1> - [32] <I>
- [4] <0> - [31] <2> - t31] <0> - [22] <2>
- [22] <0> - [3] <1> - [21] <1> - [2] <0>
[y, v - (48] <2> - [43] <3> - [43] <1> - [42] <2>
- [33] <4> - [33] <2> - [33] <0> - [32] <3>
- [32] <1> + [4] <0> - [22] <2> + [3] <1> + [2] <0>
[\,  + [42] <0> + [41] <1> + [32] <1> + [4] 0> + [31] 2>

+ [31] <0> + [22] <0> + [3] <1> + [21] <1> + [2] <0>

[A]B v - [4] <0> - [3] <1> - [2] <O>
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5.5  DIMENSION FORMULAE

The dimensions, in supertab]eaux notation, of_a]] irreducible,
typical representations for U{M/N) and 0Sp(M/N) have been given by
King [2,12]. For completeness these resu]fs for OSb(M/N) are
reproduced here in the present notation. If (1) is a standard,

typical partition as given by (5.4) then for

0Sp(2m/2n) D(2m,2n) A1 = 22mn ngfi] * Dy, <> 5.38
: ) _ »2mn B ~ '
D(om,2n) [85 A1 = 2777 Dy [A3 X] - Dy <> 5.39

2 " ~
for 0Sp(2m+1/2n) : D(2m+]/2n) [A] = 2¢™ 02m+][x] . 02n+1[p] 5.40

. - 2mn e T BN
D(2m1/zn) 83 A1 = 270 Dy pq[as A1 7 Dy [0] 5.41

where D(M/N)[ 1s DM[ ] and DN< > refer to the dimension of the relevant
represéntation in OSp(M/N), O(M) and Sp(N) respectively and (&) and

(ﬁ) are defined in (5.]5). | |

The above is always sensible for <ﬁ> since, as pointed out by King [2]
and can easily be derived from (i) of table 5.1, if Wy <m then [A]

is atypical. E1 Samra and King [19] have given compacf dimension

formulae for the classical Lie groups which for a partition, {x),

with row lengths K3 and column lengths ;i are for O(M) and Sp(N)

respectively
. . K K .
Dyl = T (Mhit.-i-§) T (M-ge, =i, +i+3-2) /H(K) 5.42
(i<3) ! (i>3) v
K K - o~
Oy = .0 (N+"<1.+'<.-1'-j+2) I (N-l<'1.-n<j+i+j)/H(|<') 5.43

(i<j) J (i>3)
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where the products are taken over all pairs (i,3) specifying positions
of boxes of the Young diagrams with i specifying the column number

and j the row number. The denominators, H(x), in (5.42 & 5.43)

refer to Robinson's hook length formula [20] which is a product of

hook lengths given by -

K ~ N
H(x) = T (Ki . - di-3+1). ' 5.44
(i,3) J :

For spinor representations of 0(M) the dimension is obtained from

Dyl8; 1 = o I2] Dy < - 5.45

-1
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6. NEW SUPERFIELDS FOR N-EXTENDED SUPERSYMMETRY
WITH CENTRAL CHARGES

6.1 INTRODUCTION

In this chaptér new methods are deve]Opedvfor the study of
N-extended supersymmetry in superspace. Although the ultimate goals
of the superfield programme, as applied to the study of super space-
time algebras, are the construction of realistic interacting models with
a view to their quantum behaviour, the work here remains at the
Tinearized level. Specifically, new representations are introduced
which generalize, to the case of N-extended supersymmetry with
unrestricted central charges, the notion of chiral superfie]ds;
a step which génera] arguments from the usual superfield framework
would indicate as problematical. To the extent that a pluralistic
attack is needed on unresolved questions of maximally extended N=4
super Yang-Mills and N =8 supergravity mode]sb[1,2], the present
work and extensions of it may find application alongside other
approaches. Thus, although rapid progress has been made recently
in component formalisms at the classical level [e.g. 3], comprehensive
results with the quantized models will require full ]qca]vand,covariant
techniques. The complexities 6f the latter have engendered such
modifications as N-supersymmetry in an N=1-'component superfield’
basis [4,5,6,7,8] and light-cone formalisms [9,10,11,12] which
necessitate sacrifices such és auxiliary field content, manifest
Lorentz invariance or locality. There are indications based on
counting arguments that beyond N=2 the full N-superspace is intrinsically
inadequate to represent physical multiplets [13,14] unless particular
'spin-reducing' representations are used [4,5,15,16]. These emerge

naturally in the present work.
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The conventional method of nonlinear realisations on coset
‘spaces, as applied to N-extended supersymmetry, considers functions
(superfie]ds), ¢, on the coset spaces ((Z x 0(3,1) x G) A T4/4Ny0(3,1) x G,
“where 0(3,1) is the Lorentz group, G is an internal symmetry group
(a subgroup of Sp(2N)), T4/4N is the nilpotent algebra of translations
énd Z denotes the abe]ian»centraT charges [17,18,19]. As discussed
in Chapter 4, induced representétions of the algebra are afforded

by these superfields, Qé;}q)(x”,éa1,ea1,.

. -ai _ai
spinor parameters (6° ,68° ')

..), which are functions of

transforming as (%30) x {1} + (0,%) x {1}

under 0(3,1) x G, plus the usual Minkowski space coordinates, x",
and some additional bosonic central‘charge coordinates. The superfié]ds
take their values in a representation space of the 1itt]é group,
0(3,1) x G, labelled by (p,q) x {r}. The representations of the
 N-extended superalgebra, realised by these superfields, are highly
reducible and it is a nontrivial exercise to extract the irreducible
content of a given superfield. |

These superfields and the physical multiplets contained within
them have been analyzed extensively [20-29]. The superfield is a
function of 4N Grassmann coordinates, and consequently when expanded
in these coordinates, contains 24N component fields. A satisfactory
analysis of the representation content of these fields, requires the
use of the maximal automorphism symmetry of the algebra, this being
Sp(2N) in the absence of central charges or a subgroup of Sp(2N) if
central charges are present. The irreducib]e‘represehtations are
obtained by realising that the superfields are in fact irreducible
under an enlarged algebra containing covariant derivatives which

anticommute with the supertranslations. These can then be used to

provide labelling operators, including Casimir invariants, from which
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projectors can be constructed to provide differential constraints on
the superfields. These suitably constrained superfields provide
irreducible representations of the original superalgebra

A useful set of projectors corresponds to the 'chiral' case

where a superfield is constrained to have vanishing covariant derivative

and consequently can be solved in terms of a function on1y of

" + 80”0 and say e2', thereby having only o 2N components. However,

X
since central charges arise from the anticommutation of covariant
derivatives, care must be exercised, lest on-shell conditions

(e.g. P2

=0 = |Z|2) be applied already as constraints [30,31].

The approach expounded here diffefs in two fundamental respects
to the conventional procedure. First, the central charges are
realised as multiplicative, complex parameters rather than extra
coordinates. Second, the superfields are functions of Grassmann
parameters of only a particular chirality but take their values in a
~graded representation space of a superalgebra. Thus superfields
are functions on the coset space ((Z x 0(3,1) x G) A T4/4N)/

((Z x 0(3,1) x G) A TO/ZN)’ where TO/ZN is the superalgebra of
supertranslations of a particular chirality. These superfields are
functions of only 2N Grassmann coordinates but possess ‘external’
representations of (Z x 0(3,1) x G) A T0/2N' As will be seen in the
next section, these include ZZE%N] irreducible representations of

2N+2[%N ]

the Lorentz group giving a total of 2 component fields.

It has been observed [4,5,15,16] that for P2 + |Z|2 = 0

where [Z|2 = IzijZijl

generators effecting a drastic reduction in the number of component

, a constraint is imposed on the supertranslation

fields contained in an irreducible representation. In fact, in the

presence of the maximal number of central charges, all of which fulfil

the above condition, the number of component fields reduces from 22N to

N

2.
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In the present treatment P2 + |Z|2 =-0 is an atypicality condition
'(seé chapters 2, 3 and 4) under which otherwise irreducible superfields
become indecomposable;on each factor space tﬁe constraint is
implemented modulo coset elements.

It is via these so-called 'spin-reducing' cases (which will
become p? - ]ZI2 = 0 on shell) that one hopes to avoid the 'component
explosion', and give a full off shell forma]i;m for N =2 3 supersymﬁetry
(for results of a different implementation of this approach see [32]).
As far as the present work is concerned we observe that bi]ineér
invariants may always be written down (at least in component form)
which in fact serve as definitions of the contragredient]y—trahsforming
superfield; presumably a corresponding projector formalism ﬁou]d be
found [26,27,29,33]. However in practice such brojections are
implemented via gauge freedoms and other constraints, so there is little
to be gained in the absence of these and without interacticns. .In this
connection the possibility of a geometrical framework for the present

superfield realizations also raises interesting questions.

6.2 CONSTRUCTION OF INDUCED REPRESENTATIONS
The SO(N)-extended super-Poincareé a]gebra,‘g consists of the
generators (P“,Jpv) of the Poincaré algebra, spinorial generators

_ . _ 1 |
(Qai’Qai) , ?-N(N-l) SO(N) generators Tij = 'Tji and at most » N(N-1)

complex central charges Zij = -Z.. where i,j = 1,...,N. These generators

ij
satisfy the following superalgebra

[J ,Pp] = 1(nvau - nuva)

uv
; =3 - + -

[JUV,JQUJ ! (n]JOJUO nUpJVU nlJUJVO nVGJUp)
A _ y

(Qqi-0557 = -2835(07) 4P,
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(Qu3-Qg35} = 26,6755

Q150057 = 25345

(9,004 = f1(°uv aBQs1

[Juv’aai] = (o v) 8681

[0 T3id = (850470,

[Q,;-T3k] = (505",

M5 Tked = Cigokmn 6.1

L . s . mn _
where (tjk)i is an hermitian representation of Tjk and Cij,kgvare the

structure constants of SO(N). A1l other (anti-)commutators are zero.
The technique of constructing induced fepresentations of § is

analogous to the procedure used in chapter 4 to which the readervis

referred for.a more formal discussion of the inducing construction.

This technique was first applied to supefsymmetry by Salam and Strathdee

[34]. In the present work superspace is taken as the coset space,

G/H, where G is the SO(N)-extended super-Poincaré group whose

corresponding superalgebra is G and H is a subgroup of G with

ai’Tij’Zij}‘ This coset space

can be parametrized as exp i(x“Pu + E&iﬁ&i) with coordinates (x

corresponding superalgebra H = {JpV,Q :
u’é(ﬂ)’
where x“(é&i) is a c-(a-) number parameter. Representations of § are
afforded by superfields ¢A(x”,é&i) which are functions on G/H taking
their vaJues in a representation space V, of X

The group action on G/H is infinitesimally

)

. . . u "‘&1 ".
exp i (sS) « exp i (X Pu +o Qi

= exp iL(x" + sP06EP + (881 + 567 (x,8)0,]

- exp i £(sk(x,8)K) . . 6.2
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ai(x,é)

where S ¢ § and K ¢ X. The precise form.of f¥(x,8), g
and k(x,8) can be obtained via the BCH formula. From (6.2) the

differential representation of the generators will be

0

S > —ifi(x,8)a/ax" - ig%(x,8)8/88% - £ k(x,8)K 6.3

where K0 is the matrix of the infinitesimal generator K in the
representation carried by V. The action on superfields is given

simply by
sop(x,5%7) = So, (x*,5%). 6.4

Obtaining irreducible representations of % in the above manner
presumes the irreducible representations of X are kﬁown. Since X
is also a superalgebra an analogous procedure to the above is
followed. Firstly, it is noted that with respect to the positive,
negative and zero roots of SO(N) the generators Tij and Qai may be
:’ T;’ Tg} and Qa'l - {Q:n’Q;n’Qg}
respectively, where n = ],...,[%-N],,a = 1,...,[%-N][%(N-1) and

written in bases Tij = {T

Qg only exists for N odd, for which [Ti,To]c'Ti, [T+,T-] c TO,

Q*,Q7y < z, [T%,08] < QF and all other (anti-) commutators involving
these generators are zero. To implement the 5nducing construction on Y s
a subgroup, H', of H is chosen with corresponding superalgebra

W = {Jpv’T;’Tg’Q:n’Qg’zij}‘ It is possible to decompose

R as = xﬂo +)e;, where )€; = {T;,Qa:,QS} is an ideal. Representations
of )('0 are then extended to ) by taking them to be zero on X:'+.
Representations of ) are afforded by superfie]ds‘gB(ya,eanA )
whichAdre functions on the coset space H/H' and taking their values in
a representation space of M'. This coset space is parametrized as
exp i(yaT; + e“nq;n) with coordinates (y2,6®"). In the manner described

above, the generators of X can be realized as differential operators
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on the coset space and the action on the superfields examined to
determine the finite-dimensional, irreducible representations of X
by the method expounded in chapter 4.

1
Since an expansion of WB(ya,ean ) in ean'yie1ds 22[§N]

cohponent fields and an expansion of @A(x”,éai) in é&i yields 22N
component fields, each of which carries a representation of X ,
there are a total of 4N+E%N] component fields. . There may however
be fewer than this if the representation of ) carried by vg is
reducibTe.

The problem of determining irreducible representations of §
must now be addressed. In the conventional procedure, discussed
in §6.1, the algebra 5, is extended to include covariant derivatives
-which, together with the generators of §-, provide a basis in
superspace for the enveloping algebra and under which the superfields
are still invariant. Since the superfields provide a representation
space for the extended algebra they are expected to be reducible
under g,. A similar situation exists in the present case.

The differential form of the spinorial generators is

3 - s =& . =B ., 50 :

Q&i = - 3/36" + 1 6 easzij 6.5
_ - n 0

.Qon' - 460"(0 )a& Pu - Qai 6.6

where Z?j and Qgi are matrix representations of the corresponding
generator. Remembering that Zij fs totally antisymmetric, (6.5)
and (6.6) tell us that a basis for the enveloping algebra in
superspace is provided by extending the superalgebra to include a
new set of generators, §éi = a/aéai. It is noted however that the

complete set of differential operators, 3/36&1, is not required for

this basis if N is odd. This becomes apparent if one regards the
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second term on the right of (6.5) as a set of N linear equations in

the variables 8Y with coefficients 70 Since 70 is a totally

iJ° 1]
antisymmetric N x N matrix it will have zero determinant, for odd N,

and consequently the equat{ons will be 1inear]y‘dependent. ~Thus,

for N odd, at least one of the generators, §&i’ can be regarded as

being constructed from linear combinations of the other generators.

This extended algebra is denoted by g. . The generators

Sae are, however, significantly different to the covariant derivatives

~of the conventional procedure in that they do not anticommute with
Qs
representations of § from irreducible representations of & .

and Qai and thus cannot be used to generate irreducible

Rather than adopting the treatment based upon the construction of
Casimir invariants and associated projection operators [20,21,22,23,
26,27,29] the procedure here is based upon recognition of highest
(and lowest) weight components, and explicit construction of the
invariant subspaces therefrom. First, it is noted that 5&1 and 6&1
may be cast in bases 5&1 = {ggn’gén’gg} and Q&i = {6gn’6én’63} with
similar properties to Qin and Qoa. From the discussion of the previous
paragraph we note that it is possible to regard §g as a linear
combination of the other generators of §— and thus it is not an
independent generator. Consequently in the following work it will
not be counted in the explicit construction of states.

Irreducible representations of § (and hence superfields) are
obtained by an inducing construction from irreducible representations
: of§} . The irreducible representations of § may also be obtained
from an inducing construction by choosing a subalgebra X , of §, where
e - {S;n’ogn’ Q:n’Qg’ T+ ;

a’Tn’Zij’
jrreducible representations of the little algebra )60 = {Tg’duv’zij}

Juv} and states, A, which are
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0. This last
et St A+ A0 Lt
{Sdn,an ’Qan ’Qa’Ta}

is an ideal of X . A basis for an irreducible representation of & ,

: s <t = N4 = + = O = +
and wh1ch_sat1sfy S&nA = Q&nA = QanA QGA TaA

requirement is justified from the fact that X ¥

of states which are representations of X , is obtained by acting with

monomials of dgn’ 59

5 and Qp, on A A similar basis, for irreducible

representations of §, , is obtained by acting with monomials of
- =0 - <- . . 2[4N]
Q&n’ Q&, Qan and S&n on A. Thus, a superfield will possess 2

irreducible multiplets of § each of which contains 22N irreducible

N[N ] component fields as

multiplets of i 0’ giving a tota} of 4
required by the superfield analysis. Unlike the conventional case,
where the irreducible multiplets of G are invariant under the 
;ovariant derivatives, the §&e will mix these representations.

The 'spin-reducing' cases can be obtained by introducing
further field redefinitions for which the constraint, pZ 4 |Z|2 =0,
is an atypicality condition under which otherwise irreducible multiplets
become indecomposable. This programme is carried out in detai] in

§6.3 for S0(2)-extended supersymmetry.
6.3 N=2 EXTENDED SUPERSYMMETRY WITH CENTRAL CHARGE

6.3a Algebra

The SO(2) graded extension of the Poincaré algebra,§ , is
obtained by taking, in addition to the generators of the Poincaré
algebra, Pu and Juv, the generator for S0(2) transformations, T, and
the Majorana spinor charges Qaa and 6&a’ where 1 < a, a <2 anda = +,~
In its most general form the algebra may also include a central charge, Z.

In the Weyl representation these generators satisfy the following

graded Lie algebra
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n Vo u up Vv

03,0906 = 10,0900 = Mugdus * Mgdup ™ Mgy

Q0450 - 40" 5P,

{Qaa’QBb} =4 €aB €abZ

Wy Qg = 41 55 a4

(90 %a? = 'i(Upv)aBQBa

[Juv’aéa} = i pv)&éééa

[1,0,,1 ==,

[T.Qp,] =0, 6.7
where e_, = = —e;_ = +]1 and all other (anti-) commutators are zero.

The metric is taken as Ny T (-, +,+,+) .
Following the procedure discussed in §6.2 the subalgebra, X,

is taken to be X = {Juv’T’Z’Qaa} with little group *;0 =% .

The cosets ﬁ'/)é are labelled by the elements exp i(x“Pu + §da6- )

taking their

aa
and the superfields are defined as functions, @A(x”,éda),
values in a representation Space of )EO.

Since X still defines a superalgebra the first task is to
determine the irreducible representations of X . To do this the
above procedure is repeated with the subalgebra )k-' of X taken as

AN {Juv,T,Z,Qa+} and little group )&6 = {Juv,T,Z}. The cosets
K/ X' are labelled by the elements exp i(ea'Qa_) and the superfields
are defined as functions y(6®”) taking their values in a representation

space of X_b . In §6.3b the irreducible representations of Y are

determined and subsequently used to deduce the irreducible representations

of 3, in §6.3c.
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6.3b Irreducible Representations of Jas
The generators of )k can be realized as differential operators
in the coset space X/ X' and as matrix representatives in the

representation space of ‘}66. Explicitly they take the form:

Qa_ = -id__
_ pnB- 0
Qa+ = 49 EBaZ
T =%y 10
. a-
z = -7Y
= igY” ) - 0 *
JaB i (eYdaB' EYBaa ) - J ab
o _ 0 * , .
Jag = sk | 6.8
o a- 0.0 .0 0 . .
where aa_ =3/%6 and T ,Z2°,J of and J 88 are matrix representations
0

of the 'little superalgebra'. T~ and ZO may be represented simply

0 0

as charges T0 =-Tand Z° = -Z while J oh and Joa may be represented

8
in terms of spin p x %-and spin q x %-projectors; HEB and HEB’

respectively (see Appendix D) as

0 _ + 4oL - .

J - 2p(m e)as 2(P+1)(n s)&s 6.9
0 _ + - '

e = Alme) o - 20g¥1)(n7e) g 6.10

where the spin p and q indices have been suppressed.

* Jpv has been expressed in bispinor form in the following way

_ /- Gx- BB _ - Go- BB )
Juv g(ou o, o, 9, )Ja&BB

_1/- Go- BB . Ga- BB . .
= g(ou g, =798, 9, )(eaBJ&B + E&BJaB)

:..:.l- ? -=-l Yo
”whgrg JaB 5 Ja;s and J&6~ > JY& 3
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Expanding the superfield y(e”") in 6°" gives
1 2

w(ea-) = V + ea‘(zz + 2;) + = 8 w 6.]1
where all components possess spin p under J&éand charge: 7.
under Z. V and W possess spin q under J&éand charges T and 7-2 -
respectively under T ,while ZZ and z; possess spin q + %—and q —_%

respectively under Ja and charge T-1 under T.

B
A11 component fields are eigenfunctions of the even generators

~and have the following variations under the odd generators

. L,
Q- 6, V=-i1 -11 8,.Ig = i(n E)Baw

aa_w =0 6.12

+ +
Qs aa+v =0 8 4Ig = -4(n s)BaZV
+ -
s W : -4y - 41z 6.13
at o o

From this explicit component form of the variations it is clear
that y(6%") is irreducible for non-zero central charge. Having found
the irreducible representations of ) the principal task of determining

the irreducible representations of § can now be broached.

6.3c - Irreducible Representations of &
The generators of g, can be realized as differential operators in &
the coset space g / ¥ and as matrix representatives in the representation

space of >&0. Their explicit form is

P = -i%
u u
3 = iln X -n X2 ) + 1 8545 )%, - o
yv vp u up \Y uv’'g oo Hv
= . - 3+ -0
Q&i - -13&t t 26 E&é Z



- ~0F , u _ 0
Qs = 48 (0) g 3, = Qg
7=-72°
_ o+ .. za- 09, _ -0
T=6 95+ el e T | 6.14
. . 9,.z0Q _ 3 M 0 0 -0 0
where aaa /36, au /3x" and J e Z°, T" and Q aa 2Te the

matrix representations of the 'little superalgebra' which determines

the external transformation rules of the superfield. Suitable

forms for Z0 and T0 are
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Ga 0
+BC
It
0=z aa 6.15
0 B¢
od
d
L Sy
- C -
_Taa 0
+BC
-(T-Tn
0 _ _(T.1\n—BC '
T = 0 (T ])Haa 6.16
d
L -(T'Z) (Sb J

The algebra satisfied by § requires matrices Qoaa which satisfy

0 0 oas 0
{Q aa’ Q Bb} = 4 €48 € ab YA

These are found to be of the form
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0 0 0 0
. + Cc
QL= Tee 0 0 O 6.17
v+ = YR . c .
(Me)yya O 0 0
_ +B8cC -Bc
i 0 Ty nyb 0 |
~ | +RC RcC
0 Lo T 0 1
+
0 O 0 (me) .d
QOY = +yu | | _oa 6.18
- 0 0 0 (I E)ayad
.0 o0 0 0 1

~where u = vz and y = (1+i)v2 has been chosen simply to render the
most symmetrical form for QOYi.‘ The only essential requirement for
these coefficients is that their product is 4iz.

The superfields @A(xu, é&a) form a representation of X -

labelled by {(p,q), T, Z} as described in §6.2:

./V (xua éaa)\

a \
R
. + H  zody !
o, (xH, 8% = aal* e. ) 6.19
- U =0d, -
Zaa(x , 8)

n zoa
\Wa(x , O )

The general form of the superfield when expanded in 5% is (spin-q
indices will be suppressed in the following work; B-monomials are

defined in Appendix G together with some useful identities):
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/ m L x
/’/A ‘{J&a Fk \
. l a+ . PH.'H' ¢)+
QA(XU’ 6aa) - i ? + éaa 5 ;?a + (B é)ab 5 ?k
! .
B aa m Paaa k q)OLk/
m
\a Via fi.,
/ o m
/ GaB a D
o+ m+ +
. Yafa . waaa Ga
= =\aB - =3, 04 m- =4 -
+ (6 8) i Yo + (67) Hena +(6) S,
g’c m ‘rlJ d/
\ gOLB maa .’,
6.20

where m = +,- refer to spin P+! and P-} projections, & = 0,+,- refer

to spin P, P+l and P-1 projections, a = +,- refer to T+1 and T-1

projections and k = 0,+,- refer to T,T+2,T-2 projections. All

component fields are functions of x*.

To determine the irreducibility or indecomposability of

¢A(xu, éaa) it is necessary to introduce appropriate field

redefinitions for the component fields and examine their variations

under the odd generators. To aid in this we recall that the algebra

realized by 6.14 may be extended to include the generators

§&a = a&a yielding the extended algebra §f. As we have noted, since

* To be precise this term should read, considering for example the

top component only,

(6

DI
S
[«
o
-
[« 1}
o
I
—~
[en]]
Dt
N
-n
+
+
<+
C
<
(e}
e
}
I

Thus we define F, = F __, F_ = F__ and Fo = Fuo *Fy
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the general superfield @A(x“,é &a) is still a representation of G

it is expected to be reducible under ¢ . To find'thé irreducible

representations of'g contained in & we proceed as follows.

Given an irreducible representation of 4 with highest weight vecfor
A= {(p,q), T, Z >, such that

Qu+h % Q&+A =S+ A=0 ,

a basis for § may be obtained from the four vectors A,_H+&B§é_A,

H'&é§é;A, (§&_)2A by acting with moTomia1s of Q&_ and Q,_. This
suggests that a superfield @A(x“, §9%), which carries a representation
({p,q), T, Z) of ¥, contains four irreducible representations of &.
This is indeed found to be the case, with A = |(p,q), T+2, L >
" and consequently, H+&é§é_A = |(p+1,q), T+, Z >,
'n“&ésé_A = |(p-%,q9), T+1, Z>and (§&_)2A = |(p,q), T, Z >. Each
of these multiplets contains sixteen fields with weights as shown in
table 6.1. | |

To obtain the basis which renders the irreducible multiplets
of §vevidenf we proceed as follows.  From the superfield it is
apparent that the highest weighf vector, A, is F., since
S

F+ =68z F, =28 F, = 0. The variations of, Fo» under QY'

.+ . -
QY+_ QY+ Sy+
and Q- are:
'Y..
s F, = - yulel, +ol) +2(M) F (o v va vi) 6.21
Y-+ vt Tyt Y B oot Tup oot )
=3 (ot - -2 .+ - )
8y Fp =g 1 (e, +08) - 1% (v, + %) 6.22

From (6.21) and (6.22) we project spin qti and spin p*i states
respectively, and define new fields proportional to these states.

Thus, explicitly, we have
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ty = -y 3t
Y s Fs - oyub, 6.23
LY 5. F o=
Mgy 6 F, = g, 6.24
~+ + S + -
where ¢° .= 67, - (2/yu)(o M) (3 s, + 0 ¥R

: ~t 3. % -2 .t
and Q o - 7 1 Q o+ M ¥y s

+ (see end of Table 6.2 for notation).

We now consider the variation of each of these ~ fields under
Qy_ and QQ- and define new ~ fields by projecting Lorentz.eigehstates
from the field variations as in (6.23) and (6.24). This procedure
'is simply repeated until a basis for the sixteen states of this
multiplet has been generated. This basis is given in Table 6.2a.

.For the multiplet characterized by (5&_)2A fhe judicious
choice is to consider a lowest weight vector A = |(p,q), T-4, Z >
such that Qa_ﬁ = Q&_R = 5&_K = 0 and obtain the remaining states of
the mu]tip]et'by acting with monimials of Qa+ and Q&+ on A. From
the superfield we find that f; is the field corresponding to A,
since 6Qa_f_ = Gaa;f' = dgd-f_ = 0. By analogy with the F+ multiplet
we now determine the variations of f_ under Qa+ and Q&+ and define
new fields as proportional to the Lorentz eigenstates projected from
these variations. Again by repeated application of this procedure
we obtain a basis for the sixteen states of this multiplet. This
basis is given in Table 6.2b.

For the remaining two multiplets characterized by Ht&e§é_A >
we see from the superfield that the highest weight states will bé

3 . 3 + . - 3 3
some linear combination of Qi& and w"&+ which is linearly independent

+

~t C . . . - . - .
to Q S For simplicity we choose W‘&f =y o for which



140.

~+ ~+ +
5 = Y. =8z Yo =2i(lTe)esF,. Thus as will
QY+ Q§+ o+ S§+ o+ ( €)ax +

be seen presently, @i&+,vare highest weight vectors, modulo coset

L
\P&+—0and6

elements, F Again by analogy with the F_ multiplet, the bases

4
for the Wi&+ multiplets are obtained by acting with mon mials of
Qa+ and Q&+ on @i&+ and defining new fields as proportional to the
Lorentz eigenstates projected from these variations. These bases
are given in Tables 6.2c and 6.2d.

This procedure effectively provides a basis transformation
of the superfield cdmponents into irreducible multiplets of § .
Such basis transformations may also be effected by constructing
Casimirs of S—which label different multiplets of’gaand finding
functions of é&a which form é complete set of eigenfunctions of
this Casimir. Expanding the superfield in terms of these functions
yields the appropriate basis directly as the component fields.
Jarvis [35] has used this technique for the study of unitary,
irreducible representations of the N=1 super Poincare algebra.
Bufton and Taylor [36] define similar basis functions for the
N-extended supersymmetry algebras. |

Given this new basis for the components of the superfield,
the irreducibility of the multiplets we have generated can now be
examined. It is found that the F_and f_ multiplets are invariant

subspaces while the W+& and W'&+ mul tiplets are invariant as factor

+

spaces. This behaviour is typified by the following examples:

" = o ~+: - iy - (M T P
SQY+ Wit yH wYa+ yu de+ 4i(o )YG 3, f,
~ . =2 ~+ . =2 ~=
8= a = - 2i we - 24 we
Q: o Ty- Hos-
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2 >+ ~+ 2i -

2i i
LI R O CE N B R I

il
"

- = i =~ ee P2 4_i H .a -t ~-':
U, % 21 ?)aY e (o )Y (au Pagt * 9y Pug)

As discussed in 86.2, it has been pointed out [4,5,15,16]

| that if the constraint

2Q., =+ CoR P 0, 6.25

ot

is imposed, the number of fields in an irreducible representation is

reduced from 24 to 22. This constraint implies that

P2 +27 =0 . 6.26

In the present approach this reduction takes place via the imposition
of only the weaker constraint (6.26) as described below.

To observe this phenomenon we note the intimate connection
between (6.25) and (6.26) and use this to introduce further field
redefinitions, for the fields in each multiplet which are obtained
from acting with Qa_,.Qa_ QB- and'Qa_ Q&_ on the highest weight
state of the multiplet or with Qs Qs Qgis Qe Q&+ on the lowest
weight state of the multiplet. These fields are constructed, up to
a proportionality, from the ~ basis of table 6.2, by projecting

Lorentz eigenstates either from

(0, *+7F () ° P, Q)8 6.27

where B is the generic title given to the fields obtained from A;s

Q,-A; and Q&_Ai with A the highest weight state of a multipiet or from



.

()" P, B

(Q, -

o+

NI p-

where B refers here to the fields obtained from 1, QG+K and Q&+R
with A the lowest weight state of a multiplet. These field
redefinitions are given in Table 6.3 and in this basis it is
observed that the fields A., Q&tAi and Q&i QéiAi (taking upper
(Tower) signs 1f’Ai is a lowest (highest) weight vector) are
invariant as abfactor space with the remaining fields of each
muitiplet decoupling when P2 + ZZ = 0. This is demonstrated for
the F_ multiplet in table 6.4, which clearly shows that when
condition (6.26) is imposed, an irreducible realisation of the

S0(2)-extended super Poincaré algebra consists of four fields with

0(3,1) x U(1) labels

{(p’qu)’ (p+%stT']), (p'%squ'1)a (paQ:T'z)} .

142.
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TABLE 6.1 Weights and defining fields of the four irreducible multiplets of g contained

in the superfield.

The fields of the A]. A3 and A4 multiplets are defined as

. . 5 ot
the highest weight vectors F_, ¥ o

and @’&_ respectively.

p’ Q7 T A] P, Q, T A2 p, Q: T A3 p’ q’ T A4
Ay 0, 0, ¥ F, 0, 0, -4 '.f_ 1, 0, +1 LAETUES PR L
_ ~+ -~ s+t "
Q(xi‘ A] 0, %s +] ¢ at 0! %’ -3 a- ‘}9 %s 0 P&a+ i‘) 'k: 0 P&a+
~ ~ ~t . N
0, -3, +] ¢ ot Oa -1, -3 ¢ o- 3, -4, 0 S+ -1, -1, 0 P&(!"’

Q&t /\1 1, 0, + §+&+ 3, 0, -3 ‘:"+&_ 1,0, 0 E+&é -1, 0,0 é;é
4,0, 4 s, -4,0,-3 @ 0,00 Fy 0,00 &%
QaiQs+ i 0’ 0, 0 f+ 01 O’ -2 F_ i" 0, -1 ¥ &+ '51 0’ -1 v .+
ﬁ&tbéil\1 0’ 0’ 0 5 0’ 01 2 5 3, 03 -1 ‘.l;+&_ '*1 os 1 .‘;’-&_
= ~44 ~ 4t ~+4 ~et
Q. 05,0 3,4, 0 Wew o b -2 Wy 1, 3, -1 SBa -1, 4, -1 aBa
~po . ~ ~—-
i, -4, 0 w&a+ 3, -4, -2 w&a_ 1: -1, -1 &éa ']’ -1, -1 &éa
~_4 ~ot ~4 ~0+
-3 4 0 waa_‘, -3, 4, -2 w&a_ o, 3, -1 ¢ a0 0, 1, -1 aBa
-3, -4, 0 w&(rl* -3, -1, -2 w&a_ 0, -3, -1 ¢ o0 0, -4, -1 &é&

~ ~+ ~+ ~44 ~_+
QaioatqéiAi 0, i, -1 a 0, %, -1 a i, 4, -2 P(.!(l- -3, 4, -2 P&u_
~- ~e ~fo ~em
0, -4, -1 & 0, -p, -1 &, 4, -h -2 PL -h b, -2 P
050004040 £ 0,1 @ 0,1 @ 1,02 gy (1,0,-2 ggs
-4, 0, -1 @3 -4, 0,-1 @5 0,0, -2 ?0 0,0, -2 goaé

- - -~ -~ ‘ . ~+ ~
QC&‘_‘QBtQ&tQéiAi 0,0, -2 d 0,0,0 A 4, 0, -3 ¥ &_ -3, 0, -3 4 &_

proportional to HQu_HO&_ acting on

The fields of the A multiplet

are defined as proportional to nQa+n0&+ acting on the lowest weight vector ?_.-
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"TABLE 6.2a Basis for the A multiplet

F, = F,
O SRl (- Fdll W APTIE S W AP
ot ot yw xla SYuo Bt B+
~+ 3 . .t -2 *
U AU W"&+
¥ _ ¢ . .8 2 2, uoa +- =+ . pi-
f,o=f, + y2u2 3°A - Vi (o") [3 Paa+ 2311Pm++aqu+ auPaa+]
B =30+ i Fy- A A
NI PR < -2 it YARPISITE S
w&a+ =721 waa+ T M Paa+ + yu (Oi) Qo au F0
-2 . .
JhT myE, Sy B t,. ..
i (9503, A - g (o)~ [3,G7ze + 36 a:]
* + =2 o+ -4 +
GOL 38+ iu ¢ 00 " o,
- giﬁi (") : [o ¥’ +3 ¢ .7+ §—-( ) a [3 ofe + 907 ]
yu tla Spioa- 0 Twoa-T o oyu o - W a-
~k L2 81 .2 ,*
“’&+'?1‘*’a+'“ q}a+-y2u2'a L
S Nl CIM ] - —:E—( ME* aa” +0a ]
w0 D3 o+ 3,0 g0l -y () B+ 3y,
4 uyka t+ 0+ 0-
- T (o") [BUYB + 9 Ysaa 3 Y+saa d Y+Baa]‘
d=3d+ii fy- it a- 3500 F
yu
- gigf_( )““ [5 PEY o Pt 5P’ +4pi7 ]
yu U oo~ U ao- U oo~ U oo
+ 3 (M® [ Wit +awf' F oW 4 W]

yu U oo- Y oo- U oo U oo~



- TABLE 6.2b  Basis for the (Sd_)z/\ multiplet
f_=f_
Foset s () g [3v s +23y + ]
Q- a-  yu o - uooa-
ot _ 3. . -2
w&_-z‘]w'_-u ‘P&_
~ 8 2. 2, oo ++ +- . ot --
- - e P . 4+ 93P +3 P.
F =F_ yzu 2 - (a") [au G- T 3P aa- 3PS cH S0
i =3 -t fy - a
TEE 3 L g 52 pi 21 (E,
'wora- 7 wococ- H Poea— yu ( t) oo ufO
4_l_£ (M) 3 a + 2 (M) B [9.g7 s +3.g . 2]
yu ' oo u yu S Tta wd o w9 o
pAI - -2 % -4 +
aa—36 -y q>a0-u oy
2 gy Syt w143 () @ [aute, + 0
yu t'a U ot oot yu o uooot u ot
~+ 3 . -2 8i 2 %
Qe =710, -u ?&_-228¢°+
yu
_ 2 (i g ot - 7oA (Ee o -
o (a")7 [au¢ w0 T30 07 W (a")7,, [aua ot O o)
_ 41 nyBa o, + 0%, 0-.
yu () [auYBaa ¥ auYBBa ¥ auYtBacx * BuYthxa].
~ -2 -4 8 .2
A=23D - iu Fo-u A+—228f+
yu
- Eiﬁi ( “)&“ P ot 4+ 5Pt +3p]
yn ° woo + o %plaet T Waat T Op aat
3/ mba + +- -+ --
¥ yu (o7) [auwaoﬁ ¥ 8uwowﬁ ¥ 8uwowt+ * auwaoﬁ]
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TABLE 6.2¢ Basis for the H+& S.

8_A multiplet

Vor TV
prE pir L4 (Gt 5
oot oot yu 7 oo p
~4
6 a8 = 8o
F = 1 _F . 2ﬁ2 A + i ﬂ&é ..
0 2p+1 0  2p+l 2(p+1) (2pP+1) of
T+ + 4 +a
R A 2 (™Y
w=ve + Vi (a") 5 [da +03a ]
oF o _ 3. ot 2 .
Ve =gi, ¢ WV,
v SN - S EPRTIND S S
o YaBa T yn (Ot)a +aB\ BUW -

~+ + 1 ke 8 ot +-
- B Ty yu (67) M+a8A [au So- * aupda-]

©
Q
w
"
«Q
Q

- B
fo—f0+21ua+‘—P—+.|rMa OLB
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TABLE 6.2d  Basis for the H'& - multiplet
Y7 Yoo
Pt oo ptt oA (oM.
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In these tables the following notation has been adopted.

u . = - B L] u +o = :toB u 3
(00)5 = o5 (M)gg o ()75 =57 (Mg,
sVl Y b e 5T 4 pes g

_MiaBA Pi af 6A * EXa GB * EAB Ga ’
where P¥ = P and P™ = - P-1, and
0 + v 0 0+
Gt&é =1 &Y G?é and Yidta and 9,58 are

similarly defined.  See Appendix D for further discussion of the

properties of the spin px%—projectors, Hi&B, and the spin qx;

. + g
pY‘OJeCtOY‘S, I nE
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TABLE 6.3 Basis required to obtain the irreducible ‘spin-reducing’
multiplets
e 1 u & ~
O = Ve~ "2 (02 [ap et 3, 05,
YuH
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TABLE 6.4 Variations of the fields of the A = F, multiplet under .

QY+ and Qi+ . These demonstrate the irreducibility, as a factor

. ~+ ~- ~ ' .
space, of the fields F , Q o Q o+ 0 D under the constraint
P2+u2u2 - 0.

6Y+ F+ = 6i+ F+ =0

0 + 2. 2-2
b b = L (n €y (P HOWO)F,
HH
6i+ o ot - 0
.- T
Syt Vgt = - 4i(c") e o F,
~E A
854 Ve = - 47 p- (m 8)&i F.,
P 1 2 2-2
6Y++= -2 (ZP )(d) ++¢ )
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21 u(l 2 2 2 -
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yuu

F o221 o ot o=
84Fs = Ji (05 (3 07+ 3, 0 )
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8.+ § = s (Hie)a (P2+u%i2) D
HH
S 2i(0)% (2, WEE, + 0 Hit,)
6,85 = - 2i iF (UFE , +WpY)
8t ;t&+ = - 41’(<§“)ic-W 3, ?+ - yu(Q§;+ + Wi%_)
B (g, 8 a0 O, i, < B i
- 357 (% (pP0fi?) 5 D
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6,4 4= 21(")® (o Tt 3w gy) tE )
In the above 6Y+ =6 and 854 = 85, o and we recall p2 - . 32’_

2 PRUNER S Ui
uw =Zandp = 7.
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7. ORTHOSYMPLECTIC SUPERGROUPS IN PHYSICAL THEORIES

7.1  EXTENDED BRS INVARIANCE

Perhaps the most useful appiication that orthosymplectic
supergroups have found (to date) in the world of physics, is to
the elegant formulation they provide of the extended BRS symmetries
[1,2,3,4] of quantised gauge theories. The BRS symmetfies [1,2]
mix the gauge and ghost fields of non-abelian gauge theories in
‘such a way as to leave the action invariant. They have powerful
implications for the gquantisation and renormalisation of these
theories, and in particular Zinn-Justin [5] and Kluberg-Stern and
Zuber [6,7] have been able to prove the renormalisability of
Yang-Mills theories based on this invariance. Subsequent investigations
[3.,4] revealed that an 'extended' BRS set can be constructed, involving
a two-parameter 'BRS group' where the roles of 'ghost' and 'antighost’
can essentially be interchanged. Following earlier work on the
unextended case [8,9], Bonora and Tonin [10] developed a superfield
formb1at10n of the extended BRS symmetry based on a six dimensiona]
superspace in which the BRS group consists of supertranslations in two
a-number superspace coordinates (8,8). An alternative formulation
of BRS supersymmetry has been proposed by Delbourgo and Jarvis [11].
This formU]ation is based upon a real form of the inhomogeneous 0Sp(4/2)
supergroup [12] consisting of the usual transformations of the Poincare
group and, in addition, symplectic transformations in (8,8) space as
well as 'supertranslations' and 'super-Lorentz' transformations.
This goes beyond the work of Bonora and Tonin [10] in the sense that
the group of supertranslations is enlarged to include transformations

mixing x* and (6,5). The supertranslations again give rise to extended
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BRS transformations amongst the superfield component fields.
The essence of this formulation by Delbourgo and Jarvis is sketched
below and its extensions discussed briefly.

As mentioned above the space-time supersymmetry imposed is a
real form [13] of the six-dimensional, inhomogeneous, orthosymplectic
supergroup 0Sp(4/2) AT4/2, which is the group of all superlinear

transformations preserving the distance [12]

(x-1)% = (%), @™ (x-v),, 7.1

between pointé in superpace, XM = (xu,ea) where v = 0,1,2,3 and

o = 1,2. Here the orthosymplectic metric is

MN Voo
R

0 eaB

where n"¥ is the usual diagonal Lorentz metric and saB is the 2 x 2

antisymmetric matrix with 312 = +].

This space-time supergroup admits, in addition to the usual

Poincaré transformations, supertrans]atidns

(Xp’ed) - (xu’ea + ea) 7.2
symplectic rotations on 6>

B8

(x,0,) > (x >t58,) - 7.3

and super-Lorentz transformations,
B )
+ - .

(xu,ea) + (xu Aues’ ® Aaxv) : 7.4

The conventions here are those of [11] in which 0, = e; and (e],ez) = (9,0)

(see [11] for further discussion of hermiticity questions).
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In constructing local gauge theories over superspace, a

gauge potential superfield is introduced
@M(x,e) = AM(x) + (higher-order terms in o) 7.5

where Au(x) is a c-number field, Aa(x) is an a-number field and AM(x)
- transforms as the fundamental, six-dimensional, vector representation
of 0Sp(4/2) and takes its values in the compact'Lie a]gebra.of the
gauge group, ¢y = ¢;Ta , where the 72 are the generators of the Lie
algebra.
B The gauge field strength, ¢MN(x,e), is a superfield transforming

in the 17-dimensional graded-antisymmetrical tensor representation

(i.e. the adjoint) of 0Sp(4/2) and is constructed as
v = Moy - [MN]3N¢M - ig[ch,@N]i 7.6

‘where g is the gauge coupling constant and [MN] is a signature factor -
with [uwv] = [we] = +1, [o,8] = -1.

Gauge ‘transformations for oy and oy 2re given as usual by

op(x,6) = U oy (x,0)U - 1/g(ayu™ U 7.7

1 X,6)U ' 7.8

'¢MN(x,e) = U @MN(

and, as shown by Bonora et al [14], U(x,6) may be uniquely decomposed as
U(x,6) = exp[-ign(x)] exb[-ig(eawa(x) - eaeaB(x))] = UyYy 7.9

To obtain a model in the six-dimensional space, which yields a
Yang-Mills action upon dimensional reduction to four-dimensional
Minkowski space-time, only those gauge potential superfields are
admitted which satisfy

A (x)

oy(x,0) = U'][ g

: 1y,
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and (x)
: F X
S ARV

0

where Au(x) is the ordinary four-vector potential and Fuv(x) is
the usual Yang-Mills field strength. Expanding the exponential

of (7.9) the components of ¢M(x,e) may be written as

1

‘ = 8 _ L B 1_ a o
® Au + 8 Du“’B' > © SBEDuB t 59 (Duw ) x wa] 7.12
- 8 1
°, = w, + 9 [BsBa - 79uwg X ma]
- %-6898[-98 <o+ g xuY) x o] 7.13

where Du is the covariant derivative DuB = auB + gAu x B, etc.

The six-dimensional action, S, is taken to be the sum of a gauge-
independent piece, SO,.and a gauge-dependent piece, S]. S0 is |
constructed to be gauge invariant, OS|3.(4/2)AT4/2 invariant and to
reduce to the usual Yang-Mills action in four-dimensional space-time. -
It is given by

_ 6, 1,2 aMN a .

The choice of the gauge breaking term, S], is not unique but is required
to break superlocal gauge invariance, to be both Sp(2) and supertranslation
invariant, and to have canonical dimension 2 [15] (for an extended

discussion of gauge breaking see Thompson [15]). A suitable candidate is
5, = f d®x-26, /¢ 7.15
where ¢ is a real constant. This leads to the action [11]

= | d*[- Lpwy A . 1.82 _ juz
S de[ 4F FW+aALl B+2gB Bwapw

- LT T u + ale (@ x u)? 7.16



159.

after appropriate rescaling of the fields and taking (m],mz) = (w,w).
This action incorporates the conventional Yang-Mills action; gauge
fixing terms involving the gauge potential, AU, and multiplier field, B;
and Faddeev-Popov ghost terms involving ghost fields, w and w, in
addition to AU. It differs from the conventional action by the
inclusion of a quartic ghost-term.

Supertranslations leave invariant the action (7.14) plus (7.15)
énd also respect the condition (7.10). From (7.12) and (7.13) the
component field variations under supertranslations are found to be

A =eDw-¢eDuw,
U M H

—

Sw =--2—gngw-sB_
_ 1 - 7.17
Sw =+-2-g€w><m-_t~:B+
6B, = - geB, xw , 8B_ = geB_
where B =B s Lo«
+ _29w w .

These are the extended BRS symmetries, providing a set of transformations
which leave the total action invariant. Further, it was shown [11] that
this model is renormalisable in standard fashion and yields the same
on-shell S-matrix as that obtained via the conventional approach [15].

It was later shown [16] that a satisfactory geometrical setting
for the above scheme could be achieved based upon a coset space
dimensional reduction procedure [17]. With this treatment, the ansatz

(7.10), for the form of ¢,(x,0), follows from superfield constraints,

M
obtained from the requirement that the gauge potential superfield be
invariant under the action of the 0Sp(4/2) supergroup, up to a gauge

transformation.



160.

This formalism also allows the introduction of matter fields,
including fermions, which appear as the solutions of analogods
constraint equations applied to an appropriate representation of the
tangent space supergroup 0Sp(4/2). One such constraint requires
" fields which are Sp(2) singlets [16]. Thus, for example, to
incorporate spinors into the theory we examine representations of
0Sp(4/2), labelled by 4L,M,N}, and decompose them with respect to

0(4) = Sp(2) = SU(2) x SU(2) = Su(2) as (see §4.5)

CLMNY ¢ (L=T,M,N)% + (L=T1,M,N) + (L-1,M<1,N)

1 1

5 Mt 7.18

(L-T,M,N2£1) + (L-1%5 Nt

2)

From this, it is evident that there is a unique, typical, irreducible
representatfon whose onTy Sp(2) singlet is (%30), corresponding to a

~ left handed spinor: namely the £3/2,0,1}, possessing dimension 96.
Similarly the right handed spinor (O,lo occurs as the unique Sp(2)
singlet in the é],%al} representation of dimension 96. Thus a Dirac
Spinor, W’(x,e) would correspond to the reducible representation

€3/2,0,1} + ¢1,5,1} , of 0Sp(4/2). Using the supertableau techniques

,2,
of Chapter 5, it is possible to show that the Kronecker product of
€3/2,0,1} with the fundamental representation of 0Sp(4/2) contains

(1,%31) , the parity conjugate. Thus it is possible to construct a
bilinear kinetic term and subsequently an 0Sp(4/2) invariant

lagrangian (w CMB Dy —é +m ?&'@&), where the CEB are coupling
coefficients, which becomes (¥ iy" Du ¥ + m Yy¥) upon dimensional

reduction [16].

This formalism of dimensional reduction via supercoset space has been
applied to the quantisation of an 0Sp(n/2) gauge theory over a six-
dimensional superspace [18]. This results, after reduction to four
dimensions, in a gauged 0(n) model containing massless scalar Higgs

fields in the fundamental representation of 0(n) with quartic self-
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interactions and gauge fixing and ghost terms which admit an extended
BRS invariance. | »

It has also been shown [15,19,20] that the derivation of extended
BRS symmetries for quantum gravity is also amenable to the orthosymplectic
BRS supersymmetry formalism; suitably modified of course but retaining
a six-dimensional superspace which admits an 0Sp(4/2) supergroup. -
This was a particularly satisfying result in view of the fact that the
standard gauge fixing procedure for gravity, while possessing an
invariance under a set of BRS transformations [21,22], does not allow
a corresponding set of dual BRS transformations [23]. The actions
obtained from the 0Sp(4/2) formalism and the standard formalism differ
only by a BRS (or dual BRS) transformation and hence their on-shell
S matrices agree.

Kaluza-Klein theories [24,25,26,27] involve the construction of
a gravitational action in (4+N)-dimensions and the subsequent
compactification of N-dimensions to yield an action which formally
incorporates a four-dimensional gravitational action, a Yang-Mills
action (if N > 1) and a cosmological term. By extending the above
ideas to consider a 4 +.N + 2 -dimensional manifold admitting an
0Sp(4+N/2) symmetry, combined with a (4+N)-dimensional Kaluza-Klein
theory, an action emerges, after an appropriate dimensional reduction,
which contains not only fhe'correct gauge-fixing and Faddeev-Popov
terms for both the gravitational and non-abelian gauge theories, but
also leads to a complete set of extended BRS transformations [15,28].
This result was first achieved by Hosoya, Ohkuwa and Omote [29] quite
independently of the Osp(4+N/2) formalism, however the latter version
is aesthetically more pleasing in that the ghbst and antighost fields

enter, quite generally, in a symmetric manner.
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7.2  ORTHOSYMPLECTIC SUPERGROUPS IN SUPERSYMMETRY
Over the past ten years supersymmetric Yang-Mi]Ts and supergravity
theories have become a dominant force in the physics literature (see
[30,31) for reviews). The basic algebra underlying the majority of these
theories is the N-extended super Poincaré algebra, SPQ, discussed in
Chapter 6. The role of orthosymplectic supéra]gebras becomes apparent
when it is realised that 0Sp(N/4) is the algebra of the N-exteﬁded
graded de Sitter group and i§ related by contraction to SPQ. The
gauging of a number of orthosymplectic superéroups has bestowed upoﬁ them
a dynamical role in some theories. For examp]é, MacDowell and
Mansouri [32] showed that !l = 1 supergravity with a cosmalogical constant
follows from gauginngSp(l/4), while Townsend and van Nieuwenhuizen [59]
arrived at a similar result for N = 2 supergravity from the Qauging of
0Sp(2/4). Nath and Arrowitt [33] have constructed geometrical models
of supergravity in superspace where the tangent space group is
0Sp(3,1/4N). Extensivé use has been made of orthosymplectic groups
in the grbup manifold approach to supergravity theories. D'Adda et al
[34] have classified a large range of orthosymplectic groups which are
suitable for the construction of supekgravity theories in various
dimensions. They have developed a comprehensive proéédure by whiéh
such theories may be formulated on orthosymplectic supergroup manifolds.
A detailed discussion of these models is eschewed in favour of
demonstrating the contraction procedure for 0Sp(N/4), based upon the
work of Green and Jarvis [35] and Butchart [36], which leads to the
N-extended super Poincaré algebra, and a discussion of the work of
Lukierski and Rytel [37] wherein a contraction of 0Sp(2N/4) leads to

the N-extended super Poincaré algebra with a complete set of N(N-1)

real central charges.
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The 0Sp(N/4) superalgebra consists of even generators,

—
|

e of O(N) and, MmB = MBa’ of Sp(4) and odd generators

Saa’ where a = 1,...,N ; o =1,...,4. These generators satisfy

ab

w
[}

ao

the following relations

[L..L

ab*ledd = cbtad T Mactbd * "ndbca - "datcb
[MaB’MY(S] N CyBMaé + Cyo:M(SG * CGBMya * CGaMye
[Lab’sﬁa] * Nebdaa T "ca ba | | 7.19
[MaB’SaY] = C g% ¥ Cludag
S3075p8 = MabMag * Caglba

where "ab is the diagonal O(N) metric with signature (+,f,...,+) and
CaB is the Sp(4) metric. The isomorphism between the Sp(4) algebra
and the algebra, S0(3,2) of the de Sitter group ié established by
identifying CaB with the charge conjugation matrix of the Dirac

spinor representation and expanding Ma in terms of the symmetric

B
matrices (Yuc)as and (quc)aB

_ o1 uv
MaB = -(Yuc)aBM - §( oqu)aBM | 7.20

where y = 0,1,2,3. The de Sitter algebra is

[MMY,MPO] = i (nVPMMI_nHPMYT_ VONHP, THYVPY

[MV,MPT = i(nP M -nPHMY) 7.21
[MY,MY] = -iM*Y

= 4+ -
where Ly ( ) .
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Defining new generators
0, = xSy, » Pe=pM, Ve 7.22
R ,

and taking the 1imit, R > =, in which the barred generators of

(7.22) tend to smooth limits Q, , P¥ and J"V, (7.19) and (7.21) become

[, 00906d = 10, 36 = mpude - novdu§ ¥ ncudvo)‘

[9,,P, 1 =ila P -n P)

[Juv’Qaa] ) %'(opv)asoas

Q4 Qet = -nab(Y“C)QBP“ | | 7.23
PP =1IP.,Q 1= 0.'

[qu’Lcd] = ncplad = Mactbd * Mbdbca - ”déch

[Lab’QCa] = neplae ~ "calba .

This is the algebra of O(N)-extended supersymmetry and has been
obtained by a straightforward contraction of 0Sp(N/4). The Casimir
invariants of 0Sp(N/4) have been shown [35,36] to contract in the
required manner to yield the Casimir invariants of the extended
supersymmetry. |

As shown in chapter 6 the central charges constitute an important
enlargement of SPE . Indeed as noted there (see e.g. [38,39])
in some cases it is only the presence of central charges which allows
for the existence of the appropriate field representations necessary
for the construction of interacting theories. They also appear to be
necessary for the formulation of N = 3-extended supergravities.

Lukierski and Rytel [37] have shown that by a suitable contraction

procedure, similar to that described above, though somewhat more
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complex,applied to 0Sp(2N/4) one can obtain SPE with a complete

set of N(N-1) real central charges. The 0(2N) algebra may be
decomposed into a direct sum U(N) ® O(2N)/U(N). It is the O(2N)/U(N)
generators which in the contraction 1imit yield the central charges,

: Zij’ upon reduction of the internal symmetry groﬁp, U(N), to a
subgroup which commutes the Zij’ Such a reduction has been discussed
by Ferrara et al [40] and Lopuszanski and Wolf [41]. It is this typé
of geometric understanding of the origin of central charges which may

provide the key to their potential role in the extended supergravity

theories.

7.3  KALUZA-KLEIN SUPERGRAVITY

Kaluza-Klein supergravity is a term which refers to the
construction of a supergravity theory in a space of dimension, d = 4 + N,
and the subsequent compactification of N of these dimensions to yield
an effective theory of supergravity in four dimensions. These theories, |
and in particu]ér the d=11 version, have offered the exciting prospect
of unifying gravity with the standard model, SU(3) x SU(Z) x U(1),
of elementary particles. Although this offer has not been fulfilled,
despite an enthusiastic following, these are still early days in the
investigation and much remains to be learned about the structure of
these theories. Orthosymplectic supergroups arise as the ground state
symmetry of some of the solutions which have been exhibited. The
eleven dimensional supergravity models which compactify a seven
dimensional internal manifold have received the closest scrutiny,
since they appear at present to offer the best prospect for achieving
the unification mentioned above. In these theories it is 0Sp(M/4)

which arises as the ground state symmetry for some solutions and
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consequently it is the infinite dimensional representations of
| 0Sp(M/4) which must be ascertained if the full implications of these
solutions are to be known. = This is of particular consequence for
those solutions for which the effective four dimensional theory is
in a de Sitter'épace where the simple idea of kéeping massiess modes
~and discarding massive ones has been shown to be incorrect [42].
In the sequel the solutions of simple supergravity in d=11 will be
presented for which the compact manifold, M7, is the 'round' seven
sphere, S7, and the seven torus, T7, both of which possess a ground
state symmetry of 0Sp(8/4). This will be followed by a brief
discussion of the possibilities for obtaining solutions which have
SU(3) x SU(2) x U(T1) as the isometry group of M7, Finally some
recent work by Freedman and Nicolai [43] on unitary, irreducible
representations of 0Sp(N/4) and their applications will be mentioned.
The fields of s1mp1e supergravity in d-]] [44] are the elfbein,
eMA, a 32-component MaJorana spinor Ve and an antisymmetric 3-index
tensor AMNP where the world indices, M,N,..., and tangent space
indices, A,B,..., all take values 1-11. To obtain vacuum solutions,
the usual procedure [45,46] to require that the vacuum expectation
value of the spinor field, < by > be zero and to look for solutions

of the bosonic field equations. These are

1

PQR 1 PQRS
MN T 7 IMN P 7.24

1
3 [FuporFy g InnF PQRS
My .. .MgPQ

R R = -

1 F

MWPQ _ 1
4 5"

Dy F = -

M £76 € M 7.25

M 8

1-- My M

) TR I : . :
where FMNPQ =4 a[MANPQ] (aM T Yy FAB) is the covariant

derivative, with r [A B] and r the eleven dimensional Dirac

matrices, € " is the totally antisymmetric tensor with e]"']] = 41,

and IuN° RMN and R are the eleven dimensional metric tensor, Ricci
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curvature tensor and Ricci scalar, respectively. A solution to
this system of equations is provided by the Freund-Rubin
mechanism [47] which takes Fuvpc = 3M € vpo FMNPQ =0 and

g  (x") 0
gMN(ﬂﬁym) = HY o | where (a,B,...3u,v,... = 1,...,4)

0 Iy (¥)

and (a,b,...;myn,... = 1,...7). | Some straightforward manipulation
of (7.24) and (7.25), adopting these forms for FMNPQ and SNE yields

_ 2 - 2 -
Ruv ~ 12m guv s 'Rmn = -6m Inn ° Rum =0 . 7.26

Thus we have a solution of the fie]d equations for which the ground
state is a direct product of a non-compact four dimensional manifold
and a compact seven dimensional manifold. There are, however, still
infinitely many solutions of (7.26) and some criterion is necessary
to distinguish the 'false' ground state§ from the 'true' ground
state. .Such a criterion can be provided by the requirement that the
ground state be stable, a reason for which may be an unbroken
supersymmetry.  Such a supersymmetric vacuum would require that,
<y > stay zero under the local supersymmetry transfbrmations,
GEwM, which leave the action invariant. Assuming that the local
spinor parameter £(x,y) of these transformations factorizes as

g(x,y) = £(x)n(y) and recalling the above restrictions on FMNPQ and

gyy then dgwM = 0 implies

7.27

¢
o

D¢

+ -
y \Dp& mYuYsi

7.28

'
o

= 1
D n Dmn - §'mfmn =

m

where the T matrices have decomposed as

rp= (v, ®I , yg®r,)
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The integrability conditions of (7.27) and (7.28) are

- = _ _]_ oo 2 ) :
0,0 =[gR v -my, J=0 7.29
= =4 _r1 rs .1 2 - ’

[Dm’Dn]n = [ ghinrs Tt g an]” =0 7.30

If these conditions are satisfied then

. ] |
wvpo -~ M G,0905 7 9,594,) 7.31

"

Ronrs ImrIns -~ Ims 9 ) 7.32

ms=nr

There remain only two possibilities for the complete solution:

(i) if mé = 0, (7.31) and (7.32) are the standard Riemann curvature
tensors for a four dimensional Minkowski space, M4, and the seven-
Torus, T7; respectively; (ii) if'm2‘> 0 (7.31) and (7.32) are the

- standard Riemann curvature tensors for anit- de Sitter space, AdS,,

and the seven sphere, S7, respectively. The m2 = 0 -case (when only

zero modes are retained) was the first solution found for the
compactification of eleven dimensional supergravity to four dimensions;
It was obtained by Cremmer and Julia [48] via a dimensional reduction
procedure in which all fields were simply assumed to be independent

of the ‘'extra' seven dimensions. The m2 > 0 solution was first
exhibited by Duff and Pope [46,49] by taking the results of Freund

and Rubin [47], who obtained (7.26), and requiring the existence of

eight unbroken supersymmetries in four dimensions. 'These are

provided by the eight linearly independent solutions to (7.28), since

n is an eight component spinor. Since S7 is the coset space

S0(8)/S0(7) which admits an SO(8) isometry group, this solution describes

a theory with local SO(8) invariance. The full symmetry group of

both these solutions has been found to be 0Sp(8/4) [50,51].
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Variations of the abové so]utioﬁs have also been obtained for
which the compact seven dimensional manifold is the 'squéshed'
- [52] or para]]e]i;ed [53] seven spheres or a product of spheres,
50 ®52, 54 & 53,_ 53 ®52 @Sz [54]. Of these the only solution
involving an orthosymplectic supergroup is the 'squashed’ S7 of Awada,
Duff and Pope [52]. These authors observed that S7 admits another
Einstein metric besides the maximally symmetric 'round' one for which
the isometry group is S7. This is the 'squashed' S7 which has-
SO(5) ® SU(2) as its isometry group. The full symmetry group of this
solution is 0Sp(1/4) & SO(5) ® SuU(2).

0f the solutions mentioned above on]Iy,IS5 X 52, possesses an
isometry groUb of the compact internal manifold large enough to contain
the phenomenological SU(3) ® SU(2) ® U(1) gauge group. A class of
seven dimensional manifolds which do contain SU(3) &® SU(2) ® U(1) are

the coset spaces

)

AT - SU(3) ® SU(2) ® U
5002V & U(1) ® 003

1
)
- This classification has been given by Witten [55] where p, q and r

are integers with no common divisor and r # 0. These integers

parametrize the embedding of SU(2) &@ U(1) ® U(1) in SU(3) ® SU(2) ® U(1).
Castellani, D'Auria and Fré [56] have investigated compactifying

solutions of d=11 simple supergravity where the compact manifolds

are MPA" spaces. They have been able to classify all such solutions

by the ratio p/q, there being no solution only for p = q =0, while

for all other values of p and q there is a unique invariant Einstein metric
on the corresponding topological space MPA" . No supersymmetry survives
except in the case of p/q = 1 for which the full symmetry group is

0Sp(2/4) ® SU(3) ® SU(2). There is obviously a long way to go to

make d=11 supergravity a realistic theory of nature but the fact that
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it does compactify onto manifolds which possess an SU(3) & SU(2) ® U(1)
symmetry is an encouraging result.
In order to obtain a complete classification of the various
states present in the supermultiplets, the full invariance of the

7, which

ground state must be considered. Thus for the ‘round' S
possesses an 0Sp(8/4) invariance of the ground state, the excitations
corresponding to fluctuations about this ground state should form |
“irreducible representations of 0Sp(8/4). For other solutions we

have seen that 0Sp(M/4) is the re]evantvinvariance and consequently

a knowledge of the unitary, irreducible representations of 0Sp(M/4)

is important for the construction of supefsymmetric field theories in
anti- de Sitter space. A study of such representations has begun with
the work of Gunaydin and Bars [57,58] and Freedman and Nicolai [43].

Of particular interest in the latter work is a phenomenon which these
authors have called 'multiplet shortening'. = This phenomenon arises

for certain restrictions on the vacuum quantum numbers, and effects a
reduction of the maximal spin of a representation. Consequently it

may have an important role to play in the construction of supersymmetric
field theories. In this way it closely resemblies the phenomenoh of
'spin reduction' in the presence of central charges which has been
discussed in chapter 6. As a final point it is worth stressing that
both these phenomena are closely related to the existence of atypical
representations, which as we have seen throughout chapters 2 to 5

play a fundamental role in the finite-dimensional, representation theory

of the Lie superalgebras.
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8. CONCLUSION

We conclude by summarizing the work and results presented in

this thesis and discussing avenues for future research.

8.1 SUMMARY

In chapter two a brief review of the theory of Lie superalgebras
was presented . This served to introduce this subject to readers
unfamiliar with it,.and to introduce the notation and terminology used
in the thesis. This work was based on the comprehenéive treatises by
Kac [1,2] and Scheunert [3].

The main work of the thesis was commenced in chapter three,
wherein weight space techniques were developed to educe finite-
dimensional, irreducible, typical and atypical, star and grade star
representations of the orthosymplectic superalgebras. These techniques
were then used to determine all such representations for the superalgebras
B(1,1), C(2) and D(2,1;a). These representations for C(2) = A(1,0)
have been reported by Scheunert, Nahm and Rittenberg [7]. The results
for B(1,1) and D(2,1;a) are new to the literature.

Chapter four saw the development of superfield techniques for the
determination of all finite-dimensional, irreducible representations of
the orthosymplectic superalgebras. These techniques are based on an
induced representation construction and were used here to find all such
representations for the superalgebras B(0,1), B(1,1), C(2) and D(2,1).
The results for the latter three cases were found to be in agreement
with those of chapter three. Finite dimensional, irreducible representations
for B(0,1) and C(2) have been constructed using weight space techniques
by Scheunert, Nahm and Rittenberg [7] while Dondi and Jarvis [8] have
used superfield techniques to construct such representations for C(2).

The results for B(1,1) and D(2,1) are new to the literature.



175.

Young supertableaux were investigated in chapter five. This
chapter included a fairly comprehensive review of the development of
young supertableau techniques for the study of representations of
SU(M/N) and OSp(M/N).  New results obtained here were the relations
between the Kac-Dynkin Tabels and the supertableau labels for 0Sp(M/N)
and the subsequent expression of Kac's atypicality conditions as
conditions on the diagram shape. Modification rules were also obtained
for all typical representations of O0Sp(M/N) and, in addition, for the
atypical representations of 0Sp(2/2), 0Sp(3/2) and 0Sp(4/2). Branching
rules for spinor representations'of OSp(M/N)'and for atypical
representations of 0Sp(2/2),05p(3/2) and 0Sp(4/2) were also presented.

| Chapter six saw new 'chiral-like' superfield techniques -
developed for the study of irreducible realisations of the N-extended
'supersymmetry algebra in the presence of central charges. | These
techniques are based on the theory of.induced representations. The
N=2-extended algebra was considered in full detail and all irreducible
realisations, including the 'spin-reducing' cases, were exhibited.

Chapter seven was a review of some of the applications
orthosymplectic supergroups have found in physical theories. The
relationship between these supergroups and the extended BRS symmetries
of quantum gauge theories was first discussed, based on the work of
Delbourgo and Jarvis [4]. It was then demonstrated how the N-extended
super Poincaré algebra could be obtained from a Inonu-Wigner contraction
of 0Sp(N/4). This chaptér concluded with a discussion of the role
played by 0Sp(N/4) as the ground state symmetry of some compactifying

solutions in Kaluza-Klein supergravity theories [5].
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8.2 FUTURE RESEARCH

Although the techniques developed in chapters three and four
are applicable to any orthosymplectic superalgebra they become rapidly
more complex to work with as the rank of the algebra increases.

This is principally due to the rapid increase.in the number of
irreducible representations of O(M) x Sp(N) contained generally in

an irreducible representation of OSp(M/N). This goes as 2™ and
consequently without computer assistance would soon become unmanageable.
Thus, a high priority for the approaches of chapters three and four
would be the simplification of these brocedures to make the higher

rank algebras more accessible. Indeed the recent work of Thierry-
Mieg [6] takes a very significant step in this direction though it
appears some degree of computer assistance may still be necessary.

There are a number of possible areas, related to Young
supertableaux, which are open for development. Nearly all of these
pertain to atypical representations. In particular the development
of modification rules, branching rules and rules for Kronecker
products, for atypical representations of OSp(M/N) and from which one
could determine the irreducible repfesentations would be.most welcome.

A simpler form of the branching rule for spinor representations than that
given in §5.3 would also be useful.

The techniques of chapters three to five have been developed with
the application to the orthsymp]eétic superalgebras as the immediate
motivation. However, hybrid forms of these procedures should also be
applicable to the study of representations of any of the classical Lie
superalgebras. This is obviously a major task and it may be many years
before the representation theory of Lie superalgebras has evolved to

the level currently acquired by Lie algebras.
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The work presented in chapter six is only the beginning of a
program for which the next phase is the use of these superfields in
the construction of models of supersymmetric field theories. It is
hoped that these superfields will be more amenable to a fully covariant
treatement with the minimal sets of auxiliary fields arising in a more

transparent manner.
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APPENDIX A:  THE ALGEBRAS: ¢(2), B(1,1), D(2,1;a)

The explicit form of the algebras for C(2), B(1,1) and D(2,1;a)

as used in chapter three are presented here. The notation is as given

in §3.2.
C(2)
T A th, w1 =2«
[y, 811 = 75t [, 5] = £ 24
(gt g7 = h, Lo o] = b,
[ g, 7] = o0 Ln,, pi®] = £ 5"
Ln, , plf] = 2" L pg/7]=-p'""
LB'™ BT = 7S Ui, B3 = ha-h,
B(1,1)
[h,, 871 =c¢ T
R I
LR, p) e, Lo 27 = by
L, %71 =0 {p p7) = =&
Lpls o] = 2p" {phr, By ) = ha-an,
L plf w1 =0 O o
[ B w, ] = ifls [B," w1 =7 2F,"



{ E‘t, ﬁ‘;}
Ligy, B S,
D2.lia) i
SN
Ly g ]
L' x,* ]
[ w,  p'*]
Low, x5 ]
R

[ ow, ]
Loy, =]
{ p'*, 8"}

¥
y,

1§
I+

1
i+

LB B e
LV\ )ﬁir] It
[ w,, ple ] = 2xp
I N
N S N

180.

N B A
{/?L’, Fl7} = 4(n -h,)
(h,-2W,) = -itk

Lp' 8] = W

[ g, =7] =0

Lo, %5 =0

[h,) ] =t 7

Ln,, g5 =% p'F

L we, x5] = o

[ h, ,311:] - ~}31.1:

! ﬁ" i By

Lp'™, Bid = c

{ gl )p;“} = xh,-h

Uw,  Bg'F] =t3pf

Ly, plE] = 787

Lo, 8551 = 7 By°

[w, B2 ] = 2() B)F
]
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;‘2'3? | = o {O{Jf) ;3;';} L g
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/33’7}' - 0 {/’7’;.;,}3:?} C s at
ST AR R A M



182.

APPENDIX B:  DEFINITION OF ADJOINT AND SUPERADJOINT OPERATIONS

The adjoints and superadjoints [1] of all even root vectors
corresponding to simple roots and of all generators in the Cartan

. . . + +_ ; :f + \'t'___ *=
subalgebra are defined as follows: (aj) a5 (aJ) ey, (hi‘ hi’ (hi) h,.

The adjoints of the odd root vectors can be defined in two ways

which we designate as Ao, where o=1 or 2:

. n-j + iy itRYo n-3 F
B(m,n)- (Bn+h ) - ( ’) I Nn+k
-t + - '-—j Sf— M+l +o > r\—J -:
(ﬂn+m J.> ( ) n+m-A

where 0<js<n-1, O<k<m, O<ls<m-1.
D(m,n): ( p"° n-3 t)_f = (")Ji‘kifﬁ_+ ! pre ¥

N xR N+ R
A=y ENT _ (YW Ewm+o o n-5 F
N A S A L
(FRRi0)T = (e gosi &
where 0<js<n-1, Os<ksm-1, 1<1zm-1. nrme
A . Jto =
cn): (g %) = (-1) g; "
~ + n+kRre =
(B;f—h> = (—') r,r.,h

where 1l<js<n, l<ksn-2.
The superadjoint of the odd root vectors can be defined in two

ways which we designate as So, where o=1 or 2:

: an-3 ENF O _ _\d+hto n-3 =
B{m.n): <p'n R ) =t ( l) lgr\f-h i
(Eﬁ?;fk)* = t (—03*“***°"+i‘~n—j.:
where O<js<n-1, Osksm, O<lsm-1. notm -4
. n-3 t \¥F _ - Sthyo n-3 T
e L
n-§ 1 | \SYmM + T ) _pe) F
* o= ”3+'“fl+d+|7§n-j o
Y‘*m-—t) " oF - A
where Osj<n 1, O<k<m-1, 1<l<m-1.
b o = R X2 -
s (8T =5 07T g7
~ 3+ ¥ . . n-+k.*.o—+| ~
L) =+ () Bin

where 1l<jsn, 1l<ksn-2. S e
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We note that for B(m,n) and D(m,n), but not C(n), the 'hidden’
even Sp(2n) generator {c;, BE} defined in §3.2 transforms as

£ o+3 k¥ £ okt o F
{Ba, Bb} = {Ba, Bb} and {Ba, Bb} +{Ba, Bb}
corresponding to compact and non-compact real forms of Sp(2n) in the

superadjoint and adjoint cases, respectively.
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APPENDIX C: ORTHOGONALISED STATES, X5 AS HIGHEST WEIGHT
STATES OF THE EVEN:SUBALGEBRA.

In this appendix it is demonstrated, in a quite general manner

that the states,

SIS Tty %(L% i | .
as constructed in §3.3, are in fact highesf'weight states of the even
subalgebra. The proof presented here is quite simple and resfs only
. on the assumption that, given a particular basis in the enveloping
algebra, the states constructed in (Cl) by Schmidt orthogonalisatfon
are unique. |

It will be recalled from §3.3 that the ¢ are states of the
same weight as wj and such that o © E; Xy 2 where EE is a monomial

of even,negative root vectors. The adjoint and superadjoint of Ek

will be a monomial of even, positive root vectors, which will be

designated FE and G: respectively (see Appendix B for a discussion
of these operations): i.e. (E;)+ = F: and (E;)-'TL = G:

If we now construct a highest weight state of the even subalgebra
xé, from v and some subset of the set of (¢,) from (C1) then

[} _ 1] - _ - + ] _ + ] -
(XJ’¢k) = (Xj’ Eka) = ((Ek) Xj, Xk) = (Fk st Xk) 0 C.2
J
such a state can only be constructed uniquely then Xj as constructed

since FE x: = 0. Thus Xj is orthogonal to all the ¢k. If, however

in (Cl) must be a highest weight of the even subalgebra. An identical

argument follows if the superadjoint is taken in (C2).
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APPENDIX D:  PROJECTION OPERATORS FOR SPIN Mxi; AND SPIN Mx1

Chapters four and six require the use of spin Mx% and spin Mx1,
with respect to SU(2), projection operators. As explained in §4.2 the

two-index basis for SU(2) is related to the spherical basis via

MaB
where the generators are in a spin M matrix representation of SU(2).

= 2(M-ge) | - D.1

~ o

Where these act on superfield components such as ¢a or Pa the question

8’
arises of projections onto total spins (M%) or (M, Mzl), respectively.
These are derived using the characteristic identity (quadratic»or cubic,
respectively) satisfied by the generators in the reducible Mx% and Mx1
representations.

The general construction of projection operators proceeds as

follows. Consider some reducible representation of an algebra with

Casimir operator, C, and eigenvalues Cys Cos vnven s C- Then there
exists a complete set of projection opérators

n (C-c.)

=0 TemeT | D.2
=1 71 7
J=i
_ 0 _ »
such that nm.-m. = 6..0. and £ m, = 1. Each of the m, will extract a
i ijhi j=1 i :

subspace with eigenvalue c. with respect to C.

For Mx} we have for the Casimir (spin M indices are suppressed

and indices a, B, ... are raised using the inverse metric eas)
Ac B: y 1‘/ 28— AZB— 1/ 28
(Meo), (M +20)" © - (M) - (50)" D.3

where M and %o are spin M and spin % matrix representations respectively.

The eigenvalues of (@-g)as on the reducible Mx)% space are given by

(Mtls) subspace:  (Miy)(Mltl) - M(MH1) - %(%+1) = M D.4
~where M+ = Mand M = -M-1. The projection operators are therefore

given by

~
*

e s |
1% = (M, - 2m'ek)/2(aMt +1) D.5



where (D.1) has been used. The following expressions

derived from (D.5) and are frequently used
B _ M8 4 B

s® =1
o o]
~ 1% - =L
M B < omtptB 4 oy 8
o o a

MBM Y = am(mr1)sY - 2m Y
o B o o -

For Mx1 we have the Casimir

can easily be

- - 2 ~2.v8 2v$8
(M-2)fg = (1 +32) 00 = (°1Yg - (an) )
where Y8 = (o Vs S 45 Yo O 4+ 5 Vs S 46 ¥ %

~oB ~a B o -B B a B o

is the spin 1 matrix representation and

s s s
118 = %(5aYa +6 8 Yy,

B
on the reducible Mx1 space

B
8

The eigenvalues of (M-z)lg

are given by

(M+1) subspace: (M+1) (M£1+1) - M(M+1) - 1(1+1) = M*

(M) subspace . : M(M+1) - M(M+1) - 1(1+1) = -2

Thus the projection operators are

I oo + *
Elys N+ (2M+3)L + 4(M7+1)(M7+2)1
af 8(ME+1) (2M%+1)
. fo s
e N+L+4MM1
B .7 + -
¢ 8M'M 0B

where we have used (D.8) and the following definitions

~yé =L Y . 6 Y o8 oY 6 + Y“G
LaB Z(Mu56 t s, MB + MBaa cBMu)
NS = LmYmS o+ mE MY o+ mYmS + momY
NaS “(MaMe + Ma MB + MBMa + MBMQ)

From these definitions several useful identities can be derived

which are necessary for the extraction of component field variations.

Examples are

O
o)
|

[]

+1
P oB

Yy & 6 1 ipil

a MB P ) 2M aB

Y$

aB

186.

.10
.11

.12
.13

.14

.15

.16

.17
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o B Y$ a B 8
thy 6 50 _ o mr p0 4 . pydp0 +
L 58 .Pya (M PQB+ 4sa8M Pya)/(ZM + 1)
iy 08 50 - 5/t o0 y “vS8 o0 * +
it MB PY(S 2(M PaB + 4eaBM Pyé)(M +2)/(2M"+1)  D.18
+] 0 . x1ys o1 _ ol 0ys 40 - o0
where'P and P~ satisfy n o8 P(ya) P(aB) and HaB P(Y5) P(aB)'
Other useful examples are
(s Yo O Y. § s _ +1y$ 0vs§ +i
Z(Ga 68 ¥ 68 6& )nywé (m ofB * HaB )nywé
Lim Yo S 4o Yo S gt _tlys * Oys %
Z(Ma 6 * MB 8, )nY¢6 2M™ 1 o8 2(M +2)HaB ”Ywé D.19
LR+l L
where Hi;ngz = wzz and n, is a spinor parameter.
Finally we have
CElye B q 2 poB +1ys
Tog M =0=M" 1 g
Al I I (L L CR L D.20

of
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APPENDIX E: MATRIX REPRESENTATIONS OF 0Sp(1/2)

In §4.4 the 1ittle group chosen involves the supergroup 0Sp(1/2)

with generators (Mas, Qa )} The superfield technique requires explicit

-~

matrix representationstAés

of arbitrary 'superspin' M (s4.2), i.e. two component superfields

,5§a) of these generators acting on fields -

. in Moy or DB L -
where ¢a has spin M and ¢aa has spin M-% or I aa ¢bB ¢aa'

Using the results of appendix D the matrices for the Sp(2)

generators can be written as

: - .d
@0 | Ml E.2
kB C 0 (Mx )d6 ’
aB’cCy
~ d . ) s ~x \ds
where (Mas)c are spin M matrix representations and (MaB)CY correspond to
the reducible Mx) representation
' oX ydé o oyd (6 § 8
= +
(MaS)CY (. ocB)C 6Y € e 56 + €8 aa.. E.3

- We actually want to project the spin M-% component from ﬁz ,VhOwever,

B8
since the spin MH; projectors commute with it the form presented in

(E.2) is appropriate, i.e.

-5%ds ,oX \ee _ox (d8 _-%Lee _ ax 4 ds
cy (MaB)dd See ~ (MaB)CY T ds %eec = (MaB)cY ds E.4

since bag has spin M-%.
The matrices (ﬁq)g must be chosen to satisfy the anticommutation

relations

@0 @)y + @00 @) = -] )E E.5

as required by the 0Sp(1/2) algebra. The appropriate choice is found

to be
_LCY
0 nz2
24 C _ L ba
(A )y = (2mM+1)2 E.6
&uB (H-;EE:)C 0 . -

bBa
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' A
When working with Qa care must be taken to ensure that it anticommutes

with a-numbers, though from the form (E.6) this property is not explicit

. . A D ~ \D . .
Finally, the action of (J%B)C and (ela)C on the superfield oy s
~ d N
N (M )¢
(u“, )D (D = AaB C d . E.7
' aB’cy "dé§
~ D Py . ’
(R )p oy = iy _ E.8
[0 C D (]_[ le)d
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APPENDIX F. A PROOF WHICH DETERMINES THE YOUNG TABLEAU
CORRESPONDING TO THE HIGHEST WEIGHT VECTOR, A.

In the following we present a diagrammatic proof that the
choice (5.7) n, for'éand g = (0) in (5.2) uniquely determines the
highest weight vector, A, for B(m,n) and D(m,n). Given the selection
criteria, for the diagram corresponding to A, which are presénted in
§§5.2.a, 5.2.b, this proof amounts to showing that if é = (;I;) has
(n+x) columns where y corresponds to the final x rows in &, then all
the partitions in the series < £/B > modify in Sp(2n) to a partition

of rank < |p| . The rank of a partition (p) we designate as |[p].

We first note that if (x) is a partition of the form

(o) = ["‘1 a2 s ] ,
La1+1 3417 py

in Frobenius notation [2], then < u+x > modifies to (-1)'X|/2_< u o>
otherwise it modifies to partitions of rank < |u|. Our proof is by
induction in which we show that if < E%X-> contains no diagram of
rank |p| then < Eiélig) > contains no diagram of rank |u|, where
(x+2) is any partition for which |(x+2)]| = [x|+2 and pt(x+2) is a
regu]ar'diagram. Since, in Sp(2n), modification 1nvol§es removing
a hook of length h = 2(P-n-1) > 0 [3], then unless [x| is even <E%X->
will modify to partitidns of rank < |u|. Consider now

'{E_ijrxig)} = {p + (x*2)} =l + (x+2)")

o~

+ o{p" H(x+2)} + {p' + (x+2)"} F.1

where |u'| < |ul-1, [u"] < |ul-2, [(x¥2)'] < |x|+1, 0 s [(x*2)"] < [x],
and A is the s-function series A = z(-l)lal/z{a}. We now divide both
o ,

sides by B and use AB = 1 = {0} to give
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o Z{PL_%_(X_@.)} - Z{L—tg—(-ﬁ}. F.2

Examining (F.2) we see that the final two terms explicitly

modify to partitions of rank < |u|. Considering the first and second

- terms, we note two possibilities:

(1)

(i1)

(x*#2) is not a form (a). In this case, 2 < |(x+2)f| < ]g|

and by our assertion < Eii%igl—-> will modify only to partitions

“of rank < |u|. Also as noted earlier the first term will’

modify to a partition of rank < |uf.

(x+2) is of form (a). For this case-in_(F.l) we have
g{p + (x+2)"} = (-l)lal/z{u} + oy + (x¥2)""}

where now 2 < [(x*2)"'| < |x|. The second term in (F.2)

therefore takes the form

(-nlel/2ay 4 g o2)T o)™y

By our assertion the last term here modifies only to partitions
of rank < |p| and the first term is explicitly of rank < |u]
except for g = {0}. The first term in (F.2) modifies however
to (-1)|“I/2<u>. Thus the only terms contributing to <>

in (F.2) will cancel.
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To complete the proof we need only show that for |x| = 2, < E%X->

modifies only to partitions of rank < [u|. There are only two

possibilities:

2
() w= (120 L (12 ¢ b zat (1) + ratH(12)> + 1l

> —<p> + <p> - gep's> + g<p''>

= p<u"'> - z<u'>  where |u'[, "] < |u] .

u+é2)> = <«p¥(2)> + <t + (1)>

1]
—
N
~—

N

(ii)  x

+ z<p"+(2)> + T<p"'s>

> Z<u"t> where |u"'| < |u| .



APPENDIX G: @ - CONVENTIONS AND SCME USEFUL IDENTITIES

Conventions for chapter four:
ab aB L

BT E T TRap T "o
- _ 12 _
where a,b = 1,2 , a,8 = 1,2 and €~ = +1.
ab _ .d aB _ <O
& bc ~ 6C > F 0 Fgy 6Y
- bg aa af _ab
ac - €ag fab ® 6 =« ®bg
Conventions for chapter six:
E&é - sab = -E.. = -E
aB ab
where ¢;8 = 1,2 , a,b = +,- and R Y
B _ . ab _ .a
€ EBY = GY ’ ? EbC GC
= =@b coa _ oB ba .
Gaa . €48 ba §) s 0 € € eBb
Metric n = (',+9+a+)
. uv
" = (1,01) , o = (1,-01) , tro’ g’ = -2n"

The monomial bases for 6°% and 3*2 expansions in §4.5 and §6.3
respectively, is given below together with some useful identities
associated with taking products and derivatives. These are given in

the notation of §6.3, the corresponding relations for §4.5 are obtained

by simply replacing 8*® by 6%%, i.e. 8 > 6, a > a, a > a.
Calculus:
. 56b = 5B 5 b
ad a a
==ybc _ . bz cC cz.b
3aa (66)" " = §, 6:7 *+ 8,7 0
. (nE\BY - < .B zY R:
34 (86) AR S S
(23y8b _ 3 y=sab B3 =niBL o b
9% (7)™ = 2 (8) aSa *2 (09) o %a
4, _ -3, .
3:q (87) = -4 (87);,
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Identities:
-\ab_ =-aa b
(e8)“ = 8 62
(éé)aﬂ _ éaa éBa
~3\0a8 _ ;==\0B = @ --ab =a
(6°)°° = (#86) 6; = -(66) C
=4, _ (=3 0@ . . (FmyoB ..
(67) = (87) o, (66)7" (68354
--.ab -
= -(88)"" (e8),
50'.3 58 »(éé)&é 63 _1/(66)a €Cl-8
b 2 b 2 b
. 1 . l .
-a ,==\bC % (z3yab.c % (z3yac b
6, (88)"~ = -3 (87) 5, 3 (87) 8,
& zzvBy _ 1 23,8 _ay 1 ,:3,y _ab
8%, (88) 3 (87)7, ¢ + 3 (87) a
-a ,=3,8b _ -4 aB b
87,(87) - % (8) 8,

(BY (28 4 cov BYy (54

.
D
@
N
Q
™
———
@1
@I
N
<.
One
1

8

D
D
~—
It

(Ebc ead + ac ebd) (-4)
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