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Abstract 

In this thesis we mathematically describe various means of constructing pictures 

which are camouflaged, and which can only be recognized when viewed in an uncon-

ventional, but prescribed manner. Such hidden, or distorted, pictures are referred 

to as anamorphoses or anamorphograms. 

We begin by considering some physiology of the eye and examine some psycho-

physical research in Vision and Perception, particularly related to stereo psis. Some 

confusion in this area is identified and discussed. The reader is guided through 

simple, but increasingly complex, experiments. These facilitate the viewing of, 

and the understanding of how we 'see' three-dimensional images in, Single-Image 

Stereograms (commercially referred to as 'Magic Eye' pictures). Construction of 

examples of these is one of our main foci. Various viewing techniques are described, 

and we identify some parallels between the psycho-physical analysis of stereopsis, 

and the likely results obtained by the reader in viewing the simple dot stereograms 

presented in our experiments. 

We construct anamorphograms by applying a perspective drawing rule and some 

basic results of Optics. To be recognizable, our initial examples must be viewed 

monocularly from a prescribed viewpoint; or as a reflection in a given mirror; or 

wrapped around a given curved surface. Some of these examples are duplicated for 

binocular viewing in the form of anaglyphs, which allow the viewer to perceive a 

three-dimensional image. 

Further anamorphograms, for binocular viewing, in the form of Single-Image 

Stereograms, are constructed. Some related geometry results are presented, culmi-

nating in the non-conventional representation of Single-Image Stereograms in terms 

of some results of Projective Geometry. We introduce the notion of a geometrical 

stereoscope which leads to the definition of a special central collineation and a con-

sideration of a theorem related to fixed conics. Application of this result leads to 

the construction of a new Single-Image Stereogram of a sphere. This stereogram 

has special properties. We note the implications of the results of our introductory 

experimental section, for its viewing. 

Finally, we present anamorphograms which are compositions of the preceding 

cases and we include transcripts, together with explanations, of the computer pro-

grams for creating all of our anamorphograms. These are written in Mathematica. 
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0.3 Notation 

In general points are represented by lower case letters such as a and b. 
However, in some instances, if cyclic ordering is required, then the digits 

1,2,3,4,5,6,7 or 8 are used. 

Upper case letters represent lines. 

a V b represents a line through the distinct points a and b. 
If the points x and y lie on the line aV b(x,y E a V b) then x V y represents 

the same line. We write a V b= xV y in this case. 

a v b represents the line segment with endpoints a and b. 

(a v bl represents the length of the line segment a V b. 

A represents any line segment on the line A. 

A A B represents the intersection point of the distinct lines A and B. 
(a v b) A (c V d) represents the intersection point of the distinct lines a V b 
and c V d. 

An f(x) represents the intersection points of the line A and the curve f(x). 

In general, planes are represented by large Greek letters such as II. Other-

wise, a script letter has been used. 

a V B represents the plane through the point a, (4 B, and the line B. 

qf represents the arclength for a minor arc with endpoints q and r on the 

circumference of a circle. (page 38) 

(47.41) represents a point which is the superimposition of two points qf  and qi 
so that (grql)(frit)  represents the arclength for a minor arc with endpoints 

(qrqi) and (frfi) on the circumference of a circle. (page 39) 

Pd represents the depth of the perceived point, p, behind a stereogram. p'd  
represents the depth of a perceived point, p', in front of the stereogram. 

(pages 58 and 59) 

s represents the distance between two matching dots, one for each eye, of a 

dot stereogram. (page 59) 

e represents the eye-spacing of the viewer. This is measured between the 

centres of the pupils. (page 59) 
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The distance d of the viewer from the stereogram is the perpendicular dis-

tance from the line through the nodal points of the eyes to the plane of the 

stereogram.(page 59) 

sd represents consecutive dot-spacing for a row of a stereogram. (page 64) 

elf represents the dotspacing of guiding dots. (page 66) 

: represents the ideal point of the family of lines parallel to it in the extended 

Euclidean plane. (page 176) 

x -1  represents the inverse image for a stereoscope. (page 178) 

x — n represents the nth  inverse image. (page 181) 

H(3; 12) represents the harmonic conjugate of the point 3 with respect to 

the points 1 and 2. (page 180) 

el _ 
L A I represents an elementary map between the points on L and the lines 

through I. (page 182) 

1 
L(PI,P2,P3,..-) X L'(//i ,p'2 ,p'3 ,...) represents a perspectivity between the 

points on L and the points on L' with centre I. (page 183) 

L(p, q, r,...) 7\ L"(p" ,q", r") represents a projectivity between the ranges of 

L and L". Similarly, we may denote a projectivity, ri, mapping a line of a 

pencil with vertex 1 onto a line of a pencil with vertex 1" by 

n 
77 : I -X 1" or I X-  I". 

We have similar notation in the dual cases. (page 184) 

L 3 1 denotes the fact that 'L is a line through the point /'.(page 185) 
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Chapter 1 

Introduction 

In embarking on this project, our aim was to complete a work which pre-

sented Mathematics as a valuable tool in describing an area with which it 

is not commonly linked. 

Our experience led to the observation that many students need to 'visu-

alize' a mathematical situation, if they are to fully understand it. This, 

coupled with a desire to present it in an enjoyable and enlightening manner 

to students, and mathematical laymen, was the impetus behind this choice 

of topic. We have endeavoured to demonstrate how our mathematical model 

fits our own experience with many 'visual' examples. Some common prob-

lems with the mathematics in physiological and psychological literature are 

raised. The existence of such problems is not surprizing as usually the writ-

ers in such areas have no expertize in mathematics. Any criticism is not 

intended to be derogatory. Discrepancies, in defining terms, came to our 

attention whilst researching the many disciplines linked with this project. 

Initially, our reading was to enhance our own understanding. Our resulting 

confusion, in some areas, led to careful considerations. Hence this thesis is 

unusual in its 'cross-disciplines' nature. 

Psychologists can study an observer's perception of a visual situation. 

Often marked differences occur between the true physical situation and the 

interpretation of the viewer. This is evidenced by the well-documented exis-

tence of visual illusions and suggests that it is impossible to provide an exact 

mathematical description of what we perceive. In this thesis we demonstrate 

that exact mathematical description of some solid objects certainly allows 

the presentation of retinal information which facilitates the perception of 

the described objects. In our cases the most common factors described as 
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contributing to visual illusions, such as light, shade, colour and experience, 

are removed. Our results show that binocular disparity and convergence are 

major factors in the perception of depth. 

In Chapter 2, we present an historical introduction to perspective draw-

ing, anamorphic art and stereograms. Some vital definitions and ideas are 

introduced to enhance the understanding of more formal discussions pre-

sented in later chapters. 

Chapter 3 looks briefly at the physical features of the eye and vision, and 

discusses in some detail the physical and psychological bases of stereopsis. 

As a means of achieving this there is an extensive review of the literature 

in these areas. Some inaccuracies, and imprecise definitions are discussed. 

This chapter also guides the reader through simple experiments with the 

aim of justifying the comments in the text. We include a description of 

possible viewing techniques for stereograms and then, painstakingly, discuss 

the building and viewing of basic dot stereograms. Some basic geometri-

cal results are included and applied to a physical situation. We see that 

in some cases the geometry fits the actual physical, or perceptual, view. 

In others there is some discrepancy. We are able to draw parallels (of a 

non-geometrical nature!) between the way in which we 'perceive' dot stere-

ograms, and the way in which stereopsis is described in the literature. When 

this amounts to linking the eye, brain and perception, such results cannot 

be conclusive. 

The creation of anamorphograms is the main focus of Chapter 4. We 

define what we mean by an anamorphogram, and then formally discuss the 

mathematics involved in creating 'distorted' rectangular grids and 'distorted' 

cubes. For each example we have a prescribed viewing technique. This could 

include 'viewing in a cylindrical mirror' for which a piece of mirrored paper 

is included in the pocket inside the back cover of this thesis. In cases where 

a conical or spherical mirror is required, the reader will not easily be able to 

check our results. A rectangular grid was chosen as it can be co-ordinatized 

to allow the creation, by hand, of a distorted version of a picture. This 

technique is demonstrated in Hickin [11] and Gardner [6]. 

Initially, our anamorphograms are designed for monocular viewing. How- 

ever, at the end of this chapter, we present anaglyphs of the cube examples. 

These are designed for binocular viewing, using 'spectacles... red and green' 
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such as those included inside the back cover of this thesis. We are able to 
'see' a three-dimensional cube, as distinct from a two-dimensional perspec-
tive drawing of one. We also apply our theory of slant anamorphograms 
to give an explanation of a perceptual view introduced in Chapter 3. The 

programs, written in Mathematica, for creating our anamorphograms are 

included in the Appendices B and D. 

Chapter 5 focuses on a construction for Single-Image Stereograms, in 
general. Although these stereograms are also examples of anamorphograms, 
it was decided that their complexities warranted a chapter of their own. We 
also discuss the construction of two stereograms, each representing a partic-

ular case; an ellipsoid in space and a cube in space. Consideration is given 

to the limitations on our models for viewing purposes. Such limitations can 

be identified as a result of our discussion in Chapter 3. Comparisons are 
made between our examples and some of those published in recent research 
papers. We finish this chapter by including examples of anamorphograms 
which may be 'seen' by employing combinations of our various viewing tech-

niques. 
Again the programs, written in Mathernatica, for both stereogram construc-
tions are included with explanations, in Appendices F and E respectively. 

Finally, in Chapter 6 we introduce some more ideas from the area of 

Projective Geometry. We define a 'geometrical stereoscope' and describe dot 
stereograms in terms of this. We prove various theorems related to special 
stereoscopes. In particular, we describe a central collineation which maps a 
conic onto itself. This result is applied to a particular example, to enable 
the construction of a Single-Image Stereogram with special properties. The 
program for this is included in Appendix G. 

It must be acknowledged that although all our programs are easy to 
use, and give reasonable pictures, they are not yet in polished form. The 
programs are written in Mathematica ( Wolfram Research, Inc.; ISBN 0-201- 
51507-5, 1991) and some of our results were tested using The Geometer's 
Sketchpad package (Key Curriculum Press, Inc.;ISBN 1-55953-034-0, 1992). 
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Chapter 2 

Historical Introduction to 
Perspective Drawing, 
Anamorphic Art and 
Stereograms 

2.1 Introducing Perspective Drawing 

The word perspective is derived from the Latin words per (meaning by or 

through) and spicere (meaning to see or look). The main problem of per-

spective is: 

How can 3-dimensions can be represented on a 2-dimensional page? 

It was not until the Italian Renaissance that perspective was first developed 

successfully by Brunelleschi (1377-1446) and Alberti followed by suggesting 

that painting can be considered as a window through which we can see the 

visible world. Leonardo da Vinci (1452-1519) and Albrecht Diirer developed 

this idea into one where the artist is considered to be peering from a single 

point through a transparent screen at the object he wishes to paint. The 

points to be painted are located on the screen by finding the intersections 

with the screen of lines drawn from each point of the object to the eye. 

Many of Dfirer's woodcuts, such as the one of Figure 2.1 (a) (From Cole [3, 

page 27]) show this technique. Figure 2.1 (b) simply demonstrates the basic 

idea. The eye of the artist is at v; some distance in front of the artist we 

have a perpendicular plane (the picture plane). Now any point, p, of an 

object behind this plane is transferred to the point p' on the picture plane 

by finding where the line drawn from p to the eye intersects the picture 
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(a) (b) 

Figure 2.1: (a) Dfirer's woodcut; (b) Mapping p of object or scene to p' on 
picture. 

plane. We formalize this notion in section 4.2. Fortunately, the computer 

will help us create our pictures! 

It is important to note that this rule of perspective was developed assuming 

that the artist was using one eye only. Provided that the viewer views 

from exactly the correct viewpoint then a very good illusion of depth is still 

created. We will consider binocular viewing in section 4.6. 

Using this method of Diirer we can present objects as we see them and not 

necessarily as they are in fact. For example, the lines segments A, T3 , C of 

Figure 2.2 are exactly similar in length, but according to this rule, their 

images on the picture plane are different lengths. This occurs because they 

are different distances from the viewer. More distant objects usually appear 

smaller to the viewer than similar objects which are placed nearer. Also 

5 

screen 

Figure 2.2: More distant objects appear smaller than nearer ones. 

it was noted that in a picture, two parallel lines do not, in general, appear 
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parallel. For example, railway lines moving away from us appear to converge 

and meet at a point. Such occurrences led to the development of Projective 

Geometry by Desargues. This was as a result of the violation of the axioms 

of Euclidean Geometry, which include the notion that parallel lines never 

meet. 

2.2 Introducing Anamorphic Art 

Historically, anamorphic art developed during the Renaissance about the 

same time as perspective drawing. We begin by considering a brief history 

of traditional anamorphograms which were more commonly referred to as 

`anamorphoses', although Kuchel [14] used the term `anamorphogram'. It 

is the perspective drawing rule which allows us to produce pictures which 

only look life-like when viewed with one eye, from a sharp angle near their 

side. Such anamorphoses we will call slant anarnorphograms. The creation 

of these is sometimes referred to as using the rule of perspective in reverse. 

The likely explanation for this is mentioned in subsection 4.2. 

Some of the earliest slant anamorphograms, which may be found in Leeman, 

Elffers and Schuyt [15, page 10], were drawn by Leonardo da Vinci. From 

the correct viewpoint, according to Leeman, Elffers and Schuyt [15], the 

picture 'regains normal proportions and seems to rise and float free above 

the page'. The most famous of this type of slant viewing anamorphogram is 

Holbein's double portrait The Ambassadors. A copy may be seen in Leeman, 

Elffers and Schuyt [15, pp 18-19] or in the theatrette in Edward St, The 

Glebe, Hobart,Tasmania. It is interesting to note that Hickin [11] points 

out that this painting of Holbein's hangs in the London National Gallery in 

an unsuitable position to view the distortion correctly. This is also the case 

with respect the copy in Tasmania. We suggest that this is because very 

few people understand anamorphic art. 

Anamorphoses supplied an ideal means of camouflaging themes which were 

to be kept secret, such as political messages, or obscene or erotic pictures. 

Some examples may be seen in Leeman, Elffers and Schuyt [15, page 13]. 

Anamorphic paintings, which must be viewed in cylindrical or conical mir-

rors, were fashionable toys in both Europe and China during the rth and 

18th Centuries. Salvador Dali created a set of erotic anamorphic paintings 

by simply looking into a cylindrical mirror while he painted on the surface 
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under it. Unlike Dali, we have the aid of a computer to allow us to apply 
our results and give us an accurate picture. 
Another form of anamorphic art was the curved surface painting which be-
came a problem for Fresco painters. They had to master not only painting 

on flat walls, but also, the technique for decorating curved walls and corners 

of vaults. 

2.3 The historical development of stereograms 

We now introduce the idea of stereopsis and some background to the con-
ception of the Single-Image random dot stereograms. It is examples of these 

that are one of the main foci of this thesis. 

Stereopsis is defined to be the perception of depth, and location of objects 

in space. It stems from the fact that the horizontal separation of our two 
eyes means that they view their surroundings from slightly differing vantage 
points. 
Stereopsis enables a predator to penetrate the camouflage used by its prey, 
because monocular form perception is not a necessary pre-requisite for stereo-

scopic vision. For example, an insect diguised as a leaf may be invisible 
monocularly but stands out in depth when viewed stereoscopically. 

Leonardo da Vinci pointed out that a sphere placed around the midline, and 
in front, of our eyes is seen differently by each eye: we see slightly further 
around the sphere on the left with the left eye, and on the right, with the 
right eye. The Principle of Stereopsis was first enunciated by Sir Charles 
Wheatstone in 1838 when he realized that the two projections of a cube 

onto the two retinas are different. This difference is evident in Figure 4.32. 
He invented the stereoscope which was present in almost every household 

for about half a century. In his original stereoscope, a viewer looked at 
two almost identical pictures in a box through two mirrors so that each eye 
saw only one picture. The small relative horizontal displacements of image 

points on the retinas lead to apparent differences in depth. In more recent 
stereoscopes than Wheatstones, the presentation of the appropriate image 

for each eye is achieved by two lenses. These are inclined so as to shift the 
images for each eye towards each other. This ensures the visual blending of 

the two images. 
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Early pioneers in photography turned to three dimensional photography 

as a means of adding extra realism to their pictures. By three dimensional 

photography we mean the use of a stereo camera. Such a camera has two 

lenses placed to mimick the positions of the human eyes. Consequently, 

two photographs of an object or scene may be taken simultaneously. A 

photograph of such a camera may be seen in Stereogram [24, page 361. 

Stereoscopic photographs from this era documented many aspects of society 

from technology to art, to pornography, to wars and current events. An 

image viewed stereoscopically seems much sharper and brighter, and enables 

the viewing of greater detail (see examples in Stereogram [24, pages 36-411). 

In the 1950's anaglyph methods became popular for making comics 

where the pictures appeared to be three dimensional if viewed in a par-

ticular way. Such methods are experiencing a revival today in children's 

books. Anaglyphs are pictures that combine two pictures, one for each eye, 

into one picture. Traditionally, the picture for one eye is in red, and the one 

for the other eye, is green or blue. The result is viewed by wearing glasses 

with a red and a green 'lens', or filter, which is not a true lens, but a piece of 

coloured cellophane. Each eye can then only see the picture printed in the 

opposite colour to its lens. Again a three-dimensional image is perceived. 

There are many areas in which three dimensional techniques are used. Geog-

raphers study land formations using perceived three dimensional images re-

sulting from stereo photographs taken from aeroplanes or weather balloons. 

Computer programs analyze photographs taken via satellites to construct 

surface maps of the earth and the moon and in chemistry, stereoscopic draw-

ings of large complex molecules are made to help in understanding structure. 

In medicine three dimensional pictures are taken to study arteries. Stereo 

viewers can also be employed in detecting forgery of currency and the like. 

Not only did Salvador Dali paint art to be viewed in cylindrical mirrors, 

he also painted examples of what have been termed Stereograrns. Unlike 

the perspective art which came before, these paintings are especially cre-

ated for the viewer to use both eyes. There are two paintings; one for each 

eye to view. As we will see in Chapter 3, the eyes combine with the brain 

to fuse the separate views for each eye stereoscopically to give a perceived 

three-dimensional image. Dali produced his stereo paintings by transfer-

ring images photographed with a stereo camera onto canvas. Examples of 

his work may be found in Stereograms [24, pp43-45]. For large paintings a 
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stereoscope such as Wheatstones must be used for viewing, but with prac-

tice, smaller examples can be fused with the naked eyes. If the distance 

between matching points on the two pictures is less than the viewer's eye-

spacing, then the three-dimensional image will be seen behind the page. If 

the spacing is greater than eye-spacing, then the crossed-eye technique (see 

section 3.2.1) allows an image to be perceived which appears to float in space 

between the viewer and the painting. 

While Salvador Dali's stereo art does not greatly camouflage the picture to 

be seen, we will create Single-Image Random Dot Stereograrns where the 

intended image is completely hidden or disguised for monocular viewing. 

One researcher who demonstrated the non-reliance on monocular cues 

for stereopsis is Dr Bela Julesz. He was introduced to aerial stereo view-

ing during his time as a radar engineer. In 1963 he invented an ingenious 

method for demonstrating stereopsis. He didn't want to show his test sub-

jects stereo photographs which might have been used with a stereoscope, as 

he wanted to remove any possibility of subject recognition with monocular 

cues. He disguised his pictures by using a computer to draw pairs of random 

dot pictures that his test subjects viewed through a special viewer. For 'un-

crossed viewing', provided that the matching dots for each eye are separated 

by a horizontal distance that is less than the observer's eye-spacing, then 

with practise, it is possible to view them without the aid of a viewer (for 

methods see subsection 3.2.1). By matching dots we mean the individual 

dots, one for each eye, which represent a single point of the object being 

viewed. These pictures of Julesz are commonly referred to as Random-Dot 
Stereograms or RDSs. An example of a Julesz-type random dot stereogram 

can be seen in Figure 2.3 (From Rock [25, page 62]). It can be seen that 

there are no obvious monocular cues to help with the recognition of the 

supposed image. When the two images are fused, a triangle is 'seen' appar-

ently floating between the viewer and the page. It must be noted that a 

reader who is an inexperienced viewer of stereograms may have difficulty in 

fusing the images of Figure 2.3. Hopefully, after 'experiencing' this thesis 

perception may be possible. Although Julesz is credited with the invention 

of RDSs, it was pointed out by Dr C.W. Tyler in Stereogram [24, page 83] 

that in 1939, Boris Kompaneysky from the Russian Academy of Fine Arts 

published a random dot stereogram of the face of Venus. 
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The leaf room described in Tychsen [20, page 784], was also a fore-runner 
of the random dot stereogram. This is a two metre cubical box. Its inside 

surfaces are covered with leaves. Using binocular vision, the cubical shape of 
the box is easily perceived. This is not the case with monocular observation. 

Figure 2.3: Two-picture Random Dot Stereogram (RDS) of Julesz 

Julesz [13] describes the term Cyclopean eye which was first coined by 
Helmholtz to denote a hypothetical eye. This hypothetical eye was intro-
duced by Hering to incorporate our two real eyes into a single entity. While 
Hering's eye is described as being in the middle of our forehead (like that 
of the mythical Greek Cyclops), Julesz describes it as a central processing 

stage inside the brain that "sees" a single stereoscopic image given the ap-

propriate stimuli in the two eyes. This process is commonly thought to be 
centered at the Striate Cortex, the terminus for the pathways of nerve fibres 
extending from corresponding retinal areas in the two eyes. 

In 1983 as a result of considering the "wallpaper effect" C.W. Tyler [28] 
and [24] described a way of combining left and right eye information into 
one picture called an Autostereograrn. This can be viewed easily without the 

aid of special glasses or a stereoscope. This effect was so-named because Dr 

David Brewster noticed that if the repetitive horizontal patterns in wallpaper 

and friezes are viewed in a particular way, then a depth impression is created. 
Further discussion of this effect appears in section 3.3. 

It is examples of Autostereograms which we will consider in this thesis, 
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but we will refer to them as Single-Image Stereograms. This terminology 

has recently been used by Maeder [11. Other examples are the commercial 
ones which are currently flooding the market such as those produced by 
N.E.Thing Enterprises in books such as 'The Magic Eye' [5]. Other research 

examples are those produced by Bar-Natan [1] and Terrell and Terrell [27]. 
In the creation of these stereograms we will use Direr's technique for per-
spective drawing, however we combine the perspective drawings for two 

different viewpoints; one for each eye. 
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Chapter 3 

Some Physiological and 
Perceptual Analysis of 
Stereopsis and the Viewing 
of Stereograms 

This chapter is in response to the mathematics and computing papers relat-

ing to random dot stereograms which have been published during the three 

years that we have been working in this area. In these papers, and in earlier 

papers cited in these papers, many questions are left unanswered and many 

concepts are poorly defined. We could be forgiven for thinking that many of 

the stereograms published have been refined for easy viewing through trial 

and error. Very little information has been included relating the mathe-

matics to the physiology of the human visual system, or to the perceptual 

view of stereopsis. This is surprising since random dot stereograms were 

conceived as a valuable tool in these areas for the testing of the presence of 

stereopsis in humans. 

Statements such as the following examples abound: 

"To aid in viewing a stereogram, the range of height values should not be too 

large in relation to the distance to the image plane. A maximum value of.. 

is the largest one should try", Maeder [17, page 53]; 

"The stereo effect is easier to obtain with a rather small disparity" or "A 

shorter repetition width produces a crossed disparity relative to the mean 

repetition width, while a longer one produces an uncrossed disparity", Tyler 

and Clarke [28, page 185]; 

"The deviations from periodicity encode depth information", " There are too 
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few vertical strips to allow the random dot stereogram effect to be discerned 

easily", Dror Bar-Natan [1, page 70]. 
Such statements lack precision especially for a reader with no expertise in 
vision research. Whilst it is possible to do the mathematics and computing 

without such expertise, we felt it an essential part of this project to delve 
into the areas of physiology and perception. This gave us a greater under-
standing of the intricacies involved in creating satisfactory stereograms for 
viewing. We also wanted our stereograms to be as mathematically correct 
as possible. This does not always mean that the intended perceived image 

is the one which is most readily seen by the viewer. Possible reasons for this 

became apparent to us, and we hope will become apparent to any reader of 
this chapter. 

The suggested 'reader experimental activities' in section 3.2, although labo-
rious, are included to help the reader achieve some understanding, and also 

to facilitate the practice of various viewing techniques. 

Before discussing the mathematics involved we will summarize some 

physiology and psychology of stereoscopic vision. This will aid in our under-
standing of how we might see Single-Image Stereograms. It will also help us 
make various assumptions and restrictions for our model. The evidence is 
a collation of results from many researchers. These results are by no means 
conclusive. Some inaccuracies and imprecise definitions will be discussed. 

3.1 The Eye and Vision 

The human eye possesses remarkable properties which allow most of us to 
view the outside world. In order to have some understanding of stereoscopic 
vision we will look at some of the eye's most vital physiological features. 
They will be by no means exhaustive. The positions of the cornea, iris, 
lens and retina can be seen on the diagram of the eye (see Figure 3.1). 
The most vital neural part of the eye is the retina. This, combined with 
the brain, contributes most of our ability to see. The collective function 

of the non-retinal parts of our eye is to keep a focused, clear image of the 

world, fixed on the retina. Each eye is held in its socket by six muscles that 

control its position. The cornea and the lens focus the light rays onto the 
back of the eye. The lens regulates focusing for near and far objects by 
becoming more, or less, convex. This changing of the shape of the lens is 
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Figure 3.1: Horizontal section of an adult human right eye viewed from 
above 
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posterior nodal point 

called accommodation. 

The retina is part of the brain and is connected to it via a bundle of 

fibres called the optic nerve. It has the shape of a bowl and is about 1/4mm 

thick. It consists of three layers of nerve-cell bodies. The tier of cells at the 

back of the retina contains the light receptors, the rods and the cones (125 
million  of them). The rods are far more numerous than the cones, which 
are responsible for our ability to see fine detail and for colour vision. In the 

very centre of the retina where our fine-detail vision (acuity) is best, we have 
only cones. This rod-free area is called the fovea. It is a depression which 
occupies about 5 0  of arc or about 1.5mm on the retina where the cones are 
most densely packed. The very centre of the fovea is called the foveola. 
Functionally, the fovea is the position on the retina to which, by turning the 

eyeball, a person brings the image of whatever is of greatest interest in his 
visual field (illustrated in Figure 3.4). 

Although the path of rays of light in the eye is in general quite com-
plicated, there is one ray for each point source which travels in almost a 
straight line from its external source to the retina. It is in general a suf-

ficient approximation to consider that all such lines cross inside the eye at 

one point called the posterior nodal point, situated towards the rear of the 
lens. In order to obtain the retinal image of any object, we will imagine a 
straight line drawn from each point on its surface to the nodal point and 
then extended to the retina. We will refer to this line as the viewline for 
each point (see Figure 3.2). 

Figure 3.2: Viewline; posterior nodal point isP.,' 17mm from the retina in a 
normal eye 

The retina has a very pronounced curvature and covers the inside of the 
eyeball up to a region which is very close to the lens. It is because of this 

that we have a high degree of peripheral vision. Light which enters the eye 
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at a high angle (up to 104°) from the visual axis can still stimulate a point 
on the retina and so can be seen. This is due to consideration of refraction 
at the corneal surface (see Figure 3.3). We define the visual axis to be the 

Figure 3.3: Refraction at the corneal surface 

line through the foveola and the nodal point of the eye. 

The vertical and horizontal fields of human vision are shown in Figure 3.4. 
The vertical range is about 140° and horizontally, it is about 150° for each 
eye. Man has binocular sight where the fields of vision for each eye overlap. 
This visual field is illustrated in Figure 3.4 by the darker shaded region. The 
smaller outer wedges represent the outer fringes of vision for each individual 
eye. Not surprisingly, peripheral vision is not as accurate as direct vision, 
as the rays need not fall on the retina near the fovea. When we fix our gaze 
or fixate on a given point, the eyes converge or diverge in order to bring 
the image of this point on to the fovea of each eye simultaneously. In this 

case, the point is seen only as a single point. The convergence or divergence 
movements where the eyes are turning simultaneously in opposite directions 
will be referred to as vergence movements. The amount of convergence 
varies inversely with the distance of the point. For very distant objects, 
such as stars, the viewlines are parallel and if we are viewing in this parallel 

way, the objects or points at other distances for which the convergence is 

not therefore correct, appear as two objects. This can be demonstrated 
by holding one finger at the level of your eyes while focusing on a distant 

point. We are aware of two blurred images of the finger. Similarly, if we 
focus on a nearer point than the finger, again two images can be seen. This 

effect is illustrated in Figure 3.15. The process where the brain allows us 
to see a single binocular image by combining two images, one for each eye, 
is called fusion. This terminology seems most appropriate as we shall see 
in our attempts to fuse two dots in section 3.3. It relies on appropriate eye 
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Figure 3.4: Man's vertical and horizontal fields of vision 

36 



vergence movements. 

3.1.1 Some Physical and Psychological bases of Stereopsis 

Stereopsis allows us to make relative depth judgements. It enables us to 

decide whether an object is nearer to us, or further away from us, than any 

other object within a region of space around a fixation point. Suppose a 

Figure 3.5: Fixating on a point, f 

viewer fixates on a point, f, as illustrated in Figure 3.5. That is, he/she 

adjusts his/her eyes so that the images of f fall on the foveolas, fi and fr , 

of the eyes and the viewlines pass through the nodal points ni and nr . Now 

suppose that q is another point in space, within the peripheral vision region 

of the observer. Monocularly this point, q, will have an image on the retina 

that is to the right, left, above, or below the foveola. Binocularly, this point 

will project to either corresponding or non-corresponding points on the two 

retinas. According to Tychsen [20], corresponding points (such as qi and qr  of 

Figure 3.6) on the two retinas are the same horizontal and vertical distance 

from the two foveolas. The lack of correspondence of two such images is 

referred to as disparity. These notions of disparity and corresponding points 

are defined in a variety of imprecise ways in the literature. Their definitions 

appear to have a geometric basis which stems from a consideration of the 

Vieth-Muller circle or geometric horopter. The Vieth-Muller horopter for a 

particular fixation point, f, is defined to be the set of points lying on a circle, 
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Figure 3.6: Corresponding points qi and qr : fl=q, fr  

in the horizontal plane of the head, that passes through the nodal points of 

the two eyes and this point of fixation (see Figure 3.7). In most instances 

though, there is no mention of the horizontal plane through the head. In 

general, the horopter is variously described. Walonker and Feldon [30, pages 

183-185] define their horopter to be the locus of all the points in external 

space that stimulate corresponding points on the retina. Perceptually, see 

Hubel [12, page147], it is defined to be the set of points that are judged by 

the viewer to be the same distance away from him as the fixation point. In 

this latter description the term "distance" is ill-defined as it is a matter of 

judgement on the viewer's part. Tychsen [20, page 779] suggests that "an 

object confined to the horopter will be seen as flat because it projects to 

corresponding retinal regions, causing zero horizontal disparity." 

Similarly, Julesz [13, page 165] says that all points that lie on the Vieth-

Muller circle will have zero disparity, and that the Vieth-Muller circle is "an 

arc on the horopter surface, a surface of space having points which appear 

at the same depth". 

What would be the shape of this horopter surface? Could the notion of 

the Vieth-Muller circle be extended to a surface such as a torus obtained 

by rotating this circle about the line through the nodal points of the eyes? 

Luneburg [16] presented non-conclusive evidence to suggest that the answer 

• to this question lies in a consideration of Hyperbolic geometry. We will 

present some of his ideas in section 3.5. 
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We will now consider some simple geometry of a circle as a means of 

understanding some of the definitions. As well we will point out some defi-

ciencies in the use of this geometry in attempts to describe vision. Consider 

the Vieth-Muller circle for a fixation point f. Note: This is sometimes re-

ferred to as the Vieth-Muller horopter but it is restricted to the plane through 

the fixation point and the nodal points of the eyes. Any point q on this circle 

Figure 3.7: Vieth-Muller circles for different fixation points 

will have image points, qi and qr , on the left and right retinas which are de-

fined to be binocularly corresponding points (see Figure 3.8). Tychsen's [20] 

definition of corresponding points tells us that they are the same horizontal 

and vertical distance from their respective foveola,s and that qfj = qf  

Walonker and Feldon [30] express this idea of corresponding points slightly 

differently. They suggest a superimposition of the two eyes as a pictorial rep-

resentation of the imaginary cyclopean eye. In their case, the corresponding 

points coincide exactly (see Figure 3.9) so that arclength (giqr)(ftfr) (here 

the notation (qlq,.) represents the superimposed point (qi on q,.) etc.) equals 

arclength r fr  which also equals arclength qj fj.  Now if we again examine 

Figure 3.8 and suppose that the angle subtended by the minor arc n r ni at 

the point f is O. This arc will also subtend an angle of 9 at the point q 

on the same circle. (Angles in the same segment of a circle subtended by 
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Figure 3.8: Corresponding points qi and qr 

Nod 

Figure 3.9: Corresponding points superimposed 
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the same arc are equal.) So we have the situation which we again depict in 

Figure 3.10 where triangles font and gar:, are similar and so 

qr 

Figure 3.10: Corresponding angles and arclengths 

Lqint = Lqrnr = 3. 

Next if we assume that the nodal points in each eye are in identical orienta-
tions with respect to the retinae then Lqin1fj = Lqr n, fr  would imply that 

arclength qt ft=arclength qr .  fr • 

Now, as we have seen, the lack of correspondence of two images on the 

retinas is defined as disparity. This disparity is described as a very powerful 
cue for depth perception. We will now look at this notion of disparity more 
closely. Again we examine our geometric horopter defined for a fixation 
point f (see Figure 3.11). Suppose a point s lies inside the major segment 
nt f nr  of the circle and that the angle subtended by the minor arc (chord 

ntnr ) at s is 0. The disparity of the point s can be defined as the difference 

between the subtended angles at the points s and f.  That is, 

disparity = (/) — O. 

Alternatively, if we let 7 = Lsnt f and 13 = Lfns, then 

(i) — 0  = 3 — 7 
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Figure 3.11: Disparity: difference between subtended angles 

when s is outside the triangle fninr , but inside the left half of the Vieth-

Muller circle, 

(ii) - 9 = +7 

when s is inside the triangle fnin, and 

- = 7 -0 

when s is outside the triangle fninr , but inside the right half of the Vieth-

Muller circle. 
Now the angles 7 and 3 correspond respectively to distances fisi and fr s, 

along the retina in each eye. These distances can be expressed in terms of 

arcminutes where 

ldegree = 60 araninutes = 3600 arcseconds. 

Suppose t is a point outside our circle but within the region of binocular 
vision of the viewer (see Figure 3.12). We have an analogous situation to 
that above, where again 

disparity = q5 — 

and we have similar alternatives to those above for s in terms of )3 and 7. It 

must be noted that using this definition will give negative disparity in cases 
when t is outside the Vieth-Muller circle. Now if we examine Figures 3.11 
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Figure 3.12: disparity = difference between subtended angles 

and 3.12, we note that the shifts along the retinas relative to the foveolas, 

of any image points, can be either temporal (towards the temple) as in f r  

to t,. (figure 3.12) or nasal (towards the nose) as in fi to ti (Figure 3.12). 

Perceptually a point such as s (Figure 3.11) inside the horopter, is described 

as being a near point to the viewer in the sense that the viewer perceives that 

it is closer to him/her than the fixation point, f.  According to Tychsen [20, 

page 780], such near points are described as giving rise to crossed disparities 

which are further characterized by a greater relative temporal shift of one of 

the retinal images. Conversely, a point such as t (Figure 3.12) outside the 

horopter, is described as a far point. Such far points give rise to uncrossed 
disparities which are characterized by a greater relative nasal shift of one of 

the retinal images. 

If we geometrically examine the relative retinal shifts in each of the near 

and far point cases, then the above claims seem justified see Figure 3.13 and 

Figure 3.14, except in the the cases where s and t are close to the central 

axis through the midpoint of the eyes (see Figure 3.13 (b) and Figure 3.14 

(b)). In the latter cases, the retinal shift is the same for both eyes. Temporal 

in the near case and nasal in the far case. It is interesting to note that the 

reader demonstration given in Tychsen [20, page 780] appears incorrect. He 

attempts to justify the terminologies crossed and uncrossed disparity. He 
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(b) (c) 

Figure 3.13: Overall temporal shift 

(a) 	 (b) 

Figure 3.14: Overall nasal shift 
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incorrectly assumes that when a viewer is fixating on a distant point that 

the right-hand image of a nearer double or diplopic point is the right eye's 

image. Evidenced by his comment: 

" With the right eye viewing monocularly (the left eye is momentarily shut) 

the image of the nearer finger is displaced to the left." 

In reality the left-hand image of the double image is the one seen by the right 

eye. When the left eye is momentarily shut, the image seen by the right eye 

stays in the same postion and is not displaced. This can be demonstrated by 

the following experiment. Basically it is Tychsen's experiment and diagram, 

but the appropriate corrections are made. 

If we hold two fingers at different distances in front of our eyes, then when 

the more distant finger is fixated, the nearer finger is seen in crossed dispar- 

ity as a double image (see Figure 3.15). Draw a coloured spot on the nearer 

far finger 
tb. ,  

.
0 

right eye's image 	%. 	.' 	left eye's image 

	

. 	. . 	. 

ne 	ger 

■ e 

■ 

Figure 3.15: Fixating on far finger 

finger. Place this spot in a position so that when it is viewed by each eye 

separately, only the right eye can see the spot. Now if we again fixate on 

the far finger and concentrate on the double image of the nearer finger, we 

can see that the image seen by the right eye is the left-hand image which 

has the coloured spot. This same exercise can be repeated with the nearer 

finger being the object of fixation. Then the more distant finger is seen 

in uncrossed disparity and this time the right eye does see the right-hand 

image. 

It would seem that the most appropriate justification of the terms crossed 
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and uncrossed would be a consideration of the direction of the relative rota-

tion of the eyes if they move from the point of fixation to fixate on the object 

presenting the original double image. In the near point case, this relative 

rotation would be nasal and in the far point case, temporal. For example, 

sr  in Figure 3.13, shifting from s r  to the foveola fr  would require a rotation 

of the eyes away from the nose. This we could describe as uncrossing our 

eyes. 

It is interesting to note that in his discussion of near and far points, Hubel [12, 

pages 146-147] considers only the cases, (b), of Figure 3.14 and Figure 3.13. 

This may be justified as for this region about our visual axis, our acuity is 

greatest. 

Suppose we want to measure the disparity between the stimuli s i  and s2 of 

Figure 3.16. 

Figure 3.16: Measuring disparity between s i  and s2  

Tychsen [20, page 781] suggests that we can simplify our calculations of 

disparity by considering right-angled triangles as shown in Figure 3.17. The 

two stimuli, whose disparity we are measuring, are aligned in front of one 

eye as shown. By measuring the distances di  and 4, we can easily calculate 

their disparity if we know the interpupillary distance (eye-spacing, e) of the 

viewer. That is 

disparity = — 8 = arctan(e14) — arctan(e I 	= 8. 
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A 

d 1  

d2  

Figure 3.17: Measuring disparity - simplification using right triangles 

In general this simplification seems inappropriate as in aligning two non-

aligned stimuli, the angles 0 and 9 are preserved only if the movement of 

si  to sc is along the Vieth-Muller circle for s i  and similarly, for 82, as 

shown in Figure 3.18. Practically this does not seem helpful. Although 

we could measure d 1  and d2  with a ruler or measuring tape, we have no 

simple way of finding d'1  and di2 . If we were to approximate the d'1  and by 

the measurements of d1  and d2  respectively, then according to the angular 

definition of disparity, large errors occur. 

However, if disparity is calculated by using the depth of the two stimuli, then 

there is no problem. By depth, denoted by dp, we mean the perpendicular 

distance between a line through the nodal points of the eyes and a line 

through the stimulus point which is parallel to the line through the eyes as 

shown in Figure 3.19. In all the literature which is related to vision research 

and the physiology of the eyes there seems to be confusion between the 

two quantities 'depth' and 'distance'. Neither is well-defined. One possible 

definition of the distance of an object from the viewer is its distance from 

the midpoint of the viewer's eyes. This is denoted by dm  in Figure 3.19. 

Here in represents the midpoint of the eyes and again e denotes the eye-

spacing. Luneburg [16, page 27] mentions that if a number of marks are 

arranged at equal distances on a Vieth-Muller circle, then a viewer with 

fixed head position will perceive these marks as though they are arranged 

on a circle with the observer as the centre. Later he specifies that the 
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Figure 3.18: Aligning two stimuli movement along the appropriate Vieth-
Muller circles 

e/2 	e/2 

Figure 3.19: Distinction between 'depth' and 'distance' of a stimulus from 
the nodal points 
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centre of this interpreted circle is m, the midpoint of the eyes. That is, the 

viewer's interpretation differs from the physical reality. The reader may try 

this experiment using Figure 3.68 of section 3.5. 

In the special case where the object lies on the central axis through the eyes 

its depth is equal to its distance. 

It must be noted that the above definitions and discussion relate to the 

theoretical geometric circle (or horopter in one plane). Practically it has 

been shown by researchers that by using the perceptual definition of the 

horopter (that is, the set of points that are judged by the viewer to be the 
same distance away from him as the fixation point), some variation from 

the theoretical occurs. Luneburg's experiment has already been outlined. 

Another practical method for plotting the horopter for a particular fixation 

point is described in Tychsen [20, page 775]. This horopter is slightly flatter 

than the geometric horopter. Its deviation being attributed to complex 

neural and optical factors. 

It appears that discussion and measurements of disparity in the literature 

relate to the geometric properties of the circle which we have discussed. 

This is regardless of the fact that the so-called perceptual horopter, with 

less curvature, would not now pass through the nodal points of the eyes. 

Since our eyes and brain are extremely sensitive to miniscule changes in 

distances along the retinae, any approximations made would seriously affect 

the credibility of the results. 

The precise measurement of disparity is not important to this discussion. It 

is the concepts that are important if we are to develop some understanding 

of the three-dimensional effect we see in stereograms where we are presented 

with matching elements with changing horizontal disparity. Such elements, 

one for each eye, are representative of a single point of the object being 

viewed. 

At this stage we can summarize by saying that when an observer fixates on 

a point of an object, the images of this point fall on the foveolas of the eyes. 

Any point in the field of view which the observer judges as being nearer 

than the fixation point, may have image points on the retinas with crossed 

disparity. This depends whether the actual geometry fits the perception of 

the viewer. Any point in the field of view which the viewer judges as being 
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further away than the fixation point may have image points with uncrossed 

disparity. Any point which the viewer judges as being the same distance 

away as the fixation point may have image points with zero disparity. Such 

points with zero disparity are described as corresponding points. By far the 

simplest way to judge whether a point is nearer or further away than some 

fixation point, is to measure in terms of depth. 'Depth' is much easier to 

define than 'distance', as it is the same for both eyes. 

3.1.2 Fusing matching retinal elements 

The fusion of two matching retinal elements to obtain a single binocular 

image is one of the essential aspects of stereopsis. The left and right retinal 

images of points on the horopter are "fused" for single vision and, by defini-

tion, have no disparity. However there is a region of single vision surrounding 

the horopter that does give disparate (non-zero disparity) image points on 

the retinae. This is known as Panum's Fusional Space. The perception of 

depth is dependent on the fusion of disparate retinal elements which are im-

ages of points within Panum's space. This space has a corresponding region 

on the retina within which image points must fall. This is called Panum's 
area. The horizontal extent of Panum's area varies according to different 

researchers. Originally Panum gave its size as representing a visual angle of 

approximately 6 minutes of arc. More recently its size has been extended. 

According to Tychsen [20], Panum's area is not of fixed size, but depends 

on whether the target is stationary or moving, and whether the eyes are sta-

tionary or moving. Hubei [12], says that it is equivalent to a visual angle of 

2°, or about 0.6mm on the retina. It must also be noted that Piantanida [23] 

suggests that although the disparity of matching points can be increased to 

2° or more, with fusion being maintained, refusion can only occur within 

much smaller disparities. A rough cross-sectional diagram representing the 

idea behind Panum's fusional space is shown in Figure 3.20. Here if f is 

the fixation point then p would present images on the retinas which can be 

fused provided 

I 0 — j <2° 

or alternatively, 

0-2 <0< 0+2. 
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The point q for which 

10 — al > 2°, 

would be seen as a double image. The diagram presented by Walonker and 

Feldon [30, page 1861 is more specific about the shape of Panum's area. The 

Figure 3.20: Shaded region represents Panum's fusion area in one plane 
about the fixation point f. 

reader can roughly demonstrate the existence of this fusion space by carry-

ing out the experiment of fixating on a far pencil point. Next raise a second 

pencil so that it is between the eyes and the far pencil. As mentioned previ-

ously in the case of a finger, unless this second pencil is in the vicinity of the 

fixated pencil, we see a double image of the nearer pencil. However, if we 

gradually move the closer pencil nearer to the far pencil, we become aware 

of the merging of the double image into one. We may conclude that a single 

image of the nearer pencil will be perceived when it lies within Panum's 

fusional space. 

3.1.3 Measuring receptive field size outside the eye 

Hubei [12] mentions a receptive field size measured outside the eye as shown 

in Figure 3.21. For the human eye one millimetre on the retina corresponds 

to 3.5° of visual angle. On a screen 1.5 metres away, 1mm on the retina 
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screen distance: 1.5m 

   

89mm 

 

  

1 mm 

  

eye 

Figure 3.21: lmm on the retina = 3•5 0  of visual angle 

corresponds to 89mm. Figure 3.21 seems to give a specific case which ap-

proximates most situations in the same way that Tyschen's right-triangles 

of Figure 3.17 did. 

Since the disparity represents a difference between two such angles, one for 

each eye, it is not obvious whether we can represent the disparity as a dis-

tance on a screen. We will investigate this possibility and make suggestions. 

It should be noted that in general the term 'receptive field' refers to the spe-

cific receptors which feed into certain cells in the nervous system. In vision, 

it refers to a region on the retina. The size of such a region is hard to mea-

sure which is the reason that Hubei suggests the above measurement from 

outside of the eye. 

Before closing our discussion on the physiology of the eye we need to make 

mention of the saccadic, or jerking, movement of the eyes. When we explore 

our visual surroundings, rather than our eyes smoothly and continuously 

moving around the scene, they fixate on an object and hold that position 

for a brief period (Hubel [12] says approx. 1/2 sec.) and then suddenly jump 

to a new position. They then fixate on this new target somewhere in the 

visual field. This new target may dominate in some way. During the jump, 

or saccade, the eyes move so rapidly that our visual system is unaware of 

the change. Researchers have monitored eye movements with the aid of a 

tiny mirror or coil of wire on a contact lens. In 1957, a Russian psychophysi-

cist, A. L. Yarbus, monitored the eye movements as they explored various 

photographs with both eyes for one minute. One of his examples is shown 

in Figure 3.22 (From Adler [10, page 177]). Feldon and Burde [2, page 177] 
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report that Varbus found: In examining complex stimuli the eye foveates 
longest on elements with the relevant information, whereas many elements 
are never viewed foveally. 

Apparently, when reading, our eye movements demonstrate a "staircase" 

Figure 3.22: Record of eye movements during free examination of the pho-
tograph with both eyes. 

pattern. A record of this pattern for a subject reading a Shakespearean 

sonnet is shown in Figure 3.23 (From Adler [10, page 177]). In this case, 

the movements consist of alternating saccades and periods of fixation (about 

100 to 500 msec each). Each saccade moves the fovea about eight characters 

to the right. At the end of each line a large saccade to the beginning of 

the next line occurs. When our eyes fixate on a point they do not lock into 

position as we might expect. They make tiny movements called microsac-
cades which occur 2 to 3 times per second and are about 1 to 2 mins of arc 

in amplitude and in random directions. These microsaccades, together with 

a high frequency tremor, are vital for the viewing of a stationary scene as 

they prevent the fading of the retinal image. 

We have included this information, as we consider the question: 

How do our eyes behave when viewing random dot stereograms? 

Given the homogeneous nature of the dots, we don't usually have any dom-

inant features which would suggest the possibility of the type of saccadic 

movements described for pictures. It is possible that our eye movements 
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Figure 3.23: Eye movements for subject reading Shakespeare. 

might demonstrate the type of 'staircase' pattern that we use for reading. 
We have horizontal rows of dots, just as we have horizontal rows of char-
acters, when we read. This would be interesting to check experimentally, 
however, it is beyond the scope of this thesis. We can state, however, that 

the computer animation of the cube stereogram discussed in Chapter 5 leads 
to a vivid three-dimensional cube rotating in space. The speed with which 
the animation frames change would suggest that row by row scanning of all 
the dots is unlikely. 

The question relating to eye movements arose because of a further question: 
How do we perceive stereograms? 

In research papers, Bar-Natan [1], Mitchison and Westheimer [21] and Mc-

Kee and Mitchison [19], dealing with random dot stereograms there is often 
some reference made to a 'fixation plane' behind the stereogram. Given 
that in stereograms we mimick retinal information to obtain stereopsis, this 
statement leads to an obvious connection between this 'fixation plane' and 
the 'horopter'. We now carefully explore the viewing of dot stereograms, to 
check this notion of a 'fixation plane'. Its possible relationship to the curved 
horopter, perceptual or geometric, will be examined. 
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3.2 Mimicking Retinal Information for Stereop-
sis 

We will now look at how we can 'trick' our brains into believing that they 

are viewing a three-dimensional object. This can be done by mimicking 

the exact information that the retinas would receive if indeed, there was an 

object in the 'perceived' position. In order to appreciate the results of this 

section we need to master the techniques for viewing stereograms. 

3.2.1 Techniques for viewing stereograms 

It is important not to overstrain your eyes when trying the fol-

lowing techniques for viewing stereograms. If viewing correctly, your 
eyes will still feel quite relaxed. These techniques sometimes take a while 

to master. The aim is to force your right and left eyes to look at different 
places at the same time. 

Technique 1: UNCROSSED or PARALLEL technique  
This is the technique used when we want to view a stereogram where the 

perceived image (in depth) is behind the plane of the stereogram. Although 
it is sometimes referred to as the parallel technique, the viewlines from each 
eye are not parallel to one another once we have fixated at a suitable depth 

behind our page. To facilitate the fixation at a point behind the page, we 

sometimes stare into the distance to begin with, so that at this stage, the 

viewlines are parallel. The required situation can be represented schemati-

cally by the following Figure 3.24 which shows a cross-sectional view from 
above. 

Methods for Uncrossed technique 

Note: These same techniques can be used for two or more dots. If used for 

two guiding dots for a larger picture, then the aim is to maintain the state 
which allows you to see the three dots, and shift your attention to the larger 
stereogram. 

(1) Look at the stereogram from a normal viewing distance but instead of 

focusing on the page, stare beyond it. After a few seconds, your eyes and 

brain will adjust to the correct fixation point for the stereogram and the 
image will 'miraculously' appear. 
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• 	• Row of dots 

(r-.**`••• viewline 

left eye 	 right eye 

Figure 3.24: Uncrossed eyes fixating beyond the stereogram 

(2) Place a transparent sheet of shiny material such as overhead projector 

film over the page of the stereogram. Sit in a position which allows you 

to see your reflection in this sheet. If you relax, and concentrate on this 

reflection which is behind the page, then in a few seconds the image will 

appear. 

(3) Hold the page with the stereogram flat up against your face. Stare 

through this page as though you are viewing a distant object. Very slowly 

move the page away from your face. At some point, as you move the page 

away, the three dimensional image should appear. 

(4) If none of the above methods work, then for viewing two dots or two-

picture stereograms, place a piece of cardboard perpendicular to the page, 

and between, the two pictures or dots. The cardboard should be about the 

size of a postcard. If you stare blankly either side of the cardboard, the two 

pictures should fuse so that you see a single picture. You should then be 

able to slowly move the cardboard without losing the fused image. 

Technique 2: CROSSED -EYES technique 
This is the technique employed when we want to view a stereogram where 

the perceived image, in depth, is between the page of the stereogram and 

the viewer. It also has the advantage of being a possible method for view-

ing stereograms where the spacing between matching dots exceeds the eye-

spacing of the viewer. It is called the crossed-eyes technique because it 

requires that as a viewer you cross your eyes; in a relaxed way. This can 
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be represented schematically by the following Figure 3.25 which shows a 
cross-sectional view from above. 
Method for Crossed-eyes technique 

• • • 

perceived dot 

viewline 

left eye 	 right eye 

Figure 3.25: crossed eyes fixating in front of the stereogram 

Hold up your finger between your eyes and the stereogram and stare at your 
finger. This will cause your eyes to cross. Hold your eyes as they are and 
shift your attention to the stereogram. You may need to move your finger 
back and forth until you find the point at which the three-dimensional image 

is clear. 

We now return to our discussion of mimicking retinal information. 

3.3 Building and viewing basic dot stereograms 

Consider the two dots shown in Figure 3.26. Next concentrate on the dots 

• 	• 

Figure 3.26: Focus behind the page 

so that your left eye focuses on the left dot and your right eye focuses on 

the right dot. This means the lens of each eye will be accommodated for 
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its particular dot on the page, but the viewlines from each eye will meet 

behind the page. There are various techniques which can be used to achieve 

this eye positioning, referred to as the 'uncrossed' technique, which can be 

seen in subsection 3.2.1. The aim is to 'fuse' the two dots by adjusting 

the angles of your eyes until you have a stable image of three dots only. 

This often involves a stage of going through four blurry unstable dots first. 

When viewed correctly, the dots will appear as shown in Figure 3.27 where 

the 'fused' dot appears to be at the midpoint of the other two dots. 

The description of this process as fusing the dots seems most appropriate as 

we do have the impression that we are superimposing one dot on top of the 

other. This impression is very marked if we attempt to fuse dots of differing 

size and shape, or dots of different colours. In these cases we are aware of 

what could be described as a shimmering effect. (The reader can easily check 

this out.) Our brain seems to alternately choose each of the different image 

dots as the perceived dot. This confusion is not surprising. In normal stereo 

viewing, the images of a single point on an object would be almost identical 

in size, shape and colour. Any minute differences could be attributed to the 

slightly different viewing positions of the eyes. In the discussion that follows 

we will be presenting identical dots to each eye. Diagrammatically, we can 

• 

Figure 3.27: Perceived dots 

represent the situation as shown in Figure 3.28 where d 1  and d2  represent 

the dots, 1 and r represent the nodal points of the eyes and p represents the 

perceived dot. The points 1,r,d t ,d2  and p are co-planar. Our perpendicular 

distance from the line di V d2, is d and pd  is the depth of the perceived point, 

p, behind the page. Unless otherwise stated, we assume that the viewer is 

standing parallel to the page of the dots. By this statement, we mean that 

the line through the nodal points, I V r, is parallel to the line through the 

dots, d1  V d2. The presence of three dots comes about because when the 

right eye is focused on d2 , there will still be an image of the point d 1  on 
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Figure 3.28: Dots d 1  and d2; perceived point p 

its retina (in peripheral vision). Similarly, the left eye focused on d1  will 

still 'see' d2 . Using geometry, the exact positions of these peripheral images 

can't be pinpointed in the same way that p can. Maybe they are 'projected' 

along the viewlines (dotted in Figure 3.28) to a depth similar to that of p? 

(uniocular projection is mentioned by Luneburg [16]) 

If s represents the distance between dots d 1  and d2  and e represents the 

distance between 1 and r (eye-spacing), then using similar triangle results 

we have 

sle=Pcil(Pd+d). 	 (3.1) 

This is a significant result, as geometrically, if the dot spacing and viewing 

distance remain fixed, then the depth, pd, of the perceived point p will be 

fixed. 

We have an analogous result for "crossed-eyes" viewing. That is, 

sle = p'/(d — 24), 	 (3.2) 

where in this case, p'd  > 0 represents the depth of the perceived point,p', in 

'front' of the row of dots including d 1  and d2 . That is, between the viewer 

and the stereogram, and in the same plane as the dots and the eyes. Note: 

The eye-spacing, e, is fixed for any particular viewer. It does, however, vary 
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between individuals; for women the range is 55-62 mm; for men the range 

is 60-67 mm. 

Theoretically, any stimulus on either viewline of Figure 3.28 would allow us 

to perceive the point p. The reader can demonstrate this for him/herself 
by drawing the two dots on different pieces of paper and then by moving 
one piece closer and closer along either of the viewlines, p V d 1  or p V d2 . 

It is to be noted that practically, this experiment demonstrates that our 

eyes cannot simultaneously be accommodated for stimuli that lie at vastly 
differing depths from the eyes. Consequently, the fusing of the images of the 

two dots becomes increasingly difficult as the difference in depth between 
the dots increases. If the presence of these dots as stimuli is to mimick a 
real situation, then it is sensible to keep our dots the same depth away from 
us. When a point of an object is fixated by our eyes it is obviously the 
same depth away from each eye even though it may be at a slightly different 
distance from each of the nodal points along each of the viewlines. 
We will now consider some geometry involved in Figure 3.28. Firstly, note 

Figure 3.29: Dots d1 and d2, perceived point p; dots d3  and d4 , perceived 
point t; dots d5  and d6, perceived point q 

that if d3  and d4  are matching dots which are closer together than d i  and d2, 
then from Figure 3.29 we would expect their perceived image, t, to be closer 
to us than p. Similarly, if d5  and d6 are matching dots which are further 
apart than d1 and d2 , then we would expect their image, q, to be further 
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away from us than p. This is also obvious from the result of equation 3.1. 

We will now investigate an extension of our two dot cases in order to check 

whether this last result fits the practical situation. Consider a horizontal 

row of equally-spaced dots such as those in Figure 3.30. If we view this row 

Figure 3.30: Row of equally-spaced dots 

with either of our viewing techniques (described in section 3.2.1), then we 

do indeed 'see' a row of dots which we could describe as being on a line 

parallel to our original row. For the 'uncrossed' viewing technique this row 

is further from us than our page, and for the 'crossed' viewing technique this 

row is between us and the page (see Figure 3.31). It is to be noted that this 

is similar to the effect obtained when we view a wallpaper frieze in a similar 

manner. To achieve the same effect such a frieze must be a horizontally 

translated motif. Suppose that we now vary the spacing of the dots in our 

mactratr VIA10111M1111 ;of  
'uncrossed viewing' : 

rceived 'lilts on a line 

stereogram with equally-spaced dots 
untocular projected points 

'crossed viewing': perceived 
points on line 

uniocular projected points 

• 	 • 

Figure 3.31: Triangulation to give a row of equally-spaced dots 

row and view this new row with the same techniques as above. The result 
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Figure 3.32: Row of unequally-spaced dots 

is interesting and perhaps, not what we would expect from the application 

of equation 3.1. It would appear that the random spacing of identical dots 

means that it is hard for our brain and eyes to combine to fuse pairs of dots. 

Does the brain pair consecutive dots or perhaps, every second or third dot? 

Before attempting to answer this question, we will return to an examination 

of the row of equally-spaced dots of Figure 3.30. We were easily convinced 

that we perceive a row of dots on a line, but how did our brain pair, and 

fuse, the dots to achieve this effect? 

The spacing between consecutive dots is the same, but so is the spacing be-

tween every second dot (twice that of consecutive dots) and between every 

third dot etc. By considering the triangulation diagram for each possibility 

we can obtain some insight (see Figure 3.33). We must keep in mind the fact 

that both eyes see every dot except, perhaps, for the very edge dots. This 

mimics the situation on an object such as a cube, where the right eye can see 

points furtherest to the right which the left eye cannot see, and vice-versa. 

Provided that this geometrical model fits the actual situation, we can 

decide which way our eyes and brain have paired the dots by noting the 

number of dots which we perceive. For example, if we have n dots and fuse 

consecutive dots, then the number of perceived dots (including the two dots 

seen by one eye only) is n + 1. If we fuse every it  dot (spacing can't exceed 

spacing of eyes) then the number of perceived dots is n i. As we could 

expect from equation 3.1, the bigger the spacing between matching dots, the 

further away from us is the perceived row (assuming that we don't vary our 

distance, d, from the row of dots). 

At this point we should consider an often-mentioned problem of vision re-

search. This is termed The False Targets Problem. A detailed description 
of this problem can be found in Grimson [8, page 19] and Julesz [13, page 

119]. It addresses the fact that although there are many possible ways of 
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possible 
paedved 
dots an line 

possible placement of 
equivalent 
single-image 
stereogram 

Two picture stereogram 
with equally-spaced 
dots 

Figure 3.35: Possible perceived dots for two-picture dot stereogram 

but the spacing is different from that of the two-picture case. To achieve 

the same effect as the original case, it must be further from the viewer. This 

assumes that the geometry represents the true physical and psychological 

situation. 

Consider the following experiment where we again view a row of equally-

spaced dots, but this time we will use two guiding dots to aid in our focusing 

(see Figures 3.36 and 3.37). These guiding dots are to be fused in the same 

manner as those in Figure 3.26. That is, by focusing behind the page until 

we have a clear image of three dots as in Figure 3.27. In Figure 3.36, the 

guiding dots have the same spacing as consecutive dots and in Figure 3.37, 

they have the spacing between every second dot. In each case, when focusing 

using the guiding dots, we match the dots of the row which have the same 

spacing as the guiding dots. This is made clear by counting the number of 

perceived dots in the row. 

Now what happens if the guiding dots are spaced a non-integral multiple 

of the consecutive dot spacing? In both Figure 3.38 and Figure 3.39, the 

guiding dot spacing is greater than the consecutive dot spacing (from now 

denote as sd). 

By fusing the guiding dots of Figure 3.38 and keeping the middle dot as 

our fixation point, we appear to match every consecutive dot of our row. In 
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Figure 3.33: Triangulation for every second dot to give a row of equally-
spaced dots 

matching the dots of Figure 3.34, the brain always selects dots which allow 

us to perceive dots on a horizontal line. Any other matches may be ruled 

out as they correspond to physically unlikely situations. For example, there 

Figure 3.34: Possible perceived dots 

should not be more than one match along any line of sight from either eye. 

It should be noted that if we consider the original false targets problem for 

two-picture stereograms as shown in Figure 3.35, then it would appear that 

this two-picture stereogram with equally-spaced matching points can be re-

placed by a single-image stereogram. This single-image stereogram again 

has equally-spaced matching points (can be proved using similar triangles) 
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Figure 3.36: Guiding dot spacing is equal to sd 

• 

• • 	• 	• 	II 	• 	• 

Figure 3.37: Guiding dot spacing is twice sd 

• 

• 

Figure 3.38: Guiding dot spacing closer to sd  than to twice sd 
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• 

Figure 3.39: Guiding dot spacing closer to thrice sd than to twice sd 

Figure 3.39, we match every third dot. By measuring the spacing between 

the guiding dots in each case we could suggest that these results are not 

surprizing. In Figure 3.38, the guiding dot spacing is closer to sd than to 

twice that spacing. In Figure 3.39, the guiding dot spacing is closer to three 

times sd than to twice that spacing. This could be attributed to the fact 

that if we are fixated on our perceived image of the guiding dots which 

corresponds to a particular dot-spacing, say df, then our eyes and brain 

combine to choose sensible pairings. Possibly such pairings have spacing 

which varies the least from df. We will elaborate later in section 3.4 by 

finking this with our results of section 3.1. 

It is appropriate to note the fact that when the guiding-dot spacing equalled 

the spacing of the matching equally-spaced dots in our rows of Figure 3.36 

and Figure 3.37, then the fixated point appeared to be on a plane with the 

row of dots. That is, it appeared to be the same depth behind the page as 

the row of dots. We now extend our similar triangle result for one row of 

dots, which gave equation 3.1, to a result for multiple rows, via the following 

theorem. 

Theorem 3.1 Suppose we have a plane, H, a fixed line L not in II, such 

that L is parallel to II, and any two points, s E II and u E L (see Figure 

3.40). If the ratio, lp v 31/13 v ui, of the line segments p v s and s Vi , is a 

constant value, k, where p is a point not on L, and not in II, then the locus 

of such points, p, for given fixed k, is a plane, H', parallel to H. 

Proof: Choose t E H, such that u V t 1 II, and produce u V t to a point p', 
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Figure 3.40: Plane II; fixed line L; points s E II and u E L 

where 

   

    

v Wit v ul = k. 

Now 1:Vup' is in the plane pV uV p' and s V t divides the sides of /p'up' in 

proportion. That is, 

11, V sills V ul = Ii V Wit V ul = k (given) 

therefore s V t II p V p' 

and so 

pV 	E II' where 	Il 

Now u V t 1 II (construction) 

therefore 	uVtlIr 

and the distance between the planes, II and II', is 

171 V tl = klu V tl 

and this distance is the same for all such points u and t. 	 0 

Now consider the case of a stereogram with equally-spaced dots. As a con-

sequence of equation 3.1, our constant value, k, of Theorem 3.1, for each 

row of dots is given by 

pdld = 3/e/(1— 3/e) 
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where .9 is the dot-spacing, e is the viewer's eye-spacing, pd is the depth of 

the perceived image behind the stereogram, and d is the distance of the row 

of dots from the viewer. For each row of dots, we have a different value 

for each of pd and d. However, the ratio, pd/d, is fixed. Consequently, the 

images of equally-spaced dots lie on a plane which is parallel to the original 

plane of the stereogram. 

We have an analogous result for the case when the viewer uses "crossed-eyes" 

viewing. In this case, the constant ratio is given by 

= slel(l+sle) 

where p'd  > 0 is the distance of the perceived image in front of the stere-

ogram. 

Again the geometry fits our practical experience. This is a proof of the 

so-called Wallpaper Effect. That is, if land r represent the positions of our 

eyes, then we have the result that:- 

Rows of horizontally equally-spaced dots, when viewed appropriately, present 

a perceived image which lies on a plane parallel to the plane of the original 

dots. This plane will be behind the stereogram plane in the case when it is 

viewed with "uncrossed" eyes, and between the stereogram plane and the 

viewer, when viewed with "crossed" eyes. 

Figure 3.41 and Figure 3.42 allow us to check this result. In the first case, 

the matching-dot spacing is obviously fixed, however this is not so obvious 

in the second case. In this latter case the brain cleverly pairs the dots with 

equal spacing. How the brain does this cannot be answered conclusively, 

however, further investigations provide a possible explanation. We must 

again note that the end dots on each row of Figure 3.41 which are viewed 

by one eye only, appear to be closer to us than the perceived images of the 

paired dots. This is much more noticeable in the multiple row case than it 

was for a single row. 

We will now again investigate the addition of guiding dots to help us focus at 

an appropriate depth to enable us to fuse the images of the correct matching 

pairs of dots. 

In the case of Figure 3.43, we obtain similar results to those obtained in 

the single row case. We can force our eyes and brain to match consecutive 

dots or every second dot, according to our guiding dots. However, in the 
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Figure 3.41: Obvious equally-spaced dots 
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Figure 3.42: Not so obvious equally-spaced dots 
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case of Figure 3.44, we cannot speak of matching consecutive dots or every 

second dot. In this latter case, the vertical columns of dots give us some 

inkling as to how the dots should be matched. This spacing seems appro-

priate for the guiding dots. Once we have focused at the depth defined by 

these guiding dots, then the brain pairs other dots of all rows with this same 

spacing. This is evident as the whole picture is perceived on the same plane 

as the perceived image of the guiding dots. If we use guiding dots which are 

considerably closer together, as in Figure 3.45, then we find that all we can 

see is a jumble of dots. These dots do not present a clear image. However, 
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Figure 3.45: Guiding-dot spacing much smaller than that given by horizontal 
spacing of vertical columns 

if we double the distance between the original guiding dots of Figure 3.44, 

then again we have a planar image which is further away from us. Math-

ematically, using the result of equation 3.1, if we double the dot spacing, 

s, then the depth of the perceived dot is more than double the depth of 

the perceived dot for the original spacing. This is assuming that all other 

variables remain fixed. It must be noted that we can only judge relative 

depths of different planes. It is impossible to gauge whether the plane we 

see is at the exact depth which we would predict from equation 3.1. 

It appears that the clear vertical columns of dots in Figure 3.44 are analo-

gous to the columns of dots in Figure 3.41. Suppose the horizontal spacing 
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between the dots of the columns is s'. Additional randomly spaced dots 

occur in the first left-hand interval of width .s', of each row. Each of these 

random dots must then be paired with a dot which is a distance .s' from 

it along a row. This next dot is then matched with another dot a similar 

distance along the row. This process continues across the rows. Diagram-

matically, this situation for one row of dots is represented in both Figure 

3.46 and Figure 3.47. 

0 	• 	• 	0 	• 	• 	0 	• 	• 	0 
a 

( 

Figure 3.46: o represents dots of vertical columns:. represents random dots 

Figure 3.47: Viewlines from each eye meet on a line 

Now suppose we remove the vertical column of dots so that we have no 

obvious clue as to how the dots are to be paired. This time view Figure 3.48 
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using the uncrossed technique of section 3.2.1. Although it may take a few 

seconds, our eyes and brain are able to pair the correct dots even though 

there are no obvious guiding dots. 
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Figure 3.48: No obvious guiding dots 

In every situation we have considered so far, our eyes and brain have been 

matching pairs of equally-spaced dots. Suppose now, that we return to our 

row of dots and firstly change the spacing between one pair of dots as in 

Figure 3.49. 

As we would expect from the geometry shown in Figure 3.50, we see one 

• 

Figure 3.49: Two dots with smaller spacing from the rest 

dot closer to us than any others. This is also obvious from the application 
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of equation 3.1. 

1 

Figure 3.50: Geometry of the preceding case showing viewfines from each 
eye 

Now we will consider a row of dots such as that in Figure 3.51. Here the 

spacing between consecutive dots is different for every pair. We will view 

Figure 3.51: Consecutive dot spacing varies across the row 

this row firstly, without guiding dots in Figure 3.51, and then, with two sets 

of guiding dots as in Figure 3.52 and in Figure 3.53. 

By counting the number of perceived dots we can begin to discover which 

pairs of dots are being matched. Some important points to note are :- 

(i) In contrast to the rows of equally-spaced dots, the perceived images for 

these two cases (matching consecutive dots and matching every second dot), 
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Figure 3.52: Guiding dots 1: consecutive dot spacing varies across the row 

• • 

• • • 	• 	• • 	• 

Figure 3.53: Guiding dots 2: consecutive dot spacing varies across the row 
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uniocular projections 

have different contours. This can be further demonstrated by considering the 
geometry of Figure 3.54. This gives us the relative placings of the perceived 
dots when viewed from above. 

A. 
uniocular projections *#.41/401 

Figure 3.54: • row of unequally-spaced dots;o perceived dots: matching 
consecutive dots;o perceived dots: matching every second dot 

In other words, the pairing, and fusing, of the correct dots is crucial if we 

are to perceive a given image. This seems to depend on the plane of fixation 

of our eyes. By plane of fixation we mean the perceived plane defined by 

the dot spacing of our fixation point. Similarly, we define a line of fixation 

which is the line of intersection of this fixation plane with any plane through 

the viewer's eyes and a row of dots. When we have guiding dots, we have 

some inkling as to the positioning of the fixation plane. If we do not have 

guiding dots, then our eyes and brain appear to automatically adjust to an 

appropriate fixation point, and hence, plane. This will be discussed in more 

detail after further experimental demonstrations. 

(ii) This row of unequally-spaced dots promotes a perceived picture which 

has clear differences in depth. In our previous example in Figure 3.32, we 

were unable to fuse the dots to obtain such an image. The explanation of 

this phenomenon is most likely linked with Panum's Fusion Space which 

we discussed earlier in this chapter. This possibility will be checked after 

further discussion. 

76 



We now extend our discussions of unequally-spaced dots in a row to unequally-

spaced dots in our multiple row cases. Analogous results are obtained. As 

the dot spacing varies, for matching dots, so does the depth of the perceived 

point. After fixating behind Figure 3.55 with our 'uncrossed' technique, we 

have four dots on a closer plane and four dots which appear on a most dis-

tant plane. The bulk of the dots appear on a central plane. Provided we 

• • 	• 	• 	• 

• • 	• 	• 

• • 	• 	• 	• 	• 

• • 	• 	• 	• 	• 

• • 	• 	• 	• 	• 

• • 	• 	• 	• 

• • 	• 	• 	• 	• 

Figure 3.55: Changes in horizontal dot spacing 

fuse consecutive dots of every row, this is exactly as we would predict after 

application of theorem 3.1. If, however, we force ourselves to fixate on a 

plane defined by the guiding dots given in Figure 3.56, then we perceive a 

different image. 

It is interesting to note that if we don't have guiding dots, we can obtain 

some rough idea of the fixation plane chosen by our brains. This is with the 

aid of a clear perspex ruler or a numbered horizontal grid on a strip of over-

head projector film. If we place this across our dots of Figure 3.55 (parallel 

to the rows), after we have a fused image, then we note the superimposition 

of the numbers on the ruler. For example, if the 3 is superimposed on the 

5, we know that we are fixating on a plane in the vicinity of a plane defined 

by a dot - spacing of two units. This must be done very speedily before our 

brains fuse similar markings on the ruler. 
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Figure 3.56: Guiding dots force fixation on another plane for fusing dots 

Another point to note is that in the cases where more than one picture 

in depth can be perceived, the viewing technique chosen by the viewer is 

crucial. Particularly, if there are no guiding dots given. The possible sce-

narios are illustrated in Figure 3.57. In the case where the viewer begins 

by staring into the distance, we can imagine that the viewlines are initially 

almost parallel. Consequently, as the viewlines converge on a closer point 

to the viewer, they are likely to lock onto a fixation plane with a bigger dot 

spacing than would be the case if the reverse occurred. That is, if the viewer 

initially focused on a point on the page of dots and then, gradually diverged 

the viewlines. 

3.3.1 Extension of dots to bigger rectangles 

We now consider a combination of the preceding cases. Suppose that we 

replace our dots of Figure 3.26 with two rectangles such as those in Figure 

3.58. The only stipulation being that the distance between matching points 

on their boundaries, say s, is less than our eye-spacing. By matching points 

we mean the points such as a and b, that would be superimposed if one rect-

angle was placed exactly on top of the other. If we fuse these two images 
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When the viewer begins by 
staring into the distance, the 
convergence towards the point. f. 
could mean the matching of 
every second dot. 

When the viewer begins by 
focusing on the page of the 
dots, the divergence of the 
viewlines in order to fixate 
behind the page. could mean 
the matching of every 
consecutive dot. 

(a) 

Figure 3.57: Perceived picture relies on the viewing technique 

a 
S 

Figure 3.58: Fuse using the 'uncrossed' technique 
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fused 	of rectan s 

as described for the dots of Figure 3.26, then we see three rectangles lying 

on planes parallel to us and our page. It is not clear whether these planes 

are the same plane. Figure 3.59 shows a geometric view from above. The 

Figure 3.59: Cross-sectional view from above of the fused preceding figure 

middle image is the fused binocular image. The left-hand image is a projec-

tion of the left-hand rectangle seen by the right eye only. The right-hand 

image is a projection of the right-hand rectangle as seen by the left eye only. 

Since these outer projections are of similar size to the fused image, we seem 

justified in saying that they are further away from us than the plane of the 

page. Note the superimposition of the letters a and b in the fused central 

image. Now we add identical circles to the interior of each rectangle so that: 

(i) the distance between the matching points on the circles equals the dis-

tance, s, between the matching points of the rectangles. (see figure 3.60). 

(ii) the distance between matching points on the circles is less than s. (see 

Figure 3.61) 

(iii) the distance between matching points on the circles is greater than s. 
(see Figure 3.62) 

In Figure 3.60, after fusion of the two images, we have an analogous situation 

to that of Figure 3.58, Figure 3.41 and Figure 3.42. In each case we have a 

fixed distance between the matching points which must he fused and in each 

case, the fused image lies on a parallel plane behind our page. In Figure 3.61 
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Figure 3.60: Circle spacing = s 

o 

Figure 3.61: Circle spacing < s 

Figure 3.62: Circle spacing > s 

81 



the fused middle image gives a circle on a plane nearer to us than the plane 
of the rectangle. For the outer images which are seen by an individual eye, 
there is no apparent difference in depth between the circle and the rectangle. 
In Figure 3.62 the central fused image is a circle which lies on a plane further 
away from us than the plane of the rectangle. 

3.3.2 What can we deduce from these observations? 

On fusing the two rectangular images we appear to be fixated on a plane. 
This plane can be described as being determined by a fixed spacing between 

matching points of the two planar pictures. In this case, the pictures are the 
rectangles and the fixed distance is s, the distance between exactly match-

ing boundary points. Adding the circles in the case of Figure 3.60 made 
no difference to this impression of a planar image, as again, the distance 
between matching points is s. In fact we could achieve a similar effect by 
adding a collection of dots to the interiors of these rectangles. The proviso 

being, that for every dot in the first rectangle, there is a matching dot in 
the second rectangle a horizontal distance of s from it. This is exactly the 
situation in the first two vertical strips of Figure 3.42, where we could say 
that the two rectangles have a common boundary. The vertical boundaries 
of the rectangles probably behave in a similar manner to our guiding dots 
of the preceding examples. 

It must be noted that the notion of fixating on a plane is not foreign to 

us. When we normally view a painting, or photograph, we fixate at various 
points on the plane of the painting via saccadic eye movements which are 

described in section 3.1. Of course in most instances the artist expects the 
viewer to stand parallel to it. As we have seen, slant anamorphic art is an 
exception to this. 

Returning to Figure 3.61 and Figure 3.62 we have analogous situations to 
that of Figure 3.55 where the spacing between some of the matching points 

does not match the spacing of the supposed fixation plane. When the two 

pictures are fused, the circles are respectively seen closer to, and further 
away from, us than this plane. 

What we have just described, is analogous to stereoscopic photographs and 
two picture random dot stereograms such as those of Bela Julesz. 

82 



We could ask another question. In fusing the images of the circles with dif-

ferent spacing from s, for example, do our eyes converge more and diverge 
more to bring the images onto the foveolas of the eyes? That is, do they 

fixate at alternately different depths? 
It seems likely that the answer to this question is NO. 
Consider the following experiment. To Figure 3.61 we will add two more 
identical, and supposedly, matching circles. The horizontal separation of 

these circles is markedly different from s and they are smaller than the 

other circles. This is shown in Figure 3.63, where these new circles are la-

belled 1 and 2. Now if we fuse the two rectangles as before, we find that the 

 

o 
6 

 

Figure 3.63: two smallest circles with spacing much less than s 

bigger circles fuse, but we are unable to fuse the smaller circles. We obtain 
four images of the smaller circles which appear to lie in a plane close to the 

plane of the rectangles. Figure 3.64 is a diagrammatical view of the cross-
sectional geometry from above. Hence it would appear that the vergence of 
our eyes is determined by the fusing of the rectangles and larger circles and 
this vergence does not change to allow the fusion of the smaller circles. If we 
note the labels 1 and 2 on our small circles when we are viewing the fused 
image, we find that each circle appears to have been moved horizontally by 

an approximate distance of s. Figure 3.64 shows the expected position of the 
image of the smallest circles if they had been fused. Their non-fused images 
which we see in practice, are the respective projections of their images as 
seen by each individual eye. 

This scenario fits very well with the physiological and psychophysical dis- 

cussion of stereopsis in section 3.1. That is, when fixating on a point, our 
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Figure 3.64: Cross-sectional view of geometry of the fused preceding figure 
from above 

eyes and brain can fuse the images of disparate points, within the region of 

peripheral vision, provided that their images fall on the retina within a small 
neighbourhood of the foveolas. Such points are said to lie within Panum's 
fusional space. Images of points which lie outside this region result in double 
vision or diplopia. This is the situation in the case of the smaller circles of 
the partially-fused image of Figure 3.64. It was also the case for our nearer 

finger in the example relating to Figure 3.15 when we fixated on a far finger. 
In the context of stereograms, what do we mean by disparate points? We 
consider this question in the next section, but firstly we note the following 

observation. 

3.3.3 Interesting observation 

If we fixate on a point behind the page when we are viewing a series of 
horizontal lines, such as those of Figure 3.65, then we perceive horizontal 
lines which appear to lie on a plane parallel to, but behind, our page. That 

is except for two small line segments at each end of the lines. In other words 
we have an analogous situation to that of the rows of equally-spaced dots. 
There are various conclusions we could draw: 
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Figure 3.65: Horizontal lines to be viewed using 'uncrossed' technique 

(i) Although these lines do not appear to be made up of dots, somehow our 

brain discerns the miniscule printed dots of the lines. 

(ii) By fixating on a point behind the page, the 'natural' result for our brain, 

given no clues, is to match points which correspond to a dot-spacing on the 

page of this fixation point. 

3.4 Links between the viewing of stereograms and 
the physiological and psychophysical view of 
stereopsis 

In subsection 3.1.1 we introduced the notion of an horopter, which corre-

sponds to any fixation point. In the context of stereograms, we could say 

that our fixation plane represents the spacial horopter; or the fixation line 

represents the horopter on one plane through the eyes. That is, it represents 

the set of points which the viewer judges to be the same 'depth' away from 

him ...in contrast to the 'distance' away from him. It must be noted that 

this fits Julesz's [13, page ] definition of the horopter. As we have mentioned, 

'distance' is harder to define. (Although using the results of Luneburg [16], 

it seems sensible to measure it from the midpoint of the line segment joining 

the viewer's eyes.) 

This planar horopter corresponds to a particular dot-spacing, say si, on a 

stereogram, for a given position of the viewer (Theorem 3.1). We have seen 
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fixation line 
near point 

dot stereogram 

teth-Muller circle through 
fixationpoint 

central aids 

that when a viewer is fixating on a point on this horopter, any point which 

is nearer (in terms of depth) will be represented by dots with a dot-spacing 

less than sf and any point which is further away will be represented by dots 

with a larger dot-spacing. This corresponds to viewlines moving in a similar 

way to the illustrations for a near point in Figure 3.13 and for a far point 

as in Figure 3.14. The only difference being that in some near point cases 

for a stereogram, it is possible for this point to lie outside the Vieth-Muller 

horopter for the particular fixation point as shown in Figure 3.66. The dia- 

Figure 3.66: Near point, n, for dot stereogram is outside the Vieth-Muller 
circle 

gram in this figure is drawn to scale. It represents the relative placing of a 

dot stereogram and the Vieth-Muller circle for a viewer observing from 30cm 

and fixating on a point defined by a certain dot spacing on the stereogram. 

This viewing distance is appropriate for a viewer of any stereogram pre-

sented in this thesis. We can see from this diagram that for normal viewing 

distances for stereograms, the angle lnr for a near point, n, varies very little 
from the angle If r, on the circle. This is provided n is around the central 
perpendicular axis through the midpoint of the segment TT. r. Similarly, the 
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row of dot 
stereogram 

angle lpr, for any point, p, on the fixation line (again around the central 

axis), varies very little from the angle !fr. This is relevant when we consider 

the rough bounds placed upon our binocular fusion by Panum's fusion area. 

We could now ask the question: How can we describe the notion of disparity 

in relation to dot stereograms? 

It seems that rather than talk about angles as in subsection 3.1.1, we can 

consider the dot-spacing required to allow us to perceive any point. If we 

consider the dot-spacing associated with any fixation point f, then we could 

describe any other point with the same dot-spacing as having zero dispar-

ity. We have seen that any such point lies on the apparent fronto-parallel 

plane containing the point f. It is this plane which we have likened to the 

horopter. Disparate points (points with non-zero disparity) will have a dot-

spacing which differs from that of the fixation point. In Figure 3.67 (a) we 

Figure 3.67: (a) Correspondence of angles with dot-spacing; (b) Angle varies 
slightly for a particular dot-spacing 

have re-drawn Figure 3.20 where we have added a representation of a row of 

a dot stereogram. The dots on this stereogram gives images on the retinae 

which mimick those of the points, p and f. We see that the angles, 8 and 
cb, correspond to the dot spacings sj and sp , respectively. Of course a par-

ticular dot-spacing does not always give rise to exactly the same angle, for 

any fixed distance of the viewer as we see in Figure 3.67 (b). However, in 

the vicinity of the central axis, for a fixed dot-spacing, the angle varies very 
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little. We are justified in considering this vicinity as Figure 3.4 (b) shows. 

if we measure two extreme angles such as 9 and 0' of Figure 3.67 (b), but on 

our scale drawing of Figure 3.4 (b), then Geometer's Sketchpad tells us that 

10 — 0, 1 < 0.56°. For normal viewing distances of stereograms, the whole 

stereogram can be seen in our region of peripheral vision and the horizontal 

width of the stereogram, either side of the central axis, is small relative to 

the viewer distance. 
Now we have seen that for fusion of the images of f and p, we must have 

10 —I < 2°. This corresponds to a difference in dot-spacing of Is/  — 

One way of placing suitable bounds on this dot-spacing is to think of our 

stereogram as a screen outside the eyes. We can then make an approxima-

tion using Hubel's result of subsection 3.1.3 to translate the 2° difference in 

angle which corresponds to a distance of about 0.6mm along the retina, to a 

difference in dot-spacing on our stereogram. Hence if we view a stereogram 

from a distance of about 30cm, and use Hubel's result shown in Figure 3.21, 

we find that 0.6mm on the retina corresponds to an approximate distance 

of 1.05cm along a row. This is provided the viewlines are around the per-

pendicular from the nodal point to the row of dots. This implies that if 

the fixation plane of a stereogram corresponds to a dot-spacing, sf, then 

in order to fuse the dots of the stereogram which lie within the peripheral 

vision region, the matching-dot spacing, if it is to be viewed from 30 cm, 

must lie between (sf — 1.05)cm and (sf + 1.05)cm. Of course the range of 

values for the appropriate dot-spacing varies according to the distance from 

the viewer. In designing stereograms (see Chapter 5), this distance from 

the viewer is crucial, particularly if the stereogram is to correctly represent 

a mathematical figure such as a cube. The range of suitable values for the 

dot spacing, corresponds to the perceived picture lying entirely between two 

planes which are parallel to the stereogram. Maeder [17] may have taken 

this into account in designing his programs. More details, and a discussion 

of the desirability of this feature can be found in section 5.1.2. 

3.5 Some results of Luneburg 

It is interesting to note that Luneburg [16, page 61] makes the point that 

curves which are apparently straight are of great interest in visual science. 

He notes that Helmholtz noticed the fact that vertical threads arranged by 
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an observer in fixed head position to form an apparent fronto-parallel plane 

are not actually arranged on a physical plane. The shape of the physical 

surface which appears to be a plane varies with the distance from the viewer. 

These are described as horopter curves. Maybe this is further justification 

for likening our perceived plane to the horopter. Our discussions relating to 

the circular horopter in subsection 3.1.1 have so far been limited to a single 

plane. That is, the plane containing the fixation point and the two nodal 

points of the eyes. Can this idea of the Vieth-Muller horopter be extended 

to give us a surface in space? 

3.5.1 Experiment 1 

We will now present some of Luneburg's suggestions which are based around 

the idea of the Vieth-Muller circles. Consider his following experiment: con-

struct a number of marks ( for example pins) arranged at equal distances 

on a Vieth-Muller circle through the eyes (see Figure 3.68). If these pins are 

observed with the head in fixed position, they give the impression of being 

arranged on a circle with the observer at its centre. He then suggests the 

possibility, that if we construct part of a torus by rotating the Vieth-Muller 

circle about the line through the nodal points of the eyes (see Figure 3.69), 

and then observe this surface again with fixed head, then we may perceive 

a spherical surface with the observer as centre. This question is left unan-

swered but he suggests that since different sensations are obtained with a 

moving head, it could contradict our common experience. Further discus-

sion on this can be found in Luneburg [16, pages 27-28]. 

3.5.2 Experiment 2 

Having experienced the fusing of dots in our preceding section on dot stere-

ograms we are now in a position to try one of Luneburg's experiments for 

ourselves. In his section on the derivation of the hyperbolic metric of visual 

sensations he considers the following experiment: 

Construct two finite sub-pencils of lines through two points, 1 and r, which 

are exactly our eye-spacing apart on a horizontal line. Angles between neigh- 

bouring lines of these pencils are the same constant size, see Figure 3.70 
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Figure 3.68: Vieth-Muller circle 
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Figure 3.69: Rotation of Vieth-Muller circle about the line I V r 

where, for example, the constant angle is 7.5°. The pencil with the left eye 

as vertex is red and the sub-pencil with the right eye as vertex is green. 

The lines of the two sub-pencils intersect one another in pairs on a set of 

Vieth-Muller circles which determine various points po , P1,  p2, ...on an axis 

through the midpoint of the segment / V r as shown in Figure 3.71. 

It must be noted that for the lines to intersect on various Vieth-Muller cir-

cles, it is vital that the angle between neighbouring lines is constant. This 

ensures that we have triangles with the same base-angle sum, which in turn, 

means that their vertex angles are equal. According to a basic result of 

Euclidean geometry which says that 'if a straight line joining two points 

subtends equal angles at two other points on the same side of it, then the 

four points lie on a circle', these vertices must then lie on a circle containing 

the endpoints of the segment, 1 V r. This is an example of a particular pro-

jective correspondence between two sub-pencils of lines. We will consider 

such correspondences, but infinite, in Chapter 6, where we will see that this 

Vieth-Muller circle is an example of a conic. 

We position our eyes exactly above the points, 1 and r, of Figure 3.72, and 

observe the pencils of lines from this position by fixating on some point 

of the Vieth-Muller circle through po. To make the fusing easier we have 

eliminated the axis through the midpoint of the eyes in this figure. Note: 
For non-practised viewers, it may be essential to view these pencils using the 
anaglyph 'spectacles'. 

According to Luneburg, instead of two pencils we see one set of fused lines 

which intersects the Vieth-Muller circle through Po  at regular distances. He 
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Figure 31.70: pencils of red and green rays fvith the eyes as vertices 



ntersect on Vieth-Muller circles 
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says, " the appearance of the fused lines is that of straight lines arranged 

on a circle around the observer." 

Whilst this statement seems correct, we can strengthen it: we see parallel 

lines which appear to be perpendicular to our page. They intersect the 

Vieth-Muller circle at the points of intersection of corresponding green and 

red rays. By corresponding rays, we mean the pairs of rays which our eyes 

and brain fuse to give the line through the point of intersection. This can 

be demonstrated by putting distinguishing marks on each of the rays. After 

fusing, these marks can both be seen on their fused ray. 

If we now fixate, in turn, on the closer Vieth-Muller circles through p i , 

P2 and p3, we observe a similar phenomenon in each case. The fused lines 

again appear parallel, perpendicular to our page and intersect the page at the 

intersection points of corresponding rays on the relevant Vieth-Muller circle. 

As the radius of the Vieth-Muller circle decreases, the distance between the 

fused parallel lines decreases. Using the basic result of Euclidean geometry 

which says that 'an angle at the centre of a circle has double the size of an 

angle standing on the same arc', we can show that the intersection points of 

the corresponding rays on the Vieth-Muller circle are equally-spaced around 

the circle (in terms of arclength). Hence it is not surprising that the fused 

lines intersect this circle at, what appear to be, equidistant points. It must 

also be stressed that these lines 'look' parallel. Some justification for this is 

given in subsection 4.6.2. 

Luneburg makes the important distinction between the geometry of the ac-

tual physical situation, and the geometry representing the visual sensation. 

He makes the point that the "Vieth-Muller circle itself appears to the ob-

server as a circle around the point., of the horizontal plane vertically below 

the apparent centre of observation." This statement is confusing. Presum-

ably, by apparent centre of observation, he means the midpoint of the line 

segment joining the observer's eyes. Most research, and even Luneberg's 

own experiment of Figure 3.68, suggests that such an observation is made 

if the eyes of the observer are in the plane of the Vieth-Muller circle, not 

above it, as this statement suggests. 

Luneburg suggests that the perceived fused lines can be interpreted as a 

Euclidean circular cone. He also suggests that a viewer projects any im- 
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age onto this artificially created cone. Further discussion may be found in 

Luneburg [16, page 53]. Whilst we cannot dispute his hypothesis, we shall 

see in subsection 4.6.2 that a cylinder (instead of a cone) of horizontal cross-

section equal to the Vieth-Muller circle, and through this circle, seems to 

provide a good representation of what we see. We will use a computer to 

demonstrate this possibility. 
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Chapter 4 

Creating Anamorphograms 

4.1 Anamorphograms 

According to the rule of perspective any picture must be viewed from a par-

ticular viewpoint if the viewer is to see what was intended by the artist. 

The anamorphogram is an extreme example of the special kind of relation-

ship between the viewer, viewpoint and picture. It is a planar picture which 

deceives the viewer by initially presenting a very distorted image if viewed 

from the expected viewing position. That is, directly in front at right an-

gles to the plane, such as the viewpoint of you, the reader. As the name 

suggests—from the Greek ana meaning again and morphe meaning shape 

— these distorted pictures must be reformed, or re-shaped, by the viewer. 

This is achieved by employing unusual viewing techniques from a specified 

viewpoint, or viewpoints (in the case of both eyes). 

Our possible techniques are: 

(i) viewing at a sharp angle from near the side of the picture plane, 

(ii) viewing as a reflection in a suitably placed mirror (planar, cylindrical, 

spherical or conical), 

(iii) viewing after 'wrapping the picture around' a suitably shaped surface 

Or 

(iv) viewing by focusing both eyes on a suitable plane behind the picture. 

ft must be noted that in cases (i), (ii), and (iii), viewing with both eyes is 

not essential. 
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4.2 Perspective Drawing 

We will now mathematically describe the method demonstrated by Diirer 

and his contemporaries for creating a perspective drawing of an object. Al-

though our method applies to any object for which we can find a representa-

tive equation, we will demonstrate this method, and all subsequent methods, 

by considering their effects on both a rectangular grid of squares (see Figure 

4.4) which is two-dimensional and the outline of the edges, or skeleton, of a 

cube, which of course, is three-dimensional. A three-dimensional image of 

such a cube may be seen by viewing the anaglyph of Figure 4.32. Creating 

a perspective drawing of such a cube is often referred to as representing the 

projection of a wire cube on a screen. 

In order to describe our perspective drawings we need the following three 

definitions. A figure is a set, F, of points together with their relationships of 

collinearity and coplanarity. The image of any point, p, from a viewpoint, 

v p, onto a picture plane, P, is the point p' = (vv p) A P and is illustrated 

in Figure 4.1. A perspective drawing of any figure, or subject, is the figure 

whose points are the images of the points of the subject. 

Figure 4.1: p' is image of p; picture plane P; viewpoint v 

To create a perspective drawing on a page of any figure, F, we will represent 

the figure by a collection of points in our chosen rectangular cartesian co-

ordinate system of Figure 4.2. We will specify a viewpoint, v, and the 

equation of the plane containing our page. At this stage we are considering 

a viewpoint for one eye only (monocular vision). For example, in Figure 4.2, 

for any point, p = (x, y, z), of our figure, F, we need to find an image point, 

p' = (x' ,y', z'), on the plane, P, given by y = 0. It must be noted that, figure 
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F, could also lie between the viewer and the picture plane. Our perspective 

Figure 4.2: Figure F; p' is image of p; picture plane P: y = 0; viewpoint v 

drawing rule of Figure 4.1 indicates that we must find p' = (v V p) A P, the 
point where the viewline, v V p, to any point, p of F, intersects the picture 
plane. The parametric representation of any point on the viewline from the 
eye, at v, to any point p of the figure is given by 

-F t[p — v] 

where 0 < t < 1 and the corresponding point, p', on the picture or drawing, 
is found by determining the value of the parameter t for which the viewline 
intersects the picture plane y = 0. 
We now consider a parametric representation of a rectangular grid. 

4.2.1 Parametric representation of a rectangular grid 

Suppose this grid lies in the xy plane. If its central point is (X centre 7 Ycentre), 

we construct suitable horizontal and vertical,intersecting line segments about 
this point. 
Each horizontal line segment will be composed of 2n r  smaller segments of 
length dz.. There will be nr  segments on each side of the vertical line, 

= xcentre , through the centre. Each vertical line segment will be com- 
posed of 2ny  smaller segments of length dy . There will be ny  such segments 
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on each side of the horizontal line, y = ycene„, through the centre. 

The horizontal line segments are represented parametrically by the set of 

points, 

(Xcentre + nzdzt, Wentre 4" id) 

where i E Z, — fly  < i < fly  and t E R, —1 < t < 1 and the vertical line 

segments are represented by the set of points 

(Xcentre + idx 7 Ycentre + ny dyt) 

where i E Z, — nz  < i < nz  and t E R, —1 < t < 1. 
An illustration of our method is given in Figure 4.3, where nz  = 4 and 

fly  = 2. 

(xcenie,Ycentr)  

4-  d,—)•• 
t 
dY 

.4- nxdx—).: 4-- 

Figure 4.3: Rectangular grid 

4.2.2 Perspective drawing of a rectangular grid 

One two-dimensional rectangular grid of squares is shown in Figure 4.4, 

where (Xcentre 9 Y centre )=(0,5), nz=5, ny =5, dz=1 cm and 4=1 cm. Two 

examples of perspective drawings of this grid are given in Figures 4.5 and 

4.6. In each case the viewpoint is (0, —10,25). In the first case (Figure 

4.5), our object figure, the rectangular grid, is a set of points on the plane, 

y = 0, and our perspective drawing (referred to as image figure) is on the 

picture plane, z = 0. The view from the side is represented in Figure 4.7 

(a). 

We have what could be described as the 'reverse situation' in Figures 4.6 

and 4.7 (b). Here the rectangular grid is on the plane, z = 0, and the image 

al, 
Y 

I 
T 
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Figure 4.4: Rectangular grid of squares 
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Figure 4.5: Perspective drawing on the plane, z = 0, of rectangular grid 
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2 . 5 

-5 	-2.5 	0 	2 . 5 	5 

Figure 4.6: Perspective drawing on the plane, y = 0, of rectangular grid 

(a) (b) 

Figure 4.7: Side views showing some viewlines from v to points, p, on our 
object figure 
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figure is on the the new picture plane, y = 0. In general, it is this situation 

which an artist mimicks when painting an object or scene which is behind 

the picture plane. For example, parallel railway tracks moving away from 

the artist. 

Figure 4.7 (a) represents the drawing of what we have referred to as a slant 

anamorphogram. That is, if the image figure is viewed from v, then this can 

be described as viewing from a sharp angle from the side. The reader may 

try this by viewing Figure 4.5 with one eye from an estimated viewpoint 

of (0, —40,20) from the point, o, on the horizontal page. The units are 

centimetres and the page lies in the xy-plane. If Figure 4.7 (a) represents 

the situation as we see it, then we would expect to see a rectangular grid of 

squares which appears to be perpendicular to our page, and above our page 

(possibly the 'floating above the page effect' mentioned in Leeman, Elffers 

and Schuyt [15]). Further consideration of slant anamorphograms will take 

place in subsection 4.3. It must also be noted that for the case depicted in 

Figure 4.7 (b), we must change our viewpoint from v, if we are to perceive 

the grid as we see it in Figure 4.4. 

We will now consider an appropriate representation of a cube. 

4.2.3 Parametric representation of a cube 

We need to specify the co-ordinates of the vertices of the cube which, in 

contrast to our grid, is three dimensional. The program which allows us to 

create our perspective drawing is included in Appendix B. It allows us to 

find the vertices of any cube, by beginning with a cube which is centered at 

the origin as shown in Figure 4.8, where dim denotes half the sidelength of 

the cube. It can be rotated about any axes, in any order, and then trans-

lated in the x,y or z directions. These linear transformations are executed by 

multiplying each vertex of the original cube by the appropriate transforma-

tion matrix using homogeneous co-ordinates. For computing purposes, these 

co-ordinates have the advantage of enabling the representation of all possi-

ble linear transformations, by matrices of similar form. Using our normal 

co-ordinate system, translations cannot be represented using a 3x3 matrix. 

An added advantage, is that compositions of these transformations to give 

a net tranformation matrix, allow us to transform about points other than 

the origin. Some common examples of such matrices are following, and finer 
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y 

(dint-dim-dim) 

Figure 4.8: Cube of sidelength 2dim centered at the origin 

details relating to homogeneous co-ordinates may be found in Appendix A. 

For scaling by a factor Sj in direction j 

[ Sz  0 0 0 
0 Sy  0 0 
0 	0 Sz  0 ' 
0 	001 

for rotation anti-clockwise by an angle 0 about the z-axis 

[

cos0 sine 0 0 
—sine cost) 0 0 
0 0 1 0 ' 
0 	0 	01 

for rotation anti-clockwise by an angle 0 about the x-axis 

[1 	0 	00 
0 cosi) sine 0 
0 —sine cos° 0 ' 
0 	0 	01 

for rotation anti-clockwise by an angle 9 about the y-axis 

[ cos0 	0 sine 0 
0 	100  
—sine 0 cos° 0 
0 	001 
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and for translations of T ,,Ty ,T, in each of the x, y, and z directions 

1 000 
0 1 00 
0 010  • 

Tz  Ty  Tz  1 

The multiplication 

1 

a 
b 

d 

f 
g 
h 

i 
j 
k 
1 

0 
0 
0 
1 

[T Ty  Tz  1 	y z 

reduces to 

[ T,r  Ty  Tz  = [ x y z 1 

a e i [ 
b f j 
c g kl• 
d h 1 

The scaling matrix enables us to magnify or shrink in one or more of the x, 

y and z directions to give us a rectangular box instead of a cube. Each of 

the twelve edges of the cube can be represented parametrically by 

vertex i t[vertex j — vertex i] 

where 0 < t < 1, the vertices i and j are adjacent and vertex i represents 

the co-ordinates of the vertex i. All that remains to create our perspective 

drawing, is to find where each viewline to each point on the cube intersects 

the picture plane. Fortunately, the computer does this for us. As mentioned 

above, the appropriate program transcript is included in Appendix B, and 

some resulting perspective drawings of cubes are shown in Figure 4.9. 

Now we have constructed our pictures with a given viewpoint, however, if we 

view this cube not knowing the correct viewpoint, then can we find it? Is this 

really the perspective drawing of a cube? Could it be a projection of another 

figure such as a truncated pyramid? Could it be the perspective drawing of 

a bigger cube placed further away? Discussion of possible ambiguities may 

be found in Gregory [7, page 35]. It suffices to say that if we do not know 

the viewpoint or the dimensions of the cube, then the perspective drawings 

displayed in Figure 4.9 could represent many different cases. 
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Figure 4.9: Perspective drawings of cubes of similar dimensions, but differing 
viewpoints. 
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4.3 Slant Anamorphograms 

In Figure 4.5 we saw what could be described as a distorted image of the 

rectangular grid of squares of Figure 4.4. The apparent distortion occurs 

when this figure is viewed from the normal viewing position of a page of this 

thesis, rather than from the correct viewpoint, which is given in the text. 

One way to create a slant anamorphic representation of any picture is to 

cover the picture with a co-ordinatized grid such as the one in Figure 4.4 

and then transform the co-ordinates of this picture onto the co-ordinates of 

the distorted grid. Similar triangle arguments were used by Hickin [11] to 

describe such transformations. 

To create our examples we again use our program of Appendix B. Here 

any given point, p, of our correct picture is transformed to a point, p', of the 

distorted picture. By correct picture, we mean one that is easily recognizable 

provided it is viewed from a given viewpoint. As mentioned earlier, this is 

not usually the normal viewpoint of a reader of this thesis. 

Suppose we want to create a slant anamorphic picture of a cube, then all 

we need to do is re-create the situation shown diagrammatically in Figure 

4.7 (a), where we place the cube about the z-axis. The perspective drawing 

of such a cube on the plane y = 0 is shown in Figure 4.10. The slant 

anamorphic picture of the same cube is found by creating its perspective 

drawing on the plane z = 0 as shown in Figure 4.11. This latter cube 

Figure 4.10: Perspective drawing of cube on the plane y = 0 
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r 9 

Figure 4.11: Slant anamorphic cube 

will not appear distorted if we view it with one eye placed at the position 

v = (0, —30,20). This can be approximated by viewing from the side and 

assuming that the point, o, is at the origin of our co-ordinate system, the 

page is in the xy-plane, and the z-axis is perpendicular to our page. Figure 

4.12 is the perspective drawing on the sz plane of a 7cm cube which has 

been rotated about the origin as described previously, and then translated 

by 10cm in the y-direction. 

4.4 Curved Surface Anamorphograms 

In our our perspective drawing examples so far, the picture surface has been 

planar. In Chapter 2 we alluded to the Fresco art on curved surfaces. We 

now examine curved surface anamorphograms which will be drawn on a 

cylinder, cone or sphere. Again the correct viewpoint is vital if we are to 

perceive a given image. 
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Figure 4.12: Perspective drawing of cube on the xz plane; viewpoint 
(0,-30,0) 
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4.4.1 Circular cylinder 

Firstly we will consider a circular cylindrical surface. Our method amounts 

to replacing the picture plane of our perspective drawing by a cylindrical 

page. That is, we replace the equation representing the picture plane in the 

program of Appendix B with the equation, F(x,y, z) = x 2  + y2  — r2  = 0, of 

the cylinder. Figure 4.13 shows that unless the viewlines are tangential to 

picture surface 

................. o 
P2' 

Object 

Figure 4.13: Picture surface is a circular cylinder 

the cylinder, then they intersect the cylinder at two points. Consequently 

our program will give us two curved perspective images. These two possibil-

ities, one near and the other far, are illustrated in Figure 4.14. Depending 

on the viewpoint, these cross-sections will be parts of ellipses or circles. 

In order to obtain individual pictures for each surface, we consider the min-

imum and maximum values of the parameter, t, which are given to us by 

finding the intersection points with the cylinder surface of the viewline to 

any point, p = (x, y, z), on the object. Again the viewline is represented 

parametrically by 

viewpoint + t[p — viewpoint] 

and the cylinder has the equation 

F(x,y, z) = x2 + y2 r2 = 0 .  

Another consideration is the suitable size of the cylinder in relation to 

the object being drawn. Figure 4.15 shows that if the object to be drawn 

is placed behind the cylinder, then it must lie entirely within the region 

bounded by the cylinder and the tangential viewlines from the eye. The 

possible size varies according to the position of the viewpoint. The far 
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Figure 4.14: Cross-sections viewed from above; near and far 

surface allows a larger possible image size if positioned in relation to the 

front surface as shown. We will apply our program to a cube in various 

positions to test our results. We can test our results by, firstly wrapping 

our pictures around a cylinder with correct radius, and then, by viewing 

from the correct viewpoint. It is probably easier to consider a suitable sized 

Figure 4.15: Tangential viewlines place bounds on size of object 

cylinder given the greatest width and position of the object to be drawn. 

We can basically use the method for constructing the inscribed circle of a 

given triangle to find a cylinder of minimum suitable radius. 
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Figure 4.16 shows the anamorphogram of a cube of sidelength 3 cm. The 

viewpoint is (0, —30,20), the cylinder (or picture surface) has equation x2  + 

y2  — 9 = 0, and the cylinder lies between the viewpoint and the cube which 

has been rotated and translated away from the origin. Such relative positions 

are shown in Figure 4.14. Figure 4.16 (a) shows the case for the surface 

nearest the viewer, while Figure 4.16 (b), shows the case for the far surface. 

(b) 

Figure 4.16: (a) Cube for near cylindrical picture surface ; (b) Cube for far 
cylindrical picture surface 

4.4.2 Spherical surface 

We have an analogous situation if our picture plane is replaced by a sphere 

with equation 

F(x , y, z) = x2 + y2 + (z  _ 	_ r2 = 0.  

Again we have a projection onto two surfaces, one of which is near, and the 

other far, as shown in Figure 4.14. Having printed out our pictures on a 

flat page we need a 'stretchy' material on which to trace these pictures if we 

want to be able to satisfactorily wrap it around a sphere. 

Figure 4.17 shows the anamorphogram of a cube of sidelength 3 cm. The 
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viewpoint is (0,0,30), the sphere (or picture surface) has equation x 2 + y2  + 

(z — 4)2  — 16 = 0, and the cube lies between the viewpoint and the sphere. 

Figure 4.17 (a) shows the case for the near surface , while Figure 4.17 (b), 

shows the case for the far surface. 

(a) 
	

(b) 

Figure 4.17: (a) Cube for near spherical picture surface ; (b) Cube for far 
spherical picture surface 

4.4.3 Conical surface 

For a conical picture surface we again follow a similar method to that for 

the cylindrical case. Again we simply replace the picture plane by the cone 

however, we can have a further two situations. The case when the apex of 

the cone is pointing up, or the case when it is pointing down. The viewpoint 

could be directly above the apex looking down on the cone or it could be 

at a point which requires side viewing. Classroom methods for constructing 

anamorphoses on a cone to be viewed from above are discussed by Hickin [11, 

page 2111. If we consider Figure 4.18 we can see that if we let the cone be 

represented by an equation of the form 

F(x, y, z) = s2 ia2 + y2/a2 _ ( z  _ b)2 = 0  

which represents a cone with circular horizontal cross-section, then again we 
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Figure 4.18: Two picture image points for circular cone 

have two possible image points pc and p'2  on the cone for any object point p. 

Two possible viewpoints are shown in Figure 4.18. For convenience, we will 

consider an object placed between the viewer and the cone. Note that the 

equation of the cone allows us to consider both the cases of cone apex up or 

down at once, although we will again use our two possible parameter values 

to consider each part of the cone separately. For a viewpoint on the z-axis 

we have an analogous situation to v2  in Figure 4.18 and resulting images of 

a 3cm cube such as those in Figure 4.19. For a viewpoint such as v 1  our 

images are such as those in Figure 4.20. 

4.5 Mirror Anamorphograms 

We will now consider the problem of creating a distorted picture which we 

want to 'unscramble' by viewing its reflection in a mirror. This mirror will 

be planar, cylindrical, conical or spherical. We begin by looking at mirrors 

in general. 
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(a) 
	

(b) 

Figure 4.19: Viewpoint (0,0,30), cone x 2  + y2  — 1/3x2  = 0, (a) inside top of 
conical picture surface (near), (b) outside far section of cone 

(b ) 
(a) 

Figure 4.20: Viewpoint (0, —30,30), cone x2 + y2 z2 = 0, (a) outside top 
of conical picture surface (near), (b) inside far section of the top section of 
cone 
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4.5.1 General mirror 

Firstly, a very brief description of one of the fundamental laws of optics is 

required. When a ray of light strikes any boundary between two transparent 

substances in which the velocity of light is different, it is in general divided 

into a reflected and a refracted ray. Consider Figure 4.21 and let p v m 

represent the incident ray, and let it make an angle (/) with N,„ the normal 

to the surface at m. This angle, q5, is called the angle of incidence and the 

plane defined by (p V m), and the normal, Nn.,, is called the plane of inci-
dence. 
The Law of Reflection can be stated as: 

The reflected ray lies in the plane of incidence, and the angle of reflection 
equals the angle of incidence. 
That is, p V m, the reflected ray m V v, and the normal to the surface at m, 

are all in the same plane and 0 = 41. 

Now suppose we have the situation shown in Figure 4.22 where v = 

Figure 4.21: Angle of incidence = Angle of reflection 

(vs , vy , vz ) represents the viewpoint, M represents the surface of the mirror, 

p' = (x', y', z') is an image point (viewed in the mirror) of an object point 

p = (x,y,z), Arm  represents the direction vector of the normal to the surface 

at the point m = (ms , my , mz ), v V m represents the incident ray. The angle 

of incidence, 0, equals the angle of reflection. 

If we are given v, p', the equation of M and the equation of the plane of p, 
then we proceed to find the point, p, where the reflected ray meets this plane. 

The viewline from the viewpoint to the perceived image, p' = (x', y', z'), in 
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--- 	P'=0,',V.e) - 

Figure 4.22: Viewer, image-object connections 

the mirror is given by 

(vr  , vy , vz ) + t * [(x', y', z') — (vi, vy , vi)]. 	(4.1) 

Next we find the intersection point, m, of this line with the mirror's surface 

which has equation F(x,y, z) = 0, say. To find the normal to the surface at 

m we calculate the gradient of F at this point, vF[(mr , my , m)], and this 

is perpendicular to the tangent plane. 

V 

P .  

'IT 

 

(a) 

  

Figure 4.23: Vector representation of triangles on plane of incidence. 

Now if we consider the co-planar vectors at the surface intersection point, 

m, we have the situation shown in Figure 4.23. Consider the two congruent 

triangles, of Figure 4.23 (b), where i" is the tangent vector at m, 4,, is 

the direction vector of the normal vector, 0 is the direction vector of the 

viewline to any image point and Ti,' is the direction vector of the reflected 

line from m to the object. Now for the two triangles vector addition gives 

—coliii.  = otAr, + 77' 
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pir «Arm  - 7f , 

where co, a, fi,ry are scalars and combining gives 

—calk [30 = 2aArm . 

Now aN,„ is the projection of 00 on N.,„, and so 

Ar, • p0 

	

aNm  — 	Nni . 
Nm N,„ 

Hence by combining the latter two results we have 

	

• 	— 
= 	

Ar 
2 	_ rn 	Nm , 	 (4.2) 
Nm  • Nm  

where Si is a scalar. Now the parametric representation of the reflected line 

m V o is 

	

m 	, 

which we can express in terms of the viewline vector and the normal vector 

by application of equation 4.2. 

In creating a distorted picture of our rectangular grid or cube, it is this 

anamorphogram which will be our 'object' of the above discussion. Our 

object surface will be our picture page which will lie on the xy-plane of our 

co-ordinate system. Our image point, p', in the mirror will be a point of 

the rectangular grid, or a point of an edge of a cube. The task is to find 

an object point, p = (x , y, z), for any image point, p' = (x' ,y', z'), in the 

mirror. All we need to find p, is the intersection point of a reflected line, 

such as m V p of Figure 4.22, with our picture page plane. In fact we hope 

that this intersection point is actually on our picture page which means that 

a suitable selection of viewpoint is essential. In contrast to our preceding 

examples, p represents a point on the distorted picture and p' represents a 

point of the 'correct' image viewed in the mirror. The program which allows 

us to create such anamorphograms using the above results of subsection 

4.5.1 may be found in Appendix D. 

4.5.2 Cylindrical mirror 

Suppose Our cylindrical mirror has equation 

F(x,y, z) = x 2  + y2  - r2  = 0. 	 (4.3) 
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then we have an analogous situation to that in subsection 4.4.1. The mirror 
has the z axis as its central vertical axis as shown in Figure 4.24 (a), the 
viewpoint, v, is outside the cylinder, and any viewline described by equa-
tion 4.1 will intersect the mirror in two places. Hence again we have the 

possibility of both a near and a far mirror surface as shown in Figure 4.24 
(b). As before we can plot individual pictures by considering the minimum 

Figure 4.24: Surface reflections for near and far mirrors 

and maximum values of the parameter t given by solving the equations 4.3 

and 4.1. This parameter enables us to find the intersection point on each 

mirror surface where the principal ray is reflected to our eye from the object. 
This corresponds to the point m in our discussion in the previous subsec-

tion 4.5.1. Some resulting pictures of our grid and cube to be viewed in our 

near surface mirror are shown in Figure 4.25. In these examples, our view-
point was (0, —30,30), the cylindrical mirror had cross-sectional diameter 
6cm, and the grid could be seen as a reflection on the xz-plane. The cube 
with sidelength 1.5cm was placed about the z-axis. The resulting anamor-
phograms (distorted pictures) lie on the xy-plane which contains our page. 

It is to be noted that co-ordinatization of corresponding grids allows the 

creation of anamorphic drawings by hand as described in Leeman, Elffers 
and Schuyt [15], Gardner [6], Hamngren [9] and Hickin [11]. 
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■1■■,01111 
Figure 4.25: Anamorphograms of grid and cube for viewing in near cylin-
drical mirror x 2  + y2  — 9 = 0; viewpoint (0, —30,30) 

5 7 . 5 
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4.5.3 Conical mirror 

Here we have an analogous situation to that discussed in subsection 4.4.3 

except that our cone surface is mirrored. The equation of this mirror surface 

has the form 

x2/ (12 + y2/42 _ F(x, y, z) = 	 (z — 6) 2  = 0. 

Our viewpoint must be chosen carefully so that our reflected rays to the 

object in the xy- plane will intersect our picture page. Various viewpoint 

scenarios are represented in Figure 4.26. Figure 4.27 shows an anamor- 

, • :° picture plane 
, 

• 

Figure 4.26: Viewpoint v, object p, normal /V„, 

phogram for a rectangular grid where the viewpoint is (0, 0, 15) and the 

cone (x2  + y2  = 1/3(z — 10) 2 ) sits on the xy plane at the origin, as shown in 
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Place mirror here 

Figure 4.27: Anamorphogram of grid for a conical mirror: (a) scale diagram; 
(b) correct scale, part of anamorphogram; (c) Image seen in mirror 
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(i) and (ii) of Figure 4.26. Figure 4.28 shows the anamorphogram of a cube 

of sidelength 2cm. Again the viewpoint is (0,0, 15). 

Care needs to be taken if part of our image is parallel to the axes and in 

particular includes the origin. This is most likely linked with inversion with 

respect to circles. Hinlcin [11] gives a transformation formula in terms of 

polar co-ordinates. Kuchel [14] describes how to produce a cone which gives 
a true circle inversion. 



. 	. 	 I 	 i 	. 	 • 	I 	 I 	• 	 . 	I 

Place mirror here 

(a) 

Figure 4.28: Anamorphogram of cube for conical mirror: (a) correct scale, 
part of anamorphogra.m; (b) scale diagram 
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4.5.4 Spherical mirror 

We consider a sphere with equation of the form 

F(x , y, 	= X 2  + y2  (z — r) 2  — r 2  = 0, 

which will sit on our picture page at the origin of our co-ordinate axes. 
Again care must be taken with the positioning of the viewpoint relative to 
the sphere. This will be affected by the sphere dimensions. 

Figure 4.29: Viewpoint v, object p, normal N,, 

Figure 4.29 represents various viewpoints and it can be seen that in cases 
(i) and (iii) we would not see the reflection of any object on our picture 
page. The anamorphogram, on the xy plane, of a rectangular grid is shown 
in Figure 4.30. Here the mirror is spherical with radius 6 cm, and the 
viewpoint is (0, —30,5). The anamorphogram of a cube of sidelength 2cm 

is shown in Figure 4.31. The cube has been rotated about the origin and 

then translated 2.5cm in the z direction. If we view such an anamorphogram 

with a mirror of different curvature from that for which it was designed, we 

expect some distortion. 

4.6 Binocular Examples 

All our examples so far have been constructed by considering only one view-

point, however in reality most of us see the world around us with two eyes. 
In Chapter 3 we discussed how the horizontal separation of our eyes means 

that they individually view our surroundings from different viewpoints. The 

125 



y 

2 . 5 
- 

.44 	 
-7.5 -5 -2 . 5 

z 

x 

-2 5 	 2 . 5 

, 	 . 

5 	 7 . 5 
. 	. 	i 

2 . 5 
Place mirror here 

Figure 4.30: Spherical mirror anamorphogram of the rectangular grid shown 
in the inset. 
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Figure 4.31: Spherical mirror anamorphogram of a cube 

two separate images are cleverly combined by our brains to enable us to see 

differences in depth, and hence, a three-dimensional world. The two dif-

ferent viewpoints which imply retinal disparity were described as the most 

vital feature for depth perception. 

4.6.1 Anaglyphs 

We will now re-view some of our preceding examples representing a cube, but 

this time, when viewed correctly, our two-dimensional drawings will present 

a very vivid three-dimensional image. This will be achieved by creating 

anaglyphs for each example. The idea of such a technique was introduced 

in Chapter 2. 

Anaglyphs are pictures of an object (or scene) which present two views of 

the object; one for each eye. In our cases, each of the views will be a per-

spective drawing of a cube. Each picture is a different colour (traditionally 

red and green or blue) to enable selective viewing. This is achieved by the 

viewer wearing glasses with appropriately coloured 'lenses' or filters so that 

each eye 'sees' only its own picture. (Green lens promotes view of the red 

picture and vice-versa). The two images are then cleverly combined by the 
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brain so that we perceive a 3-dimensional picture. The eye separation of  this 

author is 5.75cm (measured by an optometrist using a pupilometer)  and  so 

the following pictures were created for viewpoints of both (-2.875, —30,0) 

and (2.875, —30,0). These are distinct from the single viewpoint (0, —30,0) 

used in the case for monocular viewing. In every case, similar changes were 

made to the original viewpoint. It must be noted again that all the view-

points chosen for the monocular cases ensured that the anamorphogram was 

on our page. 

In the following examples we have used the same cube dimensions and posi- 

tions as in the corresponding monocular examples considered earlier. Figure 

4.32 is the anaglyph of the cube in Figure 4.12. Figure2 4.33 (a) and (b) are 

Figure 4.32: Perspective drawings of cube: green image for viewpoint 
(2.875, —30, 0), red image for viewpoint (-2.875, —30,0). 

the anaglyphs of the cubes of Figure 4.16 (a) and (b) respectively. 

We also include one mirror example to be viewed in the outside  of  a 

cylindrical mirror. Figure 4.34 is the anaglyph for the cube of Figure 4.25. 

An interesting experiment in viewing anaglyphs, is to reverse the images for 

each eye by turning the viewing 'spectacles' around. In this case, the right 

eye views the left eye's image and vice-versa. In Chapter 3 we discussed 

the 'cross-eyed' technique for viewing dot stereograms which amounts to 

128 



Figure 4.33: Anaglyph for cylindrical surface anamorphograms of a cube 

exactly this process of exchanging the images. We found that the 'perceived 

image' in this case appears to lie between the viewer and the stereogram 

page rather than behind the page. We obtain similar results in viewing the 

anaglyphs included here. In Chapter 6 we consider in some detail, the math-

ematical properties of the reversed perceived images for more complicated 

stereograms, than those of Chapter 3. 

4.6.2 Revisiting Luneburg's experiment 

Having considered binocular vision, slant anamorphograms and curved sur-

face anamorphograms, we are now in a position to further examine Luneb-

urg's experiment of subsection 3.5.2. 

To re-iterate: 

In this experiment we constructed sub-pencils of lines through two points, 

/ and r, which represented the nodal points of the eyes. The angle between 

neighbouring lines remains constant. We then viewed these pencils of lines 

from viewpoints directly above / and r, as illustrated in Figure 4.35. We 

note that this situation is reminiscent of the one represented in Figure 4.5 

when we viewed a grid on the plane z = 0, from a point above, and near 

its side. In that case we viewed with one eye only and we referred to the 

distorted grid as a slant anamorphogram. In this case, our sub-pencils of 

lines could both be considered as examples of slant anamorphograms; one 
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Figure 4.34: Anaglyph for a cylindrical mirror anamorphogram of a cube 
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Figure 4.35: Viewpoints directly above 1 and r 

for each eye. We could ask the question: 

What is the 'correct' picture that we see from the designated viewpoint in 

each case? 

In our grid example, we saw what appeared to be the grid of Figure 4.4. 

This 'correct' grid, which the computer drew on the picture plane, y = 0, 

was the perspective drawing of the 'distorted' grid. 

Our prescribed viewing of Figure 3.70 gives us a clue as to a possible picture 

surface for our perspective drawings in this case. We see lines which appear 

to be parallel, and which appear to intersect our anamorphogram plane (the 

page) on the Vieth-Muller circle for our fixation point. Consequently, a suit-

able picture surface may be the inside surface of a cylinder with horizontal 

cross-section equal to the Vieth-Muller circle for a given fixation point. 

To check this supposition we will consider the combination of two such 

anamorphograms. This allows us to choose a suitable cylinder, since, as we 

saw in subsection 3.5.2, the intersection points of the sub-pencils of the two 

anamorphograms define various Vieth-Muller circles. 

For convenience, we will choose the points, l=(-2.875, 0,0) and r=(2.875, 0, 0), 

to be points on the x-axis of our rectangular cartesian co-ordinate system. 

The co-ordinates are chosen to match the eye-spacing of the author. Our 

sub-pencils of lines through each point lie on the xy-plane and the fixed 

angle between neighbouring lines for each sub-pencil, of our example in the 

scale drawing of Figure 4.36, is r/8. After choosing a parametric represen-

tation for one ray of our pencils, we construct all other rays by carrying 

out appropriate rotations and/or translations. This involves multiplying by 

tranformation matrices of the types introduced in subsection 4.2.3. Two 
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-15 15 x 

Figure 4.36: Anamorphogram 1...red pencil through / and Anamorphogram 
2...green pencil through r 

resulting anamorphograms are shown in Figure 4.36. Intersection points 

such as po , together with the points, / and r, define a circle. Our picture 

surface will be that of a cylinder through this circle which is perpendicular 

to our page. We now apply our perspective drawing program of Appendix 

B to create our perspective drawings; one for each anamorphogram. For 

the perspective drawings shown in Figure 4.37 (a) and (b), the viewpoint 

for the red pencil of lines was (-2.875,0,10) and for the green pencil, was 

(2.875, 0,10). Such viewpoints are directly above / and r, as is required for 

Luneburg's experiment. 

We see that the combined perspective drawing of Figure 4.38 is a very close 

depiction of what we actually see when we carry out Luneburg's experiment 

on Figure 3.70. That is, parallel lines intersecting the xy-plane of the orig-

inal anamorphogram through the intersection points of corresponding rays. 

It must also be noted that: 

1. The perspective drawings of Figures 4.37 and 4.38 are anamorphograms. 

They must be wrapped inside an appropriate cylinder to be seen as the 'cor-

rect' picture. 
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Figure 4.37: Green viewpoint: (2.875,0,10); red viewpoint: ( -2.875,0,10) 
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Figure 4.38: Combined perspective drawings for both viewpoints 
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2. The perspective drawings, for each anamorphogram of Figure 4.36, co-

incide. Therefore, it seems that to 'fuse' corresponding lines from each 

sub-pencil, the observer needs to converge the viewlines from each eye on 

a surface which coincides with the cylinder surface. This contrasts with 

Luneburg's idea of binocular vision being a projection against a conical sur-

face, however, it does not contradict his theory. As we have seen, it is 

possible for the eyes and brain to fuse images within small neighbourhoods 

of geometrically predictable positions: Panum's Fusion region of Figure 3.20 
in Chapter 3. 

We now devote a chapter to the creation of the more complicated, non-

conventional anamorphogram; the Single-Image Stereogram. 

„- 

134 



Chapter 5 

The Construction of 
Single-Image St ereograms 

In Chapter 3 we introduced the notion of a Single-Image Stereogram. Some 

simple examples such as those in Figures 3.41, 3.42, 3.44, 3.48 and 3.55 were 

included together with some discussion about how we might view them. 

There was very little variation in the depth of the perceived pictures in these 

examples. However, they did give some inkling as to how we may construct 

a Single-Image Stereogram of other more interesting three-dimensional ob-

jects. 

5.1 An outline of a construction for Single-Image 
Stereograms 

Let F(x , y, z) = 0 be a three-dimensional surface. Then we construct a 

Single-Image Stereogram of this surface by constructing appropriate hori-

zontal rows of dots on a plane, y = d, which is parallel to the xx-plane. In 

this case, we will choose that the viewer's eyes lie on the x-axis and so, the 

distance of the viewer from the Single-Image Stereogram is d. Each row of 

dots belongs to a plane, through the viewer's eyes, which cuts the surface. 

The intersection of this plane with the surface is a plane curve. We construct 

our stereogram by considering a family of these sloping planes; constructing 

a row of dots in each. Figure 5.1 illustrates the situation. 
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Figure 5.1: Sloping plane through the eyes intersecting a surface 

5.1.1 Constructing one row of dots on the xy -plane 

We firstly consider the construction of a row of dots on the horizontal plane, 

z = 0, of the above family. In order to find a row of dots which represents 

the curve y = f(x) for a given domain say, —q < x < q, of Figure  5.2,  we 

carry out the following construction. If the viewer's eyes are situated  at  the 

points, 1 and r, on the x axis of this xy-plane, then to construct a suitable 

row of dots, along the line y = d, we firstly construct the viewline,  1  V  di , 

from 1 to a point di  on this line. This point, d i , represents the position of 

our first dot and we let D denote the line y = d which lies between the  x 

axis and the curve. Let the line 1 V di  intersect the curve y = f(x) at a 

point, pi . To find the position of the next dot we draw the viewline r V p i , 

and find its intersection with D. That is, 

d2  = (r V pi ) A D. 

To find further dots we repeat this process across the row, next replacing d i  

by d2 . That is, 

P2 = ( 1  V d2) n f(x) 

and so 

d3 = (p2 V r) A D. 
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Figure 5.2: Left eye: 1; right eye: r; viewlines to points, pi, on curve 

In general, the ith dot is given by 

	

= (pi_ i  V r) A D, 	 (5.1) 

where pi_ i  = (1 V di_ 1 ) n f(x)j—q<x 5_q:qE R. 

We note that although this procedure means that we are constructing dots 
from left to right across the row, we could also move to the left across a row 
using a similar rule 

	

di = (pi_ i  V 0 A D, 	 (5.2) 

where pi_ i  = (r V di_ i )n f(x) I —q<x<q:qe R. 

We use whichever technique is most convenient in any given example. As a 
result of the possibility of working in either direction, it is not essential to 
begin at the endpoints of the rows. 
We will see some examples later. A computer can easily carry out the iter-
ative process for us. 

Various decisions must be made. These are:- 
How do we choose our starting point corresponding to p i  in Figure 5.2, or 
alternatively, our first dot, such as d i ? 

In which direction do we move? 
How do we know when to stop our iterative process? 
Answers to these questions will be discussed for each of the individual ex-
amples we consider in this thesis. 

We note from Figure 5.2 that a row of dots such as the set of di's on D 
will leave significant sections of the curve f(x) which are not represented by 
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dots. To create a stereogram which represents a smooth curve, we need to 

increase the number of dots. One way of doing this is to consider any starting 
interval, (di, di÷i ), of dots RC d2) as shown in Figure 5.21. If we randomly 

add dots to this interval, then we can use our iterative process described 

in equations 5.1 and 5.2 to find the matching dots for these additional dots 

in adjacent intervals. The process is again illustrated in Figure 5.3. As 

we saw in Chapter 2, random dots help in the disguising of our picture for 

monocular viewing. 

We note that the number of random dots we add to a starting interval will 

viewlines for iterations moving to the right 

— — — — viewlines for iterations moving to the left 

Figure 5.3: Adding random dots to the starting interval 

affect the appearance of the resulting Single-Image Stereogram. We don't 

want situations where dots merge into one another to create solid black 

regions. The size of our dots, which may be programmed, plays a part here. 

The smoothest visual results occur for very small dots. This is evident if 

we compare stereograms of the same objects in Figures 6.38 and 6.39. The 

dot spacing in the starting interval is also relevant. This is illustrated in 

the extreme example in Figure 5.4, where the distinct dots in the interval 

(di, di+i ) map onto a solid black line. 

Conversely, if our starting interval was as shown in Figure 5.5, then our 

random choice of dots in this narrower interval could lead to large gaps in 

another interval. In practice, these gaps may or may not be of consequence. 

In some cases, though, they mean that some vital sections of the curve would 

be missed with the viewlines. If there is a significant difference between the 
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Figure 5.4: Solid black regions are created in the interval to the left 

relatively large gap 

Figure 5.5: Large gaps are created in the interval to the right 
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maximum and minimum depths, pd,,,„ and pdm in , relative to the distance, 
d, of the viewer from the stereogram, then care needs to be taken in choosing 
the starting interval. 

5.1.2 Comparisons with some published papers 

Terrell and Terrell [27, page 720] comment about this effect of merging dots, 
however, talk in terms of choosing a 'strip width'. Maeder's [17] solution to 

this problem was to write his programs so that the surface F(x, y, z) = 0 
lies between two planes, P1  and 132. For our co-ordinate system with the 
viewer's eyes on the x-axis and the stereogram on the plane y = d, his setup 
is illustrated for the xy-plane in Figure 5.6. The planes, P1  and P2 are 
chosen so that they are both parallel to the stereogram, the distance between 

them is d, which equals the distance of the viewer from the stereogram. The 
distance between the stereogram and P2 is d, and the distance between the 
stereogram and Pi  is 2d. In Chapter 3, we met the following result 

Figure 5.6: Maeder's depth information lies between the two planes P1  and 
P2 parallel to the plane of the stereogram 

s I e = pdl(Pd+ d), 	 (5.3) 

where s is the dot-spacing, e is the viewer's eye-spacing, pd is the depth 
of the perceived point behind the stereogram, and d is the distance of the 

viewer from the stereogram. Using this result, Maeder's setup corresponds 
to a dot spacing between 2e/3 (for points on /31 ) and e/2 (for points on P2). 
This ensures that either gaps or solid black regions can be avoided, as the 
differences in dot spacings across the whole stereogram are not very marked. 
It must also be noted that the largest possible disparity, as measured by the 
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differences in dot spacing, is e/6 0.96cm. This also ensures that the dots 

may be easily fused as, according to our approximate calculations of section 

3.4, Chapter 3, their images lie within Panum's fusion region. 

These considerations have been included as they are relevant in both the 

designing and viewing of our Single-Image Stereograms which we introduce 

later. 

It is also appropriate to mention that Terrell and Terrell's [27] computations 

differ from the ones presented in this thesis in two main respects: 

(i) Their algorithm uses intersections of the surface with horizontal, rather 

than sloping, planes through the eyes. As they point out, this is a source of 

error. 

(ii) Their computations avoid computing intersections of lines and surfaces. 

They make approximations of the value of (x) for some point, x, in an in-

terval of chosen width. They then use the equation 5.3 to find the associated 

dot-spacing. 

Bar-Natan [1] uses similar approximations to those of Terrell and Terrell 

while Maeder [17] presents much more accurate results, taking both the 

sloping planes and the surface-line intersections into account. 

Like Maeder's and Bar-Natan's, our programs are written using the pro-

gramming language Mathernatica. It must be noted that for solving non-

algebraic equations, Mathernatica uses Newton's iteration method for finding 

a numerical approximation to the solution. This involves specifying a start-

ing point for the iterations. Hence for surfaces with complicated equations 

for the curve of intersection of the sloping plane through the eyes, the solu-

tions found by Mathematica are approximate. 

For the particular cases we will consider in this thesis, this problem does not 

arise. However, our accuracy does depend on the accuracy of Mathematica. 

It is also appropriate to consider an extreme case such as that demonstrated 

in Figure 5.7. We note that the viewline from r to p, cuts the curve, y = f(x), 
at two points. Physically this amounts to the fact that the right eye would 

not see the point p. That is, the viewer is too close to the surface to be able 

to clearly ascertain its shape. This situation is also mentioned on page 44, 

Chapter 3. If however, this same curve is placed further from the viewer, 

then for some suitable distance, the viewer would be able to see most points 
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vieviiines for viewer 
standing further away 

Figure 5.7: Viewline from r cuts the curve at two points 

of the curve with both eyes. This would allow the perception of the changing 

depth of the curve. The suitable distance depends on the slope of the curve 
at each of its points, p, relative to the slope of the viewlines to p. For our 
setup, to be able to see a point, p, on the curve, the segments / V p and 

must not cut the curve at any point other than p. 

This example illustrates that to be assured that a clear, three-dimensional 

image can be perceived, we cannot 'blindly' use our algorithm of equation 
5.1 to create a stereogram of any three dimensional surface. The placement 
of this surface relative to the viewer, and the given plane of the stereogram, 
is vital. We will include a discussion of such intricacies for each of our 
individual cases. 

5.1.3 Extending to multiple rows 

After we have dealt with all the problems raised in constructing one row 
of dots, we 'build' the stereogram with multiple rows. As previously men-

tioned, each row corresponds to a sloping plane through the eyes. All we 
need to do is transform our axes so that on each sloping plane we simply 
apply our algorithm of equation 5.1 to find a suitable row of dots. 

Suppose that we have the situation which is illustrated in Figure 5.8. This 
represents a view from the side of a sloping plane through the eyes which is 
inclined at an angle, q5, to the xy-plane. The viewer's eyes lie on the x-axis, 
symmetrically placed about the y-axis at the origin. The stereogram will lie 
on the plane, y = d, which is parallel to the xz-plane. If the viewer's eyes 
are focused at a height that corresponds to z = i on the stereogram, then 
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Figure 5.8: Side view of sloping plane through the eyes 

the angle of inclination of the sloping plane is given by 0 = Arctan[il di. In 

order to create our row of dots at the height z = i on our stereogram, we 

need to find the intersection points, (x, y, z), of this plane with our surface. 

Once we have found these intersection points, we are effectively working in 

two dimensions. For convenience, we co-ordinatize each sloping plane rela-

tive to the existing x-axis and a yi-axis, for each i, which is the intersection 

of this sloping plane with the yz plane. We can think of this as a rotation 

onto the xy-plane, about the x-axis by an angle of Arctan[il 

Note: The fact that we have specified that the viewer's eyes lie on the x-axis, 
helps to simplify the calculations here. 

This will give us a set of points, (x', y', 0). We then use our algorithm of 

equation 5.1 to find the positions of the dots on the row of the stereogram 

which is at a distance of d' = d2  + i2  from the viewer. It is convenient to 

refer to this setup as being on the xyi plane as shown in Figure 5.9, where 

the x axis is normal to the page through the origin, o. 
Having found a complete row of x co-ordinates of dots where the yi co-

ordinate is Vd2  i2 , we take the x co-ordinates which don't change accord-

ing to our rotational transformation, and append each of them with our z 
value, i. This gives a set of ordered pairs which specify the positions of the 

appropriate dots on our Single-Image Stereogram which is parallel to the 

xz plane. Specific details of these processes may be found in the individual 

programs for each specific stereogram. These are included in the appendices. 

We will now use our algorithm to create various Single-Image Stereograms. 

In each individual case, we discuss the special problems involved, and include 

answers to some of the questions we have raised. 
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° pm— d 

Figure 5.9: Relative positions of the y and yi axes 

5.2 Single-Image Stereogram of an ellipsoid 

Figure 5.10: Left eye: 1, right eye: r; stereogram at y = d; ellipsoid centered 
at (0, a, 0) 

We will now consider the problem of creating a Single-Image Stereogram, of 

a given ellipsoid placed symmetrically about the y axis in our co-ordinate 
system as shown in Figure 5.10. The equation of the ellipsoid is 

F(x, y,z) = 	+ — a) 2 /c2  z2 /i2  — 1 = 0, 	(5.4) 

where the centre of the ellipsoid is (0, a, 0). There are two points to note: 
(i) When b=c=f we have the special case of a sphere. 
(ii) We must take care in choosing suitable values for the constants b, c, f 

as we want our ellipsoid to be further away from us than the plane of the 
stereogram. 
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There are two possible views we can consider:- 
(1) The outside front surface of the ellipsoid, as shown in Figure 5.11. 
(ii) The inside of part of the back surface of the ellipsoid, as shown in Figure 

5.12. 

r 

Figure 5.11: Outside front surface of the ellipsoid 

0 r 

Figure 5.12: Inside back surface of the ellipsoid 

Suppose our eyes are placed at positions with co-ordinates (—w, 0,0) and 
(w, 0, 0) and that the plane of the stereogram is y = d. That is, we are 

viewing the stereogram from a distance of d cm. 
In subsection 5.1.3 we have seen that each row of dots lies on a line with 
z-co-ordinate, say k, which is the line of intersection of two planes; the 
plane containing the stereogram, and the plane through our eyes with in-
clination = Arctan[k I d] from the horizontal xy plane. In order to con-

struct our stereogram, we need to find the equation of the figure of inter-
section of this latter plane through our eyes with the ellipsoid. To obtain 
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the equation of this plane we consider the situation of Figure 5.13 where 

= (e, f, g), the normal vector, is a vector perpendicular to both the vec-

tors, 1; = (2w, 0,0) and rp = (w,d,k), in the plane. 

14-w.0.01 	 r(t11.0.0) 

Figure 5.13: 1, r, p are planar vectors 

Now 

(2w, 0,0)- (e, f,g)= 0 

(w, d, k) • (e, f,g)= 0 

e = 0 and f = —kg/d. There are infinitely many vectors perpendicular to 

the plane but we need only choose one. Choose g = 1, then rt = (0, —k d,1) 
and let (0, 0, 0) be the fixed point in the plane, then the equation of the 

plane is 

Ox — kyld+ z = 0 

Or - kyld z = O. 

Consequently, any point on the required figure (in this case, an ellipse) of 

intersection satisfies both 

z = kyld and 

x211,2 	y a)2/c2 z2 f2 1 = O .  

To find the equation of this ellipse, it is appropriate to rotate our axes to new 

x, yk, zk axes, so that the z-term disappears. We can then use our algorithm 

on our sloping plane which will be the xyk-plane of our new co-ordinate 

system. 

Let the new co-ordinate axes have the same origin, but be rotated about 
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the x axis so that the angle between both y and Ilk' and z and zk, is 9 = 

arctan[k14 This is shown in Figure 5.14. If a point, p, has co-ordinates 

Yk 

 

 

li  31. 

° 	d 

  

Figure 5.14: Rotation of axes through an angle of 9 = arctan[k 

(y, z) with respect to the old axes and (yk,zk) with respect to the new axes, 

then 

Y = Ykc0s9 — xksin0 and 

Z = yksin0 xkcose. 

Now case = d//d2 k2  and sin° = k 1 d2  k2 . Therefore 

Y = Y kd d2  k 2  — zkk I d2  k 2  

and for the ellipse on the xyk plane we have zk = 0. Hence, if we make the 

transformation 

= dYk I Vd2  k2  

we find that the equation of the ellipse (for any k) is given by 

x2/62K-E(Yk—(adf2Vd2 	k2/(f2d2+c2k2))2/(c2f2(d2+k2)/(f2d2+c2k2))K = 1 

where 
K  = (f2 d2 c2 k2 _ a2 k2 )/(f2 d2 c2 k2 ).  

Now if we consider the way in which we view an ellipsoid, then Figure 5.15 

shows, that in every plane, our right eye sees no point further to the left than 

the tangent point, tr , of its viewline and the left eye sees no point further to 

the right than the tangent point, ti, of its viewline. However, the right eye 

will see points of the ellipse further to the right than ti, and similarly, the 

left eye will see points further to the left than tr . Consequently, a suitable 

starting dot (firstdot in Figure 5.15, and in our program of Appendix E) 
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from the left for our stereogram is at the intersection point of the viewline 

from the left eye to the tangent point, tr , with the line yk = 457-1- Ic2  (in 

our new co-ordinate system). In order to "see" this tangent point on the 

ellipsoid, the left eye must view this starting dot when the right eye views 

the dot, (dr  in Figure 5.15), at the intersection point of its tangent line with 

the line yk = Vd2  k2 . Consequently, if any dots are placed in the interval 

Figure 5.15: First and last dots for each eye 

between the firstdot and dr , then they are used only by the left eye for 

"viewing" the ellipsoid. We have an analogous situation at the right-hand 

side of the ellipse, where the interval of dots between d1 and lastdot (see 

Figure 5.15) is used only by the right eye for "viewing" the ellipse. 

Now consider our algorithm for constructing the stereogram which will en-

able the viewing of the ellipsoid. In any plane, for given k, we start by 

considering one row of dots. For any dot, dr , which is viewed by the right 

eye we can find the next dot required for the right eye by viewing d,. with 

the left eye. This latter viewline, 1 V dr , has two intersection points on the 

ellipse. If we are "viewing" the front of the ellipse [illustrated in Figure 5.11 

] then the next dot for our stereogram is given by dr+i = (i 1  V r) A D and 

if we want to "see" the inside back [illustrated in Figure 5.12 J of the ellipse 

then the next dot to the right is given by d',. +1  = (i2  V r) A D. 
For a complete row of dots we may iteratively apply this process to an 

interval of dots to the far left (for convenience). The number of dots ran-

domly chosen in this interval depends on the size and required denseness 

of the stereogram. The x co-ordinates of this interval of dots are randomly 

selected between two given values. The iterations finish for each row when 

the dot obtained is further to the right than the last dot. 
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Figure 5.16: Matching dots and intersections with the ellipse of viewlines 

To complete our full Single-Image Stereogram we repeat the above process 

for a selection of possible values for k as described in subsection 5.1.3. For 

the ellipsoid, k will vary between the z co-ordinates of the tangent points of 

the planes through our eyes, as shown in Figure 5.17. We simply find the 

Figure 5.17: Tangent points on ellipsoid of plane through our eyes. 

value of k for which the major and minor axes, of the ellipse of intersection, 

have length 0. 

5.2.1 Boundary considerations and further questions. 

If our starting interval to the left includes the first dot, then we will per-

ceive a boundary point of the ellipse on the left, however, by iterating to the 

right until the x co-ordinate of a dot exceeds a set value, we have very little 

chance of "seeing" a point on the right-hand boundary. Hence, the program 

is written so that it runs alternately, from left to right (giving a point on the 
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left boundary), or from right to left (giving a point on the right boundary). 

The Single-Image Stereogram obtained by just considering an ellipsoid with-

out any background, or surroundings, is unsatisfactory for viewing because 

on either side, we have an interval of dots which is viewed by one eye only. 

This means that these intervals are seen as flat regions on the page around 

the ellipsoid which detracts from the three-dimensional effect. This can be 

seen by viewing Figure 5.18. 

To remedy this situation, a background or surrounding plane was intro- 

Figure 5.18: Single-Image Stereogram of the inside of a sphere with no 
background. 

duced so that both the boundary intervals of dots were viewed by the op-

posite eye for viewing the background. Two intervals of dots viewed by one 

eye only still exist to the far left and right of our stereogram, however, in 

this instance, do not detract from the viewing of our central surface, the 

ellipsoid. 

The introduction of the background plane causes new questions to arise: 

1. Is it best to include the points on the boundary or is a vague edge better? 

2. Where should we place the plane in relation to the ellipsoid in order to 

obtain a satisfactory Single-Image Stereogram? 

3. What is a satisfactory Single-Image Stereogram? 

Other questions we may ask include: 

4. When do inaccuracies, such as not considering sloping planes through the 

eyes, become obvious when viewing? 

5. What happens if the tangents intersect behind the Single-Image Stere-

ogram? 
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The answers to such questions are largely a matter of opinion, however we 

note that the answer to the last question lies in an examination of Figure 

5.19. We see that there is no overlap, on D, of the possible sets of dots for 

tangent intersection point is behind the 
stereogram 

firstdot 	d 	 lastdot 

Figure 5.19: Tangents intersect behind the stereogram. 

each eye. Consequently, for such a special case, we could only represent this 

ellipsoid by a two-picture stereogram. Provided that this situation occurs 

for such tangents to the ellipsoid on every sloping plane through the eyes. 

The associated program in Mathematica is explained in Appendix E. 

Some resulting Single-Image Stereograms are shown in Figures 5.20, 5.21, 

5.22 and 5.23. 
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Figure 5.20: Single-Image Stereogram of the inside of a sphere. 
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Figure 5.21: Single-Image Stereogram of  the outside of  a sphere. 
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5.3 Single-Image Stereogram of cube 

Figure 5.24: Left eye: 1, right eye: r; stereogram at y = d; cube with vertices 
1,2,3,4,5,6,7,8 

We now consider the problem of creating a Single-Image Stereogram which 

allows us to see a three-dimensional cube, as distinct from the perspective 

drawing of one on a two-dimensional page. If we view the anaglyph of 

Figure 4.32, then we see the boundary line segments, or edges, of such a 

cube. Its Single-Image Stereogram would enable us to 'see' some of its faces 

as well. The creation of such a Single-Image Stereogram is considerably 

more complicated than our preceding ellipsoid example of section 5.2. If 

we consider a sloping plane, through the nodal points of our eyes, which 

intersects the cube, then the specification of the figure of intersection on 

this plane, is not as easy to obtain as the ellipse was, in the case of the 

ellipsoid. We must take into account the fact that, when we view a cube, 

the number of faces visible to each eye, may be one, two or three. 

5.3.1 Which faces of the cube can we see? 

Lemma 5.1 Consider a plane containing a face of a cube. This face is 
visible if and only if the viewpoint, v, is on the opposite side of the plane to 
the cube (see Figure 5.25). 
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Figure 5.25: View looking down on cube, plane and viewpoint. 
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Figure 5.26: Cube and viewpoint 

Lemma 5.2 : There exist three faces of a cube which are never visible from 
a viewpoint v. 

Proof: Suppose the face iqml, of Figure 5.26, is visible, then v and the cube 

are on the same side of the plane, oV pV k. This is the plane through the 

opposite, and parallel, face opkj of the cube. Hence this opposite face is not 

visible by lemma 5.1. Since there are 3 pairs of such opposite and parallel 

faces on a cube, we know that at least 3 faces are not visible. 

Lemma 5.3 Consider the cube of Figure 5.26. Let a z  denote the angle 
between the vectors v — i and x — i, where i represents the closest vertex to 
the viewpoint v, 0 < ax  < r and x is any vertex adjacent to i. (see Figure 
5.27) 
The face ijl is visible 4* a q  > r/2 

.#> (y_ 	0 (I — <0 

Proof: Face ij1 is visible a cube is on the opposite side of the plane 1V j V1 

from v. (from Lemma 5.1) 

czq  >r/2 (2—id../VjVI) 
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Figure 5.27: a q  is the angle between vectors v — i and q— i 

cosaq  < 0 
(eg — i) 0 (g —1)/12 — illg - II) < 

a - 0 (q —) < 0. 

If we know the co-ordinates of the eight vertices of the cube and the view-

point, then using the result of Lemma 5.3 we can establish which faces are 

visible in terms of their vertices. We have three possible cases: one, two or 

three faces are visible. 

For example, 

(i) aq  > 7r/2; ai,ai < 7r/2 	one face is visible. (That is, the face ij1k.) 

aj, q > r/2; ai <r /2 	two faces are visible. (That is, faces ilmq and 

ijkl.) 

aj, al, a q  > r/2 	three faces are visible. (That is, faces ilmq , ijkl 

and ijom.) 

We have already discussed a method for finding the eight vertices of a cube 

in section 4.2.3. We will again use this technique. For the purposes of 

finding the number of visible faces, we will take the viewpoint to be at the 

origin, which represents the position of the midpoint of the viewer's eyes. 

That is, the midpoint of the line segment joining the nodal points of the 

viewer's eyes. Our function for finding the number of visible faces is called 

nvisiblefaces in our program of Appendix F. It must be noted that this 

latter viewpoint is different from the respective viewpoints, at land r, which 

are vital for the construction of our Single-Image Stereogram. 

We will now discuss the method of construction of our Single-Image Stere-

ogram in detail. In order to 'see' our cube we will need to use our "uncrossed" 

viewing technique of subsection 3.2.1. Our description needs to be broken 

into several parts. 
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5.3.2 Single-Image Stereogram representing a quadrilateral 
on one plane in space 

Firstly, we consider a Single-Image Stereogram which will allow us to see part 

of a plane, II. Each of the visible faces of a cube, or in general a rectangular 

prism, will be quadrilaterals. Consequently, the part of the plane we consider 

will be a quadrilateral, II', with vertices (al, /317 71)1 ( 4227 02/ 72)4°3, 031 73) 
and ( 240(34,74)• 

Our co-ordinate system is as shown in Figure 5.24. We again consider 

our sloping plane, with equation z = kyld, through our eyes which intersects 

the plane, II, of our stereogram at a height of z = k. This plane which we 

Figure 5.28: Sloping plane, 0, through the eyes cuts the quadrilateral, II' 

have labelled 0 in Figure 5.28, will intersect the plane IT in a line, L, and it 

is a particular segment of L that we are interested in. That is, the segment 

on the quadrilateral II' which is T7f.i in Figure 5.29. 

Consider firstly, the endpoints q and s of this segment. To find their co-

ordinates, we consider the parametric representations of each of the four 

lines containing the sides of the quadrilateral The line segment with 

endpoints ((xi, f3i, 7i) and (a1+17 	may be represented by 

x = 	(ai+1  — 

Y = 	— 

z = 7i + (7i+i — 

where 	t E R, 	0 < t < 1. 

We can now find the co-ordinates of the intersection points q and s by 

considering the value of the parameter t for each boundary line intersection. 
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(a2,1.12,y2) 

10 0 
the rotation matrix 0 cos0 —sine 

0 sin0 cos0 

(a3,03,y3) 

(a4,1104) 

Figure 5.29: Line segment which is the intersection of the sloping plane with 

If 0 < t < 1 then this is one of our required points. 

Note: The plane 0 will intersect every line of the boundary, but not every 
line segment which is a side of our quadrilateral II'. By line of the boundary 

we mean a line which contains the line segment which is an edge of the 

quadrilateral. 

5.3.3 Rotation of line segment onto sy-plane 

Normally, there will be two intersection points as shown in Figure 5.29, 
however, there is an exception. This occurs when the plane 0 cuts through 
a single vertex of II'. This is a minor consideration when looking at the 

whole quadrilateral as this one point can be represented on our Single-Image 

Stereogram by two points only. 
Having found two intersection points, q and s, with co-ordinates (x i , 	z1) 

and (x 2 , y2 , z2 ) respectively, we consider the problem of finding the equation 
of the line containing the segment Vi. For ease of calculation we will 
rotate the endpoints q and s so that they lie in the xy-plane. The plane 0 
is inclined at an angle 0 = arta* Id] (for each k) to the xy-plane, hence 

we need to rotate points q and s about the x-axis in a clockwise direction 

by an angle of 0 degrees. To achieve this rotation we multiply each point by 

. 

This will give two new points, q' = (xc yc, 0) and s' = 	0) and it is 

now relatively easy to find the equation of the line through the line segment 
q' V s' . We must also use the fact that after rotation onto the xy-plane, 
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the row of dots which corresponds to this line segment will be at a distance 

d' = (k2  (12 )0  from the viewer. 

5.3.4 Algorithm for one row of dots/line segment 

Figure 5.30: Using our algorithm to find the dots 

Once we have the equation representing the line through the line segment, 

we apply our algorithm of equation 5.1. As shown in Figure 5.30, our first 

dot, d1 , will be the intersection point of the line IV q' with the line y = d' 

and our last dot, di, must be no further to the right than the intersection 

point of r V s' with y = d'. If we move from right to left, then the roles of 

these dots would be reversed. 

Having established how to find the dots for a complete row, we now look at 

the problem of calculating the dots for a selection of possible rows. That is, 

for possible values, z = k, on our stereogram plane. Hence we consider:- 

(i) The minimum and maxium possible z values (in the plane y = d), call 

them zm ia  and zmax  respectively. 

(ii) The step-size as we move from z, in  to ;flax . The number of rows of the 

stereogram will depend on the step-size which in turn is dependent on the 

Dot-size. By Dot here, we mean the dot, figure or motif, which we ask the 

computer to plot at the positions of the calculated dots for the stereogram. 

Hence, the height and width of such Dots must be considered, so that they 

do not overlap, or merge into one another. This is a programming problem. 
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5.3.5 zm in  and zmor 

Suppose we want the parametric representation of the lines, Li, through 

(0,0,0) and 	7,) where i = 1,2,3,4. This is given by 

(0, 0, 0) + t(ai, 0i, 70, 	0<t<1. 

The origin, (0,0,0), represents the midpoint of the line segment joining the 

viewer's eyes. We can see from Figure 5.31 that zmin  for our stereogram, 

Figure 5.31: Finding maximum and minimum z using viewlines from mid-
point of the eyes 

corresponding to one face of our cube, will occur at the minimum z value 

obtained from the four intersection points of L 1 , L2, L3, L4 with the plane 

y = d. That is, 

= (tai, tOi, t-yi) = (tai, d, t-yi) 

t = dh3i, 	i = 1,2,3,4 

Therefore 

zmin  = M inimurn[-yi(d / 0i) 72(d / 02) 73(d / 03) 74(d / 04)1. 

Similarly, 

zni=  = M ax irrturn(71(d / Ili), 72(d / 132) 73(d / 133) 74(d / 4)i• 

It must be noted that by considering the lines from the midpoint of the eyes, 

we are making an approximation. 
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5.3.6 Summary of steps for creating the entire Single-Image 
Stereogram of cube 

We now extend our construction of a stereogram for one face of our cube, 

to more than one face. The number of faces we consider will depend on 

how many are visible. This will vary according to the position of the cube 

with respect to the viewer. The program for creating our Single-Image 

Stereogram is given, and explained in fine detail, in Appendix F. We have 

again included a background plane to enhance the three-dimensional effect, 

and to eliminate the problem discussed in section 5.2.1. 

Basically we have the following steps:- We begin with the cube, of dimen- 

sion 2dim, in general position about the origin, as shown in Figure 5.32. 

In order to find the vertices of cubes in varying positions, we carry out 

z 

Figure 5.32: Cube of dimension 2dim, centered at the origin 

transformations, rotational and translational (as discussed in section 4.2.3), 

so that our cube is moved further from the viewer than the plane of the 

intended stereogram. This plane is again y = d, where d is the distance, 

in centimetres, of the viewer from the stereogram. We now have eight new 

vertices which will help us specify the faces of the cube which are visible 

to the viewer. The closest vertex to the viewer is defined to be the one of 

minimum distance from the midpoint of the line segment joining the nodal 

points of the eyes. In our case, this midpoint is the origin, (0,0, 0). Having 

found the closest vertex, we use the result of Lemma 5.3 to find the number 

of visible faces. Once we have the number of visible faces, and the closest 

vertex, we can establish the vertices of each visible face. This gives a rather 

complicated rule which we have called visible faces in our program of Ap- 
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pendix F. Fortunately, the computer does the work for us in applying this 

rule. 

The next step is to use our method of subsection 5.3.5 to find the range of 

z values, on our stereogram plane, which covers the cube. For our complete 

stereogram, we construct rows of dots which correspond to values just out-

side this range of values, but which allow us to, perceive our background 

plane. This gives greater clarity, of the edge boundaries of our cube, for 

viewing. 

As we move up our rows of dots from the bottom of our stereogram, our dots 

in each row represent points on different planes. For example, the first row 

represents points on one plane, the background plane. Then as we move up 

to our cube, we may have the situation where as we move from left to right 

across a row of dots we have points represented for four different planes, as 

shown in Figure 5.33. That is, to construct a row of dots, consideration has 

k4  

k2  - - - 

k 1  - - - 

One_plane 

four.planes 

three-planes: two 
- 6aatground planes 

are the same plane 

one plane 

Figure 5.33: Five possible k values for rows of dots representing different 
planes as we move across a row; three visible faces of the cube 

to be given to the problem of working out, for each value of k, which of the 

visible faces requires dots at that level, and in what order. It is possible to 

have rows of dots which traverse no faces, one face, two faces or three faces; 

even when three faces are visible. In our program, the computer function we 

have named cuberowdots solves this problem. To understand how cube row-

dots works, we will consider one case. 

Suppose that there are three visible faces, and that k lies between the min- - 

imum and maximum z values for the visible faces, say visibleface 1 and vis-

ibleface. This means that this row of dots only crosses two of the faces. 

If we start at the left-hand side of the cube, then we need to find which 
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of these two faces is furtherest to the left. This is done by comparing the 

firstdot for visible faces 1 and 3. The function Firstdot, of our program, 

gives us an x co-ordinate, and so the minimum value tells us which face 

we consider first. The lastdot for the first face is used as the first dot for 

the next face. The last dot for this second face is then used as the first 

dot for the background plane. Currently, the background plane to the left 

of the cube is considered separately. This has the disadvantage of creating 

a stereogram with monocular clues across its central band. Some thought 

may be given to amending this later. 

We now include examples, in Figures 5.34, 5.35 and 5.36, of the stere-

ograms which can be created using our program of Appendix F. 

165 



. • 	. r : 

96autocube explained 

- • 	• • 

• : 	: : 	: 	: : 	: 	: : 	: 	: : 	: 	: : 	: 	: : 	: 	: : 

• • • 	• 	_ • 
-. .• •• 	• • • • •. 

: 	= :: : 	: 	— • 	- . . . 	. 	_ .. . 	 . 	 = :: : 

	

- •• • 	• :: 	: 	7. : 

	

:: .. . :: . : :. 	- _ - .. „ 	 - - - . • .. 	• • - - . -. 	. 	.. 	. 	. 
:

- - - 	• • - 

	

- : 1 ::• 	. . 	. . .. 	: _ .: :. ::. . 	. 	• • • • 	 . . 	. . .. 

	

: ..:1 .:. : : : 	 :.: .:. : : : 	*. .. .• ".". . 	 ". - . • *. • *. . 	: : .:. : : 
. . . 	_ 	 : :- :*: • • 	 • :- :*: • • -: 

:= 	: 
• • ... : •• • 	7 :: : : ::. = 	: :: *: i 1 : 	- :: : : :: 

:= 	: 	
:: ": I 1: 	- :: *: i •:: 	- :: ... : 1: 	- 

- 	- • - 	:: 	: : :: 	:: 	: :: 	 - 	• - - 

	

:: 	• • — 	: : 	:: 	• - 	- 	. . 	• • 	: : - - • - 

• • : : • • 	•• 	• • 
• • 	• • 	• •- 

	

: . 	• : 	: 	: . 	: : 

• . r 	. • . . r : 

	

. . 	. . 	. 
" 	• - • 

	

- 	. 	 . 	.  

- .. . . 	- .. . . 

: : 	: : : 	:: 	: :: 	: : 	: : : 	 " 	• - 
- : 	• : • 	: : 	: : : 	: : 	: . : 	.. . 	. . . 

	

.-.*- ' -• .• 	.-. . • .. ..* 	. . . 	. . 	. . . 	. . 	. . . 	- . 

Figure 5.34: Three visible faces of a cube; viewpoint:(0. —30,0); origin is at 
the centre of the page 
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5.4 Mixed Anamorphograms 

We are now in a position to be able to combine all of our techniques to 

obtain anamorphograms which require a combination of the special viewing 

techniques. To illustrate various possibilities we will again examine a cube. 

5.4.1 Combining two perspective drawings, and a Single-
Image Stereogram, of the same cube 

The perspective drawings of a cube from two viewpoints (one for each eye) 

are superimposed on the stereogram for this same cube in Figure 5.37. 

We note that the correct focusing for the stereogram means that our eyes 

fuse the individual images of the two perspective drawings to give a three-

dimensional cube outline which matches the perceived image of the stere-

ogram. 

5.4.2 Combining anaglyph and stereogram 

The same example as that above can be used to combine the anaglyph tech-

nique with the stereogram as in Figure 5.38. The only difference, from the 

preceding case, being the two different colours used for the two perspective 

representations of the cube. We can view our combined picture with the 

appropriate spectacles with colour filters. The image obtained here is more 

satisfactory than that of Figure 5.37 since we are not aware of the individual 

pictures for each eye. 

5.4.3 Combining a stereogram and a cylindrical mirror anamor-
phogram 

Another possibility is the combining of a stereogram and a mirror distortion. 

We will aim to see a correct image of our stereogram in the mirror. Care 

must be taken here if we are to test our results as our image will need to 

be of suitable size for viewing and for apparently, 'fitting inside' our mirror. 

For convenience, its distorted picture must fit on our A4 page. 

The following example of Figure 5.39 was created for a cylindrical mirror of 
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radius 5cm. The viewpoint for the construction of the anamorphogram for 
the cylindrical mirror was (0, —30,30). If we are to view the 'image' in the 
mirror stereoscopically, then our viewpoints will not be precise. However for 
the practised stereogram viewer, and a good cylindrical mirror, the three-

dimensional cube is clearly perceivable. 
Another consideration is the choice of graphics elements used to represent 
our points on the stereogram. Even dots will be distorted by our mirror 
however, if we choose them to be small enough, then this distortion will be 
minimal. This is important for the matching of the correct pairs of dots by 

our eyes, although according to Julesz [131, it is possible for them to cope 
with very small variations in corresponding dot sizes. 

We could also consider the case of a stereogram where the Dots are figures 
which can be represented in terms of co-ordinates. This would mean that 
application of the mirror program of Appendix D, which transforms co-

ordinates to co-ordinates, will cause the Dots to be correctly distorted for 
our mirror. We have yet to try an example. 
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Figure 5.39: Three visible faces of a cube: viewpoints (-2.875, —30,0) and 
(2.875, —30,0), mirrorsurface: x2  + y2  = 25 
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Chapter 6 

Single-Image Stereogram of 
a Special Sphere 

In this chapter we consider an 'alternative view' of what we have discussed 

already. We begin with a brief description of some of the essential ideas of 
Projective geometry. 

In Projective geometry we analyze the properties of geometric figures which 

remain invariant under projections. In order to do this we extend our Eu-

clidean plane. We introduce the notions of ideal points and the ideal line. 

Each family of parallel lines in the plane defines a point called an ideal point 
(or direction). By family of parallel lines, we mean the collection of all lines 
parallel to a given line, L. We say that L and each line of the family meet 
at their associated ideal point. If we use the terminology of Row [26], and 

denote the ideal point associated with the line / as j, then the statement 
"any two lines in the plane meet at one and only one point" can be repre-
sented as shown in Figure 6.1. The line which consists of all the ideal points 

Figure 6.1: Any two non-parallel lines meet in a point and any two parallel 
lines meet at an ideal point 

is called the ideal line or line at infinity. 
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We note that with the extension of the Euclidean plane to the extended 

Euclidean or projective plane, with the ideal line and ideal points, we have 

the Principle of Duality. This means that if each occurrence of the words 

'point' and 'line' are interchanged in a geometrical statement, then the re-

sulting statement is still true. 

For example, we can say that: 

Two points determine one and only one line, and 

Two lines determine one and only one point. 
Note: In Euclidean geometry two parallel lines do not determine a point. 

Two such symmetrical statements and their corresponding geometric con-

figurations are said to be dual results. 

There are also other expressions that need to be interchanged in order to 

obtain the dual statement. For example, 'lie on' with 'pass through'. This 

depends on the terminology used by a particular writer. For example, Ve-

blen [29] simplifies the reciprocation by referring to, a point 'on' a line, and 

a line 'on' a point. 

We will now review some basic results of Projective geometry which lead to 

some new results. These will allow us to construct the single-image stere-

ogram of a fixed sphere. This sphere is fixed in the sense that, if it is viewed 

from the same viewpoints (one for each eye) with both the crossed and un-

crossed viewing techniques of section 3.2.1, then the perceived figure in each 

case is a different view of the same sphere. For convenience, we will refer to 

the employment of both viewing techniques as dual viewing. 

This is in contrast to the usual situation where the two viewing techniques 

allow the viewer to perceive similar, but different, images. For example, if we 

see the outside surface of part of a cube using the 'uncrossed' technique, then 

we usually see the inside surface of what appears to be a smaller, slightly 

distorted cube, when we switch to the 'crossed' technique. The reader may 

check the accuracy of this statement, by viewing the stereogram of Figure 

5.35 using both techniques. Another way of expressing this, is to observe 

that if certain dots present collinear images for uncrossed viewing, then their 

images for crossed viewing are also collinear. Such an observation leads to 

the result of Theorem 6.17. The case for part of a cube, is represented 

diagrammatically in Figure 6.2 (a), where we are looking down on one view-

ing plane from above. Similarly, we have represented the case for part of 

a sphere in Figure 6.2 (b). Here, according to our diagram, the perceived 
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stereo 

part of cube 
cross-section perceived image for 

'uncrossed' viewing 

perceived image for 
'crossed' viewing 

(a) 

sphere cross-section 

perceived image for 
'uncrossed' viewing 

stereogram 

perceived image 
for 'crossed-eye 
viewing 

Figure 6.2: Viewing the same dots using both the crossed and uncrossed 
techniques 

image for 'crossed-eye' viewing could be the inside of a flattened sphere such 

as an ellipsoid? 

6.1 The Stereoscope and some related theorems 

We begin by defining a stereoscope which consists of a given line D, co-planar 

with points 1 and r, where d, r D, and a permutation, ti : D ---,. D, of the 

points of D. We denote this stereoscope by S(D,1,r, it). Associated with it 

we have a collection of points 

{x=(aVI)A(taVr): aED,a10Vr}. 

Such a point, x, is illustrated in Figure 6.3 and will be referred to as the 

image of a and iia. It must be noted that a 1% 1 V r ensures that the 

stereoscope is well-defined. S(D ,I, r, ii) has an associated inverse which we 

write as 

S-1 (D,1,r,A) = S(D ,1, r,11-1 ) 

where the associated collection of points is 

fx-1  = (b V 1) A (p—l b V r) : b E D,b lit 1 v r}, 

or 	fx-1  = (pa V 1) A (a V r) : a E D,a t% IV r} . 

178 



r 

Figure 6.3: A stereoscope presenting the image, x, of points a and pa. 

I 	 r 

Figure 6.4: Inverse stereoscope 

Figure 6.5: 4 is the harmonic conjugate of 3 with respect to 1 and 2 
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Such a point, x - L, is illustrated in Figure 6.4. It will be referred to as the 

inverse image of points a and pa. 

Important to our discussion is the notion of an harmonic conjugate. In 

Figure 6.5 we have four coplanar points a, b, c and d (no three of which are 

collinear) coplanar with the line L. We see that a V b meets c V d on L and 

a V d meets b V c on L If we let (a V b) A (c V d) = 1, (a V d) A (b V c) = 2, 

(b V d) A L = 4 and (a V c) A L = 3, then the point 4 is called the harmonic 

conjugate of 3 with respect to 1 and 2 and is denoted by 4 = H(3; 12). We 

say that the four points, 1,2,3 and 4 are harmonically related. In fact we 

have the following theorems : 

Theorem 6.1 For any three collinear points 1, 2 and 3, there is a unique 

harmonic conjugate of 3 with respect to 1 and 2. 

Proof: see Pedoe [22, page 54] 	 0 

Theorem 6.2 If 1 and 2 are harmonic conjugates with respect to 3 and 4 

then 3 and 4 are harmonic conjugates with respect to 1 and 2. 

Proof: see Veblen [29, page 81] 	 0 

Theorem 6.3 Let 1 and 2 be any two distinct points and 3 the harmonic 
conjugate of the ideal point of the line 1 V 2 with respect to 1 and 2. Then 3 

is the midpoint of the segment PT . 

Proof: see Veblen [29, page 80] vol. 2 	 0 

In general, if we denote the nth  image, in our stereoscope S(D,I,r,A), of 

a and pa as xn, which corresponds to the image of points pn - la and pa, 

then we have Figure 6.6. Here we see that d is the harmonic conjugate of 

d' = D A (l V r) with respect to I and r. 

It must be noted that when 1 V r is parallel to D, then d (by Theorem 6.3) 

is the midpoint, m, of 1 and r, which in this particular case means that m 

is the harmonic conjugate of the ideal point on 1 V r with respect to land r. 
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Figure 6.6: Stereoscope of the nth  image of a and pa 

Theorem 6.4 If xi' is the nth  image of points a and pa, of Figure 6.6, 
and x —n is their nth  inverse image, then x" and X -71  are collinear with d, 
Va E D. 

Proof: This follows from the definition of harmonic conjugate and the fact 
that d depends only on d', 1 and r. 	 0 

Given a figure F and a point p, every point of F distinct from p determines 
with p a line, and every line of F not on p determines with p a plane. The set 
of these lines and planes through p is called the projection of F from p. The 
individual lines and planes of the projection are also called the projectors of 
the respective points and lines of F. 

Two figures F1  and F2 are said to be in 1:1 correspondence if every element 
of F1  corresponds to a unique element of F2 in such a way that every element 
of F2 is the correspondent of a unique element of the figure F 1 . A figure 
is said to be in 1:1 correspondence with itself, if every element of the figure 
corresponds to a unique element of the same figure in such a way that every 

element of the figure is the correspondent of a unique element. Two elements 
that are associated in this way are said to be corresponding or homologous 
elements. An example is shown in Figure 6.7. 

If we now consider any line, L, and any point, I L (as shown in Figure 
6.8), then an elementary map 0, is a particular 1:1 correspondence between 
all the lines through I and all the points, pi, on L. 
That is, using the notation of Row [26], 9 : pi  4.-+ 1 V pi and we denote this 

181 



Figure 6.7: Homologous elements in two corresponding figures 

Figure 6.8: Elementary maps 

map by 
el 	 el 

L A 1 with inverse map 1 A L. 

A pencil of lines is the figure formed by the set of all co-planar lines through 
the same point. This point is called the vertex or centre of the pencil. If the 
vertex is 1, and the set of lines {P1 , 1'2, P3 , ....} is a subset of the pencil or 
sub-pencil, we denote the subset with the centre by 1(1A, P2, P3, 	)  

The figure formed by the set of all points on the same line, say L, is 
called a range of points on L and a subset of the range on L is denoted 

by L(Pi P2, Ps, 	)  

Two ranges in the same plane are perspective provided every two homologous 
points of the ranges are on a line of a pencil of lines through a point. This 
means that these points have the same projection from this point. For 
example, in Figure 6.9 the ranges on L and L' are perspective, and we 

denote the 1:1 correspondence between the ranges by 

Such a mapping is a composition of two elementary maps 

el el 

L(P19P2)P3, ....) XIXLi  (14,112,14, ....) 
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Figure 6.9: A perspectivity between points on L and L', with centre 1. 

and establishes a (1:1) correspondence between the points on L and those 

on L' and is called a perspectivity. The point, 1, is called the centre of 

perspectivity. 

Similarly, we can have the dual situation; Two co-planar pencils of lines are 

perspective, if every two homologous lines intersect in a point of the same 

range of points. That is, in Figure 6.10 the pencils through 1 and 1' are said 

L 

Figure 6.10: A perspectivity between lines through 1 and l', with axis L. 

to be perspective, and we write 

L 

	

l(Pl? P21 P37 ...) 	11( 117 121 137 --). 

Such a mapping is a composition of two elementary maps 

	

el 	el 
i(Pi , p2 , P3 , ....) -X L T\ ii (PI, il, il, ....) 
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and establishes a (1:1) correspondence between the lines through 1 and those 

through l' and is called a perspectivity. The point, L, is called the axis of 

perspectivity. 

We define a projectivity between the points of two lines L and L", or between 

the lines through two points 1 and 1", to be a composition of a finite sequence 

of perspectivities. As an example, consider the situation shown in Figure 

6.11, where the line L" must cut L' but need not lie in the plane IV L. The 

Figure 6.11: Projectivity between ranges on L and L" 

sequence of perspectivities is 
1' 

	

L(p, q, r, .) 	L'(p' , , , 	.) X L"(p" , q" , r" , 	.). 

We now have a (1:1) correspondence between the ranges of L and L" which 

is described as a projectivity and is written 

L(p, q, r,...) A L" (p" , q", r" , .). 

Similarly, we can have the dual which is a projectivity between the pencils 

of 1 and 1" as illustrated in Figure 6.12. In this example the sequence of 

projectivities is 
Li 

	

l(P,Q , R, .) 	(P' ,Q' , R', .) 	1"(P" ,Q", R", .). 
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Figure 6.12: Pro jectivity between pencils through 1 and 1" 

and the projectivity is written 

1(P, Q,  R, )7\ 1"(P" ,Q", R", .). 

We will represent projectivities by Greek letters. If a projectivity, i, maps 

every line of a pencil with vertex 1 onto a line of a pencil with vertex 1", 

then we will denote such a mapping by 

: / 	1" or 17\1". 

If n  maps a line L onto a line L", then we may denote L" by RL. We will 

denote 'L is a line through the point 1' by L 3 1. 

6.2 Introducing Conics 

Central to our discussion is the concept of a conic. Consider two pencils of 

lines in the same plane and with vertices 1 and r and suppose that these 

pencils are in projective correspondence. That is, 3 a pro jectivity : 17\ r. 

As illustrated in Figure 6.13, to any line IV p of the first pencil there is by 

the correspondence a unique line r V p of the second pencil; and conversely. 

The locus of the points of intersection, p, of the corresponding Lines of the 
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two pencils is called a conic. The vertices of the pencils, 1 and r, are called 

the generating bases of the conic. It must be noted that we have considered 

(a) 
	

(b) 

Figure 6.13: Conic with generating bases 1 and r 

an example of such a projective correspondence already. This was for the 

Vieth-Muller circle obtained in Luneburg's experiment of subsection 3.5.2. 

That is, if the angles between neighbouring lines of the corresponding sub-

pencils are equal, the angle being the same for each sub-pencil, the conic is 

a circle, as illustrated in Figure 6.13 (b). 

A conic may be either singular or nonsingular. To understand what these 
_ 

terms mean, we suppose 9 : a A b is a projectivity defining the conic given 

by {x/x E X 3 a and x E 0X}. If 9 is a perspectivity, 9 : a A b, then the 

conic is the set of points of L together with the set of points of a V b. In this 

case the conic is described as being singular. If 9 is not a perspectivity and 

a 0 b then the conic is non-singular. 

We now state two important theorems of Projective geometry; Desargue's 

Theorem and Pappus' Theorem. The proofs may be found in Veblen [29]. 

Their results are applied in the proof of the next lemma. 

Theorem 6.5 Desargues: 

If two co-planar triangles are perspective from a point, the three pairs of 

homologous sides meet in collinear points. (see Figure 6.14) 
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Figure 6.14: Triangles abc and a'b'c' are perspective from p 

Theorem 6.6 Pappus: 

If alternate vertices of a planar hexagon lie on two lines, the three pairs of 

opposite sides meet in three collinear points. (see Figure 6.15) 

0 

Figure 6.15: Hexagon abc and a'b'c'; opposite sides are a V b', a' V b,b V c', 
b' V c, a V c', a' V c 

Lemma 6.7 Suppose 0 : a 7\ b is a projectivity between the lines through a 

point a and a point b distinct from a, then 0 is a perspectivity if and only if 

O(a V b) = a V b. 

Proof: 	Suppose 9 is a perspectivity with axis L. That is, 9 : a 	b 

and VX 3 a, OX = (X A L)V b. Therefore if X = aVb then OX = 

[(a V b) A L) V b]=aVb. 
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Conversely, suppose 0(a V b) = a V b. Any line X 3 a can be mapped onto 

a line Y b by one or a composition of two perspectivities (Theorem 6.9). 

Suppose that there are two, and denote the intermediate vertex by c, and 
R S = = 

the axes by R and S. That is,0:aAcAb. Now there are 2 cases to 

consider: 

Figure 6.16: The points a, c and b are collinear 

(i) a, c,b are collinear 	3 a line T such that R,S,T are concurrent and 

a A b. This follows from 

= 
a(A i , A2, A3, 	) A qal, C2, C3, 	) b(131, B2, B39 	) 

where we consider triangles AIBICI and A2B2C2 of Figure 6.16. Now A 1  A 

A2, C1 A C2 and B 1  A B2 are collinear points and hence by the dual of 

Desargue's Theorem 6.5, the join of A1 A B1 and A2 A B2 (which we have 

called T) is concurrent with R and S. 

(ii) a, c,b are not collinear 	Suppose that R S and let P=aVc and 

Q = c V b, P Q as shown in Figure 6.17. 

Let a V b = F. This is the given fixed line of our projectivity. Therefore 

F, R and S are concurrent. 

Q i =aV(RAQ) 
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Figure 6.17: The points a, c and b are not collinear 

P=bV(SAP) 

M = ( S A P ) V (R A Q) 

Consider any line J through a, J 3 a, and its images J' and J" under 

the two perspectivities. The hexagon RJ'SPFQ and the dual of Pappus' 

Theorem 6.6 give J, J", M are concurrent, where 

= (F A Q) v (S A f )  

J=(PAF)V(RAJ')  

Therefore a -/■ b is the perspectivity a ■ b. 	 0 

Next we need some well-known theorems on projective correspondences. 

Theorem 6.8 Given two triplets of distinct points, p i ,qi ,r 1  and p,  q, r3  

lying, respectively, on two distinct lines, L i  and L3, there is a projectivity 
which assigns p, qi, ri to p3, q3 , r3 respectively. 

Proof: see Pedoe [22, page 45]. 	 0 

In general we have the following Theorem and its Corollary. The proofs may 
be found in Pedoe (22, pages 46-521. 
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Theorem 6.9 If a pencil of lines with vertex, a, is related by a chain of, say 

m, perspectivities to a pencil of lines with vertex, b A a, then this projectivity 

is equivalent to at most two perspectivities. 

0 

Corollary 6.10 A 1:1 projective correspondence between two ranges on the 

same straight line can be obtained as the result of at most three perspectivi-

ties. 

0 

The fact that a projectivity between the points of two lines (which may 

coincide) is uniquely determined by the assignment of three pairs of corre-

sponding points comes from the following result. The proof may be found 

in Pedoe [22, page 64]. 

Theorem 6.11 A necessary and sufficient condition that a projectivity be-

tween two ranges is uniquely determined by the assignment of three pairs of 

corresponding points is that Pappus' theorem holds. 

0 

Consider the stereoscope, S(D,1,r„u), such as the one represented by Figure 

6.18, where p' = pp, q' = pq, s' = ps; a, b, c are the perceived images of p 

and p', q and q1 , s and s' respectively. 

We have the following results: 

Theorem 6.12 If the images a, b, c are collinear then the permutation A : 

D --■ D is a projectivity. 

Proof: 	a, b, c are collinear 	/2 can be written 

1 
(p, q, s) 7\--  (a, b, c) 73 (p', q', s') 

where (p, q, s), (a, b, c) and (p', q', a') are ranges on D, aV b and D respectively. 
Hence p is a projectivity by definition. 	 0 
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Figure 6.18: The points p, , q, , s, s' represent the positions of correspond-
ing pairs of dots of a stereogram 

Lemma 6.13 The permutation, /I : D 	D is a projectivity if and only if 

the stereoscope is a conic containing its generating basesl and r. 

el 	A 	el 

Proof: 	is a projectivity =. 1 A D ;7\ D A r is a projectivity since it is 

the composition of a finite number of perspectivities; call it 0. It defines a 

conic with generating bases I and r which is the stereoscope. Any point, x, 
on this conic is defined by 

x = (IV a) A (r V tia) 

for some a E D. 

Conversely, suppose we have a conic defined by /3: 1 /7\ r which we can also 
el 	el 

write as ,3 : I 	D 	D /7\ r, then any point on this conic is defined by 
(1 v d) A (r V Od), where cPd is a point on D determined uniquely by the 

conic point. This means we have a projectivity q5 : D A D and since this 

projectivity maps a — pa for any a E D, = p (the defining pro jectivity 
for our stereoscope). 0 

Lemma 6.14 The stereoscope conic described in Lemma 6.13 is : 
(i) singular if and only if pRIV r) A DI = (lv r) A D 

That is, in Figure 6.19, 1.z(d) = d' and in this case the stereoscope is a line 

S. The fixed points of are S A D and (1 V r) A D. There is exactly one 

fixed point if and only if S,D and I V r are concurrent. 

(ii) non-singular if and only if p((lv r)AD) A (1Vr)A D. That is, p(d) A d' 
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Figure 6.19: Singular conic: d' fixed by A; S is a line 

Proof: (i) The stereoscope conic is singular a 0 :1 A r is a perspectivity 

(by definition) - with axis S, say, and then the conic is the set of points on 

the line S together with the points of 1 V r 13(1v r) = (1V r) (by Lemma 

6.7). 

Any point, x, on this conic is defined by 

x = (1V a) A (r V pa) 

for some a E D. Therefore, if x E D then a = pa. Now (/ v r) A D and S AD 

are points of D and so are fixed points of A. That is, we have two possible 

cases: 

(a) there are two fixed points of A [see Figure 6.20(a)] and 

(b) there is one fixed point of A [see Figure 6.20(b)] when S, D,1 V r are 

concurrent. 

(a) 

Figure 6.20: (a) two fixed points and (b) one fixed point 
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(ii) The stereoscope conic is nonsingular <#. : 1 A r is not a perspectivity 

<=> )3(1V / V r (from Lemma 6.7). That is, #(1 V r) = r V p for some line 

r V p, distinct from 1V r, through r. Now by definition of a conic, the point 

(IV A p(i V = (/ V r) A (r V p) = r lies on the conic. This point can also 

be represented as (1V d) A (r V pd) for some d E D; in particular, the point 

d' = (1V r) A D. Therefore, p(d') d' otherwise, IV r and r V p would meet 

on D which is impossible unless they are the same line. 0 
In relation to Single-Image Stereograms, a consequence of Lemma 6.14 is 

that we will perceive a line S which is parallel to both the stereogram and 

the viewer, exactly when the only fixed point of the permutation ji is the 

ideal point containing the lines 1 V r, D and S. This is another way of 

representing our result of Theorem 3.1 which explains our perception of dots 

on a line which is parallel to a row of equally-spaced dots on a stereogram. 

We will see that the permutation it is a translation of the points of D, in 

this special case. That is, for all p,q E D,Ip V ppl = lq V pql. Recall from 

equation 3.1 that we have an expression representing the distance between 

a and 'La, a E D. Since the distance would generally be expected to vary 

with a, we will write it as s(a) = pd(a)el (pd(a) d). In our particular case, 

all the perceived points are on the line S, parallel to D. Hence pd is fixed, 

and g is a translation. An example is shown in Figure 6.21, where pa = b 

and lib = c. That is, b must be the midpoint of a V c. By Theorem 6.3, b is 

Figure 6.21: efrl is a 4-pt circuit: pairs of opposite sides are e V f and IV r, 
eV r and IV f,eV1 and f V r 

indeed the midpoint since if we consider the 4-pt circuit e frl, b = H (c1 c,; ac), 

where do°  is the ideal point of the line D through a and c. 
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A collineation is a 1:1 mapping, 0 : II — H, of a plane II onto itself, in which 

points are mapped onto points, lines are mapped onto lines, and incidence 

properties are preserved. That is, if L is a line on H (L E H) and p is a 

point on L (p E L) then ()L E IT and Op E OL. 

A central collineation in a plane is a projective collineation leaving fixed 

every point on a given line, L, and every line through a given point, p. 

The line, L, and the point, p, are called the axis and centre, respectively, 

of the central collineation which is denoted by 0 = (p,L) - collineation. If 

the centre does not lie on the axis then the collineation is called a planar 
homology; if p E L then it is a planar elation. We have the following result: 

Theorem 6.15 There are no other fixed elements besides L and the points 

on it, and p and the lines through it, unless 0 is the identity transformation. 

Proof: see Pedoe [22, page 102] 	 0 

A central involution, 0 : 	II, is a central collineation of order 2. That 

is, 0(0(a)) = 0 2 (a) = a , Va E 

Theorem 6.16 A central (p,L)-collineation, 9, in a plane is uniquely de-
termined if the centre, axis and any two homologous points (not on the axis 

or centre) are given, with the restriction that the homologous points must be 

collinear with p. 

Proof: 	If there are two (p,14-collineations a and which map a point 

p) onto av, then the collineation 0 - la would have v as a fixed 

point. Since there can be no fixed point other than p and the points on 

L (by Theorem 6.15), 13-1 a must be the identity transformation. That is 
a = 
Now given v and Ov, as shown in Figure 6.22, we can find the transform 
Oq of any point q as follows: The line v V q meets L at a fixed point u and 

0(v V q) = Ov V Oq passes through Ou = u and Ov; q V Oq passes through p (p 

being the centre). Hence Oq = (p V q) A (Ov V u). 0 

Theorem 6.17 Given the stereoscope S(D,1, r,/.4) of Figure 6.23, where the 
nth image of two points, a and pa, is denoted by xn , then 3 a central invo-
lution On  = 9n (1, r, D, n) such that 9,, : xn x", n E Z+. 
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Figure 6.22: p, v and Ov are collinear; p is the centre and L is the axis 

Figure 6.23: x —n,xn and d are collinear; d is the centre and D is the axis 
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Proof: From Theorem 6.4, xn,x and d are collinear. That is, xn, On(xn) 

and d are collinear. Therefore by Theorem 6.16, On  is a (d,D)-collineation. 

Now if we consider Figure 6.22, and let d = p, D = L and q = 1, then we 

find 

On (/) = r,9(r) = / 	0!(/) = /. 

Similarly, 9?,(x). x Vx in the stereoscope. Thus On  is an involution. 

6.2.1 Can we find a conic fixed under On (/,r,D,n)? 

After viewing many stereograms using dual viewing, various questions arise 

in considering our stereoscope S(1,D,r„u). We consider two cases in our 

diagrams of Figure 6.2. For example, if the set of points (x = (a V 1)A (pa V 

r) : a E D, a t% (1 V r)} is a planar figure of a particular type such as a 

conic, then is the planar figure which is made up of the homologous points 

{x -1  = (pa V /) A (a V r) : a E D, a ct (/ V r)} also a conic? 

The following result gives us an affirmative answer. 

Theorem 6.18 Any conic, C, in a plane II is transformed into a conic by 

any collineation, O. 

Proof: 	Suppose that the generating bases of the conic are p and q. That 

is, we have a projectivity a : p A q, where p and q are points on the conic 

and so each will correspond to the intersection of corresponding lines in the 

projectivity a. Let p = (p V q) A Q where Q 3 p and q = (q V p) A R, where 

ft E q, then 

Op = O(p V q) A OQ, where OQ 9 Op, 

Oq = O(q V p) A OR, where OR 9 Oq. 

Similarly, if we consider any line, X, of the pencil through p, then this 

corresponds projectively to a line Y 9 q (Y = aX) and the point X A Y is 

on the conic by definition. Now 0(X A Y) = OX A OY , OX 3 Op and OY 9 Oq 

which means that we have a projectivity Oa : Op 'I\ Oq and hence a conic. 

Having established that a collineation, and in particular On (/, r, D, n), will 

map a conic onto a conic, we can now investigate the specific question of 

this section : Can we find a conic which remains fixed under O n (1,r,D,n)? 
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That is, can we find the points of a stereoscope which for dual viewing al-

low us to 'see' the same conic? It must be noted that any such conic will 

not contain the points 1 and r which cannot therefore be generating bases. 

Consequently, according to Lemma 6.13, the permutation ji : D --+ D is not 

a projectivity. In order to answer our question we need to consider some 

important results. Consider Figure 6.24 where we have four co-planar points 

pl , p2 , P3 , p4  so that no three are collinear, which we will call a 4-pt circuit 

P1P2p3p4. Consider the six lines joining the points taken in pairs which give 

Figure 6.24: The points qi  , q2 , q3  are diagonal points of the 4-pt circuit, 
PiP2p3p4 

three more points q, q2, q3. These three points are called the diagonal points 
of the circuit. 

Theorem 6.19 In the extended Euclidean plane the relation "being har-
monic conjugate" is preserved by collineations and projectivities. 

Proof: 	In an extended Euclidean plane any perspectivity can be dupli- 

cated by restricting the effect of some central collineation. As every projec-

tivity is the combination of finitely many perspectivities we need only prove 

this result for collineations O. To say that c is the harmonic conjugate of 

d with respect to a and b means that 3 a 4-pt circuit pqrs. Now Op9q0rOs 
is again a 4-pt circuit and since 9 preserves incidence we have Oc is the 

harmonic conjugate of Od with respect to Oa and Ob. 0 

Lemma 6.20 In the stereoscope S(D,1,r, it) of Figure 6.25, the intersection 
of xn V d with D, call it d", is the harmonic conjugate of d with respect to 
xn and x'n 
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Figure 6.25: cin.H(d; xnx —n) 

Proof: 	We have the following projectivity 

Xn r 

L(ce ,1, d, r) -A D(d' , itn -1  a, d", pn a) X E(d, x' , d", xn) 

and we have noted already that d is the harmonic conjugate of d' with 
respect to I and r. Hence by Theorem 6.19 we have the result. 	0 

Lemma 6.21 If the vertices of a 4-pt circuit are points of a conic, the 
tangents at a pair of vertices meet in a point of the line joining the diagonal 
points of the circuit which are not on the side joining the two vertices. 

Proof: This is illustrated in Figure 6.26 and the proof may be found in 
Veblen and Young [29, page 115]. 

Figure 6.26: Tangents at p2 and p3 meet at b on a V c 

Theorem 6.22 If d is a point in the plane of a conic, but not on the conic, 
the points of intersection of the tangents to the conic at all the pairs of 
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points,on the conic, which are collinear with d are on a line which also 
contains the harmonic conjugates of d with respect to these pairs of points. 
This is illustrated in Figure 6.27. 

Figure 6.27: The point q, is on the line containing the harmonic conjugate 
d" of d with respect to a2  and al  

Proof: 	Let al , a2 and 61 ,62  be two pairs of points on the conic which are 

collinear with d, and let P1 P2 be the tangents to the conic at a l , a2 respec-

tively. If di , d2  are the points (a l  V 62 ) A (a2  V 61 ) and (al  V 61 ) A (a2 V 62) 

respectively, the line d1  V d2  passes through the intersection, q, of P1  and 

P2 by Lemma 6.21. Next consider the 4-pt circuit a 2 d2 a1 d1  where d is the 

harmonic conjugate of (d 2  V d1 ) A (b2 V b1) = d" with respect to 61 and 
d 2 

62 . Now we have a perspectivity (db2 dmb1 ) X (da2 d"ai ) and if we apply 

Theorem 6.19 we have the point d" in which d1 V d2 meets a l  V a2  is the 

harmonic conjugate of d with respect to a l , a2 . This shows that the line 

d1  V d2  = qV d" is completely determined by the pair of points a l , a2 . Hence 

the same line qV d" is obtained by replacing 6 1 ,62 by any other pair of points 

on the conic collinear with d and distinct from a l , a2. 0 

199 



Now to return to our question of a fixed conic. 

Re-iterating; we have a central involution On  = 9„(1, r, D, n) such that On  : 
xn x—n, n E Z+ which maps a conic onto a conic (Theorem 6.18). The 

centre, d, of this involution is the harmonic conjugate of (1 V r) A D with 

respect to r and I. Now Theorem 6.22 tells us that if the points, xn  and 
On (xn) = z , collinear with d are on a conic, and we consider all such 

pairs, then the points of intersection of the tangents to the conic at all these 

pairs of points lie on a line which also contains the harmonic conjugates of 

d with respect to On (xn) and xn. But by Lemma 6.20, this line of harmonic 

conjugates is D, the axis of our (d, D) - involution. Hence by using this 

information we can construct a conic, C, with the desired properties so that 

On  fixes C. 

In constructing such a conic for our stereoscope we need to use the following 

consequence of the above results. 

Lemma 6.23 In the fixed conic C, any line joining d and the point of 
intersection, pl , of the axis, D, with the conic must be a tangent to the 
conic, and furthermore this point of intersection is a fixed point of On , the 
(d, D)-involution defined on the conic. 

Figure 6.28: d V P1 is a tangent and On (pi) = Pi 

Proof: 	Suppose d V pi  cuts the conic at another point, p 2  say (see Figure 
6.28), then pi, p2, d are collinear and by Theorem 6.22, the tangents to the 

conic at each of the points p1  and p2  intersect on D. Hence, p2  must equal 

Pi . Any point on D is a fixed point of the (d, D)-collineation by definition 

of a central collineation. 0 
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As mentioned previously, when the line / V r of a stereoscope is parallel to 

D, then d corresponds to the midpoint of the line segment T T. r. Practically 

d represents m, the midpoint of the viewer's eyes. Since we normally view 

stereograms from the parallel position, we will construct our stereogram for 

the case when m represents the centre of our involution of Lemma 6.23 and 

the line through each row of dots, Di, represents the axis for each i. 

6.3 Constructing the Single-Image Stereogram of 
a Fixed Sphere 

We will now test our results by constructing a Single-Image Stereogram of 

a fixed sphere. Each row of dots on our stereogram will represent a circular 

cross-section of this sphere on the sloping plane through the eyes and the 

row of dots. Each row of dots of the stereogram together with the eyes 

constitutes a stereoscope. According to our theory, the "dual" viewing of 

these dots, enables the viewer to perceive a circle which is an example of a 

fixed conic. Ideally, we would like the viewer to see as much of each circle 

as possible, so that a practised viewer could see almost the whole figure in 

the 'blink of both eyes'. That is, we see the 'inside back' of the circle with 

'uncrossed' viewing and the 'outside front' of the circle with 'crossed-eye' 

viewing. 

6.3.1 Method for finding an appropriate circle 

As a consequence of Lemma 6.23, we consider the problem of finding a circle 

with the property that the tangent from the midpoint, m, of the viewer's 

eyes, touches the circle at its intersection point with the line, Di, through a 

row of our stereogram. 

In contrast to our earlier stereograms, our eyes will not lie on the x-axis. We 

let the perpendicular x and y axes pass through the Do , and m respectively, 

as shown in Figure 6.29. By D o, we mean the line through the central 

row of the stereogram which is the line of intersection of the horizontal 

plane through the eyes and the vertical plane through the stereogram. This 

vertical plane is the xz-plane. The viewer is assumed to be at a distance, 

d, from the stereogram, and w represents half the distance between the 

viewer's eyes. The co-ordinates of the intersection points of the tangents 
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Figure 6.29: The x-axis runs through the central row of the stereogram 

from m = (0,—d) to the required circle are i i  = (u, 0) and i2  = (—u, 0). The 

other relevant co-ordinates are shown in Figure 6.29. 
In order to find an appropriate circle, we can choose a sensible value of u. 
Sensible in the sense that if a viewer is at a distance, say 30cm, from the 

stereogram, then in order to perceive the correct circle clearly, and fit it on 
an A4 page (desirable for this thesis), then u must be approximately 6 cm 

for our central row of dots. Having chosen u, we can easily find the equation 
of the required circle by finding its centre and radius. If L 1  is the tangent 
through m and i l , then it has slope dlu and hence, the slope of the radius 
through the centre of the circle, (0,c), is —u/d. Hence, 

—clu = —uld c = u2  Id 

and the circle has radius (c 2  + u2 ) 1 /2  and its equation is 

x2 + ( y C)2 = c2 + u2 .  

Having found the equation of the appropriate circle for the central plane 
section of our sphere, we can use a similar method to find the circles of 
intersection of each sloping plane section. The sloping plane passes through 

1 V r and a row of dots of the required stereogram. Once we have the 

appropriate circle for each plane section we can use our algorithm of equation 
5.1 to construct the dots for each corresponding row of our stereogram. We 
now consider the problem of choosing an appropriate value of uk for each of 
the sloping plane circles of intersection. 
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6.3.2 Moving from one row, representing a circle, to many 
rows, representing a sphere. 

Consider the introduction of the z axis through (0,0) perpendicular to the 
xy plane. Our stereogram will consist of rows of dots on the xz plane. The 
intersection of our sphere with the xz plane will give a circular cross-section, 

call it Cz.z , with equation 
X2 + Z2 = U2 , 

where u is as described in Figure 6.29. That is, the x co-ordinate of the 

point where the tangent from m meets the central circle, C xy , in the xy 

plane. It must be noted that on any sloping plane through our eyes, and 

the row of the stereogram at a height of z = k, the tangent from m to the 

circular plane section, Czyk , of the sphere, is also a tangent to C. This is 

shown in Figure 6.30. 

Figure 6.30: Tangent point is the same for both circles Czyk  and Cxz  

Consequently, for any height, z = k, of a row of our stereogram, we can find 
the co-ordinate, uk, which gives the tangent point of the required circle by 
solving 

2 X2 + Z2 = Uk wnere z = k. 
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0 
m r 

Figure 6.31: ai +1  = u 

Solving this equation gives two values; we choose one. For any row of our 

stereogram of height z = k, the distance, dk, to the viewer is given by 

dk = (d2  k2 ) 1 /2 . We could consider any sloping plane to be a rotation of 

our axes about the line 1 V r. However, for ease of calculations, we will just 

replace our u of subsection 6.3.1 by uk; and our d, by dk. Having found the 

x co-ordinates of our dots, we append these with second co-ordinate k in 

order to plot our stereogram. The initial steps in our program of Appendix 

G find the circles for us. We now consider some intricacies involved in the 

application of our dot algorithm. 

6.3.3 Boundary problems 

If we create the rows of our stereogram by working from left to right, then 

a suitable starting dot for each row could be some arbitrarily chosen point, 

(a l , 0), where a l  is close to —u. However, this technique is fraught with 

danger. To see why this is so, we need to consider what happens in a neigh-

bourhood of (u, 0). As we move along some Dk to the right we eventually 

meet a point ai E Dk which when viewed by the left eye has a corresponding 

point ai +1  for the right eye such that a 1+1  > u. (Here when we compare the 

points ai+1  and u, we are really comparing the z co-ordinates of the points; 

the y co-ordinates being 0.) Figure 6.31 shows the case when a 2+ 1 = u and 

according to our geometry we would perceive the point bi on the circle. If 

we then view ai+1  with the left eye, then only crossing our eyes would allow 

us to see another point of the circle: For example, the point, tc l , if we 

simultaneously viewed ai with the right eye, and if it lies on the circle. Of 
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course it will only lie on the circle for our special case. That is, the case 

when u is the tangent point on the circle for the tangent drawn from in. 

This is not the case in Figure 6.31 as it is drawn here. 

The following question arises: 

In Figure 6.32, could we see a point such as c, on the circle, where we have 
moved along the circle from bi in the direction of the arrow? 
We consider various scenarios. 

If c is the tangent point of the line through r, then the corresponding dot is 

to the right of u at some point u c as shown in Figure 6.32 (a) and (b). 

As the point c then moves along the circle in the direction of the arrow 

(a) 
	

(b) 

Figure 6.32: Dot for the right eye is to the right of u; (b) An enlargement 
of the area of interest in (a) 

we next have the situation as seen in Figure 6.33 (a) and (b), where the 

appropriate dot for the right eye is at a point 1 = u where 5 < €. That 

is, the dot for the right eye is further to the left again, and the line through 

r intersects the circle at two points with positive y value. Whether we see 

either of these points is dependent on the existence of either of the dots 

marked 2 and 3 in Figure 6.33 (b). We have analogous cases for 'crossed' 

viewing. 

In reality, it seems unlikely that such intricate discussion is appropriate 
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/ 

(a) 
	 (b) 

Figure 6.33: Dots change direction; (b) An enlargement of the area of inter-
est in (a) 

for our model. In order to see a point of the circle which is extremely close 

to the axis, using uncrossed vision, the corresponding dots would need to 

be so close together that we would violate the no more than 2° disparity 
rule for the single-image stereogram which has been discussed for human 

stereoscopic vision in section 3.1.1. Hence we must be content with seeing 

almost all of our circle, the 'missing bits' being in the vicinity of the axis as 

shown in Figure 6.34. 

Note: Not surprisingly, in all of the currently very popular commercial 
single-image stereograms, the dots are spaced in such a way that the per-

ceived three-dimensional picture does not come close to the plane of the 

stereograin. That is, complete figures are easily seen. For discussion of this 
phenomenon see section 5.1.2. 

From this discussion we can see that problems begin to occur at a stage 

where the dot for the right eye begins to move to the left. That is, changes 

direction. Hence, an appropriate place to stop our process would be at a 

point ai, where 

— ai <0. 	 (6.1) 
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Tangent point of viewilne 
from r 

Tangent point of viewline 
from 

Figure 6.34: Sections of circle which may not be visible 

We still need to find a suitable starting point which would alleviate this 
boundary problem on the left-hand side of our stereogram. 

6.3.4 How do we find a suitable starting point? 

Instead of employing our usual method of beginning far left, or far right, of 
the stereogram we will try a new approach. 

Consider the line 1V q where q is the intersection point of the circle with the 
positive yk-axis as shown in Figure 6.35. Suppose p = (1 V q) A Dk then to 

choose our starting random interval we consider the following steps:- 

1. Choose a set of, say 4, random x co-ordinates in the interval (0,p) (which 

is negative) and denote this set of points (with yk-co-ordinate 0) by intl. 
This terminology, in bold print, matches that in our program of Appendix G. 

2. Apply the function of our algorithm (equation 5.1) to each point in Intl 
only once. This will give us a starting interval on the positive x-axis which 
we denote by int2. 

3. Apply the algorithm to int2 which will give the row of dots of the stere- 
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Figure 6.35: Starting point on the yk axis for each k 

ogram on the positive x-axis where we use the stopping rule of equation 6.1. 

We have still to complete the row of dots by considering how to obtain the 

dots for the negative x-axis. 

One way to execute this is to consider - lintl. This is the set of x-co-

ordinates obtained by taking the negative of each co-ordinate in the set 

intl. 

That is: 

4. Apply the algorithm to - lintl which again gives a row of dots on the 

positive x-axis. By considering the symmetry of the situation we see that 

if we take the negative of this latter row of dots, we have the required 

row of dots on the negative x-axis. This symmetry exists because of the 

rather specific placement of our chosen sphere, which gives a vertical line 

of symmetry for the stereogram about the z-axis and for the sphere, about 

the yz-plane. Since this yz-plane intersects the line I v r at m, we have a 

symmetrical viewing situation for each eye. 

5. Now our choice of int2 allows us to join the set of dots obtained in 

steps 3 and 4 so that we have a complete row which when viewed with both 

"uncrossed" and "crossed" eyes will allow us to perceive our circle. 

Note: The practised viewer can easily see this with one row of dots, but for 

the uninitiated, more than one row of dots is far more satisfactory. 
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We are now in a position to plot our stereogram where our z-values, for 
possible row positions, theoretically vary from z = —u to z = u. Our 
program is included, and explained in detail, in Appendix G. For practical 

reasons, such as round-off error in calculating boundary point intersections, 
the range of z values is taken to be slightly smaller than the theoretical 
possibility. 
Some resulting stereograms are shown in Figures 6.36, 6.37, 6.38 and 6.39 . 

6.3.5 Comments and observations 

It must be noted that in contrast to our earlier examples of Single-Image 

Stereograms of spheres, such as Figures 5.20 and 5.21, we have not included 
a background plane. In these previous cases, the inclusion of a plane was to 
eliminate the flat borders around the sphere as shown in Figure 5.18. 

These were caused by the boundary dots being seen by one eye only. In 
the case of the 'fixed sphere', a background plane would not be fixed and so 

would detract from the effect of our result of Lemma 6.23. 

Consequently, we must be satisfied with our circular stereogram, which could 
be described as containing a significant monocular cue! 
The problem of the 'flat border' is almost eliminated by the fact that the 
boundary regions are very close to the page of the stereogram. This means 
that the dot-spacings, and hence the corresponding end intervals of dots, are 
very small; a dot-spacing of zero allows us to perceive a point on our page. 
Although our perceived image does not quite reach our page, for reasons 

that were discussed in subsection 6.3.3, the interval of dots seen by one eye 
only is still very small. 

We must also note that it is desirable to have dots which are as small as 
possible, so that these boundary intervals of dots do not merge into solid 
blocks as illustrated in Figure 5.4. 

These stereograms, of Figures 6.36 and 6.37, do not fit the ideal model for 

viewing as presented by Maeder [17, page 53], and further described in sub-
section 5.1.2. This 'fixed sphere' stereogram is unique in that it necessarily 
presents an image in depth which comes very near to the plane of the stere-
ogram. That is, it approaches a depth of zero. Consequently, in order to • 

allow the viewer to fuse the dots, care must be taken in selecting the initial 
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Figure 6.37: d = 30, u=8, stepsize=0.075, AbsolutePointSize=1 
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Figure 6.39: d = 30, u=6, stepsize=0.09. AbsolutePointSize=2 
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u of subsection 6.3.1. That is, our sphere must not be too big, so that its 

depth behind the plane of the stereogram relative to the distance of the 

viewer from the stereogram, is not too great. Further comment related to 

this was made in section 3.4. 

It must be noted that the maximum difference in dot-spacing in Figures 

6.36 and 6.37 is approximately the 1 cm suggested in section 3.4. This was 

measured by considering a pair of obviously matching dot clusters in the 

centre of our 'sphere', and then by considering a pairing very close to zero. 

The practised viewer can easily see the fixed spheres of Figures 6.36 and 6.37 

by dual viewing in the 'blink of the eyes'. However, sadly, the 'common' 

viewer (and these seem to be in abundance!) 'sees' an alternative picture 

which is more parabolic in shape. This is not surprising, and can be easily 

explained by considering the discussion of alternative images in section 3.3. 

In order to facilitate the viewing of the intended correct sphere, the viewing 

method illustrated in Figure 3.57 (b) is the ideal one. This ensures that 

firstly, the eyes are not 'crossed' too much, and secondly, that the alternating 

from 'uncrossed' to 'crossed' in a 'blink of the eyes' is easier. 

Having considered both viewing techniques where the images for each eye are 

reversed, it seems appropriate to mention an interesting example discussed 

in Gregory [7, pages 126-131]. He talks about depth usually being reversed 

as we illustrated in Figure 6.2, but gives an example where, in practice, this 

is not necessarily the experience of the viewer. He provides anaglyphs of a 

photograph of a hollow facial mask. Examination of these examples with 

anaglyph 'spectacles' facilitates the perception of an image in depth in each 

of the cases; correct way around and reversed. However it is impossible 

to 'see' the nose sticking in, and not out of the face in the reverse case. 

He provides perceptual explanations linked with the viewer's recognition of 

the photograph. That is, unlike most cases of Single-Image random dot 

Stereograms, the stereo pictures are monocularly recognizable. 

214 



Appendix A 

Matrix Manipulations 

We will briefly discuss the advantage of introducing homogeneous co-ordinates 

in order to enable us (or at least the computer) to simply calculate net trans-
formation matrices for any composition of linear transformations such as, 
translating, rotating, scaling and shearing. 

To begin we will work in two dimensions where any linear transformation of 
a point (x, y) to (Tx , Ty ) can be represented by: 

Tr  = ax + by 

Ty  = cx + dy 

a c 
Or [ Tr   Ty  i = [ x y} [ b d] . 

In particular, we have the following 2x2 transformation matrices (for more 

detail see McGregor and Watt [18]). 
To rotate a point (x, y) clockwise through an angle 0, about the origin as 
illustrated in Figure A.1, the matrix is 

[

cos0 —sine I 

	

sine 	cos0 

and for an anti-clockwise rotation the matrix is 

	

[

cos0 	sin0 
—sin0 cos0] • 

For scaling by a factor .5; in the x-direction and S y  in the y-direction we 
have 

[ Tr  Ty  ] = [ s Y  I [
sz 0 1 
0 Sy  i • 
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Figure A.1: Clockwise rotation 

For shearing in the y-direction we have 

and in the x-direction 

[ 	Ty  

we have 

[ 	Ty  

= 

= 

[ 	y  

x 	y [ 

{ 01 

[ sl 	
0]

,  

where S is the scaling factor for the shearing. 

At this stage, translations cannot be defined using a 2x2 matrix. Another 
drawback, is the fact that all the transformations are centered about the 
origin, (0, 0). It would be much more useful to be able to rotate or scale 

about an arbitrary point. McGregor and Watt [18] suggest that a homoge-
neous co-ordinate system overcomes these difficulties. 
Homogeneous co-ordinates are a system of co-ordinates developed so that an-
alytic methods could be applied to the Extended Euclidean plane of Projec-
tive geometry. A description of their determination can be found in Courant 

and Robbins [4, page193]. 
In such a system, a point (x, y) becomes (rx,ry,r). 

To show how these homogeneous co-ordinates help us to obtain a translation 
matrix, we consider the following: 

Suppose our translation in terms of our original co-ordinates is 

[ x: = x 	a 
Y 	y + 0 1. 

That is, our translation in the x-direction is a and our translation in the 
y-direction is p. To express this in terms of the homogeneous co-ordinates, 
(X, Y, Z), and a matrix, A say, then 

[

all a12 a13 • 
a21 a22 a23 1 

a31  a32  (133 

216 

[ X' Y' Z' = [ X Y 



where x = XIZ, y = Y/Z , x' = X'/Z' and y' = Y'/Z'. 

After multiplying these matrices, and solving for the matrix elements, aii, 

1 < i , j < 3, we find that 

100  
[ A ] = 0 1 0 , 

a [3 1 

is the required translation matrix. 

For convenience, let r = 1 and then the point becomes (x, y, 1). Transforma-

tion matrices are now 3x3 and we have the advantage that we can represent 

a translation by a 3x3 matrix. The most common transformation matrices 

become: 

For translation Tz  in the x direction and Ty  in the y direction 

	

[1 	00 

	

0 	1 0 I , 
Tx  Ty  1 

for rotation (clockwise) about origin 

[1 cose —sine 0 
sine cose 0 , 

for rotation (anti-clockwise) about origin 

[

cose sine 0 
—sine cose 0 
0 01 

for scaling of Sr  in the x direction and Sy  in the y direction 

Sz  0 0 I 
0 Sy  0 

	

0 	01 

and for shearing in the x-direction 

100  
S 1 0 . 
001 

Figure A.2 (a) shows a square of sidelength 2 cm with vertex at the origin of 

the rectangular co-ordinate system. Each of the above transformations are 

applied to this square to give new figures. The square of Figure A.2 (b) is 

obtained by translating the square of (a) by a distance of 1 cm in each of the 

x and y directions. The figure of Figure A.2 (c) is obtained by rotating the 

0 	0 	1 
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square of (a) in a clockwise direction about the origin by an angle of r/4, 

while the figure of Figure A.2 (d) is the result of an anti-clockwise rotation 

of r/6 about the origin. Scaling by a factor of 1.5 in the x direction and 

1.25 in the y direction gives the rectangle of Figure A.2 (e), while shearing 

by a factor of 1 in the x and y directions gives the figures of Figures A.2 (f) 

and (g) respectively. 

Suppose we want to rotate a rectangle, in any position, by an angle of 

anti-clockwise about its bottom left-hand vertex, p = (x, y). This can easily 

be done now using the following steps. 

Firstly we translate by the matrix, T 1  so that the vertex, p, is at the origin 

where 
1 00 

= 0 1 0 
-x —y 1 

Next we rotate about the origin using the rotation matrix R where 

[cos cb 	sin 0 0 
R = —sin0 cos0 0 . 

	

0 	0 	1 

Lastly, we translate the rotated rectangle so that p is back to its original 

position using the translation matrix T2, where 

100 

	

 
22= 	010  . 

X y 1 

The net transformation matrix becomes T I RT2  where 

cos 0 sin ck 0 
T1 RT2 = —sin0 cos(/' 0 

x(1 — cos0)+ ysinck y(1 — cos0)-1- ssin0 1 

Application of this matrix to a square of sidelength 2 cm with its bottom 

left-hand vertex at the point (1, 1.5), and rotated by r/5 in an anti-clockwise 

direction, gives the square of Figure A.3. A net transformation matrix is 

always of the form 
a d 0 
b e 0 	, 
c f 1 

and so the multiplication 

[Tx 	Ty 	1]= [ x 	y 	l] 

	

a 	d 	0 

	

[b 	e 	0 

	

c 	f 	1 

. 
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4 

3 

2 

1 

0  

 

1 	2 	3 	4 

(b) (a) 

 

(c) 

1 	2 
	

3 
	

4 

(e)  

(d) 

Figure A.2: Square; translation, clockwise rotation, anti-clockwise rotation, 
scaling, xshear, yshear 
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Figure A.3: Rotation of r/5 about the point (1, 1.5) 

reduces to 

[ 

 a d 
Ty  = [ x y 1 	[1) e . 

c f 

These techniques can be extended to manipulating objects in three dimen-
sions. Using homogeneous co-ordinates we have net transformation matrices 
of the form 

[T Ty  Tz  1 = [ x y z 1 

a e i 0 
b f J  0 
c gkOl .  
d h 1 1 

We include a transcript of the program, written using Mathematica, which 

facilitates the above transformations. 
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96Appendix A2 

Consider a square with bottom left-hand corner placed at the origin of our rectangular co-ordinate 
system. A parametric representation of this square is given by: 

Squaredges[dim ,t_]:=((0,dim}+t*((dim,dim)-(0,dim)), 
(dim,dim)+t*((dim,0}-(dim,dim)), 
(dim,0)±t*((0,0)-(dim,0)),(0,0}+t*((0,dim)-(0,0))) 

Translation matrix using homogeneous co-ordinates: 

trans12[Tx_,Ty_]:={(1,0,0),(0,1,0),(Tx,Ty,1}) 

Rotation matrix for a rotation of ang about the origin in a clockwise direction: 

rotc[ang_]:={{Cos[ang],-Sin[ang],0},{Sin[ang],Cos[ang],0), 
(0,0,1)) 

Rotation matrix for a rotation of ang about the origin in an anti -clockwise clockwise direction: 

rotac[ang_]:={{Cos[ang],Sin[ang],0},{-Sin[ang],Cos[ang],0), 
(0,0,1)) 

Scaling matrix for scaling by a factor of Sx in the x direction and Sy in the y direction: 

scale2[Sx_,Sy_]:=({Sx,0,0),(0,Sy,0),(0,0,1)) 

Matrix for shearing in the x direction: 

shearx[S_]:={(1,0,0),(S,1,0),(0,0,1)) 

Matrix for shearing in the y direction: 

sheary[S_]:={(1,S,0),(0,1,0),(0,0,1)) 

The following products give the points on the new figure which results from applying the 
previous transformations to the original square (the function names are self-explanatory): 

squtrans[dim_,t_,Tx_,Ty_]:=Map[Drop[C-1]&,Map[Insert[#,1,3]&, 
Squaredges[dim,t]].trans12[Tx,Ty]] 

squrotc[dim_,t_,angl_]:=Map[Drop[C-1]&,Map[Insert[#,1,3]&, 
Squaredges[dim,t]].rotc[angl]] 

squrotac[dim_,t_,ang2_]:=Map[Drop[C-1]&,Map[Insert0,1,3]&, 
Squaredges[dim,t]].rotac[ang2]] 

squrscale[dim ,t_,Sx_,Sy_]:=Map[Drop[#,-1]&,Map[Insert[#,1,3]&, 
Squaredges[dim,t]].scale2[Sx,Sy]] 

squshearx[dim_,t_,S_]:=Map[Drop[C-1]&,Map[Insert[C1,3]&, 
Squaredges[dim,t]].shearx[S]] 

squsheary[dim_,t_,S_]:=Map[Drop[#,-1]&,Map[Insert[#,1,3]&, 
Squaredges[dim,t]].sheary[S] 

The following expressions allow us to plot the resulting figures for the particular cases given in 
the individual arguments of the transformation functions: 
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96Appendix A2 	 2 

ParametricPlot[Evaluate[Squaredges[2,t]],(t,0,1), 
PlotRange->{{O,4},(0,4)),AspectRatio->Automatic, 
Ticks->{{0,1,2,3,4},(0,1,2,3,4))] 

ParametricPlot [Evaluate [squtrans [2, t , 1, 1] ] , (t, 0,1), 
PlotRange->( 	(0,4}},AspectRatio->Automatic, 
Ticks->{(0,1,2,3,4),(0,1,2,3,4))] 

ParametricPlot[Evaluate[squrotc[2,t,Pi/4]],(t,0,1), 
PlotRange->{{0,4},(-2,2)),AspectRatio->Automatic, 
Ticks->{{0,1,2,3,4},(-2,-1,0,1,2))] 

ParametricPlot[Evaluate[squrotac[2,t,Pi/6]],(t,0,1), 
PlotRange->{{-2,2},(0,4)),AspectRatio->Automatic, 
Ticks->((-2,-1,0,1,2),(0,1,2,3,4))] 

ParametricPlot [Evaluate [squrscale [2 , t, 1. 5, 1. 25] ] , (t, 0,1), 
PlotRange-> ( ( 0, 4}, (0,4)},AspectRatio->Automatic, 
Ticks->((0,1,2,3,4),(0,1,2,3,4))] 

ParametricPlot[Evaluate[squshearx[2,t,1]],(t,0,1), 
PlotRange->((0,4},(0,4)),AspectRatio->Automatic, 
Ticks->((0,1,2,3,4),(0,1,2,3,4))] 

ParametricPlot [Evaluate [squsheary [2, t,1]], (t,0,1), 
PlotRange-> ( ( 0, 4), (0,4}},AspectRatio->Automatic, 
Ticks->({0,1,2,3,4),(0,1,2,3,4))] 

Now for a square with bottom left -hand co-ordinates (a,b) 

Squaredges2[a_,b_,dim ,t_]:=((a,b)+t*((a,b+dim)-(a,b)), 
(a,b+dim)+t*((a+dim,b+dim)-(a,b+dim)), 
(a+dim,b+dim)+t*((a+dim,b)-(a+dim,b+dim)), 
(a+dim,b)+t*((a,b)-(a+dim,b))) 

If we want to rotate this square about the point (a,b), then firstly we need to translate it back to the 
origin ; we then rotate it about the origin using our rotation matrix and then we translate the result 
back to the original position of the corner (a,b). 
Suppose (a,b) = (1,1.5) and that we want to rotate anti-clockwise about this point by an angle of 
Pi/5 then we consider the following matrix product: 

transform[a_,b_,ang2_]:=trans12[-a,-b].rotac[ang2].trans12[a,b] 

squtransform[a_,b_,dim_,t_,ang2_]:=Map[Drop[11,-1]&,Map[insert[ii,1,3]& 
Squaredges2[a,b,dim,t]].transform[a,b,ang2]] 

ParametricPlot[Evaluate[squtransform[1,1.5,2,t,Pi/511,M0,1), 
PlotRange->((-1,3),(1,5)),AspectRatio->Automatic, 
Ticks->((-1,0,1,2,3),(1,2,3,4,5))] 
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o This program 
(i) Gives us the co-ordinates of the vertices of a cube obtained by applying 
any composition of linear transformations to a cube originally placed about the 
origin in general position shown in Figure (3.10 ) Chapter 3. 

(ii) Plots a perspective drawing of the cube or a rectangular grid for given 
viewpoint and drawing surface. In particular, for a drawing surface of a plane, 
a circular cylinder, a sphere and a cone. The particular surface equation is 
given by the function, ObjectSurface. 

a Note: Each time the program is run we need to enter the ObjectSurface and the 
ViewPt first and if we want the furtherest picture for each surface we must 
amend PictureList with Min replaced by Max. Also if we are viewing along the 
z axis in Objectcube we must have Delete[#,3] i.e. 3 replaces 2 

• Cylinder 

ObjectSurface[xpt_List]:=xpt([1]]"2+xpt[[2]]"2-9; 

• Cone 
ObjectSurface[xpt_List]:=xpt[[1]]"2+xpt([2]]"2-1/3*xpt([3]]A2; 

• Plane 
ObjectSurface[xpt_List]:=xpt([2]] 

• Sphere 

ObjectSurface[xpt_List]:=xpt([1]]"2+xpt[[2]]A2+xpt([3]] 2-16; 

MakeGrid2({Ircentre_,zcentre_},(dy_,dz_},{ny_,nz_},t_]:= 
Join[Table((ny*dy*t+ycentre,i*dz+zcentre),(i,-nz,nz)], 
Table[Wdy+ycentre,nz*dz*t+zcentre),(1.,-ny,nY)]]; 

The following function ImageGrid gives the parametric representation of a rectangular grid. 

ImageGrid[t_]:=MakeGrid2({0,5},(1,1),(4,4},t] 

Note: In order to have the correct scale, editstyles must be set for each individual example. To set 
correctly, plot each with axes first to see the maximum and minimum x an .  values , particularly 
for the stretched case. 
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Next we plot ImageGrid 

ParametricPlot[ 
Evaluate[ImageGrid[t]],{t,-1,1),Axes->True, 
PlotStyle->AbsoluteThickness[1], 
PlotRange->{{-10,10},{0,20)),AspectRatio->Automatic] 

Imagel gives the grid on the xz-plane or y=0. 
Image2 gives the grid on the xy-plane or z=0. 

Image [t_] : =Map [transz , Map [Insert [#, 0,2] &, ImageGrid[t] ] ] 

Imagel [t_] : =Map [Insert [#, 0,2] &, ImageGrid [t] ] 

Imagelh gives the homogeneous co-ordinates of the grid on the xz-plane or y=0. 
Image2h gives the homogeneous co-ordinates of the grid on the xy-plane or z=0. 

Imagelh [t_] : =Map [Insert [#, 1,4] &, linage]. [t] ] 

Image2 [t_] : =Map [Insert [#, 0,3 ] &, ImageGrid [t] ] 

Image2h [t_] : =Map [Insert [#, 1,4] &, Image2 [t]] 

GridImage gives any transformation of the grid multiplying by matrix of homogeneous 
co-ordinates. This results in a set of points with three co-ordinates only as we saw in Appendix A. 

GridImage [scalex_, scaley_, scalez_,Tx_, Ty_,Tz_,ang1_,ang2_, 
ang3_,t_] :=Image2h[t] .netransf [scalex, scaley, scalez, Tx, Ty, Tz, angl, ang. 

rh and uh define rotation matrices using homogeneous co-ordinates as detailed in AppendixA. 
In this case rh is the composition of a rotation by ang3 about firstly the z axis and then about 
the y axis. uh is the compostion of a rotation by ang2 about the x axis and then by an angle 
of angl about the y axis. 

rh[ang3_]:={{Cos[ang3],Sin[ang3],0,0),(-Sin[ang3],Cos[ang3],0,0), 
(0,0,1,0),(0,0,0,1)). 
{{Cos[ang3],0,Sin[ang3],0),{0,1,0,0),{-Sin[ang3],°,Cos[ang3],0) 
,(0,0,0,1)); 

uh[ang2_,angl_] : ={ (1,0,0,0) , (0,Cos [ang2] , Sin [ang2] , 0) , 
{0, -Sin[ang2] ,Cos [ang2] , 	(0,0,0,1)). 
{ {Cos [angl] , 0, Sin [angl] , 0) , {0,1,0,0), { -Sin [angl] , 0,Cos [angl] , 0) , 
(0,0,0,1)); 

scale is a scaling matrix for scaling by a factor of scalei in the i -direction. 

scale[scalex_,scaley_,scalez_]:= 
{{scalex, 0,0,0), (0, scaley, 0,0), (0,0,scalez,0), (0,0,0,1)); 

transl is a translation matrix for translating by Tj units in the jth direction. 

transl[Tx_,Ty_,Tz_]:= 
{(1,0,0,0), (0,1,0,0), (0,0,1,0), (Tx,Ty,Tz,1)); 

netransf is the net tranformation matrix. 
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netransf[scalex_,scaley_,scalez_,Tx_,Ty_,Tz_,angl_,ang2_,ang3_]:= 
Map[ 
Drop[C-1]&,rh(ang3].uh[ang2,angl].scale[scalex,scaley,scalez]. 
transl[Tx,Ty,Tz]]; 

corners gives the co-ordinates of the cube vertices once the cube, originally in general position 
about the origin, has been transformed by particular cases of the preceding transformations. 

corners (scalex_, scaley_, scalez_, Tx_, Ty_, Tz_, ang1_, ang2_, ang3_, dim] : = 
Flatten [Table ( ( (-dim, j, -dim, 1) . 
netransf (scalex, scaley, scalez, Tx, Ty, Tz, angl, ang2 , ang3 ] , 
(-dim, j , dim, 1) . 
netransf [scalex, scaley, scalez, Tx, Ty, Tz , angl, ang2,ang3] , 
(dim, j , dim, 1) . netrans f [scalex, scaley, sca].ez , Tx, Ty, Tz , angl, ang2 , ang3 ] , 
(dim, j, -dim, 1) .netransf [scalex, scaley, scalez , Tx, Ty, Tz, angl, ang2, ang3 ] 
ti , -dim, dim, 2*dim) ] / /N, 1] ; 

cubedges gives a list of the parametric representations of the lines containing the edges of the 
cube. It must be noted that the order of the vertices is crucial here. The order for which this 
program is written is shown in Figure ? To obtain the correct line segments to represent the edges 
of the cube, we consider values of the parameter, t, between 0 and 1. 

cubedges[scalex_,scaley_,scalez_,Tx_,Ty_,Tz_,ang1_,ang2_, 
ang3_,dim ,t_]:= 
(c=corners[scalex,scaley,scalez,Tx,Ty,Tz,angl,ang2,ang3,dim]; 

c ( [2] ]+t*(c( [6]] -c[ [2] ] ) , 

c( [4]]+t*(c[ [3]] -c[ [4] ] ) 
c[[2]]+t*(c([3]]-c([2]]), 

c [ [1] ]+t*(c[ [5] ]-c( [1] ] ), 
c[[5]]+t*(c[[8]1-c[[5]]), 

c[[8]]+t*(c[[7]]-c[[8]]), 
c[[6]]+t*(c[[7]]-c[[6]]))); 

Viewline gives the parametric representaion of the line through the viewpoint, represented by its 
three co-ordinates, and some point represented by its list of three co-ordinates, xpt_List. 

ViewLine [ViewPt_,xpt_List, t_] :=ViewPt+t* (xpt-ViewPt) ; 
SurfaceIntersectionList [ViewPt_,xpt_List] :=zt I. 
Solve [ObjectSurface WiewLine [ViewPt,xpt, zt] ] ==0, zt] ; 

PictureList represents the value of the parameter, t, at the intersection point of the viewline with 
the picture surface. In the following case, the minimum such value of t is returned. In cases 
where the viewline cuts the picture surface twice, the other value may be found by replacing the 
Min by Max. 
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PictureList [ViewPt_,3cpt_List] : =Map [ViewLine [ViewPt,xpt, #] &, 
List [Min [Surf aceIntersectionList [ViewPt , xpt ] ] ] ] ; 

For all real values of t between 0 and 1, Objectcube, represents all the points on the perspective 
drawing of the edges of our cube (that is, the perspective drawing of the skeleton cube). These 
are points on our chosen picture surface. 

Objectcube[ViewPt_,scalex_,scaley_,scalez_,Tx_,TY_,Tz_iang1_,ang2_, 
ang3_,dim ,t_]:= 
Map[Delete[#,2]&, 
Flatten[Map[PictureList[ViewPt,#]&, 
cubedges[scalex,scaley,scalez,Tx,Ty,Tz,angl,ang2,ang3,dim,t]],1]]; 

Objectgrid gives the parametric representation of the perspective drawing of the grid on our 
picture surface. 

Objectgrid[ViewPt_,scalex_,scaley_,scalez_,Tx_,Ty_,Tz_,ang1_,ang2_, 
ang3_,t_]:= 
Map [Delete [it, 2] &, 
Flatten[Map[PictureList[ViewPt,#]&, 
GridImage[scalex,scaley,scalez,Tx,Ty,Tz,angl,ang2,ang3,t]],1]]; 

PerspectiveDrawinggrid gives the parametric plot of the perspective drawing of the grid on 
our picture surface. The parameter takes all real values between -1 and!. To be seen correctly it 
must be wrapped around the appropriate picture surface, if this is curved. 

PerspectiveDrawinggrid[ViewPt_,scalex_,scaley_,scalez_,Tx_,Ty_,Tz_, 
ang1_,ang2_,ang3_]:= 
ParametricPlot[Evaluate[ 
Objectgrid[ViewPt,scalex,scaley,scalez,Tx,Ty,Tz,angl,ang2,ang3,cat]], 
(cat,-1,1), 
PlotRange->((-8,8),(0,16)), 
PlotStyle->A1,soluteThickness[1],AspectRatio->Automatic]; 

PerspectiveDrawinggrid[(2,-20,30),1,1,1,0,0,0,0,0,0] 

PerspectiveDrawingcube gives the parametric plot of the perspective drawing of the skeleton 
cube on our picture surface. The parameter takes all real values between 0 and 1. To be seen 
correctly it must be wrapped around the appropriate picture surface, if this is curved. 

PerspectiveDrawingcube[ViewPt„scalex„scaley_,scalez_,Tx_,Ty_,Tz_, 
ang1_,ang2_,ang3_,dim ]:= 
ParametricPlot[Evaluate[ 
Objectcube[ViewPt,scalex,scaley,scalez,Tx,Ty,Tz,angl,ang2,ang3, 
dim,cat]],(cat,0,1), 
PlotRange->((-8,8),(0,16)), 
PlotStyle->AbsoluteThickness[1],AspectRatio->Automatic]; 

PerspectiveDrawingcube[(0,-30,22},1,1,1,0,0,4,0,Pi/6,Pi/4,1.5] 
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We begin by finding the centre and radius of the Vieth-Muller circle for a given fixation point, 
(p,q,0). This circle also passes through the nodal points of the viewer's eyes, which we have 
placed at (-2.875,0,0) and (2.875,0,0). We have three points of a circle, and so to find its 
centre, we need the circumcentre of the triangle with these three points as vertices. In this 
program, we have used a fixation point of (0,15,0), to give our ObjectSurface function 
which represents a cylinder with horizontal circular cross-section equal to the Vieth-Muller 
circle for this fixation point. 

Note: If this is to mimick Luneburg's experiment, we must ensure that we have a 
Vieth-Muller circle which goes through the intersection points of the corresponding rays of 
our finite sub-pencils. This is a special case where we are considering equal angles between 
neighbouring rays of each sub-pencil. For this example 'Geometer Sketchpad' was used to 
make a scale drawing of an appropriate pair of sub-pencils (their spacing equals 
eye-separation) and the set angle was chosen to be P1/10. Using the method described above 
we could then find the radius, and centre, of an appropriate Vieth-Muller circle. 

ObjectSurface[xpt_List]:=(xpt[[1]])A2+ 
(xpt [ [2] ]-9.53) "2- (9.96) "2; 

lines returns the parametric equation of an arbitrarily chosen line; through the points (0,0,0) 
and (-11,11,0). 

lines[t_]:={(0,0,0)+t*( -11,11,0)) 

transl is a translation matrix using homogeneous co -ordinates. 

transl[Tx_,Ty_,Tz_]:= 
{(1,0,0,0),(0,1,0,0),(0,0,1,0),(Tx,Ty,Tz,1)); 

uh is a rotation matrix about the origin. 

uh[angl_]:={{Cos[angl],-Sin[angl],0,0),(Sin[angl],Cos[angl],0,0), 
(0,0,1,0),(0,0,0,1)); 

linesi, where i is integral and 2<=i<=6 represent lines which are rotations (in multiples of 
P1/8), and then translations, of linest. They are concurrent at the nodal point of the right eye. 

linesil, where i is integral and 2<=i<=6 represent lines which are rotations (in multiples of 
P1/8), and then translations, of linest. They are concurrent at the nodal point of the left eye. 

lines2 [t_] : =Map [Drop [#, -1] &,Map [Append [#, Us:, lines [t] ] .transl [2.875, 

lines21 [t_] : =Map [Drop [#, -1] (c,Map EAPPend[#, 1] &z, lines [t] .transl I-2.87! 

lines3 [t_] : =Map [Drop [#, -1 ] Ec,Map [Append [#, 1] Eg, lines [t] .uh[Pi/10] .tras 

lines31 [t_] : =Map [Drop [#, -1] &,Map [APPend [#, 1] &, lines [t] ] .uh [Pi/10] .tra 

lines4 [t_] : =Map [Drop [#, -1] &,Map [Append [#, 1] &, lines [t .uh [Pi/5] .trans 

lines41 [t_] : =Map [Drop [#, -1] ge, map [Append lit, 1] re, lines [t] ] .uh [Pi/5] .trax 

lines5 [t_] : =Map [Drop [it, -1] &,Map [Append[#, 1] &, lines [t] .uh [3 Pi/10] .ts 

lines51 [t_] : =Map [Drop [#, -1] &,Map [Append [#,1] lines [t] ] .uh(3 pi/10] .t 

lines6 [t_] : =Map [Drop [#, -1] &,Map [Append[#, 1] &, lines [t]]. , uh [4 Pi/103 .ts 

lines61 [t_] : =Map [Drop [#, -1] &,Map [Append[#, 1] a, lines [t] 3 .uh[4 P1/10] .t 
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lines7lt_]:=Map[Drop[C-1]&,Map[Append[#,1]&,lines[t]].uh[5 Pi/10].t3 

lines7l[t_]:=Map[Drop[C-1]&,Map[Append[#,1]&,lines[t]].uh[5 Pi/10].t 

linese[t_]:=Map[Drop[C-1]&,Map[Append[#,1]&,lines[t]].uh[6 Pi/101.t] 

lines81(t_]:=Map[Drop[C-1]&,Map[Append[#,1]&,lines[t]].uh[6 Pi/10].t 

parametersi and parametersil return the values of the parameters for each of the 
intersection points, of the linesi or linesil, with the Vieth-Muller circle. 

parameters1=zt I. 
Solve[ObjectSurface[lines2Ezt][[1]]]==0,zt] 

parameters11=zt I. 
Solve[ObjectSurface[lines2l[zt][[1]]]==0,zt] 

parameters2=zt I. 
Solve[ObjectSurface[lines3[zt][[1]]]==0,zt] 

parameters21=zt I. 
Solve[ObjectSurface[lines3l[zt][[1]]]==0,zt] 

parameters3=zt I. 
Solve[ObjectSurface[lines4[zt][[1]]]==0,zt] 

parameters31=zt I. 
Solve[ObjectSurface[lines4l[zt][[1]]]==0,zt] 

parameters4=zt I. 
Solve[ObjectSurface[lines5(zt][[1]]]==0,zt] 

parameters41=zt I. 
Solve[ObjectSurface[lines5l[zt][[1]]]==0,zt] 

parameters5=zt I. 
Solve[ObjectSurface[lines6(zt][[1]]]==0,zt] 

parameters51=zt I. 
Solve[ObjectSurface[lines6l[zt][[1]]]==0,zt] 

parameters6=zt I. 
Solve[ObjectSurface[lines7Ezt][[1]]]==0,zt] 

parameters61=zt I. 
Solve[ObjectSurface[lines7lEzt][[1]]]==0,zt] 

parameters7=zt I. 
Solve[ObjectSurface[lines8[zt][[1]]]==0,zt] 

parameters71=zt I. 
Solve[ObjectSurface[lines8l[zt][[1]]]==0,zt] 

Next we plot each line segment, of the original linesi or linesil, from the nodal point to the 
Vieth-Muller circle. We use the values of the parameters returned above. 

ParametricPlot[Evaluate[ 
Map[Delete[#,3]&,linesi[cat]]], 
{cat,0,0.918134},Axes->True,PlotStyle->RGBCo10r[0,1,0], 
PlotRange->((-1l,11),(0,20)},AspectRatio->Automatic] 
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ParametricPlot[Evaluate[ 
Map[Delete[#,3]&,linesil[cat]]], 
(cat,0,0.395407),Axes->True,PlotStyle->RGBColor[1,0,0], 
PlotRange->((-11,11),(0,20}),AspectRatio->Automatic] 

Next we find the perspective drawing of these pencils, 
with ObjectSurface being the cylinder. We need the perspective drawing of the pencil with 
vertex (2.875,0,0) from a viewpoint directly above this vertex; from a point such as 
(2.875,0,10). Similarly, we need the perspective drawing of the pencil with vertex 
(-2.875,0,0), from a viewpoint of (-2.875,0,10). This mimicks Luneburg's experiment. 

Note: In Objectlines we need to insert the appropriate linesi. 
In PerspectiveDrawing we then need to insert the correct values for the parameter. Since 
we can't see the vertex if we are directly above it, we begin by selecting a parameter value 
which is bigger than 0. This program needs some work to make it more automatic. 

ViewLine [ViewPt_, xpt_List , t_] : =ViewPt+t* (xpt-ViewPt ) ; 
Surf aceIntersectionList [ViewPt_,xpt_List] :=zt I. 
Solve [Obj ectSurface [ViewLine [ViewPt,xpt, zt] ] ==0, zt] ; 

PictureList [ViewPt_,xpt_List] : =Map [ViewLine [ViewPt,xpt, #1&, 
List [Max [Surf aceIntersectionList [ViewPt ,xpt] ] ] ] ; 

Objectlines[ViewPt_,t_]:= 
Map[Delete[#,2]&, 
Flatten[Map[PictureList[ViewPt,#]&, 
linesi[t]],1]]; 

PerspectiveDrawing[ViewPt_]:= 
ParametricPlot[Evaluate[ 
Objectlines[ViewPt,cat]], 
(cat,0.1,0.918134),Axes->True,PlotStyle->RGBC010r[0,1,0], 
PlotRange->((-11,11),(-20,10)), 
AspectRatio->Automatic]; 
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MINote: The bash: mirror programming here was done by Simon 
VVotherspoon when I first began this project. 

• Cylinder 

MirrorSurface[xpt_List]:=xpt[[1]] 42+xpt[[2]]"2-9; 

II Cone 
MirrorSurface[xpt_List]:=xpt([1]]"2+xpt([2]]*2-1/3*xpt([3]] 4 2; 

MirrorSurface[xpt_List]:=xpt([1]]"2+xpt([2]]"2-1/3*(xpt([3]]-10)A2; 

• Plane 
MirrorSurface[xpt_List]:=xpt([2]] 

• Sphere 

MirrorSurface[xpt_List]:=xpt([1]]"2+xpt[[2]]"2+(xpt[[3]]-6) 142-36; 

ViewPt:=(-2.875,-30,30); 

ObjectPlane[xpt_List]:=xpt([3]]; 

ViewLine[xpt_List,t_]:=ViewPt+t*(xpt-ViewPt); 

Grad(f_]:={13(f,x],inf,Y1,D(f,z]); 

SurfaceNormal(xpt_List]:=Grad(MirrorSurface[(x,y,z)]] I. 
(x- >xpt[E1M,Y- >xPt([2]],z ->xPt[[3]]}; 

SurfaceIntersectionList(xpt_List]:=zt I. 
Solve[MirrorSurface(ViewLine[xpt,zt]]==0,zt]; 

IntersectionList[xpt_List]:=Map(ViewLine[xpt,#]&, 
List(Min(SurfaceIntersectionList[xpt]]]]//N; 

CalcRefLine[xpt_List,IntersectPt_List,t_]:=Block((normal,u,v), 
n=SurfaceNormal(IntersectPt]; 
u=(xpt-ViewPt); 
v =u - 2 * (u . n)/(n • 
IntersectPt + t * v 
l; 

AllRefLines(xpt_List,t_]:=Map(CalcRefLine[xpt,Lt]&, 
IntersectionList[xpt]: 
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CalcObjectPtErefline_List,t_]:=Flatten[refline I. 
Solve[ObjectPlane[refline]==00 

ObjectPtList[xpt_List]:=Map(CalcObjectPtMt]&,A21RefLines[xpt,t]] ;  
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o This program relies on the equation of the circle of 
intersection of the plane through the viewer's eyes and the 
row of the Single-Image Stereogram at a height z=k being known. 
That is, in the case of the sphere with equation 
x^2 +(y-a)'2 +z^2=r^2 
the circle on the plane of intersection is given by 
x ^2+(y' -ad/(d A 2+k A 2)A1/2)A 2=rA2.a Alga A24cd A 2/(dA2+k A2)). 
That is, we have effectively rotated the axes about the original 
x-axis to obtain a new y'-axis. 
"d" represents the distance of the viewer from the stereogram. 
"a" represents the y-co-ordinate of the centre of the sphere. 

a In the case of the ellipsoid with equation 
x^2/102 +(y-a)^2/02 +z^2/f^2=1 
the figure on the plane of intersection is given by 

((f^2*d^2-1-02*k^2-a^2*k^2)/(f^2*d^2+02*k^2)))==1; 
We have effectively rotated the axes about the original 
x-axis to obtain a new y'-axis. 

The following explanations are written for the special case of the sphere. It is relatively straight 
forward to amend this program for the more general ellipsoid, given the equations above. As 
mentioned in the text, we must choose a,b,c and f carefully so that the ellipsoid does not lie too 
close to the plane of the stereogram. 

jr 	gives two intersection points with the circle of any line with 
slope m through the right eye, at (w,0,0).w represents 
half the eye-spacing of the viewer. 

{x,y}/.Solve[(xA2+(y-(a*d/Sqrt[dA2+kA2]))A2== 
rA2-aA2+(aA2*d"2/(dA2+kA2)), y==m*x-m*w),(x,Y)1 

jl 	gives two intersection points with the circle of any line with 
slope m through the left eye, at (-w,0,0). w represents 
half the eye-spacing of the viewer. 

j l[a_,r_,d_,w_,k_]:= 
(x,y)/.Solve[002+(y-(a*d/Sgrt[dA2+kA2]))A2== 
rA2-aA2+(aA2*dA2/(dA2+kA2)),y==m*x+m*w},[x,y}] 

sloper 	gives the two possible slope values which make the 
viewlines from the right eye, tangents to the circle. 

sloper[a  ,r ,d ,w ,k  ]:= 
m/.Solve[jr[a,r,d,w,k][[1,1]]==jr[a,r,d,w,k][[2,1]],na 

slopel 	gives the two possible slope values which make the 
viewlines from the left eye, tangents to the circle. 
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slopel (a_,r_,d_,w_,k_] := 
m/ . Solve (j1 [a, r, d,w, k] [ [1, 1] ]==j1 [a, r, d,w, k] [ [2, 1] ] 

fnlr 	gives the x-co-ordinate of the intersection 
point of a right eye tangent line with the SIS which lies on 
the line y'=(dA2+102)^1/2. d is the distance of 
the viewer from the SIS and k is the z co-ordinate of 
the appropriate row of the SIS in the original co-ordinate 
system. 

fnlr [a  ,r ,d ,w ,k  := 
x/ . 
Solve [sloper [a, r,d,w,k] [ [1] ] *x-sloper [a, r,d,w,k] [ [1] ] *w== 
Sqrt (dA2+kA2] ,x] 

fn2r 	gives the x-co-ordinate of the intersection 
point of a second right eye tangent line with the SIS which lies on 
the line y'=(02+102)^1/2. Again d is the distance of 
the viewer from the SIS and k is the z co-ordinate of 
the appropriate row of the SIS in the original co-ordinate 
system. 

fn2r (a_,r_,d_,w_,k_] := 
x/ . Solve [sloper [a, r,d, w, k] [ [2] ]*x-sloper [a, r,d,w,k] [ [2] ] *w== 
Sqrt (dA2+kA2] ,x] 

fnll 	gives the x-co-ordinate of the intersection 
point of one left eye tangent line with the SIS which lies on 
the line y'.(dA2+102)^1/2. Again d is the distance of 
the viewer from the SIS and k is the z co-ordinate of 
the appropriate row of the SIS in the original co-ordinate 
system. 

full [a_,r_,d_,w_,k_] := 
x/ . Solve [slopel [a, r, d, w, k] [ [1] ]*x+slopel [a, r, d, w, k] [ [1] ] *w== 
Sqrt [d"2+kA2] ,x] 

fn21 	gives the x-co-ordinate of the intersection 
point of a second left eye tangent line with the SIS which lies on 
the line y'=(dA2+102)^1/2. Again d is the distance of 
the viewer from the SIS and k is the z co-ordinate of 
the appropriate row of the SIS in the original co-ordinate 
system. 

fn21 (a_,r_,d_,w ,k_] :=x/ . Solve [slopel [a, r, d, w, k] [ [2] ]*x+ 
slopel [a, r, d,w, k] ( [2] ]*w==Sqrt (dA2+k"2] ,x] 

intang 	gives the intersection point of the two tangents; 
one from the right eye to the left side of the circle and the 
other from the left eye to the right side of the circle.This is found 
by looking at the intersection points of the 4 possible tangents 
with the SIS. This gives the slope of the appropriate tangent 
lines. 
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intang Ea_, r_, d_, w_, k_] : =Module [ (sir, 811), If ENEfnlr 
[a, r, d,w, k] [ [1] ] <fn2r [a, r, d,w, k] [ Ell 31 , slr=sloper 
[a, r,d,w,k] [ [1] ] ,s1r=sloper[a,r,d,w,k] [ [2] 3 ; 
If [N[fnll[a,r,d,w,k] [[1]]>fn2lIa,r,d,w,k] E Ell ] 1 , 
sll=slopel [a, r, d,w, k] [ [1] ] , sll=slopel [a, r,d,w, k] [ [2] ] ; 
(x,y)/ . Solve [ (y==s1r*(x-w) ,y==s11*(x+w) }, (x,y)] //N 

tangptlr 	 gives the left hand side tangent point of the 
viewline from the right eye to the circle. 

tangptlr[a_,r_,d_,w_,k_]:=ModuleNtangentptr), 
If EN[fnlr [a, r,d,w,k] [ [1] ] <fn2r [a, r,d,w,k] [ [133 3 , 
tangentptr=(x,y)/ . Solve ( (x"2+(y- (a*d/Sqrt Ed"2+k"2] ) ) "2 
==r 4 2-a 4 2+(a"2*d"2/ (d"2+k"2) ) , 
y==sloper [a, r, d,w, k] [ [1] ] *x-sloper [a, r,d,w,k] [ [1] ] *w} , 
{x,y}],tangentptr= 
(x,y}/.Solve[(x"2+(y-(a*d/SqrtEd"2+k"2]))"2 
==r"2-a"2+(a"2*d"2/ (dA2+k"2) ), 
y==sloper [a, r,d,w,k] [ [2] ] *x-sloper [a, r,d,w,k] [ [2] ]*w} , 
(x,Y)]]]//N 

tangptll 	 gives the right hand side tangent point of the 
viewline from the left eye to the circle. 

tangptll (a_, r_, d_,w_,k_] : =Module [ (taxigentptl), 
If ENEfull Ea,r,d,w,k] [ [1] ]>fn21 [a, r,d,w,k] [ [1] ] ] ,tangentpt1={x,y}/. 
Solve [(x"2+(y- (a*d/Sqrt [d"2+k"2] ) ) A2== 
r"2-a"2+(a"2*d"2/ (d 042+kA2) ) , 
y==slopel [a, r, d,w, k] [ [1]1*x+slopel [a, r, d,w,k] 1 Ill ] *w}, 
(x,y)] ,tangentpt1={x,y} / . Solve [ (x"2+ (y- (a*d/Sqrt [d"2+k"2] ) ) A2== 
r"2-a."2+(a"2*d."2/ (dA2+kA2) ) , 
y==slopel [a, r,d,w,k] [ [2] ]*x+slopel [a, r,d,w,k] [ [2] ]*w} , 
{x,y} ] ] 1 //N 

firstdotr 	 is the intersection point with the z=k row of 
the SIS of the viewline from the left eye to the tangent 
point on the left of the sphere. This tangent point is that 
of the viewline from the right eye. 

firstdotr [a  ,r ,d ,w ,k  ] := 
x/ 	 Solve [ 
tangptlr [a, r, d,w,k] [ [1,2] ] (x+w) / (tangptlr [a, r, d,w,k] [ [1,1] ]+w) 
==SqrtEd"2+k"2],x]//N 

lastdotl 	 is the intersection point with the z=k row of 
the SIS of the viewline from the left eye to its tangent 
point on the right of the sphere. This is the last dot used 
by the left eye to view the sphere as it moves to the right. 
Any dot further to the right can be used for surroundings 
by the left eye. 
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lastdoti [a  ,r ,d ,w ,k  := 
x/ Solve [ 
tangptli [a, r, d,w, k] [ [1,2] ] (x+w) / (tangptli [a, r, d,w, k] [ [1,1] ]+w) 
==Sqrt [dA2+k"2] ,x] //N 

lastdot 	 is the intersection point with the z=k row of 
the SIS of the viewline from the right eye to the tangent 
point on the right of the sphere. This tangent point is that 
of the view line from the left eye. 

lastdot [a ,r ,d ,w ,k  := 
x/ . Solve [ 
tangptli [a, r, d,w, k] [ [1,2] ] (x-w) / (tangptli [a, r, d,w, k] [ [1,1] 3 -w) 
==Sqrt [dA2+kA2] ,x] //N 

mainfunl 	This maps the x-co-ord of a given dot,Intr, for 
the right eye onto the x-co-ord of the dot on the SIS (of our 
circle in this case) which is the corresponding dot for the 
right eye when the left eye views Intr. 
Note: Since f is a circle in this case there will be two 
intersection points of the viewline from 1=(-w,0). If we want 
the SIS of the front of the sphere then we choose the 
intersection point with f which has the smaller y' 
co-ordinate.(vice-versa for the inside of the sphere) 

mainfunl[a_,r_,d_,w_,k_][Intr_]:= 
(pt={x,y)/.So1ve[(xA2+(y-(a*d/Sqrt[dA2+k"2])) 042== 
rA2-a"2+(aA2*d"2/(d"2+kA2)),Y== 
(Sqrt [kA 2+dA 2] / (Intr+w) ) *x+ (Sqrt [kA2+d"2] / (Intr+w) )*w) 
,{x,Y}]; 
If [pt [ [1, 2] ] <pt [ [2, 2] ] , curvept=pt [ [1] , curvept=pt [ [2] ] 3 ; 
x/ .Solve [ (curvept [ [2] 3 / (curvept [ [1] 3 -w) ) (x-w)- 
(kA2+dA2)" (1/ 2 )==0,x] //N) 

mainfun2 	This maps the x-co-ord of a given dot,Intl, for 
the left eye onto the x-co-ord of the dot on the SIS (of our 
circle in this case) which is the corresponding dot for the 
left eye when the right eye views Intl. 
Note: Since f is a circle in this case there will be two 
intersection points of the viewline from r=(w,0). If we want 
the SIS of the front of the sphere then we choose the 
intersection point with f which has the smaller y' 
co-ordinate.(vice-versa for the inside of the sphere) 
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mainfun2(.1_,r_,d_,w_,k_][Intl_]:=(pt= 
Ocs1,1/.Solve[(x"2+(y-(a*d/Sqrt[dh2+kA2]))A2== 
r 42-a 4 2+(aA2 *dA2/(dA2+kA2)),y==(Sqrt[kA2+d 4 2]/ 
(Intl-w))*x-(Sqrt[kA2+dA2]/ 
(Intl-wWw),(x,y)]; 
If[pt[[1,2]]<pt[[2,2]],curvept=pt[[1]],curvept=pt[[2]]]; 
x/.Solve[(curvept[[2]]/(curvept[[1]]+w))(x+w)- 
(k 042+dA2)A(1/2)==0,x]//N) 

mainfun3 	This maps the x-co-ord of a given dot,Intl, for 
the left eye onto the x-co-ord of the dot on the SIS (of a 
background plane in this case..here the plane is y=38) which is the 
corresponding dot for the left eye when the right eye views Intl. 

(pt=(x,y)/.Solve[(y==Sgrt[38"2+(k+(38-d)ArcTan[k/d]) 4 2] 
,y==(Sqrt[kA2+dA2]/(Int1-w))*x-(Sqrt[kh2+dA2]/ 
(Intl-w))*w),(x,y)]; 
x/.Solve[(pt[(1,2]]/(Pt[[1,1]]+w))(x+w)-(kA2+dA2)"(1/2)== ,x]//N) 

mainfun4 	This maps the x-co-ord of a given dot,Intr, for 
the right eye onto the x-co-ord of the dot on the SIS (of a 
background plane in this case.. .y=38) which is the corresponding dot 
for the right eye when the left eye views Intr. 

mainfun4(a_,r_,d_,w_,k_][Intr_]:= 
(Pt={x,Y)/.Solve[(y==Sgrt[38"2+(k+(38-d)ArcTan[k/d])A2] 

(Scirt[kA2+dA2]/(Intr+w))*x+(Sqrt[kA2+dA2]/(Intr+w))*w} 
,{x,Y}]; 
x/.Solve[(pt[[1,2]]/(pt[[1,1]]-w))(x-w)- 
(kA2+dA2)"(1/2)==0,x]//N) 

dotsr 	maps the x co-ord of a given dot from left to right 
across the row of the SIS by repeatedly applying mainfunl 
until it exceeds lastdotl.We can go no further to the right 
since the viewline from the left eye misses the sphere 
for any dot farther right. (Nasty messages would appear!). 

dotsr[a_,r_,d_,w_,k_][x ]:= Nodule[(q=x,elephant=(x), 
giraffe=lastdotl[a,r,d,w,k][[1]]}, 
While[(q=mainfunl[a,r,d,w,k][q][[1]])<=giraffe, 
AppendTo[elephant,q]];elephant ] 

dotsl 	maps the x co-ord of a given dot from right to left 
across the row of the SIS by repeatedly applying mainfun2 
until it is smaller than mainfunl[firstdotaThis 
mainfunl[firstdotr] when we move from right to left 
corresponds to lastdotl when we move from left to right. 
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dots]. [a_, r_, d_, w_, k_] [x_] := Module [ (q=x, elephant=(x), 
rabbit=mainfunl [a, r,d,w,k] [firstdotr [a, r, d, w, k] [ [1] ] ] [ [1] ] ) , 
While [ (q=mainfun2 [a, r,d,w,k] [q] [ [1] ] ) >=rabbit, 
AppendTo[elephant,q]];elephant ] 

rhino 	 takes the last dot of dotsr[x] and maps it one step 
further to the right than lastdot.This cannot be done with the 
function dotsr because in applying the test "Is it bigger 
than lastdotl?"etc. an  attempt would be made to have the 
viewline from the left eye intersect the circle which 
is not possible for dots with x-co-ord bigger than lastdotl. 

rhino [a_, r_,d_,w_,k_] [x_] := 
mainfunl [a, r, d,w, k] [Take [dotsr [a, r,d,w, k] [x] , -1] [ [1] ] ] //N 

rhinol 	 takes the last dot of dotsl[x] and maps it one step 
further to the left than mainfunl[firstdotd.This cannot be 
done with the function dotsl because in applying the test 
"Is it smaller than mainfiml[firstdotr]?"etc. an  attempt would 
be made to have the viewline from the right eye intersect the 
circle which is not possible for dots with x-co-ord smaller 
than mainfunl[firstdotr]. 

rhino]. [a_, r_,d_,w_, k_] [x_] := 
mainfun2 [a, r,d,w, k] [Take [dotsl [a, r, d,w, k] [x] , -1] [ [1] ] ] //N 

hippo 	 takes rhino[x] which is in the last possible 
interval to the right used to see the circle (only by 
the right eye) and keeps mapping this dot to the right to give the x 
co-ords. of dots which enable the viewer to see a surrounding 
or background plane up to the specified value of x on the SIS. 
i.e.rhino[x] will be used by the left eye to see the plane 
rather than the circle. 

hippo (a_, r_, d_, w_, k_,maacx_] [x_] := 
Nodule [ {q=Take [rhino [a, r,d,w,k] [x] -11 [1] ] , croc={} 
While [ (q=mainfun4 [a, r, d, w, k] [q] [ [1] ) <=maxx, 
AppendTo[croc,q]];croc ]//N 

hippol 	takes rhino[x] which is in the last possible 
interval to the left used to see the circle (only by the left 
eye) and keeps mapping this dot to the left to give the x 
co-ords. of dots which enable the viewer to see a surrounding 
or background plane up to the specified value of x on the SIS. 
i.e.rhino[x] will be used by the right eye to see the line 
(of plane) rather than the circle. 

hippo]. [a  ,r ,d ,w ,k ,minx  ] [x_] := 
Module [ {q=Take [rhinol [a, r,d,w,k] [x] , -1] [ [1] ] , croc= 	, 
Tghile [ (q=mainfun3 [a, r, d,w, k] [q] [ [1] ) >=minx, 
AppendTo[croc,q]];croc ]//N 
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rowdots 	 takes the union of dots from left to right to 
give the x co-ords. of a row of dots which allow the viewer to 
perceive from the left of the circle to the line on the right 
which is on the background plane. 

rowdots [a_, r_, d_, w_, k_,maxx_] [x_] := 
Join [dotsr [a, r,d,w, k] [x] , rhino [a, r, d,w,k] (x], 
hippo [a, r, d,w, k,maxx] (x]] 

rowdotsl 	 takes the union of dots from right to left to 
give the x co-ords. of a row of dots which allow the viewer to 
perceive from the right of the circle to the line on the left 
which is on the background plane. 

rowdotsl [a_, r_, d_,w_, k_,minx_] [x_] := 
Join [dotal [a, r, d,w, k] [x] , rhinol [a, r, d, w, k] [x] 
hippo]. [a, r, d,w, k,minx] [x] ] 

edge 	 is an iterative function which maps the x-co-ord. of 
a dot to the left to give a set of dots which enable the viewer 
to see a surrounding plane on the left of the sphere. 

edge [a_, r_, d_,w_,k_,minx_] [x_] : =Module [ {b=x, g={ } } , 
While [ (b=mainfun3 [a, r, d,w, k] [b] [ [1] ] ) >=minx, 
AppendTo [g, b] ] ;g] 

edgel 	 is an iterative function which maps the x-co-ord. of 
a dot to the right to give a set of dots which enable the viewer 
to see a surrounding plane on the right of the sphere. 

edgel [a_, r_, d_,w_,k_,maxx_] [x_] : =Module [ (b=x, g={ } ) , 
While [ (b=mainfun4 [a, r, d,w, k] [b] [ [1] ] ) <=maxx, 
AppendTo [g, b] ] ;g] 

intvalr 	gives 3 (arbitrary.. .depends on scale and 
dot-size) random real numbers between the x co-ord. of one dot 
and the x co-ord. of its matching dot to the right for the 
sphere. 

intvalr [a_, r_, d_,w_, k_,xmin_] : =Table [Random [Real , 
{xmin,mainfunl [a, r, d,w, k] [xmin] [ [1] ] ] 
• (3 )] //N 

intvall 	gives 3 (arbitrary...depends on scale and 
dot-size) random real numbers between the x co-ord. of one dot 
and the x co-ord. of its matching dot to the left for the 
sphere. 

intval 1 [a_, r_, d_,w_, k_,xmax_] : =Table [Random [Real , 
{2cmax,mainfun2 [a, r, d,w, k] [xmax] [ [1] ] ) ] 
• (3 )] //N 

commencer....gives an interval of x-co-ordinates of dots 
from which our SIS can be generated. It chooses three (this 
is arbitrary. ..depends on scale and dot-size) pseudorandom 
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real numbers between the x-co-ordinate of one dot and the 
x-co-ordinate of its matching dot to the right for the sphere. 
The random number generator is seeded with the integer n so 
that it is possible to obtain the same sequence of numbers 
in a repeat run of the program. The given dot is included in 
the initial interval here.There are cases when this should be 
eliminated. 

commencer [a_, r_,xmin_,n_] [d_,w_,k_] := 
(SeedRandom [n+Ceiling [5*k] ] ; intvalr [a, r, d,w, k, xmin] 
//N; 

Join [ {main} , intvalr [a, r, d,w, k,xmin] ] ) 
cotrunencel....gives an interval of x-co-ordinates of dots 
from which our SIS can be generated. It chooses three (this 
is arbitrary.. .depends on scale and dot-size) pseudorandom 
real numbers between the x-co-ordinate of one dot and the 
x-co-ordinate of its matching dot to the left for the sphere. 
The random number generator is seeded with the integer n so 
that it is possible to obtain the same sequence of numbers 
in a repeat run of the program. The given dot is included in 
the initial interval here.There are cases when this should be 
eliminated. 

colmnencel [a_, 	 [d_,w_,k_] := 
(SeedRandom[n+Ceiling [5*k] ] ; intvall [a, r, d,w, k,xmax] 
/ /N; 

Join [ {xmax} , intvall [a, r, d,w, k, xmax] ] ) 
ptsr 	maps both the functions rowdots and edge onto the 
initial interval,commencer,to give a set of x-co-ords of a row 
of dots for the sphere. The appropriate z-co-ordinate is 
appended to give a set of points in the x-z plane. 

pt sr [a_, r_,xmin_,n_, d_,w_,minx_,maxx_] [k_] := 
( spots=Join [Flatten [ 
Map [rowdots [a, r, d,w, k, maim] , commencer [a, r, 	n] Id, w, k] ] , 1] , 
Flatten [Map [edge [a, r, d, w, k, minx] , 
commencer [a, r,xmin, n] [d,w, k] ] , 1] ; 

Map [Append [#, k] &, Partition [ spots , 1] ) ; 
ptsl 	maps both the functions rowdotsl and edgel onto the 
initial interval,commencel,to give a set of x-co-ords of a row 
of dots for the sphere. The appropriate z-co-ordinate is 
appended to give a set of points in the x-z plane. 

243 



sphere explained thesis 	 9 

,minx_,maxx_][k_]:= 
(splots=Jo

- 

in[Flatten[ 
Map[rowdotsl[a,r,d,w,k,minx], 
commencel[a,r,xmax,n][d,w,k]],1], 
Flatten[Map[edgel[a,r,d,w,k,maxx], 
commencel[a,r,xmax,n][d,w,k]],1]]; 

Map[Append[Ck]&,Partition[splots,1]]); 

zmin 	gives the minimum z-co-ordinate for which the 
circle of intersection of the sloping plane with the sphere 
has radius 0. i.e.the z-value of the bottom tangent point of 
this plane. 

Min[q/.Solv

- 

e[rA2 -aA2+(aA2 *d"2/(d A 2+qA2))==0,(Ill//N 

zmax 	gives the maximum z-co-ordinate for which the 
circle of intersection of the sloping plane with the sphere 
has radius 0. i.e.the z-value of the top tangent point of this 
plane. 

zmax[a_,d_,r_]:= 
Max[q/.Solve [rA2-aA2+(aA2*dA2/(dA2+qA2))==0,q]]//N 

plintvalr 	gives 3 (arbitrary...depends on scale and 
dot-size) random real numbers between the x co-ord. of one dot 
and the x co-ord. of its matching dot to the right for the 
surrounding plane. 

plintvalr[a_,r_,d_,w_,k_,xmin_]:=Table[Random[Real, 
{xmin,mainfun4[a,r,d,w,k][xmin][[1]])] 
,{3}]//N 

plintvall 	gives 3 (arbitrary.. .depends on scale and 
dot-size) random real numbers between the x co-ord. of one dot 
and the x co-ord. of its matching dot to the left for the 
surrounding plane. 

plintvall [a_, r_, d_,w_, k_, xmax_] : =Table [Random [Real , 
{xmax,mainfun3 [a, r, d, w, k] (max] [ [1] ] ) ] 
• {3)] //M 

plcommencer....gives an interval of x-co-ordinates of dots 
from which our SIS can be generated. It chooses three (this 
is arbitrary 	depends on scale and dot-size) pseudorandom 
real numbers between the x-co-ordinate of one dot and the 
x-co-ordinate of its matching dot to the right for the 
surrounding plane. 
The random number generator is seeded with the integer n so 
that it is possible to obtain the same sequence of numbers 
in a repeat run of the program. The given dot is included in 
the initial interval here. 
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plcommencer [a_, r_, 	n_] (d_, w_, k_] : = 
( SeedRandom[n+Ceiling [5*k] ] ;plintvalr [a, r, d, w, k,xmin] 
/ /N; 

Join( {xmin} , plintvalr [a, r, d, w, k,xmin] ] ) 
plcommencel....gives an interval of x-co-ordinates of dots 
from which our SIS can be generated. It chooses three (this 
is arbitrary. ..depends on scale and dot-size) pseudorandom 
real numbers between the x-co-ordinate of one dot and the 
x-co-ordinate of its matching dot to the left for the 
surrounding plane. 
The random number generator is seeded with the integer n so 
that it is possible to obtain the same sequence of numbers 
in a repeat run of the program. The given dot is included in 
the initial interval here. 

plcommencel [a_, r_,xmax_, n_] [d_,w_, k_] := 
(SeedRandom[n+Ceiling [5*k] ] ;plintvall [a, r, d, w, k, xmax] 
/ /N; 

Join [ ("max} , plintvall [a, r, d,w, k, "max] ] ) 
pldotsr 	maps the x co-ord of a given dot from left to right 
across the row of the SIS by repeatedly applying mainfun4 (for 
the plane on the right) until it exceeds a given maximum 
x-value. 

pldotsr [a_, r_, d_,w_,k_,maxx_] (x_] := Module [ (q=x, elephant= (x) ) 
While [ (q=mainfun4 [a, r, d, w, k] Eq] E El] ] ) <=maxx, 
AppendTo[elephant,q]];elephant ] 

pldotsl 	maps the x co-ord of a given dot from right to 
left across the row of the SIS by repeatedly applying mainfun3 
(for the plane on the left) until it is smaller than a given 
minimum x-value. 

pldotsl [a_, r_, 	 (x_] := Module [ (q=x, elephant= {x} } , 
While [ (q=mainfun3 [a, r, d, w, k] Eq3 E 	] ) >=minx, 
AppendTo[elephant,q]];elephant ] 

plptsr 	maps the function pldotsr onto the initial interval, 
plcommencer, to give a set of x-co-ords of a row of dots for the 
surrounding plane on the right. The appropriate z-co-ordinate 
is appended to give a set of points in the x-z plane. 

plpt sr [a_, r_,xmin_, n_, d_,w_,maxx_] (k_] := (spots=Flatten 
Map [pldotsr [a, r, d,w, k, maxx] , plcommencer [a, r,xmin,n] [6:1, k] ] 11 ; 

Map (Append(*, &, Partition [spots, 1] ) ; 
plptsl 	maps the function pldotsl onto the initial interval, 
plcommencel, to give a set of x-co-ords of a row of dots for the 
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surrounding plane on the left. The appropriate z-co-ordinate 
is appended to give a set of points in the x-z plane. 

plptsl [a_, 	 [k_] :=(splots=Flatten[ 
Map [pldotsl [a, r, d,w, k, minx] , plcommencel [a, r,xmax,n] [d,w,k] ] 1] ; 

Map [Append [#, k] &, Partition [splots, 1] ] ) ; 

stereog 	 calculates the set of points for each row of the 
SIS and then plots them with the options specified. 
Consideration must be given to the dot size, the difference 
in the z-co-ordinate of each row, the colours required.e.g.Do 
we need or want a different colour for each row? Why? 
What size do we want the SIS to be? 
Must it fit on an A4 page? etc.Can we change the shape of the 
dots ? 
Since the program is calculating rows from both the right 
and the left, the minimum z-values are adjusted for each 
section of the SIS so that the rows do not completely 
overlap. The advantage of calculating in both directions 
is our ability to start each iteration with a dot that is 
definitely on the visible boundary of the sphere. The last dot 
in each row is close to,but not on, the boundary. 

o Note:The step size must be such that the z-co-ordinate is 
never 0 since z sometimes appears on the denominator 

stereog [a_, r_,minx_,maxx_, n_, d_,w_, steps_] := 
ListPlot [Join [Flatten [Table [plptsr [a, r,minx,n,d,w, 
maxx] (k], 
(k,minx, zmin [a, d, r] -0 . 02, steps)] , 1] , 
Flatten [Table [plptsr [a, r, minx, n, d,w,maxx] (k], 
(k, zmax [a, d, r] +0 .02 ,maxx, steps)] , 1] , 
Flatten [Table [ptsr [a, r, firstdotr [a, r,d,w,k] [ [1] , n, d, w, 
mina , maxx] [k] , 

(k, zmin [a, d, r] +0 . 1, zmax [a, d, r] -0 .1, steps)] , 1] , 
Flatten [Table [plptsl [a, r, maxx, n, d, w, minx] [k] 
(k,minx+0 .05, zmin[a,d,r] -0 . 02, steps)] , 1] , 
Flatten [Table [plptsl [a, r, maxx, n, d,w, minx] (k], 
(k, zmax [a, d, r] +0 . 05 ,maloc, steps)] , 1] , 
Flatten [Table [ptsl [a, r, lastdot [a, r, d, w, k] [ [1] ] ,n,d,w, 
minx, maxx] (k], 

(k, zmin [a,d, r] +0 .07, zmax[a,d,r] -0 . 07, steps)] , 1 
Prolog->AbsolutePointSize [2] , 
Plot Style->RGSColor [0, 0, 0 .9] , 
Axes->False,PlotRange->( (minx, maxx) , (minx, maxx) , 
AspectRatio->Automatic] 
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a Note:The edit style must be appropriate to the size of the 
SIS so that it is exactly to scale (in cm).This is because 
the program is written using the set eye-spacing of the viewer 
(approx. 5.75cm).Any shrinkage or enlargement causes distortion 
of the perceived picture. 

stereog(35,3,-4,4,143,30,2875/1000,2/10] 

247 



Appendix F 

Program for creating 
Single-Image Stereogram of 
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ViewPt gives the co-ordinates of the midpoint of the line segment joining the nodal points of the 
viewer's eyes. In this case it is at the origin of our co-ordinate system. It is used to find the 
nearest vertices to the viewer. 

ViewPt:=(0,0,0); 

rh and uh define rotation matrices using homogeneous co-ordinates as detailed in Appendix A. 
In this case rh is the composition of a rotation by ang3, firstly about the z-axis, and then about 
the y-axis. uh is the composition of a rotation by ang2 about the x-axis and then by an angle of 
angl about the y-axis. 

rh[ang3_]:={{Cos[ang3], 
(0,0,1,0),(0,0,0,1)). 
({Cos[ang3],0,Sin[ang3] 
,(0,0,0,1)) 

uh[ang2_,angl_] :=( (1,0, 
(0, -Sin [ang2] , Cos [ang2] 
((Cog [angl] , 0, Sin [angl] 
(0,0,0,1)) 

Sin [ang3] , 0,0), (-Sin [ang3] ,Cos [ang3] , 0,0), 

,0),(0,1,0,0),(-Sin[ang3],0,Cos[ang3],0) 

0,0), (0,Cos [ang2] , Sin [ang2] , 
,0), (0,0,0,1)). 
, 0), (0,1,0,0), (-Sin[angl],0,Cos[angl],0), 

scale is a scaling matrix for scaling by a factor of Si in the i -direction. 

scale [Sx_, Sy_, Sz_] :={{Sx, 0,0,0), (0, Sy, 0,0), (0,0,Sz, 0), (0,0,0,1)) 

transl is a translation matrix for translating by Tj units in the j -direction. 

transl[Tx_,Ty_,Tz_] :={(1,0,0,0), (0,1,0,0), (0,0,1,0), (Tx,Ty,Tz,1)) 

netransf is the net transformation matrix. 

netransf [ Sx_, Sy_, Sz_, 	TY_, Tz_, ang1_, ang2_, ang3 := 
Map [Drop [#, -1] &, rh [ang3] .uh[ang2,angl] . scale [Sx, Sy, Sz] . 
transl [Tx, Ty, Tz] ] 

corners2 and corners give the co-ordinates of the vertices, once the cube has been rotated and 
translated in the required manner. 
The order of these vertices is important. 

corners2 [ Sx_, Sy_, Sz_, Tx_, Ty_, Tz_, ang1_, ang2_, ang3_, dim_] := 
Flatten [Table [ ( ( -dim, j , -dim, 1) . 
netransf [Sx, Sy, Sz, Tx, Ty, Tz, angl, ang2, ang3 ] , 
(-dim, j , dim, 1 ) .netransf [ Sx, Sy, Sz , Tx, Ty, Tz , angl, ang2,ang3] , 
(dim, j , dim, 1) .netransf [Sx, Sy, Sz , Tx, Ty, Tz, angl, ang2, ang3] , 
(dim, j, -dim, 1 ) .netransf [Sx, Sy, Sz, Tx, Ty, Tz, angl, ang2, ang3] ) , 
(j, -dim, dim, 2*dim) ] //N, 1] ; 

corners=corners2[1,1,1,0,40,0,Pi/12,Pi/6,Pi/4,3.5] 

corns pairs the co -ordinates of each vertex with the co-ordinates of the viewpoint. 

corns=Map[Prepend[#,ViewPt]&, 
Partition[corners,1]] 
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distance gives the distance between two points with given co-ordinates. 

distance [List [v_,x_]] :=Sqrt [ (v[ [3]1 -x[ [311 ) "2+ (v[ [21 -x[ [2] ] ) 4 2+ 
(v[ [1] -x[ [1]] ) 4 23 

dists gives the list of distances of each vertex from the viewpoint and again a definite order is 
maintained. 

dists=Map[distance,corns] 

closestvert gives the number of the closest vertex. In some examples there maybe more than 
one closest vertex. closestvert chooses the first in the list of possibilities. 

closestvert=Flatten[Position[dists,Min[distsi],l][[1]] 

If x_ denotes the vertex number according to our specific ordering then adjacentvertices gives 
the numbers of the vertices which have an edge in common with x. 

adjacentvertices[x_]:=If[x==1,{2,4,5},If[x==2,(1,3,6), 
If[x==3,(2,4,7),If[x==4,(1,3,8),If[x==5,(1,6,8),If[x==6, 
(2,5,7),If [x==7, {3,6,8}, (4,5,7)3M ]]] 

dotproduct gives the dot product of two vectors and dps gives the list of dotproducts of the 
vectors from the viewpoint to the closest vertex and from the closest vertex to its adjacent 
vertices. 

dotproduct[x_]:= 
(corners[Ex33-corners[[closestvert]]). 
(ViewPt-corners[[closestvert]]) 

dps=Map[dotproduct,adjacentvertices[closestvert]] 

The number of visible faces is given by the number of dot 
products less than 0 (given by neg). This uses one of our results see 	 

neg=Select[Map[dotproduct,adjacentvertices[closestvertn,#<0&] 

position gives the position in the list of adjacent vertices, of the vertices which give a negative 
dotproduct. e.g. position 1 does not necessarily mean vertex 1. 

position=Flatten [Union [Map [Position [dps, it] &, neg] , 2 ] 

nvisiblefaces gives the number of visible faces by giving the number of negative dot products. 

nvisiblefaces= 
Length[Select[ 
Map[dotproduct,adjacentvertices[closestverti],#<0&]] 

visiblefaces gives the lists of the vertices co-ordinates for each of the visible faces. There are 
many cases to consider however, we have shown that the maximum possible number of visible 
faces is three (3). 

visiblefaces=If[closestvert==2&&nvisiblefaces==3, 
((corners[[2]],corners[[33],corners[[7]],corners[[6]]), 
(corners[[1]],corners[[2]],corners[[6]],corners((51]), 
{corners [ El] ] , corners ( (2] , corners [ [3] corners I [413 
If[closestvert==2&&nvisiblefaces==2&&position==(1,2), 
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{{coruers[(2]],corners[[3]],corners[[7]],corners([6]]}, 
(corners[[2]],corners([6]],corners[D]],corners[(1]])}, 
If[closestvert==2&&nvisiblefaces==2&&position==(1,3), 
((corners([2]],corners([3]],corners([7]],corners([6]]), 
(corners([1]],corners[[2]],corners([3]],corners[[4]])}, 
If[closestvert==2&&nvisiblefaces==2&&position==(2,3), 
((corners([1]],corners([2]],corners[N]hcorners([5]]), 
(corners([1]],corners[(21],corners[[3]],corners[[4]]}), 
If[closestvert==2&&nvisiblefaces==1&&position==(1), 
((corners([2]],corners([3]],corners([7]],corners[[6]])}, 
If[closestvert==2&&nvisiblefaces==1&&position==(2), 
((corners[M],corners([2]],corners([6]],corners([5]]}), 
If[closestvert==2&&nvisiblefaces==1&&position=={3}, 
((corners([1]],corners[(21],corners[[3]],corners[[4]])), 
If[closestvert==1&&nvisiblefaces==3, 
((corners[M],corners([4]],corners([8]],corners[[5]]}, 
(corners([1]],corners[[2]],corners([6]],corners[[5]]), 
(corners([1]],corners[[2]],corners([3]],corners([4]])}, 
If[closestvert==1&&nvisiblefaces==2&&position==(1,2), 
((corners([1]],corners[[4]],corners([8]],corners([5]]), 
(corners([2]],corners[[6]],corners([5]],corners([1]])), 
If[closestvert==1&&nvisiblefaces==2&&position=={1,3), 
((corners[M],corners([4]],corners[N]] ,corners([5]]), 
(corners([1]],corners([2]],corners([3]],corners([4]])), 
If[c1osestvert==1&&nvisib1efaces==2&&position=={2,3), 
{{corners[M],corners[[2]],corners([6]],corners([5]]}, 
(corners[M],corners([2]],corners[[3]] ,corners[[4]]}}, 
If[c1osestvert==1&&nvisib1efaces==1&&position=={1}, 
((corners[[1]],corners[[4]],corners([8]],corners[[5]]}}, 
If[closestvert==1&&nvisiblefaces==1&&position=={2}, 
((corners([1]],corners[[2]],corners([6]],corners([5]]}}, 
If[closestvert==1&&nvisiblefaces==1&&position=={3}, 
((corners([1]],corners([2]],corners([3]],corners[[4]]}}, 
If[closestvert==3&&nvisiblefaces==3, 
((corners[[3]],corners[P]],corners[(8]],corners([4]]), 
(corners[P]] ,corners[D]] ,corners([7]],corners[[6]]}, 
(corners([1]],corners([2]],corners([3]],corners[[4]])), 
If[c].osestvert==3&&nvisiblefaces==2&&position==(1,2), 
((corners([3]],corners([7]],corners[[8]] ,corners([4]]), 
(corners([2]],corners([3]],corners[[7]],corners([6]])}, 
If[closestvert==3&&nvisiblefaces==2&&position==(1,3), 
((corners[[3]],corners([7]],corners([8]],corners([4]]), 
(corners([1]],corners[[2]],corners([3]],corners([4]])), 
If[closestvert==3&&nvisiblefaces==2&&position==(2,3), 
{{corners[[2]],corners([3]],corners[(7]],corners([6]]), 
(corners([1]],corners[[2]],corners([3]],corners[[4]])), 
If[closestvert==3&&nvisiblefaces==1&&position==(1), 
((corners([3]],corners([7]],corners([8]],corners[[4]])), 
If[closestvert==3&&nvisiblefaces==1&&position=={2}, 
((corners([2]],corners([3]],corners([7]],corners([6]])), 
If[closestvert==3&&nvisiblefaces==1&&position=={3}, 
((corners([1]],corners[[2]],corners([3]],corners([4]]}), 
If[closestvert==4&&nvisiblefaces==3, 
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{{corners[[3]],corners[[7]],corners([8]],corners([4]]), 
(corners([1]],corners([4]],corners([8]],corners[[5]]}, 
(corners([1]],corners([2]],corners([3]],corners[(4]])), 
If[closestvert==4&&nvisiblefaces==2&&position==(1,2), 
((corners([3]],corners([7]],corners[[8]],corners([4]]), 
(corners([1]],corners[[4]],corners([8]],corners([5]]}), 
If[closestvert==4&&nvisiblefaces==2&&position=={1,3), 
((corners([3]],corners[[7]],corners([8]],corners([4]]), 
(corners([1]],corners([2]],corners([3]],corners([4]])}, 
If[c].osestvert==4&&nvisiblefaces==2&&position==(2,3), 
((corners[M],corners[(4]],corners[[8]],corners[(5n), 
(corners[M],corners([2]],corners([3]],corners[[4]])), 
If[closestvert==4&&nvisiblefaces==1&&position==(1), 
((corners([3]],corners([7]],corners[[8]],corners[(4]]}), 
If[closestvert==4&&nvisiblefaces==1&&position==(2), 
((corners([1]],corners([4]],corners[[8]],corners[(5]])}, 
If[closestvert==4&&nvisiblefaces==1&&position=={3}, 
((corners([1]],corners[[2]],corners([3]],corners([4]]}), 
If[closestvert==5&&nvisiblefaces==3, 
((corners([5]],corners[[8]],corners[[7]],corners[(6M, 
(corners[M],corners[[2]],corners([6]],corners[PM, 
(corners([1]],corners([5]],corners[[8]],corners([4]1)), 
If[closestvert==5&&nvisiblefaces==2&&position==(1,2), 
((corners[[5]],corners[[8]],corners([7]],corners([6]]), 
(corners[M],corners[[2]],corners([6]],corners([5]]}}, 
If[c].osestvert==5&&nvisiblefaces==2&&position==(1,3), 
{{corners[(51],corners[[8]],corners[[7]],corners([6]]}, 
(corners([1]],corners([5]],corners([8]],corners[[4]])), 
If[closestvert==5&&nvisiblefaces==2&&position==(2,3), 
((corners([1]],corners[P]] ,corners([6]],corners([5]]), 
(corners([1]],corners[[5]],corners([8]],corners[[4]])}, 
If[closestvert==5&&nvisiblefaces==1&&position=={1}, 
{{corners[[5]],corners[(8]],corners([7]],corners([6]])), 
If[closestvert==5&&nvisiblefaces==1&&position==(2), 
((corners[M],corners([2]],corners([6]],corners[[5]])}, 
If[closestvert==5&&nvisiblefaces==1&&position==(3), 
{{corners[M],corners[[5]],corners[[8]],corners[(4]]}), 
If[closestvert==6&&nvisib].efaces==3, 
((corners([6]],corners[[7]],corners[[8]],corners([5]]), 
(corners[[6]],corners([7]licorners([3]],corners([2]]), 
(corners([2]],corners([6]],corners([5]],corners[(1]]}), 
If[closestvert==6&&nvisiblefaces==2&&position==(1,2), 
((corners[[6]],corners[M],corners([8]],corners[(51]), 
(corners([6]],corners([7]],corners([3]],corners([2]])), 
If[closestvert==6&&nvisiblefaces==2&&position==(1,3), 
((corners([6]],corners[[7]],corners[[8]],corners([5]]), 
(corners([2]],corners([6]],corners([5]],corriers[[1]])), 
If[c1osestvert==6&&nvisib1efaces==2&&position==(2,3), 
((corners[[6]],corners([7]],corners([3]],corners([2]]), 
(corners[[2]],corners[[6]],corners([5]],corners([1]])}, 
If[closestvert==6&&nvisiblefaces==1&&position=={1}, 
((corners([6]],corners([7]],corners([8]],corners([5]])}, 
If[c1osestvert==6&&nvisib1efaces==1&seposition==.42}, 
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{{corners[[6]],corners([7]],corners([3]],corners([2]]}}, 
If[closestvert==6&&nvisiblefaces==1&&position=={31, 
((corners([2]],corners[[6]],corners([5]],corners([1]]}), 
If[closestvert==7&&nvisiblefaces==3, 
{{corners[(6]],corners[[7]],corners[[8]],corners[[5]]}, 
(corners([2]],corners[[6]],corners([7]],corners([3]]), 
(corners([3]],corners([7]],corners([8]],corners[[4]])), 
If[closestvert==7&&nvisiblefaces==2&&position==(1,2), 
{{corners[[6]],corners([7]],corners([8]],corners[[5]]), 
(corners[[2]],corners([6]],corners[[7]],corners([3]])), 
If[closestvert==7&&nvisiblefaces==2&&position==(1,3), 
((corners([6]],corners([7]],corners([8]],corners([5]]), 
(corners([3]],corners([7]],corners([8]],corners([4]])), 
If[closestvert==7&&nvisiblefaces==2&&position==(2,3), 
((corners([2]],corners([6]],corners[[7]],corners[(373), 
(corners[(3]],corners[[7]],corners([8]],corners([43])), 
If[closestvert==7&&nvisiblefaces==1&&position==(1), 
{{corners[[6]],corners[[7]],corners[M],corners[(5]])), 
If[closestvert==7&&nvisiblefaces==1&&position==(2), 
((corners([2]],corners([6]],corners([7]],corners([3]])), 
If[c].osestvert==7&&nvisiblefaces==1&&position=={3}, 
{{corners[[3]],corners([7]],corners[[8]],corners([4]])), 
If[closestvert==8&&nvisiblefaces==3, 
((corners([5]],corners([6]],corners[[7]],corners([8]]), 
(corners[[3]],corners([7]],corners([8]],corners([4]]), 
(corners([1]],corners[[5]],corners[[8]],corners[(4]]}), 
If[closestvert==8&&nvisiblefaces==2&&position==(1,2), 
((corners([5]],corners([6]],corners([7]],corners([8]]), 
(corners([3]],corners([7]],corners([8]],corners([4]])), 
If[c].osestvert==8&&nvisiblefaces==2&&position==(1,3), 
{{corners[[5]],corners[(6]],corners([7]],corners([8]]), 
(corners[M],corners([5]],corners([8]],corners([4]]}), 
If[closestvert==8&&nvisiblefaces==2&&position==(2,3), 
((corners([3]],corners[[7]],corners([8]],corners[[4]]), 
(corners[M],corners[[5]],corners[[8]],corners[[4]]}), 
If[closestvert==8&&nvisiblefaces==1&&position==(1), 
{{corners[[5]],corners([6]],corners([7]],corners([8]])}, 
If[closestvert==8&&nvisiblefaces==1&&position==(2), 
((corners([3]],corners[[7]],corners([8]],corners[[4]])), 
If[closestvert==8&&nvisiblefaces==1&&position==(3), 
{{corners[M],corners[[5]],corners([8]],corners([4]])) 

d is the y-co-ordinate of the stereogram i.e.it represents the distance of the viewer from the 
stereogram in cm. 

d=30; 

zmin and zmax are the minimum and maximum z-co-ordinates on the SIS (top and bottom 
rows) which enable us to see the face of the cube with vertices a,b,c,g. i.e. a represents a list of 
three co-ordinates. 
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zmin[a_,b_,c_,g_]:=Min[d*a([3]]/a([21],d*g[(31]/g([2]], 

zmax[a_,b_,c_,g_]:=Max[d*a[[3]]/a([2]],d*g[[3]]/g([2]], 
d*b[[3]]/b([2]],d*c[[3]]/c([2]]]; 

bdry gives a parametric representation of the line containing the edge joining vertices e and f. 
intpt gives the three co-ordinates of a point on this same line for any value of the parameter t. 
parameter gives the value of the parameter, t, for which the plane through our eyes and the row 
of dots at a height k intersects the edge between vertices e and f. 

z==e[[3]]+(f[[3]] -e[[3]])*t); 
intpt(e_,f_,t_]:=Ce[[1]]+(fU1ll -e[(1]])*t, 

e[[2]]+(f[[2]]-e[[2]])*t, 
e([3]]+(f([31] -8([3]]) *t); 

parameter[k_,e_,f_,t_]:=Solve[Join[(-(k y)/d+z==0), 
Rest[bdry[e,f,t]]],t,(y,z)]; 

parai assigns to t the value obtained for the intersection point in parameter. i varies from 1 to 4 to 
distinguish between the different parameter values for each edge of the face. 

paral[k_,a_,b_]:=t/.Flatten[parameter[k,a,b,t],1]; 
para2(k_,b_,c_]:=t/.Flatten[parameter[k,b,c,t],1]; 
para3(k_,c_,g_]:=t/.Flatten[parameter[k,c,g,t],1]; 
para4(k_,g_,a_]:=t/.Flatten[parameter[k,g,a,t],1]; 

linei takes the intersection points on the boundaries of the face (usually two for each value of k, 
but for the special case of a vertex could be one only or in the case where the face edge is parallel 
to the line through the viewer's eyes there could be an infinite number; these extreme cases are 
unusual and can be eliminated by choosing the step-size so that their exact values of k are 
avoided) and rotates them clock-wise onto the x-y plane. The equation of the line joining them is 
then found after they have been reduced to points with two co-ordinates. 
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linei[List[a_,b_,c_,g_]][k_]:=( 
paral[k,a,b]; 
para2M,b,c]; 
para3[k,c,g]; 
para4[k,g,a]; 
If[paral[k,a,b]===t, 
il=0,If[0<=paral[k,a,b]&&paral[k,a,b]<=1, 
il=intpt[a,b,paral[k,a,b]],i1={}]]; 
If[para2M,b,c]===t, 
i2={},If[0<=para2M,b,c]&&para2M,b,c]<=1, 
i2=intpt[b,c,para2M,b,c]],i2={)]]; 
If[para3(k,c,g]===t, 
i3=0,If[0<=para3(k,c,g]&&para3(k,c,g]<=1, 
i3=intpt[c,g,paral[k,c,g]],i3=0]]; 
If[paraCk,g,a]===t, 
i4=0,If[0<=para4(k,g,a]&&para4(k,g,a]<=1, 
i4=intpt[g,a,para4(k,g,a]],i4={}]]; 
bdryintersections:=0.1,i2,i3,i4}; 
xypts:=Select[bdryintersections,#:=0&]; 
rotn:=C(1,0,0),(0,Cos[ArcTan[N[k/d]]], 
-Sin[ArcTan[N[k/d]]]), 
(0,Sin[ArcTan[N[k/d]]],Cos[ArcTan[N[k/d]]]}}; 
newplanepts:=xypts.rotn; 
points:=Map[Delete[#,3]&,newplanepts]; 
If[Min[points[[1,1]],points[[2,1]]]==points[[1,1]], 
start:=points[[1]],start:=points[[2]]]; 
If[start==points[[1]],finish:=points[[2]], 
finish:=points[[1]]]; 
(finish[[2]]-start[[2]])/(finish[[1]]-start[[1]])( 
x-start[[1]])+start[[2]]) 

st gives the left-hand endpoint of the rotated line and fin gives the right-hand endpoint. 

st[List[a_,b_,c_,g_]][k_]:=(linei[List[a,b,c,g]][k];start) 

fin[List[a_,b_,c_,g_l][k_]:=(linei[List[a,b,c,g]][k];finish) 

firstdot gives the dot on the RDS which corresponds to st and similarly, lastdot gives the dot 
that corresponds to fin. Note: the right eye would use firstdot to see either an adjoining face or 
the background plane and the left eye would use the lastdot similarly. 

firstdot[d_,w_,k_][List[a_,b_,c_,g_]]:= 
x/.Solve[(st[List[a,b,c,g]][k][[2]]/(st[List[a,b,c,g]][k][[1]]+w)) 
(x+w)-(k 4 2+dA2)"(1/2)==0,x] 

x/ . Solve ( fin [List (a,b,c,g] ] [k] [ [2] ] / ( fin [List [a,b,c,g] ] [k] [ [1] ] -w) ) 
(x-w) - (kA2+d^2) (1/ 2 ) ==0, x] 	' 

mainfun takes a point for the right eye and maps it onto the next dot for the right eye as we 
construct the stereogram for the cube from left to right. 
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mainfun[d_,w_,k_][List[a_,b_,c_,g_]][Intr_]:= 
(pt=x/.Solve[((kA2+dA2)A(1/2)/(Intr+w))*(x+w) 
-linei[List[a,b,c,g]][k]==0,x]; 
linept={pt,((kA2+dA2)A(1/2)/(Intr+w))*(pt+w)); 
x/.Solve[(linept[[2]]/(linept[[1]]-w))(x-w)- 
(kA2+dA2) A (1/2)==0,x] //N) ; 

mainfun2 takes a point for the left eye and maps it onto the next dot to the left to enable us to see 
a background plane, in particular y=48 in this case. 

mainfun2(d_,w_,k_][List[a_,b_,c_,g_]][Intr_]:= 
(Pt=1{x,Y}/.So1ve[(y==Sqrt[41A2+(k+(41-d)ArcTan[k/d])A2], 
y==(Sqrt[kA2+dA2]/(Intr-w))*x-(Sqrt[kA2+dA2]/ 
(Intr-w))*w),(x,y)]; 
x/.Solve[(pt[[1,2]]/(pt[[1,1]]+w))(x+w)- (kA2+dA2 ) A (1/2 ) ==0,x] //N) 

mainfun3 takes a point for the right eye and maps it onto the next dot to the right to enable us to 
see a background plane, in particular y=48 in this case. 

mainfun3(d_,w_,k_][List[a_,b_,c_,g_]][Intr_]:= 
(Pt={x,Y}/.Solve[(y==Sqrt[41A2+(k+(41-d)ArcTan[k/d])A2], 
y==(Sqrt[kA2+dA2]/(Intr+w))*x+(Sqrt[kA2+dA2]/ 
(Intr+w))*w),(x,y)]; 
x/.Solve[(pt[[1,2]]/(pt[[1,1]]-w))(x-w)-(kA2+dA2)A(1/2)==0,x]//N) 

dots maps the x co-ordinate of a given dot from left to right across a row of the RDS by 
repeatedly applying mainfun until it exceeds the lastdot for the face under consideration at the 
time. 

dots[d_,w ,k_][List[a_,b_,c_,g_]][x_]:= Module[(q=x,elephant={x}, 
rabbit=lastdot[d,w,k][List[a,b,c,g]][[1]]), 
While[(q=(mainfun[d,w,k][List[a,b,c,g]][q])[[1]])<=rabbit, 
AppendTo[elephant,q]];elephant ] 

dots2 maps the x co-ordinate of a given dot from right to left across the row by repeatedly 
applying mainfun2 until its value is smaller than a given value .( in this case -10) 

dots2 [d_,w_,k_] [List [a_,b_, c_, g_] Ex_l := Module [ {q=x, croc={x} 
While [ (q= (mainfun2 [d,w,k] [List [a,b,c,g] [q] E Ell ) >= -10, 
AppendTo[croc,q]];croc ] 

dots3 maps the x co-ordinate of a given dot from left to right across the row by repeatedly 
applying mainfun3 until its value exceeds a given value .( in this case 10) 

dots3(d_,w_,k_][List[a_,b_,c_,g_]][x_]:= Module[(q=x,giraffe=(x)), 
Whiler(q=(mainfun3(d,w,k][List[a,b,c,g]][q])[[1]])<=10, 
AppendTo[giraffe,q]];giraffe ] 

plintvalr gives 7 (arbitrary... depends on scale and dot-size) random real numbers between the x 
co-ordinate of one dot and the x-co-ord. of its matching dot to the right for the surrounding plane. 

plintvalr[d_,w_,k_][List[a_,b_,c_,g_]][xmin_]:=Table[Random[Real, 
(xmin,mainfun3N,w,k][List(a,b,c,g]][xmin][(1]])],(7)1//N 

plcommencer gives an interval of x co-ordinates for dots by choosing seven pseudorandom real 
numbers between the x co-ordinate of one dot and the x-co-ordinate of its matching dot to the 

256 



96autocube explainedth 	 9 

right in this case for the surrounding plane. The random number generator is seeded with the 
integer n so that it is possible to obtain the same sequence of numbers in a repeat run of the 
program. The given dot is included in the interval here. 

plcommencer [d_,w_,k_,n_] [List [a_,b_, c_, g_] ] (min_] := 
(SeedRandom[n+Ceiling [5*k] ] ; 
plintvalr [d,w,k] [List [a, b, c, g] ] [xmin] / /N; 
Join [ {xmin} , plintvalr [d,w,k] [List [a, b, c,g] ] Daain] ] ) 

pldotsr maps the x co-ordinate of a given dot from left to right across the row of the RDS by 
repeatedly applying mainfun3 until it exceeds a given maximum. 

pldotsr [d_,w_,k_] [List [a_, b_, c_, g_] ] [x_] : =Module [(q=x, flea= {x) ) , 
While [ (q= (mainfun3 [d,w,k] [List [a, b, c, g] ] [q] ) [ [1] ] )<=10, 
AppendTo [f lea, q] ; flea] 

plptsr maps the function pldotsr onto the initial interval, plcommencer, to give a set of 
x-co-ordinates of a row of dots for the background plane. The appropriate z-co-ord. is appended 
to give a set of points in the x-z plane. 

plptsr [d_, w_, k_, n_] [List [a_,b_, c_, g_] ] := ( splots=Flatten[ 
Map [pldotsr [d, w, k] [List [a, b, c, g] ] , 
plcommencer [d,w, k,n] [List [a, b, c, g] ] (-10] ] , 1] ; 
Map [Append [#, k] Partition [ splots, 1] ) ; 

Note:before this we must find the suitable k values using 
zmin and zmax 

ju and ku give the minimum and maximum z values on the RDS (i.e. values of k) respectively 
for each visible face of the cube. 

ju=Flatten [Map [Apply [ zrain, &,visiblefaces] , 1] 

ku=Flatten [Map [Apply [ zmax, #] &,visiblefaces] , 1] 

To construct a row of dots for the cube consideration had to be given to the problem of working 
out for each k, which of the visible faces required dots at that level and in what order. It is 
possible to have rows of dots which traverse no faces, one face, two faces or three faces even 
when three faces are visible. cuberowdots solves this problem to give a row of x-co-ordinates 
of dots which start with the far left of the cube and move across the cube to the right and onto the 
background plane. The background plane to the left is considered separately and is joined 
later.(Although some thought must be given to amending this to avoid central band with 
monocular clues.) 
To understand how cuberowdots works we will consider one case. 
Suppose that there are three visible faces and that k lies between the minimum and maximum 
z-values for two of the visible faces, say 1 and 3. This means that this row of dots only crosses 
two of the faces. If we start at the left hand side of the cube then we need to find which of these 
two faces is furtherest to the left. This is done by comparing the firstdot for visible faces 1 and 
3. Firstdot gives an x-co-ord. and so the minimum one is found to tell us which face we consider 
first. It is then just a matter of starting with dots[visible face which is far left] and 
proceeding until the next face is met ( the stopping rule in dots ensures that we stop at the correct 
place). The last dot for the first face is then mapped onto successive dots for the second face 
using dots[ face which is furtherest right for this row]. When the edge of this face is 
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met, the last dot is mapped across to the right to enable us to see the background plane. i.e. 
dots3 is employed. 
cuberowdots considers all the possible cases which can be explained analogously. 

cuberowdots[d_,w_,k_,n_][x_]:= 
If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]]&&ju[[2]]<=k<=ku[[ 2 ]]&& 
ju[[3]]<=k<=ku([31], 
(fd=Flatten[Map[firstdot[d,2.875,k],visiblefaces],1]; 
vf1=Flatten[Position[fd,Min[fd]],1][I1l]; 
sd=Drop[fd,(vfl,vf1)]; 
vf2=Flatten[Position[fd,Min[sd]],1][[1]]; 
vf3=Flatten[Position[fd,Max[fd]],11([1]]; 
Join[fl=dots[d,w,k][visiblefacesilvfl]]][x], 

f2=dots[d,w,k][visiblefaces[[vf2]]][Take[fl, - 1][( 1M, 
f3=dots[d,w,k][visiblefaces[[vf3]]][Take[f2, -1][[1]]], 
dots3[d,w,k][visiblefaces[[vf3]]][Take[f3, -1][[1]]], 
Flatten[Map[dots2(d,w,k][visiblefaces[(vf1]]], 

commence[d,w,k,n][visiblefaces[[vfl]]]],1]]), 

If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]]&&ju[[2]]<=k<=ku[[ 2 ]], 
(fd=Flatten[Map[firstdot[d,2.875,k], 
Drop[visiblefaces,(3,3)]],1]; 
vf1=Flatten[Position[fd,Min[fd]],1][[1]]; 
vf2=Flatten[Position[fd,Max[fd]],l][[1]]; 
Join[fl=dots[d,w,k][Drop[visiblefaces,(3,3)][[vf1]]][x], 
f2=dots[d,w,k][Drop[visiblefaces,(3,3)][[vf2]]][Take[fl, -1][[ 1 ]]], 
dots3[d,w,k][visiblefaces[[vf2]]][Take[f2,-1][[1]]], 
Flatten[Map[dots2[d,w,k][visiblefaces[[vfl]]], 
commence[d,w,k,n][visiblefaces[[vfl]]]],1]]), 

If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]]Eadu[D]l<=k<=ku[M] ,  
(fd=Flatten[Map[firstdot[d,2.875,k], 
Drop[visiblefaces,(2,2)]],1]; 
vf1=Flatten[Position[fd,Min[fd]],l][[1]]; 
vf2=Flatten[Position[fd,Max[fd]],1][[1]]; 
vf3=Flatten[Position[Flatten[Map[firstdot[d,2.8 7 5,k], 
visiblefaces],1],Min[fd]],l][[1]]; 
Join[fl=dots[d,w,k][Drop[visiblefaces,(2,2)][[vf1]]][x], 
f2=dots[d,w,k][Drop[visiblefaces,(2,2)][[vf2]]][Take[f1 , -1 ][[ 1 ]]] ,  
dots3(d,w,k][visiblefaces[[vf2]]][Take[f2, - 1][[1]]], 
Flatten[Map[dots2(d,w,k][visiblefacesUvf3M, 
commence [d,w, k,n] [visiblefaces [ [vf3] ] 	1] ] 

If[nvisiblefaces==3&&ju[[2]]<=k<=ku[[2]]&&juI[3]]<=k<=ku[[ 3 ]], 
( fd=Flatten[Map[firstdot[d,2.875,k], 
Drop[visiblefaces,(1,1)]],1]; 
vf1=Flatten[Position[fd,Min[fd]],1]([1]]; 
vf2=Flatten[Position[fd,Max[fd]],1][[1]]; 
Join[fl=dots[d,w,k][Drop[visiblefaces,(1,1)Mvflil][4, 
f2= 
dots[d,w,k][Drop[visiblefaces,(1,1)Mvf2]]][Take[f1, -1][(111], 
dots3(d,w,k][visiblefaces[Evf2M(Take[f2,-1][[ 1]]], 
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Flatten[Map[dots2[d,w,k][visiblefaces[[vf1+1]]], 
commence[d,w,k,n][visiblefaces[(vf1+1]]]],1]]), 

If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]], 
Join[dots[d,w,k][visiblefaces[[1]]] [x], 
dots3[d,w,k][visiblefaces[[1]]][Take[dots[d,w,k] 
[visiblefaces[[1]]][x],-1][[1]]], 
Flatten[Map[dots2(d,w,k][visiblefaces[[1]]], 
commence[d,w,k,n][visiblefaces[[1]]]],1]], 

If[nvisiblefaces==3&&ju[[2]]<=k<=ku[[2]], 
Join[dots[d,w,k][visiblefaces[[2]]][x], 
dots3[d,w,k][visiblefaces[[2]]][Take[dots[d,w,k] 
Evisiblefaces[[2]]][x],-1][[1]]], 
Flatten[Map[dots2N,w,k][visiblefaces[[2]]], 
commence [d,w, k,n] [visiblefaces [ [2] ] ] ] , 1] ] , 

If[nvisib].efaces==3, 
Join[dots[d,w,k][visiblefaces[[3]]][x], 
dots3[d,w,k][visiblefaces[[3]]][Take[dots[d,w,k] 
[visiblefaces[[3]]][x],-1][[1]]], 
Flatten[Map[dots2[d,w,k][visiblefaces[[3]]], 
commence[d,w,k,n][visiblefaces[[3]]]],1]], 

If[nvisiblefaces==2&&ju[[1]]<=k<=ku[[1]]&&ju[[2]]<=k<=ku[[2]], 
(fd=Flatten[Map[firstdot[d,2.875,k], 
visiblefaces],1]; 
vf1=Flatten[Position[fd,Min[fd]],1][[1]]; 
vf2=Flatten[Position[fd,Max[fd]],1][[1]]; 
Join[fl=dots[d,w,k][visiblefaces[[vfl]]][x], 
f2=dots[d,w,k][visiblefaces[[vf2]]][Take[fl,-1][[1]]], 
dots3[d,w,k][visiblefaces[[vf2]]][Take[f2,-1][[1]]], 
Flatten[Map[dots2[d,w,k][visiblefaces[[vfl]]], 
commence[d,w,k,n][visiblefaces[[vf1]]]],1]]), 

If[nvisiblefaces==2&&ju[[1]]<=k<=ku[[1]], 
Join[dots[d,w,k][visiblefaces[[1]]][x], 
dots3[d,w,k][visiblefaces[[1]]][Take[dots[d,w,k] 
[visib].efaces[(111][4,-1]([1]]], 
Flatten[Map[dots2N,w,k][visiblefaces[[1]]], 
commence[d,w,k,n][visiblefaces[MML1n, 

If[nvisiblefaces==2&&ju[[2]]<=k<=ku[[2]], 
Join[dots[d,w,k][visiblefaces[[2]]][4, 
dots3[d,w,k][visiblefaces[[2]]][Take[dots[d,w,k] 
[visiblefaces[[2]]][4,-1][(1M, 
Flatten[Map[dots2N,w,k][visiblefaces[[2]]], 
commence [d,w, k,n] [visiblefaces [ [2] ] ] ] , 1] ] , 
Join[dots[d,w,k][visiblefaces[[1]]][x], 
dots3[d,w,k][visiblefaces[[1]]][Take[dots[d,w,k] 
[visiblefaces[[1]]][x],-1][[1]]], 
Flatten[Map[dots2[43,w,k][visiblefaces[[1]]], 
commenceld,w,k,n][visiblefaces[[1]]]],llnillillill 
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commence gives an interval of x co-ordinates for dots by choosing seven pseudorandom real 
numbers between the x co-ordinate of one dot and the x-co-ordinate of its matching dot to the 
right for the appropriate face of the cube. The random number generator is seeded with the integer 
n so that it is possible to obtain the same sequence of numbers in a repeat run of the program. The 
given dot is included in the interval here. 

commence[d_,w_,k_,n_][List[a_,b_,c_,g_]]:= 
( SeedRandom [n+Ceiling [5*k] ] ; intval : =Table [Random (Real, 

(firstdot[d,w,k][List[a,b,c,g]]([1]], 
mainfun[d,w,k][List[a,b,c,g]][firstdot[d,w,k] 
[List[a,b,c,g]]][[1]])], 
(7)]//N; 
Join[firstdot[d,w,k][List[a,b,c,g]],intval]) 

pts again considers many possible cases in order that the correct commence is chosen . i.e. we 
again need to know the correct face order for each row of dots i.e. for each k.Once the 
appropriate x-co-ordinates have been found they are appended by k (a z co-ord.) to give a set of 
points in the x-z plane. 

pts[d_,w_,n_][visiblefaces_][k_]:= 
(If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]]&&juE[2]]<=k<=ku[[2]]gadu[(3 
(fd=Flatten[Map[firstdot[d,2.875,k],visiblefaces],1]; 
vf1=Flatten[Position[fd,Min[fd]],l][[1]]; 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 
commence[d,w,k,n][visiblefaces[[vfl]]]],1]), 

If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]]&&ju[[2]]<=k<=ku[[2]], 
( fd=Flatten[Map[firstdot[d,2.875,k], 
Drop[visiblefaces,(3,3)]],1]; 
vf1=Flatten[Position[fd,Min[fd]],l][M]; 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 
commence[d,w,k,n][visiblefaces[Evfl]]]],1]), 
If[nvisiblefaces==3&&ju[[1]]<=k<=ku[Ell]gaciu[(37]<=k<=ku[[3]], 
( fd=Flatten[Map[firstdot[d,2.875,k], 
Drop[visiblefaces,(2,2)]],1]; 
vf1=Flatten[Position[Flatten[Map[firstdot[d,2.875,k],visiblefaces], 1 ] 
,Min[fd]],111[1]]; 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 
commence[d,w,k,n][visiblefaces[[vfl]]]],1]), 
If[nvisiblefaces==3&&ju[[2]]<=k<=ku[[2]]&&juE[3]]<=k<=ku[[31]. 
( fd=Flatten[Map[firstdot[d,2.875,k], 
Drop[visib].efaces,(1,1)]],1]; 
vf1=Flatten[Position[fd,Min[fd]],l][[1]]; 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 
commence[d,w,k,n][visiblefaces[Cvf1+1]]]],1]), 
If[nvisiblefaces==3&&ju[[1]]<=k<=ku[[1]], 
(vf1=1; 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 

260 



96autocube explainedth 	 13 

commence[d,w,k,n][visiblefaces[[vfl]]]].1]), 
If[nvisiblefaces==3&&ju[[2]]<=k<=ku[[2]], 
(vf1=2; 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 
commence [d,w,k,n] [visiblefaces [ Evf1] ] ] 3.1 ] ) 
If [nvisiblefaces==3, 
spots=Flatten[ 
Map[cuberowdots[d,w,k,n], 
commence[d,w,k,n][visiblefaces[[3]]]],1]. 

If[nvisiblefaces==2&&ju[[1]]<=k<=ku[[1]]&&iu[[2]]<=k<=ku[[2]], 
( fd=Flatten[Map[firstdot[d,2.875,k],visiblefaces],1]; 
vf1=Flatten[Position[fd,Min[fd]],1][[1]]; 
spots=FlattenI 
Map [cuberowdots Ed,w,k,n] , 
commence [d, w, k, n] [visiblefaces [ [vfl] ] ] ] , 1] ) , 
If [nvisiblefaces==2&&ju [ [1] ] <=k<=ku [ [1] ] , 
(vf1=1; 
spot s=Flatten I 
Map [cuberowdots [d,w,k,n] , 
commence [d,w,k,n] [visiblefaces [ [vfl] ] ] ] , 1] ) , 
If [nvisiblefaces==2&&ju [ [2] ] <=k<=ku [ [2] ] 
(vf 1=2; 
spot s=Flatten [ 
Map [cuberowdots [d,w,k,n] , 
commence [d,w,k,n] [visiblefaces [ [vfl] ] ] ] , 1] ) , 
spot s=Flatten [ 
Map [cuberowdots [d, w, k, n] , 
comm ence[d,w,k,n][visiblefaces[[1]]]],1]]]]]]]]]]]; 
Map[Append[#,k]&,Partition[spots,1]]); 

stereog concatenates all the points row by row for the stereogram by looking at each value of k 
and then plots them. There are two possible versions of stereog following. The first returns a 
black and white stereogram, while the second contains a colour function to enable colour changes 
depending on the row number of the stereogram. 

stereog[d_,w_,n_,steps_][visiblefaces_]:= 
ListPlot[Join[Flatten[Table[pts[d,w,n][visiblefaces][k], 

(k,Min[ju]+0.00006,Max[ku]-0.00006,steps)],1], 
Flatten[Table[plptsr[d,w,k,n][List[a,b,c,g]], 
{k,-10,Min[ju]-0.00006,steps}] 
,1],Flatten[Table[plptsr[d,w,k,u][List[a,b,c,g]], 
(k,Max[ku]+0.00006,10,steps)] 
.1] ] , 
Prolog->AbsolutePointSize[1], 
Axes->False, 
PlotRange->{{-10,10),(-10,10)), 
AspectRatio->Automatic] 

stereog[d,2.875,173,1/10][visiblefaces] 
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stereog[d_,w_,n_,steps_][visiblefaces_]:= 
Show[Graphics[Join[Table[(Hue[Abs[k/(Abs[k]+1)]],Map[Point,pts[d,w,n] 
[visiblefaces][k]]), 

a,Min[ju]+0.00006,Max[ku]-0.00006,steps)], 
Tab1e[(Hue[Abs[k/(Abs[k]+1)]],Nap[Point,plptsr[d,w,k,n][List[a,b,c,g] 
(k,-10,Min[ju]-0.00006,steps)] 
,Table[(Hue[Abs[k/(Abs[k]+1)]],Map[Point,plptsr[d,w,k,n][List[a,b,c,g 
(k,Max[ku]+0.00006,10,steps)]], 
Prolog->AbsolutePointSize[1], 
Axes->False, 
PlotRange->{{-10,10),(-10,10)), 
AspectRatio->Automatic]] 

stereog[d,2.875,173,1/10][visiblefaces] 

The following program gives us a perspective drawing of our cube. It may be used to create an 
anaglyph of a cube by choosing the two different viewpoints of our eyes. It needs to be amended 
if only the visible faces are to be drawn as currently some unwanted lines are drawn, as it is 
designed for the whole cube. 

«Graphics'ImplicitPlots 

ObjectPlane[xpt_List]:=xpt[[2]]-30; 

ViewPt:=(0,0,0) 

ViewLine[xpt_List,t_]:=ViewPt+t*(xpt-ViewPt); 

SurfaceIntersectionList[xpt_List]:=t I. 
Solve[ObjectPlane[ViewLine[xpt,t]]==0,t]; 

PictureList[xpt_List]:=Map[VIewLine[xpt,#]&, 
SurfaceIntersectionList[xpt]]; 

Note: At this point it must be decided which objcube is required. 

objcube:=Map[PictureList,corners]//N 

objcube:=Map[PictureList,Flatten[visiblefaces,1]]/IN 

objcubel:=Flatten[objcube,1] 

v:=objcubel[[(1,2,3,4,5,6,7,8),(1,3)]] 

edges:=0, [[( 1 , 5 )]],v[[(1,4)]],v[[(1,2)]],v([(2,6)ll, 
v[[( 2 , 3 )]],v[[( 3 , 4 }]],v([(3,7)]],v[[(4,8)]],v([(5,8)]], 
v[[( 5 , 6 )]],v([(6,7)]],v[((3,7)]]) 

lines:=Map[Line,edges]//N 
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Shaw [Graphics [ (RGESColor [0,0.35,0] ,AbsoluteThickness (1], lines ) , Axes->F, 
PlotRange->( ( -10,10), (-10,10) ) , 
PlotRegion->{{0,1},(0,1)), 
AspectRatio->Automatic]] 

-Graphics- 

Show[Graphics[(AbsoluteThickness[1],lines),Axes->False, 
PlotRange->((-10,10),(-10,10)), 
PlotRegion->({0,l},(0,1)), 
AspectRatio->Automatic]] 

-Graphics- 

Show[Graphics[lines,Axes->False, 
PlotRange->((-10,10),(-10,10)), 
PlotRegion->{(0,1),(0,1)), 
AspectRatio->Automatic]] 

-Graphics- 

Show[GraphicsURGBColor[0,0.35,0],linesM,Axes->True, 
PlotRange->{{-10,10),(-10,10)), 
PlotRegion->{(0,1),(0,1)), 
AspectRatio->Automatic] 

-Graphics- 
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Appendix G 

Program for creating 
Single-Image Stereogram of 
a special sphere 
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function thesis 

o This program returns a Single Image Stereogram (SIS), of a sphere which 
remains in a fixed position when it is viewed with either the 'crossed' or 
'uncrossed' method. When viewed with the uncrossed method the inside of 
the sphere is seen behind the page of the SIS and when viewed with the 
crossed method the outside front of the same sphere is perceived to be 
'floating' in front of our page (or above if the page is flat on a table 
and the viewer is looking down on it from above) between the viewer and 
SIS. 

?circlei 

circlei[tangentpoint, distance][ z co-ord.of the line where 
the viewer's eyes meet the SIS] gives the centre of the 
circle which has a given tangent point on the x-axis 
with the associated tangent passing through the midpoint 
of the viewer's eyes. The viewer is viewing from a point 
which is a distance d in front of the x-axis (y 
co-ord=-d) and the viewline from the eyes meets the SIS 
at a height z=i. 

circlei[q_,d_][i_]:=( 
s=x/.Solve[202+i 42==q42,4//N; 

t=Min[s]; 
u=Max[s]; 
d'=-Max[Seirt[i. 4 2+d4 2]]//N; 
slopel1=(d 1 -0)/(0-t); 
sloperadt=-1/slopell; 
slopel2=(d'-0)/(0-u); 
sloperadu=-1/slopel2; 

centre=Flatten[Solve[(b/(a-t)==sloperadt, 
b/(a-u)==sloperadu ),(a,b)]]//N; 

( centrex=a/.centre, 
centrey=b/.centre)) 

radius returns the radius of the required circle. 

radius[q_,d_][j_]:=(cj=circlei[q,d][j]; 
((cj[[1]]-u) 4 2+cj[[2]] 4 2) 4 (1/2)) 

?start 

start[tangent point x co-ord.,y-co-ord. of midpoint of 
viewer's eyes,half the eye separation, z co-ord.of the 
line where the viewlines meet the SIS] gives a random 
interval of points xj on the x-axis calculated using the 
point where the circle x^2+yA2=(tangent point x)^2 
cuts the positive z-axis, and the line from this point 
through the viewer's left eye. This line cuts the x-axis 
at a point p. A specified number of random points, say 
2, are chosen between 0 and p and then the mirror 
images of each of these points about the y-axis are 
chosen. The interval consists of 6 points in this case 

• (includes the points p and -p). Their x co-ords are 
listed. 
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function thesis 

start(q_,c1_,w_A_]:=(cj=circleiN,Cd]; 
p:=x/.Solve((-(cj[(211.1.d'+ 

((ciE[1]]-u)A2+cj([2]]"2)*(1/2))/w)*x+ 
cj([2]]+((ci[Ill1-u) 0, 2+ 

cj[[2]]*2)"(1/2)==0,x]//b1; 

(int1=Table[Random[Real,(0,Max(PM,{4}], 
int2=Map[mainfun(q,d,wAhintl])//N) 

(hilbert) /n[55]:= 
?mainfun 

mainfun[tangent point x co-ord.,y-co-ord. of midpoint of viewer's 
eyes, half the eye separation,z co-ord.of the line where the 
viewlines meet the SIS] 
maps a point on the x-axis onto its corresponding 
point on the x-axis and we are moving from left to right. 

mainfun[q_,d_,w_A_][Intr_]:= 
(c=x/.So1ve[(x-circleiN,d][j][(1MA2+ 
((-d/(Intr+w))*(x-Intr)- 
circleiN,d][j][(2]])"2-((circleiN,d][j][(1]]-u)A2+ 
(circleiN,CMI[2]]-0)A2)==0,42 
If[(-d/(Intr+w))<O,f=-Max[Map[Abs,c]],f=Max[c]]; 
ycoord=y/.Solve[(f-circlei[g,d][j][[1]])"2+ 
(Y-circlei[q,d][j]([2]])A2- 
((circ1ei[q,d][j][[1]]-u)"2+(circ1ei[q,d][j][[2]]-0)A2) 
==0 ,Y]; 
circlePt={f,Max[ycoordp; 
slopeR=(d-circlePt[[2]])/(w-circlePt[[1]])//N; 
x/.Solve[slopeR*(x-w)+d==0,x] // First); 

(hilbert) /n[57]:= 
?dots 

dots[tangent point x co-ord.,y-co-ord. of midpoint of viewer's 
eyes, half the eye separation, z co-ord.of the line where the 
viewlines meet the SIS] is an iterative function applied to 
the x-co-ord of a point which recursively 
uses mainfun to obtain corresponding points on 
the x-axis until the given condition applies. 

dotsEq_,d_,w_A_Hc_1:= 
Drop[FixedPointList[mainfun[cbd,w,j],c, 

SameTest ->((#1-#2)>00],-1]; 

Note: Below I have replaced start[q,d,w,M[1]] by intl and 
start[q,d,w,j][[2]] by int2. 
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?points 

points[tangent point x co-ord.,y-co-ord. of midpoint of 
viewer's eyes,half the eye separation] [z co-ord.of the 
line where the viewlines meet the SIS] maps dots onto 
each point of the starting interval to give a list of x 
values to the right of our starting interval. To obtain 
a full row of x values for our dots we take the Union of 
this list with their mirror images about the y-axis and 
with the points in the starting interval. This list of 
x-co-ords. is appended by the appropriate second 
co-ordinate which equals the height of the row above or 
below the x-axis. 

points[q_,d_,w_][j_]:=(spots:=Join[start[q,d,w,j][[2]], 
Flatten[Map[dots[q,d,w,j],int2],1], 
intl, 
-1*Flatten[Map[dots[q,d,w,j], 
-1*intl],1]]; 

Map[Append[#,j]& ,Partition[spots,1]]); 

o Note: Below we have three possible versions of the 
function suitable to return our SIS. 

The first case allows the plotting of geometrical shapes instead of just 
dots at each point. There is a problem with regulating the shapes' size. 
This may be overcome with extra study of graphics. 

The second just returns the SIS with dots of an absolute size. 

The third allows the introduction of variable colour by introducing the 
Hue function whose argument changes with each row of dots. 

(hilbert) In[59]:= 
?stereog 

stereog[tangent point x co-ord.,y-co-ord. of midpoint of viewer's 
eyes, half the eye separation, minimum row z-value, maximum row 
z-value,step size as we move from one row to the next] 
returns our SIS with the appropriate options taken into 
consideration. Correct plot range for the size of our sphere is 
vital to have the correct scale. 
Eye-spacing does not vary. 

Only one of the following stereog functions must be entered. 
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stereog[q_,d_,w_,zmin_,zmax_,steps_]:= 
(square=RegularPolygon[4,0.003,(0,0}, 

Pi/4]; 
MultipleListPlot[Flatten[Table[points[q,d,w][j], 

(j,zmin,zmax,steps)],1], 
DotShapes->plakeSymbol[square]},Axes->False, 

PlotRange->((-10,10},{-10,10}},AspectRatio->Automatic]) 

To obtain our stereogram after we have entered all the preceding functions, we enter the 
following with our chosen values as arguments. 

stereog[8, -30,2.875, -7.8,7.8,2/10] 

Following we have our alternative stereog functions. 

stereog[q_,d_,W_,zmin_,zmax_,steps_]:= 

ListPlot[Flatten[Table[points[q,d,w][j], 
(j,zmin,zmax,steps}],1], 

Prolog->AbsolutePointSize[1],Axes->False, 
PlotRange->{{-10,10},(-10,10)),AspectRatio->Autonatic] 

stereog[q_,d_,w_,zmin_,zmax_,steps_]:= 
Show[Graphics[Table[ 
(Hue[Abs[j/(Abs[j]+1)]],Map[Point,points[q,d,w][in), 

(j,zmin,zmax,steps)], 
Prolog->AbsolutePointSize[1],Axes->False, 

PlotRange->((-10,10),(-10,10)),AspectRatio->Autonatic]] 

stereog[q_,d_,w_,zmin_,zmax_,steps_]:= 
Show[Graphics[Table[ 
(Hue[Abs[j/Ceiling[(Abs[j]+1)]]],Map[Point,points[q,d,w][j]]), 

(j,zmin,zmax,steps)], 
Prolog->AbsolutePointSize[0.1],Axes->False, 

PlotRange->{{-10,10),{-10,10}},AspectRatio->Automatic]] 
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Index 

accommodation, 34 

acuity, 34 

anaglyph, 27 

anamorphogram, 97 

autostereogram, 29 

axis of central collineation, 194 

axis of perspectivity, 184 

background plane, 150 

central axis, 86 

central collineation, 194 

central involution, 194 

centre of central collineation, 194 

centre of perspectivity, 183 

circuit;4-pt, 197 

closest vertex, 163 

collineation, 194 

conic, 185 

conical mirror, 122 

conical picture surface, 114 

correct picture, 108 

corresponding points, 37 

crossed disparity, 43 

crossed-eyes viewing technique, 56 

cube stereogram construction, 156 

cube; parametric representation, 104 

Cyclopean eye, 29 

cylindrical mirror, 119 

cylindrical picture surface, 111 

depth, 47 

diagonal points, 197 

dim, 104 

disparate, 50, 87 

disparity, 37, 41 

distance, 47 

distance of the viewer from a stereogram, 13 

Dot, 161 

double point, 45 

dual, 177 

dual viewing, 177 

elation, 194 

elementary map, 181 

ellipsoid stereogram construction, 144 

equally-spaced dots, 61 

extended Euclidean plane, 177 

eye-spacing ranges, 59 

far perspective image, 111 

far point, 43 

figure, 98 

fixate, 35 

fixation line, 76 

fixation plane, 76 

fixation point, 41 

fixed sphere, 177 

fovea, 34 

foveola, 34 

fusion, 35 

generating bases of a conic, 186 

grid; parametric representation, 99 

guiding dots, 64 
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harmonic conjugate, 180 

homogeneous co-ordinates, 104 

homologous elements, 181 

homology, 194 

horopter, 38 

horpter curvers, 89 

ideal line, 176 

ideal point, 176 

image, 98 

image figure, 100 

inverse image in stereoscope, 180 

line of boundary, 160 

Luneburg's experiments, 89 

matching elements, 49 

microsaccades of eyes, 53 

mirror anamorphograms, 115 

monocular vision, 98 

near perspective image, 111 

near point, 43 

nodal point, 34 

non-singular conic, 186 

Panum's area, 50 

Panum's fusionaI space, 50 

parallel viewer, 58 

parallel viewing technique, 55 

pencil of lines, 182 

perceived dots, number, 62 

perspective, 23, 182 

perspective drawing, 98 

perspectivity, 183, 184 

picture plane, 23 

Principle of Duality, 177 

projection, 181 

projective plane, 177 

projectivity, 184 

random-dot stereogram, 28 

range of points, 182 

receptive field, 51 

saccadic eye movement, 52 

Single-Image Stereogram, 29 

Single-Image Stereogram construction, 135 

singular conic, 186 

slant anamorphogram, 25 

spherical mirror, 125 

starting interval, 138 

stereogram, 27 

stereopsis, 26 

stereoscope, 26 

stereoscope, geometric, 178 

stereoscope, geometric inverse, 178 

sub-pencil, 182 

translation, 193 

uncrossed disparity, 43 

uncrossed viewing technique, 55 

uniocular projection, 59 

vergence, 35 

vertex of pencil of lines, 182 

Vieth-Muller circle, 37 

viewing techniques, stereograms, 55 

viewline, 34, 59 

visible faces, 163 

visible faces of cube, 156 

visual axis, 35 

visual field, 34 

Wall-paper Effect theorem, 68 

wallpaper effect, 29 

zero disparity, 50, 87 
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