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Abstract 

Hazel (Corylus avellana L.) seedlings inoculated with the Perigord black truffle 

fungus (Tuber melanosporum Vitt.) are being planted in Tasmania in an attempt to 

culture truffles. Competition from other ectomycorrhizal fungi has a significant 

impact on truffle production in Europe and can be expected to have some effect on 

the Tasmanian industry. This thesis examines ectomycorrhizal fungi occurring in 

Tasmania with respect to their ability to form mycorrhizas with hazel and compete 

with T melanosporum under various soil treatments. 

Stands of hazel previously established for nut production or as ornaments were 

surveyed for the sporocarps of ectomycorrhizal fungi. Several species were found 
; 

including species that are new either to Australia or Tasmania. The endemic 

species Descomyces albus (Klotzsch) Bougher & Castellano and 

Podohydnangium sp., previously thought to. be Eucalyptus specific were.  fruiting 

under hazel. 

T melanosporum occurs naturally on calcareous soils in Europe. Truffieres in 

Tasmania are heavily limed to create a calcareous soil environment. The response 

of selected introduced and endemic ectomycorrhizal fungi to applied lime was 

studied in a glasshouse experiment. Some of the endemic species, which would 

normally inhabit acidic soils, were unable to survive high rates of lime application 

and therefore should not pose a threat to the truffle industry. The introduced 

species were generally more tolerant to lime application. 

A subsequent glasshouse experiment sought to separate the effects of pH and 

calcium on colonisation by T melanosporum. Seedling hazels were inoculated 

with T melanosporum. After twelve months, they were transplanted using soil 

amended with fourteen rates of either CaCO 3 , CaSO4, or MgCO 3 . The seedlings 

iv 



were then exposed to spores of two endemic fungal species. Applied CaCO 3  and 

MgCO3  increased level of colonisation by T melanosporum, whereas CaSO4  had 

little or no effect. Soil pH appears to have a stronger influence on colonisation by 

T melanosporum than the level of applied or exchangeable calcium. Colonisation 

by endemic species was low and sporadic across all treatments. 

Another glasshouse experiment of similar design to that above was established to 

observe the effect of lime and phosphorus interaction. Applied lime significantly 

increased the level of colonisation of T melanosporum, but phosphorus had no 

effect, even at very high rates of application (150 mg P / Kg soil). 

A commercial truffiere was surveyed for the level of colonisation by 

T melanosporum and other ectomycorrhizal fungi. 

Descriptions were compiled of the mycorrhizas of fungal species found in the 

glasshouse and field experiments to assist in their future identification. 

The morphological identification of Tuber mycorrhizas was confirmed using PCR 

and RFLP of DNA extracted from single mycorrhizal tips. 
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INTRODUCTION 

1 Introduction 

1.1 General 

Considered one of the finest edible fungi, the black truffle is prized for its unique 

flavour and intoxicating aroma. It is used to flavour a wide variety of dishes such 

as shellfish, veal, foie gras, turkey, game, beef and omelettes. Consumer demand 

for the Perigord black truffle greatly exceeds supply, and hence the price paid for 

this product is very high. In 1998, wholesale prices in France ranged from A$1250 

to A$1600 per kilogram (D. Garvey, Perigord Truffles of Tasmania, pers. corn.). 

At the same time in Hobart, Tasmania, Perigord black truffles were retailing for 

A$2000/kg. Such prices have created a great deal of interest in the commercial 

production of Perigord black truffles. 

The Perigord black truffle is the fruiting body of the ectomycorrhizal fungus 

Tuber melanosporum Vitt.. Tuber melanosporum is an ascomycete of the family 

Tuberaceae, order Tuberales. It is native to southern continental Europe, 

occurring predominantly in the southern regions of France, and the northern 

regions of Italy and Spain. 

The fruit bodies are found below-ground, anywhere from just below the surface to 

a depth of about 50 cm (Hall et al., 1994). Traditionally, pigs were used to detect 

the truffles at the time of harvest. Nowadays, dogs are more commonly used. 

Trees that are colonised by T melanosporum can exhibit a bride. A bride is that 

area around a tree exhibiting a reduction in ground cover due to the presence of 

T melanosporum or other fungi. There have been several proposed explanations 

for the presence of the brute including competition between the plants and the 

fungus for water and nutrients (Delmas, 1983), pathogenic effects of 
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INTRODUCTION 

T melanosporum (Plattner and Hall, 1995) or the allelopathic effect of chemicals 

produced by T melanosporum (Bonfante et al., 1971; Papa and Porraro, 1978). 

In addition to the Perigord black truffle, there are several other species of the 

Tuber genus that produce edible fruitbodies. The Italian white truffle, 

T magnatum, is also in high demand and commands similar prices to the Perigord 

black truffle. Other Tuber species such as T. uncinatum, T. himalayense, 

T aestivum, T borchii and T brumale are edible, but are of inferior quality. Some 

of these inferior truffles, particularly T himalayense in recent times, are sold as 

the more valuable Perigord black truffle to unsuspecting buyers. 

Other truffle species are also major competitors to the production of Perigord 

black truffles. Chevalier et al. (1982) showed that most contamination of French 

truffieres occurred from other Tuber species, particularly T brumale and 

T borchii. 

1.2 Background to the Study 

Perigord Truffles of Tasmania Pty Ltd (PTT), have embarked on a venture to 

produce Perigord black truffles in Tasmania. From a marketing point of view, 

trufficulture is an industry well suited to Tasmania. Truffles are harvested in the 

European winter during December, January and February and have a shelf life of a 

few weeks. Truffles can be preserved in bottles or cans, but most of the flavour 

and aroma is lost in the process. Chefs will always use fresh produce where 

possible. Therefore, Tasmania has the potential to provide fresh truffles to the 

world market during the Southern Hemisphere winter months of June, July and 

August when there are few other fresh truffles available. 

PTT have entered into joint venture arrangements with primary producers. As at 

the end of spring 1997, 45 hectares of truffieres had been established on 25 sites in 

Tasmania. The company plans to increase the number of plantations to 200 

hectares by the year 2001. With substantial capital being invested, there was a 
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INTRODUCTION 

need to commence research on how T melanosporum would develop in the 

Tasmanian environment. 

In November 1993, PTT was successful in its application to the Rural Industries 

Research and Development Corporation for a research grant. Part of this grant was 

to fund a PhD candidate to study factors affecting the establishment and 

proliferation of the Perigord black truffle in Tasmania. This study commenced in 

June 1994. 

1.3 Factors Affecting the Proliferation of Tuber 
melanosporum 

Factors affecting the establishment and proliferation of the Perigord black truffle 

involve a complex interaction between the host plant, climate, soil type and 

competition from other ectomycorrhizal fungi. 

1.3.1 Host 

Tuber melanosporum has been reported to form mycorrhizas with Carpinus, 

Castanea, Cedrus, Cistus, Corylus, Fagus, Helianthemum, Juglans, Olea, Ostrya 

carpinifolia Scop., Pinus, Populus, Quercus, Salix and Tilia (Hall et al., 1994). 

PTT have chosen Corylus avellana (hazel) as their preferred host plant, although 

there have also been limited inoculations of Quercus robur and Q. ilex. The 

experience of truffle growers in Europe indicates that T melanosporum tends to 

fruit earliest when associated with hazel or Q. ilex (D. Garvey, PTT, pers. corn.). 

Chevalier et al. (1982) reported that in a truffiere in Bourgogne, 73% of the hazel 

trees were producing T melanosporum fruitbodies 3.5 years after planting, and 

82% producing fruitbodies after 4.5 years. 

This observation that T melanosporum tends to fruit earlier when associated with 

hazel may be a function of tree growth rate. Shaw et al. (1996) found that stem 
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INTRODUCTION 

diameter was a critical factor determining fruit body production of 

T melanosporum in symbiosis with Quercus ilex. This suggests that host plants 

may need to reach a critical biomass before being able to provide adequate 

carbohydrate to the fungus for fruiting. Hazels grow quickly, and the early fruiting 

reported under hazel may be attributed to their ability to reach this critical biomass 

at a younger age than other host species. Further experimentation is required to 

test this theory. 

1.3.2 Climate 

Limited studies have been made into the effect of climate on fruiting of the 

Perigord black truffle. These studies have concentrated on the influence of 

temperature and rainfall as the critical factors determining truffle production. 

Temperature 

Figures 1.1 and 1.2 compare the daily maximum and minimum temperatures for 

Perigord black truffle producing regions in France and New Zealand, and centres 

in Tasmania where truffieres have been planted. Tasmania has a stronger oceanic 

influence than the Perigord black truffle growing regions of France, which tends 

to moderate the extremes of temperature. In summer, the maximum and minimum 

temperatures at the Tasmanian centres are lower than those for France. In winter, 

daily maximum temperatures are slightly higher in Tasmania whereas daily 

minimum temperatures are very similar. 

Le Tacon et al. (1982) noted that mild oceanic climates with insufficient seasonal 

temperature contrast and continental climates where the winters are too cold are 

not suitable for truffle production. This statement appears to have been drawn 

from observation of the climatic distribution of the Perigord black truffle. 

However, truffles have been produced in Gisborne on the north island of New 

Zealand which has very mild winters relative to both the truffle producing regions 

of France and those areas being planted to truffieres in Tasmania. Furthermore, 

Perigord black truffles were also produced from a truffiere in Burgundy, France, 

on 4.5 year old hazels (Chevalier and Grente, 1979). Burgundy is well north of, 
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INTRODUCTION 

and consequently colder than the main truffle producing regions of Europe, and 

yet truffles were produced quite quickly. It would appear that the climatic 

requirements of T melanosporum may be broader than those postulated by Le 

Tacon et al. (1982). 

Montant and Kulifaj (1990) and Sourzat et al. (1993) have investigated the effects 

of climate on truffle production using poly-tunnels to control the temperature. 

Montant and Kulifaj (1990) found that during the early stages of truffle production 

(April to May in France), the temperature of the soil must not be less than 10°C, 

and must not exceed 35°C during the summer. Also, the soil temperature should 

not fall below 5°C at any time of the year. Sourzat et al. (1993) observed that air 

temperatures of 38°C for several hours did not adversely effect the mycorrhizal 

colonisation by T melanosporum. 

Montant and Kulifaj (1990) reported increased yields within the poly-tunnel 

relative to control treatments, presumably due to an increase in the average 

temperature within the greenhouse. It was also found that T melanosporum 

fruited earlier within the poly-tunnel relative to the control treatments. This 

finding is corroborated by the observation that the French truffle harvest of winter 

1988-89 occurred earlier than usual as temperatures were unseasonably mild 

(Montant and Kulifaj, 1990). 

While summer temperatures in those regions of Tasmania selected for truffle 

production are lower than the summer temperatures of truffle growing regions in 

France, there is no substantial evidence to suggest that this will be a problem. 

Rainfall 

Rainfall or irrigation over the summer has been shown to increase truffle yields 

(Le Tacon et al., 1982; Montant and Kulifaj, 1990; Sourzat et al., 1993). Montant 

and Kulifaj (1990) propose that lack of soil moisture in Spring (April in Northern 

Hemisphere / October in Southern Hemisphere) inhibits the initiation of 
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primordia, whereas low soil moisture in autumn slows the growth of the fruitbody 

provoking imperfect maturation. 

Figure 1.3. shows mean rainfall for regions of trufficulture in France, New 

Zealand and Tasmania. All truffieres in Tasmania can be irrigated to supplement 

summer rainfall. Those regions with low rainfall, particularly low winter rainfall, 

may have an advantage in that the detrimental effects of waterlogging (Montant 

and Kulifaj, 1990) are less likely, and summer soil moisture levels can be 

carefully regulated with irrigation. 

Data for Figures 1.1, 1.2 and 1.3 and climate statistics for other regions of 

trufficulture in France and Tasmania are given in Appendix 1. 
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1.3.3 Competitive Ectomycorrhizal Fungi 

The truffle growing regions of Europe and Tasmania differ greatly in the species 

composition of ectomycorrhizal fungi. Tasmania has a great diversity of native 

ectomycorrhizal fungi which have evolved in association with the indigenous flora 

(Molina etal., 1992). Some of these fungi are found world wide and are generally 

considered to have a broad host range. However, the majority of native 

ectomycorrhizal fungi are endemic and are considered to be specific to native trees 

such as Eucalyptus (Bougher, 1995; Chilvers, 1973; Molina etal., 1992). In 

addition to the native fungi, Tasmania has a number of introduced 

ectomycorrhizal fungi which are generally associated with exotic plant species. 

If the majority of native ectomycorrhizal fungi are specific to Eucalyptus and 

other native hosts, T melanosporum associated with hazel in Tasmania may have 

the advantage of an environment with few competitors. This is provided truffieres 

are planted a sufficient distance from exotic trees that may be harbouring 

introduced ectomycoiThizal fungi. 

In Europe there is a suite of ectomyconhizal fungi that compete with 

T melanosporum. These competing ectomycorrhizal fungi can reduce or prevent 

the production of truffles (Delmas, 1978; Sourzat etal., 1993). Competitor 

ectomycorrhizal fungi include epigeous and hypogeous species from a range of 

genera including a number of species from the Tuber genera. The apparent 

disparity in fungal species composition between Tasmania and Europe has the 

potential to favour truffle yields in Tasmania. Consequently, further research is 

required to test the assumption that endemic ectomycorrhizal fungi are Eucalyptus 

specific and therefore unable to compete with T melanosporum growing on hazel 

trees. 
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1.3.4 Soils 

Soils are the other major area of contrast between European truffle growing 

regions and Tasmania. Perigord black truffles occur naturally on calcareous soils 

including rendzinas and brown earths (Poitou, 1988). Tasmania has a very limited 

area of calcareous soil. The majority of Tasmanian soils are slightly acidic or 

moderately acidic (Grant et al., 1995). Consequently, truffieres are being planted 

on heavily limed soils in an attempt to produce soils with calcareous 

characteristics. The response of T melanosporum to such practice is unknown. 

Nor is it known whether other ectomycorrhizal fungi present in Tasmania, 

particularly endemic species, can adjust to such dramatic changes in soil 

conditions. 

Phosphorus level is another soil parameter that varies considerably between the 

truffle soils of Europe and those soils being used for truffieres in Tasmania. Due 

to their weathered nature, many Australian soils are inherently low in phosphorus 

(Grant et al., 1995). The level of available phosphorus (Colwell method) in the 

Tasmanian truffieres ranges from 10 to 52 with an average of 25. 

Australian endemic ectomycorrhizal fungi appear to be adapted to low levels of 

soil phosphorus. For example, Bougher et. al. (1990) demonstrated that levels of 

colonisation of Eucalypts by Descolea maculata on a phosphorus deficient soil 

(Bray-extractable P less than 2 mg P/Kg soil) were highest at very low levels of 

applied P ( 2 to 4 mg P/Kg soil) and declined quite rapidly at higher rates of 

applied P. These levels of available P reported by Bougher et al. contrast with the 

P levels reported by Delmas et. al. (1981) for truffieres in France exhibiting bride 

formation. The French soils had a range of available P (Joret Herbert method) 

from 6 mg/Kg to 980 mg/Kg. Delmas et al. also made the note that the lowest 

value in the range (6 mg/Kg) was much lower than average. Hence, there is some 

evidence that T melanosporum is able to proliferate in soils with a moderate to 

high phosphorus content (by Australian standards) whereas Australian native 

ectomycorrhizal fungi prefer soils with a low phosphorus content. 
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In the event that native Australian fungi become established in the truffieres and 

compete with T melanosporum, there may be the potential to favour 

T melanosporum by manipulating the soil environment, particularly in regard to 

lime or phosphorus application. Further research is required to determine if this is 

possible. 

1.4 Research Aims 

This thesis examines ectomycorrhizal fungi occurring in Tasmania with respect to 

their ability to form mycorrhizas with hazel and compete with T melanosporum 

under various soil treatments. 

The principle aims of the research project were: 

1. To determine which ectomycorrhizal fungi present in Tasmania are able to 

colonise hazel and thereby pose a potential threat to the production of truffles 

in Tasmania. 

2. To study the effects of applied lime on the level of colonisation by 

T melanosporum and other ectomycorrhizal fungi found in Tasmania. 

3. To study the effects of applied phosphorus and phosphorus-lime interactions on 

the level of colonisation by T. melanosporum and other ectomycorrhizal fungi. 

4. To survey truffieres in Tasmania to determine the level of colonisation of 

T melanosporum and other ectomycorrhizal fungi. 
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2 Ectomycorrhizal Fungi Associated 

with Hazel (Corylus avellana) in 

Tasmania, Australia. 

2.1 Introduction 

The isolated nature of the Australian continent gave rise to the evolution of its 

peculiar indigenous flora and fauna. Often overlooked, but sharing the uniqueness 

and diversity of the flora and fauna with which they co-evolved, are the 

indigenous ectomycorrhizal fungi of Australia. For example, Bougher (1995) 

postulated that endemism of Australian ectomycorrhizal fungi may exceed 70%. 

Molina et. al. (1992) have suggested that Eucalyptus and related Myrtaceae may 

have the greatest diversity of genus-specific ectomycorrhizal fungi in the world. 

In addition to the endemic ectomycorrhizal fungi, Australia is home to 

cosmopolitan fungi that are indigenous to several regions of the world including 

Australia, and also a number of introduced species. Tasmania is geographically 

isolated from mainland Australia by Bass Strait. Not all ectomycorrhizal fungi 

that have been found on mainland Australia are present in Tasmania and vice 

versa (May and Wood, 1997). A list of fungal genera, thought to be 

ectomycorrhizal, that have been reported in Tasmania is given in Table 2.1. A 

more detailed list giving species names can be found in Appendix 2. 
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The host specificity of all these ectomycorrhizal fungi has important implications 

for the truffle industry of Tasmania in terms of: 

• whether or not they can form a mycorrhizal relationship with hazel and thereby 

be a potential competitor to Tuber melanosporum in commercial truffieres of 

hazel trees, and 

• the prevalence and distribution of the fungi which will influence their 

likelihood of exposing spores to commercial truffieres. 

2.1.1 Endemic Ectomycorrhizal Fungi 

If the endemic fungi of Australia are indeed Eucalyptus specific, this greatly 

reduces the number of species that are capable of competing with 

T melanosporum. However, the general pattern of host specificity for Australian 

ectomycorrhizal fungi is not well defined. There has been a broad acceptance that 

Australian fungi associated with Eucalyptus are generally not compatible with 

exotic forest trees (Bougher, 1995; Castellano and Bougher, 1994; Molina et al., 

1992). Some of this opinion has developed from work by Malajczuk etal. (1982) 

where Hydnangium carneum and Descomyces albellus (Hymenogaster albellus) 

formed mycorrhizas with several Eucalyptus species using a pure culture synthesis 

technique, but would not form mycorrhizas with Pinus radiata. Chilvers (1973) 

also noted that mycorrhizal types commonly associated with Eucalyptus were 

unable to develop on black poplars or several species of pine and fir. 

With the exception of the black poplars, the studies by Malajczuk et. al. (1982) 

and Chilvers (1973) were both examining the ability of endemic ectomycorrhizal 

fungi to form relationships with exotic gymnosperms whereas the majority of 

ectomycorrhizal hosts in Australia are angiosperms. Further studies are required to 

determine whether endemic Australian ectomycorrhizal fungi will form 

mycorrhizal relationships with exotic angiosperm hosts such as hazel. If they do 

form mycorrhizal relationships with hazel, it is not known how competitive they 

are likely to be with T melanosporum. 
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2.1.2 Cosmopolitan Fungi 

In addition to the endemic indigenous fungi of Australia, there are 

ectomycorrhizal fungi found in several regions of the world including Australia. 

These species generally have a very broad host range. For example, Scleroderma 

verrucosum forms mycorrhizal relationships with Eucalyptus as well as northern 

hemisphere host species (Trappe, 1962). It is common throughout Tasmania and is 

therefore one fungus that is likely to present itself in commercial truffieres. 

However, it should be noted that some cosmopolitan species such as Pisolithus 

tinctorius display significant intraspecific heterogeneity of host specificity (Smith 

and Read, 1997). For example, carpophores of P. tinctorius associated with Pinus 

spp. are poor colonisers of Eucalyptus spp. (Cairney and Chambers, 1997). 

Therefore, strains of cosmopolitan fungi native to Australia may not show the 

same host specificity/compatibility as their European counterparts. 

The prevalence of endemic and cosmopolitan ectomycorrhizal fungi in the 

Tasmanian landscape will mean that truffieres are constantly exposed to spores of 

these fungi. Attempts have been made by truffle growers to reduce the exposure of 

the hazel trees to contaminant fungi by planting truffieres on sites with long 

histories of pasture or crop production, and away from the rooting zone of other 

ectomycorrhizal hosts. Fences have been constructed to reduce the quantity of 

spores being carried onto the truffieres by animals. However, small animals able 

to penetrate the fence, air-borne spores, and irrigation water still remain as 

potential sources of contamination. 

2.1.3 Introduced Fungi 

In terms of host specificity, fungi introduced to Australia can be divided into two 

categories: those that are able to form mycorrhizal relationships with Eucalyptus 

and those that are specific to exotic hosts. Amanita muscaria is one of the few 

examples of an introduced ectomycorrhizal fungus that is able to form a 

mycorrhizal relationships with Eucalyptus (Malajczuk etal., 1982) and has also 
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been reported fruiting under Nothofagus cunninghamii in Tasmania (Fuhrer and 

Robinson, 1992). Lactarius piperatus is an example of an introduced 

ectomycorrhizal fungi that has not been reported to form mycorrhizas with 

Eucalyptus, but has been reported for hazel and other exotic trees (Trappe, 1962). 

Cosmopolitan fungi, and introduced species that are capable of colonising 

Eucalyptus, are more likely to be the initial contaminants of the truffieres as a 

result of their greater prevalence. Fungal species that are confined to exotic hosts 

are less likely to expose their spores to truffieres provided that care is taken with 

site selection, paddock quarantine, and the preparation of inoculated seedlings. 

A number of ectomycorrhizal fungi have been reported for hazel worldwide. 

These fungi are listed in Table 2.2. Other fungi that have been reported in 

truffieres, but not specifically under hazel, are listed in Table 2.3. These fungi may 

be able to form mycorrhizas with hazel and thereby represent potential 

competitors. Tables 2.2 and 2.3 also indicate whether these fungi have been 

recorded in Tasmania. 

It is also probable that some introduced species capable of competing with 

T melanosporum have yet to be found or recorded in Tasmania. Much of the 

collecting of ectomycorrhizal fungi in Tasmania has been under commercially 

important forest trees. Less attention has been paid to the introduced flora, 

particularly exotic angiosperms which are likely hosts for competitors to the black 

truffle industry. 

There is also the risk of further introductions of deleterious ectomycorrhizal fungi 

into Tasmania. 
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2.1.4 Objectives 

The objectives of the study reported here were two fold: 

1. To ascertain if any endemic ectomycorrhizal fungi are fruiting under hazel in 

Tasmania and thereby represent a potential competitor to the Perigord black 

truffle industry. 

2. To investigate the occurrence of introduced ectomycorrhizal fungi fruiting 

under hazel. 
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Table 2.1. Genera of Ectomycorrhizal Fungi Species Reported in Tasmania and 

the Endemism and Habit of those Species e  

Ascomycotina 
Genus Endemic Introduced Cosmopolitan Epigeous Hypogeous 
Amylascus 
Balsamiad  
Dingleya 
Elaphomycesd  
Genabea * a 

Genea *a 

Hydnocystisd  
Labyrinthomyces 
Muciturbo 
Paurocotylis 
Ruhlandiella 
Sphaerosoma * a 

Spragueola 
Stephensia 
Terfezia * a 

Basidiomycotina 
Genus Endemic Introduced Cosmopolitan Epigeous Hypogeous 
Alpovaa  
Amanita 
Andebbia 
Arcangeliella * a 

Austrogautieria 
Austroboletusd  
Boletus 
Boughera 
Cantharellus * a 

Cast oreum 
Chamonixiad  
Chondrogaster 
Cortinarius * a 

Cortinomyces * a 

Cuphocybe d  d  
Cystangiumd  
Dermocybe 
Descolea 
Descomyces 
Destuntziad  
aploderma 
Gautieria * a 

Gummiglobus 
Gymnomyces * a 

Hebeloma d  
Horakiella 
Hydnangium 
Hymenogaster * a  
Hysterangium 
Hysterogaster 
Laccaria b 
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Table 2.1 continued. 

Basidiomycotina 
Genus Endemic Introduced Cosmopolitan Epigeous Hypogeous 

Lactarius 
Leucogasterd  
Macowanitesd  
Malajczukia 
ManeIliad  
Mesophellia 
Nothocastoreum 
Octaviania 
Paxillus 
Pisolithus 
Protuberad  
Quadrispora 
Rhizopogon 
Richoniellad  
Rozites 
Russula 
Scleroderma 
Sclerogasterd  
Secotium 
Setchelliogaster 
Timgrovea 
Thaxterogaster 
Zelleromycesd  
a Genus also includes introduced or cosmopolitan species that have not been reported in Tasmania 

Genus also includes endemic species that have not been reported in Tasmania 
c  The list only concerns those species that have been reported in Tasmania as per Appendix 2. 

Species names were not reported, hence in some cases, it is not possible to report the endemism of these 
fungi. 
Taxonomy is consistent with the original reports. No attempt has been made to update names. 
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Table 2.2. Ectomycorrhizal Fungi Reported for Coryhis avellana. 

Species 	 Reference 

V 

Amanita rubescens (Pers. ex Fr.) 
Balsamia vulgaris Vitt. 
Boletus edulis (Bull. ex Fr.) 
Boletus erythropus (Fr.) Pers. 
Cenococcum graniforme (Sow.) Ferd. & Winge. 
Cortinarius anomalus (Fr. ex Fr.) 
Cortinarius collinitus (Pers. ex Fr.) 
Cortinarius multiformis (Fr. ex Seer.) Fr. 
Cortinarius violaceus (L. ex Fr.) Fr. 
Genea klotzschii Berk. & Broome 
Gyroporus cyanescens (Bull. ex Fr.) 
Hebeloma pumilum J.E.Lange 
Hydnotlya tulasnei (Berk.) Berk. & Broome 
Hydnum repandum L. ex Fr. 
Hygrophorus arbustivus Fr. 
Hygrophorus nemoreus (Lasch.) Fr. 
Hygrophorus unguinosus (Fr.) Fr. 
Hygrophorus virgineus (Fr.) Fr. 
Hymenogaster citrinus Vitt. 
Hymenogaster vulgaris 
Hypochnus cyanescens Peyr. nom.nud. 
Lactarius coryli Peyr. 
Lactarius piperatus (L. ex Fr.) 
Lactarius pyrogalus (Bull. ex Fr.) Fr. 
Lactarius subdukis (Bull. ex Fr.) S.F. Gray 
Leccinum duriusculum (Schulzer in Fr.) 
Paxillus involutus (Batch ex Fr.) Fr. 
Phallus impudicus Pers. 
Pulvinula globifera 
Scleroderma aurantium 
Scleroderma laeve Loyd 
Sphaerospella brunnea (A. & S.) Svrcek &Kubicka 
Strobilomyces floccopus (Vahl ex Fr.) Karst. 
Tuber aestivum Vitt. 
T borchii Vitt. 
T. brumale Vitt. 
T. excavatum Vitt. 
T ferrugineum Vitt. 
T griseum Pers. 
T macrosporum Vitt. 
T magnatum Pico ex Vitt. 
T. melanosporum Vitt. 
T mesentericum Vitt. 
T nitidum Vitt. 
T rufum Pico 
T uncinatum Ch. 
Xerocomus chrysenteron (Bull. ex St. Am.) 
Xerocomus subtomentosus (L. ex Fr.) 

(Trappe, 1962) 
(Maia et al., 1996) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Maia etal., 1996) 
(Trappe, 1962) 
(Granetti and Angelini, 1992) 
(Maia etal., 1996) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Bencivenga et al., 1992) 
(Chevalier etal., 1982) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Trappe, 1962) 
(Malajczuk et al., 1982) 
(Trappe, 1962) 
(Olivier and Mamoun, 1994) 
(Grente etal., 1976) 
(Malajczuk etal., 1982) 
(Meotto and Carraturo, 1987-88) 
(Trappe, 1962) 
(Palenzona, 1969) 
(Granetti, 1995) 
(Palenzona, 1969) 
(Maia et al., 1996) 
(Fontana and Centrella, 1967) 
(Maia etal., 1996) 
(Giovanetti and Fontana, 1981) 
(Granetti, 1995) 
(Palenzona, 1969) 
(Granetti, 1995) 
(Maia etal., 1996) 
(Maim etal., 1996) 
(Granetti, 1995) 
(Trappe, 1962) 
(Trappe, 1962) 

Those species in bold type have been reported in Tasmania. 
Taxonomy is consistent with the original reports. No attempt has been made to update names. 
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Table 2.3. Ectomycorrhizal Fungi reported in truffieres where the host species was 

not Corylus avellana, or the host species was not given. 

 

Species 	 Reference 

 

 

Amanita echinocephala 
Amanita ovoidea 
Amanita solitaria 
Amanita strobiliformis 
Amanita vittadini 
Astraeus hygrometricus (Pers.) Morgan 
Astreus stellatus 
Boletus depilatus 
Boletus luridus Schaeff. ex. Fr. 
Boletus purpureus 
Boletus regius 
Boletus satanus Lenz 
Cortinarius atrovirens 
Cortinarius causticus 
Cortinarius elegantior 
Cortinarius flavovirens 
Cortinarius largus 
Cortinarius odoratus 
Cortinarius olivellus 
Cortinarius percomis 
Cortinarius pseudosulphureus 
Cortinarius rufoalbus 
Cortinarius xanthophyllus 
Gyroporus castaneus (Bull.) Quelet 
Hebeloma crustiliniforme 
Hebeloma edurum 
Inocybe cookei 
Inocybe fastigiata 
lnocybe fibrosa 
Inocybe godey 
Inocybe jurana (Patouillard) Saccardo 
Inocybe luteipes 
Laccaria laccata (Scop. : Fr.) Cooke 
Lactarius acerrimus 
Lactarius acris 
Lactarius aspideus 
Lactarius cremor 
Lactarius flavidus 
Lactarius fulvissimus 
Lactarius pterosporus 
Melanogaster variegatus 
Pisolithus arrhizus (Scop) S Rauschrt 
P. crassipes 
Russula delica Fr. 
R. expallens Gillet 
R. lepida Fr. 
R. luteotacta 
R. maculata 
R. pectinata (Bull.) Fr. 

(Ceruti and Tozzi, 1985) 
(Ceruti and Tozzi, 1985) 
(Sourzat etal., 1993) 
(Ceruti, 1990) 
(Ceruti and Tozzi, 1985) 
(Baron, 1984) 
(Ceruti and Tozzi, 1985) 
(Ceruti, 1990) 
(Sourzat etal., 1993) 
(Ceruti and Tozzi, 1985) 
(Ceruti, 1990) 
(Baron, 1984) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Callot and Jaillard, 1996) 
(Sourzat et al., 1993) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Sourzat etal., 1993) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Callot and Jaillard, 1996) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Sourzat et al., 1993) 
(Callot and Jaillard, 1996) 
(Ceruti and Tozzi, 1985) 
(Sourzat et al., 1993) 
(Ceruti, 1990) 
(Sourzat etal., 1993) 
(Ceruti, 1990) 
(Ceruti, 1990) 
(Ceruti, 1990) 
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Table 2.3 continued. 

Species 	 Reference 

Russula queletii 
Scleroderma verrucosum Vail!. ex Pers. 
Suillus luteus (L. ex Fr.) S.F. Gray 
Tricholoma terreum (Schaeff. ex Fr.) Kumm. 
Tuber maculatum Vitt. 
T. himalayense 
Xerocomus rubellus Quelet 

(Ceruti, 1990) 
(Baron, 1984) 
(Baron, 1984) 
(Baron, 1984) 
(Ceruti, 1990) 
(Comandini and Pacioni, 1997) 
(Callot and Jaillard, 1996) 

Those species in bold type have been reported in Tasmania. 
Taxonomy is consistent with the original reports. No attempt has been made to update names. 

2.2 Materials and Methods 

Over a period of three years from 1994 to 1996, fungal fruiting bodies were 

collected from hazel trees previously established in Tasmania for nut production 

or ornamental purposes. Fifteen sites were surveyed. For each site, notes were 

taken on the size of the plantation, distance to surrounding trees, origin and age of 

the hazel trees where known, soil type, soil structure, compaction and site 

drainage, and soil pH. 

Most collections were made during late autumn, winter and spring, though some 

collections were made in the summer months. The fruit bodies were dried, 

weighed, and attempts were made to isolate a culture from each species collected. 
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2.3 Results and Discussion 
Of the fifteen sites that were surveyed, nine recorded fruitbodies. A description of 

the sites where fruit bodies were harvested is given in Table 2.4. Sites that were 

compacted, or were poorly drained, produced few or no fruit bodies. Some of the 

sites which gave negative results contained only a few trees. The small number of 

trees may have reduced the likelihood of finding fruit bodies on these sites. 

Whilst the age of the hazel plantation could be expected to influence the level of 

fruiting and fungal diversity, this did not appear to be the case for the fifteen sites 

surveyed. For example, Site 1, which was one of the most recent plantings 

surveyed, showed prolific fruiting of a variety of fungi. There was also no 

observed correlation between the abundance or diversity of fruit bodies and the 

proximity of other ectomycorrhizal hosts, either native or exotic. 
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Table 2.4. A description of sites where sporocarps of ectomycorrhizal fungi were collected under hazel. 
Site Name Map Reference Soil Type Soil pH Associated Distance Height of Date 
Number (1:5 water) Trees to Nearest Nearest Planted 

Eucalypt Eucalypt 
(m) (m) 

1 Hazelbrook 8115: Forth Kraznozem 5.5 None >200 NA 1990 
Nursery, Penguin DQ180471 

2 Hazelbrook 8115: Forth Kraznozem 5.8 None 80 30 —1973 
Nursery, Penguin. DQ184469 
Hedge near 
house. 

3 Perth Nursery 8314: South Pansanga 4.9 Ulmus sp. 30 9 —1980 
Esk EP151968 Sandy Loam 

4 Tonganah 8415 Forrester • Silty 5.4 None 100 17 — 1975 
480380 Gravelly 

Loam 

5 University of 
Tasmania, 
Horticulture 
Centre 

8312: Derwent 
EN264494 

Black 
cracking 
clay on 
Dolerite 

7.0 None 25 9 Several 
plantings. 
1972, 
1986, 
1993. 

Origin of Trees 

Grown from suckers 
from Site 2 

Grown from suckers 
imported from 
Victoria 

Grown from suckers 
and seed from Site 4 

A number of varieties 
imported from 
Northern Victoria as 
rooted cuttings 

As rooted cuttings and 
seedlings from Vic. 
and N.S.W. and some 
material from Oregon, 
USA. 

Continued over page. 



Table 2.4 continued. 
Site Name Map Reference Soil Type Soil pH Associated Distance Height of Date Origin of Trees 
Number (1:5 water) Trees to Nearest Nearest Planted 

Eucalypt Eucalypt 
(m) (m) 

6 Macquarie Plains 8212: Tyenna Red Alluvial 5.8 None >200 NA —1985 Cuttings from Orange 
DN928711 Sandy Loam & Sydney, N.S.W. 

7 Police Point 8311: 
D' entrecasteau 
x EN046112 

Grey 
podzolic 

5.2 Scattered 
Eucalyptus 

30 18 1986 60% of material from 
Site 2 as suckers. 
Others from Monbulk, 
Vic. 

8 Rutherglen 8314 South Esk Alluvial 5.6 Unknown Unknown 
Bridge EQ053040 Sandy Loam 

9 Woodbridge Hill 
Road 

8311: 
D'entrecasteau 
x 

Clay on 
dolerite 

5.9 Eucalyptus 5 8 1981 Melbourne as nuts. 
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Putative ectomycorrhizal fungi found fruiting under Corylus avellana in 

Tasmania are shown in Table 2.5. Some of these fungi are shown in Plate 2.1. 

While many of the sites had other trees growing within or adjacent to the hazels, it 

was clear that some of the fruit bodies collected were associated with Corylus 

avellana as they were well outside the rooting zones of any other trees. Nearby 

trees and the area just outside the rooting zone of the hazel were checked for the 

presence of sporocarps. Those fungal species found under the hazels were not 

found outside the rooting zone of the hazels. However, it is quite possible that 

some of the fungi found under the hazels were colonising surrounding trees, but 

were not producing fruit bodies at the times of collection. 

Those areas where it could be positively concluded that the fungi could only be 

growing on Corylus avellana included the greater percentage of sites 1,2 and 6. 

Hence, it would appear that Descomyces albus, Hebeloma crustiliniforme, 

Hymenogaster arenarius, Laccaria tortilla, Melanogaster ambiguus and 

Podohydnangium sp. were forming mycorrhizal relationships with hazel. While it 

is possible that the remaining species were associated with other hosts, it is most 

probable that they were also associated with hazel due to the domination of hazel 

in the site and the proximity of the sporocarps to the hazel trees. The exceptions 

were Labyrinthomyces sp. and Descomyces spp. (T013H & TO3OH) which only 

occurred at sites 8 & 9 where there was a mixture of tree species including 

Australian native trees. 
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Table 2.5. Fungal collections under Corylus avellana in Tasmania. 

Species Collection Number Site Number Hemisphere of Origin 
Cortinomyces sp. (large spores) TOO4H 5 
Cortinomyces sp. (small spores) TO11H 3 
Descomyces albus (Klotzsch) Bougher & Castellano TOO2H, T003H, TOO7H TOO9H, 

TO21H, T022H, T027H, T028H, 
T029H, T031H 

1,2,3,4,5,6 

Descomyces sp. (immature, not albus) TO24H 3 
Descomyces sp. TO13H 8 
Descomyces sp. TO3OH 9 
Hebeloma crustiliniforme (Bull. : Fr.) Quel. TOO5E, TOO9E 2,3 
Hydnangium archeri (Berk.) Rodway TOO5H 5 
Hydnangium sp. TOO1H 7 
Hymenogaster arenarius Tul. & C.Tul. 11790, TO2OH 1,2,3 
Hymenogaster australis Speg H791 3 
Labyrinthomyces sp. TO14H 8 
Laccaria tortilla (Bolton) Cooke TO16E 2 
Laccaria spp. TO10E, TO13E, TO14E, TO15E, TO16E 1 
Laccaria sp. TO18E 3 
Laccaria spp. TOO1E, TO10E 7 
Melanogaster ambiguus Vitt. TOO6H, TOO8H, TO12H, T023H, 

T025H, T026H 
1,2,3 

Podohydnangium sp. TOO8E 2 
Scleroderma verrucosum Vaill. ex Pers. TOO6E, T022E 4 S/N 
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Plate 2.1. Some of the ectomycorrhizal fungi associated with hazel in Tasmania. 

1. Descomyces albus 	 2. Melanogaster ambiguus 

3. Hymenogaster arenarius 	 4. Hymenogaster australis 

5. Laccaria tortilla 	 6. Podohydnangium sp. 
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2.3.1 Host Specificity of Endemic Species 

Some Australian endemic mycorrhizal fungi, previously thought to be Eucalypt 

specific, appear to be forming mycorrhizal relationships with hazel. In particular, 

Descomyces albus sporocarps were found at six of the fifteen sites surveyed. At 

sites 1 and 2, and to a lesser extent 3, Descomyces albus fruited prolifically. An 

unidentified species of Descomyces (T024H) may also be mycorrhizal with hazel. 

The survey findings also indicate that Hydnangium, which is another common 

Australian genus, appears to be forming mycorrhizas with hazel. Hydnangium 

archeri and an unidentified Hydnangium species (T001H) were both found 

directly beneath clusters of hazel. While it is possible that they were hosted by 

Eucalyptus in the surrounding area, the assumption that hazel was the host is 

supported by the subsequent collection of Podohydnangium sp. and Laccaria 

tortilla at site 2, and other collections of Laccaria at sites 1,3 and 7. Hydnangium, 

Podohydnangium and Laccaria are closely related genera (Beaton et al., 1984). 

Podohydnangium is a sub-epigeal Australian genera that has characteristics 

intermediate to that of Laccaria and Hydnangium (Beaton et al., 1984). If species 

of Podohydnangium and Laccaria are able to form mycorrhizas with hazel, it 

seems probable that Hydnangium would be able to do likewise. 

Further to this, Hydnangium and other endemic genera such as Descolea which 

are commonly associated with Eucalyptus have been reported fruiting under 

Nothofagus (CSIRO database; Bougher, 1995). This information and the findings 

of this survey suggests that some genera of Australian endemic fungi such as 

Hydnangium, Descomyces and related genera have broader host ranges than 

previously reported. 

Additional studies are required to determine whether those endemic 

ectomycorrhizal fungi apparently supported by hazels are forming mycorrhizas 

with a mantle and Hartig net or more superficial types of mycorrhizas. Further 

studies are also required to elicit the host ranges of these fungi. If they are able to 
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form mycorrhizas with a member of the Corylaceae family, then it is quite 

conceivable that they may also enter into relationships with other northern 

hemisphere hardwoods. 

2.3.2 Species New to Tasmania 

Hymenogaster arenarius, Hymenogaster australis and Laccaria tortilla are fungal 

species which have not been previously reported in Australia. Melanogaster 

ambiguus is new to Tasmania, although it has been reported on mainland 

Australia (May and Wood, 1997). While none of these species have been noted as 

being particularly aggressive to trufficulture in Europe, the discovery of these 

fungi indicates that there are potentially other introduced fungi, yet to be 

discovered, that may impact on Tasmanian truffieres. 

It is quite likely that Melanogaster ambiguus, Hymenogaster arenarius and 

Laccaria tortilla were imported from Victoria on the roots of suckers planted at 

Site 2 (refer to Table 2.4). The limited collections of these fungi in Tasmania can 

all be traced to this site. It is interesting to note that these fungi were not apparent 

at Site 7 where the majority of trees had been taken from Site 2 as rooted suckers. 

The soil at Site 7 has poor structure and was poorly drained and this may have 

impacted on the growth of the fungi. 

2.3.3 Implications for the Truffle Industry 

Of those introduced species collected in this survey, Hebeloma crustiliniforme is 

recognised as an aggressive competitor and harmful to production, particularly in 

older plantations (Sourzat et al., 1993). Melanogaster ambiguus is not known as a 

competitor in Europe, although Melanogaster variegatus occurs occasionally in 

older truffieres (Sourzat et al., 1993). It should be noted however, that 

M ambiguus was fruiting prolifically under hazel at Sites 1 and 2. If the same 

level of contamination were to occur in a truffiere, it would represent a significant 

carbon drain on the trees. 

30 



ASSOCIATIONS 

With respect to competition from introduced and cosmopolitan fungi previously 

reported in Tasmania (Appendix 2), only three of these fungi have been reported 

for Corylus avellana. These fungi, Lactarius piperatus, L. subdulcis and Paxillus 

involutus are not cited as aggressive competitors in Europe. Furthermore, there is 

some doubt that L. subdulcis has been found in Tasmania (N. Bougher, CSIRO, 

pers. corn.). On the other hand, Cenococcum graniforme is an example of a known 

aggressive competitor that could be reasonably expected to exist in Tasmania but 

appears not to have been reported as such. 

Another threat to the truffle industry in Tasmania comes from those fungi that 

have not been specifically reported for hazel, but are expected to be capable of 

forming mycorrhizas with hazel (Table 2.3). Of the fungi in this category, Boletus 

luridus, Laccaria laccata and Scleroderma verrucosum have been reported in 

Tasmania. Sourzat et al. (1993) noted that those trees supporting Boletus luridus 

will not produce truffles. The competitiveness of Scleroderma species is subject to 

debate. Sourzat et al. (1993) suggested that Scleroderma species were present in 

most truffieres, but mainly inhabited the outer edge of the brille and were 

generally not detrimental to truffle production. However, Hall et. al. (1994) 

reported that a Scleroderma species competed with T melanosporum in New 

Zealand. 

Amanita muscaria could possibly pose problems to the Tasmanian truffle industry 

as it has a broad host range and is able to form mycorrhizas with Nothofagus 

(Fuhrer and Robinson, 1992) and Eucalyptus (N. Malajczuk, pers. corn.). While it 

is not mentioned as a truffle competitor in the European literature, several other 

Amanita spp. are mentioned and A. solitaria is noted as a very aggressive 

competitor (Sourzat et al., 1993). 

While some Australian endemic mycorrhizal fungi have the ability to form 

mycorrhizas with hazel, at present, there is little information regarding the 

compatibility of the relationship, or how competitive to T melanosporum these 
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fungi might be in a commercial truffiere. In particular, it is not known how these 

endemic ectomycorrhizal fungi will respond to the heavy applications of lime that 

are being applied to Tasmanian truffieres. These issues are examined further in the 

subsequent chapters of this thesis. 
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3 The Effect of Applied Lime on 

Tuber melanosporum and other 

Ectomycorrhizal Fungi found in 

Tasmania 

This section serves as a general introduction to Chapters 4, 5 and 6 which 

primarily concern the effects of applied lime on T melanosporum and other 

ectomycorrhizal fungi. 

Regions of truffle production in France correspond to soils formed on a calcareous 

substratum (Delmas, 1978). These soils include rendzinas, brown earths and 

lithosols (Poitou, 1988). They are typically shallow and rich in fragments of 

calcareous material. Most of the soils have not been strongly leached, and hence 

the high calcium levels give rise to high soil pH. From the results of soil surveys 

conducted in France, Delmas et al. (1981) reported that good production of 

Perigord black truffles occurred on soils with a pH (water) within the range 7.8 to 

8.35. In addition to the high pH and high levels of calcium, truffle producing soils 

are free draining with a friable granular structure. The topsoil generally has a 

balanced texture (loams) and moderate levels of organic matter (1.5 to 

8%)(Delmas et al., 1981). In soils that deviate from these physical and chemical 

characteristics, T melanosporum is likely to be replaced by other species of 

ectomycorrhizal fungi including other Tuber species (Chevalier and Poitou, 1990). 

In contrast to the truffle growing regions of Europe, most Tasmanian soils are 

acidic (Grant et al., 1995). There are only a few isolated pockets of soils formed 

from calcareous parent material (Davies, 1965). They include the calcareous 

coastal sands and terra rossa soils on the west coast of King and Flinders Islands, 
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loamy soils on precambrian dolerite in far north west Tasmania and podzolic soils 

formed on limestone in the Mole Creek region. These soils are very limited in area 

and are not suitable for the cultivation of truffles for a variety of reasons. These 

reasons differ for each soil type and include factors such as remoteness, steep 

topography, poor structure and poor drainage. 

Consequently, truffieres are being established on soils with a neutral or slightly 

acidic reaction and limestone is applied to increase the pH to the required level. 

There is little information as to how T melanosporum responds to such practice. 

However, truffles have been produced from truffieres in the USA, New Zealand 

and France on neutral or acidic soils that were limed to increase the pH (Hall et 

al., 1994). 

The response of native ectomycorrhizal fungi to liming is also a significant 

consideration. It has been shown that hazel can host some endemic fungal species 

such as Descomyces albus (refer to Section 2.3). It is reasonable to expect that 

these endemic fungi and naturalised strains of cosmopolitan fungi may be 

specifically adapted to the acidic nature of Tasmanian soils. Whether these fungi 

can grow at higher levels of pH needs to be determined. If these native species of 

fungi are not able to adapt to heavily limed soils, this further reduces the number 

of ectomycorrhizal fungi able to compete with T melanosporum. 
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4 The Effect of pH on the In Vitro 

Growth of Native and Introduced 

Ectomycorrhizal Fungi 

4.1 Introduction 

It has been widely assumed that most ectomycorrhizal fungi are acidophilic 

(Slankis, 1974). However, there are clearly many exceptions to the rule (Hung and 

Trappe, 1983), including Tuber melanosporum (Poitou etal., 1983). The response 

of Australian native fungi to different levels of pH is poorly understood. 

This work represents a preliminary study into the pH tolerance of native and 

introduced ectomycorrhizal fungi found in Tasmania. Isolates of several native 

mycorrhizal fungi collected in Tasmania were grown in vitro on media adjusted to 

four levels of pH. The growth of these native fungi was compared to that of 

introduced species collected in Tasmania and elsewhere, including Tuber spp. 

from France. 

It is acknowledged that in vitro experiments need to be interpreted with caution. 

For example, Hung and Trappe (1983) were able to group species of 

ectomycorrhizal fungi into categories depending on the number of pH units over 

which they exhibited good growth. However the variations in response to pH in 

vitro could not be related to the pH of the soil from which they originated. That is, 

those fungi that grew best in vitro at a high pH did not originate from high pH 

soils. This contrasts with work quoted by Slankis (1974) where the preferred pH 

for growth in vitro corresponded closely to the pH of soil adjacent to the 

sporocarps. 
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Erland et al. (1990) also emphasised the limitations of generalising from data 

obtained in pure culture experiments. The ectomycorrhizal fungi used in their 

study grew much faster when grown as symbionts than when grown in pure 

culture. Furthermore, pH tolerance levels of fungi grown in pure culture varied 

depending on the media used. 

With these limitations in mind, in vitro experiments are still a useful tool for 

scanning a large number of fungi for possible trends that may influence the 

direction of future research. 

4.2 Materials and Methods 

4.2.1 Overview 

Twenty seven ectomycorrhizal fungal isolates growing in culture were sub-

cultured onto buffered agarose media adjusted to four levels of pH (5.6, 7.0, 8.0 

and 8.5). The radial growth of the fungi was measured to give a growth rate in 

millimetres per day. 

4.2.2 Fungal Treatments 

The fungal isolates used in the experiment are listed in Table 4.1. Those fungi 

with the code prefixed by the letter 'T' were collected as part of the survey 

documented in Chapter 2. The Tuber spp. were provided by Mr Gerard Chevalier, 

INRA, France. The remainder of the isolates were obtained from the Australian 

Centre for International Agricultural Research collection maintained at CSIRO, 

Division of Forestry, Perth. 
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Table 4.1. List of fungal isolates. 
Code Fungal Isolate Origin Location Vegetation Soil 

pH* 
Preferred 
Medium 

E0412 Amanita muscaria Introduced Burnie, TAS Pinus radiata NA Mn 
H0222 Astraeus pteridis Introduced USA NA NA Pach 
E4432 Boletus piperatus Introduced Maydena, 

TAS 
Tsuga heterophylla, 
Pseudotsuga 
menziesii 

NA Mn 

H0220 Cenococcum 
geophilum 

Introduced USA NA NA Mn 

TO11H Cortinomyces sp. Unknown Perth, TAS Coiylus avellana 4.9 PDA 
E4974 Descolea recedens Endemic Maydena, 

TAS 
Eucalyptus regnans NA Pach 

T003H Descomyces albus Endemic Hobart, TAS C. avellana 7.0 Pach 
TOO7H Descomyces albus Endemic Penguin, 

TAS 
C. avellana 6.0 PDA 

H2114 Descomyces 
curvirostratus 

Endemic Burnie, TAS E. globulus NA PDA 

E0784 Hebeloma 
westraliense 

Endemic Moore River, 
WA 

E. wandoo NA Pach 

E0200 Hebeloma 
crustiliniforme 

Introduced USA NA NA Mn 

TOO5H Hydnangium 
archeri 

Endemic Hobart, TAS C. avellana 7.0 Pach 

TOISH Hydnangium 
carneum 

Endemic Wrens, 
Manjimup, 
WA 

E. globulus 5.7 Pach 

H1151 Hymenogaster sp. Endemic TAS E. globulus NA Mn 
E0496 Inocybe sp. Introduced Adelaide, SA NA NA Mn 
H0611 Labyrinthomyces 

varius 
Endemic Manjimup, 

WA 
E. diversicolor NA PDA 

E0202 Laccaria bicolor Introduced USA NA NA Mn 
E2092 Laccaria sp. Endemic TAS E. nitens NA Mn 
E1130 Laccaria sp. Endemic TAS E. nitens NA Pach 
H1375 Mesophelia 

clelandii 
Endemic Scamander, 

TAS 
E. delegatensis NA Mn 

E4948 Paxillus sp. Endemic Geeveston, 
TAS 

Nothofagus 
cunninghamii, 
E. delegatensis, 

NA Pach 

TOO6E Scleroderma 
verrucosum 

Cosmopolitan Tonganah, 
TAS 

C. avellana 5.4 PDA 

H2000 Scleroderma 
verrucosum 

Cosmopolitan Bakers Hill, 
WA 

E. robusta NA Mn 

H1023 Setchelliogaster sp. Endemic TAS E. globulus NA Mn 
H6315 Setchelliogaster sp. Endemic Maydena, 

TAS 
Nothofagus 
cunninghamii 

NA Mn 

Mos 
Pey 

Tuber brumale Introduced France NA NA Malt 

Mel 24 Tuber 
melanosporum 

Introduced France NA NA Malt 

• * pH of soil at the site of collection of sporocarps (if known) 
• Mn = Modified Melin Norkans medium (Marx, 1969); Pach = Pachlewski medium (Pachlewski and 

Pachlewski, 1974); PDA = Potato Dextrose Agar; Malt = 10 g/L malt extract. 
• E4948, E2092 & El 130 are assumed to be endemic because of their association with native hosts. 
• WA = Western Australia; TAS = Tasmania; SA = South Australia. 
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4.2.3 Media 

Fungal isolates were grown in 90 mm petri dishes on one of four media; modified 

Melin Norkans (Marx, 1969), Pachlewski (Pachlewski and Pachlewski, 1974), 

potato dextrose agar or malt extract. One medium would not support all the 

isolates, so isolates were grown on a medium on which they were known to grow 

strongly. The type of medium used for each isolate is given in Table 4.1. The 

composition of each medium is given in Appendix 3. 

The biological buffers MES, HEPES, and Tricine were applied to each medium at 

10 mM. The characteristics of these buffers are shown in Table 4.2. 

Table 4.2. Characteristics of the biological buffers used in the media. 

Buffer name Chemical name pKa  Buffering Range 

(25°C) (25°C) 

MES 2-(N-Morpholino)ethanesulfonic acid 6.1 5.5-6.7 

HEPES N-(2-Hydroxyetyl)piperazine-N-(2- 

ethanesulfonic acid) 

7.5 6.8-8.2 

Tricine N-tris(Hydroxymethyl)methylglycine; N- 8.1 7.4-8.8 

(2-Hydroxy-1,1- 

bis[Hydroxymethyl]ethyl)glycine 

Source: Sigma Chemical Company catalogue, 1996. 

4.2.4 pH Treatments 

Each fungal isolate was grown on buffered media at four levels of pH; 5.6, 7.0, 

8.0 and 8.5. The pH of the media was adjusted using KOH as a strong alkali was 

needed to adjust the pH once the buffers were added. In addition to the buffered 

treatments, an unbuffered treatment at pH 5.6 was included to determine the effect 

of the buffers on fungal growth. For each treatment combination, there were four 

replicates. 

The number of pH treatments was restricted by the limited availability of plates 

from which to subculture and the very slow growth rates of some species in 
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culture, particularly T melanosporum. This made it difficult to bulk up the 

number of plates required for the experiment. The range 5.6 to 8.5 corresponds to 

the pH range dealt with in the field. The majority of soils selected for truffieres in 

Tasmania have a pH greater than 5.6. This figure also lies between the pH usually 

used for the Pachlewski medium (5.4) and modified Melin Norkans (5.8). A soil 

pH (water) of 8.5 is approximately the maximum pH that can be reached by 

applying calcium carbonate. 

4.2.5 Subculturing 

Isolates were subcultured using a corer, ten millimetres in diameter, to cut a disk 

at the edge of the culture. The disk was then transferred to the centre of a treated 

agar plate. Five disks were taken from a single culture with one disk for each pH 

treatment. This process was repeated four times to obtain four replicates. 

4.2.6 Measurements 

Once the culture had grown approximately 20 mm from the disk, the radial growth 

was measured on four axis at about 90 0  to each other. Mean radial growth was 

calculated in millimetres per day. 

4.2.7 Statistics 

The results for each isolate were analysed using single factor ANOVA. Means 

were compared using the Least Significant Difference test. 

4.3 Results and Discussion 

Fungal growth for the buffered treatment at pH 5.6 varied quite significantly from 

that of the unbuffered treatment for most isolates (refer to Table 4.3). The majority 

of isolates showed a positive response to the inclusion of the buffers, however 

there were no trends between genera or between introduced and endemic species. 
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Table 4.3. Effect of applying biological buffers on the growth of the fungal 

isolates at pH 5.6. 

Endemic Species 

Fungal Isolate 	Code A Growth 

Introduced & Cosmopolitan Species 

Fungal Isolate 	Code 	A Growth 

Cortinomyces sp. TO11H 13% Amanita muscaria E412 26%* 
Descolea recedens E4974 -45%* Astraeus pteddis H222 38% 
Descomyces albus TOO7H 90%* Boletus piperatus E4432 18%* 
Descomyces albus T003H 5% Cenococcum geophilum H0220 44%* 
Descomyces curvirostratus H2114 -6% Hebeloma crustiliniforme E200 169%* 
Hebeloma westraliense E784 93%* lnocybe sp. E496 32%* 
Hydnangium arched TOO5H -100%* Laccaria bicolor E202 52%* 
Hydnangium cameum TO15H 45%* Sclerodenna verrucosum H2000 -85%* 
Hymenogaster sp. H1151 4% Scleroderma verrucosum TOO6E 22% 
Labyrinthomyces vadus H611 -20%* Tuber brumale MosPey 42%* 
Laccada sp. E2092 62%* Tuber melanosporum Mel 24 	-79%* 
Laccada sp. E1130 -11% 

Mesophelia clelandii H1375 125%* 

Paxillus sp. E4948 50%* 

Setchelliogaster sp. H6315 77%* 

Setchelliogaster sp. H1023 -17%* 

* denotes a significant change (P>0.05) 

The following results concern the changes in growth rate between the four pH 

treatments for each isolate. It is not valid to compare growth rates between fungal 

isolates as they were grown on different media and responded quite differently to 

the application of the buffers. Nor is there any reason to compare the growth rate 

between isolates as their growth rate in culture relative to their growth rate as 

symbionts is likely to vary from isolate to isolate (Erland et al., 1990). 

Growth responses of endemic ectomycorrhizal fungi to increasing pH of the media 

are shown in Figures 4.1-3. Members of the Cortinariaceae family are represented 

in Figure 4.1. All of these isolates exhibited best growth at pH 5.6 and declined 

with increasing pH, some more rapidly than others. Similar responses occurred for 

those fungi in Figure 4.2, however the two Laccaria species exhibited good 
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growth over a broader pH range. From these two figures, it would appear that 

many Australian native fungi are acidophilic. On the other hand, Figure 4.3 

demonstrates that some native species were largely unaffected by increasing pH. It 

also demonstrates that two species of a genus can react quite differently. 

Setchelliogaster sp (H6315) grew well at all levels of pH whereas Setchelliogaster 

sp. (H1023) showed no growth at pH 8 and 8.5. 

Figure 4.4 includes both introduced and cosmopolitan species exhibiting an 

acidophilic nature. This contrasts with Figure 4.5 where the introduced species, 

with the exception of the Tuber species, grew well at all pH treatments. Hebeloma 

crustiliniforme, Cenococcum graniforme and species of Amanita, Astraeus, 

Boletus, Inocybe and Scleroderma were included in the experiment as these 

species/genera are known competitors to T melanosporum (Chevalier and Poitou, 

1990; Sourzat et al., 1993) and must therefore have the capacity to tolerate 

alkaline soils. However, comparisons between the results depicted here and 

observations of fungal fruiting on calcareous soils are difficult as species of the 

same genera, and strains within a species can respond quite differently to pH 

(Hung and Trappe, 1983). 

For the six isolates that were collected as part of the survey reported in Chapter 2, 

there was information on the pH of the soil at the site of collection (refer to Table 

4.1). In each case the soil was either acidic or neutral and this generally 

corresponded to better growth in pure culture at the pH 5.6 and 7.0 treatments 

(refer to Figures 4.1, 4.2 & 4.4). 
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The growth rate of 7'. melanosporum in culture is very slow. Growth was highest 

at pH 7.0 with little growth at pH 8.0 and 8.5. These results differ from those of 

Poitou etal. (1983) where T. melanosporum exhibited weak growth below pH 7.0 

and optimal growth from pH 7.9 to 9.0. These differences may be due either to 

differences in the media, the alkali used to adjust the pH, or the strain of 

T. melanosporum. Poitou et al. (1983) used a modified Modess-Mikola medium 

and several different alkali to adjust pH. Tuber brumale grew best at pH 5.6 

which is in accordance with the finding of Poitou etal. (1983) that T. brumale 

prefers a lower pH than 7'. melanosporum. 

While there are many limitations of pure culture experiments, those native species 

that were collected in the field survey, such as Descomyces albus and 

Hydnangium archeri appear to prefer slightly acid or neutral reaction and do not 

grow well in alkaline media. Further studies with these species grown as 

symbionts are required in order to predict how these fungi will respond to the 

heavy lime applications occurring in Tasmanian truffieres. 

Figure 4.1 Growth response of endemic' ectomycorrhizal fungi to increasing pH. 

• Descdee recedens (E4974) 
LSD(5%).0.043 

• Descanyces elbus (1007H) 
LSD(5%)=0.075 
Desccrnyces albus (T003H) 
LSD(596).0.056 

• Descanres curvirostratus (112114) 
LSD(5%).0.123 

• Cortinomyces sp. (1011 H) 
LED(5%)=0.039 

• Hyrnenogaster sp. (111151) 
LSD(5%).0.050 

The origin of the Cortinomyces sp. is unknown. 
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Figure 4.2. Growth response of endemic ectomycorrhizal fungi to increasing pH 

• Hydnangium cameum (T01 5H) 
LSD(5%)01048 

• Hydnangium archeri (T005H) 
LSD(5%)=0.015 

Laccaria sp. (E2092) 
LSD(5%)=0 036 

• Laccaha sp. (E1130) 
LS0(5%)=0.107 

• Paxillus sp. (E4948) 
LSD(5%)=3.004 

O Mesophelia clelandii (H1375) 
LSD(5%)=0.076 

Figure 4.3. Growth response of endemic ectomycorrhizal fungi to increasing pH 
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• Labyrinthomyces varius (H611) 
LSD(5%).061 

• Setchelliogaster sp. (H6315) 
LSD(5%).063 

o Setchelliogaster sp. (H1023) 
LSD(5%).020 

0 Hebeloma westraliense (E784) 
LSD(5%)4).070 
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Figure 4.4. Growth response of introduced and cosmopolitan ectomycorrhizal 

fungi to increasing pH. 

1.2 	  

• Amanita muscaria (E412) 
LSD(5%)=0.030 

• Boletus piperatus (E4432) 
LSD(5%)=0.019 

0 Cenococcum geophilum (H0220) 
LSD(5%)=0.022 

0 Scleroderma verrucosum (H2000) 
LSD(5%)=0.088 

• Scleroderma verrucosum (T006E) 
LSD(5%)*:).146 

Figure 4.5. Growth response of introduced ectomycorrhizal fungi to increasing pH 

• Astraeus pteridis (H222) 
LSD(5%)=0 259 

• Hebeloma crustilinrforme (E200) 
LSD(5%)=0.076 

0 lnocybe sp. (E496) 
LSD(5%)=0.108 

0 Laccana bicolor (E202) 
LSD(5%)=0 164 

• Tuber melanosporum (Mel 24) 
LSD(5%)=0.026 

0 Tuber brumale (MosPey) 
LSD(5%)=0.018 
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5 The Effect of Applied Lime on 

Tuber melanosporum and other 

Ectomycorrhizal Fungi Forming 

Mycorrhizas with Hazel 

5.1 Introduction 

While it has been widely accepted that T melanosporum prefers calcareous soils, 

there are very few published experiments looking at the effects of applied lime on 

T melanosporum. Much of the information regarding the preferred soil ecology of 

T melanosporum has been derived from soil surveys such as that of Delmas et al. 

(1981). From these surveys, it is very difficult to determine which soil 

characteristics are critical to truffle production as many soil factors are interrelated. 

Delmas et al. (1981) surveyed soils from 144 truffieres throughout the main truffle 

growing regions of France. One hundred and fifteen of the truffieres exhibited 

brides. The remaining 29 truffieres did not exhibit brille formation. However, there 

was no information given about the productivity of these sites. Some of the results 

of the survey are summarised in Table 5.1. 

Delmas et al. (1981) used principal components analysis in an attempt to determine 

which soil parameters were responsible for the brale formation. the results 

indicated that soil types exhibiting brille formation were characterised by relatively 

high levels of fine sand and calcium carbonate, and relatively low levels of fine silt, 

nitrogen and organic matter. While this process was useful as a preliminary 

investigation, the conclusions that can be drawn regarding truffle production are 

limited. For example, it cannot be determined whether the putative positive 
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influence of fine sand and negative influence of fine silt was due to their effect on 

soil structure or soil chemistry. Further experimentation in controlled conditions is 

required to improve the knowledge base on the edaphic requirements of 

T melanosporum. 

Table 5.1. Soil parameters of French truffieres as reported by Delmas et al. (1981). 

Soil Parameter Range for truffle 

soils exhibiting a 

bride 

Range for all soils 

surveyed 

pH (water) 7.8-8.35 6.7-8.45 

Available P (mg/kg) 6-980 4-1380 

Total P (mg/kg) 555-2531 550-3300 

Total N (g/kg) 0.460-5.220 0.34-7.34 

Organic Carbon (g/kg) 4.7-50 3.3-88.6 

Carbon / Nitrogen Ratio 8.57-13.7 5.8-18.11 

Percentage Organic Matter 0.8-8.3 0.6-12.7 

Exchangeable Ca (me/100 g) 23.75-67.5 0.41-73.75 

Exchangeable Mg (me/100 g) 0.425-4.422 0.23-7.65 

Exchangeable K (me/100 g) 0.1-1.29 0.05-1.48 

Exchangeable Na (me/100 g) 0.036-0.17 0.036-0.25 

The work by Delmas et al. (1981) also raises the question of how to predict truffle 

production. Delmas et al. (1981) used the presence or absence of a bride as an 

indicator of truffle production. The correlation between bride formation and truffle 

production has not been studied, but the relationship does not appear to be strong. 

Trees without a bride can produce truffles and trees with a bride may not (Le 

Tacon et al., 1982). Furthermore, other species of ectomycorrhizal fungi such as 

Tuber aestivum and Scleroderma sp. are known to produce a bride (Hall et al., 

1994). 

46 



LIME 

The percentage of roots colonised by T melanosporum, or the total length of 

mycorrhizal roots, may be a better indication of potential fruit body production 

than brale formation, although these relationships have not been examined. In most 

vesicular-arbuscular mycorrhizal associations, there is a close correlation between 

spore formation and the total length of mycorrhizal roots produced by a given host 

(Brundrett, 1991). However, it is possible that conditions which enable good 

mycorrhizal infection by T melanosporum may not be suitable for fruiting. 

Termorshuizen and Schaffers (1989) studied correlations between environmental 

factors, fruiting of ectomycorrhizal fungi and mycorrhizal infection for Pinus 

sylvestris. There was a significant correlation (Spearman correlation coefficient of 

0.50, P<1%) between the level of fruiting and the total number of mycorrhizas. A 

stronger correlation (Spearman correlation coefficient of 0.73, P<1%) existed 

between the level of fruiting and the number of branched mycorrhizas. However, 

fruitbody production was more sensitive to adverse environmental conditions 

(atmospheric NE1 3  and SO2  pollution) than the level of mycorrhizal colonisation. 

In field experiments on established truffieres, such as those conducted by Le Tacon 

et al. (1982), fruiting can be measured directly to determine the effects of various 

soil treatments. However, the variability of conditions in the field, combined with 

the extremely sporadic nature of fruiting of T. melanosporum may necessitate a 

high number of replicates and measurement of fruiting over a number of years in 

order to reveal treatment effects. 

5.1.1. Experimental Conditions and Objectives 

In Tasmania where there has been no fruiting of T. melanosporum to date, the level 

of mycorrhizal colonisation by T melanosporum was chosen as the most practical 

indicator of potential truffle production. This experiment aims to study the effects 

of applied lime on the level of mycorrhizal colonisation by T. melanosporum and 

other introduced and native ectomycorrhizal fungi in controlled glasshouse 

conditions. The experiment was conducted as a pot experiment in a glasshouse 

where soil and other environmental factors can be controlled and the level of 

mycorrhizal colonisation can be determined more readily than in the field. This 
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decreases the level of variation in colonisation caused by non-treatment effects and 

therefore increases the potential of revealing treatment effects. 

The specific objectives were: 

1. To confirm that the endemic fungi collected in the survey (Chapter 2) can form 

mycorrhizal relationships with hazel. 

2. To see if some Australian endemic species, that are normally mycorrhizal with 

Eucalyptus, are able to form mycorrhizas with hazel. 

3. To determine how these endemic fungi respond to heavy lime application. 

4. To examine the growth of T. melanosporum on an acid soil that has been 

heavily limed both in the absence and presence of other ectomycorrhizal fungi, 

either native or introduced. 

5.2 Materials and Methods 

5.2.1 Overview 

In October 1994, 120 hazel seedlings (Corylus avellana) inoculated with one of 

eight fungal treatments were transplanted into pots in a glasshouse in Perth, 

Western Australia. Plants from each fungal treatment were grown at three levels of 

applied lime. For each lime-fungus treatment combination, there were five 

replicates. The pots were randomly distributed on benches within the glasshouse 

and the benches were rotated on a weekly basis. The experiment was non-

destructively sampled three times over a period of 26 months. 

5.2.2 Soil Preparation 

A yellow sandy soil with a pH of 6.0 (1:5 0.01M CaCl 2) and Bray-extractable P of 

2 mg / kg (total P 22 mg / kg) was collected from the Spearwood dune system 

north of Perth, Western Australia. The soil was steam sterilised twice at 80°C for 
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two hours and oven dried at 70°C before being sieved through a 2 mm sieve. This 

yellow sandy soil was selected as the growing medium for the following reasons; 

• ease of handling for the processes of sterilising, drying, sieving and potting, 

• known suitability for supporting native ectomycorrhizal fungi in previous pot 

experiments (Bougher et al., 1990), 

• ease with which strands of fungal hyphae and primordia can be seen growing in 

the soil, 

• ease of removing soil from the roots for root analysis. 

Fourteen centimetre plastic pots were lined with plastic bags, and each filled with 

2.5 kg of dried soil. Basal nutrients were applied in solution to each pot at the 

following rates (mg / kg sand): K2SO4, 111.6; CaSO4 .2H20, 51.5; MgSO4 .7H20, 

33.7; CuSO 4 .5H20, 8.2; MnSO4.4H20, 16.9; ZnSO 4 .7H20, 9.2; 

(1•11-14)6M07024.4H20, 0.46; CoC12.6H20, 0.34; Na2B407 .10H20, 1.10. When the 

soil had air-dried after the application of these solutions, 100 mg of 

Ca(H2PO4)2 .H20 was applied as a powder to each pot, together with the relevant 

lime application. These applications were thoroughly mixed through the soil by 

shaking in a plastic container. The surface of each pot was covered with reflective 

aluminium sheeting to limit evaporation and retard algal growth. The reflective 

sheeting also promotes the growth of roots and hyphae near the surface of the soil. 

The pots were watered to field capacity (14% w/w) with deionised water and left 

to equilibrate for one month prior to planting. After the equilibration period, a 

chemical analysis was conducted on a sample of 6 replicates from each soil 

treatment. Mean values from this analysis are shown in Table 5.2. The methods 

used for determination of soil parameters are given in Table 5.3. 
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Table 5.2. Mean chemical analysis of each soil treatment. 

Soil Parameter No Lime Low Lime High Lime 

Available P (mg/kg) Bray test 3.8 a 4.6 a 5 a 

Total P (mg/kg) 47.2 a 47.5 a 45.5 a 

Total N (g/kg) 0.041 a 0.036 a 0.042 a 

Organic Carbon (g/kg) 0.832 a 0.691 a 0.740 a 

Carbon / Nitrogen Ratio 20.4 a 19.2 a 17.8 a 

Percentage Organic Matter 0.14 a 0.12 a 0.13 a 

Exchangeable Ca (me/100g) 0.266 c 0.515 b 0.720 a 

Exchangeable Mg (me/100g) 0.146 a 0.105 b 0.085 c 

Exchangeable K (me/100g) 0.026 a 0 b 0 b 

Exchangeable Na (me/100g) 0.155 a 0.167 a 0.068 a 

• Means that are followed by the same letter are not significantly different (P<0.05) by the Least 
Significant Difference test. 

• Exchangeable bases were extracted using NH4C1. 
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Table 5.3. Methods used for determination of soil parameters. 

Soil Parameter Method Reference 

Available P (mg/kg) 

Total P (mg/kg) 

Total N (g/kg) 

Organic Carbon (g/kg) 

Percentage Organic Matter 

Exchangeable Ca (me/100g) 

Exchangeable Mg (me/100g) 

Exchangeable K (me/100g) 

Exchangeable Na (me/100g) 

Fluoride-extractable P (Bray 1-P) 

Sulphuric acid, potassium 

sulphate, copper sulphate 

Sulphuric acid, potassium 

sulphate, copper sulphate 

Walkley & Black 

Determined by calculation 

(Organic Carbon * 1.7) 

1M ammonium chloride at pH 7 

1M ammonium chloride at pH 7 

1M ammonium chloride at pH 7 

1M ammonium chloride at pH 7 

Rayment & Higginson (1992) 

Heffernan (1985) 

Heffernan (1985) 

Rayment & Higginson (1992) 

Brady (1984) 

Rayment & Higginson (1992) 

Rayment & Higginson (1992) 

Rayment & Higginson (1992) 

Rayment & Higginson (1992) 
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5.2.3 Fungal Treatments 

Week old hazel seedlings, germinated in sterile potting mix, were inoculated with 

one of eight fungal treatments. 

1. Control. Plants not inoculated. 

2. Tuber melanosporum Vitt. 

3. Melanogaster ambiguus (Vitt.) Tul. 

4. Descomyces albus (Klotzsch) Bougher & Castellano 

5. Hydnangium carneum Wallr. 

6. Scleroderma mcalpinei (Rodway) Castellano 

7. T melanosporum and M ambiguus . 

8. T melanosporum and D. albus 

The inoculation procedure for 7'. melanosporum has not been documented due to 

the commercially sensitive nature of the information. For the remaining 

treatments, spore slurries of both air dried and fresh sporocarps were used to 

inoculate the seedlings. Ten millilitres each of both the dry spore and wet spore 

slurry were used per seedling. Spores slurries were obtained by blending 

sporocarps in distilled water. The subsequent spore slurry concentrations are 

shown in Table 5.4. 
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Table 5.4. Source and concentration of spore slurries. 

Fungus Collection 

Number 

Collection Site Host Origin Spore Slurry Concentration 

(spores m1-1) 

Dry Fresh 

Tuber melanosporum N/A France N/A Introduced N/A N/A 

Melanogaster ambiguus TOO6H Penguin, TAS Corylus avellana Introduced 250 000 2 775 000 

Descomyces albus TOO9H Penguin, TAS Corylus avellana Endemic 595 000 418 000 

Hydnangium carneum TO15H Wrens, WA Eucalyptus globulus Endemic 1 725 000 1 240 000 

Scleroderma mcalpinei TO17H Yarnup, WA. Eucalyptus globulus Endemic 4 680 000 3 170 000 
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In addition to those fungi deliberately used as fungal treatments, several other 

ectomycorrhizal fungi became established in the experiment. Three of these 

contaminating fungi were particularly prominent. The mycorrhizas of these fungi 

were initially labelled Type 1, Type 3 and Type 9. Type 1 mycorrhizas were later 

associated with Hebeloma crustiliniforme fruitbodies and Type 9 mycorrhizas 

were associated with fruitbodies of Laccaria tortilla (refer to Section 5.3.4). Type 

3 mycorrhizas did not fruit and thus remain unidentified. 

These contaminating fungi were most likely introduced as spores attached to the 

outside of the M ambiguus and D. albus sporocarps collected from Penguin, 

Tasmania. An explanation for the presence of these fungi is given in Section 5.4.4. 

5.2.4 Lime Treatments 

The three lime treatments were, "no lime", "low lime" (0.25g CaCO3 / kg soil), 

and "high lime" (0.5g CaCO3 / kg soil). The quantity of lime required to raise the 

pH of the soil was determined by incubation as described in Barrow and Cox 

(1990). Precipitated calcium carbonate (BDH Chemicals Ltd, England) was 

incorporated in order to facilitate a rapid reaction with the soil. The pH (1:5 

0.01M CaC12) of the lime treatments from the time of inoculation and 

transplanting until the third harvest are shown in Figure 5.1. The decline in pH of 

the soil after transplanting was most likely due to the poor buffering capacity of 

the sandy soil. Fluctuations in soil-soluble salts, due to environmental conditions 

and fertilizer inputs, cause less variation in pH values measured in 0.01M CaC1 2  

than those measured in water (White 1969). 
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After the second harvest, eleven months after the commencement of the 

experiment, three of the five replicates from each treatment combination were 

randomly selected and transferred to 25 cm pots. The remaining replicates were 

discarded. Lime treated soil corresponding to the three treatment levels was used 

in transferring the plants to larger pots, hence the increase in the soil pH seen at 

this time. 

Figure 5.1. pH (CaC1 2) of the lime treatments (bars show standard error). 
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5.2.5 Glasshouse Preparation and Maintenance 

In order to limit contamination by other mycorrhizal fungi, the glasshouse and 

benches were steam cleaned prior to the commencement of the experiment. 

Plastic pots and aluminium sheeting were treated with sodium hypochlorite. 

During the experiment, the glasshouse floor was regularly hosed out to limit 

contamination from air borne dust. 

pH 
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5.2.6 Irrigation and Temperature Control 

The plants were individually weight watered with deionised water to 70% field 

capacity every day (refer to Plate 5.1). Evaporative coolers restricted maximum 

temperatures to below 25°C. Climate statistics for Perth are shown in Appendix 4. 

Plate 5.1. Watering system used to weight water the plants. 

5.2.7 Harvesting and Analysis 

5.2.7.1 Mycorrhizal colonisation 

The level of mycorrhizal colonisation was determined using non-destructive 

sampling at three harvest times. The first harvest was in May 1995, seven months 

after inoculation, the second harvest in September 1995, eleven months after 

inoculation, and the final harvest in November 1996, after twenty six months. 

Samples were taken using a stainless steel corer, 25 mm in diameter and 100 mm 

in length. Three cores were taken from opposite sides of each pot at a distance of 

about 20 mm from the edge of the pot (refer to Plate 5.2). The corer was flame 

sterilised between each pot to minimise the risk of cross infection. 
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The percent colonisation of each mycorrhizal type was calculated on the basis of 

length. The lengths of each root type were determined using the grid-line 

intersection method (Giovannetti and Mosse, 1980; Tennant, 1975). For each 

sample, roots were counted as either fine roots or coarse roots. Fine roots were 

defined as those capable of forming mycorrhizal roots (generally less than 160 pm 

in diameter). For the fine root portion, the root length of each mycorrhizal type and 

the length of non-mycorrhizal roots was determined. These figures enabled the 

calculation of the following parameters: 

• Percentage Fine Roots = Length of Fine Roots / Total Root Length * 100 

• Percentage of Mycorrhizal Roots = 

Length of Mycorrhizal Roots / Length of Fine Roots * 100 

• Percent Colonisation of Mycorrhizal Type X = 

Length of Type X / Length of Fine Roots * 100 

• Hence, E Percent Colonisation of each Mycorrhizal Type = 

Percentage of Mycorrhizal Roots 

5.2.7.2 Plant height and stem diameter 

Plant height and stem diameter were measured on four occasions; 1,3,7 and 11 

months after inoculation. 

5.2.7.3 Sporocarp production 

Fruitbody production was noted on the surface of the soil, beneath the reflective • 

foil, and on the side of the pot by lifting the plant out of the pot whilst in the plastic 

bag. The pots were checked for sporocarps regularly (twice weekly) during the 

autumn and winter months of the first year. Two fungal species fruited prolifically. 

On four occasions during the first winter (8 to 10 months after inoculation), the 

number of primordia and fruitbodies of these two predominant fungi were 

recorded. Other fungal species were recorded when noticed. 
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5.2.7.4 Statistical analysis 

• The statistical package employed for analysis was SAS for Windows version 

6.11. 

• The effect of lime on the level of mycorrhizal infection for each harvest period 

was analysed using single factor analysis of variance for each mycorrhizal type 

(refer to Section 5.3.1). 

• Repeated measures analysis of variance was used to compare levels of 

mycorrhizal infection between harvests (refer to Section 5.3.1). The 

Greenhouse-Geisser adjustment factor was utilised whenever the sphericity test 

was significant (P<0.05). 

• Two way analysis of variance was used to investigate the effects of lime and 

fungal treatments on variables such as percentage fine roots, plant height and 

stem diameter, within each harvest period (refer to Sections 5.3.2 and 5.3.3). 

• Correlation analysis was used to investigate relationships between all variables 

within a harvest period. 

• Linear regression analysis was used to compare percentage mycorrhizal roots 

and percentage fine roots for all harvests (refer to Section 5.3.2). 

• Single factor analysis of variance was used to show the effect of fungal 

treatments on fruitbody production (refer to Section 5.3.4). 

• The Least Significant Difference test was used to compare means. 
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5.3 Results 

5.3.1 Mycorrhizal Colonisation 

Four of the five fungal species used as inoculum formed mycorrhizal associations 

with the hazel. Descomyces mycorrhizas were formed, but it could not be 

conclusively shown that these mycorrhizas were derived from the inoculum (refer 

to Section 5.3.1.3 & 5.4.5). In addition to those used as inoculum, several other 

contaminant fungi formed mycorrhizas in the experiment. The main mycorrhizal 

types found in the experiment are described in Section 5.3.5. 

The mycorrhizal fungi recorded in the experiment can be divided into three groups 

according to how they responded to applied lime. 

1. Those that were positively affected by the application of lime. 7'. melanosporum 

was the only species that showed an increase in the level of colonisation when 

lime was applied. 

2. Those that were negatively affected by the application of lime. These were 

H. carneum and S. mcalpinei, both of which are endemic to Australia. 

3. Those that were relatively unaffected by the application of lime. This group 

included M ambiguus, H. crustiliniforme, L. tortilla and Descomyces sp., all of 

which are introduced species with the exception of Descomyces sp. 

More detailed results for the behaviour of each fungus are given below. 
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5.3.1.1 Species positively affected by lime 

Tuber melanosporum colonisation 
T. melanosporum was very slow to establish relative to other species in the 

experiment. In the treatment inoculated with T. melanosporum alone (refer to 

Figure 5.2), there was no evidence of T. melanosporum by the first harvest and 

only a slight colonisation in the low lime' and 'high lime' treatments by the second 

harvest. At the time of the third harvest, the mean level of colonisation in the 'high 

lime' treatment had dramatically increased to nearly 60%, the highest level of 

colonisation by any fungus in the experiment. This level of colonisation for the 

'high lime' treatment was significantly higher (P<0.001) than that of the low lime' 

and 'no lime' treatments. 

As is shown in Figure 5.3, a similar pattern for T. melanosporum colonisation 

occurred in the treatment inoculated with T melanosporum and M ambiguus. 

However, the responses of T melanosporum to the lime treatments were not 

significantly different (P>0.05). The non significant result was due to the fact that 

T. melanosporum only established in two of the replicates of the 'high lime' 

treatment, thereby increasing the variation and decreasing the mean level of 

colonisation. 

T. melanosporum did not become established in the treatment where it was co-

inoculated with D. albus. 
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Figure 5.2. The level of Tuber melanosporum colonisation in the treatment where 

it was inoculated alone. Means within harvests that are followed by the same 

letter are not significantly different (P<0.05) by the Least Significant Difference 

test. 
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Figure 5.3. The level of Tuber melanosporum colonisation in the treatment where 

it was co-inoculated Melanogaster ambiguus. Means within and between harvests 

are not significantly different (P>0.05). 
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5.3.1.2 Species negatively affected by lime 

Hydnangium carneum colonisation 
H. carneum showed moderate levels of colonisation by the first harvest, and there 

were no significant changes (P>0.05) in the level of colonisation in subsequent 

harvests. Lime had a significant effect on the level of colonisation by H. carneum. 

As shown in Figure 5.4, H. carneum did not establish at the 'high' level of applied 

lime. The 'no lime' treatment exhibited significantly higher levels of colonisation 

(P<0.05) than the 'high lime' treatment for the first two harvest. While this trend 

continued in the third harvest, the means were not significantly different (P>0.05). 

Figure 5.4. The level of Hydnangium carneum colonisation in the treatment 

inoculated with H. carneum. Means within harvests that are followed by the 

same letter are not significantly different (P<0.05) by the Least Significant 

Difference test. 
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Scleroderma mcalpinei colonisation 
There was a general trend for the level of colonisation by S. mcalpinei to decrease 

with increasing levels of applied lime (refer to Figure 5.5). However, while 

S. mcalpinei showed no signs of colonisation at the high level of applied lime, the 

differences between the 'no lime' treatment and the 'high lime' treatment were 

only significant (P<0.05) in Harvest 2. 

After the first harvest the mean level of colonisation did not significantly increase 

or decrease. That is, there were no significant differences (P>0.05) between 

harvests in the mean level of colonisation. 

Figure 5.5. The level of Scleroderma mcalpinei colonisation in the treatment 

inoculated with S. mcalpinei. Means within harvests that are followed by the 

same letter are not significantly different (P<0.05) by the Least Significant 

Difference test. 

Harvest 1 
	

Harvest 3 
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5.3.1.3 Species which were not signcantly affected by lime 

Melanogaster ambiguus colonisation 
The level of colonisation of M ambiguus was low compared to the other fungi in 

the experiment. While the number of mycorrhizas were low, M ambiguus was 

noted to produce a mass of strands, visible to the eye, in the pots that it had 

infected. This mass of strands are shown in Plate 5.3. 

Plate 5.3. Mass of strands on the soil surface produced by 

Melanogaster ambiguus. 

As indicated in Figures 5.6 and 5.7, lime had no significant effect (P>0.05) on the 

level of colonisation of M ambiguus. Nor was there a change in the levels of 

M ambiguus over the harvest period. Furthermore, co-inoculation with 

T melanosporum had no significant effect (P>0.05) on the level of M ambiguus 

relative to that treatment that was inoculated with M ambiguus alone. 
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Figure 5.6. The level of Melanogaster ambiguus colonisation in the treatment 

where it was inoculated alone. Means within harvests that are followed by the 

same letter are not significantly different (P<0.05) by the Least Significant 

Difference test. 

• No Lime 
• Low Lime 
• High Lime 

Harvest 1 
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Figure 5.7. The level of IVIelanogaster ambiguus colonisation in the treatment 

where it was co-inoculated with T. melanosporum. Means within harvests that 

are followed by the same letter are not significantly different (P<0.05) by the 

Least Significant Difference test. 
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In the second harvest, M ambiguus also appeared as a contaminant at a very low 

level in one replicate of the 'no lime', 'T. melanosporum* D. albus' treatment 

combination. 

Descomyces colonisation 
A Descomyces species appeared in those treatments inoculated with D. albus, but 

also in those inoculated with M ambiguus (refer to Figure 5.8). The level of 

colonisation was higher in those treatments inoculated with M ambiguus, but not 

significantly higher (P>0.05). By the second harvest, 7 of the 30 replicates 

inoculated with M ambiguus contained the Descomyces mycorrhizas compared to 

only 1 of the 30 replicates inoculated with D. albus. 

Lime had no significant effect (P>0.05) on the degree of colonisation of the 

Descomyces sp. for all three harvests. This can be attributed to the considerable 

variation within and between inoculation treatments as illustrated in Table 5.5. 

Figure 5.8. The average level of Descomyces sp. colonisation across the three lime 

treatments for those treatments inoculated with D. albus or Melanogaster 

ambiguus. Means are not significantly different (P>0.05). 

5 	 Fungal Treatments 
• Melanogaster 
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Contaminating fungi: Hebeloma crustiliniforme, Laccaria tortilla & Type 3 
colonisation 

Three contaminating fungi Hebeloma crustiliniforme, Laccaria tortilla & Type 3 

were found at quite high levels in the experiment. In the first and second harvests, 

these fungi were confined almost entirely to those fungal treatments inoculated 

with either NI. ambiguus or D. albus (refer to Figures 5.9, 5.10, and 5.11). It was 

only at the third harvest that H. crustiliniforme and L. tortilla mycorrhizas were 

found in other fungal treatments including the control treatment. 

Applied lime had no significant effect (P>0.05) on the level of colonisation of 

either H. crustiliniforme, Type 3 or L. tortilla. This is illustrated for Harvest 3 in 

Table 5.5. Their occurrence was sporadic and did not appear to be effected by the 

lime treatments. 
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Figure 5.11. The level of Laccaria tortilla colonisation for each fungal treatment. Means within harvests that are followed by the same letter 

are not significantly different (P<0.05) by the Least Significant Difference test. 
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Table 5.5. The effect of lime in Harvest 3 on those mycorrhizal types found in the 
treatments inoculated with Melanogaster ambiguus or Descomyces sp. Values in 
the table are for percentage colonisation of the fungus averaged over the three 
replicates. The number in brackets refers to the number of replicates in which the 
mycorrhizal type was detected. 

A. M ambiguus inoculum alone 

Mycorrhizas formed No Lime Low Lime High Lime LSD (5%) 
T melanosporum 0 0 0 
M ambiguus 2.3 (2) 8.5 (2) 2.0 (1) 17.4 
D. albus 11.8 (1) 0.9 (1) 7.0 (3) 25.0 
H. crustiliniforme 32.3 (2) 0 0 35.0 
Type 3 0 22.8(1) 0 45.5 
L. tortilla 18.3 (2) 0 2.1 (1) 19.0 
Total 64.7 32.2 11.1 38.9 

B. Descomyces inoculum alone 

Mycorrhizas formed No Lime Low Lime High Lime LSD (5%) 
T. melanosporum 0 0 0 
M ambiguus 0 0 0 
D. albus 0 0 0 
H. crustiliniforme 17.3 (2) 0.35 (2) 10.1 (2) 24.6 
Type 3 12.7 (1) 50.4 (3) 36.9 (3) 41.4 
L. tortilla 12.4 (2) 0.27 (1) 0.21 (1) 12.5 
Total 42.4 51.0 47.2 30.17 

T. melanosporum + M. ambiguus inoculum 

Mycorrhizas formed No Lime Low Lime High Lime LSD (5%) 
T. melanosporum 0 0 14.8 (1) 29.6 
M ambiguus 0.8 (1) 0.1 (1) 0.1 (1) 1.7 
D. albus 0 5.4 (2) 0 8.0 
H. crustiliniforme 0 9.5 (2) 10.0 (3) 17.6 
Type 3 13.2 (1) 0 9.7 (1) 32.8 
L. tortilla 25.8 (2) 22.4 (3) 1.8 (1) 34.4 
Total 39.8 37.4 36.4 53.7 

T. melanosporum + Descomyces inoculum 

Mycorrhizas formed No Lime Low Lime High Lime LSD (5%) 
T. melanosporum 0 0 0 
M ambiguus 0 0 0 
D. albus 0 0 0 
H. crustiliniforme 14.3 (2) 1.1 (2) 7.8 (3) 27.1 
Type 3 0 0 0 
L. tortilla 26.9 (3) 26.3 (3) 38.5 (3) 41.6 
Total 41.2 27.4 46.3 39.5 
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5.3.2 The Percentage of Fine Roots 

The ratio of fine roots to coarse roots (or the percentage of fine roots), was 

significantly affected by the lime and fungal treatments, and there were also 

significant fungal-lime interactions. However, these effects could be explained by a 

negative correlation between the percentage colonisation and the percentage of 

fine roots. That is, if a treatment (lime or fungal) increased the level of 

colonisation, then the ratio of fine roots to coarse roots decreased. 

The results of the regression analysis of percentage colonisation on the percentage 

of fine roots are illustrated in Figure 5.12. The regression analysis was across all 

treatments for each of the three harvests. The parameters for the regression 

analysis are given in Table 5.6. 

Table 5.6. Parameters for the regression analysis of percentage colonisation 

(x axis) on the percentage of fine roots (y axis). 

Harvest Y Intercept Slope Adjusted R-squared 

Harvest 1 68.70 -0.209 0.32 

Harvest 2 69.03 -0.219 0.37 

Harvest 3 68.27 -0.210 0.36 

While the adjusted R-squared values were low, the values for the Y intercept and 

slope were highly significant (P<0.001) for all three harvests. 
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5.3.3 Plant Height and Stem Diameter 

There were no significant treatment effects (P>0.05) on plant height or stem 

diameter, so data is not presented. 

5.3.4 Sporocarp Production 

Two mycorrhizal types initially labelled Type 1 and Type 9 fruited prolifically 

during the winter months. They were identified as H. crustiliniforme and L. tortilla 

respectively by tracing hyphal linkages to these sporocarps (refer to Plate 5.4). 

The fruitbodies of H. crustiliniforme and L. tortilla were initially confined to those 

treatments that were inoculated with either M ambiguus or D. aMus (refer to 

Table 5.7) as was the case for their mycorrhizas. As a result of fruiting in the first 

winter, both fungi spread to other treatments. 

Table 5.7. The average number of sporocarps or primordia per pot for Laccaria 

tortilla and Hebeloma crustiliniforme during June, July and August of 1995. 

Fungal Treatment Laccaria 
tortilla 
Mushrooms 

Hebeloma 
crustiliniforme 
Mushrooms 

Hebeloma 
crustiliniforme 
Primordia 

1. 	Control 0 a 0 b 0 b 
2. Tuber melanosporum 0 a 0 b 0 b 

3. Melanogaster ambiguus 1.80 a 0.20 b 0.93 ab 

4. Descomyces albus 2.87 a 0.20 b 3.33 a 

5. Hydnangium carneum 0 a 0 b . 0 b 

6. 	S'cleroderma mcalpinei 0 a 0 b 0 b 

7. 	T. melanosporum & 2.67 a 0.26 ab 0.73 b 
M. ambiguus . 

8. T melanosporum & 1.33 a 0.60 a 1.73 ab 
D. albus 

Means within columns (sporocarp types) that are followed by the same letter are not significantly 

different (P<0.05) by the Least Significant Difference test. 
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Plate 5.4. Sporocarps produced during the experiment. 

1 

2 
	

3 

1. Hyphal linkages between the mycorrhizas and sporocarp of Hebeloma 

crustiliniforme. 

2. Laccaria tortilla fruiting under hazel. 

3. Hymenogaster arenarius fruiting under hazel. 
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5.3.5 Description of Mycorrhizal Types 

Tuber melanosporum 

Refer to Plate 5.5 

Identification. 	Literature descriptions (Palenzona, 1969; Granetti, 1995; Meotto 

et al, 1995; Paolocci et al, 1995; Zambonelli et al., 1995), DNA 

fingerprinting (refer to Chapter 9). 

Shape. 

Colour. 

Mantle. 

Club shaped with well rounded apices and extensive irregular 

branching. Tips can be up to 4.5 mm long and are normally about 

0.3 mm wide. 

During the dormant stage, the mycorrhiza are uniformly dark 

amber. When the mycorrhiza are active, the tip becomes very 

pale and the remainder of the mycorrhiza is a light amber colour. 

A pseudoparenchymatous mantle where the surface cells have a 

puzzle-like appearance. These cells have a wavy edge with well 

pronounced lobes. Alternatively, the mantle can be described as 

irregular synenchyma with interlocking cells as per Ingleby 

1990. The mantle is compact and smooth. 

C'ystidia. At certain times of the year, predominantly when the fungus is 

actively growing (spring, summer and autumn) these mycorrhizas 

can form cystidia (spinules). These cystidia are hyaline and 

approximately 70 to 160 pm long, with one or two transverse 

septa on the lower section. At the point of attachment to the 

mantle, the cystidia are slightly enlarged with an average 3.0 pm 

wide (range of 2.5 to 4.3 pm). The cell wall of the cystidia is 

consistently thin. 
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Plate 5.5. Tuber melanosporurn mycorrhizas. 

1 (bar = 200 p.m) 
	 2 (bar = 101.(m) 

3 (bar = 251.(m) 
	 4 (bar = 10 4m) 

5 (bar = 100 i.tm) 
	 6 (bar = 10 Ilm) 
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Hyphae: During periods of active growth, the mycorrhiza produce straight 

rigid hyphae which have characteristic right-angled branches. 

This hyphae often emanates as tufts from the mycorrhiza's 

surface. The cell walls of the hyphae are light amber, but fade in 

the younger sections. 

Plate 5.5. Tuber melanosporum mycorrhizas 

1 Mycorrhiza with numerous cystidia. 

2 Transverse septa of the cystidia. 

3 Cystidia (spinules) showing transverse septa. 

4 "Jigsaw puzzle"-like mantle. 

5 Young mycorrhiza showing cystidia, emanating hyphae and germinating 

T melanosporum spores. 

6 Emanating hyphae. 
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Plate 5.6. Descomyces sp. mycorrhizas. 

1 (bar = 200 I.J.m) 
	 2 (bar = 300 rim) 
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Descomyces sp. 

Refer to Plate 5.6 

Identification. 	Literature descriptions of Descomyces species (Bougher and 

Malajczuk, 1985). 

Shape. 	Mycorrhizas are fairly long, sinuate and occasionally branched. 

Colour. 	Golden brown, even throughout the length of the mycorrhiza. 

Mantle. 	Net prosenchyma as per Ingleby et.al. 1990. 

Cystidia. 	The cystidia are a key distinguishing feature of this mycorrhiza. 

They appear as a hyaline, thin-walled stalk with a swollen apex. 

The stalks are 6 to 12 pm long, 3.5 to 6 pm wide at the base 

tapering to 1 to 2 pm wide just below the swollen apex. The 

apices are 2 to 4 pm in diameter. The density of cystidia on the 

mycorrhiza can vary enormously. 

Hyphae. 	This fungus has two distinct types of emanating hyphae. The first 

type is straight and rigid with clamp connections. The cell walls 

are thick and amber in colour. The second type of hyphae is 

hyaline, sinuous, with thin walls. 

Plate 5.6. Descomyces sp. mycorrhizas 

1. Young mycorrhiza showing the straight, rigid type hyphae emanating from the 

tip. 

2. Mature mycorrhizas. 

3. Transition at a clamp connection between the straight, rigid, amber colour 

hyphae and the sinuous, hyaline hyphae. 

4. Mass of cystidia on the mantle surface. 

5. Hyphae overlying cystidia at the surface of the mycorrhiza. 

6. Cystidia emanating from the mantle. 
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Plate 5.7. Scleroderma mcalpinei mycorrhizas. 

1 (bar  =  100 gm) 

2 (bar = 300 i.tm) 3 (bar = 10 gm) 

4 (bar  =  10 gm) 
	 5 (bar = 1 0 gm) 
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Scleroderma mcalpinei 

Refer to Plate 5.7 

Identification. 	Association with inoculant and literature descriptions of other 

Scleroderma species (Chu-Chou and Grace, 1983; Molina and 

Trappe, 1982). 

Shape. 

Colour. 

Mantle. 

Cystidia. 

Hyphae . 

Long, slender, tortuous and of uneven diameter. 

Yellow with brown tinges. 

Net synenchyma as per Ingleby et.al. 1990. 

None seen. 

Hyaline ( 2 to 3 pm in diameter) with clamp connections. Has 

distinct white simple strands that are 40 -50 pm in diameter. 

Plate 5.7. Scleroderma mcalpinei mycorrhizas. 

1. Mycorrhizas. 

2. Tortuous mycorrhizas showing hyphal strands. 

3. Net synenchyma mantle. 

4. Hyphal strand. 

5. Extramatrical hyphae showing clamp connections. 

84 



LIME 

Plate 5.8. Melanogaster ambiguus mycotThizas. 

1 (bar = 300 pm) 
	 2 (bar = 300 pm) 

3 (bar = 10 pm) 
	

4 (bar = 10 pm) 

5 (bar = 20 pm) 
	 6 (bar = 20 p.m) 
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Melanogaster ambiguus 

Refer to Plate 5.8 

Identification. 	Distinct smell, association with inoculant, and literature 

descriptions of other Melanogaster species (Molina and Trappe, 

1982). 

Shape. 	Club shaped. 

Colour. 	Dusty brown or matt brown under a stereo microscope. With the 

naked eye, they appear grey. 

Mantle. 	Net synenchyma as per Ingleby et.al., 1990. 

Cystidia. 	None seen. 

Hyphae. 	Matt brown, up to 4pm in diameter with clamp connections. The 

surface of the hyphae is rough with very fine hair like structures. 

Crowded junctions of clamp connections have been observed (ie. 

two or three close together). Younger sections of hyphae are 

hyaline, smooth and are often associated with mucilage and 

bacteria. Changes from the pigmented hyphae to the hyaline 

hyphae are observed at hyphal septum. Large brown strands, 

clearly visible with the naked eye are produced in abundance. 

The hyphae also has the same distinct smell as the fruitbody, 

somewhat like chicken manure. 

Plate 5.8. Melanogaster ambiguus mycorrhizas. 

1. Young mycorrhizal tips growing in the yellow sand interconnected with mycelial 

strands. 

2. Mature mycorrhizas. 

3. Mantle surface. 

4. Crowded junction of clamp connections. 

5. Mycelia! strands. 

6. Septa dividing the younger hyaline hyphae from the typical brown hyphae. 
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Plate 5.9. Hydnangium carneum mycorrhizas. 

1 (bar = 200 .tm) 

2 (har 10 pm) 

3  (bar = 10 gm) 
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Hydnangium carneum 

Refer to Plate 5.9 

Identification. 	Association with inoculant and hyphal linkages to fruitbody. 

Shape. 	Long, straight, unbranched and fairly uniform in diameter. 

Colour. 	Light brown. 

Mantle. 	Irregular synenchyma not interlocking as per Ingleby et. al. 1990. 

Cystidia. 	None seen. 

Hyphae. 	Hyphae extends evenly from the entire surface of the mycorrhiza. 

This hyphae is hyaline, with clamp connections and is 2 to 3 pm 

in diameter. 

Plate 5.9. Hydnangium carneum mycorrhizas. 

1. Buff coloured mycorrhizas. 

2. Mantle surface. 

3. Hyaline extramatrical hyphae showing clamp connection.' 
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Type 1. Hebeloma crustiliniforme 

Refer to Plate 5.10 

Identification. 	Hyphal links to fruitbodies and literature descriptions (Chu-Chou 

and Grace, 1983). 

Shape / Colour. These mycorrhiza are characterised by a mass of mucilaginous 

emanating hyphae. The heavy coating of mucilage on the hyphae 

gives the mycorrhiza its yellow colour. The mycorrhizas are 

typically short with little radial expansion. 

Mantle. 	Largely undiscernible due to the mucilage. 

Cystidia. 	None. 

Hyphae. 	The hyphae is straight, hyaline with clamp connections. The 

clamp connections can be very difficult to see due to the layer of 

mucilage. There was often a lot of bacteria and nematodes 

associated with this mucilaginous hyphae. 

Plate 5.10. Hebeloma crustiliniforme mycorrhizas. 

1. Mass of mucilaginous hyphae surrounding root tips with little radial expansion. 

2. More developed mycorrhizas showing some radial expansion. 

3. Mycorrhiza taken with differential interference contrast showing limited radial 

expansion. 

4. Extramatrical hyphae with clamp connection surrounded by mucilage. 
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Plate 5.11. Laccaria tortilla mycorrhizas. 

3 (bar = 20 lim) 2 (bar = 20 lAm) 

4 (bar = 10 pm) 
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Type 9. Laccaria tortilla 

Refer to Plate 5.11 

Identification. 	Hyphal links to fruitbodies and literature descriptions (Ingleby et. 

al., 1990). 

Shape. 	Thin, unbranched, with a mass of emanating hyphae. Differs from 

H. crustiliniforme in that the hyphae is generally free of mucilage 

and there is more radial expansion. 

Colour. 	Fawn, darkening to manilla with age. 

Mantle. 	Loosely formed net prosenchyma becoming more compact on 

older mycorrhizas. 

Cystidia. 	None seen. 

Hyphae. 	Hyaline, 2 to 3.5 pm in diameter with large clamp connections. 

At the septum the hyphae often bends towards the clamp 

connection to give an elbow-like appearance. 

Plate 5.11. Laccaria tortilla mycorrhizas. 

1. Fawn, unbranched mycorrhizas surrounded by extramatrical hyphae. 

2. Mantle surface. 

3. Surface of mycorrhiza after clearing with KOH. 

4. Hyaline extramatrical hyphae with clamp connections. 
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Plate 5.12. Type 3 mycorrhizas. 

 

1 (bar = 300 pm) 2 (bar = 20 pm) 

3 (bar = 10 pm) 
	 4 (bar = 20 pm) 

MINER.. 

5 (bar = 10 pm) 6 (bar = 10 p.m) 
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Type 3 

Refer to Plate 5.12 

Identification. Unknown fungus. 

Shape. 	Unbranched, undulating and uneven in diameter. Up to 5 mm in 

length. 

Colour. 	Young mycorrhizas are a manilla colour with a pale tip. Older 

mycorrhizas are light to medium brown colour. 

Mantle. 	Irregular synenchyma where the cells are not interlocked. 

C'ystidia. 	Awl-shaped cystidia, 70 to 100 pm in length, with one or two 

septum toward the base of the cystidium. The cystidia most often 

occur on the pale tip of young mycorrhiza. 

Hyphae. 	Thick, frequently septate hyphae usually 4 to 5 pm in diameter, 

with a maximum diameter of 8 pm. Occasionally the hyphae 

were covered in mucilage. No clamp connections. 

Plate 5.12. Type 3 mycorrhizas. 

1. Mycorrhiza with cystidia evident on the pale tip. 

2. Mycorrhizal tip showing cystidia and mantle pattern. 

3. Mantle surface. 

4. Straight unbranched cystidia. 

5. Thick emanating hyphae showing septum. 

6. Base of cystidia. 
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Plate 5.13. Hymenogaster arenarius mycorrhizas. 

1 (bar = 100 i_tm) 

2 (bar = 10 i.tm) 
	 3 (bar = 10 lAm) 

4 bar = 10 lim 
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Hymenogaster arenarius 

Refer to Plate 5.13 

Identification. 	Hyphal links to fruitbodies. 

Shape. 	Unbranched and uneven in diameter. Up to 4 mm in length. 

Colour. 	Manilla coloured with a reddish brown mesh when seen under a 

stereo microscope. 

Mantle. 	Net synenchyma. Short truncate branching and elbow structures 

seen in the emanating hyphae are also present in the mantle. 

C'ystidia. 	None seen. 

Hyphae. 	Hyphae is about 2-4 tm in diameter, smooth, uneven, hyaline, 

thin walled, with short truncate branching and elbow type 

bending. Hyphae are constricted at the septa. 

Plate 5.13. Hymenogaster arenarius mycorrhizas. 

1. Manilla coloured mycorrhiza with reddish brown mesh appearance. 

2. Mantle surface. 

3. Extramatrical hyphae showing short truncate branch at the top of the photo. 

4. Extramatrical hyphae showing constriction at the septa. 
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Sections of mycorrhizas 

Plate 5.14 shows mantle formation for those species described in the experiment. 

Hartig net formation was evident for, H. crustiliniforme, H. carneum, L. tortilla, 

S. mcalpinei and Type 3. Tuber melanosporum also had a Hartig net, but it is not 

shown clearly in the section. 

Spore types 
Plate 5.15 shows the spores of fungi in the experiment. 
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1. Tuber melanosporum, cross section. 

2. Descomyces sp., cross section. 

s 

3. Melanogaster ambiguus, longitudinal section. 

LIME 

Plate 5.14. Sections of mycorrhizas stained with Chlorazol Black E showing 
mantle and Hartig net (scale bar = 10 um). M = mantle, H = Hartig net. 
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„ha  
5. Hydnangium carneum, cross section. 

4. Hebeloma crustiliniforme, cross section. 

/ 

6. Laccaria tortilla, cross section. 
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7 . Hymenogaster arenarius, cross section. 

8. Scleroderma mcalpinei, cross section. 

9. Type 3, cross section. 
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Plate 5.15. Spores of fungi in the experiment (scale bar = 10 wn). 

1. Tuber melanosporum spores in ascus. 	2. Descomyces albus spores & mycelium 

3. Melanogaster ambiguus spores 	4. Hydnangium carneum spores 

5. Laccaria tortilla spores 

 

• 

6. Hebeloma crustiliniforme spores 
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5.4 Discussion 

5.4.1 The Response of Tuber melanosporum to Applied Lime 

The results of the experiment show that T melanosporum will colonise hazel 

growing on an infertile Australian sand with a pH of 6, albeit very slowly and at 

low levels of colonisation. When lime is applied, colonisation by T melanosporum 

increases. Strong colonisation by T melanosporum (— 60% of fine roots) was 

obtained at the highest level of lime application. This demonstrates that 

T. melanosporum prefers calcareous soils. 

Most of the research in Europe suggests that for good fruitbody production the 

texture of the soil needs to be a balanced mix of sand, silt and clay, and that the soil 

should have a granulose structure (Delmas etal., 1981). By comparison, the soil 

used in this experiment was a structureless sand. Other differences are 

demonstrated in Table 5.8 which compares the levels of soil parameters of the high 

lime treatment with a range for which Delmas etal. (1981) observed brflle 

formation on a number of truffieres throughout France. 

Tuber melanosporum was able to colonise hazel in a soil that would generally be 

considered to be unsuitable for truffle production. Possible explanations for this 

are: 

1. Soil conditions that are capable of supporting strong mycorrhizal development 

may not be suitable for fruit body production. That is, high levels of 

colonisation can occur in soils that would not normally be expected to furnish 

good truffle yields. 

2. A soil may not be optimal for T. melanosporum, but lack of competition from 

other fungi can allow colonisation and potential for fruit formation. 

The first point could be tested by studying the correlation between fruitbody 

production and the level of mycorrhizal infection by T. melanosporum in mature 

truffieres. If there were soil types that supported good mycorrhizal infection but 
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produced few or no fruit bodies over a number of years, then it would suggest that 

the basic soil conditions required for fruiting are more stringent than those required 

for good vegetative growth. 

The second point could be tested by growing hazels inoculated with 

T melanosporum for several years in the 'High Lime' treatment soil type to see 

whether truffles are produced. That is, grow them in pots large enough to support 

a mature tree, prevent contamination from other mycorrhizal fungi, provide 

climatically favourable conditions, then monitor for possible fruitbody production. 

Table 5.8. Soil parameters for the 'High Lime' treatment and for soils of French 

truffieres exhibiting brilles as reported by Delmas et al. (1981). 

Soil Parameter French truffle soils . 

producing a brCile 

High Lime treatment 

— 60% colonisation 

pH (water) 7.8-8.35 7.8' 

Available P (mg/kg) 6-980 5 

Total P (mg/kg) 555-2531 45.5 

Total N (g/kg) 0.460-5.220 0.042 

Organic Carbon (g/kg) 4.7-50 0.74 

Carbon / Nitrogen Ratio 8.57-13.7 17.8 

Percentage Organic Matter 0.8-8.3 0.13 

Exchangeable Ca (me/100 g) 23.75-67.5 0.72 

Exchangeable Mg (me/100 g) 0.425-4.422 0.085 

Exchangeable K (me/100 g) 0.1-1.29 0 

Exchangeable Na (me/100 g) 0.036-0.17 0.068 

At the time of the third harvest. 

For the majority of soil parameters, the levels differ greatly between the High Lime 

treatment and the range reported by Delmas et al. (1981). This indicates that the 

levels of these parameters are either not critical to the vegetative growth of 

T. melanosporum, or, that the range required for vegetative growth is much wider 
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than the range given by Delmas et al. (1981). Parameters of interest include 

exchangeable calcium, total and available P, total nitrogen, percent organic matter. 

and the carbon/nitrogen ratio as these parameters have been considered to have an 

influence on truffle production (Chevalier and Poitou, 1990; Delmas et al., 1981; 

Delmas and Poitou, 1978; Le Tacon et al., 1982; Mamoun and Olivier, 1991). The 

effect of available phosphorus, exchangeable calcium and exchangeable magnesium 

are discussed further in Chapters 6 and 7. 

On the other hand, those parameters in Table 5.8 showing corresponding levels 

may be important for the vegetative growth of T. melanosporum. The pH and 

exchangeable Na were the only parameters where this was the case. It is unlikely 

that exchangeable sodium would play a significant role in a soil dominated by 

calcium. However, the pH of the 'high lime' treatment is one parameter that is 

likely to have a significant role. The role of pH is discussed further in Chapter 6. 

It was also evident that T melanosporum suffered a dramatic decline in its 

frequency of colonisation when other fungi were present at the time of inoculation 

such as in the co-inoculated treatments. These competitor fungi established quickly 

and appear to prevent primary infection by T. melanosporum. This emphasises the 

requirement to eliminate inoculum of competitor ectomycorrhizal fungi when 

commercially inoculating seedlings with T melanosporum, and during the time the 

plants are in the nursery. When the seedlings are exposed to other ectomycorrhizal 

fungi at the time of planting in the field, T. melanosporum should have colonised 

much of the root system and be more resilient to competition. 

5.4.2 Host Specificity of Australian Native Ectomycorrhizal Fungi 

Examination of the associations formed by Descomyces sp., H. carneum and 

S. mcalpinei prove that these Australian native fungi, normally associated with 

Eucalypts, are forming mycorrhizal relationships with Cotylus avellana. It is 

reasonable to expect that other members of the Hydnangium, Descomyces and 
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Scleroderma (native species) genera may also be capable of forming mycorrhizal 

relationships with hazel as well as species from other native genera. 

5.4.3 The Response of Australian Native Fungi to Applied Lime 

Hydnangium carneum and S. mcalpinei were not able to adapt to the high level of 

applied lime. Therefore, some of the competition to T melanosporum from native 

ectomycorrhizal fungi can be reduced by the application of high levels of lime. On 

the other hand, the Descomyces sp. appeared to be unaffected by the lime 

treatments. However, the very sporadic establishment of Descomyces in the 

experiment may have prevented lime effects being recognised. The possible causes 

for the sporadic development of the Descomyces mycorrhizas are discussed below 

in Section 5.4.5. 

Further research with more fungal species, soil types, and levels of applied lime 

would offer more information as to the likely competition to T. melanosporum by 

endemic ectomycorrhizal fungi. 

It should also be noted that in a field situation where there may be a number of 

potential ectomycorrhizal competitors present, reducing the number of competitor 

species may not reduce the competition experienced by T melanosporum. It is 

probably the competitiveness of the fungi present, not the number of competitive 

species that restrict the production of T. melanosporum. For example, in New 

Zealand where there are very few ectomycorrhizal fungi, some of the newly 

established truffieres are being affected by competition from just one or two 

species including a Scleroderma sp. and another Tuber sp. (I. Hall, pers. corn.). 

However, the fewer number of species in Tasmania that are able to establish and 

grow strongly at high levels of applied lime, the less likely the trufferies are to 

become infected with contaminant fungi. 
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5.4.4 The Response of Introduced Fungi to Applied Lime 

The introduced species which occurred in the experiment included M. ambiguus, 

H. crustiliniforme and L. tortilla. These species did not appear to be affected by 

the lime treatments. M ambiguus and H. crustiliniforme are common world-wide. 

Their broad distribution indicates an ability to grow under a wide range of soil 

conditions. As mentioned in Chapter 2, H. crustiliniforme is a known competitor 

to the Perigord black truffle in Europe. While Melanogaster vulgaris has been 

reported as being found infrequently in old trufferies, M ambiguus has not been 

reported as a serious competitor. However, the prolific fruiting of M. ambiguus 

that occurred at the Penguin site and its ability to grow in heavily limed soils means 

it cannot be discounted as being a possible competitor to T melanosporum in 

Tasmania. 

Hebeloma crustiliniforme and L. tortilla were both contaminants. The most likely 

explanation for the presence of these contaminant fungi in the experiment is that 

their spores were attached to the peridium of the M. ambiguus and/or D. albus 

sporocarps collected for inoculum from Penguin, Tasmania. Evidence to support 

this presumption include: 

1. In the first and second harvests, H. crustiliniforme, L. tortilla and Type 3 were 

confined almost entirely to those fungal treatments inoculated with either 

M ambiguus or D. albus. It was only at the third harvest that H. crustiliniforme 

and L. tortilla mycorrhizas were found in other fungal treatments including the 

control treatment. Their spread would have been facilitated by the fruiting of 

these two fungi more than a year prior to the third harvest. The Type 3 

mycorrhizas, which did not produce fruiting bodies, remained confined to those 

treatments inoculated with either M. ambiguus or D. albus. 

2. The sporocarps of M ambiguus or D. albus were collected at the same site at 

Penguin, Tasmania, whereas the H. carneum and S. M calpinei sporocarps were 

collected from two different sites in Western Australia, and the • 
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T melanosporum inoculum came from France. 

3. In addition to the three main contaminants of the experiment, mycorrhizas and 

fruit bodies of H. arenarius were found in a pot inoculated with M. ambiguus. 

H. arenarius and L. tortilla are rare in Australia and all collections of these 

fungi in Tasmania can be traced back to the Penguin site. 

4. D. albus contaminated pots inoculated with M. ambiguus and vice versa. Yet 

neither of these fungi were found in any of the other treatments. 

While the D. albus and M ambiguus sporocarps were not surface sterilised, they 

were cleaned thoroughly so one would expect the number of spores of the 

contaminants to be insignificant compared to the spore mass of the sporocarp. This 

presumption was supported by examinations of the spore slurries. Three separate 

and extensive examinations of the D. albus and M. ambiguus spore slurries failed 

to reveal any contaminating spores, suggesting that their concentration in the spore 

slurry must have been very low. 

5.4.5 Origin of the Descomyces Mycorrhizas 

Their was no definite link between inoculation with D. albus spores and the 

development of Descomyces mycorrhizas. Descomyces mycorrhizas were more 

common in those treatments inoculated with M ambiguus (7 out of 30 pots) than 

those inoculated with D. albus (1 of the 30 pots). Possible explanations for the 

results include: 

• The D. albus inoculum was not viable and the Descomyces mycorrhizas formed 

were from contaminant inoculum carried on the M ambiguus and D. albus 

sporocarps. The spores from the D. albus sporocarps may not have been viable 

due to a dormancy factor. 

• The Descomyces mycorrhizas were more commonly found in the M. ambiguus 

treatments because there was more contaminant inoculum (spores or hyphae) on 

the M ambiguus sporocarps. 
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• The higher level of colonisation of Descomyces mycorrhizas in the M. amhiguus 

treatments may be a function of variability. Whilst the mycorrhizas were more 

commonly found in the M. ambiguus treatments than the D. albus treatments, 

the difference was not significant (P>0.05). This high variability may have been 

the result of competition from other species, mainly H. crustiliniforme, 

L. tortilla and Type 3, affecting primary infection by Descomyces. 

• Both the D. albus inoculum and contaminant inoculum formed mycorrhizas of 

D. albus.. That is, the contaminant inoculum was D. albus. 

Whether the mycorrhizas were formed solely from contaminant inoculum or a 

combination of D. albus inoculum and contaminant inoculum, it is highly likely that 

the inoculum came from the Penguin site. The only Descomyces species found at 

this site was D. albus and it was found in abundance. Therefore it is quite likely 

that the Descomyces mycorrhizas observed in the experiment were that of 

D. albus. 

5.4.6 Variation in Colonisation 

A high level of variation in colonisation was evident in the experiment, particularly 

in those treatments dominated by the contaminant fungi, H. crustiliniforme, 

L. tortilla and Type 3 (refer to Table 5.5). In each replicate, one or more of these 

contaminant species established quickly creating competition for available root tips. 

This appeared to result in a decline in the proportion of replicates that were 

colonised by the inoculated species, particularly T. melanosporum. 

Failure of primary infection was also evident in those treatments not affected by 

contaminants. For example, two of the five replicates of the high lime treatment 

inoculated with T melanosporum alone showed no sign of colonisation. However, 

the remaining three replicates produced quite high levels of colonisation. Similarly, 

a portion of the 'no lime' and low lime' replicates in the S. mcalpinei treatment 

showed no sign of colonisation which may have precluded statistically significant 

lime treatment effects for this fungus. 
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5.4.7 Root Structure 

The negative correlation observed between mycorrhizal colonisation and the 

percentage of fine roots can be attributed to the fact that root tips which are 

sheathed by a mycorrhizal fungus are usually shorter and grow more slowly than an 

unsheathed tip (Harley and Smith, 1983). 

However, there may be another factor contributing to the negative correlation 

observed. The percentage of fine roots (or the ratio of fine roots to coarse roots) is 

a reflection of specific root length (metres of root / gram of root). Specific root 

length varies considerably between plant species and is correlated to mycorrhizal 

dependency (Brundrett 1991). Those plants with high mycorrhizal dependency 

tend to have low specific root length. Conversely, those plants with low 

mycorrhizal dependency have a high specific root length. 

Variation within species in the capacity to host T melanosporum has also been 

observed by several authors (Boutekrabt et al., 1990; Guinberteau et al., 1990; 

Mamoun and Olivier, 1996). It is possible that the correlation observed between 

mycorrhizal colonisation and the percentage of fine roots may also be attributable 

to variation between individual hazel plants in their mycorrhizal dependency / 

receptivity. That is, some plants were poorly colonised and had extensive fine root 

systems because they were inherently less dependent on mycorrhizal fungi and 

therefore less receptive. 

While there is generally less variation in root structure within species than there is 

between species (Brundrett, 1991), the possibility that some individuals may be 

better hosts than others should be explored further. This idea is discussed at 

greater length in the general discussion. 
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5.4.8 Sporocarp Production 

Of the nine fungal species found in the experiment, four produced sporocarps; 

Hebeloma crustiliniforme, Laccaria tortilla, Hydnangium carneurri and 

Hymenogaster arenarius. Hebeloma crustiliniforme and L. tortilla fruited 

frequently in the experiment. For both these species there were significant 

correlations between colonisation and fruiting. These findings reflect the work of 

Termorshuizen and Schaffers (1989) who found significant correlations between 

the level of fruiting and the total number of mycorrhizas on Pinus sylvestris. 

The frequency of fruiting of H arenarius and H. carneum was too low to observe 

correlations between fruiting and mycorrhizal colonisation. 

5.4.9 Mycorrhizal Descriptions 

Descriptions of mycorrhizal types have been included as a reference tool to aid the 

future identification of ectomycorrhizal fungi in Tasmanian truffieres. As new 

mycorrhizal types are discovered in the truffieres, they should be described and 

added to the collection. 
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6 The Effect of pH and Calcium on 

Competition between 

Tuber melanosporum and Other 

Ectomycorrhizal Fungi. 

6.1 Introduction 

The two most prominent effects on soil chemistry of applying calcium carbonate 

are an increase in soil pH and an increase in the levels of soil calcium as described 

by the equation below. 

CaCO3  + H+  + OH<---> Ca ++ + HCO 3-  + OW 

There have been no controlled glasshouse or field experiments that have sought to 

separate the effects of pH and calcium on the growth of T. melanosporum as a 

symbiont. In an in vitro experiment, Poitou et al. (1983) used different bases 

containing either calcium, magnesium, potassium or sodium to adjust media on 

which T. melanosporum was grown. Growth was best for calcium with little or no 

growth in the magnesium and potassium treatments. While this may suggest that 

calcium plays an important role in the growth of T melanosporum, extrapolation 

from in vitro results to the field is very difficult (refer to Section 4.1). 

Most other publications regarding the roles of pH and calcium are based on 

observations of the preferred soil characteristics of T. melanosporum: 

• Delmas and Poitou (1973) and Delmas (1978) state that truffle producing soils 

are always calcareous or at least very rich in exchangeable calcium. There was 

no supporting data. 
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• Delmas and Poitou (1974) note that while many truffle producing soils have a 

calcareous substratum, a dolomitic substratum is equally as favourable. That is, 

soils with high levels of both calcium and magnesium do not represent an 

obstacle to truffle production. 

• As previously discussed in Chapter 5, Delmas et al. (1981) conducted soil 

analysis on a number of truffle producing soils. They recorded the levels of 

several soil parameters for soil types exhibiting a bride. The parameters included 

pH, total calcium carbonate, 'active' calcium carbonate and exchangeable 

calcium as well as other parameters listed in Table 5.1. Due to the complexities 

of chemical interactions in soils, few conclusions could be drawn as to the 

relative importance of each parameter. 

• More recent papers reviewing the edaphic requirements of T melanosporum 

appear to be largely based on the work of Delmas c/at. (1981) and Poitou c/at. 

(1983). These include Poitou (1988) and Poitou (1990). 

While most truffle producing soils have an alkaline pH and are calcareous or at 

least dolomitic, the relative importance of pH and calcium to T. melanosporum 

growing as a symbiont has yet to be established. 

The objectives of this experiment were two fold: 

1. To determine the relative importance of pH and calcium on the colonisation of 

hazel by T melanosporum, and 

2. To study the effects of pH and calcium on competition between 

T. melanosporum and native ectomycorrhizal fungi. 
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6.2 Materials and Methods 

6.2.1 Overview 

In a glasshouse experiment, seedling hazels (Corylus avellana) were inoculated 

with T melanosporum and planted into 125 mm pots. After a year, these plants 

were transplanted from the 125 mm pots into 250 mm pots with soil treated with 

either CaCO3 , CaSO4, K2CO3  or MgCO3 . Each soil treatment was applied at 

fourteen levels, giving a total number of 56 soil treatment combinations. Two trees 

were treated with each soil treatment combination giving a total of 112 trees. A 

month after transplanting, one of the two trees from each of the 56 soil treatment 

combinations was inoculated with spores of native ectomycorrhizal fungi. One year 

after transplanting the trees were analysed for the level of colonisation by 

T melanosporum and native ectomycorrhizal fungi. 

6.2.2 Soil Type and Preparation 

The soil used to transplant the trees into the larger 250 mm pots was taken from a 

site in the Huon Valley, Tasmania, which was to be established as a commercial 

truffiere. This site was devoid of native trees and had been used for grazing for 

more than 10 years. Prior to this, the site was an apple orchard, hence the inoculum 

load of ectomycorrhizal fungi was expected to be low (apples have 

endomycorrhizas). The A horizon used for the experiment was a grey sandy loam. 

A chemical analysis of the soil is shown in Table 6.1. 

The soil was sterilised in large plastic lined bins with methyl bromide. This 

treatment was expected to kill any source of inoculum of ectomycorrhizal fungi. 

The soil was then left in the bins for two months before being sieved through a 

2 mm sieve. 
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Table 6.1. Chemical analysis of the soil. 

Soil Property Level 

pH (H20 1:5) 6.3 

pH (CaC12  1:5) 5.4 

Electrical Conductivity (dS/m) 0.02 

Available P (mg/kg) Colwell test 8 

Available K (mg/kg) 1  105 

Total P (mg/kg) 127 

Total N (g/kg) 0.93 

Organic Carbon (g/kg) 23 

Carbon / Nitrogen Ratio 24.7 

Exchangeable Ca (me/100 g) 5.11 

Exchangeable Mg (me/100 g) 0.14 

Exchangeable Na (me/100 g) 0.04 

Exchangeable K (me/100 g) 0.21 

Exchangeable bases were extracted using NT-14C1. 
1  Using the same bicarbonate extraction as for available P. 

6.2.3 Soil Treatments 

The rate of CaCO 3 , MgCO3  and K2CO 3  application was determined by developing 

titration curves for the soil (Barrow and Cox, 1990). The titration curve method 

developed by Barrow and Cox is used to determine the liming requirement of a 

soil. The liming material was mixed with the soil at a range of rates. The soil was 

moistened to the sticky point then heated at 60°C for three days. After the 

incubation period the pH was measured and plotted against the liming rate. This 

process was carried out for CaCO 3 , MgCO 3  and K2CO3 . These titration curves 

were used to determine how much liming material to apply in order to obtain the 

desired pH. 

The rates of application of each soil amendment are shown in Table 6.2. Also listed 

are the corresponding rates of applied calcium and carbonate. CaCO 3 , MgCO3  and 
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K2CO3 were applied at rates to give a range of pH levels gradually increasing from 

the initial pH of 5.4 (refer to Figure 6.1). For the CaCO 3  treatment, the curve 

flattens out at approximately 3.33 g CaCO 3 / kg soil (level 9) where the soil has 

become saturated with CaCO 3  and dissociation ceases. Subsequent increases in the 

rate of applied CaCO 3  (levels 10-14) were included to determine the effect of an 

increasing reserve of CaCO3. For treatment levels Ito 8, MgCO 3  and K2CO3 were 

applied at a rate such that the quantity of applied carbonate was equivalent to that 

of the CaCO 3  treatment. Consequently the pH for these three treatments for levels 

1 to 8 were very similar. From level 9 onwards, the rates of MgCO3  and K2CO3  

were modified to give a modest incremental increase in pH. 

Ca504  was applied at a rate that allowed the level of applied calcium to 

correspond to the level of calcium in the CaCO 3  treatment. 

Each soil amendment was thoroughly mixed through the soil prior to transplanting 

the trees. 
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Table 6.2. Rate of application of the four soil treatments. 

CaCO3 

g/kg soil 

Calcium Carbonate 

CO3 

g/kg soil 

Ca 

g/kg soil 

Magnesium 

MgCO3 

g/kg soil 

Carbonate 

CO3 

g/kg soil 

Potassium 

K2CO3 

g/kg soil 

Carbonate 

CO3 

g/kg soil 

Calcium 

CaSO4 

g/kg soil 

Sulphate 

Ca 

g/kg soil 

0 0 0 0 0 0 0 0 0 

0.33 0.2 0.13 0.28 0.2 0.46 0.2 0.57 0.13 

0.67 0.4 0.27 0.56 0.4 0.92 0.4 1.15 0.27 

1 0.6 0.4 0.84 0.6 1.38 0.6 1.72 0.4 

1.33 0.8 0.53 1.12 0.8 1.84 0.8 2.29 0.53 

1.67 1 0.67 1.4 1 2.3 1 2.86 0.67 

2 1.2 0.8 1.69 1.2 2.76 1.2 3.44 0.8 

2.5 1.5 1 2.11 1.5 3.45 1.5 4.3 1 

3.33 2 1.33 2.53 1.8 4.14 1.8 5.73 1.33 

4.17 2.5 1.67 2.95 2.1 4.83 2.1 7.16 1.67 

6.25 3.75 2.5 3.51 2.5 5.75 2.5 10.74 2.5 

8.33 5 3.33 4.22 3 6.9 3 14.32 3.33 

12.5 7.5 5 7.03 5 9.2 4 21.48 5 

25 15 10 10.54 7.5 11.5 5 42.96 10 

Figure 6.1. Initial pH (CaC1 2  1:5) of soil treatment combinations. 
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6.2.4 Transplanting 

The plants were removed from the 125 mm pots and most of the potting mix 

gently worked free of the root system. The plants were then repotted in the 250 

mm pots with 4 kg of treated soil per pot. The surface of each pot was covered 

with reflective aluminium sheeting to limit evaporation and retard algal growth. 

The plants were then placed in the glasshouse. 

6.2.5 Fungal Treatments 

Each tree was inoculated with T melanosporum three weeks after germination. 

These seedlings were placed in a glasshouse and watered with overhead sprinklers. 

A year after inoculation the level of colonisation by T melanosporum was 

determined by analysing a core sample of the root system for each tree. The levels 

of infection were low but relatively homogeneous (mean % colonisation = 2.65, 

standard deviation = 1.51). After being transplanted into the larger pots as year old 

trees, one of the two trees from each soil treatment combination was inoculated 

with Descomyces albellus (T038H) and Hydnangium carneum (T037H). 

The two stage inoculation process was utilised to reflect the situation occurring 

within the Tasmanian truffle industry. PTT minimises the risk of early 

contamination from native ectomycorrhizal fungi by growing inoculated seedlings 

in sterilised medium within poly-tunnels. Most exposure to inoculum of native 

ectomycorrhizal fungi occurs when the trees are planted in the field, which can be 

up to a year after inoculation. Hence, the split inoculation process was seen as a 

way to more accurately assess the effects of competition from endemic 

ectomycorrhizal fungi. This method differs from the inoculation procedure 

employed in Chapter 5 where the trees were inoculated with T. melanosporum and 

competitor fungi simultaneously. 

Inoculation with the native fungi was carried out using a fresh spore slurry. The 

fruitbodies used for the slurry were collected under a Eucalyptus nitens plantation 

at Gould's block, Dover, Tasmania (8311:D'entrecasteaux EN002071). 

Sporocarps were surface sterilised with a 5% solution of sodium hypochlorite for 3 
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minutes before rinsing thoroughly with distilled water. After the treatment with the 

sodium hypochlorite, the efficacy of the sporocarps was checked by successfully 

isolating the fungus in pure culture from several regions of the gleba. Sporocarps 

were then blended with distilled water to give a spore slurry concentration for 

D. albellus and H. carneum of 3,430,000 and 3,950,000 spores / ml respectively. 

Ten millilitres of each slurry were combined to inoculate each pot. Those plants 

inoculated with T. melanosporum and native fungi were separated from those 

inoculated solely with T melanosporum to limit the risk of cross-contamination. 

6.2.6 Glasshouse Preparation, Irrigation and Experimental Maintenance 

To reduce the risk of contamination by other ectomycorrhizal fungi, the glasshouse 

walls and floors, benches and pots were treated with sodium hypochlorite prior to 

the commencement of the experiment. 

Plants were irrigated using an overhead sprinkler system. Plants were maintained at 

as close as possible to 70% field capacity. Evaporative coolers restricted maximum 

temperatures to below 25°C. Climate statistics for Hobart are shown in 

Appendix 5. 

Every four weeks, nutrients were applied in solution to each pot at the following 

rates (mg / kg soil): NH4NO3 , 121.5; CuSO4.5H20, 0.012; MoNa204, 0.0038; 

ZnSO4, 0.032; MnC12, 0.27; H3B03 , 0.43; FeNaEDTA, 0.049. 

6.2.7 Harvesting and Analysis 

6.2.7.1 Mycorrhizal colonisation 

One year after transplanting the trees into the 250 mm pots, mycorrhizal 

colonisation was determined by examining the combined contents of two core 

samples (25 mm diameter by 100 mm depth) taken 10 mm from the edge of the 

pot. Roots were removed from the soil cores by placing the cores over a 1 mm 

sieve and gently washing the soil through the sieve leaving the roots behind. The 
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various mycorrhizal types were identified by examination under light microscopes. 

The identity of T melanosporum was later confirmed using PCR and RFLP as 

described in Chapter 9. The lengths of each root type and calculation of root 

parameters were determined as per Section 5.2.7.1. 

6.2.7.2 Plant height, stem diameter and fruitbody production 

Plant height and stem diameter were measured at the time of transplanting into the 

larger pots and at harvest. The pots were checked regularly (twice, weekly) for 

fruitbody production. 

6.2.7.3 Soil analysis 

At harvest, each soil treatment combination was analysed to determine pH (CaCl2  

& H20) and exchangeable bases. 

6.2.7.4 Statistical analysis 

Several regression models including straight line, polynomial and asymptotic 

models were used to test for a relationship between the level of colonisation of 

T melanosporum and independent variables such as applied CaCO 3 , CaSO4  and 

MgCO3 . 

The response of T melanosporum to pH was described using linear regression. 

The statistical package used for the analysis was SAS for Windows version 6.11. 

Statistical analysis was not applied to the following dependent variables; percent 

colonisation by Descomyces albellus and percent colonisation by Hydnangium 

carneum, as mycorrhizas of these fungi occurred very infrequently. 
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6.3 Results 

6.3.1 Percent Colonisation of Hazel by Tuber melanosporum 

6.3.1.1 Effect of applied CaCO3, MgCO3 and K2CO3  

Application of either CaCO3  and MgCO3  increased the level of colonisation of 

T melanosporum as shown in Figure 6.2. The results for K2CO3 are not presented; 

soon after the commencement of the experiment, it was noted that many of the 

plants in the K2CO3 treatment were affected by potassium toxicity. 

An asymptotic regression model provided the best fit for the response of 

T melanosporum to independent variables such as applied CaCO 3  and MgCO 3  

(refer to Figure 6.2) 

The model used was: 

Y = a - i3 (Y)x  

where 

y = percent colonisation by T melanosporum 

a = the asymptote corresponding to X —> co 

13 = the range of the response between X=0 and X=00 

y = the rate which Y changes from its initial value at X=0 to its final value at a 

x = dependent variable 

The response of T melanosporum to CaCO 3  and MgCO3  can be described by 

Equations 1 and 2 respectively. 

Equation 1 	y = 60.3 - 47.6(0.510)x 	Root mean square residual = 17.4 

Equation 2 	y 53.2 - 39.8(0.796)x 	Root mean square residual = 13.1 

Where y = percent colonisation by T. melanosporurn 

x = level of soil treatment (mg/Kg soil) 
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Tuber melanosporum showed a greater response to CaCO 3  than an equivalent 

quantity of MgCO 3  and the maximum predicted response for CaCO 3  was higher 

than that for MgCO 3 . 

An alternative way to consider the results is to look at the response of 

T melanosporum to CaCO3  and MgCO3  at equivalent levels of applied CO 3  (refer 

to Figure 6.3). The regression equations are essentially the same with the exception 

of the gamma parameter. Gamma changes in magnitude with the change in scale of 

the x axis but also the relative difference between gamma for CaCO 3  and gamma 

for MgCO 3  changes because CaCO3  and MgCO 3  contain a different percentage by 

weight of carbonate. 

It was observed that at high levels of MgCO 3  application (>2.11g/kg soil), root 

growth was retarded. Both coarse roots and fine roots were affected. 

6.3.1.2 Effect of applied calcium 

Figure 6.4. compares the response of T melanosporum to CaCO 3  and CaSO4  at 

equivalent levels of calcium application. The response of T. melanosporum to 

CaSO4 can be depicted by the equation, y = 19.8-17.6(0.0038)x. This asymptotic 

model appeared to give a slightly better fit than a straight line (y = -0.67x+18.8, 

P>0.05). 
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6.3.1.3 Effect of exchangeable bases 

Exchangeable bases were initially analysed separately for each soil treatment group 

(CaCO3 , MgCO3  and CaSO 4). In the CaCO 3  treatment, exchangeable Ca was 

significantly correlated to percent colonisation by T melanosporum (P<0.05, 

r2=0. 198). Similarly, in the MgCO 3  treatment, exchangeable Mg was significantly 

correlated to percent colonisation by T. melanosporum (P<0.01, r2=0.324). In the 

CaSO4  treatment, there was no correlation, neither significant nor observable, 

between percent colonisation by T melanosporum and exchangeable Ca. 

In the CaCO 3  and MgCO3  treatments, the level of the exchangeable Ca and 

exchangeable Mg respectively, were closely correlated to pH. Hence, it is difficult 

to gauge whether the response by T melanosporum was a function of the level of 

the exchangeable base or of pH. The fact that exchangeable Ca was not correlated 

to percent colonisation by T melanosporum in the CaSO4  treatment (where there 

was also no correlation between exchangeable Ca and pH) suggests that pH was 

the factor responsible. 

Exchangeable bases were also analysed across all the soil treatments combined. 

Neither the individual exchangeable bases (Ca, Mg, K or Na) nor total 

exchangeable bases were significantly correlated (P>0.05) to the level of 

colonisation by T melanosporum. 
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6.3.1.4 Effect of pH 

Figure 6.5 shows the pH (CaC12) for each soil treatment at the time of harvest. 

CaCO3  and MgCO 3  significantly increased the pH (P<0.001) whereas CaSO4 had 

no significant effect on pH (P>0.05). For the soil type used in this experiment, the 

maximum pH (CaC1 2) obtainable by liming with CaCO 3  was 7.3. To convert pH 

(CaC12) to pH (H20) for the soil used in this experiment, refer to Appendix 6. 

When analysed across all soil treatments, pH explained 38% of the observed 

variation in the percent colonisation of hazels by T. melanosporum as described by 

the equation below. 

y = 16.6x - 75 	r2=0.38 

Where y = percent colonisation by T melanosporum 

x = pH (CaC12) 

This regression was highly significant (P<0.001) and is depicted in Figure 6.6 as a 

black line. 

When the effect of pH on T melanosporum was compared for each soil treatment, 

it was noted that CaCO3  gave a greater response than MgCO 3  at an equivalent pH 

level as shown in Figure 6.6. 
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Figure 6.5. The pH (CaC12) of each soil treatment at the time of harvest. 
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6.3.1.5 Other variables 

The level of colonisation by T melanosporum at the time of harvest was not 

significantly correlated to plant height, stem diameter, or to the initial level of 

colonisation by T melanosporum prior to the addition of the soil treatments. 

6.3.2 Percent Colonisation of Hazel by Descomyces albellus and 

Hydnangium carneum 

Both D. albellus and H. carneum occurred infrequently and at low levels of 

colonisation with the exception of one tree which where D. albellus colonised 

41.5% of the fine roots. The occurrence of D. albellus and H. carneum is outlined 

in Tables 6.3 and 6.4 respectively. 

Table 6.3. Pots in which Descomyces albellus was found. 

Pot 

Number 

Soil treatment 

CaCO3  

applied 

(mg/Kg soil) 

MgCO3  

to the pot 

CaSO4  

Percent 

Colonisation 

by D. albellus 

pH 

(CaCl2) 

114 0 0 0 41.5 5.83 

182 0 1.69 0 0.84 6.35 

198 0 0 0 0.98 5.75 

200 0 0 0.57 0.75 5.65 

204 0 0 1.72 2.4 5.5 

208 0 0 2.86 1.69 5.5 

218 0 0 10.74 1.82 .  5.56 

220 0 0 14.32 0.37 5.74 

129 



LIME 

Table 6.4. Pots in which Hydnangium carneum was found. 

Pot 

Number 

Soil treatment applied to the pot 

(mg/Kg soil) 

Percent 

Colonisation 

pH 

(CaC12) 

CaCO3  MgCO3  CaSO4  by H. carneum 

178 0 1.12 0 3.33 6.18 

182 0 1.69 0 0.85 6.35 

202 0 0 1.15 1.55 5.54 

210 0 0 3.44 0.847 5.5 

214 0 0 5.73 1.69 5.6 

While the levels of colonisation by D. albellus and H. carneum were not 

significantly correlated to any other variable, it was noted that these fungi did not 

occur in pots treated with high rates of either CaCO 3  or MgCO3  (ie. pots with a 

high pH). 

6.3.3 The Percentage of Fine Roots 

There was no significant (P>0.05) correlation between the total level of 

mycorrhizal colonisation and the percentage of fine roots (ratio of fine roots to 

coarse roots) as is illustrated in Figure 6.7. 

6.3.4 Sporocarp Production 

In a pot exhibiting 41.5% mycorrhizal colonisation by D. albellus, a sporocarp of 

this fungus and several primordia were found in April, 1997. 
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6.4 Discussion 

6.4.1 The Effect of pH and Calcium on Colonisation of Hazel by 

Tuber melanosporum 

In Chapter 5, it was observed that applying lime to an acid soil increases root 

colonisation by T. melanosporum. In this experiment, applying liming materials 

increased root colonisation up to a point where further additions of liming material 

did not affect the level of colonisation. That is, the response was asymptotic in 

nature. It is likely that the asymptotic curves gave the best fit for CaCO 3  and 

MgCO 3  because of the influence of CaCO 3  and MgCO 3  on soil factors such as pH 

and exchangeable bases. Applying CaCO 3  and MgCO3  continues to increase the 

pH and level of exchangeable bases up to the point when the soil becomes 

saturated with either CaCO 3  or MgCO3  and dissociation of these liming substances 

discontinues. 

There were several findings that suggest the response of T melanosporum to 

applied lime was primarily a function of pH. Applied calcium or exchangeable 

calcium may have a secondary role. The factors pointing to this conclusion include: 

• The liming materials CaCO 3  and MgCO 3  (which increase pH) increased root 

colonisation by T melanosporum. 

• There was a highly significant regression (P<0.001) between root colonisation 

by T. melanosporum and soil pH. 

• CaSO4, which does not significantly effect pH, had little if any effect on root 

colonisation by T. melanosporum. 

• There was no clear relationship between either applied calcium or exchangeable 

calcium, and root colonisation by T. melanosporum. 

While applied MgCO 3  increased root colonisation by T. melanosporum, the 

response appeared to be weaker than an equivalent application (by weight) of 

CaCO 3 . This is despite the fact that per unit weight, MgCO3  increases pH slightly 

more than does CaCO3 . There are two possible explanations for this: 
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• The weaker response to MgCO 3  may have been due to an imbalance of Ca and 

Mg in the soil affecting plant/fungus nutrition. For example, high levels of Mg 

relative to Ca can induce a calcium deficiency (Leeper and Uren, 1993). 

Furthermore, when the calcium/total cation ratio is low, root growth is inhibited 

(Marschner, 1995). 

• Alternatively, the stronger response by T. melanosporum to CaCO3  may have 

been a result of an additional positive influence of high calcium levels over and 

above the primary response to pH. 

Tuber melanosporum also appears to have shown an asymptotic type response to 

CaSO4 . There are several possible explanations for this response. 

1. Tuber melanosporum may have been calcium deficient over the first three 

treatments levels. Applying CaSO4  alleviated the deficiency and thereby resulted 

in a positive response in colonisation over the initial range of 0 to 1 grams of 

calcium. 

2. The low levels of colonisation by T melanosporum for the first three treatments 

levels may have been coincidental. If these points were the result of 

experimental variation, the straight line model (y = -0.67x+18.8) would have 

been a more appropriate model than the asymptotic model depicted in 

Figure 6.4. That is, applied CaSO4  has not influenced the colonisation of 

T. melanosporum and the average level of colonisation for the CaSat  treatment 

(ca. 18%) represents a base level of colonisation for the soil. 

3. Tuber melanosporum shows a positive response to increasing levels of calcium 

as depicted by the response within the range 0 to 1 grams of applied calcium. At 

higher rates, an inhibitory effect of sulphate negates the positive effect of 

calcium. This explanation is unlikely as it does not account for the two highest 

CaSO4  treatments where one replicate in each showed a relatively high level of 

colonisation. . 

6.4.2 Practical Implications 

Since the response of T melanosporum to CaCO3  appears to be primarily a 

function of pH, management guidelines for lime application can be simplified. 
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Before planting trees, truffle growers should incorporate sufficient lime so as to 

reach the maximum pH obtainable with CaCO 3 . In the experiment, this pH level 

corresponded to maximum root colonisation by T melanosporum. Growers need 

not be overly concerned with parameters such as exchangeable calcium or total 

calcium, but simply refer to soil pH. Truffieres should be monitored over time. As 

pH begins to decline, more lime can be applied. 

6.4.3 The Effect of MgCO3  on Root Growth 

As previously mentioned in section 6.4.1, when the calcium/total cation ratio is 

low, root growth of plants can be inhibited (Marschner, 1995). This may explain 

the poor root growth observed for those plants treated with high rates of MgCO 3  

(>2.11 g/kg). 

It is unlikely that the reduction in root growth was related to pH. As shown in 

Figure 6.5, at the time of harvest, the pH of the treatment levels for MgCO 3  were 

very similar to those for CaCO3 , with the exception of the highest rate of MgCO 3  

(treatment level 14, 10.54 g/kg) with a pH of 8.8. Reductions in root growth for 

the MgCO3  treatment were visually observed from treatment level 8 (2.11 g/kg). 

However, there were no corresponding effects in the CaCO3  treatment even 

though the pH levels were similar (except treatment level 14). 

6.4.4 The Effect of pH and Calcium on Colonisation of Hazel by Two Species 

of Australian Endemic Ectomycorrhizal Fungi 

Descomyces albellus can be added to the list of endemic ectomycorrhizal fungi 

capable of colonising hazel and fruiting under hazel. 

Due to the sporadic occurrence of both D. albellus and H. carneum, it was not 

possible to determine if they were significantly affected by the soil treatments. 

While neither fungus occurred at a pH (CaCl2) higher than 6.35, further 

experimentation is required to determine if they are able to colonise hazel at higher 

levels of pH. This experiment is being maintained to determine if there are any 
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changes in the occurrence and level of colonisation by D. albellus and H. carneum 

over time. 

6.4.5 The Percentage of Fine Roots 

In the experiment described in Chapter 5 there was a significant negative 

regression between percentage of mycorrhizal roots and the percentage of fine 

roots. This contrasts with the results of this experiment where there was no 

relationship between percentage of mycorrhizal roots and the percentage of fine 

roots. 

One possible explanation is that fungal species may influence the relationship 

between colonisation and the percentage of fine roots. The trees in this experiment 

were colonised predominantly by T. melanosporum, whereas in Chapter 5, 

T melanosporum only comprised a small proportion of the overall mycorrhizal 

colonisation. Mamoun and Olivier (1996) have observed that the relationship 

between percent colonisation and root volume for T melanosporum was different 

to that of other mycorrhizal fungi. 

6.4.6 Variability in the Colonisation of Hazel by Tuber melanosporum 

The results demonstrated substantial variation in the colonisation of the hazel trees 

by T. melanosporum that could not be explained by the soil treatments or any other 

measured variable. Soil pH only accounted for 38% of the observed variation. A 

possible explanation for the remaining variation is proposed in the general 

discussion. 
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7 The Effects of the Interaction 

Between Lime and Phosphorus on 

Competition Between 

Tuber melanosporum and other 

Ectomycorrhizal Fungi. 

7.1 Introduction 

Soil pH has a significant influence on the availability of soil phosphorus. As the soil 

pH increases above 7.2, the form of P in the soil solution changes from H 2PO4-  to 

HPO42- . Plant uptake of IfF'0 42-  is much slower than H2PO4-  (Tisdale et al., 1993). 

Furthermore, in alkaline soils, orthophosphate ions can react with calcium to 

produce sparingly soluble calcium phosphate compounds which decreases the 

quantity of plant available P (Brady, 1984). 

Improving the uptake of soil nutrients, particularly P from sparingly soluble 

sources, is one of the major functions of mycorrhizal fungi (Smith and Read, 

1997). Much of this benefit is achieved due to the ability of mycorrhized plants to 

explore a greater volume of soil than that of non-mycorrhized plants (Bolan, 

1991). In addition to this increase in spatial availability of P, the hyphae of 

mycorrhizal fungi utilise several other uptake mechanisms to improve P acquisition 

(Marschner and Dell, 1994). An example of interest is the ability of some 

ectomycorrhizal fungi to produce significant quantities of oxalic acid (Lapeyrie et 

al., 1987), which in calcareous soils, may mobilise P from insoluble calcium 

phosphates. At the same time, oxalic acid may prevent calcium intoxication of the 

plant host by the formation of calcium oxalate at the fungus-soil interface (Lapeyrie 
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et al., 1987). Another example is that mycorrhizal fungi may be able to influence 

the rhizosphere pH through differences in absorption of cations and anions and 

thereby increase the availability of P (Bolan, 1991). 

While mycorrhizal fungi can improve the uptake of P from P deficient soils, high 

levels of soil P can result in the depression of ectomycorrhizal fungal colonisation. 

This depression may be due to the effects of high concentrations of plant P 

reducing the supply of soluble carbohydrates to the root system (Harley and Smith, 

1983). The degree of depression varies from species to species (Marschner and 

Dell, 1994). Australian native ectomycorrhizal fungi appear to exhibit maximum 

levels of mycorrhizal colonisation at relatively low levels of soil phosphorus. For 

example, in a study by Bougher et al. (1990) two isolates of Descolea rnaculata 

and one isolate of Laccaria laccata showed maximum levels of mycorrhizal 

infection with the addition of less than 4 mg P / kg soil to a phosphorus deficient 

soil (available P <2 mg/kg, total P 22 mg/kg). Similar trends for three 

ectomycorrhizal fungi of Eucalyptus divers/color were noted in unpublished data 

from Grove, Dell and Malajczuk (Brundrett et al., 1996). The apparent inability of 

Australian native ectomycorrhizal fungi to cope with modest levels of applied P is 

probably a reflection of the low phosphorus status of many Australian soils. 

Some authors have noted that high levels of soil P may depress T melanosporum. 

• Delmas and Poitou (1974) state that an excess of P or N is detrimental to the 

formation and maintenance of T. melanosporum mycorrhizas. The evidence for 

this statement is not given in the paper but reference is made to another paper 

by the same authors that was 'in print'. However the journal for the paper in 

print was not given, and the paper cannot be found. 

• Delmas (1978) and Delmas etal. (1981) state that an excess of phosphorus 

leads to a reduction in colonisation by T melanosporum but do not provide 

supporting data or references. 
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While phosphorus may depress the growth of T. melanosporum, there is evidence 

to suggest that T. melanosporum may be more tolerant to higher levels of P than 

Australian native species. For example: 

• Grente et al. (1976) found that at low levels of total P (40 mg/kg), applied P 

initially increased the level of colonisation by T. melanosporum. Maximum 

colonisation was attained at a total P level of 530 mg /kg. However, at 775 

mg/kg and above, colonisation by T melanosporum was reduced to very low 

levels. By comparison, the maximum colonisation by Australian native species in 

the experiment of Bougher et al. (1990) occurred at a total P level of 

approximately 26 mg/kg (2 to 4 mg/kg applied P plus the initial total P of the 

soil of about 22 mg/kg). While total P is probably not the best measure of P for 

predicting mycorrhizal colonisation, there appears to be a marked difference in 

the level of P required for maximum colonisation of T. melanosporum relative 

to the native species. 

• The range of available P reported by Delmas et al. (1981) for 'good truffle 

production' is much higher that the available P levels of most Tasmanian soils. 

For instance, the available P levels of those soils being used for truffieres in 

Tasmania range from 10 to 52, whereas the range reported by Delmas et al. was 

6 to 980 mg / kg. 

• Le Tacon et al. (1982) applied P and N treatments to trees within a truffiere. 

Phosphorus was applied once at a rate of 200 kg P / Ha and the level of fruiting 

was recorded in the following two winters. Very low levels of ascocarp 

production made statistical analysis of the experiment difficult, however, the 

authors made the provisional conclusion that the applied P had no perceptible 

effect either positive or negative on the level of fruiting. Unfortunately, they did 

not investigate the effects of the applied P on the level of mycorrhizal 

colonisation. 

• Sourzat et al. (1990) applied P to hazels within a truffiere at rates up to 

140 kg / Ha. The treatments were repeated for three consecutive years. The 

phosphorus treatment did not significantly increase or decrease the level of 

mycorrhizal colonisation by T melanosporum. However, there were only four 
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trees per treatment and only one root core sample taken per tree which would 

dramatically reduce the likelihood of detecting significant changes. 

• Chu-Chou and Grace (1987) noted that a Tuber sp. forming mycorrhizas with 

Pinus radiata was significantly more prevalent on agroforestry sites than 

conventional forest sites. They postulated that this may be due to the preference 

or tolerance of the Tuber sp. to the higher levels of soil fertility of the 

agroforestry sites. These sites were especially high in P. 

If there are negative effects of excess P on the growth of T. melanosporum, it 

appears that this may happen at higher soil P levels than it does for Australian 

native species. The difference in response to P may be another way to manipulate 

the soil environment to favour T melanosporum over native competitors. 

Therefore, the objectives of this experiment is to study the effects of applied 

phosphorus and the interaction between lime and phosphorus on colonisation of 

hazel by T melanosporum and Australian native ectomycorrhizal fungi. 

7.2 Materials and Methods 

7.2.1 Overview 

Seedling hazels (Gory/us avellana) were inoculated with T melanosporum and 

planted into 125 mm pots. After a year, these plants Were transplanted from the 

125 mm pots into 250 mm pots with soil treated witlidifferent rates of lime and 

phosphorus. Lime was applied at four levels. At each level of lime application, 

phosphorus was applied at fourteen levels hence a total of 56 soil treatment 

combinations. Two trees were treated with each soil treatment combination giving 

a total of 112 trees. A month after transplanting, one tree from each of the 56 soil 

treatment combinations was inoculated with spores of native ectomycorrhizal 

fungi. One year after transplanting the trees were analysed for the level of 

colonisation by T. melanosporum and native ectomycorrhizal fungi. 
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7.2.2 Soil Type and Preparation 

Refer to section 6.2.2. 

7.2.3 Soil Treatments 

The four rates of lime application and corresponding initial pH (CaC1 2) of the soil 

are shown in Table 7.1. 

Table 7.1. Level of lime application and 

corresponding pH of the soil used to 

transplant the year old plants. 

Applied CaCO 3  

g/kg soil 

Initial pH 

(CaC12) 

0 5.4 

1.25 6.7 

2.5 7.3 

12.5 7.5 

The level of lime application was determined by developing a titration curve for the 

soil (Barrow and Cox, 1990). The aim was for the third level of application to be 

at the point where the soil is virtually saturated with calcium and additional 

applications of lime result in little or no increase in pH. The second level is an 

intermediate level between level 3 and the natural pH of the soil. The fourth level 

represents a massive excess of undissociated lime in the soil. 

For each lime treatment, phosphorus was applied as calcium phosphate monobasic 

at the following rates: 0, 2, 4, 8, 12, 16, 20, 28, 36, 48, 60, 80, 110 and 150 mg P / 

kg soil. 

Each soil amendment was thoroughly mixed through the soil prior to transplanting 

the trees. 

1 

2 

3 

4 
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7.2.4 Transplanting 

Refer to section 6.2.4. 

7.2.5 Fungal Treatments 

Refer to section 6.2.5. 

7.2.6 Glasshouse Preparation, Irrigation and Experimental 

Maintenance 

Refer to section 6.2.6. Potassium phosphate was excluded from the maintenance 

nutrient solution. 

7.2.7 Harvesting and Analysis 

7.2.7.1 Mycorrhizal colonisation, plant height, stem diameter and sporocarp 

production 

Refer to Section 6.2.7. 

7.2.7.2 Soil analysis 

At harvest, each lime treatment was analysed to determine pH (CaC12  & H20) and 

exchangeable bases. Each soil treatment combination was analysed for available 

phosphorus using the Colwell method (Colwell, 1963). 
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Z 2.7.3 Statistical Analysis 

Regression models including straight line, polynomial and asymptotic models were 

used to test for a relationship between the level of colonisation of 

T melanosporum and applied CaCO 3 . 

Linear regression analysis was used to study the relationship between the 

dependent variable, percent colonisation by T. melanosporum, and other variables 

including applied P, available P. fungal treatment, plant height and stem diameter. 

The statistical package used for the analysis was SAS for Windows version 6.11. 

Statistical analysis was not applied to the following dependent variables; percent 

colonisation by Descomyces albellus and percent colonisation by Hydnangium 

carneum, as mycorrhizas of these fungi occurred very infrequently. 

7.3 Results 

7.3.1 The Effect of Lime and Phosphorus on Colonisation by 

Tuber melanosporum 

Tuber melanosporum colonisation was extremely variable. The response of 

T. melanosporum to the four levels of applied lime is shown in Figure 7.1. 

An asymptotic regression model best described the response of 7'. melanosporum 

to applied CaCO 3 . 

142 



LIME & P 

The model used was 

Y = a - i3 (7)x  
where 

y = percent colonisation by T melanosporum 

cx = the asymptote corresponding to X —> co 

13 = the range of the response between X=0 and X=00 

y = the rate which Y changes from its initial value at X=0 to its final value at a 

x = dependent variable 

The relationship between applied lime and percent colonisation by 

T melanosporum can be described by the regression equation 

y = 53.3 - 37.8(0.691)x 

The root mean square residuals for the regression was 16.7. 

Neither applied P nor available P had any significant effect (P>0.05) on the percent 

colonisation of hazel by T melanosporum. Nor was there a lime/phosphorus 

interaction. The nil effect of applied phosphorus on the percent colonisation by 

T melanosporum is depicted in Figure 7.2 where the response of T melanosporum 

to increasing rates of applied P is given for the four levels of applied lime. The 

slope of the regression line for each level of applied lime is not significantly 

different to zero (P>0.05). 

The remaining variables including initial level of T melanosporurn colonisation, 

plant height and stem diameter also had no significant effect (P>0.05) on the level 

of colonisation by T melanosporum. 
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7.3.2 The Effect of Lime and Phosphorus on Colonisation by 

Descomyces albellus and Hydnangium cameum 

D. albellus was present in only one pot which had been treated with 5 mg/Kg of P 

and no lime. The level of colonisation was extremely low (1%). Similarly, 

H. carneum appeared in only one pot which had been treated with 8 mg/Kg of 

applied P and no lime. Once again, the level of mycorrhization was very low 

(3.5%). 

7.3.3 The Percentage of Fine Roots 

There was no significant (P>0.05) correlation between the total level of 

mycorrhizal colonisation and the percentage of fine roots (ratio of fine roots to 

coarse roots) as is illustrated in Figure 7.3. 
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7.4 Discussion 

7.4.1 The Response of T. melanosporum to Applied Lime 

The response of T melanosporum colonisation to applied lime was very similar to 

that observed in Chapter 6. The levels of variation in T melanosporum 

colonisation explained by applied lime also corresponded closely to that observed 

in Chapter 6 (root mean square residual equals 16.7 verses 17.4). 

7.4.2 The Response of T. melanosporum to Applied Phosphorus 

There were no significant effects of applied or available P on T melanosporum 

colonisation at any of the four levels of applied lime. It is possible that the high 

levels of variation may have masked a possible treatment effect. However, it would 

appear that T melanosporum is unresponsive to applied P up to quite high levels 

of application (150 mg/kg soil). 

7.4.3 The Percentage of Fine Roots 

There was no relationship between percentage of mycorrhizal roots and the 

percentage of fine roots in this experiment. This is a similar result to that observed 

in Chapter 6, but contrast with Chapter 5 where there was a positive correlation. A 

possible explanation for these differences has been given in Section 6.4.5. 

7.4.4 The Response of Australian Native Fungi to Applied 

Phosphorus 

The poor establishment of the native species D. albellus and H. carneum in this 

experiment precludes any conclusions as to their response to P. However, 

comparisons can be made between the results for T. melanosporum from this 

experiment and previous work on native species. As discussed in the introduction, 

Bougher et al. (1990) and Brundrett et al. (1996) reported maximum levels of 

mycorrhizal colonisation of Australian native ectomycorrhizal fungi at levels of 
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applied P of less than 4 to 6 mg/kg soil. As P application rates increased, the level 

of colonisation of the native fungi declined rapidly. If these results are 

representative for majority of Australian native ectomycorrhizal fungi, then there is 

a considerable difference between the response of T melanosporum and native 

fungi to applied P. 

If native ectomycorrhizal fungi are found to compete with T melanosporum in a 

Tasmanian truffiere, it would be worthwhile to conduct further field based 

experiments to determine if applying P could decrease competition from the native 

fungi while not reducing T melanosporum colonisation or truffle yields. 

The poor establishment of D. albellus and H. carneum in Chapters 6 and 7 may 

have been a function of the staggered inoculation. While the level of colonisation 

of T. melanosporum was quite low at the time of inoculation of the native species, 

it is possible that the presence of T. melanosporum may have been sufficient to 

inhibit primary infection by D. alhellus and H. carneum. To verify this would 

require a similar experiment including another fungal treatment where D. albellus 

and H. carneum were inoculated in the absence of T melanosporum. 
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8 Survey of Ectomycorrhizal Fungi in 

a Tasmanian Truffiere. 

8.1 Introduction 

Of the Australian endemic ectomycorrhizal fungi included in the glasshouse 

experiments of Chapters 5,6 & 7, most were unable to colonise hazel at high levels 

of lime application with the exception of D. albus which showed sporadic 

colonisation. These findings support the hypothesis that most Australian endemic 

ectomycorrhizal fungi are adapted to acidic soils and are unlikely to be strong 

competitors to T. melanosporum colonising hazel on calcareous soils. 

To further test this theory, a survey was conducted of the first truffiere established 

by Perigord Truffles of Tasmania. As it is the oldest truffiere, it has had the longest 

time with which to become contaminated by other ectomycorrhizal fungi. The 

trufflere was planted at Bream Creek (Map Reference 8412:PROSSER 

EN659591) in October, 1993, and at the time of the survey was about 2.5 years 

old. While the truffiere has only been recently established, it is expected that the 

hazel trees have been exposed to spores of endemic ectomycorrhizal fungi by the 

following mechanisms: 

• The truffiere is surrounded by a mesh fence, but small animals could still 

disperse spores on the truffiere. 

• The trufflere is irrigated from a nearby dam, the water from which would be 

expected to contain spores from a range of endemic ectomycorrhizal fungal 

species. 

• A small cluster of Eucalyptus, close to the southern edge of the truffiere and 

other nearby Eucalyptus would host epigeal ectomycorrhizal fungi whose 

spores could be readily blown onto the truffiere. 
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The objectives of the survey were: 

• To determine the number of species contaminating the truffiere and the extent 

of contamination. 

• To identify the major contaminants where possible. 

• To determine the level of colonisation by T. melanosporum. 

8.2 Materials and Methods 

The site is an ex-dairy pasture with an easterly aspect. The soil, a podzolic on 

sandstone, had a pH (1:5 H20) of 6.3. Before planting the truffiere, 30 tonnes of 

limestone were applied to increase the pH to 7.85. A soil test for the site taken 

after the initial lime application is shown in Table 8.1. 

Table 8.1. Chemical analysis of the soil at the Bream Creek truffiere. 

Soil Property Level 

pH (1:5 H20) 7.85 

Conductivity (dS/m) 0.073 

Available P (mg/kg) Colwell test 19 

Exchangeable K (me/100g) 0.48 

Exchangeable Mg (me/100g) 2.22 

Exchangeable Ca (me/100g) 7.25 

Total Ca (mg/kg) 3688 

Organic Carbon (g/kg) 34 

Organic Matter (g/kg) 58.6 

Total Nitrogen (g/kg) 3 

Carbon/Nitrogen 11.33 

Exchangeable bases were extracted using NH 4C1. 

The survey was conducted in May 1996. Sixty trees, randomly selected from 

within the truffiere, were surveyed. A single root sample was taken using a 

stainless steel corer 10 cm in diameter and 20 cm long. The core was taken 30 cm 
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from the base of the tree. Roots were removed from the soil cores by placing the 

cores over a 1 mm sieve and gently washing the soil through the sieve, leaving the 

roots behind. The various mycorrhizal types were identified by examination under 

stereo and compound light microscopes. The identities of T melanosporum and 

T brumale were later confirmed using PCR and RFLP as described in Chapter 9. 

The lengths of each root type and calculation of root parameters were determined 

as per Section 5.2.7.1. 

The height and basal diameter of each tree were recorded. 

Correlation analysis was used to investigate possible relationships between tree 

height and basal diameter and the level of colonisation of each mycorrhizal type. 

8.3 Results 

8.3.1 Level of Colonisation by Tuber melanosporum and 

Contaminants 

The level of mycorrhizal colonisation by T. melanosporum and the major 

contaminant, T. brumale are shown in Table 8.2. T. melanosporum had colonised 

all the trees sampled in the survey, and the level of mycorrhizal colonisation was 

high, averaging 70% colonisation of the fine root system. T. brumale was present 

in the sample of 15% of the trees. These trees were evenly distributed over the area 

surveyed. For those trees contaminated with T brumale, the mean level of 

colonisation by T. brumale was 13%. 

Six mycorrhizal tips of an unidentified basidiomycete were found in one core 

sample. No other contaminants were found. 

There was no correlation between the level of colonisation by T melanosporum or 

T brumale and the tree height or basal diameter (P>0.05). 
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Table 8.2. The level of mycorrhizal colonisation by Tuber melanosporum and 

Tuber brumale. 

Parameter T melanosporum T. brumale 

Percentage of trees colonised 100 15 

Maximum level of colonisation (%) 100 39 

Minimum level of colonisation (%) 5 0 

Mean level of colonisation across all 

trees sampled (%) 

70 (S.D.=22) 3 (S.D =9) 

Mean level of colonisation for those 

trees contaminated by T. brumale (%) 

65 (S.D.=23) 13 (S.D.=14) 

S.D. = Standard Deviation 
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Hyphae 	The emanating hyphae is simple or branched, tortuous, thin 

walled, faint pale yellow or hyaline, and about 4.5 um in 

diameter. 

Plate 8.1. Tuber brumale mycorrhizas. 

1. Mycorrhizas covered with cystidia. One mycorrhiza is unusual, exhibiting a tuft 

of hyphae emanating from the tip. 

2. Mantle surface with interlocking lobes. 

3. Surface of mycorrhiza showing the density of the cystidia. 

4. Robust cystidia with well rounded tip and wide base. 

5. Cystidia showing pale yellow walls. 
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Plate 8.1. Tuber brumale mycorrhizas. 

1 (bar = 100 pm) 

 

2 (bar = 10 pm) 3 (bar = 50 um) 

 

4 (bar = 10 ilm) 5 (bar = 10 1.1m) 
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8.4 Discussion 

The strong level of mycorrhizal colonisation by T. melanosporum in the field 

confirms the findings of the glasshouse experiments that T melanosporum will 

readily colonise hazel on soils of non-calcareous origin provided adequate lime is 

applied. At this early stage of development of the industry, such consistently high 

levels of colonisation by T melanosporum is a very positive outcome. 

Both the number of contaminant species, and the levels of contamination were very 

low. By comparison, Chevalier et al. (1982) noted that young truffieres in France 

(2 to 7 years) were often contaminated by several species, and the levels of 

contamination were moderate to high. Values for the level of contamination were 

not given. 

That T. brumale was the only significant contaminant lends weight to the argument 

that competition to T. melanosporum in Tasmanian truffieres is likely to come from 

introduced or cosmopolitan ectomycorrhizal fungi rather than endemic fungi. This 

emphasises the need to prevent contamination from introduced species by 

measures such as attention to inoculation procedures (surface sterilising 

sporocarps) and subsequent rearing of inoculated trees in the nursery, and careful 

paddock selection. 

In a survey of French truffieres conducted by Chevalier et al. (1982), most 

contamination occurred from other Tuber species, particularly T brumale which 

was widespread and abundant under hazel. Chevalier et al. (1982) also notes a 

personal communication from L. Riousset that hazel has a propensity to host 

T. brumale. While the fruit body of T brumale is edible, its value is considerably 

less than that of T melanosporum. 

Several papers have reported studies of the ecological preferences of various Tuber 

species and competition between T melanosporum and other Tuber species 

(Bencivenga and Granetti, 1988; Chevalier and Frochot, 1990; Granetti and 
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Angelini, 1992; Mamoun and Olivier, 1993a; Mamoun and Olivier, 1993b). These 

papers indicate that there are opportunities to manipulate environmental conditions 

such as the soil moisture content to favour the development of T melanosporum 

over other Tuber species (Mamoun and Olivier, 1993a; Mamoun and Olivier, 

1993b). 

Further surveys at the Bream Creek site are required to determine whether the 

levels of contamination of T brumale and other contaminants increase or decrease, 

and at what rate. To obtain a greater appreciation of the nature of competition 

within Tasmanian truffieres, a number of truffieres need to be surveyed over an 

extended period of time. 
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9 Identification of Tuber Mycorrhizas 

Using DNA Fingerprinting 

9.1 Introduction 

The mycorrhizas of different Tuber species can be difficult to identify 

morphologically. This is particularly the case when characteristic features such as 

cSistidia are absent. Polymerase chain reaction (PCR) combined with restriction 

fragment length polymorphism (RFLP) has been successfully developed to identify 

Tuber species from their mycorrhizas (Amicucci et al., 1996; Henrion et al., 1994; 

Lanfranco et al., 1995; Mello et al., 1996): 

The main objective of this work was to confirm the morphological identification of 

Tuber mycorrhizas in all glasshouse and field experiments using PCR and RFLP of 

DNA extracted from single mycorrhizal tips. It is important that identification can 

be made from a single tip. In the work by Mello et aL (1996), 15 to 20 tips were 

used for the extraction. It is quite possible that one or more of these tips may have 

been a different species to the remainder and was not identified. This is particularly 

the case with Tuber as the PCR products (when using the primer pairs ITS1 and 

ITS4) are approximately the same length for most Tuber species, with the 

exception of Tuber brumale. RFLP of the PCR product is required for 

identification. By this stage the bands of the contaminant fungi could be so faint as 

to be unrecognisable. 

Another objective was to simplify the DNA extraction process. The extraction 

process used by Henrion et al. (1994), Lanfranco et al. (1995), Mello et al. (1996) 

and Amicucci et al. (1996) was based on the method developed by 

Henrion et aL (1992). Any simplification of this method will increase the likelihood 

of its adoption to identify fungal species in commercial truffieres and nurseries. 
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9.2 Materials and Methods 

9.2.1 General 

Mycorrhizas morphologically identified as T melanosporum were collected from 

hazels in the glasshouse experiments described in Chapters 5,6 and 7 and from 

hazels in the truffiere at Bream Creek, Tasmania (Chapter 8). DNA extracted from 

these mycorrhizas was compared using PCR and RFLP to DNA from a pure 

culture isolate of T melanosporum (Mel 24) supplied by Gerard Chevalier (Unite 

de Mycologie, Institut National de la Recherche Agronomique, Clermont-Ferrand, 

France). Similarly, DNA was extracted from mycorrhizas found at the Bream 

Creek site morphologically identified as T brumale. This DNA was compared with 

DNA extracted from a pure culture isolate of T brumale (Mos Pey) also supplied 

by Gerard Chevalier. 

9.2.2 DNA Extraction 

The methods for DNA extraction were modifications of procedures used by Shane 

Herbert at Murdoch University, WA. The procedures developed by Shane Herbert 

have not been published. 

DNA extraction from mycorrhizal roots 

Extraction was carried out both on fresh tips and tips stored in 100% ethanol. A 

single mycorrhizal tip was placed in a 1.5 ml microcentrifuge tube with 30 pl of 

SDS extraction buffer (0.5% Sodium Dodecyl Sulfate, 100 MM tris HC1 pH 7.8, 

50 mM EDTA, 500 mM NaC1 and 0.2% fl-mercaptoethanol). The sample was 

frozen in liquid nitrogen then thawed in a water bath at 65°C. This freezing 

thawing process was repeated three times before the tip was ground with a plastic 

pestle in the same microcentrifuge tube. Cellular debris was precipitated with the 

addition of 15 p1 of 3M sodium acetate (pH 5.5) and left stand on ice for 10 

minutes. After centrifuging for 10 mins at 13000 rpm the supernatant was pipetted 

into a clean tube. The DNA was precipitated with 0.7 volumes of ice-cold 

isopropanol and left on the bench for 10 minutes before centrifuging and pouring 
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off the supernatant. The sample was then placed in a vacuum drier (Heto Lab 

Equipment DNA Mini) to remove the remaining moisture around the pellet. The 

pellet was resuspended in 10 pi of sterile distilled water and let stand for 20 

minutes before storing on ice or at -20°C. The quantity of DNA extracted could 

not be reliably quantified using a fluorometer. The final suspension was .diluted 10 

times and 100 times and 1 ml of each dilution used in the PCR reaction. 

DNA was extracted from non-mycorrhizal hazel roots using the same method as 

for mycorrhizal roots. 

DNA extraction from pure cultures 

Tuber melanosporum and T brumale were grown on malt extract media as 

described in Appendix 3. Approximately 400 mg of sterile fungal tissue and agar 

were ground in a mortar with liquid nitrogen to form a fine powder. Further 

grinding with 3 ml of SDS extraction buffer produced a slurry which was 

transferred to microcentrifuge tubes and incubated at 60°C for 10 minutes. Cellular 

debris was precipitated with the addition of 1.5 ml of 3M sodium acetate (pH 5.5) 

and placed at -20°C for 10 minutes. After centrifuging for 10 mins at 13000 rpm 

the supernatant was pipetted into a clean tube. Samples were then extracted with 

an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) and the upper 

aqueous layer transferred to new tubes. The DNA was precipitated with 0.7 

volumes of ice-cold isopropanol and left on the bench for 10 minutes before 

centrifuging and pouring off the supernatant. The pellet was washed in ice cold 

70% ethanol. The remaining ethanol was aspirated before resuspending the pellet 

in 20 pi of sterile distilled water and storing at -20°C. The quantity of DNA was 

determined using a fluorometer (Hoefer Scientific Instruments TKO 100). 

9.2.3 PCR amplification of the ITS region 

The primer pairs ITS1 and ITS4 (Bresatec Pty Ltd) used to amplify the internal 

transcribed spacer (5' to 3' sequence: TCCGTAGGTGAACCTGCGG and 

TCCTCCGCTTATTGATATGC, respectively) have been described by White et al. 

(1990). Amplification reactions were carried out in a final volume of 25 pi 
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consisting of 10 mM Tris-HCI (pH 9.0 at room temp.), 50 mM . KC1, 2 mM MgC12 , 

10 pmol of each primer, 1 unit of Pharmacia Biotech Tag DNA Polymerase, 120 

p,M each of dATP, dCTP, dTTP and dGTP, 5% glycerol, 2.5 jig Bovine Serum 

Albumin (BSA), and either 0.1 ng to 1 ng of DNA template extracted from the 

pure cultures or 1 pl of each DNA dilution (10X & 100X) for mycorrhizal and 

non-mycorrhizal roots. Control tubes with no DNA were included for each series 

of reactions. Charged tubes were then place in a Corbett Research FTS-960 

Thermal Sequencer. Thermal cycling parameters were as described by Henrion et 

al. (1994), that is, initial denaturation at 95°C for 3 minutes, followed by 35 cycles 

of denaturation at 95°C for 2 minutes, annealing at 50°C for 25 s, and extension at 

72°C for 10 minutes with a final extension at 72°C for 10 minutes. 

9.2.4 RFLP of Amplified DNA 

RFLP reactions were carried out in a final volume of 20 pl consisting of 10 jil of 

PCR product, 2 pl of buffer and 5 units of Hinf I (New England Biolabs). The 

restriction digest reactions were run for 1.5 hours at 37°C. 

PCR and RFLP products were size-fractionated on 1.5% agarose gels stained with 

ethidium bromide. 
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9.3 Results and Discussion 

ITS amplified fragments from the pure culture of T melanosporum were about 

620 bp (Lane 1 for Fig. 9.1, 9.3 and 9.5). As most Tuber species, with the 

exception of T brumale, occur in the range 600 to 680 bp (Henrion et al., 1994), 

it is necessary to use RFLP of the ITS products to identify species (Amicucci et 

al., 1996; Henrion etal., 1994; Mello etal., 1996). When digested with Hinf I, the 

PCR products of T. melanosporum mycelium are cut in half to give overlapping 

bands at about 300 bp (Lane 1 for Fig. 9.2, 9.4, and 9.6). 

T melanosporum I hazel mycorrhizas showed bands corresponding to 

T. melanosporum mycelium for both the PCR reactions (Lane 2 for Fig. 9.1, 9.3 

and 9.5) and RFLP (Lane 2 for Fig. 9.2, 9.4, and 9.6). These bands representing 

the fungal fraction of the mycorrhiza were much more prominent than those of the 

plant fraction (hazel). The PCR product for hazel was approximately 720 bp (Root 

tip - Lane 3 for Fig. 9.1, 9.3 Lane 5 for Fig. 9.5; Mycorrhizas - Lane 2 for Fig. 

9.1 9.3 and Lanes 2 & 4 for Figure 9.5). After digesting with Hinf I, two bands 

were visible at approximately 270 bp and 180 bp (very faint on the photos). 

The amplified ITS for T. brumale mycelium was approximately 970 bp (Lane 3, 

Fig. 9.5). When digested with Hinf I, two of the resulting fragments were visible at 

about 300 bp and 430 bp (Lane 3, Fig. 9.6). T. brumak I hazel mycorrhizas (Lane 

4, Figs. 9.5 & 9.6) showed bands corresponding to both organisms. Once again, 

the bands for hazel were faint relative to those for the fungus. 

The results reflect previous studies by Henrion et al. (1994) and Mello etal. 

(1996). They confirm the morphological identification of T melanosporum in the 

glasshouse experiments (Chapters 5,6 & 7) and T melanosporum and T brumale 

at the Bream Creek truffiere (Chapter 8). The procedure used for-DNA extraction 

and amplification of Tuber I hazel mycorrhizas represents a significant 

simplification and time saving over the method used by Henrion et al. '(1994). 
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Even with the time savings made using this DNA extraction technique, DNA 

fingerprinting of mycorrhizas is still a very laborious and expensive means of 

quantitatively identifying mycorrhizas. Its main use in population studies would 

be to assist in the initial identification of a mycorrhizal type, and to test the 

accuracy of subsequent morphological identifications. 

Figure 9.1. Amplification products with primers ITS1 and ITS4 of DNA extracted 

from the following: Lane 1, pure culture of Tuber melanosporum; Lane 2; 

mycorrhiza of T. melanosporumlhazel from the Perth glasshouse experiment 

described in Section 5.3.5; Lane 3, non-mycorrhizal hazel root tip; Lane 4, 

control; Lane M, marker (100 bp). 

Figure 9.2. Digestion of ITS amplification products with Hiff I from the 

following: Lane 1, pure culture of Tuber melanosporum; Lane 2; mycorrhiza of 

T. melanosporumlhazel from the Perth glasshouse experiment described in 

Section 5.3.5; Lane 3, non-mycorrhizal hazel root tip; Lane M, marker (100 bp). 
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Figure 9.3. Amplification products with primers ITS1 and ITS4 of DNA extracted 

from the following: Lane 1, pure culture of Tuber melanosporum; Lane 2; 

mycorrhiza of T. melanosporumlhazel from the Hobart glasshouse experiments 

(Chapters 6 & 7); Lane 3, non-mycorrhizal hazel root tip; Lane 4, control; Lane 

M, marker (100 bp). 

Figure 9.4. Digestion of ITS amplification products with Hinf I from the 

following: Lane 1, pure culture of Tuber melanosporum; Lane 2; myconbiza of 

T. melanosporumlhazel from the Hobart glasshouse experiments (Chapters 6 & 

7); Lane 3, non-mycorrhizal hazel root tip; Lane M, marker (100 bp). 
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Figure 9.5. Amplification products with primers ITS1 and ITS4 of DNA extracted 

from the following: Lane 1, pure culture of Tuber melanosporum; Lane 2; 

mycorrhiza of T. melanosporumlhazel from Bream Creek; Lane 3, pure culture of 

T. brumale; Lane 4, mycorrhiza of T. brumalelhazel from Bream Creek; Lane 5, 

non-mycorrhizal hazel root tip; Lane 6, control; Lane M, marker (100 bp). 

Figure Figure 9.6. Digestion of ITS amplification products with Hinf I from the 

following: Lane 1, pure culture of Tuber melanosporum; Lane 2; mycorrhiza of 

T. melanosporumlhazel from Bream Creek; Lane 3, pure culture of  T. brumale; 

Lane 4, mycorrhiza of T. brumalelhazel from Bream Ck; Lane 5, non-mycorrhizal 

hazel root tip; Lane M, marker (100 bp). 
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General Discussion and Future 

Research Perspectives 

Establishment of a truffle industry in Tasmania involves transplanting Tuber 

melanosporum, and a suitable host, into a foreign environment on the other side of 

the world. Such a venture entails both opportunity and uncertainty. 

There exists the opportunity to provide Perigord black truffles to the world at a 

time when there are no other fresh black truffles on the market with the exception 

of those being cultivated in New Zealand. Prices are expected to be higher than 

during the European harvest due to the limited supply. Also, T melanosporum, 

like so many other species of plant and animal introduced to Australia, may find 

itself in an environment with less competition than in its region of origin. Without 

its natural competitors T. melanosporum may be more productive in Tasmania. 

Hence, there is the potential for higher yields. The combination of yield and price 

has the potential to produce a very lucrative industry. 

The other side of the ledger is the uncertainty and subsequent risk of introducing 

T. melanosporum into a foreign environment. There may be unforeseen factors that 

limit or negate the viability of the Tasmanian truffle industry. The areas of greatest 

concern are the lack of knowledge about the edaphic requirements of 

T. melanosporum and possible competition from Australian native ectomycorrhizal 

fungi. 

The objective of this thesis was to reduce some of the uncertainty about truffle 

production in Tasmania by providing more information concerning the host 

specificity of Australian endemic ectomycorrhizal fungi and the edaphic 

requirements of both T melanosporum and potential competitor fungi. 
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The initial aim of the thesis was to test the assumption that Australian endemic 

ectomycorrhizal fungi are Eucalyptus specific and therefore unable to compete 

with T. melanosporum whilst colonising hazel trees. A survey of established hazels 

in Tasmania indicated that several endemic ectomycorrhizal fungi species were 

colonising hazel. This was confirmed in subsequent glasshouse experiments. 

Further research is required to determine the boundaries of host specificity of 

Australian native ectomycorrhizal fungi, though this research is not a priority for 

• the Tasmanian truffle industry. The reasons for this are explained below. 

The next stage of the project was to investigate the potential competitiveness of 

endemic ectomycorrhizal fungi to T melanosporum. It was considered that native 

fungi, which are accustomed to the acidic nature of most Tasmanian soils, may not 

be able to adapt to the large quantities of lime being applied to Tasmanian 

truffieres. In controlled glasshouse experiments, native ectomycorrhizal fungi 

colonising hazel were generally adversely affected by the application of large 

quantities of lime to soils with an acid pH. This finding was supported by the fact 

that native fungi were not detected in a survey of Tasmania's first truffiere. The 

exception to the rule was a Descomyces species which sporadically colonised hazel 

growing in soils treated with high rates of lime. However, in these isolated cases, 

the level of root colonisation was very low. 

While the results indicate that some endemic ectomycorrhizal fungi cannot adapt to 

the combined change in host and soil conditions, the Tasmanian truffle industry 

should continue to monitor truffieres across the state for contamination. Other 

species of endemic ectomycorrhizal fungi not tested in this thesis may be able to 

colonise hazel under calcareous soil conditions. Surveying the truffieres is the most 

practical way to respond to this threat. In addition, surveying will increase 

understanding of how well T melanosporum has colonised the truffiere and 

whether there has been contamination from introduced or cosmopolitan species of 

mycorrhizal fungi. Further glasshouse experiments to determine which endemic 

fungi will form mycorrhizal associations with hazel, and how they respond to 

applied lime are not warranted. They are expensive to conduct, and can only test a 

limited number of species. 
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In the event that endemic ectomycorrhizal fungi do become significant competitors, 

application of P to the truffieres should be investigated as a possible method of 

control. The results of Chapter 7 suggest that mycorrhizal colonisation by 

T melanosporum is tolerant to moderately high rates of phosphorus application 

(150 mg/kg soil). Previous studies on endemic species demonstrated a rapid 

decline in the percentage of roots colonised at very low levels of applied P (greater 

than 4 to 6 mg/kg soil) (Bougher et al. 1990, Brundrett etal. 1996). There would 

appear to be the opportunity to use P application to decrease the level of 

colonisation of endemic species while not adversely affecting colonisation by 

melanosporum. 

There are two important aspects which must be considered before P application 

could be used to reduce competition from endemic ectomycorrhizal fungi. Firstly, 

while moderate levels of applied P do not appear to decrease colonisation of 

T melanosporum, its effect on sporocarp production is not fully understood. 

Secondly, applying P to truffieres with low levels of soil P may result in increased 

growth rates of the trees and subsequent increases in growth rate of the root 

system. Chevalier and Poitou (1989) noted that if the root system of the host plant 

grows too quickly, T melanosporum cannot keep pace with the rate of root 

growth. This leaves the outer edge of the root system uncolonised by 

T melanosporum and open to colonisation by contaminants. 

The phenomenon of the root system growing faster than T melanosporum has not 

been observed in Tasmania. Even in the summer when truffieres are being irrigated 

and the root system is actively growing, T melanosporum rapidly colonises the 

fine roots as they form at the edge of the root system. The fact that 

T. melanosporum appears to be able to colonise actively growing root systems and 

not be displaced by competitors may be due to a lack of competitors in the 

Tasmanian environment. 

The growth rate of the tree and its effect on root colonisation and fruiting of 

T. melanosporum is an area that warrants further research. Shaw etal. (1996) 

169 



DISCUSSION 

found that stem diameter was a critical factor determining fruit body production of 

T melanosporum in symbiosis with Quercus hex. This suggests that host plants 

may need to reach a critical biomass before being able to provide adequate 

carbohydrate to the fungus for fruiting. The observation that T. melanosporum 

tends to fruit earlier when associated with hazel may be a function of tree growth 

rate. Hazels grow quickly, and the early fruiting reported under hazel may be 

attributed to their ability to reach this critical biomass at a younger age than other 

host species. 

Research is required to determine whether increased growth rate of trees through 

plant nutrition can be used to induce early sporocarp production. Such experiments 

would entail monitoring such factors as; colonisation of the root system by 

T melanosporum, competition from other ectomycorrhizal fungi, the effect of 

plant fertilizers on soil parameters that are considered to be important to truffle 

production such as the C/N ratio, and fruiting of T. melanosporum. 

Competition from introduced and cosmopolitan species of ectomycorrhizal fungi is 

likely to present a greater risk to the Tasmanian truffle industry than competition 

from endemic species. Tuber brumale has become established in at least one 

truffiere and is the only competitor identified in Tasmanian truffieres to date. Other 

species have the potential to be a problem. In these studies, Hebeloma .  

crustiliniforme, Laccaria tortilla and Melanogaster ambiguus were able to 

colonise hazel in soil treated with high rates of lime, and largely prevented 

colonisation by T melanosporum. Other exotic fungi reported in Tasmania such as 

Bole/us luridus and Scleroderma verrucosum also have the potential to 

contaminate the truffieres. Furthermore, it is likely that there are other known 

antagonistic ectomycorrhizal fungi that exist in Tasmania but have not been 

reported. 

Should a truffiere become infected with a problem ectomycorrhizal fungus such as 

has occurred at Bream Creek, efforts should be made to isolate the contaminant 

within that truffiere. People moving from one truffiere to the next are at risk of 

spreading the contaminant. Footwear, vehicle tyres and equipment should be 
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cleaned and disinfected before moving to the next truffiere. Owners of a 

contaminated truffiere wishing to expand their area of trufficulture should be 

advised to consider a new site rather than expanding the existing site. 

Having said this, it may be unreasonable to expect that fungal diversity within the 

truffieres can be restricted to one species. In natural ecosystems it is normal for a 

wide diversity of ectomycorrhizal fungi to colonise the roots of a single host tree 

(Mason etal. 1987). However, Chevalier etal. (1982) have found that some trees 

in plantations were abundantly colonised by T melanosporum to the exclusion of 

all other mycorrhizal fungi. In their study of fungal diversity in French truffieres, 

Chevalier etal. (1982) found the number of mycorrhizal fungi (including 

T melanosporum) varied from 1 to 8 per tree and the degree of contamination 

increased with the age of the trees. 

Furthermore, the assumption that the presence of other ectomycorrhizal fungi in a 

truffiere is detrimental may not always be correct. It is possible that some 

ectomycorrhizal fungi can co-exist with T. melanosporum without influencing 

production or even be of benefit to T melanospoi-um. For example, Sourzat et al. 

(1993) reported that a Scleroderma sp. was prevalent at almost all their sites of 

experimentation, even those sites with good truffle production. The Sckroderma 

sp. was generally observed at the edge of the brille where the soil was reportedly 

richer in organic matter. Sourzat et al. proposed that Scleroderma may have a 

useful role in altering the soil to a state that is more favourable for the growth of 

T. melanosporum. 

In another experiment, Mamoun and Olivier (1993) found that competition 

between T melanosporum and T brumale could be influenced by the rate of 

irrigation. Under moderate irrigation, T melanosporum colonisation declined in 

the presence of T. brumale. However, the presence of T. brumale at high rates of 

irrigation appeared to increase the competitiveness of T. melanosporum. 

Another area for consideration is how to measure the effects of competition 

between species of ectomycorrhizal fungi. It has been shown in field studies 
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(Gardes and Bruns, 1996; Taylor and Alexander, 1989; Vogt et al., 1992) that in 

the short term, there appears to be little correspondence between fruit body 

production and the population structure of mycorrhizal fungi measured in terms of 

mycorrhizal colonisation. For example, Taylor and Alexander (1989) found that 

those species which produced the most sporocarps, each formed less than 5% of 

the mycorrhizal types examined. However, within species, positive correlations 

have been reported between the frequency of fruiting and the level of colonisation 

(Termorshuizen and Schaffers, 1989). Positive correlations between the frequency 

of fruiting and the level of colonisation were also observed for H. crustuliniforme 
and L. tortilla in Chapter 5. 

Gardes and Bruns (1996) postulated that those fungi that are able to fruit 

prolifically from a comparatively short length of mycorrhizal root may be 

particularly efficient in the transfer of carbon from the roots to the fruit bodies. 

Similarly, it was observed in Chapter 5 that Melanogaster ambiguus was able to 

produce a mass of mycelium from very few mycorrhizas. It seems unlikely that the 

carbon required to maintain such an extensive mycelial network could have been 

supplemented by saprotrophic sources as the soil used in the experiment was 

extremely low in organic matter (0.14%). 

For the Perigord black truffle industry, the competitiveness of other 

ectomycorrhizal fungi can be considered as their ability to reduce the yield of 

T. melanosporum fruitbodies. There are a number of ways that this may occur and 

many of them are interrelated. They would include: 

• competing with T. melanosporum for carbohydrate from the host, 

• competing for positions on the root system on which to form a mycorrhizal 

relationship with the host, 

• competing for soil nutrients and soil water, and 

• allelopathic effects. 
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Fungal diversity, spatial variation, succession, and competition between 

ectomycorrhizal fungal species within truffieres are complex fields of study that 

have so far received little attention. Further research in these areas will no doubt 

bring about advances in the management of truffieres. 

While native ectomycorrhizal fungi were generally adversely affected by applied 

lime, Tuber melanosporum showed strong colonisation of hazel in soils of non-

calcareous origin provided adequate lime was applied. Tuber melanosporum was 

able to colonise hazel growing in acidic soil, but the levels of colonisation were 

very low. The benefit of applied lime appears to be largely a function of increased 

pH, although applied calcium may also have an additional positive effect or a 

positive interaction with pH. Maximum root colonisation appears to coincide with 

the maximum soil pH obtainable by applying lime. This point occurs when the soil 

is saturated with calcium, and dissociation of CaCO 3  discontinues. Applying 

additional lime increases the reserve of undissociated lime within the soil. This 

reserve is useful in that it is likely to buffer the soil against pH decline bought 

about by leaching of calcium from the soil profile. 

One of the most interesting aspects of the results was the magnitude of variation 

observed in the colonisation of hazel by T. melanosporum under controlled 

glasshouse conditions. The variation in colonisation by T. melanosporum, which 

could not be accounted for by the treatments, was most easily recognised in 

Chapters 6 and 7. In these experiments, all the replicates were colonised by 

T. melanosporum, but the soil treatment effects only explained about one third of 

the variation in colonisation. 

The observed variation is important for two reasons. 

1. It reveals the high level of root colonisation which can be achieved by 

T melanosporum. If it is possible to explain why one plant might have 80% of 

its fine roots colonised while another plant under similar conditions only 

supports 20% colonisation, then it may be possible to manipulate the system 

such that all plants support 80% colonisation or higher. 
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2. In any experimentation, such large variation will reduce the likelihood of 

obtaining significant treatment effects. 

One possible explanation for the variation observed in Chapters 6 and 7 may be 

variation in soil moisture from plant to plant. The plants from these experiments 

were watered using overhead sprinklers. The distribution pattern of the sprinklers 

was tested, but it is quite possible that there were differences between pots in soil 

moisture content due to shading and variation in water use rates of the plants as a 

consequence of their different sizes and growth rates. 

It has been shown that soil moisture content does affect root colonisation by 

T melanosporum (Mamoun and Olivier, 1990; Mamoun and Olivier, 1993a). 

Mamoun and Olivier (1993) demonstrated that in the absence of other mycorrhizal 

fungi, T. melanosporum colonisation was 24% lower at a high rate of irrigation 

(31% soil moisture) than at a medium rate of irrigation (21% soil moisture), but 

the difference was not significant (P>0.05). Therefore, while variations in soil 

moisture content may have explained some of the variation in T. melanosporum 

colonisation observed in Chapters 6 and 7, it seems unlikely to be the major 

contributor. 

It is more likely that the variation in colonisation by T. melanosporum can be 

attributed to the heterogeneity of both the plant and fungal material. Variation in 

the capacity of individual plants to host T. melanosporum has been observed by 

several authors (Boutekrabt et al., 1990; Guinberteau et al., 1990; Mamoun and 

Olivier, 1996). Mamoun and Olivier (1996) showed that variation in 

T melanosporum colonisation could be reduced by using cloned hazel plants. 

Furthermore, the clone that they used in their experiment showed consistently 

higher colonisation than seedling hazels. Mamoun and Olivier (1996) also 

suggested that individual plants may vary in their capacity to host different species 

of ectomycorrhizal fungi thus offering the potential to select clones that show a 

propensity to host T melanosporum rather than competitor fungi. Strong genetic 

control of ectomycorrhizal traits has also been observed for different genotypes of 
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Pinus elliottii var. elliottii inoculated with Pisolithus tinctorius (Rosado et al., 

1994). 

The influence of plant genotype on colonisation by T melanosporum provides 

great potential for selecting individual trees to clone for commercial truffle 

production. It is also possible that there would be a host/fungus/environment 

interaction such that eventually, different clones could be used for different 

environments within Tasmania. 

Selecting and cloning superior hosts is an area that should be pursued by the 

Tasmanian truffle industry. Care should be taken not to excessively reduce the 

genetic diversity of host plants within a truffiere as one or several of the clones 

may be susceptible to disease or some other deleterious factor. Selection would be 

initially based on the ability of the tree to support mycorrhizal colonisation by 

T melanosporum, but once truffles are produced in Tasmania, trees would most 

likely be selected on the basis of truffle production. 

Finally, the correlation between percent root colonisation by T. melanosporum and 

truffle production requires further investigation. It has been assumed that there is a 

positive correlation, but it has never been tested for T melanosporum. A 

knowledge of the relationships between root colonisation and truffle production is 

required to verify the value of experiments which look at treatment effects on root 

colonisation. 

Knowledge of the relationship between truffle production and root colonisation 

may also prove to be a valuable tool for predicting truffle production. It may be 

possible to combine root colonisation with other parameters such as, the number of 

branched mycorrhizas, brille formation and stem diameter to develop an equation 

to predict the potential truffle yield of a tree. 
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Summary of Outcomes 

• Some species of Australian endemic ectomycorrhizal fungi, previously thought 

to be Eucalyptus specific, are forming mycorrhizal relationships with hazel. 

• Of the endemic fungi that were forming mycorrhizas with hazel, most were 

unable to colonise hazel in soils that were heavily limed. This reduces the 

likelihood of these fungi having a detrimental effect on truffle production in 

Tasmania. 

• Tuber melanosporum was able to colonise hazel in an infertile, moderately 

acidic, structureless Australian soil albeit at very low levels. When lime was 

applied to the soil the level of T melanosporum colonisation increased 

significantly. Maximum colonisation corresponds to the maximum pH of the soil 

obtainable by liming with CaCO 3 . 

• The effect of applied lime on T. melanosporum appears to be .  primarily a 

function of pH. Calcium may have a secondary role. 

• The level of colonisation of hazel by T melanosporum was not significantly 

affected by high rates of phosphorus application. 

• Tuber melanosporum exhibited very strong colonisation of hazel in a Tasmanian 

truffiere. The diversity and abundance of other ectomycorrhizal fungi in the 

truffiere was very low. 

• Guidelines for the management of Tasmanian truffieres have been developed 

based on the above outcomes. 
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Appendices 

Appendix 1 Climate statistics for Perigord black truffle producing regions in France and New Zealand, and regions in 

Tasmania where truffieres have been planted 

Mean daily maximum temperatures (°C) for Perigord black truffle producing regions in France and New Zealand, and regions in Tasmania where truffieres have 

been planted. 

Gisborne, 

N.Z. 

Avignon, 

France 

	

Gourdon, 	Montelimar, Montpellier, 

	

France 	France 	France 

Orange, 

France 

Valence, 

France 

Bothwell, 	Deloraine, 

Tas. 	Tas. 

Grove, 

Tas. 

Oatlands, Westbury, 

Tas. 	Tas. 
Jan/Jul 24 31 26 29 28 29 29 22.6 21.3 22.2 21.9 23.4 

Feb/Aug 24 31 25 28 28 28 28 23.2 22.5 22.3 21.7 23.4 
Mar/Sep 22 26 23 24 24 24 24 20.5 19.6 20.3 19.3 21 
Apr/Oct 20 20 17 18 20 19 18 17 16.5 17.5 15.9 17.1 
May/Nov 17 13 12 12 15 13 12 13.5 13.2 14.4 12.4 13.8 
Jun/Dec 14 10 9 8 11 9 8 10.9 10.9 11.9 10.1 10 
Jul/Jan 14 9 7 7 11 9 7 10.6 10.4 11.6 9.4 9.7 

Aug/Feb 14 12 9 9 12 11 9 11.7 11.4 12.8 10.6 11.9 
Sep/Mar 17 15 12 14 15 15 14 13.7 13.3 14.6 12.8 14.5 
Oct/Apr 18 19 15 18 18 18 18 16.7 15.5 16.9 15.2 16.9 

Nov/May 21 23 19 22 21 22 22 18.4 17.7 18.3 17.4 19.4 
Dec/Jun 23 28 22 26 26 26 26 20.4 20.1 20.1 19.6 21.8 

Ann 19 20 17 18 19 19 18 17.5 16.1 16.8 15.4 16.9 
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Mean daily minimum temperatures (°C) for Perigord black truffle producing regions in France and New Zealand, and regions in Tasmania where truffleres have 

been planted. 

Gisbome, 

N.Z. 

Avignon, 

France 

Gourdon, Montelimar, Montpellier, 

France 	France 	France 

Orange, 

France 

Valence, 

France 

Bothwell, 	Deloraine, 

Tas. 	Tas. 

Grove, 

Tas. 

Oatlands, Westbury, 

Tas. 	Tas. 

Jan/Jul 13 16 14 16 16 17 16 7.6 7.7 9.3 8.8 8.2 

Feb/Aug 13 16 14 16 16 16 16 7.5 8.7 9.3 8.7 8.5 

Mar/Sep 12 14 12 13 14 13 13 6.6 6.3 7.9 7.5 7.2 

Apr/Oct 10 9 9 9 9 9 9 4.3 4.5 6.3 5.7 4.7 

May/Nov 7 5 4 5 6 5 5 2.2 2.7 4.2 3.4 2.4 

Jun/Dec 5 3 3 2 2 2 2 0.1 1 2.3 1.7 1 

Jul/Jan 4 1 2 1 1 1 1 -0.2 0.9 1.9 1.1 0.6 

Aug/Feb 5 2 3 2 2 2 2 0.6 1.2 2.7 1.8 1.7 

Sep/Mar 7 5 4 4 5 4 4 2.2 3.1 3.9 3.1 3 

Oct/Apr 8 7 6 6 8 7 6 3.3 4.4 5.6 4.6 4.4 
Nov/May 10 11 9 10 11 11 10 5.5 5.4 7 6.1 5.8 

Dec/Jun 12 14 13 13 14 14 13 6.7 7.2 8.6 7.7 7.5 

Ann 9 9 8 8 9 8 8 4.4 4.4 5.7 5 4.5 
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Mean rainfall (mm) for Perigord black truffle producing regions in France and New Zealand, and regions in Tasmania where truffieres have been planted. 

Gisborne, 

N.Z. 

Avignon, 

France 

	

Gourdon, 	Montelimar, Montpellier, 

	

France 	France 	France 

Orange, 

France 

Valence, 

France 

Bothwell, 	Deloraine, 

Tas. 	Tas. 

Grove, 

Tas. 

Oatlands, Westbury, 

Tas. 	Tas. 

Jan/Jul 51.6 32.5 53 41.25 19.75 38.5 43.25 39.3 50.3 48.1 44.8 44.8 

Feb/Aug 72 44.25 59.6 101.5 39.5 76.75 62 38.7 47.3 44.8 38.7 47.9 

Mar/Sep 94.2 64 64.9 110.25 98.5 86.75 127 37.8 51.4 47.2 40 47.6 

Apr/Oct 91.3 81.75 67 129 93.5 118 96.5 50.4 73.9 66.9 48.4 65.6 

May/Nov 86.8 73.75 68 120 69 87.5 98.5 44.6 87.8 63.6 44 78.4 

Jun/Dec 127.8 52.25 70.4 56 88.5 58 61 43.4 104 62.5 48.3 86 

Jul/Jan 118.5 22.75 61.5 50.25 55.25 37.5 51.25 46 123 77.1 43.7 103.9 

Aug/Feb 106.2 31.5 57.4 53.25 29.5 43.25 41.25 46.6 115.3 76.7 45.5 95 

Sep/Mar 91.7 47.25 62.2 71.75 71 63 62 43.2 92.5 73.3 41.4 79.6 

Oct/Apr 60.2 53.25 69.7 70 55.25 61 58 55.2 85.6 69.4 54 76.2 

Nov/May 56.3 62 80 88.5 46.25 71.75 71.75 53 65.4 68.9 50.5 56.7 

Dec/Jun 73.5 41.25 73 49.25 32.5 57 59 53 65.2 66.3 56.7 57.3 

Ann 	. 1033.1 607.5 787.2 940 697.5 800 832.5 551.1 961.7 764.7 555.8 839.1 

195 



Appendix 2. Fungi known to occur in Tasmania and presumed to be ectomycorrhizal. 

Taxonomy is consistent with the original reports. No attempt has been made to update names. 

Ascomycotina 

Species 	 Reference 	 Presumptive Mycorrhizal Host 

Amylascus sp. 

Amylascus tasmanica: see Terfezia tasmanica 

Balsamia sp. 

Dingleya tectiascus Trappe, Castellano & Malajczuk 

Dingleya phymatodea (Zhang & Minter) Trappe, Castellano & Malajczuk 

Labyrinthomyces phymatodeus Zhang & Minter 

Dingleya tectiascus Trappe, Castellano & Malajczuk 

Elaphomyces spp. 

Genabea tasmanica Massee & Rodway 

Genea pazschkei Bresadola 

Hydnocystis convoluta McAlpine 

E Hydnotqa convoluta (McAlpine) McLennan 

E Peziza jactata Bursdall & Korf 

Hydnocystis echinospora: see Sphaerosoma tasmanica 

(Castellano and Bougher, 1994) 

(Castellano and Bougher, 1994) 

(Trappe etal., 1992) 

(Trappe et al., 1992) 

(Trappe et al., 1992) 

(Castellano and Bougher, 1994) 

(Castellano and Trappe, 1992a) 

(Castellano and Trappe, 1992a) 

(McAlpine and Rodway, 1896) 

Leptospermum sp. 
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Hydnotrya convoluta: see Hydnocystis convoluta 

Labyrinthomyces sp. 

Labyrinthonzyces phynzatodeus: see Dingleya phymatodea 

Labyrinthomyces varius: see Stephensia varia 

Muciturbo reticulatus Talbot 

Paurocotylis niveus Rodway 

Peziza jactata: see Hydnocystis convoluta 

Ruhlandiella berolinensis Hennings 

Sphaerosoma mucida: see Spragueola mucida. 

Sphaerosoma tasmanica Rodway 

EHydnocystis echinospora Rodway 

Spragueola mucida Rodway 

E Tremellodiscus mucidus (Rodway) Lloyd 

E Sphaerosoma mucida (Rodway) Hansford 

Stephensia varia Rodway 

Labyrinthomyces varius (Rodway) Trappe 

Terfezia tasmanica Rodway 

E Amylascus tasmanica (Rodway) Trappe 

Tremellodiscus mucidus: see Spragueola mucida. 

(Castellano and Bougher, 1994) 

(Warcup, 1991) 
	

Eucalyptus obliqua 

(Rodway, 1920) 

(Warcup, 1991) 
	

Eucalyptus obliqua 

(Rodway, 1920) 

(Rodway, 1920) 

(Rodway, 1898) 

(Rodway, 1926) 
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Basidiomycotina 

Species 	 Reference 	 Presumptive Mycorrhizal Host 

Agaricus recedens: see Descolea recedens 

Alpova spp. 	 (Castellano and Bougher, 1994) 
Alpova clelandii: see Rhizopogon clelandii. 

Amanita ananiceps (Berk.) Sacc. 	 (May and Wood, 1997) 
Amanita grisea Massee & Rodway 	 (May and Wood, 1997) 
Amanita grossa Sacc. 	 (May and Wood, 1997) 
Amanita muscaria (L. : Fr.) Lam. 	 (Shepherd and Totterdell, 1988) 
Amanita umbrinella E.J. Gilbert & Cleland 	 CSIRO database 
Andebbia pachythrix (Cooke & Massee in Cooke) Trappe, Castellano & Amaranthus 	(Trappe et al., 1996a) 

E Diploderma pachythrix Cooke & Massee 

Mesophellia pachythrix (Cooke & Massee) Lloyd 

Arcangeliella alveolata: see Octaviania alveolata. 

Arcangeliella ellipsoidea Zeller & Dodge 	 (Castellano and Trappe, 1990) 
Arcangeliella glabrella Zeller & Dodge 	 (Castellano and Trappe, 1990) 

E Hydnangium glabrellum (Zeller & Dodge) Cunningham 

E Zelleromyces glabrellus (Zeller & Dodge) Singer & Smith 

Arcangeliella nana: see Hymenogaster nanus. 

Eucalyptus 
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Arcangeliella seminuda: see Gymnomyces seminudus. 

Arcangeliella tasmanical see Hydnangium tasmanicum. 

Arcengeliella violacea: see Cortinomyces violaceus 

Austrogautieria clelandii Stewart & Trappe 

Gautieria clelandii Cunningham 

Gautieria tasmanica Cunningham non Rodway 

Austrogautieria costata Stewart & Trappe 

Gautieria costata Cunningham, nom. nud. 

Austrogautieria rodwayi: see Hymenogaster rodwayi. 

Austroboletus sp. 

Boletus luridus Schaeff. : Fr. 

Boletus piperatus 

Boletus megalosporus Berk. 

Boletus tasmanicus Hongo and A.K.Mills 

Boughera spp. 

Cantharellus cibarius Fr. : Fr. 

Cantharellus cinereus (Pers. : Fr.) Fr. 

Cantharellus pusio Berk. 

Cantharellus strigipes Berk. 

Castoreurn cretaceum: see Diploderma cretaceum 

(Stewart and Trappe, 1985) 

(Johnson, 1994) 
	

Eucalyptus tenuiramus, Acacia 

dealbata, Exocarpus cupressiformis 

C S IRO database 

(Rodway, 1898) 

CSIRO database 

(Rodway, 1898) 

(Hongo and Mills, 1988) 

(Castellano and Bougher, 1994) 

(Rodway, 1898) 

(Rodway, 1898) 

(Rodway, 1898) 

(Rodway, 1898) 

Douglas Fir 
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Castoreum radicatum Cooke & Massee 

E Diploderma radicatum (Cooke & Massee) Lloyd 

Casloreum tasmanicum Cunningham 

Chamonixia spp. 

Chondrogaster spp. 

Cortinarius archeri Berk. 

Cortinarius globuliformis Bougher 

Cortinarius magellanicus Speg. 

Cortinarius ochraceus: see Cortinarius sinapicolor 

Cortinarius parochraceus var. australiensis: see Cortinarius sinapicolor 

Cortinarius rotundisporus Cleland & Cheel 

Cortinarius sinapicolor Cleland 

Cortinarius ochraceus Cleland 

Cortinarius parochraceus M.M.Moser var. australiensis M.M.Moser 

Cortinomyces luteus (Massee) Bougher & Castellano 

E Protoglossum luteum Massee 

E Hymenogaster luteus (Massee) Cunningham 

= Hysterangium atratum Rodway 

= Hymenogaster atratus (Rodway) Zeller & Dodge 

Cortinomyces violaceus (Massee & Rodway) Bougher & Castellano 

Hymenogaster violaceus Massee & Rodway 

(Cooke, 1886) 

(Castellano and Trappe, 1990) 

(Castellano and Bougher, 1994) 

(Castellano and Bougher, 1994) 

(May and Wood, 1997) 

CSIRO database 	 Eucalyptus globulus 

(May and Wood, 1997) 

CSIRO database 	 Nothofagus cunninghamii 

CSIRO database 	 Eucalyptus 

(Bougher and Castellano, 1993) Eucalyptus 

(Bougher and Castellano, 1993) 
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E Arcengeliella violacea (Massee & Rodway) Dodge 

E Dendrogaster violaceus (Massee & Rodway) Cunningham 

E Arcangeliella violacea (Massee & Rodway) Zeller & Dodge 

E Gymnoglossuin violaceum (Massee & Rodway) Cunningham 

Cortinomyces viscidus (Massee & Rodway) Bougher & Castellano 

E Hysterangium viscidum Massee & Rodway 

Hymenogaster viscidus (Massee & Rodway) Dodge & Zeller 

Cuphocybe sp. 

Cystangium spp. 

Cystangium rodwayi: see Secotium rodwayi. 

Cystangium sessile: see Secotium sessile. 

Dendrogaster fulvus: see Hymenogaster fulvus. 

Dendrogaster violaceus: see Cortinomyces violaceus 

Dermocybe sp. 

Descolea recedens (Cooke & Massee) Singer 

Agaricus recedens Cooke & Massee 

E Pholiota recedens (Cooke & Massee) Sacc. 

Pholiotina recedens (Cooke & Massee) Singer 

Pholiotina filaris (Fr.) Singer var. recedens (Cooke & Massee) Singer 

Descolea phlebophora E. Horak 

Descomyces albellus (Massee & Rodway) Bougher & Castellano 

(Bougher and Castellano, 1993) 

CSIRO database 

(Castellano and Bougher, 1994) 

CSIRO database 

CSIRO database 

CSIRO database 

(Bougher and Castellano, 1993) Myrtaceae 
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E Hymenogaster albellus Massee & Rodway 

E Hymenogaster zeylanicus Petch 

E- Hymenogaster maideni Rodway 

= Hymenogaster maurus Maire 

Hymenogaster weiblianus Maire 

Descomyces albus (Klotzsch) Bougher & Castellano 	 (Bougher and Castellano, 1993) Myrtaceae 
Hymenangium album Klotzsch 

Hymenogaster albus (Klotzch) Berk. & Br. 

E Hymenogaster klotzschii Tul. 

-a-  Splanchnomyces albus Corda emend. Zobel 

De.stuntzia sp. 	 (Castellano and Bougher, 1994) 
Diploderma castoreum Lloyd 	 (Castellano and Trappe, 1990) 
Diploderma cretaceum Lloyd 	 (Castellano and Trappe, 1990) 

E Castoreum cretaceum (Lloyd) Cunningham 

Nothocastoreum cretaceum (Lloyd) Beaton 

Diploderma dehiscens Lloyd 	 (Castellano and Trappe, 1990) 

Diploderma glaucum: see Mesophellia glauca 

Diplodernza pachythrix: see Andebbia pachythrix. 

Diploderma parvispora: see Mesophellia glauca. 

Diploderma radicatum: see Castoreum radicatum. 

Elasmomyces rodwayi: see Secotium rochvayi. 



Elasmomyces sessile: see Secotiutn sessile. 

Gautieria albida: see Hymenogaster albidus. 

Gautieria clelandii: see Austrogautieria clelandii. 

Gautieria costata: see Austrogautieria costata. 

Gautieria microspora Rodway 

Gautieria monospora Beaton, Pegler & Young 
(Rodway, 1929) 

(Johnson, 1994) Eucalyptus tenuiramus, Acacia 

dealbata, Exocarpus cupressiformis 
Gautieria rodwayi: see Hymenogaster rodwayi. 

Gautieria tasmanica Rodway 	 (Rodway, 1929) 
Gautieria tasmanica Cunningham: see Austrogautieria clelandii. 

Gigasperma clelandii: see Horakiella clelandii 

Gummiglobus agglutinosporus (Beaton in Beaton & Weste) Trappe, Castellano & Amaranthus (Trappe et al., 1996a) 
E Alesophellia agglutinospora Beaton 

Gymnoglossum fulvum: see Hymenogaster fulvus. 

Gymnoglossum violaceum: see Cortinomyces violaceus 

Gymnomyces flavus Rodway 	 (Rodway, 1918) 
Octaviania flava (Rodway) Cunningham 

E Octavianina flava (Rodway) Singer & Smith 

E Stephanospora flava (Rodway) Beaton, Pegler & Young 

Gymnomycesflavus f. tetraspora Rodway 	 (Rodway, 1924a) 
Gymnomyces megasporus Rodway 	 (Rodway, 1926) 
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E Octaviania megaspora (Rodway) Cunningham 

Gymnomyces pallidus Massee & Rodway 

E Octaviania pallida (Massee & Rodway) Cunningham 

Gymnomyces seminudus Massee & Rodway 

E Arcangeliella seminuda (Massee & Rodway) Zeller & Dodge 
Octaviania seminuda (Massee & Rodway) Cunningham 

Gymnomyces solidus Rodway 
Hebeloma sp. 

Horakiella clelandii (Rodway) Castellano & Trappe 

Hydnangium clelandii Rodway 

E Leucophlebs clelandi (Rodway) Zeller & Dodge 

E Octaviania clelandii (Rodway) Cunningham 

aGigasperma clelandii (Rodway) Horak 

Hydnangium alveolatum: see Octaviania alveolata. 

Hydnangium archeri: see Octaviania archeri. 

Hydnangium carneum Wallroth 

(Castellano and Trappe, 1990) 

(Castellano and Trappe, 1990) 

(Rodway, 1921) 

CSIRO database 

(Castellano and Trappe, 1992b) 

(Johnson, 1994) Eucalyptus tenuiramus, Acacia 

dealbata, Exocarpus cupressiformis 
Octaviania carnea (Wallroth) Corda 

Hydnangium clelandii: see Horakiella clelandii. 

Hydnangium densunt Rodway 	 (Rodway, 1920) 
E Octaviania densa (Rodway) Cunningham 
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Hydnangium glabrellum: see Arcangeliella glabrella. 

Hydnangium glabrum Rodway 	 (Rodway, 1921) 

E Octaviania glabra (Rodway) Cunningham 

Hydnangium hinsbyi Rodway 	 (Rodway, 1924b) 

Octaviania hinsbyi (Rodway) Cunningham 

Hydnangium microsporium Rodway 	 (Rodway, 1920) 

Hydnangium tasmanicum Kalchbrenner 	 (Massee, 1890) 

--a Arcangeliella tasmanica (Kalchbrenner) Zeller & Dodge 

▪ Maccagnia tasmanica (Kalchbrenner) Zeller & Dodge 

Octaviania tasmanica (Kalchbrenner) Lloyd 

Octavianina tasmanica (Kalchbrenner) Pegler & Young 

Hymenangium album: see Descomyces albus. 

Hymenogaster albellus: see Descomyces albellus. 

Hymenogaster albidus Massee & Rodway 	 (Castellano and Trappe, 1990) 

E Gautieria albida (Massee & Rodway) Zeller & Dodge 

E Gautieria albida (Massee & Rodway) Cunningham 

Hymenogaster albus: see Descomyces albus. 

Hymenogaster atratus: see Cortinomyces luteus. 

Hymenogaster aureus Rodway 	 (Rodway, 1924b) 

Hymenogaster barnardi Rodway 	 (Rodway, 1921) 

Hymenogaster fulvus Rodway 	 (Rodway, 1918) 



E Dendrogaster fulvus (Rodway) Cunningham 

E- Gymnoglossum fulvum (Rodway) Cunningham 

Hymenogaster fusisporus: see Hysterangium fusisporum. 

Hymenogaster klotzschii: see Descomyces albus. 

Hymenogaster levisporus Massee & Rodway 

Octaviania levispora (Massee & Rodway) Rodway 

Thaxterogaster levisporus (Massee & Rodway) Beaton 
Hymenogaster luteus: see Cortinomyces luteus. 

Hymenogaster macrosporus: see Timgrovea macrospra. 

Hymenogaster maideni: see Descomyces albellus. 

Hymenogaster nanus Massee & Rodway 
E Arcangeliella nana (Massee & Rodway) Zeller & Dodge 

Hymenogaster reticulatus: see Timgrovea reticulata. 

Hymenogaster rodwayi Massee 

E Gautieria rodwayi (Massee) Zeller & Dodge in Dodge & Zeller 

Gautieria rodwayi (Massee) Zeller & Doge in Cunningham 

Austrogautieria rodwayi (Massee) Stewart & Trappe 

Hymenogaster tasmanicus Cunningham 

• -a Hysterogaster tasmanicus (Cunningham) Beaton, Pegler & Young 

Hymenogaster violaceus: see Cortinomyces violaceus 

Hymenogaster viscidus: see Cortinomyces viscidus. 

(Rodway, 1912) 

(Castellano and Trappe, 1990) 

(Castellano and Trappe, 1990) 

(Cunningham, 1934) 
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Hymenogaster zeylanicus: see Descomyces albellus. 

Hysterangium affine Massee & Rodway 

Hy.sterangium affine var. irregulare Massee 

Hysterangium affine var. tenuispora Rodway 

Hysterangium aggregatum Cribb 

(Castellano and Trappe, 1990) 

(Castellano and Trappe, 1990) 

(Rodway, 1912) 

(Johnson, 1994) Eucalyptus tenuiramus, Acacia 

dealbata, Exocarpus cupressiformis 

Hysterangium atratum: see Cortinomyces luteus. 

Hysterangium burburianum Rodway 

Hysterangium clathroides Vitt. 

Hysterangium fusisporum Massee & Rodway 

▪ Hymenogaster fusisporus (Massee & Rodway) Cunningham 

Hymenogaster fusisporus (Massee & Rodway) Zeller & Dodge 

▪ Hysterogaster fiisisporum (Massee & Rodway) Zeller & Dodge 

E Hysterogaster fusisporum (Massee & Rodway) Beaton, Pegler & Young 

Hysterangium inflatum Rodway 

Hysterangium membranaceum Vitt. 

Hysterangium neglectum Massee & Rodway 

Hysterangium obtusum Rodway 

Hysterangium pumilum Rodway 

Hysterangium viscidum: see Cortinomyces viscidus. 

Hysterogaster spp. 

(Rodway, 1918) 

(Rodway, 1898) 

(Castellano and Trappe, 1990) 

(Rodway, 1918) 

(Rodway, 1898) 

(Castellano and Trappe, 1990) 

(Rodway, 1920) 

(Rodway,. 1918) 

(Castellano and Bougher, 1994) 
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Hysterogaster fusisporum: see Hysterangium fisisporum. 

Hysterogaster tasmanicus: see Hymenogaster tasmanicus. 

Inoderma arenaria: see Mesophelia arenaria 

Laccaria laccata (Scop. ex Fr.) 0. Berk. et Br. 

Lactarius deliciosus (L.Fr.) Gray 

Lactarius piperatus (L. :Fr.) Pers. 

Lactarius sepiaceus McNabb 

Lactarius stenophyllus Berk. 

Lactarius subdulcis (Pers.:Fr.) Gray 

Leucogaster sp. 

Leucophlebs clelandi: see Horakiella clelandii. 

Maccagnia tasmanica: see Hydnangium tasmanicum. 

Macowanites spp. 

Malajczukia spp. 

Martellia alveolata: see Octaviania alveolata. 

Martellia spp. 

Mesophellia agglutinospora: see Gummiglobus agglutinosporus. 

Mesophellia aren aria Berkeley 
-a-- Inoderma arenaria (Berkeley) Berkeley 

Mesophellia castanea Lloyd 

Mesophellia clelandii Trappe, Castellano & Malajczuk 

Mesophellia glauca (Cooke & Massee) Reid 

(Shepherd and Totterdell, 1988) 

CSIRO database 	 Pinus radiata 

(Rodway, 1898) 

(Hongo and Mills, 1988) 

(Rodway, 1898) 

(Rodway, 1898) 

(Castellano and Bougher, 1994) 

(Castellano and Bougher, 1994) 

(Castellano and Bougher, 1994) 

(Castellano and Bougher, 1994) 

(Trappe et al., 1996b) 	 Eucalyptus regnans 

(Trappe et al., 1996b) 
	

Eucalyptus 

(Trappe etal., 1996b) 
	

Eucalyptus 

(Trappe et al., 1996b) 	 Eucalyptus 



Diploderma glaucum Cooke & Massee 

E Potorotnyces loculatus Mueller 

Diploderma parvispora Lloyd 

Mesophellia oleifera Trappe, Castellano & Malajczuk 

Mesophellia pachythrix: see Andebbia pachythrix 

Nothocastoreum spp. 

Nothocastoreutn cretaceum: see Diploderma cretaceum. 

Octaviania alveolata Cooke & Massee 

▪ Octavianina alveolata (Cooke & Massee) 0.Kuntze 

- Hydnangium alveolatum (Cooke & Massee) Rodway 

E Arcangeliella alveolata (Cooke & Massee) Zeller & Dodge 

E Martellia alveolata (Cooke & Massee) Smith 

Octaviania arch en Berkeley 

r7- Octavianina archeri (Berkeley) 0. Kuntze 

▪ Hydnangium archeri (Berkeley) Rodway 

- Hydnangium archeri (Berkeley) Zeller & Dodge 

Octaviania camea: see Hydnangium carneum. 

Octaviania clelandii: see Horakiella clelandii. 

Octaviania densa: see Hydnangium densum. 

Octaviania ilava: see Gymnomyces flavus. 

Octaviania &bra: see Hydnangium glabrum. 

(Trappe etal., 1996b) 
	

Eucalyptus 

(Castellano and Bougher, 1994) 

(Rodway, 1920) 

(Castellano and Trappe, 1990) 



Octaviania hinsbyi: see Hydnangium hinsbyi. 

Octaviania levispora: see Hymenogaster levisporus. 

Octaviania megaspora: see Gymnomyces megasporus. 

Octaviania pallida: see Gytnnomyces 

Octaviania seminuda: see Gymnomyces seminudus. 

Octaviania tasmanica: see Hydnangium tasmanicum 

Octavianina flava: see Gymnomyces flavus 

Octavianina alveolata: see Octaviania alveolata. 

Octavianina archer!: see Octaviania archer!. 

Octavianina tasmanica: see Hydnangium tasmanicum. 

Paxillus involutus (Batsch : Fr.)Fr. 	 A.K. Mills, pers. corn. 
Paxillus muelleri Berk. 	 CSIRO database 
Pholiota recedens: see Desco lea recedens 

Pholiotina recedens: see Desco lea recedens 

Pholiotina filaris var. recedens: see Descolea recedens 

Pisolithus tinctorius (Mich. ex Pers.) Coker et Couch 	 (Shepherd and Totterdell, 1988) 
Potoromyces loculatus: see Mesophellia glauca. 

Protoglossum luteum: see Cortinomyces luteus. 
Protub era spp. 	 (Castellano and Bougher, 1994) 
Quadrispora musispora Bougher & Castellano 	 (Bougher and Castellano, 1993) 
Rhizopogon clelandii Cunningham 	 (Johnson, 1994) 

Eucalyptus globulus 

Nothofagus cunninghamii, N. gunnii 

Eucalyptus tenuiramus, Acacia 

dealbata, Exocarpus cupressiformis 
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E Alpova clelandii (Cunningham) Beaton, Pegler & Young 

Rhizopogon colossus 

Rhizopogon hawheni 

Rhizopogon rodwayi McAlpine 

Rhizopogon rubescens (Tul.) Tul. & C.Tul. 

Richoniella sp. 

Rozites armeniacovelata Bougher, Fuhrer & Horak 

Rozites foetens Bougher, Fuhrer & Horak 

Rozites fusipes Horak & Taylor 

Rozites metallica Bougher, Fuhrer & Horak 

Rozites occulta Bougher, Fuhrer & Horak 

Rozites roseolilacina Bougher, Fuhrer & Horak 

Russula alutacea (Pers.:Fr.) Fr. 

Russula coccinea Massee 

Russula compacta Frost & Peck 

Russula emetica (Schaeff.:Fr.) Gray 

Russula purpurea Gillet 

Russula semicrema Fr. 
Scleroderma parodoxum Beaton 

Scleroderma verrucosum Vaill. ex Pers. 

Sclerogaster sp. 

Secotium ochraceum Rodway 

CSIRO database 	 Pseudotsuga 

CSIRO database 	 Pseudotsuga 

(McAlpine, 1895) 

(Rodway, 1912) 

(Castellano and Bougher, 1994) 

(Bougher et al., 1994) 
	

Nothofagus 

(Bougher et al., 1994) 	Nothofagus 

(Bougher et al., 1994) 
	

Nothofagus, Eucalyptus 

(Bougher et al., 1994) 
	

Nothofagus 

(Bougher et al., 1994) 
	

Nothofagus 

(Bougher et al., 1994) 

(Rodway, 1898) 

(Rodway, 1898) 

(Hongo and Mills, 1988) 

(Rodway, 1898) 

(Rodway, 1898) 

(Rodway, 1900) 

CSIRO database 	 Eucalyptus 

CSIRO database 	 Eucalyptus 

(Castellano and Bougher, 1994) 

(Rodway, 1920) 



Secotium rodwayi Massee 

E Elasmomyces rodwayi (Massee) Zeller 

Cystangium rodwayi (Massee) Smith 

Secotium sessile Massee & Rodway 

Elasmomyces sessile (Massee & Rodway) Rodway 

E Cystangium sessile (Massee & Rodway) Singer & Smith 

Setchelliogaster sp. 

Splanchnomyces albus: see Descomyces albus. 

Stephanospora flava: see Gymnomyces flavus. 

Timgrovea macrospra (Cunningham) Bougher & Castellano 

E Hymenogaster macrosporus Cunningham non Knapp & Soehner 

Timgrovea reticulata (Cunningham) Bougher & Castellano 

E Hymenogaster reticulatus Cunningham 

= Hymenogaster reticulatus Zeller & Dodge 

= Gymnoglossum reticulatum Cribb 

Thaxterogaster spp. 

Thaxterogaster levisporus: see Hymenogaster levisporus. 

Zelleromyces spp. 

Zelleromyces glabrellus: see Arcangeliella glabrella. 

(Castellano and Trappe, 1990) 

(Rodway, 1912) 

(Castellano and Bougher, 1994) 

(Bougher and Castellano, 1993) 

(Bougher and Castellano, 1993) Eucalyptus 

(Castellano and Bougher, 1994) 

(Castellano and Bougher, 1994) 



Appendix 3. The composition of the media used in Chapter 4. 

Ingredient MMN Pach 

Maltose (g/L) 5 

Glucose (g/L) 10 20 

Malt extract (g/L) 3 

Ammonium tartrate (mg/L) 500 

KH2F04 (Ing/L) 500 1000 

(NH4)21-1PO4 (Ing/L) 250 

MgSO47H20 (ing/L) 150 500 

CaC122H20 (mg/L) 50 50 

NaCl (mg/L) 25 

Fe EDTA (mg/L) 20 20 

H3B03 (mg/L) 2.8 

MnC122H20 (mg/L) 3 

ZnSO47H20 (mg/L) 2.3 

CuC122H20 (mg/L) 0.63 

Na2Mo42H20 (mg/L) 0.27 

Thiamine HC1 (tig/L) 0.1 0.1 

Agar (g/L) 10 10 

pH 5.8 5.4 

MMN = modified Melin Norkans media 

Pach = Pachlewski media 

The potato dextrose agar media used was a commercial preparation by Merck, Germany. 

The malt extract media contained 10 g/L of food grade malt extract manufactured by Mauri 

Foods Division, Australia. Agar was incorporated at 10 g/L. 
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Appendix 4. Climate statistics for Perth, Western Australia. 

PERTH 

Latitude: 31.99 S Longitude: 115.82 E Elevation: 6.1 m State: WA 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann 

Mean Daily Max Temp (deg C) 29.5 30.0 27.6 23.8 20.7 18.5 17.5 18.2 19.5 21.6 24.4 26.9 22.8 

Mean Daily Min Temp (deg C) 17.6 18.1 16.5 13.3 10.8 9.7 8.5 8.4 9.7 11.2 13.6 15.8 12.5 

Mean Rainfall (mm) 7.8 12.1 17.4 50.3 110.8 186.8 170.3 114.3 70.3 49.2 19.4 12.6 821.2 

Mean 9am Relative Humidity (%) 56 58 66 69 76 79 80 76 71 64 58 61 69 
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Appendix 5. Climate statistics for Hobart, Tasmania. 

HOBART 

Latitude: 42.89 S Longitude: 147.33 E Elevation: 50.5 m 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann 

Mean Daily Max Temp (deg C) 21.5 21.6 20.1 17.2 14.3 11.8 11.6 12.9 15.0 16.9 18.5 20.2 16.8 

Mean Daily Min Temp (deg C) 11.8 11.9 10.8 8.9 6.9 5.1 4.5 5.2 6.3 7.7 9.2 10.7 8.2 

Mean Rainfall (mm) 48.3 39.8 45.7 52.9 47.9 54.8 53.8 52.8 51.7 62.8 54.8 58.2 623.7 

Mean 9am Relative Humidity (%) 59 63 66 70 76 79 78 73 66 62 60 59 68 
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pH (CaCl2) 

53 58 63 68 7.3 	 78 83 	 88 

Appendix 6. Graph to convert pH (CaCl 2 ) to pH (H 2 0) for the soil used in Chapters 6 and 7. 

5,4 

4 

5 9 

Y ' 2711x - 1 184 

.-0.-6165- 


