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A preclinical Alzheimer's disease (AD) case double-labelled with B-amyloid (red) and 

microtubule-associated protein-2 (MAP2) (green). MAP2-positive dendrites are shown 

deflecting around, and terminating within, the area occupied by the dense-cored plaque (see 

chapter 3 for details). Such structural deformation of neurites, by B-amyloid plaques, may 

underlie the evolution of the neuropathology which precedes neurodegeneration in AD. 





Abstract 

Alzheimer's disease (AD) results from a series of dysfunctions which spread throughout the 

cortex in a precise spatiotemporal manner, and which subsequently give rise to a 

characteristic pattern of cognitive and non-cognitive symptoms. Whilst some of these 

symptoms can be controlled with specific drug regimes, there are still no treatments 

available to prevent the disease. Similarly, there are no drugs available which will reverse 

or even halt the progression of the pathological changes which occur in the AD brain. 

It is hypothesised that B-amyloid deposited within the brain as "plaques' causes slowly 

evolving physical damage to neurons, which then triggers a stereotypical neuronal response 

to trauma. This involves specific cytoskeletal alterations which give rise to the 

characteristic neuropathology of AD, and which can be experimentally modeled in both in 

vivo and in vitro models of neuronal injury. That the pathogenesis of AD crucially involves 

the cytoskeleton, and that targeting these changes may be an effective method of delaying 

or even preventing neurodegeneration in AD, was explored in this thesis. 

A number of broad hypotheses were posed. Firstly, that there are significant cytoskeletal 

alterations in the AD brain which may be ameliorated by the use of cytoskeletal stabilising 

agents, and which may subsequently limit the evolution of the neuropathological changes 

characteristic of AD. Secondly, that metallothioneins may play a role in AD, and perhaps 

be able to prevent the aberrant neuronal sprouting associated with AD. 

These hypotheses were addressed in a number of aims. The major conclusions from these 
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investigations were that morphologically distinct plaque types differentially affect the 

architecture of the brain in the early and late stages of AD, to result in significant 

cytoskeletal alterations. Similar observations were made following experimental cortical 

injury, where it was demonstrated that the administration of cytoskeletal stabilising drugs 

can both prevent and delay the onset of neuropathological changes. Finally, 

metallothioneins were shown to be upregulated in both the early stages of AD and 

following cortical injury, suggesting that they may have a role in the pathogenesis of AD. 

This thesis has, therefore, demonstrated that it is possible to intervene in the sequence of 

events which ultimately leads to neurodegeneration in AD. Agents which target 

cytoskeletal alterations may represent alternatives to current therapeutic strategies. 
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Chapter 1 

Literature review 

1.0 Introduction 

Alzheimer's disease (AD) is the commonest cause of dementia in people of all ages 

(Wilcock, 1996), affecting approximately 11% of the population greater than 65 years 

of age and up to 50% of people aged 85 years and older (Hof and Morrison, 1994). AD 

results from a series of dysfunctions which spread throughout the cortex in a precise 

spatiotemporal manner, and which subsequently give rise to a constantly changing, and 

deteriorating, pattern of cognitive and non-cognitive symptoms (Folstein and Bylsma, 

1994; Delacourte, 1998). The disease itself may arise on many different backgrounds, 

and perhaps have many independent and dynamic processes at its cause (Delacourte, 

1998). 

1.1 Clinical course of Alzheimer's disease 

The clinical course of AD can range from a few years to many decades, with an 

extremely rapid course of illness in less than three years very unusual, and greater than 

25 years also uncommon. The majority of sufferers will experience a 7-10 year time 

frame of their illness (Berg and Morris, 1994). The clinical manifestations can also 

vary, with approximately 20% of probable AD patients showing an atypical 

presentation (Berg and Morris, 1994). The majority, however, will experience a gradual 

onset of disease with a slow, but progressive, decline in most higher cortical functions 

(Berg and Morris, 1994; Foster, 1994; Katzman and Kawas, 1994). 

AD is insidious in onset, and sufferers are often unaware of their condition. Most will 

experience increased forgetfulness, and perhaps some decline in their ability to perform 
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Chapter 1 

everyday tasks. 

Within a few years there are signs of impairment in other cognitive activities such as 

oral and written language, the ability to calculate and make judgments also declines, as 

does the ability to cope with new and complex tasks. There is also some change in 

visuospatial recognition. Aside from these issues, the patients are generally 

neurologically normal. 

AD-sufferers may then begin to experience personality changes, such as apathy and 

restlessness. Mood changes, including major depression, often occur within the first 3-4 

years of disease onset and are present in 15-20% of the AD population (Folstein and 

Bylsma, 1994). Hallucinations may also be a feature of AD, occurring in between 7- 

49% of individuals, but these are less common than delusions, which are frequent in this 

early to middle phase of the disease (Folstein and Bylsma, 1994). Other psychiatric 

manifestations are unusual. 

In the middle to moderate stage of AD, people become more reliant on others, they are 

largely only able to recall long established memories and they will become lost in 

familiar surroundings. Previously impaired abilities such as judgment and calculation 

worsen and confusion is evident. Other abnormal behaviours, such as hostility and 

personality changes, will also often become exaggerated in this phase of the disease. 

In the more advanced stages of the disease, memory loss becomes more significant, 

sufferers become nearly totally dependant on others, to the point where they need help 

dressing and washing, are often both fecally and urinary incontinent and many are 
A 

rendered mute. Comorbidity is high in this phase of the disease, with patients often 
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experiencing other disorders such as depression and stroke. 

In very advanced stages, patients become bedridden, unresponsive to verbal 

communication are often unable to swallow and may meet the criteria for a persistent 

vegetative state. Terminal illnesses may include pneumonia, sepsis and pulmonary 

embolism (Berg and Morris, 1994). 

The symptoms of AD are, therefore, quite extensive and display a progressive course, 

with the gradual erosion of higher cortical functions. Many of these symptoms can be 

observed in the aging population, and so it has been postulated that AD is merely an 

exacerbation of normal aging. AD and normal aging, however, are both qualitatively 

and quantitatively different with regards to the neuronal pathology which occurs. Thus, 

AD is a unique disease entity which is not merely an exaggeration of the effects of 

normal aging (Foster, 1994). 

1.2 The Alzheimer's disease brain 

AD is a central nervous system (CNS) related disorder, and so the brain is the main 

locus of effect. There are two main pathological structures found within the AD brain, 

B-amyloid plaques and neurofibrillary tangles (NFT). Both the B-amyloid plaque and 

the NFT, whilst not individually unique to AD, have a characteristic distribution and 

density in this disease (Hof and Morrison, 1994), and are considered its hallmark 

pathological features. There are, however, a host of other alterations which occur in and 

contribute to the gradual devastation of, the AD brain and its various functions. These 

include both atrophy of a number of cortical regions as well as more microscopic 

changes, such as alterations in various cytoskeletal networks within nerve cells. These, 

together with the hallmark pathologies, contribute to the overall pathogenesis of AD. 
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Chapter I 

1.2.1 Macroscopic 

Macroscopically, the AD brain shows an abnormal enlargement of different cortical 

structures. The leptomeninges, for example, is often thickened, whilst the lateral 

ventricle may be massively increased in size. There is also atrophy of the cerebral 

cortex, with many gyri, particularly those in frontotemporal areas, affected in AD. The 

hippocampus may also become significantly involved and can reduce in size by half 

(Terry et al., 1994). 

1.2.2 Microscopic - amyloid 

13-amyloid, which comprises the plaques found in the AD brain, is derived from the 

proteolytic cleavage of a larger protein, the amyloid precursor protein (APP). APP is 

encoded by a single gene on chromosome 21 and occurs in three different protein 

isoforms. These molecules are expressed in most tissues and are integral membrane-

spanning glycoproteins. The normal proteolysis of APP, by alpha-secretase, results in 

cleavage through the beta A4 region to give short soluble fragments and no B-amyloid. 

However, the action of putative beta- and gamma-secretases is to cleave APP on either 

side of this region to give rise to a soluble full length B-amyloid peptide. The position of 

the cleavage by gamma-secretase is crucial, and will give rise to either shorter (AB1-40) 

or longer (AB1-42143) 13-amyloid peptides. A131-42/43 comprises the most abundant 

species of B-amyloid found in neuritic plaques (Hardy, 1997). 

The precise mechanism by which these proteins become insoluble and contribute to the 

evolution of different plaque types is yet to be determined. 

1.2.2.1 Plaques 

The deposition of small (7-10 nm) extracellular filaments, comprised of a —41(Da 

.ktNw insoluble form of the B-amyloid protein ,  within the brain to f-sana plaques is a central 
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event in the pathogenesis of AD, and one which occurs in all stages of the disease 

process (Glenner and Wong, 1984; Masters et al., 1985). B-amyloid deposits are 

heterogeneously distributed, affecting most cortical areas (Delacourte, 1998). There 

does seem to be some preference, though, for the parahippocampal gyrus and the 

superficial layers of the neocortex (Hof and Morrison, 1994), and, indeed, the 

deposition of B-amyloid in particular cortical sites correlates well with cognitive decline 

(Cummings and Cotman, 1995; Cummings et al., 1996). 

The morphology of B-amyloid plaques is heterogeneous, and as such it can form 

diffuse, amorphous deposits through to the more well defined, typically spherical 

plaque structures. There are several different types of plaques that have been described, 

including diffuse plaques, which contain sparse amounts of filamentous B-amyloid and 

are not normally associated with dystrophic or abnormal neurites (Terry et al., 1994). In 

contrast, neuritic plaques contain masses of dense bundles of B-amyloid fibrils and are 

associated with dystrophic neurites (DNs) (Terry et al., 1994; Dickson, 1997). 

Ultrastructurally, these DNs are quite varied, with some containing paired helical 

filaments (PHF) and other laminated bodies, whilst others contain neurofilaments 

(NFs), laminated bodies, synaptic vesicles, mitochondria, lysosomes and a host of other 

proteins (Terry et al., 1994; Dickson, 1997). 

1.2.2.2 Amyloid angiopathy 

Amyloid angiopathy, where B-amyloid infiltrates the walls of blood vessels, particularly 

the leptomeningeal and cortical vessels within the brain, is common in AD. Whilst 

some B-amyloid plaques appear to be associated with blood vessels, there is very little 

correlation between amyloid angiopathy and the density or frequency of plaques (Lippa 

et al., 1993; Terry et al., 1994). 
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1.2.3 Microscopic- neurofibtillary pathology 

Neurofibrillary pathology, which primarily consists of NFTs, DNs and neuropil threads, 

comprises a significant amount of the pathological alterations that occur within the AD 

brain. These changes are crucial to neurodegeneration and the subsequent development 

of dementia. 

1.2.3.1 Neurofibrillary Tangles (NFT) 

NFTs are one of the major features of AD, however, they are not unique to AD and can 

be found in other conditions such as Parkinson's disease and dementia pugilistica 

(Roberts et al., 1990; Tokuda et al., 1991; Terry et al., 1994; Mendez, 1995). Their 

presence, however, is generally related to neuronal dysfunction (Geerts, 1998), and 

correlates well with the existence of dementia (Bierer et al., 1995; Berg et al., 1998). 

Ultrastructurally, NFT are identified as accumulations of abnormal components of the 

cytoskeleton, and are primarily composed of PHF. It has been suggested that PHF are 

comprised of aberrantly phosphorylated forms of the microtubule associated protein, tau 

(Wischik et al., 1988; Goedert et al., 1993; Hof and Morrison, 1994; Terry et al., 1994; 

Delacourte, 1998; Geerts, 1998), and that the latter may account for up to 80% of its 

structure (Geerts, 1998). However, it is also suggested that, at least in the early stages of 

NFT formation, that the tau comprising the PHF is not abnormally phosphorylated 

(Wischik et al., 1995). This discrepancy may be due to post-translational modifications, 

which initially produce PHF-like changes in tau (Goedert et al., 1996) and then 

subsequently promote its phosphorylation (Hasegawa et al., 1997). 

NET are normally found in the cerebral cortex and in subcortical regions that project to 

the cerebral cortex, such as the amygdala, basal forebrain and locus ceruleus (Hof and 

Morrison, 1994). Within the neocortex, there is an association between NET and 
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pyramidal nerve cells, specifically, those in layer II, III and IV comprise the most 

affected cells in AD (Pearson etal., 1985; Lewis et al., 1987; Hof and Morrison, 1990; 

Hof et al., 1995; Mann, 1996). These are primarily large, NF rich neurons that send out 

long cortical projections (Hof and Morrison, 1994), with small and medium sized 

neurons rarely affected (Hof and Morrison, 1994; Terry et al., 1994). Indeed, NF 

antibodies have been shown to label NET (Lee et al., 1988; Zhang etal., 1989; Vickers 

et al., 1992, 1994; Nakamura et al., 1997), and NF have been suggested to be essential 

to the development of neurofibrillary changes in degenerating neurons in AD (Vickers 

et al., 2000). The formation of NFT and the subsequent complete degeneration of 

affected neurons, therefore, is not a non-specific process, but rather, involves particular 

neuronal types and cortical regions preferentially to others (Morrison et al., 1987; Hof 

etal., 1990; Hof and Morrison, 1990; Hof etal., 1995). 

1.2.3.2 Neuron Loss 

Similarly, neuronal loss, which is a consistent finding in AD, occurs in specific regions 

of the brain. There is, for example, a severe loss of neurons in the nucleus basalis of 

Meynert, which then impacts upon cholinergic activity in the cortex and hippocampus 

and subsequently affects memory. Similarly, the loss of neurons in the locus ceruleus 

affects noradrenergic activity throughout the cortex (Terry et al., 1994). The loss of 

neurons and synaptic connections, therefore, is undoubtedly a feature which contributes 

to the symptoms observed in the disease. 

1.2.3.3 Neuropil threads 

Neuropil threads are short fibres that contain PliF and are characterised by labelling for 

tau and other antibodies. The majority of neuropil threads arise from degenerating 

dendrites, but some may be axonal in origin (Hof and Morrison, 1994; Terry et al., 
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1994). These structures normally appear early in the disease process, and occur more 

frequently in the hippocampus and entorhinal cortex (Hof and Morrison, 1994). 

1.2.3.4 Hirano Bodies 

Hirano bodies can also be a prominent feature in the pyramidal layer of the 

hippocampus in the AD brain. These structures are not unique to AD, and are found 

adjacent to, or within, pyramidal cells. They are composed of 7-10Am thick filaments 

that label with antibodies to actin and other proteins such as tropomyosin (Terry et al., 

1994). 

1.2.3.5 Dystrophic neurites 

Dystrophic, or abnormal, neuronal processes are a consistent finding in AD and are 

found in particular association with B-amyloid plaques (Hof and Morrison, 1994), 

although they are also found in the non-AD brain (Vickers et al., 1996). These 

degenerating neurites most likely represent altered, probably abnormally sprouting 

axons (Masliah et al., 1993a; Praprotnik et al., 1996; Vickers et al., 1996). 

As mentioned earlier, DNs display a variety of neurochemical profiles, and this may 

reflect their occurrence in different stages of the disease process (Dickson et al., 1999). 

Early forms of DNs, for example, are associated with profound neurofilamentous 

changes in the absence of tau abnormalities (Vickers et al., 1996), with tau pathology 

occurring later in the development of DNs (Benzing et al., 1993; Su et al., 1996). DNs 

can, therefore, be distinguished as either tau- or NF- abundant forms (Dickson et al., 

1988; Masliah et al., 1993b; Vickers et al., 1994; Su et al., 1996). In addition to the 

localisation of NFs (Arai etal., 1990; Gras etal., 1991; Schmidt et al., 1991; Schmidt et 

al., 1994; Su et al., 1996, Nakamura et al., 1997; Su etal., 1998) and tau (Nakamura et 
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al., 1997; Su et al., 1998) to DNs, there are also accumulations of APP (Perry et al., 

1988; Ghiso et al., 1989; Ishii et al., 1989; Shoji et al., 1990; Cole et al., 1991; Cras et 

al., 1991; Joachim et al., 1991; Saunders et al., 1998), synaptophysin and chromagranin 

(Masliah et al., 1989; Brion et al., 1991) and the growth associated protein, GAP43 

(Masliah et al., 1991) found within plaque-associated DNs. 

1.2.4 Cytoskeletal changes in Alzheimer's disease 

There are profound cytoskeletal changes in AD. Microtubules, for example, are reported 

to be lost in affected neurons in AD (Gray, 1986; Gray et al., 1987; Paula-Barbosa et 

al., 1987). This may be due to an alteration in one of the microtubule associated 

proteins, such as tau. Conversely, the destabilisation and loss of microtubules may lead 

to the subsequent changes in tau, which are characteristic of AD. It has also been 

postulated that the paucity of microtubules in AD may be due to their displacement by 

the formation of PHF within dendrites (Geddes et al., 1994; Ashford et al., 1998). 

Similarly, recent investigations have suggested that the deposition of 8-amyloid in the 

neocortex may affect microtubular structure and organisation by causing gradual 

damage to dendrites which pass through plaques, resulting in morphological changes 

which eventually lead to the dissociation of tau from microtubules, and a subsequent 

destabilisation of the cytoskeleton (Knowles et al., 1998, 1999). The various 

mechanistic issues aside, it is clear that dendrites, and the microtubules and microtubule 

associated proteins within them, are significantly altered throughout the course of AD. 

The NF system within the cell is also dramatically altered in affected neurons in AD. 

The normal NF network within the various neuronal domains such as the cell body and 

axon are replaced by abnormal neurofibrillary structures in AD (Metuzals et al., 1988; 

Vickers et al., 1992, 1994). Abnormally phosphorylated NF subunits, for example, are 

seen to accumulate in areas from which they are normally excluded, such as neuronal 
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cell bodies (Vickers et al., 1992, 1994; Nakamura et al., 1997). The early stages of DN 

formation are characterised by accumulations of NFs (Vickers et al., 1996; King et al., 

1997), and there is also a down regulation of NF expression in AD (Kittur et al., 1994). 

1.3 Risk Factors 

A number of factors have been associated with a higher risk of dementia, however, the 

majority of these may only have a modest or inconsequential effect on the development 

of AD. Similarly, there are several factors associated with a decrease in the incidence of 

AD. For example, it has been suggested that education is protective, with higher 

incidences of AD reported in manual labourers (Katzman and Kawas, 1994; Dartigues 

et al., 1998). Conversely, being single and having low weight and height have been 

associated with an increased prevalence of AD (Dartigues et al., 1998). 

There are, however, a number of accepted risk factors for the development of AD. 

These include age, the existence of a family history of dementia, Down's syndrome and 

apolipoprotein E (ApoE) genotype (Katzman and Kawas, 1994; Jorm, 1997). A history 

of head trauma is also gaining wider acceptance as a causative factor in the 

development of AD (Vickers, 1997). 

1.3.1 Age 

AD is an age-related disorder, and so the greatest risk factor for the development of AD 

is old age. AD affects approximately 11% of the population older than 65 years (Hof 

and Morrison, 1994), and its prevalence is reported to double every five years up to the 

age of 95 (Jorm, 1997). 
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1.3.2 Family history and genetic mutations 

Approximately 25% of AD patients have another relative with dementia (Bird, 1994). In 

families where only a single case is documented, the risk to other family members is no 

greater than the basal level of occurrence (Bird, 1994). However, if it is a parent or 

sibling with the disease, then the risk of developing AD is increased more than three 

fold (Jorm, 1997). Lautenschlager and colleagues (1996) report that the risk of 

developing AD for first degree relatives is 5% at age 70, 16% at age 80 and up to 33% 

at 90, and for children whose both parents had the disease, the risk is 54% by age 80. In 

cases of early onset AD, the risk of other relatives developing AD is also greater than in 

families of late onset AD. 

Familial AD, then, is classed as a family in which there is greater than one person with 

the disease. Whilst this genetic component sets these AD patients apart from others, the 

clinical range and type of symptoms are not any different between familial or sporadic 

AD cases (Bird, 1994). 

There are a number of genetic alterations that can contribute to AD, some of which have 

been postulated to be responsible for both familial and sporadic AD. These include 

mutations in a number of different genes. 

1.3.2.1 Amyloid precursor protein (chromosome 21) 

APP mutations, of which more than five have been described that give rise directly to 

AD, account for approximately 5% of all familial AD cases (Chartier-Harlin et al., 

1991; Goate et al., 1991; Murrel et al., 1991; Hendricks et al., 1992; Mullan et al., 

1992; Hardy, 1997; Van Broeckhoven, 1998). Mutations in this gene can alter its 

metabolism such that there is an increase in either the total amount of B-amyloid 
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produced (Citron et al., 1992; Cai et al., 1993; Citron et al., 1994) or the amount of the 

proteolytic fragment AB1-42/43 generated (Suzuki et al., 1994; Tamaoka et al., 1994; 

Delacourte, 1998). This peptide has a greater propensity for fibrillogenesis than the 

shorter AB1-40 (Yankner, 1996; Van Broeckhoven, 1998), and so this ratio shift may be 

crucial to B-amyloid deposition. 

1.3.2.2 Presenilin 1 (chromosome 14) and Presenilin 2 (chromosome 1) 

The presenilin 1 and 2 genes encode proteins of 463 and 448 amino acids, respectively. 

These are transmembrane proteins which are localised to the endoplasmic reticulum and 

olgi complex (Kovacs et al., 1996) and which share a high degree of homology 

(-67%), suggesting a shared functional role. Their precise cellular function, however, 

remains unknown. Recent reports, though, suggest that the presenilins may regulate 

APP processing (Karran et al., 1998; Haass and Strooper, 1999). It has been 

hypothesised that they may directly interact with APP to traffic it to a specific cellular 

site of, and perhaps assist in its presentation for, gamma-secretase cleavage (Hardy and 

Israel, 1999; Verdile et al., 2000). Alternatively, the presenilins themselves may be, or 

be cofactors for, gamma-secretase (Steiner et al., 1999; Wolfe et al., 1999; Li et al., 

2000). Further to this, there have been greater than fourty mutations described in these 

genes, which, along with mutations in the APP gene itself, give rise to altered APP 

metabolism and processing. The result is an increase in AB1-42/43 and a subsequent 

increase in B-amyloid deposition (Citron et al., 1992; Cai et al., 1993; Citron et al., 

1994; Suzuki et al., 1994; Tamaoka et al., 1994; Scheuner et al., 1996; Hardy, 1997; 

Citron et al., 1998; Delacourte, 1998; Mehta et al., 1998; De Jonghe et al., 1999). The 

presenilin genes may, therefore, be crucially involved in B-amyloid deposition. 
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1.3.2.3 Apolipoprotein E (chromosome 19) 

The ApoE gene, located on chromosome 19, occurs in three forms, which are 

designated 62, 63 and 64, and which differ by only a few amino acids at codons 112 and 

158. Their occurrence in the population varies markedly, with the 62 allelic variant 

found in approximately 7% of people, 63 in 78% and 64 in 15% (Mahley, 1988; Van 

Broeckhoven, 1998). Biologically, ApoE is considered to be a chaperone molecule, 

aiding in the transport of cholesterol and other hydrophobic molecules (Van 

Broeckhoven, 1998), and it is postulated to play a role in neuronal repair (Rubinsztein, 

1995). 

Whilst Apo e3 is the most common allele in the general population, the 64 variant is the 

most common in the AD population, and is considered a risk factor for the development 

of AD. Inheritance of an 64 allele is believed to account for between 20-50% of AD 

cases (Corder et al., 1993; Van Broecichoven, 1998), and is reported to increase the risk 

of AD by eight fold (Masters and Beyreuther, 1998). People that are homozygous for 

Apo 64 also show a greater risk for the development of AD than those with only 1 or no 

64 variants, and this is believed to give rise to an earlier age of onset (Corder et al., 

1993; Van Broeckhoven, 1998). Individuals who carry an 64 allele, however, can live to 

old ages without developing AD (Henderson et al., 1995), and so ApoE genotype is not 

an absolute determinant for the development of AD. 

The inheritance of an 64 allele is associated with increased levels and accelerated 

deposition of B-amyloid (Rebeck et al., 1993; Corder et al., 1994; Van Broeckhoven, 

1998), perhaps due to its increased affinity for B-amyloid as compared to the other 

variants (Van Broeckhoven, 1998). In AD, then, ApoE may promote the development 

of insoluble plaques (Ma et al., 1994). 
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Interestingly, inheritance of an 62 allele is believed to be protective against the 

development of AD (Corder et al., 1994). 

1.3.3 Down's syndrome 

Individuals with Down's syndrome (DS) typically develop AD-like changes in their 

brains before the age of 40 (Wisniewski et al., 1985), with the appearance of neocortical 

plaques in the second to third decade of life and then subsequent neurofibrillary changes 

and eventual degeneration (Wisniewslci et al., 1985; Mann et al., 1986; Mann and Esiri, 

1989; Giaccone et al., 1989; Motte and Williams, 1989). This disease is unique, in that 

people with DS possess two copies of the APP gene on chromosome 21. This not only 

gives rise to neuropathological changes similar to AD, but also results in the earlier 

appearance of this pathology than observed in AD. 

1.3.4 Head trauma 

While the association between head trauma and AD has remained controversial, it has 

been reported that in between 2 and 20% of AD cases there is a prior history of head 

injury (Mortimer et al., 1991; Rasmusson et al., 1995). It is also suggested that the 

effect of head injury on the incidence of AD can be significantly altered by the presence 

of an Apo 64 allele (Mayeux et al., 1995). 

1.4 The cause of Alzheimer's disease ? 

It has been postulated that B-amyloid plays a crucial role in the early stages of the 

disease process, and is involved in the neurodegeneration that leads to dementia in AD 

(Selkoe, 1991, 1994). It is also suggested that B-amyloid does not have a central role in 

the disease due to its presence in the apparently non-demented elderly (Neve and 

Robakis, 1998). So, is B-amyloid critical to the development of AD-like 
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neuropathological changes ? Studies which demonstrate that individuals with DS 

develop neurofibrillary pathology subsequent to the early deposition of B-amyloid in the 

cortex, as well as the localisation of DNs to a subset of plaques in AD, suggest that B-

amyloid is a key component in neurodegeneration. Transgenic animals which carry a 

mutation in the APP gene also demonstrate similar DNs in association with neocortical 

plaques (Masliah et al., 1996; Irizarry et al., 1997; Sturchler-Pierrat et al., 1997). 

The pervading hypothesis is that B-amyloid is toxic to nerve cells, although numerous in 

vivo and in vitro studies have both supported and refuted this hypothesis (Yankner, 

1996; Neve and Robakis, 1998). Indeed, specific B-amyloid peptides can cause nerve 

cell death both in vitro (Pike et al., 1991; Takadera et al., 1993; Lambert et al., 1998) 

and in vivo (Kowa11 et al., 1992; Weldon et al., 1998). It has, however, been 

demonstrated that B-amyloid has very little biological effect in vivo (Games et al., 1992; 

Stephenson and Clemens, 1992). It has also been suggested that the physiological level 

of B-amyloid required to cause nerve cell death is unlikely to be achieved within the AD 

brain (Neve and Robakis, 1998), and the fact that B-amyloid does not result in cell death 

in the immediate vicinity of the deposit argues against a diffusable chemical-mediated 

mechanism (Sampson et al., 1997). The abnormal localisation of DNs to plaques must, 

therefore, be a result of a mode of action unrelated to the chemical toxicity of B-

amyloid. Examination of the early stages of AD may provide clues to the mechanism of 

B-amyloid-induced neurodegeneration. 

1.5 Preclinical Alzheimer's disease cases 

The existence of the so-called 'preclinical', or transition stage, AD cases has remained 

controversial. However, they are defined as those cases in which there is the appearance 

of some diffuse neocortical plaques, but which lack significant neuronal degeneration 

and neurofibrillary pathology (Crystal et al., 1988; Morris et al., 1991, 1996; Coria et 
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al., 1993; Vickers et al., 1996). Individuals with preclinical AD, therefore, do not show 

overt signs of dementia (Terry et al., 1994), but are likely to go on and develop the full 

clinical symptoms of AD (Morris et al., 1996; Vickers et al., 1996; Troncoso et al., 

1998). It has been postulated that a large percentage of the older population are in this 

preclinical phase of the disease (Davies et al., 1988). 

Neuropathologically, preclinical AD cases demonstrate accumulations of NFs in 

abnormal neurites associated with plaques (Vickers et al., 1996). This initial pathology 

precedes PET-like changes in tau, and morphologically, the DNs appear as either bulb-

or ring-like structures. The DNs remain NF positive further into the course of the 

disease (Dickson et al., 1988; Cras et al., 1991; Masliah et al., 1993b; Vickers et al., 

1994; Su et al., 1996; Dickson et al., 1999). This suggests then, that one of the very 

early changes associated with the deposition of 13-amyloid in the cortex is a disruption to 

the cytoskeletal elements present within the processes of nerve cells. Neuronal 

cytoskeletal proteins may, therefore, be critical in the pathogenesis of AD (Matsuyama 

and Jarvick, 1989; Vickers, 1997; Vickers et al., 2000). 

1.6 The Cytoskeleton 

The axonal cytoskeleton consists of a number of different components, namely, 

microfilaments, microtubules and intermediate filaments (Okabe et al., 1993; Lin and 

Szaro, 1995), between which there is an elaborate system of structural connections 

(Hirokawa, 1991). 

1.6.1 Microfilaments 

These are short 4- to 8- nm filaments which are involved in a number of cellular 

functions, including synaptic transmission, receptor anchoring, endocytosis, filament 
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linking and contact inhibition (Bamburg and Bernstein, 1991; Nixon, 1991). An 

example of a microfilament is actin. 

Actin, a major constituent of striated muscle, is also an important component of non-

muscle cells (Bamburg and Bernstein, 1991). In neuronal cells actin is the main 

cytoskeletal component of the postsynaptic cytoplasm, whilst actin and microtubules 

comprise the presynaptic terminals. The arrangement of actin filaments within these 

domains is believed to be closely related to synaptic transmission (Hirokawa, 1991). 

Actin also participates in a host of other cellular events (Bamburg and Bernstein, 1991). 

1.6.2 Microtubules 

Microtubules are an essential component of the neuronal cytoskeleton, without which it 

could not exist (Lasek et al., 1985). Linear microtubule polymers are formed by the 

polymerisation of ot- and B-tubulin under the influence of a variety of factors, such as 

microtubule-associated proteins (MAPs) (Burgoyne, 1991; Huizing et al., 1995), and 

they normally appear in groups, forming small bundles within the axon (Hirokawa, 

1991). 

Microtubules are involved in a number of important intracellular functions, including 

mitosis; fast axonal transport of membranous organelles; slow axonal transport and 

axonal growth; maintenance of cell shape and the modulation of interactions with cell 

surface receptors (Lasek et al., 1985; Burgoyne, 1991; Huizing et al., 1995; Lin and 

Szaro, 1995). Microtubules act to stabilise the cytoskeleton (Lasek et al., 1985), and can 

be destabilised by a variety of mechanisms. Post-translational modifications to various 

MAP species can induce the disassembly of preformed microtubules, whilst similar 

modifications can occur to the greater than 20 different tubulin isoforms, the 
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components from which microtubules are formed, to regulate the kinetics of 

microtubule assembly/disassembly (Burns, 1991; Cambray-Deakin, 1991). There are 

other proteins, also, such as microtubule-inhibitory-protein, which, under the correct 

environmental conditions, can cause the partial disassembly of microtubules (Burns, 

1991). 

1.6.3 Microtubule associated proteins 

The major MAPs isolated from the mammalian brain include MAP1A, 1B, 1C, MAP2 

and tau, all of which demonstrate a specific pattern of localisation which may vary as 

the brain develops (Burgoyne, 1991; Hirokawa, 1991). These proteins are associated 

with microtubules and have a number of functions including the assembly and 

stabilisation of microtubules and the regulation of interactions between microtubules 

and other cytoskeletal elements and organelles (Burgoyne, 1991). Indeed, once the 

microtubule has formed, the MAPs have a marked effect on its function and behaviour 

(Burns, 1991). 

1.6.3.1 MAP1 

MAP1 is found to a greater extent in the axon than any other neuronal compartment, 

and is composed of three antigenically distinct isoforms, 1A, 1B, 1C (320-350 KDa) 

(Burgoyne, 1991; Hirokawa, 1991). MAP1A and 1B are the major constituents of the 

sidearms that connect microtubules to each other (Burgoyne, 1991; Hirokawa, 1991). 

MAP1C, or brain dynein, has, however, been proposed to be an axonal transport motor 

molecule (Hirokawa, 1991). It is believed that MAP1C is anterogradely transported, in 

an inactive form, by another motor molecule (perhaps kinesin) along the axon, prior to 

being activated and performing its function as a retrograde transport motor (Hirokawa, 

1991). MAP1A is neuronal specific within the CNS, whilst MAP1B is found in both 
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glia and neurons. In axons, MAP1B is in a phosphorylated form, whilst, in dendrites, it 

is unphosphorylated (Burgoyne, 1991). 

1.6.3.2 MAP2 

Within the mature CNS, MAP2 is confined to the dendritic compartment and is a 

component of the cross bridges which link microtubules to each other and to NF in the 

dendritic compartment (Burgoyne, 1991; Cambray-Deakin, 1991; Hirokawa, 1991). It 

also stimulates the assembly of microtubules and stabilises assembled microtubules 

(Burgoyne, 1991). There are three different isoforms of MAP2 (2A, 2B and 2C). 

MAP2A and 2B are of high molecular weight (-275 KDa) and are predominant in the 

mature brain. MAP2C (-70 KDa), however, is abundant in the developing brain, where 

it is expressed in axons (Burgoyne, 1991). 

Post-translational modifications of MAP2, such as phosphorylation, can significantly 

disrupt microtubule organisation. Phosphorylation of MAP2 by cAMP-dependant 

protein kinase, for example, decreases the affinity of MAP2 for microtubules, causes 

the disassembly of preformed microtubules and interferes with the interaction between 

microtubules and other cytoskeletal elements (Burgoyne, 1991). The phosphorylation of 

MAP2 can, therefore, regulate its function. There are also other regulatory mechanisms. 

The binding of MAP2 to NF, for example, is inhibited in a calcium dependent manner 

by calmodulin (Burgoyne, 1991). 

1.6.3.3 MAP3, 4 and 5 

MAP3, which is localised to the axon and appears to stimulate microtubule assembly, is 

found in glia and NF-rich neurons (Burgoyne, 1991; Iiirokawa, 1991). MAP4 is only 

present in non-neuronal cells (Burgoyne, 1991). MAPS is found in high levels in the 
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immature brain, but declines during development. It is found in both glia and neurons 

(Burgoyne, 1991), and has been shown to be homologous to an isoform of MAP1, 

MAP1B (Burgoyne, 1991; Matus, 1991). 

1.6.3.4 Tau 

The tau family consist of 55-62 KDa proteins which are formed by the alternative 

splicing of a single gene to give six different isoforms (Goedert et al., 1989). Tau 

selectively stabilises the axon, and is, therefore, primarily localised to the axonal 

compartment (Kanai and Hirokawa, 1995). It has been suggested that tau is not essential 

to the formation of axons, with tau-deficient mice demonstrating a histologically normal 

CNS, and hippocampal neurons cultured from these animals successfully elongating 

axonal structures (Harada et al., 1994). Some small calibre axons in tau-deficient mice, 

however, had a significantly altered organisation of microtubules, which had also 

become destabilised (Harada et al., 1994). Larger calibre axons demonstrated increases 

in MAP1A, perhaps in compensation for the lack of tau (Harada et al., 1994). That 

other MAPS could compensate for the loss of tau is problematic in deciphering its 

biological significance. It is of interest, then, that a recent investigation utilised a cell 

culture technique which caused an acute loss of tau without any associated 

compensatory changes in other MAPs (Liu et al., 1999). This study demonstrated that 

tau is required for normal neurite elongation. 

Tau is found in close association with microtubules, and forms projections from the 

microtubule surface (Hirokawa, 1991). Tau has a proposed role in the growth and 

maintenance of nerve cell processes, in crosslinking adjacent microtubules to form 

microtubule-bundles and in promoting the polymerisation of tubulin (Hirokawa, 1991; 

Zemlan et al., 1999). 
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Tau can be extensively phosphorylated at up to eleven different sites which are 

preferentially associated with serine or threonine amino acids. Such a modification 

increases both the length and rigidity of tau, and this change in conformation results in 

its dissociation from microtubules (Hirokawa, 1991; Geerts, 1998). This may, therefore, 

disrupt the microtubule network. Other post-translational modifications include 

glycosylation and glycation. 

1.6.4 Intermediate Filaments 

Intermediate filaments (IFs) have been divided into six different classes based upon 

their amino acid composition and similarity. Class I and II consist of acidic and basic 

keratins respectively; class III includes vimentin, desmin, glial fibrillary acidic protein 

(GFAP) and peripherin; class IV includes the NF triplet proteins and alpha-internexin; 

class V includes the nuclear laminins and nestin comprises the novel sixth class of IF 

(Oblinger et al., 1989; Steinert and Liem, 1990; Shaw, 1991). 

Intermediate filaments consist of three domains. A —40 I(Da rod shaped domain, which 

is primarily a-helical in nature, is conserved across all the members of this class. This is 

proposed to be the area responsible for filament assembly and other functions shared 

between the different IF proteins. This domain is flanked on either side by 

hypervariable regions which comprise the amino and carboxy terminals of the proteins. 

It is these hypervariable domains which are responsible for the functional variations 

between the members of this class of filament (Lasek et al., 1985). A characteristic 

feature of the rF is that, depending upon the requirements of the cell, their molecular 

composition can vary, and this is often related to the stage of maturation of the cell (Lin 

and Szaro, 1995). 
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All the different classes of intermediate filaments are preferentially expressed in a 

particular cell type. For example, the cytokeratins are found in epithelia, NF triplet 

proteins in neurons, GFAP in glia, desmin in myogenic cells, laminins in the nuclear 

envelope and vimentin in early embryonic cells and mesenchymal cells (Lasek et al., 

1985; Julien and Grosveld, 1991). The majority of mammalian neurons express the type 

IV class of IF, the NF triplet proteins, which in turn are primarily expressed in neurons 

with large myelinated axons (Oblinger et al., 1989). Throughout development, however, 

the IF network undergoes significant compositional changes, depending on the neurons 

changing demands for plasticity and stability, before a stable mature system is achieved. 

Similarly, CNS trauma results in an alteration to the expression of the different IFs 

(Oblinger et al., 1989; Nixon and Shea, 1992). 

The IFs initially expressed in the developing CNS include nestin, vimentin, peripherin 

and alpha-internexin. Nestin, or neuroepithelial stem cell protein, functions in 

neuroblast migration and is expressed in radial glial cells, the progenitors of both 

neurons and glia (Lendahl et al., 1990). Vimentin mediates cell division and alterations 

in cellular shape, and may assist in initial neurite outgrowth (Nixon & Shea, 1992). 

Peripherin helps to maintain plasticity during outgrowth and regeneration, but is 

primarily localised to the peripheral nervous system (Portier et al., 1984). Alpha-

internexin, which also helps maintain plasticity during outgrowth and regeneration, is 

hypothesised to be the first type IV class of IF that is expressed in post-mitotic CNS 

cells of a neuronal fate. It is most abundant during development, but declines to a stable 

level, with the onset of the NF triplet, which remains throughout adulthood and it 

persists as the major IF in small calibre axons (Patcher & Liem, 1985; Nixon and Shea, 

1992; Benson et al., 1996). 

22 



Chapter 1 

The NF triplet proteins, which eventually replace the majority of these other Ws, 

establishes neuronal phenotype and stabilise neuronal circuitry (Nixon and Shea, 1992). 

There is an association between this class of IF protein and AD (Dahl et al., -1982; Perry 

et al., 1985; Cork et al., 1986; Haugh et al., 1986; Miller et al., 1986, Dickson et al., 

1988; Masliah et al., 1993b; Vickers et al., 1994; Su et al., 1996), and so a more 

detailed outline of NFs is given below. 

1.6.5 Neurofilaments 

The NF triplet proteins belong to the type IV family of IFs, which all form lOnm 

filaments (Shaw, 1991). The NF triplet forms a series of long unbranched filaments that 

run longitudinally and in parallel with each other. They are linked to each other via a 

series of bridges (4-6 nm diameter) which run perpendicular to the NF, and are 

connected to microtubules by fibrils of a similar diameter, but which are 20-50 nm long 

(Hirokawa, 1991). 

1.6.5.1 Neurofilament structure 

The NF triplet is composed of three different subunits, NFL (68 KDa), NFM (150 KDa) 

and NFH (200 KDa), which copolymerise to form the NF triplet (Figure 1.1A). NFL, 

along with NFM and NFH, forms the central core, whilst NFM and NFH form 

components of the sidearms which project from the filament. These projections are of 

varied length, based upon the differences in carboxy-terminal domains of NFM and 

NFH (Hirokawa, 1991). 

The NF triplet proteins are composed of several regions, including amino-terminal 

head, alpha-helical rod (conserved among all intermediate filaments) and carboxy- 

terminal tail domains (Shaw, 1991) (Figure 1.1B). The head domain is very basic and is 
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Figure 1.1. (A) shows a stylised representation of the neurofilament (NF) triplet protein 

present in mature axons (modified from Nixon, 1993), showing the low (NFL), medium 

(NFM) and high (NFH) molecular weight NF subunits. (B) is a diagrammatic 

representation of the amino acid sequences of the three NF triplet subunits. The vertical 

lines within coil 2 indicate areas where the heptad pattern is broken due to the insertion of 

an extra amino acid. 'F segments correspond to areas within the sequence which are rich in 

glutamic acid, whilst KSP segments, which consist of lysine-serine-proline repeats, are 

found in variable numbers in different sections of each of the NF subunits. At the end of 

NFM is the 'KE' domain, which has a high concentration of lysine and glutamic acid. The 

carboxyterminus of NFH is referred to as the IKEP' segment and is rich in lysine, glutamic 

acid and proline. (Modified from Shaw, 1991) 
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composed of predominantly B-sheet and B-turn structures which range in size from —4 to 

—9 KDa (Shaw, 1991). 

The central rod domain, of the tripartite structure, is a —37 KDa alpha-helical structure 

which is much less varied than both the head and tail domains among the intermediate 

family of proteins (Shaw, 1991). The amino acids which comprise this region form a 

heptad repeat structure which produces a helical strip of hydrophobic amino acids along 

the side of each alpha-helix. This strip can then intercalate with hydrophobic amino 

acids on another alpha helix to form a stable dimer. The result is an elongated, rigid 

structure called a coiled-coil. There are two breaks in these rod domains (in all the 

intermediate filaments except NFM/H, which don't posses the break at coil 1A), each 

containing between 10 and 22 amino acids, in the heptad repeat which subsequently 

define three regions in the coiled coil (Coil 1A, 1B and 2) (Shaw, 1991). A tetramer of 

two coiled-coils in antiparallel probably form a protofilament of 2-3 nm, and then, 

subsequently, 8 protofilaments form one lOnm filament, with the flanking head and tail 

domains conferring functional specificities (Julien and Grosveld, 1991). 

The next region, the carboxy-terminal, is where the NFs demonstrate significant 

differences-Ater the remaining intermediate filaments. The initial sequence of the NF tail 

is homologous to the entire carboxy-terminal tails of the other intermediate filaments. 

The remaining regions are intermediate filament type IV specific, and commence with a 

segment, —61(Da in size, which is rich in glutamic acid. The sequence of NFL finishes 

here and mutations in this region on NFL have been shown to result in the segregation 

of NF from microtubules (Toyoshima et al., 1998). 

The next section is perhaps one of the more important, as this is where there are 
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multiple repeats of the amino acid sequence lysine-serine-proline (KSP). This is the 

major site of phosphorylation in the NF sequence. The amino acids surrounding these 

repeats form the basis of NFM/H specific KSP motifs. After this are regions which, in 

NFM and NFH, are rich in lysine and glutamic acid and lysine, glutamic acid and 

proline respectively (Shaw, 1991). 

The very large carboxy terminals of NFM and NFH, which form the structural sidearms 

present on NF, may explain why these two subunits cannot individually form lOnm 

filaments, but require the presence of the NFL backbone. This is in contrast to NFL, 

which can self assemble to form lOnm filaments (Julien and Grosveld, 1991; Shaw, 

1991), although it still requires the expression of one or both of the other two subunits 

to form a complete filamentous structure (Hirokawa and Takeda, 1998). The absence of 

the typical IF break in coil I of NFM/H may also explain their inability to self-assemble 

into lOnm filaments, as the elongated coil I structure is extremely rigid (Nixon and 

Shea, 1992). 

1.6.5.2 NF Expression and localisation 

NFM and NFH are normally dephosphorylated in the perikaryon, but then extensively 

phosphorylated once they are translocated into the axon, where they are transported to 

the axon terminal at a rate of between 0.25 and 3 mm/day depending on the organism 

and cell type (Julien and Grosveld, 1991). It is postulated that NFs are stationary within 

the axon for between 85-99% of the time spent in transport, but then undergo extremely 

rapid periods of movement (Wang et al., 2000). The phosphorylation state of the NF 

governs the relative affinity of the proteins for the transport mechanisms, as the highly 

phosphorylated forms of NF are associated with stationary NF within the axon (Nixon 

and Shea, 1992). Indeed, phosphorylation in general can affect a number of different 
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elements which comprise the neuronal cytoskeleton, and as such, it contributes to the 

formation of a stable filament network within the cell (Nixon and Shea, 1992). The 

phosphorylation of the amino-terminal of NFL, for example, will result in the 

disassembly of the NFL polymer and inhibit NFL polymerisation, thereby preventing 

the formation of the NF triplet (Strong, 1999). Similarly, phosphorylation of the 

carboxy-terminals of NFM and NFH facilitates NF crosslinking, stabilises the axonal 

cytoskeleton and protects NF from proteolysis. 

The turnover within the axon is small, and proteases degrade the NFs at the axon 

terminal (Julien and Grosveld, 1991). Turnover is believed to occur at discrete sites on 

the filaments by the incorporation of new subunits by an unknown mechanism (Okabe 

et al., 1993). 

Developmentally, the expression of NFs is associated with the appearance of post-

mitotic neurons. NFL and NFM are coexpressed pr, ior to the formation of synaptic 

connections, and then NFH is expressed and is associated with a decrease in 

cytoskeletal transport (Julien and Grosveld, 1991). The appearance of NFs, associated 

with an increase in axonal calibre, together with myelination signify the maturation 

stage of development (Oblinger et al., 1989). 

1.6.5.3 Neurofilament function 

The functions of NFs are hypothesised to be related to the maintenance of axonal 

calibre and cell shape, with a correlation existing between NF spacing and 

phosphorylation (narrow spacing of non-phosphorylated dendritic NFs, and wide in 

phosphorylated axonal NFs) (Shaw, 1991). Phosphorylation of the KSP repeats present 

in the carboxy tail domain of NFM/H increases the net negative charge causing an 
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increase in lateral extension of the terminal sidearms and, therefore, increasing the 

spacing and/ or increasing the crossbridging to other cytoskeletal elements (Hirokawa 

and Takeda, 1998; Julien, 1999). NFs may, therefore, directly contribute to the function 

of the cell by controlling axonal diameter, thereby determining the velocity of action 

potentials within the neuron (Lasek et al., 1985; Xu et al., 1993). Indeed NF-subunit 

knockouts have demonstrated an, often significant, effect on the cytoskeleton, including 

a decrease in axonal calibre, a decrease in IF number and an increase in the density of 

microtubules (Julien, 1999). Whilst it was originally reported that NFH was the most 

important subunit governing the regulation of axonal diameter by NFs, it has recently 

emerged that NFM is the most important subunit for the assembly and structure of NFs 

and for the radial outgrowth of large myelinated axons during development (Hirokawa 

and Takeda, 1998; Julien, 1999). 

There are axons, however, which contain NFs, but whose diameter is not reliant on NF 

content. Presumably, then, NFs must have other roles, such as the strengthening of the 

cytoskeleton (Lin and Szaro, 1995). Indeed, once NFs have been formed, they are very 

hard to disassemble, thereby making them inherent structural supports for the 

cytoskeleton (Lasek et al., 1985). NFs may also play a role during development and 

regeneration, with the emergence of different NF isoforms occurring at, and being 

associated with, different stages of growth (Lin and Szaro, 1995). It is also possible that, 

because NFs are degraded at axon terminals and then transported back to the 

perikaryon, that the NF breakdown products may serve as an indicator of the functional 

integrity of the cell. This may represent a positive feedback mechanism which can 

stimulate certain events following neuronal injury (Shaw, 1991). Parts of the NF 

molecule may, therefore, act either directly or indirectly as transcriptional or 

translational regulators (Shaw, 1991). 
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It should also be noted that not all nerve cells require NFs to function, which may be 

due to functional overlap with other cytoskeletal proteins such as microtubules. There 

is, for example, a naturally occurring recessive variant of the Japanese (quivering) quail 

which lacks NFL (Mizutani et al., 1992). With the exception of a trembling phenotype, 

perhaps related to a decrease in stability of the cytoskeleton due to the absence of NFs, 

the animals function normally. They do, however, have fewer and thinner axons than 

normal, supporting the notion that NFs have a function in maintaining axonal calibre 

(Lin and Szaro, 1995). There are, similarly, other classes of neurons, such as particular 

populations of neurons found within the coeliac ganglion in the guinea pig, which don't 

contain NF (Vickers et al., 1990). NFs, therefore, are not intrinsic components of the 

neuronal cytoskeleton of all neurons (Vickers et al., 1990, 1991). 

1.7 The importance of the cytoskeleton 

Cytoskeletal proteins are, therefore, crucial cellular organelles whose normal 

maintenance and operation are required to maintain neuronal function and integrity. If 

these elements are altered or misprocessed, the result could be deleterious to the cell, 

with impairments in many cellular processes. In this respect it is clear that a number of 

cytoskeletal proteins are affected in AD, as detailed earlier. However, the exact 

mechanism by which this damage occurs, and the relationship that 8-amyloid has to it 

are yet to be fully elucidated. Recent work suggests that there may be similarities 

between the neuropathological changes which occur in the early stages of AD, and 

those which occur following traumatic brain injury (TBI), one of the reported risk 

factors for the development of AD. An understanding of the mechanisms underlying the 

neuronal change associated with TBI, together with information provided by examining 

preclinical AD cases, may give further clues as to the processes which leads to cellular 

change following B-amyloid deposition in the cortex of AD sufferers. 
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1.8 Human Brain Injury 

TBI in humans involves an immediate and direct disruption to the brain (Dunn-Meynell 

and Levin, 1997). Both focal and diffuse injuries result from TBI. Focal injuries are 

associated with cerebral contusions and haematoma, typically resulting from blows to 

the head (Smith et al., 1997), whilst diffuse injuries, which are common after car 

accidents and falls from any height, are dependent upon the rapid movement and 

deformation of the brain (Adams et al., 1984, 1989; Grady et al., 1993; Abou-Hamden 

et al., 1997; Smith et al., 1997). These diffuse injuries are considered the most 

important pathology in severely brain injured people (Smith etal., 1997), however, both 

types of injury are normally encountered following brain trauma (Graham et al., 1993). 

It is these diffuse injuries following TBI which often lead to a prolonged, progressive 

neurodegenerative cascade involving diffuse axonal injury (DAI), gliosis and cell death 

(Erb and Povlishock, 1988; Gorman et al., 1989; McIntosh et al., 1989; Dunn-Meynell 

and Levin, 1997; Smith et al., 1999). DAI remains the primary cause of death and 

neuronal dysfunction following TBI (Chen et al., 1999). TBI is also one of the leading 

causes of death and disability in humans (Sosin et al., 1995), particularly in the 15-24 

year age group, where it accounts for —550/100,000 deaths (Zemlan etal., 1999). 

DAI is associated with the unrestricted rotational acceleration and deceleration of the 

head (Gennarelli et al., 1982). Due to the mass of the human brain and the inertial 

loading from the injury, there are shear, tensile and compressive strains on the brain 

which result in tissue deformation (Smith et al., 1997). Clinically, DAI has been 

associated with both prolonged cognitive impairment (Brooks, 1972) and cognitive 

decline in aging (Corkin et al., 1989; Stuss et al., 1989). DAI is also associated, in 

between 2 and 20% of cases, with the development of AD (Mortimer et al., 1991; 

Mayeux etal., 1995; Rasmusson etal., 1995). 
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The characteristic neuropathological finding in DAI is perturbations to various 

cytoskeletal elements, and the presence of axonal swellings at the ends of injured axons, 

which are immunoreactive for a number of proteins, but particularly NF (Povlishock, 

1986; Povlishock, 1992; Yaghmai and Povlishock, 1992; Gultekin and Smith, 1994). In 

all grades of DAI, there is this widespread appearance of swollen axons and the 

formation of terminal axonal bulbs (Smith et al., 1997), and similarly, axonal injury is 

reported to be associated with fatal head injury in nearly 100% of cases (Gentleman et 

al., 1995). In the study by Gentleman and colleagues (1995), it was reported that the 

amount of axonal damage increased proportionately with survival time in the first 24 

hours, but thereafter plateaued and declined over the next two months to the point that it 

was difficult to identify the typical axonal bulbs, whilst other features, such as 

Wallerian degeneration, had become the primary neuropathological finding. 

Zemlan and colleagues (1999) have demonstrated that there is tau present in the CSF of 

head injured patients, and that it correlates with the clinical condition of a patient. They 

also hypothesise that it is a good predictor of not only the severity of head injury, but 

also perhaps patient outcome after discharge. 

In single incidents of severe brain trauma there has been the demonstration of the 

occurrence of B-amyloid deposition in the form of diffuse plaques within days of the 

injury (Roberts et al., 1991, 1994; Graham et al., 1995). In contrast, however, it has 

been reported (Geddes et al., 1999), in a study examining five patients who experienced 

a variety of forms of mild chronic head injury, that NET develop in the absence of 13- 

amyloid deposition. Other studies have also shown an increase in B-amyloid in the CSF 

(Raby et al., 1998), and a demonstrable increase in immunoreactivity for APP following 

brain trauma (Roberts et al., 1994). 
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1.9 Animal models of human brain injury 

Human TBI has been experimentally modelled in a number of different paradigms. In 

all these models, widespread axonal and cytoskeletal damage results, which has been 

principally identified utilising NF antibodies to highlight axonal damage and evolving 

axonal disconnection (Dixon et al., 1991; Meller et al., 1993; Povlishock, 1993; Foda 

and Marmarou, 1994; Kanayama et al., 1996; Dunn-Meynell and Levin, 1997; Chen et 

al., 1999). Whilst axonal damage is a consistent feature of all grades of injury, 

immediate primary axotomy following TBI, which has been shown to occur within the 

first twenty minutes post-injury (PI), only represents a small proportion of the most 

severely affected axons (Maxwell et al., 1993; Maxwell et al., 1997). The majority of 

neurons are subjected to a form of non-disruptive axonal injury which initiates a focal 

evolving process that progresses to the disruption of axoplasmic transport, local axonal 

swelling and the subsequent disconnection from the distal segment, or secondary 

axotomy (Pettus et al., 1994; Pettus and Povlishock, 1996; Maxwell et al., 1997; 

Povlishock et al., 1997; Okonkwo et al., 1998). 

More specifically, there are initial intra-axonal changes, such as the misalignment and 

compaction of NPs, perhaps due to a change in phosphorylation state (Christman et al., 

1994; Okonkwo et al., 1998); an increase in proteolysis of, for example, spectrin and 

NFs, with an altered phosphorylation state increasing the susceptibility of NFs to 

proteolysis (Goldstein et al., 1987; Schlaepfer, 1987; Pant, 1988; Nixon and Sihag, 

1991); microtubular loss and mitochondrial swelling (Meller, 1987). Focal alterations in 

axolemmal permeability ensue, and lead to impairments in axoplasmic transport with 

the subsequent accumulation of organelles, mitochondria, other vesicular structures and 

cytoskeletal components such as NFs (Blumke et al., 1966; Lanners and Grafstein, 

1980; McHale et al., 1995). Specifically, NFs accumulate in the synaptic terminal, a 
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domain where they are normally not present, and this is often around a central 

mitochondrion which subsequently gives the morphological appearance of a ring-like 

structure (Gray and Hamlyn, 1962; Guillery, 1965; Meller et al., 1993, 1994; King et 

al., 1997). These distal portions gradually undergo Wallerian degeneration. There is 

also an accumulation of NFs in the proximal part of the axon and perikarya such that, 

following disconnection from the distal segment, a NF positive axonal swelling is 

evident (Torvick, 1976; Lanners and Grafstein, 1980; Meller, 1987; Schlaepfer, 1987; 

Christman et al., 1994; Pettus et al., 1994; Silveira et al., 1994; McHale et al., 1995; 

Pettus and Povlishock, 1996; Povlishock and Pettus, 1996; Povlishock et al., 1997; 

Okonkwo etal., 1998). 

Other NF changes include the abnormal localisation of specific epitopes to different 

neuronal domains. Within the cell body, NFs are normally dephosphorylated 

(Sternberger and Sternberger, 1983), however, following injury phosphorylated NF 

epitopes appear in the cell body (Mansour etal., 1989; Martin etal., 1990; Yamada and 

Hazama, 1993). Similarly, NFs in the axonal domain are normally phosphorylated 

(Sternberger and Sternberger, 1983), but following injury there is the abnormal 

localisation of dephosphorylated epitopes to this neuronal domain (Meller et al., 1993, 

1994; Ross et al., 1994; King et al., 1997). Injury also results in a decrease in NF 

expression (Mikucici and Oblinger, 1991), whilst other cytoskeletal proteins such as 

tubulin and actin are reported to be increased following neuronal injury (Hoffman and 

Cleveland, 1988). 

The abnormal accumulations of NFs within axons have been shown to develop as early 

as three hours PI (Dunn-Meynell and Levin, 1997), however, cytoskeletal change, 

which is a feature of axonal injury (Kanayama et al., 1997), has been reported to occur 
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as early as the first minutes following injury with the destruction of dendrites (Gallyas 

and Zoltay, 1992; Gallyas et al., 1992). This may be due to the significant decrease in 

MAP2, a major MAP which provides structural support to neuronal processes (Matus, 

1994), that has been shown to occur in the first ten minutes PI (Hicks et al., 1995), as 

well as at other times up to seven days PI (Taft et al., 1992; Hicks et al., 1995; Lewen et 

al., 1996). It has also been shown that MAP2 abnormally accumulates in the neuronal 

perikarya following severe TBI (Kanayama et al., 1997). 

It should be noted, however, that the response to injury is not uniform when comparing 

different neuronal populations. In the case of stretch injury to the optic nerve, for 

example, it has been demonstrated that small and large calibre axons are affected 

differently. The small axons undergo NF compaction, lasting up to four hours PI, NF 

number increases and there is no significant change in other cytoskeletal elements such 

as MAP2 (Jafari et al., 1997). Larger axons, however, experience two different forms of 

pathology. Where periaxonal spaces occur, there is a focal compaction of NFs for at 

least six hours PI, but no change in their number, and a decrease in the number of 

microtubules (Pettus and Povlishock, 1996; Jafari et al., 1997). Where intramyelin 

spaces occur there is a significant decrease in the number of both NFs and microtubules 

and an increase in the spacing between both NFs and microtubules (Jafari et al., 1997). 

There are many factors hypothesised to underpin the axotomy which eventually occurs 

following TBI. One recent hypothesis was that mitochondrial failure may be a 

precipitating event in the progression to axotomy (Okonkwo and Povlishock, 1999; 

Okonkwo et al., 1999). Okonkwo and colleagues (1999) suggested that the 

mitochondrial permeability transition pore may abnormally open and subsequently 

interfere with the production of high energy phosphates by the mitochondrion. These 
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molecules are essential to the function of the axolemmal membrane pumps which help 

maintain a homeostatic environment within the axon. This change, therefore, may lead 

to membrane deterioration and calcium influx which may participate in eventual 

axotomy (Okonkwo and Povlishock, 1999; Okonkwo et al., 1999). This is supported by 

studies utilising cyclosporin A to inhibit this opening of the transition pore in the 

mitochondria. This was shown to slow the calcium-induced cytoskeletal change 

resulting from TBI and to decrease the number of disconnected and dysfunctional axons 

(Buki et al., 1999). So, whilst mitochondria may serve a primary role in the progression 

of events following TBI, other factors may also have an equally important function. 

Calcium for example, has been shown to increase in the axon following mitochondrial 

failure (Okonkwo and Povlishock, 1999; Okonkwo et al., 1999), as well as following 

membrane depolarisation after TBI (Folkerts et al., 1998). Indeed, calcium has 

generally been shown to accumulate in cortical tissue following TBI (Shapira et al., 

1989; Fineman et al., 1993). Calcium impacts upon many cellular functions, and a lapse 

in its normally rigorously controlled levels may result in the abnormal activation of 

kinases, which can subsequently impact upon many cellular functions including, for 

example, the assembly of MAP2, as well as an activation of calpain activity. Calpains 

have been shown to be upregulated as early as 15 minutes PI, and to remain changed for 

up to six hours (McCracken et al., 1999) following TBI. This upregulation of calpain 

activity is also concomitant with cytoskeletal collapse in neurons (Posmantur et al., 

1994; Saatman et al., 1996), and is attributed to the overactivation of calpains (Kampfl 

et al., 1996). There are, undoubtedly, numerous facets to the evolution of 

neuropathology following brain injury. The influx of calcium, the overactivation of 

calpains and so on are all important aspects which contribute to the spectrum of changes 

which occur following TBI. 
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Animal models of TBI, therefore, demonstrate significant neuropathological similarities 

with human head trauma. They have also shown that neurons respond to injury in a 

stereotyped fashion, with a complex series of morphological, neurochemical and gene 

expression changes which are principally directed at an attempt to resprout or 

regenerate. 

/JO A link between Alzheimer's disease and head injury ? 

It is clear from the studies of both human head trauma and animal models of TBI that 

the neuropathological sequelae which occur following physical injury to the brain 

closely resembles the neuropathological change which is found in AD. Interestingly, a 

number of studies have also examined the accumulation of B-amyloid in the cortex of 

animals following experimentally induced head injury. Utilising a model of rotational 

acceleration of the head, Smith and colleagues (1999) demonstrated the occurrence of 

diffuse axonal pathology, concomitant with an accumulation, and colocalisation, of B-

amyloid and tau in damaged axons which demonstrated accumulations of APP and NF. 

This was observed between three and ten days PI. Other studies, however, have not 

confirmed the observation of B-amyloid accumulation following experimentally induced 

cortical injury (Pierce et al., 1996). The accumulation of phosphorylated tau in the 

neuronal perikarya has been shown, however, in a model of repeated mild cortical 

impact (Kanayama et al., 1996). 

To briefly recap, in AD there is an accumulation of NF in the perikarya (Vickers et al., 

1992, 1994; Nakamura et al., 1997); the formation of NF positive bulb- and ring-like 

structures, which are early forms in the progression to DN formation, associated with 

plaques (Vickers et al., 1996; King et al., 1997); a down regulation of NF expression 

(Kittur et al., 1994); phosphorylated NF epitopes are abnormally localised to nerve cell 
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bodies (Masliah et al., 1993b; Vickers et al., 1994); there are vesicular and 

mitochondrial changes and accumulations (Gonatas et al., 1967; Dickson, 1997); a loss 

of microtubular structures in damaged axons (Gray et al., 1987; Paula-Barbosa et al., 

1987) and the early forms of DN undergo a stereotypy of changes directed at attempts 

to regenerate. That such a similarity exists between the neuropathological sequelae of 

physical injury to the cortex and AD, suggests that B-amyloid deposition within the 

cortex functions to physically damage the cortical tissue. The hypothesis, therefore, is 

that B-amyloid is not harmful to neurons via a chemical toxin, but rather, its deposition 

within the brain causes physical damage to neurons, which triggers them to enter into a 

programmed response to that trauma (Vickers, 1997; Vickers et al., 2000). This then 

results in a number of neuronal and cytoskeletal abnormalities which subsequently give 

rise to the characteristic neuropathology of AD. Whereas, in head trauma, there is an 

immediate deformation of cortical cells, B-amyloid deposition is a slowly evolving 

process which ultimately leads to the formation of an insoluble plaque. The continued 

presence of this structure, then, is likely to continually damage neurons and result in the 

repeated stimulation of the neuronal response to trauma. 

That the pathogenesis of AD crucially involves the cytoskeleton suggests that targeting 

these changes may be an effective method of delaying or even preventing 

neurodegeneration in AD (Matsuyama and Jarvick, 1989; Vickers, 1997; Vickers et al., 

2000). 

1.11 Therapeutic intervention in Alzheimer's disease 

There are currently no treatments available to prevent AD. Similarly, there are no drugs 

yet available which will successfully reverse, halt or slow the progression of 

pathological changes which occur in the AD brain. 
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The difficulty in treatment of AD arises from its multifactorial nature. The 

heterogeneity of the disease is such that it can arise on vastly different genetic 

backgrounds and past histories and often develops in the absence of any apparent cause. 

In terms of the course of the illness, it is by no means a 'single-effect' disease. AD 

affects multiple neurotransmitter systems (Hardy et al., 1985); multiple brain regions 

and neuronal types. Although there appears to be some selectivity with the latter. A 

classical antagonist/ agonist approach to drug therapy for AD is, therefore, not suitable 

(Shvaloff, 1996). 

Despite decades of research spent trying to find a 'cure', AD sufferers are still limited to 

the symptomatic treatment of their illness. This has two major foci. Firstly, the 

alleviation of behavioural problems, such as restlessness, agitation and mood swings, 

associated with AD. This remains an important step in improving the quality of life of 

AD patients, as the lifetime risk of a dementia patient experiencing such behavioural 

changes is close to 90% (Tariot et al., 1997). Secondly, and perhaps more importantly, 

the amelioration of the cognitive decline experienced, by the augmentation of 

neurotransmitter levels in the AD brain. Whilst numerous neurotransmitter systems, 

such as the GABAergic system, are affected in AD, the one of primary interest and 

apparent greatest benefit from treatment, is the cholinergic system (Brodaty and 

Sachdev, 1997). The goal remains, however, to achieve a more fundamental approach to 

prevent disease, including strategies based on an increased understanding of, for 

example, the disruption of the neuronal cytoskeleton from NET formation. 

1.11.1 Cholinergic Agents and other neurotransmitter therapy 

The use of cholinergic agents in the treatment of AD is based upon the cholinergic 

hypothesis (Bartus et al., 1982). This hypothesis states that the learning and memory 
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discrepancies which occur in both the aged and the AD population may be attributable 

to a decline in the activity of one of the main neurotransmitter systems associated with 

memory, the cholinergic system. Specifically, the nucleus basalis of Meynert, a basal 

forebrain site where cortically projecting cholinergic neurons are located, is a centrally 

affected region in AD, and demonstrates a loss of cholinergic cells and a decrease in 

cholinergic function (Whitehouse et al., 1981, 1982; Shvaloff, 1996). This region of the 

brain produces choline acetyltransferase- a molecule which links choline from the 

synaptic space, via high affinity choline uptake, to acetyl molecules to form the 

neurotransmitter, acetylcholine (ACh). It is also a biochemical marker for cholinergic 

neurons, and was utilised to demonstrate a loss of such neurons in the AD brain (Davies 

and Maloney, 1976; Perry et al., 1977). The deterioration of this cholinergic system is 

associated with the early decline in cognitive function in AD (Perry et al., 1978, 1981 

and 1992; Palmer et al., 1987; Reinkainen et al., 1990; Dekosky et al., 1992; Lehericy 

et al., 1993; Brodaty and Sachdev, 1997; Tariot et al., 1997; Rogers et al., 1998), and so 

preventing the decline in ACh became a target for the treatment of AD. 

The four main mechanisms that can be utilised to enhance ACh activity are precursor 

loading (with choline or lecithin) to augment ACh synthesis, increasing ACh release 

(with linoprine or ondansetron), inhibition of cholinesterase activity (physostigmine) to 

delay the intrasynaptic degradation of ACh and agonism of nicotinic and muscarinic 

receptors (arecholine). The latter has relevance to AD, as post synaptic muscarinic 

cholinergic receptors are relatively intact in AD, and presynaptic muscarinic receptors 

(which are decreased in AD) regulate acetylcholine release (Shvaloff, 1996; Tariot et 

al., 1997). Muscarinic agonists then, such as xanomeline and talsaclidine, have been 

demonstrated to slow cognitive decline and have positive behavioural effects (Bymaster 

et al., 1997; Ensinger et al., 1997). 
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The most effective method of preserving the decreasing amounts of ACh within the AD 

brain to date, however, has been the use of acetylcholinesterase inhibitors (Wilcock, 

1996; Brodaty and Sachdev, 1997). These agents target the molecules which, within the 

synaptic cleft, selectively metabolise ACh (Shvaloff, 1996). The other main enzyme 

utilised within the brain for degrading ACh is butyrlcholinesterase (Shvaloff, 1996), but 

drugs which antagonise its action have had little development. 

The first cholinesterase inhibitor to be utilised, and the first drug to be approved for use 

in the treatment of AD by the Food and Drug Administration (FDA) in the United 

States, was tacrine hydrochloride (Cognex ® ) in 1995. This is a centrally active, 

reversible, non-specific cholinesterase inhibitor. It gave modest improvement in 

cognitive function, with the largest responses in those on higher doses. In patients able 

to tolerate treatment, between 30-51% showed a significant improvement on global 

clinical scales and indices of daily living, as compared to between 16 and 25% of the 

placebo group (Wagstaff and McTavish, 1994). Those which continued with treatment, 

however, only represented approximately 50% of the initial patients, the remaining 

unable to take the drug due to its toxicity. Gastrointestinal problems (Brodaty and 

Sachdev, 1997), as well as a host of other issues related to the use of cholinergic agents, 

including nausea, vomiting, hepatotoxicity and bradycardia (Wagstaff and McTavish, 

1994; Tariot et al., 1997) were experienced. The improvement in cognitive function was 

equated to the patients reverting to their cognitive status of at least six months prior to 

the commencement of treatment. There were also positive behavioural modifications as 

a result of treatment, including less anxiety, apathy, hallucinations and aberrant motor 

behaviours (Raskind et al., 1997). The average duration of benefit was approximately 

three months (Brodaty and Sachdev, 1997; Tariot et al., 1997), but the benefits, in some 

cases, can be extended out to 12 months (Giacobini, 1998; Parys, 1998). It is unlikely 
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that patients will receive benefit past this, due to tolerance to the drug and/or 

progression of the disease state (Giacobini, 1998). A review of the therapeutic efficacy 

and pharmacokinetic properties of tacrine can be found in Wagstaff and McTavish 

(1994) and Eagger and colleagues (1994). 

Newer cholinesterase inhibitors have been developed which are at least as effective in 

the treatment of AD as tacrine, such as donepezil hydrochloride (Aricepe), which was 

approved by the FDA in 1996. This is a highly selective piperidine based molecule 

which reversibly inhibits cholinesterase activity, and which shows greater specificity for 

the CNS than tacrine (Rho and Lipson, 1997; Rogers et al., 1998). Again, these drugs 

give statistically significant improvements in global clinical scales and indices of daily 

living, however, this benefit can be obtained as early as the first three weeks of 

treatment for demonstrated improvements on cognitive tests, and within the first 6 

weeks for improvements in global function (Rogers et al., 1998). It has been reported 

that the number of patients showing cognitive decline is reduced from 20% in the . 

control group to 11% in those taking the drug (Rogers et al., 1996). The benefits of 

these newer agents are that they are tolerated better and have fewer cholinergic side 

effects, the dosing regime is easier and achieves therapeutic levels quicker (Rogers et 

al., 1996, 1998; Rho and Lipson, 1997). 

Despite the positive benefits of these cholinesterase inhibitors, no drug has yet been 

able to return cognitive function to normal control levels, and they do nothing to 

prevent the disease progression (Wilcock, 1996; Brodaty and Sachdev, 1997; Giacobini, 

1998). Despite this, the improvements that are gained in cognitive function and relief 

from various behavioural problems give a real improvement in the quality of life for AD 

patients in the short term (Giacobini, 1998). 
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These two agents, tacrine and donepezil, were the first two drugs to be approved for use 

in the treatment of AD, however, there are numerous other drugs which are in different 

phases of clinical trials which may also be later approved for use in AD, such as 

huperzine A (Cheng et al., 1996; Da-Yuan et al., 1996) and galanthamine (Rainer, 

1997). Recently (April, 2000), another cholinesterase inhibitor, rivastigmine (ExelonTM) 

(Sim, 1999), was approved by the FDA for use in the treatment of AD. 

1.11.2 Other neurotransmitter therapy 

Both aging and AD are associated with defects in monoaminergic transmission, as 

evidenced by a decrease in monoamine metabolite concentration in the brain and CSF. 

This is due to the increased activity of type B monoamine oxidases (MAO-B). MAO-Bs 

are mitochondrial enzymes which are responsible for the oxidative deamination of 

dopamine and other monoamines (Piccinin et al., 1990). The inhibition of MAO-Bs 

with drugs such as L-deprenyl, therefore, has shown to have significant effects on 

memory and attention, which may be due in part to an improved function of the 

monoaminergic system, a decrease in oxidative stress or an increase in catecholamine 

levels and other chemicals such as dopamine and phenethlamine (Piccinin et al., 1990; 

Wilcock, 1996; Brodaty and Sachdev, 1997; Tariot et al., 1997). 

Other neurotransmitters which are affected in AD have also been targeted. Attempts to 

boost serotonin levels, to normalise the catecholaminergic system, as well as to regulate 

NMDA receptor transmission and glutaminergic and GABAergic function, have all 

been trialled through the use of various precursors, agonists and antagonists, but to little 

or no positive behavioural or cognitive effect (Shvaloff, 1996; Wilcock, 1996; Brodaty 

and Sachdev, 1997; Tariot et al., 1997). 
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1.11.3 Non-steroidal anti-inflammatory drugs 

Retrospective analyses of patients with rheumatoid arthritis, who have a predilection to 

the use of non-steroidal anti-inflammatory drugs (NSAIDS), have demonstrated that 

there is an inverse relationship between the use of NSMDS and the prevalence of AD, 

as compared to control patients (Jenlcinson et al., 1988; Broe et al., 1990; McGeer et al., 

1990; Tariot et al., 1997). NSAIDS such as indomethacin, therefore, appear to either 

delay the development of AD or slow the progression of both cognitive and behavioural 

symptoms (Rogers et al., 1993; Rich et al., 1995; Shvaloff, 1996; Wilcock, 1996). 

There have been numerous studies on the use of NSAIDS, and their role in slowing the 

symptoms of AD, however, the majority of studies have been small and, therefore, 

lacked significance. McGeer and colleagues (1996) analysed 17 different 

epidemiological studies, however, and demonstrated that anti-inflammatory drugs may 

indeed be useful in protection against AD. Similarly, large population based studies 

have shown a possible protective effect of NSAIDS on the risk of the development of 

AD (Anderson et al., 1995). In an interesting study by Breitner and colleagues (1994), 

twin pairs presenting with a disparity in the onset of AD by at least three years were 

examined. The patient with delayed onset, or in fact no AD symptoms, was more likely 

to have had prior treatment with either steroids or NSAIDS. Whilst the majority of these 

studies point to a role for NSAIDS in AD treatment, other studies, such as that by 

Henderson and colleagues (1997), have not been able to attribute any positive effect on 

the incidence of AD, or the slowing of symptoms, to the use of either aspirin or 

NSAIDS, even after more than three and a half years of treatment. 

Whilst AD is unlikely to be initiated by inflammatory processes, there is little doubt that 

this plays a part in the disease process and presentation of symptoms. The AD brain 

42 



Chapter 1 

contains several markers of an inflammatory process, and is associated with an 

activation of the complement cascade and reactive astrocytes and/or activated microglia 

are found in association with both 13-amyloid plaques and neurofibrillary tangles 

(McGeer and Rogers, 1992; Breitner, 1996; McGeer et al., 1996). NSAIDS are believed 

to function by inhibiting cell death, either by preventing astrocytic reuptake of 

glutamate and thereby interfering in glutamatergic transmission or by the suppression of 

cyclooxygenases, which catalyse the synthesis of prostaglandins and subsequently 

interfere in postsynaptic signal transduction (Breitner, 1996). 

1.11.4 Hormone replacement therapy 

Estrogen replacement therapy (ERT) is reported to decrease the risk of developing AD 

in postmenopausal women (Mortel and Meyer, 1995; Henderson, 1996; Tang et al., 

1996; Keller et al., 1997; McBee et al., 1997; Paganini-Hill, 1997; Paganini-Hill and 

Henderson, 1997; Sohrabji and Miranda, 1997; van Duijn, 1997). It has also been 

shown to result in an improvement in cognition and other behavioural indices (Fillit et 

al., 1986; Kampen and Sherwin, 1994). However, there have also been a number of 

recent studies, which suggest that the short term (4 months) use of ERT does not have 

any positive effect on women with mild to moderate AD (Henderson et al., 2000). 

Similarly, it has been demonstrated that the longer term (1 year) use of ERT does not 

slow the progression of AD, or result in a positive change in different functional and 

cognitive indices in women with mild to moderate AD (Mulnard et al., 2000). 

The use of estrogen has also been investigated in cell culture experimental models, 

where it has been shown to decrease both A13(25-35)-induced toxicity and lipid 

peroxidation (Gridley et al., 1997); block the toxicity of A13(1-42) and increase neurite 

extension (Mook-Jung et al., 1997); attenuate neuronal loss due to oxidative and 

excitotoxic stress (Regan and Guo, 1997) and to differentially and significantly regulate 
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cortical nerve cell outgrowth (Brinton et al., 1997) and in particular, increase the 

density of spines on hippocampal neurons (Brinton, 1993). This latter point, which is 

postulated to directly affect memory, has also been demonstrated in vivo (Gould et al., 

1990; Woolley et al., 1990; Woolley and McEwen, 1992, 1994). Whilst most studies 

have emphasised the action of estrogen on prevention of toxic-related nerve cell death 

and effects of cortical outgrowth, it may also impact upon the metabolism of APP and 

interact with ApoE (Brodaty and Sachdev, 1997). 

Interestingly, the effects of estrogen are not confined to postmenopausal women. 

Phillips and Sherwin (1992) have demonstrated that 17 B-estradiol enhances memory in 

not only women who have had surgically-induced menopause, but also in young 

neurologically normal adult women. It remains unlikely, however, that men would ever 

receive any benefit from ERT, as they have a constant source of estrogen until late in 

life from the intracerebral aromatisation of oestrone to oestrogen (Brodaty and Sachdev, 

1997). This may, perhaps, explain the decreased prevalence of AD in the male 

population. The use of ERT may, therefore, represent a future therapy for AD. 

1.11.5 Growth factor therapy 

Another popular hypothesis is that the use of growth factors will be efficacious in the 

treatment of AD. Growth factors, in particular neurotrophins, are proteins which act on 

specific populations of neurons to support their growth, differentiation, survival and 

which may potentially have a role in repair of the CNS (Shvaloff, 1996). The 

neurotrophins, which all share a conserved domain and have a variable domain 

responsible for different receptor specificities, consist of nerve growth factor (NGF), 

brainLderived neurotrophic factor (BDNF), neurotrophin 3 (NT-3) and NT-4/5. Other 

groups also exhibit neurotrophin-like activity, such as lymphokines, insulin-like growth 
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factors, fibroblast and epidermal growth factors (Wilcock, 1996; Bossi, 1998). 

Studies have been undertaken in both animals and man, and the evidence in animal 

trials is fairly unanimous. The administration of NGF has been reported to have many 

effects. It is neuroprotective of basal forebrain cholinergic neurons, which are central to 

the cholinergic deficit in AD (Shvaloff, 1996). It will also promote neuronal survival, 

irrespective of the cause of the damage (Tariot et al., 1997), prevent neuronal death, 

induce and accelerate recovery from injury and, with the appropriate conditions, both 

result in significant compensatory changes in cortical synaptic connections and improve 

behavioural symptoms associated with neurological deficit (Garofalo et al., 1992; 

Tuszynski and Gage, 1995; Novikov et al., 1997; Bossi, 1998). Different neurotrophins 

will also act on different populations of neurons. NGF, for example, will support the 

survival of septal cholinergic neurons whereas BDNF will support the survival of 

dopaminergic neurons in the substantia nigra (Bossi, 1998). 

Trials of NGF administration in AD patients have, therefore, been undertaken (Olsen et 

al., 1992; Seiger et al., 1993; Eriksdotter et al., 1998). These studies have shown little 

positive consistent effect, with side effects and drug penetration both being limiting 

factors. 

The use of growth factors in the treatment of AD, however, may be harmful. It has been 

reported that there is massive somatodendritic sprouting of cortical neurons in AD 

(Ihara, 1988; McKee et al., 1989). This may be due to a chronic stimulation of the 

neuronal reaction to physical trauma induced by the presence of 13-amyloid plaques 

within the brain. These sprouting attempts are futile and may eventually lead to cell 

death. The use of growth factors, therefore, may accelerate this response and cause a 
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faster degeneration of nerve cells and loss of cortical connections. This may 

subsequently result in a quicker cognitive decline. 

1.11.6 Cytoskeletal strategies 

The abnormal phosphorylation of tau proteins in AD, particularly in the cortex, results 

in a significant disruption to the neuronal cytoskeleton, which in turn results in impaired 

intraneuronal transport and may contribute to the formation of NFT. A potential target 

for therapy therefore, is an agent which acts to prevent this abnormal phosphorylation of 

tau, which may then result in a preservation of neuronal transport, including the 

retrograde transport of neurotrophic factors to the perikaryon and neurotransmitters to 

their site of release (Shvaloff, 1996; Wilcock, 1996; Tariot et al., 1997). Another 

potential target is the cytoskeleton itself. Stabilisation of cytoskeletal networks against 

collapse, with drugs such as sabeluzole, may represent another therapeutic opportunity 

(Uberti et al., 1997; Delacourte, 1998). 

1.11.7 Anti-amyloid strategies 

The recent literature has highlighted a promising avenue of therapy, anti-amyloid 

strategies. There have been a number of hypotheses put forward to prevent the 

deposition of B-amyloid within the brain. These have included the use of antagonists 

against the enzymes which abnormally cleave APP into more amyloidogenic fragments 

(Shvaloff, 1996; Wilcock, 1996), and agents which break the structure of B-amyloid, 

anti-B-sheet peptides (Delacourte, 1998; Sigurdsson et al., 1998). An example of a B-

sheet breaker peptide is AB5. This peptide has been tested in both in vitro and in vivo 

paradigms. In vitro experiments have demonstrated that it reduces the neurotoxicity of 

AB 1-42. It has shown similar promise in vivo, where it has reduced the size of B-

amyloid deposits by 49%, as well as removed histochemical positivity for AB and 
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thioflavine-S (Sigurdsson et al., 1998). 

In another more recent study by Schenk and colleagues (1999), it has been 

demonstrated that the immunization of a transgenic mouse line, which expresses 

mutated human APP and subsequently develops the neuropathological hallmarks of 

AD, with B-amyloid, can almost completely prevent the development of B-amyloid 

plaques, dystrophic neurites and astrogliosis. This result was reliant on the 

immunisation of animals prior to the formation of the pathological structures. However, 

even in older animals where the plaques had already formed, immunisation resulted in a 

reduction in pathology. 

This, therefore, remains perhaps one of the better, more fundamental approaches to the 

treatment of AD. It remains to be seen, however, whether or not this approach will work 

in humans, as it may prove difficult to immunise against native APP in man. 

1.11.8. Other strategies 

There have been innumerable agents postulated to be of benefit in the treatment of AD, 

with information based on historical anecdotes, animal studies and human trials. Agents 

have included nootropic drugs; neuropeptides; calcium channel blockers; chelating 

agents; antioxidants and ancient remedies such as ginkgo biloba (Brodaty and Sachdev, 

1997). These drugs, however, will require thorough evaluation in modem clinical trials 

before they may become widely available for the treatment of AD. 
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Aims 

Currently, the neurodegenerative cascade which leads to dementia in AD cannot be 

prevented. The only drugs which have been approved for the treatment of AD restore 

some cognitive abilities for a brief period of time, but do nothing to halt or even slow 

the progression of the disease. There is, therefore, a need for agents which will attack 

the underlying cause of the disease, and perhaps prevent its onset. In this respect, the 

central aim of this thesis has been concerned with establishing alternative routes of 

therapy for AD than those currently available. The approach is based on the hypothesis 

that there are very early cytoskeletal changes which occur within the AD brain as a 

result of plaque deposition, and that targeting these changes may be an effective method 

of preventing the neuropathology of AD. 

Specific aim 1 

To determine if J3-amyloid plaques are mediators of structural damage to the 

cytoarchitecture of the AD brain, and whether similar changes occur following 

experimentally induced cortical injury. 

As outlined in the literature review, the deposition of B-amyloid plaques in the AD brain 

is hypothesised to result in structural deformation to surrounding neurites. This theory 

will be analysed in this thesis by the examination of the dendritic changes that occur 

both in and around plaques in the early and late stages of AD. Similarly, the dendritic 

alterations which occur following a defined cortical lesion will be examined to 

determine whether the neuropathological changes which occur in, and are characteristic 

of, AD may be the result of a stimulation of the neuronal response to physical injury by 

the deposition of B-amyloid plaques within the brain. 
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Specific aim 2 

To assess the efficacy of potential therapeutic agents in preventing the cytoskeletal 

changes which are characteristic of AD. 

Utilising an in vivo animal model of the early neuronal pathology of AD, agents which 

target and stabilise microtubules will be assessed for their efficacy in preventing the 

cytoskeletal changes which are characteristic of both cortical injury and AD. Similarly, 

the ability of microtubule-stabilising agents to prevent the evolution of the 

neuropathological structures which precede neurodegeneration will be assessed. The 

relative potential of such an approach in the treatment of AD will, therefore, be 

determined. 

Specific aim 3 

To examine the role of metallothione ins in AD and following cortical injury, and to 

determine their potential for the treatment of AD 

It has previously been postulated that particular metallothionein (MT) isoforms may 

have a crucial role in the sprouting of damaged neurons in the AD brain. Examination 

of the expression of MT isoforms in the early and late stages of AD, as well as 

following cortical injury will be undertaken to establish whether this family of proteins 

may have a role in AD. Similarly, the in vivo animal model will be utilised to assess the 

relative effect of the exogenous administration of specific MT proteins on the neuronal 

response to physical injury. The potential use of these agents in the treatment of AD 

will, therefore, be determined. 

In summary, then, this study will seek to further define the pathogenic mechanisms 

which may underlie neurodegeneration in AD, and to subsequently assess the 

effectiveness of targeting specific processes in the prevention of the evolution of the 
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neuropathology which is characteristic of AD. This thesis will be presented in two parts, 

the first three experimental chapters are concerned with specific aims one and two, 

whilst the remaining three experimental chapters deal with specific aim three. The main 

targets for therapeutic intervention in this thesis are summarised in Figure 1.2. 
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Figure 1.2. A simplified mechanism outlining the cascade of changes leading to 

neurodegeneration in AD. The specific aspects targeted in this thesis are shown (*). 
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Materials and methods 

2.0 Human material - Introduction and case definition 

Investigations utilising human brain material were carried out in this thesis. Material was 

obtained from normal aged individuals, people diagnosed as suffering from Alzheimer's 

disease (AD) and also from people considered to be in a preclinical stage of AD. The 

source of this tissue and the fixation details are summarised in Table 2.1 (non-AD), 2.2 

(preclinical AD) and 2.3 (AD). AD cases were diagnosed according to CERAD 

(Consortium to Establish a Register for Alzheimer's Disease) criteria (Mirra et al., 1991), 

whilst preclinical cases were defined as cases in which there was the presence of 6-amyloid 

plaques throughout the neocortex, but no extensive neuronal pathology as indicated by 

thioflavine S staining or immunolabelling with PHF-tau or ubiquitin antibodies (Vickers et 

al., 1996). These cases also showed no overt signs of dementia. They were, therefore, not 

diagnosed as AD according to CERAD criteria. Non-AD cases had no known 

neuropathological condition. 

Brain tissue was cryopreserved and blocks from the superior frontal gyrus removed and 

sectioned at 40-50 Am on a freezing microtome (Leica CM1325). Tissue sections were then 

placed into storage medium until use (appendix, 11.1) Variations in fixation protocols and 

post mortem intervals to fixation did not result in different immunohistochemical profiles 

between cases. 
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Table 2.1. Summary of non-Alzheimer's disease cases utilised throughout this thesis. 

(PMI = post mortem interval) 



Code Age 

(yr) 

Sex PM! 

(hrs) 

Cause of 

death 

Fixation 

details 

Source 

N-14 72 F 7 Cardiac 

failure 

1 NH&MRC Brain Bank, Adelaide 

15-98 83 F 8.5 Bowel 

disease 

2 University of Sydney, Sydney 

15-28 47 M 24 Heart disease 2 University of Sydney, Sydne§, 1  

15-49 51 M 24 Pulmonary 2 University of Sydney, Sydney , . 

Embolus 

15-69 58 M 28 Heart disease 2 University of Sydney, Sydney 

15-87 65 M 15 Heart failure 2 University of Sydney, Sydney 

1. Perfusion-fixed with 2% picric acid/ 4% paraformaldehyde 

2. Blocks of cerebral cortex, immersion-fixed in 4% paraformaldehyde 



Table 2.2. Summary of preclinical Alzheimer's disease cases used throughout this thesis. 

(PMI = post mortem interval) 



Code Age Sex PMI Cause of Fixation Source 

(37) (hrs) death details 

PM- 70 F 4.4 Cardiac failure 2 University of Tasmania, Hobart 
6060 

15-90 61 M 19 Heart disease 2 University of Sydney, Sydney 

15-17 62 M 24 Cardiac failure 2 University of Sydney, Sydney 

15-35 71 M 32.5 Cardiac arrest 2 University of Sydney, Sydney 

... N-17 78 F 18 Cardiac failure 1 NH&MRC Brain Bank, Adelaide 

96-30 90 M 2.16 Resp. failure 2 Sun Health Research Institute, USA 

97-09 81 F 3 Cardiac arrest 2 Sun Health Research Institute,,,USA 

97-51 84 M 3 Cardiac arrest 2 Sun Health Research Institute ', USA 

98-37 78 M 2.25 Pneumonia 2 Sun Health Research Institute, USA 

99-22 91 m 3 Cardiac failure 2 Sun Health Research Institute, USA 

3. Perfusion-fixed with 2% picric acid/ 4% paraformaldehyde 

4. Blocks of cerebral cortex, immersion-fixed in 4% paraformaldehyde 



Table 2.3. Summary of Alzheimer's disease cases utilised throughout this thesis. 

(PMI = post mortem interval) 



Code Age Sex PMI Cause of Fixation Source 

(3') (hrs) death details 

AD-1 65 m 3 AD 1 NH&MRC Brain Bank, Adelaide 

AD-2 73 M 6.5 AD 1 NI-I&MRC Brain Bank, Adelaide 

91 -16 72 F 4 AD 2 Sun Health Research Institute, USA 

91-11 66 M 2.8 AD 2 Sun Health Research Intitute, USA 

91-10 84 F 3 AD 2 Sun Health Research Institute, USA 

99 -07 92 F 2.25 Pneumonia 2 Sun Health Research Institute, USA 

99 -10 74 F 2 Pneumonia 2 Sun Health Research Institute, USA 

99-13  74 M 2.75 Resp. failure 2 Sun Health Research Institute, USA 

99 -15 83 M 2.83 AD 2 Sun Health Research Institute, USA 

1. Perfusion-fixed with 2% picric acid/ 4% paraformaldehyde 

2. Blocks of cerebral cortex, immersion-fixed in 4% paraformaldehyde 
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2.1 Animal model - Introduction 

AD has been experimentally replicated in a number of different models. Our laboratory has 

demonstrated that the in vivo focal cortical injury model utilised throughout this thesis 

accurately replicates the early neuropathological change associated with plaque formation 

in preclinical AD cases (King et al., 1997). This model has the advantage of producing a 

defined lesion without confounding factors, and it also allows for the direct introduction of 

minute quantities of any agent into the damaged cortex, a method which has been exploited 

in this thesis. 

All procedures were approved by the Ethics Committee (Animal Experimentation) of the 

University of Tasmania and are consistent with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes. 

2.1.1 Technique 

Adult Hooded Wistar rats (250-300g) were anaesthetised with sodium pentobarbitol 

('Nembutal', 60 mg/Kg, intraperitoneal), the scalp was shaved and the head immobilised in 

a stereotaxic frame (Stoelting). The dorsal surface of the skull was wiped with alcohol and 

a midline incision made to expose the skull. Cortical landmarks were identified and, using 

the coordinates of Paxinos and Watson (1986), the Pan l region of the right somatosensory 

cortex was located. A hole was then created in the skull using a Dremel Multipro drill with 

an attached bit. The dura mater was removed with fine forceps and a 25 gauge blunt needle, 

with attached 2,u1 syringe (Hamilton), slowly inserted into the cortex to a depth of 1.5 mm. 

The needle, which penetrated all layers of the grey matter, but not the underlying white 

matter, was left in place for a total of ten minutes before being slowly removed. In animals 
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which received intracortical drug injections, the syringe was preloaded with 1AL of the 

given agent and then, once inserted into the cortex, delivered at a rate of 0.2A/minute. The 

needle then remained in the cortex for the remainder of the ten minutes. Gelfoam (Upjohn) 

was utilised to fill the burr hole in the skull, and antibiotic powder (Cicatrin, Wellcome) 

sprinkled over the surface. The skin was closed with autoclips (9mm, Becton Dickinson) 

and an intramuscular injection of gentamicin (0.02 ml, David Bull Laboratories) given. A 

mild analgesic was supplied in the drinking water (Soluble 'Aspro', Roche). Animals were 

kept warm during the entire procedure and in the post-operative period. Once fully 

recovered, animals were closely monitored to ensure there were no behavioural 

abnormalities. In all experiments involving the injection of drugs into the cortex, 

appropriate controls of the vehicle solution were also performed. 

At varying intervals post-surgery, animals were reanaesthetised with sodium pentobarbitol 

(60 mg/Kg, intraperitoneal) and perfusion fixed as detailed in the following section. Once 

animals were anaesthetised, they were immobilised on a perfusion table which allowed for 

the collection of waste material. The external surface of the skin was wiped with 70% 

alcohol and a midline incision made from the clavicle to the sternum. The skin was then 

laid back and the zyphoid process exposed. This structure was then clamped and incisions 

made down each side of the chest cavity. The diaphragm and rib cage were then cut 

through to open the thoracic cavity and allow access to the heart. The pericardial sac was 

removed and a 24 gauge cannula inserted through the left ventricle and into the aorta. The 

cannula was clamped in place with a haemostat and the right atrium pierced to allow 

exsanguination. Phosphate-buffered saline (PBS) (0.01M, appendix, 11.0) was then flushed 

through for a total of two minutes (or until the waste material had sufficiently cleared of red 
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blood cells) to remove blood from the circulation and allow better fixation and to enhance 

later immunohistochemical investigations. The perfusate was then changed to a 4% 

paraformaldehyde fixative solution (appendix, 11.2), and this was circulated for seven 

minutes. At the completion of perfusion, the skull cavity was opened with bone clippers 

and the brain carefully removed and placed in paraformaldehyde fixative for a further six 

hours of post-fixing. 

The brain was blocked down to an area surrounding the injury site and glued to the stage of 

a 752M Vibroslice (Campden Instruments). The brain remained immersed in PBS (0.01M), 

and coronal sections were cut at 50AM. Sections were serially collected and were stored in 

PBS-azide until use (appendix, 11.2). 

2.2 Immunohistochemistry 

Analyses throughout this thesis have principally been conducted utilising the visualisation 

of specific antibody reactivity with fluorescence immunohistochemical techniques. Both 

single and double labelling methods have been utilised (an extensive outline of these 

techniques can be found in Vickers, 1999). 

Briefly, material was initially washed three times in 0.01M PBS before incubation in 

primary antibodies. For investigations utilising human material, sections were initially 
' 

pretreated with 90% formic acid for twenty minutes as well as 'quenched', which involved 

treating the material in 0.25% KMnO, for 20 minutes, washing in PBS, then placing in 1% 

K2S 205  and 1% oxalic acid until they turned white. Human material was then similarly 
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incubated in primary antibody, initially for several hours on an orbital shaker at room 

temperature, followed by overnight incubation at 4°C. Antibodies were diluted to the 

appropriate concentration in diluent (appendix, 11.0) to aid in their penetration into tissue. 

A list of the primary antibodies utilised, and their working concentration is shown in table 

2.4 (monoclonal antibodies) and 2.5 (polyclonal antibodies). Primary antibodies will bind 

to a specific antigenic site, and this can be subsequently visualised by the use of secondary 

antibodies. Because the primary antibodies can be raised in different hosts, it is possible to 

combine multiple primary antibodies so that different antigenic sites can be targeted in the 

one tissue section. In this thesis, both single (one primary antibody, raised in either a mouse 

or rabbit) and double (two primary antibodies, one raised in mouse and one in rabbit) 

labelling techniques were utilised. Thioflavine-S staining was also used in conjunction with 

single labelling fluorescence investigations. Briefly, this involved incubating the human 

material in thioflavine-S (Polysciences) (0.0125% in a solution of 40% ethanol and 60% 

0.01M PBS) for three minutes, followed by differentiation (in a solution of 50% ethanol 

and 50% 0.01M PBS) and washes in 0.01M PBS, prior to the overnight incubation in 

primary antibody. 

Material was then given three ten minute washes in 0.01 M PBS before incubation in a 

secondary antibody. Secondary antibodies will attach to immunoglobulins of the primary 

antibody host species (either mouse or rabbit). They are utilised because they are 

conjugated to either a fluorophore or to biotin. In the former case, the fluorophore will emit 

fluorescent light when exposed to a specific wavelength of light, thereby allowing 

visualisation of antibody immunoreactivity. In the latter case, an avidin-conjugated 
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Table 2.4. Summary of mouse monoclonal primary antibodies utilised throughout this 

thesis. 



Code Reactivity Dilution Source 

SMI32 dephosphorylated NF-M & NF-H 1:2000 Sternberger Monoclonals Inc. 

SMI312 phosphorylated NF-M & NF-H* 1:5000 Sternberger Monoclonals 

GAP43 Growth-associated protein-43 1:1000 Boehringer Mannheim 

MAP2 Microtubule-associated protein 2 1:1000 Boehringer Mannheim 

MT-I/II Metallothionein isoforms I and II 1:500 DAKO 

* A cocktail of monoclonal antibodies 



Table 2.5. Summary of rabbit polyclonal primary antibodies utilised throughout this thesis. 



Code Reactivity Dilution Source 

GFAP Astrocytes 1:2000 DAKO 

S-100 ct-FB Reactive protoplasmic and fibrous 

astrocytes 

1:2000 DAKO 

Tau Tau 1:2000 DAKO 

B-amyloid B-amyloid 1-42(43) 1:500 Zymed 

B-amyloid (pan) all B-amyloid peptides 1:500 QCB 

Ferritin Reactive microglia 1:10000 DAKO 
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fluorophore can be added which will attach to the biotinylated secondary antibody. This, 

again, will emit fluorescent light when exposed to a specific wavelength of light. Double 

labelling studies exploit the technique of using two primary antibodies, raised in different 

hosts, and two secondary antibodies, conjugated to different complexes, which 

subsequently allows the simultaneous visualisation of two antibody species in the one 

tissue section by use of a fluorescent microscope with the capacity to excite different 

wavelengths of light. Other antibody detection systems also allow for the use of two 

fluorophore-conjugated secondary antibodies, eliminating the need to utilise a biotinylated 

secondary step in double labelling experiments. 

Once the tissue has been thoroughly washed, either one or two secondary antibodies are 

added, and a list of those utilised is shown in Table 2.6. When injured animal tissue 

sections were utilised, the secondary antibodies used were 'rat adsorbed' to minimise 

binding to endogenous immunoglobulins. The sections were again incubated on the orbital 

shaker for two hours. To preserve the intensity of labelling, once a fluorescent label had 

been added to material, it was kept in the dark as much as possible. Sections were then 

washed three times in 0.01M PBS, and material which was single labelled using a 

fluorescein-conjugated secondary antibody was then mounted on glass slides with the 

aqueous mounting medium, Permafluor (Immunotech). 

Sections, in which a biotinylated secondary was utilised, were then incubated in the avidin- 

conjugated fluorophore, streptavidin Texas Red, for two hours. Sections were then washed 

three times in 0.01M PBS prior to mounting on glass slides with Permafluor. In all 
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Table 2.6. Summary of secondary antibodies utilised throughout this thesis. 



Lot Reactivity Raised in Conjugate Dilution Source 

F1206 

J0814 

J0311 

Mouse IgG (H+L) 

Mouse IgG (H+L) 

Rabbit IgG (H+L) 

Horse 

Horse 

(rat adsorbed) 

Goat 

FITC 

FITC 

Biotin 

1:200 

1:200 

1:200 

Vector 

Vector, 

Vector* 

DT'  
Mr, 

,Ti :x3  

FITC 	- fluoresciln isothiocyanate 

* visualised with streptavidin Texas Red avidin D (Amersham 1:200, Lot J0310) 

, 
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experiments, control sections were processed concurrently, but without the addition of 

primary antibody. 

2.3 Cell Culture- Introduction 

The development of a cell culture model of cortical injury/ AD was undertaken to provide 

an alternative to the in vivo cortical injury paradigm. A cell culture system would allow for 

the quicker screening of a much larger number of potential therapeutic agents, and, 

therefore, result in a minimisation of animal experimentation. 

All procedures were approved by the Ethics Committee (Animal Experimentation) of the 

University of Tasmania and are consistent with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes. 

2.3.1 Technique 

Primary cortical cell cultures were established according to standard procedures (Banker & 

Goslin, 1991). Timed pregnant (gestational day 18) Hooded Wistar rats were anaesthetised 

by CO2  asphyxiation. The abdomen was wiped with 70% alcohol and the skin then cut open 

and laid back. The abdomen wall was then cut through and the two horns of the uterus 

removed and placed in a sterile petri dish. This dish was briefly placed on ice to cold 

anaesthetise the foetuses (pups). The petri dish was then transferred to a laminar flow hood, 

where the remaining steps of the procedure were performed. 

Foetuses were individually removed from the uterus and decapitated. The skull was then 

carefully unroofed using sterile forceps, and the meninges removed to expose the brain. 
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The cerebral cortex was then removed from both hemispheres of the brain. The cortical 

tissue was immediately placed into a sterile tube containing 4.5 ml 10 mM HEPES buffered 

saline (HBS) (appendix, 11.3). Once the required tissue was removed, 0.5 ml of 2.5% 

trypsin (from beef pancreas, BDH Chemicals) in PBS (0.01M) was added to enzymatically 

dissociate the tissue. This was incubated at 37°C for 20 minutes. The tissue was then 

washed, by removal of the HBS and the addition of a further 5 ml of HBS, followed by 

vigorous shaking. The solution was allowed to stand for five minutes, and then the 

procedure was repeated a further two times. The tissue was further dissociated by triturating 

through a series of decreasing calibre pipettes. The number of viable cells was then 

assessed utilising the trypan blue exclusion technique. 

The required density of cells (4.5 x 10 5 ) was then plated into an 'initial' plating media 

(appendix, 11.3) on previously prepared glass coverslips. Prior to use, coverslips (Fisher 

Scientific) had been 'pitted' by acid treatment (two hours in 69% nitric acid) followed by 

extensive washes in MilliQ ®  water , heat sterilised (160°C overnight) and incubated 

overnight in poly-L-lysine (L-2, 6-Diaminohexanoic acid) (Sigma) (1 mg/ml in borate 

buffer (appendix, 11.3)). The poly-L-lysine was then removed and replaced with 1 mL of 

the 'initial' plating media (appendix, 11.3) in preparation for seeding with cells. 

Once plated, cells were placed in an incubator (Flow Laboratories CO 2  incubator 220) at 

37°C in a 5% CO2  humidified atmosphere. Following one day in 'initial' plating media (1 

day in vitro, DIV), the media was completely removed and replaced by a 'subsequent' 

plating media (appendix, 11.3). One third of the media on the cells was then exchanged for 

fresh 'subsequent' plating media every three days. The primary component of all media 
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used was NeurobasalTM  (Gibco BRL, Life Technologies), which is selective for neuronal 

cells (Brewer et al., 1993; Brewer, 1995, 1997). 

2.3.2 Axonal transection 

One day prior to the transection of cells (DIV 20), the coverslips were removed from the 

twelve wells trays and placed in individual petri dishes (35mm, Iwalci) with 1 ml of new 

'subsequent' media and 1 ml of old media. The larger petri dishes allowed easier access to 

the coverslip for the transection of neurite bundles. The cells were reacclimatised for 24 

hours prior to transection. Individual petri dishes were removed from the incubator and 

appropriate neurite bundles selected for transection under the inverted microscope (Leitz 

Fluovert). Utilising a size 15 scalpel blade attached to a scalpel handle, a number of cuts 

were made on each coverslip (example, Figure 2.1), with a montage of digital images 

captured both before and after each cut so as to allow easy relocation of the cut-site for 

immunohistochemical analysis. Analyses were performed at a variety of time points post-

injury. 

2.3.3 Fixation and labelling of coverslips 

Prior to immunohistochemical analysis, cells were paraformaldehyde fixed on the 

coverslip. All the media was removed from the coverslip, and replaced by 37°C phosphate 

buffered paraformaldehyde/sucrose fixative (appendix, 11.3). This was then incubated for 

30 minutes, removed and the coverslip washed with 0.01M PBS in preparation for 

labelling. The protocol for visualisation of antibody immunoreactivity in cell monolayers 

differed slightly from the standard method, as outlined below. 
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Figure 2.1. Unlabelled neuronal cultures at 21 days in vitro. (A) is before and (B) after 

localised physical injury. The arrow indicates the point of transection. 

Scale Bar = 150 tan. 
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Following three 10 minute washes with 0.01M PBS, the coverslips were immersed in 

diluent for five minutes to permeabilize the cells. This was then removed and replaced with 

a blocking solution of 5% normal goat or horse sera (Vector) in PBS (0.01 M) and 

incubated on an orbital shaker for one hour. Coverslips were then incubated overnight in 

primary antibodies (diluted in 1% normal goat or horse sera) at 4°C. The following day the 

sera was removed and coverslips washed three times with PBS (0.01M) and then incubated 

in the appropriate rat adsorbed secondary antibody diluted in PBS (0.01M). Following 

further PBS washes, coverslips were left upside down to dry and then mounted on glass 

slides with Permafluor mounting medium. 

2.4 Fluorescence microscopy and image analysis 

A Leitz Dialux 22EB epifluorescence microscope was used to visualise fluorescence 

labelled material. This microscope is equipped with filters to allow the specific 

visualisation of different excitation wavelengths of light, specifically, those that allow the 

visualisation of FITC (fluorescein isothiocyanate) and Texas Red. With human material, it 

was also possible to utilise UV light to observe material that had been stained with 

thioflavine-S. This microscope was attached to a digital CCD camera (Ikegami ICD-4CE, 

Tsushinki Co) which in turn was attached to a Power Macintosh 7600 computer (with 

internal video capture card) running the NIH Image Analysis program (version 1.61). This 

allowed for the digital capturing of images from the microscope and subsequent analysis 

and preparation in Adobe Photoshop (version 5.5). Figures were printed with an Epson 

Stylus 800 Colour printer on photo quality paper (Epson). 

Specific methods of quantitation are outlined in each chapter. 
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2.5 Confocal Microscopy 

Confocal microscopy was performed using an Optiscan F900e krypton/argon scanning laser 

system attached to an Olympus microscope (BX60) and a Hewlett Packard Pentium II 

computer. 

2.6 Protein Investigations- SDS-PAGE sample preparation 

Samples were prepared by adding 16.51.11 of sample to 7.5111 of 4X NuPage LDS sample 

buffer. The sample was then vortexed, and stored at 4°C until use. Just prior to use, 611,1 of 

NuPage 10X Reducing Agent was added, and the sample heated for 10 minutes at 70°C, 

followed by thorough mixing. 

2.6.1 SDS-PAGE running conditions 

A Novex ready made 10% NuPage Bis-Tris gel was used in an electrophoretic apparatus 

(Mini-Protean II Cell). The gel was run at a constant 200V for 35 minutes, with 1XMES 

running buffer (Novex). Reducing conditions were required, so the upper running chamber 

contained 500111 of NuPage Running Buffer Antioxidant. 

2.6.2 Western blotting 

The Western Blot gel membrane sandwich was made up as per the instructions contained in 

the Novex Western Blot Unit user's manual. The gel was run at 20 V (approx 70 mA) 

overnight at 4°C. The following day, the gel was run at 40 V for an hour to ensure 

complete transfer. The Blot module was then carefully disassembled and the membrane 

gently removed and thoroughly washed. This involved firstly rinsing twice in PBS-T 
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(appendix, 11.4) buffer, followed by a wash in PBS-T for 5 minutes. The membrane was 

then placed in a heat-sealed, plastic bag with 10mls of 5% blocking reagent (appendix, 

11.4) for 1 hour at room temperature with shaking. This was followed by another thorough 

washing process, involving four rinses in PBS-T at room temperature with shaking. The 

primary antibody, in 10 mls PBS-T, was then added to the membrane in a heat-sealed bag. 

This was then incubated overnight at 4°C. The following day, the membrane was again 

thoroughly washed, involving four rinses in PBS-T at room temperature with shaking. The 

secondary anti-body, anti-mouse Ig horseradish peroxidase, was diluted at a concentration 

of 1:1000 in 2.5% blocking solution (appendix, 11.4) and 10mls added to the membrane in 

a heat sealed bag, and incubated with shaking at room temperature for 1 hour. This was 

followed by washing of the membrane, involving four rinses in PBS-T at room temperature 

with shaking. Excess PBS-T was drained off the membrane and the detection solution 

prepared by mixing equal volumes of detection solution 1 and detection solution 2 (Lum-

light Western Blotting Substrate kit, Roche Diagnostics). The membrane was then 

incubated, protein side up, in the detection solution for 1 minute with gentle agitation at 

room temperature. Excess solution was drained from the membrane and it was then 

wrapped in Glad Wrap, protein side up, to form an envelope with no air pockets. The 

membrane was then placed protein side up on an x-ray cassette and exposed to Hyperfilm 

ECL (Amersham Pharmacia Biotech), at varying exposure times. 
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Morphologically distinct plaque-types differentially affect dendritic 

structure and organisation in the early and late stages of Alzheimer's 

disease 

3.0 Introduction 

Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the commonest 

cause of dementia in people of all ages (Wilcock, 1996), affecting approximately 11% of 

the population greater than 65 years of age and up to 50% of people aged 85 years and 

older (Hof and Morrison, 1994). While the precise aetiology of the disease remains 

unknown, it is believed that the deposition of small (7-10 nm) extracellular filaments, 

comprised of a -4IcDa insoluble form of the B-amyloid protein, within the brain to farm 

plaques is a central event in the pathogenesis of AD, and one which occurs in all stages of 

the disease process (Glenner and Wong, 1984; Masters et al., 1985). The precise 

mechanism by which B-amyloid interacts with, and causes damage to, the brain also 

remains to be clearly defined. The formation of plaques in the neocortex, however, is 

known to be associated with a number of neuropathological changes which may be 

involved in the pathogenesis of AD, such as the development of dystrophic neurites (Benes 

et al., 1991; Terry et al., 1994; Dickson, 1997; Dickson et al., 1999). 

The quantitative examination of the influence of plaques on normal axon morphology has 

demonstrated that axons which pass through plaques are often swollen and have a disrupted 

organisation (Probst et al., 1983; Benes et al., 1991), with fewer axons found in association 

with the plaque relative to areaat a distance from the plaque (Benes et al., 1991). Whilst it 

has been proposed that plaques disrupt the normal axonal cytoskeleton (Onorato et al., 
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1989; Benes et al., 1991; Vickers et al., 1996; Dickson et al., 1999), there has been a 

paucity of studies examining the effect of plaques oh dendritic morphology. It has, however, 

been reported that dendrites may become affected in AD with the formation of neuropil 

threads early in the disease process. These are short fibers that contain paired helical 

filaments (PHF), and which predominantly arise from degenerating dendrites (Gray et al., 

1987; Hof and Morrison, 1994; Terry et al. 1994). The formation of neuropil threads 

involves a series of dendritic changes which not only include the accumulation of PHF-tau 

(Masliah et al., 1992), but also dramatic structural alterations, such as swelling, localised 

'transection' and eventual degeneration (McKee et al., 1989; Braak et al., 1994; Braak and 

Braak, 1997). Apical dendrites have also been shown to possess a significantly decreased 

number of spines in diseases such as Parkinson's disease, Creutzfeldt-Jacob disease and AD 

(Catala et al., 1988). 

Whilst it has been demonstrated that dendrites often have an altered, and abnormal, 

morphology within plaques (Probst et al., 1983; Knowles et al., 1998, 1999), the effect of 

various plaque types on dendrites has not been extensively investigated. To further define 

the effect of plaque formation on dendrites within the brain, then, we have examined 

microtubule-associated-protein 2 (MAP2), a marker for microtubules which is specifically 

localised to dendrites (Hirokawa et al., 1996), within a number of morphologically distinct 

plaque-types in both the early and late stages of AD. 
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3.1 Materials and methods 

Tissue source and processing 

Forty p,M sections of the superior frontal gyrus of each of 5 AD cases (case codes; mean 

age ± standard error: 99-07, 99-10, 99-13, 99-15, AD-2; 79.2 ± 3.7 years), 5 preclinical-

AD cases (96-30; 97-09; 97-51; 98-37; 99-22; 84.8 ± 2.5 years) and 4 cases without any 

AD pathological changes (15-87; 15-69; 15-49; 15-28; 55.3 ± 3.9 years) were 

examined. Full case details are outlined in chapter 2. Prior to use, human material was 

pretreated with formic acid and autofluorescence quenched (chapter 2). 

Standard immunohistochemical techniques for double labelling were utilised for 

visualisation of antibody immunoreactivity (chapter 2). In all fluorescence-double-

labelling investigations, a monoclonal antibody which recognises MAP2 was utilised in 

combination with a rabbit polyclonal antibody against B-amyloid (Zymed). In all 

immunofluorescence experiments, antibodies were visualised with a horse anti-mouse 

IgG conjugated to fluorescein isothiocyanate and a goat anti-rabbit IgG conjugated to 

biotin followed by avidin Texas Red. 

It has been demonstrated that MAPs are not stable during post-mortem intervals in the rat 

(Irving et al., 1997), however, there were no differences observed in the immunolabelling 

profile for either MAP2 or B-amyloid across varying post-mortem to fixation intervals 

(PMI) or different fixation protocols. There was also no significant difference in PMT 

between preclinical AD cases (mean PMI ± standard error, 2.68 ± 0.19 hrs) and AD cases 

(3.27 ± 0.82 hrs) 
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Microscopy 

For quantitative purposes, a Leitz Dialux 22 EB fluorescence microscope attached to a 

digital CCD camera (Ikegami ICD-4CE) and Macintosh computer (with internal video 

capture card), was utilised. The image analysis program, NIH Image (vprsion 1.61), was 

utilised to capture individual fields of view. Based on previous investigations in this 

laboratory, three plaque types (diffuse, fibrillar and dense-core) were identified in each case 

examined. Ten plaques of each type, randomly chosen from throughout all layers of the 

grey matter, were then individually captured along with the corresponding field of view 

showing the labelling for MAP2 in that section. Adobe Photoshop (version 5.5) was then 

utilised to create a multi-layer, double-labelled, image of each plaque. The plaque area 

could then be accurately circumscribed and the area in the MAP2 field taken up by the 

plaque could be digitally isolated. Four further images (the same size as the plaque, and 

also in the MAP2 field) were taken from each side of the plaque. Utilising NIH Image 

software (version 1.61), the total area of MAP2 labelling both within, and surrounding, the 

plaque area was determined. This procedure was repeated for each individual plaque (ten of 

each of the different plaque types, thirty plaques per case), across all cases (five AD and 

five preclinical cases). Statistical analyses of all results (unpaired t-test, ANOVA) were 

carried out using StatView 4.5 for Macintosh. 

Laser confocal scanning microscopy, using an Optiscan F900e krypton/argon system 

attached to an Olympus B X50 epifluorescence microscope, was also utilised to 

qualitatively assess microtubular changes associated with both preclinical and clinical AD. 
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3.2 Results 

MAP2 and B-amyloid immunohistochemistry 

In all cases, MAP2 labelling was localised to cell bodies and dendrites, including long 

bundles of apical dendrites throughout the cortex, which extended from deeper layers to the 

external surface of the brain (Figure 3.1). Labelling remained consistent within case groups, 

however, qualitatively, there appeared to be a greater density of MAP2 labelled dendrites in 

AD cases, as compared to preclinical cases. Quantitatively, this is also suggested by the 

higher proportion of MAP2 labelling found in the neuropil surrounding all plaque-types in 

AD cases, relative to preclinical cases (Table 3.1). 

Labelling for B-amyloid identified three plaque-types in the preclinical and clinical AD 

cases, including dense-core (-30-60 Am in diameter), diffuse (-10-180Am in diameter) and 

fibrillar (-20-70 p.m in diameter) types (Figure 3.2). Dense-core plaques had a central mass 

of B-amyloid surrounded by more loosely aggregated fibrils, whereas fibrillar plaques 

appeared similar, but without the central core. Diffuse plaques had no central core or 

distinct edges, and were comprised of more punctate B-amyloid labelling. The various 

plaque types were homogeneously distributed throughout all cortical layers, and showed no 

specific localisation to any particular layer of the grey matter. Similarly, all plaque-types 

were present in both preclinical and clinical AD cases. 

Quantitation of immunohistochemistry 

Non-AD cases 

Non-AD cases did not demonstrate any B-amyloid immunoreactivity, whilst labelling for 

MAP2 was both extensive and uniform. 
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Figure 3.1. Microtubule-associate protein-2 labelling in the grey matter of a brain with no 

neuropathological changes. Immunoreactivity is confined to long bundles of apical 

dendrites, which typically appear in bundles extending towards the pial surface (arrow), and 

in cell bodies (arrowhead). 

Scale bar = 50p,m. 





Table 3.1. Summary of quantitation of microtubule-associated protein-2 (MAP2) labelling 

in human material. The case types are as defined in chapter 2. The three different plaque 

types are as defined in the text (shown graphically in Figure 3.2), and 'Neuropil' refers to 

the area surrounding the plaque, whilst 'Plaque' refers to within the area occupied by the 

plaque. Values given are the average relative percentages, plus or minus the standard error, 

of the area labelled for MAP2 in each case (n=5). Statistically significant differences 

(p<0.05) between the relative amount of MAP2 labelling between the inside and the outside 

of the plaque are shown in all cases, except for fibrillar plaques in Preclinical Alzheimer's 

disease (AD) cases. 



Dense core 	 Diffuse 	 Fibrillar 

Neuropil Plaque Neuropil Plaque Neuropil Plaque 

Case Type 

Preclinical AD 17.2 ± 1.9 12.4 ± 1.4* 16.8 ± 1.1 21.2 ± 0.9 18.8 ± 1.9 18.6 ± 1.6 

AD 26.2 ± 1.9* 16± 1.5* 21.4 ± 2.1 28 ± 2.1* 24.6 ± 2.5 17.4 ± 0.9 

* Statistically significant difference (p < 0.05) between the 'Neuropil' and 'Plaque' value 
within each case type. 

# Quantitation of non-AD cases demonstrated that 35 ± 2.8 % of the neuropil was 
labelled for MAP2. 



Figure 3.2. Examples of the three different categories into which plaques were grouped 

based on morphological findings. Human material was stained with thioflavine-S and 

visualised on a confocal laser scanning fluorescent microscope. (A) shows diffuse plaques, 

(B) fibrillar plaques and (C) dense-cored plaques (arrow shows a dense core of B-amyloid 

surrounded by more loosely aggregated B-amyloid). 

Scale bar = 20/1m. 
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Preclinical AD cases 

Dendritic structure and organisation was not significantly affected by the presence of 

diffuse plaques in preclinical cases. Dendrites passed through regions occupied by diffuse 

plaques with little to no change in morphology (Figure 3.3). Similarly, deflection of 

dendrites around the perimeter of the plaque was rare, as was the termination of dendrites 

which entered the region occupied by the plaque. Quantitation demonstrated that there was 

a statistically significant (p<0.05) increase in the relative proportion of MAP2 labelling 

found within the area of the plaque, as compared to the surrounding neuropil (Table 3.1). 

In contrast, there was a statistically significant (p<0.05) decrease in the relative proportion 

of MAP2 labelling found within the area occupied by dense-core plaques, as compared to 

the surrounding area (Table 3.1). Dendrites had a significantly altered morphology in the 

vicinity of dense-cored plaques, and often terminated at the periphery of the plaque or 

deflected around its outer margins (Figure 3.4). Dendrites occasionally passed through the 

outer rim of dense-core plaques (Figure 3.4). 

Fibrillar plaques showed no significant change in the relative proportion of MAP2 labelling 

found within the plaque as compared to the surrounding neuropil (Table 3.1). Dendritic 

morphology was not consistently affected. Dendrites often passed through the plaque area 

unaffected (Figure 3.5), but were occasionally decreased in calibre as they traversed the 

plaque. Dendrites also terminated within plaques or were deflected around the plaque 

perimeter (Figure 3.5). 
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Figure 3.3. An example of the effect of diffuse plaques on dendritic structure. Human 

material was labelled with 8-amyloid (red) and microtubule-associated protein-2 (MAP2) 

(green), and visualised with a fluorescent microscope. MAP2-labelled dendrites are shown 

traversing the plaque (arrow) without morphological alteration. 

Scale bar = 50 Am. 





Figure 3.4. An example of the effect of dense-cored plaques on dendritic structure. 

Material from a preclinical Alzheimer's disease (AD) case is shown, which has been 

double-labelled with 13-amyloid (A) and microtubule-associated protein-2 (MAP2) (B). (A) 

and (B), which were visualised on a fluorescent microscope, demonstrate that there is very 

little MAP2 immunoreactivity within the area occupied by the plaque (which was 

morphologically identified as a 'dense-cored') as compared to the surrounding neuropil. 

Dendrites are shown both terminating within the plaque (arrowhead) and deflecting around 

its outer margins (arrow). (C) and (D), derived from confocal laser scanning microscopy, 

show material from a preclinical AD case which has been double-labelled with 13-amyloid 

(red) and MAP2 (green). They similarly show dendrites terminating within the dense-cored 

plaque (arrowhead) and deflecting around its outer margins (arrow). 

Scale bar (A), (B) = 50 pm; (C) = 40/.tm; (D) =20i.tm. 





Figure 3.5. An example of the effect of fibrillar plaques on dendritic structure. Material 

from a preclinical Alzheimer's disease (AD) case is shown, which has been double-labelled 

with 13-amyloid (red) and microtubule-associated protein-2 (MAP2) (green). (A) was 

visualised with standard fluorescence microscopy, whilst (B) was derived by confocal laser 

scanning microscopy. Dendrites are shown both passing through the outer margins and the 

centre of the plaque (arrow) and also terminating within the plaque (arrowhead). 

Scale bar (A) = 50Am; (B) = 40m. 
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AD cases 

The pattern of MAP2 and B-amyloid immunoreactivity observed in AD material was 

similar to that found in preclinical AD cases. B-amyloid labelled the same plaque-types as 

in preclinical AD, and MAP2 labelled dendrites were similarly affected in relation to the 

effect of dense core and diffuse plaques on their structure and morphology. Differences 

were noted, however, with respect to the fibrillar plaques found in AD material. There was 

a greater relative percentage of MAP2 labelled dendrites surrounding fibrillar plaques, as 

compared to within the plaque area (Table 3.1). However, fibrillar plaques in AD 

demonstrated a similar inconsistent pattern of MAP2 labelling, in association with the 

plaque, as observed in preclinical AD, with dendrites both unaffected and significantly 

altered as they traversed the plaque. Amyloid angiopathy was also observed in AD 

material, with MAP2 labelled dendrites deflecting around the margins of the B-amyloid 

deposits associated with blood vessels (Figure 3.6). 
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Figure 3.6. A double-labelled image of an Alzheimer's disease brain, visualised with 

confocal laser scanning microscopy, showing B-amyloid (red) and microtubule-associated 

protein-2 (MAP2) (green) surrounding a blood vessel (long arrow). This is an example of 

amyloid angiopathy, with dendrites deflected around the B-amyloid deposit (short arrow). 

Scale bar = 40 Am. 
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3.3 Discussion 

We have demonstrated that dendrites within the AD brain are subject to dramatic structural 

and morphological changes as a result of B-amyloid plaque formation in both the early and 

late stages of AD. These findings are consistent with previous reports which show that the 

presence of neocortical B-amyloid plaques in AD results in an abnormal morphological 

change in dendrites which encounter them (Knowles et al., 1998, 1999). Knowles and 

colleagues (1998 and 1999) noted that neurofilament-immunolabelled dendrites lose their 

normal straight, aligned appearance and become more 'curvier' within regions occupied by 

plaques. They hypothesised that this change was a response to slowly evolving damage 

evoked by the presence of the plaque. Whilst our results support the notion that plaques 

impact upon the normal cytoskeletal network present within neurites, our investigations 

qualify that observation. Depending upon both the stage of the illness and the type of 

plaque encountered, dendrites will be differentially affected, and in fact, can remain 

unaffected as they pass through plaques. 

Both clinical, or late-stage, and preclinical, or early-stage, AD cases were examined in this 

investigation, as well as non-AD controls. The same definition of plaque type was utilised 

across all case types. Previous investigations both in this laboratory (unpublished) and 

others (Wisniewski and Terry, 1973; Ulrich, 1985; Masliah et al., 1993a; Schmidt et al., 

1995; Dickson, 1997; Armstrong, 1998) have shown that there is a degree of heterogeneity 

in plaque morphology. We have, however, demonstrated that plaques can be grouped into 

one of the three morphologically distinct types, diffuse, fibrillar or dense core. These three 

plaque types were identifiable in all cases examined, and these groupings were used to 

draw a distinction between the relative effect of plaque-type on dendrites. 
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Dendritic morphology and organisation was demonstrated with the microtubule-associated-

protein, MAP2. This protein is a marker for microtubules, and is selectively localised 

within dendrites in the mature central nervous system (Hirokawa et al., 1996). There are a 

number of existing studies that have investigated the change in MAP2 in AD, but the 

majority of these have examined the possible relationship between MAP2 and the 

formation of neurofibrillary tangles (NET). It has been reported that NET are labelled for 

antibodies against MAP2 (Kosik et al., 1984; Neve et al., 1986; Dammerman et al., 1989; 

Mulvihill and Perry, 1989), and may form integral components of NET. It has, however, 

been demonstrated that MAP2 is not one of the major structural components of the NET 

(Rosemblatt et al., 1989; Six et al., 1992), although recent studies have shown that small 

fragments of MAP2 molecules, the microtubule-binding region, can form PHF-like 

structures (DeTure et al., 1996; Zhang et al., 1996). 

Preclinical AD cases demonstrated statistically significant differences in the preservation of 

MAP2 labelling between the three different plaque types. That the area occupied by dense-

cored plaques had statistically fewer MAP2 labelled processes in it than the surrounding 

neuropil is perhaps not surprising. We have previously shown that dense cored plaques are 

the most likely to be neuritic, and often contain dystrophic, or abnormal, axons 

(unpublished). These plaque types are, therefore, hypothesised to be destructive with 

regards to their effect on neuronal structure. The morphology of the dendrites associated 

with dense-cored plaques also suggests that these plaques damage the neuronal 

cytoarchitecture of the brain. We have demonstrated a similar phenomena to that reported 

by Knowles and colleagues (1998, 1999), whereby dendrites appear 'curvy' and seem to 

deflect around the outer margins of the plaque, suggesting that the dendrites have either 
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actively 'avoided' the plaque, or have been excluded from it. The background level of 

MAP2 labelling in AD cases was also markedly decreased relative to that found in controls. 

Previous studies have highlighted the paucity of microtubules in the AD brain (Terry et al., 

1964; Gray, 1986; Gray et al., 1987; Paula-Barbosa et al., 1987), which has been attributed 

to a displacement of microtubules, and associated proteins such as MAP2, from dendrites 

by the formation of PHF (Geddes et al., 1994; Ashford et al., 1998). The diminished MAP2 

labelling may, therefore, reflect a reduction in normal dendritic structure due to an overall 

loss of microtubules within affected neurons. Similarly, McKee and colleagues (1989) have 

also demonstrated that, even in unaffected neurons in AD, there are significant dendritic 

changes observed with MAP2 labelling, including the complete degeneration of apical 

dendrites. 

In contrast to the effects of dense cored plaques on dendrites, the reverse was observed in 

diffuse plaques. There was a statistically significant increase in the density of MAP2 

labelling present within plaques relative to the surrounding neuropil. This finding, though, 

is not without precedent. In vitro studies on the effect of the B-amyloid protein on cultured 

hippocampal neurons have demonstrated that AB-1-42 can increase both the number of 

dendrites and their arborization (Whitson et al., 1990). Similarly, further in vitro 

experiments on hippocampal cultures have shown that, when exposed to sera from AD 

patients, there is a significant increase in the relative amounts of MAP2 fluorescence, as 

compared to neurons exposed to sera from young people (Brewer and Ashford, 1992). This 

apparent increase in MAP2 labelling within diffuse plaques in AD cases may be due to 

local dendritic sprouting, which has been proposed to occur both in the neuropil (Ihara, 
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1988; McKee et al., 1989; Geddes et al., 1991; Masliah et al., 1992) and within the area 

occupied by plaques (Probst et al., 1983). 

With regards to fibrillar plaques, there was no difference between the density of MAP2 

labelling within the plaque, as compared to the surrounding neuropil in the preclinical AD 

cases. A similar result, but in clinical AD cases, has been shown by Nieto and colleagues, 

who demonstrated that both tubulin and microtubule-associated-protein-2 (MAP2) protein 

levels in the AD brain were no different to control brains. However, in this investigation, 

quantitation revealed that in the AD cases there was a significant difference between the 

MAP2 labelling within the area occupied by plaques as compared to the surrounding 

neuropil. 

AD cases demonstrated a statistically significant decrease in MAP2 density within fibrillar 

plaques as compared to the surrounding neuropil. This is perhaps not surprising, as we have 

previously shown that fibrillar plaques are as equally neuritic as dense cored plaques in end 

stage AD (unpublished). This suggests, therefore, that fibrillar plaques are more disruptive 

to neuronal architecture in the late stage of AD, and perhaps, therefore, undergo some kind 

of transition from the early to the later stages of AD. 

An intriguing observation has been that, both within the area occupied by a plaque and also 

within the surrounding neuropil, with only one exception, there is a consistently greater 

density of MAP2 labelling within the AD brain relative to the preclinical cases. This may 

be a response to the increased deposition of plaques, which may result in structural 

deformation to surrounding neurons, which in turn may stimulate the neuronal response to 
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physical injury (Vickers et al., 2000) and cause attempted neurite outgrowth. Alternatively, 

it may be due to the formation of other abnormal AD structures, including PI-1F, in all 

aspects of the neuron, again resulting in cytoskeletal disruption, stimulation of the injury 

response, and attempted resprouting. There can also be significant atrophy in the AD brain, 

as mentioned in chapter 1, and this may contribute to a 'compressing' of the neuronal 

architecture and subsequent apparent increase in the density of cytoskeletal elements. 

We have demonstrated, therefore, that morphologically distinct classes of plaques 

differentially affect dendritic structure and organisation in both the early and late stages of 

AD. That such dendritic disruption may form a key component underlying the pathogenesis 

of AD has been previously hypothesised, and suggests that therapies based on the 

stabilisation of the cytoskeleton against such alterations may prove efficacious in the 

treatment of AD. 
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Changes in microtubule-associated-proteins, MAP2 and tau, following 

both in vitro and in vivo neuronal injury 

4.0 Introduction 

Microtubule associated proteins (MAPs) are essential cytoskeletal components which 

contribute to microtubule stability, cellular architecture, form cross bridges with other 

filamentous proteins and which have a host of other putative functions (Hirokawa et al., 

1988). There are several major MAP isoforms that can be isolated from the mammalian 

brain (see chapter 1), including those investigated in this chapter, MAP2 and tau. The 

expression and localisation of the different MAPs is developmentally regulated. Within 

immature neurons, MAP2 is present within the axon and dendrite, but then as development 

continues, it is selectively lost from the axonal domain (Caceres et al., 1986; Pennypacker 

et al., 1991), and within the mature system is localised to the somatodendritic domain 

(Hirokawa et al., 1991; Litman et al., 1994). Tau is enriched in the axon (Kanai and 

Hirokawa, 1995; Hirokawa et al., 1996), with tau mRNA localised to the cell body and 

axon (Litman et al., 1994). In the previous chapter, it was demonstrated that dendritic 

architecture, as evidenced with MAP2 labelling, is subject to significant alterations, 

including physical deformation and even transection, in both the early and late stages of 

Alzheimer's disease (AD), as a result of the deposition of insoluble B-amyloid 'plaques' in 

the cortex. Similarly, the role, and alterations in, tau in AD has been extensively 

investigated (e.g. Johnson and Jenkins, 1996). These changes may contribute to the 

pathogenesis of the disease, and in this respect, it has been hypothesised that they may 

represent therapeutic targets for the treatment of AD. 
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Dendritic and MAP changes can be studied experimentally, and in this chapter, the changes 

in MAP2 and tau have been investigated following both in vivo and in vitro cortical injury. 

Whilst there are existing reports detailing the change in these proteins following a variety 

of insults to the central nervous system (CNS), they have not been investigated in the 

models utilised in this chapter, which have principally been used to study the role of 

neurofilaments in the development of neuronal pathology (King et al., 1997; Dickson etal., 

2000). The advantage of these models is that they have been shown to replicate the 

neuropathological changes associated with the early stages of AD, and they allow for the 

introduction of agents into the damaged cortical tissue. It is possible, then, to examine the 

aspects which may contribute to the development of the neuropathology which 

characterises these models, and AD, as well as to examine the efficacy of different agents 

in preventing the evolution of these neuronal changes. 
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4.1 Materials and methods 

Animal Procedures 

Methods utilised throughout this chapter are detailed in chapter 2. All procedures 

involving animals were approved by the Ethics Committee (Animal Experimentation) 

of the University of Tasmania and are consistent with the Australian Code of Practice 

for the Care and Use of Animals for Scientific Purposes. Briefly, for in vivo studies, 

animals, in groups of five, received experimentally induced cortical injuries, and were 

examined at one, four, seven and fourteen days post-injury (PI). Coronal sections 

through the injury site were cut at 50/,tm with a vibratome. Standard 

immunohistochemical techniques for double labelling were utilised for visualisation of 

antibody immunoreactivity (chapter 2). In all fluorescence-double-labelling 

investigations, a monoclonal antibody which recognises MAP2 was utilised in 

combination with a rabbit polyclonal antibody against tau. Antibodies were visualised 

with a rat-adsorbed, horse anti-mouse IgG conjugated to fluorescein isothiocyanate 

(FITC) and a goat anti-rabbit IgG conjugated to biotin followed by avidin Texas Red. 

For in vitro studies, neuronal cell cultures were established as outlined in chapter 2. Neurite 

bundles between clusters of cells were transected at twelve hours PI, one, three and seven 

days PI. Standard immunohistochemical techniques for double labelling of coverslips were 

utilised (chapter 2). In all fluorescence-double-labelling investigations, a polyclonal 

antibody against tau was alternately utilised in combination with both mouse monoclonal 

antibodies which recognise MAP2, and the growth associated protein, GAP43. Antibodies 

were visualised with a rat-adsorbed, horse anti-mouse IgG conjugated to FITC and a goat 

anti-rabbit IgG conjugated to biotin followed by avidin Texas Red. 
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4.2 Results 

In vivo investigation 

MAP2 

In the normal rodent brain, MAP2 primarily labelled long bundles of apical dendrites, 

which extended from the pial surface to the deeper layers of the cortical grey matter (Figure 

4.1). The dendrites appeared 'smooth' and evenly labelled. MAP2 labelling was also 

localised to cell bodies. Following cortical injury, induced by the insertion of a 25 gauge 

needle, there were dramatic changes in MAP2 immunoreactivity surrounding the injury 

site. At one day PI, normal MAP2 labelling was completely absent from the margins of the 

injection tract in all animals examined (Figure 4.1). There was, however, the occasional 

'wispy fibre' which appeared beaded and MAP2 positive (Figure 4.1). The loss of normal 

MAP2 immunoreactivity extended for a distance of approximately 200 Am on either side of 

the tract, past which MAP2 labelling appeared normal. The contralateral cortex, at both this 

and all other timepoints, did not exhibit any morphological change with MAP2 labelling, 

suggestive of a disruption to the normal cytoarchitecture of the brain. At four days PI, there 

was, similarly, a complete loss of normal MAP2 labelling at the margins of the injury site 

in all animals examined (Figure 4.1). At seven days PI, however, there was an inconsistent 

pattern of MAP2 immunoreactivity. Unlike earlier timepoints, where the margins of the 

tract were devoid of MAP2 labelling, in 40% (2/5) of animals examined at seven days PI, 

there were MAP2 labelled processes in this region (Figure 4.2). These fibers were of 

differing lengths, often beaded and not typically 'bundled'. None of the structures 

demonstrated normal dendritic morphology. In the remaining 60% of animals (3/5) the 

margins of the tract were devoid of MAP2 immunoreactivity (Figure 4.2). At fourteen days 

PI, 100% (5/5) of animals demonstrated MAP2 immunoreactivity adjacent to, and up to the 

78 



Figure 4.1. Microtubule-associated protein-2 (MAP2) labelling in the rodent brain. (A) 

shows the uninjured cortex, where MAP2 immunoreactivity is primarily localised to cell 

bodies and long apical dendrites, the latter which extend from the deeper layers of the 

cortex through to the pial surface. These dendrites typically appear in bundles (short 

arrow). (B) shows the area adjacent to the injury tract (*) at one day post-injury (PI). There 

is a complete loss of normal MAP2 labelling, however, there is the occasional fine, beaded 

fibre (long arrow). Similarly, at four days PI (C), the area surrounding the lesion site (*) is 

devoid of MAP2 labelling, with the exception of occasional fine fibres (long arrow). 

Scale bar = 50 Am. 





Figure 4.2. Microtubule-associated protein-2 (MAP2) labelling in the rodent brain at seven 

and fourteen days post-injury (PI). (A) and (C) are taken from the injury site (*), whilst (B) 

and (D) show areas immediately adjacent to the injury tract. At seven days PI there is the 

occasional MAP2 labelled process (long arrow) at the injury site (A). This was 

demonstrable in 40% of animals examined. The remaining 60% of animals examined 

showed no MAP2 labelling at, or adjacent to, the tract (B). At fourteen days PI, there are 

beaded processes (arrowhead) as well as processes of varied length which are labelled with 

MAP2 (long arrow) (C). This was observed in 100% of animals examined. (D) shows an 

area adjacent to the tract in which there is also extensive MAP2 labelling of dendrites (long 

arrow), as well as finer, beaded processes (arrowhead). This was also observed in 100% of 

animals examined at this timepoint. 

Scale bar = 50 Arn 
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margins of, the injury tract (Figure 4.2). Processes were again of varied length, but were 

often continuous with processes outside the tract area. Dendrites were not typically 

'smooth', but were occasionally 'bundled', as in the uninjured cortex, and often appeared 

beaded along their length (Figure 4.2). There was significantly more MAP2 

immunoreactivity surrounding the tract at fourteen days PI relative to earlier timepoints. 

Tau 

In the uninjured cortex, tau labelling primarily appeared punctate throughout the grey 

matter, with no labelling of discrete structures (Figure 4.3). At one, four and seven days PI, 

there was a decrease in the intensity of tau labelling in the area surrounding the injury site 

(example, Figure 4.3). However, at fourteen days PI, 100% (5/5) of animals demonstrated 

tau labelling similar to that found in the normal cortex (example, Figure 4.3). 

In vitro investigation 

MAP2 

Based on light microscopic observations, in vitro transection involved cutting bundles of 

neurites extending between clusters of cells. Fluorescence microscopy revealed that the site 

of injury was normally devoid of MAP2 labelling, suggesting that the majority of these 

neurites were not dendrites. MAP2 labelling was normally confined to cell bodies and small 

calibre neurites extending from the periphery of individual, and clusters of, cells. There 

was, however, the occasional MAP2 positive fiber observed at the site of transection at all 

timepoints examined. Interestingly, these neurites were also invariably labelled with tau 

(e.g. Figure 4.4). 
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Figure 4.3. Tau immunoreactivity in the rodent brain. (A) shows the uninjured cortex, 

where there is a high density of tau immunoreactivity, which appears punctate throughout 

the cortex. (B) is an example of the area adjacent to the injury tract at seven days post-

injury (PI), where there are few tau-positive structures (arrow) relative to the uninjured 

brain. At fourteen days PI (C), however, tau labelling appears similar to that found in the 

uninjured cortex. 

Scale bar = 50Am. 





Figure 4.4. Double-labelled images of transected mature cultured cortical neurons. 

Processes at the site of transection are occasionally labelled for both tau (A) and 

microtubule-associated protein-2 (B) (short arrows). The distal portion of the transected 

axonal stumps (*) are consistently labelled for tau (C) and growth-associated protein-43 

(GAP43) (D). Neurites also appear beaded (small concave arrows, C) at 12 hours PI. At one 

day PI there is the appearance of tau-positive bulb- (concave arrow, E) and ring-like 

(concave arrowhead, E) structures, the latter which are double-labelled with GAP-43 

(concave arrowhead, F). 

Scale bar = 50,um. 
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Tau 

Tau labelling was extensive in all cases, and was primarily localised to axons, which 

extended from individual cell bodies and from the margins of cell clusters. At twelve hours 

PI there was little change in tau labelling, with axons remaining immunoreactive. There 

was the appearance, however, of beaded axons which were labelled for tau (Figure 4.4). At 

one day PI, the pattern of labelling was similar to that observed at twelve hours PI. There 

was, however, the appearance of both 'bulb-like' and 'ring-like' structures labelled for tau 

(Figure 4.4). Three day PI material again demonstrated a similar pattern of tau 

immunoreactivity as observed at twelve hours and one day PI. Abnormal tau positive bulb-

and ring-like structures, however, were less frequent than at earlier timepoints, and tau 

positive fibers appeared to cross the injury tract uninterrupted (Figure 4.5). At seven days 

PI there was little evidence of transection between cell clusters, with tau positive fibers 

extending between the cell clusters (Figure 4.6). There was no evidence of abnormal tau-

positive structures as observed at earlier timepoints. 

GAP43 

GAP43 labelling was punctate at all time points examined. At twelve hours and one day PI, 

GAP43 labelling was intense within the end of the transected axonal stump, and it also 

selectively labelled discrete sections of a number of tau positive fibers which emerged from 

that stump (Figure 4.4). There were also GAP43-positive growth-cone-like structures which 

were immunoreactive for tau. At three days PI, GAP43 labelled the majority of neurites 

which extended across the lesion site (Figure 4.5). A similar pattern was observed at seven 

days PI, however, GAP43 labelled fewer of these tau-positive neurites. 
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Figure 4.5. Transection of mature cultured cortical neurons. The arrow shows the 

transection of neurite bundles between two clusters of nerve cells (A) (image unlabelled). 

(B) shows the same group of cells at three days post-injury (PI), with tau-positive neurites 

traversing the site of axonal transection (short arrow, B). (C) shows the transection of 

neurite bundles (image unlabelled). This site is shown at three days PI in panel (D) and (E), 

with tau-positive neurites (short concave arrow, D) double-labelled with GAP43 (short 

concave arrow, E). 

Scale bar (A), (C) = 150m; (B) = 100/..tm and (D), (E) = 50m. 





Figure 4.6. Transection (arrow) of neurite bundles between clusters of cortical neurons at 

21 days in vitro (A) (image is unlabelled). At seven days post-injury (PI) tau-positive 

neurites (concave arrow, B) are shown crossing the previously transected area. 

Scale bar (A) = 150,m; (B) = 50m. 
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4.3 Discussion 

This investigation has demonstrated that the neuronal cytoskeleton undergoes a series of 

alterations following both in vitro and in vivo cortical injury, which primarily involve the 

loss of normal cytoskeletal protein labelling at the site of injury, and morphological 

alterations in the elements that remain. We have also shown that at a number of days post-

injury, the neuropil begins to appear morphologically normal, which may be due to local 

sprouting of injured neurites. 

In this investigation, in vivo cortical injury resulted in significant cytoskeletal abnormalities 

at one, four, seven and fourteen days post injury, as evidenced by reduced labelling for the 

different cytoskeletal proteins. Such a loss of immunoreactivity is a characteristic finding 

following different forms of neuronal injury. It has been demonstrated, for example, that 

within hours following ischaemia, there is a decrease in normal dendritic MAP2 labelling 

(Kwei et al., 1993; Matesic and Lin, 1994; Blomgren et al., 1995; Raley-Susman and 

Murata, 1995; Gilland et al., 1998), and MAP2 protein levels (Matesic and Lin, 1994). 

Different forms of traumatic brain injury (TBI) have been shown to result in a decrease in 

MAP2 immunoreactivity within the first ten minutes post-injury (Hicks et al., 1995), as 

well as at other times and up to seven days PI (Taft et al., 1992; Hicks et al., 1995; Lewen 

et al., 1996; Posmantur et al., 1996; Li et al., 2000). Cortical lesions also result in the 

phosphorylation of tau (Janke et al., 1998), which can subsequently interfere in its ability to 

bind to microtubules (Garver et al., 1994). Following lesions of the spinal cord (Li et al., 

2000; Zhang et al., 2000) and sciatic nerve (Chambers and Muma, 1997), there are also 

marked losses in proteins such as MAP2 and tau. In the case of tau, however, this may be 
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due to a relative shift in the expression of different tau isoforms (Chambers and Muma, 

1997). 

It should also be noted, however, that more mild forms of brain injury have been shown to 

result in accumulations of both MAP2 (Kanayama et al., 1997) and tau (Smith et al., 1999) 

in damaged axons, and particularly in the perikarya, in both the grey and white matter. 

Morphologically, our in vivo results are in accordance with that found in other 

investigations. MAP2 labelled dendrites, following ischaemia, have an altered morphology 

(Kwei et al., 1993), with dendrites appearing beaded (Matesic and Lin, 1994). TBI 

similarly results in injured dendrites becoming misaligned, swollen and fragmented 

(Posmantur et al., 1996; Folkerts et al., 1998) and they often lose their arborization 

(Posmantur et al., 1996). These factors are hypothesised to contribute to the early 

destruction of dendrites following injury (Gallyas and Zoltay, 1992; Gallyas et al., 1992). 

Following lesions to the spinal cord, where similar morphological alterations have been 

demonstrated, the resolution of this beading correlated with behavioural recovery (Zhang et 

al., 2000). Whilst we did not perform any behavioural analysis, our results confirmed that 

the abnormal dendritic morphology does resolve over time, although there still remained 

significant differences in the cytoarchitecture of the brain at fourteen days PI, as compared 

to the uninjured cortex. A similar phenomenon was observed in the in vitro model. 

In the in vitro model of cortical injury, which involves the transection of neurite bundles, 

there were not the typical MAP changes as observed in vivo. However, there were 

significant changes in tau, with fragmentation of labelling as well as the formation of 

abnormal bulb- and ring-like structures, the latter which were colocalised with labelling for 
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the growth associated protein GAP43. At a number of days PI there was the appearance of 

tau positive fibres crossing a previously transected area. Whether such an apparent 

regrowth of tissue is the result of injured neurites sprouting, or a compensatory growth of 

adjacent neurites has remained controversial, as it has been proposed that the CNS presents 

an inhibitory environment to cortical sprouting such that functional regeneration is not 

possible (Ramon y Cajal, 1928). In the previous chapter, however, we demonstrated that 

there is a greater density of MAP2 labelling present within the area occupied by diffuse 

plaques, as compared to the surrounding neuropil, which may be the result of local 

dendritic sprouting. It is possible, therefore, that in the cell culture environment, where 

many of the inhibitory factors normally associated with the brain milieu, are not present, 

that injured neurites may be better able to resprout. This is particularly true if the correct 

plating conditions are supplied, as Brewer (1999) has demonstrated that greater than half of 

adult neurons retain the ability to regenerate and proliferate in specific circumstances. It is 

possible, therefore, that the neurites which cross previously transected areas are the result 

of local sprouting. Newly formed axons express both MAP2 and tau during the initial 

stages of growth both in vivo and in vitro (Cambray-Deakin, 1991). That these tau-positive 

neurites are initially GAP43 positive, but consistently remain negative for MAP2, suggests 

that they may represent an altered, perhaps sprouting, response of previously injured axons. 

In this chapter, therefore, it has been demonstrated that, following experimentally induced 

cortical injury, there are dramatic alterations to a number of different cytoskeletal elements 

present within neurites soon after injury. These same proteins are subject to significant 

changes in AD. Cytoskeletal disruption, therefore, may be a key process in the pathogenesis 

of both AD and the neuropathological changes following cortical injury. This suggests that 
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drugs which specifically target such cytoskeletal alterations may be efficacious in the 

treatment of the neuropathological sequelae of cortical injury. Given the similarities 

between the neuropathology of AD and that which occurs following cortical injury (King et 

al., 1997), the drugs which prove effective in the in vivo model may also prove effective in 

the treatment of AD. The use of drugs that target these changes is explored in the following 

chapter. 
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The effects of taxol on the central nervous system response to physical 

injury 

5.0 Introduction 

Taxol, a diterpene alkaloid originally isolated from the Pacific Yew tree, Taxus brevifolia, is a 

cytoskeletal stabilising agent which has been used extensively in the treatment of refractory 

ovarian and metastatic breast cancer (Huizing et al., 1995). Taxol binds to the B subunit of 

tubulin, causing an increase in the polymerisation of soluble tubulin to form microtubules and 

also stabilising existing microtubules to prevent their breakdown (Gotaskie and Andreassi, 

1994; Huizing et al., 1995). In cancer therapy, taxol prevents the breakdown of the 

microtubules comprising the mitotic spindle present during mitosis, thereby disrupting the 

normal microtubule dynamics of the cell cycle, eventually causing growth arrest (Tishler et 

al., 1992). There have also been a number of studies on both the acute and chronic effects of 

taxol administration on the peripheral nervous system (PNS) (Roytta et al., 1984; Roytta and 

Raine, 1985; Roytta and Raine, 1986; Vuorinen et al., 1988; Vuorinen et al., 1989; Vuofinen 

and Roytta, 1990). There have been no such similar studies on the effect of taxol on the 

central nervous system (CNS), however, recent reports have suggested that it may be of use 

in both the treatment of Alzheimer's disease (AD) (Michaelis et al., 1998) and Multiple 

Sclerosis (MS), with clinical trials involving taxol analogues currently being undertaken in 

both conditions. Degenerative diseases of the nervous system, such as MS and AD, as well 

as the sequelae of events following head trauma, are all characterised by some degree of 

neuronal damage involving the cytoskeleton (Raine and Cross, 1989; Povlishock and 

Christman, 1995; Trapp et al., 1998; Vickers et al., 2000). Changes which are common to 

these conditions include alterations in both neurofilaments (NF), intermediate filaments found 

within nerve cells, and microtubules, integral components of the filamentous network 

comprising the cytoskeleton (Burgoyne, 1991). Specifically there is an accumulation of both 

organelles and NFs at sites of axonal damage, resulting in impairments in many cellular 

functions, including axoplasmic transport (Yaghmai and Povlishock, 1992; Pettus and 
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Povlishock, 1995; Povlishock and Christman, 1995; Vickers et al., 2000). This can further 

result in axonal transection and the formation of reactive axonal swellings which appear as 

bulb- and ring-like NF accumulations (Guillery, 1965; Meller et al., 1993; Meller et al., 

1994; Vickers et al., 1996; King et al., 1997; Dickson et al., 1999; Vickers et al., 2000). 

Axonal damage also results in microtubule perturbations, with an apparent loss of 

microtubules around lesion sites in AD (Paula-Barbosa et al., 1987), MS (Raine and Cross, 

1989) and head injury (Blomgren et al., 1997; Jafari et al., 1997; Maxwell and Graham, 

1997) resulting in structural alterations to, and impairments in the function of, the 

cytoskeleton. Similarly, in numerous models of brain injury (Hicks et al., 1995; Vancilcy et 

al., 1995; Dawson and Hallenbeck, 1996; Maxwell, 1996; Pettigrew et al., 1996; Posmantur 

et al., 1996a, 1996b; Maxwell and Graham, 1997; Jafari et al., 1998; Saatman et al., 1998; 

Schmidt-Kastner et al., 1998), there are also profound changes in Microtubule Associated 

Protein-2 (MAP2), as detailed in chapter 4. 

In this respect, the use of taxol to stabilise microtubules in damaged or degenerating neurons 

could be efficacious in delaying or even preventing the sequence of deleterious events which 

follow axonal damage and microtubule disruption in these conditions (Lee et al., 1994). In 

vitro studies have demonstrated that taxol treatment may protect against both calcium-

mediated neuronal death in cortical neurons (Burke et al., 1994; Furukawa and Mattson, 

1995) and the development of cytoskeletal pathology in AD (Mattson, 1992; Michaelis et al., 

1998). In an in vitro study by Bird (1984), however, it was demonstrated that continued 

taxol treatment of neural tissue resulted in significant microtubular changes, including the 

accumulation, and abnormal morphological appearance, of microtubules. 

To further examine the effect of taxol on the neuronal response to trauma we have utilised an 

in vivo animal model of physical injury which replicates the NF alterations and microtubule 

loss which occurs in conditions such as AD and head injury (King et al., 1997). Similar NF 

changes have been reported in MS (Raine and Cross, 1989; Trapp et al., 1998). We have 
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examined the effect of taxol, and docetaxel (Taxotere), treatment on the presence of the 

abnormal pathological structures, which are characteristic of these conditions, and on the 

maintenance of the microtubule network surrounding areas of cortical damage. The results of 

this study will have important implications for the use of taxol-like drugs in the treatment of 

disorders of the CNS. 
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5.1 Materials and methods 

Animal procedures 

All procedures involving animals were approved by the Ethics Committee (Animal 

Experimentation) of the University of Tasmania and are consistent with the Australian Code 

of Practice for the Care and Use of Animals for Scientific Purposes. Briefly, twenty animals 

received experimentally induced cortical injuries as outlined in Chapter 2. In all animals, the 

needle was left in place for a total of 10 minutes before being slowly removed. 1 Al of either 

vehicle or vehicle plus taxol (1mIVI, Paclitaxel, ICN) was intracortically injected at a rate of 

0.2 AL/minute. 10 animals received intracortical injections of the vehicle alone (0.01 M 

phosphate buffered saline (PBS)), and another 10 rats received intracortical injections of a 

solution of 1 mM taxol in PBS (0.01 M). At both one day and four days post-surgery, five 

control and five test animals were perfusion fixed, as detailed in chapter 2. 

Coronal sections through the injury site were cut at 50 Am with a vibratome and labelled with 

mouse monoclonal antibodies to both phosphorylated (SMI312) and dephosphorylated 

(SMI32) epitopes on the medium and high molecular weight neurofilament subunits. A 

mouse monoclonal antibody to Microtubule Associated Protein-2 (MAP2) was also used. 

Antibodies to neuronal markers were visualised with a rat-adsorbed, horse anti-mouse IgG 

conjugated to fluorescein isothiocyanate (FITC). 

Microscopy 

For quantitative purposes, the number of NF immunoreactive abnormal neurites were 

counted in 5 random fields of view (using a rectangular counting frame and the 50x objective 

of a Leitz Dialux 22 EB fluorescence microscope) taken from around the needle tract and 

within two fields of view extending out from the tract. Quantitation of these structures in both 

one-day and four-day post-injury (PI) animals was conducted in a blind fashion by an 

investigator who was not involved in the preparation of tissue. Quantitation of MAP2 

changes in both one and four day animals was conducted by digitally capturing five fields of 
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view, in the same orientation (using a rectangular counting frame and the 50x objective of a 

Leitz Dialux 22 EB fluorescence microscope), adjacent to the needle tract. A counting frame 

consisting of five equally spaced horizontal lines was placed over each image and the number 

of MAP2 positive fibers crossing those lines quantitated. Statistical analyses of all results 

(unpaired t-test) were carried out using StatView 4 for Macintosh. 

Other drugs 

A preliminary investigation was also undertaken with a second microtubule stabilising drug, 

and taxol analogue, docetaxel (12mM, Taxotere®,  RhOne-Poulenc Rorer). The same protocol 

was utilised as outlined above. The docetaxel solution was prepared according to the 

manufacturer's instructions, and the solvent solution provided comprised a mixture of 

polysorbate 80 (0.5 ml) and ethanol (191.1mg in 1.5m1 water). This solvent was also utilised 

as the control, vehicle solution. The same method of quantitation as used above was utilised 

to assess the density of abnormal neurofilament-positive structures surrounding the injury 

tract at one and four days PI. 
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5.2 Results 

All animals injected with either vehicle alone (PBS) or taxol plus vehicle exhibited normal 

behaviour following surgery. 

MAP2 Labelling 

In non-injured cortex, MAP2 labelling was localised to cell bodies and dendrites, including 

long bundles of apical dendrites throughout the cortex, which extended from deeper layers to 

the pial surface. 

At one day PI there was a distinct region around the needle tract (up to 200ttm on either side) 

in the vehicle-treated animals in which there was statistically significantly (p < 0.01) fewer 

MAP2 labelled processes, compared 4E) uninjured cortex. In contrast to vehicle-treated 

animals, taxol-treated animals demonstrated statistically significantly (p < 0.01) more MAP2 

labelled processes in the region directly surrounding the injection tract (Figure 5.1). In this 

respect, there was not a statistically significant difference in the number of MAP2 positive 

fibers surrounding the injection site in taxol-treated animals, as compared to normal uninjured 

cortex (p >0.01) (Figure 5.1). The MAP2 labelled structures surrounding the injection site in 

taxol-treated animals appeared as processes of varied length, some which were continuous 

with processes outside the tract area. Whereas MAP2 labelled structures in the uninjured 

cortex appeared primarily as long smooth projections, the MAP2 labelled processes in the 

taxol-treated cortex often appeared beaded and swollen along their length and did not appear 

typically 'bundled' (Figure 5.2). 

At four days PI, there was not a statistically significant difference in the degree of MAP2 

labelling between vehicle-treated and taxol-treated animals (p > 0.01) (Figure 5.3). The area 

directly surrounding the injection tract remained largely devoid of MAP2 labelling in both 

cases, and again, the labelling was sporadic, with processes appearing of varied length and 
we rt. 

morphology. There,lwas-, however, statistically significant differences between the degree of 
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Figure 5.1. Graph demonstrating the density of MAP2 labelled processes surrounding the 

injection site in both control- and 1mM taxol-treated animals, at one day post-injury, 

compared to normal cortex. Statistically significant differences are noted between control-

treated and taxol-treated (P=0.0064) and control-treated and normal (P<0.0001). 
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Figure 5.2. MAP2 labelling in the rodent brain. (A) shows labelling in the uninjured 

cortex, with long bundles of MAP2 positive processes (arrow). (B) is from a control-treated 

animal at one day post-injury (PI), and shows a complete absence of MAP2 labelling 

surrounding the injection tract (*). (C) and (D) both demonstrate MAP2 labelling (arrows) 

surrounding the injection tract (*) in taxol-treated animals at one day PI. 

Scale Bar = 50 Am. 





Figure 5.3. Graph demonstrating the density of MAP2 labelled processes surrounding the 

injection site in both control- and 1mM taxol-treated animals, at four days post-injury, 

compared to normal cortex. Statistically significant differences are noted between both 

control-treated and normal (P=0.0005) and taxol-treated and normal (P=0.0012). 
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MAP2 labelling surrounding the injection site in both vehicle- and taxol-treated animals as 

compared to normal, uninjured cortex (p <0.01) (Figure 5.3). 

Neurofilament Labelling 

In the contralateral cortex of both vehicle-treated and taxol-treated animals, labelling for 

dephosphorylated neurofilament epitopes (SMI32) was localised to cell bodies and dendrites 

in a subset of pyramidal-like neurons, whereas labelling for phosphorylated neurofilament 

epitopes (SMI312) was localised primarily to axons. Surrounding the lesion there was 

substantial labelling of abnormal structures (Figure 5.4). Consistent with a previous report 

(King et al., 1997), these abnormal axons appeared primarily as ring- and bulb-like neuritic 

structures which were often continuous with both fine and thicker calibre fibers. These 

structures extended to a distance of 200 itm out from the tract edge and there was no 

difference in the morphology of these structures between either vehicle- or taxol-treated 

animals. 5MI312 labelled more abnormal neuritic structures than 5MI32 (Table 5.1). 

At one day PI, there were fewer abnormal neurites labelled with both SMI32 

(dephosphorylated) and SMI312 (phosphorylated) in the taxol-treated animals than the 

vehicle-treated animals. However, statistical analysis indicated that the density of SMI32 
Lie ve labelled bulb-like structures present in vehicle-treated animals was l  not statistically 

significantly different from taxol-treated animals. There was, however, statistically 

significantly (p <0.05) fewer 5MI32 labelled ring-like structures present in the taxol-treated 

brain (Table 5.1). There was no statistically significant difference between the density of 

5MI312 labelled bulb-like or ring-like structures surrounding the injection tract in control-

and taxol-treated animals (Table 5.1). 

At four days PI, the density of 5MI32 labelled bulb-like structures present in the taxol-treated 

animals was significantly increased over vehicle-treated animals (p < 0.05), whereas the 

density of SMI32 labelled ring-like structures was not significantly different. Relative to 
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Figure 5.4. Labelling for phosphorylated neurofilaments (NFs) in the injured rodent 

cortex at one day post-injury. NF-labelled structures appear primarily as 'bulb-like' 

(arrowhead) and 'ring-like' (arrow) accumulations surrounding the injection tract. 

Scale Bar = 100m. 





Table 5.1. Mean density (± standard deviation) of pathological structures present at both 

one and four days post-injury in the cortical grey matter of 1mM taxol- and vehicle-treated 

animals. Significant (p<0.05) differences were noted in the number of SMI32 labelled ring-

like structures at one day (*) and the number of SMI32 and SMI312 labelled bulb-like 

structures present at both one () and four (I) days respectively. 



Group Antibody 	Number of pathological structures (mm 2 ) 
around the injection tract 

Ring-like Bulb-like 
1 day 4 days 1 day 4 day 

Control S1vI32 294 ± 44* 59 ± 29 265 ± 44 157 	20' 
Taxol S1v1132 88±54* 98± 15 226±74 36334# 

Control SMI312 1461± 142 559 ± 98 1049 ± 93 314 ± 59' 
Taxol SM1312 1373 ± 289 608 ± 123 794 ± 123 657 ± 108' 
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animals examined at one day PI, the density of SM1132 labelled structures present in the 

vehicle-treated group at four days PI had significantly decreased (p < 0.05), while the density 

of structures present in the taxol-treated animals demonstrated a slight increase (Table 5.1). 

Similarly, the density of SMI312 labelled bulb-like structures present at four days PI in the 

taxol-treated animals was significantly increased (p < 0.05) over the vehicle-treated animals. 

The density of SMI312 labelled ring-like structures in the taxol-treated animals, however, 

was not statistically different to vehicle-treated animals. Relative to one-day animals, the 

density of bulb- and ring-like structures labelled with SMI312 in both vehicle- and taxol-

treated animals was decreased (Table 5.1). 

Docetaxel -treated animals 

There was little change in the density of abnormal structures present in the docetaxel-treated 
vae-re animals as compared to vehicle-treated animals (Table 5.2). ThereAwas, however, statistically 

significantly (p < 0.05) fewer SMI312 labelled ring-like structures present in docetaxel-

treated animals at one day PI relative to controls. 

92 



Table 5.2. Mean density (± standard deviation) of pathological structures present at both 

one and four days post-injury in the cortical grey matter of 12mM docetaxel- and vehicle-

treated animals. Significant (p<0.05) differences were noted in the number of SMI312 

labelled ring-like structures present at one day (*) post-injury. 



Group Antibody Number of pathological structures (mm 2) 
around the injection tract 

Ring-like 	 Bulb-like 
1 day 4 days 1 day 4 day 

Control S1vI32 382 ± 72 88 ±39 402± 109 392 ± 82 
Docetaxel SMI32 441 ± 245 186 ± 61 588 ±98 470 ± 87 

Control SM1312 1578 ± 307 578 ± 156 1196 ± 283 764 ± 266 
Docetaxel SMI312 941 ± 23F 745 ± 194 833 ± 291 843 ± 126 
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5.3 Discussion 

This study has demonstrated that the administration of taxol into the damaged CNS results in 

a significant change to the acute cellular alterations which normally follow physical injury to 

the cortex. 

In this investigation brains were examined at both one and four days PI. At one day PI, there 

is a peak in neuronal pathology, whilst at four days a period of rapid reactive change has 

begun within the lesion site. At one day PI, quantitation of the density of pathological 

structures present in taxol-treated animals, relative to vehicle-treated animals, demonstrated a 

decrease in the number of bulb- and ring-like structures labelled with antibodies to both 

dephosphorylated and phosphorylated NF epitopes. Taxol treatment has, therefore, resulted 

in a decrease in abnormal neuritic structures surrounding the injection site, and this was 

statistically significant in some cases, as shown in Table 1. The MAP2 labelling surrounding 
;taw the injection site in taxol-treated animals was also statistically significantly different'  to. 1 

controls, as shown in Figure 1. The preservation of MAP2 labelling in apical dendrites 

throughout the injured cortex in taxol-treated animals is indicative of a stabilisation of 

microtubules. 

At four days PI, all taxol-treated animals showed an increase in density of NF-positive 

structures above control values, with the density of bulb-like structures labelled for 

dephosphorylated and phosphorylated NF epitopes demonstrating a statistically significantly 

increase above controls. This apparent increase in neuropathology may be due to the toxicity 

of the compound. Taxol is a recognised cytotoxic agent, with demonstrated activity against a 

number of different cell lines, including neuronal cells (Bird, 1984; Huizing et al., 1995). 

After four days in vivo, then, the compound may be exerting a toxic effect on the cell 

population surrounding the tract. This may result in a decrease in cell survival and subsequent 

increase in the density of neuritic structures. However, while taxol may give rise to 'new' 

pathology, it is more likely that it has affected the neurons damaged upon the initial lesion in 
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such a way as to prolong their presence within the brain. Microtubules are normally in a state 

of rapid turnover within the neuron (Hirokawa, 1991). The action of taxol, to alter the 

equilibrium in favour of microtubule production (Gotaskie and Andreassi, 1994; Huizing et 

al., 1995), therefore disrupts the normal cytoskeletal dynamics within the neuron (Bird, 

1984), and, experimentally, has been shown to result in a number of outcomes. In cell 

culture models, taxol treatment leads to the arrest of growth of existing neurites and inhibits 

further neurite outgrowth (LeTourneau and Ressler, 1984; George et al., 1988). It has also 

been demonstrated, in both in vitro and in vivo studies, that taxol treatment can prolong 

neuronal pathology. In a dissociated cell culture model, taxol treatment has been shown to 

stabilise transected axons, resulting from the dissociation process, against collapse, leading to 

an abnormal persistence of axonal stumps once plated (LeTourneau and Ressler, 1984). 

These axonal stumps became swollen from microtubule accumulation and did not allow any 

neurite outgrowth. A similar phenomenon has been demonstrated in the PNS following 

sciatic nerve crush (Roytta et al., 1984; Roytta and Raine, 1985; Roytta and Raine, 1986; 

Vuorinen et al., 1988; Vuorinen et al., 1989; Vuorinen and Roytta, 1990). An injection of 

taxol into the crush site significantly increased the number of axoplasmic microtubules, 

leading to prolonged neuronal pathology characterised by swollen axonal stumps or 'bulbs'. 

However, in contrast to the in vitro studies, this prolonged pathology did give rise to a 

secondary wave of regenerative growth from the bulbs. In the current study, the injection of 

taxol into the lesion site has most likely resulted in both the enhanced polymerisation and 

stabilisation of microtubules in the neurons surrounding the injury tract. This has then 

prevented the normal resolution of the neuropathology resulting from the initial cortical 

lesion, thereby prolonging the presence of neuritic structures within the brain to give a 

comparably higher density surrounding the injury site in taxol-treated animals at four days PI. 
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That the MAP2 labelling was comparable between vehicle- and taxol-treated animals at four 

days PI also suggests that the action of taxol was acute, and has indeed prevented the 

resolution of the neuritic structures resulting from the initial cortical lesion. Similarly, the 

administration of docetaxel resulted in an acute response at one day PI, with a decrease in the 

number of ring-like structures labelled with antibodies to phosphorylated NFs. This effect, 

however, was not long lasting. In contrast to taxol-treated animals, however, there was not a 

significant increase in the density of abnormal structures present at four days PI. This may be 

due to reduced toxicity of docetaxel, or alternatively, a result of decreased drug effectiveness 

and hence an increased resolution of neuritic structures as compared to taxol-treated animals. 

We have, therefore, demonstrated that taxol has a profound effect on the CNS. Whilst it does 

not alter normal neuronal morphology within the brain, it can significantly decrease the 

immediate evolution of neuronal pathology occurring as a result of physical injury to the 

cortex. This has relevance to the neuronal pathology of head injury and MS, and also 

particularly to Alzheimer's disease, where physical injury is not only a key risk factor but 

perhaps, at a microscopic level, also the underlying cause of the disease (Vickers et al., 

2000). Any intervention in the cascade of cytoskeletal changes leading to neuronal 

dysfunction may offer protection against the progression of the disease. 
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Increased density of metallothionein I/II irnmunopositive cortical glial 

cells in the early stages of Alzheimer's disease 

6.0 Introduction 

Metallothioneins (MT) are cysteine rich (23-33 mol%) proteins of low molecular 

weight (6-7 kDa). The MT family now consists of at least four different isoforms 

which are found throughout a variety of tissues (Nakajima and Suzuki, 1995; Zheng 

et al., 1995; Erickson et al., 1997). Isoforms I and II are found in most tissues, 

isoform III in the brain and isoform IV in stratified squamous epithelia (Erickson et 

al., 1997). MTs have been shown to be induced, or regulated, by a number of 

different factors including bacterial endotoxins, oxidative stress, heavy metals and 

various cytolcines and polypeptide hormones (Anezaki et al., 1995; Dalton et al., 

1995; Ebadi et al., 1995; Zheng et al., 1995). Within the body, MTs may have a role 

in sequestering heavy metals such as Zn(II) and Cu(I) (7-12 ions/MT), regulating the 

availability of metals to various enzymes and transcription factors. In this fashion, 

MTs may influence a host of biological processes such as DNA transcription and 

protein synthesis. MTs could also contribute towards the detoxification of heavy 

metals and act as an intracellular antioxidant. 

Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the major 

cause of dementia in people over 65 years of age. With respect to AD, much emphasis 

has been placed on the potential role of MT III in the progression of the disease. MT 

III possesses a unique growth inhibitory function which has been shown to suppress 

neuronal growth (Palmiter et al., 1992; Masters et al., 1994; Vallee, 1995). MT III, 

reported to be down regulated in AD (Uchida et al., 1991; Tsuji et al., 1992; Uchida 

and Ihara, 1995), may, therefore, potentiate the aberrant neuronal sprouting 

associated with this disease (Vickers, 1997). Of interest in this study, however, was 

the possible role that MT 1111 may play in AD. These isoforms, which are expressed in 

similar concentrations and similar locations within the brain as MT III (Nakajima and 
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Suzuki, 1995; Aschner et al., 1997), have not been extensively investigated in relation 

to AD. Existing reports show that MT I/II mRNA is upregulated in the AD brain 

(Duguid et al., 1989; Nakajima and Suzuki, 1995). This increase was correlated with 

an increase in glial fibrillary acidic protein (GFAP) mRNA, and so it was postulated 

that elevated MT UII expression may follow glial cell proliferation and, thus, may not 

have a direct role in AD pathology (Nakajima and Suzuki, 1995). We have re-

examined the possible role of MT I/II in AD, with a specific focus on the cellular 

localisation of these MT isoforms relative to that of other glial markers such as GFAP 

and ferritin. In addition to AD cases, we have specifically investigated MT I/11 

immunoreactivity in the brains of individuals who may be in a `preclinical' stage of 

AD, possessing cortical B-amyloid plaques but not the widespread neuronal pathology 

that is associated with dementia (Ulrich, 1985; Crystal et al., 1988; Benzing et al., 

1993; Coria et al., 1993; Morris et al., 1996; Vickers et al., 1996; Vickers, 1997). 

Such preclinical cases typically demonstrate a mild cognitive impairment that predicts 

subsequent progression to dementia (Morris et al., 1996). Investigation of these 

individuals may, therefore, give an insight into changes in MT I/II expression 

associated with the early stages of the disease process. 

97 



Chapter 6 

6.1 Materials and methods 

Tissue source and processing 

Forty M sections of the superior frontal gyms of each of 5 AD cases (case codes; 

mean age ± standard error: AD-1, AD-2, 91-10, 91-11, 91-16; 72 ± 3.4 years), 5 

preclinical-AD cases (PM-6060, N-17, 15-17, 15-35, 15-90; 68.4 ± 3.1 years) and 5 

cases without any AD pathological changes (N-14, 15-49, 15-69, 15-87, 15-98; 65.8 

± 5.5 years). Full case details are outlined in chapter 2. Prior to use, human material 

was pretreated with formic acid and autofluorescence quenched (chapter 2). 

Standard immunohistochemical techniques for both single and double labelling were 

utilised for visualisation of antibody immunoreactivity (chapter 2). The 

immunohistochemical markers used in this study included rabbit polyclonal antibodies 

to GFAP, a major protein of intermediate filaments in astrocytes, S-100a+B, a 

protein common to reactive protoplasmic and fibrous astrocytes (Kimura and Budka, 

1986), and a marker for microglia, ferritin, an intracellular iron-storage protein in 

most eukaryotic cells and a marker for reactive astrocytes (Bignami et al., 1972; 

Kaneko et al., 1989) and pan B-amyloid, a marker for B-amyloid plaques. A Mouse 

monoclonal antibody to MT, specific for MT isoforms I and II (Jasani and Elmes, 

1991) was also utilised. Thioflavine-S staining was used to visualise AD pathology, 

and this was combined with immunofluorescent techniques (Vickers et al., 1992). 

In all immunofluorescence experiments, antibodies were visualised with a horse anti-

mouse IgG conjugated to fluorescein isothiocyanate and a goat anti-rabbit IgG 

conjugated to biotin followed by avidin Texas Red. 

Microscopy 

For quantitative purposes, the number of MT lin immunopositive cells were counted 

in 10 random fields of view taken from layer II of the cortical grey matter (using a 

rectangular counting frame and the 50x objective of a Leitz Dialux 22 EB fluorescence 
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microscope) of all cases, and a similar number of fields of view from the underlying 

white matter. An identical approach was taken for the determination of GFAP labelled 

cell density in these cases. In addition, we also determined the extent of colocalisation 

of these markers from 5 random fields of view from layer II of each case using the 

50X objective. Statistical analyses of results (analysis of variance and regression 

analysis) were carried out using StatView 4 for Macintosh. 
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6.2 Results 

MT 1/II and GFAP labelling in non-AD cases 

MT I/11 immunolabelling was present in glia-like cell bodies and their processes. In 

the five cases lacking any AD-like pathology in the neocortex, MT I/11 labelling was 

sparse throughout layers II-VI of the cortical grey matter and uniformly distributed 

throughout the white matter. Layer I of the grey matter was devoid of MT I/II 

labelling. 

Double immunofluorescence labelling showed that reactivity for MT I/II and GFAP 

was colocalised in approximately half of the cells labelled for each marker (Table 6.1). 

GFAP labelling, but not MT 1/II immunoreactivity, was also present in long varicosed 

processes extending from layer 1 into deeper layers of the grey matter. Quantitation of 

the density of GFAP and MT I/II labelled cells in these cases is presented in Table 

6.2. There was no significant difference (p > 0.01) between the density of MT I/II 

and GFAP labelled cells in the grey or white matter of non-AD cases. 

MT I/II and GFAP labelling in preclinical AD cases 

The preclinical AD cases showed similar patterns of immunostaining as the normal 

cases. MT I/II immunopositive cell bodies and processes were present in layers II-VI 

of the grey matter and the white matter was uniformly labelled. These cases, however, 

demonstrated a significant increase (p < 0.01) in MT I/II labelled cells in the grey 

matter, as compared to non-AD cases, which was not accompanied by a similar 

increase in GFAP immunoreactive cells (Table 6.2). Colocalisation of MT and GFAP 

immunoreactivity in cells did occur, but double labelling verified that a greater 

proportion of MT I/II positive cells (63%) lacked GFAP immunolabelling (Figure 

6.1, Table 6.2). GFAP labelling in general was similar to that observed in the non-AD 

cases. There was also extensive labelling of capillaries with both MT MI and GFAP 

antibodies, representing the feet of the astrocytes wrapping around the vessels. There 
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Table 6.1. Colocalisation of metallothionein-I/II (MT-Jill) and glial fibrillary acidic protein 

(GFAP) immunoreactivity in cells in layer II of the superior frontal gyrus of non-

Alzheimer's disease (AD), preclinical-AD and AD cases (n=900 cells). Values shown are 

the percentage, plus or minus the standard deviation. 



Case Type MT 1/II only MT 111I and GFAP GFAP only 

Non-AD 34 ± 20 28 ± 12 37 ± 25 

Preclinical AD 63 ± 7 35 ± 9 2 ± 3 

AD 11 ± 13 63 ± 15 26 ± 8 



Table 6.2. Mean density (± standard deviation) of metallothionein-I/II (MT-I/II) and glial 

fibrillary acidic protein (GFAP) immunopositive cells in the superior frontal gyrus of non-

Alzheimer's disease (AD), preclinical-AD and AD cases (n=3267 cells). 



Case 	 Number of Cells (mm 2) in 	Number of Cells (mm2) in 

Grey matter 	 White matter 

MT Ull GFAP MT VII GFAP 

Non-AD 69 ±39 90 ±60 270 ±45 240 ± 445 

Preclinical AD 209 ± 27* 109 ± 69* 284 ± 40 233 ± 62 

AD 439 ± 78** 595 ± 125** 357 ± 89-  325 ± 33-  

• Statistical difference (p <0.01) within the case category. 

• Statistical difference (p <0.01) with other case categories. 



Figure 6.1. Double immunolabelling of the grey matter of the superior frontal gyrus, with 

metallothionein I/II (MT I/II) (A, C, E), glial fibrillary acidic protein (GFAP) (B, D) and 13- 

amyloid (F). (A) and (B) demonstrate the colocalisation observed between MT I/II and 

GFAP labelling in an Alzheimer's disease (AD) case, with astrocytes (arrow) 

immunoreactive for both markers. (C) and (D) show a preclinical-AD case where astrocytes 

are labelled for MT I/II (arrow) but not GFAP. (D) also shows the fine long varicosed 

fibres (arrowhead) observed in preclinical-AD and non-AD cases which were labelled for 

GFAP but not MT I111. (E) and (F) are taken from an AD case and show MT I/II labelled 

astrocytes (eg. arrow) (E) which are not associated with the plaque (arrowhead) (F). 

Scale bar for (A) to (F) = 50 itm 
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was no significant difference between the density of MT I/II and GFAP labelled cells 

in the white matter of these cases. 

MT I/II and GFAP labelling in AD 

AD cases showed extensive labelling for both MT vll and GFAP throughout layers 

II-VI of the grey matter and the white matter. The majority of labelled cells were 

immunoreactive for both MT I/II and GFAP (Figure 6.1, Table 6.2), with a 

statistically significant increase (p < 0.01) in cell numbers above both preclinical AD 

and non-AD cases (Table 6.2). Interestingly, GFAP labelling in AD cases was present 

in cell bodies and their immediate processes, with no labelling of the long varicosed 

processes observed in both non-AD and preclinical AD cases. There was also a 

statistically significant (p < 0.01) difference between the density of GFAP and MT I/II 

labelled cells in the grey matter, but no significant difference for these markers in the 

white matter. 

Within each case category, there was no significant correlation between the density of 

MT I/II labelled cells relative to the post mortem interval. 

MT I/II localisation and association with AD pathology 

In each case category, all MT I/II labelled cells were also immunoreactive for S- 

100a+B, a marker for reactive fibrous and protoplasmic glia (Kimura and Budka, 

1986). An antibody to ferritin was used as a marker for microglia (Bignami et al., 

1972; Kaneko et al., 1989). Double labelling immunohistochemistry revealed that MT 

I/II immunoreactive cells were not labelled for ferritin in all cases. Ferritin 

immunoreactive microglia mainly occurred in clusters of >3 cells, and upon double-

labelling with B-amyloid, these clusters were shown to be localised to plaques. 

In contrast, double labelling showed that MT I/II immunoreactive cells were not 

particularly associated with B-amyloid plaques in either preclinical-AD or AD cases 
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(Figure 6.1). In addition, thioflavine-S staining with MT MI antibody labelling 

demonstrated that MT I111 positive cells were not spatially localised to any other aspect 

of AD pathology. 
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6.3 Discussion 

Demonstration of an increased density of MT MCI labelled cells in the AD brain in the 

present study is consistent with reports of elevated MT I/II gene expression in this 

condition (Duguid et al., 1989; Nakajima and Suzuki, 1995). More surprisingly, our 

studies have shown significantly elevated densities of MT I/II labelled cells in the 

cortical grey matter of cases containing B—amyloid plaques but not the widespread 

neurofibrillary pathology linked to dementia in AD. Furthermore, the increased 

density of glial cells showing MT I/II immunoreactivity in these cases was not 

associated with a concomitant increase in cell density based on GFAP labelling. In 

contrast to these presumable preclinical cases (Morris et al., 1996), GFAP and MT 

immunolabelling was generally colocalised to the same cell bodies in AD material. 

GFAP immunoreactivity, detected primarily in fibrous astrocytes (Eng et al., 1971; 

Bignami et al., 1972; Graeber and Kreutzberg, 1986) but also in protoplasmic 

astrocytes under certain brain fixation protocols (Shebab et al., 1990), is considered 

to be a marker for reactive gliosis- the proliferation of astroglial cells which represents 

the fundamental reaction of the central nervous system to tissue damage (Manuelidis et 

al., 1987). GFAP immunoreactivity has been utilised as a marker for gliosis in a 

number of neurological disorders, including progressive dysphasic dementia 

(Kobayashi et al., 1990); the latter stages of Creutzfeldt-Jakob disease (Manuelidis et 

al., 1987); amyotrophic lateral sclerosis (Kushner et al., 1991); scrapie (Tatzelt et al., 

1996) and AD (Beach et al., 1989; Delacourte and Buee, 1989; Delacourte, 1990; 

Jorgensen et al., 1990). However, other researchers have emphasised that gliosis is 

correlated with an increase in the size of astrocytes in the white matter, and not the 

density of GFAP immunoreactive cells (da-Cunha et al., 1993). In addition, Pekny et 

al. (1995) have demonstrated that GFAP gene knockout mice display post-traumatic 

reactive gliosis, suggesting that GFAP expression is not obligatory for gliosis to 

occur. Therefore, whilst there is no apparent concomitant increase in glial cell density 

in these preclinical AD cases based upon GFAP immunolabelling, there remains the 

possibility that the increase in MT cell density is due to a proliferation of glial cells 
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not labelled for GFAP. This possibility is supported by the labelling of all MT I/II 

cells with an antibody to S- 100a+8, a marker for reactive protoplasmic glia that are 

otherwise unlabelled for GFAP (Kimura and Budka, 1986). This data, therefore, 

does suggest a specific increase in MT I/II levels in the early stages of the disease 

process. 

MT VII labelled cells in both the AD and preclinical AD cases did not show a spatial 

relationship with 8-amyloid plaques. In contrast, microglial cells, labelled for ferritin 

and not immunoreactive for MT UII, were closely associated with plaques. This 

indicates that increased levels of MT may be more closely linked to a general 

aspect of AD pathology and is not a specific response localised to hallmark 

pathological features such as 13-amyloid plaques or neurofibrillary pathology. 

MT proteins appear to play important roles in heavy metal binding and detoxification 

as well as in preventing free radical-mediated cellular damage, both of which have 

been implicated in playing a role in the pathology of AD (Bremmer, 1993; Cherian 

and Chan, 1993; Sato et al., 1993; Vallee and Maret, 1993; Maret, 1995; Aschner et 

al., 1997). Oxidative damage can occur either by a deficiency in normal cell 

antioxidant defences or an increase in the production of free radicals. Whilst 

alterations to antioxidant defence systems, such as glutathione, increase vulnerability 

to oxidative stress (Cuajungco and Lees, 1997b), there is little evidence that such 

alterations play any role in the pathogenesis of AD. Free radicals, however, are 

postulated to be increased in the AD brain, as evidenced by the high levels of 

antioxidant enzymes, such as superoxide dismutase, found in association with NFT 

and senile plaques in the AD brain (Pappolla et al., 1992). Similarly, Smith and 

colleagues (Smith et al., 1996, 1997) have demonstrated an accumulation of redox-

available iron, a catalyst for oxyradical generation, in association with plaques, NFT 

and neuropil threads. These researchers have also demonstrated an increase in 

carbonyls in the neuronal cytoplasm and nuclei of neurons in AD, which is 
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characteristic of an increase in oxidative stress, and at least partly due to an increase in 

peroxynitrite- a source of hydroxyl-radical-like reactivity (Smith et al., 1997). This 

increase in oxidative stress in the AD brain may result in the release of soluble 

mediators, such as glucocorticoids and cytokines (Cherian and Chan, 1993), which 

subsequently induce the synthesis of MT (Sato et al., 1993). MT, which contains 

sulfhydryl groups similar to glutathione, can scavenge both free hydroxyl and 

superoxide radicals (Min et al., 1993; Sato et al., 1993; Aschner et al., 1997) and also 

react with electrophiles to prevent cellular oxidative damage (Maret, 1995). Although 

the importance of MT relative to other antioxidant systems, such as superoxide 

dismutase and glutathione, remains uncertain (Cherian and Chan, 1993), the increased 

density of MT MI cells in the early and latter stages of AD may represent a response 

of the surrounding tissue to increased levels of potentially damaging free radical 

species. 

Conversely, the increased density of MT I/11 labelled glial cells may be due to elevated 

levels of particular metal species that contribute to AD pathology. Examination of trace 

elements in the AD brain has demonstrated whole brain increases in a number of 

elements, but only a minority are significantly increased above non-AD controls 

(Wenstrup et al., 1990; Markesberry and Ehmann, 1994). Many of the elements 

elevated in AD, such as mercury, cadmium, zinc and copper, can be bound by MT 

(Hamer, 1986; Kagi and 'Schaffer, 1988; Vallee, 1995), and in doing so MT can 

function to maintain a level of metal ion homeostasis (Cuajungco and Lees, 1997a, 

1997b). This regulation can prevent potentially toxic alterations in metal levels, which 

can, for example, prevent the misassembly of microtubules within the cytoskeleton 

(Wenstrupp et al., 1990) in the case of excess mercury. 

One of the more widely studied metals in relation to both AD and MT has been zinc. 

Zinc has structural, catalytic and regulatory roles in cell biology and is crucial to >200 

proteins/ enzymes (Cuajungco and Lees, 1997a, 1997b). Whilst the possibility of 
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increased brain concentration of zinc during pathological conditions such as AD 

remains controversial, there are numerous reports on the potential interactions of zinc 

in the pathogenesis of AD. It has been demonstrated that the amyloid precursor 

protein (APP), from which the B-amyloid comprising plaques in AD is derived, 

contains a zinc binding site which may modulate the function of the protein (Bush et 

al., 1993; Multhaup et al., 1994). The binding of zinc at this site was shown to 

increase the proteiris affinity for heparin (Multhaup et al., 1994), which in turn could 

promote the binding of the protein to extracellular matrix molecules such as heparin-

sulfated proteoglycans (Bush et al., 1993, 1994b) and type I collagen (Aschner et al., 

1997), possibly affecting the processing of APP. It has also been suggested that zinc 

may stabilise APP and inhibit its degradation (Bush et al., 1994a, 1994b; Li et al., 

1995; Cuajungco and Lees, 1997a). 

Finally, recent in vitro studies have indicated that zinc may contribute to the 

aggregation of B-amyloid and prevent its alpha-secretase cleavage (Bush et al., 1994a, 

1994b). Whilst there is some controversy regarding the concentration of zinc required 

to induce the aggregation of soluble B-amyloid protein into plaques, Bush and 

coworkers (Bush et al., 1994a, 1994b) have demonstrated that it occurs at levels of 

zinc below that found under physiological conditions. The appropriate maintenance of 

zinc homeostasis may, therefore, prevent increased levels of APP and insoluble 13- 

amyloid. 

MTs possess a unique structure consisting of two clusters which cumulatively bind 7 

atoms of zinc/ apothionein (metal-free form of metallothionein) (Hamer, 1986; Vallee, 

1995), and as such, represents the major 'store' of zinc within the cell (Karin, 1985; 

Cherian and Chan, 1993). MT is, therefore, crucial in the maintenance of zinc 

homeostasis, with increases in zinc resulting in increased transcription of MT genes 

(Karin, 1985; Hamer, 1986) and, conversely, a decrease in intracellular zinc resulting 
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in increased MT degradation (Karin, 1985). MT may, therefore, serve a protective 

role, preventing interactions between zinc and APP/ B-amyloid. 

Another possibility, however, is that the increased levels of MT I/II may inflict be 

harmful. AD plaques, comprised of B-amyloid, may induce the formation of hydrogen 

peroxide resulting in an increase in oxidative stress (Maret, 1995). This oxidative 

stress can potentially increase both MT and glutathione disulfide (part of the 

glutathione antioxidant defence system), altering the glutathione redox balance (Maret, 

1995). The glutathione disulfide can interact with the thiolate bonds in the MT 

structure causing the release of metal ions from MT for various zinc-dependent 

processes (Maret, 1995; Vallee, 1995). Therefore, while MT is a 'store' for zinc, 

possibly preventing some zinc-induced aggregation of B-amyloid, it may also release 

zinc under the biological conditions present in the AD brain, perhaps potentiating B-

amyloid misprocessing and plaque formation. 

We have demonstrated, therefore, that MT MI expression appears to be upregulated in 

response to a specific stimulus in the early stages of AD. This raises the question of 

what function MT is serving in this phase of the disease, and whether elevated levels 

of MT may prevent or potentiate the AD disease process. The potential role of this 

protein is further examined in the in vivo model of the early neuronal pathology of AD 

in the following chapter. 
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Induction of metallothionein I/II in an in vivo time course of cortical 

injury 

7.0 Introduction 

Whilst the metallothionein (MT) isoform most studied within the central nervous system 

(CNS) has been MT III (Vallee, 1995; Aschner et al., 1997; Palmiter, 1998), in the 

previous chapter it was demonstrated that MT I/II may have an important role in the CNS 

of AD sufferers, as it is specifically upregulated in the preclinical stage of the disease 

process (Adlard et al., 1998). This phase of the disease has been experimentally replicated 

in an animal model of physical injury to neurons (King et al., 1997), where we have 

demonstrated that the neuropathological sequelae of localised cortical injury mimics the 

early neuronal pathology associated with preclinical AD. To further our understanding of 

the functional role of this protein in this stage of the disease we have, therefore, examined 

the distribution and expression of MT IJII over a time course in this model. 
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7.1 Materials and methods 

Animal procedures 

Methods utilised throughout this chapter are detailed in chapter 2. All procedures 

involving animals were approved by the Ethics Committee (Animal Experimentation) 

of the University of Tasmania and are consistent with the Australian Code of Practice 

for the Care and Use of Animals for Scientific Purposes. Briefly, twenty nine animals 

received experimentally induced cortical injuries, and at one day post-injury (PI), four 

days PI, seven days PI and fourteen days PI, five animals at each timepoint were 

reanaesthetised and transcardially perfusion fixed, as outlined in Chapter 2. Coronal 

sections through the injury site were cut at 50 Am with a vibratome. Standard 

immunohistochemical techniques for double labelling were utilised for visualisation of 

antibody immunoreactivity (chapter 2). In all fluorescence-double-labelling 

investigations, a monoclonal antibody which recognises metallothionein I/II, was 

alternately utilised in combination with rabbit polyclonal antibodies against glial 

fibrillary acidic protein (GFAP) or ferritin. The antibody to MT I/II was visualised with 

a rat-adsorbed, horse anti-mouse IgG conjugated to fluorescein isothiocyanate (FITC) 

and other markers visualised with a goat anti-rabbit IgG conjugated to biotin followed 

by avidin Texas Red. 

At one, seven and fourteen days PI, three animals were taken at each time point, 

reanaesthetised and transcardially perfused with saline alone. An uninjured control brain 

was also utilised. Brains were immediately blocked down to a 7mm square around the 

injection site and stored at -80°C. These animals were utilised for Western blot analyses, as 

detailed in chapter 2. 
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7.2 Results 

Immunohistochemistry 

MT I/II and ferritin labelling was not evident in the normal uninjured neocortex. GFAP 

immunoreactivity was both extensive and uniform throughout normal cortex, labelling glial 

cell bodies and their processes, as well as the entire pial surface. 

At day one PI, both ferritin (results not shown) and MT I/II (Figure 7.1A) labelling was 

absent. GFAP immunoreactivity remained extensive and uniform, as in the uninjured 

brains. 

At four days PI, ferritin labelling was sparse. The MT I/II antibody, however, labelled glia-

like cell bodies and processes adjacent to the injury site and surrounding blood vessels 

(Figure 7.1B). The pial surface, at up to 100Am on either side of the tract, was also 

immunoreactive for MT I/II, with labelling confined to fibrous-like processes. All MT I/II 

labelled structures at this, and later, time points, were immunoreactive for GFAP, but not 

all GFAP positive cells were labelled for MT I/II (Figure 7.1B and 7.1C). GFAP 

immunoreactivity was more extensive throughout the cortex than in earlier time points, and 

many GFAP positive structures had the morphology of reactive astrocytes. 

The density of ferritin-immunoreactive cells qualitatively peaked at seven days PI and was 

present in cells in a bridge of tissue between either side of the injection tract, and remained 

distinct from the margins of the lesion, which was demarcated by an intense band of MT 

I/II immunoreactivity (Figure 7.1D). MT I/II labelling was primarily in fibrous-like 

processes, which were often thickened and aligned towards the tract. Cell bodies were also 
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Figure 7.1. MT I/II (A, B, D, E, F) and GFAP (C) labelling following experimental cortical 

injury in the rat. No labelling for MT I/II was present in the cortex at one day post-injury 

(PI) (A). At four days PI, MT I/II labelling was confined to glia-like cell bodies and 

processes (B) (arrowhead) which were often colocalised with GFAP immunoreactivity (C) 

(arrowhead). At seven days PI, MT I/II immunolabelling was present in a diffuse band (V) 

of immunoreactivity demarcating the lesion site and morphologically appeared as reactive 

astrocytes () (D), whereas at a distance from the lesion, MT I/II labelled normal glia-like 

cell bodies and processes (e.g, short arrow, E). At fourteen days PI (F), MT I/II 

immunoreactivity declined and was present primarily in the external surface of the brain 

(long arrow). Autofluorescent material is present within the tract (*). 

Scale bar (A), (B), (C) = 100,um; (D), (E), (F) = 50,um. 
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labelled for MT I/II at the lesion boundary, however, the most distinct glial (cell body and 

process) labelling was evident at a distance, up to 2 mm, from the injury site (Figure 7.1E). 

GFAP immunoreactivity was more extensive than at four days PI and primarily labelled 

fibrous-like processes, which were also often thickened and orientated towards the injection 

site. 

Ferritin labelling had declined at fourteen days PI. MT  I/II immunoreactivity was also 

reduced, being largely confined to fibrous-like processes at the pial surface, with little 

labelling at the edges of the tract (Figure 7.1F). There was also labelling of fibres 

traversing, and 'capping', the top of the tract. GFAP labelled structures were extensive, 

orientated towards the tract and often thickened as at seven days PI. There was also a higher 

density of GFAP positive structures at the tract edges. 

Immunob lots 

Western blot analysis (Figure 7.2) of the expression of MT I/II showed no labelling in 

control, one day, four days or fourteen days PI brain homogenates. Homogenates from 

seven day PI material, however, demonstrated labelling for MT I/II, suggesting a specific 

'abundance of this protein at that time point. The detection of MT I/II at other time points by 

immunohistochemistry, and not immunoblots, reflects the relative concentration of MT I/II 

expressing cells in the different samples. MT I/II was concentrated enough in the cells to be 

seen in tissue sections, but when homogenised in a larger volume for immunoblots, the 

concentration dropped below detection level. 
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Figure 7.2. Evidence for an upregulation of MT I/II following experimental cortical injury 

in the rat. At each time point (1, 7 and 14 days PI), brain material from three animals was 

collected, homogenised and analysed with Western blotting. Normal uninjured brain as 

well as positive controls (Sheep MT I/II) were run concurrently in all experiments. This 

figure shows a representative blot, with approximate molecular weights shown on the left. 

Lane 1 (uninjured brain), lane 2 (1 day PI) and lane 4 (14 days PI) show no reactivity 

against MT I/II, 'whilst lane 3 (7 days PI) demonstrates strong labelling against MT I/II 

which also correlates with the positive MT I/II control shown in lane 5. Both bands 

correspond to molecular weights (Mw) of —6-7 I(Da, which is consistent with reported M w  

values for MT-I/II. 
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7.3 Discussion 

We have demonstrated that, following a focal cortical lesion, there is a specific 

upregulation of both MT I/II immunoreactivity and protein levels at seven days PI 

surrounding the injection tract. We have also shown that MT I/II immunoreactivity is 

detectable by four days PI, but declines at fourteen days PI. 

Similar findings, but with a different temporal staging of MT I/II immunoreactivity and that 

of other glial markers, have also been demonstrated in two other time course studies on MT 

I/II expression after cortical NMDA (Acarin et al., 1999b) and freeze (Penkowa et al., 

1999) lesions. These studies illustrate that an upregulation of MT MI synthesis is not 

restricted to mechanical lesions, as described in this study, but perhaps more closely linked 

to generalised neuronal injury. 

In this investigation, there was no expression of MT I/II in the normal and one day PI brain. 

MT MI immunoreactivity was detected by four days PI, with clearly defined labelling of 

glia-like cell bodies and processes adjacent to the needle tract. These structures colocalised 

with GFAP immunoreactivity, consistent with reports on the localisation of MT I/II to 

astrocytes in the human brain (Nakajima and Suzuki, 1995; Adlard et al., 1998). Unlike the 

normal human brain, where MT MI is present in the entire pial surface (Nakajima and 

Suzuki, 1995), the appearance of MT MI immunoreactivity in the pial surface in rodents 

was only associated with neocortical injury. 

MT I/II positive structures increased noticeably at seven days PI, and, based on 

immunoblots, MT MI protein content in the neocortex peaked at this time point. Based 
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upon their distance from the injection tract, MT I/II labelled cells had two different 

morphologies. At up to 2 mm distant from the injury site MT I/II labelled well defined glia-

like cell bodies and processes, whereas, adjacent to the tract, labelled cells corresponded to 

'reactive' astrocytes. MT I/II positive cells around the tract were distinct from central 

regions of the lesion containing ferritin-labelled microglia, as also demonstrated in an 

examination of MT I/II immunoreactivity in a variety of lesions (e.g. infarct, haemorrhage 

and tumour) in dogs (Shimada et al., 1998). While MT I/II immunoreactivity declined by 

fourteen days PI, GFAP immunoreactivity was present in the normal brain and at all points 

PI. At fourteen days PI, reactive astrocytes showed a specific localisation to the edges of 

the injury tract, suggestive of the beginning of the formation of a glial scar. This is a well 

documented feature following CNS injury and is believed to significantly impact upon 

neuronal regeneration and functional recovery (Hozumi et al., 1990). 

We have previously demonstrated that there is increased MT UII immunoreactivity in glial 

cells from the earliest stages of AD. These changes were not associated with the hallmark 

pathological features of the disease, but may be closely linked with a general aspect of the 

condition (Adlard et al., 1998, chapter 6). Neuritic pathology in the animal model utilised 

in this investigation mimics the plaque-related neuronal changes associated with the 

preclinical stage of AD (King et al., 1997). Thus, this investigation suggests that MT MI 

changes in preclinical AD may be related to a generalised brain response to injury. 

Features consistent between the sequelae of events which occur following neuronal injury 

and in AD, and which may be responsible for the induction of MT I/II expression, include 

both oxidative stress and metal accumulation. The evidence that oxidative stress may be 
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associated with the AD brain was detailed in the previous chapter. Similarly, following 

cortical injury, there is both a demonstrable increase in oxidative stress and an 

accumulation of harmful mediators, such as reactive oxygen species, as early as sixty 

minutes after traumatic brain injury (Awasthi et al., 1997; Shohami et al., 1999). Given that 

MT I/II scavenges both free hydroxyl- and superoxide radicals, the increase in MT I/II in 

AD and following experimental cortical injury may, therefore, be a response to increasing 

free radical damage (Aschner et al., 1997). 

It is well established that MTs also function to maintain a level of metal ion homeostasis by 

sequestering various metal species such as copper and zinc (Vallee, 1995). A disregulation 

of metal ions in both AD and following cortical injury, therefore, may result in the 

induction of MT synthesis. In the previous chapter, the role of various metal species in AD 

was outlined, and the potential importance of zinc noted. In cortical injury, it has recently 

been demonstrated that there is a translocation of zinc into injured postsynaptic neurons 

post-injury, which is an important factor controlling the fate of injured neurons (Suh et al., 

2000). In this regard, it was shown that the administration of a zinc chelator prior to injury 

resulted in significant neuroprotection. The expression of MT I/II in AD and following 

cortical injury may, therefore, represent an acute phase response to an increase in 

concentration of various metal ion species such as zinc. In this regard, the expression of 

MTs is also closely interlinked with the cortical pool of labile zinc (Aschner et al., 1997). 

We have demonstrated, therefore, that MT I/II expression is specifically and significantly 

upregulated at seven days PI, and, together with our earlier report on the possible role of 

MT I/II in preclinical AD (Chapter 6), we hypothesise that this protein may serve an 
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important functional role within the damaged CNS environment. These two chapters 

suggest that the induction of MT synthesis is likely to be a result of factors associated with 

neuronal injury, and may involve oxidative stress or the mismetabolism of metals, two 

factors which could significantly contribute to the sequelae of events which occur following 

both brain injury and in AD. 
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The effect of metallothioneins on the neuronal response to physical injury 

8.0 Introduction 

As outlined in previous chapters, the metallothionein (MT) family consists of a group of 

low molecular weight proteins which are found throughout the body, and which are 

reported to have a number of different functions (Karin, 1985; Cherian and Chan, 1993; 

Vallee and Maret, 1993; Vallee, 1995; Aschner et al., 1997). With regards to the brain, it 

has been suggested that one of the four MT isoforms, MT-III, is a brain specific member of 

the group (Palmiter et al., 1992; Erickson et al., 1995; Aschner et al., 1997). It has, 

however, been demonstrated that MT-III, while predominantly expressed within the brain, 

can also be found in other areas of the body, such as the renal system (Hoey et al., 1997). 

MT-III was originally named growth inhibitory factor (GIF), and its isolation arose from 

studies of the Alzheimer's disease (AD) brain (Uchida et al., 1988, 1991). Uchida and 

colleagues (1988) showed that extracts prepared from the AD brain could enhance the 

survival of cultured cortical neurons better than extracts prepared from normal human 

brain. This led to the proposal that there was an increase in the neurotrophic activity in the 

AD cortex relative to normal brain, which was postulated to be the result of a decrease in a 

growth inhibitory factor (Uchida and Tomonaga, 1989). This was hypothesised to account 

for the massive sprouting in the AD cortex, and was suggested to be responsible for the 

neuropathology of AD, by the repeated attempts at regrowth, subsequent exhaustion of cells 

and their eventual death (Uchida et al., 1988, 1991; Uchida and Tomonaga, 1989). The 

normal brain was then examined for the presence of a protein which possessed an inhibitory 

action on the growth of cortical neurons. A small protein, GIF, was isolated, which was 

shown to be significantly decreased in the AD brain (Uchida et al., 1991; Tsuji et al., 1992; 
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Uchida, 1993; Hozumi et al., 1998). This protein could also prevent the increased survival 

of cortical neurons cultured in the presence of AD brain extracts. This was, therefore, 

believed to be the candidate factor which was decreased in AD and responsible for the 

increased neurotrophic activity. It was later demonstrated that GIF, with the exception of a 

one amino acid insert in the amino terminal and a six amino acid insert in the carboxy 

terminal sequence of MT-I/II, demonstrated a high degree of homology with MT-Jill and 

was subsequently termed MT-III (Uchida et al., 1991; Palmiter et al., 1992; Kobayashi et 

al., 1993). 

That MT-III is significantly reduced in the AD brain, however, has remained controversial, 

with a number of studies suggesting that MT-III expression is either down-regulated in AD 

(Uchida and Tomonaga, 1989; Uchida et al., 1991; Tsuji et al., 1992) or not changed 

(Erickson et al., 1994; Amoureux et al., 1997). Similarly, whether the increased 

neurotrophic activity in the AD brain is due to an increase in a neurotrophic factor, such as 

nerve growth factor (Crutcher et al., 1993) or fibroblast growth factor (Stopa et al., 1990), 

or due to a decrease in an inhibitory factor, such as MT-III, also remains controversial. It is 

accepted, however, that MT-III does possess a unique growth inhibitory action on cortical 

neuron growth, which is not possessed by the other members of the MT family, and which 

is believed to reside in the first 32 amino acids of the B domain of the protein (Sewell et al., 

1995; Uchida and Ihara, 1995). 

The role of MT-III in AD, therefore, remains controversial. It has, however, been 

postulated that the administration of exogenous GIF may be an approach to the treatment of 

AD (Hozumi et al., 1998). It is hypothesised that MT-III may inhibit the progression of AD 
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in its early stages by the inhibition of aberrant neuronal sprouting (Uchida et al., 1991; 

Hozumi et al., 1998). In this chapter, then, we have utilised the in vivo model of cortical 

injury, which has been shown to replicate the early neuronal pathology of AD (King et al., 

1997), to determine whether the administration of MT-III will result in a significant 

decrease in neuropathology which characterises this model. Given the results of the 

previous two chapters, as well as the commencement of clinical trials examining the effect 

of metal chelators in the treatment of AD patients (Colin Masters, Australia, 2000), we 

have also undertaken a preliminary trial with MT-H to assess its effect in this model. Thus, 

we have established the therapeutic potential of MTs in the treatment of AD. 
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8.1 Materials and methods 

Animal procedures 

All procedures involving animals were approved by the Ethics Committee (Animal 

Experimentation) of the University of Tasmania and are consistent with the Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes. Briefly, twenty 

animals received experimentally induced cortical injuries as outlined in chapter 2. In all 

animals, the needle was left in place for a total of 10 minutes before being slowly removed. 

During that ten minutes, 1 Al of either vehicle (0.01 M PBS, 10 animals) or vehicle plus a 

synthetic MT-III peptide (corresponding to the amino acid sequence, 

MDPETCPCPSGGSCTCADSCKCEGCKCTSCKK) (50Ag/ml, AUSPEP, 10 animals) was 

intracortically injected at a rate of 0.2 AL/minute. At both one day and four days post-

surgery, five control and five test animals were perfusion fixed, as detailed in chapter 2. 

Coronal sections through the injury site were cut at 50 Am with a vibratome and labelled 

with mouse monoclonal antibodies to both phosphorylated (SMI312, Sternberger 

Monoclonals Inc., 1:2000) and dephosphorylated (SMI32, Sternberger Monoclonals Inc., 

1:2000) epitopes on the medium and high molecular weight neurofilament (NF) subunits. 

Antibodies to NF markers were visualised with a rat-adsorbed, horse anti-mouse IgG 

conjugated to fluorescein isothiocyanate (FITC) (dilution 1:200, Vector Labs). 

Microscopy 

For quantitative purposes, the number of NF immunoreactive abnormal neurites were 

counted in 5 random fields of view (using a rectangular counting frame and the 50x 

objective of a Leitz Dialux 22 EB fluorescence microscope) taken from around the needle 
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tract and within two fields of view extending out from the tract. Quantitation of these 

structures in both one-day and four-day post-injury (PI) animals was conducted in a blind 

fashion by an investigator who was not involved in the preparation of tissue. 

Preliminary investigations 

The MT-III peptide utilised for the majority of investigations was not constituted with 

metals. A preliminary study (n=4), however, was carried out which involved reconstituting 

the synthetic peptide with zinc in vitro, prior to cortical injection. The peptide was 

preincubated in hydrochloric acid (HC1), to a final concentration of 0.025N, and 5mM DTT 

for thirty minutes at room temperature before the addition of zinc chloride (pH 2) at a 1:3 

molar ratio. Tris HC1 (20mM) was added to neutralise the peptide prior to use (method 

courtesy of D. Winge). The same solution, but without the MT-III peptide, was utilised as a 

control (n=2). Animals were examined at one (n=2) and four (n=2) days PI. 

Another preliminary investigation, utilising full length, metal-constituted, MT-IA 

(-200itg/ml, n=4) and MT-III (-105n/ml, n=4) was also carried out. Animals were 

examined at both one (n=2 for each MT-group) and four days (n=2 for each MT-group) 

following cortical injury. The proteins, and appropriate controls (n=2), were a kind 

donation from Dr. Adrian West, Molecular Biology Unit, University of Tasmania. Only a 

small trial could be undertaken, as these proteins were only recently produced and 

characterised. 
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8.2 Results 

All animals injected with either the vehicle alone (PBS) or with the MT-III peptide solution 

exhibited normal behaviour following surgery, and there were no gross differences in brain 

structure. 

Neurofilament labelling 

In the contralateral cortex of both vehicle-treated and MT-III treated animals, SMI32 

labelling was localised to cell bodies and dendrites in a subset of pyramidal-like neurons. 

Labelling with SMI312 was restricted to axons. 

Surrounding the injury tract there was substantial labelling of abnormal structures, and 

these appeared primarily as ring- and bulb-like neuritic structures, as shown in chapter 5. 

These abnormal axons extended to a distance of —200m on either side of the tract, and 

were often continuous with fibers of varying calibre. The morphology of these structures 

was not different between vehicle-injected and MT-III injected animals. 

At one day PI, with labelling for both phosphorylated and dephosphorylated neurofilament 

epitopes, there was no statistically significant difference between the density of either bulb-

like or ring-like structures surrounding the injection tract in control- and MT-III treated 

animals (Table 8.1). 

Similarly, at four days PI, quantitation demonstrated that there was no statistical difference 

in the number of abnormal structures labelled for both phosphorylated and 
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Table 8.1. Mean density (± standard deviation) of pathological structures present at both 

one and four days post-injury in the cortical grey matter of MT III (50,ug/m1)- and vehicle-

treated animals. No significant (P<0.05) differences were noted between any group at any 

timepoint. 



Group 	Antibody 	Number of pathological structures (mm 2) 
around the injection tract 

Ring-like 	 Bulb-like 
1 day 	4 days 	1 day 	4 day 

Control 	SMI32 	294 ± 44 	59 ± 29 	265 ± 44 ,157 ± 20 
MT-Ill 	SMI32 	382 ± 34 	64 	353 ± 88 	167 

Control 	SMI312 1461± 142 559 ± 98 	1049 ± 93 	314 ± 59 
MT-111 	SM1312 1441 ± 353 674± 103 921± 162 490 ± 83 
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dephosphorylated NF epitopes surrounding the injection tract in control- and MT-III treated 

animals (Table 8.1). 

Preliminary investigations 

Neurofilament labelling surrounding the injection tract in all drug-treated (metal 

reconstituted MT-III and native MT-IA and MT-III) animals was no different to that 

observed in any of the control-treated animals. There was, however, a difference in the 

gross appearance of the injection tract in the native MT-III treated animals. All animals 

demonstrated a significantly enlarged lesion site, relative to all other protein- and control-

treated animals, at one and four days following injury. 
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8.3 Discussion 

In this investigation we have examined the effects of MT-III on the neuronal response to • 

physical injury. We have demonstrated that the intracortical injection of a synthetic MT-III 

peptide, irrespective of the metal content, does not significantly alter the normal 

neuropathological changes which occur within the brain following injury. 

A number of studies have examined the change in MT-III following different types of brain 

trauma, including cortical stab wounds (Anezalci et al., 1995; Hozumi et al., 1995, 1996) 

and ablation (Yuguchi et al., 1995a), excitotoxic lesions (Anezalci et al., 1995; Acarin et 

al., 1999a) and ischaemia (Yanagitani et al., 1999). The balance of these studies suggest 

that MT-III mRNA and proteins levels are upregulated from three to four days PI, and can 

remain increased for several weeks PI, although there was an initial decrease in MT-III 

expression at one day PI in the cortical ablation model, prior to an increase at four days PI 

(Yuguchi et al., 1995a). Cortical injury, therefore, results in an increase in MT-III. In 

contrast to these studies, however, it has been demonstrated that, following facial nerve 

transection, MT-III mRNA is suppressed from three days PI until at least five weeks PI 

(Yuguchi et al., 1995b). It has been shown that the facial nerve can regenerate and recover 

function following a lesion (Tetzlaff et al., 1988), and so it was hypothesised that MT-In is 

actively downregulated to allow neurite outgrowth and regeneration (Yuguchi et al., 

1995b). 

As opposed to the facial nerve, where regeneration is possible, it' is widely accepted that 

regeneration within the cortex is very limited and unlikely to result in the reformation of 

functional connections. The increase in MT-III expression in these situations may, 
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therefore, represent a protective phenomena, whereby the injured CNS actively inhibits 

neuronal sprouting. The timing of this increase in MT-III expression following different 

types of neuronal injury also correlates with the onset of sprouting. We have previously 

established that, following both in vitro and in vivo cortical injury, changes to the CNS 

occur almost immediately, and set in place a series of stereotypical changes which 

ultimately results in attempts by injured neurons to resprout at between three and four days 

PI (unpublished). That abortive sprouting still occurs, however, suggests that the 

endogenous MT-III levels are either insufficient, or not elevated soon enough following 

cortical injury to prevent this attempted outgrowth. The earlier administration of MT-III 

may, therefore, be efficacious in preventing the sequelae of events which follow neuronal 

injury. 

There have been no previously published studies on the effects of exogenous MT-III 

administration on the brain following cortical injury. In a review by Hozumi and colleagues 

(1998), however, there was reference to unpublished data which suggested that the 

administration of native MT-III following stab wound lesions resulted a demonstrably 

larger cavity as a result of the lesion, as compared to controls. We have similarly shown 

that the administration of native MT-III into the cortex results in a larger lesion site, as 

compared to vehicle-treated animals. However, administration of the synthetic MT-III 

peptides did not result in any alteration to the microscopic or macroscopic appearance of 

the injured cortex. It is possible that the lack of any apparent effect, of the synthetic MT-III 

utilised in our investigation, may be accounted for by the nature of the peptide. 
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Due to the initial lack of availability of native, full length MT-III, we had a short synthetic 

peptide produced for the majority of these studies. The inhibitory properties of different 

MT-III domains have been previously examined, including MT-111(1-26) and MT-111(5-23) 

(Sewell et al., 1995; Uchida and Ihara, 1995). Both these short proteins, prepared from 

native MT-III, could inhibit the neurotrophic activity of AD extract on cultured cortical 

neurons. However, similar experiments utilising a synthetic form of MT-III(5-23) did not 

result in an inhibition of cortical outgrowth, even at concentrations ten fold greater than 

used for native MT-III proteins. This suggests, therefore, that synthetic MT proteins have 

little biological effect in vitro. We, however, utilised a longer peptide which corresponded 

to the first 32 amino acids of the 13 domain of the amino terminal portion of the protein. 

This region was selected, as it has been demonstrated that the neurite inhibitory properties 

of the protein reside in this portion of the molecule, with a double mutation in prolyl 

residues which comprise the 'cys-pro-cys-pro' sequence at the start of the protein abolishing 

the bioactivity of the protein (Sewell et al., 1995). The inhibitory activity of the B-domain 

is comparable to that exhibited by the full length protein (Sewell et al., 1995), and is 

believed to result from a unique conformation which may crucially involve the prolyl 

residues. It was hypothesised, therefore, that this longer peptide would be more likely to 

exhibit growth inhibitory properties in vivo than the shorter (5-23) peptide. Another 

consideration in the use of this short synthetic peptide was its metal content. 

Metals are known to stabilise metalloenzymes such as metallothionein (Vallee and Auld, 

1990) and to give them their unique tertiary structure which is often required for 

bioactivity. As mentioned above, in the case of MT-III, it is believed that its biological 

activity may not necessarily be dictated by its metal content, but rather, be a function of a 
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conformation reliant on the presence of specific prolyl residues. In support of this notion, it 

was originally demonstrated by Uchida and Ihara (1995) that native metal-free MT-III(1- 

26) had similar bioactivity to that of MT-III(1-26) which was fully constituted with metals. 

Therefore, we utilised the synthetic peptide without first reconstituting it with metals for the 

majority of investigations. It is likely, however, that this peptide would reconstitute with 

the pool of labile cortical zinc in vivo. Preliminary investigations utilising this same 

peptide, but after it had been reconstituted with zinc in vitro, were also performed. Despite 

the different protein preparations, and the use of the peptide at a concentration which was 

more than five fold higher than that required for native MT-III to demonstrate almost 

maximal inhibition of cortical outgrowth in vitro (Uchida and Ihara, 1995), there was no 

obvious change in the neuronal pathology observed following cortical injury. It remains 

possible, however, that the peptide had degraded in storage. 

Due to the lack of a commercial antibody against MT-III and the ineffectiveness of 

polyclonal antibodies generated against MT-III in this laboratory (results not shown), we 

have been unable to confirm results of other investigations which have examined the 

expression and localisation of MT-III in AD as well as following cortical injury. The results 

of this study do not support a role for MT-III in the prevention of the neuropathological 

sequelae of neuronal injury, and hence do not suggest it useful for the treatment of AD 

neurodegeneration. However, further studies utilising full length native MT-III peptides are 

warranted before it can be determined whether MT-III will represent a future therapeutic 

avenue for the treatment of AD. 
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Final discussion 

9.0 Introduction 

Alzheimer's disease (AD) is a major central nervous system disorder which is the major 

cause of dementia in the elderly population. Despite advancements in the understanding of 

the underlying biological mechanisms which result in neurodegeneration, there has yet to 

be developed a drug which will prevent, delay or even effectively treat AD. 

The literature review (chapter 1) provided a background on AD, as well as the current 

strategies being investigated to treat it. In the description of AD, it has been hypothesised 

that the deposition of insoluble B-amyloid plaques within the cortex causes physical 

disruption to the surrounding neuropil, and this sets in place the programmed neuronal 

response to injury. This response crucially involves various cytoskeletal proteins, and 

ultimately leads to attempts by the injured neuron to resprout, which can eventually lead to 

cell death. That these changes may crucially involve the cytoskeleton was highlighted by 

studies of preclinical AD cases, where the earliest neuropathological changes that occur 

have been shown to involve cytoskeletal abnormalities (Vickers et al., 1996). These 

changes are also recapitulated in various animal models of cortical injury (Povlishock and 

Christman, 1995; King et al., 1997), supporting the controversial notion that B-amyloid 

plaques cause structural damage to neurites. With regards to current therapeutic strategies 

for the treatment of AD, these are heavily weighted in favour of restoring acetylcholine 

levels within the AD brain. Whilst such therapies have a place in treating the symptoms of 

AD, and indeed have proven successful in improving the quality of life for a short period of 

time in a subpopulation of AD sufferers, they do nothing to prevent the progression of the 
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disease. In this respect, the central aim of this thesis has been concerned with establishing 

alternative routes of therapy for AD than those currently available. 

The first three experimental chapters were based on the concept that, following B-amyloid 

deposition, there are very early cytoskeletal changes in affected neurons which involve 

microtubules, and that targeting these proteins may be an effective method of preventing 

the neuropathology of AD. To investigate this, studies were initially undertaken to establish 

whether or not dendrites, and by inference, microtubules, are significantly affected as a 

result of plaque deposition in the AD cortex. Utilising an animal model of the early 

neuronal pathology of AD, we then determined whether or not similar changes occur 

following cortical injury in vivo, and finally, established the efficacy of different drugs in 

preventing these changes. 

The final three chapters were aimed at establishing if a family of proteins, metallothioneins 

(MT), have any role in AD. We examined the cellular distribution and expression of 

different MT isoforms in both the early and late stages of AD and following cortical injury. 

We also trialed various MT peptides in the in vivo animal model to determine whether these 

agents had the potential for use in the treatment of AD, 

9.1 General discussion 

That physical injury to neurons, as a result of B-amyloid deposition within the cortex, is the 

cause of neurodegeneration in AD, and that this crucially involves cytoskeletal components 

such as neurofilaments, has been extensively investigated within our laboratory. We have 

hypothesised, however, that targeting other cytoskeletal changes, in particular, stabilising 
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microtubules against collapse, may be an effective method of preventing the 

neuropathology which leads to dementia in AD. In this thesis, the extent of microtubular 

change in AD was initially determined by examining the distribution of MAP2, a marker 

for microtubules specifically localised to dendrites, both within and around plaques in the 

early and late stages of AD. In contrast to existing studies by Knowles and colleagues 

(1998, 1999), we have demonstrated that the morphological change which occurs in 

dendrites in AD is a function of the type of plaque which they encounter, rather than a 

generalised effect of all plaque types on dendrites. In this respect, diffuse plaques result in 

little deformation to normal dendritic structure in both the early and late stages of AD. In 

contrast, the formation of dense-cored plaques within the cortex results in major structural 

disruption to the normal architecture of the brain. That there is no gradient of damage away 

from the plaque also argues against a diffusible toxic mechanism, and supports the notion 

that B-amyloid plaques lead to neuronal dysfunction via a structural mechanism. It is 

posited, therefore, that specific plaque types structurally damage neurites which encounter 

them, resulting in a destabilisation and loss of microtubules within them. Such changes can 

significantly impact upon the functional integrity of the affected neurite, altering processes 

such as cellular transport, and may contribute to the formation of abnormal neuritic 

structures in association with 13-amyloid plaques. Ultimately, as suggested by Knowles and 

colleagues (1999), such a disruption to the neural networks of the brain may lead to 

dementia. 

Previous studies, including early electron-microscopic investigations, have reported a 

specific loss of microtubules in the AD brain (Gray, 1986; Gray et al., 1987; Paula-Barbosa 

et al., 1987). Similarly, other studies in this laboratory have highlighted the absence of 

microtubules in the neuritic structures which are characteristic of AD, and which are found 
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in association with B-amyloid plaques (unpublished). The work in this thesis, which 

represents one of the few studies on the effect of plaques on dendritic cytoarchitecture, 

suggests that such findings are the result of the destruction of neurites which encounter 

dense-cored plaques in all stages of the disease process, and also fibrillar plaques in the late 

stage of the disease. This further supports studies which have demonstrated axonal 

dystrophy in association with plaques (Dickson et al., 1999). 

One approach to the treatment of AD, therefore, would be to prevent plaque formation, and 

such an approach is currently under investigation (chapter 1). However, based on current 

data, such a treatment would not be of benefit once plaques have formed, and so would do 

nothing for the millions of people currently suffering from, or in the early stages of, AD. 

The strategy examined in this thesis, then, was to determine if it is possible to prevent the 

neurodegenerative changes which lead to dementia, by the stabilisation of cytoskeletal 

elements within damaged neuritei. 

Utilising an animal model of the early neuronal pathology of AD, we initially established 

that, following cortical injury, there was a significant loss of normal MAP2 labelling 

surrounding the lesion site, suggestive of both dendritic, and microtubular, disruption as a 

result of injury to the cortex. That microtubules are affected following in vivo cortical 

lesions is further highlighted by electron-microscopic investigations in this laboratory. 

These studies have demonstrated that the abnormal axonal structures which occur following 

injury, which demonstrate morphological, neurochemical and ultrastructural similarities 

with early forms of DNs in AD, show a complete loss of microtubules (King et al., 2000). 

Both the dendritic and axonal changes which occur following experimentally-induced 
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cortical injury, therefore, closely resemble that which occurs in the AD brain following the 

deposition of B-amyloid plaques. This further supports the notion that B-amyloid is 

physically destructive to local neurites. The animal model utilised not only allows the 

investigation of the mechanisms which lead to neurodegeneration in AD, but also provides 

a platform on which to test the ability of different agents to prevent these AD-like 

alterations. That the model also mimics the early neuronal pathology of AD is also 

advantageous, as this represents the stage of the disease in which there has been little 

cortical damage, and hence is the most favourable window for therapeutic intervention. 

Thus, the in vivo model formed the basis for the investigations on the effect of taxol on the 

central nervous system (CNS) response to injury in the fifth chapter. 

Taxol functions to increase the polymerisation of soluble tubulin to form microtubules, and 

also stabilises existing microtubules against collapse. This drug, therefore, was a good 

candidate for study in this thesis. That it has already been approved for use in humans, for 

the treatment of various forms of cancer, would also be beneficial should this drug be of 

potential use in the treatment of AD. There have been no previous studies on the effect of 

taxol on the CNS, although extensive investigations have been performed on its effect in 

the peripheral nervous system. Several reports, however, have suggested that taxol may be 

of use in the treatment of AD (Mattson, 1992; Lee et al., 1994; Michaelis et al., 1998). 

We demonstrated that taxol has a profound effect on the CNS response to physical injury. 

Although it did not alter the normal neuronal morphology within the brain, it had 

demonstrable effects on the microtubule marker, MAP2, within the lesion site, such that 

there was a relative preservation of MAP2 labelling within the area of damage. That taxol 
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may have stabilised microtubules against collapse was further highlighted on quantitation 

of the abnormal NF-positive axonal structures which evolve, probably as a consequence of 

discrete cytoskeletal alterations, following cortical injury. Taxol significantly decreased the 

evolution of the neuritic structures which characterise both this model, and AD. This 

clearly demonstrated, therefore, that it is possible to intervene in the normal stereotypical 

response of neurons to physical injury, and that maintenance of neuronal architecture can 

prevent the degeneration of injured neurites. 

In the animal model, the administration of taxol was only effective in the short term. Taxol-

injected animals examined at four days post-injury (PI) demonstrated MAP2 labelling 

around the injury site that was similar to the control-treated animals, and there were 

significantly more abnormal axonal structures labelled for NFs surrounding the lesion site 

in taxol-treated animals. It was demonstrated, however, that following in vivo and in vitro 

cortical injury, there is a significant reduction in the appearance of abnormal neuritic 

pathology and, morphologically, the damaged cortex begins to resemble normal neuropil. It 

is likely, therefore, that taxol prevented the resolution of the initial neuropathological 

changes in axons. 

In AD, the initial stabilisation of the cytoskeleton within neurites may ultimately be 

beneficial in preventing the subsequent evolution of abnormal neuritic structures. We 

hypothesise, therefore, that taxol may be effective in the treatment of AD. However, the 

eventual use of taxol for AD would require a number of issues to be addressed, including 

the method of drug delivery and the potential toxicity of the drug on the normal neuropil. 

So, whilst taxol may, ultimately, not be the drug of choice for the treatment of AD, this 
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thesis has demonstrated that taxol-like drugs, which specifically target the neuronal 

cytoskeleton and aspects of the neuronal reaction to physical trauma, can be effective in 

preventing the evolution of abnormal neuritic structures which occur in the early stages of 

AD. 

An in vitro model of physical injury was also developed to allow for the rapid screening of 

potential therapeutic agents. This model has been shown to replicate the cellular changes 

which occur following both in vivo cortical injury and the deposition of B-amyloid plaques 

in the early stages of AD (Dickson et al., 2000). Due to the absence of a robust axonal 

microtubule marker, it was not utilised for drug investigations in this thesis. However, 

further characterisation of this model was made with respect to the microtubule associated 

proteins, MAP2 and tau. In particular, the alterations in tau observed following cortical 

injury in vitro may be crucial to the loss of normal microtubular structures which was 

demonstrated to follow such injuries in vivo. Also, that tau was localised to both abnormal 

neuritic and growth cone-like structures, where it has been proposed to participate in the 

formation of the growth cone (DiTella et al., 1994), suggests that it may have a role in the 

apparent regrowth/sprouting of transected neurites observed in vitro. That similar 

observations have also been made in AD, where there is a mobilisation of tau in dystrophic 

neurites, perhaps in preparation for sprouting, further supports the notion that this in vitro 

model replicates the early neuropathology of AD. 

The final three experimental chapters centred on the role which metallothioneins may have 

in AD and brain injury. We have demonstrated that B-amyloid plaques physically damage 

local neurites. This may cause injured cells to enter into a cycle of repeated futile attempts 
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at sprouting, where the subsequent accumulation of proteins may be harmful. We 

hypothesised, therefore, that following cortical injury, sprouting may result in cytoskeletal 

changes and eventual neuronal cell death. With regards to the metallothionein family of 

proteins, then, the brain specific isoform of this family, MT-III, was reported to possess 

growth inhibitory properties. Originally isolated from the normal human brain, it was 

shown to be specifically down regulated in AD and hypothesised to be the protein 

ultimately responsible for aberrant neuronal sprouting (Uchida and Tomonaga, 1989; 

Uchida et al., 1988, 1991). Whilst we could not obtain antibodies to MT-III, and hence 

examine the localisation and distribution of MT-III in AD and following cortical injury, we 

were able to assess the effect of this protein on the neuronal response to physical injury. 

There have been no previously published in vivo investigations on the effect on exogenous 

MT-III administration on the brain, its response to injury or its potential use in the 

treatment of AD. In this thesis, then, these questions were answered by examining the 

effect of a synthetic MT-III peptide in the in vivo animal model of cortical injury previously 

described. The results of this study suggested that MT-III has little effect on the injured 

cortex and they do not support a role for MT-III in the treatment of AD. A number of 

factors, as outlined in chapter 8, need to be considered before this protein can be ruled out 

as a potential therapeutic agent. Also, further studies of the expression and localisation of 

MT-III in both the early and late stages of AD are required to conclude the controversy 

surrounding the regulation of MT-III in AD. 

Other members of the MT family are also expressed within the cerebral cortex, in 

particular, MT-I and MT-II. Both these proteins share a high degree of homology with MT- 
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III, and are also expressed in similar locations and concentrations within the brain as MT-

III. Despite the presence of these other MT isoforms within the brain, they had not been 

extensively investigated in relation to AD. As part of our investigation on the role of MTs 

in AD, therefore, we examined the distribution and localisation of MT-LILT in both the early 

and late stages of AD, as well as in normal brain. Existing reports demonstrated that MT-

I/II mRNA, as well as GFAP mRNA, is upregulated in the AD brain (Duguid et al., 1989; 

Nakajima and Suzuki, 1995). The concomitant elevation in GFAP suggested that the 

increase in MT-I/II was unrelated to the disease process. These previous studies, however, 

only examined end-stage AD cases. In reexamining these proteins in this thesis, then, both 

end stage as well as preclinical AD cases were examined, thus giving a better perspective of 

MTs role relative to the staging of AD. 

Our studies supported the findings of the previous reports on the cellular localisation of 

MT-I/II, as well as the determination that MT-I/II increases in the end-stage of AD. 

Importantly, however, we demonstrated that there was a significant upregulation of MT-I/II 

in the preclinical phase of the disease which was not associated with a concomitant 

proliferation of glial cells. This suggests, therefore, that MT-I/II is specifically upregulated 

in this early stage of the disease process. MT-Jill positive cells did not show any particular 

association with specific AD pathological hallmarks, and so the inducing factor is likely to 

be a general aspect of the disease process. I also demonstrated that there was a significant 

increase in MT-UII expression in the rat brain at seven days following localised injury to 

the cortex. The induction of MT-I/II may, therefore, be due to a factor which is common to 

both AD and the brain response to injury. In this respect, the increased levels of reactive 

oxygen species or other free radical mediators are possible candidates, as outlined in 
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chapter 6 and 7. There is an extensive literature on the disregulation of metal species within 

the AD brain (Wenstrup et al., 1990; Markesberry and Ehmann, 1994), and recent in vivo 

work suggests that a disruption in homeostatic mechanisms controlling zinc ions may be an 

important factor in controlling the fate of injured neurons following cortical injury (Suh et 

al., 2000). That MT-I/II is a major intracellular store for metal ions such as copper and zinc, 

therefore, suggests that this protein may be responding to harmful levels of particular 

metals in both conditions. It is of note, then, that a clinical trial on the use of metal 

chelators in the treatment of AD has recently begun. Cumulatively, therefore, these data 

support a role for MT-I/II in the early stages of AD, perhaps as an acute phase reactant to a 

disregulation of metals. To further examine this possible link, the distribution of MT-IfII in 

relation to areas of oxidative stress and metal accumulation should also be examined. 

Whilst the initial interest in metallothioneins was for the therapeutic potential of MT-III, we 

have clearly demonstrated that other members of the MT family, MT-I/II in particular, 

should be considered for their potential use in the treatment of AD. 

9.2 Conclusions 

As the world's population ages, the prevalence of late onset neurodegenerative disorders 

such as AD will increase significantly. In the absence of a cure for AD, it is necessary to 

establish novel means of treating the cause of the disease, with symptomatic relief only 

applicable in the short term. With a greater understanding of the biological mechanism 

underlying the disease, it will become increasingly likely that more effective drugs will be 

developed to treat the disease process. It is imperative, therefore, that the scientific 

community be guided by the strength, rather than the perceived 'popularity', of new 

hypotheses. The results of this thesis, then, have highlighted new therapeutic avenues for 
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the treatment of AD, some of which have already entered into clinical trial throughout the 

world. The major conclusions from this thesis, then, are as follows. 

* B-amyloid plaque deposition results in structural deformation to the AD brain 

The cytoarchitecture of the brain was shown to be differentially affected by 

morphologically distinct types of B-amyloid plaques. That there were such similarities 

between the microtubular changes that occur following cortical injury and in AD further 

supports the notion that B-amyloid plaques result in structural deformation to the neuropil. 

* Drugs that stabilise the cytoskeleton may be effective in treatment of AD 

We demonstrated that targeting the cytoskeletal abnormalities which occur following 

cortical injury could significantly reduce the subsequent evolution of neuropathology in an 

animal model which produces neuritic changes characteristic of the early stages of AD. The 

implications are, therefore, that drugs such as taxol, which specifically stabilise the 

neuronal cytoskeleton, may be effective in the treatment, and perhaps prevention, of AD. 

* The MT family of proteins may be important mediators in the neuropathology of 

AD 

Specific MT proteins expressed within the brain were shown to be induced, perhaps by a 

disregulation of metal species, in both the early stages of AD and following cortical injury. 

This supports a role for metal chelators, such as in limiting the neuropathological 

sequelae of AD. The use of growth inhibitors in stalling the stereotypical response to 

physical trauma also needs to be further investigated. 
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Appendix 

11.0 General solutions 

0.01M PBS, pH 7.4 (4°C): 

100 ml 	10X saline stock (90 g NaC1 (ASTRAL) per litre MilliQ ®  water) 

40 ml 	Di-sodium hydrogen orthophosphate (Na 2HPO4 , BDH) (28.4 g per 

litre MilliQ®  water) 

10 ml 	Sodium di-hydrogen orthophosphate (NaH 2PO42H20, UNILAB) 

(31.2 g per litre MilliQ ®  water) 

850 ml 	MilliQ®  

Diluent (4 °C) 

300 pi 	Triton X-100 (Sigma) 

100 ml 	PBS (0.01M) 

Tissue storage solution (4 °C) 

100 ml 	0.01 M PBS 

0.01 g 	Sodium azide (BDH) 

11.1 Solutions for human investigations 

Tissue storage solution (4 °C) - as in section 11.0 
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Tissue storage solution (-20 °C) 

300 ml 	glycerol (BDH) 

300 ml 	ethylene glycol (BDH) 

300 ml 	MilliQ®  

80 ml 	Di-sodium hydrogen orthophosphate (BDH) (28.4 g per litre MilliQ ®  

water) 

20 ml 	Sodium di-hydrogen orthophosphate (UNILAB) (31.2 g per litre 

MilliQ®  water) 

11.2 Solutions for animal investigations 

4% Paraformaldehyde fixative 

40 g 	Paraformaldehyde (BDH) 

100 ml 	Sodium di-hydrogen orthophosphate (UNILAB) (31.2 g per litre 

MilliQ®  water) 

400 ml 	Di-sodium hydrogen orthophosphate (BDH) (28.4 g per litre MilliQ ®  

water) 

500 ml 	MilliQ®  

Solution heated, but not boiled, until dissolved. 

Tissue storage solution (4°C) - as in section 11.0 
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11.3 Solutions for cell culture 

Initial' plating media (4°C) 

500 ml 	Neurobasal®  media (Life Technologies) 

10 ml 	B-27 supplement®  (2%) (Life Technologies) 

0.0365 g 	L-Glutamine (0.5 mM) (Life Technologies) 

0.0018 g 	Glutamate (25 pM) (Life Technologies) 

50 ml 	Foetal calf serum (CSL) 

0.5 ml 	Gentamicin (David Bull Laboratories) 

All additives are filter sterilised into the Neurobasal®  media in a laminar flow hood. 

'Subsequent' plating media (4°C) 

500 ml 	Neurobasal ®  media (Life Technologies) 

10 ml 	B-27 supplement ®  (2%) (Life Technologies) 

0.0365 g 	L-Glutamine (0.5 mM) (Life Technologies) 

1.5 ml 	Gentamicin (David Bull Laboratories) 

All additives are filter sterilised into the Neurobasal®  media in a laminar flow hood. 

4 % Paraformaldehyde fixative 

40 g 	Paraformaldehyde (BDH) 

40 g 	Sucrose (UNILAB) 
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100 ml 	Sodium di-hydrogen orthophosphate (UNILAB) (31.2 g per litre 

MilliQ®  water) 

400 ml 	Di-sodium hydrogen orthophosphate (BDH) (28.4 g per litre MilliQ ®  

water) 

500 ml 	MilliQ®  

Solution heated, but not boiled, until dissolved. 

Borate buffer (4°C, pH 7.4) 

-115 ml 	disodium tetraborate (Na 2B407 .10H20, BDH) (38.16 g per litre 

MilliQ®  water) 

4 L 	Boric acid (H 3B0 3 , M & B Lab Chemicals) (6.18 g per litre MiIliQ ®  

water) 

Add disodium tetraborate solution to boric acid solution until pH reaches 7.4. 

lOmM HEPES buffered saline (HBS) (4°C) 

2.38 g 	HEPES (N-2-Hydroxyethyl piperazine-N-2-ethane sulphonic acid) 

(BDH). 

1 L 	PBS (0.01M) 

The solution is autoclaved at 121°C for 15 minutes. 
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Chapter 11 

11.4 Solutions for Western blotting 

Blocking Solution 2.5 and 5% 

2.5 or 5 g 	Skim milk powder (Diploma) 

100 ml 	PBS-T 

PBS-T 

1 L 
	

0.001M PBS 

1 ml 
	

Tween 20 (Bio-Rad Laboratories) 
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