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Abstract 

In 1949 Max Born introduced the idea of reciprocity, that the laws of physics 

should be invariant under the transformation, 

Then a reciprocally invariant function is one which obeys S(X, P) = S(P, ). 

A self-reciprocal function :F is one which obeys the eigenvalue equation, 

S(X, P):F(x) = s:F(x) 

Born then claimed that these eigenfunctions :F are the field operators, a contention 

that must be justified by comparing the solutions of :F with the observable facts. 

He studied the case of the metric operator, S = X 11X 1t P11 P11 ; finding eigen­

functions that involved Laguerre polynomials. The roots of these polynomials 

correspond with the masses of what Born thought were an infinite number of 

mesons. 

Supersymmetry is a principle that seeks to transform bosons into fermions and 

vice-versa. This is done by use of a Z2 grading on the Poincare algebra. 

Born's theory did not have much success when related to the observed mass 

spectrum and so the motivation for this project is to apply supersymmetry princi­

ples to the theory to see if this alleviates these problems. This is done by modifying 

the metric operator to include four antisymmetric Grassmann variables and Grass­

mann momentum operators and then solving for the new eigenfunctions :F. Thus 

families of bosons and fermions have been uncovered. Also, a preliminary calcula­

tion has been made of Low's fundamental constant pertaining to an upper bound 

on rate of change of momentum, b, finding: b R:! 2.61 x 109N. 
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Chapter 1 

Introduction 

There are two major topics discussed in this thesis. The first is Max Born's 

principle of reciprocity. The second is the relatively new symmetry principle in 

particle physics that allows transformations of fermions into bosons and vice-versa. 

This is called supersymmetry. 

In 1949 Max Born introduced his theory of reciprocity in his paper "Reciprocity 

Theory of Elementary Particles" [3]. Born proposed that the laws of physics should 

be invariant under the following transformation 

(1.1) 

There are many simple examples in quantum and classical mechanics alike where 

the reciprocity transformation leaves quantities invariant. Two examples that 

Born [3] use are: 

1. The (quantum) orbital angular momentum operators, which in three dimen­

sions are given by 

(1.2) 

2. Hamilton's canonical equations of motion in classical mechanics, given by 

dx f)H 

dt OPx 
dpx aH 

dt &c 

1 



CHAPTER 1. INTRODUCTION 2 

One of Born's initial applications of reciprocity was to set 

n ag (1.3) 

where a has units of position and g has units of momentum. Therefore it is 

possible to measure position in terms of a and momentum in terms of g. is 

the convention I have used in this thesis. The theory of reciprocity as developed 

by Born [3) and then much later by Low [19, 18] is the topic considered in chapter 

2. The group aspect of Low's theory is also studied further in chapter 3 after some 

general group theory is developed in the same chapter. 

Supersymmetry is a very interesting yet so far unconfirmed theory involving 

the transformations of bosons into fermions and vice-versa.. It involves a.nticom­

muting coordinates known a.s Grassmann variables. Some basic theory behind 

Grassmann variables is developed in section 4.1. Supersymmetry involves a 

graded entity known as a. Lie superalgebra. The even subalgebra of this entity is 

the corresponding Lie algebra. The theory of Lie algebras is developed in chapter 

3 and then applied to supera.lgebras in section 

The original work of this thesis is the focus of chapter 5. It is the supersym­

metric extension of the theory of reciprocity. A discussion of the results of Born's 

theory and the supersymmetric extension is given in chapter 6. 

1.1 Notation 

Most of the analysis in this thesis is done in four-dimensions. Quantities in four­

dimensions are indicated by possessing indices from the middle of the Greek al­

phabet, for example fL and v. These indices run from 0 to 3. Indices from the 

beginning of the Greek alphabet (a, fJ and r) will run through 1, 2, ... , with the 

value of rn depending on the given situation. We have the covariant four-vectors 
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of position and plh of momentum, such that 

Xo = ct, Po Ejc 

X1 =X, PI= Px 

X3 z, P3 Pz· 

The corresponding contravariant vectors are obtained by use of the raising metric. 

Throughout this thesis, I have used the following metric in Minkowski space, unless 

otherwise specified: 

And so we see that 

then for each eomponent: 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 p - -po 

2 p =p2 

(1.4) 

The proper t'ime is defined to be equal to the square of the position four-veetor: 

)
2 = (ct (1.5) 

and is an invariant quantity. Using the convention of working in a system of 

natural units so that the speed of light, c and ti both have a value of unity, then 

the interval between two events is defined to be: 
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allowing three cases to characterise the proper time: 

(d7) 2 > 0 

(d7) 2 0 

(d7) 2 < 0 

timelike 

light like 

spacelike. 

In this thesis, only the timelike and lightlike cases are considered. 

4 

Quantities in three-dimensions are indicated by having indices from the middle 

of the Roman alphabet, for example i, j and k. These indices all run from 1 to 3. 

The metric for three-dimensional quantities is simply the identity matrix in three­

dimensions. Einstein summation is implied, so that repeated indices are summed 

over. 

The commutator of two quantities is denoted by square brackets and defined 

by: 

B] =AB-BA. (1.6) 

In a similar manner we define the anticommutator, denoted by curly brackets: 

{A, B} AB + BA. 

The Levi-Civita symbol, Eijk, seen in equation 1.2 is defined as: 

+1 for (i,j,k) E {(1,2,3), (2,3, 1), (3, 1,2)} 

Eijk= -lfor j,k)E{(1,3,2),(2,1,3),(3,2,1)} 

0 otherwise. 

1.2 Position and Momentum Operators 

(1.7) 

VVe take position and momentum operators , Pv in position space, so that 

(1.8) 

(where Pv are the eigenvalues of the respective operators acting on a wave-

function then these operators represent the canonically conjugate position and 
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momentum variables of a particle [4] and they obey the well known Heisenberg 

commutation relations 

[PM, Pv] 

[xi, Pj] 

[X 0 ,Po] 

In these equations, I is the identity matrix. 

0 

0 

-if. 

(1.9) 

(1.10) 

(1.11) 

(1.12) 



Chapter 2 

Born's Theory of Reciprocity 

In this chapter the scene of Born's reciprocity theory is set. Most of the work 

done on reciprocity has been done by Born himself [3], Land6[15, 16] and more 

recently, Caianello [5] and Low [19]. In section 2.1, I illustrate Born's principle 

of Reciprocity, in particular explaining the terms reciprocal invariant and self­

reciprocal. In sections 2.2 and 2.3, I use Born's theory to formulate an equation 

to determine particle rest masses. In section 2.4, I develop the solution of this 

equation, including much work not included in Born's paper [3]. Section 2.5 gives 

the results of this theory as applied to the particle mass spectrum. 

2.1 Definition 

The basic idea of reciprocity theory of elementary particles put forward by Born 

[3] is that the laws of physics should be invariant under the transformation 

(2.1) 

This is only one example of the possible transformations we could use. It represents 

a rotation in the phase plane of the quantity X +iP by 90 degrees (multiply X +iP 

by i), but we could rotate any number of ways. This method is convenient however, 

so for the remainder of the thesis, this will be the definition used for reciprocity. 

Any quantity that is of the form 

S(X, P) = S(P, -X) (2.2) 

6 



CHAPTER 2. BORN'S THEORY OF RECIPROCITY 7 

is said to be reciprocally invariant. Also, any functional F that satisfies 

(x!S(X, P) IF) = s (x!F) (2.3) 

is said to be self-reciprocal. \i\le want to show that F(x) is its own Fourier trans-

form, 

F(p) _1_ ;·oo F(;:c) e-ixpdx 
V2ir -00 

F(x) 1 /
00 

. --oo F(p) eixp dp. 

Indeed, this is an alternate definition of reciprocity [3, 15}. VVe have 

F(x) 

S(x, 
a 

ax )F(x) 

1 I: :F(p)eipxclp 

sF(x). 

S(X, P) acting on the eigenfunction F(x) yields 

S(X, P)F(x) = 
1 ;·ex; a . 

- :F(p)S(x, -)e7'pxclp 
V2ir -ex; ax 

1 100 a . 
-oo ap' p ):J-'(p )e~PXcfp 

also, 
1 100 

. . S(X, P)F(x) = -oo :F(p)e~pxclp 

from the eigenvalue equation. Equating these gives us 

I: :F(p)eipxdp. 

(2.4) 

(2.5) 

(2.6) 

But S(X, P) is reciprocally invariant, and both sides of these equations involve 

the same integral. So we can apply the reciprocity transformation and write 

S(p, ~i ~ ):F(p) = s:F(p). 
up 

(2.7) 

vVe can see that this equation is of exactly the same form as equation 2.6, so that 

we can say that F(x) is indeed its own Fourier transform. From now on I will not 

make the distinction between F(p) and :F(p), I will to :F(p) as F(p). 

Low [19} explains Born's reciprocity principle as the extension of the usual 

four degrees of freedom of space-time to eight degrees of freedom of space-time 
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and momentum-energy. This is as opposed to other contemporary theories that 

tack on non-observable dimensions to space-time to try and explain experimental 

results. These additional dimensions then need to somehow be explained, espe~ 

cially with respect to their non-observability. Lovv predicts the existence of a 

universal upper bound on the rate of change of momentum, the momentum ana­

logue to the universal upper bound on rate of change of position: the speed of 

light. Some of Low's theory is discussed in sections and 3.9 . 

. 2 Reciprocity Applied to Particle Rest Masses 

Bosons are generally supposed to have wave functions that obey equations of the 

form 

(2.8) 

where the constant K, is proportional to the rest mass of a particle. Born used as 

the constant of proportionality, g 1 c = n/ ac, so that 

(2.9) 

is the actual rest mass of observed particles. vVe can write equation 2.8 in the 

form 

(2.10) 

where F(PM) PM~;,- K
2

. But we could just as easily write 

(2.11) 

where F 1(PM) has no roots. But if F1 (PM) is itself of the form 

(2.12) 

where (PM) has no roots then there will be another set of solutions to equation 

2.8 corresponding to theoretical rest masses of a different set of particles. We can 

continue this process indefinitely, so that choosing the function F to have roots 

K1, K2, K3, ... will produce a wave equation (equation 2.8) representing simultane­

ously particles with different rest masses. 
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Finding this function F (which has so far been arbitrary) through use of reci­

procity was exactly the purpose of Born's reciprocity paper [3]. vVe can do this 

by solving equation 2.3 using an arbitrary reciprocal invariant. Then, when we 

have roots r;;1 , r;;2 , r;;3 , ... we need to determine the constant of proportionality (in 

other words, we need to evaluate a, because the values of c and ti are of course, 

well known). To do that we need to identify one of our theoretical particles, (for 

instance, r;;I) with a particle of known mass, /-hi· Once we know the value of a then 

it is a simple matter to evaluate the rest masses of the particles corresponding to 

all of our theoretical particles r;;i· 

An alternative method of evaluating the constant a was put forth by Low [19]. 

He proposed the existence of a new kind of fundamental constant; a universal 

upper bound on rate of change of momentum. This constant was denoted in 

Low's literature by b. Born's minimum length constant is then defined in terms 

of Low's maximum rate of change of momentum by 

_(jk 
a-yt;· (2.13) 

Low also wrote measures for time, momentum and energy in terms of the three 

constants n, c and bin a similar manner [19, 18]: 

At ~ . 
Ap PI 
AE Viik. 

Defining these quantities allows us to make all measurements of time, position, 

momentum and energy in units of At, a, /\p and /\E respectively and so the mea­

surements are dimensionless. 

2.3 Formulating the Field Equation 

According to Born's paper, the solutions of equation 2.3 represent all possible self­

reciprocal scalars and tensors. Born initially said that the function S is arbitrary, 
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but then he chose to use the simplest relativistically and reciprocally invariant 

function, what he called the metric operator: 

(2.14) 

In accordance with equation 2.3, we apply this operator in position space (we could 

equally well do this in momentum space, indeed Born himself used momentum 

space), to the self-reciprocal wave function. This gives us the Field equation: 

sF 

0. 

2.4 Solving the Field Equation 

(2.15) 

(2.16) 

The best way to solve this equation is to use 4-dimensional polar coordinates 

r, 0, ¢, w, with x'0 = r, x 11 = w, x'2 = 0, x'3 = ¢. So our first task is to find 

the d' Alembertian using these coordinates. To do this, we need to know the 

four-dimensional polar coordinate metric for Minkowski space. Born's reciprocity 

paper skips straight from the formulation of the field equation (equation 2.15) to 

the radial equation (equation 2.31) to the solutions of the radial equation. However 

to make this paper more self-contained I have included the derivation of the radial 

equation, as I do not believe all of the steps involved are entirely obvious. 

2.4.1 The Four-Dimensional Polar Coordinate Metric 

For simplicity, let a = ict, so that for Minkowski space we have a Euclidean metric, 

TJfLv = TJfL'/ = 6t. We want to make the following change of variables: 

xo = (J -+ r cos w 

x 1 = x -+ r sin w sin 0 cos ¢ 

2 
X = y -+ r sin w sin () sin ¢ 

x 3 = z -+ r sin w cos () 
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where 0 r :::=; oo, 0 :::=; w < 71, 0 < () < 71, 0 :::=; 1J < 271. Now we need to find the 

metric ·ry;
1
.v in polar coordinates. The components of this new metric are given by: 

oxll axv 
1hw axlr ax/( . (2.17) 

Clearly, this metric has the form of a diagonal matrix, with TJ~v r/p,v. Therefore 

we can work out the diagonal components: 

I 
TJoo 

I 

TJn 

ox'' axv 
1ltw ax/0 ax/0 

.aa)2 (ax 2 o:y 
TJoo( a + T/11 -a ) + T/22 a r r T 

1 

(az)2 
+ T/33 OT 

oa 2 oy. ') az 
TJoo (ow ) + TJn + T/22 ( ow t + f/33 ow 

T
2 Sin2 

W + T 2 
COS

2 w(sin2 (J(cos2 c/J + sin2 c/J) COS
2 

{)) 

(ax)2 
+ 1Ju ae 

(aa)2 ax 2 ( oy 
TJoo 8¢ + 7ln ( o¢) + 7122 8¢ 

oz 2 + T/33(-,) arp 
0 + r 2 sin2 w sin2 8(sin2 ¢ + cos2 ¢) 

From this we can write the Minkowski metric in four-dimensional polar coordi-

nates, which will now be denoted as ·ry1w: 

l 0 0 0 

0 r2 0 0 
TJiw n~'·v 

r 2 sin2 w 
(2.18) 

0 0 0 

0 0 0 7'2 w sin2 () 

We can see from this that the separation between two events in four-dimensional 

polar coordinates is 

(2.19) 
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and from [2] we have the four-dimensional volume element 

dV = r3 sin2 w sin (}drdwd(}d¢. (2.20) 

2.4.2 Connection Coefficients for the d' Alembertian 

"Csing notation common to tensor mechanics, the d'Alembertian is written as: 

(2.21) 

The next step is to derive the relevant connection coefficients. In general, 

ru 1 ( 
JLV = ~2 7}>.,!J,,1J + 71>..v,Jt 

1}u)., 
(2.22) 

In our case, there will only be a few non-zero derivatives of 71~w. To be exact, there 

are six non-zero derivatives. These are: 

71n,o 2r 

T}22,0 2r sin2 w 

7122,1 2r2 sin w cos w 

7133,0 2r sin2 w sin2 
(} 

7133,1 2r2 sin w cos w sin 2 
(} 

7133,2 2r2 sin2 w sin(} cos e. 
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There are only six connection coefficients that we are interested in. These are: 

_21 (77n,o) 
7711 

1 

r 
1 

--(7722,0) 
27722 
1 

r 
1 

--(7722,1) 
27722 
cotw 

1 
-2 - ( 7733,0) 

7733 
1 

r 
1 

-2 -(7733,1) 
7733 

cotw 
1 

-2 - ( 7733,2) 
7733 

cote. 

2.4.3 The d' Alembertian in Polar Coordinates 

Now that we have the connection coefficients, we can expand equation 2.21: 

13 
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where is the radiai term of the d'Alembertian and ~Lflv Lvp is the angular 

component of the d' Alembertian; the four-dimensional analogue to the three­

dimensional operator representing the square of the magnitude of the orbital an-

gular momentum [4]; and 

(2.23) 

2 The Solution of the Field Equation 

'We want to look for a separable solution of equation 2.15 in the form 

(2.24) 

where R r 2 . The angular component of the solution, Yk(O,¢,w) is a four-

dimensional harmonic. Taking the d' Alembertian and breaking it up into its 

radial and angular components produces 

D= (2.25) 

When operating on a harmonic, this operator has the well known property that 

(see for example, [2]): 

in four-dimensions. Therefore equation 2.15 becomes: 

+ r 2 )Fk(R)Yk(O, ¢, w) 
2 

+ L + r 2 )Fk(R)J:k(O, ¢, w) 

sF!.:(R)J:k(O, ¢, w) 

sFk(R)Yk(O, (p, w). 

(2.26) 

(2.27) 

(2.28) 

radial terms commute with the angular term and vice versa, so after dividing 

by Yk(O,c/J,w) we can write 

(R). (2.29) 

Rearranging this gives: 

3 dFk(R) + - _ _:_,__:__ 
r dr 

0. (2.30) 
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Recalling that F(x) = F(p) we want to change to momentum space and then 

apply the change of variables: M _ p1Lp11 = p2 . 

dF dF dM 
dp dM dp 

dF 
2PdM 

dF d2 F dM 
2 dM + 2PdM2 dp 

dF 2 d
2 F 

2dM + 4p dM2 . 

Now we can substitute this into equation 2.30: 

4Md
2
F + 2 dF +~(2pdF)+(s-M- k(k+2))F 

dM2 dM p dM M 

d2Fk 2 dFk 1( s k(k+2))F 
dM2 + .M dM - 4 1 - M + M 2 k 

0 

0. (2.31) 

Born [3] gives the solution of this eigenvalue problem. With boundary conditions 

Fk -----7 0 as M --7 oo, the solution is 

(2.32) 

where L~k) (M) is the kth derivative of the Laguerre polynomial Ln(M) of order 

n 2:: k + 1. 

2.5 Boson Rest Masses Derived from the Field 

Equation 

According to equation 2.10 if we can solve for F(M) = 0 then we can find the 

values of l'loi representing the theoretical rest masses of our particles. Therefore we 

need to find the roots of the equation 

F(Ko2
) = 0 (2.33) 

and solve for the values of ''" at each root. But we have the solution in equation 

2.32: 

(2.34) 
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2.5 

1.5 

0.5 

'/fo ·/ /. 

';,x:/ 
,·/ / 

''/ /' 0 
.··/ /' 

·'/ *, 
.· / ·, 

.·)( ·,' ''•,' + 

'···+ .. 

0~------~------~------~------~----------~----~ 
0 5 1 0 1 5 20 25 30 

s 

Figure 2.1: Born's theoretical mass spectrum 

This will be zero when either Kk 0 ::::> K- 0 or when 

16 

K 0 is trivial and applies to photons of vanishing mass. The other values we are 

interested in are those of 

(2.35) 

This leads us to Born's theoretical mass spectrum for bosons with an infinite 

number of values for Ki. I have reproduced Born's spectrum in figure 2.1 , for 

n = 1, 2, ... , 6. This graph plots Ki against s. The unbroken lines all correspond to 

values of k 0, the dotted lines correspond to k = 1, the dashed lines correspond 

to k = 2 and the square is one value of K with k 3. 
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2.6 Self-Reciprocal :Functions for Half-Integral 

Spin 

Born also tried to determine self-reciprocal eigenfunctions for elementary particles 

with half-integral spin. He did this by factorizing F again into two factors: 

where Ak is a factor depending on 77 = O!kpk; O!k are Dirac matrices. These 

are briefly explained in section 4.2.21. Zk is a generalized spherical harmonic, 

depending on 0, ¢ and w: 

Zk = (L+4+2k)Yic 

Yk being an ordinary harmonic. Then we have three cases for the form of the 

solution. The first case is the trivial 

TJk = 0, k 1' 2, 3, ... 

which Born took as the vanishing rest masses of neutrinos. The other two cases 

depend on the eigenvalues ,\ of the Dirac matrices. They lead to two separate 

equations, the roots of which correspond to an infinite number oftheoretical masses 

K;i of fermions: 

,\ = -1: t;;{L n 

This development was a necessary part of Born's theory [3]. However, it is the au­

thor's contention that the application of supersymmetry to reciprocity will negate 

the need for a separate development of fermions and bosons in the theory. 

l For a better explanation see for example http:/ /mathworld.wolfram.com/Dirac:VIatrices.htrnl 



Chapter 3 

Groups 

This chapter starts with a brief introduction to groups, including several definitions 

used throughout this thesis. This is largely based on [12, 11]. It then moves on 

to discuss a particular class of groups, called Lie groups. These are discussed 

in section 3.4. The algebra of Lie groups is discussed in section 3.5. Following 

this are some important examples of Lie groups, in particular the Lorentz and 

Poincare groups discussed in section 3.8. For more reference into these topics see 

for example, [13]. Finally, another example of a Lie group is discussed in section 

3.9. Most of the work that has been done on the canonical group has been done 

by Low [19, 18]. 

3.1 Definition 

A set S of elements forms a semigrov,p if to any two elements x and y of S taken 

in a particular order there is associated a unique 3rd element of S, called their 

product and denoted by A semigroup is called a monoid if there exists a 

neutral element, denoted by e. A monoid is called a group, G if for element 

x of G, there exists an inverse element. The product of the group does not have to 

be multiplication, it is simply an operation associated with the group structure. 

Therefore, given a set and a product there are four necessary properties that will 

constitute a group: 

• Two elements x andy of G must have a unique product, xy, that is contained 

18 
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within the group. 

• Associative law must hold: = x(yz) (M2). 

... There rn""i· "ho <>n irlont1"tv or neut·ral element denotElrl "hu "' fl\lfQ\ 1iP' .J "' .L.L.LU.LJ\J f.J\....1 LIJJ.J. .L\..A\....1 ! J . I .L ' J .<\.A. "-'.J \.....- \ ..l"V..l_V J • 

• Every element x must have an inverse, denoted by x- 1 (M4). 

Note that M1, the commutative product law does not have to hold for groups. It 

may hold in a specific example, but by no means is it necessary to form a group. 

The order of a finite group G is simply the number of elements in that group, 

denoted by IGI. 

3.2 Examples 

Here are a few simple examples of groups: 

• The set of all real numbers except for 0 under multiplication. This is only 

a group if 0 is not included in the group as 0 has no inverse. The set of all 

real numbers under addition (this time including 0) will also form a group. 

• Similarly the set of all complex numbers forms a group under addition, and 

will form a group under multiplication if 0 + Oi is excluded. 

• The set of all two-dimensional vectors, under vector addition. The neutral 

element is (0, 0), the inverse of (x, y) is simply , -y), the product is 

uniquely defined and contained within the group and is clearly associative. 

This is an example of an abelian group, see section 3.3.1. 

• The permutation groups: an example of a permutation group is as follows: 

Take three elements, 1, 2 and 3 which constitute all the elements of the 

group (so the group is of order 3). Now, the action is to map one element 

into another. One such mapping could be 

1 --+ 1 

2 --+ 3 

3 --+ 2 
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call this x. Define y as the mapping 

1 -+ 3 

2 -+ 1 

3 -+ 2 

20 

Now, the product xy is simply defined as making the first map and then the 

second map. So xy would be the mapping 

1 -+ 3 

2 -+ 2 

3 -+ 1 

Note that this product is associative (if a third mapping z was defined, then 

= x(yz)), but not commutative. For two general permutations, the 

product may be commutative but does not have to be, just as for any other 

group. The inverse of a mapping is simply the backward mapping, and the 

identity (or neutral) permutation is the mapping of a number into itself: 

1 -+ 1 

2 -+ 2 

3 -+ 3 

3.3 Other Group Definitions 

3.1 Abelian Groups 

As stated above, the group product is not necessarily commutative, but may be 

in some instances. If it is the case that the group product is commutative (so 

that, for elements x andy, xy = yx), the group is said to be an abelian group. 

It is usual to use addition notation for abelian groups rather than multiplication 

notation. Therefore an abelian group has the following properties: 

e Two elements :r and y must have a unique sum (or product) .T + y that is 

contained within the group. 
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• The sum is commutative: x + y y + x (A1). 

• The sum is associative, so for three elements, x, y and 

x + (y + z) (A2). 

(x+y)+z 

• There is a neutral element, called the "zero", such that x + 0 = 0 + x x 

(A3). 

• Each element x has an inverse element, ~:r, called the ''negative" (A4). 

3.3.2 Generators 

Any group of finite elements has the property that all of its elements can be 

expressed in terms of a set of generators of that group. infinite group may or 

may not have a set of generators. For finite groups the set of all group elements 

is itself a set of generators. However if it is the case that it is possible to express 

some generators in terms of other generators or their inverses, then we can omit 

the former generators and still have a set of generators. If no elements of the 

set of generators may be expressed in terms of the other elements in the set then 

we have an independent set of generators (some literature calls this the minimal 

set of generators). In some cases we may have more than one independent set of 

generators. 

Once we have a set of generators we need to express other group elements 

in terms of this set. These relations are called the defining -relations of the set 

of generators. It is often useful to describe a group simply by giving a set of 

generators together with the defining relations of these generators. 

3.3.3 Direct Products and Sernidirect Products 

Take two groups, A and B with respective elements a1 , a 2 and h, b2 . Consider the 

set of ordered pairs (ai, bi) to be elements of a third group The di-rect p-roduct 

of this group is defined as 

(3.1) 
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This product is unique, it is an element of the group and it is clearly associative, 

as the products a1a2 and b1b2 are themselves associative. The neutral element 

is simply (ea, eb) where ea and eb are the respective neutral elements of the two 

groups. The inverse of (a, b) is of course, ( a- 1
, b-1

) and so the direct product of 

two groups does indeed form a group itself. The direct product of groups A and 

B is usually denoted by 

C =Ax B. (3.2) 

The direct product of two groups can be abelian but only if both the groups 

are themselves abelian. The direct product of abelian groups A and B is usually 

called the direct sum and is denoted by AEBB. We could denote the direct product 

of abelian groups either way but it is more convenient to denote it by the direct 

sum as addition connotates commutativity. 

The order of the direct product is simply the (usual) product of the orders of 

each of the two groups, ICI = IAIIBI. If one or both of the groups has infinite 

order, then the direct product also has infinite order. 

The semidirect product differs from the direct product when the groups A and 

B do not commute with each other. These groups must commute to form a direct 

product A 0 B. If they do not, then we can form the semidirect product, A Q9 8 B 

such that 

then this implies that 

3.3.4 Homomorphisms 

C A0sB 

(a1bi)(a2b2) 

a1 (b1a2b"11 )b1b2 

(a1b1a2b11, b1b2). 

(3.3) 

A mapping, () takes an object a from a set, called the object space, A and associates 

it with an image, b in another set, called the image space, B. This has the following 

notation: 

() : A --+ B, a() = b. (3.4) 
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A mapping must always have a unique image for each and every object. However, 

the reverse is not true: an image may have two objects associated with it. For 

example, for objects x and images y, y = x 2 is a proper mapping as every object 

has a unique image associated with it. y 2 = x is not a proper mapping as there 

are two images associated with each object. 

A mapping where every image in B has at least one object associated with 

it is called onto. If every image has only one object associated with it, then the 

mapping is said to be 1-1. If this is the case, then a1e = a2e :::::? a 1 = a2, and if 

the mapping is onto as well, then an inverse mapping exists, denoted by e~ 1 . 

A group homomorphism is a mapping that preserves the group structure. The 

image of the product of two group elements must be equal to the product of the 

images of the two elements. So, for elements 91 , 92 E G, then e : G ----+ H is a 

homomorphism if 

(3.5) 

where both sides of this equation are elements in H. Clearly, a homomorphism 

must map the neutral element of G into the neutral element of H. If other elements 

of G map into the neutral element of H then the set of all of these objects is called 

the kernel of the homomorphism, and this kernel is a subgroup of G. 

Homomorphisms that are onto and 1-1 have their own special names. A ho­

momorphism that is onto is called an epimorphism, a homomorphism that is 1-1 

is called a monomorphism, and a homomorphism that is both 1-1 and onto is 

called an isomorphism. Therefore for a homomorphism to have an inverse homo­

morphism it must in fact be an isomorphism. Indeed every isomorphism has an 

inverse homomorphism, which is itself an isomorphism. 

Isomorphisms preserve the inverses of elements and the identity of a group. 

Isomorphisms have their own notation: G rv H indicates that an isomorphism 

exists pairing off the elements of G and H. Groups that are isomorphic to each 

other have the same group structure. This means that for theoretical purposes, 

they are the same abstract group, and so we can discuss the group structure in 

terms of either one of the isomorphic groups. 

A homomorphism where the image space is identical to the object space (e : 
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A--+ A), so that e maps A into itself is called an endomorphism. An endomorphism 

that is also an isomorphism is called an automorphism, so that an automorphism 

e is an isomorphism that maps A into itself. 

An example of an isomorphism is the mapping of real integers j into the real 

even integers, 2j. The group operation could for instance be addition. This is an 

isomorphism as every even number has one and only one number associated with 

it, with respect to the mapping. An example of an automorphism is the mapping 

of all real integers into their negatives. Again we will take the group operation as 

addition. This mapping is clearly an isomorphism, and as both the image space 

and the object space are the integers, it is in fact, an automorphism, albeit a fairly 

trivial one. 

3.3.5 Cosets, Invariant Subgroups and Quotient Groups 

If we take H as a subgroup of G with g E G then the subgroup of G defined by 

gh for some h E H is said to be a left coset of H. Similarly the subgroup defined 

by hg is a right coset of H. If the order of G is a finite number, then IGI = aiHI 

where a is the number of cosets in H, called the index of H in G. If the following 

is true 

gH g-1 = H, V g E G; g rj:_ H (3.6) 

then H is said to be an invariant subgroup of G, otherwise known as a normal 

subgroup of G. In other words, an invariant subgroup of G is a subgroup in which 

all of the left cosets are right cosets. In particular, all subgroups of an abelian 

group are invariant. 

The set of cosets of the invariant subgroup H of G is called the Quotient group 

of H in G, denoted by G I H. The elements of G I H form a group with H as the 

identity element, and we have 

( H a) ( H b) = H ( ab) (3.7) 

for elements a, b E G. A simple group is a group that has no invariant subgroups. 

A semi-simple group is a group that has invariant subgroups that are not abelian. 
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3.4 Lie Groups 

Lie groups were invented by Sophus Lie in the late 19th century, mainly for the pur­

pose of solving differential equations. Since then they have been used in many ar-­

eas of mathematics and physics, and are of specific importance in particle physics. 

Lie groups possess the same properties as ordinary groups except they addition­

ally have the property that the group operations are continuous. Alternatively, 

we could say that they depend on a set of continuous parameters; the number of 

which is not necessarily related to the dimension of the vector space on which the 

Lie group operates. 

Lie groups have associated with them a Lie Algebra discussed in section 3.5. 

As Lie groups' operations can be thought of as linear transformations acting on a 

vector space, we can represent the group by a set of linear matrices homomorphic 

to the group. The group operation for these sets of matrices is then simply matrix 

multiplication. There may be more than one appropriate representation for each 

Lie group. In section 3.6 I discuss some examples of Lie groups, with the groups' 

corresponding algebra discussed in section 3. 7. 

3.4.1 Lie Group Generators 

The generators of a Lie group can be defined in several different ways. For instance, 

[9] uses a clever representation of groups and [29] uses one parameter subgroups. 

These are both standard theory and in this section I will follow the more general 

convention used in [13]. 

Suppose we have a set of linear transformations Ji on a space (for instance a 

vector space) of n variables xi, i = 1, 2, ... , n, such that 

.ti _ ji ( 1 2 n. 1 2 r) x- x,x, ... ,x,a,a, ... ,a (3.8) 

where o;P is a set of r independent parameters that is the smallest set needed to 

completely define the properties of the transformations. We assume the transfor­

mations Ji satisfy the necessary conditions to form a group. Writing this more 
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compactly we have 

x' = j(x; a). (3.9) 

Corresponding to each transformation we have the inverse transformation def-ined 

by 

(3.10) 

and we have the identity transformation 

X= r(x;O) (3.11) 

where we can arbitrarily choose aP = 0, V p = 1, 2, ... , r in the identity transfor­

mation. We can thus define the infinitesimal change in x as 

(3.12) 

and we define u~(x) such that 

(3.13) 

then we use this to express the generators X(}" of the group as 

3.5 Lie Algebras 

. a 
X(}"= -iu~(x)-8 .. 

x~ 
(3.14) 

The generators of a Lie group form a closed algebra, called a Lie algebra [13]. 

If we have generators Xa, Xb, and Xc belonging to the Lie algebra of a specific 

group, then these generators obey the following commutation relations: 

[Xa +Xb,Xc] [Xa, Xc] + [Xb, Z] 
' 

[X a, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [X a, Xb]] 0 (3.15) 

[Xa,Xb] [Xb,Xa] 

where equation 3.15 is known as the Jacobi identity of the Lie group. In fact we 

can say that any vector space that satisfies the Jacobi identity forms a Lie algebra. 
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Lie algebras are often more convenient to discuss than their corresponding 

groups because they form a vector space. Therefore the basis elements of the Lie 

algebra determine the properties of the algebra and hence the group. 

3.5.1 Structure Constants 

From Lie's second theorem (see, for example, [13]), we have the following result 

for the generators of the Lie group (given by equation 3.13) 

(3.16) 

where jgb are constants known as the structure constants of the Lie group. If the 

structure constants of an algebra vanish then the elements of the algebra commute 

and hence we have an abelian Lie algebra. Structure constants themselves provide 

an alternate representation of a Lie group, called the adjoint representation. From 

the Jacobi identity (equation 3.15) we can see that the structure constants obey 

the following relations: Lie's third theorem, 

(3.17) 

3.6 Examples of Lie Groups 

• Q£(n, CC): The general linear group: the group of all complex non-singular 

n x n matrices (the group of all invertible matrices). These matrices perform 

linear transformations on a vector space X with elements (x1 , x2 , x 3 , ... xn)· 

An important subgroup is the subgroup with unit determinant- S£(n, q. 
All of the other groups studied below are subgroups of the general linear 

group. 

• U(n): The group of all unitary n x n matrices: the group of all matrices that 

satisfy utu =I, where I is the identity matrix. This group leaves the norm 

(Jx1 J2 + Jx2 J2 + Jx3 J2 + ... + JxnJ 2
) invariant. And similarly to S£(n, q in 

Q£(n, q, so is SU(n)- the group of unitary matrices with unit determinant 

-an important subgroup of U(n). We can also have the group U(n, m): the 
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group of pseudo-unitary matrices which acts on the (n + m) dimensional 

vector space and leaves (lx1l2 + lx2l2 + lx312 + ... + lxnl2)- (IY1I2 + IY2I2 + 
IY312 + ... + 1Ynl2) invariant. 

• O(n): The group of all orthogonal matrices: the group of all matrices A 

that satisfy AAT =I. This group is the real subgroup of U(n). We can also 

have O(n, m), the real subgroup of U(n, m). And again we have the group 

SO(n) as the subgroup of O(n) with unit determinant. 

• Sp(2n): The group of all symplectic n x n matrices. This group, introduced 

by Weyl in 1938 [13] preserves anti-symmetric products. For example, the 

group Sp(2, JR) preserves the quantity lul2 -lvl2 for spinors ( ~). This group 

is sometimes called S£(2, JR) or SU(1, 1) [13], and it is a simple group. 

3.7 Exarnples of Lie Algebras 

The following are the Lie algebras that generate the Lie groups discussed in section 

3.6 [9]. 

e gl(n): All n x n matrices. 

• u(n): All anti-·Hermitian n x n matrices. That is, matrices M that satisfy 

M =-MI. 

• o(n): All anti-symmetric n x n matrices, sometimes called skew-symmetric. 

These are matrices A that satisfy A = -AT. Note that this requires all 

diagonal elements to be zero. In terms of the individual elements of matrix 

A, we have aij = -aji· 

e sp(2n): All matrices A which satisfy AT J + J A= 0 where 

with I as the n x n identity matrix. 
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3.8 The Lorentz and Poincare Groups 

The Lorentz group is the group of transformations that leaves the line element 

1 2 = t2 - x 2 invariant. We have for Lorentz transformations on (fiat) Minkowski 

space xf.L 

(3.18) 

where A~Lv is called a Lorentz tensor. We can define this transformation as 

(3.19) 

and the inverse transformation 

(3.20) 

and from this we can see that A~Lv satisfies 

rJf.L 
v 

{ 

1 if 1-L = v 

0 if 1-L =1- v 

A Poincare transformation is an inhomogeneous Lorentz transformation. This 

means that it includes translations of a four-vector x~L: 

(3.21) 

where aiL is a constant tensor. The set of all Poincare transformations (inho­

mogeneous transformations) is known as the Poincare group, while the set of all 

Lorentz transformations (homogeneous transformations) is known as the Lorentz 

group, and this is clearly a subgroup of the Poincare group. The theory behind 

both of these groups is extensive and well covered in the literature (see for example, 

[13]). Accordingly I will provide only a brief summary of this theory. 

As elements of the Lorentz group leave invariant the quantity , 2 = t2 - x2 -

y 2
- z2 the group is often represented by 0(1, 3). The group consists of all matrices 

A that satisfy equation 3.18. These matrices have the property that 

det(A) = ±1 
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and only six independent parameters are needed to the group properties. 

Taking det(l\) = +1 gives us the group 80(1, 3). An invariant subgroup of the 

Lorentz group is this group 80(1, 3) with the additional condition that the trans­

formations are orthochronous transformations, defined by 

This is called the proper Lorentz group, and is generated by the Lie algebra of 

pseudo-anti-symmetric matrices so(l, 3). 

subgroup of the proper Lorentz group is Ar S:! 80(3). This describes the 

of rotations in three-dimensional space. This group is generated by the Lie algebra 

so(3) which is the set of 3 x 3 anti-symmetric matrices with unit determinant. 

Vve also want to look at the set of proper Lorentz boosts l\b. These matrices 

are all symmetric, and they also have three independent parameters. However, 

the set of all matrices l\b does not form a subgroup because the product of two 

boosts does not result in another boost. In other words, if we were to make one 

rotation followed by a second rotation, the result is another rotation and hence 

the set of rotations does form a (sub-) group. But if we were to make one boost 

followed by a second boost then the result is not necessarily a third boost, and so 

the set of all boosts does not form a subgroup. However, we can write a general 

Lorentz transformation in terms of a rotation and a boost: 

Vve now want to find the group properties in terms of its algebra, by looking 

at its generators. 

3.8.1 Generators of the Proper Lorentz Group 

According to [13] we can write A, and Ab in terms of the generators 

that are the generators for pure rotations and pure boosts respectively. Then, a 

general Lorentz transformation will be of the form: 



CHAPTER 3. GROUPS 31 

When thought of as operators acting on Minkowski space, these generators take 

the infinitesimal form [13] 

The Lorentz generators also satisfy the following commutation relations [13] 

[Li, Lj] 

[Li,Kj] 

[Ki,Kj] 

We can combine these six generators succinctly by using the four-dimensional 

analogue to the standard three-dimensional angular momentum operators, defined 

in equation 2.23. Then in position space we have: 

(3.22) 

We can now express our previous generators in terms of the angular momentum 

operators by 

E· ·kLk. 2J J 

K· 2 Loi· 

3.8.2 The Group of Translations in Four-Dimensions 

(3.23) 

(3.24) 

According to [18], the Poincare group can be represented by the semidirect product 

P SO(l, 3) 0s T(4). (3.25) 

We have already discussed some properties of the group S0(1, 3), but now we are 

adding the group of translations in four-dimensions, T( 4) ~ IR4 under addition. 
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This group is abelian, and its elements T can be written in the matrix form 

1 0 0 0 ao 

0 1 0 0 al 

T 0 0 1 0 a2 (3.26) 

0 0 0 1 a3 

0 0 0 0 1 

The generators of translations are simply the momentum operators; which we 

recall are given in position space through the correspondence principle as 

p v (3.27) 

3.8.3 Generators of the Poincare Group 

The Lorentz generators are given in equation 3.22. Following the convention used 

in [13] to write the most general generators of the Lorentz group in the form, 

(3.28) 

where L1w operates on coordinate variables and the operators SJ.Lv operate on all 

other variables not applicable to L1w. The set of generators { J~tn Pv} have the 

following well known defining relations 

0 

.9 The Canonical Group 

(3.29) 

(3.30) 

(3.31) 

Low [19, 18] defines the Canonical group or Canonical Relativistic gmup as the 

semidirect product 

C(1, 3) U(l, 3) ®s H(1, 3). (3.32) 

vVe have already seen that U(l, 3) is the pseudo-unitary group of space-time. This 

is the homogeneous analogue in Reciprocity theory of the homogeneous group 
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S0(1, 3) of the Poincare group of special relativity [19]. The group 1-L(1, 3) is the 

Weyl-Heisenberg group, and is the inhomogeneous part of the canonical group, in 

analogue to the group of translations in the Poincare group. 

The Weyl-Heisenberg group's nine generators {XM, PM, I} satisfy the Lie alge­

bra given by the Heisenberg commutation relations of equations 1.9 to 1.12. Low 

uses the principle of Reciprocity to combine the line elements corresponding to 

position and momentum space. Recall that the line element of position space is 

given by equation 1.5: 

(3.33) 

and the line element of momentum space is 

(3.34) 

so then we have Low's reciprocally invariant line element 

(3.35) 

The Canonical Relativistic group keeps this line element invariant as well as the 

Heisenberg commutation relations. Additionally it has 25 generators as opposed 

to the Poincare algebra that has only 10 generators. 

An alternate definition of the Canonical group according to Low [18] is the 

semidirect product 

C(1, 3) = SU(1, 3) ®s Os(1, 3). (3.36) 

In this case, the Os(1, 3) group is the Oscillator group. For a detailed discussion 

of the group theory of the Canonical group, refer to Low's articles [19, 18]. 

The most interesting aspects of this group are that it fixes several problems 

of the Poincare group with respect to experimental evidence. For instance, the 

Heisenberg commutation relations are not included in the Poincare algebra and 

therefore they must be added to the theory. Also, the Canonical group suggests 

that the individual line elements T 2 and m2 need not themselves be invariant; 

rather the line element suggested by the reciprocity principle: s2 = T 2 + m2 is the 

element that is kept invariant. This will only be seen in the case where the rates 
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of change of position and momentum approach the limits c and b respectively. 

\Vhen this is not the case, the physical space involving eight degrees of freedom 

actually decomposes into the usual space-time and momentum-energy. This is a 

similar argument used to explain the space-time of special relativity decomposing 

into the Newtonian, space degrees of freedom and time degree of freedom, in the 

non-relativistic case. 

3.9.1 Casimir Operators of the Canonical Group 

Casimir operators are the ma..-x:imal set of all operators that commute with the 

generators of a Lie group. In other words, the Casimir operators are invariant 

under group transformations [13]. For the Canonical group, Low [18] found two 

Casimir operators, one of which is the line element that we have said is invariant 

under reciprocity. However, there was an extra term in this Casimir operator not 

included in equation 3.35. This term is only important in quantum systems when 

we take li 0. In this case the Hermitian metric is not invariant as the extra term 

in the line element allows time-like states and null states to transform into each 

other. This extra term involves the generator of the U ( 1) algebra that appears in 

Os(1, 3); for a discussion of this refer to Low's papers [19, 18]. 
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Supersymmetry 

Section 4.1 extends the position and momentum theory of section 1.2 to anticom­

muting variables, called Grassmann variables. In section I introduce the idea 

of supersymmetry; first by looking at a Lie superalgebra and then by giving an 

example of a Lie superalgebra in section 4.2.2. In section 4.2.3 the idea of using 

Grassmann variables as coordinates is developed, in an eight-dimensional manifold 

called superspace. 

4.1 Grassmann Variables 

The arguments in this section follow that of [14], but summarized to stay within 

the scope of this thesis. 

Grassmann eoordinates satisfy antieommutation relations that are the ana­

logue to the commutation relations of equations 1.9, 1.10 and 1.11. The general 

property of Grassmann variables ea is 

( 4.1) 

and in particular, for (.:\:, fJ = 1, 2 for example 

(4.2) 

Equation 4.1 is true for any even number of Grassmann coordinates, by defining 

a, fJ 1, 2, 3, ... , 2rn. 

35 
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The metric for these Grassmannian variables is Eaf3, the totally anticommutat·· 

ing tensor, with 

Therefore 

For four Grassmannian variables, the metric is 

1 0 0 

-f.aB 
1 0 0 0 

0 0 1 

0 -1 0 

and so on for more Grassmannian variables. 

4.1.1 Grassmannian Derivatives and Taylor Series' 

The derivative for Grassmann variables is simply given by 

= £(3 ua. 

(4.3) 

(4.4) 

( 4.5) 

(4.6) 

(4.7) 

The product rule for differentiation of functions of Grassmann variables differs 

from the usual product rule in that there is a minus sign ln between terms: 

BdA _ dB 
dO dO. (4.8) 

Expanding a wavefunction V'( 0) in a Grassmannian Taylor series will yield an 

exact, terminating sequence, as all higher order terms vanish. For two Grassman­

nian variables this is given by: 

(4.9) 

For 2m Grassmannian variables, the Taylor series is given by 

2m 

'1/;(8) = c0 + 10) 
p::::l 



CHAPTER 4. SUPERSYMMETRY 37 

4.1.2 Supernumbers 

The Grassmann algebra is defined by equation 4.1, with generators ea. The ele­

ments of this algebra are called super-numbers, (. vVe can write the basis elements 

of the Grassmann algebra as all the possible non-zero combinations (products) of 

the generators. If we have a= 1, 2, ... ,2m then there are 2m generators and 22
m 

basis elements. These elements are [14] 

] ()1 e2m ()1()2 e2m-1e2m eae 
. ' ' ••• ' ' ' .•• ' ' ~ .• ; 0:. (4.11) 

vVe can see that these basis elements themselves are not necessarily anticommuting 

quantities. Looking at the commutator of 8182 with ()3 produces: 

ei£J2e3 + 818382 

ele2e3 - e1e2e3 

0 

and so ()1 ()2 commutes with ()3
. In fact, 8182 will commute with any basis element 

of the Grassmann algebra, and hence we label it even. There are other even 

basis elements as well, and these elements commute with all other elements. The 

remaining basis elements can be labelled odd, and these elements will anticommute 

among other odd elements but commute with even elements, as required in a Lie 

superalgebra; see section 4.2.1. 

Any supernumber can be written in terms of an expansion of the basis of the 

Grassmann algebra 

2m 

( co+I": (4.12) 
p=1 

We can then write the elements of the Grassmann algebra as a sum of its odd 

and even components: 

( 4.13) 
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with 

m-1 

(a = L Ci] ... i2p+l eii ... ei2p+l . 

p=O 
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( 4.14) 

( 4.15) 

We can see that in the same manner as the basis elements of the Grassmann 

algebra, the even supernumbers commute with all other supernumbers, and the 

odd supernumbers anticommute among themselves. This is required for a Lie 

superalgebra (section 4.2.1). 

4.1.3 Grassmann Operators 

Express Grassmann coordinate operators as ea, with eigenvalues ea when oper­

ating on a wavefunction ?jJ(e), ie 

(4.16) 

and define ITa as the Grassmannian analogue of momentum operators with eigen-

values 1f00 , ie 

( 4.17) 

From equation 4.1, these Grassmann coordinate and momentum operators 

satisfy the following anticommutation relations 

{ 8 00
, e/3} 

{I1a,I1(3} 

{8 00
, n/3} 

0 

0 

(4.18) 

(4.19) 

( 4.20) 

where equation 4.8 has been used in equation 4.20. These are the Grassmannian 

equivalent of the Heisenberg commutation relations. 

4.2 Supersymmetry 

Supersymmetry is an extension of the Standard Model of particle physics that 

includes transformations of fermions into bosons and vice-versa. So far there is 
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no experimental evidence that supersymmetry is present in nature; however the 

maths of the theory is very elegant and many physicists believe it is only a matter 

of time before experimentalists confirm its existence. 

The Standard Model of particle physics involves unitary irreducible represen­

tations of the Poincare group [18]. The supersymmetry algebra is a Z2 gmded 

extension of the Poincare algebra. The Poincare group is discussed in section 3.8 

and the meaning of the word graded is explained in section 4.2.1. We label the 

extra generators of graded Lie algebras by Qan where n = 1, 2, ... , N. sim-

plest version of supersyrnmetry has N = 1, and from now on we will take 1. 

Supersymmetry also seeks to include gravity in a local version of supersymmetry 

called supergmvity. 

Particles predicted by the Standard Model and observed experimentally will 

all have a super-partner under the supersymmetry theory. pairs of parti­

cles will have the same quantum numbers as each other but they will differ in 

spin by ~· For example, the photon with spin 1 would have a supersymmetric 

partn(~r called the photino with spin ~. None of these superpartners have been 

found experimentally and it is hypothesized that the reason for this is because 

the masses of the superpartners are too large for modern particle accelerators to 

detect. Indeed, there exist theories that predict superparticles contribute to the 

dark matter of the galaxy. 

4.2.1 Lie Superalgebras 

A Lie supemlgebra. which is a type of gmded Lie algebra, is an algebra that 

includes the idea. of odd and even elements. This graded lie algebra can be written 

as the sum of its even and odd elements: 

(4.21) 

where is the set of even elements in L and L 0 is the set of odd elements in 

Odd elements anticommute among themselves, but commute with even elements. 

Even elements commute with all other elements. So we have the defining relations 
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of the superalgebra: 

[Ai,Aj] 

[Ai, Bj] 

[Bi,Bj] 

A ·A·-A·k ~ J J ~ 

A·B· -B·k . ~ J J ~ 

where the elements Ai E Le and Bi E La. Introducing the function [9] 

{

0 X E Le 
a(X) = 

1 X E La 
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( 4.22) 

for any X E L allows us to combine the defining relations into the single expression 

[X, Y] = XY- ( -1)o-(X)o-(Y)y X. ( 4.23) 

Note that this will be a commutator unless both X and Y are odd, in which case 

it will be an anti-commutator, as desired. We also have the following properties: 

a([X, Y]) = la(X) - a(Y) I ( 4.24) 

so that a Lie bracket is odd unless both of the elements are even or both of the 

elements are odd, and 

[X, [Y, Z]] + [Z, [X, Y]] + ( -1 )o-(X)o-(Y) [Y, [ Z, X]] = 0 (4.25) 

which is the Jacobi identity for the superalgebra (see equation 3.15). This grading 

structure is called a z2 grading structure [31]. 

4.2.2 The Super-Poincare Algebra 

The literature varies with regard to how to write the generators and relations 

of the super-Poincare group. I will follow the method of [31]. In addition to 

the usual generators of the Poincare group, we add the new generators Qa that 

satisfy anticommutation relations, we add a generator for internal symmetry, S, 

and we also take Qa to be Majorana spinors (Qa = Caf3Qf3, where Cis the charge 

conjugation matrix defined in equation 4.30). Thus we have the set of generators 
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for the super-Poincare group as { Pv, l 11v, S, QQ}· Now, these generators obey the 

following defining relations in addition to the defining relations of the Poincare 

group, listed in section 3.8.3, for the N 1 supersymmetry: 

{Qa,Qp} - 2(Jf1C)a.BP11 

[Qa, Pfl] 0 

[Qa, 111v] ~(a 11v )!Qs 

[Qco S] l3Qp. 

( 4.26) 

( 4.27) 

( 4.28) 

(4.29) 

These relations involve the Dirac matrices, the Pauli spin matrices and the charge 

conjugation matrix. The Pauli spin matrices are: 

\Ve can define the Dirac matrices in terms of the Pauli spin matrices. Note that 

the method I use here (from [31]) is only one representation of the relevant algebra. 

There are many ways of representing this algebra. The method used here is but 

one. And so, we have: 

( 
0 -I) 
-I 0 

(
0 -ai) 
ai 0 

( 1 0)' 
0 -I 
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where all of the elements in the above matrix are 2 x 2 matrices. \Ne can now 

( 4.30) 

2.3 Superspace and Superfields 

Superspace is obtained by adding four fermionic (Grassmann) coordinates to the 

usual coordinates of space-time. Hence we have eight dimensions, and we take our 

coordinates to be 

( 4.31) 

with the index JVf running over the bosonic indices fJ and the fermionic indices 

a [28]. Srivastava [28] (and many others) uses for his Grassmann coordinates, 

dotted and undotted spinor·s [25]: Weyl spinors ga = ( ~~) and 71a = ( :~) . In my 

notation I have used a 1, 2, 3, 4 to produce the four Grassmann variables. These 

superspace coordinates obey relations of the form equation 4.23: 

( 4.32) 

and we can then define transformations in superspace to be sttpertranslations (see 

[28, 25]. 

\Ve obtain a superfield by making a Taylor expansion of F(z) F(x1\ ea) [28] 

and then requiring the coefficients of the Taylor expansion to be fields rather than 

numbers. \Ve then have a superfield as a combination or multiplet of fields [14]. 

Ryder [25] classifies each field as a scalar or a spinor (bosonic or fermionic). If we 

have the superfield [14] 

n 

F(x, B) Fa(x) +'I:. Fi 1 ... ip0i1 
... Oip ( 4.33) 

p=l 
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then we have the fields 

Fo(x) -t 1 scalar 

Fa(x) 4 spinors 

Fc,;J(x) (a ::j: ,B) -t 6 scalars 

(x)(a#f3=1=r a) 4 spinors 

F1234 -t 1 scalar. 

This means there are eight bosonic and eight fermionic fields that make up the 

multiplet. In other words, there are 

freedom [25]. 

bosonic and eight fermionic degrees of 



Chapter 5 

Supersymmetric Reciprocity 

This chapter continues on from the work done by Born, outlined in chapter 2. First 

we modify the metric operator (equation 2.14), by adding Grassmann variables 

(5.1) 

Then proceed in much the same way as in Born's theory. In equation 5.1 I have 

purposely not defined the values for a. This is because a depends on how many 

Grassmann variables we want to include in the operator. As a mathematical exer­

cise, we can use any even number of Grassmann variables. I used two Grassmann 

variables in section 5.1 and four Grassmann variables in section 5.2. 

5.1 Reciprocity in two Grassrnannian Variables 

In this section, letters from the beginning of the Greek alphabet (namely c~;, ,B) 

will run through the numbers 1 ,2; and as always, letters from the middle of the 

Greek alphabet (Jl, 1J) will run through the numbers 0,1,2,3. The metric operator 

becomes 

S(X, P, e, II) 

S(x, 0) 

Xll-Xll- + Pll ~1 + 2818 2 + 2II1II2 
[)2 

()()l ()()2 

after the substitutions Pp, --+ -i 8~1,, 1r a --+ -i a~a have been made. 
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(5.2) 

(5.3) 

(5.4) 
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We want to find the family of self-reciprocal functions that arises from this 

reciprocal invariant. Equation 2.3 becomes 

S(x, e)F(x, e) = sF(x, e) (5.5) 

We can expand the self-reciprocal function F(x, e) in a Grassmannian Taylor se­

ries, of two Grassmann variables (see equation 4.9) recalling that this is in fact an 

exact, terminating series. 

(5.6) 

where A, Ba and Care all functions of x. Notice that when the reciprocal invariant 

defined by equation 5.4 acts on the function given in equation 5.6, some interesting 

things happen. It leads to the following coupled equations: 

( -D + x~tx~t)A + 2C 

( -D + x~Lx~t)B 

( -D + x~tx~t)C + 2A 

sA 

sB 

sC. 

(5.7) 

(5.8) 

(5.9) 

We can see that equation 5.8 is exactly the same as Born's differential equation 

(equation 2.15) and hence it can be solved in exactly the same manner. This is 

not true for equations 5. 7 and 5.9. Adding these two equations yields 

( -D + x~tx~t)(A +C)= (s- 2)(A +C) (5.10) 

and then subtracting equation 5.9 from equation 5. 7 yields 

( -D + x~tx~t)(A- C)= (s + 2)(A- C). (5.11) 

Note that equations 5.10 and 5.11 are similar to equation 2.15; they differ only in 

the eigenvalue. So we have the solution: 

and three sets of values for the quantum number s, given by 

A+C: s =2(2n-k)+2 

B: s = 2(2n- k) 

A- C: s = 2(2n- k)- 2. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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Figure 5.1: Theoretical mass spectrum with two Grassmann coordinates 

As the solution corresponding to equation 5.13 comes from odd elements of the 

Grassmann Taylor series given in equation 5.() we identify this set of solutions as 

belonging to a fermionic family. Similarly, both equation 5.13 and equation 5.15 

involve even elements of the Grassmann Taylor series, so we identify this set of 

solutions as belonging to two bosonic families. 

Figure 5.1 is a plot of the theoretical mass spectrum corresponding to two 

Grassmann coordinates. This is a supersyrnmetric version of Born's spectrum, 

given in figure 2.1. However, where multiple solutions of the Laguerre polynomial 

exist I have only taken the greatest solution. Then we have the unbroken lines 

corresponding to k 0, the dotted lines correspond to k - 1 and the dashed lines 

correspond to k 2. vVe can see that there are indeed three families of the same 

spectrum; Born's original spectrum has been shifted two units of s to the left and 

to the right of the original spectrum. 
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5.2 Reciprocity in four Grassmannian Variables 

Now we take a, (3 = 1, 2, 3, 4, so that there are four Grassmann position and four 

Grassmann momentum operators. Then the metric operator becomes 

S(X, P, 8, IT) 

S(x, B) 

Again we want to apply this to equation 5.5, so again, expand the self-reciprocal 

function in a Grassmannian Taylor series, this time of four variables: 

F(x, B) = Co+ CJB1 + CzB2 + c3B3 + c4B4 + c5B1B2 + c6B3 B4 + c7B1B3 

+ CsB1B4 + CgB2B3 + C1QB2B4 + cuB283B4 + CJz81B3B4 

+ C13 B1B2B4 + C14glg2g3 + C15 B1B2B3B4. 

This is equivalent to the expansion of equation 4.33 but written out explicitly in 

terms of the coefficients (fields) en ( x), to clarify the following argument. 

From equation 5.5 this leads to a set of twelve coupled equations in coefficients 

of powers of B: 

( -D + x2 - s)c0 + 2c5 + 2c6 0 

(-D + x2 - s)c1 + c12 0 

(-D + x2 - s)cz +en 0 

( -D + x2 - s )c3 + c14 0 

(-D + x2 s)c4+c13 0 

( -D + x2 - s)c5 + 2c15 + 2co 0 

(-D + x2 - s)c5 + 2cl5 + 2co 0 

(-0 + x2 - s)cu + 2cz 0 

(-D + x2 - s)c12 + 2cl 0 

(-0 + x2 s )c13 + 2c4 0 

(-0 + x2 - s) c14 + 2c3 0 

( -0 + x2 - s)c15 + 2c5 + 2c6 0. 
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We want to add and subtract these equations as in section 5.1 to find equations 

similar to those of equations 5.10 and 5.11. The result is 

(-0 + x2) (co + c15 + cs + cs) 

( -0 + x2)(c1 + c12) 

( -0 + x2)(c2 +en) 

( -0 + x2)(c3 + c14) 

( -0 + x2)(c4 + c13) 

( -0 + x 2 )(co- CJs) 

( -0 + x 2)(cl- c12) 

( -0 + x 2)(c2- en) 

( -0 + x2)(c3 - c14) 

( -0 + x2)(c4- c13 ) 

(-0 + x2)(c0 + c15- cs- cs) 

( S - 4) (Co + C15 + C5 + Cs) 

(s- 2)(cl + c12) 

( s - 2) ( c2 + en) 

(s- 2)(c3 + c14) 

( s - 2) ( c4 + c13) 

s(co- c15) 

(s + 2)(c1 - c12) 

( S + 2) ( c1 - Cn) 

(s + 2)(cl- c14) 

( S + 2) ( C1 - C13) 

( S + 4) (Co + C15 - C5 - Cs) . 

The operations which were used on equations 5.18 to 5.18 to produce these new 

eigenvalue equations should be apparent. Notice that the only way in which the 

operators of these equations differ from Born's field equation (if they differ at all) 

is in the presence of a number ±2 or ±4. As these are just a number they commute 

with the eigenvector and hence they change the value of the eigenvalue. Instead 

of Born's value for s, we now have five families: three bosonic type families and 

two fermionic type families. These families differ from one another in their value 

of s: 

Bosonic: 

Fermionic: 

Bosonic: 

Fermionic: 

Bosonic: 

s = 2(2n- k) + 4 

s = 2(2n - k) + 2 

s = 2(2n- k) 

s 2(2n- k) 2 

s = 2(2n- k)- 4, 

where I have labelled families according to which types of field they involve. 
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Figure 5.2: Theoretical mass spectrum with four Grassmann coordinates 
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Bosonic families only involve scalar fields, while fermionic families only involve 

spinor fields, as per section 4.2.3. It is interesting to note that the case s- 2(2n- k) 

now corresponds to a bosonic type family, whereas in the previous case with two 

Grassmann coordinates, the s = 2(2n- k) case corresponded to a fermionic type 

family. We can see these five families in figure 5.2. Again the unbroken lines 

correspond to k = 0, the dotted lines correspond to k = 1 and the dashed lines 

correspond to k = 2. 

Although I have not proved this to be true, we can now generalize from our 

position to say that if we add 2m Grassmann coordinates to the usual space­

time metric operator then the result is the production of an extra 2m families of 

fermions and bosons. This will result in us having ( m + 1) families of bosons and 

m families of fermions. Each family has the same values of r;,i; the theoretical 

masses of an infinite number of elementary particles. However, each family has 

a different value of s corresponding to each theoretical mass. The significance of 

this is yet to be determined. 
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5.3 Normalizing the Wave Function 

We want to find 'lfJk(M) such that 

(5.18) 

where 1pk(M) is the normalized solution of the field equation, equation 2.3. So we 

need to find the value of (FkiFk), where Fk(M) is given in equation 2.32. Then 

(5.19) 

Expanding this expression yields 

We are only interested in the case M PM PJ.L 2: 0 so that this expression is purely 

real, with commuting terms. So switching back to position space, we can drop the 

Dirac notation and write 

(5.21) 

(5.22) 

(5.23) 

The notation used in equation 5.23, (L~~(k+l)(R)) is actually that of an associ­

ated Laguerre polynomial, as opposed to the derivative of the ordinary Laguerre 

polynomials; L~k+l)(R). We have the four-dimensional volume element defined in 

equation 2.20, so we can define (3 n- (k + 1) and write 

I (5.24) 

(5.25) 

(5.26) 

(5.27) 
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and so we have the normalized wave function (in momentum space) 

(5.28) 

(5.29) 



Chapter 6 

Discussion 

Now that we have the mass spectra given by figures 2.1, 5.1 and 5.2 there are 

several questions we need answered. First of all, what is the mass scale pertinent 

to these spectra? Or to put this more quantitatively, what is the value of the 

constant a defined by Born in [3]? Also, as in figures 5.1 and 5.2 each theoretical 

mass corresponds to three or five values respectively of the eigenvalues of equation 

2.3, what is the significance of s? And what is the significance of having each 

theoretical mass corresponding to more than one value of s? Also, why does there 

appear to be an infinite number of particles? In this chapter I will attempt to 

answer these questions. 

To find the value of a we only need to identify one value of K with the actual 

known mass of a particle. Once we have found the value of a we can use this to 

match up every other theoretical mass with the actual mass of a known particle. 

The analysis Born and I have used to obtain the mass spectra studied in this 

thesis has been restricted to integral spin particles (bosons). Therefore we could 

look at the spectra as if it belonged to gauge bosons, or to mesons. First we need 

to define a scale by matching up a theoretical mass with the actual mass of a 

corresponding particle, then match up other particles of similar mass and look for 

patterns. 

Matching the lightest meson, the pion 1r
0 to the point (n, k) = (2, 0), K 

1.414214 provides us with a scale we can use to match up the masses of other 

mesons with our theoretical masses. this case, ~ ::-;::::: 0.010476. \Ve can then 
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determine the theoretical masses of other mesons, and try to match them up with 

the spectra, obtaining 

1r
0 ----7 (2, 0), K, = 1.414214 

K+ -+ (10, 0), K, = 5.30267 

7]
0 

----7 (11,0), K, = 5.62875 

p0 ----7 (20,0), K, = 8.0405 

w0 
----7 (21,0), K, = 8.26904 

7]
01 -+ (30,0), K, = 10.1121 

¢ ----7 (33, 0)' K, = 10.6604 

where the parentheses indicate points belonging to (n, k) on the spectra corre­

sponding to the largest value of K, pertaining to those values of n and k. There is 

no distinct pattern in the values of K, that seem to correspond to actual particles 

and those that do not. It should be noted that the matchings are all very approx­

imate, and I have by no means proved this to be an accurate fit of the spectra. 

Indeed, there seems to be no reason why so many of the theoretical values of K, 

should not have an actual mass partner. Therefore for the theory to fit the ex­

perimental evidence, there must be some way of building into the theory a reason 

why only some of the data points correspond to a physical particle. This would 

also have to explain why there are an infinite number of theoretical masses; while 

as far as we can determine there are only a finite number of elementary particles. 

In Born's original theory, we had s = 2(2n- k), n ~ k + 1. Therefore s is 

clearly always positive. Also, for fixed values of k, s is proportional to n. In other 

words, s and n have the same significance for fixed values of k. After adding in the 

supersymmetric arguments we now have (for four Grassmann variables), the same 

theoretical mass arising for five different values of s. So if this theory is an accu­

rate portrayal of nature, s would need to have some physical interpretation. For 

example, it might play the role of a quantum number, perhaps the colour quantum 

number. As yet, there is not enough information to determine the significance of 

s. 
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Assuming the model detailed above, with the point ( n, k) = (2, 0) belonging 

to the pion, n°, we can evaluate Born's minimum length constant, a. Taking the 

mass of the pion to be 135 MeV [1], 

r;,n 
a --- . 

JJC 

From here it is a simple task to calculate the value of a as: 

a~ 2.07 x 10-15m. (6.1) 

This would put a as the same order as the classical electron radius: the Compton 

radius ro = 2.82 x 10-15m1. This is very interesting, and so far the only real 

evidence in this thesis that might support Born's theory. 

b: 

We can now evaluate Low's maximum rate of change of momentum constant, 

b 
nc 
a2 

~ 7.37 X 103N. 

If we were to take a to be exactly the Compton radius, then we would evaluate b 

as 

(6.2) 

This intuitively seems to be several orders of magnitude too small. However, it 

does give us a rough guide as to the scale we should be using. Therefore, instead 

of matching the pion to the point (n, k) = (2, 0), matching the much heavier, W 

boson to this point produces a smaller value for a, and a larger value for b: 

This is a much more sensible value for a maximum rate of change of momentum. 

Also, we could naively say that gauge bosons and photons are in the same class 

of particle (force carriers), therefore it makes sense that the mass spectrum would 

belong to this single class of particles. 

1from http:/ /scienceworld.wolfram.com/physics/PhysicalConstants.html 
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Vve can now try to match up the Z boson to one of the theoretical masses, 

obtaining Kz ::::::: 1.604. Even though this corresponds quite well with the second 

smallest root of (n, k) = (5, 0), it seems as if we could almost take the rest mass of 

any particle and try and argue why it should be matched tcJ a particular theoretical 

mass. If it is the case that the vV boson corresponds to the point (2,0), and hence 

the Z boson corresponds to the second smallest root of (5,0), then what is so 

significant about these points? Why are so many theoretical masses unmatched? 

This theory is unable to answer these questions. Therefore, while it may be 

possible that the previous arguments are correct (or at least have some merit), 

more research needs to be done before any definite conclusions can be drawn. 



Chapter 7 

Conclusion 

Born's theory of reciprocity is a very interesting idea, but as has not much 

experimental evidence to support its validity. This is also true of supersymmetry. 

The aim of this thesis was to apply supersymmetric principles to Born's theory to 

try to correct the inconsistencies arising from the theory. Born's metric operator 

was first used to reproduce Born's theoretical mass scale for bosons, but then 

the metric operator was extended to become the supermetric operator by way of 

introducing Grassmann position and momentum variables into the operator. This 

new supermetric operator was then used to determine a supersymmetric version 

of Born's theoretical mass scale; first for two Grassmann variables and then for 

four. Families of bosonic and fermionic theoretical masses were produced; where 

in general, for an addition of 2m Grassmann variables, we obtained m -r 1 bosonic 

type families and m fermionic type families to make a total of 2m 1 families. 

Each family had the same theoretical mass scale, but the eigenvalues of the self­

reciprocal equation (equation 2.3) were modified so that each family was translated 

by an even integral number of units of s, with the last family producing a spectrum 

with the same eigenvalue to Born. 

This result was no help in trying to fit Born's theory to the experimental 

data. However, a very qualitative discussion of Born's spectrum was undertaken, 

involving the lightest meson the pion - as the basic guide to determine the 

scale factor between the theoretical mass spectrum and the actual mass spectrum. 

According to this scale, Born's minimum length constant, a was thus calculated 

56 



CHAPTER 7. CONCLUSION 57 

to be approximately: 

a ~ 2.07 x 10-15m, 

leading to the approximate evaluation of Low's maximum rate of change constant, 

b: 

While the value of a seems at first glance to have physical meaning as it is of 

the same order as the classical electron radius, the value of b is several orders 

of magnitude too small. This in turn means a is too large to be taken very 

seriously. Also, only a finite value of theoretical masses were able to be matched 

up with physical particles. The theory was unable to account for the unmatched 

theoretical particles, nor was it able to explain the existence of an infinite number 

of theoretical particles. 

An alternative scale was considered, matching up the theoretical mass at the 

point ( n, k) = (2, 0) to the W boson. This yielded much more realistic values for 

a and b: 

a ~ 3.48 x 10-18m 

b ~ 2.61 X 109N. 

Using this scale, the Z boson was then matched to the second smallest root of 

(5,0). Again, this scale skipped several theoretical mass values, and we still cannot 

explain the supposed existence of an infinite number of theoretical particles. 

The most interesting aspect of this thesis is not its conclusions but the questions 

that arise from it. There are several avenues of research able to be undertaken 

to extend this theory. First of all, a supersymmetric generalization of Born's 

theoretical mass scale pertaining to fermions could be performed, but it is the 

author's suggestion that this would run into similar problems to that of this thesis. 

A more interesting and possibly more relevant direction for further research 

would be to study the self-reciprocal functions belonging to other reciprocal invari­

ants. Born and myself have used only the simplest non-trivial reciprocal invariant 

(being the metric operator), but there is no reason why we cannot use any quantity 
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that is reciprocally invariant. One such example is the hyper-Coulomb potential: 

1 1 
S(X,P)=!X +!Pi. 

There is also the possibility of extending Low's theory. For example, a canoni­

cal superalgebra could be developed. Also, it would be worthwhile examining the 

value of b obtained in this thesis, and ascertaining its validity. If it was valid then 

there exists even more possibilities for research in this area. 
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